code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
#!/usr/bin/python import os.path import cppcodebase import random def CreateLibJamfile(lib_number, classes): os.chdir(cppcodebase.lib_name(lib_number)) handle = file("Jamfile.jam", "w") handle.write ("SubDir TOP lib_" + str(lib_number) + " ;\n\n") handle.write ("SubDirHdrs $(INCLUDES) ;\n\n") handle.write ("Library lib_" + str(lib_number) + " :\n") for i in xrange(classes): handle.write(' class_' + str(i) + '.cpp\n') handle.write (' ;\n') os.chdir('..') def CreateFullJamfile(libs): handle = file("Jamfile.jam", "w") handle.write ("SubDir TOP ;\n\n") for i in xrange(libs): handle.write('SubInclude TOP ' + cppcodebase.lib_name(i) + ' ;\n') handle.write('\nWorkspace GeneratedLibs :\n') for i in xrange(libs): handle.write('\t\t' + cppcodebase.lib_name(i) + '\n') handle.write(';\n') handle = file("Jamrules.jam", "w") handle.write ('INCLUDES = $(TOP) ;\n') def CreateCodebase(libs, classes, internal_includes, external_includes): cppcodebase.SetDir('jamplus') cppcodebase.CreateSetOfLibraries(libs, classes, internal_includes, external_includes, CreateLibJamfile) CreateFullJamfile(libs) os.chdir('..')
[ "cppcodebase.SetDir", "cppcodebase.CreateSetOfLibraries", "cppcodebase.lib_name" ]
[((1043, 1072), 'cppcodebase.SetDir', 'cppcodebase.SetDir', (['"""jamplus"""'], {}), "('jamplus')\n", (1061, 1072), False, 'import cppcodebase\n'), ((1077, 1184), 'cppcodebase.CreateSetOfLibraries', 'cppcodebase.CreateSetOfLibraries', (['libs', 'classes', 'internal_includes', 'external_includes', 'CreateLibJamfile'], {}), '(libs, classes, internal_includes,\n external_includes, CreateLibJamfile)\n', (1109, 1184), False, 'import cppcodebase\n'), ((125, 157), 'cppcodebase.lib_name', 'cppcodebase.lib_name', (['lib_number'], {}), '(lib_number)\n', (145, 157), False, 'import cppcodebase\n'), ((683, 706), 'cppcodebase.lib_name', 'cppcodebase.lib_name', (['i'], {}), '(i)\n', (703, 706), False, 'import cppcodebase\n'), ((825, 848), 'cppcodebase.lib_name', 'cppcodebase.lib_name', (['i'], {}), '(i)\n', (845, 848), False, 'import cppcodebase\n')]
""" FOTA update tool which is called from the dispatcher during installation Copyright (C) 2017-2022 Intel Corporation SPDX-License-Identifier: Apache-2.0 """ import logging import os import platform from threading import Timer from typing import Any, Optional, Mapping from future.moves.urllib.parse import urlparse from inbm_common_lib.exceptions import UrlSecurityException from inbm_common_lib.utility import canonicalize_uri from inbm_common_lib.constants import REMOTE_SOURCE from .constants import * from .fota_error import FotaError from .manifest import parse_tool_options, parse_guid, parse_hold_reboot_flag from .os_factory import OsFactory, OsType from ..common import dispatcher_state from ..common.result_constants import * from ..constants import UMASK_OTA from ..dispatcher_callbacks import DispatcherCallbacks from ..dispatcher_exception import DispatcherException from ..downloader import download from ..packagemanager.local_repo import DirectoryRepo logger = logging.getLogger(__name__) class FOTA: """AKA FOTA Tool An instance of this class will be called from the dispatcher if the requested type of update is FOTA """ def __init__(self, parsed_manifest: Mapping[str, Optional[Any]], repo_type: str, dispatcher_callbacks: DispatcherCallbacks) -> None: """Base class constructor for variable assignment, to send telemetry info and create a new directory if no repo is present @param parsed_manifest: Parsed parameters from manifest @param repo_type: OTA source location -> local or remote @param dispatcher_callbacks: DispatcherCallbacks instance """ logger.debug(f"parsed_manifest: {parsed_manifest}") self._ota_element = parsed_manifest.get('resource') logger.debug(f"ota_element: {self._ota_element}") self._dispatcher_callbacks = dispatcher_callbacks self._uri: Optional[str] = parsed_manifest['uri'] self._repo_type = repo_type repo_path: Optional[str] """If repo_type=local, then use path and not URI""" if self._repo_type == REMOTE_SOURCE: if not self._uri: raise FotaError("missing URI.") else: self._pkg_filename = os.path.basename(urlparse(self._uri).path) repo_path = None else: if self._ota_element is None or 'path' not in self._ota_element: raise FotaError('attempting to use local repo for FOTA but no path specified') self._pkg_filename = os.path.basename(self._ota_element['path']) path = self._ota_element.get('path', None) logger.debug(f"path: {path}") if path is None: repo_path = None else: repo_path = os.path.dirname(path) logger.debug(f"repo_path: {repo_path}") self.__signature = parsed_manifest['signature'] self._hash_algorithm = parsed_manifest['hash_algorithm'] self._username = parsed_manifest['username'] self._password = parsed_manifest['password'] if self._dispatcher_callbacks is None: raise FotaError("dispatcher_callbacks not specified in FOTA constructor") self._dispatcher_callbacks.broker_core.telemetry("Firmware Update Tool launched") if repo_path: logger.debug("Using manifest specified repo path") self._repo = DirectoryRepo(repo_path) else: logger.debug("Using default repo path") self._repo = DirectoryRepo(CACHE) def install(self) -> Result: """checks current platform versions and then issues download and install. Performs clean() in failure conditions @return: (Result) containing status code and message """ logger.debug("") return_message: Result = Result() hold_reboot = False try: factory = OsFactory.get_factory( self._verify_os_supported(), self._ota_element, self._dispatcher_callbacks) bios_vendor, platform_product = factory.create_upgrade_checker().check() if self._repo_type.lower() == REMOTE_SOURCE: # need to perform this check here because some FOTA commands don't have a URI -- see constructor # (instead they have a path) if self._uri is None: raise FotaError( "internal error: _uri uninitialized in Fota.install with download requested in manifest") uri = canonicalize_uri(self._uri) download(dispatcher_callbacks=self._dispatcher_callbacks, uri=uri, repo=self._repo, umask=UMASK_OTA, username=self._username, password=self._password) else: logger.debug("Skipping FOTA upgradable check for local repo") if self._ota_element is None: raise FotaError("missing ota_element") tool_options = parse_tool_options(self._ota_element) logger.debug(f"tool_options: {tool_options}") guid = parse_guid(self._ota_element) logger.debug(f"guid: {guid}") hold_reboot = parse_hold_reboot_flag(self._ota_element) logger.debug(f"holdReboot: {hold_reboot}; pkg_filename: {self._pkg_filename}") factory.create_installer(self._repo, FOTA_CONF_PATH, FOTA_CONF_SCHEMA_LOC).\ install(guid=guid, tool_options=tool_options, pkg_filename=self._pkg_filename, signature=self.__signature, hash_algorithm=self._hash_algorithm, bios_vendor=bios_vendor, platform_product=platform_product) def trigger_reboot() -> None: """This method triggers a reboot.""" factory.create_rebooter().reboot() if not hold_reboot: logger.debug("") state = {'restart_reason': "fota"} dispatcher_state.write_dispatcher_state_to_state_file(state) time_to_trigger_reboot = Timer(0.1, trigger_reboot) time_to_trigger_reboot.start() return_message = COMMAND_SUCCESS else: status = 'Reboot on hold after Firmware update...' state = {'restart_reason': "pota"} dispatcher_state.write_dispatcher_state_to_state_file(state) logger.debug(status) self._dispatcher_callbacks.broker_core.telemetry(status) except (DispatcherException, FotaError, UrlSecurityException, ValueError, FileNotFoundError) as e: error = 'Firmware Update Aborted: ' + str(e) logger.error(error) self._dispatcher_callbacks.broker_core.telemetry(error) return_message = INSTALL_FAILURE self._repo.delete(self._pkg_filename) # In POTA, mender file needs to be deleted also. if hold_reboot: self._repo.delete_all() finally: if return_message == COMMAND_SUCCESS: status = 'Firmware update in process...' else: status = 'Firmware Update Aborted' dispatcher_state.clear_dispatcher_state() logger.debug('Firmware update status: ' + status) self._dispatcher_callbacks.broker_core.telemetry(status) return return_message @staticmethod def _verify_os_supported(): """checks if the current OS is supported. @return True if OS is supported; otherwise, false. @raise ValueError Unsupported OS """ logger.debug("") os_type = platform.system() logger.debug(f"os_type: {os_type}") if os_type in OsType.__members__: return os_type else: logger.error("Unsupported OS type.") raise ValueError('Unsupported OS type.') def check(self) -> None: """validate the manifest before FOTA""" logger.debug("") factory = OsFactory.get_factory( self._verify_os_supported(), self._ota_element, self._dispatcher_callbacks) factory.create_upgrade_checker().check()
[ "logging.getLogger", "threading.Timer", "os.path.dirname", "platform.system", "os.path.basename", "future.moves.urllib.parse.urlparse", "inbm_common_lib.utility.canonicalize_uri" ]
[((996, 1023), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1013, 1023), False, 'import logging\n'), ((7954, 7971), 'platform.system', 'platform.system', ([], {}), '()\n', (7969, 7971), False, 'import platform\n'), ((2609, 2652), 'os.path.basename', 'os.path.basename', (["self._ota_element['path']"], {}), "(self._ota_element['path'])\n", (2625, 2652), False, 'import os\n'), ((2858, 2879), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (2873, 2879), False, 'import os\n'), ((4627, 4654), 'inbm_common_lib.utility.canonicalize_uri', 'canonicalize_uri', (['self._uri'], {}), '(self._uri)\n', (4643, 4654), False, 'from inbm_common_lib.utility import canonicalize_uri\n'), ((6347, 6373), 'threading.Timer', 'Timer', (['(0.1)', 'trigger_reboot'], {}), '(0.1, trigger_reboot)\n', (6352, 6373), False, 'from threading import Timer\n'), ((2331, 2350), 'future.moves.urllib.parse.urlparse', 'urlparse', (['self._uri'], {}), '(self._uri)\n', (2339, 2350), False, 'from future.moves.urllib.parse import urlparse\n')]
from ipso_phen.ipapi.base.ipt_abstract import IptBase from ipso_phen.ipapi.tools import regions import numpy as np import cv2 import logging logger = logging.getLogger(__name__) from ipso_phen.ipapi.base import ip_common as ipc class IptFilterContourBySize(IptBase): def build_params(self): self.add_enabled_checkbox() self.add_spin_box( name="min_threshold", desc="Lower bound limit", default_value=0, minimum=0, maximum=100000000, hint="Only contours bigger than lower limit bound will be kept", ) self.add_spin_box( name="max_threshold", desc="Upper bound limit", default_value=100000000, minimum=0, maximum=100000000, hint="Only contours smaller than lower limit bound will be kept", ) self.add_roi_selector() def process_wrapper(self, **kwargs): """ Filter contour by size: 'Keep or descard contours according to their size Real time: False Keyword Arguments (in parentheses, argument name): * Activate tool (enabled): Toggle whether or not tool is active * Lower bound limit (min_threshold): Only contours bigger than lower limit bound will be kept * Upper bound limit (max_threshold): Only contours smaller than lower limit bound will be kept * Name of ROI to be used (roi_names): Operation will only be applied inside of ROI * ROI selection mode (roi_selection_mode): """ wrapper = self.init_wrapper(**kwargs) if wrapper is None: return False res = False try: if self.get_value_of("enabled") == 1: mask = self.get_mask() if mask is None: logger.error(f"FAIL {self.name}: mask must be initialized") return lt, ut = self.get_value_of("min_threshold"), self.get_value_of( "max_threshold" ) # Get source contours contours = [ c for c in ipc.get_contours( mask=mask, retrieve_mode=cv2.RETR_LIST, method=cv2.CHAIN_APPROX_SIMPLE, ) if cv2.contourArea(c, True) < 0 ] contours.sort(key=lambda x: cv2.contourArea(x), reverse=True) colors = ipc.build_color_steps(step_count=len(contours)) dbg_img = np.dstack( (np.zeros_like(mask), np.zeros_like(mask), np.zeros_like(mask)) ) for clr, cnt in zip(colors, contours): cv2.drawContours(dbg_img, [cnt], 0, clr, -1) dbg_img = np.dstack( ( cv2.bitwise_and(dbg_img[:, :, 0], mask), cv2.bitwise_and(dbg_img[:, :, 1], mask), cv2.bitwise_and(dbg_img[:, :, 2], mask), ) ) wrapper.store_image( image=dbg_img, text="all_contours", ) fnt = (cv2.FONT_HERSHEY_SIMPLEX, 0.6) for cnt in contours: area_ = cv2.contourArea(cnt) x, y, w, h = cv2.boundingRect(cnt) x += w // 2 - 10 y += h // 2 if area_ > 0: cv2.putText( dbg_img, f"{area_}", (x, y), fnt[0], fnt[1], (255, 255, 255), 2, ) wrapper.store_image( image=dbg_img, text="all_contours_with_sizes", ) dbg_img = np.dstack( (np.zeros_like(mask), np.zeros_like(mask), np.zeros_like(mask)) ) out_mask = np.zeros_like(mask) # Discarded contours size_cnts = np.dstack( (np.zeros_like(mask), np.zeros_like(mask), np.zeros_like(mask)) ) for cnt in contours: area_ = cv2.contourArea(cnt) if area_ < lt: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_RED, -1) elif area_ > ut: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_BLUE, -1) else: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_WHITE, -1) wrapper.store_image(image=size_cnts, text="cnts_by_size") # Discarded contours size_cnts = np.dstack( (np.zeros_like(mask), np.zeros_like(mask), np.zeros_like(mask)) ) for cnt in sorted( contours, key=lambda x: cv2.contourArea(x), reverse=True ): area_ = cv2.contourArea(cnt) if area_ < lt: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_RED, -1) elif area_ > ut: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_BLUE, -1) else: cv2.drawContours(size_cnts, [cnt], 0, ipc.C_WHITE, -1) wrapper.store_image(image=size_cnts, text="cnts_by_size_reversed") for cnt in contours: area_ = cv2.contourArea(cnt) if not (lt < area_ < ut): cv2.drawContours(dbg_img, [cnt], 0, ipc.C_RED, -1) # Discarded contours borders for cnt in contours: area_ = cv2.contourArea(cnt) if not (lt < area_ < ut): cv2.drawContours(dbg_img, [cnt], 0, ipc.C_MAROON, 4) # Kept contours for cnt in contours: area_ = cv2.contourArea(cnt) if lt < area_ < ut: cv2.drawContours(out_mask, [cnt], 0, 255, -1) cv2.drawContours(dbg_img, [cnt], 0, ipc.C_GREEN, -1) else: cv2.drawContours(out_mask, [cnt], 0, 0, -1) cv2.drawContours(dbg_img, [cnt], 0, ipc.C_RED, -1) dbg_img = np.dstack( ( cv2.bitwise_and(dbg_img[:, :, 0], mask), cv2.bitwise_and(dbg_img[:, :, 1], mask), cv2.bitwise_and(dbg_img[:, :, 2], mask), ) ) # Discarded sizes for cnt in contours: area_ = cv2.contourArea(cnt) if not (lt < area_ < ut): x, y, w, h = cv2.boundingRect(cnt) x += w // 2 - 10 y += h // 2 cv2.putText( dbg_img, f"{area_}", (x, y), fnt[0], fnt[1], ipc.C_RED, thickness=2, ) # Kept sizes for cnt in contours: area_ = cv2.contourArea(cnt) if lt < area_ < ut: x, y, w, h = cv2.boundingRect(cnt) x += w // 2 - 10 y += h // 2 cv2.putText( dbg_img, f"{area_}", (x, y), fnt[0], fnt[1], ipc.C_LIME, thickness=2, ) out_mask = cv2.bitwise_and( out_mask, mask, ) # Apply ROIs if needed rois = self.get_ipt_roi( wrapper=wrapper, roi_names=self.get_value_of("roi_names").replace(" ", "").split(","), selection_mode=self.get_value_of("roi_selection_mode"), ) if rois: untouched_mask = regions.delete_rois(rois=rois, image=self.get_mask()) self.result = cv2.bitwise_or( untouched_mask, regions.keep_rois(rois=rois, image=out_mask) ) self.demo_image = cv2.bitwise_or( dbg_img, np.dstack((untouched_mask, untouched_mask, untouched_mask)), ) else: self.result = out_mask self.demo_image = dbg_img wrapper.store_image(image=self.result, text="filtered_contours") wrapper.store_image(image=self.demo_image, text="tagged_contours") res = True else: wrapper.store_image(wrapper.current_image, "current_image") res = True except Exception as e: res = False logger.exception(f"Filter contour by size FAILED, exception: {repr(e)}") else: pass finally: return res @property def name(self): return "Filter contour by size" @property def package(self): return "TPMP" @property def real_time(self): return False @property def result_name(self): return "mask" @property def output_kind(self): return "mask" @property def use_case(self): return [ipc.ToolFamily.MASK_CLEANUP] @property def description(self): return """'Keep or descard contours according to their size"""
[ "logging.getLogger", "numpy.dstack", "ipso_phen.ipapi.tools.regions.keep_rois", "cv2.drawContours", "cv2.bitwise_and", "cv2.contourArea", "cv2.putText", "ipso_phen.ipapi.base.ip_common.get_contours", "numpy.zeros_like", "cv2.boundingRect" ]
[((159, 186), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (176, 186), False, 'import logging\n'), ((4349, 4368), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4362, 4368), True, 'import numpy as np\n'), ((8412, 8443), 'cv2.bitwise_and', 'cv2.bitwise_and', (['out_mask', 'mask'], {}), '(out_mask, mask)\n', (8427, 8443), False, 'import cv2\n'), ((2910, 2954), 'cv2.drawContours', 'cv2.drawContours', (['dbg_img', '[cnt]', '(0)', 'clr', '(-1)'], {}), '(dbg_img, [cnt], 0, clr, -1)\n', (2926, 2954), False, 'import cv2\n'), ((3515, 3535), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (3530, 3535), False, 'import cv2\n'), ((3570, 3591), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (3586, 3591), False, 'import cv2\n'), ((4620, 4640), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (4635, 4640), False, 'import cv2\n'), ((5401, 5421), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (5416, 5421), False, 'import cv2\n'), ((5913, 5933), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (5928, 5933), False, 'import cv2\n'), ((6170, 6190), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (6185, 6190), False, 'import cv2\n'), ((6416, 6436), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (6431, 6436), False, 'import cv2\n'), ((7202, 7222), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (7217, 7222), False, 'import cv2\n'), ((7843, 7863), 'cv2.contourArea', 'cv2.contourArea', (['cnt'], {}), '(cnt)\n', (7858, 7863), False, 'import cv2\n'), ((2276, 2369), 'ipso_phen.ipapi.base.ip_common.get_contours', 'ipc.get_contours', ([], {'mask': 'mask', 'retrieve_mode': 'cv2.RETR_LIST', 'method': 'cv2.CHAIN_APPROX_SIMPLE'}), '(mask=mask, retrieve_mode=cv2.RETR_LIST, method=cv2.\n CHAIN_APPROX_SIMPLE)\n', (2292, 2369), True, 'from ipso_phen.ipapi.base import ip_common as ipc\n'), ((2751, 2770), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (2764, 2770), True, 'import numpy as np\n'), ((2772, 2791), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (2785, 2791), True, 'import numpy as np\n'), ((2793, 2812), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (2806, 2812), True, 'import numpy as np\n'), ((3041, 3080), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 0]', 'mask'], {}), '(dbg_img[:, :, 0], mask)\n', (3056, 3080), False, 'import cv2\n'), ((3107, 3146), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 1]', 'mask'], {}), '(dbg_img[:, :, 1], mask)\n', (3122, 3146), False, 'import cv2\n'), ((3173, 3212), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 2]', 'mask'], {}), '(dbg_img[:, :, 2], mask)\n', (3188, 3212), False, 'import cv2\n'), ((3723, 3799), 'cv2.putText', 'cv2.putText', (['dbg_img', 'f"""{area_}"""', '(x, y)', 'fnt[0]', 'fnt[1]', '(255, 255, 255)', '(2)'], {}), "(dbg_img, f'{area_}', (x, y), fnt[0], fnt[1], (255, 255, 255), 2)\n", (3734, 3799), False, 'import cv2\n'), ((4239, 4258), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4252, 4258), True, 'import numpy as np\n'), ((4260, 4279), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4273, 4279), True, 'import numpy as np\n'), ((4281, 4300), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4294, 4300), True, 'import numpy as np\n'), ((4471, 4490), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4484, 4490), True, 'import numpy as np\n'), ((4492, 4511), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4505, 4511), True, 'import numpy as np\n'), ((4513, 4532), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (4526, 4532), True, 'import numpy as np\n'), ((4702, 4754), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_RED', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_RED, -1)\n', (4718, 4754), False, 'import cv2\n'), ((5156, 5175), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (5169, 5175), True, 'import numpy as np\n'), ((5177, 5196), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (5190, 5196), True, 'import numpy as np\n'), ((5198, 5217), 'numpy.zeros_like', 'np.zeros_like', (['mask'], {}), '(mask)\n', (5211, 5217), True, 'import numpy as np\n'), ((5483, 5535), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_RED', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_RED, -1)\n', (5499, 5535), False, 'import cv2\n'), ((6006, 6056), 'cv2.drawContours', 'cv2.drawContours', (['dbg_img', '[cnt]', '(0)', 'ipc.C_RED', '(-1)'], {}), '(dbg_img, [cnt], 0, ipc.C_RED, -1)\n', (6022, 6056), False, 'import cv2\n'), ((6263, 6315), 'cv2.drawContours', 'cv2.drawContours', (['dbg_img', '[cnt]', '(0)', 'ipc.C_MAROON', '(4)'], {}), '(dbg_img, [cnt], 0, ipc.C_MAROON, 4)\n', (6279, 6315), False, 'import cv2\n'), ((6503, 6548), 'cv2.drawContours', 'cv2.drawContours', (['out_mask', '[cnt]', '(0)', '(255)', '(-1)'], {}), '(out_mask, [cnt], 0, 255, -1)\n', (6519, 6548), False, 'import cv2\n'), ((6574, 6626), 'cv2.drawContours', 'cv2.drawContours', (['dbg_img', '[cnt]', '(0)', 'ipc.C_GREEN', '(-1)'], {}), '(dbg_img, [cnt], 0, ipc.C_GREEN, -1)\n', (6590, 6626), False, 'import cv2\n'), ((6679, 6722), 'cv2.drawContours', 'cv2.drawContours', (['out_mask', '[cnt]', '(0)', '(0)', '(-1)'], {}), '(out_mask, [cnt], 0, 0, -1)\n', (6695, 6722), False, 'import cv2\n'), ((6748, 6798), 'cv2.drawContours', 'cv2.drawContours', (['dbg_img', '[cnt]', '(0)', 'ipc.C_RED', '(-1)'], {}), '(dbg_img, [cnt], 0, ipc.C_RED, -1)\n', (6764, 6798), False, 'import cv2\n'), ((6885, 6924), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 0]', 'mask'], {}), '(dbg_img[:, :, 0], mask)\n', (6900, 6924), False, 'import cv2\n'), ((6951, 6990), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 1]', 'mask'], {}), '(dbg_img[:, :, 1], mask)\n', (6966, 6990), False, 'import cv2\n'), ((7017, 7056), 'cv2.bitwise_and', 'cv2.bitwise_and', (['dbg_img[:, :, 2]', 'mask'], {}), '(dbg_img[:, :, 2], mask)\n', (7032, 7056), False, 'import cv2\n'), ((7308, 7329), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (7324, 7329), False, 'import cv2\n'), ((7434, 7519), 'cv2.putText', 'cv2.putText', (['dbg_img', 'f"""{area_}"""', '(x, y)', 'fnt[0]', 'fnt[1]', 'ipc.C_RED'], {'thickness': '(2)'}), "(dbg_img, f'{area_}', (x, y), fnt[0], fnt[1], ipc.C_RED, thickness=2\n )\n", (7445, 7519), False, 'import cv2\n'), ((7943, 7964), 'cv2.boundingRect', 'cv2.boundingRect', (['cnt'], {}), '(cnt)\n', (7959, 7964), False, 'import cv2\n'), ((8069, 8154), 'cv2.putText', 'cv2.putText', (['dbg_img', 'f"""{area_}"""', '(x, y)', 'fnt[0]', 'fnt[1]', 'ipc.C_LIME'], {'thickness': '(2)'}), "(dbg_img, f'{area_}', (x, y), fnt[0], fnt[1], ipc.C_LIME,\n thickness=2)\n", (8080, 8154), False, 'import cv2\n'), ((9025, 9069), 'ipso_phen.ipapi.tools.regions.keep_rois', 'regions.keep_rois', ([], {'rois': 'rois', 'image': 'out_mask'}), '(rois=rois, image=out_mask)\n', (9042, 9069), False, 'from ipso_phen.ipapi.tools import regions\n'), ((9207, 9266), 'numpy.dstack', 'np.dstack', (['(untouched_mask, untouched_mask, untouched_mask)'], {}), '((untouched_mask, untouched_mask, untouched_mask))\n', (9216, 9266), True, 'import numpy as np\n'), ((2488, 2512), 'cv2.contourArea', 'cv2.contourArea', (['c', '(True)'], {}), '(c, True)\n', (2503, 2512), False, 'import cv2\n'), ((2581, 2599), 'cv2.contourArea', 'cv2.contourArea', (['x'], {}), '(x)\n', (2596, 2599), False, 'import cv2\n'), ((4818, 4871), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_BLUE', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_BLUE, -1)\n', (4834, 4871), False, 'import cv2\n'), ((4924, 4978), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_WHITE', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_WHITE, -1)\n', (4940, 4978), False, 'import cv2\n'), ((5319, 5337), 'cv2.contourArea', 'cv2.contourArea', (['x'], {}), '(x)\n', (5334, 5337), False, 'import cv2\n'), ((5599, 5652), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_BLUE', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_BLUE, -1)\n', (5615, 5652), False, 'import cv2\n'), ((5705, 5759), 'cv2.drawContours', 'cv2.drawContours', (['size_cnts', '[cnt]', '(0)', 'ipc.C_WHITE', '(-1)'], {}), '(size_cnts, [cnt], 0, ipc.C_WHITE, -1)\n', (5721, 5759), False, 'import cv2\n')]
from wrapper_tests.upsert_test import * from wrapper_tests.upsertvaluedict_test import * import os import logging import sys import argparse import signal logging.getLogger().setLevel(logging.DEBUG) ch = logging.StreamHandler(sys.stdout) ch.setLevel(logging.DEBUG) formatter = logging.Formatter('[%(asctime)s - %(name)s] %(message)s') ch.setFormatter(formatter) logging.getLogger().addHandler(ch) parser = argparse.ArgumentParser( description='Unit testing for fiery snap.') parser.add_argument('-config', type=str, default=None, help='toml config for keys and such, see key.toml') if __name__ == '__main__': unittest.main() os.kill(os.getpid(), signal.SIGKILL)
[ "logging.getLogger", "logging.StreamHandler", "argparse.ArgumentParser", "logging.Formatter", "os.getpid" ]
[((205, 238), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (226, 238), False, 'import logging\n'), ((278, 335), 'logging.Formatter', 'logging.Formatter', (['"""[%(asctime)s - %(name)s] %(message)s"""'], {}), "('[%(asctime)s - %(name)s] %(message)s')\n", (295, 335), False, 'import logging\n'), ((409, 476), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Unit testing for fiery snap."""'}), "(description='Unit testing for fiery snap.')\n", (432, 476), False, 'import argparse\n'), ((156, 175), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (173, 175), False, 'import logging\n'), ((363, 382), 'logging.getLogger', 'logging.getLogger', ([], {}), '()\n', (380, 382), False, 'import logging\n'), ((689, 700), 'os.getpid', 'os.getpid', ([], {}), '()\n', (698, 700), False, 'import os\n')]
#!/usr/bin/env python ############################################################################## ## # This file is part of Sardana ## # http://www.sardana-controls.org/ ## # Copyright 2011 CELLS / ALBA Synchrotron, Bellaterra, Spain ## # Sardana is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. ## # Sardana is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. ## # You should have received a copy of the GNU Lesser General Public License # along with Sardana. If not, see <http://www.gnu.org/licenses/>. ## ############################################################################## """ macrodescriptionviewer.py: """ import taurus.core from taurus.external.qt import Qt from taurus.qt.qtgui.base import TaurusBaseWidget class TaurusMacroDescriptionViewer(Qt.QTextEdit, TaurusBaseWidget): __pyqtSignals__ = ("modelChanged(const QString &)",) def __init__(self, parent=None, designMode=False): name = "TaurusMacroDescriptionView" self.call__init__wo_kw(Qt.QTextEdit, parent) self.call__init__(TaurusBaseWidget, name) self.setReadOnly(True) self.setFont(Qt.QFont("Courier", 9)) def defineStyle(self): """ Defines the initial style for the widget """ self.updateStyle() def getModelClass(self): return taurus.core.taurusdevice.TaurusDevice def updateStyle(self): self.update() def onMacroNameChanged(self, macroName): """Can be connected to an event emitted after macro name was changed. As an argument receives macroName and ask BaseMacroServer object about already prepared and stored in MacroInfoObj object macro description""" macroServer = self.getModelObj() if macroServer is None or macroName is None or macroName == "": self.setText("") return self.setText(str(macroServer.getMacroInfoObj(macroName).doc)) def getFormatedToolTip(self, cache=True): """This method was overridden to get rid of the default tooltip of TaurusWidget""" return "" model = Qt.pyqtProperty("QString", TaurusBaseWidget.getModel, TaurusBaseWidget.setModel, TaurusBaseWidget.resetModel) useParentModel = Qt.pyqtProperty("bool", TaurusBaseWidget.getUseParentModel, TaurusBaseWidget.setUseParentModel, TaurusBaseWidget.resetUseParentModel) def test(): import sys from sardana.taurus.core.tango.sardana.macroserver import registerExtensions registerExtensions() app = Qt.QApplication(sys.argv) taurusMacroDescriptionView = TaurusMacroDescriptionViewer(designMode=1) if len(sys.argv) != 2: taurusMacroDescriptionView.setModel("macroserver/zreszela/1") else: taurusMacroDescriptionView.setModel(sys.argv[1]) taurusMacroDescriptionView.onMacroChanged("mv") taurusMacroDescriptionView.show() sys.exit(app.exec_()) if __name__ == "__main__": test()
[ "sardana.taurus.core.tango.sardana.macroserver.registerExtensions", "taurus.external.qt.Qt.QApplication", "taurus.external.qt.Qt.pyqtProperty", "taurus.external.qt.Qt.QFont" ]
[((2447, 2561), 'taurus.external.qt.Qt.pyqtProperty', 'Qt.pyqtProperty', (['"""QString"""', 'TaurusBaseWidget.getModel', 'TaurusBaseWidget.setModel', 'TaurusBaseWidget.resetModel'], {}), "('QString', TaurusBaseWidget.getModel, TaurusBaseWidget.\n setModel, TaurusBaseWidget.resetModel)\n", (2462, 2561), False, 'from taurus.external.qt import Qt\n'), ((2663, 2800), 'taurus.external.qt.Qt.pyqtProperty', 'Qt.pyqtProperty', (['"""bool"""', 'TaurusBaseWidget.getUseParentModel', 'TaurusBaseWidget.setUseParentModel', 'TaurusBaseWidget.resetUseParentModel'], {}), "('bool', TaurusBaseWidget.getUseParentModel,\n TaurusBaseWidget.setUseParentModel, TaurusBaseWidget.resetUseParentModel)\n", (2678, 2800), False, 'from taurus.external.qt import Qt\n'), ((3022, 3042), 'sardana.taurus.core.tango.sardana.macroserver.registerExtensions', 'registerExtensions', ([], {}), '()\n', (3040, 3042), False, 'from sardana.taurus.core.tango.sardana.macroserver import registerExtensions\n'), ((3053, 3078), 'taurus.external.qt.Qt.QApplication', 'Qt.QApplication', (['sys.argv'], {}), '(sys.argv)\n', (3068, 3078), False, 'from taurus.external.qt import Qt\n'), ((1487, 1509), 'taurus.external.qt.Qt.QFont', 'Qt.QFont', (['"""Courier"""', '(9)'], {}), "('Courier', 9)\n", (1495, 1509), False, 'from taurus.external.qt import Qt\n')]
from functools import partial from uuid import UUID from dateutil.parser import parse as dateutil_parse from django.apps import apps from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from rest_framework import serializers from rest_framework.exceptions import ValidationError from rest_framework.fields import ReadOnlyField, UUIDField from datahub.core.constants import Country as CountryEnum from datahub.core.validate_utils import DataCombiner from datahub.core.validators import InRule, OperatorRule, RulesBasedValidator, ValidationRule from datahub.metadata.models import AdministrativeArea, Country MAX_LENGTH = settings.CHAR_FIELD_MAX_LENGTH class ConstantModelSerializer(serializers.Serializer): """Constant models serializer.""" id = serializers.ReadOnlyField() name = serializers.ReadOnlyField() disabled_on = serializers.ReadOnlyField() class PermittedFieldsModelSerializer(serializers.ModelSerializer): """Lets you get permitted fields only. Needs 'permissions' attribute on Meta class in following format: permissions = { 'app_name.permission': 'field' } If user doesn't have required permission, corresponding field will be filtered out. Note: The current implementation does not allow access to the field if request.user is None. """ def get_fields(self): """Gets filtered dictionary of fields based on permissions.""" assert hasattr(self.Meta, 'permissions'), ( 'Class {serializer_class} missing "Meta.permissions" attribute'.format( serializer_class=self.__class__.__name__, ) ) fields = super().get_fields() request = self.context.get('request', None) if request: permissions = self.Meta.permissions for permission, field in permissions.items(): if not request.user or not request.user.has_perm(permission): del fields[field] return fields class NestedRelatedField(serializers.RelatedField): """DRF serialiser field for foreign keys and many-to-many fields. Serialises as a dict with 'id' plus other specified keys. """ default_error_messages = { 'required': 'This field is required.', 'missing_pk': 'pk not provided.', 'does_not_exist': 'Invalid pk "{pk_value}" - object does not exist.', 'incorrect_type': 'Incorrect type. Expected object, received {' 'data_type}.', } def __init__(self, model, extra_fields=('name',), **kwargs): """Initialises the related field. :param model: Model of the related field. :param extra_fields: List of extra fields to include in the representation. Can contain field names as strings or as tuples of (field name, DRF field). E.g. ['field1', ('field2', CharField())] :param kwargs: Keyword arguments to pass to RelatedField.__init__() """ super().__init__(**kwargs) model_class = (apps.get_model(model) if isinstance(model, str) else model) self.pk_field = UUIDField() self._fields = [ field if isinstance(field, tuple) else (field, ReadOnlyField()) for field in extra_fields ] self._model = model_class def get_queryset(self): """Returns the queryset corresponding to the model.""" return self._model.objects.all() def to_internal_value(self, data): """Converts a user-provided value to a model instance.""" try: if isinstance(data, (str, UUID)): id_repr = data else: id_repr = data['id'] data = self.pk_field.to_internal_value(id_repr) return self.get_queryset().get(pk=data) except ObjectDoesNotExist: self.fail('does_not_exist', pk_value=data) except KeyError: self.fail('missing_pk') except (TypeError, ValueError): self.fail('incorrect_type', data_type=type(data).__name__) def to_representation(self, value): """Converts a model instance to a dict representation.""" if not value: return value extra = { field_name: field.to_representation(getattr(value, field_name)) for field_name, field in self._fields } return { **extra, 'id': self.pk_field.to_representation(value.pk), } def get_choices(self, cutoff=None): """Returns choices for DRF UI. Standard implementation uses a dict, but that doesn't work as our representation isn't hashable. """ queryset = self.get_queryset() if queryset is None: return () if cutoff is not None: queryset = queryset[:cutoff] return _Choices( ( self.pk_field.to_representation(item.pk), self.display_value(item), ) for item in queryset ) RelaxedDateField = partial(serializers.DateField, input_formats=('iso-8601', '%Y/%m/%d')) class RelaxedDateTimeField(serializers.Field): """ Relaxed DateTime field. Front end uses free text field for data filters, that's why we need to accept date/datetime in various different formats. DRF DateTimeField doesn't offer that flexibility. """ default_error_messages = { 'invalid': 'Date is in incorrect format.', } def to_internal_value(self, data): """Parses data into datetime.""" try: data = dateutil_parse(data) except ValueError: self.fail('invalid', value=data) return data def to_representation(self, value): """Formats the datetime using a normal DateTimeField.""" repr_field = serializers.DateTimeField() return repr_field.to_representation(value) class RelaxedURLField(serializers.URLField): """URLField subclass that prepends http:// to input and output when a scheme is not present.""" def to_internal_value(self, data): """Converts a user-provided value to an internal value.""" return super().to_internal_value(self._fix_missing_url_scheme(data)) def to_representation(self, value): """Converts a stored value to the external representation.""" return super().to_representation(self._fix_missing_url_scheme(value)) @staticmethod def _fix_missing_url_scheme(value): if value and '://' not in value: return f'http://{value}' return value class _Choices: """Wrapper for choices to make them compatible with DRF.""" def __init__(self, choices): self._choices = choices def items(self): """Returns the choices.""" return self._choices class AddressSerializer(serializers.ModelSerializer): """ ModelSerializer that can be used to simulate nested address objects. E.g. Model: class MultiAddressModel(models.Model): primary_address_1 = models.CharField(max_length=MAX_LENGTH) primary_address_2 = models.CharField(max_length=MAX_LENGTH, blank=True) primary_address_town = models.CharField(max_length=MAX_LENGTH) primary_address_county = models.CharField(max_length=MAX_LENGTH, blank=True) primary_address_country = models.ForeignKey( Country, on_delete=models.PROTECT, related_name='+', ) primary_address_postcode = models.CharField(max_length=MAX_LENGTH, blank=True) secondary_address_1 = models.CharField(max_length=MAX_LENGTH, blank=True) secondary_address_2 = models.CharField(max_length=MAX_LENGTH, blank=True, null=True) secondary_address_town = models.CharField(max_length=MAX_LENGTH, blank=True) secondary_address_county = models.CharField(max_length=MAX_LENGTH, blank=True) secondary_address_country = models.ForeignKey( Country, null=True, on_delete=models.SET_NULL, related_name='+', ) secondary_address_postcode = models.CharField(max_length=MAX_LENGTH, blank=True) Serializer: class MultiAddressModelSerializer(serializers.ModelSerializer): primary_address = AddressSerializer( source_model=MultiAddressModel, address_source_prefix='primary_address', ) secondary_address = AddressSerializer( source_model=MultiAddressModel, address_source_prefix='secondary_address', required=False, allow_null=True, ) class Meta: model = MultiAddressModel fields = ['primary_address', 'secondary_address'] Will produce the following API response: { 'primary_address': { 'line_1': '2', 'line_2': '', 'town': 'London', 'county': '', 'postcode': '', 'country': { 'id': '80756b9a-5d95-e211-a939-e4115bead28a', 'name': 'United Kingdom', }, }, 'secondary_address': { 'line_1': '1', 'line_2': '', 'town': 'Muckamore', 'county': '', 'postcode': '', 'country': { 'id': '736a9ab2-5d95-e211-a939-e4115bead28a', 'name': 'Ireland', }, }, }, Please note: 1. None values for CharFields will be converted to '' 2. If all address field values are blank the nested object in the response will return None E.g. Fiven the following fields' values: secondary_address_1='' secondary_address_2='' secondary_address_town='' secondary_address_county='' secondary_address_postcode='' secondary_address_country_id=None The equivalent API response body will be: 'secondary_address': None The same applies for changing the data. 3. If AddressSerializer has required=False, the validation is triggered only if at least one of the fields is passed in. """ line_1 = serializers.CharField( max_length=MAX_LENGTH, allow_blank=True, required=False, default='', source='{source_prefix}_1', ) line_2 = serializers.CharField( max_length=MAX_LENGTH, allow_blank=True, required=False, default='', source='{source_prefix}_2', ) town = serializers.CharField( max_length=MAX_LENGTH, allow_blank=True, required=False, default='', source='{source_prefix}_town', ) county = serializers.CharField( max_length=MAX_LENGTH, allow_blank=True, required=False, default='', source='{source_prefix}_county', ) postcode = serializers.CharField( max_length=MAX_LENGTH, allow_blank=True, required=False, default='', source='{source_prefix}_postcode', ) area = NestedRelatedField( AdministrativeArea, allow_null=True, required=False, source='{source_prefix}_area', ) country = NestedRelatedField( Country, allow_null=True, required=False, source='{source_prefix}_country', ) REQUIRED_FIELDS = ( 'line_1', 'town', 'country', ) def __init__( self, source_model, *args, address_source_prefix='address', area_can_be_required=False, postcode_can_be_required=False, **kwargs, ): """ Initialises the serializer. It populates all necessary parts (e.g. Meta model, source, fields' source). """ # Define a custom Meta so that the Meta model can be specified as an argument class MultiAddressMeta(self.Meta): model = source_model self.Meta = MultiAddressMeta kwargs.setdefault('source', '*') super().__init__(*args, **kwargs) # populate fields' source for field in self.fields.values(): field.source = field.source.format(source_prefix=address_source_prefix) field.source_attrs = field.source.split('.') self.area_can_be_required = area_can_be_required self.postcode_can_be_required = postcode_can_be_required self.address_source_prefix = address_source_prefix def add_area_validator(self, validators): """ Mark area as required for US and Canadian companies. """ validators.append( RulesBasedValidator( ValidationRule( 'required', OperatorRule(f'{self.address_source_prefix}_area', bool), when=InRule( f'{self.address_source_prefix}_country', ( CountryEnum.united_states.value.id, CountryEnum.canada.value.id, ), ), ), ), ) def add_postcode_validator(self, validators): """ Mark postcode as required for US and Canadian companies. """ validators.append( RulesBasedValidator( ValidationRule( 'required', OperatorRule(f'{self.address_source_prefix}_postcode', bool), when=InRule( f'{self.address_source_prefix}_country', ( CountryEnum.united_states.value.id, CountryEnum.canada.value.id, ), ), ), ), ) def get_validators(self): """ Append ValidationRule for area/postcode depending on feature flag/context Only mark area/postcode required if country is US/Canada & called from context where area is safe to require, and if feature flag enabled. Currently the only context where area is safe to require is CompanySerializer """ validators = super().get_validators() if self.area_can_be_required: self.add_area_validator(validators) if self.postcode_can_be_required: self.add_postcode_validator(validators) return validators def run_validation(self, data=serializers.empty): """ Converts None to dict with default values so that those values can be used to reset the fields on the model. """ if data or not self.allow_null: normalised_data = data else: normalised_data = { field_name: None if (field.default == serializers.empty) else field.default for field_name, field in self.fields.items() } return super().run_validation(data=normalised_data) def to_representation(self, value): """ It returns None if none of the address values is set. E.g. { 'address': None } instead of { 'address': { 'line_1': '', 'line_2': '', 'town': '', 'county': '', 'postcode': '', 'country': None } } """ address_dict = super().to_representation(value) if not any(address_dict.values()): return None # for each address field, replace None with default if possible for field_name, value in address_dict.items(): field_default = self.fields[field_name].default if value is None and field_default is not serializers.empty: address_dict[field_name] = field_default return address_dict def should_validate(self, data_combiner): """ Returns true if the data should be validated. """ if self.required: return True return any( data_combiner.get_value(field.source) for field in self.fields.values() ) def validate(self, attrs): """ Validates the data if necessary. This is needed because some addresses only need to be validated if they are passed in. """ validated_data = super().validate(attrs) data_combiner = DataCombiner(self.parent.instance, validated_data) if self.should_validate(data_combiner): errors = {} for field_name in self.REQUIRED_FIELDS: field = self.fields[field_name] value = data_combiner.get_value(field.source) if not value: errors[field_name] = self.error_messages['required'] if errors: raise ValidationError(errors) return validated_data class Meta: """Meta options.""" model = None fields = ( 'line_1', 'line_2', 'town', 'county', 'postcode', 'area', 'country', )
[ "rest_framework.serializers.DateTimeField", "dateutil.parser.parse", "datahub.core.validators.OperatorRule", "datahub.core.validate_utils.DataCombiner", "rest_framework.serializers.ReadOnlyField", "rest_framework.fields.UUIDField", "rest_framework.fields.ReadOnlyField", "rest_framework.serializers.CharField", "functools.partial", "datahub.core.validators.InRule", "rest_framework.exceptions.ValidationError", "django.apps.apps.get_model" ]
[((5268, 5338), 'functools.partial', 'partial', (['serializers.DateField'], {'input_formats': "('iso-8601', '%Y/%m/%d')"}), "(serializers.DateField, input_formats=('iso-8601', '%Y/%m/%d'))\n", (5275, 5338), False, 'from functools import partial\n'), ((793, 820), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (818, 820), False, 'from rest_framework import serializers\n'), ((832, 859), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (857, 859), False, 'from rest_framework import serializers\n'), ((878, 905), 'rest_framework.serializers.ReadOnlyField', 'serializers.ReadOnlyField', ([], {}), '()\n', (903, 905), False, 'from rest_framework import serializers\n'), ((10591, 10714), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': 'MAX_LENGTH', 'allow_blank': '(True)', 'required': '(False)', 'default': '""""""', 'source': '"""{source_prefix}_1"""'}), "(max_length=MAX_LENGTH, allow_blank=True, required=\n False, default='', source='{source_prefix}_1')\n", (10612, 10714), False, 'from rest_framework import serializers\n'), ((10770, 10893), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': 'MAX_LENGTH', 'allow_blank': '(True)', 'required': '(False)', 'default': '""""""', 'source': '"""{source_prefix}_2"""'}), "(max_length=MAX_LENGTH, allow_blank=True, required=\n False, default='', source='{source_prefix}_2')\n", (10791, 10893), False, 'from rest_framework import serializers\n'), ((10947, 11073), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': 'MAX_LENGTH', 'allow_blank': '(True)', 'required': '(False)', 'default': '""""""', 'source': '"""{source_prefix}_town"""'}), "(max_length=MAX_LENGTH, allow_blank=True, required=\n False, default='', source='{source_prefix}_town')\n", (10968, 11073), False, 'from rest_framework import serializers\n'), ((11129, 11257), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': 'MAX_LENGTH', 'allow_blank': '(True)', 'required': '(False)', 'default': '""""""', 'source': '"""{source_prefix}_county"""'}), "(max_length=MAX_LENGTH, allow_blank=True, required=\n False, default='', source='{source_prefix}_county')\n", (11150, 11257), False, 'from rest_framework import serializers\n'), ((11315, 11445), 'rest_framework.serializers.CharField', 'serializers.CharField', ([], {'max_length': 'MAX_LENGTH', 'allow_blank': '(True)', 'required': '(False)', 'default': '""""""', 'source': '"""{source_prefix}_postcode"""'}), "(max_length=MAX_LENGTH, allow_blank=True, required=\n False, default='', source='{source_prefix}_postcode')\n", (11336, 11445), False, 'from rest_framework import serializers\n'), ((3310, 3321), 'rest_framework.fields.UUIDField', 'UUIDField', ([], {}), '()\n', (3319, 3321), False, 'from rest_framework.fields import ReadOnlyField, UUIDField\n'), ((6059, 6086), 'rest_framework.serializers.DateTimeField', 'serializers.DateTimeField', ([], {}), '()\n', (6084, 6086), False, 'from rest_framework import serializers\n'), ((16934, 16984), 'datahub.core.validate_utils.DataCombiner', 'DataCombiner', (['self.parent.instance', 'validated_data'], {}), '(self.parent.instance, validated_data)\n', (16946, 16984), False, 'from datahub.core.validate_utils import DataCombiner\n'), ((3202, 3223), 'django.apps.apps.get_model', 'apps.get_model', (['model'], {}), '(model)\n', (3216, 3223), False, 'from django.apps import apps\n'), ((5819, 5839), 'dateutil.parser.parse', 'dateutil_parse', (['data'], {}), '(data)\n', (5833, 5839), True, 'from dateutil.parser import parse as dateutil_parse\n'), ((17368, 17391), 'rest_framework.exceptions.ValidationError', 'ValidationError', (['errors'], {}), '(errors)\n', (17383, 17391), False, 'from rest_framework.exceptions import ValidationError\n'), ((3406, 3421), 'rest_framework.fields.ReadOnlyField', 'ReadOnlyField', ([], {}), '()\n', (3419, 3421), False, 'from rest_framework.fields import ReadOnlyField, UUIDField\n'), ((13171, 13227), 'datahub.core.validators.OperatorRule', 'OperatorRule', (['f"""{self.address_source_prefix}_area"""', 'bool'], {}), "(f'{self.address_source_prefix}_area', bool)\n", (13183, 13227), False, 'from datahub.core.validators import InRule, OperatorRule, RulesBasedValidator, ValidationRule\n'), ((13852, 13912), 'datahub.core.validators.OperatorRule', 'OperatorRule', (['f"""{self.address_source_prefix}_postcode"""', 'bool'], {}), "(f'{self.address_source_prefix}_postcode', bool)\n", (13864, 13912), False, 'from datahub.core.validators import InRule, OperatorRule, RulesBasedValidator, ValidationRule\n'), ((13254, 13373), 'datahub.core.validators.InRule', 'InRule', (['f"""{self.address_source_prefix}_country"""', '(CountryEnum.united_states.value.id, CountryEnum.canada.value.id)'], {}), "(f'{self.address_source_prefix}_country', (CountryEnum.united_states.\n value.id, CountryEnum.canada.value.id))\n", (13260, 13373), False, 'from datahub.core.validators import InRule, OperatorRule, RulesBasedValidator, ValidationRule\n'), ((13939, 14058), 'datahub.core.validators.InRule', 'InRule', (['f"""{self.address_source_prefix}_country"""', '(CountryEnum.united_states.value.id, CountryEnum.canada.value.id)'], {}), "(f'{self.address_source_prefix}_country', (CountryEnum.united_states.\n value.id, CountryEnum.canada.value.id))\n", (13945, 14058), False, 'from datahub.core.validators import InRule, OperatorRule, RulesBasedValidator, ValidationRule\n')]
import pytest from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO from stable_baselines.ddpg import AdaptiveParamNoiseSpec from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox from stable_baselines.common.vec_env import DummyVecEnv PARAM_NOISE_DDPG = AdaptiveParamNoiseSpec(initial_stddev=float(0.2), desired_action_stddev=float(0.2)) # Hyperparameters for learning identity for each RL model LEARN_FUNC_DICT = { 'a2c': lambda e: A2C(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'acer': lambda e: ACER(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'acktr': lambda e: ACKTR(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'deepq': lambda e: DeepQ(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'ddpg': lambda e: DDPG(policy="MlpPolicy", env=e, param_noise=PARAM_NOISE_DDPG).learn(total_timesteps=1000), 'ppo1': lambda e: PPO1(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'ppo2': lambda e: PPO2(policy="MlpPolicy", env=e).learn(total_timesteps=1000), 'trpo': lambda e: TRPO(policy="MlpPolicy", env=e).learn(total_timesteps=1000), } @pytest.mark.slow @pytest.mark.parametrize("model_name", ['a2c', 'acer', 'acktr', 'deepq', 'ppo1', 'ppo2', 'trpo']) def test_identity(model_name): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) :param model_name: (str) Name of the RL model """ env = DummyVecEnv([lambda: IdentityEnv(10)]) model = LEARN_FUNC_DICT[model_name](env) n_trials = 1000 obs = env.reset() action_shape = model.predict(obs, deterministic=False)[0].shape action, _ = model.predict(obs, deterministic=True) assert action.shape == action_shape for _ in range(n_trials): new_action = model.predict(obs, deterministic=True)[0] assert action == model.predict(obs, deterministic=True)[0] assert new_action.shape == action_shape # Free memory del model, env @pytest.mark.slow @pytest.mark.parametrize("model_name", ['a2c', 'ddpg', 'ppo1', 'ppo2', 'trpo']) def test_identity_continuous(model_name): """ Test if the algorithm (with a given policy) can learn an identity transformation (i.e. return observation as an action) :param model_name: (str) Name of the RL model """ env = DummyVecEnv([lambda: IdentityEnvBox(eps=0.5)]) model = LEARN_FUNC_DICT[model_name](env) n_trials = 1000 obs = env.reset() action_shape = model.predict(obs, deterministic=False)[0].shape action, _ = model.predict(obs, deterministic=True) assert action.shape == action_shape for _ in range(n_trials): new_action = model.predict(obs, deterministic=True)[0] assert action == model.predict(obs, deterministic=True)[0] assert new_action.shape == action_shape
[ "stable_baselines.TRPO", "stable_baselines.DDPG", "stable_baselines.PPO1", "stable_baselines.common.identity_env.IdentityEnvBox", "stable_baselines.common.identity_env.IdentityEnv", "stable_baselines.ACKTR", "pytest.mark.parametrize", "stable_baselines.PPO2", "stable_baselines.DeepQ", "stable_baselines.ACER", "stable_baselines.A2C" ]
[((1184, 1284), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model_name"""', "['a2c', 'acer', 'acktr', 'deepq', 'ppo1', 'ppo2', 'trpo']"], {}), "('model_name', ['a2c', 'acer', 'acktr', 'deepq',\n 'ppo1', 'ppo2', 'trpo'])\n", (1207, 1284), False, 'import pytest\n'), ((2074, 2152), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""model_name"""', "['a2c', 'ddpg', 'ppo1', 'ppo2', 'trpo']"], {}), "('model_name', ['a2c', 'ddpg', 'ppo1', 'ppo2', 'trpo'])\n", (2097, 2152), False, 'import pytest\n'), ((486, 516), 'stable_baselines.A2C', 'A2C', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (489, 516), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((568, 599), 'stable_baselines.ACER', 'ACER', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (572, 599), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((652, 684), 'stable_baselines.ACKTR', 'ACKTR', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (657, 684), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((737, 769), 'stable_baselines.DeepQ', 'DeepQ', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (742, 769), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((821, 882), 'stable_baselines.DDPG', 'DDPG', ([], {'policy': '"""MlpPolicy"""', 'env': 'e', 'param_noise': 'PARAM_NOISE_DDPG'}), "(policy='MlpPolicy', env=e, param_noise=PARAM_NOISE_DDPG)\n", (825, 882), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((934, 965), 'stable_baselines.PPO1', 'PPO1', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (938, 965), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((1017, 1048), 'stable_baselines.PPO2', 'PPO2', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (1021, 1048), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((1100, 1131), 'stable_baselines.TRPO', 'TRPO', ([], {'policy': '"""MlpPolicy"""', 'env': 'e'}), "(policy='MlpPolicy', env=e)\n", (1104, 1131), False, 'from stable_baselines import A2C, ACER, ACKTR, DeepQ, DDPG, PPO1, PPO2, TRPO\n'), ((1538, 1553), 'stable_baselines.common.identity_env.IdentityEnv', 'IdentityEnv', (['(10)'], {}), '(10)\n', (1549, 1553), False, 'from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox\n'), ((2421, 2444), 'stable_baselines.common.identity_env.IdentityEnvBox', 'IdentityEnvBox', ([], {'eps': '(0.5)'}), '(eps=0.5)\n', (2435, 2444), False, 'from stable_baselines.common.identity_env import IdentityEnv, IdentityEnvBox\n')]
import tensorflow as tf from tensorflow.python.saved_model import signature_constants from tensorflow.python.saved_model import tag_constants export_dir = './reference/00000002' graph_pb = './creditcardfraud.pb' builder = tf.saved_model.builder.SavedModelBuilder(export_dir) with tf.gfile.GFile(graph_pb, "rb") as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) sigs = {} with tf.Session(graph=tf.Graph()) as sess: # name="" is important to ensure we don't get spurious prefixing tf.import_graph_def(graph_def, name="") g = tf.get_default_graph() inp1 = g.get_tensor_by_name("transaction:0") inp2 = g.get_tensor_by_name("reference:0") out = g.get_tensor_by_name("output:0") sigs[signature_constants.DEFAULT_SERVING_SIGNATURE_DEF_KEY] = \ tf.saved_model.signature_def_utils.predict_signature_def( {"transaction": inp1, "reference": inp2}, {"output": out}) builder.add_meta_graph_and_variables(sess, [tag_constants.SERVING], signature_def_map=sigs) builder.save()
[ "tensorflow.saved_model.signature_def_utils.predict_signature_def", "tensorflow.Graph", "tensorflow.gfile.GFile", "tensorflow.GraphDef", "tensorflow.import_graph_def", "tensorflow.saved_model.builder.SavedModelBuilder", "tensorflow.get_default_graph" ]
[((224, 276), 'tensorflow.saved_model.builder.SavedModelBuilder', 'tf.saved_model.builder.SavedModelBuilder', (['export_dir'], {}), '(export_dir)\n', (264, 276), True, 'import tensorflow as tf\n'), ((283, 313), 'tensorflow.gfile.GFile', 'tf.gfile.GFile', (['graph_pb', '"""rb"""'], {}), "(graph_pb, 'rb')\n", (297, 313), True, 'import tensorflow as tf\n'), ((336, 349), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (347, 349), True, 'import tensorflow as tf\n'), ((518, 557), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def'], {'name': '""""""'}), "(graph_def, name='')\n", (537, 557), True, 'import tensorflow as tf\n'), ((566, 588), 'tensorflow.get_default_graph', 'tf.get_default_graph', ([], {}), '()\n', (586, 588), True, 'import tensorflow as tf\n'), ((805, 924), 'tensorflow.saved_model.signature_def_utils.predict_signature_def', 'tf.saved_model.signature_def_utils.predict_signature_def', (["{'transaction': inp1, 'reference': inp2}", "{'output': out}"], {}), "({'transaction':\n inp1, 'reference': inp2}, {'output': out})\n", (861, 924), True, 'import tensorflow as tf\n'), ((424, 434), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (432, 434), True, 'import tensorflow as tf\n')]
import torch from scipy.stats import median_absolute_deviation class Transform_Base(object): """ Base class for transformations based on some data. """ def __init__(self, Ytr): self.Ytr = Ytr # Transform the mean def scale_mean(self, mu): return mu # Reverse the transformation to the mean def unscale_mean(self, mu): return mu # Reverse the transformation to the variance def unscale_var(self, var): return var class Transform_Standardize(Transform_Base): """ Standardize the data """ def __init__(self, Ytr): super().__init__(Ytr) self.Ytr_mean = Ytr.mean() self.Ytr_std = Ytr.std() self.Ytr_var = Ytr.var() def scale_mean(self, mu): return (mu - self.Ytr_mean) / self.Ytr_std def unscale_mean(self, mu): return mu * self.Ytr_std + self.Ytr_mean def unscale_var(self, var): return var * self.Ytr_var class Transform_StandardizeRobustly(Transform_Base): """ Robustly standardize the data by estimating its scale """ def __init__(self, Ytr): super().__init__(Ytr) self.Ytr_median = Ytr.median() Ytr_numpy = Ytr.numpy().ravel() self.Ytr_scale = torch.tensor(median_absolute_deviation(Ytr_numpy)) self.Ytr_scaleSQR = self.Ytr_scale**2 def scale_mean(self, mu): return (mu - self.Ytr_median) / self.Ytr_scale def unscale_mean(self, mu): return mu * self.Ytr_scale + self.Ytr_median def unscale_var(self, var): return var * self.Ytr_scaleSQR
[ "scipy.stats.median_absolute_deviation" ]
[((1327, 1363), 'scipy.stats.median_absolute_deviation', 'median_absolute_deviation', (['Ytr_numpy'], {}), '(Ytr_numpy)\n', (1352, 1363), False, 'from scipy.stats import median_absolute_deviation\n')]
import pytest from prefect.core import Edge, Flow, Parameter, Task from prefect.tasks.core import collections from prefect.tasks.core.constants import Constant from prefect.tasks.core.function import FunctionTask class IdentityTask(Task): def run(self, x): return x class TestConstant: def test_constant_task_returns_its_value(self): x = Constant("x") assert x.run() == "x" y = Constant(100) assert y.run() == 100 def test_automatic_create_constant_task(self): with Flow(name="test") as flow: t = Task() t.set_dependencies(upstream_tasks=[4]) assert len(flow.tasks) == 2 assert any(isinstance(t, Constant) for t in flow.tasks) class TestFunctionTask: def test_function_task_requires_callable(self): with pytest.raises(TypeError): FunctionTask(fn=1) def test_function_task_takes_name_from_callable(self): def my_fn(): pass f = FunctionTask(fn=my_fn) assert f.name == "my_fn" def test_function_task_takes_name_from_arg_if_provided(self): def my_fn(): pass f = FunctionTask(fn=my_fn, name="test") assert f.name == "test" def test_function_task_docstring(self): def my_fn(): """An example docstring.""" pass # Original docstring available on class assert "FunctionTask" in FunctionTask.__doc__ # Wrapped function is docstring on instance f = FunctionTask(fn=my_fn) assert f.__doc__ == my_fn.__doc__ # Except when no docstring on wrapped function f = FunctionTask(fn=lambda x: x + 1) assert "FunctionTask" in f.__doc__ def test_function_task_sets__wrapped__(self): def my_fn(): """An example function""" pass t = FunctionTask(fn=my_fn) assert t.__wrapped__ == my_fn assert not hasattr(FunctionTask, "__wrapped__") class TestCollections: def test_list_returns_a_list(self): l = collections.List() with Flow(name="test") as f: l.bind(1, 2) assert f.run().result[l].result == [1, 2] def test_list_binds_varargs(self): t1 = Task() t2 = Task() l = collections.List() with Flow(name="test") as f: l.bind(t1, t2) assert set([t1, t2, l]) == f.tasks assert Edge(t1, l, key="arg_1") in f.edges assert Edge(t2, l, key="arg_2") in f.edges def test_tuple_returns_a_tuple(self): l = collections.Tuple() with Flow(name="test") as f: l.bind(1, 2) assert f.run().result[l].result == (1, 2) def test_tuple_binds_varargs(self): t1 = Task() t2 = Task() l = collections.Tuple() with Flow(name="test") as f: l.bind(t1, t2) assert set([t1, t2, l]) == f.tasks assert Edge(t1, l, key="arg_1") in f.edges assert Edge(t2, l, key="arg_2") in f.edges def test_set_returns_a_set(self): l = collections.Set() with Flow(name="test") as f: l.bind(1, 2) assert f.run().result[l].result == set([1, 2]) def test_set_binds_varargs(self): t1 = Task() t2 = Task() l = collections.Set() with Flow(name="test") as f: l.bind(t1, t2) assert set([t1, t2, l]) == f.tasks assert Edge(t1, l, key="arg_1") in f.edges assert Edge(t2, l, key="arg_2") in f.edges def test_dict_returns_a_dict(self): l = collections.Dict() with Flow(name="test") as f: l.bind(keys=["a", "b"], values=[1, 2]) assert f.run().result[l].result == dict(a=1, b=2) def test_dict_handles_non_string_keys(self): l = collections.Dict() with Flow(name="test") as f: l.bind(keys=[None, 55], values=[1, 2]) assert f.run().result[l].result == {None: 1, 55: 2} def test_dict_raises_for_differing_length_key_value_pairs(self): l = collections.Dict() with Flow(name="test") as f: l.bind(keys=["a"], values=[1, 2]) state = f.run() assert state.result[l].is_failed() assert isinstance(state.result[l].result, ValueError) def test_list_automatically_applied_to_callargs(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() with Flow(name="test") as f: identity.bind(x=[x, y]) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.List) for t in f.tasks) == 1 assert state.result[identity].result == [1, 2] def test_list_automatically_applied_to_callargs_imperative(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() f = Flow(name="test") f.add_task(identity) identity.bind(x=[x, y], flow=f) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.List) for t in f.tasks) == 1 assert state.result[identity].result == [1, 2] def test_tuple_automatically_applied_to_callargs(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() with Flow(name="test") as f: identity.bind(x=(x, y)) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.Tuple) for t in f.tasks) == 1 assert state.result[identity].result == (1, 2) def test_tuple_automatically_applied_to_callargs_imperative(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() f = Flow(name="test") f.add_task(identity) identity.bind(x=(x, y), flow=f) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.Tuple) for t in f.tasks) == 1 assert state.result[identity].result == (1, 2) def test_set_automatically_applied_to_callargs(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() with Flow(name="test") as f: identity.bind(x=set([x, y])) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.Set) for t in f.tasks) == 1 assert state.result[identity].result == set([1, 2]) def test_set_automatically_applied_to_callargs_imperative(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() f = Flow(name="test") f.add_task(identity) identity.bind(x=set([x, y]), flow=f) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 4 assert sum(isinstance(t, collections.Set) for t in f.tasks) == 1 assert state.result[identity].result == set([1, 2]) def test_dict_automatically_applied_to_callargs(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() with Flow(name="test") as f: identity.bind(x=dict(a=x, b=y)) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 5 # 2 params, identity, Dict, List of dict values assert sum(isinstance(t, collections.Dict) for t in f.tasks) == 1 assert state.result[identity].result == dict(a=1, b=2) def test_dict_automatically_applied_to_callargs_imperative(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() f = Flow(name="test") f.add_task(identity) identity.bind(x=dict(a=x, b=y), flow=f) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 5 # 2 params, identity, Dict, List of dict values assert sum(isinstance(t, collections.Dict) for t in f.tasks) == 1 assert state.result[identity].result == dict(a=1, b=2) def test_nested_collection_automatically_applied_to_callargs(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() with Flow(name="test") as f: identity.bind(x=dict(a=[x, dict(y=y)], b=(y, set([x])))) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 10 assert state.result[identity].result == dict(a=[1, dict(y=2)], b=(2, set([1]))) def test_nested_collection_automatically_applied_to_callargs_imperative(self): x = Parameter("x") y = Parameter("y") identity = IdentityTask() f = Flow(name="test") f.add_task(identity) identity.bind(x=dict(a=[x, dict(y=y)], b=(y, set([x]))), flow=f) state = f.run(parameters=dict(x=1, y=2)) assert len(f.tasks) == 10 assert state.result[identity].result == dict(a=[1, dict(y=2)], b=(2, set([1]))) def test_list_maintains_sort_order_for_more_than_10_items(self): # https://github.com/PrefectHQ/prefect/issues/2451 l = collections.List() with Flow(name="test") as f: l.bind(*list(range(15))) assert f.run().result[l].result == list(range(15)) def test_tuple_maintains_sort_order_for_more_than_10_items(self): # https://github.com/PrefectHQ/prefect/issues/2451 t = collections.Tuple() with Flow(name="test") as f: t.bind(*list(range(15))) assert f.run().result[t].result == tuple(range(15))
[ "prefect.tasks.core.collections.Tuple", "prefect.core.Task", "prefect.tasks.core.collections.Dict", "prefect.core.Edge", "prefect.tasks.core.constants.Constant", "prefect.tasks.core.collections.List", "prefect.tasks.core.collections.Set", "prefect.tasks.core.function.FunctionTask", "pytest.raises", "prefect.core.Parameter", "prefect.core.Flow" ]
[((367, 380), 'prefect.tasks.core.constants.Constant', 'Constant', (['"""x"""'], {}), "('x')\n", (375, 380), False, 'from prefect.tasks.core.constants import Constant\n'), ((424, 437), 'prefect.tasks.core.constants.Constant', 'Constant', (['(100)'], {}), '(100)\n', (432, 437), False, 'from prefect.tasks.core.constants import Constant\n'), ((993, 1015), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': 'my_fn'}), '(fn=my_fn)\n', (1005, 1015), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((1167, 1202), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': 'my_fn', 'name': '"""test"""'}), "(fn=my_fn, name='test')\n", (1179, 1202), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((1526, 1548), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': 'my_fn'}), '(fn=my_fn)\n', (1538, 1548), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((1659, 1691), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': '(lambda x: x + 1)'}), '(fn=lambda x: x + 1)\n', (1671, 1691), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((1875, 1897), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': 'my_fn'}), '(fn=my_fn)\n', (1887, 1897), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((2069, 2087), 'prefect.tasks.core.collections.List', 'collections.List', ([], {}), '()\n', (2085, 2087), False, 'from prefect.tasks.core import collections\n'), ((2253, 2259), 'prefect.core.Task', 'Task', ([], {}), '()\n', (2257, 2259), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2273, 2279), 'prefect.core.Task', 'Task', ([], {}), '()\n', (2277, 2279), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2292, 2310), 'prefect.tasks.core.collections.List', 'collections.List', ([], {}), '()\n', (2308, 2310), False, 'from prefect.tasks.core import collections\n'), ((2576, 2595), 'prefect.tasks.core.collections.Tuple', 'collections.Tuple', ([], {}), '()\n', (2593, 2595), False, 'from prefect.tasks.core import collections\n'), ((2762, 2768), 'prefect.core.Task', 'Task', ([], {}), '()\n', (2766, 2768), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2782, 2788), 'prefect.core.Task', 'Task', ([], {}), '()\n', (2786, 2788), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2801, 2820), 'prefect.tasks.core.collections.Tuple', 'collections.Tuple', ([], {}), '()\n', (2818, 2820), False, 'from prefect.tasks.core import collections\n'), ((3082, 3099), 'prefect.tasks.core.collections.Set', 'collections.Set', ([], {}), '()\n', (3097, 3099), False, 'from prefect.tasks.core import collections\n'), ((3269, 3275), 'prefect.core.Task', 'Task', ([], {}), '()\n', (3273, 3275), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3289, 3295), 'prefect.core.Task', 'Task', ([], {}), '()\n', (3293, 3295), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3308, 3325), 'prefect.tasks.core.collections.Set', 'collections.Set', ([], {}), '()\n', (3323, 3325), False, 'from prefect.tasks.core import collections\n'), ((3589, 3607), 'prefect.tasks.core.collections.Dict', 'collections.Dict', ([], {}), '()\n', (3605, 3607), False, 'from prefect.tasks.core import collections\n'), ((3816, 3834), 'prefect.tasks.core.collections.Dict', 'collections.Dict', ([], {}), '()\n', (3832, 3834), False, 'from prefect.tasks.core import collections\n'), ((4065, 4083), 'prefect.tasks.core.collections.Dict', 'collections.Dict', ([], {}), '()\n', (4081, 4083), False, 'from prefect.tasks.core import collections\n'), ((4368, 4382), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (4377, 4382), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4395, 4409), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (4404, 4409), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4812, 4826), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (4821, 4826), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4839, 4853), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (4848, 4853), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4900, 4917), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (4904, 4917), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5272, 5286), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (5281, 5286), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5299, 5313), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (5308, 5313), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5718, 5732), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (5727, 5732), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5745, 5759), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (5754, 5759), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5806, 5823), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (5810, 5823), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6177, 6191), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (6186, 6191), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6204, 6218), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (6213, 6218), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6629, 6643), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (6638, 6643), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6656, 6670), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (6665, 6670), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6717, 6734), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (6721, 6734), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7097, 7111), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (7106, 7111), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7124, 7138), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (7133, 7138), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7606, 7620), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (7615, 7620), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7633, 7647), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (7642, 7647), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7694, 7711), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (7698, 7711), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8143, 8157), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (8152, 8157), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8170, 8184), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (8179, 8184), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8593, 8607), 'prefect.core.Parameter', 'Parameter', (['"""x"""'], {}), "('x')\n", (8602, 8607), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8620, 8634), 'prefect.core.Parameter', 'Parameter', (['"""y"""'], {}), "('y')\n", (8629, 8634), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8681, 8698), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (8685, 8698), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((9114, 9132), 'prefect.tasks.core.collections.List', 'collections.List', ([], {}), '()\n', (9130, 9132), False, 'from prefect.tasks.core import collections\n'), ((9408, 9427), 'prefect.tasks.core.collections.Tuple', 'collections.Tuple', ([], {}), '()\n', (9425, 9427), False, 'from prefect.tasks.core import collections\n'), ((533, 550), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (537, 550), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((576, 582), 'prefect.core.Task', 'Task', ([], {}), '()\n', (580, 582), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((825, 849), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (838, 849), False, 'import pytest\n'), ((863, 881), 'prefect.tasks.core.function.FunctionTask', 'FunctionTask', ([], {'fn': '(1)'}), '(fn=1)\n', (875, 881), False, 'from prefect.tasks.core.function import FunctionTask\n'), ((2101, 2118), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (2105, 2118), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2324, 2341), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (2328, 2341), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2434, 2458), 'prefect.core.Edge', 'Edge', (['t1', 'l'], {'key': '"""arg_1"""'}), "(t1, l, key='arg_1')\n", (2438, 2458), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2485, 2509), 'prefect.core.Edge', 'Edge', (['t2', 'l'], {'key': '"""arg_2"""'}), "(t2, l, key='arg_2')\n", (2489, 2509), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2609, 2626), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (2613, 2626), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2834, 2851), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (2838, 2851), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2944, 2968), 'prefect.core.Edge', 'Edge', (['t1', 'l'], {'key': '"""arg_1"""'}), "(t1, l, key='arg_1')\n", (2948, 2968), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((2995, 3019), 'prefect.core.Edge', 'Edge', (['t2', 'l'], {'key': '"""arg_2"""'}), "(t2, l, key='arg_2')\n", (2999, 3019), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3113, 3130), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (3117, 3130), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3339, 3356), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (3343, 3356), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3449, 3473), 'prefect.core.Edge', 'Edge', (['t1', 'l'], {'key': '"""arg_1"""'}), "(t1, l, key='arg_1')\n", (3453, 3473), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3500, 3524), 'prefect.core.Edge', 'Edge', (['t2', 'l'], {'key': '"""arg_2"""'}), "(t2, l, key='arg_2')\n", (3504, 3524), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3621, 3638), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (3625, 3638), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((3848, 3865), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (3852, 3865), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4097, 4114), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (4101, 4114), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((4457, 4474), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (4461, 4474), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((5361, 5378), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (5365, 5378), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((6266, 6283), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (6270, 6283), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((7186, 7203), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (7190, 7203), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((8232, 8249), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (8236, 8249), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((9146, 9163), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (9150, 9163), False, 'from prefect.core import Edge, Flow, Parameter, Task\n'), ((9441, 9458), 'prefect.core.Flow', 'Flow', ([], {'name': '"""test"""'}), "(name='test')\n", (9445, 9458), False, 'from prefect.core import Edge, Flow, Parameter, Task\n')]
# This file is part of QuTiP: Quantum Toolbox in Python. # # Copyright (c) 2011 and later, <NAME> and <NAME>. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # # 3. Neither the name of the QuTiP: Quantum Toolbox in Python nor the names # of its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A # PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. ############################################################################### """ This module contains functions for generating Qobj representation of a variety of commonly occuring quantum operators. """ __all__ = ['jmat', 'spin_Jx', 'spin_Jy', 'spin_Jz', 'spin_Jm', 'spin_Jp', 'spin_J_set', 'sigmap', 'sigmam', 'sigmax', 'sigmay', 'sigmaz', 'destroy', 'create', 'qeye', 'identity', 'position', 'momentum', 'num', 'squeeze', 'squeezing', 'displace', 'commutator', 'qutrit_ops', 'qdiags', 'phase', 'qzero', 'enr_destroy', 'enr_identity', 'charge', 'tunneling'] import numbers import numpy as np import scipy import scipy.sparse as sp from qutip.qobj import Qobj from qutip.fastsparse import fast_csr_matrix, fast_identity from qutip.dimensions import flatten # # Spin operators # def jmat(j, *args): """Higher-order spin operators: Parameters ---------- j : float Spin of operator args : str Which operator to return 'x','y','z','+','-'. If no args given, then output is ['x','y','z'] Returns ------- jmat : qobj / ndarray ``qobj`` for requested spin operator(s). Examples -------- >>> jmat(1) # doctest: +SKIP [ Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0. 0.70710678 0. ] [ 0.70710678 0. 0.70710678] [ 0. 0.70710678 0. ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-0.70710678j 0.+0.j ] [ 0.+0.70710678j 0.+0.j 0.-0.70710678j] [ 0.+0.j 0.+0.70710678j 0.+0.j ]] Quantum object: dims = [[3], [3]], \ shape = [3, 3], type = oper, isHerm = True Qobj data = [[ 1. 0. 0.] [ 0. 0. 0.] [ 0. 0. -1.]]] Notes ----- If no 'args' input, then returns array of ['x','y','z'] operators. """ if (np.fix(2 * j) != 2 * j) or (j < 0): raise TypeError('j must be a non-negative integer or half-integer') if not args: return jmat(j, 'x'), jmat(j, 'y'), jmat(j, 'z') if args[0] == '+': A = _jplus(j) elif args[0] == '-': A = _jplus(j).getH() elif args[0] == 'x': A = 0.5 * (_jplus(j) + _jplus(j).getH()) elif args[0] == 'y': A = -0.5 * 1j * (_jplus(j) - _jplus(j).getH()) elif args[0] == 'z': A = _jz(j) else: raise TypeError('Invalid type') return Qobj(A) def _jplus(j): """ Internal functions for generating the data representing the J-plus operator. """ m = np.arange(j, -j - 1, -1, dtype=complex) data = (np.sqrt(j * (j + 1.0) - (m + 1.0) * m))[1:] N = m.shape[0] ind = np.arange(1, N, dtype=np.int32) ptr = np.array(list(range(N-1))+[N-1]*2, dtype=np.int32) ptr[-1] = N-1 return fast_csr_matrix((data,ind,ptr), shape=(N,N)) def _jz(j): """ Internal functions for generating the data representing the J-z operator. """ N = int(2*j+1) data = np.array([j-k for k in range(N) if (j-k)!=0], dtype=complex) # Even shaped matrix if (N % 2 == 0): ind = np.arange(N, dtype=np.int32) ptr = np.arange(N+1,dtype=np.int32) ptr[-1] = N # Odd shaped matrix else: j = int(j) ind = np.array(list(range(j))+list(range(j+1,N)), dtype=np.int32) ptr = np.array(list(range(j+1))+list(range(j,N)), dtype=np.int32) ptr[-1] = N-1 return fast_csr_matrix((data,ind,ptr), shape=(N,N)) # # Spin j operators: # def spin_Jx(j): """Spin-j x operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'x') def spin_Jy(j): """Spin-j y operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'y') def spin_Jz(j): """Spin-j z operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, 'z') def spin_Jm(j): """Spin-j annihilation operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '-') def spin_Jp(j): """Spin-j creation operator Parameters ---------- j : float Spin of operator Returns ------- op : Qobj ``qobj`` representation of the operator. """ return jmat(j, '+') def spin_J_set(j): """Set of spin-j operators (x, y, z) Parameters ---------- j : float Spin of operators Returns ------- list : list of Qobj list of ``qobj`` representating of the spin operator. """ return jmat(j) # # Pauli spin 1/2 operators: # def sigmap(): """Creation operator for Pauli spins. Examples -------- >>> sigmap() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 0. 0.]] """ return jmat(1 / 2., '+') def sigmam(): """Annihilation operator for Pauli spins. Examples -------- >>> sigmam() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 0.] [ 1. 0.]] """ return jmat(1 / 2., '-') def sigmax(): """Pauli spin 1/2 sigma-x operator Examples -------- >>> sigmax() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = False Qobj data = [[ 0. 1.] [ 1. 0.]] """ return 2.0 * jmat(1.0 / 2, 'x') def sigmay(): """Pauli spin 1/2 sigma-y operator. Examples -------- >>> sigmay() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 0.+0.j 0.-1.j] [ 0.+1.j 0.+0.j]] """ return 2.0 * jmat(1.0 / 2, 'y') def sigmaz(): """Pauli spin 1/2 sigma-z operator. Examples -------- >>> sigmaz() # doctest: +SKIP Quantum object: dims = [[2], [2]], \ shape = [2, 2], type = oper, isHerm = True Qobj data = [[ 1. 0.] [ 0. -1.]] """ return 2.0 * jmat(1.0 / 2, 'z') # # DESTROY returns annihilation operator for N dimensional Hilbert space # out = destroy(N), N is integer value & N>0 # def destroy(N, offset=0): '''Destruction (lowering) operator. Parameters ---------- N : int Dimension of Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Qobj for lowering operator. Examples -------- >>> destroy(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.00000000+0.j 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j] [ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j]] ''' if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") data = np.sqrt(np.arange(offset+1, N+offset, dtype=complex)) ind = np.arange(1,N, dtype=np.int32) ptr = np.arange(N+1, dtype=np.int32) ptr[-1] = N-1 return Qobj(fast_csr_matrix((data,ind,ptr),shape=(N,N)), isherm=False) # # create returns creation operator for N dimensional Hilbert space # out = create(N), N is integer value & N>0 # def create(N, offset=0): '''Creation (raising) operator. Parameters ---------- N : int Dimension of Hilbert space. Returns ------- oper : qobj Qobj for raising operator. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Examples -------- >>> create(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 1.00000000+0.j 0.00000000+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 1.41421356+0.j 0.00000000+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.00000000+0.j 1.73205081+0.j 0.00000000+0.j]] ''' if not isinstance(N, (int, np.integer)): # raise error if N not integer raise ValueError("Hilbert space dimension must be integer value") qo = destroy(N, offset=offset) # create operator using destroy function return qo.dag() def _implicit_tensor_dimensions(dimensions): """ Total flattened size and operator dimensions for operator creation routines that automatically perform tensor products. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) First dimension of an operator which can create an implicit tensor product. If the type is `int`, it is promoted first to `[dimensions]`. From there, it should be one of the two-elements `dims` parameter of a `qutip.Qobj` representing an `oper` or `super`, with possible tensor products. Returns ------- size : int Dimension of backing matrix required to represent operator. dimensions : list Dimension list in the form required by ``Qobj`` creation. """ if not isinstance(dimensions, list): dimensions = [dimensions] flat = flatten(dimensions) if not all(isinstance(x, numbers.Integral) and x >= 0 for x in flat): raise ValueError("All dimensions must be integers >= 0") return np.prod(flat), [dimensions, dimensions] def qzero(dimensions): """ Zero operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- qzero : qobj Zero operator Qobj. """ size, dimensions = _implicit_tensor_dimensions(dimensions) # A sparse matrix with no data is equal to a zero matrix. return Qobj(fast_csr_matrix(shape=(size, size), dtype=complex), dims=dimensions, isherm=True) # # QEYE returns identity operator for a Hilbert space with dimensions dims. # a = qeye(N), N is integer or list of integers & all elements >= 0 # def qeye(dimensions): """ Identity operator. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- oper : qobj Identity operator Qobj. Examples -------- >>> qeye(3) # doctest: +SKIP Quantum object: dims = [[3], [3]], shape = (3, 3), type = oper, \ isherm = True Qobj data = [[ 1. 0. 0.] [ 0. 1. 0.] [ 0. 0. 1.]] >>> qeye([2,2]) # doctest: +SKIP Quantum object: dims = [[2, 2], [2, 2]], shape = (4, 4), type = oper, \ isherm = True Qobj data = [[1. 0. 0. 0.] [0. 1. 0. 0.] [0. 0. 1. 0.] [0. 0. 0. 1.]] """ size, dimensions = _implicit_tensor_dimensions(dimensions) return Qobj(fast_identity(size), dims=dimensions, isherm=True, isunitary=True) def identity(dims): """Identity operator. Alternative name to :func:`qeye`. Parameters ---------- dimensions : (int) or (list of int) or (list of list of int) Dimension of Hilbert space. If provided as a list of ints, then the dimension is the product over this list, but the ``dims`` property of the new Qobj are set to this list. This can produce either `oper` or `super` depending on the passed `dimensions`. Returns ------- oper : qobj Identity operator Qobj. """ return qeye(dims) def position(N, offset=0): """ Position operator x=1/sqrt(2)*(a+a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Position operator as Qobj. """ a = destroy(N, offset=offset) return 1.0 / np.sqrt(2.0) * (a + a.dag()) def momentum(N, offset=0): """ Momentum operator p=-1j/sqrt(2)*(a-a.dag()) Parameters ---------- N : int Number of Fock states in Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Momentum operator as Qobj. """ a = destroy(N, offset=offset) return -1j / np.sqrt(2.0) * (a - a.dag()) def num(N, offset=0): """Quantum object for number operator. Parameters ---------- N : int The dimension of the Hilbert space. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper: qobj Qobj for number operator. Examples -------- >>> num(4) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = True Qobj data = [[0 0 0 0] [0 1 0 0] [0 0 2 0] [0 0 0 3]] """ if offset == 0: data = np.arange(1,N, dtype=complex) ind = np.arange(1,N, dtype=np.int32) ptr = np.array([0]+list(range(0,N)), dtype=np.int32) ptr[-1] = N-1 else: data = np.arange(offset, offset + N, dtype=complex) ind = np.arange(N, dtype=np.int32) ptr = np.arange(N+1,dtype=np.int32) ptr[-1] = N return Qobj(fast_csr_matrix((data,ind,ptr), shape=(N,N)), isherm=True) def squeeze(N, z, offset=0): """Single-mode Squeezing operator. Parameters ---------- N : int Dimension of hilbert space. z : float/complex Squeezing parameter. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : :class:`qutip.qobj.Qobj` Squeezing operator. Examples -------- >>> squeeze(4, 0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.98441565+0.j 0.00000000+0.j 0.17585742+0.j 0.00000000+0.j] [ 0.00000000+0.j 0.95349007+0.j 0.00000000+0.j 0.30142443+0.j] [-0.17585742+0.j 0.00000000+0.j 0.98441565+0.j 0.00000000+0.j] [ 0.00000000+0.j -0.30142443+0.j 0.00000000+0.j 0.95349007+0.j]] """ a = destroy(N, offset=offset) op = (1 / 2.0) * np.conj(z) * (a ** 2) - (1 / 2.0) * z * (a.dag()) ** 2 return op.expm() def squeezing(a1, a2, z): """Generalized squeezing operator. .. math:: S(z) = \\exp\\left(\\frac{1}{2}\\left(z^*a_1a_2 - za_1^\\dagger a_2^\\dagger\\right)\\right) Parameters ---------- a1 : :class:`qutip.qobj.Qobj` Operator 1. a2 : :class:`qutip.qobj.Qobj` Operator 2. z : float/complex Squeezing parameter. Returns ------- oper : :class:`qutip.qobj.Qobj` Squeezing operator. """ b = 0.5 * (np.conj(z) * (a1 * a2) - z * (a1.dag() * a2.dag())) return b.expm() def displace(N, alpha, offset=0): """Single-mode displacement operator. Parameters ---------- N : int Dimension of Hilbert space. alpha : float/complex Displacement amplitude. offset : int (default 0) The lowest number state that is included in the finite number state representation of the operator. Returns ------- oper : qobj Displacement operator. Examples --------- >>> displace(4,0.25) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isHerm = False Qobj data = [[ 0.96923323+0.j -0.24230859+0.j 0.04282883+0.j -0.00626025+0.j] [ 0.24230859+0.j 0.90866411+0.j -0.33183303+0.j 0.07418172+0.j] [ 0.04282883+0.j 0.33183303+0.j 0.84809499+0.j -0.41083747+0.j] [ 0.00626025+0.j 0.07418172+0.j 0.41083747+0.j 0.90866411+0.j]] """ a = destroy(N, offset=offset) D = (alpha * a.dag() - np.conj(alpha) * a).expm() return D def commutator(A, B, kind="normal"): """ Return the commutator of kind `kind` (normal, anti) of the two operators A and B. """ if kind == 'normal': return A * B - B * A elif kind == 'anti': return A * B + B * A else: raise TypeError("Unknown commutator kind '%s'" % kind) def qutrit_ops(): """ Operators for a three level system (qutrit). Returns ------- opers: array `array` of qutrit operators. """ from qutip.states import qutrit_basis one, two, three = qutrit_basis() sig11 = one * one.dag() sig22 = two * two.dag() sig33 = three * three.dag() sig12 = one * two.dag() sig23 = two * three.dag() sig31 = three * one.dag() return np.array([sig11, sig22, sig33, sig12, sig23, sig31], dtype=object) def qdiags(diagonals, offsets, dims=None, shape=None): """ Constructs an operator from an array of diagonals. Parameters ---------- diagonals : sequence of array_like Array of elements to place along the selected diagonals. offsets : sequence of ints Sequence for diagonals to be set: - k=0 main diagonal - k>0 kth upper diagonal - k<0 kth lower diagonal dims : list, optional Dimensions for operator shape : list, tuple, optional Shape of operator. If omitted, a square operator large enough to contain the diagonals is generated. See Also -------- scipy.sparse.diags : for usage information. Notes ----- This function requires SciPy 0.11+. Examples -------- >>> qdiags(sqrt(range(1, 4)), 1) # doctest: +SKIP Quantum object: dims = [[4], [4]], \ shape = [4, 4], type = oper, isherm = False Qobj data = [[ 0. 1. 0. 0. ] [ 0. 0. 1.41421356 0. ] [ 0. 0. 0. 1.73205081] [ 0. 0. 0. 0. ]] """ data = sp.diags(diagonals, offsets, shape, format='csr', dtype=complex) if not dims: dims = [[], []] if not shape: shape = [] return Qobj(data, dims, list(shape)) def phase(N, phi0=0): """ Single-mode Pegg-Barnett phase operator. Parameters ---------- N : int Number of basis states in Hilbert space. phi0 : float Reference phase. Returns ------- oper : qobj Phase operator with respect to reference phase. Notes ----- The Pegg-Barnett phase operator is Hermitian on a truncated Hilbert space. """ phim = phi0 + (2.0 * np.pi * np.arange(N)) / N # discrete phase angles n = np.arange(N).reshape((N, 1)) states = np.array([np.sqrt(kk) / np.sqrt(N) * np.exp(1.0j * n * kk) for kk in phim]) ops = np.array([np.outer(st, st.conj()) for st in states]) return Qobj(np.sum(ops, axis=0)) def enr_destroy(dims, excitations): """ Generate annilation operators for modes in a excitation-number-restricted state space. For example, consider a system consisting of 4 modes, each with 5 states. The total hilbert space size is 5**4 = 625. If we are only interested in states that contain up to 2 excitations, we only need to include states such as (0, 0, 0, 0) (0, 0, 0, 1) (0, 0, 0, 2) (0, 0, 1, 0) (0, 0, 1, 1) (0, 0, 2, 0) ... This function creates annihilation operators for the 4 modes that act within this state space: a1, a2, a3, a4 = enr_destroy([5, 5, 5, 5], excitations=2) From this point onwards, the annihiltion operators a1, ..., a4 can be used to setup a Hamiltonian, collapse operators and expectation-value operators, etc., following the usual pattern. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. Returns ------- a_ops : list of qobj A list of annihilation operators for each mode in the composite quantum system described by dims. """ from qutip.states import enr_state_dictionaries nstates, state2idx, idx2state = enr_state_dictionaries(dims, excitations) a_ops = [sp.lil_matrix((nstates, nstates), dtype=np.complex) for _ in range(len(dims))] for n1, state1 in idx2state.items(): for n2, state2 in idx2state.items(): for idx, a in enumerate(a_ops): s1 = [s for idx2, s in enumerate(state1) if idx != idx2] s2 = [s for idx2, s in enumerate(state2) if idx != idx2] if (state1[idx] == state2[idx] - 1) and (s1 == s2): a_ops[idx][n1, n2] = np.sqrt(state2[idx]) return [Qobj(a, dims=[dims, dims]) for a in a_ops] def enr_identity(dims, excitations): """ Generate the identity operator for the excitation-number restricted state space defined by the `dims` and `exciations` arguments. See the docstring for enr_fock for a more detailed description of these arguments. Parameters ---------- dims : list A list of the dimensions of each subsystem of a composite quantum system. excitations : integer The maximum number of excitations that are to be included in the state space. state : list of integers The state in the number basis representation. Returns ------- op : Qobj A Qobj instance that represent the identity operator in the exication-number-restricted state space defined by `dims` and `exciations`. """ from qutip.states import enr_state_dictionaries nstates, _, _ = enr_state_dictionaries(dims, excitations) data = sp.eye(nstates, nstates, dtype=np.complex) return Qobj(data, dims=[dims, dims]) def charge(Nmax, Nmin=None, frac = 1): """ Generate the diagonal charge operator over charge states from Nmin to Nmax. Parameters ---------- Nmax : int Maximum charge state to consider. Nmin : int (default = -Nmax) Lowest charge state to consider. frac : float (default = 1) Specify fractional charge if needed. Returns ------- C : Qobj Charge operator over [Nmin,Nmax]. Notes ----- .. versionadded:: 3.2 """ if Nmin is None: Nmin = -Nmax diag = np.arange(Nmin, Nmax+1, dtype=float) if frac != 1: diag *= frac C = sp.diags(diag, 0, format='csr', dtype=complex) return Qobj(C, isherm=True) def tunneling(N, m=1): """ Tunneling operator with elements of the form :math:`\\sum |N><N+m| + |N+m><N|`. Parameters ---------- N : int Number of basis states in Hilbert space. m : int (default = 1) Number of excitations in tunneling event. Returns ------- T : Qobj Tunneling operator. Notes ----- .. versionadded:: 3.2 """ diags = [np.ones(N-m,dtype=int),np.ones(N-m,dtype=int)] T = sp.diags(diags,[m,-m],format='csr', dtype=complex) return Qobj(T, isherm=True) # Break circular dependencies by a trailing import. # Note that we use a relative import here to deal with that # qutip.tensor is the *function* tensor, not the module. from qutip.tensor import tensor
[ "numpy.prod", "scipy.sparse.lil_matrix", "numpy.sqrt", "numpy.ones", "qutip.states.enr_state_dictionaries", "qutip.dimensions.flatten", "qutip.qobj.Qobj", "scipy.sparse.eye", "numpy.fix", "numpy.conj", "qutip.fastsparse.fast_csr_matrix", "qutip.states.qutrit_basis", "qutip.fastsparse.fast_identity", "numpy.exp", "numpy.array", "numpy.sum", "scipy.sparse.diags", "numpy.arange" ]
[((4281, 4288), 'qutip.qobj.Qobj', 'Qobj', (['A'], {}), '(A)\n', (4285, 4288), False, 'from qutip.qobj import Qobj\n'), ((4415, 4454), 'numpy.arange', 'np.arange', (['j', '(-j - 1)', '(-1)'], {'dtype': 'complex'}), '(j, -j - 1, -1, dtype=complex)\n', (4424, 4454), True, 'import numpy as np\n'), ((4540, 4571), 'numpy.arange', 'np.arange', (['(1)', 'N'], {'dtype': 'np.int32'}), '(1, N, dtype=np.int32)\n', (4549, 4571), True, 'import numpy as np\n'), ((4662, 4709), 'qutip.fastsparse.fast_csr_matrix', 'fast_csr_matrix', (['(data, ind, ptr)'], {'shape': '(N, N)'}), '((data, ind, ptr), shape=(N, N))\n', (4677, 4709), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((5293, 5340), 'qutip.fastsparse.fast_csr_matrix', 'fast_csr_matrix', (['(data, ind, ptr)'], {'shape': '(N, N)'}), '((data, ind, ptr), shape=(N, N))\n', (5308, 5340), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((9507, 9538), 'numpy.arange', 'np.arange', (['(1)', 'N'], {'dtype': 'np.int32'}), '(1, N, dtype=np.int32)\n', (9516, 9538), True, 'import numpy as np\n'), ((9548, 9580), 'numpy.arange', 'np.arange', (['(N + 1)'], {'dtype': 'np.int32'}), '(N + 1, dtype=np.int32)\n', (9557, 9580), True, 'import numpy as np\n'), ((11755, 11774), 'qutip.dimensions.flatten', 'flatten', (['dimensions'], {}), '(dimensions)\n', (11762, 11774), False, 'from qutip.dimensions import flatten\n'), ((19729, 19743), 'qutip.states.qutrit_basis', 'qutrit_basis', ([], {}), '()\n', (19741, 19743), False, 'from qutip.states import qutrit_basis\n'), ((19931, 19997), 'numpy.array', 'np.array', (['[sig11, sig22, sig33, sig12, sig23, sig31]'], {'dtype': 'object'}), '([sig11, sig22, sig33, sig12, sig23, sig31], dtype=object)\n', (19939, 19997), True, 'import numpy as np\n'), ((21223, 21287), 'scipy.sparse.diags', 'sp.diags', (['diagonals', 'offsets', 'shape'], {'format': '"""csr"""', 'dtype': 'complex'}), "(diagonals, offsets, shape, format='csr', dtype=complex)\n", (21231, 21287), True, 'import scipy.sparse as sp\n'), ((23557, 23598), 'qutip.states.enr_state_dictionaries', 'enr_state_dictionaries', (['dims', 'excitations'], {}), '(dims, excitations)\n', (23579, 23598), False, 'from qutip.states import enr_state_dictionaries\n'), ((25062, 25103), 'qutip.states.enr_state_dictionaries', 'enr_state_dictionaries', (['dims', 'excitations'], {}), '(dims, excitations)\n', (25084, 25103), False, 'from qutip.states import enr_state_dictionaries\n'), ((25115, 25157), 'scipy.sparse.eye', 'sp.eye', (['nstates', 'nstates'], {'dtype': 'np.complex'}), '(nstates, nstates, dtype=np.complex)\n', (25121, 25157), True, 'import scipy.sparse as sp\n'), ((25169, 25198), 'qutip.qobj.Qobj', 'Qobj', (['data'], {'dims': '[dims, dims]'}), '(data, dims=[dims, dims])\n', (25173, 25198), False, 'from qutip.qobj import Qobj\n'), ((25762, 25800), 'numpy.arange', 'np.arange', (['Nmin', '(Nmax + 1)'], {'dtype': 'float'}), '(Nmin, Nmax + 1, dtype=float)\n', (25771, 25800), True, 'import numpy as np\n'), ((25846, 25892), 'scipy.sparse.diags', 'sp.diags', (['diag', '(0)'], {'format': '"""csr"""', 'dtype': 'complex'}), "(diag, 0, format='csr', dtype=complex)\n", (25854, 25892), True, 'import scipy.sparse as sp\n'), ((25904, 25924), 'qutip.qobj.Qobj', 'Qobj', (['C'], {'isherm': '(True)'}), '(C, isherm=True)\n', (25908, 25924), False, 'from qutip.qobj import Qobj\n'), ((26405, 26458), 'scipy.sparse.diags', 'sp.diags', (['diags', '[m, -m]'], {'format': '"""csr"""', 'dtype': 'complex'}), "(diags, [m, -m], format='csr', dtype=complex)\n", (26413, 26458), True, 'import scipy.sparse as sp\n'), ((26467, 26487), 'qutip.qobj.Qobj', 'Qobj', (['T'], {'isherm': '(True)'}), '(T, isherm=True)\n', (26471, 26487), False, 'from qutip.qobj import Qobj\n'), ((4467, 4505), 'numpy.sqrt', 'np.sqrt', (['(j * (j + 1.0) - (m + 1.0) * m)'], {}), '(j * (j + 1.0) - (m + 1.0) * m)\n', (4474, 4505), True, 'import numpy as np\n'), ((4966, 4994), 'numpy.arange', 'np.arange', (['N'], {'dtype': 'np.int32'}), '(N, dtype=np.int32)\n', (4975, 4994), True, 'import numpy as np\n'), ((5009, 5041), 'numpy.arange', 'np.arange', (['(N + 1)'], {'dtype': 'np.int32'}), '(N + 1, dtype=np.int32)\n', (5018, 5041), True, 'import numpy as np\n'), ((9451, 9499), 'numpy.arange', 'np.arange', (['(offset + 1)', '(N + offset)'], {'dtype': 'complex'}), '(offset + 1, N + offset, dtype=complex)\n', (9460, 9499), True, 'import numpy as np\n'), ((9613, 9660), 'qutip.fastsparse.fast_csr_matrix', 'fast_csr_matrix', (['(data, ind, ptr)'], {'shape': '(N, N)'}), '((data, ind, ptr), shape=(N, N))\n', (9628, 9660), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((11925, 11938), 'numpy.prod', 'np.prod', (['flat'], {}), '(flat)\n', (11932, 11938), True, 'import numpy as np\n'), ((12619, 12669), 'qutip.fastsparse.fast_csr_matrix', 'fast_csr_matrix', ([], {'shape': '(size, size)', 'dtype': 'complex'}), '(shape=(size, size), dtype=complex)\n', (12634, 12669), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((13900, 13919), 'qutip.fastsparse.fast_identity', 'fast_identity', (['size'], {}), '(size)\n', (13913, 13919), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((16158, 16188), 'numpy.arange', 'np.arange', (['(1)', 'N'], {'dtype': 'complex'}), '(1, N, dtype=complex)\n', (16167, 16188), True, 'import numpy as np\n'), ((16202, 16233), 'numpy.arange', 'np.arange', (['(1)', 'N'], {'dtype': 'np.int32'}), '(1, N, dtype=np.int32)\n', (16211, 16233), True, 'import numpy as np\n'), ((16341, 16385), 'numpy.arange', 'np.arange', (['offset', '(offset + N)'], {'dtype': 'complex'}), '(offset, offset + N, dtype=complex)\n', (16350, 16385), True, 'import numpy as np\n'), ((16400, 16428), 'numpy.arange', 'np.arange', (['N'], {'dtype': 'np.int32'}), '(N, dtype=np.int32)\n', (16409, 16428), True, 'import numpy as np\n'), ((16443, 16475), 'numpy.arange', 'np.arange', (['(N + 1)'], {'dtype': 'np.int32'}), '(N + 1, dtype=np.int32)\n', (16452, 16475), True, 'import numpy as np\n'), ((16510, 16557), 'qutip.fastsparse.fast_csr_matrix', 'fast_csr_matrix', (['(data, ind, ptr)'], {'shape': '(N, N)'}), '((data, ind, ptr), shape=(N, N))\n', (16525, 16557), False, 'from qutip.fastsparse import fast_csr_matrix, fast_identity\n'), ((22128, 22147), 'numpy.sum', 'np.sum', (['ops'], {'axis': '(0)'}), '(ops, axis=0)\n', (22134, 22147), True, 'import numpy as np\n'), ((23613, 23664), 'scipy.sparse.lil_matrix', 'sp.lil_matrix', (['(nstates, nstates)'], {'dtype': 'np.complex'}), '((nstates, nstates), dtype=np.complex)\n', (23626, 23664), True, 'import scipy.sparse as sp\n'), ((24125, 24151), 'qutip.qobj.Qobj', 'Qobj', (['a'], {'dims': '[dims, dims]'}), '(a, dims=[dims, dims])\n', (24129, 24151), False, 'from qutip.qobj import Qobj\n'), ((26350, 26375), 'numpy.ones', 'np.ones', (['(N - m)'], {'dtype': 'int'}), '(N - m, dtype=int)\n', (26357, 26375), True, 'import numpy as np\n'), ((26373, 26398), 'numpy.ones', 'np.ones', (['(N - m)'], {'dtype': 'int'}), '(N - m, dtype=int)\n', (26380, 26398), True, 'import numpy as np\n'), ((3735, 3748), 'numpy.fix', 'np.fix', (['(2 * j)'], {}), '(2 * j)\n', (3741, 3748), True, 'import numpy as np\n'), ((15005, 15017), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (15012, 15017), True, 'import numpy as np\n'), ((15491, 15503), 'numpy.sqrt', 'np.sqrt', (['(2.0)'], {}), '(2.0)\n', (15498, 15503), True, 'import numpy as np\n'), ((21908, 21920), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (21917, 21920), True, 'import numpy as np\n'), ((17526, 17536), 'numpy.conj', 'np.conj', (['z'], {}), '(z)\n', (17533, 17536), True, 'import numpy as np\n'), ((18099, 18109), 'numpy.conj', 'np.conj', (['z'], {}), '(z)\n', (18106, 18109), True, 'import numpy as np\n'), ((21857, 21869), 'numpy.arange', 'np.arange', (['N'], {}), '(N)\n', (21866, 21869), True, 'import numpy as np\n'), ((21987, 22008), 'numpy.exp', 'np.exp', (['(1.0j * n * kk)'], {}), '(1.0j * n * kk)\n', (21993, 22008), True, 'import numpy as np\n'), ((19131, 19145), 'numpy.conj', 'np.conj', (['alpha'], {}), '(alpha)\n', (19138, 19145), True, 'import numpy as np\n'), ((21960, 21971), 'numpy.sqrt', 'np.sqrt', (['kk'], {}), '(kk)\n', (21967, 21971), True, 'import numpy as np\n'), ((21974, 21984), 'numpy.sqrt', 'np.sqrt', (['N'], {}), '(N)\n', (21981, 21984), True, 'import numpy as np\n'), ((24091, 24111), 'numpy.sqrt', 'np.sqrt', (['state2[idx]'], {}), '(state2[idx])\n', (24098, 24111), True, 'import numpy as np\n')]
from abc import ABCMeta, abstractmethod import random import json import pickle import numpy as np import os os.environ['TF_CPP_MIN_LOG_LEVEL'] = '3' import nltk from nltk.stem import WordNetLemmatizer from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout from tensorflow.keras.optimizers import SGD from tensorflow.keras.models import load_model nltk.download('punkt', quiet=True) nltk.download('wordnet', quiet=True) class IAssistant(metaclass=ABCMeta): @abstractmethod def train_model(self): """ Implemented in child class """ @abstractmethod def request_tag(self, message): """ Implemented in child class """ @abstractmethod def get_tag_by_id(self, id): """ Implemented in child class """ @abstractmethod def request_method(self, message): """ Implemented in child class """ @abstractmethod def request(self, message): """ Implemented in child class """ class GenericAssistant(IAssistant): def __init__(self, intents, intent_methods={}, model_name="assistant_model", *, json_encoding='utf-8'): self.intents = intents self.intent_methods = intent_methods self.model_name = model_name self.json_encoding = json_encoding if intents.endswith(".json"): self.load_json_intents(intents) self.lemmatizer = WordNetLemmatizer() def load_json_intents(self, intents): with open(intents, encoding=self.json_encoding) as f: self.intents = json.load(f) def train_model(self): self.words = [] self.classes = [] documents = [] ignore_letters = ['!', '?', ',', '.'] for intent in self.intents['intents']: for pattern in intent['patterns']: word = nltk.word_tokenize(pattern) self.words.extend(word) documents.append((word, intent['tag'])) if intent['tag'] not in self.classes: self.classes.append(intent['tag']) self.words = [self.lemmatizer.lemmatize(w.lower()) for w in self.words if w not in ignore_letters] self.words = sorted(list(set(self.words))) self.classes = sorted(list(set(self.classes))) training = [] output_empty = [0] * len(self.classes) for doc in documents: bag = [] word_patterns = doc[0] word_patterns = [self.lemmatizer.lemmatize(word.lower()) for word in word_patterns] for word in self.words: bag.append(1) if word in word_patterns else bag.append(0) output_row = list(output_empty) output_row[self.classes.index(doc[1])] = 1 training.append([bag, output_row]) random.shuffle(training) training = np.array(training) train_x = list(training[:, 0]) train_y = list(training[:, 1]) self.model = Sequential() self.model.add(Dense(128, input_shape=(len(train_x[0]),), activation='relu')) self.model.add(Dropout(0.5)) self.model.add(Dense(64, activation='relu')) self.model.add(Dropout(0.5)) self.model.add(Dense(len(train_y[0]), activation='softmax')) sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True) self.model.compile(loss='categorical_crossentropy', optimizer=sgd, metrics=['accuracy']) self.hist = self.model.fit(np.array(train_x), np.array(train_y), epochs=200, batch_size=5, verbose=1) def save_model(self, model_name=None): if model_name is None: self.model.save(f"{self.model_name}.h5", self.hist) with open(f'{self.model_name}_words.pkl', 'wb') as f: pickle.dump(self.words, f) with open(f'{self.model_name}_classes.pkl', 'wb') as f: pickle.dump(self.classes, f) else: self.model.save(f"{model_name}.h5", self.hist) with open(f'{model_name}_words.pkl', 'wb') as f: pickle.dump(self.words, f) with open(f'{model_name}_classes.pkl', 'wb') as f: pickle.dump(self.classes, f) def load_model(self, model_name=None): if model_name is None: with open(f'{self.model_name}_words.pkl', 'rb') as f: self.words = pickle.load(f) with open(f'{self.model_name}_classes.pkl', 'rb') as f: self.classes = pickle.load(f) self.model = load_model(f'{self.model_name}.h5') else: with open(f'{model_name}_words.pkl', 'rb') as f: self.words = pickle.load(f) with open(f'{model_name}_classes.pkl', 'rb') as f: self.classes = pickle.load(f) self.model = load_model(f'{model_name}.h5') def _clean_up_sentence(self, sentence): sentence_words = nltk.word_tokenize(sentence) sentence_words = [self.lemmatizer.lemmatize(word.lower()) for word in sentence_words] return sentence_words def _bag_of_words(self, sentence, words): sentence_words = self._clean_up_sentence(sentence) bag = [0] * len(words) for s in sentence_words: for i, word in enumerate(words): if word == s: bag[i] = 1 return np.array(bag) def _predict_class(self, sentence): p = self._bag_of_words(sentence, self.words) res = self.model.predict(np.array([p]))[0] ERROR_THRESHOLD = 0.1 results = [[i, r] for i, r in enumerate(res) if r > ERROR_THRESHOLD] results.sort(key=lambda x: x[1], reverse=True) return_list = [] for r in results: return_list.append({'intent': self.classes[r[0]], 'probability': str(r[1])}) return return_list def _get_response(self, ints, intents_json): try: tag = ints[0]['intent'] list_of_intents = intents_json['intents'] for i in list_of_intents: if i['tag'] == tag: result = random.choice(i['responses']) break except IndexError: result = "I don't understand!" return result def request_tag(self, message): pass def get_tag_by_id(self, id): pass def request_method(self, message): pass def request(self, message): ints = self._predict_class(message) if ints[0]['intent'] in self.intent_methods.keys(): self.intent_methods[ints[0]['intent']]() else: return self._get_response(ints, self.intents)
[ "random.choice", "pickle.dump", "random.shuffle", "nltk.download", "nltk.word_tokenize", "tensorflow.keras.layers.Dropout", "nltk.stem.WordNetLemmatizer", "pickle.load", "tensorflow.keras.optimizers.SGD", "numpy.array", "tensorflow.keras.layers.Dense", "tensorflow.keras.models.load_model", "json.load", "tensorflow.keras.models.Sequential" ]
[((396, 430), 'nltk.download', 'nltk.download', (['"""punkt"""'], {'quiet': '(True)'}), "('punkt', quiet=True)\n", (409, 430), False, 'import nltk\n'), ((431, 467), 'nltk.download', 'nltk.download', (['"""wordnet"""'], {'quiet': '(True)'}), "('wordnet', quiet=True)\n", (444, 467), False, 'import nltk\n'), ((1406, 1425), 'nltk.stem.WordNetLemmatizer', 'WordNetLemmatizer', ([], {}), '()\n', (1423, 1425), False, 'from nltk.stem import WordNetLemmatizer\n'), ((2806, 2830), 'random.shuffle', 'random.shuffle', (['training'], {}), '(training)\n', (2820, 2830), False, 'import random\n'), ((2850, 2868), 'numpy.array', 'np.array', (['training'], {}), '(training)\n', (2858, 2868), True, 'import numpy as np\n'), ((2970, 2982), 'tensorflow.keras.models.Sequential', 'Sequential', ([], {}), '()\n', (2980, 2982), False, 'from tensorflow.keras.models import Sequential\n'), ((3280, 3334), 'tensorflow.keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.01)', 'decay': '(1e-06)', 'momentum': '(0.9)', 'nesterov': '(True)'}), '(lr=0.01, decay=1e-06, momentum=0.9, nesterov=True)\n', (3283, 3334), False, 'from tensorflow.keras.optimizers import SGD\n'), ((4902, 4930), 'nltk.word_tokenize', 'nltk.word_tokenize', (['sentence'], {}), '(sentence)\n', (4920, 4930), False, 'import nltk\n'), ((5346, 5359), 'numpy.array', 'np.array', (['bag'], {}), '(bag)\n', (5354, 5359), True, 'import numpy as np\n'), ((1558, 1570), 'json.load', 'json.load', (['f'], {}), '(f)\n', (1567, 1570), False, 'import json\n'), ((3092, 3104), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3099, 3104), False, 'from tensorflow.keras.layers import Dense, Dropout\n'), ((3129, 3157), 'tensorflow.keras.layers.Dense', 'Dense', (['(64)'], {'activation': '"""relu"""'}), "(64, activation='relu')\n", (3134, 3157), False, 'from tensorflow.keras.layers import Dense, Dropout\n'), ((3182, 3194), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.5)'], {}), '(0.5)\n', (3189, 3194), False, 'from tensorflow.keras.layers import Dense, Dropout\n'), ((3467, 3484), 'numpy.array', 'np.array', (['train_x'], {}), '(train_x)\n', (3475, 3484), True, 'import numpy as np\n'), ((3486, 3503), 'numpy.array', 'np.array', (['train_y'], {}), '(train_y)\n', (3494, 3503), True, 'import numpy as np\n'), ((4512, 4547), 'tensorflow.keras.models.load_model', 'load_model', (['f"""{self.model_name}.h5"""'], {}), "(f'{self.model_name}.h5')\n", (4522, 4547), False, 'from tensorflow.keras.models import load_model\n'), ((4801, 4831), 'tensorflow.keras.models.load_model', 'load_model', (['f"""{model_name}.h5"""'], {}), "(f'{model_name}.h5')\n", (4811, 4831), False, 'from tensorflow.keras.models import load_model\n'), ((1837, 1864), 'nltk.word_tokenize', 'nltk.word_tokenize', (['pattern'], {}), '(pattern)\n', (1855, 1864), False, 'import nltk\n'), ((3763, 3789), 'pickle.dump', 'pickle.dump', (['self.words', 'f'], {}), '(self.words, f)\n', (3774, 3789), False, 'import pickle\n'), ((3874, 3902), 'pickle.dump', 'pickle.dump', (['self.classes', 'f'], {}), '(self.classes, f)\n', (3885, 3902), False, 'import pickle\n'), ((4053, 4079), 'pickle.dump', 'pickle.dump', (['self.words', 'f'], {}), '(self.words, f)\n', (4064, 4079), False, 'import pickle\n'), ((4159, 4187), 'pickle.dump', 'pickle.dump', (['self.classes', 'f'], {}), '(self.classes, f)\n', (4170, 4187), False, 'import pickle\n'), ((4358, 4372), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (4369, 4372), False, 'import pickle\n'), ((4472, 4486), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (4483, 4486), False, 'import pickle\n'), ((4652, 4666), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (4663, 4666), False, 'import pickle\n'), ((4761, 4775), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (4772, 4775), False, 'import pickle\n'), ((5487, 5500), 'numpy.array', 'np.array', (['[p]'], {}), '([p])\n', (5495, 5500), True, 'import numpy as np\n'), ((6092, 6121), 'random.choice', 'random.choice', (["i['responses']"], {}), "(i['responses'])\n", (6105, 6121), False, 'import random\n')]
""" @brief Generate Fe55 images and associated darks and bias images according to section 5.4 of the E/O document (Dec 19, 2012 version). @author <NAME> <<EMAIL>> """ import os import numpy as np from sim_inputs import * from sim_tools import * def generate_Fe55_images(exptimes, nxrays, outdir, sensorid, gain=gain, bias_level=bias_level, sys_noise=sys_noise, dark_current=dark_current): nexp = len(exptimes) for i, exptime, nxray in zip(list(range(nexp)), exptimes, nxrays): # # Bias images # outfile = "Fe55_bias_%s_%02i.fits" % (sensorid, i) bias_file = os.path.join(outdir, outfile) bias_segs = [] for hdu in range(nhdu): seg = SegmentExposure(exptime=0, gain=gain) seg.add_bias(level=bias_level, sigma=sys_noise) # electronics seg.add_bias(level=0, sigma=read_noise) # read noise bias_segs.append(seg) bias_output = fitsFile(bias_segs) bias_output[0].header['GAIN'] = gain bias_output[0].header['BIASLVL'] = bias_level bias_output[0].header['SYSNOISE'] = sys_noise bias_output[0].header['RDNOISE'] = read_noise bias_output.writeto(bias_file, overwrite=True) # # Dark images # outfile = "Fe55_dark_%s_%02i.fits" % (sensorid, i) dark_file = os.path.join(outdir, outfile) dark_segs = [] for hdu in range(nhdu): seg = SegmentExposure(exptime=exptime, gain=gain) seg.add_bias(level=bias_level, sigma=sys_noise) # electronics seg.add_bias(level=0, sigma=read_noise) # read noise seg.add_dark_current(level=dark_current) # dark current dark_segs.append(seg) dark_output = fitsFile(dark_segs) dark_output[0].header['GAIN'] = gain dark_output[0].header['BIASLVL'] = bias_level dark_output[0].header['SYSNOISE'] = sys_noise dark_output[0].header['RDNOISE'] = read_noise dark_output[0].header['DARKCURR'] = dark_current dark_output.writeto(dark_file, overwrite=True) # # Fe55 exposures # outfile = "Fe55_exp_%s_%02i.fits" % (sensorid, i) Fe55_file = os.path.join(outdir, outfile) fe55_segs = [] for hdu in range(nhdu): seg = SegmentExposure(exptime=exptime, gain=gain) seg.add_bias(level=bias_level, sigma=sys_noise) # electronics seg.add_bias(level=0, sigma=read_noise) # read noise seg.add_dark_current(level=dark_current) # dark current seg.add_Fe55_hits(nxrays=nxray) fe55_segs.append(seg) fe55_output = fitsFile(fe55_segs) fe55_output[0].header['GAIN'] = gain fe55_output[0].header['BIASLVL'] = bias_level fe55_output[0].header['SYSNOISE'] = sys_noise fe55_output[0].header['RDNOISE'] = read_noise fe55_output[0].header['DARKCURR'] = dark_current fe55_output[0].header['FE55HITS'] = nxray fe55_output.writeto(Fe55_file, overwrite=True) if __name__ == '__main__': nexp = 10 exptimes = np.linspace(1, 5, nexp) nxrays = [int(x*1000) for x in exptimes] generate_Fe55_images(exptimes, nxrays, '.', 'xxx-xx')
[ "numpy.linspace", "os.path.join" ]
