id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
11236531
# flake8: noqa: E128 """ Add cascades Revision ID: <KEY> Revises: <PASSWORD> Create Date: 2019-05-02 10:57:00.579594+00:00 """ # Stdlib import re # External Libraries from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<PASSWORD>" branch_labels = None depends_on = None constraint_re = re.compile( r"^fk_" # Start tag r"(.*)_" # Table r"((?:author|user|mod|review)(?:_id)?)_" # Column r"(.*)$" # Foreign table ) constraints = [ "fk_connection_user_user", "fk_editors_choice_author_id_user", "fk_editors_choice_mod_id_mod", "fk_media_mod_id_mod", "fk_mod_playtester_mod_id_mod", "fk_mod_playtester_user_id_user", "fk_report_author_id_user", "fk_report_mod_id_mod", "fk_review_author_id_user", "fk_review_mod_id_mod", "fk_review_reaction_review_id_review", "fk_review_reaction_user_id_user", "fk_user_favorite_user_id_user", "fk_user_favorite_mod_id_mod", "fk_user_mod_user_id_user", "fk_user_mod_mod_id_mod", ] def upgrade(): for constraint in constraints: # Get all parts of constraint (table[_table part 2]_column[_column part 2]_foreign_table) table, column, foreign = constraint_re.match(constraint).groups() op.drop_constraint(constraint, table, type_="foreignkey") op.create_foreign_key( op.f(constraint), table, foreign, [column], ["id"], ondelete="CASCADE" ) def downgrade(): for constraint in constraints: # Get all parts of constraint (table[_table part 2]_column[_column part 2]_foreign_table) table, column, foreign = constraint_re.match(constraint).groups() op.drop_constraint(op.f(constraint), table, type_="foreignkey") op.create_foreign_key(constraint, table, foreign, [column], ["id"])
StarcoderdataPython
6608349
<gh_stars>10-100 from __future__ import print_function import numpy import theano from theano import gof class AXPBOp(gof.Op): """ This creates an Op that takes x to a*x+b. """ __props__ = ("a", "b") def __init__(self, a, b): self.a = a self.b = b super(AXPBOp, self).__init__() def make_node(self, x): x = theano.tensor.as_tensor_variable(x) return theano.Apply(self, [x], [x.type()]) def c_code_cache_version(self): return (6, 1) def c_support_code(self): c_support_code = """ bool same_shape(PyArrayObject* arr1, PyArrayObject* arr2) { if( PyArray_NDIM(arr1) != PyArray_NDIM(arr2)) { return false; } for(int i = 0; i < PyArray_NDIM(arr2) ; i++) { if (PyArray_DIMS(arr1)[0] == PyArray_DIMS(arr2)[0]) { return false; } } return true; } """ return c_support_code def c_support_code_apply(self, node, name): dtype_x = node.inputs[0].dtype dtype_z = node.outputs[0].dtype a = self.a b = self.b c_support_code = """ void elemwise_op_%(name)s(npy_%(dtype_x)s* x_ptr, npy_intp* x_str, int itemsize_x, npy_%(dtype_z)s* z_ptr, npy_intp* z_str, int itemsize_z, int nbDims, npy_intp* dims) { npy_intp stride_x = (npy_intp)(1); npy_intp stride_z = (npy_intp)(1); for (int i = 0; i < nbDims; i ++) { stride_x = stride_x * x_str[i] / itemsize_x; stride_z = stride_z * z_str[i] / itemsize_z; } for (int i=0; i < dims[0]; i++) if (nbDims==1) { z_ptr[i * z_str[0]/itemsize_z] = x_ptr[i * x_str[0] / itemsize_x] * ((npy_%(dtype_z)s) %(a)s) + ((npy_%(dtype_z)s)%(b)s); } else { elemwise_op_%(name)s( x_ptr + i * stride_x , x_str + 1, itemsize_x, z_ptr + i * stride_z , z_str + 1, itemsize_z, nbDims - 1, dims + 1 ); } } """ return c_support_code % locals() def c_code(self, node, name, inp, out, sub): x = inp[0] z = out[0] dtype_x = node.inputs[0].dtype dtype_z = node.outputs[0].dtype itemsize_x = numpy.dtype(dtype_x).itemsize itemsize_z = numpy.dtype(dtype_z).itemsize typenum_z = numpy.dtype(dtype_z).num fail = sub['fail'] c_code = """ // Validate that the output storage exists and has the same // dimension as x. if (NULL == %(z)s || !(same_shape(%(x)s, %(z)s))) { /* Reference received to invalid output variable. Decrease received reference's ref count and allocate new output variable */ Py_XDECREF(%(z)s); %(z)s = (PyArrayObject*)PyArray_EMPTY(PyArray_NDIM(%(x)s), PyArray_DIMS(%(x)s), %(typenum_z)s, 0); if (!%(z)s) { %(fail)s; } } // Perform the elemwise operation ((npy_%(dtype_z)s *)PyArray_DATA(%(z)s))[0] = 0; elemwise_op_%(name)s((npy_%(dtype_x)s*)PyArray_DATA(%(x)s), PyArray_STRIDES(%(x)s), %(itemsize_x)s, (npy_%(dtype_z)s*)PyArray_DATA(%(z)s), PyArray_STRIDES(%(z)s), %(itemsize_z)s, PyArray_NDIM(%(x)s), PyArray_DIMS(%(x)s) ); """ return c_code % locals() mult4plus5op = AXPBOp(4,5) x = theano.tensor.matrix() y = mult4plus5op( x ) print(y) theano.printing.pprint(y) theano.printing.debugprint(y) theano.printing.pydotprint(y) print("Compiling") f = theano.function([x], y) theano.printing.debugprint(f) print("Eval") ind = numpy.random.rand(3,2).astype('float32') print("Equality", numpy.allclose(f(ind), 4 * ind + 5 )) print(mult4plus5op)
StarcoderdataPython
3536090
<reponame>weihsuanchou/algorithm_py<gh_stars>0 #i manually increase from typing import List class Solution: def removeElement(self, nums: List[int], val: int) -> int: if nums is None or nums == []: return 0 i = 0 for j in range(len(nums)): if nums[j] != val: #bring all follwing number one index forward nums[i] = nums[j] i += 1 return i def main(): print( "hello") s = Solution() print("output: ", s.removeElement( [0,1,2,2,3,0,4,2], 2)) if __name__ == "__main__": main()
StarcoderdataPython
3330457
"""Module of the routes of the Auth blueprint """ from flask import render_template, request, url_for, redirect, flash from flask_login import login_user, current_user, login_required, logout_user from app.auth import auth from app.auth.forms import LoginForm from app.models.administrator import Administrator @auth.route('/login/', methods=['GET', 'POST']) def login(): """View of login to the backstage""" if current_user.is_authenticated: return redirect(url_for('admin.index')) form = LoginForm() if form.validate_on_submit(): admin = Administrator.query \ .filter_by(name=form.name.data).first() if admin is not None and admin.verify_password(form.password.data): login_user(admin, form.remember_me.data) redirect_url = request.args.get('next') if redirect_url is None or not redirect_url.startswith('/'): redirect_url = url_for('admin.index') return redirect(redirect_url) flash('Invalid administrator name or password') return render_template('/auth/login.html', form=form) @auth.route('/logout/') @login_required def logout(): """View of logout""" logout_user() flash('Administrator Logged out') return redirect(url_for('main.index'))
StarcoderdataPython
9663353
<reponame>adfoucart/deephisto from .PAN import PAN from .ShortRes import ShortRes from .UNet import UNet from .BaseNetwork import BaseNetwork
StarcoderdataPython
11294534
""" Blind SQL Injection (BSQLI) PayloadGroup type """ #FIXME: how does this handle add_payload? see PNKTHR-43 from massweb.payloads.bsqli_payload import BSQLIPayload from massweb.payloads.payload_group import PayloadGroup class BSQLIPayloadGroup(PayloadGroup): """ Blind SQL Injection Payload type: contains multiple pairs of BSQLIPayloads""" def __init__(self, true_payload, false_payload): """ Initialize this BSQLIPayloadGroup. true_payload BSQLIPayload for the true SQL statement false_payload BSQLIPayload for the false SQL statement """ if isinstance(true_payload, BSQLIPayload) and isinstance(false_payload, BSQLIPayload): pass else: raise TypeError("input payloads must be of type BSQLIPayload") #FIXME: maybe just negate this and skip the else? if true_payload.payload_attributes["truth"] == True and false_payload.payload_attributes["truth"] == False: pass else: raise ValueError("true_payload must have an truth attribute of True and false_payload must have a truth attribute of False") self.true_payload = true_payload self.false_payload = false_payload """ payload_false = BSQLIPayload("dddd", {"truth" : False}) payload_true = BSQLIPayload("ddd333d", {"truth" : True}) bspg = BSQLIPayloadGroup(payload_true, payload_false) """
StarcoderdataPython
6625769
#!/usr/bin/env python # -*- coding: utf-8 -*- """ROS2 Robot Simulation Launch File. This script simulates a robot in Gazebo simulation. Revision History: 2021-10-23 (Animesh): Baseline Software. Example: $ colcon build && source install/setup.bash && ros2 launch ros2_robot_simulation launch.py $ source install/setup.bash && ros2 launch ros2_robot_simulation launch.py $ ros2 launch ros2_robot_simulation launch.py """ #___Import Modules: import os from ament_index_python.packages import get_package_share_directory from launch import LaunchDescription from launch.substitutions import LaunchConfiguration from launch.actions import DeclareLaunchArgument, IncludeLaunchDescription from launch.launch_description_sources import PythonLaunchDescriptionSource from launch_ros.actions import Node #___Function: def generate_launch_description(): # Get the package directory ros2_world_simulation_dir = get_package_share_directory('ros2_world_simulation') ros2_robot_simulation_dir = get_package_share_directory('ros2_robot_simulation') # Create launch configuration variables use_simulator = LaunchConfiguration('use_simulator') headless = LaunchConfiguration('headless') world = LaunchConfiguration('world') x_pos = LaunchConfiguration('x_pos') y_pos = LaunchConfiguration('y_pos') z_pos = LaunchConfiguration('z_pos') roll = LaunchConfiguration('roll') pitch = LaunchConfiguration('pitch') yaw = LaunchConfiguration('yaw') urdf_file = LaunchConfiguration('urdf_file') # Declare the launch arguments declare_use_simulator_cmd = DeclareLaunchArgument( 'use_simulator', default_value='True', description='Whether to start the simulator') declare_simulator_cmd = DeclareLaunchArgument( 'headless', default_value='False', description='Whether to execute gzclient)') declare_world_cmd = DeclareLaunchArgument( 'world', default_value=os.path.join(ros2_world_simulation_dir, 'worlds', 'empty.world'), description='Full path to world model file to load') declare_x_pos_cmd = DeclareLaunchArgument( 'x_pos', default_value='0.0') declare_y_pos_cmd = DeclareLaunchArgument( 'y_pos', default_value='0.0') declare_z_pos_cmd = DeclareLaunchArgument( 'z_pos', default_value='0.0') declare_roll_cmd = DeclareLaunchArgument( 'roll', default_value='0.0') declare_pitch_cmd = DeclareLaunchArgument( 'pitch', default_value='0.0') declare_yaw_cmd = DeclareLaunchArgument( 'yaw', default_value='0.0') declare_urdf_file_cmd = DeclareLaunchArgument( 'urdf_file', default_value='jetbot.urdf') # Specify the actions world_launch_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(ros2_world_simulation_dir, 'launch', 'launch.py')), launch_arguments={'use_simulator': use_simulator, 'headless': headless, 'world': world}.items()) spawn_robot_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(ros2_robot_simulation_dir, 'launch', 'spawn.py')), launch_arguments={'x_pos': x_pos, 'y_pos': y_pos, 'z_pos': z_pos, 'roll': roll, 'pitch': pitch, 'yaw': yaw, 'urdf': urdf_file}.items()) robot_states_cmd = IncludeLaunchDescription( PythonLaunchDescriptionSource(os.path.join(ros2_robot_simulation_dir, 'launch', 'states.py')), launch_arguments={'urdf': urdf_file,}.items()) # Create the launch description and populate ld = LaunchDescription() # Declare the launch options ld.add_action(declare_use_simulator_cmd) ld.add_action(declare_simulator_cmd) ld.add_action(declare_world_cmd) ld.add_action(declare_x_pos_cmd) ld.add_action(declare_y_pos_cmd) ld.add_action(declare_z_pos_cmd) ld.add_action(declare_roll_cmd) ld.add_action(declare_pitch_cmd) ld.add_action(declare_yaw_cmd) ld.add_action(declare_urdf_file_cmd) # Add all actions ld.add_action(world_launch_cmd) ld.add_action(spawn_robot_cmd) ld.add_action(robot_states_cmd) return ld # # end of file """ANI717"""
StarcoderdataPython
6580933
<filename>fas2ipa/cli.py<gh_stars>0 from urllib.parse import parse_qs, urlencode import click import vcr from python_freeipa import ClientLegacy as Client from fedora.client.fas2 import AccountSystem from .config import get_config from .statistics import Stats from .users import Users from .groups import Groups from .agreements import Agreements class FASWrapper: _remove_from_request_body = ("_csrf_token", "user_name", "password", "login") def __init__(self, config): self.fas = AccountSystem( config["fas"]["url"], username=config["fas"]["username"], password=config["fas"]["password"], ) self._replay = config["replay"] self._recorder = vcr.VCR( ignore_hosts=config["ipa"]["instances"], record_mode="new_episodes", filter_post_data_parameters=self._remove_from_request_body, ) self._recorder.register_matcher("fas2ipa", self._vcr_match_request) def _vcr_match_request(self, r1, r2): assert r1.query == r2.query body1 = parse_qs(r1.body) body2 = parse_qs(r2.body) for param in self._remove_from_request_body: for body in (body1, body2): try: del body[param] except KeyError: pass assert body1 == body2 def _vcr_get_cassette_path(self, url, *args, **kwargs): params = kwargs.get("req_params", {}) cassette_path = [ "fixtures/fas-", url[1:].replace("/", "_"), ".yaml", ] if params: cassette_path[2:2] = [ "-", urlencode(params, doseq=True), ] return "".join(cassette_path) def send_request(self, url, *args, **kwargs): if not self._replay: return self.fas.send_request(url, *args, **kwargs) cassette_path = self._vcr_get_cassette_path(url, *args, **kwargs) with self._recorder.use_cassette(cassette_path, match_on=["fas2ipa"]): return self.fas.send_request(url, *args, **kwargs) @click.command() @click.option("--skip-groups", is_flag=True, help="Skip group creation") @click.option( "--skip-user-add", is_flag=True, help="Don't add or update users", ) @click.option( "--skip-user-membership", is_flag=True, help="Don't add users to groups", ) @click.option( "--skip-user-signature", is_flag=True, help="Don't store users signatures of agreements", ) @click.option("--users-start-at", help="Start migrating users at that letter") def cli( skip_groups, skip_user_add, skip_user_membership, skip_user_signature, users_start_at, ): config = get_config() config["skip_groups"] = skip_groups config["skip_user_add"] = skip_user_add config["skip_user_membership"] = skip_user_membership config["skip_user_signature"] = skip_user_signature fas = FASWrapper(config) click.echo("Logged into FAS") instances = [] for instance in config["ipa"]["instances"]: ipa = Client(host=instance, verify_ssl=config["ipa"]["cert_path"]) ipa.login(config["ipa"]["username"], config["ipa"]["password"]) instances.append(ipa) click.echo("Logged into IPA") stats = Stats() agreements = Agreements(config, instances, fas) if config.get("agreement"): agreements.create() groups = Groups(config, instances, fas, agreements=agreements) groups_stats = groups.migrate_groups() stats.update(groups_stats) users = Users(config, instances, fas, agreements=agreements) users_stats = users.migrate_users(users_start_at=users_start_at) stats.update(users_stats) stats.print()
StarcoderdataPython
5071326
<filename>pd-service-ep-toggle.py #!/usr/local/bin/python import requests import json apiKey = 'YOURAPIKEYGOESHERE' # api key MUST have write access serviceId = 'PR8MOOH' weekdayEpId = 'P5IB0SR' weekendEpId = 'PDJMLYV' url = "https://api.pagerduty.com/services/" + serviceId headers = { 'Authorization': 'Token token=' + apiKey, 'Accept': 'application/vnd.pagerduty+json;version=2', 'Content-Type': 'application/json' } response = requests.request("GET", url, headers=headers) serviceDetails = response.json()['service'] currentEp = serviceDetails['escalation_policy']['id'] if currentEp == weekdayEpId: newEp = weekendEpId else: newEp = weekdayEpId print("\n") print("Service Name: " + serviceDetails['name'] + " (" + serviceId + ")") print("----------------------------------------------") print("🔴 Previous EP: " + currentEp) payload = json.dumps({ "service": { "type": "service", "escalation_policy": { "id": newEp, "type": "escalation_policy_reference" } } }) requests.request("PUT", url, headers=headers, data=payload) print("🟢 Updated EP: " + newEp) print("\n")
StarcoderdataPython
4952788
<reponame>IndustryApps/flask-eureka # coding: utf-8 from flask_eureka.eureka import Eureka, eureka_bp
StarcoderdataPython
3581597
#Copyright (C) 2019. Huawei Technologies Co., Ltd. All rights reserved. #This program is free software; you can redistribute it and/or modify it under the terms of the BSD 3-Clause License. #This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the BSD 3-Clause License for more details. import os cpu_num = 4 import resnet import torch import torch.nn as nn import torch.nn.functional as F import numpy as np import math # from torch.autograd import Variable from resnet import ResNet18,ResNet34 from torchvision.datasets import CIFAR100,ImageFolder,CIFAR10 import torchvision.transforms as transforms from torch.utils.data import DataLoader from timm.models import create_model import vision_transformer from loss import kdloss, csloss, patch_attention_probe_loss, robust_kdloss from utils import accuracy, AverageMeter from functools import partial import random from PIL import Image, ImageFile ImageFile.LOAD_TRUNCATED_IMAGES = True import pdb import numpy as np import warnings os.environ['OMP_NUM_THREADS'] = str(cpu_num) os.environ['OPENBLAS_NUM_THREADS'] = str(cpu_num) os.environ['MKL_NUM_THREADS'] = str(cpu_num) os.environ['VECLIB_MAXIMUM_THREADS'] = str(cpu_num) os.environ['NUMEXPR_NUM_THREADS'] = str(cpu_num) torch.set_num_threads(cpu_num) warnings.filterwarnings('ignore') import argparse parser = argparse.ArgumentParser() parser.add_argument('--num_select', type=int, default=600000) parser.add_argument('--data_cifar', type=str, default='/home/wjh19/database/cifar10/') parser.add_argument('--data_imagenet', type=str, default='/home/wjh19/database/imagenet/train/') parser.add_argument('--teacher', default='deit_base_patch4_32_teacher', type=str, metavar='MODEL', help='Name of teacher model to train (default: "regnety_160"') parser.add_argument('--teacher_dir', type=str, default='/home/wjh19/mage/DFND_DeiT/output/cifar10/teacher/checkpoint.pth') parser.add_argument('--nb_classes', type=int, default=10, help='number of classes') parser.add_argument('--lr_S', type=float, default=7.5e-4, help='learning rate') parser.add_argument('--robust', action='store_true', default=False, help='Robust distillation enabled (if avail)') parser.add_argument('--attnprobe_sel', action='store_true', default=False, help='Distillation by attention prime enabled (if avail)') parser.add_argument('--random', action='store_true', default=False, help='Randomly select wild data (if avail)') parser.add_argument('--attnprobe_dist', action='store_true', default=False, help='Distillation by attention prime enabled (if avail)') parser.add_argument('--attnlier', type=float, default=0.05, help='weight of attention layer to sample the wild data') parser.add_argument('--outlier', type=float, default=0.9, help='weight of output layer to sample the wild data') parser.add_argument('--patchattn', type=float, default=0.8, help='weight of patch attention loss') parser.add_argument('--pos_num', type=int, default=129) parser.add_argument('--dataset', type=str, default='cifar10', choices=['cifar10','cifar100','imagenet','mnist']) parser.add_argument('--epochs', type=float, default=800) parser.add_argument('--output_dir', type=str, default='/home/wjh19/mage/DFND_DeiT/output/cifar10/') parser.add_argument('--selected_file', type=str, default='/home/wjh19/mage/DFND_DeiT/selected/cifar10/') parser.add_argument('--schedule', default=[200, 300], nargs='*', type=int, help='learning rate schedule (when to drop lr by 10x)') parser.add_argument('--cos', action='store_true', help='use cosine lr schedule') args,_ = parser.parse_known_args() acc = 0 acc_best = 0 teacher = None assert args.teacher_dir, 'need to specify teacher-path when using distillation' print(f"Creating teacher model: {args.teacher}") teacher = create_model( args.teacher, pretrained=False, num_classes=args.nb_classes, ) if args.dataset == 'imagenet': embed_dim = 768 num_heads = 12 img_size = 224 else: embed_dim = 384 num_heads = 3 img_size = 32 checkpoint = torch.load(args.teacher_dir, map_location='cpu') teacher.load_state_dict(checkpoint['model']) teacher.cuda() teacher.eval() teacher = nn.DataParallel(teacher) # teacher = torch.load(args.teacher_dir + 'teacher').cuda() # teacher.eval() for parameter in teacher.parameters(): parameter.requires_grad = False def get_class_weight(model, dataloader, num_classes=10, T=1): classes_outputs = np.zeros(num_classes) model.eval() if os.path.exists(args.selected_file + 'class_weights.pth'): class_weights = torch.load(args.selected_file + 'class_weights.pth') else: for i,(inputs, labels) in enumerate(dataloader): inputs = inputs.cuda() with torch.set_grad_enabled(False): outputs, output_feature_t = model(inputs) outputs = F.softmax(outputs/T, dim=1) for j in range(inputs.shape[0]): classes_outputs += outputs[j].cpu().data.numpy() class_weights = 1/classes_outputs weights_sum = np.sum(class_weights) class_weights /= weights_sum class_weights *= num_classes torch.save(class_weights, args.selected_file + 'class_weights.pth') return class_weights def perturb(weight, epsilon=0.1, perturb_num=1): weights = [] weights.append(weight) for i in range(perturb_num): p = np.random.rand(weight.shape[0]) * epsilon weight_new = weight + p weights.append(weight_new) return weights normalize = transforms.Normalize(mean=[0.4914, 0.4822, 0.4465], std=[0.2023, 0.1994, 0.2010]) data_train = ImageFolder(args.data_imagenet, transforms.Compose([ transforms.Resize((img_size,img_size)), transforms.ToTensor(), normalize, ])) data_train_transform = ImageFolder(args.data_imagenet, transforms.Compose([ transforms.Resize((img_size,img_size)), transforms.RandomCrop(img_size, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ])) transform_train = transforms.Compose([ transforms.RandomCrop(img_size, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) transform_train_imagenet = transforms.Compose([ transforms.Resize(224), transforms.RandomCrop(224, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), normalize, ]) transform_test_imagenet = transforms.Compose([ transforms.Resize(224), transforms.CenterCrop(224), transforms.ToTensor(), normalize, ]) if args.dataset == 'cifar100': data_test = CIFAR100(args.data_cifar, train=False, transform=transform_test) teacher_acc = torch.tensor([0.7630]) n_classes = 100 if args.dataset == 'cifar10': data_test = CIFAR10(args.data_cifar, train=False, transform=transform_test) teacher_acc = torch.tensor([0.9665]) n_classes = 10 if args.dataset == 'imagenet': label_trainset = ImageFolder(os.path.join(args.data_cifar, 'train'), transform_train_imagenet) data_test = ImageFolder(os.path.join(args.data_cifar, 'val'), transform_test_imagenet) teacher_acc = torch.tensor([0.8118]) n_classes = 1000 if os.path.exists(args.selected_file + 'labelset_index_dict.pth'): labelset_index = torch.load(args.selected_file + 'labelset_index_dict.pth')['positive_index'] else: labelset_index = [] classnum = np.ones(n_classes) * args.pos_num i = 0 sample_idx = 0 while(np.sum(classnum) > 0): image = label_trainset[i][0] label = label_trainset[i][1] if(classnum[label] > 0): labelset_index.append(i) classnum[label] -= 1 sample_idx += 1 i += 1 print('Sample %d from the original dataset.' % sample_idx) labelset_index_dict = {} labelset_index_dict['positive_index'] = labelset_index torch.save(labelset_index_dict, args.selected_file + 'labelset_index_dict.pth') print("Positive data has been sampled from the original dataset!") label_train_subset = torch.utils.data.Subset(label_trainset, labelset_index) data_test_loader = DataLoader(data_test, batch_size=1000, num_workers=0) noise_adaptation = torch.nn.Parameter(torch.zeros(n_classes,n_classes-1)) def noisy(noise_adaptation): # noise_adaptation_softmax: (n_classes,n_classes-1) noise_adaptation_softmax = torch.nn.functional.softmax(noise_adaptation,dim=1) * (1 - teacher_acc) # noise_adaptation_layer: (n_classes,n_classes) noise_adaptation_layer = torch.zeros(n_classes,n_classes) for i in range(n_classes): if i == 0: noise_adaptation_layer[i] = torch.cat([teacher_acc,noise_adaptation_softmax[i][i:]]) if i == n_classes-1: noise_adaptation_layer[i] = torch.cat([noise_adaptation_softmax[i][:i],teacher_acc]) else: noise_adaptation_layer[i] = torch.cat([noise_adaptation_softmax[i][:i],teacher_acc,noise_adaptation_softmax[i][i:]]) # noise_adaptation_layer: (n_classes,n_classes) return noise_adaptation_layer.cuda() # net = ResNet18(n_classes).cuda() if args.dataset == 'imagenet': print("Creating student model: deiT_tiny_patch16_224") net = vision_transformer.TeacherVisionTransformer(img_size=224, patch_size=16, in_chans=3, num_classes=args.nb_classes, embed_dim=192, depth=12, num_heads=3, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).cuda() else: print("Creating student model: deiT_xtiny_patch4_32") net = vision_transformer.TeacherVisionTransformer(img_size=32, patch_size=4, in_chans=3, num_classes=args.nb_classes, embed_dim=128, depth=12, num_heads=2, mlp_ratio=4, qkv_bias=True, norm_layer=partial(nn.LayerNorm, eps=1e-6)).cuda() net = torch.nn.DataParallel(net) criterion = torch.nn.CrossEntropyLoss().cuda() celoss = torch.nn.CrossEntropyLoss(reduction = 'none').cuda() # optimizer = torch.optim.SGD(list(net.parameters()), lr=0.1, momentum=0.9, weight_decay=5e-4) optimizer = torch.optim.AdamW(net.parameters(), lr=args.lr_S, weight_decay=0.025) optimizer_noise = torch.optim.Adam([noise_adaptation], lr=0.001) data_train_loader_noshuffle = DataLoader(data_train, batch_size=256, shuffle=False, num_workers=8) def identify_attnlier(checkpoint, embed_dim, num_heads): value_blk3 = [] value_blk7 = [] # pred_list = [] attn_inputs_blk3 = [] attn_inputs_blk7 = [] index = 0 embed_dim = int(embed_dim/num_heads) scale = embed_dim ** -0.5 teacher.eval() # Obtain weights and bias # linear_weight_blk_3: (1152, 384). linear_bias_blk_3: (1152) linear_weight_blk_3 = checkpoint['model']['blocks.3.attn.qkv.weight'].cuda() linear_bias_blk_3 = checkpoint['model']['blocks.3.attn.qkv.bias'].cuda() # linear_weight_q_blk_3, linear_weight_k_blk_3, linear_weight_v_blk_3 = torch.split(linear_weight_blk_3, [384, 384, 384], dim=0) linear_weight_blk_7 = checkpoint["model"]['blocks.7.attn.qkv.weight'].cuda() linear_bias_blk_7 = checkpoint["model"]['blocks.7.attn.qkv.bias'].cuda() # linear_weight_q_blk_7, linear_weight_k_blk_7, linear_weight_v_blk_7 = torch.split(linear_weight_blk_7, [384, 384, 384], dim=0) hooksadd = [ teacher.module.blocks[3].attn.register_forward_hook( lambda self, input, output: attn_inputs_blk3.append(input) ), teacher.module.blocks[7].attn.register_forward_hook( lambda self, input, output: attn_inputs_blk7.append(input) ), ] for i,(inputs, labels) in enumerate(data_train_loader_noshuffle): inputs = inputs.cuda() outputs, output_feature = teacher(inputs) # calculate input × weights and view the shape # B, N, C = 256, 65, 384 B, N, C = attn_inputs_blk3[index][0].shape uniform = (torch.ones(B, N-1)/(N-1)).float().cuda() qkv_blk_3 = torch.bmm(attn_inputs_blk3[0][0], linear_weight_blk_3.unsqueeze(0).repeat(B, 1, 1).permute(0, 2, 1)) + linear_bias_blk_3 qkv_blk_3 = qkv_blk_3.reshape(B, N, 3, num_heads, embed_dim).permute(2, 0, 3, 1, 4) q_blk_3, k_blk_3, v_blk_3 = qkv_blk_3[0], qkv_blk_3[1], qkv_blk_3[2] # make torchscript happy (cannot use tensor as tuple) # attn_blk_3: (B, num_heads, N, N) = (256, num_heads, 65, 65) attn_blk_3 = (q_blk_3 @ k_blk_3.transpose(-2, -1)) * scale attn_blk_3 = attn_blk_3.softmax(dim=-1) # attnprime_blk_3: (B, N-1) = (256, 64) attnprime_blk_3 = attn_blk_3[:,0,0,1:] qkv_blk_7 = torch.bmm(attn_inputs_blk7[0][0], linear_weight_blk_7.unsqueeze(0).repeat(B, 1, 1).permute(0, 2, 1)) + linear_bias_blk_7 qkv_blk_7 = qkv_blk_7.reshape(B, N, 3, num_heads, embed_dim).permute(2, 0, 3, 1, 4) q_blk_7, k_blk_7, v_blk_7 = qkv_blk_7[0], qkv_blk_7[1], qkv_blk_7[2] # make torchscript happy (cannot use tensor as tuple) # attn_blk_7: (B, num_heads, N, N) attn_blk_7 = (q_blk_7 @ k_blk_7.transpose(-2, -1)) * scale attn_blk_7 = attn_blk_7.softmax(dim=-1) # attnprime_blk_7: (B, N-1) attnprime_blk_7 = attn_blk_7[:,0,0,1:] loss_blk3 = csloss(attnprime_blk_3, uniform) loss_blk7 = csloss(attnprime_blk_7, uniform) value_blk3.append(loss_blk3.detach().clone()) value_blk7.append(loss_blk7.detach().clone()) attn_inputs_blk3.clear() attn_inputs_blk7.clear() print('Considering attnlier of batch %d from the wild massive unlabeled dataset.' % i) for hook in hooksadd: hook.remove() return torch.cat(value_blk3,dim=0), torch.cat(value_blk7,dim=0) def identify_outlier(): value = [] pred_list = [] index = 0 teacher.eval() for i,(inputs, labels) in enumerate(data_train_loader_noshuffle): inputs = inputs.cuda() # outputs: (bs, n_classes) outputs, output_feature = teacher(inputs) # pred: (bs, 1) pred = outputs.data.max(1)[1] loss = celoss(outputs, pred) value.append(loss.detach().clone()) index += inputs.shape[0] pred_list.append(pred) print('Considering outlier of batch %d from the wild massive unlabeled dataset.' % i) return torch.cat(value,dim=0), torch.cat(pred_list,dim=0) def train(epoch, trainloader, nll, class_weights): net.train() loss_list, batch_list = [], [] interval = len(trainloader) // 6 for i, (images, labels) in enumerate(trainloader): images, labels = images.cuda(), labels.cuda() optimizer.zero_grad() optimizer_noise.zero_grad() output, output_feature_s = net(images) output_t, output_feature_t = teacher(images) output_t = output_t.detach() output_feature_t = output_feature_t.detach() pred = output_t.data.max(1)[1] preds_t = pred.cpu().data.numpy() if args.robust: for class_weight in class_weights: weights = torch.from_numpy(class_weight[preds_t]).float().cuda() loss = robust_kdloss(output, output_t, weights) else: loss = kdloss(output, output_t) output_s = F.softmax(output, dim=1) output_s_adaptation = torch.matmul(output_s, noisy(noise_adaptation)) loss += nll(torch.log(output_s_adaptation), pred) if args.attnprobe_dist: loss_patch_attn = args.patchattn * patch_attention_probe_loss(output_feature_t, output_feature_s) loss += loss_patch_attn loss_list.append(loss.data.item()) batch_list.append(i+1) if (i % interval) == 0: if args.attnprobe_dist: print('Train - Epoch %d, Batch: %d, Loss: %f, Loss_attn: %f' % (epoch, i, loss.data.item(), loss_patch_attn.data.item())) else: print('Train - Epoch %d, Batch: %d, Loss: %f' % (epoch, i, loss.data.item())) loss.backward() optimizer.step() optimizer_noise.step() def test(epoch): global acc, acc_best, epoch_best net.eval() top1 = AverageMeter('Acc@1', ':6.2f') top5 = AverageMeter('Acc@5', ':6.2f') total_correct = 0 avg_loss = 0.0 with torch.no_grad(): for i, (images, labels) in enumerate(data_test_loader): images, labels = images.cuda(), labels.cuda() output, output_feature_s = net(images) avg_loss += criterion(output, labels).sum() pred = output.data.max(1)[1] total_correct += pred.eq(labels.data.view_as(pred)).sum() acc1, acc5 = accuracy(output, labels, topk=(1, 5)) top1.update(acc1[0], images.size(0)) top5.update(acc5[0], images.size(0)) avg_loss /= len(data_test) acc = float(total_correct) / len(data_test) if acc_best < acc: torch.save(net.state_dict(), args.output_dir + 'student/' + 'checkpoint.pth') acc_best = acc epoch_best = epoch print('Test Avg. Loss: %f, Accuracy: %f. Epoch: %d' % (avg_loss.data.item(), acc, epoch)) print('******** ******** ********') print('Test Avg Best. Accuracy: %f. Epoch: %d' % (acc_best, epoch_best)) print(' * Acc@1 {top1.avg:.3f} Acc@5 {top5.avg:.3f}'.format(top1=top1, top5=top5)) def train_and_test(epoch, trainloader3, nll, class_weight): train(epoch, trainloader3, nll, class_weight) test(epoch) # def adjust_learning_rate(optimizer, epoch, max_epoch): # """For resnet, the lr starts from 0.1, and is divided by 10 at 80 and 120 epochs""" # if epoch < (max_epoch/200.0*80.0): # lr = 0.1 # elif epoch < (max_epoch/200.0*160.0): # lr = 0.01 # else: # lr = 0.001 # for param_group in optimizer.param_groups: # param_group['lr'] = lr def adjust_learning_rate(optimizer, epoch, max_epoch, args): """Decay the learning rate based on schedule""" lr = args.lr_S if args.cos: # cosine lr schedule lr *= 0.5 * (1. + math.cos(math.pi * epoch / max_epoch)) else: # stepwise lr schedule for milestone in args.schedule: lr *= 0.1 if epoch >= milestone else 1. for param_group in optimizer.param_groups: param_group['lr'] = lr def get_positive(value_blk3, value_blk7, value_out, args): positive_index = [] if args.attnprobe_sel: value = value_out else: value = args.attnlier * (value_blk3 + value_blk7) + args.outlier * value_out if args.random: print('randomly selected!') positive_index = torch.tensor(random.sample(range(1281167), args.num_select)) else: positive_index = value.topk(args.num_select,largest=False)[1] return positive_index def main(): global acc_best if os.path.exists(args.selected_file + 'value_out.pth'): value_out = torch.load(args.selected_file + 'value_out.pth').cuda() pred_out = torch.load(args.selected_file + 'pred_out.pth').cuda() value_blk3 = torch.load(args.selected_file + 'value_blk3.pth').cuda() value_blk7 = torch.load(args.selected_file + 'value_blk7.pth').cuda() # value_numpy = np.loadtxt(args.selected_file + '/value.txt') # value = torch.Tensor(value_numpy) # pred_numpy = np.loadtxt(args.selected_file + '/pred.txt') # pred = torch.Tensor(pred_numpy) else: value_blk3, value_blk7 = identify_attnlier(checkpoint, embed_dim, num_heads) value_out, pred_out = identify_outlier() torch.save(value_out, args.selected_file + 'value_out.pth') torch.save(pred_out, args.selected_file + 'pred_out.pth') torch.save(value_blk3, args.selected_file + 'value_blk3.pth') torch.save(value_blk7, args.selected_file + 'value_blk7.pth') # np.savetxt(args.selected_file + '/value.txt', value.numpy(), fmt='%d',delimiter=None) # np.savetxt(args.selected_file + '/pred.txt', pred.numpy(), fmt='%d',delimiter=None) positive_index = get_positive(value_blk3, value_blk7, value_out, args) nll = torch.nn.NLLLoss().cuda() positive_index = positive_index.tolist() data_train_select = torch.utils.data.Subset(data_train_transform, positive_index) trainloader3 = torch.utils.data.DataLoader(label_train_subset + data_train_select, batch_size=256, shuffle=True, num_workers=8, pin_memory=True) class_weight = get_class_weight(teacher, trainloader3, num_classes=args.nb_classes) print(class_weight) class_weights = perturb(class_weight) epoch = int(640000/args.num_select * 512) for e in range(1, epoch): adjust_learning_rate(optimizer, e, epoch, args) train_and_test(e, trainloader3, nll, class_weights) print(acc_best) if __name__ == '__main__': main()
StarcoderdataPython
11262630
import re from ._abstract import AbstractScraper from ._utils import get_minutes, get_yields, normalize_string class SunBasket(AbstractScraper): @classmethod def host(self, domain="com"): return f"sunbasket.{domain}" def title(self): return self.soup.find("h1").get_text() def total_time(self): minutes_tag = self.soup.find("span", text=re.compile(r"Minutes")) return get_minutes(minutes_tag.parent.get_text()) def yields(self): yields_tag = self.soup.find("span", text=re.compile(r"Servings,")) return get_yields(yields_tag.parent.get_text()) def ingredients(self): ingredients_container = self.soup.find(class_="ingredients-list") ingredients = ingredients_container.findAll("li") return [normalize_string(ingredient.get_text()) for ingredient in ingredients] def instructions(self): instructions_container = self.soup.find( "div", {"class": "instructions-container"} ) instructions = instructions_container.findAll("div", {"class": "step"}) instruction_list = [] for instruction in instructions: step_number_tag = instruction.find(class_="step-number") if step_number_tag is not None: step_number = normalize_string( instruction.find(class_="step-number").get_text() ) step_name = normalize_string( instruction.find(class_="step-header").get_text() ) step_instructions = normalize_string( instruction.find(class_="instruction-description").get_text() ) instruction_list.append( f"{step_number}: {step_name} - {step_instructions}" ) return instruction_list def image(self): container = self.soup.find("div", {"class": "recipe-image-container"}) if not container: return None image = container.find("img", {"src": True}) return image["src"] if image else None
StarcoderdataPython
3494335
<reponame>tperka-catalogicsoftware/pre-commit-maven import argparse import os.path from pre_commit_maven.utils import generic_main CWD = os.getcwd() def main(cwd=CWD, print_fn=print, execute_fn=generic_main.execute) -> int: return execute_fn(["clean", "test"], cwd) if __name__ == "__main__": exit(main())
StarcoderdataPython
1955796
<filename>data_acquisition/figure_A7/2016_11_18_modulated_imaging_darkfield_nanodiamond_7_extra_green_filter/registration_brightness_correction_rep_avg.py import numpy as np from scipy.ndimage import gaussian_filter from stack_registration import stack_registration, apply_registration_shifts import np_tif def main(): # each raw data stack has a full red and green power scan with red # varying slowly and green varying more quickly and green/red pulse # delay varying the quickest (5 delays, middle delay is 0 delay) num_reps = 200 # number power scans taken num_red_powers = 7 num_green_powers = 13 num_delays = 5 image_h = 128 image_w = 380 less_rows = 3 # top/bottom 3 rows may contain leakage from outside pixels top = less_rows bot = image_h - less_rows # assume no sample motion during a single power scan # allocate hyperstack to carry power/delay-averaged images for registration data_rep = np.zeros(( num_reps, image_h - less_rows * 2, image_w, ), dtype=np.float64) data_rep_bg = np.zeros(( num_reps, image_h - less_rows * 2, image_w, ), dtype=np.float64) # allocate array to carry a number corresponding to the average red # beam brightness for each red power red_avg_brightness = np.zeros((num_red_powers)) # populate hyperstack from data for rep_num in range(num_reps): filename = 'STE_darkfield_power_delay_scan_' + str(rep_num) + '.tif' print("Loading", filename) imported_power_scan = np_tif.tif_to_array( filename).astype(np.float64)[:, top:bot, :] red_avg_brightness += get_bg_level( imported_power_scan.reshape( num_red_powers, num_green_powers, num_delays, image_h - less_rows * 2, image_w).mean(axis=1).mean(axis=1) ) / (2 * num_reps) data_rep[rep_num, :, :] = imported_power_scan.mean(axis=0) filename_bg = ( 'STE_darkfield_power_delay_scan_' + str(rep_num) + '_green_blocked.tif') print("Loading", filename_bg) imported_power_scan_bg = np_tif.tif_to_array( filename_bg).astype(np.float64)[:, top:bot, :] red_avg_brightness += get_bg_level( imported_power_scan_bg.reshape( num_red_powers, num_green_powers, num_delays, image_h - less_rows * 2, image_w).mean(axis=1).mean(axis=1) ) / (2 * num_reps) data_rep_bg[rep_num, :, :] = imported_power_scan_bg.mean(axis=0) # reshape red_avg_brightness to add a dimension for multiplication # with a brightness array with dimensions num_red_powers X num_green # powers X num_delays red_avg_brightness = red_avg_brightness.reshape(num_red_powers, 1, 1) # pick image/slice for all stacks to align to representative_rep_num = 0 align_slice = data_rep[representative_rep_num, :, :] # save pre-registered average data (all powers for each rep) np_tif.array_to_tif(data_rep, 'dataset_not_registered_power_avg.tif') np_tif.array_to_tif(data_rep_bg, 'dataset_green_blocked_not_registered_power_avg.tif') # compute registration shifts print("Computing registration shifts...") shifts = stack_registration( data_rep, align_to_this_slice=align_slice, refinement='integer', register_in_place=True, background_subtraction='edge_mean') print("Computing registration shifts (no green) ...") shifts_bg = stack_registration( data_rep_bg, align_to_this_slice=align_slice, refinement='integer', register_in_place=True, background_subtraction='edge_mean') # save registered average data (all powers for each rep) and shifts np_tif.array_to_tif(data_rep, 'dataset_registered_power_avg.tif') np_tif.array_to_tif(data_rep_bg, 'dataset_green_blocked_registered_power_avg.tif') np_tif.array_to_tif(shifts, 'shifts.tif') np_tif.array_to_tif(shifts_bg, 'shifts_bg.tif') # now apply shifts to raw data and compute space-averaged signal # and representative images # define box around main lobe for computing space-averaged signal rect_top = 44 rect_bot = 102 rect_left = 172 rect_right = 228 # initialize hyperstacks for signal (with/without green light) print('Applying shifts to raw data...') signal = np.zeros(( num_reps, num_red_powers, num_green_powers, num_delays, ), dtype=np.float64) signal_bg = np.zeros(( num_reps, num_red_powers, num_green_powers, num_delays, ), dtype=np.float64) data_hyper_shape = ( num_red_powers, num_green_powers, num_delays, image_h, image_w) # get representative image cropping coordinates rep_top = 22 rep_bot = 122 rep_left = 136 rep_right = 262 # initialize representative images (with/without green light) darkfield_image = np.zeros((#num_reps, rep_bot-rep_top, rep_right-rep_left, ), dtype=np.float64) STE_image = np.zeros((#num_reps, rep_bot-rep_top, rep_right-rep_left, ), dtype=np.float64) darkfield_image_bg = np.zeros((#num_reps, rep_bot-rep_top, rep_right-rep_left, ), dtype=np.float64) STE_image_bg = np.zeros((#num_reps, rep_bot-rep_top, rep_right-rep_left, ), dtype=np.float64) # finally apply shifts and compute output data for rep_num in range(num_reps): filename = 'STE_darkfield_power_delay_scan_' + str(rep_num) + '.tif' data = np_tif.tif_to_array( filename).astype(np.float64)[:, top:bot, :] filename_bg = ('STE_darkfield_power_delay_scan_' + str(rep_num) + '_green_blocked.tif') data_bg = np_tif.tif_to_array(filename_bg).astype( np.float64)[:, top:bot, :] print(filename) print(filename_bg) # apply registration shifts apply_registration_shifts( data, registration_shifts=[shifts[rep_num]]*data.shape[0], registration_type='nearest_integer', edges='sloppy') apply_registration_shifts( data_bg, registration_shifts=[shifts_bg[rep_num]]*data_bg.shape[0], registration_type='nearest_integer', edges='sloppy') # re-scale images to compensate for red beam brightness fluctuations # for regular data local_laser_brightness = get_bg_level( data.reshape( num_red_powers, num_green_powers, num_delays, data.shape[-2], data.shape[-1])) local_calibration_factor = red_avg_brightness / local_laser_brightness local_calibration_factor = local_calibration_factor.reshape( num_red_powers * num_green_powers * num_delays, 1, 1) data = data * local_calibration_factor # for green blocked data local_laser_brightness_bg = get_bg_level( data_bg.reshape( num_red_powers, num_green_powers, num_delays, data.shape[-2], data.shape[-1])) local_calibration_factor_bg = ( red_avg_brightness / local_laser_brightness_bg) local_calibration_factor_bg = local_calibration_factor_bg.reshape( num_red_powers * num_green_powers * num_delays, 1, 1) data_bg = data_bg * local_calibration_factor_bg # draw rectangle around bright lobe and spatially average signal data_space_avg = data[:, rect_top:rect_bot, rect_left:rect_right].mean(axis=2).mean(axis=1) data_bg_space_avg = data_bg[:, rect_top:rect_bot, rect_left:rect_right].mean(axis=2).mean(axis=1) # reshape 1D signal and place in output file signal[rep_num, :, :, :] = data_space_avg.reshape( num_red_powers, num_green_powers, num_delays) signal_bg[rep_num, :, :, :] = data_bg_space_avg.reshape( num_red_powers, num_green_powers, num_delays) # capture average images for max red/green power image_green_power = num_green_powers - 1 image_red_power = num_red_powers - 1 STE_image += data[ -3, # Zero delay, max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps darkfield_image += data[ -1, # max red-green delay (2.5 us), max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps/2 # one of two maximum absolute red/green delay values darkfield_image += data[ -5, # min red-green delay (-2.5 us), max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps/2 # one of two maximum absolute red/green delay values STE_image_bg += data_bg[ -3, # Zero delay, max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps darkfield_image_bg += data_bg[ -1, # max red-green delay (2.5 us), max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps/2 # one of two maximum absolute red/green delay values darkfield_image_bg += data_bg[ -5, # min red-green delay (-2.5 us), max red power, max green power rep_top:rep_bot, rep_left:rep_right ]/num_reps/2 # one of two maximum absolute red/green delay values print('Done applying shifts') signal_tif_shape = (signal.shape[0] * signal.shape[1], signal.shape[2],signal.shape[3]) print("Saving...") np_tif.array_to_tif(signal.reshape(signal_tif_shape), 'signal_all_scaled.tif') np_tif.array_to_tif(signal_bg.reshape(signal_tif_shape), 'signal_green_blocked_all_scaled.tif') np_tif.array_to_tif(darkfield_image, 'darkfield_image_avg.tif') np_tif.array_to_tif(darkfield_image_bg, 'darkfield_image_bg_avg.tif') np_tif.array_to_tif(STE_image, 'STE_image_avg.tif') np_tif.array_to_tif(STE_image_bg, 'STE_image_bg_avg.tif') print("... done.") return None def get_bg_level(data): num_regions = 2 # region 1 bg_up = 9 bg_down = 112 bg_left = 325#270#325 bg_right = 366 bg_level = data[..., bg_up:bg_down, bg_left:bg_right].mean(axis=(-2, -1)) # region 2 bg_up = 9 bg_down = 112 bg_left = 8 bg_right = 64#130#64 bg_level += data[..., bg_up:bg_down, bg_left:bg_right].mean(axis=(-2, -1)) return(bg_level / num_regions) main()
StarcoderdataPython
3554981
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from polygraphy import mod, util from polygraphy.backend.base import BaseLoader onnxruntime = mod.lazy_import("onnxruntime") @mod.export(funcify=True) class SessionFromOnnx(BaseLoader): """ Functor that builds an ONNX-Runtime inference session. """ def __init__(self, model_bytes): """ Builds an ONNX-Runtime inference session. Args: model_bytes (Union[Union[bytes, str], Callable() -> Union[bytes, str]]): A serialized ONNX model or a path to a model or a callable that returns one of those. """ self._model_bytes_or_path = model_bytes def call_impl(self): """ Returns: onnxruntime.InferenceSession: The inference session. """ model_bytes, _ = util.invoke_if_callable(self._model_bytes_or_path) return onnxruntime.InferenceSession(model_bytes)
StarcoderdataPython
4924125
from django.conf.urls import url from django.contrib.auth.views import login from . import views urlpatterns = [ url(r'^private/$', views.private, name='private'), url(r'^register/$', views.CreateUser.as_view(), name='register'), url(r'^login/$', login, {'template_name': 'users/login.html'}, name='login'), url(r'^logout/$', views.logout_user, name='logout'), ]
StarcoderdataPython
353910
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # import python libs import json from pprint import pprint as pp import sys sys.path.append('../') # import project libs from constants import * from helper import * # defining globals & constants PREANNOTATIONS_START_INDEX = 27 BLOCK_OFFSET = 58 # methods def check_annotation_corrections(data_frame): for subject_id, subject_data in enumerate(data_frame): for block_index in range(0, 4): (preannotations, corrections) = restructure_data(subject_data, block_index) for index, number_of_annotations in enumerate(preannotations): if number_of_annotations != sum(corrections[index]): print('ERROR FOUND! subject', subject_id, ' block', block_index) print('sum does not match for class', index) print('expecting', number_of_annotations, 'annotations, got:', corrections[index]) print('full distribution and answer table for subject:') pp(preannotations) pp(corrections) exit() print('✓ annotation corrections of subject ID', subject_id, 'are valid') def restructure_data(subject_data, block_index): start_index = PREANNOTATIONS_START_INDEX + (BLOCK_OFFSET * block_index) preannotations = [ subject_data[start_index], subject_data[start_index + 7], subject_data[start_index + 14], subject_data[start_index + 21], subject_data[start_index + 28], subject_data[start_index + 35] ] corrections = [ [], [], [], [], [], [] ] data_offset = (BLOCK_OFFSET * block_index) for class_index in range(0, 6): for answer_index in range(0, 6): answer_count = subject_data[PREANNOTATIONS_START_INDEX + data_offset + 1 + class_index + answer_index] corrections[class_index].append(answer_count) data_offset += 6 return (preannotations, corrections) def check_shape(data_frame): header_length = len(data_frame[0]) for subject_id in range(0, len(data_frame) - 1): subject_row = data_frame[subject_id + 1] current_length = len(subject_row) if current_length != header_length: print('ERROR FOUND! row of subject ID', subject_id, 'is', current_length, 'but should be', header_length) exit() print('✓ length of subject ID', subject_id, 'is valid') data = read_json_file('../' + JSON_DATA_FRAME_FILE_NAME) check_shape(data) check_annotation_corrections(data)
StarcoderdataPython
8139441
#!/usr/bin/env python import roslib roslib.load_manifest('blob_tracker_base') import rospy from sensor_msgs.msg import RegionOfInterest from sensor_msgs.msg import CameraInfo from geometry_msgs.msg import Twist class BlobFollower: def __init__(self): self.blob = None self.info = None rospy.init_node('blob_follow') self.pub = rospy.Publisher("~twistOut",Twist,queue_size=1) rospy.Subscriber("~blob",RegionOfInterest,self.store_blob) rospy.Subscriber("~info",CameraInfo,self.store_info) def store_blob(self,blob): self.blob = blob def store_info(self,info): self.info = info def run(self): rospy.loginfo("Waiting for first blob and camera info") t = Twist() rate = rospy.Rate(10) while (not rospy.is_shutdown()) and ((not self.info) or (not self.blob)): self.pub.publish(t) rate.sleep() while not rospy.is_shutdown(): self.pub.publish(t) rate.sleep() if __name__=="__main__": demo = BlobFollower() demo.run()
StarcoderdataPython
12816887
<reponame>tensorchen/DianpingSpider import base64 import random from settings import PROXIES from settings import USER_AGENTS class RandomUserAgent(object): def process_request(self, request, spider): request.headers.setdefault('User-Agent', random.choice(USER_AGENTS)) class ProxyMiddleware(object): def process_request(self, request, spider): request.meta['proxy'] = "http://%s" % random.choice(PROXIES) # proxy_user_pass = "<PASSWORD>" # encode_user_pass = base64.encodestring(proxy_user_pass) # request.headers['Proxy-Authorization'] = 'Basic' + proxy_user_pass
StarcoderdataPython
6412516
