code
stringlengths
22
1.05M
apis
listlengths
1
3.31k
extract_api
stringlengths
75
3.25M
from itertools import chain from django.conf import settings from django.contrib.gis.db import models as gis_models from django.db import models, router, transaction from django.utils import timezone from django.utils.translation import gettext_lazy as _ from ..fields import CleaningJsonField from ..validators import DictListValidator, TextField, TimestampField from .constants import GK25FIN_SRID from .enforcement_domain import EnforcementDomain from .mixins import TimestampedModelMixin from .parking import Parking class PermitArea(TimestampedModelMixin): name = models.CharField(max_length=40, verbose_name=_('name')) domain = models.ForeignKey( EnforcementDomain, on_delete=models.PROTECT, related_name='permit_areas') identifier = models.CharField(max_length=10, verbose_name=_('identifier')) geom = gis_models.MultiPolygonField( srid=GK25FIN_SRID, verbose_name=_('geometry')) permitted_user = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.PROTECT, verbose_name=_("permitted_user")) class Meta: unique_together = [('domain', 'identifier')] ordering = ('identifier',) def __str__(self): return '{}/{}: {}'.format(self.domain.code, self.identifier, self.name) class PermitSeriesQuerySet(models.QuerySet): def active(self): return self.filter(active=True) def latest_active(self): return self.active().order_by('-modified_at').first() def prunable(self, time_limit=None): limit = time_limit or ( timezone.now() - settings.PARKKIHUBI_PERMITS_PRUNABLE_AFTER) return self.filter(created_at__lt=limit, active=False) class PermitSeries(TimestampedModelMixin, models.Model): active = models.BooleanField(default=False) owner = models.ForeignKey( settings.AUTH_USER_MODEL, on_delete=models.PROTECT, verbose_name=_("owner")) objects = PermitSeriesQuerySet.as_manager() class Meta: ordering = ('created_at', 'id') verbose_name = _("permit series") verbose_name_plural = _("permit series") @classmethod def delete_prunable_series(cls, time_limit=None): prunable = cls.objects.prunable(time_limit) Permit.objects.filter(series__in=prunable).delete() prunable.delete() def __str__(self): return str(self.id) class PermitQuerySet(models.QuerySet): def active(self): return self.filter(series__active=True) def by_time(self, timestamp): lookup_items = PermitLookupItem.objects.by_time(timestamp) return self.filter(lookup_items__in=lookup_items).distinct() def by_subject(self, registration_number): lookup_items = PermitLookupItem.objects.by_subject(registration_number) return self.filter(lookup_items__in=lookup_items).distinct() def by_area(self, area): lookup_items = PermitLookupItem.objects.by_area(area) return self.filter(lookup_items__in=lookup_items).distinct() def bulk_create(self, permits, *args, **kwargs): for permit in permits: assert isinstance(permit, Permit) permit.full_clean() with transaction.atomic(using=self.db, savepoint=False): created_permits = super().bulk_create(permits, *args, **kwargs) PermitLookupItem.objects.using(self.db).bulk_create( chain(*(x._make_lookup_items() for x in created_permits))) return created_permits class Permit(TimestampedModelMixin, models.Model): domain = models.ForeignKey( EnforcementDomain, on_delete=models.PROTECT, related_name='permits') series = models.ForeignKey(PermitSeries, on_delete=models.PROTECT) external_id = models.CharField(max_length=50, null=True, blank=True) subjects = CleaningJsonField(blank=True, validators=[DictListValidator({ 'start_time': TimestampField(), 'end_time': TimestampField(), 'registration_number': TextField(max_length=20), })]) areas = CleaningJsonField(blank=True, validators=[DictListValidator({ 'start_time': TimestampField(), 'end_time': TimestampField(), 'area': TextField(max_length=10), })]) objects = PermitQuerySet.as_manager() class Meta: unique_together = [('series', 'external_id')] indexes = [ models.Index(fields=['series', 'id']), ] ordering = ('series', 'id') def __str__(self): return 'Permit {id} ({series}{active}/{external_id} {dom})'.format( id=self.id, dom=self.domain.code, series=self.series, active='*' if self.series.active else '', external_id=self.external_id) def save(self, using=None, *args, **kwargs): self.full_clean() using = using or router.db_for_write(type(self), instance=self) with transaction.atomic(using=using, savepoint=False): super(Permit, self).save(using=using, *args, **kwargs) self.lookup_items.all().using(using).delete() new_lookup_items = self._make_lookup_items() PermitLookupItem.objects.using(using).bulk_create(new_lookup_items) def _make_lookup_items(self): for area in self.areas: for subject in self.subjects: max_start_time = max(subject['start_time'], area['start_time']) min_end_time = min(subject['end_time'], area['end_time']) if max_start_time >= min_end_time: continue yield PermitLookupItem( permit=self, registration_number=Parking.normalize_reg_num( subject['registration_number']), area=PermitArea.objects.get(identifier=area['area'], domain=self.domain), start_time=max_start_time, end_time=min_end_time ) class PermitLookupItemQuerySet(models.QuerySet): def active(self): return self.filter(permit__series__active=True) def by_time(self, timestamp): return self.filter(start_time__lte=timestamp, end_time__gte=timestamp) def by_subject(self, registration_number): normalized_reg_num = Parking.normalize_reg_num(registration_number) return self.filter(registration_number=normalized_reg_num) def by_area(self, area): return self.filter(area=area) class PermitLookupItem(models.Model): permit = models.ForeignKey( Permit, related_name="lookup_items", on_delete=models.CASCADE) registration_number = models.CharField(max_length=20) area = models.ForeignKey(PermitArea, on_delete=models.PROTECT, default=None, null=True, blank=True) start_time = models.DateTimeField() end_time = models.DateTimeField() objects = PermitLookupItemQuerySet.as_manager() class Meta: indexes = [ models.Index(fields=[ 'registration_number', 'start_time', 'end_time', 'area', 'permit']), ] ordering = ('registration_number', 'start_time', 'end_time') def __str__(self): return ( '{start_time:%Y-%m-%d %H:%M} -- {end_time:%Y-%m-%d %H:%M} / ' '{registration_number} / {area}' ).format( start_time=self.start_time, end_time=self.end_time, registration_number=self.registration_number, area=self.area.identifier)
[ "django.db.models.Index", "django.db.models.ForeignKey", "django.db.transaction.atomic", "django.utils.translation.gettext_lazy", "django.db.models.BooleanField", "django.utils.timezone.now", "django.db.models.DateTimeField", "django.db.models.CharField" ]
[((646, 742), 'django.db.models.ForeignKey', 'models.ForeignKey', (['EnforcementDomain'], {'on_delete': 'models.PROTECT', 'related_name': '"""permit_areas"""'}), "(EnforcementDomain, on_delete=models.PROTECT, related_name\n ='permit_areas')\n", (663, 742), False, 'from django.db import models, router, transaction\n'), ((1756, 1790), 'django.db.models.BooleanField', 'models.BooleanField', ([], {'default': '(False)'}), '(default=False)\n', (1775, 1790), False, 'from django.db import models, router, transaction\n'), ((3551, 3642), 'django.db.models.ForeignKey', 'models.ForeignKey', (['EnforcementDomain'], {'on_delete': 'models.PROTECT', 'related_name': '"""permits"""'}), "(EnforcementDomain, on_delete=models.PROTECT, related_name\n ='permits')\n", (3568, 3642), False, 'from django.db import models, router, transaction\n'), ((3668, 3725), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PermitSeries'], {'on_delete': 'models.PROTECT'}), '(PermitSeries, on_delete=models.PROTECT)\n', (3685, 3725), False, 'from django.db import models, router, transaction\n'), ((3744, 3798), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(50)', 'null': '(True)', 'blank': '(True)'}), '(max_length=50, null=True, blank=True)\n', (3760, 3798), False, 'from django.db import models, router, transaction\n'), ((6510, 6595), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Permit'], {'related_name': '"""lookup_items"""', 'on_delete': 'models.CASCADE'}), "(Permit, related_name='lookup_items', on_delete=models.CASCADE\n )\n", (6527, 6595), False, 'from django.db import models, router, transaction\n'), ((6626, 6657), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (6642, 6657), False, 'from django.db import models, router, transaction\n'), ((6669, 6766), 'django.db.models.ForeignKey', 'models.ForeignKey', (['PermitArea'], {'on_delete': 'models.PROTECT', 'default': 'None', 'null': '(True)', 'blank': '(True)'}), '(PermitArea, on_delete=models.PROTECT, default=None, null=\n True, blank=True)\n', (6686, 6766), False, 'from django.db import models, router, transaction\n'), ((6779, 6801), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (6799, 6801), False, 'from django.db import models, router, transaction\n'), ((6817, 6839), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {}), '()\n', (6837, 6839), False, 'from django.db import models, router, transaction\n'), ((2035, 2053), 'django.utils.translation.gettext_lazy', '_', (['"""permit series"""'], {}), "('permit series')\n", (2036, 2053), True, 'from django.utils.translation import gettext_lazy as _\n'), ((2084, 2102), 'django.utils.translation.gettext_lazy', '_', (['"""permit series"""'], {}), "('permit series')\n", (2085, 2102), True, 'from django.utils.translation import gettext_lazy as _\n'), ((622, 631), 'django.utils.translation.gettext_lazy', '_', (['"""name"""'], {}), "('name')\n", (623, 631), True, 'from django.utils.translation import gettext_lazy as _\n'), ((817, 832), 'django.utils.translation.gettext_lazy', '_', (['"""identifier"""'], {}), "('identifier')\n", (818, 832), True, 'from django.utils.translation import gettext_lazy as _\n'), ((915, 928), 'django.utils.translation.gettext_lazy', '_', (['"""geometry"""'], {}), "('geometry')\n", (916, 928), True, 'from django.utils.translation import gettext_lazy as _\n'), ((1043, 1062), 'django.utils.translation.gettext_lazy', '_', (['"""permitted_user"""'], {}), "('permitted_user')\n", (1044, 1062), True, 'from django.utils.translation import gettext_lazy as _\n'), ((1895, 1905), 'django.utils.translation.gettext_lazy', '_', (['"""owner"""'], {}), "('owner')\n", (1896, 1905), True, 'from django.utils.translation import gettext_lazy as _\n'), ((3182, 3232), 'django.db.transaction.atomic', 'transaction.atomic', ([], {'using': 'self.db', 'savepoint': '(False)'}), '(using=self.db, savepoint=False)\n', (3200, 3232), False, 'from django.db import models, router, transaction\n'), ((4369, 4406), 'django.db.models.Index', 'models.Index', ([], {'fields': "['series', 'id']"}), "(fields=['series', 'id'])\n", (4381, 4406), False, 'from django.db import models, router, transaction\n'), ((4901, 4949), 'django.db.transaction.atomic', 'transaction.atomic', ([], {'using': 'using', 'savepoint': '(False)'}), '(using=using, savepoint=False)\n', (4919, 4949), False, 'from django.db import models, router, transaction\n'), ((6942, 7034), 'django.db.models.Index', 'models.Index', ([], {'fields': "['registration_number', 'start_time', 'end_time', 'area', 'permit']"}), "(fields=['registration_number', 'start_time', 'end_time',\n 'area', 'permit'])\n", (6954, 7034), False, 'from django.db import models, router, transaction\n'), ((1560, 1574), 'django.utils.timezone.now', 'timezone.now', ([], {}), '()\n', (1572, 1574), False, 'from django.utils import timezone\n')]
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Tests for the union find data structure. """ try: from ..unionfind import UnionFind except ValueError: pass def test_unionfind_basics(): """ Test the basic properties of unionfind. """ u = UnionFind([1, 2, 3]) assert u.in_same_set(1, 2) is False assert u.in_same_set(2, 3) is False u.union(1, 3) assert u.in_same_set(1, 2) is False assert u.in_same_set(3, 1) assert u.get_root(1) == u.get_root(3) def test_unionfind_adding_elements(): """ Test adding operations, mostly syntactic sugar. """ u = UnionFind([1, 2]) u.add(['a', 'b']) assert 1 in u assert 'a' in u def test_unionfind_example(): """ Test on a slightly more invovled example. """ u = UnionFind([1, 2, 3, 4, 5]) u.union(1, 3) u.union(2, 4) assert u.in_same_set(1, 3) assert u.in_same_set(4, 2) assert not u.in_same_set(2, 5) assert not u.in_same_set(2, 1) assert not u.in_same_set(1, 4) u.union(5, 1) assert u.in_same_set(3, 5) def test_unionfind_several(): """ Test that we can take union of more than two elements. """ u = UnionFind([1, 2, 3, 4, 5, 6, 7, 8]) u.union([1, 2, 3]) u.union([4, 5, 6]) u.union([7, 8]) assert u.in_same_set(1, 3) assert u.in_same_set(6, 4) assert u.in_same_set(7, 8) assert not u.in_same_set(2, 5) assert not u.in_same_set(4, 8) def test_unionfind_compression(): """ Test path compression and the union by rank. """ # Test the ranking elements = list(range(100)) u = UnionFind(elements) for i in range(len(elements) - 1): u.union(elements[i], elements[i + 1]) assert max(u._rank.values()) == 1 # Test path compression parent_nodes = list(u._parent.values()) assert all(parent == parent_nodes[0] for parent in parent_nodes) if __name__ == "__main__": import pytest # --durations=10 <- May be used to show potentially slow tests pytest.main(args=['.', '--doctest-modules', '-v'])
[ "pytest.main" ]
[((2112, 2162), 'pytest.main', 'pytest.main', ([], {'args': "['.', '--doctest-modules', '-v']"}), "(args=['.', '--doctest-modules', '-v'])\n", (2123, 2162), False, 'import pytest\n')]
# Generated by Django 3.2.8 on 2021-11-25 17:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('products', '0009_auto_20211125_1846'), ] operations = [ migrations.RemoveField( model_name='product', name='updated_at', ), ]
[ "django.db.migrations.RemoveField" ]
[((228, 291), 'django.db.migrations.RemoveField', 'migrations.RemoveField', ([], {'model_name': '"""product"""', 'name': '"""updated_at"""'}), "(model_name='product', name='updated_at')\n", (250, 291), False, 'from django.db import migrations\n')]
from builtins import str from builtins import range from builtins import object import logging import inspect import os class CustomAttr(object): """This type handles non-flat data-types like int, str, bool. """ def __init__(self, key, value): self._value = value self._key = key def validate(self): pass def post_validation(self): pass class CustomAttrTlsContainer(CustomAttr): def __init__(self, key, value): super(CustomAttrTlsContainer, self).__init__(key, value) def validate(self): return True def post_validation(self): return self._value def validate_custom_attributes(custom_attributes_dict, section, custom_attributes): section_dict = {} if custom_attributes and section in custom_attributes_dict: for key, value in list(custom_attributes.items()): if key in custom_attributes_dict[section]: #Sanitize the value try: type_attr = custom_attributes_dict[section][key]['type'] limits = custom_attributes_dict[section][key]['limits'] if type_attr == 'int': value = int(value) if value in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'str': if len(value) in range(limits[0], limits[1]): section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif type_attr == 'bool': if value in limits: if value == 'True': value = '' elif value == 'False': value = 'no ' section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) elif inspect.isclass(eval(type_attr)): new_custom_attr = eval(type_attr)(key, value) if new_custom_attr.validate(): value = new_custom_attr.post_validation() section_dict.update({key:value}) else: logging.info("Skipping key: %s, value: %s due to" \ "validation failure" % (key, value)) except Exception as e: logging.error(str(e)) continue return section_dict
[ "builtins.range", "logging.info", "builtins.str" ]
[((1296, 1323), 'builtins.range', 'range', (['limits[0]', 'limits[1]'], {}), '(limits[0], limits[1])\n', (1301, 1323), False, 'from builtins import range\n'), ((1444, 1531), 'logging.info', 'logging.info', (["('Skipping key: %s, value: %s due tovalidation failure' % (key, value))"], {}), "('Skipping key: %s, value: %s due tovalidation failure' % (key,\n value))\n", (1456, 1531), False, 'import logging\n'), ((3001, 3007), 'builtins.str', 'str', (['e'], {}), '(e)\n', (3004, 3007), False, 'from builtins import str\n'), ((1650, 1677), 'builtins.range', 'range', (['limits[0]', 'limits[1]'], {}), '(limits[0], limits[1])\n', (1655, 1677), False, 'from builtins import range\n'), ((1798, 1885), 'logging.info', 'logging.info', (["('Skipping key: %s, value: %s due tovalidation failure' % (key, value))"], {}), "('Skipping key: %s, value: %s due tovalidation failure' % (key,\n value))\n", (1810, 1885), False, 'import logging\n'), ((2315, 2402), 'logging.info', 'logging.info', (["('Skipping key: %s, value: %s due tovalidation failure' % (key, value))"], {}), "('Skipping key: %s, value: %s due tovalidation failure' % (key,\n value))\n", (2327, 2402), False, 'import logging\n'), ((2808, 2895), 'logging.info', 'logging.info', (["('Skipping key: %s, value: %s due tovalidation failure' % (key, value))"], {}), "('Skipping key: %s, value: %s due tovalidation failure' % (key,\n value))\n", (2820, 2895), False, 'import logging\n')]
import gdb class TypeCache(object): def __init__(self): self.cache = {} self.intptr_type = False def clear(self): self.cache = {} self.intptr_type = False def get_type(self, typename): if typename in self.cache: return self.cache[typename] try: gdb_type = gdb.lookup_type(typename) self.cache[typename] = gdb_type return gdb_type except: pass try: proto = gdb.parse_and_eval("(%s*)0" % typename) gdb_type = proto.type.target() self.cache[typename] = gdb_type return gdb_type except: pass return None def get_intptr_type(self): if self.intptr_type != False: return self.intptr_type ptr_type = self.get_type("void*") if ptr_type == None: self.intptr_type = None return None ulong_type = self.get_type("unsigned long") if ulong_type == None: self.intptr_type = None return None if ulong_type.sizeof >= ptr_type.sizeof: self.intptr_type = ulong_type return ulong_type ullong_type = self.get_type("unsigned long long") self.intptr_type = ullong_type return ullong_type cache = TypeCache()
[ "gdb.lookup_type", "gdb.parse_and_eval" ]
[((361, 386), 'gdb.lookup_type', 'gdb.lookup_type', (['typename'], {}), '(typename)\n', (376, 386), False, 'import gdb\n'), ((534, 573), 'gdb.parse_and_eval', 'gdb.parse_and_eval', (["('(%s*)0' % typename)"], {}), "('(%s*)0' % typename)\n", (552, 573), False, 'import gdb\n')]
import os import sys directory = sys.argv[1] outfile = open("key_phrases.csv","w") files = {} for filename in os.listdir(directory): text=[] with open(os.path.join(directory, filename)) as f: text=[l.strip() for l in f if len(l.strip())>2] data='' for t in text: if len(t.split()) > 1: data = data+'. '+t.strip() whitelist = set('abcdefghijklmnopqrstuvwxy ABCDEFGHIJKLMNOPQRSTUVWXYZ') answer = ''.join(filter(whitelist.__contains__, data)) answer=' '.join(answer.split()) import rake import operator rake_object = rake.Rake("/home/ashutosh/Sudeshna/RAKE-tutorial/data/stoplists/SmartStoplist.txt", 3,3,1) import pprint pp = pprint.PrettyPrinter() keywords = rake_object.run(answer) for entry in keywords: outfile.write("%s, %s\n" % (entry[0], str(entry[1])) ) outfile.close()
[ "rake.Rake", "os.listdir", "os.path.join", "pprint.PrettyPrinter" ]
[((112, 133), 'os.listdir', 'os.listdir', (['directory'], {}), '(directory)\n', (122, 133), False, 'import os\n'), ((535, 636), 'rake.Rake', 'rake.Rake', (['"""/home/ashutosh/Sudeshna/RAKE-tutorial/data/stoplists/SmartStoplist.txt"""', '(3)', '(3)', '(1)'], {}), "(\n '/home/ashutosh/Sudeshna/RAKE-tutorial/data/stoplists/SmartStoplist.txt',\n 3, 3, 1)\n", (544, 636), False, 'import rake\n'), ((647, 669), 'pprint.PrettyPrinter', 'pprint.PrettyPrinter', ([], {}), '()\n', (667, 669), False, 'import pprint\n'), ((156, 189), 'os.path.join', 'os.path.join', (['directory', 'filename'], {}), '(directory, filename)\n', (168, 189), False, 'import os\n')]
"""Unit tests for helper utilities in :mod:`dftinputgen.utils`.""" import os import pytest from ase import io as ase_io from dftinputgen.utils import get_elem_symbol from dftinputgen.utils import read_crystal_structure from dftinputgen.utils import get_kpoint_grid_from_spacing from dftinputgen.utils import DftInputGeneratorUtilsError test_base_dir = os.path.dirname(__file__) feo_conv_file = os.path.join(test_base_dir, "qe", "files", "feo_conv.vasp") feo_conv = ase_io.read(feo_conv_file) def test_get_elem_symbol(): assert get_elem_symbol("Fe-34") == "Fe" assert get_elem_symbol("3RGe-34") == "Ge" with pytest.raises(DftInputGeneratorUtilsError): get_elem_symbol("G23") def test_read_crystal_structure(): # str with path to crystal structure file is OK cs = read_crystal_structure(feo_conv_file) assert cs == feo_conv # any other type of input should throw an error with pytest.raises(TypeError): read_crystal_structure(feo_conv) def test_kpoint_grid_from_spacing(): assert get_kpoint_grid_from_spacing(feo_conv, 0.2) == pytest.approx( [7, 7, 7] )
[ "pytest.approx", "dftinputgen.utils.get_elem_symbol", "dftinputgen.utils.read_crystal_structure", "os.path.join", "dftinputgen.utils.get_kpoint_grid_from_spacing", "os.path.dirname", "pytest.raises", "ase.io.read" ]
[((357, 382), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (372, 382), False, 'import os\n'), ((399, 458), 'os.path.join', 'os.path.join', (['test_base_dir', '"""qe"""', '"""files"""', '"""feo_conv.vasp"""'], {}), "(test_base_dir, 'qe', 'files', 'feo_conv.vasp')\n", (411, 458), False, 'import os\n'), ((470, 496), 'ase.io.read', 'ase_io.read', (['feo_conv_file'], {}), '(feo_conv_file)\n', (481, 496), True, 'from ase import io as ase_io\n'), ((799, 836), 'dftinputgen.utils.read_crystal_structure', 'read_crystal_structure', (['feo_conv_file'], {}), '(feo_conv_file)\n', (821, 836), False, 'from dftinputgen.utils import read_crystal_structure\n'), ((538, 562), 'dftinputgen.utils.get_elem_symbol', 'get_elem_symbol', (['"""Fe-34"""'], {}), "('Fe-34')\n", (553, 562), False, 'from dftinputgen.utils import get_elem_symbol\n'), ((582, 608), 'dftinputgen.utils.get_elem_symbol', 'get_elem_symbol', (['"""3RGe-34"""'], {}), "('3RGe-34')\n", (597, 608), False, 'from dftinputgen.utils import get_elem_symbol\n'), ((626, 668), 'pytest.raises', 'pytest.raises', (['DftInputGeneratorUtilsError'], {}), '(DftInputGeneratorUtilsError)\n', (639, 668), False, 'import pytest\n'), ((678, 700), 'dftinputgen.utils.get_elem_symbol', 'get_elem_symbol', (['"""G23"""'], {}), "('G23')\n", (693, 700), False, 'from dftinputgen.utils import get_elem_symbol\n'), ((924, 948), 'pytest.raises', 'pytest.raises', (['TypeError'], {}), '(TypeError)\n', (937, 948), False, 'import pytest\n'), ((958, 990), 'dftinputgen.utils.read_crystal_structure', 'read_crystal_structure', (['feo_conv'], {}), '(feo_conv)\n', (980, 990), False, 'from dftinputgen.utils import read_crystal_structure\n'), ((1041, 1084), 'dftinputgen.utils.get_kpoint_grid_from_spacing', 'get_kpoint_grid_from_spacing', (['feo_conv', '(0.2)'], {}), '(feo_conv, 0.2)\n', (1069, 1084), False, 'from dftinputgen.utils import get_kpoint_grid_from_spacing\n'), ((1088, 1112), 'pytest.approx', 'pytest.approx', (['[7, 7, 7]'], {}), '([7, 7, 7])\n', (1101, 1112), False, 'import pytest\n')]
from django.contrib.auth.models import User from django.db.models import (Model, TextField, DateTimeField, ForeignKey, CASCADE) from asgiref.sync import async_to_sync from channels.layers import get_channel_layer from django.db import models import json class MessageModel(Model): """ This class represents a chat message. It has a owner (user), timestamp and the message body. """ user = ForeignKey(User, on_delete=CASCADE, verbose_name='user', related_name='from_user', db_index=True) recipient = ForeignKey(User, on_delete=CASCADE, verbose_name='recipient', related_name='to_user', db_index=True) timestamp = DateTimeField('timestamp', auto_now_add=True, editable=False, db_index=True) body = TextField('body') def __str__(self): return str(self.id) def characters(self): """ Toy function to count body characters. :return: body's char number """ return len(self.body) def notify_ws_clients(self): """ Inform client there is a new message. """ notification = { 'type': 'chat_message', 'message': '{}'.format(self.id) } channel_layer = get_channel_layer() print("user.id {}".format(self.user.id)) print("user.id {}".format(self.recipient.id)) async_to_sync(channel_layer.group_send)("{}".format(self.user.id), notification) async_to_sync(channel_layer.group_send)("{}".format(self.recipient.id), notification) def save(self, *args, **kwargs): """ Trims white spaces, saves the message and notifies the recipient via WS if the message is new. """ new = self.id self.body = self.body.strip() # Trimming whitespaces from the body super(MessageModel, self).save(*args, **kwargs) if new is None: self.notify_ws_clients() # Meta class Meta: app_label = 'core' verbose_name = 'message' verbose_name_plural = 'messages' ordering = ('-timestamp',) class Group(models.Model): name = models.CharField(max_length = 20) members = models.TextField() messages = models.TextField () def set_members(self,user_id_list): self.members = json.dumps(user_id_list) def get_members(self): return json.loads(self.members) def add(self,user_id): current_list = self.get_members() if user_id in current_list: print("user is already in the group") else: new_list = current_list.append(user_id) self.set_members(new_list) def remove(self,user_id): current_list = self.get_members() if user_id in current_list: new_list = current_list.remove(user_id) self.set_members(new_list) else: print("User is not a member of theis group") def has(self,user_id): current_list = self.get_members() return(user_id in current_list) # Set of functions for dealing with group messages def set_messages(self,message_id_list): self.messages = json.dumps(message_id_list) def get_messages(self): return json.loads(self.messages) def add_message(self,message_id): current_list = self.get_messages() new_list = current_list.append(message_id) self.set_messages(new_list) def delete_message(self,message_id): current_list = self.get_messages() if message_id in current_list: new_list = current_list.remove(message_id) self.set_messages(new_list) def save(self, *args, **kwargs): if self.pk is None or self.members is None or self.members == '': self.set_members([]) if self.pk is None or self.messages is None or self.messages == '': self.set_messages([]) super(Group, self).save(*args, **kwargs) def __str__(self): return self.name+" ID: "+str(self.id) # Meta class Meta: app_label = 'core' verbose_name = 'Group' verbose_name_plural = 'Groups' ordering = ('name',) class GroupMessage(Model): """ This class represents a chat message. It has a owner (user), timestamp and the message body. """ sender = ForeignKey(User, on_delete=CASCADE, verbose_name='sender', related_name='from_sender', db_index=True) group = ForeignKey(Group, on_delete=CASCADE, verbose_name='group', related_name='to_group', db_index=True) time = DateTimeField('time', auto_now_add=True, editable=False, db_index=True) body = TextField('body') def __str__(self): return str(self.id) def characters(self): """ Toy function to count body characters. :return: body's char number """ return len(self.body) def notify_ws_clients(self): """ Inform client there is a new message. """ notification = { 'type': 'group_message', 'group': '{}'.format(self.id) } channel_layer = get_channel_layer() group_id = "group"+str(self.group.id) print("group.id {}".format(group_id)) async_to_sync(channel_layer.group_send)(group_id, notification) def save(self, *args, **kwargs): """ Trims white spaces, saves the message and notifies the recipient via WS if the message is new. """ new = self.id self.body = self.body.strip() # Trimming whitespaces from the body super(GroupMessage, self).save(*args, **kwargs) if new is None: self.notify_ws_clients() # Meta class Meta: app_label = 'core' verbose_name = 'group message' verbose_name_plural = 'group messags' ordering = ('-time',)
[ "json.loads", "django.db.models.TextField", "django.db.models.ForeignKey", "json.dumps", "channels.layers.get_channel_layer", "django.db.models.DateTimeField", "django.db.models.CharField", "asgiref.sync.async_to_sync" ]
[((443, 545), 'django.db.models.ForeignKey', 'ForeignKey', (['User'], {'on_delete': 'CASCADE', 'verbose_name': '"""user"""', 'related_name': '"""from_user"""', 'db_index': '(True)'}), "(User, on_delete=CASCADE, verbose_name='user', related_name=\n 'from_user', db_index=True)\n", (453, 545), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((579, 684), 'django.db.models.ForeignKey', 'ForeignKey', (['User'], {'on_delete': 'CASCADE', 'verbose_name': '"""recipient"""', 'related_name': '"""to_user"""', 'db_index': '(True)'}), "(User, on_delete=CASCADE, verbose_name='recipient', related_name=\n 'to_user', db_index=True)\n", (589, 684), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((723, 799), 'django.db.models.DateTimeField', 'DateTimeField', (['"""timestamp"""'], {'auto_now_add': '(True)', 'editable': '(False)', 'db_index': '(True)'}), "('timestamp', auto_now_add=True, editable=False, db_index=True)\n", (736, 799), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((841, 858), 'django.db.models.TextField', 'TextField', (['"""body"""'], {}), "('body')\n", (850, 858), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((2217, 2248), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)'}), '(max_length=20)\n', (2233, 2248), False, 'from django.db import models\n'), ((2265, 2283), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (2281, 2283), False, 'from django.db import models\n'), ((2299, 2317), 'django.db.models.TextField', 'models.TextField', ([], {}), '()\n', (2315, 2317), False, 'from django.db import models\n'), ((4439, 4545), 'django.db.models.ForeignKey', 'ForeignKey', (['User'], {'on_delete': 'CASCADE', 'verbose_name': '"""sender"""', 'related_name': '"""from_sender"""', 'db_index': '(True)'}), "(User, on_delete=CASCADE, verbose_name='sender', related_name=\n 'from_sender', db_index=True)\n", (4449, 4545), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((4575, 4678), 'django.db.models.ForeignKey', 'ForeignKey', (['Group'], {'on_delete': 'CASCADE', 'verbose_name': '"""group"""', 'related_name': '"""to_group"""', 'db_index': '(True)'}), "(Group, on_delete=CASCADE, verbose_name='group', related_name=\n 'to_group', db_index=True)\n", (4585, 4678), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((4712, 4783), 'django.db.models.DateTimeField', 'DateTimeField', (['"""time"""'], {'auto_now_add': '(True)', 'editable': '(False)', 'db_index': '(True)'}), "('time', auto_now_add=True, editable=False, db_index=True)\n", (4725, 4783), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((4825, 4842), 'django.db.models.TextField', 'TextField', (['"""body"""'], {}), "('body')\n", (4834, 4842), False, 'from django.db.models import Model, TextField, DateTimeField, ForeignKey, CASCADE\n'), ((1319, 1338), 'channels.layers.get_channel_layer', 'get_channel_layer', ([], {}), '()\n', (1336, 1338), False, 'from channels.layers import get_channel_layer\n'), ((2387, 2411), 'json.dumps', 'json.dumps', (['user_id_list'], {}), '(user_id_list)\n', (2397, 2411), False, 'import json\n'), ((2454, 2478), 'json.loads', 'json.loads', (['self.members'], {}), '(self.members)\n', (2464, 2478), False, 'import json\n'), ((3260, 3287), 'json.dumps', 'json.dumps', (['message_id_list'], {}), '(message_id_list)\n', (3270, 3287), False, 'import json\n'), ((3331, 3356), 'json.loads', 'json.loads', (['self.messages'], {}), '(self.messages)\n', (3341, 3356), False, 'import json\n'), ((5302, 5321), 'channels.layers.get_channel_layer', 'get_channel_layer', ([], {}), '()\n', (5319, 5321), False, 'from channels.layers import get_channel_layer\n'), ((1451, 1490), 'asgiref.sync.async_to_sync', 'async_to_sync', (['channel_layer.group_send'], {}), '(channel_layer.group_send)\n', (1464, 1490), False, 'from asgiref.sync import async_to_sync\n'), ((1540, 1579), 'asgiref.sync.async_to_sync', 'async_to_sync', (['channel_layer.group_send'], {}), '(channel_layer.group_send)\n', (1553, 1579), False, 'from asgiref.sync import async_to_sync\n'), ((5422, 5461), 'asgiref.sync.async_to_sync', 'async_to_sync', (['channel_layer.group_send'], {}), '(channel_layer.group_send)\n', (5435, 5461), False, 'from asgiref.sync import async_to_sync\n')]
# -*- coding: utf-8 -*- """CNN.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/1Tq6HUya2PrC0SmyOIFo2c_eVtguRED2q """ import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F from torch.utils.data import DataLoader import torchvision.datasets as datasets import torchvision.transforms as transforms class CNN(nn.Module): def __init__(self,in_channels = 1,num_classes = 10): super(CNN,self).__init__() self.conv1 = nn.Conv2d(in_channels= in_channels,out_channels = 8,kernel_size =(3,3),stride = (1,1),padding = (1,1)) self.pool1 = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2)) self.conv2 = nn.Conv2d(in_channels= 8,out_channels = 16,kernel_size =(3,3),stride = (1,1),padding = (1,1)) self.pool2 = nn.MaxPool2d(kernel_size=(2,2),stride=(2,2)) self.fc1 = nn.Linear(16*7*7,num_classes) def forward(self,x): x = F.relu(self.conv1(x)) x = self.pool1(x) x = F.relu(self.conv2(x)) x = self.pool2(x) x = x.reshape(x.shape[0],-1) x = self.fc1(x) return x model = CNN(1,10) x = torch.randn((64,1,28,28)) print(model(x).shape) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") device in_channels = 1 num_classes = 10 learning_rate = 0.001 batch_size = 64 num_epochs = 4 train_dataset = datasets.MNIST(root = "dataset/",train = True,transform = transforms.ToTensor(),download = True) train_loader = DataLoader(dataset=train_dataset,batch_size=64,shuffle=True) test_dataset = train_dataset = datasets.MNIST(root = "dataset/",train = False,transform = transforms.ToTensor(),download = True) test_loader = DataLoader(dataset = test_dataset,batch_size = batch_size,shuffle = True) model = CNN(1,10).to(device = device) criterion = nn.CrossEntropyLoss() optimizer = optim.Adam(model.parameters(),lr = learning_rate) for epoch in range(num_epochs): for batch_idx,(data,targets) in enumerate(train_loader): #get data to cuda if possible data = data.cuda() targets = targets.cuda() scores = model(data) loss = criterion(scores,targets) #backward optimizer.zero_grad() loss.backward() #gradient_descent or adam-step optimizer.step() # Check the accuracy for the training step def check_accuracy(loader,model): if loader.dataset.train: print("Checking accuracy on training data") else: print("Checking accuracy on test data") num_correct = 0 num_samples = 0 model.eval() with torch.no_grad(): for x,y in loader: x = x.cuda() y = y.cuda() scores = model(x) _,predictions = scores.max(1) num_correct += (predictions == y).sum() num_samples += predictions.size(0) print(f' Got {num_correct}/{num_samples} with accuracy ={float(num_correct)/float(num_samples)*100:.2f} ') model.train() check_accuracy(train_loader,model) check_accuracy(test_loader,model)
[ "torch.nn.CrossEntropyLoss", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "torch.cuda.is_available", "torch.nn.Linear", "torch.utils.data.DataLoader", "torch.no_grad", "torchvision.transforms.ToTensor", "torch.randn" ]
[((1138, 1166), 'torch.randn', 'torch.randn', (['(64, 1, 28, 28)'], {}), '((64, 1, 28, 28))\n', (1149, 1166), False, 'import torch\n'), ((1482, 1544), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'train_dataset', 'batch_size': '(64)', 'shuffle': '(True)'}), '(dataset=train_dataset, batch_size=64, shuffle=True)\n', (1492, 1544), False, 'from torch.utils.data import DataLoader\n'), ((1686, 1755), 'torch.utils.data.DataLoader', 'DataLoader', ([], {'dataset': 'test_dataset', 'batch_size': 'batch_size', 'shuffle': '(True)'}), '(dataset=test_dataset, batch_size=batch_size, shuffle=True)\n', (1696, 1755), False, 'from torch.utils.data import DataLoader\n'), ((1812, 1833), 'torch.nn.CrossEntropyLoss', 'nn.CrossEntropyLoss', ([], {}), '()\n', (1831, 1833), True, 'import torch.nn as nn\n'), ((537, 642), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': 'in_channels', 'out_channels': '(8)', 'kernel_size': '(3, 3)', 'stride': '(1, 1)', 'padding': '(1, 1)'}), '(in_channels=in_channels, out_channels=8, kernel_size=(3, 3),\n stride=(1, 1), padding=(1, 1))\n', (546, 642), True, 'import torch.nn as nn\n'), ((657, 704), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2, 2)', 'stride': '(2, 2)'}), '(kernel_size=(2, 2), stride=(2, 2))\n', (669, 704), True, 'import torch.nn as nn\n'), ((719, 815), 'torch.nn.Conv2d', 'nn.Conv2d', ([], {'in_channels': '(8)', 'out_channels': '(16)', 'kernel_size': '(3, 3)', 'stride': '(1, 1)', 'padding': '(1, 1)'}), '(in_channels=8, out_channels=16, kernel_size=(3, 3), stride=(1, 1),\n padding=(1, 1))\n', (728, 815), True, 'import torch.nn as nn\n'), ((830, 877), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', ([], {'kernel_size': '(2, 2)', 'stride': '(2, 2)'}), '(kernel_size=(2, 2), stride=(2, 2))\n', (842, 877), True, 'import torch.nn as nn\n'), ((890, 924), 'torch.nn.Linear', 'nn.Linear', (['(16 * 7 * 7)', 'num_classes'], {}), '(16 * 7 * 7, num_classes)\n', (899, 924), True, 'import torch.nn as nn\n'), ((1220, 1245), 'torch.cuda.is_available', 'torch.cuda.is_available', ([], {}), '()\n', (1243, 1245), False, 'import torch\n'), ((1428, 1449), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1447, 1449), True, 'import torchvision.transforms as transforms\n'), ((1633, 1654), 'torchvision.transforms.ToTensor', 'transforms.ToTensor', ([], {}), '()\n', (1652, 1654), True, 'import torchvision.transforms as transforms\n'), ((2522, 2537), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2535, 2537), False, 'import torch\n')]
"""Treadmill hierarchical scheduler. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import abc import collections import datetime import heapq import itertools import logging import operator import sys import time import enum import numpy as np import six _LOGGER = logging.getLogger(__name__) MAX_PRIORITY = 100 DEFAULT_RANK = 100 _UNPLACED_RANK = sys.maxsize DIMENSION_COUNT = None _MAX_UTILIZATION = float('inf') _GLOBAL_ORDER_BASE = time.mktime((2014, 1, 1, 0, 0, 0, 0, 0, 0)) # 21 day DEFAULT_SERVER_UPTIME = 21 * 24 * 60 * 60 # 1 day MIN_SERVER_UPTIME = 1 * 24 * 60 * 60 # 7 days DEFAULT_MAX_APP_LEASE = 7 * 24 * 60 * 60 # Default partition threshold DEFAULT_THRESHOLD = 0.9 # pylint: disable=C0302,too-many-lines def _bit_count(value): """Returns number of bits set. """ count = 0 while value: value &= value - 1 count += 1 return count def zero_capacity(): """Returns zero capacity vector. """ assert DIMENSION_COUNT is not None, 'Dimension count not set.' return np.zeros(DIMENSION_COUNT) def eps_capacity(): """Returns eps capacity vector. """ assert DIMENSION_COUNT is not None, 'Dimension count not set.' return np.array( [np.finfo(float).eps for _x in range(0, DIMENSION_COUNT)] ) def _global_order(): """Use timestamp in nanoseconds, from Jan 1st 2014, to break tie in scheduling conflicts for apps of the same priority, in a FIFO fashion. """ # Take the current EPOCH in nanosec global_order = int(time.time() * 1000000) - _GLOBAL_ORDER_BASE return global_order def utilization(demand, allocated, available): """Calculates utilization score. """ return np.max(np.subtract(demand, allocated) / available) def _all(oper, left, right): """Short circuit all for ndarray. """ return all( oper(ai, bi) for ai, bi in six.moves.zip(left, right) ) def _any(oper, left, right): """Short circuit any for ndarray. """ return any( oper(ai, bi) for ai, bi in six.moves.zip(left, right) ) def _any_eq(left, right): """Short circuit any eq for ndarray. """ return _any(operator.eq, left, right) def _any_isclose(left, right): """Short circuit any isclose for ndarray. """ return _any(np.isclose, left, right) def _any_lt(left, right): """Short circuit any lt for ndarray. """ return _any(operator.lt, left, right) def _any_le(left, right): """Short circuit any le for ndarray. """ return _any(operator.le, left, right) def _any_gt(left, right): """Short circuit any gt for ndarray. """ return _any(operator.gt, left, right) def _any_ge(left, right): """Short circuit any ge for ndarray. """ return _any(operator.ge, left, right) def _all_eq(left, right): """Short circuit all eq for ndarray. """ return _all(operator.eq, left, right) def _all_isclose(left, right): """Short circuit all isclose for ndarray. """ return _all(np.isclose, left, right) def _all_lt(left, right): """Short circuit all lt for ndarray. """ return _all(operator.lt, left, right) def _all_le(left, right): """Short circuit all le for ndarray. """ return _all(operator.le, left, right) def _all_gt(left, right): """Short circuit all gt for ndarray. """ return _all(operator.gt, left, right) def _all_ge(left, right): """Short circuit all ge for ndarray. """ return _all(operator.ge, left, right) class IdentityGroup: """Identity group. """ __slots__ = ( 'available', 'count', ) def __init__(self, count=0): self.count = count self.available = set(range(0, count)) def acquire(self): """Return next available identity or None. """ if self.available: return self.available.pop() else: return None def release(self, ident): """Mark identity as available. """ if ident < self.count: self.available.add(ident) def adjust(self, count): """Adjust identities with new count. If count is larger, add additional identities to the set. If count is lower, remove identities that are no longer valid. All apps that have invalid identities will be adjusted in the schedule cycle. """ if count >= self.count: self.available ^= set(six.moves.xrange(self.count, count)) else: self.available -= set(six.moves.xrange(count, self.count)) self.count = count class State(enum.Enum): """Enumeration of node/server states. """ # Ready to accept new applications. # TODO: Fix attribute name up = 'up' # pylint: disable=invalid-name # Applications need to be migrated. down = 'down' # Existing applications can stay, but will not accept new. frozen = 'frozen' class Affinity: """Model affinity and affinity limits. """ __slots__ = ( 'name', 'limits', 'constraints', ) def __init__(self, name, limits=None): self.name = name self.limits = collections.defaultdict(lambda: float('inf')) if limits: self.limits.update(limits) # freeze affinity shape constraints. self.constraints = tuple([self.name] + sorted(self.limits.values())) class Application: """Application object. """ __slots__ = ( 'global_order', 'name', 'demand', 'affinity', 'priority', 'allocation', 'data_retention_timeout', 'server', 'lease', 'identity', 'identity_group', 'identity_group_ref', 'schedule_once', 'evicted', 'placement_expiry', 'renew', 'unschedule', 'final_rank', 'final_util', 'constraints', ) def __init__(self, name, priority, demand, affinity, affinity_limits=None, data_retention_timeout=0, lease=0, identity_group=None, identity=None, schedule_once=False): self.global_order = _global_order() self.allocation = None self.server = None self.name = name self.affinity = Affinity(affinity, affinity_limits) self.priority = priority self.demand = np.array(demand, dtype=float) self.data_retention_timeout = data_retention_timeout self.lease = lease self.identity_group = identity_group self.identity = identity self.identity_group_ref = None self.schedule_once = schedule_once self.evicted = False self.unschedule = False self.placement_expiry = None self.renew = False def shape(self): """Return tuple of application (constraints, demand). Application shape is tuple of constraints that affect application placement. Currently this includes affinity constraints and app lease time. """ constraints = (self.affinity.constraints + (self.lease,)) if self.allocation: constraints += self.allocation.constraints return constraints, self.demand def acquire_identity(self): """Try to acquire identity if belong to the group. Returns True if successfull or if identity group is none. """ if not self.identity_group_ref: return True if self.identity is None: self.identity = self.identity_group_ref.acquire() _LOGGER.info('Acquired identity: %s: %s - %s', self.name, self.identity_group, self.identity) return self.identity is not None def release_identity(self): """Release app identity. """ if self.identity_group_ref and self.identity is not None: self.identity_group_ref.release(self.identity) self.identity = None def force_set_identity(self, identity): """Force identity of the app. """ if identity is not None: assert self.identity_group_ref self.identity = identity self.identity_group_ref.available.discard(identity) def has_identity(self): """Checks if app has identity if identity group is specified. """ return self.identity_group_ref is None or self.identity is not None @property def traits(self): """The app traits are derived from allocation. """ if self.allocation is None: return 0 else: return self.allocation.traits @six.add_metaclass(abc.ABCMeta) class Strategy: """Base class for all placement strategies. """ @abc.abstractmethod def suggested_node(self): """Suggested node that should be tried first. """ pass @abc.abstractmethod def next_node(self): """Next node to try, if previous suggestion was rejected. """ pass class SpreadStrategy(Strategy): """Spread strategy will suggest new node for each subsequent placement. """ __slots__ = ( 'current_idx', 'node', ) def __init__(self, node): self.current_idx = 0 self.node = node def suggested_node(self): """Suggest next node from the cycle. """ for _ in six.moves.xrange(0, len(self.node.children)): if self.current_idx == len(self.node.children): self.current_idx = 0 current = self.node.children[self.current_idx] self.current_idx += 1 if current: return current # Not a single non-none node. return None def next_node(self): """Suggest next node from the cycle. """ return self.suggested_node() class PackStrategy(Strategy): """Pack strategy will suggest same node until it is full. """ __slots__ = ( 'current_idx', 'node', ) def __init__(self, node): self.current_idx = 0 self.node = node def suggested_node(self): """Suggest same node as previous placement. """ for _ in six.moves.xrange(0, len(self.node.children)): if self.current_idx == len(self.node.children): self.current_idx = 0 node = self.node.children[self.current_idx] if node: return node return None def next_node(self): """Suggest next node from the cycle. """ self.current_idx += 1 return self.suggested_node() class TraitSet: """Hierarchical set of traits. """ __slots__ = ( 'self_traits', 'children_traits', 'traits', ) def __init__(self, traits=0): if not traits: traits = 0 # Private traits. assert isinstance(traits, six.integer_types) self.self_traits = traits # Union of all children traits. self.children_traits = dict() self._recalculate() def _recalculate(self): """Calculate combined set of all traits. """ self.traits = self.self_traits for trait in six.itervalues(self.children_traits): self.traits |= trait def has(self, traits): """Check if all traits are present. """ return (self.traits & traits) == traits def add(self, child, traits): """Add a child with given traits. """ # Update children traits. self.children_traits[child] = traits self._recalculate() def remove(self, child): """Remove child traits from the list. """ if child in self.children_traits: del self.children_traits[child] self._recalculate() def is_same(self, other): """Compares own traits, ignore child. """ return self.self_traits == other.self_traits class AffinityCounter: """Manages affinity count. """ __slots__ = ( 'affinity_counter', ) def __init__(self): self.affinity_counter = collections.Counter() class Node: """Abstract placement node. """ __slots__ = ( 'name', 'level', 'free_capacity', 'parent', 'children', 'children_by_name', 'traits', 'labels', 'affinity_counters', 'valid_until', '_state', '_state_since', ) def __init__(self, name, traits, level, valid_until=0): self.name = name self.level = level self.free_capacity = zero_capacity() self.parent = None self.children = list() self.children_by_name = dict() self.traits = TraitSet(traits) self.labels = set() self.affinity_counters = collections.Counter() self.valid_until = valid_until self._state = State.up self._state_since = time.time() def empty(self): """Return true if there are no children. """ return not bool(self.children_by_name) def children_iter(self): """Iterate over active children. """ for child in self.children: if child: yield child def get_state(self): """Returns tuple of (state, since). """ return self. _state, self._state_since def set_state(self, state, since): """Sets the state and time since. """ if self._state is not state: self._state_since = since self._state = state _LOGGER.debug('state: %s - (%s, %s)', self.name, self._state, self._state_since) @property def state(self): """Return current state. """ return self._state @state.setter def state(self, new_state): """Set node state and records time. """ self.set_state(new_state, time.time()) def add_child_traits(self, node): """Recursively add child traits up. """ self.traits.add(node.name, node.traits.traits) if self.parent: self.parent.remove_child_traits(self.name) self.parent.add_child_traits(self) def adjust_valid_until(self, child_valid_until): """Recursively adjust valid until time. """ if child_valid_until: self.valid_until = max(self.valid_until, child_valid_until) else: if self.empty(): self.valid_until = 0 else: self.valid_until = max([node.valid_until for node in self.children_iter()]) if self.parent: self.parent.adjust_valid_until(child_valid_until) def remove_child_traits(self, node_name): """Recursively remove child traits up. """ self.traits.remove(node_name) if self.parent: self.parent.remove_child_traits(self.name) self.parent.add_child_traits(self) def reset_children(self): """Reset children to empty list. """ for child in self.children_iter(): child.parent = None self.children = list() self.children_by_name = dict() def add_node(self, node): """Add child node, set the traits and propagate traits up. """ assert node.parent is None assert node.name not in self.children_by_name node.parent = self self.children.append(node) self.children_by_name[node.name] = node self.add_child_traits(node) self.increment_affinity(node.affinity_counters) self.add_labels(node.labels) self.adjust_valid_until(node.valid_until) def add_labels(self, labels): """Recursively add labels to self and parents. """ self.labels.update(labels) if self.parent: self.parent.add_labels(self.labels) def remove_node(self, node): """Remove child node and adjust the traits. """ assert node.name in self.children_by_name del self.children_by_name[node.name] for idx in six.moves.xrange(0, len(self.children)): if self.children[idx] == node: self.children[idx] = None self.remove_child_traits(node.name) self.decrement_affinity(node.affinity_counters) self.adjust_valid_until(None) node.parent = None return node def remove_node_by_name(self, nodename): """Removes node by name. """ assert nodename in self.children_by_name return self.remove_node(self.children_by_name[nodename]) def check_app_constraints(self, app): """Find app placement on the node. """ if app.allocation is not None: if app.allocation.label not in self.labels: _LOGGER.info('Missing label: %s on %s', app.allocation.label, self.name) return False if app.traits != 0 and not self.traits.has(app.traits): _LOGGER.info('Missing traits: %s on %s', app.traits, self.name) return False if not self.check_app_affinity_limit(app): return False if _any_gt(app.demand, self.free_capacity): _LOGGER.info('Not enough free capacity: %s', self.free_capacity) return False return True def check_app_affinity_limit(self, app): """Check app affinity limits """ count = self.affinity_counters[app.affinity.name] limit = app.affinity.limits[self.level] return count < limit def put(self, _app): """Abstract method, should never be called. """ raise Exception('Not implemented.') def size(self, label): """Returns total capacity of the children. """ if self.empty() or label not in self.labels: return eps_capacity() return np.sum([ n.size(label) for n in self.children_iter()], 0) def members(self): """Return set of all leaf node names. """ names = dict() for node in self.children_iter(): names.update(node.members()) return names def increment_affinity(self, counters): """Increment affinity counters recursively. """ self.affinity_counters.update(counters) if self.parent: self.parent.increment_affinity(counters) def decrement_affinity(self, counters): """Decrement affinity counters recursively. """ self.affinity_counters.subtract(counters) if self.parent: self.parent.decrement_affinity(counters) class Bucket(Node): """Collection of nodes/buckets. """ __slots__ = ( 'affinity_strategies', 'traits', ) _default_strategy_t = SpreadStrategy def __init__(self, name, traits=0, level=None): super(Bucket, self).__init__(name, traits, level) self.affinity_strategies = dict() self.traits = TraitSet(traits) def set_affinity_strategy(self, affinity, strategy_t): """Initilaizes placement strategy for given affinity. """ self.affinity_strategies[affinity] = strategy_t(self) def get_affinity_strategy(self, affinity): """Returns placement strategy for the affinity, defaults to spread. """ if affinity not in self.affinity_strategies: self.set_affinity_strategy(affinity, Bucket._default_strategy_t) return self.affinity_strategies[affinity] def adjust_capacity_up(self, new_capacity): """Node can only increase capacity. """ self.free_capacity = np.maximum(self.free_capacity, new_capacity) if self.parent: self.parent.adjust_capacity_up(self.free_capacity) def adjust_capacity_down(self, prev_capacity=None): """Called when capacity is decreased. """ if self.empty(): self.free_capacity = zero_capacity() if self.parent: self.parent.adjust_capacity_down() else: if prev_capacity is not None and _all_lt(prev_capacity, self.free_capacity): return free_capacity = zero_capacity() for child_node in self.children_iter(): if child_node.state is not State.up: continue free_capacity = np.maximum(free_capacity, child_node.free_capacity) # If resulting free_capacity is less the previous, we need to # adjust the parent, otherwise, nothing needs to be done. prev_capacity = self.free_capacity.copy() if _any_lt(free_capacity, self.free_capacity): self.free_capacity = free_capacity if self.parent: self.parent.adjust_capacity_down(prev_capacity) def add_node(self, node): """Adds node to the bucket. """ super(Bucket, self).add_node(node) self.adjust_capacity_up(node.free_capacity) def remove_node(self, node): """Removes node from the bucket. """ super(Bucket, self).remove_node(node) # if _any_isclose(self.free_capacity, node.free_capacity): self.adjust_capacity_down(node.free_capacity) return node def put(self, app): """Try to put app on one of the nodes that belong to the bucket. """ # Check if it is feasible to put app on some node low in the # hierarchy _LOGGER.debug('bucket.put: %s => %s', app.name, self.name) if not self.check_app_constraints(app): return False strategy = self.get_affinity_strategy(app.affinity.name) node = strategy.suggested_node() if node is None: _LOGGER.debug('All nodes in the bucket deleted.') return False nodename0 = node.name first = True while True: # End of iteration. if not first and node.name == nodename0: _LOGGER.debug('Finished iterating on: %s.', self.name) break first = False _LOGGER.debug('Trying node: %s:', node.name) if node.state is not State.up: _LOGGER.debug('Node not up: %s, %s', node.name, node.state) else: if node.put(app): return True node = strategy.next_node() return False class Server(Node): """Server object, final app placement. """ __slots__ = ( 'init_capacity', 'apps', 'up_since', 'presence_id', ) def __init__(self, name, capacity, up_since=0, valid_until=0, traits=0, label=None, presence_id=None): super(Server, self).__init__(name, traits=traits, level='server', valid_until=valid_until) self.labels = set([label]) self.init_capacity = np.array(capacity, dtype=float) self.free_capacity = self.init_capacity.copy() self.apps = dict() self.up_since = up_since self.presence_id = presence_id def __str__(self): return 'server: %s %s' % (self.name, self.init_capacity) def is_same(self, other): """Compares capacity and traits against another server. valid_until is ignored, as server comes up after reboot will have different valid_until value. """ return (self.labels == other.labels and _all_eq(self.init_capacity, other.init_capacity) and self.traits.is_same(other.traits)) def put(self, app): """Tries to put the app on the server. """ assert app.name not in self.apps _LOGGER.debug('server.put: %s => %s', app.name, self.name) if not self.check_app_lifetime(app): return False if not self.check_app_constraints(app): return False prev_capacity = self.free_capacity.copy() self.free_capacity -= app.demand self.apps[app.name] = app self.increment_affinity([app.affinity.name]) app.server = self.name if self.parent: self.parent.adjust_capacity_down(prev_capacity) if app.placement_expiry is None: app.placement_expiry = time.time() + app.lease return True def restore(self, app, placement_expiry=None): """Put app back on the server, ignore app lifetime. """ _LOGGER.debug('server.restore: %s => %s (%s)', app.name, self.name, placement_expiry) lease = app.lease # If not explicit if placement_expiry is None: placement_expiry = app.placement_expiry app.lease = 0 rc = self.put(app) app.lease = lease app.placement_expiry = placement_expiry return rc def renew(self, app): """Try to extend the placement for app lease. """ can_renew = self.check_app_lifetime(app) if can_renew: app.placement_expiry = time.time() + app.lease return can_renew def check_app_lifetime(self, app): """Check if the app lease fits until server is rebooted. """ # app with 0 lease can be placed anywhere (ignore potentially # expired servers) if not app.lease: return True return time.time() + app.lease < self.valid_until def remove(self, app_name): """Removes app from the server. """ assert app_name in self.apps app = self.apps[app_name] del self.apps[app_name] app.server = None app.evicted = True app.unschedule = False app.placement_expiry = None self.free_capacity += app.demand self.decrement_affinity([app.affinity.name]) if self.parent: self.parent.adjust_capacity_up(self.free_capacity) def remove_all(self): """Remove all apps. """ # iterate over copy of the keys, as we are removing them in the loop. for appname in list(self.apps): self.remove(appname) def size(self, label): """Return server capacity. """ if label not in self.labels: return eps_capacity() return self.init_capacity def members(self): """Return set of all leaf node names. """ return {self.name: self} def set_state(self, state, since): """Change host state. """ if self.state is state: return super(Server, self).set_state(state, since) if state == State.up: if self.parent: self.parent.adjust_capacity_up(self.free_capacity) elif state in (State.down, State.frozen): if self.parent: self.parent.adjust_capacity_down(self.free_capacity) else: raise Exception('Invalid state: ' % state) class Allocation: """Allocation manages queue of apps sharing same reserved capacity. In reality allocation is tied to grn via application proid. Applications within the allocation are organized by application priority. Allocations are ranked, and the rank is used to globally order applications from different allocations into global queue. Default allocation has rank 100. Defining allocation with lower rank will result in all it's applications to be evaluated first regardless of utilization. This is used to model "system" applications that should be always present regardless of utilization. Allocation queue can be capped with max_utilization parameter. If set, it will specify the max_utilization which will be considered for scheduling. """ __slots__ = ( 'reserved', 'rank', 'rank_adjustment', 'traits', 'label', 'max_utilization', 'apps', 'sub_allocations', 'path', 'constraints', ) def __init__(self, reserved=None, rank=None, traits=None, max_utilization=None, partition=None): self.set_reserved(reserved) self.rank = None self.rank_adjustment = 0 self.traits = 0 self.label = partition self.max_utilization = _MAX_UTILIZATION self.reserved = zero_capacity() self.set_max_utilization(max_utilization) self.set_traits(traits) self.update(reserved, rank, 0) self.apps = dict() self.sub_allocations = dict() self.path = [] # Freeze shape constraintes. self.constraints = (self.label, self.traits,) @property def name(self): """Returns full allocation name. """ return '/'.join(self.path) def set_reserved(self, reserved): """Update reserved capacity. """ if reserved is None: self.reserved = zero_capacity() elif isinstance(reserved, int): assert reserved == 0 self.reserved = zero_capacity() elif isinstance(reserved, float): assert reserved == 0.0 self.reserved = zero_capacity() elif isinstance(reserved, list): assert len(reserved) == DIMENSION_COUNT self.reserved = np.array(reserved, dtype=float) elif isinstance(reserved, np.ndarray): self.reserved = reserved else: assert 'Unsupported type: %r' % type(reserved) def update(self, reserved, rank, rank_adjustment, max_utilization=None): """Updates allocation. """ if rank is not None: self.rank = rank else: self.rank = DEFAULT_RANK if rank_adjustment is not None: self.rank_adjustment = rank_adjustment self.set_reserved(reserved) self.set_max_utilization(max_utilization) def set_max_utilization(self, max_utilization): """Sets max_utilization, accounting for default None value. """ if max_utilization is not None: self.max_utilization = max_utilization else: self.max_utilization = _MAX_UTILIZATION def set_traits(self, traits): """Set traits, account for default None value. """ if not traits: self.traits = 0 else: self.traits = traits def add(self, app): """Add application to the allocation queue. Once added, the scheduler will make an attempt to place the app on one of the cell nodes. """ # Check that there are no duplicate app names. if app.name in self.apps: _LOGGER.warning( 'Duplicate app on alllocation queue: %s', app.name ) return app.allocation = self self.apps[app.name] = app def remove(self, name): """Remove application from the allocation queue. """ if name in self.apps: self.apps[name].allocation = None del self.apps[name] def priv_utilization_queue(self): """Returns tuples for sorted by global utilization. Apps in the queue are ordered by priority, insertion order. Adding or removing maintains invariant that apps utilization monotonically increases as well. Returns local prioritization queue in a tuple where first element is utilization ratio, so that this queue is suitable for merging into global priority queue. """ def _app_key(app): """Compares apps by priority, state, global index """ return (-app.priority, 0 if app.server else 1, app.global_order, app.name) prio_queue = sorted(six.viewvalues(self.apps), key=_app_key) acc_demand = zero_capacity() available = self.reserved + np.finfo(float).eps util_before = utilization(acc_demand, self.reserved, available) for app in prio_queue: acc_demand = acc_demand + app.demand util_after = utilization(acc_demand, self.reserved, available) # Priority 0 apps are treated specially - utilization is set to # max float. # # This ensures that they are at the end of the all queues. if app.priority == 0: util_before = _MAX_UTILIZATION util_after = _MAX_UTILIZATION # All things equal, already scheduled applications have priority # over pending. pending = 0 if app.server else 1 if util_after <= self.max_utilization - 1: rank = self.rank if util_before < 0: rank -= self.rank_adjustment else: rank = _UNPLACED_RANK entry = (rank, util_before, util_after, pending, app.global_order, app) util_before = util_after yield entry def utilization_queue(self, free_capacity, visitor=None): """Returns utilization queue including the sub-allocs. All app queues from self and sub-allocs are merged in standard order, and then utilization is recalculated based on total reserved capacity of this alloc and sub-allocs combined. The function maintains invariant that any app (self or inside sub-alloc with utilization < 1 will remain with utilzation < 1. """ total_reserved = self.total_reserved() queues = [ alloc.utilization_queue(free_capacity, visitor) for alloc in six.itervalues(self.sub_allocations) ] queues.append(self.priv_utilization_queue()) acc_demand = zero_capacity() available = total_reserved + free_capacity + np.finfo(float).eps util_before = utilization(acc_demand, total_reserved, available) for item in heapq.merge(*queues): rank, _u_before, _u_after, pending, order, app = item acc_demand = acc_demand + app.demand util_after = utilization(acc_demand, total_reserved, available) if app.priority == 0: util_before = _MAX_UTILIZATION util_after = _MAX_UTILIZATION # - lower rank allocations take precedence. # - for same rank, utilization takes precedence # - False < True, so for apps with same utilization we prefer # those that already running (False == not pending) # - Global order entry = (rank, util_before, util_after, pending, order, app) if visitor: visitor(self, entry, acc_demand) util_before = util_after yield entry def total_reserved(self): """Total reserved capacity including sub-allocs. """ return six.moves.reduce( lambda acc, alloc: acc + alloc.total_reserved(), six.itervalues(self.sub_allocations), self.reserved ) def add_sub_alloc(self, name, alloc): """Add child allocation. """ self.sub_allocations[name] = alloc assert not alloc.path alloc.path = self.path + [name] alloc.label = self.label def remove_sub_alloc(self, name): """Remove chlid allocation. """ if name in self.sub_allocations: del self.sub_allocations[name] def get_sub_alloc(self, name): """Return sub allocation, create empty if it does not exist. """ if name not in self.sub_allocations: self.add_sub_alloc(name, Allocation()) return self.sub_allocations[name] def all_apps(self): """Return all apps in allocation and sub-allocations.""" all_apps = list(six.itervalues(self.apps)) for alloc in six.itervalues(self.sub_allocations): all_apps.extend(alloc.all_apps()) return all_apps class Partition: """Cell partition. """ __slots__ = ( 'allocation', 'max_server_uptime', 'max_lease', 'threshold', 'label', '_reboot_buckets', '_reboot_dates', '_reboot_last', ) def __init__(self, max_server_uptime=None, max_lease=None, threshold=None, label=None, reboot_schedule=None, now=None): self.label = label self.allocation = Allocation(partition=label) # Default - if not max_server_uptime: max_server_uptime = DEFAULT_SERVER_UPTIME if not max_lease: max_lease = DEFAULT_MAX_APP_LEASE if not threshold: threshold = DEFAULT_THRESHOLD self.max_server_uptime = max_server_uptime self.max_lease = max_lease self.threshold = threshold if not reboot_schedule: # reboot every day reboot_schedule = {day: (23, 59, 59) for day in range(7)} if not now: now = time.time() self._reboot_dates = reboot_dates( reboot_schedule, start_date=datetime.date.fromtimestamp(now) ) self._reboot_buckets = [] self._reboot_last = now self.tick(now) def _find_bucket(self, timestamp): """Try to find bucket with given timestamp. """ for bucket in self._reboot_buckets: if bucket.timestamp == timestamp: return bucket return None def add(self, server, timestamp=None): """Add server. """ bucket = None if timestamp: bucket = self._find_bucket(timestamp) # servers with larger than max lifetime should be rebooted at # the next opportunity if (self._reboot_buckets[0].timestamp > server.up_since + DEFAULT_SERVER_UPTIME): bucket = self._reboot_buckets[0] if not bucket: bucket = min(reversed(self._reboot_buckets), key=lambda b: b.cost(server)) bucket.add(server) def remove(self, server): """Remove server. """ for bucket in self._reboot_buckets: bucket.remove(server) def tick(self, now): """Do per-tick-bookkeeping. """ while self._reboot_last <= now + DEFAULT_SERVER_UPTIME: bucket = RebootBucket(next(self._reboot_dates)) self._reboot_buckets.append(bucket) self._reboot_last = bucket.timestamp while self._reboot_buckets[0].timestamp < now: self._reboot_buckets.pop(0) class PartitionDict(dict): """Dict that creates partitions on demand. We use this instead of collections.defaultdict so that we can provide the new partition with its label, to be propagated to its allocations. """ def __missing__(self, label): """Create a new partition, passing the label to its constructor. """ self[label] = Partition(label=label) return self[label] # pylint: disable=invalid-name def reboot_dates(schedule, start_date=None): """Generate list of valid reboot dates. """ date = datetime.date.today() if start_date: date = start_date while True: weekday = date.weekday() if weekday in schedule: h, m, s = schedule[weekday] yield time.mktime((date.year, date.month, date.day, h, m, s, 0, 0, 0)) date += datetime.timedelta(days=1) class RebootBucket: """Bucket of servers to be rebooted at the same time. """ __slots__ = ( 'timestamp', 'servers', ) def __init__(self, timestamp): self.timestamp = timestamp self.servers = [] def add(self, server): """Add server to this bucket. """ self.servers.append(server) server.valid_until = self.timestamp _LOGGER.info('Setting valid until on server: %s %s', server.name, server.valid_until) def remove(self, server): """Remove server from this bucket. """ try: self.servers.remove(server) except ValueError: pass def cost(self, server): """The cost of adding server to this bucket. """ if self.timestamp > server.up_since + DEFAULT_SERVER_UPTIME: return float('inf') if self.timestamp < server.up_since + MIN_SERVER_UPTIME: return float('inf') return len(self.servers) class PlacementFeasibilityTracker: """Tracks similar apps placement failures.""" def __init__(self): self.recorder = dict() def feasible(self, app): """Checks if it is feasible to satisfy demand.""" constraints, demand = app.shape() if constraints in self.recorder: # If demand is >= than recorded failure, placement is not feasible. if _all_ge(demand, self.recorder[constraints]): return False return True def adjust(self, app): """Adjust info about failed placement.""" constraints, demand = app.shape() if constraints not in self.recorder: self.recorder[constraints] = demand else: if _all_le(demand, self.recorder[constraints]): self.recorder[constraints] = demand class Cell(Bucket): """Top level node. """ __slots__ = ( 'partitions', 'next_event_at', 'apps', 'identity_groups', ) def __init__(self, name): super(Cell, self).__init__(name, traits=0, level='cell') self.partitions = PartitionDict() self.apps = dict() self.identity_groups = collections.defaultdict(IdentityGroup) self.next_event_at = np.inf def add_app(self, allocation, app): """Adds application to the scheduled list. """ assert allocation is not None if app.allocation: app.allocation.remove(app.name) allocation.add(app) self.apps[app.name] = app if app.identity_group: app.identity_group_ref = self.identity_groups[app.identity_group] def remove_app(self, appname): """Remove app from scheduled list. """ if appname not in self.apps: return app = self.apps[appname] servers = self.members() if app.server in servers: servers[app.server].remove(app.name) if app.allocation: app.allocation.remove(app.name) app.release_identity() del self.apps[appname] def configure_identity_group(self, name, count): """Add identity group to the cell. """ if name not in self.identity_groups: self.identity_groups[name] = IdentityGroup(count) else: self.identity_groups[name].adjust(count) def remove_identity_group(self, name): """Remove identity group. """ ident_group = self.identity_groups.get(name) if ident_group: in_use = False for app in six.itervalues(self.apps): if app.identity_group_ref == ident_group: ident_group.adjust(0) in_use = True break if not in_use: del self.identity_groups[name] def _fix_invalid_placements(self, queue, servers): """If app is placed on non-existent server, set server to None. """ for app in queue: if app.server and app.server not in servers: app.server = None app.evicted = True app.release_identity() def _record_rank_and_util(self, queue): """Set final rank and utilization for all apps in the queue. """ for item in queue: rank = item[0] util = item[1] app = item[-1] app.final_rank = rank app.final_util = util def _fix_invalid_identities(self, queue, servers): """Check that app identity is valid for given identity group. """ for app in queue: if app.identity is not None and app.identity_group_ref is not None: # Can happen if identity group was adjusted to lower count. if app.identity >= app.identity_group_ref.count: # Can't release identity as it is invalid. _LOGGER.info('Identity exceeds limit: %s - %s, limit %s', app.name, app.identity, app.identity_group_ref.count) app.identity = None # Invalidate any existing placement. if app.server: servers[app.server].remove(app.name) def _handle_inactive_servers(self, servers): """Migrate apps from inactive servers. """ self.next_event_at = np.inf for server in six.itervalues(servers): state, since = server.get_state() to_be_moved = [] if state == State.down: _LOGGER.debug('Server state is down: %s', server.name) for name, app in six.iteritems(server.apps): if app.data_retention_timeout is None: expires_at = 0 else: expires_at = since + app.data_retention_timeout if expires_at <= time.time(): _LOGGER.debug('Expired placement: %s', name) app.release_identity() to_be_moved.append(name) else: _LOGGER.debug('Keep placement: %s until %s', name, expires_at) self.next_event_at = min(expires_at, self.next_event_at) elif state == State.frozen: _LOGGER.debug('Server state is frozen: %s', server.name) to_be_moved = [ name for name, app in six.iteritems(server.apps) if app.unschedule ] for name in to_be_moved: server.remove(name) def _find_placements(self, queue, servers): """Run the queue and find placements. """ # TODO: refactor to get rid of warnings. # # pylint: disable=too-many-branches,too-many-statements # # At this point, if app.server is defined, it points to attached # server. evicted = dict() reversed_queue = queue[::-1] placement_tracker = PlacementFeasibilityTracker() for app in queue: _LOGGER.debug('scheduling %s', app.name) if app.final_rank == _UNPLACED_RANK: if app.server: assert app.server in servers assert app.has_identity() servers[app.server].remove(app.name) app.release_identity() continue restore = {} if app.renew: assert app.server assert app.has_identity() assert app.server in servers server = servers[app.server] if not server.renew(app): # Save information that will be used to restore placement # in case renewal fails. _LOGGER.debug('Cannot renew app %s on server %s', app.name, app.server) restore['server'] = server restore['placement_expiry'] = app.placement_expiry server.remove(app.name) # At this point app was either renewed on the same server, or # temporarily removed from server if renew failed. # # If placement will be found, renew should remain False. If # placement will not be found, renew will be set to True when # placement is restored to the server it was running. app.renew = False if app.server: assert app.server in servers assert app.has_identity() continue assert app.server is None if not app.acquire_identity(): _LOGGER.info('Unable to acquire identity: %s, %s', app.name, app.identity_group) continue # If app was evicted before, try to restore to the same node. if app in evicted: assert app.has_identity() evicted_from, app_expiry = evicted[app] del evicted[app] if evicted_from.restore(app, app_expiry): app.evicted = False continue assert app.server is None if app.schedule_once and app.evicted: continue # Check if placement is feasible. if not placement_tracker.feasible(app): _LOGGER.info( 'Placement not feasible: %s %r', app.name, app.shape() ) continue if not self.put(app): # There is not enough capacity, from the end of the queue, # evict apps, freeing capacity. for evicted_app in reversed_queue: # We reached the app we can't place if evicted_app == app: break # The app is not yet placed, skip if not evicted_app.server: continue assert evicted_app.server in servers evicted_app_server = servers[evicted_app.server] # Do not consider servers that are not up. if evicted_app_server.state is not State.up: continue evicted[evicted_app] = (evicted_app_server, evicted_app.placement_expiry) evicted_app_server.remove(evicted_app.name) # TODO: we need to check affinity limit constraints on # each level, all the way to the top. if evicted_app_server.put(app): break # Placement failed. if not app.server: # If renewal attempt failed, restore previous placement and # expiry date. if restore: restore['server'].restore(app, restore['placement_expiry']) app.renew = True else: app.release_identity() placement_tracker.adjust(app) def schedule_alloc(self, allocation, servers): """Run the scheduler for given allocation. """ begin = time.time() size = self.size(allocation.label) util_queue = list(allocation.utilization_queue(size)) self._record_rank_and_util(util_queue) queue = [item[-1] for item in util_queue] self._find_placements(queue, servers) _LOGGER.info('Scheduled %s (%d) apps in %r', allocation.label, len(queue), time.time() - begin) def schedule(self): """Run the scheduler. """ begin = time.time() all_apps = [] for label, partition in six.iteritems(self.partitions): allocation = partition.allocation all_apps.extend(allocation.all_apps()) before = [(app.name, app.server, app.placement_expiry) for app in all_apps] servers = self.members() self._fix_invalid_placements(six.viewvalues(self.apps), servers) self._handle_inactive_servers(servers) self._fix_invalid_identities(six.viewvalues(self.apps), servers) for label, partition in six.iteritems(self.partitions): allocation = partition.allocation allocation.label = label self.schedule_alloc(allocation, servers) after = [(app.server, app.placement_expiry) for app in all_apps] placement = [ tuple(itertools.chain(b, a)) for b, a in six.moves.zip(before, after) ] for appname, s_before, exp_before, s_after, exp_after in placement: if s_before != s_after: _LOGGER.info('New placement: %s - %s => %s', appname, s_before, s_after) else: if exp_before != exp_after: _LOGGER.info('Renewed: %s [%s] - %s => %s', appname, s_before, exp_before, exp_after) _LOGGER.info('Total scheduler time for %s apps: %r (sec)', len(all_apps), time.time() - begin) return placement def resolve_reboot_conflicts(self): """Adjust server exipiration time to avoid conflicts. """ pass def dumps(cell): """Serializes cell to string. """ del cell return '' def loads(data): """Loads scheduler from string. """ del data assert False, 'not implemented.'
[ "logging.getLogger", "itertools.chain", "six.itervalues", "heapq.merge", "numpy.array", "datetime.date.fromtimestamp", "six.moves.xrange", "datetime.timedelta", "numpy.subtract", "numpy.maximum", "six.moves.zip", "six.viewvalues", "numpy.finfo", "datetime.date.today", "time.time", "time.mktime", "six.add_metaclass", "collections.Counter", "numpy.zeros", "collections.defaultdict", "six.iteritems" ]
[((377, 404), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (394, 404), False, 'import logging\n'), ((551, 594), 'time.mktime', 'time.mktime', (['(2014, 1, 1, 0, 0, 0, 0, 0, 0)'], {}), '((2014, 1, 1, 0, 0, 0, 0, 0, 0))\n', (562, 594), False, 'import time\n'), ((8874, 8904), 'six.add_metaclass', 'six.add_metaclass', (['abc.ABCMeta'], {}), '(abc.ABCMeta)\n', (8891, 8904), False, 'import six\n'), ((1147, 1172), 'numpy.zeros', 'np.zeros', (['DIMENSION_COUNT'], {}), '(DIMENSION_COUNT)\n', (1155, 1172), True, 'import numpy as np\n'), ((39765, 39786), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (39784, 39786), False, 'import datetime\n'), ((6599, 6628), 'numpy.array', 'np.array', (['demand'], {'dtype': 'float'}), '(demand, dtype=float)\n', (6607, 6628), True, 'import numpy as np\n'), ((11480, 11516), 'six.itervalues', 'six.itervalues', (['self.children_traits'], {}), '(self.children_traits)\n', (11494, 11516), False, 'import six\n'), ((12396, 12417), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (12415, 12417), False, 'import collections\n'), ((13106, 13127), 'collections.Counter', 'collections.Counter', ([], {}), '()\n', (13125, 13127), False, 'import collections\n'), ((13226, 13237), 'time.time', 'time.time', ([], {}), '()\n', (13235, 13237), False, 'import time\n'), ((20062, 20106), 'numpy.maximum', 'np.maximum', (['self.free_capacity', 'new_capacity'], {}), '(self.free_capacity, new_capacity)\n', (20072, 20106), True, 'import numpy as np\n'), ((23473, 23504), 'numpy.array', 'np.array', (['capacity'], {'dtype': 'float'}), '(capacity, dtype=float)\n', (23481, 23504), True, 'import numpy as np\n'), ((34511, 34531), 'heapq.merge', 'heapq.merge', (['*queues'], {}), '(*queues)\n', (34522, 34531), False, 'import heapq\n'), ((36447, 36483), 'six.itervalues', 'six.itervalues', (['self.sub_allocations'], {}), '(self.sub_allocations)\n', (36461, 36483), False, 'import six\n'), ((40086, 40112), 'datetime.timedelta', 'datetime.timedelta', ([], {'days': '(1)'}), '(days=1)\n', (40104, 40112), False, 'import datetime\n'), ((42352, 42390), 'collections.defaultdict', 'collections.defaultdict', (['IdentityGroup'], {}), '(IdentityGroup)\n', (42375, 42390), False, 'import collections\n'), ((45645, 45668), 'six.itervalues', 'six.itervalues', (['servers'], {}), '(servers)\n', (45659, 45668), False, 'import six\n'), ((51700, 51711), 'time.time', 'time.time', ([], {}), '()\n', (51709, 51711), False, 'import time\n'), ((52213, 52224), 'time.time', 'time.time', ([], {}), '()\n', (52222, 52224), False, 'import time\n'), ((52280, 52310), 'six.iteritems', 'six.iteritems', (['self.partitions'], {}), '(self.partitions)\n', (52293, 52310), False, 'import six\n'), ((52772, 52802), 'six.iteritems', 'six.iteritems', (['self.partitions'], {}), '(self.partitions)\n', (52785, 52802), False, 'import six\n'), ((1820, 1850), 'numpy.subtract', 'np.subtract', (['demand', 'allocated'], {}), '(demand, allocated)\n', (1831, 1850), True, 'import numpy as np\n'), ((14223, 14234), 'time.time', 'time.time', ([], {}), '()\n', (14232, 14234), False, 'import time\n'), ((32345, 32370), 'six.viewvalues', 'six.viewvalues', (['self.apps'], {}), '(self.apps)\n', (32359, 32370), False, 'import six\n'), ((35551, 35587), 'six.itervalues', 'six.itervalues', (['self.sub_allocations'], {}), '(self.sub_allocations)\n', (35565, 35587), False, 'import six\n'), ((36399, 36424), 'six.itervalues', 'six.itervalues', (['self.apps'], {}), '(self.apps)\n', (36413, 36424), False, 'import six\n'), ((37584, 37595), 'time.time', 'time.time', ([], {}), '()\n', (37593, 37595), False, 'import time\n'), ((43744, 43769), 'six.itervalues', 'six.itervalues', (['self.apps'], {}), '(self.apps)\n', (43758, 43769), False, 'import six\n'), ((52583, 52608), 'six.viewvalues', 'six.viewvalues', (['self.apps'], {}), '(self.apps)\n', (52597, 52608), False, 'import six\n'), ((52703, 52728), 'six.viewvalues', 'six.viewvalues', (['self.apps'], {}), '(self.apps)\n', (52717, 52728), False, 'import six\n'), ((1336, 1351), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (1344, 1351), True, 'import numpy as np\n'), ((1640, 1651), 'time.time', 'time.time', ([], {}), '()\n', (1649, 1651), False, 'import time\n'), ((2000, 2026), 'six.moves.zip', 'six.moves.zip', (['left', 'right'], {}), '(left, right)\n', (2013, 2026), False, 'import six\n'), ((2169, 2195), 'six.moves.zip', 'six.moves.zip', (['left', 'right'], {}), '(left, right)\n', (2182, 2195), False, 'import six\n'), ((4600, 4635), 'six.moves.xrange', 'six.moves.xrange', (['self.count', 'count'], {}), '(self.count, count)\n', (4616, 4635), False, 'import six\n'), ((4685, 4720), 'six.moves.xrange', 'six.moves.xrange', (['count', 'self.count'], {}), '(count, self.count)\n', (4701, 4720), False, 'import six\n'), ((20853, 20904), 'numpy.maximum', 'np.maximum', (['free_capacity', 'child_node.free_capacity'], {}), '(free_capacity, child_node.free_capacity)\n', (20863, 20904), True, 'import numpy as np\n'), ((24844, 24855), 'time.time', 'time.time', ([], {}), '()\n', (24853, 24855), False, 'import time\n'), ((25613, 25624), 'time.time', 'time.time', ([], {}), '()\n', (25622, 25624), False, 'import time\n'), ((25943, 25954), 'time.time', 'time.time', ([], {}), '()\n', (25952, 25954), False, 'import time\n'), ((32460, 32475), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (32468, 32475), True, 'import numpy as np\n'), ((34205, 34241), 'six.itervalues', 'six.itervalues', (['self.sub_allocations'], {}), '(self.sub_allocations)\n', (34219, 34241), False, 'import six\n'), ((34397, 34412), 'numpy.finfo', 'np.finfo', (['float'], {}), '(float)\n', (34405, 34412), True, 'import numpy as np\n'), ((37692, 37724), 'datetime.date.fromtimestamp', 'datetime.date.fromtimestamp', (['now'], {}), '(now)\n', (37719, 37724), False, 'import datetime\n'), ((39973, 40037), 'time.mktime', 'time.mktime', (['(date.year, date.month, date.day, h, m, s, 0, 0, 0)'], {}), '((date.year, date.month, date.day, h, m, s, 0, 0, 0))\n', (39984, 40037), False, 'import time\n'), ((45886, 45912), 'six.iteritems', 'six.iteritems', (['server.apps'], {}), '(server.apps)\n', (45899, 45912), False, 'import six\n'), ((52109, 52120), 'time.time', 'time.time', ([], {}), '()\n', (52118, 52120), False, 'import time\n'), ((53072, 53093), 'itertools.chain', 'itertools.chain', (['b', 'a'], {}), '(b, a)\n', (53087, 53093), False, 'import itertools\n'), ((53119, 53147), 'six.moves.zip', 'six.moves.zip', (['before', 'after'], {}), '(before, after)\n', (53132, 53147), False, 'import six\n'), ((53715, 53726), 'time.time', 'time.time', ([], {}), '()\n', (53724, 53726), False, 'import time\n'), ((29858, 29889), 'numpy.array', 'np.array', (['reserved'], {'dtype': 'float'}), '(reserved, dtype=float)\n', (29866, 29889), True, 'import numpy as np\n'), ((46148, 46159), 'time.time', 'time.time', ([], {}), '()\n', (46157, 46159), False, 'import time\n'), ((46794, 46820), 'six.iteritems', 'six.iteritems', (['server.apps'], {}), '(server.apps)\n', (46807, 46820), False, 'import six\n')]
import os import sys import re import json import logging import torch from transformers import ( HfArgumentParser, set_seed, AutoTokenizer, AutoConfig, EvalPrediction, ) from src.model.ca_mtl import CaMtl, CaMtlArguments from src.utils.misc import MultiTaskDataArguments, Split from src.mtl_trainer import MultiTaskTrainer, MultiTaskTrainingArguments from src.data.mtl_dataset import MultiTaskDataset from src.data.task_dataset import TaskDataset logger = logging.getLogger(__name__) def setup_logging(training_args): logging.basicConfig( format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", datefmt="%m/%d/%Y %H:%M:%S", level=logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN, ) logger.warning( "Process rank: %s, device: %s, n_gpu: %s, distributed training: %s, 16-bits training: %s", training_args.local_rank, training_args.device, training_args.n_gpu, bool(training_args.local_rank != -1), training_args.fp16, ) def parse_cmd_args(): parser = HfArgumentParser( ( CaMtlArguments, MultiTaskDataArguments, MultiTaskTrainingArguments, ) ) if len(sys.argv) == 2 and sys.argv[1].endswith(".json"): model_args, data_args, training_args = parser.parse_json_file( json_file=os.path.abspath(sys.argv[1]) ) else: ( model_args, data_args, training_args, ) = parser.parse_args_into_dataclasses() logger.info("Training/evaluation parameters %s", training_args) return model_args, data_args, training_args def create_eval_datasets(mode, data_args, tokenizer): eval_datasets = {} for task_id, task_name in enumerate(data_args.tasks): eval_datasets[task_name] = TaskDataset( task_name, task_id, data_args, tokenizer, mode=mode ) if task_name == "mnli": # Loop to handle MNLI double evaluation (matched, mis-matched) eval_datasets["mnli-mm"] = TaskDataset( "mnli-mm", task_id, data_args, tokenizer, mode=mode ) return eval_datasets def main(): model_args, data_args, training_args = parse_cmd_args() setup_logging(training_args) set_seed(training_args.seed) config = AutoConfig.from_pretrained( CaMtl.get_base_model(model_args.model_name_or_path), ) model = CaMtl.from_pretrained( CaMtl.get_base_model(model_args.model_name_or_path), model_args, data_args, config=config) model.freeze_encoder_layers(model_args) logger.info(model) tokenizer = AutoTokenizer.from_pretrained( CaMtl.get_base_model(model_args.model_name_or_path), ) logger.info("Training tasks: %s", ", ".join([t for t in data_args.tasks])) trainer = MultiTaskTrainer( tokenizer, data_args, model=model, args=training_args, train_dataset=MultiTaskDataset(data_args, tokenizer, limit_length=50) if training_args.do_train else None, eval_datasets=create_eval_datasets(Split.dev, data_args, tokenizer) if training_args.do_eval or training_args.evaluate_during_training else None, test_datasets=create_eval_datasets(Split.test, data_args, tokenizer) if training_args.do_predict else None, ) if training_args.do_train: trainer.train( model_path=model_args.model_name_or_path if os.path.isdir(model_args.model_name_or_path) else None ) if training_args.do_eval: trainer.evaluate() if training_args.do_predict: trainer.predict() def _mp_fn(index): # For xla_spawn (TPUs) main() if __name__ == "__main__": main()
[ "logging.getLogger", "logging.basicConfig", "src.model.ca_mtl.CaMtl.get_base_model", "transformers.HfArgumentParser", "src.data.mtl_dataset.MultiTaskDataset", "os.path.isdir", "os.path.abspath", "transformers.set_seed", "src.data.task_dataset.TaskDataset" ]
[((480, 507), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (497, 507), False, 'import logging\n'), ((548, 752), 'logging.basicConfig', 'logging.basicConfig', ([], {'format': '"""%(asctime)s - %(levelname)s - %(name)s - %(message)s"""', 'datefmt': '"""%m/%d/%Y %H:%M:%S"""', 'level': '(logging.INFO if training_args.local_rank in [-1, 0] else logging.WARN)'}), "(format=\n '%(asctime)s - %(levelname)s - %(name)s - %(message)s', datefmt=\n '%m/%d/%Y %H:%M:%S', level=logging.INFO if training_args.local_rank in\n [-1, 0] else logging.WARN)\n", (567, 752), False, 'import logging\n'), ((1099, 1189), 'transformers.HfArgumentParser', 'HfArgumentParser', (['(CaMtlArguments, MultiTaskDataArguments, MultiTaskTrainingArguments)'], {}), '((CaMtlArguments, MultiTaskDataArguments,\n MultiTaskTrainingArguments))\n', (1115, 1189), False, 'from transformers import HfArgumentParser, set_seed, AutoTokenizer, AutoConfig, EvalPrediction\n'), ((2341, 2369), 'transformers.set_seed', 'set_seed', (['training_args.seed'], {}), '(training_args.seed)\n', (2349, 2369), False, 'from transformers import HfArgumentParser, set_seed, AutoTokenizer, AutoConfig, EvalPrediction\n'), ((1874, 1938), 'src.data.task_dataset.TaskDataset', 'TaskDataset', (['task_name', 'task_id', 'data_args', 'tokenizer'], {'mode': 'mode'}), '(task_name, task_id, data_args, tokenizer, mode=mode)\n', (1885, 1938), False, 'from src.data.task_dataset import TaskDataset\n'), ((2420, 2471), 'src.model.ca_mtl.CaMtl.get_base_model', 'CaMtl.get_base_model', (['model_args.model_name_or_path'], {}), '(model_args.model_name_or_path)\n', (2440, 2471), False, 'from src.model.ca_mtl import CaMtl, CaMtlArguments\n'), ((2523, 2574), 'src.model.ca_mtl.CaMtl.get_base_model', 'CaMtl.get_base_model', (['model_args.model_name_or_path'], {}), '(model_args.model_name_or_path)\n', (2543, 2574), False, 'from src.model.ca_mtl import CaMtl, CaMtlArguments\n'), ((2762, 2813), 'src.model.ca_mtl.CaMtl.get_base_model', 'CaMtl.get_base_model', (['model_args.model_name_or_path'], {}), '(model_args.model_name_or_path)\n', (2782, 2813), False, 'from src.model.ca_mtl import CaMtl, CaMtlArguments\n'), ((2107, 2171), 'src.data.task_dataset.TaskDataset', 'TaskDataset', (['"""mnli-mm"""', 'task_id', 'data_args', 'tokenizer'], {'mode': 'mode'}), "('mnli-mm', task_id, data_args, tokenizer, mode=mode)\n", (2118, 2171), False, 'from src.data.task_dataset import TaskDataset\n'), ((1402, 1430), 'os.path.abspath', 'os.path.abspath', (['sys.argv[1]'], {}), '(sys.argv[1])\n', (1417, 1430), False, 'import os\n'), ((3043, 3098), 'src.data.mtl_dataset.MultiTaskDataset', 'MultiTaskDataset', (['data_args', 'tokenizer'], {'limit_length': '(50)'}), '(data_args, tokenizer, limit_length=50)\n', (3059, 3098), False, 'from src.data.mtl_dataset import MultiTaskDataset\n'), ((3583, 3627), 'os.path.isdir', 'os.path.isdir', (['model_args.model_name_or_path'], {}), '(model_args.model_name_or_path)\n', (3596, 3627), False, 'import os\n')]
#!/usr/bin/env python3 """Read data in CSV format from websocket """ import sys import asyncio import websockets # read url from command line if len(sys.argv) >= 2: uri = sys.argv[1] else: # host url and port uri = "ws://localhost:8314" print("*==* ", sys.argv[0], " Lese Daten von url ", uri) async def read_ws(): """asynchronous read from websocket """ async with websockets.connect(uri, ping_interval=None) as websocket: # test connection await websocket.send("req_connect") answ = await websocket.recv() if answ == "ack_connect": print("** connected to websocket ", uri) # get data await websocket.send("getData") while True: inp = await websocket.recv() if inp == '\n': # empty record, end print("empty input - closing") sys.exit(0) else: print('read: %s ' % inp, end='') # run web client asyncio.get_event_loop().run_until_complete(read_ws())
[ "asyncio.get_event_loop", "websockets.connect", "sys.exit" ]
[((394, 437), 'websockets.connect', 'websockets.connect', (['uri'], {'ping_interval': 'None'}), '(uri, ping_interval=None)\n', (412, 437), False, 'import websockets\n'), ((978, 1002), 'asyncio.get_event_loop', 'asyncio.get_event_loop', ([], {}), '()\n', (1000, 1002), False, 'import asyncio\n'), ((880, 891), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (888, 891), False, 'import sys\n')]
#! /usr/bin/env python import tensorflow as tf import numpy as np import os import time import datetime from tensorflow.contrib import learn from input_helpers import InputHelper # Parameters # ================================================== # Eval Parameters tf.flags.DEFINE_integer("batch_size", 64, "Batch Size (default: 64)") tf.flags.DEFINE_string("checkpoint_dir", "", "Checkpoint directory from training run") tf.flags.DEFINE_string("eval_filepath", "match_valid.tsv", "Evaluate on this data (Default: None)") tf.flags.DEFINE_string("vocab_filepath", "runs/1479874609/checkpoints/vocab", "Load training time vocabulary (Default: None)") tf.flags.DEFINE_string("model", "runs/1479874609/checkpoints/model-32000", "Load trained model checkpoint (Default: None)") # Misc Parameters tf.flags.DEFINE_boolean("allow_soft_placement", True, "Allow device soft device placement") tf.flags.DEFINE_boolean("log_device_placement", False, "Log placement of ops on devices") FLAGS = tf.flags.FLAGS FLAGS._parse_flags() print("\nParameters:") for attr, value in sorted(FLAGS.__flags.items()): print("{}={}".format(attr.upper(), value)) print("") if FLAGS.eval_filepath==None or FLAGS.vocab_filepath==None or FLAGS.model==None : print("Eval or Vocab filepaths are empty.") exit() # load data and map id-transform based on training time vocabulary inpH = InputHelper() x1_test,x2_test,y_test = inpH.getTestDataSet(FLAGS.eval_filepath, FLAGS.vocab_filepath, 30) print("\nEvaluating...\n") # Evaluation # ================================================== checkpoint_file = FLAGS.model print(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=FLAGS.allow_soft_placement, log_device_placement=FLAGS.log_device_placement) sess = tf.Session(config=session_conf) with sess.as_default(): # Load the saved meta graph and restore variables saver = tf.train.import_meta_graph("{}.meta".format(checkpoint_file)) sess.run(tf.initialize_all_variables()) saver.restore(sess, checkpoint_file) # Get the placeholders from the graph by name input_x1 = graph.get_operation_by_name("input_x1").outputs[0] input_x2 = graph.get_operation_by_name("input_x2").outputs[0] input_y = graph.get_operation_by_name("input_y").outputs[0] dropout_keep_prob = graph.get_operation_by_name("dropout_keep_prob").outputs[0] # Tensors we want to evaluate predictions = graph.get_operation_by_name("output/distance").outputs[0] accuracy = graph.get_operation_by_name("accuracy/accuracy").outputs[0] sim = graph.get_operation_by_name("accuracy/temp_sim").outputs[0] #emb = graph.get_operation_by_name("embedding/W").outputs[0] #embedded_chars = tf.nn.embedding_lookup(emb,input_x) # Generate batches for one epoch batches = inpH.batch_iter(list(zip(x1_test,x2_test,y_test)), 2*FLAGS.batch_size, 1, shuffle=False) # Collect the predictions here all_predictions = [] all_d=[] for db in batches: x1_dev_b,x2_dev_b,y_dev_b = zip(*db) batch_predictions, batch_acc, sim = sess.run([predictions,accuracy,sim], {input_x1: x1_dev_b, input_x2: x2_dev_b, input_y:y_dev_b, dropout_keep_prob: 1.0}) all_predictions = np.concatenate([all_predictions, batch_predictions]) print(batch_predictions) all_d = np.concatenate([all_d, sim]) print("DEV acc {}".format(batch_acc)) for ex in all_predictions: print(ex) correct_predictions = float(np.mean(all_d == y_test)) print("Accuracy: {:g}".format(correct_predictions))
[ "tensorflow.flags.DEFINE_string", "tensorflow.Graph", "tensorflow.ConfigProto", "tensorflow.initialize_all_variables", "numpy.mean", "tensorflow.flags.DEFINE_boolean", "tensorflow.Session", "numpy.concatenate", "tensorflow.flags.DEFINE_integer", "input_helpers.InputHelper" ]
[((265, 334), 'tensorflow.flags.DEFINE_integer', 'tf.flags.DEFINE_integer', (['"""batch_size"""', '(64)', '"""Batch Size (default: 64)"""'], {}), "('batch_size', 64, 'Batch Size (default: 64)')\n", (288, 334), True, 'import tensorflow as tf\n'), ((335, 425), 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""checkpoint_dir"""', '""""""', '"""Checkpoint directory from training run"""'], {}), "('checkpoint_dir', '',\n 'Checkpoint directory from training run')\n", (357, 425), True, 'import tensorflow as tf\n'), ((422, 525), 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""eval_filepath"""', '"""match_valid.tsv"""', '"""Evaluate on this data (Default: None)"""'], {}), "('eval_filepath', 'match_valid.tsv',\n 'Evaluate on this data (Default: None)')\n", (444, 525), True, 'import tensorflow as tf\n'), ((522, 656), 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""vocab_filepath"""', '"""runs/1479874609/checkpoints/vocab"""', '"""Load training time vocabulary (Default: None)"""'], {}), "('vocab_filepath',\n 'runs/1479874609/checkpoints/vocab',\n 'Load training time vocabulary (Default: None)')\n", (544, 656), True, 'import tensorflow as tf\n'), ((649, 776), 'tensorflow.flags.DEFINE_string', 'tf.flags.DEFINE_string', (['"""model"""', '"""runs/1479874609/checkpoints/model-32000"""', '"""Load trained model checkpoint (Default: None)"""'], {}), "('model', 'runs/1479874609/checkpoints/model-32000',\n 'Load trained model checkpoint (Default: None)')\n", (671, 776), True, 'import tensorflow as tf\n'), ((792, 887), 'tensorflow.flags.DEFINE_boolean', 'tf.flags.DEFINE_boolean', (['"""allow_soft_placement"""', '(True)', '"""Allow device soft device placement"""'], {}), "('allow_soft_placement', True,\n 'Allow device soft device placement')\n", (815, 887), True, 'import tensorflow as tf\n'), ((884, 977), 'tensorflow.flags.DEFINE_boolean', 'tf.flags.DEFINE_boolean', (['"""log_device_placement"""', '(False)', '"""Log placement of ops on devices"""'], {}), "('log_device_placement', False,\n 'Log placement of ops on devices')\n", (907, 977), True, 'import tensorflow as tf\n'), ((1367, 1380), 'input_helpers.InputHelper', 'InputHelper', ([], {}), '()\n', (1378, 1380), False, 'from input_helpers import InputHelper\n'), ((1629, 1639), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (1637, 1639), True, 'import tensorflow as tf\n'), ((1684, 1800), 'tensorflow.ConfigProto', 'tf.ConfigProto', ([], {'allow_soft_placement': 'FLAGS.allow_soft_placement', 'log_device_placement': 'FLAGS.log_device_placement'}), '(allow_soft_placement=FLAGS.allow_soft_placement,\n log_device_placement=FLAGS.log_device_placement)\n', (1698, 1800), True, 'import tensorflow as tf\n'), ((1821, 1852), 'tensorflow.Session', 'tf.Session', ([], {'config': 'session_conf'}), '(config=session_conf)\n', (1831, 1852), True, 'import tensorflow as tf\n'), ((2034, 2063), 'tensorflow.initialize_all_variables', 'tf.initialize_all_variables', ([], {}), '()\n', (2061, 2063), True, 'import tensorflow as tf\n'), ((3374, 3426), 'numpy.concatenate', 'np.concatenate', (['[all_predictions, batch_predictions]'], {}), '([all_predictions, batch_predictions])\n', (3388, 3426), True, 'import numpy as np\n'), ((3484, 3512), 'numpy.concatenate', 'np.concatenate', (['[all_d, sim]'], {}), '([all_d, sim])\n', (3498, 3512), True, 'import numpy as np\n'), ((3657, 3681), 'numpy.mean', 'np.mean', (['(all_d == y_test)'], {}), '(all_d == y_test)\n', (3664, 3681), True, 'import numpy as np\n')]
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs __all__ = [ 'GetWorkspaceResult', 'AwaitableGetWorkspaceResult', 'get_workspace', 'get_workspace_output', ] @pulumi.output_type class GetWorkspaceResult: def __init__(__self__, bundle_id=None, directory_id=None, id=None, root_volume_encryption_enabled=None, tags=None, user_volume_encryption_enabled=None, volume_encryption_key=None, workspace_properties=None): if bundle_id and not isinstance(bundle_id, str): raise TypeError("Expected argument 'bundle_id' to be a str") pulumi.set(__self__, "bundle_id", bundle_id) if directory_id and not isinstance(directory_id, str): raise TypeError("Expected argument 'directory_id' to be a str") pulumi.set(__self__, "directory_id", directory_id) if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if root_volume_encryption_enabled and not isinstance(root_volume_encryption_enabled, bool): raise TypeError("Expected argument 'root_volume_encryption_enabled' to be a bool") pulumi.set(__self__, "root_volume_encryption_enabled", root_volume_encryption_enabled) if tags and not isinstance(tags, list): raise TypeError("Expected argument 'tags' to be a list") pulumi.set(__self__, "tags", tags) if user_volume_encryption_enabled and not isinstance(user_volume_encryption_enabled, bool): raise TypeError("Expected argument 'user_volume_encryption_enabled' to be a bool") pulumi.set(__self__, "user_volume_encryption_enabled", user_volume_encryption_enabled) if volume_encryption_key and not isinstance(volume_encryption_key, str): raise TypeError("Expected argument 'volume_encryption_key' to be a str") pulumi.set(__self__, "volume_encryption_key", volume_encryption_key) if workspace_properties and not isinstance(workspace_properties, dict): raise TypeError("Expected argument 'workspace_properties' to be a dict") pulumi.set(__self__, "workspace_properties", workspace_properties) @property @pulumi.getter(name="bundleId") def bundle_id(self) -> Optional[str]: return pulumi.get(self, "bundle_id") @property @pulumi.getter(name="directoryId") def directory_id(self) -> Optional[str]: return pulumi.get(self, "directory_id") @property @pulumi.getter def id(self) -> Optional[str]: return pulumi.get(self, "id") @property @pulumi.getter(name="rootVolumeEncryptionEnabled") def root_volume_encryption_enabled(self) -> Optional[bool]: return pulumi.get(self, "root_volume_encryption_enabled") @property @pulumi.getter def tags(self) -> Optional[Sequence['outputs.WorkspaceTag']]: return pulumi.get(self, "tags") @property @pulumi.getter(name="userVolumeEncryptionEnabled") def user_volume_encryption_enabled(self) -> Optional[bool]: return pulumi.get(self, "user_volume_encryption_enabled") @property @pulumi.getter(name="volumeEncryptionKey") def volume_encryption_key(self) -> Optional[str]: return pulumi.get(self, "volume_encryption_key") @property @pulumi.getter(name="workspaceProperties") def workspace_properties(self) -> Optional['outputs.WorkspaceProperties']: return pulumi.get(self, "workspace_properties") class AwaitableGetWorkspaceResult(GetWorkspaceResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetWorkspaceResult( bundle_id=self.bundle_id, directory_id=self.directory_id, id=self.id, root_volume_encryption_enabled=self.root_volume_encryption_enabled, tags=self.tags, user_volume_encryption_enabled=self.user_volume_encryption_enabled, volume_encryption_key=self.volume_encryption_key, workspace_properties=self.workspace_properties) def get_workspace(id: Optional[str] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetWorkspaceResult: """ Resource Type definition for AWS::WorkSpaces::Workspace """ __args__ = dict() __args__['id'] = id if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('aws-native:workspaces:getWorkspace', __args__, opts=opts, typ=GetWorkspaceResult).value return AwaitableGetWorkspaceResult( bundle_id=__ret__.bundle_id, directory_id=__ret__.directory_id, id=__ret__.id, root_volume_encryption_enabled=__ret__.root_volume_encryption_enabled, tags=__ret__.tags, user_volume_encryption_enabled=__ret__.user_volume_encryption_enabled, volume_encryption_key=__ret__.volume_encryption_key, workspace_properties=__ret__.workspace_properties) @_utilities.lift_output_func(get_workspace) def get_workspace_output(id: Optional[pulumi.Input[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetWorkspaceResult]: """ Resource Type definition for AWS::WorkSpaces::Workspace """ ...