[((3210, 3233), 'numpy.linspace', 'np.linspace', (['(1)', '(5)', 'nexp'], {}), '(1, 5, nexp)\n', (3221, 3233), True, 'import numpy as np\n'), ((659, 688), 'os.path.join', 'os.path.join', (['outdir', 'outfile'], {}), '(outdir, outfile)\n', (671, 688), False, 'import os\n'), ((1406, 1435), 'os.path.join', 'os.path.join', (['outdir', 'outfile'], {}), '(outdir, outfile)\n', (1418, 1435), False, 'import os\n'), ((2293, 2322), 'os.path.join', 'os.path.join', (['outdir', 'outfile'], {}), '(outdir, outfile)\n', (2305, 2322), False, 'import os\n')]
import math import numpy as np import torch import torch.nn as nn from ....ops.pointnet2.pointnet2_stack import pointnet2_modules as pointnet2_stack_modules from ....ops.pointnet2.pointnet2_stack import pointnet2_utils as pointnet2_stack_utils from ....utils import common_utils from ...backbones_2d.transformer import TransformerEncoderLayer3D, TransformerEncoder from ...roi_heads.target_assigner.proposal_target_layer import ProposalTargetLayer from ...model_utils.model_nms_utils import class_agnostic_nms def bilinear_interpolate_torch(im, x, y): """ Args: im: (H, W, C) [y, x] x: (N) y: (N) Returns: """ x0 = torch.floor(x).long() x1 = x0 + 1 y0 = torch.floor(y).long() y1 = y0 + 1 x0 = torch.clamp(x0, 0, im.shape[1] - 1) x1 = torch.clamp(x1, 0, im.shape[1] - 1) y0 = torch.clamp(y0, 0, im.shape[0] - 1) y1 = torch.clamp(y1, 0, im.shape[0] - 1) Ia = im[y0, x0] Ib = im[y1, x0] Ic = im[y0, x1] Id = im[y1, x1] wa = (x1.type_as(x) - x) * (y1.type_as(y) - y) wb = (x1.type_as(x) - x) * (y - y0.type_as(y)) wc = (x - x0.type_as(x)) * (y1.type_as(y) - y) wd = (x - x0.type_as(x)) * (y - y0.type_as(y)) ans = torch.t((torch.t(Ia) * wa)) + torch.t(torch.t(Ib) * wb) + torch.t(torch.t(Ic) * wc) + torch.t(torch.t(Id) * wd) return ans def sample_points_with_roi(rois, points, sample_radius_with_roi, num_max_points_of_part=200000): """ Args: rois: (M, 7 + C) points: (N, 3) sample_radius_with_roi: num_max_points_of_part: Returns: sampled_points: (N_out, 3) """ if points.shape[0] < num_max_points_of_part: distance = (points[:, None, :] - rois[None, :, 0:3]).norm(dim=-1) min_dis, min_dis_roi_idx = distance.min(dim=-1) roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1) point_mask = min_dis < roi_max_dim + sample_radius_with_roi else: start_idx = 0 point_mask_list = [] while start_idx < points.shape[0]: distance = (points[start_idx:start_idx + num_max_points_of_part, None, :] - rois[None, :, 0:3]).norm(dim=-1) min_dis, min_dis_roi_idx = distance.min(dim=-1) roi_max_dim = (rois[min_dis_roi_idx, 3:6] / 2).norm(dim=-1) cur_point_mask = min_dis < roi_max_dim + sample_radius_with_roi point_mask_list.append(cur_point_mask) start_idx += num_max_points_of_part point_mask = torch.cat(point_mask_list, dim=0) sampled_points = points[:1] if point_mask.sum() == 0 else points[point_mask, :] return sampled_points, point_mask def sector_fps(points, num_sampled_points, num_sectors): """ Args: points: (N, 3) num_sampled_points: int num_sectors: int Returns: sampled_points: (N_out, 3) """ sector_size = np.pi * 2 / num_sectors point_angles = torch.atan2(points[:, 1], points[:, 0]) + np.pi sector_idx = (point_angles / sector_size).floor().clamp(min=0, max=num_sectors) xyz_points_list = [] xyz_batch_cnt = [] num_sampled_points_list = [] for k in range(num_sectors): mask = (sector_idx == k) cur_num_points = mask.sum().item() if cur_num_points > 0: xyz_points_list.append(points[mask]) xyz_batch_cnt.append(cur_num_points) ratio = cur_num_points / points.shape[0] num_sampled_points_list.append( min(cur_num_points, math.ceil(ratio * num_sampled_points)) ) if len(xyz_batch_cnt) == 0: xyz_points_list.append(points) xyz_batch_cnt.append(len(points)) num_sampled_points_list.append(num_sampled_points) print(f'Warning: empty sector points detected in SectorFPS: points.shape={points.shape}') xyz = torch.cat(xyz_points_list, dim=0) xyz_batch_cnt = torch.tensor(xyz_batch_cnt, device=points.device).int() sampled_points_batch_cnt = torch.tensor(num_sampled_points_list, device=points.device).int() sampled_pt_idxs = pointnet2_stack_utils.stack_farthest_point_sample( xyz.contiguous(), xyz_batch_cnt, sampled_points_batch_cnt ).long() sampled_points = xyz[sampled_pt_idxs] return sampled_points class VoxelSetAbstractionTransFusionv5(nn.Module): def __init__(self, model_cfg, voxel_size, point_cloud_range, num_bev_features=None, num_rawpoint_features=None, **kwargs): super().__init__() self.model_cfg = model_cfg self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range SA_cfg = self.model_cfg.SA_LAYER self.SA_layers = nn.ModuleList() self.linears_in = nn.ModuleList() self.linears_out = nn.ModuleList() self.fusion_channel = sum([x[-1] for x in SA_cfg[self.model_cfg.FEATURES_SOURCE[-2]].MLPS]) # self.fusion_channel = 16 self.SA_layer_names = [] self.downsample_times_map = {} c_in = 0 if 'bev' in self.model_cfg.FEATURES_SOURCE: c_bev = num_bev_features c_in += c_bev if c_bev == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(c_bev, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, c_bev, bias=False), nn.BatchNorm1d(c_bev))) if 'raw_points' in self.model_cfg.FEATURES_SOURCE: mlps = SA_cfg['raw_points'].MLPS for k in range(len(mlps)): mlps[k] = [num_rawpoint_features - 3] + mlps[k] self.SA_rawpoints = pointnet2_stack_modules.StackSAModuleMSG( radii=SA_cfg['raw_points'].POOL_RADIUS, nsamples=SA_cfg['raw_points'].NSAMPLE, mlps=mlps, use_xyz=True, pool_method='max_pool' ) cur = sum([x[-1] for x in mlps]) if cur == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(cur, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, cur, bias=False), nn.BatchNorm1d(cur))) c_in += cur for src_name in self.model_cfg.FEATURES_SOURCE: if src_name in ['bev', 'raw_points']: continue self.downsample_times_map[src_name] = SA_cfg[src_name].DOWNSAMPLE_FACTOR mlps = SA_cfg[src_name].MLPS for k in range(len(mlps)): mlps[k] = [mlps[k][0]] + mlps[k] cur_layer = pointnet2_stack_modules.StackSAModuleMSG( radii=SA_cfg[src_name].POOL_RADIUS, nsamples=SA_cfg[src_name].NSAMPLE, mlps=mlps, use_xyz=True, pool_method='max_pool', ) self.SA_layers.append(cur_layer) cur = sum([x[-1] for x in mlps]) if cur == self.fusion_channel: self.linears_in.append(nn.Identity()) self.linears_out.append(nn.Identity()) else: self.linears_in.append(nn.Sequential( nn.Linear(cur, self.fusion_channel, bias=False), nn.BatchNorm1d(self.fusion_channel))) self.linears_out.append(nn.Sequential( nn.Linear(self.fusion_channel, cur, bias=False), nn.BatchNorm1d(cur))) self.SA_layer_names.append(src_name) c_in += cur self.vsa_point_feature_fusion = nn.Sequential( nn.Linear(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False), nn.BatchNorm1d(self.model_cfg.NUM_OUTPUT_FEATURES), nn.ReLU(), ) self.num_point_features = self.model_cfg.NUM_OUTPUT_FEATURES self.num_point_features_before_fusion = c_in if self.model_cfg.NORM: self.transnorm = nn.LayerNorm(c_in) else: self.transnorm = None if self.model_cfg.NORM2: self.transnorm2 = nn.LayerNorm(self.fusion_channel) else: self.transnorm2 = None # multi_location self.trans_layer = TransformerEncoder(TransformerEncoderLayer3D(c_in, self.model_cfg.FUSION_HEAD), self.model_cfg.NUM_LAYERS, self.transnorm) # have multi-modality + multi-scale self.trans_fusion_layer = TransformerEncoder(TransformerEncoderLayer3D(self.fusion_channel, self.model_cfg.FUSION2_HEAD), self.model_cfg.NUM_LAYERS2, self.transnorm2) self.reduce_radius = self.model_cfg.REDUCE_RADIUS**2 self.topks = self.model_cfg.NMS_CONFIG.TOPK self.max_keypoints = self.model_cfg.NMS_CONFIG.MAX_POINTS self.res1_actn_1 = nn.Sequential( nn.LayerNorm(c_in), nn.ReLU()) self.res1_actn_2 = nn.Sequential( nn.LayerNorm(c_in), nn.ReLU()) def interpolate_from_bev_features(self, keypoints, bev_features, batch_size, bev_stride): x_idxs = (keypoints[:, :, 0] - self.point_cloud_range[0]) / self.voxel_size[0] y_idxs = (keypoints[:, :, 1] - self.point_cloud_range[1]) / self.voxel_size[1] x_idxs = x_idxs / bev_stride y_idxs = y_idxs / bev_stride point_bev_features_list = [] for k in range(batch_size): cur_x_idxs = x_idxs[k] cur_y_idxs = y_idxs[k] cur_bev_features = bev_features[k].permute(1, 2, 0) # (H, W, C) point_bev_features = bilinear_interpolate_torch(cur_bev_features, cur_x_idxs, cur_y_idxs) point_bev_features_list.append(point_bev_features.unsqueeze(dim=0)) point_bev_features = torch.cat(point_bev_features_list, dim=0) # (B, N, C0) return point_bev_features def get_sampled_points(self, batch_dict): batch_size = batch_dict['batch_size'] if self.model_cfg.POINT_SOURCE == 'raw_points': src_points = batch_dict['points'][:, 1:4] batch_indices = batch_dict['points'][:, 0].long() elif self.model_cfg.POINT_SOURCE == 'voxel_centers': src_points = common_utils.get_voxel_centers( batch_dict['voxel_coords'][:, 1:4], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_indices = batch_dict['voxel_coords'][:, 0].long() else: raise NotImplementedError keypoints_list = [] for bs_idx in range(batch_size): bs_mask = (batch_indices == bs_idx) sampled_points = src_points[bs_mask].unsqueeze(dim=0) # (1, N, 3) if self.model_cfg.SAMPLE_METHOD == 'FPS': cur_pt_idxs = pointnet2_stack_utils.furthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.model_cfg.NUM_KEYPOINTS ).long() if sampled_points.shape[1] < self.model_cfg.NUM_KEYPOINTS: empty_num = self.model_cfg.NUM_KEYPOINTS - sampled_points.shape[1] cur_pt_idxs[0, -empty_num:] = cur_pt_idxs[0, :empty_num] keypoints = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) elif self.model_cfg.SAMPLE_METHOD == 'FastFPS': raise NotImplementedError else: raise NotImplementedError keypoints_list.append(keypoints) keypoints = torch.cat(keypoints_list, dim=0) # (B, M, 3) return keypoints def get_sampled_points_post(self, batch_dict, keypoints): batch_size = batch_dict['batch_size'] src_points = keypoints keypoints_list = [] for bs_idx in range(batch_size): sampled_points = src_points[bs_idx].unsqueeze(dim=0) # (1, N, 3) if sampled_points.shape[1] < self.max_keypoints: cur_count = sampled_points.shape[1] cur_pt_idxs = torch.arange(0, self.max_keypoints) empty_num = self.max_keypoints - cur_count while empty_num >= cur_count: cur_pt_idxs[cur_count:cur_count * 2] = cur_pt_idxs[:cur_count] empty_num -= cur_count cur_count *= 2 if cur_count < self.max_keypoints: assert empty_num == self.max_keypoints - cur_count cur_pt_idxs[-empty_num:] = cur_pt_idxs[:empty_num] keypoint = sampled_points[0][cur_pt_idxs].unsqueeze(dim=0) else: cur_pt_idxs = pointnet2_stack_utils.furthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.max_keypoints ).long() if sampled_points.shape[1] < self.max_keypoints: empty_num = self.max_keypoints - sampled_points.shape[1] cur_pt_idxs[0, -empty_num:] = cur_pt_idxs[0, :empty_num] keypoint = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) keypoints_list.append(keypoint) keypoint = torch.cat(keypoints_list, dim=0) # (B, M, 3) return keypoint def reduce_points(self, batch_dict): batch_indices = batch_dict['points'][:, 0].long() masks = [] for bs_idx, roi in enumerate(batch_dict['batch_cls_preds']): bs_mask = (batch_indices == bs_idx) pts = batch_dict['points'][bs_mask].unsqueeze(dim=1)[:, :, 1: 4] # (N, 1, 3) s, _ = torch.max(batch_dict['batch_cls_preds'][bs_idx], dim=1) top, idx = torch.topk(s, self.topks) c = batch_dict['batch_box_preds'][bs_idx][idx][:, :3].unsqueeze(dim=0) dist = (pts - c)**2 dist, _ = dist.sum(dim=-1).min(dim=1) mask = (dist <= self.reduce_radius) masks.extend(mask) batch_dict['points'] = batch_dict['points'][masks] return batch_dict def reduce_points_post(self, keypoints, batch_dict): keypoints_list = [] for bs_idx, roi in enumerate(batch_dict['batch_cls_preds']): pts = keypoints[bs_idx].unsqueeze(dim=1) s, _ = torch.max(batch_dict['batch_cls_preds'][bs_idx], dim=1) top, idx = torch.topk(s, self.topks) c = batch_dict['batch_box_preds'][bs_idx][idx][:, :3].unsqueeze(dim=0) dist = (pts - c)**2 dist, _ = dist.sum(dim=-1).min(dim=1) mask = (dist <= self.reduce_radius) keypoints_list.append(keypoints[bs_idx][mask]) return keypoints_list def forward(self, batch_dict): """ Args: batch_dict: batch_size: keypoints: (B, num_keypoints, 3) multi_scale_3d_features: { 'x_conv4': ... } points: optional (N, 1 + 3 + C) [bs_idx, x, y, z, ...] spatial_features: optional spatial_features_stride: optional Returns: point_features: (N, C) point_coords: (N, 4) """ if self.model_cfg.POINT_SOURCE == 'raw_points' and self.reduce_radius > 0: # batch_dict = self.reduce_points(batch_dict) keypoints = self.get_sampled_points(batch_dict) keypoint_lst = self.reduce_points_post(keypoints, batch_dict) keypoints = self.get_sampled_points_post(batch_dict, keypoint_lst) else: keypoints = self.get_sampled_points(batch_dict) point_features_list = [] if 'bev' in self.model_cfg.FEATURES_SOURCE: point_bev_features = self.interpolate_from_bev_features( keypoints, batch_dict['spatial_features'], batch_dict['batch_size'], bev_stride=batch_dict['spatial_features_stride'] ) point_features_list.append(point_bev_features) batch_size, num_keypoints, _ = keypoints.shape new_xyz = keypoints.view(-1, 3) new_xyz_batch_cnt = new_xyz.new_zeros(batch_size).int().fill_(num_keypoints) if 'raw_points' in self.model_cfg.FEATURES_SOURCE: raw_points = batch_dict['points'] xyz = raw_points[:, 1:4] xyz_batch_cnt = xyz.new_zeros(batch_size).int() for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (raw_points[:, 0] == bs_idx).sum() point_features = raw_points[:, 4:].contiguous() if raw_points.shape[1] > 4 else None pooled_points, pooled_features = self.SA_rawpoints( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=point_features, ) point_features_list.append(pooled_features.view(batch_size, num_keypoints, -1)) for k, src_name in enumerate(self.SA_layer_names): cur_coords = batch_dict['multi_scale_3d_features'][src_name].indices xyz = common_utils.get_voxel_centers( cur_coords[:, 1:4], downsample_times=self.downsample_times_map[src_name], voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) xyz_batch_cnt = xyz.new_zeros(batch_size).int() for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (cur_coords[:, 0] == bs_idx).sum() pooled_points, pooled_features = self.SA_layers[k]( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=batch_dict['multi_scale_3d_features'][src_name].features.contiguous(), ) point_features_list.append(pooled_features.view(batch_size, num_keypoints, -1)) point_features_list_new = [] for i, x in enumerate(point_features_list): feat = self.linears_in[i](x.view(batch_size * num_keypoints, -1)) point_features_list_new.append(feat.view(1, batch_size * num_keypoints, -1)) fusion_feat = torch.cat(point_features_list_new, dim=0) # have multi-modality + multi-scale trans1_feat_list = self.trans_fusion_layer(fusion_feat).view(len(fusion_feat), batch_size, num_keypoints, -1) trans1_feat_projected_list = [] for i, x in enumerate(trans1_feat_list): feat = self.linears_out[i](x.view(batch_size * num_keypoints, -1)) trans1_feat_projected_list.append(feat.view(batch_size, num_keypoints, -1)) # multi_location point_features_main1 = torch.cat(point_features_list, dim=2) point_features_res1 = self.res1_actn_1(torch.cat(trans1_feat_projected_list, dim=2)) point_features_main2 = point_features_res1 + point_features_main1 point_features_res2 = self.res1_actn_2(self.trans_layer(point_features_main2.permute(1, 0, 2)).permute(1, 0, 2)) point_features = point_features_main2 + point_features_res2 batch_idx = torch.arange(batch_size, device=keypoints.device).view(-1, 1).repeat(1, keypoints.shape[1]).view(-1) point_coords = torch.cat((batch_idx.view(-1, 1).float(), keypoints.view(-1, 3)), dim=1) batch_dict['point_features_before_fusion'] = point_features.reshape(-1, point_features.shape[-1]) point_features = self.vsa_point_feature_fusion(point_features.reshape(-1, point_features.shape[-1])) batch_dict['point_features'] = point_features # (BxN, C) batch_dict['point_coords'] = point_coords # (BxN, 4) return batch_dict class VoxelSetAbstraction(nn.Module): def __init__(self, model_cfg, voxel_size, point_cloud_range, num_bev_features=None, num_rawpoint_features=None, **kwargs): super().__init__() self.model_cfg = model_cfg self.voxel_size = voxel_size self.point_cloud_range = point_cloud_range SA_cfg = self.model_cfg.SA_LAYER self.SA_layers = nn.ModuleList() self.SA_layer_names = [] self.downsample_times_map = {} c_in = 0 for src_name in self.model_cfg.FEATURES_SOURCE: if src_name in ['bev', 'raw_points']: continue self.downsample_times_map[src_name] = SA_cfg[src_name].DOWNSAMPLE_FACTOR if SA_cfg[src_name].get('INPUT_CHANNELS', None) is None: input_channels = SA_cfg[src_name].MLPS[0][0] \ if isinstance(SA_cfg[src_name].MLPS[0], list) else SA_cfg[src_name].MLPS[0] else: input_channels = SA_cfg[src_name]['INPUT_CHANNELS'] cur_layer, cur_num_c_out = pointnet2_stack_modules.build_local_aggregation_module( input_channels=input_channels, config=SA_cfg[src_name] ) self.SA_layers.append(cur_layer) self.SA_layer_names.append(src_name) c_in += cur_num_c_out if 'bev' in self.model_cfg.FEATURES_SOURCE: c_bev = num_bev_features c_in += c_bev if 'raw_points' in self.model_cfg.FEATURES_SOURCE: self.SA_rawpoints, cur_num_c_out = pointnet2_stack_modules.build_local_aggregation_module( input_channels=num_rawpoint_features - 3, config=SA_cfg['raw_points'] ) c_in += cur_num_c_out self.vsa_point_feature_fusion = nn.Sequential( nn.Linear(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False), nn.BatchNorm1d(self.model_cfg.NUM_OUTPUT_FEATURES), nn.ReLU(), ) self.num_point_features = self.model_cfg.NUM_OUTPUT_FEATURES self.num_point_features_before_fusion = c_in def interpolate_from_bev_features(self, keypoints, bev_features, batch_size, bev_stride): """ Args: keypoints: (N1 + N2 + ..., 4) bev_features: (B, C, H, W) batch_size: bev_stride: Returns: point_bev_features: (N1 + N2 + ..., C) """ x_idxs = (keypoints[:, 1] - self.point_cloud_range[0]) / self.voxel_size[0] y_idxs = (keypoints[:, 2] - self.point_cloud_range[1]) / self.voxel_size[1] x_idxs = x_idxs / bev_stride y_idxs = y_idxs / bev_stride point_bev_features_list = [] for k in range(batch_size): bs_mask = (keypoints[:, 0] == k) cur_x_idxs = x_idxs[bs_mask] cur_y_idxs = y_idxs[bs_mask] cur_bev_features = bev_features[k].permute(1, 2, 0) # (H, W, C) point_bev_features = bilinear_interpolate_torch(cur_bev_features, cur_x_idxs, cur_y_idxs) point_bev_features_list.append(point_bev_features) point_bev_features = torch.cat(point_bev_features_list, dim=0) # (N1 + N2 + ..., C) return point_bev_features def sectorized_proposal_centric_sampling(self, roi_boxes, points): """ Args: roi_boxes: (M, 7 + C) points: (N, 3) Returns: sampled_points: (N_out, 3) """ sampled_points, _ = sample_points_with_roi( rois=roi_boxes, points=points, sample_radius_with_roi=self.model_cfg.SPC_SAMPLING.SAMPLE_RADIUS_WITH_ROI, num_max_points_of_part=self.model_cfg.SPC_SAMPLING.get('NUM_POINTS_OF_EACH_SAMPLE_PART', 200000) ) sampled_points = sector_fps( points=sampled_points, num_sampled_points=self.model_cfg.NUM_KEYPOINTS, num_sectors=self.model_cfg.SPC_SAMPLING.NUM_SECTORS ) return sampled_points def get_sampled_points(self, batch_dict): """ Args: batch_dict: Returns: keypoints: (N1 + N2 + ..., 4), where 4 indicates [bs_idx, x, y, z] """ batch_size = batch_dict['batch_size'] if self.model_cfg.POINT_SOURCE == 'raw_points': src_points = batch_dict['points'][:, 1:4] batch_indices = batch_dict['points'][:, 0].long() elif self.model_cfg.POINT_SOURCE == 'voxel_centers': src_points = common_utils.get_voxel_centers( batch_dict['voxel_coords'][:, 1:4], downsample_times=1, voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) batch_indices = batch_dict['voxel_coords'][:, 0].long() else: raise NotImplementedError keypoints_list = [] for bs_idx in range(batch_size): bs_mask = (batch_indices == bs_idx) sampled_points = src_points[bs_mask].unsqueeze(dim=0) # (1, N, 3) if self.model_cfg.SAMPLE_METHOD == 'FPS': cur_pt_idxs = pointnet2_stack_utils.farthest_point_sample( sampled_points[:, :, 0:3].contiguous(), self.model_cfg.NUM_KEYPOINTS ).long() if sampled_points.shape[1] < self.model_cfg.NUM_KEYPOINTS: times = int(self.model_cfg.NUM_KEYPOINTS / sampled_points.shape[1]) + 1 non_empty = cur_pt_idxs[0, :sampled_points.shape[1]] cur_pt_idxs[0] = non_empty.repeat(times)[:self.model_cfg.NUM_KEYPOINTS] keypoints = sampled_points[0][cur_pt_idxs[0]].unsqueeze(dim=0) elif self.model_cfg.SAMPLE_METHOD == 'SPC': cur_keypoints = self.sectorized_proposal_centric_sampling( roi_boxes=batch_dict['rois'][bs_idx], points=sampled_points[0] ) bs_idxs = cur_keypoints.new_ones(cur_keypoints.shape[0]) * bs_idx keypoints = torch.cat((bs_idxs[:, None], cur_keypoints), dim=1) else: raise NotImplementedError keypoints_list.append(keypoints) keypoints = torch.cat(keypoints_list, dim=0) # (B, M, 3) or (N1 + N2 + ..., 4) if len(keypoints.shape) == 3: batch_idx = torch.arange(batch_size, device=keypoints.device).view(-1, 1).repeat(1, keypoints.shape[1]).view(-1, 1) keypoints = torch.cat((batch_idx.float(), keypoints.view(-1, 3)), dim=1) return keypoints @staticmethod def aggregate_keypoint_features_from_one_source( batch_size, aggregate_func, xyz, xyz_features, xyz_bs_idxs, new_xyz, new_xyz_batch_cnt, filter_neighbors_with_roi=False, radius_of_neighbor=None, num_max_points_of_part=200000, rois=None ): """ Args: aggregate_func: xyz: (N, 3) xyz_features: (N, C) xyz_bs_idxs: (N) new_xyz: (M, 3) new_xyz_batch_cnt: (batch_size), [N1, N2, ...] filter_neighbors_with_roi: True/False radius_of_neighbor: float num_max_points_of_part: int rois: (batch_size, num_rois, 7 + C) Returns: """ xyz_batch_cnt = xyz.new_zeros(batch_size).int() if filter_neighbors_with_roi: point_features = torch.cat((xyz, xyz_features), dim=-1) if xyz_features is not None else xyz point_features_list = [] for bs_idx in range(batch_size): bs_mask = (xyz_bs_idxs == bs_idx) _, valid_mask = sample_points_with_roi( rois=rois[bs_idx], points=xyz[bs_mask], sample_radius_with_roi=radius_of_neighbor, num_max_points_of_part=num_max_points_of_part, ) point_features_list.append(point_features[bs_mask][valid_mask]) xyz_batch_cnt[bs_idx] = valid_mask.sum() valid_point_features = torch.cat(point_features_list, dim=0) xyz = valid_point_features[:, 0:3] xyz_features = valid_point_features[:, 3:] if xyz_features is not None else None else: for bs_idx in range(batch_size): xyz_batch_cnt[bs_idx] = (xyz_bs_idxs == bs_idx).sum() pooled_points, pooled_features = aggregate_func( xyz=xyz.contiguous(), xyz_batch_cnt=xyz_batch_cnt, new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, features=xyz_features.contiguous(), ) return pooled_features def forward(self, batch_dict): """ Args: batch_dict: batch_size: keypoints: (B, num_keypoints, 3) multi_scale_3d_features: { 'x_conv4': ... } points: optional (N, 1 + 3 + C) [bs_idx, x, y, z, ...] spatial_features: optional spatial_features_stride: optional Returns: point_features: (N, C) point_coords: (N, 4) """ keypoints = self.get_sampled_points(batch_dict) point_features_list = [] if 'bev' in self.model_cfg.FEATURES_SOURCE: point_bev_features = self.interpolate_from_bev_features( keypoints, batch_dict['spatial_features'], batch_dict['batch_size'], bev_stride=batch_dict['spatial_features_stride'] ) point_features_list.append(point_bev_features) batch_size = batch_dict['batch_size'] new_xyz = keypoints[:, 1:4].contiguous() new_xyz_batch_cnt = new_xyz.new_zeros(batch_size).int() for k in range(batch_size): new_xyz_batch_cnt[k] = (keypoints[:, 0] == k).sum() if 'raw_points' in self.model_cfg.FEATURES_SOURCE: raw_points = batch_dict['points'] pooled_features = self.aggregate_keypoint_features_from_one_source( batch_size=batch_size, aggregate_func=self.SA_rawpoints, xyz=raw_points[:, 1:4], xyz_features=raw_points[:, 4:].contiguous() if raw_points.shape[1] > 4 else None, xyz_bs_idxs=raw_points[:, 0], new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, filter_neighbors_with_roi=self.model_cfg.SA_LAYER['raw_points'].get('FILTER_NEIGHBOR_WITH_ROI', False), radius_of_neighbor=self.model_cfg.SA_LAYER['raw_points'].get('RADIUS_OF_NEIGHBOR_WITH_ROI', None), rois=batch_dict.get('rois', None) ) point_features_list.append(pooled_features) for k, src_name in enumerate(self.SA_layer_names): cur_coords = batch_dict['multi_scale_3d_features'][src_name].indices cur_features = batch_dict['multi_scale_3d_features'][src_name].features.contiguous() xyz = common_utils.get_voxel_centers( cur_coords[:, 1:4], downsample_times=self.downsample_times_map[src_name], voxel_size=self.voxel_size, point_cloud_range=self.point_cloud_range ) pooled_features = self.aggregate_keypoint_features_from_one_source( batch_size=batch_size, aggregate_func=self.SA_layers[k], xyz=xyz.contiguous(), xyz_features=cur_features, xyz_bs_idxs=cur_coords[:, 0], new_xyz=new_xyz, new_xyz_batch_cnt=new_xyz_batch_cnt, filter_neighbors_with_roi=self.model_cfg.SA_LAYER[src_name].get('FILTER_NEIGHBOR_WITH_ROI', False), radius_of_neighbor=self.model_cfg.SA_LAYER[src_name].get('RADIUS_OF_NEIGHBOR_WITH_ROI', None), rois=batch_dict.get('rois', None) ) point_features_list.append(pooled_features) point_features = torch.cat(point_features_list, dim=-1) batch_dict['point_features_before_fusion'] = point_features.view(-1, point_features.shape[-1]) point_features = self.vsa_point_feature_fusion(point_features.view(-1, point_features.shape[-1])) batch_dict['point_features'] = point_features # (BxN, C) batch_dict['point_coords'] = keypoints # (BxN, 4) return batch_dict
[ "torch.nn.ReLU", "math.ceil", "torch.nn.ModuleList", "torch.topk", "torch.atan2", "torch.floor", "torch.nn.LayerNorm", "torch.max", "torch.tensor", "torch.nn.BatchNorm1d", "torch.arange", "torch.nn.Linear", "torch.nn.Identity", "torch.t", "torch.clamp", "torch.cat" ]
[((756, 791), 'torch.clamp', 'torch.clamp', (['x0', '(0)', '(im.shape[1] - 1)'], {}), '(x0, 0, im.shape[1] - 1)\n', (767, 791), False, 'import torch\n'), ((801, 836), 'torch.clamp', 'torch.clamp', (['x1', '(0)', '(im.shape[1] - 1)'], {}), '(x1, 0, im.shape[1] - 1)\n', (812, 836), False, 'import torch\n'), ((846, 881), 'torch.clamp', 'torch.clamp', (['y0', '(0)', '(im.shape[0] - 1)'], {}), '(y0, 0, im.shape[0] - 1)\n', (857, 881), False, 'import torch\n'), ((891, 926), 'torch.clamp', 'torch.clamp', (['y1', '(0)', '(im.shape[0] - 1)'], {}), '(y1, 0, im.shape[0] - 1)\n', (902, 926), False, 'import torch\n'), ((3854, 3887), 'torch.cat', 'torch.cat', (['xyz_points_list'], {'dim': '(0)'}), '(xyz_points_list, dim=0)\n', (3863, 3887), False, 'import torch\n'), ((2503, 2536), 'torch.cat', 'torch.cat', (['point_mask_list'], {'dim': '(0)'}), '(point_mask_list, dim=0)\n', (2512, 2536), False, 'import torch\n'), ((2935, 2974), 'torch.atan2', 'torch.atan2', (['points[:, 1]', 'points[:, 0]'], {}), '(points[:, 1], points[:, 0])\n', (2946, 2974), False, 'import torch\n'), ((4699, 4714), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (4712, 4714), True, 'import torch.nn as nn\n'), ((4741, 4756), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (4754, 4756), True, 'import torch.nn as nn\n'), ((4784, 4799), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (4797, 4799), True, 'import torch.nn as nn\n'), ((10246, 10287), 'torch.cat', 'torch.cat', (['point_bev_features_list'], {'dim': '(0)'}), '(point_bev_features_list, dim=0)\n', (10255, 10287), False, 'import torch\n'), ((12031, 12063), 'torch.cat', 'torch.cat', (['keypoints_list'], {'dim': '(0)'}), '(keypoints_list, dim=0)\n', (12040, 12063), False, 'import torch\n'), ((13670, 13702), 'torch.cat', 'torch.cat', (['keypoints_list'], {'dim': '(0)'}), '(keypoints_list, dim=0)\n', (13679, 13702), False, 'import torch\n'), ((18822, 18863), 'torch.cat', 'torch.cat', (['point_features_list_new'], {'dim': '(0)'}), '(point_features_list_new, dim=0)\n', (18831, 18863), False, 'import torch\n'), ((19340, 19377), 'torch.cat', 'torch.cat', (['point_features_list'], {'dim': '(2)'}), '(point_features_list, dim=2)\n', (19349, 19377), False, 'import torch\n'), ((20728, 20743), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (20741, 20743), True, 'import torch.nn as nn\n'), ((23487, 23528), 'torch.cat', 'torch.cat', (['point_bev_features_list'], {'dim': '(0)'}), '(point_bev_features_list, dim=0)\n', (23496, 23528), False, 'import torch\n'), ((26577, 26609), 'torch.cat', 'torch.cat', (['keypoints_list'], {'dim': '(0)'}), '(keypoints_list, dim=0)\n', (26586, 26609), False, 'import torch\n'), ((32262, 32300), 'torch.cat', 'torch.cat', (['point_features_list'], {'dim': '(-1)'}), '(point_features_list, dim=-1)\n', (32271, 32300), False, 'import torch\n'), ((660, 674), 'torch.floor', 'torch.floor', (['x'], {}), '(x)\n', (671, 674), False, 'import torch\n'), ((708, 722), 'torch.floor', 'torch.floor', (['y'], {}), '(y)\n', (719, 722), False, 'import torch\n'), ((3908, 3957), 'torch.tensor', 'torch.tensor', (['xyz_batch_cnt'], {'device': 'points.device'}), '(xyz_batch_cnt, device=points.device)\n', (3920, 3957), False, 'import torch\n'), ((3995, 4054), 'torch.tensor', 'torch.tensor', (['num_sampled_points_list'], {'device': 'points.device'}), '(num_sampled_points_list, device=points.device)\n', (4007, 4054), False, 'import torch\n'), ((8143, 8206), 'torch.nn.Linear', 'nn.Linear', (['c_in', 'self.model_cfg.NUM_OUTPUT_FEATURES'], {'bias': '(False)'}), '(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False)\n', (8152, 8206), True, 'import torch.nn as nn\n'), ((8220, 8270), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['self.model_cfg.NUM_OUTPUT_FEATURES'], {}), '(self.model_cfg.NUM_OUTPUT_FEATURES)\n', (8234, 8270), True, 'import torch.nn as nn\n'), ((8284, 8293), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (8291, 8293), True, 'import torch.nn as nn\n'), ((8488, 8506), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['c_in'], {}), '(c_in)\n', (8500, 8506), True, 'import torch.nn as nn\n'), ((8618, 8651), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['self.fusion_channel'], {}), '(self.fusion_channel)\n', (8630, 8651), True, 'import torch.nn as nn\n'), ((9329, 9347), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['c_in'], {}), '(c_in)\n', (9341, 9347), True, 'import torch.nn as nn\n'), ((9361, 9370), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (9368, 9370), True, 'import torch.nn as nn\n'), ((9427, 9445), 'torch.nn.LayerNorm', 'nn.LayerNorm', (['c_in'], {}), '(c_in)\n', (9439, 9445), True, 'import torch.nn as nn\n'), ((9459, 9468), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (9466, 9468), True, 'import torch.nn as nn\n'), ((14087, 14142), 'torch.max', 'torch.max', (["batch_dict['batch_cls_preds'][bs_idx]"], {'dim': '(1)'}), "(batch_dict['batch_cls_preds'][bs_idx], dim=1)\n", (14096, 14142), False, 'import torch\n'), ((14166, 14191), 'torch.topk', 'torch.topk', (['s', 'self.topks'], {}), '(s, self.topks)\n', (14176, 14191), False, 'import torch\n'), ((14758, 14813), 'torch.max', 'torch.max', (["batch_dict['batch_cls_preds'][bs_idx]"], {'dim': '(1)'}), "(batch_dict['batch_cls_preds'][bs_idx], dim=1)\n", (14767, 14813), False, 'import torch\n'), ((14837, 14862), 'torch.topk', 'torch.topk', (['s', 'self.topks'], {}), '(s, self.topks)\n', (14847, 14862), False, 'import torch\n'), ((19425, 19469), 'torch.cat', 'torch.cat', (['trans1_feat_projected_list'], {'dim': '(2)'}), '(trans1_feat_projected_list, dim=2)\n', (19434, 19469), False, 'import torch\n'), ((22156, 22219), 'torch.nn.Linear', 'nn.Linear', (['c_in', 'self.model_cfg.NUM_OUTPUT_FEATURES'], {'bias': '(False)'}), '(c_in, self.model_cfg.NUM_OUTPUT_FEATURES, bias=False)\n', (22165, 22219), True, 'import torch.nn as nn\n'), ((22233, 22283), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['self.model_cfg.NUM_OUTPUT_FEATURES'], {}), '(self.model_cfg.NUM_OUTPUT_FEATURES)\n', (22247, 22283), True, 'import torch.nn as nn\n'), ((22297, 22306), 'torch.nn.ReLU', 'nn.ReLU', ([], {}), '()\n', (22304, 22306), True, 'import torch.nn as nn\n'), ((28392, 28429), 'torch.cat', 'torch.cat', (['point_features_list'], {'dim': '(0)'}), '(point_features_list, dim=0)\n', (28401, 28429), False, 'import torch\n'), ((1317, 1328), 'torch.t', 'torch.t', (['Id'], {}), '(Id)\n', (1324, 1328), False, 'import torch\n'), ((12536, 12571), 'torch.arange', 'torch.arange', (['(0)', 'self.max_keypoints'], {}), '(0, self.max_keypoints)\n', (12548, 12571), False, 'import torch\n'), ((27767, 27805), 'torch.cat', 'torch.cat', (['(xyz, xyz_features)'], {'dim': '(-1)'}), '((xyz, xyz_features), dim=-1)\n', (27776, 27805), False, 'import torch\n'), ((1289, 1300), 'torch.t', 'torch.t', (['Ic'], {}), '(Ic)\n', (1296, 1300), False, 'import torch\n'), ((3519, 3556), 'math.ceil', 'math.ceil', (['(ratio * num_sampled_points)'], {}), '(ratio * num_sampled_points)\n', (3528, 3556), False, 'import math\n'), ((5224, 5237), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (5235, 5237), True, 'import torch.nn as nn\n'), ((5279, 5292), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (5290, 5292), True, 'import torch.nn as nn\n'), ((6296, 6309), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (6307, 6309), True, 'import torch.nn as nn\n'), ((6351, 6364), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (6362, 6364), True, 'import torch.nn as nn\n'), ((7554, 7567), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (7565, 7567), True, 'import torch.nn as nn\n'), ((7609, 7622), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (7620, 7622), True, 'import torch.nn as nn\n'), ((26398, 26449), 'torch.cat', 'torch.cat', (['(bs_idxs[:, None], cur_keypoints)'], {'dim': '(1)'}), '((bs_idxs[:, None], cur_keypoints), dim=1)\n', (26407, 26449), False, 'import torch\n'), ((1232, 1243), 'torch.t', 'torch.t', (['Ia'], {}), '(Ia)\n', (1239, 1243), False, 'import torch\n'), ((1261, 1272), 'torch.t', 'torch.t', (['Ib'], {}), '(Ib)\n', (1268, 1272), False, 'import torch\n'), ((5386, 5435), 'torch.nn.Linear', 'nn.Linear', (['c_bev', 'self.fusion_channel'], {'bias': '(False)'}), '(c_bev, self.fusion_channel, bias=False)\n', (5395, 5435), True, 'import torch.nn as nn\n'), ((5457, 5492), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['self.fusion_channel'], {}), '(self.fusion_channel)\n', (5471, 5492), True, 'import torch.nn as nn\n'), ((5570, 5619), 'torch.nn.Linear', 'nn.Linear', (['self.fusion_channel', 'c_bev'], {'bias': '(False)'}), '(self.fusion_channel, c_bev, bias=False)\n', (5579, 5619), True, 'import torch.nn as nn\n'), ((5641, 5662), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['c_bev'], {}), '(c_bev)\n', (5655, 5662), True, 'import torch.nn as nn\n'), ((6458, 6505), 'torch.nn.Linear', 'nn.Linear', (['cur', 'self.fusion_channel'], {'bias': '(False)'}), '(cur, self.fusion_channel, bias=False)\n', (6467, 6505), True, 'import torch.nn as nn\n'), ((6527, 6562), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['self.fusion_channel'], {}), '(self.fusion_channel)\n', (6541, 6562), True, 'import torch.nn as nn\n'), ((6640, 6687), 'torch.nn.Linear', 'nn.Linear', (['self.fusion_channel', 'cur'], {'bias': '(False)'}), '(self.fusion_channel, cur, bias=False)\n', (6649, 6687), True, 'import torch.nn as nn\n'), ((6709, 6728), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['cur'], {}), '(cur)\n', (6723, 6728), True, 'import torch.nn as nn\n'), ((7716, 7763), 'torch.nn.Linear', 'nn.Linear', (['cur', 'self.fusion_channel'], {'bias': '(False)'}), '(cur, self.fusion_channel, bias=False)\n', (7725, 7763), True, 'import torch.nn as nn\n'), ((7785, 7820), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['self.fusion_channel'], {}), '(self.fusion_channel)\n', (7799, 7820), True, 'import torch.nn as nn\n'), ((7898, 7945), 'torch.nn.Linear', 'nn.Linear', (['self.fusion_channel', 'cur'], {'bias': '(False)'}), '(self.fusion_channel, cur, bias=False)\n', (7907, 7945), True, 'import torch.nn as nn\n'), ((7967, 7986), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['cur'], {}), '(cur)\n', (7981, 7986), True, 'import torch.nn as nn\n'), ((19759, 19808), 'torch.arange', 'torch.arange', (['batch_size'], {'device': 'keypoints.device'}), '(batch_size, device=keypoints.device)\n', (19771, 19808), False, 'import torch\n'), ((26707, 26756), 'torch.arange', 'torch.arange', (['batch_size'], {'device': 'keypoints.device'}), '(batch_size, device=keypoints.device)\n', (26719, 26756), False, 'import torch\n')]
#PRIMARY IMPORTS import discord, os, datetime, sys, json, traceback, logging #SECONDARY IMPORTS from apscheduler.schedulers.asyncio import AsyncIOScheduler from discord.ext import commands from data import config #LOGGING logger = logging.getLogger("ivry") logger.debug("errors.py Started") class Errors(commands.Cog): def __init__(self, client): self.client = client #ERROR MESSAGES @commands.Cog.listener() async def on_command_error(self, ctx, error): if hasattr(ctx.command, 'on_error'): return cog = ctx.cog if cog: if cog._get_overridden_method(cog.cog_command_error) is not None: return ignored = (commands.CommandNotFound) error = getattr(error, 'original', error) if isinstance(error, ignored): return #COMMAND ERROR elif isinstance(error, commands.CommandError): embed = discord.Embed(title=f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Command Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CONVERSION ERROR elif isinstance(error, commands.ConversionError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Conversion Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Conversion Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #USER INPUT ERROR elif isinstance(error, commands.UserInputError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal User Input Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal User Input Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MISSING REQUIRED ARGUMENT elif isinstance(error, commands.MissingRequiredArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Conversion Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Conversion Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #TOO MANY ARGUMENTS elif isinstance(error, commands.TooManyArguments): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Conversion Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Conversion Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BAD ARGUMENT elif isinstance(error, commands.BadArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bad Argument Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bad Argument Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MESSAGE NOT FOUND elif isinstance(error, commands.MessageNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Message Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Message Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MEMBER NOT FOUND elif isinstance(error, commands.MemberNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Member Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bad Member Not Found occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #USER NOT FOUND elif isinstance(error, commands.UserNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal User Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal User Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CHANNEL NOT FOUND elif isinstance(error, commands.ChannelNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Channel Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Channel Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CHANNEL NOT READABLE elif isinstance(error, commands.ChannelNotReadable): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Channel Not Readable Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Channel Not Readable Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BAD COLOR ARGUMENT elif isinstance(error, commands.BadColourArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bad Colour Argument Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bad Colour Argument Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #ROLE NOT FOUND elif isinstance(error, commands.RoleNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Role Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Role Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BAD INVITE ARGUMENT elif isinstance(error, commands.BadInviteArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Conversion Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Conversion Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EMOJI NOT FOUND elif isinstance(error, commands.EmojiNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Emoji Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Emoji Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #PARTIAL EMOJI CONVERSION FAILURE elif isinstance(error, commands.PartialEmojiConversionFailure): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Partial Emoji Conversion Failure Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Partial Emoji Conversion Failure Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BAD BOOL ARGUMENT elif isinstance(error, commands.BadBoolArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bad Bool Argument Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bad Bool Argument Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BAD UNION ARGUMENT elif isinstance(error, commands.BadUnionArgument): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bad Union Argument Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bad Union Argument Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #ARGUMENT PARSING ERROR elif isinstance(error, commands.ArgumentParsingError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Argument Parsing Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Argument Parsing Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #UNEXPECTED QUOTE ERROR elif isinstance(error, commands.UnexpectedQuoteError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Unexpected Quote Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Unexpected Quote Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #INVALID END OF QUOTED STRING elif isinstance(error, commands.InvalidEndOfQuotedStringError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Invalid End Of Quoted String Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Invalid End Of Quoted String Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXPECTED CLOSING QUOTE ERROR elif isinstance(error, commands.ExpectedClosingQuoteError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Expected Closing Quote Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Expected Closing Quote Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #COMMAND NOT FOUND elif isinstance(error, commands.CommandNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Command Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CHECK FAILURE elif isinstance(error, commands.CheckFailure): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Check Failure Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Check Failure Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CHECK ANY FAILURE elif isinstance(error, commands.CheckAnyFailure): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Check Any Failure Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Check Any Failure Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #PRIVATE MESSAGE ONLY elif isinstance(error, commands.PrivateMessageOnly): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Private Message Only Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Private Message Only Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #NO PRIVATE MESSAGE elif isinstance(error, commands.NoPrivateMessage): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal No Private Message Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal No Private Message Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #NOT OWNER elif isinstance(error, commands.NotOwner): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Not Owner Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Not Owner Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MISSING PERMISSIONS elif isinstance(error, commands.MissingPermissions): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Missing Permissions Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Missing Permissions Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MISSING ROLE elif isinstance(error, commands.MissingRole): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Missing Role Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Missing Role Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BOT MISSING ROLE elif isinstance(error, commands.BotMissingRole): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bot Missing Role Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bot Missing Role Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MISSING ANY ROLE elif isinstance(error, commands.MissingAnyRole): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Missing Any Role Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Missing Any Role Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #BOT MISSING ANY ROLE elif isinstance(error, commands.BotMissingAnyRole): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Bot Missing Any Role Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Bot Missing Any Role Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #NSFW CHANNEL REQUIRED elif isinstance(error, commands.NSFWChannelRequired): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal NSFW Channel Required Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal NSFW Channel Required Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #DISABLED COMMAND elif isinstance(error, commands.DisabledCommand): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Disabled Command Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Disabled Command Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #COMMAND INVOKE ERROR elif isinstance(error, commands.CommandInvokeError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Invoke Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Command Invoke Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #COMMAND ON COOLDOWN elif isinstance(error, commands.CommandOnCooldown): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command On Cooldown Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Command On Cooldown Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #MAX CONCURRENCY REACHED elif isinstance(error, commands.MaxConcurrencyReached): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Max Concurrency Reached Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Max Concurrency Reached Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXTENSION ERROR elif isinstance(error, commands.ExtensionError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal EXT Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Extension Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXTENSION ALREADY LOADED elif isinstance(error, commands.ExtensionAlreadyLoaded): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal EXT Already Loaded Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Extension Already Loaded Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXTENSION NOT LOADED elif isinstance(error, commands.ExtensionNotLoaded): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal EXT Not Loaded Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Extension Not Loaded Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #NO ENTRY POINT ERROR elif isinstance(error, commands.NoEntryPointError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal No Entry Point Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal No Entrypoint Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXTENSION FAILED elif isinstance(error, commands.ExtensionFailed): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal EXT Failed Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Extension Failed Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #EXTENSION NOT FOUND elif isinstance(error, commands.ExtensionNotFound): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal EXT Not Found Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Extension Not Found Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") #CLIENT EXCEPTION #COMMAND REGISTRATION ERROR elif isinstance(error, commands.CommandRegistrationError): embed = discord.Embed(title = f"Type = `Fatal`",color=0x9B59B6, timestamp=ctx.message.created_at) embed.set_author(name="IVRY Error", icon_url=self.client.user.avatar_url) embed.add_field(name = "Error", value="`Internal Command Registration Error`", inline=True) embed.add_field(name = "Error Point", value=f"`{ctx.command}`", inline=True) embed.add_field(name = "Trace Back", value=f"```CSS\n{error}```", inline=False) embed.set_footer(text=f"{config.version} | {config.shards}") await ctx.send(embed=embed) print(f'[WARNING] A Fatal internal Command Registration Error occured in execution of {ctx.command}') logger.debug(f"[ERROR] {ctx.command} | {error}") else: print('Ignoring exception in command {}:'.format(ctx.command), file=sys.stderr) traceback.print_exception(type(error), error, error.__traceback__, file=sys.stderr) def setup(client): client.add_cog(Errors(client))
[ "logging.getLogger", "discord.Embed", "discord.ext.commands.Cog.listener" ]
[((248, 273), 'logging.getLogger', 'logging.getLogger', (['"""ivry"""'], {}), "('ivry')\n", (265, 273), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((472, 495), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (493, 495), False, 'from discord.ext import commands\n'), ((1153, 1246), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (1166, 1246), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((2137, 2230), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (2150, 2230), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((3144, 3237), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (3157, 3237), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((4169, 4262), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (4182, 4262), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((5170, 5263), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (5183, 5263), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((6162, 6255), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (6175, 6255), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((7188, 7281), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (7201, 7281), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((8222, 8315), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (8235, 8315), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((9247, 9340), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (9260, 9340), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((10274, 10367), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (10287, 10367), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((11313, 11406), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (11326, 11406), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((12355, 12448), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (12368, 12448), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((13385, 13478), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (13398, 13478), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((14414, 14507), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (14427, 14507), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((15419, 15512), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (15432, 15512), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((16459, 16552), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (16472, 16552), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((17504, 17597), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (17517, 17597), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((18523, 18616), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (18536, 18616), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((19552, 19645), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (19565, 19645), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((20577, 20670), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (20590, 20670), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((21618, 21711), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (21631, 21711), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((22676, 22769), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (22689, 22769), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((23709, 23802), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (23722, 23802), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((24711, 24804), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (24724, 24804), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((25726, 25819), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (25739, 25819), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((26761, 26854), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (26774, 26854), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((27790, 27883), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (27803, 27883), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((28798, 28891), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (28811, 28891), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((29808, 29901), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (29821, 29901), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((30840, 30933), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (30853, 30933), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((31849, 31942), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (31862, 31942), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((32866, 32959), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (32879, 32959), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((33890, 33983), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (33903, 33983), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((34922, 35015), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (34935, 35015), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((35953, 36046), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (35966, 36046), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((36974, 37067), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (36987, 37067), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((37989, 38082), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (38002, 38082), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((39026, 39119), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (39039, 39119), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((40063, 40156), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (40076, 40156), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((41072, 41165), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (41085, 41165), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((42101, 42194), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (42114, 42194), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((43121, 43214), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (43134, 43214), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((44128, 44221), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (44141, 44221), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((45139, 45232), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (45152, 45232), False, 'import discord, os, datetime, sys, json, traceback, logging\n'), ((46199, 46292), 'discord.Embed', 'discord.Embed', ([], {'title': 'f"""Type = `Fatal`"""', 'color': '(10181046)', 'timestamp': 'ctx.message.created_at'}), "(title=f'Type = `Fatal`', color=10181046, timestamp=ctx.\n message.created_at)\n", (46212, 46292), False, 'import discord, os, datetime, sys, json, traceback, logging\n')]
from ariadne import make_executable_schema, load_schema_from_path from ariadne.asgi import GraphQL from resolvers import query, skill, person, eye_color, mutation # import schema from GraphQL file type_defs = load_schema_from_path("./schema.gql") schema = make_executable_schema( type_defs, query, skill, person, eye_color, mutation ) app = GraphQL(schema, debug=True)
[ "ariadne.asgi.GraphQL", "ariadne.make_executable_schema", "ariadne.load_schema_from_path" ]
[((211, 248), 'ariadne.load_schema_from_path', 'load_schema_from_path', (['"""./schema.gql"""'], {}), "('./schema.gql')\n", (232, 248), False, 'from ariadne import make_executable_schema, load_schema_from_path\n'), ((259, 335), 'ariadne.make_executable_schema', 'make_executable_schema', (['type_defs', 'query', 'skill', 'person', 'eye_color', 'mutation'], {}), '(type_defs, query, skill, person, eye_color, mutation)\n', (281, 335), False, 'from ariadne import make_executable_schema, load_schema_from_path\n'), ((348, 375), 'ariadne.asgi.GraphQL', 'GraphQL', (['schema'], {'debug': '(True)'}), '(schema, debug=True)\n', (355, 375), False, 'from ariadne.asgi import GraphQL\n')]
import importlib import time from pathlib import Path import os import sys def import_plugins(): #find actual path realpath = os.path.realpath(__file__) dirname = os.path.dirname(realpath) #add modules & plugins plugin_path = os.path.join(dirname, "plugins") for dir_path in Path(plugin_path).rglob('*.py'): dp = str(dir_path) if dp.lower().endswith("__init__.py"): continue path = dp[len(dirname)+1:-3].replace(os.sep,".") if len(path.split('.')) < 4: '''only import the top level plugin directory, so that potential submodules are only imported if they are imported by the plugins.''' print(" > " + path) importlib.import_module(path) print("Import plugins ..") import_plugins() print("Import app ..") import modules.app.App as piTomation app: piTomation.App print("Start app ..") app = piTomation.App() #try: # app = piTomation.App() #except Exception as ex: # print(ex) # exit() try: while not app.is_disposed: time.sleep(1) except Exception as ex: print(ex)
[ "modules.app.App.App", "importlib.import_module", "pathlib.Path", "os.path.join", "time.sleep", "os.path.realpath", "os.path.dirname" ]
[((914, 930), 'modules.app.App.App', 'piTomation.App', ([], {}), '()\n', (928, 930), True, 'import modules.app.App as piTomation\n'), ((135, 161), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (151, 161), False, 'import os\n'), ((176, 201), 'os.path.dirname', 'os.path.dirname', (['realpath'], {}), '(realpath)\n', (191, 201), False, 'import os\n'), ((248, 280), 'os.path.join', 'os.path.join', (['dirname', '"""plugins"""'], {}), "(dirname, 'plugins')\n", (260, 280), False, 'import os\n'), ((1063, 1076), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (1073, 1076), False, 'import time\n'), ((302, 319), 'pathlib.Path', 'Path', (['plugin_path'], {}), '(plugin_path)\n', (306, 319), False, 'from pathlib import Path\n'), ((728, 757), 'importlib.import_module', 'importlib.import_module', (['path'], {}), '(path)\n', (751, 757), False, 'import importlib\n')]
""" Functions support other modules. """ import uuid def check_response(response, key=None): """CHeck the api response. Make sure the status call is successful and the response have specific key. Return: class: `Response <Response>` """ code = response.status_code if not 200 <= code < 300: raise Exception('[Decanter Core response Error] Request Error') if key is not None and key not in response.json(): raise KeyError('[Decanter Core response Error] No key value') return response def gen_id(type_, name): """Generate a random UUID if name isn't given. Returns: string """ if name is None: rand_id = uuid.uuid4() rand_id = str(rand_id)[:8] name = type_ + '_' + rand_id return name def isnotebook(): """Return True if SDK is running on Jupyter Notebook.""" try: shell = get_ipython().__class__.__name__ if shell == 'ZMQInteractiveShell': return True # Jupyter notebook or qtconsole if shell == 'TerminalInteractiveShell': return False # Terminal running IPython return False except NameError: return False
[ "uuid.uuid4" ]
[((699, 711), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (709, 711), False, 'import uuid\n')]
import scipy.stats import numpy as np def f_test(sample_x, sample_y, larger_varx_alt): """ Computes the F-value and corresponding p-value for a pair of samples and alternative hypothesis. Parameters ---------- sample_x : list A random sample x1,...,xnx. Let its (underlying) variance be ox^2 and its sample variance Sx^2. sample_y : list A random sample y1,...,yny. Let its (underlying) variance be oy^2 and its sample variance Sy^2. larger_varx_alt : bool True if alternative hypothesis is ox^2 > oy^2. False if ox^2 < oy^2. Returns ------- f_value : float Sx^2 / Sy^2 as defined in 'A Quick, Compact, Two-Sample Dispersion Test: Count Five'. p_value : float Let F be the F-distribution with nx, ny df. 1 - P(F < f_value) if larger_varx_alt = True, P(F < f_value) otherwise. More extreme F = Sx^2 / Sy^2 values for alternative ox^2 > oy^2 are to the right. More extreme F values for ox^2 < oy^2 are to the left. """ # calculate unbiased sample variances (n-1 in the denominator) sample_var_x = np.var(sample_x, ddof=1) sample_var_y = np.var(sample_y, ddof=1) f_value = sample_var_x/sample_var_y nx = len(sample_x) ny = len(sample_y) # compute P(F < f_value) with nx-1, ny-1 df cdf = scipy.stats.f.cdf(f_value, nx-1, ny-1) # More extreme f_value = Sx^2 / Sy^2 values for alternative ox^2 > oy^2. ox^2 being even bigger would be represented by larger quotient Sx^2 / Sy^2. # More extreme f_value for ox^2 < oy^2 are to the left. ox^2 being even smaller would be represented by smaller quotient. p_value = 1 - cdf if larger_varx_alt else cdf return f_value, p_value def f1_test(sample_x, sample_y, larger_varx_alt): """ Computes the F1-value as defined in 'Fixing the F Test for Equal Variances' and corresponding p-value for a pair of samples and alternative hypothesis. Parameters ---------- sample_x : list A random sample x1,...,xnx. Let its (underlying) variance be ox^2 and its sample variance Sx^2. sample_y : list A random sample y1,...,yny. Let its (underlying) variance be oy^2 and its sample variance Sy^2. larger_varx_alt : bool True if alternative hypothesis is ox^2 > oy^2. False if ox^2 < oy^2. Returns ------- p_value : float Let F be the F-distribution with rx, ry df as specified in equation (1) of 'Fixing the F Test for Equal Variances'. 1 - P(F < f_value) if larger_varx_alt = True, P(F < f_value) otherwise. """ # calculate unbiased sample variances (n-1 in the denominator) sample_var_x = np.var(sample_x, ddof=1) sample_var_y = np.var(sample_y, ddof=1) f_value = sample_var_x/sample_var_y nx = len(sample_x) ny = len(sample_y) xmean = np.mean(sample_x) ymean = np.mean(sample_y) # compute moment, variance below equatio (1) of Shoemaker paper fourth_moment = (np.sum((sample_x - xmean)**4) + np.sum((sample_y - ymean)**4))/(nx + ny) pooled_var = ((nx-1)*sample_var_x + (ny-1)*sample_var_y)/(nx + ny) # see equation (1) of Shoemaker paper rx = 2*nx / ((fourth_moment/pooled_var**2) - ((nx - 3)/(nx - 1))) ry = 2*ny / ((fourth_moment/pooled_var**2) - ((ny - 3)/(ny - 1))) # compute P(F < f_value) with rx-1, ry-1 df cdf = scipy.stats.f.cdf(f_value, rx-1, ry-1) # More extreme f_value = Sx^2 / Sy^2 values for alternative ox^2 > oy^2. ox^2 being even bigger would be represented by larger quotient Sx^2 / Sy^2. # More extreme f_value for ox^2 < oy^2 are to the left. ox^2 being even smaller would be represented by smaller quotient. p_value = 1 - cdf if larger_varx_alt else cdf return p_value def count_five(sample_x, sample_y, center): """ Computes the extreme counts for samples x and y as defined in 'A Quick, Compact, Two-Sample Dispersion Test: Count Five'. Parameters ---------- sample_x : list A random sample x1,...,xn. sample_y : list A random sample y1,...,ym. center : str Whether to use 'mean' or 'median' for centering. Returns ------- extreme_count_x : int C_x computed with centering mu being sample mean if center = 'mean' and sample median if center = 'median' as defined in equation (1) of 'A Quick, Compact, Two-Sample Dispersion Test: Count Five'. extreme_count_y : int C_y defined analogously to C_x above. Raises ------ ValueError If center is neither 'mean' or 'median'. """ if center not in {'mean', 'median'}: raise ValueError('Invalid center %s' % (center)) if center == 'mean': centering_x = np.mean(sample_x) centering_y = np.mean(sample_y) else: centering_x = np.median(sample_x) centering_y = np.median(sample_y) # compute absolute deviations from centering for x, y samples abs_dev_x = np.abs(np.array(sample_x) - centering_x) abs_dev_y = np.abs(np.array(sample_y) - centering_y) # count number of X deviations greater than max Y deviation and vice versa # see equation (1) of Count Five paper extreme_count_x = np.sum(np.where(abs_dev_x > np.max(abs_dev_y), 1, 0)) extreme_count_y = np.sum(np.where(abs_dev_y > np.max(abs_dev_x), 1, 0)) return extreme_count_x, extreme_count_y
[ "numpy.mean", "numpy.median", "numpy.max", "numpy.array", "numpy.sum", "numpy.var" ]
[((1099, 1123), 'numpy.var', 'np.var', (['sample_x'], {'ddof': '(1)'}), '(sample_x, ddof=1)\n', (1105, 1123), True, 'import numpy as np\n'), ((1143, 1167), 'numpy.var', 'np.var', (['sample_y'], {'ddof': '(1)'}), '(sample_y, ddof=1)\n', (1149, 1167), True, 'import numpy as np\n'), ((2649, 2673), 'numpy.var', 'np.var', (['sample_x'], {'ddof': '(1)'}), '(sample_x, ddof=1)\n', (2655, 2673), True, 'import numpy as np\n'), ((2693, 2717), 'numpy.var', 'np.var', (['sample_y'], {'ddof': '(1)'}), '(sample_y, ddof=1)\n', (2699, 2717), True, 'import numpy as np\n'), ((2816, 2833), 'numpy.mean', 'np.mean', (['sample_x'], {}), '(sample_x)\n', (2823, 2833), True, 'import numpy as np\n'), ((2846, 2863), 'numpy.mean', 'np.mean', (['sample_y'], {}), '(sample_y)\n', (2853, 2863), True, 'import numpy as np\n'), ((4713, 4730), 'numpy.mean', 'np.mean', (['sample_x'], {}), '(sample_x)\n', (4720, 4730), True, 'import numpy as np\n'), ((4753, 4770), 'numpy.mean', 'np.mean', (['sample_y'], {}), '(sample_y)\n', (4760, 4770), True, 'import numpy as np\n'), ((4803, 4822), 'numpy.median', 'np.median', (['sample_x'], {}), '(sample_x)\n', (4812, 4822), True, 'import numpy as np\n'), ((4845, 4864), 'numpy.median', 'np.median', (['sample_y'], {}), '(sample_y)\n', (4854, 4864), True, 'import numpy as np\n'), ((2954, 2985), 'numpy.sum', 'np.sum', (['((sample_x - xmean) ** 4)'], {}), '((sample_x - xmean) ** 4)\n', (2960, 2985), True, 'import numpy as np\n'), ((3007, 3038), 'numpy.sum', 'np.sum', (['((sample_y - ymean) ** 4)'], {}), '((sample_y - ymean) ** 4)\n', (3013, 3038), True, 'import numpy as np\n'), ((4955, 4973), 'numpy.array', 'np.array', (['sample_x'], {}), '(sample_x)\n', (4963, 4973), True, 'import numpy as np\n'), ((5012, 5030), 'numpy.array', 'np.array', (['sample_y'], {}), '(sample_y)\n', (5020, 5030), True, 'import numpy as np\n'), ((5219, 5236), 'numpy.max', 'np.max', (['abs_dev_y'], {}), '(abs_dev_y)\n', (5225, 5236), True, 'import numpy as np\n'), ((5295, 5312), 'numpy.max', 'np.max', (['abs_dev_x'], {}), '(abs_dev_x)\n', (5301, 5312), True, 'import numpy as np\n')]
""" Pycovjson - Command line interface Author: rileywilliams Version: 0.1.0 """ import argparse from pycovjson.write import Writer from pycovjson.read_netcdf import NetCDFReader as Reader def main(): """ Command line interface for pycovjson - Converts Scientific Data Formats into CovJSON and saves to disk. :argument -i: Input file path. :argument -o: Output file name. :argument -t: Use Tiling. :argument -v: Which variable to populate coverage with. :argument -s: [tile shape]: Tile shape. :argument -n: Use interactive mode. :argument -u: MongoDB URL """ parser = argparse.ArgumentParser( description='Convert Scientific Data Formats into CovJSON.') parser.add_argument('-i', '--input', dest='inputfile', help='Name of input file', required=True) parser.add_argument('-o', '--output', dest='outputfile', help='Name and location of output file', default='coverage.covjson') parser.add_argument('-t', '--tiled', action='store_true', help='Apply tiling') parser.add_argument('-s', '--shape', nargs='+', help='Tile shape, list', type=int) parser.add_argument('-v', dest='variable', help='Variable to populate coverage with', required=True) parser.add_argument('-n', '--interactive', action='store_true', help='Enter interactive mode') parser.add_argument('-u', '--endpoint_url', dest='endpoint_url', nargs=1, help='MongoDB endpoint for CovJSON persistence') args = parser.parse_args() inputfile = args.inputfile outputfile = args.outputfile variable = args.variable tiled = args.tiled tile_shape = args.shape interactive = args.interactive endpoint_url = args.endpoint_url if interactive: axis = input('Which Axis?', Reader.get_axis(variable)) if tiled and len(tile_shape) == 0: reader = Reader(inputfile) shape_list = reader.get_shape(variable) dims = reader.get_dimensions(variable) print(list(zip(dims, shape_list))) tile_shape = input( 'Enter the shape tile shape as a list of comma separated integers') tile_shape = tile_shape.split(',') tile_shape = list(map(int, tile_shape)) print(tile_shape) if outputfile == None: outputfile = outputfile.default Writer(outputfile, inputfile, [variable], tiled=tiled, tile_shape=tile_shape, endpoint_url=endpoint_url).write() if __name__ == '__main__': main()
[ "pycovjson.read_netcdf.NetCDFReader.get_axis", "pycovjson.read_netcdf.NetCDFReader", "argparse.ArgumentParser", "pycovjson.write.Writer" ]
[((618, 707), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Convert Scientific Data Formats into CovJSON."""'}), "(description=\n 'Convert Scientific Data Formats into CovJSON.')\n", (641, 707), False, 'import argparse\n'), ((1953, 1970), 'pycovjson.read_netcdf.NetCDFReader', 'Reader', (['inputfile'], {}), '(inputfile)\n', (1959, 1970), True, 'from pycovjson.read_netcdf import NetCDFReader as Reader\n'), ((1869, 1894), 'pycovjson.read_netcdf.NetCDFReader.get_axis', 'Reader.get_axis', (['variable'], {}), '(variable)\n', (1884, 1894), True, 'from pycovjson.read_netcdf import NetCDFReader as Reader\n'), ((2407, 2516), 'pycovjson.write.Writer', 'Writer', (['outputfile', 'inputfile', '[variable]'], {'tiled': 'tiled', 'tile_shape': 'tile_shape', 'endpoint_url': 'endpoint_url'}), '(outputfile, inputfile, [variable], tiled=tiled, tile_shape=\n tile_shape, endpoint_url=endpoint_url)\n', (2413, 2516), False, 'from pycovjson.write import Writer\n')]
import numpy as np from kivygames.games import Game import kivygames.games.noughtsandcrosses.c as c class CellOccupiedError(Exception): pass class NoughtsAndCrosses(Game): minPlayers = 2 maxPlayers = 2 hasAI = True gridShape = (3, 3) def __init__(self): Game.__init__(self) self.grid = np.zeros(self.gridShape, dtype="u1") self.player = 1 def isEmpty(self, position): return self.grid[position] == 0 async def turn(self): await self.sendOutput("Player", self.player) while True: position = await self.getInput("Position", tuple, self.player) if self.isEmpty(position): break await self.sendOutput("Error", "That space is already full.") await self.sendOutput("Error", "") self.grid[position] = self.player await self.sendOutput("Grid", self.grid) if c.hasPlayerWon(self.grid, self.player): await self.sendOutput("End", f"Player {self.player} wins.") return True if np.count_nonzero(self.grid) == 9: await self.sendOutput("End", f"It's a draw!") return True self.player = 3 - self.player return False def getAIInput(self, name): if name == "Position": return c.minimax(self.player, self.player, True, self.grid)[1] async def game(self): while True: ended = await self.turn() if ended: break await self.end()
[ "numpy.count_nonzero", "numpy.zeros", "kivygames.games.noughtsandcrosses.c.hasPlayerWon", "kivygames.games.noughtsandcrosses.c.minimax", "kivygames.games.Game.__init__" ]
[((294, 313), 'kivygames.games.Game.__init__', 'Game.__init__', (['self'], {}), '(self)\n', (307, 313), False, 'from kivygames.games import Game\n'), ((335, 371), 'numpy.zeros', 'np.zeros', (['self.gridShape'], {'dtype': '"""u1"""'}), "(self.gridShape, dtype='u1')\n", (343, 371), True, 'import numpy as np\n'), ((926, 964), 'kivygames.games.noughtsandcrosses.c.hasPlayerWon', 'c.hasPlayerWon', (['self.grid', 'self.player'], {}), '(self.grid, self.player)\n', (940, 964), True, 'import kivygames.games.noughtsandcrosses.c as c\n'), ((1073, 1100), 'numpy.count_nonzero', 'np.count_nonzero', (['self.grid'], {}), '(self.grid)\n', (1089, 1100), True, 'import numpy as np\n'), ((1332, 1384), 'kivygames.games.noughtsandcrosses.c.minimax', 'c.minimax', (['self.player', 'self.player', '(True)', 'self.grid'], {}), '(self.player, self.player, True, self.grid)\n', (1341, 1384), True, 'import kivygames.games.noughtsandcrosses.c as c\n')]
import awkward as ak from coffea.nanoevents.methods import vector import pytest ATOL = 1e-8 def record_arrays_equal(a, b): return (ak.fields(a) == ak.fields(b)) and all(ak.all(a[f] == b[f]) for f in ak.fields(a)) def test_two_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]] }, with_name="TwoVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[11, 12], [], [13], [14]], "y": [[15, 16], [], [17], [18]] }, with_name="TwoVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[12, 14], [], [16], [18]], "y": [[20, 22], [], [24], [26]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-10, -10], [], [-10], [-10]], "y": [[-10, -10], [], [-10], [-10]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]] } )) assert record_arrays_equal(a.dot(b), ak.Array([[86, 120], [], [158], [200]])) assert record_arrays_equal(b.dot(a), ak.Array([[86, 120], [], [158], [200]])) assert ak.all(abs(a.unit.r - 1) < ATOL) assert ak.all(abs(a.unit.phi - a.phi) < ATOL) def test_polar_two_vector(): a = ak.zip( { "r": [[1, 2], [], [3], [4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], }, with_name="PolarTwoVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert record_arrays_equal(a * 2, ak.zip( { "r": [[2, 4], [], [6], [8]], "phi": [[0.3, 0.4], [], [0.5], [0.6]] } )) assert ak.all((a * (-2)).r == [[2, 4], [], [6], [8]]) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "r": [[0.5, 1], [], [1.5], [2]], "phi": [[0.3, 0.4], [], [0.5], [0.6]] } )) assert ak.all(abs((-a).x + a.x) < ATOL) assert ak.all(abs((-a).y + a.y) < ATOL) assert record_arrays_equal(a * (-1), -a) assert ak.all(a.unit.phi == a.phi) def test_three_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]] }, with_name="ThreeVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[4, 1], [], [10], [11]], "y": [[17, 7], [], [11], [6]], "z": [[9, 11], [], [5], [16]] }, with_name="ThreeVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]], "z": [[-9, -10], [], [-11], [-12]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[5, 3], [], [13], [15]], "y": [[22, 13], [], [18], [14]], "z": [[18, 21], [], [16], [28]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-3, 1], [], [-7], [-7]], "y": [[-12, -1], [], [-4], [2]], "z": [[0, -1], [], [6], [-4]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]], "z": [[18, 20], [], [22], [24]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]], "z": [[4.5, 5], [], [5.5], [6]] } )) assert ak.all(a.dot(b) == ak.Array([[170, 154], [], [162], [284]])) assert ak.all(b.dot(a) == ak.Array([[170, 154], [], [162], [284]])) assert record_arrays_equal(a.cross(b), ak.zip( { "x": [[-108, -4], [], [-86], [56]], "y": [[27, -12], [], [95], [68]], "z": [[-3, 8], [], [-37], [-64]] } )) assert record_arrays_equal(b.cross(a), ak.zip( { "x": [[108, 4], [], [86], [-56]], "y": [[-27, 12], [], [-95], [-68]], "z": [[3, -8], [], [37], [64]] } )) assert ak.all(abs(a.unit.rho - 1) < ATOL) assert ak.all(abs(a.unit.phi - a.phi) < ATOL) def test_spherical_three_vector(): a = ak.zip( { "rho": [[1.0, 2.0], [], [3.0], [4.0]], "theta": [[1.2, 0.7], [], [1.8], [1.9]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], }, with_name="SphericalThreeVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all(abs((-a).x + a.x) < ATOL) assert ak.all(abs((-a).y + a.y) < ATOL) assert ak.all(abs((-a).z + a.z) < ATOL) assert record_arrays_equal(a * (-1), -a) def test_lorentz_vector(): a = ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]], "t": [[50, 51], [], [52], [53]] }, with_name="LorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) b = ak.zip( { "x": [[4, 1], [], [10], [11]], "y": [[17, 7], [], [11], [6]], "z": [[9, 11], [], [5], [16]], "t": [[60, 61], [], [62], [63]] }, with_name="LorentzVector", highlevel=False ) b = ak.Array(b, behavior=vector.behavior) assert record_arrays_equal(- a, ak.zip( { "x": [[-1, -2], [], [-3], [-4]], "y": [[-5, -6], [], [-7], [-8]], "z": [[-9, -10], [], [-11], [-12]], "t": [[-50, -51], [], [-52], [-53]] } )) assert record_arrays_equal(a + b, ak.zip( { "x": [[5, 3], [], [13], [15]], "y": [[22, 13], [], [18], [14]], "z": [[18, 21], [], [16], [28]], "t": [[110, 112], [], [114], [116]] } )) assert record_arrays_equal(a - b, ak.zip( { "x": [[-3, 1], [], [-7], [-7]], "y": [[-12, -1], [], [-4], [2]], "z": [[0, -1], [], [6], [-4]], "t": [[-10, -10], [], [-10], [-10]] } )) assert record_arrays_equal(a * 2, ak.zip( { "x": [[2, 4], [], [6], [8]], "y": [[10, 12], [], [14], [16]], "z": [[18, 20], [], [22], [24]], "t": [[100, 102], [], [104], [106]] } )) assert record_arrays_equal(a / 2, ak.zip( { "x": [[0.5, 1], [], [1.5], [2]], "y": [[2.5, 3], [], [3.5], [4]], "z": [[4.5, 5], [], [5.5], [6]], "t": [[25, 25.5], [], [26], [26.5]] } )) assert record_arrays_equal(a.pvec, ak.zip( { "x": [[1, 2], [], [3], [4]], "y": [[5, 6], [], [7], [8]], "z": [[9, 10], [], [11], [12]], } )) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL) def test_pt_eta_phi_m_lorentz_vector(): a = ak.zip( { "pt": [[1, 2], [], [3], [4]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "mass": [[0.5, 0.9], [], [1.3], [4.5]] }, with_name="PtEtaPhiMLorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all((a * (-2)).pt == ak.Array([[2, 4], [], [6], [8]])) assert ak.all((a * (-2)).theta - ak.Array([ [2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733] ]) < ATOL) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "pt": [[0.5, 1], [], [1.5], [2]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "mass": [[0.25, 0.45], [], [0.65], [2.25]] } )) assert record_arrays_equal(a * (-1), -a) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL) def test_pt_eta_phi_e_lorentz_vector(): a = ak.zip( { "pt": [[1, 2], [], [3], [4]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "energy": [[50, 51], [], [52], [60]] }, with_name="PtEtaPhiELorentzVector", highlevel=False ) a = ak.Array(a, behavior=vector.behavior) assert ak.all((a * (-2)).pt == ak.Array([[2, 4], [], [6], [8]])) assert ak.all((a * (-2)).theta - ak.Array([ [2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733] ]) < ATOL) assert ak.all((a * (-2)).phi - ak.Array([ [-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535] ]) < ATOL) assert record_arrays_equal(a / 2, ak.zip( { "pt": [[0.5, 1], [], [1.5], [2]], "eta": [[1.2, 1.4], [], [1.6], [3.4]], "phi": [[0.3, 0.4], [], [0.5], [0.6]], "energy": [[25, 25.5], [], [26], [30]] } )) assert record_arrays_equal(a * (-1), -a) boosted = a.boost(-a.boostvec) assert ak.all(abs(boosted.x) < ATOL) assert ak.all(abs(boosted.y) < ATOL) assert ak.all(abs(boosted.z) < ATOL)
[ "awkward.all", "awkward.Array", "awkward.zip", "awkward.fields" ]
[((254, 364), 'awkward.zip', 'ak.zip', (["{'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]]}"], {'with_name': '"""TwoVector"""', 'highlevel': '(False)'}), "({'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]]},\n with_name='TwoVector', highlevel=False)\n", (260, 364), True, 'import awkward as ak\n'), ((433, 470), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (441, 470), True, 'import awkward as ak\n'), ((479, 597), 'awkward.zip', 'ak.zip', (["{'x': [[11, 12], [], [13], [14]], 'y': [[15, 16], [], [17], [18]]}"], {'with_name': '"""TwoVector"""', 'highlevel': '(False)'}), "({'x': [[11, 12], [], [13], [14]], 'y': [[15, 16], [], [17], [18]]},\n with_name='TwoVector', highlevel=False)\n", (485, 597), True, 'import awkward as ak\n'), ((666, 703), 'awkward.Array', 'ak.Array', (['b'], {'behavior': 'vector.behavior'}), '(b, behavior=vector.behavior)\n', (674, 703), True, 'import awkward as ak\n'), ((1818, 1943), 'awkward.zip', 'ak.zip', (["{'r': [[1, 2], [], [3], [4]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}"], {'with_name': '"""PolarTwoVector"""', 'highlevel': '(False)'}), "({'r': [[1, 2], [], [3], [4]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]},\n with_name='PolarTwoVector', highlevel=False)\n", (1824, 1943), True, 'import awkward as ak\n'), ((2013, 2050), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (2021, 2050), True, 'import awkward as ak\n'), ((2227, 2271), 'awkward.all', 'ak.all', (['((a * -2).r == [[2, 4], [], [6], [8]])'], {}), '((a * -2).r == [[2, 4], [], [6], [8]])\n', (2233, 2271), True, 'import awkward as ak\n'), ((2750, 2777), 'awkward.all', 'ak.all', (['(a.unit.phi == a.phi)'], {}), '(a.unit.phi == a.phi)\n', (2756, 2777), True, 'import awkward as ak\n'), ((2813, 2957), 'awkward.zip', 'ak.zip', (["{'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9, 10], [\n ], [11], [12]]}"], {'with_name': '"""ThreeVector"""', 'highlevel': '(False)'}), "({'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9,\n 10], [], [11], [12]]}, with_name='ThreeVector', highlevel=False)\n", (2819, 2957), True, 'import awkward as ak\n'), ((3038, 3075), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (3046, 3075), True, 'import awkward as ak\n'), ((3084, 3231), 'awkward.zip', 'ak.zip', (["{'x': [[4, 1], [], [10], [11]], 'y': [[17, 7], [], [11], [6]], 'z': [[9, 11\n ], [], [5], [16]]}"], {'with_name': '"""ThreeVector"""', 'highlevel': '(False)'}), "({'x': [[4, 1], [], [10], [11]], 'y': [[17, 7], [], [11], [6]], 'z':\n [[9, 11], [], [5], [16]]}, with_name='ThreeVector', highlevel=False)\n", (3090, 3231), True, 'import awkward as ak\n'), ((3312, 3349), 'awkward.Array', 'ak.Array', (['b'], {'behavior': 'vector.behavior'}), '(b, behavior=vector.behavior)\n', (3320, 3349), True, 'import awkward as ak\n'), ((5100, 5288), 'awkward.zip', 'ak.zip', (["{'rho': [[1.0, 2.0], [], [3.0], [4.0]], 'theta': [[1.2, 0.7], [], [1.8], [\n 1.9]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}"], {'with_name': '"""SphericalThreeVector"""', 'highlevel': '(False)'}), "({'rho': [[1.0, 2.0], [], [3.0], [4.0]], 'theta': [[1.2, 0.7], [], [\n 1.8], [1.9]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}, with_name=\n 'SphericalThreeVector', highlevel=False)\n", (5106, 5288), True, 'import awkward as ak\n'), ((5364, 5401), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (5372, 5401), True, 'import awkward as ak\n'), ((5616, 5800), 'awkward.zip', 'ak.zip', (["{'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9, 10], [\n ], [11], [12]], 't': [[50, 51], [], [52], [53]]}"], {'with_name': '"""LorentzVector"""', 'highlevel': '(False)'}), "({'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9,\n 10], [], [11], [12]], 't': [[50, 51], [], [52], [53]]}, with_name=\n 'LorentzVector', highlevel=False)\n", (5622, 5800), True, 'import awkward as ak\n'), ((5888, 5925), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (5896, 5925), True, 'import awkward as ak\n'), ((5934, 6121), 'awkward.zip', 'ak.zip', (["{'x': [[4, 1], [], [10], [11]], 'y': [[17, 7], [], [11], [6]], 'z': [[9, 11\n ], [], [5], [16]], 't': [[60, 61], [], [62], [63]]}"], {'with_name': '"""LorentzVector"""', 'highlevel': '(False)'}), "({'x': [[4, 1], [], [10], [11]], 'y': [[17, 7], [], [11], [6]], 'z':\n [[9, 11], [], [5], [16]], 't': [[60, 61], [], [62], [63]]}, with_name=\n 'LorentzVector', highlevel=False)\n", (5940, 6121), True, 'import awkward as ak\n'), ((6209, 6246), 'awkward.Array', 'ak.Array', (['b'], {'behavior': 'vector.behavior'}), '(b, behavior=vector.behavior)\n', (6217, 6246), True, 'import awkward as ak\n'), ((7931, 8148), 'awkward.zip', 'ak.zip', (["{'pt': [[1, 2], [], [3], [4]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]], 'phi':\n [[0.3, 0.4], [], [0.5], [0.6]], 'mass': [[0.5, 0.9], [], [1.3], [4.5]]}"], {'with_name': '"""PtEtaPhiMLorentzVector"""', 'highlevel': '(False)'}), "({'pt': [[1, 2], [], [3], [4]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]],\n 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'mass': [[0.5, 0.9], [], [1.3],\n [4.5]]}, with_name='PtEtaPhiMLorentzVector', highlevel=False)\n", (7937, 8148), True, 'import awkward as ak\n'), ((8237, 8274), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (8245, 8274), True, 'import awkward as ak\n'), ((9201, 9417), 'awkward.zip', 'ak.zip', (["{'pt': [[1, 2], [], [3], [4]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]], 'phi':\n [[0.3, 0.4], [], [0.5], [0.6]], 'energy': [[50, 51], [], [52], [60]]}"], {'with_name': '"""PtEtaPhiELorentzVector"""', 'highlevel': '(False)'}), "({'pt': [[1, 2], [], [3], [4]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]],\n 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'energy': [[50, 51], [], [52], [\n 60]]}, with_name='PtEtaPhiELorentzVector', highlevel=False)\n", (9207, 9417), True, 'import awkward as ak\n'), ((9505, 9542), 'awkward.Array', 'ak.Array', (['a'], {'behavior': 'vector.behavior'}), '(a, behavior=vector.behavior)\n', (9513, 9542), True, 'import awkward as ak\n'), ((741, 815), 'awkward.zip', 'ak.zip', (["{'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]]}"], {}), "({'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]]})\n", (747, 815), True, 'import awkward as ak\n'), ((904, 978), 'awkward.zip', 'ak.zip', (["{'x': [[12, 14], [], [16], [18]], 'y': [[20, 22], [], [24], [26]]}"], {}), "({'x': [[12, 14], [], [16], [18]], 'y': [[20, 22], [], [24], [26]]})\n", (910, 978), True, 'import awkward as ak\n'), ((1066, 1153), 'awkward.zip', 'ak.zip', (["{'x': [[-10, -10], [], [-10], [-10]], 'y': [[-10, -10], [], [-10], [-10]]}"], {}), "({'x': [[-10, -10], [], [-10], [-10]], 'y': [[-10, -10], [], [-10], [\n -10]]})\n", (1072, 1153), True, 'import awkward as ak\n'), ((1237, 1307), 'awkward.zip', 'ak.zip', (["{'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]]}"], {}), "({'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]]})\n", (1243, 1307), True, 'import awkward as ak\n'), ((1395, 1469), 'awkward.zip', 'ak.zip', (["{'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]]}"], {}), "({'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]]})\n", (1401, 1469), True, 'import awkward as ak\n'), ((1561, 1600), 'awkward.Array', 'ak.Array', (['[[86, 120], [], [158], [200]]'], {}), '([[86, 120], [], [158], [200]])\n', (1569, 1600), True, 'import awkward as ak\n'), ((1643, 1682), 'awkward.Array', 'ak.Array', (['[[86, 120], [], [158], [200]]'], {}), '([[86, 120], [], [158], [200]])\n', (1651, 1682), True, 'import awkward as ak\n'), ((2090, 2166), 'awkward.zip', 'ak.zip', (["{'r': [[2, 4], [], [6], [8]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}"], {}), "({'r': [[2, 4], [], [6], [8]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]})\n", (2096, 2166), True, 'import awkward as ak\n'), ((2474, 2559), 'awkward.zip', 'ak.zip', (["{'r': [[0.5, 1], [], [1.5], [2]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}"], {}), "({'r': [[0.5, 1], [], [1.5], [2]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]]}\n )\n", (2480, 2559), True, 'import awkward as ak\n'), ((3387, 3501), 'awkward.zip', 'ak.zip', (["{'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]], 'z': [[-\n 9, -10], [], [-11], [-12]]}"], {}), "({'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]],\n 'z': [[-9, -10], [], [-11], [-12]]})\n", (3393, 3501), True, 'import awkward as ak\n'), ((3598, 3707), 'awkward.zip', 'ak.zip', (["{'x': [[5, 3], [], [13], [15]], 'y': [[22, 13], [], [18], [14]], 'z': [[18,\n 21], [], [16], [28]]}"], {}), "({'x': [[5, 3], [], [13], [15]], 'y': [[22, 13], [], [18], [14]], 'z':\n [[18, 21], [], [16], [28]]})\n", (3604, 3707), True, 'import awkward as ak\n'), ((3803, 3911), 'awkward.zip', 'ak.zip', (["{'x': [[-3, 1], [], [-7], [-7]], 'y': [[-12, -1], [], [-4], [2]], 'z': [[0,\n -1], [], [6], [-4]]}"], {}), "({'x': [[-3, 1], [], [-7], [-7]], 'y': [[-12, -1], [], [-4], [2]],\n 'z': [[0, -1], [], [6], [-4]]})\n", (3809, 3911), True, 'import awkward as ak\n'), ((4008, 4115), 'awkward.zip', 'ak.zip', (["{'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]], 'z': [[18, \n 20], [], [22], [24]]}"], {}), "({'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]], 'z':\n [[18, 20], [], [22], [24]]})\n", (4014, 4115), True, 'import awkward as ak\n'), ((4211, 4322), 'awkward.zip', 'ak.zip', (["{'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]], 'z': [[\n 4.5, 5], [], [5.5], [6]]}"], {}), "({'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]],\n 'z': [[4.5, 5], [], [5.5], [6]]})\n", (4217, 4322), True, 'import awkward as ak\n'), ((4569, 4686), 'awkward.zip', 'ak.zip', (["{'x': [[-108, -4], [], [-86], [56]], 'y': [[27, -12], [], [95], [68]], 'z':\n [[-3, 8], [], [-37], [-64]]}"], {}), "({'x': [[-108, -4], [], [-86], [56]], 'y': [[27, -12], [], [95], [68]\n ], 'z': [[-3, 8], [], [-37], [-64]]})\n", (4575, 4686), True, 'import awkward as ak\n'), ((4786, 4901), 'awkward.zip', 'ak.zip', (["{'x': [[108, 4], [], [86], [-56]], 'y': [[-27, 12], [], [-95], [-68]], 'z':\n [[3, -8], [], [37], [64]]}"], {}), "({'x': [[108, 4], [], [86], [-56]], 'y': [[-27, 12], [], [-95], [-68]\n ], 'z': [[3, -8], [], [37], [64]]})\n", (4792, 4901), True, 'import awkward as ak\n'), ((6284, 6435), 'awkward.zip', 'ak.zip', (["{'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]], 'z': [[-\n 9, -10], [], [-11], [-12]], 't': [[-50, -51], [], [-52], [-53]]}"], {}), "({'x': [[-1, -2], [], [-3], [-4]], 'y': [[-5, -6], [], [-7], [-8]],\n 'z': [[-9, -10], [], [-11], [-12]], 't': [[-50, -51], [], [-52], [-53]]})\n", (6290, 6435), True, 'import awkward as ak\n'), ((6544, 6690), 'awkward.zip', 'ak.zip', (["{'x': [[5, 3], [], [13], [15]], 'y': [[22, 13], [], [18], [14]], 'z': [[18,\n 21], [], [16], [28]], 't': [[110, 112], [], [114], [116]]}"], {}), "({'x': [[5, 3], [], [13], [15]], 'y': [[22, 13], [], [18], [14]], 'z':\n [[18, 21], [], [16], [28]], 't': [[110, 112], [], [114], [116]]})\n", (6550, 6690), True, 'import awkward as ak\n'), ((6798, 6943), 'awkward.zip', 'ak.zip', (["{'x': [[-3, 1], [], [-7], [-7]], 'y': [[-12, -1], [], [-4], [2]], 'z': [[0,\n -1], [], [6], [-4]], 't': [[-10, -10], [], [-10], [-10]]}"], {}), "({'x': [[-3, 1], [], [-7], [-7]], 'y': [[-12, -1], [], [-4], [2]],\n 'z': [[0, -1], [], [6], [-4]], 't': [[-10, -10], [], [-10], [-10]]})\n", (6804, 6943), True, 'import awkward as ak\n'), ((7052, 7196), 'awkward.zip', 'ak.zip', (["{'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]], 'z': [[18, \n 20], [], [22], [24]], 't': [[100, 102], [], [104], [106]]}"], {}), "({'x': [[2, 4], [], [6], [8]], 'y': [[10, 12], [], [14], [16]], 'z':\n [[18, 20], [], [22], [24]], 't': [[100, 102], [], [104], [106]]})\n", (7058, 7196), True, 'import awkward as ak\n'), ((7304, 7452), 'awkward.zip', 'ak.zip', (["{'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]], 'z': [[\n 4.5, 5], [], [5.5], [6]], 't': [[25, 25.5], [], [26], [26.5]]}"], {}), "({'x': [[0.5, 1], [], [1.5], [2]], 'y': [[2.5, 3], [], [3.5], [4]],\n 'z': [[4.5, 5], [], [5.5], [6]], 't': [[25, 25.5], [], [26], [26.5]]})\n", (7310, 7452), True, 'import awkward as ak\n'), ((7562, 7664), 'awkward.zip', 'ak.zip', (["{'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9, 10], [\n ], [11], [12]]}"], {}), "({'x': [[1, 2], [], [3], [4]], 'y': [[5, 6], [], [7], [8]], 'z': [[9,\n 10], [], [11], [12]]})\n", (7568, 7664), True, 'import awkward as ak\n'), ((8710, 8883), 'awkward.zip', 'ak.zip', (["{'pt': [[0.5, 1], [], [1.5], [2]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]],\n 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'mass': [[0.25, 0.45], [], [0.65\n ], [2.25]]}"], {}), "({'pt': [[0.5, 1], [], [1.5], [2]], 'eta': [[1.2, 1.4], [], [1.6], [\n 3.4]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'mass': [[0.25, 0.45], [],\n [0.65], [2.25]]})\n", (8716, 8883), True, 'import awkward as ak\n'), ((9978, 10147), 'awkward.zip', 'ak.zip', (["{'pt': [[0.5, 1], [], [1.5], [2]], 'eta': [[1.2, 1.4], [], [1.6], [3.4]],\n 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'energy': [[25, 25.5], [], [26],\n [30]]}"], {}), "({'pt': [[0.5, 1], [], [1.5], [2]], 'eta': [[1.2, 1.4], [], [1.6], [\n 3.4]], 'phi': [[0.3, 0.4], [], [0.5], [0.6]], 'energy': [[25, 25.5], [],\n [26], [30]]})\n", (9984, 10147), True, 'import awkward as ak\n'), ((139, 151), 'awkward.fields', 'ak.fields', (['a'], {}), '(a)\n', (148, 151), True, 'import awkward as ak\n'), ((155, 167), 'awkward.fields', 'ak.fields', (['b'], {}), '(b)\n', (164, 167), True, 'import awkward as ak\n'), ((4411, 4451), 'awkward.Array', 'ak.Array', (['[[170, 154], [], [162], [284]]'], {}), '([[170, 154], [], [162], [284]])\n', (4419, 4451), True, 'import awkward as ak\n'), ((4483, 4523), 'awkward.Array', 'ak.Array', (['[[170, 154], [], [162], [284]]'], {}), '([[170, 154], [], [162], [284]])\n', (4491, 4523), True, 'import awkward as ak\n'), ((8311, 8343), 'awkward.Array', 'ak.Array', (['[[2, 4], [], [6], [8]]'], {}), '([[2, 4], [], [6], [8]])\n', (8319, 8343), True, 'import awkward as ak\n'), ((9579, 9611), 'awkward.Array', 'ak.Array', (['[[2, 4], [], [6], [8]]'], {}), '([[2, 4], [], [6], [8]])\n', (9587, 9611), True, 'import awkward as ak\n'), ((177, 197), 'awkward.all', 'ak.all', (['(a[f] == b[f])'], {}), '(a[f] == b[f])\n', (183, 197), True, 'import awkward as ak\n'), ((2309, 2394), 'awkward.Array', 'ak.Array', (['[[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]'], {}), '([[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]\n )\n', (2317, 2394), True, 'import awkward as ak\n'), ((8382, 8468), 'awkward.Array', 'ak.Array', (['[[2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733]]'], {}), '([[2.556488570968, 2.65804615357], [], [2.74315571762], [\n 3.07487087733]])\n', (8390, 8468), True, 'import awkward as ak\n'), ((8545, 8630), 'awkward.Array', 'ak.Array', (['[[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]'], {}), '([[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]\n )\n', (8553, 8630), True, 'import awkward as ak\n'), ((9650, 9736), 'awkward.Array', 'ak.Array', (['[[2.556488570968, 2.65804615357], [], [2.74315571762], [3.07487087733]]'], {}), '([[2.556488570968, 2.65804615357], [], [2.74315571762], [\n 3.07487087733]])\n', (9658, 9736), True, 'import awkward as ak\n'), ((9813, 9898), 'awkward.Array', 'ak.Array', (['[[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]'], {}), '([[-2.8415926535, -2.7415926535], [], [-2.6415926535], [-2.5415926535]]\n )\n', (9821, 9898), True, 'import awkward as ak\n'), ((207, 219), 'awkward.fields', 'ak.fields', (['a'], {}), '(a)\n', (216, 219), True, 'import awkward as ak\n')]
from collections import defaultdict import graphene import pytest from django.core.exceptions import ValidationError from ....shipping.error_codes import ShippingErrorCode from ..mutations import BaseChannelListingMutation def test_validate_duplicated_channel_ids(channel_PLN, channel_USD): # given channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) errors = defaultdict(list) # when result = BaseChannelListingMutation.validate_duplicated_channel_ids( [channel_id], [second_channel_id], errors, ShippingErrorCode.DUPLICATED_INPUT_ITEM.value, ) # then assert result is None assert errors["input"] == [] def test_validate_duplicated_channel_ids_with_duplicates(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.validate_duplicated_channel_ids( [channel_id], [second_channel_id], errors, error_code ) # then assert result is None assert errors["input"][0].code == error_code def test_validate_duplicated_channel_values(channel_PLN, channel_USD): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_USD.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) field = "add_channels" # when result = BaseChannelListingMutation.validate_duplicated_channel_values( [channel_id, second_channel_id], field, errors, error_code ) # then assert result is None assert errors[field] == [] def test_validate_duplicated_channel_values_with_duplicates(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) second_channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) field = "add_channels" # when result = BaseChannelListingMutation.validate_duplicated_channel_values( [channel_id, second_channel_id], field, errors, error_code ) # then assert result is None assert errors[field][0].code == error_code def test_clean_channels_add_channels(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"add_channels": [{"channel_id": channel_id}]}, errors, error_code ) # then assert result == { "add_channels": [{"channel_id": channel_id, "channel": channel_PLN}], "remove_channels": [], } assert errors["input"] == [] def test_clean_channels_remove_channels(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id]}, errors, error_code ) # then assert result == {"add_channels": [], "remove_channels": [str(channel_PLN.id)]} assert errors["input"] == [] def test_test_clean_channels_with_errors(channel_PLN): # given channel_id = graphene.Node.to_global_id("Channel", channel_PLN.id) error_code = ShippingErrorCode.DUPLICATED_INPUT_ITEM.value errors = defaultdict(list) # when result = BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id, channel_id]}, errors, error_code ) # then assert result == {} assert errors["remove_channels"][0].code == error_code def test_test_clean_channels_invalid_object_type(channel_PLN): # given channel_id = graphene.Node.to_global_id("Product", channel_PLN.id) error_code = ShippingErrorCode.GRAPHQL_ERROR.value errors = defaultdict(list) # when with pytest.raises(ValidationError) as error: BaseChannelListingMutation.clean_channels( None, {"remove_channels": [channel_id]}, errors, error_code ) # then assert ( error.value.error_dict["remove_channels"][0].message == f"Must receive Channel id: {channel_id}." )
[ "graphene.Node.to_global_id", "collections.defaultdict", "pytest.raises" ]
[((324, 377), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_USD.id'], {}), "('Channel', channel_USD.id)\n", (350, 377), False, 'import graphene\n'), ((402, 455), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (428, 455), False, 'import graphene\n'), ((469, 486), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (480, 486), False, 'from collections import defaultdict\n'), ((873, 926), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (899, 926), False, 'import graphene\n'), ((951, 1004), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (977, 1004), False, 'import graphene\n'), ((1081, 1098), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1092, 1098), False, 'from collections import defaultdict\n'), ((1441, 1494), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (1467, 1494), False, 'import graphene\n'), ((1519, 1572), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_USD.id'], {}), "('Channel', channel_USD.id)\n", (1545, 1572), False, 'import graphene\n'), ((1649, 1666), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (1660, 1666), False, 'from collections import defaultdict\n'), ((2029, 2082), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (2055, 2082), False, 'import graphene\n'), ((2107, 2160), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (2133, 2160), False, 'import graphene\n'), ((2237, 2254), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2248, 2254), False, 'from collections import defaultdict\n'), ((2610, 2663), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (2636, 2663), False, 'import graphene\n'), ((2740, 2757), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2751, 2757), False, 'from collections import defaultdict\n'), ((3181, 3234), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (3207, 3234), False, 'import graphene\n'), ((3311, 3328), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3322, 3328), False, 'from collections import defaultdict\n'), ((3686, 3739), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Channel"""', 'channel_PLN.id'], {}), "('Channel', channel_PLN.id)\n", (3712, 3739), False, 'import graphene\n'), ((3816, 3833), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (3827, 3833), False, 'from collections import defaultdict\n'), ((4177, 4230), 'graphene.Node.to_global_id', 'graphene.Node.to_global_id', (['"""Product"""', 'channel_PLN.id'], {}), "('Product', channel_PLN.id)\n", (4203, 4230), False, 'import graphene\n'), ((4299, 4316), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (4310, 4316), False, 'from collections import defaultdict\n'), ((4338, 4368), 'pytest.raises', 'pytest.raises', (['ValidationError'], {}), '(ValidationError)\n', (4351, 4368), False, 'import pytest\n')]
# -*- coding: utf-8 -*- # You should have received a copy of the GNU Affero General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # # Authors: <NAME> / Coopérative ARTEFACTS <<EMAIL>> import requests from django.conf import settings from django.contrib import messages from django.core.exceptions import PermissionDenied from django.http import HttpResponseRedirect, Http404 from django.utils.translation import gettext as _ from requests.exceptions import RequestException from rest_framework import status from francoralite.apps.francoralite_front.errors import APPLICATION_ERRORS from .views.related import ( write_fond_related, write_mission_related, write_collection_related, write_item_related) HTTP_ERRORS = { status.HTTP_400_BAD_REQUEST: APPLICATION_ERRORS['HTTP_API_400'], status.HTTP_401_UNAUTHORIZED: APPLICATION_ERRORS['HTTP_API_401'], status.HTTP_403_FORBIDDEN: APPLICATION_ERRORS['HTTP_API_403'], status.HTTP_404_NOT_FOUND: APPLICATION_ERRORS['HTTP_API_404'], status.HTTP_409_CONFLICT: APPLICATION_ERRORS['HTTP_API_409'], } PROBLEM_NAMES = [ "legal_rights", "recording_context", "location_gis", ] class UserMessageError(RequestException): pass def get_token_header(request): """ TODO: À renseigner """ auth_token = request.session.get('oidc_access_token') if auth_token: return {'Authorization': 'Bearer ' + auth_token} else: return {} def check_status_code(status_code, allowed_codes=(status.HTTP_200_OK,)): """ TODO: À renseigner """ if status_code == status.HTTP_403_FORBIDDEN: raise PermissionDenied(_('Accès interdit.')) if status_code == status.HTTP_404_NOT_FOUND: raise Http404(_('Cette fiche n’existe pas.')) if status_code == status.HTTP_409_CONFLICT: raise UserMessageError(_('Une fiche avec ce code existe déjà.')) if status.HTTP_400_BAD_REQUEST <= status_code < status.HTTP_500_INTERNAL_SERVER_ERROR: raise RequestException() if status_code not in allowed_codes: raise Exception(HTTP_ERRORS[status_code]) def handle_message_from_exception(request, exception): """ TODO: À renseigner """ if isinstance(exception, UserMessageError): messages.add_message(request, messages.ERROR, exception) elif exception is not None: messages.add_message(request, messages.ERROR, _('Une erreur indéterminée est survenue.')) def request_api(endpoint): """ TODO: À renseigner """ response = requests.get(settings.FRONT_HOST_URL + endpoint) check_status_code(response.status_code) return response.json() def post(entity, form_entity, request, *args, **kwargs): """ TODO: À renseigner """ form = form_entity(request.POST, request.FILES) entity_api = entity entity_url = entity # Processing the problem names entities if entity in PROBLEM_NAMES: entity_api = entity.replace('_', '') # Processing URL for Mission entity if entity == 'fond': entity_url = 'institution/' + kwargs['id_institution'] \ + '/' + entity # Processing URL for Mission entity if entity == 'mission': entity_url = 'institution/' + kwargs['id_institution'] \ + '/fond/' + kwargs['id_fond']\ + '/' + entity # Processing URL for Collection entity if entity == 'collection': entity_url = 'institution/' + kwargs['id_institution'] \ + '/fond/' + kwargs['id_fond']\ + '/mission/' + kwargs['id_mission'] \ + '/' + entity # Processing URL for Item entity if entity == 'item': entity_url = 'institution/' + kwargs['id_institution'] \ + '/fond/' + kwargs['id_fond']\ + '/mission/' + kwargs['id_mission'] \ + '/collection/' + kwargs['id_collection'] \ + '/' + entity # Problem with old Telemeta fields/entities if form.is_valid(): if entity == 'item': # Concatenate domains form.cleaned_data['domain'] = ''.join(form.cleaned_data['domain']) # Remove the 'file' entry : if not, there some bugs del form.cleaned_data['file'] try: post_api(settings.FRONT_HOST_URL + '/api/' + entity_api, data=form.cleaned_data, request=request, entity=entity) if entity == 'fond': return HttpResponseRedirect( '/institution/' + str(form.cleaned_data['institution'])) # Previous page ( not an edit page ... ) if len(request.session["referers"]) > 1: try: for referer in request.session["referers"]: if 'add' not in referer.split('/'): return HttpResponseRedirect(referer) except Exception: return HttpResponseRedirect('/' + entity) return HttpResponseRedirect('/' + entity) except RequestException as e: handle_message_from_exception(request, e) return HttpResponseRedirect('/' + entity_url + '/add') return HttpResponseRedirect('/' + entity_url + '/add') def post_api(endpoint, data, request, entity): """ TODO: À renseigner """ headers = get_token_header(request=request) response = requests.post( endpoint, data=data, files=request.FILES, headers=headers, ) check_status_code(response.status_code, allowed_codes=(status.HTTP_200_OK, status.HTTP_201_CREATED)) entity_json = response.json() if entity == "fond": write_fond_related(entity_json, request, headers) if entity == "mission": write_mission_related(entity_json, request, headers) if entity == "collection": write_collection_related(entity_json, request, headers) if entity == "item": write_item_related(entity_json, request, headers) return entity_json def patch(entity, form_entity, request, *args, **kwargs): """ TODO: À renseigner """ form = form_entity(request.POST) if entity == 'item': form.fields['file'].required = False id = kwargs.get('id') entity_api = entity if entity in PROBLEM_NAMES: entity_api = entity.replace('_', '') if form.is_valid(): if entity == "collection": form.cleaned_data['recorded_from_year'] = \ form.data['recorded_from_year'] form.cleaned_data['recorded_to_year'] = \ form.data['recorded_to_year'] if form.cleaned_data['year_published'] is None: form.cleaned_data['year_published'] = '' if entity == "item": # Concatenate domains form.cleaned_data['domain'] = ''.join(form.cleaned_data['domain']) try: response = patch_api( settings.FRONT_HOST_URL + '/api/' + entity_api + '/' + str(id), data=form.cleaned_data, request=request, entity=entity ) if(response.status_code != status.HTTP_200_OK): return HttpResponseRedirect('/' + entity + '/edit/' + str(id)) # Previous page ( not an edit page ... ) if len(request.session["referers"]) > 1: for referer in request.session["referers"]: if 'edit' not in referer.split('/'): return HttpResponseRedirect(referer) return HttpResponseRedirect('/' + entity) except RequestException as e: handle_message_from_exception(request, e) return HttpResponseRedirect('/' + entity + '/edit/' + str(id)) return HttpResponseRedirect('/' + entity + '/edit/' + str(id)) def patch_api(endpoint, data, request, entity): """ TODO: À renseigner """ response = requests.patch( endpoint, data=data, headers=get_token_header(request=request), ) check_status_code(response.status_code) entity_json = response.json() if entity == "fond": write_fond_related( entity_json, request, headers=get_token_header(request=request), ) if entity == "mission": write_mission_related( entity_json, request, headers=get_token_header(request=request), ) if entity == "collection": write_collection_related( entity_json, request, headers=get_token_header(request=request), ) if entity == "item": write_item_related( entity_json, request, headers=get_token_header(request=request), ) return response def delete(entity, request, *args, **kwargs): """ TODO: À renseigner """ id = kwargs.get('id') entity_api = entity if entity in PROBLEM_NAMES: entity_api = entity.replace('_', '') try: delete_api( settings.FRONT_HOST_URL + '/api/' + entity_api + '/' + str(id), request=request, ) return HttpResponseRedirect(request.META.get('HTTP_REFERER')) except RequestException as e: handle_message_from_exception(request, e) return HttpResponseRedirect('/' + entity) def delete_api(endpoint, request): """ TODO: À renseigner """ response = requests.delete( endpoint, headers=get_token_header(request=request), ) check_status_code(response.status_code) return response
[ "django.http.HttpResponseRedirect", "requests.post", "django.utils.translation.gettext", "requests.get", "django.contrib.messages.add_message", "requests.exceptions.RequestException" ]
[((2605, 2653), 'requests.get', 'requests.get', (['(settings.FRONT_HOST_URL + endpoint)'], {}), '(settings.FRONT_HOST_URL + endpoint)\n', (2617, 2653), False, 'import requests\n'), ((5312, 5359), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity_url + '/add')"], {}), "('/' + entity_url + '/add')\n", (5332, 5359), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((5512, 5584), 'requests.post', 'requests.post', (['endpoint'], {'data': 'data', 'files': 'request.FILES', 'headers': 'headers'}), '(endpoint, data=data, files=request.FILES, headers=headers)\n', (5525, 5584), False, 'import requests\n'), ((2040, 2058), 'requests.exceptions.RequestException', 'RequestException', ([], {}), '()\n', (2056, 2058), False, 'from requests.exceptions import RequestException\n'), ((2304, 2360), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.ERROR', 'exception'], {}), '(request, messages.ERROR, exception)\n', (2324, 2360), False, 'from django.contrib import messages\n'), ((1686, 1706), 'django.utils.translation.gettext', '_', (['"""Accès interdit."""'], {}), "('Accès interdit.')\n", (1687, 1706), True, 'from django.utils.translation import gettext as _\n'), ((1780, 1810), 'django.utils.translation.gettext', '_', (['"""Cette fiche n’existe pas."""'], {}), "('Cette fiche n’existe pas.')\n", (1781, 1810), True, 'from django.utils.translation import gettext as _\n'), ((1892, 1932), 'django.utils.translation.gettext', '_', (['"""Une fiche avec ce code existe déjà."""'], {}), "('Une fiche avec ce code existe déjà.')\n", (1893, 1932), True, 'from django.utils.translation import gettext as _\n'), ((5105, 5139), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity)"], {}), "('/' + entity)\n", (5125, 5139), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((7748, 7782), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity)"], {}), "('/' + entity)\n", (7768, 7782), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((9539, 9573), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity)"], {}), "('/' + entity)\n", (9559, 9573), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((2477, 2519), 'django.utils.translation.gettext', '_', (['"""Une erreur indéterminée est survenue."""'], {}), "('Une erreur indéterminée est survenue.')\n", (2478, 2519), True, 'from django.utils.translation import gettext as _\n'), ((5252, 5299), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity_url + '/add')"], {}), "('/' + entity_url + '/add')\n", (5272, 5299), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((5051, 5085), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (["('/' + entity)"], {}), "('/' + entity)\n", (5071, 5085), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((7699, 7728), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['referer'], {}), '(referer)\n', (7719, 7728), False, 'from django.http import HttpResponseRedirect, Http404\n'), ((4960, 4989), 'django.http.HttpResponseRedirect', 'HttpResponseRedirect', (['referer'], {}), '(referer)\n', (4980, 4989), False, 'from django.http import HttpResponseRedirect, Http404\n')]