<reponame>jochym/ALM import warnings from collections import OrderedDict import numpy as np from . import _alm as alm atom_names = ("X", "H", "He", "Li", "Be", "B", "C", "N", "O", "F", "Ne", "Na", "Mg", "Al", "Si", "P", "S", "Cl", "Ar", "K", "Ca", "Sc", "Ti", "V", "Cr", "Mn", "Fe", "Co", "Ni", "Cu", "Zn", "Ga", "Ge", "As", "Se", "Br", "Kr", "Rb", "Sr", "Y", "Zr", "Nb", "Mo", "Tc", "Ru", "Rh", "Pd", "Ag", "Cd", "In", "Sn", "Sb", "Te", "I", "Xe", "Cs", "Ba", "La", "Ce", "Pr", "Nd", "Pm", "Sm", "Eu", "Gd", "Tb", "Dy", "Ho", "Er", "Tm", "Yb", "Lu", "Hf", "Ta", "W", "Re", "Os", "Ir", "Pt", "Au", "Hg", "Tl", "Pb", "Bi", "Po", "At", "Rn", "Fr", "Ra", "Ac", "Th", "Pa", "U", "Np", "Pu", "Am", "Cm", "Bk", "Cf", "Es", "Fm", "Md", "No", "Lr", "Rf", "Db", "Sg", "Bh", "Hs", "Mt", "Ds", "Rg", "Cn", "Uut", "Uuq", "Uup", "Uuh", "Uus", "Uuo") # From src/optimize.h # {sparsefolver: str} is omitted because this is set at ALM.optimize. # This order is not allowed to change because it is explicitly used in _alm.c. optimizer_control_data_types = OrderedDict([ ('linear_model', int), ('use_sparse_solver', int), ('maxnum_iteration', int), ('tolerance_iteration', float), ('output_frequency', int), ('standardize', int), ('displacement_normalization_factor', float), ('debiase_after_l1opt', int), ('cross_validation', int), ('l1_alpha', float), ('l1_alpha_min', float), ('l1_alpha_max', float), ('num_l1_alpha', int), ('l1_ratio', float), ('save_solution_path', int)]) class ALM(object): """Calculate harmonic and anharmonic interatomic force constants Attributes ---------- lavec : ndarray Basis vectors. a, b, c are given as row vectors. shape=(3, 3), dtype='double' xcoord : ndarray Fractional coordinates of atomic points. shape=(num_atoms, 3), dtype='double' numbers : ndarray Atomic numbers. shape=(num_atoms,), dtype='intc' kind_names : OrderedDict Pairs of (atomic number, element name). Since the atomic number is the key of OrderedDict, only unique atomic numbers are stored and the order of ``numbers`` is preserved in the keys of this OrderedDict. displacements : ndarray Displacements of atoms in supercells used as training data. shape=(supercells, num_atoms, 3), dtype='double', order='C' forces : ndarray Forces of atoms in supercells used as training data. shape=(supercells, num_atoms, 3), dtype='double', order='C' verbosity : int Level of the output frequency either 0 (no output) or 1 (normal output). Default is 0. output_filename_prefix : str More detailed logs are stored in files when this is given. This string is used to the prefix of filenames of logs. optimizer_control : dict Parameters to use elastic net regression. cv_l1_alpha : float (read-only) Alpha value to minimize fitting error of elastic net regression obtained by cross validation. """ def __init__(self, lavec, xcoord, numbers, verbosity=0): """ Parameters ---------- lavec : array_like Basis vectors. a, b, c are given as column vectors. shape=(3, 3), dtype='double' xcoord : array_like Fractional coordinates of atomic points. shape=(num_atoms, 3), dtype='double' numbers : array_like Atomic numbers. shape=(num_atoms,), dtype='intc' verbosity : int Level of the output frequency either 0 (no output) or 1 (normal output). Default is 0. """ self._id = None self._lavec = None self._xcoord = None self._numbers = None self._verbosity = False self._kind_names = None self._iconst = 11 self._maxorder = 1 self.lavec = lavec self.xcoord = xcoord self.numbers = numbers self._verbosity = verbosity self._output_filename_prefix = None # Whether python parameters are needed to be copied to C++ instance # or not. self._need_transfer = True # self.define() has been done or not. self._defined = False @property def lavec(self): """Getter of basis vectors Returns ------- lavec : ndarray Copy of basis vectors. a, b, c are given as row vectors. shape=(3, 3), dtype='double', order='C' """ return np.array(self._lavec, dtype='double', order='C') @lavec.setter def lavec(self, lavec): """Setter of basis vectors Parameters ---------- lavec : array_like Basis vectors. a, b, c are given as row vectors. shape=(3, 3), dtype='double', order='C' """ self._need_transfer = True self._lavec = np.array(lavec, dtype='double', order='C') @property def xcoord(self): """Getter of atomic point coordinates Returns ------- xcoord : ndarray Atomic point coordinates. shape=(num_atom, 3), dtype='double', order='C' """ return np.array(self._xcoord, dtype='double', order='C') @xcoord.setter def xcoord(self, xcoord): """Setter of atomic point coordinates Returns ------- xcoord : ndarray Atomic point coordinates. shape=(num_atom, 3), dtype='double', order='C' """ self._need_transfer = True self._xcoord = np.array(xcoord, dtype='double', order='C') @property def numbers(self): """Getter of atomic numbers Returns ------- numbers : ndarray Atomic numbers. shape=(num_atom,), dtype='intc', order='C' """ return np.array(self._numbers, dtype='intc') @numbers.setter def numbers(self, numbers): """Setter of atomic numbers Parameters ---------- numbers : ndarray Atomic numbers. shape=(num_atom,), dtype='intc', order='C' """ self._need_transfer = True self._numbers = np.array(numbers, dtype='intc') self._kind_names = OrderedDict.fromkeys(self._numbers) for key in self._kind_names: self._kind_names[key] = atom_names[key % 118] @property def kind_names(self): return self._kind_names @property def verbosity(self): return self._verbosity @verbosity.setter def verbosity(self, verbosity): """Set verbosity of output. Parameters ---------- verbosity : int Choose the level of the output frequency from 0 (no output) or 1 (normal output). """ self._verbosity = verbosity self._set_verbosity() def set_verbosity(self, verbosity): self.verbosity = verbosity def __enter__(self): self.alm_new() return self def __exit__(self, exc_type, exc_value, traceback): self.alm_delete() def alm_new(self): """Create ALM instance in C++. This is also called by context manager when entering the block. ex.:: with ALM(lavec, xcoord, numbers) as alm: Note ---- When an ALM instance is created by ``alm_new``, it must be deleted by ``alm_delete`` to avoid memory leak. """ if self._id is None: self._id = alm.alm_new() if self._id < 0: raise RuntimeError("Too many ALM objects") if self._verbosity is not None: self.verbosity = self._verbosity else: raise("This ALM object is already initialized.") def alm_delete(self): """Delete ALM instance in C++. This is also called by context manager when exiting the block. ex.:: with ALM(lavec, xcoord, numbers) as alm: """ if self._id is None: self._show_error_not_initizalied() alm.alm_delete(self._id) self._id = None def suggest(self): """Compute displacement patterns to obtain force constants.""" if self._id is None: self._show_error_not_initizalied() if self._defined: alm.suggest(self._id) else: self._show_error_not_defined() def optimize(self, solver='dense'): """Fit force constants to forces. Parameters ---------- solver : str, default='dense' Solver choice for fitting either 'dense' or 'SimplicialLDLT'. - When solver='dense', the fitting is performed with the singular value decomposition implemented in LAPACK. - When solver='SimplicialLDLT', the fitting is performed with the sparse solver class SimplicialLDLT implemented in Eigen3 library. Returns ------- info : int This tells condition how fitting went. 0 if the fitting is successful, 1 otherwise. """ if self._id is None: self._show_error_not_initizalied() if not self._defined: self._show_error_not_defined() solvers = {'dense': 'dense', 'simplicialldlt': 'SimplicialLDLT'} if solver.lower() not in solvers: msgs = ["The given solver option is not supported.", "Available options are 'dense' and 'SimplicialLDLT'."] raise ValueError("\n".join(msgs)) info = alm.optimize(self._id, solvers[solver.lower()]) return info @property def output_filename_prefix(self): return self._output_filename_prefix @output_filename_prefix.setter def output_filename_prefix(self, prefix): """Set output prefix of output filename""" if self._id is None: self._show_error_not_initizalied() if type(prefix) is str: self._output_filename_prefix = prefix alm.set_output_filename_prefix(self._id, prefix) def set_output_filename_prefix(self, prefix): self.output_filename_prefix = prefix @property def optimizer_control(self): if self._id is None: self._show_error_not_initizalied() optctrl = alm.get_optimizer_control(self._id) keys = optimizer_control_data_types.keys() optcontrol = dict(zip(keys, optctrl)) return optcontrol @optimizer_control.setter def optimizer_control(self, optcontrol): if self._id is None: self._show_error_not_initizalied() keys = optimizer_control_data_types.keys() optctrl = [] optcontrol_l = {key.lower(): optcontrol[key] for key in optcontrol} for i, key in enumerate(optcontrol): if key.lower() not in keys: msg = "%s is not a valide key for optimizer control." % key raise KeyError(msg) for i, key in enumerate(keys): if key in optcontrol_l: optctrl.append(optcontrol_l[key]) else: optctrl.append(None) alm.set_optimizer_control(self._id, optctrl) def set_optimizer_control(self, optcontrol): self.optimizer_control = optcontrol @property def displacements(self): """Get displacements Returns -------- u : ndarray Atomic displacement patterns in supercells in Cartesian. shape=(supercells, num_atoms, 3), dtype='double', order='C' """ if self._id is None: self._show_error_not_initizalied() ndata = alm.get_number_of_data(self._id) u = np.zeros((ndata, len(self._xcoord), 3), dtype='double', order='C') succeeded = alm.get_u_train(self._id, u) if succeeded: return u else: return None @displacements.setter def displacements(self, u): """Set displacements Parameters ---------- u : array_like Atomic displacement patterns in supercells in Cartesian. shape=(supercells, num_atoms, 3), dtype='double' """ if self._id is None: self._show_error_not_initizalied() if u.ndim != 3: msg = "Displacement array has to be three dimensions." raise RuntimeError(msg) alm.set_u_train(self._id, np.array(u, dtype='double', order='C')) @property def forces(self): """Get forces Returns -------- f : ndarray Forces in supercells. shape=(supercells, num_atoms, 3), dtype='double', order='C' """ if self._id is None: self._show_error_not_initizalied() ndata = alm.get_number_of_data(self._id) f = np.zeros((ndata, len(self._xcoord), 3), dtype='double', order='C') succeeded = alm.get_f_train(self._id, f) if succeeded: return f else: return None @forces.setter def forces(self, f): """Set forces Parameters ---------- f : array_like Forces in supercells. shape=(supercells, num_atoms, 3), dtype='double' """ if self._id is None: self._show_error_not_initizalied() if f.ndim != 3: msg = "Force array has to be three dimensions." raise RuntimeError(msg) alm.set_f_train(self._id, np.array(f, dtype='double', order='C')) def set_training_data(self, u, f): """Set displacements and respective forces in supercell. Parameters ---------- u : array_like Atomic displacement patterns in supercells in Cartesian. dtype='double' shape=(supercells, num_atoms, 3) f : array_like Forces in supercells. dtype='double' shape=(supercells, num_atoms, 3) """ self.displacements = u self.forces = f def set_displacement_and_force(self, u, f): warnings.warn("set_displacement_and_force is deprecated. " "Use set_training_data.", DeprecationWarning) self.set_training_data(u, f) def define(self, maxorder, cutoff_radii=None, nbody=None, symmetrization_basis='Lattice'): """Define the Taylor expansion potential. Parameters ---------- maxorder : int Maximum order of the Taylor expansion potential. - If ``maxorder = 1``, only harmonic (2nd-order) terms are considered. - If ``maxorder = 2``, both harmonic and cubic terms are considered. cutoff_radii : array_like, default = None Cutoff radii defined for each order. When a negative value is provided, the cutoff radius is not used. dtype='double' shape=(maxorder, num_elems, num_elems) nbody : array_like, default = None Option to neglect multi-body interactions. dtype='intc' shape=(maxorder,) symmetrization_basis : str, default='Lattice' Either 'Cartesian' or 'Lattice'. Symmetrization of force constants is done either in the matrix based on crystal coordinates ('Lattice') or Cartesian coordinates ('Cartesian'). """ if self._id is None: self._show_error_not_initizalied() self._transfer_parameters() if nbody is None: nbody = [] for i in range(maxorder): nbody.append(i + 2) else: if len(nbody) != maxorder: msg = "The size of nbody must be equal to maxorder." raise RuntimeError(msg) if cutoff_radii is None: _cutoff_radii = None else: _cutoff_radii = np.array(cutoff_radii, dtype='double', order='C') nelem = len(_cutoff_radii.ravel()) if (nelem // maxorder) * maxorder != nelem: msg = "The array shape of cutoff_radii is wrong." raise RuntimeError(msg) nkd = int(round(np.sqrt(nelem // maxorder))) if nkd ** 2 - nelem // maxorder != 0: msg = "The array shape of cutoff_radii is wrong." raise RuntimeError(msg) _cutoff_radii = np.reshape(_cutoff_radii, (maxorder, nkd, nkd), order='C') self._maxorder = maxorder if symmetrization_basis.lower() in ['lattice', 'cartesian']: fc_basis = symmetrization_basis.capitalize() else: fc_basis = 'Lattice' alm.define(self._id, maxorder, np.array(nbody, dtype='intc'), _cutoff_radii, fc_basis) alm.init_fc_table(self._id) self._defined = True def set_constraint(self, translation=True, rotation=False): """Set constraints for the translational and rotational invariances Parameters ---------- translation : bool, optional (default = True) When set to ``True``, the translational invariance (aka acoustic sum rule) is imposed between force constants. rotation : bool, optional (default = False) When set to ``True``, the rotational invariance is imposed between force constants. This function is not implemented. """ if rotation is True: raise("Rotational invariance is not supported in python API.") if translation is True: iconst = 11 else: iconst = 10 self._iconst = iconst alm.set_constraint_type(self._id, self._iconst) def getmap_primitive_to_supercell(self): """Returns the mapping information from the primitive cell to the supercell. Returns ------- map_p2s : array_like The mapping information of atoms from the primitive cell to the supercell. dtype='intc' shape = (num_trans, num_atoms_primitive) """ if self._id is None: self._show_error_not_initizalied() if not self._defined: self._show_error_not_defined() map_p2s = np.zeros(len(self._xcoord), dtype='intc') ntrans = alm.get_atom_mapping_by_pure_translations(self._id, map_p2s) return map_p2s.reshape((ntrans, -1)) def get_displacement_patterns(self, fc_order): """Returns the displacement patterns to obtain force constants. Parameters ---------- fc_order : int The order of force constants to get the displacement patterns. - If ``fc_order = 1``, returns patterns for harmonic force constants. - If ``fc_order = 2``, returns patterns for cubic force constants. - If ``fc_order = 3``, returns patterns for quartic force constants. - ... Returns ------- all_disps : array_like, shape = (n_patterns,) The array of tuples (``atom_index``, ``direction``, ``basis``), where ``direction`` is the numpy.ndarray of size = (3,) representing the direction of the displacement, and ``basis`` is a string either "Cartesian" or "Fractional". """ if self._id is None: self._show_error_not_initizalied() if fc_order > self._maxorder: msg = ("The fc_order must not be larger than the maximum order " "(maxorder).") raise ValueError(msg) numbers = self._get_number_of_displaced_atoms(fc_order) tot_num = np.sum(numbers) atom_indices = np.zeros(tot_num, dtype='intc') disp_patterns = np.zeros((tot_num, 3), dtype='double', order='C') nbasis = alm.get_displacement_patterns(self._id, atom_indices, disp_patterns, fc_order) basis = ["Cartesian", "Fractional"][nbasis] all_disps = [] pos = 0 for num in numbers: disp = [] for i in range(num): disp.append((atom_indices[pos], disp_patterns[pos], basis)) pos += 1 all_disps.append(disp) return all_disps def get_fc(self, fc_order, mode="origin", permutation=True): """Returns the force constant values Parameters ---------- fc_order : int The order of force constants to get. - If ``fc_order = 1``, returns harmonic force constants. - If ``fc_order = 2``, returns cubic force constants. - If ``fc_order = 3``, returns quartic force constants. - ... mode : str, optional (default="origin") The choice of the force constant list to be returned. - If "origin", returns the reducible set of force constants, whose first element corresponds to an atom in the primitive cell at the origin. - If "all", returns the all non-zero elements of force constants in the supercell. - If "irreducible" or "irred", returns the irreducible set of force constants. permutation : bool (default=True) The flag for printing out elements with permutation symmetry. Effective only when ``mode = origin`` or ``mode = all``. - If True, returns force constants after replicating elements by the permutation of indices. - If False, returns force constants without replicating elements by the permutation of indices. For "origin" and "all", all indices except the first index participate to the permutation of indices to reduce the number of the output values. Returns ------- fc_values : array_like, dtype='double', shape=(num_fc,) Force constant values. elem_indices : array_like, dtype='int', shape=(num_fc, fc_order + 1) Array of flattened indices 3 * index_atom + index_xyz. Note ---- This method returns force constants in Cartesian basis when ``mode = origin`` and ``mode = all`. When ``mode = irred``, it returns the irreducible set of force constants in the basis defined via "symmetrization_basis" of the alm.define method. """ if self._id is None: self._show_error_not_initizalied() if fc_order > self._maxorder: msg = ("The fc_order must not be larger than the maximum order " "(maxorder).") raise ValueError(msg) perm_int = permutation * 1 if mode == "origin": fc_length = self._get_number_of_fc_origin(fc_order, perm_int) fc_values = np.zeros(fc_length, dtype='double') elem_indices = np.zeros((fc_length, fc_order + 1), dtype='intc', order='C') alm.get_fc_origin(self._id, fc_values, elem_indices, perm_int) return fc_values, elem_indices elif mode == "irreducible" or mode == "irred": fc_length = self._get_number_of_irred_fc_elements(fc_order) fc_values = np.zeros(fc_length, dtype='double') elem_indices = np.zeros((fc_length, fc_order + 1), dtype='intc', order='C') alm.get_fc_irreducible(self._id, fc_values, elem_indices) return fc_values, elem_indices elif mode == "all": map_p2s = np.zeros(len(self._xcoord), dtype='intc') ntrans = alm.get_atom_mapping_by_pure_translations(self._id, map_p2s) fc_length = self._get_number_of_fc_origin( fc_order, perm_int) * ntrans fc_values = np.zeros(fc_length, dtype='double') elem_indices = np.zeros((fc_length, fc_order + 1), dtype='intc', order='C') alm.get_fc_all(self._id, fc_values, elem_indices, perm_int) return fc_values, elem_indices else: raise ValueError("Invalid mode in get_fc.") def set_fc(self, fc_in): """Copy force constant obtained by an external optimizer to the ALM instance. Parameters ---------- fc_in : array_like The irreducible set of force constants. dtype='double' shape=(num_fc,) Note ---- When an external optimizer, such as numpy.linalg.lstsq, is used to fit force constants, the force constants need to be passed to the ALM instance by ``set_fc`` to use the ``get_fc`` method. """ if self._id is None: self._show_error_not_initizalied() maxorder = self._maxorder fc_length_irred = 0 for i in range(maxorder): fc_length_irred += self._get_number_of_irred_fc_elements(i + 1) if fc_length_irred != len(fc_in): msg = "The size of the given force constant array is incorrect." raise RuntimeError(msg) alm.set_fc(self._id, np.array(fc_in, dtype='double', order='C')) def get_matrix_elements(self): """Returns the sensing matrix A and force vector b Returns ------- amat : ndarray, dtype='double' shape=(3 * num_atoms * ndata_training, num_fc_irred), order='F'. The sensing matrix A calculated from the displacements. bvec : ndarray, dtype='double' shape=(3 * num_atoms * ndata_training,) The vector b calculated from the atomic forces. Note ---- From the amat (``A``) and bvec (``b``), the force constant vector ``x`` can be obtained by solving the least-square problem: x = argmin_{x} | Ax-b|^{2}. """ if self._id is None: self._show_error_not_initizalied() maxorder = self._maxorder nrows = self._get_nrows_amat() fc_length = 0 for i in range(maxorder): fc_length += self._get_number_of_irred_fc_elements(i + 1) amat = np.zeros(nrows * fc_length, dtype='double', order='C') bvec = np.zeros(nrows, dtype='double') alm.get_matrix_elements(self._id, amat, bvec) return (np.reshape(amat, (nrows, fc_length), order='F'), bvec) @property def cv_l1_alpha(self): """Returns L1 alpha at minimum CV""" if self._id is None: self._show_error_not_initizalied() return alm.get_cv_l1_alpha(self._id) def get_cv_l1_alpha(self): return self.cv_l1_alpha def _transfer_parameters(self): if self._need_transfer: self._set_cell() self._need_transfer = False self._defined = False def _set_cell(self): """Inject crystal structure in C++ instance""" if self._id is None: self._show_error_not_initizalied() if self._lavec is None: msg = "Basis vectors are not set." raise RuntimeError(msg) if self._xcoord is None: msg = "Atomic point coordinates (positions) are not set." raise RuntimeError(msg) if self._numbers is None: msg = "Atomic numbers are not set." raise RuntimeError(msg) if len(self._xcoord) != len(self._numbers): msg = "Numbers of atomic points and atomic numbers don't agree." raise RuntimeError(msg) kind_numbers = np.array(list(self._kind_names.keys()), dtype='intc') alm.set_cell(self._id, self._lavec, self._xcoord, self._numbers, kind_numbers) def _set_verbosity(self): """Inject verbosity in C++ instance.""" if self._id is None: self._show_error_not_initizalied() alm.set_verbosity(self._id, self._verbosity) def _get_nrows_amat(self): """Private method to return the number of training data sets""" if self._id is None: self._show_error_not_initizalied() nrows_amat = alm.get_nrows_amat(self._id) return nrows_amat def _get_id(self): """Private method to return the instance ID""" return self._id def _get_number_of_displacement_patterns(self, fc_order): """Private method to return the number of displacement patterns Parameters ---------- fc_order : int The order of force constants. fc_order = 1 for harmonic, fc_order = 2 for cubic ... """ return alm.get_number_of_displacement_patterns(self._id, fc_order) def _get_number_of_displaced_atoms(self, fc_order): """Private method to return the number of displaced atoms Parameters ---------- fc_order : int The order of force constants. fc_order = 1 for harmonic, fc_order = 2 for cubic ... """ num_disp_patterns = self._get_number_of_displacement_patterns( fc_order) numbers = np.zeros(num_disp_patterns, dtype='intc') alm.get_number_of_displaced_atoms(self._id, numbers, fc_order) return numbers def _get_number_of_fc_elements(self, fc_order): """Private method to get the number of force constants Parameters ---------- fc_order : int The order of force constants. fc_order = 1 for harmonic, fc_order = 2 for cubic ... """ return alm.get_number_of_fc_elements(self._id, fc_order) def _get_number_of_fc_origin(self, fc_order, permutation): """Private method to get the number of force constants for fc_origin Parameters ---------- fc_order : int The order of force constants. fc_order = 1 for harmonic, fc_order = 2 for cubic ... permutation: int Flag to include permutated elements permutation = 0 for skipping permutated elements, permutation = 1 for including them """ return alm.get_number_of_fc_origin(self._id, fc_order, permutation) def _get_number_of_irred_fc_elements(self, fc_order): """Private method to get the number of irreducible set of force constants Parameters ---------- fc_order : int The order of force constants. fc_order = 1 for harmonic, fc_order = 2 for cubic ... """ return alm.get_number_of_irred_fc_elements(self._id, fc_order) def _show_error_not_initizalied(self): """Private method to raise an error""" msg = ("This ALM instance has to be initialized by ALM.alm_new() or " "context manager.") raise RuntimeError(msg) def _show_error_not_defined(self): msg = "This ALM.define() has to be done beforehand." raise RuntimeError(msg)
StarcoderdataPython
125038
# Code for CVPR'21 paper: # [Title] - "CoLA: Weakly-Supervised Temporal Action Localization with Snippet Contrastive Learning" # [Author] - <NAME>*, <NAME>, <NAME>, <NAME> and <NAME> # [Github] - https://github.com/zhang-can/CoLA import numpy as np import os from easydict import EasyDict as edict cfg = edict() cfg.GPU_ID = '0' cfg.LR = '[0.0001]*6000' cfg.NUM_ITERS = len(eval(cfg.LR)) cfg.NUM_CLASSES = 20 cfg.MODAL = 'all' cfg.FEATS_DIM = 2048 cfg.BATCH_SIZE = 16 cfg.DATA_PATH = './data/THUMOS14' cfg.NUM_WORKERS = 8 cfg.LAMBDA = 0.01 cfg.R_EASY = 5 cfg.R_HARD = 20 cfg.m = 3 cfg.M = 6 cfg.TEST_FREQ = 100 cfg.PRINT_FREQ = 20 cfg.CLASS_THRESH = 0.2 cfg.NMS_THRESH = 0.6 cfg.CAS_THRESH = np.arange(0.0, 0.25, 0.025) cfg.ANESS_THRESH = np.arange(0.1, 0.925, 0.025) cfg.TIOU_THRESH = np.linspace(0.1, 0.7, 7) cfg.UP_SCALE = 24 cfg.GT_PATH = os.path.join(cfg.DATA_PATH, 'gt.json') cfg.SEED = 0 cfg.FEATS_FPS = 25 cfg.NUM_SEGMENTS = 750 cfg.CLASS_DICT = {'BaseballPitch': 0, 'BasketballDunk': 1, 'Billiards': 2, 'CleanAndJerk': 3, 'CliffDiving': 4, 'CricketBowling': 5, 'CricketShot': 6, 'Diving': 7, 'FrisbeeCatch': 8, 'GolfSwing': 9, 'HammerThrow': 10, 'HighJump': 11, 'JavelinThrow': 12, 'LongJump': 13, 'PoleVault': 14, 'Shotput': 15, 'SoccerPenalty': 16, 'TennisSwing': 17, 'ThrowDiscus': 18, 'VolleyballSpiking': 19}
StarcoderdataPython
6677349
__author__ = 'pvde' """ Limitations: Keys, Certificates and Signing: - Certificate Policies are not checked - Certificates are not validated - Signatures on input CPPs are not validated - The generated CPA is not signed - No support for PGP (which is theoretically needed for AS1) - Certificate chain validation against specified trust anchors only triggers a match on root CA certificate. Any intermediate certificates are not matched against the trust anchor set. Transports: - IMAP ? Limitations / features: - SecurityPolicy only matches "href", does not intersect XML children yet. """ import lxml.etree, logging, datetime, isodate, hashlib, base64, uuid, re, string from copy import deepcopy import schema logging.basicConfig(level=logging.DEBUG) _NSMAP = {'cppa': 'http://docs.oasis-open.org/ebcore/ns/cppa/v3.0', 'ds': 'http://www.w3.org/2000/09/xmldsig#', 'xml': 'http://www.w3.org/XML/1998/namespace', 'xkms': 'http://www.w3.org/2002/03/xkms#', 'dsig11' : 'http://www.w3.org/2009/xmldsig11#' } unreferenced_cert_transform = lxml.etree.XSLT( lxml.etree.XML("""<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:cppa="http://docs.oasis-open.org/ebcore/ns/cppa/v3.0" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" version="1.0"> <xsl:template match="cppa:PartyInfo/cppa:Certificate | cppa:CounterPartyInfo/cppa:Certificate "> <xsl:variable name="id" select="@id"></xsl:variable> <xsl:choose> <xsl:when test="//node()[@certId=$id]"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:when> <xsl:otherwise> <xsl:comment>Suppressed unreferenced certificate <xsl:value-of select="$id"/> </xsl:comment> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="/ | @* | node()"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:template> </xsl:stylesheet> """)) unreferenced_trustanchor_transform = lxml.etree.XSLT( lxml.etree.XML("""<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:cppa="http://docs.oasis-open.org/ebcore/ns/cppa/v3.0" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" version="1.0"> <xsl:template match="cppa:TrustAnchorSet"> <xsl:variable name="id" select="@id"></xsl:variable> <xsl:choose> <xsl:when test="//node()[@certId=$id]"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:when> <xsl:otherwise> <xsl:comment>Suppressed unreferenced trust anchor set <xsl:value-of select="$id"/> </xsl:comment> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="/ | @* | node()"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:template> </xsl:stylesheet> """)) unreferenced_ssh_key_transform = lxml.etree.XSLT( lxml.etree.XML("""<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:cppa="http://docs.oasis-open.org/ebcore/ns/cppa/v3.0" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" version="1.0"> <xsl:template match="cppa:PartyInfo/cppa:SSHKey | cppa:CounterPartyInfo/cppa:SSHKey "> <xsl:variable name="id" select="@id"></xsl:variable> <xsl:choose> <xsl:when test="//node()[@keyId=$id]"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:when> <xsl:otherwise> <xsl:comment>Suppressed unreferenced SSH Key <xsl:value-of select="$id"/> </xsl:comment> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="/ | @* | node()"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:template> </xsl:stylesheet> """)) unreferenced_policy_set_transform = lxml.etree.XSLT( lxml.etree.XML("""<?xml version="1.0" encoding="UTF-8"?> <xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:cppa="http://docs.oasis-open.org/ebcore/ns/cppa/v3.0" xmlns:xml="http://www.w3.org/XML/1998/namespace" xmlns:ds="http://www.w3.org/2000/09/xmldsig#" version="1.0"> <xsl:template match="cppa:PartyInfo/cppa:CertificatePolicySet | cppa:CounterPartyInfo/cppa:CertificatePolicySet "> <xsl:variable name="id" select="@id"></xsl:variable> <xsl:choose> <xsl:when test="//node()[@setId=$id]"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:when> <xsl:otherwise> <xsl:comment>Suppressed unreferenced policy set <xsl:value-of select="$id"/> </xsl:comment> </xsl:otherwise> </xsl:choose> </xsl:template> <xsl:template match="/ | @* | node()"> <xsl:copy> <xsl:apply-templates select="@* | node()" /> </xsl:copy> </xsl:template> </xsl:stylesheet> """)) def unify(acpp, bcpp, nsmap = {}, agreementidfun = None, agreementid=None, requested_activation_date=None, requested_expiration_date=None, acpp_url=None, bcpp_url=None, default_handler=None, handle_defaults=False, delegation_handler=None, remove_unused_certs=False): """ @param acpp: a CPP @param bcpp: another CPP @param nsmap: optional dictionary of additional namespaces @param agreementidfun: optional function to determine the agreement identifier @param agreementid: optional specific agreement identifier to use @return: """ unifier = CPABuilder(nsmap, agreementidfun, default_handler=default_handler, delegation_handler=delegation_handler) return unifier.unify(acpp, bcpp, agreementid=agreementid, requested_activation_date=requested_activation_date, requested_expiration_date=requested_expiration_date, acpp_url=acpp_url, bcpp_url=bcpp_url, handle_defaults=handle_defaults, remove_unused_certs=remove_unused_certs) class UnificationException(Exception): def __init__(self, value): self.value = value def __str__(self): return repr(self.value) class CPABuilder(): def __init__(self, nsmap = {}, agreementidfun = None, default_handler = None, delegation_handler = None): """ @param nsmap: optional dictionary of additional namespaces @param agreementidfun: optional function to determine the agreement identifier @return: """ self.reset_caches() self.NSMAP = {} self.agreementidfun = self._agreementidfun if agreementidfun != None: self.agreementidfun = agreementidfun if default_handler != None: self.default_handler = default_handler else: self.default_handler = _identity_transform self.channel_handlers = { cppa('NamedChannel'): self.unify_named_channel, cppa('AS1Channel'): self.unify_ediint_channel, cppa('AS2Channel'): self.unify_ediint_channel, cppa('AS3Channel'): self.unify_ediint_channel, cppa('ebMS2Channel'): self.unify_ebms2_channel, cppa('WSChannel'): self.unify_ws_channel, cppa('ebMS3Channel'): self.unify_ebms3_channel, cppa('TransportChannel') : self.unify_transport_channel, cppa('AMQPChannel') : self.unify_amqp_channel } self.packaging_handlers = { cppa('SOAPWithAttachmentsEnvelope'): self.unify_soap_with_attachments_envelope, cppa('SimpleSOAPEnvelope'): self.unify_simple_soap_envelope, cppa('MIMEEnvelope'): self.unify_mime_envelope } self.mimepart_handlers = { cppa('SimpleMIMEPart'): self.unify_simple_mime_part, cppa('MIMEMultipartRelated'): self.unify_mime_multipart_related, cppa('ExternalPayload'): self.unify_external_payload } # load the defaults for prefix in _NSMAP: self.NSMAP[prefix] = _NSMAP[prefix] # load any extension namespaces for prefix in nsmap: self.NSMAP[prefix] = nsmap[prefix] # Delegation context handler. if delegation_handler != None: self.is_connected_to = delegation_handler else: self.is_connected_to = self.default_is_connected_to def reset_caches(self): # Resets the unification data structures. # In the future, other data may be cached as well that is independent of the # input CPPs. For example, XKMS results, OCSP queries etc. self.included_service_specifications_counter = 0 self.included_certificates = {} self.unify_channels_results = {} self.unify_channels_exceptions = {} self.unify_transport_results = {} self.unify_transport_exceptions = {} self.unify_payload_profile_results = {} self.unify_payload_profile_exceptions = {} self.unify_package_results = {} self.unify_package_exceptions = {} self.depends_on = {} self.included_components = {} self.shortened = {} self.collisions = {} # Delegation context handler. # By default there are no connections def default_is_connected_to(self, frompartyid, frompartytype, fromcppid, service, action, direction, topartyid, topartyidtype, topartycppid): return False def unify(self, acpp, bcpp, partyrole=None, counterpartyrole=None, agreementid = None, requested_activation_date=None, requested_expiration_date=None, acpp_url=None, bcpp_url=None, handle_defaults=False, remove_unused_certs=False): self.reset_caches() logging.debug('Inline channel features ..') acpp = self.inline_channel_features(acpp) bcpp = self.inline_channel_features(bcpp) cpp_level_acl_check(acpp, bcpp) if handle_defaults: logging.debug('Processing CPPs for defaults..') acpp = self.default_handler(deepcopy(acpp)) bcpp = self.default_handler(deepcopy(bcpp)) prefix_identifiers(acpp,'a_') prefix_identifiers(bcpp,'b_') cpa = lxml.etree.Element(cppa('CPA'), nsmap = self.NSMAP) acppid, bcppid, activation, expiration = self.unify_profileinfo(cpa, acpp, bcpp, agreementid, requested_activation_date, requested_expiration_date, acpp_url, bcpp_url) self.initialize_partyinfo(cpa, acpp, 'PartyInfo', handle_defaults) self.initialize_partyinfo(cpa, bcpp, 'CounterPartyInfo', handle_defaults) logging.info("Unifying {} {}".format(acppid, bcppid)) a_service_specifications = acpp.xpath('cppa:ServiceSpecification', namespaces=self.NSMAP) for a_service_specification in a_service_specifications: logging.info('Processing service specification for {} {}'.format( (a_service_specification.xpath('child::cppa:PartyRole/@name', namespaces=_NSMAP))[0], (a_service_specification.xpath('child::cppa:CounterPartyRole/@name', namespaces=_NSMAP))[0] )) try: self.unify_servicebinding_list(cpa, acpp, bcpp, a_service_specification, acppid, bcppid, partyrole, counterpartyrole, activation, expiration) except UnificationException as e: logging.info('Exception in Service Specification: {}'.format(e.value)) if self.included_service_specifications_counter == 0: # There has to be at least one role pair # for which there is at least one matching binding situation = 'No matching service specifications for {}-{}'.format(acppid, bcppid) logging.info(situation) raise UnificationException(situation) else: logging.info('Matched {} service specification(s)'.format( self.included_service_specifications_counter) ) if 'actionbinding' in self.included_components: for ab in self.included_components['actionbinding']: if ab in self.depends_on and 'channel' in self.depends_on[ab]: for dc in self.depends_on[ab]['channel']: self.confirm_included('channel', dc) if ab in self.depends_on and 'payloadprofile' in self.depends_on[ab]: for pp in self.depends_on[ab]['payloadprofile']: self.confirm_included('payloadprofile', pp) if 'channel' in self.included_components: for ch in self.included_components['channel']: if ch in self.depends_on and 'channel' in self.depends_on[ch]: for ch2 in self.depends_on[ch]['channel']: self.confirm_included('channel', ch2) for ch in self.included_components['channel']: cpa.append(self.unify_channels_results[ch]) for ch in self.included_components['channel']: if ch in self.depends_on and 'transport' in self.depends_on[ch]: for tid in self.depends_on[ch]['transport']: self.confirm_included('transport', tid) if 'transport' in self.included_components: for tp in self.included_components['transport']: cpa.append(self.unify_transport_results[tp]) if 'payloadprofile' in self.included_components: for pp in self.included_components['payloadprofile']: cpa.append(self.unify_payload_profile_results[pp]) if 'channel' in self.included_components: for ch in self.included_components['channel']: if ch in self.depends_on and 'package' in self.depends_on[ch]: for ppid in self.depends_on[ch]['package']: (a, b, c, d) = ppid pp = self.unify_package_results[ppid] logging.info("Unifying {}-{} {}-{}: {}".format(a, b, c, d, pp.tag)) pp.set('id', self.cppaid(a, b, c, d)) cpa.append(self.unify_package_results[ppid]) if remove_unused_certs: # first remove any unreferenced trust anchor cpa = unreferenced_trustanchor_transform(cpa).getroot() # then remove any unrefenced cert cpa = unreferenced_cert_transform(cpa).getroot() # then remove any unreference policy set cpa = unreferenced_policy_set_transform(cpa).getroot() # then remove unused SSH keys cpa = unreferenced_ssh_key_transform(cpa).getroot() return self.c14n(cpa) def c14n(self, tree): newtree = lxml.etree.Element(tree.tag, nsmap=self.NSMAP) newtree.text = tree.text for att in tree.attrib: newtree.attrib[att] = tree.attrib[att] for element in tree: if element is None: pass #elif lxml.etree.iselement(element): elif type(element) is lxml.etree._Element: newtree.append(self.c14n(element)) else: newtree.append(element) return newtree def unify_profileinfo(self, cpa, acpp, bcpp, agreementid=None, requested_activation_date=None, requested_expiration_date=None, acpp_url=None, bccp_url=None): acppid = acpp.xpath('child::cppa:ProfileInfo/cppa:ProfileIdentifier/text()', namespaces=self.NSMAP)[0] bcppid = bcpp.xpath('child::cppa:ProfileInfo/cppa:ProfileIdentifier/text()', namespaces=self.NSMAP)[0] agreementinfo = lxml.etree.SubElement(cpa, cppa('AgreementInfo')) agreementidel = lxml.etree.SubElement(agreementinfo, cppa('AgreementIdentifier')) #agreementid.text = "{}_{}".format(acppid, bcppid) if agreementid != None: agreementidel.text = agreementid else: agreementidel.text = self.agreementidfun(acpp, bcpp) agreementdescription = lxml.etree.SubElement(agreementinfo, cppa('Description')) agreementdescription.text = \ "Agreement formed from {} and {} at {}".format(acppid, bcppid, datetime.datetime.now().isoformat()) agreementdescription.set(xml('lang'), 'en') for (pid, pid_url) in [(acppid, acpp_url), (bcppid, bccp_url)]: pid2 = lxml.etree.SubElement(agreementinfo, cppa('ProfileIdentifier')) pid2.text = pid if pid_url != None: pid2.set('href', pid_url) activation, expiration = self.init_cpa_validity_interval(acpp, bcpp, agreementinfo, requested_activation_date, requested_expiration_date) return acppid, bcppid, activation, expiration def init_cpa_validity_interval(self, acpp, bcpp, agreementinfo, requested_activation_date=None, requested_expiration_date=None): now = datetime.datetime.now() try: aphasein = acpp.xpath('child::cppa:ProfileInfo/cppa:PhaseIn/text()', namespaces=self.NSMAP)[0] aduration = isodate.isoduration.parse_duration(aphasein) except: aduration = datetime.timedelta(0) try: bphasein = bcpp.xpath('child::cppa:ProfileInfo/cppa:PhaseIn/text()', namespaces=self.NSMAP)[0] bduration = isodate.isoduration.parse_duration(bphasein) except: bduration = datetime.timedelta(0) if aduration < bduration: activation = now + bduration else: activation = now + aduration if requested_activation_date != None: if requested_activation_date > activation: activation = requested_activation_date activation = self.init_activation_date(_profileinfo(acpp), _profileinfo(bcpp), agreementinfo, activation) expiration = self.init_expiration_date(_profileinfo(acpp), _profileinfo(bcpp), agreementinfo, requested_expiration_date, activation) return activation, expiration def init_activation_date(self, aparent, bparent, abparent, requested_activation, toplevel=True): activation = None for parent in [aparent, bparent]: activationl = parent.xpath( 'child::cppa:ActivationDate/text()', namespaces=self.NSMAP) if len(activationl) > 0: specified_activation = isodate.isodatetime.parse_datetime(activationl[0]) if specified_activation > requested_activation: activation = specified_activation if toplevel is False and activation is None: # the CPPs did not specify an activation date and we're in an embedded # context, where we inherit the top level activation date, we don't # create an ActivationDate pass else: # we're at top level or there is a specified activation if activation is None: activation = requested_activation activationdate = lxml.etree.SubElement(abparent, cppa('ActivationDate')) activationdate.text = activation.isoformat() return activation def init_expiration_date(self, aparent, bparent, abparent, requested_expiration_date, activation): expiration = None for parent in [aparent, bparent]: expirationL = parent.xpath( 'child::cppa:ExpirationDate/text()', namespaces=self.NSMAP) if len(expirationL) > 0: specified_expiration = isodate.isodatetime.parse_datetime(expirationL[0]) if requested_expiration_date is not None: if requested_expiration_date < specified_expiration: specified_expiration = requested_expiration_date if activation is not None and specified_expiration < activation: situation = 'Service expires at {} before earliest activation {}'.format( expirationL[0], activation.isoformat()) logging.info(situation) raise UnificationException(situation) if expiration is None: expiration = specified_expiration elif specified_expiration < expiration: expiration = specified_expiration if not expiration is None: expirationdate = lxml.etree.SubElement(abparent, cppa('ExpirationDate')) expirationdate.text = expiration.isoformat() return expiration def _agreementidfun(self, acpp, bcpp): acppid = acpp.xpath( 'child::cppa:ProfileInfo/cppa:ProfileIdentifier/text()', namespaces=self.NSMAP)[0] bcppid = bcpp.xpath( 'child::cppa:ProfileInfo/cppa:ProfileIdentifier/text()', namespaces=self.NSMAP)[0] return "{}_{}".format(acppid, bcppid) def initialize_partyinfo(self, cpa, cpp, element, handle_defaults=False): partyinfo = lxml.etree.SubElement(cpa, cppa(element)) inelement = cpp.xpath('child::cppa:PartyInfo', namespaces=self.NSMAP)[0] for pname in inelement.xpath('child::cppa:PartyName', namespaces= self.NSMAP): partyinfo.append( deepcopy(pname)) for pid in inelement.xpath('descendant-or-self::cppa:PartyId', namespaces= self.NSMAP): partyinfo.append( deepcopy(pid)) for certificate in inelement.xpath('child::cppa:Certificate', namespaces= self.NSMAP): partyinfo.append(deepcopy(certificate)) for anchorset in inelement.xpath('child::cppa:TrustAnchorSet', namespaces= self.NSMAP): partyinfo.append(deepcopy(anchorset)) for anchorset in inelement.xpath('child::cppa:CertificatePolicySet', namespaces= self.NSMAP): partyinfo.append(deepcopy(anchorset)) self.process_default_certificates(inelement, partyinfo, handle_defaults) for certificate in inelement.xpath('child::cppa:IDPRegistration', namespaces= self.NSMAP): partyinfo.append(deepcopy(certificate)) for certificate in inelement.xpath('child::cppa:IDPRegistrationSet', namespaces= self.NSMAP): partyinfo.append(deepcopy(certificate)) for ssh_key in inelement.xpath('child::cppa:SSHKey', namespaces= self.NSMAP): partyinfo.append(deepcopy(ssh_key)) return partyinfo def process_default_certificates(self, inelement, partyinfo, handle_defaults=False): #if not handle_defaults: certificate_defaults_list = inelement.xpath('child::cppa:CertificateDefaults', namespaces= self.NSMAP) if len(certificate_defaults_list) > 0: partyinfo.append(deepcopy(certificate_defaults_list[0])) def unify_servicebinding_list(self, cpa, acpp, bcpp, a_service_specification, acppid, bcppid, partyrole, counterpartyrole, activation, expiration, bindings_match_mode='all'): arole = a_service_specification.xpath('child::cppa:PartyRole/@name', namespaces=self.NSMAP)[0] brole = a_service_specification.xpath('child::cppa:CounterPartyRole/@name', namespaces=self.NSMAP)[0] if (partyrole is None or partyrole == arole) \ and (counterpartyrole is None or counterpartyrole == brole): service_specification = lxml.etree.Element(cppa('ServiceSpecification')) lxml.etree.SubElement(service_specification, cppa('PartyRole'), name=arole) lxml.etree.SubElement(service_specification, cppa('CounterPartyRole'), name=brole) ebbp_constraints_list = [] for attribute in ['uuid', 'name', 'version']: if attribute in a_service_specification.attrib: value = a_service_specification.get(attribute) service_specification.set(attribute, value) ebbp_constraints_list.append('@{}="{}"'.format(attribute, value)) else: ebbp_constraints_list.append('not(@{})'.format(attribute)) if len(ebbp_constraints_list) > 0: ebbp_constraints_list_xp = string.join(ebbp_constraints_list,' and ') xpq = 'cppa:ServiceSpecification[{} and cppa:PartyRole/@name = "{}"' \ ' and cppa:CounterPartyRole/@name = "{}"]' xpq = xpq.format(ebbp_constraints_list_xp, brole, arole) else: xpq = 'cppa:ServiceSpecification[cppa:PartyRole/@name = "{}"' \ ' and cppa:CounterPartyRole/@name = "{}"]' xpq = xpq.format(brole, arole) try: b_service_specification = bcpp.xpath(xpq, namespaces=self.NSMAP)[0] except IndexError: situation = 'No ServiceSpecification for {} {} in {}'.format(brole, arole, bcppid) logging.info(situation) if partyrole is not None and counterpartyrole is not None: """ We raise an exception if unification was requested for a specific PartyRole-CounterPartyRole combination. Otherwise, we assume it can just be ignored. """ raise UnificationException(situation) else: logging.info('Processing ACL checks for service {} {}'.format(arole, brole)) service_specification_acl_check(a_service_specification, acpp, b_service_specification, bcpp) logging.info('Processing service bindings for {} {}'.format(arole, brole)) a_servicebinding_list = a_service_specification.xpath( 'child::cppa:ServiceBinding', namespaces=self.NSMAP) included_bindings_counter = 0 last_exception = None for counter, a_servicebinding in enumerate(a_servicebinding_list, start=1): try: logging.info('Service binding #{}'.format(counter)) acpa_servicebinding = self.unify_servicebinding_from_acpp_party( acppid, acpp, bcppid, bcpp, arole, brole, a_servicebinding, b_service_specification, activation, expiration) except UnificationException as e: last_exception = e if bindings_match_mode == 'all': logging.info("UnificationException: {}".format(e.value)) logging.info('Bindings match mode {} ' \ 'so abandoning service specification'.format( bindings_match_mode) ) # @@@ review the following # #raise else: logging.info('Bindings match mode {}' \ 'so ignoring {}'.format(bindings_match_mode, e.value)) else: included_bindings_counter += 1 service_specification.append(acpa_servicebinding) logging.info('Computed {} service binding(s)'.format(included_bindings_counter)) if included_bindings_counter > 0: logging.info('Total service bindings is {}'.format(included_bindings_counter)) cpa.append(service_specification) self.included_service_specifications_counter += 1 else: situation = 'No Service Bindings matched for {}-{} {}-{}: {}'.format( acppid, arole, bcppid, brole, last_exception ) logging.info(situation) raise UnificationException(situation) else: logging.info("Skipping role {}".format(arole)) def unify_servicebinding_from_acpp_party(self, acppid, acpp, bcppid, bcpp, arole, brole, a_servicebinding, b_service_specification, activation, expiration): acpa_servicebinding = lxml.etree.Element(cppa('ServiceBinding')) aserviceEl = a_servicebinding.xpath('child::cppa:Service', namespaces=self.NSMAP)[0] aservice = aserviceEl.text aservicetype = aserviceEl.get('type') logging.info("Processing service {} type {}".format( aservice, aservicetype) ) acpaservice = lxml.etree.SubElement(acpa_servicebinding, cppa('Service')) acpaservice.text = aservice if aservicetype is not None: acpaservice.set('type', aservicetype) if aservicetype is None: bserviceq = 'child::cppa:ServiceBinding[cppa:Service="{}"]'.format(aservice) else: bserviceqt = 'child::cppa:ServiceBinding[cppa:Service[text()="{}" and @type="{}"]]' bserviceq = bserviceqt.format(aservice, aservicetype) try: b_servicebinding = b_service_specification.xpath(bserviceq, namespaces=self.NSMAP)[0] except: raise UnificationException( 'Service {} not found for {} {} in {}'.format(aservice, brole, arole, bcppid)) else: logging.info( "Unifying definitions for service {}, type {} in role {}".format( aservice, aservicetype, arole)) activation = self.init_activation_date(a_servicebinding, b_servicebinding, acpa_servicebinding, activation, toplevel=False) expiration = self.init_expiration_date(a_servicebinding, b_servicebinding, acpa_servicebinding, expiration, activation) self.unify_servicebinding(acppid, acpp, bcppid, bcpp, aservice, a_servicebinding, b_servicebinding, acpa_servicebinding) return acpa_servicebinding def unify_servicebinding(self, acppid, acpp, bcppid, bcpp, service, a_servicebinding, b_servicebinding, servicebinding): logging.info("Unifying service {} in {} and {}".format(service, acppid, bcppid)) service_binding_acl_check(a_servicebinding, acpp, b_servicebinding, bcpp) (identifiers, actions) = self.unify_send_receive(acppid, acpp, bcppid, bcpp, service, a_servicebinding, b_servicebinding, servicebinding, "send", "receive", action_identifiers =[], actions=[]) (identifiers2, actions2) = self.unify_send_receive(acppid, acpp, bcppid, bcpp, service, a_servicebinding, b_servicebinding, servicebinding, "receive", "send", action_identifiers=identifiers, actions=actions) logging.info("Unified service binding in {} and {} for {}".format(acppid, bcppid, service)) self.check_b_servicebinding(actions2, b_servicebinding) for id in identifiers2: self.confirm_included('actionbinding', id) def unify_send_receive(self, acppid, acpp, bcppid, bcpp, service, a_servicebinding, b_servicebinding, ab_servicebinding, atype, btype, action_identifiers = [], actions = []): try: asendbinding_list = a_servicebinding.xpath( 'child::cppa:ActionBinding[@sendOrReceive="{}"]'.format(atype), namespaces=self.NSMAP) for a_binding in asendbinding_list: action = a_binding.get('action') aid = a_binding.get('id') direction = a_binding.get('sendOrReceive') logging.info('Processing Service {}, Action {}'.format(service, action)) actionbinding = lxml.etree.Element(cppa('ActionBinding'), id=aid, sendOrReceive=atype, action=action) a_reply_to = a_binding.get('replyTo') if a_reply_to is not None: actionbinding.set('replyTo', a_reply_to) bexpr = 'child::cppa:ActionBinding[@action="{}" and @sendOrReceive="{}"]'.format( action, btype) b_binding_list = b_servicebinding.xpath(bexpr, namespaces=self.NSMAP) if len(b_binding_list) == 0: use = a_binding.get('use') logging.info( "No match in {} for {}-{} ({})".format(bcppid, service, action, use)) if use != 'optional': raise UnificationException( "No match in {} for {}-{}".format(bcppid, service, action) ) else: self.unify_send_receive_to_b_list( acppid, acpp, bcppid, bcpp, service, action, a_servicebinding, b_servicebinding, ab_servicebinding, aid, a_reply_to, a_binding, b_binding_list, actionbinding, atype, direction, action_identifiers, actions) except UnificationException as e: logging.info("Send_Receive exception: {}".format(e.value)) raise else: return action_identifiers, actions def unify_send_receive_to_b_list(self, acppid, acpp, bcppid, bcpp, service, action, a_servicebinding, b_servicebinding, ab_servicebinding, aid, a_reply_to, a_binding, b_binding_list, actionbinding, atype, direction, action_identifiers, actions): last_exception = '' for b_binding in b_binding_list: try: bid = b_binding.get('id') logging.info("Unifying {}-{} in {} and {} channels {} - {}".format(service, action, acppid, bcppid, aid, bid)) self.check_action_replyto(service, action, a_reply_to, b_binding, a_servicebinding, b_servicebinding) try: logging.info('Checking action binding level ACL') action_binding_acl_check(a_binding, acpp, b_binding, bcpp) except UnificationException as e: use = a_binding.get('use') if use == 'optional' or use == None: logging.info('ACL ignored for optional action binding {}'.format(e.value)) else: logging.info('Exception for action binding {}'.format(e.value)) raise else: (acid, bcid) = self.unify_actionbinding_channels(acppid, acpp, bcppid, bcpp, service, action, aid, a_binding, bid, b_binding, actionbinding, atype) (appid, bppid) = self.unify_actionbinding_payloadprofiles(acppid, acpp, bcppid, bcpp, aid, bid, service, action, a_binding, b_binding, actionbinding, direction) self.unify_properties(aid, acpp, a_binding, bid, bcpp, b_binding, actionbinding) action_identifiers.append((acppid, aid, bcppid, bid)) actions.append(action) logging.info("Successfully unified {}-{}: {} {} {} {} to {} {} {} {}".format( service, action, acppid, aid, acid, appid, bcppid, bid, bcid, bppid) ) ab_servicebinding.append(actionbinding) self.record_dependency((acppid, aid, bcppid, bid), 'channel', (acppid, acid, bcppid, bcid)) except UnificationException as e: last_exception = e.value # See if there is another b_binding on b_binding_list that unifies else: # The b_binding unified. Stop the iteration return # we only get here if there was no return from any of the b_bindings raise UnificationException(last_exception) def check_action_replyto(self, service, action, areplyTo, b_binding, a_servicebinding, b_servicebinding): b_reply_to = b_binding.get('replyTo') if areplyTo is None and b_reply_to is not None \ or areplyTo is not None and b_reply_to is None: raise UnificationException( 'Bindings {} {} inconsistent for replyTo presence'.format(service, action)) if areplyTo is not None and b_reply_to is not None: arsendbinding = a_servicebinding.xpath( 'child::cppa:ActionBinding[@id="{}"]'.format(areplyTo), namespaces=self.NSMAP)[0] brsendbinding = b_servicebinding.xpath( 'child::cppa:ActionBinding[@id="{}"]'.format(b_reply_to), namespaces=self.NSMAP)[0] araction = arsendbinding.get('action') braction = brsendbinding.get('action') if araction != braction: raise UnificationException( 'Bindings {} replyTo to different actions {} {}'.format(service, araction, braction)) def check_b_servicebinding(self, covered_actions, b_servicebinding): b_abinding_list = b_servicebinding.xpath('child::cppa:ActionBinding', namespaces=self.NSMAP) for b_abinding in b_abinding_list: action = b_abinding.get('action') if action in covered_actions: logging.debug('{} found in covered action list'.format(action)) else: use = b_abinding.get('use') if use == 'optional': logging.debug( '{} not found in covered action list, but it is optional'.format(action) ) else: raise UnificationException( 'Required binding for action {} not matched'.format(action)) def unify_actionbinding_payloadprofiles(self, acppid, acpp, bcppid, bcpp, aid, bid, service, action, a_binding, b_binding, actionbinding, direction): logging.info( "Unifying payload profiles in action bindings {} and {} for {} -- {}".format(aid, bid, service, action) ) #appids = a_binding.xpath('@payloadProfileId') + a_binding.xpath('child::cppa:PayloadProfileId/text()', # namespaces=self.NSMAP) #bppids = b_binding.xpath('@payloadProfileId') + b_binding.xpath('child::cppa:PayloadProfileId/text()', # namespaces=self.NSMAP) appids = a_binding.xpath('child::cppa:PayloadProfileId/text()', namespaces=self.NSMAP) bppids = b_binding.xpath('child::cppa:PayloadProfileId/text()', namespaces=self.NSMAP) if appids != [] and bppids != []: for (acounter, appid) in enumerate(appids): for (bcounter, bppid) in enumerate(bppids): logging.info("Attempting to unify {} #{} and {} #{}".format(appid, acounter, bppid, bcounter)) try: self.unify_payload_profile(acppid, acpp, bcppid, bcpp, appid, bppid, direction) logging.info( 'Setting attribute to {} for {} {} {} {}'.format( self.cppaid(acppid, appid, bcpp, bppid), acppid, appid, bcppid, bppid)) except UnificationException as e: last_exception = e logging.info("Failure to unify {} #{} and {} #{}: {}".format(appid, acounter, bppid, bcounter, e.value)) else: cpa_ppid_el = lxml.etree.SubElement(actionbinding, cppa('PayloadProfileId')) cpa_ppid_el.text = self.cppaid(acppid, appid, bcppid, bppid) self.record_dependency((acppid, aid, bcppid, bid), 'payloadprofile', (acppid, appid, bcppid, bppid)) return (appid, bppid) # The following exception is only raised in no matching pair is found, meaning there # been at least one exception raise UnificationException( 'Payload profiles {} {} failed to unify: {}'.format(aid, bid, last_exception.value)) elif (appids != [] and bppids == []) or (appids == [] and bppids != []): raise UnificationException('{} and {} inconsistent for payload profiles: {} vs {}'.format(aid, bid, appids, bppids)) else: return None, None def unify_actionbinding_channels(self, acppid, acpp, bcppid, bcpp, service, action, aid, a_binding, bid, b_binding, actionbinding, direction): logging.info( "Unifying channels in action bindings {} and {} for {} -- {}".format(aid, bid, service, action) ) # Channels achannelids = a_binding.xpath('child::cppa:ChannelId/text()', namespaces=self.NSMAP) bchannelids = b_binding.xpath('child::cppa:ChannelId/text()', namespaces=self.NSMAP) last_exception = None for (acounter, acid) in enumerate(achannelids): for (bcounter, bcid) in enumerate(bchannelids): logging.info("Attempt to unify {} #{} and {} #{}".format(acid, acounter, bcid, bcounter)) abchannelid = (acppid, acid, bcppid, bcid) try: logging.info("Attempting to unify channel {} for {}".format(bcounter, abchannelid)) self.unify_channels(abchannelid, acpp, bcpp, direction, service, action) except UnificationException as e: last_exception = e logging.info("Failure to unify {} #{} and {} #{}: {}".format(acid, acounter, bcid, bcounter, e.value)) else: logging.info("Successfully unified {} #{} and {} #{}".format(acid, acounter, bcid, bcounter)) acpachannelid = lxml.etree.SubElement(actionbinding, cppa('ChannelId')) acpachannelid.text = self.cppaid(acppid, acid, bcppid, bcid) return (acid, bcid) raise UnificationException( 'Action bindings {} {} failed to unify: {}'.format(aid, bid, last_exception.value)) def unify_channels(self, abchannelid, acpp, bcpp, direction, service=None, action=None): (acppid, acid, bcppid, bcid) = abchannelid cached, result = self.memo(acppid, acid, bcppid, bcid, self.unify_channels_results, self.unify_channels_exceptions, service, action) if cached: logging.info( "Found cached channel for {} {} and {} {}".format(acppid, acid, bcppid, bcid, service, action) ) return result try: result = self.unify_channels_memo(acpp, bcpp, abchannelid, acid, bcid, direction, service, action) except UnificationException as e: logging.info( "Exception unifying channel for {} {} and {} {}: {}".format(acppid, acid, bcppid, bcid, e.value) ) self.unify_channels_exceptions[acppid, acid, bcppid, bcid] = e raise else: self.unify_channels_results[acppid, acid, bcppid, bcid] = result logging.info("Unified channel for {} {} and {} {}".format( acppid, acid, bcppid, bcid) ) return result def unify_channels_memo(self, acpp, bcpp, abchannelid, a_channelid, b_channelid, direction, service=None, action=None): (acppid, acid, bcppid, bcid) = abchannelid logging.info("Unifying channel {} {} {} and {} {} {}".format(acppid, acid, a_channelid, bcppid, bcid, b_channelid)) context = (acppid, a_channelid, bcppid, b_channelid) try: if a_channelid is b_channelid is None: return context elif a_channelid is None or b_channelid is None: raise UnificationException( 'Missing channel {} versus {}'.format(a_channelid, b_channelid)) else: a_channel = acpp.xpath( 'descendant::node()[@id="{}"]'.format(a_channelid), namespaces=self.NSMAP)[0] b_channel = bcpp.xpath( 'descendant::node()[@id="{}"]'.format(b_channelid), namespaces=self.NSMAP)[0] if a_channel.tag == cppa('DelegationChannel') or \ b_channel.tag == cppa('DelegationChannel'): ab_channel = lxml.etree.Element(cppa('DelegationChannel'), id = self.cppaid(acppid, a_channelid, bcppid, b_channelid)) if a_channel.tag != cppa('DelegationChannel'): aparty = acpp.xpath('descendant::cppa:PartyId', namespaces=_NSMAP)[0] p1 = aparty.text p2 = aparty.get('type') p3 = acppid else: p1, p2, p3 = delegated_party_params(a_channel) for i in a_channel: ab_channel.append(deepcopy(i)) if b_channel.tag != cppa('DelegationChannel'): bparty = bcpp.xpath('descendant::cppa:PartyId', namespaces=_NSMAP)[0] p4 = bparty.text p5 = bparty.get('type') p6 = acppid else: p4, p5, p6 = delegated_party_params(b_channel) two = deepcopy(b_channel) two[0].tag = cppa('CounterPartyId') for i in two: ab_channel.append(i) if self.is_connected_to(p1, p2, p3, service, action, direction, p4, p5, p6): return ab_channel else: raise UnificationException( 'Delegation failed for {} {}'.format( a_channel.get('id'), b_channel.get('id')) ) elif a_channel.tag != b_channel.tag: raise UnificationException( 'Incompatible channel types {} {}'.format(a_channel.tag, b_channel.tag)) elif a_channel.tag not in self.channel_handlers: raise UnificationException( 'Unsupported channel type {} {}'.format(a_channel.tag, b_channel.tag)) else: try: handler = self.channel_handlers[a_channel.tag] ab_channel = lxml.etree.Element(a_channel.tag) abdxid = self.cppaid(acppid, a_channelid, bcppid, b_channelid) ab_channel.set('id', abdxid) return handler(acpp, bcpp, context, a_channel, b_channel, ab_channel, direction) except UnificationException as e: raise UnificationException( 'Mismatch in channel for protocol {}: {}'.format(a_channel.tag, e.value)) except UnificationException as e: te = 'Channel unification exception for {}: {}'.format(abchannelid, e.value) raise UnificationException(te) """ Channel Bindings """ def unify_channel_descriptions(self, context, a_channel, b_channel, binding): (acppid, axid, bcppid, bxid) = context description = lxml.etree.SubElement(binding, cppa('Description')) description.text = 'Channel formed from {}{} in {} and {}{} in {}'.format( a_channel.get('id'), get_description_value_if_present(a_channel), acppid, b_channel.get('id'), get_description_value_if_present(b_channel), bcppid) description.set(xml('lang'), 'en') def unify_channel_max_size(self, a_channel, b_channel, ab_channel): self.unify_size_element(a_channel, b_channel, ab_channel, 'MaxSize') def unify_size_element(self, a_channel, b_channel, ab_channel, element_name): xpath_expression = 'child::cppa:{}'.format(element_name) logging.debug('Querying for {}'.format(xpath_expression)) a_max_size = _apply_units( a_channel.xpath(xpath_expression, namespaces=self.NSMAP) ) b_max_size = _apply_units( b_channel.xpath(xpath_expression, namespaces=self.NSMAP) ) if a_max_size == b_max_size == 0: logging.debug('a_max_size == b_max_size == 0') else: if a_max_size > b_max_size: ab_max_size = b_max_size else: ab_max_size = a_max_size if ab_max_size > 0: ab_max_size_el = lxml.etree.SubElement(ab_channel,cppa(element_name)) ab_max_size_el.text = str(ab_max_size) logging.info( "Unifying {}, {} {} {}".format(element_name, a_max_size, b_max_size, ab_max_size)) else: logging.info( "Not reporting 0 size " ) """ Named Channel """ def unify_named_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, axid, bcppid, bxid) = context self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_channel_max_size(a_channel, b_channel, binding) self.unify_simple_subelement(a_channel, b_channel, binding, 'cppa', 'ChannelName') self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:SigningCertificateRef', a_channel, b_channel, binding, direction, 'send') self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:EncryptionCertificateRef', a_channel, b_channel, binding, direction, 'receive') self.unify_signing_cert_and_anchor(acppid, acpp, bcppid, bcpp, a_channel, b_channel, binding, direction) self.unify_encryption_cert_and_anchor(acppid, acpp, bcppid, bcpp, a_channel, b_channel, binding, direction) a_transport_id = a_channel.get('transport') b_transport_id = b_channel.get('transport') self.unify_transport(acppid, acpp, bcppid, bcpp, a_transport_id, b_transport_id, direction) self.record_dependency(context, 'transport', (acppid, a_transport_id, bcppid, b_transport_id)) ab_transport_id = self.cppaid(acppid, a_transport_id, bcppid, b_transport_id) binding.set('transport', ab_transport_id) # to do: match Params return binding """ EDIINT """ def unify_ediint_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, acid, bcppid, bcid) = context self.unify_as_response(acid, a_channel, bcid, b_channel, binding) self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'Signature', self.unify_signature, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'Encryption', self.unify_encryption, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ReceiptHandling', self.unify_receipt_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'Compression', self.unify_compression, direction) self.unify_transport_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) self.unify_package_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) return binding """ ebMS2 """ def unify_ebms2_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, acid, bcppid, bcid) = context logging.info("Unifying ebMS2Channel for {} {}".format(acid, bcid)) self.unify_as_response(acid, a_channel, bcid, b_channel, binding) self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_transport_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) self.unify_package_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ErrorHandling', self.unify_error_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ReceiptHandling', self.unify_receipt_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ebMS2ReliableMessaging', self.unify_ebms2_reliable_messaging, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ebMS2SecurityBinding', self.unify_ebms2_security_binding, direction) return binding def unify_ebms2_reliable_messaging(self, acpp, bcpp, context, ael, bel, abel, direction): unify_atts(ael, bel, abel, strictatts=True) self.unify_complex_subelement(acpp, bcpp, context, ael, bel, abel, 'cppa', 'DuplicateHandling', self.unify_duplicate_handling) self.unify_persist_duration(acpp, bcpp, context, ael, bel, abel, direction) self.unify_retry_handling(acpp, bcpp, context, ael, bel, abel, direction) def unify_ebms2_security_binding(self, acpp, bcpp, context, asec, bsec, security, direction): self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'Signature', self.unify_signature, direction) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'Encryption', self.unify_encryption, direction) """ Web Services """ def unify_ws_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, axid, bcppid, bxid) = context self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_simple_subelement(a_channel, b_channel, binding, 'cppa', 'SOAPVersion', required=False) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'Addressing', self.unify_ws_addressing, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'WSSecurityBinding', self.unify_ws_security, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'WSReliableMessagingBinding', self.unify_ws_reliable_messaging, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'ReceiptHandling', self.unify_receipt_handling, direction) return binding """ AMQP Channel """ def unify_amqp_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, acid, bcppid, bcid) = context self.unify_as_response(acid, a_channel, bcid, b_channel, binding) self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_transport_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) self.unify_package_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) return binding """ Delegation Channels """ def unify_delegation_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): self.unify_simple_subelement(a_channel, b_channel, binding, 'cppa', 'PartyId', required=False) self.unify_simple_subelement(a_channel, b_channel, binding, 'cppa', 'ProfileIdentifier', required=False) return binding """ Transport Channels """ def unify_transport_channel(self, acpp, bcpp, context, a_channel, b_channel, binding, direction): (acppid, acid, bcppid, bcid) = context self.unify_transport_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction) self.unify_channel_descriptions(context, a_channel, b_channel, binding) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, binding, 'cppa', 'RequestChannelID', self.unify_request_channel_id, direction) return binding def unify_request_channel_id(self, acpp, bcpp, context, arerc, brerc, abrerc, direction): (acppid, axid, bcppid, bxid) = context logging.info('unify_RequestChannelId for {} {}'.format(context, arerc)) arercid = arerc.text brercid = brerc.text self.unify_channels((acppid, arercid, bcppid, brercid), acpp, bcpp, None) logging.info("Unified RequestChannelId {} {}".format(arercid, brercid)) abrerc.text = self.cppaid(acppid, arercid, bcppid, brercid) self.record_dependency(context, 'channel', (acppid, arercid, bcppid, brercid)) """ ebMS3 and AS4 """ def unify_ebms3_channel(self, acpp, bcpp, context, a_channel, b_channel, ebmsbinding, direction): (acppid, acid, bcppid, bcid) = context unify_and_set_att(a_channel, b_channel, ebmsbinding, 'actorOrRole') self.unify_as_response(acid, a_channel, bcid, b_channel, ebmsbinding) self.unify_channel_descriptions(context, a_channel, b_channel, ebmsbinding) self.unify_simple_subelement(a_channel, b_channel, ebmsbinding, 'cppa', 'ChannelProfile', required=False) logging.info("Unifying ebMS3Channel for {} {}".format(acid, bcid)) self.unify_mpc(context, a_channel, b_channel, ebmsbinding, direction) self.unify_simple_subelement(a_channel, b_channel, ebmsbinding, 'cppa', 'SOAPVersion', required=False) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'Addressing', self.unify_ws_addressing, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'WSSecurityBinding', self.unify_ws_security, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'AS4ReceptionAwareness', self.unify_as4_reception_awareness, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'ErrorHandling', self.unify_error_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'ReceiptHandling', self.unify_receipt_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'PullHandling', self.unify_pull_handling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'Compression', self.unify_compression, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'Bundling', self.unify_bundling, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'Splitting', self.unify_splitting, direction) self.unify_complex_subelement(acpp, bcpp, context, a_channel, b_channel, ebmsbinding, 'cppa', 'AlternateChannel', self.unify_alternate_channel_id, direction) self.unify_transport_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, ebmsbinding, direction) self.unify_package_elements(acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, ebmsbinding, direction) logging.info("Unified ebMS3Channel for {} {}".format(acid, bcid)) return ebmsbinding def unify_mpc(self, context, a_channel, b_channel, ebmsbinding, direction): (acppid, acid, bcppid, bcid) = context logging.info('Unify MPC for {}, {}'.format(acid, bcid)) for mpcatt in ['mpc', 'submpcext']: ampc = a_channel.get(mpcatt) bmpc = b_channel.get(mpcatt) a_as_response = a_channel.get('asResponse') b_as_response = b_channel.get('asResponse') if ampc == bmpc is None: pass elif ampc == bmpc: # MPC specified on both sides with same value: reuse value ebmsbinding.set(mpcatt, ampc) elif ampc is not None and bmpc is not None and ampc != bmpc: # MPC specified on both sides with conflicting value: unification fails raise UnificationException( 'Incompatible (sub)MPC {}-{} versus {}-{}'.format(acid, ampc, bcid, bmpc)) else: # The MPC is specified on one side only logging.info(' {} {} {}'.format(a_as_response, b_as_response, direction)) if direction == 'send' and xsd_boolean(a_as_response) is not False: # Message is transmitted over backchannel of a Pull request if ampc is not None and bmpc is None: ebmsbinding.set(mpcatt, ampc) else: raise UnificationException( 'Pull client cannot set (sub)MPC for server {} {}'.format(acid, bcid)) elif direction == 'receive' and xsd_boolean(b_as_response) is not False: # Message is transmitted over backchannel of a Pull request if ampc is None and bmpc is not None: ebmsbinding.set(mpcatt, bmpc) else: raise UnificationException( 'Pull client cannot set MPC for server {} {}'.format(acid, bcid)) def unify_as_response(self, aid, a_binding, bid, b_binding, ab_binding): aval = a_binding.get('asResponse') bval = b_binding.get('asResponse') if xsd_boolean(aval) is xsd_boolean(bval): # both are set with the same Boolean (true or false) value or both are None if xsd_boolean(aval) is True: # they are set to true ab_binding.set('asResponse', 'true') else: # both are False or None # donothing, default is false pass elif xsd_boolean(aval) is True: if xsd_boolean(bval) is None: # A is set and is set to true, B is not set ab_binding.set('asResponse', 'true') else: # B is False raise UnificationException( 'Channels {} {} inconsistent for asResponse'.format(aid, bid)) elif xsd_boolean(bval) is True: if xsd_boolean(aval) is None: # B is set and is set to true, A is not set ab_binding.set('asResponse', 'true') else: # A is False raise UnificationException( 'Channels {} {} inconsistent for asResponse'.format(aid, bid)) """ WS-Addressing, for ebMS3 Part 2 multihop feature """ def unify_ws_addressing(self, acpp, bcpp, context, a_addressing, b_addressing, ab_addressing, direction): self.unify_simple_subelement(a_addressing, b_addressing, ab_addressing, 'cppa', 'Endpoint', required=False) self.unify_simple_subelement(a_addressing, b_addressing, ab_addressing, 'cppa', 'Action', required=True, strictatts=True) self.unify_wsa_from(acpp, bcpp, context, a_addressing, b_addressing, ab_addressing, direction) self.unify_complex_subelement(acpp, bcpp, context, a_addressing, b_addressing, ab_addressing, 'cppa', 'ebMS3InferredRoutingInput', self.unify_routinginput, direction) def unify_routinginput(self, acpp, bcpp, context, a_addressing, b_addressing, ab_addressing, direction): self.unify_simple_subelement(a_addressing, b_addressing, ab_addressing, 'cppa', 'ActionSuffix', required=False) self.unify_simple_subelement(a_addressing, b_addressing, ab_addressing, 'cppa', 'MPCSuffix', required=False) def unify_wsa_from(self, acpp, bcpp, context, a_addressing, b_addressing, ab_addressing, direction): if direction == 'send': wsa_from_L = a_addressing.xpath('child::cppa:From', namespaces=self.NSMAP) else: wsa_from_L = b_addressing.xpath('child::cppa:From', namespaces=self.NSMAP) if len(wsa_from_L) > 0: ab_addressing.append(deepcopy(wsa_from_L[0])) """ Compression """ def unify_compression(self, acpp, bcpp, context, a_compression, b_compression, ab_compression, direction): self.unify_simple_subelement(a_compression, b_compression, ab_compression, 'cppa', 'CompressionAlgorithm', intersectifmultiple=False, strictelements=False) self.unify_boolean_subelement(a_compression, b_compression, ab_compression, 'cppa', 'CompressAttachments', required=False, strictelements=True) self.unify_boolean_subelement(a_compression, b_compression, ab_compression, 'cppa', 'CompressExternalPayloads', required=False, strictelements=True) """ WS-Security """ def unify_ws_security(self, acpp, bcpp, context, asec, bsec, security, direction): #(acppid, axid, bcppid, bxid) = context self.unify_simple_subelement(asec, bsec,security, 'cppa', 'WSSVersion', required=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'SecurityPolicy', required=False) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'SAMLKeyConfirmedSubjectToken', self.unify_saml_key_confirmed_subject, direction) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'Signature', self.unify_signature, direction) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'Encryption', self.unify_encryption, direction) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'UserAuthentication', self.unify_user_authentication, direction) def unify_saml_key_confirmed_subject(self, acpp, bcpp, context, asec, bsec, security, direction): (acppid, axid, bcppid, bxid) = context security.set('id', '{}_{}'.format(asec.get('id'), bsec.get('id'))) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'SAMLVersion', required=True) self.unify_idp_registration_set_ref(acpp, bcpp, context, asec, bsec, security, direction) self.include_sender_signing_certificate_ref(acpp, bcpp, context, asec, bsec, security, direction) self.unify_saml_attributes(acpp, bcpp, context, asec, bsec, security, direction) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'KeyType', required=True) def unify_saml_attributes(self, acpp, bcpp, context, acppel, bcppel, abcpael, direction): if direction is 'send': receiver_attributeL = bcppel.xpath( 'child::cppa:SAMLAttribute', namespaces=self.NSMAP ) sender_attributeL = acppel.xpath( 'child::cppa:SAMLAttribute', namespaces=self.NSMAP ) else: receiver_attributeL = acppel.xpath( 'child::cppa:SAMLAttribute', namespaces=self.NSMAP ) sender_attributeL = bcppel.xpath( 'child::cppa:SAMLAttribute', namespaces=self.NSMAP ) for receiver_attribute in receiver_attributeL: attributename = receiver_attribute.get('Name') sender_receiver_match = False for sender_attribute in sender_attributeL: if sender_attribute.get('Name') == attributename \ and sender_attribute.get('use') == 'required': sender_receiver_match = True if receiver_attribute.get('use') == 'required' \ and sender_receiver_match is False: raise UnificationException( 'Required attribute {} not provided by sender'.format(attributename) ) def include_sender_signing_certificate_ref(self, acpp, bcpp, context, acppel, bcppel, abcpael, direction): if direction == 'send': signing_certL = acppel.xpath('child::cppa:SigningCertificateRef', namespaces=self.NSMAP) else: signing_certL = bcppel.xpath('child::cppa:SigningCertificateRef', namespaces=self.NSMAP) if len(signing_certL) > 0: abcpael.append(deepcopy(signing_certL[0])) def unify_idp_registration_set_ref(self, acpp, bcpp, context, acppel, bcppel, abcpael, direction): a_idp_set_refL = acppel.xpath('child::cppa:IDPRegistrationSetRef', namespaces=self.NSMAP) b_idp_set_refL = bcppel.xpath('child::cppa:IDPRegistrationSetRef', namespaces=self.NSMAP) if len(a_idp_set_refL) > 0: a_idprs_ref = (a_idp_set_refL[0]).get('idpsetid') a_idprs = acpp.xpath( 'descendant::cppa:IDPRegistrationSet[@id="{}"]/cppa:IDPRegistrationRef/@idp'.format( a_idprs_ref), namespaces=self.NSMAP) if len(b_idp_set_refL) > 0: b_idprs_ref = (b_idp_set_refL[0]).get('idpsetid') b_idprs = bcpp.xpath( 'descendant::cppa:IDPRegistrationSet[@id="{}"]/cppa:IDPRegistrationRef/@idp'.format( b_idprs_ref), namespaces=self.NSMAP) abcpael.append(deepcopy(b_idp_set_refL[0])) idp_sets_intersect = False for aidp in a_idprs: a_provider = acpp.xpath( 'descendant::cppa:IDPRegistration[@id="{}"]/cppa:ProviderID/text()'.format(aidp), namespaces=self.NSMAP)[0] logging.info('P: {}'.format(a_provider)) for bidp in b_idprs: b_provider = bcpp.xpath( 'descendant::cppa:IDPRegistration[@id="{}"]/cppa:ProviderID/text()'.format(bidp), namespaces=self.NSMAP)[0] if a_provider == b_provider: if not idp_sets_intersect: idp_sets_intersect = True provideridel = lxml.etree.SubElement(abcpael, cppa('ProviderID')) provideridel.text = a_provider else: logging.info('AIDP {} not found in B') if not idp_sets_intersect: raise UnificationException( 'Empty intersection of IDP sets {} and {}'.format(a_idprs_ref, b_idprs_ref)) def unify_signature(self, acpp, bcpp, context, asec, bsec, security, direction): (acppid, axid, bcppid, bxid) = context self.unify_simple_subelement(asec, bsec,security, 'cppa', 'SignatureFormat', required=False, intersectifmultiple=False, strictelements=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'SignatureAlgorithm', required=False, intersectifmultiple=False, strictelements=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'DigestAlgorithm', required=False, intersectifmultiple=False, strictelements=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'CanonicalizationMethod', required=False, intersectifmultiple=False, strictelements=False) self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:SigningCertificateRef', asec, bsec, security, direction, 'send') self.unify_signing_cert_and_anchor(acppid, acpp, bcppid, bcpp, asec, bsec, security, direction) self.unify_saml_token_ref(acpp, bcpp, context, asec, bsec, security, direction) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'SignElements', self.unify_sign_elements, direction) self.unify_boolean_subelement(asec, bsec,security, 'cppa', 'SignAttachments', required=False, strictelements=True) self.unify_boolean_subelement(asec, bsec,security, 'cppa', 'SignExternalPayloads', required=False, strictelements=True) def resolve_certificate_ref(self, acpp, bcpp, context, certificate_kind, asec, bsec, security, direction, leading_direction): xpath_local = 'child::{}'.format(certificate_kind) xpath_default = 'descendant::cppa:CertificateDefaults/{}'.format(certificate_kind) if direction == leading_direction: local_certificate_list = asec.xpath(xpath_local, namespaces=self.NSMAP) default_certificate_list = acpp.xpath(xpath_default, namespaces=self.NSMAP) to_append_to = asec else: local_certificate_list = bsec.xpath(xpath_local, namespaces=self.NSMAP) default_certificate_list = bcpp.xpath( xpath_default, namespaces=self.NSMAP) to_append_to = bsec if len(local_certificate_list) > 0: security.append(deepcopy(local_certificate_list[0])) elif len(default_certificate_list) > 0: security.append(deepcopy(default_certificate_list[0])) to_append_to.append(deepcopy(default_certificate_list[0])) def unify_saml_token_ref(self, acpp, bcpp, context, acppel, bcppel, abcpael, direction): a_saml_tokenL = acppel.xpath('child::cppa:SAMLTokenRef', namespaces=self.NSMAP) b_saml_tokenL = bcppel.xpath('child::cppa:SAMLTokenRef', namespaces=self.NSMAP) if len(a_saml_tokenL) != len(b_saml_tokenL): raise UnificationException('Mismatch in child count for SAMLTokenRef') elif len(a_saml_tokenL) == 1: a_saml_token_id = (a_saml_tokenL[0]).get('tokenId') b_saml_token_id = (b_saml_tokenL[0]).get('tokenId') lxml.etree.SubElement(abcpael, cppa('SAMLTokenRef'), tokenId= '{}_{}'.format(a_saml_token_id, b_saml_token_id)) def unify_sign_elements(self, acpp, bcpp, context, asec, bsec, security, direction): self.unify_expressions(asec, bsec, security, context) def unify_encryption(self, acpp, bcpp, context, asec, bsec, security, direction): (acppid, axid, bcppid, bxid) = context self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'KeyEncryption', self.unify_key_encryption, direction) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'EncryptionAlgorithm', required=False, intersectifmultiple=True, strictelements=False) self.unify_complex_subelement(acpp, bcpp, context, asec, bsec, security, 'cppa', 'EncryptElements', self.unify_encrypt_elements, direction) self.unify_boolean_subelement(asec, bsec,security, 'cppa', 'EncryptAttachments', required=False, strictelements=True) self.unify_boolean_subelement(asec, bsec,security, 'cppa', 'EncryptExternalPayloads', required=False, strictelements=True) self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:EncryptionCertificateRef', asec, bsec, security, direction, 'receive') self.unify_encryption_cert_and_anchor(acppid, acpp, bcppid, bcpp, asec, bsec, security, direction) def unify_key_encryption(self, acpp, bcpp, context, asec, bsec, security, direction): self.unify_simple_subelement(asec, bsec,security, 'cppa', 'EncryptionAlgorithm', required=False, intersectifmultiple=False, strictelements=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'MaskGenerationFunction', required=False, intersectifmultiple=False, strictelements=False) self.unify_simple_subelement(asec, bsec,security, 'cppa', 'DigestAlgorithm', required=False, intersectifmultiple=False, strictelements=False) def unify_encrypt_elements(self, acpp, bcpp, context, asec, bsec, security, direction): self.unify_expressions(asec, bsec, security, context) def unify_expressions(self, asec, bsec, security, context): (acppid, axid, bcppid, bxid) = context a_expressions_list = sorted(asec.xpath('child::cppa:Expression/text()', namespaces=self.NSMAP)) b_expressions_list = sorted(bsec.xpath('child::cppa:Expression/text()', namespaces=self.NSMAP)) if len(a_expressions_list) != len(b_expressions_list): return UnificationException( 'Unequal number of expression in {} {}'.format(acppid, bcppid)) else: for counter, a_expr in enumerate(a_expressions_list): b_expr = b_expressions_list[counter] if a_expr != b_expr: raise UnificationException( 'Mismatch in expression: {} {}'.format(a_expr, b_expr)) else: expression = lxml.etree.SubElement(security, cppa('Expression')) expression.text = a_expr """ AMQP Security """ def unify_amqp_security(self, acpp, bcpp, context, a_amqp_security, b_amqp_security, ab_amqp_security, direction): self.unify_simple_subelement(a_amqp_security, b_amqp_security, ab_amqp_security, 'cppa', 'SASLMechanism', required=True, strictelements=False) self.unify_complex_subelement(acpp, bcpp, context, a_amqp_security, b_amqp_security, ab_amqp_security, 'cppa', 'TransportLayerSecurity', self.unify_transport_layer_security, direction) """ Reliable Messaging """ def unify_as4_reception_awareness(self, acpp, bcpp, context, ael, bel, abel, direction): self.unify_complex_subelement(acpp, bcpp, context, ael, bel, abel, 'cppa', 'DuplicateHandling', self.unify_duplicate_handling, direction) self.unify_retry_handling(acpp, bcpp, context, ael, bel, abel, direction) def unify_duplicate_handling(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context self.unify_boolean_subelement(ael, bel,abel, 'cppa', 'DuplicateElimination', required=True, strictelements=False) self.unify_persist_duration(acpp, bcpp, context, ael, bel, abel, direction) def unify_persist_duration(self, acpp, bcpp, context, ael, bel, abel, direction): """ The PersistDuration of the receiver is used """ (acppid, axid, bcppid, bxid) = context if direction == "send": self.unify_persist_duration_send(acppid, bcppid, ael, bel, abel) else: self.unify_persist_duration_send(acppid, bcppid, bel, ael, abel) def unify_persist_duration_send(self, acppid, bcppid, ael, bel, abel): b_persistdurationl = bel.xpath('child::cppa:PersistDuration', namespaces=self.NSMAP) if len(b_persistdurationl) > 0: abel.append(self.c14n(deepcopy(b_persistdurationl[0]))) def unify_retry_handling(self, acpp, bcpp, context, ael, bel, abel, direction): """ Retries are handled by the sender, so the configuration for the CPA is based on the configuration of the sender. @@@ for consideration: add checks that the last possible retry is within the persist duration interval """ (acppid, axid, bcppid, bxid) = context if direction == "send": self.unify_retry_handling_send(acppid, bcppid, ael, bel, abel) else: self.unify_retry_handling_send(acppid, bcppid, bel, ael, abel) def unify_retry_handling_send(self, acppid, bcppid, ael, bel, abel): a_RetryHandlingL = ael.xpath('child::cppa:RetryHandling', namespaces=self.NSMAP) if len(a_RetryHandlingL) > 0: abel.append(self.c14n(a_RetryHandlingL[0])) def unify_ws_reliable_messaging(self, acpp, bcpp, context, ael, bel, parent, direction): self.unify_complex_subelement(acpp, bcpp, context, ael, bel, parent, 'cppa', 'DuplicateHandling', self.unify_duplicate_handling) self.unify_retry_handling(acpp, bcpp, context, ael, bel, parent, direction) self.unify_simple_subelement(ael, bel, parent, 'cppa', 'Protocol', required = True, strictelements=False) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'AckOnDelivery', required = False, strictelements=False) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'InOrder', required = False, strictelements=False) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'StartGroup', required = False, strictelements=False) self.unify_complex_subelement(acpp, bcpp, context, ael, bel, parent, 'cppa', 'Correlation', self.unify_rm_correlation, direction) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'TerminateGroup', required = False, strictelements=False) def unify_rm_correlation(self, acpp, bcpp, context, ael, bel, abel, direction): self.unify_expressions(ael, bel, abel, context) """ Error Handling """ def unify_error_handling(self, acpp, bcpp, context, ael, bel, parent, direction): logging.info("Unifying ErrorHandling for {}".format(ael)) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'DeliveryFailuresNotifyProducer', required = False, strictelements=False) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'ProcessErrorNotifyConsumer', required = False, strictelements = False) self.unify_boolean_subelement(ael, bel, parent, 'cppa', 'ProcessErrorNotifyProducer', required=False, strictelements=False) self.unify_complex_subelement(acpp, bcpp, context, ael, bel, parent, 'cppa', 'ReceiverErrorsReportChannelId', self.unify_receiver_errors_report_channel_id, reverse(direction)) def unify_receiver_errors_report_channel_id(self, acpp, bcpp, context, arerc, brerc, abrerc, direction): (acppid, axid, bcppid, bxid) = context logging.info( 'unify_ReceiverErrorsReportChannelId for {} {}'.format( context, arerc) ) arercid = arerc.text brercid = brerc.text logging.info( "Attempting to unify ReceiverErrorsReport channels {} with {}".format( arercid, brercid) ) self.unify_channels((acppid, arercid, bcppid, brercid), acpp, bcpp, direction) logging.info("Unified ReceiverErrorsReportChannelId {} {}".format( arercid, brercid) ) abrerc.text = self.cppaid(acppid, arercid, bcppid, brercid) self.record_dependency(context, 'channel', (acppid, arercid, bcppid, brercid)) """ Receipt Handling """ def unify_receipt_handling(self, acpp, bcpp, context, ael, bel, parent, direction): logging.info("Unifying ReceiptHandling for {}".format(ael)) self.unify_simple_subelement(ael, bel, parent, 'cppa', 'ReceiptFormat', required=False, strictelements=True, intersectifmultiple=False) self.unify_complex_subelement(acpp, bcpp, context, ael, bel, parent, 'cppa', 'ReceiptChannelId', self.unify_receipt_channel_id, direction) def unify_receipt_channel_id(self, acpp, bcpp, context, arerc, brerc, abrerc, direction): (acppid, axid, bcppid, bxid) = context logging.info('unify_ReceiptChannelId for {} {}'.format(context, arerc)) arercid = arerc.text brercid = brerc.text self.unify_channels((acppid, arercid, bcppid, brercid), acpp, bcpp, reverse(direction)) logging.info("Unified ReceiptChannelId {} {}".format(arercid, brercid)) abrerc.text = self.cppaid(acppid, arercid, bcppid, brercid) self.record_dependency(context, 'channel', (acppid, arercid, bcppid, brercid)) """ self.unify_pull_handling """ def unify_pull_handling(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context logging.info('unify_pull_channel_id for {} {}'.format(context, ael)) self.unify_complex_subelement(acpp, bcpp, context, ael, bel, abel, 'cppa', 'PullChannelId', self.unify_pull_channel_id, direction) """ self.unify_pull_channel_id """ def unify_pull_channel_id(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context logging.info('unify_pull_channel_id for {} {}'.format(context, ael)) apullchannelid = ael.text bpullchannelid = bel.text logging.info( "Attempting to unify Pull channels {} and {}".format(apullchannelid, bpullchannelid) ) self.unify_channels((acppid, apullchannelid, bcppid, bpullchannelid), acpp, bcpp, reverse(direction)) logging.info("Unified PullChannelId {} {}".format(apullchannelid, bpullchannelid)) abel.text = self.cppaid(acppid, apullchannelid, bcppid, bpullchannelid) self.record_dependency(context, 'channel', (acppid, apullchannelid, bcppid, bpullchannelid)) """ self.unify_bundling """ def unify_bundling(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context self.unify_complex_subelement(acpp, bcpp, context, ael, bel, abel, 'cppa', 'Ordering', self.unify_bundling_ordering, direction) def unify_bundling_ordering(self, acpp, bcpp, context, ael, bel, abel, direction): self.unify_simple_subelement(ael, bel, abel, 'cppa', 'Policy', required=True) """ self.unify_splitting """ def unify_splitting(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context self.unify_size_element(ael, bel, abel, 'FragmentSize') self.unify_properties(axid, acpp, ael, bxid, bcpp, bel, abel) self.unify_simple_subelement(ael, bel, abel, 'cppa', 'CompressionAlgorithm', intersectifmultiple=False, strictelements=False, required=False) if direction == 'send': splitting_interval_list = bel.xpath('child::cppa:JoinInterval', namespaces=self.NSMAP) else: splitting_interval_list = ael.xpath('child::cppa:JoinInterval', namespaces=self.NSMAP) if len(splitting_interval_list) > 0: abel.append(deepcopy(splitting_interval_list[0])) """ self.unify_alternate_channel_id """ def unify_alternate_channel_id(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, axid, bcppid, bxid) = context logging.info('unify_alternate_channel_id for {} {}'.format(context, ael)) aaltchannelid = ael.text baltchannelid = bel.text logging.info("Attempting to unify Alternate channels {} and {}".format( aaltchannelid, baltchannelid) ) self.unify_channels((acppid, aaltchannelid, bcppid, baltchannelid), acpp, bcpp, direction) logging.info("Unified AlternateChannelId {} {}".format(aaltchannelid, baltchannelid)) abel.text = self.cppaid(acppid, aaltchannelid, bcppid, baltchannelid) self.record_dependency(context, 'channel', (acppid, aaltchannelid, bcppid, baltchannelid)) """ Certificates """ def unify_signing_cert_and_anchor(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, security, direction): if direction == "send": self.unify_signing_cert_and_anchor_send(acppid, acpp, bcppid, bcpp, acppel, bcppel, security) else: self.unify_signing_cert_and_anchor_send(bcppid, bcpp, acppid, acpp, bcppel, acppel, security) def unify_signing_cert_and_anchor_send(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, security): a_signing_certL = acppel.xpath('child::cppa:SigningCertificateRef', namespaces=self.NSMAP) b_signing_anchorL = bcppel.xpath('child::cppa:SigningTrustAnchorSetRef', namespaces=self.NSMAP) required = self.certificate_required(bcppel, 'Signing', False) if len(a_signing_certL) == 1 and len(b_signing_anchorL) == 1: signingcertid = a_signing_certL[0].get('certId') banchorid = b_signing_anchorL[0].get('certId') logging.info('Checking if cert {} matches anchors {}'.format(signingcertid, banchorid)) acert = acpp.xpath('cppa:PartyInfo/cppa:Certificate[@id="{}"]'.format(signingcertid), namespaces=self.NSMAP)[0] banchor = bcpp.xpath('cppa:PartyInfo/cppa:TrustAnchorSet[@id="{}"]'.format(banchorid), namespaces=self.NSMAP)[0] ax509certL = acert.xpath('descendant-or-self::ds:X509Certificate', namespaces=self.NSMAP) self.unify_cert_and_anchor(signingcertid, ax509certL, banchorid, banchor, bcpp, required) elif len(b_signing_anchorL) == 1: logging.info('A signing anchor specified, but no cert') security.append(deepcopy(b_signing_anchorL[0])) if required: raise UnificationException('A signing certificate is required, but not presented') elif len(a_signing_certL) == 1: logging.info('A signing cert specified, but no anchor') else: logging.info('No signing anchor and/or cert specified') def unify_encryption_cert_and_anchor(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, parent, direction): if direction == "send": self.unify_encryption_cert_and_anchor_send(acppid, acpp, bcppid, bcpp, acppel, bcppel, parent) else: self.unify_encryption_cert_and_anchor_send(bcppid, bcpp, acppid, acpp, bcppel, acppel, parent) def unify_encryption_cert_and_anchor_send(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, parent): a_encryption_anchorL = acppel.xpath('child::cppa:EncryptionTrustAnchorSetRef', namespaces=self.NSMAP) b_encryption_certL = bcppel.xpath('child::cppa:EncryptionCertificateRef', namespaces=self.NSMAP) required = self.certificate_required(acppel, 'Encryption', True) if len(a_encryption_anchorL) == 1 and len(b_encryption_certL) == 1: aanchorid = a_encryption_anchorL[0].get('certId') encryptioncertid = b_encryption_certL[0].get('certId') logging.info('Checking if cert {} matches anchors {}'.format(encryptioncertid, aanchorid)) aanchor = acpp.xpath( 'cppa:PartyInfo/cppa:TrustAnchorSet[@id="{}"]'.format(aanchorid), namespaces=self.NSMAP)[0] bcert = bcpp.xpath( 'cppa:PartyInfo/cppa:Certificate[@id="{}"]'.format(encryptioncertid), namespaces=self.NSMAP)[0] bx509certl = bcert.xpath('descendant-or-self::ds:X509Certificate', namespaces=self.NSMAP) if len(bx509certl) > 0: bx509rootcert = remove_all_whitespace(bx509certl[-1].text) logging.debug('Root cert is {} ... {} (len: {})'.format(bx509rootcert[0:6], bx509rootcert[-6:], len(bx509rootcert))) self.unify_cert_and_anchor(encryptioncertid, bx509certl, aanchorid, aanchor, acpp) elif len(a_encryption_anchorL) == 1: logging.info('An encryption anchor specified, but no cert') parent.append(deepcopy(a_encryption_anchorL[0])) if required: raise UnificationException('An encryption certificate is required, but not presented') elif len(b_encryption_certL) == 1: logging.info('An encryption cert specified, but no anchor') else: logging.info('No encryption anchor/cert specified') def unify_cert_and_anchor(self, signingcertid, ax509certL, banchorid, banchor, bcpp, required=None): rootfound = False if len(ax509certL) > 0: ax509rootcert = remove_all_whitespace(ax509certL[-1].text) logging.debug('Root cert is {} ... {} (len: {})'.format(ax509rootcert[0:6], ax509rootcert[-6:], len(ax509rootcert))) rootfound = False for b_anchor_ref in banchor.xpath('cppa:AnchorCertificateRef', namespaces=self.NSMAP): b_anchor_certid = b_anchor_ref.get('certId') if check_x509_data_content(signingcertid, ax509rootcert, b_anchor_certid, bcpp): rootfound = True if not rootfound: for embedded_cert in banchor.xpath('cppa:Certificate', namespaces=self.NSMAP): certid = embedded_cert.get('id') if check_x509_data_content_2(signingcertid, ax509rootcert, certid, embedded_cert, bcpp): rootfound = True else: logging.warning('Empty ax509certL for {}'.format(signingcertid)) if not rootfound: raise UnificationException( 'Cert {} does not match a root cert in {}'.format(signingcertid, banchorid) ) """ User Authentication A username and password are generated as part of CPA formation """ def unify_user_authentication(self, acpp, bcpp, context, ael, bel, abel, direction): (acppid, aelid, bcppid, belid) = context usernameel = lxml.etree.SubElement(abel, cppa('Username')) usernameel.text = create_username(acppid, aelid, bcppid, belid) passwordel = lxml.etree.SubElement(abel, cppa('Password')) passwordel.text = create_random_password() self.unify_boolean_subelement(ael, bel, abel, 'cppa', 'Digest', required=False) self.unify_boolean_subelement(ael, bel, abel, 'cppa', 'Nonce', required=False) self.unify_boolean_subelement(ael, bel, abel, 'cppa', 'Created', required=False) """ Transport """ def unify_transport_elements(self, acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, binding, direction): atid = a_channel.get('transport') btid = b_channel.get('transport') if atid is not None and btid is not None: self.unify_transport(acppid, acpp, bcppid, bcpp, atid, btid, direction) abtid = self.cppaid(acppid, atid, bcppid, btid) binding.set('transport', abtid) self.record_dependency(context, 'transport', (acppid, atid, bcppid, btid)) elif (atid is None and btid is not None) or (btid is None and atid is not None): raise UnificationException( 'Element {} and {} inconsistent for transport'.format(a_channel.get('id'), b_channel.get('id')) ) def unify_transport(self, acppid, acpp, bcppid, bcpp, atid, btid, direction): cached, result = self.memo(acppid, atid, bcppid, btid, self.unify_transport_results, self.unify_transport_exceptions) if cached: return result try: result = self.unify_transport_memo(acppid, acpp, bcppid, bcpp, atid, btid, direction) except UnificationException as e: self.unify_transport_exceptions[acppid, atid, bcppid, btid] = e raise else: self.unify_transport_results[acppid, atid, bcppid, btid] = result return result def unify_transport_memo(self, acppid, acpp, bcppid, bcpp, atid, btid, direction): try: if atid is None and btid is None: logging.info("No transport, OK") return (acppid, bcppid, atid, btid) elif atid is None or btid is None: raise Exception('Missing transport {} or {}'.format(atid, btid)) else: atransport = acpp.xpath('descendant::node()[@id="{}"]'.format(atid), namespaces=self.NSMAP)[0] btransport = bcpp.xpath('descendant::node()[@id="{}"]'.format(btid), namespaces=self.NSMAP)[0] if atransport.tag != btransport.tag: raise UnificationException( 'Mismatch in transport type: {} vs {}'.format(atransport.tag, btransport.tag)) abtransport = lxml.etree.Element(atransport.tag, id=self.cppaid(acppid, atransport.get('id'), bcppid, btransport.get('id')), nsmap=self.NSMAP) description = lxml.etree.SubElement(abtransport, cppa('Description')) description.set(xml('lang'),'en') description.text = 'Transport formed from {} in {} and {} in {}'.format(atid, acppid, btid, bcppid) self.unify_transport_method(atransport.tag, atid, atransport, btid, btransport, abtransport) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'ClientIPv4', required=False, strictelements=False, intersectifmultiple=False) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'ClientIPv6', required=False, strictelements=False) self.unify_ip_versions(atid, atransport, btid, btransport, abtransport) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'Endpoint', required=True, strictelements=False) self.unify_complex_subelement(acpp, bcpp, (acppid, atid, bcppid, btid), atransport, btransport, abtransport, 'cppa', 'TransportLayerSecurity', self.unify_transport_layer_security, direction) self.unify_complex_subelement(acpp, bcpp, (acppid, atid, bcppid, btid), atransport, btransport, abtransport, 'cppa', 