[ "pulumi.get", "pulumi.getter", "pulumi.set", "pulumi.InvokeOptions", "pulumi.runtime.invoke" ]
[((2494, 2524), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""bundleId"""'}), "(name='bundleId')\n", (2507, 2524), False, 'import pulumi\n'), ((2632, 2665), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""directoryId"""'}), "(name='directoryId')\n", (2645, 2665), False, 'import pulumi\n'), ((2886, 2935), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""rootVolumeEncryptionEnabled"""'}), "(name='rootVolumeEncryptionEnabled')\n", (2899, 2935), False, 'import pulumi\n'), ((3226, 3275), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""userVolumeEncryptionEnabled"""'}), "(name='userVolumeEncryptionEnabled')\n", (3239, 3275), False, 'import pulumi\n'), ((3426, 3467), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""volumeEncryptionKey"""'}), "(name='volumeEncryptionKey')\n", (3439, 3467), False, 'import pulumi\n'), ((3599, 3640), 'pulumi.getter', 'pulumi.getter', ([], {'name': '"""workspaceProperties"""'}), "(name='workspaceProperties')\n", (3612, 3640), False, 'import pulumi\n'), ((860, 904), 'pulumi.set', 'pulumi.set', (['__self__', '"""bundle_id"""', 'bundle_id'], {}), "(__self__, 'bundle_id', bundle_id)\n", (870, 904), False, 'import pulumi\n'), ((1052, 1102), 'pulumi.set', 'pulumi.set', (['__self__', '"""directory_id"""', 'directory_id'], {}), "(__self__, 'directory_id', directory_id)\n", (1062, 1102), False, 'import pulumi\n'), ((1220, 1250), 'pulumi.set', 'pulumi.set', (['__self__', '"""id"""', 'id'], {}), "(__self__, 'id', id)\n", (1230, 1250), False, 'import pulumi\n'), ((1454, 1544), 'pulumi.set', 'pulumi.set', (['__self__', '"""root_volume_encryption_enabled"""', 'root_volume_encryption_enabled'], {}), "(__self__, 'root_volume_encryption_enabled',\n root_volume_encryption_enabled)\n", (1464, 1544), False, 'import pulumi\n'), ((1666, 1700), 'pulumi.set', 'pulumi.set', (['__self__', '"""tags"""', 'tags'], {}), "(__self__, 'tags', tags)\n", (1676, 1700), False, 'import pulumi\n'), ((1904, 1994), 'pulumi.set', 'pulumi.set', (['__self__', '"""user_volume_encryption_enabled"""', 'user_volume_encryption_enabled'], {}), "(__self__, 'user_volume_encryption_enabled',\n user_volume_encryption_enabled)\n", (1914, 1994), False, 'import pulumi\n'), ((2165, 2233), 'pulumi.set', 'pulumi.set', (['__self__', '"""volume_encryption_key"""', 'volume_encryption_key'], {}), "(__self__, 'volume_encryption_key', volume_encryption_key)\n", (2175, 2233), False, 'import pulumi\n'), ((2407, 2473), 'pulumi.set', 'pulumi.set', (['__self__', '"""workspace_properties"""', 'workspace_properties'], {}), "(__self__, 'workspace_properties', workspace_properties)\n", (2417, 2473), False, 'import pulumi\n'), ((2582, 2611), 'pulumi.get', 'pulumi.get', (['self', '"""bundle_id"""'], {}), "(self, 'bundle_id')\n", (2592, 2611), False, 'import pulumi\n'), ((2726, 2758), 'pulumi.get', 'pulumi.get', (['self', '"""directory_id"""'], {}), "(self, 'directory_id')\n", (2736, 2758), False, 'import pulumi\n'), ((2843, 2865), 'pulumi.get', 'pulumi.get', (['self', '"""id"""'], {}), "(self, 'id')\n", (2853, 2865), False, 'import pulumi\n'), ((3015, 3065), 'pulumi.get', 'pulumi.get', (['self', '"""root_volume_encryption_enabled"""'], {}), "(self, 'root_volume_encryption_enabled')\n", (3025, 3065), False, 'import pulumi\n'), ((3181, 3205), 'pulumi.get', 'pulumi.get', (['self', '"""tags"""'], {}), "(self, 'tags')\n", (3191, 3205), False, 'import pulumi\n'), ((3355, 3405), 'pulumi.get', 'pulumi.get', (['self', '"""user_volume_encryption_enabled"""'], {}), "(self, 'user_volume_encryption_enabled')\n", (3365, 3405), False, 'import pulumi\n'), ((3537, 3578), 'pulumi.get', 'pulumi.get', (['self', '"""volume_encryption_key"""'], {}), "(self, 'volume_encryption_key')\n", (3547, 3578), False, 'import pulumi\n'), ((3735, 3775), 'pulumi.get', 'pulumi.get', (['self', '"""workspace_properties"""'], {}), "(self, 'workspace_properties')\n", (3745, 3775), False, 'import pulumi\n'), ((4691, 4713), 'pulumi.InvokeOptions', 'pulumi.InvokeOptions', ([], {}), '()\n', (4711, 4713), False, 'import pulumi\n'), ((4805, 4914), 'pulumi.runtime.invoke', 'pulumi.runtime.invoke', (['"""aws-native:workspaces:getWorkspace"""', '__args__'], {'opts': 'opts', 'typ': 'GetWorkspaceResult'}), "('aws-native:workspaces:getWorkspace', __args__, opts=\n opts, typ=GetWorkspaceResult)\n", (4826, 4914), False, 'import pulumi\n')]
#!/usr/bin/env python ############################################################################### # # # manifestManager.py # # # # Work with online data manifests (creating / syncing / validating) # # # # Copyright (C) <NAME> # # # ############################################################################### # # # This program is free software: you can redistribute it and/or modify # # it under the terms of the GNU General Public License as published by # # the Free Software Foundation, either version 3 of the License, or # # (at your option) any later version. # # # # This program is distributed in the hope that it will be useful, # # but WITHOUT ANY WARRANTY; without even the implied warranty of # # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # # GNU General Public License for more details. # # # # You should have received a copy of the GNU General Public License # # along with this program. If not, see <http://www.gnu.org/licenses/>. # # # ############################################################################### __author__ = "<NAME>" __copyright__ = "Copyright 2014" __credits__ = ["<NAME>"] __license__ = "GPLv3" __maintainer__ = "<NAME>" __email__ = "<EMAIL>" __version__ = "0.35" ############################################################################### ############################################################################### ############################################################################### ############################################################################### __MANIFEST__ = ".dmanifest" ############################################################################### ############################################################################### ############################################################################### ############################################################################### # system includes import os import hashlib import urllib.request, urllib.error, urllib.parse import urllib.request, urllib.parse, urllib.error import shutil import errno # local includes from fileEntity import FileEntity as FE ############################################################################### ############################################################################### ############################################################################### ############################################################################### class ManifestManager(object): """Use this interface for storing and managing file and paths""" def __init__(self, manType=None, timeout=30): self.timeout = timeout self.myExtensions = [".py",".sh"] self.files = [] if manType is not None: self.type = manType else: self.type = "generic" def createManifest(self, path, manifestName=None): """inventory all files in path and create a manifest file""" if manifestName is None: manifestName = __MANIFEST__ # make the root file entity root_path = os.path.abspath(path) root_fe = FE('root', ".", None, "-", 0) self.files.append(root_fe) # now make all the ones below parents = [root_fe] dirs, files = self.listdir(path)[:2] self.walk(parents, root_path, '', dirs, files, skipFile=manifestName) with open(os.path.join(path, manifestName), 'w') as man_fh: # print the header man_fh.write("#\t::: %s ::: \tPizza3 manifest version %s\n\n" % (self.type, __version__)) for f in self.files: if f.parent is not None: man_fh.write("%s\n" % f) def diffManifests(self, localManifestLocation, sourceManifestLocation, localManifestName=None, sourceManifestName=None, printDiffs=False): """check for any differences between two manifests if remote is true then sourceManifestLocation is a URL returns a list of files that need to be updated """ if localManifestName is None: localManifestName = __MANIFEST__ if sourceManifestName is None: sourceManifestName = __MANIFEST__ # get the "type" of the local manifest l_type = "generic" with open(os.path.join(localManifestLocation, localManifestName)) as l_man: for line in l_man: if line[0] == "#": l_type = self.getManType(line) break # load the source manifest s_type = "generic" source_man = {} source = "" # first we assume it is remote try: s_man = urllib.request.urlopen(sourceManifestLocation + "/" + sourceManifestName, None, self.timeout) source = sourceManifestLocation + "/" except ValueError: # then it is probably a file s_man = open(os.path.join(sourceManifestLocation, sourceManifestName)) source = os.path.join(sourceManifestLocation) + os.path.sep except urllib.error.URLError: # problems connecting to server, perhaps user is behind a proxy or firewall print("Error: failed to connect to server.") return (None, None, None, None, None) first_line = True for line in s_man: if first_line: first_line = False if line[0] == "#": # get the type of the manifest s_type = self.getManType(line) if s_type != l_type: print("Error: type of source manifest (%s) does not match type of local manifest (%s)" % (s_type, l_type)) return (None, None, None, None, None) else: # no type specified print("Error: type of source manifest is not specified. Is this a valid manifest file?") return (None, None, None, None, None) self.type = l_type if line[0] != "#": fields = line.rstrip().split("\t") # set the dict up as {path => [hash, size, seenLocal] source_man[fields[0]] = [fields[1], fields[2], False] # keep lists of modifications deleted = [] addedDirs = [] addedFiles = [] modified = [] with open(os.path.join(localManifestLocation, localManifestName)) as l_man: for line in l_man: if line[0] != "#": fields = line.rstrip().split("\t") try: if source_man[fields[0]][0] != fields[1]: # hashes don't match modified.append(fields[0]) # seen this file source_man[fields[0]][2] = True except KeyError: # this file has been deleted from the source manifest deleted.append(fields[0]) # check for new files for f in list(source_man.keys()): if source_man[f][2] == False: if source_man[f][0] == '-': addedDirs.append(f) else: addedFiles.append(f) if printDiffs: new_size = 0 modified_size = 0 for f in addedFiles: new_size += int(source_man[f][1]) for f in modified: modified_size += int(source_man[f][1]) if len(addedFiles) > 0: print("#------------------------------------------------------") print("# Source contains %d new file(s) (%s)" % (len(addedFiles), self.formatData(new_size))) for f in addedFiles: print("\t".join([self.formatData(int(source_man[f][1])), f])) if len(addedDirs) > 0: print("#------------------------------------------------------") print("# Source contains %d new folders(s)" % (len(addedDirs))) for f in addedDirs: print(f) if len(modified) > 0: print("#------------------------------------------------------") print("# Source contains %d modified file(s) (%s)" % (len(modified), self.formatData(modified_size))) for f in modified: print(f) if len(deleted) > 0: print("#------------------------------------------------------") print("# %d files have been deleted in the source:" % len(deleted)) for f in deleted: print(f) else: return (source, [(a, source_man[a]) for a in addedFiles], [(a, source_man[a]) for a in addedDirs], deleted, [(m, source_man[m]) for m in modified]) def updateManifest(self, localManifestLocation, sourceManifestLocation, localManifestName=None, sourceManifestName=None, prompt=True): """Update local files based on remote changes""" # get the diffs source, added_files, added_dirs, deleted, modified = self.diffManifests(localManifestLocation, sourceManifestLocation, localManifestName, sourceManifestName) # bail if the diff failed if source is None: return False # no changes by default do_down = False if prompt: total_size = 0 for f in added_files: total_size += int(f[1][1]) for f in modified: total_size += int(f[1][1]) if total_size != 0: print("****************************************************************") print("%d new file(s) to be downloaded from source" % len(added_files)) print("%d existing file(s) to be updated" % len(modified)) print("%s will need to be downloaded" % self.formatData(total_size)) do_down = self.promptUserDownload() if not do_down: print("Download aborted") update_manifest = False if do_down: update_manifest = True for add in added_dirs: # make the dirs first full_path = os.path.abspath(os.path.join(localManifestLocation, add[0])) self.makeSurePathExists(full_path) for add in added_files: full_path = os.path.abspath(os.path.join(localManifestLocation, add[0])) urllib.request.urlretrieve(source+add[0], full_path) for modify in modified: full_path = os.path.abspath(os.path.join(localManifestLocation, modify[0])) urllib.request.urlretrieve(source+modify[0], full_path) if update_manifest: print("(re) creating manifest file (please be patient)") self.createManifest(localManifestLocation, manifestName=localManifestName) return True def getManType(self, line): """Work out the manifest type from the first line of the file""" return line.rstrip().split("##")[1] def formatData(self, amount): """Pretty print file sizes""" if amount < 1024*1024: return "%d B" % amount elif amount < 1024*1024*1024: return "%0.2f MB" % (float(amount)/(1024.*1024.)) elif amount < 1024*1024*1024*1024: return "%0.2f GB" % (float(amount)/(1024.*1024.*1024.)) elif amount < 1024*1024*1024*1024*1024: return "%0.2f TB" % (float(amount)/(1024.*1024.*1024.*1024.)) #----------------------------------------------------------------------------- # FS utilities def makeSurePathExists(self, path): try: os.makedirs(path) except OSError as exception: if exception.errno != errno.EEXIST: raise def promptUserDownload(self): """Check that the user is OK with making changes""" input_not_ok = True minimal=False valid_responses = {'Y':True,'N':False} vrs = ",".join([x.lower() for x in list(valid_responses.keys())]) while(input_not_ok): if(minimal): option = input("Download? ("+vrs+") : ").upper() else: option = input("Confirm you want to download this data\n" \ "Changes *WILL* be permanent\n" \ "Continue? ("+vrs+") : ").upper() if(option in valid_responses): print("****************************************************************") return valid_responses[option] else: print("ERROR: unrecognised choice '"+option+"'") minimal = True def walk(self, parents, full_path, rel_path, dirs, files, skipFile=__MANIFEST__): """recursive walk through directory tree""" # first do files here for f in files: if (f != skipFile) and os.path.splitext(f)[1] in self.myExtensions: path = os.path.join(full_path, f) self.files.append(FE(f, rel_path, parents[-1], self.hashfile(path), os.path.getsize(path) ) ) for d in dirs: # the walk will go into these dirs first tmp_fe = FE(d, rel_path, parents[-1], "-", 0) self.files.append(tmp_fe) parents.append(tmp_fe) new_full_path = os.path.join(full_path, d) new_rel_path = os.path.join(rel_path, d) new_dirs, new_files = self.listdir(new_full_path)[:2] self.walk(parents, new_full_path, new_rel_path, new_dirs, new_files) parents.pop() def listdir(self, path): """List dirs, files etc in path (one dir deep)""" dirs, files, links = [], [], [] for name in os.listdir(path): path_name = os.path.join(path, name) if os.path.isdir(path_name): dirs.append(name) elif os.path.isfile(path_name): files.append(name) elif os.path.islink(path_name): links.append(name) return dirs, files, links def hashfile(self, fileName, blocksize=65536): """Hash a file and return the digest""" hasher = hashlib.sha256() with open(fileName,"rb") as fh: buf = fh.read(blocksize) while len(buf) > 0: hasher.update(buf.strip()) buf = fh.read(blocksize) return hasher.hexdigest() return "?" ############################################################################### ############################################################################### ############################################################################### ############################################################################### # %% DEBUG # =================================================== # main() # =================================================== # for debugging purposes (code called as a script) # the code is called from here # =================================================== if __name__ == '__main__': man = ManifestManager() man.createManifest("/home/olivi/billy/python",manifestName="Pizza3.manifest")
[ "hashlib.sha256", "os.listdir", "os.path.getsize", "os.makedirs", "os.path.join", "os.path.splitext", "os.path.isfile", "os.path.isdir", "os.path.abspath", "os.path.islink", "fileEntity.FileEntity" ]
[((3939, 3960), 'os.path.abspath', 'os.path.abspath', (['path'], {}), '(path)\n', (3954, 3960), False, 'import os\n'), ((3979, 4008), 'fileEntity.FileEntity', 'FE', (['"""root"""', '"""."""', 'None', '"""-"""', '(0)'], {}), "('root', '.', None, '-', 0)\n", (3981, 4008), True, 'from fileEntity import FileEntity as FE\n'), ((15546, 15562), 'os.listdir', 'os.listdir', (['path'], {}), '(path)\n', (15556, 15562), False, 'import os\n'), ((15997, 16013), 'hashlib.sha256', 'hashlib.sha256', ([], {}), '()\n', (16011, 16013), False, 'import hashlib\n'), ((13222, 13239), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (13233, 13239), False, 'import os\n'), ((15007, 15043), 'fileEntity.FileEntity', 'FE', (['d', 'rel_path', 'parents[-1]', '"""-"""', '(0)'], {}), "(d, rel_path, parents[-1], '-', 0)\n", (15009, 15043), True, 'from fileEntity import FileEntity as FE\n'), ((15145, 15171), 'os.path.join', 'os.path.join', (['full_path', 'd'], {}), '(full_path, d)\n', (15157, 15171), False, 'import os\n'), ((15199, 15224), 'os.path.join', 'os.path.join', (['rel_path', 'd'], {}), '(rel_path, d)\n', (15211, 15224), False, 'import os\n'), ((15588, 15612), 'os.path.join', 'os.path.join', (['path', 'name'], {}), '(path, name)\n', (15600, 15612), False, 'import os\n'), ((15628, 15652), 'os.path.isdir', 'os.path.isdir', (['path_name'], {}), '(path_name)\n', (15641, 15652), False, 'import os\n'), ((4252, 4284), 'os.path.join', 'os.path.join', (['path', 'manifestName'], {}), '(path, manifestName)\n', (4264, 4284), False, 'import os\n'), ((5260, 5314), 'os.path.join', 'os.path.join', (['localManifestLocation', 'localManifestName'], {}), '(localManifestLocation, localManifestName)\n', (5272, 5314), False, 'import os\n'), ((7366, 7420), 'os.path.join', 'os.path.join', (['localManifestLocation', 'localManifestName'], {}), '(localManifestLocation, localManifestName)\n', (7378, 7420), False, 'import os\n'), ((14554, 14580), 'os.path.join', 'os.path.join', (['full_path', 'f'], {}), '(full_path, f)\n', (14566, 14580), False, 'import os\n'), ((15705, 15730), 'os.path.isfile', 'os.path.isfile', (['path_name'], {}), '(path_name)\n', (15719, 15730), False, 'import os\n'), ((5881, 5937), 'os.path.join', 'os.path.join', (['sourceManifestLocation', 'sourceManifestName'], {}), '(sourceManifestLocation, sourceManifestName)\n', (5893, 5937), False, 'import os\n'), ((5960, 5996), 'os.path.join', 'os.path.join', (['sourceManifestLocation'], {}), '(sourceManifestLocation)\n', (5972, 5996), False, 'import os\n'), ((11731, 11774), 'os.path.join', 'os.path.join', (['localManifestLocation', 'add[0]'], {}), '(localManifestLocation, add[0])\n', (11743, 11774), False, 'import os\n'), ((11907, 11950), 'os.path.join', 'os.path.join', (['localManifestLocation', 'add[0]'], {}), '(localManifestLocation, add[0])\n', (11919, 11950), False, 'import os\n'), ((12101, 12147), 'os.path.join', 'os.path.join', (['localManifestLocation', 'modify[0]'], {}), '(localManifestLocation, modify[0])\n', (12113, 12147), False, 'import os\n'), ((15784, 15809), 'os.path.islink', 'os.path.islink', (['path_name'], {}), '(path_name)\n', (15798, 15809), False, 'import os\n'), ((14486, 14505), 'os.path.splitext', 'os.path.splitext', (['f'], {}), '(f)\n', (14502, 14505), False, 'import os\n'), ((14813, 14834), 'os.path.getsize', 'os.path.getsize', (['path'], {}), '(path)\n', (14828, 14834), False, 'import os\n')]
import pytest from flask_resty import Api from flask_resty.testing import assert_response # ----------------------------------------------------------------------------- @pytest.fixture(autouse=True) def routes(app): api = Api(app, "/api") api.add_ping("/ping") # ----------------------------------------------------------------------------- def test_ping(base_client): response = base_client.get("/ping") assert_response(response, 200) assert response.get_data(as_text=True) == ""
[ "pytest.fixture", "flask_resty.testing.assert_response", "flask_resty.Api" ]
[((175, 203), 'pytest.fixture', 'pytest.fixture', ([], {'autouse': '(True)'}), '(autouse=True)\n', (189, 203), False, 'import pytest\n'), ((231, 247), 'flask_resty.Api', 'Api', (['app', '"""/api"""'], {}), "(app, '/api')\n", (234, 247), False, 'from flask_resty import Api\n'), ((430, 460), 'flask_resty.testing.assert_response', 'assert_response', (['response', '(200)'], {}), '(response, 200)\n', (445, 460), False, 'from flask_resty.testing import assert_response\n')]
import os from subprocess import call files = ['000002b66c9c498e.jpg', '000002b97e5471a0.jpg', '000002c707c9895e.jpg', '0000048549557964.jpg', '000004f4400f6ec5.jpg', '0000071d71a0a6f6.jpg', '000013ba71c12506.jpg', '000018acd19b4ad3.jpg', '00001bc2c4027449.jpg', '00001bcc92282a38.jpg', '0000201cd362f303.jpg', '000020780ccee28d.jpg', '000023aa04ab09ed.jpg', '0000253ea4ecbf19.jpg', '000025ea48cab6fc.jpg', '0000271195f2c007.jpg', '0000286a5c6a3eb5.jpg', '00002b368e91b947.jpg', '00002f4ff380c64c.jpg', '0000313e5dccf13b.jpg', '000032046c3f8371.jpg', '00003223e04e2e66.jpg', '0000333f08ced1cd.jpg'] for file in files: if not os.path.exists('train/' + file + '.jpg'): spath = "gs://open-images-dataset/train/%s " % file call(["gsutil", "cp", spath, 'train/']) print(file, 'done', 'count:') else: print(file, 'already downloaded')
[ "os.path.exists", "subprocess.call" ]
[((631, 671), 'os.path.exists', 'os.path.exists', (["('train/' + file + '.jpg')"], {}), "('train/' + file + '.jpg')\n", (645, 671), False, 'import os\n'), ((741, 780), 'subprocess.call', 'call', (["['gsutil', 'cp', spath, 'train/']"], {}), "(['gsutil', 'cp', spath, 'train/'])\n", (745, 780), False, 'from subprocess import call\n')]
""" SNMP_FRAMEWORK_MIB """ from collections import OrderedDict from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64 from ydk.filters import YFilter from ydk.errors import YError, YModelError from ydk.errors.error_handler import handle_type_error as _handle_type_error class SnmpSecurityLevel(Enum): """ SnmpSecurityLevel (Enum Class) .. data:: noAuthNoPriv = 1 .. data:: authNoPriv = 2 .. data:: authPriv = 3 """ noAuthNoPriv = Enum.YLeaf(1, "noAuthNoPriv") authNoPriv = Enum.YLeaf(2, "authNoPriv") authPriv = Enum.YLeaf(3, "authPriv") class SNMPFRAMEWORKMIB(Entity): """ .. attribute:: snmpengine **type**\: :py:class:`Snmpengine <ydk.models.cisco_ios_xr.SNMP_FRAMEWORK_MIB.SNMPFRAMEWORKMIB.Snmpengine>` """ _prefix = 'SNMP_FRAMEWORK_MIB' _revision = '2002-10-14' def __init__(self): super(SNMPFRAMEWORKMIB, self).__init__() self._top_entity = None self.yang_name = "SNMP-FRAMEWORK-MIB" self.yang_parent_name = "SNMP-FRAMEWORK-MIB" self.is_top_level_class = True self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([("snmpEngine", ("snmpengine", SNMPFRAMEWORKMIB.Snmpengine))]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict() self.snmpengine = SNMPFRAMEWORKMIB.Snmpengine() self.snmpengine.parent = self self._children_name_map["snmpengine"] = "snmpEngine" self._children_yang_names.add("snmpEngine") self._segment_path = lambda: "SNMP-FRAMEWORK-MIB:SNMP-FRAMEWORK-MIB" class Snmpengine(Entity): """ .. attribute:: snmpengineid **type**\: str **pattern:** (([0\-9a\-fA\-F]){2}(\:([0\-9a\-fA\-F]){2})\*)? .. attribute:: snmpengineboots **type**\: int **range:** 1..2147483647 .. attribute:: snmpenginetime **type**\: int **range:** 0..2147483647 .. attribute:: snmpenginemaxmessagesize **type**\: int **range:** 484..2147483647 """ _prefix = 'SNMP_FRAMEWORK_MIB' _revision = '2002-10-14' def __init__(self): super(SNMPFRAMEWORKMIB.Snmpengine, self).__init__() self.yang_name = "snmpEngine" self.yang_parent_name = "SNMP-FRAMEWORK-MIB" self.is_top_level_class = False self.has_list_ancestor = False self.ylist_key_names = [] self._child_container_classes = OrderedDict([]) self._child_list_classes = OrderedDict([]) self._leafs = OrderedDict([ ('snmpengineid', YLeaf(YType.str, 'snmpEngineID')), ('snmpengineboots', YLeaf(YType.int32, 'snmpEngineBoots')), ('snmpenginetime', YLeaf(YType.int32, 'snmpEngineTime')), ('snmpenginemaxmessagesize', YLeaf(YType.int32, 'snmpEngineMaxMessageSize')), ]) self.snmpengineid = None self.snmpengineboots = None self.snmpenginetime = None self.snmpenginemaxmessagesize = None self._segment_path = lambda: "snmpEngine" self._absolute_path = lambda: "SNMP-FRAMEWORK-MIB:SNMP-FRAMEWORK-MIB/%s" % self._segment_path() def __setattr__(self, name, value): self._perform_setattr(SNMPFRAMEWORKMIB.Snmpengine, ['snmpengineid', 'snmpengineboots', 'snmpenginetime', 'snmpenginemaxmessagesize'], name, value) def clone_ptr(self): self._top_entity = SNMPFRAMEWORKMIB() return self._top_entity
[ "collections.OrderedDict", "ydk.types.YLeaf", "ydk.types.Enum.YLeaf" ]
[((541, 570), 'ydk.types.Enum.YLeaf', 'Enum.YLeaf', (['(1)', '"""noAuthNoPriv"""'], {}), "(1, 'noAuthNoPriv')\n", (551, 570), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((589, 616), 'ydk.types.Enum.YLeaf', 'Enum.YLeaf', (['(2)', '"""authNoPriv"""'], {}), "(2, 'authNoPriv')\n", (599, 616), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((633, 658), 'ydk.types.Enum.YLeaf', 'Enum.YLeaf', (['(3)', '"""authPriv"""'], {}), "(3, 'authPriv')\n", (643, 658), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((1308, 1382), 'collections.OrderedDict', 'OrderedDict', (["[('snmpEngine', ('snmpengine', SNMPFRAMEWORKMIB.Snmpengine))]"], {}), "([('snmpEngine', ('snmpengine', SNMPFRAMEWORKMIB.Snmpengine))])\n", (1319, 1382), False, 'from collections import OrderedDict\n'), ((1418, 1433), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (1429, 1433), False, 'from collections import OrderedDict\n'), ((1456, 1469), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1467, 1469), False, 'from collections import OrderedDict\n'), ((2853, 2868), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (2864, 2868), False, 'from collections import OrderedDict\n'), ((2908, 2923), 'collections.OrderedDict', 'OrderedDict', (['[]'], {}), '([])\n', (2919, 2923), False, 'from collections import OrderedDict\n'), ((2997, 3029), 'ydk.types.YLeaf', 'YLeaf', (['YType.str', '"""snmpEngineID"""'], {}), "(YType.str, 'snmpEngineID')\n", (3002, 3029), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((3068, 3105), 'ydk.types.YLeaf', 'YLeaf', (['YType.int32', '"""snmpEngineBoots"""'], {}), "(YType.int32, 'snmpEngineBoots')\n", (3073, 3105), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((3143, 3179), 'ydk.types.YLeaf', 'YLeaf', (['YType.int32', '"""snmpEngineTime"""'], {}), "(YType.int32, 'snmpEngineTime')\n", (3148, 3179), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n'), ((3227, 3273), 'ydk.types.YLeaf', 'YLeaf', (['YType.int32', '"""snmpEngineMaxMessageSize"""'], {}), "(YType.int32, 'snmpEngineMaxMessageSize')\n", (3232, 3273), False, 'from ydk.types import Entity, EntityPath, Identity, Enum, YType, YLeaf, YLeafList, YList, LeafDataList, Bits, Empty, Decimal64\n')]
from aiogram.utils.markdown import hide_link from aiogram.types import CallbackQuery from loader import dp from utils import ( get_object, get_attributes_of_object ) from keyboards import ( anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons ) @dp.callback_query_handler(text="menu") async def call_menu_with_categories(call: CallbackQuery): """ Function for sending a menu, with a selection of safe content """ await call.answer() # Editing the message await call.message.edit_text( text=( "<b>🔗 Select a category to get a picture.</b>" ), reply_markup=menu_with_categories() ) @dp.callback_query_handler(text="anime") async def call_anime_categories(call: CallbackQuery): """ Redirect to select anime actions """ await call.answer() # Editing the message await call.message.edit_text( text=( "<b>⚜️ Choose what content you want to see.</b>" ), reply_markup=anime_choose_safe_category() ) @dp.callback_query_handler(text=["sfw", "nsfw"]) async def call_nsfw_categories(call: CallbackQuery): """ Redirect to anime content """ data = call.data.upper() message = call.message # Send answer await call.answer() if data == "SFW": kb = anime_sfw_categories() else: kb = anime_nsfw_categories() # Editing the message await message.edit_text( text=( f"<b>🍿 You are in the {data} category.</b>" ), reply_markup=kb ) @dp.callback_query_handler(text="animals") async def call_anime_categories(call: CallbackQuery): """ Redirect to animals content """ await call.answer() # Editing the message await call.message.edit_text( text=( "<b>🦄 You are in the category with animals.</b>" ), reply_markup=animals_categories() ) @dp.callback_query_handler() async def call_get_photography(call: CallbackQuery): """ Function for sending photos """ message = call.message data = call.data # Get json document api = get_attributes_of_object() if data == "generate_new": data = message.text.split("#")[1] obj = api[data]["object"] atr = api[data]["attribute"] mark = api[data]["entity"] if mark == "anime": mark = api[data]["safe"] if mark == "memes": mark = "menu" # We get a link to the preview photo link = await get_object(obj, atr) await call.answer() # Editing the message await message.edit_text( text=( f"{hide_link(link)} #{data}" ), reply_markup=control_buttons(mark) )
[ "keyboards.anime_sfw_categories", "loader.dp.callback_query_handler", "keyboards.control_buttons", "utils.get_object", "keyboards.anime_nsfw_categories", "aiogram.utils.markdown.hide_link", "keyboards.animals_categories", "utils.get_attributes_of_object", "keyboards.anime_choose_safe_category", "keyboards.menu_with_categories" ]
[((377, 415), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {'text': '"""menu"""'}), "(text='menu')\n", (402, 415), False, 'from loader import dp\n'), ((798, 837), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {'text': '"""anime"""'}), "(text='anime')\n", (823, 837), False, 'from loader import dp\n'), ((1190, 1237), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {'text': "['sfw', 'nsfw']"}), "(text=['sfw', 'nsfw'])\n", (1215, 1237), False, 'from loader import dp\n'), ((1738, 1779), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {'text': '"""animals"""'}), "(text='animals')\n", (1763, 1779), False, 'from loader import dp\n'), ((2119, 2146), 'loader.dp.callback_query_handler', 'dp.callback_query_handler', ([], {}), '()\n', (2144, 2146), False, 'from loader import dp\n'), ((2340, 2366), 'utils.get_attributes_of_object', 'get_attributes_of_object', ([], {}), '()\n', (2364, 2366), False, 'from utils import get_object, get_attributes_of_object\n'), ((1484, 1506), 'keyboards.anime_sfw_categories', 'anime_sfw_categories', ([], {}), '()\n', (1504, 1506), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((1532, 1555), 'keyboards.anime_nsfw_categories', 'anime_nsfw_categories', ([], {}), '()\n', (1553, 1555), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((2716, 2736), 'utils.get_object', 'get_object', (['obj', 'atr'], {}), '(obj, atr)\n', (2726, 2736), False, 'from utils import get_object, get_attributes_of_object\n'), ((762, 784), 'keyboards.menu_with_categories', 'menu_with_categories', ([], {}), '()\n', (782, 784), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((1148, 1176), 'keyboards.anime_choose_safe_category', 'anime_choose_safe_category', ([], {}), '()\n', (1174, 1176), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((2085, 2105), 'keyboards.animals_categories', 'animals_categories', ([], {}), '()\n', (2103, 2105), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((2913, 2934), 'keyboards.control_buttons', 'control_buttons', (['mark'], {}), '(mark)\n', (2928, 2934), False, 'from keyboards import anime_choose_safe_category, anime_sfw_categories, anime_nsfw_categories, animals_categories, menu_with_categories, control_buttons\n'), ((2853, 2868), 'aiogram.utils.markdown.hide_link', 'hide_link', (['link'], {}), '(link)\n', (2862, 2868), False, 'from aiogram.utils.markdown import hide_link\n')]
#!c:\users\hooma\documents\github\spinesegmentation\segmentation_test\scripts\python.exe """ Execute a graph cut on a voxel image based on some foreground and background markers. Copyright (C) 2013 <NAME> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. """ # build-in modules from argparse import RawTextHelpFormatter import argparse import logging import os # third-party modules import scipy # path changes # own modules from medpy.core import ArgumentError, Logger from medpy.io import load, save, header from medpy import graphcut from medpy.graphcut.wrapper import split_marker # information __author__ = "<NAME>" __version__ = "r0.3.1, 2012-03-23" __email__ = "<EMAIL>" __status__ = "Release" __description__ = """ Perform a binary graph cut using Boykov's max-flow/min-cut algorithm. This implementation does only compute a boundary term and does not use any regional term. The desired boundary term can be selected via the --boundary argument. Depending on the selected term, an additional image has to be supplied as badditional. In the case of the difference of means, it is the original image. Furthermore the algorithm requires a binary image with foreground markers and a binary image with background markers. Additionally a filename for the created binary mask marking foreground and background has to be supplied. Note that the input images must be of the same dimensionality, otherwise an exception is thrown. Note to take into account the input images orientation. Note that the quality of the resulting segmentations depends also on the quality of the supplied markers. Copyright (C) 2013 <NAME> This program comes with ABSOLUTELY NO WARRANTY; This is free software, and you are welcome to redistribute it under certain conditions; see the LICENSE file or <http://www.gnu.org/licenses/> for details. """ # code def main(): # parse cmd arguments parser = getParser() parser.parse_args() args = getArguments(parser) # prepare logger logger = Logger.getInstance() if args.debug: logger.setLevel(logging.DEBUG) elif args.verbose: logger.setLevel(logging.INFO) # check if output image exists if not args.force: if os.path.exists(args.output): logger.warning('The output image {} already exists. Exiting.'.format(args.output)) exit(-1) # select boundary term ['diff_linear', 'diff_exp', 'diff_div', 'diff_pow', 'max_linear', 'max_exp', 'max_div', 'max_pow'] if 'diff_linear' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_difference_linear logger.info('Selected boundary term: linear difference of intensities') elif 'diff_exp' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_difference_exponential logger.info('Selected boundary term: exponential difference of intensities') elif 'diff_div' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_difference_division logger.info('Selected boundary term: divided difference of intensities') elif 'diff_pow' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_difference_power logger.info('Selected boundary term: power based / raised difference of intensities') elif 'max_linear' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_maximum_linear logger.info('Selected boundary term: linear maximum of intensities') elif 'max_exp' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_maximum_exponential logger.info('Selected boundary term: exponential maximum of intensities') elif 'max_div' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_maximum_division logger.info('Selected boundary term: divided maximum of intensities') elif 'max_pow' == args.boundary: boundary_term = graphcut.energy_voxel.boundary_maximum_power logger.info('Selected boundary term: power based / raised maximum of intensities') # load input images badditional_image_data, reference_header = load(args.badditional) markers_image_data, _ = load(args.markers) # split marker image into fg and bg images fgmarkers_image_data, bgmarkers_image_data = split_marker(markers_image_data) # check if all images dimensions are the same if not (badditional_image_data.shape == fgmarkers_image_data.shape == bgmarkers_image_data.shape): logger.critical('Not all of the supplied images are of the same shape.') raise ArgumentError('Not all of the supplied images are of the same shape.') # extract spacing if required if args.spacing: spacing = header.get_pixel_spacing(reference_header) logger.info('Taking spacing of {} into account.'.format(spacing)) else: spacing = False # generate graph logger.info('Preparing BK_MFMC C++ graph...') gcgraph = graphcut.graph_from_voxels(fgmarkers_image_data, bgmarkers_image_data, boundary_term = boundary_term, boundary_term_args = (badditional_image_data, args.sigma, spacing)) # execute min-cut logger.info('Executing min-cut...') maxflow = gcgraph.maxflow() logger.debug('Maxflow is {}'.format(maxflow)) # reshape results to form a valid mask logger.info('Applying results...') result_image_data = scipy.zeros(bgmarkers_image_data.size, dtype=scipy.bool_) for idx in range(len(result_image_data)): result_image_data[idx] = 0 if gcgraph.termtype.SINK == gcgraph.what_segment(idx) else 1 result_image_data = result_image_data.reshape(bgmarkers_image_data.shape) # save resulting mask save(result_image_data.astype(scipy.bool_), args.output, reference_header, args.force) logger.info('Successfully terminated.') def getArguments(parser): "Provides additional validation of the arguments collected by argparse." return parser.parse_args() def getParser(): "Creates and returns the argparse parser object." parser = argparse.ArgumentParser(description=__description__, formatter_class=RawTextHelpFormatter) parser.add_argument('sigma', type=float, help='The sigma required for the boundary terms.') parser.add_argument('badditional', help='The additional image required by the boundary term. See there for details.') parser.add_argument('markers', help='Image containing the foreground (=1) and background (=2) markers.') parser.add_argument('output', help='The output image containing the segmentation.') parser.add_argument('--boundary', default='diff_exp', help='The boundary term to use. Note that the ones prefixed with diff_ require the original image, while the ones prefixed with max_ require the gradient image.', choices=['diff_linear', 'diff_exp', 'diff_div', 'diff_pow', 'max_linear', 'max_exp', 'max_div', 'max_pow']) parser.add_argument('-s', dest='spacing', action='store_true', help='Set this flag to take the pixel spacing of the image into account. The spacing data will be extracted from the baddtional image.') parser.add_argument('-f', dest='force', action='store_true', help='Set this flag to silently override files that exist.') parser.add_argument('-v', dest='verbose', action='store_true', help='Display more information.') parser.add_argument('-d', dest='debug', action='store_true', help='Display debug information.') return parser if __name__ == "__main__": main()
[ "os.path.exists", "medpy.io.load", "argparse.ArgumentParser", "scipy.zeros", "medpy.core.Logger.getInstance", "medpy.graphcut.wrapper.split_marker", "medpy.io.header.get_pixel_spacing", "medpy.graphcut.graph_from_voxels", "medpy.core.ArgumentError" ]
[((3039, 3059), 'medpy.core.Logger.getInstance', 'Logger.getInstance', ([], {}), '()\n', (3057, 3059), False, 'from medpy.core import ArgumentError, Logger\n'), ((5157, 5179), 'medpy.io.load', 'load', (['args.badditional'], {}), '(args.badditional)\n', (5161, 5179), False, 'from medpy.io import load, save, header\n'), ((5208, 5226), 'medpy.io.load', 'load', (['args.markers'], {}), '(args.markers)\n', (5212, 5226), False, 'from medpy.io import load, save, header\n'), ((5328, 5360), 'medpy.graphcut.wrapper.split_marker', 'split_marker', (['markers_image_data'], {}), '(markers_image_data)\n', (5340, 5360), False, 'from medpy.graphcut.wrapper import split_marker\n'), ((5999, 6172), 'medpy.graphcut.graph_from_voxels', 'graphcut.graph_from_voxels', (['fgmarkers_image_data', 'bgmarkers_image_data'], {'boundary_term': 'boundary_term', 'boundary_term_args': '(badditional_image_data, args.sigma, spacing)'}), '(fgmarkers_image_data, bgmarkers_image_data,\n boundary_term=boundary_term, boundary_term_args=(badditional_image_data,\n args.sigma, spacing))\n', (6025, 6172), False, 'from medpy import graphcut\n'), ((6552, 6609), 'scipy.zeros', 'scipy.zeros', (['bgmarkers_image_data.size'], {'dtype': 'scipy.bool_'}), '(bgmarkers_image_data.size, dtype=scipy.bool_)\n', (6563, 6609), False, 'import scipy\n'), ((7225, 7320), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '__description__', 'formatter_class': 'RawTextHelpFormatter'}), '(description=__description__, formatter_class=\n RawTextHelpFormatter)\n', (7248, 7320), False, 'import argparse\n'), ((3241, 3268), 'os.path.exists', 'os.path.exists', (['args.output'], {}), '(args.output)\n', (3255, 3268), False, 'import os\n'), ((5617, 5687), 'medpy.core.ArgumentError', 'ArgumentError', (['"""Not all of the supplied images are of the same shape."""'], {}), "('Not all of the supplied images are of the same shape.')\n", (5630, 5687), False, 'from medpy.core import ArgumentError, Logger\n'), ((5762, 5804), 'medpy.io.header.get_pixel_spacing', 'header.get_pixel_spacing', (['reference_header'], {}), '(reference_header)\n', (5786, 5804), False, 'from medpy.io import load, save, header\n')]
author = '<NAME>' email = '<EMAIL>' project = 'Astronaut Training Program' description = 'Astronaut Training Program' extensions = [ 'sphinx.ext.todo', 'sphinx.ext.imgmath', ] todo_emit_warnings = False todo_include_todos = True exclude_patterns = [] # ----------------------------------------------------------------------------- # Standard book config # ----------------------------------------------------------------------------- import os import re import subprocess import sys from datetime import datetime needs_sphinx = '2.2' mathjax_path = 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.5/latest.js?config=TeX-MML-AM_CHTML' mathjax_config = { 'extensions': ['tex2jax.js'], 'jax': ['input/TeX', 'output/HTML-CSS'], } html_theme = 'sphinx_rtd_theme' exclude_patterns = exclude_patterns + [ '.*', 'venv*', 'virtualenv*', '_extensions', '_img', '_slides', '_static', '_themes', '_tmp', '*/_template.rst', '*/contrib/*', '*/solution/*', '*/solutions/*', '**.ipynb_checkpoints', 'README.rst', 'TODO.rst', ] numfig_format = { 'section': 'Sect. %s.', 'figure': 'Fig. %s.', 'table': 'Tab. %s.', 'code-block': 'Code Listing %s.', } language = 'en' source_directory = '.' master_doc = 'index' highlight_language = 'python3' pygments_style = 'borland' numfig = True templates_path = ['_templates'] source_suffix = ['.rst'] imgmath_image_format = 'svg' today_fmt = '%Y-%m-%d' project_slug = re.sub(r'[\W]+', '', project) sha1 = subprocess.Popen('git log -1 --format="%h"', stdout=subprocess.PIPE, shell=True).stdout.read().decode().replace('\n', '') now = datetime.now() year = now.year today = now.strftime('%Y-%m-%d') version = f'#{sha1}, {today}' release = f'#{sha1}, {today}' copyright = f'{year}, {author} <{email}>' extensions_dir = os.path.join(os.path.dirname(__file__), '', '_extensions') sys.path.append(extensions_dir) htmlhelp_basename = project html_theme_path = ['_themes'] html_static_path = ['_static'] html_favicon = '_static/favicon.png' html_sidebars = {'sidebar': ['localtoc.html', 'sourcelink.html', 'searchbox.html']} html_show_sphinx = False html_context = { 'css_files': [ '_static/theme-overrides.css', ], } latex_documents = [(master_doc, f'{project_slug}.tex', project, author, 'manual')] latex_elements = { 'papersize': 'a4paper', 'pointsize': '10pt', 'figure_align': 'htbp', # Fix for: LaTeX Backend Fails with Citations In Figure Captions 'preamble': r""" \usepackage{etoolbox} \AtBeginEnvironment{figure}{\renewcommand{\phantomsection}{}} """ } epub_title = project epub_author = author epub_publisher = author epub_copyright = copyright epub_exclude_files = ['search.html'] man_pages = [ (master_doc, project_slug, project, [author], 1) ] texinfo_documents = [ (master_doc, project_slug, project, author, project, '', 'Miscellaneous'), ]
[ "subprocess.Popen", "os.path.dirname", "datetime.datetime.now", "re.sub", "sys.path.append" ]
[((1499, 1528), 're.sub', 're.sub', (['"""[\\\\W]+"""', '""""""', 'project'], {}), "('[\\\\W]+', '', project)\n", (1505, 1528), False, 'import re\n'), ((1664, 1678), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1676, 1678), False, 'from datetime import datetime\n'), ((1908, 1939), 'sys.path.append', 'sys.path.append', (['extensions_dir'], {}), '(extensions_dir)\n', (1923, 1939), False, 'import sys\n'), ((1862, 1887), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1877, 1887), False, 'import os\n'), ((1536, 1621), 'subprocess.Popen', 'subprocess.Popen', (['"""git log -1 --format="%h\\""""'], {'stdout': 'subprocess.PIPE', 'shell': '(True)'}), '(\'git log -1 --format="%h"\', stdout=subprocess.PIPE, shell=True\n )\n', (1552, 1621), False, 'import subprocess\n')]
from __future__ import absolute_import, division, print_function, unicode_literals import tensorflow as tf from keras import regularizers from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D from tensorflow.keras.preprocessing.image import ImageDataGenerator from keras.models import load_model import numpy as np from keras.preprocessing.image import img_to_array, load_img from keras.preprocessing import image import os import numpy as np import matplotlib.pyplot as plt # defining classes def soil(result): soil_type="" if result[0]==2: soil_type="Red soil" elif result[0]==1: soil_type="Black soil" else: soil_type="Alluvial soil" return soil_type # Adding dataset paths PATH = 'new_datasets' train_dir = os.path.join(PATH, 'train') validation_dir = os.path.join(PATH, 'validation') test_dir = os.path.join(PATH, 'test') train_red_dir = os.path.join(train_dir, 'Red_soil') validation_red_dir = os.path.join(validation_dir, 'Red_soil') train_black_dir = os.path.join(train_dir, 'Black_soil') validation_black_dir = os.path.join(validation_dir, 'Black_soil') train_all_dir = os.path.join(train_dir, 'Alluvial_soil') validation_all_dir = os.path.join(validation_dir, 'Alluvial_soil') num_soil_tr = len(os.listdir(train_red_dir)) + len(os.listdir(train_black_dir)) +len(os.listdir(train_all_dir)) num_soil_val = len(os.listdir(validation_red_dir)) + len(os.listdir(validation_black_dir)) + len((os.listdir(validation_all_dir))) print("Total training images = ",num_soil_tr) print("Total validation images = ",num_soil_val) # hyperparameters batch_size = 100 epochs = 15 IMG_HEIGHT = 128 IMG_WIDTH = 128 classes_num=3 # data generators train_image_generator = ImageDataGenerator(rescale=1./255) validation_image_generator = ImageDataGenerator(rescale=1./255) train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size, directory=train_dir, shuffle=True, target_size=(IMG_HEIGHT, IMG_WIDTH), class_mode='categorical') val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size, directory=validation_dir, target_size=(IMG_HEIGHT, IMG_WIDTH), shuffle=True, class_mode='categorical') # defining the model model = Sequential([ Conv2D(16, 5, activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)), MaxPooling2D(pool_size=(3, 3)), Dropout(0.2), Conv2D(32, 5, activation='relu'), MaxPooling2D(pool_size=(3, 3)), Dropout(0.2), Conv2D(64, 5, activation='relu'), MaxPooling2D(pool_size=(3, 3)), Dropout(0.3), Flatten(), Dense(32, activation='relu'), Dense(classes_num, activation='softmax') ]) model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() history = model.fit_generator( train_data_gen, steps_per_epoch= num_soil_tr// batch_size, epochs=epochs, validation_data=val_data_gen, validation_steps=num_soil_val // batch_size ) acc = history.history['accuracy'] val_acc = history.history['val_accuracy'] loss = history.history['loss'] val_loss = history.history['val_loss'] epochs_range = range(epochs) # training and validation graphs plt.figure(figsize=(8, 8)) plt.subplot(1, 2, 1) plt.plot(epochs_range, acc, label='Training Accuracy') plt.plot(epochs_range, val_acc, label='Validation Accuracy') plt.legend(loc='lower right') plt.title('Training and Validation Accuracy') plt.subplot(1, 2, 2) plt.plot(epochs_range, loss, label='Training Loss') plt.plot(epochs_range, val_loss, label='Validation Loss') plt.legend(loc='upper right') plt.title('Training and Validation Loss') plt.show() model.save('new_soil_classify.h5') # for testing trained model with images differnent class image_path="red.jpg" img = image.load_img(image_path, target_size=(IMG_HEIGHT, IMG_WIDTH)) plt.imshow(img) img = np.expand_dims(img, axis=0) result=model.predict_classes(img) plt.title(result[0]) plt.show() image_path1="black.jpg" img1 = image.load_img(image_path1, target_size=(IMG_HEIGHT, IMG_WIDTH)) plt.imshow(img1) img1 = np.expand_dims(img1, axis=0) result=model.predict_classes(img1) plt.title(result[0]) plt.show() image_path="all.jpg" img = image.load_img(image_path, target_size=(IMG_HEIGHT, IMG_WIDTH)) plt.imshow(img) img = np.expand_dims(img, axis=0) result=model.predict_classes(img) plt.title(result[0]) plt.show()
[ "matplotlib.pyplot.imshow", "os.listdir", "tensorflow.keras.layers.Conv2D", "tensorflow.keras.layers.MaxPooling2D", "tensorflow.keras.layers.Flatten", "matplotlib.pyplot.plot", "os.path.join", "tensorflow.keras.preprocessing.image.ImageDataGenerator", "keras.preprocessing.image.load_img", "tensorflow.keras.layers.Dropout", "matplotlib.pyplot.figure", "tensorflow.keras.layers.Dense", "numpy.expand_dims", "matplotlib.pyplot.title", "matplotlib.pyplot.subplot", "matplotlib.pyplot.legend", "matplotlib.pyplot.show" ]
[((834, 861), 'os.path.join', 'os.path.join', (['PATH', '"""train"""'], {}), "(PATH, 'train')\n", (846, 861), False, 'import os\n'), ((879, 911), 'os.path.join', 'os.path.join', (['PATH', '"""validation"""'], {}), "(PATH, 'validation')\n", (891, 911), False, 'import os\n'), ((923, 949), 'os.path.join', 'os.path.join', (['PATH', '"""test"""'], {}), "(PATH, 'test')\n", (935, 949), False, 'import os\n'), ((967, 1002), 'os.path.join', 'os.path.join', (['train_dir', '"""Red_soil"""'], {}), "(train_dir, 'Red_soil')\n", (979, 1002), False, 'import os\n'), ((1024, 1064), 'os.path.join', 'os.path.join', (['validation_dir', '"""Red_soil"""'], {}), "(validation_dir, 'Red_soil')\n", (1036, 1064), False, 'import os\n'), ((1084, 1121), 'os.path.join', 'os.path.join', (['train_dir', '"""Black_soil"""'], {}), "(train_dir, 'Black_soil')\n", (1096, 1121), False, 'import os\n'), ((1145, 1187), 'os.path.join', 'os.path.join', (['validation_dir', '"""Black_soil"""'], {}), "(validation_dir, 'Black_soil')\n", (1157, 1187), False, 'import os\n'), ((1205, 1245), 'os.path.join', 'os.path.join', (['train_dir', '"""Alluvial_soil"""'], {}), "(train_dir, 'Alluvial_soil')\n", (1217, 1245), False, 'import os\n'), ((1267, 1312), 'os.path.join', 'os.path.join', (['validation_dir', '"""Alluvial_soil"""'], {}), "(validation_dir, 'Alluvial_soil')\n", (1279, 1312), False, 'import os\n'), ((1793, 1830), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)'}), '(rescale=1.0 / 255)\n', (1811, 1830), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((1858, 1895), 'tensorflow.keras.preprocessing.image.ImageDataGenerator', 'ImageDataGenerator', ([], {'rescale': '(1.0 / 255)'}), '(rescale=1.0 / 255)\n', (1876, 1895), False, 'from tensorflow.keras.preprocessing.image import ImageDataGenerator\n'), ((3744, 3770), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(8, 8)'}), '(figsize=(8, 8))\n', (3754, 3770), True, 'import matplotlib.pyplot as plt\n'), ((3771, 3791), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(1)'], {}), '(1, 2, 1)\n', (3782, 3791), True, 'import matplotlib.pyplot as plt\n'), ((3792, 3846), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'acc'], {'label': '"""Training Accuracy"""'}), "(epochs_range, acc, label='Training Accuracy')\n", (3800, 3846), True, 'import matplotlib.pyplot as plt\n'), ((3847, 3907), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'val_acc'], {'label': '"""Validation Accuracy"""'}), "(epochs_range, val_acc, label='Validation Accuracy')\n", (3855, 3907), True, 'import matplotlib.pyplot as plt\n'), ((3908, 3937), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""lower right"""'}), "(loc='lower right')\n", (3918, 3937), True, 'import matplotlib.pyplot as plt\n'), ((3938, 3983), 'matplotlib.pyplot.title', 'plt.title', (['"""Training and Validation Accuracy"""'], {}), "('Training and Validation Accuracy')\n", (3947, 3983), True, 'import matplotlib.pyplot as plt\n'), ((3985, 4005), 'matplotlib.pyplot.subplot', 'plt.subplot', (['(1)', '(2)', '(2)'], {}), '(1, 2, 2)\n', (3996, 4005), True, 'import matplotlib.pyplot as plt\n'), ((4006, 4057), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'loss'], {'label': '"""Training Loss"""'}), "(epochs_range, loss, label='Training Loss')\n", (4014, 4057), True, 'import matplotlib.pyplot as plt\n'), ((4058, 4115), 'matplotlib.pyplot.plot', 'plt.plot', (['epochs_range', 'val_loss'], {'label': '"""Validation Loss"""'}), "(epochs_range, val_loss, label='Validation Loss')\n", (4066, 4115), True, 'import matplotlib.pyplot as plt\n'), ((4116, 4145), 'matplotlib.pyplot.legend', 'plt.legend', ([], {'loc': '"""upper right"""'}), "(loc='upper right')\n", (4126, 4145), True, 'import matplotlib.pyplot as plt\n'), ((4146, 4187), 'matplotlib.pyplot.title', 'plt.title', (['"""Training and Validation Loss"""'], {}), "('Training and Validation Loss')\n", (4155, 4187), True, 'import matplotlib.pyplot as plt\n'), ((4188, 4198), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4196, 4198), True, 'import matplotlib.pyplot as plt\n'), ((4323, 4386), 'keras.preprocessing.image.load_img', 'image.load_img', (['image_path'], {'target_size': '(IMG_HEIGHT, IMG_WIDTH)'}), '(image_path, target_size=(IMG_HEIGHT, IMG_WIDTH))\n', (4337, 4386), False, 'from keras.preprocessing import image\n'), ((4387, 4402), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4397, 4402), True, 'import matplotlib.pyplot as plt\n'), ((4409, 4436), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (4423, 4436), True, 'import numpy as np\n'), ((4471, 4491), 'matplotlib.pyplot.title', 'plt.title', (['result[0]'], {}), '(result[0])\n', (4480, 4491), True, 'import matplotlib.pyplot as plt\n'), ((4492, 4502), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4500, 4502), True, 'import matplotlib.pyplot as plt\n'), ((4536, 4600), 'keras.preprocessing.image.load_img', 'image.load_img', (['image_path1'], {'target_size': '(IMG_HEIGHT, IMG_WIDTH)'}), '(image_path1, target_size=(IMG_HEIGHT, IMG_WIDTH))\n', (4550, 4600), False, 'from keras.preprocessing import image\n'), ((4601, 4617), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img1'], {}), '(img1)\n', (4611, 4617), True, 'import matplotlib.pyplot as plt\n'), ((4625, 4653), 'numpy.expand_dims', 'np.expand_dims', (['img1'], {'axis': '(0)'}), '(img1, axis=0)\n', (4639, 4653), True, 'import numpy as np\n'), ((4689, 4709), 'matplotlib.pyplot.title', 'plt.title', (['result[0]'], {}), '(result[0])\n', (4698, 4709), True, 'import matplotlib.pyplot as plt\n'), ((4710, 4720), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4718, 4720), True, 'import matplotlib.pyplot as plt\n'), ((4749, 4812), 'keras.preprocessing.image.load_img', 'image.load_img', (['image_path'], {'target_size': '(IMG_HEIGHT, IMG_WIDTH)'}), '(image_path, target_size=(IMG_HEIGHT, IMG_WIDTH))\n', (4763, 4812), False, 'from keras.preprocessing import image\n'), ((4813, 4828), 'matplotlib.pyplot.imshow', 'plt.imshow', (['img'], {}), '(img)\n', (4823, 4828), True, 'import matplotlib.pyplot as plt\n'), ((4835, 4862), 'numpy.expand_dims', 'np.expand_dims', (['img'], {'axis': '(0)'}), '(img, axis=0)\n', (4849, 4862), True, 'import numpy as np\n'), ((4897, 4917), 'matplotlib.pyplot.title', 'plt.title', (['result[0]'], {}), '(result[0])\n', (4906, 4917), True, 'import matplotlib.pyplot as plt\n'), ((4918, 4928), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4926, 4928), True, 'import matplotlib.pyplot as plt\n'), ((1399, 1424), 'os.listdir', 'os.listdir', (['train_all_dir'], {}), '(train_all_dir)\n', (1409, 1424), False, 'import os\n'), ((1524, 1554), 'os.listdir', 'os.listdir', (['validation_all_dir'], {}), '(validation_all_dir)\n', (1534, 1554), False, 'import os\n'), ((2783, 2855), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(16)', '(5)'], {'activation': '"""relu"""', 'input_shape': '(IMG_HEIGHT, IMG_WIDTH, 3)'}), "(16, 5, activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH, 3))\n", (2789, 2855), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((2861, 2891), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)'}), '(pool_size=(3, 3))\n', (2873, 2891), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((2897, 2909), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2904, 2909), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((2915, 2947), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(32)', '(5)'], {'activation': '"""relu"""'}), "(32, 5, activation='relu')\n", (2921, 2947), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((2953, 2983), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)'}), '(pool_size=(3, 3))\n', (2965, 2983), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((2989, 3001), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.2)'], {}), '(0.2)\n', (2996, 3001), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3007, 3039), 'tensorflow.keras.layers.Conv2D', 'Conv2D', (['(64)', '(5)'], {'activation': '"""relu"""'}), "(64, 5, activation='relu')\n", (3013, 3039), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3045, 3075), 'tensorflow.keras.layers.MaxPooling2D', 'MaxPooling2D', ([], {'pool_size': '(3, 3)'}), '(pool_size=(3, 3))\n', (3057, 3075), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3081, 3093), 'tensorflow.keras.layers.Dropout', 'Dropout', (['(0.3)'], {}), '(0.3)\n', (3088, 3093), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3099, 3108), 'tensorflow.keras.layers.Flatten', 'Flatten', ([], {}), '()\n', (3106, 3108), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3114, 3142), 'tensorflow.keras.layers.Dense', 'Dense', (['(32)'], {'activation': '"""relu"""'}), "(32, activation='relu')\n", (3119, 3142), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((3148, 3188), 'tensorflow.keras.layers.Dense', 'Dense', (['classes_num'], {'activation': '"""softmax"""'}), "(classes_num, activation='softmax')\n", (3153, 3188), False, 'from tensorflow.keras.layers import Dense, Conv2D, Flatten, Dropout, MaxPooling2D\n'), ((1332, 1357), 'os.listdir', 'os.listdir', (['train_red_dir'], {}), '(train_red_dir)\n', (1342, 1357), False, 'import os\n'), ((1365, 1392), 'os.listdir', 'os.listdir', (['train_black_dir'], {}), '(train_black_dir)\n', (1375, 1392), False, 'import os\n'), ((1445, 1475), 'os.listdir', 'os.listdir', (['validation_red_dir'], {}), '(validation_red_dir)\n', (1455, 1475), False, 'import os\n'), ((1483, 1515), 'os.listdir', 'os.listdir', (['validation_black_dir'], {}), '(validation_black_dir)\n', (1493, 1515), False, 'import os\n')]
#client.py #!/usr/bin/python # This is client.py file import socket # Import socket module s = socket.socket() # Create a socket object host = socket.gethostname() # Get local machine name port = 12352 # Reserve a port for your service. s.connect((host, port)) while True: message = input('Digite mensagem: ') s.send(bytes(message, encoding='utf8')) if message == 'SAIR': breaks print('Mensagem enviada.') print('Esperando resposta.') answer = s.recv(1024).decode('utf8') print('Resposta recebida: ' + answer) print('Desconectando.') s.close()
[ "socket.gethostname", "socket.socket" ]
[((162, 177), 'socket.socket', 'socket.socket', ([], {}), '()\n', (175, 177), False, 'import socket\n'), ((238, 258), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (256, 258), False, 'import socket\n')]
"""Consts for Kaiterra integration.""" from datetime import timedelta from homeassistant.const import ( CONCENTRATION_MICROGRAMS_PER_CUBIC_METER, CONCENTRATION_MILLIGRAMS_PER_CUBIC_METER, CONCENTRATION_PARTS_PER_BILLION, CONCENTRATION_PARTS_PER_MILLION, PERCENTAGE, Platform, ) DOMAIN = "kaiterra" DISPATCHER_KAITERRA = "kaiterra_update" AQI_SCALE = { "cn": [0, 50, 100, 150, 200, 300, 400, 500], "in": [0, 50, 100, 200, 300, 400, 500], "us": [0, 50, 100, 150, 200, 300, 500], } AQI_LEVEL = { "cn": [ "Good", "Satisfactory", "Moderate", "Unhealthy for sensitive groups", "Unhealthy", "Very unhealthy", "Hazardous", ], "in": [ "Good", "Satisfactory", "Moderately polluted", "Poor", "Very poor", "Severe", ], "us": [ "Good", "Moderate", "Unhealthy for sensitive groups", "Unhealthy", "Very unhealthy", "Hazardous", ], } ATTR_VOC = "volatile_organic_compounds" ATTR_AQI_LEVEL = "air_quality_index_level" ATTR_AQI_POLLUTANT = "air_quality_index_pollutant" AVAILABLE_AQI_STANDARDS = ["us", "cn", "in"] AVAILABLE_UNITS = [ "x", PERCENTAGE, "C", "F", CONCENTRATION_MILLIGRAMS_PER_CUBIC_METER, CONCENTRATION_MICROGRAMS_PER_CUBIC_METER, CONCENTRATION_PARTS_PER_MILLION, CONCENTRATION_PARTS_PER_BILLION, ] AVAILABLE_DEVICE_TYPES = ["laseregg", "sensedge"] CONF_AQI_STANDARD = "aqi_standard" CONF_PREFERRED_UNITS = "preferred_units" DEFAULT_AQI_STANDARD = "us" DEFAULT_PREFERRED_UNIT: list[str] = [] DEFAULT_SCAN_INTERVAL = timedelta(seconds=30) PLATFORMS = [Platform.SENSOR, Platform.AIR_QUALITY]
[ "datetime.timedelta" ]
[((1666, 1687), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(30)'}), '(seconds=30)\n', (1675, 1687), False, 'from datetime import timedelta\n')]
from datetime import datetime from werkzeug.security import generate_password_hash from flask import Blueprint, jsonify, request from sqlalchemy.orm import joinedload from flask_login import login_required from app.models import db, User, Type from app.forms import UpdateUserForm from .auth_routes import authenticate, validation_errors_to_error_messages user_routes = Blueprint('users', __name__) @user_routes.route("/types") def types(): types = db.session.query(Type).all() return jsonify([type.name_to_id() for type in types]) @user_routes.route('/') @login_required def users(): users = db.session.query(User).all() return jsonify([user.to_dict_full() for user in users]) @user_routes.route('/<int:id>') @login_required def user(id): user = User.query.get(id) return user.to_dict() @user_routes.route('/<int:id>', methods=["DELETE"]) @login_required def user_delete(id): user = User.query.get(id) db.session.delete(user) db.session.commit() return { id: "Successfully deleted" } @user_routes.route('/<int:id>', methods=["POST"]) @login_required def user_update(id): user = User.query.options(joinedload("type")).get(id) form = UpdateUserForm() form['csrf_token'].data = request.cookies['csrf_token'] if form.validate_on_submit(): print("_______ FORM DATA",form.data) user.username=form.data['username'], user.email=form.data['email'], user.hashed_password=generate_password_hash(form.password.data), user.first_name=form.data['first_name'], user.last_name=form.data['last_name'], user.type_id=form.data['type_id'], user.updated_at=datetime.now() db.session.commit() return user.to_dict_full() return {'errors': validation_errors_to_error_messages(form.errors)} @user_routes.route("/<int:id>/clients") @login_required def admin_fetch_clients(id): authenticated = authenticate() clientUsers = db.session.query(User).filter_by(type_id=2).all() if authenticated["type_id"] != 1: return jsonify({ "errors": [ "Unauthorized" ] }) return jsonify([user.to_dict_full() for user in clientUsers])
[ "app.models.db.session.delete", "app.models.db.session.query", "app.forms.UpdateUserForm", "datetime.datetime.now", "werkzeug.security.generate_password_hash", "sqlalchemy.orm.joinedload", "app.models.db.session.commit", "app.models.User.query.get", "flask.Blueprint", "flask.jsonify" ]
[((371, 399), 'flask.Blueprint', 'Blueprint', (['"""users"""', '__name__'], {}), "('users', __name__)\n", (380, 399), False, 'from flask import Blueprint, jsonify, request\n'), ((773, 791), 'app.models.User.query.get', 'User.query.get', (['id'], {}), '(id)\n', (787, 791), False, 'from app.models import db, User, Type\n'), ((920, 938), 'app.models.User.query.get', 'User.query.get', (['id'], {}), '(id)\n', (934, 938), False, 'from app.models import db, User, Type\n'), ((943, 966), 'app.models.db.session.delete', 'db.session.delete', (['user'], {}), '(user)\n', (960, 966), False, 'from app.models import db, User, Type\n'), ((971, 990), 'app.models.db.session.commit', 'db.session.commit', ([], {}), '()\n', (988, 990), False, 'from app.models import db, User, Type\n'), ((1191, 1207), 'app.forms.UpdateUserForm', 'UpdateUserForm', ([], {}), '()\n', (1205, 1207), False, 'from app.forms import UpdateUserForm\n'), ((1667, 1681), 'datetime.datetime.now', 'datetime.now', ([], {}), '()\n', (1679, 1681), False, 'from datetime import datetime\n'), ((1690, 1709), 'app.models.db.session.commit', 'db.session.commit', ([], {}), '()\n', (1707, 1709), False, 'from app.models import db, User, Type\n'), ((2065, 2102), 'flask.jsonify', 'jsonify', (["{'errors': ['Unauthorized']}"], {}), "({'errors': ['Unauthorized']})\n", (2072, 2102), False, 'from flask import Blueprint, jsonify, request\n'), ((456, 478), 'app.models.db.session.query', 'db.session.query', (['Type'], {}), '(Type)\n', (472, 478), False, 'from app.models import db, User, Type\n'), ((609, 631), 'app.models.db.session.query', 'db.session.query', (['User'], {}), '(User)\n', (625, 631), False, 'from app.models import db, User, Type\n'), ((1460, 1502), 'werkzeug.security.generate_password_hash', 'generate_password_hash', (['form.password.data'], {}), '(form.password.data)\n', (1482, 1502), False, 'from werkzeug.security import generate_password_hash\n'), ((1152, 1170), 'sqlalchemy.orm.joinedload', 'joinedload', (['"""type"""'], {}), "('type')\n", (1162, 1170), False, 'from sqlalchemy.orm import joinedload\n'), ((1957, 1979), 'app.models.db.session.query', 'db.session.query', (['User'], {}), '(User)\n', (1973, 1979), False, 'from app.models import db, User, Type\n')]
"""Machine Learning""" import importlib import numpy as np import pandas as pd import json from jsonschema import validate from sklearn.pipeline import make_pipeline from timeflux.core.node import Node from timeflux.core.exceptions import ValidationError, WorkerInterrupt from timeflux.helpers.background import Task from timeflux.helpers.port import make_event, match_events, get_meta from timeflux.helpers.clock import now, min_time, max_time # Statuses IDLE = 0 ACCUMULATING = 1 FITTING = 2 READY = 3 class Pipeline(Node): """Fit, transform and predict. Training on continuous data is always unsupervised. Training on epoched data can either be supervised or unsupervised. If fit is `False`, input events are ignored, and initital training is not performed. Automatically set to False if mode is either 'fit_predict' or fit_transform'. Automatically set to True if mode is either 'predict', 'predict_proba' or 'predict_log_proba'. Attributes: i (Port): Continuous data input, expects DataFrame. i_* (Port): Epoched data input, expects DataFrame. i_training (Port): Continuous training data input, expects DataFrame. i_training_* (Port): Epoched training data input, expects DataFrame. i_events (Port): Event input, expects DataFrame. o (Port): Continuous data output, provides DataFrame. o_* (Port): Epoched data output, provides DataFrame. o_events (Port): Event output, provides DataFrame. Args: steps (dict): Pipeline steps and settings fit (bool): mode ('predict'|'predict_proba'|'predict_log_proba'|'transform'|'fit_predict'|'fit_transform'): meta_label (str|tuple|None): event_start_accumulation (str): event_stop_accumulation (str): event_start_training (str): event_reset (str): buffer_size (str): passthrough (bool): resample (bool): resample_direction ('right'|'left'|'both'): resample_rate (None|float): model: Load a pickle model - NOT IMPLEMENTED cv: Cross-validation - NOT IMPLEMENTED """ def __init__( self, steps, fit=True, mode="predict", meta_label=("epoch", "context", "target"), event_start_accumulation="accumulation_starts", event_stop_accumulation="accumulation_stops", event_start_training="training_starts", event_reset=None, buffer_size="5s", passthrough=False, resample=False, resample_direction="right", resample_rate=None, model=None, cv=None, use_task = True, ): # TODO: validation # TODO: model loading from file # TODO: cross-validation # TODO: provide more context for errors self.fit = fit self.mode = mode self.meta_label = meta_label self.event_start_accumulation = event_start_accumulation self.event_stop_accumulation = event_stop_accumulation self.event_start_training = event_start_training self.event_reset = event_reset self.passthrough = passthrough self.resample = resample self.resample_direction = resample_direction self.resample_rate = resample_rate self.use_task = use_task self._buffer_size = pd.Timedelta(buffer_size) self._make_pipeline(steps) self._reset() def update(self): # Let's get ready self._clear() # Reset if self.event_reset: matches = match_events(self.i_events, self.event_reset) if matches is not None: self.logger.debug("Reset") if self._task is not None: if self._status == FITTING: self._task.stop() self._reset() # Are we dealing with continuous data or epochs? if self._dimensions is None: port_name = "i_training" if self.fit else "i" if getattr(self, port_name).ready(): self._dimensions = 2 elif len(list(self.iterate(port_name + "_*"))) > 0: self._dimensions = 3 # Set the accumulation boundaries if self._accumulation_start is None: matches = match_events(self.i_events, self.event_start_accumulation) if matches is not None: self._accumulation_start = matches.index.values[0] self._status = ACCUMULATING self.logger.debug("Start accumulation") if self._accumulation_stop is None: matches = match_events(self.i_events, self.event_stop_accumulation) if matches is not None: self._accumulation_stop = matches.index.values[0] self.logger.debug("Stop accumulation") # Always buffer a few seconds, in case the start event is coming late if self._status == IDLE: start = (now() - self._buffer_size).to_datetime64() stop = max_time() self._accumulate(start, stop) # Accumulate between boundaries if self._status == ACCUMULATING: start = self._accumulation_start stop = self._accumulation_stop if self._accumulation_stop else max_time() self._accumulate(start, stop) # Should we start fitting the model? if self._status < FITTING: if match_events(self.i_events, self.event_start_training) is not None: self._status = FITTING self.logger.debug("Start training") if self.use_task: self._task = Task( self._pipeline, "fit", self._X_train, self._y_train ).start() else: try: self._pipeline = self._pipeline.fit(self._X_train, self._y_train) self._fitted_success = True except Exception as error: self._fitted_success = False # Is the model ready? if self._status == FITTING: ready_to_proceed = False if self.use_task: status = self._task.status() if status: ready_to_proceed = True else: ready_to_proceed = True if ready_to_proceed: if self.use_task: success = status["success"] else: success = self._fitted_success if success: if self.use_task: self._pipeline = status["instance"] self.logger.debug(f"Model fitted in {status['time']} seconds") else: self.logger.debug(f"Model fitted") self._status = READY # TODO: this can potentially be overwritten in _send() self.o_events.data = make_event("ready") else: if self.use_task: self.logger.error( f"An error occured while fitting: {status['exception'].args[0]}" ) self.logger.debug( "\nTraceback (most recent call last):\n" + "".join(status["traceback"]) ) else: self.logger.error( f"An error occured while fitting" ) raise WorkerInterrupt() # Run the pipeline if self._status == READY: self._receive() if self._X is not None: args = [self._X] if self.mode.startswith("fit"): args.append(self._y) # TODO: optionally loop through epochs instead of sending them all at once self._out = getattr(self._pipeline, self.mode)(*args) # Set output streams self._send() def terminate(self): # Kill the fit subprocess if self._task is not None: self._task.stop() def _reset(self): self._X_train = None self._y_train = None self._X_train_indices = np.array([], dtype=np.datetime64) self._accumulation_start = None self._accumulation_stop = None self._dimensions = None self._shape = () self._task = None if self.mode.startswith("fit"): self.fit = False elif self.mode.startswith("predict"): self.fit = True if self.fit: self._status = IDLE else: self._status = READY def _clear(self): self._X = None self._y = None self._X_indices = [] self._X_columns = [] self._X_meta = None self._out = None def _make_pipeline(self, steps): schema = { "type": "array", "minItems": 1, "items": { "type": "object", "properties": { "module": {"type": "string"}, "class": {"type": "string"}, "args": {"type": "object"}, }, "required": ["module", "class"], }, } try: validate(instance=steps, schema=schema) except Exception as error: raise ValidationError("steps", error.message) pipeline = [] for step in steps: try: args = step["args"] if "args" in step else {} m = importlib.import_module(step["module"]) c = getattr(m, step["class"]) i = c(**args) pipeline.append(i) except ImportError as error: raise ValidationError("steps", f"could not import '{step['module']}'") except AttributeError as error: raise ValidationError( "steps", f"could not find class '{step['class']}'" ) except TypeError as error: raise ValidationError( "steps", f"could not instantiate class '{step['class']}' with the given params", ) # TODO: memory and verbose args self._pipeline = make_pipeline(*pipeline, memory=None, verbose=False) def _accumulate(self, start, stop): # Do nothing if no fitting required if not self.fit: return # Set defaults indices = np.array([], dtype=np.datetime64) # Accumulate continuous data if self._dimensions == 2: if self.i_training.ready(): data = self.i_training.data mask = (data.index >= start) & (data.index < stop) data = data[mask] if not data.empty: if self._X_train is None: self._X_train = data.values self._shape = self._X_train.shape[1] indices = data.index.values else: if data.shape[1] == self._shape: self._X_train = np.vstack((self._X_train, data.values)) indices = data.index.values else: self.logger.warning("Invalid shape") # Accumulate epoched data if self._dimensions == 3: for _, _, port in self.iterate("i_training_*"): if port.ready(): index = port.data.index.values[0] if index >= start and index < stop: data = port.data.values label = get_meta(port, self.meta_label) if self._shape and (data.shape != self._shape): self.logger.warning("Invalid shape") continue if self.meta_label is not None and label is None: self.logger.warning("Invalid label") continue if self._X_train is None: self._X_train = np.array([data]) self._shape = self._X_train.shape[1:] else: self._X_train = np.vstack((self._X_train, [data])) indices = np.append(indices, index) if label is not None: if self._y_train is None: self._y_train = np.array([label]) else: self._y_train = np.append(self._y_train, [label]) # Store indices if indices.size != 0: self._X_train_indices = np.append(self._X_train_indices, indices) # Trim if self._X_train is not None: mask = (self._X_train_indices >= start) & (self._X_train_indices < stop) self._X_train = self._X_train[mask] self._X_train_indices = self._X_train_indices[mask] if self._y_train is not None: self._y_train = self._y_train[mask] def _receive(self): # Continuous data if self._dimensions == 2: if self.i.ready(): if not self._X_columns: self._X_columns = list(self.i.data.columns) if self._shape and (self.i.data.shape[1] != self._shape): self.logger.warning("Invalid shape") else: self._X = self.i.data.values self._X_indices = self.i.data.index.values self._X_meta = self.i.meta # Epochs if self._dimensions == 3: for name, _, port in self.iterate("i_*"): if port.ready() and "training" not in name and "events" not in name: data = port.data.values meta = port.meta indices = port.data.index.values label = get_meta(port, self.meta_label) if not self._X_columns: self._X_columns = list(port.data.columns) if self._shape and (data.shape != self._shape): self.logger.warning("Invalid shape") continue if not self.fit and self.meta_label is not None and label is None: self.logger.warning("Invalid label") continue if self._X is None: self._X = [] if self._y is None and label is not None: self._y = [] if self._X_meta is None: self._X_meta = [] self._X.append(data) self._X_indices.append(indices) self._X_meta.append(meta) if label is not None: self._y.append(label) def _send(self): # Passthrough if self._status < READY and self.passthrough: inputs = [] for _, suffix, port in self.iterate("i*"): if not suffix.startswith("_training") and not suffix.startswith( "_events" ): inputs.append((suffix, port)) for suffix, src_port in inputs: dst_port = getattr(self, "o" + suffix) dst_port.data = src_port.data dst_port.meta = src_port.meta # Model if self._out is not None: if "predict" in self.mode: # Send events if len(self._X_indices) == len(self._out): # TODO: skip JSON serialization? data = [ [self.mode, json.dumps({"result": self._np_to_native(result)})] for result in self._out ] times = ( self._X_indices if self._dimensions == 2 else np.asarray(self._X_indices)[:, 0] ) # Keep the first timestamp of each epoch names = ["label", "data"] meta = ( self._X_meta if self._dimensions == 2 else {"epochs": self._X_meta} ) # port.meta should always be an object self.o_events.set(data, times, names, meta) else: self.logger.warning( "Number of predictions inconsistent with input length" ) else: # Send data if self._dimensions == 2: try: self.o.data = self._reindex( self._out, self._X_indices, self._X_columns ) self.o.meta = self._X_meta except Exception as e: self.logger.warning(getattr(e, "message", repr(e))) if self._dimensions == 3: if len(self._X_indices) == len(self._out): for i, (data, times) in enumerate( zip(self._out, self._X_indices) ): try: getattr(self, "o_" + str(i)).data = self._reindex( data, times, self._X_columns ) getattr(self, "o_" + str(i)).meta = self._X_meta[i] except Exception as e: self.logger.warning(getattr(e, "message", repr(e))) else: self.logger.warning( "Number of transforms inconsistent with number of epochs" ) def _np_to_native(self, data): """Convert numpy scalars and objects to native types.""" return getattr(data, "tolist", lambda: data)() def _reindex(self, data, times, columns): if len(data) != len(times): if self.resample: # Resample at a specific frequency kwargs = {"periods": len(data)} if self.resample_rate is None: kwargs["freq"] = pd.infer_freq(times) kwargs["freq"] = pd.tseries.frequencies.to_offset(kwargs["freq"]) else: kwargs["freq"] = pd.DateOffset(seconds=1 / self.resample_rate) if self.resample_direction == "right": kwargs["start"] = times[0] elif self.resample_direction == "left": kwargs["end"] = times[-1] else: def middle(a): return int(np.ceil(len(a) / 2)) - 1 kwargs["start"] = times[middle(times)] - ( middle(data) * kwargs["freq"] ) times = pd.date_range(**kwargs) else: # Linearly arange between first and last times = pd.date_range(start=times[0], end=times[-1], periods=len(data)) return pd.DataFrame(data, times, columns)
[ "timeflux.core.exceptions.WorkerInterrupt", "timeflux.helpers.clock.max_time", "pandas.infer_freq", "numpy.array", "timeflux.helpers.clock.now", "timeflux.core.exceptions.ValidationError", "pandas.date_range", "timeflux.helpers.background.Task", "timeflux.helpers.port.make_event", "numpy.asarray", "numpy.vstack", "pandas.DataFrame", "importlib.import_module", "sklearn.pipeline.make_pipeline", "jsonschema.validate", "pandas.DateOffset", "timeflux.helpers.port.match_events", "timeflux.helpers.port.get_meta", "pandas.Timedelta", "numpy.append", "pandas.tseries.frequencies.to_offset" ]
[((3357, 3382), 'pandas.Timedelta', 'pd.Timedelta', (['buffer_size'], {}), '(buffer_size)\n', (3369, 3382), True, 'import pandas as pd\n'), ((8422, 8455), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.datetime64'}), '([], dtype=np.datetime64)\n', (8430, 8455), True, 'import numpy as np\n'), ((10524, 10576), 'sklearn.pipeline.make_pipeline', 'make_pipeline', (['*pipeline'], {'memory': 'None', 'verbose': '(False)'}), '(*pipeline, memory=None, verbose=False)\n', (10537, 10576), False, 'from sklearn.pipeline import make_pipeline\n'), ((10749, 10782), 'numpy.array', 'np.array', (['[]'], {'dtype': 'np.datetime64'}), '([], dtype=np.datetime64)\n', (10757, 10782), True, 'import numpy as np\n'), ((19682, 19716), 'pandas.DataFrame', 'pd.DataFrame', (['data', 'times', 'columns'], {}), '(data, times, columns)\n', (19694, 19716), True, 'import pandas as pd\n'), ((3580, 3625), 'timeflux.helpers.port.match_events', 'match_events', (['self.i_events', 'self.event_reset'], {}), '(self.i_events, self.event_reset)\n', (3592, 3625), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((4318, 4376), 'timeflux.helpers.port.match_events', 'match_events', (['self.i_events', 'self.event_start_accumulation'], {}), '(self.i_events, self.event_start_accumulation)\n', (4330, 4376), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((4646, 4703), 'timeflux.helpers.port.match_events', 'match_events', (['self.i_events', 'self.event_stop_accumulation'], {}), '(self.i_events, self.event_stop_accumulation)\n', (4658, 4703), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((5056, 5066), 'timeflux.helpers.clock.max_time', 'max_time', ([], {}), '()\n', (5064, 5066), False, 'from timeflux.helpers.clock import now, min_time, max_time\n'), ((9510, 9549), 'jsonschema.validate', 'validate', ([], {'instance': 'steps', 'schema': 'schema'}), '(instance=steps, schema=schema)\n', (9518, 9549), False, 'from jsonschema import validate\n'), ((13057, 13098), 'numpy.append', 'np.append', (['self._X_train_indices', 'indices'], {}), '(self._X_train_indices, indices)\n', (13066, 13098), True, 'import numpy as np\n'), ((5311, 5321), 'timeflux.helpers.clock.max_time', 'max_time', ([], {}), '()\n', (5319, 5321), False, 'from timeflux.helpers.clock import now, min_time, max_time\n'), ((5460, 5514), 'timeflux.helpers.port.match_events', 'match_events', (['self.i_events', 'self.event_start_training'], {}), '(self.i_events, self.event_start_training)\n', (5472, 5514), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((9603, 9642), 'timeflux.core.exceptions.ValidationError', 'ValidationError', (['"""steps"""', 'error.message'], {}), "('steps', error.message)\n", (9618, 9642), False, 'from timeflux.core.exceptions import ValidationError, WorkerInterrupt\n'), ((9791, 9830), 'importlib.import_module', 'importlib.import_module', (["step['module']"], {}), "(step['module'])\n", (9814, 9830), False, 'import importlib\n'), ((19478, 19501), 'pandas.date_range', 'pd.date_range', ([], {}), '(**kwargs)\n', (19491, 19501), True, 'import pandas as pd\n'), ((7065, 7084), 'timeflux.helpers.port.make_event', 'make_event', (['"""ready"""'], {}), "('ready')\n", (7075, 7084), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((7704, 7721), 'timeflux.core.exceptions.WorkerInterrupt', 'WorkerInterrupt', ([], {}), '()\n', (7719, 7721), False, 'from timeflux.core.exceptions import ValidationError, WorkerInterrupt\n'), ((10005, 10069), 'timeflux.core.exceptions.ValidationError', 'ValidationError', (['"""steps"""', 'f"""could not import \'{step[\'module\']}\'"""'], {}), '(\'steps\', f"could not import \'{step[\'module\']}\'")\n', (10020, 10069), False, 'from timeflux.core.exceptions import ValidationError, WorkerInterrupt\n'), ((10136, 10203), 'timeflux.core.exceptions.ValidationError', 'ValidationError', (['"""steps"""', 'f"""could not find class \'{step[\'class\']}\'"""'], {}), '(\'steps\', f"could not find class \'{step[\'class\']}\'")\n', (10151, 10203), False, 'from timeflux.core.exceptions import ValidationError, WorkerInterrupt\n'), ((10303, 10403), 'timeflux.core.exceptions.ValidationError', 'ValidationError', (['"""steps"""', 'f"""could not instantiate class \'{step[\'class\']}\' with the given params"""'], {}), '(\'steps\',\n f"could not instantiate class \'{step[\'class\']}\' with the given params")\n', (10318, 10403), False, 'from timeflux.core.exceptions import ValidationError, WorkerInterrupt\n'), ((14330, 14361), 'timeflux.helpers.port.get_meta', 'get_meta', (['port', 'self.meta_label'], {}), '(port, self.meta_label)\n', (14338, 14361), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((18780, 18800), 'pandas.infer_freq', 'pd.infer_freq', (['times'], {}), '(times)\n', (18793, 18800), True, 'import pandas as pd\n'), ((18838, 18886), 'pandas.tseries.frequencies.to_offset', 'pd.tseries.frequencies.to_offset', (["kwargs['freq']"], {}), "(kwargs['freq'])\n", (18870, 18886), True, 'import pandas as pd\n'), ((18946, 18991), 'pandas.DateOffset', 'pd.DateOffset', ([], {'seconds': '(1 / self.resample_rate)'}), '(seconds=1 / self.resample_rate)\n', (18959, 18991), True, 'import pandas as pd\n'), ((4994, 4999), 'timeflux.helpers.clock.now', 'now', ([], {}), '()\n', (4997, 4999), False, 'from timeflux.helpers.clock import now, min_time, max_time\n'), ((11956, 11987), 'timeflux.helpers.port.get_meta', 'get_meta', (['port', 'self.meta_label'], {}), '(port, self.meta_label)\n', (11964, 11987), False, 'from timeflux.helpers.port import make_event, match_events, get_meta\n'), ((12658, 12683), 'numpy.append', 'np.append', (['indices', 'index'], {}), '(indices, index)\n', (12667, 12683), True, 'import numpy as np\n'), ((5686, 5743), 'timeflux.helpers.background.Task', 'Task', (['self._pipeline', '"""fit"""', 'self._X_train', 'self._y_train'], {}), "(self._pipeline, 'fit', self._X_train, self._y_train)\n", (5690, 5743), False, 'from timeflux.helpers.background import Task\n'), ((11413, 11452), 'numpy.vstack', 'np.vstack', (['(self._X_train, data.values)'], {}), '((self._X_train, data.values))\n', (11422, 11452), True, 'import numpy as np\n'), ((12432, 12448), 'numpy.array', 'np.array', (['[data]'], {}), '([data])\n', (12440, 12448), True, 'import numpy as np\n'), ((12589, 12623), 'numpy.vstack', 'np.vstack', (['(self._X_train, [data])'], {}), '((self._X_train, [data]))\n', (12598, 12623), True, 'import numpy as np\n'), ((16421, 16448), 'numpy.asarray', 'np.asarray', (['self._X_indices'], {}), '(self._X_indices)\n', (16431, 16448), True, 'import numpy as np\n'), ((12832, 12849), 'numpy.array', 'np.array', (['[label]'], {}), '([label])\n', (12840, 12849), True, 'import numpy as np\n'), ((12932, 12965), 'numpy.append', 'np.append', (['self._y_train', '[label]'], {}), '(self._y_train, [label])\n', (12941, 12965), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- # Generated by Django 1.10.5 on 2017-01-22 15:45 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('content', '0002_auto_20170122_1509'), ('cms', '0005_auto_20170122_1534'), ] operations = [ migrations.AddField( model_name='paginahome', name='posts1_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts1_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts1_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts1_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts2_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts2_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts2_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts2_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts3_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts3_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts3_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts3_titulo', to='content.TitleContent'), ), migrations.AddField( model_name='paginahome', name='posts4_imagen', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_imagen', to='content.ImageContent'), ), migrations.AddField( model_name='paginahome', name='posts4_texto', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_texto', to='content.TextContent'), ), migrations.AddField( model_name='paginahome', name='posts4_titulo', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='posts4_titulo', to='content.TitleContent'), ), ]