""" :mod:`meshes` -- Discretization =============================== Everything related to meshes appropriate for the multigrid solver. """ # Copyright 2018-2020 The emg3d Developers. # # This file is part of emg3d. # # Licensed under the Apache License, Version 2.0 (the "License"); you may not # use this file except in compliance with the License. You may obtain a copy # of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations under # the License. import numpy as np from copy import deepcopy from scipy import optimize __all__ = ['TensorMesh', 'get_hx_h0', 'get_cell_numbers', 'get_stretched_h', 'get_domain', 'get_hx'] class TensorMesh: """Rudimentary mesh for multigrid calculation. The tensor-mesh :class:`discretize.TensorMesh` is a powerful tool, including sophisticated mesh-generation possibilities in 1D, 2D, and 3D, plotting routines, and much more. However, in the multigrid solver we have to generate a mesh at each level, many times over and over again, and we only need a very limited set of attributes. This tensor-mesh class provides all required attributes. All attributes here are the same as their counterparts in :class:`discretize.TensorMesh` (both in name and value). .. warning:: This is a slimmed-down version of :class:`discretize.TensorMesh`, meant principally for internal use by the multigrid modeller. It is highly recommended to use :class:`discretize.TensorMesh` to create the input meshes instead of this class. There are no input-checks carried out here, and there is only one accepted input format for `h` and `x0`. Parameters ---------- h : list of three ndarrays Cell widths in [x, y, z] directions. x0 : ndarray of dimension (3, ) Origin (x, y, z). """ def __init__(self, h, x0): """Initialize the mesh.""" self.x0 = x0 # Width of cells. self.hx = h[0] self.hy = h[1] self.hz = h[2] # Cell related properties. self.nCx = int(self.hx.size) self.nCy = int(self.hy.size) self.nCz = int(self.hz.size) self.vnC = np.array([self.hx.size, self.hy.size, self.hz.size]) self.nC = int(self.vnC.prod()) self.vectorCCx = np.r_[0, self.hx[:-1].cumsum()]+self.hx*0.5+self.x0[0] self.vectorCCy = np.r_[0, self.hy[:-1].cumsum()]+self.hy*0.5+self.x0[1] self.vectorCCz = np.r_[0, self.hz[:-1].cumsum()]+self.hz*0.5+self.x0[2] # Node related properties. self.nNx = self.nCx + 1 self.nNy = self.nCy + 1 self.nNz = self.nCz + 1 self.vnN = np.array([self.nNx, self.nNy, self.nNz], dtype=int) self.nN = int(self.vnN.prod()) self.vectorNx = np.r_[0., self.hx.cumsum()] + self.x0[0] self.vectorNy = np.r_[0., self.hy.cumsum()] + self.x0[1] self.vectorNz = np.r_[0., self.hz.cumsum()] + self.x0[2] # Edge related properties. self.vnEx = np.array([self.nCx, self.nNy, self.nNz], dtype=int) self.vnEy = np.array([self.nNx, self.nCy, self.nNz], dtype=int) self.vnEz = np.array([self.nNx, self.nNy, self.nCz], dtype=int) self.nEx = int(self.vnEx.prod()) self.nEy = int(self.vnEy.prod()) self.nEz = int(self.vnEz.prod()) self.vnE = np.array([self.nEx, self.nEy, self.nEz], dtype=int) self.nE = int(self.vnE.sum()) def __repr__(self): """Simple representation.""" return (f"TensorMesh: {self.nCx} x {self.nCy} x {self.nCz} " f"({self.nC:,})") def copy(self): """Return a copy of the TensorMesh.""" return TensorMesh.from_dict(self.to_dict(True)) def to_dict(self, copy=False): """Store the necessary information of the TensorMesh in a dict.""" out = {'hx': self.hx, 'hy': self.hy, 'hz': self.hz, 'x0': self.x0, '__class__': self.__class__.__name__} if copy: return deepcopy(out) else: return out @classmethod def from_dict(cls, inp): """Convert dictionary into :class:`TensorMesh` instance. Parameters ---------- inp : dict Dictionary as obtained from :func:`TensorMesh.to_dict`. The dictionary needs the keys `hx`, `hy`, `hz`, and `x0`. Returns ------- obj : :class:`TensorMesh` instance """ try: return cls(h=[inp['hx'], inp['hy'], inp['hz']], x0=inp['x0']) except KeyError as e: print(f"* ERROR :: Variable {e} missing in `inp`.") raise @property def vol(self): """Construct cell volumes of the 3D model as 1D array.""" if getattr(self, '_vol', None) is None: self._vol = (self.hx[None, None, :]*self.hy[None, :, None] * self.hz[:, None, None]).ravel() return self._vol def get_hx_h0(freq, res, domain, fixed=0., possible_nx=None, min_width=None, pps=3, alpha=None, max_domain=100000., raise_error=True, verb=1, return_info=False): r"""Return cell widths and origin for given parameters. Returns cell widths for the provided frequency, resistivity, domain extent, and other parameters using a flexible amount of cells. See input parameters for more details. A maximum of three hard/fixed boundaries can be provided (one of which is the grid center). The minimum cell width is calculated through :math:`\delta/\rm{pps}`, where the skin depth is given by :math:`\delta = 503.3 \sqrt{\rho/f}`, and the parameter `pps` stands for 'points-per-skindepth'. The minimum cell width can be restricted with the parameter `min_width`. The actual calculation domain adds a buffer zone around the (survey) domain. The thickness of the buffer is six times the skin depth. The field is basically zero after two wavelengths. A wavelength is :math:`2\pi\delta`, hence roughly 6 times the skin depth. Taking a factor 6 gives therefore almost two wavelengths, as the field travels to the boundary and back. The actual buffer thickness can be steered with the `res` parameter. One has to take into account that the air is very resistive, which has to be considered not just in the vertical direction, but also in the horizontal directions, as the airwave will bounce back from the sides otherwise. In the marine case this issue reduces with increasing water depth. See Also -------- get_stretched_h : Get `hx` for a fixed number `nx` and within a fixed domain. Parameters ---------- freq : float Frequency (Hz) to calculate the skin depth. The skin depth is a concept defined in the frequency domain. If a negative frequency is provided, it is assumed that the calculation is carried out in the Laplace domain. To calculate the skin depth, the value of `freq` is then multiplied by :math:`-2\pi`, to simulate the closest frequency-equivalent. res : float or list Resistivity (Ohm m) to calculate the skin depth. The skin depth is used to calculate the minimum cell width and the boundary thicknesses. Up to three resistivities can be provided: - float: Same resistivity for everything; - [min_width, boundaries]; - [min_width, left boundary, right boundary]. domain : list Contains the survey-domain limits [min, max]. The actual calculation domain consists of this domain plus a buffer zone around it, which depends on frequency and resistivity. fixed : list, optional Fixed boundaries, one, two, or maximum three values. The grid is centered around the first value. Hence it is the center location with the smallest cell. Two more fixed boundaries can be added, at most one on each side of the first one. Default is 0. possible_nx : list, optional List of possible numbers of cells. See :func:`get_cell_numbers`. Default is ``get_cell_numbers(500, 5, 3)``, which corresponds to [16, 24, 32, 40, 48, 64, 80, 96, 128, 160, 192, 256, 320, 384]. min_width : float, list or None, optional Minimum cell width restriction: - None : No restriction; - float : Fixed to this value, ignoring skin depth and `pps`. - list [min, max] : Lower and upper bounds. Default is None. pps : int, optional Points per skindepth; minimum cell width is calculated via `dmin = skindepth/pps`. Default = 3. alpha : list, optional Maximum alpha and step size to find a good alpha. The first value is the maximum alpha of the survey domain, the second value is the maximum alpha for the buffer zone, and the third value is the step size. Default = [1, 1.5, .01], hence no stretching within the survey domain and a maximum stretching of 1.5 in the buffer zone; step size is 0.01. max_domain : float, optional Maximum calculation domain from fixed[0] (usually source position). Default is 100,000. raise_error : bool, optional If True, an error is raised if no suitable grid is found. Otherwise it just prints a message and returns None's. Default is True. verb : int, optional Verbosity, 0 or 1. Default = 1. return_info : bool If True, a dictionary is returned with some grid info (min and max cell width and alpha). Returns ------- hx : ndarray Cell widths of mesh. x0 : float Origin of the mesh. info : dict Dictionary with mesh info; only if ``return_info=True``. Keys: - `dmin`: Minimum cell width; - `dmax`: Maximum cell width; - `amin`: Minimum alpha; - `amax`: Maximum alpha. """ # Get variables with default lists: if alpha is None: alpha = [1, 1.5, 0.01] if possible_nx is None: possible_nx = get_cell_numbers(500, 5, 3) # Cast resistivity value(s). res = np.array(res, ndmin=1) if res.size == 1: res_arr = np.array([res[0], res[0], res[0]]) elif res.size == 2: res_arr = np.array([res[0], res[1], res[1]]) else: res_arr = np.array([res[0], res[1], res[2]]) # Cast and check fixed. fixed = np.array(fixed, ndmin=1) if fixed.size > 2: # Check length. if fixed.size > 3: print("\n* ERROR :: Maximum three fixed boundaries permitted.\n" f" Provided: {fixed.size}.") raise ValueError("Wrong input for fixed") # Sort second and third, so it doesn't matter how it was provided. fixed = np.array([fixed[0], max(fixed[1:]), min(fixed[1:])]) # Check side. if np.sign(np.diff(fixed[:2])) == np.sign(np.diff(fixed[::2])): print("\n* ERROR :: 2nd and 3rd fixed boundaries have to be " "left and right of the first one.\n " f"Provided: [{fixed[0]}, {fixed[1]}, {fixed[2]}]") raise ValueError("Wrong input for fixed") # Calculate skin depth. skind = 503.3*np.sqrt(res_arr/abs(freq)) if freq < 0: # For Laplace-domain calculations. skind /= np.sqrt(2*np.pi) # Minimum cell width. dmin = skind[0]/pps if min_width is not None: # Respect user input. min_width = np.array(min_width, ndmin=1) if min_width.size == 1: dmin = min_width else: dmin = np.clip(dmin, *min_width) # Survey domain; contains all sources and receivers. domain = np.array(domain, dtype=float) # Calculation domain; big enough to avoid boundary effects. # To avoid boundary effects we want the signal to travel two wavelengths # from the source to the boundary and back to the receiver. # => 2*pi*sd ~ 6.3*sd = one wavelength => signal is ~ 0.2 %. # Two wavelengths we can safely assume it is zero. # # The air does not follow the concept of skin depth, as it is a wave rather # than diffusion. For this is the factor `max_domain`, which restricts # the domain in each direction to this value from the center. # (a) Source to edges of domain. dist_in_domain = abs(domain - fixed[0]) # (b) Two wavelengths. two_lambda = skind[1:]*4*np.pi # (c) Required buffer, additional to domain. dist_buff = np.max([np.zeros(2), (two_lambda - dist_in_domain)/2], axis=0) # (d) Add buffer to domain. calc_domain = np.array([domain[0]-dist_buff[0], domain[1]+dist_buff[1]]) # (e) Restrict total domain to max_domain. calc_domain[0] = max(calc_domain[0], fixed[0]-max_domain) calc_domain[1] = min(calc_domain[1], fixed[0]+max_domain) # Initiate flag if terminated. finished = False # Initiate alpha variables for survey and calculation domains. sa, ca = 1.0, 1.0 # Loop over possible cell numbers from small to big. for nx in np.unique(possible_nx): # Loop over possible alphas for domain. for sa in np.arange(1.0, alpha[0]+alpha[2]/2, alpha[2]): # Get current stretched grid cell sizes. thxl = dmin*sa**np.arange(nx) # Left of origin. thxr = dmin*sa**np.arange(nx) # Right of origin. # 0. Adjust stretching for fixed boundaries. if fixed.size > 1: # Move mesh to first fixed boundary. t_nx = np.r_[fixed[0], fixed[0]+np.cumsum(thxr)] ii = np.argmin(abs(t_nx-fixed[1])) thxr *= abs(fixed[1]-fixed[0])/np.sum(thxr[:ii]) if fixed.size > 2: # Move mesh to second fixed boundary. t_nx = np.r_[fixed[0], fixed[0]-np.cumsum(thxl)] ii = np.argmin(abs(t_nx-fixed[2])) thxl *= abs(fixed[2]-fixed[0])/np.sum(thxl[:ii]) # 1. Fill from center to left domain. nl = np.sum((fixed[0]-np.cumsum(thxl)) > domain[0])+1 # 2. Fill from center to right domain. nr = np.sum((fixed[0]+np.cumsum(thxr)) < domain[1])+1 # 3. Get remaining number of cells and check termination criteria. nsdc = nl+nr # Number of domain cells. nx_remain = nx-nsdc # Not good, try next. if nx_remain <= 0: continue # Create the current hx-array. hx = np.r_[thxl[:nl][::-1], thxr[:nr]] hxo = np.r_[thxl[:nl][::-1], thxr[:nr]] # Get actual domain: asurv_domain = [fixed[0]-np.sum(thxl[:nl]), fixed[0]+np.sum(thxr[:nr])] x0 = float(fixed[0]-np.sum(thxl[:nl])) # Get actual stretching (differs in case of fixed layers). sa_adj = np.max([hx[1:]/hx[:-1], hx[:-1]/hx[1:]]) # Loop over possible alphas for calc_domain. for ca in np.arange(sa, alpha[1]+alpha[2]/2, alpha[2]): # 4. Fill to left calc_domain. thxl = hx[0]*ca**np.arange(1, nx_remain+1) nl = np.sum((asurv_domain[0]-np.cumsum(thxl)) > calc_domain[0])+1 # 5. Fill to right calc_domain. thxr = hx[-1]*ca**np.arange(1, nx_remain+1) nr = np.sum((asurv_domain[1]+np.cumsum(thxr)) < calc_domain[1])+1 # 6. Get remaining number of cells and check termination # criteria. ncdc = nl+nr # Number of calc_domain cells. nx_remain2 = nx-nsdc-ncdc if nx_remain2 < 0: # Not good, try next. continue # Create hx-array. nl += int(np.floor(nx_remain2/2)) # If uneven, add one cell nr += int(np.ceil(nx_remain2/2)) # more on the right. hx = np.r_[thxl[:nl][::-1], hx, thxr[:nr]] # Calculate origin. x0 = float(asurv_domain[0]-np.sum(thxl[:nl])) # Mark it as finished and break out of the loop. finished = True break if finished: break if finished: break # Check finished and print info about found grid. if not finished: # Throw message if no solution was found. print("\n* ERROR :: No suitable grid found; relax your criteria.\n") if raise_error: raise ArithmeticError("No grid found!") else: hx, x0 = None, None elif verb > 0: print(f" Skin depth ", end="") if res.size == 1: print(f" [m] : {skind[0]:.0f}") elif res.size == 2: print(f"(m/l-r) [m] : {skind[0]:.0f} / {skind[1]:.0f}") else: print(f"(m/l/r) [m] : {skind[0]:.0f} / {skind[1]:.0f} / " f"{skind[2]:.0f}") print(f" Survey domain [m] : {domain[0]:.0f} - " f"{domain[1]:.0f}") print(f" Calculation domain [m] : {calc_domain[0]:.0f} - " f"{calc_domain[1]:.0f}") print(f" Final extent [m] : {x0:.0f} - " f"{x0+np.sum(hx):.0f}") extstr = f" Min/max cell width [m] : {min(hx):.0f} / " alstr = f" Alpha survey" nrstr = " Number of cells " if not np.isclose(sa, sa_adj): sastr = f"{sa:.3f} ({sa_adj:.3f})" else: sastr = f"{sa:.3f}" print(extstr+f"{max(hxo):.0f} / {max(hx):.0f}") print(alstr+f"/calc : {sastr} / {ca:.3f}") print(nrstr+f"(s/c/r) : {nx} ({nsdc}/{ncdc}/{nx_remain2})") print() if return_info: if not fixed.size > 1: sa_adj = sa info = {'dmin': dmin, 'dmax': np.nanmax(hx), 'amin': np.nanmin([ca, sa, sa_adj]), 'amax': np.nanmax([ca, sa, sa_adj])} return hx, x0, info else: return hx, x0 def get_cell_numbers(max_nr, max_prime=5, min_div=3): r"""Returns 'good' cell numbers for the multigrid method. 'Good' cell numbers are numbers which can be divided by 2 as many times as possible. At the end there will be a low prime number. The function adds all numbers :math:`p 2^n \leq M` for :math:`p={2, 3, ..., p_\text{max}}` and :math:`n={n_\text{min}, n_\text{min}+1, ..., \infty}`; :math:`M, p_\text{max}, n_\text{min}` correspond to `max_nr`, `max_prime`, and `min_div`, respectively. Parameters ---------- max_nr : int Maximum number of cells. max_prime : int Highest permitted prime number p for p*2^n. {2, 3, 5, 7} are good upper limits in order to avoid too big lowest grids in the multigrid method. Default is 5. min_div : int Minimum times the number can be divided by two. Default is 3. Returns ------- numbers : array Array containing all possible cell numbers from lowest to highest. """ # Primes till 20. primes = np.array([2, 3, 5, 7, 11, 13, 17, 19]) # Sanity check; 19 is already ridiculously high. if max_prime > primes[-1]: print(f"* ERROR :: Highest prime is {max_prime}, " "please use a value < 20.") raise ValueError("Highest prime too high") # Restrict to max_prime. primes = primes[primes <= max_prime] # Get possible values. # Currently restricted to prime*2**30 (for prime=2 => 1,073,741,824 cells). numbers = primes[:, None]*2**np.arange(min_div, 30) # Get unique values. numbers = np.unique(numbers) # Restrict to max_nr and return. return numbers[numbers <= max_nr] def get_stretched_h(min_width, domain, nx, x0=0, x1=None, resp_domain=False): """Return cell widths for a stretched grid within the domain. Returns `nx` cell widths within `domain`, where the minimum cell width is `min_width`. The cells are not stretched within `x0` and `x1`, and outside uses a power-law stretching. The actual stretching factor and the number of cells left and right of `x0` and `x1` are find in a minimization process. The domain is not completely respected. The starting point of the domain is, but the endpoint of the domain might slightly shift (this is more likely the case for small `nx`, for big `nx` the shift should be small). The new endpoint can be obtained with ``domain[0]+np.sum(hx)``. If you want the domain to be respected absolutely, set ``resp_domain=True``. However, be aware that this will introduce one stretch-factor which is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the left- and right-side of `x0`, or, if `x1` is provided, just after `x1`. See Also -------- get_hx_x0 : Get `hx` and `x0` for a flexible number of `nx` with given bounds. Parameters ---------- min_width : float Minimum cell width. If x1 is provided, the actual minimum cell width might be smaller than min_width. domain : list [start, end] of model domain. nx : int Number of cells. x0 : float Center of the grid. `x0` is restricted to `domain`. Default is 0. x1 : float If provided, then no stretching is applied between `x0` and `x1`. The non-stretched part starts at `x0` and stops at the first possible location at or after `x1`. `x1` is restricted to `domain`. This will min_width so that an integer number of cells fit within x0 and x1. resp_domain : bool If False (default), then the domain-end might shift slightly to assure that the same stretching factor is applied throughout. If set to True, however, the domain is respected absolutely. This will introduce one stretch-factor which is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the left- and right-side of `x0`, or, if `x1` is provided, just after `x1`. Returns ------- hx : ndarray Cell widths of mesh. """ # Cast to arrays domain = np.array(domain, dtype=float) x0 = np.array(x0, dtype=float) x0 = np.clip(x0, *domain) # Restrict to model domain min_width = np.array(min_width, dtype=float) if x1 is not None: x1 = np.array(x1, dtype=float) x1 = np.clip(x1, *domain) # Restrict to model domain # If x1 is provided (a part is not stretched) if x1 is not None: # Store original values xlim_orig = domain.copy() nx_orig = int(nx) x0_orig = x0.copy() h_min_orig = min_width.copy() # Get number of non-stretched cells n_nos = int(np.ceil((x1-x0)/min_width)) # Re-calculate min_width to fit with x0-x1-limits: min_width = (x1-x0)/n_nos # Subtract one cell, because the standard scheme provides one # min_width-cell. n_nos -= 1 # Reset x0, because the first min_width comes from normal scheme x0 += min_width # Reset xmax for normal scheme domain[1] -= n_nos*min_width # Reset nx for normal scheme nx -= n_nos # If there are not enough points reset to standard procedure. The limit # of five is arbitrary. However, nx should be much bigger than five # anyways, otherwise stretched grid doesn't make sense. if nx <= 5: print("Warning :: Not enough points for non-stretched part," "ignoring therefore `x1`.") domain = xlim_orig nx = nx_orig x0 = x0_orig x1 = None min_width = h_min_orig # Get stretching factor (a = 1+alpha). if min_width == 0 or min_width > np.diff(domain)/nx: # If min_width is bigger than the domain-extent divided by nx, no # stretching is required at all. alpha = 0 else: # Wrap _get_dx into a minimization function to call with fsolve. def find_alpha(alpha, min_width, args): """Find alpha such that min(hx) = min_width.""" return min(get_hx(alpha, *args))/min_width-1 # Search for best alpha, must be at least 0 args = (domain, nx, x0) alpha = max(0, optimize.fsolve(find_alpha, 0.02, (min_width, args))) # With alpha get actual cell spacing with `resp_domain` to respect the # users decision. hx = get_hx(alpha, domain, nx, x0, resp_domain) # Add the non-stretched center if x1 is provided if x1 is not None: hx = np.r_[hx[: np.argmin(hx)], np.ones(n_nos)*min_width, hx[np.argmin(hx):]] # Print warning min_width could not be respected. if abs(hx.min() - min_width) > 0.1: print(f"Warning :: Minimum cell width ({np.round(hx.min(), 2)} m) is " "below `min_width`, because `nx` is too big for `domain`.") return hx def get_domain(x0=0, freq=1, res=0.3, limits=None, min_width=None, fact_min=0.2, fact_neg=5, fact_pos=None): r"""Get domain extent and minimum cell width as a function of skin depth. Returns the extent of the calculation domain and the minimum cell width as a multiple of the skin depth, with possible user restrictions on minimum calculation domain and range of possible minimum cell widths. .. math:: \delta &= 503.3 \sqrt{\frac{\rho}{f}} , \\ x_\text{start} &= x_0-k_\text{neg}\delta , \\ x_\text{end} &= x_0+k_\text{pos}\delta , \\ h_\text{min} &= k_\text{min} \delta . Parameters ---------- x0 : float Center of the calculation domain. Normally the source location. Default is 0. freq : float Frequency (Hz) to calculate the skin depth. The skin depth is a concept defined in the frequency domain. If a negative frequency is provided, it is assumed that the calculation is carried out in the Laplace domain. To calculate the skin depth, the value of `freq` is then multiplied by :math:`-2\pi`, to simulate the closest frequency-equivalent. Default is 1 Hz. res : float, optional Resistivity (Ohm m) to calculate skin depth. Default is 0.3 Ohm m (sea water). limits : None or list [start, end] of model domain. This extent represents the minimum extent of the domain. The domain is therefore only adjusted if it has to reach outside of [start, end]. Default is None. min_width : None, float, or list of two floats Minimum cell width is calculated as a function of skin depth: fact_min*sd. If `min_width` is a float, this is used. If a list of two values [min, max] are provided, they are used to restrain min_width. Default is None. fact_min, fact_neg, fact_pos : floats The skin depth is multiplied with these factors to estimate: - Minimum cell width (`fact_min`, default 0.2) - Domain-start (`fact_neg`, default 5), and - Domain-end (`fact_pos`, defaults to `fact_neg`). Returns ------- h_min : float Minimum cell width. domain : list Start- and end-points of calculation domain. """ # Set fact_pos to fact_neg if not provided. if fact_pos is None: fact_pos = fact_neg # Calculate the skin depth. skind = 503.3*np.sqrt(res/abs(freq)) if freq < 0: # For Laplace-domain calculations. skind /= np.sqrt(2*np.pi) # Estimate minimum cell width. h_min = fact_min*skind if min_width is not None: # Respect user input. if np.array(min_width).size == 1: h_min = min_width else: h_min = np.clip(h_min, *min_width) # Estimate calculation domain. domain = [x0-fact_neg*skind, x0+fact_pos*skind] if limits is not None: # Respect user input. domain = [min(limits[0], domain[0]), max(limits[1], domain[1])] return h_min, domain def get_hx(alpha, domain, nx, x0, resp_domain=True): r"""Return cell widths for given input. Find the number of cells left and right of `x0`, `nl` and `nr` respectively, for the provided alpha. For this, we solve .. math:: \frac{x_\text{max}-x_0}{x_0-x_\text{min}} = \frac{a^{nr}-1}{a^{nl}-1} where :math:`a = 1+\alpha`. Parameters ---------- alpha : float Stretching factor `a` is given by ``a=1+alpha``. domain : list [start, end] of model domain. nx : int Number of cells. x0 : float Center of the grid. `x0` is restricted to `domain`. resp_domain : bool If False (default), then the domain-end might shift slightly to assure that the same stretching factor is applied throughout. If set to True, however, the domain is respected absolutely. This will introduce one stretch-factor which is different from the other stretch factors, to accommodate the restriction. This one-off factor is between the left- and right-side of `x0`, or, if `x1` is provided, just after `x1`. Returns ------- hx : ndarray Cell widths of mesh. """ if alpha <= 0.: # If alpha <= 0: equal spacing (no stretching at all) hx = np.ones(nx)*np.diff(np.squeeze(domain))/nx else: # Get stretched hx a = alpha+1 # Get hx depending if x0 is on the domain boundary or not. if np.isclose(x0, domain[0]) or np.isclose(x0, domain[1]): # Get al a's alr = np.diff(domain)*alpha/(a**nx-1)*a**np.arange(nx) if x0 == domain[1]: alr = alr[::-1] # Calculate differences hx = alr*np.diff(domain)/sum(alr) else: # Find number of elements left and right by solving: # (xmax-x0)/(x0-xmin) = a**nr-1/(a**nl-1) nr = np.arange(2, nx+1) er = (domain[1]-x0)/(x0-domain[0]) - (a**nr[::-1]-1)/(a**nr-1) nl = np.argmin(abs(np.floor(er)))+1 nr = nx-nl # Get all a's al = a**np.arange(nl-1, -1, -1) ar = a**np.arange(1, nr+1) # Calculate differences if resp_domain: # This version honours domain[0] and domain[1], but to achieve # this it introduces one stretch-factor which is different from # all the others between al to ar. hx = np.r_[al*(x0-domain[0])/sum(al), ar*(domain[1]-x0)/sum(ar)] else: # This version moves domain[1], but each stretch-factor is # exactly the same. fact = (x0-domain[0])/sum(al) # Take distance from al. hx = np.r_[al, ar]*fact # Note: this hx is equivalent as providing the following h # to TensorMesh: # h = [(min_width, nl-1, -a), (min_width, n_nos+1), # (min_width, nr, a)] return hx
[ "numpy.clip", "numpy.sqrt", "numpy.array", "copy.deepcopy", "numpy.nanmin", "numpy.arange", "numpy.diff", "numpy.max", "numpy.nanmax", "numpy.argmin", "numpy.ceil", "numpy.ones", "numpy.floor", "numpy.squeeze", "scipy.optimize.fsolve", "numpy.isclose", "numpy.unique", "numpy.sum", "numpy.zeros", "numpy.cumsum" ]
[((10528, 10550), 'numpy.array', 'np.array', (['res'], {'ndmin': '(1)'}), '(res, ndmin=1)\n', (10536, 10550), True, 'import numpy as np\n'), ((10807, 10831), 'numpy.array', 'np.array', (['fixed'], {'ndmin': '(1)'}), '(fixed, ndmin=1)\n', (10815, 10831), True, 'import numpy as np\n'), ((12111, 12140), 'numpy.array', 'np.array', (['domain'], {'dtype': 'float'}), '(domain, dtype=float)\n', (12119, 12140), True, 'import numpy as np\n'), ((13019, 13081), 'numpy.array', 'np.array', (['[domain[0] - dist_buff[0], domain[1] + dist_buff[1]]'], {}), '([domain[0] - dist_buff[0], domain[1] + dist_buff[1]])\n', (13027, 13081), True, 'import numpy as np\n'), ((13469, 13491), 'numpy.unique', 'np.unique', (['possible_nx'], {}), '(possible_nx)\n', (13478, 13491), True, 'import numpy as np\n'), ((19562, 19600), 'numpy.array', 'np.array', (['[2, 3, 5, 7, 11, 13, 17, 19]'], {}), '([2, 3, 5, 7, 11, 13, 17, 19])\n', (19570, 19600), True, 'import numpy as np\n'), ((20115, 20133), 'numpy.unique', 'np.unique', (['numbers'], {}), '(numbers)\n', (20124, 20133), True, 'import numpy as np\n'), ((22736, 22765), 'numpy.array', 'np.array', (['domain'], {'dtype': 'float'}), '(domain, dtype=float)\n', (22744, 22765), True, 'import numpy as np\n'), ((22775, 22800), 'numpy.array', 'np.array', (['x0'], {'dtype': 'float'}), '(x0, dtype=float)\n', (22783, 22800), True, 'import numpy as np\n'), ((22810, 22830), 'numpy.clip', 'np.clip', (['x0', '*domain'], {}), '(x0, *domain)\n', (22817, 22830), True, 'import numpy as np\n'), ((22875, 22907), 'numpy.array', 'np.array', (['min_width'], {'dtype': 'float'}), '(min_width, dtype=float)\n', (22883, 22907), True, 'import numpy as np\n'), ((2493, 2545), 'numpy.array', 'np.array', (['[self.hx.size, self.hy.size, self.hz.size]'], {}), '([self.hx.size, self.hy.size, self.hz.size])\n', (2501, 2545), True, 'import numpy as np\n'), ((2976, 3027), 'numpy.array', 'np.array', (['[self.nNx, self.nNy, self.nNz]'], {'dtype': 'int'}), '([self.nNx, self.nNy, self.nNz], dtype=int)\n', (2984, 3027), True, 'import numpy as np\n'), ((3318, 3369), 'numpy.array', 'np.array', (['[self.nCx, self.nNy, self.nNz]'], {'dtype': 'int'}), '([self.nCx, self.nNy, self.nNz], dtype=int)\n', (3326, 3369), True, 'import numpy as np\n'), ((3390, 3441), 'numpy.array', 'np.array', (['[self.nNx, self.nCy, self.nNz]'], {'dtype': 'int'}), '([self.nNx, self.nCy, self.nNz], dtype=int)\n', (3398, 3441), True, 'import numpy as np\n'), ((3462, 3513), 'numpy.array', 'np.array', (['[self.nNx, self.nNy, self.nCz]'], {'dtype': 'int'}), '([self.nNx, self.nNy, self.nCz], dtype=int)\n', (3470, 3513), True, 'import numpy as np\n'), ((3656, 3707), 'numpy.array', 'np.array', (['[self.nEx, self.nEy, self.nEz]'], {'dtype': 'int'}), '([self.nEx, self.nEy, self.nEz], dtype=int)\n', (3664, 3707), True, 'import numpy as np\n'), ((10591, 10625), 'numpy.array', 'np.array', (['[res[0], res[0], res[0]]'], {}), '([res[0], res[0], res[0]])\n', (10599, 10625), True, 'import numpy as np\n'), ((11750, 11768), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (11757, 11768), True, 'import numpy as np\n'), ((11891, 11919), 'numpy.array', 'np.array', (['min_width'], {'ndmin': '(1)'}), '(min_width, ndmin=1)\n', (11899, 11919), True, 'import numpy as np\n'), ((13560, 13609), 'numpy.arange', 'np.arange', (['(1.0)', '(alpha[0] + alpha[2] / 2)', 'alpha[2]'], {}), '(1.0, alpha[0] + alpha[2] / 2, alpha[2])\n', (13569, 13609), True, 'import numpy as np\n'), ((22944, 22969), 'numpy.array', 'np.array', (['x1'], {'dtype': 'float'}), '(x1, dtype=float)\n', (22952, 22969), True, 'import numpy as np\n'), ((22983, 23003), 'numpy.clip', 'np.clip', (['x1', '*domain'], {}), '(x1, *domain)\n', (22990, 23003), True, 'import numpy as np\n'), ((28143, 28161), 'numpy.sqrt', 'np.sqrt', (['(2 * np.pi)'], {}), '(2 * np.pi)\n', (28150, 28161), True, 'import numpy as np\n'), ((4310, 4323), 'copy.deepcopy', 'deepcopy', (['out'], {}), '(out)\n', (4318, 4323), False, 'from copy import deepcopy\n'), ((10668, 10702), 'numpy.array', 'np.array', (['[res[0], res[1], res[1]]'], {}), '([res[0], res[1], res[1]])\n', (10676, 10702), True, 'import numpy as np\n'), ((10731, 10765), 'numpy.array', 'np.array', (['[res[0], res[1], res[2]]'], {}), '([res[0], res[1], res[2]])\n', (10739, 10765), True, 'import numpy as np\n'), ((12014, 12039), 'numpy.clip', 'np.clip', (['dmin', '*min_width'], {}), '(dmin, *min_width)\n', (12021, 12039), True, 'import numpy as np\n'), ((12913, 12924), 'numpy.zeros', 'np.zeros', (['(2)'], {}), '(2)\n', (12921, 12924), True, 'import numpy as np\n'), ((15271, 15315), 'numpy.max', 'np.max', (['[hx[1:] / hx[:-1], hx[:-1] / hx[1:]]'], {}), '([hx[1:] / hx[:-1], hx[:-1] / hx[1:]])\n', (15277, 15315), True, 'import numpy as np\n'), ((15392, 15440), 'numpy.arange', 'np.arange', (['sa', '(alpha[1] + alpha[2] / 2)', 'alpha[2]'], {}), '(sa, alpha[1] + alpha[2] / 2, alpha[2])\n', (15401, 15440), True, 'import numpy as np\n'), ((18306, 18319), 'numpy.nanmax', 'np.nanmax', (['hx'], {}), '(hx)\n', (18315, 18319), True, 'import numpy as np\n'), ((18345, 18372), 'numpy.nanmin', 'np.nanmin', (['[ca, sa, sa_adj]'], {}), '([ca, sa, sa_adj])\n', (18354, 18372), True, 'import numpy as np\n'), ((18398, 18425), 'numpy.nanmax', 'np.nanmax', (['[ca, sa, sa_adj]'], {}), '([ca, sa, sa_adj])\n', (18407, 18425), True, 'import numpy as np\n'), ((20052, 20074), 'numpy.arange', 'np.arange', (['min_div', '(30)'], {}), '(min_div, 30)\n', (20061, 20074), True, 'import numpy as np\n'), ((23330, 23360), 'numpy.ceil', 'np.ceil', (['((x1 - x0) / min_width)'], {}), '((x1 - x0) / min_width)\n', (23337, 23360), True, 'import numpy as np\n'), ((24890, 24942), 'scipy.optimize.fsolve', 'optimize.fsolve', (['find_alpha', '(0.02)', '(min_width, args)'], {}), '(find_alpha, 0.02, (min_width, args))\n', (24905, 24942), False, 'from scipy import optimize\n'), ((28382, 28408), 'numpy.clip', 'np.clip', (['h_min', '*min_width'], {}), '(h_min, *min_width)\n', (28389, 28408), True, 'import numpy as np\n'), ((30129, 30154), 'numpy.isclose', 'np.isclose', (['x0', 'domain[0]'], {}), '(x0, domain[0])\n', (30139, 30154), True, 'import numpy as np\n'), ((30158, 30183), 'numpy.isclose', 'np.isclose', (['x0', 'domain[1]'], {}), '(x0, domain[1])\n', (30168, 30183), True, 'import numpy as np\n'), ((30579, 30599), 'numpy.arange', 'np.arange', (['(2)', '(nx + 1)'], {}), '(2, nx + 1)\n', (30588, 30599), True, 'import numpy as np\n'), ((11286, 11304), 'numpy.diff', 'np.diff', (['fixed[:2]'], {}), '(fixed[:2])\n', (11293, 11304), True, 'import numpy as np\n'), ((11317, 11336), 'numpy.diff', 'np.diff', (['fixed[::2]'], {}), '(fixed[::2])\n', (11324, 11336), True, 'import numpy as np\n'), ((17861, 17883), 'numpy.isclose', 'np.isclose', (['sa', 'sa_adj'], {}), '(sa, sa_adj)\n', (17871, 17883), True, 'import numpy as np\n'), ((24380, 24395), 'numpy.diff', 'np.diff', (['domain'], {}), '(domain)\n', (24387, 24395), True, 'import numpy as np\n'), ((28287, 28306), 'numpy.array', 'np.array', (['min_width'], {}), '(min_width)\n', (28295, 28306), True, 'import numpy as np\n'), ((29946, 29957), 'numpy.ones', 'np.ones', (['nx'], {}), '(nx)\n', (29953, 29957), True, 'import numpy as np\n'), ((30791, 30816), 'numpy.arange', 'np.arange', (['(nl - 1)', '(-1)', '(-1)'], {}), '(nl - 1, -1, -1)\n', (30800, 30816), True, 'import numpy as np\n'), ((30835, 30855), 'numpy.arange', 'np.arange', (['(1)', '(nr + 1)'], {}), '(1, nr + 1)\n', (30844, 30855), True, 'import numpy as np\n'), ((13689, 13702), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (13698, 13702), True, 'import numpy as np\n'), ((13750, 13763), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (13759, 13763), True, 'import numpy as np\n'), ((14074, 14091), 'numpy.sum', 'np.sum', (['thxr[:ii]'], {}), '(thxr[:ii])\n', (14080, 14091), True, 'import numpy as np\n'), ((14326, 14343), 'numpy.sum', 'np.sum', (['thxl[:ii]'], {}), '(thxl[:ii])\n', (14332, 14343), True, 'import numpy as np\n'), ((15052, 15069), 'numpy.sum', 'np.sum', (['thxl[:nl]'], {}), '(thxl[:nl])\n', (15058, 15069), True, 'import numpy as np\n'), ((15108, 15125), 'numpy.sum', 'np.sum', (['thxr[:nr]'], {}), '(thxr[:nr])\n', (15114, 15125), True, 'import numpy as np\n'), ((15159, 15176), 'numpy.sum', 'np.sum', (['thxl[:nl]'], {}), '(thxl[:nl])\n', (15165, 15176), True, 'import numpy as np\n'), ((16229, 16253), 'numpy.floor', 'np.floor', (['(nx_remain2 / 2)'], {}), '(nx_remain2 / 2)\n', (16237, 16253), True, 'import numpy as np\n'), ((16306, 16329), 'numpy.ceil', 'np.ceil', (['(nx_remain2 / 2)'], {}), '(nx_remain2 / 2)\n', (16313, 16329), True, 'import numpy as np\n'), ((25211, 25225), 'numpy.ones', 'np.ones', (['n_nos'], {}), '(n_nos)\n', (25218, 25225), True, 'import numpy as np\n'), ((29966, 29984), 'numpy.squeeze', 'np.squeeze', (['domain'], {}), '(domain)\n', (29976, 29984), True, 'import numpy as np\n'), ((30263, 30276), 'numpy.arange', 'np.arange', (['nx'], {}), '(nx)\n', (30272, 30276), True, 'import numpy as np\n'), ((30399, 30414), 'numpy.diff', 'np.diff', (['domain'], {}), '(domain)\n', (30406, 30414), True, 'import numpy as np\n'), ((15519, 15546), 'numpy.arange', 'np.arange', (['(1)', '(nx_remain + 1)'], {}), '(1, nx_remain + 1)\n', (15528, 15546), True, 'import numpy as np\n'), ((15738, 15765), 'numpy.arange', 'np.arange', (['(1)', '(nx_remain + 1)'], {}), '(1, nx_remain + 1)\n', (15747, 15765), True, 'import numpy as np\n'), ((16491, 16508), 'numpy.sum', 'np.sum', (['thxl[:nl]'], {}), '(thxl[:nl])\n', (16497, 16508), True, 'import numpy as np\n'), ((25195, 25208), 'numpy.argmin', 'np.argmin', (['hx'], {}), '(hx)\n', (25204, 25208), True, 'import numpy as np\n'), ((25259, 25272), 'numpy.argmin', 'np.argmin', (['hx'], {}), '(hx)\n', (25268, 25272), True, 'import numpy as np\n'), ((30228, 30243), 'numpy.diff', 'np.diff', (['domain'], {}), '(domain)\n', (30235, 30243), True, 'import numpy as np\n'), ((30704, 30716), 'numpy.floor', 'np.floor', (['er'], {}), '(er)\n', (30712, 30716), True, 'import numpy as np\n'), ((13959, 13974), 'numpy.cumsum', 'np.cumsum', (['thxr'], {}), '(thxr)\n', (13968, 13974), True, 'import numpy as np\n'), ((14211, 14226), 'numpy.cumsum', 'np.cumsum', (['thxl'], {}), '(thxl)\n', (14220, 14226), True, 'import numpy as np\n'), ((14429, 14444), 'numpy.cumsum', 'np.cumsum', (['thxl'], {}), '(thxl)\n', (14438, 14444), True, 'import numpy as np\n'), ((14547, 14562), 'numpy.cumsum', 'np.cumsum', (['thxr'], {}), '(thxr)\n', (14556, 14562), True, 'import numpy as np\n'), ((17689, 17699), 'numpy.sum', 'np.sum', (['hx'], {}), '(hx)\n', (17695, 17699), True, 'import numpy as np\n'), ((15590, 15605), 'numpy.cumsum', 'np.cumsum', (['thxl'], {}), '(thxl)\n', (15599, 15605), True, 'import numpy as np\n'), ((15809, 15824), 'numpy.cumsum', 'np.cumsum', (['thxr'], {}), '(thxr)\n', (15818, 15824), True, 'import numpy as np\n')]
from common_src.lib.model.post import Post from common_src.lib.model.source import Source from common_src.scrapers.abstract_scraper import make_soup, remove_dups, now SOURCE_CODE = "second_extinction" WEBSITE = "https://www.secondextinctiongame.com/news" ALT_IMAGE = 'https://www.secondextinctiongame.com/static/242486b363d867dc483deb6d7038dde1/d8255/se_screenshot_5.jpg' FILENAME = "../resources/data/second_extinction.txt" def get_source(): name = "Second Extinction" description = 'Second Extinction is a first person shooter game where earth has been invaded by mutated dinosaurs.' profile_image = 'https://www.secondextinctiongame.com/static/logo-0d52f8575a251eff8ebd6e2d6bd6c51b.png' return Source(SOURCE_CODE, name, description, profile_image, ALT_IMAGE, None) def scrape(): soup = make_soup(WEBSITE) base_site = "https://www.secondextinctiongame.com" data = [] for post in soup.findAll("article", {"class": "cgYILD"}): date = post.find("time").text.replace("-", "") + "0000" title = post.find("h3").text.strip() link = base_site + post.find("a").get("href") alt_image = ALT_IMAGE image = base_site + post.find("picture").find("img").get("src").replace(" ", "%20") data.append(Post(None, date, title, link, image, alt_image, SOURCE_CODE, None)) if len(data) % 25 == 0: print(now() + f"Processed {len(data)} posts") return remove_dups(data)
[ "common_src.scrapers.abstract_scraper.make_soup", "common_src.lib.model.post.Post", "common_src.lib.model.source.Source", "common_src.scrapers.abstract_scraper.remove_dups", "common_src.scrapers.abstract_scraper.now" ]
[((716, 786), 'common_src.lib.model.source.Source', 'Source', (['SOURCE_CODE', 'name', 'description', 'profile_image', 'ALT_IMAGE', 'None'], {}), '(SOURCE_CODE, name, description, profile_image, ALT_IMAGE, None)\n', (722, 786), False, 'from common_src.lib.model.source import Source\n'), ((814, 832), 'common_src.scrapers.abstract_scraper.make_soup', 'make_soup', (['WEBSITE'], {}), '(WEBSITE)\n', (823, 832), False, 'from common_src.scrapers.abstract_scraper import make_soup, remove_dups, now\n'), ((1443, 1460), 'common_src.scrapers.abstract_scraper.remove_dups', 'remove_dups', (['data'], {}), '(data)\n', (1454, 1460), False, 'from common_src.scrapers.abstract_scraper import make_soup, remove_dups, now\n'), ((1272, 1338), 'common_src.lib.model.post.Post', 'Post', (['None', 'date', 'title', 'link', 'image', 'alt_image', 'SOURCE_CODE', 'None'], {}), '(None, date, title, link, image, alt_image, SOURCE_CODE, None)\n', (1276, 1338), False, 'from common_src.lib.model.post import Post\n'), ((1391, 1396), 'common_src.scrapers.abstract_scraper.now', 'now', ([], {}), '()\n', (1394, 1396), False, 'from common_src.scrapers.abstract_scraper import make_soup, remove_dups, now\n')]
# # alexnet.py # # Author(s): # <NAME> <<EMAIL>> # # Copyright (c) 2020-2021 ETH Zurich. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import torch import torch.nn as nn class AlexNet(nn.Module): def __init__(self, use_bn: bool, num_classes: int = 1000, seed : int = -1) -> None: super(AlexNet, self).__init__() self.features = self._make_features(use_bn) self.avgpool = nn.AdaptiveAvgPool2d((6, 6)) self.classifier = self._make_classifier(num_classes) self._initialize_weights(seed) def _make_features(self, use_bn: bool) -> nn.Sequential: modules = [] # conv 1 modules += [nn.Conv2d(3, 64, kernel_size=11, stride=4, padding=2, bias=not use_bn)] modules += [nn.BatchNorm2d(64)] if use_bn else [] modules += [nn.ReLU(inplace=True)] # max pool modules += [nn.MaxPool2d(kernel_size=3, stride=2)] # conv 2 modules += [nn.Conv2d(64, 192, kernel_size=5, padding=2, bias=not use_bn)] modules += [nn.BatchNorm2d(192)] if use_bn else [] modules += [nn.ReLU(inplace=True)] # max pool modules += [nn.MaxPool2d(kernel_size=3, stride=2)] # conv 3 modules += [nn.Conv2d(192, 384, kernel_size=3, padding=1, bias=not use_bn)] modules += [nn.BatchNorm2d(384)] if use_bn else [] modules += [nn.ReLU(inplace=True)] # conv 4 modules += [nn.Conv2d(384, 256, kernel_size=3, padding=1, bias=not use_bn)] modules += [nn.BatchNorm2d(256)] if use_bn else [] modules += [nn.ReLU(inplace=True)] # conv 5 modules += [nn.Conv2d(256, 256, kernel_size=3, padding=1, bias=not use_bn)] modules += [nn.BatchNorm2d(256)] if use_bn else [] modules += [nn.ReLU(inplace=True)] # max pool modules += [nn.MaxPool2d(kernel_size=3, stride=2)] return nn.Sequential(*modules) def _make_classifier(self, num_classes: int) -> nn.Sequential: modules = [] # dropout modules += [nn.Dropout()] # linear 1 modules += [nn.Linear(256 * 6 * 6, 4096)] modules += [nn.ReLU(inplace=True)] # dropout modules += [nn.Dropout()] # linear 2 modules += [nn.Linear(4096, 4096)] modules += [nn.ReLU(inplace=True)] # linear 3 modules += [nn.Linear(4096, num_classes)] return nn.Sequential(*modules) def forward(self, x: torch.Tensor) -> torch.Tensor: x = self.features(x) x = self.avgpool(x) x = x.view(x.size(0), -1) x = self.classifier(x) return x def _initialize_weights(self, seed: int = -1): if seed >= 0: torch.manual_seed(seed) for m in self.modules(): if isinstance(m, nn.Conv2d): nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu') if m.bias is not None: nn.init.constant_(m.bias, 0) elif isinstance(m, nn.BatchNorm2d): nn.init.constant_(m.weight, 1) nn.init.constant_(m.bias, 0) elif isinstance(m, nn.Linear): nn.init.normal_(m.weight, 0, 0.01) if m.bias is not None: nn.init.constant_(m.bias, 0)
[ "torch.manual_seed", "torch.nn.ReLU", "torch.nn.Dropout", "torch.nn.BatchNorm2d", "torch.nn.init.constant_", "torch.nn.Sequential", "torch.nn.init.kaiming_normal_", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "torch.nn.AdaptiveAvgPool2d", "torch.nn.Linear", "torch.nn.init.normal_" ]
[((915, 943), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(6, 6)'], {}), '((6, 6))\n', (935, 943), True, 'import torch.nn as nn\n'), ((2400, 2423), 'torch.nn.Sequential', 'nn.Sequential', (['*modules'], {}), '(*modules)\n', (2413, 2423), True, 'import torch.nn as nn\n'), ((2921, 2944), 'torch.nn.Sequential', 'nn.Sequential', (['*modules'], {}), '(*modules)\n', (2934, 2944), True, 'import torch.nn as nn\n'), ((1166, 1236), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', '(64)'], {'kernel_size': '(11)', 'stride': '(4)', 'padding': '(2)', 'bias': '(not use_bn)'}), '(3, 64, kernel_size=11, stride=4, padding=2, bias=not use_bn)\n', (1175, 1236), True, 'import torch.nn as nn\n'), ((1316, 1337), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1323, 1337), True, 'import torch.nn as nn\n'), ((1378, 1415), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)'}), '(kernel_size=3, stride=2)\n', (1390, 1415), True, 'import torch.nn as nn\n'), ((1454, 1515), 'torch.nn.Conv2d', 'nn.Conv2d', (['(64)', '(192)'], {'kernel_size': '(5)', 'padding': '(2)', 'bias': '(not use_bn)'}), '(64, 192, kernel_size=5, padding=2, bias=not use_bn)\n', (1463, 1515), True, 'import torch.nn as nn\n'), ((1596, 1617), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1603, 1617), True, 'import torch.nn as nn\n'), ((1658, 1695), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)'}), '(kernel_size=3, stride=2)\n', (1670, 1695), True, 'import torch.nn as nn\n'), ((1734, 1796), 'torch.nn.Conv2d', 'nn.Conv2d', (['(192)', '(384)'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(not use_bn)'}), '(192, 384, kernel_size=3, padding=1, bias=not use_bn)\n', (1743, 1796), True, 'import torch.nn as nn\n'), ((1877, 1898), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (1884, 1898), True, 'import torch.nn as nn\n'), ((1937, 1999), 'torch.nn.Conv2d', 'nn.Conv2d', (['(384)', '(256)'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(not use_bn)'}), '(384, 256, kernel_size=3, padding=1, bias=not use_bn)\n', (1946, 1999), True, 'import torch.nn as nn\n'), ((2080, 2101), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2087, 2101), True, 'import torch.nn as nn\n'), ((2140, 2202), 'torch.nn.Conv2d', 'nn.Conv2d', (['(256)', '(256)'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(not use_bn)'}), '(256, 256, kernel_size=3, padding=1, bias=not use_bn)\n', (2149, 2202), True, 'import torch.nn as nn\n'), ((2283, 2304), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2290, 2304), True, 'import torch.nn as nn\n'), ((2345, 2382), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(3)', 'stride': '(2)'}), '(kernel_size=3, stride=2)\n', (2357, 2382), True, 'import torch.nn as nn\n'), ((2553, 2565), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (2563, 2565), True, 'import torch.nn as nn\n'), ((2606, 2634), 'torch.nn.Linear', 'nn.Linear', (['(256 * 6 * 6)', '(4096)'], {}), '(256 * 6 * 6, 4096)\n', (2615, 2634), True, 'import torch.nn as nn\n'), ((2656, 2677), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2663, 2677), True, 'import torch.nn as nn\n'), ((2717, 2729), 'torch.nn.Dropout', 'nn.Dropout', ([], {}), '()\n', (2727, 2729), True, 'import torch.nn as nn\n'), ((2770, 2791), 'torch.nn.Linear', 'nn.Linear', (['(4096)', '(4096)'], {}), '(4096, 4096)\n', (2779, 2791), True, 'import torch.nn as nn\n'), ((2813, 2834), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (2820, 2834), True, 'import torch.nn as nn\n'), ((2875, 2903), 'torch.nn.Linear', 'nn.Linear', (['(4096)', 'num_classes'], {}), '(4096, num_classes)\n', (2884, 2903), True, 'import torch.nn as nn\n'), ((3232, 3255), 'torch.manual_seed', 'torch.manual_seed', (['seed'], {}), '(seed)\n', (3249, 3255), False, 'import torch\n'), ((1258, 1276), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(64)'], {}), '(64)\n', (1272, 1276), True, 'import torch.nn as nn\n'), ((1537, 1556), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(192)'], {}), '(192)\n', (1551, 1556), True, 'import torch.nn as nn\n'), ((1818, 1837), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(384)'], {}), '(384)\n', (1832, 1837), True, 'import torch.nn as nn\n'), ((2021, 2040), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(256)'], {}), '(256)\n', (2035, 2040), True, 'import torch.nn as nn\n'), ((2224, 2243), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['(256)'], {}), '(256)\n', (2238, 2243), True, 'import torch.nn as nn\n'), ((3348, 3418), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['m.weight'], {'mode': '"""fan_out"""', 'nonlinearity': '"""relu"""'}), "(m.weight, mode='fan_out', nonlinearity='relu')\n", (3371, 3418), True, 'import torch.nn as nn\n'), ((3478, 3506), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3495, 3506), True, 'import torch.nn as nn\n'), ((3572, 3602), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.weight', '(1)'], {}), '(m.weight, 1)\n', (3589, 3602), True, 'import torch.nn as nn\n'), ((3619, 3647), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3636, 3647), True, 'import torch.nn as nn\n'), ((3708, 3742), 'torch.nn.init.normal_', 'nn.init.normal_', (['m.weight', '(0)', '(0.01)'], {}), '(m.weight, 0, 0.01)\n', (3723, 3742), True, 'import torch.nn as nn\n'), ((3802, 3830), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias', '(0)'], {}), '(m.bias, 0)\n', (3819, 3830), True, 'import torch.nn as nn\n')]
import pytest from django.utils.timezone import now from pretix.base.models import Device, Event, Organizer, Team, User from pretix.base.models.devices import generate_api_token @pytest.fixture def organizer(): return Organizer.objects.create(name='Dummy', slug='dummy') @pytest.fixture def event(organizer): event = Event.objects.create( organizer=organizer, name='Dummy', slug='dummy', date_from=now() ) return event @pytest.fixture def device(organizer): return organizer.devices.create(name='Cashdesk') @pytest.fixture def admin_user(admin_team): u = User.objects.create_user('<EMAIL>', 'dummy') admin_team.members.add(u) return u @pytest.fixture def admin_team(organizer): return Team.objects.create(organizer=organizer, can_change_organizer_settings=True, name='Admin team') @pytest.mark.django_db def test_list_of_devices(event, admin_user, client, device): client.login(email='<EMAIL>', password='<PASSWORD>') resp = client.get('/control/organizer/dummy/devices') assert 'Cashdesk' in resp.rendered_content @pytest.mark.django_db def test_create_device(event, admin_user, admin_team, client): client.login(email='<EMAIL>', password='<PASSWORD>') resp = client.post('/control/organizer/dummy/device/add', { 'name': 'Foo', 'limit_events': str(event.pk), }, follow=True) d = Device.objects.last() assert d.name == 'Foo' assert not d.all_events assert list(d.limit_events.all()) == [event] assert d.initialization_token in resp.content.decode() @pytest.mark.django_db def test_update_device(event, admin_user, admin_team, device, client): client.login(email='<EMAIL>', password='<PASSWORD>') client.post('/control/organizer/dummy/device/{}/edit'.format(device.pk), { 'name': 'Cashdesk 2', 'limit_events': str(event.pk), }, follow=True) device.refresh_from_db() assert device.name == 'Cashdesk 2' assert not device.all_events assert list(device.limit_events.all()) == [event] @pytest.mark.django_db def test_revoke_device(event, admin_user, admin_team, device, client): client.login(email='<EMAIL>', password='<PASSWORD>') device.api_token = generate_api_token() device.initialized = now() device.save() client.get('/control/organizer/dummy/device/{}/revoke'.format(device.pk)) client.post('/control/organizer/dummy/device/{}/revoke'.format(device.pk), {}, follow=True) device.refresh_from_db() assert device.revoked
[ "pretix.base.models.Team.objects.create", "pretix.base.models.Organizer.objects.create", "pretix.base.models.devices.generate_api_token", "django.utils.timezone.now", "pretix.base.models.Device.objects.last", "pretix.base.models.User.objects.create_user" ]
[((225, 277), 'pretix.base.models.Organizer.objects.create', 'Organizer.objects.create', ([], {'name': '"""Dummy"""', 'slug': '"""dummy"""'}), "(name='Dummy', slug='dummy')\n", (249, 277), False, 'from pretix.base.models import Device, Event, Organizer, Team, User\n'), ((604, 648), 'pretix.base.models.User.objects.create_user', 'User.objects.create_user', (['"""<EMAIL>"""', '"""dummy"""'], {}), "('<EMAIL>', 'dummy')\n", (628, 648), False, 'from pretix.base.models import Device, Event, Organizer, Team, User\n'), ((748, 847), 'pretix.base.models.Team.objects.create', 'Team.objects.create', ([], {'organizer': 'organizer', 'can_change_organizer_settings': '(True)', 'name': '"""Admin team"""'}), "(organizer=organizer, can_change_organizer_settings=True,\n name='Admin team')\n", (767, 847), False, 'from pretix.base.models import Device, Event, Organizer, Team, User\n'), ((1391, 1412), 'pretix.base.models.Device.objects.last', 'Device.objects.last', ([], {}), '()\n', (1410, 1412), False, 'from pretix.base.models import Device, Event, Organizer, Team, User\n'), ((2228, 2248), 'pretix.base.models.devices.generate_api_token', 'generate_api_token', ([], {}), '()\n', (2246, 2248), False, 'from pretix.base.models.devices import generate_api_token\n'), ((2274, 2279), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (2277, 2279), False, 'from django.utils.timezone import now\n'), ((427, 432), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (430, 432), False, 'from django.utils.timezone import now\n')]
# -*- coding: utf-8 -*- import bleach import json def strip_html(unclean): """Sanitize a string, removing (as opposed to escaping) HTML tags :param unclean: A string to be stripped of HTML tags :return: stripped string :rtype: str """ return bleach.clean(unclean, strip=True, tags=[], attributes=[], styles=[]) def clean_tag(data): """Format as a valid Tag :param data: A string to be cleaned :return: cleaned string :rtype: str """ # TODO: make this a method of Tag? return escape_html(data).replace('"', '&quot;').replace("'", '&#39') def is_iterable_but_not_string(obj): """Return True if ``obj`` is an iterable object that isn't a string.""" return (hasattr(obj, '__iter__') and not hasattr(obj, 'strip')) def escape_html(data): """Escape HTML characters in data. :param data: A string, dict, or list to clean of HTML characters :return: A cleaned object :rtype: str or list or dict """ if isinstance(data, dict): return { key: escape_html(value) for (key, value) in data.iteritems() } if is_iterable_but_not_string(data): return [ escape_html(value) for value in data ] if isinstance(data, basestring): return bleach.clean(data) return data def assert_clean(data): """Ensure that data is cleaned :raise: AssertionError """ def _ensure_clean(value): if value != bleach.clean(value): raise ValueError return escape_html(data) # TODO: Remove safe_unescape_html when mako html safe comes in def safe_unescape_html(value): """ Return data without html escape characters. :param value: A string, dict, or list :return: A string or list or dict without html escape characters """ safe_characters = { '&amp;': '&', '&lt;': '<', '&gt;': '>', } if isinstance(value, dict): return { key: safe_unescape_html(value) for (key, value) in value.iteritems() } if is_iterable_but_not_string(value): return [ safe_unescape_html(each) for each in value ] if isinstance(value, basestring): for escape_sequence, character in safe_characters.items(): value = value.replace(escape_sequence, character) return value return value def safe_json(value): """ Dump a string to JSON in a manner that can be used for JS strings in mako templates. Providing additional forward-slash escaping to prevent injection of closing markup in strings. See: http://benalpert.com/2012/08/03/preventing-xss-json.html :param value: A string to be converted :return: A JSON-formatted string that explicitly escapes forward slashes when needed """ return json.dumps(value).replace('</', '<\\/') # Fix injection of closing markup in strings
[ "bleach.clean", "json.dumps" ]
[((270, 338), 'bleach.clean', 'bleach.clean', (['unclean'], {'strip': '(True)', 'tags': '[]', 'attributes': '[]', 'styles': '[]'}), '(unclean, strip=True, tags=[], attributes=[], styles=[])\n', (282, 338), False, 'import bleach\n'), ((1309, 1327), 'bleach.clean', 'bleach.clean', (['data'], {}), '(data)\n', (1321, 1327), False, 'import bleach\n'), ((1491, 1510), 'bleach.clean', 'bleach.clean', (['value'], {}), '(value)\n', (1503, 1510), False, 'import bleach\n'), ((2873, 2890), 'json.dumps', 'json.dumps', (['value'], {}), '(value)\n', (2883, 2890), False, 'import json\n')]
import torch import torch.nn as nn import torch.nn.functional as F from torch.utils.tensorboard import SummaryWriter from torch.utils import data from torch import optim import torchvision.models as models from torch.autograd import Variable import torchvision as tv import random import math import time from datetime import datetime import os import argparse import subprocess from util.LFUtil import * import numpy as np from networks.LFMNet import LFMNet def main(args=None): # # Arguments # parser = argparse.ArgumentParser() # # Number of epochs # parser.add_argument('--epochs', type=int, default=1000) # # Validate every n percentage of the data # parser.add_argument('--valEvery', type=float, default=0.25) # # Image indices to use for training and validation # parser.add_argument('--imagesToUse', nargs='+', type=int, default=list(range(0,5,1))) # # List of GPUs to use: 0 1 2 for example # parser.add_argument('--GPUs', nargs='+', type=int, default=None) # # Batch size # parser.add_argument('--batchSize', type=int, default=128) # # Perentage of the data to use for validation, from 0 to 1 # parser.add_argument('--validationSplit', type=float, default=0.1) # # Bias initialization value # parser.add_argument('--biasVal', type=float, default=0.1) # # Learning rate # parser.add_argument('--learningRate', type=float, default=0.001) # # Use bias flag # parser.add_argument('--useBias', type=str2bool, default=True) # # Use skip connections flag # parser.add_argument('--useSkipCon', type=str2bool, default=False) # # User selected random seed # parser.add_argument('--randomSeed', type=int, default=None) # # fov of input or neighboarhood around lenslet to reconstruct # parser.add_argument('--fovInput', type=int, default=9) # # nT number of lenslets to reconstruct simultaneously use at training time # parser.add_argument('--neighShape', type=int, default=3) # # Flag to use shallow or large U-net # parser.add_argument('--useShallowUnet', type=str2bool, default=True) # # Lower threshold of GT stacks, to get rid of autofluorescence # parser.add_argument('--ths', type=float, default=0.03) # # Path to dataset # parser.add_argument('--datasetPath', nargs='?', default="BrainLFMConfocalDataset/Brain_40x_64Depths_362imgs.h5") # # Path to directory where models and tensorboard logs are stored # parser.add_argument('--outputPath', nargs='?', default="runs/") # # Prefix for current output folder # parser.add_argument('--outputPrefix', nargs='?', default="") # # Path to model in case of continuing a training # parser.add_argument('--checkpointPath', nargs='?', default=None) # args = parser.parse_args() nImgs = len(args.imagesToUse) # Setup multithreading num_workers = getThreads() if num_workers!=0: torch.set_num_threads(num_workers) if not torch.cuda.is_available(): print("GPU initialization error") exit(-1) if torch.cuda.is_available(): print ("Cuda is available") device_id = torch.cuda.current_device() gpu_properties = torch.cuda.get_device_properties(device_id) print("Found %d GPUs available. Using GPU %d (%s) of compute capability %d.%d with " "%.1fGb total memory.\n" % (torch.cuda.device_count(), device_id, gpu_properties.name, gpu_properties.major, gpu_properties.minor, gpu_properties.total_memory / 1e9)) # Select GPUs to use args.GPUs = list(range(torch.cuda.device_count())) if args.GPUs is None else args.GPUs print('Using GPUs: ' + str(args.GPUs)) device_ids = args.GPUs # Set common random seed if args.randomSeed is not None: np.random.seed(args.randomSeed) torch.manual_seed(args.randomSeed) # Load checkpoint if provided if args.checkpointPath is not None: checkpointPath = args.checkpointPath checkpoint = torch.load(checkpointPath) # overwrite args args = checkpoint['args'] args.checkpointPath = checkpointPath # set Device to use device = torch.device("cuda:"+str(device_ids[0]) if torch.cuda.is_available() else "cpu") # Create unique label today = datetime.now() # Get commit number # label = subprocess.check_output(["git", "describe", "--always"]).strip() #specific to MBL lab workstation label = subprocess.check_output(["C:/Program Files/git/bin/git", "describe", "--always"]).strip() comment = today.strftime('%Y_%m_%d__%H%M%S') + "_"+ str(args.useBias) +"B_"+str(args.biasVal)+"bias_" + str(nImgs) + \ "I_"+ str(args.batchSize)+"BS_"+str(args.useSkipCon)+"Sk_" + str(args.fovInput) + "FOV_" + str(args.neighShape) + "nT_" \ + str(args.ths) + "ths_" + str(label.decode("utf-8") ) + "_commit__" + args.outputPrefix # Create output folder save_folder = args.outputPath + "/" + comment # If asked to continue a training, save in the same folder if args.checkpointPath is not None: save_folder = os.path.split(args.checkpointPath)[0] print(save_folder) # Create summary writer to log stuff writer = SummaryWriter(log_dir=save_folder) writer.add_text('Description',comment,0) writer.flush() # Load dataset all_data = Dataset(args.datasetPath, args.randomSeed, \ fov=args.fovInput, neighShape=args.neighShape, img_indices=args.imagesToUse, get_full_imgs=False, center_region=None) # Split validation and testing train_size = int((1 - args.validationSplit) * len(all_data)) test_size = len(all_data) - train_size train_dataset, test_dataset = torch.utils.data.random_split(all_data, [train_size, test_size]) # Create data loaders train_dataset = data.DataLoader(train_dataset, batch_size=args.batchSize, shuffle=True, num_workers=num_workers, pin_memory=True) test_dataset = data.DataLoader(test_dataset, batch_size=args.batchSize, shuffle=True, num_workers=num_workers, pin_memory=True) validate_every = np.round(len(train_dataset)*args.valEvery) # Get Dataset information nDepths = all_data.get_n_depths() volShape, LFshape = all_data.__shape__() LFshape = LFshape[0:4] lateralTile = int(math.sqrt(nDepths)) # Find normalization values maxInputTrain, maxVolumeTrain = all_data.get_max() maxInputTest, maxVolumeTest = all_data.get_max() # Create network net = LFMNet(nDepths, args.useBias, args.useSkipCon, LFshape, LFfov=args.fovInput, use_small_unet=args.useShallowUnet).to(device) optimizer = optim.Adam(net.parameters(), lr=args.learningRate) lossFunction = nn.L1Loss() # Create SSIM criteria ssim = SSIM() ssim.eval() # Init bias and weights if needed if args.useBias: def bias_init(m): if isinstance(m, nn.Conv2d) or isinstance(m, nn.Conv3d): if m.bias is not None: nn.init.constant_(m.bias.data, args.biasVal) nn.init.kaiming_normal_(m.weight) if isinstance(m, nn.ConvTranspose2d): nn.init.constant_(m.bias.data, args.biasVal) nn.init.kaiming_normal_(m.weight) net.apply(bias_init) # Load network from checkpoint if args.checkpointPath is not None: net.load_state_dict(checkpoint['model_state_dict']) optimizer.load_state_dict(checkpoint['optimizer_state_dict']) epochStart = checkpoint['epoch'] epochs = args.epochs + epochStart train_loss = checkpoint['loss'] # Start distributed data parallel, as it's faster than DataParallel if torch.cuda.device_count() > 1: print("Let's use", torch.cuda.device_count(), "GPUs!") os.environ['MASTER_ADDR'] = 'localhost' os.environ['MASTER_PORT'] = '1234'+str(device_ids[0]) torch.distributed.init_process_group(backend="nccl", rank=0, world_size=1) # Move network to distributed data parallel net = nn.parallel.DistributedDataParallel(net, device_ids=args.GPUs, output_device=args.GPUs[0]).to(device) # timers start = torch.cuda.Event(enable_timing=True) end = torch.cuda.Event(enable_timing=True) global_it_counter = 0 # define indices to grab for tensorboard visualization indices_to_show = torch.randperm(test_size)[0:8] # Init arrays to store losses train_losses, test_losses = [], [] test_loss = 0 epochStart = 0 # Start training for epoch in range(epochStart, args.epochs): net.train() torch.set_grad_enabled(True) torch.cuda.empty_cache() train_loss = 0 print('Training') global_it_counter = 0 for nBatch,(inputs,labels) in enumerate(train_dataset): # compute current iteration curr_it = epoch*len(train_dataset) + nBatch # start timer start.record() print('ep: ' + str(epoch) + ' ' + str(nBatch+1) + '/' + str(len(train_dataset)) + ' currIt: ' + str(curr_it)) optimizer.zero_grad() # load data to gpu and normalize from 0 to 1 inputGPU = inputs.float().to(device) / maxInputTest outputsGT = labels.float().to(device) / maxVolumeTrain # Threshold GT to get rid of autofluorescence if args.ths!=0: outputsGT = imadjust(outputsGT, args.ths,outputsGT.max(), outputsGT.min(), outputsGT.max()) # Predict outputsVol = net(inputGPU) loss = lossFunction(outputsGT,outputsVol) loss.backward() train_loss += loss.item() / nDepths optimizer.step() global_it_counter += inputs.shape[0] # Record training time end.record() torch.cuda.synchronize() end_time = start.elapsed_time(end) # Compute time per sample elapsed_time = end_time/inputs.shape[0] # Check if validation is required if nBatch%validate_every==0: print(comment) # Write training images to tensorboard lastBatchSize = min(outputsGT.shape[0],4) gridOut2 = torch.cat((outputsGT[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach(), outputsVol[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach()), dim=0) gridOut2 = tv.utils.make_grid(gridOut2, normalize=True, scale_each=False) # Select some images in the batch for showing indices_to_display = torch.randperm(inputGPU.shape[0])[0:4] outputsGT = F.interpolate(outputsGT[indices_to_display, :, :, :, :],[LFshape[0]*2,LFshape[1]*2,volShape[2]]) outputsVol = F.interpolate(outputsVol[indices_to_display, :, :, :, :],[LFshape[0]*2,LFshape[1]*2,volShape[2]]) inputGPU = inputGPU[indices_to_display,:,:,:,:,:] currPred = convert3Dto2DTiles(outputsVol, [lateralTile, lateralTile]) currGT = convert3Dto2DTiles(outputsGT, [lateralTile, lateralTile]) inputGrid = LF2Spatial(inputGPU, inputGPU.shape[2:]) gridPred = tv.utils.make_grid(currPred,normalize=True, scale_each=False) gridGT = tv.utils.make_grid(currGT,normalize=True, scale_each=False) gridInput = tv.utils.make_grid(inputGrid,normalize=True, scale_each=False) gt = outputsGT[0,:,:,:,:].sum(3).repeat(3,1,1) gt /= gt.max() # Write to tensorboard writer.add_image('z_proj_train',gt,curr_it) writer.add_image('images_train_YZ_projection', gridOut2, curr_it) writer.add_image('outputRGB_train', gridPred, curr_it) writer.add_image('outputRGB_train_GT', gridGT, curr_it) writer.add_image('input_train', gridInput, curr_it) writer.add_scalar('Loss/train', train_loss/global_it_counter, curr_it) writer.add_scalar('times/train', elapsed_time, curr_it) # Restart train_loss = 0.0 global_it_counter = 0 print('Validating') net.eval() with torch.no_grad(): avg_psnr = 0 avg_ssim = 0 test_loss = 0 start.record() for nBatch,(inputs,labels) in enumerate(test_dataset): inputGPU = inputs.float().to(device) / maxInputTest outputsGT = labels.float().to(device) / maxVolumeTrain # Threshold GT to get rid of autofluorescence outputsGT = imadjust(outputsGT,args.ths,outputsGT.max(), outputsGT.min(), outputsGT.max()) outputsVol = net(inputGPU) loss = lossFunction(outputsGT,outputsVol) test_loss += loss.item() / nDepths # Compute PSNR lossMSE = nn.functional.mse_loss(outputsVol.to(device).detach(), outputsGT.to(device).detach()) avg_psnr += 10 * math.log10(1 / lossMSE.item()) # Compute ssim avg_ssim += ssim(outputsVol[:,0,:,:,:].permute(0,3,1,2).contiguous().detach().to(device), outputsGT[:,0,:,:,:].permute(0,3,1,2).contiguous().detach().to(device)).sum() end.record() torch.cuda.synchronize() lastBatchSize = min(outputsGT.shape[0],4) gridOut2 = torch.cat((outputsGT[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach(), outputsVol[0:lastBatchSize, :, :, :, :].sum(2).cpu().data.detach()), dim=0) gridOut2 = tv.utils.make_grid(gridOut2, normalize=True, scale_each=False) # process some for showing indices_to_display = torch.randperm(inputGPU.shape[0])[0:lastBatchSize] outputsGT = F.interpolate(outputsGT[indices_to_display, :, :, :, :],[LFshape[0]*2,LFshape[1]*2,volShape[2]]) outputsVol = F.interpolate(outputsVol[indices_to_display, :, :, :, :],[LFshape[0]*2,LFshape[1]*2,volShape[2]]) inputGPU = inputGPU[indices_to_display,:,:,:,:,:] currPred = convert3Dto2DTiles(outputsVol, [lateralTile, lateralTile]) currGT = convert3Dto2DTiles(outputsGT, [lateralTile, lateralTile]) inputGrid = LF2Spatial(inputGPU, inputGPU.shape[2:]) gridPred = tv.utils.make_grid(currPred,normalize=True, scale_each=False) gridGT = tv.utils.make_grid(currGT,normalize=True, scale_each=False) gridInput = tv.utils.make_grid(inputGrid,normalize=True, scale_each=False) # Write to tensorboard writer.add_image('images_val_YZ_projection', gridOut2, curr_it) writer.add_image('outputRGB_test', gridPred, curr_it) writer.add_image('outputRGB_test_GT', gridGT, curr_it) writer.add_image('input_test', gridInput, curr_it) writer.add_scalar('Loss/test', test_loss/len(test_dataset), curr_it) writer.add_scalar('Loss/psnr_val', avg_psnr/len(test_dataset), curr_it) writer.add_scalar('Loss/ssim_val', avg_ssim/len(test_dataset), curr_it) writer.add_scalar('LearningRate', args.learningRate, curr_it) writer.add_scalar('times/val', start.elapsed_time(end)/test_size, curr_it) net.train() if epoch%2==0: torch.save({ 'epoch': epoch, 'args' : args, 'model_state_dict': net.state_dict(), 'optimizer_state_dict': optimizer.state_dict(), 'loss': train_loss, 'dataset_path': args.datasetPath}, save_folder + '/model_'+str(epoch)) print(f"Epoch {epoch + 1}/{args.epochs}.. " f"Train loss: {train_loss / len(train_dataset):.7f}.. " f"Test loss: {test_loss / len(test_dataset):.7f}.. ") if __name__ == '__main__': main()
[ "torch.randperm", "torch.nn.init.constant_", "torch.nn.L1Loss", "math.sqrt", "torch.cuda.device_count", "torch.cuda.synchronize", "torch.cuda.is_available", "torch.nn.functional.interpolate", "torchvision.utils.make_grid", "torch.utils.tensorboard.SummaryWriter", "torch.nn.init.kaiming_normal_", "torch.set_num_threads", "os.path.split", "numpy.random.seed", "torch.cuda.current_device", "networks.LFMNet.LFMNet", "torch.cuda.Event", "subprocess.check_output", "torch.nn.parallel.DistributedDataParallel", "torch.utils.data.random_split", "torch.no_grad", "torch.cuda.empty_cache", "torch.manual_seed", "torch.load", "datetime.datetime.now", "torch.utils.data.DataLoader", "torch.set_grad_enabled", "torch.distributed.init_process_group", "torch.cuda.get_device_properties" ]
[((3063, 3088), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (3086, 3088), False, 'import torch\n'), ((4383, 4397), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (4395, 4397), False, 'from datetime import datetime\n'), ((5320, 5354), 'torch.utils.tensorboard.SummaryWriter', 'SummaryWriter', ([], {'log_dir': 'save_folder'}), '(log_dir=save_folder)\n', (5333, 5354), False, 'from torch.utils.tensorboard import SummaryWriter\n'), ((5805, 5869), 'torch.utils.data.random_split', 'torch.utils.data.random_split', (['all_data', '[train_size, test_size]'], {}), '(all_data, [train_size, test_size])\n', (5834, 5869), False, 'import torch\n'), ((5916, 6033), 'torch.utils.data.DataLoader', 'data.DataLoader', (['train_dataset'], {'batch_size': 'args.batchSize', 'shuffle': '(True)', 'num_workers': 'num_workers', 'pin_memory': '(True)'}), '(train_dataset, batch_size=args.batchSize, shuffle=True,\n num_workers=num_workers, pin_memory=True)\n', (5931, 6033), False, 'from torch.utils import data\n'), ((6085, 6201), 'torch.utils.data.DataLoader', 'data.DataLoader', (['test_dataset'], {'batch_size': 'args.batchSize', 'shuffle': '(True)', 'num_workers': 'num_workers', 'pin_memory': '(True)'}), '(test_dataset, batch_size=args.batchSize, shuffle=True,\n num_workers=num_workers, pin_memory=True)\n', (6100, 6201), False, 'from torch.utils import data\n'), ((6860, 6871), 'torch.nn.L1Loss', 'nn.L1Loss', ([], {}), '()\n', (6869, 6871), True, 'import torch.nn as nn\n'), ((8325, 8361), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (8341, 8361), False, 'import torch\n'), ((8372, 8408), 'torch.cuda.Event', 'torch.cuda.Event', ([], {'enable_timing': '(True)'}), '(enable_timing=True)\n', (8388, 8408), False, 'import torch\n'), ((2914, 2948), 'torch.set_num_threads', 'torch.set_num_threads', (['num_workers'], {}), '(num_workers)\n', (2935, 2948), False, 'import torch\n'), ((2961, 2986), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2984, 2986), False, 'import torch\n'), ((3146, 3173), 'torch.cuda.current_device', 'torch.cuda.current_device', ([], {}), '()\n', (3171, 3173), False, 'import torch\n'), ((3199, 3242), 'torch.cuda.get_device_properties', 'torch.cuda.get_device_properties', (['device_id'], {}), '(device_id)\n', (3231, 3242), False, 'import torch\n'), ((3878, 3909), 'numpy.random.seed', 'np.random.seed', (['args.randomSeed'], {}), '(args.randomSeed)\n', (3892, 3909), True, 'import numpy as np\n'), ((3918, 3952), 'torch.manual_seed', 'torch.manual_seed', (['args.randomSeed'], {}), '(args.randomSeed)\n', (3935, 3952), False, 'import torch\n'), ((4094, 4120), 'torch.load', 'torch.load', (['checkpointPath'], {}), '(checkpointPath)\n', (4104, 4120), False, 'import torch\n'), ((6458, 6476), 'math.sqrt', 'math.sqrt', (['nDepths'], {}), '(nDepths)\n', (6467, 6476), False, 'import math\n'), ((7842, 7867), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (7865, 7867), False, 'import torch\n'), ((8054, 8128), 'torch.distributed.init_process_group', 'torch.distributed.init_process_group', ([], {'backend': '"""nccl"""', 'rank': '(0)', 'world_size': '(1)'}), "(backend='nccl', rank=0, world_size=1)\n", (8090, 8128), False, 'import torch\n'), ((8516, 8541), 'torch.randperm', 'torch.randperm', (['test_size'], {}), '(test_size)\n', (8530, 8541), False, 'import torch\n'), ((8756, 8784), 'torch.set_grad_enabled', 'torch.set_grad_enabled', (['(True)'], {}), '(True)\n', (8778, 8784), False, 'import torch\n'), ((8793, 8817), 'torch.cuda.empty_cache', 'torch.cuda.empty_cache', ([], {}), '()\n', (8815, 8817), False, 'import torch\n'), ((4306, 4331), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (4329, 4331), False, 'import torch\n'), ((4551, 4636), 'subprocess.check_output', 'subprocess.check_output', (["['C:/Program Files/git/bin/git', 'describe', '--always']"], {}), "(['C:/Program Files/git/bin/git', 'describe',\n '--always'])\n", (4574, 4636), False, 'import subprocess\n'), ((5204, 5238), 'os.path.split', 'os.path.split', (['args.checkpointPath'], {}), '(args.checkpointPath)\n', (5217, 5238), False, 'import os\n'), ((6650, 6766), 'networks.LFMNet.LFMNet', 'LFMNet', (['nDepths', 'args.useBias', 'args.useSkipCon', 'LFshape'], {'LFfov': 'args.fovInput', 'use_small_unet': 'args.useShallowUnet'}), '(nDepths, args.useBias, args.useSkipCon, LFshape, LFfov=args.fovInput,\n use_small_unet=args.useShallowUnet)\n', (6656, 6766), False, 'from networks.LFMNet import LFMNet\n'), ((7900, 7925), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (7923, 7925), False, 'import torch\n'), ((9994, 10018), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (10016, 10018), False, 'import torch\n'), ((3670, 3695), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3693, 3695), False, 'import torch\n'), ((7208, 7241), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['m.weight'], {}), '(m.weight)\n', (7231, 7241), True, 'import torch.nn as nn\n'), ((7308, 7352), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias.data', 'args.biasVal'], {}), '(m.bias.data, args.biasVal)\n', (7325, 7352), True, 'import torch.nn as nn\n'), ((7369, 7402), 'torch.nn.init.kaiming_normal_', 'nn.init.kaiming_normal_', (['m.weight'], {}), '(m.weight)\n', (7392, 7402), True, 'import torch.nn as nn\n'), ((8196, 8290), 'torch.nn.parallel.DistributedDataParallel', 'nn.parallel.DistributedDataParallel', (['net'], {'device_ids': 'args.GPUs', 'output_device': 'args.GPUs[0]'}), '(net, device_ids=args.GPUs,\n output_device=args.GPUs[0])\n', (8231, 8290), True, 'import torch.nn as nn\n'), ((10596, 10658), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['gridOut2'], {'normalize': '(True)', 'scale_each': '(False)'}), '(gridOut2, normalize=True, scale_each=False)\n', (10614, 10658), True, 'import torchvision as tv\n'), ((10825, 10933), 'torch.nn.functional.interpolate', 'F.interpolate', (['outputsGT[indices_to_display, :, :, :, :]', '[LFshape[0] * 2, LFshape[1] * 2, volShape[2]]'], {}), '(outputsGT[indices_to_display, :, :, :, :], [LFshape[0] * 2, \n LFshape[1] * 2, volShape[2]])\n', (10838, 10933), True, 'import torch.nn.functional as F\n'), ((10951, 11060), 'torch.nn.functional.interpolate', 'F.interpolate', (['outputsVol[indices_to_display, :, :, :, :]', '[LFshape[0] * 2, LFshape[1] * 2, volShape[2]]'], {}), '(outputsVol[indices_to_display, :, :, :, :], [LFshape[0] * 2, \n LFshape[1] * 2, volShape[2]])\n', (10964, 11060), True, 'import torch.nn.functional as F\n'), ((11380, 11442), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['currPred'], {'normalize': '(True)', 'scale_each': '(False)'}), '(currPred, normalize=True, scale_each=False)\n', (11398, 11442), True, 'import torchvision as tv\n'), ((11467, 11527), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['currGT'], {'normalize': '(True)', 'scale_each': '(False)'}), '(currGT, normalize=True, scale_each=False)\n', (11485, 11527), True, 'import torchvision as tv\n'), ((11555, 11618), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['inputGrid'], {'normalize': '(True)', 'scale_each': '(False)'}), '(inputGrid, normalize=True, scale_each=False)\n', (11573, 11618), True, 'import torchvision as tv\n'), ((3397, 3422), 'torch.cuda.device_count', 'torch.cuda.device_count', ([], {}), '()\n', (3420, 3422), False, 'import torch\n'), ((7147, 7191), 'torch.nn.init.constant_', 'nn.init.constant_', (['m.bias.data', 'args.biasVal'], {}), '(m.bias.data, args.biasVal)\n', (7164, 7191), True, 'import torch.nn as nn\n'), ((10758, 10791), 'torch.randperm', 'torch.randperm', (['inputGPU.shape[0]'], {}), '(inputGPU.shape[0])\n', (10772, 10791), False, 'import torch\n'), ((12471, 12486), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (12484, 12486), False, 'import torch\n'), ((13730, 13754), 'torch.cuda.synchronize', 'torch.cuda.synchronize', ([], {}), '()\n', (13752, 13754), False, 'import torch\n'), ((14051, 14113), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['gridOut2'], {'normalize': '(True)', 'scale_each': '(False)'}), '(gridOut2, normalize=True, scale_each=False)\n', (14069, 14113), True, 'import torchvision as tv\n'), ((14285, 14393), 'torch.nn.functional.interpolate', 'F.interpolate', (['outputsGT[indices_to_display, :, :, :, :]', '[LFshape[0] * 2, LFshape[1] * 2, volShape[2]]'], {}), '(outputsGT[indices_to_display, :, :, :, :], [LFshape[0] * 2, \n LFshape[1] * 2, volShape[2]])\n', (14298, 14393), True, 'import torch.nn.functional as F\n'), ((14415, 14524), 'torch.nn.functional.interpolate', 'F.interpolate', (['outputsVol[indices_to_display, :, :, :, :]', '[LFshape[0] * 2, LFshape[1] * 2, volShape[2]]'], {}), '(outputsVol[indices_to_display, :, :, :, :], [LFshape[0] * 2, \n LFshape[1] * 2, volShape[2]])\n', (14428, 14524), True, 'import torch.nn.functional as F\n'), ((14865, 14927), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['currPred'], {'normalize': '(True)', 'scale_each': '(False)'}), '(currPred, normalize=True, scale_each=False)\n', (14883, 14927), True, 'import torchvision as tv\n'), ((14956, 15016), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['currGT'], {'normalize': '(True)', 'scale_each': '(False)'}), '(currGT, normalize=True, scale_each=False)\n', (14974, 15016), True, 'import torchvision as tv\n'), ((15048, 15111), 'torchvision.utils.make_grid', 'tv.utils.make_grid', (['inputGrid'], {'normalize': '(True)', 'scale_each': '(False)'}), '(inputGrid, normalize=True, scale_each=False)\n', (15066, 15111), True, 'import torchvision as tv\n'), ((14202, 14235), 'torch.randperm', 'torch.randperm', (['inputGPU.shape[0]'], {}), '(inputGPU.shape[0])\n', (14216, 14235), False, 'import torch\n')]
from stix_shifter_utils.utils.entry_point_base import EntryPointBase from stix_shifter_utils.modules.cim.stix_translation.cim_data_mapper import CimDataMapper from stix_shifter_utils.modules.car.stix_translation.car_data_mapper import CarDataMapper from .stix_translation.stix_to_elastic import StixToElastic class EntryPoint(EntryPointBase): def __init__(self, connection={}, configuration={}, options={}): super().__init__(options) self.add_dialect('default', query_translator=StixToElastic(), data_mapper=CarDataMapper(options), default=True) self.add_dialect('cim', query_translator=StixToElastic(), data_mapper=CimDataMapper(options), default_include=False) self.add_dialect('car', query_translator=StixToElastic(), data_mapper=CarDataMapper(options), default_include=False)
[ "stix_shifter_utils.modules.car.stix_translation.car_data_mapper.CarDataMapper", "stix_shifter_utils.modules.cim.stix_translation.cim_data_mapper.CimDataMapper" ]
[((530, 552), 'stix_shifter_utils.modules.car.stix_translation.car_data_mapper.CarDataMapper', 'CarDataMapper', (['options'], {}), '(options)\n', (543, 552), False, 'from stix_shifter_utils.modules.car.stix_translation.car_data_mapper import CarDataMapper\n'), ((646, 668), 'stix_shifter_utils.modules.cim.stix_translation.cim_data_mapper.CimDataMapper', 'CimDataMapper', (['options'], {}), '(options)\n', (659, 668), False, 'from stix_shifter_utils.modules.cim.stix_translation.cim_data_mapper import CimDataMapper\n'), ((771, 793), 'stix_shifter_utils.modules.car.stix_translation.car_data_mapper.CarDataMapper', 'CarDataMapper', (['options'], {}), '(options)\n', (784, 793), False, 'from stix_shifter_utils.modules.car.stix_translation.car_data_mapper import CarDataMapper\n')]
""" Crack a password using a genetic algorithm! """ import random as rnd def main(): """ This file implements a genetic algorithm to solve the problem of cracking a given password, by creating 'generations' of different words, selecting the best, breeeding them, applying a simple crossover (randomized) and a mutation chance. """ #variables dict: Define the problem constants genetic_variables = { 'password' : "<PASSWORD>", 'size_population' : 100, 'best_sample' : 20, 'lucky_few' : 20, 'number_of_child' : 5, 'number_of_generations' : 10000, #Overkill >:D 'chance_of_mutation' : .5 } prob = genetic_variables #program if (prob['best_sample'] + prob['lucky_few'])/2*prob['number_of_child'] != prob['size_population']: print ("population size not stable") return last_gen, _ = genetic_algorithm(**genetic_variables) print("Last generation: \n\n") print(last_gen) def genetic_algorithm(**kwargs): """ Execute the genetic algorithm. This algorithm takes a dict as an argument. It will iterate based on the variable 'number_of_generations', and return the last_gen and the historic """ # Unpack the values from the dict password = kwargs['password'] size_population = kwargs['size_population'] best_sample = kwargs['best_sample'] lucky_few = kwargs['lucky_few'] number_of_child = kwargs['number_of_child'] number_of_generations = kwargs['number_of_generations'] chance_of_mutation = kwargs['chance_of_mutation'] hist = [] # The genetic algorithm curr_pop = initial_pop(size_population, password) hist = curr_pop last_found = -1 for _ in range (number_of_generations): curr_pop = next_gen(curr_pop, password, best_sample, lucky_few, number_of_child, chance_of_mutation) hist.append(curr_pop) if check_solution(curr_pop, password): last_found = _ break if last_found != -1: print(f"Found a solution in the {last_found} generation!!") else: print("No solution found! D':") return curr_pop, hist def next_gen(curr_pop, password, best_sample, lucky_few, number_of_child, chance_of_mutation): """ -> This is the main task of the Genetic Algorithm <- Given the current population, apply the following steps: - Compute the fitness of each individual in the population - Select the best ones (and some lucky guys) - Make them reproduce - Mutate the children - Return this new population """ pop_sorted = compute_perf_pop(curr_pop, password) next_breeders = select_from_population(pop_sorted, best_sample, lucky_few) next_pop = create_children(next_breeders, number_of_child) next_gen = mutate_pop(next_pop, chance_of_mutation) return next_gen def initial_pop(size, password): """ Generate a population consisting of random words, each with the same length as the password, and the population has the size specified. """ return [word_generate(len(password)) for _ in range(size)] def fitness (password, test_word): """ The fitness function: fitness(test_word): (# of correct chars) / (total number of chars) fitness(test_word) = 0 if # of correct chars = 0 fitness(test_word) = 100 if # of correct chars = total number of chars """ if (len(test_word) != len(password)): print("Incompatible password...") return else: score = (1 if password[i] == test_word[i] else 0 for i in range(len(password))) return sum(score)*100/len(password) def compute_perf_pop(population, password): """ Return the population, sorted by the fitness from each individual """ populationPerf = {ind:fitness(password, ind) for ind in population} # Sort by fitness, reversed (best ones in the beginning of the list) return sorted(populationPerf.items(), key= lambda it: it[1], reverse=True) def select_from_population(pop_sorted, best_sample, lucky_few): """ Create the next breeders, with 'best_sample' individuals which have the top fitness value from the population, and 'lucky_few' individuals which are randomly selected. """ next_gen = [] for i in range(best_sample): next_gen.append(pop_sorted[i][0]) # Simple lucky few: randomly select some elements from the population for i in range(lucky_few): next_gen.append(rnd.choice(pop_sorted)[0]) rnd.shuffle(next_gen) return next_gen def create_children(breeders, nof_childs): """ Create the next population of individuals, by breeding two by two """ next_pop = [] mid_pos = len(breeders)//2 # len(breeders) must be an even number for ind_1, ind_2 in zip(breeders[:mid_pos], breeders[mid_pos:]): for _ in range(nof_childs): next_pop.append(create_child(ind_1, ind_2)) return next_pop def mutate_pop(population, chance): """ Given a chance for mutation, this apply the mutation layer to the genetic algorithm, by generating a mutation with the chance specified. """ for i in range(len(population)): if rnd.random() < chance: population[i] = mutate_word(population[i]) return population def mutate_word(word): """ Mutate a letter(gene) from the word, then return it """ pos = int(rnd.random()*len(word)) word = word[:pos] + chr(97 + int(26*rnd.random())) + word[pos + 1:] return word def create_child(ind_1, ind_2): """ For each letter of the child, get a random gene from ind_1 or ind_2 in the i-th position. """ temp = [ind_1[i] if rnd.random() < 0.5 else ind_2[i] for i in range(len(ind_1))] return "".join(temp) def word_generate(length): """ Generate a string with random lowercase letters, with length = length! """ # Generate a random letter from alphabet, lowercase, and add to result return "".join((chr(97 + rnd.randint(0, 26)) for _ in range(length))) def check_solution(population, password): """ Check if the population found a solution to the problem """ return any(ind == password for ind in population) if __name__ == '__main__': main()
[ "random.random", "random.choice", "random.randint", "random.shuffle" ]
[((4567, 4588), 'random.shuffle', 'rnd.shuffle', (['next_gen'], {}), '(next_gen)\n', (4578, 4588), True, 'import random as rnd\n'), ((5259, 5271), 'random.random', 'rnd.random', ([], {}), '()\n', (5269, 5271), True, 'import random as rnd\n'), ((5469, 5481), 'random.random', 'rnd.random', ([], {}), '()\n', (5479, 5481), True, 'import random as rnd\n'), ((4535, 4557), 'random.choice', 'rnd.choice', (['pop_sorted'], {}), '(pop_sorted)\n', (4545, 4557), True, 'import random as rnd\n'), ((5752, 5764), 'random.random', 'rnd.random', ([], {}), '()\n', (5762, 5764), True, 'import random as rnd\n'), ((6061, 6079), 'random.randint', 'rnd.randint', (['(0)', '(26)'], {}), '(0, 26)\n', (6072, 6079), True, 'import random as rnd\n'), ((5533, 5545), 'random.random', 'rnd.random', ([], {}), '()\n', (5543, 5545), True, 'import random as rnd\n')]
import pygame import time import numpy as np import sys gray = (150, 150, 150) white = (255, 255, 255) black = (0, 0, 0, ) red_block = (255, 0, 0) red_border = (76, 0, 19) block_color = (255, 128, 0) border_color = (165,42,42) screen = None SIDE = 50 BORDER = 5 MARGIN = 5 LINE = 1 h_switch = True def __draw_horizontal_block(x,y): global screen, h_switch pygame.draw.rect(screen, border_color, pygame.Rect(MARGIN + y*SIDE,MARGIN + x*SIDE, SIDE, SIDE)) pygame.draw.rect(screen, block_color, pygame.Rect(MARGIN + y*SIDE + h_switch*BORDER, MARGIN + x*SIDE + BORDER, SIDE - BORDER, SIDE - 2*BORDER)) h_switch = not h_switch def __draw_red_block(x,y): global screen, h_switch pygame.draw.rect(screen, red_border, pygame.Rect(MARGIN + y*SIDE,MARGIN + x*SIDE, SIDE, SIDE)) pygame.draw.rect(screen, red_block, pygame.Rect(MARGIN + y*SIDE + h_switch*BORDER, MARGIN + x*SIDE + BORDER, SIDE - BORDER, SIDE - 2*BORDER)) h_switch = not h_switch def __draw_vertical_block(x,y): global screen pygame.draw.rect(screen, border_color, pygame.Rect(MARGIN + y*SIDE, MARGIN + x*SIDE, SIDE, 2*SIDE)) pygame.draw.rect(screen, block_color, pygame.Rect(MARGIN + y*SIDE + BORDER, MARGIN + x*SIDE + BORDER, SIDE - 2*BORDER, 2*SIDE - 2*BORDER)) ## Render function for the unblockme_class def render_unblockme(game_object): matrix = game_object.internal_state k, h, _ = game_object.shape global screen if screen is None: pygame.init() screen = pygame.display.set_mode((2*MARGIN+k*SIDE, 2*MARGIN+h*SIDE)) for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.display.quit() pygame.quit() sys.exit(0) screen.fill(black) # first we draw the background for x in range(0,k): for y in range(0,h): cell = matrix[x,y,:] selected_block = np.where(cell == 1)[0] if len(selected_block) != 0: #draw the exit on the outer border if selected_block[0] == 0: if y == 0: pygame.draw.rect(screen, white, pygame.Rect(y*SIDE,x*SIDE+MARGIN, SIDE+MARGIN, SIDE)) else: pygame.draw.rect(screen, white, pygame.Rect(y*SIDE+MARGIN,x*SIDE+MARGIN, SIDE+MARGIN, SIDE)) # Draw the background with the grid pattern pygame.draw.rect(screen, gray , pygame.Rect(MARGIN + y*SIDE,MARGIN + x*SIDE, SIDE, SIDE)) pygame.draw.rect(screen, white, pygame.Rect(MARGIN + y*SIDE + LINE,MARGIN + x*SIDE + LINE, SIDE - 2*LINE, SIDE - 2*LINE)) # then we draw the blocks in the grid for x in range(0,k): for y in range(0,h): cell = matrix[x,y,1:] selected_block = np.where(cell == 1)[0] if len(selected_block) != 0: if selected_block[-1] == 1: __draw_horizontal_block(x,y) elif selected_block[-1] == 2: if (x == 0 or not (matrix[x-1,y,1:] == cell).all() ) and \ (x != k-1 and (matrix[x+1,y,1:] == cell).all() ): __draw_vertical_block(x,y) elif selected_block[-1] == 0: __draw_red_block(x,y) pygame.display.update() time.sleep(0.1) if __name__ == "__main__": from unblockme_class import * matrix, goal = get_example() game = unblock_me(matrix, goal) render_unblockme(game)
[ "pygame.init", "pygame.quit", "pygame.event.get", "numpy.where", "pygame.display.set_mode", "time.sleep", "pygame.display.quit", "sys.exit", "pygame.display.update", "pygame.Rect" ]
[((1755, 1773), 'pygame.event.get', 'pygame.event.get', ([], {}), '()\n', (1771, 1773), False, 'import pygame\n'), ((3536, 3559), 'pygame.display.update', 'pygame.display.update', ([], {}), '()\n', (3557, 3559), False, 'import pygame\n'), ((3564, 3579), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (3574, 3579), False, 'import time\n'), ((412, 473), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE)', '(MARGIN + x * SIDE)', 'SIDE', 'SIDE'], {}), '(MARGIN + y * SIDE, MARGIN + x * SIDE, SIDE, SIDE)\n', (423, 473), False, 'import pygame\n'), ((513, 629), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE + h_switch * BORDER)', '(MARGIN + x * SIDE + BORDER)', '(SIDE - BORDER)', '(SIDE - 2 * BORDER)'], {}), '(MARGIN + y * SIDE + h_switch * BORDER, MARGIN + x * SIDE +\n BORDER, SIDE - BORDER, SIDE - 2 * BORDER)\n', (524, 629), False, 'import pygame\n'), ((800, 861), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE)', '(MARGIN + x * SIDE)', 'SIDE', 'SIDE'], {}), '(MARGIN + y * SIDE, MARGIN + x * SIDE, SIDE, SIDE)\n', (811, 861), False, 'import pygame\n'), ((899, 1015), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE + h_switch * BORDER)', '(MARGIN + x * SIDE + BORDER)', '(SIDE - BORDER)', '(SIDE - 2 * BORDER)'], {}), '(MARGIN + y * SIDE + h_switch * BORDER, MARGIN + x * SIDE +\n BORDER, SIDE - BORDER, SIDE - 2 * BORDER)\n', (910, 1015), False, 'import pygame\n'), ((1183, 1248), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE)', '(MARGIN + x * SIDE)', 'SIDE', '(2 * SIDE)'], {}), '(MARGIN + y * SIDE, MARGIN + x * SIDE, SIDE, 2 * SIDE)\n', (1194, 1248), False, 'import pygame\n'), ((1287, 1401), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE + BORDER)', '(MARGIN + x * SIDE + BORDER)', '(SIDE - 2 * BORDER)', '(2 * SIDE - 2 * BORDER)'], {}), '(MARGIN + y * SIDE + BORDER, MARGIN + x * SIDE + BORDER, SIDE - \n 2 * BORDER, 2 * SIDE - 2 * BORDER)\n', (1298, 1401), False, 'import pygame\n'), ((1646, 1659), 'pygame.init', 'pygame.init', ([], {}), '()\n', (1657, 1659), False, 'import pygame\n'), ((1677, 1748), 'pygame.display.set_mode', 'pygame.display.set_mode', (['(2 * MARGIN + k * SIDE, 2 * MARGIN + h * SIDE)'], {}), '((2 * MARGIN + k * SIDE, 2 * MARGIN + h * SIDE))\n', (1700, 1748), False, 'import pygame\n'), ((1825, 1846), 'pygame.display.quit', 'pygame.display.quit', ([], {}), '()\n', (1844, 1846), False, 'import pygame\n'), ((1859, 1872), 'pygame.quit', 'pygame.quit', ([], {}), '()\n', (1870, 1872), False, 'import pygame\n'), ((1885, 1896), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (1893, 1896), False, 'import sys\n'), ((2073, 2092), 'numpy.where', 'np.where', (['(cell == 1)'], {}), '(cell == 1)\n', (2081, 2092), True, 'import numpy as np\n'), ((2615, 2676), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE)', '(MARGIN + x * SIDE)', 'SIDE', 'SIDE'], {}), '(MARGIN + y * SIDE, MARGIN + x * SIDE, SIDE, SIDE)\n', (2626, 2676), False, 'import pygame\n'), ((2717, 2818), 'pygame.Rect', 'pygame.Rect', (['(MARGIN + y * SIDE + LINE)', '(MARGIN + x * SIDE + LINE)', '(SIDE - 2 * LINE)', '(SIDE - 2 * LINE)'], {}), '(MARGIN + y * SIDE + LINE, MARGIN + x * SIDE + LINE, SIDE - 2 *\n LINE, SIDE - 2 * LINE)\n', (2728, 2818), False, 'import pygame\n'), ((3027, 3046), 'numpy.where', 'np.where', (['(cell == 1)'], {}), '(cell == 1)\n', (3035, 3046), True, 'import numpy as np\n'), ((2318, 2379), 'pygame.Rect', 'pygame.Rect', (['(y * SIDE)', '(x * SIDE + MARGIN)', '(SIDE + MARGIN)', 'SIDE'], {}), '(y * SIDE, x * SIDE + MARGIN, SIDE + MARGIN, SIDE)\n', (2329, 2379), False, 'import pygame\n'), ((2454, 2524), 'pygame.Rect', 'pygame.Rect', (['(y * SIDE + MARGIN)', '(x * SIDE + MARGIN)', '(SIDE + MARGIN)', 'SIDE'], {}), '(y * SIDE + MARGIN, x * SIDE + MARGIN, SIDE + MARGIN, SIDE)\n', (2465, 2524), False, 'import pygame\n')]
# API from pyramid.scaffolds import PyramidTemplate import os import re import logging def _camelcase_to_upper_camel_case(the_str): if not the_str: return '' return the_str[0].upper() + the_str[1:] def _upper_camelcase_to_camelcase(the_str): if not the_str: return '' return the_str[0].lower() + the_str[1:] def _camelcase_to_constant(the_str): s1 = re.sub('(.)([A-Z][a-z]+)', r'\1_\2', the_str) return re.sub('([a-z0-9])([A-Z])', r'\1_\2', s1).upper() class MyTemplate(PyramidTemplate): def pre(self, command, output_dir, vars): the_args = command.args module_name = '' if not isinstance(the_args, list) or len(the_args) < 2 else the_args[1] logging.warning('command: %s output_dir: %s vars: %s args: %s module_name: %s', command, output_dir, vars, command.args, module_name) self._setup_module(vars, module_name) return PyramidTemplate.pre(self, command, output_dir, vars) def _setup_module(self, vars, full_module_name): full_module_path = full_module_name.replace('.', os.path.sep) module_name = os.path.basename(full_module_path) class_name = _camelcase_to_upper_camel_case(module_name) constant_name = _camelcase_to_constant(module_name) sub_pkg_dir = os.path.dirname(full_module_path) sub_pkg_name = sub_pkg_dir.replace(os.path.sep, '.') test_name = '' if not module_name else 'test' + class_name sub_pkg_dir_list = [] if not sub_pkg_dir else sub_pkg_dir.split(os.path.sep) test_dir_list = ['test_' + each_pkg for each_pkg in sub_pkg_dir_list] test_dir = os.path.sep.join(test_dir_list) pkg_name = vars['package'] if sub_pkg_name: pkg_name += '.' + sub_pkg_name project_name = vars['project'] vars['module_name'] = module_name vars['class_name'] = class_name vars['sub_pkg_name'] = sub_pkg_name vars['sub_pkg_dir'] = sub_pkg_dir vars['constant_name'] = constant_name vars['test_name'] = test_name vars['test_dir'] = test_dir vars['pkg_name'] = pkg_name vars['project_name'] = project_name class ComponentProjectTemplate(MyTemplate): _template_dir = 'component' summary = 'component' class ContainerProjectTemplate(MyTemplate): _template_dir = 'container' summary = 'container' class SubContainerProjectTemplate(MyTemplate): _template_dir = 'subcontainer' summary = 'subcontainer' class ModuleProjectTemplate(MyTemplate): _template_dir = 'module' summary = 'module' class InitStarterProjectTemplate(MyTemplate): _template_dir = 'init_starter' summary = 'including store / middleware / utils' class InitDevProjectTemplate(MyTemplate): _template_dir = 'init_dev' summary = 'starting project'
[ "logging.warning", "os.path.dirname", "os.path.sep.join", "pyramid.scaffolds.PyramidTemplate.pre", "os.path.basename", "re.sub" ]
[((393, 439), 're.sub', 're.sub', (['"""(.)([A-Z][a-z]+)"""', '"""\\\\1_\\\\2"""', 'the_str'], {}), "('(.)([A-Z][a-z]+)', '\\\\1_\\\\2', the_str)\n", (399, 439), False, 'import re\n'), ((722, 859), 'logging.warning', 'logging.warning', (['"""command: %s output_dir: %s vars: %s args: %s module_name: %s"""', 'command', 'output_dir', 'vars', 'command.args', 'module_name'], {}), "('command: %s output_dir: %s vars: %s args: %s module_name: %s',\n command, output_dir, vars, command.args, module_name)\n", (737, 859), False, 'import logging\n'), ((919, 971), 'pyramid.scaffolds.PyramidTemplate.pre', 'PyramidTemplate.pre', (['self', 'command', 'output_dir', 'vars'], {}), '(self, command, output_dir, vars)\n', (938, 971), False, 'from pyramid.scaffolds import PyramidTemplate\n'), ((1119, 1153), 'os.path.basename', 'os.path.basename', (['full_module_path'], {}), '(full_module_path)\n', (1135, 1153), False, 'import os\n'), ((1303, 1336), 'os.path.dirname', 'os.path.dirname', (['full_module_path'], {}), '(full_module_path)\n', (1318, 1336), False, 'import os\n'), ((1648, 1679), 'os.path.sep.join', 'os.path.sep.join', (['test_dir_list'], {}), '(test_dir_list)\n', (1664, 1679), False, 'import os\n'), ((450, 492), 're.sub', 're.sub', (['"""([a-z0-9])([A-Z])"""', '"""\\\\1_\\\\2"""', 's1'], {}), "('([a-z0-9])([A-Z])', '\\\\1_\\\\2', s1)\n", (456, 492), False, 'import re\n')]
# -*- coding: utf-8 -*- """Test GUI component.""" #------------------------------------------------------------------------------ # Imports #------------------------------------------------------------------------------ #from contextlib import contextmanager from pytest import yield_fixture, fixture, raises import numpy as np from numpy.testing import assert_array_equal as ae from .. import supervisor as _supervisor from ..supervisor import (Supervisor, TaskLogger, ClusterView, SimilarityView, ActionCreator, ) from phy.gui import GUI from phy.gui.widgets import Barrier from phy.gui.qt import qInstallMessageHandler from phy.gui.tests.test_widgets import _assert, _wait_until_table_ready from phy.utils.context import Context from phylib.utils import connect, Bunch, emit def handler(msg_type, msg_log_context, msg_string): pass qInstallMessageHandler(handler) #------------------------------------------------------------------------------ # Fixtures #------------------------------------------------------------------------------ @yield_fixture def gui(tempdir, qtbot): # NOTE: mock patch show box exec_ _supervisor._show_box = lambda _: _ gui = GUI(position=(200, 100), size=(500, 500), config_dir=tempdir) gui.set_default_actions() gui.show() qtbot.waitForWindowShown(gui) yield gui qtbot.wait(5) gui.close() del gui qtbot.wait(5) @fixture def supervisor(qtbot, gui, cluster_ids, cluster_groups, cluster_labels, similarity, tempdir): spike_clusters = np.repeat(cluster_ids, 2) s = Supervisor( spike_clusters, cluster_groups=cluster_groups, cluster_labels=cluster_labels, similarity=similarity, context=Context(tempdir), sort=('id', 'desc'), ) s.attach(gui) b = Barrier() connect(b('cluster_view'), event='ready', sender=s.cluster_view) connect(b('similarity_view'), event='ready', sender=s.similarity_view) b.wait() return s #------------------------------------------------------------------------------ # Test tasks #------------------------------------------------------------------------------ @fixture def tl(): class MockClusterView(object): _selected = [0] def select(self, cl, callback=None, **kwargs): self._selected = cl callback({'selected': cl, 'next': cl[-1] + 1}) def next(self, callback=None): callback({'selected': [self._selected[-1] + 1], 'next': self._selected[-1] + 2}) def previous(self, callback=None): # pragma: no cover callback({'selected': [self._selected[-1] - 1], 'next': self._selected[-1]}) class MockSimilarityView(MockClusterView): pass class MockSupervisor(object): def merge(self, cluster_ids, to, callback=None): callback(Bunch(deleted=cluster_ids, added=[to])) def split(self, old_cluster_ids, new_cluster_ids, callback=None): callback(Bunch(deleted=old_cluster_ids, added=new_cluster_ids)) def move(self, which, group, callback=None): callback(Bunch(metadata_changed=which, metadata_value=group)) def undo(self, callback=None): callback(Bunch()) def redo(self, callback=None): callback(Bunch()) out = TaskLogger(MockClusterView(), MockSimilarityView(), MockSupervisor()) return out def test_task_1(tl): assert tl.last_state(None) is None def test_task_2(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.process() assert tl.last_state() == ([0], 1, None, None) def test_task_3(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.process() assert tl.last_state() == ([0], 1, [100], 101) def test_task_merge(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.enqueue(tl.supervisor, 'merge', [0, 100], 1000) tl.process() assert tl.last_state() == ([1000], 1001, None, None) tl.enqueue(tl.supervisor, 'undo') tl.process() assert tl.last_state() == ([0], 1, [100], 101) tl.enqueue(tl.supervisor, 'redo') tl.process() assert tl.last_state() == ([1000], 1001, None, None) def test_task_split(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.enqueue(tl.supervisor, 'split', [0, 100], [1000, 1001]) tl.process() assert tl.last_state() == ([1000, 1001], 1002, None, None) def test_task_move_1(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.supervisor, 'move', [0], 'good') tl.process() assert tl.last_state() == ([1], 2, None, None) def test_task_move_best(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.enqueue(tl.supervisor, 'move', 'best', 'good') tl.process() assert tl.last_state() == ([1], 2, None, None) def test_task_move_similar(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.enqueue(tl.supervisor, 'move', 'similar', 'good') tl.process() assert tl.last_state() == ([0], 1, [101], 102) def test_task_move_all(tl): tl.enqueue(tl.cluster_view, 'select', [0]) tl.enqueue(tl.similarity_view, 'select', [100]) tl.enqueue(tl.supervisor, 'move', 'all', 'good') tl.process() assert tl.last_state() == ([1], 2, [101], 102) #------------------------------------------------------------------------------ # Test cluster and similarity views #------------------------------------------------------------------------------ @fixture def data(): _data = [{"id": i, "n_spikes": 100 - 10 * i, "group": {2: 'noise', 3: 'noise', 5: 'mua', 8: 'good'}.get(i, None), "is_masked": i in (2, 3, 5), } for i in range(10)] return _data def test_cluster_view_1(qtbot, gui, data): cv = ClusterView(gui, data=data) _wait_until_table_ready(qtbot, cv) cv.sort_by('n_spikes', 'asc') cv.select([1]) qtbot.wait(10) assert cv.state == {'current_sort': ('n_spikes', 'asc'), 'selected': [1]} cv.set_state({'current_sort': ('id', 'desc'), 'selected': [2]}) assert cv.state == {'current_sort': ('id', 'desc'), 'selected': [2]} def test_similarity_view_1(qtbot, gui, data): sv = SimilarityView(gui, data=data) _wait_until_table_ready(qtbot, sv) @connect(sender=sv) def on_request_similar_clusters(sender, cluster_id): return [{'id': id} for id in (100 + cluster_id, 110 + cluster_id, 102 + cluster_id)] sv.reset([5]) _assert(sv.get_ids, [105, 115, 107]) def test_cluster_view_extra_columns(qtbot, gui, data): for cl in data: cl['my_metrics'] = cl['id'] * 1000 cv = ClusterView(gui, data=data, columns=['id', 'n_spikes', 'my_metrics']) _wait_until_table_ready(qtbot, cv) #------------------------------------------------------------------------------ # Test ActionCreator #------------------------------------------------------------------------------ def test_action_creator_1(qtbot, gui): ac = ActionCreator() ac.attach(gui) gui.show() #------------------------------------------------------------------------------ # Test GUI component #------------------------------------------------------------------------------ def _select(supervisor, cluster_ids, similar=None): supervisor.task_logger.enqueue(supervisor.cluster_view, 'select', cluster_ids) if similar is not None: supervisor.task_logger.enqueue(supervisor.similarity_view, 'select', similar) supervisor.task_logger.process() supervisor.block() supervisor.task_logger.show_history() assert supervisor.task_logger.last_state()[0] == cluster_ids assert supervisor.task_logger.last_state()[2] == similar def _assert_selected(supervisor, sel): assert supervisor.selected == sel def test_select(qtbot, supervisor): _select(supervisor, [30], [20]) _assert_selected(supervisor, [30, 20]) def test_supervisor_busy(qtbot, supervisor): _select(supervisor, [30], [20]) o = object() emit('is_busy', o, True) assert supervisor._is_busy # The action fails while the supervisor is busy. with raises(RuntimeError): emit('action', supervisor.action_creator, 'merge') emit('is_busy', o, False) assert not supervisor._is_busy # The action succeeds because the supervisor is no longer busy. emit('action', supervisor.action_creator, 'merge') supervisor.block() assert not supervisor._is_busy def test_supervisor_cluster_metrics( qtbot, gui, cluster_ids, cluster_groups, similarity, tempdir): spike_clusters = np.repeat(cluster_ids, 2) def my_metrics(cluster_id): return cluster_id ** 2 cluster_metrics = {'my_metrics': my_metrics} mc = Supervisor(spike_clusters, cluster_groups=cluster_groups, cluster_metrics=cluster_metrics, similarity=similarity, context=Context(tempdir), ) mc.attach(gui) b = Barrier() connect(b('cluster_view'), event='ready', sender=mc.cluster_view) connect(b('similarity_view'), event='ready', sender=mc.similarity_view) b.wait() assert 'my_metrics' in mc.columns def test_supervisor_select_1(qtbot, supervisor): # WARNING: always use actions in tests, because this doesn't call # the supervisor method directly, but raises an event, enqueue the task, # and call TaskLogger.process() which handles the cascade of callbacks. supervisor.select_actions.select([0]) supervisor.block() _assert_selected(supervisor, [0]) supervisor.task_logger.show_history() def test_supervisor_color(qtbot, supervisor): supervisor.view_actions.colormap_linear() supervisor.view_actions.color_field_n_spikes() supervisor.view_actions.toggle_categorical_colormap(False) supervisor.view_actions.toggle_logarithmic_colormap(True) def test_supervisor_select_2(qtbot, supervisor): supervisor.select_actions.next_best() supervisor.block() _assert_selected(supervisor, [30]) def test_supervisor_select_order(qtbot, supervisor): _select(supervisor, [1, 0]) _assert_selected(supervisor, [1, 0]) _select(supervisor, [0, 1]) _assert_selected(supervisor, [0, 1]) def test_supervisor_edge_cases(supervisor): # Empty selection at first. ae(supervisor.clustering.cluster_ids, [0, 1, 2, 10, 11, 20, 30]) _select(supervisor, [0]) supervisor.undo() supervisor.block() supervisor.redo() supervisor.block() # Merge. supervisor.merge() supervisor.block() _assert_selected(supervisor, [0]) supervisor.merge([]) supervisor.block() _assert_selected(supervisor, [0]) supervisor.merge([10]) supervisor.block() _assert_selected(supervisor, [0]) # Split. supervisor.split([]) supervisor.block() _assert_selected(supervisor, [0]) # Move. supervisor.move('ignored', []) supervisor.block() supervisor.save() def test_supervisor_save(qtbot, gui, supervisor): emit('request_save', gui) def test_supervisor_skip(qtbot, gui, supervisor): # yield [0, 1, 2, 10, 11, 20, 30] # # i, g, N, i, g, N, N expected = [30, 20, 11, 2, 1] for clu in expected: supervisor.select_actions.next_best() supervisor.block() _assert_selected(supervisor, [clu]) def test_supervisor_sort(qtbot, supervisor): supervisor.sort('id', 'desc') qtbot.wait(50) assert supervisor.state.cluster_view.current_sort == ('id', 'desc') supervisor.select_actions.sort_by_n_spikes() qtbot.wait(50) assert supervisor.state.cluster_view.current_sort == ('n_spikes', 'desc') def test_supervisor_filter(qtbot, supervisor): supervisor.filter('5 <= id && id <= 20') qtbot.wait(50) _cl = [] supervisor.cluster_view.get_ids(lambda cluster_ids: _cl.extend(cluster_ids)) qtbot.wait(50) assert _cl == [20, 11, 10] def test_supervisor_merge_1(qtbot, supervisor): _select(supervisor, [30], [20]) _assert_selected(supervisor, [30, 20]) supervisor.actions.merge() supervisor.block() _assert_selected(supervisor, [31]) supervisor.actions.undo() supervisor.block() _assert_selected(supervisor, [30, 20]) supervisor.actions.redo() supervisor.block() supervisor.task_logger.show_history() _assert_selected(supervisor, [31]) assert supervisor.is_dirty() def test_supervisor_merge_event(qtbot, supervisor): _select(supervisor, [30], [20]) _l = [] @connect(sender=supervisor) def on_select(sender, cluster_ids): _l.append(cluster_ids) supervisor.actions.merge() supervisor.block() # After a merge, there should be only one select event. assert len(_l) == 1 def test_supervisor_merge_move(qtbot, supervisor): """Check that merge then move selects the next cluster in the original cluster view, not the updated cluster view.""" _select(supervisor, [20, 11], []) _assert_selected(supervisor, [20, 11]) supervisor.actions.merge() supervisor.block() _assert_selected(supervisor, [31]) supervisor.actions.move('good', 'all') supervisor.block() _assert_selected(supervisor, [30]) supervisor.actions.move('good', 'all') supervisor.block() _assert_selected(supervisor, [2]) def test_supervisor_split_0(qtbot, supervisor): _select(supervisor, [1, 2]) _assert_selected(supervisor, [1, 2]) supervisor.actions.split([1, 2]) supervisor.block() _assert_selected(supervisor, [31, 32, 33]) supervisor.actions.undo() supervisor.block() _assert_selected(supervisor, [1, 2]) supervisor.actions.redo() supervisor.block() _assert_selected(supervisor, [31, 32, 33]) def test_supervisor_split_1(supervisor): supervisor.select_actions.select([1, 2]) supervisor.block() @connect(sender=supervisor) def on_request_split(sender): return [1, 2] supervisor.actions.split() supervisor.block() _assert_selected(supervisor, [31, 32, 33]) def test_supervisor_split_2(gui, similarity): spike_clusters = np.array([0, 0, 1]) supervisor = Supervisor(spike_clusters, similarity=similarity, ) supervisor.attach(gui) b = Barrier() connect(b('cluster_view'), event='ready', sender=supervisor.cluster_view) connect(b('similarity_view'), event='ready', sender=supervisor.similarity_view) b.wait() supervisor.actions.split([0]) supervisor.block() _assert_selected(supervisor, [2, 3]) def test_supervisor_state(tempdir, qtbot, gui, supervisor): supervisor.select(1) cv = supervisor.cluster_view assert supervisor.state.cluster_view.current_sort == ('id', 'desc') assert supervisor.state.cluster_view.selected == [1] cv.sort_by('id') assert supervisor.state.cluster_view.current_sort == ('id', 'asc') cv.set_state({'current_sort': ('n_spikes', 'desc')}) assert supervisor.state.cluster_view.current_sort == ('n_spikes', 'desc') cv.sort_by('id', 'desc') assert supervisor.all_cluster_ids == [30, 20, 11, 10, 2, 1, 0] def test_supervisor_label(supervisor): _select(supervisor, [20]) supervisor.label("my_field", 3.14) supervisor.block() supervisor.label("my_field", 1.23, cluster_ids=30) supervisor.block() assert 'my_field' in supervisor.fields assert supervisor.get_labels('my_field')[20] == 3.14 assert supervisor.get_labels('my_field')[30] == 1.23 def test_supervisor_label_cluster_1(supervisor): _select(supervisor, [20, 30]) supervisor.label("my_field", 3.14) supervisor.block() # Same value for the old clusters. l = supervisor.get_labels('my_field') assert l[20] == l[30] == 3.14 up = supervisor.merge() supervisor.block() assert supervisor.get_labels('my_field')[up.added[0]] == 3.14 def test_supervisor_label_cluster_2(supervisor): _select(supervisor, [20]) supervisor.label("my_field", 3.14) supervisor.block() # One of the parents. l = supervisor.get_labels('my_field') assert l[20] == 3.14 assert l[30] is None up = supervisor.merge([20, 30]) supervisor.block() assert supervisor.get_labels('my_field')[up.added[0]] == 3.14 def test_supervisor_label_cluster_3(supervisor): # Conflict: largest cluster wins. _select(supervisor, [20, 30]) supervisor.label("my_field", 3.14) supervisor.block() # Create merged cluster from 20 and 30. up = supervisor.merge() new = up.added[0] supervisor.block() # It fot the label of its parents. assert supervisor.get_labels('my_field')[new] == 3.14 # Now, we label a smaller cluster. supervisor.label("my_field", 2.718, cluster_ids=[10]) # We merge the large and small cluster together. up = supervisor.merge(up.added + [10]) supervisor.block() # The new cluster should have the value of the first, merged big cluster, i.e. 3.14. assert supervisor.get_labels('my_field')[up.added[0]] == 3.14 def test_supervisor_move_1(supervisor): _select(supervisor, [20]) _assert_selected(supervisor, [20]) assert not supervisor.move('', '') supervisor.actions.move('noise', 'all') supervisor.block() _assert_selected(supervisor, [11]) supervisor.actions.undo() supervisor.block() _assert_selected(supervisor, [20]) supervisor.actions.redo() supervisor.block() _assert_selected(supervisor, [11]) def test_supervisor_move_2(supervisor): _select(supervisor, [20], [10]) _assert_selected(supervisor, [20, 10]) supervisor.actions.move('noise', 10) supervisor.block() _assert_selected(supervisor, [20, 2]) supervisor.actions.undo() supervisor.block() _assert_selected(supervisor, [20, 10]) supervisor.actions.redo() supervisor.block() _assert_selected(supervisor, [20, 2]) def test_supervisor_move_3(qtbot, supervisor): supervisor.select_actions.next() supervisor.block() _assert_selected(supervisor, [30]) supervisor.actions.move_best_to_noise() supervisor.block() _assert_selected(supervisor, [20]) supervisor.actions.move_best_to_mua() supervisor.block() _assert_selected(supervisor, [11]) supervisor.actions.move_best_to_good() supervisor.block() _assert_selected(supervisor, [2]) supervisor.cluster_meta.get('group', 30) == 'noise' supervisor.cluster_meta.get('group', 20) == 'mua' supervisor.cluster_meta.get('group', 11) == 'good' def test_supervisor_move_4(supervisor): _select(supervisor, [30], [20]) _assert_selected(supervisor, [30, 20]) supervisor.actions.move_similar_to_noise() supervisor.block() _assert_selected(supervisor, [30, 11]) supervisor.actions.move_similar_to_mua() supervisor.block() _assert_selected(supervisor, [30, 2]) supervisor.actions.move_similar_to_good() supervisor.block() _assert_selected(supervisor, [30, 1]) supervisor.cluster_meta.get('group', 20) == 'noise' supervisor.cluster_meta.get('group', 11) == 'mua' supervisor.cluster_meta.get('group', 2) == 'good' def test_supervisor_move_5(supervisor): _select(supervisor, [30], [20]) _assert_selected(supervisor, [30, 20]) supervisor.actions.move_all_to_noise() supervisor.block() _assert_selected(supervisor, [11, 2]) supervisor.select_actions.next() supervisor.block() _assert_selected(supervisor, [11, 1]) supervisor.actions.move_all_to_mua() supervisor.block() _assert_selected(supervisor, [2]) supervisor.actions.move_all_to_good() supervisor.block() _assert_selected(supervisor, []) supervisor.cluster_meta.get('group', 30) == 'noise' supervisor.cluster_meta.get('group', 20) == 'noise' supervisor.cluster_meta.get('group', 11) == 'mua' supervisor.cluster_meta.get('group', 10) == 'mua' supervisor.cluster_meta.get('group', 2) == 'good' supervisor.cluster_meta.get('group', 1) == 'good' def test_supervisor_reset(qtbot, supervisor): supervisor.select_actions.select([10, 11]) supervisor.select_actions.reset_wizard() supervisor.block() _assert_selected(supervisor, [30]) supervisor.select_actions.next() supervisor.block() _assert_selected(supervisor, [30, 20]) supervisor.select_actions.next() supervisor.block() _assert_selected(supervisor, [30, 11]) supervisor.select_actions.previous() supervisor.block() _assert_selected(supervisor, [30, 20]) def test_supervisor_nav(qtbot, supervisor): supervisor.select_actions.reset_wizard() supervisor.block() _assert_selected(supervisor, [30]) supervisor.select_actions.next_best() supervisor.block() _assert_selected(supervisor, [20]) supervisor.select_actions.previous_best() supervisor.block() _assert_selected(supervisor, [30])
[ "phylib.utils.emit", "phy.gui.tests.test_widgets._assert", "phylib.utils.Bunch", "phy.gui.qt.qInstallMessageHandler", "numpy.repeat", "phy.utils.context.Context", "phy.gui.tests.test_widgets._wait_until_table_ready", "phy.gui.GUI", "numpy.array", "pytest.raises", "phylib.utils.connect", "phy.gui.widgets.Barrier", "numpy.testing.assert_array_equal" ]
[((978, 1009), 'phy.gui.qt.qInstallMessageHandler', 'qInstallMessageHandler', (['handler'], {}), '(handler)\n', (1000, 1009), False, 'from phy.gui.qt import qInstallMessageHandler\n'), ((1313, 1374), 'phy.gui.GUI', 'GUI', ([], {'position': '(200, 100)', 'size': '(500, 500)', 'config_dir': 'tempdir'}), '(position=(200, 100), size=(500, 500), config_dir=tempdir)\n', (1316, 1374), False, 'from phy.gui import GUI\n'), ((1673, 1698), 'numpy.repeat', 'np.repeat', (['cluster_ids', '(2)'], {}), '(cluster_ids, 2)\n', (1682, 1698), True, 'import numpy as np\n'), ((1948, 1957), 'phy.gui.widgets.Barrier', 'Barrier', ([], {}), '()\n', (1955, 1957), False, 'from phy.gui.widgets import Barrier\n'), ((6187, 6221), 'phy.gui.tests.test_widgets._wait_until_table_ready', '_wait_until_table_ready', (['qtbot', 'cv'], {}), '(qtbot, cv)\n', (6210, 6221), False, 'from phy.gui.tests.test_widgets import _assert, _wait_until_table_ready\n'), ((6607, 6641), 'phy.gui.tests.test_widgets._wait_until_table_ready', '_wait_until_table_ready', (['qtbot', 'sv'], {}), '(qtbot, sv)\n', (6630, 6641), False, 'from phy.gui.tests.test_widgets import _assert, _wait_until_table_ready\n'), ((6648, 6666), 'phylib.utils.connect', 'connect', ([], {'sender': 'sv'}), '(sender=sv)\n', (6655, 6666), False, 'from phylib.utils import connect, Bunch, emit\n'), ((6840, 6876), 'phy.gui.tests.test_widgets._assert', '_assert', (['sv.get_ids', '[105, 115, 107]'], {}), '(sv.get_ids, [105, 115, 107])\n', (6847, 6876), False, 'from phy.gui.tests.test_widgets import _assert, _wait_until_table_ready\n'), ((7082, 7116), 'phy.gui.tests.test_widgets._wait_until_table_ready', '_wait_until_table_ready', (['qtbot', 'cv'], {}), '(qtbot, cv)\n', (7105, 7116), False, 'from phy.gui.tests.test_widgets import _assert, _wait_until_table_ready\n'), ((8363, 8387), 'phylib.utils.emit', 'emit', (['"""is_busy"""', 'o', '(True)'], {}), "('is_busy', o, True)\n", (8367, 8387), False, 'from phylib.utils import connect, Bunch, emit\n'), ((8568, 8593), 'phylib.utils.emit', 'emit', (['"""is_busy"""', 'o', '(False)'], {}), "('is_busy', o, False)\n", (8572, 8593), False, 'from phylib.utils import connect, Bunch, emit\n'), ((8702, 8752), 'phylib.utils.emit', 'emit', (['"""action"""', 'supervisor.action_creator', '"""merge"""'], {}), "('action', supervisor.action_creator, 'merge')\n", (8706, 8752), False, 'from phylib.utils import connect, Bunch, emit\n'), ((8942, 8967), 'numpy.repeat', 'np.repeat', (['cluster_ids', '(2)'], {}), '(cluster_ids, 2)\n', (8951, 8967), True, 'import numpy as np\n'), ((9361, 9370), 'phy.gui.widgets.Barrier', 'Barrier', ([], {}), '()\n', (9368, 9370), False, 'from phy.gui.widgets import Barrier\n'), ((10697, 10761), 'numpy.testing.assert_array_equal', 'ae', (['supervisor.clustering.cluster_ids', '[0, 1, 2, 10, 11, 20, 30]'], {}), '(supervisor.clustering.cluster_ids, [0, 1, 2, 10, 11, 20, 30])\n', (10699, 10761), True, 'from numpy.testing import assert_array_equal as ae\n'), ((11408, 11433), 'phylib.utils.emit', 'emit', (['"""request_save"""', 'gui'], {}), "('request_save', gui)\n", (11412, 11433), False, 'from phylib.utils import connect, Bunch, emit\n'), ((12914, 12940), 'phylib.utils.connect', 'connect', ([], {'sender': 'supervisor'}), '(sender=supervisor)\n', (12921, 12940), False, 'from phylib.utils import connect, Bunch, emit\n'), ((14265, 14291), 'phylib.utils.connect', 'connect', ([], {'sender': 'supervisor'}), '(sender=supervisor)\n', (14272, 14291), False, 'from phylib.utils import connect, Bunch, emit\n'), ((14519, 14538), 'numpy.array', 'np.array', (['[0, 0, 1]'], {}), '([0, 0, 1])\n', (14527, 14538), True, 'import numpy as np\n'), ((14701, 14710), 'phy.gui.widgets.Barrier', 'Barrier', ([], {}), '()\n', (14708, 14710), False, 'from phy.gui.widgets import Barrier\n'), ((8482, 8502), 'pytest.raises', 'raises', (['RuntimeError'], {}), '(RuntimeError)\n', (8488, 8502), False, 'from pytest import yield_fixture, fixture, raises\n'), ((8512, 8562), 'phylib.utils.emit', 'emit', (['"""action"""', 'supervisor.action_creator', '"""merge"""'], {}), "('action', supervisor.action_creator, 'merge')\n", (8516, 8562), False, 'from phylib.utils import connect, Bunch, emit\n'), ((1869, 1885), 'phy.utils.context.Context', 'Context', (['tempdir'], {}), '(tempdir)\n', (1876, 1885), False, 'from phy.utils.context import Context\n'), ((9294, 9310), 'phy.utils.context.Context', 'Context', (['tempdir'], {}), '(tempdir)\n', (9301, 9310), False, 'from phy.utils.context import Context\n'), ((2989, 3027), 'phylib.utils.Bunch', 'Bunch', ([], {'deleted': 'cluster_ids', 'added': '[to]'}), '(deleted=cluster_ids, added=[to])\n', (2994, 3027), False, 'from phylib.utils import connect, Bunch, emit\n'), ((3125, 3178), 'phylib.utils.Bunch', 'Bunch', ([], {'deleted': 'old_cluster_ids', 'added': 'new_cluster_ids'}), '(deleted=old_cluster_ids, added=new_cluster_ids)\n', (3130, 3178), False, 'from phylib.utils import connect, Bunch, emit\n'), ((3255, 3306), 'phylib.utils.Bunch', 'Bunch', ([], {'metadata_changed': 'which', 'metadata_value': 'group'}), '(metadata_changed=which, metadata_value=group)\n', (3260, 3306), False, 'from phylib.utils import connect, Bunch, emit\n'), ((3369, 3376), 'phylib.utils.Bunch', 'Bunch', ([], {}), '()\n', (3374, 3376), False, 'from phylib.utils import connect, Bunch, emit\n'), ((3439, 3446), 'phylib.utils.Bunch', 'Bunch', ([], {}), '()\n', (3444, 3446), False, 'from phylib.utils import connect, Bunch, emit\n')]