'UserAuthentication', self.unify_user_authentication, direction) self.unify_complex_subelement(acpp, bcpp, (acppid, atid, bcppid, btid), atransport, btransport, abtransport, 'cppa', 'TransportRestart', self.unify_transport_restart, direction) # For HTTP self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'HTTPVersion', required=False, strictelements=False, intersectifmultiple=True) self.unify_boolean_subelement(atransport, btransport, abtransport, 'cppa', 'ChunkedTransferCoding', strictelements=False, required=False) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'ContentCoding', required=False, strictelements=False, intersectifmultiple=True) # For SMTP self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'From', required=False, strictelements=False) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'To', required=False, strictelements=False) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'Subject', required=False, strictelements=False) # For WebSocket self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'SubProtocol', required=False, strictelements=False) # For AMQP self.unify_complex_subelement(acpp, bcpp, (acppid, atid, bcppid, btid), atransport, btransport, abtransport, 'cppa', 'AMQPSecurity', self.unify_amqp_security, direction) # For SFTP self.unify_complex_subelement(acpp, bcpp, (acppid, atid, bcppid, btid), atransport, btransport, abtransport, 'cppa', 'Compression', self.unify_compression, direction) self.unify_ssh_keys(acppid, acpp, bcppid, bcpp, atransport, btransport, abtransport, direction) #(self, acppid, acpp, bcppid, bcpp, # acppel, bcppel, parent, direction) self.unify_simple_subelement(atransport, btransport, abtransport, 'cppa', 'SSHCipher', required=False, strictelements=False, intersectifmultiple=False) return abtransport except UnificationException as e: raise UnificationException('Transport {} {}: {}'.format(atid, btid, e)) def unify_ip_versions(self, atid, atransport, btid, btransport, abtransport): if ( xsd_boolean(atransport.get('supportsIPv4')) is False \ and xsd_boolean(btransport.get('supportsIPv6')) is False ) \ or \ ( xsd_boolean(btransport.get('supportsIPv4')) is False \ and xsd_boolean(atransport.get('supportsIPv6')) is False ): raise UnificationException( 'Transport {} {} are on incompatible IP versions'.format( atid, btid )) else: for transport in [atransport, btransport]: for ip_version in ['supportsIPv4', 'supportsIPv6']: if xsd_boolean(transport.get(ip_version)) is False: abtransport.set(ip_version, 'false') def unify_transport_method(self, protocol, atid, atransport, btid, btransport, abtransport): for transport in [atransport, btransport]: if protocol == cppa('FTPTransport'): if 'method' not in transport.attrib: transport.set('method', 'PUT') if protocol == cppa('HTTPTransport'): if 'method' not in transport.attrib: transport.set('method', 'POST') if atransport.get('method') != btransport.get('method'): raise UnificationException( 'Method mismatch for {} {}: {} vs {}'.format(atid, btid, atransport.get('method'), btransport.get('method')) ) elif 'method' in atransport.attrib: abtransport.set('method', atransport.get('method')) if protocol == cppa('FTPTransport') and abtransport.get('method') == 'PUT': del abtransport.attrib['method'] elif protocol == cppa('HTTPTransport') and abtransport.get('method') == 'POST': del abtransport.attrib['method'] def unify_transport_layer_security(self, acpp, bcpp, context, atls, btls, abtls, direction): if direction == "send": self.unify_transport_layer_security_send(acpp, bcpp, context, atls, btls, abtls) else: self.unify_transport_layer_security_send(bcpp, acpp, context, btls, atls, abtls) def unify_transport_layer_security_send(self, acpp, bcpp, context, atls, btls, abtls): (acppid, axid, bcppid, bxid) = context logging.info('Unifying TransportLayerSecurity for {} {}'.format(axid, bxid)) self.unify_boolean_subelement(atls, btls, abtls, 'cppa', 'StartTLS', required=False, strictelements=True) self.unify_simple_subelement(atls, btls, abtls, 'cppa', 'TLSProtocol', required=False, strictelements=False) self.unify_boolean_subelement(atls, btls, abtls, 'cppa', 'ServerNameIndicationRequired', required=False, strictelements=True) self.unify_simple_subelement(atls, btls, abtls, 'cppa', 'CipherSuite', required=False, intersectifmultiple=True, strictelements=False) self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:ClientCertificateRef', atls, btls, abtls, 'send', 'send') self.resolve_certificate_ref(acpp, bcpp, context, 'cppa:ServerCertificateRef', atls, btls, abtls, 'send', 'receive') self.unify_tls_server_cert_and_anchor_send(acppid, acpp, bcppid, bcpp, atls, btls, abtls) self.unify_tls_client_cert_and_anchor_send(acppid, acpp, bcppid, bcpp, atls, btls, abtls) def unify_tls_server_cert_and_anchor_send(self, acppid, acpp, bcppid, bcpp, atls, btls, abtls): a_server_anchorL = atls.xpath('child::cppa:ServerTrustAnchorSetRef', namespaces=self.NSMAP) b_server_certL = btls.xpath('child::cppa:ServerCertificateRef', namespaces=self.NSMAP) required = self.certificate_required(atls, 'Server', False) if len(a_server_anchorL) == 1 and len(b_server_certL) == 1: aanchorid = a_server_anchorL[0].get('certId') server_certid = b_server_certL[0].get('certId') logging.info( 'Checking if cert {} matches anchors {}'.format( server_certid, aanchorid) ) aanchor = acpp.xpath('cppa:PartyInfo/cppa:TrustAnchorSet[@id="{}"]'.format(aanchorid), namespaces=self.NSMAP)[0] bcert = bcpp.xpath('cppa:PartyInfo/cppa:Certificate[@id="{}"]'.format(server_certid), namespaces=self.NSMAP)[0] bx509certL = bcert.xpath('descendant-or-self::ds:X509Certificate', namespaces=self.NSMAP) self.unify_cert_and_anchor(server_certid, bx509certL, aanchorid, aanchor, acpp) elif len(a_server_anchorL) == 1: logging.info('A server anchor specified, but no cert') abtls.append(deepcopy(a_server_anchorL[0])) if required: raise UnificationException('A server certificate is required, but not presented') elif len(b_server_certL) == 1: logging.info('A server cert specified, but no anchor') else: logging.info('No encryption anchor/cert specified') def unify_tls_client_cert_and_anchor_send(self, acppid, acpp, bcppid, bcpp, atls, btls, abtls): a_client_certL = atls.xpath('child::cppa:ClientCertificateRef', namespaces=self.NSMAP) b_client_anchorL = btls.xpath('child::cppa:ClientTrustAnchorSetRef', namespaces=self.NSMAP) required = self.certificate_required(btls, 'Client', False) if len(b_client_anchorL) == 1 and len(a_client_certL) == 1: banchorid = b_client_anchorL[0].get('certId') client_certid = a_client_certL[0].get('certId') logging.info('Checking if cert {} matches anchors {}'.format(client_certid, banchorid)) acert = acpp.xpath('cppa:PartyInfo/cppa:Certificate[@id="{}"]'.format(client_certid), namespaces=self.NSMAP)[0] banchor = bcpp.xpath( 'cppa:PartyInfo/cppa:TrustAnchorSet[@id="{}"]'.format(banchorid), namespaces=self.NSMAP)[0] ax509certL = acert.xpath('descendant-or-self::ds:X509Certificate', namespaces=self.NSMAP) self.unify_cert_and_anchor(client_certid, ax509certL, banchorid, banchor, bcpp) elif len(b_client_anchorL) == 1: logging.info('A server anchor specified, but no cert') abtls.append(deepcopy(b_client_anchorL[0])) if required: raise UnificationException('A server certificate is required, but not presented') elif len(a_client_certL) == 1: logging.info('A server cert specified, but no anchor') else: logging.info('No encryption anchor/cert specified') def unify_ssh_keys(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, parent, direction): if direction == "send": self.unify_ssh_keys_send(acppid, acpp, bcppid, bcpp, acppel, bcppel, parent) else: self.unify_ssh_keys_send(bcppid, bcpp, acppid, acpp, bcppel, acppel, parent) def unify_ssh_keys_send(self, acppid, acpp, bcppid, bcpp, acppel, bcppel, parent): a_key_refs = acppel.xpath('child::cppa:SSHClientKeyRef', namespaces=self.NSMAP) b_key_refs = bcppel.xpath('child::cppa:SSHServerKeyRef', namespaces=self.NSMAP) if len(a_key_refs) > 0: parent.append( deepcopy(a_key_refs[0])) if len(b_key_refs) > 0: parent.append( deepcopy(b_key_refs[0])) def unify_transport_restart(self, acpp, bcpp, context, a, b, ab, direction): self.unify_simple_subelement(a, b, ab, 'cppa', 'RestartProtocol', required=True, strictelements=True) if direction == 'send': receiver_interval_L = b.xpath('child::cppa:RestartInterval', namespaces=self.NSMAP) else: receiver_interval_L = a.xpath('child::cppa:RestartInterval', namespaces=self.NSMAP) if len(receiver_interval_L) > 0: ab.append(deepcopy(receiver_interval_L[0])) """ Properties Unify properties in two action bindings or in AMQP property definitions. Checks that the two bindings have the same number of properties and that they match pairwise. """ def unify_properties(self, aid, acpp, a_binding, bid, bcpp, b_binding, actionbinding): if a_binding.get('propertySetId') == b_binding.get('propertySetId') == None: a_property_list = a_binding.xpath('child::cppa:Property', namespaces=self.NSMAP) b_property_list = b_binding.xpath('child::cppa:Property', namespaces=self.NSMAP) b_parent = b_binding else: if a_binding.get('propertySetId') != None: a_property_list = acpp.xpath( "cppa:PropertySet[@id='{}']/child::cppa:Property".format( a_binding.get('propertySetId')), namespaces=self.NSMAP) else: a_property_list = a_binding.xpath( 'child::cppa:Property', namespaces=self.NSMAP) if b_binding.get('propertySetId') != None: b_property_list = bcpp.xpath( "cppa:PropertySet[@id='{}']/child::cppa:Property".format( b_binding.get('propertySetId')), namespaces=self.NSMAP) b_parent = bcpp.xpath( "cppa:PropertySet[@id='{}']".format( b_binding.get('propertySetId')), namespaces=self.NSMAP)[0] else: b_property_list = b_binding.xpath('child::cppa:Property', namespaces=self.NSMAP) b_parent = b_binding if len(a_property_list) != len(b_property_list): raise UnificationException( 'Unequal number of properties for {}, {}'.format(aid, bid)) else: #xpq = 'child::cppa:Property[@name="{}" and @minOccurs="{}" and @maxOccurs="{}"]' xpq = 'child::cppa:Property[@name="{}"]' for aprop in a_property_list: aname = aprop.get('name') a_min = aprop.get('minOccurs') a_max = aprop.get('maxOccurs') bpropl = b_parent.xpath(xpq.format(aname,a_min,a_max), namespaces=self.NSMAP) if len(bpropl) == 0: raise UnificationException( 'Mismatch for property {} in {}, {}'.format(aname, aid, bid)) bprop = bpropl[0] b_min = bprop.get('minOccurs') b_max = bprop.get('maxOccurs') for (p1, p2, np) in [ (a_min, b_min, 'minOccurs'), (a_max, b_max, 'maxOccurs')]: if p1 != p2: raise UnificationException( 'Mismatch for {} of property {} in {}, {}'.format(np, aname, aid, bid)) else: actionbinding.append(deepcopy(aprop)) """ Payload Profiles """ def unify_payload_profile(self, acppid, acpp, bcppid, bcpp, aid, bid, direction): logging.info('Unifying payload profiles {} {} and {} {}'.format(acppid, aid, bcppid, bid)) cached, result = self.memo(acppid, aid, bcppid, bid, self.unify_payload_profile_results, self.unify_payload_profile_exceptions) if cached: return result try: result = self.unify_payload_profile_memo(acppid, acpp, bcppid, bcpp, aid, bid, direction) except UnificationException as e: self.unify_payload_profile_exceptions[acppid, aid, bcppid, bid] = e raise else: self.unify_payload_profile_results[acppid, aid, bcppid, bid] = result return result def unify_payload_profile_memo(self, acppid, acpp, bcppid, bcpp, aid, bid, direction): try: if aid == bid is None: logging.info("No payload profile, OK") return None elif aid is None or bid is None: raise Exception('Missing payload profile {} or {}'.format(aid, bid)) else: app = acpp.xpath('descendant::node()[@id="{}"]'.format(aid), namespaces=self.NSMAP)[0] bpp = bcpp.xpath('descendant::node()[@id="{}"]'.format(bid), namespaces=self.NSMAP)[0] abpp = lxml.etree.Element(app.tag, id=self.cppaid(acppid, app.get('id'), bcppid, bpp.get('id')), nsmap=self.NSMAP) self.unify_payload_parts(acpp, bcpp, acppid, aid, app, bcppid, bid, bpp, abpp, direction) return abpp except UnificationException as e: raise UnificationException('Payload Profile {} {}: {}'.format(aid, bid, e)) def unify_payload_parts(self, acpp, bcpp, acppid, appid, app, bcppid, bppid, bpp, abpp, direction): app_part_list = app.xpath('child::cppa:PayloadPart', namespaces=self.NSMAP) bpp_part_list = bpp.xpath('child::cppa:PayloadPart', namespaces=self.NSMAP) alen = len(app_part_list) blen = len(bpp_part_list) if alen != blen: raise UnificationException( 'Inconsistent number of payload parts {} {}: {}; {} {}: {}'.format(acppid, appid, alen, bcppid, bppid, blen) ) else: for c in range(0,alen): appart = app_part_list[c] bppart = bpp_part_list[c] self.unify_payload_part(acpp, bcpp, acppid, appid, appart, bcppid, bppid, bppart, c, abpp, direction) def unify_payload_part(self, acpp, bcpp, acppid, appid, appart, bcppid, bppid, bppart, c, abpp, direction): abpart = lxml.etree.Element(appart.tag) unify_cardinality(appart, bppart, abpart, '{} {} {}'.format(appid, bppid, c)) unify_atts(appart, bppart, abpart, False, ['requireSignature', 'requireEncryption']) self.unify_simple_subelement(appart, bppart, abpart, 'cppa', 'PartName') self.unify_simple_subelement(appart, bppart, abpart, 'cppa', 'MIMEContentType', required=False, strictelements=False) self.unify_simple_subelement(appart, bppart, abpart, 'cppa', 'Schema', required=False, strictelements=False, intersectifmultiple=True) self.unify_size_element(appart, bppart, abpart, 'MaxSize') self.unify_properties(appid, acpp, appart, bppid, bcpp, bppart, abpart) self.unify_complex_subelement(acpp, bcpp, (acppid, appid, bcppid, bppid), appart, bppart, abpart, 'cppa', 'Signature', self.unify_signature, direction) self.unify_complex_subelement(acpp, bcpp, (acppid, appid, bcppid, bppid), appart, bppart, abpart, 'cppa', 'Encryption', self.unify_encryption, direction) abpp.append(abpart) """ Packaging """ def unify_package_elements(self, acppid, acpp, bcppid, bcpp, a_channel, b_channel, context, ebmsbinding, direction): apid = a_channel.get('package') bpid = b_channel.get('package') if apid is not None and bpid is not None: self.unify_package(acppid, acpp, bcppid, bcpp, apid, bpid, context, direction) abpid = self.cppaid(acppid, apid, bcppid, bpid) ebmsbinding.set('package', abpid) self.record_dependency(context, 'package', (acppid, apid, bcppid, bpid)) def unify_package(self, acppid, acpp, bcppid, bcpp, apid, bpid, context, direction): cached, result = self.memo(acppid, apid, bcppid, bpid, self.unify_package_results, self.unify_package_exceptions) if cached: return result try: result = self.unify_package_memo(acppid, acpp, bcppid, bcpp, apid, bpid, context, direction) except UnificationException as e: self.unify_package_exceptions[acppid, apid, bcppid, bpid] = e raise else: self.unify_package_results[acppid, apid, bcppid, bpid] = result return result def unify_package_memo(self, acppid, acpp, bcppid, bcpp, apid, bpid, context, direction): try: if apid == bpid is None: logging.info("No packaging, OK") return None elif apid is None or bpid is None: raise Exception('Missing package {} or {}'.format(apid, bpid)) else: logging.info('Attempting to unify packages {} and {}'.format(apid, bpid)) apackage = acpp.xpath('descendant::node()[@id="{}"]'.format(apid), namespaces=self.NSMAP)[0] bpackage = bcpp.xpath('descendant::node()[@id="{}"]'.format(bpid), namespaces=self.NSMAP)[0] if apackage.tag != bpackage.tag: raise UnificationException( 'Incompatible package types {} {}'.format(apackage.tag, bpackage.tag)) elif apackage.tag not in self.packaging_handlers: raise UnificationException( 'Unsupported package type {} {}'.format(apackage.tag, bpackage.tag)) else: try: handler = self.packaging_handlers[apackage.tag] logging.info("Package compatible {} {}".format(apid, bpid)) return handler(acpp, acppid, bcpp, bcppid, apackage, bpackage, context, direction) except UnificationException as e: raise UnificationException( 'Mismatch in package {}: {}'.format(apackage.tag, e)) except UnificationException as e: raise UnificationException( 'Transport {} {}: {}'.format(apid, bpid, e.value) ) def unify_soap_with_attachments_envelope(self, acpp, acppid, bcpp, bcppid, apackage, bpackage, context, direction): swael = lxml.etree.Element(apackage.tag, nsmap=self.NSMAP) self.unify_mime_part_lists(swael, apackage, bpackage, context, acpp, bcpp, direction) return swael def unify_simple_soap_envelope(self, acpp, acppid, bcpp, bcppid, apackage, bpackage, context, direction): sel = lxml.etree.Element(apackage.tag, nsmap=self.NSMAP) self.unify_mime_part_lists(sel, apackage, bpackage, context, acpp, bcpp, direction) return sel def unify_mime_envelope(self, acpp, acppid, bcpp, bcppid, apackage, bpackage, context, direction): sel = lxml.etree.Element(apackage.tag, nsmap=self.NSMAP) self.unify_mime_part_lists(sel, apackage, bpackage, context, acpp, bcpp, direction) return sel def unify_mime_multipart_related(self, apart, bpart, context, acpp, bcpp, direction): mimepart = lxml.etree.Element(apart.tag, nsmap=self.NSMAP) unify_atts(apart, bpart, mimepart, strictatts=True) self.unify_mime_part_lists(mimepart, apart, bpart, context, acpp, bcpp, direction) return mimepart def unify_simple_mime_part(self, apart, bpart, context, acpp, bcpp, direction): mimepart = lxml.etree.Element(apart.tag, nsmap=self.NSMAP) aname = apart.get('PartName') bname = bpart.get('PartName') if aname != bname: raise UnificationException( 'Incompatible PartName {} vs {}'.format(aname, bname)) else: mimepart.set('PartName',aname) return mimepart def unify_external_payload(self, apart, bpart, context, acpp, bcpp, direction): mimepart = lxml.etree.Element(apart.tag, nsmap=self.NSMAP) aname = apart.get('PartName') bname = bpart.get('PartName') if aname != bname: raise UnificationException( 'Incompatible PartName {} vs {}'.format(aname, bname)) else: (acppid, axid, bcppid, bxid) = context mimepart.set('PartName',aname) a_ep_ch_id = apart.xpath('child::cppa:ChannelId/text()', namespaces=self.NSMAP)[0] b_ep_ch_id = bpart.xpath('child::cppa:ChannelId/text()', namespaces=self.NSMAP)[0] transportchannelid = (acppid, a_ep_ch_id, bcppid, b_ep_ch_id) self.unify_channels(transportchannelid, acpp, bcpp, direction) self.record_dependency(context, 'channel', transportchannelid) abchannel = lxml.etree.SubElement(mimepart, cppa('ChannelId')) abchannel.text = self.cppaid(acppid, a_ep_ch_id, bcppid, b_ep_ch_id) return mimepart def unify_mime_part_lists(self, parent, apackage, bpackage, context, acpp, bcpp, direction): apartl = apackage.xpath( 'child::*[local-name()!="Description" and local-name()!="CompressionType" ]' ) bpartl = bpackage.xpath( 'child::*[local-name()!="Description" and local-name()!="CompressionType"]' ) alen, blen = len(apartl), len(bpartl) if alen != blen: raise UnificationException( 'Mismatch in child count for package: {} {}'.format(alen, blen) ) else: for apart, bpart in zip(apartl, bpartl): if apart.tag != bpart.tag: raise UnificationException( 'Mismatch in child type for package: {} {}'.format(alen, blen) ) else: handler = self.mimepart_handlers[apart.tag] parent.append(handler(apart, bpart, context, acpp, bcpp, direction)) """ Auxiliary functions """ def memo(self, p1, p2, p3, p4, results, exceptions, p5=None, p6=None): if (p1, p2, p3, p4, p5, p6) in results: logging.info("Results cache hit for {} {} {} {} {} {}".format( p1, p2, p3, p4, p5, p6) ) return True, results[p1, p2, p3, p4, p5, p6] elif (p1, p2, p3, p4, p5, p6) in exceptions: logging.info("Exceptions cache hit for {} {} {} {} {} {}".format( p1, p2, p3, p4, p5, p6) ) raise exceptions[p1, p2, p3, p4, p5, p6] else: return False, None def confirm_included(self, componenttype, id): if not componenttype in self.included_components: self.included_components[componenttype] = [] if not id in self.included_components[componenttype]: self.included_components[componenttype].append(id) def record_dependency(self, source, category, target): if not source in self.depends_on: self.depends_on[source] = {} if not category in self.depends_on[source]: self.depends_on[source][category] = [target] logging.info("Dependency {} {} {} created".format(source, category, target)) targetlist = self.depends_on[source][category] if target not in targetlist: logging.info("Dependency {} {} {} added to list".format(source, category, target)) targetlist.append(target) else: logging.info("Dependency {} {} {} already on list".format(source, category, target)) def unify_simple_subelement(self, ael, bel, abel, childns, childtag, required=True, strictelements=True, strictatts=True, boolean=False, intersectifmultiple=False): """ strictelements: either both inputs have the subelement or sequence of subelements or none required: there must be at least one match intersectifmultiple: if both inputs may have multiple elements, the unification is their intersection if True; if False, there must be a one-to-one unification of subelement instances. strictatts: if one input has an attribute then the other must have it too with same value boolean: if the value is Boolean """ logging.info("Unifying subelement {} for {}".format(childtag, abel.tag)) try: achildren = ael.xpath('child::{}:{}'.format(childns, childtag), namespaces=self.NSMAP) bchildren = bel.xpath('child::{}:{}'.format(childns, childtag), namespaces=self.NSMAP) achildcount = len(achildren) bchildcount = len(bchildren) at_least_one_shared_child_matches = False if strictelements and achildcount != bchildcount: raise UnificationException( 'Child count mismatch for {}: {}, {}'.format(childtag, achildcount, bchildcount) ) if achildcount == 0 and bchildcount == 0 and required: raise UnificationException( 'Missing child {} {} {}'.format(childtag, achildcount, bchildcount) ) elif achildcount == 0 and bchildcount > 0: for bchild in bchildren: abchild = lxml.etree.Element(ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) abchild.text = bchild.text copy_atts(bchild,abchild) abel.append(abchild) #at_least_one_shared_child_matches = True elif achildcount > 0 and bchildcount == 0: for achild in achildren: abchild = lxml.etree.Element(ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) abchild.text = achild.text copy_atts(achild,abchild) abel.append(abchild) #at_least_one_shared_child_matches = True elif achildcount == 0 and bchildcount > 0: for bchild in bchildren: abchild = lxml.etree.Element(ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) abchild.text = achild.text copy_atts(achild,abchild) abel.append(abchild) #at_least_one_shared_child_matches = True elif achildcount == 1 and bchildcount == 1: abchild = lxml.etree.Element(ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) abchild.text = unify_boolean_or_text(achildren[0], bchildren[0], boolean) unify_atts(achildren[0], bchildren[0],abchild, strictatts=strictatts) abel.append(abchild) #at_least_one_shared_child_matches = True elif achildcount >= 1 and bchildcount >= 1: for counter, achild in enumerate(achildren, 1): bchildmatchfound = False for bchild in bchildren: try: abchild = lxml.etree.Element(ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) abchild.text = unify_boolean_or_text(achild, bchild, boolean) unify_atts(achild, bchild, abchild, strictatts=strictatts) except UnificationException as e: logging.info( "Skipping non-matching {} #{}, suppressing {}".format( achild.tag, counter, e.value) ) else: logging.info("Matched {} #{}".format(achild.tag, counter)) abel.append(abchild) bchildmatchfound = True at_least_one_shared_child_matches = True break if intersectifmultiple == False \ and at_least_one_shared_child_matches == True: break # we're here if we did not find a match for achild if strictelements and not bchildmatchfound: raise UnificationException( 'Missing child for {} {}'.format( childtag, counter) ) if not at_least_one_shared_child_matches: raise UnificationException( 'Empty intersection for {}'.format(childtag)) elif required and not at_least_one_shared_child_matches: raise UnificationException( 'Missing match for {} {} {}'.format(childtag, achildcount, bchildcount)) except UnificationException as e: logging.info("Subelements incompatible for {}: {}".format(childtag, e.value)) raise else: logging.info("Subelements compatible for {}".format(childtag)) def unify_boolean_subelement(self, ael, bel, abel, childns, childtag, required=True, strictelements=True, strictatts=True): return self.unify_simple_subelement(ael, bel, abel, childns, childtag, required=required, strictelements=strictelements, strictatts=strictatts, boolean=True) def unify_complex_subelement(self, acpp, bcpp, idtuple, ael, bel, abel, childns, childtag, handler, direction=None): logging.info("Unifying subelement {} for {} ({})".format(childtag, ael.tag, direction)) try: aelements = ael.xpath('child::{}:{}'.format(childns, childtag), namespaces=self.NSMAP) belements = bel.xpath('child::{}:{}'.format(childns, childtag), namespaces=self.NSMAP) aelementcount = len(aelements) belementcount = len(belements) if aelementcount != belementcount: raise UnificationException( 'Mismatch in count for child(ren) {}, {} vs {}'.format(childtag, aelementcount, belementcount) ) elif aelementcount == 1 and belementcount == 1: logging.info('Creating {} element, invoking {}'.format( childtag, handler.func_name) ) abchild = lxml.etree.SubElement(abel,ns(self.NSMAP[childns], childtag), nsmap=self.NSMAP) handler(acpp, bcpp, idtuple, aelements[0], belements[0], abchild, direction) unify_atts(aelements[0], belements[0],abchild, strictatts=False) elif aelementcount == belementcount == 0: logging.info('Element {} not present'.format(childtag)) except UnificationException as e: raise e else: logging.info("Subelements compatible for {}".format(childtag)) def cppaid(self, acppid, acid, bcppid, bcid): if (acppid, acid, bcppid, bcid) in self.shortened: return self.shortened[acppid, acid, bcppid, bcid] else: m = hashlib.sha224() m.update('{}_{}_{}_{}'.format(acppid,acid, bcppid, bcid)) longvalue = '_'+base64.b32encode(m.digest()) for i in range(5, 50): short = str(longvalue)[:i] if short not in self.collisions: self.shortened[acppid, acid, bcppid, bcid] = short self.collisions[short] = (acppid, acid, bcppid, bcid) return short else: logging.error('Collision {} for {} {} {} {}'.format(short, acppid, acid, bcppid, bcid)) (a, b, c, d) = self.collisions[short] logging.error('Previous value for {} was {} {} {} {}'.format(short, a, b, c, d)) def inline_channel_features(self, cpp): for feature_att in [ 'securityBinding', 'reliableMessagingBinding', 'errorHandling', 'receiptHandling', 'addressing', 'compression', 'splitting', 'bundling' ]: for element in cpp.xpath('//node()[@{}]'.format(feature_att), namespaces= self.NSMAP): logging.info(element) binding_element = element.tag binding_id = element.get(feature_att) logging.info('Inlining feature with id {}'.format(binding_id)) referenced_node = cpp.xpath('//node()[@id="{}"]'.format(binding_id ), namespaces= self.NSMAP)[0] copied_node = deepcopy(referenced_node) del element.attrib[feature_att] del copied_node.attrib['id'] element.append(copied_node) logging.info('Inlined {} with id {}'.format(binding_element, binding_id)) return schema.ensure_ordered(cpp) def certificate_required(self, element, certificatetype, default=False): certtype_required_list = element.xpath('child::cppa:{}CertificateRequired'.format(certificatetype), namespaces=self.NSMAP) if len(certtype_required_list) > 0: return xsd_boolean(certtype_required_list[0].text) else: return default def cpp_level_acl_check(acpp, bcpp): a_allowed_party_list_id = acpp.get('allowed') b_allowed_party_list_id = bcpp.get('allowed') a_denied_party_list_id = acpp.get('denied') b_denied_party_list_id = bcpp.get('denied') acl_check(a_allowed_party_list_id, a_denied_party_list_id, acpp, b_allowed_party_list_id, b_denied_party_list_id, bcpp) def service_specification_acl_check(a_service_spec, acpp, b_service_spec, bcpp): a_allowed_party_list_id = acpp.get('allowed') b_allowed_party_list_id = bcpp.get('allowed') a_denied_party_list_id = acpp.get('denied') b_denied_party_list_id = bcpp.get('denied') acl_check(a_allowed_party_list_id, a_denied_party_list_id, acpp, b_allowed_party_list_id, b_denied_party_list_id, bcpp) def service_binding_acl_check(a_servicebinding, acpp, b_servicebinding, bcpp): logging.info('Checking ACLs for {}, {}'.format( a_servicebinding.xpath( 'descendant::cppa:Description/text()', namespaces=_NSMAP ), b_servicebinding.xpath( 'descendant::cppa:Description/text()', namespaces=_NSMAP )) ) a_allowed_party_list_id = a_servicebinding.get('allowed') b_allowed_party_list_id = b_servicebinding.get('allowed') a_denied_party_list_id = a_servicebinding.get('denied') b_denied_party_list_id = b_servicebinding.get('denied') acl_check(a_allowed_party_list_id, a_denied_party_list_id, acpp, b_allowed_party_list_id, b_denied_party_list_id, bcpp) def action_binding_acl_check(a_actionbinding, acpp, b_actionbinding, bcpp): a_allowed_party_list_id = a_actionbinding.get('allowed') b_allowed_party_list_id = b_actionbinding.get('allowed') a_denied_party_list_id = a_actionbinding.get('denied') b_denied_party_list_id = b_actionbinding.get('denied') acl_check(a_allowed_party_list_id, a_denied_party_list_id, acpp, b_allowed_party_list_id, b_denied_party_list_id, bcpp) def acl_check(a_allowed_party_list_id, a_denied_party_list_id, acpp, b_allowed_party_list_id, b_denied_party_list_id, bcpp): a_parties = deferenced_party_ids(acpp) b_parties = deferenced_party_ids(bcpp) if a_allowed_party_list_id == None: if b_allowed_party_list_id == None: pass else: b_allowed_parties = lookup_party_identifiers(bcpp, b_allowed_party_list_id, []) acl_allow_match(b_allowed_parties, a_parties) else: a_allowed_parties = lookup_party_identifiers(acpp, a_allowed_party_list_id, []) acl_allow_match(a_allowed_parties, b_parties) if b_allowed_party_list_id == None: pass else: b_allowed_parties = lookup_party_identifiers(bcpp, b_allowed_party_list_id) acl_allow_match(b_allowed_parties, a_parties) if a_denied_party_list_id == None: if b_denied_party_list_id == None: pass else: b_denied_parties = lookup_party_identifiers(bcpp, b_denied_party_list_id, []) acl_deny_match(b_denied_parties, a_parties) else: a_denied_parties = lookup_party_identifiers(acpp, a_denied_party_list_id, []) b_parties = deferenced_party_ids(bcpp) acl_deny_match(a_denied_parties, b_parties) if b_denied_party_list_id == None: pass else: b_denied_parties = lookup_party_identifiers(bcpp, b_denied_party_list_id) a_parties = deferenced_party_ids(acpp) acl_deny_match(b_denied_parties, a_parties) def lookup_party_identifiers(cpp, id, parties=[]): party_id_list = cpp.xpath('child::cppa:PartyIdList[@id="{}"]'.format(id), namespaces=_NSMAP)[0] logging.debug('Found list with id {}'.format(id)) for party_id in party_id_list.xpath('child::cppa:PartyId', namespaces=_NSMAP): pid = party_id.text pidtype = party_id.get('type') if (pid, pidtype) not in party_id_list: parties.append((pid,pidtype)) for listref in party_id_list.xpath('child::cppa:PartyIdListRef/@href', namespaces=_NSMAP): parties = lookup_party_identifiers(cpp, listref, parties) return parties def deferenced_party_ids(cpp): parties = [] for party_id in cpp.xpath('descendant::cppa:PartyId', namespaces=_NSMAP): pid = party_id.text pidtype = party_id.get('type') if (pid, pidtype) not in parties: parties.append((pid,pidtype)) return parties def acl_allow_match(allowed_party_ids, party_ids): for (pid, ptype) in party_ids: if (pid, ptype) not in allowed_party_ids: raise UnificationException( '{}, {} not in allowed list {}'.format(pid, ptype, allowed_party_ids)) else: logging.debug('{}, {} found in allowed party list'.format(pid, ptype)) def acl_deny_match(denied_party_ids, party_ids): for (pid, ptype) in party_ids: if (pid, ptype) in denied_party_ids: raise UnificationException( '{}, {} in denied list {}'.format(pid, ptype, denied_party_ids)) else: logging.debug('{}, {} not in denied party list'.format(pid, ptype)) def check_x509_data_content(anchorid, rootcert, anchor_certid, cpp): anchor_cert = cpp.xpath( 'descendant::cppa:Certificate[@id="{}"]'.format(anchor_certid), namespaces=_NSMAP)[0] return check_x509_data_content_2(anchorid, rootcert, anchor_certid, anchor_cert, cpp) def check_x509_data_content_2(anchorid, rootcert, anchor_certid, anchor_cert, cpp): anchor_cert_data = anchor_cert.xpath( 'descendant::ds:X509Certificate/text()', namespaces=_NSMAP)[0] anchor_cert_data = remove_all_whitespace(anchor_cert_data) logging.debug( 'Comparing against {} {} ... {} (len: {})'.format(anchor_certid, anchor_cert_data[0:6], anchor_cert_data[-6:], len(anchor_cert_data))) if str(rootcert) == str(anchor_cert_data): logging.info( 'Referenced X509Certificate found in anchor {} cert {}'.format(anchorid, anchor_certid)) return True else: return False def unify_boolean_or_text(el1, el2, boolean): if boolean: return unify_boolean(el1, el2) else: return unify_text(el1, el2) def unify_text(e1, e2): if e1.text == e2.text: return e1.text else: raise UnificationException('{}: {} vs {}'.format(e1.tag, e1.text, e2.text)) def unify_boolean(e1, e2): if (e1.text == 'true' or e1.text == 1) and (e2.text == 'true' or e1.text == 1): return 'true' elif (e1.text == 'false' or e1.text == 0) and (e2.text == 'false' or e1.text == 0): return 'false' else: raise UnificationException('Boolean {}: {} vs {}'.format(e1.tag, e1.text, e2.text)) def unify_atts(ael, bel, abel, strictatts=True, atts_to_match = None): for (aside, bside) in [(ael, bel), (bel, ael)]: for att in aside.attrib: if att not in ['id', 'propertySetId']: if atts_to_match != None and att in atts_to_match: if aside.attrib[att] == bside.attrib[att]: abel.set(att, aside.attrib[att]) else: raise UnificationException( 'Attribute {} value mismatch: {} vs {}'.format(att, aside.attrib[att], bside.attrib[att])) elif atts_to_match == None and att in bside.attrib: if aside.attrib[att] == bside.attrib[att]: abel.set(att, aside.attrib[att]) else: raise UnificationException( 'Attribute {} value mismatch: {} vs {}'.format(att, aside.attrib[att], bside.attrib[att])) elif strictatts: # @@@ not covered yet raise UnificationException( 'Attribute {} missing value in one of the inputs'.format(att)) else: abel.set(att, aside.attrib[att]) def copy_atts(source, target): for att in source.attrib: target.set(att, source.get(att)) def unify_att(e1, e2, att): if not e1.attrib[att] == e2.attrib[att]: raise UnificationException('{}/@{}: {} vs {}'.format(e1.tag, att, e1.attrib[att], e2.attrib[att])) else: return e1.attrib[att] def unify_and_set_att(el1, el2, el3, att): if el1.get(att) == el2.get(att): if el1.get(att) != None: el3.set(att, el1.get(att)) else: raise UnificationException('{}/@{}: {} vs {}'.format(el1.tag, att, el1.get(att), el2.get(att))) def unify_cardinality(aelement, belement, abelement, context=''): logging.info('Cardinality check for {}'.format(context)) for att in ['minOccurs', 'maxOccurs']: amin = aelement.get(att) bmin = belement.get(att) if amin == bmin: if amin is None: pass else: abelement.set(att, amin) if amin != bmin: raise UnificationException( 'Incompatible {} cardinality in {}: {} vs {}'.format(att, context, amin, bmin)) elif amin is not None: abelement.set(att, amin) def reverse(direction): if direction == 'send': return 'receive' else: return 'send' def cppa(el): return '{{{}}}{}'.format(_NSMAP['cppa'],el) def xml(el): return '{{{}}}{}'.format(_NSMAP['xml'],el) def ns(ns,el): return '{{{}}}{}'.format(ns,el) def get_description_value_if_present(el): descriptions = el.xpath('child::cppa:Description', namespaces=_NSMAP) if len(descriptions)>0: return ' ('+(descriptions[0]).text+')' else: return '' def create_username(acppid, aelid, bcppid, belid, len=15): m = hashlib.sha224() m.update('{}_{}_{}_{}'.format(acppid, aelid, bcppid, belid)) longvalue = base64.b64encode(m.digest()) return str(longvalue)[:len] def create_random_password(len=20): return str(uuid.uuid4())[:len] def remove_all_whitespace(inputstring): pattern = re.compile(r'\s+') return re.sub(pattern, '', inputstring) def xsd_boolean(value): if value == '1': return True elif value == 'true': return True elif value == '0': return False elif value == 'false': return False else: return None def delegated_party_params(delegation): delegated_party = delegation.xpath('child::cppa:PartyId', namespaces=_NSMAP)[0] delegated_party_cpp_list = delegation.xpath('child::cppa:ProfileIdentifier', namespaces=_NSMAP) if len(delegated_party_cpp_list) > 0: delegated_party_cpp_id = delegated_party_cpp_list[0].text else: delegated_party_cpp_id = None return delegated_party.text, delegated_party.get('type'), delegated_party_cpp_id def prefix_identifiers(cpp, prefix=''): for xpexpr in [ 'descendant::cppa:ChannelId', 'descendant::cppa:RequestChannelID', 'descendant::cppa:ReceiptHandling/cppa:ReceiptChannelId', 'descendant::cppa:ErrorHandling/cppa:SenderErrorsReportChannelId', 'descendant::cppa:ErrorHandling/cppa:ReceiverErrorsReportChannelId', 'descendant::cppa:PullHandling/cppa:PullChannelId', 'descendant::cppa:AlternateChannel', ]: for item in cpp.xpath(xpexpr, namespaces = _NSMAP): item.text = prefix+item.text for xpexpr in [ 'descendant::cppa:NamedChannel[@id]', 'descendant::cppa:DelegationChannel[@id]', 'descendant::cppa:WSChannel[@id]', 'descendant::cppa:TransportChannel[@id]', 'descendant::cppa:ebMS2Channel[@id]', 'descendant::cppa:ebMS3Channel[@id]', 'descendant::cppa:AS1Channel[@id]', 'descendant::cppa:AS2Channel[@id]', 'descendant::cppa:AS3Channel[@id]', 'descendant::cppa:AMQPChannel[@id]', 'descendant::cppa:SSHKey[@id]' ]: for item in cpp.xpath(xpexpr, namespaces = _NSMAP): item.set('id', prefix+item.get('id')) for xpexpr in [ 'descendant::cppa:SSHClientKeyRef[@keyId]', 'descendant::cppa:SSHServerKeyRef[@keyId]' ]: for item in cpp.xpath(xpexpr, namespaces = _NSMAP): item.set('keyId', prefix+item.get('keyId')) def _identity_transform(input): logging.default('Applying identity transform ..') return input def _apply_units(xpathresult): if len(xpathresult) is 0: return 0 element = xpathresult[0] value = float(element.text) unit = element.get('unit') if unit is None: return int(value) elif unit is 'da': return int(value*pow(10,1)) elif unit is 'h': return int(value*pow(10,2)) elif unit is 'k': return int(value*pow(10,3)) elif unit is 'M': return int(value*pow(10,6)) elif unit is 'G': return int(value*pow(10,9)) elif unit is 'T': return int(value*pow(10,12)) elif unit is 'P': return int(value*pow(10,15)) elif unit is 'E': return int(value*pow(10,18)) elif unit is 'Z': return int(value*pow(10,21)) elif unit is 'Y': return int(value*pow(10,24)) def _profileinfo(cpp): return cpp.xpath('child::cppa:ProfileInfo', namespaces=_NSMAP)[0]
StarcoderdataPython
3505865
<gh_stars>1-10 #!usr/bin/env python import sys,os,codecs import xml.etree.ElementTree as ET from Transducer import transduce,chinese,baptist,decompose def main(): # for line in open('lahu_writing.txt','rU'): # for word in line.split(): # print word, # print transduce(word,decompose), # print transduce(transduce(word,decompose),chinese), # print transduce(transduce(word,decompose),baptist) f = open('4testLahuTexts.xml','rt') tree = ET.parse(f) f.close() for node in tree.findall('.//word/words/word/item'): if node.attrib['type'] == 'txt': form = codecs.encode(node.text,'utf8') print form, print [form], print transduce(form,decompose), print transduce(transduce(form,decompose),chinese), print transduce(transduce(form,decompose),baptist) if __name__ == '__main__': main()
StarcoderdataPython
164487
from famille.models import has_user_related, get_user_related from famille.utils import get_context def related_user(request): """ A context processor that returns the related user from a request.user. :param request: the request to be processed """ if not has_user_related(request.user): return {} return {"related_user": get_user_related(request.user)} def base(request): """ Providing base variables. :param request: the request to be processed """ return get_context()
StarcoderdataPython
5094605
import math from scipy.spatial import ConvexHull from pyray.shapes.oned.circle import * from pyray.axes import * from pyray.shapes.twod.plane import * from pyray.shapes.twod.functional import * def paraboloid_circles_rotatingplane(basepath='.\\', scale=200, shift=np.array([1000,1000,0])): im_ind = 0 for i in (np.concatenate((np.arange(0.5,1,0.01), np.arange(1,3,0.05),np.arange(3,10,0.6)),axis=0) + 1e-4): #Controls the rotation of the plane. r2 = general_rotation(np.array([.3, .3, .3]), np.pi/i) r1 = np.eye(4) orthogonal_vec = np.dot(r2, np.array([0,1,0])) orthogonal_vec = orthogonal_vec/sum(orthogonal_vec**2) # Should be unnecessary since rotation doesn't change magnitude. for j in range(4,5): # Controls the rotation of the paraboloid. r = rotation(3, 2*np.pi*j/30.0) r1[:3,:3] = r im = Image.new("RGB", (2048, 2048), "black") draw = ImageDraw.Draw(im, 'RGBA') translate = np.array([0,0,1.5]) rotated_xz_plane(draw, r, r2, scale, shift, translate) render_scene_4d_axis(draw, r1, 4) for z in np.arange(0.001, 3.5, 0.01): #generalized_circle(draw, np.array([0,0,z]), np.array([0,0,1]), np.sqrt(z), r, rgba = (255,20,147,50)) #generalized_arc(draw, r, np.array([0,0,z]), np.array([0,0,1]), np.array([np.sqrt(z),0,z]), np.sqrt(z), 0.5, (255,20,147,50)) #generalized_arc(draw, r, np.array([0,0,z]), np.array([0,0,1]), np.array([-np.sqrt(z),0,z]), np.sqrt(z), 0.5, (255,20,147,10)) pt1 = np.dot(r, np.array([-np.sqrt(z),0,z])) theta = np.pi * 2.0 / 180.0 rot = general_rotation(np.dot(r,np.array([0,0,1])),theta) for j in range(0,180): pt2 = np.dot(rot, pt1) pt2Orig = np.dot(np.transpose(r),pt2) if sum(pt2Orig * orthogonal_vec) - 1.5*orthogonal_vec[2] > 0: draw.line((pt1[0]*scale + shift[0], pt1[1]*scale+shift[1], pt2[0]*scale+shift[0], pt2[1]*scale+shift[1]),\ fill=(255,20,147,100), width=5) else: draw.line((pt1[0]*scale + shift[0], pt1[1]*scale+shift[1], pt2[0]*scale+shift[0], pt2[1]*scale+shift[1]),\ fill=(255,20,147,40), width=5) pt1 = pt2 three_d_parabola(draw, r, r2) im.save(basepath + 'im' + str(im_ind) + '.png') im_ind = im_ind + 1 def paraboloid_circles(basepath='.\\', scale=200, shift=np.array([1000,1000,0])): r2=general_rotation(np.array([0,0,1]),np.pi/2) orthogonal_vec = np.dot(r2, np.array([0,1,0])) r = rotation(3, 2*np.pi*4/30.0) r1 = np.eye(4) r1[:3,:3] = r im = Image.new("RGB", (2048, 2048), "black") draw = ImageDraw.Draw(im, 'RGBA') translate = np.array([0,1.5,0]) #rotated_xz_plane(draw, r, r2, scale, shift, translate=translate) render_scene_4d_axis(draw, r1, 4) for z in np.arange(0.001, 3.5, 0.01): generalized_arc(draw, r, np.array([0,0,z]), np.array([0,0,1]), np.array([np.sqrt(z),0,z]), np.sqrt(z), 0.5, (255,20,147,50)) generalized_arc(draw, r, np.array([0,0,z]), np.array([0,0,1]), np.array([-np.sqrt(z),0,z]), np.sqrt(z), 0.5, (255,20,147,10)) three_d_parabola(draw, r, r2) im.save(basepath + 'im' + str(0) + '.png') def paraboloid_dirty(im_ind=0, scale=200, shift=np.array([1000,1000,0]), opacity=60, basepath='.\\'): #i=1 #r2 = general_rotation(np.array([.3, .3, .3]), np.pi/i) r1 = np.eye(4) rot = general_rotation(np.array([0,0,1]), np.pi/20.0 * (8 + im_ind/3.0)) j=4 #r = rotation(3, 2 * np.pi* j /30.0) r=np.eye(3) rr = general_rotation(np.array([0,1,0]), np.pi/20.0 * (im_ind/7.0)) r = np.dot(r,rr) r = np.dot(r, rot) r1[:3,:3] = r im = Image.new("RGB", (2048, 2048), "black") draw = ImageDraw.Draw(im, 'RGBA') #translate = np.array([0, 0, 1.5]) render_scene_4d_axis(draw, r1, 4, scale, shift) for z in np.arange(0.001, 3.5, 0.02): if z<=1: prcnt1=0.0; point1 = np.array([np.sqrt(z),0,z]) prcnt2=1.0; point2 = np.array([-np.sqrt(z),0,z]) else: angle=2*np.arccos(1/np.sqrt(z)) prcnt1=-angle/2/np.pi; point1 = np.array([1,np.sqrt(z-1),z]) prcnt2=-1+prcnt1; point2 = np.array([-np.sqrt(z-1),1,z]) generalized_arc(draw, r, center=np.array([0,0,z]), vec=np.array([0,0,1]), point=point1, radius=np.sqrt(z), prcnt=prcnt1, rgba=(255,20,147,50)) generalized_arc(draw, r, np.array([0,0,z]), np.array([0,0,1]), point2, np.sqrt(z), prcnt2, (255,20,147,10)) ## Highlight axes xax1=np.array([-100.0,0,0.0]);xax1=np.dot(r,xax1)*scale+shift xax2=np.array([100.0,0,0.0]);xax2=np.dot(r,xax2)*scale+shift draw.line((xax1[0], xax1[1], xax2[0], xax2[1]), fill=(235,255,0), width=4) xax1=np.array([0.0,-100,0.0]);xax1=np.dot(r,xax1)*scale+shift xax2=np.array([0.0,100,0.0]);xax2=np.dot(r,xax2)*scale+shift draw.line((xax1[0], xax1[1], xax2[0], xax2[1]), fill=(235,255,0), width=4) xzgradients(draw, r, 1.0) # draws the arrows correponding to gradients. ## Draw the plane. pt1 = np.array([1.0,-1.2,0]); pt2 = np.array([1.0,1.2,0]) z = 1.2**2+1 pt3 = np.array([1.0,-1.2,z]); pt4 = np.array([1.0,1.2,z]) pt1 = np.dot(r,pt1)*scale+shift; pt2 = np.dot(r,pt2)*scale+shift pt3 = np.dot(r,pt3)*scale+shift; pt4 = np.dot(r,pt4)*scale+shift draw.polygon([(pt1[0], pt1[1]), (pt2[0], pt2[1]), (pt4[0], pt4[1]), (pt3[0], pt3[1])],\ (0,102,255,150)) pt = np.array([1.0,0,1.0]);pt=np.dot(r,pt)*scale+shift pt_z = np.array([0.0,0,1.0]); pt_z=np.dot(r,pt_z)*scale+shift draw.line((pt[0], pt[1], pt_z[0], pt_z[1]), fill=(255,0,120), width=4) pt_y = np.array([1.0,0,0.0]); pt_y=np.dot(r,pt_y)*scale+shift #draw.line((pt[0], pt[1], pt_y[0], pt_y[1]), fill=(255,0,120), width=4) draw.ellipse((pt[0]-10, pt[1]-10, pt[0]+10, pt[1]+10), fill = (0,255,0)) pt = shift draw.ellipse((pt[0]-10, pt[1]-10, pt[0]+10, pt[1]+10), fill = (255,255,0)) im.save(basepath + 'im' + str(im_ind) + '.png') def xzgradients(draw, r, y): for x in [-1.2,-0.7,-0.4,0.0,0.4,0.7,1.2]: z = x*x + y*y #draw_points(draw, r, y, x) #arrowV1(draw,r,np.array([y,x,z]), np.array([2.5*y,2.5*x,z]), (204,102,255)) arrowV1(draw,r,np.array([y,x,z]), np.array([2.5*y,2.5*x,z]), (255,20,147)) #arrowV1(draw,r,np.array([y,x,z]), np.array([y+1.0,x,z]), (0,102,255)) arrowV1(draw,r,np.array([y,x,z]), np.array([y-1.0,x,z]), (0,102,255)) def paraboloidTangent(draw, r, x1, y1, d = 1.0, rgba = (120,80,200,150), scale = 200, shift = np.array([1000,1000,0])): ''' Draws a tangent plane to a paraboloid: x^2+y^2 = z at point given by coordinates (x1, y1) ''' x2 = x1-d y2 = y1+d pt1 = np.dot(r, np.array([x2, y2, z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1+d y2 = y1+d pt2 = np.dot(r, np.array([x2, y2, z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1+d y2 = y1-d pt3 = np.dot(r, np.array([x2, y2, z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1-d y2 = y1-d pt4 = np.dot(r, np.array([x2, y2, z_plane(x2, y2, x1, y1)])) * scale + shift[:3] draw.polygon([(pt1[0], pt1[1]), (pt2[0], pt2[1]), (pt3[0], pt3[1]), (pt4[0], pt4[1])], rgba) def paraboloid(x, y, coeff=0.1, intercept=0.1): ''' ''' return coeff*(x**2 + y**2) - intercept def paraboloid_intersection(draw, r, x1, y1, coeff, intercept, shift=np.array([1000.0, 1000.0, 0.0]), scale=200.0, rgba=(250,250,20), start_line=-12, extend=1.7, width=10): ''' Draws the intersection arc of two paraboloids. args: extend: The amount by which the arc is to extend from its starting point. This parameter was tuned by hit and trial. ''' def parametrized_pt(t, x1, y1, coeff, intercept): ''' See 180225 ''' x = t y = (x1**2 + y1**2 - 2*t*x1)/(2*y1) z = coeff*(x**2+y**2) - intercept return np.array([x, y, z]) t = start_line pt1 = np.dot(r, parametrized_pt(t, x1, y1, coeff, intercept)) * scale + shift[:3] #for i in range(1, int_line): while t <= abs(start_line)*extend: t += 1/10.0 pt2 = np.dot(r, parametrized_pt(t, x1, y1, coeff, intercept)) * scale + shift[:3] draw.line((pt1[0], pt1[1], pt2[0], pt2[1]), fill=rgba, width=width) pt1 = pt2 def draw_paraboloids(scale=12.5, basedir=".\\"): ''' Draws a pair of flapping paraboloids. args: scale: How big should the paraboloids be relative to the image. basedir:The directory where the images are to be saved. In the main pyray repo, basedir is ..\\images\\RotatingCube\\ ''' sep = 8 base_coeff = 0.01 start_line = -12 r1 = np.eye(4) for j in range(21,22): r = rotation(3, np.pi/30*j) r1[:3,:3] = r for i1 in range(20): i = 2.5*np.sin(i1*np.pi/10.0) im = Image.new("RGB", (2048, 2048), (1, 1, 1)) draw = ImageDraw.Draw(im, 'RGBA') render_scene_4d_axis(draw, r1, 4) fn = lambda x, y : paraboloid(x, y, coeff=i*base_coeff, intercept=i) cfn = lambda x, y : 0.0 #drawFunctionalXYGrid(draw, r, scale=50, fn=cfn, extent=15) drawXYGrid(draw, r, meshLen=1.0) drawFunctionalXYGrid(draw, r, scale=scale, fn=fn, extent=20, rgba2=(0,255,0,75), saperatingPlane=np.array([-1,-1,sep])) shift1 = np.dot(r, np.array([sep,sep,0]))*scale + np.array([1000.0, 1000.0, 0]) drawFunctionalXYGrid(draw, r, scale=scale, fn=fn, shift=shift1, rgba=(202,200,20,150), extent=20, rgba2=(202,200,20,75), saperatingPlane=np.array([1,1,sep])) draw_circle_x_y(draw, r, center=np.array([0,0]), radius=np.sqrt(1/base_coeff), scale=scale) draw_circle_x_y(draw, r, center=np.array([0,0]), radius=np.sqrt(1/base_coeff), scale=scale, shift=shift1) paraboloid_intersection(draw, r, sep, sep, i*base_coeff, i, scale=scale, start_line=start_line) im.save(basedir + "im" + str(i1) + ".png") def draw_paraboloidsV2(scale=20.0, ind=0): sep = 8 base_coeff = 0.02 start_line = -12.0 r1 = np.eye(4) j = 21 r = rotation(3, np.pi/30*j) r1[:3,:3] = r shift = np.array([1000.0, 1000.0, 0.0]) for i1 in range(2,3): pt_orig = -9.0*np.array([np.cos(np.pi*6.0/15.0), np.sin(np.pi*6.0/15.0), 0]) for ind in range(15): #i = 2.5*np.sin(i1*np.pi/10.0) i = 2.0 c = i*base_coeff im = Image.new("RGB", (2048, 2048), (1, 1, 1)) draw = ImageDraw.Draw(im, 'RGBA') fn = lambda x, y : paraboloid(x, y, coeff=i*base_coeff, intercept=i) cfn = lambda x, y : 0.0 drawFunctionalXYGrid(draw, r, scale=scale, fn=fn, extent=30, rgba2=(0,255,0,40), saperatingPlane=np.array([-1,-1,sep])) shift1 = np.dot(r, np.array([sep,sep,0.0]))*scale + np.array([1000.0, 1000.0, 0.0]) drawFunctionalXYGrid(draw, r, scale=scale, fn=fn, shift=shift1, rgba=(202,200,20,150), extent=30, rgba2=(202,200,20,40), saperatingPlane=np.array([1,1,sep])) draw_circle_x_y(draw, r, center=np.array([0,0]), radius=np.sqrt(1/base_coeff), scale=scale) draw_circle_x_y(draw, r, center=np.array([0,0]), radius=np.sqrt(1/base_coeff), scale=scale, shift=shift1) paraboloid_intersection(draw, r, sep, sep, i*base_coeff, i, scale=scale, start_line=start_line) render_scene_4d_axis(draw, r1, 4) #pt_orig = 10.0*np.array([np.cos(np.pi*ind/15.0), np.sin(np.pi*ind/15.0), 0]) pt = pt_orig z1 = i*base_coeff*(pt[0]**2 + pt[1]**2) - i z2 = i*base_coeff*((pt[0] - sep)**2 + (pt[1] - sep)**2) - i pt1 = np.array([pt[0],pt[1],z1]) pt1 = np.dot(r, pt1)*scale+shift pt2 = np.array([pt[0],pt[1],z2]) pt2 = np.dot(r, pt2)*scale+shift pt = np.dot(r, pt)*scale+shift draw.ellipse((pt[0]-5, pt[1]-5, pt[0]+5, pt[1]+5), fill = (255,0,120)) draw.ellipse((pt1[0]-5, pt1[1]-5, pt1[0]+5, pt1[1]+5), fill = (0,255,0)) draw.ellipse((pt2[0]-5, pt2[1]-5, pt2[0]+5, pt2[1]+5), fill = (202,200,20)) draw.line((pt[0], pt[1], pt2[0], pt2[1]), fill="white", width=3) [x0, y0] = [0, 0] [x1, y1] = pt_orig[:2] [a1, b1, d1] = [2*c*(x1-x0), 2*c*(y1-y0), c*(x1-x0)**2 + c*(y1-y0)**2 - i -2*c*(x1-x0)*x1 - 2*c*(y1-y0)*y1] [x0_1, y0_1] = [sep, sep] [a2, b2, d2] = [2*c*(x1-x0_1), 2*c*(y1-y0_1), c*(x1-x0_1)**2 + c*(y1-y0_1)**2 \ - i -2*c*(x1-x0_1)*x1 - 2*c*(y1-y0_1)*y1] [line_pt1, line_pt2] = plane_intersection(draw, r, plane1=[a1, b1, d1], plane2=[a2, b2, d2], x_start=pt_orig[0]-7, x_end=pt_orig[0]+7, scale=scale, shift=shift) generalizedParaboloidTangent(draw, r, pt_orig[0], pt_orig[1], d=10.0, x0=0, y0=0, c=c, i=i , scale=scale, shift=shift, line_pt1=line_pt1, line_pt2=line_pt2, rgba=(153,255,102,150)) generalizedParaboloidTangent(draw, r, pt_orig[0], pt_orig[1], d=10.0, x0=sep, y0=sep, c=c, i=i , scale=scale, shift=shift, line_pt1=line_pt1, line_pt2=line_pt2, rgba=(255,204,102,150)) mat = np.array([[a1, b1],[a2, b2]]) rhs = np.array([-d1, -d2]) pt_orig = np.linalg.solve(mat, rhs) pt_orig = np.append(pt_orig, 0) pt = np.dot(r, pt_orig)*scale+shift draw.line((pt[0], pt[1], line_pt1[0], line_pt1[1])) draw.line((pt[0], pt[1], line_pt2[0], line_pt2[1])) drawXYGrid(draw, r, meshLen=1.0) im.save("Images\\RotatingCube\\im" + str(ind) + ".png") def three_d_parabola(draw, r, r2, scale = 200, shift = np.array([1000,1000,0])): ''' Draws a curve described by the intersection of a plane with the paraboloid x^2+y^2 = z params: r: The rotation matrix the whole scene is rotated by r2: The rotation matrix that the inetersecting plane is to be rotated by ''' # Assume you start with the x-z plane orthogonal_vec = np.array([0,1,0]) orthogonal_vec = np.dot(r2, orthogonal_vec) b = 1.5 [thetax, thetay, thetaz] = orthogonal_vec c1 = -thetax/thetaz/2 c2 = -thetay/thetaz/2 c3 = np.sqrt(b + c1**2 + c2**2) x_min = max((c1 - abs(c3)),-np.sqrt(3.5)) x_max = min((c1 + abs(c3)),np.sqrt(3.5)) y = c2 + np.sqrt(c3*c3 - (x_min-c1)*(x_min-c1)) pt1 = np.dot(r, [x_min, y, (x_min**2+y**2)]) * scale + shift[:3] for x in np.arange(x_min, x_max, 0.01): y = c2 + np.sqrt(c3*c3 - (x-c1)*(x-c1)) pt2 = np.dot(r, [x, y, (x**2 + y**2)]) * scale + shift[:3] if x**2 + y**2 < 3.5: draw.line((pt1[0], pt1[1], pt2[0], pt2[1]), fill = (204,102,255), width=5) pt1 = pt2 y = c2 + np.sqrt(c3*c3 - (x_min-c1)*(x_min-c1)) pt1 = np.dot(r, [x_min, y, (x_min**2+y**2)]) * scale + shift[:3] for x in np.arange(x_min, x_max, 0.01): y = c2 - np.sqrt(c3*c3 - (x-c1)*(x-c1)) pt2 = np.dot(r, [x, y, (x**2 + y**2)]) * scale + shift[:3] if x**2 + y**2 < 3.5: draw.line((pt1[0], pt1[1], pt2[0], pt2[1]), fill = (204,102,255), width=5) pt1 = pt2 def plane_intersection(draw, r, plane1=[0,0,0], plane2=[0,0,0], x_start=0, x_end=0, scale=200, shift=np.array([1000,1000,0])): [a1,b1,d1] = plane1 [a2,b2,d2] = plane2 x = x_start y = ((d2-d1) + (a2-a1)*x)/(b1-b2) z = a1*x+b1*y+d1 pt1 = np.dot(r, np.array([x, y, z])) * scale + shift[:3] init_pt = pt1 while x <= x_end: x += 1/10.0 y = ((d2-d1) + (a2-a1)*x)/(b1-b2) z = a1*x+b1*y+d1 pt2 = np.dot(r, np.array([x, y, z])) * scale + shift[:3] #draw.line((pt1[0], pt1[1], pt2[0], pt2[1]), fill = "white", width=3) pt1 = pt2 fin_pt = pt1 return [init_pt, fin_pt] def paraboloidTangentV2(draw, r, x1, y1, c=1.0, d = 1.0, rgba = (120,80,200,150), scale = 200, shift = np.array([1000,1000,0]), line_pt1=None, line_pt2=None): ''' Draws a tangent plane to a paraboloid: x^2+y^2 = z at point given by coordinates (x1, y1) ''' x2 = x1-d y2 = y1+d pt1 = np.dot(r, np.array([x2, y2, c*z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1+d y2 = y1+d pt2 = np.dot(r, np.array([x2, y2, c*z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1+d y2 = y1-d pt3 = np.dot(r, np.array([x2, y2, c*z_plane(x2, y2, x1, y1)])) * scale + shift[:3] x2 = x1-d y2 = y1-d pt4 = np.dot(r, np.array([x2, y2, c*z_plane(x2, y2, x1, y1)])) * scale + shift[:3] #draw.polygon([(pt1[0], pt1[1]), (pt2[0], pt2[1]), (pt3[0], pt3[1]), (pt4[0], pt4[1])], rgba) sqr1 = [[pt1[0], pt1[1]], [pt2[0], pt2[1]], [pt3[0],pt3[1]], [pt4[0], pt4[1]]] if line_pt1 is not None: sqr1.append([line_pt1[0], line_pt1[1]]) if line_pt2 is not None: sqr1.append([line_pt2[0], line_pt2[1]]) hull = ConvexHull([i[:2] for i in sqr1]).vertices poly = [(sqr1[i][0], sqr1[i][1]) for i in hull] draw.polygon(poly, rgba) def z_plane(x, y, x1, y1): ''' Returns the z-coordinate of a point on a plane that is tangent to the paraboloid z = x^2 + y^2 ''' return 2*x1*x + 2*y1*y - (x1**2 + y1**2) def generalizedParaboloidTangent(draw, r, x1, y1, d=1.0, x0=0.0, y0=0.0, rgba=(120,80,200,150), c=1.0, i=0.0, scale=200, shift=np.array([1000,1000,0]), line_pt1=None, line_pt2=None, p=1.0): ''' Draws a tangent plane to a paraboloid: x^2+y^2 = z at point given by coordinates (x1, y1) ''' x2 = x1-d y2 = y1+d pt1 = np.dot(r, np.array([x2, y2, z_plane_generalized(x2, y2, x1, y1, x0, y0, c, i)]))*scale + shift[:3] x2 = x1+d y2 = y1+d pt2 = np.dot(r, np.array([x2, y2, z_plane_generalized(x2, y2, x1, y1, x0, y0, c, i)]))*scale + shift[:3] x2 = x1+d y2 = y1-d pt3 = np.dot(r, np.array([x2, y2, z_plane_generalized(x2, y2, x1, y1, x0, y0, c, i)]))*scale + shift[:3] x2 = x1-d y2 = y1-d pt4 = np.dot(r, np.array([x2, y2, z_plane_generalized(x2, y2, x1, y1, x0, y0, c, i)]))*scale + shift[:3] #draw.polygon([(pt1[0], pt1[1]), (pt2[0], pt2[1]), (pt3[0], pt3[1]), (pt4[0], pt4[1])], rgba) sqr1 = [[pt1[0], pt1[1]], [pt2[0], pt2[1]], [pt3[0],pt3[1]], [pt4[0], pt4[1]]] if line_pt1 is not None: sqr1.append([line_pt1[0], line_pt1[1]]) if line_pt2 is not None: sqr1.append([line_pt2[0], line_pt2[1]]) try: hull = ConvexHull([i[:2] for i in sqr1]).vertices except: hull = range(4) orig_pt = np.dot(r, np.array([x1,y1,z_plane_generalized(x1, y1, x1, y1, x0, y0, c, i)]))*scale+shift[:3] poly = [(sqr1[i][0]*p+orig_pt[0]*(1-p), sqr1[i][1]*p+orig_pt[1]*(1-p)) for i in hull] draw.polygon(poly, rgba) def z_plane_generalized(x, y, x1, y1, x0, y0, c=1.0, i=0.0): d = c*(x1-x0)**2 + c*(y1-y0)**2 - i -2*c*(x1-x0)*x1 - 2*c*(y1-y0)*y1 return 2*c*(x1-x0)*x + 2*c*(y1-y0)*y + d