[ "django.db.models.OneToOneField" ]
[((487, 637), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts1_imagen"""', 'to': '"""content.ImageContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts1_imagen', to='content.ImageContent')\n", (507, 637), False, 'from django.db import migrations, models\n'), ((762, 910), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts1_texto"""', 'to': '"""content.TextContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts1_texto', to='content.TextContent')\n", (782, 910), False, 'from django.db import migrations, models\n'), ((1036, 1186), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts1_titulo"""', 'to': '"""content.TitleContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts1_titulo', to='content.TitleContent')\n", (1056, 1186), False, 'from django.db import migrations, models\n'), ((1312, 1462), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts2_imagen"""', 'to': '"""content.ImageContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts2_imagen', to='content.ImageContent')\n", (1332, 1462), False, 'from django.db import migrations, models\n'), ((1587, 1735), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts2_texto"""', 'to': '"""content.TextContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts2_texto', to='content.TextContent')\n", (1607, 1735), False, 'from django.db import migrations, models\n'), ((1861, 2011), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts2_titulo"""', 'to': '"""content.TitleContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts2_titulo', to='content.TitleContent')\n", (1881, 2011), False, 'from django.db import migrations, models\n'), ((2137, 2287), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts3_imagen"""', 'to': '"""content.ImageContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts3_imagen', to='content.ImageContent')\n", (2157, 2287), False, 'from django.db import migrations, models\n'), ((2412, 2560), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts3_texto"""', 'to': '"""content.TextContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts3_texto', to='content.TextContent')\n", (2432, 2560), False, 'from django.db import migrations, models\n'), ((2686, 2836), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts3_titulo"""', 'to': '"""content.TitleContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts3_titulo', to='content.TitleContent')\n", (2706, 2836), False, 'from django.db import migrations, models\n'), ((2962, 3112), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts4_imagen"""', 'to': '"""content.ImageContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts4_imagen', to='content.ImageContent')\n", (2982, 3112), False, 'from django.db import migrations, models\n'), ((3237, 3385), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts4_texto"""', 'to': '"""content.TextContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts4_texto', to='content.TextContent')\n", (3257, 3385), False, 'from django.db import migrations, models\n'), ((3511, 3661), 'django.db.models.OneToOneField', 'models.OneToOneField', ([], {'blank': '(True)', 'null': '(True)', 'on_delete': 'django.db.models.deletion.CASCADE', 'related_name': '"""posts4_titulo"""', 'to': '"""content.TitleContent"""'}), "(blank=True, null=True, on_delete=django.db.models.\n deletion.CASCADE, related_name='posts4_titulo', to='content.TitleContent')\n", (3531, 3661), False, 'from django.db import migrations, models\n')]
from pug.nlp.db import representation from django.db import models class RepresentationMixin(models.Model): """Produce a meaningful string representation of a model with `str(model.objects.all[0])`.""" __unicode__ = representation class Meta: abstract = True class DateMixin(models.Model): """Add updated and created fields that auto-populate to create a ORM-level transaction log for auditing (though not a full log, just 2 events).""" updated = models.DateTimeField(auto_now=True) created = models.DateTimeField(auto_now_add=True) class Meta: abstract = True
[ "django.db.models.DateTimeField" ]
[((479, 514), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now': '(True)'}), '(auto_now=True)\n', (499, 514), False, 'from django.db import models\n'), ((529, 568), 'django.db.models.DateTimeField', 'models.DateTimeField', ([], {'auto_now_add': '(True)'}), '(auto_now_add=True)\n', (549, 568), False, 'from django.db import models\n')]
from django.shortcuts import render from django.views.generic.edit import FormView from django.views.generic.edit import View from . import forms # Опять же, спасибо django за готовую форму аутентификации. from django.contrib.auth.forms import AuthenticationForm from django.contrib.auth import logout from django.http import HttpResponseRedirect from django.contrib.auth import login class index(FormView): form_class = AuthenticationForm # Аналогично регистрации, только используем шаблон аутентификации. template_name = "MainApp/homepage.html" # В случае успеха перенаправим на главную. success_url = "/" def get(self, request): form1 = AuthenticationForm(request.POST) return render(request, 'MainApp/homepage.html', {'form': form1, 'user': request.user}) def form_valid(self, form): # Получаем объект пользователя на основе введённых в форму данных. self.user = form.get_user() # Выполняем аутентификацию пользователя. login(self.request, self.user) return super(index, self).form_valid(form) class contact(FormView): form_class = AuthenticationForm # Аналогично регистрации, только используем шаблон аутентификации. template_name = "MainApp/contact.html" # В случае успеха перенаправим на главную. success_url = "../contact/" def get(self, request): form1 = AuthenticationForm(request.POST) return render(request, 'MainApp/contact.html', {'values': ['Звоните по телефону', '<EMAIL>', '8(977)335-77-77'], 'form': form1, 'user': request.user}) def form_valid(self, form): # Получаем объект пользователя на основе введённых в форму данных. self.user = form.get_user() # Выполняем аутентификацию пользователя. login(self.request, self.user) return super(contact, self).form_valid(form) class registration(FormView): form_class = forms.UserCreationForm # Ссылка, на которую будет перенаправляться пользователь в случае успешной регистрации. # В данном случае указана ссылка на страницу входа для зарегистрированных пользователей. success_url = "/login/" # Шаблон, который будет использоваться при отображении представления. template_name = "MainApp/registration_form.html" def form_valid(self, form): # Создаём пользователя, если данные в форму были введены корректно. form.save() # Вызываем метод базового класса return super(registration, self).form_valid(form) class LogoutView(View): def get(self, request): # Выполняем выход для пользователя, запросившего данное представление. logout(request) # После чего, перенаправляем пользователя на главную страницу. #return HttpResponseRedirect("/seeuagain") return render(request, 'MainApp/quitpage.html') class LoginFormView(FormView): form_class = AuthenticationForm # Аналогично регистрации, только используем шаблон аутентификации. template_name = "MainApp/login_form.html" # В случае успеха перенаправим на главную. success_url = "/news" def form_valid(self, form): # Получаем объект пользователя на основе введённых в форму данных. self.user = form.get_user() # Выполняем аутентификацию пользователя. login(self.request, self.user) return super(LoginFormView, self).form_valid(form)
[ "django.shortcuts.render", "django.contrib.auth.forms.AuthenticationForm", "django.contrib.auth.login", "django.contrib.auth.logout" ]
[((698, 730), 'django.contrib.auth.forms.AuthenticationForm', 'AuthenticationForm', (['request.POST'], {}), '(request.POST)\n', (716, 730), False, 'from django.contrib.auth.forms import AuthenticationForm\n'), ((749, 828), 'django.shortcuts.render', 'render', (['request', '"""MainApp/homepage.html"""', "{'form': form1, 'user': request.user}"], {}), "(request, 'MainApp/homepage.html', {'form': form1, 'user': request.user})\n", (755, 828), False, 'from django.shortcuts import render\n'), ((1061, 1091), 'django.contrib.auth.login', 'login', (['self.request', 'self.user'], {}), '(self.request, self.user)\n', (1066, 1091), False, 'from django.contrib.auth import login\n'), ((1460, 1492), 'django.contrib.auth.forms.AuthenticationForm', 'AuthenticationForm', (['request.POST'], {}), '(request.POST)\n', (1478, 1492), False, 'from django.contrib.auth.forms import AuthenticationForm\n'), ((1511, 1658), 'django.shortcuts.render', 'render', (['request', '"""MainApp/contact.html"""', "{'values': ['Звоните по телефону', '<EMAIL>', '8(977)335-77-77'], 'form':\n form1, 'user': request.user}"], {}), "(request, 'MainApp/contact.html', {'values': ['Звоните по телефону',\n '<EMAIL>', '8(977)335-77-77'], 'form': form1, 'user': request.user})\n", (1517, 1658), False, 'from django.shortcuts import render\n'), ((1887, 1917), 'django.contrib.auth.login', 'login', (['self.request', 'self.user'], {}), '(self.request, self.user)\n', (1892, 1917), False, 'from django.contrib.auth import login\n'), ((2780, 2795), 'django.contrib.auth.logout', 'logout', (['request'], {}), '(request)\n', (2786, 2795), False, 'from django.contrib.auth import logout\n'), ((2940, 2980), 'django.shortcuts.render', 'render', (['request', '"""MainApp/quitpage.html"""'], {}), "(request, 'MainApp/quitpage.html')\n", (2946, 2980), False, 'from django.shortcuts import render\n'), ((3461, 3491), 'django.contrib.auth.login', 'login', (['self.request', 'self.user'], {}), '(self.request, self.user)\n', (3466, 3491), False, 'from django.contrib.auth import login\n')]
""" Django settings for imagetagger project. Generated by 'django-admin startproject' using Django 1.10.3. For more information on this file, see https://docs.djangoproject.com/en/1.10/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.10/ref/settings/ """ import os from django.contrib.messages import constants as messages # Build paths inside the project like this: os.path.join(BASE_DIR, ...) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) # SECURITY WARNING: don't run with debug turned on in production! DEBUG = False ALLOWED_HOSTS = [] # Application definition INSTALLED_APPS = [ 'imagetagger.annotations', 'imagetagger.base', 'imagetagger.images', 'imagetagger.users', 'imagetagger.tools', 'imagetagger.administration', 'django.contrib.admin', 'imagetagger.tagger_messages', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'rest_framework', 'widget_tweaks', 'friendlytagloader', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.locale.LocaleMiddleware', ] ROOT_URLCONF = 'imagetagger.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'imagetagger.base.context_processors.base_data', ], }, }, ] WSGI_APPLICATION = 'imagetagger.wsgi.application' FILE_UPLOAD_HANDLERS = ( "django.core.files.uploadhandler.MemoryFileUploadHandler", "django.core.files.uploadhandler.TemporaryFileUploadHandler", ) # Password validation # https://docs.djangoproject.com/en/1.10/ref/settings/#auth-password-validators AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.NumericPasswordValidator', }, ] AUTH_USER_MODEL = 'users.User' # Internationalization # https://docs.djangoproject.com/en/1.10/topics/i18n/ LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Berlin' # Timezone of your server USE_I18N = True USE_L10N = True USE_TZ = True PROBLEMS_URL = 'https://github.com/bit-bots/imagetagger/issues' PROBLEMS_TEXT = '' LOGIN_URL = '/user/login/' LOGIN_REDIRECT_URL = '/images/' MESSAGE_STORAGE = 'django.contrib.messages.storage.session.SessionStorage' MESSAGE_TAGS = { messages.INFO: 'info', messages.ERROR: 'danger', messages.WARNING: 'warning', messages.SUCCESS: 'success', } # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.10/howto/static-files/ STATIC_URL = '/static/' EXPORT_SEPARATOR = '|' DATA_PATH = os.path.join(BASE_DIR, 'data') IMAGE_PATH = os.path.join(BASE_DIR, 'images') # the absolute path to the folder with the imagesets # filename extension of accepted imagefiles IMAGE_EXTENSION = { 'png', 'jpeg', } # Sets the default expire time for new messages in days DEFAULT_EXPIRE_TIME = 7 # Sets the default number of messages per page MESSAGES_PER_PAGE = 10
[ "os.path.abspath", "os.path.join" ]
[((3683, 3713), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""data"""'], {}), "(BASE_DIR, 'data')\n", (3695, 3713), False, 'import os\n'), ((3728, 3760), 'os.path.join', 'os.path.join', (['BASE_DIR', '"""images"""'], {}), "(BASE_DIR, 'images')\n", (3740, 3760), False, 'import os\n'), ((499, 524), 'os.path.abspath', 'os.path.abspath', (['__file__'], {}), '(__file__)\n', (514, 524), False, 'import os\n')]
#encoding:utf-8 from utils import weighted_random_subreddit t_channel = '@news756' subreddit = weighted_random_subreddit({ 'politics': 0.5, 'news': 0.5 }) def send_post(submission, r2t): return r2t.send_simple(submission, text='{title}\n\n{self_text}\n\n/r/{subreddit_name}\n{short_link}', gif='{title}\n\n/r/{subreddit_name}\n{short_link}', img='{title}\n\n/r/{subreddit_name}\n{short_link}', album='{title}\n{link}\n\n/r/{subreddit_name}\n{short_link}', other='{title}\n{link}\n\n/r/{subreddit_name}\n{short_link}' )
[ "utils.weighted_random_subreddit" ]
[((98, 155), 'utils.weighted_random_subreddit', 'weighted_random_subreddit', (["{'politics': 0.5, 'news': 0.5}"], {}), "({'politics': 0.5, 'news': 0.5})\n", (123, 155), False, 'from utils import weighted_random_subreddit\n')]
''' This module contains the classes which represent XCB data types. ''' from xcbgen.expr import Field, Expression import __main__ class Type(object): ''' Abstract base class for all XCB data types. Contains default fields, and some abstract methods. ''' def __init__(self, name): ''' Default structure initializer. Sets up default fields. Public fields: name is a tuple of strings specifying the full type name. size is the size of the datatype in bytes, or None if variable-sized. nmemb is 1 for non-list types, None for variable-sized lists, otherwise number of elts. booleans for identifying subclasses, because I can't figure out isinstance(). ''' self.name = name self.size = None self.nmemb = None self.resolved = False # Screw isinstance(). self.is_simple = False self.is_list = False self.is_expr = False self.is_container = False self.is_reply = False self.is_union = False self.is_pad = False self.is_switch = False self.is_bitcase = False def resolve(self, module): ''' Abstract method for resolving a type. This should make sure any referenced types are already declared. ''' raise Exception('abstract resolve method not overridden!') def out(self, name): ''' Abstract method for outputting code. These are declared in the language-specific modules, and there must be a dictionary containing them declared when this module is imported! ''' raise Exception('abstract out method not overridden!') def fixed_size(self): ''' Abstract method for determining if the data type is fixed-size. ''' raise Exception('abstract fixed_size method not overridden!') def make_member_of(self, module, complex_type, field_type, field_name, visible, wire, auto): ''' Default method for making a data type a member of a structure. Extend this if the data type needs to add an additional length field or something. module is the global module object. complex_type is the structure object. see Field for the meaning of the other parameters. ''' new_field = Field(self, field_type, field_name, visible, wire, auto) # We dump the _placeholder_byte if any fields are added. for (idx, field) in enumerate(complex_type.fields): if field == _placeholder_byte: complex_type.fields[idx] = new_field return complex_type.fields.append(new_field) class SimpleType(Type): ''' Derived class which represents a cardinal type like CARD32 or char. Any type which is typedef'ed to cardinal will be one of these. Public fields added: none ''' def __init__(self, name, size): Type.__init__(self, name) self.is_simple = True self.size = size self.nmemb = 1 def resolve(self, module): self.resolved = True def fixed_size(self): return True out = __main__.output['simple'] # Cardinal datatype globals. See module __init__ method. tcard8 = SimpleType(('uint8_t',), 1) tcard16 = SimpleType(('uint16_t',), 2) tcard32 = SimpleType(('uint32_t',), 4) tint8 = SimpleType(('int8_t',), 1) tint16 = SimpleType(('int16_t',), 2) tint32 = SimpleType(('int32_t',), 4) tchar = SimpleType(('char',), 1) tfloat = SimpleType(('float',), 4) tdouble = SimpleType(('double',), 8) class Enum(SimpleType): ''' Derived class which represents an enum. Fixed-size. Public fields added: values contains a list of (name, value) tuples. value is empty, or a number. bits contains a list of (name, bitnum) tuples. items only appear if specified as a bit. bitnum is a number. ''' def __init__(self, name, elt): SimpleType.__init__(self, name, 4) self.values = [] self.bits = [] for item in list(elt): # First check if we're using a default value if len(list(item)) == 0: self.values.append((item.get('name'), '')) continue # An explicit value or bit was specified. value = list(item)[0] if value.tag == 'value': self.values.append((item.get('name'), value.text)) elif value.tag == 'bit': self.values.append((item.get('name'), '%u' % (1 << int(value.text, 0)))) self.bits.append((item.get('name'), value.text)) def resolve(self, module): self.resolved = True def fixed_size(self): return True out = __main__.output['enum'] class ListType(Type): ''' Derived class which represents a list of some other datatype. Fixed- or variable-sized. Public fields added: member is the datatype of the list elements. parent is the structure type containing the list. expr is an Expression object containing the length information, for variable-sized lists. ''' def __init__(self, elt, member, *parent): Type.__init__(self, member.name) self.is_list = True self.member = member self.parents = list(parent) if elt.tag == 'list': elts = list(elt) self.expr = Expression(elts[0] if len(elts) else elt, self) elif elt.tag == 'valueparam': self.expr = Expression(elt, self) self.size = member.size if member.fixed_size() else None self.nmemb = self.expr.nmemb if self.expr.fixed_size() else None def make_member_of(self, module, complex_type, field_type, field_name, visible, wire, auto): if not self.fixed_size(): # We need a length field. # Ask our Expression object for it's name, type, and whether it's on the wire. lenfid = self.expr.lenfield_type lenfield_name = self.expr.lenfield_name lenwire = self.expr.lenwire needlen = True # See if the length field is already in the structure. for parent in self.parents: for field in parent.fields: if field.field_name == lenfield_name: needlen = False # It isn't, so we need to add it to the structure ourself. if needlen: type = module.get_type(lenfid) lenfield_type = module.get_type_name(lenfid) type.make_member_of(module, complex_type, lenfield_type, lenfield_name, True, lenwire, False) # Add ourself to the structure by calling our original method. Type.make_member_of(self, module, complex_type, field_type, field_name, visible, wire, auto) def resolve(self, module): if self.resolved: return self.member.resolve(module) self.expr.resolve(module, self.parents) # Find my length field again. We need the actual Field object in the expr. # This is needed because we might have added it ourself above. if not self.fixed_size(): for parent in self.parents: for field in parent.fields: if field.field_name == self.expr.lenfield_name and field.wire: self.expr.lenfield = field break self.resolved = True def fixed_size(self): return self.member.fixed_size() and self.expr.fixed_size() class ExprType(Type): ''' Derived class which represents an exprfield. Fixed size. Public fields added: expr is an Expression object containing the value of the field. ''' def __init__(self, elt, member, *parents): Type.__init__(self, member.name) self.is_expr = True self.member = member self.parents = parents self.expr = Expression(list(elt)[0], self) self.size = member.size self.nmemb = 1 def resolve(self, module): if self.resolved: return self.member.resolve(module) self.resolved = True def fixed_size(self): return True class PadType(Type): ''' Derived class which represents a padding field. ''' def __init__(self, elt): Type.__init__(self, tcard8.name) self.is_pad = True self.size = 1 self.nmemb = 1 if (elt == None) else int(elt.get('bytes'), 0) def resolve(self, module): self.resolved = True def fixed_size(self): return True class ComplexType(Type): ''' Derived class which represents a structure. Base type for all structure types. Public fields added: fields is an array of Field objects describing the structure fields. ''' def __init__(self, name, elt): Type.__init__(self, name) self.is_container = True self.elt = elt self.fields = [] self.nmemb = 1 self.size = 0 self.lenfield_parent = [self] def resolve(self, module): if self.resolved: return pads = 0 # Resolve all of our field datatypes. for child in list(self.elt): if child.tag == 'pad': field_name = 'pad' + str(pads) fkey = 'CARD8' type = PadType(child) pads = pads + 1 visible = False elif child.tag == 'field': field_name = child.get('name') fkey = child.get('type') type = module.get_type(fkey) visible = True elif child.tag == 'exprfield': field_name = child.get('name') fkey = child.get('type') type = ExprType(child, module.get_type(fkey), *self.lenfield_parent) visible = False elif child.tag == 'list': field_name = child.get('name') fkey = child.get('type') type = ListType(child, module.get_type(fkey), *self.lenfield_parent) visible = True elif child.tag == 'valueparam': field_name = child.get('value-list-name') fkey = 'CARD32' type = ListType(child, module.get_type(fkey), *self.lenfield_parent) visible = True elif child.tag == 'switch': field_name = child.get('name') # construct the switch type name from the parent type and the field name field_type = self.name + (field_name,) type = SwitchType(field_type, child, *self.lenfield_parent) visible = True type.make_member_of(module, self, field_type, field_name, visible, True, False) type.resolve(module) continue else: # Hit this on Reply continue # Get the full type name for the field field_type = module.get_type_name(fkey) # Add the field to ourself type.make_member_of(module, self, field_type, field_name, visible, True, False) # Recursively resolve the type (could be another structure, list) type.resolve(module) self.calc_size() # Figure out how big we are self.resolved = True def calc_size(self): self.size = 0 for m in self.fields: if not m.wire: continue if m.type.fixed_size(): self.size = self.size + (m.type.size * m.type.nmemb) else: self.size = None break def fixed_size(self): for m in self.fields: if not m.type.fixed_size(): return False return True class SwitchType(ComplexType): ''' Derived class which represents a List of Items. Public fields added: bitcases is an array of Bitcase objects describing the list items ''' def __init__(self, name, elt, *parents): ComplexType.__init__(self, name, elt) self.parents = parents # FIXME: switch cannot store lenfields, so it should just delegate the parents self.lenfield_parent = list(parents) + [self] # self.fields contains all possible fields collected from the Bitcase objects, # whereas self.items contains the Bitcase objects themselves self.bitcases = [] self.is_switch = True elts = list(elt) self.expr = Expression(elts[0] if len(elts) else elt, self) def resolve(self, module): if self.resolved: return # pads = 0 parents = list(self.parents) + [self] # Resolve all of our field datatypes. for index, child in enumerate(list(self.elt)): if child.tag == 'bitcase': field_name = child.get('name') if field_name is None: field_type = self.name + ('bitcase%d' % index,) else: field_type = self.name + (field_name,) # use self.parent to indicate anchestor, # as switch does not contain named fields itself type = BitcaseType(index, field_type, child, *parents) # construct the switch type name from the parent type and the field name if field_name is None: type.has_name = False # Get the full type name for the field field_type = type.name visible = True # add the field to ourself type.make_member_of(module, self, field_type, field_name, visible, True, False) # recursively resolve the type (could be another structure, list) type.resolve(module) inserted = False for new_field in type.fields: # We dump the _placeholder_byte if any fields are added. for (idx, field) in enumerate(self.fields): if field == _placeholder_byte: self.fields[idx] = new_field inserted = True break if False == inserted: self.fields.append(new_field) self.calc_size() # Figure out how big we are self.resolved = True def make_member_of(self, module, complex_type, field_type, field_name, visible, wire, auto): if not self.fixed_size(): # We need a length field. # Ask our Expression object for it's name, type, and whether it's on the wire. lenfid = self.expr.lenfield_type lenfield_name = self.expr.lenfield_name lenwire = self.expr.lenwire needlen = True # See if the length field is already in the structure. for parent in self.parents: for field in parent.fields: if field.field_name == lenfield_name: needlen = False # It isn't, so we need to add it to the structure ourself. if needlen: type = module.get_type(lenfid) lenfield_type = module.get_type_name(lenfid) type.make_member_of(module, complex_type, lenfield_type, lenfield_name, True, lenwire, False) # Add ourself to the structure by calling our original method. Type.make_member_of(self, module, complex_type, field_type, field_name, visible, wire, auto) # size for switch can only be calculated at runtime def calc_size(self): pass # note: switch is _always_ of variable size, but we indicate here wether # it contains elements that are variable-sized themselves def fixed_size(self): return False # for m in self.fields: # if not m.type.fixed_size(): # return False # return True class Struct(ComplexType): ''' Derived class representing a struct data type. ''' out = __main__.output['struct'] class Union(ComplexType): ''' Derived class representing a union data type. ''' def __init__(self, name, elt): ComplexType.__init__(self, name, elt) self.is_union = True out = __main__.output['union'] class BitcaseType(ComplexType): ''' Derived class representing a struct data type. ''' def __init__(self, index, name, elt, *parent): elts = list(elt) self.expr = Expression(elts[0] if len(elts) else elt, self) ComplexType.__init__(self, name, elts[1:]) self.has_name = True self.index = 1 self.lenfield_parent = list(parent) + [self] self.parents = list(parent) self.is_bitcase = True def make_member_of(self, module, switch_type, field_type, field_name, visible, wire, auto): ''' register BitcaseType with the corresponding SwitchType module is the global module object. complex_type is the structure object. see Field for the meaning of the other parameters. ''' new_field = Field(self, field_type, field_name, visible, wire, auto) # We dump the _placeholder_byte if any bitcases are added. for (idx, field) in enumerate(switch_type.bitcases): if field == _placeholder_byte: switch_type.bitcases[idx] = new_field return switch_type.bitcases.append(new_field) def resolve(self, module): if self.resolved: return self.expr.resolve(module, self.parents+[self]) # Resolve the bitcase expression ComplexType.resolve(self, module) class Reply(ComplexType): ''' Derived class representing a reply. Only found as a field of Request. ''' def __init__(self, name, elt): ComplexType.__init__(self, name, elt) self.is_reply = True def resolve(self, module): if self.resolved: return # Add the automatic protocol fields self.fields.append(Field(tcard8, tcard8.name, 'response_type', False, True, True)) self.fields.append(_placeholder_byte) self.fields.append(Field(tcard16, tcard16.name, 'sequence', False, True, True)) self.fields.append(Field(tcard32, tcard32.name, 'length', False, True, True)) ComplexType.resolve(self, module) class Request(ComplexType): ''' Derived class representing a request. Public fields added: reply contains the reply datatype or None for void requests. opcode contains the request number. ''' def __init__(self, name, elt): ComplexType.__init__(self, name, elt) self.reply = None self.opcode = elt.get('opcode') for child in list(elt): if child.tag == 'reply': self.reply = Reply(name, child) def resolve(self, module): if self.resolved: return # Add the automatic protocol fields if module.namespace.is_ext: self.fields.append(Field(tcard8, tcard8.name, 'major_opcode', False, True, True)) self.fields.append(Field(tcard8, tcard8.name, 'minor_opcode', False, True, True)) self.fields.append(Field(tcard16, tcard16.name, 'length', False, True, True)) ComplexType.resolve(self, module) else: self.fields.append(Field(tcard8, tcard8.name, 'major_opcode', False, True, True)) self.fields.append(_placeholder_byte) self.fields.append(Field(tcard16, tcard16.name, 'length', False, True, True)) ComplexType.resolve(self, module) if self.reply: self.reply.resolve(module) out = __main__.output['request'] class Event(ComplexType): ''' Derived class representing an event data type. Public fields added: opcodes is a dictionary of name -> opcode number, for eventcopies. ''' def __init__(self, name, elt): ComplexType.__init__(self, name, elt) self.opcodes = {} tmp = elt.get('no-sequence-number') self.has_seq = (tmp == None or tmp.lower() == 'false' or tmp == '0') def add_opcode(self, opcode, name, main): self.opcodes[name] = opcode if main: self.name = name def resolve(self, module): if self.resolved: return # Add the automatic protocol fields self.fields.append(Field(tcard8, tcard8.name, 'response_type', False, True, True)) if self.has_seq: self.fields.append(_placeholder_byte) self.fields.append(Field(tcard16, tcard16.name, 'sequence', False, True, True)) ComplexType.resolve(self, module) out = __main__.output['event'] class Error(ComplexType): ''' Derived class representing an error data type. Public fields added: opcodes is a dictionary of name -> opcode number, for errorcopies. ''' def __init__(self, name, elt): ComplexType.__init__(self, name, elt) self.opcodes = {} def add_opcode(self, opcode, name, main): self.opcodes[name] = opcode if main: self.name = name def resolve(self, module): if self.resolved: return # Add the automatic protocol fields self.fields.append(Field(tcard8, tcard8.name, 'response_type', False, True, True)) self.fields.append(Field(tcard8, tcard8.name, 'error_code', False, True, True)) self.fields.append(Field(tcard16, tcard16.name, 'sequence', False, True, True)) ComplexType.resolve(self, module) out = __main__.output['error'] _placeholder_byte = Field(PadType(None), tcard8.name, 'pad0', False, True, False)
[ "xcbgen.expr.Expression", "xcbgen.expr.Field" ]
[((2353, 2409), 'xcbgen.expr.Field', 'Field', (['self', 'field_type', 'field_name', 'visible', 'wire', 'auto'], {}), '(self, field_type, field_name, visible, wire, auto)\n', (2358, 2409), False, 'from xcbgen.expr import Field, Expression\n'), ((17293, 17349), 'xcbgen.expr.Field', 'Field', (['self', 'field_type', 'field_name', 'visible', 'wire', 'auto'], {}), '(self, field_type, field_name, visible, wire, auto)\n', (17298, 17349), False, 'from xcbgen.expr import Field, Expression\n'), ((18249, 18311), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""response_type"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'response_type', False, True, True)\n", (18254, 18311), False, 'from xcbgen.expr import Field, Expression\n'), ((18386, 18445), 'xcbgen.expr.Field', 'Field', (['tcard16', 'tcard16.name', '"""sequence"""', '(False)', '(True)', '(True)'], {}), "(tcard16, tcard16.name, 'sequence', False, True, True)\n", (18391, 18445), False, 'from xcbgen.expr import Field, Expression\n'), ((18474, 18531), 'xcbgen.expr.Field', 'Field', (['tcard32', 'tcard32.name', '"""length"""', '(False)', '(True)', '(True)'], {}), "(tcard32, tcard32.name, 'length', False, True, True)\n", (18479, 18531), False, 'from xcbgen.expr import Field, Expression\n'), ((20654, 20716), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""response_type"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'response_type', False, True, True)\n", (20659, 20716), False, 'from xcbgen.expr import Field, Expression\n'), ((21540, 21602), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""response_type"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'response_type', False, True, True)\n", (21545, 21602), False, 'from xcbgen.expr import Field, Expression\n'), ((21631, 21690), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""error_code"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'error_code', False, True, True)\n", (21636, 21690), False, 'from xcbgen.expr import Field, Expression\n'), ((21719, 21778), 'xcbgen.expr.Field', 'Field', (['tcard16', 'tcard16.name', '"""sequence"""', '(False)', '(True)', '(True)'], {}), "(tcard16, tcard16.name, 'sequence', False, True, True)\n", (21724, 21778), False, 'from xcbgen.expr import Field, Expression\n'), ((5514, 5535), 'xcbgen.expr.Expression', 'Expression', (['elt', 'self'], {}), '(elt, self)\n', (5524, 5535), False, 'from xcbgen.expr import Field, Expression\n'), ((19255, 19316), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""major_opcode"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'major_opcode', False, True, True)\n", (19260, 19316), False, 'from xcbgen.expr import Field, Expression\n'), ((19349, 19410), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""minor_opcode"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'minor_opcode', False, True, True)\n", (19354, 19410), False, 'from xcbgen.expr import Field, Expression\n'), ((19443, 19500), 'xcbgen.expr.Field', 'Field', (['tcard16', 'tcard16.name', '"""length"""', '(False)', '(True)', '(True)'], {}), "(tcard16, tcard16.name, 'length', False, True, True)\n", (19448, 19500), False, 'from xcbgen.expr import Field, Expression\n'), ((19593, 19654), 'xcbgen.expr.Field', 'Field', (['tcard8', 'tcard8.name', '"""major_opcode"""', '(False)', '(True)', '(True)'], {}), "(tcard8, tcard8.name, 'major_opcode', False, True, True)\n", (19598, 19654), False, 'from xcbgen.expr import Field, Expression\n'), ((19737, 19794), 'xcbgen.expr.Field', 'Field', (['tcard16', 'tcard16.name', '"""length"""', '(False)', '(True)', '(True)'], {}), "(tcard16, tcard16.name, 'length', False, True, True)\n", (19742, 19794), False, 'from xcbgen.expr import Field, Expression\n'), ((20824, 20883), 'xcbgen.expr.Field', 'Field', (['tcard16', 'tcard16.name', '"""sequence"""', '(False)', '(True)', '(True)'], {}), "(tcard16, tcard16.name, 'sequence', False, True, True)\n", (20829, 20883), False, 'from xcbgen.expr import Field, Expression\n')]
# Copyright 2020 by <NAME>, Solis-Lemus Lab, WID. # All rights reserved. # This file is part of the BioKlustering Website. import pandas as pd from Bio import SeqIO from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.decomposition import PCA from sklearn.cluster import MeanShift from sklearn import preprocessing import numpy as np import os from .helpers import plotly_dash_show_plot def parseFasta(data): d = {fasta.id : str(fasta.seq) for fasta in SeqIO.parse(data, "fasta")} pd.DataFrame([d]) s = pd.Series(d, name='Sequence') s.index.name = 'ID' s.reset_index() return pd.DataFrame(s) def kmerXTable(s, a, b): tfid_vector = TfidfVectorizer(analyzer='char', ngram_range=(a,b)) s_hat = tfid_vector.fit_transform(s.Sequence) kmerNames = tfid_vector.get_feature_names() kmers = s_hat.toarray() return pd.DataFrame(kmers,columns=kmerNames, index = s.index) # credit to chunrong def read_fasta_sequences(sequence_paths): all_sequences = pd.DataFrame() for path in sequence_paths: path = os.path.join("media", path) sequence = parseFasta(path) all_sequences = pd.concat([all_sequences, sequence]) return all_sequences def kmeans(userId, fasta, klength_min, klength_max, rNum, cNum, method): inputData = read_fasta_sequences(fasta) inputData["Sequence"] = inputData["Sequence"].apply(lambda x: x.replace("-", "")) kmerXTableInput = kmerXTable(inputData, klength_min, klength_max) km = KMeans(random_state = rNum, n_clusters = cNum) km.fit(kmerXTableInput) y_hat = km.predict(kmerXTableInput) plotly_kmertable = kmerXTableInput if method == "PCA": plotly_kmertable = preprocessing.normalize(kmerXTableInput) plot_div = plotly_dash_show_plot(userId, plotly_kmertable, y_hat, "Unsupervised Kmeans", method) inputData.insert(0, "Labels", y_hat) return [[inputData], [plot_div]] def kmeans_semiSupervised(userId, fasta, klength_min, klength_max, rNum, y_hat, method): inputData = read_fasta_sequences(fasta) inputData["Sequence"] = inputData["Sequence"].apply(lambda x: x.replace("-", "")) kmerXTableInput = kmerXTable(inputData, klength_min, klength_max) PCAembedding = PCA(n_components=10) NkmerXTableInput = preprocessing.normalize(kmerXTableInput) PCAembedding_low = PCAembedding.fit_transform(NkmerXTableInput) ms = MeanShift() ms.fit(PCAembedding_low) cluster_centers = ms.cluster_centers_ import warnings with warnings.catch_warnings(): warnings.simplefilter("ignore") kmms = KMeans(init = cluster_centers, n_clusters = len(cluster_centers)) kmms_labels = kmms.fit_predict(PCAembedding_low) # convert all clusters into two clusters kmerXTableInput["pLabels"] = kmms_labels kmerXTableInput["aLabels"] = y_hat.tolist() newLabels_clusters_1 = kmerXTableInput[kmerXTableInput["aLabels"] == 1]["pLabels"].tolist() newLabels_clusters_0 = kmerXTableInput[kmerXTableInput["aLabels"] == 0]["pLabels"].tolist() newLabels = [] for label in kmms_labels: if newLabels_clusters_1.count(label) > newLabels_clusters_0.count(label): newLabels.append(1) else: newLabels.append(0) kmerTable = kmerXTableInput.drop(columns=["pLabels", "aLabels"]) plotly_kmertable = kmerTable plotly_labels = np.array(newLabels) if method == "PCA": plotly_kmertable = preprocessing.normalize(kmerTable) plotly_div = plotly_dash_show_plot(userId, plotly_kmertable, plotly_labels, "Semi-supervised Kmeans", method) inputData.insert(0, "Labels", newLabels) return [[inputData], [plotly_div]]
[ "pandas.Series", "sklearn.cluster.KMeans", "sklearn.decomposition.PCA", "os.path.join", "warnings.catch_warnings", "numpy.array", "sklearn.feature_extraction.text.TfidfVectorizer", "warnings.simplefilter", "Bio.SeqIO.parse", "pandas.DataFrame", "sklearn.cluster.MeanShift", "sklearn.preprocessing.normalize", "pandas.concat" ]
[((546, 563), 'pandas.DataFrame', 'pd.DataFrame', (['[d]'], {}), '([d])\n', (558, 563), True, 'import pandas as pd\n'), ((573, 602), 'pandas.Series', 'pd.Series', (['d'], {'name': '"""Sequence"""'}), "(d, name='Sequence')\n", (582, 602), True, 'import pandas as pd\n'), ((658, 673), 'pandas.DataFrame', 'pd.DataFrame', (['s'], {}), '(s)\n', (670, 673), True, 'import pandas as pd\n'), ((718, 770), 'sklearn.feature_extraction.text.TfidfVectorizer', 'TfidfVectorizer', ([], {'analyzer': '"""char"""', 'ngram_range': '(a, b)'}), "(analyzer='char', ngram_range=(a, b))\n", (733, 770), False, 'from sklearn.feature_extraction.text import TfidfVectorizer\n'), ((907, 960), 'pandas.DataFrame', 'pd.DataFrame', (['kmers'], {'columns': 'kmerNames', 'index': 's.index'}), '(kmers, columns=kmerNames, index=s.index)\n', (919, 960), True, 'import pandas as pd\n'), ((1046, 1060), 'pandas.DataFrame', 'pd.DataFrame', ([], {}), '()\n', (1058, 1060), True, 'import pandas as pd\n'), ((1546, 1588), 'sklearn.cluster.KMeans', 'KMeans', ([], {'random_state': 'rNum', 'n_clusters': 'cNum'}), '(random_state=rNum, n_clusters=cNum)\n', (1552, 1588), False, 'from sklearn.cluster import KMeans\n'), ((2300, 2320), 'sklearn.decomposition.PCA', 'PCA', ([], {'n_components': '(10)'}), '(n_components=10)\n', (2303, 2320), False, 'from sklearn.decomposition import PCA\n'), ((2344, 2384), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['kmerXTableInput'], {}), '(kmerXTableInput)\n', (2367, 2384), False, 'from sklearn import preprocessing\n'), ((2467, 2478), 'sklearn.cluster.MeanShift', 'MeanShift', ([], {}), '()\n', (2476, 2478), False, 'from sklearn.cluster import MeanShift\n'), ((3450, 3469), 'numpy.array', 'np.array', (['newLabels'], {}), '(newLabels)\n', (3458, 3469), True, 'import numpy as np\n'), ((1108, 1135), 'os.path.join', 'os.path.join', (['"""media"""', 'path'], {}), "('media', path)\n", (1120, 1135), False, 'import os\n'), ((1196, 1232), 'pandas.concat', 'pd.concat', (['[all_sequences, sequence]'], {}), '([all_sequences, sequence])\n', (1205, 1232), True, 'import pandas as pd\n'), ((1753, 1793), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['kmerXTableInput'], {}), '(kmerXTableInput)\n', (1776, 1793), False, 'from sklearn import preprocessing\n'), ((2580, 2605), 'warnings.catch_warnings', 'warnings.catch_warnings', ([], {}), '()\n', (2603, 2605), False, 'import warnings\n'), ((2615, 2646), 'warnings.simplefilter', 'warnings.simplefilter', (['"""ignore"""'], {}), "('ignore')\n", (2636, 2646), False, 'import warnings\n'), ((3521, 3555), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['kmerTable'], {}), '(kmerTable)\n', (3544, 3555), False, 'from sklearn import preprocessing\n'), ((514, 540), 'Bio.SeqIO.parse', 'SeqIO.parse', (['data', '"""fasta"""'], {}), "(data, 'fasta')\n", (525, 540), False, 'from Bio import SeqIO\n')]
# -*- coding: utf-8 -*- from src import icons, __version__ from src.actions import HOST_URL from src.actions.configure import ConfigureWorkflowAction from src.actions.help import HelpWorkflowAction from src.actions.index import IndexWorkflowAction from src.actions.projects import ProjectWorkflowAction from src.actions.pull_requests import PullRequestWorkflowAction from src.actions.repositories import RepositoryWorkflowAction from src.util import workflow, call_alfred WORKFLOW_ACTIONS = { ':config': ConfigureWorkflowAction, ':projects': ProjectWorkflowAction, ':repos': RepositoryWorkflowAction, ':pullrequests': PullRequestWorkflowAction, ':help': HelpWorkflowAction } def route(args): # e.g., args = ":config sethost http://localhost,--exec" command_string = args[0] # :config sethost http://localhost command = command_string.split(' ') if not workflow().settings.get(HOST_URL, None) and 'sethost' not in command: call_alfred('stash:config sethost ') return handler = IndexWorkflowAction action = next(iter(command), None) if action: handler = WORKFLOW_ACTIONS.get(action, IndexWorkflowAction) if '--exec' in args: handler().execute(command, cmd_pressed='--cmd' in args, shift_pressed='--shift' in args) else: # show menu handler().menu(command) _notify_if_upgrade_available() workflow().send_feedback() def _notify_if_upgrade_available(): if workflow().update_available: new_version = workflow().cached_data('__workflow_update_status', max_age=0)['version'] workflow().add_item('An update is available!', 'Update the workflow from version {} to {}'.format(__version__, new_version), arg=':config update', valid=True, icon=icons.UPDATE)
[ "src.util.workflow", "src.util.call_alfred" ]
[((992, 1028), 'src.util.call_alfred', 'call_alfred', (['"""stash:config sethost """'], {}), "('stash:config sethost ')\n", (1003, 1028), False, 'from src.util import workflow, call_alfred\n'), ((1498, 1508), 'src.util.workflow', 'workflow', ([], {}), '()\n', (1506, 1508), False, 'from src.util import workflow, call_alfred\n'), ((1426, 1436), 'src.util.workflow', 'workflow', ([], {}), '()\n', (1434, 1436), False, 'from src.util import workflow, call_alfred\n'), ((1630, 1640), 'src.util.workflow', 'workflow', ([], {}), '()\n', (1638, 1640), False, 'from src.util import workflow, call_alfred\n'), ((1549, 1559), 'src.util.workflow', 'workflow', ([], {}), '()\n', (1557, 1559), False, 'from src.util import workflow, call_alfred\n'), ((914, 924), 'src.util.workflow', 'workflow', ([], {}), '()\n', (922, 924), False, 'from src.util import workflow, call_alfred\n')]
from itertools import count from _pandigital_tools import is_pandigital def pand_products(): """ Returns the sum of all numbers n which have a factorization a * b = n such that a, b, n are (cumulatively) 1 through 9 pandigital. """ total = set() for a in range(2, 100): for b in count(a): if len(str(a) + str(b) + str(a * b)) > 9: break elif is_pandigital(a, b, a * b): total.add(a * b) return sum(total) def solve(vol=0): return pand_products()
[ "itertools.count", "_pandigital_tools.is_pandigital" ]
[((314, 322), 'itertools.count', 'count', (['a'], {}), '(a)\n', (319, 322), False, 'from itertools import count\n'), ((417, 443), '_pandigital_tools.is_pandigital', 'is_pandigital', (['a', 'b', '(a * b)'], {}), '(a, b, a * b)\n', (430, 443), False, 'from _pandigital_tools import is_pandigital\n')]
from django.db import models from openstates.data.models import Bill class LegacyBillMapping(models.Model): legacy_id = models.CharField(max_length=20, primary_key=True) bill = models.ForeignKey( Bill, related_name="legacy_mapping", on_delete=models.CASCADE )
[ "django.db.models.CharField", "django.db.models.ForeignKey" ]
[((126, 175), 'django.db.models.CharField', 'models.CharField', ([], {'max_length': '(20)', 'primary_key': '(True)'}), '(max_length=20, primary_key=True)\n', (142, 175), False, 'from django.db import models\n'), ((187, 272), 'django.db.models.ForeignKey', 'models.ForeignKey', (['Bill'], {'related_name': '"""legacy_mapping"""', 'on_delete': 'models.CASCADE'}), "(Bill, related_name='legacy_mapping', on_delete=models.CASCADE\n )\n", (204, 272), False, 'from django.db import models\n')]
from __future__ import print_function from troposphere import ( Template, Parameter, Ref, Condition, Equals, And, Or, Not, If ) from troposphere import ec2 parameters = { "One": Parameter( "One", Type="String", ), "Two": Parameter( "Two", Type="String", ), "Three": Parameter( "Three", Type="String", ), "Four": Parameter( "Four", Type="String", ), "SshKeyName": Parameter( "SshKeyName", Type="String", ) } conditions = { "OneEqualsFoo": Equals( Ref("One"), "Foo" ), "NotOneEqualsFoo": Not( Condition("OneEqualsFoo") ), "BarEqualsTwo": Equals( "Bar", Ref("Two") ), "ThreeEqualsFour": Equals( Ref("Three"), Ref("Four") ), "OneEqualsFooOrBarEqualsTwo": Or( Condition("OneEqualsFoo"), Condition("BarEqualsTwo") ), "OneEqualsFooAndNotBarEqualsTwo": And( Condition("OneEqualsFoo"), Not(Condition("BarEqualsTwo")) ), "OneEqualsFooAndBarEqualsTwoAndThreeEqualsPft": And( Condition("OneEqualsFoo"), Condition("BarEqualsTwo"), Equals(Ref("Three"), "Pft") ), "OneIsQuzAndThreeEqualsFour": And( Equals(Ref("One"), "Quz"), Condition("ThreeEqualsFour") ), "LaunchInstance": And( Condition("OneEqualsFoo"), Condition("NotOneEqualsFoo"), Condition("BarEqualsTwo"), Condition("OneEqualsFooAndNotBarEqualsTwo"), Condition("OneIsQuzAndThreeEqualsFour") ), "LaunchWithGusto": And( Condition("LaunchInstance"), Equals(Ref("One"), "Gusto") ) } resources = { "Ec2Instance": ec2.Instance( "Ec2Instance", Condition="LaunchInstance", ImageId=If("ConditionNameEqualsFoo", "ami-12345678", "ami-87654321"), InstanceType="t1.micro", KeyName=Ref("SshKeyName"), SecurityGroups=["default"], ) } t = Template() for p in parameters.values(): t.add_parameter(p) for k in conditions: t.add_condition(k, conditions[k]) for r in resources.values(): t.add_resource(r) print(t.to_json())
[ "troposphere.Parameter", "troposphere.Ref", "troposphere.If", "troposphere.Condition", "troposphere.Template" ]
[((2017, 2027), 'troposphere.Template', 'Template', ([], {}), '()\n', (2025, 2027), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((189, 220), 'troposphere.Parameter', 'Parameter', (['"""One"""'], {'Type': '"""String"""'}), "('One', Type='String')\n", (198, 220), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((256, 287), 'troposphere.Parameter', 'Parameter', (['"""Two"""'], {'Type': '"""String"""'}), "('Two', Type='String')\n", (265, 287), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((325, 358), 'troposphere.Parameter', 'Parameter', (['"""Three"""'], {'Type': '"""String"""'}), "('Three', Type='String')\n", (334, 358), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((395, 427), 'troposphere.Parameter', 'Parameter', (['"""Four"""'], {'Type': '"""String"""'}), "('Four', Type='String')\n", (404, 427), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((470, 508), 'troposphere.Parameter', 'Parameter', (['"""SshKeyName"""'], {'Type': '"""String"""'}), "('SshKeyName', Type='String')\n", (479, 508), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((586, 596), 'troposphere.Ref', 'Ref', (['"""One"""'], {}), "('One')\n", (589, 596), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((655, 680), 'troposphere.Condition', 'Condition', (['"""OneEqualsFoo"""'], {}), "('OneEqualsFoo')\n", (664, 680), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((739, 749), 'troposphere.Ref', 'Ref', (['"""Two"""'], {}), "('Two')\n", (742, 749), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((796, 808), 'troposphere.Ref', 'Ref', (['"""Three"""'], {}), "('Three')\n", (799, 808), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((818, 829), 'troposphere.Ref', 'Ref', (['"""Four"""'], {}), "('Four')\n", (821, 829), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((883, 908), 'troposphere.Condition', 'Condition', (['"""OneEqualsFoo"""'], {}), "('OneEqualsFoo')\n", (892, 908), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((918, 943), 'troposphere.Condition', 'Condition', (['"""BarEqualsTwo"""'], {}), "('BarEqualsTwo')\n", (927, 943), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1002, 1027), 'troposphere.Condition', 'Condition', (['"""OneEqualsFoo"""'], {}), "('OneEqualsFoo')\n", (1011, 1027), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1140, 1165), 'troposphere.Condition', 'Condition', (['"""OneEqualsFoo"""'], {}), "('OneEqualsFoo')\n", (1149, 1165), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1175, 1200), 'troposphere.Condition', 'Condition', (['"""BarEqualsTwo"""'], {}), "('BarEqualsTwo')\n", (1184, 1200), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1327, 1355), 'troposphere.Condition', 'Condition', (['"""ThreeEqualsFour"""'], {}), "('ThreeEqualsFour')\n", (1336, 1355), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1398, 1423), 'troposphere.Condition', 'Condition', (['"""OneEqualsFoo"""'], {}), "('OneEqualsFoo')\n", (1407, 1423), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1433, 1461), 'troposphere.Condition', 'Condition', (['"""NotOneEqualsFoo"""'], {}), "('NotOneEqualsFoo')\n", (1442, 1461), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1471, 1496), 'troposphere.Condition', 'Condition', (['"""BarEqualsTwo"""'], {}), "('BarEqualsTwo')\n", (1480, 1496), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1506, 1549), 'troposphere.Condition', 'Condition', (['"""OneEqualsFooAndNotBarEqualsTwo"""'], {}), "('OneEqualsFooAndNotBarEqualsTwo')\n", (1515, 1549), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1559, 1598), 'troposphere.Condition', 'Condition', (['"""OneIsQuzAndThreeEqualsFour"""'], {}), "('OneIsQuzAndThreeEqualsFour')\n", (1568, 1598), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1642, 1669), 'troposphere.Condition', 'Condition', (['"""LaunchInstance"""'], {}), "('LaunchInstance')\n", (1651, 1669), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1041, 1066), 'troposphere.Condition', 'Condition', (['"""BarEqualsTwo"""'], {}), "('BarEqualsTwo')\n", (1050, 1066), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1217, 1229), 'troposphere.Ref', 'Ref', (['"""Three"""'], {}), "('Three')\n", (1220, 1229), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1299, 1309), 'troposphere.Ref', 'Ref', (['"""One"""'], {}), "('One')\n", (1302, 1309), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1686, 1696), 'troposphere.Ref', 'Ref', (['"""One"""'], {}), "('One')\n", (1689, 1696), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1838, 1898), 'troposphere.If', 'If', (['"""ConditionNameEqualsFoo"""', '"""ami-12345678"""', '"""ami-87654321"""'], {}), "('ConditionNameEqualsFoo', 'ami-12345678', 'ami-87654321')\n", (1840, 1898), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n'), ((1949, 1966), 'troposphere.Ref', 'Ref', (['"""SshKeyName"""'], {}), "('SshKeyName')\n", (1952, 1966), False, 'from troposphere import Template, Parameter, Ref, Condition, Equals, And, Or, Not, If\n')]
# (c) Copyright IBM Corporation 2020. # LICENSE: Apache License 2.0 (Apache-2.0) # http://www.apache.org/licenses/LICENSE-2.0 import logging from lrtc_lib.data_access import single_dataset_loader from lrtc_lib.data_access.processors.dataset_part import DatasetPart from lrtc_lib.oracle_data_access import gold_labels_loader logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s') def load(dataset: str, force_new: bool = False): for part in DatasetPart: dataset_name = dataset + '_' + part.name.lower() # load dataset (generate Documents and TextElements) if force_new: single_dataset_loader.clear_all_saved_files(dataset_name) single_dataset_loader.load_dataset(dataset_name, force_new) # load gold labels if force_new: gold_labels_loader.clear_gold_labels_file(dataset_name) gold_labels_loader.load_gold_labels(dataset_name, force_new) logging.info('-' * 60) if __name__ == '__main__': dataset_name = 'polarity' load(dataset=dataset_name)
[ "logging.basicConfig", "lrtc_lib.data_access.single_dataset_loader.load_dataset", "lrtc_lib.data_access.single_dataset_loader.clear_all_saved_files", "lrtc_lib.oracle_data_access.gold_labels_loader.clear_gold_labels_file", "lrtc_lib.oracle_data_access.gold_labels_loader.load_gold_labels", "logging.info" ]
[((328, 448), 'logging.basicConfig', 'logging.basicConfig', ([], {'level': 'logging.INFO', 'format': '"""%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s"""'}), "(level=logging.INFO, format=\n '%(asctime)s %(levelname)-8s [%(filename)s:%(lineno)d] %(message)s')\n", (347, 448), False, 'import logging\n'), ((742, 801), 'lrtc_lib.data_access.single_dataset_loader.load_dataset', 'single_dataset_loader.load_dataset', (['dataset_name', 'force_new'], {}), '(dataset_name, force_new)\n', (776, 801), False, 'from lrtc_lib.data_access import single_dataset_loader\n'), ((927, 987), 'lrtc_lib.oracle_data_access.gold_labels_loader.load_gold_labels', 'gold_labels_loader.load_gold_labels', (['dataset_name', 'force_new'], {}), '(dataset_name, force_new)\n', (962, 987), False, 'from lrtc_lib.oracle_data_access import gold_labels_loader\n'), ((996, 1018), 'logging.info', 'logging.info', (["('-' * 60)"], {}), "('-' * 60)\n", (1008, 1018), False, 'import logging\n'), ((676, 733), 'lrtc_lib.data_access.single_dataset_loader.clear_all_saved_files', 'single_dataset_loader.clear_all_saved_files', (['dataset_name'], {}), '(dataset_name)\n', (719, 733), False, 'from lrtc_lib.data_access import single_dataset_loader\n'), ((863, 918), 'lrtc_lib.oracle_data_access.gold_labels_loader.clear_gold_labels_file', 'gold_labels_loader.clear_gold_labels_file', (['dataset_name'], {}), '(dataset_name)\n', (904, 918), False, 'from lrtc_lib.oracle_data_access import gold_labels_loader\n')]
from .component import Component, using_scope import tensorflow.compat.v1 as tf tf.disable_v2_behavior() class EmbeddingLayer(Component): def __init__(self, input_size, output_size, name='embedding'): Component.__init__(self, name=name) self.input_size = input_size self.output_size = output_size with self.use_scope(): self.embedding_matrix = tf.get_variable( 'embedding_matrix', shape=[self.input_size, self.output_size]) self._built = True @using_scope def embed(self, x): return tf.nn.embedding_lookup(self.embedding_matrix, x) def __call__(self, inputs): return self.embed(inputs)
[ "tensorflow.compat.v1.disable_v2_behavior", "tensorflow.compat.v1.nn.embedding_lookup", "tensorflow.compat.v1.get_variable" ]
[((80, 104), 'tensorflow.compat.v1.disable_v2_behavior', 'tf.disable_v2_behavior', ([], {}), '()\n', (102, 104), True, 'import tensorflow.compat.v1 as tf\n'), ((577, 625), 'tensorflow.compat.v1.nn.embedding_lookup', 'tf.nn.embedding_lookup', (['self.embedding_matrix', 'x'], {}), '(self.embedding_matrix, x)\n', (599, 625), True, 'import tensorflow.compat.v1 as tf\n'), ((397, 475), 'tensorflow.compat.v1.get_variable', 'tf.get_variable', (['"""embedding_matrix"""'], {'shape': '[self.input_size, self.output_size]'}), "('embedding_matrix', shape=[self.input_size, self.output_size])\n", (412, 475), True, 'import tensorflow.compat.v1 as tf\n')]
''' Copyright (C) 2021 CG Cookie http://cgcookie.com <EMAIL> Created by <NAME>, <NAME> This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program. If not, see <http://www.gnu.org/licenses/>. ''' import os import re import json import time import inspect from functools import wraps import bpy debug_run_test_calls = False def debug_test_call(*args, **kwargs): def wrapper(fn): if debug_run_test_calls: ret = str(fn(*args,*kwargs)) print('TEST: %s()' % fn.__name__) if args: print(' arg:', args) if kwargs: print(' kwa:', kwargs) print(' ret:', ret) return fn return wrapper def stats_wrapper(fn): return fn if not hasattr(stats_report, 'stats'): stats_report.stats = dict() frame = inspect.currentframe().f_back f_locals = frame.f_locals filename = os.path.basename(frame.f_code.co_filename) clsname = f_locals['__qualname__'] if '__qualname__' in f_locals else '' linenum = frame.f_lineno fnname = fn.__name__ key = '%s%s (%s:%d)' % ( clsname + ('.' if clsname else ''), fnname, filename, linenum ) stats = stats_report.stats stats[key] = { 'filename': filename, 'clsname': clsname, 'linenum': linenum, 'fileline': '%s:%d' % (filename, linenum), 'fnname': fnname, 'count': 0, 'total time': 0, 'average time': 0, } def wrapped(*args, **kwargs): time_beg = time.time() ret = fn(*args, **kwargs) time_end = time.time() time_delta = time_end - time_beg d = stats[key] d['count'] += 1 d['total time'] += time_delta d['average time'] = d['total time'] / d['count'] return ret return wrapped def stats_report(): return stats = stats_report.stats if hasattr(stats_report, 'stats') else dict() l = max(len(k) for k in stats) def fmt(s): return s + ' ' * (l - len(s)) print() print('Call Statistics Report') cols = [ ('class', 'clsname', '%s'), ('func', 'fnname', '%s'), ('location', 'fileline', '%s'), # ('line','linenum','% 10d'), ('count', 'count', '% 8d'), ('total (sec)', 'total time', '% 10.4f'), ('avg (sec)', 'average time', '% 10.6f'), ] data = [stats[k] for k in sorted(stats)] data = [[h] + [f % row[c] for row in data] for (h, c, f) in cols] colwidths = [max(len(d) for d in col) for col in data] totwidth = sum(colwidths) + len(colwidths) - 1 def rpad(s, l): return '%s%s' % (s, ' ' * (l - len(s))) def printrow(i_row): row = [col[i_row] for col in data] print(' '.join(rpad(d, w) for (d, w) in zip(row, colwidths))) printrow(0) print('-' * totwidth) for i in range(1, len(data[0])): printrow(i) def add_cache(attr, default): def wrapper(fn): setattr(fn, attr, default) return fn return wrapper class LimitRecursion: def __init__(self, count, def_ret): self.count = count self.def_ret = def_ret self.calls = 0 def __call__(self, fn): def wrapped(*args, **kwargs): ret = self.def_ret if self.calls < self.count: try: self.calls += 1 ret = fn(*args, **kwargs) finally: self.calls -= 1 return ret return wrapped @add_cache('data', {'nested':0, 'last':None}) def timed_call(label): def wrapper(fn): def wrapped(*args, **kwargs): data = timed_call.data if data['last']: print(data['last']) data['last'] = f'''{" " * data['nested']}Timing {label}''' data['nested'] += 1 time_beg = time.time() ret = fn(*args, **kwargs) time_end = time.time() time_delta = time_end - time_beg if data['last']: print(f'''{data['last']}: {time_delta:0.4f}s''') data['last'] = None else: print(f'''{" " * data['nested']}{time_delta:0.4f}s''') data['nested'] -= 1 return ret return wrapped return wrapper # corrected bug in previous version of blender_version fn wrapper # https://github.com/CGCookie/retopoflow/commit/135746c7b4ee0052ad0c1842084b9ab983726b33#diff-d4260a97dcac93f76328dfaeb5c87688 def blender_version_wrapper(op, ver): self = blender_version_wrapper if not hasattr(self, 'fns'): major, minor, rev = bpy.app.version self.blenderver = '%d.%02d' % (major, minor) self.fns = fns = {} self.ops = { '<': lambda v: self.blenderver < v, '>': lambda v: self.blenderver > v, '<=': lambda v: self.blenderver <= v, '==': lambda v: self.blenderver == v, '>=': lambda v: self.blenderver >= v, '!=': lambda v: self.blenderver != v, } update_fn = self.ops[op](ver) def wrapit(fn): nonlocal self, update_fn fn_name = fn.__name__ fns = self.fns error_msg = "Could not find appropriate function named %s for version Blender %s" % (fn_name, self.blenderver) if update_fn: fns[fn_name] = fn def callit(*args, **kwargs): nonlocal fns, fn_name, error_msg fn = fns.get(fn_name, None) assert fn, error_msg ret = fn(*args, **kwargs) return ret return callit return wrapit def only_in_blender_version(*args, ignore_others=False, ignore_return=None): self = only_in_blender_version if not hasattr(self, 'fns'): major, minor, rev = bpy.app.version self.blenderver = '%d.%02d' % (major, minor) self.fns = {} self.ignores = {} self.ops = { '<': lambda v: self.blenderver < v, '>': lambda v: self.blenderver > v, '<=': lambda v: self.blenderver <= v, '==': lambda v: self.blenderver == v, '>=': lambda v: self.blenderver >= v, '!=': lambda v: self.blenderver != v, } self.re_blender_version = re.compile(r'^(?P<comparison><|<=|==|!=|>=|>) *(?P<version>\d\.\d\d)$') matches = [self.re_blender_version.match(arg) for arg in args] assert all(match is not None for match in matches), f'At least one arg did not match version comparison: {args}' results = [self.ops[match.group('comparison')](match.group('version')) for match in matches] version_matches = all(results) def wrapit(fn): fn_name = fn.__name__ if version_matches: assert fn_name not in self.fns, f'Multiple functions {fn_name} match the Blender version {self.blenderver}' self.fns[fn_name] = fn if ignore_others and fn_name not in self.ignores: self.ignores[fn_name] = ignore_return @wraps(fn) def callit(*args, **kwargs): fn = self.fns.get(fn_name, None) if fn_name not in self.ignores: assert fn, f'Could not find appropriate function named {fn_name} for version Blender version {self.blenderver}' elif fn is None: return self.ignores[fn_name] return fn(*args, **kwargs) return callit return wrapit def warn_once(warning): def wrapper(fn): nonlocal warning @wraps(fn) def wrapped(*args, **kwargs): nonlocal warning if warning: print(warning) warning = None return fn(*args, **kwargs) return wrapped return wrapper class PersistentOptions: class WrappedDict: def __init__(self, cls, filename, version, defaults, update_external): self._dirty = False self._last_save = time.time() self._write_delay = 2.0 self._defaults = defaults self._update_external = update_external self._defaults['persistent options version'] = version self._dict = {} if filename: src = inspect.getsourcefile(cls) path = os.path.split(os.path.abspath(src))[0] self._fndb = os.path.join(path, filename) else: self._fndb = None self.read() if self._dict.get('persistent options version', None) != version: self.reset() self.update_external() def update_external(self): upd = self._update_external if upd: upd() def dirty(self): self._dirty = True self.update_external() def clean(self, force=False): if not force: if not self._dirty: return if time.time() < self._last_save + self._write_delay: return if self._fndb: json.dump(self._dict, open(self._fndb, 'wt'), indent=2, sort_keys=True) self._dirty = False self._last_save = time.time() def read(self): self._dict = {} if self._fndb and os.path.exists(self._fndb): try: self._dict = json.load(open(self._fndb, 'rt')) except Exception as e: print('Exception caught while trying to read options from "%s"' % self._fndb) print(str(e)) for k in set(self._dict.keys()) - set(self._defaults.keys()): print('Deleting extraneous key "%s" from options' % k) del self._dict[k] self.update_external() self._dirty = False def keys(self): return self._defaults.keys() def reset(self): keys = list(self._dict.keys()) for k in keys: del self._dict[k] self._dict['persistent options version'] = self['persistent options version'] self.dirty() self.clean() def __getitem__(self, key): return self._dict[key] if key in self._dict else self._defaults[key] def __setitem__(self, key, val): assert key in self._defaults, 'Attempting to write "%s":"%s" to options, but key does not exist in defaults' % (str(key), str(val)) if self[key] == val: return self._dict[key] = val self.dirty() self.clean() def gettersetter(self, key, fn_get_wrap=None, fn_set_wrap=None): if not fn_get_wrap: fn_get_wrap = lambda v: v if not fn_set_wrap: fn_set_wrap = lambda v: v oself = self class GetSet: def get(self): return fn_get_wrap(oself[key]) def set(self, v): v = fn_set_wrap(v) if oself[key] != v: oself[key] = v return GetSet() def __init__(self, filename=None, version=None): self._filename = filename self._version = version self._db = None def __call__(self, cls): upd = getattr(cls, 'update', None) if upd: u = upd def wrap(): def upd_wrap(*args, **kwargs): u(None) return upd_wrap upd = wrap() self._db = PersistentOptions.WrappedDict(cls, self._filename, self._version, cls.defaults, upd) db = self._db class WrappedClass: def __init__(self, *args, **kwargs): self._db = db self._def = cls.defaults def __getitem__(self, key): return self._db[key] def __setitem__(self, key, val): self._db[key] = val def keys(self): return self._db.keys() def reset(self): self._db.reset() def clean(self): self._db.clean() def gettersetter(self, key, fn_get_wrap=None, fn_set_wrap=None): return self._db.gettersetter(key, fn_get_wrap=fn_get_wrap, fn_set_wrap=fn_set_wrap) return WrappedClass
[ "os.path.exists", "inspect.getsourcefile", "re.compile", "inspect.currentframe", "os.path.join", "functools.wraps", "os.path.basename", "os.path.abspath", "time.time" ]
[((1455, 1497), 'os.path.basename', 'os.path.basename', (['frame.f_code.co_filename'], {}), '(frame.f_code.co_filename)\n', (1471, 1497), False, 'import os\n'), ((1379, 1401), 'inspect.currentframe', 'inspect.currentframe', ([], {}), '()\n', (1399, 1401), False, 'import inspect\n'), ((2087, 2098), 'time.time', 'time.time', ([], {}), '()\n', (2096, 2098), False, 'import time\n'), ((2152, 2163), 'time.time', 'time.time', ([], {}), '()\n', (2161, 2163), False, 'import time\n'), ((6851, 6925), 're.compile', 're.compile', (['"""^(?P<comparison><|<=|==|!=|>=|>) *(?P<version>\\\\d\\\\.\\\\d\\\\d)$"""'], {}), "('^(?P<comparison><|<=|==|!=|>=|>) *(?P<version>\\\\d\\\\.\\\\d\\\\d)$')\n", (6861, 6925), False, 'import re\n'), ((7594, 7603), 'functools.wraps', 'wraps', (['fn'], {}), '(fn)\n', (7599, 7603), False, 'from functools import wraps\n'), ((8092, 8101), 'functools.wraps', 'wraps', (['fn'], {}), '(fn)\n', (8097, 8101), False, 'from functools import wraps\n'), ((4432, 4443), 'time.time', 'time.time', ([], {}), '()\n', (4441, 4443), False, 'import time\n'), ((4505, 4516), 'time.time', 'time.time', ([], {}), '()\n', (4514, 4516), False, 'import time\n'), ((8527, 8538), 'time.time', 'time.time', ([], {}), '()\n', (8536, 8538), False, 'import time\n'), ((9781, 9792), 'time.time', 'time.time', ([], {}), '()\n', (9790, 9792), False, 'import time\n'), ((8807, 8833), 'inspect.getsourcefile', 'inspect.getsourcefile', (['cls'], {}), '(cls)\n', (8828, 8833), False, 'import inspect\n'), ((8925, 8953), 'os.path.join', 'os.path.join', (['path', 'filename'], {}), '(path, filename)\n', (8937, 8953), False, 'import os\n'), ((9875, 9901), 'os.path.exists', 'os.path.exists', (['self._fndb'], {}), '(self._fndb)\n', (9889, 9901), False, 'import os\n'), ((9526, 9537), 'time.time', 'time.time', ([], {}), '()\n', (9535, 9537), False, 'import time\n'), ((8871, 8891), 'os.path.abspath', 'os.path.abspath', (['src'], {}), '(src)\n', (8886, 8891), False, 'import os\n')]
import numpy as np import pytest from pandas import ( DataFrame, Series, concat, ) import pandas._testing as tm @pytest.mark.parametrize("func", ["cov", "corr"]) def test_ewm_pairwise_cov_corr(func, frame): result = getattr(frame.ewm(span=10, min_periods=5), func)() result = result.loc[(slice(None), 1), 5] result.index = result.index.droplevel(1) expected = getattr(frame[1].ewm(span=10, min_periods=5), func)(frame[5]) tm.assert_series_equal(result, expected, check_names=False) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov(name): A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=5), name)(B) assert np.isnan(result.values[:14]).all() assert not np.isnan(result.values[14:]).any() @pytest.mark.parametrize("min_periods", [0, 1, 2]) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_ewm_corr_cov_min_periods(name, min_periods): # GH 7898 A = Series(np.random.randn(50), index=np.arange(50)) B = A[2:] + np.random.randn(48) A[:10] = np.NaN B[-10:] = np.NaN result = getattr(A.ewm(com=20, min_periods=min_periods), name)(B) # binary functions (ewmcov, ewmcorr) with bias=False require at # least two values assert np.isnan(result.values[:11]).all() assert not np.isnan(result.values[11:]).any() # check series of length 0 empty = Series([], dtype=np.float64) result = getattr(empty.ewm(com=50, min_periods=min_periods), name)(empty) tm.assert_series_equal(result, empty) # check series of length 1 result = getattr(Series([1.0]).ewm(com=50, min_periods=min_periods), name)( Series([1.0]) ) tm.assert_series_equal(result, Series([np.NaN])) @pytest.mark.parametrize("name", ["cov", "corr"]) def test_different_input_array_raise_exception(name): A = Series(np.random.randn(50), index=np.arange(50)) A[:10] = np.NaN msg = "other must be a DataFrame or Series" # exception raised is Exception with pytest.raises(ValueError, match=msg): getattr(A.ewm(com=20, min_periods=5), name)(np.random.randn(50)) def create_mock_weights(obj, com, adjust, ignore_na): if isinstance(obj, DataFrame): if not len(obj.columns): return DataFrame(index=obj.index, columns=obj.columns) w = concat( [ create_mock_series_weights( obj.iloc[:, i], com=com, adjust=adjust, ignore_na=ignore_na ) for i, _ in enumerate(obj.columns) ], axis=1, ) w.index = obj.index w.columns = obj.columns return w else: return create_mock_series_weights(obj, com, adjust, ignore_na) def create_mock_series_weights(s, com, adjust, ignore_na): w = Series(np.nan, index=s.index) alpha = 1.0 / (1.0 + com) if adjust: count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: w.iat[i] = pow(1.0 / (1.0 - alpha), count) count += 1 elif not ignore_na: count += 1 else: sum_wts = 0.0 prev_i = -1 count = 0 for i in range(len(s)): if s.iat[i] == s.iat[i]: if prev_i == -1: w.iat[i] = 1.0 else: w.iat[i] = alpha * sum_wts / pow(1.0 - alpha, count - prev_i) sum_wts += w.iat[i] prev_i = count count += 1 elif not ignore_na: count += 1 return w @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_mean(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 result = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) expected = ( x.multiply(weights).cumsum().divide(weights.cumsum()).fillna(method="ffill") ) expected[ x.expanding().count() < (max(min_periods, 1) if min_periods else 1) ] = np.nan tm.assert_equal(result, expected.astype("float64")) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_consistent(consistency_data, adjust, ignore_na, min_periods): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding().count() mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() # check that correlation of a series with itself is either 1 or NaN corr_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x) exp = x.max() if isinstance(x, Series) else x.max().max() # check mean of constant series expected = x * np.nan expected[count_x >= max(min_periods, 1)] = exp tm.assert_equal(mean_x, expected) # check correlation of constant series with itself is NaN expected[:] = np.nan tm.assert_equal(corr_x_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) def test_ewm_consistency_var_debiasing_factors( consistency_data, adjust, ignore_na, min_periods ): x, is_constant, no_nans = consistency_data com = 3.0 # check variance debiasing factors var_unbiased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=False) var_biased_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=True) weights = create_mock_weights(x, com=com, adjust=adjust, ignore_na=ignore_na) cum_sum = weights.cumsum().fillna(method="ffill") cum_sum_sq = (weights * weights).cumsum().fillna(method="ffill") numerator = cum_sum * cum_sum denominator = numerator - cum_sum_sq denominator[denominator <= 0.0] = np.nan var_debiasing_factors_x = numerator / denominator tm.assert_equal(var_unbiased_x, var_biased_x * var_debiasing_factors_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() if bias: # check that biased var(x) == mean(x^2) - mean(x)^2 mean_x2 = ( (x * x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .mean() ) tm.assert_equal(var_x, mean_x2 - (mean_x * mean_x)) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_moments_consistency_var_constant( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if is_constant: count_x = x.expanding(min_periods=min_periods).count() var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) # check that variance of constant series is identically 0 assert not (var_x > 0).any().any() expected = x * np.nan expected[count_x >= max(min_periods, 1)] = 0.0 if not bias: expected[count_x < 2] = np.nan tm.assert_equal(var_x, expected) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_std(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) assert not (var_x < 0).any().any() assert not (std_x < 0).any().any() # check that var(x) == std(x)^2 tm.assert_equal(var_x, std_x * std_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_cov(consistency_data, adjust, ignore_na, min_periods, bias): x, is_constant, no_nans = consistency_data com = 3.0 var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) assert not (var_x < 0).any().any() cov_x_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) assert not (cov_x_x < 0).any().any() # check that var(x) == cov(x, x) tm.assert_equal(var_x, cov_x_x) @pytest.mark.parametrize("min_periods", [0, 1, 2, 3, 4]) @pytest.mark.parametrize("bias", [True, False]) def test_ewm_consistency_series_cov_corr( consistency_data, adjust, ignore_na, min_periods, bias ): x, is_constant, no_nans = consistency_data com = 3.0 if isinstance(x, Series): var_x_plus_y = ( (x + x) .ewm(com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na) .var(bias=bias) ) var_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) var_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).var(bias=bias) cov_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).cov(x, bias=bias) # check that cov(x, y) == (var(x+y) - var(x) - # var(y)) / 2 tm.assert_equal(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y)) # check that corr(x, y) == cov(x, y) / (std(x) * # std(y)) corr_x_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).corr(x, bias=bias) std_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) std_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).std(bias=bias) tm.assert_equal(corr_x_y, cov_x_y / (std_x * std_y)) if bias: # check that biased cov(x, y) == mean(x*y) - # mean(x)*mean(y) mean_x = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_y = x.ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ).mean() mean_x_times_y = ( (x * x) .ewm( com=com, min_periods=min_periods, adjust=adjust, ignore_na=ignore_na ) .mean() ) tm.assert_equal(cov_x_y, mean_x_times_y - (mean_x * mean_y))
[ "pandas.Series", "pandas._testing.assert_series_equal", "pytest.mark.parametrize", "pandas._testing.assert_equal", "pytest.raises", "numpy.isnan", "pandas.DataFrame", "numpy.random.randn", "numpy.arange" ]
[((128, 176), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""func"""', "['cov', 'corr']"], {}), "('func', ['cov', 'corr'])\n", (151, 176), False, 'import pytest\n'), ((520, 568), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['cov', 'corr']"], {}), "('name', ['cov', 'corr'])\n", (543, 568), False, 'import pytest\n'), ((893, 942), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2]'], {}), "('min_periods', [0, 1, 2])\n", (916, 942), False, 'import pytest\n'), ((944, 992), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['cov', 'corr']"], {}), "('name', ['cov', 'corr'])\n", (967, 992), False, 'import pytest\n'), ((1843, 1891), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""name"""', "['cov', 'corr']"], {}), "('name', ['cov', 'corr'])\n", (1866, 1891), False, 'import pytest\n'), ((3705, 3760), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (3728, 3760), False, 'import pytest\n'), ((4368, 4423), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (4391, 4423), False, 'import pytest\n'), ((5333, 5388), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (5356, 5388), False, 'import pytest\n'), ((6305, 6360), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (6328, 6360), False, 'import pytest\n'), ((6362, 6408), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (6385, 6408), False, 'import pytest\n'), ((7127, 7182), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (7150, 7182), False, 'import pytest\n'), ((7184, 7230), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (7207, 7230), False, 'import pytest\n'), ((7912, 7967), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (7935, 7967), False, 'import pytest\n'), ((7969, 8015), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (7992, 8015), False, 'import pytest\n'), ((8557, 8612), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (8580, 8612), False, 'import pytest\n'), ((8614, 8660), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (8637, 8660), False, 'import pytest\n'), ((9205, 9260), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""min_periods"""', '[0, 1, 2, 3, 4]'], {}), "('min_periods', [0, 1, 2, 3, 4])\n", (9228, 9260), False, 'import pytest\n'), ((9262, 9308), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""bias"""', '[True, False]'], {}), "('bias', [True, False])\n", (9285, 9308), False, 'import pytest\n'), ((457, 516), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'expected'], {'check_names': '(False)'}), '(result, expected, check_names=False)\n', (479, 516), True, 'import pandas._testing as tm\n'), ((1498, 1526), 'pandas.Series', 'Series', (['[]'], {'dtype': 'np.float64'}), '([], dtype=np.float64)\n', (1504, 1526), False, 'from pandas import DataFrame, Series, concat\n'), ((1609, 1646), 'pandas._testing.assert_series_equal', 'tm.assert_series_equal', (['result', 'empty'], {}), '(result, empty)\n', (1631, 1646), True, 'import pandas._testing as tm\n'), ((2918, 2947), 'pandas.Series', 'Series', (['np.nan'], {'index': 's.index'}), '(np.nan, index=s.index)\n', (2924, 2947), False, 'from pandas import DataFrame, Series, concat\n'), ((6230, 6301), 'pandas._testing.assert_equal', 'tm.assert_equal', (['var_unbiased_x', '(var_biased_x * var_debiasing_factors_x)'], {}), '(var_unbiased_x, var_biased_x * var_debiasing_factors_x)\n', (6245, 6301), True, 'import pandas._testing as tm\n'), ((8516, 8553), 'pandas._testing.assert_equal', 'tm.assert_equal', (['var_x', '(std_x * std_x)'], {}), '(var_x, std_x * std_x)\n', (8531, 8553), True, 'import pandas._testing as tm\n'), ((9170, 9201), 'pandas._testing.assert_equal', 'tm.assert_equal', (['var_x', 'cov_x_x'], {}), '(var_x, cov_x_x)\n', (9185, 9201), True, 'import pandas._testing as tm\n'), ((613, 632), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (628, 632), True, 'import numpy as np\n'), ((671, 690), 'numpy.random.randn', 'np.random.randn', (['(48)'], {}), '(48)\n', (686, 690), True, 'import numpy as np\n'), ((1076, 1095), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (1091, 1095), True, 'import numpy as np\n'), ((1134, 1153), 'numpy.random.randn', 'np.random.randn', (['(48)'], {}), '(48)\n', (1149, 1153), True, 'import numpy as np\n'), ((1767, 1780), 'pandas.Series', 'Series', (['[1.0]'], {}), '([1.0])\n', (1773, 1780), False, 'from pandas import DataFrame, Series, concat\n'), ((1822, 1838), 'pandas.Series', 'Series', (['[np.NaN]'], {}), '([np.NaN])\n', (1828, 1838), False, 'from pandas import DataFrame, Series, concat\n'), ((1961, 1980), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (1976, 1980), True, 'import numpy as np\n'), ((2117, 2153), 'pytest.raises', 'pytest.raises', (['ValueError'], {'match': 'msg'}), '(ValueError, match=msg)\n', (2130, 2153), False, 'import pytest\n'), ((5156, 5189), 'pandas._testing.assert_equal', 'tm.assert_equal', (['mean_x', 'expected'], {}), '(mean_x, expected)\n', (5171, 5189), True, 'import pandas._testing as tm\n'), ((5294, 5329), 'pandas._testing.assert_equal', 'tm.assert_equal', (['corr_x_x', 'expected'], {}), '(corr_x_x, expected)\n', (5309, 5329), True, 'import pandas._testing as tm\n'), ((7072, 7121), 'pandas._testing.assert_equal', 'tm.assert_equal', (['var_x', '(mean_x2 - mean_x * mean_x)'], {}), '(var_x, mean_x2 - mean_x * mean_x)\n', (7087, 7121), True, 'import pandas._testing as tm\n'), ((7876, 7908), 'pandas._testing.assert_equal', 'tm.assert_equal', (['var_x', 'expected'], {}), '(var_x, expected)\n', (7891, 7908), True, 'import pandas._testing as tm\n'), ((10152, 10214), 'pandas._testing.assert_equal', 'tm.assert_equal', (['cov_x_y', '(0.5 * (var_x_plus_y - var_x - var_y))'], {}), '(cov_x_y, 0.5 * (var_x_plus_y - var_x - var_y))\n', (10167, 10214), True, 'import pandas._testing as tm\n'), ((10693, 10745), 'pandas._testing.assert_equal', 'tm.assert_equal', (['corr_x_y', '(cov_x_y / (std_x * std_y))'], {}), '(corr_x_y, cov_x_y / (std_x * std_y))\n', (10708, 10745), True, 'import pandas._testing as tm\n'), ((640, 653), 'numpy.arange', 'np.arange', (['(50)'], {}), '(50)\n', (649, 653), True, 'import numpy as np\n'), ((805, 833), 'numpy.isnan', 'np.isnan', (['result.values[:14]'], {}), '(result.values[:14])\n', (813, 833), True, 'import numpy as np\n'), ((1103, 1116), 'numpy.arange', 'np.arange', (['(50)'], {}), '(50)\n', (1112, 1116), True, 'import numpy as np\n'), ((1369, 1397), 'numpy.isnan', 'np.isnan', (['result.values[:11]'], {}), '(result.values[:11])\n', (1377, 1397), True, 'import numpy as np\n'), ((1988, 2001), 'numpy.arange', 'np.arange', (['(50)'], {}), '(50)\n', (1997, 2001), True, 'import numpy as np\n'), ((2207, 2226), 'numpy.random.randn', 'np.random.randn', (['(50)'], {}), '(50)\n', (2222, 2226), True, 'import numpy as np\n'), ((2371, 2418), 'pandas.DataFrame', 'DataFrame', ([], {'index': 'obj.index', 'columns': 'obj.columns'}), '(index=obj.index, columns=obj.columns)\n', (2380, 2418), False, 'from pandas import DataFrame, Series, concat\n'), ((11353, 11411), 'pandas._testing.assert_equal', 'tm.assert_equal', (['cov_x_y', '(mean_x_times_y - mean_x * mean_y)'], {}), '(cov_x_y, mean_x_times_y - mean_x * mean_y)\n', (11368, 11411), True, 'import pandas._testing as tm\n'), ((855, 883), 'numpy.isnan', 'np.isnan', (['result.values[14:]'], {}), '(result.values[14:])\n', (863, 883), True, 'import numpy as np\n'), ((1419, 1447), 'numpy.isnan', 'np.isnan', (['result.values[11:]'], {}), '(result.values[11:])\n', (1427, 1447), True, 'import numpy as np\n'), ((1700, 1713), 'pandas.Series', 'Series', (['[1.0]'], {}), '([1.0])\n', (1706, 1713), False, 'from pandas import DataFrame, Series, concat\n')]