# # Copyright (C) 2018 <NAME>. # # This software may be modified and distributed under the terms # of the MIT license. See the LICENSE file for details. # # # Portions of this module are copied or lightly modified from the # Tensor2Tensor registry_test module, so here is their license: # # Copyright 2018 The Tensor2Tensor Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for utils.registry References: Slight modification of `Tensor2Tensor registry_test`_. .. _Tensor2Tensor registry_test: https://github.com/tensorflow/ tensor2tensor/blob/master/tensor2tensor/utils/registry_test.py """ import unittest from carpedm.util import registry from carpedm.models.generic import Model from carpedm.models.baseline import SingleCharBaseline class ModelRegistryTest(unittest.TestCase): def setUp(self): registry._reset() def test_model_registration(self): @registry.register_model class MyModel1(Model): pass model = registry.model("my_model1") self.assertTrue(model is MyModel1) def test_named_registration(self): @registry.register_model("model2") class MyModel1(Model): pass model = registry.model("model2") self.assertTrue(model is MyModel1) def test_request_unprovided_model(self): with self.assertRaisesRegex(LookupError, "never registered"): _ = registry.model("not_provided") def test_duplicate_registration(self): @registry.register_model def m1(): pass with self.assertRaisesRegex(LookupError, "already registered"): @registry.register_model("m1") def m2(): pass def test_list_models(self): @registry.register_model def m1(): pass @registry.register_model def m2(): pass self.assertSetEqual({"m1", "m2"}, set(registry.list_models())) def test_snake_case(self): convert = registry._convert_camel_to_snake self.assertEqual("typical_camel_case", convert("TypicalCamelCase")) self.assertEqual("numbers_fuse2gether", convert("NumbersFuse2gether")) self.assertEqual("numbers_fuse2_gether", convert("NumbersFuse2Gether")) self.assertEqual("lstm_seq2_seq", convert("LSTMSeq2Seq")) self.assertEqual("starts_lower", convert("startsLower")) self.assertEqual("starts_lower_caps", convert("startsLowerCAPS")) self.assertEqual("caps_fuse_together", convert("CapsFUSETogether")) self.assertEqual("startscap", convert("Startscap")) self.assertEqual("s_tartscap", convert("STartscap")) class ModelProvidedTest(unittest.TestCase): def setUp(self): from carpedm import models def test_access_provided_model(self): model = registry.model("single_char_baseline") self.assertTrue(model is SingleCharBaseline) if __name__ == '__main__': unittest.main()
[ "carpedm.util.registry.register_model", "carpedm.util.registry.model", "carpedm.util.registry._reset", "unittest.main", "carpedm.util.registry.list_models" ]
[((3474, 3489), 'unittest.main', 'unittest.main', ([], {}), '()\n', (3487, 3489), False, 'import unittest\n'), ((1342, 1359), 'carpedm.util.registry._reset', 'registry._reset', ([], {}), '()\n', (1357, 1359), False, 'from carpedm.util import registry\n'), ((1499, 1526), 'carpedm.util.registry.model', 'registry.model', (['"""my_model1"""'], {}), "('my_model1')\n", (1513, 1526), False, 'from carpedm.util import registry\n'), ((1620, 1653), 'carpedm.util.registry.register_model', 'registry.register_model', (['"""model2"""'], {}), "('model2')\n", (1643, 1653), False, 'from carpedm.util import registry\n'), ((1719, 1743), 'carpedm.util.registry.model', 'registry.model', (['"""model2"""'], {}), "('model2')\n", (1733, 1743), False, 'from carpedm.util import registry\n'), ((3349, 3387), 'carpedm.util.registry.model', 'registry.model', (['"""single_char_baseline"""'], {}), "('single_char_baseline')\n", (3363, 3387), False, 'from carpedm.util import registry\n'), ((1919, 1949), 'carpedm.util.registry.model', 'registry.model', (['"""not_provided"""'], {}), "('not_provided')\n", (1933, 1949), False, 'from carpedm.util import registry\n'), ((2150, 2179), 'carpedm.util.registry.register_model', 'registry.register_model', (['"""m1"""'], {}), "('m1')\n", (2173, 2179), False, 'from carpedm.util import registry\n'), ((2441, 2463), 'carpedm.util.registry.list_models', 'registry.list_models', ([], {}), '()\n', (2461, 2463), False, 'from carpedm.util import registry\n')]
# The MIT License (MIT) # Copyright (c) 2021 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a copy of # this software and associated documentation files (the "Software"), to deal in # the Software without restriction, including without limitation the rights to # use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies # of the Software, and to permit persons to whom the Software is furnished to do # so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np import xarray as xr def is_empty_cube(cube: xr.Dataset) -> bool: return len(cube.data_vars) == 0 def strip_cube(cube: xr.Dataset) -> xr.Dataset: drop_vars = [k for k, v in cube.data_vars.items() if len(v.shape) < 3 or np.product(v.shape) == 0 or v.shape[-2] < 2 or v.shape[-1] < 2] if drop_vars: return cube.drop_vars(drop_vars) return cube
[ "numpy.product" ]
[((1433, 1452), 'numpy.product', 'np.product', (['v.shape'], {}), '(v.shape)\n', (1443, 1452), True, 'import numpy as np\n')]
# Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. import logging import os import pickle from dataclasses import dataclass from multiprocessing import Pipe, Process, Queue import ijson import smarts.core.scenario as scenario @dataclass class RequestHistoryRange: start_index: int batch_count: int class Traffic_history_service: """responsible for dynamically fetching traffic history json to reduce memory use of traffic history data """ class QueueDone: pass def __init__(self, history_file_path): self._history_file_path = history_file_path self._all_timesteps = set() self._current_traffic_history = {} self._prev_batch_history = {} # return if traffic history is not used if history_file_path is None: return self._log = logging.getLogger(self.__class__.__name__) send_data_conn, receive_data_conn = Pipe() self._receive_data_conn = receive_data_conn self._request_queue = Queue() self._fetch_history_proc = Process( target=self._fetch_history, args=( send_data_conn, self._request_queue, self._history_file_path, ), ) self._fetch_history_proc.daemon = True self._fetch_history_proc.start() self._range_start = 0 self._batch_size = 300 # initialize with open(self._history_file_path, "rb") as f: for index, (t, vehicles_state) in enumerate( ijson.kvitems(f, "", use_float=True) ): self._all_timesteps.add(t) if ( self._range_start <= index and index < self._range_start + self._batch_size ): self._current_traffic_history[t] = vehicles_state self._range_start += self._batch_size # prepares the next batch self._prepare_next_batch() self._receive_data_conn.recv() def teardown(self): if self.is_in_use: self._request_queue.put(Traffic_history_service.QueueDone()) self._request_queue.close() self._request_queue = None self._fetch_history_proc.join(timeout=3) if self._fetch_history_proc.is_alive(): self._log.warning("fetch history process still alive after teardown") self._fetch_history_proc = None self._history_file_path = None def __del__(self): self.teardown() @property def is_in_use(self): return self._history_file_path is not None def _fetch_history(self, send_data_conn, request_queue, history_file_path): """prepare 1 batch ahead, when received request, immediately return the previously prepared batch and prepares the next batch. """ return_batch = {} while True: historyRange = request_queue.get() if type(historyRange) is Traffic_history_service.QueueDone: break assert isinstance(historyRange, RequestHistoryRange) send_data_conn.send(return_batch) return_batch = {} with open(history_file_path, "rb") as f: for index, (t, vehicles_state) in enumerate( ijson.kvitems(f, "", use_float=True) ): if ( historyRange.start_index <= index and index < historyRange.start_index + historyRange.batch_count ): return_batch[t] = vehicles_state send_data_conn.close() @property def all_timesteps(self): return self._all_timesteps @property def history_file_path(self): return self._history_file_path @property def traffic_history(self): return {**self._current_traffic_history, **self._prev_batch_history} def _prepare_next_batch(self): self._request_queue.put( RequestHistoryRange( start_index=self._range_start, batch_count=self._batch_size, ) ) self._range_start += self._batch_size def fetch_history_at_timestep(self, timestep: str): if timestep not in self._all_timesteps: return {} elif timestep in self.traffic_history: return self.traffic_history[timestep] # ask child process to prepare the next batch: self._prepare_next_batch() self._prev_batch_history = self._current_traffic_history # receives the previous batch child process prepared self._current_traffic_history = self._receive_data_conn.recv() if timestep in self._current_traffic_history: return self._current_traffic_history[timestep] # no history exists at requested timestamp return {} @staticmethod def apply_map_location_offset(position, map_offset): return [pos + map_offset[i] for i, pos in enumerate(position[:2])] @staticmethod def fetch_agent_missions( history_file_path: str, scenario_root_path: str, mapLocationOffset ): assert os.path.isdir(scenario_root_path) history_mission_filepath = os.path.join( scenario_root_path, "history_mission.pkl" ) if not os.path.exists(history_mission_filepath): history_mission = {} else: with open(history_mission_filepath, "rb") as f: history_mission = pickle.load(f) if history_file_path in history_mission: return history_mission[history_file_path] vehicle_missions = {} with open(history_file_path, "rb") as f: for t, vehicles_state in ijson.kvitems(f, "", use_float=True): for vehicle_id in vehicles_state: if vehicle_id in vehicle_missions: continue vehicle_missions[vehicle_id] = scenario.Mission( start=scenario.Start( Traffic_history_service.apply_map_location_offset( vehicles_state[vehicle_id]["position"], mapLocationOffset, ), scenario.Heading(vehicles_state[vehicle_id]["heading"]), ), goal=scenario.EndlessGoal(), start_time=float(t), ) history_mission[history_file_path] = vehicle_missions # update cached history_mission_file with open(history_mission_filepath, "wb") as f: pickle.dump(history_mission, f) return vehicle_missions
[ "logging.getLogger", "os.path.exists", "pickle.dump", "smarts.core.scenario.Heading", "multiprocessing.Process", "os.path.join", "pickle.load", "smarts.core.scenario.EndlessGoal", "os.path.isdir", "ijson.kvitems", "multiprocessing.Queue", "multiprocessing.Pipe" ]
[((1918, 1960), 'logging.getLogger', 'logging.getLogger', (['self.__class__.__name__'], {}), '(self.__class__.__name__)\n', (1935, 1960), False, 'import logging\n'), ((2005, 2011), 'multiprocessing.Pipe', 'Pipe', ([], {}), '()\n', (2009, 2011), False, 'from multiprocessing import Pipe, Process, Queue\n'), ((2094, 2101), 'multiprocessing.Queue', 'Queue', ([], {}), '()\n', (2099, 2101), False, 'from multiprocessing import Pipe, Process, Queue\n'), ((2137, 2246), 'multiprocessing.Process', 'Process', ([], {'target': 'self._fetch_history', 'args': '(send_data_conn, self._request_queue, self._history_file_path)'}), '(target=self._fetch_history, args=(send_data_conn, self.\n _request_queue, self._history_file_path))\n', (2144, 2246), False, 'from multiprocessing import Pipe, Process, Queue\n'), ((6317, 6350), 'os.path.isdir', 'os.path.isdir', (['scenario_root_path'], {}), '(scenario_root_path)\n', (6330, 6350), False, 'import os\n'), ((6386, 6441), 'os.path.join', 'os.path.join', (['scenario_root_path', '"""history_mission.pkl"""'], {}), "(scenario_root_path, 'history_mission.pkl')\n", (6398, 6441), False, 'import os\n'), ((6480, 6520), 'os.path.exists', 'os.path.exists', (['history_mission_filepath'], {}), '(history_mission_filepath)\n', (6494, 6520), False, 'import os\n'), ((6899, 6935), 'ijson.kvitems', 'ijson.kvitems', (['f', '""""""'], {'use_float': '(True)'}), "(f, '', use_float=True)\n", (6912, 6935), False, 'import ijson\n'), ((7831, 7862), 'pickle.dump', 'pickle.dump', (['history_mission', 'f'], {}), '(history_mission, f)\n', (7842, 7862), False, 'import pickle\n'), ((2639, 2675), 'ijson.kvitems', 'ijson.kvitems', (['f', '""""""'], {'use_float': '(True)'}), "(f, '', use_float=True)\n", (2652, 2675), False, 'import ijson\n'), ((6663, 6677), 'pickle.load', 'pickle.load', (['f'], {}), '(f)\n', (6674, 6677), False, 'import pickle\n'), ((4434, 4470), 'ijson.kvitems', 'ijson.kvitems', (['f', '""""""'], {'use_float': '(True)'}), "(f, '', use_float=True)\n", (4447, 4470), False, 'import ijson\n'), ((7564, 7586), 'smarts.core.scenario.EndlessGoal', 'scenario.EndlessGoal', ([], {}), '()\n', (7584, 7586), True, 'import smarts.core.scenario as scenario\n'), ((7451, 7506), 'smarts.core.scenario.Heading', 'scenario.Heading', (["vehicles_state[vehicle_id]['heading']"], {}), "(vehicles_state[vehicle_id]['heading'])\n", (7467, 7506), True, 'import smarts.core.scenario as scenario\n')]
import argparse from time import sleep, time from collections import defaultdict from sqlalchemy import orm, text, insert, delete from sqlalchemy.orm import selectinload import models from app import db from app import logger from scripts.queue import JsonWorks, JsonAuthors, JsonConcepts, JsonInstitutions, JsonVenues from util import elapsed def run(**kwargs): entity_type = kwargs.get("entity") method_name = kwargs.get("method") if entity_type == "work" and method_name == "add_everything": queue_table = "queue.work_add_everything" elif method_name == "store": queue_table = f"queue.{entity_type.lower()}_store" else: queue_table = f"queue.{method_name.lower()}" if single_id := kwargs.get('id'): if objects := get_objects(entity_type, [single_id]): logger.info(f'found object {objects[0]}') store_objects(objects) db.session.commit() else: logger.warn(f'found no object with id {single_id}') else: objects_updated = 0 limit = kwargs.get('limit') chunk = kwargs.get('chunk') total_count = 0 while limit is None or objects_updated < limit: loop_start = time() if object_ids := fetch_queue_chunk_ids(queue_table, chunk): objects = get_objects(entity_type, object_ids) for obj in objects: method_start_time = time() total_count += 1 print(f"*** #{total_count} starting {obj}.{method_name}() method") method_to_run = getattr(obj, method_name) method_to_run() print(f">>> finished {obj}.{method_name}(). took {elapsed(method_start_time, 4)} seconds") # print(1/0) logger.info('committing') start_time = time() if method_name == "store": store_json_objects(objects) else: db.session.commit() # fail loudly for now logger.info(f'commit took {elapsed(start_time, 4)}s') finish_object_ids(queue_table, object_ids) objects_updated += len(objects) logger.info(f'processed chunk of {chunk} objects in {elapsed(loop_start, 2)} seconds') else: logger.info('nothing ready in the queue, waiting 5 seconds...') sleep(5) def store_json_objects(objects): delete_dict_all_objects = defaultdict(list) insert_dict_all_objects = defaultdict(list) for count, obj in enumerate(objects): obj.delete_dict = defaultdict(list) for row in obj.insert_dicts: for table_name, insert_dict in row.items(): insert_dict_all_objects[table_name] += [insert_dict] obj.delete_dict[table_name] += [insert_dict["id"]] for table_name, ids in obj.delete_dict.items(): delete_dict_all_objects[table_name] += ids start_time = time() for table_name, delete_ids in delete_dict_all_objects.items(): my_table = globals()[table_name] db.session.remove() db.session.execute(delete(my_table).where(my_table.id.in_(delete_ids))) db.session.commit() print("delete done") for table_name, all_insert_strings in insert_dict_all_objects.items(): my_table = globals()[table_name] db.session.remove() db.session.execute(insert(my_table).values(all_insert_strings)) db.session.commit() print("insert and commit took {} seconds".format(elapsed(start_time, 2))) def fetch_queue_chunk_ids(queue_table, chunk_size): text_query = f""" with chunk as ( select id from {queue_table} where started is null order by finished asc nulls first, rand limit :chunk for update skip locked ) update {queue_table} set started = now() from chunk where {queue_table}.id = chunk.id returning chunk.id; """ logger.info(f'getting {chunk_size} ids from the queue') start_time = time() ids = [ row[0] for row in db.engine.execute(text(text_query).bindparams(chunk=chunk_size).execution_options(autocommit=True)).all() ] logger.info(f'got {len(ids)} ids from the queue in {elapsed(start_time, 4)}s') logger.info(f'got these ids: {ids}') return ids def finish_object_ids(queue_table, object_ids): # logger.info(f'finishing queue chunk') start_time = time() query_text = f''' update {queue_table} set finished = now(), started=null where id = any(:ids) ''' db.session.execute(text(query_text).bindparams(ids=object_ids)) db.session.commit() # logger.info(f'finished saving finish_objects in {elapsed(start_time, 4)}s') def get_objects(entity_type, object_ids): logger.info(f'getting {len(object_ids)} objects') start_time = time() if entity_type == "work": objects = db.session.query(models.Work).options( selectinload(models.Work.records).selectinload(models.Record.journals).raiseload('*'), selectinload(models.Work.records).raiseload('*'), selectinload(models.Work.locations), selectinload(models.Work.journal).raiseload('*'), selectinload(models.Work.references).raiseload('*'), selectinload(models.Work.references_unmatched).raiseload('*'), selectinload(models.Work.mesh), selectinload(models.Work.counts_by_year).raiseload('*'), selectinload(models.Work.abstract), selectinload(models.Work.extra_ids).raiseload('*'), selectinload(models.Work.related_works).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.author).selectinload(models.Author.orcids).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.author).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.institution).selectinload(models.Institution.ror).raiseload('*'), selectinload(models.Work.affiliations).selectinload(models.Affiliation.institution).raiseload('*'), selectinload(models.Work.concepts).selectinload(models.WorkConcept.concept).raiseload('*'), selectinload(models.Work.concepts_full).raiseload('*'), orm.Load(models.Work).raiseload('*') ).filter(models.Work.paper_id.in_(object_ids)).all() elif entity_type == "author": objects = db.session.query(models.Author).options( selectinload(models.Author.counts_by_year_papers), selectinload(models.Author.counts_by_year_citations), selectinload(models.Author.alternative_names), selectinload(models.Author.author_concepts), selectinload(models.Author.orcids).selectinload(models.AuthorOrcid.orcid_data), selectinload(models.Author.last_known_institution).selectinload(models.Institution.ror).raiseload('*'), selectinload(models.Author.last_known_institution).raiseload('*'), orm.Load(models.Author).raiseload('*') ).filter(models.Author.author_id.in_(object_ids)).all() elif entity_type == "venue": objects = db.session.query(models.Venue).options( selectinload(models.Venue.counts_by_year_papers), selectinload(models.Venue.counts_by_year_citations), orm.Load(models.Venue).raiseload('*') ).filter(models.Venue.journal_id.in_(object_ids)).all() elif entity_type == "institution": objects = db.session.query(models.Institution).filter(models.Institution.affiliation_id.in_(object_ids)).all() elif entity_type == "concept": objects = db.session.query(models.Concept).filter(models.Concept.field_of_study_id.in_(object_ids)).all() logger.info(f'got {len(objects)} objects in {elapsed(start_time, 4)}s') return objects # python -m scripts.fast_queue --entity=work --method=add_everything --limit=3 if __name__ == "__main__": parser = argparse.ArgumentParser(description="Run fast queue.") parser.add_argument('--entity', type=str, help="the entity type to run") parser.add_argument('--method', type=str, help="the method to run") parser.add_argument('--id', nargs="?", type=str, help="id of the one thing you want to update (case sensitive)") parser.add_argument('--limit', "-l", nargs="?", type=int, help="how many objects to work on") parser.add_argument( '--chunk', "-ch", nargs="?", default=100, type=int, help="how many objects to take off the queue at once" ) parsed_args = parser.parse_args() run(**vars(parsed_args))
[ "app.db.session.commit", "time.sleep", "sqlalchemy.delete", "app.logger.info", "models.Venue.journal_id.in_", "sqlalchemy.orm.selectinload", "argparse.ArgumentParser", "models.Author.author_id.in_", "sqlalchemy.insert", "sqlalchemy.orm.Load", "models.Work.paper_id.in_", "app.logger.warn", "util.elapsed", "app.db.session.query", "models.Concept.field_of_study_id.in_", "models.Institution.affiliation_id.in_", "app.db.session.remove", "time.time", "sqlalchemy.text", "collections.defaultdict" ]
[((2547, 2564), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2558, 2564), False, 'from collections import defaultdict\n'), ((2595, 2612), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2606, 2612), False, 'from collections import defaultdict\n'), ((3057, 3063), 'time.time', 'time', ([], {}), '()\n', (3061, 3063), False, 'from time import sleep, time\n'), ((4189, 4244), 'app.logger.info', 'logger.info', (['f"""getting {chunk_size} ids from the queue"""'], {}), "(f'getting {chunk_size} ids from the queue')\n", (4200, 4244), False, 'from app import logger\n'), ((4262, 4268), 'time.time', 'time', ([], {}), '()\n', (4266, 4268), False, 'from time import sleep, time\n'), ((4516, 4552), 'app.logger.info', 'logger.info', (['f"""got these ids: {ids}"""'], {}), "(f'got these ids: {ids}')\n", (4527, 4552), False, 'from app import logger\n'), ((4680, 4686), 'time.time', 'time', ([], {}), '()\n', (4684, 4686), False, 'from time import sleep, time\n'), ((4892, 4911), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (4909, 4911), False, 'from app import db\n'), ((5110, 5116), 'time.time', 'time', ([], {}), '()\n', (5114, 5116), False, 'from time import sleep, time\n'), ((8318, 8372), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Run fast queue."""'}), "(description='Run fast queue.')\n", (8341, 8372), False, 'import argparse\n'), ((2681, 2698), 'collections.defaultdict', 'defaultdict', (['list'], {}), '(list)\n', (2692, 2698), False, 'from collections import defaultdict\n'), ((3180, 3199), 'app.db.session.remove', 'db.session.remove', ([], {}), '()\n', (3197, 3199), False, 'from app import db\n'), ((3288, 3307), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3305, 3307), False, 'from app import db\n'), ((3461, 3480), 'app.db.session.remove', 'db.session.remove', ([], {}), '()\n', (3478, 3480), False, 'from app import db\n'), ((3561, 3580), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (3578, 3580), False, 'from app import db\n'), ((828, 869), 'app.logger.info', 'logger.info', (['f"""found object {objects[0]}"""'], {}), "(f'found object {objects[0]}')\n", (839, 869), False, 'from app import logger\n'), ((917, 936), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (934, 936), False, 'from app import db\n'), ((963, 1014), 'app.logger.warn', 'logger.warn', (['f"""found no object with id {single_id}"""'], {}), "(f'found no object with id {single_id}')\n", (974, 1014), False, 'from app import logger\n'), ((1231, 1237), 'time.time', 'time', ([], {}), '()\n', (1235, 1237), False, 'from time import sleep, time\n'), ((3634, 3656), 'util.elapsed', 'elapsed', (['start_time', '(2)'], {}), '(start_time, 2)\n', (3641, 3656), False, 'from util import elapsed\n'), ((1839, 1864), 'app.logger.info', 'logger.info', (['"""committing"""'], {}), "('committing')\n", (1850, 1864), False, 'from app import logger\n'), ((1894, 1900), 'time.time', 'time', ([], {}), '()\n', (1898, 1900), False, 'from time import sleep, time\n'), ((2393, 2456), 'app.logger.info', 'logger.info', (['"""nothing ready in the queue, waiting 5 seconds..."""'], {}), "('nothing ready in the queue, waiting 5 seconds...')\n", (2404, 2456), False, 'from app import logger\n'), ((2473, 2481), 'time.sleep', 'sleep', (['(5)'], {}), '(5)\n', (2478, 2481), False, 'from time import sleep, time\n'), ((4485, 4507), 'util.elapsed', 'elapsed', (['start_time', '(4)'], {}), '(start_time, 4)\n', (4492, 4507), False, 'from util import elapsed\n'), ((4843, 4859), 'sqlalchemy.text', 'text', (['query_text'], {}), '(query_text)\n', (4847, 4859), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((8150, 8172), 'util.elapsed', 'elapsed', (['start_time', '(4)'], {}), '(start_time, 4)\n', (8157, 8172), False, 'from util import elapsed\n'), ((1450, 1456), 'time.time', 'time', ([], {}), '()\n', (1454, 1456), False, 'from time import sleep, time\n'), ((2035, 2054), 'app.db.session.commit', 'db.session.commit', ([], {}), '()\n', (2052, 2054), False, 'from app import db\n'), ((3227, 3243), 'sqlalchemy.delete', 'delete', (['my_table'], {}), '(my_table)\n', (3233, 3243), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((3508, 3524), 'sqlalchemy.insert', 'insert', (['my_table'], {}), '(my_table)\n', (3514, 3524), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((6675, 6711), 'models.Work.paper_id.in_', 'models.Work.paper_id.in_', (['object_ids'], {}), '(object_ids)\n', (6699, 6711), False, 'import models\n'), ((7412, 7451), 'models.Author.author_id.in_', 'models.Author.author_id.in_', (['object_ids'], {}), '(object_ids)\n', (7439, 7451), False, 'import models\n'), ((2120, 2142), 'util.elapsed', 'elapsed', (['start_time', '(4)'], {}), '(start_time, 4)\n', (2127, 2142), False, 'from util import elapsed\n'), ((2325, 2347), 'util.elapsed', 'elapsed', (['loop_start', '(2)'], {}), '(loop_start, 2)\n', (2332, 2347), False, 'from util import elapsed\n'), ((5380, 5415), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.locations'], {}), '(models.Work.locations)\n', (5392, 5415), False, 'from sqlalchemy.orm import selectinload\n'), ((5635, 5665), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.mesh'], {}), '(models.Work.mesh)\n', (5647, 5665), False, 'from sqlalchemy.orm import selectinload\n'), ((5750, 5784), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.abstract'], {}), '(models.Work.abstract)\n', (5762, 5784), False, 'from sqlalchemy.orm import selectinload\n'), ((7747, 7786), 'models.Venue.journal_id.in_', 'models.Venue.journal_id.in_', (['object_ids'], {}), '(object_ids)\n', (7774, 7786), False, 'import models\n'), ((1752, 1781), 'util.elapsed', 'elapsed', (['method_start_time', '(4)'], {}), '(method_start_time, 4)\n', (1759, 1781), False, 'from util import elapsed\n'), ((5165, 5194), 'app.db.session.query', 'db.session.query', (['models.Work'], {}), '(models.Work)\n', (5181, 5194), False, 'from app import db\n'), ((6824, 6873), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.counts_by_year_papers'], {}), '(models.Author.counts_by_year_papers)\n', (6836, 6873), False, 'from sqlalchemy.orm import selectinload\n'), ((6887, 6939), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.counts_by_year_citations'], {}), '(models.Author.counts_by_year_citations)\n', (6899, 6939), False, 'from sqlalchemy.orm import selectinload\n'), ((6953, 6998), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.alternative_names'], {}), '(models.Author.alternative_names)\n', (6965, 6998), False, 'from sqlalchemy.orm import selectinload\n'), ((7012, 7055), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.author_concepts'], {}), '(models.Author.author_concepts)\n', (7024, 7055), False, 'from sqlalchemy.orm import selectinload\n'), ((7895, 7944), 'models.Institution.affiliation_id.in_', 'models.Institution.affiliation_id.in_', (['object_ids'], {}), '(object_ids)\n', (7932, 7944), False, 'import models\n'), ((5317, 5350), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.records'], {}), '(models.Work.records)\n', (5329, 5350), False, 'from sqlalchemy.orm import selectinload\n'), ((5430, 5463), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.journal'], {}), '(models.Work.journal)\n', (5442, 5463), False, 'from sqlalchemy.orm import selectinload\n'), ((5493, 5529), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.references'], {}), '(models.Work.references)\n', (5505, 5529), False, 'from sqlalchemy.orm import selectinload\n'), ((5559, 5605), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.references_unmatched'], {}), '(models.Work.references_unmatched)\n', (5571, 5605), False, 'from sqlalchemy.orm import selectinload\n'), ((5680, 5720), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.counts_by_year'], {}), '(models.Work.counts_by_year)\n', (5692, 5720), False, 'from sqlalchemy.orm import selectinload\n'), ((5799, 5834), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.extra_ids'], {}), '(models.Work.extra_ids)\n', (5811, 5834), False, 'from sqlalchemy.orm import selectinload\n'), ((5864, 5903), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.related_works'], {}), '(models.Work.related_works)\n', (5876, 5903), False, 'from sqlalchemy.orm import selectinload\n'), ((6552, 6591), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.concepts_full'], {}), '(models.Work.concepts_full)\n', (6564, 6591), False, 'from sqlalchemy.orm import selectinload\n'), ((6621, 6642), 'sqlalchemy.orm.Load', 'orm.Load', (['models.Work'], {}), '(models.Work)\n', (6629, 6642), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((6771, 6802), 'app.db.session.query', 'db.session.query', (['models.Author'], {}), '(models.Author)\n', (6787, 6802), False, 'from app import db\n'), ((7563, 7611), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Venue.counts_by_year_papers'], {}), '(models.Venue.counts_by_year_papers)\n', (7575, 7611), False, 'from sqlalchemy.orm import selectinload\n'), ((7626, 7677), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Venue.counts_by_year_citations'], {}), '(models.Venue.counts_by_year_citations)\n', (7638, 7677), False, 'from sqlalchemy.orm import selectinload\n'), ((7851, 7887), 'app.db.session.query', 'db.session.query', (['models.Institution'], {}), '(models.Institution)\n', (7867, 7887), False, 'from app import db\n'), ((8045, 8093), 'models.Concept.field_of_study_id.in_', 'models.Concept.field_of_study_id.in_', (['object_ids'], {}), '(object_ids)\n', (8081, 8093), False, 'import models\n'), ((4334, 4350), 'sqlalchemy.text', 'text', (['text_query'], {}), '(text_query)\n', (4338, 4350), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((7069, 7103), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.orcids'], {}), '(models.Author.orcids)\n', (7081, 7103), False, 'from sqlalchemy.orm import selectinload\n'), ((7277, 7327), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.last_known_institution'], {}), '(models.Author.last_known_institution)\n', (7289, 7327), False, 'from sqlalchemy.orm import selectinload\n'), ((7356, 7379), 'sqlalchemy.orm.Load', 'orm.Load', (['models.Author'], {}), '(models.Author)\n', (7364, 7379), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((7510, 7540), 'app.db.session.query', 'db.session.query', (['models.Venue'], {}), '(models.Venue)\n', (7526, 7540), False, 'from app import db\n'), ((8005, 8037), 'app.db.session.query', 'db.session.query', (['models.Concept'], {}), '(models.Concept)\n', (8021, 8037), False, 'from app import db\n'), ((5217, 5250), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.records'], {}), '(models.Work.records)\n', (5229, 5250), False, 'from sqlalchemy.orm import selectinload\n'), ((6076, 6114), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.affiliations'], {}), '(models.Work.affiliations)\n', (6088, 6114), False, 'from sqlalchemy.orm import selectinload\n'), ((6334, 6372), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.affiliations'], {}), '(models.Work.affiliations)\n', (6346, 6372), False, 'from sqlalchemy.orm import selectinload\n'), ((6447, 6481), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.concepts'], {}), '(models.Work.concepts)\n', (6459, 6481), False, 'from sqlalchemy.orm import selectinload\n'), ((7692, 7714), 'sqlalchemy.orm.Load', 'orm.Load', (['models.Venue'], {}), '(models.Venue)\n', (7700, 7714), False, 'from sqlalchemy import orm, text, insert, delete\n'), ((7161, 7211), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Author.last_known_institution'], {}), '(models.Author.last_known_institution)\n', (7173, 7211), False, 'from sqlalchemy.orm import selectinload\n'), ((5933, 5971), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.affiliations'], {}), '(models.Work.affiliations)\n', (5945, 5971), False, 'from sqlalchemy.orm import selectinload\n'), ((6184, 6222), 'sqlalchemy.orm.selectinload', 'selectinload', (['models.Work.affiliations'], {}), '(models.Work.affiliations)\n', (6196, 6222), False, 'from sqlalchemy.orm import selectinload\n')]
import json import discord from discord.ext import commands from assets import internet_funcs from assets.list_funcs import chunks class Memes(commands.Cog, description="Memes from https://imgflip.com/"): def __init__(self, bot): self.bot = bot with open("config.json") as configFile: config = json.load(configFile) self.username = config.get("imgflip_username") self.password = config.get("imgflip_password") self.memetemps = {} @commands.Cog.listener() async def on_ready(self): result = json.loads(await internet_funcs.get_response("https://api.imgflip.com/get_memes")) if result["success"] is not True: return result = result["data"]["memes"] for k in result: self.memetemps[k["id"]] = {"name": k["name"], "box_count": k["box_count"]} @commands.command(name="memetemplates", aliases=["memetemps"]) async def meme_temps(self, ctx): """Fetches top 100 meme templates from imgflip.com""" # TODO: pagination for meme templates result = list(self.memetemps.items()) if not result: await self.on_ready() result = list(self.memetemps.items()) n = 0 split_entries = list(chunks(result, 25)) for entry in split_entries: embed = discord.Embed(title="Meme Templates", color=0x00ff00) for meme in entry: n += 1 meme_id = meme[0] meme_name = meme[1]["name"] embed.add_field(name=f"{n}. {meme_name}", value=f"ID: `{meme_id}`", inline=False) try: await ctx.author.send(embed=embed) except discord.Forbidden: await ctx.send("I can't DM you! Please enable DMs and try again.") return @commands.command(name="memegen", aliases=["memegenerator"]) async def meme_gen(self, ctx, meme_id, *text): """Generates a meme from imgflip. For template IDs, see the `memetemplates` command""" text = list(text) if self.memetemps == {}: await self.on_ready() if len(text) > 20: text = text[:20] if not str(meme_id).isnumeric(): found = False for k, v in self.memetemps.items(): if str(meme_id).lower() == str(v["name"]).lower(): meme_id = int(k) found = True break if not found: return await ctx.send("Meme not found. Please check the ID and try again.") # clean up the number of boxes to send if meme_id in self.memetemps.keys(): if len(text) > self.memetemps[meme_id]["box_count"]: text = text[:int(self.memetemps[meme_id]["box_count"])] if len(text) < self.memetemps[meme_id]["box_count"]: text += [""] * int(self.memetemps[meme_id]["box_count"] - len(text)) # ready the text boxes boxes_dict = {} for box_count in range(len(text)): boxes_dict[f"boxes[{box_count}][text]"] = text[box_count] boxes_dict[f"boxes[{box_count}][color]"] = "#000000" boxes_dict[f"boxes[{box_count}][outline_color]"] = "#FFFFFF" # send the request payload = {"template_id": meme_id, "username": self.username, "password": self.password} payload.update(boxes_dict) result = json.loads(await internet_funcs.post("https://api.imgflip.com/caption_image", data=payload)) if result["success"] is not True: await ctx.send("An error occurred:" + " " + "**" + result["error_message"] + "**") return await ctx.send(result["data"]["url"]) def setup(bot): bot.add_cog(Memes(bot))
[ "discord.ext.commands.Cog.listener", "assets.internet_funcs.get_response", "assets.list_funcs.chunks", "json.load", "assets.internet_funcs.post", "discord.Embed", "discord.ext.commands.command" ]
[((497, 520), 'discord.ext.commands.Cog.listener', 'commands.Cog.listener', ([], {}), '()\n', (518, 520), False, 'from discord.ext import commands\n'), ((871, 932), 'discord.ext.commands.command', 'commands.command', ([], {'name': '"""memetemplates"""', 'aliases': "['memetemps']"}), "(name='memetemplates', aliases=['memetemps'])\n", (887, 932), False, 'from discord.ext import commands\n'), ((1852, 1911), 'discord.ext.commands.command', 'commands.command', ([], {'name': '"""memegen"""', 'aliases': "['memegenerator']"}), "(name='memegen', aliases=['memegenerator'])\n", (1868, 1911), False, 'from discord.ext import commands\n'), ((331, 352), 'json.load', 'json.load', (['configFile'], {}), '(configFile)\n', (340, 352), False, 'import json\n'), ((1274, 1292), 'assets.list_funcs.chunks', 'chunks', (['result', '(25)'], {}), '(result, 25)\n', (1280, 1292), False, 'from assets.list_funcs import chunks\n'), ((1350, 1400), 'discord.Embed', 'discord.Embed', ([], {'title': '"""Meme Templates"""', 'color': '(65280)'}), "(title='Meme Templates', color=65280)\n", (1363, 1400), False, 'import discord\n'), ((585, 649), 'assets.internet_funcs.get_response', 'internet_funcs.get_response', (['"""https://api.imgflip.com/get_memes"""'], {}), "('https://api.imgflip.com/get_memes')\n", (612, 649), False, 'from assets import internet_funcs\n'), ((3486, 3560), 'assets.internet_funcs.post', 'internet_funcs.post', (['"""https://api.imgflip.com/caption_image"""'], {'data': 'payload'}), "('https://api.imgflip.com/caption_image', data=payload)\n", (3505, 3560), False, 'from assets import internet_funcs\n')]
import itertools import json import logging import re from django.views.generic import TemplateView from django.http import HttpResponse from django.views import View from django.contrib.auth.mixins import LoginRequiredMixin, PermissionRequiredMixin from django.views.decorators.csrf import csrf_exempt from django.shortcuts import render, redirect from django.urls import reverse from django.utils import timezone from django.utils.decorators import method_decorator from django_chunk_upload_handlers.clam_av import VirusFoundInFileException from core.base import GroupRequiredMixin from core.utils import ( deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email, ) from django_countries import countries from django.conf import settings from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline from cases.utils import decorate_orgs from core.constants import ( ALL_REGION_ALLOWED_TYPE_IDS, SECURITY_GROUP_TRA_HEAD_OF_INVESTIGATION, SECURITY_GROUP_TRA_LEAD_INVESTIGATOR, SECURITY_GROUPS_TRA, SECURITY_GROUP_TRA_ADMINISTRATOR, SECURITY_GROUPS_TRA_ADMINS, SECURITY_GROUP_ORGANISATION_OWNER, SUBMISSION_TYPE_QUESTIONNAIRE, SUBMISSION_TYPE_APPLICATION, SUBMISSION_NOTICE_TYPE_INVITE, SUBMISSION_NOTICE_TYPE_DEFICIENCY, SUBMISSION_TYPE_THIRD_PARTY, CASE_ROLE_AWAITING_APPROVAL, CASE_ROLE_REJECTED, CASE_ROLE_APPLICANT, CASE_ROLE_PREPARING, DIRECTION_TRA_TO_PUBLIC, ) from trade_remedies_client.mixins import TradeRemediesAPIClientMixin from trade_remedies_client.exceptions import APIException logger = logging.getLogger(__name__) org_fields = json.dumps( { "Organisation": { "id": 0, "has_non_draft_subs": 0, "gov_body": 0, "has_roi": 0, } } ) class CasesView(LoginRequiredMixin, TemplateView, TradeRemediesAPIClientMixin): template_name = "cases/cases.html" def get(self, request, *args, **kwargs): list_mode = request.GET.get("tab", "my") panel_layout = self.client(self.request.user).get_system_boolean("PRE_RELEASE_PANELS") fields = { "Case": { "id": 0, "user_case": 0, "name": 0, "reference": 0, "created_at": 0, "type": { "name": 0, "acronym": 0, "colour": 0, "reference": 0, "applicant": {"organisation": 0, "name": 0, "id": 0}, }, "applicant": { "organisation": { "name": 0, "id": 0, } }, "stage": {"name": 0}, "case_status": {"next_action": 0, "next_notice_due": 0}, } } if list_mode == "archived": fields = deep_update( fields, { "Case": { "workflow_state": { "MEASURE_EXPIRY": 0, "DETERMINATION_ACTIVE_DATE": 0, } } }, ) cases = self.client(request.user).get_cases( archived=list_mode == "archived", all_cases=list_mode == "all", new_cases=list_mode == "new", fields=json.dumps(fields), ) tabs = { "value": list_mode, "tabList": [ {"label": "Your cases", "value": "my", "sr_text": "Show your cases"}, {"label": "Open cases", "value": "all", "sr_text": "Show open cases"}, { "label": "New applications", "value": "new", "sr_text": "Show new applications", }, { "label": "Archived", "value": "archived", "sr_text": "Show archived cases", }, ], } template_name = self.template_name if panel_layout else "cases/cases_old.html" body_class = "full-width kill-footer" if panel_layout else "full-width" return render( request, template_name, { "body_classes": body_class, "cases": cases, "tabs": tabs, }, ) class CaseBaseView( LoginRequiredMixin, GroupRequiredMixin, PermissionRequiredMixin, TemplateView, TradeRemediesAPIClientMixin, ): permission_required = [] groups_required = SECURITY_GROUPS_TRA supress_nav_section = False def dispatch(self, *args, **kwargs): if self.request.user.is_authenticated: self._client = self.client(self.request.user) self.case_id = kwargs.get("case_id") return super().dispatch(*args, **kwargs) def get(self, request, *args, **kwargs): self.kwargs = kwargs self.organisation_id = kwargs.get("organisation_id") self.request = request self.user_token = request.user.token case_fields = json.dumps( { "Case": { "id": 0, "name": 0, "initiated_at": 0, "decision_to_initiate,name": 0, "reference": 0, "sequence": 0, "type": 0, "archived_at": 0, "archive_reason": {"name": 0}, "submission_count": 0, "participant_count": 0, "stage": {"name": 0}, "case_status": 0, "organisation": {"id": 0, "name": 0}, } } ) self.case = self._client.get_case(self.case_id, fields=case_fields) self.document_count = self._client.get_case_document_count(self.case_id) self.start = int(request.GET.get("start", 0)) self.limit = int(request.GET.get("limit", 20)) content_id = self.kwargs.get("nav_section_id") context = { "case": self.case, "case_id": self.case_id, "document_count": self.document_count, "content": self._client.get_case_content(self.case_id, content_id=content_id), "tree": self._client.get_nav_section(self.case_id, selected_content=content_id), "body_classes": "full-width", "panel_layout": self._client.get_system_boolean("PRE_RELEASE_PANELS"), "organisation_id": self.organisation_id, "submission_group_name": "submission", "alert": request.GET.get("alert"), "user": request.user, } deep_update(context, self.add_page_data()) if context.get("redirect"): return redirect(context.get("redirect")) return render(request, self.template_name, context) def add_page_data(self): return {} def get_documents(self, submission, all_versions=None): result = self._client.get_submission_documents( self.case_id, submission.get("id"), all_versions=all_versions ) all_documents = result.get("documents", []) deficiency_docs = result.get("deficiency_documents", []) if all_versions: # If this submission has an immediate ancestor, get the docs from that to mark status docs_by_submission = deep_index_items_by(all_documents, "version") this_version = int(submission.get("version")) this_sub = docs_by_submission.get(str(this_version)) sub_docs = this_sub[0].get("documents") # we have a list of the submissions that make up a family - id, version and documents. if this_version > 1: parent_sub = docs_by_submission.get(str(this_version - 1)) parent_docs = parent_sub and parent_sub[0].get("documents") parent_doc_idx = {} for parent_doc in parent_docs: doc_type = get(parent_doc, "type/name") + "|" + get(parent_doc, "name") parent_doc_idx[doc_type] = parent_doc for document in sub_docs: document["parent"] = parent_doc_idx.get( get(document, "type/name") + "|" + get(document, "name") ) else: sub_docs = all_documents submission_documents = deep_index_items_by(sub_docs, "type/key") document_conf_index = deep_index_items_by( submission_documents.get("respondent", []), "confidential" ) confidential = document_conf_index.get("true", []) confidential.sort(key=lambda cf: cf.get("name")) non_conf = document_conf_index.get("", []) doc_index = key_by(confidential, "id") non_conf.sort(key=lambda nc: get(get(doc_index, str(nc.get("parent_id"))), "name")) return { "caseworker": submission_documents.get("caseworker", []), "respondent": submission_documents.get("respondent", []), "loa": submission_documents.get("loa", []), "deficiency": deficiency_docs, "confidential": confidential, "nonconfidential": non_conf, } def has_permission(self): """ Override this method to customize the way permissions are checked. """ perms = self.get_permission_required() return not perms or self.request.user.has_perms(perms) class CaseAdminView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA permission_required = ("case_admin",) template_name = "cases/admin.html" def add_page_data(self): case_enums = self._client.get_all_case_enums() case_users = self._client.get_case_users(self.case["id"]) context = { "case_enums": case_enums, "case": self.case, "users": case_users, "participants": self._client.get_case_participants(self.case_id), } return context def post(self, request, case_id, *args, **kwargs): action = request.POST.get("action") case = self._client.get_case(case_id) update_spec = {} if action == "initiation_flag_toggle": if case["initiated_at"]: update_spec["initiated_at"] = "" else: update_spec["initiated_at"] = timezone.now() elif action == "set_case_stage": update_spec["ignore_flow"] = request.POST.get("ignore_flow") or "false" update_spec["stage_id"] = request.POST.get("stage_id") elif action == "set_name": update_spec["name"] = request.POST.get("name") elif action == "set_case_type": update_spec["stage_id"] = "" update_spec["type_id"] = request.POST.get("type_id") elif action == "toggle_archived": if case.get("archived_at"): update_spec["archived_at"] = "" else: update_spec["archived_at"] = timezone.now() update_spec["archive_reason_id"] = request.POST.get("archive_reason_id") elif action == "reset_initiation_decision": update_spec["reset_initiation_decision"] = True if update_spec: response = self._client.update_case(case_id, update_spec) return redirect(f"/case/{case_id}/admin/") class CaseMilestoneDatesView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA permission_required = ("case_admin",) template_name = "cases/milestone_dates.html" def add_page_data(self): case_enums = self._client.get_all_case_enums(self.case_id) case_milestones = self._client.case_milestones(self.case["id"]) existing_keys = [cm["key"] for cm in case_milestones] context = { "milestone_types": case_enums.get("milestone_types"), "available_review_types": case_enums.get("available_review_types"), "milestones": case_milestones, "existing_milestones": existing_keys, } return context def post(self, request, case_id, milestone_key=None): milestone_key = milestone_key or request.POST.get("milestone_key") date = request.POST.get("date") response = self._client.set_case_milestone(case_id, milestone_key, date) return redirect(f"/case/{case_id}/milestones/") class CaseView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA permission_required = [] template_name = "cases/case.html" extra_case_fields = json.dumps( { "Case": { "applicant": { "organisation": { "id": 0, "name": 0, "primary_contact": { "name": 0, "email": 0, "phone": 0, "address": 0, "post_code": 0, "country": {"name": 0}, "has_user": 0, "user": {"id": 0, "organisation": {"id": 0, "name": 0}}, }, } }, "parent": {"id": 0, "name": 0, "reference": 0, "type": 0}, "workflow_state": {"LINKED_CASE_CONFIRM": 0}, "initiated_sequence": 0, } } ) def add_page_data(self): team = self._client.get_case_team_members(self.case_id) team_by_group = index_users_by_group([member.get("user") for member in team]) group_order = [ SECURITY_GROUP_TRA_ADMINISTRATOR, SECURITY_GROUP_TRA_HEAD_OF_INVESTIGATION, SECURITY_GROUP_TRA_LEAD_INVESTIGATOR, ] case_extras = self._client.get_case(self.case_id, fields=self.extra_case_fields) return { "audit": self._client.get_audit( case_id=self.case_id, start=0, limit=20, milestone=True ), "case_page": True, "case": case_extras, "team_groups": team_by_group, "group_order": group_order, "public_base_url": settings.PUBLIC_BASE_URL, } def post(self, request, case_id, *args, **kwargs): self._client.set_case_data(case_id, {"name": request.POST.get("name")}) redirect = request.POST.get("redirect") if redirect: return internal_redirect(request.POST.get("redirect"), "/") else: return HttpResponse(json.dumps({"result": "ok"}), content_type="application/json") class PartiesView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/parties.html" def add_page_data(self): parties = [] roles = self._client.get_case_roles() all_case_invites = self._client.get_contact_case_invitations(self.case_id) all_participants = self._client.get_case_participants(self.case_id, fields=org_fields) case_invites = deep_index_items_by(all_case_invites, "contact/id") invited = set([]) accepted = set([]) for invite in all_case_invites: org_id = invite.get("organisation", {}).get("id") if invite.get("accepted_at"): # note: accepted and invited are mutually exclusive accepted.add(org_id) else: invited.add(org_id) for role in roles: _base = all_participants[role["key"]] _base["key"] = role["key"] _base["name"] = role["plural"] if role["allow_cw_create"]: _base["add_link"] = f"Add {role['name']}" parties.append(_base) return { "party_types": parties, "invites": case_invites, "accepted_orgs": list(accepted), "invited_orgs": list(invited), "pre_release_invitations": self._client.get_system_boolean("PRE_RELEASE_INVITATIONS"), "alert": self.request.GET.get("alert"), } class CaseTeamView(CaseBaseView): permission_required = "can_assign_team" template_name = "cases/team.html" def add_page_data(self): all_users = self._client.get_all_users(group_name="caseworker") users_by_group = index_users_by_group(all_users) team = self._client.get_case_team_members(self.case_id) return { "team": [member.get("user", {}).get("id") for member in team], "tra_users": all_users, "grouped_users": users_by_group, "groups": SECURITY_GROUPS_TRA[1:], "inactive_user_count": sum(user["active"] is False for user in all_users), "singleton_groups": [ SECURITY_GROUP_TRA_HEAD_OF_INVESTIGATION, SECURITY_GROUP_TRA_ADMINISTRATOR, ], } def post(self, request, case_id, *args, **kwargs): user_ids = request.POST.getlist("user_id") response = self._client.assign_case_team(case_id, user_ids) return redirect(f"/case/{case_id}/") class SubmissionsView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/submissions.html" show_global = False sub_page = "" def get_tab(self, role, party): if not role.get("allow_cw_create"): return role["key"] return "sampled" if party.get("sampled") else "not_sampled" def consolidate_submissions( self, case, participants, submissions_by_party, counts, selected_tab ): roles = [] single_role_return = None # for awaiting and rejected - only return that specific role for role in self._client.get_case_roles(): role["participants"] = [] for party in participants.get(role["key"], {}).get("parties", []): tab = self.get_tab(role, party) submissions = submissions_by_party.get(party["id"], []) submissions += submissions_by_party.get("", []) if submissions: counts[tab] = counts.get(tab, 0) + len(submissions) if tab == selected_tab: party["submissions"] = submissions role["participants"].append(party) if not party.get("gov_body"): role["customer_parties"] = True sort_key = ( "submissions/0/received_at" if selected_tab == CASE_ROLE_AWAITING_APPROVAL else "name" ) role["participants"].sort(key=lambda pt: get(pt, sort_key) or "") if role.get("key") == selected_tab: single_role_return = role if role.get("allow_cw_create"): roles.append(role) return [single_role_return] if single_role_return else roles def get_name(self, participant): return participant.get("name") def flatten_participants(self, source): participants = [] for role in source: rec = source[role] participants = participants + rec["parties"] participants.sort(key=self.get_name) return participants def divide_submissions(self, submissions): incoming = [] outgoing = [] draft = [] for submission in submissions: if get(submission, "status/sent"): outgoing.append(submission) elif get(submission, "status/default") and get(submission, "type/direction") != 1: draft.append(submission) else: if ( not get(submission, "status/draft") or get(submission, "type/key") == "application" ): # customer draft should not be seen by investigators incoming.append(submission) return { "incoming": sorted(incoming, key=lambda su: su.get("received_at") or "", reverse=True), "outgoing": sorted(outgoing, key=lambda su: su.get("sent_at") or "", reverse=True), "draft": sorted(draft, key=lambda su: su.get("created_at") or "", reverse=True), } def add_page_data(self): tab = self.request.GET.get("tab", "sampled").lower() all_submissions = self._client.get_submissions(self.case_id, show_global=True) submissions_by_type = deep_index_items_by(all_submissions, "type/name") # Get submissions that have just been created by customer # or are still in draft after creation draft_submissions = deep_index_items_by(all_submissions, "status/default").get("true") or [] # Remove any that are back with the customer following deficiency draft_first_version_submissions = ( deep_index_items_by(draft_submissions, "version").get("1") or [] ) # Exclude these drafts from our list non_draft_submissions = [ sub for sub in all_submissions if sub not in draft_first_version_submissions ] # draft applications are included to allow a heads up view # to the caseworker before it's submitted if submissions_by_type.get("application", [{}])[0].get("status", {}).get("default") is True: submissions_by_type["application"][0]["tra_editable"] = True non_draft_submissions += submissions_by_type["application"] submissions_by_party = deep_index_items_by(non_draft_submissions, "organisation/id") case_enums = self._client.get_all_case_enums() invites = self._client.get_case_invite_submissions(self.case_id) participants = self._client.get_case_participants(self.case_id, fields=org_fields) flat_participants = self.flatten_participants(participants) counts = {} if self.sub_page: self.template_name = f"cases/submissions_{self.sub_page}.html" tab = self.request.GET.get("tab", "incoming").lower() elif self._client.get_system_boolean("PRE_NEW_SUBMISSION_PAGE"): self.template_name = "cases/submissions_new.html" context = { "raw_participants": participants, "submissions": submissions_by_type, "participants": flat_participants, "counts": counts, "all_roles": self.consolidate_submissions( self.case, participants=participants, submissions_by_party=submissions_by_party, counts=counts, selected_tab=tab, ), "submission_types": case_enums["case_worker_allowed_submission_types"], "invites": invites, "tab": tab, "submission_groups": self.divide_submissions(all_submissions), "all_submissions": all_submissions, } # TODO: Temp handling of application vs ex_officio ones if not submissions_by_type.get("application") and submissions_by_type.get( "ex officio application" ): context["submissions"]["application"] = submissions_by_type["ex officio application"] return context class SubmissionView(CaseBaseView): """ View and modify submissions """ groups_required = SECURITY_GROUPS_TRA template_name = "cases/submission.html" extra_case_fields = json.dumps( { "Case": { "applicant": 0, "product": 0, "sources": 0, } } ) def add_page_data_old(self): alert = self.request.GET.get("alert") # indicates the submission has just been created documents = [] submission = {} submission_id = self.kwargs.get("submission_id") third_party_invite = False if submission_id: submission = self._client.get_submission(self.case_id, submission_id) submission_type = submission["type"] third_party_invite = submission_type["name"] == "Invite 3rd party" self.organisation_id = submission["organisation"]["id"] created_by_id = get(submission, "created_by/id") if created_by_id: full_user = self._client.get_user(created_by_id) submission["created_by"]["organisation"] = get(full_user, "organisations/0") submission_context = {} if SUBMISSION_TYPE_HELPERS.get(submission_type["key"]): submission_context = SUBMISSION_TYPE_HELPERS[submission_type["key"]]( submission, self.request.user ).get_context() self.template_name = "cases/submission.html" case_extras = self._client.get_case(self.case_id, fields=self.extra_case_fields) context = { "submission": submission, "template_name": f"{submission_type['key']}", "documents": self.get_documents(submission=submission, all_versions=True), "alert": alert, "case": case_extras, "third_party_invite": third_party_invite, **submission_context, } if ( not submission or not submission.get("status") or submission.get("status", {}).get("default") ): context["mode"] = "form" else: context["mode"] = "view" if self.organisation_id: self.organisation = self._client.get_organisation(self.organisation_id) context["organisation"] = self.organisation context["organisation_id"] = str(self.organisation["id"]) return context def get_all_participants(self, case_participants): all_parties = [] roles = {} for type_name, role_parties in case_participants.items(): parties = role_parties.get("parties") if parties: all_parties.extend(parties) role = parties[0].get("role") roles[role.get("key")] = role return deep_index_items_by(all_parties, "sampled"), roles def add_page_data(self): case_enums = self._client.get_all_case_enums() submission = {} participants = self._client.get_case_participants(self.case_id, fields=org_fields) parties, roles = self.get_all_participants(participants) alert = self.request.GET.get("alert") # indicates the submission has just been created virus = self.request.GET.get("virus") upload_error = self.request.GET.get("upload_error") return_data = { "virus": virus, "upload_error": upload_error, } submission_id = self.kwargs.get("submission_id") if submission_id: submission = self._client.get_submission(self.case_id, submission_id) json_data = from_json(submission.get("deficiency_notice_params")) _default = submission.get("status", {}).get("default") if not _default or ( _default and submission["type"]["id"] == SUBMISSION_TYPE_APPLICATION ): page_data = self.add_page_data_old() return_data.update(page_data) return return_data self.organisation_id = submission["organisation"]["id"] return_data.update( { "roles": roles, "submission": submission, "status": (submission.get("status") or {}).get("id"), "alert": alert, "documents": self.get_documents(submission=submission), "role": submission.get("organisation_case_role") or {"name": "Public file"}, "participants": participants, "all_participants": parties, "json_data": json_data, "selected_submission_type": submission.get("type", {}).get("key") or "questionnaire", } ) else: role = self.request.GET.get("for") sampled = self.request.GET.get("sampled") == "sampled" full_role = ( self._client.get_case_role(role) if (role and role != "public") else {"name": "Public file"} ) case_enums = self._client.get_all_case_enums(direction=DIRECTION_TRA_TO_PUBLIC) # Get all draft submissions of this type all_submissions = self._client.get_submissions(self.case_id, show_global=True) draft_submissions = ( deep_index_items_by(all_submissions, "status/default").get("true") or [] ) # draft_submissions_this_role = deep_index_items_by(draft_submissions, # 'organisation_case_role/key').get('' if role == 'public' else role) draft_submissions_this_role = deep_index_items_by( draft_submissions, "organisation_id" ).get("") return_data.update( { "submission": submission, "submission_type_id": self.kwargs.get("submission_type_id") or self.request.GET.get("submission_type_id"), "submission_statuses": case_enums["submission_statuses"], "statuses_by_type": case_enums["statuses_by_type"], "selected_submission_type": self.request.GET.get("submission_type") or "questionnaire", "organisation_id": self.kwargs.get("organisation_id"), "draft_submissions": draft_submissions_this_role, "role": full_role, } ) if role == "public": return_data.update( { "submission_types": case_enums["public_submission_types"], "public": True, "organisation_id": self.kwargs.get("organisation_id"), } ) else: role_participants = participants.get(role, {}).get("parties", []) filtered = list( filter( lambda party: party if party.get("sampled") == sampled and not party.get("gov_body") else None, role_participants, ) ) return_data.update( { "submission_types": case_enums["case_worker_allowed_submission_types"], "participants": participants, "roles": roles, } ) self.organisation_id = self.organisation_id or self.request.GET.get("organisation_id") if self.organisation_id: self.organisation = self._client.get_organisation(self.organisation_id) return_data["organisation"] = self.organisation return_data["organisation_id"] = str(self.organisation["id"]) # add errors from the url errors = self.request.GET.get("errors") if errors: try: return_data["errors"] = json.loads(errors) except Exception as ex: pass # Set up template to use template_name = ( submission["type"]["key"] if submission else (role if role == "public" else "questionnaire") ) return_data.update({"template_name": template_name, "mode": "form"}) return return_data def post( # noqa: C901 self, request, case_id, submission_id=None, organisation_id=None, *args, **kwargs, ): """ Update an existing submission """ return_data = {"submission_id": str(submission_id)} contact_id = request.POST.get("contact_id") btn_value = request.POST.get("btn-value") review = request.POST.get("review") name = request.POST.get("name") due_at = request.POST.get("due_at") response_window_yn = request.POST.get("response_window_yn") time_window = request.POST.get("time_window") meta_raw = request.POST.getlist("meta") meta = [json.loads(block) for block in meta_raw] file_details = deep_index_items_by(meta, "name") file_details_by_id = deep_index_items_by(meta, "file/id") organisation_id = organisation_id or request.POST.get("organisation_id") send_to = request.POST.get("send_to") submission = self._client.get_submission(case_id, submission_id) organisation_id = submission.get("organisation", {}).get("id") status_id = request.POST.get("submission_status_id") if submission_id and btn_value == "discard": delete_submission_response = self._client.delete_submission( case_id=case_id, submission_id=submission_id ) return HttpResponse( json.dumps({"redirect_url": f"/case/{case_id}/submissions/"}), content_type="application/json", ) # check if the update is for name or notify contact if ( submission["name"] != name or not submission["contact"] or submission.get("contact", {}).get("id") != contact_id ): if name is not None and not name: return_data.update({"errors": '{"name":"You must enter a name"}'}) if due_at and not is_date(due_at): return_data.update({"errors": '{"due_date":"Invalid date"}'}) if not return_data.get("errors"): self._client.update_submission( case_id=case_id, submission_id=submission_id, name=name, contact_id=contact_id, # TODO:not used due_at=due_at, time_window=time_window, description=request.POST.get("description"), url=request.POST.get("url"), ) # API `update_submission` returns an incomplete submission # (no documents) so we re-fetch the submission here. submission = self._client.get_submission(case_id, submission_id) return_data.update({"submission": submission}) if submission.get("id"): for _file in request.FILES.getlist("files"): try: _file.readline() # Important, will raise VirusFoundInFileException if infected original_file_name = _file.original_name details = file_details.get(original_file_name.lower())[0] confidential = details.get("confidential") document_type = details.get("submission_document_type") document = self._client.upload_document( case_id=str(case_id), submission_id=submission_id, organisation_id=str(organisation_id), data={ "name": "Questionnaire", "confidential": confidential, "submission_document_type": document_type, "document_name": original_file_name, "file_name": _file.name, "file_size": _file.file_size, }, ) except (VirusFoundInFileException, APIException) as e: redirect_url = f"/case/{case_id}/submission/{submission_id}/?" if isinstance(e, VirusFoundInFileException): redirect_url += "virus=true" else: redirect_url += f"upload_error={e}" logger.warning(f"File upload aborted: {e}") return HttpResponse( json.dumps({"redirect_url": redirect_url}), content_type="application/json", ) if case_files := request.POST.getlist("case_files"): for case_file_id in case_files: details = (file_details_by_id.get(case_file_id) or [])[0] document = self._client.attach_document( case_id=str(case_id), submission_id=submission_id, organisation_id=str(organisation_id), data={"submission_document_type": details.get("submission_document_type")}, document_id=case_file_id, ) submission_group_name = get(submission, "type/key") if btn_value in ["send", "publish", "withdraw"]: if btn_value in ["publish", "withdraw"]: result = self._client.set_submission_state( case_id, submission_id, "sent" if (btn_value == "send" or submission_group_name == "public") else "", {"publish": "issue", "withdraw": "un-issue"}[btn_value], ) result = self._client.update_submission( case_id=case_id, submission_id=submission_id ) return_data.update( { "redirect_url": f"/case/{case_id}/submission/{submission['id']}/?alert={btn_value}" # noqa: E301, E501 } ) if btn_value == "sufficient": # Set the submission to sufficient result = self._client.set_submission_state(case_id, submission_id, btn_value) return_data.update({"alert": "Submission approved"}) submission_type = submission["type"] type_helpers = SUBMISSION_TYPE_HELPERS.get(submission_type["key"]) if type_helpers: return_data.update( type_helpers(submission, self.request.user).on_approve() or {} ) # Update submission document approvals self.update_submission_status(request.POST, submission) # set any deficiency-notice parameters updated = False deficiency_notice_params = from_json(submission.get("deficiency_notice_params")) send_to = request.POST.getlist("send_to") if send_to: deficiency_notice_params["send_to"] = send_to updated = True regex = r"^deficiency_notice_params_" for param_key in request.POST: matches = re.split(regex, param_key) if len(matches) > 1: value = request.POST[param_key] updated = updated or (deficiency_notice_params.get(matches[1]) != value) if value == "__remove": if get(deficiency_notice_params, matches[1]): deficiency_notice_params.pop(matches[1]) else: deficiency_notice_params[matches[1]] = value if updated: update_submission_response = self._client.update_submission( case_id=case_id, submission_id=submission_id, deficiency_notice_params=to_json(deficiency_notice_params), ) if btn_value == "save-exit": return_data.update({"redirect_url": f"/case/{case_id}/submissions"}) if deficiency_notice_params: return_data.update( {"redirect_url": f"/case/{case_id}/submission/{submission_id}"} ) return HttpResponse(json.dumps(return_data), content_type="application/json") def update_submission_status(self, request_params, submission): """Update submission document statuses. For each document in the submission review, examine response to establish if it was marked sufficient/deficient. Call API to update submission document status if it has changed. :param (dict) request_params: request parameters :param (dict) submission: submission """ submission_docs = {doc["id"]: doc for doc in submission.get("documents")} for doc_id in request_params: if doc_id in submission_docs: current_status = submission_docs[doc_id]["sufficient"] new_status = request_params[doc_id] == "yes" if current_status != new_status: self._client.set_submission_document_state( case_id=submission["case"]["id"], submission_id=submission.get("id"), document_id=doc_id, status="sufficient" if new_status else "deficient", block_from_public_file=submission_docs.get("block_from_public_file"), block_reason=submission_docs.get("block_reason"), ) class SubmissionCreateView(SubmissionView): groups_required = SECURITY_GROUPS_TRA def post(self, request, case_id, *args, **kwargs): btn_value = request.POST.get("btn-value") send_to = request.POST.getlist("send_to") organisation_id = request.POST.get("organisation_id") submission_data = { "submission_type": int( request.POST.get("submission_type_id", SUBMISSION_TYPE_QUESTIONNAIRE) ), "case_id": str(case_id), "organisation_id": str(organisation_id) if organisation_id else None, "contact_id": request.POST.getlist("contact_id"), "public": request.POST.get("public"), } if send_to: submission_data["deficiency_notice_params"] = to_json( {"send_to": send_to, "case_role": request.POST.get("role_key")} ) result = self._client.create_submission(**submission_data) submission = result.get("submission", {}) if result else {} return HttpResponse( json.dumps( { "submission_id": submission.get("id"), "redirect_url": f"/case/{case_id}/submission/{submission['id']}/", } ), content_type="application/json", ) class SubmissionDocumentView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA def post(self, request, case_id, submission_id, organisation_id=None, *args, **kwargs): response = {} document_list_json = request.POST.get("document_list") if document_list_json: document_list = json.loads(document_list_json) for doc_id, doc_status in document_list.items(): logger.debug(f"update document state {doc_id}") response = self._client.set_submission_document_state( case_id=case_id, submission_id=submission_id, document_id=doc_id, status=doc_status["status"], block_from_public_file=doc_status["block_from_public_file"], block_reason=doc_status["block_reason"], ) return HttpResponse(json.dumps(response), content_type="application/json") def delete(self, request, case_id, submission_id, document_id, *args, **kwargs): response = self._client.detach_document( case_id=case_id, submission_id=submission_id, document_id=document_id ) return HttpResponse(json.dumps(response), content_type="application/json") class SubmissionStatusView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA def post(self, request, case_id, submission_id, *args, **kwargs): stage_change_if_sufficient = request.POST.get("stage_change_if_sufficient") stage_change_if_deficient = request.POST.get("stage_change_if_deficient") submission = self._client.get_submission(case_id, submission_id) status_id = request.POST.get("submission_status_id") if submission.get("status", {}).get("id") != status_id: status_response = self._client.set_submission_status( case_id=case_id, submission_id=submission_id, status_id=status_id, stage_change_if_sufficient=stage_change_if_sufficient, stage_change_if_deficient=stage_change_if_deficient, deficiency_documents=request.FILES.getlist("deficiency_document"), issue=request.POST.get("issue"), ) if status_response.get("submission"): submission_id = status_response["submission"]["id"] return redirect(f"/case/{case_id}/submission/{submission_id}/") class SubmissionApprovalView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/submission.html" def add_page_data(self): submission_id = self.kwargs.get("submission_id") submission = self._client.get_submission(self.case_id, submission_id) sub_documents = self._client.get_submission_documents(self.case_id, submission_id) documents = sub_documents.get("documents", []) submission.update(sub_documents) case_enums = self._client.get_all_case_enums() submission_type_id = submission["type"]["id"] status_map = case_enums["submission_status_map"] status_options = status_map.get(str(submission_type_id), {}).get("keys", []) status_context = status_map.get(str(submission_type_id)) submission_documents = self.get_documents(submission=submission) context = { "template_name": submission["type"]["key"], "mode": "approval", "submission": submission, "case_enums": case_enums, "status_context": status_context, "documents": submission_documents, } return context class SubmissionDeficiencyView(CaseBaseView): """ Set the submission into a deficiency status and notify the party about it. """ groups_required = SECURITY_GROUPS_TRA raise_exception = True def get(self, request, case_id, submission_id, *args, **kwargs): submission = self._client.get_submission(case_id, submission_id) submission_type = submission["type"] contact = submission_contact(submission) contact_name = contact.get("name") organisation_name = submission.get("organisation", {}).get("name") or ( contact.get("organisation") or {} ).get("name") notification_template = self._client.get_notification_template( "NOTIFY_SUBMISSION_DEFICIENCY" ) template_name = f"cases/submissions/{submission_type['key']}/notify.html" due_at = get_submission_deadline(submission, settings.FRIENDLY_DATE_FORMAT) case_number = submission["case"]["reference"] email = notify_contact_email(self._client, case_number) footer = notify_footer(self._client, email) values = { "full_name": contact_name, "case_name": submission["case"]["name"], "case_number": case_number, "company_name": organisation_name, "deadline": due_at or "No deadline assigned", "submission_type": submission.get("type", {}).get("name"), "login_url": public_login_url(), "footer": footer, } context = { "form_action": f"/case/{case_id}/submission/{submission_id}/status/notify/", "form_title": f"Deficiency Notice for {organisation_name}", "cancel_redirect_url": f"/case/{case_id}/submission/{submission_id}/", "editable_fields": { # leaving one as a future example # 'full_name': {'title': 'Name'}, }, "notification_template": notification_template, "submission": submission, "case_id": str(case_id), "contact": contact, "values": values, "parsed_template": parse_notify_template(notification_template["body"], values), } return render(request, template_name, context) def post(self, request, case_id, submission_id, *args, **kwargs): stage_change_if_sufficient = request.POST.get("stage_change_if_sufficient") stage_change_if_deficient = request.POST.get("stage_change_if_deficient") submission = self._client.get_submission(case_id, submission_id) notify_keys = [ "full_name", "case_name", "case_number", "company_name", "deadline", "submission_type", "login_url", ] notify_data = {key: request.POST.get(key) for key in notify_keys} if request.POST.get("contact_id"): notify_data["contact_id"] = request.POST["contact_id"] case_enums = self._client.get_all_case_enums() submission_type_id = submission["type"]["id"] status_map = case_enums["submission_status_map"] status_context = status_map.get(str(submission_type_id)) status_id = status_context.get("NO") error = None if status_id: if submission.get("status", {}).get("id") != status_id: status_response = self._client.set_submission_status( case_id=case_id, submission_id=submission_id, status_id=status_id, stage_change_if_sufficient=stage_change_if_sufficient, stage_change_if_deficient=stage_change_if_deficient, ) self._client.submission_notify( case_id=case_id, organisation_id=submission["organisation"]["id"], submission_id=submission["id"], values=notify_data, notice_type=SUBMISSION_NOTICE_TYPE_DEFICIENCY, ) # reset the submission id to redirect to the new clone if available if status_response.get("submission"): submission_id = status_response["submission"]["id"] return HttpResponse( json.dumps( { "redirect_url": f"/case/{case_id}/submission/{submission_id}/", } ), content_type="application/json", ) # If there's no deficiency state for this submission type, return an error return HttpResponse( json.dumps( { "error": "No deficiency status for this submission type", } ), content_type="application/json", ) class SubmissionVerifyBaseView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA def get_submission_id(self, case_id=None, organisation_id=None): submission_id = self.kwargs.get("submission_id") if not submission_id: # If this is called from the party page - there is no submission id # so find from the org/case submissions = self._client.get_submissions_public( organisation_id=organisation_id, case_id=case_id, fields=json.dumps({"id": 0, "type": {"key": 0}}), ) for submission in submissions: if get(submission, "type/key") in ["interest", "application"]: submission_id = submission.get("id") break # we only want one reg-of-interest submission return submission_id def update_submission_json(self, case_id, submission, params): regex = r"^deficiency_notice_params_" deficiency_notice_params = submission.get("deficiency_notice_params") or {} updated = False response = None for param_key in params: matches = re.split(regex, param_key) if len(matches) > 1: value = params[param_key] updated = updated or (deficiency_notice_params.get(matches[1]) != value) deficiency_notice_params[matches[1]] = value if updated: response = self._client.update_submission( case_id=case_id, submission_id=get(submission, "id"), deficiency_notice_params=to_json(deficiency_notice_params), ) return response class SubmissionVerifyViewTasks(SubmissionVerifyBaseView): """ Used to verify user and orgs admission to a case """ template_name = "cases/verify/submission_verify_tasks.html" submission_fields = json.dumps( { "Submission": { "id": 0, "deficiency_notice_params": 0, "organisation": { "id": 0, "name": 0, }, "contact": { "name": 0, "email": 0, "user": { "name": 0, "email": 0, "id": 0, "organisation": { "organisation": { "id": 0, "name": 0, } }, }, "organisation": { "id": 0, "name": 0, }, }, "case": 0, "type": 0, "created_by": 0, "organisation_case_role_outer": 0, } } ) def get(self, request, case_id, organisation_id, **kwargs): submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) if not submission_id: return HttpResponse( json.dumps( { "error": "You cannot verify this organisation " "as they have not yet registered interest in this case.", } ), content_type="application/json", ) submission = self._client.get_submission( self.case_id, submission_id, fields=self.submission_fields ) json_data = submission.get("deficiency_notice_params") or {} organisation = submission.get("organisation") caserole = self._client.get_organisation_case_role( case_id=case_id, organisation_id=get(submission, "organisation/id") ) org_matches = self._client.get_organisation_matches(organisation_id, with_details="none") return render( request, self.template_name, { "submission": submission, "organisation": organisation, "caserole": caserole, "org_matches": org_matches, "page_data": { "submission": submission, "organisation": organisation, }, }, ) class SubmisisonVerifyEditLoaView(SubmissionVerifyBaseView): def get(self, request, case_id, organisation_id): submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) organisation = self._client.get_organisation( case_id=case_id, organisation_id=organisation_id ) documents = self.get_documents(submission) caserole = self._client.get_organisation_case_role( case_id=self.case_id, organisation_id=organisation_id ) org_contacts = self._client.get_organisation_contacts( organisation_id, case_id, exclude_indirect=True ) return render( request, "cases/verify/loa.html", { "auth_contacts": org_contacts, "organisation": organisation, "documents": documents, "LOA": caserole.get("auth_contact"), "submission": submission, }, ) def post(self, request, case_id, organisation_id, *args, **kwargs): submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) self.update_submission_json(case_id, submission, request.POST) result = self._client.set_organisation_case_role_loa( case_id, organisation_id, pluck( request.POST, ["LOA_contact_id", "name", "email", "address", "org_name", "phone"], ), ) return HttpResponse(json.dumps(result)) class SubmisisonVerifyOrganisation(SubmissionVerifyBaseView): enable_merge = False def get(self, request, case_id, organisation_id): test_org_id = request.GET.get("org_id") or organisation_id submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) organisation = self._client.get_organisation(case_id=case_id, organisation_id=test_org_id) if self.enable_merge: org_matches = self._client.get_organisation_matches(test_org_id, with_details=True) else: org_matches = self._client.get_organisation_matches(test_org_id, with_details=False) org_matches.sort( key=lambda m: 1 if m.get("id") == test_org_id else 0 ) # put the actual match at the end matches = decorate_orgs(org_matches, test_org_id, exclude_case_id=case_id) for match in matches: if str(match.get("id")) == str(organisation.get("id")): organisation.update(match) return render( request, "cases/verify/merge_org.html" if self.enable_merge else "cases/verify/verify_org.html", { "case_id": self.case_id, "organisation": organisation, "match_list": matches, "representing": test_org_id != organisation_id, "json_data": submission.get("deficiency_notice_params"), }, ) def post(self, request, case_id, organisation_id, *args, **kwargs): test_org_id = request.POST.get("org_id") or organisation_id submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) verify = request.POST.get("deficiency_notice_params_org_verify") if verify == "verified": self._client.verify_caserole( case_id=case_id, organisation_id=get(submission, "organisation/id") ) elif verify == "rejected": result = self._client.reject_organisation(case_id, organisation_id) result = self.update_submission_json(case_id, submission, request.POST) return HttpResponse(json.dumps({"result": True})) class SubmissionVerifyAccept(SubmissionVerifyBaseView): def get(self, request, case_id, organisation_id): submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) organisation = self._client.get_organisation( case_id=case_id, organisation_id=organisation_id ) caserole = self._client.get_organisation_case_role( case_id=self.case_id, organisation_id=organisation_id ) roles = self._client.get_case_roles( exclude=[ CASE_ROLE_APPLICANT, CASE_ROLE_AWAITING_APPROVAL, CASE_ROLE_REJECTED, CASE_ROLE_PREPARING, ] ) return render( request, "cases/verify/accept.html", { "submission": submission, "organisation": organisation, "roles": roles, "caserole": caserole, "role_name": get(caserole, "role/name"), }, ) def post(self, request, case_id, organisation_id, *args, **kwargs): role_key = request.POST.get("role_key") result = {} result = self._client.set_organisation_case_role( case_id, organisation_id, role_key, pluck(request.POST, ["approve"]) ) return HttpResponse(json.dumps(result)) class SubmissionVerifyNotify(SubmissionVerifyBaseView): def get(self, request, case_id, organisation_id): caserole = self._client.get_organisation_case_role( case_id=self.case_id, organisation_id=organisation_id ) role_name = get(caserole, "role/name") action = ( "reject" if get(caserole, "role/key") == "rejected" else "accept" ) # Todo: get this from the right place submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) submission = self._client.get_submission(case_id, submission_id) case = self._client.get_case(case_id) contact = submission_contact(submission) organisation = self._client.get_organisation( case_id=case_id, organisation_id=organisation_id ) notify_key = ( "NOTIFY_INTERESTED_PARTY_REQUEST_PERMITTED" if action == "accept" else "NOTIFY_INTERESTED_PARTY_REQUEST_DENIED" ) try: notification_template = self._client.get_notification_template(notify_key) values = self._client.create_notify_context( { "full_name": contact.get("name"), "case_name": case.get("name"), "case_number": case.get("reference"), "company_name": organisation["name"], "login_url": public_login_url(), "role": role_name, } ) parsed_template = parse_notify_template(notification_template["body"], values) except Exception as ex: parsed_template = "" # contacts for the notification contact selector contacts = organisation.get("contacts", []) user = self._client.get_user(get(submission, "created_by/id")) contacts.append(user.get("contact")) return render( request, "cases/verify/notify.html", { "parsed_template": parsed_template, }, ) def post(self, request, case_id, organisation_id, *args, **kwargs): submission_id = self.get_submission_id(case_id=case_id, organisation_id=organisation_id) self._client.approve_submission(submission_id=submission_id) return HttpResponse(json.dumps({"result": True})) class SubmissionNotifyView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA raise_exception = True def get(self, request, case_id, submission_id, *args, **kwargs): case = self._client.get_case(case_id) submission = self._client.get_submission(case_id, submission_id) json_data = from_json(submission.get("deficiency_notice_params")) contact = None contact_name = None send_to = json_data.get("send_to") if not send_to: contact = submission_contact(submission) contact_name = contact and contact.get("name") submission_type = submission["type"] notify_sys_param_name = submission_type.get("notify_template") or "NOTIFY_QUESTIONNAIRE" notification_template = self._client.get_notification_template(notify_sys_param_name) template_name = f"cases/submissions/{submission_type['key']}/notify.html" due_at = get_submission_deadline(submission, settings.FRIENDLY_DATE_FORMAT) case_number = case["reference"] email = notify_contact_email(self._client, case_number) footer = notify_footer(self._client, email) values = { "full_name": contact_name, "case_number": case_number, "case_name": case["name"], "investigation_type": case["type"]["name"], "country": case["sources"][0]["country"] if case["sources"] else "N/A", "company_name": submission["organisation"].get("name"), "deadline": due_at or "No deadline assigned", "login_url": public_login_url(), "description": submission.get("description"), "submission_request_name": submission.get("name"), "notice_type": submission.get("type", {}).get("name"), "notice_url": submission["url"], "notice_of_initiation_url": submission["url"], "footer": footer, } template_list = [] if send_to: for case_role, participant_list in ( self._client.get_case_participants(case_id) or {} ).items(): for participant in participant_list.get("parties"): if participant.get("id") in send_to: contact = participant.get("primary_contact") if contact: local_values = { "full_name": contact.get("name"), "email": contact.get("email"), "company_name": participant.get("name"), } values.update(local_values) template_list.append( { "values": local_values, "preview": parse_notify_template( notification_template["body"], values ), } ) else: template_list[contact.get("email")] = parse_notify_template( notification_template["body"], values ) context = { "form_action": f"/case/{case_id}/submission/{submission_id}/notify/", "form_title": f"Invite {contact_name}", "cancel_redirect_url": f"/case/{case_id}/submission/{submission_id}/", "editable_fields": { # leaving one as an example # 'full_name': {'title': '<NAME>', 'disabled': True}, }, "notification_template": notification_template, "templates": template_list, "submission": submission, "case_id": str(case_id), "contact": contact, "values": values, } return render(request, template_name, context) def post(self, request, case_id, submission_id, *args, **kwargs): submission = self._client.get_submission(case_id, submission_id) notify_keys = ["full_name", "product", "submission_request_name", "description"] notify_data = {key: request.POST.get(key) for key in notify_keys if key in request.POST} due_at = get_submission_deadline(submission, settings.FRIENDLY_DATE_FORMAT) notify_data["deadline"] = due_at or "No deadline assigned" if request.POST.get("multiple"): return self.post_multiple(request, case_id, submission, context=notify_data) self._client.submission_notify( case_id=case_id, organisation_id=submission["organisation"]["id"], submission_id=submission["id"], values=notify_data, notice_type=SUBMISSION_NOTICE_TYPE_INVITE, ) return HttpResponse( json.dumps( { "redirect_url": f"/case/{case_id}/submission/{submission_id}/", "error": None, } ), content_type="application/json", ) def post_multiple(self, request, case_id, submission, context=None): """ Called to handle a notify post to multiple recipents. We must clone the submission for each target and send the notification """ case = self._client.get_case(case_id) json_data = from_json(submission.get("deficiency_notice_params")) send_to = json_data.get("send_to") # We need to know which is the last party in the list # so we can modify the existing sub rather than clone it. party_counter = len(send_to) for case_role, participant_list in ( self._client.get_case_participants(case_id) or {} ).items(): for participant in participant_list.get("parties"): if participant.get("id") in send_to: contact = participant.get("primary_contact") party_counter -= 1 if contact: # don't try to send if there is no contact data = { "case_id": case_id, "submission_id": submission["id"], "organisation_id": participant.get("id"), "contact_id": contact.get("id"), } if party_counter: cloned_submission = self._client.clone_submission(**data) else: cloned_submission = self._client.update_submission(**data).get( "submission" ) context["full_name"] = contact.get("full_name") self._client.submission_notify( case_id=case_id, organisation_id=participant.get("id"), submission_id=cloned_submission["id"], values=context or {}, notice_type=SUBMISSION_NOTICE_TYPE_INVITE, ) return HttpResponse( json.dumps( { "alert": f'Sent {len(send_to)} request{"" if len(send_to) < 2 else "s"}', "redirect_url": f'/case/{case_id}/submission/{submission.get("id")}/' if len(send_to) < 2 else f"/case/{case_id}/submissions/", "error": None, } ), content_type="application/json", ) class OrganisationDetailsView(LoginRequiredMixin, View, TradeRemediesAPIClientMixin): def get(self, request, case_id, organisation_id, *args, **kwargs): client = self.client(request.user) item = request.GET.get("item") template = request.GET.get("template") result = {} case_submissions = client.get_submissions(case_id) idx_submissions = deep_index_items_by(case_submissions, "organisation/id") org_id = str(organisation_id) third_party_contacts = [] if item == "contacts": contacts = client.get_organisation_contacts(org_id, case_id) for contact in contacts: case = get(contact, "cases/" + str(case_id)) or {} contact["primary"] = case.get("primary") all_case_invites = client.get_contact_case_invitations(case_id) if org_id in idx_submissions: org_submission_idx = deep_index_items_by(idx_submissions[org_id], "id") third_party_contacts = self.get_third_party_contacts( org_id, org_submission_idx, all_case_invites ) # `contacts` may also contain on-boarded third-party contacts that # have a user, so we need to prune these out. third_party_contact_ids = set([i["id"] for i in third_party_contacts]) contacts = [ i for i in itertools.filterfalse( lambda x: x["id"] in third_party_contact_ids, contacts ) ] result = { "contacts": contacts, "pre_release_invitations": client.get_system_boolean("PRE_RELEASE_INVITATIONS"), "invites": deep_index_items_by(all_case_invites, "contact/id"), "third_party_contacts": third_party_contacts, "case_role_id": request.GET.get("caserole"), } elif item == "submissions": result["submissions"] = idx_submissions.get(org_id, []) elif item == "details": result["party"] = client.get_organisation(organisation_id=organisation_id) if template: deep_update( result, { "case_id": case_id, "case": {"id": case_id}, "organisation": {"id": org_id}, }, ) return render(request, template, result) return HttpResponse(json.dumps({"result": result}), content_type="application/json") @staticmethod def get_third_party_contacts(organisation_id, submissions, invites): """Get third party contacts. Given an organisation, its submissions and all invitations for a case, build a list of third party invite contacts. We include the invite submissions yet to be approved but flag the contact with `submission_sufficient` :param (str) organisation_id: Organisation ID. :param (dict) submissions: The organisation's submissions keyed on id. :param (list) invites: All invites for a case. :returns (list): Contacts arising from 3rd party invite submissions. """ third_party_contacts = [] for invite in invites: if invite["submission"]: submission_id = invite["submission"]["id"] full_submission = submissions.get(submission_id) if not full_submission: # Submission not at this org continue if full_submission[0]["type"]["id"] != SUBMISSION_TYPE_THIRD_PARTY: # Not a third party submission continue inviting_organisation = full_submission[0]["organisation"]["id"] if inviting_organisation == organisation_id: submission_sufficient = full_submission[0]["status"]["sufficient"] invite["contact"]["is_third_party"] = True invite["contact"]["submission_id"] = submission_id invite["contact"]["submission_sufficient"] = submission_sufficient invite["contact"]["invited"] = invite["email_sent"] third_party_contacts.append(invite["contact"]) return third_party_contacts class CaseOrganisationView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "organisations/organisation_in_case.html" def add_page_data(self): organisation = self._client.get_organisation(organisation_id=self.organisation_id) caserole = None case_submissions = self._client.get_submissions_public(self.case_id, self.organisation_id) idx_submissions = deep_index_items_by(case_submissions, "organisation/id") submissions = idx_submissions.get(str(self.organisation_id), []) roi_app_submission = next( filter(lambda x: get(x, "type/key") in ["interest", "application"], submissions), None, ) cases = self._client.organisation_cases(self.organisation_id) user_cases = self._client.organisation_user_cases(self.organisation_id) cases_idx = deep_index_items_by_exists(cases, "archived_at") for case in cases: if get(case, "id") == str(self.case_id): caserole = case invites = self._client.get_contact_case_invitations( self.case_id, ) return { "case": self.case, "invites": invites, "party": organisation, "organisation": organisation, "cases_idx": cases_idx, "submissions": submissions, "user_cases": user_cases, "roi_app_submission": roi_app_submission, "caserole": caserole, } class OrganisationMatchView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/organisation_dedupe.html" def add_page_data(self): organisation = self._client.get_organisation( organisation_id=self.organisation_id, case_id=self.case_id ) org_matches = self._client.get_organisation_matches(self.organisation_id) org_matches = decorate_orgs(org_matches, self.organisation_id) return { "case": self.case, "organisation": organisation, "org_matches": org_matches, } class FilesView(CaseBaseView): """ View all case documents """ groups_required = SECURITY_GROUPS_TRA template_name = "cases/files.html" def add_page_data(self): tab = self.request.GET.get("tab", "respondent") sort = self.request.GET.get("sort") direction = self.request.GET.get("dir", "asc") submission_id = self.request.GET.get("submission_id") collapse_identical = self.request.GET.get("collapse_identical", "false") in ( "true", "1", "Y", ) tabs = { "tabList": [ {"label": "Respondent", "value": "respondent"}, {"label": "Investigator", "value": "investigator"}, ], "value": tab, } case_enums = self._client.get_all_case_enums(direction=DIRECTION_TRA_TO_PUBLIC) case_files = self._client.get_case_documents( case_id=self.case_id, source=tab, submission_id=submission_id, order_by=sort, order_dir=direction, ) submission = None if submission_id: submission = self._client.get_submission(self.case_id, submission_id) return { "tabs": tabs, "tab": tab, "case_enums": case_enums, "file_list": case_files, "sort": sort, "dir": direction, "collapse_identical": collapse_identical, "submission": submission, "pre_document_search": self._client.get_system_boolean("PRE_DOCUMENT_SEARCH"), } def post(self, request, case_id, *args, **kwargs): action = request.POST.get("action") name = request.POST.get("name") confirm = request.POST.get("confirm") == "true" tab = request.POST.get("tab", "respondent") document_ids = request.POST.getlist("document_id") if document_ids: if action == "issue" and confirm: submission_type_id = request.POST.get("submission_type_id") response = self._client.issue_documents_to_case( case_id=case_id, name=name, document_ids=document_ids, submission_type_id=submission_type_id, ) elif action == "confidential": response = self._client.toggle_documents_confidentiality( case_id=case_id, document_ids=document_ids ) return redirect(f"/case/{case_id}/files/?tab={tab}") class FileBrowseView(View, TradeRemediesAPIClientMixin): def get(self, request, case_id, *args, **kwargs): _client = self.client(request.user) case_files = _client.get_case_documents(case_id=case_id, source="investigator") # Add application bundle documents case_files.extend(_client.get_system_documents()) return HttpResponse(json.dumps(case_files), content_type="application/json") class WorkflowEditor(CaseBaseView): groups_required = SECURITY_GROUPS_TRA permission_required = ("workflow_editor",) template_name = "cases/workflow_editor.html" def add_page_data(self): case_workflow = self._client.get_case_workflow(self.case_id) return { "workflow": case_workflow.get("workflow"), "state": case_workflow.get("state"), } def post(self, request, case_id, *args, **kwargs): workflow = request.POST.get("workflow") self._client.save_case_workflow(case_id, workflow) return HttpResponse(json.dumps({"saved": 1}), content_type="application/json") class ActionsView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/actions.html" def add_page_data(self): permissions = {} for permission_key in self.request.user.permissions: permissions[permission_key] = 1 case_workflow = self._client.get_case_workflow(self.case_id) return { "workflow": case_workflow.get("workflow"), "state": case_workflow.get("state"), "permissions": permissions, } class StateView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/action.html" def post(self, request, case_id, state_key=None, *args, **kwargs): value = request.POST.get(state_key) state_map = self._client.set_case_workflow_state(case_id, [state_key], {state_key: value}) return HttpResponse( json.dumps({"workflow_state": state_map}), content_type="application/json" ) class ActionView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/action.html" def get_state_from_children(self, item): any_mode = item.get("required") # this is a bodge and the logic is reverse state = None completed = False if any_mode else True for child in item.get("children", []): value = self.get_value(child.get("key")) if value: state = state or "in-progress" if any_mode: if value == "complete": completed = True else: if value != "complete": completed = False return "complete" if state and completed else state state_map = {} def get_value(self, key): return (self.state_map.get(key) or [""])[0] def set_value(self, key, value): arr = self.state_map.get(key) or [""] arr[0] = value self.state_map[key] = arr def post(self, request, case_id, action_id=None, *args, **kwargs): # noqa: C901 values = {} node_keys = [] action_key = request.POST.get("action-key") btn_action = request.POST.get("btn_action") complete = True error = False state = "" wf = self._client.get_case_workflow(case_id) workflow = wf.get("workflow") self.state_map = wf.get("state") index = key_by(workflow["root"], "key", "children") action = index.get(action_key.lower(), {}) for task in action.get("children", []): response_type = task.get("response_type", {}).get("name", "") if response_type.lower() not in ( "notesection", "timer", "label", ): # notes don't count as in-progress task_key = task.get("key") old_val = self.get_value(task_key) new_val = request.POST.get(task_key) if old_val != new_val: values[task_key] = new_val node_keys.append(task_key) if not new_val: if task.get("required"): complete = False else: if new_val != "na": state = "in-progress" if complete: state = "complete" if (self.get_value(action_key) or "") != state: values[action_key] = state node_keys.append(action_key) self.set_value(action_key, state) # ripple the state down the tree loc_action = action while loc_action.get("parent_key"): loc_action = index.get(loc_action.get("parent_key")) loc_key = loc_action.get("key") loc_state = self.get_state_from_children(loc_action) if (self.get_value(loc_key) or "") != loc_state: values[loc_key] = loc_state node_keys.append(loc_key) self.set_value(loc_key, loc_state) if any(values): self.state_map = self._client.set_case_workflow_state(case_id, node_keys, values) if error: action_id = action.get("id") return redirect(f"/case/{case_id}/action/{action_id}") else: return HttpResponse( json.dumps({"workflow_state": self.state_map}), content_type="application/json", ) class NavSectionView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/nav_section.html" def post(self, request, case_id, *args, **kwargs): content_id = kwargs.get("nav_section_id") response = self._client.set_case_content( case_id, content_id=content_id, content=request.POST ) content_id = response.get("id") return redirect(f"/case/{case_id}/section/{content_id}") def add_page_data(self): return {} class AuditView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/audit.html" def add_page_data(self): milestone = self.request.GET.get("milestone", "true") == "true" limit = int(self.request.GET.get("limit", self.limit)) audit_data = self._client.get_audit( case_id=self.case_id, start=self.start, limit=limit, milestone=milestone ) url = reverse("case_audit", kwargs={"case_id": self.case_id}) prev_url = next_url = None prev_page = max(0, self.start - limit) milestone_flag = f"milestone={milestone}".lower() if len(audit_data) >= limit: next_page = max(0, self.start + limit) next_url = f"{url}?{milestone_flag}&start={next_page}" if next_page > limit: prev_url = f"{url}?{milestone_flag}&start={prev_page}" self.start = next_page else: self.start = prev_page + len(audit_data) if prev_page: prev_url = f"{url}?{milestone_flag}&start={prev_page}" return { "milestone": milestone, "events": audit_data, "next_url": next_url, "prev_url": prev_url, } class CaseAuditExport(LoginRequiredMixin, View, TradeRemediesAPIClientMixin): groups_required = SECURITY_GROUPS_TRA def get(self, request, case_id, *args, **kwargs): file = self.client(request.user).get_audit_export(case_id) response = HttpResponse(file, content_type="application/vnd.ms-excel") response["Content-Disposition"] = "attachment; filename=trade_remedies_export.xlsx" return response class NoteView(LoginRequiredMixin, View, TradeRemediesAPIClientMixin): groups_required = SECURITY_GROUPS_TRA def get( self, request, case_id, content_type=None, model_id=None, model_key=None, *args, **kwargs, ): notes = self.client(request.user).get_notes( case_id, content_type, model_id, model_key=model_key ) return HttpResponse(json.dumps(notes), content_type="application/json") def post(self, request, case_id, note_id=None, *args, **kwargs): # noqa: C901 entity_id = request.POST.get("model_id") model_key = request.POST.get("model_key") content_type = request.POST.get("content_type") client = self.client(request.user) content = request.POST.get("content") if note_id is None: result = client.create_note( case_id=case_id, content_type=content_type, model_id=entity_id, model_key=model_key, note_text=content, ) note_id = result.get("id") else: delete_list = request.POST.getlist("delete_list") if delete_list: for document_id in delete_list: deleted = client.delete_note_document(case_id, note_id, document_id) conf_list = request.POST.getlist("set_confidential") if conf_list: for document_id in conf_list: result = client.update_note_document( case_id, note_id, document_id, "confidential" ) nonconf_list = request.POST.getlist("set_non-confidential") if nonconf_list: for document_id in nonconf_list: result = client.update_note_document( case_id, note_id, document_id, "non-confidential" ) result = client.update_note(case_id, note_id, content) file_meta = request.POST.getlist("file-meta") files = request.FILES.getlist("files") for idx, _file in enumerate(files): try: _file.readline() # Important, will raise VirusFoundInFileException if infected except VirusFoundInFileException: # Display a fake doc in the widget until # a poll for success clears it msg = "File upload aborted: malware detected in file!" document = { "name": msg, "safe": False, } result["documents"].append(document) else: document = { "document_name": _file.original_name, "name": _file.name, "size": _file.file_size, } result = client.add_note_document( case_id=case_id, note_id=note_id, document=json.dumps(document), confidentiality=file_meta[idx], ) redirect_url = request.POST.get("redirect") if redirect_url: return internal_redirect(redirect_url, "/") else: # Return note json to be rendered at the client return HttpResponse(json.dumps(result), content_type="application/json") class PublicFileView(CaseBaseView): groups_required = SECURITY_GROUPS_TRA template_name = "cases/public_file.html" def add_page_data(self): tab = self.request.GET.get("tab", "all") tabs = { "tabList": [ {"label": "All", "value": "all"}, {"label": "Notices", "value": "tra"}, {"label": "Business", "value": "business"}, {"label": "Withdrawn", "value": "withdrawn"}, ], "value": tab, } case_submissions = self._client.get_submissions(self.case_id, show_global=True) by_tra = deep_index_items_by_exists(case_submissions, "is_tra") tra_by_published = deep_index_items_by_exists(by_tra.get("true"), "issued_at") by_published = deep_index_items_by_exists(case_submissions, "issued_at") if tab == "all": submissions = by_published.get("true") if tab == "tra": submissions = deep_index_items_by(by_published.get("true"), "is_tra").get("true") if tab == "business": submissions = deep_index_items_by(by_published.get("true"), "is_tra").get("") if tab == "withdrawn": submissions = deep_index_items_by(by_published.get("false"), "is_tra").get("true") return { "tabs": tabs, "submissions": submissions, "public_base_url": settings.PUBLIC_BASE_URL, } class CaseFormView(LoginRequiredMixin, TemplateView, TradeRemediesAPIClientMixin): groups_required = SECURITY_GROUPS_TRA template_name = "cases/case_form.html" def get_context(self, client, case_id=None): if case_id: case = client.get_case(case_id) else: case = { "new": True, "id": "", "organisation": {"id": ""}, "type": {"id": "1"}, } enums = client.get_all_case_enums() gov_bodies = client.get_organisations(gov_body=True) country_dict = {} for country in countries: country_dict[country[0]] = country[1] context = { "body_classes": "full-width", "case": case, "organisations": gov_bodies, "country_dict": country_dict, "organisation_name": case.get("organisation", {}).get("name") or "Secretary of State", "contact_country": "GB", "submission": {"type": {"id": 4}}, "tra_team_names": [ settings.ORGANISATION_NAME, settings.ORGANISATION_INITIALISM + " Team 1", settings.ORGANISATION_INITIALISM + " Team 2", settings.ORGANISATION_INITIALISM + " Team 3", ], } context.update(enums) # context['countries'] = countries[0] return context def get(self, request, case_id=None, *args, **kwargs): client = self.client(request.user) context = self.get_context(client, case_id) return render(request, self.template_name, context) def post(self, request, case_id=None, *args, **kwargs): post_data = { "id": case_id, } non_required_fields = [ "submission_status_id", "case_name", "organisation_name", "organisation_id", # 'organisation_address', 'organisation_post_code', 'companies_house_id', # 'contact_name', 'contact_email', 'contact_phone', 'contact_address', # 'contact_country', ] error_lookup = { "case_type_id": "Case type", "product_name": "Product name", "submission_type_id": "Submission type", "sector_id": "Product sector", "product_description": "Product description", "export_country_code": "Export country", "hs_code": "Product code", } required_fields = list(error_lookup.keys()) list_fields = ["export_country_code", "hs_code"] case_fields = required_fields + non_required_fields errors = {} client = self.client(request.user) if request.POST.get("case_type_id") in ALL_REGION_ALLOWED_TYPE_IDS: required_fields.remove("export_country_code") for field in case_fields: post_data[field] = ( compact_list(request.POST.getlist(field)) if field in list_fields else request.POST.get(field) ) for field in required_fields: if field in error_lookup and not post_data.get(field): fieldname = error_lookup.get(field) errors[field] = f"{fieldname} is required" for i, code in enumerate(post_data.get("hs_code")): if len(str(code)) not in (6, 7, 8, 9, 10): # temporary validation errors["hs_code"] = "HS codes should be between 6 and 10 digits" if not errors: post_data["ex_oficio"] = True result = client.submit_full_case_data(post_data) return redirect("/cases/") else: context = self.get_context(client, case_id) context["errors"] = errors context.update(post_data) return render(request, self.template_name, context) class InviteContactView(CaseBaseView): """ Invite a contact to the case """ groups_required = SECURITY_GROUPS_TRA template_name = "cases/invite.html" raise_exception = True def get_organisation_admin_user_contact(self, organisation_id): contact = None organisation = self._client.get_organisation(organisation_id) admin_user = [ user for user in organisation.get("users", []) if user.get("security_group") == SECURITY_GROUP_ORGANISATION_OWNER ] if admin_user: user = self._client.get_user(admin_user[0]["user_id"]) contact = user.get("contact") contact["organisation"] = organisation return contact def add_page_data(self): contact = None organisation = None if self.kwargs.get("organisation_id"): organisation = self._client.get_organisation(self.kwargs.get("organisation_id")) if self.kwargs.get("contact_id"): contact = self._client.get_contact(self.kwargs["contact_id"]) form_url = f"/case/{self.case['id']}/invite/{self.kwargs['contact_id']}/as/{self.kwargs['case_role_id']}/" # noqa: E501 if organisation: form_url = f"{form_url}for/{organisation['id']}/" elif self.kwargs.get("organisation_id"): contact = self.get_organisation_admin_user_contact(self.kwargs["organisation_id"]) form_url = f"/case/{self.case['id']}/invite/organisation/{self.kwargs['organisation_id']}/as/{self.kwargs['case_role_id']}/" # noqa: E501 if not organisation: organisation = contact["organisation"] notification_template = self._client.get_notification_template( "NOTIFY_INFORM_INTERESTED_PARTIES" ) deep_update( self.case, self._client.get_case( self.case_id, fields=json.dumps( { "Case": { "latest_notice_of_initiation_url": 0, "registration_deadline": 0, "product": 0, } } ), ), ) case_number = self.case["reference"] email = notify_contact_email(self._client, case_number) footer = notify_footer(self._client, email) values = { "full_name": contact["name"], "product": get(self.case, "product/name"), "case_number": case_number, "case_name": self.case["name"], "notice_of_initiation_url": self.case.get("latest_notice_of_initiation_url"), "company_name": organisation["name"], "deadline": parse_api_datetime( get(self.case, "registration_deadline"), settings.FRIENDLY_DATE_FORMAT ), "footer": footer, "guidance_url": self._client.get_system_parameters("LINK_HELP_BOX_GUIDANCE")["value"], "email": email, "login_url": f"{settings.PUBLIC_BASE_URL}", } context = { "form_url": form_url, "editable_fields": ["full_name", "product"], "case": self.case, "contact": contact, "case_role_id": self.kwargs["case_role_id"], "parsed_template": parse_notify_template(notification_template["body"], values), "values": values, "organisation": organisation, "organisation_id": self.kwargs.get("organisation_id"), } return context def post( self, request, contact_id=None, case_id=None, case_role_id=None, organisation_id=None, *args, **kwargs, ): notify_keys = ["full_name", "product"] notify_data = {key: request.POST.get(key) for key in notify_keys} if organisation_id and contact_id: notify_data["organisation_id"] = organisation_id elif organisation_id and not contact_id: contact = self.get_organisation_admin_user_contact(organisation_id) contact_id = contact["id"] response = self._client.invite_contact(case_id, contact_id, case_role_id, notify_data) return HttpResponse(json.dumps(response), content_type="application/json") class IssueFilesFormView(CaseBaseView): """ Issue files to case """ groups_required = SECURITY_GROUPS_TRA template_name = "widgets/issue_files_form.html" def add_page_data(self): case_enums = self._client.get_all_case_enums() return { "case_enums": case_enums, "case": self.case, } class CaseBundlesView(CaseBaseView): """ Assign documents to the case directly (not via submissions) """ groups_required = SECURITY_GROUPS_TRA template_name = "cases/case_bundles.html" def add_page_data(self): list_mode = self.request.GET.get("tab", "live") tabs = { "value": list_mode, "tabList": [ {"label": "Live", "value": "live", "sr_text": "Show live bundles"}, {"label": "Draft", "value": "draft", "sr_text": "Show draft bundles"}, ], } case_bundles = self._client.get_case_submission_bundles( case_id=self.case["id"], status=list_mode.upper(), ) return { "bundles": case_bundles, "error": self.kwargs.get("error"), "tabs": tabs, "status": list_mode, } @method_decorator(csrf_exempt, name="dispatch") class CaseBundleView(CaseBaseView): """ View and edit a specific bundle full of documents """ groups_required = SECURITY_GROUPS_TRA template_name = "cases/case_bundle_builder.html" def add_page_data(self): case_enums = self._client.get_all_case_enums() bundle = None bundle_id = self.kwargs.get("bundle_id") virus = self.request.GET.get("virus") upload_error = self.request.GET.get("upload_error") return_data = { "virus": virus, "upload_error": upload_error, } if bundle_id: bundle = self._client.get_case_submission_bundles( case_id=self.case["id"], bundle_id=self.kwargs.get("bundle_id") ) return_data.update( { "bundle": bundle, "submission_types": case_enums["submission_types"], } ) return return_data def post(self, request, case_id, bundle_id=None, *args, **kwargs): # noqa: C901 name = request.POST.get("name") data = pluck(request.POST, ["name", "description"]) btn_value = request.POST.get("btn-value") if btn_value == "send": data["status"] = "LIVE" # Upload documents if bundle_id: meta_raw = request.POST.getlist("meta") meta = [json.loads(block) for block in meta_raw] file_details = deep_index_items_by(meta, "name") for _file in request.FILES.getlist("files"): try: _file.readline() # Important, will raise VirusFoundInFileException if infected original_file_name = _file.original_name details = file_details.get(original_file_name.lower())[0] confidential = details.get("confidential") document_type = details.get("submission_document_type") document = self._client.upload_document( case_id=str(case_id), data={ "bundle_id": bundle_id, "confidential": confidential, "submission_document_type": document_type, "document_name": original_file_name, "file_name": _file.name, "file_size": _file.file_size, }, ) except (VirusFoundInFileException, APIException) as e: redirect_url = f"/case/{case_id}/bundle/{bundle_id}/?" msg = "File upload aborted: " if isinstance(e, VirusFoundInFileException): redirect_url += "virus=true" else: msg += f"{e}" redirect_url += f"upload_error={msg}" logger.warning(f"{msg}") return HttpResponse( json.dumps({"redirect_url": redirect_url}), content_type="application/json", ) # Attach existing documents to this bundle if case_files := request.POST.getlist("case_files"): file_details_by_id = deep_index_items_by(meta, "file/id") for case_file_id in case_files: details = (file_details_by_id.get(case_file_id) or [])[0] document = self._client.attach_document( case_id=str(case_id), data={ "bundle_id": bundle_id, "submission_document_type": details.get("submission_document_type"), }, document_id=case_file_id, ) else: data = pluck(request.POST, ["name", "submission_type_id"]) data["case_id"] = case_id # Anything else to send? response = None if data: response = self._client.set_case_submission_bundle(bundle_id=bundle_id, data=data) ret = {"result": "ok", "status": data.get("status")} response_id = response and response.get("id") if response_id: ret["redirect_url"] = f"/case/{case_id}/bundle/{response_id}/" return HttpResponse(json.dumps(ret), content_type="application/json") def delete(self, request, case_id, document_id, *args, **kwargs): response = self._client.delete_case_submission_bundle(case_id, document_id) return redirect(f"/case/{case_id}/documents/") class SubmissionInviteNotifyView(CaseBaseView): """ Notify an invitee about an invitation to case. """ groups_required = SECURITY_GROUPS_TRA raise_exception = True template_name = "cases/invite.html" def add_page_data(self): """Add page data. CaseBaseView override. """ case_id = self.kwargs.get("case_id") submission_id = self.kwargs.get("submission_id") contact_id = self.kwargs.get("contact_id") case = self._client.get_case(case_id) submission = self._client.get_submission(case_id, submission_id) inviting_organisation = submission["organisation"] invited_contact = self._client.get_contact(contact_id) inviting_contact = submission.get("contact") or {} notification_template = self._client.get_notification_template("NOTIFY_THIRD_PARTY_INVITE") form_url = f"/case/{case_id}/submission/{submission_id}/invite/{contact_id}/notify/" # Attempt to infer the invite URL login_url = f"{settings.PUBLIC_BASE_URL}" invites = self._client.get_invitations(case_id, submission_id) for i in invites: if i["contact"]["id"] == str(contact_id): invite = self._client.get_invite_details(i["id"]) code = invite.get("code") login_url = f"{login_url}/invitation/{code}/{case_id}/" break case_number = case["reference"] email = notify_contact_email(self._client, case_number) footer = notify_footer(self._client, email) values = { "full_name": invited_contact["name"], "case_name": case["name"], "invited_by_organisation": inviting_organisation["name"], "invited_by_name": inviting_contact["name"], "notice_of_initiation_url": self.case.get("latest_notice_of_initiation_url"), "login_url": login_url, "deadline": parse_api_datetime( get(self.case, "registration_deadline"), settings.FRIENDLY_DATE_FORMAT ), "footer": footer, "email": email, } context = { "form_url": form_url, "notification_template": notification_template, "submission": submission, "case": case, "contact": invited_contact, "parsed_template": parse_notify_template(notification_template["body"], values), "values": values, } return context def post(self, request, case_id, submission_id, contact_id, *args, **kwargs): notify_data = { "case_id": case_id, "submission_id": submission_id, "contact_id": contact_id, } response = self._client.action_third_party_invite( case_id=case_id, submission_id=submission_id, contact_id=contact_id, params=notify_data, ) return HttpResponse(json.dumps(response), content_type="application/json") class UpdateParentView(CaseBaseView): template_name = "cases/update_parent.html" linked_case_confirm_key = "LINKED_CASE_CONFIRM" cases_fields = json.dumps( { "Case": { "name": 0, "id": 0, "reference": 0, } } ) case_fields = json.dumps( {"Case": {"parent": {"id": 0}, "workflow_state": {linked_case_confirm_key: 0}}} ) def add_page_data(self): cases = self._client.get_cases(archived=True, all_cases=False, fields=self.cases_fields) case = self._client.get_case(self.case_id, fields=self.case_fields) return {"case": case, "cases": cases} def post(self, request, case_id, *args, **kwargs): link_confirm = request.POST.get("link_confirm") parent_id = request.POST.get("parent_id") _client = self.client(request.user) case = _client.get_case(case_id, fields=self.case_fields) if get(case, "parent/id") != parent_id: _client.set_case_data(case_id, {"parent_id": parent_id}) if (get(case, f"workflow_state/{self.linked_case_confirm_key}") or [0])[0] != link_confirm: _client.set_case_workflow_state( case_id, values={f"{self.linked_case_confirm_key}": link_confirm} ) return HttpResponse( json.dumps({"parent_id": parent_id, "link_confirm": link_confirm}), content_type="application/json", ) class NoticesView( LoginRequiredMixin, GroupRequiredMixin, TemplateView, TradeRemediesAPIClientMixin ): groups_required = SECURITY_GROUPS_TRA_ADMINS template_name = "cases/notices.html" def get(self, request): client = self.client(request.user) notices = client.get_notices() return render( request, self.template_name, { "body_classes": "full-width", "notices": notices, }, ) class NoticeView(LoginRequiredMixin, GroupRequiredMixin, TemplateView, TradeRemediesAPIClientMixin): groups_required = SECURITY_GROUPS_TRA_ADMINS template_name = "cases/notice.html" cases_fields = json.dumps({"Case": {"name": 0, "id": 0, "reference": 0}}) def get(self, request, notice_id=None): client = self.client(request.user) enums = client.get_all_case_enums() case_types = enums.get("case_types", []) cases = client.get_cases(archived=True, all_cases=False, fields=self.cases_fields) notice = {} if notice_id: notice = client.get_notice(notice_id) return render( request, self.template_name, { "body_classes": "full-width", "notice": notice, "cases": cases, "case_types": case_types, }, ) def post(self, request, notice_id=None): client = self.client(request.user) notice = client.create_update_notice( name=request.POST.get("name"), reference=request.POST.get("reference"), terminated_at=request.POST.get("terminated_at"), published_at=request.POST.get("published_at"), case_type=request.POST.get("case_type_id"), review_case=request.POST.get("review_case_id"), notice_id=notice_id, ) return redirect("/cases/notices/") class DocumentSearchView(CaseBaseView): template_name = "documents/documents.html" def add_page_data(self): query = self.request.GET.get("query") conf_status = self.request.GET.get("confidential_status") user_type = self.request.GET.get("user_type") response = self._client.search_documents( case_id=self.case_id, query=query, confidential_status=conf_status, user_type=user_type, ) return { "body_classes": "full-width", "documents": response.pop("results", []), "query": query, "conf_status": conf_status, **response, } class CaseTeamJsonView(LoginRequiredMixin, View, TradeRemediesAPIClientMixin): def get(self, request, case_id, **kwargs): team = self.client(request.user).get_case_team_members(case_id) return HttpResponse(json.dumps(team), content_type="application/json")