StarcoderdataPython
347321
# # Copyright (c) 2021, NVIDIA CORPORATION. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from polygraphy import mod from polygraphy.tools import util as tools_util from polygraphy.tools.args import (DataLoaderArgs, ModelArgs, OnnxLoaderArgs, OnnxSaveArgs, OnnxShapeInferenceArgs) from polygraphy.tools.surgeon.subtool.base import BaseSurgeonSubtool onnx_backend = mod.lazy_import("polygraphy.backend.onnx") gs = mod.lazy_import("onnx_graphsurgeon") class Sanitize(BaseSurgeonSubtool): """ Clean up and optimize an ONNX model. """ def __init__(self): super().__init__("sanitize") self.subscribe_args(ModelArgs(model_required=True, inputs="--override-inputs", model_type="onnx")) self.subscribe_args(DataLoaderArgs()) self.subscribe_args(OnnxShapeInferenceArgs(default=True, enable_force_fallback=True)) self.subscribe_args(OnnxLoaderArgs(output_prefix="")) self.subscribe_args(OnnxSaveArgs(infer_shapes=True, required=True)) def add_parser_args(self, parser): const_fold_args = parser.add_argument_group("Constant Folding", "Options for folding constants") const_fold_args.add_argument("--fold-constants", help="Fold constants in the graph by computing subgraphs whose values " "are not dependent on runtime inputs.", action="store_true", default=None) const_fold_args.add_argument("--num-passes", "--num-const-fold-passes", help="The number of constant folding passes to run. " "Sometimes, subgraphs that compute tensor shapes may not be foldable in a single pass. " "If not specified, Polygraphy will automatically determine the number of passes required. ", type=int, default=None, dest="num_const_fold_passes") const_fold_args.add_argument("--partitioning", help="Controls how to partition the graph during constant folding: {{" "'basic': Partition the graph so failures in one part do not affect other parts, " "'recursive': In addition to partitioning the graph, partition partitions where needed}} ", choices=["basic", "recursive"], default=None) const_fold_args.add_argument("--no-fold-shapes", help="Disable folding Shape nodes and subgraphs that operate on shapes", dest="fold_shapes", default=True, action="store_false") parser.add_argument("--cleanup", help="Run dead layer removal on the graph. This is generally not required if other options are set. ", action="store_true", default=False) super().add_parser_args(parser) def run_impl(self, args): # First do all processing that requires an ONNX-GraphSurgeon graph, then do everything # that operates on the ONNX model. This lets us avoid ONNX-GraphSurgeon import if we don't # need it. def do_graph_processing(model): graph = None def get_graph(): nonlocal graph if graph is None: graph = gs.import_onnx(model) return graph user_input_metadata = self.arg_groups[ModelArgs].input_shapes if user_input_metadata: graph = get_graph() graph = tools_util.override_input_shapes(graph, user_input_metadata) if self.arg_groups[OnnxShapeInferenceArgs].force_fallback: _, layerwise_meta = self.arg_groups[OnnxShapeInferenceArgs].fallback_inference(model) graph = get_graph() tools_util.set_shapes_from_layerwise_meta(graph, layerwise_meta) if args.cleanup: graph = get_graph() graph.cleanup() if graph is not None: model = gs.export_onnx(graph) return model def do_model_processing(model): if args.fold_constants: model = onnx_backend.fold_constants(model, num_passes=args.num_const_fold_passes, do_shape_inference=self.arg_groups[OnnxShapeInferenceArgs].do_shape_inference, fold_shapes=args.fold_shapes, partitioning=args.partitioning) return model model = super().load_model() model = do_graph_processing(model) model = do_model_processing(model) super().save_model(model)
StarcoderdataPython
5078474
<filename>features/dev_florian/wpfconstanst.py # -*- coding: utf-8 -*- ''' Created on 2017-07-24 @author: <NAME> ''' import win32con constants = { "WS_OVERLAPPED": win32con.WS_OVERLAPPED, "WS_POPUP": win32con.WS_POPUP, "WS_CHILD": win32con.WS_CHILD, "WS_MINIMIZE": win32con.WS_MINIMIZE, "WS_VISIBLE": win32con.WS_VISIBLE, "WS_DISABLED": win32con.WS_DISABLED, "WS_CLIPSIBLINGS": win32con.WS_CLIPSIBLINGS, "WS_CLIPCHILDREN": win32con.WS_CLIPCHILDREN, "WS_MAXIMIZE": win32con.WS_MAXIMIZE, "WS_BORDER": win32con.WS_BORDER, "WS_DLGFRAME": win32con.WS_DLGFRAME, "WS_VSCROLL": win32con.WS_VSCROLL, "WS_HSCROLL": win32con.WS_HSCROLL, "WS_SYSMENU": win32con.WS_SYSMENU, "WS_THICKFRAME": win32con.WS_THICKFRAME, "WS_GROUP": win32con.WS_GROUP, "WS_TABSTOP": win32con.WS_TABSTOP, "WS_MINIMIZEBOX": win32con.WS_MINIMIZEBOX, "WS_MAXIMIZEBOX": win32con.WS_MAXIMIZEBOX, "WS_CAPTION": win32con.WS_CAPTION, "WS_TILED": win32con.WS_TILED, "WS_ICONIC": win32con.WS_ICONIC, "WS_SIZEBOX": win32con.WS_SIZEBOX, "WS_TILEDWINDOW": win32con.WS_TILEDWINDOW, "WS_OVERLAPPEDWINDOW": win32con.WS_OVERLAPPEDWINDOW, "WS_POPUPWINDOW": win32con.WS_POPUPWINDOW, "WS_CHILDWINDOW": win32con.WS_CHILDWINDOW, } def check(input): result = "" for key,value in constants.iteritems(): if (input & value) == abs(value): result += key + "\r\n" return result exconstants = { "WS_EX_DLGMODALFRAME": win32con.WS_EX_DLGMODALFRAME, "WS_EX_NOPARENTNOTIFY": win32con.WS_EX_NOPARENTNOTIFY, "WS_EX_TOPMOST": win32con.WS_EX_TOPMOST, "WS_EX_ACCEPTFILES": win32con.WS_EX_ACCEPTFILES, "WS_EX_TRANSPARENT": win32con.WS_EX_TRANSPARENT, "WS_EX_MDICHILD": win32con.WS_EX_MDICHILD, "WS_EX_TOOLWINDOW": win32con.WS_EX_TOOLWINDOW, "WS_EX_WINDOWEDGE": win32con.WS_EX_WINDOWEDGE, "WS_EX_CLIENTEDGE": win32con.WS_EX_CLIENTEDGE, "WS_EX_CONTEXTHELP": win32con.WS_EX_CONTEXTHELP, "WS_EX_RIGHT": win32con.WS_EX_RIGHT, "WS_EX_LEFT": win32con.WS_EX_LEFT, "WS_EX_RTLREADING": win32con.WS_EX_RTLREADING, "WS_EX_LTRREADING": win32con.WS_EX_LTRREADING, "WS_EX_LEFTSCROLLBAR": win32con.WS_EX_LEFTSCROLLBAR, "WS_EX_RIGHTSCROLLBAR": win32con.WS_EX_RIGHTSCROLLBAR, "WS_EX_CONTROLPARENT": win32con.WS_EX_CONTROLPARENT, "WS_EX_STATICEDGE": win32con.WS_EX_STATICEDGE, "WS_EX_APPWINDOW": win32con.WS_EX_APPWINDOW, "WS_EX_LAYERED": win32con.WS_EX_LAYERED, "WS_EX_COMPOSITED": win32con.WS_EX_COMPOSITED, "WS_EX_NOACTIVATE": win32con.WS_EX_NOACTIVATE, "WS_EX_NOINHERITLAYOUT": win32con.WS_EX_NOINHERITLAYOUT, "WS_EX_NOPARENTNOTIFY": win32con.WS_EX_NOPARENTNOTIFY, "WS_EX_OVERLAPPEDWINDOW": win32con.WS_EX_OVERLAPPEDWINDOW, "WS_EX_PALETTEWINDOW": win32con.WS_EX_PALETTEWINDOW, } def check2(input): result = "" for key,value in exconstants.iteritems(): if (input & value) == abs(value): result += key + "\r\n" return result
StarcoderdataPython
343320
# Copyright 2019-2021 ETH Zurich and the DaCe authors. All rights reserved. import dace.library import dace.properties import dace.sdfg.nodes from dace.transformation.transformation import ExpandTransformation from .. import environments @dace.library.expansion class ExpandAllgatherMPI(ExpandTransformation): environments = [environments.mpi.MPI] @staticmethod def expansion(node, parent_state, parent_sdfg, n=None, **kwargs): (inbuffer, in_count_str), (outbuffer, out_count_str) = node.validate(parent_sdfg, parent_state) in_mpi_dtype_str = dace.libraries.mpi.utils.MPI_DDT(inbuffer.dtype.base_type) out_mpi_dtype_str = dace.libraries.mpi.utils.MPI_DDT(outbuffer.dtype.base_type) if inbuffer.dtype.veclen > 1: raise (NotImplementedError) code = f""" int _commsize; MPI_Comm_size(MPI_COMM_WORLD, &_commsize); MPI_Allgather(_inbuffer, {in_count_str}, {in_mpi_dtype_str}, _outbuffer, {out_count_str}/_commsize, {out_mpi_dtype_str}, MPI_COMM_WORLD); """ tasklet = dace.sdfg.nodes.Tasklet(node.name, node.in_connectors, node.out_connectors, code, language=dace.dtypes.Language.CPP) return tasklet @dace.library.node class Allgather(dace.sdfg.nodes.LibraryNode): # Global properties implementations = { "MPI": ExpandAllgatherMPI, } default_implementation = "MPI" def __init__(self, name, *args, **kwargs): super().__init__(name, *args, inputs={"_inbuffer"}, outputs={"_outbuffer"}, **kwargs) def validate(self, sdfg, state): """ :return: A three-tuple inbuffer, outbuffer of the data descriptors in the parent SDFG. """ inbuffer, outbuffer = None, None for e in state.out_edges(self): if e.src_conn == "_outbuffer": outbuffer = sdfg.arrays[e.data.data] for e in state.in_edges(self): if e.dst_conn == "_inbuffer": inbuffer = sdfg.arrays[e.data.data] in_count_str = "XXX" out_count_str = "XXX" for _, src_conn, _, _, data in state.out_edges(self): if src_conn == '_outbuffer': dims = [str(e) for e in data.subset.size_exact()] out_count_str = "*".join(dims) for _, _, _, dst_conn, data in state.in_edges(self): if dst_conn == '_inbuffer': dims = [str(e) for e in data.subset.size_exact()] in_count_str = "*".join(dims) return (inbuffer, in_count_str), (outbuffer, out_count_str)
StarcoderdataPython
8137164
import os import json from pathlib import Path import colorful def load_theme(): try: theme_name = os.environ['PURE_THEME'] except KeyError: theme_name = 'tomorrow' finally: theme_path = Path(os.getcwd() + '/pure/theme/' + theme_name + '.json') with open(str(theme_path), 'r') as theme: scheme = json.load(theme) colorful.use_true_colors() colorful.use_palette(scheme) return theme_name, scheme def style(color): return getattr(colorful, color).style[0]
StarcoderdataPython
3327769
<reponame>sethshill/final from util import d class BaseGamePad(object): def __init__(self): pass def getKeys(self): raise Exception("getKeys must be overriden!") def __enter__(self): return self def __exit__(self, type, value, traceback): pass def close(self): pass def setLights(self, data): pass def setLightsOff(self, count): pass
StarcoderdataPython
9762271
<filename>model/migrations/0012_auto_20200826_0703.py<gh_stars>1-10 # Generated by Django 3.0.7 on 2020-08-26 07:03 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('model', '0011_auto_20200824_0753'), ] operations = [ migrations.RenameModel( old_name='Conferences', new_name='Conference', ), ]
StarcoderdataPython
9733427
<reponame>7mp/django-dynamic-fixture<gh_stars>0 # -*- coding: utf-8 -*- from django_dynamic_fixture import new from django.conf import settings from django.db import connection from django import db from django_dynamic_fixture.django_helper import get_models_of_an_app, is_model_managed, get_unique_model_name, get_apps class Report(object): def __init__(self): self.data = [] self.errors = [] def add_record(self, app, model, queries_insert, queries_update): self.data.append((app, model, queries_insert, queries_update)) def add_error(self, msg): self.errors.append(msg) def export_csv(self, order_by_quantity_queries=False): if order_by_quantity_queries: self.data.sort(key=lambda t: t[2], reverse=True) print 'APP.MODEL;QUERIES ON INSERT;QUERIES ON UPDATE' for app, model, queries_insert, queries_update in self.data: print '%s;%s;%s' % (get_unique_model_name(model), queries_insert, queries_update) for err in self.errors: print err class CountQueriesOnSave(object): def __init__(self): self.report = Report() def count_queries_for_model(self, app, model): try: model_instance = new(model, print_errors=False) except Exception as e: self.report.add_error('- Could not prepare %s: %s' % (get_unique_model_name(model), str(e))) return db.reset_queries() try: model_instance.save() except Exception as e: self.report.add_error('- Could not insert %s: %s' % (get_unique_model_name(model), str(e))) return queries_insert = len(connection.queries) db.reset_queries() try: model_instance.save() except Exception as e: self.report.add_error('- Could not update %s: %s' % (get_unique_model_name(model), str(e))) return queries_update = len(connection.queries) self.report.add_record(app, model, queries_insert, queries_update) def execute(self, app_labels=[], exclude_app_labels=[]): settings.DEBUG = True apps = get_apps(application_labels=app_labels, exclude_application_labels=exclude_app_labels) for app in apps: models = get_models_of_an_app(app) for model in models: if not is_model_managed(model): continue self.count_queries_for_model(app, model) return self.report
StarcoderdataPython
11396935
<gh_stars>10-100 #!/usr/bin/env python # -*- coding: utf8 -*- # # Copyright 2014,2018 <NAME> <<EMAIL>> # # This file is part of MFRC522-Python # MFRC522-Python is a simple Python implementation for # the MFRC522 NFC Card Reader for the Raspberry Pi. # # MFRC522-Python is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # MFRC522-Python is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with MFRC522-Python. If not, see <http://www.gnu.org/licenses/>. import RPi.GPIO as GPIO import MFRC522 import signal continue_reading = True # function to perform cleanup when the script is aborted def end_read(signal,frame): global continue_reading print("Ctrl+C captured, ending read.") continue_reading = False GPIO.cleanup() signal.signal(signal.SIGINT, end_read) # Create an object of class MFRC522 MIFAREReader = MFRC522.MFRC522() # Continue looking for cards till the script is manually aborted while continue_reading: # Search for NFC cards (status,TagType) = MIFAREReader.MFRC522_Request(MIFAREReader.PICC_REQIDL) # Check if card detected if status == MIFAREReader.MI_OK: print("Card detected") # get the data of the card that been touched (status,uid) = MIFAREReader.MFRC522_Anticoll() # If UID received, continue if status == MIFAREReader.MI_OK: # Print UID in console print("Card read UID: %s,%s,%s,%s" % (uid[0], uid[1], uid[2], uid[3])) # Standard encryption key for the NFC card (default) key = [<KEY> MIFAREReader.MFRC522_SelectTag(uid) # Authorization status = MIFAREReader.MFRC522_Auth(MIFAREReader.PICC_AUTHENT1A, 8, key, uid) print("\n") # Check if authenticated if status == MIFAREReader.MI_OK: # This is the data that we want to write into the NFC card data = [99, 11, 55, 66, 44, 111, 222, 210, 125, 153, 136, 199, 144, 177, 166, 188] for x in range(0,16): data.append(0xFF) print("Sector 8 looked like this:") # Block 8 lesen MIFAREReader.MFRC522_Read(8) print("\n") print("Sector 8 will now be filled with 0xFF:") # Write data into the NFC card MIFAREReader.MFRC522_Write(8, data) print("\n") print("It now looks like this:") # Checks how the card looks like after it's been written MIFAREReader.MFRC522_Read(8) print("\n") MIFAREReader.MFRC522_StopCrypto1() # Make sure that card reading is set. continue_reading = False else: print("Authentification error")
StarcoderdataPython
6562858
<gh_stars>1000+ import ruia from lxml import etree HTML = """ <body> <div class="title" href="/">Ruia Documentation</div> <ul> <li class="tag" href="./easy.html">easy</li> <li class="tag" href="./fast.html">fast</li> <li class="tag" href="./powerful.html">powerful</li> </ul> </body> """ html = etree.HTML(HTML) def test_element_field(): ul = ruia.ElementField(css_select="ul") assert len(ul.extract(html_etree=html).xpath('//li')) == 3 def test_text_field(): title = ruia.TextField(css_select=".title", default="Untitled") assert title.extract(html_etree=html) == "Ruia Documentation" tags = ruia.TextField(css_select=".tag", default="No tag", many=True) assert tags.extract(html_etree=html) == ["easy", "fast", "powerful"] def test_attr_field(): title = ruia.AttrField(css_select=".title", attr="href", default="Untitled") assert title.extract(html_etree=html) == "/" tags = ruia.AttrField(css_select=".tag", attr="href", default="No tag", many=True) assert tags.extract(html_etree=html)[0] == "./easy.html" def test_html_field(): title = ruia.HtmlField(css_select=".title", default="Untitled") assert ( title.extract(html_etree=html) == '<div class="title" href="/">Ruia Documentation</div>\n' ) tags = ruia.HtmlField(css_select=".tag", default="No tag", many=True) assert ( tags.extract(html_etree=html)[1] == '<li class="tag" href="./fast.html">fast</li>\n ' ) def test_regex_field(): title = ruia.RegexField(re_select='<div class="title" href="(.*?)">(.*?)</div>') assert title.extract(html=HTML)[0] == "/" assert title.extract(html=HTML)[1] == "Ruia Documentation" tags = ruia.RegexField( re_select='<li class="tag" href="(?P<href>.*?)">(?P<text>.*?)</li>', many=True ) result = tags.extract(html=HTML) assert isinstance(result, list) assert len(result) == 3 assert isinstance(result[0], dict) assert result[0]["href"] == "./easy.html"
StarcoderdataPython
9771864
<filename>lymph/tests/integration/test_zookeeper_discovery.py<gh_stars>10-100 import gevent from kazoo.client import KazooClient from kazoo.handlers.gevent import SequentialGeventHandler from lymph.core.decorators import rpc from lymph.core.interfaces import Interface from lymph.discovery.zookeeper import ZookeeperServiceRegistry from lymph.events.null import NullEventSystem from lymph.testing import LymphIntegrationTestCase class Upper(Interface): service_type = 'upper' @rpc() def upper(self, text=None): return text.upper() class ZookeeperIntegrationTest(LymphIntegrationTestCase): use_zookeeper = True def setUp(self): super(ZookeeperIntegrationTest, self).setUp() self.events = NullEventSystem() self.upper_container, interface = self.create_container(Upper, 'upper') self.lymph_client = self.create_client() def create_registry(self, **kwargs): zkclient = KazooClient(self.hosts, handler=SequentialGeventHandler()) return ZookeeperServiceRegistry(zkclient) def test_lookup(self): service = self.lymph_client.container.lookup('upper') self.assertEqual(len(service), 1) self.assertEqual(list(service)[0].endpoint, self.upper_container.endpoint) def test_upper(self): reply = self.lymph_client.request('upper', 'upper.upper', {'text': 'foo'}) self.assertEqual(reply.body, 'FOO') def test_ping(self): reply = self.lymph_client.request('upper', 'lymph.ping', {'payload': 42}) self.assertEqual(reply.body, 42) def test_status(self): reply = self.lymph_client.request('upper', 'lymph.status', {}) self.assertEqual(reply.body, { 'endpoint': self.upper_container.endpoint, 'identity': self.upper_container.identity, }) def test_get_metrics(self): reply = self.lymph_client.request('upper', 'lymph.get_metrics', {}) self.assertIsInstance(reply.body, list) def test_connection_loss(self): service = self.lymph_client.container.lookup('upper') self.assertEqual( [i.identity for i in service], [self.upper_container.identity], ) self.upper_container.service_registry.client.stop() self.upper_container.service_registry.client.start() gevent.sleep(.1) # XXX: give zk a chance to reconnect self.assertEqual( [i.identity for i in service], [self.upper_container.identity], )
StarcoderdataPython
9705469
# encoding=utf-8 import unittest from Calc import Calc class MyTest(unittest.TestCase): @classmethod def setUpClass(self): print("init Calc before unittest") self.c = Calc() # rename the four methods bellow, make sure print queue will be : # P.S.: test case must starts with ‘test’ def test_a_add(self): print("run add()") self.assertEqual(self.c.add(1, 2, 12), 15, 'test add fail') def test_b_sub(self): print("run sub()") self.assertEqual(self.c.sub(2, 1, 3), -2, 'test sub fail') def test_c_mul(self): print("run mul()") self.assertEqual(Calc.mul(self,2, 3, 5), 30, 'test mul fail') def test_d_div(self): print("run div()") self.assertEqual(Calc.div(self,8, 2, 4), 1, 'test div fail') if __name__ == '__main__': unittest.main()
StarcoderdataPython
11342377
<reponame>derekwacks/RaspberryPiKeithleyCommunication """ Adapted from Keithley User manual to communcate with Raspberry PI using Pyvisa 7.16.19 <NAME> """ import visa import time rm = visa.ResourceManager('@py') address = "ASRL/dev/ttyUSB0::INSTR" inst = rm.open_resource(address) inst.write("*RST") print(inst.query("*IDN?")) inst.write("FORM:DATA ASCII") inst.write(“:SYSt:BEEP 100, 3“) inst.close()
StarcoderdataPython
32169
<reponame>danieltes/tp_solver import uuid from PIL import Image import graphviz as gv styles = { 'graph': { 'label': 'Discreta - Representación de AST', 'fontsize': '16', 'fontcolor': 'white', 'bgcolor': '#333333', }, 'nodes': { 'fontname': 'Helvetica', 'shape': 'hexagon', 'fontcolor': 'white', 'color': 'white', 'style': 'filled', 'fillcolor': '#006699', }, 'edges': { 'style': 'dashed', 'color': 'white', 'arrowhead': 'open', 'fontname': 'Courier', 'fontsize': '12', 'fontcolor': 'white', } } def _render_children(g, n, parent=None): id = str(uuid.uuid1()) if n.op is not None: g.node(id, n.op) if parent is not None: g.edge(parent, id) for each in n.children: _render_children(g, each, id) else: g.node(id, n.value) g.edge(parent, id) def _set_styles(graph): graph.graph_attr.update( ('graph' in styles and styles['graph']) or {} ) graph.node_attr.update( ('nodes' in styles and styles['nodes']) or {} ) graph.edge_attr.update( ('edges' in styles and styles['edges']) or {} ) return graph def render_tree(tree): graph = gv.Digraph( format='jpg', comment="Arbol de representación semántico") _set_styles(graph) _render_children(graph, tree) filename = graph.render("ast", view=True)
StarcoderdataPython
5059887
<reponame>molguin92/gabriel-lego-py3 from numpy import array # Automatically generated task with 45 steps # Labels: nothing:0, white:1, green:2, yellow:3, red:4, blue:5, black:6, # unsure:7 bitmaps = \ [array([[4, 4, 4, 4, 4, 4]]), array([[3, 3, 3, 3, 3, 3], [4, 4, 4, 4, 4, 4]]), array([[4, 4, 4, 4, 4, 4]]), array([[2, 0, 0, 0, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 0, 0, 3, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 3, 3, 3], [2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[4, 0, 3, 3, 3, 3], [2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[4, 5, 3, 3, 3, 3], [2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[4, 0, 3, 3, 3, 3], [2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 3, 3, 3], [2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 2, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 5, 4], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 5, 0, 3, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 0, 0, 3, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[2, 0, 0, 0, 0, 0], [4, 4, 4, 4, 4, 4]]), array([[4, 4, 4, 4, 4, 4]]), array([[0, 0, 0, 0, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 0, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 5, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[3, 0, 3, 5, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[3, 0, 3, 5, 5, 5], [4, 4, 4, 4, 4, 4]]), array([[3, 5, 3, 5, 5, 5], [4, 4, 4, 4, 4, 4]]), array([[3, 0, 3, 5, 5, 5], [4, 4, 4, 4, 4, 4]]), array([[3, 0, 3, 5, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 5, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 0, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 0, 0, 5, 0], [4, 4, 4, 4, 4, 4]]), array([[4, 4, 4, 4, 4, 4]]), array([[0, 0, 0, 0, 2, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 0, 2, 0], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 3, 0, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 4, 3, 0, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 0, 0, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 2, 0, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 2, 2, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[5, 2, 2, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 2, 2, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]]), array([[0, 2, 0, 4, 4, 4], [4, 4, 3, 4, 2, 5], [4, 4, 4, 4, 4, 4]])]
StarcoderdataPython
8056152
<reponame>dwhitte7/ntap-automation<filename>storagegrid/python/01_get_grid_details.py<gh_stars>0 #!/usr/bin/env python3 ################################################################################ # # Title: 01_get_grid_details.py # Author: <NAME> # Date: 2020-03-17 # Description: Get grid information # # Resources: # # URLs: # ################################################################################ import json, os, sys import requests ### Define Functions def _url(path): return 'https://' + global_vars["SG_ADMIN_NODE"] + '/api/v3' + path def get_info(endpoint, auth_token): return requests.get(endpoint, headers={'accept': 'application/json', 'authorization': 'Bearer {}'.format(auth_token)}, verify=False).json()['data'] ### Step 1 - Read in global variables with open(os.path.dirname(sys.argv[0])+'/../global.vars') as json_file: global_vars = json.load(json_file) ### Step 2 - Set Authorization Header auth_body = { "username": global_vars['SG_ADMIN_USER'], "password": global_<PASSWORD>['<PASSWORD>'], "cookie": "false", "csrfToken": "false" } ### Step 3 - Get Grid Authorization Token grid_auth = requests.post('https://' + global_vars["SG_ADMIN_NODE"] + '/api/v3/authorize', data=json.dumps(auth_body), headers={'Content-Type':'application/json', 'accept':'application/json'}, verify=False).json()['data'] ### Step 4 - Get Grid Info - Version & Topology version_resp = get_info(_url('/grid/config/product-version'), grid_auth) topology_resp = get_info(_url('/grid/health/topology'), grid_auth) ### Step 5 - Print Info print('\n{0:13}{1}'.format('Name:', topology_resp['name'])) print('{0:13}{1}\n'.format('Version:', version_resp['productVersion'])) for site in topology_resp['children']: print('Data Center: {}'.format(site['name'])) for node in site['children']: print(' - Node Name: {0:20} Type: {1}'.format(node['name'], node['type'])) print('\n')
StarcoderdataPython
1896146
<filename>ros/src/twist_controller/twist_controller.py<gh_stars>0 from yaw_controller import YawController from pid import PID from lowpass import LowPassFilter import rospy GAS_DENSITY = 2.858 ONE_MPH = 0.44704 class Controller(object): def __init__(self, wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle, accel_limit, decel_limit, loop_frequency, vehicle_mass, wheel_radius): self.wheel_base = wheel_base self.steer_ratio = steer_ratio self.max_steer_angle = max_steer_angle self.vehicle_mass = vehicle_mass self.wheel_radius = wheel_radius self.steering_controller = YawController(wheel_base, steer_ratio, min_speed, max_lat_accel, max_steer_angle) self.throttle_controller = PID(0.15, 0.0, 0.09, mn=decel_limit, mx=accel_limit) self.low_pass_filter = LowPassFilter(12.0, 1) self.last_timestamp = None def control(self, target_angular_velocity, target_linear_velocity, current_angular_velocity, current_linear_velocity, dbw_enabled): # Return throttle, brake, steer if not dbw_enabled: self.reset() return 0., 0., 0. steer = self.steering_controller.get_steering(target_linear_velocity, target_angular_velocity, current_linear_velocity) throttle = 0. brake = 0. current_timestamp = rospy.Time.now() if self.last_timestamp != None: dt = (current_timestamp - self.last_timestamp).nsecs / 1e9 cte = target_linear_velocity - current_linear_velocity acceleration = self.throttle_controller.step(cte, dt) filtvalue = self.low_pass_filter.filt(acceleration) if self.low_pass_filter.ready: acceleration = self.low_pass_filter.get() if acceleration > 0: throttle = acceleration else: brake = self.vehicle_mass * abs(acceleration) * self.wheel_radius self.last_timestamp = current_timestamp rospy.loginfo('SENDING - [throttle,brake,steer]:[{:.4f},{:.4f},{:.4f}], [cA,cL]:[{:.4f},{:.4f}]m [tA, tL]:[{:.4f},{:.4f}]'.format(throttle, brake, steer,current_angular_velocity, current_linear_velocity,target_angular_velocity, target_linear_velocity)) return throttle, brake, steer def reset(self): """ Reset the controller's state. """ self.throttle_controller.reset() self.low_pass_filter.reset()
StarcoderdataPython
1746919
import json from jupyter_server.base.handlers import APIHandler from jupyter_server.utils import url_path_join import tornado from pyarrow import fs def parsePath(path): parts = path.split('/', 1) bucket = parts[0] if len(parts) >= 1 else '' local_path = '/' + parts[1] if len(parts) > 1 else '/' return bucket, local_path class BucketRouteHandler(APIHandler): @tornado.web.authenticated def get(self, local_path): bucket, path = parsePath(local_path) print(bucket, path) fs_client = fs.LocalFileSystem() file_info_list = fs_client.get_file_info( fs.FileSelector(path, recursive=False)) files = [] dirs = [] for info in file_info_list: if info.type.value == 2: # File type files.append({'name': info.base_name, 'ext': info.extension, 'size': info.size, 'mtime': info.mtime.isoformat()}) elif info.type.value == 3: # Directory type dirs.append({'name': info.base_name, 'mtime': info.mtime.isoformat()}) self.finish(json.dumps({'files': files, 'dirs': dirs})) def setup_handlers(web_app): host_pattern = ".*$" base_url = web_app.settings["base_url"] route_pattern = url_path_join(base_url, "jupyterlab_filesystem", "bucket") handlers = [("{}/(.*)".format(route_pattern), BucketRouteHandler)] web_app.add_handlers(host_pattern, handlers)
StarcoderdataPython
1896352
<gh_stars>1-10 import torch from transformers import BertTokenizer, BertPreTrainedModel, BertModel, BertConfig, AdamW, get_linear_schedule_with_warmup from torch import nn from torch.utils.data import Dataset, DataLoader from multitask_bert_entitity_classifier import COVID19TaskDataset, TokenizeCollator, make_predictions_on_dataset, split_data_based_on_subtasks from utils import load_from_pickle, get_multitask_instances_for_valid_tasks, split_multitask_instances_in_train_dev, get_TP_FP_FN, add_marker_for_loss_ignore import random import json import argparse TEXT_TO_TWEET_ID_PATH = "../test/txt_2_tid.json" POSSIBLE_BATCH_SIZE=8 IGNORE_TASKS_DICT = {"tested_positive": ["part1.Response", "gender_male", "gender_female", "relation"], "tested_negative": ["part1.Response", "how_long", "gender_male", "gender_female", "relation"], "can_not_test": ["part1.Response", "symptoms", "relation"], "death": ["part1.Response", "symptoms", "relation"], "cure": ["part1.Response", "opinion"] } parser = argparse.ArgumentParser() parser.add_argument("-d", "--data_file", help="Path to the pickle file that contains the training instances", type=str, required=True) parser.add_argument("-t", "--task", help="Event for which we want to train the baseline", type=str, required=True) parser.add_argument("-s", "--save_path", help="Path to the directory where saved model is.", type=str, required=True) parser.add_argument("-o", "--output_dir", help="Path to the output directory where we will save all the model results", type=str, required=True) parser.add_argument("--device", type=str, default="cuda", help="name of the device to be used for training") parser.add_argument("--sentence_level_classify", dest="sentence_level_classify", action="store_true", default=True) args = parser.parse_args() device = args.device="cuda" args.sentence_level_classify=True IGNORE_TASKS = IGNORE_TASKS_DICT[args.task] TASK_TO_TID_KEY = {'tested_positive': 'positive', 'tested_negative': 'negative', 'can_not_test': 'can_not_test', 'cure': 'cure', 'death': 'death'} text_to_tweetid = json.load(open(TEXT_TO_TWEET_ID_PATH, 'r'))[TASK_TO_TID_KEY[args.task]] def log_multitask_data_statistics(data, subtasks): print(f"Total instances in the data = {len(data)}") pos_counts = {subtask: sum(subtask_labels_dict[subtask][1] for _,_,_,_,_,_,_,subtask_labels_dict in data) for subtask in subtasks} neg_counts = dict() for subtask in subtasks: neg_counts[subtask] = len(data) - pos_counts[subtask] print(f"Subtask:{subtask:>15}\tPositive labels = {pos_counts[subtask]}\tNegative labels = {neg_counts[subtask]}") return len(data), pos_counts, neg_counts class MultiTaskBertForCovidEntityClassification(BertPreTrainedModel): def __init__(self, config): super().__init__(config) self.num_labels = config.num_labels self.bert = BertModel(config) self.dropout = nn.Dropout(config.hidden_dropout_prob * 2) self.subtasks = config.subtasks self.classifier_in_size = config.hidden_size # For sentence level classification if args.sentence_level_classify: self.sentence_classification_att = nn.Linear(config.hidden_size, 1) self.sentence_classifier_1 = nn.Sequential(nn.Linear(config.hidden_size, 50), nn.Dropout(0.1)) self.sentence_classifier_2 = nn.Linear(50, 2) self.sent_fuse_skip = nn.Sequential(nn.Linear(2,4), nn.LeakyReLU(), nn.Linear(4,2)) # self.classifier_in_size += 50 # We will create a dictionary of classifiers based on the number of subtasks self.classifiers = nn.ModuleDict() for subtask in self.subtasks: if subtask != "part1.Response": self.classifiers[subtask] = nn.Linear(self.classifier_in_size, config.num_labels) self.context_vectors = nn.ModuleDict() for subtask in self.subtasks: if subtask != "part1.Response": self.context_vectors[subtask] = nn.Embedding(1,config.hidden_size) # self.att_taskwise_mlp[subtask] = nn.Linear(config. # self.subtask_to_id = {s:i for i,s in enumerate(self.subtasks)} # self.id_to_subtask = {i:s for s,i in self.subtask_to_id.items()} # self.ids_long_tensor = torch.LongTensor([i for i in id_to_subtask.keys()]) for task in IGNORE_TASKS: if task == "part1.Response": continue self.classifiers[task].weight.requires_grad = False self.classifiers[task].bias.requires_grad = False torch.nn.init.zeros_(self.classifiers[task].weight) devic = self.classifiers[task].weight.device self.classifiers[task].bias.data = torch.tensor([10.0, -10.0]).to(devic) # Only predict negative class. self.init_weights() self.norm_probs = lambda x: x / x.sum(1).unsqueeze(-1) def forward( self, input_ids, entity_start_positions, entity_end_positions, attention_mask=None, token_type_ids=None, position_ids=None, head_mask=None, inputs_embeds=None, labels=None, label_weight=None ): assert attention_mask == None attention_mask = (input_ids != 0) * 1 # No weights for <PAD> input outputs = self.bert( input_ids, attention_mask=attention_mask, token_type_ids=token_type_ids, position_ids=position_ids, head_mask=head_mask, inputs_embeds=inputs_embeds, ) # Sentence level classification: if args.sentence_level_classify: # pad_mask = (input_ids != 0) # No weights for <PAD> input # att_scores = self.sentence_classification_att(outputs[0]) * pad_mask.unsqueeze(-1) # Calculate score # att_scores = torch.softmax(att_scores, dim=1) # Softmax across the words. sentence_pooled = outputs[0][:, 0, :] # # sentence_pooled = (outputs[0] * att_scores).sum(1) # Get a single sentence vector for each sentence. sentence_classifier_feats = self.sentence_classifier_1(sentence_pooled) sentence_logits = self.sentence_classifier_2(sentence_classifier_feats) detached_sent_logits = sentence_logits.detach() sent_log_skip_add = self.sent_fuse_skip(sentence_logits) # NOTE: outputs[0] has all the hidden dimensions for the entire sequence # We will extract the embeddings indexed with entity_start_positions all_output = outputs[0] all_output = self.dropout(all_output) # Entity_mask entity_mask = torch.arange(input_ids.shape[1]).expand(input_ids.shape[0], -1).to(input_ids.device) entity_mask = (entity_mask >= entity_start_positions[:, 1:2]) & (entity_mask <= entity_end_positions[:, 1:2]) entity_mask = ~ entity_mask.unsqueeze(-1) # Get logits for each subtask if args.sentence_level_classify: logits = dict() # {subtask: self.classifiers[subtask](pooled_output) for subtask in self.classifiers.keys()} for subtask in self.context_vectors.keys(): att_weights = torch.matmul(all_output, self.dropout(self.context_vectors[subtask].weight.T)) att_weights = att_weights.masked_fill(entity_mask, -1000) att_weights = torch.softmax(att_weights, 1) pooled_output = torch.sum(all_output * att_weights, 1) logits[subtask] = self.classifiers[subtask](pooled_output) if subtask not in IGNORE_TASKS: logits[subtask] = sent_log_skip_add + logits[subtask] # self.fuse_classify[subtask](sentence_logits) + logits[subtask] # else: # logits = {subtask: torch.softmax(self.classifiers[subtask](pooled_output), 1) for subtask in self.classifiers.keys()} if args.sentence_level_classify: logits["part1.Response"] = sentence_logits outputs = (logits,) + outputs[2:] # add hidden states and attention if they are here if labels is not None: loss_fct = nn.CrossEntropyLoss(reduction='none') loss = 0 for i, subtask in enumerate(self.subtasks): if (args.sentence_level_classify and subtask == "part1.Response") or subtask not in IGNORE_TASKS: # if loss == None: # this_loss = loss_fct(logits[subtask].view(-1, self.num_labels) , labels[subtask].view(-1)) * label_weight[subtask] # if subtask == "part1.Response": # this_loss *= LOSS_SCALE['part1'] # else: # this_loss *= LOSS_SCALE['others'] # loss = this_loss.mean() # else: this_loss = loss_fct(logits[subtask].view(-1, self.num_labels), labels[subtask].view(-1)) * label_weight[subtask] if subtask == "part1.Response": this_loss *= LOSS_SCALE['part1'] else: this_loss *= LOSS_SCALE['others'] loss += this_loss.mean() outputs = (loss,) + outputs return outputs # (loss), logits, (hidden_states), (attentions) def get_chunk_tweet_id(data, prediction_scores, THRESHOLD=0.5): # code from get_TP_FP_FN in utils.py predicted_chunks_for_each_instance = dict() for (text, chunk, _, _, _, _, _, _, _), prediction_score in zip(data, prediction_scores): original_text = text predicted_chunks_for_each_instance.setdefault(original_text, set()) predicted_chunks = predicted_chunks_for_each_instance[original_text] if prediction_score > THRESHOLD: # Save this prediction in the predicted chunks # print(chunk, prediction_score) predicted_chunks.add(chunk) predicted_chunks_for_each_instance[original_text] = predicted_chunks return {text_to_tweetid[text]:preds for text,preds in predicted_chunks_for_each_instance.items()} def json_save_predicts(dev_pred_chunks, pred_save_path, question_keys_and_tags): guesses = {} i = 0 current_subtasks = dev_pred_chunks.keys() for subtask in current_subtasks: question = question_keys_and_tags[subtask] if i == 0: for id, pred in dev_pred_chunks[subtask].items(): guesses[id] = {question: list(pred)} else: for id, pred in dev_pred_chunks[subtask].items(): guesses[id][question] = list(pred) i += 1 fo = open(pred_save_path, "w") json.dump(guesses, fo) fo.close() print("Saved predicts as JSON:", pred_save_path) def main_try(args): task_instances_dict, tag_statistics, question_keys_and_tags = load_from_pickle(args.data_file) data, subtasks_list = get_multitask_instances_for_valid_tasks(task_instances_dict, tag_statistics) data = add_marker_for_loss_ignore(data, 1.0 if False else 0.0) model_name = "digitalepidemiologylab/covid-twitter-bert" print("\n\n===========\n\n", subtasks_list, "\n\n===========\n\n") tokenizer = BertTokenizer.from_pretrained(model_name) config = BertConfig.from_pretrained(model_name) config.subtasks = subtasks_list model = MultiTaskBertForCovidEntityClassification.from_pretrained(model_name, config=config) # Add new tokens in tokenizer new_special_tokens_dict = {"additional_special_tokens": ["<E>", "</E>", "<URL>", "@USER"]} tokenizer.add_special_tokens(new_special_tokens_dict) # Add the new embeddings in the weights print("Embeddings type:", model.bert.embeddings.word_embeddings.weight.data.type()) print("Embeddings shape:", model.bert.embeddings.word_embeddings.weight.data.size()) embedding_size = model.bert.embeddings.word_embeddings.weight.size(1) new_embeddings = torch.FloatTensor(len(new_special_tokens_dict["additional_special_tokens"]), embedding_size).uniform_(-0.1, 0.1) # new_embeddings = torch.FloatTensor(2, embedding_size).uniform_(-0.1, 0.1) print("new_embeddings shape:", new_embeddings.size()) new_embedding_weight = torch.cat((model.bert.embeddings.word_embeddings.weight.data,new_embeddings), 0) model.bert.embeddings.word_embeddings.weight.data = new_embedding_weight print("Embeddings shape:", model.bert.embeddings.word_embeddings.weight.data.size()) # Update model config vocab size model.config.vocab_size = model.config.vocab_size + len(new_special_tokens_dict["additional_special_tokens"]) model.load_state_dict(torch.load(args.save_path + "ckpt.pth")) print("loaded_model") model.to("cuda") entity_start_token_id = tokenizer.convert_tokens_to_ids(["<E>"])[0] entity_end_token_id = tokenizer.convert_tokens_to_ids(["</E>"])[0] print(f"Task dataset for task: {args.task} loaded from {args.data_file}.") model_config = dict() results = dict() # Split the data into train, dev and test and shuffle the train segment dev_data = data print("Dev Data:") total_dev_size, pos_subtasks_dev_size, neg_subtasks_dev_size = log_multitask_data_statistics(dev_data, model.subtasks) model_config["dev_data"] = {"size":total_dev_size, "pos":pos_subtasks_dev_size, "neg":neg_subtasks_dev_size} # Extract subtasks data for dev and test dev_subtasks_data = split_data_based_on_subtasks(dev_data, model.subtasks) # Load the instances into pytorch dataset dev_dataset = COVID19TaskDataset(dev_data) tokenize_collator = TokenizeCollator(tokenizer, model.subtasks, entity_start_token_id, entity_end_token_id) dev_dataloader = DataLoader(dev_dataset, batch_size=POSSIBLE_BATCH_SIZE, collate_fn=tokenize_collator) print("Created dev dataloaders with batch aggregation") dev_predicted_labels, dev_prediction_scores, dev_gold_labels = make_predictions_on_dataset(dev_dataloader, model, device, args.task + "_dev", True) # print(dev_predicted_labels['age'][0], dev_prediction_scores['age'][0], dev_gold_labels['age'][0]) assert dev_predicted_labels.keys() == dev_prediction_scores.keys() assert dev_predicted_labels.keys() == dev_gold_labels.keys() for st in dev_gold_labels.keys(): print(st,":", len(dev_predicted_labels[st]), len(dev_prediction_scores[st]), len(dev_gold_labels[st])) dev_threshold = json.load(open(args.save_path + "/results.json", "r"))['best_dev_threshold'] print(dev_threshold) # [print(k, v) for k,v in get_chunk_tweet_id(dev_subtasks_data['age'], dev_prediction_scores['age'], dev_threshold['age']).items()] dev_pred_chunks = {} for subtask in subtasks_list: if subtask not in IGNORE_TASKS: dev_pred_chunks[subtask] = get_chunk_tweet_id(dev_subtasks_data[subtask], dev_prediction_scores[subtask], dev_threshold[subtask]) json_save_predicts(dev_pred_chunks, args.output_dir + "/" + args.task +".json", {k:v for k,v in question_keys_and_tags}) collect_TP_FP_FN = {"TP": 0.0001, "FP": 0.0001, "FN": 0.0001} for subtask in model.subtasks: dev_subtask_data = dev_subtasks_data[subtask] dev_subtask_prediction_scores = dev_prediction_scores[subtask] dev_F1, dev_P, dev_R, dev_TP, dev_FP, dev_FN = get_TP_FP_FN(dev_subtask_data, dev_subtask_prediction_scores, dev_threshold[subtask], task=subtask) if subtask not in IGNORE_TASKS: collect_TP_FP_FN["TP"] += dev_TP collect_TP_FP_FN["FP"] += dev_FP collect_TP_FP_FN["FN"] += dev_FN else: print("IGNORE: ", end = "") print(f"Subtask:{subtask:>15}\tN={dev_TP + dev_FN}\tF1={dev_F1}\tP={dev_P}\tR={dev_R}\tTP={dev_TP}\tFP={dev_FP}\tFN={dev_FN}") dev_macro_P = collect_TP_FP_FN["TP"] / (collect_TP_FP_FN["TP"] + collect_TP_FP_FN["FP"]) dev_macro_R = collect_TP_FP_FN["TP"] / (collect_TP_FP_FN["TP"] + collect_TP_FP_FN["FN"]) dev_macro_F1 = (2 * dev_macro_P * dev_macro_R) / (dev_macro_P + dev_macro_R) print(collect_TP_FP_FN) print("dev_macro_P:", dev_macro_P, "\ndev_macro_R:", dev_macro_R, "\ndev_macro_F1:", dev_macro_F1,"\n") main_try(args)
StarcoderdataPython
50570
<gh_stars>1-10 import numpy as np import matplotlib.pyplot as plt from tqdm import tqdm import copy STATE_A = 0 STATE_B = 1 STATE_TERMINAL = 2 STATE_START = STATE_A ACTION_A_RIGHT = 0 ACTION_A_LEFT = 1 EPSILON = 0.1 ALPHA = 0.1 GAMMA = 1 # take 10 actions in B ACTIONS_B = range(0, 10) STATE_ACTIONS = [[ACTION_A_RIGHT, ACTION_A_LEFT], ACTIONS_B] INITIAL_Q = [np.zeros(2), np.zeros(len(ACTIONS_B)), np.zeros(1)] TRANSITION = [[STATE_TERMINAL, STATE_B], [STATE_TERMINAL] * len(ACTIONS_B)] def choose_action(state, q_value): if np.random.binomial(1, EPSILON) == 1: action = np.random.choice(STATE_ACTIONS[state]) else: values = q_value[state] action = np.random.choice([action_ for action_, value_ in enumerate(values) if value_ == np.max(values)]) return action def take_action(state, action): if state == STATE_A: return 0 return np.random.normal(-0.1, 1) def q_learning(q1, q2=None): state = STATE_START left_count = 0 while state != STATE_TERMINAL: if q2 is None: action = choose_action(state, q1) else: action = choose_action(state, [item1 + item2 for item1, item2 in zip(q1, q2)]) if state == STATE_START and action == ACTION_A_LEFT: left_count += 1 reward = take_action(state, action) next_state = TRANSITION[state][action] if q2 is None: active_q = q1 target = np.max(active_q[next_state]) else: if np.random.binomial(1, 0.5) == 1: active_q = q1 target_q = q2 else: active_q = q2 target_q = q1 best_action = np.random.choice([action_ for action_, value_ in enumerate(active_q[next_state]) if value_ == np.max(active_q[next_state])]) target = target_q[next_state][best_action] active_q[state][action] += ALPHA * (reward + GAMMA * target - active_q[state][action]) state = next_state return left_count def figure_6_7(): episodes = 300 runs = 100 left_counts_q = np.zeros((runs, episodes)) left_counts_double_q = np.zeros((runs, episodes)) for run in tqdm(range(runs)): q = copy.deepcopy(INITIAL_Q) q1 = copy.deepcopy(INITIAL_Q) q2 = copy.deepcopy(INITIAL_Q) for ep in range(0, episodes): left_counts_q[run, ep] = q_learning(q) left_counts_double_q[run, ep] = q_learning(q1, q2) left_counts_q = left_counts_q.mean(axis=0) left_counts_double_q = left_counts_double_q.mean(axis=0) plt.plot(left_counts_q, label='Q-learning') plt.plot(left_counts_double_q, label='Double Q-learning') plt.plot(np.ones(episodes) * 0.05, label='Optimal') plt.xlabel('Episodes') plt.ylabel('% left actions from A') plt.legend() plt.savefig('./images/figure_6_7.png') plt.close() if __name__ == '__main__': figure_6_7()
StarcoderdataPython
9789106
"""Default core views provided to Websauna."""