# TODO finish implementing query import math from pyspark import SparkContext # from genex.cluster import sim_between_seq from brainex.op.query_op import sim_between_seq from brainex.parse import strip_function, remove_trailing_zeros from .classes import Sequence from brainex.database import genexengine def query(q: Sequence, gc: genexengine, loi: list, sc: SparkContext, k:int=1, ex_sameID: bool=False, overlap: float= 1.0, mode:str='genex'): """ :param q: query sequence :param gc: Gcluster in which to query :param loi: list of two integer values, specifying the query range, if set to None, is going to query all length :param sc: spark context on which to run the query operation :param k: integer, specifying to return top k matches :param ex_sameID: boolean, whether to include sequences from the time series with the same id as the query sequence :param overlap: float, how much overlapping between queries lookups :param mode: query mode, supported modes are 'genex' and 'bf' (bf = brute force) """ if mode == 'genex': gquery() elif mode == 'bf': bfquery() else: raise Exception('Unsupported query mode: ' + mode) def get_query_from_dict(): pass def get_query_sequence_from_file(file: str): resList = [] with open(file, 'r') as f: for i, line in enumerate(f): if not i: features = list(map(lambda x: strip_function(x), line.strip()[:-1].split(','))) if line != "" and line != "\n": data = remove_trailing_zeros(line.split(",")[:-1]) series_data = data[len(features):] resList.append(series_data) if len(resList[0]) == 0: return resList[1:] else: return resList def gquery(query_list: list, gc_data: dict, loi: list, input_list: list, k:int=1, ex_sameID: bool=False, overlap: float= 1.0, ): """ Because Gcluster object doesn't have map property, we have to use dict as input :param file: :param gc_data: :param loi: :param input_list: :param k: :param ex_sameID: :param overlap: :return: """ # get query from id, start, end point # get query from csv file # # query_list = [] # query_set = get_query_from_csv_with_id(file) # print(query_set) # for cur_query in query_set: # query_list.append(get_query_from_sequence(cur_query[0], int(cur_query[1]), int(cur_query[2]), input_list)) # print(query_list) return custom_query(query_list, loi, gc_data, k, input_list) def bfquery(): print() # # def custom_query_operation(q: Sequence, gc: Gcluster, loi: list, sc: SparkContext, # k:int=1, ex_sameID: bool=False, overlap: float= 1.0): # # query_result = filter_rdd_back.repartition(16).map( # lambda clusters: custom_query(q, loi, gc, k, # global_time_series_dict.value, )) # # changed here # # plot_query_result(query_sequence, query_result, global_time_series_dict.value) # return query_result def get_query_from_sequence(id: tuple, start: int, end: int, input_list: list): """ :param id: :param start: :param end: :param input_list: :return: a list """ try: input_dict = dict(input_list) # validate by converting input_list into a dict except (TypeError, ValueError): raise Exception('sequence: fetch_data: input_list is not key-value pair.') return input_dict[id][start: end] def custom_query(query_sequences: list, loi: list, Gcluster_data:dict, k : int, input_list:list): # """ # # :param query_sequences: list of list: the list of sequences to be queried # :param cluster: dict[key = representative, value = list of timeSeriesObj] -> representative is timeSeriesObj # the sequences in the cluster are all of the SAME length # :param k: int # :return list of time series objects: best k matches. Again note they are all of the SAME length # """ """ :param query_sequences: :param query_range: :param Gcluster_data: :param k: :param input_list: :return: """ # get query from csv file which contains lists of list of query actual clusters # get query from csv file which contains lists of tuple of id, start, endpoint query_result = dict() if not isinstance(query_sequences, list) or len(query_sequences) == 0: raise ValueError("query sequence must be a list and not empty") cur_query_number = 0 if isinstance(query_sequences[0], list): print("length of query is [" + str(len(query_sequences)) + "]" + "[" + str(len(query_sequences[0])) + "]") print("query is a list of list") for cur_query in query_sequences: if isinstance(cur_query, list): query_result[cur_query_number] = get_most_k_sim(cur_query, loi, Gcluster_data, k, input_list) cur_query_number += 1 return query_result else: return get_most_k_sim(query_sequences, loi, Gcluster_data, k, input_list) def get_most_k_sim(query_sequence: list, loi: list, Gcluster_data : dict, k, input_list:list): """ :param query_sequence: :param query_range: :param Gcluster_data: :param k: :param input_list: :return: """ min_rprs = None # the representative that is closest to the query distance min_dist = math.inf target_cluster = [] print("length of gcluster clusters is " + str(len(Gcluster_data[1]))) for cur_rprs_seq in Gcluster_data[1].keys(): # TODO do we want to get raw clusters here, or set the raw in timeSeriesObj before calling query (no parsing) if (cur_rprs_seq.end - cur_rprs_seq.start + 1) in range(loi[0], loi[1] + 1): # modify here, not use get clusters from objects, use values cur_dist = sim_between_seq(query_sequence, cur_rprs_seq.fetch_data(input_list)) if cur_dist < min_dist: min_rprs = cur_rprs_seq min_dist = cur_dist else: break if min_rprs: print('min representative is ' + min_rprs.__str__()) print('min dist' + str(min_dist)) # print("Querying Cluster of length: " + str(len(get_data_for_timeSeriesObj(min_rprs, time_series_dict)))) target_cluster = Gcluster_data[1].get(min_rprs) print('len of cluster is ' + str(len(target_cluster))) # print("sorting") # target_cluster.sort(key=lambda cluster_sequence: sim_between_seq(query_sequence, cluster_sequence.data)) k = int(k) return target_cluster[0:k] # return the k most similar sequences else: return None
[ "brainex.op.query_op.sim_between_seq", "brainex.parse.strip_function" ]
[((6638, 6692), 'brainex.op.query_op.sim_between_seq', 'sim_between_seq', (['query_sequence', 'cluster_sequence.data'], {}), '(query_sequence, cluster_sequence.data)\n', (6653, 6692), False, 'from brainex.op.query_op import sim_between_seq\n'), ((1456, 1473), 'brainex.parse.strip_function', 'strip_function', (['x'], {}), '(x)\n', (1470, 1473), False, 'from brainex.parse import strip_function, remove_trailing_zeros\n')]
# Copyright (c) Microsoft Corporation. # Licensed under the MIT license. from typing import Callable, Dict import torch import torch.nn as nn from nni.retiarii import model_wrapper from nni.retiarii.nn.pytorch import NasBench201Cell __all__ = ['NasBench201'] OPS_WITH_STRIDE = { 'none': lambda C_in, C_out, stride: Zero(C_in, C_out, stride), 'avg_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'avg'), 'max_pool_3x3': lambda C_in, C_out, stride: Pooling(C_in, C_out, stride, 'max'), 'conv_3x3': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (3, 3), (stride, stride), (1, 1), (1, 1)), 'conv_1x1': lambda C_in, C_out, stride: ReLUConvBN(C_in, C_out, (1, 1), (stride, stride), (0, 0), (1, 1)), 'skip_connect': lambda C_in, C_out, stride: nn.Identity() if stride == 1 and C_in == C_out else FactorizedReduce(C_in, C_out, stride), } PRIMITIVES = ['none', 'skip_connect', 'conv_1x1', 'conv_3x3', 'avg_pool_3x3'] class ReLUConvBN(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): super(ReLUConvBN, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_out, kernel_size, stride=stride, padding=padding, dilation=dilation, bias=False), nn.BatchNorm2d(C_out) ) def forward(self, x): return self.op(x) class SepConv(nn.Module): def __init__(self, C_in, C_out, kernel_size, stride, padding, dilation): super(SepConv, self).__init__() self.op = nn.Sequential( nn.ReLU(inplace=False), nn.Conv2d(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=C_in, bias=False), nn.Conv2d(C_in, C_out, kernel_size=1, padding=0, bias=False), nn.BatchNorm2d(C_out), ) def forward(self, x): return self.op(x) class Pooling(nn.Module): def __init__(self, C_in, C_out, stride, mode): super(Pooling, self).__init__() if C_in == C_out: self.preprocess = None else: self.preprocess = ReLUConvBN(C_in, C_out, 1, 1, 0, 1) if mode == 'avg': self.op = nn.AvgPool2d(3, stride=stride, padding=1, count_include_pad=False) elif mode == 'max': self.op = nn.MaxPool2d(3, stride=stride, padding=1) else: raise ValueError('Invalid mode={:} in Pooling'.format(mode)) def forward(self, x): if self.preprocess: x = self.preprocess(x) return self.op(x) class Zero(nn.Module): def __init__(self, C_in, C_out, stride): super(Zero, self).__init__() self.C_in = C_in self.C_out = C_out self.stride = stride self.is_zero = True def forward(self, x): if self.C_in == self.C_out: if self.stride == 1: return x.mul(0.) else: return x[:, :, ::self.stride, ::self.stride].mul(0.) else: shape = list(x.shape) shape[1] = self.C_out zeros = x.new_zeros(shape, dtype=x.dtype, device=x.device) return zeros class FactorizedReduce(nn.Module): def __init__(self, C_in, C_out, stride): super(FactorizedReduce, self).__init__() self.stride = stride self.C_in = C_in self.C_out = C_out self.relu = nn.ReLU(inplace=False) if stride == 2: C_outs = [C_out // 2, C_out - C_out // 2] self.convs = nn.ModuleList() for i in range(2): self.convs.append(nn.Conv2d(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False)) self.pad = nn.ConstantPad2d((0, 1, 0, 1), 0) else: raise ValueError('Invalid stride : {:}'.format(stride)) self.bn = nn.BatchNorm2d(C_out) def forward(self, x): x = self.relu(x) y = self.pad(x) out = torch.cat([self.convs[0](x), self.convs[1](y[:, :, 1:, 1:])], dim=1) out = self.bn(out) return out class ResNetBasicblock(nn.Module): def __init__(self, inplanes, planes, stride): super(ResNetBasicblock, self).__init__() assert stride == 1 or stride == 2, 'invalid stride {:}'.format(stride) self.conv_a = ReLUConvBN(inplanes, planes, 3, stride, 1, 1) self.conv_b = ReLUConvBN(planes, planes, 3, 1, 1, 1) if stride == 2: self.downsample = nn.Sequential( nn.AvgPool2d(kernel_size=2, stride=2, padding=0), nn.Conv2d(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)) elif inplanes != planes: self.downsample = ReLUConvBN(inplanes, planes, 1, 1, 0, 1) else: self.downsample = None self.in_dim = inplanes self.out_dim = planes self.stride = stride self.num_conv = 2 def forward(self, inputs): basicblock = self.conv_a(inputs) basicblock = self.conv_b(basicblock) if self.downsample is not None: inputs = self.downsample(inputs) # residual return inputs + basicblock @model_wrapper class NasBench201(nn.Module): """The full search space proposed by `NAS-Bench-201 <https://arxiv.org/abs/2001.00326>`__. It's a stack of :class:`NasBench201Cell`. """ def __init__(self, stem_out_channels: int = 16, num_modules_per_stack: int = 5, num_labels: int = 10): super().__init__() self.channels = C = stem_out_channels self.num_modules = N = num_modules_per_stack self.num_labels = num_labels self.stem = nn.Sequential( nn.Conv2d(3, C, kernel_size=3, padding=1, bias=False), nn.BatchNorm2d(C) ) layer_channels = [C] * N + [C * 2] + [C * 2] * N + [C * 4] + [C * 4] * N layer_reductions = [False] * N + [True] + [False] * N + [True] + [False] * N C_prev = C self.cells = nn.ModuleList() for C_curr, reduction in zip(layer_channels, layer_reductions): if reduction: cell = ResNetBasicblock(C_prev, C_curr, 2) else: ops: Dict[str, Callable[[int, int], nn.Module]] = { prim: lambda C_in, C_out: OPS_WITH_STRIDE[prim](C_in, C_out, 1) for prim in PRIMITIVES } cell = NasBench201Cell(ops, C_prev, C_curr, label='cell') self.cells.append(cell) C_prev = C_curr self.lastact = nn.Sequential( nn.BatchNorm2d(C_prev), nn.ReLU(inplace=True) ) self.global_pooling = nn.AdaptiveAvgPool2d(1) self.classifier = nn.Linear(C_prev, self.num_labels) def forward(self, inputs): feature = self.stem(inputs) for cell in self.cells: feature = cell(feature) out = self.lastact(feature) out = self.global_pooling(out) out = out.view(out.size(0), -1) logits = self.classifier(out) return logits
[ "torch.nn.BatchNorm2d", "torch.nn.ReLU", "torch.nn.ModuleList", "torch.nn.Conv2d", "torch.nn.MaxPool2d", "torch.nn.AdaptiveAvgPool2d", "torch.nn.Linear", "torch.nn.AvgPool2d", "torch.nn.ConstantPad2d", "torch.nn.Identity", "nni.retiarii.nn.pytorch.NasBench201Cell" ]
[((3476, 3498), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(False)'}), '(inplace=False)\n', (3483, 3498), True, 'import torch.nn as nn\n'), ((3909, 3930), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['C_out'], {}), '(C_out)\n', (3923, 3930), True, 'import torch.nn as nn\n'), ((6097, 6112), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (6110, 6112), True, 'import torch.nn as nn\n'), ((6768, 6791), 'torch.nn.AdaptiveAvgPool2d', 'nn.AdaptiveAvgPool2d', (['(1)'], {}), '(1)\n', (6788, 6791), True, 'import torch.nn as nn\n'), ((6818, 6852), 'torch.nn.Linear', 'nn.Linear', (['C_prev', 'self.num_labels'], {}), '(C_prev, self.num_labels)\n', (6827, 6852), True, 'import torch.nn as nn\n'), ((793, 806), 'torch.nn.Identity', 'nn.Identity', ([], {}), '()\n', (804, 806), True, 'import torch.nn as nn\n'), ((1165, 1187), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(False)'}), '(inplace=False)\n', (1172, 1187), True, 'import torch.nn as nn\n'), ((1201, 1303), 'torch.nn.Conv2d', 'nn.Conv2d', (['C_in', 'C_out', 'kernel_size'], {'stride': 'stride', 'padding': 'padding', 'dilation': 'dilation', 'bias': '(False)'}), '(C_in, C_out, kernel_size, stride=stride, padding=padding,\n dilation=dilation, bias=False)\n', (1210, 1303), True, 'import torch.nn as nn\n'), ((1335, 1356), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['C_out'], {}), '(C_out)\n', (1349, 1356), True, 'import torch.nn as nn\n'), ((1610, 1632), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(False)'}), '(inplace=False)\n', (1617, 1632), True, 'import torch.nn as nn\n'), ((1646, 1773), 'torch.nn.Conv2d', 'nn.Conv2d', (['C_in', 'C_in'], {'kernel_size': 'kernel_size', 'stride': 'stride', 'padding': 'padding', 'dilation': 'dilation', 'groups': 'C_in', 'bias': '(False)'}), '(C_in, C_in, kernel_size=kernel_size, stride=stride, padding=\n padding, dilation=dilation, groups=C_in, bias=False)\n', (1655, 1773), True, 'import torch.nn as nn\n'), ((1804, 1864), 'torch.nn.Conv2d', 'nn.Conv2d', (['C_in', 'C_out'], {'kernel_size': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(C_in, C_out, kernel_size=1, padding=0, bias=False)\n', (1813, 1864), True, 'import torch.nn as nn\n'), ((1878, 1899), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['C_out'], {}), '(C_out)\n', (1892, 1899), True, 'import torch.nn as nn\n'), ((2272, 2338), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', (['(3)'], {'stride': 'stride', 'padding': '(1)', 'count_include_pad': '(False)'}), '(3, stride=stride, padding=1, count_include_pad=False)\n', (2284, 2338), True, 'import torch.nn as nn\n'), ((3602, 3617), 'torch.nn.ModuleList', 'nn.ModuleList', ([], {}), '()\n', (3615, 3617), True, 'import torch.nn as nn\n'), ((3775, 3808), 'torch.nn.ConstantPad2d', 'nn.ConstantPad2d', (['(0, 1, 0, 1)', '(0)'], {}), '((0, 1, 0, 1), 0)\n', (3791, 3808), True, 'import torch.nn as nn\n'), ((5794, 5847), 'torch.nn.Conv2d', 'nn.Conv2d', (['(3)', 'C'], {'kernel_size': '(3)', 'padding': '(1)', 'bias': '(False)'}), '(3, C, kernel_size=3, padding=1, bias=False)\n', (5803, 5847), True, 'import torch.nn as nn\n'), ((5861, 5878), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['C'], {}), '(C)\n', (5875, 5878), True, 'import torch.nn as nn\n'), ((6670, 6692), 'torch.nn.BatchNorm2d', 'nn.BatchNorm2d', (['C_prev'], {}), '(C_prev)\n', (6684, 6692), True, 'import torch.nn as nn\n'), ((6706, 6727), 'torch.nn.ReLU', 'nn.ReLU', ([], {'inplace': '(True)'}), '(inplace=True)\n', (6713, 6727), True, 'import torch.nn as nn\n'), ((2389, 2430), 'torch.nn.MaxPool2d', 'nn.MaxPool2d', (['(3)'], {'stride': 'stride', 'padding': '(1)'}), '(3, stride=stride, padding=1)\n', (2401, 2430), True, 'import torch.nn as nn\n'), ((4565, 4613), 'torch.nn.AvgPool2d', 'nn.AvgPool2d', ([], {'kernel_size': '(2)', 'stride': '(2)', 'padding': '(0)'}), '(kernel_size=2, stride=2, padding=0)\n', (4577, 4613), True, 'import torch.nn as nn\n'), ((4631, 4706), 'torch.nn.Conv2d', 'nn.Conv2d', (['inplanes', 'planes'], {'kernel_size': '(1)', 'stride': '(1)', 'padding': '(0)', 'bias': '(False)'}), '(inplanes, planes, kernel_size=1, stride=1, padding=0, bias=False)\n', (4640, 4706), True, 'import torch.nn as nn\n'), ((6504, 6554), 'nni.retiarii.nn.pytorch.NasBench201Cell', 'NasBench201Cell', (['ops', 'C_prev', 'C_curr'], {'label': '"""cell"""'}), "(ops, C_prev, C_curr, label='cell')\n", (6519, 6554), False, 'from nni.retiarii.nn.pytorch import NasBench201Cell\n'), ((3683, 3750), 'torch.nn.Conv2d', 'nn.Conv2d', (['C_in', 'C_outs[i]', '(1)'], {'stride': 'stride', 'padding': '(0)', 'bias': '(False)'}), '(C_in, C_outs[i], 1, stride=stride, padding=0, bias=False)\n', (3692, 3750), True, 'import torch.nn as nn\n')]
#!/usr/bin/env python3 import os from setuptools import setup with open(os.path.join(os.path.dirname(__file__), 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='dialog_py', version='1.0a1', description='Python API for cdialog/linux dialog', long_description=long_description, url='https://github.com/pasha13666/dialog_py', author='Pasha__kun', author_email='<EMAIL>', packages=['dialog_py'], install_requires=[], include_package_data=True, license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Environment :: Console', 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX', 'Operating System :: POSIX :: Linux', 'Programming Language :: Python', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3 :: Only', 'Programming Language :: Python :: 3.3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: Implementation :: CPython' ] )
[ "os.path.dirname", "setuptools.setup" ]
[((187, 1082), 'setuptools.setup', 'setup', ([], {'name': '"""dialog_py"""', 'version': '"""1.0a1"""', 'description': '"""Python API for cdialog/linux dialog"""', 'long_description': 'long_description', 'url': '"""https://github.com/pasha13666/dialog_py"""', 'author': '"""Pasha__kun"""', 'author_email': '"""<EMAIL>"""', 'packages': "['dialog_py']", 'install_requires': '[]', 'include_package_data': '(True)', 'license': '"""MIT"""', 'classifiers': "['Development Status :: 3 - Alpha', 'Environment :: Console',\n 'License :: OSI Approved :: MIT License', 'Operating System :: POSIX',\n 'Operating System :: POSIX :: Linux', 'Programming Language :: Python',\n 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3 :: Only',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: Implementation :: CPython']"}), "(name='dialog_py', version='1.0a1', description=\n 'Python API for cdialog/linux dialog', long_description=\n long_description, url='https://github.com/pasha13666/dialog_py', author\n ='Pasha__kun', author_email='<EMAIL>', packages=['dialog_py'],\n install_requires=[], include_package_data=True, license='MIT',\n classifiers=['Development Status :: 3 - Alpha',\n 'Environment :: Console', 'License :: OSI Approved :: MIT License',\n 'Operating System :: POSIX', 'Operating System :: POSIX :: Linux',\n 'Programming Language :: Python', 'Programming Language :: Python :: 3',\n 'Programming Language :: Python :: 3 :: Only',\n 'Programming Language :: Python :: 3.3',\n 'Programming Language :: Python :: 3.4',\n 'Programming Language :: Python :: 3.5',\n 'Programming Language :: Python :: 3.6',\n 'Programming Language :: Python :: Implementation :: CPython'])\n", (192, 1082), False, 'from setuptools import setup\n'), ((88, 113), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (103, 113), False, 'import os\n')]
# -*- coding: utf-8 -*- from __future__ import unicode_literals import unittest import nose from nose.tools import * from whoswho import who, config from nameparser.config.titles import TITLES as NAMEPARSER_TITLES class TestMatch(unittest.TestCase): def setUp(self): self.name = '<NAME>' def test_string(self): # Only relevant for python 2.X assert_true(who.match(self.name, str('<NAME>'))) def test_unicode(self): name = self.name assert_true(who.match(name, '<NAME>')) assert_true(who.match(name, '<NAME>')) assert_false(who.match(name, '<NAME>')) def test_name_and_initials(self): assert_true(who.match(self.name, '<NAME>')) assert_true(who.match(self.name, '<NAME>')) assert_true(who.match(self.name, '<NAME>')) def test_different_number_initials(self): assert_true(who.match(self.name, '<NAME>')) assert_true(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) assert_true(who.match('<NAME>', '<NAME>')) def test_different_initials(self): assert_false(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) def test_short_names(self): assert_true(who.match(self.name, '<NAME>')) # TODO: Should these be true? assert_false(who.match(self.name, '<NAME>')) assert_false(who.match(self.name, '<NAME>')) def test_suffixes(self): name = '<NAME>' assert_true(who.match(name, '<NAME>')) assert_true(who.match(name, '<NAME>r')) assert_true(who.match(name, '<NAME>, PhD')) assert_false(who.match(name, '<NAME>, Sr')) assert_false(who.match(name, '<NAME>, Sr, PhD')) assert_true(who.match(name, '<NAME>, Jr, PhD')) def test_equivalent_suffixes(self): name = '<NAME>r' assert_true(who.match(name, '<NAME> Jnr')) assert_false(who.match(name, '<NAME> Snr')) def test_titles(self): name = 'Mr. <NAME>' assert_true(who.match(name, '<NAME>')) assert_true(who.match(name, 'Sir <NAME>')) assert_true(who.match(name, 'Dr. <NAME>')) assert_false(who.match(name, 'Mrs. <NAME>')) def test_nickname(self): name = 'Robert "<NAME>' assert_true(who.match(name, '<NAME>')) assert_true(who.match('<NAME>', name)) assert_false(who.match(name, '<NAME>')) assert_false(who.match(name, '<NAME>')) assert_false(who.match(name, '<NAME>', options={'check_nickname': False})) class TestRatio(unittest.TestCase): def setUp(self): self.name = '<NAME>' def test_string(self): # Only relevant for python 2.X assert_equal(who.ratio(self.name, str('<NAME>')), 100) def test_unicode(self): name = self.name assert_equal(who.ratio(name, 'attach<NAME>'), 100) assert_equal(who.ratio(name, '<NAME>'), 100) assert_true(who.ratio(name, '<NAME>') < 100) def test_name_and_initials(self): assert_equal(who.ratio(self.name, '<NAME>'), 100) assert_equal(who.ratio(self.name, '<NAME>'), 100) assert_equal(who.ratio(self.name, '<NAME>'), 100) def test_different_number_initials(self): assert_equal(who.ratio(self.name, '<NAME>'), 100) assert_equal(who.ratio(self.name, '<NAME>'), 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_equal(who.ratio('<NAME>', '<NAME>'), 100) def test_different_initials(self): assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < who.ratio(self.name, '<NAME>')) assert_true(who.ratio(self.name, '<NAME>') < who.ratio(self.name, '<NAME>')) assert_true(who.ratio(self.name, '<NAME>') < who.ratio(self.name, '<NAME>')) def test_short_names(self): assert_true(who.ratio(self.name, '<NAME>')) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < 100) assert_true(who.ratio(self.name, '<NAME>') < who.ratio(self.name, '<NAME>')) def test_suffixes(self): name = '<NAME>' assert_equal(who.ratio(name, '<NAME>'), 100) assert_equal(who.ratio(name, '<NAME>r'), 100) assert_equal(who.ratio(name, '<NAME>, PhD'), 100) assert_false(who.ratio(name, '<NAME>, Sr')) assert_false(who.ratio(name, '<NAME>, Sr, PhD')) assert_equal(who.ratio(name, '<NAME>, Jr, PhD'), 100) # Suffix doesn't change a match assert_equal(who.ratio(name, '<NAME>, Jr'), who.ratio(name, '<NAME>')) def test_equivalent_suffixes(self): name = '<NAME> Jr' assert_equal(who.ratio(name, '<NAME> Jnr'), 100) assert_false(who.ratio(name, '<NAME> Snr')) def test_titles(self): name = 'Mr. <NAME>' assert_equal(who.ratio(name, '<NAME>'), 100) assert_equal(who.ratio(name, 'Sir <NAME>'), 100) assert_equal(who.ratio(name, 'Dr. <NAME>'), 100) assert_false(who.ratio(name, 'Mrs. <NAME>')) # Title doesn't change a match assert_equal(who.ratio(name, 'Dr. <NAME>'), who.ratio(name, '<NAME>')) def test_nickname(self): name = 'Robert "Evan" Liebowitz' assert_equal(who.ratio(name, '<NAME>'), 100) assert_equal(who.ratio('<NAME>', name), 100) assert_true(who.ratio(name, '<NAME>') < 100) assert_true(who.ratio(name, '<NAME>') < 100) assert_true(who.ratio(name, '<NAME>', options={'check_nickname': False}) < 100) assert_true(who.ratio(name, '<NAME>') < who.ratio(name, '<NAME>')) assert_equal(who.ratio(name, '<NAME>ebowitz'), who.ratio(name, '<NAME>', 'strict')) # TODO: Should we ensure that the metadata is up to date? @nottest class TestConfig(unittest.TestCase): def test_titles_all_defined(self): """ Check if list of titles is up to date with nameparser """ all_titles = ( config.MALE_TITLES | config.FEMALE_TITLES | config.GENDERLESS_TITLES ) assert_equal(all_titles, NAMEPARSER_TITLES) def test_suffixes_all_defined(self): """ Check if list of suffixes is up to date with nameparser """ from nameparser.config.suffixes import SUFFIX_ACRONYMS, SUFFIX_NOT_ACRONYMS all_suffixes = ( config.UNIQUE_SUFFIXES | config.MISC_SUFFIXES ) nameparser_suffixes = ( SUFFIX_ACRONYMS | SUFFIX_NOT_ACRONYMS ) assert_equal(all_suffixes, nameparser_suffixes) if __name__ == '__main__': nose.main()
[ "whoswho.who.match", "nose.main", "whoswho.who.ratio" ]
[((7315, 7326), 'nose.main', 'nose.main', ([], {}), '()\n', (7324, 7326), False, 'import nose\n'), ((505, 530), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (514, 530), False, 'from whoswho import who, config\n'), ((552, 577), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (561, 577), False, 'from whoswho import who, config\n'), ((600, 625), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (609, 625), False, 'from whoswho import who, config\n'), ((686, 716), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (695, 716), False, 'from whoswho import who, config\n'), ((738, 768), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (747, 768), False, 'from whoswho import who, config\n'), ((790, 820), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (799, 820), False, 'from whoswho import who, config\n'), ((889, 919), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (898, 919), False, 'from whoswho import who, config\n'), ((941, 971), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (950, 971), False, 'from whoswho import who, config\n'), ((994, 1024), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1003, 1024), False, 'from whoswho import who, config\n'), ((1047, 1077), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1056, 1077), False, 'from whoswho import who, config\n'), ((1099, 1128), 'whoswho.who.match', 'who.match', (['"""<NAME>"""', '"""<NAME>"""'], {}), "('<NAME>', '<NAME>')\n", (1108, 1128), False, 'from whoswho import who, config\n'), ((1191, 1221), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1200, 1221), False, 'from whoswho import who, config\n'), ((1244, 1274), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1253, 1274), False, 'from whoswho import who, config\n'), ((1297, 1327), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1306, 1327), False, 'from whoswho import who, config\n'), ((1350, 1380), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1359, 1380), False, 'from whoswho import who, config\n'), ((1435, 1465), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1444, 1465), False, 'from whoswho import who, config\n'), ((1526, 1556), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1535, 1556), False, 'from whoswho import who, config\n'), ((1579, 1609), 'whoswho.who.match', 'who.match', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (1588, 1609), False, 'from whoswho import who, config\n'), ((1685, 1710), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (1694, 1710), False, 'from whoswho import who, config\n'), ((1732, 1758), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>r"""'], {}), "(name, '<NAME>r')\n", (1741, 1758), False, 'from whoswho import who, config\n'), ((1780, 1810), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>, PhD"""'], {}), "(name, '<NAME>, PhD')\n", (1789, 1810), False, 'from whoswho import who, config\n'), ((1833, 1862), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>, Sr"""'], {}), "(name, '<NAME>, Sr')\n", (1842, 1862), False, 'from whoswho import who, config\n'), ((1885, 1919), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>, Sr, PhD"""'], {}), "(name, '<NAME>, Sr, PhD')\n", (1894, 1919), False, 'from whoswho import who, config\n'), ((1941, 1975), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>, Jr, PhD"""'], {}), "(name, '<NAME>, Jr, PhD')\n", (1950, 1975), False, 'from whoswho import who, config\n'), ((2063, 2092), 'whoswho.who.match', 'who.match', (['name', '"""<NAME> Jnr"""'], {}), "(name, '<NAME> Jnr')\n", (2072, 2092), False, 'from whoswho import who, config\n'), ((2115, 2144), 'whoswho.who.match', 'who.match', (['name', '"""<NAME> Snr"""'], {}), "(name, '<NAME> Snr')\n", (2124, 2144), False, 'from whoswho import who, config\n'), ((2222, 2247), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (2231, 2247), False, 'from whoswho import who, config\n'), ((2269, 2298), 'whoswho.who.match', 'who.match', (['name', '"""Sir <NAME>"""'], {}), "(name, 'Sir <NAME>')\n", (2278, 2298), False, 'from whoswho import who, config\n'), ((2320, 2349), 'whoswho.who.match', 'who.match', (['name', '"""Dr. <NAME>"""'], {}), "(name, 'Dr. <NAME>')\n", (2329, 2349), False, 'from whoswho import who, config\n'), ((2372, 2402), 'whoswho.who.match', 'who.match', (['name', '"""Mrs. <NAME>"""'], {}), "(name, 'Mrs. <NAME>')\n", (2381, 2402), False, 'from whoswho import who, config\n'), ((2486, 2511), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (2495, 2511), False, 'from whoswho import who, config\n'), ((2533, 2558), 'whoswho.who.match', 'who.match', (['"""<NAME>"""', 'name'], {}), "('<NAME>', name)\n", (2542, 2558), False, 'from whoswho import who, config\n'), ((2581, 2606), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (2590, 2606), False, 'from whoswho import who, config\n'), ((2629, 2654), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (2638, 2654), False, 'from whoswho import who, config\n'), ((2677, 2737), 'whoswho.who.match', 'who.match', (['name', '"""<NAME>"""'], {'options': "{'check_nickname': False}"}), "(name, '<NAME>', options={'check_nickname': False})\n", (2686, 2737), False, 'from whoswho import who, config\n'), ((3064, 3095), 'whoswho.who.ratio', 'who.ratio', (['name', '"""attach<NAME>"""'], {}), "(name, 'attach<NAME>')\n", (3073, 3095), False, 'from whoswho import who, config\n'), ((3123, 3148), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (3132, 3148), False, 'from whoswho import who, config\n'), ((3268, 3298), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3277, 3298), False, 'from whoswho import who, config\n'), ((3326, 3356), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3335, 3356), False, 'from whoswho import who, config\n'), ((3384, 3414), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3393, 3414), False, 'from whoswho import who, config\n'), ((3489, 3519), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3498, 3519), False, 'from whoswho import who, config\n'), ((3547, 3577), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3556, 3577), False, 'from whoswho import who, config\n'), ((3721, 3750), 'whoswho.who.ratio', 'who.ratio', (['"""<NAME>"""', '"""<NAME>"""'], {}), "('<NAME>', '<NAME>')\n", (3730, 3750), False, 'from whoswho import who, config\n'), ((4397, 4427), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4406, 4427), False, 'from whoswho import who, config\n'), ((4725, 4750), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (4734, 4750), False, 'from whoswho import who, config\n'), ((4778, 4804), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>r"""'], {}), "(name, '<NAME>r')\n", (4787, 4804), False, 'from whoswho import who, config\n'), ((4832, 4862), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>, PhD"""'], {}), "(name, '<NAME>, PhD')\n", (4841, 4862), False, 'from whoswho import who, config\n'), ((4890, 4919), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>, Sr"""'], {}), "(name, '<NAME>, Sr')\n", (4899, 4919), False, 'from whoswho import who, config\n'), ((4942, 4976), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>, Sr, PhD"""'], {}), "(name, '<NAME>, Sr, PhD')\n", (4951, 4976), False, 'from whoswho import who, config\n'), ((4999, 5033), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>, Jr, PhD"""'], {}), "(name, '<NAME>, Jr, PhD')\n", (5008, 5033), False, 'from whoswho import who, config\n'), ((5101, 5130), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>, Jr"""'], {}), "(name, '<NAME>, Jr')\n", (5110, 5130), False, 'from whoswho import who, config\n'), ((5153, 5178), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (5162, 5178), False, 'from whoswho import who, config\n'), ((5269, 5298), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME> Jnr"""'], {}), "(name, '<NAME> Jnr')\n", (5278, 5298), False, 'from whoswho import who, config\n'), ((5326, 5355), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME> Snr"""'], {}), "(name, '<NAME> Snr')\n", (5335, 5355), False, 'from whoswho import who, config\n'), ((5434, 5459), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (5443, 5459), False, 'from whoswho import who, config\n'), ((5487, 5516), 'whoswho.who.ratio', 'who.ratio', (['name', '"""Sir <NAME>"""'], {}), "(name, 'Sir <NAME>')\n", (5496, 5516), False, 'from whoswho import who, config\n'), ((5544, 5573), 'whoswho.who.ratio', 'who.ratio', (['name', '"""Dr. <NAME>"""'], {}), "(name, 'Dr. <NAME>')\n", (5553, 5573), False, 'from whoswho import who, config\n'), ((5601, 5631), 'whoswho.who.ratio', 'who.ratio', (['name', '"""Mrs. <NAME>"""'], {}), "(name, 'Mrs. <NAME>')\n", (5610, 5631), False, 'from whoswho import who, config\n'), ((5693, 5722), 'whoswho.who.ratio', 'who.ratio', (['name', '"""Dr. <NAME>"""'], {}), "(name, 'Dr. <NAME>')\n", (5702, 5722), False, 'from whoswho import who, config\n'), ((5745, 5770), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (5754, 5770), False, 'from whoswho import who, config\n'), ((5864, 5889), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (5873, 5889), False, 'from whoswho import who, config\n'), ((5917, 5942), 'whoswho.who.ratio', 'who.ratio', (['"""<NAME>"""', 'name'], {}), "('<NAME>', name)\n", (5926, 5942), False, 'from whoswho import who, config\n'), ((6289, 6321), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>ebowitz"""'], {}), "(name, '<NAME>ebowitz')\n", (6298, 6321), False, 'from whoswho import who, config\n'), ((6344, 6379), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""', '"""strict"""'], {}), "(name, '<NAME>', 'strict')\n", (6353, 6379), False, 'from whoswho import who, config\n'), ((3175, 3200), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (3184, 3200), False, 'from whoswho import who, config\n'), ((3604, 3634), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3613, 3634), False, 'from whoswho import who, config\n'), ((3662, 3692), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3671, 3692), False, 'from whoswho import who, config\n'), ((3817, 3847), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3826, 3847), False, 'from whoswho import who, config\n'), ((3875, 3905), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3884, 3905), False, 'from whoswho import who, config\n'), ((3933, 3963), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (3942, 3963), False, 'from whoswho import who, config\n'), ((3991, 4021), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4000, 4021), False, 'from whoswho import who, config\n'), ((4049, 4079), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4058, 4079), False, 'from whoswho import who, config\n'), ((4102, 4132), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4111, 4132), False, 'from whoswho import who, config\n'), ((4154, 4184), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4163, 4184), False, 'from whoswho import who, config\n'), ((4207, 4237), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4216, 4237), False, 'from whoswho import who, config\n'), ((4259, 4289), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4268, 4289), False, 'from whoswho import who, config\n'), ((4312, 4342), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4321, 4342), False, 'from whoswho import who, config\n'), ((4449, 4479), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4458, 4479), False, 'from whoswho import who, config\n'), ((4507, 4537), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4516, 4537), False, 'from whoswho import who, config\n'), ((4565, 4595), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4574, 4595), False, 'from whoswho import who, config\n'), ((4618, 4648), 'whoswho.who.ratio', 'who.ratio', (['self.name', '"""<NAME>"""'], {}), "(self.name, '<NAME>')\n", (4627, 4648), False, 'from whoswho import who, config\n'), ((5969, 5994), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (5978, 5994), False, 'from whoswho import who, config\n'), ((6022, 6047), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (6031, 6047), False, 'from whoswho import who, config\n'), ((6075, 6135), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {'options': "{'check_nickname': False}"}), "(name, '<NAME>', options={'check_nickname': False})\n", (6084, 6135), False, 'from whoswho import who, config\n'), ((6193, 6218), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (6202, 6218), False, 'from whoswho import who, config\n'), ((6241, 6266), 'whoswho.who.ratio', 'who.ratio', (['name', '"""<NAME>"""'], {}), "(name, '<NAME>')\n", (6250, 6266), False, 'from whoswho import who, config\n')]
import json from flask import request from flask_restful import Resource, abort, reqparse from models.User import User """ POST Creates a new resource. GET Retrieves a resource. PUT Updates an existing resource. DELETE Deletes a resource. """ class UserEndpoint(Resource): def post(self): j = request.get_json() # need to ensure the required fields are in the json if "name" not in j: abort(422, message="name is not in json body") else: name = j["name"] if "username" not in j: abort(422, message="username not in json body") else: username = j["username"] if "email" not in j: abort(422, message="email not in json body") else: email = j["email"] if "password" not in j: abort(422, message="password not in json body") else: password = j["password"] user_obj = User( name=name, username=username, email=email, password=password, ) if "phone_number" in j: user_obj.phone_number = j["phone_number"] if "experience" in j: user_obj.experience = j["experience"] if "pictureURL" in j: user_obj.pictureURL = j["pictureURL"] d = user_obj.save() return json.loads(d.to_json()) def put(self): # TODO pass def delete(self): # TODO pass def get(self): parser = reqparse.RequestParser() parser.add_argument('username', required=True, type=str, help='The username of the User') args = parser.parse_args() try: user = json.loads(User.objects.get(username=args['username']).to_json()) except Exception as e: print(e) abort(404, message="User doesnt exist: {} doesn't exist".format(args['username'])) return user
[ "models.User.User.objects.get", "flask_restful.reqparse.RequestParser", "models.User.User", "flask.request.get_json", "flask_restful.abort" ]
[((354, 372), 'flask.request.get_json', 'request.get_json', ([], {}), '()\n', (370, 372), False, 'from flask import request\n'), ((1006, 1072), 'models.User.User', 'User', ([], {'name': 'name', 'username': 'username', 'email': 'email', 'password': 'password'}), '(name=name, username=username, email=email, password=password)\n', (1010, 1072), False, 'from models.User import User\n'), ((1586, 1610), 'flask_restful.reqparse.RequestParser', 'reqparse.RequestParser', ([], {}), '()\n', (1608, 1610), False, 'from flask_restful import Resource, abort, reqparse\n'), ((476, 522), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""name is not in json body"""'}), "(422, message='name is not in json body')\n", (481, 522), False, 'from flask_restful import Resource, abort, reqparse\n'), ((611, 658), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""username not in json body"""'}), "(422, message='username not in json body')\n", (616, 658), False, 'from flask_restful import Resource, abort, reqparse\n'), ((752, 796), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""email not in json body"""'}), "(422, message='email not in json body')\n", (757, 796), False, 'from flask_restful import Resource, abort, reqparse\n'), ((887, 934), 'flask_restful.abort', 'abort', (['(422)'], {'message': '"""password not in json body"""'}), "(422, message='password not in json body')\n", (892, 934), False, 'from flask_restful import Resource, abort, reqparse\n'), ((1789, 1832), 'models.User.User.objects.get', 'User.objects.get', ([], {'username': "args['username']"}), "(username=args['username'])\n", (1805, 1832), False, 'from models.User import User\n')]
import datetime from enum import Enum from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, cast import attr import ciso8601 import structlog from attr import converters from . import enums from .utils import as_json_dict, to_snake_case logger = structlog.get_logger() class Omitted(Enum): """Singleton written in a way mypy can parse. See https://www.python.org/dev/peps/pep-0484/#support-for-singleton-types-in-unions for more details. """ token = 0 OMITTED = Omitted.token """A singleton to differentiate between omitted vs explicit :obj:`None`.""" # helper type for entity_converter U = TypeVar("U", bound="BaseAAEntity") def entity_converter( entity_cls, # type: Union[List[Type[U]], Type[U]] ): # type: (...) -> Callable[[Union[Omitted, U, Dict]], Union[U, Omitted]] """ Convert a dictionary response into instances of the entity class. Usage: # disambiguates between type_a and type_b based on ``__typename`` converter = entity_converter([TypeA, TypeB]) my_instance = converter({'__typename': 'TypeB'}) XXX: mypy isn't expressive enough to annotate that the return type will be one of the _specific_ arg types and not the most generic bound base. We'll unfortunately have to ``# type: ignore`` on lines that call this. Args: entity_cls: the class (or classes) the value should be converted into. If multiple classes are provided as options, ``__typename`` must be included in the reponse to support disambiguation. Returns: A callable that will convert a dictionary to the right entity type. If more than one entity type is possible, that dictionary must have a ``__typename`` field present, which must match the ``TYPENAME`` on a provided entity. If none of the provided types match of if the fields don't align with the provided entity, a ``TypeError`` is raised. """ entity_classes = [] # type: List[Type[U]] if isinstance(entity_cls, (list, tuple)): entity_classes = entity_cls else: entity_classes = [entity_cls] def _entity_converter(val): # type: (Union[Dict[str, Any], U, Omitted]) -> Union[U, Omitted] # check if it's explitly been omitted (don't try to convert those) if val is OMITTED: return val # check if it's already an entity if any([isinstance(val, e_cls) for e_cls in entity_classes]): return cast(U, val) # definitely a dict now, since we check what it was earlier. (present # for type checking) val = cast(Dict[str, Any], val) # if there's more than one possibility for entity classes, pick the # right one based on ``__typename`` if len(entity_classes) == 1: # only one option, we don't need an explicit type selected_cls = entity_classes[0] # type: Type[U] else: # a few different return types are expected typename = val.pop("__typename", None) if typename is None: type_options = ", ".join([e.TYPENAME for e in entity_classes]) raise TypeError( 'No "__typename" present to disambiguate between possible ' "types: [{}]".format(type_options) ) matching_typename = next( (e for e in entity_classes if e.TYPENAME == typename), None ) # type: Optional[Type[U]] if matching_typename is None: raise TypeError('No entity found for type "{}"'.format(typename)) selected_cls = matching_typename return selected_cls.from_api_response(val) return _entity_converter @attr.attrs(frozen=True) class BaseAAEntity(object): TYPENAME = "" # type: str """The name of the graphql type in the schema. Used for disambiguation when there's more than one possible type being returned. """ as_dict = as_json_dict @classmethod def from_api_response(cls, data): # type: (Type[U], Dict[str, Any]) -> U # If __typename is present, this asserts that it matches this class's # expected typename typename = data.pop("__typename", None) if typename and typename != cls.TYPENAME: raise TypeError( ( "Given type \"{}\" doesn't match this entity's type: " '"{}". Is {} the right entity for ' "this data?" ).format(typename, cls.TYPENAME, cls.__name__) ) # convert top-level kwargs from camelCase to snake_case kwargs = {to_snake_case(k): v for k, v in data.items()} # mypy doesn't like that we're providing kwargs to a type whose init # doesn't accept any kwargs (even though subclasses do have attributes) return cls(**kwargs) # type: ignore @attr.attrs(frozen=True) class AccountError(BaseAAEntity): TYPENAME = "AccountError" code = attr.attrib(converter=enums.AccountErrorCode) # type: enums.AccountErrorCode message = attr.attrib() # type: Optional[str] retry_in = attr.attrib() # type: Optional[int] @attr.attrs(frozen=True) class Account(BaseAAEntity): TYPENAME = "Account" provider = attr.attrib(converter=enums.ProviderType) # type: enums.ProviderType username = attr.attrib() # type: str access_token = attr.attrib() # type: Optional[str] access_token_expires_at = attr.attrib( converter=converters.optional(ciso8601.parse_datetime), ) # type: Optional[datetime.datetime] @attr.attrs(frozen=True) class DeleteOperation(BaseAAEntity): """Base class for delete operation payloads. These payloads don't actually have any field information in them. While there's technically a "_" field in the schema, it's only a placeholder to work around the language not supporting empty responses. It has no meaning and will never have a meaningful value. This class has no specific equivalent type, it's just a convenience type for these entities. """ pass @attr.attrs(frozen=True) class DeleteOtherAccountKeysPayload(DeleteOperation): TYPENAME = "DeleteOtherAccountKeysPayload" @attr.attrs(frozen=True) class DeleteAccountKeyPayload(DeleteOperation): TYPENAME = "DeleteAccountKeyPayload" @attr.attrs(frozen=True) class DeleteAccountPayload(DeleteOperation): TYPENAME = "DeleteAccountPayload" @attr.attrs(frozen=True) class AuthorizeAccountPayload(BaseAAEntity): TYPENAME = "AuthorizeAccountPayload" account = attr.attrib( converter=entity_converter(Account), # type: ignore[misc] ) # type: Account account_key = attr.attrib() # type: str number_of_account_keys = attr.attrib() # type: int @attr.attrs(frozen=True) class VerifyAccountPayload(BaseAAEntity): TYPENAME = "VerifyAccountPayload" account = attr.attrib( converter=entity_converter(Account), # type: ignore[misc] ) # type: Account @attr.attrs(frozen=True) class Query(BaseAAEntity): account = attr.attrib( default=OMITTED, converter=entity_converter([Account, AccountError]), # type: ignore[misc] ) # type: Union[Omitted, Account, AccountError] @attr.attrs(frozen=True) class Mutation(BaseAAEntity): # mypy and the attrs plugin doens't like the `Omitted` default + converter # stuff authorize_account = attr.attrib( # type: ignore default=OMITTED, # ignore unsupport converter warning converter=cast( # type: ignore[misc] Union[Omitted, AuthorizeAccountPayload, AccountError], entity_converter([AuthorizeAccountPayload, AccountError]), ), ) # type: Union[Omitted, AuthorizeAccountPayload, AccountError] verify_account = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, VerifyAccountPayload, AccountError], entity_converter([VerifyAccountPayload, AccountError]), ), ) # type: Union[Omitted, VerifyAccountPayload, AccountError] delete_account = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, DeleteAccountPayload, AccountError], entity_converter([DeleteAccountPayload, AccountError]), ), ) # type: Union[Omitted, DeleteAccountPayload, AccountError] delete_account_key = attr.attrib( # type: ignore default=OMITTED, converter=cast( # type: ignore[misc] Union[Omitted, DeleteAccountKeyPayload, AccountError], entity_converter([DeleteAccountKeyPayload, AccountError]), ), ) # type: Union[Omitted, DeleteAccountKeyPayload, AccountError] delete_other_account_keys = attr.attrib( # type: ignore default=OMITTED, # ignore unsupport converter warning converter=cast( # type: ignore[misc] Union[Omitted, DeleteOtherAccountKeysPayload, AccountError], entity_converter([DeleteOtherAccountKeysPayload, AccountError]), ), ) # type: Union[Omitted, DeleteOtherAccountKeysPayload, AccountError]
[ "structlog.get_logger", "attr.attrs", "attr.converters.optional", "attr.attrib", "typing.cast", "typing.TypeVar" ]
[((273, 295), 'structlog.get_logger', 'structlog.get_logger', ([], {}), '()\n', (293, 295), False, 'import structlog\n'), ((645, 679), 'typing.TypeVar', 'TypeVar', (['"""U"""'], {'bound': '"""BaseAAEntity"""'}), "('U', bound='BaseAAEntity')\n", (652, 679), False, 'from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, cast\n'), ((3791, 3814), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (3801, 3814), False, 'import attr\n'), ((4981, 5004), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (4991, 5004), False, 'import attr\n'), ((5265, 5288), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (5275, 5288), False, 'import attr\n'), ((5680, 5703), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (5690, 5703), False, 'import attr\n'), ((6191, 6214), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (6201, 6214), False, 'import attr\n'), ((6319, 6342), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (6329, 6342), False, 'import attr\n'), ((6435, 6458), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (6445, 6458), False, 'import attr\n'), ((6545, 6568), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (6555, 6568), False, 'import attr\n'), ((6877, 6900), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (6887, 6900), False, 'import attr\n'), ((7102, 7125), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (7112, 7125), False, 'import attr\n'), ((7344, 7367), 'attr.attrs', 'attr.attrs', ([], {'frozen': '(True)'}), '(frozen=True)\n', (7354, 7367), False, 'import attr\n'), ((5081, 5126), 'attr.attrib', 'attr.attrib', ([], {'converter': 'enums.AccountErrorCode'}), '(converter=enums.AccountErrorCode)\n', (5092, 5126), False, 'import attr\n'), ((5173, 5186), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (5184, 5186), False, 'import attr\n'), ((5225, 5238), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (5236, 5238), False, 'import attr\n'), ((5359, 5400), 'attr.attrib', 'attr.attrib', ([], {'converter': 'enums.ProviderType'}), '(converter=enums.ProviderType)\n', (5370, 5400), False, 'import attr\n'), ((5444, 5457), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (5455, 5457), False, 'import attr\n'), ((5490, 5503), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (5501, 5503), False, 'import attr\n'), ((6791, 6804), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (6802, 6804), False, 'import attr\n'), ((6847, 6860), 'attr.attrib', 'attr.attrib', ([], {}), '()\n', (6858, 6860), False, 'import attr\n'), ((2653, 2678), 'typing.cast', 'cast', (['Dict[str, Any]', 'val'], {}), '(Dict[str, Any], val)\n', (2657, 2678), False, 'from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, cast\n'), ((2518, 2530), 'typing.cast', 'cast', (['U', 'val'], {}), '(U, val)\n', (2522, 2530), False, 'from typing import Any, Callable, Dict, List, Optional, Type, TypeVar, Union, cast\n'), ((5588, 5632), 'attr.converters.optional', 'converters.optional', (['ciso8601.parse_datetime'], {}), '(ciso8601.parse_datetime)\n', (5607, 5632), False, 'from attr import converters\n')]
from datetime import datetime from jsonschema_serialize_fork import NO_DEFAULT from pyramid.security import effective_principals from pyramid.threadlocal import get_current_request from string import ( digits, ascii_uppercase, ) import random import uuid from snovault.schema_utils import server_default ACCESSION_FACTORY = __name__ + ':accession_factory' def includeme(config): from pyramid.path import DottedNameResolver accession_factory = config.registry.settings.get('accession_factory') if accession_factory: factory = DottedNameResolver().resolve(accession_factory) else: factory = enc_accession config.registry[ACCESSION_FACTORY] = factory @server_default def userid(instance, subschema): request = get_current_request() principals = effective_principals(request) for principal in principals: if principal.startswith('userid.'): return principal[7:] return NO_DEFAULT @server_default def now(instance, subschema): # from jsonschema_serialize_fork date-time format requires a timezone return datetime.utcnow().isoformat() + '+00:00' @server_default def uuid4(instance, subschema): return str(uuid.uuid4()) @server_default def accession(instance, subschema): if 'external_accession' in instance: return NO_DEFAULT request = get_current_request() factory = request.registry[ACCESSION_FACTORY] # With 17 576 000 options ATTEMPTS = 10 for attempt in range(ATTEMPTS): new_accession = factory(subschema['accessionType']) if new_accession in request.root: continue return new_accession raise AssertionError("Free accession not found in %d attempts" % ATTEMPTS) ENC_ACCESSION_FORMAT = (digits, digits, digits, ascii_uppercase, ascii_uppercase, ascii_uppercase) def enc_accession(accession_type): random_part = ''.join(random.choice(s) for s in ENC_ACCESSION_FORMAT) return 'D' + accession_type + random_part TEST_ACCESSION_FORMAT = (digits, ) * 6 def test_accession(accession_type): """ Test accessions are generated on test.encodedcc.org """ random_part = ''.join(random.choice(s) for s in TEST_ACCESSION_FORMAT) return 'D' + accession_type + random_part
[ "pyramid.threadlocal.get_current_request", "random.choice", "datetime.datetime.utcnow", "pyramid.security.effective_principals", "uuid.uuid4", "pyramid.path.DottedNameResolver" ]
[((766, 787), 'pyramid.threadlocal.get_current_request', 'get_current_request', ([], {}), '()\n', (785, 787), False, 'from pyramid.threadlocal import get_current_request\n'), ((805, 834), 'pyramid.security.effective_principals', 'effective_principals', (['request'], {}), '(request)\n', (825, 834), False, 'from pyramid.security import effective_principals\n'), ((1355, 1376), 'pyramid.threadlocal.get_current_request', 'get_current_request', ([], {}), '()\n', (1374, 1376), False, 'from pyramid.threadlocal import get_current_request\n'), ((1206, 1218), 'uuid.uuid4', 'uuid.uuid4', ([], {}), '()\n', (1216, 1218), False, 'import uuid\n'), ((1906, 1922), 'random.choice', 'random.choice', (['s'], {}), '(s)\n', (1919, 1922), False, 'import random\n'), ((2173, 2189), 'random.choice', 'random.choice', (['s'], {}), '(s)\n', (2186, 2189), False, 'import random\n'), ((562, 582), 'pyramid.path.DottedNameResolver', 'DottedNameResolver', ([], {}), '()\n', (580, 582), False, 'from pyramid.path import DottedNameResolver\n'), ((1100, 1117), 'datetime.datetime.utcnow', 'datetime.utcnow', ([], {}), '()\n', (1115, 1117), False, 'from datetime import datetime\n')]
import unittest import os import json import requests import requests_mock from ioapi import api_url, IOService, AuthorizationError, UnexpectedResponseCodeError class APIAccountStateTestCase(unittest.TestCase): def setUp(self): self.service = IOService() @requests_mock.mock() def test_account_state_without_auth(self, mock): data = self._read_mock_response('account_state_without_auth') self._setup_response(mock, data, 401) with self.assertRaises(AuthorizationError): self.service.get_account_state() @requests_mock.mock() def test_account_state_auth_not_ok(self, mock): data = self._read_mock_response('account_state_not_ok') for code in range(201, 600): # skip 401 status code (unauthorized) if code == 401: continue self._setup_response(mock, data, code) with self.assertRaises(UnexpectedResponseCodeError) as cm: self.service.get_account_state() self.assertEqual(cm.exception.status_code, code) @requests_mock.mock() def test_account_state(self, mock): data = self._read_mock_response('account_state') self.service = IOService() self._setup_response(mock, data) self.assertEqual(self.service.get_account_state(), data) self.fail("auth missing") def _read_mock_response(self, name): path = os.path.join(os.path.dirname(__file__), name + '.json') with open(path, 'r') as file: data = json.loads(file.read()) return data def _setup_response(self, mock, response, code=None): if code is None: code = requests.codes.ok mock.get( self.service.api + api_url.URL_ACCOUNT_STATE, json=response, status_code=code)
[ "os.path.dirname", "requests_mock.mock", "ioapi.IOService" ]
[((276, 296), 'requests_mock.mock', 'requests_mock.mock', ([], {}), '()\n', (294, 296), False, 'import requests_mock\n'), ((570, 590), 'requests_mock.mock', 'requests_mock.mock', ([], {}), '()\n', (588, 590), False, 'import requests_mock\n'), ((1088, 1108), 'requests_mock.mock', 'requests_mock.mock', ([], {}), '()\n', (1106, 1108), False, 'import requests_mock\n'), ((258, 269), 'ioapi.IOService', 'IOService', ([], {}), '()\n', (267, 269), False, 'from ioapi import api_url, IOService, AuthorizationError, UnexpectedResponseCodeError\n'), ((1229, 1240), 'ioapi.IOService', 'IOService', ([], {}), '()\n', (1238, 1240), False, 'from ioapi import api_url, IOService, AuthorizationError, UnexpectedResponseCodeError\n'), ((1452, 1477), 'os.path.dirname', 'os.path.dirname', (['__file__'], {}), '(__file__)\n', (1467, 1477), False, 'import os\n')]
''' fake posts to bootstrap a development database. Put any interesting cases useful for development in here. ''' from datetime import datetime POST_DATA_1 = [ { "created" : datetime(2015, 10, 1), "published": datetime(2015, 10, 1), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "First Post", "slug": "", "text": "a bunch of words #foo #bar", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "published", "title": "Second Post", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": False, "status": "draft", "title": "Third Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "draft", "title": "Fourth Post", "slug": "", "text": "This is a #draft #post", "tags": [], "type": "Post" }, ] POST_DATA_2 = [ { "created" : datetime(2015, 3, 2), "published": datetime(2015, 3, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 1", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 4, 2), "published": datetime(2015, 4, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 2", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 3", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 5, 2), "published": datetime(2015, 5, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 4", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 5", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 6", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 6, 2), "published": datetime(2015, 6, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 7", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 7, 2), "published": datetime(2015, 7, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 8", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 8, 2), "published": datetime(2015, 8, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 9", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 9, 2), "published": datetime(2015, 9, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 10", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, { "created" : datetime(2015, 10, 2), "published": datetime(2015, 10, 2), "edited": datetime(2015, 10, 1), "rendered": None, "author": "bgporter", "public": True, "status": "published", "title": "Post 11", "slug": "", "text": "This is a #secret #post", "tags": [], "type": "Post" }, ]
[ "datetime.datetime" ]
[((197, 218), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (205, 218), False, 'from datetime import datetime\n'), ((241, 262), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (249, 262), False, 'from datetime import datetime\n'), ((285, 306), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (293, 306), False, 'from datetime import datetime\n'), ((625, 646), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (633, 646), False, 'from datetime import datetime\n'), ((669, 690), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (677, 690), False, 'from datetime import datetime\n'), ((713, 734), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (721, 734), False, 'from datetime import datetime\n'), ((1052, 1073), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (1060, 1073), False, 'from datetime import datetime\n'), ((1096, 1117), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (1104, 1117), False, 'from datetime import datetime\n'), ((1140, 1161), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (1148, 1161), False, 'from datetime import datetime\n'), ((1473, 1494), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (1481, 1494), False, 'from datetime import datetime\n'), ((1517, 1538), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (1525, 1538), False, 'from datetime import datetime\n'), ((1561, 1582), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (1569, 1582), False, 'from datetime import datetime\n'), ((1916, 1936), 'datetime.datetime', 'datetime', (['(2015)', '(3)', '(2)'], {}), '(2015, 3, 2)\n', (1924, 1936), False, 'from datetime import datetime\n'), ((1959, 1979), 'datetime.datetime', 'datetime', (['(2015)', '(3)', '(2)'], {}), '(2015, 3, 2)\n', (1967, 1979), False, 'from datetime import datetime\n'), ((2002, 2023), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (2010, 2023), False, 'from datetime import datetime\n'), ((2338, 2358), 'datetime.datetime', 'datetime', (['(2015)', '(4)', '(2)'], {}), '(2015, 4, 2)\n', (2346, 2358), False, 'from datetime import datetime\n'), ((2381, 2401), 'datetime.datetime', 'datetime', (['(2015)', '(4)', '(2)'], {}), '(2015, 4, 2)\n', (2389, 2401), False, 'from datetime import datetime\n'), ((2424, 2445), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (2432, 2445), False, 'from datetime import datetime\n'), ((2758, 2778), 'datetime.datetime', 'datetime', (['(2015)', '(5)', '(2)'], {}), '(2015, 5, 2)\n', (2766, 2778), False, 'from datetime import datetime\n'), ((2801, 2821), 'datetime.datetime', 'datetime', (['(2015)', '(5)', '(2)'], {}), '(2015, 5, 2)\n', (2809, 2821), False, 'from datetime import datetime\n'), ((2844, 2865), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (2852, 2865), False, 'from datetime import datetime\n'), ((3178, 3198), 'datetime.datetime', 'datetime', (['(2015)', '(5)', '(2)'], {}), '(2015, 5, 2)\n', (3186, 3198), False, 'from datetime import datetime\n'), ((3221, 3241), 'datetime.datetime', 'datetime', (['(2015)', '(5)', '(2)'], {}), '(2015, 5, 2)\n', (3229, 3241), False, 'from datetime import datetime\n'), ((3264, 3285), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (3272, 3285), False, 'from datetime import datetime\n'), ((3598, 3618), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (3606, 3618), False, 'from datetime import datetime\n'), ((3641, 3661), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (3649, 3661), False, 'from datetime import datetime\n'), ((3684, 3705), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (3692, 3705), False, 'from datetime import datetime\n'), ((4018, 4038), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (4026, 4038), False, 'from datetime import datetime\n'), ((4061, 4081), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (4069, 4081), False, 'from datetime import datetime\n'), ((4104, 4125), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (4112, 4125), False, 'from datetime import datetime\n'), ((4438, 4458), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (4446, 4458), False, 'from datetime import datetime\n'), ((4481, 4501), 'datetime.datetime', 'datetime', (['(2015)', '(6)', '(2)'], {}), '(2015, 6, 2)\n', (4489, 4501), False, 'from datetime import datetime\n'), ((4524, 4545), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (4532, 4545), False, 'from datetime import datetime\n'), ((4858, 4878), 'datetime.datetime', 'datetime', (['(2015)', '(7)', '(2)'], {}), '(2015, 7, 2)\n', (4866, 4878), False, 'from datetime import datetime\n'), ((4901, 4921), 'datetime.datetime', 'datetime', (['(2015)', '(7)', '(2)'], {}), '(2015, 7, 2)\n', (4909, 4921), False, 'from datetime import datetime\n'), ((4944, 4965), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (4952, 4965), False, 'from datetime import datetime\n'), ((5278, 5298), 'datetime.datetime', 'datetime', (['(2015)', '(8)', '(2)'], {}), '(2015, 8, 2)\n', (5286, 5298), False, 'from datetime import datetime\n'), ((5321, 5341), 'datetime.datetime', 'datetime', (['(2015)', '(8)', '(2)'], {}), '(2015, 8, 2)\n', (5329, 5341), False, 'from datetime import datetime\n'), ((5364, 5385), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (5372, 5385), False, 'from datetime import datetime\n'), ((5698, 5718), 'datetime.datetime', 'datetime', (['(2015)', '(9)', '(2)'], {}), '(2015, 9, 2)\n', (5706, 5718), False, 'from datetime import datetime\n'), ((5741, 5761), 'datetime.datetime', 'datetime', (['(2015)', '(9)', '(2)'], {}), '(2015, 9, 2)\n', (5749, 5761), False, 'from datetime import datetime\n'), ((5784, 5805), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (5792, 5805), False, 'from datetime import datetime\n'), ((6119, 6140), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (6127, 6140), False, 'from datetime import datetime\n'), ((6163, 6184), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(2)'], {}), '(2015, 10, 2)\n', (6171, 6184), False, 'from datetime import datetime\n'), ((6207, 6228), 'datetime.datetime', 'datetime', (['(2015)', '(10)', '(1)'], {}), '(2015, 10, 1)\n', (6215, 6228), False, 'from datetime import datetime\n')]
from __future__ import absolute_import from django.shortcuts import render import simplejson import datetime from django.http import HttpResponse class GenericItemBase(object): ITEM_ATTRS = [] def __init__(self, identifier): self.identifier = identifier def jsonify(self, value): """ Method to convert non JSON serializable objects into an equivalent JSON serializable form. """ return value def json(self): raise NotImplementedError def render_json(self): raise NotImplementedError def render_html(self): raise NotImplementedError class GenericItem(GenericItemBase): TEMPLATE = 'customer_support/item.html' def __init__(self, *args, **kwargs): super(GenericItem, self).__init__(*args, **kwargs) self._item = {} def get_item(self, identifier): raise NotImplementedError def set_item(self, data): self._item = {} for key, value in data.items(): if key in self.ITEM_ATTRS: self._item[key] = value def json(self): item = {} for attr_name in self.ITEM_ATTRS: attr = self.jsonify(self._item[attr_name]) if isinstance(attr, datetime): attr = attr.strftime('%Y-%m-%d %H:%M') item[attr_name] = attr return simplejson.dumps(item) def render_json(self): return HttpResponse( self.json(), mimetype='application/json') def render_html(self): return render(self.TEMPLATE, {'item': self._item}) class GenericItems(GenericItemBase): TEMPLATE = 'customer_support/items.html' def __init__(self, *args, **kwargs): super(GenericItem, self).__init__(*args, **kwargs) self._items = [] def get_items(self, for_entity): raise NotImplementedError def set_items(self, items): self._items = items def json(self): items = [] for item in self._items: item_dict = {} for attr_name in self.ITEM_ATTRS: attr = self.jsonify(item[attr_name]) if isinstance(attr, datetime): attr = attr.strftime('%Y-%m-%d %H:%M') item_dict[attr_name] = attr items.append(item) return simplejson.dumps(items) def render_json(self): return HttpResponse( self.json(), mimetype='application/json') def render_html(self): return render(self.TEMPLATE, {'items': self._items}) class GenericActions(object): def __init__(self, item_id): self.item_id = item_id self.actions = [] def get_actions_for_item(self): raise NotImplementedError def json(self): return simplejson.dumps(self.actions) def render_json(self): return HttpResponse(self.json(), mimetype='application/json') def render_html(self): pass
[ "simplejson.dumps", "django.shortcuts.render" ]
[((1371, 1393), 'simplejson.dumps', 'simplejson.dumps', (['item'], {}), '(item)\n', (1387, 1393), False, 'import simplejson\n'), ((1548, 1591), 'django.shortcuts.render', 'render', (['self.TEMPLATE', "{'item': self._item}"], {}), "(self.TEMPLATE, {'item': self._item})\n", (1554, 1591), False, 'from django.shortcuts import render\n'), ((2330, 2353), 'simplejson.dumps', 'simplejson.dumps', (['items'], {}), '(items)\n', (2346, 2353), False, 'import simplejson\n'), ((2508, 2553), 'django.shortcuts.render', 'render', (['self.TEMPLATE', "{'items': self._items}"], {}), "(self.TEMPLATE, {'items': self._items})\n", (2514, 2553), False, 'from django.shortcuts import render\n'), ((2784, 2814), 'simplejson.dumps', 'simplejson.dumps', (['self.actions'], {}), '(self.actions)\n', (2800, 2814), False, 'import simplejson\n')]
import math import warnings import numpy as np import pandas as pd from scipy.optimize import minimize import scipy.stats from scipy.stats import norm # edit from scipy.special import log_ndtr from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error, mean_absolute_error def split_left_right_censored(x, y, cens): counts = cens.value_counts() if -1 not in counts and 1 not in counts: warnings.warn("No censored observations; use regression methods for uncensored data") xs = [] ys = [] for value in [-1, 0, 1]: if value in counts: split = cens == value y_split = np.squeeze(y[split].values) x_split = x[split].values else: y_split, x_split = None, None xs.append(x_split) ys.append(y_split) return xs, ys def tobit_neg_log_likelihood(xs, ys, params): x_left, x_mid, x_right = xs y_left, y_mid, y_right = ys b = params[:-1] # s = math.exp(params[-1]) s = params[-1] to_cat = [] cens = False if y_left is not None: cens = True left = (y_left - np.dot(x_left, b)) to_cat.append(left) if y_right is not None: cens = True right = (np.dot(x_right, b) - y_right) to_cat.append(right) if cens: concat_stats = np.concatenate(to_cat, axis=0) / s log_cum_norm = scipy.stats.norm.logcdf(concat_stats) # log_ndtr(concat_stats) cens_sum = log_cum_norm.sum() else: cens_sum = 0 if y_mid is not None: mid_stats = (y_mid - np.dot(x_mid, b)) / s mid = scipy.stats.norm.logpdf(mid_stats) - math.log(max(np.finfo('float').resolution, s)) mid_sum = mid.sum() else: mid_sum = 0 loglik = cens_sum + mid_sum return - loglik def tobit_neg_log_likelihood_der(xs, ys, params): x_left, x_mid, x_right = xs y_left, y_mid, y_right = ys b = params[:-1] # s = math.exp(params[-1]) # in censReg, not using chain rule as below; they optimize in terms of log(s) s = params[-1] beta_jac = np.zeros(len(b)) sigma_jac = 0 if y_left is not None: left_stats = (y_left - np.dot(x_left, b)) / s l_pdf = scipy.stats.norm.logpdf(left_stats) l_cdf = log_ndtr(left_stats) left_frac = np.exp(l_pdf - l_cdf) beta_left = np.dot(left_frac, x_left / s) beta_jac -= beta_left left_sigma = np.dot(left_frac, left_stats) sigma_jac -= left_sigma if y_right is not None: right_stats = (np.dot(x_right, b) - y_right) / s r_pdf = scipy.stats.norm.logpdf(right_stats) r_cdf = log_ndtr(right_stats) right_frac = np.exp(r_pdf - r_cdf) beta_right = np.dot(right_frac, x_right / s) beta_jac += beta_right right_sigma = np.dot(right_frac, right_stats) sigma_jac -= right_sigma if y_mid is not None: mid_stats = (y_mid - np.dot(x_mid, b)) / s beta_mid = np.dot(mid_stats, x_mid / s) beta_jac += beta_mid mid_sigma = (np.square(mid_stats) - 1).sum() sigma_jac += mid_sigma combo_jac = np.append(beta_jac, sigma_jac / s) # by chain rule, since the expression above is dloglik/dlogsigma return -combo_jac class TobitModel: def __init__(self, fit_intercept=True): self.fit_intercept = fit_intercept self.ols_coef_ = None self.ols_intercept = None self.coef_ = None self.intercept_ = None self.sigma_ = None def fit(self, x, y, cens, verbose=False): """ Fit a maximum-likelihood Tobit regression :param x: Pandas DataFrame (n_samples, n_features): Data :param y: Pandas Series (n_samples,): Target :param cens: Pandas Series (n_samples,): -1 indicates left-censored samples, 0 for uncensored, 1 for right-censored :param verbose: boolean, show info from minimization :return: """ x_copy = x.copy() if self.fit_intercept: x_copy.insert(0, 'intercept', 1.0) else: x_copy.scale(with_mean=True, with_std=False, copy=False) init_reg = LinearRegression(fit_intercept=False).fit(x_copy, y) b0 = init_reg.coef_ y_pred = init_reg.predict(x_copy) resid = y - y_pred resid_var = np.var(resid) s0 = np.sqrt(resid_var) params0 = np.append(b0, s0) xs, ys = split_left_right_censored(x_copy, y, cens) result = minimize(lambda params: tobit_neg_log_likelihood(xs, ys, params), params0, method='BFGS', jac=lambda params: tobit_neg_log_likelihood_der(xs, ys, params), options={'disp': verbose}) if verbose: print(result) self.ols_coef_ = b0[1:] self.ols_intercept = b0[0] if self.fit_intercept: self.intercept_ = result.x[1] self.coef_ = result.x[1:-1] else: self.coef_ = result.x[:-1] self.intercept_ = 0 self.sigma_ = result.x[-1] return self def predict(self, x): return self.intercept_ + np.dot(x, self.coef_) def score(self, x, y, scoring_function=mean_absolute_error): y_pred = np.dot(x, self.coef_) return scoring_function(y, y_pred) # EDIT - insert marginal effects function def margins(self, x, k = 0): """ Marginal effects on dependent variable of a regressor, identified by coef :param x: array with all regressors (independent variables) to make a prediction :param k: coefficient corresponding to the regressor with respect to which we want to take the marginal effects :return: an array with the marginal effects estimated at each observation's level The marginal effect of regressor k on individual i's y is defined as the product of coef[k] and the normal cdf evaluated at x_i * coeff[k] / sigma """ return self.coef_[k] * norm.cdf(self.predict(x) / self.sigma_)
[ "scipy.special.log_ndtr", "numpy.sqrt", "numpy.squeeze", "numpy.append", "numpy.exp", "numpy.dot", "numpy.square", "numpy.concatenate", "numpy.finfo", "warnings.warn", "sklearn.linear_model.LinearRegression", "numpy.var" ]
[((3180, 3214), 'numpy.append', 'np.append', (['beta_jac', '(sigma_jac / s)'], {}), '(beta_jac, sigma_jac / s)\n', (3189, 3214), True, 'import numpy as np\n'), ((443, 533), 'warnings.warn', 'warnings.warn', (['"""No censored observations; use regression methods for uncensored data"""'], {}), "(\n 'No censored observations; use regression methods for uncensored data')\n", (456, 533), False, 'import warnings\n'), ((2304, 2324), 'scipy.special.log_ndtr', 'log_ndtr', (['left_stats'], {}), '(left_stats)\n', (2312, 2324), False, 'from scipy.special import log_ndtr\n'), ((2345, 2366), 'numpy.exp', 'np.exp', (['(l_pdf - l_cdf)'], {}), '(l_pdf - l_cdf)\n', (2351, 2366), True, 'import numpy as np\n'), ((2387, 2416), 'numpy.dot', 'np.dot', (['left_frac', '(x_left / s)'], {}), '(left_frac, x_left / s)\n', (2393, 2416), True, 'import numpy as np\n'), ((2469, 2498), 'numpy.dot', 'np.dot', (['left_frac', 'left_stats'], {}), '(left_frac, left_stats)\n', (2475, 2498), True, 'import numpy as np\n'), ((2686, 2707), 'scipy.special.log_ndtr', 'log_ndtr', (['right_stats'], {}), '(right_stats)\n', (2694, 2707), False, 'from scipy.special import log_ndtr\n'), ((2729, 2750), 'numpy.exp', 'np.exp', (['(r_pdf - r_cdf)'], {}), '(r_pdf - r_cdf)\n', (2735, 2750), True, 'import numpy as np\n'), ((2772, 2803), 'numpy.dot', 'np.dot', (['right_frac', '(x_right / s)'], {}), '(right_frac, x_right / s)\n', (2778, 2803), True, 'import numpy as np\n'), ((2858, 2889), 'numpy.dot', 'np.dot', (['right_frac', 'right_stats'], {}), '(right_frac, right_stats)\n', (2864, 2889), True, 'import numpy as np\n'), ((3020, 3048), 'numpy.dot', 'np.dot', (['mid_stats', '(x_mid / s)'], {}), '(mid_stats, x_mid / s)\n', (3026, 3048), True, 'import numpy as np\n'), ((4376, 4389), 'numpy.var', 'np.var', (['resid'], {}), '(resid)\n', (4382, 4389), True, 'import numpy as np\n'), ((4403, 4421), 'numpy.sqrt', 'np.sqrt', (['resid_var'], {}), '(resid_var)\n', (4410, 4421), True, 'import numpy as np\n'), ((4440, 4457), 'numpy.append', 'np.append', (['b0', 's0'], {}), '(b0, s0)\n', (4449, 4457), True, 'import numpy as np\n'), ((5275, 5296), 'numpy.dot', 'np.dot', (['x', 'self.coef_'], {}), '(x, self.coef_)\n', (5281, 5296), True, 'import numpy as np\n'), ((667, 694), 'numpy.squeeze', 'np.squeeze', (['y[split].values'], {}), '(y[split].values)\n', (677, 694), True, 'import numpy as np\n'), ((1152, 1169), 'numpy.dot', 'np.dot', (['x_left', 'b'], {}), '(x_left, b)\n', (1158, 1169), True, 'import numpy as np\n'), ((1264, 1282), 'numpy.dot', 'np.dot', (['x_right', 'b'], {}), '(x_right, b)\n', (1270, 1282), True, 'import numpy as np\n'), ((1359, 1389), 'numpy.concatenate', 'np.concatenate', (['to_cat'], {'axis': '(0)'}), '(to_cat, axis=0)\n', (1373, 1389), True, 'import numpy as np\n'), ((5170, 5191), 'numpy.dot', 'np.dot', (['x', 'self.coef_'], {}), '(x, self.coef_)\n', (5176, 5191), True, 'import numpy as np\n'), ((1606, 1622), 'numpy.dot', 'np.dot', (['x_mid', 'b'], {}), '(x_mid, b)\n', (1612, 1622), True, 'import numpy as np\n'), ((2213, 2230), 'numpy.dot', 'np.dot', (['x_left', 'b'], {}), '(x_left, b)\n', (2219, 2230), True, 'import numpy as np\n'), ((2583, 2601), 'numpy.dot', 'np.dot', (['x_right', 'b'], {}), '(x_right, b)\n', (2589, 2601), True, 'import numpy as np\n'), ((2979, 2995), 'numpy.dot', 'np.dot', (['x_mid', 'b'], {}), '(x_mid, b)\n', (2985, 2995), True, 'import numpy as np\n'), ((4206, 4243), 'sklearn.linear_model.LinearRegression', 'LinearRegression', ([], {'fit_intercept': '(False)'}), '(fit_intercept=False)\n', (4222, 4243), False, 'from sklearn.linear_model import LinearRegression\n'), ((3100, 3120), 'numpy.square', 'np.square', (['mid_stats'], {}), '(mid_stats)\n', (3109, 3120), True, 'import numpy as np\n'), ((1692, 1709), 'numpy.finfo', 'np.finfo', (['"""float"""'], {}), "('float')\n", (1700, 1709), True, 'import numpy as np\n')]
import os import sys from conda_build import api from conda_build import render import pytest def test_output_with_noarch_says_noarch(testing_metadata): testing_metadata.meta['build']['noarch'] = 'python' output = api.get_output_file_path(testing_metadata) assert os.path.sep + "noarch" + os.path.sep in output[0] def test_output_with_noarch_python_says_noarch(testing_metadata): testing_metadata.meta['build']['noarch_python'] = True output = api.get_output_file_path(testing_metadata) assert os.path.sep + "noarch" + os.path.sep in output[0] def test_reduce_duplicate_specs(testing_metadata): reqs = {'build': ['exact', 'exact 1.2.3 1', 'exact >1.0,<2'], 'host': ['exact', 'exact 1.2.3 1'] } testing_metadata.meta['requirements'] = reqs render._simplify_to_exact_constraints(testing_metadata) assert (testing_metadata.meta['requirements']['build'] == testing_metadata.meta['requirements']['host']) simplified_deps = testing_metadata.meta['requirements'] assert len(simplified_deps['build']) == 1 assert 'exact 1.2.3 1' in simplified_deps['build'] def test_pin_run_as_build_preserve_string(testing_metadata): m = testing_metadata m.config.variant['pin_run_as_build']['pkg'] = { 'max_pin': 'x.x' } dep = render.get_pin_from_build( m, 'pkg * somestring*', {'pkg': '1.2.3 somestring_h1234'} ) assert dep == 'pkg >=1.2.3,<1.3.0a0 somestring*'
[ "conda_build.render._simplify_to_exact_constraints", "conda_build.render.get_pin_from_build", "conda_build.api.get_output_file_path" ]
[((225, 267), 'conda_build.api.get_output_file_path', 'api.get_output_file_path', (['testing_metadata'], {}), '(testing_metadata)\n', (249, 267), False, 'from conda_build import api\n'), ((469, 511), 'conda_build.api.get_output_file_path', 'api.get_output_file_path', (['testing_metadata'], {}), '(testing_metadata)\n', (493, 511), False, 'from conda_build import api\n'), ((798, 853), 'conda_build.render._simplify_to_exact_constraints', 'render._simplify_to_exact_constraints', (['testing_metadata'], {}), '(testing_metadata)\n', (835, 853), False, 'from conda_build import render\n'), ((1317, 1405), 'conda_build.render.get_pin_from_build', 'render.get_pin_from_build', (['m', '"""pkg * somestring*"""', "{'pkg': '1.2.3 somestring_h1234'}"], {}), "(m, 'pkg * somestring*', {'pkg':\n '1.2.3 somestring_h1234'})\n", (1342, 1405), False, 'from conda_build import render\n')]
#Writing MOOG parameter file for the parameter, abundance, and error calculations. #The parameter file only needs to be written once, at beginning of the routine, because the output #files are overwritten with each itereation of the routine, only minimal output data are needed. # #The user can choose to have the parameter file written to screen by choosing verbose=True #The user can choose to have more detailed MOOG output by chooseing the appropriate values for the #MOOG input parameters. import numpy as np def param_file(linelist,atmosphere=0,molecules=1,lines=0,flux=0,damp=0,plot=0,units=0,verbose=False): if verbose: print('abfind') print('terminal \'x11\'') print('standard_out \'moog_out.1\'') print('summary_out \'moog_out.2\'') print('model_in \'star.mod\'') print('lines_in \'' + linelist + '\'') print('atmosphere ' + str(atmosphere)) print('molecules ' + str(molecules)) print('lines ' + str(lines)) print('flux/int ' + str(flux)) print('damping ' + str(damp)) print('plot ' + str(plot)) print('units ' + str(units)) with open('batch.par', 'wt') as file: file.write('abfind' + '\n') file.write('terminal \'x11\'' + '\n') file.write('standard_out \'moog_out.1\'' + '\n') file.write('summary_out \'moog_out.2\'' + '\n') file.write('model_in \'star.mod\'' + '\n') file.write('lines_in \'' + linelist + '\'' + '\n') file.write('atmosphere ' + str(atmosphere) + '\n') file.write('molecules ' + str(molecules) + '\n') file.write('lines ' + str(lines) + '\n') file.write('flux/int ' + str(flux) + '\n') file.write('damping ' + str(damp) + '\n') file.write('plot ' + str(plot) + '\n') file.write('units ' + str(units) + '\n') #Function for creating the solar and stellar linelists def linelist_create(star_in, sun_in, direc_path): with open(direc_path + '/linelist_star.txt', 'w') as out_star: with open(direc_path + '/linelist_sun.txt', 'w') as out_sun: with open(star_in) as file_star: with open(sun_in) as file_sun: line_star = file_star.readline() out_star.write(line_star) #accounts for comment line in linelist files line_sun = file_sun.readline() out_sun.write(line_sun) #accounts for comment line in linelist files line = file_star.readlines() line_s = file_sun.readlines() for line_star in line: line_star_split = line_star.split() #if len(line_star_split) < 2: continue for line_sun in line_s: line_sun_split = line_sun.split() #if len(line_sun_split) < 2: continue if line_star_split[0] == line_sun_split[0] and line_star_split[1] == line_sun_split[1]: out_star.write(line_star) out_sun.write(line_sun) continue #Reads Moog output files, parsing elements and colums def read_file(filename): count = 0 elements = ['Fe I ', 'Fe II ', 'C I ', 'N I ', 'O I ', 'S I', 'K I ', 'Na I ', 'Mg I ', 'Al I ', 'Si I ', 'Ca I ', 'Sc II ', 'Ti I ', 'Ti II ', 'V ', 'Cr I ', 'Mn I ', 'Co I ', 'Ni I ', 'Cu I ', 'Zn I ', 'Ba II '] dtype = [('wavelength', 'f8'), ('ID', 'f8'), ('EP', 'f8'), ('logGF', 'f8'), ('EWin', 'f8'), ('logRWin', 'f8'), ('abund', 'f8'), ('delavg', 'f8')] abundances = [] el_found = [] with open(filename) as file: while True: count += 1 # Get next line from file line = file.readline() # if line is empty end of file is reached if not line: break for j, el in enumerate(elements): species = 'Abundance Results for Species ' + el if species in line: new_arr = [] el_found.append(el) line = file.readline().split() line = file.readline().split() while len(line) == 8: new_arr.append(line) line = file.readline().rstrip().split() new_arr = np.array(new_arr) new_arr = np.core.records.fromarrays(new_arr.T,dtype=dtype) abundances.append(new_arr) return el_found, abundances
[ "numpy.array", "numpy.core.records.fromarrays" ]
[((4833, 4850), 'numpy.array', 'np.array', (['new_arr'], {}), '(new_arr)\n', (4841, 4850), True, 'import numpy as np\n'), ((4881, 4931), 'numpy.core.records.fromarrays', 'np.core.records.fromarrays', (['new_arr.T'], {'dtype': 'dtype'}), '(new_arr.T, dtype=dtype)\n', (4907, 4931), True, 'import numpy as np\n')]