[ "logging.getLogger", "core.utils.pluck", "itertools.filterfalse", "core.utils.deep_index_items_by", "django.urls.reverse", "core.utils.notify_contact_email", "django.shortcuts.render", "core.utils.key_by", "re.split", "django.http.HttpResponse", "json.dumps", "core.utils.to_json", "core.utils.deep_index_items_by_exists", "cases.utils.decorate_orgs", "django.utils.timezone.now", "django.shortcuts.redirect", "core.utils.parse_notify_template", "json.loads", "core.utils.is_date", "core.utils.internal_redirect", "core.utils.index_users_by_group", "cases.submissions.SUBMISSION_TYPE_HELPERS.get", "core.utils.public_login_url", "cases.submissions.get_submission_deadline", "core.utils.notify_footer", "core.utils.deep_update", "django.utils.decorators.method_decorator", "core.utils.submission_contact", "core.utils.get" ]
[((1891, 1918), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (1908, 1918), False, 'import logging\n'), ((1933, 2031), 'json.dumps', 'json.dumps', (["{'Organisation': {'id': 0, 'has_non_draft_subs': 0, 'gov_body': 0,\n 'has_roi': 0}}"], {}), "({'Organisation': {'id': 0, 'has_non_draft_subs': 0, 'gov_body': \n 0, 'has_roi': 0}})\n", (1943, 2031), False, 'import json\n'), ((102937, 102983), 'django.utils.decorators.method_decorator', 'method_decorator', (['csrf_exempt'], {'name': '"""dispatch"""'}), "(csrf_exempt, name='dispatch')\n", (102953, 102983), False, 'from django.utils.decorators import method_decorator\n'), ((13054, 13462), 'json.dumps', 'json.dumps', (["{'Case': {'applicant': {'organisation': {'id': 0, 'name': 0,\n 'primary_contact': {'name': 0, 'email': 0, 'phone': 0, 'address': 0,\n 'post_code': 0, 'country': {'name': 0}, 'has_user': 0, 'user': {'id': 0,\n 'organisation': {'id': 0, 'name': 0}}}}}, 'parent': {'id': 0, 'name': 0,\n 'reference': 0, 'type': 0}, 'workflow_state': {'LINKED_CASE_CONFIRM': 0\n }, 'initiated_sequence': 0}}"], {}), "({'Case': {'applicant': {'organisation': {'id': 0, 'name': 0,\n 'primary_contact': {'name': 0, 'email': 0, 'phone': 0, 'address': 0,\n 'post_code': 0, 'country': {'name': 0}, 'has_user': 0, 'user': {'id': 0,\n 'organisation': {'id': 0, 'name': 0}}}}}, 'parent': {'id': 0, 'name': 0,\n 'reference': 0, 'type': 0}, 'workflow_state': {'LINKED_CASE_CONFIRM': 0\n }, 'initiated_sequence': 0}})\n", (13064, 13462), False, 'import json\n'), ((23916, 23982), 'json.dumps', 'json.dumps', (["{'Case': {'applicant': 0, 'product': 0, 'sources': 0}}"], {}), "({'Case': {'applicant': 0, 'product': 0, 'sources': 0}})\n", (23926, 23982), False, 'import json\n'), ((53700, 54073), 'json.dumps', 'json.dumps', (["{'Submission': {'id': 0, 'deficiency_notice_params': 0, 'organisation': {\n 'id': 0, 'name': 0}, 'contact': {'name': 0, 'email': 0, 'user': {'name':\n 0, 'email': 0, 'id': 0, 'organisation': {'organisation': {'id': 0,\n 'name': 0}}}, 'organisation': {'id': 0, 'name': 0}}, 'case': 0, 'type':\n 0, 'created_by': 0, 'organisation_case_role_outer': 0}}"], {}), "({'Submission': {'id': 0, 'deficiency_notice_params': 0,\n 'organisation': {'id': 0, 'name': 0}, 'contact': {'name': 0, 'email': 0,\n 'user': {'name': 0, 'email': 0, 'id': 0, 'organisation': {\n 'organisation': {'id': 0, 'name': 0}}}, 'organisation': {'id': 0,\n 'name': 0}}, 'case': 0, 'type': 0, 'created_by': 0,\n 'organisation_case_role_outer': 0}})\n", (53710, 54073), False, 'import json\n'), ((110832, 110890), 'json.dumps', 'json.dumps', (["{'Case': {'name': 0, 'id': 0, 'reference': 0}}"], {}), "({'Case': {'name': 0, 'id': 0, 'reference': 0}})\n", (110842, 110890), False, 'import json\n'), ((111009, 111105), 'json.dumps', 'json.dumps', (["{'Case': {'parent': {'id': 0}, 'workflow_state': {linked_case_confirm_key: 0}}}"], {}), "({'Case': {'parent': {'id': 0}, 'workflow_state': {\n linked_case_confirm_key: 0}}})\n", (111019, 111105), False, 'import json\n'), ((112877, 112935), 'json.dumps', 'json.dumps', (["{'Case': {'name': 0, 'id': 0, 'reference': 0}}"], {}), "({'Case': {'name': 0, 'id': 0, 'reference': 0}})\n", (112887, 112935), False, 'import json\n'), ((4588, 4682), 'django.shortcuts.render', 'render', (['request', 'template_name', "{'body_classes': body_class, 'cases': cases, 'tabs': tabs}"], {}), "(request, template_name, {'body_classes': body_class, 'cases': cases,\n 'tabs': tabs})\n", (4594, 4682), False, 'from django.shortcuts import render, redirect\n'), ((5520, 5846), 'json.dumps', 'json.dumps', (["{'Case': {'id': 0, 'name': 0, 'initiated_at': 0,\n 'decision_to_initiate,name': 0, 'reference': 0, 'sequence': 0, 'type': \n 0, 'archived_at': 0, 'archive_reason': {'name': 0}, 'submission_count':\n 0, 'participant_count': 0, 'stage': {'name': 0}, 'case_status': 0,\n 'organisation': {'id': 0, 'name': 0}}}"], {}), "({'Case': {'id': 0, 'name': 0, 'initiated_at': 0,\n 'decision_to_initiate,name': 0, 'reference': 0, 'sequence': 0, 'type': \n 0, 'archived_at': 0, 'archive_reason': {'name': 0}, 'submission_count':\n 0, 'participant_count': 0, 'stage': {'name': 0}, 'case_status': 0,\n 'organisation': {'id': 0, 'name': 0}}})\n", (5530, 5846), False, 'import json\n'), ((7301, 7345), 'django.shortcuts.render', 'render', (['request', 'self.template_name', 'context'], {}), '(request, self.template_name, context)\n', (7307, 7345), False, 'from django.shortcuts import render, redirect\n'), ((8893, 8934), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['sub_docs', '"""type/key"""'], {}), "(sub_docs, 'type/key')\n", (8912, 8934), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((9254, 9280), 'core.utils.key_by', 'key_by', (['confidential', '"""id"""'], {}), "(confidential, 'id')\n", (9260, 9280), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((11839, 11874), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/admin/"""'], {}), "(f'/case/{case_id}/admin/')\n", (11847, 11874), False, 'from django.shortcuts import render, redirect\n'), ((12847, 12887), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/milestones/"""'], {}), "(f'/case/{case_id}/milestones/')\n", (12855, 12887), False, 'from django.shortcuts import render, redirect\n'), ((15559, 15610), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_case_invites', '"""contact/id"""'], {}), "(all_case_invites, 'contact/id')\n", (15578, 15610), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((16843, 16874), 'core.utils.index_users_by_group', 'index_users_by_group', (['all_users'], {}), '(all_users)\n', (16863, 16874), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((17603, 17632), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/"""'], {}), "(f'/case/{case_id}/')\n", (17611, 17632), False, 'from django.shortcuts import render, redirect\n'), ((20960, 21009), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_submissions', '"""type/name"""'], {}), "(all_submissions, 'type/name')\n", (20979, 21009), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((22002, 22063), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['non_draft_submissions', '"""organisation/id"""'], {}), "(non_draft_submissions, 'organisation/id')\n", (22021, 22063), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((24947, 24998), 'cases.submissions.SUBMISSION_TYPE_HELPERS.get', 'SUBMISSION_TYPE_HELPERS.get', (["submission_type['key']"], {}), "(submission_type['key'])\n", (24974, 24998), False, 'from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline\n'), ((32964, 32997), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['meta', '"""name"""'], {}), "(meta, 'name')\n", (32983, 32997), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((33027, 33063), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['meta', '"""file/id"""'], {}), "(meta, 'file/id')\n", (33046, 33063), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((45672, 45728), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/submission/{submission_id}/"""'], {}), "(f'/case/{case_id}/submission/{submission_id}/')\n", (45680, 45728), False, 'from django.shortcuts import render, redirect\n'), ((47331, 47361), 'core.utils.submission_contact', 'submission_contact', (['submission'], {}), '(submission)\n', (47349, 47361), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((47777, 47843), 'cases.submissions.get_submission_deadline', 'get_submission_deadline', (['submission', 'settings.FRIENDLY_DATE_FORMAT'], {}), '(submission, settings.FRIENDLY_DATE_FORMAT)\n', (47800, 47843), False, 'from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline\n'), ((47914, 47961), 'core.utils.notify_contact_email', 'notify_contact_email', (['self._client', 'case_number'], {}), '(self._client, case_number)\n', (47934, 47961), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((47979, 48013), 'core.utils.notify_footer', 'notify_footer', (['self._client', 'email'], {}), '(self._client, email)\n', (47992, 48013), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((49138, 49177), 'django.shortcuts.render', 'render', (['request', 'template_name', 'context'], {}), '(request, template_name, context)\n', (49144, 49177), False, 'from django.shortcuts import render, redirect\n'), ((55780, 56006), 'django.shortcuts.render', 'render', (['request', 'self.template_name', "{'submission': submission, 'organisation': organisation, 'caserole':\n caserole, 'org_matches': org_matches, 'page_data': {'submission':\n submission, 'organisation': organisation}}"], {}), "(request, self.template_name, {'submission': submission,\n 'organisation': organisation, 'caserole': caserole, 'org_matches':\n org_matches, 'page_data': {'submission': submission, 'organisation':\n organisation}})\n", (55786, 56006), False, 'from django.shortcuts import render, redirect\n'), ((58782, 58846), 'cases.utils.decorate_orgs', 'decorate_orgs', (['org_matches', 'test_org_id'], {'exclude_case_id': 'case_id'}), '(org_matches, test_org_id, exclude_case_id=case_id)\n', (58795, 58846), False, 'from cases.utils import decorate_orgs\n'), ((61979, 62005), 'core.utils.get', 'get', (['caserole', '"""role/name"""'], {}), "(caserole, 'role/name')\n", (61982, 62005), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((62386, 62416), 'core.utils.submission_contact', 'submission_contact', (['submission'], {}), '(submission)\n', (62404, 62416), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((63640, 63725), 'django.shortcuts.render', 'render', (['request', '"""cases/verify/notify.html"""', "{'parsed_template': parsed_template}"], {}), "(request, 'cases/verify/notify.html', {'parsed_template':\n parsed_template})\n", (63646, 63725), False, 'from django.shortcuts import render, redirect\n'), ((65040, 65106), 'cases.submissions.get_submission_deadline', 'get_submission_deadline', (['submission', 'settings.FRIENDLY_DATE_FORMAT'], {}), '(submission, settings.FRIENDLY_DATE_FORMAT)\n', (65063, 65106), False, 'from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline\n'), ((65163, 65210), 'core.utils.notify_contact_email', 'notify_contact_email', (['self._client', 'case_number'], {}), '(self._client, case_number)\n', (65183, 65210), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((65228, 65262), 'core.utils.notify_footer', 'notify_footer', (['self._client', 'email'], {}), '(self._client, email)\n', (65241, 65262), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((67989, 68028), 'django.shortcuts.render', 'render', (['request', 'template_name', 'context'], {}), '(request, template_name, context)\n', (67995, 68028), False, 'from django.shortcuts import render, redirect\n'), ((68377, 68443), 'cases.submissions.get_submission_deadline', 'get_submission_deadline', (['submission', 'settings.FRIENDLY_DATE_FORMAT'], {}), '(submission, settings.FRIENDLY_DATE_FORMAT)\n', (68400, 68443), False, 'from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline\n'), ((72133, 72189), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['case_submissions', '"""organisation/id"""'], {}), "(case_submissions, 'organisation/id')\n", (72152, 72189), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((76510, 76566), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['case_submissions', '"""organisation/id"""'], {}), "(case_submissions, 'organisation/id')\n", (76529, 76566), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((76970, 77018), 'core.utils.deep_index_items_by_exists', 'deep_index_items_by_exists', (['cases', '"""archived_at"""'], {}), "(cases, 'archived_at')\n", (76996, 77018), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((78008, 78056), 'cases.utils.decorate_orgs', 'decorate_orgs', (['org_matches', 'self.organisation_id'], {}), '(org_matches, self.organisation_id)\n', (78021, 78056), False, 'from cases.utils import decorate_orgs\n'), ((80738, 80783), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/files/?tab={tab}"""'], {}), "(f'/case/{case_id}/files/?tab={tab}')\n", (80746, 80783), False, 'from django.shortcuts import render, redirect\n'), ((84277, 84320), 'core.utils.key_by', 'key_by', (["workflow['root']", '"""key"""', '"""children"""'], {}), "(workflow['root'], 'key', 'children')\n", (84283, 84320), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((86729, 86778), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/section/{content_id}"""'], {}), "(f'/case/{case_id}/section/{content_id}')\n", (86737, 86778), False, 'from django.shortcuts import render, redirect\n'), ((87260, 87315), 'django.urls.reverse', 'reverse', (['"""case_audit"""'], {'kwargs': "{'case_id': self.case_id}"}), "('case_audit', kwargs={'case_id': self.case_id})\n", (87267, 87315), False, 'from django.urls import reverse\n'), ((88344, 88403), 'django.http.HttpResponse', 'HttpResponse', (['file'], {'content_type': '"""application/vnd.ms-excel"""'}), "(file, content_type='application/vnd.ms-excel')\n", (88356, 88403), False, 'from django.http import HttpResponse\n'), ((92576, 92630), 'core.utils.deep_index_items_by_exists', 'deep_index_items_by_exists', (['case_submissions', '"""is_tra"""'], {}), "(case_submissions, 'is_tra')\n", (92602, 92630), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((92741, 92798), 'core.utils.deep_index_items_by_exists', 'deep_index_items_by_exists', (['case_submissions', '"""issued_at"""'], {}), "(case_submissions, 'issued_at')\n", (92767, 92798), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((94985, 95029), 'django.shortcuts.render', 'render', (['request', 'self.template_name', 'context'], {}), '(request, self.template_name, context)\n', (94991, 95029), False, 'from django.shortcuts import render, redirect\n'), ((99626, 99673), 'core.utils.notify_contact_email', 'notify_contact_email', (['self._client', 'case_number'], {}), '(self._client, case_number)\n', (99646, 99673), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((99691, 99725), 'core.utils.notify_footer', 'notify_footer', (['self._client', 'email'], {}), '(self._client, email)\n', (99704, 99725), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((104068, 104112), 'core.utils.pluck', 'pluck', (['request.POST', "['name', 'description']"], {}), "(request.POST, ['name', 'description'])\n", (104073, 104112), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((107588, 107627), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/documents/"""'], {}), "(f'/case/{case_id}/documents/')\n", (107596, 107627), False, 'from django.shortcuts import render, redirect\n'), ((109103, 109150), 'core.utils.notify_contact_email', 'notify_contact_email', (['self._client', 'case_number'], {}), '(self._client, case_number)\n', (109123, 109150), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((109168, 109202), 'core.utils.notify_footer', 'notify_footer', (['self._client', 'email'], {}), '(self._client, email)\n', (109181, 109202), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((112484, 112575), 'django.shortcuts.render', 'render', (['request', 'self.template_name', "{'body_classes': 'full-width', 'notices': notices}"], {}), "(request, self.template_name, {'body_classes': 'full-width',\n 'notices': notices})\n", (112490, 112575), False, 'from django.shortcuts import render, redirect\n'), ((113315, 113446), 'django.shortcuts.render', 'render', (['request', 'self.template_name', "{'body_classes': 'full-width', 'notice': notice, 'cases': cases,\n 'case_types': case_types}"], {}), "(request, self.template_name, {'body_classes': 'full-width', 'notice':\n notice, 'cases': cases, 'case_types': case_types})\n", (113321, 113446), False, 'from django.shortcuts import render, redirect\n'), ((114094, 114121), 'django.shortcuts.redirect', 'redirect', (['"""/cases/notices/"""'], {}), "('/cases/notices/')\n", (114102, 114121), False, 'from django.shortcuts import render, redirect\n'), ((3231, 3339), 'core.utils.deep_update', 'deep_update', (['fields', "{'Case': {'workflow_state': {'MEASURE_EXPIRY': 0,\n 'DETERMINATION_ACTIVE_DATE': 0}}}"], {}), "(fields, {'Case': {'workflow_state': {'MEASURE_EXPIRY': 0,\n 'DETERMINATION_ACTIVE_DATE': 0}}})\n", (3242, 3339), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((7868, 7913), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_documents', '"""version"""'], {}), "(all_documents, 'version')\n", (7887, 7913), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((19940, 19970), 'core.utils.get', 'get', (['submission', '"""status/sent"""'], {}), "(submission, 'status/sent')\n", (19943, 19970), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((24683, 24715), 'core.utils.get', 'get', (['submission', '"""created_by/id"""'], {}), "(submission, 'created_by/id')\n", (24686, 24715), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((26560, 26603), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_parties', '"""sampled"""'], {}), "(all_parties, 'sampled')\n", (26579, 26603), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((32900, 32917), 'json.loads', 'json.loads', (['block'], {}), '(block)\n', (32910, 32917), False, 'import json\n'), ((37412, 37439), 'core.utils.get', 'get', (['submission', '"""type/key"""'], {}), "(submission, 'type/key')\n", (37415, 37439), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((40605, 40628), 'json.dumps', 'json.dumps', (['return_data'], {}), '(return_data)\n', (40615, 40628), False, 'import json\n'), ((43594, 43624), 'json.loads', 'json.loads', (['document_list_json'], {}), '(document_list_json)\n', (43604, 43624), False, 'import json\n'), ((44185, 44205), 'json.dumps', 'json.dumps', (['response'], {}), '(response)\n', (44195, 44205), False, 'import json\n'), ((44495, 44515), 'json.dumps', 'json.dumps', (['response'], {}), '(response)\n', (44505, 44515), False, 'import json\n'), ((48366, 48384), 'core.utils.public_login_url', 'public_login_url', ([], {}), '()\n', (48382, 48384), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((49051, 49111), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (49072, 49111), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((51584, 51654), 'json.dumps', 'json.dumps', (["{'error': 'No deficiency status for this submission type'}"], {}), "({'error': 'No deficiency status for this submission type'})\n", (51594, 51654), False, 'import json\n'), ((52954, 52980), 're.split', 're.split', (['regex', 'param_key'], {}), '(regex, param_key)\n', (52962, 52980), False, 'import re\n'), ((57716, 57808), 'core.utils.pluck', 'pluck', (['request.POST', "['LOA_contact_id', 'name', 'email', 'address', 'org_name', 'phone']"], {}), "(request.POST, ['LOA_contact_id', 'name', 'email', 'address',\n 'org_name', 'phone'])\n", (57721, 57808), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((57891, 57909), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (57901, 57909), False, 'import json\n'), ((60215, 60243), 'json.dumps', 'json.dumps', (["{'result': True}"], {}), "({'result': True})\n", (60225, 60243), False, 'import json\n'), ((61620, 61652), 'core.utils.pluck', 'pluck', (['request.POST', "['approve']"], {}), "(request.POST, ['approve'])\n", (61625, 61652), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((61691, 61709), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (61701, 61709), False, 'import json\n'), ((63273, 63333), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (63294, 63333), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((63545, 63577), 'core.utils.get', 'get', (['submission', '"""created_by/id"""'], {}), "(submission, 'created_by/id')\n", (63548, 63577), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((64068, 64096), 'json.dumps', 'json.dumps', (["{'result': True}"], {}), "({'result': True})\n", (64078, 64096), False, 'import json\n'), ((64614, 64644), 'core.utils.submission_contact', 'submission_contact', (['submission'], {}), '(submission)\n', (64632, 64644), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((65691, 65709), 'core.utils.public_login_url', 'public_login_url', ([], {}), '()\n', (65707, 65709), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((67251, 67311), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (67272, 67311), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((68955, 69050), 'json.dumps', 'json.dumps', (["{'redirect_url': f'/case/{case_id}/submission/{submission_id}/', 'error': None}"], {}), "({'redirect_url': f'/case/{case_id}/submission/{submission_id}/',\n 'error': None})\n", (68965, 69050), False, 'import json\n'), ((73935, 74037), 'core.utils.deep_update', 'deep_update', (['result', "{'case_id': case_id, 'case': {'id': case_id}, 'organisation': {'id': org_id}}"], {}), "(result, {'case_id': case_id, 'case': {'id': case_id},\n 'organisation': {'id': org_id}})\n", (73946, 74037), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((74179, 74212), 'django.shortcuts.render', 'render', (['request', 'template', 'result'], {}), '(request, template, result)\n', (74185, 74212), False, 'from django.shortcuts import render, redirect\n'), ((74241, 74271), 'json.dumps', 'json.dumps', (["{'result': result}"], {}), "({'result': result})\n", (74251, 74271), False, 'import json\n'), ((81158, 81180), 'json.dumps', 'json.dumps', (['case_files'], {}), '(case_files)\n', (81168, 81180), False, 'import json\n'), ((81812, 81836), 'json.dumps', 'json.dumps', (["{'saved': 1}"], {}), "({'saved': 1})\n", (81822, 81836), False, 'import json\n'), ((82760, 82801), 'json.dumps', 'json.dumps', (["{'workflow_state': state_map}"], {}), "({'workflow_state': state_map})\n", (82770, 82801), False, 'import json\n'), ((86096, 86143), 'django.shortcuts.redirect', 'redirect', (['f"""/case/{case_id}/action/{action_id}"""'], {}), "(f'/case/{case_id}/action/{action_id}')\n", (86104, 86143), False, 'from django.shortcuts import render, redirect\n'), ((88967, 88984), 'json.dumps', 'json.dumps', (['notes'], {}), '(notes)\n', (88977, 88984), False, 'import json\n'), ((91751, 91787), 'core.utils.internal_redirect', 'internal_redirect', (['redirect_url', '"""/"""'], {}), "(redirect_url, '/')\n", (91768, 91787), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((97057, 97076), 'django.shortcuts.redirect', 'redirect', (['"""/cases/"""'], {}), "('/cases/')\n", (97065, 97076), False, 'from django.shortcuts import render, redirect\n'), ((97243, 97287), 'django.shortcuts.render', 'render', (['request', 'self.template_name', 'context'], {}), '(request, self.template_name, context)\n', (97249, 97287), False, 'from django.shortcuts import render, redirect\n'), ((99810, 99840), 'core.utils.get', 'get', (['self.case', '"""product/name"""'], {}), "(self.case, 'product/name')\n", (99813, 99840), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((100697, 100757), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (100718, 100757), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((101637, 101657), 'json.dumps', 'json.dumps', (['response'], {}), '(response)\n', (101647, 101657), False, 'import json\n'), ((104420, 104453), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['meta', '"""name"""'], {}), "(meta, 'name')\n", (104439, 104453), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((106867, 106918), 'core.utils.pluck', 'pluck', (['request.POST', "['name', 'submission_type_id']"], {}), "(request.POST, ['name', 'submission_type_id'])\n", (106872, 106918), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((107368, 107383), 'json.dumps', 'json.dumps', (['ret'], {}), '(ret)\n', (107378, 107383), False, 'import json\n'), ((110028, 110088), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (110049, 110088), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((110618, 110638), 'json.dumps', 'json.dumps', (['response'], {}), '(response)\n', (110628, 110638), False, 'import json\n'), ((111647, 111669), 'core.utils.get', 'get', (['case', '"""parent/id"""'], {}), "(case, 'parent/id')\n", (111650, 111669), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((112035, 112101), 'json.dumps', 'json.dumps', (["{'parent_id': parent_id, 'link_confirm': link_confirm}"], {}), "({'parent_id': parent_id, 'link_confirm': link_confirm})\n", (112045, 112101), False, 'import json\n'), ((115047, 115063), 'json.dumps', 'json.dumps', (['team'], {}), '(team)\n', (115057, 115063), False, 'import json\n'), ((3753, 3771), 'json.dumps', 'json.dumps', (['fields'], {}), '(fields)\n', (3763, 3771), False, 'import json\n'), ((10874, 10888), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (10886, 10888), False, 'from django.utils import timezone\n'), ((15080, 15108), 'json.dumps', 'json.dumps', (["{'result': 'ok'}"], {}), "({'result': 'ok'})\n", (15090, 15108), False, 'import json\n'), ((24870, 24903), 'core.utils.get', 'get', (['full_user', '"""organisations/0"""'], {}), "(full_user, 'organisations/0')\n", (24873, 24903), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((31808, 31826), 'json.loads', 'json.loads', (['errors'], {}), '(errors)\n', (31818, 31826), False, 'import json\n'), ((33647, 33708), 'json.dumps', 'json.dumps', (["{'redirect_url': f'/case/{case_id}/submissions/'}"], {}), "({'redirect_url': f'/case/{case_id}/submissions/'})\n", (33657, 33708), False, 'import json\n'), ((38666, 38717), 'cases.submissions.SUBMISSION_TYPE_HELPERS.get', 'SUBMISSION_TYPE_HELPERS.get', (["submission_type['key']"], {}), "(submission_type['key'])\n", (38693, 38717), False, 'from cases.submissions import SUBMISSION_TYPE_HELPERS, get_submission_deadline\n'), ((39484, 39510), 're.split', 're.split', (['regex', 'param_key'], {}), '(regex, param_key)\n', (39492, 39510), False, 'import re\n'), ((51234, 51310), 'json.dumps', 'json.dumps', (["{'redirect_url': f'/case/{case_id}/submission/{submission_id}/'}"], {}), "({'redirect_url': f'/case/{case_id}/submission/{submission_id}/'})\n", (51244, 51310), False, 'import json\n'), ((54970, 55094), 'json.dumps', 'json.dumps', (["{'error':\n 'You cannot verify this organisation as they have not yet registered interest in this case.'\n }"], {}), "({'error':\n 'You cannot verify this organisation as they have not yet registered interest in this case.'\n })\n", (54980, 55094), False, 'import json\n'), ((55621, 55655), 'core.utils.get', 'get', (['submission', '"""organisation/id"""'], {}), "(submission, 'organisation/id')\n", (55624, 55655), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((61320, 61346), 'core.utils.get', 'get', (['caserole', '"""role/name"""'], {}), "(caserole, 'role/name')\n", (61323, 61346), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((62049, 62074), 'core.utils.get', 'get', (['caserole', '"""role/key"""'], {}), "(caserole, 'role/key')\n", (62052, 62074), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((72682, 72732), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['idx_submissions[org_id]', '"""id"""'], {}), "(idx_submissions[org_id], 'id')\n", (72701, 72732), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((73489, 73540), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_case_invites', '"""contact/id"""'], {}), "(all_case_invites, 'contact/id')\n", (73508, 73540), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((77062, 77077), 'core.utils.get', 'get', (['case', '"""id"""'], {}), "(case, 'id')\n", (77065, 77077), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((86207, 86253), 'json.dumps', 'json.dumps', (["{'workflow_state': self.state_map}"], {}), "({'workflow_state': self.state_map})\n", (86217, 86253), False, 'import json\n'), ((91894, 91912), 'json.dumps', 'json.dumps', (['result'], {}), '(result)\n', (91904, 91912), False, 'import json\n'), ((100126, 100165), 'core.utils.get', 'get', (['self.case', '"""registration_deadline"""'], {}), "(self.case, 'registration_deadline')\n", (100129, 100165), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((104352, 104369), 'json.loads', 'json.loads', (['block'], {}), '(block)\n', (104362, 104369), False, 'import json\n'), ((106285, 106321), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['meta', '"""file/id"""'], {}), "(meta, 'file/id')\n", (106304, 106321), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((109624, 109663), 'core.utils.get', 'get', (['self.case', '"""registration_deadline"""'], {}), "(self.case, 'registration_deadline')\n", (109627, 109663), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((20033, 20066), 'core.utils.get', 'get', (['submission', '"""status/default"""'], {}), "(submission, 'status/default')\n", (20036, 20066), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((21152, 21206), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_submissions', '"""status/default"""'], {}), "(all_submissions, 'status/default')\n", (21171, 21206), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((21355, 21404), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['draft_submissions', '"""version"""'], {}), "(draft_submissions, 'version')\n", (21374, 21404), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((29432, 29489), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['draft_submissions', '"""organisation_id"""'], {}), "(draft_submissions, 'organisation_id')\n", (29451, 29489), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((34165, 34180), 'core.utils.is_date', 'is_date', (['due_at'], {}), '(due_at)\n', (34172, 34180), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((52315, 52356), 'json.dumps', 'json.dumps', (["{'id': 0, 'type': {'key': 0}}"], {}), "({'id': 0, 'type': {'key': 0}})\n", (52325, 52356), False, 'import json\n'), ((52434, 52461), 'core.utils.get', 'get', (['submission', '"""type/key"""'], {}), "(submission, 'type/key')\n", (52437, 52461), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((53344, 53365), 'core.utils.get', 'get', (['submission', '"""id"""'], {}), "(submission, 'id')\n", (53347, 53365), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((53408, 53441), 'core.utils.to_json', 'to_json', (['deficiency_notice_params'], {}), '(deficiency_notice_params)\n', (53415, 53441), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((59943, 59977), 'core.utils.get', 'get', (['submission', '"""organisation/id"""'], {}), "(submission, 'organisation/id')\n", (59946, 59977), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((63152, 63170), 'core.utils.public_login_url', 'public_login_url', ([], {}), '()\n', (63168, 63170), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((73174, 73251), 'itertools.filterfalse', 'itertools.filterfalse', (["(lambda x: x['id'] in third_party_contact_ids)", 'contacts'], {}), "(lambda x: x['id'] in third_party_contact_ids, contacts)\n", (73195, 73251), False, 'import itertools\n'), ((99241, 99347), 'json.dumps', 'json.dumps', (["{'Case': {'latest_notice_of_initiation_url': 0, 'registration_deadline': 0,\n 'product': 0}}"], {}), "({'Case': {'latest_notice_of_initiation_url': 0,\n 'registration_deadline': 0, 'product': 0}})\n", (99251, 99347), False, 'import json\n'), ((111765, 111824), 'core.utils.get', 'get', (['case', 'f"""workflow_state/{self.linked_case_confirm_key}"""'], {}), "(case, f'workflow_state/{self.linked_case_confirm_key}')\n", (111768, 111824), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((8523, 8546), 'core.utils.get', 'get', (['parent_doc', '"""name"""'], {}), "(parent_doc, 'name')\n", (8526, 8546), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((20071, 20104), 'core.utils.get', 'get', (['submission', '"""type/direction"""'], {}), "(submission, 'type/direction')\n", (20074, 20104), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((29138, 29192), 'core.utils.deep_index_items_by', 'deep_index_items_by', (['all_submissions', '"""status/default"""'], {}), "(all_submissions, 'status/default')\n", (29157, 29192), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((39764, 39805), 'core.utils.get', 'get', (['deficiency_notice_params', 'matches[1]'], {}), '(deficiency_notice_params, matches[1])\n', (39767, 39805), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((40203, 40236), 'core.utils.to_json', 'to_json', (['deficiency_notice_params'], {}), '(deficiency_notice_params)\n', (40210, 40236), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((76705, 76723), 'core.utils.get', 'get', (['x', '"""type/key"""'], {}), "(x, 'type/key')\n", (76708, 76723), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((91563, 91583), 'json.dumps', 'json.dumps', (['document'], {}), '(document)\n', (91573, 91583), False, 'import json\n'), ((8486, 8514), 'core.utils.get', 'get', (['parent_doc', '"""type/name"""'], {}), "(parent_doc, 'type/name')\n", (8489, 8514), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((8767, 8788), 'core.utils.get', 'get', (['document', '"""name"""'], {}), "(document, 'name')\n", (8770, 8788), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((19174, 19191), 'core.utils.get', 'get', (['pt', 'sort_key'], {}), '(pt, sort_key)\n', (19177, 19191), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((20215, 20246), 'core.utils.get', 'get', (['submission', '"""status/draft"""'], {}), "(submission, 'status/draft')\n", (20218, 20246), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((20270, 20297), 'core.utils.get', 'get', (['submission', '"""type/key"""'], {}), "(submission, 'type/key')\n", (20273, 20297), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((36667, 36709), 'json.dumps', 'json.dumps', (["{'redirect_url': redirect_url}"], {}), "({'redirect_url': redirect_url})\n", (36677, 36709), False, 'import json\n'), ((106004, 106046), 'json.dumps', 'json.dumps', (["{'redirect_url': redirect_url}"], {}), "({'redirect_url': redirect_url})\n", (106014, 106046), False, 'import json\n'), ((8732, 8758), 'core.utils.get', 'get', (['document', '"""type/name"""'], {}), "(document, 'type/name')\n", (8735, 8758), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n'), ((11514, 11528), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (11526, 11528), False, 'from django.utils import timezone\n'), ((66983, 67043), 'core.utils.parse_notify_template', 'parse_notify_template', (["notification_template['body']", 'values'], {}), "(notification_template['body'], values)\n", (67004, 67043), False, 'from core.utils import deep_index_items_by, deep_index_items_by_exists, get, key_by, index_users_by_group, compact_list, submission_contact, public_login_url, parse_notify_template, parse_api_datetime, pluck, to_json, from_json, deep_update, internal_redirect, is_date, notify_footer, notify_contact_email\n')]
import json import requests from datetime import datetime from playsound import playsound tday=datetime.today().strftime('%Y-%m-%d') right_now=datetime.today().strftime('%I-%M-%p') response = requests.get("https://www.londonprayertimes.com/api/times/?format=json&key=0239f686-4423-408e-9a0c-7968a403d197&year=&month=") data=response.json() for key,value in data.items(): if value >= '03:30' and value < '06:00': print('It is asr time') #playsound('/home/danish/Downloads/adan.mp3')
[ "datetime.datetime.today", "requests.get" ]
[((198, 334), 'requests.get', 'requests.get', (['"""https://www.londonprayertimes.com/api/times/?format=json&key=0239f686-4423-408e-9a0c-7968a403d197&year=&month="""'], {}), "(\n 'https://www.londonprayertimes.com/api/times/?format=json&key=0239f686-4423-408e-9a0c-7968a403d197&year=&month='\n )\n", (210, 334), False, 'import requests\n'), ((99, 115), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (113, 115), False, 'from datetime import datetime\n'), ((148, 164), 'datetime.datetime.today', 'datetime.today', ([], {}), '()\n', (162, 164), False, 'from datetime import datetime\n')]
import unittest import datetime import rdflib # needed for eval(repr(...)) below from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN from rdflib.namespace import XSD def uformat(s): return s.replace("u'", "'") class TestLiteral(unittest.TestCase): def setUp(self): pass def test_repr_apostrophe(self): a = rdflib.Literal("'") b = eval(repr(a)) self.assertEqual(a, b) def test_repr_quote(self): a = rdflib.Literal('"') b = eval(repr(a)) self.assertEqual(a, b) def test_backslash(self): d = r""" <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" xmlns:foo="http://example.org/foo#"> <rdf:Description> <foo:bar>a\b</foo:bar> </rdf:Description> </rdf:RDF> """ g = rdflib.Graph() g.parse(data=d, format="xml") a = rdflib.Literal("a\\b") b = list(g.objects())[0] self.assertEqual(a, b) def test_literal_from_bool(self): l = rdflib.Literal(True) self.assertEqual(l.datatype, rdflib.XSD["boolean"]) class TestNew(unittest.TestCase): def testCantPassLangAndDatatype(self): self.assertRaises( TypeError, Literal, "foo", lang="en", datatype=URIRef("http://example.com/") ) def testFromOtherLiteral(self): l = Literal(1) l2 = Literal(l) self.assertTrue(isinstance(l.value, int)) self.assertTrue(isinstance(l2.value, int)) # change datatype l = Literal("1") l2 = Literal(l, datatype=rdflib.XSD.integer) self.assertTrue(isinstance(l2.value, int)) def testDatatypeGetsAutoURIRefConversion(self): # drewp disapproves of this behavior, but it should be # represented in the tests x = Literal("foo", datatype="http://example.com/") self.assertTrue(isinstance(x.datatype, URIRef)) x = Literal("foo", datatype=Literal("pennies")) self.assertEqual(x.datatype, URIRef("pennies")) class TestRepr(unittest.TestCase): def testOmitsMissingDatatypeAndLang(self): self.assertEqual(repr(Literal("foo")), uformat("rdflib.term.Literal(u'foo')")) def testOmitsMissingDatatype(self): self.assertEqual( repr(Literal("foo", lang="en")), uformat("rdflib.term.Literal(u'foo', lang='en')"), ) def testOmitsMissingLang(self): self.assertEqual( repr(Literal("foo", datatype=URIRef("http://example.com/"))), uformat( "rdflib.term.Literal(u'foo', datatype=rdflib.term.URIRef(u'http://example.com/'))" ), ) def testSubclassNameAppearsInRepr(self): class MyLiteral(Literal): pass x = MyLiteral("foo") self.assertEqual(repr(x), uformat("MyLiteral('foo')")) class TestDoubleOutput(unittest.TestCase): def testNoDanglingPoint(self): """confirms the fix for https://github.com/RDFLib/rdflib/issues/237""" vv = Literal("0.88", datatype=_XSD_DOUBLE) out = vv._literal_n3(use_plain=True) self.assertTrue(out in ["8.8e-01", "0.88"], out) class TestParseBoolean(unittest.TestCase): """confirms the fix for https://github.com/RDFLib/rdflib/issues/913""" def testTrueBoolean(self): test_value = Literal("tRue", datatype=_XSD_BOOLEAN) self.assertTrue(test_value.value) test_value = Literal("1", datatype=_XSD_BOOLEAN) self.assertTrue(test_value.value) def testFalseBoolean(self): test_value = Literal("falsE", datatype=_XSD_BOOLEAN) self.assertFalse(test_value.value) test_value = Literal("0", datatype=_XSD_BOOLEAN) self.assertFalse(test_value.value) def testNonFalseBoolean(self): test_value = Literal("abcd", datatype=_XSD_BOOLEAN) self.assertRaises(DeprecationWarning) self.assertFalse(test_value.value) test_value = Literal("10", datatype=_XSD_BOOLEAN) self.assertRaises(DeprecationWarning) self.assertFalse(test_value.value) class TestBindings(unittest.TestCase): def testBinding(self): class a: def __init__(self, v): self.v = v[3:-3] def __str__(self): return "<<<%s>>>" % self.v dtA = rdflib.URIRef("urn:dt:a") bind(dtA, a) va = a("<<<2>>>") la = Literal(va, normalize=True) self.assertEqual(la.value, va) self.assertEqual(la.datatype, dtA) la2 = Literal("<<<2>>>", datatype=dtA) self.assertTrue(isinstance(la2.value, a)) self.assertEqual(la2.value.v, va.v) class b: def __init__(self, v): self.v = v[3:-3] def __str__(self): return "B%s" % self.v dtB = rdflib.URIRef("urn:dt:b") bind(dtB, b, None, lambda x: "<<<%s>>>" % x) vb = b("<<<3>>>") lb = Literal(vb, normalize=True) self.assertEqual(lb.value, vb) self.assertEqual(lb.datatype, dtB) def testSpecificBinding(self): def lexify(s): return "--%s--" % s def unlexify(s): return s[2:-2] datatype = rdflib.URIRef("urn:dt:mystring") # Datatype-specific rule bind(datatype, str, unlexify, lexify, datatype_specific=True) s = "Hello" normal_l = Literal(s) self.assertEqual(str(normal_l), s) self.assertEqual(normal_l.toPython(), s) self.assertEqual(normal_l.datatype, None) specific_l = Literal("--%s--" % s, datatype=datatype) self.assertEqual(str(specific_l), lexify(s)) self.assertEqual(specific_l.toPython(), s) self.assertEqual(specific_l.datatype, datatype) class TestXsdLiterals(unittest.TestCase): def test_make_literals(self): """ Tests literal construction. """ inputs = [ # these literals do not get conerted to python types ("ABCD", XSD.integer, None), ("ABCD", XSD.gYear, None), ("-10000", XSD.gYear, None), ("-1921-00", XSD.gYearMonth, None), ("1921-00", XSD.gMonthDay, None), ("1921-13", XSD.gMonthDay, None), ("-1921-00", XSD.gMonthDay, None), ("10", XSD.gDay, None), ("-1", XSD.gDay, None), ("0000", XSD.gYear, None), ("0000-00-00", XSD.date, None), ("NOT A VALID HEX STRING", XSD.hexBinary, None), ("NOT A VALID BASE64 STRING", XSD.base64Binary, None), # these literals get converted to python types ("1921-05-01", XSD.date, datetime.date), ("1921-05-01T00:00:00", XSD.dateTime, datetime.datetime), ("1921-05", XSD.gYearMonth, datetime.date), ("0001-01", XSD.gYearMonth, datetime.date), ("0001-12", XSD.gYearMonth, datetime.date), ("2002-01", XSD.gYearMonth, datetime.date), ("9999-01", XSD.gYearMonth, datetime.date), ("9999-12", XSD.gYearMonth, datetime.date), ("1921", XSD.gYear, datetime.date), ("2000", XSD.gYear, datetime.date), ("0001", XSD.gYear, datetime.date), ("9999", XSD.gYear, datetime.date), ("1982", XSD.gYear, datetime.date), ("2002", XSD.gYear, datetime.date), ("1921-05-01T00:00:00+00:30", XSD.dateTime, datetime.datetime), ("1921-05-01T00:00:00-00:30", XSD.dateTime, datetime.datetime), ("abcdef0123", XSD.hexBinary, bytes), ("", XSD.hexBinary, bytes), ("UkRGTGli", XSD.base64Binary, bytes), ("", XSD.base64Binary, bytes), ] self.check_make_literals(inputs) @unittest.expectedFailure def test_make_literals_ki(self): """ Known issues with literal construction. """ inputs = [ ("1921-01Z", XSD.gYearMonth, datetime.date), ("1921Z", XSD.gYear, datetime.date), ("1921-00", XSD.gYearMonth, datetime.date), ("1921-05-01Z", XSD.date, datetime.date), ("1921-05-01+00:30", XSD.date, datetime.date), ("1921-05-01+00:30", XSD.date, datetime.date), ("1921-05-01+00:00", XSD.date, datetime.date), ("1921-05-01+00:00", XSD.date, datetime.date), ("1921-05-01T00:00:00Z", XSD.dateTime, datetime.datetime), ] self.check_make_literals(inputs) def check_make_literals(self, inputs): for literal_pair in inputs: (lexical, type, value_cls) = literal_pair with self.subTest(f"tesing {literal_pair}"): literal = Literal(lexical, datatype=type) if value_cls is not None: self.assertIsInstance(literal.value, value_cls) else: self.assertIsNone(literal.value) self.assertEqual(lexical, f"{literal}") if __name__ == "__main__": unittest.main()
[ "rdflib.term.URIRef", "rdflib.term.Literal", "rdflib.term.bind", "rdflib.Literal", "rdflib.Graph", "unittest.main", "rdflib.URIRef" ]
[((9047, 9062), 'unittest.main', 'unittest.main', ([], {}), '()\n', (9060, 9062), False, 'import unittest\n'), ((362, 381), 'rdflib.Literal', 'rdflib.Literal', (['"""\'"""'], {}), '("\'")\n', (376, 381), False, 'import rdflib\n'), ((483, 502), 'rdflib.Literal', 'rdflib.Literal', (['"""\\""""'], {}), '(\'"\')\n', (497, 502), False, 'import rdflib\n'), ((815, 829), 'rdflib.Graph', 'rdflib.Graph', ([], {}), '()\n', (827, 829), False, 'import rdflib\n'), ((880, 902), 'rdflib.Literal', 'rdflib.Literal', (['"""a\\\\b"""'], {}), "('a\\\\b')\n", (894, 902), False, 'import rdflib\n'), ((1018, 1038), 'rdflib.Literal', 'rdflib.Literal', (['(True)'], {}), '(True)\n', (1032, 1038), False, 'import rdflib\n'), ((1353, 1363), 'rdflib.term.Literal', 'Literal', (['(1)'], {}), '(1)\n', (1360, 1363), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1377, 1387), 'rdflib.term.Literal', 'Literal', (['l'], {}), '(l)\n', (1384, 1387), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1528, 1540), 'rdflib.term.Literal', 'Literal', (['"""1"""'], {}), "('1')\n", (1535, 1540), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1554, 1593), 'rdflib.term.Literal', 'Literal', (['l'], {'datatype': 'rdflib.XSD.integer'}), '(l, datatype=rdflib.XSD.integer)\n', (1561, 1593), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1808, 1854), 'rdflib.term.Literal', 'Literal', (['"""foo"""'], {'datatype': '"""http://example.com/"""'}), "('foo', datatype='http://example.com/')\n", (1815, 1854), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3024, 3061), 'rdflib.term.Literal', 'Literal', (['"""0.88"""'], {'datatype': '_XSD_DOUBLE'}), "('0.88', datatype=_XSD_DOUBLE)\n", (3031, 3061), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3337, 3375), 'rdflib.term.Literal', 'Literal', (['"""tRue"""'], {'datatype': '_XSD_BOOLEAN'}), "('tRue', datatype=_XSD_BOOLEAN)\n", (3344, 3375), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3439, 3474), 'rdflib.term.Literal', 'Literal', (['"""1"""'], {'datatype': '_XSD_BOOLEAN'}), "('1', datatype=_XSD_BOOLEAN)\n", (3446, 3474), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3571, 3610), 'rdflib.term.Literal', 'Literal', (['"""falsE"""'], {'datatype': '_XSD_BOOLEAN'}), "('falsE', datatype=_XSD_BOOLEAN)\n", (3578, 3610), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3675, 3710), 'rdflib.term.Literal', 'Literal', (['"""0"""'], {'datatype': '_XSD_BOOLEAN'}), "('0', datatype=_XSD_BOOLEAN)\n", (3682, 3710), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3811, 3849), 'rdflib.term.Literal', 'Literal', (['"""abcd"""'], {'datatype': '_XSD_BOOLEAN'}), "('abcd', datatype=_XSD_BOOLEAN)\n", (3818, 3849), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((3960, 3996), 'rdflib.term.Literal', 'Literal', (['"""10"""'], {'datatype': '_XSD_BOOLEAN'}), "('10', datatype=_XSD_BOOLEAN)\n", (3967, 3996), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((4329, 4354), 'rdflib.URIRef', 'rdflib.URIRef', (['"""urn:dt:a"""'], {}), "('urn:dt:a')\n", (4342, 4354), False, 'import rdflib\n'), ((4363, 4375), 'rdflib.term.bind', 'bind', (['dtA', 'a'], {}), '(dtA, a)\n', (4367, 4375), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((4416, 4443), 'rdflib.term.Literal', 'Literal', (['va'], {'normalize': '(True)'}), '(va, normalize=True)\n', (4423, 4443), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((4541, 4573), 'rdflib.term.Literal', 'Literal', (['"""<<<2>>>"""'], {'datatype': 'dtA'}), "('<<<2>>>', datatype=dtA)\n", (4548, 4573), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((4839, 4864), 'rdflib.URIRef', 'rdflib.URIRef', (['"""urn:dt:b"""'], {}), "('urn:dt:b')\n", (4852, 4864), False, 'import rdflib\n'), ((4873, 4917), 'rdflib.term.bind', 'bind', (['dtB', 'b', 'None', "(lambda x: '<<<%s>>>' % x)"], {}), "(dtB, b, None, lambda x: '<<<%s>>>' % x)\n", (4877, 4917), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((4958, 4985), 'rdflib.term.Literal', 'Literal', (['vb'], {'normalize': '(True)'}), '(vb, normalize=True)\n', (4965, 4985), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((5232, 5264), 'rdflib.URIRef', 'rdflib.URIRef', (['"""urn:dt:mystring"""'], {}), "('urn:dt:mystring')\n", (5245, 5264), False, 'import rdflib\n'), ((5307, 5368), 'rdflib.term.bind', 'bind', (['datatype', 'str', 'unlexify', 'lexify'], {'datatype_specific': '(True)'}), '(datatype, str, unlexify, lexify, datatype_specific=True)\n', (5311, 5368), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((5409, 5419), 'rdflib.term.Literal', 'Literal', (['s'], {}), '(s)\n', (5416, 5419), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((5584, 5624), 'rdflib.term.Literal', 'Literal', (["('--%s--' % s)"], {'datatype': 'datatype'}), "('--%s--' % s, datatype=datatype)\n", (5591, 5624), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((2005, 2022), 'rdflib.term.URIRef', 'URIRef', (['"""pennies"""'], {}), "('pennies')\n", (2011, 2022), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1264, 1293), 'rdflib.term.URIRef', 'URIRef', (['"""http://example.com/"""'], {}), "('http://example.com/')\n", (1270, 1293), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((1948, 1966), 'rdflib.term.Literal', 'Literal', (['"""pennies"""'], {}), "('pennies')\n", (1955, 1966), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((2138, 2152), 'rdflib.term.Literal', 'Literal', (['"""foo"""'], {}), "('foo')\n", (2145, 2152), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((2279, 2304), 'rdflib.term.Literal', 'Literal', (['"""foo"""'], {'lang': '"""en"""'}), "('foo', lang='en')\n", (2286, 2304), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((8741, 8772), 'rdflib.term.Literal', 'Literal', (['lexical'], {'datatype': 'type'}), '(lexical, datatype=type)\n', (8748, 8772), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n'), ((2484, 2513), 'rdflib.term.URIRef', 'URIRef', (['"""http://example.com/"""'], {}), "('http://example.com/')\n", (2490, 2513), False, 'from rdflib.term import Literal, URIRef, _XSD_DOUBLE, bind, _XSD_BOOLEAN\n')]
import telegram from emoji import emojize from .base import TextMessageBase class RulingHelpTextMessage(TextMessageBase): """ Ruling help message. Taken from: https://www.iamexpat.nl/expat-info/taxation/30-percent-ruling/requirements """ def get_text(self): message = emojize( "<b>30% RULING INCOME REQUIREMENTS</b>\n\n" "<a href=\"https://www.iamexpat.nl/expat-info/taxation/30-percent-ruling/requirements\">Go to Source</a>\n\n" "<b>2019 salary requirements</b>\n\n" ":small_blue_diamond: Minimum taxable salary at 70%: <b>37743 EUR</b> \n" ":small_blue_diamond: Employee with master's degree: <b>28690 EUR</b> \n" ":small_blue_diamond: Scientific researchers: <b>No minimum</b> \n" ":small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n" "<b>2018 salary requirements</b>\n\n" ":small_blue_diamond: Minimum taxable salary at 70%: <b>37296 EUR</b> \n" ":small_blue_diamond: Employee with master's degree: <b>28350 EUR</b> \n" ":small_blue_diamond: Scientific researchers: <b>No minimum</b> \n" ":small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n" "<b>2017 salary requirements</b>\n\n" ":small_blue_diamond: Minimum taxable salary at 70%: <b>37000 EUR</b> \n" ":small_blue_diamond: Employee with master's degree: <b>28125 EUR</b> \n" ":small_blue_diamond: Scientific researchers: <b>No minimum</b> \n" ":small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n" "<b>2016 salary requirements</b>\n\n" ":small_blue_diamond: Minimum taxable salary at 70%: <b>36889 EUR</b> \n" ":small_blue_diamond: Employee with master's degree: <b>28041 EUR</b> \n" ":small_blue_diamond: Scientific researchers: <b>No minimum</b> \n" ":small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n" "Type /start to start calculation. \n" "Type /help get more details. \n\n", use_aliases=True ) return message def get_options(self): """ Disable link preview. Add HTML tags render support. """ return { "disable_web_page_preview": True, "parse_mode": telegram.ParseMode.HTML, }
[ "emoji.emojize" ]
[((306, 1789), 'emoji.emojize', 'emojize', (['"""<b>30% RULING INCOME REQUIREMENTS</b>\n\n<a href="https://www.iamexpat.nl/expat-info/taxation/30-percent-ruling/requirements">Go to Source</a>\n\n<b>2019 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37743 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28690 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2018 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37296 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28350 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2017 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37000 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28125 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2016 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>36889 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28041 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\nType /start to start calculation. \nType /help get more details. \n\n"""'], {'use_aliases': '(True)'}), '(\n """<b>30% RULING INCOME REQUIREMENTS</b>\n\n<a href="https://www.iamexpat.nl/expat-info/taxation/30-percent-ruling/requirements">Go to Source</a>\n\n<b>2019 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37743 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28690 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2018 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37296 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28350 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2017 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>37000 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28125 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\n<b>2016 salary requirements</b>\n\n:small_blue_diamond: Minimum taxable salary at 70%: <b>36889 EUR</b> \n:small_blue_diamond: Employee with master\'s degree: <b>28041 EUR</b> \n:small_blue_diamond: Scientific researchers: <b>No minimum</b> \n:small_blue_diamond: Medical training specialists: <b>No minimum</b> \n\nType /start to start calculation. \nType /help get more details. \n\n"""\n , use_aliases=True)\n', (313, 1789), False, 'from emoji import emojize\n')]
import os os.environ['CUDA_VISIBLE_DEVICES']='0' from common import * from dataset import * from model import * def valid_augment(image, mask, infor): return image, mask, infor def train_augment(image, mask, infor): u=np.random.choice(3) if u==0: pass elif u==1: image, mask = do_random_crop_rescale(image, mask, 1600-(256-224), 224) elif u==2: image, mask = do_random_crop_rotate_rescale(image, mask, 1600-(256-224), 224) if np.random.rand()>0.5: image = do_random_log_contast(image) if np.random.rand()>0.5: image, mask = do_flip_lr(image, mask) if np.random.rand()>0.5: image, mask = do_flip_ud(image, mask) if np.random.rand()>0.5: image, mask = do_noise(image, mask) return image, mask, infor def null_collate(batch): batch_size = len(batch) input = [] truth_mask = [] truth_label = [] infor = [] for b in range(batch_size): input.append(batch[b][0]) #truth_mask.append(batch[b][1]) infor.append(batch[b][2]) mask = batch[b][1] label = (mask.reshape(4,-1).sum(1)>0).astype(np.int32) num_class,H,W = mask.shape mask = mask.transpose(1,2,0)*[1,2,3,4] mask = mask.reshape(-1,4) mask = mask.max(-1).reshape(1,H,W) truth_mask.append(mask) truth_label.append(label) input = np.stack(input) input = image_to_input(input, IMAGE_RGB_MEAN,IMAGE_RGB_STD) input = torch.from_numpy(input).float() truth_mask = np.stack(truth_mask) truth_mask = torch.from_numpy(truth_mask).long() truth_label = np.array(truth_label) truth_label = torch.from_numpy(truth_label).float() return input, truth_mask, truth_label, infor #------------------------------------ def do_valid(net, valid_loader, out_dir=None): #out_dir=None valid_num = np.zeros(11, np.float32) valid_loss = np.zeros(11, np.float32) for t, (input, truth_mask, truth_label, infor) in enumerate(valid_loader): #if b==5: break net.eval() input = input.cuda() truth_mask = truth_mask.cuda() truth_label = truth_label.cuda() with torch.no_grad(): logit = data_parallel(net, input) #net(input) loss = criterion(logit, truth_mask) tn,tp, num_neg,num_pos = metric_hit(logit, truth_mask) dn,dp, num_neg,num_pos = metric_dice(logit, truth_mask, threshold=0.5, sum_threshold=100) #zz=0 #--- batch_size = len(infor) l = np.array([ loss.item(), tn,*tp, dn,*dp ]) n = np.array([ batch_size, num_neg,*num_pos, num_neg,*num_pos ]) valid_loss += l*n valid_num += n # debug----------------------------- if out_dir is not None: probability = torch.softmax(logit,1) image = input_to_image(input, IMAGE_RGB_MEAN,IMAGE_RGB_STD) probability = one_hot_encode_predict(probability) truth_mask = one_hot_encode_truth(truth_mask) probability_mask = probability.data.cpu().numpy() truth_label = truth_label.data.cpu().numpy() truth_mask = truth_mask.data.cpu().numpy() for b in range(0, batch_size, 4): image_id = infor[b].image_id[:-4] result = draw_predict_result(image[b], truth_mask[b], truth_label[b], probability_mask[b], stack='vertical') draw_shadow_text(result,'%05d %s.jpg'%(valid_num[0]-batch_size+b, image_id),(5,24),1,[255,255,255],2) image_show('result',result,resize=1) cv2.imwrite(out_dir +'/valid/%s.png'%(infor[b].image_id[:-4]), result) cv2.waitKey(1) pass # debug----------------------------- #print(valid_loss) print('\r %8d /%8d'%(valid_num[0], len(valid_loader.dataset)),end='',flush=True) pass #-- end of one data loader -- assert(valid_num[0] == len(valid_loader.dataset)) valid_loss = valid_loss/valid_num return valid_loss def run_train(): out_dir = \ '/root/share/project/kaggle/2019/steel/result1/resnet18-seg-full-softmax-foldb1-1-4balance' initial_checkpoint = \ '/root/share/project/kaggle/2019/steel/result1/resnet18-seg-full-softmax-foldb1-1-4balance/checkpoint/00114000_model.pth' schduler = NullScheduler(lr=0.001) batch_size = 8 #8 iter_accum = 4 loss_weight = None#[5,5,2,5] # train_sampler = FourBalanceClassSampler #RandomSampler ## setup ----------------------------------------------------------------------------- for f in ['checkpoint','train','valid','backup'] : os.makedirs(out_dir +'/'+f, exist_ok=True) backup_project_as_zip(PROJECT_PATH, out_dir +'/backup/code.train.%s.zip'%IDENTIFIER) log = Logger() log.open(out_dir+'/log.train.txt',mode='a') log.write('\n--- [START %s] %s\n\n' % (IDENTIFIER, '-' * 64)) log.write('\t%s\n' % COMMON_STRING) log.write('\n') log.write('\tSEED = %u\n' % SEED) log.write('\tPROJECT_PATH = %s\n' % PROJECT_PATH) log.write('\t__file__ = %s\n' % __file__) log.write('\tout_dir = %s\n' % out_dir) log.write('\n') ## dataset ---------------------------------------- log.write('** dataset setting **\n') train_dataset = SteelDataset( mode = 'train', csv = ['train.csv',], split = ['train_b1_11568.npy',], augment = train_augment, ) train_loader = DataLoader( train_dataset, sampler = train_sampler(train_dataset), batch_size = batch_size, drop_last = True, num_workers = 8, pin_memory = True, collate_fn = null_collate ) valid_dataset = SteelDataset( mode = 'train', csv = ['train.csv',], split = ['valid_b1_1000.npy',], augment = valid_augment, ) valid_loader = DataLoader( valid_dataset, sampler = SequentialSampler(valid_dataset), batch_size = 4, drop_last = False, num_workers = 8, pin_memory = True, collate_fn = null_collate ) assert(len(train_dataset)>=batch_size) log.write('batch_size = %d\n'%(batch_size)) log.write('train_dataset : \n%s\n'%(train_dataset)) log.write('valid_dataset : \n%s\n'%(valid_dataset)) log.write('\n') ## net ---------------------------------------- log.write('** net setting **\n') net = Net().cuda() log.write('\tinitial_checkpoint = %s\n' % initial_checkpoint) if initial_checkpoint is not None: state_dict = torch.load(initial_checkpoint, map_location=lambda storage, loc: storage) ##for k in ['logit.weight','logit.bias']: state_dict.pop(k, None) #tramsfer sigmoid feature to softmax network ##net.load_state_dict(state_dict,strict=False) net.load_state_dict(state_dict,strict=False) else: net.load_pretrain(skip=['logit'], is_print=False) log.write('%s\n'%(type(net))) log.write('\tloss_weight = %s\n' % str(loss_weight)) log.write('\ttrain_loader.sampler = %s\n' % str(train_loader.sampler)) log.write('\n') ## optimiser ---------------------------------- # if 0: ##freeze # for p in net.encoder1.parameters(): p.requires_grad = False # pass #net.set_mode('train',is_freeze_bn=True) #----------------------------------------------- #optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, net.parameters()),lr=schduler(0)) #optimizer = torch.optim.RMSprop(net.parameters(), lr =0.0005, alpha = 0.95) optimizer = torch.optim.SGD(filter(lambda p: p.requires_grad, net.parameters()), lr=schduler(0), momentum=0.9, weight_decay=0.0001) num_iters = 3000*1000 iter_smooth = 50 iter_log = 500 iter_valid = 1500 iter_save = [0, num_iters-1]\ + list(range(0, num_iters, 1500))#1*1000 start_iter = 0 start_epoch= 0 rate = 0 if initial_checkpoint is not None: initial_optimizer = initial_checkpoint.replace('_model.pth','_optimizer.pth') if os.path.exists(initial_optimizer): checkpoint = torch.load(initial_optimizer) start_iter = checkpoint['iter' ] start_epoch = checkpoint['epoch'] #optimizer.load_state_dict(checkpoint['optimizer']) pass log.write('optimizer\n %s\n'%(optimizer)) log.write('schduler\n %s\n'%(schduler)) log.write('\n') ## start training here! ############################################## log.write('** start training here! **\n') log.write(' batch_size=%d, iter_accum=%d\n'%(batch_size,iter_accum)) log.write(' experiment = %s\n' % __file__.split('/')[-2]) log.write(' |-------------------------------- VALID-----------------------------|---------- TRAIN/BATCH ------------------------------\n') log.write('rate iter epoch | loss hit_neg,pos1,2,3,4 dice_neg,pos1,2,3,4 | loss hit_neg,pos1,2,3,4 | time \n') log.write('------------------------------------------------------------------------------------------------------------------------------------------------\n') #0.00000 0.0* 0.0 | 0.690 0.50 [0.00,1.00,0.00,1.00] 0.44 [0.00,0.02,0.00,0.15] | 0.000 0.00 [0.00,0.00,0.00,0.00] | 0 hr 00 min train_loss = np.zeros(20,np.float32) valid_loss = np.zeros(20,np.float32) batch_loss = np.zeros(20,np.float32) iter = 0 i = 0 start = timer() while iter<num_iters: sum_train_loss = np.zeros(20,np.float32) sum = np.zeros(20,np.float32) optimizer.zero_grad() for t, (input, truth_mask, truth_label, infor) in enumerate(train_loader): batch_size = len(infor) iter = i + start_iter epoch = (iter-start_iter)*batch_size/len(train_dataset) + start_epoch #if 0: if (iter % iter_valid==0): valid_loss = do_valid(net, valid_loader, out_dir) # #pass if (iter % iter_log==0): print('\r',end='',flush=True) asterisk = '*' if iter in iter_save else ' ' log.write('%0.5f %5.1f%s %5.1f | %5.3f %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] | %5.3f %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] | %s' % (\ rate, iter/1000, asterisk, epoch, *valid_loss[:11], *train_loss[:6], time_to_str((timer() - start),'min')) ) log.write('\n') #if 0: if iter in iter_save: torch.save(net.state_dict(),out_dir +'/checkpoint/%08d_model.pth'%(iter)) torch.save({ #'optimizer': optimizer.state_dict(), 'iter' : iter, 'epoch' : epoch, }, out_dir +'/checkpoint/%08d_optimizer.pth'%(iter)) pass # learning rate schduler ------------- lr = schduler(iter) if lr<0 : break adjust_learning_rate(optimizer, lr) rate = get_learning_rate(optimizer) # one iteration update ------------- #net.set_mode('train',is_freeze_bn=True) net.train() input = input.cuda() truth_label = truth_label.cuda() truth_mask = truth_mask.cuda() logit = data_parallel(net,input) #net(input) loss = criterion(logit, truth_mask, loss_weight) tn,tp, num_neg,num_pos = metric_hit(logit, truth_mask) (loss/iter_accum).backward() if (iter % iter_accum)==0: optimizer.step() optimizer.zero_grad() # print statistics ------------ l = np.array([ loss.item(), tn,*tp ]) n = np.array([ batch_size, num_neg,*num_pos ]) batch_loss[:6] = l sum_train_loss[:6] += l*n sum[:6] += n if iter%iter_smooth == 0: train_loss = sum_train_loss/(sum+1e-12) sum_train_loss[...] = 0 sum[...] = 0 print('\r',end='',flush=True) asterisk = ' ' print('%0.5f %5.1f%s %5.1f | %5.3f %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] | %5.3f %4.2f [%4.2f,%4.2f,%4.2f,%4.2f] | %s' % (\ rate, iter/1000, asterisk, epoch, *valid_loss[:11], *batch_loss[:6], time_to_str((timer() - start),'min')) , end='',flush=True) i=i+1 # debug----------------------------- if 1: for di in range(3): if (iter+di)%1000==0: probability = torch.softmax(logit,1) image = input_to_image(input, IMAGE_RGB_MEAN,IMAGE_RGB_STD) probability = one_hot_encode_predict(probability) truth_mask = one_hot_encode_truth(truth_mask) probability_mask = probability.data.cpu().numpy() truth_label = truth_label.data.cpu().numpy() truth_mask = truth_mask.data.cpu().numpy() for b in range(batch_size): result = draw_predict_result(image[b], truth_mask[b], truth_label[b], probability_mask[b], stack='vertical') image_show('result',result,resize=1) cv2.imwrite(out_dir +'/train/%05d.png'%(di*100+b), result) cv2.waitKey(1) pass pass #-- end of one data loader -- pass #-- end of all iterations -- log.write('\n') # main ################################################################# if __name__ == '__main__': print( '%s: calling main function ... ' % os.path.basename(__file__)) run_train()
[ "os.path.exists", "os.path.basename", "os.makedirs" ]
[((4727, 4772), 'os.makedirs', 'os.makedirs', (["(out_dir + '/' + f)"], {'exist_ok': '(True)'}), "(out_dir + '/' + f, exist_ok=True)\n", (4738, 4772), False, 'import os\n'), ((8236, 8269), 'os.path.exists', 'os.path.exists', (['initial_optimizer'], {}), '(initial_optimizer)\n', (8250, 8269), False, 'import os\n'), ((14267, 14293), 'os.path.basename', 'os.path.basename', (['__file__'], {}), '(__file__)\n', (14283, 14293), False, 'import os\n')]
# (c) Copyright [2018-2021] Micro Focus or one of its affiliates. # Licensed under the Apache License, Version 2.0 (the "License"); # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest, warnings from verticapy import vDataFrame, drop_table from verticapy import set_option set_option("print_info", False) @pytest.fixture(scope="module") def titanic_vd(base): from verticapy.learn.datasets import load_titanic titanic = load_titanic(cursor=base.cursor) yield titanic with warnings.catch_warnings(record=True) as w: drop_table(name="public.titanic", cursor=base.cursor) class TestvDFCreate: def test_creating_vDF_using_input_relation(self, base, titanic_vd): tvdf = vDataFrame(input_relation="public.titanic", cursor=base.cursor) assert tvdf["pclass"].count() == 1234 def test_creating_vDF_using_input_relation_schema(self, base, titanic_vd): tvdf = vDataFrame(input_relation="titanic", schema="public", cursor=base.cursor) assert tvdf["pclass"].count() == 1234 def test_creating_vDF_using_input_relation_vcolumns(self, base, titanic_vd): tvdf = vDataFrame( input_relation="public.titanic", usecols=["age", "survived"], cursor=base.cursor, ) assert tvdf["survived"].count() == 1234 @pytest.mark.skip(reason="test not implemented") def test_creating_vDF_using_input_relation_dsn(self): pass
[ "verticapy.vDataFrame", "verticapy.learn.datasets.load_titanic", "pytest.mark.skip", "verticapy.set_option", "warnings.catch_warnings", "verticapy.drop_table", "pytest.fixture" ]
[((711, 742), 'verticapy.set_option', 'set_option', (['"""print_info"""', '(False)'], {}), "('print_info', False)\n", (721, 742), False, 'from verticapy import set_option\n'), ((746, 776), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""module"""'}), "(scope='module')\n", (760, 776), False, 'import pytest, warnings\n'), ((868, 900), 'verticapy.learn.datasets.load_titanic', 'load_titanic', ([], {'cursor': 'base.cursor'}), '(cursor=base.cursor)\n', (880, 900), False, 'from verticapy.learn.datasets import load_titanic\n'), ((1762, 1809), 'pytest.mark.skip', 'pytest.mark.skip', ([], {'reason': '"""test not implemented"""'}), "(reason='test not implemented')\n", (1778, 1809), False, 'import pytest, warnings\n'), ((928, 964), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {'record': '(True)'}), '(record=True)\n', (951, 964), False, 'import pytest, warnings\n'), ((979, 1032), 'verticapy.drop_table', 'drop_table', ([], {'name': '"""public.titanic"""', 'cursor': 'base.cursor'}), "(name='public.titanic', cursor=base.cursor)\n", (989, 1032), False, 'from verticapy import vDataFrame, drop_table\n'), ((1143, 1206), 'verticapy.vDataFrame', 'vDataFrame', ([], {'input_relation': '"""public.titanic"""', 'cursor': 'base.cursor'}), "(input_relation='public.titanic', cursor=base.cursor)\n", (1153, 1206), False, 'from verticapy import vDataFrame, drop_table\n'), ((1349, 1422), 'verticapy.vDataFrame', 'vDataFrame', ([], {'input_relation': '"""titanic"""', 'schema': '"""public"""', 'cursor': 'base.cursor'}), "(input_relation='titanic', schema='public', cursor=base.cursor)\n", (1359, 1422), False, 'from verticapy import vDataFrame, drop_table\n'), ((1567, 1663), 'verticapy.vDataFrame', 'vDataFrame', ([], {'input_relation': '"""public.titanic"""', 'usecols': "['age', 'survived']", 'cursor': 'base.cursor'}), "(input_relation='public.titanic', usecols=['age', 'survived'],\n cursor=base.cursor)\n", (1577, 1663), False, 'from verticapy import vDataFrame, drop_table\n')]
#!/usr/bin/env python # # Copyright (C) 2007 British Broadcasting Corporation and Kamaelia Contributors(1) # All Rights Reserved. # # You may only modify and redistribute this under the terms of any of the # following licenses(2): Mozilla Public License, V1.1, GNU General # Public License, V2.0, GNU Lesser General Public License, V2.1 # # (1) Kamaelia Contributors are listed in the AUTHORS file and at # http://kamaelia.sourceforge.net/AUTHORS - please extend this file, # not this notice. # (2) Reproduced in the COPYING file, and at: # http://kamaelia.sourceforge.net/COPYING # Under section 3.5 of the MPL, we are using this text since we deem the MPL # notice inappropriate for this file. As per MPL/GPL/LGPL removal of this # notice is prohibited. # # Please contact us via: <EMAIL> # to discuss alternative licensing. # ------------------------------------------------------------------------- # """\ ============================================= Parsing and Creation of YUV4MPEG format files ============================================= YUV4MPEGToFrame parses YUV4MPEG format data sent to its "inbox" inbox and sends video fram data structures to its "outbox" outbox. FrameToYUV4MPEG does the reverse - taking frame data structures sent to its "inbox" inbox and outputting YUV4MPEG format data to its "outbox" outbox." The YUV4MPEG file format is supported by many tools, such as mjpegtools, mplayer/mencoder, and ffmpeg. Example Usage ------------- Playback a YUV4MPEG format file:: Pipeline( RateControlledFileReader("video.yuv4mpeg",readmode="bytes", ...), YUV4MPEGToFrame(), VideoOverlay() ).run() Decode a dirac encoded video file to a YUV4MPEG format file:: Pipeline( RateControlledFileReader("video.dirac",readmode="bytes", ...), DiracDecoder(), FrameToYUV4MPEG(), SimpleFileWriter("output.yuv4mpeg") ).run() YUV4MPEGToFrame Behaviour ------------------------- Send binary data as strings containing YUV4MPEG format data to the "inbox" inbox and frame data structures will be sent out of the "outbox" outbox as soon as they are parsed. See below for a description of the uncompressed frame data structure format. This component supports sending data out of its outbox to a size limited inbox. If the size limited inbox is full, this component will pause until it is able to send out the data. Data will not be consumed from the inbox if this component is waiting to send to the outbox. If a producerFinished message is received on the "control" inbox, this component will complete parsing any data pending in its inbox, and finish sending any resulting data to its outbox. It will then send the producerFinished message on out of its "signal" outbox and terminate. If a shutdownMicroprocess message is received on the "control" inbox, this component will immediately send it on out of its "signal" outbox and immediately terminate. It will not complete processing, or sending on any pending data. FrameToYUV4MPEG Behaviour ------------------------- Send frame data structures to the "inbox" inbox of this component. YUV4MPEG format binary string data will be sent out of the "outbox" outbox. See below for a description of the uncompressed frame data structure format. The header data for the YUV4MPEG file is determined from the first frame. All frames sent to this component must therefore be in the same pixel format and size, otherwise the output data will not be valid YUV4MPEG. This component supports sending data out of its outbox to a size limited inbox. If the size limited inbox is full, this component will pause until it is able to send out the data. Data will not be consumed from the inbox if this component is waiting to send to the outbox. If a producerFinished message is received on the "control" inbox, this component will complete parsing any data pending in its inbox, and finish sending any resulting data to its outbox. It will then send the producerFinished message on out of its "signal" outbox and terminate. If a shutdownMicroprocess message is received on the "control" inbox, this component will immediately send it on out of its "signal" outbox and immediately terminate. It will not complete processing, or sending on any pending data. ========================= UNCOMPRESSED FRAME FORMAT ========================= A frame is a dictionary data structure. It must, at minimum contain the first 3 ("yuv", "size" and "pixformat"):: { "yuv" : (y_data, u_data, v_data) # a tuple of strings "size" : (width, height) # in pixels "pixformat" : pixelformat # format of raw video data "frame_rate" : fps # frames per second "interlaced" : 0 or not 0 # non-zero if the frame is two interlaced fields "topfieldfirst" : 0 or not 0 # non-zero the first field comes first in the data "pixel_aspect" : fraction # aspect ratio of pixels "sequence_meta" : metadata # string containing extended metadata # (no whitespace or control characters) } All other fields are optional when providing frames to FrameToYUV4MPEG. YUV4MPEGToFrame only guarantees to fill inthe YUV data itself. All other fields will be filled in if the relevant header data is detected in the file. The pixel formats recognised (and therefore supported) are:: "YUV420_planar" "YUV411_planar" "YUV422_planar" "YUV444_planar" "YUV4444_planar" "Y_planar" """ from Axon.Component import component #from Axon.Ipc import WaitComplete from Axon.Ipc import shutdownMicroprocess, producerFinished from Axon.AxonExceptions import noSpaceInBox import re from Kamaelia.Support.Data.Rationals import rational class YUV4MPEGToFrame(component): """\ YUV4MPEGToFrame() -> new YUV4MPEGToFrame component. Parses YUV4MPEG format binarydata, sent as strings to its "inbox" inbox and outputs uncompressed video frame data structures to its "outbox" outbox. """ def __init__(self): """x.__init__(...) initializes x; see x.__class__.__doc__ for signature""" super(YUV4MPEGToFrame,self).__init__() self.remainder = "" self.shutdownMsg = None def checkShutdown(self): """\ Collects any new shutdown messages arriving at the "control" inbox, and returns "NOW" if immediate shutdown is required, or "WHENEVER" if the component can shutdown when it has finished processing pending data. """ while self.dataReady("control"): newMsg = self.recv("control") if isinstance(newMsg, shutdownMicroprocess): self.shutdownMsg = newMsg elif self.shutdownMsg is None and isinstance(newMsg, producerFinished): self.shutdownMsg = newMsg if isinstance(self.shutdownMsg, shutdownMicroprocess): return "NOW" elif self.shutdownMsg is not None: return "WHENEVER" else: return None def readline(self): """\ Generator. Read up to the next newline char from the stream of chunks of binary string data arriving at the "inbox" inbox. Any excess data is placed into self.remainder ready for the next call to self.readline or self.readbytes. Data is only read from the inbox when required. It is not preemptively fetched. The read data is placed into self.bytesread If a shutdown is detected, self.bytesread is set to "" and this generator immediately returns. """ bytes = [] newdata = self.remainder index = newdata.find("\x0a") while index==-1: bytes.append(newdata) while not self.dataReady("inbox"): if self.checkShutdown(): self.bytesread="" return self.pause() yield 1 newdata = self.recv("inbox") index = newdata.find("\x0a") tail = newdata[:index+1] self.remainder = newdata[index+1:] bytes.append(tail) self.bytesread = "".join(bytes) return def readbytes(self,size): """\ Generator. Read the specified number of bytes from the stream of chunks of binary string data arriving at the "inbox" inbox. Any excess data is placed into self.remainder ready for the next call to self.readline or self.readbytes. Data is only read from the inbox when required. It is not preemptively fetched. The read data is placed into self.bytesread If a shutdown is detected, self.bytesread is set to "" and this generator immediately returns. """ buf = [self.remainder] bufsize = len(self.remainder) while bufsize < size: if self.dataReady("inbox"): newdata = self.recv("inbox") buf.append(newdata) bufsize += len(newdata) shutdown = self.checkShutdown() if shutdown == "NOW" or (shutdown and not self.dataReady("inbox") and bufsize<size): self.bytesread="" return if bufsize<size and not self.anyReady(): self.pause() yield 1 excess = bufsize-size if excess: wanted = buf[:-1] tail, self.remainder = buf[-1][:-excess], buf[-1][-excess:] wanted.append(tail) else: wanted = buf self.remainder = "" self.bytesread = "".join(wanted) return def safesend(self, data, boxname): """\ Generator. Sends data out of the named outbox. If the destination is full (noSpaceInBox exception) then it waits until there is space and retries until it succeeds. If a shutdownMicroprocess message is received, returns early. """ while 1: try: self.send(data, boxname) return except noSpaceInBox: if self.checkShutdown() == "NOW": return self.pause() yield 1 def main(self): """Main loop""" # parse header for _ in self.readline(): yield _ if self.checkShutdown() == "NOW" or (self.checkShutdown() and self.bytesread==""): self.send(self.shutdownMsg,"signal") return line = self.bytesread m = re.match("^YUV4MPEG2((?: .\S*)*)\n$", line) assert(m) fields = m.groups()[0] seq_params = parse_seq_tags(fields) yield 1 while 1: for _ in self.readline(): yield _ line = self.bytesread if self.checkShutdown() == "NOW" or (self.checkShutdown() and self.bytesread==""): break m = re.match("^FRAME((?: .\S*)*)\n$", line) assert(m) fields = m.groups()[0] frame_params = parse_frame_tags(fields) ysize = seq_params["size"][0] * seq_params["size"][1] csize = seq_params["chroma_size"][0] * seq_params["chroma_size"][1] for _ in self.readbytes(ysize): yield _ if self.checkShutdown() == "NOW" or (self.checkShutdown() and self.bytesread==""): break y = self.bytesread for _ in self.readbytes(csize): yield _ if self.checkShutdown() == "NOW" or (self.checkShutdown() and self.bytesread==""): break u = self.bytesread for _ in self.readbytes(csize): yield _ if self.checkShutdown() == "NOW" or (self.checkShutdown() and self.bytesread==""): break v = self.bytesread frame = { "yuv" : (y,u,v) } frame.update(seq_params) frame.update(frame_params) for _ in self.safesend(frame,"outbox"): yield _ if self.checkShutdown() == "NOW" or (self.checkShutdown() and not self.dataReady("inbox")): break yield 1 if self.shutdownMsg: self.send(self.shutdownMsg, "signal") else: self.send(producerFinished(), "signal") def parse_seq_tags(fields): """Parses YUV4MPEG header tags""" params = {} tags = {} while fields: m = re.match("^ (.)(\S*)(.*)$", fields) (tag,value,fields) = m.groups() tags[tag] = value if "W" in tags and "H" in tags: params['size'] = (int(tags["W"]), int(tags["H"])) else: raise if "C" in tags: C = tags["C"] if C == "420jpeg": # 4:2:0 with JPEG/MPEG-1 siting (default) params['pixformat'] = "YUV420_planar" params['chroma_size'] = (params['size'][0]/2, params['size'][1]/2) elif C == "420mpeg2": # 4:2:0 with MPEG-2 siting params['pixformat'] = "YUV420_planar" params['chroma_size'] = (params['size'][0]/2, params['size'][1]/2) elif C == "420paldv": # 4:2:0 with PAL-DV siting params['pixformat'] = "YUV420_planar" params['chroma_size'] = (params['size'][0]/2, params['size'][1]/2) elif C == "411": # 4:1:1, cosited params['pixformat'] = "YUV411_planar" params['chroma_size'] = (params['size'][0]/4, params['size'][1]) elif C == "422": # 4:2:2, cosited params['pixformat'] = "YUV422_planar" params['chroma_size'] = (params['size'][0]/2, params['size'][1]) elif C == "444": # 4:4:4 (no subsampling) params['pixformat'] = "YUV444_planar" params['chroma_size'] = (params['size'][0], params['size'][1]) elif C == "444alpha": # 4:4:4 with an alpha channel params['pixformat'] = "YUV4444_planar" params['chroma_size'] = (params['size'][0], params['size'][1]) elif C == "mono": # luma (Y') plane only params['pixformat'] = "Y_planar" params['chroma_size'] = (0,0) else: params['pixformat'] = "YUV420_planar" params['chroma_size'] = (params['size'][0]/2, params['size'][1]/2) if "I" in tags: I = tags["I"] if I == "?": # unknown (default) pass elif I == "p": # progressive/none params["interlaced"] = False elif I == "t": # top-field-first params["interlaced"] = True params["topfieldfirst"] = True elif I == "b": # bottom-field-first params["interlaced"] = True params["topfieldfirst"] = False elif I == "m": # mixed-mode: refer to 'I' tag in frame header pass if "F" in tags: m = re.match("^(\d+):(\d+)$",tags["F"]) num, denom = float(m.groups()[0]), float(m.groups()[1]) if denom > 0: params["frame_rate"] = num/denom if "A" in tags: m = re.match("^(\d+):(\d+)$",tags["A"]) num, denom = float(m.groups()[0]), float(m.groups()[1]) if denom > 0: params["pixel_aspect"] = num/denom if "X" in tags: params["sequence_meta"] = tags["X"] return params def parse_frame_tags(fields): """\ Parses YUV4MPEG frame tags. """ params = {} tags = {} while fields: m = re.match("^ (.)(\S*)(.*)$", fields) (tag,value,fields) = m.groups() tags[tag] = value if "I" in tags: x,y,z = tags["I"][0], tags["I"][1], tags["I"][2] if x == "t": # top-field-first params["interlaced"] = True params["topfieldfirst"] = True elif x == "T": # top-field-first and repeat params["interlaced"] = True params["topfieldfirst"] = True elif x == "b": # bottom-field-first params["interlaced"] = True params["topfieldfirst"] = False elif x == "B": # bottom-field-first and repeat params["interlaced"] = True params["topfieldfirst"] = False elif x == "1": # single progressive frame params["interlaced"] = False elif x == "2": # double progressive frame (repeat) params["interlaced"] = False elif x == "3": # triple progressive frame (repeat) params["interlaced"] = False if y == "p": # fields sampled at same time params["interlaced"] = False elif y == "i": # fields sampled at different times params["interlaced"] = True if z == "p": # progressive (subsampling over whole frame) pass elif z == "i": # interlaced (each field subsampled independently) pass elif z == "?": # unknown (allowed only for non-4:2:0 subsampling) pass if "X" in tags: params["meta"] = tags["X"] return params class FrameToYUV4MPEG(component): """\ FrameToYUV4MPEG() -> new FrameToYUV4MPEG component. Parses uncompressed video frame data structures sent to its "inbox" inbox and writes YUV4MPEG format binary data as strings to its "outbox" outbox. """ def checkShutdown(self): """\ Collects any new shutdown messages arriving at the "control" inbox, and ensures self.shutdownMsg contains the highest priority one encountered so far. """ while self.dataReady("control"): msg = self.recv("control") if isinstance(msg, producerFinished) and not isinstance(self.shutdownMsg,shutdownMicroprocess): self.shutdownMsg = msg elif isinstance(msg, shutdownMicroprocess): self.shutdownMsg = msg def canShutdown(self): """\ Returns true if the component should terminate when it has finished processing any pending data. """ return isinstance(self.shutdownMsg, (producerFinished, shutdownMicroprocess)) def mustShutdown(self): """Returns true if the component should terminate immediately.""" return isinstance(self.shutdownMsg, shutdownMicroprocess) def sendoutbox(self,data): """\ Generator. Sends data out of the "outbox" outbox. If the destination is full (noSpaceInBox exception) then it waits until there is space. It keeps retrying until it succeeds. If the component is ordered to immediately terminate then "STOP" is raised as an exception. """ while 1: try: self.send(data,"outbox") return except noSpaceInBox: self.checkShutdown() if self.mustShutdown(): raise "STOP" self.pause() yield 1 self.checkShutdown() if self.mustShutdown(): raise "STOP" def main(self): """Main loop""" self.shutdownMsg = None try: while not self.dataReady("inbox"): self.checkShutdown() if self.canShutdown(): raise "STOP" self.pause() yield 1 frame = self.recv("inbox") for _ in self.write_header(frame): yield _ for _ in self.write_frame(frame): yield _ while 1: while self.dataReady("inbox"): frame = self.recv("inbox") for _ in self.write_frame(frame): yield _ self.checkShutdown() if self.canShutdown(): raise "STOP" self.pause() yield 1 except "STOP": self.send(self.shutdownMsg,"signal") def write_header(self, frame): """\ Generator. Sends the YUV4MPEG format header to the "outbox" outbox, based on attributes of the supplied frame data structure. """ format = "YUV4MPEG2 W%d H%d" % tuple(frame['size']) if frame['pixformat']=="YUV420_planar": format += " C420mpeg2" elif frame['pixformat']=="YUV411_planar": format += " C411" elif frame['pixformat']=="YUV422_planar": format += " C422" elif frame['pixformat']=="YUV444_planar": format += " C444" elif frame['pixformat']=="YUV4444_planar": format += " C444alpha" elif frame['pixformat']=="Y_planar": format += " Cmono" interlace = frame.get("interlaced",False) topfieldfirst = frame.get("topfieldfirst",False) if interlace and topfieldfirst: format += " It" elif interlace and not topfieldfirst: format += " Ib" elif not interlace: format += " Ip" rate = frame.get("frame_rate", 0) if rate > 0: num,denom = rational(rate) format += " F%d:%d" % (num,denom) rate = frame.get("pixel_aspect", 0) if rate > 0: num,denom = rational(rate) format += " A%d:%d" % (num,denom) if "sequence_meta" in frame: format += " X"+frame['sequence_meta'] format += "\x0a" for _ in self.sendoutbox(format): yield _ def write_frame(self, frame): """\ Generator. Writes out YUV4MPEG format frame marker and data. """ for _ in self.sendoutbox("FRAME\x0a"): yield _ for component in frame['yuv']: for _ in self.sendoutbox(component): yield _ __kamaelia_components__ = ( YUV4MPEGToFrame, FrameToYUV4MPEG, ) if __name__ == "__main__": from Kamaelia.Chassis.Pipeline import Pipeline from Kamaelia.File.Reading import RateControlledFileReader from Kamaelia.UI.Pygame.VideoOverlay import VideoOverlay Pipeline( RateControlledFileReader("/data/stream.yuv",readmode="bytes",rate=25*(608256+128)), YUV4MPEGToFrame(), FrameToYUV4MPEG(), YUV4MPEGToFrame(), VideoOverlay(), ).run()
[ "re.match", "Kamaelia.File.Reading.RateControlledFileReader", "Kamaelia.Support.Data.Rationals.rational", "Axon.Ipc.producerFinished", "Kamaelia.UI.Pygame.VideoOverlay.VideoOverlay" ]
[((10896, 10943), 're.match', 're.match', (['"""^YUV4MPEG2((?: .\\\\S*)*)\n$"""', 'line'], {}), '("""^YUV4MPEG2((?: .\\\\S*)*)\n$""", line)\n', (10904, 10943), False, 'import re\n'), ((12858, 12894), 're.match', 're.match', (['"""^ (.)(\\\\S*)(.*)$"""', 'fields'], {}), "('^ (.)(\\\\S*)(.*)$', fields)\n", (12866, 12894), False, 'import re\n'), ((15312, 15350), 're.match', 're.match', (['"""^(\\\\d+):(\\\\d+)$"""', "tags['F']"], {}), "('^(\\\\d+):(\\\\d+)$', tags['F'])\n", (15320, 15350), False, 'import re\n'), ((15516, 15554), 're.match', 're.match', (['"""^(\\\\d+):(\\\\d+)$"""', "tags['A']"], {}), "('^(\\\\d+):(\\\\d+)$', tags['A'])\n", (15524, 15554), False, 'import re\n'), ((15919, 15955), 're.match', 're.match', (['"""^ (.)(\\\\S*)(.*)$"""', 'fields'], {}), "('^ (.)(\\\\S*)(.*)$', fields)\n", (15927, 15955), False, 'import re\n'), ((11301, 11344), 're.match', 're.match', (['"""^FRAME((?: .\\\\S*)*)\n$"""', 'line'], {}), '("""^FRAME((?: .\\\\S*)*)\n$""", line)\n', (11309, 11344), False, 'import re\n'), ((21815, 21829), 'Kamaelia.Support.Data.Rationals.rational', 'rational', (['rate'], {}), '(rate)\n', (21823, 21829), False, 'from Kamaelia.Support.Data.Rationals import rational\n'), ((21978, 21992), 'Kamaelia.Support.Data.Rationals.rational', 'rational', (['rate'], {}), '(rate)\n', (21986, 21992), False, 'from Kamaelia.Support.Data.Rationals import rational\n'), ((12699, 12717), 'Axon.Ipc.producerFinished', 'producerFinished', ([], {}), '()\n', (12715, 12717), False, 'from Axon.Ipc import shutdownMicroprocess, producerFinished\n'), ((22872, 22965), 'Kamaelia.File.Reading.RateControlledFileReader', 'RateControlledFileReader', (['"""/data/stream.yuv"""'], {'readmode': '"""bytes"""', 'rate': '(25 * (608256 + 128))'}), "('/data/stream.yuv', readmode='bytes', rate=25 * (\n 608256 + 128))\n", (22896, 22965), False, 'from Kamaelia.File.Reading import RateControlledFileReader\n'), ((23069, 23083), 'Kamaelia.UI.Pygame.VideoOverlay.VideoOverlay', 'VideoOverlay', ([], {}), '()\n', (23081, 23083), False, 'from Kamaelia.UI.Pygame.VideoOverlay import VideoOverlay\n')]
import click from flask.cli import AppGroup from project import app, db from project.dateutils import berlin_tz from project.services.event import ( get_recurring_events, update_event_dates_with_recurrence_rule, ) event_cli = AppGroup("event") @event_cli.command("update-recurring-dates") def update_recurring_dates(): # Setting the timezone is neccessary for cli command db.session.execute("SET timezone TO :val;", {"val": berlin_tz.zone}) events = get_recurring_events() for event in events: update_event_dates_with_recurrence_rule(event) db.session.commit() click.echo(f"{len(events)} event(s) were updated.") app.cli.add_command(event_cli)
[ "project.db.session.execute", "flask.cli.AppGroup", "project.services.event.update_event_dates_with_recurrence_rule", "project.services.event.get_recurring_events", "project.app.cli.add_command", "project.db.session.commit" ]
[((236, 253), 'flask.cli.AppGroup', 'AppGroup', (['"""event"""'], {}), "('event')\n", (244, 253), False, 'from flask.cli import AppGroup\n'), ((666, 696), 'project.app.cli.add_command', 'app.cli.add_command', (['event_cli'], {}), '(event_cli)\n', (685, 696), False, 'from project import app, db\n'), ((392, 460), 'project.db.session.execute', 'db.session.execute', (['"""SET timezone TO :val;"""', "{'val': berlin_tz.zone}"], {}), "('SET timezone TO :val;', {'val': berlin_tz.zone})\n", (410, 460), False, 'from project import app, db\n'), ((475, 497), 'project.services.event.get_recurring_events', 'get_recurring_events', ([], {}), '()\n', (495, 497), False, 'from project.services.event import get_recurring_events, update_event_dates_with_recurrence_rule\n'), ((532, 578), 'project.services.event.update_event_dates_with_recurrence_rule', 'update_event_dates_with_recurrence_rule', (['event'], {}), '(event)\n', (571, 578), False, 'from project.services.event import get_recurring_events, update_event_dates_with_recurrence_rule\n'), ((587, 606), 'project.db.session.commit', 'db.session.commit', ([], {}), '()\n', (604, 606), False, 'from project import app, db\n')]
import os import re import sys import subprocess import pytest from testplan.common.utils.path import change_directory import platform ON_WINDOWS = platform.system() == 'Windows' KNOWN_EXCEPTIONS = [ "TclError: Can't find a usable init\.tcl in the following directories:", # Matplotlib module improperly installed. Will skip Data Science example. "ImportError: lib.*\.so\..+: cannot open shared object file: No such file or directory", # Matplotlib module improperly installed. Will skip Data Science example. "ImportError: No module named sklearn.*", # Missing module sklearn. Will skip Data Science example. "ImportError: No module named Tkinter", # Missing module Tkinter. Will skip Data Science example. "ImportError: No module named _tkinter.*", # Missing module Tkinter. Will skip Data Science example. "RuntimeError: Download pyfixmsg library .*", # Missing module pyfixmsg. Will skip FIX example. "No spec file set\. You should download .*", # Missing FIX spec file. Will skip FIX example. "AttributeError: 'module' object has no attribute 'poll'", "RuntimeError: You need to compile test binary first." # Need to compile cpp binary first. Will skip GTest example. ] SKIP_ON_WINDOWS = [ os.path.join('Cpp', 'GTest', 'test_plan.py'), ] ROOT_DIR_CONTENTS = [ "setup.py", "requirements.txt", "README.rst", "LICENSE.md" ] def _depth_from_repo_root(): cwd = os.getcwd() depth = [] while True: contents = os.listdir(cwd) if all([entry in contents for entry in ROOT_DIR_CONTENTS]): return depth parent_dir = os.path.dirname(cwd) if os.path.realpath(cwd) == os.path.realpath(parent_dir): raise RuntimeError('Could not find repo directory') depth.append(os.pardir) cwd = parent_dir def _relative_dir(directory): path_args = _depth_from_repo_root() + [directory] return os.path.join(*path_args) def _param_formatter(param): if 'examples' in param: return repr(param.rsplit('examples')[1]) return repr(param) @pytest.mark.parametrize( 'root,filename', [ (os.path.abspath(root), filename) for root, _, files in os.walk( _relative_dir(os.path.join('testplan', 'examples'))) for filename in files if 'test_plan' in filename ], ids=_param_formatter, ) def test_example(root, filename): file_path = os.path.join(root, filename) if ON_WINDOWS and any( [file_path.endswith(skip_name) for skip_name in SKIP_ON_WINDOWS] ): pytest.skip() with change_directory(root), open(filename) as file_obj: file_obj.readline() second_line = file_obj.readline() try: subprocess.check_output( [sys.executable, filename], stderr=subprocess.STDOUT ) except subprocess.CalledProcessError as e: out = e.output.decode() for exception in KNOWN_EXCEPTIONS: if re.search(exception, out): pytest.xfail() assert 'Exception in test_plan definition' not in out, \ 'Exception raised in test_plan definition.' assert 'Traceback (most recent call last):' not in out, \ 'Exception raised during test:\n{}'.format(out) assert \ ('# This plan contains tests that demonstrate failures ' 'as well.') == second_line.strip(), \ "Expected \'{}\' example to pass, it failed.\n{}".format( file_path, out )
[ "subprocess.check_output", "os.listdir", "os.path.join", "os.getcwd", "os.path.realpath", "os.path.dirname", "platform.system", "testplan.common.utils.path.change_directory", "os.path.abspath", "pytest.skip", "pytest.xfail", "re.search" ]
[((151, 168), 'platform.system', 'platform.system', ([], {}), '()\n', (166, 168), False, 'import platform\n'), ((1240, 1284), 'os.path.join', 'os.path.join', (['"""Cpp"""', '"""GTest"""', '"""test_plan.py"""'], {}), "('Cpp', 'GTest', 'test_plan.py')\n", (1252, 1284), False, 'import os\n'), ((1429, 1440), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (1438, 1440), False, 'import os\n'), ((1926, 1950), 'os.path.join', 'os.path.join', (['*path_args'], {}), '(*path_args)\n', (1938, 1950), False, 'import os\n'), ((2433, 2461), 'os.path.join', 'os.path.join', (['root', 'filename'], {}), '(root, filename)\n', (2445, 2461), False, 'import os\n'), ((1491, 1506), 'os.listdir', 'os.listdir', (['cwd'], {}), '(cwd)\n', (1501, 1506), False, 'import os\n'), ((1621, 1641), 'os.path.dirname', 'os.path.dirname', (['cwd'], {}), '(cwd)\n', (1636, 1641), False, 'import os\n'), ((2578, 2591), 'pytest.skip', 'pytest.skip', ([], {}), '()\n', (2589, 2591), False, 'import pytest\n'), ((2602, 2624), 'testplan.common.utils.path.change_directory', 'change_directory', (['root'], {}), '(root)\n', (2618, 2624), False, 'from testplan.common.utils.path import change_directory\n'), ((1653, 1674), 'os.path.realpath', 'os.path.realpath', (['cwd'], {}), '(cwd)\n', (1669, 1674), False, 'import os\n'), ((1678, 1706), 'os.path.realpath', 'os.path.realpath', (['parent_dir'], {}), '(parent_dir)\n', (1694, 1706), False, 'import os\n'), ((2749, 2826), 'subprocess.check_output', 'subprocess.check_output', (['[sys.executable, filename]'], {'stderr': 'subprocess.STDOUT'}), '([sys.executable, filename], stderr=subprocess.STDOUT)\n', (2772, 2826), False, 'import subprocess\n'), ((2146, 2167), 'os.path.abspath', 'os.path.abspath', (['root'], {}), '(root)\n', (2161, 2167), False, 'import os\n'), ((3026, 3051), 're.search', 're.search', (['exception', 'out'], {}), '(exception, out)\n', (3035, 3051), False, 'import re\n'), ((2244, 2280), 'os.path.join', 'os.path.join', (['"""testplan"""', '"""examples"""'], {}), "('testplan', 'examples')\n", (2256, 2280), False, 'import os\n'), ((3073, 3087), 'pytest.xfail', 'pytest.xfail', ([], {}), '()\n', (3085, 3087), False, 'import pytest\n')]
import datetime import getpass import logging import os import pathlib import platform import re import smtplib import sys from contextlib import contextmanager from email.message import EmailMessage from functools import wraps import azure.functions as func import click import gspread import pandas as pd from apscheduler.schedulers.background import BlockingScheduler from oauth2client.service_account import ServiceAccountCredentials from selenium import webdriver from selenium.common.exceptions import TimeoutException from selenium.webdriver.chrome.options import Options from selenium.webdriver.common.by import By from selenium.webdriver.support import expected_conditions as EC from selenium.webdriver.support.ui import WebDriverWait log = logging.getLogger(__name__) log.setLevel(logging.DEBUG) handler = logging.StreamHandler(sys.stdout) handler.setLevel(logging.DEBUG) formatter = logging.Formatter('%(asctime)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) log.addHandler(handler) @contextmanager def get_driver(*args, **kwargs): options = Options() options.headless = True options.add_argument("--window-size=1920,1200") options.add_argument('--no-sandbox') options.add_argument('--disable-dev-shm-usage') options.add_argument('--disable-crash-reporter') options.add_argument('--disable-logging') options.add_argument('--log-level=3') if platform.system() == 'Linux': DRIVER_PATH = 'chromedriver' elif platform.system() == "Darwin": DRIVER_PATH = (pathlib.Path(__file__).parent.parent / 'chromedriver').resolve() else: log.error('Unsupported OS') exit(0) driver = webdriver.Chrome(options=options, executable_path=DRIVER_PATH) yield driver driver.close() driver.quit() def get_browser(func): @wraps(func) def wrapper(*args, **kwargs): with get_driver() as d: kwargs['driver'] = d return func(*args, **kwargs) return wrapper @click.group() @click.option('--email', is_flag=True, help='A flag for sending email with results.') @click.option('--email_to', help='CSV of email addresses to send notification to.') @click.option('--username', help='SMTP account username.') @click.option('--gsheet', is_flag=True, help='A flag for updating google sheet with results') @click.option('--doc_key', help='Google Doc Key to update') @click.pass_context def cli(ctx, email, email_to, username, gsheet, doc_key): ctx.ensure_object(dict) if email and (not username or not email_to): log.error('Please provide email sending parameters') exit(0) elif email: password = getpass.getpass( "Please enter your google account password for sending email:\n") ctx.obj['password'] = password if gsheet and not doc_key: log.error('Please provide a gsheet doc key') exit(0) pass @cli.command('schedule') @click.option('--hour', default='*/1', help='Cron hour expression') @click.pass_context def schedule(ctx, hour): email = ctx.parent.params['email'] username = ctx.parent.params['username'] email_to = ctx.parent.params['email_to'] password = ctx.obj.get('password', None) gsheet = ctx.parent.params['gsheet'] doc_key = ctx.parent.params['doc_key'] schedule = BlockingScheduler() schedule.add_job(run, kwargs={"email": email, "gsheet": gsheet, "doc_key": doc_key, "username": username, "email_to": email_to, "password": password}, trigger='cron', hour=hour) try: schedule.start() except (KeyboardInterrupt, SystemExit): schedule.shutdown() @cli.command('run') @click.pass_context def once(ctx): email = ctx.parent.params['email'] gsheet = ctx.parent.params['gsheet'] username = ctx.parent.params['username'] email_to = ctx.parent.params['email_to'] password = ctx.obj.get('password', None) doc_key = ctx.parent.params['doc_key'] run(email, username, email_to, password, gsheet, doc_key) def run(email, username, email_to, password, gsheet, doc_key): log.info('In run') content = [] for link in os.environ["searchLinks"].split(): content += get_prometheus_apartments(link) formatted_content = format_email(content) if gsheet: log.info('Updating gsheet') update_historical_data(doc_key, content) formatted_content += f'For historical data click the link below:\nhttps://docs.google.com/spreadsheets/d/1XZocxmyQ91e1exBvwDAaSR8Rhavy9WPnwLSz0Z5SKsM/edit?usp=sharing' if email: log.info('Sending email') send_email(username, password, email_to, formatted_content) log.info(content) @get_browser def get_prometheus_apartments(url, driver): driver.get(url) content = [] log.info(f'Getting apartments: {url}') try: anchors = driver.find_elements_by_xpath( "//div[@id='results-cards']/div/a[@class='card-wrapper']") except Exception as e: log.exception(f'{e}') return content links = [a.get_attribute('href') for a in anchors] apartments = [] for apt in links: name = apt.strip('/').split('/')[-1] apartments.append({'name': name, 'url': f'{apt}lease'}) # Scrape each appartment in parallel for apt in apartments: results = get_availability(apt) if results: content.append(results) # with Pool() as pool: # results = [pool.apply_async(get_availability, args=(apt,)) for apt in apartments] # for result in results: # data = result.get() # if data: # content.append(data) return content def update_historical_data(doc_key, content): date = datetime.datetime.today().strftime('%Y-%m-%d') all_content = [] for apt in content: complex = apt['meta']['name'] data = apt['data'] for row in data: cleaned_values = [f'{date}', f'{complex}'] + \ [value.replace('$', '').replace(',', '') for value in row] all_content.append(cleaned_values) update_gdoc(doc_key, all_content) def format_email(content): result = '' for apt in content: complex = apt['meta']['name'] data = apt['data'] if complex != 'mansion-grove': continue result += f'------------ {complex} ----------------\n' total_available = sum(int(row[-1]) for row in data) result += '\n'.join(', '.join(row) for row in data) result += f'\nTotal Available: {total_available}\n' return result @get_browser def get_availability(data, driver): """ Returns apartment availability information """ url = data['url'] content = [] log.info(f'Processing {url}') driver.get(url) delay = 60 # seconds try: WebDriverWait(driver, delay).until( EC.frame_to_be_available_and_switch_to_it('rp-leasing-widget')) WebDriverWait(driver, delay).until(EC.presence_of_element_located( (By.XPATH, "//button[contains(@class, 'primary')][contains(text(), 'Start')]"))) except TimeoutException: log.info(f'Page did not load: {url}') return content try: driver.find_element_by_xpath( "//button[contains(@class, 'primary')][contains(text(), 'Start')]").click() WebDriverWait(driver, delay).until( EC.presence_of_element_located((By.XPATH, "//div[contains(@class, 'floorplan-tile')]/div/span[contains(@class, 'name')]"))) # Print plan prices names = [n.text for n in driver.find_elements_by_xpath( "//div[contains(@class, 'floorplan-tile')]/div/span[contains(@class, 'name')]")] specs = [n.text for n in driver.find_elements_by_xpath( "//div[contains(@class, 'floorplan-tile')]/div/span[contains(@class, 'specs')]")] prices = [n.text for n in driver.find_elements_by_xpath( "//div[contains(@class, 'floorplan-tile')]/div/span[contains(@class, 'range')]")] availability = [n.text for n in driver.find_elements_by_xpath( "//div[contains(@class, 'floorplan-tile')]/div[@class='tile-buttons']/button")] except Exception: log.exception(f'Unable to parse {url}') return content for i in range(len(names)): match = re.match( r'\((\d+)\).*', availability[i]) if len(availability) > i else None units = int(match.groups()[0]) if match else '0' match = re.match( r'(\$\d*)( \- \$\d*\*)*', prices[i].split(' - ')[0].replace(',', '').replace('From ', '')) if len(prices) > i else None min_price = match.groups()[0] if match else '$0' content.append((names[i], specs[i], min_price, str(units))) return {'meta': data, 'data': content} def send_email(username, password, to, content): if not content: log.info('Nothing to send') return msg = EmailMessage() msg.set_content(content) msg['Subject'] = f'Apartment availability' msg['From'] = username msg['To'] = to # Send the message via our own SMTP server. s = smtplib.SMTP_SSL('smtp.gmail.com', 465) s.login(username, password) s.send_message(msg) s.quit() def update_gdoc(doc_key, cells): scope = [ "https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive", ] CREDENTIALS_PATH = pathlib.Path(__file__).parent.parent / 'credentials.json' credentials = ServiceAccountCredentials.from_json_keyfile_name( CREDENTIALS_PATH.resolve(), scope, ) docs = gspread.authorize(credentials) sheet = docs.open_by_key(doc_key).sheet1 new = pd.DataFrame(cells) new.columns = ['Date', 'Complex', 'Plan', 'Specs', 'Price', 'Availability'] existing = pd.DataFrame(sheet.get_all_values()[1:]) if existing.size: existing.columns = ['Date', 'Complex', 'Plan', 'Specs', 'Price', 'Availability'] updated = existing.append(new) updated = updated.groupby(['Date', 'Complex', 'Plan', 'Specs']).min() updated.reset_index(inplace=True) sheet.update([updated.columns.values.tolist()] + updated.values.tolist(), value_input_option='USER_ENTERED') if __name__ == '__main__': cli() def azurefunc(PrometheusScrapper: func.TimerRequest) -> None: email = os.environ["SendEmail"] email_to = os.environ["EmailTo"] username = os.environ["GmailUsername"] password = os.environ["GmailPassword"] gsheet = os.environ["UpdateGSheet"] doc_key = os.environ["GSheetKey"] run(email, username, email_to, password, gsheet, doc_key)
[ "logging.getLogger", "selenium.webdriver.chrome.options.Options", "logging.StreamHandler", "gspread.authorize", "smtplib.SMTP_SSL", "datetime.datetime.today", "email.message.EmailMessage", "pathlib.Path", "click.group", "click.option", "functools.wraps", "getpass.getpass", "platform.system", "selenium.webdriver.support.expected_conditions.frame_to_be_available_and_switch_to_it", "pandas.DataFrame", "selenium.webdriver.support.ui.WebDriverWait", "re.match", "apscheduler.schedulers.background.BlockingScheduler", "azure.functions", "logging.Formatter", "selenium.webdriver.Chrome", "selenium.webdriver.support.expected_conditions.presence_of_element_located" ]
[((752, 779), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (769, 779), False, 'import logging\n'), ((819, 852), 'logging.StreamHandler', 'logging.StreamHandler', (['sys.stdout'], {}), '(sys.stdout)\n', (840, 852), False, 'import logging\n'), ((897, 959), 'logging.Formatter', 'logging.Formatter', (['"""%(asctime)s - %(levelname)s - %(message)s"""'], {}), "('%(asctime)s - %(levelname)s - %(message)s')\n", (914, 959), False, 'import logging\n'), ((2027, 2040), 'click.group', 'click.group', ([], {}), '()\n', (2038, 2040), False, 'import click\n'), ((2042, 2131), 'click.option', 'click.option', (['"""--email"""'], {'is_flag': '(True)', 'help': '"""A flag for sending email with results."""'}), "('--email', is_flag=True, help=\n 'A flag for sending email with results.')\n", (2054, 2131), False, 'import click\n'), ((2128, 2215), 'click.option', 'click.option', (['"""--email_to"""'], {'help': '"""CSV of email addresses to send notification to."""'}), "('--email_to', help=\n 'CSV of email addresses to send notification to.')\n", (2140, 2215), False, 'import click\n'), ((2212, 2269), 'click.option', 'click.option', (['"""--username"""'], {'help': '"""SMTP account username."""'}), "('--username', help='SMTP account username.')\n", (2224, 2269), False, 'import click\n'), ((2271, 2368), 'click.option', 'click.option', (['"""--gsheet"""'], {'is_flag': '(True)', 'help': '"""A flag for updating google sheet with results"""'}), "('--gsheet', is_flag=True, help=\n 'A flag for updating google sheet with results')\n", (2283, 2368), False, 'import click\n'), ((2365, 2423), 'click.option', 'click.option', (['"""--doc_key"""'], {'help': '"""Google Doc Key to update"""'}), "('--doc_key', help='Google Doc Key to update')\n", (2377, 2423), False, 'import click\n'), ((2962, 3028), 'click.option', 'click.option', (['"""--hour"""'], {'default': '"""*/1"""', 'help': '"""Cron hour expression"""'}), "('--hour', default='*/1', help='Cron hour expression')\n", (2974, 3028), False, 'import click\n'), ((1081, 1090), 'selenium.webdriver.chrome.options.Options', 'Options', ([], {}), '()\n', (1088, 1090), False, 'from selenium.webdriver.chrome.options import Options\n'), ((1706, 1768), 'selenium.webdriver.Chrome', 'webdriver.Chrome', ([], {'options': 'options', 'executable_path': 'DRIVER_PATH'}), '(options=options, executable_path=DRIVER_PATH)\n', (1722, 1768), False, 'from selenium import webdriver\n'), ((1853, 1864), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (1858, 1864), False, 'from functools import wraps\n'), ((3348, 3367), 'apscheduler.schedulers.background.BlockingScheduler', 'BlockingScheduler', ([], {}), '()\n', (3365, 3367), False, 'from apscheduler.schedulers.background import BlockingScheduler\n'), ((9001, 9015), 'email.message.EmailMessage', 'EmailMessage', ([], {}), '()\n', (9013, 9015), False, 'from email.message import EmailMessage\n'), ((9195, 9234), 'smtplib.SMTP_SSL', 'smtplib.SMTP_SSL', (['"""smtp.gmail.com"""', '(465)'], {}), "('smtp.gmail.com', 465)\n", (9211, 9234), False, 'import smtplib\n'), ((9668, 9698), 'gspread.authorize', 'gspread.authorize', (['credentials'], {}), '(credentials)\n', (9685, 9698), False, 'import gspread\n'), ((9754, 9773), 'pandas.DataFrame', 'pd.DataFrame', (['cells'], {}), '(cells)\n', (9766, 9773), True, 'import pandas as pd\n'), ((1412, 1429), 'platform.system', 'platform.system', ([], {}), '()\n', (1427, 1429), False, 'import platform\n'), ((1488, 1505), 'platform.system', 'platform.system', ([], {}), '()\n', (1503, 1505), False, 'import platform\n'), ((1983, 2004), 'azure.functions', 'func', (['*args'], {}), '(*args, **kwargs)\n', (1987, 2004), True, 'import azure.functions as func\n'), ((2691, 2777), 'getpass.getpass', 'getpass.getpass', (['"""Please enter your google account password for sending email:\n"""'], {}), "(\n 'Please enter your google account password for sending email:\\n')\n", (2706, 2777), False, 'import getpass\n'), ((5783, 5808), 'datetime.datetime.today', 'datetime.datetime.today', ([], {}), '()\n', (5806, 5808), False, 'import datetime\n'), ((6941, 7003), 'selenium.webdriver.support.expected_conditions.frame_to_be_available_and_switch_to_it', 'EC.frame_to_be_available_and_switch_to_it', (['"""rp-leasing-widget"""'], {}), "('rp-leasing-widget')\n", (6982, 7003), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((7048, 7162), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (['(By.XPATH, "//button[contains(@class, \'primary\')][contains(text(), \'Start\')]")'], {}), '((By.XPATH,\n "//button[contains(@class, \'primary\')][contains(text(), \'Start\')]"))\n', (7078, 7162), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((7464, 7595), 'selenium.webdriver.support.expected_conditions.presence_of_element_located', 'EC.presence_of_element_located', (['(By.XPATH,\n "//div[contains(@class, \'floorplan-tile\')]/div/span[contains(@class, \'name\')]"\n )'], {}), '((By.XPATH,\n "//div[contains(@class, \'floorplan-tile\')]/div/span[contains(@class, \'name\')]"\n ))\n', (7494, 7595), True, 'from selenium.webdriver.support import expected_conditions as EC\n'), ((8396, 8439), 're.match', 're.match', (['"""\\\\((\\\\d+)\\\\).*"""', 'availability[i]'], {}), "('\\\\((\\\\d+)\\\\).*', availability[i])\n", (8404, 8439), False, 'import re\n'), ((6893, 6921), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['driver', 'delay'], {}), '(driver, delay)\n', (6906, 6921), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((7013, 7041), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['driver', 'delay'], {}), '(driver, delay)\n', (7026, 7041), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((7416, 7444), 'selenium.webdriver.support.ui.WebDriverWait', 'WebDriverWait', (['driver', 'delay'], {}), '(driver, delay)\n', (7429, 7444), False, 'from selenium.webdriver.support.ui import WebDriverWait\n'), ((9481, 9503), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (9493, 9503), False, 'import pathlib\n'), ((1542, 1564), 'pathlib.Path', 'pathlib.Path', (['__file__'], {}), '(__file__)\n', (1554, 1564), False, 'import pathlib\n')]