StarcoderdataPython
5185106
<reponame>cbf02000/JETEngine #!/usr/bin/python # -*- coding: utf-8 -*- import tornado.ioloop import tornado.web import json import os import sys import cgi import urllib import urllib2 from flightaware import flightaware from hotels import hotelsearch from uber import uber_estimate_time from nyt_36hours import articlesearch class NewsHandler(tornado.web.RequestHandler): def get(self): self.set_header("Content-Type", 'application/json; charset="utf-8"') airport_code = self.get_argument('airport', True) jsontxt = articlesearch(airport_code) self.write(jsontxt) class UberHandler(tornado.web.RequestHandler): def get(self): self.set_header("Content-Type", 'application/json; charset="utf-8"') #start_lat, start_long, dest_lat, dest_long start_lat = self.get_argument('start_lat', True) start_long = self.get_argument('start_long', True) dest_lat = self.get_argument('dest_lat', True) dest_long = self.get_argument('dest_long', True) jsontxt = uber_estimate_time(start_lat, start_long, dest_lat, dest_long) self.write(jsontxt) class HotelHandler(tornado.web.RequestHandler): def get(self): self.set_header("Content-Type", 'application/json; charset="utf-8"') airport_code = self.get_argument('airport', True) arrival_time = self.get_argument('arrival_time', True) jsontxt = hotelsearch(airport_code,arrival_time) self.write(jsontxt) class FlightHandler(tornado.web.RequestHandler): def get(self): self.set_header("Content-Type", 'application/json; charset="utf-8"') airport_code = self.get_argument('airport', True) jsontxt = flightaware(airport_code) #url = "http://www.flightstats.com/go/FlightStatus/flightStatusByAirport.do?airport=SFO&airportQueryDate=2015-11-07&airportQueryTime=16" #response = urllib2.urlopen(url) #html = response.read() self.write(jsontxt) class MainHandler(tornado.web.RequestHandler): def get(self): self.set_header("Content-Type", 'application/json; charset="utf-8"') lon = self.get_argument('lon', True) lat = self.get_argument('lat', True) url = "https://airport.api.aero/airport/nearest/" + lat + "/" + lon + "?user_key=72963f44671d7039fe893d82903bc457" print url response = urllib2.urlopen(url) html = response.read() jsontxt = html[html.find("airports")+11:-3] root_o = json.loads(jsontxt) origCity = root_o["city"] print origCity imgurl_orig = "https://ajax.googleapis.com/ajax/services/search/images?v=1.0&q=" + urllib.quote(origCity, safe='') + "&rsz=8" r_o1 = urllib2.urlopen(imgurl_orig) root_o1 = json.loads(r_o1.read()) imgurl_o_0 = root_o1["responseData"]["results"][0]["url"] imgurl_o_1 = root_o1["responseData"]["results"][1]["url"] imgurl_o_2 = root_o1["responseData"]["results"][2]["url"] imgAppJson = ', "cityImageURL":["%s","%s","%s"]}' % (imgurl_o_0, imgurl_o_1, imgurl_o_2) returnJsonText = jsontxt[:-1] + imgAppJson print returnJsonText #my_json = json.dumps(jsontxt, ensure_ascii=False) self.write(returnJsonText) application = tornado.web.Application([ (r"/nearest_airport.cgi", MainHandler), (r"/flight.cgi", FlightHandler), (r"/hotel.cgi", HotelHandler), (r"/uber.cgi", UberHandler), (r"/news.cgi", NewsHandler) ]) if __name__ == "__main__": application.listen(8888) tornado.ioloop.IOLoop.instance().start()
StarcoderdataPython
5130568
#Definir variables y otros print("Ejercicio") Sueldo=0 #Datos de entrada a=int(input("Años de trabajo:")) b=int(input("Sueldo de trabajo:")) #Proceso if a>=4: Sueldo=((b*25)/100)+b elif b<=2000: Sueldo=((b*25)/100)+b elif a<=4: Sueldo=((b*20)/100)+b elif b>=2000: Sueldo=((b*20)/100)+b #Datos de salida print("El sueldo de navidad es:", Sueldo)
StarcoderdataPython
9731600
<reponame>adam-funk/pytilt #!/usr/bin/env python3 import matplotlib matplotlib.use('Agg') import argparse import imghdr import os import smtplib import time import datetime from email.message import EmailMessage import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import dates from subprocess import Popen, PIPE FIGSIZE = (15, 6) # https://stackoverflow.com/questions/4931376/generating-matplotlib-graphs-without-a-running-x-server # https://matplotlib.org/gallery/text_labels_and_annotations/date.html # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.subplots.html#matplotlib.pyplot.subplots # https://matplotlib.org/api/dates_api.html#matplotlib.dates.MonthLocator # https://matplotlib.org/api/_as_gen/matplotlib.pyplot.plot.html#matplotlib.pyplot.plot # https://matplotlib.org/tutorials/introductory/pyplot.html def meanr(x): # ignore NaN (blank fields in the CSV return round(np.nanmean(x), 1) def medianr(x): # ignore NaN (blank fields in the CSV return round(np.nanmedian(x), 1) def get_data(options): data = pd.read_csv(options.data_file, names=['color', 'epoch', 'iso', 'sg', 'c', 'f', 'n'], index_col='epoch') data['time'] = pd.to_datetime(data['iso']) data['date'] = data['time'].dt.date data['c'] = round(data['c'], 1) # aggregated by date columns = [min, meanr, medianr, max] date_data = data.groupby('date').agg({'sg': columns, 'c': columns}).rename(columns={'meanr': 'mean', 'medianr': 'mdn'}) return data, date_data def make_plots(options, data, data_by_date): output_dir = '/tmp/hydrometer-plots-%i' % int(time.time()) os.mkdir(output_dir) f0 = os.path.join(output_dir, 'density.png') f1 = os.path.join(output_dir, 'temperature.png') f2 = os.path.join(output_dir, 'density_date.png') f3 = os.path.join(output_dir, 'temperature_date.png') date_html = data_by_date.to_html() days_locator = dates.DayLocator(interval=1) days_format = dates.DateFormatter('%d') plt.ioff() fig0, ax0 = plt.subplots(figsize=FIGSIZE) ax0.xaxis.set_major_locator(days_locator) ax0.xaxis.set_major_formatter(days_format) ax0.format_xdata = days_format ax0.grid(True, which='both') ax0.plot(data['time'], data['sg']) plt.savefig(f0, dpi=200) fig1, ax1 = plt.subplots(figsize=FIGSIZE) ax1.xaxis.set_major_locator(days_locator) ax1.xaxis.set_major_formatter(days_format) ax1.format_xdata = days_format ax1.grid(True, which='both') ax1.plot(data['time'], data['c']) plt.savefig(f1, dpi=200) fig2, ax2 = plt.subplots(figsize=FIGSIZE) ax2.xaxis.set_major_locator(days_locator) ax2.xaxis.set_major_formatter(days_format) ax2.format_xdata = days_format ax2.grid(True, which='both') ax2.plot(data_by_date.index, data_by_date['sg']) plt.savefig(f2, dpi=200) fig3, ax3 = plt.subplots(figsize=FIGSIZE) ax3.xaxis.set_major_locator(days_locator) ax3.xaxis.set_major_formatter(days_format) ax3.format_xdata = days_format ax3.grid(True, which='both') ax3.plot(data_by_date.index, data_by_date['c']) plt.savefig(f3, dpi=200) return date_html, (f0, f1, f2, f3) def send_mail(message, options): # https://stackoverflow.com/questions/73781/sending-mail-via-sendmail-from-python if options.mail_command: p = Popen(["/usr/sbin/sendmail", "-t", "-oi"], stdin=PIPE) p.communicate(message.as_bytes()) else: with smtplib.SMTP('localhost') as s: s.send_message(mail) return oparser = argparse.ArgumentParser(description="Plotter for temperature and humidity log", formatter_class=argparse.ArgumentDefaultsHelpFormatter) oparser.add_argument("-d", dest="data_file", required=True, metavar="CSV", help="CSV input file") oparser.add_argument("-m", dest="mail", action='append', metavar='<EMAIL>', help="send mail to this address") oparser.add_argument("-M", dest='mail_command', action='store_true', default=False, help="use mail command instead of localhost SMTP") oparser.add_argument("-f", dest="from_mail", default='<EMAIL>', metavar='<EMAIL>', help="send mail from this address") options = oparser.parse_args() data, data_by_date = get_data(options) html, plot_files = make_plots(options, data, data_by_date) if options.mail: mail = EmailMessage() mail.set_charset('utf-8') mail['To'] = ', '.join(options.mail) mail['From'] = options.from_mail mail['Subject'] = 'Hydrometer %s' % datetime.datetime.now().strftime('%a %H:%M') # https://stackoverflow.com/questions/56711321/addng-attachment-to-an-emailmessage-raises-typeerror-set-text-content-got-an # accepts a maintype argument if the content is bytes, but not if the content is str mail.add_attachment(html.encode('utf-8'), disposition='inline', maintype='text', subtype='html') # https://docs.python.org/3/library/email.examples.html for file in plot_files: with open(file, 'rb') as fp: img_data = fp.read() mail.add_attachment(img_data, disposition='inline', maintype='image', subtype=imghdr.what(None, img_data)) send_mail(mail, options)
StarcoderdataPython
3511395
<reponame>amanThakral002/charm-kubernetes-dashboard<filename>src/cert.py # Copyright 2021 Canonical # See LICENSE file for licensing details. import datetime from ipaddress import IPv4Address from typing import List from cryptography import x509 from cryptography.hazmat.primitives import hashes, serialization from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.x509.oid import NameOID class SelfSignedCert: """A class used for generating self-signed RSA TLS certificates""" def __init__( self, names: List[str], ips: List[IPv4Address] = [], key_size: int = 2048, validity: int = 365, ): """Initialise a new self-signed certificate. Args: names: A list of FQDNs that should be placed in the Subject Alternative Name field of the certificate. The first name in the list will be used as the Common Name, Subject and Issuer field. ips: A list of IPv4Address objects that should be present in the list of Subject Alternative Names of the certificate. key_size: Size of the RSA Private Key to be generated. Defaults to 2048 validity: Period in days the certificate is valid for. Default is 365. Raises: ValueError: is raised if an empty list of names is provided to the constructor. """ # Ensure that at least one FQDN was provided # TODO: Do some validation on any provided names if not names: raise ValueError("Must provide at least one name for the certificate") # Create a list of x509.DNSName objects from the list of FQDNs provided self.names = [x509.DNSName(n) for n in names] # Create a list of x509IPAdress objects from the list of IPv4Addresses self.ips = [x509.IPAddress(i) for i in ips] if ips else [] # Initialise some values self.key_size = key_size self.validity = validity self.cert = None self.key = None # Generate the certificate self._generate() def _generate(self) -> None: """Generate a self-signed certificate""" # Generate a new RSA private key key = rsa.generate_private_key(public_exponent=65537, key_size=self.key_size) # Set the subject/issuer to the first of the given names subject = issuer = x509.Name( [x509.NameAttribute(NameOID.COMMON_NAME, self.names[0].value)] ) # Build the cert cert = ( x509.CertificateBuilder() .subject_name(subject) .issuer_name(issuer) .public_key(key.public_key()) .serial_number(x509.random_serial_number()) .not_valid_before(datetime.datetime.utcnow()) .not_valid_after(datetime.datetime.utcnow() + datetime.timedelta(days=self.validity)) .add_extension( x509.SubjectAlternativeName(self.names + self.ips), critical=False, ) .add_extension( x509.KeyUsage( digital_signature=True, key_encipherment=True, key_cert_sign=False, key_agreement=False, content_commitment=False, data_encipherment=False, crl_sign=False, encipher_only=False, decipher_only=False, ), critical=True, ) .add_extension( x509.ExtendedKeyUsage( [ x509.oid.ExtendedKeyUsageOID.SERVER_AUTH, x509.oid.ExtendedKeyUsageOID.CLIENT_AUTH, ] ), critical=False, ) .sign(key, hashes.SHA256()) ) self.cert = cert.public_bytes(serialization.Encoding.PEM) self.key = key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.PKCS8, encryption_algorithm=serialization.NoEncryption(), )
StarcoderdataPython
363797
<gh_stars>1-10 def airflow_dags(): """ Read the list of dags from Airflow's metastore DB and return the list as a pandas.DataFrame :return: pandas.DataFrame """ from airflow import models, settings dagbag = models.DagBag(settings.DAGS_FOLDER) return list(dagbag.dags)
StarcoderdataPython
3330254
<filename>in-class-activities/07_Spark/7M_EDA_ML/7M_PySpark_Midway.py from pyspark.sql import SparkSession from pyspark.sql.functions import * # Start Spark Session spark = SparkSession.builder.getOrCreate() # Read data data = spark.read.csv('/project2/macs30123/AWS_book_reviews/*.csv', header='true', inferSchema='true') # Recast columns to correct data type data = (data.withColumn('star_rating', col('star_rating').cast('int')) .withColumn('total_votes', col('total_votes').cast('int')) .withColumn('helpful_votes', col('helpful_votes').cast('int')) ) # Summarize data by star_rating stars_votes = (data.groupBy('star_rating') .sum('total_votes', 'helpful_votes') .sort('star_rating', ascending=False) ) # Drop rows with NaN values and then print out resulting data: stars_votes_clean = stars_votes.dropna() stars_votes_clean.show()
StarcoderdataPython
6613867
<filename>wow_watches.py #!/usr/bin/env python # bhq_query.py - module for sopel to query blade head quarters site for knife data # # Copyright (c) 2015,2016 <NAME> <<EMAIL>> # # See LICENSE for terms of usage, modification and redistribution. from sopel import * @module.commands('wtc') def knife(bot, trigger): bot.reply("Look I respond to the wtc command now!")
StarcoderdataPython
11319309
<gh_stars>0 from threading import Timer class Monitor: def __init__(self, interval, action, args=None): args = args if args is not None else [] self.listening = False self.status = 'pending' self.timer = Timer(interval, self.timing, [action, args]) def start(self): if self.listening: print('Monitor has been start.') else: print('Monitor start listening...') self.listening = True self.status = 'running' # start an new thread self.timer.start() def stop(self): if self.listening: print('Monitor been closed.') self.listening = False self.status = 'pending' # force stop monitor self.timer.cancel() else: print('Monitor did not start.') def timing(self, action, args): print('loop...') action(*args) if self.listening: # loop interval while every x sec self.timer.run()
StarcoderdataPython
3338356
<reponame>matthew-chinn/my-led<filename>original_visualize_spectrum.py import util import numpy as np from scipy.ndimage.filters import gaussian_filter1d import config import dsp r_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2), alpha_decay=0.2, alpha_rise=0.99) g_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2), alpha_decay=0.05, alpha_rise=0.3) b_filt = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2), alpha_decay=0.1, alpha_rise=0.5) common_mode = dsp.ExpFilter(np.tile(0.01, config.N_PIXELS // 2), alpha_decay=0.99, alpha_rise=0.01) p_filt = dsp.ExpFilter(np.tile(1, (3, config.N_PIXELS // 2)), alpha_decay=0.1, alpha_rise=0.99) p = np.tile(1.0, (3, config.N_PIXELS // 2)) gain = dsp.ExpFilter(np.tile(0.01, config.N_FFT_BINS), alpha_decay=0.001, alpha_rise=0.99) _prev_spectrum = np.tile(0.01, config.N_PIXELS // 2) def effect(y): global _prev_spectrum """Effect that maps the Mel filterbank frequencies onto the LED strip""" y = np.copy(util.interpolate(y, config.N_PIXELS // 2)) common_mode.update(y) diff = y - _prev_spectrum _prev_spectrum = np.copy(y) # Color channel mappings r = r_filt.update(y - common_mode.value) g = np.abs(diff) b = b_filt.update(np.copy(y)) # Mirror the color channels for symmetric output r = np.concatenate((r[::-1], r)) g = np.concatenate((g[::-1], g)) b = np.concatenate((b[::-1], b)) output = np.array([r, g,b]) * 255 return output
StarcoderdataPython
1947116
from uuid import uuid4 from random import choice from rest_framework.test import APITestCase from irekua_database.utils import simple_JSON_schema from irekua_database.models import TermType, EntailmentType, Term from irekua_rest_api.serializers import entailments from .utils import ( BaseTestCase, Users, Actions, create_permission_mapping_from_lists ) class EntailmentTestCase(BaseTestCase, APITestCase): serializer = entailments.CreateSerializer permissions = create_permission_mapping_from_lists({ Actions.LIST: Users.ALL_AUTHENTICATED_USERS, Actions.CREATE: [ Users.ADMIN, Users.CURATOR], Actions.RETRIEVE: Users.ALL_AUTHENTICATED_USERS, Actions.UPDATE: [ Users.ADMIN, Users.CURATOR], Actions.PARTIAL_UPDATE: [ Users.ADMIN, Users.CURATOR], Actions.DESTROY: [ Users.ADMIN, Users.CURATOR], }) def setUp(self): super().setUp() term_type_1 = TermType.objects.create( name=str(uuid4()), description='Random term type', is_categorical=True, metadata_schema=simple_JSON_schema(), synonym_metadata_schema=simple_JSON_schema()) term_type_2 = TermType.objects.create( name=str(uuid4()), description='Random term type', is_categorical=True, metadata_schema=simple_JSON_schema(), synonym_metadata_schema=simple_JSON_schema()) EntailmentType.objects.create( source_type=term_type_1, target_type=term_type_2, metadata_schema=simple_JSON_schema()) self.type_1_terms = [ Term.objects.create( term_type=term_type_1, value=str(uuid4()), description='Random term', metadata={}) for _ in range(40)] self.type_2_terms = [ Term.objects.create( term_type=term_type_2, value=str(uuid4()), description='Random term', metadata={}) for _ in range(40)] def generate_random_json_data(self): term_1 = choice(self.type_1_terms) term_2 = choice(self.type_2_terms) data = { 'source': term_1.pk, 'target': term_2.pk, 'description': 'Random entailment', 'metadata': {} } return data
StarcoderdataPython
8107328
#!/usr/bin/env python """Print json to stdout or wherever""" # # Copyright 2017-2018 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import re from google.protobuf import json_format from builtins import object from log_collectors.training_data_service_client import training_data_pb2 as tdp rindex_regex = re.compile(r"\"rindex\":\s\"([0-9]+)\"") time_regex = re.compile(r"\"time\":\s\"([0-9]+)\"") def output(obj: object): """Take a EMetrics or LogLine record and print a valid JSON object to stdout""" json_string = to_string(obj) print(json_string) def to_string(obj: object)->str: """Take a EMetrics or LogLine record and return a valid JSON string""" # Call buggy google protobuf function. json_string = json_format.MessageToJson(obj, indent=0, preserving_proto_field_name=True) # The rest of this is a bit of a hack. Perhaps I'd be better off just # processing the typed record and hand-printing the json. json_string = json_string.replace('\n', ' ').replace('\r', '') for i in range(1, 10): json_string = json_string.replace(' ', ' ') json_string = json_string.replace('{ "', '{"') json_string = json_string.replace('" }', '"}') json_string = json_string.replace('"type": "STRING"', '"type": 0') json_string = json_string.replace('"type": "JSONSTRING"', '"type": 1') json_string = json_string.replace('"type": "INT"', '"type": 2') json_string = json_string.replace('"type": "FLOAT"', '"type": 3') json_string = rindex_regex.sub(r'"rindex": \1', json_string) json_string = time_regex.sub(r'"time": \1', json_string) return json_string
StarcoderdataPython
5131841
import datetime from database.database_schemas import Schemas from sqlalchemy import Column, ForeignKey, Integer, String, DateTime from sqlalchemy.dialects.mysql import BIGINT, SMALLINT, DOUBLE, TIMESTAMP, TINYINT from database.base import Base class ReferentialConstraints(Base): """Maps to REFERENTIAL_CONSTRAINTS table in information databases.""" __tablename__ = 'REFERENTIAL_CONSTRAINTS' __table_args__ = {'schema': Schemas.information_schema} CONSTRAINT_CATALOG = Column(String, nullable=False) CONSTRAINT_SCHEMA = Column(String, nullable=False) CONSTRAINT_NAME = Column(String, nullable=False) UNIQUE_CONSTRAINT_CATALOG = Column(String, nullable=False) UNIQUE_CONSTRAINT_SCHEMA = Column(String, nullable=False) UNIQUE_CONSTRAINT_NAME = Column(String) MATCH_OPTION = Column(String, nullable=False) UPDATE_RULE = Column(String, nullable=False) DELETE_RULE = Column(String, nullable=False) TABLE_NAME = Column(String, nullable=False) REFERENCED_TABLE_NAME = Column(String, nullable=False)
StarcoderdataPython
1639375
<filename>snipy/io/fileutil.py # -*- coding: utf-8 -*- import os from codecs import open import scandir from snipy.ilogging import logg import numpy as np def mkdir_if_not(filepath, ispath=False): """ path 부분이 없으면 mkdir 을 한다. :param filepath: 파일 패쓰 :return: filpath 그대로 리턴 """ if not ispath: p, _ = os.path.split(filepath) else: p = filepath if not p: return filepath if not os.path.exists(p): # M.info('%s not exist, trying mkdir ', p) try: os.makedirs(p) except FileExistsError as e: logg.warn(str(e)) return filepath def readlines(filepath): """ read lines from a textfile :param filepath: :return: list[line] """ with open(filepath, 'rt') as f: lines = f.readlines() lines = map(str.strip, lines) lines = [l for l in lines if l] return lines def writelines(filepath, lines): mkdir_if_not(filepath) with open(filepath, 'wt') as f: for l in lines: f.write(l + '\n') def readtxt(filepath): """ read file as is""" with open(filepath, 'rt') as f: lines = f.readlines() return ''.join(lines) def writetxt(filepath, txt): mkdir_if_not(filepath) with open(filepath, 'wt') as f: f.write(txt) def savefile(obj, filepath, compress=True): """ 파일 있으면 덮어씀 :param obj: :param str filepath: :param compress: :return: """ try: import cPickle as pickle except Exception: import pickle import joblib # 일단 임시 파일에 저장. tmpfile = filepath + '.tmp' mkdir_if_not(tmpfile) if compress: joblib.dump(obj, tmpfile, compress=3, cache_size=100, protocol=pickle.HIGHEST_PROTOCOL) else: joblib.dump(obj, tmpfile, compress=0) os.rename(tmpfile, filepath) return obj def loadfile(filepath, mmap_mode=None): """ :param filepath: :param mmap_mode: {None, ‘r+’, ‘r’, ‘w+’, ‘c’} see. joblib.load :return: """ import joblib try: return joblib.load(filepath, mmap_mode=mmap_mode) except IOError: return None def latest_file(fpattern, matchfun=None): """ regular format으로 조회한 파일리스트중에 가장최신 파일 path리턴 file modified time 조회 비교 :param function matchfun: :param fpattern: 파일 패턴 ( ex: data/some*.txt) :return: data/somelatest.txt, None 이면 파일이 없는 것 """ import glob # matchfun = matchfun or glob.glob files = glob.glob(fpattern) if matchfun: files = filter(matchfun, files) latest, maxtime = None, 0 for f in files: t = os.path.getmtime(f) if t > maxtime: latest, maxtime = f, t return latest def load_latest(fpattern): latest = latest_file(fpattern) if latest is None: return None else: return loadfile(latest) def load_or_run(filepath, fun, *args, **kwargs): """ 계산된 결과 파일이 있으면 로딩하고, 없으면 계산후 저장 ex) res = load_or_run('file_loadorsave', funlongtime, ...., force=False) :param filepath: :param fun: :param force: :return: """ force = kwargs.pop('force', False) compress = kwargs.pop('compress', True) if not filepath.startswith('/') or not filepath.startswith('~'): filepath = os.path.join('/tmp/snipy/load_or_run/', filepath) if not force and os.path.exists(filepath): # 저장되어 있는 것 로딩 mmap_mode = 'r+' if not compress else None return loadfile(filepath, mmap_mode=mmap_mode) res = fun(*args, **kwargs) savefile(res, filepath, compress=compress) return res def readhdf5(f): import warnings warnings.simplefilter(action='ignore', category=FutureWarning) import h5py warnings.resetwarnings() return h5py.File(f, 'r') def getpath(f, isfile=True): if isfile: return os.path.dirname(os.path.realpath(f)) else: return os.path.realpath(f) # list directory, file, recursive or not, ... # import scandir def any_match(fname, patterns, matchfun=None): """ ANY matches? :param str fname: file name :param list[str] patterns: list of filename pattern. see fnmatch.fnamtch :rtype: bool """ return any(fnmatches(fname, patterns, matchfun)) def fnmatches(fname, patterns, matchfun): """" matches? :param fname: file name :type fname: str :param patterns: list of filename pattern. see fnmatch.fnamtch :type patterns: [str] :rtype: generator of bool """ import fnmatch matchfun = matchfun or fnmatch.fnmatch for p in patterns: yield matchfun(fname, p) def listdir(p, match='*', exclude='', listtype='file', matchfun=None): """ list file(or folder) for this path (NOT recursive) :param p: :param match: :param exclude: :param listtype: ('file' | 'filepath' |'dir' | 'all') :param matchfun: match fun (default fnmatch.fnmatch) True/False = matchfun(name, pattern) :rtype: """ if listtype == 'file': gen = listfile(p) elif listtype == 'filepath': gen = listfilepath(p) elif listtype == 'dir': gen = listfolder(p) elif listtype == 'dirpath': gen = listfolderpath(p) else: # list file or folder gen = (entry.name for entry in scandir.scandir(p)) return filter_pattern(gen, match, exclude, matchfun) def filter_pattern(gen, include='*', exclude='', matchfun=None): pred = _pred_pattern(include, exclude, matchfun) for f in gen: if pred(f): yield f def listfile(p): """ generator of list files in the path. filenames only """ try: for entry in scandir.scandir(p): if entry.is_file(): yield entry.name except OSError: return def listfilepath(p): """ generator of list files in the path. filenames only """ for entry in scandir.scandir(p): if entry.is_file(): yield entry.path def listfolder(p): """ generator of list folder in the path. folders only """ for entry in scandir.scandir(p): if entry.is_dir(): yield entry.name def listfolderpath(p): """ generator of list folder in the path. folders only """ for entry in scandir.scandir(p): if entry.is_dir(): yield entry.path def get_match_fun(patterns, patterntype): import re def _fnmatch(fname): return any_match(fname, patterns, patterntype) if patterntype != 're': # usually just fnmatch return _fnmatch patterns = [re.compile(p) for p in patterns] def _re_match(fname): for p in patterns: if p.match(fname): return True return False return _re_match def _is_str(x): try: return isinstance(x, (str, basestring)) except NameError: return isinstance(x, str) def _pred_pattern(match='*', exclude='', patterntype='fnmatch'): """ internal use """ m, x = match, exclude if m == '*': if not x: pred = lambda n: True else: x = [x] if _is_str(x) else x matcher = get_match_fun(x, patterntype) pred = lambda n: not matcher(n) else: m = [m] if _is_str(m) else m if not x: matcher = get_match_fun(m, patterntype) pred = lambda n: matcher(n) else: x = [x] if _is_str(x) else x matcher_m = get_match_fun(m, patterntype) matcher_x = get_match_fun(x, patterntype) pred = lambda n: matcher_m(n) and not matcher_x(n) return pred def findfolder(toppath, match='*', exclude=''): """ recursively find folder path from toppath. patterns to decide to walk folder path or not :type toppath: str :type match: str or list(str) :type exclude: str or list(str) :rtype: generator for path str """ pred = _pred_pattern(match, exclude) return (p for p in walkfolder(toppath, pred)) def walkfolder(toppath, pred): """ walk folder if pred(foldername) is True :type toppath: str :type pred: function(str) => bool """ for entry in scandir.scandir(toppath): if not entry.is_dir() or not pred(entry.name): continue yield entry.path for p in walkfolder(entry.path, pred): yield p def tempdir(): import tempfile d = tempfile.gettempdir() p = os.path.join(d, 'her_temp') mkdir_if_not(p, ispath=True) return p def tempfolder(prefix=''): """임시 폴더를 만들어서 리턴""" import uuid p = prefix + str(uuid.uuid4()) d = tempdir() tmpd = os.path.join(d, p) return mkdir_if_not(tmpd, ispath=True) def tempfile(mode, ext='', **kwargs): import uuid d = tempdir() if ext and not ext.startswith('.'): ext = '.' + ext fname = os.path.join(d, str(uuid.uuid4()) + ext) return open(fname, mode, **kwargs) def renderhtml(template, **kwargs): # from packageutil import caller_path from .caller import caller from jinja2 import Environment, FileSystemLoader from os.path import dirname if '/' not in template: p = dirname(caller.abspath(depth=2)) else: p, template = os.path.split(template) j2_env = Environment(loader=FileSystemLoader(p), trim_blocks=True) rendered = j2_env.get_template(template).render(**kwargs) return rendered def renderimages(images, width=80, height=80, space=0): import webbrowser template = os.path.dirname(os.path.realpath(__file__)) + '/template/images.html' rendered = renderhtml(template, data=images, width=width, height=height, space=space) tmp = tempfile('wt', '.html') tmp.write(rendered) tmp.flush() webbrowser.open(tmp.name) return tmp.name def imsize(fname): """ return image size (height, width) :param fname: :return: """ from PIL import Image im = Image.open(fname) return im.size[1], im.size[0] def imread(fname, size=None, expand=True, dtype='float32', **kwargs): from skimage import io, transform import numpy as np img = io.imread(fname, **kwargs) image_max = np.iinfo(img.dtype).max if size is not None: sz = list(img.shape) sz[:len(size)] = size img = transform.resize(img, sz, preserve_range=True) if dtype.startswith('float'): # normalize 0 to 1 img = img.astype(dtype) / float(image_max) else: img = img.astype(dtype) if expand: img = np.expand_dims(img, 0) if img.ndim == 3: img = np.expand_dims(img, -1) return img def imsave(fname, *args, **kwargs): from skimage import io mkdir_if_not(fname) res = io.imsave(fname, *args, **kwargs) logg.info('image saved to [{}]'.format(fname)) return res def imread_palette(fname, expand=True, dtype='uint8', mode='r'): from PIL import Image # use png? https://pythonhosted.org/pypng/png.html ? img = Image.open(fname, mode=mode) palette = img.getpalette() if palette is not None: img = np.array(img) num_colors = len(palette) / 3 image_max = float(np.iinfo(img.dtype).max) palette = np.array(palette).reshape(num_colors, 3) / image_max else: colors = img.convert('RGBA').getcolors() num_colors = len(colors) assert num_colors <= 256 palette = [c[:3] for _, c in colors] im = Image.new('P', img.size) palette = np.array(palette).reshape((-1)) im.putpalette(palette, rawmode="RGB") im.paste(img) palette = im.getpalette() img = np.array(im) img = img.astype(dtype) palette = palette.astype('float32') if expand: img = np.expand_dims(img, axis=0) palette = np.expand_dims(palette, axis=0) return img, palette def filecopy(src, dst): import shutil shutil.copy(src, dst) def download(url, out=None): import wget if out is not None: mkdir_if_not(out) logg.info('downloading... [{}] to [{}]'.format(url, out)) f = wget.download(url, out=out) return f def download_if_not(url, f): if not os.path.exists(f): f = download(url, f) return f def unzip(z, member=None): import zipfile path = os.path.dirname(z) zip = zipfile.ZipFile(z, 'r') if member is None: zip.extractall(path) logg.info('unzip [{}] to [{}]'.format(z, path)) else: zip.extract(member, path) logg.info('unzip [{}] to [{}]'.format(member, path)) zip.close() def untar(t, member=None): import tarfile path = os.path.dirname(t) tar = tarfile.open(t) if member is None: tar.extractall(path) logg.info('unzip [{}] to [{}]'.format(t, path)) else: tar.extract(member, path) logg.info('unzip [{}] to [{}]'.format(member, path)) tar.close() def anyfile(pattern): import glob return any(glob.glob(pattern))
StarcoderdataPython
248871
from modules.Load import * from modules.Plotter import * file=None # test via manual selection of data source ( explicit run of this file alone ) if __name__ != "__main__": file="../../data/2019 06 12/0 degrees/run1/" run = LoadSingleRun(file) plotter = MultiPlotter_CreateFromRotaryAndAccel(run["omega"], run["accel"]) plotter.display() # original code: #run = LoadRun(None if __name__ == "__main__" else "../../data/2019 06 12/0 degrees/run1/") #Plot(run["accel"], run["omega"]) file=None
StarcoderdataPython
9636815
# Čtení ze souboru # Použití operátoru `with open(...) as` zařídí, že na konci bloku se soubor korektně uzavře with open("/home/jethro/Dokumenty/prifuk/uvod-do-prg_21/cv06/soubor.txt", encoding="utf-8") as f: # obsah = f.read() # Přečtení celého souboru naráz # print(obsah) for radek in f: # Čtení souboru po řádcích print(f"Řádek: {radek.rstrip()}") # Zápis do souboru # mode="w" otevře soubor pro zápis, případný existující soubor stejného jména smaže with open("/home/jethro/Dokumenty/prifuk/uvod-do-prg_21/cv06/soubor_out.txt", mode="w", encoding="utf-8") as f: f.write("Ahoj") # Zápis řetězce do souboru, nevkládá se automaticky nový řádek
StarcoderdataPython
11374595
import consts def TEST_(): """ [FUNC] TEST_: Silly tests """ PI = consts.Consts.PI; E = consts.Consts.E; GOLDEN = consts.Consts.GOLDEN; DEGREE = consts.Consts.DEGREE MIN = consts.Consts.MINUTE; HOUR = consts.Consts.HOUR; DAY = consts.Consts.DAY; YR = consts.Consts.YEAR; return PI, E, GOLDEN, DEGREE, MIN, HOUR, DAY, YR;
StarcoderdataPython
1782049
"""Top-level package for barbell2light.""" __author__ = """<NAME>""" __email__ = '<EMAIL>' __version__ = '0.27.0' from .castorclient import CastorClient from .castorexportclient import CastorExportClient from .utils import Logger from .utils import current_time_millis from .utils import current_time_secs from .utils import elapsed_millis from .utils import elapsed_secs from .utils import duration
StarcoderdataPython
1909372
import pysmurf import numpy as np from sklearn.decomposition import PCA import matplotlib.pyplot as plt import os import seaborn as sns S = pysmurf.SmurfControl(make_logfile=False, epics_root='test_epics', cfg_file='/usr/local/controls/Applications/'+\ 'smurf/pysmurf/pysmurf/cfg_files/'+\ 'experiment_fp28_smurfsrv04.cfg') datafile = S.take_stream_data(5) t, d, m = S.read_stream_data(datafile) ivch = np.array([16,32,64,165,171,179,197,203,213,222,256,389,395,398,415,421,427,447]) d = d[m[2][ivch]] # d = d[m[np.where(m!=-1)]] #print(np.shape(d)) pca = PCA(svd_solver='full') pca.fit(d.T) d2 = pca.transform(d.T).T print(np.shape(d2)) fig, ax = plt.subplots(3,4, figsize=(12,7), sharex=True) for i in np.arange(12): y = i // 4 x = i % 4 ax[y,x].plot(d2[i]) ax[y,x].set_title('Mode {}'.format(i)) dirname, filename = os.path.split(datafile) timestamp = filename.split('.')[0] plt.savefig(os.path.join(dirname, '{}_modes.png'.format(timestamp)), bbox_inches='tight') plt.show() cm = plt.get_cmap('viridis') for i, ch in enumerate(ivch): plt.figure() plt.plot(d[m[i], 'k') plt.title(ch) plt.savefig(os.path.join(dirname, '{}_ch{:03}.png'.format(timestamp, ch)), bbox_inches='tight') plt.close()
StarcoderdataPython
1922219
import flask from flask import abort from flask import current_app, g from flask import request frontend = flask.Blueprint("lnt", __name__, template_folder="ui/templates/", static_folder="ui/static") def _make_db_session(db_name): # Initialize the database parameters on the app globals object. g.db_name = db_name or "default" g.db_info = current_app.old_config.databases.get(g.db_name) if g.db_info is None: abort(404, "Unknown database.") request.db = current_app.instance.get_database(g.db_name) request.session = request.db.make_session() def db_route(rule, **options): """ LNT specific route for endpoints which always refer to some database object. This decorator handles adding the routes for both the default and explicit database, as well as initializing the global database information objects. """ def decorator(f): def wrap(db_name=None, **args): _make_db_session(db_name) try: return f(**args) finally: request.session.close() frontend.add_url_rule(rule, f.__name__, wrap, **options) frontend.add_url_rule("/db_<db_name>" + rule, f.__name__, wrap, **options) return wrap return decorator def v4_route(rule, **options): """ LNT V4 specific route for endpoints which always refer to some testsuite object. """ def decorator(f): def wrap(testsuite_name, db_name=None, **args): g.testsuite_name = testsuite_name _make_db_session(db_name) try: return f(**args) finally: request.session.close() frontend.add_url_rule("/v4/<testsuite_name>" + rule, f.__name__, wrap, **options) frontend.add_url_rule("/db_<db_name>/v4/<testsuite_name>" + rule, f.__name__, wrap, **options) return wrap return decorator def in_db(func): """Extract the database information off the request and attach to particular test suite and database. Used by the REST api.""" def wrap(*args, **kwargs): db = kwargs.pop('db') ts = kwargs.pop('ts') g.testsuite_name = ts _make_db_session(db) try: return func(*args, **kwargs) finally: request.session.close() return wrap
StarcoderdataPython
9627499
import json import os import sys json_path = sys.argv[1] with open(json_path, 'r') as f: tag = json.load(f)['Tags'][0] print tag['Value']
StarcoderdataPython
20031
<reponame>sthagen/facultyai-dash-bootstrap-components<gh_stars>10-100 import dash_bootstrap_components as dbc from dash import html from .util import make_subheading list_group = html.Div( [ make_subheading("ListGroup", "list_group"), dbc.ListGroup( [ dbc.ListGroupItem("No color applied"), dbc.ListGroupItem("The primary item", color="primary"), dbc.ListGroupItem("A secondary item", color="secondary"), dbc.ListGroupItem("A successful item", color="success"), dbc.ListGroupItem("A warning item", color="warning"), dbc.ListGroupItem("A dangerous item", color="danger"), dbc.ListGroupItem("An informative item", color="info"), dbc.ListGroupItem("A light item", color="light"), dbc.ListGroupItem("A dark item", color="dark"), dbc.ListGroupItem("An action item", action=True), dbc.ListGroupItem("An active item", active=True), dbc.ListGroupItem( [ html.H5("Item 4 heading"), html.P("Item 4 text"), ] ), ] ), ], className="mb-4", )
StarcoderdataPython
11251010
<gh_stars>1-10 import ssl import socket import requests import OpenSSL from datetime import date #Input: string with filename to file with websites #Return: nothing, create files of information def create_certificate_file(filename): f = open(filename, 'r') #Creating lits for storing data hsts_list = [] data = [] dates = [] ssl_errors = [] req_errors = [] other_errors = [] print("\nNew file: " + filename) print('Fetching pem-certificates...\n') #Check every website in the file for website in f: #Get url website = 'www.' + str(website.strip().lower()) temp = [] try: #ssl.PROTOCOL_SSLv23 #Selects SSL version 2 or 3 as the channel encryption protocol. #This is a setting to use with servers for maximum compatibility with the other end of an SSL connection, #but it may cause the specific ciphers chosen for the encryption to be of fairly low quality. #ssl.PROTOCOL_SSLv3 #Selects SSL version 3 as the channel encryption protocol. #For clients, this is the maximally compatible SSL variant. #ssl.PROTOCOL_TLSv1 #Selects TLS version 1 as the channel encryption protocol. #This is the most modern version, and probably the best choice for maximum protection, if both sides can speak it. #Fetch certificate socket.setdefaulttimeout(10) certificate = ssl.get_server_certificate((socket.gethostbyname(website), 443), ssl_version = ssl.PROTOCOL_SSLv23) #Create certificate-files pem = OpenSSL.crypto.FILETYPE_PEM cert = OpenSSL.crypto.load_certificate(pem, certificate) cert_file = open('certificates\\'+filename[9:-4]+'-'+website+'.txt', 'w') #Website cert_file.write(website + '\n') #HSTS or NOT req = requests.get('https://' + website) if 'strict-transport-security' in req.headers: cert_file.write("HSTS" + "\n") temp.append(website + ":" + "HSTS" + "\n") else: cert_file.write("NO HSTS" + "\n") temp.append(website + ":" + "NO HSTS" + "\n") #Signature algorithm cert_file.write(cert.get_signature_algorithm().decode("utf-8") + '\n') temp.append(website + ":" + cert.get_signature_algorithm().decode("utf-8") + '\n') #Issuer organisation cert_file.write(cert.get_issuer().O + '\n') temp.append(website + ":" + cert.get_issuer().O + '\n') #Public key type and bits, types: 6 = RSA, 116 = DSA, 408 = EC key_type = cert.get_pubkey().type() if key_type == 6: cert_file.write('RSA ' + str(cert.get_pubkey().bits()) + '\n') temp.append(website + ":" + 'RSA ' + str(cert.get_pubkey().bits()) + '\n') elif key_type == 116: cert_file.write('DSA ' + str(cert.get_pubkey().bits()) + '\n') temp.append(website + ":" + 'DSA ' + str(cert.get_pubkey().bits()) + '\n') elif key_type == 408: cert_file.write('EC ' + str(cert.get_pubkey().bits()) + '\n') temp.append(website + ":" + 'EC ' + str(cert.get_pubkey().bits()) + '\n') #Close certificate file cert_file.close() #Store certificate data data.append(temp) #Store the certificate dates dates.append([]) dates[-1].append(website) #Certificate startdate start = cert.get_notBefore().decode("utf-8") y = int(start[:4]) m = int(start[4:6]) d = int(start[6:8]) dates[-1].append(date(y,m,d)) #Certificate enddate end = cert.get_notAfter().decode("utf-8") y = int(end[:4]) m = int(end[4:6]) d = int(end[6:8]) dates[-1].append(date(y,m,d)) except ssl.SSLError as e: ssl_errors.append(website) print('\nssl:') print(website + ' failed.') except requests.exceptions.SSLError as e: req_errors.append(website) print('\nreq:') print(website + ' failed.') #ConnectionRefusedError, ConnectionResetError or TimeoutError etc except Exception as e: other_errors.append(website + ":" + str(type(e))) print('\n' + website + ' failed.') f.close() failures = len(ssl_errors) + len(req_errors) + len(other_errors) #Print summary print('\nTotal number of SSL Errors: ' + str(len(ssl_errors)) + '.') print('Total number of Request Errors: ' + str(len(req_errors)) + '.') print('Total number of other errors: ' + str(len(other_errors)) + '.') print(str(len(data)) + ' successful certificates, ' + str(failures) + ' websites failed.') print('Done fetching and saving certificates.') #Write certificate data to file create_data_file(filename, data) #Write errors to files create_error_file(filename, ssl_errors, "SSL") create_error_file(filename, req_errors, "REQ") create_error_file(filename, other_errors, "OTHER") #Write dates to file create_date_file(filename, dates) #Write stats to file create_stat_file(filename, len(ssl_errors), len(req_errors), len(other_errors)) #Input: filename, list of errors and string with type of error #Return: nothing, create file with information about the errors def create_error_file(filename, errors, error_type): #Open file error_file = open('errors\\' + filename[9:-4] + '-' + error_type + '-errors.txt', 'w') #Write information about the errors to file error_file.write('Total number of ' + error_type + ' errors:' + str(len(errors)) + '\n') error_file.write('\n') #Add each website with errors to file for domain in errors: error_file.write(domain + '\n') #Close the file error_file.close() print('\n' + filename[9:-4] + '-' + error_type + '-errors.txt are ready.') #Input: string with filename and list with data #Return: nothing, create file with information about the data def create_data_file(filename, data): #Open file data_file = open('data\\' + filename[9:-4] + '-data.txt', 'w') #Write all data about websites to file for i in range(len(data[0])): for j in range(len(data)): data_file.write(data[j][i]) data_file.write('\n') #Close the file data_file.close() print('\n' + filename[9:-4] + '-data.txt are ready.') #Input: string with filename and list with dates #Return: nothing, create file with information about the dates def create_date_file(filename, dates): #Open file date_file = open('dates\\' + filename[9:-4] + '-dates.txt', 'w') #Sort the file dates = list(reversed(sort_tuples(dates, 2))) #Write every date to file for d in dates: date_file.write(d[0] + ':' + str(d[1]) + ':' + str(d[2]) + '\n') #Close the file date_file.close() print('\n' + filename[9:-4] + '-dates.txt are ready.') #Input: list of tuples of data #Return: list of sorted tubles with data def sort_tuples(data_list, pos): #Sort list depending on second pos value for i in range(len(data_list)): for j in range(1,len(data_list)): #Greatest element first in list if data_list[j-1][pos] < data_list[j][pos]: temp = data_list[j-1] data_list[j-1] = data_list[j] data_list[j] = temp #Return the sorted list return data_list #Input: string with filename and number of different errors #Return: nothing, create file with information with statistics def create_stat_file(filename, a, b, c): #Open file f = open('data\\' + filename[9:-4] + '-data.txt', 'r') #Create lists to store data data = [[]] stat = [] #Read all the data and add to list for line in f: if line == '\n': data.append([]) else: data[-1].append(line.strip('\n').split(":")[1]) #Go through all categories for category in data: data_set = set(category) data_list = [] #Count number of distinct elements and add to list for element in data_set: data_list.append((element, category.count(element))) #Add information to list and add a dummy point stat.extend(sort_tuples(data_list),1) stat.append((0,0)) #Open stat file f = open('stat\\' + filename[9:-4] + '-stat.txt', 'w') #Write information about the errors to the file f.write("SSL errors:" + str(a) + "\n") f.write("REQ errors:" + str(b) + "\n") f.write("Other errors:" + str(c) + "\n") f.write("Total number of errors:" + str(a+b+c) + "\n\n") #Go througf every data-tuple in the lsit for tup in stat: #Write the information to the file if tup == (0,0): f.write('\n') else: f.write(tup[0] + ':' + str(tup[1]) + '\n') #Close the file f.close() print('\n' + filename[9:-4] + '-stat.txt are ready.')