#coding=utf-8 from __future__ import division """ # OVERLAY UFOS For anyone looking in here, sorry the code is so messy. This is a standalone version of a script with a lot of dependencies. """ import os from AppKit import * #@PydevCodeAnalysisIgnore from vanilla import * #@PydevCodeAnalysisIgnore from mojo.drawingTools import * from mojo.events import addObserver, removeObserver from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor from mojo.UI import UpdateCurrentGlyphView from fontTools.pens.transformPen import TransformPen from defconAppKit.windows.baseWindow import BaseWindowController import unicodedata #from lib.tools.defaults import getDefaultColor from lib.tools.drawing import strokePixelPath from lib.UI.spaceCenter.glyphSequenceEditText import splitText from builtins import chr selectedSymbol = u'•' def SmallTextListCell(editable=False): cell = NSTextFieldCell.alloc().init() size = NSSmallControlSize #NSMiniControlSize cell.setControlSize_(size) font = NSFont.systemFontOfSize_(NSFont.systemFontSizeForControlSize_(size)) cell.setFont_(font) cell.setEditable_(editable) return cell class TX: """ An agnostic way to get a naked font. """ @classmethod def naked(cls, f): try: return f.naked() except: return f class Tool(): """ The tool object manages the font list. This is a simplification. """ fonts = AllFonts() def addObserver(self, target, method, action): addObserver(target, method, action) def removeObserver(self, target, method, action): removeObserver(target, method, action) def getCurrentFont(self): return CurrentFont() def getFonts(self): u"""Answers the list of selected fonts, ordered by their path. """ return self.fonts def appendToFonts(self, path): f = OpenFont(path, showUI=False) self.fonts.append(f) def removeFromFonts(self, path): for i, f in enumerate(self.fonts): if f.path == path: del self.fonts[i] def getFontPaths(self): return [f.path or str(f.info.familyName)+" "+str(f.info.styleName) for f in self.getFonts()] def getFontLabel(self, path): if path is None: return None if not path: return 'Untitled' name = path.split('/')[-1] status = selectedSymbol return status, path, name def getFontLabels(self): labels = {} for path in self.getFontPaths(): if path: label = self.getFontLabel(path) name = label[-1] else: name = 'Untitled' if not name in labels: labels[name] = [] labels[name].append(label) sortedLabels = [] for _, labelSet in sorted(labels.items()): if len(labelSet) == 1: # There is only a single font with this name sortedLabels.append(labelSet[0]) else: # Otherwise we'll have to construct new names to show the difference for status, path, name in sorted(labelSet): sortedLabels.append((status, path, '%s "%s"' % (name, '/'.join(path.split('/')[:-1])))) return sortedLabels class C: """ Some constants. """ C2 = 100 BUTTON_WIDTH = 80 STYLE_CHECKBOXSIZE = 'small' STYLE_LABELSIZE = 'small' STYLE_RADIOSIZE = 'small' L = 22 LL = 25 class OverlayUFOs(BaseWindowController): DEFAULTKEY = "com.fontbureau.overlayUFO" DEFAULTKEY_FILLCOLOR = "%s.fillColor" %DEFAULTKEY DEFAULTKEY_STROKECOLOR = "%s.strokeColor" %DEFAULTKEY DEFAULTKEY_STROKE = "%s.stroke" %DEFAULTKEY DEFAULTKEY_FILL = "%s.fill" %DEFAULTKEY FALLBACK_FILLCOLOR = NSColor.colorWithCalibratedRed_green_blue_alpha_(.5, 0, .5, .1) FALLBACK_STROKECOLOR = NSColor.colorWithCalibratedRed_green_blue_alpha_(.5, 0, .5, .5) VERSION = 1.0 NAME = u'Overlay UFOs' MANUAL = u"""In the current glyph window, this will present the view the same glyph from a separate UFO or set of UFOs.<br/> This does NOT import the UFO into a background layer. Instead, it renders a outline directly from the UFO into the glyph window view. <ul> <li>There is no need to import duplicate data into a background layer.</li> <li>The source outline is always live; when changes are made to the source, they will automatically appear in the current without re-importing.</li> <li>The source font does not need to be opened with a UI.</li> </ul> <h3>DIALOG</h3> <ul> <li>A floating dialog is present to let you open and select source fonts, fill, stroke, color.</li> <li>Source Fonts: The default source font list is self.getOpenFonts(). The refresh button will return this list to self.getOpenFonts().</li> <li>Adding Fonts: You can manually add fonts by selecting a UFO file. The UFO file will open without an interface.</li> <li>Removing Fonts: There are buttons for removing selected fonts and for clearing the source font list.</li> </ul> <h3>BUGS/IMPROVEMENTS</h3> <ul> <li>Known Issue: The source font is drawn on top of the current font, instead of behind it. So, it is good to select a color with a low opacity.</li> <li>Known Bug: If the glyph window for both source and current fonts are open, it is possible to select and inadvertently edit the source outline in the current window. I don't know how to solve this.</li> <li>Improvement?: Add options to scale the source font.</li> <li>Improvement?: Set different colors, fill settings for each font?</li> </ul> """ # Fixed width of the window. VIEWMINSIZE = 400 VIEWSIZE = VIEWMINSIZE VIEWMAXSIZE = VIEWMINSIZE WINDOW_POSSIZE = (130, 20, VIEWSIZE, 260) WINDOW_MINSIZE = (VIEWMINSIZE, 260) WINDOW_MAXSIZE = (VIEWMAXSIZE, 260) def getPathListDescriptor(self): return [ dict(title='Status', key='status', cell=SmallTextListCell(editable=False), width=12, editable=False), dict(title='Name', key='name', width=300, cell=SmallTextListCell(editable=False), editable=False), dict(title='Path', key='path', width=0, editable=False), ] ################ # OBSERVERS AND UPDATERS ################ def fontSelectionChanged(self): self.setSourceFonts() def activateModule(self): self.tool.addObserver(self, 'drawInactive', 'drawInactive') self.tool.addObserver(self, 'drawBackground', 'drawBackground') self.tool.addObserver(self, 'fontDidOpen', 'fontDidOpen') self.tool.addObserver(self, 'fontWillClose', 'fontWillClose') def deactivateModule(self): removeObserver(self, 'drawBackground') removeObserver(self, 'drawInactive') removeObserver(self, 'fontDidOpen') removeObserver(self, 'fontWillClose') ################ # CONTEXTS ################ def fontDidOpen(self, info): font = info.get('font') if font: self.tool.fonts.append(font) self.refreshCallback() def fontWillClose(self, info): font = info.get('font') path = font.path if path: self.tool.removeFromFonts(path) self.refreshCallback() def __init__(self): self.tool = Tool() self.w = FloatingWindow((400, 200), "Overlay UFOs", minSize=(400, 200)) self.populateView() self.getView().open() def getView(self): return self.w def refreshCallback(self, sender=None): """ Update the font list. """ self.getView().fontList.set(self.getFontItems()) def resetCallback(self, sender=None): """ Resets the view to the currently opened fonts. """ self.tool.fonts = AllFonts() self.getView().fontList.set(self.getFontItems()) def addCallback(self, sender=None): """ Open a font without UI and add it to the font list. """ f = OpenFont(None, showUI=False) if f is None: return self.tool.appendToFonts(f.path) self.refreshCallback() def populateView(self): """ The UI """ self.fillColor = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) self.strokeColor = getExtensionDefaultColor(self.DEFAULTKEY_STROKECOLOR, self.FALLBACK_STROKECOLOR) self.contextBefore = self.contextAfter = '' # Populating the view can only happen after the view is attached to the window, # or else the relative widths go wrong. view = self.getView() view.add = Button((-40, 3, 30, 22), '+', callback=self.addCallback) view.reset = Button((-40, 30, 30, 22), chr(8634), callback=self.resetCallback) # Flag to see if the selection list click is in progress. We are resetting the selection # ourselves, using the list "buttons", but changing that selection will cause another # list update, that should be ignored. self._selectionChanging = False # Indicate that we are a drawing module self._canDraw = True self.sources = [] x = y = 4 view.fontList = List((C.C2, y, 250, -65), self.getFontItems(), selectionCallback=self.fontListCallback, drawFocusRing=False, enableDelete=False, allowsMultipleSelection=False, allowsEmptySelection=True, drawHorizontalLines=True, showColumnTitles=False, columnDescriptions=self.getPathListDescriptor(), rowHeight=16, ) view.viewEnabled = CheckBox((x, y, C.BUTTON_WIDTH, 22), "Show", callback=self.viewCallback, sizeStyle=C.STYLE_CHECKBOXSIZE, value=True) y += C.L view.fill = CheckBox((x, y, 60, 22), "Fill", sizeStyle=C.STYLE_CHECKBOXSIZE, #value=getExtensionDefault("%s.%s" %(self.DEFAULTKEY, "fill"), True), value = True, callback=self.fillCallback) y += C.L color = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) view.color = ColorWell((x, y, 60, 22), color=color, callback=self.colorCallback) y += C.L + 5 view.stroke = CheckBox((x, y, 60, 22), "Stroke", sizeStyle=C.STYLE_CHECKBOXSIZE, #value=getExtensionDefault("%s.%s" %(self.DEFAULTKEY, "stroke"), False), value = False, callback=self.strokeCallback) y += C.LL view.alignText = TextBox((x, y, 90, 50), 'Alignment', sizeStyle=C.STYLE_LABELSIZE) y += C.L view.align = RadioGroup((x, y, 90, 50), ['Left', 'Center', 'Right'], isVertical=True, sizeStyle=C.STYLE_RADIOSIZE, callback=self.alignCallback) view.align.set(0) #view.contextLabel = TextBox((C.C2, -58, 90, 50), 'Contexts', sizeStyle=C.STYLE_LABELSIZE) view.viewCurrent = CheckBox((C.C2, -60, 150, 22), "Always View Current", sizeStyle=C.STYLE_CHECKBOXSIZE, value = False, callback=self.contextEditCallback) #view.contextUandlc = CheckBox((C.C2+170, -60, 85, 22), "Match Case", sizeStyle=C.STYLE_CHECKBOXSIZE, # value = False, # callback=self.contextEditCallback) view.contextBefore = EditText((C.C2, -30, 85, 20), callback=self.contextEditCallback, continuous=True, sizeStyle="small", placeholder='Left Context') view.contextCurrent = EditText((C.C2+95, -30, 60, 20), callback=self.contextCurrentEditCallback, continuous=True, sizeStyle="small") view.contextAfter = EditText((C.C2+165, -30, 85, 20), callback=self.contextEditCallback, continuous=True, sizeStyle="small", placeholder='Right Context') self.activateModule() self.setUpBaseWindowBehavior() def fontListCallback(self, sender): u"""If there is a selection, toggle the status of these fonts.""" # Avoid recursive loop because of changing font selection if not self._selectionChanging: for selectedIndex in sender.getSelection(): item = sender.get()[selectedIndex] if item['status']: item['status'] = '' else: item['status'] = selectedSymbol # If shift is held when pressing an entry in the font list, # the non-selected fonts will swap with the current's state if NSEvent.modifierFlags() & NSShiftKeyMask: items = [sender.get()[i] for i in range(len(sender.get())) if i != selectedIndex] for subItems in items: if item['status'] == '': subItems['status'] = selectedSymbol else: subItems['status'] = '' self._selectionChanging = True # Avoid recursive loop because of changing font selection sender.setSelection([]) self._selectionChanging = False self.updateView() def canDraw(self): return True """ There is an experimental feature that will change the case of the context characters based on the case of the current glyph. But I'm disabling that for now. """ #def isUpper(self, g): # char = CharacterTX.glyph2Char(g) # if len(char) > 1: # char = char[0] # if unicodedata.category(char) == 'Lu': # return True # return False #def isLower(self, g): # char = CharacterTX.glyph2Char(g) # if len(char) > 1: # char = char[0] # if unicodedata.category(char) == 'Ll': # return True # return False def getHiddenFont(self, path): from builtins import str for f in self.tool.getFonts(): if f.path == path: return f elif path == str(f.info.familyName)+" "+str(f.info.styleName): return f def drawBackground(self, info): u"""Draw the background of defined glyphs and fonbts. Scale is available as mouse.scale.""" view = self.getView() if not view.viewEnabled.get(): return fill = getExtensionDefault(self.DEFAULTKEY_FILL, True) stroke = getExtensionDefault(self.DEFAULTKEY_STROKE, True) fillcolor = getExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR) glyph = info.get('glyph') if glyph is not None: current = glyph.getParent() else: current = self.tool.getCurrentFont() if glyph is None or current is None: return align = self.getAlignment() # Get the fonts from the list and see if they are selected. sourceItems = self.getSourceFonts() showFonts = [] for item in sourceItems: if not item['status']: continue path = item['path'] font = self.getHiddenFont(path) showFonts.append(font) if view.viewCurrent.get() and current not in showFonts: showFonts.append(current) for font in showFonts: self.fillColor.setFill() self.strokeColor.setStroke() contextBefore, contextCurrent, contextAfter = self.getContexts() if font is not None: contextBefore = splitText(contextBefore, TX.naked(font).unicodeData, TX.naked(font).groups) contextBefore = [font[gname] for gname in contextBefore if gname in font.keys()] contextAfter = splitText(contextAfter, TX.naked(font).unicodeData, TX.naked(font).groups) contextAfter = [font[gname] for gname in contextAfter if gname in font.keys()] contextCurrent = splitText(contextCurrent, TX.naked(font).unicodeData, TX.naked(font).groups) if len(contextCurrent) > 0: contextCurrent = [font[gname] for gname in [contextCurrent[0]] if gname in font.keys()] if len(contextCurrent) > 0: sourceGlyph = contextCurrent[0] else: sourceGlyph = None elif glyph.name in font.keys(): sourceGlyph = font[glyph.name] else: sourceGlyph = None """ #There is an experimental feature that will change the case of the context characters based on the case of the current glyph. But I'm disabling that for now. if view.contextUandlc.get(): caseTransform = None if self.isUpper(glyph): caseTransform = FontTX.unicodes.getUpperFromLower elif self.isLower(glyph): caseTransform = FontTX.unicodes.getLowerFromUpper if caseTransform: for i, g in enumerate(contextBefore): newG = caseTransform(g) if newG is not None: contextBefore[i] = newG newG = caseTransform(sourceGlyph) if newG is not None: sourceGlyph = newG if caseTransform: for i, g in enumerate(contextAfter): newG = caseTransform(g) if newG is not None: contextAfter[i] = newG """ scale(current.info.unitsPerEm/float(font.info.unitsPerEm)) widthOffset = 0 if sourceGlyph is not None: if align == 'center': destCenter = float(glyph.width/2) / current.info.unitsPerEm sourceCenter = float(sourceGlyph.width/2) / font.info.unitsPerEm widthOffset = (destCenter-sourceCenter) * font.info.unitsPerEm elif align == 'right': widthOffset = ( ( glyph.width / glyph.getParent().info.unitsPerEm ) - (sourceGlyph.width / sourceGlyph.getParent().info.unitsPerEm ) ) * font.info.unitsPerEm translate(widthOffset, 0) previousGlyph = sourceGlyph contextBefore.reverse() totalWidth = 0 for i, cbGlyph in enumerate(contextBefore): kernValue = 0 if previousGlyph is not None and previousGlyph.getParent() == cbGlyph.getParent(): # Uncomment to activate kerning. Requires FontTX. #kernValue += FontTX.kerning.getValue((previousGlyph.name, cbGlyph.name), font.kerning, font.groups) kernValue += 0 translate(-cbGlyph.width-kernValue, 0) totalWidth += cbGlyph.width + kernValue drawGlyphPath = TX.naked(cbGlyph).getRepresentation("defconAppKit.NSBezierPath") if view.fill.get(): drawGlyphPath.fill() if view.stroke.get(): strokePixelPath(drawGlyphPath) previousGlyph = cbGlyph translate(totalWidth, 0) totalWidth = 0 contextCurrentAndAfter = [sourceGlyph]+contextAfter for i, cbGlyph in enumerate(contextCurrentAndAfter): if cbGlyph is None: cbGlyph = sourceGlyph nextGlyph = None if i + 1 < len(contextCurrentAndAfter): nextGlyph = contextCurrentAndAfter[i+1] if (i == 0 and cbGlyph == glyph) or sourceGlyph is None: pass else: drawGlyphPath = TX.naked(cbGlyph).getRepresentation("defconAppKit.NSBezierPath") if view.fill.get(): drawGlyphPath.fill() if view.stroke.get(): strokePixelPath(drawGlyphPath) kernValue = 0 if cbGlyph is not None and nextGlyph is not None and nextGlyph.getParent() == cbGlyph.getParent(): #kernValue = FontTX.kerning.getValue((cbGlyph.name, nextGlyph.name), font.kerning, font.groups) # Uncomment to activate kerning. Requires FontTX. kernValue = 0 width = 0 if cbGlyph is not None: width = cbGlyph.width translate(width+kernValue, 0) totalWidth += width + kernValue previousGlyph = cbGlyph translate(-totalWidth, 0) translate(-widthOffset, 0) scale(font.info.unitsPerEm/float(current.info.unitsPerEm)) #restore() drawInactive = drawBackground def viewCallback(self, sender): self.updateView() def getSourceFonts(self): """ Get the fonts in the list. """ view = self.getView() return view.fontList.get() def setSourceFonts(self): u""" Set the font list from the current set of open fonts. """ view = self.getView() labels = [] currentSelection = [] for d in self.getSourceFonts(): if d['status']: currentSelection.append(d['path']) for status, path, name in self.tool.getFontLabels(): if path in currentSelection: status = selectedSymbol else: status = '' labels.append(dict(status=status, path=path, name=name)) view.fontList.set(labels) def colorCallback(self, sender): """ Change the color. """ selectedColor = sender.get() r = selectedColor.redComponent() g = selectedColor.greenComponent() b = selectedColor.blueComponent() a = 1 strokeColor = NSColor.colorWithCalibratedRed_green_blue_alpha_(r, g, b, a) setExtensionDefaultColor(self.DEFAULTKEY_FILLCOLOR, selectedColor) setExtensionDefaultColor(self.DEFAULTKEY_STROKECOLOR, strokeColor) self.fillColor = selectedColor self.strokeColor = strokeColor self.updateView() def fillCallback(self, sender): """ Change the fill status. """ setExtensionDefault(self.DEFAULTKEY_FILL, sender.get()) self.updateView() def strokeCallback(self, sender): """ Change the stroke status. """ setExtensionDefault(self.DEFAULTKEY_STROKE, sender.get()) self.updateView() def alignCallback(self, sender): """ Change the alignment status. """ self.updateView() def getAlignment(self): """ Get the alignment as a string. """ view = self.getView() index = view.align.get() if index == 0: return 'left' elif index == 1: return 'center' elif index == 2: return 'right' def updateView(self, sender=None): UpdateCurrentGlyphView() def windowCloseCallback(self, sender): self.deactivateModule() self.updateView() BaseWindowController.windowCloseCallback(self, sender) def getFontItems(self, update=False): """ Get all fonts in a way that can be set into a vanilla list. """ paths = set() # Set of all unique paths in the merges lists itemsByName = {} if update: # If update flag is set, then keep the existing selected fonts. for item in self.getSourceFonts(): if item['status']: itemsByName[item['name']] = item currentStatuses = {} if hasattr(self.getView(), 'fontList'): for d in self.getSourceFonts(): currentStatuses[d['path']] = d['status'] for status, path, uniqueName in self.tool.getFontLabels(): if path in currentStatuses: status = currentStatuses[path] else: status = selectedSymbol if not uniqueName in itemsByName.keys():# If it is not already there, add this to the list itemsByName[uniqueName] = dict(status=status, path=path, name=uniqueName) fontList = [] for key, item in sorted(itemsByName.items()): fontList.append(item) return fontList ################ # CONTEXTS ################ def getContexts(self): if not hasattr(self, 'contextBefore'): self.contextBefore = '' if not hasattr(self, 'contextAfter'): self.contextAfter = '' if not hasattr(self, 'contextCurrent'): self.contextCurrent = None return self.contextBefore, self.contextCurrent, self.contextAfter def setContexts(self, contextBefore, contextCurrent, contextAfter): self.contextBefore = contextBefore self.contextCurrent = contextCurrent self.contextAfter = contextAfter def contextEditCallback(self, sender): before = self.getView().contextBefore.get() current = self.getView().contextCurrent.get() or None after = self.getView().contextAfter.get() self.setContexts(before, current, after) self.updateView() def contextCurrentEditCallback(self, sender): #if sender.get(): #sender.set(sender.get()[0]) self.contextEditCallback(sender) if __name__ == "__main__": OverlayUFOs()
[ "builtins.chr", "mojo.extensions.setExtensionDefaultColor", "defconAppKit.windows.baseWindow.BaseWindowController.windowCloseCallback", "mojo.extensions.getExtensionDefaultColor", "builtins.str", "mojo.extensions.getExtensionDefault", "lib.tools.drawing.strokePixelPath", "mojo.events.removeObserver", "mojo.events.addObserver", "mojo.UI.UpdateCurrentGlyphView" ]
[((1594, 1629), 'mojo.events.addObserver', 'addObserver', (['target', 'method', 'action'], {}), '(target, method, action)\n', (1605, 1629), False, 'from mojo.events import addObserver, removeObserver\n'), ((1693, 1731), 'mojo.events.removeObserver', 'removeObserver', (['target', 'method', 'action'], {}), '(target, method, action)\n', (1707, 1731), False, 'from mojo.events import addObserver, removeObserver\n'), ((6961, 6999), 'mojo.events.removeObserver', 'removeObserver', (['self', '"""drawBackground"""'], {}), "(self, 'drawBackground')\n", (6975, 6999), False, 'from mojo.events import addObserver, removeObserver\n'), ((7008, 7044), 'mojo.events.removeObserver', 'removeObserver', (['self', '"""drawInactive"""'], {}), "(self, 'drawInactive')\n", (7022, 7044), False, 'from mojo.events import addObserver, removeObserver\n'), ((7053, 7088), 'mojo.events.removeObserver', 'removeObserver', (['self', '"""fontDidOpen"""'], {}), "(self, 'fontDidOpen')\n", (7067, 7088), False, 'from mojo.events import addObserver, removeObserver\n'), ((7097, 7134), 'mojo.events.removeObserver', 'removeObserver', (['self', '"""fontWillClose"""'], {}), "(self, 'fontWillClose')\n", (7111, 7134), False, 'from mojo.events import addObserver, removeObserver\n'), ((8552, 8628), 'mojo.extensions.getExtensionDefaultColor', 'getExtensionDefaultColor', (['self.DEFAULTKEY_FILLCOLOR', 'self.FALLBACK_FILLCOLOR'], {}), '(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR)\n', (8576, 8628), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((8656, 8741), 'mojo.extensions.getExtensionDefaultColor', 'getExtensionDefaultColor', (['self.DEFAULTKEY_STROKECOLOR', 'self.FALLBACK_STROKECOLOR'], {}), '(self.DEFAULTKEY_STROKECOLOR, self.FALLBACK_STROKECOLOR\n )\n', (8680, 8741), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((10443, 10519), 'mojo.extensions.getExtensionDefaultColor', 'getExtensionDefaultColor', (['self.DEFAULTKEY_FILLCOLOR', 'self.FALLBACK_FILLCOLOR'], {}), '(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR)\n', (10467, 10519), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((14710, 14757), 'mojo.extensions.getExtensionDefault', 'getExtensionDefault', (['self.DEFAULTKEY_FILL', '(True)'], {}), '(self.DEFAULTKEY_FILL, True)\n', (14729, 14757), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((14775, 14824), 'mojo.extensions.getExtensionDefault', 'getExtensionDefault', (['self.DEFAULTKEY_STROKE', '(True)'], {}), '(self.DEFAULTKEY_STROKE, True)\n', (14794, 14824), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((14845, 14921), 'mojo.extensions.getExtensionDefaultColor', 'getExtensionDefaultColor', (['self.DEFAULTKEY_FILLCOLOR', 'self.FALLBACK_FILLCOLOR'], {}), '(self.DEFAULTKEY_FILLCOLOR, self.FALLBACK_FILLCOLOR)\n', (14869, 14921), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((23033, 23099), 'mojo.extensions.setExtensionDefaultColor', 'setExtensionDefaultColor', (['self.DEFAULTKEY_FILLCOLOR', 'selectedColor'], {}), '(self.DEFAULTKEY_FILLCOLOR, selectedColor)\n', (23057, 23099), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((23108, 23174), 'mojo.extensions.setExtensionDefaultColor', 'setExtensionDefaultColor', (['self.DEFAULTKEY_STROKECOLOR', 'strokeColor'], {}), '(self.DEFAULTKEY_STROKECOLOR, strokeColor)\n', (23132, 23174), False, 'from mojo.extensions import getExtensionDefault, setExtensionDefault, getExtensionDefaultColor, setExtensionDefaultColor\n'), ((24133, 24157), 'mojo.UI.UpdateCurrentGlyphView', 'UpdateCurrentGlyphView', ([], {}), '()\n', (24155, 24157), False, 'from mojo.UI import UpdateCurrentGlyphView\n'), ((24268, 24322), 'defconAppKit.windows.baseWindow.BaseWindowController.windowCloseCallback', 'BaseWindowController.windowCloseCallback', (['self', 'sender'], {}), '(self, sender)\n', (24308, 24322), False, 'from defconAppKit.windows.baseWindow import BaseWindowController\n'), ((9087, 9096), 'builtins.chr', 'chr', (['(8634)'], {}), '(8634)\n', (9090, 9096), False, 'from builtins import chr\n'), ((2280, 2301), 'builtins.str', 'str', (['f.info.styleName'], {}), '(f.info.styleName)\n', (2283, 2301), False, 'from builtins import str\n'), ((2253, 2275), 'builtins.str', 'str', (['f.info.familyName'], {}), '(f.info.familyName)\n', (2256, 2275), False, 'from builtins import str\n'), ((14405, 14426), 'builtins.str', 'str', (['f.info.styleName'], {}), '(f.info.styleName)\n', (14408, 14426), False, 'from builtins import str\n'), ((19922, 19952), 'lib.tools.drawing.strokePixelPath', 'strokePixelPath', (['drawGlyphPath'], {}), '(drawGlyphPath)\n', (19937, 19952), False, 'from lib.tools.drawing import strokePixelPath\n'), ((14378, 14400), 'builtins.str', 'str', (['f.info.familyName'], {}), '(f.info.familyName)\n', (14381, 14400), False, 'from builtins import str\n'), ((20875, 20905), 'lib.tools.drawing.strokePixelPath', 'strokePixelPath', (['drawGlyphPath'], {}), '(drawGlyphPath)\n', (20890, 20905), False, 'from lib.tools.drawing import strokePixelPath\n')]
import requests import json import datetime import sys from dateutil.parser import parse as to_datetime try: import pandas as pd except: pass from pyteamup.utils.utilities import * from pyteamup.utils.constants import * from pyteamup.Event import Event class Calendar: def __init__(self, cal_id, api_key): self.__calendar_id = cal_id self.__api_key = api_key self.__cal_base = f'/{cal_id}' self.__token_str = f'?_teamup_token={self.api_key}' self.__subcalendars = None self.__valid_api = None self.__configuration = None self._base_url = BASE_URL + self.__cal_base self._event_collection_url = self._base_url + EVENTS_BASE + self.__token_str self._subcalendars_url = self._base_url + SUBCALENDARS_BASE + self.__token_str self._check_access_url = BASE_URL + CHECK_ACCESS_BASE + self.__token_str self.events_json = None if not self.valid_api: raise Exception(f'Invalid Api Key: {self.api_key}') def __str__(self): return self.calendar_id @property def api_key(self): return self.__api_key @property def calendar_id(self): return self.__calendar_id @property def valid_api(self): """Makes a request to the calendar to see if the api is valid""" if not self.__valid_api: req = requests.get(self._check_access_url) try: check_status_code(req.status_code) self.__valid_api = True except: self.__valid_api = False return self.__valid_api else: return None @property def configuration(self): if self.__configuration is None: print('Fetching configuration') req = requests.get(self._base_url + CONFIGURATION_BASE + self.__token_str) check_status_code(req.status_code) self.__configuration = json.loads(req.text)['configuration'] return self.__configuration @property def subcalendars(self): if not self.__subcalendars: print('Fetching Subcalendars') req = requests.get(self._subcalendars_url) check_status_code(req.status_code) self.__subcalendars = json.loads(req.text)['subcalendars'] return self.__subcalendars def clear_calendar_cache(self): self.__subcalendars = None self.__configuration = None def get_event_collection(self, start_dt=None, end_dt=None, subcal_id=None, returnas='events', markdown=False): """ Method allows bulk fetching of events that fall between the provided time frame. If None is provided then the current date -30 and +180 days is used. :param start_dt: if set as None then set as today minus 30 days :param end_dt: if left as None then set as today plus 180 days :param subcal_id: optional str or list-like if a different calendar should be queried :return: json of events """ if returnas not in ('events', 'dataframe', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') if start_dt is None: start_dt = datetime.date.today() - datetime.timedelta(30) if end_dt is None: end_dt = datetime.date.today() + datetime.timedelta(180) subcal_par = '' if subcal_id: if isinstance(subcal_id, (list, tuple)): for id in subcal_id: subcal_par += f'&subcalendarId[]={id}' else: subcal_par = f'&subcalendarId[]={subcal_id}' if markdown == True: para_markdown = '&format[]=markdown' else: para_markdown = '' parameters = f'&startDate={start_dt.strftime("%Y-%m-%d")}&endDate={end_dt.strftime("%Y-%m-%d")}' + subcal_par + para_markdown req = requests.get(self._event_collection_url + parameters) check_status_code(req.status_code) self.events_json = json.loads(req.text)['events'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in self.events_json] elif returnas == 'dataframe' and 'pandas' in sys.modules: return pd.DataFrame.from_records(self.events_json) else: return self.events_json def _create_event_from_json(self, payload): """ Lazy Creation of Event by passing a formatted payload""" resp = requests.post(self._event_collection_url, data=payload, headers=POST_HEADERS) try: check_status_code(resp.status_code) except: print(payload) print(resp.text) raise return resp.text def get_event(self, event_id, returnas='event'): if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + f'/{event_id}' + self.__token_str resp = requests.get(url) check_status_code(resp.status_code) event_dict = json.loads(resp.text)['event'] if returnas == 'event': return Event(self, **event_dict) elif returnas == 'series' and 'pandas' in sys.modules: return pd.Series(event_dict) else: return event_dict def get_subcalendar(self): raise NotImplementedError def search_events(self): raise NotImplementedError def get_changed_events(self, modified_since, returnas='event'): """ Get changed events since given unix time :param modified_since: <int> Unix timestamp, must be less than 30 days old :param returnas: <str> `event` `series` `dict` are valid options :return: Tuple of event list and returned timestamp """ if returnas not in ('event', 'series', 'dict'): raise TypeError('Returnas not recognized. Recognized values: event, series, dict') url = self._base_url + EVENTS_BASE + self.__token_str + '&modifiedSince=' + str(modified_since) resp = requests.get(url) check_status_code(resp.status_code) events_json = json.loads(resp.text)['events'] timestamp = json.loads(resp.text)['timestamp'] if returnas == 'events': return [Event(self, **event_dict) for event_dict in events_json], timestamp elif returnas == 'dataframe' and 'pandas' in sys.modules: return pd.DataFrame.from_records(events_json), timestamp else: return events_json, timestamp def new_event(self, title, start_dt, end_dt, subcalendar_ids, all_day=False, notes=None, location=None, who=None, remote_id=None, returnas='event'): """ Create a new event within a provided subcalendar. Can return as Event object, Series object, or Dictionary. Undo_id not included with return unless returnas='event' in which case it is included with the returned Event Object :param subcalendar_id: <str, int, or list-like> Required - the ID of the subcalendar within the calendar the event should be created in. :param title: <str> Title of the event, must be :param start_dt: <datetime> Start Datetime :param end_dt: <datetime> End Datetime :param all_day: <Bool> Allday or Not :param notes: <str> HTML or Markdown formatted string detailing the Description :param location: <str> Location of the event :param who: <str> :param remote_id: <str> Remote ID of the event, used to link the TeamUp event record to its source information :param returnas: <str> `event` `series` `dict` are valid options :return: """ if returnas not in ('event','dict','series'): raise ValueError(f'Unrecognized returnas paramter: {returnas}') if not isinstance(start_dt, datetime.datetime) or not isinstance(end_dt, datetime.datetime): try: start_dt = to_datetime(start_dt) end_dt = to_datetime(end_dt) except: raise ValueError('Parse failed, please pass all dates as a datetime object') if isinstance(subcalendar_ids, (str, int)): subcalendar_ids = [subcalendar_ids] if not isinstance(subcalendar_ids, (tuple, list)): raise ValueError(f'Unrecognized Type: Subcalendar_ids type: {type(subcalendar_ids)}') dict = {'remote_id': remote_id, 'title': title, 'subcalendar_ids': subcalendar_ids, 'start_dt': format_date(start_dt), 'end_dt': format_date(end_dt), 'all_day': all_day, 'notes': notes, 'location': location, 'who': who } resp_text = self._create_event_from_json(json.dumps(dict)) resp_dict = json.loads(resp_text) event_dict = resp_dict['event'] undo_id = resp_dict['undo_id'] if returnas == 'event': return Event(self, undo_id = undo_id, **event_dict) elif returnas == 'series' and 'pandas' in sys.modules: return pd.Series(event_dict) else: return event_dict
[ "pandas.DataFrame.from_records", "pandas.Series", "json.loads", "requests.post", "dateutil.parser.parse", "json.dumps", "pyteamup.Event.Event", "requests.get", "datetime.timedelta", "datetime.date.today" ]
[((3970, 4023), 'requests.get', 'requests.get', (['(self._event_collection_url + parameters)'], {}), '(self._event_collection_url + parameters)\n', (3982, 4023), False, 'import requests\n'), ((4553, 4630), 'requests.post', 'requests.post', (['self._event_collection_url'], {'data': 'payload', 'headers': 'POST_HEADERS'}), '(self._event_collection_url, data=payload, headers=POST_HEADERS)\n', (4566, 4630), False, 'import requests\n'), ((5107, 5124), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (5119, 5124), False, 'import requests\n'), ((6204, 6221), 'requests.get', 'requests.get', (['url'], {}), '(url)\n', (6216, 6221), False, 'import requests\n'), ((9021, 9042), 'json.loads', 'json.loads', (['resp_text'], {}), '(resp_text)\n', (9031, 9042), False, 'import json\n'), ((1391, 1427), 'requests.get', 'requests.get', (['self._check_access_url'], {}), '(self._check_access_url)\n', (1403, 1427), False, 'import requests\n'), ((1819, 1887), 'requests.get', 'requests.get', (['(self._base_url + CONFIGURATION_BASE + self.__token_str)'], {}), '(self._base_url + CONFIGURATION_BASE + self.__token_str)\n', (1831, 1887), False, 'import requests\n'), ((2184, 2220), 'requests.get', 'requests.get', (['self._subcalendars_url'], {}), '(self._subcalendars_url)\n', (2196, 2220), False, 'import requests\n'), ((4094, 4114), 'json.loads', 'json.loads', (['req.text'], {}), '(req.text)\n', (4104, 4114), False, 'import json\n'), ((5190, 5211), 'json.loads', 'json.loads', (['resp.text'], {}), '(resp.text)\n', (5200, 5211), False, 'import json\n'), ((5272, 5297), 'pyteamup.Event.Event', 'Event', (['self'], {}), '(self, **event_dict)\n', (5277, 5297), False, 'from pyteamup.Event import Event\n'), ((6288, 6309), 'json.loads', 'json.loads', (['resp.text'], {}), '(resp.text)\n', (6298, 6309), False, 'import json\n'), ((6340, 6361), 'json.loads', 'json.loads', (['resp.text'], {}), '(resp.text)\n', (6350, 6361), False, 'import json\n'), ((8983, 8999), 'json.dumps', 'json.dumps', (['dict'], {}), '(dict)\n', (8993, 8999), False, 'import json\n'), ((9174, 9216), 'pyteamup.Event.Event', 'Event', (['self'], {'undo_id': 'undo_id'}), '(self, undo_id=undo_id, **event_dict)\n', (9179, 9216), False, 'from pyteamup.Event import Event\n'), ((1970, 1990), 'json.loads', 'json.loads', (['req.text'], {}), '(req.text)\n', (1980, 1990), False, 'import json\n'), ((2302, 2322), 'json.loads', 'json.loads', (['req.text'], {}), '(req.text)\n', (2312, 2322), False, 'import json\n'), ((3267, 3288), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3286, 3288), False, 'import datetime\n'), ((3291, 3313), 'datetime.timedelta', 'datetime.timedelta', (['(30)'], {}), '(30)\n', (3309, 3313), False, 'import datetime\n'), ((3362, 3383), 'datetime.date.today', 'datetime.date.today', ([], {}), '()\n', (3381, 3383), False, 'import datetime\n'), ((3386, 3409), 'datetime.timedelta', 'datetime.timedelta', (['(180)'], {}), '(180)\n', (3404, 3409), False, 'import datetime\n'), ((4179, 4204), 'pyteamup.Event.Event', 'Event', (['self'], {}), '(self, **event_dict)\n', (4184, 4204), False, 'from pyteamup.Event import Event\n'), ((4326, 4369), 'pandas.DataFrame.from_records', 'pd.DataFrame.from_records', (['self.events_json'], {}), '(self.events_json)\n', (4351, 4369), True, 'import pandas as pd\n'), ((5380, 5401), 'pandas.Series', 'pd.Series', (['event_dict'], {}), '(event_dict)\n', (5389, 5401), True, 'import pandas as pd\n'), ((8122, 8143), 'dateutil.parser.parse', 'to_datetime', (['start_dt'], {}), '(start_dt)\n', (8133, 8143), True, 'from dateutil.parser import parse as to_datetime\n'), ((8169, 8188), 'dateutil.parser.parse', 'to_datetime', (['end_dt'], {}), '(end_dt)\n', (8180, 8188), True, 'from dateutil.parser import parse as to_datetime\n'), ((9301, 9322), 'pandas.Series', 'pd.Series', (['event_dict'], {}), '(event_dict)\n', (9310, 9322), True, 'import pandas as pd\n'), ((6429, 6454), 'pyteamup.Event.Event', 'Event', (['self'], {}), '(self, **event_dict)\n', (6434, 6454), False, 'from pyteamup.Event import Event\n'), ((6582, 6620), 'pandas.DataFrame.from_records', 'pd.DataFrame.from_records', (['events_json'], {}), '(events_json)\n', (6607, 6620), True, 'import pandas as pd\n')]
from django.conf.urls import patterns, include, url urlpatterns = patterns('reports.views', url(r'^index/*$', 'index'), url(r'^dashboard/*$', 'dashboard'), url(r'^$', 'index'), url(r'^detail/(?P<serial>[^/]+)$', 'detail'), url(r'^detailpkg/(?P<serial>[^/]+)/(?P<manifest_name>[^/]+)$', 'detail_pkg'), url(r'^detailmachine/(?P<serial>[^/]+)$', 'machine_detail'), url(r'^appleupdate/(?P<serial>[^/]+)$', 'appleupdate'), url(r'^raw/(?P<serial>[^/]+)$', 'raw'), url(r'^submit/(?P<submission_type>[^/]+)$', 'submit'), url(r'^warranty/(?P<serial>[^/]+)$', 'warranty'), # for compatibilty with MunkiReport scripts url(r'^ip$', 'lookup_ip'), url(r'^(?P<submission_type>[^/]+)$', 'submit'), )
[ "django.conf.urls.url" ]
[((97, 122), 'django.conf.urls.url', 'url', (['"""^index/*$"""', '"""index"""'], {}), "('^index/*$', 'index')\n", (100, 122), False, 'from django.conf.urls import patterns, include, url\n'), ((129, 162), 'django.conf.urls.url', 'url', (['"""^dashboard/*$"""', '"""dashboard"""'], {}), "('^dashboard/*$', 'dashboard')\n", (132, 162), False, 'from django.conf.urls import patterns, include, url\n'), ((169, 187), 'django.conf.urls.url', 'url', (['"""^$"""', '"""index"""'], {}), "('^$', 'index')\n", (172, 187), False, 'from django.conf.urls import patterns, include, url\n'), ((194, 237), 'django.conf.urls.url', 'url', (['"""^detail/(?P<serial>[^/]+)$"""', '"""detail"""'], {}), "('^detail/(?P<serial>[^/]+)$', 'detail')\n", (197, 237), False, 'from django.conf.urls import patterns, include, url\n'), ((244, 319), 'django.conf.urls.url', 'url', (['"""^detailpkg/(?P<serial>[^/]+)/(?P<manifest_name>[^/]+)$"""', '"""detail_pkg"""'], {}), "('^detailpkg/(?P<serial>[^/]+)/(?P<manifest_name>[^/]+)$', 'detail_pkg')\n", (247, 319), False, 'from django.conf.urls import patterns, include, url\n'), ((326, 384), 'django.conf.urls.url', 'url', (['"""^detailmachine/(?P<serial>[^/]+)$"""', '"""machine_detail"""'], {}), "('^detailmachine/(?P<serial>[^/]+)$', 'machine_detail')\n", (329, 384), False, 'from django.conf.urls import patterns, include, url\n'), ((391, 444), 'django.conf.urls.url', 'url', (['"""^appleupdate/(?P<serial>[^/]+)$"""', '"""appleupdate"""'], {}), "('^appleupdate/(?P<serial>[^/]+)$', 'appleupdate')\n", (394, 444), False, 'from django.conf.urls import patterns, include, url\n'), ((451, 488), 'django.conf.urls.url', 'url', (['"""^raw/(?P<serial>[^/]+)$"""', '"""raw"""'], {}), "('^raw/(?P<serial>[^/]+)$', 'raw')\n", (454, 488), False, 'from django.conf.urls import patterns, include, url\n'), ((495, 547), 'django.conf.urls.url', 'url', (['"""^submit/(?P<submission_type>[^/]+)$"""', '"""submit"""'], {}), "('^submit/(?P<submission_type>[^/]+)$', 'submit')\n", (498, 547), False, 'from django.conf.urls import patterns, include, url\n'), ((554, 601), 'django.conf.urls.url', 'url', (['"""^warranty/(?P<serial>[^/]+)$"""', '"""warranty"""'], {}), "('^warranty/(?P<serial>[^/]+)$', 'warranty')\n", (557, 601), False, 'from django.conf.urls import patterns, include, url\n'), ((660, 684), 'django.conf.urls.url', 'url', (['"""^ip$"""', '"""lookup_ip"""'], {}), "('^ip$', 'lookup_ip')\n", (663, 684), False, 'from django.conf.urls import patterns, include, url\n'), ((691, 736), 'django.conf.urls.url', 'url', (['"""^(?P<submission_type>[^/]+)$"""', '"""submit"""'], {}), "('^(?P<submission_type>[^/]+)$', 'submit')\n", (694, 736), False, 'from django.conf.urls import patterns, include, url\n')]
#!/usr/bin/env python # -*- coding: utf-8 -*- import time import multiprocessing import pytest import socket import signal import os import logging try: from urllib2 import URLError, urlopen except ImportError: from urllib.error import URLError from urllib.request import urlopen from flask import _request_ctx_stack @pytest.yield_fixture def client(app): """A Flask test client. An instance of :class:`flask.testing.TestClient` by default. """ with app.test_client() as client: yield client @pytest.fixture def client_class(request, client): """Uses to set a ``client`` class attribute to current Flask test client:: @pytest.mark.usefixtures('client_class') class TestView: def login(self, email, password): credentials = {'email': email, 'password': password} return self.client.post(url_for('login'), data=credentials) def test_login(self): assert self.login('<EMAIL>', 'pass').status_code == 200 """ if request.cls is not None: request.cls.client = client class LiveServer(object): """The helper class uses to manage live server. Handles creation and stopping application in a separate process. :param app: The application to run. :param host: The host where to listen (default localhost). :param port: The port to run application. """ def __init__(self, app, host, port, clean_stop=False): self.app = app self.port = port self.host = host self.clean_stop = clean_stop self._process = None def start(self): """Start application in a separate process.""" def worker(app, host, port): app.run(host=host, port=port, use_reloader=False, threaded=True) self._process = multiprocessing.Process( target=worker, args=(self.app, self.host, self.port) ) self._process.start() # We must wait for the server to start listening with a maximum # timeout of 5 seconds. timeout = 5 while timeout > 0: time.sleep(1) try: urlopen(self.url()) timeout = 0 except URLError: timeout -= 1 def url(self, url=''): """Returns the complete url based on server options.""" return 'http://%s:%d%s' % (self.host, self.port, url) def stop(self): """Stop application process.""" if self._process: if self.clean_stop and self._stop_cleanly(): return if self._process.is_alive(): # If it's still alive, kill it self._process.terminate() def _stop_cleanly(self, timeout=5): """Attempts to stop the server cleanly by sending a SIGINT signal and waiting for ``timeout`` seconds. :return: True if the server was cleanly stopped, False otherwise. """ try: os.kill(self._process.pid, signal.SIGINT) self._process.join(timeout) return True except Exception as ex: logging.error('Failed to join the live server process: %r', ex) return False def __repr__(self): return '<LiveServer listening at %s>' % self.url() def _rewrite_server_name(server_name, new_port): """Rewrite server port in ``server_name`` with ``new_port`` value.""" sep = ':' if sep in server_name: server_name, port = server_name.split(sep, 1) return sep.join((server_name, new_port)) @pytest.fixture(scope='function') def live_server(request, app, monkeypatch, pytestconfig): """Run application in a separate process. When the ``live_server`` fixture is applied, the ``url_for`` function works as expected:: def test_server_is_up_and_running(live_server): index_url = url_for('index', _external=True) assert index_url == 'http://localhost:5000/' res = urllib2.urlopen(index_url) assert res.code == 200 """ port = pytestconfig.getvalue('live_server_port') if port == 0: # Bind to an open port s = socket.socket(socket.AF_INET, socket.SOCK_STREAM) s.bind(('', 0)) port = s.getsockname()[1] s.close() host = pytestconfig.getvalue('live_server_host') # Explicitly set application ``SERVER_NAME`` for test suite # and restore original value on test teardown. server_name = app.config['SERVER_NAME'] or 'localhost' monkeypatch.setitem(app.config, 'SERVER_NAME', _rewrite_server_name(server_name, str(port))) clean_stop = request.config.getvalue('live_server_clean_stop') server = LiveServer(app, host, port, clean_stop) if request.config.getvalue('start_live_server'): server.start() request.addfinalizer(server.stop) return server @pytest.fixture def config(app): """An application config.""" return app.config @pytest.fixture def request_ctx(app): """The request context which contains all request relevant information, e.g. `session`, `g`, `flashes`, etc. """ return _request_ctx_stack.top @pytest.fixture(params=['application/json', 'text/html']) def mimetype(request): return request.param def _make_accept_header(mimetype): return [('Accept', mimetype)] @pytest.fixture def accept_mimetype(mimetype): return _make_accept_header(mimetype) @pytest.fixture def accept_json(request): return _make_accept_header('application/json') @pytest.fixture def accept_jsonp(): return _make_accept_header('application/json-p') @pytest.fixture(params=['*', '*/*']) def accept_any(request): return _make_accept_header(request.param)
[ "os.kill", "socket.socket", "multiprocessing.Process", "time.sleep", "pytest.fixture", "logging.error" ]
[((3608, 3640), 'pytest.fixture', 'pytest.fixture', ([], {'scope': '"""function"""'}), "(scope='function')\n", (3622, 3640), False, 'import pytest\n'), ((5242, 5298), 'pytest.fixture', 'pytest.fixture', ([], {'params': "['application/json', 'text/html']"}), "(params=['application/json', 'text/html'])\n", (5256, 5298), False, 'import pytest\n'), ((5697, 5732), 'pytest.fixture', 'pytest.fixture', ([], {'params': "['*', '*/*']"}), "(params=['*', '*/*'])\n", (5711, 5732), False, 'import pytest\n'), ((1835, 1912), 'multiprocessing.Process', 'multiprocessing.Process', ([], {'target': 'worker', 'args': '(self.app, self.host, self.port)'}), '(target=worker, args=(self.app, self.host, self.port))\n', (1858, 1912), False, 'import multiprocessing\n'), ((4220, 4269), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (4233, 4269), False, 'import socket\n'), ((2141, 2154), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (2151, 2154), False, 'import time\n'), ((3017, 3058), 'os.kill', 'os.kill', (['self._process.pid', 'signal.SIGINT'], {}), '(self._process.pid, signal.SIGINT)\n', (3024, 3058), False, 'import os\n'), ((3167, 3230), 'logging.error', 'logging.error', (['"""Failed to join the live server process: %r"""', 'ex'], {}), "('Failed to join the live server process: %r', ex)\n", (3180, 3230), False, 'import logging\n')]
from .exceptions import ( ServerResponseError, InternalServerError, NonXMLResponseError, EndpointUnavailableError, ) from functools import wraps from xml.etree.ElementTree import ParseError from ..query import QuerySet import logging try: from distutils2.version import NormalizedVersion as Version except ImportError: from distutils.version import LooseVersion as Version logger = logging.getLogger("tableau.endpoint") Success_codes = [200, 201, 202, 204] class Endpoint(object): def __init__(self, parent_srv): self.parent_srv = parent_srv @staticmethod def _make_common_headers(auth_token, content_type): headers = {} if auth_token is not None: headers["x-tableau-auth"] = auth_token if content_type is not None: headers["content-type"] = content_type return headers @staticmethod def _safe_to_log(server_response): """Checks if the server_response content is not xml (eg binary image or zip) and replaces it with a constant """ ALLOWED_CONTENT_TYPES = ("application/xml", "application/xml;charset=utf-8") if server_response.headers.get("Content-Type", None) not in ALLOWED_CONTENT_TYPES: return "[Truncated File Contents]" else: return server_response.content def _make_request( self, method, url, content=None, auth_token=None, content_type=None, parameters=None, ): parameters = parameters or {} parameters.update(self.parent_srv.http_options) parameters["headers"] = Endpoint._make_common_headers(auth_token, content_type) if content is not None: parameters["data"] = content logger.debug(u"request {}, url: {}".format(method.__name__, url)) if content: logger.debug(u"request content: {}".format(content[:1000])) server_response = method(url, **parameters) self.parent_srv._namespace.detect(server_response.content) self._check_status(server_response) # This check is to determine if the response is a text response (xml or otherwise) # so that we do not attempt to log bytes and other binary data. if len(server_response.content) > 0 and server_response.encoding: logger.debug( u"Server response from {0}:\n\t{1}".format( url, server_response.content.decode(server_response.encoding) ) ) return server_response def _check_status(self, server_response): if server_response.status_code >= 500: raise InternalServerError(server_response) elif server_response.status_code not in Success_codes: try: raise ServerResponseError.from_response(server_response.content, self.parent_srv.namespace) except ParseError: # This will happen if we get a non-success HTTP code that # doesn't return an xml error object (like metadata endpoints) # we convert this to a better exception and pass through the raw # response body raise NonXMLResponseError(server_response.content) except Exception: # anything else re-raise here raise def get_unauthenticated_request(self, url): return self._make_request(self.parent_srv.session.get, url) def get_request(self, url, request_object=None, parameters=None): if request_object is not None: try: # Query param delimiters don't need to be encoded for versions before 3.7 (2020.1) self.parent_srv.assert_at_least_version("3.7") parameters = parameters or {} parameters["params"] = request_object.get_query_params() except EndpointUnavailableError: url = request_object.apply_query_params(url) return self._make_request( self.parent_srv.session.get, url, auth_token=self.parent_srv.auth_token, parameters=parameters, ) def delete_request(self, url): # We don't return anything for a delete self._make_request(self.parent_srv.session.delete, url, auth_token=self.parent_srv.auth_token) def put_request(self, url, xml_request=None, content_type="text/xml"): return self._make_request( self.parent_srv.session.put, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def post_request(self, url, xml_request, content_type="text/xml"): return self._make_request( self.parent_srv.session.post, url, content=xml_request, auth_token=self.parent_srv.auth_token, content_type=content_type, ) def api(version): """Annotate the minimum supported version for an endpoint. Checks the version on the server object and compares normalized versions. It will raise an exception if the server version is > the version specified. Args: `version` minimum version that supports the endpoint. String. Raises: EndpointUnavailableError Returns: None Example: >>> @api(version="2.3") >>> def get(self, req_options=None): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): self.parent_srv.assert_at_least_version(version) return func(self, *args, **kwargs) return wrapper return _decorator def parameter_added_in(**params): """Annotate minimum versions for new parameters or request options on an endpoint. The api decorator documents when an endpoint was added, this decorator annotates keyword arguments on endpoints that may control functionality added after an endpoint was introduced. The REST API will ignore invalid parameters in most cases, so this raises a warning instead of throwing an exception. Args: Key/value pairs of the form `parameter`=`version`. Kwargs. Raises: UserWarning Returns: None Example: >>> @api(version="2.0") >>> @parameter_added_in(no_extract='2.5') >>> def download(self, workbook_id, filepath=None, extract_only=False): >>> ... """ def _decorator(func): @wraps(func) def wrapper(self, *args, **kwargs): import warnings server_ver = Version(self.parent_srv.version or "0.0") params_to_check = set(params) & set(kwargs) for p in params_to_check: min_ver = Version(str(params[p])) if server_ver < min_ver: error = "{!r} not available in {}, it will be ignored. Added in {}".format(p, server_ver, min_ver) warnings.warn(error) return func(self, *args, **kwargs) return wrapper return _decorator class QuerysetEndpoint(Endpoint): @api(version="2.0") def all(self, *args, **kwargs): queryset = QuerySet(self) return queryset @api(version="2.0") def filter(self, *args, **kwargs): queryset = QuerySet(self).filter(**kwargs) return queryset @api(version="2.0") def order_by(self, *args, **kwargs): queryset = QuerySet(self).order_by(*args) return queryset @api(version="2.0") def paginate(self, **kwargs): queryset = QuerySet(self).paginate(**kwargs) return queryset
[ "logging.getLogger", "distutils.version.LooseVersion", "warnings.warn", "functools.wraps" ]
[((408, 445), 'logging.getLogger', 'logging.getLogger', (['"""tableau.endpoint"""'], {}), "('tableau.endpoint')\n", (425, 445), False, 'import logging\n'), ((5527, 5538), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (5532, 5538), False, 'from functools import wraps\n'), ((6540, 6551), 'functools.wraps', 'wraps', (['func'], {}), '(func)\n', (6545, 6551), False, 'from functools import wraps\n'), ((6650, 6691), 'distutils.version.LooseVersion', 'Version', (["(self.parent_srv.version or '0.0')"], {}), "(self.parent_srv.version or '0.0')\n", (6657, 6691), True, 'from distutils.version import LooseVersion as Version\n'), ((7016, 7036), 'warnings.warn', 'warnings.warn', (['error'], {}), '(error)\n', (7029, 7036), False, 'import warnings\n')]
import unittest from freeplane_importer.importer import Importer from mock import Mock from mock import MagicMock from mock import call from freeplane_importer.model_not_found_exception import ModelNotFoundException class TestImporter(unittest.TestCase): def setUp(self): self.mock_collection = Mock() self.mock_model = MagicMock() self.mock_collection.models.byName.return_value = self.mock_model self.mock_note = MagicMock() self.mock_note.model.return_value = self.mock_model self.mock_collection.newNote.return_value = self.mock_note self.mock_collection.models.fieldNames.return_value = [] self.importer = Importer(self.mock_collection) self.mock_collection.db.scalar.return_value = None self.note = { 'id': 100, 'deck': 'History', 'model': 'Basic', 'fields': {} } def test_it_should_initialise_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.setCurrent.assert_called_with( self.mock_model) def test_it_should_select_the_correct_deck(self): self.mock_collection.decks.id.return_value = 100 self.importer = Importer(self.mock_collection) self.importer.import_note(self.note) self.mock_model.__setitem__.assert_called_with('did', 100) self.mock_collection.decks.id.assert_called_with('History') def test_it_should_find_the_correct_model(self): self.importer.import_note(self.note) self.mock_collection.models.byName.assert_called_with('Basic') def test_it_should_return_true_if_note_was_added_successfully(self): self.assertTrue(self.importer.import_note(self.note)) def test_it_should_raise_a_no_model_exception_if_the_model_does_not_exist(self): self.mock_collection.models.byName.return_value = None self.assertRaises(ModelNotFoundException, self.importer.import_note, self.note) def test_it_should_create_a_new_note(self): self.importer.import_note(self.note) self.mock_collection.newNote.assert_called_with() def test_it_should_get_the_field_names_from_the_model(self): self.importer.import_note(self.note) self.mock_collection.models.fieldNames.assert_called_with( self.mock_model) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_lowercase(self): self.mock_collection.models.fieldNames.return_value = ['id'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('id', 100) def test_it_should_save_the_node_id_if_the_first_field_is_named_id_in_uppercase(self): self.mock_collection.models.fieldNames.return_value = ['ID'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_called_with('ID', 100) def test_it_should_populate_the_note_with_the_field_values(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front', 'Back'] self.importer.import_note(self.note) self.mock_note.__setitem__.assert_has_calls( [call('Front', 'Front value'), call('Back', 'Back value')]) def test_it_should_ignore_fields_that_do_not_exist_in_the_model(self): self.note['fields'] = { 'Front': 'Front value', 'Back': 'Back value' } self.mock_collection.models.fieldNames.return_value = ['Front'] self.importer.import_note(self.note) self.assertFalse('Back' in self.mock_note) def test_it_should_save_the_note_changes(self): self.importer.import_note(self.note) self.mock_note.flush.assert_called_with() def test_it_should_attempt_to_find_an_existing_note_with_the_given_node_id(self): self.mock_collection.getNote.return_value = self.mock_note self.mock_collection.db.scalar.return_value = 123 self.importer.import_note(self.note) self.mock_collection.getNote.assert_called_with(123) def test_it_should_add_the_note_to_the_collection_if_it_is_new(self): del self.mock_note.mod self.importer.import_note(self.note) self.mock_collection.addNote.assert_called_with(self.mock_note) def test_it_should_not_add_the_note_to_the_collection_if_it_is_not_new(self): self.importer.import_note(self.note) self.assertEqual(0, self.mock_collection.addNote.call_count)
[ "mock.Mock", "mock.call", "mock.MagicMock", "freeplane_importer.importer.Importer" ]
[((311, 317), 'mock.Mock', 'Mock', ([], {}), '()\n', (315, 317), False, 'from mock import Mock\n'), ((345, 356), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (354, 356), False, 'from mock import MagicMock\n'), ((457, 468), 'mock.MagicMock', 'MagicMock', ([], {}), '()\n', (466, 468), False, 'from mock import MagicMock\n'), ((687, 717), 'freeplane_importer.importer.Importer', 'Importer', (['self.mock_collection'], {}), '(self.mock_collection)\n', (695, 717), False, 'from freeplane_importer.importer import Importer\n'), ((1257, 1287), 'freeplane_importer.importer.Importer', 'Importer', (['self.mock_collection'], {}), '(self.mock_collection)\n', (1265, 1287), False, 'from freeplane_importer.importer import Importer\n'), ((3315, 3343), 'mock.call', 'call', (['"""Front"""', '"""Front value"""'], {}), "('Front', 'Front value')\n", (3319, 3343), False, 'from mock import call\n'), ((3345, 3371), 'mock.call', 'call', (['"""Back"""', '"""Back value"""'], {}), "('Back', 'Back value')\n", (3349, 3371), False, 'from mock import call\n')]
import argparse import numpy as np from scipy.stats import linregress import matplotlib.pyplot as plt parser = argparse.ArgumentParser() parser.add_argument("--plot", action="store_const", default=False, const=True) args = parser.parse_args() data = np.loadtxt("../data/data.csv", skiprows=1, usecols=list(range(1,8)), delimiter=",")[33:,:] xdays = data[:,0] - np.mean(data[:,0]) deaths = data[:,-1] print(xdays, deaths) logdeaths = np.log(deaths) slope, offset, rval, pval, stderr = linregress(xdays, logdeaths) stderr = np.sqrt(np.sum((logdeaths-(slope*logdeaths+offset))**2) / (len(logdeaths)-2.)) / np.sqrt(np.sum((xdays - np.mean(xdays))**2)) if args.plot: plt.plot(xdays, np.exp(offset + slope*xdays), 'C0-') plt.plot(xdays, np.exp(offset + (slope+stderr)*xdays), 'C0--') plt.plot(xdays, np.exp(offset + (slope-stderr)*xdays), 'C0--') plt.plot(xdays, deaths, 'C0o') plt.gca().set_yscale("log") plt.show() print("Slope: %.3e" % slope) print("Doubling every: %.2f" % (np.log(2)/slope)) print("R-squared: %.3f" % (rval*rval)) print("Stderr: %.3e" % stderr)
[ "scipy.stats.linregress", "numpy.mean", "argparse.ArgumentParser", "matplotlib.pyplot.gca", "numpy.log", "matplotlib.pyplot.plot", "numpy.exp", "numpy.sum", "matplotlib.pyplot.show" ]
[((112, 137), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {}), '()\n', (135, 137), False, 'import argparse\n'), ((435, 449), 'numpy.log', 'np.log', (['deaths'], {}), '(deaths)\n', (441, 449), True, 'import numpy as np\n'), ((487, 515), 'scipy.stats.linregress', 'linregress', (['xdays', 'logdeaths'], {}), '(xdays, logdeaths)\n', (497, 515), False, 'from scipy.stats import linregress\n'), ((363, 382), 'numpy.mean', 'np.mean', (['data[:, 0]'], {}), '(data[:, 0])\n', (370, 382), True, 'import numpy as np\n'), ((861, 891), 'matplotlib.pyplot.plot', 'plt.plot', (['xdays', 'deaths', '"""C0o"""'], {}), "(xdays, deaths, 'C0o')\n", (869, 891), True, 'import matplotlib.pyplot as plt\n'), ((928, 938), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (936, 938), True, 'import matplotlib.pyplot as plt\n'), ((686, 716), 'numpy.exp', 'np.exp', (['(offset + slope * xdays)'], {}), '(offset + slope * xdays)\n', (692, 716), True, 'import numpy as np\n'), ((743, 784), 'numpy.exp', 'np.exp', (['(offset + (slope + stderr) * xdays)'], {}), '(offset + (slope + stderr) * xdays)\n', (749, 784), True, 'import numpy as np\n'), ((810, 851), 'numpy.exp', 'np.exp', (['(offset + (slope - stderr) * xdays)'], {}), '(offset + (slope - stderr) * xdays)\n', (816, 851), True, 'import numpy as np\n'), ((533, 588), 'numpy.sum', 'np.sum', (['((logdeaths - (slope * logdeaths + offset)) ** 2)'], {}), '((logdeaths - (slope * logdeaths + offset)) ** 2)\n', (539, 588), True, 'import numpy as np\n'), ((896, 905), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (903, 905), True, 'import matplotlib.pyplot as plt\n'), ((1001, 1010), 'numpy.log', 'np.log', (['(2)'], {}), '(2)\n', (1007, 1010), True, 'import numpy as np\n'), ((630, 644), 'numpy.mean', 'np.mean', (['xdays'], {}), '(xdays)\n', (637, 644), True, 'import numpy as np\n')]
import sys import os import re import json import pickle import tempfile import itertools import contextlib import xml.etree.cElementTree as cET from copy import deepcopy from xml.etree import ElementTree as ET from pprint import pformat from .constants import ( MARKER_COLOR, MARKER_DURATION, MARKER_NAME, COLOR_MAP, MARKER_PUBLISH_DEFAULT ) import openpype.api as openpype log = openpype.Logger.get_logger(__name__) FRAME_PATTERN = re.compile(r"[\._](\d+)[\.]") class CTX: # singleton used for passing data between api modules app_framework = None flame_apps = [] selection = None @contextlib.contextmanager def io_preferences_file(klass, filepath, write=False): try: flag = "w" if write else "r" yield open(filepath, flag) except IOError as _error: klass.log.info("Unable to work with preferences `{}`: {}".format( filepath, _error)) class FlameAppFramework(object): # flameAppFramework class takes care of preferences class prefs_dict(dict): def __init__(self, master, name, **kwargs): self.name = name self.master = master if not self.master.get(self.name): self.master[self.name] = {} self.master[self.name].__init__() def __getitem__(self, k): return self.master[self.name].__getitem__(k) def __setitem__(self, k, v): return self.master[self.name].__setitem__(k, v) def __delitem__(self, k): return self.master[self.name].__delitem__(k) def get(self, k, default=None): return self.master[self.name].get(k, default) def setdefault(self, k, default=None): return self.master[self.name].setdefault(k, default) def pop(self, *args, **kwargs): return self.master[self.name].pop(*args, **kwargs) def update(self, mapping=(), **kwargs): self.master[self.name].update(mapping, **kwargs) def __contains__(self, k): return self.master[self.name].__contains__(k) def copy(self): # don"t delegate w/ super - dict.copy() -> dict :( return type(self)(self) def keys(self): return self.master[self.name].keys() @classmethod def fromkeys(cls, keys, v=None): return cls.master[cls.name].fromkeys(keys, v) def __repr__(self): return "{0}({1})".format( type(self).__name__, self.master[self.name].__repr__()) def master_keys(self): return self.master.keys() def __init__(self): self.name = self.__class__.__name__ self.bundle_name = "OpenPypeFlame" # self.prefs scope is limited to flame project and user self.prefs = {} self.prefs_user = {} self.prefs_global = {} self.log = log try: import flame self.flame = flame self.flame_project_name = self.flame.project.current_project.name self.flame_user_name = flame.users.current_user.name except Exception: self.flame = None self.flame_project_name = None self.flame_user_name = None import socket self.hostname = socket.gethostname() if sys.platform == "darwin": self.prefs_folder = os.path.join( os.path.expanduser("~"), "Library", "Caches", "OpenPype", self.bundle_name ) elif sys.platform.startswith("linux"): self.prefs_folder = os.path.join( os.path.expanduser("~"), ".OpenPype", self.bundle_name) self.prefs_folder = os.path.join( self.prefs_folder, self.hostname, ) self.log.info("[{}] waking up".format(self.__class__.__name__)) try: self.load_prefs() except RuntimeError: self.save_prefs() # menu auto-refresh defaults if not self.prefs_global.get("menu_auto_refresh"): self.prefs_global["menu_auto_refresh"] = { "media_panel": True, "batch": True, "main_menu": True, "timeline_menu": True } self.apps = [] def get_pref_file_paths(self): prefix = self.prefs_folder + os.path.sep + self.bundle_name prefs_file_path = "_".join([ prefix, self.flame_user_name, self.flame_project_name]) + ".prefs" prefs_user_file_path = "_".join([ prefix, self.flame_user_name]) + ".prefs" prefs_global_file_path = prefix + ".prefs" return (prefs_file_path, prefs_user_file_path, prefs_global_file_path) def load_prefs(self): (proj_pref_path, user_pref_path, glob_pref_path) = self.get_pref_file_paths() with io_preferences_file(self, proj_pref_path) as prefs_file: self.prefs = pickle.load(prefs_file) self.log.info( "Project - preferences contents:\n{}".format( pformat(self.prefs) )) with io_preferences_file(self, user_pref_path) as prefs_file: self.prefs_user = pickle.load(prefs_file) self.log.info( "User - preferences contents:\n{}".format( pformat(self.prefs_user) )) with io_preferences_file(self, glob_pref_path) as prefs_file: self.prefs_global = pickle.load(prefs_file) self.log.info( "Global - preferences contents:\n{}".format( pformat(self.prefs_global) )) return True def save_prefs(self): # make sure the preference folder is available if not os.path.isdir(self.prefs_folder): try: os.makedirs(self.prefs_folder) except Exception: self.log.info("Unable to create folder {}".format( self.prefs_folder)) return False # get all pref file paths (proj_pref_path, user_pref_path, glob_pref_path) = self.get_pref_file_paths() with io_preferences_file(self, proj_pref_path, True) as prefs_file: pickle.dump(self.prefs, prefs_file) self.log.info( "Project - preferences contents:\n{}".format( pformat(self.prefs) )) with io_preferences_file(self, user_pref_path, True) as prefs_file: pickle.dump(self.prefs_user, prefs_file) self.log.info( "User - preferences contents:\n{}".format( pformat(self.prefs_user) )) with io_preferences_file(self, glob_pref_path, True) as prefs_file: pickle.dump(self.prefs_global, prefs_file) self.log.info( "Global - preferences contents:\n{}".format( pformat(self.prefs_global) )) return True def get_current_project(): import flame return flame.project.current_project def get_current_sequence(selection): import flame def segment_to_sequence(_segment): track = _segment.parent version = track.parent return version.parent process_timeline = None if len(selection) == 1: if isinstance(selection[0], flame.PySequence): process_timeline = selection[0] if isinstance(selection[0], flame.PySegment): process_timeline = segment_to_sequence(selection[0]) else: for segment in selection: if isinstance(segment, flame.PySegment): process_timeline = segment_to_sequence(segment) break return process_timeline def rescan_hooks(): import flame try: flame.execute_shortcut('Rescan Python Hooks') except Exception: pass def get_metadata(project_name, _log=None): # TODO: can be replaced by MediaInfoFile class method from adsk.libwiretapPythonClientAPI import ( WireTapClient, WireTapServerHandle, WireTapNodeHandle, WireTapStr ) class GetProjectColorPolicy(object): def __init__(self, host_name=None, _log=None): # Create a connection to the Backburner manager using the Wiretap # python API. # self.log = _log or log self.host_name = host_name or "localhost" self._wiretap_client = WireTapClient() if not self._wiretap_client.init(): raise Exception("Could not initialize Wiretap Client") self._server = WireTapServerHandle( "{}:IFFFS".format(self.host_name)) def process(self, project_name): policy_node_handle = WireTapNodeHandle( self._server, "/projects/{}/syncolor/policy".format(project_name) ) self.log.info(policy_node_handle) policy = WireTapStr() if not policy_node_handle.getNodeTypeStr(policy): self.log.warning( "Could not retrieve policy of '%s': %s" % ( policy_node_handle.getNodeId().id(), policy_node_handle.lastError() ) ) return policy.c_str() policy_wiretap = GetProjectColorPolicy(_log=_log) return policy_wiretap.process(project_name) def get_segment_data_marker(segment, with_marker=None): """ Get openpype track item tag created by creator or loader plugin. Attributes: segment (flame.PySegment): flame api object with_marker (bool)[optional]: if true it will return also marker object Returns: dict: openpype tag data Returns(with_marker=True): flame.PyMarker, dict """ for marker in segment.markers: comment = marker.comment.get_value() color = marker.colour.get_value() name = marker.name.get_value() if (name == MARKER_NAME) and ( color == COLOR_MAP[MARKER_COLOR]): if not with_marker: return json.loads(comment) else: return marker, json.loads(comment) def set_segment_data_marker(segment, data=None): """ Set openpype track item tag to input segment. Attributes: segment (flame.PySegment): flame api object Returns: dict: json loaded data """ data = data or dict() marker_data = get_segment_data_marker(segment, True) if marker_data: # get available openpype tag if any marker, tag_data = marker_data # update tag data with new data tag_data.update(data) # update marker with tag data marker.comment = json.dumps(tag_data) else: # update tag data with new data marker = create_segment_data_marker(segment) # add tag data to marker's comment marker.comment = json.dumps(data) def set_publish_attribute(segment, value): """ Set Publish attribute in input Tag object Attribute: segment (flame.PySegment)): flame api object value (bool): True or False """ tag_data = get_segment_data_marker(segment) tag_data["publish"] = value # set data to the publish attribute set_segment_data_marker(segment, tag_data) def get_publish_attribute(segment): """ Get Publish attribute from input Tag object Attribute: segment (flame.PySegment)): flame api object Returns: bool: True or False """ tag_data = get_segment_data_marker(segment) if not tag_data: set_publish_attribute(segment, MARKER_PUBLISH_DEFAULT) return MARKER_PUBLISH_DEFAULT return tag_data["publish"] def create_segment_data_marker(segment): """ Create openpype marker on a segment. Attributes: segment (flame.PySegment): flame api object Returns: flame.PyMarker: flame api object """ # get duration of segment duration = segment.record_duration.relative_frame # calculate start frame of the new marker start_frame = int(segment.record_in.relative_frame) + int(duration / 2) # create marker marker = segment.create_marker(start_frame) # set marker name marker.name = MARKER_NAME # set duration marker.duration = MARKER_DURATION # set colour marker.colour = COLOR_MAP[MARKER_COLOR] # Red return marker def get_sequence_segments(sequence, selected=False): segments = [] # loop versions in sequence for ver in sequence.versions: # loop track in versions for track in ver.tracks: # ignore all empty tracks and hidden too if len(track.segments) == 0 and track.hidden: continue # loop all segment in remaining tracks for segment in track.segments: if segment.name.get_value() == "": continue if segment.hidden.get_value() is True: continue if ( selected is True and segment.selected.get_value() is not True ): continue # add it to original selection segments.append(segment) return segments @contextlib.contextmanager def maintained_segment_selection(sequence): """Maintain selection during context Attributes: sequence (flame.PySequence): python api object Yield: list of flame.PySegment Example: >>> with maintained_segment_selection(sequence) as selected_segments: ... for segment in selected_segments: ... segment.selected = False >>> print(segment.selected) True """ selected_segments = get_sequence_segments(sequence, True) try: # do the operation on selected segments yield selected_segments finally: # reset all selected clips reset_segment_selection(sequence) # select only original selection of segments for segment in selected_segments: segment.selected = True def reset_segment_selection(sequence): """Deselect all selected nodes """ for ver in sequence.versions: for track in ver.tracks: if len(track.segments) == 0 and track.hidden: continue for segment in track.segments: segment.selected = False def _get_shot_tokens_values(clip, tokens): old_value = None output = {} if not clip.shot_name: return output old_value = clip.shot_name.get_value() for token in tokens: clip.shot_name.set_value(token) _key = str(re.sub("[<>]", "", token)).replace(" ", "_") try: output[_key] = int(clip.shot_name.get_value()) except ValueError: output[_key] = clip.shot_name.get_value() clip.shot_name.set_value(old_value) return output def get_segment_attributes(segment): if segment.name.get_value() == "": return None # Add timeline segment to tree clip_data = { "shot_name": segment.shot_name.get_value(), "segment_name": segment.name.get_value(), "segment_comment": segment.comment.get_value(), "tape_name": segment.tape_name, "source_name": segment.source_name, "fpath": segment.file_path, "PySegment": segment } # head and tail with forward compatibility if segment.head: # `infinite` can be also returned if isinstance(segment.head, str): clip_data["segment_head"] = 0 else: clip_data["segment_head"] = int(segment.head) if segment.tail: # `infinite` can be also returned if isinstance(segment.tail, str): clip_data["segment_tail"] = 0 else: clip_data["segment_tail"] = int(segment.tail) # add all available shot tokens shot_tokens = _get_shot_tokens_values(segment, [ "<colour space>", "<width>", "<height>", "<depth>", "<segment>", "<track>", "<track name>" ]) clip_data.update(shot_tokens) # populate shot source metadata segment_attrs = [ "record_duration", "record_in", "record_out", "source_duration", "source_in", "source_out" ] segment_attrs_data = {} for attr_name in segment_attrs: if not hasattr(segment, attr_name): continue attr = getattr(segment, attr_name) segment_attrs_data[attr] = str(attr).replace("+", ":") if attr_name in ["record_in", "record_out"]: clip_data[attr_name] = attr.relative_frame else: clip_data[attr_name] = attr.frame clip_data["segment_timecodes"] = segment_attrs_data return clip_data def get_clips_in_reels(project): output_clips = [] project_desktop = project.current_workspace.desktop for reel_group in project_desktop.reel_groups: for reel in reel_group.reels: for clip in reel.clips: clip_data = { "PyClip": clip, "fps": float(str(clip.frame_rate)[:-4]) } attrs = [ "name", "width", "height", "ratio", "sample_rate", "bit_depth" ] for attr in attrs: val = getattr(clip, attr) clip_data[attr] = val version = clip.versions[-1] track = version.tracks[-1] for segment in track.segments: segment_data = get_segment_attributes(segment) clip_data.update(segment_data) output_clips.append(clip_data) return output_clips def get_reformated_filename(filename, padded=True): """ Return fixed python expression path Args: filename (str): file name Returns: type: string with reformated path Example: get_reformated_filename("plate.1001.exr") > plate.%04d.exr """ found = FRAME_PATTERN.search(filename) if not found: log.info("File name is not sequence: {}".format(filename)) return filename padding = get_padding_from_filename(filename) replacement = "%0{}d".format(padding) if padded else "%d" start_idx, end_idx = found.span(1) return replacement.join( [filename[:start_idx], filename[end_idx:]] ) def get_padding_from_filename(filename): """ Return padding number from Flame path style Args: filename (str): file name Returns: int: padding number Example: get_padding_from_filename("plate.0001.exr") > 4 """ found = get_frame_from_filename(filename) return len(found) if found else None def get_frame_from_filename(filename): """ Return sequence number from Flame path style Args: filename (str): file name Returns: int: sequence frame number Example: def get_frame_from_filename(path): ("plate.0001.exr") > 0001 """ found = re.findall(FRAME_PATTERN, filename) return found.pop() if found else None @contextlib.contextmanager def maintained_object_duplication(item): """Maintain input item duplication Attributes: item (any flame.PyObject): python api object Yield: duplicate input PyObject type """ import flame # Duplicate the clip to avoid modifying the original clip duplicate = flame.duplicate(item) try: # do the operation on selected segments yield duplicate finally: # delete the item at the end flame.delete(duplicate) @contextlib.contextmanager def maintained_temp_file_path(suffix=None): _suffix = suffix or "" try: # Store dumped json to temporary file temporary_file = tempfile.mktemp( suffix=_suffix, prefix="flame_maintained_") yield temporary_file.replace("\\", "/") except IOError as _error: raise IOError( "Not able to create temp json file: {}".format(_error)) finally: # Remove the temporary json os.remove(temporary_file) def get_clip_segment(flame_clip): name = flame_clip.name.get_value() version = flame_clip.versions[0] track = version.tracks[0] segments = track.segments if len(segments) < 1: raise ValueError("Clip `{}` has no segments!".format(name)) if len(segments) > 1: raise ValueError("Clip `{}` has too many segments!".format(name)) return segments[0] def get_batch_group_from_desktop(name): project = get_current_project() project_desktop = project.current_workspace.desktop for bgroup in project_desktop.batch_groups: if bgroup.name.get_value() in name: return bgroup class MediaInfoFile(object): """Class to get media info file clip data Raises: IOError: MEDIA_SCRIPT_PATH path doesn't exists TypeError: Not able to generate clip xml data file ET.ParseError: Missing clip in xml clip data IOError: Not able to save xml clip data to file Attributes: str: `MEDIA_SCRIPT_PATH` path to flame binary logging.Logger: `log` logger TODO: add method for getting metadata to dict """ MEDIA_SCRIPT_PATH = "/opt/Autodesk/mio/current/dl_get_media_info" log = log _clip_data = None _start_frame = None _fps = None _drop_mode = None def __init__(self, path, **kwargs): # replace log if any if kwargs.get("logger"): self.log = kwargs["logger"] # test if `dl_get_media_info` paht exists self._validate_media_script_path() # derivate other feed variables self.feed_basename = os.path.basename(path) self.feed_dir = os.path.dirname(path) self.feed_ext = os.path.splitext(self.feed_basename)[1][1:].lower() with maintained_temp_file_path(".clip") as tmp_path: self.log.info("Temp File: {}".format(tmp_path)) self._generate_media_info_file(tmp_path) # get clip data and make them single if there is multiple # clips data xml_data = self._make_single_clip_media_info(tmp_path) self.log.debug("xml_data: {}".format(xml_data)) self.log.debug("type: {}".format(type(xml_data))) # get all time related data and assign them self._get_time_info_from_origin(xml_data) self.log.debug("start_frame: {}".format(self.start_frame)) self.log.debug("fps: {}".format(self.fps)) self.log.debug("drop frame: {}".format(self.drop_mode)) self.clip_data = xml_data @property def clip_data(self): """Clip's xml clip data Returns: xml.etree.ElementTree: xml data """ return self._clip_data @clip_data.setter def clip_data(self, data): self._clip_data = data @property def start_frame(self): """ Clip's starting frame found in timecode Returns: int: number of frames """ return self._start_frame @start_frame.setter def start_frame(self, number): self._start_frame = int(number) @property def fps(self): """ Clip's frame rate Returns: float: frame rate """ return self._fps @fps.setter def fps(self, fl_number): self._fps = float(fl_number) @property def drop_mode(self): """ Clip's drop frame mode Returns: str: drop frame flag """ return self._drop_mode @drop_mode.setter def drop_mode(self, text): self._drop_mode = str(text) def _validate_media_script_path(self): if not os.path.isfile(self.MEDIA_SCRIPT_PATH): raise IOError("Media Scirpt does not exist: `{}`".format( self.MEDIA_SCRIPT_PATH)) def _generate_media_info_file(self, fpath): # Create cmd arguments for gettig xml file info file cmd_args = [ self.MEDIA_SCRIPT_PATH, "-e", self.feed_ext, "-o", fpath, self.feed_dir ] try: # execute creation of clip xml template data openpype.run_subprocess(cmd_args) except TypeError as error: raise TypeError( "Error creating `{}` due: {}".format(fpath, error)) def _make_single_clip_media_info(self, fpath): with open(fpath) as f: lines = f.readlines() _added_root = itertools.chain( "<root>", deepcopy(lines)[1:], "</root>") new_root = ET.fromstringlist(_added_root) # find the clip which is matching to my input name xml_clips = new_root.findall("clip") matching_clip = None for xml_clip in xml_clips: if xml_clip.find("name").text in self.feed_basename: matching_clip = xml_clip if matching_clip is None: # return warning there is missing clip raise ET.ParseError( "Missing clip in `{}`. Available clips {}".format( self.feed_basename, [ xml_clip.find("name").text for xml_clip in xml_clips ] )) return matching_clip def _get_time_info_from_origin(self, xml_data): try: for out_track in xml_data.iter('track'): for out_feed in out_track.iter('feed'): # start frame out_feed_nb_ticks_obj = out_feed.find( 'startTimecode/nbTicks') self.start_frame = out_feed_nb_ticks_obj.text # fps out_feed_fps_obj = out_feed.find( 'startTimecode/rate') self.fps = out_feed_fps_obj.text # drop frame mode out_feed_drop_mode_obj = out_feed.find( 'startTimecode/dropMode') self.drop_mode = out_feed_drop_mode_obj.text break else: continue except Exception as msg: self.log.warning(msg) @staticmethod def write_clip_data_to_file(fpath, xml_element_data): """ Write xml element of clip data to file Args: fpath (string): file path xml_element_data (xml.etree.ElementTree.Element): xml data Raises: IOError: If data could not be written to file """ try: # save it as new file tree = cET.ElementTree(xml_element_data) tree.write( fpath, xml_declaration=True, method='xml', encoding='UTF-8' ) except IOError as error: raise IOError( "Not able to write data to file: {}".format(error))
[ "xml.etree.ElementTree.fromstringlist", "re.compile", "xml.etree.cElementTree.ElementTree", "sys.platform.startswith", "copy.deepcopy", "flame.execute_shortcut", "os.remove", "openpype.api.run_subprocess", "flame.duplicate", "adsk.libwiretapPythonClientAPI.WireTapStr", "json.dumps", "os.path.isdir", "flame.delete", "socket.gethostname", "os.path.expanduser", "json.loads", "pickle.load", "os.path.splitext", "pprint.pformat", "adsk.libwiretapPythonClientAPI.WireTapClient", "os.path.isfile", "os.path.dirname", "re.sub", "re.findall", "openpype.api.Logger.get_logger", "pickle.dump", "os.makedirs", "os.path.join", "tempfile.mktemp", "os.path.basename" ]
[((403, 439), 'openpype.api.Logger.get_logger', 'openpype.Logger.get_logger', (['__name__'], {}), '(__name__)\n', (429, 439), True, 'import openpype.api as openpype\n'), ((457, 488), 're.compile', 're.compile', (['"""[\\\\._](\\\\d+)[\\\\.]"""'], {}), "('[\\\\._](\\\\d+)[\\\\.]')\n", (467, 488), False, 'import re\n'), ((19406, 19441), 're.findall', 're.findall', (['FRAME_PATTERN', 'filename'], {}), '(FRAME_PATTERN, filename)\n', (19416, 19441), False, 'import re\n'), ((19817, 19838), 'flame.duplicate', 'flame.duplicate', (['item'], {}), '(item)\n', (19832, 19838), False, 'import flame\n'), ((3298, 3318), 'socket.gethostname', 'socket.gethostname', ([], {}), '()\n', (3316, 3318), False, 'import socket\n'), ((3798, 3844), 'os.path.join', 'os.path.join', (['self.prefs_folder', 'self.hostname'], {}), '(self.prefs_folder, self.hostname)\n', (3810, 3844), False, 'import os\n'), ((7986, 8031), 'flame.execute_shortcut', 'flame.execute_shortcut', (['"""Rescan Python Hooks"""'], {}), "('Rescan Python Hooks')\n", (8008, 8031), False, 'import flame\n'), ((10984, 11004), 'json.dumps', 'json.dumps', (['tag_data'], {}), '(tag_data)\n', (10994, 11004), False, 'import json\n'), ((11176, 11192), 'json.dumps', 'json.dumps', (['data'], {}), '(data)\n', (11186, 11192), False, 'import json\n'), ((19979, 20002), 'flame.delete', 'flame.delete', (['duplicate'], {}), '(duplicate)\n', (19991, 20002), False, 'import flame\n'), ((20184, 20243), 'tempfile.mktemp', 'tempfile.mktemp', ([], {'suffix': '_suffix', 'prefix': '"""flame_maintained_"""'}), "(suffix=_suffix, prefix='flame_maintained_')\n", (20199, 20243), False, 'import tempfile\n'), ((20485, 20510), 'os.remove', 'os.remove', (['temporary_file'], {}), '(temporary_file)\n', (20494, 20510), False, 'import os\n'), ((22114, 22136), 'os.path.basename', 'os.path.basename', (['path'], {}), '(path)\n', (22130, 22136), False, 'import os\n'), ((22161, 22182), 'os.path.dirname', 'os.path.dirname', (['path'], {}), '(path)\n', (22176, 22182), False, 'import os\n'), ((3585, 3617), 'sys.platform.startswith', 'sys.platform.startswith', (['"""linux"""'], {}), "('linux')\n", (3608, 3617), False, 'import sys\n'), ((5066, 5089), 'pickle.load', 'pickle.load', (['prefs_file'], {}), '(prefs_file)\n', (5077, 5089), False, 'import pickle\n'), ((5339, 5362), 'pickle.load', 'pickle.load', (['prefs_file'], {}), '(prefs_file)\n', (5350, 5362), False, 'import pickle\n'), ((5616, 5639), 'pickle.load', 'pickle.load', (['prefs_file'], {}), '(prefs_file)\n', (5627, 5639), False, 'import pickle\n'), ((5912, 5944), 'os.path.isdir', 'os.path.isdir', (['self.prefs_folder'], {}), '(self.prefs_folder)\n', (5925, 5944), False, 'import os\n'), ((6395, 6430), 'pickle.dump', 'pickle.dump', (['self.prefs', 'prefs_file'], {}), '(self.prefs, prefs_file)\n', (6406, 6430), False, 'import pickle\n'), ((6668, 6708), 'pickle.dump', 'pickle.dump', (['self.prefs_user', 'prefs_file'], {}), '(self.prefs_user, prefs_file)\n', (6679, 6708), False, 'import pickle\n'), ((6948, 6990), 'pickle.dump', 'pickle.dump', (['self.prefs_global', 'prefs_file'], {}), '(self.prefs_global, prefs_file)\n', (6959, 6990), False, 'import pickle\n'), ((8662, 8677), 'adsk.libwiretapPythonClientAPI.WireTapClient', 'WireTapClient', ([], {}), '()\n', (8675, 8677), False, 'from adsk.libwiretapPythonClientAPI import WireTapClient, WireTapServerHandle, WireTapNodeHandle, WireTapStr\n'), ((9170, 9182), 'adsk.libwiretapPythonClientAPI.WireTapStr', 'WireTapStr', ([], {}), '()\n', (9180, 9182), False, 'from adsk.libwiretapPythonClientAPI import WireTapClient, WireTapServerHandle, WireTapNodeHandle, WireTapStr\n'), ((24166, 24204), 'os.path.isfile', 'os.path.isfile', (['self.MEDIA_SCRIPT_PATH'], {}), '(self.MEDIA_SCRIPT_PATH)\n', (24180, 24204), False, 'import os\n'), ((24661, 24694), 'openpype.api.run_subprocess', 'openpype.run_subprocess', (['cmd_args'], {}), '(cmd_args)\n', (24684, 24694), True, 'import openpype.api as openpype\n'), ((25068, 25098), 'xml.etree.ElementTree.fromstringlist', 'ET.fromstringlist', (['_added_root'], {}), '(_added_root)\n', (25085, 25098), True, 'from xml.etree import ElementTree as ET\n'), ((27100, 27133), 'xml.etree.cElementTree.ElementTree', 'cET.ElementTree', (['xml_element_data'], {}), '(xml_element_data)\n', (27115, 27133), True, 'import xml.etree.cElementTree as cET\n'), ((3419, 3442), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (3437, 3442), False, 'import os\n'), ((5979, 6009), 'os.makedirs', 'os.makedirs', (['self.prefs_folder'], {}), '(self.prefs_folder)\n', (5990, 6009), False, 'import os\n'), ((10343, 10362), 'json.loads', 'json.loads', (['comment'], {}), '(comment)\n', (10353, 10362), False, 'import json\n'), ((3681, 3704), 'os.path.expanduser', 'os.path.expanduser', (['"""~"""'], {}), "('~')\n", (3699, 3704), False, 'import os\n'), ((5199, 5218), 'pprint.pformat', 'pformat', (['self.prefs'], {}), '(self.prefs)\n', (5206, 5218), False, 'from pprint import pformat\n'), ((5469, 5493), 'pprint.pformat', 'pformat', (['self.prefs_user'], {}), '(self.prefs_user)\n', (5476, 5493), False, 'from pprint import pformat\n'), ((5748, 5774), 'pprint.pformat', 'pformat', (['self.prefs_global'], {}), '(self.prefs_global)\n', (5755, 5774), False, 'from pprint import pformat\n'), ((6540, 6559), 'pprint.pformat', 'pformat', (['self.prefs'], {}), '(self.prefs)\n', (6547, 6559), False, 'from pprint import pformat\n'), ((6815, 6839), 'pprint.pformat', 'pformat', (['self.prefs_user'], {}), '(self.prefs_user)\n', (6822, 6839), False, 'from pprint import pformat\n'), ((7099, 7125), 'pprint.pformat', 'pformat', (['self.prefs_global'], {}), '(self.prefs_global)\n', (7106, 7125), False, 'from pprint import pformat\n'), ((10412, 10431), 'json.loads', 'json.loads', (['comment'], {}), '(comment)\n', (10422, 10431), False, 'import json\n'), ((14974, 14999), 're.sub', 're.sub', (['"""[<>]"""', '""""""', 'token'], {}), "('[<>]', '', token)\n", (14980, 14999), False, 'import re\n'), ((25013, 25028), 'copy.deepcopy', 'deepcopy', (['lines'], {}), '(lines)\n', (25021, 25028), False, 'from copy import deepcopy\n'), ((22207, 22243), 'os.path.splitext', 'os.path.splitext', (['self.feed_basename'], {}), '(self.feed_basename)\n', (22223, 22243), False, 'import os\n')]
import sys import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns if len(sys.argv) != 3: print('usage: python plot_performances.py <group_csv> <indiv_csv>') exit() group_file = sys.argv[1] indiv_file = sys.argv[2] # Load the data df_group = pd.read_csv(group_file) df_indiv = pd.read_csv(indiv_file) df = pd.concat([df_group, df_indiv], sort=True) # Prepare the data for plotting plot_df = df.groupby(['model', 'id'], as_index=False)['hit'].agg('mean') mfa_df = plot_df.loc[plot_df['model'] == 'MFA'] mfa_median = mfa_df['hit'].median() plot_df = plot_df.loc[plot_df['model'] != 'MFA'] # Plot the data sns.set(style='whitegrid', palette='colorblind') plt.figure(figsize=(7, 3)) order = plot_df.groupby('model', as_index=False)['hit'].agg('median').sort_values('hit')['model'] colors = [('C0' if 'mReasoner' in x else 'C2') for x in order] sns.boxplot(x='model', y='hit', data=plot_df, order=order, palette=colors) plt.axhline(y=mfa_median, ls='--', color='C7', zorder=10) plt.text(0.002, mfa_median + 0.015, 'MFA', color='C7', fontsize=10, transform=plt.gca().transAxes) plt.xlabel('') plt.yticks(np.arange(0, 1.1, 0.1)) plt.ylabel('Coverage Accuracy') plt.tight_layout() plt.savefig('visualizations/performances.pdf') plt.show()
[ "seaborn.set", "matplotlib.pyplot.savefig", "pandas.read_csv", "matplotlib.pyplot.ylabel", "matplotlib.pyplot.gca", "matplotlib.pyplot.xlabel", "seaborn.boxplot", "matplotlib.pyplot.axhline", "matplotlib.pyplot.figure", "matplotlib.pyplot.tight_layout", "pandas.concat", "numpy.arange", "matplotlib.pyplot.show" ]