# -*- coding: utf-8 -*- # Copyright 2020 Google Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Demo CLI tool for Azure.""" import os from datetime import datetime from typing import TYPE_CHECKING from Crypto.PublicKey import RSA from libcloudforensics import logging_utils from libcloudforensics.providers.azure.internal import account from libcloudforensics.providers.azure.internal import monitoring from libcloudforensics.providers.azure import forensics logging_utils.SetUpLogger(__name__) logger = logging_utils.GetLogger(__name__) if TYPE_CHECKING: import argparse def ListInstances(args: 'argparse.Namespace') -> None: """List instances in Azure subscription. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) instances = az_account.compute.ListInstances( resource_group_name=args.resource_group_name) logger.info('Instances found:') for instance in instances.values(): boot_disk = instance.GetBootDisk() logger.info( 'Name: {0:s}, Boot disk: {1:s}'.format(instance.name, boot_disk.name)) def ListDisks(args: 'argparse.Namespace') -> None: """List disks in Azure subscription. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) disks = az_account.compute.ListDisks( resource_group_name=args.resource_group_name) logger.info('Disks found:') for disk_name, disk in disks.items(): logger.info('Name: {0:s}, Region: {1:s}'.format(disk_name, disk.region)) def CreateDiskCopy(args: 'argparse.Namespace') -> None: """Create an Azure disk copy. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ logger.info('Starting disk copy...') disk_copy = forensics.CreateDiskCopy(args.default_resource_group_name, instance_name=args.instance_name, disk_name=args.disk_name, disk_type=args.disk_type, region=args.region, src_profile=args.src_profile, dst_profile=args.dst_profile) logger.info( 'Done! Disk {0:s} successfully created. You will find it in ' 'your Azure subscription under the name {1:s}.'.format( disk_copy.resource_id, disk_copy.name)) def StartAnalysisVm(args: 'argparse.Namespace') -> None: """Start forensic analysis VM. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ attach_disks = [] if args.attach_disks: attach_disks = args.attach_disks.split(',') # Check if attach_disks parameter exists and if there # are any empty entries. if not (attach_disks and all(elements for elements in attach_disks)): logger.error('error: parameter --attach_disks: {0:s}'.format( args.attach_disks)) return ssh_public_key = args.ssh_public_key if not ssh_public_key: # According to https://docs.microsoft.com/cs-cz/samples/azure-samples/ # resource-manager-python-template-deployment/resource-manager-python- # template-deployment/ there's no API to generate a new SSH key pair in # Azure, so we do this manually... ssh_public_key = _GenerateSSHKeyPair(args.instance_name) logger.info('Starting analysis VM...') vm = forensics.StartAnalysisVm(args.default_resource_group_name, args.instance_name, int(args.disk_size), ssh_public_key, cpu_cores=int(args.cpu_cores), memory_in_mb=int(args.memory_in_mb), region=args.region, attach_disks=attach_disks, dst_profile=args.dst_profile) logger.info('Analysis VM started.') logger.info('Name: {0:s}, Started: {1:s}'.format(vm[0].name, str(vm[1]))) def _GenerateSSHKeyPair(vm_name: str) -> str: """Generate a SSH key pair and returns its public key. Both public and private keys will be saved in the current directory. Args: vm_name (str): The VM name for which to generate the key pair. Returns: str: The public key for the generated SSH key pair. Raises: ValueError: If vm_name is None. """ if not vm_name: raise ValueError('Parameter vm_name must not be None.') logger.info('Generating a new SSH key pair for VM: {0:s}'.format(vm_name)) key = RSA.generate(2048) key_name = '{0:s}-ssh'.format(vm_name) public_key = key.publickey().exportKey('OpenSSH') path_public_key = os.path.join(os.getcwd(), key_name + '.pub') private_key = key.exportKey('PEM') path_private_key = os.path.join(os.getcwd(), key_name + '.pem') with open(path_private_key, 'wb') as f: f.write(private_key) with open(path_public_key, 'wb') as f: f.write(public_key) logger.info('SSH key pair generated. Public key saved in {0:s}, private key ' 'saved in {1:s}'.format(path_public_key, path_private_key)) return public_key.decode('utf-8') def ListMetrics(args: 'argparse.Namespace') -> None: """List Azure Monitoring metrics for a resource. Args: args (argparse.Namespace): Arguments from ArgumentParser. """ az_account = account.AZAccount(args.default_resource_group_name) az_monitoring = monitoring.AZMonitoring(az_account) metrics = az_monitoring.ListAvailableMetricsForResource(args.resource_id) for metric in metrics: logger.info('Available metric: {0:s}'.format(metric)) def QueryMetrics(args: 'argparse.Namespace') -> None: """Query Azure Monitoring metrics for a resource. Args: args (argparse.Namespace): Arguments from ArgumentParser. Raises: RuntimeError: If from_date or to_date could not be parsed. """ az_account = account.AZAccount(args.default_resource_group_name) az_monitoring = monitoring.AZMonitoring(az_account) from_date, to_date = args.from_date, args.to_date if from_date and to_date: try: from_date = datetime.strptime(from_date, '%Y-%m-%dT%H:%M:%SZ') to_date = datetime.strptime(to_date, '%Y-%m-%dT%H:%M:%SZ') except ValueError as exception: raise RuntimeError( 'Cannot parse date: {0!s}'.format(exception)) from exception metrics = az_monitoring.GetMetricsForResource( args.resource_id, metrics=args.metrics, from_date=from_date, to_date=to_date, interval=args.interval, aggregation=args.aggregation or 'Total', qfilter=args.qfilter) for metric, metric_value in metrics.items(): logger.info('Metric: {0:s}'.format(metric)) for timestamp, value in metric_value.items(): logger.info(' Timestamp: {0:s}, value: {1:s}'.format(timestamp, value))
[ "datetime.datetime.strptime", "libcloudforensics.providers.azure.forensics.CreateDiskCopy", "Crypto.PublicKey.RSA.generate", "os.getcwd", "libcloudforensics.providers.azure.internal.account.AZAccount", "libcloudforensics.logging_utils.GetLogger", "libcloudforensics.logging_utils.SetUpLogger", "libcloudforensics.providers.azure.internal.monitoring.AZMonitoring" ]
[((969, 1004), 'libcloudforensics.logging_utils.SetUpLogger', 'logging_utils.SetUpLogger', (['__name__'], {}), '(__name__)\n', (994, 1004), False, 'from libcloudforensics import logging_utils\n'), ((1014, 1047), 'libcloudforensics.logging_utils.GetLogger', 'logging_utils.GetLogger', (['__name__'], {}), '(__name__)\n', (1037, 1047), False, 'from libcloudforensics import logging_utils\n'), ((1278, 1329), 'libcloudforensics.providers.azure.internal.account.AZAccount', 'account.AZAccount', (['args.default_resource_group_name'], {}), '(args.default_resource_group_name)\n', (1295, 1329), False, 'from libcloudforensics.providers.azure.internal import account\n'), ((1823, 1874), 'libcloudforensics.providers.azure.internal.account.AZAccount', 'account.AZAccount', (['args.default_resource_group_name'], {}), '(args.default_resource_group_name)\n', (1840, 1874), False, 'from libcloudforensics.providers.azure.internal import account\n'), ((2335, 2573), 'libcloudforensics.providers.azure.forensics.CreateDiskCopy', 'forensics.CreateDiskCopy', (['args.default_resource_group_name'], {'instance_name': 'args.instance_name', 'disk_name': 'args.disk_name', 'disk_type': 'args.disk_type', 'region': 'args.region', 'src_profile': 'args.src_profile', 'dst_profile': 'args.dst_profile'}), '(args.default_resource_group_name, instance_name=\n args.instance_name, disk_name=args.disk_name, disk_type=args.disk_type,\n region=args.region, src_profile=args.src_profile, dst_profile=args.\n dst_profile)\n', (2359, 2573), False, 'from libcloudforensics.providers.azure import forensics\n'), ((5142, 5160), 'Crypto.PublicKey.RSA.generate', 'RSA.generate', (['(2048)'], {}), '(2048)\n', (5154, 5160), False, 'from Crypto.PublicKey import RSA\n'), ((5947, 5998), 'libcloudforensics.providers.azure.internal.account.AZAccount', 'account.AZAccount', (['args.default_resource_group_name'], {}), '(args.default_resource_group_name)\n', (5964, 5998), False, 'from libcloudforensics.providers.azure.internal import account\n'), ((6017, 6052), 'libcloudforensics.providers.azure.internal.monitoring.AZMonitoring', 'monitoring.AZMonitoring', (['az_account'], {}), '(az_account)\n', (6040, 6052), False, 'from libcloudforensics.providers.azure.internal import monitoring\n'), ((6486, 6537), 'libcloudforensics.providers.azure.internal.account.AZAccount', 'account.AZAccount', (['args.default_resource_group_name'], {}), '(args.default_resource_group_name)\n', (6503, 6537), False, 'from libcloudforensics.providers.azure.internal import account\n'), ((6556, 6591), 'libcloudforensics.providers.azure.internal.monitoring.AZMonitoring', 'monitoring.AZMonitoring', (['az_account'], {}), '(az_account)\n', (6579, 6591), False, 'from libcloudforensics.providers.azure.internal import monitoring\n'), ((5288, 5299), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5297, 5299), False, 'import os\n'), ((5392, 5403), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (5401, 5403), False, 'import os\n'), ((6699, 6749), 'datetime.datetime.strptime', 'datetime.strptime', (['from_date', '"""%Y-%m-%dT%H:%M:%SZ"""'], {}), "(from_date, '%Y-%m-%dT%H:%M:%SZ')\n", (6716, 6749), False, 'from datetime import datetime\n'), ((6766, 6814), 'datetime.datetime.strptime', 'datetime.strptime', (['to_date', '"""%Y-%m-%dT%H:%M:%SZ"""'], {}), "(to_date, '%Y-%m-%dT%H:%M:%SZ')\n", (6783, 6814), False, 'from datetime import datetime\n')]
import torch.nn as nn import torch.nn.functional as F from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg,PointNetFeaturePropagation class get_shared_model(nn.Module): def __init__(self, use_batch_norm, num_classes, num_input_channel=7): super(get_shared_model, self).__init__() self.sa1 = PointNetSetAbstractionMsg(1024, [0.05, 0.1], [16, 32], num_input_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(256, [0.1, 0.2], [16, 32], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(64, [0.2, 0.4], [16, 32], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.sa4 = PointNetSetAbstractionMsg(16, [0.4, 0.8], [16, 32], 256+256, [[256, 256, 512], [256, 384, 512]], use_batch_norm=use_batch_norm) self.fp4 = PointNetFeaturePropagation(512+512+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) self.conv1 = nn.Conv1d(128, 128, 1) if use_batch_norm: self.bn1 = nn.BatchNorm1d(128) self.drop1 = nn.Dropout(0.5) self.conv2 = nn.Conv1d(128, num_classes, 1) # for normal prediction self.conv_normal = nn.Conv1d(128, 3, 1) # for force prediction self.conv_force = nn.Conv1d(128, 1, 1) self.use_batch_norm = use_batch_norm def forward(self, xyz): l0_points = xyz l0_xyz = xyz[:,:3,:] l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l4_xyz, l4_points = self.sa4(l3_xyz, l3_points) l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) if self.use_batch_norm: x = self.drop1(F.relu(self.bn1(self.conv1(l0_points)))) else: x = F.relu(self.conv1(l0_points)) contact = self.conv2(x) normal = self.conv_normal(x) normal = F.normalize(normal, dim=1) force = self.conv_force(x) # this is not needed with BCElogit loss # x = F.log_softmax(x, dim=1) contact = contact.permute(0, 2, 1) normal = normal.permute(0, 2, 1) force = force.permute(0, 2, 1) return (contact, normal, force), l4_points class get_model(nn.Module): def __init__(self, use_batch_norm, num_out_channel, num_in_channel=7, target='contact', radius_list=[[0.05, 0.1], [0.1, 0.2], [0.2, 0.4], [0.4, 0.8]], npoint_list=[1024, 256, 64, 16], sample_point_1_list=[16, 16, 16, 16], sample_point_2_list=[32, 32, 32, 32], layer=4, downsample=True, dropout=True, track_running_stats=True, mlp1_size=[16, 16, 32], mlp2_size=[32, 32, 64], interpolation_mlp_size=[128, 128, 128] ): print("using layer: ", layer) super(get_model, self).__init__() self.layer = layer if self.layer == 4: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(npoint_list[2], radius_list[2], [sample_point_1_list[2], sample_point_2_list[2]], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.sa4 = PointNetSetAbstractionMsg(npoint_list[3], radius_list[3], [sample_point_1_list[3], sample_point_2_list[3]], 256+256, [[256, 256, 512], [256, 384, 512]], use_batch_norm=use_batch_norm) self.fp4 = PointNetFeaturePropagation(512+512+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 3: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.sa3 = PointNetSetAbstractionMsg(npoint_list[2], radius_list[2], [sample_point_1_list[2], sample_point_2_list[2]], 128+128, [[128, 196, 256], [128, 196, 256]], use_batch_norm=use_batch_norm) self.fp3 = PointNetFeaturePropagation(128+128+256+256, [256, 256], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+256, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 2: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm) self.sa2 = PointNetSetAbstractionMsg(npoint_list[1], radius_list[1], [sample_point_1_list[1], sample_point_2_list[1]], 32+64, [[64, 64, 128], [64, 96, 128]], use_batch_norm=use_batch_norm) self.fp2 = PointNetFeaturePropagation(32+64+128+128, [256, 128], use_batch_norm=use_batch_norm) self.fp1 = PointNetFeaturePropagation(128, [128, 128, 128], use_batch_norm=use_batch_norm) elif self.layer == 1: self.sa1 = PointNetSetAbstractionMsg(npoint_list[0], radius_list[0], [sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [mlp1_size, mlp2_size], use_batch_norm=use_batch_norm, downsample=downsample, track_running_stats=track_running_stats) self.fp1 = PointNetFeaturePropagation(mlp1_size[-1] + mlp2_size[-1], interpolation_mlp_size, use_batch_norm=use_batch_norm, track_running_stats=track_running_stats) self.drop_out = dropout self.conv1 = nn.Conv1d(128, 128, 1) if use_batch_norm: self.bn1 = nn.BatchNorm1d(128, track_running_stats=track_running_stats) if self.drop_out: self.drop1 = nn.Dropout(0.5) self.conv2 = nn.Conv1d(128, num_out_channel, 1) self.use_batch_norm = use_batch_norm self.target = target def forward(self, xyz): l0_points = xyz l0_xyz = xyz[:,:3,:] if self.layer == 4: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l4_xyz, l4_points = self.sa4(l3_xyz, l3_points) l3_points = self.fp4(l3_xyz, l4_xyz, l3_points, l4_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 3: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l3_xyz, l3_points = self.sa3(l2_xyz, l2_points) l2_points = self.fp3(l2_xyz, l3_xyz, l2_points, l3_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 2: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l2_xyz, l2_points = self.sa2(l1_xyz, l1_points) l1_points = self.fp2(l1_xyz, l2_xyz, l1_points, l2_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) elif self.layer == 1: l1_xyz, l1_points = self.sa1(l0_xyz, l0_points) l0_points = self.fp1(l0_xyz, l1_xyz, None, l1_points) if self.use_batch_norm: if self.drop_out: x = self.drop1(F.relu(self.bn1(self.conv1(l0_points)))) else: x = F.relu(self.bn1(self.conv1(l0_points))) else: x = F.relu(self.conv1(l0_points)) x = self.conv2(x) # this is not needed with BCElogit loss # x = F.log_softmax(x, dim=1) if self.target == 'normal': x = F.normalize(x, dim=1) x = x.permute(0, 2, 1) # return x, l4_points return x, None class get_loss_original(nn.Module): def __init__(self): super(get_loss_original, self).__init__() def forward(self, pred, target, trans_feat, weight): total_loss = F.nll_loss(pred, target, weight=weight) return total_loss class get_loss(nn.Module): def __init__(self): super(get_loss, self).__init__() self.loss = nn.BCEWithLogitsLoss() def forward(self, pred, target, trans_feat, weight): total_loss = self.loss(pred, target) return total_loss if __name__ == '__main__': import torch model = get_model(13) xyz = torch.rand(6, 9, 2048) (model(xyz))
[ "torch.nn.Dropout", "torch.nn.functional.nll_loss", "haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation", "torch.nn.functional.normalize", "torch.nn.BatchNorm1d", "haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg", "torch.nn.BCEWithLogitsLoss", "torch.nn.Conv1d", "torch.rand" ]
[((10025, 10047), 'torch.rand', 'torch.rand', (['(6)', '(9)', '(2048)'], {}), '(6, 9, 2048)\n', (10035, 10047), False, 'import torch\n'), ((356, 495), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['(1024)', '[0.05, 0.1]', '[16, 32]', 'num_input_channel', '[[16, 16, 32], [32, 32, 64]]'], {'use_batch_norm': 'use_batch_norm'}), '(1024, [0.05, 0.1], [16, 32], num_input_channel, [\n [16, 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm)\n', (381, 495), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((510, 639), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['(256)', '[0.1, 0.2]', '[16, 32]', '(32 + 64)', '[[64, 64, 128], [64, 96, 128]]'], {'use_batch_norm': 'use_batch_norm'}), '(256, [0.1, 0.2], [16, 32], 32 + 64, [[64, 64, 128\n ], [64, 96, 128]], use_batch_norm=use_batch_norm)\n', (535, 639), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((652, 786), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['(64)', '[0.2, 0.4]', '[16, 32]', '(128 + 128)', '[[128, 196, 256], [128, 196, 256]]'], {'use_batch_norm': 'use_batch_norm'}), '(64, [0.2, 0.4], [16, 32], 128 + 128, [[128, 196, \n 256], [128, 196, 256]], use_batch_norm=use_batch_norm)\n', (677, 786), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((799, 933), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['(16)', '[0.4, 0.8]', '[16, 32]', '(256 + 256)', '[[256, 256, 512], [256, 384, 512]]'], {'use_batch_norm': 'use_batch_norm'}), '(16, [0.4, 0.8], [16, 32], 256 + 256, [[256, 256, \n 512], [256, 384, 512]], use_batch_norm=use_batch_norm)\n', (824, 933), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((946, 1042), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(512 + 512 + 256 + 256)', '[256, 256]'], {'use_batch_norm': 'use_batch_norm'}), '(512 + 512 + 256 + 256, [256, 256],\n use_batch_norm=use_batch_norm)\n', (972, 1042), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((1052, 1143), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128 + 128 + 256)', '[256, 256]'], {'use_batch_norm': 'use_batch_norm'}), '(128 + 128 + 256, [256, 256], use_batch_norm=\n use_batch_norm)\n', (1078, 1143), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((1154, 1243), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(32 + 64 + 256)', '[256, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(32 + 64 + 256, [256, 128], use_batch_norm=\n use_batch_norm)\n', (1180, 1243), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((1254, 1333), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128)', '[128, 128, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(128, [128, 128, 128], use_batch_norm=use_batch_norm)\n', (1280, 1333), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((1355, 1377), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', '(128)', '(1)'], {}), '(128, 128, 1)\n', (1364, 1377), True, 'import torch.nn as nn\n'), ((1510, 1540), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', 'num_classes', '(1)'], {}), '(128, num_classes, 1)\n', (1519, 1540), True, 'import torch.nn as nn\n'), ((1600, 1620), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', '(3)', '(1)'], {}), '(128, 3, 1)\n', (1609, 1620), True, 'import torch.nn as nn\n'), ((1678, 1698), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', '(1)', '(1)'], {}), '(128, 1, 1)\n', (1687, 1698), True, 'import torch.nn as nn\n'), ((2571, 2597), 'torch.nn.functional.normalize', 'F.normalize', (['normal'], {'dim': '(1)'}), '(normal, dim=1)\n', (2582, 2597), True, 'import torch.nn.functional as F\n'), ((7036, 7058), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', '(128)', '(1)'], {}), '(128, 128, 1)\n', (7045, 7058), True, 'import torch.nn as nn\n'), ((7266, 7300), 'torch.nn.Conv1d', 'nn.Conv1d', (['(128)', 'num_out_channel', '(1)'], {}), '(128, num_out_channel, 1)\n', (7275, 7300), True, 'import torch.nn as nn\n'), ((9611, 9650), 'torch.nn.functional.nll_loss', 'F.nll_loss', (['pred', 'target'], {'weight': 'weight'}), '(pred, target, weight=weight)\n', (9621, 9650), True, 'import torch.nn.functional as F\n'), ((9791, 9813), 'torch.nn.BCEWithLogitsLoss', 'nn.BCEWithLogitsLoss', ([], {}), '()\n', (9811, 9813), True, 'import torch.nn as nn\n'), ((1428, 1447), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {}), '(128)\n', (1442, 1447), True, 'import torch.nn as nn\n'), ((1473, 1488), 'torch.nn.Dropout', 'nn.Dropout', (['(0.5)'], {}), '(0.5)\n', (1483, 1488), True, 'import torch.nn as nn\n'), ((3657, 3851), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[0]', 'radius_list[0]', '[sample_point_1_list[0], sample_point_2_list[0]]', 'num_in_channel', '[[16, 16, 32], [32, 32, 64]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[0], radius_list[0], [\n sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, \n 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm)\n', (3682, 3851), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((3865, 4054), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[1]', 'radius_list[1]', '[sample_point_1_list[1], sample_point_2_list[1]]', '(32 + 64)', '[[64, 64, 128], [64, 96, 128]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[1], radius_list[1], [\n sample_point_1_list[1], sample_point_2_list[1]], 32 + 64, [[64, 64, 128\n ], [64, 96, 128]], use_batch_norm=use_batch_norm)\n', (3890, 4054), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4066, 4260), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[2]', 'radius_list[2]', '[sample_point_1_list[2], sample_point_2_list[2]]', '(128 + 128)', '[[128, 196, 256], [128, 196, 256]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[2], radius_list[2], [\n sample_point_1_list[2], sample_point_2_list[2]], 128 + 128, [[128, 196,\n 256], [128, 196, 256]], use_batch_norm=use_batch_norm)\n', (4091, 4260), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4273, 4467), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[3]', 'radius_list[3]', '[sample_point_1_list[3], sample_point_2_list[3]]', '(256 + 256)', '[[256, 256, 512], [256, 384, 512]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[3], radius_list[3], [\n sample_point_1_list[3], sample_point_2_list[3]], 256 + 256, [[256, 256,\n 512], [256, 384, 512]], use_batch_norm=use_batch_norm)\n', (4298, 4467), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4480, 4576), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(512 + 512 + 256 + 256)', '[256, 256]'], {'use_batch_norm': 'use_batch_norm'}), '(512 + 512 + 256 + 256, [256, 256],\n use_batch_norm=use_batch_norm)\n', (4506, 4576), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4590, 4681), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128 + 128 + 256)', '[256, 256]'], {'use_batch_norm': 'use_batch_norm'}), '(128 + 128 + 256, [256, 256], use_batch_norm=\n use_batch_norm)\n', (4616, 4681), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4696, 4785), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(32 + 64 + 256)', '[256, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(32 + 64 + 256, [256, 128], use_batch_norm=\n use_batch_norm)\n', (4722, 4785), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((4800, 4879), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128)', '[128, 128, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(128, [128, 128, 128], use_batch_norm=use_batch_norm)\n', (4826, 4879), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((7109, 7169), 'torch.nn.BatchNorm1d', 'nn.BatchNorm1d', (['(128)'], {'track_running_stats': 'track_running_stats'}), '(128, track_running_stats=track_running_stats)\n', (7123, 7169), True, 'import torch.nn as nn\n'), ((9315, 9336), 'torch.nn.functional.normalize', 'F.normalize', (['x'], {'dim': '(1)'}), '(x, dim=1)\n', (9326, 9336), True, 'import torch.nn.functional as F\n'), ((4933, 5127), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[0]', 'radius_list[0]', '[sample_point_1_list[0], sample_point_2_list[0]]', 'num_in_channel', '[[16, 16, 32], [32, 32, 64]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[0], radius_list[0], [\n sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, \n 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm)\n', (4958, 5127), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((5141, 5330), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[1]', 'radius_list[1]', '[sample_point_1_list[1], sample_point_2_list[1]]', '(32 + 64)', '[[64, 64, 128], [64, 96, 128]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[1], radius_list[1], [\n sample_point_1_list[1], sample_point_2_list[1]], 32 + 64, [[64, 64, 128\n ], [64, 96, 128]], use_batch_norm=use_batch_norm)\n', (5166, 5330), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((5342, 5536), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[2]', 'radius_list[2]', '[sample_point_1_list[2], sample_point_2_list[2]]', '(128 + 128)', '[[128, 196, 256], [128, 196, 256]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[2], radius_list[2], [\n sample_point_1_list[2], sample_point_2_list[2]], 128 + 128, [[128, 196,\n 256], [128, 196, 256]], use_batch_norm=use_batch_norm)\n', (5367, 5536), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((5549, 5645), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128 + 128 + 256 + 256)', '[256, 256]'], {'use_batch_norm': 'use_batch_norm'}), '(128 + 128 + 256 + 256, [256, 256],\n use_batch_norm=use_batch_norm)\n', (5575, 5645), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((5659, 5748), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(32 + 64 + 256)', '[256, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(32 + 64 + 256, [256, 128], use_batch_norm=\n use_batch_norm)\n', (5685, 5748), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((5763, 5842), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128)', '[128, 128, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(128, [128, 128, 128], use_batch_norm=use_batch_norm)\n', (5789, 5842), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((7229, 7244), 'torch.nn.Dropout', 'nn.Dropout', (['(0.5)'], {}), '(0.5)\n', (7239, 7244), True, 'import torch.nn as nn\n'), ((5896, 6090), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[0]', 'radius_list[0]', '[sample_point_1_list[0], sample_point_2_list[0]]', 'num_in_channel', '[[16, 16, 32], [32, 32, 64]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[0], radius_list[0], [\n sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [[16, \n 16, 32], [32, 32, 64]], use_batch_norm=use_batch_norm)\n', (5921, 6090), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((6104, 6293), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[1]', 'radius_list[1]', '[sample_point_1_list[1], sample_point_2_list[1]]', '(32 + 64)', '[[64, 64, 128], [64, 96, 128]]'], {'use_batch_norm': 'use_batch_norm'}), '(npoint_list[1], radius_list[1], [\n sample_point_1_list[1], sample_point_2_list[1]], 32 + 64, [[64, 64, 128\n ], [64, 96, 128]], use_batch_norm=use_batch_norm)\n', (6129, 6293), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((6305, 6400), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(32 + 64 + 128 + 128)', '[256, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(32 + 64 + 128 + 128, [256, 128], use_batch_norm=\n use_batch_norm)\n', (6331, 6400), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((6413, 6492), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(128)', '[128, 128, 128]'], {'use_batch_norm': 'use_batch_norm'}), '(128, [128, 128, 128], use_batch_norm=use_batch_norm)\n', (6439, 6492), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((6546, 6803), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetSetAbstractionMsg', 'PointNetSetAbstractionMsg', (['npoint_list[0]', 'radius_list[0]', '[sample_point_1_list[0], sample_point_2_list[0]]', 'num_in_channel', '[mlp1_size, mlp2_size]'], {'use_batch_norm': 'use_batch_norm', 'downsample': 'downsample', 'track_running_stats': 'track_running_stats'}), '(npoint_list[0], radius_list[0], [\n sample_point_1_list[0], sample_point_2_list[0]], num_in_channel, [\n mlp1_size, mlp2_size], use_batch_norm=use_batch_norm, downsample=\n downsample, track_running_stats=track_running_stats)\n', (6571, 6803), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n'), ((6828, 6989), 'haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils.PointNetFeaturePropagation', 'PointNetFeaturePropagation', (['(mlp1_size[-1] + mlp2_size[-1])', 'interpolation_mlp_size'], {'use_batch_norm': 'use_batch_norm', 'track_running_stats': 'track_running_stats'}), '(mlp1_size[-1] + mlp2_size[-1],\n interpolation_mlp_size, use_batch_norm=use_batch_norm,\n track_running_stats=track_running_stats)\n', (6854, 6989), False, 'from haptic.Pointnet_Pointnet2_pytorch.models.pointnet2_utils import PointNetSetAbstractionMsg, PointNetFeaturePropagation\n')]
import krpc import time import math from simple_pid import PID conn = krpc.connect(name="UI Test") vessel = conn.space_center.active_vessel kerbin_frame = vessel.orbit.body.reference_frame orb_frame = vessel.orbital_reference_frame srf_frame = vessel.surface_reference_frame surface_gravity = vessel.orbit.body.surface_gravity current_met = conn.add_stream(getattr, vessel, 'met') current_roll = conn.add_stream(getattr, vessel.flight(), 'roll') current_pitch = conn.add_stream(getattr, vessel.flight(), 'pitch') current_heading = conn.add_stream(getattr, vessel.flight(), 'heading') current_alt = conn.add_stream(getattr, vessel.flight(), 'surface_altitude') lowest = conn.add_stream(vessel.bounding_box, srf_frame) current_drag = conn.add_stream(getattr, vessel.flight(), 'drag') current_aero = conn.add_stream(getattr, vessel.flight(), 'aerodynamic_force') current_speed = conn.add_stream(getattr, vessel.flight(kerbin_frame), 'speed') vessel.control.activate_next_stage() vessel.control.sas = True time.sleep(.2) vessel.control.sas_mode = conn.space_center.SASMode.retrograde def bottom_altitude(): return max(0, current_alt() - abs(lowest()[0][0])) for engine in vessel.parts.engines: engine.gimbal_locked = True while True: aero_amp = math.sqrt(current_aero()[0] ** 2 + current_aero()[1] ** 2 + current_aero()[2] ** 2) time_to_zero = current_speed() / ((((vessel.max_thrust * .9) + aero_amp) / vessel.mass) + vessel.orbit.body.surface_gravity) if (time_to_zero * current_speed()) >= bottom_altitude() - current_speed(): print(current_speed()) print(f"Start Hover Slam Burn") vessel.control.throttle = .9 break while current_speed() > 50: print(current_speed()) time.sleep(.01) pass print(f"Switch to Stab") for leg in vessel.parts.legs: leg.deployed = True pid1 = PID(.15, 0, .5, setpoint=0) pid1.output_limits = (0, 1) pid1.sample_time = 0.01 while bottom_altitude() > 1: vessel.control.throttle = pid1(bottom_altitude()) # pid1.setpoint *= .98 time.sleep(.01) vessel.control.sas_mode = conn.space_center.SASMode.radial vessel.control.throttle = 0
[ "krpc.connect", "simple_pid.PID", "time.sleep" ]
[((71, 99), 'krpc.connect', 'krpc.connect', ([], {'name': '"""UI Test"""'}), "(name='UI Test')\n", (83, 99), False, 'import krpc\n'), ((1005, 1020), 'time.sleep', 'time.sleep', (['(0.2)'], {}), '(0.2)\n', (1015, 1020), False, 'import time\n'), ((1936, 1965), 'simple_pid.PID', 'PID', (['(0.15)', '(0)', '(0.5)'], {'setpoint': '(0)'}), '(0.15, 0, 0.5, setpoint=0)\n', (1939, 1965), False, 'from simple_pid import PID\n'), ((1823, 1839), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (1833, 1839), False, 'import time\n'), ((2131, 2147), 'time.sleep', 'time.sleep', (['(0.01)'], {}), '(0.01)\n', (2141, 2147), False, 'import time\n')]
import datetime import os from io import BytesIO import logging from functools import wraps from copy import deepcopy from collections import Counter import slugify import yaml import mistune import requests from flask import \ Blueprint, Flask, render_template, abort, send_file, make_response from flask_cors import CORS from flask_jsonpify import jsonify from flask_basicauth import BasicAuth from datapackage_pipelines.status import status_mgr from datapackage_pipelines.utilities.stat_utils import user_facing_stats YAML_DUMPER = yaml.CDumper if 'CDumper' in yaml.__dict__ else yaml.Dumper def datestr(x): if x is None: return '' return str(datetime.datetime.fromtimestamp(x)) def yamlize(x): ret = yaml.dump(x, default_flow_style=False, Dumper=YAML_DUMPER) return ret markdown = mistune.Markdown(hard_wrap=True) status = status_mgr() def make_hierarchies(statuses): def group(lvl): pipelines = list(filter(lambda x: len(x['id']) == 1, lvl)) children_ = list(filter(lambda x: len(x['id']) > 1, lvl)) groups_ = {} for child in children_: child_key = child['id'].pop(0) groups_.setdefault(child_key, []).append(child) children_ = dict( (k, group(v)) for k, v in groups_.items() ) for p in pipelines: p['id'] = p['id'][0] return { 'pipelines': pipelines, 'children': children_ } def flatten(children_): for k, v in children_.items(): v['children'] = flatten(v['children']) child_keys = list(v['children'].keys()) if len(child_keys) == 1 and len(v['pipelines']) == 0: child_key = child_keys[0] children_['/'.join([k, child_key])] = v['children'][child_key] del children_[k] return children_ statuses = [ { 'id': st['id'].split('/'), 'title': st.get('title'), 'stats': st.get('stats'), 'slug': st.get('slug') } for st in statuses ] groups = group(statuses) children = groups.get('children', {}) groups['children'] = flatten(children) return groups def basic_auth_required(view_func): """ A decorator that can be used to protect specific views with HTTP basic access authentication. Conditional on having BASIC_AUTH_USERNAME and BASIC_AUTH_PASSWORD set as env vars. """ @wraps(view_func) def wrapper(*args, **kwargs): if app.config.get('BASIC_AUTH_ACTIVE', False): if basic_auth.authenticate(): return view_func(*args, **kwargs) else: return basic_auth.challenge() else: return view_func(*args, **kwargs) return wrapper blueprint = Blueprint('dpp', 'dpp') @blueprint.route("") @blueprint.route("<path:pipeline_path>") @basic_auth_required def main(pipeline_path=None): pipeline_ids = sorted(status.all_pipeline_ids()) # If we have a pipeline_path, filter the pipeline ids. if pipeline_path is not None: if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path pipeline_ids = [p for p in pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in pipeline_ids: pipeline_status = status.get(pipeline_id) ex = pipeline_status.get_last_execution() success_ex = pipeline_status.get_last_successful_execution() pipeline_obj = { 'id': pipeline_id.lstrip('./'), 'title': pipeline_status.pipeline_details.get('title'), 'stats': user_facing_stats(ex.stats) if ex else None, 'slug': slugify.slugify(pipeline_id), 'trigger': ex.trigger if ex else None, 'error_log': pipeline_status.errors(), 'state': pipeline_status.state(), 'pipeline': pipeline_status.pipeline_details, 'message': pipeline_status.state().capitalize(), 'dirty': pipeline_status.dirty(), 'runnable': pipeline_status.runnable(), 'class': {'INIT': 'primary', 'QUEUED': 'primary', 'INVALID': 'danger', 'RUNNING': 'warning', 'SUCCEEDED': 'success', 'FAILED': 'danger' }[pipeline_status.state()], 'ended': datestr(ex.finish_time) if ex else None, 'started': datestr(ex.start_time) if ex else None, 'last_success': datestr(success_ex.finish_time) if success_ex else None, } statuses.append(pipeline_obj) def state_and_not_dirty(state, p): return p.get('state') == state and not p.get('dirty') def state_or_dirty(state, p): return p.get('state') == state or p.get('dirty') categories = [ ['ALL', 'All Pipelines', lambda _, __: True], ['INVALID', "Can't start", lambda _, p: not p['runnable']], ['QUEUED', 'Waiting to run', lambda state, p: p['state'] == state], ['RUNNING', 'Running', state_and_not_dirty], ['FAILED', 'Failed Execution', state_and_not_dirty], ['SUCCEEDED', 'Successful Execution', state_and_not_dirty], ] for item in categories: item.append([p for p in deepcopy(statuses) if item[2](item[0], p)]) item.append(len(item[-1])) item.append(make_hierarchies(item[-2])) return render_template('dashboard.html', categories=categories, yamlize=yamlize, markdown=markdown) @blueprint.route("api/raw/status") @basic_auth_required def pipeline_raw_api_status(): pipelines = sorted(status.all_statuses(), key=lambda x: x.get('id')) for pipeline in pipelines: # can get the full details from api/raw/<path:pipeline_id> for attr in ["pipeline", "reason", "error_log"]: if attr in pipeline: del pipeline[attr] return jsonify(pipelines) @blueprint.route("api/raw/<path:pipeline_id>") @basic_auth_required def pipeline_raw_api(pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) last_execution = pipeline_status.get_last_execution() last_successful_execution = pipeline_status.get_last_successful_execution() ret = { "id": pipeline_id, "cache_hash": pipeline_status.cache_hash, "dirty": pipeline_status.dirty(), "queued": last_execution.queue_time if last_execution else None, "started": last_execution.start_time if last_execution else None, "ended": last_execution.finish_time if last_execution else None, "reason": last_execution.log if last_execution else None, "error_log": pipeline_status.errors(), "stats": last_execution.stats if last_execution else None, "success": last_execution.success if last_execution else None, "last_success": last_successful_execution.finish_time if last_successful_execution else None, "trigger": last_execution.trigger if last_execution else None, "pipeline": pipeline_status.pipeline_details, "source": pipeline_status.source_spec, "message": pipeline_status.state().capitalize(), "state": pipeline_status.state(), } return jsonify(ret) @blueprint.route("api/<field>/<path:pipeline_id>") @basic_auth_required def pipeline_api(field, pipeline_id): if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) if not pipeline_status.pipeline_details: abort(404) ret = None if field == 'pipeline': ret = pipeline_status.pipeline_details ret = yamlize(ret) elif field == 'source': ret = pipeline_status.source_spec ret = yamlize(ret) elif field == 'log': ex = pipeline_status.get_last_execution() ret = ex.log if ex else '' else: abort(400) ret = ret.split('\n') ret = {'text': ret} return jsonify(ret) def _make_badge_response(subject, text, colour): image_url = 'https://img.shields.io/badge/{}-{}-{}.svg'.format( subject, text, colour) r = requests.get(image_url) buffer_image = BytesIO(r.content) buffer_image.seek(0) res = make_response(send_file(buffer_image, mimetype='image/svg+xml')) res.headers['Cache-Control'] = \ 'max-age=0, no-cache, no-store, must-revalidate' res.headers['Expires'] = '0' return res @blueprint.route("badge/<path:pipeline_id>") def badge(pipeline_id): '''An individual pipeline status''' if not pipeline_id.startswith('./'): pipeline_id = './' + pipeline_id pipeline_status = status.get(pipeline_id) status_color = 'lightgray' if pipeline_status.pipeline_details: status_text = pipeline_status.state().lower() last_execution = pipeline_status.get_last_execution() success = last_execution.success if last_execution else None if success is True: stats = last_execution.stats if last_execution else None record_count = stats.get('count_of_rows') if record_count is not None: status_text += ' (%d records)' % record_count status_color = 'brightgreen' elif success is False: status_color = 'red' else: status_text = "not found" return _make_badge_response('pipeline', status_text, status_color) @blueprint.route("badge/collection/<path:pipeline_path>") def badge_collection(pipeline_path): '''Status badge for a collection of pipelines.''' all_pipeline_ids = sorted(status.all_pipeline_ids()) if not pipeline_path.startswith('./'): pipeline_path = './' + pipeline_path # Filter pipeline ids to only include those that start with pipeline_path. path_pipeline_ids = \ [p for p in all_pipeline_ids if p.startswith(pipeline_path)] statuses = [] for pipeline_id in path_pipeline_ids: pipeline_status = status.get(pipeline_id) if pipeline_status is None: abort(404) status_text = pipeline_status.state().lower() statuses.append(status_text) status_color = 'lightgray' status_counter = Counter(statuses) if status_counter: if len(status_counter) == 1 and status_counter['succeeded'] > 0: status_color = 'brightgreen' elif status_counter['failed'] > 0: status_color = 'red' elif status_counter['failed'] == 0: status_color = 'yellow' status_text = \ ', '.join(['{} {}'.format(v, k) for k, v in status_counter.items()]) else: status_text = "not found" return _make_badge_response('pipelines', status_text, status_color) app = Flask(__name__) app.config['JSONIFY_PRETTYPRINT_REGULAR'] = True if os.environ.get('DPP_BASIC_AUTH_USERNAME', False) \ and os.environ.get('DPP_BASIC_AUTH_PASSWORD', False): app.config['BASIC_AUTH_USERNAME'] = os.environ['DPP_BASIC_AUTH_USERNAME'] app.config['BASIC_AUTH_PASSWORD'] = os.environ['DPP_BASIC_AUTH_PASSWORD'] app.config['BASIC_AUTH_ACTIVE'] = True basic_auth = BasicAuth(app) CORS(app) url_prefix = os.environ.get('DPP_BASE_PATH', '/') if not url_prefix.endswith('/'): url_prefix += '/' logging.info('Serving on path %s', url_prefix) app.register_blueprint(blueprint, url_prefix=url_prefix)
[ "flask.render_template", "mistune.Markdown", "flask_cors.CORS", "flask.Flask", "datapackage_pipelines.utilities.stat_utils.user_facing_stats", "io.BytesIO", "copy.deepcopy", "logging.info", "functools.wraps", "flask.abort", "yaml.dump", "requests.get", "flask_jsonpify.jsonify", "flask.send_file", "slugify.slugify", "datetime.datetime.fromtimestamp", "os.environ.get", "collections.Counter", "datapackage_pipelines.status.status_mgr", "flask.Blueprint", "flask_basicauth.BasicAuth" ]
[((823, 855), 'mistune.Markdown', 'mistune.Markdown', ([], {'hard_wrap': '(True)'}), '(hard_wrap=True)\n', (839, 855), False, 'import mistune\n'), ((865, 877), 'datapackage_pipelines.status.status_mgr', 'status_mgr', ([], {}), '()\n', (875, 877), False, 'from datapackage_pipelines.status import status_mgr\n'), ((2852, 2875), 'flask.Blueprint', 'Blueprint', (['"""dpp"""', '"""dpp"""'], {}), "('dpp', 'dpp')\n", (2861, 2875), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((11132, 11147), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (11137, 11147), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((11522, 11536), 'flask_basicauth.BasicAuth', 'BasicAuth', (['app'], {}), '(app)\n', (11531, 11536), False, 'from flask_basicauth import BasicAuth\n'), ((11539, 11548), 'flask_cors.CORS', 'CORS', (['app'], {}), '(app)\n', (11543, 11548), False, 'from flask_cors import CORS\n'), ((11563, 11599), 'os.environ.get', 'os.environ.get', (['"""DPP_BASE_PATH"""', '"""/"""'], {}), "('DPP_BASE_PATH', '/')\n", (11577, 11599), False, 'import os\n'), ((11655, 11701), 'logging.info', 'logging.info', (['"""Serving on path %s"""', 'url_prefix'], {}), "('Serving on path %s', url_prefix)\n", (11667, 11701), False, 'import logging\n'), ((736, 794), 'yaml.dump', 'yaml.dump', (['x'], {'default_flow_style': '(False)', 'Dumper': 'YAML_DUMPER'}), '(x, default_flow_style=False, Dumper=YAML_DUMPER)\n', (745, 794), False, 'import yaml\n'), ((2497, 2513), 'functools.wraps', 'wraps', (['view_func'], {}), '(view_func)\n', (2502, 2513), False, 'from functools import wraps\n'), ((5559, 5655), 'flask.render_template', 'render_template', (['"""dashboard.html"""'], {'categories': 'categories', 'yamlize': 'yamlize', 'markdown': 'markdown'}), "('dashboard.html', categories=categories, yamlize=yamlize,\n markdown=markdown)\n", (5574, 5655), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((6129, 6147), 'flask_jsonpify.jsonify', 'jsonify', (['pipelines'], {}), '(pipelines)\n', (6136, 6147), False, 'from flask_jsonpify import jsonify\n'), ((7602, 7614), 'flask_jsonpify.jsonify', 'jsonify', (['ret'], {}), '(ret)\n', (7609, 7614), False, 'from flask_jsonpify import jsonify\n'), ((8336, 8348), 'flask_jsonpify.jsonify', 'jsonify', (['ret'], {}), '(ret)\n', (8343, 8348), False, 'from flask_jsonpify import jsonify\n'), ((8507, 8530), 'requests.get', 'requests.get', (['image_url'], {}), '(image_url)\n', (8519, 8530), False, 'import requests\n'), ((8550, 8568), 'io.BytesIO', 'BytesIO', (['r.content'], {}), '(r.content)\n', (8557, 8568), False, 'from io import BytesIO\n'), ((10568, 10585), 'collections.Counter', 'Counter', (['statuses'], {}), '(statuses)\n', (10575, 10585), False, 'from collections import Counter\n'), ((11201, 11249), 'os.environ.get', 'os.environ.get', (['"""DPP_BASIC_AUTH_USERNAME"""', '(False)'], {}), "('DPP_BASIC_AUTH_USERNAME', False)\n", (11215, 11249), False, 'import os\n'), ((11259, 11307), 'os.environ.get', 'os.environ.get', (['"""DPP_BASIC_AUTH_PASSWORD"""', '(False)'], {}), "('DPP_BASIC_AUTH_PASSWORD', False)\n", (11273, 11307), False, 'import os\n'), ((672, 706), 'datetime.datetime.fromtimestamp', 'datetime.datetime.fromtimestamp', (['x'], {}), '(x)\n', (703, 706), False, 'import datetime\n'), ((6434, 6444), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (6439, 6444), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((7909, 7919), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (7914, 7919), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((8618, 8667), 'flask.send_file', 'send_file', (['buffer_image'], {'mimetype': '"""image/svg+xml"""'}), "(buffer_image, mimetype='image/svg+xml')\n", (8627, 8667), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((3763, 3791), 'slugify.slugify', 'slugify.slugify', (['pipeline_id'], {}), '(pipeline_id)\n', (3778, 3791), False, 'import slugify\n'), ((10413, 10423), 'flask.abort', 'abort', (['(404)'], {}), '(404)\n', (10418, 10423), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((3698, 3725), 'datapackage_pipelines.utilities.stat_utils.user_facing_stats', 'user_facing_stats', (['ex.stats'], {}), '(ex.stats)\n', (3715, 3725), False, 'from datapackage_pipelines.utilities.stat_utils import user_facing_stats\n'), ((8263, 8273), 'flask.abort', 'abort', (['(400)'], {}), '(400)\n', (8268, 8273), False, 'from flask import Blueprint, Flask, render_template, abort, send_file, make_response\n'), ((5400, 5418), 'copy.deepcopy', 'deepcopy', (['statuses'], {}), '(statuses)\n', (5408, 5418), False, 'from copy import deepcopy\n')]
import pygame as pg from pygame.locals import * import sys import board.chess_board as board w = 60 * 8 h = 60 * 8 class Game: """ Class to setup and start a game """ def __init__(self): self.b = board.Board(w, h) def get_board(self): """ Returns board :return: Board-class """ return self.b def run(self): """ Where the game is created and launched :return: """ # While loop to show display while True: for event in pg.event.get(): # Quitting game if event.type == QUIT: pg.quit() sys.exit() # If game can continue if self.b.get_status() == "-": # Pressing mouse if event.type == MOUSEBUTTONDOWN: pos = pg.mouse.get_pos() for r in self.b.get_board_array(): for square in r: if square.get_visual().collidepoint(pos): square.click() self.b.update_board() if __name__ == "__main__": # Launch main-function if running this script game = Game() game.run()
[ "pygame.quit", "pygame.event.get", "pygame.mouse.get_pos", "sys.exit", "board.chess_board.Board" ]
[((224, 241), 'board.chess_board.Board', 'board.Board', (['w', 'h'], {}), '(w, h)\n', (235, 241), True, 'import board.chess_board as board\n'), ((555, 569), 'pygame.event.get', 'pg.event.get', ([], {}), '()\n', (567, 569), True, 'import pygame as pg\n'), ((662, 671), 'pygame.quit', 'pg.quit', ([], {}), '()\n', (669, 671), True, 'import pygame as pg\n'), ((692, 702), 'sys.exit', 'sys.exit', ([], {}), '()\n', (700, 702), False, 'import sys\n'), ((910, 928), 'pygame.mouse.get_pos', 'pg.mouse.get_pos', ([], {}), '()\n', (926, 928), True, 'import pygame as pg\n')]
#importing libraries import torch import torch.utils.data as data import os import random from PIL import Image class CreateDataset(data.Dataset): def __init__(self , imagedir , subfolder='train' , direction = 'AtoB' , flip = False , transform = None ,resize_scale = None , crop_size = None): super(CreateDataset , self).__init__() self.images_path = os.path.join(imagedir , subfolder) self.image_filenames = [name for name in sorted(os.listdir(self.images_path))] self.flip = flip self.transform = transform self.resize_scale = resize_scale self.crop_size = crop_size self.direction = direction def __getitem__(self , index): image_path = os.path.join(self.images_path , self.image_filenames[index]) img = Image.open(image_path) if self.direction == 'AtoB': inp_img = img.crop((0,0,img.width//2 , img.height)) target_img = img.crop((img.width//2 , 0 , img.width , img.height)) elif self.direction == 'BtoA': inp_img = img.crop((img.width//2 , 0 , img.width , img.height)) target_img = img.crop((0,0,img.width//2 , img.height)) if self.resize_scale: inp_img = inp_img.resize((self.resize_scale , self.resize_scale) , Image.BILINEAR) target_img = target_img.resize((self.resize_scale , self.resize_scale) , Image.BILINEAR) if self.crop_size: x = random.randint(0 , self.resize_scale - self.crop_size + 1) y = random.randint(0 , self.resize_scale - self.crop_size + 1) inp_img = inp_img.crop((x , y , x + self.crop_size , y + self.crop_size)) target_img = target_img.crop((x , y , x + self.crop_size , y + self.crop_size)) if self.flip: if random.random() < 0.5: inp_img = inp_img.transpose(Image.FLIP_LEFT_RIGHT) target_img = target_img.transpose(Image.FLIP_LEFT_RIGHT) if self.transform is not None: inp_img = self.transform(inp_img) target_img = self.transform(target_img) return inp_img , target_img def __len__(self): return len(self.image_filenames)
[ "os.listdir", "PIL.Image.open", "os.path.join", "random.random", "random.randint" ]
[((402, 435), 'os.path.join', 'os.path.join', (['imagedir', 'subfolder'], {}), '(imagedir, subfolder)\n', (414, 435), False, 'import os\n'), ((785, 844), 'os.path.join', 'os.path.join', (['self.images_path', 'self.image_filenames[index]'], {}), '(self.images_path, self.image_filenames[index])\n', (797, 844), False, 'import os\n'), ((861, 883), 'PIL.Image.open', 'Image.open', (['image_path'], {}), '(image_path)\n', (871, 883), False, 'from PIL import Image\n'), ((1630, 1687), 'random.randint', 'random.randint', (['(0)', '(self.resize_scale - self.crop_size + 1)'], {}), '(0, self.resize_scale - self.crop_size + 1)\n', (1644, 1687), False, 'import random\n'), ((1706, 1763), 'random.randint', 'random.randint', (['(0)', '(self.resize_scale - self.crop_size + 1)'], {}), '(0, self.resize_scale - self.crop_size + 1)\n', (1720, 1763), False, 'import random\n'), ((2026, 2041), 'random.random', 'random.random', ([], {}), '()\n', (2039, 2041), False, 'import random\n'), ((494, 522), 'os.listdir', 'os.listdir', (['self.images_path'], {}), '(self.images_path)\n', (504, 522), False, 'import os\n')]
#Prediction model using an instance of the Monte Carlo simulation and Brownian Motion equation #import of libraries import numpy as np import pandas as pd from pandas_datareader import data as wb import matplotlib.pyplot as plt from scipy.stats import norm #ticker selection def mainFunction(tradingSymbol): data = pd.DataFrame() data[tradingSymbol] = wb.DataReader(tradingSymbol, data_source='yahoo', start='2019-1-1')['Adj Close'] #percent change of asset price log_returns = np.log(1+ data.pct_change()) #graph showing growth over time beginning from 2015 data.plot(figsize = (10,6)); plt.show() #graph of log returns of input ticker #returns are normally distributed and have a consistent mean log_returns.plot(figsize = (10,6)) plt.show() #calculations averageDailyReturn = log_returns.mean() variance = log_returns.var() drift = averageDailyReturn-(variance/2) standardDeviation = log_returns.std() #Brownian Motion equation #r = drift + standardDeviation * (e^r) #prediction of future stock price based on simulation below using numpy for storing data into array np.array(drift) drift.values standardDeviation.values #Brownian motion variable correlating to the distance between the mean and the number of standard deviation norm.ppf(0.95) #10 x 2 Matrix x = np.random.rand(10,2) norm.ppf(x) #stores distances from the mean value, 0, into the 10 x 2 matrix Z = norm.ppf(np.random.rand(10,2)) #time interval for the stock price forecast timeInterval = 365 iterations = 5 #r = drift + standardDeviation * (e^r) #10 sets of 365 random future stock prices of the ticker symbol dailyReturns = np.exp(drift.values + standardDeviation.values * norm.ppf(np.random.rand(timeInterval,iterations))) #returns into price points presentPrice = data.iloc[-1] priceList = np.zeros_like(dailyReturns) priceList[0] = presentPrice #iteration for the time interavl of 365 for t in range(1, timeInterval): priceList[t] = priceList[t-1] * dailyReturns[t] #showcases 10 paths of the future stock price plt.figure(figsize =(10,6)) plt.plot(priceList) plt.show()
[ "numpy.random.rand", "pandas_datareader.data.DataReader", "matplotlib.pyplot.plot", "scipy.stats.norm.ppf", "numpy.array", "matplotlib.pyplot.figure", "pandas.DataFrame", "numpy.zeros_like", "matplotlib.pyplot.show" ]
[((322, 336), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (334, 336), True, 'import pandas as pd\n'), ((621, 631), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (629, 631), True, 'import matplotlib.pyplot as plt\n'), ((782, 792), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (790, 792), True, 'import matplotlib.pyplot as plt\n'), ((1149, 1164), 'numpy.array', 'np.array', (['drift'], {}), '(drift)\n', (1157, 1164), True, 'import numpy as np\n'), ((1328, 1342), 'scipy.stats.norm.ppf', 'norm.ppf', (['(0.95)'], {}), '(0.95)\n', (1336, 1342), False, 'from scipy.stats import norm\n'), ((1371, 1392), 'numpy.random.rand', 'np.random.rand', (['(10)', '(2)'], {}), '(10, 2)\n', (1385, 1392), True, 'import numpy as np\n'), ((1396, 1407), 'scipy.stats.norm.ppf', 'norm.ppf', (['x'], {}), '(x)\n', (1404, 1407), False, 'from scipy.stats import norm\n'), ((1923, 1950), 'numpy.zeros_like', 'np.zeros_like', (['dailyReturns'], {}), '(dailyReturns)\n', (1936, 1950), True, 'import numpy as np\n'), ((2175, 2202), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(10, 6)'}), '(figsize=(10, 6))\n', (2185, 2202), True, 'import matplotlib.pyplot as plt\n'), ((2207, 2226), 'matplotlib.pyplot.plot', 'plt.plot', (['priceList'], {}), '(priceList)\n', (2215, 2226), True, 'import matplotlib.pyplot as plt\n'), ((2231, 2241), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2239, 2241), True, 'import matplotlib.pyplot as plt\n'), ((363, 430), 'pandas_datareader.data.DataReader', 'wb.DataReader', (['tradingSymbol'], {'data_source': '"""yahoo"""', 'start': '"""2019-1-1"""'}), "(tradingSymbol, data_source='yahoo', start='2019-1-1')\n", (376, 430), True, 'from pandas_datareader import data as wb\n'), ((1495, 1516), 'numpy.random.rand', 'np.random.rand', (['(10)', '(2)'], {}), '(10, 2)\n', (1509, 1516), True, 'import numpy as np\n'), ((1799, 1839), 'numpy.random.rand', 'np.random.rand', (['timeInterval', 'iterations'], {}), '(timeInterval, iterations)\n', (1813, 1839), True, 'import numpy as np\n')]
import os import csv import numpy as np from sklearn.utils import shuffle ## Read in frame data samples = [] with open('/../opt/carnd_p3/data/driving_log.csv') as csvfile: #open the log file reader = csv.reader(csvfile) #as a readable csv for line in reader: samples.append(line) #add each line of the log file to samples samples = samples[1:] # to remove table header samples = shuffle(samples) # shuffle entire sample set before splitting into training and validation so that training isn't biased from sklearn.model_selection import train_test_split train_samples, validation_samples = train_test_split(samples, test_size=0.2) #split samples into 80% training, 20% validation from scipy import ndimage #because cv2.imread() imports the image as BGR, and we want RGB ## Define generator to handle small portions of images at a time so that training is not as memory-heavy def generator(samples, batch_size=32): num_samples = len(samples) while 1: # Loop forever so the generator never terminates # shuffle(samples) #shuffle within the training/validation sets, NOT NECESSARY SINCE SHUFFLING ALREADY SHUFFLED for offset in range(0, num_samples, batch_size): batch_samples = samples[offset:offset+batch_size] #collect the images for this batch images = [] angles = [] for batch_sample in batch_samples: path = '/../opt/carnd_p3/data/IMG/' #assign the location from which to read images # read in images from all 3 cameras MAKING SURE TO READ IN AS RGB center_image = ndimage.imread(path+batch_sample[0].split('/')[-1]) left_image = ndimage.imread(path+batch_sample[1].split('/')[-1]) right_image = ndimage.imread(path+batch_sample[2].split('/')[-1]) # read in steering angle center_angle = float(batch_sample[3]) #read the steering angle # apply a steering correction for the left and right images, in a way to generate "new" samples correction = 0.2 left_angle = center_angle + correction right_angle = center_angle - correction # add images and angles to batch set images.extend([center_image, left_image, right_image]) angles.extend([center_angle, left_angle, right_angle]) # copy all batches' images to final numpy array X_train = np.array(images) y_train = np.array(angles) yield shuffle(X_train, y_train) #shuffle before yielding result # compile and train the model using the generator function train_generator = generator(train_samples, batch_size=32) validation_generator = generator(validation_samples, batch_size=32) ch, row, col = 3, 160, 320 # Full image format #import Keras model layers from keras.models import Sequential from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda from keras.layers.convolutional import Conv2D, Cropping2D from keras.layers.pooling import MaxPooling2D # BUILD MODEL model = Sequential() # Preprocess incoming data, centered around zero with small standard deviation model.add(Lambda(lambda x: x/127.5 - 1.0, input_shape=(row,col,ch))) # Crop incoming data (training, validation, and autonomous so that everything is consistent) model.add(Cropping2D(cropping=((60,20), (0,0)))) # could be first layer to reduce memory used in Lambda calculation, and thus faster training # Begin CNN (similar to NVIDIA architecture) # Convolution layer 1-3, kernel size 5 with stride of 2 model.add(Conv2D(24,(5,5),strides=(2,2),activation='relu')) model.add(Conv2D(36,(5,5),strides=(2,2),activation='relu')) model.add(Conv2D(48,(5,5),strides=(2,2),activation='relu')) # Convolution layers 4-5, kernel size 3 wth stride of 1 model.add(Conv2D(64,(3,3),activation='relu')) model.add(Conv2D(64,(3,3),activation='relu')) # Flatten convolution output to yield single numerical result model.add(Flatten()) # Fully connected layers to complete computations, gradually decreasing in parameters until final value model.add(Dense(100)) model.add(Dense(50)) model.add(Dense(10)) model.add(Dense(1)) ## Training hyper parameters to play with ## Stop training checkpoints... # save_path = 'model{epoch:02d}-{val_loss:.2f}.h5' # checkpoint = ModelCheckpoint(filepath=save_path, monitor='val_loss', save_best_only=True) # stopper = EarlyStopping(monitor='val_acc', min_delta=0.0003, patience=5) ## OR batch_size = 32 epochs = 5 #*** ## Compile and train the model model.compile(loss='mse', optimizer='adam', metrics=['accuracy']) #use Mean Squared Error to measure loss, use Adam optimizer for tuning model.fit_generator(train_generator, steps_per_epoch= len(train_samples)/batch_size,validation_data=validation_generator, validation_steps=len(validation_samples)/batch_size, epochs=5, verbose = 1) # train using generators #save the trained model model.save('model.h5')
[ "keras.layers.core.Flatten", "keras.layers.convolutional.Cropping2D", "sklearn.model_selection.train_test_split", "sklearn.utils.shuffle", "keras.layers.core.Lambda", "keras.models.Sequential", "numpy.array", "keras.layers.convolutional.Conv2D", "csv.reader", "keras.layers.core.Dense" ]
[((399, 415), 'sklearn.utils.shuffle', 'shuffle', (['samples'], {}), '(samples)\n', (406, 415), False, 'from sklearn.utils import shuffle\n'), ((610, 650), 'sklearn.model_selection.train_test_split', 'train_test_split', (['samples'], {'test_size': '(0.2)'}), '(samples, test_size=0.2)\n', (626, 650), False, 'from sklearn.model_selection import train_test_split\n'), ((3171, 3183), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (3181, 3183), False, 'from keras.models import Sequential\n'), ((206, 225), 'csv.reader', 'csv.reader', (['csvfile'], {}), '(csvfile)\n', (216, 225), False, 'import csv\n'), ((3274, 3335), 'keras.layers.core.Lambda', 'Lambda', (['(lambda x: x / 127.5 - 1.0)'], {'input_shape': '(row, col, ch)'}), '(lambda x: x / 127.5 - 1.0, input_shape=(row, col, ch))\n', (3280, 3335), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((3436, 3475), 'keras.layers.convolutional.Cropping2D', 'Cropping2D', ([], {'cropping': '((60, 20), (0, 0))'}), '(cropping=((60, 20), (0, 0)))\n', (3446, 3475), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((3680, 3733), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(24)', '(5, 5)'], {'strides': '(2, 2)', 'activation': '"""relu"""'}), "(24, (5, 5), strides=(2, 2), activation='relu')\n", (3686, 3733), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((3740, 3793), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(36)', '(5, 5)'], {'strides': '(2, 2)', 'activation': '"""relu"""'}), "(36, (5, 5), strides=(2, 2), activation='relu')\n", (3746, 3793), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((3800, 3853), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(48)', '(5, 5)'], {'strides': '(2, 2)', 'activation': '"""relu"""'}), "(48, (5, 5), strides=(2, 2), activation='relu')\n", (3806, 3853), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((3916, 3953), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""'}), "(64, (3, 3), activation='relu')\n", (3922, 3953), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((3962, 3999), 'keras.layers.convolutional.Conv2D', 'Conv2D', (['(64)', '(3, 3)'], {'activation': '"""relu"""'}), "(64, (3, 3), activation='relu')\n", (3968, 3999), False, 'from keras.layers.convolutional import Conv2D, Cropping2D\n'), ((4070, 4079), 'keras.layers.core.Flatten', 'Flatten', ([], {}), '()\n', (4077, 4079), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((4195, 4205), 'keras.layers.core.Dense', 'Dense', (['(100)'], {}), '(100)\n', (4200, 4205), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((4217, 4226), 'keras.layers.core.Dense', 'Dense', (['(50)'], {}), '(50)\n', (4222, 4226), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((4238, 4247), 'keras.layers.core.Dense', 'Dense', (['(10)'], {}), '(10)\n', (4243, 4247), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((4259, 4267), 'keras.layers.core.Dense', 'Dense', (['(1)'], {}), '(1)\n', (4264, 4267), False, 'from keras.layers.core import Dense, Activation, Flatten, Dropout, Lambda\n'), ((2527, 2543), 'numpy.array', 'np.array', (['images'], {}), '(images)\n', (2535, 2543), True, 'import numpy as np\n'), ((2566, 2582), 'numpy.array', 'np.array', (['angles'], {}), '(angles)\n', (2574, 2582), True, 'import numpy as np\n'), ((2601, 2626), 'sklearn.utils.shuffle', 'shuffle', (['X_train', 'y_train'], {}), '(X_train, y_train)\n', (2608, 2626), False, 'from sklearn.utils import shuffle\n')]
#!/usr/bin/env python3 """ A script containing the basic principles of the extraction primitive inner workings""" from __future__ import division, print_function from ghostdr import polyfit import numpy as pn # Firstly, let's find all the needed files fitsdir='/Users/mireland/data/ghost/cal_frames/' #Define the files in use (NB xmod.txt and wavemod.txt should be correct) arc_file = fitsdir+"arc_extracted.fits" # load it in now: extracted_flux,extracted_vars=pyfits.getdata(arc_file) # Where is the default location for the model? By default it is a parameter # in the ghost class. If this needs to be overwritten, go ahead. # This is the xmod file. Wherever it is saved from the flat reduction. xmodel_file=fitsdir+'GHOST_1_1_blue_std_xmodPolyfit.fits' # All the other models... which are currently in the "test" directory. wmodel_file=test_files_dir+'wparams_blue_std.fits' spatmod_file=test_files_dir+'spatmod.fits' specmod_file=test_files_dir+'specmod.fits' rotmod_file=test_files_dir+'rotmod2.fits' # Find the arc line list file arclinefile='/home/jbento/code/ghostdr/ghostdr/ADCONFIG_GHOST/lookups/GHOST/Polyfit/mnras0378-0221-SD1.txt' arcwaves, arcfluxes= np.loadtxt(arclinefile,usecols=[1,2]).T #instantiate the ghost arm arm = polyfit.GhostArm('blue',mode='std') arm.spectral_format_with_matrix(xpars,wpars,spatpars,specpars,rotpars) #Get the initial default model from the lookup location xpars=pyfits.getdata(xmodel_file) wpars=pyfits.getdata(wmodel_file) spatpars=pyfits.getdata(spatmod_file) specpars=pyfits.getdata(specmod_file) rotpars=pyfits.getdata(rotmod_file) slitview = polyfit.SlitView(image_array, flat_image_array, mode='std') # The extractor is given the polyfit "arm" object, and a slitview object which has # been instantiated with the slit viewer data. extractor = polyfit.Extractor(arm, slitview) #Now find the other lines, after first re-loading into the extractor. # the inspect parameter is a verbose option for visualising the line # finding results lines_out=extractor.find_lines(extracted_flux, arcwaves, inspect=False) #Now finally do the wavelength fit! fitted_params, wave_and_resid = arm.read_lines_and_fit(wpars,lines_out,ydeg=3,xdeg=3) # Optionally show residuals? #Now write the output to a file, in whatever format suits the recipe system best. pyfits.writeto('outputs.fits',fitted_params)
[ "ghostdr.polyfit.Extractor", "ghostdr.polyfit.GhostArm", "ghostdr.polyfit.SlitView" ]
[((1251, 1287), 'ghostdr.polyfit.GhostArm', 'polyfit.GhostArm', (['"""blue"""'], {'mode': '"""std"""'}), "('blue', mode='std')\n", (1267, 1287), False, 'from ghostdr import polyfit\n'), ((1607, 1666), 'ghostdr.polyfit.SlitView', 'polyfit.SlitView', (['image_array', 'flat_image_array'], {'mode': '"""std"""'}), "(image_array, flat_image_array, mode='std')\n", (1623, 1666), False, 'from ghostdr import polyfit\n'), ((1811, 1843), 'ghostdr.polyfit.Extractor', 'polyfit.Extractor', (['arm', 'slitview'], {}), '(arm, slitview)\n', (1828, 1843), False, 'from ghostdr import polyfit\n')]
import unittest import datetime import kronos string_format_time = "%Y-%m-%d %H:%M:%S" date_time_str = "2020-07-19 18:14:21" class KronosTest(unittest.TestCase): def test_get_day_of_week(self): for i in range(len(kronos.week_days)): date = kronos.get_date_time_from_string(f"2020-08-{10 + i} 13:00:00") self.assertEqual(kronos.week_days.get(i), kronos.get_day_of_week(date)) def test_is_yesterday(self): date_time = kronos.get_date_time_from_string("2020-07-20 18:14:21") self.assertTrue(kronos.is_yesterday(date_time_str, today=date_time)) date_time = kronos.get_date_time_from_string("2020-07-19 18:14:21") self.assertFalse(kronos.is_yesterday(date_time_str, today=date_time)) def test_is_previous_friday(self): last_friday = "2020-08-14 13:00:00" last_monday = kronos.get_date_time_from_string("2020-08-17 13:00:00") self.assertTrue(kronos.is_previous_friday(last_friday, last_monday)) last_tuesday = kronos.get_date_time_from_string("2020-08-18 13:00:00") self.assertFalse(kronos.is_previous_friday(last_friday, last_tuesday)) def test_is_overdue_checks_correctly(self): creation_date = "2020-08-10 13:00:00" completion_goal = 5 self.assertTrue(kronos.is_overdue(creation_date, completion_goal)) on_time_date = kronos.get_date_time_as_string() on_time_goal = 100 self.assertFalse(kronos.is_overdue(on_time_date, on_time_goal))
[ "kronos.is_previous_friday", "kronos.is_yesterday", "kronos.is_overdue", "kronos.get_date_time_from_string", "kronos.get_day_of_week", "kronos.get_date_time_as_string", "kronos.week_days.get" ]
[((468, 523), 'kronos.get_date_time_from_string', 'kronos.get_date_time_from_string', (['"""2020-07-20 18:14:21"""'], {}), "('2020-07-20 18:14:21')\n", (500, 523), False, 'import kronos\n'), ((621, 676), 'kronos.get_date_time_from_string', 'kronos.get_date_time_from_string', (['"""2020-07-19 18:14:21"""'], {}), "('2020-07-19 18:14:21')\n", (653, 676), False, 'import kronos\n'), ((861, 916), 'kronos.get_date_time_from_string', 'kronos.get_date_time_from_string', (['"""2020-08-17 13:00:00"""'], {}), "('2020-08-17 13:00:00')\n", (893, 916), False, 'import kronos\n'), ((1017, 1072), 'kronos.get_date_time_from_string', 'kronos.get_date_time_from_string', (['"""2020-08-18 13:00:00"""'], {}), "('2020-08-18 13:00:00')\n", (1049, 1072), False, 'import kronos\n'), ((1374, 1406), 'kronos.get_date_time_as_string', 'kronos.get_date_time_as_string', ([], {}), '()\n', (1404, 1406), False, 'import kronos\n'), ((267, 329), 'kronos.get_date_time_from_string', 'kronos.get_date_time_from_string', (['f"""2020-08-{10 + i} 13:00:00"""'], {}), "(f'2020-08-{10 + i} 13:00:00')\n", (299, 329), False, 'import kronos\n'), ((548, 599), 'kronos.is_yesterday', 'kronos.is_yesterday', (['date_time_str'], {'today': 'date_time'}), '(date_time_str, today=date_time)\n', (567, 599), False, 'import kronos\n'), ((702, 753), 'kronos.is_yesterday', 'kronos.is_yesterday', (['date_time_str'], {'today': 'date_time'}), '(date_time_str, today=date_time)\n', (721, 753), False, 'import kronos\n'), ((941, 992), 'kronos.is_previous_friday', 'kronos.is_previous_friday', (['last_friday', 'last_monday'], {}), '(last_friday, last_monday)\n', (966, 992), False, 'import kronos\n'), ((1098, 1150), 'kronos.is_previous_friday', 'kronos.is_previous_friday', (['last_friday', 'last_tuesday'], {}), '(last_friday, last_tuesday)\n', (1123, 1150), False, 'import kronos\n'), ((1299, 1348), 'kronos.is_overdue', 'kronos.is_overdue', (['creation_date', 'completion_goal'], {}), '(creation_date, completion_goal)\n', (1316, 1348), False, 'import kronos\n'), ((1459, 1504), 'kronos.is_overdue', 'kronos.is_overdue', (['on_time_date', 'on_time_goal'], {}), '(on_time_date, on_time_goal)\n', (1476, 1504), False, 'import kronos\n'), ((359, 382), 'kronos.week_days.get', 'kronos.week_days.get', (['i'], {}), '(i)\n', (379, 382), False, 'import kronos\n'), ((384, 412), 'kronos.get_day_of_week', 'kronos.get_day_of_week', (['date'], {}), '(date)\n', (406, 412), False, 'import kronos\n')]
from asyncio import Future from greenlet import getcurrent import psycopg2 from psycopg2 import * # noqa from psycopg2 import extensions, OperationalError __version__ = psycopg2.__version__ def psycopg2_wait_callback(conn): """A wait callback to allow greenlet to work with Psycopg. The caller must be from a greenlet other than the main one. :param conn: psycopg2 connection or file number This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. """ while True: state = conn.poll() if state == extensions.POLL_OK: # Done with waiting break elif state == extensions.POLL_READ: _wait_fd(conn) elif state == extensions.POLL_WRITE: _wait_fd(conn, read=False) else: # pragma nocover raise OperationalError("Bad result from poll: %r" % state) # INTERNALS def _wait_fd(conn, read=True): '''Wait for an event on file descriptor ``fd``. :param conn: file descriptor :param read: wait for a read event if ``True``, otherwise a wait for write event. This function must be invoked from a coroutine with parent, therefore invoking it from the main greenlet will raise an exception. ''' current = getcurrent() parent = current.parent assert parent, '"_wait_fd" must be called by greenlet with a parent' try: fileno = conn.fileno() except AttributeError: fileno = conn future = Future() # When the event on fd occurs switch back to the current greenlet if read: future._loop.add_reader(fileno, _done_wait_fd, fileno, future, read) else: future._loop.add_writer(fileno, _done_wait_fd, fileno, future, read) # switch back to parent greenlet parent.switch(future) # Back on the child greenlet. Raise error if there is one future.result() def _done_wait_fd(fd, future, read): try: if read: future._loop.remove_reader(fd) else: future._loop.remove_writer(fd) except Exception as exc: future.set_exception(exc) else: future.set_result(None) try: extensions.POLL_OK except AttributeError: # pragma nocover from pulsar import ImproperlyConfigured raise ImproperlyConfigured( 'Psycopg2 does not have support for asynchronous connections. ' 'You need at least version 2.2.0 of Psycopg2.') extensions.set_wait_callback(psycopg2_wait_callback)
[ "psycopg2.OperationalError", "psycopg2.extensions.set_wait_callback", "pulsar.ImproperlyConfigured", "greenlet.getcurrent", "asyncio.Future" ]
[((2505, 2557), 'psycopg2.extensions.set_wait_callback', 'extensions.set_wait_callback', (['psycopg2_wait_callback'], {}), '(psycopg2_wait_callback)\n', (2533, 2557), False, 'from psycopg2 import extensions, OperationalError\n'), ((1339, 1351), 'greenlet.getcurrent', 'getcurrent', ([], {}), '()\n', (1349, 1351), False, 'from greenlet import getcurrent\n'), ((1555, 1563), 'asyncio.Future', 'Future', ([], {}), '()\n', (1561, 1563), False, 'from asyncio import Future\n'), ((2354, 2493), 'pulsar.ImproperlyConfigured', 'ImproperlyConfigured', (['"""Psycopg2 does not have support for asynchronous connections. You need at least version 2.2.0 of Psycopg2."""'], {}), "(\n 'Psycopg2 does not have support for asynchronous connections. You need at least version 2.2.0 of Psycopg2.'\n )\n", (2374, 2493), False, 'from pulsar import ImproperlyConfigured\n'), ((899, 951), 'psycopg2.OperationalError', 'OperationalError', (["('Bad result from poll: %r' % state)"], {}), "('Bad result from poll: %r' % state)\n", (915, 951), False, 'from psycopg2 import extensions, OperationalError\n')]
# Copyright 2011-2012 10gen, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Test the replica_set_connection module.""" import copy import datetime import os import signal import socket import sys import time import thread import traceback import unittest sys.path[0:0] = [""] from nose.plugins.skip import SkipTest from bson.son import SON from bson.tz_util import utc from pymongo.connection import Connection from pymongo.read_preferences import ReadPreference from pymongo.replica_set_connection import ReplicaSetConnection from pymongo.replica_set_connection import _partition_node from pymongo.database import Database from pymongo.errors import (AutoReconnect, ConfigurationError, ConnectionFailure, InvalidName, OperationFailure) from test import version from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host host = os.environ.get("DB_IP", 'localhost') port = int(os.environ.get("DB_PORT", 27017)) pair = '%s:%d' % (host, port) class TestReplicaSetConnectionAgainstStandalone(unittest.TestCase): """This is a funny beast -- we want to run tests for ReplicaSetConnection but only if the database at DB_IP and DB_PORT is a standalone. """ def setUp(self): conn = Connection(pair) response = conn.admin.command('ismaster') if 'setName' in response: raise SkipTest() def test_connect(self): self.assertRaises(ConfigurationError, ReplicaSetConnection, pair, replicaSet='anything', connectTimeoutMS=600) class TestConnectionReplicaSetBase(unittest.TestCase): def setUp(self): conn = Connection(pair) response = conn.admin.command('ismaster') if 'setName' in response: self.name = str(response['setName']) self.w = len(response['hosts']) self.hosts = set([_partition_node(h) for h in response["hosts"]]) self.arbiters = set([_partition_node(h) for h in response.get("arbiters", [])]) repl_set_status = conn.admin.command('replSetGetStatus') primary_info = [ m for m in repl_set_status['members'] if m['stateStr'] == 'PRIMARY' ][0] self.primary = _partition_node(primary_info['name']) self.secondaries = [ _partition_node(m['name']) for m in repl_set_status['members'] if m['stateStr'] == 'SECONDARY' ] else: raise SkipTest() def _get_connection(self, **kwargs): return ReplicaSetConnection(pair, replicaSet=self.name, **kwargs) class TestConnection(TestConnectionReplicaSetBase): def test_connect(self): self.assertRaises(ConnectionFailure, ReplicaSetConnection, "somedomainthatdoesntexist.org:27017", replicaSet=self.name, connectTimeoutMS=600) self.assertRaises(ConfigurationError, ReplicaSetConnection, pair, replicaSet='fdlksjfdslkjfd') self.assertTrue(ReplicaSetConnection(pair, replicaSet=self.name)) def test_repr(self): connection = self._get_connection() self.assertEqual(repr(connection), "ReplicaSetConnection(%r)" % (["%s:%d" % n for n in self.hosts],)) def test_properties(self): c = ReplicaSetConnection(pair, replicaSet=self.name) c.admin.command('ping') self.assertEqual(c.primary, self.primary) self.assertEqual(c.hosts, self.hosts) self.assertEqual(c.arbiters, self.arbiters) self.assertEqual(c.max_pool_size, 10) self.assertEqual(c.document_class, dict) self.assertEqual(c.tz_aware, False) # Make sure RSC's properties are copied to Database and Collection for obj in c, c.pymongo_test, c.pymongo_test.test: self.assertEqual(obj.read_preference, ReadPreference.PRIMARY) self.assertEqual(obj.tag_sets, [{}]) self.assertEqual(obj.secondary_acceptable_latency_ms, 15) self.assertEqual(obj.slave_okay, False) self.assertEqual(obj.safe, False) cursor = c.pymongo_test.test.find() self.assertEqual( ReadPreference.PRIMARY, cursor._Cursor__read_preference) self.assertEqual([{}], cursor._Cursor__tag_sets) self.assertEqual(15, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) c.close() tag_sets = [{'dc': 'la', 'rack': '2'}, {'foo': 'bar'}] c = ReplicaSetConnection(pair, replicaSet=self.name, max_pool_size=25, document_class=SON, tz_aware=True, slaveOk=False, safe=True, read_preference=ReadPreference.SECONDARY, tag_sets=copy.deepcopy(tag_sets), secondary_acceptable_latency_ms=77) c.admin.command('ping') self.assertEqual(c.primary, self.primary) self.assertEqual(c.hosts, self.hosts) self.assertEqual(c.arbiters, self.arbiters) self.assertEqual(c.max_pool_size, 25) self.assertEqual(c.document_class, SON) self.assertEqual(c.tz_aware, True) for obj in c, c.pymongo_test, c.pymongo_test.test: self.assertEqual(obj.read_preference, ReadPreference.SECONDARY) self.assertEqual(obj.tag_sets, tag_sets) self.assertEqual(obj.secondary_acceptable_latency_ms, 77) self.assertEqual(obj.slave_okay, False) self.assertEqual(obj.safe, True) cursor = c.pymongo_test.test.find() self.assertEqual( ReadPreference.SECONDARY, cursor._Cursor__read_preference) self.assertEqual(tag_sets, cursor._Cursor__tag_sets) self.assertEqual(77, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) cursor = c.pymongo_test.test.find( read_preference=ReadPreference.NEAREST, tag_sets=[{'dc':'ny'}, {}], secondary_acceptable_latency_ms=123) self.assertEqual( ReadPreference.NEAREST, cursor._Cursor__read_preference) self.assertEqual([{'dc':'ny'}, {}], cursor._Cursor__tag_sets) self.assertEqual(123, cursor._Cursor__secondary_acceptable_latency_ms) self.assertEqual(False, cursor._Cursor__slave_okay) if version.at_least(c, (1, 7, 4)): self.assertEqual(c.max_bson_size, 16777216) else: self.assertEqual(c.max_bson_size, 4194304) c.close() def test_get_db(self): connection = self._get_connection() def make_db(base, name): return base[name] self.assertRaises(InvalidName, make_db, connection, "") self.assertRaises(InvalidName, make_db, connection, "te$t") self.assertRaises(InvalidName, make_db, connection, "te.t") self.assertRaises(InvalidName, make_db, connection, "te\\t") self.assertRaises(InvalidName, make_db, connection, "te/t") self.assertRaises(InvalidName, make_db, connection, "te st") self.assertTrue(isinstance(connection.test, Database)) self.assertEqual(connection.test, connection["test"]) self.assertEqual(connection.test, Database(connection, "test")) connection.close() def test_auto_reconnect_exception_when_read_preference_is_secondary(self): c = self._get_connection() db = c.pymongo_test def raise_socket_error(*args, **kwargs): raise socket.error old_sendall = socket.socket.sendall socket.socket.sendall = raise_socket_error try: cursor = db.test.find(read_preference=ReadPreference.SECONDARY) self.assertRaises(AutoReconnect, cursor.next) finally: socket.socket.sendall = old_sendall def test_operations(self): c = self._get_connection() # Check explicitly for a case we've commonly hit in tests: # a replica set is started with a tiny oplog, a previous # test does a big insert that leaves the secondaries # permanently "RECOVERING", and our insert(w=self.w) hangs # forever. rs_status = c.admin.command('replSetGetStatus') members = rs_status['members'] self.assertFalse( [m for m in members if m['stateStr'] == 'RECOVERING'], "Replica set is recovering, try a larger oplogSize next time" ) db = c.pymongo_test db.test.remove({}, safe=True) self.assertEqual(0, db.test.count()) db.test.insert({'foo': 'x'}, safe=True, w=self.w, wtimeout=10000) self.assertEqual(1, db.test.count()) cursor = db.test.find() doc = cursor.next() self.assertEqual('x', doc['foo']) # Ensure we read from the primary self.assertEqual(c.primary, cursor._Cursor__connection_id) cursor = db.test.find(read_preference=ReadPreference.SECONDARY) doc = cursor.next() self.assertEqual('x', doc['foo']) # Ensure we didn't read from the primary self.assertTrue(cursor._Cursor__connection_id in c.secondaries) self.assertEqual(1, db.test.count()) db.test.remove({}, safe=True) self.assertEqual(0, db.test.count()) db.test.drop() c.close() def test_database_names(self): connection = self._get_connection() connection.pymongo_test.test.save({"dummy": u"object"}) connection.pymongo_test_mike.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) self.assertTrue("pymongo_test_mike" in dbs) connection.close() def test_drop_database(self): connection = self._get_connection() self.assertRaises(TypeError, connection.drop_database, 5) self.assertRaises(TypeError, connection.drop_database, None) connection.pymongo_test.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) connection.drop_database("pymongo_test") dbs = connection.database_names() self.assertTrue("pymongo_test" not in dbs) connection.pymongo_test.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) connection.drop_database(connection.pymongo_test) dbs = connection.database_names() self.assertTrue("pymongo_test" not in dbs) connection.close() def test_copy_db(self): c = self._get_connection() self.assertTrue(c.in_request()) self.assertRaises(TypeError, c.copy_database, 4, "foo") self.assertRaises(TypeError, c.copy_database, "foo", 4) self.assertRaises(InvalidName, c.copy_database, "foo", "$foo") c.pymongo_test.test.drop() c.drop_database("pymongo_test1") c.drop_database("pymongo_test2") c.pymongo_test.test.insert({"foo": "bar"}) self.assertFalse("pymongo_test1" in c.database_names()) self.assertFalse("pymongo_test2" in c.database_names()) c.copy_database("pymongo_test", "pymongo_test1") # copy_database() didn't accidentally end the request self.assertTrue(c.in_request()) self.assertTrue("pymongo_test1" in c.database_names()) self.assertEqual("bar", c.pymongo_test1.test.find_one()["foo"]) c.end_request() self.assertFalse(c.in_request()) c.copy_database("pymongo_test", "pymongo_test2", pair) # copy_database() didn't accidentally restart the request self.assertFalse(c.in_request()) time.sleep(1) self.assertTrue("pymongo_test2" in c.database_names()) self.assertEqual("bar", c.pymongo_test2.test.find_one()["foo"]) if version.at_least(c, (1, 3, 3, 1)): c.drop_database("pymongo_test1") c.pymongo_test.add_user("mike", "password") self.assertRaises(OperationFailure, c.copy_database, "pymongo_test", "pymongo_test1", username="foo", password="<PASSWORD>") self.assertFalse("pymongo_test1" in c.database_names()) self.assertRaises(OperationFailure, c.copy_database, "pymongo_test", "pymongo_test1", username="mike", password="<PASSWORD>") self.assertFalse("pymongo_test1" in c.database_names()) c.copy_database("pymongo_test", "pymongo_test1", username="mike", password="password") self.assertTrue("pymongo_test1" in c.database_names()) time.sleep(2) self.assertEqual("bar", c.pymongo_test1.test.find_one()["foo"]) c.close() def test_iteration(self): connection = self._get_connection() def iterate(): [a for a in connection] self.assertRaises(TypeError, iterate) connection.close() def test_disconnect(self): c = self._get_connection() coll = c.foo.bar c.disconnect() c.disconnect() coll.count() c.disconnect() c.disconnect() coll.count() def test_fork(self): """Test using a connection before and after a fork. """ if sys.platform == "win32": raise SkipTest() try: from multiprocessing import Process, Pipe except ImportError: raise SkipTest() db = self._get_connection().pymongo_test # Failure occurs if the connection is used before the fork db.test.find_one() #db.connection.end_request() def loop(pipe): while True: try: db.test.insert({"a": "b"}, safe=True) for _ in db.test.find(): pass except: traceback.print_exc() pipe.send(True) os._exit(1) cp1, cc1 = Pipe() cp2, cc2 = Pipe() p1 = Process(target=loop, args=(cc1,)) p2 = Process(target=loop, args=(cc2,)) p1.start() p2.start() p1.join(1) p2.join(1) p1.terminate() p2.terminate() p1.join() p2.join() cc1.close() cc2.close() # recv will only have data if the subprocess failed try: cp1.recv() self.fail() except EOFError: pass try: cp2.recv() self.fail() except EOFError: pass db.connection.close() def test_document_class(self): c = self._get_connection() db = c.pymongo_test db.test.insert({"x": 1}) self.assertEqual(dict, c.document_class) self.assertTrue(isinstance(db.test.find_one(), dict)) self.assertFalse(isinstance(db.test.find_one(), SON)) c.document_class = SON self.assertEqual(SON, c.document_class) self.assertTrue(isinstance(db.test.find_one(), SON)) self.assertFalse(isinstance(db.test.find_one(as_class=dict), SON)) c.close() c = self._get_connection(document_class=SON) db = c.pymongo_test self.assertEqual(SON, c.document_class) self.assertTrue(isinstance(db.test.find_one(), SON)) self.assertFalse(isinstance(db.test.find_one(as_class=dict), SON)) c.document_class = dict self.assertEqual(dict, c.document_class) self.assertTrue(isinstance(db.test.find_one(), dict)) self.assertFalse(isinstance(db.test.find_one(), SON)) c.close() def test_network_timeout(self): no_timeout = self._get_connection() timeout_sec = 1 timeout = self._get_connection(socketTimeoutMS=timeout_sec*1000) no_timeout.pymongo_test.drop_collection("test") no_timeout.pymongo_test.test.insert({"x": 1}, safe=True) # A $where clause that takes a second longer than the timeout where_func = delay(1 + timeout_sec) def get_x(db): doc = db.test.find().where(where_func).next() return doc["x"] self.assertEqual(1, get_x(no_timeout.pymongo_test)) self.assertRaises(ConnectionFailure, get_x, timeout.pymongo_test) def get_x_timeout(db, t): doc = db.test.find(network_timeout=t).where(where_func).next() return doc["x"] self.assertEqual(1, get_x_timeout(timeout.pymongo_test, None)) self.assertRaises(ConnectionFailure, get_x_timeout, no_timeout.pymongo_test, 0.1) no_timeout.close() timeout.close() def test_tz_aware(self): self.assertRaises(ConfigurationError, ReplicaSetConnection, tz_aware='foo', replicaSet=self.name) aware = self._get_connection(tz_aware=True) naive = self._get_connection() aware.pymongo_test.drop_collection("test") now = datetime.datetime.utcnow() aware.pymongo_test.test.insert({"x": now}, safe=True) time.sleep(1) self.assertEqual(None, naive.pymongo_test.test.find_one()["x"].tzinfo) self.assertEqual(utc, aware.pymongo_test.test.find_one()["x"].tzinfo) self.assertEqual( aware.pymongo_test.test.find_one()["x"].replace(tzinfo=None), naive.pymongo_test.test.find_one()["x"]) def test_ipv6(self): try: connection = ReplicaSetConnection("[::1]:%d" % (port,), replicaSet=self.name) except: # Either mongod was started without --ipv6 # or the OS doesn't support it (or both). raise SkipTest() # Try a few simple things connection = ReplicaSetConnection("mongodb://[::1]:%d" % (port,), replicaSet=self.name) connection = ReplicaSetConnection("mongodb://[::1]:%d/?safe=true;" "replicaSet=%s" % (port, self.name)) connection = ReplicaSetConnection("[::1]:%d,localhost:" "%d" % (port, port), replicaSet=self.name) connection = ReplicaSetConnection("localhost:%d,[::1]:" "%d" % (port, port), replicaSet=self.name) connection.pymongo_test.test.save({"dummy": u"object"}) connection.pymongo_test_bernie.test.save({"dummy": u"object"}) dbs = connection.database_names() self.assertTrue("pymongo_test" in dbs) self.assertTrue("pymongo_test_bernie" in dbs) connection.close() def _test_kill_cursor_explicit(self, read_pref): c = self._get_connection(read_preference=read_pref) db = c.pymongo_test db.drop_collection("test") test = db.test test.insert([{"i": i} for i in range(20)], w=1 + len(c.secondaries)) # Partially evaluate cursor so it's left alive, then kill it cursor = test.find().batch_size(10) cursor.next() self.assertNotEqual(0, cursor.cursor_id) connection_id = cursor._Cursor__connection_id writer = c._ReplicaSetConnection__writer if read_pref == ReadPreference.PRIMARY: msg = "Expected cursor's connection_id to be %s, got %s" % ( writer, connection_id) self.assertEqual(connection_id, writer, msg) else: self.assertNotEqual(connection_id, writer, "Expected cursor's connection_id not to be primary") cursor_id = cursor.cursor_id # Cursor dead on server - trigger a getMore on the same cursor_id and # check that the server returns an error. cursor2 = cursor.clone() cursor2._Cursor__id = cursor_id if (sys.platform.startswith('java') or 'PyPy' in sys.version): # Explicitly kill cursor. cursor.close() else: # Implicitly kill it in CPython. del cursor self.assertRaises(OperationFailure, lambda: list(cursor2)) def test_kill_cursor_explicit_primary(self): self._test_kill_cursor_explicit(ReadPreference.PRIMARY) def test_kill_cursor_explicit_secondary(self): self._test_kill_cursor_explicit(ReadPreference.SECONDARY) def test_interrupt_signal(self): if sys.platform.startswith('java'): raise SkipTest("Can't test interrupts in Jython") # Test fix for PYTHON-294 -- make sure Connection closes its # socket if it gets an interrupt while waiting to recv() from it. c = self._get_connection() db = c.pymongo_test # A $where clause which takes 1.5 sec to execute where = delay(1.5) # Need exactly 1 document so find() will execute its $where clause once db.drop_collection('foo') db.foo.insert({'_id': 1}, safe=True) old_signal_handler = None try: # Platform-specific hacks for raising a KeyboardInterrupt on the main # thread while find() is in-progress: On Windows, SIGALRM is unavailable # so we use second thread. In our Bamboo setup on Linux, the thread # technique causes an error in the test at sock.recv(): # TypeError: 'int' object is not callable # We don't know what causes this in Bamboo, so we hack around it. if sys.platform == 'win32': def interrupter(): time.sleep(0.25) # Raises KeyboardInterrupt in the main thread thread.interrupt_main() thread.start_new_thread(interrupter, ()) else: # Convert SIGALRM to SIGINT -- it's hard to schedule a SIGINT for one # second in the future, but easy to schedule SIGALRM. def sigalarm(num, frame): raise KeyboardInterrupt old_signal_handler = signal.signal(signal.SIGALRM, sigalarm) signal.alarm(1) raised = False try: # Will be interrupted by a KeyboardInterrupt. db.foo.find({'$where': where}).next() except KeyboardInterrupt: raised = True # Can't use self.assertRaises() because it doesn't catch system # exceptions self.assertTrue(raised, "Didn't raise expected ConnectionFailure") # Raises AssertionError due to PYTHON-294 -- Mongo's response to the # previous find() is still waiting to be read on the socket, so the # request id's don't match. self.assertEqual( {'_id': 1}, db.foo.find().next() ) finally: if old_signal_handler: signal.signal(signal.SIGALRM, old_signal_handler) def test_auto_start_request(self): for bad_horrible_value in (None, 5, 'hi!'): self.assertRaises( (TypeError, ConfigurationError), lambda: self._get_connection(auto_start_request=bad_horrible_value) ) # auto_start_request should default to True conn = self._get_connection() pools = [mongo.pool for mongo in conn._ReplicaSetConnection__members.values()] self.assertTrue(conn.auto_start_request) self.assertTrue(conn.in_request()) # Trigger the RSC to actually start a request conn.test.test.find_one() for pool in pools: self.assertTrue(pool.in_request()) conn.end_request() self.assertFalse(conn.in_request()) for pool in pools: self.assertFalse(pool.in_request()) conn.start_request() self.assertTrue(conn.in_request()) conn.close() conn = self._get_connection(auto_start_request=False) self.assertFalse(conn.in_request()) conn.start_request() self.assertTrue(conn.in_request()) conn.end_request() self.assertFalse(conn.in_request()) conn.close() def test_schedule_refresh(self): # Monitor thread starts waiting for _refresh_interval, 30 seconds conn = self._get_connection() # Reconnect if necessary conn.pymongo_test.test.find_one() secondaries = conn.secondaries for secondary in secondaries: conn._ReplicaSetConnection__members[secondary].up = False conn._ReplicaSetConnection__members[conn.primary].up = False # Wake up monitor thread conn._ReplicaSetConnection__schedule_refresh() # Refresh interval is 30 seconds; scheduling a refresh tells the # monitor thread / greenlet to start a refresh now. We still need to # sleep a few seconds for it to complete. time.sleep(5) for secondary in secondaries: self.assertTrue(conn._ReplicaSetConnection__members[secondary].up, "ReplicaSetConnection didn't detect secondary is up") self.assertTrue(conn._ReplicaSetConnection__members[conn.primary].up, "ReplicaSetConnection didn't detect primary is up") conn.close() def test_pinned_member(self): latency = 1000 * 1000 conn = self._get_connection( auto_start_request=False, secondary_acceptable_latency_ms=latency) host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) # No pinning since we're not in a request assertReadFromAll( self, conn, conn.secondaries, ReadPreference.SECONDARY, None, latency) assertReadFromAll( self, conn, list(conn.secondaries) + [conn.primary], ReadPreference.NEAREST, None, latency) conn.start_request() host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) assertReadFrom(self, conn, host, ReadPreference.SECONDARY) # Repin primary = read_from_which_host(conn, ReadPreference.PRIMARY) self.assertEqual(conn.primary, primary) assertReadFrom(self, conn, primary, ReadPreference.NEAREST) # Repin again host = read_from_which_host(conn, ReadPreference.SECONDARY) self.assertTrue(host in conn.secondaries) assertReadFrom(self, conn, host, ReadPreference.SECONDARY) # Unpin conn.end_request() assertReadFromAll( self, conn, list(conn.secondaries) + [conn.primary], ReadPreference.NEAREST, None, latency) if __name__ == "__main__": unittest.main()
[ "pymongo.database.Database", "multiprocessing.Process", "sys.platform.startswith", "time.sleep", "pymongo.replica_set_connection.ReplicaSetConnection", "signal.alarm", "copy.deepcopy", "unittest.main", "test.utils.delay", "test.utils.read_from_which_host", "test.utils.assertReadFrom", "pymongo.connection.Connection", "pymongo.replica_set_connection._partition_node", "thread.interrupt_main", "traceback.print_exc", "test.utils.assertReadFromAll", "nose.plugins.skip.SkipTest", "multiprocessing.Pipe", "signal.signal", "datetime.datetime.utcnow", "os.environ.get", "test.version.at_least", "os._exit", "thread.start_new_thread" ]
[((1477, 1513), 'os.environ.get', 'os.environ.get', (['"""DB_IP"""', '"""localhost"""'], {}), "('DB_IP', 'localhost')\n", (1491, 1513), False, 'import os\n'), ((1525, 1557), 'os.environ.get', 'os.environ.get', (['"""DB_PORT"""', '(27017)'], {}), "('DB_PORT', 27017)\n", (1539, 1557), False, 'import os\n'), ((27982, 27997), 'unittest.main', 'unittest.main', ([], {}), '()\n', (27995, 27997), False, 'import unittest\n'), ((1847, 1863), 'pymongo.connection.Connection', 'Connection', (['pair'], {}), '(pair)\n', (1857, 1863), False, 'from pymongo.connection import Connection\n'), ((2270, 2286), 'pymongo.connection.Connection', 'Connection', (['pair'], {}), '(pair)\n', (2280, 2286), False, 'from pymongo.connection import Connection\n'), ((3253, 3311), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (['pair'], {'replicaSet': 'self.name'}), '(pair, replicaSet=self.name, **kwargs)\n', (3273, 3311), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((4212, 4260), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (['pair'], {'replicaSet': 'self.name'}), '(pair, replicaSet=self.name)\n', (4232, 4260), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((7356, 7386), 'test.version.at_least', 'version.at_least', (['c', '(1, 7, 4)'], {}), '(c, (1, 7, 4))\n', (7372, 7386), False, 'from test import version\n'), ((12700, 12713), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (12710, 12713), False, 'import time\n'), ((12862, 12895), 'test.version.at_least', 'version.at_least', (['c', '(1, 3, 3, 1)'], {}), '(c, (1, 3, 3, 1))\n', (12878, 12895), False, 'from test import version\n'), ((15112, 15118), 'multiprocessing.Pipe', 'Pipe', ([], {}), '()\n', (15116, 15118), False, 'from multiprocessing import Process, Pipe\n'), ((15138, 15144), 'multiprocessing.Pipe', 'Pipe', ([], {}), '()\n', (15142, 15144), False, 'from multiprocessing import Process, Pipe\n'), ((15159, 15192), 'multiprocessing.Process', 'Process', ([], {'target': 'loop', 'args': '(cc1,)'}), '(target=loop, args=(cc1,))\n', (15166, 15192), False, 'from multiprocessing import Process, Pipe\n'), ((15206, 15239), 'multiprocessing.Process', 'Process', ([], {'target': 'loop', 'args': '(cc2,)'}), '(target=loop, args=(cc2,))\n', (15213, 15239), False, 'from multiprocessing import Process, Pipe\n'), ((17164, 17186), 'test.utils.delay', 'delay', (['(1 + timeout_sec)'], {}), '(1 + timeout_sec)\n', (17169, 17186), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((18127, 18153), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (18151, 18153), False, 'import datetime\n'), ((18224, 18237), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (18234, 18237), False, 'import time\n'), ((18942, 19016), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (["('mongodb://[::1]:%d' % (port,))"], {'replicaSet': 'self.name'}), "('mongodb://[::1]:%d' % (port,), replicaSet=self.name)\n", (18962, 19016), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((19080, 19171), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (["('mongodb://[::1]:%d/?safe=true;replicaSet=%s' % (port, self.name))"], {}), "('mongodb://[::1]:%d/?safe=true;replicaSet=%s' % (port,\n self.name))\n", (19100, 19171), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((19234, 19321), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (["('[::1]:%d,localhost:%d' % (port, port))"], {'replicaSet': 'self.name'}), "('[::1]:%d,localhost:%d' % (port, port), replicaSet=\n self.name)\n", (19254, 19321), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((19425, 19512), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (["('localhost:%d,[::1]:%d' % (port, port))"], {'replicaSet': 'self.name'}), "('localhost:%d,[::1]:%d' % (port, port), replicaSet=\n self.name)\n", (19445, 19512), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((21644, 21675), 'sys.platform.startswith', 'sys.platform.startswith', (['"""java"""'], {}), "('java')\n", (21667, 21675), False, 'import sys\n'), ((22020, 22030), 'test.utils.delay', 'delay', (['(1.5)'], {}), '(1.5)\n', (22025, 22030), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((26154, 26167), 'time.sleep', 'time.sleep', (['(5)'], {}), '(5)\n', (26164, 26167), False, 'import time\n'), ((26717, 26769), 'test.utils.read_from_which_host', 'read_from_which_host', (['conn', 'ReadPreference.SECONDARY'], {}), '(conn, ReadPreference.SECONDARY)\n', (26737, 26769), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((26879, 26971), 'test.utils.assertReadFromAll', 'assertReadFromAll', (['self', 'conn', 'conn.secondaries', 'ReadPreference.SECONDARY', 'None', 'latency'], {}), '(self, conn, conn.secondaries, ReadPreference.SECONDARY,\n None, latency)\n', (26896, 26971), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27182, 27234), 'test.utils.read_from_which_host', 'read_from_which_host', (['conn', 'ReadPreference.SECONDARY'], {}), '(conn, ReadPreference.SECONDARY)\n', (27202, 27234), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27293, 27351), 'test.utils.assertReadFrom', 'assertReadFrom', (['self', 'conn', 'host', 'ReadPreference.SECONDARY'], {}), '(self, conn, host, ReadPreference.SECONDARY)\n', (27307, 27351), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27387, 27437), 'test.utils.read_from_which_host', 'read_from_which_host', (['conn', 'ReadPreference.PRIMARY'], {}), '(conn, ReadPreference.PRIMARY)\n', (27407, 27437), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27494, 27553), 'test.utils.assertReadFrom', 'assertReadFrom', (['self', 'conn', 'primary', 'ReadPreference.NEAREST'], {}), '(self, conn, primary, ReadPreference.NEAREST)\n', (27508, 27553), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27592, 27644), 'test.utils.read_from_which_host', 'read_from_which_host', (['conn', 'ReadPreference.SECONDARY'], {}), '(conn, ReadPreference.SECONDARY)\n', (27612, 27644), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((27703, 27761), 'test.utils.assertReadFrom', 'assertReadFrom', (['self', 'conn', 'host', 'ReadPreference.SECONDARY'], {}), '(self, conn, host, ReadPreference.SECONDARY)\n', (27717, 27761), False, 'from test.utils import delay, assertReadFrom, assertReadFromAll, read_from_which_host\n'), ((1966, 1976), 'nose.plugins.skip.SkipTest', 'SkipTest', ([], {}), '()\n', (1974, 1976), False, 'from nose.plugins.skip import SkipTest\n'), ((2941, 2978), 'pymongo.replica_set_connection._partition_node', '_partition_node', (["primary_info['name']"], {}), "(primary_info['name'])\n", (2956, 2978), False, 'from pymongo.replica_set_connection import _partition_node\n'), ((3185, 3195), 'nose.plugins.skip.SkipTest', 'SkipTest', ([], {}), '()\n', (3193, 3195), False, 'from nose.plugins.skip import SkipTest\n'), ((3798, 3846), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (['pair'], {'replicaSet': 'self.name'}), '(pair, replicaSet=self.name)\n', (3818, 3846), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((8242, 8270), 'pymongo.database.Database', 'Database', (['connection', '"""test"""'], {}), "(connection, 'test')\n", (8250, 8270), False, 'from pymongo.database import Database\n'), ((13739, 13752), 'time.sleep', 'time.sleep', (['(2)'], {}), '(2)\n', (13749, 13752), False, 'import time\n'), ((14438, 14448), 'nose.plugins.skip.SkipTest', 'SkipTest', ([], {}), '()\n', (14446, 14448), False, 'from nose.plugins.skip import SkipTest\n'), ((18621, 18685), 'pymongo.replica_set_connection.ReplicaSetConnection', 'ReplicaSetConnection', (["('[::1]:%d' % (port,))"], {'replicaSet': 'self.name'}), "('[::1]:%d' % (port,), replicaSet=self.name)\n", (18641, 18685), False, 'from pymongo.replica_set_connection import ReplicaSetConnection\n'), ((21077, 21108), 'sys.platform.startswith', 'sys.platform.startswith', (['"""java"""'], {}), "('java')\n", (21100, 21108), False, 'import sys\n'), ((21695, 21738), 'nose.plugins.skip.SkipTest', 'SkipTest', (['"""Can\'t test interrupts in Jython"""'], {}), '("Can\'t test interrupts in Jython")\n', (21703, 21738), False, 'from nose.plugins.skip import SkipTest\n'), ((3028, 3054), 'pymongo.replica_set_connection._partition_node', '_partition_node', (["m['name']"], {}), "(m['name'])\n", (3043, 3054), False, 'from pymongo.replica_set_connection import _partition_node\n'), ((5746, 5769), 'copy.deepcopy', 'copy.deepcopy', (['tag_sets'], {}), '(tag_sets)\n', (5759, 5769), False, 'import copy\n'), ((14563, 14573), 'nose.plugins.skip.SkipTest', 'SkipTest', ([], {}), '()\n', (14571, 14573), False, 'from nose.plugins.skip import SkipTest\n'), ((18875, 18885), 'nose.plugins.skip.SkipTest', 'SkipTest', ([], {}), '()\n', (18883, 18885), False, 'from nose.plugins.skip import SkipTest\n'), ((22930, 22970), 'thread.start_new_thread', 'thread.start_new_thread', (['interrupter', '()'], {}), '(interrupter, ())\n', (22953, 22970), False, 'import thread\n'), ((23269, 23308), 'signal.signal', 'signal.signal', (['signal.SIGALRM', 'sigalarm'], {}), '(signal.SIGALRM, sigalarm)\n', (23282, 23308), False, 'import signal\n'), ((23325, 23340), 'signal.alarm', 'signal.alarm', (['(1)'], {}), '(1)\n', (23337, 23340), False, 'import signal\n'), ((24130, 24179), 'signal.signal', 'signal.signal', (['signal.SIGALRM', 'old_signal_handler'], {}), '(signal.SIGALRM, old_signal_handler)\n', (24143, 24179), False, 'import signal\n'), ((2494, 2512), 'pymongo.replica_set_connection._partition_node', '_partition_node', (['h'], {}), '(h)\n', (2509, 2512), False, 'from pymongo.replica_set_connection import _partition_node\n'), ((2605, 2623), 'pymongo.replica_set_connection._partition_node', '_partition_node', (['h'], {}), '(h)\n', (2620, 2623), False, 'from pymongo.replica_set_connection import _partition_node\n'), ((22785, 22801), 'time.sleep', 'time.sleep', (['(0.25)'], {}), '(0.25)\n', (22795, 22801), False, 'import time\n'), ((22889, 22912), 'thread.interrupt_main', 'thread.interrupt_main', ([], {}), '()\n', (22910, 22912), False, 'import thread\n'), ((15002, 15023), 'traceback.print_exc', 'traceback.print_exc', ([], {}), '()\n', (15021, 15023), False, 'import traceback\n'), ((15080, 15091), 'os._exit', 'os._exit', (['(1)'], {}), '(1)\n', (15088, 15091), False, 'import os\n')]
import argparse_helper as argparse import config_dir import sys from .editor import Editor def main(*args): if len(args) > 0: args = [args] parser = argparse.ArgumentParser() parser.add_argument("-f", dest="cfg_file", help="query save name") parser.add_argument("-x", default=False, action="store_true", dest="run", help="run immediately") parser.add_argument("-l", default=False, action="count", dest="list", help="list saved queries") parser.add_argument("-p", default=False, action="store_true", dest="previous", help="use previous query") parser.add_argument("pattern", nargs="?", help="override saved pattern") parser.add_argument("file", nargs="?", help="file to operate on") args = parser.parse_args(*args) if args.cfg_file is None and args.previous: args.cfg_file = "previous" if args.cfg_file is not None and args.file is None: args.file = args.pattern args.pattern = None editor = Editor(file=args.cfg_file, pattern=args.pattern) if args.list > 0: if args.cfg_file is not None: cfg = config_dir.load_config(name=".jqi", sub_dir="query", sub_name=args.cfg_file, create=False) print(cfg["pattern"]) else: list_stored(args.list > 1) return if args.file is None: text = sys.stdin.read() else: with open(args.file) as f: text = f.read() if args.run: editor.jq(text, stdio=True) else: result = editor.run(text) if result == 0: editor.save() editor.save("previous") else: sys.exit(result) def list_stored(long=False): d = config_dir.config_dir(name=".jqi", sub_dir="query") for f in d.iterdir(): name = f.name cfg = config_dir.load_config(name=".jqi", sub_dir="query", sub_name=name, create=False) if long: print(name) for line in cfg["pattern"].splitlines(): print("\t{}".format(line)) else: print("{}\t{}".format(name, cfg["pattern"].splitlines()[0])) if __name__ == '__main__': main("-f", "foo", "/tmp/x")
[ "config_dir.config_dir", "config_dir.load_config", "sys.exit", "argparse_helper.ArgumentParser", "sys.stdin.read" ]
[((168, 193), 'argparse_helper.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (191, 193), True, 'import argparse_helper as argparse\n'), ((1696, 1747), 'config_dir.config_dir', 'config_dir.config_dir', ([], {'name': '""".jqi"""', 'sub_dir': '"""query"""'}), "(name='.jqi', sub_dir='query')\n", (1717, 1747), False, 'import config_dir\n'), ((1340, 1356), 'sys.stdin.read', 'sys.stdin.read', ([], {}), '()\n', (1354, 1356), False, 'import sys\n'), ((1810, 1896), 'config_dir.load_config', 'config_dir.load_config', ([], {'name': '""".jqi"""', 'sub_dir': '"""query"""', 'sub_name': 'name', 'create': '(False)'}), "(name='.jqi', sub_dir='query', sub_name=name, create=\n False)\n", (1832, 1896), False, 'import config_dir\n'), ((1105, 1199), 'config_dir.load_config', 'config_dir.load_config', ([], {'name': '""".jqi"""', 'sub_dir': '"""query"""', 'sub_name': 'args.cfg_file', 'create': '(False)'}), "(name='.jqi', sub_dir='query', sub_name=args.cfg_file,\n create=False)\n", (1127, 1199), False, 'import config_dir\n'), ((1640, 1656), 'sys.exit', 'sys.exit', (['result'], {}), '(result)\n', (1648, 1656), False, 'import sys\n')]
import numpy as np from visual_dynamics.policies import CameraTargetPolicy class RandomOffsetCameraTargetPolicy(CameraTargetPolicy): def __init__(self, env, target_env, camera_node_name, agent_node_name, target_node_name, height=12.0, radius=16.0, angle=(-np.pi/4, np.pi/4), tightness=0.1, hra_interpolation=True): self.height = height self.radius = radius self.angle = angle offset = self.sample_offset() super(RandomOffsetCameraTargetPolicy, self).__init__(env, target_env, camera_node_name, agent_node_name, target_node_name, offset, tightness=tightness, hra_interpolation=hra_interpolation) def reset(self): self.offset = self.sample_offset() state = super(RandomOffsetCameraTargetPolicy, self).reset() # self.offset = self.sample_offset() return state def sample_offset(self): height = np.random.uniform(*self.height) if isinstance(self.height, (list, tuple)) else self.height radius = np.random.uniform(*self.radius) if isinstance(self.radius, (list, tuple)) else self.radius angle = np.random.uniform(*self.angle) if isinstance(self.angle, (list, tuple)) else self.angle return np.array([radius * np.sin(angle), -radius * np.cos(angle), height]) def _get_config(self): config = super(RandomOffsetCameraTargetPolicy, self)._get_config() config.pop('offset') config.update({'height': self.height, 'radius': self.radius, 'angle': self.angle}) return config
[ "numpy.sin", "numpy.cos", "numpy.random.uniform" ]
[((1027, 1058), 'numpy.random.uniform', 'np.random.uniform', (['*self.height'], {}), '(*self.height)\n', (1044, 1058), True, 'import numpy as np\n'), ((1135, 1166), 'numpy.random.uniform', 'np.random.uniform', (['*self.radius'], {}), '(*self.radius)\n', (1152, 1166), True, 'import numpy as np\n'), ((1242, 1272), 'numpy.random.uniform', 'np.random.uniform', (['*self.angle'], {}), '(*self.angle)\n', (1259, 1272), True, 'import numpy as np\n'), ((1364, 1377), 'numpy.sin', 'np.sin', (['angle'], {}), '(angle)\n', (1370, 1377), True, 'import numpy as np\n'), ((1389, 1402), 'numpy.cos', 'np.cos', (['angle'], {}), '(angle)\n', (1395, 1402), True, 'import numpy as np\n')]
import json import logging import os from typing import Optional from mir import scm from mir.tools import mir_storage def mir_check_repo_dvc_dirty(mir_root: str = ".") -> bool: names = [name for name in mir_storage.get_all_mir_paths() if os.path.isfile(os.path.join(mir_root, name))] if names: dvc_cmd_args = ["--show-json", "--targets"] dvc_cmd_args.extend(names) dvc_scm = scm.Scm(mir_root, scm_executable="dvc") dvc_result = dvc_scm.diff(dvc_cmd_args) json_object = json.loads(dvc_result) keys = ['added', 'deleted', 'modified', 'renamed', 'not in cache'] dvc_dirty = False for key in keys: dirty_value = json_object.get(key, None) if dirty_value: logging.info(f"{key}: {dirty_value}") dvc_dirty = True return dvc_dirty else: # if no mir files in this mir repo, it's clean return False def mir_check_repo_git_dirty(mir_root: str = ".") -> bool: git_scm = scm.Scm(mir_root, scm_executable="git") git_result = git_scm.status("-s") # if clean, returns nothing if (git_result or len(git_result) > 0): logging.info(f"{git_result}") return True return False # clean def mir_check_repo_dirty(mir_root: str = '.') -> bool: return mir_check_repo_dvc_dirty(mir_root) or mir_check_repo_git_dirty(mir_root) def mir_check_branch_exists(mir_root: str, branch: str) -> bool: try: git_scm = scm.Scm(mir_root, scm_executable="git") git_scm.rev_parse(branch) return True except Exception: # git rev-parse will return non-zero code when can not find branch # and cmd.py packs non-zero return code as an error return False def work_dir_to_monitor_file(work_dir: Optional[str]) -> Optional[str]: return os.path.join(work_dir, 'out', 'monitor.txt') if work_dir else None
[ "json.loads", "mir.scm.Scm", "os.path.join", "mir.tools.mir_storage.get_all_mir_paths", "logging.info" ]
[((1026, 1065), 'mir.scm.Scm', 'scm.Scm', (['mir_root'], {'scm_executable': '"""git"""'}), "(mir_root, scm_executable='git')\n", (1033, 1065), False, 'from mir import scm\n'), ((411, 450), 'mir.scm.Scm', 'scm.Scm', (['mir_root'], {'scm_executable': '"""dvc"""'}), "(mir_root, scm_executable='dvc')\n", (418, 450), False, 'from mir import scm\n'), ((521, 543), 'json.loads', 'json.loads', (['dvc_result'], {}), '(dvc_result)\n', (531, 543), False, 'import json\n'), ((1185, 1214), 'logging.info', 'logging.info', (['f"""{git_result}"""'], {}), "(f'{git_result}')\n", (1197, 1214), False, 'import logging\n'), ((1496, 1535), 'mir.scm.Scm', 'scm.Scm', (['mir_root'], {'scm_executable': '"""git"""'}), "(mir_root, scm_executable='git')\n", (1503, 1535), False, 'from mir import scm\n'), ((1853, 1897), 'os.path.join', 'os.path.join', (['work_dir', '"""out"""', '"""monitor.txt"""'], {}), "(work_dir, 'out', 'monitor.txt')\n", (1865, 1897), False, 'import os\n'), ((211, 242), 'mir.tools.mir_storage.get_all_mir_paths', 'mir_storage.get_all_mir_paths', ([], {}), '()\n', (240, 242), False, 'from mir.tools import mir_storage\n'), ((261, 289), 'os.path.join', 'os.path.join', (['mir_root', 'name'], {}), '(mir_root, name)\n', (273, 289), False, 'import os\n'), ((768, 805), 'logging.info', 'logging.info', (['f"""{key}: {dirty_value}"""'], {}), "(f'{key}: {dirty_value}')\n", (780, 805), False, 'import logging\n')]
# coding:utf-8 from sqlalchemy import text from db.basic_db import db_session from db.models import SeedIds from decorators.decorator import db_commit_decorator def get_seed(): """ Get all user id to be crawled :return: user ids """ return db_session.query(SeedIds).filter(text('status=0')).all() def get_seed_ids(): """ Get all user id to be crawled :return: user ids """ return db_session.query(SeedIds.uid).filter(text('is_crawled=0')).all() def get_home_ids(): """ Get all user id who's home pages need to be crawled :return: user ids """ return db_session.query(SeedIds.uid).filter(text('home_crawled=0')).all() @db_commit_decorator def set_seed_crawled(uid, result): """ :param uid: user id that is crawled :param result: crawling result :return: None """ seed = db_session.query(SeedIds).filter(SeedIds.uid == uid).first() if seed: if seed.is_crawled == 0: seed.is_crawled = result else: seed = SeedIds(uid=uid, is_crawled=result) db_session.add(seed) db_session.commit() def get_seed_by_id(uid): return db_session.query(SeedIds).filter(SeedIds.uid == uid).first() @db_commit_decorator def insert_seeds(ids): db_session.execute(SeedIds.__table__.insert().prefix_with('IGNORE'), [{'uid': i} for i in ids]) db_session.commit() @db_commit_decorator def set_seed_other_crawled(uid): """ update it if user id already exists, else insert :param uid: user id :return: None """ seed = get_seed_by_id(uid) if seed is None: seed = SeedIds(uid=uid, is_crawled=1, other_crawled=1, home_crawled=1) db_session.add(seed) else: seed.other_crawled = 1 db_session.commit() @db_commit_decorator def set_seed_home_crawled(uid): """ :param uid: user id :return: None """ seed = get_seed_by_id(uid) if seed is None: seed = SeedIds(uid=uid, is_crawled=0, other_crawled=0, home_crawled=1) db_session.add(seed) else: seed.home_crawled = 1 db_session.commit()
[ "db.basic_db.db_session.query", "sqlalchemy.text", "db.models.SeedIds.__table__.insert", "db.basic_db.db_session.commit", "db.models.SeedIds", "db.basic_db.db_session.add" ]