StarcoderdataPython
9670565
<reponame>seekindark/helloworld #!/usr/bin/python3 # -*- coding: utf-8 -*- """ pyu40 PyQt5 tutorial In this example, we reimplement an event handler. author: <NAME> website: py40.com last edited: January 2015 """ import sys from PyQt5.QtCore import Qt from PyQt5.QtWidgets import QWidget, QApplication class Example(QWidget): def __init__(self): super().__init__() self.initUI() def initUI(self): self.setGeometry(300, 300, 250, 150) self.setWindowTitle('Event handler') self.show() def keyPressEvent(self, e): # 重新实现这个基类方法, 输入ESC 键,关闭窗口 if e.key() == Qt.Key_Escape: self.close() elif e.key() == Qt.Key_E: self.close() if __name__ == '__main__': app = QApplication(sys.argv) ex = Example() sys.exit(app.exec_())
StarcoderdataPython
112368
<reponame>nkashy1/tensorio-models # Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from . import repository_pb2 as repository__pb2 class RepositoryStub(object): # missing associated documentation comment in .proto file pass def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.Healthz = channel.unary_unary( '/api.Repository/Healthz', request_serializer=repository__pb2.HealthCheckRequest.SerializeToString, response_deserializer=repository__pb2.HealthCheckResponse.FromString, ) self.Config = channel.unary_unary( '/api.Repository/Config', request_serializer=repository__pb2.ConfigRequest.SerializeToString, response_deserializer=repository__pb2.ConfigResponse.FromString, ) self.ListModels = channel.unary_unary( '/api.Repository/ListModels', request_serializer=repository__pb2.ListModelsRequest.SerializeToString, response_deserializer=repository__pb2.ListModelsResponse.FromString, ) self.CreateModel = channel.unary_unary( '/api.Repository/CreateModel', request_serializer=repository__pb2.CreateModelRequest.SerializeToString, response_deserializer=repository__pb2.CreateModelResponse.FromString, ) self.GetModel = channel.unary_unary( '/api.Repository/GetModel', request_serializer=repository__pb2.GetModelRequest.SerializeToString, response_deserializer=repository__pb2.GetModelResponse.FromString, ) self.UpdateModel = channel.unary_unary( '/api.Repository/UpdateModel', request_serializer=repository__pb2.UpdateModelRequest.SerializeToString, response_deserializer=repository__pb2.UpdateModelResponse.FromString, ) self.ListHyperparameters = channel.unary_unary( '/api.Repository/ListHyperparameters', request_serializer=repository__pb2.ListHyperparametersRequest.SerializeToString, response_deserializer=repository__pb2.ListHyperparametersResponse.FromString, ) self.CreateHyperparameters = channel.unary_unary( '/api.Repository/CreateHyperparameters', request_serializer=repository__pb2.CreateHyperparametersRequest.SerializeToString, response_deserializer=repository__pb2.CreateHyperparametersResponse.FromString, ) self.GetHyperparameters = channel.unary_unary( '/api.Repository/GetHyperparameters', request_serializer=repository__pb2.GetHyperparametersRequest.SerializeToString, response_deserializer=repository__pb2.GetHyperparametersResponse.FromString, ) self.UpdateHyperparameters = channel.unary_unary( '/api.Repository/UpdateHyperparameters', request_serializer=repository__pb2.UpdateHyperparametersRequest.SerializeToString, response_deserializer=repository__pb2.UpdateHyperparametersResponse.FromString, ) self.ListCheckpoints = channel.unary_unary( '/api.Repository/ListCheckpoints', request_serializer=repository__pb2.ListCheckpointsRequest.SerializeToString, response_deserializer=repository__pb2.ListCheckpointsResponse.FromString, ) self.CreateCheckpoint = channel.unary_unary( '/api.Repository/CreateCheckpoint', request_serializer=repository__pb2.CreateCheckpointRequest.SerializeToString, response_deserializer=repository__pb2.CreateCheckpointResponse.FromString, ) self.GetCheckpoint = channel.unary_unary( '/api.Repository/GetCheckpoint', request_serializer=repository__pb2.GetCheckpointRequest.SerializeToString, response_deserializer=repository__pb2.GetCheckpointResponse.FromString, ) class RepositoryServicer(object): # missing associated documentation comment in .proto file pass def Healthz(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def Config(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListModels(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateModel(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetModel(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateModel(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListHyperparameters(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateHyperparameters(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetHyperparameters(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def UpdateHyperparameters(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ListCheckpoints(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def CreateCheckpoint(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetCheckpoint(self, request, context): # missing associated documentation comment in .proto file pass context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_RepositoryServicer_to_server(servicer, server): rpc_method_handlers = { 'Healthz': grpc.unary_unary_rpc_method_handler( servicer.Healthz, request_deserializer=repository__pb2.HealthCheckRequest.FromString, response_serializer=repository__pb2.HealthCheckResponse.SerializeToString, ), 'Config': grpc.unary_unary_rpc_method_handler( servicer.Config, request_deserializer=repository__pb2.ConfigRequest.FromString, response_serializer=repository__pb2.ConfigResponse.SerializeToString, ), 'ListModels': grpc.unary_unary_rpc_method_handler( servicer.ListModels, request_deserializer=repository__pb2.ListModelsRequest.FromString, response_serializer=repository__pb2.ListModelsResponse.SerializeToString, ), 'CreateModel': grpc.unary_unary_rpc_method_handler( servicer.CreateModel, request_deserializer=repository__pb2.CreateModelRequest.FromString, response_serializer=repository__pb2.CreateModelResponse.SerializeToString, ), 'GetModel': grpc.unary_unary_rpc_method_handler( servicer.GetModel, request_deserializer=repository__pb2.GetModelRequest.FromString, response_serializer=repository__pb2.GetModelResponse.SerializeToString, ), 'UpdateModel': grpc.unary_unary_rpc_method_handler( servicer.UpdateModel, request_deserializer=repository__pb2.UpdateModelRequest.FromString, response_serializer=repository__pb2.UpdateModelResponse.SerializeToString, ), 'ListHyperparameters': grpc.unary_unary_rpc_method_handler( servicer.ListHyperparameters, request_deserializer=repository__pb2.ListHyperparametersRequest.FromString, response_serializer=repository__pb2.ListHyperparametersResponse.SerializeToString, ), 'CreateHyperparameters': grpc.unary_unary_rpc_method_handler( servicer.CreateHyperparameters, request_deserializer=repository__pb2.CreateHyperparametersRequest.FromString, response_serializer=repository__pb2.CreateHyperparametersResponse.SerializeToString, ), 'GetHyperparameters': grpc.unary_unary_rpc_method_handler( servicer.GetHyperparameters, request_deserializer=repository__pb2.GetHyperparametersRequest.FromString, response_serializer=repository__pb2.GetHyperparametersResponse.SerializeToString, ), 'UpdateHyperparameters': grpc.unary_unary_rpc_method_handler( servicer.UpdateHyperparameters, request_deserializer=repository__pb2.UpdateHyperparametersRequest.FromString, response_serializer=repository__pb2.UpdateHyperparametersResponse.SerializeToString, ), 'ListCheckpoints': grpc.unary_unary_rpc_method_handler( servicer.ListCheckpoints, request_deserializer=repository__pb2.ListCheckpointsRequest.FromString, response_serializer=repository__pb2.ListCheckpointsResponse.SerializeToString, ), 'CreateCheckpoint': grpc.unary_unary_rpc_method_handler( servicer.CreateCheckpoint, request_deserializer=repository__pb2.CreateCheckpointRequest.FromString, response_serializer=repository__pb2.CreateCheckpointResponse.SerializeToString, ), 'GetCheckpoint': grpc.unary_unary_rpc_method_handler( servicer.GetCheckpoint, request_deserializer=repository__pb2.GetCheckpointRequest.FromString, response_serializer=repository__pb2.GetCheckpointResponse.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'api.Repository', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
StarcoderdataPython
8025704
"""generate openapi docs.""" from pkg_resources import get_distribution from honeybee_schema._openapi import get_openapi, get_model_mapper from honeybee_schema.model import Model from honeybee_schema.energy.simulation import SimulationParameter import json import argparse parser = argparse.ArgumentParser(description='Generate OpenAPI JSON schemas') parser.add_argument('--version', help='Set the version of the new OpenAPI Schema') args = parser.parse_args() VERSION = None if args.version: VERSION = args.version.replace('v', '') else: VERSION = '.'.join(get_distribution('honeybee_schema').version.split('.')[:3]) info = { "description": "", "version": VERSION, "title": "", "contact": { "name": "<NAME>", "email": "<EMAIL>", "url": "https://github.com/ladybug-tools/honeybee-schema" }, "x-logo": { "url": "https://www.ladybug.tools/assets/img/honeybee-large.png", "altText": "Honeybee logo" }, "license": { "name": "BSD", "url": "https://github.com/ladybug-tools-in2/honeybee-schema/blob/master/LICENSE" } } # generate Model open api schema print('Generating Model documentation...') external_docs = { "description": "OpenAPI Specification with Inheritance", "url": "./model_inheritance.json" } openapi = get_openapi( [Model], title='Honeybee Model Schema', description='This is the documentation for Honeybee model schema.', version=VERSION, info=info, external_docs=external_docs) with open('./docs/model.json', 'w') as out_file: json.dump(openapi, out_file, indent=2) # with inheritance openapi = get_openapi( [Model], title='Honeybee Model Schema', description='This is the documentation for Honeybee model schema.', version=VERSION, info=info, inheritance=True, external_docs=external_docs ) with open('./docs/model_inheritance.json', 'w') as out_file: json.dump(openapi, out_file, indent=2) # add the mapper file mapper = get_model_mapper(Model) module_mapper = {k: c.__module__ for k, c in mapper.items()} with open('./docs/model_mapper.json', 'w') as out_file: json.dump(module_mapper, out_file, indent=2) # generate SimulationParameter open api schema print('Generating Energy Simulation Parameter documentation...') external_docs = { "description": "OpenAPI Specification with Inheritance", "url": "./simulation-parameter_inheritance.json" } openapi = get_openapi( [SimulationParameter], title='Honeybee Energy Simulation Parameter Schema', description='This is the documentation for Honeybee energy simulation parameter schema.', version=VERSION, info=info, external_docs=external_docs) with open('./docs/simulation-parameter.json', 'w') as out_file: json.dump(openapi, out_file, indent=2) openapi = get_openapi( [SimulationParameter], title='Honeybee Energy Simulation Parameter Schema', description='This is the documentation for Honeybee energy simulation parameter schema.', version=VERSION, inheritance=True, info=info, external_docs=external_docs ) with open('./docs/simulation-parameter_inheritance.json', 'w') as out_file: json.dump(openapi, out_file, indent=2) # add the mapper file mapper = get_model_mapper(SimulationParameter) module_mapper = {k: c.__module__ for k, c in mapper.items()} with open('./docs/simulation-parameter_mapper.json', 'w') as out_file: json.dump(module_mapper, out_file, indent=2)
StarcoderdataPython
88768
import os import torch from torch import nn import torch.nn.functional as F from torch.autograd import Variable import numpy as np VERBOSE = True USE_CUDA = True def model_summary(model): for idx, m in enumerate(model.modules()): print(idx, '->', m) def save_checkpoint(state, loss, prefix, ckptpath): filename_late = os.path.join(ckptpath, "%s_%.5f.tar" % (prefix, loss)) torch.save(state, filename_late) def adjust_learning_rate(initial, optimizer, epoch, factor=0.1): lr = max(initial * (factor ** (epoch // 2)), 0.0001) for param_group in optimizer.param_groups: param_group['lr'] = lr def set_learning_rate(lr, optimizer): for param_group in optimizer.param_groups: param_group['lr'] = lr # https://github.com/pytorch/pytorch/issues/2830 def optimizer_cuda(optimizer): for state in optimizer.state.values(): for k, v in state.items(): if torch.is_tensor(v): state[k] = v.cuda() class AdaptiveLR(object): def __init__(self, opt, initial_lr, num_iterations=1000): self._lr = initial_lr self.opt = opt self.losses = [] self.window = num_iterations self.min_lr = 0.0001 self.factor = 0.5 def update(self, loss): losses = self.losses while len(losses) > self.window: losses.pop(0) losses.append(loss) if len(losses) < self.window: return avg_old = np.mean(losses[:self.window//2]) avg_new = np.mean(losses[self.window//2:]) if avg_new < avg_old: return self.lr = max(self.lr * self.factor, self.min_lr) self.losses = [] # restart loss count @property def lr(self): return self._lr @lr.setter def lr(self, val): if VERBOSE: print("resetting LR: %s -> %s" % (self._lr, val)) set_learning_rate(val, self.opt) self._lr = val def shuffle(data, labels): s = np.arange(data.shape[0]) np.random.shuffle(s) return data[s], labels[s] class CosineSimilarityRegressionLoss(nn.Module): def __init__(self): super(CosineSimilarityRegressionLoss, self).__init__() def forward(self, vec1, vec2, y): mse = nn.MSELoss() y_hat = F.cosine_similarity(vec1, vec2) return mse(y_hat, y) class CosineSimilarityLossWithL2Regularization(nn.Module): def __init__(self, cos_sim_margin=0.1, l2_margin=0.1, alpha=0.1): super(CosineSimilarityLossWithL2Regularization, self).__init__() self.cos_sim_margin = cos_sim_margin self.l2_margin = l2_margin self.alpha = alpha def forward(self, vec1, vec2, y): assert vec1.size(0) == vec2.size(0) ones = Variable(torch.ones(vec1.size(0), 1)) if USE_CUDA: ones = ones.cuda() # l2_1 = torch.clamp(torch.abs(ones - vec1.norm(p=2, dim=1)), max=1.0) # l2_2 = torch.clamp(torch.abs(ones - vec2.norm(p=2, dim=1)), max=1.0) # l2_1 = l2_1.mean() # l2_2 = l2_2.mean() l2_1 = F.l1_loss(ones, vec1.norm(p=2, dim=1)) l2_2 = F.l1_loss(ones, vec2.norm(p=2, dim=1)) loss = F.cosine_embedding_loss(vec1, vec2, y) return loss + self.alpha * (l2_1 + l2_2)
StarcoderdataPython
9605258
import unittest from os.path import join from w3lib.encoding import html_to_unicode from scrapy.utils.gz import gunzip, gzip_magic_number from scrapy.http import Response from tests import tests_datadir SAMPLEDIR = join(tests_datadir, 'compressed') class GunzipTest(unittest.TestCase): def test_gunzip_basic(self): with open(join(SAMPLEDIR, 'feed-sample1.xml.gz'), 'rb') as f: r1 = Response("http://www.example.com", body=f.read()) self.assertTrue(gzip_magic_number(r1)) r2 = Response("http://www.example.com", body=gunzip(r1.body)) self.assertFalse(gzip_magic_number(r2)) self.assertEqual(len(r2.body), 9950) def test_gunzip_truncated(self): with open(join(SAMPLEDIR, 'truncated-crc-error.gz'), 'rb') as f: text = gunzip(f.read()) assert text.endswith(b'</html') def test_gunzip_no_gzip_file_raises(self): with open(join(SAMPLEDIR, 'feed-sample1.xml'), 'rb') as f: self.assertRaises(IOError, gunzip, f.read()) def test_gunzip_truncated_short(self): with open(join(SAMPLEDIR, 'truncated-crc-error-short.gz'), 'rb') as f: r1 = Response("http://www.example.com", body=f.read()) self.assertTrue(gzip_magic_number(r1)) r2 = Response("http://www.example.com", body=gunzip(r1.body)) assert r2.body.endswith(b'</html>') self.assertFalse(gzip_magic_number(r2)) def test_is_gzipped_empty(self): r1 = Response("http://www.example.com") self.assertFalse(gzip_magic_number(r1)) def test_gunzip_illegal_eof(self): with open(join(SAMPLEDIR, 'unexpected-eof.gz'), 'rb') as f: text = html_to_unicode('charset=cp1252', gunzip(f.read()))[1] with open(join(SAMPLEDIR, 'unexpected-eof-output.txt'), 'rb') as o: expected_text = o.read().decode("utf-8") self.assertEqual(len(text), len(expected_text)) self.assertEqual(text, expected_text)
StarcoderdataPython
6474535
#!/usr/bin/env python # -*- coding: utf-8 -*- import typing Schema = typing.Mapping[str, typing.Any]
StarcoderdataPython
4981964
<gh_stars>1-10 # SPDX-FileCopyrightText: 2020 Splunk Inc. # # SPDX-License-Identifier: Apache-2.0 from future import standard_library standard_library.install_aliases() from builtins import object class RESTURIS(object): """ Simple module to wrap REST endpoints into a consistent set of methods """ URIS = { "APP": "/servicesNS/{u}/{a}/apps", "APP_TEMPLATE": "/servicesNS/{u}/{a}/apps/apptemplates", "APP_LOCAL": "/servicesNS/{u}/{a}/apps/local/", "APP_INSTALL": "/servicesNS/{u}/{a}/apps/appinstall", "AUTOMATIC_LOOKUP": "/servicesNS/{u}/{a}/data/props/lookups", "AUTHENTICATION": "/services/authentication/users", "CALCUALTED_FIELD": "/servicesNS/{u}/{a}/data/props/calcfields", "CAPABILITIES": "/services/authorization/capabilities/", "CHANGEPASSWORD": "/servicesNS/{u}/{a}/authentication/changepassword/", "CONFIG": "/servicesNS/{u}/{a}/configs/{config}/", "CLUSTER_CONFIG": "/servicesNS/{u}/{a}/cluster/config", "CLUSTER_MASTER": "/servicesNS/{u}/{a}/cluster/master", "CLUSTER_SEARCHHEAD": "/servicesNS/{u}/{a}/cluster/searchhead", "CLUSTER_SLAVE": "/servicesNS/{u}/{a}/cluster/slave", "DATAMODEL_REPORT": "/services/datamodel/pivot/{dm}", "DATAMODEL_ACC": "/services/datamodel/model/", "DATAMODEL": "/servicesNS/{u}/{a}/datamodel/model/", "DATAMODEL_ACCELERATION": "/services/datamodel/acceleration", "DATAMODEL_DOWNLOAD": "/servicesNS/{u}/{a}/data/models/{dm}/download", "DATAMODEL_PIVOT": "/servicesNS/{u}/{a}/datamodel/pivot/", "DEPLOYMENT_CLIENT_CONFIG": ("/servicesNS/{u}/{a}/deployment/client/config"), "DEPLOYMENT_SERVER_CLASSES": ( "/servicesNS/{u}/{a}/deployment/server/serverclasses" ), "DEPLOYMENT_SERVER_CONFIG": ("/servicesNS/{u}/{a}/deployment/server/config"), "DEPLOYMENT_SERVER_CLIENTS": ("/servicesNS/{u}/{a}/deployment/server/clients"), "DEPLOYMENT_SERVER_APPLICATION": ( "/servicesNS/{u}/{a}/deployment/server/applications" ), "EVENTTYPE": "/servicesNS/{u}/{a}/saved/eventtypes", "FIRED_ALERT": "/servicesNS/{u}/{a}/alerts/fired_alerts", "FIELD": "/servicesNS/{u}/{a}/search/fields", "FIELD_ALIAS": "/servicesNS/{u}/{a}/data/props/fieldaliases", "FIELD_EXTRACTION": "/servicesNS/{u}/{a}/data/props/extractions", "FVTAG": "/servicesNS/{u}/{a}/saved/fvtags", "HTTPAUTH_TOKEN": "/servicesNS/{u}/{a}/authentication/httpauth-tokens", "INDEX": "/servicesNS/{u}/{a}/data/indexes/", "INPUT_MONITOR": "/servicesNS/{u}/{a}/data/inputs/monitor", "INPUT_ONESHOT": "/servicesNS/{u}/{a}/data/inputs/oneshot", "INPUT_SCRIPT": "/servicesNS/{u}/{a}/data/inputs/script", "INPUT_TCP_COOKED": "/servicesNS/{u}/{a}/data/inputs/tcp/cooked", "INPUT_TCP_RAW": "/servicesNS/{u}/{a}/data/inputs/tcp/raw", "INPUT_UDP": "/servicesNS/{u}/{a}/data/inputs/udp", "INPUT_EVENTLOG": ("/servicesNS/{u}/{a}/data/inputs/win-event-log-collections"), "INPUT_REGMON": "/servicesNS/{u}/{a}/data/inputs/WinRegMon", "INPUT_PERFMON": "/servicesNS/{u}/{a}/data/inputs/win-perfmon", "INPUT_HOSTMON": "/servicesNS/{u}/{a}/data/inputs/WinHostMon", "INPUT_NETMON": "/servicesNS/{u}/{a}/data/inputs/WinNetMon", "INPUT_ADMON": "/servicesNS/{u}/{a}/data/inputs/ad", "INPUT_PRINTMON": "/servicesNS/{u}/{a}/data/inputs/WinPrintMon", "JOB": "/servicesNS/{u}/{a}/search/jobs", "LDAP": "/services/authentication/providers/LDAP/", "LOOKUP": "/servicesNS/{u}/{a}/data/props/lookups/", "LOOKUP_TRANSFORM": "/servicesNS/{u}/{a}/data/transforms/lookups/", "LOOKUP_TABLE_FILES": "/servicesNS/{u}/{a}/data/lookup-table-files", "LOGIN": "/services/auth/login", "MACRO": "/servicesNS/{u}/{a}/data/macros", "MESSAGES": "/servicesNS/{u}/{a}/messages", "NAVIGATION": "/servicesNS/{u}/{a}/data/ui/nav", "NTAG": "/servicesNS/{u}/{a}/saved/ntags", "OPEN_IN_PIVOT_GENERATE": "/services/datamodel/generate", "PROPERTIES": "/servicesNS/{u}/{a}/properties", "ROLE": "/services/authorization/roles/", "REFRESH": "/debug/refresh", "SAVED_SEARCH": "/servicesNS/{u}/{a}/saved/searches", "SCHEDULED_VIEW": "/servicesNS/{u}/{a}/scheduled/views", "SEARCH_COMMANDS": "/servicesNS/{u}/{a}/search/commands", "SOURCETYPE": "/servicesNS/{u}/{a}/saved/sourcetypes", "SERVER_CONTROL_RESTART": "/services/server/control/restart/", "SERVER_SETTINGS": "/services/{u}/server-settings/settings", "ACCESS_CONTROL_XML": "/services/data/ui/manager/accesscontrols", "TAG": "/servicesNS/{u}/{a}/search/tags", "TIME": "/servicesNS/{u}/{a}/data/ui/times", "TRANSFORMS_EXTRACTION": ("/servicesNS/{u}/{a}/data/transforms/extractions"), "TRANSFORMS_LOOKUP": "/servicesNS/{u}/{a}/data/transforms/lookups/", "TRANSPARENT_SUMMARIZATION": "/servicesNS/{u}/{a}/admin/summarization", "TYPEAHEAD": "/servicesNS/{u}/{a}/search/typeahead/", "USER": "/servicesNS/{u}/{a}/authentication/users", "UI_MANAGER": "/servicesNS/{u}/{a}/data/ui/manager", "UI_PREFS": "/servicesNS/{u}/{a}/admin/ui-prefs", "USER_PREFS": "/servicesNS/{u}/{a}/admin/user-prefs", "VIEW": "/servicesNS/{u}/{a}/data/ui/views", "VIEWSTATES": "/servicesNS/{u}/{a}/data/ui/viewstates", "VIX_INDEXES": "/servicesNS/{u}/{a}/data/vix-indexes", "VIX_PROVIDERS": "/servicesNS/{u}/{a}/data/vix-providers", "WORKFLOW_ACTION": "/servicesNS/{u}/{a}/data/ui/workflow-actions", "RELOAD_ENDPOINT": "/services/configs/conf-{conf}/_reload", "ROLL_HOT_TO_COLD": "/services/data/indexes/{index}/chill-bucket?bucket_id={bucket_id}", "INDEXER_S2S_TOKEN": "/services/data/inputs/tcp/splunktcptoken", "FORWARDER_S2S_TOKEN": "/services/data/outputs/tcp/group", "SAML": "/services/authentication/providers/SAML", "JOBS_CREATED_FROM_SAVED_SEARCH": "/servicesNS/{u}/{a}/saved/searches/{name}/history", "SAML_USER_ROLE_MAP": "/services/{u}/SAML-user-role-map", "SAML_GROUP": "/services/{u}/SAML-groups", "SAML_METADATA": "services/{u}/SAML-sp-metadata", "SAML_AUTH": "/services/{u}/SAML-auth", "SPLUNK_AUTH": "/services/admin/Splunk-auth/splunk_auth", }
StarcoderdataPython
11280213
from selenium import webdriver chrome = webdriver.Chrome() chrome.implicitly_wait(5) chrome.get("https://yandex.ru") home_tabs = chrome.find_element_by_css_selector("[data-id='market']") # https://stackoverflow.com/questions/43627340/what-is-the-difference-between-property-and-attribute-in-selenium-webelement html = home_tabs.get_property("innerHTML") print(html) attr = home_tabs.get_attribute("data-bem") print(attr) css = home_tabs.value_of_css_property("margin-bottom") print(css) chrome.close()
StarcoderdataPython
383498
<filename>hico_det/model/util.py<gh_stars>1-10 import torch import os import math import time import sys import math import torch.nn as nn import torch.nn.functional as F import torch.nn.init as init import numpy as np from collections import OrderedDict device_ids=[0,2] obj_hoi_index = [(0, 0), (161, 170), (11, 24), (66, 76), (147, 160), (1, 10), (55, 65), (187, 194), (568, 576), (32, 46), (563, 567), (326, 330), (503, 506), (415, 418), (244, 247), (25, 31), (77, 86), (112, 129), (130, 146), (175, 186), (97, 107), (314, 325), (236, 239), (596, 600), (343, 348), (209, 214), (577, 584), (353, 356), (539, 546), (507, 516), (337, 342), (464, 474), (475, 483), (489, 502), (369, 376), (225, 232), (233, 235), (454, 463), (517, 528), (534, 538), (47, 54), (589, 595), (296, 305), (331, 336), (377, 383), (484, 488), (253, 257), (215, 224), (199, 208), (439, 445), (398, 407), (258, 264), (274, 283), (357, 363), (419, 429), (306, 313), (265, 273), (87, 92), (93, 96), (171, 174), (240, 243), (108, 111), (551, 558), (195, 198), (384, 389), (394, 397), (435, 438),(364, 368), (284, 290), (390, 393), (408, 414), (547, 550), (450, 453), (430, 434), (248, 252), (291, 295),(585, 588), (446, 449), (529, 533), (349, 352), (559, 562) ] hico_classes = ['__background__', # always index 0 'airplane', 'apple', 'backpack', 'banana', 'baseball_bat', 'baseball_glove', 'bear', 'bed', 'bench', 'bicycle', 'bird', 'boat', 'book', 'bottle', 'bowl', 'broccoli', 'bus', 'cake', 'car', 'carrot', 'cat', 'cell_phone', 'chair', 'clock', 'couch', 'cow', 'cup', 'dining_table', 'dog', 'donut', 'elephant', 'fire_hydrant', 'fork', 'frisbee', 'giraffe', 'hair_drier', 'handbag', 'horse', 'hot_dog', 'keyboard', 'kite', 'knife', 'laptop', 'microwave', 'motorcycle', 'mouse', 'orange', 'oven', 'parking_meter', 'person', 'pizza', 'potted_plant', 'refrigerator', 'remote', 'sandwich', 'scissors', 'sheep', 'sink', 'skateboard', 'skis', 'snowboard', 'spoon', 'sports_ball', 'stop_sign', 'suitcase', 'surfboard', 'teddy_bear', 'tennis_racket', 'tie', 'toaster', 'toilet', 'toothbrush', 'traffic_light', 'train', 'truck', 'tv', 'umbrella', 'vase', 'wine_glass', 'zebra'] def get_box_index(batch_size): batch_index_list = [i for i in range(batch_size)] box_index_data = torch.IntTensor(batch_index_list) box_index = to_varabile(box_index_data) # ([0,1,2,3....,batch-1]) return box_index def to_varabile(tensor, is_cuda=True): if is_cuda: tensor=tensor.cuda() return tensor def process_multi_batch(batch): """ :param batch: :return: batch[0]:image_tensor batch[1]:rois_h_tensor batch[2]:rois_o_tensor batch[3]:pair_tensor batch[4]:obj_det_score_tensor batch[5]:img_path batch[6]:human_bboxes batch[7]:obj_bboxes batch[8]:action_tensor """ batch_imgs_arr = batch[0][0].transpose(0, 3, 2, 1) batch_rois_h_arr = batch[0][1] batch_rois_o_arr = batch[0][2] batch_pair_posi_arr = batch[0][3].transpose(0, 3, 2, 1) batch_obj_det_s_arr = batch[0][4] batch_img_path = batch[0][5] batch_human_bboxes = batch[0][6] batch_obj_bboxes = batch[0][7] # batch_point_arr = batch[0][8].transpose(0, 3, 2, 1) # label batch_action_arr = batch[1] batch_imgs_tensor = torch.from_numpy(batch_imgs_arr) batch_imgs_tensor = to_varabile(batch_imgs_tensor.float()) batch_rois_h_arr_tensor = torch.from_numpy(batch_rois_h_arr) batch_rois_h_arr_tensor = to_varabile(batch_rois_h_arr_tensor.float()) batch_rois_o_arr_tensor = torch.from_numpy(batch_rois_o_arr) batch_rois_o_arr_tensor = to_varabile(batch_rois_o_arr_tensor.float()) batch_pair_posi_arr_tensor = torch.from_numpy(batch_pair_posi_arr) batch_pair_posi_arr_tensor = to_varabile(batch_pair_posi_arr_tensor.float()) batch_obj_det_s_arr_tensor = torch.from_numpy(batch_obj_det_s_arr) batch_obj_det_s_arr_tensor = to_varabile(batch_obj_det_s_arr_tensor.float()) # # batch_point_arr_tensor = torch.from_numpy(batch_point_arr) # batch_point_arr_tensor = to_varabile(batch_point_arr_tensor) batch_action_tensor = torch.from_numpy(batch_action_arr).type(torch.FloatTensor)#.type(torch.FloatTensor) batch_action_tensor = to_varabile(batch_action_tensor) return batch_imgs_tensor,batch_rois_h_arr_tensor,batch_rois_o_arr_tensor,batch_pair_posi_arr_tensor,\ batch_obj_det_s_arr_tensor,batch_img_path,batch_human_bboxes,batch_obj_bboxes,\ batch_action_tensor def process_batch(batch): """ :param batch: :return: batch[0]:image_tensor batch[1]:rois_h_tensor batch[2]:rois_o_tensor batch[3]:pair_tensor batch[4]:obj_det_score_tensor batch[5]:img_path batch[6]:human_bboxes batch[7]:obj_bboxes batch[8]:action_tensor """ batch_imgs_arr = batch[0][0].transpose(0, 3, 2, 1) batch_rois_h_arr = batch[0][1] batch_rois_o_arr = batch[0][2] batch_pair_posi_arr = batch[0][3].transpose(0, 3, 2, 1) batch_obj_det_s_arr = batch[0][4] batch_img_path = batch[0][5] batch_human_bboxes = batch[0][6] batch_obj_bboxes = batch[0][7] # batch_point_arr = batch[0][8].transpose(0, 3, 2, 1) # label batch_action_arr = batch[1] batch_imgs_tensor = torch.from_numpy(batch_imgs_arr) batch_imgs_tensor = to_varabile(batch_imgs_tensor.float()) batch_rois_h_arr_tensor = torch.from_numpy(batch_rois_h_arr) batch_rois_h_arr_tensor = to_varabile(batch_rois_h_arr_tensor.float()) batch_rois_o_arr_tensor = torch.from_numpy(batch_rois_o_arr) batch_rois_o_arr_tensor = to_varabile(batch_rois_o_arr_tensor.float()) batch_pair_posi_arr_tensor = torch.from_numpy(batch_pair_posi_arr) batch_pair_posi_arr_tensor = to_varabile(batch_pair_posi_arr_tensor.float()) batch_obj_det_s_arr_tensor = torch.from_numpy(batch_obj_det_s_arr) batch_obj_det_s_arr_tensor = to_varabile(batch_obj_det_s_arr_tensor.float()) # # batch_point_arr_tensor = torch.from_numpy(batch_point_arr) # batch_point_arr_tensor = to_varabile(batch_point_arr_tensor) batch_action_tensor = torch.from_numpy(batch_action_arr) batch_action_tensor = to_varabile(batch_action_tensor) return batch_imgs_tensor,batch_rois_h_arr_tensor,batch_rois_o_arr_tensor,batch_pair_posi_arr_tensor,\ batch_obj_det_s_arr_tensor,batch_img_path,batch_human_bboxes,batch_obj_bboxes,\ batch_action_tensor class FocalLoss(nn.Module): def __init__(self, focusing_param=8, balance_param=0.25):#focusing_param代表gamma super(FocalLoss, self).__init__() self.focusing_param = focusing_param self.balance_param = balance_param def forward(self, output, target): cross_entropy = F.cross_entropy(output, target) cross_entropy_log = torch.log(cross_entropy) logpt = - F.cross_entropy(output, target) pt = torch.exp(logpt) focal_loss = -((1 - pt) ** self.focusing_param) * logpt balanced_focal_loss = self.balance_param * focal_loss return balanced_focal_loss def accuracy(output, target, topk=(5,)): """Computes the precision@k for the specified values of k""" maxk = max(topk) batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res def from_one_hot_to_list(one_hot_tensor): one_hot_list = one_hot_tensor.clone().cpu().detach().numpy().tolist() list_ = [] for one_hot in one_hot_list: list_.append(one_hot.index(1)) return np.array(list_) def multi_accuracy(output, target,topk=(5,)): maxk = max(topk) target=torch.from_numpy(from_one_hot_to_list(target)).cuda() batch_size = target.size(0) _, pred = output.topk(maxk, 1, True, True) pred = pred.t() correct = pred.eq(target.view(1, -1).expand_as(pred)) res = [] for k in topk: correct_k = correct[:k].view(-1).float().sum(0) res.append(correct_k.mul_(100.0 / batch_size)) return res # print('shape1',output.shape) # print('shape2',target.shape) class Timer(object): """A simple timer.""" def __init__(self): self.reset() def tic(self): # using time.time instead of time.clock because time time.clock # does not normalize for multithreading self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.total_time += self.diff self.calls += 1 self.average_time = self.total_time / self.calls if average: return self.average_time else: return self.diff def reset(self): self.total_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def format_time(seconds): days = int(seconds / 3600/24) seconds = seconds - days*3600*24 hours = int(seconds / 3600) seconds = seconds - hours*3600 minutes = int(seconds / 60) seconds = seconds - minutes*60 secondsf = int(seconds) seconds = seconds - secondsf millis = int(seconds*1000) f = '' i = 1 if days > 0: f += str(days) + 'D' i += 1 if hours > 0 and i <= 2: f += str(hours) + 'h' i += 1 if minutes > 0 and i <= 2: f += str(minutes) + 'm' i += 1 if secondsf > 0 and i <= 2: f += str(secondsf) + 's' i += 1 if millis > 0 and i <= 2: f += str(millis) + 'ms' i += 1 if f == '': f = '0ms' return f def adjust_learning_rate(ori_lr,optimizer, epoch,batch_index,lr_decay_step): """Sets the learning rate to the initial LR decayed by 10 every 30 epochs""" rate = epoch // lr_decay_step urate=epoch%lr_decay_step if epoch>1 and urate==0 and batch_index==1: lr = ori_lr * (0.1 ** rate) optimizer.param_groups[0]['lr']=lr def get_loss_weighted(): with open('./data/hico_data/hico_hoi_count_train.txt','r') as f: lines=f.readlines() hoi_class_ins=[] hoi_num=0 for line in lines: hoi_class_ins.append(int(line.strip().split(' ')[-1])) for i in hoi_class_ins: hoi_num+=i hoi_class_weight = [hoi_num / float(ins) for ins in hoi_class_ins] return torch.from_numpy(np.array(hoi_class_weight)) def get_obj_score(): with open('/home/priv-lab1/workspace/zxh/HOI/hico_det/data/hico_data/hico_hoi_count_train.txt') as f: lines=f.readlines() action_dict=OrderedDict() for i,line in enumerate(lines): if line.strip().split(' ')[1] in action_dict: action_dict[line.strip().split(' ')[1]]['end']=i+1 else: action_dict[line.strip().split(' ')[1]] = {'start':i+1} print(action_dict) if __name__ == '__main__': # get_loss_weighted() get_obj_score()
StarcoderdataPython
338299
# -*- coding: utf-8; -*- import os.path import shutil from ano.commands.base import Command class Clean(Command): """ Remove all intermediate compilation files and directories completely. In fact `.build' directory is simply removed. """ name = 'clean' help_line = "Remove intermediate compilation files completely" def run(self, args): if os.path.isdir(self.e.output_dir): shutil.rmtree(self.e.output_dir)
StarcoderdataPython
3303015
import unittest from flow.core.params import SumoParams, EnvParams, InitialConfig, \ NetParams, SumoCarFollowingParams, SumoLaneChangeParams from flow.core.params import VehicleParams from flow.controllers.routing_controllers import ContinuousRouter from flow.controllers.car_following_models import IDMController from flow.controllers import RLController from flow.envs.ring.accel import ADDITIONAL_ENV_PARAMS from flow.utils.exceptions import FatalFlowError from flow.envs import Env, TestEnv from tests.setup_scripts import ring_road_exp_setup, highway_exp_setup import os import numpy as np import gym.spaces as spaces os.environ["TEST_FLAG"] = "True" # colors for vehicles WHITE = (255, 255, 255) CYAN = (0, 255, 255) RED = (255, 0, 0) YELLOW = (255, 255, 0) class TestShuffle(unittest.TestCase): """ Tests that, at resets, the ordering of vehicles changes while the starting position values stay the same. """ def setUp(self): # turn on vehicle arrangement shuffle env_params = EnvParams( additional_params=ADDITIONAL_ENV_PARAMS) # place 5 vehicles in the network (we need at least more than 1) vehicles = VehicleParams() vehicles.add( veh_id="test", acceleration_controller=(IDMController, {}), routing_controller=(ContinuousRouter, {}), num_vehicles=5) initial_config = InitialConfig(x0=5, shuffle=True) # create the environment and network classes for a ring road self.env, _ = ring_road_exp_setup( env_params=env_params, initial_config=initial_config, vehicles=vehicles) def tearDown(self): # terminate the traci instance self.env.terminate() # free data used by the class self.env = None def test_shuffle(self): ids = self.env.k.vehicle.get_ids() # position of vehicles before reset before_reset = [self.env.k.vehicle.get_x_by_id(veh_id) for veh_id in ids] # reset the environment self.env.reset() # position of vehicles after reset after_reset = [self.env.k.vehicle.get_x_by_id(veh_id) for veh_id in ids] self.assertCountEqual(before_reset, after_reset) class TestEmissionPath(unittest.TestCase): """ Tests that the default emission path of an environment is set to None. If it is not None, then sumo starts accumulating memory. """ def setUp(self): # set sim_params to default sim_params = SumoParams() # create the environment and network classes for a ring road self.env, _ = ring_road_exp_setup(sim_params=sim_params) def tearDown(self): # terminate the traci instance self.env.terminate() # free data used by the class self.env = None def test_emission(self): self.assertIsNone(self.env.sim_params.emission_path) class TestApplyingActionsWithSumo(unittest.TestCase): """ Tests the apply_acceleration, apply_lane_change, and choose_routes functions in base.py """ def setUp(self): # create a 2-lane ring road network additional_net_params = { "length": 230, "lanes": 3, "speed_limit": 30, "resolution": 40 } net_params = NetParams(additional_params=additional_net_params) # turn on starting position shuffle env_params = EnvParams( additional_params=ADDITIONAL_ENV_PARAMS) # place 5 vehicles in the network (we need at least more than 1) vehicles = VehicleParams() vehicles.add( veh_id="test", acceleration_controller=(IDMController, {}), routing_controller=(ContinuousRouter, {}), car_following_params=SumoCarFollowingParams( accel=1000, decel=1000), lane_change_params=SumoLaneChangeParams( lane_change_mode=0), num_vehicles=5) # create the environment and network classes for a ring road self.env, _ = ring_road_exp_setup( net_params=net_params, env_params=env_params, vehicles=vehicles) def tearDown(self): # terminate the traci instance self.env.terminate() # free data used by the class self.env = None def test_apply_acceleration(self): """ Tests that, in the absence of all failsafes, the acceleration requested from sumo is equal to the acceleration witnessed in between steps. Also ensures that vehicles can never have velocities below zero given any acceleration. """ ids = self.env.k.vehicle.get_ids() vel0 = np.array( [self.env.k.vehicle.get_speed(veh_id) for veh_id in ids]) # apply a certain set of accelerations to the vehicles in the network accel_step0 = np.array([0, 1, 4, 9, 16]) self.env.k.vehicle.apply_acceleration(veh_ids=ids, acc=accel_step0) self.env.k.simulation.simulation_step() self.env.k.vehicle.update(False) # compare the new velocity of the vehicles to the expected velocity # given the accelerations vel1 = np.array([ self.env.k.vehicle.get_speed(veh_id) for veh_id in ids ]) expected_vel1 = (vel0 + accel_step0 * 0.1).clip(min=0) np.testing.assert_array_almost_equal(vel1, expected_vel1, 1) # apply a set of decelerations accel_step1 = np.array([-16, -9, -4, -1, 0]) self.env.k.vehicle.apply_acceleration(veh_ids=ids, acc=accel_step1) self.env.k.simulation.simulation_step() self.env.k.vehicle.update(False) # this time, some vehicles should be at 0 velocity (NOT less), and sum # are a result of the accelerations that took place vel2 = np.array([ self.env.k.vehicle.get_speed(veh_id) for veh_id in ids ]) expected_vel2 = (vel1 + accel_step1 * 0.1).clip(min=0) np.testing.assert_array_almost_equal(vel2, expected_vel2, 1) def test_apply_lane_change_errors(self): """ Ensures that apply_lane_change raises ValueErrors when it should """ self.env.reset() ids = self.env.k.vehicle.get_ids() # make sure that running apply lane change with a invalid direction # values leads to a ValueError bad_directions = np.array([-1, 0, 1, 2, 3]) self.assertRaises( ValueError, self.env.k.vehicle.apply_lane_change, veh_ids=ids, direction=bad_directions) def test_apply_lane_change_direction(self): """ Tests the direction method for apply_lane_change. Ensures that the lane change action requested from sumo is the same as the lane change that occurs, and that vehicles attempting do not issue lane changes in there is no lane in te requested direction. """ self.env.reset() ids = self.env.k.vehicle.get_ids() lane0 = np.array( [self.env.k.vehicle.get_lane(veh_id) for veh_id in ids]) max_lanes = self.env.net_params.additional_params['lanes'] # perform lane-changing actions using the direction method direction0 = np.array([0, 1, 0, 1, -1]) self.env.k.vehicle.apply_lane_change(ids, direction=direction0) self.env.k.simulation.simulation_step() self.env.k.vehicle.update(False) # check that the lane vehicle lane changes to the correct direction # without skipping lanes lane1 = np.array([ self.env.k.vehicle.get_lane(veh_id) for veh_id in ids ]) expected_lane1 = (lane0 + np.sign(direction0)).clip( min=0, max=max_lanes - 1) np.testing.assert_array_almost_equal(lane1, expected_lane1, 1) # perform lane-changing actions using the direction method one more # time to test lane changes to the right direction1 = np.array([-1, -1, -1, -1, -1]) self.env.k.vehicle.apply_lane_change(ids, direction=direction1) self.env.k.simulation.simulation_step() self.env.k.vehicle.update(False) # check that the lane vehicle lane changes to the correct direction # without skipping lanes lane2 = np.array([ self.env.k.vehicle.get_lane(veh_id) for veh_id in ids ]) expected_lane2 = (lane1 + np.sign(direction1)).clip( min=0, max=max_lanes - 1) np.testing.assert_array_almost_equal(lane2, expected_lane2, 1) class TestWarmUpSteps(unittest.TestCase): """Ensures that the appropriate number of warmup steps are run when using flow.core.params.EnvParams.warmup_steps""" def test_it_works(self): warmup_step = 5 # some value # start an environment with a number of simulations per step greater # than one env_params = EnvParams( warmup_steps=warmup_step, additional_params=ADDITIONAL_ENV_PARAMS) env, _ = ring_road_exp_setup(env_params=env_params) # time before running a reset t1 = 0 # perform a reset env.reset() # time after a reset t2 = env.time_counter # ensure that the difference in time is equal to sims_per_step self.assertEqual(t2 - t1, warmup_step) class TestSimsPerStep(unittest.TestCase): """Ensures that the appropriate number of simultaions are run at any given steps when using flow.core.params.EnvParams.sims_per_step""" def test_it_works(self): sims_per_step = 5 # some value # start an environment with a number of simulations per step greater # than one env_params = EnvParams( sims_per_step=sims_per_step, additional_params=ADDITIONAL_ENV_PARAMS) env, _ = ring_road_exp_setup(env_params=env_params) env.reset() # time before running a step t1 = env.time_counter # perform a step env.step(rl_actions=[]) # time after a step t2 = env.time_counter # ensure that the difference in time is equal to sims_per_step self.assertEqual(t2 - t1, sims_per_step) class TestAbstractMethods(unittest.TestCase): """ These series of tests are meant to ensure that the environment abstractions exist and are in fact abstract, i.e. they will raise errors if not implemented in a child class. """ def setUp(self): env, network = ring_road_exp_setup() sim_params = SumoParams() # FIXME: make ambiguous env_params = EnvParams() self.env = Env(sim_params=sim_params, env_params=env_params, network=network) def tearDown(self): self.env.terminate() self.env = None def test_get_state(self): """Checks that get_state raises an error.""" self.assertRaises(NotImplementedError, self.env.get_state) def test_compute_reward(self): """Checks that compute_reward returns 0.""" self.assertEqual(self.env.compute_reward([]), 0) def test__apply_rl_actions(self): self.assertRaises(NotImplementedError, self.env._apply_rl_actions, rl_actions=None) class TestVehicleColoring(unittest.TestCase): def test_all(self): vehicles = VehicleParams() vehicles.add("human", num_vehicles=10) # add an RL vehicle to ensure that its color will be distinct vehicles.add("rl", acceleration_controller=(RLController, {}), num_vehicles=1) _, network = ring_road_exp_setup(vehicles=vehicles) env = TestEnv(EnvParams(), SumoParams(), network) env.reset() # set one vehicle as observed env.k.vehicle.set_observed("human_0") # update the colors of all vehicles env.step(rl_actions=None) # check that, when rendering is off, the colors don't change (this # avoids unnecessary API calls) for veh_id in env.k.vehicle.get_ids(): self.assertEqual(env.k.vehicle.get_color(veh_id), YELLOW) # a little hack to ensure the colors change env.sim_params.render = True # set one vehicle as observed env.k.vehicle.set_observed("human_0") # update the colors of all vehicles env.step(rl_actions=None) # check the colors of all vehicles for veh_id in env.k.vehicle.get_ids(): if veh_id in ["human_0"]: self.assertEqual(env.k.vehicle.get_color(veh_id), CYAN) elif veh_id == "rl_0": self.assertEqual(env.k.vehicle.get_color(veh_id), RED) else: self.assertEqual(env.k.vehicle.get_color(veh_id), WHITE) class TestNotEnoughVehicles(unittest.TestCase): """Tests that when not enough vehicles spawn an error is raised.""" def test_num_spawned(self): initial_config = InitialConfig( spacing="custom", additional_params={ 'start_positions': [('highway_0', 0), ('highway_0', 0)], 'start_lanes': [0, 0]} ) vehicles = VehicleParams() vehicles.add('test', num_vehicles=2) self.assertRaises(FatalFlowError, highway_exp_setup, initial_config=initial_config, vehicles=vehicles) class BoxEnv(Env): """A mock-up class to test clipping for Box.""" def get_state(self): pass @property def action_space(self): return spaces.Box(low=0, high=1, shape=(3,)) @property def observation_space(self): pass def _apply_rl_actions(self, rl_actions): pass class TestClipBoxActions(unittest.TestCase): """ This tests base environment properly clips box actions per specification. """ def setUp(self): env, network = ring_road_exp_setup() sim_params = SumoParams() env_params = EnvParams() self.env = BoxEnv( sim_params=sim_params, env_params=env_params, scenario=network) def tearDown(self): self.env.terminate() self.env = None def test_clip_box_actions(self): """Test whether box actions get properly clipped.""" actions = [0.5, -1, 2] clipped_actions = [0.5, 0, 1] _actions = self.env.clip_actions(actions) self.assertTrue((_actions == clipped_actions).all()) class TupleEnv(Env): """A mock-up class to test clipping for Tuple.""" def get_state(self): pass @property def action_space(self): return spaces.Tuple([ spaces.Box(low=0, high=255, shape=(1,)), spaces.Box(low=0, high=1, shape=(3,)), spaces.Discrete(3)]) @property def observation_space(self): pass def _apply_rl_actions(self, rl_actions): pass class TestClipTupleActions(unittest.TestCase): """ This tests base environment properly clips tuple actions based on specification in each individual Box objects. """ def setUp(self): env, scenario = ring_road_exp_setup() sim_params = SumoParams() env_params = EnvParams() self.env = TupleEnv( sim_params=sim_params, env_params=env_params, scenario=scenario) def tearDown(self): self.env.terminate() self.env = None def test_clip_tuple_actions(self): """Test whether tuple actions get properly clipped.""" actions = [ [-1], [0.5, -1, 2], 2 ] clipped_actions = [ [0], [0.5, 0, 1], 2 ] _actions = self.env.clip_actions(actions) self.assertEquals(_actions[0], clipped_actions[0]) self.assertTrue((_actions[1] == clipped_actions[1]).all()) self.assertEquals(_actions[2], clipped_actions[2]) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4898602
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class ReplicaLifecycleDescription(Model): """Describes how the replica will behave. :param is_singleton_replica_move_allowed_during_upgrade: If set to true, replicas with a target replica set size of 1 will be permitted to move during upgrade. :type is_singleton_replica_move_allowed_during_upgrade: bool :param restore_replica_location_after_upgrade: If set to true, move/swap replica to original location after upgrade. :type restore_replica_location_after_upgrade: bool """ _attribute_map = { 'is_singleton_replica_move_allowed_during_upgrade': {'key': 'IsSingletonReplicaMoveAllowedDuringUpgrade', 'type': 'bool'}, 'restore_replica_location_after_upgrade': {'key': 'RestoreReplicaLocationAfterUpgrade', 'type': 'bool'}, } def __init__(self, **kwargs): super(ReplicaLifecycleDescription, self).__init__(**kwargs) self.is_singleton_replica_move_allowed_during_upgrade = kwargs.get('is_singleton_replica_move_allowed_during_upgrade', None) self.restore_replica_location_after_upgrade = kwargs.get('restore_replica_location_after_upgrade', None)
StarcoderdataPython
1962403
# this is an AWS inventory for RDS # you must supply an AWS IAM keypair with Read to RDS across specified regions # output is to STDOUT in white space delimited (except Tags are comma # seperated) # feel free to change the fields to any variable of the DBInstance boto class # but please sanitize changes to these fields import argparse from pprint import pprint import boto.rds import unicodedata access_key = '' secret_key = '' def get_rds_instances(region,fields): rds_conn = boto.rds.connect_to_region(region, aws_access_key_id=access_key, aws_secret_access_key=secret_key) dbinstances = rds_conn.get_all_dbinstances() for instance in dbinstances: #pprint(i.__dict__) # trying to use variable of class DBInstance as string to sanitize in loop fails #for field in fields: #instance."field" = str(instance."field") # print(instance.field) # stuck sanitizing each field instance.id = str(instance.id) instance.instance_class = str(instance.instance_class) instance.engine = str(instance.engine) instance.multi_az = str(instance.multi_az) instance.availability_zone = str(instance.availability_zone) instance.allocated_storage = str(instance.allocated_storage) print instance.id, instance.instance_class, instance.engine, instance.multi_az, instance.availability_zone, instance.allocated_storage def main(): # which regions to pull from # note AZs for each region are included regions = [ 'us-east-1','us-west-1','us-west-2','eu-west-1','sa-east-1', 'ap-southeast-1','ap-southeast-2','ap-northeast-1', 'eu-central-1', 'ap-northeast-2' ] # which fields to print from DBInstance class attributes fields = [ 'id', 'instance_class', 'engine', 'multi_az', 'availability_zone', 'allocated_storage' ] parser = argparse.ArgumentParser() parser.add_argument('access_key', help='Access Key'); parser.add_argument('secret_key', help='Secret Key'); args = parser.parse_args() global access_key global secret_key access_key = args.access_key secret_key = args.secret_key print("DB ID, Instance class, Engine, MultiAZ, AZ, Storage") for region in regions: get_rds_instances(region,fields) if __name__ =='__main__':main()
StarcoderdataPython
11225237
<reponame>vijaykumawat256/Prompt-Summarization def dominator(arr):
StarcoderdataPython
3417107
<filename>ecommerceApplicationServer/ecommerce/migrations/0003_product_productstatus.py # Generated by Django 4.0.2 on 2022-02-16 19:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('ecommerce', '0002_product'), ] operations = [ migrations.AddField( model_name='product', name='productStatus', field=models.BooleanField(default=None), preserve_default=False, ), ]
StarcoderdataPython
338013