[((292, 315), 'pandas.read_csv', 'pd.read_csv', (['group_file'], {}), '(group_file)\n', (303, 315), True, 'import pandas as pd\n'), ((327, 350), 'pandas.read_csv', 'pd.read_csv', (['indiv_file'], {}), '(indiv_file)\n', (338, 350), True, 'import pandas as pd\n'), ((356, 398), 'pandas.concat', 'pd.concat', (['[df_group, df_indiv]'], {'sort': '(True)'}), '([df_group, df_indiv], sort=True)\n', (365, 398), True, 'import pandas as pd\n'), ((655, 703), 'seaborn.set', 'sns.set', ([], {'style': '"""whitegrid"""', 'palette': '"""colorblind"""'}), "(style='whitegrid', palette='colorblind')\n", (662, 703), True, 'import seaborn as sns\n'), ((704, 730), 'matplotlib.pyplot.figure', 'plt.figure', ([], {'figsize': '(7, 3)'}), '(figsize=(7, 3))\n', (714, 730), True, 'import matplotlib.pyplot as plt\n'), ((893, 967), 'seaborn.boxplot', 'sns.boxplot', ([], {'x': '"""model"""', 'y': '"""hit"""', 'data': 'plot_df', 'order': 'order', 'palette': 'colors'}), "(x='model', y='hit', data=plot_df, order=order, palette=colors)\n", (904, 967), True, 'import seaborn as sns\n'), ((969, 1026), 'matplotlib.pyplot.axhline', 'plt.axhline', ([], {'y': 'mfa_median', 'ls': '"""--"""', 'color': '"""C7"""', 'zorder': '(10)'}), "(y=mfa_median, ls='--', color='C7', zorder=10)\n", (980, 1026), True, 'import matplotlib.pyplot as plt\n'), ((1127, 1141), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['""""""'], {}), "('')\n", (1137, 1141), True, 'import matplotlib.pyplot as plt\n'), ((1177, 1208), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Coverage Accuracy"""'], {}), "('Coverage Accuracy')\n", (1187, 1208), True, 'import matplotlib.pyplot as plt\n'), ((1210, 1228), 'matplotlib.pyplot.tight_layout', 'plt.tight_layout', ([], {}), '()\n', (1226, 1228), True, 'import matplotlib.pyplot as plt\n'), ((1229, 1275), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""visualizations/performances.pdf"""'], {}), "('visualizations/performances.pdf')\n", (1240, 1275), True, 'import matplotlib.pyplot as plt\n'), ((1276, 1286), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (1284, 1286), True, 'import matplotlib.pyplot as plt\n'), ((1153, 1175), 'numpy.arange', 'np.arange', (['(0)', '(1.1)', '(0.1)'], {}), '(0, 1.1, 0.1)\n', (1162, 1175), True, 'import numpy as np\n'), ((1105, 1114), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (1112, 1114), True, 'import matplotlib.pyplot as plt\n')]
from collections import OrderedDict import pytest import vcr try: # Python 2.7 # requests's ``json()`` function returns strings as unicode (as per the # JSON spec). In 2.7, those are of type unicode rather than str. basestring # was created to help with that. # https://docs.python.org/2/library/functions.html#basestring basestring = basestring except NameError: basestring = str @pytest.mark.incremental class TestShow(object): """These don't require authentication to Game Pass.""" @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_desc(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.desc, basestring) # content is not required @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_logo(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.logo, basestring) assert show.logo @vcr.use_cassette('public_API/europe_show.yaml') @staticmethod def test_name(gp): shows = gp.shows for s in shows: show = shows[s] isinstance(show.name, basestring) assert show.name @vcr.use_cassette('public_API/europe_show_seasons.yaml') @staticmethod def test_seasons(gp): shows = gp.shows for s in shows: show = shows[s] assert type(show.seasons) is OrderedDict assert show.seasons prev = 9999 for s in show.seasons: season = show.seasons[s] # TODO: assert it has content # TODO: assert is type season # make sure the years look sane-ish assert int(s) > 2000 and int(s) < 2050 # make sure it's sorted high to low assert int(prev) > int(s) prev = s
[ "vcr.use_cassette" ]
[((524, 571), 'vcr.use_cassette', 'vcr.use_cassette', (['"""public_API/europe_show.yaml"""'], {}), "('public_API/europe_show.yaml')\n", (540, 571), False, 'import vcr\n'), ((783, 830), 'vcr.use_cassette', 'vcr.use_cassette', (['"""public_API/europe_show.yaml"""'], {}), "('public_API/europe_show.yaml')\n", (799, 830), False, 'import vcr\n'), ((1033, 1080), 'vcr.use_cassette', 'vcr.use_cassette', (['"""public_API/europe_show.yaml"""'], {}), "('public_API/europe_show.yaml')\n", (1049, 1080), False, 'import vcr\n'), ((1283, 1338), 'vcr.use_cassette', 'vcr.use_cassette', (['"""public_API/europe_show_seasons.yaml"""'], {}), "('public_API/europe_show_seasons.yaml')\n", (1299, 1338), False, 'import vcr\n')]
import os import sys import numpy as np import matplotlib.pyplot as plt import flopy def run(): workspace = os.path.join("lake") # make sure workspace directory exists if not os.path.exists(workspace): os.makedirs(workspace) fext = "png" narg = len(sys.argv) iarg = 0 if narg > 1: while iarg < narg - 1: iarg += 1 basearg = sys.argv[iarg].lower() if basearg == "--pdf": fext = "pdf" # save the starting path cwdpth = os.getcwd() # change to the working directory os.chdir(workspace) # We are creating a square model with a specified head equal to `h1` along all boundaries. # The head at the cell in the center in the top layer is fixed to `h2`. First, set the name # of the model and the parameters of the model: the number of layers `Nlay`, the number of rows # and columns `N`, lengths of the sides of the model `L`, aquifer thickness `H`, hydraulic # conductivity `Kh` name = "lake_example" h1 = 100 h2 = 90 Nlay = 10 N = 101 L = 400.0 H = 50.0 Kh = 1.0 # Create a MODFLOW model and store it (in this case in the variable `ml`, but you can call it # whatever you want). The modelname will be the name given to all MODFLOW files (input and output). # The exe_name should be the full path to your MODFLOW executable. The version is either 'mf2k' # for MODFLOW2000 or 'mf2005'for MODFLOW2005. ml = flopy.modflow.Modflow( modelname=name, exe_name="mf2005", version="mf2005" ) # Define the discretization of the model. All layers are given equal thickness. The `bot` array # is build from the `Hlay` values to indicate top and bottom of each layer, and `delrow` and # `delcol` are computed from model size `L` and number of cells `N`. Once these are all computed, # the Discretization file is built. bot = np.linspace(-H / Nlay, -H, Nlay) delrow = delcol = L / (N - 1) dis = flopy.modflow.ModflowDis( ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=delcol, top=0.0, botm=bot, laycbd=0, ) # Next we specify the boundary conditions and starting heads with the Basic package. The `ibound` # array will be `1` in all cells in all layers, except for along the boundary and in the cell at # the center in the top layer where it is set to `-1` to indicate fixed heads. The starting heads # are used to define the heads in the fixed head cells (this is a steady simulation, so none of # the other starting values matter). So we set the starting heads to `h1` everywhere, except for # the head at the center of the model in the top layer. Nhalf = int((N - 1) / 2) ibound = np.ones((Nlay, N, N), dtype=int) ibound[:, 0, :] = -1 ibound[:, -1, :] = -1 ibound[:, :, 0] = -1 ibound[:, :, -1] = -1 ibound[0, Nhalf, Nhalf] = -1 start = h1 * np.ones((N, N)) start[Nhalf, Nhalf] = h2 # create external ibound array and starting head files files = [] hfile = f"{name}_strt.ref" np.savetxt(hfile, start) hfiles = [] for kdx in range(Nlay): file = f"{name}_ib{kdx + 1:02d}.ref" files.append(file) hfiles.append(hfile) np.savetxt(file, ibound[kdx, :, :], fmt="%5d") bas = flopy.modflow.ModflowBas(ml, ibound=files, strt=hfiles) # The aquifer properties (really only the hydraulic conductivity) are defined with the # LPF package. lpf = flopy.modflow.ModflowLpf(ml, hk=Kh) # Finally, we need to specify the solver we want to use (PCG with default values), and the # output control (using the default values). Then we are ready to write all MODFLOW input # files and run MODFLOW. pcg = flopy.modflow.ModflowPcg(ml) oc = flopy.modflow.ModflowOc(ml) ml.write_input() ml.run_model() # change back to the starting directory os.chdir(cwdpth) # Once the model has terminated normally, we can read the heads file. First, a link to the heads # file is created with `HeadFile`. The link can then be accessed with the `get_data` function, by # specifying, in this case, the step number and period number for which we want to retrieve data. # A three-dimensional array is returned of size `nlay, nrow, ncol`. Matplotlib contouring functions # are used to make contours of the layers or a cross-section. hds = flopy.utils.HeadFile(os.path.join(workspace, f"{name}.hds")) h = hds.get_data(kstpkper=(0, 0)) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[0], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%2.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake1.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) x = y = np.linspace(0, L, N) c = plt.contour(x, y, h[-1], np.arange(90, 100.1, 0.2)) plt.clabel(c, fmt="%1.1f") plt.axis("scaled") outfig = os.path.join(workspace, f"lake2.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) z = np.linspace(-H / Nlay / 2, -H + H / Nlay / 2, Nlay) c = plt.contour(x, z, h[:, 50, :], np.arange(90, 100.1, 0.2)) plt.axis("scaled") outfig = os.path.join(workspace, f"lake3.{fext}") fig = plt.gcf() fig.savefig(outfig, dpi=300) print("created...", outfig) return 0 if __name__ == "__main__": success = run()
[ "os.path.exists", "numpy.ones", "flopy.modflow.ModflowPcg", "os.makedirs", "matplotlib.pyplot.clabel", "matplotlib.pyplot.gcf", "os.path.join", "flopy.modflow.ModflowDis", "os.getcwd", "os.chdir", "numpy.linspace", "flopy.modflow.ModflowBas", "numpy.savetxt", "flopy.modflow.ModflowLpf", "flopy.modflow.ModflowOc", "matplotlib.pyplot.axis", "numpy.arange", "flopy.modflow.Modflow" ]
[((115, 135), 'os.path.join', 'os.path.join', (['"""lake"""'], {}), "('lake')\n", (127, 135), False, 'import os\n'), ((526, 537), 'os.getcwd', 'os.getcwd', ([], {}), '()\n', (535, 537), False, 'import os\n'), ((581, 600), 'os.chdir', 'os.chdir', (['workspace'], {}), '(workspace)\n', (589, 600), False, 'import os\n'), ((1491, 1565), 'flopy.modflow.Modflow', 'flopy.modflow.Modflow', ([], {'modelname': 'name', 'exe_name': '"""mf2005"""', 'version': '"""mf2005"""'}), "(modelname=name, exe_name='mf2005', version='mf2005')\n", (1512, 1565), False, 'import flopy\n'), ((1930, 1962), 'numpy.linspace', 'np.linspace', (['(-H / Nlay)', '(-H)', 'Nlay'], {}), '(-H / Nlay, -H, Nlay)\n', (1941, 1962), True, 'import numpy as np\n'), ((2007, 2122), 'flopy.modflow.ModflowDis', 'flopy.modflow.ModflowDis', (['ml'], {'nlay': 'Nlay', 'nrow': 'N', 'ncol': 'N', 'delr': 'delrow', 'delc': 'delcol', 'top': '(0.0)', 'botm': 'bot', 'laycbd': '(0)'}), '(ml, nlay=Nlay, nrow=N, ncol=N, delr=delrow, delc=\n delcol, top=0.0, botm=bot, laycbd=0)\n', (2031, 2122), False, 'import flopy\n'), ((2806, 2838), 'numpy.ones', 'np.ones', (['(Nlay, N, N)'], {'dtype': 'int'}), '((Nlay, N, N), dtype=int)\n', (2813, 2838), True, 'import numpy as np\n'), ((3147, 3171), 'numpy.savetxt', 'np.savetxt', (['hfile', 'start'], {}), '(hfile, start)\n', (3157, 3171), True, 'import numpy as np\n'), ((3383, 3438), 'flopy.modflow.ModflowBas', 'flopy.modflow.ModflowBas', (['ml'], {'ibound': 'files', 'strt': 'hfiles'}), '(ml, ibound=files, strt=hfiles)\n', (3407, 3438), False, 'import flopy\n'), ((3560, 3595), 'flopy.modflow.ModflowLpf', 'flopy.modflow.ModflowLpf', (['ml'], {'hk': 'Kh'}), '(ml, hk=Kh)\n', (3584, 3595), False, 'import flopy\n'), ((3825, 3853), 'flopy.modflow.ModflowPcg', 'flopy.modflow.ModflowPcg', (['ml'], {}), '(ml)\n', (3849, 3853), False, 'import flopy\n'), ((3863, 3890), 'flopy.modflow.ModflowOc', 'flopy.modflow.ModflowOc', (['ml'], {}), '(ml)\n', (3886, 3890), False, 'import flopy\n'), ((3980, 3996), 'os.chdir', 'os.chdir', (['cwdpth'], {}), '(cwdpth)\n', (3988, 3996), False, 'import os\n'), ((4594, 4614), 'numpy.linspace', 'np.linspace', (['(0)', 'L', 'N'], {}), '(0, L, N)\n', (4605, 4614), True, 'import numpy as np\n'), ((4678, 4704), 'matplotlib.pyplot.clabel', 'plt.clabel', (['c'], {'fmt': '"""%2.1f"""'}), "(c, fmt='%2.1f')\n", (4688, 4704), True, 'import matplotlib.pyplot as plt\n'), ((4709, 4727), 'matplotlib.pyplot.axis', 'plt.axis', (['"""scaled"""'], {}), "('scaled')\n", (4717, 4727), True, 'import matplotlib.pyplot as plt\n'), ((4742, 4782), 'os.path.join', 'os.path.join', (['workspace', 'f"""lake1.{fext}"""'], {}), "(workspace, f'lake1.{fext}')\n", (4754, 4782), False, 'import os\n'), ((4793, 4802), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (4800, 4802), True, 'import matplotlib.pyplot as plt\n'), ((4881, 4901), 'numpy.linspace', 'np.linspace', (['(0)', 'L', 'N'], {}), '(0, L, N)\n', (4892, 4901), True, 'import numpy as np\n'), ((4966, 4992), 'matplotlib.pyplot.clabel', 'plt.clabel', (['c'], {'fmt': '"""%1.1f"""'}), "(c, fmt='%1.1f')\n", (4976, 4992), True, 'import matplotlib.pyplot as plt\n'), ((4997, 5015), 'matplotlib.pyplot.axis', 'plt.axis', (['"""scaled"""'], {}), "('scaled')\n", (5005, 5015), True, 'import matplotlib.pyplot as plt\n'), ((5030, 5070), 'os.path.join', 'os.path.join', (['workspace', 'f"""lake2.{fext}"""'], {}), "(workspace, f'lake2.{fext}')\n", (5042, 5070), False, 'import os\n'), ((5081, 5090), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5088, 5090), True, 'import matplotlib.pyplot as plt\n'), ((5165, 5216), 'numpy.linspace', 'np.linspace', (['(-H / Nlay / 2)', '(-H + H / Nlay / 2)', 'Nlay'], {}), '(-H / Nlay / 2, -H + H / Nlay / 2, Nlay)\n', (5176, 5216), True, 'import numpy as np\n'), ((5287, 5305), 'matplotlib.pyplot.axis', 'plt.axis', (['"""scaled"""'], {}), "('scaled')\n", (5295, 5305), True, 'import matplotlib.pyplot as plt\n'), ((5320, 5360), 'os.path.join', 'os.path.join', (['workspace', 'f"""lake3.{fext}"""'], {}), "(workspace, f'lake3.{fext}')\n", (5332, 5360), False, 'import os\n'), ((5371, 5380), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (5378, 5380), True, 'import matplotlib.pyplot as plt\n'), ((190, 215), 'os.path.exists', 'os.path.exists', (['workspace'], {}), '(workspace)\n', (204, 215), False, 'import os\n'), ((225, 247), 'os.makedirs', 'os.makedirs', (['workspace'], {}), '(workspace)\n', (236, 247), False, 'import os\n'), ((2992, 3007), 'numpy.ones', 'np.ones', (['(N, N)'], {}), '((N, N))\n', (2999, 3007), True, 'import numpy as np\n'), ((3325, 3371), 'numpy.savetxt', 'np.savetxt', (['file', 'ibound[kdx, :, :]'], {'fmt': '"""%5d"""'}), "(file, ibound[kdx, :, :], fmt='%5d')\n", (3335, 3371), True, 'import numpy as np\n'), ((4504, 4542), 'os.path.join', 'os.path.join', (['workspace', 'f"""{name}.hds"""'], {}), "(workspace, f'{name}.hds')\n", (4516, 4542), False, 'import os\n'), ((4647, 4672), 'numpy.arange', 'np.arange', (['(90)', '(100.1)', '(0.2)'], {}), '(90, 100.1, 0.2)\n', (4656, 4672), True, 'import numpy as np\n'), ((4935, 4960), 'numpy.arange', 'np.arange', (['(90)', '(100.1)', '(0.2)'], {}), '(90, 100.1, 0.2)\n', (4944, 4960), True, 'import numpy as np\n'), ((5256, 5281), 'numpy.arange', 'np.arange', (['(90)', '(100.1)', '(0.2)'], {}), '(90, 100.1, 0.2)\n', (5265, 5281), True, 'import numpy as np\n')]
# -*- coding: utf-8 -*- ''' Documentación sobre clustering en Python: http://scikit-learn.org/stable/modules/clustering.html http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ http://hdbscan.readthedocs.io/en/latest/comparing_clustering_algorithms.html https://joernhees.de/blog/2015/08/26/scipy-hierarchical-clustering-and-dendrogram-tutorial/ http://www.learndatasci.com/k-means-clustering-algorithms-python-intro/ ''' import time import csv import matplotlib.pyplot as plt import pandas as pd import numpy as np from sklearn import preprocessing from sklearn import metrics from sklearn import cluster from math import floor import seaborn as sns # Cosas bonitas por defecto sns.set() def norm_to_zero_one(df): return (df - df.min()) * 1.0 / (df.max() - df.min()) censo = pd.read_csv('../mujeres_fecundidad_INE_2018.csv') ''' for col in censo: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count) #''' #Se pueden reemplazar los valores desconocidos por un número #censo = censo.replace(np.NaN,0) # Sustituimos valores perdidos con la media for col in censo: censo[col].fillna(censo[col].mean(), inplace=True) #seleccionar casos subset = censo.loc[(censo['TRAREPRO']==1) & (censo['NEMBTRAREPRO']<=6)] # Seleccionar variables usadas = ['NHIJOS', 'TIPOTRAREPRO', 'NMESESTRAREPRO', 'NEMBTRAREPRO'] X = subset[usadas] X_normal = X.apply(norm_to_zero_one) print('Tamaño de la población tras filtrado: ',len(X_normal.index)) for col in X: missing_count = sum(pd.isnull(censo[col])) if missing_count > 0: print(col,missing_count, ' AFTER') algoritmos = (('KMeans', cluster.KMeans(init='k-means++', n_clusters=5, n_init=5)), ('MeanShift', cluster.MeanShift(cluster_all=False, min_bin_freq=3)), ('Ward', cluster.AgglomerativeClustering(n_clusters=4, linkage='ward')), ('DBScan', cluster.DBSCAN(eps=0.35, min_samples=5)), ('Birch', cluster.Birch(threshold=0.1,n_clusters=5))) cluster_predict = {} calinski = {} silh = {} times = {} n_clusters = {} clusters_fig, clusters_axis = plt.subplots(3, 2, figsize=(10,10)) clusters_colors = ['gold', 'yellowgreen', 'lightcoral', 'lightskyblue', '#ffb347'] ijs = [(0,0), (0,1), (1,0), (1,1), (2,0), (2,1)] for i_alg, par in enumerate(algoritmos): name, alg = par print('----- Ejecutando ' + name,) t = time.time() cluster_predict[name] = alg.fit_predict(X_normal) tiempo = time.time() - t times[name] = tiempo metric_CH = metrics.calinski_harabasz_score(X_normal, cluster_predict[name]) calinski[name] = metric_CH metric_SC = metrics.silhouette_score(X_normal, cluster_predict[name], metric='euclidean', sample_size=floor(len(X)), random_state=123456) silh[name] = metric_SC # Asignamos de clusters a DataFrame clusters = pd.DataFrame(cluster_predict[name],index=X.index,columns=['cluster']) if (name == 'KMeans'): clusters_kmeans = clusters alg_kmeans = alg elif (name == 'Ward'): clusters_ward = clusters print("Tamaño de cada cluster:") size = clusters['cluster'].value_counts() cluster_fractions = [] for num,i in size.iteritems(): print('%s: %5d (%5.2f%%)' % (num,i,100*i/len(clusters))) cluster_fractions.append( 100*i/len(clusters) ) n_clusters[name] = len(size) # Bar charts if ( len(cluster_fractions) > 7 ): cluster_fractions = cluster_fractions[0:6] i, j = ijs[i_alg] y_pos = np.arange(len(cluster_fractions)) labels = [ "Cluster " + str(i) for i in range(len(cluster_fractions)) ] clusters_axis[i, j].bar(y_pos, cluster_fractions, tick_label=labels, color=clusters_colors) clusters_axis[i, j].set_ylim(0, 100) clusters_axis[i, j].set_title(name) if (j == 0): clusters_axis[i, j].set_ylabel("Cluster size (%)") clusters_axis[2,1].remove() #clusters_fig.savefig("clusters.png") plt.show() from prettytable import PrettyTable header = ['Algoritmo', 'CH', 'Silh', 'Tiempo', 'Número de clusters'] tabla = PrettyTable(header) for name, alg in algoritmos: tabla.add_row([name, "{0:.2f}".format(calinski[name]), "{0:.2f}".format(silh[name]), "{0:.2f}".format(times[name]), n_clusters[name]]) print(tabla) # Escribir los datos en un general.csv ''' with open('general.csv', mode='w+', newline='') as file: writer = csv.DictWriter(file, fieldnames=header) writer.writeheader() for name, _ in algoritmos: writer.writerow({'Algoritmo': name, 'CH': "{0:.2f}".format(calinski[name]), 'Silh': "{0:.2f}".format(silh[name]), 'Tiempo': "{0:.2f}".format(times[name]), 'Número de clusters': n_clusters[name]}) #''' # ----------------------- FUNCIONES DE DISTRIBUCIÓN --------- print("---------- Preparando funciones de distribución...") n_clusters_ward = n_clusters['Ward'] n_var = len(usadas) X_ward = pd.concat([X, clusters_ward], axis=1) fig, axes = plt.subplots(n_clusters_ward, n_var, sharey=True, figsize=(15,15)) fig.subplots_adjust(wspace=0, hspace=0) colors = sns.color_palette(palette=None, n_colors=n_clusters_ward, desat=None) rango = [] for j in range(n_var): rango.append([X_ward[usadas[j]].min(), X_ward[usadas[j]].max()]) for i in range(n_clusters_ward): dat_filt = X_ward.loc[X_ward['cluster']==i] for j in range(n_var): #ax = sns.kdeplot(dat_filt[usadas[j]], label="", shade=True, color=colors[i], ax=axes[i,j]) ax = sns.boxplot(dat_filt[usadas[j]], color=colors[i], flierprops={'marker':'o','markersize':4}, ax=axes[i,j]) if (i==n_clusters_ward-1): axes[i,j].set_xlabel(usadas[j]) else: axes[i,j].set_xlabel("") if (j==0): axes[i,j].set_ylabel("Cluster "+str(i)) else: axes[i,j].set_ylabel("") axes[i,j].set_yticks([]) axes[i,j].grid(axis='x', linestyle='-', linewidth='0.2', color='gray') axes[i,j].grid(axis='y', b=False) ax.set_xlim(rango[j][0]-0.05*(rango[j][1]-rango[j][0]),rango[j][1]+0.05*(rango[j][1]-rango[j][0])) plt.show() #fig.savefig("boxes.png") # ---------------- SCATTER MATRIX ----------------------- ''' plt.clf() print("---------- Preparando el scatter matrix...") # Se añade la asignación de clusters como columna a X variables = list(X_ward) variables.remove('cluster') sns_plot = sns.pairplot(X_ward, vars=variables, hue="cluster", palette='Paired', plot_kws={"s": 25}, diag_kind="hist") sns_plot.fig.subplots_adjust(wspace=.03, hspace=.03); # sns_plot.savefig("scatter_matrix.png") plt.show() #''' # ----------------------- DENDOGRAMAS ----------------------- #En clustering hay que normalizar para las métricas de distancia # X_normal = preprocessing.normalize(X, norm='l2') X_normal = (X - X.min() ) / (X.max() - X.min()) #Vamos a usar este jerárquico y nos quedamos con 100 clusters, es decir, cien ramificaciones del dendrograma ward = cluster.AgglomerativeClustering(n_clusters=20, linkage='ward') name, algorithm = ('Ward', ward) cluster_predict = {} k = {} t = time.time() cluster_predict[name] = algorithm.fit_predict(X_normal) tiempo = time.time() - t k[name] = len(set(cluster_predict[name])) # Se convierte la asignación de clusters a DataFrame clusters = pd.DataFrame(cluster_predict['Ward'],index=X.index,columns=['cluster']) # Y se añade como columna a X X_cluster = pd.concat([X, clusters], axis=1) # Filtro quitando los elementos (outliers) que caen en clusters muy pequeños en el jerárquico min_size = 3 X_filtrado = X ''' X_cluster[X_cluster.groupby('cluster').cluster.transform(len) > min_size] k_filtrado = len(set(X_filtrado['cluster'])) print("De los {:.0f} clusters hay {:.0f} con más de {:.0f} elementos. Del total de {:.0f} elementos, se seleccionan {:.0f}".format(k['Ward'],k_filtrado,min_size,len(X),len(X_filtrado))) X_filtrado = X_filtrado.drop('cluster', 1) X_filtrado = X #''' #Normalizo el conjunto filtrado X_filtrado_normal = preprocessing.normalize(X_filtrado, norm='l2') # Obtengo el dendrograma usando scipy, que realmente vuelve a ejecutar el clustering jerárquico from scipy.cluster import hierarchy linkage_array = hierarchy.ward(X_filtrado_normal) plt.clf() dendro = hierarchy.dendrogram(linkage_array,orientation='left', p=10, truncate_mode='lastp') #lo pongo en horizontal para compararlo con el generado por seaborn # puedo usar "p=10,truncate_mode='lastp'" para cortar el dendrograma en 10 hojas # Dendograma usando seaborn (que a su vez usa scipy) para incluir un heatmap X_filtrado_normal_DF = pd.DataFrame(X_filtrado_normal, index=X_filtrado.index, columns=usadas) # Añadimos una columna de label para indicar el cluster al que pertenece cada objeto labels = X_ward['cluster'] lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) # Para añadir los labels reordenados. Ahora mismo no salen los colores en la # columna donde deberian. Intuyo que esto se debe a que los ids no encajan. #''' ordering = clustergrid.dendrogram_row.reordered_ind labels_list = [x for _, x in sorted(zip(ordering,labels), key=lambda pair: pair[0])] labels = pd.Series(labels_list, index=X_filtrado_normal_DF.index, name='cluster') lut = dict(zip(set(labels), sns.color_palette(palette="Blues_d", n_colors=n_clusters_ward))) row_colors = pd.DataFrame(labels)['cluster'].map(lut) clustergrid = sns.clustermap(X_filtrado_normal_DF, method='ward', row_colors=row_colors, col_cluster=False, figsize=(20,10), cmap="YlGnBu", yticklabels=False) #''' #plt.savefig("dendograma.png") # ----------------------- HEATMAPS ----------------------- #''' plt.figure(1) centers = pd.DataFrame(alg_kmeans.cluster_centers_, columns=list(X)) centers_desnormal = centers.copy() centers_desnormal = centers.drop([4]) # Calculamos los centroides X = pd.concat([X, clusters_ward], axis=1) for variable in list(centers): for k_cluster in range(n_clusters_ward): centroide = X.loc[(clusters_ward['cluster']==k_cluster)][variable].mean() centers_desnormal.loc[k_cluster, variable] = centroide # Normalizamos centers_normal2 = centers_desnormal.copy() centers_normal2 = (centers_normal2 - centers_normal2.min() ) / (centers_normal2.max() - centers_normal2.min()) import matplotlib.pyplot as plt heatmap_fig, ax = plt.subplots(figsize=(10,10)) heatmap = sns.heatmap(centers_normal2, cmap="YlGnBu", annot=centers_desnormal, fmt='.3f') # Para evitar que los bloques de arriba y abajo se corten por la mitad bottom, top = ax.get_ylim() ax.set_ylim(bottom + 0.5, top - 0.5) #heatmap_fig.savefig("heatmap.png") #'''
[ "pandas.read_csv", "sklearn.cluster.MeanShift", "sklearn.cluster.DBSCAN", "seaborn.set", "sklearn.cluster.AgglomerativeClustering", "seaborn.color_palette", "scipy.cluster.hierarchy.ward", "pandas.DataFrame", "prettytable.PrettyTable", "seaborn.clustermap", "seaborn.heatmap", "time.time", "sklearn.cluster.Birch", "matplotlib.pyplot.show", "pandas.Series", "sklearn.metrics.calinski_harabasz_score", "pandas.isnull", "sklearn.cluster.KMeans", "scipy.cluster.hierarchy.dendrogram", "matplotlib.pyplot.clf", "seaborn.boxplot", "matplotlib.pyplot.figure", "sklearn.preprocessing.normalize", "pandas.concat", "matplotlib.pyplot.subplots" ]
[((751, 760), 'seaborn.set', 'sns.set', ([], {}), '()\n', (758, 760), True, 'import seaborn as sns\n'), ((859, 908), 'pandas.read_csv', 'pd.read_csv', (['"""../mujeres_fecundidad_INE_2018.csv"""'], {}), "('../mujeres_fecundidad_INE_2018.csv')\n", (870, 908), True, 'import pandas as pd\n'), ((2256, 2292), 'matplotlib.pyplot.subplots', 'plt.subplots', (['(3)', '(2)'], {'figsize': '(10, 10)'}), '(3, 2, figsize=(10, 10))\n', (2268, 2292), True, 'import matplotlib.pyplot as plt\n'), ((4185, 4195), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (4193, 4195), True, 'import matplotlib.pyplot as plt\n'), ((4318, 4337), 'prettytable.PrettyTable', 'PrettyTable', (['header'], {}), '(header)\n', (4329, 4337), False, 'from prettytable import PrettyTable\n'), ((5353, 5390), 'pandas.concat', 'pd.concat', (['[X, clusters_ward]'], {'axis': '(1)'}), '([X, clusters_ward], axis=1)\n', (5362, 5390), True, 'import pandas as pd\n'), ((5406, 5473), 'matplotlib.pyplot.subplots', 'plt.subplots', (['n_clusters_ward', 'n_var'], {'sharey': '(True)', 'figsize': '(15, 15)'}), '(n_clusters_ward, n_var, sharey=True, figsize=(15, 15))\n', (5418, 5473), True, 'import matplotlib.pyplot as plt\n'), ((5526, 5595), 'seaborn.color_palette', 'sns.color_palette', ([], {'palette': 'None', 'n_colors': 'n_clusters_ward', 'desat': 'None'}), '(palette=None, n_colors=n_clusters_ward, desat=None)\n', (5543, 5595), True, 'import seaborn as sns\n'), ((6597, 6607), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (6605, 6607), True, 'import matplotlib.pyplot as plt\n'), ((7473, 7535), 'sklearn.cluster.AgglomerativeClustering', 'cluster.AgglomerativeClustering', ([], {'n_clusters': '(20)', 'linkage': '"""ward"""'}), "(n_clusters=20, linkage='ward')\n", (7504, 7535), False, 'from sklearn import cluster\n'), ((7609, 7620), 'time.time', 'time.time', ([], {}), '()\n', (7618, 7620), False, 'import time\n'), ((7816, 7889), 'pandas.DataFrame', 'pd.DataFrame', (["cluster_predict['Ward']"], {'index': 'X.index', 'columns': "['cluster']"}), "(cluster_predict['Ward'], index=X.index, columns=['cluster'])\n", (7828, 7889), True, 'import pandas as pd\n'), ((7932, 7964), 'pandas.concat', 'pd.concat', (['[X, clusters]'], {'axis': '(1)'}), '([X, clusters], axis=1)\n', (7941, 7964), True, 'import pandas as pd\n'), ((8528, 8574), 'sklearn.preprocessing.normalize', 'preprocessing.normalize', (['X_filtrado'], {'norm': '"""l2"""'}), "(X_filtrado, norm='l2')\n", (8551, 8574), False, 'from sklearn import preprocessing\n'), ((8728, 8761), 'scipy.cluster.hierarchy.ward', 'hierarchy.ward', (['X_filtrado_normal'], {}), '(X_filtrado_normal)\n', (8742, 8761), False, 'from scipy.cluster import hierarchy\n'), ((8763, 8772), 'matplotlib.pyplot.clf', 'plt.clf', ([], {}), '()\n', (8770, 8772), True, 'import matplotlib.pyplot as plt\n'), ((8783, 8872), 'scipy.cluster.hierarchy.dendrogram', 'hierarchy.dendrogram', (['linkage_array'], {'orientation': '"""left"""', 'p': '(10)', 'truncate_mode': '"""lastp"""'}), "(linkage_array, orientation='left', p=10, truncate_mode\n ='lastp')\n", (8803, 8872), False, 'from scipy.cluster import hierarchy\n'), ((9121, 9192), 'pandas.DataFrame', 'pd.DataFrame', (['X_filtrado_normal'], {'index': 'X_filtrado.index', 'columns': 'usadas'}), '(X_filtrado_normal, index=X_filtrado.index, columns=usadas)\n', (9133, 9192), True, 'import pandas as pd\n'), ((9473, 9622), 'seaborn.clustermap', 'sns.clustermap', (['X_filtrado_normal_DF'], {'method': '"""ward"""', 'row_colors': 'row_colors', 'col_cluster': '(False)', 'figsize': '(20, 10)', 'cmap': '"""YlGnBu"""', 'yticklabels': '(False)'}), "(X_filtrado_normal_DF, method='ward', row_colors=row_colors,\n col_cluster=False, figsize=(20, 10), cmap='YlGnBu', yticklabels=False)\n", (9487, 9622), True, 'import seaborn as sns\n'), ((9933, 10005), 'pandas.Series', 'pd.Series', (['labels_list'], {'index': 'X_filtrado_normal_DF.index', 'name': '"""cluster"""'}), "(labels_list, index=X_filtrado_normal_DF.index, name='cluster')\n", (9942, 10005), True, 'import pandas as pd\n'), ((10171, 10320), 'seaborn.clustermap', 'sns.clustermap', (['X_filtrado_normal_DF'], {'method': '"""ward"""', 'row_colors': 'row_colors', 'col_cluster': '(False)', 'figsize': '(20, 10)', 'cmap': '"""YlGnBu"""', 'yticklabels': '(False)'}), "(X_filtrado_normal_DF, method='ward', row_colors=row_colors,\n col_cluster=False, figsize=(20, 10), cmap='YlGnBu', yticklabels=False)\n", (10185, 10320), True, 'import seaborn as sns\n'), ((10427, 10440), 'matplotlib.pyplot.figure', 'plt.figure', (['(1)'], {}), '(1)\n', (10437, 10440), True, 'import matplotlib.pyplot as plt\n'), ((10622, 10659), 'pandas.concat', 'pd.concat', (['[X, clusters_ward]'], {'axis': '(1)'}), '([X, clusters_ward], axis=1)\n', (10631, 10659), True, 'import pandas as pd\n'), ((11122, 11152), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {'figsize': '(10, 10)'}), '(figsize=(10, 10))\n', (11134, 11152), True, 'import matplotlib.pyplot as plt\n'), ((11163, 11242), 'seaborn.heatmap', 'sns.heatmap', (['centers_normal2'], {'cmap': '"""YlGnBu"""', 'annot': 'centers_desnormal', 'fmt': '""".3f"""'}), "(centers_normal2, cmap='YlGnBu', annot=centers_desnormal, fmt='.3f')\n", (11174, 11242), True, 'import seaborn as sns\n'), ((2542, 2553), 'time.time', 'time.time', ([], {}), '()\n', (2551, 2553), False, 'import time\n'), ((2689, 2753), 'sklearn.metrics.calinski_harabasz_score', 'metrics.calinski_harabasz_score', (['X_normal', 'cluster_predict[name]'], {}), '(X_normal, cluster_predict[name])\n', (2720, 2753), False, 'from sklearn import metrics\n'), ((3025, 3096), 'pandas.DataFrame', 'pd.DataFrame', (['cluster_predict[name]'], {'index': 'X.index', 'columns': "['cluster']"}), "(cluster_predict[name], index=X.index, columns=['cluster'])\n", (3037, 3096), True, 'import pandas as pd\n'), ((7689, 7700), 'time.time', 'time.time', ([], {}), '()\n', (7698, 7700), False, 'import time\n'), ((1653, 1674), 'pandas.isnull', 'pd.isnull', (['censo[col]'], {}), '(censo[col])\n', (1662, 1674), True, 'import pandas as pd\n'), ((1776, 1832), 'sklearn.cluster.KMeans', 'cluster.KMeans', ([], {'init': '"""k-means++"""', 'n_clusters': '(5)', 'n_init': '(5)'}), "(init='k-means++', n_clusters=5, n_init=5)\n", (1790, 1832), False, 'from sklearn import cluster\n'), ((1864, 1916), 'sklearn.cluster.MeanShift', 'cluster.MeanShift', ([], {'cluster_all': '(False)', 'min_bin_freq': '(3)'}), '(cluster_all=False, min_bin_freq=3)\n', (1881, 1916), False, 'from sklearn import cluster\n'), ((1943, 2004), 'sklearn.cluster.AgglomerativeClustering', 'cluster.AgglomerativeClustering', ([], {'n_clusters': '(4)', 'linkage': '"""ward"""'}), "(n_clusters=4, linkage='ward')\n", (1974, 2004), False, 'from sklearn import cluster\n'), ((2033, 2072), 'sklearn.cluster.DBSCAN', 'cluster.DBSCAN', ([], {'eps': '(0.35)', 'min_samples': '(5)'}), '(eps=0.35, min_samples=5)\n', (2047, 2072), False, 'from sklearn import cluster\n'), ((2100, 2142), 'sklearn.cluster.Birch', 'cluster.Birch', ([], {'threshold': '(0.1)', 'n_clusters': '(5)'}), '(threshold=0.1, n_clusters=5)\n', (2113, 2142), False, 'from sklearn import cluster\n'), ((2624, 2635), 'time.time', 'time.time', ([], {}), '()\n', (2633, 2635), False, 'import time\n'), ((5931, 6044), 'seaborn.boxplot', 'sns.boxplot', (['dat_filt[usadas[j]]'], {'color': 'colors[i]', 'flierprops': "{'marker': 'o', 'markersize': 4}", 'ax': 'axes[i, j]'}), "(dat_filt[usadas[j]], color=colors[i], flierprops={'marker': 'o',\n 'markersize': 4}, ax=axes[i, j])\n", (5942, 6044), True, 'import seaborn as sns\n'), ((9338, 9400), 'seaborn.color_palette', 'sns.color_palette', ([], {'palette': '"""Blues_d"""', 'n_colors': 'n_clusters_ward'}), "(palette='Blues_d', n_colors=n_clusters_ward)\n", (9355, 9400), True, 'import seaborn as sns\n'), ((10036, 10098), 'seaborn.color_palette', 'sns.color_palette', ([], {'palette': '"""Blues_d"""', 'n_colors': 'n_clusters_ward'}), "(palette='Blues_d', n_colors=n_clusters_ward)\n", (10053, 10098), True, 'import seaborn as sns\n'), ((9417, 9437), 'pandas.DataFrame', 'pd.DataFrame', (['labels'], {}), '(labels)\n', (9429, 9437), True, 'import pandas as pd\n'), ((10115, 10135), 'pandas.DataFrame', 'pd.DataFrame', (['labels'], {}), '(labels)\n', (10127, 10135), True, 'import pandas as pd\n')]
""" preprocess of (single lead) ecg signal: band pass --> remove baseline --> find rpeaks --> denoise (mainly deal with motion artefact) TODO: 1. motion artefact detection, and slice the signal into continuous (no motion artefact within) segments 2. to add References: ----------- [1] https://github.com/PIA-Group/BioSPPy [2] to add """ import os, time import multiprocessing as mp from copy import deepcopy from numbers import Real from typing import Union, Optional, Any, List, Dict import numpy as np from easydict import EasyDict as ED from scipy.ndimage.filters import median_filter from scipy.signal.signaltools import resample from scipy.io import savemat # from scipy.signal import medfilt # https://github.com/scipy/scipy/issues/9680 try: from biosppy.signals.tools import filter_signal except: from references.biosppy.biosppy.signals.tools import filter_signal from cfg import PreprocCfg from .ecg_rpeaks import ( xqrs_detect, gqrs_detect, pantompkins, hamilton_detect, ssf_detect, christov_detect, engzee_detect, gamboa_detect, ) from .ecg_rpeaks_dl import seq_lab_net_detect __all__ = [ "preprocess_signal", "parallel_preprocess_signal", "denoise_signal", ] QRS_DETECTORS = { "xqrs": xqrs_detect, "gqrs": gqrs_detect, "pantompkins": pantompkins, "hamilton": hamilton_detect, "ssf": ssf_detect, "christov": christov_detect, "engzee": engzee_detect, "gamboa": gamboa_detect, "seq_lab": seq_lab_net_detect, } DL_QRS_DETECTORS = [ "seq_lab", ] def preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will be updated by this `config` Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ filtered_ecg = raw_sig.copy() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) if fs != cfg.fs: filtered_ecg = resample(filtered_ecg, int(round(len(filtered_ecg)*cfg.fs/fs))) # remove baseline if 'baseline' in cfg.preproc: window1 = 2 * (cfg.baseline_window1 // 2) + 1 # window size must be odd window2 = 2 * (cfg.baseline_window2 // 2) + 1 baseline = median_filter(filtered_ecg, size=window1, mode='nearest') baseline = median_filter(baseline, size=window2, mode='nearest') filtered_ecg = filtered_ecg - baseline # filter signal if 'bandpass' in cfg.preproc: filtered_ecg = filter_signal( signal=filtered_ecg, ftype='FIR', band='bandpass', order=int(0.3 * fs), sampling_rate=fs, frequency=cfg.filter_band, )['signal'] if cfg.rpeaks and cfg.rpeaks.lower() not in DL_QRS_DETECTORS: # dl detectors not for parallel computing using `mp` detector = QRS_DETECTORS[cfg.rpeaks.lower()] rpeaks = detector(sig=filtered_ecg, fs=fs).astype(int) else: rpeaks = np.array([], dtype=int) retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval def parallel_preprocess_signal(raw_sig:np.ndarray, fs:Real, config:Optional[ED]=None, save_dir:Optional[str]=None, save_fmt:str='npy', verbose:int=0) -> Dict[str, np.ndarray]: """ finished, checked, Parameters: ----------- raw_sig: ndarray, the raw ecg signal fs: real number, sampling frequency of `raw_sig` config: dict, optional, extra process configuration, `PreprocCfg` will `update` this `config` save_dir: str, optional, directory for saving the outcome ('filtered_ecg' and 'rpeaks') save_fmt: str, default 'npy', format of the save files, 'npy' or 'mat' Returns: -------- retval: dict, with items - 'filtered_ecg': the array of the processed ecg signal - 'rpeaks': the array of indices of rpeaks; empty if 'rpeaks' in `config` is not set NOTE: ----- output (`retval`) are resampled to have sampling frequency equal to `config.fs` (if `config` has item `fs`) or `PreprocCfg.fs` """ start_time = time.time() cfg = deepcopy(PreprocCfg) cfg.update(config or {}) epoch_len = int(cfg.parallel_epoch_len * fs) epoch_overlap_half = int(cfg.parallel_epoch_overlap * fs) // 2 epoch_overlap = 2 * epoch_overlap_half epoch_forward = epoch_len - epoch_overlap if len(raw_sig) <= 3 * epoch_len: # too short, no need for parallel computing retval = preprocess_signal(raw_sig, fs, cfg) if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) retval.rpeaks = rpeaks return retval l_epoch = [ raw_sig[idx*epoch_forward: idx*epoch_forward + epoch_len] \ for idx in range((len(raw_sig)-epoch_overlap)//epoch_forward) ] if cfg.parallel_keep_tail: tail_start_idx = epoch_forward * len(l_epoch) + epoch_overlap if len(raw_sig) - tail_start_idx < 30 * fs: # less than 30s, make configurable? # append to the last epoch l_epoch[-1] = np.append(l_epoch[-1], raw_sig[tail_start_idx:]) else: # long enough tail_epoch = raw_sig[tail_start_idx-epoch_overlap:] l_epoch.append(tail_epoch) cpu_num = max(1, mp.cpu_count()-3) with mp.Pool(processes=cpu_num) as pool: result = pool.starmap( func=preprocess_signal, iterable=[(e, fs, cfg) for e in l_epoch], ) if cfg.parallel_keep_tail: tail_result = result[-1] result = result[:-1] filtered_ecg = result[0]['filtered_ecg'][:epoch_len-epoch_overlap_half] rpeaks = result[0]['rpeaks'][np.where(result[0]['rpeaks']<epoch_len-epoch_overlap_half)[0]] for idx, e in enumerate(result[1:]): filtered_ecg = np.append( filtered_ecg, e['filtered_ecg'][epoch_overlap_half: -epoch_overlap_half] ) epoch_rpeaks = e['rpeaks'][np.where( (e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len-epoch_overlap_half) )[0]] rpeaks = np.append(rpeaks, (idx+1)*epoch_forward + epoch_rpeaks) if cfg.parallel_keep_tail: filtered_ecg = np.append(filtered_ecg, tail_result['filtered_ecg'][epoch_overlap_half:]) tail_rpeaks = tail_result['rpeaks'][np.where(tail_result['rpeaks'] >= epoch_overlap_half)[0]] rpeaks = np.append(rpeaks, len(result)*epoch_forward + tail_rpeaks) if verbose >= 1: if cfg.rpeaks.lower() in DL_QRS_DETECTORS: print(f"signal processing took {round(time.time()-start_time, 3)} seconds") else: print(f"signal processing and R peaks detection took {round(time.time()-start_time, 3)} seconds") start_time = time.time() if cfg.rpeaks and cfg.rpeaks.lower() in DL_QRS_DETECTORS: rpeaks = QRS_DETECTORS[cfg.rpeaks.lower()](sig=raw_sig, fs=fs, verbose=verbose).astype(int) if verbose >= 1: print(f"R peaks detection using {cfg.rpeaks} took {round(time.time()-start_time, 3)} seconds") if save_dir: # NOTE: this part is not tested os.makedirs(save_dir, exist_ok=True) if save_fmt.lower() == 'npy': np.save(os.path.join(save_dir, "filtered_ecg.npy"), filtered_ecg) np.save(os.path.join(save_dir, "rpeaks.npy"), rpeaks) elif save_fmt.lower() == 'mat': # save into 2 files, keep in accordance savemat(os.path.join(save_dir, "filtered_ecg.mat"), {"filtered_ecg": filtered_ecg}, format='5') savemat(os.path.join(save_dir, "rpeaks.mat"), {"rpeaks": rpeaks}, format='5') retval = ED({ "filtered_ecg": filtered_ecg, "rpeaks": rpeaks, }) return retval """ to check correctness of the function `parallel_preprocess_signal`, say for record A01, one can call >>> raw_sig = loadmat("./data/A01.mat")['ecg'].flatten() >>> processed = parallel_preprocess_signal(raw_sig, 400) >>> print(len(processed['filtered_ecg']) - len(raw_sig)) >>> start_t = int(3600*24.7811) >>> len_t = 10 >>> fig, ax = plt.subplots(figsize=(20,6)) >>> ax.plot(hehe['filtered_ecg'][start_t*400:(start_t+len_t)*400]) >>> for r in [p for p in hehe['rpeaks'] if start_t*400 <= p < (start_t+len_t)*400]: >>> ax.axvline(r-start_t*400,c='red',linestyle='dashed') >>> plt.show() or one can use the 'dataset.py' """
[ "scipy.ndimage.filters.median_filter", "os.makedirs", "numpy.where", "os.path.join", "multiprocessing.cpu_count", "numpy.append", "easydict.EasyDict", "numpy.array", "multiprocessing.Pool", "copy.deepcopy", "time.time" ]
[((2371, 2391), 'copy.deepcopy', 'deepcopy', (['PreprocCfg'], {}), '(PreprocCfg)\n', (2379, 2391), False, 'from copy import deepcopy\n'), ((3534, 3586), 'easydict.EasyDict', 'ED', (["{'filtered_ecg': filtered_ecg, 'rpeaks': rpeaks}"], {}), "({'filtered_ecg': filtered_ecg, 'rpeaks': rpeaks})\n", (3536, 3586), True, 'from easydict import EasyDict as ED\n'), ((4684, 4695), 'time.time', 'time.time', ([], {}), '()\n', (4693, 4695), False, 'import os, time\n'), ((4706, 4726), 'copy.deepcopy', 'deepcopy', (['PreprocCfg'], {}), '(PreprocCfg)\n', (4714, 4726), False, 'from copy import deepcopy\n'), ((8305, 8357), 'easydict.EasyDict', 'ED', (["{'filtered_ecg': filtered_ecg, 'rpeaks': rpeaks}"], {}), "({'filtered_ecg': filtered_ecg, 'rpeaks': rpeaks})\n", (8307, 8357), True, 'from easydict import EasyDict as ED\n'), ((2741, 2798), 'scipy.ndimage.filters.median_filter', 'median_filter', (['filtered_ecg'], {'size': 'window1', 'mode': '"""nearest"""'}), "(filtered_ecg, size=window1, mode='nearest')\n", (2754, 2798), False, 'from scipy.ndimage.filters import median_filter\n'), ((2818, 2871), 'scipy.ndimage.filters.median_filter', 'median_filter', (['baseline'], {'size': 'window2', 'mode': '"""nearest"""'}), "(baseline, size=window2, mode='nearest')\n", (2831, 2871), False, 'from scipy.ndimage.filters import median_filter\n'), ((3496, 3519), 'numpy.array', 'np.array', (['[]'], {'dtype': 'int'}), '([], dtype=int)\n', (3504, 3519), True, 'import numpy as np\n'), ((5981, 6007), 'multiprocessing.Pool', 'mp.Pool', ([], {'processes': 'cpu_num'}), '(processes=cpu_num)\n', (5988, 6007), True, 'import multiprocessing as mp\n'), ((6483, 6570), 'numpy.append', 'np.append', (['filtered_ecg', "e['filtered_ecg'][epoch_overlap_half:-epoch_overlap_half]"], {}), "(filtered_ecg, e['filtered_ecg'][epoch_overlap_half:-\n epoch_overlap_half])\n", (6492, 6570), True, 'import numpy as np\n'), ((6740, 6799), 'numpy.append', 'np.append', (['rpeaks', '((idx + 1) * epoch_forward + epoch_rpeaks)'], {}), '(rpeaks, (idx + 1) * epoch_forward + epoch_rpeaks)\n', (6749, 6799), True, 'import numpy as np\n'), ((6851, 6924), 'numpy.append', 'np.append', (['filtered_ecg', "tail_result['filtered_ecg'][epoch_overlap_half:]"], {}), "(filtered_ecg, tail_result['filtered_ecg'][epoch_overlap_half:])\n", (6860, 6924), True, 'import numpy as np\n'), ((7409, 7420), 'time.time', 'time.time', ([], {}), '()\n', (7418, 7420), False, 'import os, time\n'), ((7782, 7818), 'os.makedirs', 'os.makedirs', (['save_dir'], {'exist_ok': '(True)'}), '(save_dir, exist_ok=True)\n', (7793, 7818), False, 'import os, time\n'), ((5751, 5799), 'numpy.append', 'np.append', (['l_epoch[-1]', 'raw_sig[tail_start_idx:]'], {}), '(l_epoch[-1], raw_sig[tail_start_idx:])\n', (5760, 5799), True, 'import numpy as np\n'), ((5954, 5968), 'multiprocessing.cpu_count', 'mp.cpu_count', ([], {}), '()\n', (5966, 5968), True, 'import multiprocessing as mp\n'), ((6356, 6418), 'numpy.where', 'np.where', (["(result[0]['rpeaks'] < epoch_len - epoch_overlap_half)"], {}), "(result[0]['rpeaks'] < epoch_len - epoch_overlap_half)\n", (6364, 6418), True, 'import numpy as np\n'), ((6624, 6722), 'numpy.where', 'np.where', (["((e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len -\n epoch_overlap_half))"], {}), "((e['rpeaks'] >= epoch_overlap_half) & (e['rpeaks'] < epoch_len -\n epoch_overlap_half))\n", (6632, 6722), True, 'import numpy as np\n'), ((6969, 7022), 'numpy.where', 'np.where', (["(tail_result['rpeaks'] >= epoch_overlap_half)"], {}), "(tail_result['rpeaks'] >= epoch_overlap_half)\n", (6977, 7022), True, 'import numpy as np\n'), ((7877, 7919), 'os.path.join', 'os.path.join', (['save_dir', '"""filtered_ecg.npy"""'], {}), "(save_dir, 'filtered_ecg.npy')\n", (7889, 7919), False, 'import os, time\n'), ((7955, 7991), 'os.path.join', 'os.path.join', (['save_dir', '"""rpeaks.npy"""'], {}), "(save_dir, 'rpeaks.npy')\n", (7967, 7991), False, 'import os, time\n'), ((8113, 8155), 'os.path.join', 'os.path.join', (['save_dir', '"""filtered_ecg.mat"""'], {}), "(save_dir, 'filtered_ecg.mat')\n", (8125, 8155), False, 'import os, time\n'), ((8221, 8257), 'os.path.join', 'os.path.join', (['save_dir', '"""rpeaks.mat"""'], {}), "(save_dir, 'rpeaks.mat')\n", (8233, 8257), False, 'import os, time\n'), ((7226, 7237), 'time.time', 'time.time', ([], {}), '()\n', (7235, 7237), False, 'import os, time\n'), ((7350, 7361), 'time.time', 'time.time', ([], {}), '()\n', (7359, 7361), False, 'import os, time\n'), ((7678, 7689), 'time.time', 'time.time', ([], {}), '()\n', (7687, 7689), False, 'import os, time\n')]
"""Test Manage All-Link Record.""" import unittest from binascii import unhexlify from pyinsteon.address import Address from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId from pyinsteon.protocol.messages.all_link_record_flags import \ AllLinkRecordFlags from tests import set_log_levels from tests.utils import hex_to_inbound_message # pylint: disable=no-member class TestManageAllLinkRecord(unittest.TestCase): """Test Manage All-Link Record.""" def setUp(self): """Set up test.""" self.hex = "026F400405060708090a0b" self.hex_ack = "026F400405060708090a0b06" self.message_id = MessageId(0x6F) self.action = ManageAllLinkRecordAction(0x40) self.flags = AllLinkRecordFlags(0x04) self.group = int(0x05) self.address = Address("060708") self.data1 = int(0x09) self.data2 = int(0x0A) self.data3 = int(0x0B) self.ack = AckNak(0x06) self.msg, self.msg_bytes = hex_to_inbound_message(self.hex_ack) set_log_levels( logger="info", logger_pyinsteon="info", logger_messages="info", logger_topics=False, ) def test_id(self): """Test ID.""" assert self.msg.message_id == self.message_id def test_ack_nak(self): """Test ACK/NAK.""" assert self.msg.ack == self.ack def test_bytes(self): """Test bytes.""" assert bytes(self.msg) == unhexlify(self.hex_ack)
[ "pyinsteon.constants.AckNak", "tests.utils.hex_to_inbound_message", "tests.set_log_levels", "pyinsteon.address.Address", "pyinsteon.constants.MessageId", "pyinsteon.protocol.messages.all_link_record_flags.AllLinkRecordFlags", "binascii.unhexlify", "pyinsteon.constants.ManageAllLinkRecordAction" ]
[((653, 667), 'pyinsteon.constants.MessageId', 'MessageId', (['(111)'], {}), '(111)\n', (662, 667), False, 'from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId\n'), ((691, 720), 'pyinsteon.constants.ManageAllLinkRecordAction', 'ManageAllLinkRecordAction', (['(64)'], {}), '(64)\n', (716, 720), False, 'from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId\n'), ((744, 765), 'pyinsteon.protocol.messages.all_link_record_flags.AllLinkRecordFlags', 'AllLinkRecordFlags', (['(4)'], {}), '(4)\n', (762, 765), False, 'from pyinsteon.protocol.messages.all_link_record_flags import AllLinkRecordFlags\n'), ((823, 840), 'pyinsteon.address.Address', 'Address', (['"""060708"""'], {}), "('060708')\n", (830, 840), False, 'from pyinsteon.address import Address\n'), ((953, 962), 'pyinsteon.constants.AckNak', 'AckNak', (['(6)'], {}), '(6)\n', (959, 962), False, 'from pyinsteon.constants import AckNak, ManageAllLinkRecordAction, MessageId\n'), ((1002, 1038), 'tests.utils.hex_to_inbound_message', 'hex_to_inbound_message', (['self.hex_ack'], {}), '(self.hex_ack)\n', (1024, 1038), False, 'from tests.utils import hex_to_inbound_message\n'), ((1047, 1151), 'tests.set_log_levels', 'set_log_levels', ([], {'logger': '"""info"""', 'logger_pyinsteon': '"""info"""', 'logger_messages': '"""info"""', 'logger_topics': '(False)'}), "(logger='info', logger_pyinsteon='info', logger_messages=\n 'info', logger_topics=False)\n", (1061, 1151), False, 'from tests import set_log_levels\n'), ((1491, 1514), 'binascii.unhexlify', 'unhexlify', (['self.hex_ack'], {}), '(self.hex_ack)\n', (1500, 1514), False, 'from binascii import unhexlify\n')]
from django.shortcuts import render, HttpResponse, HttpResponseRedirect from django.template import loader from django.conf import settings from django.contrib.auth.models import User from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle from django.views.generic import ListView, FormView, CreateView from django.contrib.auth.mixins import LoginRequiredMixin from django.contrib.auth.decorators import login_required from rameniaapp.decorators import user_is_moderator from rameniaapp.actionhookutils import dispatch_hook from rameniaapp.utils import UserIsModeratorMixin from django.forms.widgets import Select from django.contrib import messages class ReportForm(LoginRequiredMixin, CreateView): '''Class based view for creating reports''' template_name = "report_form.html" model = Report success_url = "/app" fields = ["reason"] url_path = "/app" login_url="/app/login" def get_form(self, form_class=None): form = super(ReportForm, self).get_form(form_class) form.fields['reason'].widget.attrs.update({'class':'form-control'}) return form def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.reporter = self.request.user form.instance.status = 'OP' return super().form_valid(form) def get_context_data(self, **kwargs): '''Adds url_path value and relevant object id to template''' context = super().get_context_data(**kwargs) context["id"] = self.kwargs["id"] context["url_path"] = self.url_path return context class NoodleReportForm(ReportForm): '''Class based view for reporting noodles''' model = NoodleReport #This is used to allow the form to create the correct object url_path = "noodle_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.noodle = Noodle.objects.get(pk=self.kwargs["id"]) form.instance.type = 'ND' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Noodle.objects.get(pk=self.kwargs["id"]).name return context class ReviewReportForm(ReportForm): '''Class based view for reporting reviews''' model = ReviewReport url_path = "review_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.review = Review.objects.get(pk=self.kwargs["id"]) form.instance.type = 'RV' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Review.objects.get(pk=self.kwargs["id"]).title return context class ProfileReportForm(ReportForm): '''Class based view for reporting profile''' model = ProfileReport url_path = "profile_report" def form_valid(self, form): '''Ensures hidden form values are filled''' form.instance.profile = Profile.objects.get(pk=self.kwargs["id"]) form.instance.type = 'PF' return super().form_valid(form) def get_context_data(self, **kwargs): '''Passes item name to template''' context = super().get_context_data(**kwargs) context["name"] = Profile.objects.get(pk=self.kwargs["id"]).name return context class ReportList(LoginRequiredMixin, UserIsModeratorMixin, ListView): '''Class based view for viewing reports''' # These values are overriden for the subclasses so we can create # multiple types of noodles without rewriting code model = Report item_type = "" context_object_name = "reports" template_name = "report_view.html" login_url="/app/login" def get_queryset(self): '''Get all reports for specific objects''' if "item_id" in self.kwargs: item_tuple = self.get_item(self.kwargs["item_id"]) self.kwargs[item_tuple[0]] = item_tuple[1] # This prevents the next line from breaking del self.kwargs["item_id"] # Using get_item, this lets us filter for any kind of object without # writing extra code return self.model.objects.filter(**self.kwargs) def get_item(self, id): '''Returns a tuple containing the key name and item''' return (None, None) def get_context_data(self, **kwargs): '''Knowing the item type lets us not break things''' context = super().get_context_data(**kwargs) context['item_type'] = self.item_type return context class NoodleReportList(ReportList): '''List of noodle reports''' model = NoodleReport item_type = "Noodles" def get_item(self, id): '''Returns a tuple containing the key name and item''' noodle = Noodle.objects.get(id=id) return ("noodle", noodle) class ReviewReportList(ReportList): '''List of review reports''' model = ReviewReport item_type = "Reviews" def get_item(self, id): '''Returns a tuple containing the key name and item''' review = Review.objects.get(id=id) return ("review", review) class ProfileReportList(ReportList): '''List of profile reports''' model = ProfileReport item_type = "Profiles" def get_item(self, id): '''Returns a tuple containing the key name and item''' profile = Profile.objects.get(id=id) return ("profile", profile) @login_required(login_url="/app/login") @user_is_moderator def ban_user(request, report_type, user_id): '''Ban a user by their id; expects report_type arg for redirect reasons''' if request.method == "POST": user = User.objects.get(pk=user_id).delete() path = None if report_type == "ND": path = "reports/noodle" elif report_type == "RV": path = "reports/review" elif report_type == "PF": path = "reports/profile" messages.add_message(request, messages.WARNING, "User banned") return HttpResponseRedirect("/app/mod/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def delete_content(request, report_id): '''This method deletes offending items that have been reported, or just their content''' if request.method == "POST": report = Report.objects.get(pk=report_id) reporter = report.reporter creator = None path = get_return_path(report) # Deleting object is dependent on type if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer report.review.delete() elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor report.noodle.delete() elif report.type == "PF": # Deleting a profile will break fundamental assumptions, so we instead # remove all content from it. report = ProfileReport.objects.get(pk=report_id) report.profile.name = "AnonymousUser" report.profile.profile_pic = Profile._meta.get_field('profile_pic').default report.profile.metadata["Description"] = "" report.profile.save() creator = report.profile.user report.delete() # If we delete the content, it was reasonable to report it dispatch_hook(reporter, "good-report") if creator: # If the noodle's creator hasn't been banned, penalize them dispatch_hook(creator, "bad-content") messages.add_message(request, messages.WARNING, "Content deleted") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def update_report_status(request, report_id, status): '''Change report status to "open", "resolved", or "spam"''' if request.method == "POST": # Validate status is the correct value if status in dict(Report.STATUS_CHOICES): report = Report.objects.get(pk=report_id) report.status = status report.save() creator = None path = get_return_path(report) # Get the creator of the relevant object/report if report.type == "RV": report = ReviewReport.objects.get(pk=report_id) creator = report.review.reviewer elif report.type == "ND": report = NoodleReport.objects.get(pk=report_id) creator = report.noodle.editor elif report.type == "PF": report = ProfileReport.objects.get(pk=report_id) creator = report.profile.user # Reward people for good reports if status == "ED": if report.reporter: dispatch_hook(report.reporter, "good-report") if creator: dispatch_hook(creator, "bad-content") messages.add_message(request, messages.SUCCESS, "Report marked as resolved") # Penalize people for bad reports if status == "SP": if report.reporter: dispatch_hook(report.reporter, "bad-report") messages.add_message(request, messages.WARNING, "Report marked as spam") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") @login_required(login_url="/app/login") @user_is_moderator def ignore_report(request, report_id): '''Ignore (delete) a report''' if request.method == "POST": report = Report.objects.get(pk=report_id) path = get_return_path(report) if report.reporter: # We assume a bad report is worth deleting if its creator # wasn't banned dispatch_hook(report.reporter, "bad-report") report.delete() messages.add_message(request, messages.WARNING, "Report ignored") return HttpResponseRedirect("/app/mod/reports/{}".format(path)) else: return HttpResponseRedirect("/app/mod") def get_return_path(report): '''Util method to return a correct redirect path''' if report.type == "RV": return "review" elif report.type == "ND": return "noodle" elif report.type == "PF": return "profile"
[ "django.contrib.auth.models.User.objects.get", "rameniaapp.models.ProfileReport.objects.get", "rameniaapp.actionhookutils.dispatch_hook", "rameniaapp.models.NoodleReport.objects.get", "rameniaapp.models.Report.objects.get", "rameniaapp.models.Profile.objects.get", "rameniaapp.models.Profile._meta.get_field", "rameniaapp.models.ReviewReport.objects.get", "django.shortcuts.HttpResponseRedirect", "django.contrib.auth.decorators.login_required", "django.contrib.messages.add_message", "rameniaapp.models.Noodle.objects.get", "rameniaapp.models.Review.objects.get" ]
[((5632, 5670), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/app/login"""'}), "(login_url='/app/login')\n", (5646, 5670), False, 'from django.contrib.auth.decorators import login_required\n'), ((6324, 6362), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/app/login"""'}), "(login_url='/app/login')\n", (6338, 6362), False, 'from django.contrib.auth.decorators import login_required\n'), ((8067, 8105), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/app/login"""'}), "(login_url='/app/login')\n", (8081, 8105), False, 'from django.contrib.auth.decorators import login_required\n'), ((9821, 9859), 'django.contrib.auth.decorators.login_required', 'login_required', ([], {'login_url': '"""/app/login"""'}), "(login_url='/app/login')\n", (9835, 9859), False, 'from django.contrib.auth.decorators import login_required\n'), ((1962, 2002), 'rameniaapp.models.Noodle.objects.get', 'Noodle.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (1980, 2002), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((2569, 2609), 'rameniaapp.models.Review.objects.get', 'Review.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (2587, 2609), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((3181, 3222), 'rameniaapp.models.Profile.objects.get', 'Profile.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (3200, 3222), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((4982, 5007), 'rameniaapp.models.Noodle.objects.get', 'Noodle.objects.get', ([], {'id': 'id'}), '(id=id)\n', (5000, 5007), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((5272, 5297), 'rameniaapp.models.Review.objects.get', 'Review.objects.get', ([], {'id': 'id'}), '(id=id)\n', (5290, 5297), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((5567, 5593), 'rameniaapp.models.Profile.objects.get', 'Profile.objects.get', ([], {'id': 'id'}), '(id=id)\n', (5586, 5593), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((6137, 6199), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.WARNING', '"""User banned"""'], {}), "(request, messages.WARNING, 'User banned')\n", (6157, 6199), False, 'from django.contrib import messages\n'), ((6289, 6321), 'django.shortcuts.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/app/mod"""'], {}), "('/app/mod')\n", (6309, 6321), False, 'from django.shortcuts import render, HttpResponse, HttpResponseRedirect\n'), ((6565, 6597), 'rameniaapp.models.Report.objects.get', 'Report.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (6583, 6597), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((7679, 7717), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['reporter', '"""good-report"""'], {}), "(reporter, 'good-report')\n", (7692, 7717), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((7868, 7934), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.WARNING', '"""Content deleted"""'], {}), "(request, messages.WARNING, 'Content deleted')\n", (7888, 7934), False, 'from django.contrib import messages\n'), ((8032, 8064), 'django.shortcuts.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/app/mod"""'], {}), "('/app/mod')\n", (8052, 8064), False, 'from django.shortcuts import render, HttpResponse, HttpResponseRedirect\n'), ((9786, 9818), 'django.shortcuts.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/app/mod"""'], {}), "('/app/mod')\n", (9806, 9818), False, 'from django.shortcuts import render, HttpResponse, HttpResponseRedirect\n'), ((10003, 10035), 'rameniaapp.models.Report.objects.get', 'Report.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (10021, 10035), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((10290, 10355), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.WARNING', '"""Report ignored"""'], {}), "(request, messages.WARNING, 'Report ignored')\n", (10310, 10355), False, 'from django.contrib import messages\n'), ((10453, 10485), 'django.shortcuts.HttpResponseRedirect', 'HttpResponseRedirect', (['"""/app/mod"""'], {}), "('/app/mod')\n", (10473, 10485), False, 'from django.shortcuts import render, HttpResponse, HttpResponseRedirect\n'), ((2242, 2282), 'rameniaapp.models.Noodle.objects.get', 'Noodle.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (2260, 2282), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((2849, 2889), 'rameniaapp.models.Review.objects.get', 'Review.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (2867, 2889), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((3462, 3503), 'rameniaapp.models.Profile.objects.get', 'Profile.objects.get', ([], {'pk': "self.kwargs['id']"}), "(pk=self.kwargs['id'])\n", (3481, 3503), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((6795, 6833), 'rameniaapp.models.ReviewReport.objects.get', 'ReviewReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (6819, 6833), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((7822, 7859), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['creator', '"""bad-content"""'], {}), "(creator, 'bad-content')\n", (7835, 7859), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((8394, 8426), 'rameniaapp.models.Report.objects.get', 'Report.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (8412, 8426), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((10213, 10257), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['report.reporter', '"""bad-report"""'], {}), "(report.reporter, 'bad-report')\n", (10226, 10257), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((5862, 5890), 'django.contrib.auth.models.User.objects.get', 'User.objects.get', ([], {'pk': 'user_id'}), '(pk=user_id)\n', (5878, 5890), False, 'from django.contrib.auth.models import User\n'), ((6969, 7007), 'rameniaapp.models.NoodleReport.objects.get', 'NoodleReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (6993, 7007), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((8679, 8717), 'rameniaapp.models.ReviewReport.objects.get', 'ReviewReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (8703, 8717), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((9345, 9421), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.SUCCESS', '"""Report marked as resolved"""'], {}), "(request, messages.SUCCESS, 'Report marked as resolved')\n", (9365, 9421), False, 'from django.contrib import messages\n'), ((9616, 9688), 'django.contrib.messages.add_message', 'messages.add_message', (['request', 'messages.WARNING', '"""Report marked as spam"""'], {}), "(request, messages.WARNING, 'Report marked as spam')\n", (9636, 9688), False, 'from django.contrib import messages\n'), ((7266, 7305), 'rameniaapp.models.ProfileReport.objects.get', 'ProfileReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (7291, 7305), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((8830, 8868), 'rameniaapp.models.NoodleReport.objects.get', 'NoodleReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (8854, 8868), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((9197, 9242), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['report.reporter', '"""good-report"""'], {}), "(report.reporter, 'good-report')\n", (9210, 9242), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((9291, 9328), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['creator', '"""bad-content"""'], {}), "(creator, 'bad-content')\n", (9304, 9328), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((9555, 9599), 'rameniaapp.actionhookutils.dispatch_hook', 'dispatch_hook', (['report.reporter', '"""bad-report"""'], {}), "(report.reporter, 'bad-report')\n", (9568, 9599), False, 'from rameniaapp.actionhookutils import dispatch_hook\n'), ((7397, 7435), 'rameniaapp.models.Profile._meta.get_field', 'Profile._meta.get_field', (['"""profile_pic"""'], {}), "('profile_pic')\n", (7420, 7435), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n'), ((8979, 9018), 'rameniaapp.models.ProfileReport.objects.get', 'ProfileReport.objects.get', ([], {'pk': 'report_id'}), '(pk=report_id)\n', (9004, 9018), False, 'from rameniaapp.models import ReviewReport, ProfileReport, NoodleReport, Report, Review, Profile, Noodle\n')]
import numpy as np class ProjectionMatrix(): """This matrix provides projection distortion. Projection distortion is when things that are far away appear smaller and things that are close appear bigger. This works flawlessly so far. Takes in screen-size and provides near- and far clipping. fov is field-of-view and smaller values will make view zoom in. A value of 1 will provide a panorama image.""" def __init__(self, screen_size, zNear, zFar, fov): if fov >= 1: # Limit to 0.99 or we get infinity error at 1.0. >1.0 will give strange result. fov = 0.99999; tanHalfFOV = np.tan(fov * np.pi / 2.0) zRange = zNear - zFar; self.projectionMatrix = np.array([ [ # Row 0: screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0 ], [ # Row 1: 0, 1.0 / tanHalfFOV, 0, 0 ], [ # Row 2: 0, 0, (-zNear - zFar)/zRange, 2.0 * zFar * zNear / zRange ], [ # Row 3: 0, 0, 1, 0 ], ], dtype=np.float32) def get(self): return self.projectionMatrix class ViewMatrix(): """This matrix transform a model as if it's percieved by a camera with a target 'self.t' in global world coordinates and a position 'self.p' in global world coordinates. Global coordinates are x=right, y=forth and z=up.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) # target coordinates: self.t = vec3(0, 0, 0) # tolerance value: self.tolerance = 0.5 """The tolerance value is for testing when view lies within bounds. In case of 'self.orbitTarget()', it's for testing when view gets too close to target z-axis. In case of 'self.approachTarget()', it's for testing when view gets too close to target coordinates.""" # Sensitivity value: self.alpha = 0.01 """The sensitivity value is for tuning how sensitive 'self.orbitTarget()' and 'self.approachTarget()' are to user input.""" # Initialize the rotationMatrix as the identity matrix: self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def setPos(self, p): self.p = vec3(p.x, p.y, p.z) def lookAt(self, target=None, up=None): """This function focuses the view on a target. Tested and seem to work as it should... ........finally........""" if target != None: self.t = vec3(target.x, target.y, target.z) f = self.t.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, s.y, s.z, 0], [ u.x, u.y, u.z, 0], [ f.x, f.y, f.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def approachTarget(self, amount): """This function approaches the view towards the target when amount is positive and moves away from the target when amount is negative. It will stay outside the self.tolerance distance. When completely close to the target, view cannot look up or down too much.""" if amount == 0: # If amount is zero, do nothing. return if self.t.sub(self.p).mag()*(1 - amount) > 2.0*self.tolerance: # If 'self.approachTarget()' will not take the view within twice the # tolerance distance, approach the target by given amount: self.p = self.p.add(self.t.sub(self.p).scale(amount)) def orbitTarget(self, axis): if axis == (0, 0): return # Do nothing # Get target2camera-vector: p = self.p.sub(self.t) # Assign passed values to variables we can change if we have to: axis_x = -axis[0] if axis[1] > 0.30/self.alpha: """If axis[1] is bigger than 0.40 / self.alpha, we get strange results becouse view can 'tunnel' over the boundary set when getting view is getting close to target z-axis. Changing tolerance doen't change it a whole lot so I'm setting a boundary value for axis[1] to +-0.30 / self.alpha which is really really large as it is.""" axis_y = 0.3 / self.alpha elif axis[1] < -0.30/self.alpha: axis_y = -0.3 / self.alpha else: axis_y = axis[1] if axis_y > 0 and p.z > 0: """Tests if user is trying to orbit the view up and if the view is above the 'equator'. The second test is to make sure the view doesn't get stuck if it gets inside the tolerance bounds and can get back out as long as it's trying to move away.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 elif axis_y < 0 and p.z < 0: """Tests if user is trying to orbit the view down and if the view is below the 'equator'. Same test but for different case as the one above.""" if vec2(p.x, p.y).mag() < self.tolerance: axis_y = 0 if axis_y == 0: #If the other axis is zero: # Amount of rotation for target-cam x-axis: (longitude, west2east) v = vec3(0, 0, 1) # v is up vector rate = axis_x elif axis_x == 0: #If the other axis is zero: # Amount of rotation for target-cam y-axis: (latitude, south2north) v = p.cross(vec3(0, 0, 1)).norm() # v is side vector rate = axis_y else: #If neither is zero # u is up vector: u = vec3(0, 0, axis_x) # s is side vector: s = p.cross(vec3(0, 0, 1)).norm().scale(axis_y) # v is combined vector: v = u.add(s).norm() rate = abs(axis_x) + abs(axis_y) sin = np.sin(self.alpha * rate) cos = np.cos(self.alpha * rate) rotateMatrix = np.matrix([ [ # Row 0: ( v.x*v.x*(1 - cos) + cos ), ( v.y*v.x*(1 - cos) - v.z*sin ), ( v.z*v.x*(1 - cos) + v.y*sin ), 0 ], [ # Row 1: ( v.x*v.y*(1 - cos) + v.z*sin ), ( v.y*v.y*(1 - cos) + cos ), ( v.z*v.y*(1 - cos) - v.x*sin ), 0 ], [ # Row 2: ( v.x*v.z*(1 - cos) - v.y*sin ), ( v.y*v.z*(1 - cos) + v.x*sin ), ( v.z*v.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32) p = rotateMatrix.dot( np.array([p.x, p.y, p.z, 1.0]) ).getA()[0][0:3] self.p = vec3(p[0], p[1], p[2]).add(self.t) self.lookAt(self.t) def get(self): translationMatrix = np.matrix([ [1,0,0,-self.p.x], [0,1,0,-self.p.y], [0,0,1,-self.p.z], [0,0,0,1] ], dtype=np.float32) return (self.rotationMatrix*translationMatrix).getA() class ModelMatrix(): """This matrix transform a model into world coordinates. Heavily tested and should work properly. Could probably be optimized further or even translated into cython for performance.""" def __init__(self, position): self.p = vec3(position.x, position.y, position.z) self.s = vec3(1, 1, 1) self.rotationMatrix = np.matrix([ [1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1] ], dtype=np.float32) def translate(self, dp): self.p = self.p.add(dp) def rotate(self, turns, unit): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" u = unit.norm() sin = np.sin(turns * np.pi * 2) cos = np.cos(turns * np.pi * 2) self.rotationMatrix = self.rotationMatrix.dot( np.matrix([ [ # Row 0: ( u.x*u.x*(1 - cos) + cos ), ( u.y*u.x*(1 - cos) - u.z*sin ), ( u.z*u.x*(1 - cos) + u.y*sin ), 0 ], [ # Row 1: ( u.x*u.y*(1 - cos) + u.z*sin ), ( u.y*u.y*(1 - cos) + cos ), ( u.z*u.y*(1 - cos) - u.x*sin ), 0 ], [ # Row 2: ( u.x*u.z*(1 - cos) - u.y*sin ), ( u.y*u.z*(1 - cos) + u.x*sin ), ( u.z*u.z*(1 - cos) + cos ), 0 ], [ # Row 3: 0, 0, 0, 1 ], ], dtype=np.float32)) def scale(self, s): self.s = vec3(s.x, s.y, s.z) def lookAt(self, target, up=None): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" # Get normalized vector pointing from model to target f = target.sub(self.p).norm() if up != None: u = vec3(up.x, up.y, up.z).norm() else: u = vec3(0, 0, 1) s = f.cross(u).norm() # f x u # s must be normalized! Consider when f and u are not perpendicular! u = s.cross(f) # s x f, automatically normalized self.rotationMatrix = np.matrix([ [ s.x, f.x, u.x, 0], [ s.y, f.y, u.y, 0], [ s.z, f.z, u.z, 0], [ 0, 0, 0, 1]], dtype=np.float32) def get(self): """Heavily tested and should work! Requires 'GL_TRUE' to be passed to the uniform on shader program to work.""" translationMatrix = np.matrix([ [1,0,0,self.p.x], [0,1,0,self.p.y], [0,0,1,self.p.z], [0,0,0,1] ], dtype=np.float32) scaleMatrix = np.matrix([ [self.s.x,0,0,0], [0,self.s.y,0,0], [0,0,self.s.z,0], [0,0,0,1] ], dtype=np.float32) return (translationMatrix*self.rotationMatrix*scaleMatrix).getA() class quaternion(): def __init__(self, x, y, z, w): self.x = float(x) self.y = float(y) self.z = float(z) self.w = float(w) def mag(self): # Get length of quaternion return np.sqrt(self.x*self.x + self.y*self.y + self.y*self.y + self.y*self.y) def norm(self): # Normalize quaternion return quaternion( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag(), w= self.w / self.mag()) def conjugate(self): return quaternion( x=-self.x, y=-self.y, z=-self.z, w= self.w) def xQ(self, q): # Multiply with quaternion return quaternion( x= self.x * q.w + self.w * q.x + self.y * q.z - self.z * q.y, y= self.y * q.w + self.w * q.y + self.z * q.x - self.x * q.z, z= self.z * q.w + self.w * q.z + self.x * q.y - self.y * q.x, w= self.w * q.w - self.x * q.x - self.y * q.y - self.z * q.z) def xV(self, v): # Multiply with vector return quaternion( x= self.w*v.x + self.y*v.z - self.z*v.y, y= self.w*v.y + self.z*v.x - self.x*v.z, z= self.w*v.z + self.x*v.y - self.y*v.x, w=-self.x*v.x - self.y*v.y - self.z*v.z) class vec2(): def __init__(self, x, y): self.x = float(x) self.y = float(y) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y) def norm(self): return vec2( x= self.x / self.mag(), y= self.y / self.mag()) class vec3(): def __init__(self, x, y, z): self.x = float(x) self.y = float(y) self.z = float(z) def cross(self, vector): return vec3( x= self.y*vector.z - self.z*vector.y, y= self.z*vector.x - self.x*vector.z, z= self.x*vector.y - self.y*vector.x) def dot(self, vector): return float( self.x*vector.x + self.y*vector.y + self.z*vector.z ) def mag(self): return np.sqrt(self.x*self.x + self.y*self.y + self.z*self.z) def norm(self): return vec3( x= self.x / self.mag(), y= self.y / self.mag(), z= self.z / self.mag()) def add(self, vector): return vec3( x= self.x + vector.x, y= self.y + vector.y, z= self.z + vector.z) def sub(self, vector): return vec3( x= self.x - vector.x, y= self.y - vector.y, z= self.z - vector.z) def scale(self, scalar): return vec3( self.x*scalar, self.y*scalar, self.z*scalar) def rotate(self, angle, axis): pass
[ "numpy.sqrt", "numpy.tan", "numpy.array", "numpy.cos", "numpy.sin", "numpy.matrix" ]
[((648, 673), 'numpy.tan', 'np.tan', (['(fov * np.pi / 2.0)'], {}), '(fov * np.pi / 2.0)\n', (654, 673), True, 'import numpy as np\n'), ((746, 948), 'numpy.array', 'np.array', (['[[screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0], [0, 1.0 /\n tanHalfFOV, 0, 0], [0, 0, (-zNear - zFar) / zRange, 2.0 * zFar * zNear /\n zRange], [0, 0, 1, 0]]'], {'dtype': 'np.float32'}), '([[screen_size[1] / (tanHalfFOV * screen_size[0]), 0, 0, 0], [0, \n 1.0 / tanHalfFOV, 0, 0], [0, 0, (-zNear - zFar) / zRange, 2.0 * zFar *\n zNear / zRange], [0, 0, 1, 0]], dtype=np.float32)\n', (754, 948), True, 'import numpy as np\n'), ((2582, 2672), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=\n np.float32)\n', (2591, 2672), True, 'import numpy as np\n'), ((3428, 3536), 'numpy.matrix', 'np.matrix', (['[[s.x, s.y, s.z, 0], [u.x, u.y, u.z, 0], [f.x, f.y, f.z, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[s.x, s.y, s.z, 0], [u.x, u.y, u.z, 0], [f.x, f.y, f.z, 0], [0, \n 0, 0, 1]], dtype=np.float32)\n', (3437, 3536), True, 'import numpy as np\n'), ((6746, 6771), 'numpy.sin', 'np.sin', (['(self.alpha * rate)'], {}), '(self.alpha * rate)\n', (6752, 6771), True, 'import numpy as np\n'), ((6786, 6811), 'numpy.cos', 'np.cos', (['(self.alpha * rate)'], {}), '(self.alpha * rate)\n', (6792, 6811), True, 'import numpy as np\n'), ((6844, 7216), 'numpy.matrix', 'np.matrix', (['[[v.x * v.x * (1 - cos) + cos, v.y * v.x * (1 - cos) - v.z * sin, v.z * v.x *\n (1 - cos) + v.y * sin, 0], [v.x * v.y * (1 - cos) + v.z * sin, v.y * v.\n y * (1 - cos) + cos, v.z * v.y * (1 - cos) - v.x * sin, 0], [v.x * v.z *\n (1 - cos) - v.y * sin, v.y * v.z * (1 - cos) + v.x * sin, v.z * v.z * (\n 1 - cos) + cos, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[v.x * v.x * (1 - cos) + cos, v.y * v.x * (1 - cos) - v.z * sin,\n v.z * v.x * (1 - cos) + v.y * sin, 0], [v.x * v.y * (1 - cos) + v.z *\n sin, v.y * v.y * (1 - cos) + cos, v.z * v.y * (1 - cos) - v.x * sin, 0],\n [v.x * v.z * (1 - cos) - v.y * sin, v.y * v.z * (1 - cos) + v.x * sin, \n v.z * v.z * (1 - cos) + cos, 0], [0, 0, 0, 1]], dtype=np.float32)\n', (6853, 7216), True, 'import numpy as np\n'), ((7930, 8043), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0, -self.p.x], [0, 1, 0, -self.p.y], [0, 0, 1, -self.p.z], [0, 0, 0, 1]\n ]'], {'dtype': 'np.float32'}), '([[1, 0, 0, -self.p.x], [0, 1, 0, -self.p.y], [0, 0, 1, -self.p.z],\n [0, 0, 0, 1]], dtype=np.float32)\n', (7939, 8043), True, 'import numpy as np\n'), ((8554, 8644), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 1, 0], [0, 0, 0, 1]], dtype=\n np.float32)\n', (8563, 8644), True, 'import numpy as np\n'), ((8983, 9008), 'numpy.sin', 'np.sin', (['(turns * np.pi * 2)'], {}), '(turns * np.pi * 2)\n', (8989, 9008), True, 'import numpy as np\n'), ((9023, 9048), 'numpy.cos', 'np.cos', (['(turns * np.pi * 2)'], {}), '(turns * np.pi * 2)\n', (9029, 9048), True, 'import numpy as np\n'), ((10669, 10777), 'numpy.matrix', 'np.matrix', (['[[s.x, f.x, u.x, 0], [s.y, f.y, u.y, 0], [s.z, f.z, u.z, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[s.x, f.x, u.x, 0], [s.y, f.y, u.y, 0], [s.z, f.z, u.z, 0], [0, \n 0, 0, 1]], dtype=np.float32)\n', (10678, 10777), True, 'import numpy as np\n'), ((11012, 11123), 'numpy.matrix', 'np.matrix', (['[[1, 0, 0, self.p.x], [0, 1, 0, self.p.y], [0, 0, 1, self.p.z], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[1, 0, 0, self.p.x], [0, 1, 0, self.p.y], [0, 0, 1, self.p.z], [\n 0, 0, 0, 1]], dtype=np.float32)\n', (11021, 11123), True, 'import numpy as np\n'), ((11200, 11311), 'numpy.matrix', 'np.matrix', (['[[self.s.x, 0, 0, 0], [0, self.s.y, 0, 0], [0, 0, self.s.z, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[self.s.x, 0, 0, 0], [0, self.s.y, 0, 0], [0, 0, self.s.z, 0], [\n 0, 0, 0, 1]], dtype=np.float32)\n', (11209, 11311), True, 'import numpy as np\n'), ((11675, 11753), 'numpy.sqrt', 'np.sqrt', (['(self.x * self.x + self.y * self.y + self.y * self.y + self.y * self.y)'], {}), '(self.x * self.x + self.y * self.y + self.y * self.y + self.y * self.y)\n', (11682, 11753), True, 'import numpy as np\n'), ((12938, 12980), 'numpy.sqrt', 'np.sqrt', (['(self.x * self.x + self.y * self.y)'], {}), '(self.x * self.x + self.y * self.y)\n', (12945, 12980), True, 'import numpy as np\n'), ((13590, 13650), 'numpy.sqrt', 'np.sqrt', (['(self.x * self.x + self.y * self.y + self.z * self.z)'], {}), '(self.x * self.x + self.y * self.y + self.z * self.z)\n', (13597, 13650), True, 'import numpy as np\n'), ((9125, 9497), 'numpy.matrix', 'np.matrix', (['[[u.x * u.x * (1 - cos) + cos, u.y * u.x * (1 - cos) - u.z * sin, u.z * u.x *\n (1 - cos) + u.y * sin, 0], [u.x * u.y * (1 - cos) + u.z * sin, u.y * u.\n y * (1 - cos) + cos, u.z * u.y * (1 - cos) - u.x * sin, 0], [u.x * u.z *\n (1 - cos) - u.y * sin, u.y * u.z * (1 - cos) + u.x * sin, u.z * u.z * (\n 1 - cos) + cos, 0], [0, 0, 0, 1]]'], {'dtype': 'np.float32'}), '([[u.x * u.x * (1 - cos) + cos, u.y * u.x * (1 - cos) - u.z * sin,\n u.z * u.x * (1 - cos) + u.y * sin, 0], [u.x * u.y * (1 - cos) + u.z *\n sin, u.y * u.y * (1 - cos) + cos, u.z * u.y * (1 - cos) - u.x * sin, 0],\n [u.x * u.z * (1 - cos) - u.y * sin, u.y * u.z * (1 - cos) + u.x * sin, \n u.z * u.z * (1 - cos) + cos, 0], [0, 0, 0, 1]], dtype=np.float32)\n', (9134, 9497), True, 'import numpy as np\n'), ((7750, 7780), 'numpy.array', 'np.array', (['[p.x, p.y, p.z, 1.0]'], {}), '([p.x, p.y, p.z, 1.0])\n', (7758, 7780), True, 'import numpy as np\n')]
from xml.dom import minidom import pywikibot from api.decorator import time_this SiteMock = pywikibot.Site class PageMock(pywikibot.Page): def __init__(self, *args, **kwargs): super(PageMock, self).__init__(*args, **kwargs) self.filename = "test_data/test_pages_%s.xml" % self.site.lang self.parsed = minidom.parse(open(self.filename, 'r')) self.pages = self.parsed.getElementsByTagName('page') def put(self, newtext, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, **kwargs): print(('Saving page [[%s]] through put' % self.title())) def save(self, summary=None, watch=None, minor=True, botflag=None, force=False, asynchronous=False, callback=None, apply_cosmetic_changes=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) def _save(self, summary=None, watch=None, minor=True, botflag=None, cc=None, quiet=False, **kwargs): print(('Saving page [[%s]] through save' % self.title())) @time_this('Page.get() method mock') def get(self, force=False, get_redirect=False, sysop=False): for page in self.pages: xml_title = page.getElementsByTagName( 'title')[0].childNodes[0].nodeValue if xml_title == self.title(): return page.getElementsByTagName( 'text')[0].childNodes[0].nodeValue print(('No page %s found in "%s"' % (self.title(), self.filename))) return '' p = PageMock(SiteMock('en', 'wiktionary'), 'gaon') e = p.get()
[ "api.decorator.time_this" ]
[((1109, 1144), 'api.decorator.time_this', 'time_this', (['"""Page.get() method mock"""'], {}), "('Page.get() method mock')\n", (1118, 1144), False, 'from api.decorator import time_this\n')]
import os from functools import partial from io import BytesIO import numpy as np import PIL.Image import scipy.misc import tensorflow as tf graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) t_input = tf.placeholder(tf.float32, name="input") imagenet_mean = 117.0 t_preprocessed = tf.expand_dims(t_input-imagenet_mean, 0) tf.import_graph_def(graph_def, {"input": t_preprocessed}) def load_inception(): graph = tf.Graph() sess = tf.InteractiveSession(graph=graph) model_fn = "./models/tensorflow_inception_graph.pb" with tf.gfile.FastGFile(model_fn, 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) # 定义t_input为我们输入的图像 t_input = tf.placeholder(np.float32, name='input') imagenet_mean = 117.0 # 输入图像需要经过处理才能送入网络中 # expand_dims是加一维,从[height, width, channel]变成[1, height, width, channel] # t_input - imagenet_mean是减去一个均值 t_preprocessed = tf.expand_dims(t_input - imagenet_mean, 0) tf.import_graph_def(graph_def, {'input': t_preprocessed}) # 找到所有卷积层 layers = [op.name for op in graph.get_operations() if op.type == "Conv2D" and "import/" in op.name] # 输出卷积层层数 print('Number of layers', len(layers)) # 特别地,输出mixed4d_3x3_bottleneck_pre_relu的形状 name = 'mixed4d_3x3_bottleneck_pre_relu' print('shape of %s: %s' %(name, str(graph.get_tensor_by_name('import/' + name + ':0').get_shape()))) def savearray(img_array, img_name): scipy.misc.toimage(img_array).save(img_name) print('img saved: %s' % img_name) def visstd(a, s=0.1): return (a-a.mean())/max(a.std(), 1e-4)*s+0.5 def resize_ratio(img, ratio): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, ratio)) img = img / 255 * (max - min) + min return img def resize(img, hw): min = img.min() max = img.max() img = (img - min) / (max - min) * 255 img = np.float32(scipy.misc.imresize(img, hw)) img = img / 255 * (max - min) + min return img def calc_grad_tiled(img, t_grad, tile_size=512): sz = tile_size h, w = img.shape[:2] sx, sy = np.random.randint(sz, size=2) img_shift = np.roll(np.roll(img, sx, 1), sy, 0) # 先在行上做整体移动,再在列上做整体移动 grad = np.zeros_like(img) for y in range(0, max(h - sz // 2, sz), sz): for x in range(0, max(w - sz // 2, sz), sz): sub = img_shift[y:y + sz, x:x + sz] g = sess.run(t_grad, {t_input: sub}) grad[y:y + sz, x:x + sz] = g return np.roll(np.roll(grad, -sx, 1), -sy, 0) k = np.float32([1, 4, 6, 4, 1]) k = np.outer(k, k) k5x5 = k[:, :, None, None] / k.sum() * np.eye(3, dtype=np.float32) # 将拉普拉斯金字塔还原到原始图像 def lap_merge(levels): img = levels[0] for hi in levels[1:]: with tf.name_scope('merge'): img = tf.nn.conv2d_transpose(img, k5x5 * 4, tf.shape(hi), [1, 2, 2, 1]) + hi return img # 对img做标准化。 def normalize_std(img, eps=1e-10): with tf.name_scope('normalize'): std = tf.sqrt(tf.reduce_mean(tf.square(img))) return img / tf.maximum(std, eps) # 拉普拉斯金字塔标准化 def lap_normalize(img, scale_n=4): img = tf.expand_dims(img, 0) tlevels = lap_split_n(img, scale_n) # 每一层都做一次normalize_std tlevels = list(map(normalize_std, tlevels)) out = lap_merge(tlevels) return out[0, :, :, :] # 这个函数将图像分为低频和高频成分 def lap_split(img): with tf.name_scope('split'): # 做过一次卷积相当于一次“平滑”,因此lo为低频成分 lo = tf.nn.conv2d(img, k5x5, [1, 2, 2, 1], 'SAME') # 低频成分放缩到原始图像一样大小得到lo2,再用原始图像img减去lo2,就得到高频成分hi lo2 = tf.nn.conv2d_transpose(lo, k5x5 * 4, tf.shape(img), [1, 2, 2, 1]) hi = img - lo2 return lo, hi # 这个函数将图像img分成n层拉普拉斯金字塔 def lap_split_n(img, n): levels = [] for i in range(n): # 调用lap_split将图像分为低频和高频部分 # 高频部分保存到levels中 # 低频部分再继续分解 img, hi = lap_split(img) levels.append(hi) levels.append(img) return levels[::-1] def tffunc(*argtypes): placeholders = list(map(tf.placeholder, argtypes)) def wrap(f): out = f(*placeholders) def wrapper(*args, **kw): return out.eval(dict(zip(placeholders, args)), session=kw.get('session')) return wrapper return wrap def render_deepdream(img0, iter_n=10, step=1.5, octave_n=4, octave_scale=1.4): name = 'mixed4d_3x3_bottleneck_pre_relu' channel = 139 t_obj = graph.get_tensor_by_name("import/%s:0" % name) t_score = tf.reduce_mean(t_obj) t_grad = tf.gradients(t_score, t_input)[0] lap_n=4 # 将lap_normalize转换为正常函数 lap_norm_func = tffunc(np.float32)(partial(lap_normalize, scale_n=lap_n)) img = img0 # 同样将图像进行金字塔分解 # 此时提取高频、低频的方法比较简单。直接缩放就可以 octaves = [] for i in range(octave_n-1): hw = img.shape[:2] lo = resize(img, np.int32(np.float32(hw) / octave_scale)) hi = img - resize(lo, hw) img = lo octaves.append(hi) # 先生成低频的图像,再依次放大并加上高频 for octave in range(octave_n): if octave > 0: hi = octaves[-octave] img = resize(img, hi.shape[:2]) + hi for i in range(iter_n): g = calc_grad_tiled(img, t_grad) img += g * (step / (np.abs(g).mean() + 1e-7)) # 唯一的区别在于我们使用lap_norm_func来标准化g! # g = lap_norm_func(g) # img += g * step print('.', end=' ') img = img.clip(0, 255) savearray(img, './predict_img/deepdream.jpg') if __name__ == '__main__': img0 = PIL.Image.open('./images/test.jpg') img0 = np.float32(img0) render_deepdream(img0)