[((1097, 1116), 'db.basic_db.db_session.commit', 'db_session.commit', ([], {}), '()\n', (1114, 1116), False, 'from db.basic_db import db_session\n'), ((1366, 1385), 'db.basic_db.db_session.commit', 'db_session.commit', ([], {}), '()\n', (1383, 1385), False, 'from db.basic_db import db_session\n'), ((1758, 1777), 'db.basic_db.db_session.commit', 'db_session.commit', ([], {}), '()\n', (1775, 1777), False, 'from db.basic_db import db_session\n'), ((2095, 2114), 'db.basic_db.db_session.commit', 'db_session.commit', ([], {}), '()\n', (2112, 2114), False, 'from db.basic_db import db_session\n'), ((1028, 1063), 'db.models.SeedIds', 'SeedIds', ([], {'uid': 'uid', 'is_crawled': 'result'}), '(uid=uid, is_crawled=result)\n', (1035, 1063), False, 'from db.models import SeedIds\n'), ((1072, 1092), 'db.basic_db.db_session.add', 'db_session.add', (['seed'], {}), '(seed)\n', (1086, 1092), False, 'from db.basic_db import db_session\n'), ((1620, 1683), 'db.models.SeedIds', 'SeedIds', ([], {'uid': 'uid', 'is_crawled': '(1)', 'other_crawled': '(1)', 'home_crawled': '(1)'}), '(uid=uid, is_crawled=1, other_crawled=1, home_crawled=1)\n', (1627, 1683), False, 'from db.models import SeedIds\n'), ((1692, 1712), 'db.basic_db.db_session.add', 'db_session.add', (['seed'], {}), '(seed)\n', (1706, 1712), False, 'from db.basic_db import db_session\n'), ((1958, 2021), 'db.models.SeedIds', 'SeedIds', ([], {'uid': 'uid', 'is_crawled': '(0)', 'other_crawled': '(0)', 'home_crawled': '(1)'}), '(uid=uid, is_crawled=0, other_crawled=0, home_crawled=1)\n', (1965, 2021), False, 'from db.models import SeedIds\n'), ((2030, 2050), 'db.basic_db.db_session.add', 'db_session.add', (['seed'], {}), '(seed)\n', (2044, 2050), False, 'from db.basic_db import db_session\n'), ((294, 310), 'sqlalchemy.text', 'text', (['"""status=0"""'], {}), "('status=0')\n", (298, 310), False, 'from sqlalchemy import text\n'), ((459, 479), 'sqlalchemy.text', 'text', (['"""is_crawled=0"""'], {}), "('is_crawled=0')\n", (463, 479), False, 'from sqlalchemy import text\n'), ((651, 673), 'sqlalchemy.text', 'text', (['"""home_crawled=0"""'], {}), "('home_crawled=0')\n", (655, 673), False, 'from sqlalchemy import text\n'), ((1285, 1311), 'db.models.SeedIds.__table__.insert', 'SeedIds.__table__.insert', ([], {}), '()\n', (1309, 1311), False, 'from db.models import SeedIds\n'), ((261, 286), 'db.basic_db.db_session.query', 'db_session.query', (['SeedIds'], {}), '(SeedIds)\n', (277, 286), False, 'from db.basic_db import db_session\n'), ((422, 451), 'db.basic_db.db_session.query', 'db_session.query', (['SeedIds.uid'], {}), '(SeedIds.uid)\n', (438, 451), False, 'from db.basic_db import db_session\n'), ((614, 643), 'db.basic_db.db_session.query', 'db_session.query', (['SeedIds.uid'], {}), '(SeedIds.uid)\n', (630, 643), False, 'from db.basic_db import db_session\n'), ((859, 884), 'db.basic_db.db_session.query', 'db_session.query', (['SeedIds'], {}), '(SeedIds)\n', (875, 884), False, 'from db.basic_db import db_session\n'), ((1155, 1180), 'db.basic_db.db_session.query', 'db_session.query', (['SeedIds'], {}), '(SeedIds)\n', (1171, 1180), False, 'from db.basic_db import db_session\n')]
""" Area Weighted Interpolation """ import numpy as np import geopandas as gpd from ._vectorized_raster_interpolation import _fast_append_profile_in_gdf import warnings from scipy.sparse import dok_matrix, diags, coo_matrix import pandas as pd from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs def _area_tables_binning(source_df, target_df, spatial_index): """Construct area allocation and source-target correspondence tables using a spatial indexing approach ... NOTE: this currently relies on Geopandas' spatial index machinery Parameters ---------- source_df : geopandas.GeoDataFrame GeoDataFrame containing input data and polygons target_df : geopandas.GeoDataFramee GeoDataFrame defining the output geometries spatial_index : str Spatial index to use to build the allocation of area from source to target tables. It currently support the following values: - "source": build the spatial index on `source_df` - "target": build the spatial index on `target_df` - "auto": attempts to guess the most efficient alternative. Currently, this option uses the largest table to build the index, and performs a `bulk_query` on the shorter table. Returns ------- tables : scipy.sparse.dok_matrix """ if _check_crs(source_df, target_df): pass else: return None df1 = source_df.copy() df2 = target_df.copy() # it is generally more performant to use the longer df as spatial index if spatial_index == "auto": if df1.shape[0] > df2.shape[0]: spatial_index = "source" else: spatial_index = "target" if spatial_index == "source": ids_tgt, ids_src = df1.sindex.query_bulk(df2.geometry, predicate="intersects") elif spatial_index == "target": ids_src, ids_tgt = df2.sindex.query_bulk(df1.geometry, predicate="intersects") else: raise ValueError( f"'{spatial_index}' is not a valid option. Use 'auto', 'source' or 'target'." ) areas = df1.geometry.values[ids_src].intersection(df2.geometry.values[ids_tgt]).area table = coo_matrix( (areas, (ids_src, ids_tgt),), shape=(df1.shape[0], df2.shape[0]), dtype=np.float32, ) table = table.todok() return table def _area_tables(source_df, target_df): """ Construct area allocation and source-target correspondence tables. Parameters ---------- source_df : geopandas.GeoDataFrame target_df : geopandas.GeoDataFrame Returns ------- tables : tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t Notes ----- The assumption is both dataframes have the same coordinate reference system. Union geometry is a geometry formed by the intersection of a source geometry and a target geometry SU Maps source geometry to union geometry, UT maps union geometry to target geometry """ if _check_crs(source_df, target_df): pass else: return None source_df = source_df.copy() source_df = source_df.copy() n_s = source_df.shape[0] n_t = target_df.shape[0] _left = np.arange(n_s) _right = np.arange(n_t) source_df.loc[:, "_left"] = _left # create temporary index for union target_df.loc[:, "_right"] = _right # create temporary index for union res_union = gpd.overlay(source_df, target_df, how="union") n_u, _ = res_union.shape SU = np.zeros( (n_s, n_u) ) # holds area of intersection of source geom with union geom UT = np.zeros((n_u, n_t)) # binary table mapping union geom to target geom for index, row in res_union.iterrows(): # only union polygons that intersect both a source and a target geometry matter if not np.isnan(row["_left"]) and not np.isnan(row["_right"]): s_id = int(row["_left"]) t_id = int(row["_right"]) SU[s_id, index] = row[row.geometry.name].area UT[index, t_id] = 1 source_df.drop(["_left"], axis=1, inplace=True) target_df.drop(["_right"], axis=1, inplace=True) return SU, UT def _area_interpolate_binning( source_df, target_df, extensive_variables=None, intensive_variables=None, table=None, allocate_total=True, spatial_index="auto", ): """ Area interpolation for extensive and intensive variables. Parameters ---------- source_df : geopandas.GeoDataFrame target_df : geopandas.GeoDataFrame extensive_variables : list [Optional. Default=None] Columns in dataframes for extensive variables intensive_variables : list [Optional. Default=None] Columns in dataframes for intensive variables table : scipy.sparse.dok_matrix [Optional. Default=None] Area allocation source-target correspondence table. If not provided, it will be built from `source_df` and `target_df` using `tobler.area_interpolate._area_tables_binning` allocate_total : boolean [Optional. Default=True] True if total value of source area should be allocated. False if denominator is area of i. Note that the two cases would be identical when the area of the source polygon is exhausted by intersections. See Notes for more details. spatial_index : str [Optional. Default="auto"] Spatial index to use to build the allocation of area from source to target tables. It currently support the following values: - "source": build the spatial index on `source_df` - "target": build the spatial index on `target_df` - "auto": attempts to guess the most efficient alternative. Currently, this option uses the largest table to build the index, and performs a `bulk_query` on the shorter table. Returns ------- estimates : geopandas.GeoDataFrame new geodaraframe with interpolated variables as columns and target_df geometry as output geometry Notes ----- The assumption is both dataframes have the same coordinate reference system. For an extensive variable, the estimate at target polygon j (default case) is: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \\sum_k a_{i,k} If the area of the source polygon is not exhausted by intersections with target polygons and there is reason to not allocate the complete value of an extensive attribute, then setting allocate_total=False will use the following weights: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / a_i where a_i is the total area of source polygon i. For an intensive variable, the estimate at target polygon j is: .. math:: v_j = \\sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \\sum_k a_{k,j} """ source_df = source_df.copy() target_df = target_df.copy() if _check_crs(source_df, target_df): pass else: return None if table is None: table = _area_tables_binning(source_df, target_df, spatial_index) den = source_df[source_df.geometry.name].area.values if allocate_total: den = np.asarray(table.sum(axis=1)) den = den + (den == 0) den = 1.0 / den n = den.shape[0] den = den.reshape((n,)) den = diags([den], [0]) weights = den.dot(table) # row standardize table dfs = [] extensive = [] if extensive_variables: for variable in extensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) estimates = diags([vals], [0]).dot(weights) estimates = estimates.sum(axis=0) extensive.append(estimates.tolist()[0]) extensive = np.asarray(extensive) extensive = np.array(extensive) extensive = pd.DataFrame(extensive.T, columns=extensive_variables) area = np.asarray(table.sum(axis=0)) den = 1.0 / (area + (area == 0)) n, k = den.shape den = den.reshape((k,)) den = diags([den], [0]) weights = table.dot(den) intensive = [] if intensive_variables: for variable in intensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) n = vals.shape[0] vals = vals.reshape((n,)) estimates = diags([vals], [0]) estimates = estimates.dot(weights).sum(axis=0) intensive.append(estimates.tolist()[0]) intensive = np.asarray(intensive) intensive = pd.DataFrame(intensive.T, columns=intensive_variables) if extensive_variables: dfs.append(extensive) if intensive_variables: dfs.append(intensive) df = pd.concat(dfs, axis=1) df["geometry"] = target_df[target_df.geometry.name].reset_index(drop=True) df = gpd.GeoDataFrame(df.replace(np.inf, np.nan)) return df def _area_interpolate( source_df, target_df, extensive_variables=None, intensive_variables=None, tables=None, allocate_total=True, ): """ Area interpolation for extensive and intensive variables. Parameters ---------- source_df : geopandas.GeoDataFrame (required) geodataframe with polygon geometries target_df : geopandas.GeoDataFrame (required) geodataframe with polygon geometries extensive_variables : list, (optional) columns in dataframes for extensive variables intensive_variables : list, (optional) columns in dataframes for intensive variables tables : tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t allocate_total : boolean True if total value of source area should be allocated. False if denominator is area of i. Note that the two cases would be identical when the area of the source polygon is exhausted by intersections. See Notes for more details. Returns ------- estimates : geopandas.GeoDataFrame new geodaraframe with interpolated variables as columns and target_df geometry as output geometry Notes ----- The assumption is both dataframes have the same coordinate reference system. For an extensive variable, the estimate at target polygon j (default case) is: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \sum_k a_{i,k} If the area of the source polygon is not exhausted by intersections with target polygons and there is reason to not allocate the complete value of an extensive attribute, then setting allocate_total=False will use the following weights: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / a_i where a_i is the total area of source polygon i. For an intensive variable, the estimate at target polygon j is: v_j = \sum_i v_i w_{i,j} w_{i,j} = a_{i,j} / \sum_k a_{k,j} """ source_df = source_df.copy() target_df = target_df.copy() if _check_crs(source_df, target_df): pass else: return None if tables is None: SU, UT = _area_tables(source_df, target_df) else: SU, UT = tables den = source_df[source_df.geometry.name].area.values if allocate_total: den = SU.sum(axis=1) den = den + (den == 0) weights = np.dot(np.diag(1 / den), SU) dfs = [] extensive = [] if extensive_variables: for variable in extensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) estimates = np.dot(np.diag(vals), weights) estimates = np.dot(estimates, UT) estimates = estimates.sum(axis=0) extensive.append(estimates) extensive = np.array(extensive) extensive = pd.DataFrame(extensive.T, columns=extensive_variables) ST = np.dot(SU, UT) area = ST.sum(axis=0) den = np.diag(1.0 / (area + (area == 0))) weights = np.dot(ST, den) intensive = [] if intensive_variables: for variable in intensive_variables: vals = _nan_check(source_df, variable) vals = _inf_check(source_df, variable) vals.shape = (len(vals), 1) est = (vals * weights).sum(axis=0) intensive.append(est) intensive = np.array(intensive) intensive = pd.DataFrame(intensive.T, columns=intensive_variables) if extensive_variables: dfs.append(extensive) if intensive_variables: dfs.append(intensive) df = pd.concat(dfs, axis=1) df["geometry"] = target_df[target_df.geometry.name].reset_index(drop=True) df = gpd.GeoDataFrame(df.replace(np.inf, np.nan)) return df def _area_tables_raster( source_df, target_df, raster_path, codes=[21, 22, 23, 24], force_crs_match=True ): """ Construct area allocation and source-target correspondence tables according to a raster 'populated' areas Parameters ---------- source_df : geopandas.GeoDataFrame geeodataframe with geometry column of polygon type target_df : geopandas.GeoDataFrame geodataframe with geometry column of polygon type raster_path : str the path to the associated raster image. codes : list list of integer code values that should be considered as 'populated'. Since this draw inspiration using the National Land Cover Database (NLCD), the default is 21 (Developed, Open Space), 22 (Developed, Low Intensity), 23 (Developed, Medium Intensity) and 24 (Developed, High Intensity). The description of each code can be found here: https://www.mrlc.gov/sites/default/files/metadata/landcover.html Only taken into consideration for harmonization raster based. force_crs_match : bool (default is True) Whether the Coordinate Reference System (CRS) of the polygon will be reprojected to the CRS of the raster file. It is recommended to let this argument as True. Returns ------- tables: tuple (optional) two 2-D numpy arrays SU: area of intersection of source geometry i with union geometry j UT: binary mapping of union geometry j to target geometry t Notes ----- The assumption is both dataframes have the same coordinate reference system. Union geometry is a geometry formed by the intersection of a source geometry and a target geometry SU Maps source geometry to union geometry, UT maps union geometry to target geometry """ if _check_crs(source_df, target_df): pass else: return None source_df = source_df.copy() target_df = target_df.copy() n_s = source_df.shape[0] n_t = target_df.shape[0] _left = np.arange(n_s) _right = np.arange(n_t) source_df.loc[:, "_left"] = _left # create temporary index for union target_df.loc[:, "_right"] = _right # create temporary index for union res_union_pre = gpd.overlay(source_df, target_df, how="union") # Establishing a CRS for the generated union warnings.warn( "The CRS for the generated union will be set to be the same as source_df." ) res_union_pre.crs = source_df.crs # The 'append_profile_in_gdf' function is present in nlcd.py script res_union = _fast_append_profile_in_gdf( res_union_pre, raster_path, force_crs_match=force_crs_match ) str_codes = [str(i) for i in codes] str_list = ["Type_" + i for i in str_codes] # Extract list of code names that actually appear in the appended dataset str_list_ok = [col for col in res_union.columns if col in str_list] res_union["Populated_Pixels"] = res_union[str_list_ok].sum(axis=1) n_u, _ = res_union.shape SU = np.zeros( (n_s, n_u) ) # holds area of intersection of source geom with union geom UT = np.zeros((n_u, n_t)) # binary table mapping union geom to target geom for index, row in res_union.iterrows(): # only union polygons that intersect both a source and a target geometry matter if not np.isnan(row["_left"]) and not np.isnan(row["_right"]): s_id = int(row["_left"]) t_id = int(row["_right"]) SU[s_id, index] = row["Populated_Pixels"] UT[index, t_id] = 1 source_df.drop(["_left"], axis=1, inplace=True) target_df.drop(["_right"], axis=1, inplace=True) return SU, UT
[ "scipy.sparse.diags", "tobler.util.util._check_crs", "pandas.DataFrame", "numpy.asarray", "numpy.diag", "numpy.array", "numpy.zeros", "numpy.dot", "tobler.util.util._nan_check", "numpy.isnan", "geopandas.overlay", "scipy.sparse.coo_matrix", "warnings.warn", "tobler.util.util._inf_check", "pandas.concat", "numpy.arange" ]
[((1390, 1422), 'tobler.util.util._check_crs', '_check_crs', (['source_df', 'target_df'], {}), '(source_df, target_df)\n', (1400, 1422), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((2243, 2340), 'scipy.sparse.coo_matrix', 'coo_matrix', (['(areas, (ids_src, ids_tgt))'], {'shape': '(df1.shape[0], df2.shape[0])', 'dtype': 'np.float32'}), '((areas, (ids_src, ids_tgt)), shape=(df1.shape[0], df2.shape[0]),\n dtype=np.float32)\n', (2253, 2340), False, 'from scipy.sparse import dok_matrix, diags, coo_matrix\n'), ((3198, 3230), 'tobler.util.util._check_crs', '_check_crs', (['source_df', 'target_df'], {}), '(source_df, target_df)\n', (3208, 3230), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((3412, 3426), 'numpy.arange', 'np.arange', (['n_s'], {}), '(n_s)\n', (3421, 3426), True, 'import numpy as np\n'), ((3440, 3454), 'numpy.arange', 'np.arange', (['n_t'], {}), '(n_t)\n', (3449, 3454), True, 'import numpy as np\n'), ((3621, 3667), 'geopandas.overlay', 'gpd.overlay', (['source_df', 'target_df'], {'how': '"""union"""'}), "(source_df, target_df, how='union')\n", (3632, 3667), True, 'import geopandas as gpd\n'), ((3706, 3726), 'numpy.zeros', 'np.zeros', (['(n_s, n_u)'], {}), '((n_s, n_u))\n', (3714, 3726), True, 'import numpy as np\n'), ((3811, 3831), 'numpy.zeros', 'np.zeros', (['(n_u, n_t)'], {}), '((n_u, n_t))\n', (3819, 3831), True, 'import numpy as np\n'), ((7155, 7187), 'tobler.util.util._check_crs', '_check_crs', (['source_df', 'target_df'], {}), '(source_df, target_df)\n', (7165, 7187), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((7560, 7577), 'scipy.sparse.diags', 'diags', (['[den]', '[0]'], {}), '([den], [0])\n', (7565, 7577), False, 'from scipy.sparse import dok_matrix, diags, coo_matrix\n'), ((8290, 8307), 'scipy.sparse.diags', 'diags', (['[den]', '[0]'], {}), '([den], [0])\n', (8295, 8307), False, 'from scipy.sparse import dok_matrix, diags, coo_matrix\n'), ((8999, 9021), 'pandas.concat', 'pd.concat', (['dfs'], {'axis': '(1)'}), '(dfs, axis=1)\n', (9008, 9021), True, 'import pandas as pd\n'), ((11334, 11366), 'tobler.util.util._check_crs', '_check_crs', (['source_df', 'target_df'], {}), '(source_df, target_df)\n', (11344, 11366), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((12220, 12234), 'numpy.dot', 'np.dot', (['SU', 'UT'], {}), '(SU, UT)\n', (12226, 12234), True, 'import numpy as np\n'), ((12271, 12306), 'numpy.diag', 'np.diag', (['(1.0 / (area + (area == 0)))'], {}), '(1.0 / (area + (area == 0)))\n', (12278, 12306), True, 'import numpy as np\n'), ((12321, 12336), 'numpy.dot', 'np.dot', (['ST', 'den'], {}), '(ST, den)\n', (12327, 12336), True, 'import numpy as np\n'), ((12894, 12916), 'pandas.concat', 'pd.concat', (['dfs'], {'axis': '(1)'}), '(dfs, axis=1)\n', (12903, 12916), True, 'import pandas as pd\n'), ((14868, 14900), 'tobler.util.util._check_crs', '_check_crs', (['source_df', 'target_df'], {}), '(source_df, target_df)\n', (14878, 14900), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((15081, 15095), 'numpy.arange', 'np.arange', (['n_s'], {}), '(n_s)\n', (15090, 15095), True, 'import numpy as np\n'), ((15109, 15123), 'numpy.arange', 'np.arange', (['n_t'], {}), '(n_t)\n', (15118, 15123), True, 'import numpy as np\n'), ((15295, 15341), 'geopandas.overlay', 'gpd.overlay', (['source_df', 'target_df'], {'how': '"""union"""'}), "(source_df, target_df, how='union')\n", (15306, 15341), True, 'import geopandas as gpd\n'), ((15396, 15490), 'warnings.warn', 'warnings.warn', (['"""The CRS for the generated union will be set to be the same as source_df."""'], {}), "(\n 'The CRS for the generated union will be set to be the same as source_df.')\n", (15409, 15490), False, 'import warnings\n'), ((16081, 16101), 'numpy.zeros', 'np.zeros', (['(n_s, n_u)'], {}), '((n_s, n_u))\n', (16089, 16101), True, 'import numpy as np\n'), ((16186, 16206), 'numpy.zeros', 'np.zeros', (['(n_u, n_t)'], {}), '((n_u, n_t))\n', (16194, 16206), True, 'import numpy as np\n'), ((8015, 8036), 'numpy.asarray', 'np.asarray', (['extensive'], {}), '(extensive)\n', (8025, 8036), True, 'import numpy as np\n'), ((8057, 8076), 'numpy.array', 'np.array', (['extensive'], {}), '(extensive)\n', (8065, 8076), True, 'import numpy as np\n'), ((8097, 8151), 'pandas.DataFrame', 'pd.DataFrame', (['extensive.T'], {'columns': 'extensive_variables'}), '(extensive.T, columns=extensive_variables)\n', (8109, 8151), True, 'import pandas as pd\n'), ((8775, 8796), 'numpy.asarray', 'np.asarray', (['intensive'], {}), '(intensive)\n', (8785, 8796), True, 'import numpy as np\n'), ((8817, 8871), 'pandas.DataFrame', 'pd.DataFrame', (['intensive.T'], {'columns': 'intensive_variables'}), '(intensive.T, columns=intensive_variables)\n', (8829, 8871), True, 'import pandas as pd\n'), ((11678, 11694), 'numpy.diag', 'np.diag', (['(1 / den)'], {}), '(1 / den)\n', (11685, 11694), True, 'import numpy as np\n'), ((12115, 12134), 'numpy.array', 'np.array', (['extensive'], {}), '(extensive)\n', (12123, 12134), True, 'import numpy as np\n'), ((12155, 12209), 'pandas.DataFrame', 'pd.DataFrame', (['extensive.T'], {'columns': 'extensive_variables'}), '(extensive.T, columns=extensive_variables)\n', (12167, 12209), True, 'import pandas as pd\n'), ((12672, 12691), 'numpy.array', 'np.array', (['intensive'], {}), '(intensive)\n', (12680, 12691), True, 'import numpy as np\n'), ((12712, 12766), 'pandas.DataFrame', 'pd.DataFrame', (['intensive.T'], {'columns': 'intensive_variables'}), '(intensive.T, columns=intensive_variables)\n', (12724, 12766), True, 'import pandas as pd\n'), ((7757, 7788), 'tobler.util.util._nan_check', '_nan_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (7767, 7788), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((7808, 7839), 'tobler.util.util._inf_check', '_inf_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (7818, 7839), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((8449, 8480), 'tobler.util.util._nan_check', '_nan_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (8459, 8480), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((8500, 8531), 'tobler.util.util._inf_check', '_inf_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (8510, 8531), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((8624, 8642), 'scipy.sparse.diags', 'diags', (['[vals]', '[0]'], {}), '([vals], [0])\n', (8629, 8642), False, 'from scipy.sparse import dok_matrix, diags, coo_matrix\n'), ((11825, 11856), 'tobler.util.util._nan_check', '_nan_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (11835, 11856), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((11876, 11907), 'tobler.util.util._inf_check', '_inf_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (11886, 11907), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((11987, 12008), 'numpy.dot', 'np.dot', (['estimates', 'UT'], {}), '(estimates, UT)\n', (11993, 12008), True, 'import numpy as np\n'), ((12448, 12479), 'tobler.util.util._nan_check', '_nan_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (12458, 12479), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((12499, 12530), 'tobler.util.util._inf_check', '_inf_check', (['source_df', 'variable'], {}), '(source_df, variable)\n', (12509, 12530), False, 'from tobler.util.util import _check_crs, _nan_check, _inf_check, _check_presence_of_crs\n'), ((4029, 4051), 'numpy.isnan', 'np.isnan', (["row['_left']"], {}), "(row['_left'])\n", (4037, 4051), True, 'import numpy as np\n'), ((4060, 4083), 'numpy.isnan', 'np.isnan', (["row['_right']"], {}), "(row['_right'])\n", (4068, 4083), True, 'import numpy as np\n'), ((11939, 11952), 'numpy.diag', 'np.diag', (['vals'], {}), '(vals)\n', (11946, 11952), True, 'import numpy as np\n'), ((16405, 16427), 'numpy.isnan', 'np.isnan', (["row['_left']"], {}), "(row['_left'])\n", (16413, 16427), True, 'import numpy as np\n'), ((16436, 16459), 'numpy.isnan', 'np.isnan', (["row['_right']"], {}), "(row['_right'])\n", (16444, 16459), True, 'import numpy as np\n'), ((7864, 7882), 'scipy.sparse.diags', 'diags', (['[vals]', '[0]'], {}), '([vals], [0])\n', (7869, 7882), False, 'from scipy.sparse import dok_matrix, diags, coo_matrix\n')]
## # This software was developed and / or modified by Raytheon Company, # pursuant to Contract DG133W-05-CQ-1067 with the US Government. # # U.S. EXPORT CONTROLLED TECHNICAL DATA # This software product contains export-restricted data whose # export/transfer/disclosure is restricted by U.S. law. Dissemination # to non-U.S. persons whether in the United States or abroad requires # an export license or other authorization. # # Contractor Name: <NAME> # Contractor Address: 6825 Pine Street, Suite 340 # Mail Stop B8 # Omaha, NE 68106 # 402.291.0100 # # See the AWIPS II Master Rights File ("Master Rights File.pdf") for # further licensing information. ## # ---------------------------------------------------------------------------- # This software is in the public domain, furnished "as is", without technical # support, and with no warranty, express or implied, as to its usefulness for # any purpose. # # Headlines Timing # # Author: # ---------------------------------------------------------------------------- #set up to test area names and part of states # without locationName defined areaT1 = """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' """ #with location name defined areaT2= """ AreaDictionary['FLZ050']['fullStateName'] = 'Florida' AreaDictionary['FLZ050']['partOfState'] = 'western' AreaDictionary['FLZ050']['locationName'] = 'Clearfield' AreaDictionary['FLZ057']['fullStateName'] = 'Florida' AreaDictionary['FLZ057']['partOfState'] = 'western' AreaDictionary['FLZ057']['locationName'] = 'Clearfield' AreaDictionary['FLZ160']['fullStateName'] = 'Florida' AreaDictionary['FLZ160']['partOfState'] = 'central' AreaDictionary['FLZ160']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ151']['fullStateName'] = 'Florida' AreaDictionary['FLZ151']['partOfState'] = 'central' AreaDictionary['FLZ151']['locationName'] = 'Aunt Ruby' AreaDictionary['FLZ043']['fullStateName'] = 'Florida' AreaDictionary['FLZ043']['partOfState'] = 'central' AreaDictionary['FLZ043']['locationName'] = 'Adams' AreaDictionary['FLZ162']['fullStateName'] = 'Florida' AreaDictionary['FLZ162']['partOfState'] = 'central' AreaDictionary['FLZ162']['locationName'] = 'Adams' AreaDictionary['FLZ165']['fullStateName'] = 'Florida' AreaDictionary['FLZ165']['partOfState'] = 'central' #AreaDictionary['FLZ165']['locationName'] = 'western' AreaDictionary['FLZ056']['fullStateName'] = 'Florida' AreaDictionary['FLZ056']['partOfState'] = 'southern' AreaDictionary['FLZ056']['locationName'] = 'Tampa' AreaDictionary['FLZ052']['fullStateName'] = 'Georgia' AreaDictionary['FLZ052']['partOfState'] = 'western' AreaDictionary['FLZ052']['locationName'] = 'Tampa' AreaDictionary['FLZ155']['fullStateName'] = 'Georgia' AreaDictionary['FLZ155']['partOfState'] = 'western' AreaDictionary['FLZ155']['locationName'] = 'Atlanta' AreaDictionary['FLZ061']['fullStateName'] = 'Georgia' AreaDictionary['FLZ061']['partOfState'] = 'southern' AreaDictionary['FLZ061']['locationName'] = 'Beach' AreaDictionary['FLZ148']['fullStateName'] = 'Georgia' AreaDictionary['FLZ148']['partOfState'] = 'southern' AreaDictionary['FLZ148']['locationName'] = 'Beach' AreaDictionary['FLZ142']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ142']['partOfState'] = 'western' AreaDictionary['FLZ142']['locationName'] = 'South Park' AreaDictionary['FLZ043']['fullStateName'] = 'South Carolina' AreaDictionary['FLZ043']['partOfState'] = 'western' AreaDictionary['FLZ043']['locationName'] = 'South Park' """ #for testing of parishes, counties, and areas areaT3 = """ AreaDictionary['FLC017']['fullStateName'] = 'Louisiana' AreaDictionary['FLC017']['partOfState'] = 'western' AreaDictionary['FLC017']['independentCity'] = 1 AreaDictionary['FLC105']['fullStateName'] = 'Louisiana' AreaDictionary['FLC105']['partOfState'] = 'western' AreaDictionary['FLC027']['fullStateName'] = 'Louisiana' AreaDictionary['FLC027']['partOfState'] = 'western' AreaDictionary['FLC053']['fullStateName'] = 'Florida' AreaDictionary['FLC053']['partOfState'] = 'western' """ areaT3FIPS0= '#Definition["areaType"] = "FIPS"' areaT3FIPS1= 'Definition["areaType"] = "FIPS"' scripts = [ { "commentary": "Clear out all Hazards Table and Grids.", "name": "Hazard_FFA_0", "productType": None, "clearHazardsTable": 1, "checkStrings": [], }, { "commentary": "NEW FFA", "name": "Hazard_FFA_1", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Coastal Pasco-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CON FFA", "name": "Hazard_FFA_2", "drtTime": "20100101_0530", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "EXA FFA", "name": "Hazard_FFA_3", "drtTime": "20100101_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ149","FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXA.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has expanded the", "* Flood Watch to include a portion of south central Florida, including the following area, Highlands.", "* Until 3 AM EST early this morning", "FLZ149-", "/X.CON.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.DM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 3 AM EST early this morning", ], }, { "commentary": "CAN FFA, NEW FFA", "name": "Hazard_FFA_4", "drtTime": "20100101_0720", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IJ '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 8, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/X.NEW.KTBW.FF.A.0001.100101T0720Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLOOD WATCH IS CANCELLED...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The Flood Watch for a portion of south central Florida has been cancelled.", "FLZ149-", "/X.CAN.KTBW.FA.A.0001.000000T0000Z-100101T0800Z/", "/00000.0.IJ.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled." ], }, { "commentary": "EXP FFA, 2 NEW FFA", "name": "Hazard_FFA_5", "drtTime": "20100101_1300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'FS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0001.000000T0000Z-100101T1300Z/", "/X.NEW.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM LATE TONIGHT THROUGH SATURDAY MORNING...", "...FLASH FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "...FLASH FLOOD WATCH HAS EXPIRED...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From late tonight through Saturday morning", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flash Flood Watch for a portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "The Flash Flood Watch for a portion of south central Florida has expired.", "FLZ149-", "/X.NEW.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.FS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "CON test of multiple events", "name": "Hazard_FFA_6", "drtTime": "20100102_0300", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'RS '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.100102T0500Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST SATURDAY...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST Saturday", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From Saturday evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.RS.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM SATURDAY EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From Saturday evening through Sunday evening", ], }, { "commentary": "middle of 1st event", "name": "Hazard_FFA_7", "drtTime": "20100102_0700", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 32, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 46, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 46, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.CON.KTBW.FF.A.0003.100103T0300Z-100103T1900Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 8 AM EST THIS MORNING...", "...FLASH FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 8 AM EST this morning", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* From this evening through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "joining two events", "name": "Hazard_FFA_8", "drtTime": "20100102_1200", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'IC '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CAN.KTBW.FF.A.0002.000000T0000Z-100102T1300Z/", "/X.EXT.KTBW.FF.A.0003.100102T1200Z-100103T1900Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH NOW IN EFFECT THROUGH SUNDAY AFTERNOON...", "The Flash Flood Watch is now in effect for", "* A portion of south central Florida, including the following area, Highlands.", "* Through Sunday afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.100103T0200Z-100104T0100Z/", "/00000.0.IC.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT FROM THIS EVENING THROUGH SUNDAY EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* From this evening through Sunday evening", ], }, { "commentary": "into the tail end of the events", "name": "Hazard_FFA_9", "drtTime": "20100103_1100", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'SM '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.CON.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH REMAINS IN EFFECT UNTIL 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch continues for", "* A portion of south central Florida, including the following area, Highlands.", "* Until 2 PM EST this afternoon", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.SM.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT THROUGH THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Through this evening", ], }, { "commentary": "exp 1st event, continue 2nd event", "name": "Hazard_FFA_10", "drtTime": "20100103_1855", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'DR '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 24, 45, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FF.A", ["FLZ057"]), ("Fcst", "Hazards", "DISCRETE", 45, 62, "FA.A", ["FLZ149"]), ("Fcst", "Hazards", "DISCRETE", 62, 68, "FA.A", ["FLZ149"]), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ057-", "/X.EXP.KTBW.FF.A.0003.000000T0000Z-100103T1900Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLASH FLOOD WATCH WILL EXPIRE AT 2 PM EST THIS AFTERNOON...", "The Flash Flood Watch for a portion of south central Florida will expire at 2 PM EST this afternoon.", "FLZ149-", "/X.CON.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.DR.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH REMAINS IN EFFECT UNTIL 8 PM EST THIS EVENING...", "The Flood Watch continues for", "* A portion of west central Florida, including the following area, Coastal Pasco.", "* Until 8 PM EST this evening", ], }, { "commentary": "cancel 2nd event", "name": "Hazard_FFA_11", "drtTime": "20100104_0000", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'GO '}", "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ], "checkStrings": ["Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "FLZ149-", "/X.CAN.KTBW.FA.A.0002.000000T0000Z-100104T0100Z/", "/00000.0.GO.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "...FLOOD WATCH IS CANCELLED...", "The Flood Watch for a portion of west central Florida has been cancelled.", ], }, { "commentary": "Deleting hazard grids.", "name": "Hazard_FFA_12", "productType": None, "checkStrings": [], "clearHazardsTable": 1, }, # Begin detailed phrasing of location tests { "commentary": "one state, single area, w/o location", "name": "Hazard_FFA_13a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, single area, w location", "name": "Hazard_FFA_13b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for a portion of western Florida, including the following area, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w/o location", "name": "Hazard_FFA_14a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", # "Including the cities of St. Petersburg, Clearwater, Largo, ", # "Lakeland, Winter Haven, Bradenton, Bayshore Gardens, ", # "Palmetto, Sebring, Avon Park, Placid Lakes", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Highlands and Pinellas. In western Georgia, Coastal Manatee and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area, w location", "name": "Hazard_FFA_14b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ052","FLZ155"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Georgia, including the following areas, in western Florida, Clearfield. In western Georgia, Atlanta and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w/o location", "name": "Hazard_FFA_15a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Coastal Hillsborough and Coastal Sarasota. In southern Florida, Hardee. In western Florida, Highlands and Pinellas.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "one state, multiple areas, w location", "name": "Hazard_FFA_15b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ160", "FLZ057","FLZ151","FLZ056"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-056-057-151-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Hardee-Highlands-Coastal Hillsborough-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of central Florida, southern Florida, and western Florida, including the following areas, in central Florida, Aunt Ruby. In southern Florida, Tampa. In western Florida, Clearfield.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w/o location", "name": "Hazard_FFA_16a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Pinellas. In Georgia, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, single area 1st, mulitple area 2nd, w location", "name": "Hazard_FFA_16b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ052", "FLZ155","FLZ061"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-061-155-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-DeSoto-Coastal Manatee-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and Georgia, including the following areas, in western Florida, Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w/o location", "name": "Hazard_FFA_17a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT1, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Coastal Hillsborough, Coastal Sarasota, Highlands, and Pinellas. In Georgia, Coastal Hernando, Coastal Manatee, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "two states, multiple areas, w location", "name": "Hazard_FFA_17b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [("AreaDictionary", "TextUtility", "add", areaT2, "delete"),], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLZ050","FLZ057", "FLZ160","FLZ151","FLZ052","FLZ155","FLZ061","FLZ148"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLZ050-052-057-061-148-151-155-160-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Pinellas-Polk-Highlands-DeSoto-Coastal Hernando-", "Coastal Hillsborough-Coastal Manatee-Coastal Sarasota-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of Florida and Georgia, including the following areas, in Florida, Aunt Ruby and Clearfield. In Georgia, Atlanta, Beach, and Tampa.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 1, independent 1, counties 1", "name": "Hazard_FFA_18a", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parish, in western Florida, Hernando. In western Louisiana, Citrus and DeSoto.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, { "commentary": "parishes 2, independent 1, counties 1", "name": "Hazard_FFA_18b", "drtTime": "20100101_0510", "productType": "Hazard_FFA_Local", "cmdLineVars": "{('Flood Reason', 'floodReason'): 'ER '}", "decodeVTEC": 0, "vtecMode": "O", "fileChanges": [ ("AreaDictionary", "TextUtility", "add", areaT3, "delete"), ("Hazard_FFA_Local", "TextProduct", "replace", (areaT3FIPS0, areaT3FIPS1), "delete"), ], "createGrids": [ ("Fcst", "Hazards", "DISCRETE", -100, 100, "<None>", "all"), ("Fcst", "Hazards", "DISCRETE", 0, 3, "FA.A", ["FLC017","FLC027", "FLC053","FLC105"]), ], "checkStrings": [ "WGUS62 KTBW 010510", "FFATBW", "URGENT - IMMEDIATE BROADCAST REQUESTED", "Flood Watch", "National Weather Service Tampa Bay Ruskin FL", "1210 AM EST Fri Jan 1 2010", "...|*Overview headline (must edit)*|...", ".|*Overview (must edit)*|.", "FLC017-027-053-105-010800-", "/O.NEW.KTBW.FA.A.0001.100101T0510Z-100101T0800Z/", "/00000.0.ER.000000T0000Z.000000T0000Z.000000T0000Z.OO/", "Citrus-DeSoto-Hernando-Polk-", "1210 AM EST Fri Jan 1 2010", "...FLOOD WATCH IN EFFECT UNTIL 3 AM EST EARLY THIS MORNING...", "The National Weather Service in Tampa Bay Ruskin has issued a", "* Flood Watch for portions of western Florida and western Louisiana, including the following county, independent city, and parishes, in western Florida, Hernando. In western Louisiana, Citrus, DeSoto, and Polk.", "* Until 3 AM EST early this morning", "* |* Basis for the watch *|", "* |* (optional) potential impacts of flooding *|", "PRECAUTIONARY/PREPAREDNESS ACTIONS...", "A Flood Watch means there is a potential for flooding based on current forecasts.", "You should monitor later forecasts and be alert for possible Flood Warnings. Those living in areas prone to flooding should be prepared to take action should flooding develop.", "&&", "$$", ], }, ] import TestScript def testScript(self, dataMgr): defaults = { "database": "<site>_GRID__Fcst_00000000_0000", "publishGrids": 0, "decodeVTEC": 1, "gridsStartTime": "20100101_0500", "orderStrings": 1, "vtecMode": "X", "deleteGrids": [("Fcst", "Hazards", "SFC", "all", "all")], } return TestScript.generalTestScript(self, dataMgr, scripts, defaults)
[ "TestScript.generalTestScript" ]
[((49491, 49553), 'TestScript.generalTestScript', 'TestScript.generalTestScript', (['self', 'dataMgr', 'scripts', 'defaults'], {}), '(self, dataMgr, scripts, defaults)\n', (49519, 49553), False, 'import TestScript\n')]
import time old_input_value = False flag_falling_edge = None start = None flag_output_mask = False DELAY_CONST = 10 # delay time from falling edge ... . output = None def response_function(): global old_input_value, flag_falling_edge, start, flag_output_mask, output if flag_falling_edge: output = True end = time.perf_counter() if end - start > DELAY_CONST: output = 0 flag_falling_edge = 0 flag_output_mask = False input_value = bool(int(input('Please Enter your Input Value: '))) if old_input_value == False and input_value == True: if not flag_output_mask: output = input_value old_input_value = input_value print('Input Rising Edge detected ... ') print(f'output is: {output}') elif old_input_value == False and input_value == False: if not flag_output_mask: output = input_value old_input_value = input_value print(f'output is: {output}') elif old_input_value == True and input_value == True: old_input_value = input_value if not flag_output_mask: output = input_value print(f'output is: {output}') elif old_input_value == True and input_value == False: start = time.perf_counter() print('Input Falling Edge detected ... ') flag_falling_edge = True flag_output_mask = True old_input_value = input_value print(f'output is: {output}') if __name__ == '__main__': DELAY_CONST=int(input("Hello \nPlease Enter Your delay value here :")) while True: response_function()
[ "time.perf_counter" ]
[((365, 384), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (382, 384), False, 'import time\n'), ((1306, 1325), 'time.perf_counter', 'time.perf_counter', ([], {}), '()\n', (1323, 1325), False, 'import time\n')]
""" This module does validation for data input in incidents """ import re class Validate(): """ methods for validatin incidents input data """ def valid_email(self, email): self.vemail = re.match( r"(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\.[a-zA-Z0-9-.]+$)", email) if not self.vemail: return None return True def valid_password(self, password): self.password = re.match(r'[A-Za-z0-9@#$%^&+=]{8,}', password) if self.password is None: return None return True def valid_string(self, value): """ checks if value in data is empty """ self.value = value if not isinstance(self.value, str): return None return True
[ "re.match" ]
[((217, 287), 're.match', 're.match', (['"""(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\\\.[a-zA-Z0-9-.]+$)"""', 'email'], {}), "('(^[a-zA-Z0-9_.+-]+@[a-zA-Z0-9-]+\\\\.[a-zA-Z0-9-.]+$)', email)\n", (225, 287), False, 'import re\n'), ((434, 479), 're.match', 're.match', (['"""[A-Za-z0-9@#$%^&+=]{8,}"""', 'password'], {}), "('[A-Za-z0-9@#$%^&+=]{8,}', password)\n", (442, 479), False, 'import re\n')]
from .terraform import TerraformManager import pytest from _pytest.tmpdir import TempPathFactory @pytest.fixture(scope='session') def tfenv(tmp_path_factory: TempPathFactory): env_vars = { } with TerraformManager(path_factory=tmp_path_factory, env_vars=env_vars) as deployment: yield deployment
[ "pytest.fixture" ]
[((100, 131), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""session"""'}), "(scope='session')\n", (114, 131), False, 'import pytest\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- # # vim: encoding=utf-8 # # Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import unicode_literals from datetime import date # import os # import sys PATH = 'content' TIMEZONE = 'UTC' DEFAULT_LANG = u'en' AUTHOR = u'Treasurer Team' SITENAME = u'Apache Treasurer' SITEDOMAIN = 'treasurer.apache.org' SITEURL = 'https://treasurer.apache.org' # SITELOGO = 'https://treasurer.apache.org/images/logo.png' # SITEDESC = u'<blank>' SITEREPOSITORY = 'https://github.com/apache/treasurer-site/blob/main/content/pages/' TRADEMARKS = u'Apache and the Apache feather logo are trademarks or registered trademarks' CURRENTYEAR = date.today().year # Save pages using full directory preservation PAGES_PATHS = ['content'] # PATH_METADATA= '(?P<path_no_ext>.*)\..*' # PAGE_SAVE_AS= '{path_no_ext}.html' PAGE_URL = '{slug}.html' SLUGIFY_SOURCE = 'basename' PAGE_SAVE_AS = '{slug}.html' # We want to serve any images STATIC_PATHS = ['.htaccess', 'images'] # We don't use articles, but we don't want pelican to think # that content/ contains articles. ARTICLE_PATHS = ['articles'] # Disable these pages ARCHIVES_SAVE_AS = '' ARTICLE_SAVE_AS = '' AUTHORS_SAVE_AS = '' CATEGORIES_SAVE_AS = '' INDEX_SAVE_AS = '' TAGS_SAVE_AS = '' # Enable ATOM feed and Disable other feeds FEED_DOMAIN = SITEURL FEED_ALL_ATOM = 'feeds/all.atom.xml' CATEGORY_FEED_ATOM = None TRANSLATION_FEED_ATOM = None AUTHOR_FEED_ATOM = None AUTHOR_FEED_RSS = None # Pelican Plugins # The provided location. If the buildbot does not have a new plugin then look into requirements.txt PLUGIN_PATHS = ['./theme/plugins'] PLUGINS = ['toc', 'pelican-gfm', 'sitemap'] # TOC Generator TOC_HEADERS = r"h[1-6]" # Sitemap Generator SITEMAP = { "exclude": ["tag/", "category/"], "format": "xml", "priorities": { "articles": 0.1, "indexes": 0.1, "pages": 0.8 }, "changefreqs": { "articles": "never", "indexes": "never", "pages": "monthly" } } # Unused links LINKS = ( ) SOCIAL = ( ) DEFAULT_PAGINATION = False # Uncomment following line if you want document-relative URLs when developing # RELATIVE_URLS = True
[ "datetime.date.today" ]
[((1419, 1431), 'datetime.date.today', 'date.today', ([], {}), '()\n', (1429, 1431), False, 'from datetime import date\n')]
# -*- coding: utf-8 -*- #Copyright (c) 2010,12 <NAME> #Permission is hereby granted, free of charge, to any person obtaining a copy #of this software and associated documentation files (the "Software"), to deal #in the Software without restriction, including without limitation the rights #to use, copy, modify, merge, publish, distribute, sublicense, and/or sell #copies of the Software, and to permit persons to whom the Software is #furnished to do so, subject to the following conditions: #The above copyright notice and this permission notice shall be included in #all copies or substantial portions of the Software. #THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR #IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, #FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE #AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER #LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, #OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN #THE SOFTWARE. from random import uniform from math import sin, cos, pi, sqrt from gettext import gettext as _ import gtk import cairo from taconstants import TURTLE_LAYER, DEFAULT_TURTLE_COLORS from tasprite_factory import SVG, svg_str_to_pixbuf from tacanvas import wrap100, COLOR_TABLE from sprites import Sprite from tautils import debug_output SHAPES = 36 def generate_turtle_pixbufs(colors): """ Generate pixbufs for generic turtles """ shapes = [] svg = SVG() svg.set_scale(1.0) for i in range(SHAPES): svg.set_orientation(i * 10) shapes.append(svg_str_to_pixbuf(svg.turtle(colors))) return shapes class Turtles: def __init__(self, sprite_list): """ Class to hold turtles """ self.dict = dict() self.sprite_list = sprite_list self.default_pixbufs = [] def get_turtle(self, k, append=False, colors=None): """ Find a turtle """ if k in self.dict: return self.dict[k] elif not append: return None else: if colors == None: Turtle(self, k) elif type(colors) in [list, tuple]: Turtle(self, k, colors) else: Turtle(self, k, colors.split(',')) return self.dict[k] def get_turtle_key(self, turtle): """ Find a turtle's name """ for k in iter(self.dict): if self.dict[k] == turtle: return k return None def turtle_count(self): """ How many turtles are there? """ return(len(self.dict)) def add_to_dict(self, k, turtle): """ Add a new turtle """ self.dict[k] = turtle def remove_from_dict(self, k): """ Delete a turtle """ if k in self.dict: del(self.dict[k]) def show_all(self): """ Make all turtles visible """ for k in iter(self.dict): self.dict[k].show() def spr_to_turtle(self, spr): """ Find the turtle that corresponds to sprite spr. """ for k in iter(self.dict): if spr == self.dict[k].spr: return self.dict[k] return None def get_pixbufs(self): """ Get the pixbufs for the default turtle shapes. """ if self.default_pixbufs == []: self.default_pixbufs = generate_turtle_pixbufs( ["#008000", "#00A000"]) return(self.default_pixbufs) class Turtle: def __init__(self, turtles, key, turtle_colors=None): """ The turtle is not a block, just a sprite with an orientation """ self.x = 0 self.y = 0 self.hidden = False self.shapes = [] self.custom_shapes = False self.type = 'turtle' self.name = key self.heading = 0 self.pen_shade = 50 self.pen_color = 0 self.pen_gray = 100 self.pen_size = 5 self.pen_state = True self.label_block = None self._prep_shapes(key, turtles, turtle_colors) # Choose a random angle from which to attach the turtle label. if turtles.sprite_list is not None: self.spr = Sprite(turtles.sprite_list, 0, 0, self.shapes[0]) angle = uniform(0, pi * 4 / 3.0) # 240 degrees w = self.shapes[0].get_width() r = w * 0.67 # Restrict angle the the sides 30-150; 210-330 if angle > pi * 2 / 3.0: angle += pi / 2.0 # + 90 self.label_xy = [int(r * sin(angle)), int(r * cos(angle) + w / 2.0)] else: angle += pi / 6.0 # + 30 self.label_xy = [int(r * sin(angle) + w / 2.0), int(r * cos(angle) + w / 2.0)] else: self.spr = None turtles.add_to_dict(key, self) def _prep_shapes(self, name, turtles=None, turtle_colors=None): # If the turtle name is an int, we'll use a palette color as the # turtle color try: int_key = int(name) use_color_table = True except ValueError: use_color_table = False if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) elif use_color_table: fill = wrap100(int_key) stroke = wrap100(fill + 10) self.colors = ['#%06x' % (COLOR_TABLE[fill]), '#%06x' % (COLOR_TABLE[stroke])] self.shapes = generate_turtle_pixbufs(self.colors) else: if turtles is not None: self.colors = DEFAULT_TURTLE_COLORS self.shapes = turtles.get_pixbufs() def set_turtle_colors(self, turtle_colors): ''' reset the colors of a preloaded turtle ''' if turtle_colors is not None: self.colors = turtle_colors[:] self.shapes = generate_turtle_pixbufs(self.colors) self.set_heading(self.heading) def set_shapes(self, shapes, i=0): """ Reskin the turtle """ n = len(shapes) if n == 1 and i > 0: # set shape[i] if i < len(self.shapes): self.shapes[i] = shapes[0] elif n == SHAPES: # all shapes have been precomputed self.shapes = shapes[:] else: # rotate shapes if n != 1: debug_output("%d images passed to set_shapes: ignoring" % (n), self.tw.running_sugar) if self.heading == 0: # rotate the shapes images = [] w, h = shapes[0].get_width(), shapes[0].get_height() nw = nh = int(sqrt(w * w + h * h)) for i in range(SHAPES): surface = cairo.ImageSurface(cairo.FORMAT_ARGB32, nw, nh) context = cairo.Context(surface) context = gtk.gdk.CairoContext(context) context.translate(nw / 2., nh / 2.) context.rotate(i * 10 * pi / 180.) context.translate(-nw / 2., -nh / 2.) context.set_source_pixbuf(shapes[0], (nw - w) / 2., (nh - h) / 2.) context.rectangle(0, 0, nw, nh) context.fill() images.append(surface) self.shapes = images[:] else: # associate shape with image at current heading j = int(self.heading + 5) % 360 / (360 / SHAPES) self.shapes[j] = shapes[0] self.custom_shapes = True self.show() def reset_shapes(self): """ Reset the shapes to the standard turtle """ if self.custom_shapes: self.shapes = generate_turtle_pixbufs(self.colors) self.custom_shapes = False def set_heading(self, heading): """ Set the turtle heading (one shape per 360/SHAPES degrees) """ self.heading = heading i = (int(self.heading + 5) % 360) / (360 / SHAPES) if not self.hidden and self.spr is not None: try: self.spr.set_shape(self.shapes[i]) except IndexError: self.spr.set_shape(self.shapes[0]) def set_color(self, color): """ Set the pen color for this turtle. """ self.pen_color = color def set_gray(self, gray): """ Set the pen gray level for this turtle. """ self.pen_gray = gray def set_shade(self, shade): """ Set the pen shade for this turtle. """ self.pen_shade = shade def set_pen_size(self, pen_size): """ Set the pen size for this turtle. """ self.pen_size = pen_size def set_pen_state(self, pen_state): """ Set the pen state (down==True) for this turtle. """ self.pen_state = pen_state def hide(self): """ Hide the turtle. """ if self.spr is not None: self.spr.hide() if self.label_block is not None: self.label_block.spr.hide() self.hidden = True def show(self): """ Show the turtle. """ if self.spr is not None: self.spr.set_layer(TURTLE_LAYER) self.hidden = False self.move((self.x, self.y)) self.set_heading(self.heading) if self.label_block is not None: self.label_block.spr.move((self.x + self.label_xy[0], self.y + self.label_xy[1])) self.label_block.spr.set_layer(TURTLE_LAYER + 1) def move(self, pos): """ Move the turtle. """ self.x, self.y = int(pos[0]), int(pos[1]) if not self.hidden and self.spr is not None: self.spr.move(pos) if self.label_block is not None: self.label_block.spr.move((pos[0] + self.label_xy[0], pos[1] + self.label_xy[1])) return(self.x, self.y) def get_name(self): ''' return turtle name (key) ''' return self.name def get_xy(self): """ Return the turtle's x, y coordinates. """ return(self.x, self.y) def get_heading(self): """ Return the turtle's heading. """ return(self.heading) def get_color(self): """ Return the turtle's color. """ return(self.pen_color) def get_gray(self): """ Return the turtle's gray level. """ return(self.pen_gray) def get_shade(self): """ Return the turtle's shade. """ return(self.pen_shade) def get_pen_size(self): """ Return the turtle's pen size. """ return(self.pen_size) def get_pen_state(self): """ Return the turtle's pen state. """ return(self.pen_state)
[ "random.uniform", "cairo.ImageSurface", "tacanvas.wrap100", "cairo.Context", "math.sqrt", "tautils.debug_output", "math.cos", "gtk.gdk.CairoContext", "tasprite_factory.SVG", "sprites.Sprite", "math.sin" ]
[((1556, 1561), 'tasprite_factory.SVG', 'SVG', ([], {}), '()\n', (1559, 1561), False, 'from tasprite_factory import SVG, svg_str_to_pixbuf\n'), ((4257, 4306), 'sprites.Sprite', 'Sprite', (['turtles.sprite_list', '(0)', '(0)', 'self.shapes[0]'], {}), '(turtles.sprite_list, 0, 0, self.shapes[0])\n', (4263, 4306), False, 'from sprites import Sprite\n'), ((4327, 4351), 'random.uniform', 'uniform', (['(0)', '(pi * 4 / 3.0)'], {}), '(0, pi * 4 / 3.0)\n', (4334, 4351), False, 'from random import uniform\n'), ((5462, 5478), 'tacanvas.wrap100', 'wrap100', (['int_key'], {}), '(int_key)\n', (5469, 5478), False, 'from tacanvas import wrap100, COLOR_TABLE\n'), ((5500, 5518), 'tacanvas.wrap100', 'wrap100', (['(fill + 10)'], {}), '(fill + 10)\n', (5507, 5518), False, 'from tacanvas import wrap100, COLOR_TABLE\n'), ((6536, 6624), 'tautils.debug_output', 'debug_output', (["('%d images passed to set_shapes: ignoring' % n)", 'self.tw.running_sugar'], {}), "('%d images passed to set_shapes: ignoring' % n, self.tw.\n running_sugar)\n", (6548, 6624), False, 'from tautils import debug_output\n'), ((6833, 6852), 'math.sqrt', 'sqrt', (['(w * w + h * h)'], {}), '(w * w + h * h)\n', (6837, 6852), False, 'from math import sin, cos, pi, sqrt\n'), ((6924, 6971), 'cairo.ImageSurface', 'cairo.ImageSurface', (['cairo.FORMAT_ARGB32', 'nw', 'nh'], {}), '(cairo.FORMAT_ARGB32, nw, nh)\n', (6942, 6971), False, 'import cairo\n'), ((7002, 7024), 'cairo.Context', 'cairo.Context', (['surface'], {}), '(surface)\n', (7015, 7024), False, 'import cairo\n'), ((7055, 7084), 'gtk.gdk.CairoContext', 'gtk.gdk.CairoContext', (['context'], {}), '(context)\n', (7075, 7084), False, 'import gtk\n'), ((4614, 4624), 'math.sin', 'sin', (['angle'], {}), '(angle)\n', (4617, 4624), False, 'from math import sin, cos, pi, sqrt\n'), ((4668, 4678), 'math.cos', 'cos', (['angle'], {}), '(angle)\n', (4671, 4678), False, 'from math import sin, cos, pi, sqrt\n'), ((4792, 4802), 'math.sin', 'sin', (['angle'], {}), '(angle)\n', (4795, 4802), False, 'from math import sin, cos, pi, sqrt\n'), ((4856, 4866), 'math.cos', 'cos', (['angle'], {}), '(angle)\n', (4859, 4866), False, 'from math import sin, cos, pi, sqrt\n')]
try: from django.forms.utils import pretty_name except ImportError: from django.forms.forms import pretty_name from django.template import Context from django.template.loader import render_to_string from .compat import context_flatten class Group(list): """ A simplistic representation of backends that are related and should be displayed as one "group" in the backend (e.g. as one box in the sidebar). """ template_name = 'django_backend/_group.html' def __init__(self, id, name=None, position=0, template_name=None): self.id = id if name is None: name = pretty_name(id) self.template_name = template_name or self.template_name self.name = name self.position = position super(Group, self).__init__() @property def backends(self): return list(self) def get_context_data(self, context, **kwargs): data = { 'group': self, } data.update(kwargs) return data def get_template_name(self): return self.template_name def render(self, context): context_data = {} if isinstance(context, Context): context_data.update(context_flatten(context)) context_data = self.get_context_data(context, **context_data) return render_to_string(self.get_template_name(), context_data)
[ "django.forms.forms.pretty_name" ]
[((621, 636), 'django.forms.forms.pretty_name', 'pretty_name', (['id'], {}), '(id)\n', (632, 636), False, 'from django.forms.forms import pretty_name\n')]
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Flask, request, abort, render_template from datetime import timedelta import pymysql from search import start_search, decorate page_dir = "E:/WEBPAGES_RAW" app = Flask(__name__) app.config['DEBUG'] = True app.config['SEND_FILE_MAX_AGE_DEFAULT'] = timedelta(seconds=1) connection = pymysql.connect(host="localhost",port=3306,user="root",db="spicy_pot") cursor = connection.cursor() @app.route('/') def homepage(): return render_template("root.html") @app.route('/search') def search(): word = request.args.get('s') page = int(request.args.get('p')) all_res = start_search(word,cursor) if len(all_res) == 0: return render_template("result.html",result={"word":word,"pages":-1,"currentPage":1,"res":[]}) pages = ((len(all_res)-1)//10) + 1 res = decorate(all_res[(page-1)*10:page*10]) content = {"word":word,"pages":pages,"currentPage":page,"res":res} return render_template("result.html",result=content) @app.route('/cache') def cache(): p = request.args.get('p') c = request.args.get('c') read = open(page_dir+"/"+p+"/"+c,'r',encoding="utf-8") save = open("templates/temp.html",'w',encoding="utf-8") for line in read: save.write(line) read.close() save.close() return render_template("temp.html") app.run(host='0.0.0.0',port=80,debug=True)
[ "flask.render_template", "flask.request.args.get", "flask.Flask", "pymysql.connect", "search.start_search", "datetime.timedelta", "search.decorate" ]
[((235, 250), 'flask.Flask', 'Flask', (['__name__'], {}), '(__name__)\n', (240, 250), False, 'from flask import Flask, request, abort, render_template\n'), ((322, 342), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(1)'}), '(seconds=1)\n', (331, 342), False, 'from datetime import timedelta\n'), ((359, 432), 'pymysql.connect', 'pymysql.connect', ([], {'host': '"""localhost"""', 'port': '(3306)', 'user': '"""root"""', 'db': '"""spicy_pot"""'}), "(host='localhost', port=3306, user='root', db='spicy_pot')\n", (374, 432), False, 'import pymysql\n'), ((508, 536), 'flask.render_template', 'render_template', (['"""root.html"""'], {}), "('root.html')\n", (523, 536), False, 'from flask import Flask, request, abort, render_template\n'), ((589, 610), 'flask.request.args.get', 'request.args.get', (['"""s"""'], {}), "('s')\n", (605, 610), False, 'from flask import Flask, request, abort, render_template\n'), ((665, 691), 'search.start_search', 'start_search', (['word', 'cursor'], {}), '(word, cursor)\n', (677, 691), False, 'from search import start_search, decorate\n'), ((879, 923), 'search.decorate', 'decorate', (['all_res[(page - 1) * 10:page * 10]'], {}), '(all_res[(page - 1) * 10:page * 10])\n', (887, 923), False, 'from search import start_search, decorate\n'), ((1002, 1048), 'flask.render_template', 'render_template', (['"""result.html"""'], {'result': 'content'}), "('result.html', result=content)\n", (1017, 1048), False, 'from flask import Flask, request, abort, render_template\n'), ((1095, 1116), 'flask.request.args.get', 'request.args.get', (['"""p"""'], {}), "('p')\n", (1111, 1116), False, 'from flask import Flask, request, abort, render_template\n'), ((1126, 1147), 'flask.request.args.get', 'request.args.get', (['"""c"""'], {}), "('c')\n", (1142, 1147), False, 'from flask import Flask, request, abort, render_template\n'), ((1366, 1394), 'flask.render_template', 'render_template', (['"""temp.html"""'], {}), "('temp.html')\n", (1381, 1394), False, 'from flask import Flask, request, abort, render_template\n'), ((627, 648), 'flask.request.args.get', 'request.args.get', (['"""p"""'], {}), "('p')\n", (643, 648), False, 'from flask import Flask, request, abort, render_template\n'), ((734, 833), 'flask.render_template', 'render_template', (['"""result.html"""'], {'result': "{'word': word, 'pages': -1, 'currentPage': 1, 'res': []}"}), "('result.html', result={'word': word, 'pages': -1,\n 'currentPage': 1, 'res': []})\n", (749, 833), False, 'from flask import Flask, request, abort, render_template\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- """ .. codeauthor:: <NAME> <<EMAIL>> """ import logging import sys, os, json from cdumay_rest_client.client import RESTClient from cdumay_rest_client.exceptions import NotFound, HTTPException class NoSuchFile(NotFound): """NoSuchFile""" def oncritical(exc): """description of oncritical""" if isinstance(exc, HTTPException): logging.critical(exc.message) else: logging.critical(str(exc)) sys.exit(1) def file_exists(filename): """description of file_exists""" filename = os.path.realpath(filename) logging.debug("Checking file: {}".format(filename)) if not os.path.exists(filename): raise NoSuchFile( message="No such file '{}'".format(filename), extra=dict(filename=filename) ) return filename def file_write(dst, data): """description of file_write""" if dst: dst = os.path.realpath(dst) logging.debug("Saving to: {}".format(dst)) out = open(dst, "w") else: logging.debug("Current std will be used") out = sys.stdout json.dump( data, out, ensure_ascii=False, sort_keys=True, indent=2, separators=(',', ': ') ) def from_local(src, dst=None): """description of from_local""" try: file_write(dst, json.load(open(file_exists(src), "r"))) except Exception as exc: oncritical(exc) def from_remote(src, dst=None): """description of fromurl""" try: file_write( dst, RESTClient(server=src).do_request(method="GET", path="") ) except Exception as exc: oncritical(exc)
[ "os.path.exists", "cdumay_rest_client.client.RESTClient", "logging.debug", "os.path.realpath", "logging.critical", "sys.exit", "json.dump" ]
[((477, 488), 'sys.exit', 'sys.exit', (['(1)'], {}), '(1)\n', (485, 488), False, 'import sys, os, json\n'), ((570, 596), 'os.path.realpath', 'os.path.realpath', (['filename'], {}), '(filename)\n', (586, 596), False, 'import sys, os, json\n'), ((1129, 1223), 'json.dump', 'json.dump', (['data', 'out'], {'ensure_ascii': '(False)', 'sort_keys': '(True)', 'indent': '(2)', 'separators': "(',', ': ')"}), "(data, out, ensure_ascii=False, sort_keys=True, indent=2,\n separators=(',', ': '))\n", (1138, 1223), False, 'import sys, os, json\n'), ((398, 427), 'logging.critical', 'logging.critical', (['exc.message'], {}), '(exc.message)\n', (414, 427), False, 'import logging\n'), ((664, 688), 'os.path.exists', 'os.path.exists', (['filename'], {}), '(filename)\n', (678, 688), False, 'import sys, os, json\n'), ((937, 958), 'os.path.realpath', 'os.path.realpath', (['dst'], {}), '(dst)\n', (953, 958), False, 'import sys, os, json\n'), ((1057, 1098), 'logging.debug', 'logging.debug', (['"""Current std will be used"""'], {}), "('Current std will be used')\n", (1070, 1098), False, 'import logging\n'), ((1550, 1572), 'cdumay_rest_client.client.RESTClient', 'RESTClient', ([], {'server': 'src'}), '(server=src)\n', (1560, 1572), False, 'from cdumay_rest_client.client import RESTClient\n')]
import numpy as np import pytest import apexpy import tempfile import os import h5py from ttools import create_dataset, config, io, utils map_periods = [np.timedelta64(10, 'm'), np.timedelta64(30, 'm'), np.timedelta64(1, 'h'), np.timedelta64(2, 'h')] @pytest.fixture def times(): yield np.datetime64('2010-01-01T00:00:00') + np.arange(100) * np.timedelta64(5, 'm') @pytest.mark.parametrize('map_period', map_periods) def test_assemble_args(times, map_period): mlat = np.arange(10) mlt = np.arange(10) ssmlon = np.random.rand(times.shape[0]) mlt, mlat = np.meshgrid(mlt, mlat) mlat = mlat[None, :, :] * np.ones((times.shape[0], 1, 1)) mlt = mlt[None, :, :] * np.ones((times.shape[0], 1, 1)) tec = np.random.rand(*mlat.shape) bin_edges = np.arange(-.5, 10) bins = [bin_edges, bin_edges] args = create_dataset.assemble_binning_args(mlat, mlt, tec, times, ssmlon, bins, map_period) assert len(args) == np.ceil((times[-1] - times[0]) / map_period) assert args[0][3][0] == times[0] assert args[-1][3][0] + map_period >= times[-1] assert args[-1][3][0] < times[-1] assert args[-1][3][-1] == times[-1] for i in range(len(args) - 1): assert args[i][3][-1] == args[i + 1][3][0] - np.timedelta64(5, 'm') @pytest.mark.parametrize('map_period', map_periods) def test_process_file(madrigal_data_dir, map_period): """not that good of a test: wait for bugs and add asserts """ start_date = np.datetime64('2012-06-08') end_date = np.datetime64('2012-06-13') converter = apexpy.Apex() mlat, mlon = create_dataset.get_mag_grid(config.madrigal_lat, config.madrigal_lon, converter) bin_edges = np.arange(-.5, 10) bins = [bin_edges + 30, bin_edges] times, tec, ssmlon, n, std = create_dataset.process_file(start_date, end_date, mlat, mlon, converter, bins, map_period, madrigal_data_dir) assert times.shape[0] == tec.shape[0] == n.shape[0] == std.shape[0] == ssmlon.shape[0] assert np.isnan(tec[times < np.datetime64('2012-06-10')]).all() assert np.isnan(tec[times >= np.datetime64('2012-06-11')]).all() assert np.isfinite(tec[(times >= np.datetime64('2012-06-10')) * (times < np.datetime64('2012-06-11'))]).any() assert not np.isnan(tec).all(axis=(0, 1)).any() assert not np.isnan(tec).all(axis=(0, 2)).any() def test_calculate_bins(): mlat = np.arange(10)[None, :, None] * np.ones((1, 1, 10)) mlt = np.arange(10)[None, None, :] * np.ones((1, 10, 1)) tec = np.zeros((1, 10, 10)) tec[0, 0, 0] = 10 tec[0, 0, -1] = 20 tec[0, -1, 0] = 30 times = ssmlon = np.ones(1) * np.nan be = np.array([-.5, 4.5, 9.5]) bins = [be, be] out_t, out_tec, out_ssm, out_n, out_std = create_dataset.calculate_bins(mlat.ravel(), mlt.ravel(), tec.ravel(), times, ssmlon, bins) assert np.isnan(out_t) assert np.isnan(out_ssm) assert out_tec.shape == (2, 2) assert out_tec[0, 0] == 10 / 25 assert out_tec[0, 1] == 20 / 25 assert out_tec[1, 0] == 30 / 25 assert out_tec[1, 1] == 0 assert np.all(out_n == 25) def test_process_dataset(): start_date = np.datetime64("2012-03-07") end_date = np.datetime64("2012-03-08") file_dt = np.timedelta64(12, 'h') mlat_bins = np.array([35, 45, 55, 65]) mlt_bins = np.array([-1.5, -.5, .5, 1.5]) def fn_pattern(date): return f"{date.astype('datetime64[h]')}.h5" dates = np.arange(start_date, end_date, file_dt) with tempfile.TemporaryDirectory() as tempdir: files = [os.path.join(tempdir, fn_pattern(d)) for d in dates] create_dataset.process_dataset(start_date, end_date, mlat_bins, mlt_bins, apex_dt=np.timedelta64(365, 'D'), file_dt=file_dt, output_dir=tempdir, file_name_pattern=fn_pattern) grid_fn = os.path.join(tempdir, 'grid.h5') assert os.path.exists(grid_fn) with h5py.File(grid_fn, 'r') as f: mlt_vals = f['mlt'][()] mlat_vals = f['mlat'][()] assert np.all(mlt_vals == [-1, 0, 1]) assert np.all(mlat_vals == [40, 50, 60]) for f, d in zip(files, dates): assert os.path.exists(f) tec, times, ssmlon, n, std = io.open_tec_file(f) assert tec.shape == (12, 3, 3) assert utils.datetime64_to_timestamp(d) == times[0]
[ "numpy.random.rand", "numpy.array", "numpy.arange", "os.path.exists", "numpy.datetime64", "numpy.meshgrid", "ttools.create_dataset.process_file", "numpy.ceil", "numpy.ones", "h5py.File", "numpy.isnan", "ttools.io.open_tec_file", "numpy.timedelta64", "apexpy.Apex", "tempfile.TemporaryDirectory", "ttools.utils.datetime64_to_timestamp", "ttools.create_dataset.assemble_binning_args", "os.path.join", "pytest.mark.parametrize", "numpy.zeros", "ttools.create_dataset.get_mag_grid", "numpy.all" ]
[((376, 426), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""map_period"""', 'map_periods'], {}), "('map_period', map_periods)\n", (399, 426), False, 'import pytest\n'), ((1278, 1328), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""map_period"""', 'map_periods'], {}), "('map_period', map_periods)\n", (1301, 1328), False, 'import pytest\n'), ((155, 178), 'numpy.timedelta64', 'np.timedelta64', (['(10)', '"""m"""'], {}), "(10, 'm')\n", (169, 178), True, 'import numpy as np\n'), ((180, 203), 'numpy.timedelta64', 'np.timedelta64', (['(30)', '"""m"""'], {}), "(30, 'm')\n", (194, 203), True, 'import numpy as np\n'), ((205, 227), 'numpy.timedelta64', 'np.timedelta64', (['(1)', '"""h"""'], {}), "(1, 'h')\n", (219, 227), True, 'import numpy as np\n'), ((229, 251), 'numpy.timedelta64', 'np.timedelta64', (['(2)', '"""h"""'], {}), "(2, 'h')\n", (243, 251), True, 'import numpy as np\n'), ((481, 494), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (490, 494), True, 'import numpy as np\n'), ((505, 518), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (514, 518), True, 'import numpy as np\n'), ((532, 562), 'numpy.random.rand', 'np.random.rand', (['times.shape[0]'], {}), '(times.shape[0])\n', (546, 562), True, 'import numpy as np\n'), ((579, 601), 'numpy.meshgrid', 'np.meshgrid', (['mlt', 'mlat'], {}), '(mlt, mlat)\n', (590, 601), True, 'import numpy as np\n'), ((734, 761), 'numpy.random.rand', 'np.random.rand', (['*mlat.shape'], {}), '(*mlat.shape)\n', (748, 761), True, 'import numpy as np\n'), ((778, 797), 'numpy.arange', 'np.arange', (['(-0.5)', '(10)'], {}), '(-0.5, 10)\n', (787, 797), True, 'import numpy as np\n'), ((842, 931), 'ttools.create_dataset.assemble_binning_args', 'create_dataset.assemble_binning_args', (['mlat', 'mlt', 'tec', 'times', 'ssmlon', 'bins', 'map_period'], {}), '(mlat, mlt, tec, times, ssmlon, bins,\n map_period)\n', (878, 931), False, 'from ttools import create_dataset, config, io, utils\n'), ((1470, 1497), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-08"""'], {}), "('2012-06-08')\n", (1483, 1497), True, 'import numpy as np\n'), ((1513, 1540), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-13"""'], {}), "('2012-06-13')\n", (1526, 1540), True, 'import numpy as np\n'), ((1557, 1570), 'apexpy.Apex', 'apexpy.Apex', ([], {}), '()\n', (1568, 1570), False, 'import apexpy\n'), ((1588, 1673), 'ttools.create_dataset.get_mag_grid', 'create_dataset.get_mag_grid', (['config.madrigal_lat', 'config.madrigal_lon', 'converter'], {}), '(config.madrigal_lat, config.madrigal_lon, converter\n )\n', (1615, 1673), False, 'from ttools import create_dataset, config, io, utils\n'), ((1685, 1704), 'numpy.arange', 'np.arange', (['(-0.5)', '(10)'], {}), '(-0.5, 10)\n', (1694, 1704), True, 'import numpy as np\n'), ((1776, 1889), 'ttools.create_dataset.process_file', 'create_dataset.process_file', (['start_date', 'end_date', 'mlat', 'mlon', 'converter', 'bins', 'map_period', 'madrigal_data_dir'], {}), '(start_date, end_date, mlat, mlon, converter,\n bins, map_period, madrigal_data_dir)\n', (1803, 1889), False, 'from ttools import create_dataset, config, io, utils\n'), ((2555, 2576), 'numpy.zeros', 'np.zeros', (['(1, 10, 10)'], {}), '((1, 10, 10))\n', (2563, 2576), True, 'import numpy as np\n'), ((2695, 2721), 'numpy.array', 'np.array', (['[-0.5, 4.5, 9.5]'], {}), '([-0.5, 4.5, 9.5])\n', (2703, 2721), True, 'import numpy as np\n'), ((2965, 2980), 'numpy.isnan', 'np.isnan', (['out_t'], {}), '(out_t)\n', (2973, 2980), True, 'import numpy as np\n'), ((2992, 3009), 'numpy.isnan', 'np.isnan', (['out_ssm'], {}), '(out_ssm)\n', (3000, 3009), True, 'import numpy as np\n'), ((3194, 3213), 'numpy.all', 'np.all', (['(out_n == 25)'], {}), '(out_n == 25)\n', (3200, 3213), True, 'import numpy as np\n'), ((3261, 3288), 'numpy.datetime64', 'np.datetime64', (['"""2012-03-07"""'], {}), "('2012-03-07')\n", (3274, 3288), True, 'import numpy as np\n'), ((3304, 3331), 'numpy.datetime64', 'np.datetime64', (['"""2012-03-08"""'], {}), "('2012-03-08')\n", (3317, 3331), True, 'import numpy as np\n'), ((3346, 3369), 'numpy.timedelta64', 'np.timedelta64', (['(12)', '"""h"""'], {}), "(12, 'h')\n", (3360, 3369), True, 'import numpy as np\n'), ((3386, 3412), 'numpy.array', 'np.array', (['[35, 45, 55, 65]'], {}), '([35, 45, 55, 65])\n', (3394, 3412), True, 'import numpy as np\n'), ((3428, 3460), 'numpy.array', 'np.array', (['[-1.5, -0.5, 0.5, 1.5]'], {}), '([-1.5, -0.5, 0.5, 1.5])\n', (3436, 3460), True, 'import numpy as np\n'), ((3551, 3591), 'numpy.arange', 'np.arange', (['start_date', 'end_date', 'file_dt'], {}), '(start_date, end_date, file_dt)\n', (3560, 3591), True, 'import numpy as np\n'), ((632, 663), 'numpy.ones', 'np.ones', (['(times.shape[0], 1, 1)'], {}), '((times.shape[0], 1, 1))\n', (639, 663), True, 'import numpy as np\n'), ((692, 723), 'numpy.ones', 'np.ones', (['(times.shape[0], 1, 1)'], {}), '((times.shape[0], 1, 1))\n', (699, 723), True, 'import numpy as np\n'), ((952, 996), 'numpy.ceil', 'np.ceil', (['((times[-1] - times[0]) / map_period)'], {}), '((times[-1] - times[0]) / map_period)\n', (959, 996), True, 'import numpy as np\n'), ((2464, 2483), 'numpy.ones', 'np.ones', (['(1, 1, 10)'], {}), '((1, 1, 10))\n', (2471, 2483), True, 'import numpy as np\n'), ((2525, 2544), 'numpy.ones', 'np.ones', (['(1, 10, 1)'], {}), '((1, 10, 1))\n', (2532, 2544), True, 'import numpy as np\n'), ((2666, 2676), 'numpy.ones', 'np.ones', (['(1)'], {}), '(1)\n', (2673, 2676), True, 'import numpy as np\n'), ((3602, 3631), 'tempfile.TemporaryDirectory', 'tempfile.TemporaryDirectory', ([], {}), '()\n', (3629, 3631), False, 'import tempfile\n'), ((3955, 3987), 'os.path.join', 'os.path.join', (['tempdir', '"""grid.h5"""'], {}), "(tempdir, 'grid.h5')\n", (3967, 3987), False, 'import os\n'), ((4003, 4026), 'os.path.exists', 'os.path.exists', (['grid_fn'], {}), '(grid_fn)\n', (4017, 4026), False, 'import os\n'), ((4159, 4189), 'numpy.all', 'np.all', (['(mlt_vals == [-1, 0, 1])'], {}), '(mlt_vals == [-1, 0, 1])\n', (4165, 4189), True, 'import numpy as np\n'), ((4205, 4238), 'numpy.all', 'np.all', (['(mlat_vals == [40, 50, 60])'], {}), '(mlat_vals == [40, 50, 60])\n', (4211, 4238), True, 'import numpy as np\n'), ((294, 330), 'numpy.datetime64', 'np.datetime64', (['"""2010-01-01T00:00:00"""'], {}), "('2010-01-01T00:00:00')\n", (307, 330), True, 'import numpy as np\n'), ((2433, 2446), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (2442, 2446), True, 'import numpy as np\n'), ((2494, 2507), 'numpy.arange', 'np.arange', (['(10)'], {}), '(10)\n', (2503, 2507), True, 'import numpy as np\n'), ((4040, 4063), 'h5py.File', 'h5py.File', (['grid_fn', '"""r"""'], {}), "(grid_fn, 'r')\n", (4049, 4063), False, 'import h5py\n'), ((4298, 4315), 'os.path.exists', 'os.path.exists', (['f'], {}), '(f)\n', (4312, 4315), False, 'import os\n'), ((4357, 4376), 'ttools.io.open_tec_file', 'io.open_tec_file', (['f'], {}), '(f)\n', (4373, 4376), False, 'from ttools import create_dataset, config, io, utils\n'), ((333, 347), 'numpy.arange', 'np.arange', (['(100)'], {}), '(100)\n', (342, 347), True, 'import numpy as np\n'), ((350, 372), 'numpy.timedelta64', 'np.timedelta64', (['(5)', '"""m"""'], {}), "(5, 'm')\n", (364, 372), True, 'import numpy as np\n'), ((1252, 1274), 'numpy.timedelta64', 'np.timedelta64', (['(5)', '"""m"""'], {}), "(5, 'm')\n", (1266, 1274), True, 'import numpy as np\n'), ((3804, 3828), 'numpy.timedelta64', 'np.timedelta64', (['(365)', '"""D"""'], {}), "(365, 'D')\n", (3818, 3828), True, 'import numpy as np\n'), ((4439, 4471), 'ttools.utils.datetime64_to_timestamp', 'utils.datetime64_to_timestamp', (['d'], {}), '(d)\n', (4468, 4471), False, 'from ttools import create_dataset, config, io, utils\n'), ((2070, 2097), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-10"""'], {}), "('2012-06-10')\n", (2083, 2097), True, 'import numpy as np\n'), ((2139, 2166), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-11"""'], {}), "('2012-06-11')\n", (2152, 2166), True, 'import numpy as np\n'), ((2304, 2317), 'numpy.isnan', 'np.isnan', (['tec'], {}), '(tec)\n', (2312, 2317), True, 'import numpy as np\n'), ((2356, 2369), 'numpy.isnan', 'np.isnan', (['tec'], {}), '(tec)\n', (2364, 2369), True, 'import numpy as np\n'), ((2212, 2239), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-10"""'], {}), "('2012-06-10')\n", (2225, 2239), True, 'import numpy as np\n'), ((2252, 2279), 'numpy.datetime64', 'np.datetime64', (['"""2012-06-11"""'], {}), "('2012-06-11')\n", (2265, 2279), True, 'import numpy as np\n')]
import typer def name_callback(value: str): if value != "Camila": raise typer.BadParameter("Only Camila is allowed") return value def main(name: str = typer.Option(..., callback=name_callback)): typer.echo(f"Hello {name}") if __name__ == "__main__": typer.run(main)
[ "typer.Option", "typer.run", "typer.echo", "typer.BadParameter" ]
[((171, 212), 'typer.Option', 'typer.Option', (['...'], {'callback': 'name_callback'}), '(..., callback=name_callback)\n', (183, 212), False, 'import typer\n'), ((219, 246), 'typer.echo', 'typer.echo', (['f"""Hello {name}"""'], {}), "(f'Hello {name}')\n", (229, 246), False, 'import typer\n'), ((280, 295), 'typer.run', 'typer.run', (['main'], {}), '(main)\n', (289, 295), False, 'import typer\n'), ((86, 130), 'typer.BadParameter', 'typer.BadParameter', (['"""Only Camila is allowed"""'], {}), "('Only Camila is allowed')\n", (104, 130), False, 'import typer\n')]
from math import sqrt def stream_primes(num): primes = [] candidate = 2 for i in range(num): prime = next_prime(primes, candidate) primes.append(prime) candidate = prime + 1 yield prime def next_prime(primes, candidate): while True: for prime in primes: if candidate % prime == 0: break elif prime > sqrt(candidate): return candidate else: return candidate candidate += 1 for prime in stream_primes(10001): print(prime)
[ "math.sqrt" ]
[((398, 413), 'math.sqrt', 'sqrt', (['candidate'], {}), '(candidate)\n', (402, 413), False, 'from math import sqrt\n')]
from typing import List, Dict import json from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest from gtmcore.environment.packagemanager import PackageManager, PackageResult, PackageMetadata from gtmcore.container import container_for_context from gtmcore.labbook import LabBook from gtmcore.logging import LMLogger logger = LMLogger.get_logger() class CondaPackageManagerBase(PackageManager): """Class to implement the conda package manager """ def __init__(self): # String to be set in child classes indicating which python version you are checking. Typically should be either # python 3.6* or python 2.7* self.python_depends_str = None # String of the name of the conda environment (e.g. py36 or py27, as created via container build) self.python_env = None # Note, currently we hard code channel config. Future changes to support the user specifying channels # will modify this behavior self.channel_priority = ['conda-forge', 'anaconda'] self.request_mgr = ConcurrentRequestManager() def list_versions(self, package_name: str, labbook: LabBook, username: str) -> List[str]: """Method to list all available versions of a package based on the package name Args: package_name: Name of the package to query labbook: Subject LabBook username: username of current user Returns: list(str): Version strings """ # Check for package in channels, picking out version by priority request_list = list() for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{package_name}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) versions = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') break if not versions: raise ValueError(f"Package {package_name} not found in channels {' ,'.join(self.channel_priority)}.") versions.reverse() return versions def list_installed_packages(self, labbook: LabBook, username: str) -> List[Dict[str, str]]: """Method to get a list of all packages that are currently installed Note, this will return results for the computer/container in which it is executed. To get the properties of a LabBook container, a docker exec command would be needed from the Gigantum application container. return format is a list of dicts with the format (name: <package name>, version: <version string>) Returns: list """ project_container = container_for_context(username, labbook=labbook) result = project_container.run_container("conda list --no-pip --json", wait_for_output=True) if result: data = json.loads(result) if data: return [{"name": x['name'], 'version': x['version']} for x in data] else: return [] def validate_packages(self, package_list: List[Dict[str, str]], labbook: LabBook, username: str) \ -> List[PackageResult]: """Method to validate a list of packages, and if needed fill in any missing versions Should check both the provided package name and version. If the version is omitted, it should be generated from the latest version. Args: package_list(list): A list of dictionaries of packages to validate labbook(str): The labbook instance username(str): The username for the logged in user Returns: namedtuple: namedtuple indicating if the package and version are valid """ result = list() # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg['package']}", headers={'Accept': 'application/json'})) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) for package, responses in zip(package_list, responses_per_package): versions = None latest_version = None for response in responses: if response.status_code != 200: continue versions = response.json.get('versions') latest_version = response.json.get('latest_version') break if not versions: # Package is not found result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) continue if package.get('version'): # Package has been set, so validate it if package.get('version') in versions: # Both package name and version are valid result.append(PackageResult(package=package['package'], version=package.get('version'), error=False)) else: # The package version is not in the list, so invalid result.append(PackageResult(package=package['package'], version=package.get('version'), error=True)) else: # You need to look up the latest version since not included result.append(PackageResult(package=package['package'], version=str(latest_version), error=False)) return result def get_packages_metadata(self, package_list: List[str], labbook: LabBook, username: str) -> List[PackageMetadata]: """Method to get package metadata Args: package_list: List of package names labbook(str): The labbook instance username(str): The username for the logged in user Returns: list """ def _extract_metadata(data): """Extraction method to pull out the docs URL and description""" latest_val = data.get('latest_version') description_val = data.get('summary').strip() docs_val = data.get('doc_url') if not docs_val: docs_val = data.get('html_url') return latest_val, description_val, docs_val # Check for package in channels, picking out version by priority request_list = list() for pkg in package_list: for channel in self.channel_priority: request_list.append(ConcurrentRequest(f"https://api.anaconda.org/package/{channel}/{pkg}", headers={'Accept': 'application/json'}, extraction_function=_extract_metadata)) responses = self.request_mgr.resolve_many(request_list) # Repack into groups by package responses_per_package = list(zip(*(iter(responses),) * len(self.channel_priority))) result = list() for package, responses in zip(package_list, responses_per_package): data = None for response in responses: if response.status_code == 200: data = response.extracted_json break if data: latest_version, description, docs_url = data result.append(PackageMetadata(package_manager="conda", package=package, latest_version=latest_version, description=description, docs_url=docs_url)) else: result.append(PackageMetadata(package_manager="conda", package=package, latest_version=None, description=None, docs_url=None)) return result def generate_docker_install_snippet(self, packages: List[Dict[str, str]], single_line: bool = False) -> List[str]: """Method to generate a docker snippet to install 1 or more packages Note: Because conda be so slow to solve environments with conda-forge included, always single line it. Args: packages(list(dict)): A list of package names and versions to install single_line(bool): If true, collapse Returns: list """ package_strings = [f"{x['name']}={x['version']}" for x in packages] if single_line: return [f"RUN conda install -yq {' '.join(package_strings)}"] else: return [f"RUN conda install -yq {' '.join(package_strings)}"] class Conda3PackageManager(CondaPackageManagerBase): """Class to implement the conda3 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 3.6*' self.python_env = 'py36' class Conda2PackageManager(CondaPackageManagerBase): """Class to implement the conda2 package manager """ def __init__(self): super().__init__() self.python_depends_str = 'python 2.7*' self.python_env = 'py27'
[ "json.loads", "gtmcore.http.ConcurrentRequest", "gtmcore.environment.packagemanager.PackageMetadata", "gtmcore.logging.LMLogger.get_logger", "gtmcore.container.container_for_context", "gtmcore.http.ConcurrentRequestManager" ]
[((341, 362), 'gtmcore.logging.LMLogger.get_logger', 'LMLogger.get_logger', ([], {}), '()\n', (360, 362), False, 'from gtmcore.logging import LMLogger\n'), ((1065, 1091), 'gtmcore.http.ConcurrentRequestManager', 'ConcurrentRequestManager', ([], {}), '()\n', (1089, 1091), False, 'from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest\n'), ((2890, 2938), 'gtmcore.container.container_for_context', 'container_for_context', (['username'], {'labbook': 'labbook'}), '(username, labbook=labbook)\n', (2911, 2938), False, 'from gtmcore.container import container_for_context\n'), ((3078, 3096), 'json.loads', 'json.loads', (['result'], {}), '(result)\n', (3088, 3096), False, 'import json\n'), ((1679, 1802), 'gtmcore.http.ConcurrentRequest', 'ConcurrentRequest', (['f"""https://api.anaconda.org/package/{channel}/{package_name}"""'], {'headers': "{'Accept': 'application/json'}"}), "(f'https://api.anaconda.org/package/{channel}/{package_name}',\n headers={'Accept': 'application/json'})\n", (1696, 1802), False, 'from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest\n'), ((4177, 4308), 'gtmcore.http.ConcurrentRequest', 'ConcurrentRequest', (['f"""https://api.anaconda.org/package/{channel}/{pkg[\'package\']}"""'], {'headers': "{'Accept': 'application/json'}"}), '(\n f"https://api.anaconda.org/package/{channel}/{pkg[\'package\']}", headers\n ={\'Accept\': \'application/json\'})\n', (4194, 4308), False, 'from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest\n'), ((7051, 7209), 'gtmcore.http.ConcurrentRequest', 'ConcurrentRequest', (['f"""https://api.anaconda.org/package/{channel}/{pkg}"""'], {'headers': "{'Accept': 'application/json'}", 'extraction_function': '_extract_metadata'}), "(f'https://api.anaconda.org/package/{channel}/{pkg}',\n headers={'Accept': 'application/json'}, extraction_function=\n _extract_metadata)\n", (7068, 7209), False, 'from gtmcore.http import ConcurrentRequestManager, ConcurrentRequest\n'), ((7909, 8046), 'gtmcore.environment.packagemanager.PackageMetadata', 'PackageMetadata', ([], {'package_manager': '"""conda"""', 'package': 'package', 'latest_version': 'latest_version', 'description': 'description', 'docs_url': 'docs_url'}), "(package_manager='conda', package=package, latest_version=\n latest_version, description=description, docs_url=docs_url)\n", (7924, 8046), False, 'from gtmcore.environment.packagemanager import PackageManager, PackageResult, PackageMetadata\n'), ((8137, 8253), 'gtmcore.environment.packagemanager.PackageMetadata', 'PackageMetadata', ([], {'package_manager': '"""conda"""', 'package': 'package', 'latest_version': 'None', 'description': 'None', 'docs_url': 'None'}), "(package_manager='conda', package=package, latest_version=\n None, description=None, docs_url=None)\n", (8152, 8253), False, 'from gtmcore.environment.packagemanager import PackageManager, PackageResult, PackageMetadata\n')]
from tensor.main_module import Tensor import numpy as np def getTensor(value): if type(value) is np.ndarray: return Tensor.numpy2Tensor(value) elif type(value) is Tensor: return value else: raise Exception
[ "tensor.main_module.Tensor.numpy2Tensor" ]
[((129, 155), 'tensor.main_module.Tensor.numpy2Tensor', 'Tensor.numpy2Tensor', (['value'], {}), '(value)\n', (148, 155), False, 'from tensor.main_module import Tensor\n')]
# coding: utf-8 """ TGS API A production scale tool for BYOND server management # noqa: E501 OpenAPI spec version: 9.0.0 Generated by: https://github.com/swagger-api/swagger-codegen.git """ from __future__ import absolute_import import unittest import swagger_client from swagger_client.models.watchdog_status import WatchdogStatus # noqa: E501 from swagger_client.rest import ApiException class TestWatchdogStatus(unittest.TestCase): """WatchdogStatus unit test stubs""" def setUp(self): pass def tearDown(self): pass def testWatchdogStatus(self): """Test WatchdogStatus""" # FIXME: construct object with mandatory attributes with example values # model = swagger_client.models.watchdog_status.WatchdogStatus() # noqa: E501 pass if __name__ == '__main__': unittest.main()
[ "unittest.main" ]
[((862, 877), 'unittest.main', 'unittest.main', ([], {}), '()\n', (875, 877), False, 'import unittest\n')]
from setuptools import find_packages, setup setup( name='src', packages=find_packages(), version='0.1.0', description='Python codebase for the housing classification ML problem', author='Joesan', license='', )
[ "setuptools.find_packages" ]
[((81, 96), 'setuptools.find_packages', 'find_packages', ([], {}), '()\n', (94, 96), False, 'from setuptools import find_packages, setup\n')]
# Copyright (c) OpenMMLab. All rights reserved. import pytest import torch from mmedit.models.backbones.sr_backbones.edvr_net import (EDVRNet, PCDAlignment, TSAFusion) def test_pcd_alignment(): """Test PCDAlignment.""" # cpu pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment input_list = [v for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) # gpu if torch.cuda.is_available(): pcd_alignment = PCDAlignment(mid_channels=4, deform_groups=2) input_list = [] for i in range(3, 0, -1): input_list.append(torch.rand(1, 4, 2**i, 2**i)) pcd_alignment = pcd_alignment.cuda() input_list = [v.cuda() for v in input_list] output = pcd_alignment(input_list, input_list) assert output.shape == (1, 4, 8, 8) with pytest.raises(AssertionError): pcd_alignment(input_list[0:2], input_list) def test_tsa_fusion(): """Test TSAFusion.""" # cpu tsa_fusion = TSAFusion(mid_channels=4, num_frames=5, center_frame_idx=2) input_tensor = torch.rand(1, 5, 4, 8, 8) output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) # gpu if torch.cuda.is_available(): tsa_fusion = tsa_fusion.cuda() input_tensor = input_tensor.cuda() output = tsa_fusion(input_tensor) assert output.shape == (1, 4, 8, 8) def test_edvrnet(): """Test EDVRNet.""" # cpu # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True) input_tensor = torch.rand(1, 5, 3, 8, 8) edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3) edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1]) # gpu if torch.cuda.is_available(): # with tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=True).cuda() input_tensor = torch.rand(1, 5, 3, 8, 8).cuda() edvrnet.init_weights(pretrained=None) output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) # without tsa edvrnet = EDVRNet( 3, 3, mid_channels=8, num_frames=5, deform_groups=2, num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=2, with_tsa=False).cuda() output = edvrnet(input_tensor) assert output.shape == (1, 3, 32, 32) with pytest.raises(AssertionError): # The height and width of inputs should be a multiple of 4 input_tensor = torch.rand(1, 5, 3, 3, 3).cuda() edvrnet(input_tensor) with pytest.raises(TypeError): # pretrained should be str or None edvrnet.init_weights(pretrained=[1])
[ "mmedit.models.backbones.sr_backbones.edvr_net.PCDAlignment", "mmedit.models.backbones.sr_backbones.edvr_net.TSAFusion", "mmedit.models.backbones.sr_backbones.edvr_net.EDVRNet", "torch.cuda.is_available", "pytest.raises", "torch.rand" ]
[((375, 420), 'mmedit.models.backbones.sr_backbones.edvr_net.PCDAlignment', 'PCDAlignment', ([], {'mid_channels': '(4)', 'deform_groups': '(2)'}), '(mid_channels=4, deform_groups=2)\n', (387, 420), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((804, 829), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (827, 829), False, 'import torch\n'), ((1395, 1454), 'mmedit.models.backbones.sr_backbones.edvr_net.TSAFusion', 'TSAFusion', ([], {'mid_channels': '(4)', 'num_frames': '(5)', 'center_frame_idx': '(2)'}), '(mid_channels=4, num_frames=5, center_frame_idx=2)\n', (1404, 1454), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((1474, 1499), 'torch.rand', 'torch.rand', (['(1)', '(5)', '(4)', '(8)', '(8)'], {}), '(1, 5, 4, 8, 8)\n', (1484, 1499), False, 'import torch\n'), ((1597, 1622), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1620, 1622), False, 'import torch\n'), ((1879, 2037), 'mmedit.models.backbones.sr_backbones.edvr_net.EDVRNet', 'EDVRNet', (['(3)', '(3)'], {'mid_channels': '(8)', 'num_frames': '(5)', 'deform_groups': '(2)', 'num_blocks_extraction': '(1)', 'num_blocks_reconstruction': '(1)', 'center_frame_idx': '(2)', 'with_tsa': '(True)'}), '(3, 3, mid_channels=8, num_frames=5, deform_groups=2,\n num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=\n 2, with_tsa=True)\n', (1886, 2037), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((2121, 2146), 'torch.rand', 'torch.rand', (['(1)', '(5)', '(3)', '(8)', '(8)'], {}), '(1, 5, 3, 8, 8)\n', (2131, 2146), False, 'import torch\n'), ((2299, 2458), 'mmedit.models.backbones.sr_backbones.edvr_net.EDVRNet', 'EDVRNet', (['(3)', '(3)'], {'mid_channels': '(8)', 'num_frames': '(5)', 'deform_groups': '(2)', 'num_blocks_extraction': '(1)', 'num_blocks_reconstruction': '(1)', 'center_frame_idx': '(2)', 'with_tsa': '(False)'}), '(3, 3, mid_channels=8, num_frames=5, deform_groups=2,\n num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=\n 2, with_tsa=False)\n', (2306, 2458), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((2930, 2955), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (2953, 2955), False, 'import torch\n'), ((704, 733), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (717, 733), False, 'import pytest\n'), ((855, 900), 'mmedit.models.backbones.sr_backbones.edvr_net.PCDAlignment', 'PCDAlignment', ([], {'mid_channels': '(4)', 'deform_groups': '(2)'}), '(mid_channels=4, deform_groups=2)\n', (867, 900), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((2611, 2640), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (2624, 2640), False, 'import pytest\n'), ((2732, 2757), 'torch.rand', 'torch.rand', (['(1)', '(5)', '(3)', '(3)', '(3)'], {}), '(1, 5, 3, 3, 3)\n', (2742, 2757), False, 'import torch\n'), ((2798, 2822), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (2811, 2822), False, 'import pytest\n'), ((497, 529), 'torch.rand', 'torch.rand', (['(1)', '(4)', '(2 ** i)', '(2 ** i)'], {}), '(1, 4, 2 ** i, 2 ** i)\n', (507, 529), False, 'import torch\n'), ((1230, 1259), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (1243, 1259), False, 'import pytest\n'), ((3855, 3884), 'pytest.raises', 'pytest.raises', (['AssertionError'], {}), '(AssertionError)\n', (3868, 3884), False, 'import pytest\n'), ((4065, 4089), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (4078, 4089), False, 'import pytest\n'), ((989, 1021), 'torch.rand', 'torch.rand', (['(1)', '(4)', '(2 ** i)', '(2 ** i)'], {}), '(1, 4, 2 ** i, 2 ** i)\n', (999, 1021), False, 'import torch\n'), ((2994, 3152), 'mmedit.models.backbones.sr_backbones.edvr_net.EDVRNet', 'EDVRNet', (['(3)', '(3)'], {'mid_channels': '(8)', 'num_frames': '(5)', 'deform_groups': '(2)', 'num_blocks_extraction': '(1)', 'num_blocks_reconstruction': '(1)', 'center_frame_idx': '(2)', 'with_tsa': '(True)'}), '(3, 3, mid_channels=8, num_frames=5, deform_groups=2,\n num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=\n 2, with_tsa=True)\n', (3001, 3152), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((3283, 3308), 'torch.rand', 'torch.rand', (['(1)', '(5)', '(3)', '(8)', '(8)'], {}), '(1, 5, 3, 8, 8)\n', (3293, 3308), False, 'import torch\n'), ((3488, 3647), 'mmedit.models.backbones.sr_backbones.edvr_net.EDVRNet', 'EDVRNet', (['(3)', '(3)'], {'mid_channels': '(8)', 'num_frames': '(5)', 'deform_groups': '(2)', 'num_blocks_extraction': '(1)', 'num_blocks_reconstruction': '(1)', 'center_frame_idx': '(2)', 'with_tsa': '(False)'}), '(3, 3, mid_channels=8, num_frames=5, deform_groups=2,\n num_blocks_extraction=1, num_blocks_reconstruction=1, center_frame_idx=\n 2, with_tsa=False)\n', (3495, 3647), False, 'from mmedit.models.backbones.sr_backbones.edvr_net import EDVRNet, PCDAlignment, TSAFusion\n'), ((3984, 4009), 'torch.rand', 'torch.rand', (['(1)', '(5)', '(3)', '(3)', '(3)'], {}), '(1, 5, 3, 3, 3)\n', (3994, 4009), False, 'import torch\n')]
import os from shutil import rmtree from tempfile import mkdtemp from unittest import TestCase from enjoliver import generator class GenerateGroupTestCase(TestCase): api_uri = None test_matchbox_path = None test_resources_path = None tests_path = None @classmethod def setUpClass(cls): cls.tests_path = mkdtemp(dir='/tmp') cls.test_matchbox_path = os.path.join(cls.tests_path, 'test_matchbox') cls.test_resources_path = os.path.join(cls.tests_path, 'test_resources') os.mkdir(cls.test_matchbox_path) os.mkdir(cls.test_resources_path) os.mkdir(os.path.join(cls.test_matchbox_path, 'groups')) cls.api_uri = "http://127.0.0.1:5000" @classmethod def tearDownClass(cls): rmtree(cls.tests_path) class TestGenerateGroups(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", matchbox_path=cls.test_matchbox_path ) cls.gen.profiles_path = cls.test_resources_path def test_instantiate_generate_group_with_incorrect_parameters(self): with self.assertRaises(TypeError): generator.GenerateGroup() def test_instantiate_generate_group_with_non_existing_matchbox_path(self): with self.assertRaises(OSError): generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path='/foo/bar' ) def test_instantiate_generate_group(self): sandbox = mkdtemp(dir='/tmp') os.mkdir(os.path.join(sandbox, 'groups')) generator.GenerateGroup( api_uri='foobar', _id='foo', name='foo-bar', profile='foo-bar-baz', matchbox_path=sandbox ) rmtree(sandbox) def test_00_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': '', 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': []} self.gen._metadata() self.assertEqual(expect['api_uri'], self.gen._target_data["metadata"]["api_uri"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': '%s' % self.gen.api_uri, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy' } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", matchbox_path=self.test_matchbox_path ) result = new.generate() self.assertEqual(expect["profile"], result["profile"]) self.assertEqual(expect["id"], result["id"]) self.assertEqual(expect["name"], result["name"]) self.assertEqual(expect["metadata"]["api_uri"], result["metadata"]["api_uri"]) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) self.assertFalse(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) new = generator.GenerateGroup( api_uri=self.api_uri, _id=_id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"one": "selector"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorLower(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsSelectorUpper(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, matchbox_path=cls.test_matchbox_path ) def test_00_ip_address(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = { 'api_uri': "%s" % self.gen.api_uri, 'ssh_authorized_keys': [] } self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) new.dump() self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) class TestGenerateGroupsExtraMetadata(GenerateGroupTestCase): @classmethod def setUpClass(cls): super().setUpClass() os.environ["MATCHBOX_URI"] = "http://127.0.0.1:8080" os.environ["API_URI"] = "http://127.0.0.1:5000" cls.gen = generator.GenerateGroup( api_uri=cls.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="TestGenerateProfiles", selector={"mac": "08:00:27:37:28:2E"}, metadata={"etcd_initial_cluster": "static0=http://192.168.1.1:2379", "api_seed": "http://192.168.1.2:5000"}, matchbox_path=cls.test_matchbox_path ) def test_00_api_uri(self): ip = self.gen.api_uri self.assertIsNotNone(ip) def test_01_metadata(self): expect = {'etcd_initial_cluster': 'static0=http://192.168.1.1:2379', 'api_uri': "%s" % self.gen.api_uri, 'api_seed': 'http://192.168.1.2:5000', 'ssh_authorized_keys': []} self.gen._metadata() self.gen._target_data["metadata"]['ssh_authorized_keys'] = [] self.assertEqual(expect, self.gen._target_data["metadata"]) def test_02_selector(self): expect = {'mac': '08:00:27:37:28:2e'} self.gen._selector() self.assertEqual(expect, self.gen._target_data["selector"]) def test_990_generate(self): expect = { 'profile': 'etcd-proxy.yaml', 'metadata': { 'api_uri': "%s" % self.gen.api_uri, 'selector': {'mac': '08:00:27:37:28:2e'}, 'ssh_authorized_keys': [] }, 'id': 'etcd-proxy', 'name': 'etcd-proxy', 'selector': {'mac': '08:00:27:37:28:2e'} } new = generator.GenerateGroup( api_uri=self.api_uri, _id="etcd-proxy", name="etcd-proxy", profile="etcd-proxy.yaml", selector={"mac": "08:00:27:37:28:2e"}, matchbox_path=self.test_matchbox_path ) result = new.generate() result["metadata"]["ssh_authorized_keys"] = [] self.assertEqual(expect, result) def test_991_dump(self): _id = "etcd-test-%s" % self.test_991_dump.__name__ new = generator.GenerateGroup( api_uri=self.api_uri, _id="%s" % _id, name="etcd-test", profile="etcd-test.yaml", matchbox_path=self.test_matchbox_path, selector={"mac": "08:00:27:37:28:2e"} ) self.assertTrue(new.dump()) self.assertTrue(os.path.isfile("%s/groups/%s.json" % (self.test_matchbox_path, _id))) os.remove("%s/groups/%s.json" % (self.test_matchbox_path, _id)) self.assertTrue(new.dump()) for i in range(10): self.assertFalse(new.dump()) new.api_uri = "http://google.com" self.assertTrue(new.dump()) self.assertFalse(new.dump())
[ "os.path.join", "os.path.isfile", "tempfile.mkdtemp", "os.mkdir", "enjoliver.generator.GenerateGroup", "shutil.rmtree", "os.remove" ]
[((339, 358), 'tempfile.mkdtemp', 'mkdtemp', ([], {'dir': '"""/tmp"""'}), "(dir='/tmp')\n", (346, 358), False, 'from tempfile import mkdtemp\n'), ((392, 437), 'os.path.join', 'os.path.join', (['cls.tests_path', '"""test_matchbox"""'], {}), "(cls.tests_path, 'test_matchbox')\n", (404, 437), False, 'import os\n'), ((472, 518), 'os.path.join', 'os.path.join', (['cls.tests_path', '"""test_resources"""'], {}), "(cls.tests_path, 'test_resources')\n", (484, 518), False, 'import os\n'), ((528, 560), 'os.mkdir', 'os.mkdir', (['cls.test_matchbox_path'], {}), '(cls.test_matchbox_path)\n', (536, 560), False, 'import os\n'), ((569, 602), 'os.mkdir', 'os.mkdir', (['cls.test_resources_path'], {}), '(cls.test_resources_path)\n', (577, 602), False, 'import os\n'), ((769, 791), 'shutil.rmtree', 'rmtree', (['cls.tests_path'], {}), '(cls.tests_path)\n', (775, 791), False, 'from shutil import rmtree\n'), ((932, 1093), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'cls.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""TestGenerateProfiles"""', 'matchbox_path': 'cls.test_matchbox_path'}), "(api_uri=cls.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='TestGenerateProfiles', matchbox_path=cls.\n test_matchbox_path)\n", (955, 1093), False, 'from enjoliver import generator\n'), ((1776, 1795), 'tempfile.mkdtemp', 'mkdtemp', ([], {'dir': '"""/tmp"""'}), "(dir='/tmp')\n", (1783, 1795), False, 'from tempfile import mkdtemp\n'), ((1855, 1973), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': '"""foobar"""', '_id': '"""foo"""', 'name': '"""foo-bar"""', 'profile': '"""foo-bar-baz"""', 'matchbox_path': 'sandbox'}), "(api_uri='foobar', _id='foo', name='foo-bar',\n profile='foo-bar-baz', matchbox_path=sandbox)\n", (1878, 1973), False, 'from enjoliver import generator\n'), ((2048, 2063), 'shutil.rmtree', 'rmtree', (['sandbox'], {}), '(sandbox)\n', (2054, 2063), False, 'from shutil import rmtree\n'), ((2772, 2930), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""etcd-proxy.yaml"""', 'matchbox_path': 'self.test_matchbox_path'}), "(api_uri=self.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='etcd-proxy.yaml', matchbox_path=self.\n test_matchbox_path)\n", (2795, 2930), False, 'from enjoliver import generator\n'), ((3386, 3527), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '_id', 'name': '"""etcd-test"""', 'profile': '"""etcd-test.yaml"""', 'matchbox_path': 'self.test_matchbox_path'}), "(api_uri=self.api_uri, _id=_id, name='etcd-test',\n profile='etcd-test.yaml', matchbox_path=self.test_matchbox_path)\n", (3409, 3527), False, 'from enjoliver import generator\n'), ((3871, 4046), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '_id', 'name': '"""etcd-test"""', 'profile': '"""etcd-test.yaml"""', 'matchbox_path': 'self.test_matchbox_path', 'selector': "{'one': 'selector'}"}), "(api_uri=self.api_uri, _id=_id, name='etcd-test',\n profile='etcd-test.yaml', matchbox_path=self.test_matchbox_path,\n selector={'one': 'selector'})\n", (3894, 4046), False, 'from enjoliver import generator\n'), ((4259, 4322), 'os.remove', 'os.remove', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (4268, 4322), False, 'import os\n'), ((4593, 4792), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'cls.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""TestGenerateProfiles"""', 'selector': "{'mac': '08:00:27:37:28:2e'}", 'matchbox_path': 'cls.test_matchbox_path'}), "(api_uri=cls.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='TestGenerateProfiles', selector={'mac':\n '08:00:27:37:28:2e'}, matchbox_path=cls.test_matchbox_path)\n", (4616, 4792), False, 'from enjoliver import generator\n'), ((5876, 6072), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""etcd-proxy.yaml"""', 'selector': "{'mac': '08:00:27:37:28:2e'}", 'matchbox_path': 'self.test_matchbox_path'}), "(api_uri=self.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='etcd-proxy.yaml', selector={'mac':\n '08:00:27:37:28:2e'}, matchbox_path=self.test_matchbox_path)\n", (5899, 6072), False, 'from enjoliver import generator\n'), ((6344, 6537), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': "('%s' % _id)", 'name': '"""etcd-test"""', 'profile': '"""etcd-test.yaml"""', 'matchbox_path': 'self.test_matchbox_path', 'selector': "{'mac': '08:00:27:37:28:2e'}"}), "(api_uri=self.api_uri, _id='%s' % _id, name=\n 'etcd-test', profile='etcd-test.yaml', matchbox_path=self.\n test_matchbox_path, selector={'mac': '08:00:27:37:28:2e'})\n", (6367, 6537), False, 'from enjoliver import generator\n'), ((6724, 6787), 'os.remove', 'os.remove', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (6733, 6787), False, 'import os\n'), ((7058, 7257), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'cls.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""TestGenerateProfiles"""', 'selector': "{'mac': '08:00:27:37:28:2E'}", 'matchbox_path': 'cls.test_matchbox_path'}), "(api_uri=cls.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='TestGenerateProfiles', selector={'mac':\n '08:00:27:37:28:2E'}, matchbox_path=cls.test_matchbox_path)\n", (7081, 7257), False, 'from enjoliver import generator\n'), ((8351, 8547), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""etcd-proxy.yaml"""', 'selector': "{'mac': '08:00:27:37:28:2e'}", 'matchbox_path': 'self.test_matchbox_path'}), "(api_uri=self.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='etcd-proxy.yaml', selector={'mac':\n '08:00:27:37:28:2e'}, matchbox_path=self.test_matchbox_path)\n", (8374, 8547), False, 'from enjoliver import generator\n'), ((8840, 9033), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': "('%s' % _id)", 'name': '"""etcd-test"""', 'profile': '"""etcd-test.yaml"""', 'matchbox_path': 'self.test_matchbox_path', 'selector': "{'mac': '08:00:27:37:28:2e'}"}), "(api_uri=self.api_uri, _id='%s' % _id, name=\n 'etcd-test', profile='etcd-test.yaml', matchbox_path=self.\n test_matchbox_path, selector={'mac': '08:00:27:37:28:2e'})\n", (8863, 9033), False, 'from enjoliver import generator\n'), ((9203, 9266), 'os.remove', 'os.remove', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (9212, 9266), False, 'import os\n'), ((9537, 9853), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'cls.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""TestGenerateProfiles"""', 'selector': "{'mac': '08:00:27:37:28:2E'}", 'metadata': "{'etcd_initial_cluster': 'static0=http://192.168.1.1:2379', 'api_seed':\n 'http://192.168.1.2:5000'}", 'matchbox_path': 'cls.test_matchbox_path'}), "(api_uri=cls.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='TestGenerateProfiles', selector={'mac':\n '08:00:27:37:28:2E'}, metadata={'etcd_initial_cluster':\n 'static0=http://192.168.1.1:2379', 'api_seed':\n 'http://192.168.1.2:5000'}, matchbox_path=cls.test_matchbox_path)\n", (9560, 9853), False, 'from enjoliver import generator\n'), ((11088, 11284), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': '"""etcd-proxy"""', 'name': '"""etcd-proxy"""', 'profile': '"""etcd-proxy.yaml"""', 'selector': "{'mac': '08:00:27:37:28:2e'}", 'matchbox_path': 'self.test_matchbox_path'}), "(api_uri=self.api_uri, _id='etcd-proxy', name=\n 'etcd-proxy', profile='etcd-proxy.yaml', selector={'mac':\n '08:00:27:37:28:2e'}, matchbox_path=self.test_matchbox_path)\n", (11111, 11284), False, 'from enjoliver import generator\n'), ((11565, 11758), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': 'self.api_uri', '_id': "('%s' % _id)", 'name': '"""etcd-test"""', 'profile': '"""etcd-test.yaml"""', 'matchbox_path': 'self.test_matchbox_path', 'selector': "{'mac': '08:00:27:37:28:2e'}"}), "(api_uri=self.api_uri, _id='%s' % _id, name=\n 'etcd-test', profile='etcd-test.yaml', matchbox_path=self.\n test_matchbox_path, selector={'mac': '08:00:27:37:28:2e'})\n", (11588, 11758), False, 'from enjoliver import generator\n'), ((11945, 12008), 'os.remove', 'os.remove', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (11954, 12008), False, 'import os\n'), ((620, 666), 'os.path.join', 'os.path.join', (['cls.test_matchbox_path', '"""groups"""'], {}), "(cls.test_matchbox_path, 'groups')\n", (632, 666), False, 'import os\n'), ((1339, 1364), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {}), '()\n', (1362, 1364), False, 'from enjoliver import generator\n'), ((1498, 1619), 'enjoliver.generator.GenerateGroup', 'generator.GenerateGroup', ([], {'api_uri': '"""foobar"""', '_id': '"""foo"""', 'name': '"""foo-bar"""', 'profile': '"""foo-bar-baz"""', 'matchbox_path': '"""/foo/bar"""'}), "(api_uri='foobar', _id='foo', name='foo-bar',\n profile='foo-bar-baz', matchbox_path='/foo/bar')\n", (1521, 1619), False, 'from enjoliver import generator\n'), ((1813, 1844), 'os.path.join', 'os.path.join', (['sandbox', '"""groups"""'], {}), "(sandbox, 'groups')\n", (1825, 1844), False, 'import os\n'), ((3654, 3722), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (3668, 3722), False, 'import os\n'), ((3786, 3854), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (3800, 3854), False, 'import os\n'), ((4181, 4249), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (4195, 4249), False, 'import os\n'), ((6646, 6714), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (6660, 6714), False, 'import os\n'), ((9125, 9193), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (9139, 9193), False, 'import os\n'), ((11867, 11935), 'os.path.isfile', 'os.path.isfile', (["('%s/groups/%s.json' % (self.test_matchbox_path, _id))"], {}), "('%s/groups/%s.json' % (self.test_matchbox_path, _id))\n", (11881, 11935), False, 'import os\n')]
# Enter your code here. Read input from STDIN. Print output to STDOUT import calendar mm,dd,yyyy = map(int,input().split()) day = ["MONDAY","TUESDAY","WEDNESDAY","THURSDAY","FRIDAY","SATURDAY","SUNDAY"] val = int (calendar.weekday(yyyy,mm,dd)) print(day[val])
[ "calendar.weekday" ]
[((217, 247), 'calendar.weekday', 'calendar.weekday', (['yyyy', 'mm', 'dd'], {}), '(yyyy, mm, dd)\n', (233, 247), False, 'import calendar\n')]
"""Defines the models for trigger rules and events""" from __future__ import unicode_literals import django.contrib.postgres.fields from django.db import models, transaction from django.utils.timezone import now class TriggerEventManager(models.Manager): """Provides additional methods for handling trigger events """ def create_trigger_event(self, trigger_type, rule, description, occurred): """Creates a new trigger event and returns the event model. The given rule model, if not None, must have already been saved in the database (it must have an ID). The returned trigger event model will be saved in the database. :param trigger_type: The type of the trigger that occurred :type trigger_type: str :param rule: The rule that triggered the event, possibly None :type rule: :class:`trigger.models.TriggerRule` :param description: The JSON description of the event as a dict :type description: dict :param occurred: When the event occurred :type occurred: :class:`datetime.datetime` :returns: The new trigger event :rtype: :class:`trigger.models.TriggerEvent` """ if trigger_type is None: raise Exception('Trigger event must have a type') if description is None: raise Exception('Trigger event must have a JSON description') if occurred is None: raise Exception('Trigger event must have a timestamp') event = TriggerEvent() event.type = trigger_type event.rule = rule event.description = description event.occurred = occurred event.save() return event class TriggerEvent(models.Model): """Represents an event where a trigger occurred :keyword type: The type of the trigger that occurred :type type: :class:`django.db.models.CharField` :keyword rule: The rule that triggered this event, possibly None (some events are not triggered by rules) :type rule: :class:`django.db.models.ForeignKey` :keyword description: JSON description of the event. This will contain fields specific to the type of the trigger that occurred. :type description: :class:`django.contrib.postgres.fields.JSONField` :keyword occurred: When the event occurred :type occurred: :class:`django.db.models.DateTimeField` """ type = models.CharField(db_index=True, max_length=50) rule = models.ForeignKey('trigger.TriggerRule', blank=True, null=True, on_delete=models.PROTECT) description = django.contrib.postgres.fields.JSONField(default=dict) occurred = models.DateTimeField(db_index=True) objects = TriggerEventManager() class Meta(object): """meta information for the db""" db_table = 'trigger_event' class TriggerRuleManager(models.Manager): """Provides additional methods for handling trigger rules """ @transaction.atomic def archive_trigger_rule(self, trigger_rule_id): """Archives the trigger rule (will no longer be active) with the given ID :param trigger_rule_id: The ID of the trigger rule to archive :type trigger_rule_id: int """ rule = TriggerRule.objects.select_for_update().get(pk=trigger_rule_id) rule.is_active = False rule.archived = now() rule.save() def create_trigger_rule(self, trigger_type, configuration, name='', is_active=True): """Creates a new trigger rule and returns the rule model. The returned trigger rule model will be saved in the database. :param trigger_type: The type of this trigger rule :type trigger_type: str :param configuration: The rule configuration :type configuration: :class:`trigger.configuration.TriggerRuleConfiguration` :param name: An optional name for the trigger :type name: str :param is_active: Whether or not the trigger should be active :type is_active: bool :returns: The new trigger rule :rtype: :class:`trigger.models.TriggerRule` :raises trigger.configuration.exceptions.InvalidTriggerRule: If the configuration is invalid """ if not trigger_type: raise Exception('Trigger rule must have a type') if not configuration: raise Exception('Trigger rule must have a configuration') configuration.validate() rule = TriggerRule() rule.type = trigger_type rule.name = name rule.is_active = is_active rule.configuration = configuration.get_dict() rule.save() return rule def get_by_natural_key(self, name): """Django method to retrieve a trigger rule for the given natural key. NOTE: All trigger rule names are NOT unique. This is implemented to allow the loading of defined system trigger rules which do have unique names. :param name: The name of the trigger rule :type name: str :returns: The trigger rule defined by the natural key :rtype: :class:`error.models.Error` """ return self.get(name=name) class TriggerRule(models.Model): """Represents a rule that, when triggered, creates a trigger event :keyword type: The type of the trigger for the rule :type type: :class:`django.db.models.CharField` :keyword name: The identifying name of the trigger rule used by clients for queries :type name: :class:`django.db.models.CharField` :keyword configuration: JSON configuration for the rule. This will contain fields specific to the type of the trigger. :type configuration: :class:`django.contrib.postgres.fields.JSONField` :keyword is_active: Whether the rule is still active (false once rule is archived) :type is_active: :class:`django.db.models.BooleanField` :keyword created: When the rule was created :type created: :class:`django.db.models.DateTimeField` :keyword archived: When the rule was archived (no longer active) :type archived: :class:`django.db.models.DateTimeField` :keyword last_modified: When the rule was last modified :type last_modified: :class:`django.db.models.DateTimeField` """ type = models.CharField(max_length=50, db_index=True) name = models.CharField(blank=True, max_length=50) configuration = django.contrib.postgres.fields.JSONField(default=dict) is_active = models.BooleanField(default=True, db_index=True) created = models.DateTimeField(auto_now_add=True) archived = models.DateTimeField(blank=True, null=True) last_modified = models.DateTimeField(auto_now=True) objects = TriggerRuleManager() def get_configuration(self): """Returns the configuration for this trigger rule :returns: The configuration for this trigger rule :rtype: :class:`trigger.configuration.trigger_rule.TriggerRuleConfiguration` :raises :class:`trigger.configuration.exceptions.InvalidTriggerType`: If the trigger type is invalid """ from trigger.handler import get_trigger_rule_handler handler = get_trigger_rule_handler(self.type) return handler.create_configuration(self.configuration) def natural_key(self): """Django method to define the natural key for a trigger rule as the name :returns: A tuple representing the natural key :rtype: tuple(str,) """ return (self.name,) class Meta(object): """meta information for the db""" db_table = 'trigger_rule'
[ "django.db.models.ForeignKey", "django.db.models.BooleanField", "django.utils.timezone.now", "trigger.handler.get_trigger_rule_handler", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((2395, 2441), 'django.db.models.CharField', 'models.CharField', ([], {'db_index': '(True)', 'max_length': '(50)'}), '(db_index=True, max_length=50)\n', (2411, 2441), False, 'from django.db import models, transaction\n'), ((2453, 2547), 'django.db.models.ForeignKey', 'models.ForeignKey', (['"""trigger.TriggerRule"""'], {'blank': '(True)', 'null': '(True)', 'on_delete': 'models.PROTECT'}), "('trigger.TriggerRule', blank=True, null=True, on_delete=\n models.PROTECT)\n", (2470, 2547), False, 'from django.db import models, transaction\n'), ((2631, 2666), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'db_index': '(True)'}), '(db_index=True)\n', (2651, 2666), False, 'from django.db import models, transaction\n'), ((6235, 6281), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'db_index': '(True)'}), '(max_length=50, db_index=True)\n', (6251, 6281), False, 'from django.db import models, transaction\n'), ((6293, 6336), 'django.db.models.CharField', 'models.CharField', ([], {'blank': '(True)', 'max_length': '(50)'}), '(blank=True, max_length=50)\n', (6309, 6336), False, 'from django.db import models, transaction\n'), ((6429, 6477), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(True)', 'db_index': '(True)'}), '(default=True, db_index=True)\n', (6448, 6477), False, 'from django.db import models, transaction\n'), ((6493, 6532), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (6513, 6532), False, 'from django.db import models, transaction\n'), ((6548, 6591), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'blank': '(True)', 'null': '(True)'}), '(blank=True, null=True)\n', (6568, 6591), False, 'from django.db import models, transaction\n'), ((6612, 6647), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (6632, 6647), False, 'from django.db import models, transaction\n'), ((3333, 3338), 'django.utils.timezone.now', 'now', ([], {}), '()\n', (3336, 3338), False, 'from django.utils.timezone import now\n'), ((7124, 7159), 'trigger.handler.get_trigger_rule_handler', 'get_trigger_rule_handler', (['self.type'], {}), '(self.type)\n', (7148, 7159), False, 'from trigger.handler import get_trigger_rule_handler\n')]
# Copyright 2018 Flight Lab authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Library for components related to running apps.""" import subprocess import threading from components import base from protos import controller_pb2 from utils import app class AppComponent(base.Component): """Component to run command-line based app on any platform. This component can start app, restart app upon crash, and stop app. Events: "status_changed": when status of the app is changed. Args: app_component: instance of this class. """ def __init__(self, proto, *args, **kwargs): """Initializes the component. Args: proto: flightlab.App proto defining app details and options. """ super(AppComponent, self).__init__(proto, *args, **kwargs) self._app = app.Application( name=self.name, bin_path=self.settings.executable_path, arguments=(list(self.settings.arguments) if self.settings.arguments else []), working_dir=self.settings.working_dir, restart_on_crash=(self.settings.restart_on_crash if self.settings.restart_on_crash else False), env=(self.settings.env if self.settings.env else None)) self._app.on('started', self._on_app_started) self._app.on('stopped', self._on_app_stopped) self._monitor = threading.Timer(1, self._check_status) self._monitor.start() def close(self): if self._monitor: self._monitor.cancel() self._monitor = None self._app.stop() def _check_status(self): if self._app.has_running_instance(): component_status = controller_pb2.Component.ON app_status = controller_pb2.App.RUNNING else: component_status = controller_pb2.Component.OFF app_status = controller_pb2.App.NOT_RUNNING if (self.proto.status != component_status or self.settings.status != app_status): self.proto.status = component_status self.settings.status = app_status self.emit('status_changed', self) def _start(self): self.logger.info('[App - {0}] Starting...'.format(self.name)) self._app.start() def _stop(self): self.logger.info('[App - {0}] Stopping...'.format(self.name)) self._app.stop() def _restart(self): self._stop() self._start() def _on_app_started(self, app): self.logger.info('[App - {0}] Started.'.format(self.name)) self.settings.status = controller_pb2.App.RUNNING self.proto.status = controller_pb2.Component.ON self.emit('status_changed', self) def _on_app_stopped(self, app): self.logger.info('[App - {0}] Stopped.'.format(self.name)) self.settings.status = controller_pb2.App.NOT_RUNNING self.proto.status = controller_pb2.Component.OFF self.emit('status_changed', self) class CommandLineComponent(base.Component): """Component to run command-line based apps on any platform.""" def _start(self): for cmd in self.settings.when_on: self.logger.info('[{0}] Running: {1}'.format(self.name, cmd)) ret = subprocess.call(cmd) self.logger.info('[{0}] Done (return code={1})'.format(self.name, ret)) def _stop(self): for cmd in self.settings.when_off: self.logger.info('[{0}] Running: {1}'.format(self.name, cmd)) ret = subprocess.call(cmd) self.logger.info('[{0}] Done (return code={1})'.format(self.name, ret))
[ "threading.Timer", "subprocess.call" ]
[((1865, 1903), 'threading.Timer', 'threading.Timer', (['(1)', 'self._check_status'], {}), '(1, self._check_status)\n', (1880, 1903), False, 'import threading\n'), ((3563, 3583), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (3578, 3583), False, 'import subprocess\n'), ((3801, 3821), 'subprocess.call', 'subprocess.call', (['cmd'], {}), '(cmd)\n', (3816, 3821), False, 'import subprocess\n')]
"""Randomize the minitaur_gym_alternating_leg_env when reset() is called. The randomization include swing_offset, extension_offset of all legs that mimics bent legs, desired_pitch from user input, battery voltage and motor damping. """ import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(os.path.dirname(currentdir)) parentdir = os.path.dirname(os.path.dirname(parentdir)) os.sys.path.insert(0, parentdir) import numpy as np import tf.compat.v1 as tf from pybullet_envs.minitaur.envs import env_randomizer_base # Absolute range. NUM_LEGS = 4 BATTERY_VOLTAGE_RANGE = (14.8, 16.8) MOTOR_VISCOUS_DAMPING_RANGE = (0, 0.01) class MinitaurAlternatingLegsEnvRandomizer(env_randomizer_base.EnvRandomizerBase): """A randomizer that changes the minitaur_gym_alternating_leg_env.""" def __init__(self, perturb_swing_bound=0.1, perturb_extension_bound=0.1, perturb_desired_pitch_bound=0.01): super(MinitaurAlternatingLegsEnvRandomizer, self).__init__() self.perturb_swing_bound = perturb_swing_bound self.perturb_extension_bound = perturb_extension_bound self.perturb_desired_pitch_bound = perturb_desired_pitch_bound def randomize_env(self, env): perturb_magnitude = np.random.uniform(low=-self.perturb_swing_bound, high=self.perturb_swing_bound, size=NUM_LEGS) env.set_swing_offset(perturb_magnitude) tf.logging.info("swing_offset: {}".format(perturb_magnitude)) perturb_magnitude = np.random.uniform(low=-self.perturb_extension_bound, high=self.perturb_extension_bound, size=NUM_LEGS) env.set_extension_offset(perturb_magnitude) tf.logging.info("extension_offset: {}".format(perturb_magnitude)) perturb_magnitude = np.random.uniform(low=-self.perturb_desired_pitch_bound, high=self.perturb_desired_pitch_bound) env.set_desired_pitch(perturb_magnitude) tf.logging.info("desired_pitch: {}".format(perturb_magnitude)) randomized_battery_voltage = np.random.uniform(BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1]) env.minitaur.SetBatteryVoltage(randomized_battery_voltage) tf.logging.info("battery_voltage: {}".format(randomized_battery_voltage)) randomized_motor_damping = np.random.uniform(MOTOR_VISCOUS_DAMPING_RANGE[0], MOTOR_VISCOUS_DAMPING_RANGE[1]) env.minitaur.SetMotorViscousDamping(randomized_motor_damping) tf.logging.info("motor_damping: {}".format(randomized_motor_damping))
[ "os.path.dirname", "inspect.currentframe", "os.sys.path.insert", "numpy.random.uniform" ]
[((457, 489), 'os.sys.path.insert', 'os.sys.path.insert', (['(0)', 'parentdir'], {}), '(0, parentdir)\n', (475, 489), False, 'import os, inspect\n'), ((372, 399), 'os.path.dirname', 'os.path.dirname', (['currentdir'], {}), '(currentdir)\n', (387, 399), False, 'import os, inspect\n'), ((429, 455), 'os.path.dirname', 'os.path.dirname', (['parentdir'], {}), '(parentdir)\n', (444, 455), False, 'import os, inspect\n'), ((1317, 1416), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.perturb_swing_bound)', 'high': 'self.perturb_swing_bound', 'size': 'NUM_LEGS'}), '(low=-self.perturb_swing_bound, high=self.\n perturb_swing_bound, size=NUM_LEGS)\n', (1334, 1416), True, 'import numpy as np\n'), ((1631, 1738), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.perturb_extension_bound)', 'high': 'self.perturb_extension_bound', 'size': 'NUM_LEGS'}), '(low=-self.perturb_extension_bound, high=self.\n perturb_extension_bound, size=NUM_LEGS)\n', (1648, 1738), True, 'import numpy as np\n'), ((1961, 2061), 'numpy.random.uniform', 'np.random.uniform', ([], {'low': '(-self.perturb_desired_pitch_bound)', 'high': 'self.perturb_desired_pitch_bound'}), '(low=-self.perturb_desired_pitch_bound, high=self.\n perturb_desired_pitch_bound)\n', (1978, 2061), True, 'import numpy as np\n'), ((2245, 2314), 'numpy.random.uniform', 'np.random.uniform', (['BATTERY_VOLTAGE_RANGE[0]', 'BATTERY_VOLTAGE_RANGE[1]'], {}), '(BATTERY_VOLTAGE_RANGE[0], BATTERY_VOLTAGE_RANGE[1])\n', (2262, 2314), True, 'import numpy as np\n'), ((2539, 2624), 'numpy.random.uniform', 'np.random.uniform', (['MOTOR_VISCOUS_DAMPING_RANGE[0]', 'MOTOR_VISCOUS_DAMPING_RANGE[1]'], {}), '(MOTOR_VISCOUS_DAMPING_RANGE[0],\n MOTOR_VISCOUS_DAMPING_RANGE[1])\n', (2556, 2624), True, 'import numpy as np\n'), ((318, 340), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (338, 340), False, 'import os, inspect\n')]
""" The TensorProductState class and supporting functionality. """ #*************************************************************************************************** # Copyright 2015, 2019 National Technology & Engineering Solutions of Sandia, LLC (NTESS). # Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains certain rights # in this software. # Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except # in compliance with the License. You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 or in the LICENSE file in the root pyGSTi directory. #*************************************************************************************************** import functools as _functools import itertools as _itertools import numpy as _np from pygsti.modelmembers.states.state import State as _State from pygsti.modelmembers import modelmember as _modelmember, term as _term from pygsti.baseobjs import statespace as _statespace from pygsti.tools import listtools as _lt from pygsti.tools import matrixtools as _mt class TensorProductState(_State): """ A state vector that is a tensor-product of other state vectors. Parameters ---------- factors : list of States a list of the component states to take the tensor product of. state_space : StateSpace, optional The state space for this operation. """ def __init__(self, factors, state_space): assert(len(factors) > 0), "Must have at least one factor!" self.factors = factors # do *not* copy - needs to reference common objects evotype = self.factors[0]._evotype rep = evotype.create_tensorproduct_state_rep([f._rep for f in factors], state_space) _State.__init__(self, rep, evotype) self.init_gpindices() # initialize our gpindices based on sub-members self._update_rep() # initializes rep data #Note: no to_memoized_dict needed, as ModelMember version does all we need. @classmethod def _from_memoized_dict(cls, mm_dict, serial_memo): state_space = _statespace.StateSpace.from_nice_serialization(mm_dict['state_space']) factors = [serial_memo[i] for i in mm_dict['submembers']] return cls(factors, state_space) def submembers(self): """ Get the ModelMember-derived objects contained in this one. Returns ------- list """ return self.factors # factor POVM object def _update_rep(self): self._rep.reps_have_changed() @property def parameter_labels(self): """ An array of labels (usually strings) describing this model member's parameters. """ vl = _np.empty(self.num_params, dtype=object) for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): vl[factor_local_inds] = factor_state.parameter_labels return vl def to_dense(self, on_space='minimal', scratch=None): """ Return this state vector as a (dense) numpy array. The memory in `scratch` maybe used when it is not-None. Parameters ---------- on_space : {'minimal', 'Hilbert', 'HilbertSchmidt'} The space that the returned dense operation acts upon. For unitary matrices and bra/ket vectors, use `'Hilbert'`. For superoperator matrices and super-bra/super-ket vectors use `'HilbertSchmidt'`. `'minimal'` means that `'Hilbert'` is used if possible given this operator's evolution type, and otherwise `'HilbertSchmidt'` is used. scratch : numpy.ndarray, optional scratch space available for use. Returns ------- numpy.ndarray """ return self._rep.to_dense(on_space) def taylor_order_terms(self, order, max_polynomial_vars=100, return_coeff_polys=False): """ Get the `order`-th order Taylor-expansion terms of this state vector. This function either constructs or returns a cached list of the terms at the given order. Each term is "rank-1", meaning that it is a state preparation followed by or POVM effect preceded by actions on a density matrix `rho` of the form: `rho -> A rho B` The coefficients of these terms are typically polynomials of the State's parameters, where the polynomial's variable indices index the *global* parameters of the State's parent (usually a :class:`Model`) , not the State's local parameter array (i.e. that returned from `to_vector`). Parameters ---------- order : int The order of terms to get. max_polynomial_vars : int, optional maximum number of variables the created polynomials can have. return_coeff_polys : bool Whether a parallel list of locally-indexed (using variable indices corresponding to *this* object's parameters rather than its parent's) polynomial coefficients should be returned as well. Returns ------- terms : list A list of :class:`RankOneTerm` objects. coefficients : list Only present when `return_coeff_polys == True`. A list of *compact* polynomial objects, meaning that each element is a `(vtape,ctape)` 2-tuple formed by concatenating together the output of :method:`Polynomial.compact`. """ terms = [] fnq = [int(round(_np.log2(f.dim))) // 2 for f in self.factors] # num of qubits per factor # assumes density matrix evolution total_nQ = sum(fnq) # total number of qubits for p in _lt.partition_into(order, len(self.factors)): factor_lists = [self.factors[i].taylor_order_terms(pi, max_polynomial_vars) for i, pi in enumerate(p)] # When possible, create COLLAPSED factor_lists so each factor has just a single # (State) pre & post op, which can be formed into the new terms' # TensorProdState ops. # - DON'T collapse stabilizer states & clifford ops - can't for POVMs collapsible = False # bool(self._evotype =="svterm") # need to use reps for collapsing now... TODO? if collapsible: factor_lists = [[t.collapse_vec() for t in fterms] for fterms in factor_lists] for factors in _itertools.product(*factor_lists): # create a term with a TensorProdState - Note we always create # "prep"-mode vectors, since even when self._prep_or_effect == "effect" these # vectors are created with factor (prep- or effect-type) States not factor POVMs # we workaround this by still allowing such "prep"-mode # TensorProdStates to be represented as effects (i.e. in torep('effect'...) works) coeff = _functools.reduce(lambda x, y: x.mult(y), [f.coeff for f in factors]) pre_rep = self._evotype.create_tensorproduct_state_rep( [f.pre_state for f in factors if (f.pre_state is not None)], self.state_space) post_rep = self._evotype.create_tensorproduct_state_rep( [f.post_state for f in factors if (f.post_state is not None)], self.state_space) term = _term.RankOnePolynomialPrepTerm.create_from(coeff, pre_rep, post_rep, self._evotype, self.state_space) if not collapsible: # then may need to add more ops. Assume factor ops are clifford gates # Embed each factors ops according to their target qubit(s) and just daisy chain them ss = _statespace.QubitSpace(total_nQ); curQ = 0 for f, nq in zip(factors, fnq): targetLabels = tuple(range(curQ, curQ + nq)); curQ += nq term._rep.pre_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.pre_ops]) # embed and add ops term._rep.post_ops.extend([self._evotype.create_embedded_rep(ss, targetLabels, op) for op in f.post_ops]) # embed and add ops terms.append(term) if return_coeff_polys: def _decompose_indices(x): return tuple(_modelmember._decompose_gpindices( self.gpindices, _np.array(x, _np.int64))) poly_coeffs = [t.coeff.map_indices(_decompose_indices) for t in terms] # with *local* indices tapes = [poly.compact(complex_coeff_tape=True) for poly in poly_coeffs] if len(tapes) > 0: vtape = _np.concatenate([t[0] for t in tapes]) ctape = _np.concatenate([t[1] for t in tapes]) else: vtape = _np.empty(0, _np.int64) ctape = _np.empty(0, complex) coeffs_as_compact_polys = (vtape, ctape) #self.local_term_poly_coeffs[order] = coeffs_as_compact_polys #FUTURE? return terms, coeffs_as_compact_polys else: return terms # Cache terms in FUTURE? @property def num_params(self): """ Get the number of independent parameters which specify this state vector. Returns ------- int the number of independent parameters. """ return len(self.gpindices_as_array()) def to_vector(self): """ Get the state vector parameters as an array of values. Returns ------- numpy array The parameters as a 1D array with length num_params(). """ v = _np.empty(self.num_params, 'd') for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): v[factor_local_inds] = factor_state.to_vector() return v def from_vector(self, v, close=False, dirty_value=True): """ Initialize the state vector using a 1D array of parameters. Parameters ---------- v : numpy array The 1D vector of state vector parameters. Length must == num_params() close : bool, optional Whether `v` is close to this state vector's current set of parameters. Under some circumstances, when this is true this call can be completed more quickly. dirty_value : bool, optional The value to set this object's "dirty flag" to before exiting this call. This is passed as an argument so it can be updated *recursively*. Leave this set to `True` unless you know what you're doing. Returns ------- None """ for factor_state, factor_local_inds in zip(self.factors, self._submember_rpindices): factor_state.from_vector(v[factor_local_inds], close, dirty_value) #Update representation, which may be a dense matrix or # just fast-kron arrays or a stabilizer state. self._update_rep() # TODO - how does this apply to state reps?? def deriv_wrt_params(self, wrt_filter=None): """ The element-wise derivative this state vector. Construct a matrix whose columns are the derivatives of the state vector with respect to a single param. Thus, each column is of length dimension and there is one column per state vector parameter. An empty 2D array in the StaticState case (num_params == 0). Parameters ---------- wrt_filter : list or numpy.ndarray List of parameter indices to take derivative with respect to. (None means to use all the this operation's parameters.) Returns ------- numpy array Array of derivatives, shape == (dimension, num_params) """ typ = self.factors[0].to_dense(on_space='minimal').dtype if len(self.factors) > 0 else 'd' #HACK to deal with fact that output of to_dense is really what is differentiated # but this may not match self.dim == self.state_space.dim, e.g. for pure state vecs. dims = [len(fct.to_dense(on_space='minimal')) for fct in self.factors] dim = int(_np.product(dims)) derivMx = _np.zeros((dim, self.num_params), typ) #Product rule to compute jacobian # loop over the spamvec/povm we differentiate wrt: for i, (fct, fct_local_inds, fct_dim) in enumerate(zip(self.factors, self._submember_rpindices, dims)): vec = fct if vec.num_params == 0: continue # no contribution deriv = vec.deriv_wrt_params(None) # TODO: use filter?? / make relative to this gate... deriv.shape = (fct_dim, vec.num_params) if i > 0: # factors before ith pre = self.factors[0].to_dense(on_space='minimal') for vecA in self.factors[1:i]: pre = _np.kron(pre, vecA.to_dense(on_space='minimal')) deriv = _np.kron(pre[:, None], deriv) # add a dummy 1-dim to 'pre' and do kron properly... if i + 1 < len(self.factors): # factors after ith post = self.factors[i + 1].to_dense(on_space='minimal') for vecA in self.factors[i + 2:]: post = _np.kron(post, vecA.to_dense(on_space='minimal')) deriv = _np.kron(deriv, post[:, None]) # add a dummy 1-dim to 'post' and do kron properly... assert(fct_local_inds is not None), \ "Error: gpindices has not been initialized for factor %d - cannot compute derivative!" % i derivMx[:, fct_local_inds] += deriv derivMx.shape = (dim, self.num_params) # necessary? if wrt_filter is None: return derivMx else: return _np.take(derivMx, wrt_filter, axis=1) def has_nonzero_hessian(self): """ Whether this state vector has a non-zero Hessian with respect to its parameters. Returns ------- bool """ return False def __str__(self): s = "Tensor product %s vector with length %d\n" % (self._prep_or_effect, self.dim) #ar = self.to_dense() #s += _mt.mx_to_string(ar, width=4, prec=2) # factors are just other States s += " x ".join([_mt.mx_to_string(fct.to_dense(on_space='minimal'), width=4, prec=2) for fct in self.factors]) return s
[ "numpy.product", "itertools.product", "pygsti.modelmembers.states.state.State.__init__", "numpy.take", "numpy.kron", "numpy.zeros", "numpy.array", "numpy.empty", "pygsti.baseobjs.statespace.QubitSpace", "numpy.concatenate", "pygsti.modelmembers.term.RankOnePolynomialPrepTerm.create_from", "numpy.log2", "pygsti.baseobjs.statespace.StateSpace.from_nice_serialization" ]
[((1791, 1826), 'pygsti.modelmembers.states.state.State.__init__', '_State.__init__', (['self', 'rep', 'evotype'], {}), '(self, rep, evotype)\n', (1806, 1826), True, 'from pygsti.modelmembers.states.state import State as _State\n'), ((2134, 2204), 'pygsti.baseobjs.statespace.StateSpace.from_nice_serialization', '_statespace.StateSpace.from_nice_serialization', (["mm_dict['state_space']"], {}), "(mm_dict['state_space'])\n", (2180, 2204), True, 'from pygsti.baseobjs import statespace as _statespace\n'), ((2764, 2804), 'numpy.empty', '_np.empty', (['self.num_params'], {'dtype': 'object'}), '(self.num_params, dtype=object)\n', (2773, 2804), True, 'import numpy as _np\n'), ((9902, 9933), 'numpy.empty', '_np.empty', (['self.num_params', '"""d"""'], {}), "(self.num_params, 'd')\n", (9911, 9933), True, 'import numpy as _np\n'), ((12509, 12547), 'numpy.zeros', '_np.zeros', (['(dim, self.num_params)', 'typ'], {}), '((dim, self.num_params), typ)\n', (12518, 12547), True, 'import numpy as _np\n'), ((6499, 6532), 'itertools.product', '_itertools.product', (['*factor_lists'], {}), '(*factor_lists)\n', (6517, 6532), True, 'import itertools as _itertools\n'), ((12471, 12488), 'numpy.product', '_np.product', (['dims'], {}), '(dims)\n', (12482, 12488), True, 'import numpy as _np\n'), ((14076, 14113), 'numpy.take', '_np.take', (['derivMx', 'wrt_filter'], {'axis': '(1)'}), '(derivMx, wrt_filter, axis=1)\n', (14084, 14113), True, 'import numpy as _np\n'), ((7437, 7544), 'pygsti.modelmembers.term.RankOnePolynomialPrepTerm.create_from', '_term.RankOnePolynomialPrepTerm.create_from', (['coeff', 'pre_rep', 'post_rep', 'self._evotype', 'self.state_space'], {}), '(coeff, pre_rep, post_rep, self.\n _evotype, self.state_space)\n', (7480, 7544), True, 'from pygsti.modelmembers import modelmember as _modelmember, term as _term\n'), ((8904, 8942), 'numpy.concatenate', '_np.concatenate', (['[t[0] for t in tapes]'], {}), '([t[0] for t in tapes])\n', (8919, 8942), True, 'import numpy as _np\n'), ((8967, 9005), 'numpy.concatenate', '_np.concatenate', (['[t[1] for t in tapes]'], {}), '([t[1] for t in tapes])\n', (8982, 9005), True, 'import numpy as _np\n'), ((9048, 9071), 'numpy.empty', '_np.empty', (['(0)', '_np.int64'], {}), '(0, _np.int64)\n', (9057, 9071), True, 'import numpy as _np\n'), ((9096, 9117), 'numpy.empty', '_np.empty', (['(0)', 'complex'], {}), '(0, complex)\n', (9105, 9117), True, 'import numpy as _np\n'), ((13260, 13289), 'numpy.kron', '_np.kron', (['pre[:, None]', 'deriv'], {}), '(pre[:, None], deriv)\n', (13268, 13289), True, 'import numpy as _np\n'), ((13631, 13661), 'numpy.kron', '_np.kron', (['deriv', 'post[:, None]'], {}), '(deriv, post[:, None])\n', (13639, 13661), True, 'import numpy as _np\n'), ((7847, 7879), 'pygsti.baseobjs.statespace.QubitSpace', '_statespace.QubitSpace', (['total_nQ'], {}), '(total_nQ)\n', (7869, 7879), True, 'from pygsti.baseobjs import statespace as _statespace\n'), ((5597, 5612), 'numpy.log2', '_np.log2', (['f.dim'], {}), '(f.dim)\n', (5605, 5612), True, 'import numpy as _np\n'), ((8631, 8654), 'numpy.array', '_np.array', (['x', '_np.int64'], {}), '(x, _np.int64)\n', (8640, 8654), True, 'import numpy as _np\n')]
from .exceptions import MazeNotSolved, AlgorithmNotFound from .dijkstra import Dijkstra from .astar import Astar from functools import wraps import warnings from daedalus import Maze as _maze from PIL import Image warnings.simplefilter("once", UserWarning) class Maze: """ Create a maze and solve it. Available algorithms: dijkstra astar (WIP) Steps: 1. Create maze using the daedalus library. 2. Convert maze to graph. 3. Solve maze with algorithm. """ WHITE = (0, 0, 0) BLACK = (255, 255, 255) RED = (255, 0, 0) def __init__(self, width, height, algorithm="dijkstra"): """Set algorithm to be used when solving. Args: algorithm (str) to be used when solving maze width (int) of maze in pixels height (int) of maze in pixels """ self.algorithm = algorithm if not width % 2 or not height % 2: warnings.warn( "Using even width or height, use even numbers for optimal images" ) self._create_maze(width, height) self._create_graph() self.width = width self.height = height def _create_maze(self, width, height): """Make maze to be solved and add border to maze. Args: width (int) of maze height (int) of maze """ # create maze self.maze = _maze(width, height) self.maze.create_perfect() # define maze variables self.entrance = self.maze.entrance self.exit = self.maze.exit # add index to maze self.maze = { row_i: {item_i: item for item_i, item in enumerate(row)} for row_i, row in enumerate(self.maze) } def _create_graph(self): """Remove unnecessary states from maze and convert maze to graph to be solved.""" self.graph = {} # convert to graph for column in self.maze.keys(): for row in self.maze[column].keys(): item = self.maze[column][row] if item != 1: neighbours = [] try: if self.maze[column][row - 1] != 1: neighbours.append(["left", (column, row - 1)]) except KeyError: None try: if self.maze[column][row + 1] != 1: neighbours.append(["right", (column, row + 1)]) except KeyError: None try: if self.maze[column - 1][row] != 1: neighbours.append(["above", (column - 1, row)]) except KeyError: None try: if self.maze[column + 1][row] != 1: neighbours.append(["below", (column + 1, row)]) except KeyError: None self.graph[(column, row)] = {x[:][1]: 1 for x in neighbours} # TODO: remove unnecessary states def _maze_maker(file_name): def real_decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): data = [] for row_i, row in enumerate(list(self.maze)): for item_i, item in enumerate(self.maze[row].values()): func(self, data, item, row_i=row_i, item_i=item_i) # save maze image = Image.new("RGB", (self.width, self.height)) image.putdata(data) image.save(file_name) return wrapper return real_decorator @_maze_maker("maze.png") def save(self, data, item, row_i=None, item_i=None): """Save maze locally as an image.""" # invert maze because maze is incorrect if item: data.append(self.WHITE) else: data.append(self.BLACK) def solve(self): """ Solve maze using specified algorithm. Returns: shortest path as a queue from start to finish of maze """ if self.algorithm == "astar": algorithm = Astar() elif self.algorithm == "dijkstra": algorithm = Dijkstra() else: raise AlgorithmNotFound( f"Invalid algorithm: {self.algorithm}. See help({type(self).__name__}) for available algorithms." ) # add nodes to graph for node in self.graph: algorithm.add_node(node, self.graph[node]) # pydaedalus stores y then x value which need to be reversed self.entrance = tuple(reversed(self.entrance)) self.exit = tuple(reversed(self.exit)) self.path = algorithm.shortest_path(self.entrance, self.exit) @_maze_maker("solution.png") def save_solution(self, data, item, row_i=None, item_i=None): """Save maze image and the shortest path.""" if not hasattr(self, "path"): raise MazeNotSolved( f"Maze must be solved to save solution. Run {type(self).__name__}.solve() first." ) if (row_i, item_i) in self.path: data.append(self.RED) elif item: data.append(self.WHITE) else: data.append(self.BLACK) def __str__(self): """Just cause it looks nice.""" string = [] for row in self.maze: string.append(["█" if item else " " for item in self.maze[row].values()]) return "\n".join(["".join(line) for line in string]) def __repr__(self): """Easier on the eyes.""" return f"Maze(algorithm='{self.algorithm}', width={self.width}, height={self.height})"
[ "daedalus.Maze", "PIL.Image.new", "functools.wraps", "warnings.simplefilter", "warnings.warn" ]
[((217, 259), 'warnings.simplefilter', 'warnings.simplefilter', (['"""once"""', 'UserWarning'], {}), "('once', UserWarning)\n", (238, 259), False, 'import warnings\n'), ((1427, 1447), 'daedalus.Maze', '_maze', (['width', 'height'], {}), '(width, height)\n', (1432, 1447), True, 'from daedalus import Maze as _maze\n'), ((954, 1039), 'warnings.warn', 'warnings.warn', (['"""Using even width or height, use even numbers for optimal images"""'], {}), "('Using even width or height, use even numbers for optimal images'\n )\n", (967, 1039), False, 'import warnings\n'), ((3267, 3278), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (3272, 3278), False, 'from functools import wraps\n'), ((3619, 3662), 'PIL.Image.new', 'Image.new', (['"""RGB"""', '(self.width, self.height)'], {}), "('RGB', (self.width, self.height))\n", (3628, 3662), False, 'from PIL import Image\n')]
#!/usr/bin/python """Interface to OpenShift oc command""" import os import shlex import shutil import subprocess from ansible.module_utils.basic import AnsibleModule ADDITIONAL_PATH_LOOKUPS = ['/usr/local/bin', os.path.expanduser('~/bin')] def locate_oc_binary(): """Find and return oc binary file""" # https://github.com/openshift/openshift-ansible/issues/3410 # oc can be in /usr/local/bin in some cases, but that may not # be in $PATH due to ansible/sudo paths = os.environ.get("PATH", os.defpath).split(os.pathsep) + ADDITIONAL_PATH_LOOKUPS oc_binary = 'oc' # Use shutil.which if it is available, otherwise fallback to a naive path search try: which_result = shutil.which(oc_binary, path=os.pathsep.join(paths)) if which_result is not None: oc_binary = which_result except AttributeError: for path in paths: if os.path.exists(os.path.join(path, oc_binary)): oc_binary = os.path.join(path, oc_binary) break return oc_binary def main(): """Module that executes commands on a remote OpenShift cluster""" module = AnsibleModule( argument_spec=dict( namespace=dict(type="str", required=False), config_file=dict(type="str", required=True), cmd=dict(type="str", required=True), extra_args=dict(type="list", default=[]), ), ) cmd = [locate_oc_binary(), '--config', module.params["config_file"]] if module.params["namespace"]: cmd += ['-n', module.params["namespace"]] cmd += shlex.split(module.params["cmd"]) + module.params["extra_args"] failed = True try: cmd_result = subprocess.check_output(list(cmd), stderr=subprocess.STDOUT) failed = False except subprocess.CalledProcessError as exc: cmd_result = '[rc {}] {}\n{}'.format(exc.returncode, ' '.join(exc.cmd), exc.output) except OSError as exc: # we get this when 'oc' is not there cmd_result = str(exc) module.exit_json( changed=False, failed=failed, result=cmd_result, ) if __name__ == '__main__': main()
[ "shlex.split", "os.pathsep.join", "os.path.join", "os.environ.get", "os.path.expanduser" ]
[((215, 242), 'os.path.expanduser', 'os.path.expanduser', (['"""~/bin"""'], {}), "('~/bin')\n", (233, 242), False, 'import os\n'), ((1600, 1633), 'shlex.split', 'shlex.split', (["module.params['cmd']"], {}), "(module.params['cmd'])\n", (1611, 1633), False, 'import shlex\n'), ((492, 526), 'os.environ.get', 'os.environ.get', (['"""PATH"""', 'os.defpath'], {}), "('PATH', os.defpath)\n", (506, 526), False, 'import os\n'), ((740, 762), 'os.pathsep.join', 'os.pathsep.join', (['paths'], {}), '(paths)\n', (755, 762), False, 'import os\n'), ((922, 951), 'os.path.join', 'os.path.join', (['path', 'oc_binary'], {}), '(path, oc_binary)\n', (934, 951), False, 'import os\n'), ((982, 1011), 'os.path.join', 'os.path.join', (['path', 'oc_binary'], {}), '(path, oc_binary)\n', (994, 1011), False, 'import os\n')]
import fractions class Network(object): def __init__(self, network): self.network = network def degree(self, link_type, key): return len(self.network.get(link_type).get(key)) def average_degree(self, link_type): degree = 0 for link in self.network.get(link_type).itervalues(): degree += len(link) return float(degree) / float(len(self.network.get(link_type))) def nn_degree(self, link_type, link_n_type, key): degree = self.degree(link_type, key) nn_degree = 0 for n_key in self.network.get(link_type, key): nn_degree += self.degree(link_n_type, n_key) return '%d/%d' % (nn_degree, degree) def jaccard_index(self, set_a, set_b): n = len(set_a & set_b) return float(n)/float(len(set_a) + len(set_b) - n) def jaccard_similarity(self, link_type, key_a, key_b, return_string=False): key_a = int(key_a) key_b = int(key_b) set_a = set(self.network.get(link_type).get(key_a).values()) set_b = set(self.network.get(link_type).get(key_b).values()) if return_string: intersection = len(set_a & set_b) union = len(set_a | set_b) gcd = fractions.gcd(intersection, union) return '%d/%d' % (intersection/gcd, union/gcd) return self.jaccard_index(set_a, set_b) def collaborative_similarity(self, link_type, link_n_type, key, return_string=False): degree = self.degree(link_type, key) if degree <= 1: return 0 similarity_sum = 0 for n_key_1 in self.network.get(link_type).get(key).itervalues(): for n_key_2 in self.network.get(link_type).get(key).itervalues(): if n_key_1 == n_key_2: continue similarity_sum += self.jaccard_similarity(link_n_type, n_key_1, n_key_2) if return_string: precision = 1e3 new_similarity_sum = round(similarity_sum * degree*(degree-1) * precision) gcd = fractions.gcd(new_similarity_sum, degree*(degree-1) * precision) new_similarity_sum /= gcd return '%d/%d' % (new_similarity_sum, degree*(degree-1)*round(new_similarity_sum/similarity_sum)) return similarity_sum / (degree*(degree-1)) def average_jaccard_similarity(self, link_type, link_n_type, return_string=False): nodes = 0 similarity_sum = 0 for key_links in self.network.get(link_type).itervalues(): for n_key_1 in key_links.itervalues(): for n_key_2 in key_links.itervalues(): if n_key_1 == n_key_2: continue nodes += 1 similarity_sum += self.jaccard_similarity(link_n_type, n_key_1, n_key_2) if nodes == 0: return 0 if return_string: precision = 1e3 new_similarity_sum = round(similarity_sum * nodes * precision) gcd = fractions.gcd(new_similarity_sum, nodes * precision) new_similarity_sum /= gcd return '%d/%d' % (new_similarity_sum, nodes*round(new_similarity_sum/similarity_sum)) return similarity_sum / nodes def network_collaborative_similarity(self, link_type, link_n_type, return_string=False): nodes = 0 similarity_sum = 0 for key, key_links in self.network.get(link_type).iteritems(): if self.degree(link_type, key) <= 1: continue nodes += 1 collaborative_similarity = self.collaborative_similarity(link_type, link_n_type, key) similarity_sum += collaborative_similarity if nodes == 0: return 0 if return_string: precision = 1e3 new_similarity_sum = round(similarity_sum * nodes * precision) gcd = fractions.gcd(new_similarity_sum, nodes * precision) new_similarity_sum /= gcd return '%d/%d' % (new_similarity_sum, nodes*(new_similarity_sum/similarity_sum)) return similarity_sum/nodes
[ "fractions.gcd" ]
[((1247, 1281), 'fractions.gcd', 'fractions.gcd', (['intersection', 'union'], {}), '(intersection, union)\n', (1260, 1281), False, 'import fractions\n'), ((2065, 2133), 'fractions.gcd', 'fractions.gcd', (['new_similarity_sum', '(degree * (degree - 1) * precision)'], {}), '(new_similarity_sum, degree * (degree - 1) * precision)\n', (2078, 2133), False, 'import fractions\n'), ((3027, 3079), 'fractions.gcd', 'fractions.gcd', (['new_similarity_sum', '(nodes * precision)'], {}), '(new_similarity_sum, nodes * precision)\n', (3040, 3079), False, 'import fractions\n'), ((3905, 3957), 'fractions.gcd', 'fractions.gcd', (['new_similarity_sum', '(nodes * precision)'], {}), '(new_similarity_sum, nodes * precision)\n', (3918, 3957), False, 'import fractions\n')]
import ansible import pprint from ansible import utils from jinja2 import Environment, PackageLoader from collections import namedtuple from ansible import utils from ansible.parsing.dataloader import DataLoader from ansible.vars import VariableManager from ansible.inventory import Inventory from ansible.executor.playbook_executor import PlaybookExecutor from ansible.plugins.callback import CallbackBase from callbacks import PlaybookCallback def invoke_ansible_playbook(module_path, e_vars, playbook_path="site.yml", console=True): """ Invokes playbook """ loader = DataLoader() variable_manager = VariableManager() variable_manager.extra_vars = e_vars inventory = Inventory(loader=loader, variable_manager=variable_manager, host_list=['localhost']) passwords = {} utils.VERBOSITY = 4 Options = namedtuple('Options', ['listtags', 'listtasks', 'listhosts', 'syntax', 'connection', 'module_path', 'forks', 'remote_user', 'private_key_file', 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args', 'scp_extra_args', 'become', 'become_method', 'become_user', 'verbosity', 'check']) options = Options(listtags=False, listtasks=False, listhosts=False, syntax=False, connection='ssh', module_path=module_path, forks=100, remote_user='root', private_key_file=None, ssh_common_args=None, ssh_extra_args=None, sftp_extra_args=None, scp_extra_args=None, become=False, become_method=None, become_user='root', verbosity=utils.VERBOSITY, check=False) pbex = PlaybookExecutor(playbooks=[playbook_path], inventory=inventory, variable_manager=variable_manager, loader=loader, options=options, passwords=passwords) if not console: cb = PlaybookCallback() pbex._tqm._stdout_callback = cb return_code = pbex.run() results = cb.results else: results = pbex.run() return results
[ "ansible.vars.VariableManager", "collections.namedtuple", "ansible.inventory.Inventory", "callbacks.PlaybookCallback", "ansible.parsing.dataloader.DataLoader", "ansible.executor.playbook_executor.PlaybookExecutor" ]
[((585, 597), 'ansible.parsing.dataloader.DataLoader', 'DataLoader', ([], {}), '()\n', (595, 597), False, 'from ansible.parsing.dataloader import DataLoader\n'), ((621, 638), 'ansible.vars.VariableManager', 'VariableManager', ([], {}), '()\n', (636, 638), False, 'from ansible.vars import VariableManager\n'), ((696, 785), 'ansible.inventory.Inventory', 'Inventory', ([], {'loader': 'loader', 'variable_manager': 'variable_manager', 'host_list': "['localhost']"}), "(loader=loader, variable_manager=variable_manager, host_list=[\n 'localhost'])\n", (705, 785), False, 'from ansible.inventory import Inventory\n'), ((890, 1188), 'collections.namedtuple', 'namedtuple', (['"""Options"""', "['listtags', 'listtasks', 'listhosts', 'syntax', 'connection',\n 'module_path', 'forks', 'remote_user', 'private_key_file',\n 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args',\n 'scp_extra_args', 'become', 'become_method', 'become_user', 'verbosity',\n 'check']"], {}), "('Options', ['listtags', 'listtasks', 'listhosts', 'syntax',\n 'connection', 'module_path', 'forks', 'remote_user', 'private_key_file',\n 'ssh_common_args', 'ssh_extra_args', 'sftp_extra_args',\n 'scp_extra_args', 'become', 'become_method', 'become_user', 'verbosity',\n 'check'])\n", (900, 1188), False, 'from collections import namedtuple\n'), ((2550, 2710), 'ansible.executor.playbook_executor.PlaybookExecutor', 'PlaybookExecutor', ([], {'playbooks': '[playbook_path]', 'inventory': 'inventory', 'variable_manager': 'variable_manager', 'loader': 'loader', 'options': 'options', 'passwords': 'passwords'}), '(playbooks=[playbook_path], inventory=inventory,\n variable_manager=variable_manager, loader=loader, options=options,\n passwords=passwords)\n', (2566, 2710), False, 'from ansible.executor.playbook_executor import PlaybookExecutor\n'), ((2876, 2894), 'callbacks.PlaybookCallback', 'PlaybookCallback', ([], {}), '()\n', (2892, 2894), False, 'from callbacks import PlaybookCallback\n')]
#!/usr/bin/env python3 import itertools import string from elasticsearch import Elasticsearch,helpers import sys import os from glob import glob import pandas as pd import json host = sys.argv[1] port = int(sys.argv[2]) alias = sys.argv[3] print(host) print(port) print(alias) es = Elasticsearch([{'host': host, 'port': port}]) # create our test index # Get all csv files in /root/data files = [y for x in os.walk('/root/data') for y in glob(os.path.join(x[0], '*.csv'))] count = 0 def clean_field(val): val = val.split('.') val = [i for i in val if i != ''] val = '_'.join(val) val = val.split() val = [i for i in val if i != ''] val = '_'.join(val) val = val.split('/') val = [i for i in val if i != ''] val = '_'.join(val) return val es.indices.delete(index=alias + '*', ignore=[400, 404]) indices = [] for file in files: data = pd.read_csv(file, sep=None, engine='python') index = alias + '_'.join(file.split('/')) index = clean_field(index).lower().split('_csv')[0] indices.append(index) es.indices.create(index) for col in data.columns: if col.startswith('Unnamed'): del data[col] else: data.rename(columns= { col : clean_field(col) },inplace=True ) data = data.reset_index() # Make sure there is no duplicate indexing data.rename(columns={'index':'row'},inplace =True) data['File'] = file data['_id'] = data['File'] + '.{}.'.format(str(count)) + data.reset_index()['index'].apply(str) data['_type'] = "document" data['_index'] = index records = data.to_json(orient='records') records = json.loads(records) helpers.bulk(es, records, chunk_size=100) count += 1 print(es.count(index=index)) # Create an index table in elasticsearch to locate the files indices_table = pd.DataFrame() indices_table['Index'] = pd.Series(indices) indices_table['File'] = pd.Series(files) indices_table['Alias'] = alias indices_table['_id'] = indices_table['Alias'] + '.' + indices_table['File'] indices_table['_type'] = "document" indices_table['_index'] = alias + '_indices' es.indices.create(alias + '_indices') records = indices_table.to_json(orient='records') records = json.loads(records) helpers.bulk(es, records, chunk_size=100) print(es.count(index=alias + '_indices'))
[ "pandas.Series", "json.loads", "pandas.read_csv", "elasticsearch.helpers.bulk", "elasticsearch.Elasticsearch", "os.path.join", "pandas.DataFrame", "os.walk" ]
[((297, 342), 'elasticsearch.Elasticsearch', 'Elasticsearch', (["[{'host': host, 'port': port}]"], {}), "([{'host': host, 'port': port}])\n", (310, 342), False, 'from elasticsearch import Elasticsearch, helpers\n'), ((1842, 1856), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1854, 1856), True, 'import pandas as pd\n'), ((1882, 1900), 'pandas.Series', 'pd.Series', (['indices'], {}), '(indices)\n', (1891, 1900), True, 'import pandas as pd\n'), ((1925, 1941), 'pandas.Series', 'pd.Series', (['files'], {}), '(files)\n', (1934, 1941), True, 'import pandas as pd\n'), ((2229, 2248), 'json.loads', 'json.loads', (['records'], {}), '(records)\n', (2239, 2248), False, 'import json\n'), ((2249, 2290), 'elasticsearch.helpers.bulk', 'helpers.bulk', (['es', 'records'], {'chunk_size': '(100)'}), '(es, records, chunk_size=100)\n', (2261, 2290), False, 'from elasticsearch import Elasticsearch, helpers\n'), ((897, 941), 'pandas.read_csv', 'pd.read_csv', (['file'], {'sep': 'None', 'engine': '"""python"""'}), "(file, sep=None, engine='python')\n", (908, 941), True, 'import pandas as pd\n'), ((1650, 1669), 'json.loads', 'json.loads', (['records'], {}), '(records)\n', (1660, 1669), False, 'import json\n'), ((1674, 1715), 'elasticsearch.helpers.bulk', 'helpers.bulk', (['es', 'records'], {'chunk_size': '(100)'}), '(es, records, chunk_size=100)\n', (1686, 1715), False, 'from elasticsearch import Elasticsearch, helpers\n'), ((423, 444), 'os.walk', 'os.walk', (['"""/root/data"""'], {}), "('/root/data')\n", (430, 444), False, 'import os\n'), ((459, 486), 'os.path.join', 'os.path.join', (['x[0]', '"""*.csv"""'], {}), "(x[0], '*.csv')\n", (471, 486), False, 'import os\n')]
from absl import app from mainLoop import main if __name__ == '__main__': app.run(main)
[ "absl.app.run" ]
[((91, 104), 'absl.app.run', 'app.run', (['main'], {}), '(main)\n', (98, 104), False, 'from absl import app\n')]
#!/usr/bin/env python # vgm2electron.py # Tool for converting SN76489-based PSG VGM data to Acorn Electron # By <NAME> (https://github.com/simondotm/) # See https://github.com/simondotm/vgm-packer # # Copyright (c) 2019 <NAME>. All rights reserved. # # "MIT License": # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the Software # is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, # INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A # PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION # OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. import functools import itertools import struct import sys import time import binascii import math import operator import os from modules.vgmparser import VgmStream class VgmElectron: OUTPUT_RAWDATA = False # output raw dumps of the data that was compressed by LZ4/Huffman VERBOSE = True # 0-3 represents approx the loudest 50% of volumes (=ON), 4-15 are the quietest 50% (=OFF) ATTENTUATION_THRESHOLD1 = 10 ATTENTUATION_THRESHOLD2 = 10 ATTENTUATION_THRESHOLD3 = 10 # define the number of octaves to transpose whole song by, in case too much bass getting lost TRANSPOSE_OCTAVES1 = 0 TRANSPOSE_OCTAVES2 = 0 TRANSPOSE_OCTAVES3 = 0 #-1 ENABLE_CHANNEL1 = True ENABLE_CHANNEL2 = True ENABLE_CHANNEL3 = True USE_TECHNIQUE = 2 def __init__(self): print("init") #---------------------------------------------------------- # Utilities #---------------------------------------------------------- # split the packed raw data into 11 separate streams # returns array of 11 bytearrays def split_raw(self, rawData, stripCommands = True): registers = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] registers_opt = [ 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] latched_channel = -1 output_block = bytearray() output_blocks = [] for o in range(11): output_blocks.append( bytearray() ) if stripCommands: register_mask = 15 else: register_mask = 255 # unpack the raw binary data in 11 arrays of register data without any deltas between them # eg. the raw chip writes to all 11 registers every frame n = 0 Packet = True verbose = False while (Packet): packet_size = rawData[n] if verbose: print("packet_size=" + str(packet_size)) n += 1 if packet_size == 255: Packet = False else: for x in range(packet_size): d = rawData[n+x] #if verbose: # print " frame byte number=" +str(x) # print " frame byte=" +str(d) if d & 128: # latch c = (d>>5)&3 latched_channel = c if d & 16: # volume if verbose: print(" volume on channel " + str(c)) registers[c+7] = d & register_mask else: # tone if verbose: print(" tone on channel " + str(c)) registers[c*2+0] = d & register_mask else: if verbose: print(" tone data on latched channel " + str(latched_channel)) registers[latched_channel*2+1] = d # we no longer do any masking here # d & 63 # tone data only contains 6 bits of info anyway, so no need for mask if latched_channel == 3: print("ERROR CHANNEL") # emit current state of each of the 11 registers to 11 different bytearrays for x in range(11): output_blocks[x].append( registers[x] ) # next packet n += packet_size #print(output_blocks[6]) #IGNORE we no longer do this - let the decoder do it instead. if False: # make sure we only emit tone3 when it changes, or 15 for no-change # this prevents the LFSR from being reset lastTone3 = 255 for x in range(len(output_blocks[6])): t = output_blocks[6][x] if t == lastTone3: output_blocks[6][x] = 15 lastTone3 = t # print(output_blocks[6]) # Add EOF marker (0x08) to tone3 byte stream output_blocks[6].append(0x08) # 0x08 is an invalid noise tone. # return the split blocks return output_blocks # given an array of data points, serialize it to a bytearray # size is the number of bytes to be used to represent each element in the source array. def toByteArray(self, array, size = 1): r = bytearray() for v in array: if size < 2: r.append(v & 255) else: r.append(v & 255) r.append(v >> 8) return r #---------------------------------------------------------- # Process(filename) # Convert the given VGM file to an electron VGM file #---------------------------------------------------------- def process(self, src_filename, dst_filename): # load the VGM file, or alternatively interpret as a binary if src_filename.lower()[-4:] != ".vgm": print("ERROR: Not a VGM source") return vgm = VgmStream(src_filename) data_block = vgm.as_binary() data_offset = 0 # parse the header header_size = data_block[0] # header size play_rate = data_block[1] # play rate if header_size == 5 and play_rate == 50: packet_count = data_block[2] + data_block[3]*256 # packet count LO duration_mm = data_block[4] # duration mm duration_ss = data_block[5] # duration ss data_offset = header_size+1 data_offset += data_block[data_offset]+1 data_offset += data_block[data_offset]+1 print("header_size=" +str(header_size)) print("play_rate="+str(play_rate)) print("packet_count="+str(packet_count)) print("duration_mm="+str(duration_mm)) print("duration_ss="+str(duration_ss)) print("data_offset="+str(data_offset)) else: print("No header.") print("") # Trim off the header data. The rest is raw data. data_block = data_block[data_offset:] #---------------------------------------------------------- # Unpack the register data into 11 separate data streams #---------------------------------------------------------- registers = self.split_raw(data_block, True) #---------------------------------------------------------- # Begin VGM conversion to Electron #---------------------------------------------------------- # Filter out channels we do not need # Modify all volumes to full or none # Interleave sound to a single channel # output final VGM vgm_stream = bytearray() vgm_time = 0 electron_data = bytearray() # given an SN76489 tone register value, return the equivalent Electron ULA register setting def sn_to_electron(tone_value): # hack to protect against divbyzero if (tone_value == 0): tone_value = 1 hz = float(vgm.vgm_source_clock) / ( 2.0 * float(tone_value) * 16.0) print(" sn_to_electron freq " + str(hz) + "hz") # electron # Sound frequency = 1 MHz / [32 * (S + 1)] # f * 32*(S+1) = 1Mhz # 32*(S+1) = 1Mhz / f # (S+1) = 1Mhz / f*32 #print ("SN freq is " + str(hz)) ula6 = int( 1000000.0 / (hz * 32.0) ) - 1 # check we are within range if ula6 < 0: print(" WARNING: Electron freqency '" + str(ula6) + "' too high (" + str(hz) + ")") ula6 = 0 if ula6 > 255: print(" WARNING: Electron frequency '" + str(ula6) + "' too low (" + str(hz) + ")") ula6 = 255 return ula6 #-------------------------------------------------------------- # conversion settings #-------------------------------------------------------------- # convert the register data to a vgm stream sample_interval = int(44100 / vgm.metadata['rate']) # 882 # 50hz - TODO: use frame rate print("sample_interval=" + str(sample_interval)) USE_TONE3 = VgmElectron.ENABLE_CHANNEL3 # True # TODO: make these all parameters # Add channel filter option # Add mix type options # --attentuation 468 --filter 123 --transpose 00F --mix 123 --arpeggio 2 --rate 50 # Add option to clamp or transpose out of range frequencies # Make the .ula output file filename.electron.ula # Add 0x01 as a terminating byte in the output ULA MIX_RATE = 2 # modulo 2 for interleaving channels # other options # bias for channels # transpose or silence out of range notes channel_mix = 0 #-------------------------------------------------------------- # pre-process music to suit Electron capabilities #-------------------------------------------------------------- for i in range(len(registers[0])): print("Frame " + str(i)) #-------------------------------------------------------------- # step 1- map volumes to 1-bit precision #-------------------------------------------------------------- # 11 registers per frame # Tone 0 HL Tone 1 HL Tone 2 HL Tone 3 Vol 0123 for r in range(11): if r > 6: register_data = registers[r][i] # apply the threshold for each channel threshold = VgmElectron.ATTENTUATION_THRESHOLD1 if r == 8: threshold = VgmElectron.ATTENTUATION_THRESHOLD2 if r == 9: threshold = VgmElectron.ATTENTUATION_THRESHOLD3 # if its a volume, map to loudest volume or no volume (using logarithmic scale) if register_data < threshold: register_data = 0 # full volume else: register_data = 15 # zero volume if r == 7 and VgmElectron.ENABLE_CHANNEL1 == False: register_data = 15 # zero volume if r == 8 and VgmElectron.ENABLE_CHANNEL2 == False: register_data = 15 # zero volume if r == 9 and VgmElectron.ENABLE_CHANNEL3 == False: register_data = 15 # zero volume registers[r][i] = register_data #-------------------------------------------------------------- # step 2 - transpose to fit frequency range #-------------------------------------------------------------- # final step - bring tone1 into the frequency range of the electron # if the frequency goes below the range of the ULA capabilities, add an octave def retune(octaves, l,h,v): #if (octaves == 0): # print(" No transpose performed, octaves set to 0") # return print( " tonehi=" + str(registers[h][i]) + ", tonelo=" + str(registers[l][i])) tone_value = (registers[h][i] << 4) + registers[l][i] if tone_value > 0: tone_freq = float(vgm.vgm_source_clock) / ( 2.0 * float(tone_value) * 16.0) print(" Retune, Channel " + str(int(l/2)) + " tone=" + str(tone_value) + ", freq=" + str(tone_freq)) # electron baseline is 122Hz not 244Hz as the AUG states. baseline_freq = 1000000.0 / (32.0*256.0) target_freq = tone_freq retuned = 0 transpose = abs(octaves) while retuned != transpose: # target_freq < baseline_freq: if (octaves < 0): target_freq /= 2.0 else: target_freq *= 2.0 retuned += 1 # if cant reach baseline freq, transpose once, then silence if still too low :( if target_freq < baseline_freq: print(" WARNING: Freq too low - Added " + str(1) + " octave(s) - from " + str(target_freq) + " to " + str(target_freq*2.0) + "Hz") # better to just clamp low frequencies at the bottom, and risk tuning issues rather than transposition jumps target_freq = baseline_freq #*= 2.0 retuned = 1 if target_freq < baseline_freq: registers[v][i] = 15 print(" Tone " + str(i) + " silenced because frequency too low - " + str(target_freq)) #target_freq *= 2.0 #retuned += 1 if retuned: #print(" WARNING: Freq too low - Added " + str(retuned) + " octave(s) - from " + str(tone_freq) + " to " + str(target_freq) + "Hz") tone_value = int( round( float(vgm.vgm_source_clock) / (2.0 * target_freq * 16.0 ) ) ) registers[h][i] = tone_value >> 4 registers[l][i] = tone_value & 15 # transpose #if TRANSPOSE_OCTAVES > 0: print(" Transposing ") retune(VgmElectron.TRANSPOSE_OCTAVES1, 0,1,7) retune(VgmElectron.TRANSPOSE_OCTAVES2, 2,3,8) retune(VgmElectron.TRANSPOSE_OCTAVES3, 4,5,9) #-------------------------------------------------------------- # Step 3 - mix the 2 primary channels down to 1 channel #-------------------------------------------------------------- # map channel 2 to channel 1 # noise channel is completely ignored ENABLE_DOWNMIX = True if ENABLE_DOWNMIX: print(" Downmix channels ") #print("Frame " + str(i)) vol1 = registers[7][i] vol2 = registers[8][i] vol3 = registers[9][i] tone1_active = vol1 != 15 tone2_active = vol2 != 15 tone3_active = vol3 != 15 tone_active = tone1_active or tone2_active or tone3_active if tone_active: print(" Tone active, mixing") output_tone = 1 if self.USE_TECHNIQUE == 2: c1f = (registers[1][i] << 4) + registers[0][i] c2f = (registers[3][i] << 4) + registers[2][i] c3f = (registers[5][i] << 4) + registers[4][i] active_channels = [ False, False, False ] if tone1_active: active_channels[0] = True print("Channel 1 is active volume") if tone2_active: active_channels[1] = True print("Channel 2 is active volume") if tone3_active: active_channels[2] = True print("Channel 3 is active volume") # any channels playing the same frequency are filtered out if tone1_active and tone2_active and c2f == c1f: active_channels[1] = False print("Channel 2 is same freq as Channel 1, filtered") if tone1_active and tone3_active and c3f == c1f: active_channels[2] = False print("Channel 3 is same freq as Channel 1, filtered") if tone2_active and tone3_active and c2f == c3f: active_channels[2] = False print("Channel 3 is same freq as Channel 2, filtered") channel_count = 0 if active_channels[0]: channel_count += 1 if active_channels[1]: channel_count += 1 if active_channels[2]: channel_count += 1 print("channel_count=" + str(channel_count)) output_mix = [] if active_channels[0]: output_mix.append(1) if active_channels[1]: output_mix.append(2) if active_channels[2]: output_mix.append(3) mix = (i % channel_count) output_tone = output_mix[mix] if self.USE_TECHNIQUE == 1: # interleaving of channels 1+2 is done on odd/even frames for a consistent effect mix = (i % MIX_RATE) == 0 #(i & 1) == 0 # random is no good, thought it might average out but it sounds , well random #mix = random.random() < 0.5 # test code to see if modulo 3 any good, it wasn't if False: if channel_mix == 0 and vol1 != 0: channel_mix = (channel_mix + 1) % 3 if channel_mix == 1 and vol2 != 0: channel_mix = (channel_mix + 1) % 3 if channel_mix == 1 and vol3 != 0: channel_mix = (channel_mix + 1) % 3 output_tone = (channel_mix % 3) + 1 print("output tone=" + str(output_tone)) channel_mix = (channel_mix + 1) % 3 if True: # detect if channel 1 needs priority this frame # - its volume is on, and the alternative frame mix flag is good c1p = vol1 == 0 and mix # don't give channel 2 priority if tone is the same and channel1 is playing c1f = (registers[1][i] << 4) + registers[0][i] c2f = (registers[3][i] << 4) + registers[2][i] sametone = (c1f == c2f/2) or (c1f == c2f * 2) or (c1f == c2f) sametone = sametone and (vol1 == vol2) and (vol1 == 0) if vol1 == 0 and sametone: #diff < 100: #registers[0][i] == registers[2][i] and registers[1][i] == registers[2][i] and vol1 == 0: c1p = True print(" NOTE: channel 1 & channel 2 have same tone") # replace channel 1 data with channel 2 data # if, channel2 is active, but c1 doesn't have priority this frame if vol2 == 0 and not c1p:# and vol1 != 0: output_tone = 2 # if no volume on tone1, we can look at channel 3 too if USE_TONE3: #if registers[7][i] == 15: if vol1 == 15 and vol2 == 15 and vol3 == 0 and not mix:# and not c1p and output_tone != 2: print("tone3 active") output_tone = 3 # pick which tone to output if output_tone == 1: # do nothing, because tone1 register frequency already setup output_tone = 1 elif output_tone == 2: # replace tone 1 frequency with tone 2 frequency registers[0][i] = registers[2][i] registers[1][i] = registers[3][i] registers[7][i] = registers[8][i] elif output_tone == 3: # replace tone 1 frequency with tone 3 frequency registers[0][i] = registers[4][i] registers[1][i] = registers[5][i] registers[7][i] = registers[9][i] else: print("UNHANDLED CASE - output_tone not set") # output ULA data final_volume = registers[7][i] ula_tone = 0 # zero is highest freq. so inaudible, so thats how we handle volume if final_volume == 0: final_tone1 = (registers[1][i] << 4) + registers[0][i] ula_tone = sn_to_electron(final_tone1) electron_data.append( ula_tone ) # write to output ULA file ula_file = open(dst_filename + ".ula.bin", 'wb') ula_file.write(electron_data) ula_file.close() #-------------------------------------------------------------- # Final stage - output to vgm #-------------------------------------------------------------- # Tone1----- Tone2----- Tone3----- Tone4 Vol1 Vol2 Vol3 Vol4 control = [ 0x80, 0x00, 0xa0, 0x00, 0xc0, 0x00, 0xe0, 0x90, 0xb0, 0xd0, 0xf0 ] #filter = [ 0,1,2,3,7,8 ] #filter = [ 2,3,8 ] #filter = [ 0,1,2,3,4,5,6,7,8,9,10 ] filter = [ 0,1,2,3,4,5,7,8,9 ] if ENABLE_DOWNMIX: filter = [ 0,1,7 ] last_tone3 = 255 for i in range(len(registers[0])): # 11 registers per frame # Tone 0 HL Tone 1 HL Tone 2 HL Tone 3 Vol 0123 for r in range(11): register_data = registers[r][i] # dont update noise register unless different update = True if r == 6: if register_data == last_tone3: update = False else: last_tone3 = register_data if not r in filter: update = False if update: register_data |= control[r] vgm_stream.extend( struct.pack('B', 0x50) ) # COMMAND vgm_stream.extend( struct.pack('B', register_data) ) # DATA # next frame if sample_interval == 882: # wait 50 vgm_stream.extend( struct.pack('B', 0x63) ) elif sample_interval == 735: # wait 60 vgm_stream.extend( struct.pack('B', 0x62) ) else: vgm_stream.extend( struct.pack('B', 0x61) ) vgm_stream.extend( struct.pack('B', int(sample_interval % 256)) ) vgm_stream.extend( struct.pack('B', int(sample_interval / 256)) ) # END command vgm_stream.extend( struct.pack('B', 0x66) ) vgm.write_vgm(vgm_stream, dst_filename) #output = bytearray() # write the electron vgm file #open(dst_filename, "wb").write( output ) #------------------------------------------------------------------------ # Main() #------------------------------------------------------------------------ import argparse # Determine if running as a script if __name__ == '__main__': print("Vgm2Electron.py : VGM music converter for Acorn Electron") print("Written in 2019 by <NAME>, https://github.com/simondotm/vgm-packer") print("") epilog_string = "" parser = argparse.ArgumentParser( formatter_class=argparse.RawDescriptionHelpFormatter, epilog=epilog_string) parser.add_argument("input", help="VGM source file (must be single SN76489 PSG format) [input]") parser.add_argument("-o", "--output", metavar="<output>", help="write VGC file <output> (default is '[input].vgc')") parser.add_argument("-v", "--verbose", help="Enable verbose mode", action="store_true") parser.add_argument("-a", "--attenuation", default="444", metavar="<nnn>", help="Set attenuation threshold for each channel, 3 character string where each character is 0-F and 0 is loudest, 4 is 50%, F is quietest, default: 444") parser.add_argument("-t", "--transpose", default="000", metavar="<nnn>", help="Set octaves to transpose for each channel, where 1 is +1 octave and F is -1 octave.") parser.add_argument("-c", "--channels", default="123", metavar="[1][2][3]", help="Set which channels will be included in the conversion, default 123, which means all 3 channels") parser.add_argument("-q", "--technique", default=2, metavar="<n>", help="Set which downmix technique to use 1 or 2.") args = parser.parse_args() src = args.input dst = args.output if dst == None: dst = os.path.splitext(src)[0] + ".electron.vgm" # attenuation options attenuation = args.attenuation if (len(attenuation) != 3): print("ERROR: attenuation must be 3 values eg. '444'") sys.exit() #print("attenuation=" + attenuation) VgmElectron.ATTENTUATION_THRESHOLD1 = int(attenuation[0],16) VgmElectron.ATTENTUATION_THRESHOLD2 = int(attenuation[1],16) VgmElectron.ATTENTUATION_THRESHOLD3 = int(attenuation[2],16) # transpose options transpose = args.transpose if (len(transpose) != 3): print("ERROR: transpose must be 3 values eg. '000'") sys.exit() #print("transpose=" + transpose) # 0 1 2 3 4 5 6 7 8 9 a b c d e f ttable = [0,1,2,3,4,5,6,7,-8,-7,-6,-5,-4,-3,-2,-1] VgmElectron.TRANSPOSE_OCTAVES1 = ttable[ int(transpose[0],16) ] VgmElectron.TRANSPOSE_OCTAVES2 = ttable[ int(transpose[1],16) ] VgmElectron.TRANSPOSE_OCTAVES3 = ttable[ int(transpose[2],16) ] # channel options print(args.channels) VgmElectron.ENABLE_CHANNEL1 = args.channels.find("1") >= 0 VgmElectron.ENABLE_CHANNEL2 = args.channels.find("2") >= 0 VgmElectron.ENABLE_CHANNEL3 = args.channels.find("3") >= 0 print("Channel 1: Enabled=" + str(VgmElectron.ENABLE_CHANNEL1) + ", Transpose=" + str(VgmElectron.TRANSPOSE_OCTAVES1) + ", Attenuation="+str(VgmElectron.ATTENTUATION_THRESHOLD1)) print("Channel 2: Enabled=" + str(VgmElectron.ENABLE_CHANNEL2) + ", Transpose=" + str(VgmElectron.TRANSPOSE_OCTAVES2) + ", Attenuation="+str(VgmElectron.ATTENTUATION_THRESHOLD2)) print("Channel 3: Enabled=" + str(VgmElectron.ENABLE_CHANNEL3) + ", Transpose=" + str(VgmElectron.TRANSPOSE_OCTAVES3) + ", Attenuation="+str(VgmElectron.ATTENTUATION_THRESHOLD3)) # technique VgmElectron.USE_TECHNIQUE = int(args.technique) print("Using technique " + str(VgmElectron.USE_TECHNIQUE)) # check for missing files if not os.path.isfile(src): print("ERROR: File '" + src + "' not found") sys.exit() packer = VgmElectron() packer.VERBOSE = args.verbose packer.process(src, dst)
[ "argparse.ArgumentParser", "os.path.splitext", "struct.pack", "os.path.isfile", "modules.vgmparser.VgmStream", "sys.exit" ]
[((19976, 20080), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'formatter_class': 'argparse.RawDescriptionHelpFormatter', 'epilog': 'epilog_string'}), '(formatter_class=argparse.\n RawDescriptionHelpFormatter, epilog=epilog_string)\n', (19999, 20080), False, 'import argparse\n'), ((5444, 5467), 'modules.vgmparser.VgmStream', 'VgmStream', (['src_filename'], {}), '(src_filename)\n', (5453, 5467), False, 'from modules.vgmparser import VgmStream\n'), ((21363, 21373), 'sys.exit', 'sys.exit', ([], {}), '()\n', (21371, 21373), False, 'import sys\n'), ((21732, 21742), 'sys.exit', 'sys.exit', ([], {}), '()\n', (21740, 21742), False, 'import sys\n'), ((22997, 23016), 'os.path.isfile', 'os.path.isfile', (['src'], {}), '(src)\n', (23011, 23016), False, 'import os\n'), ((23067, 23077), 'sys.exit', 'sys.exit', ([], {}), '()\n', (23075, 23077), False, 'import sys\n'), ((19367, 19388), 'struct.pack', 'struct.pack', (['"""B"""', '(102)'], {}), "('B', 102)\n", (19378, 19388), False, 'import struct\n'), ((21176, 21197), 'os.path.splitext', 'os.path.splitext', (['src'], {}), '(src)\n', (21192, 21197), False, 'import os\n'), ((18984, 19004), 'struct.pack', 'struct.pack', (['"""B"""', '(99)'], {}), "('B', 99)\n", (18995, 19004), False, 'import struct\n'), ((18804, 18824), 'struct.pack', 'struct.pack', (['"""B"""', '(80)'], {}), "('B', 80)\n", (18815, 18824), False, 'import struct\n'), ((18863, 18894), 'struct.pack', 'struct.pack', (['"""B"""', 'register_data'], {}), "('B', register_data)\n", (18874, 18894), False, 'import struct\n'), ((19075, 19095), 'struct.pack', 'struct.pack', (['"""B"""', '(98)'], {}), "('B', 98)\n", (19086, 19095), False, 'import struct\n'), ((19133, 19153), 'struct.pack', 'struct.pack', (['"""B"""', '(97)'], {}), "('B', 97)\n", (19144, 19153), False, 'import struct\n')]
# ██╗░░░░░██╗███╗░░██╗░██████╗░░░░██████╗░██╗░░░░░░█████╗░░█████╗░██╗░░██╗ # ██║░░░░░██║████╗░██║██╔════╝░░░░██╔══██╗██║░░░░░██╔══██╗██╔══██╗██║░██╔╝ # ██║░░░░░██║██╔██╗██║██║░░██╗░░░░██████╦╝██║░░░░░███████║██║░░╚═╝█████═╝░ # ██║░░░░░██║██║╚████║██║░░╚██╗░░░██╔══██╗██║░░░░░██╔══██║██║░░██╗██╔═██╗░ # ███████╗██║██║░╚███║╚██████╔╝░░░██████╦╝███████╗██║░░██║╚█████╔╝██║░╚██╗ # ╚══════╝╚═╝╚═╝░░╚══╝░╚═════╝░░░░╚═════╝░╚══════╝╚═╝░░╚═╝░╚════╝░╚═╝░░╚═╝ # # Developed by <NAME> (C) Ling • Black 2020 # @site http://ling.black # ██╗░░░░░██╗███╗░░██╗░██████╗░░░░██████╗░██╗░░░░░░█████╗░░█████╗░██╗░░██╗ # ██║░░░░░██║████╗░██║██╔════╝░░░░██╔══██╗██║░░░░░██╔══██╗██╔══██╗██║░██╔╝ # ██║░░░░░██║██╔██╗██║██║░░██╗░░░░██████╦╝██║░░░░░███████║██║░░╚═╝█████═╝░ # ██║░░░░░██║██║╚████║██║░░╚██╗░░░██╔══██╗██║░░░░░██╔══██║██║░░██╗██╔═██╗░ # ███████╗██║██║░╚███║╚██████╔╝░░░██████╦╝███████╗██║░░██║╚█████╔╝██║░╚██╗ # ╚══════╝╚═╝╚═╝░░╚══╝░╚═════╝░░░░╚═════╝░╚══════╝╚═╝░░╚═╝░╚════╝░╚═╝░░╚═╝ # # Developed by <NAME> (C) Ling • Black 2020 # @site http://ling.black from typing import List from fastapi import APIRouter, Depends, HTTPException from pydantic import BaseModel from core.response import RequestLimit from database import get_db, DatabaseUtils from database.wow.models import PostModel, PostCommentsModel from wow.interface.entity import PostCategory, Post, PostCategoryCreate, PostCreate, PostLikeCreate, PostCommentCreate from wow.utils.posts import PostsUtils from wow.utils.users import BlizzardUsersUtils router = APIRouter() class TokenArgs(BaseModel): token: str class TokenPostIdArgs(BaseModel): token: str post_id: int class CommentIdAndToken(TokenArgs): comment_id: int class PostAPIList(BaseModel): items: List[Post] count: int class PostAPIListResponse(BaseModel): response: PostAPIList request: RequestLimit # ----------------------------------- # CATEGORIES # ----------------------------------- @router.post( "/categories", response_model=PostCategory, summary='Adds the category' ) def add_category(body: PostCategoryCreate): """ Adds the category :param body: :return: """ blizzard_id = BlizzardUsersUtils.id__safe(body.token) return PostsUtils.add_category(user_id=blizzard_id, url=body.url, title=body.title) @router.get( "/categories", response_model=List[PostCategory], summary='Returns the categories' ) def get_categories(): """ Returns the categories list :return: """ return PostsUtils.get_categories() # ----------------------------------- # POSTS # ----------------------------------- @router.get( "/", response_model=PostAPIListResponse, summary='Returns all the posts' ) def get_posts_all(limit: int = 100, offset: int = 0): return PostsUtils.get_posts_limit( limit=limit, offset=offset ) @router.get( "/category/{category_url}", response_model=PostAPIListResponse, summary='Returns the posts in category' ) def get_posts_all(category_url: int, limit: int = 100, offset: int = 0): """ Returns all the posts by category :param category_url: :param limit: :param offset: :return: """ return PostsUtils.get_posts_by_category_limit( category_id=category_url, limit=limit, offset=offset ) @router.get( "/user/{blizzard_id}", response_model=PostAPIListResponse, summary='Returns the posts by users' ) def get_posts_all(blizzard_id: int, limit: int = 100, offset: int = 0): """ Returns all the posts by category :param blizzard_id: :param limit: :param offset: :return: """ return PostsUtils.get_posts_by_blizzard_id( blizzard_id=blizzard_id, limit=limit, offset=offset ) @router.post( "/like", summary='Likes the post', tags=['Лайки'] ) def like_post(body: PostLikeCreate): blizzard_id = BlizzardUsersUtils.id__safe(body.token) return PostsUtils.add_like( user_id=blizzard_id, post_id=body.post_id, ) @router.post( "/unlike", summary='Unlikes the post', tags=['Лайки'] ) def like_post(body: PostLikeCreate): blizzard_id = BlizzardUsersUtils.id__safe(body.token) return PostsUtils.remove_like( user_id=blizzard_id, post_id=body.post_id, ) @router.post( "/comment", summary='Adds the comment', tags=['Комментарии'] ) def like_post(body: PostCommentCreate): blizzard_id = BlizzardUsersUtils.id__safe(body.token) return PostsUtils.add_comment( user_id=blizzard_id, post_id=body.post_id, reply_id=body.reply_id, text=body.text, ) @router.delete( "/comment", summary='Removes the comment', tags=['Комментарии'] ) def removes_post(body: CommentIdAndToken, db=Depends(get_db)): blizzard_id = BlizzardUsersUtils.id__safe(body.token) com = db.query(PostCommentsModel).filter(PostCommentsModel.id == body.comment_id).filter( PostCommentsModel.user_id == blizzard_id) if com.count() > 0: com.delete() db.commit() return True return False @router.post( "/", response_model=Post, summary='Adds the post' ) def add_post(body: PostCreate): """ Adds the post item :param body: :return: """ blizzard_id = BlizzardUsersUtils.id__safe(body.token) return PostsUtils.add_post( user_id=blizzard_id, category_id=body.category_id, title=body.title, content=body.content, tags=body.tags, image=body.image ) @router.delete( "/{post_id}", summary='Deletes the post' ) def delete_post(post_id: int, body: TokenArgs, db=Depends(get_db)): blizzard_id = BlizzardUsersUtils.id__safe(body.token) q = db.query(PostModel).filter(PostModel.id == post_id).filter(PostModel.user_id == blizzard_id) if q.count() == 0: raise HTTPException(status_code=404, detail='Post is undefined') return DatabaseUtils.remove_query(db, q) @router.post( "/{post_id}", summary='Edits the post' ) def edit_post(post_id: int, body: PostCreate, db=Depends(get_db)): blizzard_id = BlizzardUsersUtils.id__safe(body.token) q = db.query(PostModel).filter(PostModel.id == post_id).filter(PostModel.user_id == blizzard_id) if q.count() == 0: raise HTTPException(status_code=404, detail='Post is undefined') q.update({ 'title': body.title, 'content': body.content, 'category_id': body.category_id, 'image': body.image, 'tags': body.tags, }) db.commit() return True @router.get( "/{post_id}", response_model=Post, summary='Returns the post' ) def get_post(post_id: int, db=Depends(get_db)): return db.query(PostModel).filter(PostModel.id == post_id).first()
[ "wow.utils.posts.PostsUtils.get_posts_by_blizzard_id", "wow.utils.posts.PostsUtils.add_category", "fastapi.HTTPException", "wow.utils.posts.PostsUtils.get_categories", "fastapi.Depends", "wow.utils.posts.PostsUtils.get_posts_by_category_limit", "fastapi.APIRouter", "wow.utils.users.BlizzardUsersUtils.id__safe", "wow.utils.posts.PostsUtils.add_comment", "wow.utils.posts.PostsUtils.add_post", "database.DatabaseUtils.remove_query", "wow.utils.posts.PostsUtils.remove_like", "wow.utils.posts.PostsUtils.add_like", "wow.utils.posts.PostsUtils.get_posts_limit" ]
[((1530, 1541), 'fastapi.APIRouter', 'APIRouter', ([], {}), '()\n', (1539, 1541), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((2208, 2247), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (2235, 2247), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((2259, 2335), 'wow.utils.posts.PostsUtils.add_category', 'PostsUtils.add_category', ([], {'user_id': 'blizzard_id', 'url': 'body.url', 'title': 'body.title'}), '(user_id=blizzard_id, url=body.url, title=body.title)\n', (2282, 2335), False, 'from wow.utils.posts import PostsUtils\n'), ((2542, 2569), 'wow.utils.posts.PostsUtils.get_categories', 'PostsUtils.get_categories', ([], {}), '()\n', (2567, 2569), False, 'from wow.utils.posts import PostsUtils\n'), ((2835, 2889), 'wow.utils.posts.PostsUtils.get_posts_limit', 'PostsUtils.get_posts_limit', ([], {'limit': 'limit', 'offset': 'offset'}), '(limit=limit, offset=offset)\n', (2861, 2889), False, 'from wow.utils.posts import PostsUtils\n'), ((3258, 3355), 'wow.utils.posts.PostsUtils.get_posts_by_category_limit', 'PostsUtils.get_posts_by_category_limit', ([], {'category_id': 'category_url', 'limit': 'limit', 'offset': 'offset'}), '(category_id=category_url, limit=\n limit, offset=offset)\n', (3296, 3355), False, 'from wow.utils.posts import PostsUtils\n'), ((3717, 3809), 'wow.utils.posts.PostsUtils.get_posts_by_blizzard_id', 'PostsUtils.get_posts_by_blizzard_id', ([], {'blizzard_id': 'blizzard_id', 'limit': 'limit', 'offset': 'offset'}), '(blizzard_id=blizzard_id, limit=limit,\n offset=offset)\n', (3752, 3809), False, 'from wow.utils.posts import PostsUtils\n'), ((3971, 4010), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (3998, 4010), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((4022, 4084), 'wow.utils.posts.PostsUtils.add_like', 'PostsUtils.add_like', ([], {'user_id': 'blizzard_id', 'post_id': 'body.post_id'}), '(user_id=blizzard_id, post_id=body.post_id)\n', (4041, 4084), False, 'from wow.utils.posts import PostsUtils\n'), ((4247, 4286), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (4274, 4286), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((4298, 4363), 'wow.utils.posts.PostsUtils.remove_like', 'PostsUtils.remove_like', ([], {'user_id': 'blizzard_id', 'post_id': 'body.post_id'}), '(user_id=blizzard_id, post_id=body.post_id)\n', (4320, 4363), False, 'from wow.utils.posts import PostsUtils\n'), ((4536, 4575), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (4563, 4575), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((4587, 4697), 'wow.utils.posts.PostsUtils.add_comment', 'PostsUtils.add_comment', ([], {'user_id': 'blizzard_id', 'post_id': 'body.post_id', 'reply_id': 'body.reply_id', 'text': 'body.text'}), '(user_id=blizzard_id, post_id=body.post_id, reply_id=\n body.reply_id, text=body.text)\n', (4609, 4697), False, 'from wow.utils.posts import PostsUtils\n'), ((4873, 4888), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (4880, 4888), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((4909, 4948), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (4936, 4948), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((5395, 5434), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (5422, 5434), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((5446, 5594), 'wow.utils.posts.PostsUtils.add_post', 'PostsUtils.add_post', ([], {'user_id': 'blizzard_id', 'category_id': 'body.category_id', 'title': 'body.title', 'content': 'body.content', 'tags': 'body.tags', 'image': 'body.image'}), '(user_id=blizzard_id, category_id=body.category_id,\n title=body.title, content=body.content, tags=body.tags, image=body.image)\n', (5465, 5594), False, 'from wow.utils.posts import PostsUtils\n'), ((5765, 5780), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (5772, 5780), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((5801, 5840), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (5828, 5840), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((6049, 6082), 'database.DatabaseUtils.remove_query', 'DatabaseUtils.remove_query', (['db', 'q'], {}), '(db, q)\n', (6075, 6082), False, 'from database import get_db, DatabaseUtils\n'), ((6197, 6212), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (6204, 6212), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((6233, 6272), 'wow.utils.users.BlizzardUsersUtils.id__safe', 'BlizzardUsersUtils.id__safe', (['body.token'], {}), '(body.token)\n', (6260, 6272), False, 'from wow.utils.users import BlizzardUsersUtils\n'), ((6804, 6819), 'fastapi.Depends', 'Depends', (['get_db'], {}), '(get_db)\n', (6811, 6819), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((5979, 6037), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Post is undefined"""'}), "(status_code=404, detail='Post is undefined')\n", (5992, 6037), False, 'from fastapi import APIRouter, Depends, HTTPException\n'), ((6411, 6469), 'fastapi.HTTPException', 'HTTPException', ([], {'status_code': '(404)', 'detail': '"""Post is undefined"""'}), "(status_code=404, detail='Post is undefined')\n", (6424, 6469), False, 'from fastapi import APIRouter, Depends, HTTPException\n')]
import datetime import pickle import tensorflow as tf def save_checkpoint(model, current_step, epoch, output_path, **kwargs): """ Save TF Vocoder model """ state = { 'model': model.weights, 'step': current_step, 'epoch': epoch, 'date': datetime.date.today().strftime("%B %d, %Y"), } state.update(kwargs) pickle.dump(state, open(output_path, 'wb')) def load_checkpoint(model, checkpoint_path): """ Load TF Vocoder model """ checkpoint = pickle.load(open(checkpoint_path, 'rb')) chkp_var_dict = {var.name: var.numpy() for var in checkpoint['model']} tf_vars = model.weights for tf_var in tf_vars: layer_name = tf_var.name chkp_var_value = chkp_var_dict[layer_name] tf.keras.backend.set_value(tf_var, chkp_var_value) return model
[ "datetime.date.today", "tensorflow.keras.backend.set_value" ]
[((763, 813), 'tensorflow.keras.backend.set_value', 'tf.keras.backend.set_value', (['tf_var', 'chkp_var_value'], {}), '(tf_var, chkp_var_value)\n', (789, 813), True, 'import tensorflow as tf\n'), ((278, 299), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (297, 299), False, 'import datetime\n')]
import sys import copy import matplotlib import matplotlib.pyplot as plt import seaborn as sns from collections import Counter from .utils import * import numpy as np import pandas as pd class plotFeatures: usage = """Produces different feature plots given a data table and peak table. Initial_Parameters ---------- peaktable : Pandas dataframe containing peak data. Must contain 'Name' and 'Label'. datatable : Pandas dataframe containing matrix of values to plot (N samples x N features). Columns/features must be same as 'Name' from Peak Table. Methods ------- set_params : Set parameters - plot_type: The type of plot. Either "point", "violin", "box", "swarm", "violin-swarm" or "box-swarm" (default: 'point') column_numbers: The number of columns to display in the plots (default: 4) log_data: Perform a log ('natural', base 2 or base 10) on all data (default: (True, 2)) scale_data: Scale the data ('standard' (centers to the mean and scales to unit variance), 'minmax' (scales between 0 and 1), 'maxabs' (scales to the absolute maximum value), 'robust' (centers to the median and scales to between 25th and 75th quantile range) (default: (True, 'minmax')) impute_data: Impute any missing values using KNN impute with a set number of nearest neighbours (default: (True, 3)) style: Set the matplotlib style (see https://matplotlib.org/stable/tutorials/introductory/customizing.html) (default: 'seaborn-white') transparent: Setting to 'True' will make the background transparent (default: False) figSize: The figure size as a tuple (width,height) (default: (15,10)) fontSize: The font size for all text (default: 12) colour_palette: The colour palette to use for the plot (default: None) y_axis_label: The label to customise the y axis (default: None) x_axis_rotation: Rotate the x axis labels this number of degrees (default: 0) group_column_name: The group column name used in the datatable (e.g. 'Class') (default: None) point_estimator: The statistical function to use for the point plot. Either "mean" or "median" (default: 'mean') point_ci: The bootstrapped confidence interval for the point plot. Can also be standard deviation ("sd") (default: 95) violin_distribution_type: The representation of the distribution of data points within the violin plot. Either "quartile", "box", "point", "stick" or None (default: 'box') violin_width_scale: The method used to scale the width of the violin plot. Either "area", "count" or "width" (default: "width") box_iqr: The proportion past the lower and upper quartiles to extend the plot whiskers for the box plot. Points outside this range will be identified as outliers (default: 1.5) saveImage: Setting to 'True' will save the image to file (default: True) imageFileName: The image file name to save to (default: [plot_type]_features.png') dpi: The number of Dots Per Inch (DPI) for the image (default: 200) help : Print this help text plot : Generates feature plots """ def __init__(self, peaktable, datatable): peaktable = self.__checkPeakTable(self.__checkData(peaktable)) datatable = self.__checkData(datatable) # Slice the meta-data, and select only peaks from the peaktable for processing, and add the meta-data back meta = datatable.T[~datatable.T.index.isin(peaktable['Name'])].T.reset_index(drop=True) dat = datatable[peaktable['Name']].reset_index() datatable = pd.concat([meta, dat], axis=1).set_index(['index']) datatable.index.name = None self.__peaktable = peaktable # Search for duplicate labels and amend with a suffix, to avoid issues when relabelling the datatable labels = copy.deepcopy(list(peaktable['Label'])) label_counts = {k: v for k, v in Counter(labels).items() if v > 1} for i in reversed(range(len(labels))): item = str(labels[i]) if item in label_counts and label_counts[item]: labels[i] += "_" + str(label_counts[item]) label_counts[item] -= 1 #Label datatable with peak labels instead of names for ease of feature plotting col_label_dict = dict(zip(list(peaktable['Name']), labels)) datatable.rename(columns=col_label_dict, inplace=True) self.__peak_labels = labels self.__datatable = datatable self.set_params() def help(self): print(plotFeatures.usage) def set_params(self, plot_type='point', column_numbers=4, log_data=(True, 2), scale_data=(True, 'minmax'), impute_data=(True, 3), style='seaborn-white', transparent=False, figSize = (15, 10), fontSize = 12, colour_palette=None, y_axis_label=None, x_axis_rotation=0, group_column_name=None, point_estimator='mean', point_ci=95, violin_distribution_type='box', violin_width_scale='width', box_iqr=1.5, saveImage=True, imageFileName='_features.png', dpi = 200): plot_type, column_numbers, log_data, scale_data, impute_data, style, transparent, figSize, fontSize, colour_palette, y_axis_label, x_axis_rotation, group_column_name, point_estimator, point_ci, violin_distribution_type, violin_width_scale, box_iqr, saveImage, imageFileName, dpi = self.__paramCheck(plot_type, column_numbers, log_data, scale_data, impute_data, style, transparent, figSize, fontSize, colour_palette, y_axis_label, x_axis_rotation, group_column_name, point_estimator, point_ci, violin_distribution_type, violin_width_scale, box_iqr, saveImage, imageFileName, dpi) self.__plot_type = plot_type; self.__column_numbers = column_numbers; self.__log_data = log_data; self.__scale_data = scale_data; self.__impute_data = impute_data; self.__style = style; self.__transparent = transparent; self.__figSize = figSize; self.__fontSize = fontSize; self.__colour_palette = colour_palette; self.__y_axis_label = y_axis_label; self.__x_axis_rotation = x_axis_rotation; self.__group_column_name = group_column_name; self.__point_estimator = point_estimator; self.__point_ci = point_ci; self.__violin_distribution_type = violin_distribution_type; self.__violin_width_scale = violin_width_scale; self.__box_iqr = box_iqr; self.__saveImage = saveImage; self.__imageFileName = imageFileName; self.__dpi = dpi; def plot(self): datatable = copy.deepcopy(self.__datatable) labels = self.__peak_labels plot_type = self.__plot_type group_column_name = self.__group_column_name column_numbers = self.__column_numbers colour_palette = self.__colour_palette point_ci = self.__point_ci point_estimator = self.__point_estimator log_data = self.__log_data scale_data = self.__scale_data impute_data = self.__impute_data x_axis_rotation = self.__x_axis_rotation y_axis_label = self.__y_axis_label violin_distribution_type = self.__violin_distribution_type violin_width_scale = self.__violin_width_scale box_iqr = self.__box_iqr imageFileName = self.__imageFileName saveImage = self.__saveImage fontSize = self.__fontSize style = self.__style transparent = self.__transparent dpi = self.__dpi figSize = self.__figSize meta = datatable.T[~datatable.T.index.isin(labels)].T.reset_index(drop=True) X = datatable[labels].reset_index(drop=True) (log_bool, log_base) = log_data; if log_bool: if isinstance(log_base, str) and log_base.lower() == 'natural': X = X.applymap(np.log); elif log_base == 2: X = X.applymap(np.log2); elif log_base == 10: X = X.applymap(np.log10); else: print("Error: The chosen log type is invalid.") sys.exit() (scale_bool, scale_type) = scale_data if scale_bool: if isinstance(scale_type, str) and scale_type.lower() == 'standard': X = scaler(X, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'minmax': X = scaler(X, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'maxabs': X = scaler(X, type=scale_type.lower()).reset_index(drop=True) elif isinstance(scale_type, str) and scale_type.lower() == 'robust': X = scaler(X, type=scale_type.lower()).reset_index(drop=True) else: print("Error: The chosen scale type is invalid.") sys.exit() (impute_bool, k) = impute_data; if impute_bool: X = imputeData(X, k=k).reset_index(drop=True) if not isinstance(X, pd.DataFrame): X = pd.DataFrame(X, columns=labels) # Add the meta data back in with the logged, scaled, or imputed data datatable = pd.concat([meta, X], axis=1).reset_index(drop=True) with plt.style.context(style): fig, axes = plt.subplots(nrows=int(np.ceil(float(len(labels) / column_numbers))), ncols=column_numbers, sharey=True, figsize=figSize) if plot_type == 'point': for peak_index, peak in enumerate(labels): if point_estimator.lower() == 'mean': point_estimator = 'Mean' ax = sns.pointplot(data=datatable, x=group_column_name, y=peak, estimator=np.nanmean, capsize=0.1, ci=point_ci, palette=colour_palette, ax=axes.flat[peak_index]) elif point_estimator.lower() == 'median': point_estimator = 'Median' ax = sns.pointplot(data=datatable, x=group_column_name, y=peak, estimator=np.nanmedian, capsize=0.1, ci=point_ci, palette=colour_palette, ax=axes.flat[peak_index]) else: print("Error: Invalid point plot estimator type.") sys.exit() ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) if log_bool: if scale_data: if isinstance(point_ci, str): if point_ci == 'sd': ax.set_title(peak + ' within SD', fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) {} Peak Area within SD'.format(log_base, scale_type, point_estimator), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: ax.set_title(peak + ' with {}% CI'.format(point_ci), fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) {} Peak Area & {}% CI'.format(log_base, scale_type, point_estimator, point_ci), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if isinstance(point_ci, str): if point_ci == 'sd': ax.set_title(peak + ' within SD', fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Log({}) {} Peak Area within SD'.format(log_base, point_estimator), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: ax.set_title(peak + ' with {}% CI'.format(point_ci), fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Log({}) {} Peak Area & {}% CI'.format(log_base, point_estimator, point_ci), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if isinstance(point_ci, str): if point_ci == 'sd': ax.set_title(peak + ' within SD', fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Scaled ({}) {} Peak Area within SD'.format(scale_type, point_estimator), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: ax.set_title(peak + ' with {}% CI'.format(point_ci), fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('Scaled ({}) {} Peak Area & {}% CI'.format(scale_type, point_estimator, point_ci), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if isinstance(point_ci, str): if point_ci == 'sd': ax.set_title(peak + ' within SD', fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('{} Peak Area within SD'.format(point_estimator), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: ax.set_title(peak + ' with {}% CI'.format(point_ci), fontsize=fontSize) ax.set_xlabel('') if y_axis_label is None: ax.set_ylabel('{} Peak Area & {}% CI'.format(point_estimator, point_ci), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) elif plot_type.lower() == 'violin': for peak_index, peak in enumerate(labels): ax = sns.violinplot(data=datatable, x=group_column_name, y=peak, linewidth=1, inner=violin_distribution_type, scale=violin_width_scale, palette=colour_palette, ax=axes.flat[peak_index]) ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) ax.set_title(peak, fontsize=fontSize) ax.set_xlabel('') if log_bool: if scale_data: if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) Peak Area'.format(log_base, scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Log({}) Peak Area'.format(log_base), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if y_axis_label is None: ax.set_ylabel('Scaled ({}) Peak Area'.format(scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Peak Area', fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) elif plot_type.lower() == 'box': for peak_index, peak in enumerate(labels): ax = sns.boxplot(data=datatable, x=group_column_name, y=peak, palette=colour_palette, whis=box_iqr, ax=axes.flat[peak_index]) ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) ax.set_title(peak, fontsize=fontSize) ax.set_xlabel('') if log_bool: if scale_data: if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) Peak Area'.format(log_base, scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Log({}) Peak Area'.format(log_base), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if y_axis_label is None: ax.set_ylabel('Scaled ({}) Peak Area'.format(scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Peak Area', fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) elif plot_type.lower() == 'swarm': for peak_index, peak in enumerate(labels): ax = sns.swarmplot(data=datatable, x=group_column_name, y=peak, size=10, palette=colour_palette, ax=axes.flat[peak_index]) ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) ax.set_title(peak, fontsize=fontSize) ax.set_xlabel('') if log_bool: if scale_data: if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) Peak Area'.format(log_base, scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Log({}) Peak Area'.format(log_base), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if y_axis_label is None: ax.set_ylabel('Scaled ({}) Peak Area'.format(scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Peak Area', fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) elif plot_type.lower() == 'violin-swarm': for peak_index, peak in enumerate(labels): ax = sns.violinplot(data=datatable, x=group_column_name, y=peak, linewidth=1, inner=None, scale=violin_width_scale, palette=colour_palette, ax=axes.flat[peak_index]) ax = sns.swarmplot(data=datatable, x=group_column_name, y=peak, color="white", edgecolor="gray", ax=axes.flat[peak_index]) ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) ax.set_title(peak, fontsize=fontSize) ax.set_xlabel('') if log_bool: if scale_data: if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) Peak Area'.format(log_base, scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Log({}) Peak Area'.format(log_base), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if y_axis_label is None: ax.set_ylabel('Scaled ({}) Peak Area'.format(scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Peak Area', fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) elif plot_type.lower() == 'box-swarm': for peak_index, peak in enumerate(labels): ax = sns.boxplot(data=datatable, x=group_column_name, y=peak, palette=colour_palette, whis=np.inf, ax=axes.flat[peak_index]) ax = sns.swarmplot(data=datatable, x=group_column_name, y=peak, color="0.2", ax=axes.flat[peak_index]) ax.tick_params(labelrotation=x_axis_rotation, labelsize=fontSize) ax.set_title(peak, fontsize=fontSize) ax.set_xlabel('') if log_bool: if scale_data: if y_axis_label is None: ax.set_ylabel('Log({}) scaled ({}) Peak Area'.format(log_base, scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Log({}) Peak Area'.format(log_base), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if scale_data: if y_axis_label is None: ax.set_ylabel('Scaled ({}) Peak Area'.format(scale_type), fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) else: if y_axis_label is None: ax.set_ylabel('Peak Area', fontsize=fontSize) else: ax.set_ylabel(y_axis_label, fontsize=fontSize) fig.tight_layout(h_pad=5, w_pad=2) if saveImage: plt.savefig(plot_type + 'Plot' + imageFileName, dpi=dpi, transparent=transparent) plt.show() def __paramCheck(self, plot_type, column_numbers, log_data, scale_data, impute_data, style, transparent, figSize, fontSize, colour_palette, y_axis_label, x_axis_rotation, group_column_name, point_estimator, point_ci, violin_distribution_type, violin_width_scale, box_iqr, saveImage, imageFileName, dpi): cmap_list = list(matplotlib.cm.cmaps_listed) + list(matplotlib.cm.datad) cmap_list_r = [cmap + '_r' for cmap in cmap_list] cmap_list = cmap_list + cmap_list_r plot_types = ['point', 'violin', 'box', 'swarm', 'violin-swarm', 'box-swarm'] estimator_types = ['mean', 'median'] datatable = self.__datatable if plot_type.lower() not in plot_types: print("Error: Plot type is not valid. Choose one of the following: {}.".format(', '.join(plot_types))) sys.exit() if not isinstance(column_numbers, int): print("Error: Column numbers is not valid. Choose a integer value.") sys.exit() if not isinstance(log_data, tuple): print("Error: Log data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 2).") sys.exit() else: (log_bool, log_base) = log_data if not isinstance(log_bool, bool): print("Error: Log data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() base_types = ['natural', 2, 10] if isinstance(log_base, str): log_base = log_base.lower() if log_base not in base_types: print("Error: Log data second tuple item is not valid. Choose one of {}.".format(', '.join(base_types))) sys.exit() if not isinstance(scale_data, tuple): print("Error: Scale data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 'standard').") sys.exit() else: (scale_bool, scale_type) = scale_data if not isinstance(scale_bool, bool): print("Error: Scale data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() scale_types = ['standard', 'minmax', 'maxabs', 'robust'] if isinstance(scale_type, str): scale_type = scale_type.lower() if scale_type not in scale_types: print("Error: Scale data second tuple item is not valid. Choose one of {}.".format(', '.join(scale_types))) sys.exit() if not isinstance(impute_data, tuple): print("Error: Impute data type if not a tuple. Please ensure the value is a tuple (e.g. (True, 3).") sys.exit() else: (impute_bool, k) = impute_data if not isinstance(impute_bool, bool): print("Error: Impute data first tuple item is not a boolean value. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(k, float): if not isinstance(k, int): print("Error: Impute data second tuple item, the nearest neighbours k value, is not valid. Choose a float or integer value.") sys.exit() if not isinstance(style, str): print("Error: Seaborn style is not valid. Choose a string value.") sys.exit() else: styleList = list(plt.style.available) if style not in styleList: print("Error: Chosen style is not valid. Choose one of the following: {}.".format(', '.join(styleList))) sys.exit() if not isinstance(transparent, bool): print("Error: The transparent value is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(figSize, tuple): print("Error: Figure size is not valid. Choose a tuple of length 2.") sys.exit() else: for length in figSize: if not isinstance(length, float): if not isinstance(length, int): print("Error: Figure size value is not valid. Choose a float or integer value.") sys.exit() if not isinstance(fontSize, float): if not isinstance(fontSize, int): print("Error: Font size is not valid. Choose a float or integer value.") sys.exit() if colour_palette is not None: if not isinstance(colour_palette, str): print("Error: The colour palette is not valid. Choose a string value.") sys.exit() else: if colour_palette not in cmap_list: print("Error: The colour palette is not valid. Choose one of the following: {}.".format(', '.join(cmap_list))) sys.exit() if y_axis_label is not None: if isinstance(y_axis_label, str): print("Error: The y axis label is not valid. Choose a string value.") sys.exit() if not isinstance(x_axis_rotation, float): if not isinstance(x_axis_rotation, int): print("Error: The x axis rotation value is not valid. Choose a float or integer value.") sys.exit() if ((x_axis_rotation < 0) or (x_axis_rotation > 360)): print("Error: The x axis rotation value is not valid. Choose a value >=0 or <= 360.") sys.exit() if group_column_name is not None: if not isinstance(group_column_name, str): print("Error: Group column name is not valid. Choose a string value.") sys.exit() else: if group_column_name not in list(datatable.columns): print("Error: Group column name not valid. Choose one of {}.".format(', '.join(list(datatable.columns)))) sys.exit() if point_estimator.lower() not in estimator_types: print("Error: The chosen point plot estimator is invalid. Choose one of \"{}\".".format('\" or \"'.join(estimator_types))) sys.exit() if isinstance(point_ci, str): if point_ci != 'sd': print("Error: The string value for point plot ci is invalid. Choose a float, integer or 'sd' value for standard deviation.") sys.exit() else: if not isinstance(point_ci, float): if not isinstance(point_ci, int): print("Error: The value for point plot ci is invalid. Choose a float, integer or 'sd' value for standard deviation.") sys.exit() violin_distribution_types = ['quartile', 'box', 'point', 'stick', None] violin_width_scale_types = ['area', 'count', 'width'] if plot_type.lower() == "violin": if violin_distribution_type not in violin_distribution_types: print("Error: Violin distribution type not valid. Choose one of the following: {}.".format(', '.join(violin_distribution_types))) sys.exit() if violin_width_scale not in violin_width_scale_types: print("Error: Violin width scale type not valid. Choose one of the following: {}.".format(', '.join(violin_width_scale_types))) sys.exit() if plot_type.lower == "box": if not isinstance(box_iqr, float): if not isinstance(box_iqr, int): print( "Error: The box plot interquartile range extension beyond whiskers is not valid. Choose a float or integer value.") sys.exit() if not isinstance(saveImage, bool): print("Error: Save image is not valid. Choose either \"True\" or \"False\".") sys.exit() if not isinstance(imageFileName, str): print("Error: Image file name is not valid. Choose a string value.") sys.exit() if not isinstance(dpi, float): if not isinstance(dpi, int): print("Error: Dpi is not valid. Choose a float or integer value.") sys.exit() return plot_type, column_numbers, log_data, scale_data, impute_data, style, transparent, figSize, fontSize, colour_palette, y_axis_label, x_axis_rotation, group_column_name, point_estimator, point_ci, violin_distribution_type, violin_width_scale, box_iqr, saveImage, imageFileName, dpi def __checkData(self, df): if not isinstance(df, pd.DataFrame): print("Error: A dataframe was not entered. Please check your data.") return df def __checkPeakTable(self, PeakTable): if "Name" not in PeakTable.columns: print("Error: \"Name\" column not in Peak Table. Please check your data.") sys.exit() if "Label" not in PeakTable.columns: print("Error: \"Label\" column not in Peak Table. Please check your data.") sys.exit() # Do not assume the peaks/nodes have been indexed correctly. Remove any index columns and reindex. column_list = [column.lower() for column in PeakTable.columns] if 'idx' in column_list: index = column_list.index('idx') column_name = PeakTable.columns[index] PeakTable = PeakTable.drop(columns=[column_name]) if 'index' in column_list: index = column_list.index('index') column_name = PeakTable.columns[index] PeakTable = PeakTable.drop(columns=[column_name]) PeakTable = PeakTable.reset_index(drop=True) PeakTable.index.name = 'Idx' PeakTable = PeakTable.reset_index() return PeakTable
[ "copy.deepcopy", "matplotlib.pyplot.savefig", "collections.Counter", "seaborn.boxplot", "matplotlib.pyplot.style.context", "seaborn.violinplot", "sys.exit", "pandas.DataFrame", "seaborn.pointplot", "pandas.concat", "seaborn.swarmplot", "matplotlib.pyplot.show" ]
[((6879, 6910), 'copy.deepcopy', 'copy.deepcopy', (['self.__datatable'], {}), '(self.__datatable)\n', (6892, 6910), False, 'import copy\n'), ((9401, 9432), 'pandas.DataFrame', 'pd.DataFrame', (['X'], {'columns': 'labels'}), '(X, columns=labels)\n', (9413, 9432), True, 'import pandas as pd\n'), ((9597, 9621), 'matplotlib.pyplot.style.context', 'plt.style.context', (['style'], {}), '(style)\n', (9614, 9621), True, 'import matplotlib.pyplot as plt\n'), ((24435, 24445), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (24443, 24445), True, 'import matplotlib.pyplot as plt\n'), ((25285, 25295), 'sys.exit', 'sys.exit', ([], {}), '()\n', (25293, 25295), False, 'import sys\n'), ((25438, 25448), 'sys.exit', 'sys.exit', ([], {}), '()\n', (25446, 25448), False, 'import sys\n'), ((25616, 25626), 'sys.exit', 'sys.exit', ([], {}), '()\n', (25624, 25626), False, 'import sys\n'), ((26383, 26393), 'sys.exit', 'sys.exit', ([], {}), '()\n', (26391, 26393), False, 'import sys\n'), ((27190, 27200), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27198, 27200), False, 'import sys\n'), ((27851, 27861), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27859, 27861), False, 'import sys\n'), ((28274, 28284), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28282, 28284), False, 'import sys\n'), ((28423, 28433), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28431, 28433), False, 'import sys\n'), ((29979, 29989), 'sys.exit', 'sys.exit', ([], {}), '()\n', (29987, 29989), False, 'import sys\n'), ((30653, 30663), 'sys.exit', 'sys.exit', ([], {}), '()\n', (30661, 30663), False, 'import sys\n'), ((32335, 32345), 'sys.exit', 'sys.exit', ([], {}), '()\n', (32343, 32345), False, 'import sys\n'), ((32487, 32497), 'sys.exit', 'sys.exit', ([], {}), '()\n', (32495, 32497), False, 'import sys\n'), ((33350, 33360), 'sys.exit', 'sys.exit', ([], {}), '()\n', (33358, 33360), False, 'import sys\n'), ((33507, 33517), 'sys.exit', 'sys.exit', ([], {}), '()\n', (33515, 33517), False, 'import sys\n'), ((3901, 3931), 'pandas.concat', 'pd.concat', (['[meta, dat]'], {'axis': '(1)'}), '([meta, dat], axis=1)\n', (3910, 3931), True, 'import pandas as pd\n'), ((9531, 9559), 'pandas.concat', 'pd.concat', (['[meta, X]'], {'axis': '(1)'}), '([meta, X], axis=1)\n', (9540, 9559), True, 'import pandas as pd\n'), ((24340, 24426), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(plot_type + 'Plot' + imageFileName)"], {'dpi': 'dpi', 'transparent': 'transparent'}), "(plot_type + 'Plot' + imageFileName, dpi=dpi, transparent=\n transparent)\n", (24351, 24426), True, 'import matplotlib.pyplot as plt\n'), ((25868, 25878), 'sys.exit', 'sys.exit', ([], {}), '()\n', (25876, 25878), False, 'import sys\n'), ((26192, 26202), 'sys.exit', 'sys.exit', ([], {}), '()\n', (26200, 26202), False, 'import sys\n'), ((26645, 26655), 'sys.exit', 'sys.exit', ([], {}), '()\n', (26653, 26655), False, 'import sys\n'), ((27006, 27016), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27014, 27016), False, 'import sys\n'), ((27447, 27457), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27455, 27457), False, 'import sys\n'), ((28103, 28113), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28111, 28113), False, 'import sys\n'), ((28921, 28931), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28929, 28931), False, 'import sys\n'), ((29128, 29138), 'sys.exit', 'sys.exit', ([], {}), '()\n', (29136, 29138), False, 'import sys\n'), ((29557, 29567), 'sys.exit', 'sys.exit', ([], {}), '()\n', (29565, 29567), False, 'import sys\n'), ((29794, 29804), 'sys.exit', 'sys.exit', ([], {}), '()\n', (29802, 29804), False, 'import sys\n'), ((30191, 30201), 'sys.exit', 'sys.exit', ([], {}), '()\n', (30199, 30201), False, 'import sys\n'), ((30893, 30903), 'sys.exit', 'sys.exit', ([], {}), '()\n', (30901, 30903), False, 'import sys\n'), ((31606, 31616), 'sys.exit', 'sys.exit', ([], {}), '()\n', (31614, 31616), False, 'import sys\n'), ((31845, 31855), 'sys.exit', 'sys.exit', ([], {}), '()\n', (31853, 31855), False, 'import sys\n'), ((32678, 32688), 'sys.exit', 'sys.exit', ([], {}), '()\n', (32686, 32688), False, 'import sys\n'), ((27709, 27719), 'sys.exit', 'sys.exit', ([], {}), '()\n', (27717, 27719), False, 'import sys\n'), ((29360, 29370), 'sys.exit', 'sys.exit', ([], {}), '()\n', (29368, 29370), False, 'import sys\n'), ((30435, 30445), 'sys.exit', 'sys.exit', ([], {}), '()\n', (30443, 30445), False, 'import sys\n'), ((31174, 31184), 'sys.exit', 'sys.exit', ([], {}), '()\n', (31182, 31184), False, 'import sys\n'), ((32177, 32187), 'sys.exit', 'sys.exit', ([], {}), '()\n', (32185, 32187), False, 'import sys\n'), ((4236, 4251), 'collections.Counter', 'Counter', (['labels'], {}), '(labels)\n', (4243, 4251), False, 'from collections import Counter\n'), ((8387, 8397), 'sys.exit', 'sys.exit', ([], {}), '()\n', (8395, 8397), False, 'import sys\n'), ((10003, 10169), 'seaborn.pointplot', 'sns.pointplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'estimator': 'np.nanmean', 'capsize': '(0.1)', 'ci': 'point_ci', 'palette': 'colour_palette', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, estimator=np.\n nanmean, capsize=0.1, ci=point_ci, palette=colour_palette, ax=axes.flat\n [peak_index])\n', (10016, 10169), True, 'import seaborn as sns\n'), ((15428, 15617), 'seaborn.violinplot', 'sns.violinplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'linewidth': '(1)', 'inner': 'violin_distribution_type', 'scale': 'violin_width_scale', 'palette': 'colour_palette', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, linewidth=1,\n inner=violin_distribution_type, scale=violin_width_scale, palette=\n colour_palette, ax=axes.flat[peak_index])\n', (15442, 15617), True, 'import seaborn as sns\n'), ((28714, 28724), 'sys.exit', 'sys.exit', ([], {}), '()\n', (28722, 28724), False, 'import sys\n'), ((9205, 9215), 'sys.exit', 'sys.exit', ([], {}), '()\n', (9213, 9215), False, 'import sys\n'), ((10302, 10470), 'seaborn.pointplot', 'sns.pointplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'estimator': 'np.nanmedian', 'capsize': '(0.1)', 'ci': 'point_ci', 'palette': 'colour_palette', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, estimator=np.\n nanmedian, capsize=0.1, ci=point_ci, palette=colour_palette, ax=axes.\n flat[peak_index])\n', (10315, 10470), True, 'import seaborn as sns\n'), ((10586, 10596), 'sys.exit', 'sys.exit', ([], {}), '()\n', (10594, 10596), False, 'import sys\n'), ((17203, 17328), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'palette': 'colour_palette', 'whis': 'box_iqr', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, palette=\n colour_palette, whis=box_iqr, ax=axes.flat[peak_index])\n', (17214, 17328), True, 'import seaborn as sns\n'), ((18920, 19042), 'seaborn.swarmplot', 'sns.swarmplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'size': '(10)', 'palette': 'colour_palette', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, size=10, palette\n =colour_palette, ax=axes.flat[peak_index])\n', (18933, 19042), True, 'import seaborn as sns\n'), ((20640, 20809), 'seaborn.violinplot', 'sns.violinplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'linewidth': '(1)', 'inner': 'None', 'scale': 'violin_width_scale', 'palette': 'colour_palette', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, linewidth=1,\n inner=None, scale=violin_width_scale, palette=colour_palette, ax=axes.\n flat[peak_index])\n', (20654, 20809), True, 'import seaborn as sns\n'), ((20826, 20947), 'seaborn.swarmplot', 'sns.swarmplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'color': '"""white"""', 'edgecolor': '"""gray"""', 'ax': 'axes.flat[peak_index]'}), "(data=datatable, x=group_column_name, y=peak, color='white',\n edgecolor='gray', ax=axes.flat[peak_index])\n", (20839, 20947), True, 'import seaborn as sns\n'), ((22543, 22667), 'seaborn.boxplot', 'sns.boxplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'palette': 'colour_palette', 'whis': 'np.inf', 'ax': 'axes.flat[peak_index]'}), '(data=datatable, x=group_column_name, y=peak, palette=\n colour_palette, whis=np.inf, ax=axes.flat[peak_index])\n', (22554, 22667), True, 'import seaborn as sns\n'), ((22688, 22790), 'seaborn.swarmplot', 'sns.swarmplot', ([], {'data': 'datatable', 'x': 'group_column_name', 'y': 'peak', 'color': '"""0.2"""', 'ax': 'axes.flat[peak_index]'}), "(data=datatable, x=group_column_name, y=peak, color='0.2', ax=\n axes.flat[peak_index])\n", (22701, 22790), True, 'import seaborn as sns\n')]