[ "tensorflow.shape", "tensorflow.gfile.FastGFile", "tensorflow.gradients", "tensorflow.reduce_mean", "tensorflow.Graph", "tensorflow.placeholder", "tensorflow.GraphDef", "tensorflow.maximum", "tensorflow.square", "tensorflow.nn.conv2d", "numpy.abs", "numpy.eye", "tensorflow.InteractiveSession", "numpy.outer", "tensorflow.import_graph_def", "tensorflow.expand_dims", "numpy.roll", "numpy.random.randint", "tensorflow.name_scope", "functools.partial", "numpy.zeros_like", "numpy.float32" ]
[((151, 161), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (159, 161), True, 'import tensorflow as tf\n'), ((169, 203), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'graph'}), '(graph=graph)\n', (190, 203), True, 'import tensorflow as tf\n'), ((383, 423), 'tensorflow.placeholder', 'tf.placeholder', (['tf.float32'], {'name': '"""input"""'}), "(tf.float32, name='input')\n", (397, 423), True, 'import tensorflow as tf\n'), ((463, 505), 'tensorflow.expand_dims', 'tf.expand_dims', (['(t_input - imagenet_mean)', '(0)'], {}), '(t_input - imagenet_mean, 0)\n', (477, 505), True, 'import tensorflow as tf\n'), ((504, 561), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def', "{'input': t_preprocessed}"], {}), "(graph_def, {'input': t_preprocessed})\n", (523, 561), True, 'import tensorflow as tf\n'), ((2762, 2789), 'numpy.float32', 'np.float32', (['[1, 4, 6, 4, 1]'], {}), '([1, 4, 6, 4, 1])\n', (2772, 2789), True, 'import numpy as np\n'), ((2794, 2808), 'numpy.outer', 'np.outer', (['k', 'k'], {}), '(k, k)\n', (2802, 2808), True, 'import numpy as np\n'), ((261, 295), 'tensorflow.gfile.FastGFile', 'tf.gfile.FastGFile', (['model_fn', '"""rb"""'], {}), "(model_fn, 'rb')\n", (279, 295), True, 'import tensorflow as tf\n'), ((318, 331), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (329, 331), True, 'import tensorflow as tf\n'), ((598, 608), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (606, 608), True, 'import tensorflow as tf\n'), ((620, 654), 'tensorflow.InteractiveSession', 'tf.InteractiveSession', ([], {'graph': 'graph'}), '(graph=graph)\n', (641, 654), True, 'import tensorflow as tf\n'), ((877, 917), 'tensorflow.placeholder', 'tf.placeholder', (['np.float32'], {'name': '"""input"""'}), "(np.float32, name='input')\n", (891, 917), True, 'import tensorflow as tf\n'), ((1103, 1145), 'tensorflow.expand_dims', 'tf.expand_dims', (['(t_input - imagenet_mean)', '(0)'], {}), '(t_input - imagenet_mean, 0)\n', (1117, 1145), True, 'import tensorflow as tf\n'), ((1150, 1207), 'tensorflow.import_graph_def', 'tf.import_graph_def', (['graph_def', "{'input': t_preprocessed}"], {}), "(graph_def, {'input': t_preprocessed})\n", (1169, 1207), True, 'import tensorflow as tf\n'), ((2332, 2361), 'numpy.random.randint', 'np.random.randint', (['sz'], {'size': '(2)'}), '(sz, size=2)\n', (2349, 2361), True, 'import numpy as np\n'), ((2448, 2466), 'numpy.zeros_like', 'np.zeros_like', (['img'], {}), '(img)\n', (2461, 2466), True, 'import numpy as np\n'), ((2848, 2875), 'numpy.eye', 'np.eye', (['(3)'], {'dtype': 'np.float32'}), '(3, dtype=np.float32)\n', (2854, 2875), True, 'import numpy as np\n'), ((3345, 3367), 'tensorflow.expand_dims', 'tf.expand_dims', (['img', '(0)'], {}), '(img, 0)\n', (3359, 3367), True, 'import tensorflow as tf\n'), ((4664, 4685), 'tensorflow.reduce_mean', 'tf.reduce_mean', (['t_obj'], {}), '(t_obj)\n', (4678, 4685), True, 'import tensorflow as tf\n'), ((5751, 5767), 'numpy.float32', 'np.float32', (['img0'], {}), '(img0)\n', (5761, 5767), True, 'import numpy as np\n'), ((720, 754), 'tensorflow.gfile.FastGFile', 'tf.gfile.FastGFile', (['model_fn', '"""rb"""'], {}), "(model_fn, 'rb')\n", (738, 754), True, 'import tensorflow as tf\n'), ((781, 794), 'tensorflow.GraphDef', 'tf.GraphDef', ([], {}), '()\n', (792, 794), True, 'import tensorflow as tf\n'), ((2386, 2405), 'numpy.roll', 'np.roll', (['img', 'sx', '(1)'], {}), '(img, sx, 1)\n', (2393, 2405), True, 'import numpy as np\n'), ((2726, 2747), 'numpy.roll', 'np.roll', (['grad', '(-sx)', '(1)'], {}), '(grad, -sx, 1)\n', (2733, 2747), True, 'import numpy as np\n'), ((3162, 3188), 'tensorflow.name_scope', 'tf.name_scope', (['"""normalize"""'], {}), "('normalize')\n", (3175, 3188), True, 'import tensorflow as tf\n'), ((3589, 3611), 'tensorflow.name_scope', 'tf.name_scope', (['"""split"""'], {}), "('split')\n", (3602, 3611), True, 'import tensorflow as tf\n'), ((3662, 3707), 'tensorflow.nn.conv2d', 'tf.nn.conv2d', (['img', 'k5x5', '[1, 2, 2, 1]', '"""SAME"""'], {}), "(img, k5x5, [1, 2, 2, 1], 'SAME')\n", (3674, 3707), True, 'import tensorflow as tf\n'), ((4699, 4729), 'tensorflow.gradients', 'tf.gradients', (['t_score', 't_input'], {}), '(t_score, t_input)\n', (4711, 4729), True, 'import tensorflow as tf\n'), ((4812, 4849), 'functools.partial', 'partial', (['lap_normalize'], {'scale_n': 'lap_n'}), '(lap_normalize, scale_n=lap_n)\n', (4819, 4849), False, 'from functools import partial\n'), ((2977, 2999), 'tensorflow.name_scope', 'tf.name_scope', (['"""merge"""'], {}), "('merge')\n", (2990, 2999), True, 'import tensorflow as tf\n'), ((3265, 3285), 'tensorflow.maximum', 'tf.maximum', (['std', 'eps'], {}), '(std, eps)\n', (3275, 3285), True, 'import tensorflow as tf\n'), ((3815, 3828), 'tensorflow.shape', 'tf.shape', (['img'], {}), '(img)\n', (3823, 3828), True, 'import tensorflow as tf\n'), ((3227, 3241), 'tensorflow.square', 'tf.square', (['img'], {}), '(img)\n', (3236, 3241), True, 'import tensorflow as tf\n'), ((3057, 3069), 'tensorflow.shape', 'tf.shape', (['hi'], {}), '(hi)\n', (3065, 3069), True, 'import tensorflow as tf\n'), ((5027, 5041), 'numpy.float32', 'np.float32', (['hw'], {}), '(hw)\n', (5037, 5041), True, 'import numpy as np\n'), ((5414, 5423), 'numpy.abs', 'np.abs', (['g'], {}), '(g)\n', (5420, 5423), True, 'import numpy as np\n')]
import calendar import datetime import logging import os import webapp2 import dbmodel TESTING = os.environ.get('SERVER_SOFTWARE', '').startswith('Development') class ResetHandler(webapp2.RequestHandler): def get(self): timestamp = calendar.timegm(datetime.datetime.utcnow().timetuple()) self.response.write('<html><body><form method="POST"><input type="text" value="' + str( timestamp) + '" name="day"><input type="submit"></form></body></html>') def post(self): timestamp = int(self.request.get('day', None)) entry_day = datetime.datetime.utcfromtimestamp(timestamp).date() logging.info('Processing day %s', entry_day) starttimestamp = calendar.timegm((entry_day.year, entry_day.month, entry_day.day, 0, 0, 0)) endtimestamp = starttimestamp + 24 * 60 * 60 logging.info('starttimestamp, endtimestamp: (%s, %s)', starttimestamp, endtimestamp) count = 0 for item in dbmodel.ReportItem.all().filter('counted', 0).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 for item in dbmodel.ReportItem.all().filter('counted', 1).filter('eventtype =', 'Information').filter( 'timestamp <', endtimestamp).filter('timestamp >=', starttimestamp).order('timestamp'): item.counted = None item.put() count += 1 logging.info('Reset for %s items', count) for item in dbmodel.AggregateItem.all().filter('timestamp =', starttimestamp).filter('rangetype =', 'day'): item.delete() app = webapp2.WSGIApplication([ ('/tasks/admin/reset', ResetHandler) ], debug=TESTING)
[ "datetime.datetime.utcfromtimestamp", "datetime.datetime.utcnow", "dbmodel.ReportItem.all", "os.environ.get", "calendar.timegm", "webapp2.WSGIApplication", "logging.info", "dbmodel.AggregateItem.all" ]
[((1744, 1822), 'webapp2.WSGIApplication', 'webapp2.WSGIApplication', (["[('/tasks/admin/reset', ResetHandler)]"], {'debug': 'TESTING'}), "([('/tasks/admin/reset', ResetHandler)], debug=TESTING)\n", (1767, 1822), False, 'import webapp2\n'), ((100, 137), 'os.environ.get', 'os.environ.get', (['"""SERVER_SOFTWARE"""', '""""""'], {}), "('SERVER_SOFTWARE', '')\n", (114, 137), False, 'import os\n'), ((644, 688), 'logging.info', 'logging.info', (['"""Processing day %s"""', 'entry_day'], {}), "('Processing day %s', entry_day)\n", (656, 688), False, 'import logging\n'), ((715, 789), 'calendar.timegm', 'calendar.timegm', (['(entry_day.year, entry_day.month, entry_day.day, 0, 0, 0)'], {}), '((entry_day.year, entry_day.month, entry_day.day, 0, 0, 0))\n', (730, 789), False, 'import calendar\n'), ((852, 940), 'logging.info', 'logging.info', (['"""starttimestamp, endtimestamp: (%s, %s)"""', 'starttimestamp', 'endtimestamp'], {}), "('starttimestamp, endtimestamp: (%s, %s)', starttimestamp,\n endtimestamp)\n", (864, 940), False, 'import logging\n'), ((1552, 1593), 'logging.info', 'logging.info', (['"""Reset for %s items"""', 'count'], {}), "('Reset for %s items', count)\n", (1564, 1593), False, 'import logging\n'), ((583, 628), 'datetime.datetime.utcfromtimestamp', 'datetime.datetime.utcfromtimestamp', (['timestamp'], {}), '(timestamp)\n', (617, 628), False, 'import datetime\n'), ((265, 291), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (289, 291), False, 'import datetime\n'), ((1614, 1641), 'dbmodel.AggregateItem.all', 'dbmodel.AggregateItem.all', ([], {}), '()\n', (1639, 1641), False, 'import dbmodel\n'), ((976, 1000), 'dbmodel.ReportItem.all', 'dbmodel.ReportItem.all', ([], {}), '()\n', (998, 1000), False, 'import dbmodel\n'), ((1270, 1294), 'dbmodel.ReportItem.all', 'dbmodel.ReportItem.all', ([], {}), '()\n', (1292, 1294), False, 'import dbmodel\n')]
from dataclasses import dataclass from itertools import cycle from typing import Dict, Union import numpy as np from ...layers.utils.color_transformations import ( transform_color, transform_color_cycle, ) @dataclass(eq=False) class ColorCycle: """A dataclass to hold a color cycle for the fallback_colors in the CategoricalColormap Attributes ---------- values : np.ndarray The (Nx4) color array of all colors contained in the color cycle. cycle : cycle The cycle object that gives fallback colors. """ values: np.ndarray cycle: cycle @classmethod def __get_validators__(cls): yield cls.validate_type @classmethod def validate_type(cls, val): # turn a generic dict into object if isinstance(val, dict): return _coerce_colorcycle_from_dict(val) elif isinstance(val, ColorCycle): return val else: return _coerce_colorcycle_from_colors(val) def _json_encode(self): return {'values': self.values.tolist()} def __eq__(self, other): if isinstance(other, ColorCycle): eq = np.array_equal(self.values, other.values) else: eq = False return eq def _coerce_colorcycle_from_dict( val: Dict[str, Union[str, list, np.ndarray, cycle]] ) -> ColorCycle: # validate values color_values = val.get('values') if color_values is None: raise ValueError('ColorCycle requires a values argument') transformed_color_values = transform_color(color_values) # validate cycle color_cycle = val.get('cycle') if color_cycle is None: transformed_color_cycle = transform_color_cycle( color_cycle=color_values, elem_name='color_cycle', default="white", )[0] else: transformed_color_cycle = color_cycle return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def _coerce_colorcycle_from_colors( val: Union[str, list, np.ndarray] ) -> ColorCycle: if isinstance(val, str): val = [val] ( transformed_color_cycle, transformed_color_values, ) = transform_color_cycle( color_cycle=val, elem_name='color_cycle', default="white", ) return ColorCycle( values=transformed_color_values, cycle=transformed_color_cycle ) def compare_colormap_dicts(cmap_1, cmap_2): if len(cmap_1) != len(cmap_2): return False for k, v in cmap_1.items(): if k not in cmap_2: return False if not np.allclose(v, cmap_2[k]): return False return True
[ "numpy.array_equal", "numpy.allclose", "dataclasses.dataclass" ]
[((219, 238), 'dataclasses.dataclass', 'dataclass', ([], {'eq': '(False)'}), '(eq=False)\n', (228, 238), False, 'from dataclasses import dataclass\n'), ((1165, 1206), 'numpy.array_equal', 'np.array_equal', (['self.values', 'other.values'], {}), '(self.values, other.values)\n', (1179, 1206), True, 'import numpy as np\n'), ((2640, 2665), 'numpy.allclose', 'np.allclose', (['v', 'cmap_2[k]'], {}), '(v, cmap_2[k])\n', (2651, 2665), True, 'import numpy as np\n')]
"""Abstract class for all toggle buttons""" # Standard library imports import logging from collections import OrderedDict # Third party imports import ipywidgets # Local imports from .abc_toggle_buttons import BaseToggleButtons from .layouts import DICT_LAYOUT_HBOX_ANY LOGGER = logging.getLogger(__name__) class BaseToggleButtonsWithHide(BaseToggleButtons): """Abstract class for all toggle buttons Values are stored in self.widget_parent when displayed is self.widget Which is updated in the moment when display() is launched """ def __init__( self, widget_parent, options_visible=None, options_hidden=None, **kwargs ): """Initialize object""" super().__init__(widget_parent, **kwargs) # hidden attributes to setters self._options_visible = [] self._options_hidden = [] self._bool_is_hidden_options_created = False # Create scaffolds inside self.widgets self._create_scaffold_for_widget() self._dict_visible_button_by_option = OrderedDict() self._dict_hidden_button_by_option = OrderedDict() # Set options self.options_visible = options_visible self.options_hidden = options_hidden self._update_buttons_for_new_options() @property def options_visible(self): """Getter for visible options used in widget""" return self._options_visible @options_visible.setter def options_visible(self, new_value): """Setter for visible options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_visible): return None self._options_visible = new_value self._create_buttons_for_visible_options() # Update hidden options to delete which exists in new visible # This will also update the whole widget self.options_hidden = self._options_hidden self.options = self._options_visible + self._options_hidden self._update_widget_view() @property def options_hidden(self): """Getter for hidden options used in widget""" return self._options_hidden @options_hidden.setter def options_hidden(self, new_value): """Setter for hidden options in widget Args: new_value (list or tuple): New options to set for widgets """ if new_value is None: new_value = [] if set(new_value) == set(self.options_hidden): return None # Filter out from hidden options all options which exists in main options_hidden_cleared = [] for str_option in new_value: if str_option not in self.options_visible: options_hidden_cleared.append(str_option) self._options_hidden = options_hidden_cleared self.options = self._options_visible + self._options_hidden # self._create_buttons_for_hidden_options() self._update_widget_view() def turn_off_all_buttons(self): """Mark all buttons as not clicked""" for str_option in self._dict_visible_button_by_option: but = self._dict_visible_button_by_option[str_option] but.button_style = "" for str_option in self._dict_hidden_button_by_option: but = self._dict_hidden_button_by_option[str_option] but.button_style = "" # Change style of selected hidden button # self._widget_but_hidden_option_selected.description = "..." # self._widget_but_hidden_option_selected.button_style = "" def _update_buttons_for_new_options(self): """Update buttons if options were changed""" self._create_buttons_for_visible_options() self._bool_is_hidden_options_created = False # self._create_buttons_for_hidden_options() def _create_scaffold_for_widget(self): """Create scaffold of ipywidget Boxes for self""" # Main buttons box self._widget_hbox_main = ipywidgets.HBox() self._widget_hbox_main.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_main.layout.flex_flow = "row wrap" # Middle buttons box self._widget_hbox_middle_buttons = ipywidgets.HBox() self._widget_hbox_middle_buttons.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) self._create_middle_buttons() # Hidden buttons box self._widget_hbox_hidden = ipywidgets.HBox() self._widget_hbox_hidden.layout = ipywidgets.Layout(**DICT_LAYOUT_HBOX_ANY) # self._widget_hbox_hidden.layout.flex_flow = "row wrap" def _create_buttons_for_visible_options(self): """Create buttons for all visible options""" self._dict_visible_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_visible) list_buttons = [] for str_option in list(self.options_visible): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) but_wid.on_click(self._on_click_button_to_choose_option) self._dict_visible_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_main.children = list_buttons def _create_middle_buttons(self): """Create buttons which are in charge what to do with hidden buttons""" self._wid_but_hide_show = ipywidgets.ToggleButton( value=False, description="Show Hidden options", button_style="info", ) self._wid_but_hide_show.layout.width = "40%" self._wid_but_hide_show.observe( lambda _: self._update_widget_view(), "value") self._widget_but_hidden_option_selected = ipywidgets.Button( description="...", disabled=True) self._widget_but_hidden_option_selected.layout.width = "40%" self._widget_hbox_middle_buttons.children = [ self._widget_but_hidden_option_selected, self._wid_but_hide_show] def _create_buttons_for_hidden_options(self): """Create buttons for all hidden options""" self._dict_hidden_button_by_option = OrderedDict() int_button_width = self._get_button_width(self.options_hidden) list_buttons = [] for str_option in list(self.options_hidden): but_wid = ipywidgets.Button( description=str_option, layout={"width": "%dpx" % int_button_width} ) if str_option in self.value: but_wid.button_style = "success" but_wid.on_click(self._on_click_button_to_choose_option) self._dict_hidden_button_by_option[str_option] = but_wid list_buttons.append(but_wid) self._widget_hbox_hidden.children = list_buttons
[ "logging.getLogger", "ipywidgets.HBox", "collections.OrderedDict", "ipywidgets.ToggleButton", "ipywidgets.Button", "ipywidgets.Layout" ]
[((282, 309), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (299, 309), False, 'import logging\n'), ((1092, 1105), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1103, 1105), False, 'from collections import OrderedDict\n'), ((1151, 1164), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (1162, 1164), False, 'from collections import OrderedDict\n'), ((4151, 4168), 'ipywidgets.HBox', 'ipywidgets.HBox', ([], {}), '()\n', (4166, 4168), False, 'import ipywidgets\n'), ((4209, 4250), 'ipywidgets.Layout', 'ipywidgets.Layout', ([], {}), '(**DICT_LAYOUT_HBOX_ANY)\n', (4226, 4250), False, 'import ipywidgets\n'), ((4386, 4403), 'ipywidgets.HBox', 'ipywidgets.HBox', ([], {}), '()\n', (4401, 4403), False, 'import ipywidgets\n'), ((4454, 4495), 'ipywidgets.Layout', 'ipywidgets.Layout', ([], {}), '(**DICT_LAYOUT_HBOX_ANY)\n', (4471, 4495), False, 'import ipywidgets\n'), ((4598, 4615), 'ipywidgets.HBox', 'ipywidgets.HBox', ([], {}), '()\n', (4613, 4615), False, 'import ipywidgets\n'), ((4658, 4699), 'ipywidgets.Layout', 'ipywidgets.Layout', ([], {}), '(**DICT_LAYOUT_HBOX_ANY)\n', (4675, 4699), False, 'import ipywidgets\n'), ((4916, 4929), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (4927, 4929), False, 'from collections import OrderedDict\n'), ((5625, 5721), 'ipywidgets.ToggleButton', 'ipywidgets.ToggleButton', ([], {'value': '(False)', 'description': '"""Show Hidden options"""', 'button_style': '"""info"""'}), "(value=False, description='Show Hidden options',\n button_style='info')\n", (5648, 5721), False, 'import ipywidgets\n'), ((5968, 6019), 'ipywidgets.Button', 'ipywidgets.Button', ([], {'description': '"""..."""', 'disabled': '(True)'}), "(description='...', disabled=True)\n", (5985, 6019), False, 'import ipywidgets\n'), ((6382, 6395), 'collections.OrderedDict', 'OrderedDict', ([], {}), '()\n', (6393, 6395), False, 'from collections import OrderedDict\n'), ((5104, 5194), 'ipywidgets.Button', 'ipywidgets.Button', ([], {'description': 'str_option', 'layout': "{'width': '%dpx' % int_button_width}"}), "(description=str_option, layout={'width': '%dpx' %\n int_button_width})\n", (5121, 5194), False, 'import ipywidgets\n'), ((6568, 6658), 'ipywidgets.Button', 'ipywidgets.Button', ([], {'description': 'str_option', 'layout': "{'width': '%dpx' % int_button_width}"}), "(description=str_option, layout={'width': '%dpx' %\n int_button_width})\n", (6585, 6658), False, 'import ipywidgets\n')]
__author__ = '<NAME> and <NAME>' import Player import Message # input #0 for rock #1 for paper #2 for scissors # past move is array of numbers # our move followed by their move #Our strategy is to look at all past moves #In a large number of games, you would expect # each move to be seen an even amount of times #So our strategy is to take the least seen move # and expect it to show up soon # so we will play to beat that move class DWPMPlayer(Player.Player): def __init__(self): Player.Player.__init__(self) self.past_moves = [] self.set_name("Dan and Pats Player") def play(self): return RpsPlayingStrategy.play(self.past_moves) def add_past_move(self, move): """ adds opponents move to past moves """ self.past_moves.append(move) def get_name(self): return self.name def notify(self, message): # We use notifications to store opponent's moves in past rounds # Process match-start and round-end messages # At the start of the match, clear opponent moves history since a new match has started # At the end of a round, append move to opponent's move history. Move history is used # to compute the next move played. if message.is_match_start_message(): players = message.get_players() if players[0] == self or players[1] == self: self.reset() elif message.is_round_end_message(): players = message.get_players() # Check if this message is for me and only then proceed if (players[0] == self) or (players[1] == self): # In this case, (by convention) the info is a tuple of the moves made and result # e.g. ((1, 0), (1,0)) which # means player 1 played paper (1), the player 2 played rock(0) and the result was that # player 1 won (got 1 point) and player 2 lost (got 0 point) moves, result = message.get_info() # RPS is a two person game; figure out which of the players is me # and which one is the opponent if players[0] == self: opponent = 1 else: opponent = 0 # Update opponent's past moves history self.add_past_move(moves[opponent]) def reset(self): self.past_moves = [] def set_name(self, name): self.name = name class RpsPlayingStrategy(object): @staticmethod def play(past_moves): """ our player assumes that given a high number of games, all 3 different moves of opponent will be used an equal number of times. Given a list of past_moves, we can counter an opponent's assumed move """ rock = 0 paper = 0 scissors = 0 for this_move in list(past_moves): if this_move == 0: rock += 1 elif this_move == 1: paper += 1 elif this_move == 2: scissors += 1 #determine which move has been used least if (rock < paper) and (rock < scissors): move = 0 elif paper < scissors: move = 1 else: move = 2 move = (move + 1) % 3 return move # Test driver # Run by typing "python3 RpsPlayerExample.py" if __name__ == "__main__": player = PatAndDansRPSPlayer() opponent = PatAndDansRPSPlayer() players = [opponent, player] fakemoves = (1, 2) fakeresult = (0, 1) player.notify(Message.Message.get_match_start_message(players)) player.notify(Message.Message.get_round_start_message(players)) move = player.play() print ("Move played: ", move) player.notify(Message.Message.get_round_end_message(players, fakemoves, fakeresult))
[ "Player.Player.__init__", "Message.Message.get_match_start_message", "Message.Message.get_round_start_message", "Message.Message.get_round_end_message" ]
[((503, 531), 'Player.Player.__init__', 'Player.Player.__init__', (['self'], {}), '(self)\n', (525, 531), False, 'import Player\n'), ((3621, 3669), 'Message.Message.get_match_start_message', 'Message.Message.get_match_start_message', (['players'], {}), '(players)\n', (3660, 3669), False, 'import Message\n'), ((3689, 3737), 'Message.Message.get_round_start_message', 'Message.Message.get_round_start_message', (['players'], {}), '(players)\n', (3728, 3737), False, 'import Message\n'), ((3816, 3885), 'Message.Message.get_round_end_message', 'Message.Message.get_round_end_message', (['players', 'fakemoves', 'fakeresult'], {}), '(players, fakemoves, fakeresult)\n', (3853, 3885), False, 'import Message\n')]
from tictactoe import TicTacToe import random import csv import os gameNr = 1 gameLimit = 10000 lst_moves_1 = [] lst_moves_2 = [] while gameNr <= gameLimit: print("+++++++++++") print("Game#", gameNr) game = TicTacToe() tmp_moves_1 = [] tmp_moves_2 = [] while game.get_winner() == 0 and game.possible_moves() > 0: pos = game.get_positions().copy() while game.possible_moves() > 0: move = random.randint(0,9) if game.play(int(move)): if game.get_player() == 1: tmp_moves_2.append([gameNr] + [game.get_turn() - 1] + pos + [move]) else: tmp_moves_1.append([gameNr] + [game.get_turn() - 1] + pos + [move]) break print("Winner of game ", gameNr, "is", game.get_winner()) if game.get_winner() == 1: lst_moves_1.append(tmp_moves_1) #lst_moves_1.append(tmp_moves_1[len(tmp_moves_1) - 1]) else: #lst_moves_2.append(tmp_moves_2[len(tmp_moves_2) - 1]) lst_moves_2.append(tmp_moves_2) #print("List X: ", lst_moves_1) #print("List O: ", lst_moves_2) game.print_board() gameNr = gameNr + 1 with open('moves_1.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_1: writer.writerows(row) with open('moves_2.csv', 'w', newline='') as f: writer = csv.writer(f) for row in lst_moves_2: writer.writerows(row)
[ "csv.writer", "random.randint", "tictactoe.TicTacToe" ]
[((223, 234), 'tictactoe.TicTacToe', 'TicTacToe', ([], {}), '()\n', (232, 234), False, 'from tictactoe import TicTacToe\n'), ((1258, 1271), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (1268, 1271), False, 'import csv\n'), ((1392, 1405), 'csv.writer', 'csv.writer', (['f'], {}), '(f)\n', (1402, 1405), False, 'import csv\n'), ((444, 464), 'random.randint', 'random.randint', (['(0)', '(9)'], {}), '(0, 9)\n', (458, 464), False, 'import random\n')]
import bitstring import pytest from stixcore.data.test import test_data from stixcore.idb.manager import IDBManager from stixcore.tmtc.packets import ( SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket, ) from stixcore.tmtc.tm.tm_1 import TM_1_1 @pytest.fixture def idb(): return IDBManager(test_data.idb.DIR).get_idb("2.26.34") @pytest.mark.parametrize('class_header', [(SourcePacketHeader, SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader, TM_DATA_HEADER_STRUCTURE)]) def test_tmtc_headers(class_header): cls, header = class_header test_fmt = ', '.join(header.values()) test_values = {n: 2**int(v.split(':')[-1])-1 for n, v in header.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) sph = cls(test_binary) assert all([getattr(sph, key) == test_values[key] for key in header.keys() if not key.startswith('spare')]) def test_tm_packet(idb): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TM_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TMPacket(test_binary, idb=idb) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TM_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tc_packet(): combind_structures = {**SOURCE_PACKET_HEADER_STRUCTURE, **TC_DATA_HEADER_STRUCTURE} test_fmt = ', '.join(combind_structures.values()) test_values = {n: 2 ** int(v.split(':')[-1]) - 1 for n, v in combind_structures.items()} test_values['process_id'] = 90 test_values['packet_category'] = 12 test_binary = bitstring.pack(test_fmt, *test_values.values()) tmtc_packet = TCPacket(test_binary) assert all([getattr(tmtc_packet.source_packet_header, key) == test_values[key] for key in SOURCE_PACKET_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) assert all([getattr(tmtc_packet.data_header, key) == test_values[key] for key in TC_DATA_HEADER_STRUCTURE.keys() if not key.startswith('spare')]) def test_tm_1_1(idb): packet = TM_1_1('0x0da1c066000d100101782628a9c4e71e1dacc0a0', idb=idb) assert packet.source_packet_header.process_id == 90 assert packet.source_packet_header.packet_category == 1 assert packet.data_header.service_type == 1 assert packet.data_header.service_subtype == 1
[ "stixcore.tmtc.packets.TM_DATA_HEADER_STRUCTURE.keys", "stixcore.tmtc.tm.tm_1.TM_1_1", "pytest.mark.parametrize", "stixcore.tmtc.packets.SOURCE_PACKET_HEADER_STRUCTURE.keys", "stixcore.tmtc.packets.TC_DATA_HEADER_STRUCTURE.keys", "stixcore.tmtc.packets.TCPacket", "stixcore.tmtc.packets.TMPacket", "stixcore.idb.manager.IDBManager" ]
[((455, 596), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""class_header"""', '[(SourcePacketHeader, SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader,\n TM_DATA_HEADER_STRUCTURE)]'], {}), "('class_header', [(SourcePacketHeader,\n SOURCE_PACKET_HEADER_STRUCTURE), (TMDataHeader, TM_DATA_HEADER_STRUCTURE)])\n", (478, 596), False, 'import pytest\n'), ((1408, 1438), 'stixcore.tmtc.packets.TMPacket', 'TMPacket', (['test_binary'], {'idb': 'idb'}), '(test_binary, idb=idb)\n', (1416, 1438), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n'), ((2223, 2244), 'stixcore.tmtc.packets.TCPacket', 'TCPacket', (['test_binary'], {}), '(test_binary)\n', (2231, 2244), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n'), ((2629, 2690), 'stixcore.tmtc.tm.tm_1.TM_1_1', 'TM_1_1', (['"""0x0da1c066000d100101782628a9c4e71e1dacc0a0"""'], {'idb': 'idb'}), "('0x0da1c066000d100101782628a9c4e71e1dacc0a0', idb=idb)\n", (2635, 2690), False, 'from stixcore.tmtc.tm.tm_1 import TM_1_1\n'), ((403, 432), 'stixcore.idb.manager.IDBManager', 'IDBManager', (['test_data.idb.DIR'], {}), '(test_data.idb.DIR)\n', (413, 432), False, 'from stixcore.idb.manager import IDBManager\n'), ((1549, 1586), 'stixcore.tmtc.packets.SOURCE_PACKET_HEADER_STRUCTURE.keys', 'SOURCE_PACKET_HEADER_STRUCTURE.keys', ([], {}), '()\n', (1584, 1586), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n'), ((1721, 1752), 'stixcore.tmtc.packets.TM_DATA_HEADER_STRUCTURE.keys', 'TM_DATA_HEADER_STRUCTURE.keys', ([], {}), '()\n', (1750, 1752), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n'), ((2355, 2392), 'stixcore.tmtc.packets.SOURCE_PACKET_HEADER_STRUCTURE.keys', 'SOURCE_PACKET_HEADER_STRUCTURE.keys', ([], {}), '()\n', (2390, 2392), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n'), ((2527, 2558), 'stixcore.tmtc.packets.TC_DATA_HEADER_STRUCTURE.keys', 'TC_DATA_HEADER_STRUCTURE.keys', ([], {}), '()\n', (2556, 2558), False, 'from stixcore.tmtc.packets import SOURCE_PACKET_HEADER_STRUCTURE, TC_DATA_HEADER_STRUCTURE, TM_DATA_HEADER_STRUCTURE, SourcePacketHeader, TCPacket, TMDataHeader, TMPacket\n')]
# run local models given a path, default to './mxnet_models/' import os import argparse import time import mxnet as mx import numpy as np file_path = os.path.realpath(__file__) dir_name = os.path.dirname(file_path) os.environ["MXNET_CUDNN_AUTOTUNE_DEFAULT"] = "0" class cuda_profiler_start(): import numba.cuda as cuda cuda.profile_start() class cuda_profiler_stop(): import numba.cuda as cuda cuda.profile_stop() def xprint(s): pass parser = argparse.ArgumentParser( description='Predict ImageNet classes from a given image') parser.add_argument('--model_name', type=str, required=False, default='resnet50_v1', help='name of the model to use') parser.add_argument('--batch_size', type=int, required=False, default=1, help='batch size to use') parser.add_argument('--input_dim', type=int, required=False, default=224, help='input dimension') parser.add_argument('--input_channels', type=int, required=False, default=3, help='input channels') parser.add_argument('--num_iterations', type=int, required=False, default=30, help='number of iterations to run') parser.add_argument('--num_warmup', type=int, required=False, default=5, help='number of warmup iterations to run') parser.add_argument('--model_idx', type=int, required=False, default=2, help='model idx') parser.add_argument('--profile', type=bool, required=False, default=False, help='enable profiling') opt = parser.parse_args() model_name = opt.model_name batch_size = opt.batch_size input_dim = opt.input_dim input_channels = opt.input_channels num_iterations = opt.num_iterations num_warmup = opt.num_warmup model_idx = opt.model_idx profile = opt.profile ctx = mx.gpu() if len(mx.test_utils.list_gpus()) else mx.cpu() sym, arg_params, aux_params = mx.model.load_checkpoint( dir_name + '/mxnet_models/'+model_name, 0) data_names = [ graph_input for graph_input in sym.list_inputs() if graph_input not in arg_params and graph_input not in aux_params ] net = mx.mod.Module( symbol=sym, data_names=[data_names[0]], context=ctx, label_names=None, ) input_shape = (batch_size, input_channels, input_dim, input_dim) img = mx.random.uniform( shape=input_shape, ctx=ctx) net.bind(for_training=False, data_shapes=[ (data_names[0], input_shape)], label_shapes=net._label_shapes) net.set_params(arg_params, aux_params, allow_missing=True) def forward_once(): mx.nd.waitall() start = time.time() prob = net.predict(img) mx.nd.waitall() end = time.time() # stop timer return end - start for i in range(num_warmup): forward_once() res = [] if profile: cuda_profiler_start() for i in range(num_iterations): t = forward_once() res.append(t) if profile: cuda_profiler_stop() res = np.multiply(res, 1000) print("{},{},{},{},{},{}".format(model_idx+1, model_name, batch_size, np.min(res), np.average(res), np.max(res)))
[ "numpy.multiply", "argparse.ArgumentParser", "mxnet.nd.waitall", "mxnet.random.uniform", "mxnet.cpu", "numpy.average", "numba.cuda.profile_stop", "numpy.min", "numpy.max", "os.path.realpath", "os.path.dirname", "numba.cuda.profile_start", "mxnet.gpu", "mxnet.mod.Module", "mxnet.model.load_checkpoint", "time.time", "mxnet.test_utils.list_gpus" ]
[((152, 178), 'os.path.realpath', 'os.path.realpath', (['__file__'], {}), '(__file__)\n', (168, 178), False, 'import os\n'), ((190, 216), 'os.path.dirname', 'os.path.dirname', (['file_path'], {}), '(file_path)\n', (205, 216), False, 'import os\n'), ((474, 561), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""Predict ImageNet classes from a given image"""'}), "(description=\n 'Predict ImageNet classes from a given image')\n", (497, 561), False, 'import argparse\n'), ((1909, 1978), 'mxnet.model.load_checkpoint', 'mx.model.load_checkpoint', (["(dir_name + '/mxnet_models/' + model_name)", '(0)'], {}), "(dir_name + '/mxnet_models/' + model_name, 0)\n", (1933, 1978), True, 'import mxnet as mx\n'), ((2135, 2223), 'mxnet.mod.Module', 'mx.mod.Module', ([], {'symbol': 'sym', 'data_names': '[data_names[0]]', 'context': 'ctx', 'label_names': 'None'}), '(symbol=sym, data_names=[data_names[0]], context=ctx,\n label_names=None)\n', (2148, 2223), True, 'import mxnet as mx\n'), ((2312, 2357), 'mxnet.random.uniform', 'mx.random.uniform', ([], {'shape': 'input_shape', 'ctx': 'ctx'}), '(shape=input_shape, ctx=ctx)\n', (2329, 2357), True, 'import mxnet as mx\n'), ((2926, 2948), 'numpy.multiply', 'np.multiply', (['res', '(1000)'], {}), '(res, 1000)\n', (2937, 2948), True, 'import numpy as np\n'), ((332, 352), 'numba.cuda.profile_start', 'cuda.profile_start', ([], {}), '()\n', (350, 352), True, 'import numba.cuda as cuda\n'), ((417, 436), 'numba.cuda.profile_stop', 'cuda.profile_stop', ([], {}), '()\n', (434, 436), True, 'import numba.cuda as cuda\n'), ((1821, 1829), 'mxnet.gpu', 'mx.gpu', ([], {}), '()\n', (1827, 1829), True, 'import mxnet as mx\n'), ((1869, 1877), 'mxnet.cpu', 'mx.cpu', ([], {}), '()\n', (1875, 1877), True, 'import mxnet as mx\n'), ((2565, 2580), 'mxnet.nd.waitall', 'mx.nd.waitall', ([], {}), '()\n', (2578, 2580), True, 'import mxnet as mx\n'), ((2593, 2604), 'time.time', 'time.time', ([], {}), '()\n', (2602, 2604), False, 'import time\n'), ((2637, 2652), 'mxnet.nd.waitall', 'mx.nd.waitall', ([], {}), '()\n', (2650, 2652), True, 'import mxnet as mx\n'), ((2663, 2674), 'time.time', 'time.time', ([], {}), '()\n', (2672, 2674), False, 'import time\n'), ((1837, 1862), 'mxnet.test_utils.list_gpus', 'mx.test_utils.list_gpus', ([], {}), '()\n', (1860, 1862), True, 'import mxnet as mx\n'), ((3020, 3031), 'numpy.min', 'np.min', (['res'], {}), '(res)\n', (3026, 3031), True, 'import numpy as np\n'), ((3066, 3081), 'numpy.average', 'np.average', (['res'], {}), '(res)\n', (3076, 3081), True, 'import numpy as np\n'), ((3083, 3094), 'numpy.max', 'np.max', (['res'], {}), '(res)\n', (3089, 3094), True, 'import numpy as np\n')]
# Generated by Django 3.1.1 on 2020-12-16 03:07 from django.db import migrations, models class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Scheduler', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('minutes', models.IntegerField(default=15)), ], ), ]
[ "django.db.models.AutoField", "django.db.models.IntegerField" ]
[((305, 398), 'django.db.models.AutoField', 'models.AutoField', ([], {'auto_created': '(True)', 'primary_key': '(True)', 'serialize': '(False)', 'verbose_name': '"""ID"""'}), "(auto_created=True, primary_key=True, serialize=False,\n verbose_name='ID')\n", (321, 398), False, 'from django.db import migrations, models\n'), ((425, 456), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': '(15)'}), '(default=15)\n', (444, 456), False, 'from django.db import migrations, models\n')]
from sklearn.preprocessing import StandardScaler from sklearn.datasets import load_wine from sklearn.model_selection import train_test_split wine = load_wine() columns_names = wine.feature_names y = wine.target X = wine.data print('Pre scaling X') print(X) scaler = StandardScaler() scaler.fit(X) scaled_features = scaler.transform(X) print('Post scaling X') print(scaled_features) X_train, X_test, y_train, y_test = train_test_split(scaled_features, y, test_size=0.375)
[ "sklearn.preprocessing.StandardScaler", "sklearn.model_selection.train_test_split", "sklearn.datasets.load_wine" ]
[((149, 160), 'sklearn.datasets.load_wine', 'load_wine', ([], {}), '()\n', (158, 160), False, 'from sklearn.datasets import load_wine\n'), ((269, 285), 'sklearn.preprocessing.StandardScaler', 'StandardScaler', ([], {}), '()\n', (283, 285), False, 'from sklearn.preprocessing import StandardScaler\n'), ((422, 475), 'sklearn.model_selection.train_test_split', 'train_test_split', (['scaled_features', 'y'], {'test_size': '(0.375)'}), '(scaled_features, y, test_size=0.375)\n', (438, 475), False, 'from sklearn.model_selection import train_test_split\n')]
############################################################## #*** MagicDAQ USB DAQ and M&A Board General Demo Script *** ############################################################## #*** Websites *** # MagicDAQ Website: # https://www.magicdaq.com/ # API Docs Website: # https://magicdaq.github.io/magicdaq_docs/ #*** Install MagicDAQ *** # Download the MagicDAQ python package from pypi # Run this command in a command prompt: # python -m pip install magicdaq # Further docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ # MagicDAQ is only compatible with Python 3 on Windows. It does not work on Linux at the moment. It does not work with Python 2. #*** Using Auto Code Complete With PyCharm *** # Using a code editor like Pycharm and want to get auto complete working for the MagicDAQ package? # Docs: https://magicdaq.github.io/magicdaq_docs/#/PyCharmCodeCompletion ############################################################## #*** Imports *** ############################################################## import sys import time # Import MagicDAQ print('*** MagicDAQ Install Check ***') print('') try: # Import MagicDAQDevice object from magicdaq.api_class import MagicDAQDevice # Create daq_one object daq_one = MagicDAQDevice() print('GOOD: MagicDAQ API is installed properly.') # Get MagicDAQ Driver Version driver_version = daq_one.get_driver_version() if driver_version == 1.0: print('GOOD: MagicDAQ Driver is installed properly.') print('You are ready to use MagicDAQ!') else: print('ERROR: MagicDAQ Driver version not expected value: '+str(driver_version)) print('Try installing MagicDAQ using pip again.') print('https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') except Exception as exception_text: print('Original exception: ') print(exception_text) print('') print('ERROR: Unable to import MagicDAQ API.') print('Mostly likely, MagicDAQ has not been properly downloaded and installed using pip.') print('Please consult MagicDAQ API Docs: https://magicdaq.github.io/magicdaq_docs/#/Install_MagicDAQ') print('Feel free to email MagicDAQ Support at: <EMAIL>') sys.exit(0) ############################################################## #*** MagicDAQ USB DAQ MDAQ300 Features Demo *** ############################################################## # This portion of the script shows off some of the USB DAQ's features # Hardware docs: https://www.magicdaq.com/product/magic-daq/ print('') print('*** MagicDAQ USB DAQ Demo ***') print('Ensure the USB DAQ is plugged into the computer using the USB cable.') print('The DAQ does not need to be connected to the M&A board.') print('') user_input = input('Press any key to continue.') #*** Open DAQ Device *** # Remember, the daq_one object has already been created in the above 'Imports' section # We must open the daq device before performing any hardware feature manipulation # https://magicdaq.github.io/magicdaq_docs/#/MagicDAQ_Basics daq_one.open_daq_device() ############################################################### #*** Analog Output Demo: Constant, Sine, and PWM on AO1 Pin *** ############################################################### print('') print('--- Analog Output Demo: Constant, Sine, and PWM Output ---') # Set constant 3 volt output voltage on AO1 pin daq_one.set_analog_output(1,3) print('Using an oscilloscope, place the scope probe on pin AO1 and connect the scope probe GND to one of the USB DAQs AGND pins') print('You should now observe a constant 3V') print('') user_input = input('Press any key to continue.') # Configure and start 300Hz sine wave with 2V amplitude on AO1 pin daq_one.configure_analog_output_sine_wave(1,300,amplitude=2) daq_one.start_analog_output_wave(1) print('You should now observe a 300Hz sine wave with 2V amplitude.') print('') user_input = input('Press any key to continue.') # Stop previous wave daq_one.stop_analog_output_wave(1) # Configure and start PWM wave, 200 Hz, 50% duty cycle, 3.3V amplitude daq_one.configure_analog_output_pwm_wave(1,200,50,amplitude=3.3) daq_one.start_analog_output_wave(1) print('You should now observe a 200Hz PWM wave, 50% duty cycle, with 3.3V amplitude.') print('') user_input = input('Press any key to continue.') # Stop the wave daq_one.stop_analog_output_wave(1) print('The wave should now stop. You could set it to GND using set_analog_ouput() if you wanted.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: PWM waves *** ############################################################### print('') print('--- Pulse Counter Pin Demo: PWM Waves ---') # Configure a 50 KHz frequency, 75% duty cycle, continuous PWM Wave on the counter pin (CTR0) # Note that unlike the analog output pins, the CTR0 pin always outputs at an amplitude of 3.3v when producing PWM waves daq_one.configure_counter_pwm(50000,75) # Start counter wave daq_one.start_counter_pwm() print('Place your scope probe on pin CTR0') print('You should see a 50kHz, 75% duty cycle PWM wave.') print('') user_input = input('Press any key to continue.') # Now stopping the counter PWM wave daq_one.stop_counter_pwm() print('The PWM wave will now stop.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Pulse Counter Pin Demo: Pulse Counting *** ############################################################### print('') print('--- Pulse Counter Pin Demo: Pulse Counting ---') print('Use a piece of wire to bridge CTR0 to DGND several times') print('CTR0 has an internal pull up resistor. You are simulating a pulse pulling the voltage to GND.') print('You will have 8 sec to simulate some pulses.') print('') user_input = input('Press any key when you are ready to start.') # Start the Pulse Counter # Pulses will be counted on the falling edge daq_one.enable_pulse_counter() # Sleep for 8 sec time.sleep(8) # Read number of pulses print('Number of pulses counted: '+str(daq_one.read_pulse_counter())) print('You are using a piece of wire, so it is likely bouncing on and off the screw terminal, counting many pulses') print('') user_input = input('Stop simulating pulses. Press any key to continue.') print('') print('Now clearing the pulse counter') daq_one.clear_pulse_counter() print('Pulse count after clearing: '+str(daq_one.read_pulse_counter())) ############################################################### #*** Digital Pin Demo *** ############################################################### print('') print('--- Digital Pin Demo ---') # Set P0.0 pin LOW daq_one.set_digital_output(0,0) print('Place scope probe on pin P0.0, pin should be LOW') print('') user_input = input('Press any key to continue.') # Set P0.0 pin HIGH daq_one.set_digital_output(0,1) print('Place scope probe on pin P0.0, pin should be HIGH') print('') user_input = input('Press any key to continue.') ############################################################### #*** Analog Input Pin Demo *** ############################################################### print('') print('--- Analog Input Pin Demo ---') # Single ended voltage measurement print('Apply voltage to AI0 pin. If you dont have a power supply handy, you can run a wire from the +5V pin to the AI0 pin.') print('') user_input = input('Press any key to continue.') print('Voltage measured at AI0: '+str(daq_one.read_analog_input(0))) print('If you are using the +5V pin, remember that this voltage is derived from the USB Power supply, so it will be what ever your USB bus ir producing, probably something slightly less than 5V.') # If you want to perform a differential input measurement # daq_one.read_diff_analog_input() # https://magicdaq.github.io/magicdaq_docs/#/read_diff_analog_input ############################################################### #*** M&A Board Demo *** ############################################################### # M&A Board hardware spec: # https://www.magicdaq.com/product/ma-board-full-kit/ print('') print('*** M&A Board Demo ***') print('Ensure the USB DAQ is connected to the M&A board using the ribbon cable.') print('Ribbon cable pin out on page 6 of: ') print('https://www.magicdaq.com/mdaq350datasheet/') print('Use the provided power cable to apply power to the M&A board.') print('') user_input = input('Press any key to continue.') ############################################################### #*** Relay Demo *** ############################################################### print('') print('--- Relay Demo ---') print('Setting all relays to closed.') daq_one.set_digital_output(7, 1) daq_one.set_digital_output(6, 1) daq_one.set_digital_output(5, 1) daq_one.set_digital_output(4, 1) time.sleep(1) relay_count = 1 digital_pin_count = 7 while relay_count <= 4: print('Relay #: ' + str(relay_count) + ' Digital Pin #: ' + str(digital_pin_count)) # Set relay to open print('Setting relay to OPEN.') daq_one.set_digital_output(digital_pin_count, 0) time.sleep(1) # Increment counters relay_count += 1 digital_pin_count -= 1 print('') print('') user_input = input('Press any key to continue.') ############################################################### #*** Vout Demo *** ############################################################### print('') print('--- Vout Demo ---') print('Vout provides a variable voltage power output capable of up to 2A') print('By characterizing your M&A board, or building a feedback loop; voltage accuracy of Vout can be made quite good.') print('See notes on page 4 of the M&A data sheet.') print('https://www.magicdaq.com/mdaq350datasheet/') # See the M&A board data sheet for the equation that describes the Vout to Vout_set (0 and 2.77 here) relationship print('') print('Vout_set Set to 0V.') print('Measure Vout with a multimeter. It should be about 10V') daq_one.set_analog_output(0, 0) print('') user_input = input('Press any key to continue.') print('Vout_set Set to 2.77V') print('Measure Vout with a multimeter. It should be about 5V') daq_one.set_analog_output(0, 2.77) print('') user_input = input('Press any key to continue.') ############################################################### #*** Low Current Measurement Demo: A1 *** ############################################################### print('') print('--- A1 Low Current Measurement Demo ---') print('Use the 3.3V board voltage and a 20K resistor to put 165uA through A1.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_4_voltage = daq_one.read_analog_input(4) print('Read voltage: ' + str(pin_4_voltage)) calculated_current_amps = pin_4_voltage / (332 * 97.863) ua_current = round((calculated_current_amps / .000001), 3) print('Calculated uA current: ' + str(ua_current)) ############################################################### #*** Current Measurement Demo: A2 *** ############################################################### print('') print('--- A2 Current Measurement Demo (+/- 5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A2.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_5_voltage = daq_one.read_analog_input(5) print('Read voltage: ' + str(pin_5_voltage)) calculated_current_amps = pin_5_voltage / (.01 * 200) # ma_current = round((calculated_current_amps / .001), 3) print('Calculated A current: ' + str(calculated_current_amps)) ############################################################### #*** Current Measurement Demo: A3 *** ############################################################### print('') print('--- A3 Current Measurement Demo (+/- 1.5A max) ---') print('Use an external 5V power supply and 5 ohm power resistor to put 1 Amp through A3.') print('') user_input = input('Press any key to continue.') # See the M&A board data sheet for the equation that describes the Vout to current relationship pin_6_voltage = daq_one.read_analog_input(6) print('Read voltage: ' + str(pin_6_voltage)) calculated_current_amps = pin_6_voltage / (.033 * 200) ma_current = round((calculated_current_amps / .001), 3) print('Calculated mA current: ' + str(ma_current)) ############################################################### #*** Demo Complete. *** ############################################################### # Close connection to daq daq_one.close_daq_device()
[ "magicdaq.api_class.MagicDAQDevice", "time.sleep", "sys.exit" ]
[((6139, 6152), 'time.sleep', 'time.sleep', (['(8)'], {}), '(8)\n', (6149, 6152), False, 'import time\n'), ((8952, 8965), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (8962, 8965), False, 'import time\n'), ((1263, 1279), 'magicdaq.api_class.MagicDAQDevice', 'MagicDAQDevice', ([], {}), '()\n', (1277, 1279), False, 'from magicdaq.api_class import MagicDAQDevice\n'), ((9236, 9249), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (9246, 9249), False, 'import time\n'), ((2289, 2300), 'sys.exit', 'sys.exit', (['(0)'], {}), '(0)\n', (2297, 2300), False, 'import sys\n')]
# Copyright 2022 IBM Inc. All rights reserved # SPDX-License-Identifier: Apache2.0 # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # This file is part of the code to reproduce the results in the paper: # <NAME> and <NAME>, "Circuit optimization of Hamiltonian # simulation by simultaneous diagonalization of Pauli clusters," Quantum 4, # p. 322, 2020. https://doi.org/10.22331/q-2020-09-12-322 import os import cl import numpy as np import matplotlib.pyplot as plt import matplotlib.colors as colors from matplotlib.ticker import FuncFormatter from itertools import permutations def plotZ(Z, exportFilename=None) : (m,n) = Z.shape cmap = colors.LinearSegmentedColormap.from_list("white_and_gray", [(1, 1, 1), (0.6, 0.6, 0.6)], N=2) fig, ax = plt.subplots() im = ax.imshow(Z.T,cmap=cmap) ax.set_yticklabels([]) ax.set_xticklabels([]) ax.set_yticks([]) ax.set_xticks([]) for i in range(1,m) : plt.plot([-0.5+i,-0.5+i],[-0.5,-0.5+n],color='k',linewidth=0.7) for i in range(1,T.n) : plt.plot([-0.5,-0.5+m],[-0.5+i,-0.5+i],color='k',linewidth=0.7) for i in range(n) : v = Z[:,i] c = np.sum(v[:-1] != v[1:]) + v[0] + v[-1] ax.text(m-0.25,i, str(c), fontsize=12, ha='left', va='center') if (exportFilename) : plt.gcf().tight_layout() plt.savefig(exportFilename + "-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop %s-uncropped.pdf %s.pdf" % (exportFilename, exportFilename)) else : plt.show() # Make sure the figure directory exists cl.ensureDirExists('fig') # Create the test problem M = cl.create_basic_problem(7,0) C = cl.generate_full_rank_weights(20,7,seed=1) M = np.dot(C,M) % 2 # Apply diagonalization and get the final Z matrix T = cl.Tableau(M) R = cl.RecordOperations(T.n) T.addRecorder(R) cl.zeroX_algorithm1_cz(T) T = cl.Tableau(M) R.apply(T) Z = T.getZ() # Plot the results plotZ(Z,'fig/Figure_9a') print("Original: %d" % cl.countCNot(Z)) idx = cl.orderZ(Z) plotZ(Z[idx,:],'fig/Figure_9b') print("Sorted : %d" % cl.countCNot(Z[idx,:])) # Generate histogram of actual permutations if (True) : base = list(range(7)) count = [] for idx2 in permutations(base) : idx1 = cl.orderZ(Z[:,idx2]) count.append(cl.countCNot(Z[idx1,:][:,idx2])) def format_percentage(y, position): return str(100 * y) # Count is always even plt.hist(count,bins=list(range(min(count)-1,max(count)+2,2)),rwidth=0.9,density=True) plt.gca().set_xticklabels([str(x) for x in range(min(count),max(count)+1,2)],fontsize=16) plt.gca().set_xticks(list(range(min(count),max(count)+1,2))) plt.gca().yaxis.set_major_formatter(FuncFormatter(format_percentage)) plt.xlabel('Number of CNOT gates',fontsize=16) plt.ylabel("Percentage",fontsize=16) for tick in plt.gca().yaxis.get_major_ticks(): tick.label.set_fontsize(16) plt.gcf().tight_layout() ratio = 0.5 xleft, xright = plt.gca().get_xlim() ybottom, ytop = plt.gca().get_ylim() plt.gca().set_aspect(abs((xright-xleft)/(ybottom-ytop))*ratio) plt.savefig("fig/Figure_9c-uncropped.pdf", transparent=True) plt.close() os.system("pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf")
[ "matplotlib.pyplot.ylabel", "cl.orderZ", "matplotlib.ticker.FuncFormatter", "matplotlib.pyplot.xlabel", "matplotlib.pyplot.plot", "matplotlib.pyplot.close", "numpy.dot", "itertools.permutations", "cl.create_basic_problem", "cl.Tableau", "matplotlib.pyplot.savefig", "cl.zeroX_algorithm1_cz", "cl.ensureDirExists", "matplotlib.pyplot.gca", "matplotlib.pyplot.gcf", "cl.generate_full_rank_weights", "matplotlib.colors.LinearSegmentedColormap.from_list", "matplotlib.pyplot.show", "numpy.sum", "cl.RecordOperations", "cl.countCNot", "os.system", "matplotlib.pyplot.subplots" ]
[((2046, 2071), 'cl.ensureDirExists', 'cl.ensureDirExists', (['"""fig"""'], {}), "('fig')\n", (2064, 2071), False, 'import cl\n'), ((2103, 2132), 'cl.create_basic_problem', 'cl.create_basic_problem', (['(7)', '(0)'], {}), '(7, 0)\n', (2126, 2132), False, 'import cl\n'), ((2136, 2180), 'cl.generate_full_rank_weights', 'cl.generate_full_rank_weights', (['(20)', '(7)'], {'seed': '(1)'}), '(20, 7, seed=1)\n', (2165, 2180), False, 'import cl\n'), ((2255, 2268), 'cl.Tableau', 'cl.Tableau', (['M'], {}), '(M)\n', (2265, 2268), False, 'import cl\n'), ((2273, 2297), 'cl.RecordOperations', 'cl.RecordOperations', (['T.n'], {}), '(T.n)\n', (2292, 2297), False, 'import cl\n'), ((2315, 2340), 'cl.zeroX_algorithm1_cz', 'cl.zeroX_algorithm1_cz', (['T'], {}), '(T)\n', (2337, 2340), False, 'import cl\n'), ((2345, 2358), 'cl.Tableau', 'cl.Tableau', (['M'], {}), '(M)\n', (2355, 2358), False, 'import cl\n'), ((2475, 2487), 'cl.orderZ', 'cl.orderZ', (['Z'], {}), '(Z)\n', (2484, 2487), False, 'import cl\n'), ((1144, 1241), 'matplotlib.colors.LinearSegmentedColormap.from_list', 'colors.LinearSegmentedColormap.from_list', (['"""white_and_gray"""', '[(1, 1, 1), (0.6, 0.6, 0.6)]'], {'N': '(2)'}), "('white_and_gray', [(1, 1, 1), (0.6,\n 0.6, 0.6)], N=2)\n", (1184, 1241), True, 'import matplotlib.colors as colors\n'), ((1251, 1265), 'matplotlib.pyplot.subplots', 'plt.subplots', ([], {}), '()\n', (1263, 1265), True, 'import matplotlib.pyplot as plt\n'), ((2183, 2195), 'numpy.dot', 'np.dot', (['C', 'M'], {}), '(C, M)\n', (2189, 2195), True, 'import numpy as np\n'), ((2679, 2697), 'itertools.permutations', 'permutations', (['base'], {}), '(base)\n', (2691, 2697), False, 'from itertools import permutations\n'), ((3204, 3251), 'matplotlib.pyplot.xlabel', 'plt.xlabel', (['"""Number of CNOT gates"""'], {'fontsize': '(16)'}), "('Number of CNOT gates', fontsize=16)\n", (3214, 3251), True, 'import matplotlib.pyplot as plt\n'), ((3254, 3291), 'matplotlib.pyplot.ylabel', 'plt.ylabel', (['"""Percentage"""'], {'fontsize': '(16)'}), "('Percentage', fontsize=16)\n", (3264, 3291), True, 'import matplotlib.pyplot as plt\n'), ((3571, 3631), 'matplotlib.pyplot.savefig', 'plt.savefig', (['"""fig/Figure_9c-uncropped.pdf"""'], {'transparent': '(True)'}), "('fig/Figure_9c-uncropped.pdf', transparent=True)\n", (3582, 3631), True, 'import matplotlib.pyplot as plt\n'), ((3635, 3646), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (3644, 3646), True, 'import matplotlib.pyplot as plt\n'), ((3650, 3716), 'os.system', 'os.system', (['"""pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf"""'], {}), "('pdfcrop fig/Figure_9c-uncropped.pdf fig/Figure_9c.pdf')\n", (3659, 3716), False, 'import os\n'), ((1425, 1499), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.5 + i, -0.5 + i]', '[-0.5, -0.5 + n]'], {'color': '"""k"""', 'linewidth': '(0.7)'}), "([-0.5 + i, -0.5 + i], [-0.5, -0.5 + n], color='k', linewidth=0.7)\n", (1433, 1499), True, 'import matplotlib.pyplot as plt\n'), ((1522, 1596), 'matplotlib.pyplot.plot', 'plt.plot', (['[-0.5, -0.5 + m]', '[-0.5 + i, -0.5 + i]'], {'color': '"""k"""', 'linewidth': '(0.7)'}), "([-0.5, -0.5 + m], [-0.5 + i, -0.5 + i], color='k', linewidth=0.7)\n", (1530, 1596), True, 'import matplotlib.pyplot as plt\n'), ((1808, 1872), 'matplotlib.pyplot.savefig', 'plt.savefig', (["(exportFilename + '-uncropped.pdf')"], {'transparent': '(True)'}), "(exportFilename + '-uncropped.pdf', transparent=True)\n", (1819, 1872), True, 'import matplotlib.pyplot as plt\n'), ((1879, 1890), 'matplotlib.pyplot.close', 'plt.close', ([], {}), '()\n', (1888, 1890), True, 'import matplotlib.pyplot as plt\n'), ((1897, 1976), 'os.system', 'os.system', (["('pdfcrop %s-uncropped.pdf %s.pdf' % (exportFilename, exportFilename))"], {}), "('pdfcrop %s-uncropped.pdf %s.pdf' % (exportFilename, exportFilename))\n", (1906, 1976), False, 'import os\n'), ((1993, 2003), 'matplotlib.pyplot.show', 'plt.show', ([], {}), '()\n', (2001, 2003), True, 'import matplotlib.pyplot as plt\n'), ((2451, 2466), 'cl.countCNot', 'cl.countCNot', (['Z'], {}), '(Z)\n', (2463, 2466), False, 'import cl\n'), ((2543, 2566), 'cl.countCNot', 'cl.countCNot', (['Z[idx, :]'], {}), '(Z[idx, :])\n', (2555, 2566), False, 'import cl\n'), ((2714, 2735), 'cl.orderZ', 'cl.orderZ', (['Z[:, idx2]'], {}), '(Z[:, idx2])\n', (2723, 2735), False, 'import cl\n'), ((3167, 3199), 'matplotlib.ticker.FuncFormatter', 'FuncFormatter', (['format_percentage'], {}), '(format_percentage)\n', (3180, 3199), False, 'from matplotlib.ticker import FuncFormatter\n'), ((2755, 2788), 'cl.countCNot', 'cl.countCNot', (['Z[idx1, :][:, idx2]'], {}), '(Z[idx1, :][:, idx2])\n', (2767, 2788), False, 'import cl\n'), ((2974, 2983), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (2981, 2983), True, 'import matplotlib.pyplot as plt\n'), ((3067, 3076), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3074, 3076), True, 'import matplotlib.pyplot as plt\n'), ((3380, 3389), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (3387, 3389), True, 'import matplotlib.pyplot as plt\n'), ((3440, 3449), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3447, 3449), True, 'import matplotlib.pyplot as plt\n'), ((3480, 3489), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3487, 3489), True, 'import matplotlib.pyplot as plt\n'), ((3504, 3513), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3511, 3513), True, 'import matplotlib.pyplot as plt\n'), ((1637, 1660), 'numpy.sum', 'np.sum', (['(v[:-1] != v[1:])'], {}), '(v[:-1] != v[1:])\n', (1643, 1660), True, 'import numpy as np\n'), ((1777, 1786), 'matplotlib.pyplot.gcf', 'plt.gcf', ([], {}), '()\n', (1784, 1786), True, 'import matplotlib.pyplot as plt\n'), ((3131, 3140), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3138, 3140), True, 'import matplotlib.pyplot as plt\n'), ((3307, 3316), 'matplotlib.pyplot.gca', 'plt.gca', ([], {}), '()\n', (3314, 3316), True, 'import matplotlib.pyplot as plt\n')]
""" #;+ #; NAME: #; general #; Version 1.0 #; #; PURPOSE: #; Module for monkeying with files and filenames #; 172Sep-2014 by JXP #;- #;------------------------------------------------------------------------------ """ # Import libraries import numpy as np from astropy.io import fits from astropy.io import ascii import os, pdb #### ############################### # Deal with .gz extensions, usually on FITS files # See if filenm exists, if so pass it back # def chk_for_gz(filenm,chk=None): import os, pdb # File exist? if os.path.lexists(filenm): chk=1 return filenm, chk # .gz already if filenm.find('.gz') > 0: chk=0 return filenm, chk # Add .gz if os.path.lexists(filenm+'.gz'): chk=1 return filenm+'.gz', chk else: chk=0 return filenm, chk
[ "os.path.lexists" ]
[((554, 577), 'os.path.lexists', 'os.path.lexists', (['filenm'], {}), '(filenm)\n', (569, 577), False, 'import os, pdb\n'), ((734, 765), 'os.path.lexists', 'os.path.lexists', (["(filenm + '.gz')"], {}), "(filenm + '.gz')\n", (749, 765), False, 'import os, pdb\n')]
# Copyright 2022 Collate # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Test suite for the action module implementation """ import os from unittest import mock from jinja2 import Environment from pytest import mark from metadata.great_expectations.action import OpenMetadataValidationAction from metadata.great_expectations.utils.ometa_config_handler import render_template @mark.parametrize( "input,expected", [ (None, "list_entities"), ("service_name", "get_by_name"), ], ) def test_get_table_entity(input, expected, mocked_ometa, mocked_ge_data_context): """Test get table entity""" ometa_validation = OpenMetadataValidationAction( data_context=mocked_ge_data_context, config_file_path="my/config/path", ometa_service_name=input, ) res = ometa_validation._get_table_entity("database", "schema", "table") assert res._type == expected def test_create_jinja_environment(fixture_jinja_environment): """Test create jinja environment""" assert isinstance(fixture_jinja_environment, Environment) @mock.patch.dict(os.environ, {"API_VERSION": "v1"}) def test_render_template(fixture_jinja_environment): """Test create jinja environment""" tmplt = render_template(fixture_jinja_environment) assert tmplt == "hostPort: http://localhost:8585\napiVersion: v1"
[ "metadata.great_expectations.utils.ometa_config_handler.render_template", "pytest.mark.parametrize", "unittest.mock.patch.dict", "metadata.great_expectations.action.OpenMetadataValidationAction" ]
[((883, 982), 'pytest.mark.parametrize', 'mark.parametrize', (['"""input,expected"""', "[(None, 'list_entities'), ('service_name', 'get_by_name')]"], {}), "('input,expected', [(None, 'list_entities'), (\n 'service_name', 'get_by_name')])\n", (899, 982), False, 'from pytest import mark\n'), ((1586, 1636), 'unittest.mock.patch.dict', 'mock.patch.dict', (['os.environ', "{'API_VERSION': 'v1'}"], {}), "(os.environ, {'API_VERSION': 'v1'})\n", (1601, 1636), False, 'from unittest import mock\n'), ((1149, 1279), 'metadata.great_expectations.action.OpenMetadataValidationAction', 'OpenMetadataValidationAction', ([], {'data_context': 'mocked_ge_data_context', 'config_file_path': '"""my/config/path"""', 'ometa_service_name': 'input'}), "(data_context=mocked_ge_data_context,\n config_file_path='my/config/path', ometa_service_name=input)\n", (1177, 1279), False, 'from metadata.great_expectations.action import OpenMetadataValidationAction\n'), ((1742, 1784), 'metadata.great_expectations.utils.ometa_config_handler.render_template', 'render_template', (['fixture_jinja_environment'], {}), '(fixture_jinja_environment)\n', (1757, 1784), False, 'from metadata.great_expectations.utils.ometa_config_handler import render_template\n')]
# -*- coding: utf-8 -*- from storyruntime.Containers import Containers from storyruntime.constants.ServiceConstants import ServiceConstants import storyscript def test_containers_format_command(story): """ Ensures a simple resolve can be performed """ story_text = 'alpine echo msg:"foo"\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': { 'arguments': {'msg': {'type': 'string'}} } } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo', '{"msg":"foo"}'] def test_containers_format_command_no_arguments(story): story_text = 'alpine echo\n' story.context = {} story.app.services = { 'alpine': { ServiceConstants.config: { 'actions': { 'echo': {} } } } } story.tree = storyscript.Api.loads(story_text).result()['tree'] assert Containers.format_command( story, story.line('1'), 'alpine', 'echo' ) == ['echo']
[ "storyscript.Api.loads" ]
[((631, 664), 'storyscript.Api.loads', 'storyscript.Api.loads', (['story_text'], {}), '(story_text)\n', (652, 664), False, 'import storyscript\n'), ((1129, 1162), 'storyscript.Api.loads', 'storyscript.Api.loads', (['story_text'], {}), '(story_text)\n', (1150, 1162), False, 'import storyscript\n')]
from django.contrib import admin from django.shortcuts import redirect from django.utils.safestring import mark_safe from django.contrib.admin.widgets import AdminFileWidget class AdminImageWidget(AdminFileWidget): def render(self, name, value, attrs=None, renderer=None): output = [] if value and getattr(value, "url", None): output.append(u'<a href="%s" target="_blank">%s</a>' % (value.url, thumbnail(value))) output.append(super(AdminFileWidget, self).render(name, value, attrs, renderer)) return mark_safe(u''.join(output)) class ImageWidgetAdmin(admin.ModelAdmin): image_fields = [] def formfield_for_dbfield(self, db_field, **kwargs): if db_field.name in self.image_fields: kwargs.pop("request", None) kwargs['widget'] = AdminImageWidget return db_field.formfield(**kwargs) return super(ImageWidgetAdmin, self).formfield_for_dbfield(db_field, **kwargs) def redirect_one_object(model, obj): response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/add/') if obj: response = redirect(f'/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/') return response def thumbnail(obj, size='col-md-2'): return mark_safe('<img src="{}" class="img-thumbnail {} p-0">'.format(obj.url, size))
[ "django.shortcuts.redirect" ]
[((1027, 1100), 'django.shortcuts.redirect', 'redirect', (['f"""/admin/{model._meta.app_label}/{model._meta.model_name}/add/"""'], {}), "(f'/admin/{model._meta.app_label}/{model._meta.model_name}/add/')\n", (1035, 1100), False, 'from django.shortcuts import redirect\n'), ((1132, 1227), 'django.shortcuts.redirect', 'redirect', (['f"""/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/"""'], {}), "(\n f'/admin/{model._meta.app_label}/{model._meta.model_name}/{obj.pk}/change/'\n )\n", (1140, 1227), False, 'from django.shortcuts import redirect\n')]
import unittest class Solution: def setZeroes(self, matrix): """ :type matrix: List[List[int]] :rtype: void Do not return anything, modify matrix in-place instead. """ rows = [0] * len(matrix) cols = [0] * len(matrix[0]) for i, row in enumerate(matrix): for j, num in enumerate(row): if not num: rows[i] = 1 cols[j] = 1 for row, num in enumerate(rows): if num: for j in range(len(matrix[0])): matrix[row][j] = 0 for col, num in enumerate(cols): if num: for i in range(len(matrix)): matrix[i][col] = 0 class Test(unittest.TestCase): def test(self): self._test( [ [1, 2, 0], [1, 2, 3], [0, 2, 3], ], [ [0, 0, 0], [0, 2, 0], [0, 0, 0], ] ) def _test(self, matrix, expected): Solution().setZeroes(matrix) self.assertEqual(expected, matrix) if __name__ == '__main__': unittest.main()
[ "unittest.main" ]
[((1201, 1216), 'unittest.main', 'unittest.main', ([], {}), '()\n', (1214, 1216), False, 'import unittest\n')]
import argparse import collections import shutil import sys import time from datetime import timedelta from pathlib import Path import torch from torch.nn.parallel import DataParallel, DistributedDataParallel try: # PyTorch >= 1.6 supports mixed precision training from torch.cuda.amp import autocast amp_support = True except: amp_support = False from openunreid.apis import GANBaseRunner, set_random_seed, infer_gan from openunreid.core.solvers import build_lr_scheduler, build_optimizer from openunreid.data import ( build_test_dataloader, build_train_dataloader, build_val_dataloader, ) from openunreid.models import build_gan_model from openunreid.models.losses import build_loss from openunreid.models.utils.extract import extract_features from openunreid.utils.config import ( cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file, ) from openunreid.utils.dist_utils import init_dist, synchronize from openunreid.utils.file_utils import mkdir_if_missing from openunreid.utils.logger import Logger class SPGANRunner(GANBaseRunner): def train_step(self, iter, batch): data_src, data_tgt = batch[0], batch[1] self.real_A = data_src['img'].cuda() self.real_B = data_tgt['img'].cuda() # Forward self.fake_B = self.model['G_A'](self.real_A) # G_A(A) self.fake_A = self.model['G_B'](self.real_B) # G_B(B) self.rec_A = self.model['G_B'](self.fake_B) # G_B(G_A(A)) self.rec_B = self.model['G_A'](self.fake_A) # G_A(G_B(B)) # G_A and G_B if iter % 2 == 0: self.set_requires_grad([self.model['D_A'], self.model['D_B'], self.model['Metric']], False) # save memory if self.scaler is None: self.optimizer['G'].zero_grad() else: with autocast(enabled=False): self.optimizer['G'].zero_grad() if self._epoch > 1: self.backward_G(retain_graph=True) self.backward_GM() else: self.backward_G() if self.scaler is None: self.optimizer['G'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['G']) # SiaNet for SPGAN if self._epoch > 0: self.set_requires_grad([self.model['Metric']], True) if self.scaler is None: self.optimizer['Metric'].zero_grad() else: with autocast(enabled=False): self.optimizer['Metric'].zero_grad() self.backward_M() if self.scaler is None: self.optimizer['Metric'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['Metric']) # D_A and D_B self.set_requires_grad([self.model['D_A'], self.model['D_B']], True) # self.optimizer['D'].zero_grad() # self.backward_D() # self.optimizer['D'].step() if self.scaler is None: self.optimizer['D'].zero_grad() else: with autocast(enabled=False): self.optimizer['D'].zero_grad() self.backward_D() if self.scaler is None: self.optimizer['D'].step() else: with autocast(enabled=False): self.scaler.step(self.optimizer['D']) # save translated images if self._rank == 0: self.save_imgs(['real_A', 'real_B', 'fake_A', 'fake_B', 'rec_A', 'rec_B']) return 0 def backward_GM(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A) fake_B_metric = self.model['Metric'](self.fake_B) # positive pairs loss_pos = self.criterions['sia_G'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_G'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_G'](fake_B_metric, real_B_metric, 0) + \ self.criterions['sia_G'](fake_A_metric, real_A_metric, 0) loss_M = (loss_pos + 0.5 * loss_neg) / 4.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_G'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_G': loss_M.item()} self.train_progress.update(meters) def backward_M(self): real_A_metric = self.model['Metric'](self.real_A) real_B_metric = self.model['Metric'](self.real_B) fake_A_metric = self.model['Metric'](self.fake_A.detach()) fake_B_metric = self.model['Metric'](self.fake_B.detach()) # positive pairs loss_pos = self.criterions['sia_M'](real_A_metric, fake_B_metric, 1) + \ self.criterions['sia_M'](real_B_metric, fake_A_metric, 1) # negative pairs loss_neg = self.criterions['sia_M'](real_A_metric, real_B_metric, 0) loss_M = (loss_pos + 2 * loss_neg) / 3.0 loss = loss_M * self.cfg.TRAIN.LOSS.losses['sia_M'] if self.scaler is None: loss.backward() else: with autocast(enabled=False): self.scaler.scale(loss).backward() meters = {'sia_M': loss_M.item()} self.train_progress.update(meters) def parge_config(): parser = argparse.ArgumentParser(description="SPGAN training") parser.add_argument("config", help="train config file path") parser.add_argument( "--work-dir", help="the dir to save logs and models", default="" ) parser.add_argument("--resume-from", help="the checkpoint file to resume from") parser.add_argument( "--launcher", type=str, choices=["none", "pytorch", "slurm"], default="none", help="job launcher", ) parser.add_argument("--tcp-port", type=str, default="5017") parser.add_argument( "--set", dest="set_cfgs", default=None, nargs=argparse.REMAINDER, help="set extra config keys if needed", ) args = parser.parse_args() cfg_from_yaml_file(args.config, cfg) assert len(list(cfg.TRAIN.datasets.keys()))==2, \ "the number of datasets for domain-translation training should be two" cfg.launcher = args.launcher cfg.tcp_port = args.tcp_port if not args.work_dir: args.work_dir = Path(args.config).stem cfg.work_dir = cfg.LOGS_ROOT / args.work_dir mkdir_if_missing(cfg.work_dir) if args.set_cfgs is not None: cfg_from_list(args.set_cfgs, cfg) shutil.copy(args.config, cfg.work_dir / "config.yaml") return args, cfg def main(): start_time = time.monotonic() # init distributed training args, cfg = parge_config() dist = init_dist(cfg) set_random_seed(cfg.TRAIN.seed, cfg.TRAIN.deterministic) synchronize() # init logging file logger = Logger(cfg.work_dir / 'log.txt', debug=False) sys.stdout = logger print("==========\nArgs:{}\n==========".format(args)) log_config_to_file(cfg) # build train loader train_loader, _ = build_train_dataloader(cfg, joint=False) # build model model = build_gan_model(cfg) for key in model.keys(): model[key].cuda() if dist: ddp_cfg = { "device_ids": [cfg.gpu], "output_device": cfg.gpu, "find_unused_parameters": True, } for key in model.keys(): model[key] = torch.nn.parallel.DistributedDataParallel(model[key], **ddp_cfg) elif cfg.total_gpus > 1: for key in model.keys(): model[key] = torch.nn.DataParallel(model[key]) # build optimizer optimizer = {} optimizer['G'] = build_optimizer([model['G_A'], model['G_B']], **cfg.TRAIN.OPTIM) optimizer['D'] = build_optimizer([model['D_A'], model['D_B']], **cfg.TRAIN.OPTIM) optimizer['Metric'] = build_optimizer([model['Metric']], **cfg.TRAIN.OPTIM) # build lr_scheduler if cfg.TRAIN.SCHEDULER.lr_scheduler is not None: lr_scheduler = [build_lr_scheduler(optimizer[key], **cfg.TRAIN.SCHEDULER) \ for key in optimizer.keys()] else: lr_scheduler = None # build loss functions criterions = build_loss(cfg.TRAIN.LOSS, cuda=True) # build runner runner = SPGANRunner( cfg, model, optimizer, criterions, train_loader, lr_scheduler=lr_scheduler, meter_formats={"Time": ":.3f"} ) # resume if args.resume_from: runner.resume(args.resume_from) # start training runner.run() # load the latest model # runner.resume(cfg.work_dir) # final inference test_loader, _ = build_val_dataloader( cfg, for_clustering=True, all_datasets=True ) # source to target infer_gan( cfg, model['G_A'], test_loader[0], dataset_name=list(cfg.TRAIN.datasets.keys())[0] ) # target to source infer_gan( cfg, model['G_B'], test_loader[1], dataset_name=list(cfg.TRAIN.datasets.keys())[1] ) # print time end_time = time.monotonic() print("Total running time: ", timedelta(seconds=end_time - start_time)) if __name__ == '__main__': main()
[ "openunreid.utils.dist_utils.init_dist", "openunreid.models.losses.build_loss", "openunreid.utils.logger.Logger", "datetime.timedelta", "argparse.ArgumentParser", "pathlib.Path", "openunreid.data.build_val_dataloader", "openunreid.utils.config.cfg.TRAIN.datasets.keys", "torch.cuda.amp.autocast", "openunreid.core.solvers.build_lr_scheduler", "torch.nn.parallel.DistributedDataParallel", "openunreid.models.build_gan_model", "openunreid.utils.config.cfg_from_yaml_file", "time.monotonic", "openunreid.apis.set_random_seed", "openunreid.utils.config.cfg_from_list", "openunreid.utils.config.log_config_to_file", "shutil.copy", "openunreid.utils.dist_utils.synchronize", "openunreid.data.build_train_dataloader", "openunreid.core.solvers.build_optimizer", "openunreid.utils.file_utils.mkdir_if_missing", "torch.nn.DataParallel" ]
[((5588, 5641), 'argparse.ArgumentParser', 'argparse.ArgumentParser', ([], {'description': '"""SPGAN training"""'}), "(description='SPGAN training')\n", (5611, 5641), False, 'import argparse\n'), ((6342, 6378), 'openunreid.utils.config.cfg_from_yaml_file', 'cfg_from_yaml_file', (['args.config', 'cfg'], {}), '(args.config, cfg)\n', (6360, 6378), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n'), ((6708, 6738), 'openunreid.utils.file_utils.mkdir_if_missing', 'mkdir_if_missing', (['cfg.work_dir'], {}), '(cfg.work_dir)\n', (6724, 6738), False, 'from openunreid.utils.file_utils import mkdir_if_missing\n'), ((6820, 6874), 'shutil.copy', 'shutil.copy', (['args.config', "(cfg.work_dir / 'config.yaml')"], {}), "(args.config, cfg.work_dir / 'config.yaml')\n", (6831, 6874), False, 'import shutil\n'), ((6928, 6944), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (6942, 6944), False, 'import time\n'), ((7020, 7034), 'openunreid.utils.dist_utils.init_dist', 'init_dist', (['cfg'], {}), '(cfg)\n', (7029, 7034), False, 'from openunreid.utils.dist_utils import init_dist, synchronize\n'), ((7039, 7095), 'openunreid.apis.set_random_seed', 'set_random_seed', (['cfg.TRAIN.seed', 'cfg.TRAIN.deterministic'], {}), '(cfg.TRAIN.seed, cfg.TRAIN.deterministic)\n', (7054, 7095), False, 'from openunreid.apis import GANBaseRunner, set_random_seed, infer_gan\n'), ((7100, 7113), 'openunreid.utils.dist_utils.synchronize', 'synchronize', ([], {}), '()\n', (7111, 7113), False, 'from openunreid.utils.dist_utils import init_dist, synchronize\n'), ((7152, 7197), 'openunreid.utils.logger.Logger', 'Logger', (["(cfg.work_dir / 'log.txt')"], {'debug': '(False)'}), "(cfg.work_dir / 'log.txt', debug=False)\n", (7158, 7197), False, 'from openunreid.utils.logger import Logger\n'), ((7284, 7307), 'openunreid.utils.config.log_config_to_file', 'log_config_to_file', (['cfg'], {}), '(cfg)\n', (7302, 7307), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n'), ((7356, 7396), 'openunreid.data.build_train_dataloader', 'build_train_dataloader', (['cfg'], {'joint': '(False)'}), '(cfg, joint=False)\n', (7378, 7396), False, 'from openunreid.data import build_test_dataloader, build_train_dataloader, build_val_dataloader\n'), ((7428, 7448), 'openunreid.models.build_gan_model', 'build_gan_model', (['cfg'], {}), '(cfg)\n', (7443, 7448), False, 'from openunreid.models import build_gan_model\n'), ((7974, 8038), 'openunreid.core.solvers.build_optimizer', 'build_optimizer', (["[model['G_A'], model['G_B']]"], {}), "([model['G_A'], model['G_B']], **cfg.TRAIN.OPTIM)\n", (7989, 8038), False, 'from openunreid.core.solvers import build_lr_scheduler, build_optimizer\n'), ((8060, 8124), 'openunreid.core.solvers.build_optimizer', 'build_optimizer', (["[model['D_A'], model['D_B']]"], {}), "([model['D_A'], model['D_B']], **cfg.TRAIN.OPTIM)\n", (8075, 8124), False, 'from openunreid.core.solvers import build_lr_scheduler, build_optimizer\n'), ((8151, 8204), 'openunreid.core.solvers.build_optimizer', 'build_optimizer', (["[model['Metric']]"], {}), "([model['Metric']], **cfg.TRAIN.OPTIM)\n", (8166, 8204), False, 'from openunreid.core.solvers import build_lr_scheduler, build_optimizer\n'), ((8504, 8541), 'openunreid.models.losses.build_loss', 'build_loss', (['cfg.TRAIN.LOSS'], {'cuda': '(True)'}), '(cfg.TRAIN.LOSS, cuda=True)\n', (8514, 8541), False, 'from openunreid.models.losses import build_loss\n'), ((8982, 9047), 'openunreid.data.build_val_dataloader', 'build_val_dataloader', (['cfg'], {'for_clustering': '(True)', 'all_datasets': '(True)'}), '(cfg, for_clustering=True, all_datasets=True)\n', (9002, 9047), False, 'from openunreid.data import build_test_dataloader, build_train_dataloader, build_val_dataloader\n'), ((9493, 9509), 'time.monotonic', 'time.monotonic', ([], {}), '()\n', (9507, 9509), False, 'import time\n'), ((6781, 6814), 'openunreid.utils.config.cfg_from_list', 'cfg_from_list', (['args.set_cfgs', 'cfg'], {}), '(args.set_cfgs, cfg)\n', (6794, 6814), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n'), ((9544, 9584), 'datetime.timedelta', 'timedelta', ([], {'seconds': '(end_time - start_time)'}), '(seconds=end_time - start_time)\n', (9553, 9584), False, 'from datetime import timedelta\n'), ((6632, 6649), 'pathlib.Path', 'Path', (['args.config'], {}), '(args.config)\n', (6636, 6649), False, 'from pathlib import Path\n'), ((7725, 7789), 'torch.nn.parallel.DistributedDataParallel', 'torch.nn.parallel.DistributedDataParallel', (['model[key]'], {}), '(model[key], **ddp_cfg)\n', (7766, 7789), False, 'import torch\n'), ((8308, 8365), 'openunreid.core.solvers.build_lr_scheduler', 'build_lr_scheduler', (['optimizer[key]'], {}), '(optimizer[key], **cfg.TRAIN.SCHEDULER)\n', (8326, 8365), False, 'from openunreid.core.solvers import build_lr_scheduler, build_optimizer\n'), ((3183, 3206), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (3191, 3206), False, 'from torch.cuda.amp import autocast\n'), ((3384, 3407), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (3392, 3407), False, 'from torch.cuda.amp import autocast\n'), ((4463, 4486), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (4471, 4486), False, 'from torch.cuda.amp import autocast\n'), ((5391, 5414), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (5399, 5414), False, 'from torch.cuda.amp import autocast\n'), ((6399, 6424), 'openunreid.utils.config.cfg.TRAIN.datasets.keys', 'cfg.TRAIN.datasets.keys', ([], {}), '()\n', (6422, 6424), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n'), ((7877, 7910), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model[key]'], {}), '(model[key])\n', (7898, 7910), False, 'import torch\n'), ((1849, 1872), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (1857, 1872), False, 'from torch.cuda.amp import autocast\n'), ((2214, 2237), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (2222, 2237), False, 'from torch.cuda.amp import autocast\n'), ((2546, 2569), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (2554, 2569), False, 'from torch.cuda.amp import autocast\n'), ((2781, 2804), 'torch.cuda.amp.autocast', 'autocast', ([], {'enabled': '(False)'}), '(enabled=False)\n', (2789, 2804), False, 'from torch.cuda.amp import autocast\n'), ((9265, 9290), 'openunreid.utils.config.cfg.TRAIN.datasets.keys', 'cfg.TRAIN.datasets.keys', ([], {}), '()\n', (9288, 9290), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n'), ((9424, 9449), 'openunreid.utils.config.cfg.TRAIN.datasets.keys', 'cfg.TRAIN.datasets.keys', ([], {}), '()\n', (9447, 9449), False, 'from openunreid.utils.config import cfg, cfg_from_list, cfg_from_yaml_file, log_config_to_file\n')]
import logging import requests import multiprocessing import pathlib from typing import List from typing import Optional from typing import Tuple from typing import Dict from joblib import delayed from joblib import Parallel from datetime import date from datetime import timedelta logger = logging.getLogger(__name__) logger.addHandler(logging.NullHandler()) def next_date(start_date=date(2018, 3, 1)): days_to_download = abs(start_date - date.today()).days - 5 for date_offset in range(days_to_download): yield start_date start_date = start_date + timedelta(days=1) def download_all(inputs: List[Tuple[pathlib.Path, str]], cookies: Optional[Dict]): session = requests.session() inputs[0][0].parent.mkdir(parents=True, exist_ok=True) def download_single_link(file_path: pathlib.Path, url): thread_nr = multiprocessing.current_process().name thread_nr = thread_nr[thread_nr.rfind('-') + 1:] file_name = file_path.stem if file_path.is_file(): logger.info('{} {} already exists'.format(thread_nr, file_name)) return try: response = session.get(url=url, cookies=cookies) except TimeoutError: logger.critical('{} Timeout Error'.format(thread_nr)) return content = response.content.decode('utf-8') if response.status_code != 200: logger.critical('{} {}'.format(thread_nr, url, response.status_code)) logger.critical('{}'.format(thread_nr, content)) return else: logger.info('{} {} {} OK'.format(thread_nr, file_name, response.status_code)) with open(str(file_path), mode='w', encoding='utf-8') as output_file: output_file.write(content) num_cores = multiprocessing.cpu_count() Parallel(n_jobs=num_cores)(delayed(download_single_link)(*j) for j in inputs)
[ "logging.getLogger", "logging.NullHandler", "requests.session", "datetime.date.today", "multiprocessing.cpu_count", "joblib.Parallel", "datetime.date", "joblib.delayed", "datetime.timedelta", "multiprocessing.current_process" ]
[((292, 319), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (309, 319), False, 'import logging\n'), ((338, 359), 'logging.NullHandler', 'logging.NullHandler', ([], {}), '()\n', (357, 359), False, 'import logging\n'), ((388, 404), 'datetime.date', 'date', (['(2018)', '(3)', '(1)'], {}), '(2018, 3, 1)\n', (392, 404), False, 'from datetime import date\n'), ((694, 712), 'requests.session', 'requests.session', ([], {}), '()\n', (710, 712), False, 'import requests\n'), ((1797, 1824), 'multiprocessing.cpu_count', 'multiprocessing.cpu_count', ([], {}), '()\n', (1822, 1824), False, 'import multiprocessing\n'), ((1829, 1855), 'joblib.Parallel', 'Parallel', ([], {'n_jobs': 'num_cores'}), '(n_jobs=num_cores)\n', (1837, 1855), False, 'from joblib import Parallel\n'), ((577, 594), 'datetime.timedelta', 'timedelta', ([], {'days': '(1)'}), '(days=1)\n', (586, 594), False, 'from datetime import timedelta\n'), ((854, 887), 'multiprocessing.current_process', 'multiprocessing.current_process', ([], {}), '()\n', (885, 887), False, 'import multiprocessing\n'), ((1856, 1885), 'joblib.delayed', 'delayed', (['download_single_link'], {}), '(download_single_link)\n', (1863, 1885), False, 'from joblib import delayed\n'), ((447, 459), 'datetime.date.today', 'date.today', ([], {}), '()\n', (457, 459), False, 'from datetime import date\n')]
import logging import os import shutil import time import torch model_state = 'model_state.pt' trainer_state = 'trainer_state.pt' class Checkpoint(): def __init__(self, step, epoch, model, optim, path=None, opt=None): self.step = step self.epoch = epoch self.model = model self.optim = optim self._path = path self.opt = opt self.logger = logging.getLogger(__name__) @property def path(self): if self._path is None: raise LookupError("The checkpoint has not been saved.") return self._path @classmethod def load(cls, model, optim=None, opt=None): logger = logging.getLogger(__name__) all_times = sorted(os.listdir(opt.ckpt_fd), reverse=True) fchckpt = os.path.join(opt.ckpt_fd, all_times[0]) logger.info("load checkpoint from %s" % fchckpt) resume_model = torch.load(os.path.join(fchckpt, model_state), map_location=opt.device) resume_checkpoint = torch.load(os.path.join(fchckpt, trainer_state), map_location=opt.device) model.load_state_dict(resume_model) if optim is not None: optim.load_state_dict(resume_checkpoint['optimizer']) return Checkpoint(step=resume_checkpoint['step'], epoch=resume_checkpoint['epoch'], model=model, optim=optim, path=opt.ckpt_fd) def save(self): date_time = time.strftime('%Y_%m_%d_%H_%M_%S', time.localtime()) path = os.path.join(self.opt.ckpt_fd, date_time) if os.path.exists(path): shutil.rmtree(path) os.makedirs(path) torch.save( {'epoch': self.epoch, 'step': self.step, 'optimizer': self.optim.state_dict()}, os.path.join(path, trainer_state)) torch.save( self.model.state_dict(), os.path.join(path, model_state)) log_msg = "Validation loss being smaller than previous " log_msg += "minimum, checkpoint is saved at %s" % path self.logger.info(log_msg) return path
[ "logging.getLogger", "os.path.exists", "os.listdir", "os.makedirs", "os.path.join", "shutil.rmtree", "time.localtime" ]
[((406, 433), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (423, 433), False, 'import logging\n'), ((677, 704), 'logging.getLogger', 'logging.getLogger', (['__name__'], {}), '(__name__)\n', (694, 704), False, 'import logging\n'), ((790, 829), 'os.path.join', 'os.path.join', (['opt.ckpt_fd', 'all_times[0]'], {}), '(opt.ckpt_fd, all_times[0])\n', (802, 829), False, 'import os\n'), ((1649, 1690), 'os.path.join', 'os.path.join', (['self.opt.ckpt_fd', 'date_time'], {}), '(self.opt.ckpt_fd, date_time)\n', (1661, 1690), False, 'import os\n'), ((1702, 1722), 'os.path.exists', 'os.path.exists', (['path'], {}), '(path)\n', (1716, 1722), False, 'import os\n'), ((1764, 1781), 'os.makedirs', 'os.makedirs', (['path'], {}), '(path)\n', (1775, 1781), False, 'import os\n'), ((733, 756), 'os.listdir', 'os.listdir', (['opt.ckpt_fd'], {}), '(opt.ckpt_fd)\n', (743, 756), False, 'import os\n'), ((922, 956), 'os.path.join', 'os.path.join', (['fchckpt', 'model_state'], {}), '(fchckpt, model_state)\n', (934, 956), False, 'import os\n'), ((1056, 1092), 'os.path.join', 'os.path.join', (['fchckpt', 'trainer_state'], {}), '(fchckpt, trainer_state)\n', (1068, 1092), False, 'import os\n'), ((1616, 1632), 'time.localtime', 'time.localtime', ([], {}), '()\n', (1630, 1632), False, 'import time\n'), ((1736, 1755), 'shutil.rmtree', 'shutil.rmtree', (['path'], {}), '(path)\n', (1749, 1755), False, 'import shutil\n'), ((1933, 1966), 'os.path.join', 'os.path.join', (['path', 'trainer_state'], {}), '(path, trainer_state)\n', (1945, 1966), False, 'import os\n'), ((2025, 2056), 'os.path.join', 'os.path.join', (['path', 'model_state'], {}), '(path, model_state)\n', (2037, 2056), False, 'import os\n')]
import numpy as np import torch import os import cv2 import importlib from dataset import * from PIL import Image from argparse import ArgumentParser from torch.autograd import Variable from torch.utils.data import DataLoader from torchvision.transforms import Compose, CenterCrop, Normalize, Resize from torchvision.transforms import ToTensor, ToPILImage from dataset import cityscapes from lednet import Net from transform import Relabel, ToLabel, Colorize import visdom NUM_CHANNELS = 3 NUM_CLASSES = 20 #* *******************测试单张图片**************************** image_transform = ToPILImage() input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) def main(args): modelpath = args.loadDir + args.loadModel weightspath = args.loadDir + args.loadWeights print("Loading model: " + modelpath) print("Loading weights: " + weightspath) model = Net(NUM_CLASSES) model = torch.nn.DataParallel(model) if (not args.cpu): model = model.cuda() # model.load_state_dict(torch.load(args.state)) # model.load_state_dict(torch.load(weightspath)) #not working if missing key def load_my_state_dict(model, state_dict): # custom function to load model when not all dict elements own_state = model.state_dict() for name, param in state_dict.items(): if name not in own_state: continue own_state[name].copy_(param) return model model = load_my_state_dict(model, torch.load(weightspath)) print("Model and weights LOADED successfully") model.eval() if (not os.path.exists(args.datadir)): print("Error: datadir could not be loaded") # loader = DataLoader( # cityscapes('/home/liqi/PycharmProjects/LEDNet/4.png', input_transform_cityscapes, target_transform_cityscapes, subset=args.subset), # num_workers=args.num_workers, batch_size=1 ,shuffle=False) input_transform_cityscapes = Compose([ Resize((512, 1024), Image.BILINEAR), ToTensor(), # Normalize([.485, .456, .406], [.229, .224, .225]), ]) name ="4.png" with open(image_path_city('/home/gongyiqun/images', name), 'rb') as f: images = load_image(f).convert('RGB') images = input_transform_cityscapes(images) # For visualizer: # must launch in other window "python3.6 -m visdom.server -port 8097" # and access localhost:8097 to see it if (args.visualize): vis = visdom.Visdom() if (not args.cpu): images = images.cuda() # labels = labels.cuda() a=torch.unsqueeze(images,0) inputs = Variable(a) # targets = Variable(labels) with torch.no_grad(): outputs = model(inputs) label = outputs[0].max(0)[1].byte().cpu().data # label_cityscapes = cityscapes_trainIds2labelIds(label.unsqueeze(0)) label_color = Colorize()(label.unsqueeze(0)) filenameSave = "./save_color/"+"Others/"+name os.makedirs(os.path.dirname(filenameSave), exist_ok=True) # image_transform(label.byte()).save(filenameSave) label_save = ToPILImage()(label_color) label_save = label_save.resize((1241, 376), Image.BILINEAR) # label_save = cv2.resize(label_save, (376, 1224),interpolation=cv2.INTER_AREA) label_save.save(filenameSave) if (args.visualize): vis.image(label_color.numpy()) # print(step, filenameSave) # for step, (images, labels, filename, filenameGt) in enumerate(loader): if __name__ == '__main__': parser = ArgumentParser() parser.add_argument('--state') parser.add_argument('--loadDir', default="../save/logs(KITTI)/") parser.add_argument('--loadWeights', default="model_best.pth") parser.add_argument('--loadModel', default="lednet.py") parser.add_argument('--subset', default="val") # can be val, test, train, demoSequence parser.add_argument('--datadir', default="") parser.add_argument('--num-workers', type=int, default=4) parser.add_argument('--batch-size', type=int, default=1) parser.add_argument('--cpu', action='store_true') parser.add_argument('--visualize', action='store_true') main(parser.parse_args())
[ "os.path.exists", "transform.Colorize", "lednet.Net", "torchvision.transforms.ToPILImage", "argparse.ArgumentParser", "torch.unsqueeze", "torch.load", "torch.nn.DataParallel", "os.path.dirname", "torchvision.transforms.Resize", "torch.no_grad", "torchvision.transforms.ToTensor", "torch.autograd.Variable", "visdom.Visdom" ]
[((590, 602), 'torchvision.transforms.ToPILImage', 'ToPILImage', ([], {}), '()\n', (600, 602), False, 'from torchvision.transforms import ToTensor, ToPILImage\n'), ((974, 990), 'lednet.Net', 'Net', (['NUM_CLASSES'], {}), '(NUM_CLASSES)\n', (977, 990), False, 'from lednet import Net\n'), ((1004, 1032), 'torch.nn.DataParallel', 'torch.nn.DataParallel', (['model'], {}), '(model)\n', (1025, 1032), False, 'import torch\n'), ((2661, 2687), 'torch.unsqueeze', 'torch.unsqueeze', (['images', '(0)'], {}), '(images, 0)\n', (2676, 2687), False, 'import torch\n'), ((2700, 2711), 'torch.autograd.Variable', 'Variable', (['a'], {}), '(a)\n', (2708, 2711), False, 'from torch.autograd import Variable\n'), ((3590, 3606), 'argparse.ArgumentParser', 'ArgumentParser', ([], {}), '()\n', (3604, 3606), False, 'from argparse import ArgumentParser\n'), ((646, 681), 'torchvision.transforms.Resize', 'Resize', (['(512, 1024)', 'Image.BILINEAR'], {}), '((512, 1024), Image.BILINEAR)\n', (652, 681), False, 'from torchvision.transforms import Compose, CenterCrop, Normalize, Resize\n'), ((687, 697), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (695, 697), False, 'from torchvision.transforms import ToTensor, ToPILImage\n'), ((1577, 1600), 'torch.load', 'torch.load', (['weightspath'], {}), '(weightspath)\n', (1587, 1600), False, 'import torch\n'), ((1684, 1712), 'os.path.exists', 'os.path.exists', (['args.datadir'], {}), '(args.datadir)\n', (1698, 1712), False, 'import os\n'), ((2551, 2566), 'visdom.Visdom', 'visdom.Visdom', ([], {}), '()\n', (2564, 2566), False, 'import visdom\n'), ((2754, 2769), 'torch.no_grad', 'torch.no_grad', ([], {}), '()\n', (2767, 2769), False, 'import torch\n'), ((2947, 2957), 'transform.Colorize', 'Colorize', ([], {}), '()\n', (2955, 2957), False, 'from transform import Relabel, ToLabel, Colorize\n'), ((3046, 3075), 'os.path.dirname', 'os.path.dirname', (['filenameSave'], {}), '(filenameSave)\n', (3061, 3075), False, 'import os\n'), ((3165, 3177), 'torchvision.transforms.ToPILImage', 'ToPILImage', ([], {}), '()\n', (3175, 3177), False, 'from torchvision.transforms import ToTensor, ToPILImage\n'), ((2057, 2092), 'torchvision.transforms.Resize', 'Resize', (['(512, 1024)', 'Image.BILINEAR'], {}), '((512, 1024), Image.BILINEAR)\n', (2063, 2092), False, 'from torchvision.transforms import Compose, CenterCrop, Normalize, Resize\n'), ((2102, 2112), 'torchvision.transforms.ToTensor', 'ToTensor', ([], {}), '()\n', (2110, 2112), False, 'from torchvision.transforms import ToTensor, ToPILImage\n')]
import pytest from pytest import raises from pydantic_jsonapi.resource_linkage import ResourceLinkage from pydantic import BaseModel, ValidationError class ThingWithLinkageData(BaseModel): data: ResourceLinkage class TestResourceLinks: @pytest.mark.parametrize( 'linkage, message', [ ( None, 'null is valid for empty to-one relationships', ), ( [], 'empty list valid for empty to-many relationships.', ), ( {'id': 'abc123', 'type': 'item', 'meta': None}, 'single resource identifier valid for non-empty to-one relationships.', ), ( [ {'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456', 'type': 'item', 'meta': None}, ], 'array of resource identifiers valid for non-empty to-many relationships.', ), ], ) def test_valid_possibilities(self, linkage, message): structure_to_validate = { 'data': linkage } validated = ThingWithLinkageData(**structure_to_validate) assert validated.dict() == structure_to_validate, message def test_invalid_resource_identifier(self): structure_to_validate = { 'data': {} } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data', 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data',), 'msg': 'value is not a valid list', 'type': 'type_error.list'}, ] def test_invalid_resource_identifier_array(self): structure_to_validate = { 'data': [ {} ], } with raises(ValidationError) as e: ThingWithLinkageData(**structure_to_validate) assert e.value.errors() == [ {'loc': ('data',), 'msg': 'value is not a valid dict', 'type': 'type_error.dict'}, {'loc': ('data', 0, 'id'), 'msg': 'field required', 'type': 'value_error.missing'}, {'loc': ('data', 0, 'type'), 'msg': 'field required', 'type': 'value_error.missing'}, ]
[ "pytest.mark.parametrize", "pytest.raises" ]
[((251, 742), 'pytest.mark.parametrize', 'pytest.mark.parametrize', (['"""linkage, message"""', "[(None, 'null is valid for empty to-one relationships'), ([],\n 'empty list valid for empty to-many relationships.'), ({'id': 'abc123',\n 'type': 'item', 'meta': None},\n 'single resource identifier valid for non-empty to-one relationships.'),\n ([{'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456',\n 'type': 'item', 'meta': None}],\n 'array of resource identifiers valid for non-empty to-many relationships.')\n ]"], {}), "('linkage, message', [(None,\n 'null is valid for empty to-one relationships'), ([],\n 'empty list valid for empty to-many relationships.'), ({'id': 'abc123',\n 'type': 'item', 'meta': None},\n 'single resource identifier valid for non-empty to-one relationships.'),\n ([{'id': 'abc123', 'type': 'item', 'meta': None}, {'id': 'def456',\n 'type': 'item', 'meta': None}],\n 'array of resource identifiers valid for non-empty to-many relationships.'\n )])\n", (274, 742), False, 'import pytest\n'), ((1430, 1453), 'pytest.raises', 'raises', (['ValidationError'], {}), '(ValidationError)\n', (1436, 1453), False, 'from pytest import raises\n'), ((2016, 2039), 'pytest.raises', 'raises', (['ValidationError'], {}), '(ValidationError)\n', (2022, 2039), False, 'from pytest import raises\n')]
import numpy as np from keras.datasets import mnist from keras.models import Sequential from keras.layers.core import Dense, Dropout, Activation from keras.optimizers import SGD from keras.utils import np_utils import keras.callbacks import keras.backend.tensorflow_backend as KTF import tensorflow as tf batch_size = 128 nb_classes = 10 nb_epoch = 20 nb_data = 28*28 log_filepath = '/tmp/keras_log' # load data (X_train, y_train), (X_test, y_test) = mnist.load_data() # reshape X_train = X_train.reshape(X_train.shape[0], X_train.shape[1]*X_train.shape[2]) X_test = X_test.reshape(X_test.shape[0], X_test.shape[1]*X_test.shape[2]) # rescale X_train = X_train.astype(np.float32) X_train /= 255 X_test = X_test.astype(np.float32) X_test /= 255 # convert class vectors to binary class matrices (one hot vectors) Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) old_session = KTF.get_session() with tf.Graph().as_default(): session = tf.Session('') KTF.set_session(session) KTF.set_learning_phase(1) # build model model = Sequential() model.add(Dense(512, input_shape=(nb_data,), init='normal',name='dense1')) model.add(Activation('relu', name='relu1')) model.add(Dropout(0.2, name='dropout1')) model.add(Dense(512, init='normal', name='dense2')) model.add(Activation('relu', name='relu2')) model.add(Dropout(0.2, name='dropout2')) model.add(Dense(10, init='normal', name='dense3')) model.add(Activation('softmax', name='softmax1')) model.summary() model.compile(loss='categorical_crossentropy', optimizer=SGD(lr=0.001), metrics=['accuracy']) tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, histogram_freq=1) cbks = [tb_cb] history = model.fit(X_train, Y_train, batch_size=batch_size, nb_epoch = nb_epoch, verbose=1, callbacks=cbks) score = model.evaluate(X_test, Y_test, verbose=0) print('Test score:', score[0]) print('Test accuracy;', score[1]) KTF.set_session(old_session)
[ "keras.backend.tensorflow_backend.get_session", "tensorflow.Graph", "keras.backend.tensorflow_backend.set_session", "keras.layers.core.Activation", "keras.datasets.mnist.load_data", "tensorflow.Session", "keras.models.Sequential", "keras.layers.core.Dense", "keras.utils.np_utils.to_categorical", "keras.optimizers.SGD", "keras.layers.core.Dropout", "keras.backend.tensorflow_backend.set_learning_phase" ]
[((458, 475), 'keras.datasets.mnist.load_data', 'mnist.load_data', ([], {}), '()\n', (473, 475), False, 'from keras.datasets import mnist\n'), ((831, 875), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_train', 'nb_classes'], {}), '(y_train, nb_classes)\n', (854, 875), False, 'from keras.utils import np_utils\n'), ((885, 928), 'keras.utils.np_utils.to_categorical', 'np_utils.to_categorical', (['y_test', 'nb_classes'], {}), '(y_test, nb_classes)\n', (908, 928), False, 'from keras.utils import np_utils\n'), ((944, 961), 'keras.backend.tensorflow_backend.get_session', 'KTF.get_session', ([], {}), '()\n', (959, 961), True, 'import keras.backend.tensorflow_backend as KTF\n'), ((2017, 2045), 'keras.backend.tensorflow_backend.set_session', 'KTF.set_session', (['old_session'], {}), '(old_session)\n', (2032, 2045), True, 'import keras.backend.tensorflow_backend as KTF\n'), ((1007, 1021), 'tensorflow.Session', 'tf.Session', (['""""""'], {}), "('')\n", (1017, 1021), True, 'import tensorflow as tf\n'), ((1026, 1050), 'keras.backend.tensorflow_backend.set_session', 'KTF.set_session', (['session'], {}), '(session)\n', (1041, 1050), True, 'import keras.backend.tensorflow_backend as KTF\n'), ((1055, 1080), 'keras.backend.tensorflow_backend.set_learning_phase', 'KTF.set_learning_phase', (['(1)'], {}), '(1)\n', (1077, 1080), True, 'import keras.backend.tensorflow_backend as KTF\n'), ((1111, 1123), 'keras.models.Sequential', 'Sequential', ([], {}), '()\n', (1121, 1123), False, 'from keras.models import Sequential\n'), ((1138, 1202), 'keras.layers.core.Dense', 'Dense', (['(512)'], {'input_shape': '(nb_data,)', 'init': '"""normal"""', 'name': '"""dense1"""'}), "(512, input_shape=(nb_data,), init='normal', name='dense1')\n", (1143, 1202), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1217, 1249), 'keras.layers.core.Activation', 'Activation', (['"""relu"""'], {'name': '"""relu1"""'}), "('relu', name='relu1')\n", (1227, 1249), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1265, 1294), 'keras.layers.core.Dropout', 'Dropout', (['(0.2)'], {'name': '"""dropout1"""'}), "(0.2, name='dropout1')\n", (1272, 1294), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1310, 1350), 'keras.layers.core.Dense', 'Dense', (['(512)'], {'init': '"""normal"""', 'name': '"""dense2"""'}), "(512, init='normal', name='dense2')\n", (1315, 1350), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1366, 1398), 'keras.layers.core.Activation', 'Activation', (['"""relu"""'], {'name': '"""relu2"""'}), "('relu', name='relu2')\n", (1376, 1398), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1414, 1443), 'keras.layers.core.Dropout', 'Dropout', (['(0.2)'], {'name': '"""dropout2"""'}), "(0.2, name='dropout2')\n", (1421, 1443), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1459, 1498), 'keras.layers.core.Dense', 'Dense', (['(10)'], {'init': '"""normal"""', 'name': '"""dense3"""'}), "(10, init='normal', name='dense3')\n", (1464, 1498), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((1514, 1552), 'keras.layers.core.Activation', 'Activation', (['"""softmax"""'], {'name': '"""softmax1"""'}), "('softmax', name='softmax1')\n", (1524, 1552), False, 'from keras.layers.core import Dense, Dropout, Activation\n'), ((968, 978), 'tensorflow.Graph', 'tf.Graph', ([], {}), '()\n', (976, 978), True, 'import tensorflow as tf\n'), ((1636, 1649), 'keras.optimizers.SGD', 'SGD', ([], {'lr': '(0.001)'}), '(lr=0.001)\n', (1639, 1649), False, 'from keras.optimizers import SGD\n')]
""" usage requires these additional modules pip install azure-batch azure-storage-blob jsonschema pyyaml && pip install git+https://github.com/microsoft/SparseSC.git@ad4bf27edb28f517508f6934f21eb65d17fb6543 && scgrad start usage: from SparseSC import fit, aggregate_batch_results from SparseSC.utils.azure_batch_client import BatchConfig, run _TIMESTAMP = datetime.utcnow().strftime("%Y%m%d%H%M%S") BATCH_DIR= "path/to/my/batch_config/" fit(x=x,..., batchDir=BATCH_DIR) my_config = BatchConfig( BATCH_ACCOUNT_NAME="MySecret", BATCH_ACCOUNT_KEY="MySecret", BATCH_ACCOUNT_URL="MySecret", STORAGE_ACCOUNT_NAME="MySecret", STORAGE_ACCOUNT_KEY="MySecret", POOL_ID="my-compute-pool", POOL_NODE_COUNT=0, POOL_LOW_PRIORITY_NODE_COUNT=20, POOL_VM_SIZE="STANDARD_A1_v2", DELETE_POOL_WHEN_DONE=False, JOB_ID="my-job" + _TIMESTAMP, DELETE_JOB_WHEN_DONE=False, CONTAINER_NAME="my-blob-container", BATCH_DIRECTORY=BATCH_DIR, ) run(my_config) fitted_model = aggregate_batch_results("path/to/my/batch_config") """ # pylint: disable=differing-type-doc, differing-param-doc, missing-param-doc, missing-raises-doc, missing-return-doc from __future__ import print_function import datetime import io import os import sys import time import pathlib import importlib from collections import defaultdict import azure.storage.blob as azureblob from azure.storage.blob.models import ContainerPermissions import azure.batch.batch_service_client as batch import azure.batch.batch_auth as batch_auth import azure.batch.models as models from SparseSC.cli.stt import get_config from ..print_progress import print_progress from .BatchConfig import BatchConfig, validate_config from yaml import load try: from yaml import CLoader as Loader except ImportError: from yaml import Loader from .constants import ( _STANDARD_OUT_FILE_NAME, _CONTAINER_OUTPUT_FILE, _CONTAINER_INPUT_FILE, _BATCH_CV_FILE_NAME, ) FOLD_FILE_PATTERN = "fold_{}.yaml" # pylint: disable=bad-continuation, invalid-name, protected-access, line-too-long, fixme sys.path.append(".") sys.path.append("..") # Update the Batch and Storage account credential strings in config.py with values # unique to your accounts. These are used when constructing connection strings # for the Batch and Storage client objects. def build_output_sas_url(config, _blob_client): """ build a sas token for the output container """ sas_token = _blob_client.generate_container_shared_access_signature( config.CONTAINER_NAME, ContainerPermissions.READ + ContainerPermissions.WRITE + ContainerPermissions.DELETE + ContainerPermissions.LIST, datetime.datetime.utcnow() + datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS), start=datetime.datetime.utcnow(), ) _sas_url = "https://{}.blob.core.windows.net/{}?{}".format( config.STORAGE_ACCOUNT_NAME, config.CONTAINER_NAME, sas_token ) return _sas_url def print_batch_exception(batch_exception): """ Prints the contents of the specified Batch exception. :param batch_exception: """ print("-------------------------------------------") print("Exception encountered:") if ( batch_exception.error and batch_exception.error.message and batch_exception.error.message.value ): print(batch_exception.error.message.value) if batch_exception.error.values: print() for mesg in batch_exception.error.values: print("{}:\t{}".format(mesg.key, mesg.value)) print("-------------------------------------------") def build_output_file(container_sas_url, fold_number): """ Uploads a local file to an Azure Blob storage container. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ # where to store the outputs container_dest = models.OutputFileBlobContainerDestination( container_url=container_sas_url, path=FOLD_FILE_PATTERN.format(fold_number) ) dest = models.OutputFileDestination(container=container_dest) # under what conditions should you attempt to extract the outputs? upload_options = models.OutputFileUploadOptions( upload_condition=models.OutputFileUploadCondition.task_success ) # https://docs.microsoft.com/en-us/azure/batch/batch-task-output-files#specify-output-files-for-task-output return models.OutputFile( file_pattern=_CONTAINER_OUTPUT_FILE, destination=dest, upload_options=upload_options, ) def upload_file_to_container(block_blob_client, container_name, file_path, duration_hours=24): """ Uploads a local file to an Azure Blob storage container. :param block_blob_client: A blob service client. :type block_blob_client: `azure.storage.blob.BlockBlobService` :param str container_name: The name of the Azure Blob storage container. :param str file_path: The local path to the file. :rtype: `azure.batch.models.ResourceFile` :return: A ResourceFile initialized with a SAS URL appropriate for Batch tasks. """ blob_name = os.path.basename(file_path) print("Uploading file {} to container [{}]...".format(file_path, container_name)) block_blob_client.create_blob_from_path(container_name, blob_name, file_path) sas_token = block_blob_client.generate_blob_shared_access_signature( container_name, blob_name, permission=azureblob.BlobPermissions.READ, expiry=datetime.datetime.utcnow() + datetime.timedelta(hours=duration_hours), ) sas_url = block_blob_client.make_blob_url( container_name, blob_name, sas_token=sas_token ) return models.ResourceFile(http_url=sas_url, file_path=_CONTAINER_INPUT_FILE) def create_pool(config, batch_service_client): """ Creates a pool of compute nodes with the specified OS settings. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str pool_id: An ID for the new pool. :param str publisher: Marketplace image publisher :param str offer: Marketplace image offer :param str sku: Marketplace image sku """ # Create a new pool of Linux compute nodes using an Azure Virtual Machines # Marketplace image. For more information about creating pools of Linux # nodes, see: # https://azure.microsoft.com/documentation/articles/batch-linux-nodes/ image_ref_to_use = models.ImageReference( publisher="microsoft-azure-batch", offer="ubuntu-server-container", sku="16-04-lts", version="latest", ) if config.REGISTRY_USERNAME: registry = batch.models.ContainerRegistry( user_name=config.REGISTRY_USERNAME, password=config.REGISTRY_PASSWORD, registry_server=config.REGISTRY_SERVER, ) container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER], container_registries=[registry], ) else: container_conf = batch.models.ContainerConfiguration( container_image_names=[config.DOCKER_CONTAINER] ) new_pool = batch.models.PoolAddParameter( id=config.POOL_ID, virtual_machine_configuration=batch.models.VirtualMachineConfiguration( image_reference=image_ref_to_use, container_configuration=container_conf, node_agent_sku_id="batch.node.ubuntu 16.04", ), vm_size=config.POOL_VM_SIZE, target_dedicated_nodes=config.POOL_NODE_COUNT, target_low_priority_nodes=config.POOL_LOW_PRIORITY_NODE_COUNT, ) batch_service_client.pool.add(new_pool) def create_job(batch_service_client, job_id, pool_id): """ Creates a job with the specified ID, associated with the specified pool. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID for the job. :param str pool_id: The ID for the pool. """ print("Creating job [{}]...".format(job_id)) job_description = batch.models.JobAddParameter( id=job_id, pool_info=batch.models.PoolInformation(pool_id=pool_id) ) batch_service_client.job.add(job_description) def add_tasks( config, _blob_client, batch_service_client, container_sas_url, job_id, _input_file, count, ): """ Adds a task for each input file in the collection to the specified job. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The ID of the job to which to add the tasks. :param list input_files: The input files :param output_container_sas_token: A SAS token granting write access to the specified Azure Blob storage container. """ print("Adding {} tasks to job [{}]...".format(count, job_id)) tasks = list() for fold_number in range(count): output_file = build_output_file(container_sas_url, fold_number) # command_line = '/bin/bash -c \'echo "Hello World" && echo "hello: world" > output.yaml\'' command_line = "/bin/bash -c 'stt {} {} {}'".format( _CONTAINER_INPUT_FILE, _CONTAINER_OUTPUT_FILE, fold_number ) task_container_settings = models.TaskContainerSettings( image_name=config.DOCKER_CONTAINER ) tasks.append( batch.models.TaskAddParameter( id="Task_{}".format(fold_number), command_line=command_line, resource_files=[_input_file], output_files=[output_file], container_settings=task_container_settings, ) ) batch_service_client.task.add_collection(job_id, tasks) def wait_for_tasks_to_complete(batch_service_client, job_id, timeout): """ Returns when all tasks in the specified job reach the Completed state. :param batch_service_client: A Batch service client. :type batch_service_client: `azure.batch.BatchServiceClient` :param str job_id: The id of the job whose tasks should be to monitored. :param timedelta timeout: The duration to wait for task completion. If all tasks in the specified job do not reach Completed state within this time period, an exception will be raised. """ _start_time = datetime.datetime.now() timeout_expiration = _start_time + timeout # print( "Monitoring all tasks for 'Completed' state, timeout in {}...".format(timeout), end="",) while datetime.datetime.now() < timeout_expiration: sys.stdout.flush() tasks = [t for t in batch_service_client.task.list(job_id)] incomplete_tasks = [ task for task in tasks if task.state != models.TaskState.completed ] hours, remainder = divmod((datetime.datetime.now() - _start_time).seconds, 3600) minutes, seconds = divmod(remainder, 60) print_progress( len(tasks) - len(incomplete_tasks), len(tasks), prefix="Time elapsed {:02}:{:02}:{:02}".format( int(hours), int(minutes), int(seconds) ), decimals=1, bar_length=min(len(tasks), 50), ) error_codes = [t.execution_info.exit_code for t in tasks if t.execution_info and t.execution_info.exit_code ] if error_codes: codes = defaultdict(lambda : 0) for cd in error_codes: codes[cd] +=1 # import pdb; pdb.set_trace() raise RuntimeError( "\nSome tasks have exited with a non-zero exit code including: " + ", ".join([ "{}({})".format(k,v) for k, v in codes.items() ] )) if not incomplete_tasks: print() return True time.sleep(1) print() raise RuntimeError( "ERROR: Tasks did not reach 'Completed' state within " "timeout period of " + str(timeout) ) def print_task_output(batch_service_client, job_id, encoding=None): """Prints the stdout.txt file for each task in the job. :param batch_client: The batch client to use. :type batch_client: `batchserviceclient.BatchServiceClient` :param str job_id: The id of the job with task output files to print. """ print("Printing task output...") tasks = batch_service_client.task.list(job_id) for task in tasks: node_id = batch_service_client.task.get(job_id, task.id).node_info.node_id print("Task: {}".format(task.id)) print("Node: {}".format(node_id)) stream = batch_service_client.file.get_from_task( job_id, task.id, _STANDARD_OUT_FILE_NAME ) file_text = _read_stream_as_string(stream, encoding) print("Standard output:") print(file_text) def _read_stream_as_string(stream, encoding): """Read stream as string :param stream: input stream generator :param str encoding: The encoding of the file. The default is utf-8. :return: The file content. :rtype: str """ output = io.BytesIO() try: for data in stream: output.write(data) if encoding is None: encoding = "utf-8" return output.getvalue().decode(encoding) finally: output.close() raise RuntimeError("could not write data to stream or decode bytes") def _download_files(config, _blob_client, out_path, count): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] for i in range(count): blob_name = FOLD_FILE_PATTERN.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) _blob_client.get_blob_to_path(config.CONTAINER_NAME, blob_name, out_path) def _download_results(config, _blob_client, out_path, count, ptrn=FOLD_FILE_PATTERN): pathlib.Path(config.BATCH_DIRECTORY).mkdir(parents=True, exist_ok=True) blob_names = [b.name for b in _blob_client.list_blobs(config.CONTAINER_NAME)] results = [] for i in range(count): blob_name = ptrn.format(i) if not blob_name in blob_names: raise RuntimeError("incomplete blob set: missing blob {}".format(blob_name)) out_path = os.path.join(config.BATCH_DIRECTORY, blob_name) with _blob_client.get_blob_to_stream( config.CONTAINER_NAME, blob_name, out_path ) as blob: results[i] = load(blob, Loader=Loader) return results def run(config: BatchConfig, wait=True) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :param boolean wait: If true, wait for the batch to complete and then download the results to file :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print( 'Synthetic Controls Run "{}" start time: {}'.format(config.JOB_ID, start_time) ) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Use the blob client to create the containers in Azure Storage if they # don't yet exist. blob_client.create_container(config.CONTAINER_NAME, fail_on_exist=False) CONTAINER_SAS_URL = build_output_sas_url(config, blob_client) # The collection of data files that are to be processed by the tasks. input_file_path = os.path.join(sys.path[0], _LOCAL_INPUT_FILE) # Upload the data files. input_file = upload_file_to_container( blob_client, config.CONTAINER_NAME, input_file_path, config.STORAGE_ACCESS_DURATION_HRS ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Create the pool that will contain the compute nodes that will execute the # tasks. try: create_pool(config, batch_client) print("Created pool: ", config.POOL_ID) except models.BatchErrorException: print("Using pool: ", config.POOL_ID) # Create the job that will run the tasks. create_job(batch_client, config.JOB_ID, config.POOL_ID) # Add the tasks to the job. add_tasks( config, blob_client, batch_client, CONTAINER_SAS_URL, config.JOB_ID, input_file, n_folds, ) if not wait: return # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) def load_results(config: BatchConfig) -> None: r""" :param config: A :class:`BatchConfig` instance with the Azure Batch run parameters :type config: :class:BatchConfig :raises BatchErrorException: If raised by the Azure Batch Python SDK """ # pylint: disable=too-many-locals # replace any missing values in the configuration with environment variables config = validate_config(config) start_time = datetime.datetime.now().replace(microsecond=0) print('Load result for job "{}" start time: {}'.format(config.JOB_ID, start_time)) print() _LOCAL_INPUT_FILE = os.path.join(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME) v_pen, w_pen, model_data = get_config(_LOCAL_INPUT_FILE) n_folds = len(model_data["folds"]) * len(v_pen) * len(w_pen) # Create the blob client, for use in obtaining references to # blob storage containers and uploading files to containers. blob_client = azureblob.BlockBlobService( account_name=config.STORAGE_ACCOUNT_NAME, account_key=config.STORAGE_ACCOUNT_KEY ) # Create a Batch service client. We'll now be interacting with the Batch # service in addition to Storage credentials = batch_auth.SharedKeyCredentials( config.BATCH_ACCOUNT_NAME, config.BATCH_ACCOUNT_KEY ) batch_client = batch.BatchServiceClient( credentials, batch_url=config.BATCH_ACCOUNT_URL ) try: # Pause execution until tasks reach Completed state. wait_for_tasks_to_complete( batch_client, config.JOB_ID, datetime.timedelta(hours=config.STORAGE_ACCESS_DURATION_HRS) ) _download_files(config, blob_client, config.BATCH_DIRECTORY, n_folds) except models.BatchErrorException as err: print_batch_exception(err) raise err # Clean up storage resources # TODO: re-enable this and delete the output container too # -- print("Deleting container [{}]...".format(input_container_name)) # -- blob_client.delete_container(input_container_name) # Print out some timing info end_time = datetime.datetime.now().replace(microsecond=0) print() print("Sample end: {}".format(end_time)) print("Elapsed time: {}".format(end_time - start_time)) print() # Clean up Batch resources (if the user so chooses). if config.DELETE_POOL_WHEN_DONE: batch_client.pool.delete(config.POOL_ID) if config.DELETE_JOB_WHEN_DONE: batch_client.job.delete(config.JOB_ID) if __name__ == "__main__": # TODO: this is not an ideal API config_module = importlib.__import__("config") run(config_module.config)
[ "importlib.__import__", "azure.batch.models.ImageReference", "io.BytesIO", "azure.batch.models.OutputFileDestination", "time.sleep", "yaml.load", "datetime.timedelta", "sys.path.append", "azure.batch.models.OutputFileUploadOptions", "pathlib.Path", "azure.batch.batch_service_client.models.ContainerRegistry", "sys.stdout.flush", "azure.batch.models.OutputFile", "SparseSC.cli.stt.get_config", "azure.batch.batch_service_client.models.ContainerConfiguration", "azure.batch.batch_service_client.models.PoolInformation", "azure.storage.blob.BlockBlobService", "azure.batch.batch_service_client.models.VirtualMachineConfiguration", "azure.batch.models.ResourceFile", "datetime.datetime.utcnow", "os.path.join", "datetime.datetime.now", "azure.batch.batch_auth.SharedKeyCredentials", "collections.defaultdict", "os.path.basename", "azure.batch.batch_service_client.BatchServiceClient", "azure.batch.models.TaskContainerSettings" ]
[((2092, 2112), 'sys.path.append', 'sys.path.append', (['"""."""'], {}), "('.')\n", (2107, 2112), False, 'import sys\n'), ((2113, 2134), 'sys.path.append', 'sys.path.append', (['""".."""'], {}), "('..')\n", (2128, 2134), False, 'import sys\n'), ((4142, 4196), 'azure.batch.models.OutputFileDestination', 'models.OutputFileDestination', ([], {'container': 'container_dest'}), '(container=container_dest)\n', (4170, 4196), True, 'import azure.batch.models as models\n'), ((4290, 4389), 'azure.batch.models.OutputFileUploadOptions', 'models.OutputFileUploadOptions', ([], {'upload_condition': 'models.OutputFileUploadCondition.task_success'}), '(upload_condition=models.\n OutputFileUploadCondition.task_success)\n', (4320, 4389), True, 'import azure.batch.models as models\n'), ((4523, 4630), 'azure.batch.models.OutputFile', 'models.OutputFile', ([], {'file_pattern': '_CONTAINER_OUTPUT_FILE', 'destination': 'dest', 'upload_options': 'upload_options'}), '(file_pattern=_CONTAINER_OUTPUT_FILE, destination=dest,\n upload_options=upload_options)\n', (4540, 4630), True, 'import azure.batch.models as models\n'), ((5234, 5261), 'os.path.basename', 'os.path.basename', (['file_path'], {}), '(file_path)\n', (5250, 5261), False, 'import os\n'), ((5813, 5883), 'azure.batch.models.ResourceFile', 'models.ResourceFile', ([], {'http_url': 'sas_url', 'file_path': '_CONTAINER_INPUT_FILE'}), '(http_url=sas_url, file_path=_CONTAINER_INPUT_FILE)\n', (5832, 5883), True, 'import azure.batch.models as models\n'), ((6602, 6731), 'azure.batch.models.ImageReference', 'models.ImageReference', ([], {'publisher': '"""microsoft-azure-batch"""', 'offer': '"""ubuntu-server-container"""', 'sku': '"""16-04-lts"""', 'version': '"""latest"""'}), "(publisher='microsoft-azure-batch', offer=\n 'ubuntu-server-container', sku='16-04-lts', version='latest')\n", (6623, 6731), True, 'import azure.batch.models as models\n'), ((10582, 10605), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10603, 10605), False, 'import datetime\n'), ((13290, 13302), 'io.BytesIO', 'io.BytesIO', ([], {}), '()\n', (13300, 13302), False, 'import io\n'), ((15624, 15681), 'os.path.join', 'os.path.join', (['config.BATCH_DIRECTORY', '_BATCH_CV_FILE_NAME'], {}), '(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME)\n', (15636, 15681), False, 'import os\n'), ((15714, 15743), 'SparseSC.cli.stt.get_config', 'get_config', (['_LOCAL_INPUT_FILE'], {}), '(_LOCAL_INPUT_FILE)\n', (15724, 15743), False, 'from SparseSC.cli.stt import get_config\n'), ((15959, 16071), 'azure.storage.blob.BlockBlobService', 'azureblob.BlockBlobService', ([], {'account_name': 'config.STORAGE_ACCOUNT_NAME', 'account_key': 'config.STORAGE_ACCOUNT_KEY'}), '(account_name=config.STORAGE_ACCOUNT_NAME,\n account_key=config.STORAGE_ACCOUNT_KEY)\n', (15985, 16071), True, 'import azure.storage.blob as azureblob\n'), ((16422, 16466), 'os.path.join', 'os.path.join', (['sys.path[0]', '_LOCAL_INPUT_FILE'], {}), '(sys.path[0], _LOCAL_INPUT_FILE)\n', (16434, 16466), False, 'import os\n'), ((16775, 16864), 'azure.batch.batch_auth.SharedKeyCredentials', 'batch_auth.SharedKeyCredentials', (['config.BATCH_ACCOUNT_NAME', 'config.BATCH_ACCOUNT_KEY'], {}), '(config.BATCH_ACCOUNT_NAME, config.\n BATCH_ACCOUNT_KEY)\n', (16806, 16864), True, 'import azure.batch.batch_auth as batch_auth\n'), ((16894, 16967), 'azure.batch.batch_service_client.BatchServiceClient', 'batch.BatchServiceClient', (['credentials'], {'batch_url': 'config.BATCH_ACCOUNT_URL'}), '(credentials, batch_url=config.BATCH_ACCOUNT_URL)\n', (16918, 16967), True, 'import azure.batch.batch_service_client as batch\n'), ((19382, 19439), 'os.path.join', 'os.path.join', (['config.BATCH_DIRECTORY', '_BATCH_CV_FILE_NAME'], {}), '(config.BATCH_DIRECTORY, _BATCH_CV_FILE_NAME)\n', (19394, 19439), False, 'import os\n'), ((19472, 19501), 'SparseSC.cli.stt.get_config', 'get_config', (['_LOCAL_INPUT_FILE'], {}), '(_LOCAL_INPUT_FILE)\n', (19482, 19501), False, 'from SparseSC.cli.stt import get_config\n'), ((19717, 19829), 'azure.storage.blob.BlockBlobService', 'azureblob.BlockBlobService', ([], {'account_name': 'config.STORAGE_ACCOUNT_NAME', 'account_key': 'config.STORAGE_ACCOUNT_KEY'}), '(account_name=config.STORAGE_ACCOUNT_NAME,\n account_key=config.STORAGE_ACCOUNT_KEY)\n', (19743, 19829), True, 'import azure.storage.blob as azureblob\n'), ((19973, 20062), 'azure.batch.batch_auth.SharedKeyCredentials', 'batch_auth.SharedKeyCredentials', (['config.BATCH_ACCOUNT_NAME', 'config.BATCH_ACCOUNT_KEY'], {}), '(config.BATCH_ACCOUNT_NAME, config.\n BATCH_ACCOUNT_KEY)\n', (20004, 20062), True, 'import azure.batch.batch_auth as batch_auth\n'), ((20092, 20165), 'azure.batch.batch_service_client.BatchServiceClient', 'batch.BatchServiceClient', (['credentials'], {'batch_url': 'config.BATCH_ACCOUNT_URL'}), '(credentials, batch_url=config.BATCH_ACCOUNT_URL)\n', (20116, 20165), True, 'import azure.batch.batch_service_client as batch\n'), ((21356, 21386), 'importlib.__import__', 'importlib.__import__', (['"""config"""'], {}), "('config')\n", (21376, 21386), False, 'import importlib\n'), ((6819, 6965), 'azure.batch.batch_service_client.models.ContainerRegistry', 'batch.models.ContainerRegistry', ([], {'user_name': 'config.REGISTRY_USERNAME', 'password': 'config.REGISTRY_PASSWORD', 'registry_server': 'config.REGISTRY_SERVER'}), '(user_name=config.REGISTRY_USERNAME, password\n =config.REGISTRY_PASSWORD, registry_server=config.REGISTRY_SERVER)\n', (6849, 6965), True, 'import azure.batch.batch_service_client as batch\n'), ((7033, 7155), 'azure.batch.batch_service_client.models.ContainerConfiguration', 'batch.models.ContainerConfiguration', ([], {'container_image_names': '[config.DOCKER_CONTAINER]', 'container_registries': '[registry]'}), '(container_image_names=[config.\n DOCKER_CONTAINER], container_registries=[registry])\n', (7068, 7155), True, 'import azure.batch.batch_service_client as batch\n'), ((7221, 7310), 'azure.batch.batch_service_client.models.ContainerConfiguration', 'batch.models.ContainerConfiguration', ([], {'container_image_names': '[config.DOCKER_CONTAINER]'}), '(container_image_names=[config.\n DOCKER_CONTAINER])\n', (7256, 7310), True, 'import azure.batch.batch_service_client as batch\n'), ((9521, 9585), 'azure.batch.models.TaskContainerSettings', 'models.TaskContainerSettings', ([], {'image_name': 'config.DOCKER_CONTAINER'}), '(image_name=config.DOCKER_CONTAINER)\n', (9549, 9585), True, 'import azure.batch.models as models\n'), ((10767, 10790), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (10788, 10790), False, 'import datetime\n'), ((10821, 10839), 'sys.stdout.flush', 'sys.stdout.flush', ([], {}), '()\n', (10837, 10839), False, 'import sys\n'), ((12013, 12026), 'time.sleep', 'time.sleep', (['(1)'], {}), '(1)\n', (12023, 12026), False, 'import time\n'), ((14035, 14082), 'os.path.join', 'os.path.join', (['config.BATCH_DIRECTORY', 'blob_name'], {}), '(config.BATCH_DIRECTORY, blob_name)\n', (14047, 14082), False, 'import os\n'), ((14640, 14687), 'os.path.join', 'os.path.join', (['config.BATCH_DIRECTORY', 'blob_name'], {}), '(config.BATCH_DIRECTORY, blob_name)\n', (14652, 14687), False, 'import os\n'), ((2712, 2738), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2736, 2738), False, 'import datetime\n'), ((2741, 2801), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'config.STORAGE_ACCESS_DURATION_HRS'}), '(hours=config.STORAGE_ACCESS_DURATION_HRS)\n', (2759, 2801), False, 'import datetime\n'), ((2817, 2843), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (2841, 2843), False, 'import datetime\n'), ((7440, 7608), 'azure.batch.batch_service_client.models.VirtualMachineConfiguration', 'batch.models.VirtualMachineConfiguration', ([], {'image_reference': 'image_ref_to_use', 'container_configuration': 'container_conf', 'node_agent_sku_id': '"""batch.node.ubuntu 16.04"""'}), "(image_reference=image_ref_to_use,\n container_configuration=container_conf, node_agent_sku_id=\n 'batch.node.ubuntu 16.04')\n", (7480, 7608), True, 'import azure.batch.batch_service_client as batch\n'), ((8353, 8398), 'azure.batch.batch_service_client.models.PoolInformation', 'batch.models.PoolInformation', ([], {'pool_id': 'pool_id'}), '(pool_id=pool_id)\n', (8381, 8398), True, 'import azure.batch.batch_service_client as batch\n'), ((11633, 11656), 'collections.defaultdict', 'defaultdict', (['(lambda : 0)'], {}), '(lambda : 0)\n', (11644, 11656), False, 'from collections import defaultdict\n'), ((13657, 13693), 'pathlib.Path', 'pathlib.Path', (['config.BATCH_DIRECTORY'], {}), '(config.BATCH_DIRECTORY)\n', (13669, 13693), False, 'import pathlib\n'), ((14258, 14294), 'pathlib.Path', 'pathlib.Path', (['config.BATCH_DIRECTORY'], {}), '(config.BATCH_DIRECTORY)\n', (14270, 14294), False, 'import pathlib\n'), ((14833, 14858), 'yaml.load', 'load', (['blob'], {'Loader': 'Loader'}), '(blob, Loader=Loader)\n', (14837, 14858), False, 'from yaml import load\n'), ((15435, 15458), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (15456, 15458), False, 'import datetime\n'), ((17832, 17892), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'config.STORAGE_ACCESS_DURATION_HRS'}), '(hours=config.STORAGE_ACCESS_DURATION_HRS)\n', (17850, 17892), False, 'import datetime\n'), ((18370, 18393), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (18391, 18393), False, 'import datetime\n'), ((19211, 19234), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (19232, 19234), False, 'import datetime\n'), ((20329, 20389), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'config.STORAGE_ACCESS_DURATION_HRS'}), '(hours=config.STORAGE_ACCESS_DURATION_HRS)\n', (20347, 20389), False, 'import datetime\n'), ((20867, 20890), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (20888, 20890), False, 'import datetime\n'), ((5615, 5641), 'datetime.datetime.utcnow', 'datetime.datetime.utcnow', ([], {}), '()\n', (5639, 5641), False, 'import datetime\n'), ((5644, 5684), 'datetime.timedelta', 'datetime.timedelta', ([], {'hours': 'duration_hours'}), '(hours=duration_hours)\n', (5662, 5684), False, 'import datetime\n'), ((11063, 11086), 'datetime.datetime.now', 'datetime.datetime.now', ([], {}), '()\n', (11084, 11086), False, 'import datetime\n')]
from flask import Flask, current_app from flask import render_template from flask import jsonify from jieba.analyse import extract_tags import string from DB import chinaSQL from DB import worldSQL app = Flask(__name__, template_folder='../../web', static_folder='../../static') @app.route('/', methods=["get", "post"]) def hello_world(): return render_template("china.html") @app.route('/china', methods=["get", "post"]) def china(): return render_template("china.html") @app.route('/world', methods=["get", "post"]) def world(): return render_template("world.html") @app.route('/favicon.ico') def favicon(): return current_app.send_static_file('image/favicon-32x32-sun.ico') @app.route("/time") def time(): data = chinaSQL.time() return str(data[0]) @app.route("/chinaEightNumber") def chinaEightNumber(): data = chinaSQL.chinaEightNumber() return jsonify({"confirmTotal": data[0], "healTotal": data[1], "deadTotal": data[2], "nowConfirmTotal": data[3], "suspectTotal": data[4], "nowSevereTotal": data[5], "importedCaseTotal": data[6], "noInfectTotal": data[7], "confirmAdd": data[8], "healAdd": data[9], "deadAdd": data[10], "nowConfirmAdd": data[11], "suspectAdd": data[12], "nowSevereAdd": data[13], "importedCaseAdd": data[14], "noInfectAdd": data[15] }) @app.route('/chinaMap', methods=['GET']) def chinaMap(): data = chinaSQL.chinaMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a, "value": b}) nowConfirmTotal.append({"name": a, "value": c}) confirmTotal.append({"name": a, "value": d}) healTotal.append({"name": a, "value": e}) deadTotal.append({"name": a, "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route('/chinaProvinceMap', methods=['GET']) def chinaProvinceMap(): data = chinaSQL.chinaProvinceMap() confirmToday, nowConfirmTotal, confirmTotal, healTotal, deadTotal = [], [], [], [], [] for a, b, c, d, e, f in data: confirmToday.append({"name": a + "市", "value": b}) nowConfirmTotal.append({"name": a + "市", "value": c}) confirmTotal.append({"name": a + "市", "value": d}) healTotal.append({"name": a + "市", "value": e}) deadTotal.append({"name": a + "市", "value": f}) return jsonify({"confirmToday": confirmToday, "nowConfirmTotal": nowConfirmTotal, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal}) @app.route("/nationalTotal") def nationalTotal(): data = chinaSQL.nationalTotal() day, \ confirmChinaDayList, \ healChinaDayList, \ deadChinaDayList, \ importedCaseChinaDayList = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirmChinaDayList.append(b) healChinaDayList.append(c) deadChinaDayList.append(d) importedCaseChinaDayList.append(e) return jsonify({"day": day, "confirmChinaDayList": confirmChinaDayList, "healChinaDayList": healChinaDayList, "deadChinaDayList": deadChinaDayList, "importedCaseChinaDayList": importedCaseChinaDayList }) @app.route("/dailyAdditionsNationwide") def dailyAdditionsNationwide(): data = chinaSQL.dailyAdditionsNationwide() day, \ confirmChinaDayAddList, \ healChinaDayAddList, \ deadChinaDayAddList, \ importedCaseChinaDayAddList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) confirmChinaDayAddList.append(b) healChinaDayAddList.append(c) deadChinaDayAddList.append(d) importedCaseChinaDayAddList.append(e) return jsonify({"day": day, "confirmChinaDayAddList": confirmChinaDayAddList, "healChinaDayAddList": healChinaDayAddList, "deadChinaDayAddList": deadChinaDayAddList, "importedCaseChinaDayAddList": importedCaseChinaDayAddList }) @app.route("/dailyCasesNationwide") def dailyCasesNationwide(): data = chinaSQL.dailyCasesNationwide() day, \ suspectChinaDayList, \ noInfectChinaDayList, \ nowConfirmChinaDayList, \ nowSevereChinaDayList = [], [], [], [], [] for a, b, c, d, e in data[7:]: day.append(a.strftime("%m-%d")) suspectChinaDayList.append(b) noInfectChinaDayList.append(c) nowConfirmChinaDayList.append(d) nowSevereChinaDayList.append(e) return jsonify({"day": day, "suspectChinaDayList": suspectChinaDayList, "noInfectChinaDayList": noInfectChinaDayList, "nowConfirmChinaDayList": nowConfirmChinaDayList, "nowSevereChinaDayList": nowSevereChinaDayList }) @app.route("/nationalCumulativeCureMortalityRate") def nationalCumulativeCureMortalityRate(): data = chinaSQL.nationalCumulativeCureMortalityRate() day, \ healRateChinaDayList, \ deadRateChinaDayList = [], [], [] for a, b, c in data[7:]: day.append(a.strftime("%m-%d")) healRateChinaDayList.append(b) deadRateChinaDayList.append(c) return jsonify({"day": day, "healRateChinaDayList": healRateChinaDayList, "deadRateChinaDayList": deadRateChinaDayList }) @app.route("/detailedDataByProvince") def detailedDataByProvince(): data = chinaSQL.detailedDataByProvince() provinceName, \ confirmTotal, \ healTotal, \ deadTotal, \ healRateTotal, \ deadRateTotal = [], [], [], [], [], [] for a, b, c, d, e, f in data: provinceName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) healRateTotal.append(e) deadRateTotal.append(f) return jsonify({"provinceName": provinceName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal, "healRateTotal": healRateTotal, "deadRateTotal": deadRateTotal }) @app.route("/cumulativeNumberOfConfirmedCasesInAllProvinces") def cumulativeNumberOfConfirmedCasesInAllProvinces(): data = chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces() provincedetails = [] for provinceName, confirmTotal in data: provincedetails.append({"name": provinceName, "value": confirmTotal}) return jsonify({"data": provincedetails}) @app.route("/currentConfirmedDataInAllProvinces") def currentConfirmedDataInAllProvinces(): data = chinaSQL.currentConfirmedDataInAllProvinces() provinceName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: provinceName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"provinceName": provinceName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/existingDiagnosticClassificationInChina") def existingDiagnosticClassificationInChina(): data = chinaSQL.existingDiagnosticClassificationInChina() nowconfirmstatis = [] nowconfirmstatis.append({"name": '港澳台现存确诊', "value": data[0][0]}) nowconfirmstatis.append({"name": '境外输入现存确诊', "value": data[0][1]}) nowconfirmstatis.append({"name": '31省本土现有确诊', "value": data[0][2]}) return jsonify({"data": nowconfirmstatis}) @app.route("/totalNumberOfOverseasImportsFromTop10Provinces") def totalNumberOfOverseasImportsFromTop10Provinces(): data = chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces() importstatis = [] for province, importedCase in data: importstatis.append({"name": province, "value": importedCase}) return jsonify({"data": importstatis}) @app.route("/eachProvinceComparesYesterdayData") def eachProvinceComparesYesterdayData(): data = chinaSQL.eachProvinceComparesYesterdayData() province, \ nowConfirm, \ confirmAdd, \ heal, \ dead, \ zero = [], [], [], [], [], [] for a, b, c, d, e, f in data: province.append(a) nowConfirm.append(b) confirmAdd.append(c) heal.append(d) dead.append(e) zero.append(f) return jsonify({"province": province, "nowConfirm": nowConfirm, "confirmAdd": confirmAdd, "heal": heal, "dead": dead, "zero": zero }) @app.route("/hubeiNonHubeiNationalCumulativeData") def hubeiNonHubeiNationalCumulativeData(): data = chinaSQL.hubeiNonHubeiNationalCumulativeData() day, \ hubeiNowConfirm, \ hubeiHeal, \ hubeiDead, \ notHubeiNowConfirm, \ notHubeiHeal, \ notHubeiDead, \ countryNowConfirm, \ countryHeal, \ countryDead = [], [], [], [], [], [], [], [], [], [] for a, b, c, d, e, f, g, h, i, j in data: day.append(a.strftime("%m-%d")) hubeiNowConfirm.append(b) hubeiHeal.append(c) hubeiDead.append(d) notHubeiNowConfirm.append(e) notHubeiHeal.append(f) notHubeiDead.append(g) countryNowConfirm.append(h) countryHeal.append(i) countryDead.append(j) return jsonify({"day": day, "hubeiNowConfirm": hubeiNowConfirm, "hubeiHeal": hubeiHeal, "hubeiDead": hubeiDead, "notHubeiNowConfirm": notHubeiNowConfirm, "notHubeiHeal": notHubeiHeal, "notHubeiDead": notHubeiDead, "countryNowConfirm": countryNowConfirm, "countryHeal": countryHeal, "countryDead": countryDead }) @app.route("/hubeiNonHubeiNationalCureMortalityRate") def hubeiNonHubeiNationalCureMortalityRate(): data = chinaSQL.hubeiNonHubeiNationalCureMortalityRate() day, \ hubeiHealRate, \ hubeiDeadRate, \ notHubeiHealRate, \ notHubeiDeadRate, \ countryHealRate, \ countryDeadRate = [], [], [], [], [], [], [] for a, b, c, d, e, f, g in data: day.append(a.strftime("%m-%d")) hubeiHealRate.append(b) hubeiDeadRate.append(c) notHubeiHealRate.append(d) notHubeiDeadRate.append(e) countryHealRate.append(f) countryDeadRate.append(g) return jsonify({"day": day, "hubeiHealRate": hubeiHealRate, "hubeiDeadRate": hubeiDeadRate, "notHubeiHealRate": notHubeiHealRate, "notHubeiDeadRate": notHubeiDeadRate, "countryHealRate": countryHealRate, "countryDeadRate": countryDeadRate }) @app.route("/hubeiNonHubeiNationalDailyNew") def hubeiNonHubeiNationalDailyNew(): data = chinaSQL.hubeiNonHubeiNationalDailyNew() day, \ hubei, \ notHubei, \ country = [], [], [], [] for a, b, c, d in data[7:]: day.append(a.strftime("%m-%d")) hubei.append(b) notHubei.append(c) country.append(d) return jsonify({"day": day, "hubei": hubei, "notHubei": notHubei, "country": country }) @app.route("/wuhanNotWuhanNotHubeiNewlyConfirmed") def wuhanNotWuhanNotHubeiNewlyConfirmed(): data = chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed() day, \ wuhan, \ notWuhan, \ notHubei = [], [], [], [] for a, b, c, d in data: day.append(a.strftime("%m-%d")) wuhan.append(b) notWuhan.append(c) notHubei.append(d) return jsonify({"day": day, "wuhan": wuhan, "notWuhan": notWuhan, "notHubei": notHubei }) @app.route("/totalConfirmedTop20UrbanAreas") def totalConfirmedTop20UrbanAreas(): data = chinaSQL.totalConfirmedTop20UrbanAreas() cityName, \ deadRateTotal, \ healRateTotal = [], [], [] for a, b, c in data: cityName.append(a) deadRateTotal.append(b) healRateTotal.append(c) return jsonify({"cityName": cityName, "deadRateTotal": deadRateTotal, "healRateTotal": healRateTotal }) @app.route("/existingConfirmedTop20UrbanAreas") def existingConfirmedTop20UrbanAreas(): data = chinaSQL.existingConfirmedTop20UrbanAreas() cityName, \ nowConfirmTotal, \ confirmToday, \ suspectTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) nowConfirmTotal.append(b) confirmToday.append(c) suspectTotal.append(d) return jsonify({"cityName": cityName, "nowConfirmTotal": nowConfirmTotal, "confirmToday": confirmToday, "suspectTotal": suspectTotal }) @app.route("/urbanDataOfHubeiProvince") def urbanDataOfHubeiProvince(): data = chinaSQL.urbanDataOfHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/accumulativeDataExceptHubeiProvince") def accumulativeDataExceptHubeiProvince(): data = chinaSQL.accumulativeDataExceptHubeiProvince() cityName, \ confirmTotal, \ healTotal, \ deadTotal = [], [], [], [] for a, b, c, d in data: cityName.append(a) confirmTotal.append(b) healTotal.append(c) deadTotal.append(d) return jsonify({"cityName": cityName, "confirmTotal": confirmTotal, "healTotal": healTotal, "deadTotal": deadTotal }) @app.route("/provincesWithFatalCasesNationwide") def provincesWithFatalCasesNationwide(): data = chinaSQL.provincesWithFatalCasesNationwide() provincedetails = [] provincedetails.append({"name": "无死亡病例省份数量", "value": data[0][0]}) provincedetails.append({"name": "有死亡病例省份数量", "value": data[0][1]}) return jsonify({"data": provincedetails}) @app.route("/numberOfDeathsInCities") def numberOfDeathsInCities(): data = chinaSQL.numberOfDeathsInCities() dataCityCount = [] dataCityCount.append({"name": "无死亡病例城市数量", "value": data[0][0]}) dataCityCount.append({"name": "有死亡病例城市数量", "value": data[0][1]}) return jsonify({"data": dataCityCount}) @app.route("/outbreakOut") def outbreakOut(): data = chinaSQL.outbreakOut() d = [] for i in data: k = i[0].rstrip(string.digits) v = i[0][len(k):] ks = extract_tags(k) for j in ks: if not j.isdigit(): d.append({"name": j, "value": v}) return jsonify({"kws": d}) @app.route("/worldFourNumber") def worldFourNumber(): data = worldSQL.worldFourNumber() return jsonify({"nowConfirm": data[0], "confirm": data[1], "heal": data[2], "dead": data[3], "nowConfirmAdd": data[4], "confirmAdd": data[5], "healAdd": data[6], "deadAdd": data[7] }) @app.route('/worldMapNoChina', methods=['GET']) def worldMapNoChina(): data = worldSQL.worldMapNoChina() nowConfirm, confirm, heal, dead = [], [], [], [] for a, b, c, d, e in data: nowConfirm.append({"name": a, "value": b}) confirm.append({"name": a, "value": c}) heal.append({"name": a, "value": d}) dead.append({"name": a, "value": e}) data1 = worldSQL.worldMapChina() nowConfirm.append({"name": "中国", "value": data1[0][0]}) confirm.append({"name": "中国", "value": data1[0][1]}) heal.append({"name": "中国", "value": data1[0][2]}) dead.append({"name": "中国", "value": data1[0][3]}) return jsonify({"nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/globalCumulativeTrend") def globalCumulativeTrend(): data = worldSQL.globalCumulativeTrend() day, \ confirm, \ heal, \ dead, \ newAddConfirm = [], [], [], [], [] for a, b, c, d, e in data: day.append(a.strftime("%m-%d")) confirm.append(b) heal.append(c) dead.append(d) newAddConfirm.append(e) return jsonify({"day": day, "confirm": confirm, "heal": heal, "dead": dead, "newAddConfirm": newAddConfirm }) @app.route("/globalCumulativeCureMortality") def globalCumulativeCureMortality(): data = worldSQL.globalCumulativeCureMortality() day, \ healRate, \ deadRate = [], [], [] for a, b, c in data: day.append(a.strftime("%m-%d")) healRate.append(b) deadRate.append(c) return jsonify({"day": day, "healRate": healRate, "deadRate": deadRate }) @app.route("/foreignCumulativeDiagnosisTop10Countries") def foreignCumulativeDiagnosisTop10Countries(): data = worldSQL.foreignCumulativeDiagnosisTop10Countries() name, \ nowConfirm, \ confirm, \ heal, \ dead = [], [], [], [], [] for a, b, c, d, e in data: name.append(a) nowConfirm.append(b) confirm.append(c) heal.append(d) dead.append(e) return jsonify({"name": name, "nowConfirm": nowConfirm, "confirm": confirm, "heal": heal, "dead": dead }) @app.route("/theTop10CountriesGrewFastestInSevenDays") def theTop10CountriesGrewFastestInSevenDays(): data = worldSQL.theTop10CountriesGrewFastestInSevenDays() nation, \ day7, \ day, \ rate = [], [], [], [] for a, b, c, d in data: nation.append(a) day7.append(b) day.append(c) rate.append(d) return jsonify({"nation": nation, "day7": day7, "day0": day, "rate": rate }) @app.route("/overseasCountriesWithMoreThan10000ConfirmedCases") def overseasCountriesWithMoreThan10000ConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases() foreignlist = [] for name, confirm in data: foreignlist.append({"name": name, "value": confirm}) return jsonify({"data": foreignlist}) @app.route("/overseasCountriesWithMoreThan10000HaveBeenConfirmedCases") def overseasCountriesWithMoreThan10000HaveBeenConfirmedCases(): data = worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases() foreignlist = [] for name, nowConfirm in data: foreignlist.append({"name": name, "value": nowConfirm}) return jsonify({"data": foreignlist}) @app.route("/newCasesInTheTop10CountriesWithin24Hours") def newCasesInTheTop10CountriesWithin24Hours(): data = worldSQL.newCasesInTheTop10CountriesWithin24Hours() nationAddConfirm = [] for nation, addConfirm in data: nationAddConfirm.append({"name": nation, "value": addConfirm}) return jsonify({"data": nationAddConfirm}) @app.route("/theNumberOfForeignCountriesWithConfirmedCases") def theNumberOfForeignCountriesWithConfirmedCases(): data = worldSQL.theNumberOfForeignCountriesWithConfirmedCases() foreignlist = [] for continent, count in data: foreignlist.append({"name": continent, "value": count}) return jsonify({"data": foreignlist}) if __name__ == '__main__': app.run()
[ "flask.render_template", "DB.chinaSQL.urbanDataOfHubeiProvince", "DB.chinaSQL.existingConfirmedTop20UrbanAreas", "DB.chinaSQL.currentConfirmedDataInAllProvinces", "DB.worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases", "flask.Flask", "DB.chinaSQL.hubeiNonHubeiNationalDailyNew", "DB.chinaSQL.dailyCasesNationwide", "DB.chinaSQL.chinaMap", "DB.worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases", "jieba.analyse.extract_tags", "DB.chinaSQL.existingDiagnosticClassificationInChina", "DB.chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces", "flask.jsonify", "DB.chinaSQL.accumulativeDataExceptHubeiProvince", "DB.chinaSQL.nationalCumulativeCureMortalityRate", "DB.chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces", "DB.worldSQL.foreignCumulativeDiagnosisTop10Countries", "DB.chinaSQL.numberOfDeathsInCities", "DB.worldSQL.worldFourNumber", "DB.worldSQL.globalCumulativeTrend", "DB.chinaSQL.totalConfirmedTop20UrbanAreas", "DB.chinaSQL.eachProvinceComparesYesterdayData", "DB.chinaSQL.outbreakOut", "DB.chinaSQL.chinaEightNumber", "DB.chinaSQL.chinaProvinceMap", "DB.chinaSQL.hubeiNonHubeiNationalCureMortalityRate", "DB.worldSQL.newCasesInTheTop10CountriesWithin24Hours", "DB.worldSQL.worldMapChina", "DB.chinaSQL.detailedDataByProvince", "flask.current_app.send_static_file", "DB.worldSQL.theTop10CountriesGrewFastestInSevenDays", "DB.chinaSQL.nationalTotal", "DB.worldSQL.worldMapNoChina", "DB.worldSQL.theNumberOfForeignCountriesWithConfirmedCases", "DB.chinaSQL.dailyAdditionsNationwide", "DB.chinaSQL.time", "DB.worldSQL.globalCumulativeCureMortality", "DB.chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed", "DB.chinaSQL.hubeiNonHubeiNationalCumulativeData", "DB.chinaSQL.provincesWithFatalCasesNationwide" ]
[((205, 279), 'flask.Flask', 'Flask', (['__name__'], {'template_folder': '"""../../web"""', 'static_folder': '"""../../static"""'}), "(__name__, template_folder='../../web', static_folder='../../static')\n", (210, 279), False, 'from flask import Flask, current_app\n'), ((353, 382), 'flask.render_template', 'render_template', (['"""china.html"""'], {}), "('china.html')\n", (368, 382), False, 'from flask import render_template\n'), ((455, 484), 'flask.render_template', 'render_template', (['"""china.html"""'], {}), "('china.html')\n", (470, 484), False, 'from flask import render_template\n'), ((557, 586), 'flask.render_template', 'render_template', (['"""world.html"""'], {}), "('world.html')\n", (572, 586), False, 'from flask import render_template\n'), ((642, 701), 'flask.current_app.send_static_file', 'current_app.send_static_file', (['"""image/favicon-32x32-sun.ico"""'], {}), "('image/favicon-32x32-sun.ico')\n", (670, 701), False, 'from flask import Flask, current_app\n'), ((747, 762), 'DB.chinaSQL.time', 'chinaSQL.time', ([], {}), '()\n', (760, 762), False, 'from DB import chinaSQL\n'), ((856, 883), 'DB.chinaSQL.chinaEightNumber', 'chinaSQL.chinaEightNumber', ([], {}), '()\n', (881, 883), False, 'from DB import chinaSQL\n'), ((895, 1329), 'flask.jsonify', 'jsonify', (["{'confirmTotal': data[0], 'healTotal': data[1], 'deadTotal': data[2],\n 'nowConfirmTotal': data[3], 'suspectTotal': data[4], 'nowSevereTotal':\n data[5], 'importedCaseTotal': data[6], 'noInfectTotal': data[7],\n 'confirmAdd': data[8], 'healAdd': data[9], 'deadAdd': data[10],\n 'nowConfirmAdd': data[11], 'suspectAdd': data[12], 'nowSevereAdd': data\n [13], 'importedCaseAdd': data[14], 'noInfectAdd': data[15]}"], {}), "({'confirmTotal': data[0], 'healTotal': data[1], 'deadTotal': data[2\n ], 'nowConfirmTotal': data[3], 'suspectTotal': data[4],\n 'nowSevereTotal': data[5], 'importedCaseTotal': data[6],\n 'noInfectTotal': data[7], 'confirmAdd': data[8], 'healAdd': data[9],\n 'deadAdd': data[10], 'nowConfirmAdd': data[11], 'suspectAdd': data[12],\n 'nowSevereAdd': data[13], 'importedCaseAdd': data[14], 'noInfectAdd':\n data[15]})\n", (902, 1329), False, 'from flask import jsonify\n'), ((1696, 1715), 'DB.chinaSQL.chinaMap', 'chinaSQL.chinaMap', ([], {}), '()\n', (1713, 1715), False, 'from DB import chinaSQL\n'), ((2114, 2275), 'flask.jsonify', 'jsonify', (["{'confirmToday': confirmToday, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmTotal': confirmTotal, 'healTotal': healTotal, 'deadTotal':\n deadTotal}"], {}), "({'confirmToday': confirmToday, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmTotal': confirmTotal, 'healTotal': healTotal, 'deadTotal':\n deadTotal})\n", (2121, 2275), False, 'from flask import jsonify\n'), ((2374, 2401), 'DB.chinaSQL.chinaProvinceMap', 'chinaSQL.chinaProvinceMap', ([], {}), '()\n', (2399, 2401), False, 'from DB import chinaSQL\n'), ((2830, 2991), 'flask.jsonify', 'jsonify', (["{'confirmToday': confirmToday, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmTotal': confirmTotal, 'healTotal': healTotal, 'deadTotal':\n deadTotal}"], {}), "({'confirmToday': confirmToday, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmTotal': confirmTotal, 'healTotal': healTotal, 'deadTotal':\n deadTotal})\n", (2837, 2991), False, 'from flask import jsonify\n'), ((3067, 3091), 'DB.chinaSQL.nationalTotal', 'chinaSQL.nationalTotal', ([], {}), '()\n', (3089, 3091), False, 'from DB import chinaSQL\n'), ((3461, 3664), 'flask.jsonify', 'jsonify', (["{'day': day, 'confirmChinaDayList': confirmChinaDayList, 'healChinaDayList':\n healChinaDayList, 'deadChinaDayList': deadChinaDayList,\n 'importedCaseChinaDayList': importedCaseChinaDayList}"], {}), "({'day': day, 'confirmChinaDayList': confirmChinaDayList,\n 'healChinaDayList': healChinaDayList, 'deadChinaDayList':\n deadChinaDayList, 'importedCaseChinaDayList': importedCaseChinaDayList})\n", (3468, 3664), False, 'from flask import jsonify\n'), ((3843, 3878), 'DB.chinaSQL.dailyAdditionsNationwide', 'chinaSQL.dailyAdditionsNationwide', ([], {}), '()\n', (3876, 3878), False, 'from DB import chinaSQL\n'), ((4276, 4507), 'flask.jsonify', 'jsonify', (["{'day': day, 'confirmChinaDayAddList': confirmChinaDayAddList,\n 'healChinaDayAddList': healChinaDayAddList, 'deadChinaDayAddList':\n deadChinaDayAddList, 'importedCaseChinaDayAddList':\n importedCaseChinaDayAddList}"], {}), "({'day': day, 'confirmChinaDayAddList': confirmChinaDayAddList,\n 'healChinaDayAddList': healChinaDayAddList, 'deadChinaDayAddList':\n deadChinaDayAddList, 'importedCaseChinaDayAddList':\n importedCaseChinaDayAddList})\n", (4283, 4507), False, 'from flask import jsonify\n'), ((4674, 4705), 'DB.chinaSQL.dailyCasesNationwide', 'chinaSQL.dailyCasesNationwide', ([], {}), '()\n', (4703, 4705), False, 'from DB import chinaSQL\n'), ((5093, 5310), 'flask.jsonify', 'jsonify', (["{'day': day, 'suspectChinaDayList': suspectChinaDayList,\n 'noInfectChinaDayList': noInfectChinaDayList, 'nowConfirmChinaDayList':\n nowConfirmChinaDayList, 'nowSevereChinaDayList': nowSevereChinaDayList}"], {}), "({'day': day, 'suspectChinaDayList': suspectChinaDayList,\n 'noInfectChinaDayList': noInfectChinaDayList, 'nowConfirmChinaDayList':\n nowConfirmChinaDayList, 'nowSevereChinaDayList': nowSevereChinaDayList})\n", (5100, 5310), False, 'from flask import jsonify\n'), ((5511, 5557), 'DB.chinaSQL.nationalCumulativeCureMortalityRate', 'chinaSQL.nationalCumulativeCureMortalityRate', ([], {}), '()\n', (5555, 5557), False, 'from DB import chinaSQL\n'), ((5793, 5910), 'flask.jsonify', 'jsonify', (["{'day': day, 'healRateChinaDayList': healRateChinaDayList,\n 'deadRateChinaDayList': deadRateChinaDayList}"], {}), "({'day': day, 'healRateChinaDayList': healRateChinaDayList,\n 'deadRateChinaDayList': deadRateChinaDayList})\n", (5800, 5910), False, 'from flask import jsonify\n'), ((6049, 6082), 'DB.chinaSQL.detailedDataByProvince', 'chinaSQL.detailedDataByProvince', ([], {}), '()\n', (6080, 6082), False, 'from DB import chinaSQL\n'), ((6448, 6637), 'flask.jsonify', 'jsonify', (["{'provinceName': provinceName, 'confirmTotal': confirmTotal, 'healTotal':\n healTotal, 'deadTotal': deadTotal, 'healRateTotal': healRateTotal,\n 'deadRateTotal': deadRateTotal}"], {}), "({'provinceName': provinceName, 'confirmTotal': confirmTotal,\n 'healTotal': healTotal, 'deadTotal': deadTotal, 'healRateTotal':\n healRateTotal, 'deadRateTotal': deadRateTotal})\n", (6455, 6637), False, 'from flask import jsonify\n'), ((6880, 6937), 'DB.chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces', 'chinaSQL.cumulativeNumberOfConfirmedCasesInAllProvinces', ([], {}), '()\n', (6935, 6937), False, 'from DB import chinaSQL\n'), ((7096, 7130), 'flask.jsonify', 'jsonify', (["{'data': provincedetails}"], {}), "({'data': provincedetails})\n", (7103, 7130), False, 'from flask import jsonify\n'), ((7236, 7281), 'DB.chinaSQL.currentConfirmedDataInAllProvinces', 'chinaSQL.currentConfirmedDataInAllProvinces', ([], {}), '()\n', (7279, 7281), False, 'from DB import chinaSQL\n'), ((7545, 7684), 'flask.jsonify', 'jsonify', (["{'provinceName': provinceName, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmToday': confirmToday, 'suspectTotal': suspectTotal}"], {}), "({'provinceName': provinceName, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmToday': confirmToday, 'suspectTotal': suspectTotal})\n", (7552, 7684), False, 'from flask import jsonify\n'), ((7877, 7927), 'DB.chinaSQL.existingDiagnosticClassificationInChina', 'chinaSQL.existingDiagnosticClassificationInChina', ([], {}), '()\n', (7925, 7927), False, 'from DB import chinaSQL\n'), ((8178, 8213), 'flask.jsonify', 'jsonify', (["{'data': nowconfirmstatis}"], {}), "({'data': nowconfirmstatis})\n", (8185, 8213), False, 'from flask import jsonify\n'), ((8343, 8400), 'DB.chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces', 'chinaSQL.totalNumberOfOverseasImportsFromTop10Provinces', ([], {}), '()\n', (8398, 8400), False, 'from DB import chinaSQL\n'), ((8546, 8577), 'flask.jsonify', 'jsonify', (["{'data': importstatis}"], {}), "({'data': importstatis})\n", (8553, 8577), False, 'from flask import jsonify\n'), ((8681, 8725), 'DB.chinaSQL.eachProvinceComparesYesterdayData', 'chinaSQL.eachProvinceComparesYesterdayData', ([], {}), '()\n', (8723, 8725), False, 'from DB import chinaSQL\n'), ((9035, 9164), 'flask.jsonify', 'jsonify', (["{'province': province, 'nowConfirm': nowConfirm, 'confirmAdd': confirmAdd,\n 'heal': heal, 'dead': dead, 'zero': zero}"], {}), "({'province': province, 'nowConfirm': nowConfirm, 'confirmAdd':\n confirmAdd, 'heal': heal, 'dead': dead, 'zero': zero})\n", (9042, 9164), False, 'from flask import jsonify\n'), ((9389, 9435), 'DB.chinaSQL.hubeiNonHubeiNationalCumulativeData', 'chinaSQL.hubeiNonHubeiNationalCumulativeData', ([], {}), '()\n', (9433, 9435), False, 'from DB import chinaSQL\n'), ((10053, 10372), 'flask.jsonify', 'jsonify', (["{'day': day, 'hubeiNowConfirm': hubeiNowConfirm, 'hubeiHeal': hubeiHeal,\n 'hubeiDead': hubeiDead, 'notHubeiNowConfirm': notHubeiNowConfirm,\n 'notHubeiHeal': notHubeiHeal, 'notHubeiDead': notHubeiDead,\n 'countryNowConfirm': countryNowConfirm, 'countryHeal': countryHeal,\n 'countryDead': countryDead}"], {}), "({'day': day, 'hubeiNowConfirm': hubeiNowConfirm, 'hubeiHeal':\n hubeiHeal, 'hubeiDead': hubeiDead, 'notHubeiNowConfirm':\n notHubeiNowConfirm, 'notHubeiHeal': notHubeiHeal, 'notHubeiDead':\n notHubeiDead, 'countryNowConfirm': countryNowConfirm, 'countryHeal':\n countryHeal, 'countryDead': countryDead})\n", (10060, 10372), False, 'from flask import jsonify\n'), ((10671, 10720), 'DB.chinaSQL.hubeiNonHubeiNationalCureMortalityRate', 'chinaSQL.hubeiNonHubeiNationalCureMortalityRate', ([], {}), '()\n', (10718, 10720), False, 'from DB import chinaSQL\n'), ((11184, 11429), 'flask.jsonify', 'jsonify', (["{'day': day, 'hubeiHealRate': hubeiHealRate, 'hubeiDeadRate': hubeiDeadRate,\n 'notHubeiHealRate': notHubeiHealRate, 'notHubeiDeadRate':\n notHubeiDeadRate, 'countryHealRate': countryHealRate, 'countryDeadRate':\n countryDeadRate}"], {}), "({'day': day, 'hubeiHealRate': hubeiHealRate, 'hubeiDeadRate':\n hubeiDeadRate, 'notHubeiHealRate': notHubeiHealRate, 'notHubeiDeadRate':\n notHubeiDeadRate, 'countryHealRate': countryHealRate, 'countryDeadRate':\n countryDeadRate})\n", (11191, 11429), False, 'from flask import jsonify\n'), ((11654, 11694), 'DB.chinaSQL.hubeiNonHubeiNationalDailyNew', 'chinaSQL.hubeiNonHubeiNationalDailyNew', ([], {}), '()\n', (11692, 11694), False, 'from DB import chinaSQL\n'), ((11924, 12003), 'flask.jsonify', 'jsonify', (["{'day': day, 'hubei': hubei, 'notHubei': notHubei, 'country': country}"], {}), "({'day': day, 'hubei': hubei, 'notHubei': notHubei, 'country': country})\n", (11931, 12003), False, 'from flask import jsonify\n'), ((12192, 12238), 'DB.chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed', 'chinaSQL.wuhanNotWuhanNotHubeiNewlyConfirmed', ([], {}), '()\n', (12236, 12238), False, 'from DB import chinaSQL\n'), ((12466, 12551), 'flask.jsonify', 'jsonify', (["{'day': day, 'wuhan': wuhan, 'notWuhan': notWuhan, 'notHubei': notHubei}"], {}), "({'day': day, 'wuhan': wuhan, 'notWuhan': notWuhan, 'notHubei':\n notHubei})\n", (12473, 12551), False, 'from flask import jsonify\n'), ((12724, 12764), 'DB.chinaSQL.totalConfirmedTop20UrbanAreas', 'chinaSQL.totalConfirmedTop20UrbanAreas', ([], {}), '()\n', (12762, 12764), False, 'from DB import chinaSQL\n'), ((12960, 13059), 'flask.jsonify', 'jsonify', (["{'cityName': cityName, 'deadRateTotal': deadRateTotal, 'healRateTotal':\n healRateTotal}"], {}), "({'cityName': cityName, 'deadRateTotal': deadRateTotal,\n 'healRateTotal': healRateTotal})\n", (12967, 13059), False, 'from flask import jsonify\n'), ((13218, 13261), 'DB.chinaSQL.existingConfirmedTop20UrbanAreas', 'chinaSQL.existingConfirmedTop20UrbanAreas', ([], {}), '()\n', (13259, 13261), False, 'from DB import chinaSQL\n'), ((13517, 13648), 'flask.jsonify', 'jsonify', (["{'cityName': cityName, 'nowConfirmTotal': nowConfirmTotal, 'confirmToday':\n confirmToday, 'suspectTotal': suspectTotal}"], {}), "({'cityName': cityName, 'nowConfirmTotal': nowConfirmTotal,\n 'confirmToday': confirmToday, 'suspectTotal': suspectTotal})\n", (13524, 13648), False, 'from flask import jsonify\n'), ((13811, 13846), 'DB.chinaSQL.urbanDataOfHubeiProvince', 'chinaSQL.urbanDataOfHubeiProvince', ([], {}), '()\n', (13844, 13846), False, 'from DB import chinaSQL\n'), ((14084, 14197), 'flask.jsonify', 'jsonify', (["{'cityName': cityName, 'confirmTotal': confirmTotal, 'healTotal': healTotal,\n 'deadTotal': deadTotal}"], {}), "({'cityName': cityName, 'confirmTotal': confirmTotal, 'healTotal':\n healTotal, 'deadTotal': deadTotal})\n", (14091, 14197), False, 'from flask import jsonify\n'), ((14382, 14428), 'DB.chinaSQL.accumulativeDataExceptHubeiProvince', 'chinaSQL.accumulativeDataExceptHubeiProvince', ([], {}), '()\n', (14426, 14428), False, 'from DB import chinaSQL\n'), ((14666, 14779), 'flask.jsonify', 'jsonify', (["{'cityName': cityName, 'confirmTotal': confirmTotal, 'healTotal': healTotal,\n 'deadTotal': deadTotal}"], {}), "({'cityName': cityName, 'confirmTotal': confirmTotal, 'healTotal':\n healTotal, 'deadTotal': deadTotal})\n", (14673, 14779), False, 'from flask import jsonify\n'), ((14960, 15004), 'DB.chinaSQL.provincesWithFatalCasesNationwide', 'chinaSQL.provincesWithFatalCasesNationwide', ([], {}), '()\n', (15002, 15004), False, 'from DB import chinaSQL\n'), ((15183, 15217), 'flask.jsonify', 'jsonify', (["{'data': provincedetails}"], {}), "({'data': provincedetails})\n", (15190, 15217), False, 'from flask import jsonify\n'), ((15299, 15332), 'DB.chinaSQL.numberOfDeathsInCities', 'chinaSQL.numberOfDeathsInCities', ([], {}), '()\n', (15330, 15332), False, 'from DB import chinaSQL\n'), ((15505, 15537), 'flask.jsonify', 'jsonify', (["{'data': dataCityCount}"], {}), "({'data': dataCityCount})\n", (15512, 15537), False, 'from flask import jsonify\n'), ((15597, 15619), 'DB.chinaSQL.outbreakOut', 'chinaSQL.outbreakOut', ([], {}), '()\n', (15617, 15619), False, 'from DB import chinaSQL\n'), ((15858, 15877), 'flask.jsonify', 'jsonify', (["{'kws': d}"], {}), "({'kws': d})\n", (15865, 15877), False, 'from flask import jsonify\n'), ((15945, 15971), 'DB.worldSQL.worldFourNumber', 'worldSQL.worldFourNumber', ([], {}), '()\n', (15969, 15971), False, 'from DB import worldSQL\n'), ((15983, 16166), 'flask.jsonify', 'jsonify', (["{'nowConfirm': data[0], 'confirm': data[1], 'heal': data[2], 'dead': data[3\n ], 'nowConfirmAdd': data[4], 'confirmAdd': data[5], 'healAdd': data[6],\n 'deadAdd': data[7]}"], {}), "({'nowConfirm': data[0], 'confirm': data[1], 'heal': data[2], 'dead':\n data[3], 'nowConfirmAdd': data[4], 'confirmAdd': data[5], 'healAdd':\n data[6], 'deadAdd': data[7]})\n", (15990, 16166), False, 'from flask import jsonify\n'), ((16404, 16430), 'DB.worldSQL.worldMapNoChina', 'worldSQL.worldMapNoChina', ([], {}), '()\n', (16428, 16430), False, 'from DB import worldSQL\n'), ((16716, 16740), 'DB.worldSQL.worldMapChina', 'worldSQL.worldMapChina', ([], {}), '()\n', (16738, 16740), False, 'from DB import worldSQL\n'), ((16977, 17064), 'flask.jsonify', 'jsonify', (["{'nowConfirm': nowConfirm, 'confirm': confirm, 'heal': heal, 'dead': dead}"], {}), "({'nowConfirm': nowConfirm, 'confirm': confirm, 'heal': heal, 'dead':\n dead})\n", (16984, 17064), False, 'from flask import jsonify\n'), ((17221, 17253), 'DB.worldSQL.globalCumulativeTrend', 'worldSQL.globalCumulativeTrend', ([], {}), '()\n', (17251, 17253), False, 'from DB import worldSQL\n'), ((17529, 17634), 'flask.jsonify', 'jsonify', (["{'day': day, 'confirm': confirm, 'heal': heal, 'dead': dead,\n 'newAddConfirm': newAddConfirm}"], {}), "({'day': day, 'confirm': confirm, 'heal': heal, 'dead': dead,\n 'newAddConfirm': newAddConfirm})\n", (17536, 17634), False, 'from flask import jsonify\n'), ((17827, 17867), 'DB.worldSQL.globalCumulativeCureMortality', 'worldSQL.globalCumulativeCureMortality', ([], {}), '()\n', (17865, 17867), False, 'from DB import worldSQL\n'), ((18051, 18116), 'flask.jsonify', 'jsonify', (["{'day': day, 'healRate': healRate, 'deadRate': deadRate}"], {}), "({'day': day, 'healRate': healRate, 'deadRate': deadRate})\n", (18058, 18116), False, 'from flask import jsonify\n'), ((18295, 18346), 'DB.worldSQL.foreignCumulativeDiagnosisTop10Countries', 'worldSQL.foreignCumulativeDiagnosisTop10Countries', ([], {}), '()\n', (18344, 18346), False, 'from DB import worldSQL\n'), ((18600, 18701), 'flask.jsonify', 'jsonify', (["{'name': name, 'nowConfirm': nowConfirm, 'confirm': confirm, 'heal': heal,\n 'dead': dead}"], {}), "({'name': name, 'nowConfirm': nowConfirm, 'confirm': confirm, 'heal':\n heal, 'dead': dead})\n", (18607, 18701), False, 'from flask import jsonify\n'), ((18914, 18964), 'DB.worldSQL.theTop10CountriesGrewFastestInSevenDays', 'worldSQL.theTop10CountriesGrewFastestInSevenDays', ([], {}), '()\n', (18962, 18964), False, 'from DB import worldSQL\n'), ((19160, 19228), 'flask.jsonify', 'jsonify', (["{'nation': nation, 'day7': day7, 'day0': day, 'rate': rate}"], {}), "({'nation': nation, 'day7': day7, 'day0': day, 'rate': rate})\n", (19167, 19228), False, 'from flask import jsonify\n'), ((19443, 19502), 'DB.worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases', 'worldSQL.overseasCountriesWithMoreThan10000ConfirmedCases', ([], {}), '()\n', (19500, 19502), False, 'from DB import worldSQL\n'), ((19627, 19657), 'flask.jsonify', 'jsonify', (["{'data': foreignlist}"], {}), "({'data': foreignlist})\n", (19634, 19657), False, 'from flask import jsonify\n'), ((19807, 19874), 'DB.worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases', 'worldSQL.overseasCountriesWithMoreThan10000HaveBeenConfirmedCases', ([], {}), '()\n', (19872, 19874), False, 'from DB import worldSQL\n'), ((20005, 20035), 'flask.jsonify', 'jsonify', (["{'data': foreignlist}"], {}), "({'data': foreignlist})\n", (20012, 20035), False, 'from flask import jsonify\n'), ((20153, 20204), 'DB.worldSQL.newCasesInTheTop10CountriesWithin24Hours', 'worldSQL.newCasesInTheTop10CountriesWithin24Hours', ([], {}), '()\n', (20202, 20204), False, 'from DB import worldSQL\n'), ((20349, 20384), 'flask.jsonify', 'jsonify', (["{'data': nationAddConfirm}"], {}), "({'data': nationAddConfirm})\n", (20356, 20384), False, 'from flask import jsonify\n'), ((20512, 20568), 'DB.worldSQL.theNumberOfForeignCountriesWithConfirmedCases', 'worldSQL.theNumberOfForeignCountriesWithConfirmedCases', ([], {}), '()\n', (20566, 20568), False, 'from DB import worldSQL\n'), ((20699, 20729), 'flask.jsonify', 'jsonify', (["{'data': foreignlist}"], {}), "({'data': foreignlist})\n", (20706, 20729), False, 'from flask import jsonify\n'), ((15728, 15743), 'jieba.analyse.extract_tags', 'extract_tags', (['k'], {}), '(k)\n', (15740, 15743), False, 'from jieba.analyse import extract_tags\n')]
# Generated by Django 2.0.2 on 2018-02-17 10:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('T2API', '0007_apiuser_deviceuser'), ] operations = [ migrations.AddField( model_name='product', name='weight', field=models.IntegerField(default=None, null=True), ), ]
[ "django.db.models.IntegerField" ]
[((333, 377), 'django.db.models.IntegerField', 'models.IntegerField', ([], {'default': 'None', 'null': '(True)'}), '(default=None, null=True)\n', (352, 377), False, 'from django.db import migrations, models\n')]
#!/usr/bin/env python3 # Simple and dumb script to send a message to the #podman IRC channel on frenode # Based on example from: https://pythonspot.com/building-an-irc-bot/ import os import time import random import errno import socket import sys class IRC: response_timeout = 10 # seconds irc = socket.socket() def __init__(self, server, nickname, channel): self.server = server self.nickname = nickname self.channel = channel self.irc = socket.socket(socket.AF_INET, socket.SOCK_STREAM) def _send(self, cmdstr): self.irc.send(bytes(cmdstr + '\r\n', 'utf-8')) def message(self, msg): data = 'PRIVMSG {0} :{1}\r\n'.format(self.channel, msg) print(data) self._send(data) @staticmethod def fix_newlines(bufr): return bufr.replace('\\r\\n', '\n') def _required_response(self, needle, haystack): start = time.time() end = start + self.response_timeout while time.time() < end: if haystack.find(needle) != -1: return (False, haystack) time.sleep(0.1) try: haystack += str(self.irc.recv(4096, socket.MSG_DONTWAIT)) except socket.error as serr: if serr.errno == errno.EWOULDBLOCK: continue raise # can't handle this return (True, haystack) # Error def connect(self, username, password): # This is ugly as sin, but seems to be a working send/expect sequence print("connecting to: {0}".format(self.server)) self.irc.connect((self.server, 6667)) #connects to the server self._send("USER {0} {0} {0} :I am {0}".format(self.nickname)) self._send("NICK {0}".format(self.nickname)) err, haystack = self._required_response('End of /MOTD command.' ''.format(self.nickname), "") if err: print(self.fix_newlines(haystack)) print("Error connecting to {0}".format(self.server)) return True print("Logging in as {0}".format(username)) self._send("PRIVMSG NickServ :IDENTIFY {0} {1}".format(username, password)) err, _ = self._required_response("You are now identified for", "") if err: print("Error logging in to {0} as {1}".format(self.server, username)) return True print("Joining {0}".format(self.channel)) self._send("JOIN {0}".format(self.channel)) err, haystack = self._required_response("{0} {1} :End of /NAMES list." "".format(self.nickname, self.channel), haystack) print(self.fix_newlines(haystack)) if err: print("Error joining {0}".format(self.channel)) return True return False def quit(self): print("Quitting") self._send("QUIT :my work is done here") self.irc.close() if len(sys.argv) < 3: print("Error: Must pass desired nick and message as parameters") else: irc = IRC("irc.freenode.net", sys.argv[1], "#podman") err = irc.connect(*os.environ.get('IRCID', 'Big Bug').split(" ", 2)) if not err: irc.message(" ".join(sys.argv[2:])) time.sleep(5.0) # avoid join/quit spam irc.quit()
[ "time.sleep", "time.time", "os.environ.get", "socket.socket" ]
[((309, 324), 'socket.socket', 'socket.socket', ([], {}), '()\n', (322, 324), False, 'import socket\n'), ((489, 538), 'socket.socket', 'socket.socket', (['socket.AF_INET', 'socket.SOCK_STREAM'], {}), '(socket.AF_INET, socket.SOCK_STREAM)\n', (502, 538), False, 'import socket\n'), ((922, 933), 'time.time', 'time.time', ([], {}), '()\n', (931, 933), False, 'import time\n'), ((3343, 3358), 'time.sleep', 'time.sleep', (['(5.0)'], {}), '(5.0)\n', (3353, 3358), False, 'import time\n'), ((992, 1003), 'time.time', 'time.time', ([], {}), '()\n', (1001, 1003), False, 'import time\n'), ((1108, 1123), 'time.sleep', 'time.sleep', (['(0.1)'], {}), '(0.1)\n', (1118, 1123), False, 'import time\n'), ((3225, 3259), 'os.environ.get', 'os.environ.get', (['"""IRCID"""', '"""Big Bug"""'], {}), "('IRCID', 'Big Bug')\n", (3239, 3259), False, 'import os\n')]
import unittest from flydenity import Parser class TestParseIcao24Bit(unittest.TestCase): def setUp(self): self.parser = Parser() def test_parse_simple(self): match = self.parser.parse("3D2591", icao24bit=True) self.assertEqual(match, {"nation": "Germany", "description": "general", "iso2": "DE", "iso3": "DEU"}) def test_parse_strict(self): sloppy_reg_sloppy_parser = self.parser.parse("3DX", icao24bit=True, strict=False) sloppy_reg_strict_parser = self.parser.parse("3DX", icao24bit=True, strict=True) strict_reg_sloppy_parser = self.parser.parse("3D2591", icao24bit=True, strict=False) strict_reg_strict_parser = self.parser.parse("3D2591", icao24bit=True, strict=True) self.assertTrue(sloppy_reg_sloppy_parser == strict_reg_sloppy_parser == strict_reg_strict_parser != sloppy_reg_strict_parser) if __name__ == "__main__": unittest.main()
[ "unittest.main", "flydenity.Parser" ]
[((916, 931), 'unittest.main', 'unittest.main', ([], {}), '()\n', (929, 931), False, 'import unittest\n'), ((136, 144), 'flydenity.Parser', 'Parser', ([], {}), '()\n', (142, 144), False, 'from flydenity import Parser\n')]
import os def create_project(path): dirs = ['configs', 'module', 'data'] dirs = [os.path.join(path, d) for d in dirs] for d in dirs: os.makedirs(d) train_script = r""" import ever as er def train(trainer_name): trainer = er.trainer.get_trainer(trainer_name)() trainer.run() """ with open(os.path.join(path, 'train.py'), 'w') as f: f.write(train_script) print('created project in {}'.format(path))
[ "os.path.join", "os.makedirs" ]
[((91, 112), 'os.path.join', 'os.path.join', (['path', 'd'], {}), '(path, d)\n', (103, 112), False, 'import os\n'), ((155, 169), 'os.makedirs', 'os.makedirs', (['d'], {}), '(d)\n', (166, 169), False, 'import os\n'), ((342, 372), 'os.path.join', 'os.path.join', (['path', '"""train.py"""'], {}), "(path, 'train.py')\n", (354, 372), False, 'import os\n')]