<gh_stars>1-10 config={} with open('etc/apt/config', 'r') as config_file: exec(config_file.read(), config) import os import subprocess import sys import re import io import shutil try: import urllib2 except ImportError: from urllib import request as urllib2 import bz2, lzma, gzip try: import cPickle as pickle except ImportError: import pickle import tarfile try: from hashlib import md5 except ImportError: from md5 import md5 desc=""" apt-get {update | upgrade | install pkg ... | remove pkg... | purge pkg... | -h} """ available_package_list_file = 'var/cache/apt/package_available.pkl' installed_package_list_file = 'var/cache/apt/package_installed.pkl' link_package_list_file = 'var/cache/apt/package_links.pkl' package_folder = 'var/cache/apt/archives' number_re = re.compile('([0-9]+)') class DebianStringVersion: def __init__(self, text): self.text = text def __cmp__(self, other): i = 0 for i in range(0, min(len(self.text), len(other.text))): if self.text[i] != other.text[i]: if self.text[i] == '~': return -1 elif other.text[i] == '~': return 1 elif self.text[i] in ['-', '.', ':']: if other.text[i] in ['-', '.', ':']: return ord(self.text[i]) - ord(other.text[i]) else: return -1 else: if other.text[i] in ['-', '.', ':']: return 1 else: return ord(self.text[i]) - ord(other.text[i]) if len(self.text) > len(other.text): if self.text[i] == '~': return -1 else: return 1 else: if other.text[i] == '~': return 1 else: return -1 def __eq__(self, other): return self.text == other.text def __neq__(self, other): return self.text == other.text def __lt__(self, other): return self.__cmp__(other) < 0 def __le__(self, other): return self.__cmp__(other) <= 0 def __gt__(self, other): return self.__cmp__(other) > 0 def __gt__(self, other): return self.__cmp__(other) >= 0 assert(DebianStringVersion('52~m1-1~') < DebianStringVersion('52.1-3')) def to_version(version_string): result = [] epoch, __, version = version_string.partition(':') if not version: version = epoch epoch = 0 else: epoch = int(epoch) upstream_version, __, debian_version = version.rpartition('-') if not upstream_version: upstream_version = debian_version debian_version = '' result.append(epoch) result += [int(text) if text.isdigit() else DebianStringVersion(text) for text in number_re.split(upstream_version)] result += [int(text) if text.isdigit() else DebianStringVersion(text) for text in number_re.split(debian_version)] return result class Package: KEYS = [ 'Depends', 'Pre-Depends', 'MD5sum', 'Size', 'Installed-Size', 'Version', 'Filename' ] def __init__(self, package_name, package_arch): self.package_name = package_name self.package_arch = package_arch self.Depends = '' setattr(self, 'Pre-Depends', '') self.filename = '' def compatible(self, version_check): if version_check: assert(version_check[0] == '(') assert(version_check[-1] == ')') op, version = version_check[1:-1].split(' ') version = to_version(version) my_version = to_version(self.Version) if op == '<<': return my_version < version if op == '>>': return my_version > version if op == '=': return my_version == version if op == '<=': return my_version <= version if op == '>=': return my_version >= version raise Exception('unknown op: %s' % op) else: return True def __str__(self): return '%s:%s [%s]' % (self.package_name, self.package_arch, self.Version) def generate_ld_conf(): with open('etc/ld.so.conf', 'w') as ld_so_conf: try: confs = os.listdir('etc/ld.so.conf.d') except OSError: pass else: for conf in confs: with open('etc/ld.so.conf.d/%s'%conf) as conf_file: ld_so_conf.write(conf_file.read()) ld_so_conf.write('\n') def usage(): print(desc) def download(url): def chunk_report(bytes_so_far, chunk_size, total_size): if total_size: percent = float(bytes_so_far) / total_size percent = round(percent*100, 2) sys.stdout.write('\r[%0.2f%%] %s...'%(percent, url)) sys.stdout.flush() else: data_so_far = float(bytes_so_far) unit = 'B' if data_so_far > 1024*5: data_so_far = data_so_far / 1024 unit = 'kB' if data_so_far > 1024*5: data_so_far = data_so_far / 1024 unit = 'MB' sys.stdout.write('\r[%0.2f%s] %s...'%(data_so_far, unit, url)) sys.stdout.flush() chunk_size = 8192 data = bytes() response = urllib2.urlopen(url) try: total_size = response.info()['Content-length'].strip() total_size = int(total_size) except Exception as e: print(e) total_size = 0 bytes_so_far = 0 chunk_report(bytes_so_far, chunk_size, total_size) while(1): try: chunk = response.read(chunk_size) bytes_so_far += len(chunk) if not chunk: break data += chunk chunk_report(bytes_so_far, chunk_size, total_size) except Exception as e: print(e) return None print('') return data def run(*command): p = subprocess.Popen(command, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.PIPE) out, err = p.communicate() if p.returncode != 0: if not isinstance(err, str): err = err.decode('utf-8') raise Exception(err) return out def load_database(): try: with open(available_package_list_file, 'rb') as package_file: available_packages = pickle.load(package_file) except Exception: raise Exception('No package database stored\n\n%s' % desc) try: with open(installed_package_list_file, 'rb') as package_file: installed_packages = pickle.load(package_file) except Exception as e: installed_packages = {} for architectures,_,_,_ in config['MIRRORS']: for arch in architectures: installed_packages[arch] = {} try: with open(link_package_list_file, 'rb') as link_file: installed_links = pickle.load(link_file) except Exception: installed_links = [] return available_packages, installed_packages, installed_links def save_database(installed_packages, installed_links): with open(installed_package_list_file, 'wb') as package_file: pickle.dump(installed_packages, package_file) with open(link_package_list_file, 'wb') as link_file: pickle.dump(installed_links, link_file) def ensure_directories_exist(): directory = os.path.split(available_package_list_file)[0] try: os.makedirs(directory) except OSError: pass directory = os.path.split(installed_package_list_file)[0] try: os.makedirs(directory) except OSError: pass try: os.makedirs(package_folder) except OSError: pass try: os.makedirs('etc') except OSError: pass def filter_packages_to_download(package_list): result = [] for package in package_list: filename = os.path.split(package.Filename)[1] filepath = os.path.join(package_folder, filename) if os.path.isfile(filepath): with open(filepath, 'rb') as f: m = md5() m.update(f.read()) if m.hexdigest().lower() == package.MD5sum.lower(): continue result.append(package) return result def do_download(package_list): for package in package_list: filename = os.path.split(package.Filename)[1] filepath = os.path.join(package_folder, filename) with open(filepath, 'wb') as f: f.write(download(package.Url + '/' + package.Filename)) def do_delete_packages(package_list): for package in package_list: filename = os.path.split(package.Filename)[1] filepath = os.path.join(package_folder, filename) os.remove(filepath) def do_install(package_list, directory_links): links = [] def read_file(bytes, offset): if offset & 1 == 1: offset+=1 filename = bytes[offset:offset+16].decode('latin1').strip() filesize = int(bytes[offset+48:offset+58].decode('latin1').strip()) return offset+60+filesize, filename, bytes[offset+60:offset+60+filesize] for package in package_list[::-1]: filename = os.path.split(package.Filename)[1] filepath = os.path.join(package_folder, filename) print(filename) package.installed_files = [] package.installed_dirs = [] with open(filepath, 'rb') as archive: bytes = archive.read() i = 8 i, filename, data = read_file(bytes, i) assert(filename == 'debian-binary') while i < len(bytes)-1: i, filename, data = read_file(bytes, i) if filename.startswith('data.tar'): tar = tarfile.open(fileobj=io.BytesIO(data)) for info in tar.getmembers(): if info.isdir(): package.installed_dirs.append(info.name) try: os.mkdir(info.name) except OSError: pass elif info.isfile(): filename = info.name if filename[0] == '/': filename = '.'+filename with open(filename, 'wb') as file: file.write(tar.extractfile(info).read()) package.installed_files.append(filename) elif info.islnk() or info.issym(): if sys.platform == 'win32': links.append((package, info.name, info.linkname)) else: if info.linkname[0] == '/': info.linkname = os.path.relpath('.', os.path.split(info.name)[0]) + info.linkname try: os.symlink(info.linkname, info.name) except FileExistsError: os.unlink(info.name) os.symlink(info.linkname, info.name) else: print (info.name) while links: old_links = links links = [] for package, link_path, link_target in old_links: if link_target[0] == '/': relative_link_target = '.' + link_target else: relative_link_target = os.path.join(os.path.split(link_path)[0], link_target) if os.path.isdir(relative_link_target): package.installed_dirs.append(link_path) directory_links.append((link_path, relative_link_target)) elif os.path.isfile(relative_link_target): package.installed_files.append(link_path) with open(relative_link_target, 'rb') as source: with open(link_path, 'wb') as dest: dest.write(source.read()) else: links.append((package, link_path, link_target)) if len(old_links) == len(links): print("Can't create links:\n " + '\n '.join('[%s] %s -> %s' % l for l in links)) break for link_path, link_target in directory_links: try: shutil.rmtree(link_path) except FileNotFoundError: pass shutil.copytree(link_target, link_path) def do_uninstall(package_list): pass def info(): available_packages, installed_packages, links = load_database() for package_arch, packages in installed_packages.items(): for package_name, package in packages.items(): print(package_name, ':', package_arch) def update(): ensure_directories_exist() packages = {} mirrors = config['MIRRORS'] package_count = 0 package = None for architectures, mirror, dists, repositories in mirrors: for architecture in architectures: packages[architecture] = {} for dist in dists: for repository in repositories: for ext, decompress in (('xz', lzma.decompress), ('bz2', bz2.decompress), ('gz', gzip.decompress)): url = '%s/dists/%s/%s/binary-%s/Packages.%s'%(mirror, dist, repository, architecture, ext) try: package_compressed = download(url) except Exception: pass else: package_data = decompress(package_compressed) break else: raise Exception ('could not download %s %s [%s]' %(dist, repository, architecture)) try: package_data = package_data.decode('latin1') except Exception: pass for line in package_data.split('\n'): if line: split = line.find(':') key = line[:split] value = line[split + 1:].strip() if key == 'Package': package = Package(value, architecture) package.Url = mirror package_count += 1 try: packages[architecture][value].append(package) except KeyError: packages[architecture][value] = [package] else: if key in Package.KEYS: setattr(package, key, value) if key == 'Provides': provides = value.split(',') for p in provides: p = p.strip() try: packages[architecture][p].append(package) except: packages[architecture][p] = [package] with open(available_package_list_file, 'wb') as package_file: pickle.dump(packages, package_file) print('Information on %d packages' % package_count) def upgrade(): return def install(package_list): available_packages, installed_packages, installed_links = load_database() default_architecture = config['DEFAULT_ARCHITECTURE'] package_list = [(p, None) for p in package_list] packages_to_check = [] seen = set([]) while package_list: package_name_arch, package_version = package_list.pop(0) arch_start = package_name_arch.find(':') if arch_start != -1: arch = package_name_arch[arch_start+1:] package_name = package_name_arch[:arch_start] else: arch = default_architecture package_name = package_name_arch if (package_name, arch) in seen: continue seen.add((package_name, arch)) try: available_list = sorted(available_packages[arch][package_name], reverse=True, key=lambda x: to_version(x.Version)) for package in available_list: if package.compatible(package_version): break else: raise Exception('package %s[%s] version %s has no installed candidates.\n Available:\n %s' % (package_name, arch, package_version, '\n '.join(['%s (%s)'%(p.package_name, p.Version) for p in available_list]))) packages_to_check.append(package) dependencies = package.Depends.split(',') if package.Depends else [] dependencies += getattr(package, 'Pre-Depends', '').split(',') if getattr(package, 'Pre-Depends', '') else [] for depend in dependencies: depend_choice = depend.split('|') for depend in depend_choice: depend = depend.strip().split(' ', 1) depend_name = depend[0] depend_version = depend[1] if len(depend) == 2 else None if (depend_name, arch) in seen: for p in packages_to_check: if p.package_name == depend_name and p.package_arch == arch: if not p.compatible(depend_version): raise Exception('%s[%s] requires %s[%s] version %s, but version %s is to be installed' % (package_name, arch, depend_name, arch, depend_version, p.Version)) break else: for pname, pver in package_list: if pname == depend_name: break else: depend = depend_choice[0].strip().split(' ', 1) depend_name = depend[0] depend_version = depend[1] if len(depend) == 2 else None package_list.insert(0, ('%s:%s'%(depend_name, arch), depend_version)) except KeyError: raise Exception('Unable to locate package %s[%s]'%(package_name, arch)) new_packages = [] updated_packages = [] for package in packages_to_check: try: installed_package = installed_packages[package.package_arch][package.package_name] except KeyError: new_packages.append(package) else: if to_version(package.Version) > to_version(installed_package.Version): updated_packages.append((package, installed_package)) if new_packages: print('The following NEW packages will be installed:\n %s\n' % ', '.join(['%s[%s]'%(p.package_name,p.package_arch) for p in new_packages])) if updated_packages: print('The following packages will be upgraded:\n %s\n' % ', '.join(['%s[%s]'%(p.package_name,p.package_arch) for p,__ in updated_packages])) print('%d upgraded, %d newly installed, and %d to remove' % (len(updated_packages), len(new_packages), 0)) download_packages = filter_packages_to_download(new_packages + [p for p, __ in updated_packages]) download_size = float(sum([int(p.Size) for p in download_packages])) total_package_size = float(sum([int(p.Size) for p in new_packages])) total_package_size += float(sum([int(p.Size) for p,_ in updated_packages])) install_size = float(sum([int(getattr(p, 'Installed-Size')) for p in new_packages])) install_size += float(sum([int(getattr(p, 'Installed-Size')) for p,__ in updated_packages])) install_size -= float(sum([int(getattr(p, 'Installed-Size')) for __,p in updated_packages])) unit_dl = 'B' if download_size > 1024*5: download_size /= 1024 unit_dl = 'kB' if download_size > 1024*5: download_size /= 1024 unit_dl = 'MB' unit = 'B' if total_package_size > 1024*5: total_package_size /= 1024 unit = 'kB' if total_package_size > 1024*5: total_package_size /= 1024 unit = 'MB' print('Need to get %0.2f %s/%0.2f %s of archives.' % (download_size, unit_dl, total_package_size, unit)) unit = 'kB' disk = 'used' if install_size < 0: disk = 'freed' install_size = -install_size if install_size > 1024*5: install_size /= 1024 unit = 'MB' print('After this operation, %0.2f %s of additional disk space will be %s.' % (install_size, unit, disk)) print('Do you want to continue? [Y/n]',) do_download(download_packages) do_uninstall([p for __,p in updated_packages]) do_install([p for p,__ in updated_packages], installed_links) do_install(new_packages, installed_links) generate_ld_conf() save_database(installed_packages, installed_links) print('Do you want to delete downloaded packages? [Y/n]',) #do_delete_packages(new_packages + [p for p, __ in updated_packages]) def uninstall(package_list): return 0 if __name__ == '__main__': command = sys.argv[1] packages = sys.argv[2:] try: if command == '-h': usage() elif command == 'update': if packages: raise Exception(desc) update() elif command == 'upgrade': if packages: raise Exception(desc) upgrade() elif command == 'info': if packages: raise Exception(desc) info() elif command == 'install': if not packages: raise Exception(desc) install(packages) elif command == 'remove': if not packages: raise Exception(desc) uninstall(packages) elif command == 'purge': if not packages: raise Exception(desc) uninstall(packages) else: raise Exception('unknown command: %s\n\n%s' % (command, desc)) except Exception as e: print(e.__class__, e) exit(1) else: exit(0)
StarcoderdataPython
8129251
#!/usr/bin/env python # # Copyright (c) 2018 <NAME> # Copyright (c) 2018 <NAME> # Copyright (c) 2018 <NAME> # # Distributed under the Boost Software License, Version 1.0. (See accompanying # file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) # # Phylanx K-Means algorithm example in Python. Iteratively clusters 250 # randomly generated points into 3 clusters for the specified number of # iterations. # # Code adapted from: http://flothesof.github.io/k-means-numpy.html # Original source code is BSD-licensed # # \param iterations Number of iterations # \returns the cluster centroids import argparse import csv import numpy as np def initialize_centroids(points, k): centroids = points.copy() np.random.shuffle(centroids) return centroids[:k] def closest_centroid(points, centroids): distances = np.sqrt(((points - centroids[:, np.newaxis]) ** 2).sum(axis=2)) return np.argmin(distances, axis=0) def move_centroids(points, closest, centroids): return np.array([points[closest == k].mean(axis=0) for k in range( centroids.shape[0])]) def kmeans(points, k, iterations): centroids = initialize_centroids(points, k) for i in range(iterations): centroids = move_centroids(points, closest_centroid(points, centroids), centroids) return centroids def generate_random(): return np.vstack(( (np.random.randn(150, 2) * 0.75 + np.array([1, 0])), (np.random.randn(50, 2) * 0.25 + np.array([-0.5, 0.5])), (np.random.randn(50, 2) * 0.5 + np.array([-0.5, -0.5])) )) def csv_records(path): with argparse.FileType('r')(path) as csv_file: data = [d for d in csv.reader(csv_file, delimiter=',')] return np.asarray(data, dtype=np.float_) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument('--centroids', type=int, default=3) parser.add_argument('--iterations', type=int, default=2) parser.add_argument('--csv-file', dest='points', type=csv_records, default=generate_random()) parser.add_argument('--dry-run', type=bool, nargs='?', const=True, default=False) return parser.parse_args() def main(): args = parse_args() if args.dry_run: print('kmeans', args.points.shape, args.centroids, args.iterations) else: print('Cluster centroids are:\n', kmeans(args.points, args.centroids, args.iterations)) if __name__ == '__main__': main()
StarcoderdataPython
6436047
<reponame>SOFIE-project/SMAUG-Marketplace from flask.app import Flask from project import create_app from project.db_utils import load_server_config from dotenv import load_dotenv from os import environ load_dotenv('.env') _app: Flask = None # Singleton for Flask app def get_app() -> Flask: global _app if _app is None: _app = create_app(load_server_config()) return _app if __name__ == "__main__": app = get_app() app.run(host=environ.get('HOST', '0.0.0.0'), port=environ.get('PORT', '61234'))
StarcoderdataPython
146539
<filename>central/aplicacao/leitura.py from aplicacao.models import Leitura, Sensor, SensorGrandeza def novaLeitura(_idRede, _grandeza, _valor): try: sensor = Sensor.objects.get(idRede=_idRede) sg = SensorGrandeza.objects.get(sensor=sensor, grandeza_id=_grandeza) l = Leitura(valor=_valor, grandeza=sg.grandeza, ambiente=sensor.ambiente, sensor=sensor) l.save() except Sensor.DoesNotExist: print('ID de rede: ' + str(_idRede) + ' nao encontrado') return False except SensorGrandeza.DoesNotExist: print('A grandeza ' + str(_grandeza) + ' nao esta cadastrada no sensor ' + str(sensor)) return False except Exception as e: print(e) return False
StarcoderdataPython
11363795
<gh_stars>10-100 import scrapy class BooksSpider(scrapy.Spider): name = 'bookLinks' start_urls = ['http://books.toscrape.com'] images_data = {} def parse(self, response): # follow links to author pages for img in response.css('a::attr(href)'): yield response.follow(img, self.parse_images) def parse_images(self, response): print ("URL: " + response.request.url) def extract_with_css(query): return response.css(query).extract() yield { 'URL': response.request.url, 'image_link': extract_with_css('img::attr(src)') }
StarcoderdataPython
149028
from collections import deque from threading import Condition from typing import BinaryIO, Deque, Optional from pytils.mixins import DaemonHandler from ._base import IOReceiver, IOSender __all__ = [ 'QueuedReceiver', 'QueuedSender', ] _DEFAULT_MAX_QUEUE_SIZE = 4096 class QueuedSender(DaemonHandler, IOSender): def __init__(self, dst: BinaryIO, max_queue_size: int = _DEFAULT_MAX_QUEUE_SIZE): super().__init__(dst) self.is_closed = False self._cv = Condition() self._queue = deque(maxlen=max_queue_size) # type: Optional[Deque[bytes]] def send(self, msg: bytes): with self._cv: self._queue.append(msg) self._cv.notify() def is_active(self) -> bool: return not self.is_closed def handle_one(self): with self._cv: self._cv.wait_for(lambda: self.is_closed or self._queue) self._cv.notify() if self._queue: super().send(self._queue.popleft()) def close(self): self.is_closed = True with self._cv: self._cv.notify_all() class QueuedReceiver(DaemonHandler, IOReceiver): def __init__(self, src: BinaryIO, max_queue_size: int = _DEFAULT_MAX_QUEUE_SIZE): super().__init__(src) self.is_closed = False self._cv = Condition() self._queue = deque(maxlen=max_queue_size) # type: Optional[Deque[bytes]] def receive(self) -> Optional[bytes]: with self._cv: self._cv.wait_for(lambda: self.is_closed or self._queue) self._cv.notify() return self._queue.popleft() if self._queue else None def is_active(self) -> bool: return not self.is_closed def handle_one(self): msg = super().receive() with self._cv: if msg is not None: self._queue.append(msg) else: self.is_closed = True self._cv.notify()
StarcoderdataPython
1821138
# Auto-generated at 2021-09-27T17:12:33.436703+08:00 # from: Justice Lobby Service (1.33.0) # Copyright (c) 2018 - 2021 AccelByte Inc. All Rights Reserved. # This is licensed software from AccelByte Inc, for limitations # and restrictions contact your company contract manager. # pylint: disable=duplicate-code # pylint: disable=line-too-long # pylint: disable=missing-function-docstring # pylint: disable=missing-module-docstring # pylint: disable=too-many-arguments # pylint: disable=too-many-branches # pylint: disable=too-many-instance-attributes # pylint: disable=too-many-lines # pylint: disable=too-many-locals # pylint: disable=too-many-public-methods # pylint: disable=too-many-return-statements # pylint: disable=too-many-statements # pylint: disable=unused-import from __future__ import annotations from typing import Any, Dict, List, Optional, Tuple, Union from ....core import Model from ..models.model_localization import ModelLocalization class ModelNotificationTemplateResponse(Model): """Model notification template response Properties: template_localizations: (templateLocalizations) REQUIRED List[ModelLocalization] template_slug: (templateSlug) REQUIRED str """ # region fields template_localizations: List[ModelLocalization] # REQUIRED template_slug: str # REQUIRED # endregion fields # region with_x methods def with_template_localizations(self, value: List[ModelLocalization]) -> ModelNotificationTemplateResponse: self.template_localizations = value return self def with_template_slug(self, value: str) -> ModelNotificationTemplateResponse: self.template_slug = value return self # endregion with_x methods # region to methods def to_dict(self, include_empty: bool = False) -> dict: result = {} if hasattr(self, "template_localizations") and self.template_localizations: result["templateLocalizations"] = [i0.to_dict(include_empty=include_empty) for i0 in self.template_localizations] elif include_empty: result["templateLocalizations"] = [] if hasattr(self, "template_slug") and self.template_slug: result["templateSlug"] = str(self.template_slug) elif include_empty: result["templateSlug"] = str() return result # endregion to methods # region static methods @classmethod def create( cls, template_localizations: List[ModelLocalization], template_slug: str, ) -> ModelNotificationTemplateResponse: instance = cls() instance.template_localizations = template_localizations instance.template_slug = template_slug return instance @classmethod def create_from_dict(cls, dict_: dict, include_empty: bool = False) -> ModelNotificationTemplateResponse: instance = cls() if not dict_: return instance if "templateLocalizations" in dict_ and dict_["templateLocalizations"] is not None: instance.template_localizations = [ModelLocalization.create_from_dict(i0, include_empty=include_empty) for i0 in dict_["templateLocalizations"]] elif include_empty: instance.template_localizations = [] if "templateSlug" in dict_ and dict_["templateSlug"] is not None: instance.template_slug = str(dict_["templateSlug"]) elif include_empty: instance.template_slug = str() return instance @staticmethod def get_field_info() -> Dict[str, str]: return { "templateLocalizations": "template_localizations", "templateSlug": "template_slug", } # endregion static methods
StarcoderdataPython
11309364
import os import json from itertools import chain from functools import reduce from pathlib import Path from tqdm import tqdm import h5py as h5 import fire import numpy as np from PIL import Image, ImageDraw, ImageFont, features, ImageOps # from fontTools.ttLib import TTFont from logger import Logger from datasets import thai_decompose as thai CODE_RANGE = { 'kor': [[0x0021, 0x007E], [0x3131, 0x3163], [0xAC00, 0xD7A3]], 'thai': [[0x0E01, 0x0E3A], [0x0E3F, 0x0E5B]] } def get_code_points(language): codes = set() code_range = CODE_RANGE[language] for rangemin, rangemax in code_range: for codepoint in range(rangemin, rangemax+1): codes.add(chr(codepoint)) return codes def dump_to_hdf5(dump_path, font_name, images, chars, compression=None): with h5.File(dump_path, 'w') as f: dset = f.create_group('dataset') dset.attrs['font_name'] = font_name N = len(images) print(N, len(chars)) print(np.stack(images).shape) dset.create_dataset('images', (N, 128, 128), np.uint8, compression=compression, data=np.stack(images)) data = np.array(chars) dset.create_dataset('chars', data.shape, np.int, compression=compression, data=np.array(chars)) class UserFontProcessor(object): def __init__(self, language, resize_method="bilinear", font_size_factor=2, sample_size=128): self.logger = Logger.get(file_path='preparedata.log', level='error') self.language = language self.targetcodes = get_code_points(self.language) if resize_method == 'bilinear': self.resize_method = Image.BILINEAR else: raise ValueError('Invalid resize method: {}'.format(resize_method)) self.sample_size = sample_size self.font_size = self.sample_size * font_size_factor def ord(self, char): if self.language == 'kor': return ord(char) else: raise ValueError(self.language) def get_fontsize(self, npimg): w, h = npimg.shape wsum = npimg.sum(0) hsum = npimg.sum(1) npimg = 255 - npimg # # Binary Thresholding. threshold = 255 * 2 if not npimg.sum(): self.logger.warning( '{}, "{}" ({}) is empty (no black)'.format(font, char, self.ord(char)) ) return False wmin = np.arange(w)[wsum>threshold].min() wmax = np.arange(w)[wsum>threshold].max() hmin = np.arange(h)[hsum>threshold].min() hmax = np.arange(h)[hsum>threshold].max() return max(wmax-wmin, hmax-hmin) def center_align(self, npimg, fontmaxsize, size=128, margin=0): # remove boundaries boundaries = 5 npimg = npimg[boundaries:-(boundaries-1),boundaries:-(boundaries-1)] w, h = npimg.shape wsum = npimg.sum(0) hsum = npimg.sum(1) npimg = 255 - npimg # # Binary Thresholding. threshold = 255 * 2 if not npimg.sum(): import ipdb; ipdb.set_trace(context=15) # self.logger.warning( # '{}, "{}" ({}) is empty (no black)'.format(font, char, self.ord(char)) # ) return False wmin = np.arange(w)[wsum>threshold].min() wmax = np.arange(w)[wsum>threshold].max() hmin = np.arange(h)[hsum>threshold].min() hmax = np.arange(h)[hsum>threshold].max() npimg = 255 - npimg[hmin:hmax+1, wmin:wmax+1] canvas_size = int(fontmaxsize*(1+margin)) roi_w = wmax-wmin roi_h = hmax-hmin left_margin = (canvas_size - roi_w)//2 right_margin = canvas_size - roi_w - left_margin top_margin = (canvas_size - roi_h)//2 bottom_margin = canvas_size - roi_h - top_margin npimg = np.pad(npimg, ((top_margin, bottom_margin), (left_margin, right_margin)), 'constant', constant_values=255) img = Image.fromarray(npimg).resize((size, size), resample=self.resize_method) return img def render_center_no_offset(self, char, font, fontmaxsize, size=128, margin=0): char = self.fix_char_order_if_thai(char) size_x, size_y = font.getsize(char) offset_x, offset_y = font.getoffset(char) roi_w = size_x-offset_x roi_h = size_y-offset_y img = Image.new('L', (roi_w, roi_h), 255) draw = ImageDraw.Draw(img) draw.text((-offset_x, -offset_y), char, font=font) if img.size[0] == 0 or img.size[1] == 0: self.logger.warning( '{}, "{}" ({}) is empty (size=0)'.format(font, char, self.ord(char)) ) return False npimg = 255 - np.array(img) if not npimg.sum(): self.logger.warning( '{}, "{}" ({}) is empty (no black)'.format(font, char, self.ord(char)) ) return False wmin = npimg.sum(0).nonzero()[0].min() wmax = npimg.sum(0).nonzero()[0].max() hmin = npimg.sum(1).nonzero()[0].min() hmax = npimg.sum(1).nonzero()[0].max() npimg = 255 - npimg[hmin:hmax+1, wmin:wmax+1] canvas_size = int(fontmaxsize*(1+margin)) left_margin = (canvas_size - roi_w)//2 right_margin = canvas_size - roi_w - left_margin top_margin = (canvas_size - roi_h)//2 bottom_margin = canvas_size - roi_h - top_margin npimg = np.pad(npimg, ((top_margin, bottom_margin), (left_margin, right_margin)), 'constant', constant_values=255) img = Image.fromarray(npimg).resize((size, size), resample=self.resize_method) def dump_fonts(self, fonts, dump_dir, compression=None): self.logger.info('# Font candidates: {}'.format(len(fonts))) dump_dir = Path(dump_dir) dump_dir.mkdir(parents=True, exist_ok=True) assert dump_dir.is_dir() n_fonts = len(fonts) for i, targetfontpath in enumerate(fonts): targetfontname = os.path.basename(targetfontpath) # w/ ext font_name = os.path.basename(targetfontpath) # w/o ext hdf5_name = "{}.hdf5".format(font_name) dump_path = dump_dir / hdf5_name if dump_path.exists(): continue targetfontpath = Path(targetfontpath) targetfonts = [str(fname) for fname in targetfontpath.glob("*")] images = [] chars = [] # get max font size fontmaxsize = 0 for f in targetfonts: img = Image.open(f) npimg = np.array(ImageOps.grayscale(img)) maxsize = self.get_fontsize(npimg) fontmaxsize = max(fontmaxsize, maxsize) for f in targetfonts: img = Image.open(f) npimg = np.array(ImageOps.grayscale(img)) # img = Image.fromarray(npimg) img = self.center_align(npimg, fontmaxsize, size=128, margin=0.4) # img = Image.fromarray(npimg).resize((128, 128), resample=self.resize_method) if not img: continue char = os.path.basename(f) char = char.split('.')[0][3:] char = int(char, 16) images.append(img) chars.append(char) dump_to_hdf5(dump_path, targetfontname, images, chars, compression=compression) # self.logger.info("[{:3d}/{:3d}] {} has {} valid chars and {} images...".format( # i, n_fonts, font_name, len(images))) def main(language, fonts_dir, meta_path, dump_dir): """ Args: language: kor / thai fonts_dir: font directory that has ttf files meta_path: meta file path dump_dir: dataset dir """ fonts_dir = Path(fonts_dir) meta = json.load(open(meta_path, encoding="utf-8")) allfonts = set(meta['train']['fonts'] + meta['valid']['fonts']) fonts = [ str(fname) for fname in fonts_dir.glob("*") if fname.name in allfonts ] assert len(allfonts) == len(fonts) processor = UserFontProcessor(language) processor.dump_fonts(fonts, dump_dir) if __name__ == '__main__': fire.Fire(main)
StarcoderdataPython
11272297
#!/usr/bin/env python # -*- coding: utf-8 -*- # ************************************ # @Time : 2019/7/20 15:59 # @Author : <NAME> # @Lab : nesa.zju.edu.cn # @File : cfg_config.py # ************************************ import argparse parser = argparse.ArgumentParser(description="Multi-Level Graph Matching Network for the Graph-Graph Classification tasks") parser.add_argument('--data_dir', type=str, default='../data/CFG', help='root directory for the data set') parser.add_argument('--dataset', type=str, default="ffmpeg", help='indicate the specific data set (ffmpeg/OpenSSL)') parser.add_argument('--graph_size_min', type=int, default=3, help='min node size for one graph ') parser.add_argument('--graph_size_max', type=int, default=200, help='max node size for one graph ') parser.add_argument('--graph_init_dim', type=int, default=6, help='init feature dimension for one graph') parser.add_argument("--task", type=str, default='classification', help="classification/regression") parser.add_argument("--filters", type=str, default='100_100_100', help="filters (neurons) for graph neural networks") parser.add_argument("--conv", type=str, default='gcn', help="one kind of graph neural networks") parser.add_argument("--match", type=str, default='node-graph', help="indicating the matching method") parser.add_argument("--perspectives", type=int, default=100, help='number of perspectives for node-graph matching') parser.add_argument("--match_agg", type=str, default='bilstm', help="aggregator") parser.add_argument("--hidden_size", type=int, default=100, help='hidden size for the graph-level embedding') # global-level information parser.add_argument("--global_flag", type=lambda x: (str(x).lower() == 'true'), default='True', help="Whether use global info ") parser.add_argument("--global_agg", type=str, default='fc_max_pool', help="aggregation function for global level gcn ") # training parameters for classification tasks parser.add_argument('--epochs', type=int, default=100, help='number of training epochs') parser.add_argument("--batch_size", type=int, default=5, help="Number of graph pairs per batch.") parser.add_argument("--lr", type=float, default=0.5e-3, help="Learning rate.") parser.add_argument("--dropout", type=float, default=0.1, help="Dropout probability.") # others parser.add_argument('--gpu_index', type=str, default='1', help="gpu index to use") parser.add_argument('--log_path', type=str, default='../CFGLogs/', help='path for log file') parser.add_argument('--repeat_run', type=int, default=1, help='indicated the index of repeat run') # only test parser.add_argument('--only_test', type=lambda x: (str(x).lower() == 'true'), default='false') parser.add_argument('--model_path', type=str, default='.') cfg_args = parser.parse_args()
StarcoderdataPython
9745468
<filename>funcx_container_service/build.py import os import json import asyncio import tarfile import tempfile import docker import boto3 from pathlib import Path from datetime import datetime from docker.errors import ImageNotFound from fastapi import HTTPException from . import database, landlord from .models import ContainerSpec, ContainerState REPO2DOCKER_CMD = 'jupyter-repo2docker --no-run --image-name {} {}' SINGULARITY_CMD = 'singularity build --force {} docker-daemon://{}:latest' DOCKER_BASE_URL = 'unix://var/run/docker.sock' def s3_connection(): return boto3.client('s3') def ecr_connection(): return boto3.client('ecr') def s3_upload(s3, filename, bucket, key): s3.upload_file(filename, bucket, key) def s3_check(db, s3, bucket, container_id): try: s3.head_object(Bucket=bucket, Key=container_id) except s3.exceptions.NoSuchKey: return False return True def ecr_check(db, ecr, container_id): try: resp = ecr.list_images(repositoryName=container_id) return len(resp['imageIds']) > 0 except ecr.exceptions.RepositoryNotFoundException: return False return True def docker_name(container_id): # XXX need to add repo info here return f'funcx_{container_id}' def docker_size(container_id): docker_client = docker.APIClient(base_url=DOCKER_BASE_URL) try: inspect = docker_client.inspect_image(docker_name(container_id)) return inspect['VirtualSize'] except ImageNotFound: return None def env_from_spec(spec): out = { "name": "funcx-container", "channels": ["conda-forge"], "dependencies": ["pip"] } if spec.conda: out["dependencies"] += list(spec.conda) if spec.pip: out["dependencies"].append({"pip": list(spec.pip)}) return out async def build_spec(s3, container_id, spec, tmp_dir): if spec.apt: with (tmp_dir / 'apt.txt').open('w') as f: f.writelines([x + '\n' for x in spec.apt]) with (tmp_dir / 'environment.yml').open('w') as f: json.dump(env_from_spec(spec), f, indent=4) return await repo2docker_build(s3, container_id, tmp_dir) async def build_tarball(s3, container_id, tarball, tmp_dir): with tarfile.open(tarball) as tar_obj: await asyncio.to_thread(tar_obj.extractall, path=tmp_dir) # For some reason literally any file will pass through this tarfile check if len(os.listdir(tmp_dir)) == 0: raise HTTPException(status_code=415, detail="Invalid tarball") return await repo2docker_build(s3, container_id, tmp_dir) async def repo2docker_build(s3, container_id, temp_dir): with tempfile.NamedTemporaryFile() as out: proc = await asyncio.create_subprocess_shell( REPO2DOCKER_CMD.format(docker_name(container_id), temp_dir), stdout=out, stderr=out) await proc.communicate() out.flush() out.seek(0) await asyncio.to_thread( s3_upload, s3, out.name, 'docker-logs', container_id) if proc.returncode != 0: return None return docker_size(container_id) async def singularity_build(s3, container_id): with tempfile.NamedTemporaryFile() as sif, \ tempfile.NamedTemporaryFile() as out: proc = await asyncio.create_subprocess_shell( SINGULARITY_CMD.format(sif.name, docker_name(container_id)), stdout=out, stderr=out) await proc.communicate() await asyncio.to_thread( s3_upload, s3, out.name, 'singularity-logs', container_id) if proc.returncode != 0: return None container_size = os.stat(sif.name).st_size if container_size > 0: await asyncio.to_thread( s3_upload, s3, sif.name, 'singularity', container_id) else: container_size = None return container_size async def docker_build(s3, container, tarball): with tempfile.TemporaryDirectory() as tmp: tmp = Path(tmp) if container.specification: container_size = await build_spec( s3, container.id, ContainerSpec.parse_raw(container.specification), tmp) else: if not tarball: download = tempfile.NamedTemporaryFile() tarball = download.name await asyncio.to_thread( s3.download_file, 'repos', container.id, tarball) container_size = await build_tarball( s3, container.id, tarball, tmp) # just to be safe os.unlink(tarball) return container_size async def make_s3_url(db, s3, bucket, build_id, is_container=True): for row in db.query(database.Build).filter(database.Build.id == build_id): container = row.container break else: raise HTTPException(status_code=404) if not s3_check(db, s3, bucket, container.id): return None url = s3.generate_presigned_url( 'get_object', Params={'Bucket': bucket, 'Key': container.id}) return url async def make_s3_container_url(db, s3, bucket, build_id): for row in db.query(database.Build).filter(database.Build.id == build_id): container = row.container break else: raise HTTPException(status_code=404) if container.state == ContainerState.failed: raise HTTPException(status_code=410) elif container.state != ContainerState.ready: alt = await landlord.find_existing( db, ContainerSpec.parse_raw(container.specification)) if alt: container = alt else: return container.id, None if not s3_check(db, s3, bucket, container.id): await remove(db, container.id) return container.id, None container.last_used = datetime.now() url = s3.generate_presigned_url( 'get_object', Params={'Bucket': bucket, 'Key': container.id}) return container.id, url async def make_ecr_url(db, ecr, build_id): for row in db.query(database.Build).filter(database.Build.id == build_id): container = row.container break else: raise HTTPException(status_code=404) if container.state == ContainerState.failed: raise HTTPException(status_code=410) elif container.state != ContainerState.ready: alt = await landlord.find_existing( db, ContainerSpec.parse_raw(container.specification)) if alt: container = alt else: return container.id, None if not ecr_check(db, ecr, container.id): await remove(db, container.id) return container.id, None container.last_used = datetime.now() return container.id, docker_name(container.id) async def background_build(container_id, tarball): with database.session_scope() as db: if not await database.start_build(db, container_id): return container = db.query(database.Container).filter( database.Container.id == container_id).one() s3 = s3_connection() docker_client = docker.APIClient(base_url=DOCKER_BASE_URL) try: container.docker_size = await docker_build(s3, container, tarball) if container.docker_size is None: container.state = ContainerState.failed return container.singularity_size = await singularity_build( s3, container_id) if container.singularity_size is None: container.state = ContainerState.failed return await asyncio.to_thread(docker_client.push, docker_name(container_id)) container.state = ContainerState.ready finally: container.builder = None await landlord.cleanup(db) async def remove(db, container_id): container = db.query(database.Container).filter( database.Container.id == container_id).one() container.state = ContainerState.pending container.builder = None container.docker_size = None container.singularity_size = None s3 = s3_connection() ecr = ecr_connection() await asyncio.to_thread(s3.delete_object, {'Bucket': 'singularity', 'Key': container_id}) await asyncio.to_thread(s3.delete_object, {'Bucket': 'singularity-logs', 'Key': container_id}) await asyncio.to_thread(s3.delete_object, {'Bucket': 'docker-logs', 'Key': container_id}) try: await asyncio.to_thread(ecr.delete_repository, repositoryName=container_id, force=True) except ecr.exceptions.RepositoryNotFoundException: pass
StarcoderdataPython
197734
<reponame>warrench/qiskit-metal # -*- coding: utf-8 -*- # This code is part of Qiskit. # # (C) Copyright IBM 2017, 2021. # # This code is licensed under the Apache License, Version 2.0. You may # obtain a copy of this license in the LICENSE.txt file in the root directory # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. # # Any modifications or derivative works of this code must retain this # copyright notice, and modified files need to carry a notice indicating # that they have been altered from the originals. """QRenderer base class.""" import logging import inspect from copy import deepcopy from typing import TYPE_CHECKING from typing import List, Tuple, Union, Any, Iterable from typing import Dict as Dict_ from typing import List, Tuple, Union from qiskit_metal.designs import is_design from qiskit_metal.qgeometries import QGeometryTables from ... import Dict __all__ = ['QRenderer'] if TYPE_CHECKING: # For linting typechecking, import modules that can't be loaded here under normal conditions. # For example, I can't import QDesign, because it requires Qrenderer first. We have the # chicken and egg issue. from qiskit_metal.designs import QDesign class QRenderer(): """Abstract base class for all Renderers of Metal designs and their components and qgeometry. Handles: :: designs components qgeometry paths polys chips """ name = 'base' # overwrite this! """Name""" __loaded_renderers__ = set() __instantiated_renderers__ = dict() # overwrite this to add element extensions: see ELEMENT_COLUMNS # should be dict of dict with keys as element type, which contain (name, dype) pairs # e.g. element_extensions = dict( # base=dict(color=str, klayer=int), # path=dict(thickness=float, material=str, perfectE=bool), # poly=dict(thickness=float, material=str), ) element_extensions = dict() """Element extensions dictionary""" # TODO: To add: default parameters for the renderer for component element values. element_table_data = dict() @classmethod def load(cls): """Load the renderer and register all its extensions. Only performed once. Once complete, the renderer is added to the class attribute '__loaded_renderers__' of QRenderer Returns: bool: True if success, otherwise throws an error. """ # Check name name = cls.name if name in QRenderer.__loaded_renderers__: pass # print(f'Warning: Renderer name={name}, class={cls} already loaded. Doing nothing.') cls.populate_element_extensions() # Add element extensions # see docstring for QRenderer.element_extensions QGeometryTables.add_renderer_extension(cls.name, cls.element_extensions) # Moved to init for each renderer. # Add component extensions # to be used in the creation of default params for component qgeometry #raise NotImplementedError() # Finish and register officially as ready to use. QRenderer.__loaded_renderers__.add(name) # Reset the table for the next QRenderer. for table in cls.element_table_data.keys(): cls.element_extensions.pop(table, None) return True @classmethod def populate_element_extensions(cls): """Populate cls.element_extensions which will be used to create columns for tables in QGeometry tables. The structure of cls.element_table_data should be same as cls.element_extensions. """ for table, a_dict in cls.element_table_data.items(): cls.element_extensions[table] = dict() for col_name, col_value in a_dict.items(): # type will only tell out about the base class, won't tell you about the inheritance. cls.element_extensions[table][col_name] = type(col_value) @staticmethod def get_renderer(name: str): """Returns an already loaded and instantiated renderer. Args: name (str): rendering name Returns: QRenderer: Renderer with the given name """ if not name in QRenderer.__loaded_renderers__: print( 'ERROR: The renderer {name} has not yet been loaded. Please use the load function!' ) if not name in QRenderer.__instantiated_renderers__: print( 'ERROR: The renderer {name} has not yet been instantiated. Please instantiate the class!' ) return QRenderer.__instantiated_renderers__[name] def __init__(self, design: 'QDesign', initiate=True, render_template: Dict = None, render_options: Dict = None): """ Args: design (QDesign): The design initiate (bool): True to initiate the renderer. Defaults to True. render_template (Dict, optional): Typically used by GUI for template options for GDS. Defaults to None. render_options (Dict, optional): Used to override all options. Defaults to None. """ # TODO: check that the renderer has been loaded with load_renderer self.status = 'Not Init' assert is_design( design), "Erorr, for the design argument you must provide a\ a child instance of Metal QDesign class." self._design = design self.initiated = False if initiate: self.initate() # Register as an instantiated renderer. QRenderer.__instantiated_renderers__[self.name] = self # Options self._options = Dict() self.update_options(render_options=render_options, render_template=render_template) self.status = 'Init Completed' @property def options(self) -> Dict: """Options for the QRenderer.""" return self._options @property def design(self) -> 'QDesign': """Return a reference to the parent design object.""" return self._design @property def logger(self) -> logging.Logger: """Returns the logger.""" return self._design.logger @classmethod def _gather_all_children_default_options(cls) -> Dict: """From the base class of QRenderer, traverse the child classes to gather the .default_options for each child class. Note: If keys are the same for a child and grandchild, the grandchild will overwrite the child init method. Returns: Dict: Options from all children. """ options_from_children = Dict() parents = inspect.getmro(cls) # QRenderer is not expected to have default_options dict to add to QRenderer class. for child in parents[len(parents) - 2::-1]: # There is a developer agreement so the defaults for a renderer will be in a dict named default_options. if hasattr(child, 'default_options'): options_from_children = { **options_from_children, **child.default_options } return options_from_children @classmethod def _get_unique_class_name(cls) -> str: """Returns unique class name based on the module. Returns: str: Example: 'qiskit_metal.renders.renderer_gds.gds_renderer.QGDSRenderer' """ return f'{cls.__module__}.{cls.__name__}' @classmethod def _register_class_with_design(cls, design: 'QDesign', template_key: str, render_template: Dict): """Init function to register a renderer class with the design when first instantiated. Registers the renderer's template options. Args: design (QDesign): The parent design template_key (str): Key to use render_template (dict): template of render to copy """ # do not overwrite if template_key not in design.template_options: if not render_template: render_template = cls._gather_all_children_default_options() design.template_options[template_key] = deepcopy(render_template) @classmethod def get_template_options(cls, design: 'QDesign', render_template: Dict = None, logger_: logging.Logger = None, template_key: str = None) -> Dict: """Creates template options for the Metal QRenderer class required for the class to function, based on the design template; i.e., be created, made, and rendered. Provides the blank option structure required. The options can be extended by plugins, such as renderers. Args: design (QDesign): A design class. render_template (Dict, optional): Template options to overwrite the class ones. Defaults to None. logger_ (logging.Logger, optional): A logger for errors. Defaults to None. template_key (str, optional): The design.template_options key identifier. If None, then use _get_unique_class_name(). Defaults to None. Returns: Dict: Dictionary of renderer's default options based on design.template_options. """ # get key for templates if template_key is None: template_key = cls._get_unique_class_name() if template_key not in design.template_options: # Registers the renderer's template options. cls._register_class_with_design(design, template_key, render_template) # Only log warning, if template_key not registered within design. if template_key not in design.template_options: logger_ = logger_ or design.logger if logger_: logger_.error( f'ERROR in creating renderer {cls.__name__}!\nThe default ' f'options for the renderer class {cls.__name__} are missing' ) # Specific object render template options options = deepcopy(Dict(design.template_options[template_key])) return options def parse_value(self, value: Union[Any, List, Dict, Iterable]) -> Any: """Same as design.parse_value. See design for help. Returns: object: Parsed value of input. """ return self.design.parse_value(value) def update_options(self, render_options: Dict = None, render_template: Dict = None): """If template options has not been set for this renderer, then gather all the default options for children and add to design. The GUI would use this to store the template options. Then give the template options to render to store in self.options. Then user can over-ride the render_options. Args: render_options (Dict, optional): If user wants to over-ride the template options. Defaults to None. render_template (Dict, optional): All the template options for each child. Defaults to None. """ self.options.update( self.get_template_options(self.design, render_template=render_template)) if render_options: self.options.update(render_options) def add_table_data_to_QDesign(self, class_name: str): """During init of renderer, this needs to happen. In particular, each renderer needs to update custom columns and values within QDesign. Args: class_name (str): Name from cls.name for each renderer. """ status = set() if not isinstance(QRenderer.name, str): self.logger.warning( f'In add_table_data_to_QDesign, cls.str={QRenderer.name} is not a str.' ) return for table, a_dict in self.element_table_data.items(): for col_name, col_value in a_dict.items(): status = self.design.add_default_data_for_qgeometry_tables( table, class_name, col_name, col_value) if 5 not in status: self.logger.warning( f'col_value={col_value} not added to QDesign') def initate(self, re_initiate=False): """Call any initiations steps required to be performed a single time before rendering, such as connecting to some API or COM, or importing the correct material libraries, etc. Overwrite `initiate_renderer`. Args: re_initiate (bool) : If False will only apply this function once. If True, will re-apply. Defaults to False. Returns: bool: was a re_initiation applied or not """ if not re_initiate: if self.initiated: return False self.initiated = True self._initate_renderer() return True def get_unique_component_ids( self, highlight_qcomponents: Union[list, None] = None) -> Tuple[list, int]: """Confirm the list doesn't have names of components repeated. Confirm that the name of component exists in QDesign. If QDesign doesn't contain any component, or if all components in QDesign are found in highlight_qcomponents, return an empty list; otherwise return a list of unique components to be sent to the renderer. The second returned item, an integer, specifies which of these 3 cases applies. Args: highlight_qcomponents (Union[list, None], optional): Components to render. Defaults to None. Returns: Tuple[list, int]: Empty or partial list of components in QDesign. """ highlight_qcomponents = highlight_qcomponents if highlight_qcomponents else [] unique_qcomponents = set(highlight_qcomponents) for qcomp in unique_qcomponents: if qcomp not in self.design.name_to_id: self.logger.warning( f'The component={qcomp} in highlight_qcomponents not' ' in QDesign.') return [], 2 # Invalid if len(unique_qcomponents) in (0, len(self.design.components)): return [], 1 # Everything selected return [self.design.name_to_id[elt] for elt in unique_qcomponents ], 0 # Subset selected def _initate_renderer(self): """Call any initiations steps required to be performed a single time before rendering, such as connecting to some API or COM, or importing the correct material libraries, etc. Returns: bool: Always returns True """ return True def post_render(self): """Any calls that one may want to make after a rendering is complete.""" pass def render_design(self): """Renders all design chips and components.""" self.initate() self.render_chips() self.render_components() # ... def render_chips(self, all_chips): """Render all chips of the design. Calls render_chip for each chip. Args: all_chips (list): All chip names to render. Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_chips' is # abstract in class 'QRenderer' but is not overridden, # have this method do something. type(all_chips) raise NotImplementedError() def render_chip(self, name): """Render the given chip. Args: name (str): Chip to render. Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_chip' is # abstract in class 'QRenderer' but is not overridden, # have this method do something. type(name) raise NotImplementedError() def render_components(self, selection=None): """Render all components of the design. If selection is none, then render all components. Args: selection (QComponent): Component to render. Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_component' # is abstract in class 'QRenderer' but is not overridden, # have this method do something. type(selection) raise NotImplementedError() def render_component(self, qcomponent): """Render the specified qcomponent. Args: qcomponent (QComponent): QComponent to render. Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_component' # is abstract in class 'QRenderer' but is not overridden, # have this method do something. type(qcomponent) raise NotImplementedError() def render_element(self, element): """Render the specified element. Args: element (Element): Element to render Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_element' is # abstract in class 'QRenderer' but is not overridden, # have this method do something. type(element) raise NotImplementedError() # if isinstance(element, path): # self.render_element_path(element) # elif isinstance(element, poly): # self.render_element_poly(element) # else: # self.logger.error('RENDERER ERROR: Unknown element {element}') def render_element_path(self, path): """Render an element path. Args: path (str): Path to render. Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_element_path' # is abstract in class 'QRenderer' but is not overridden, # have this method do something. type(path) raise NotImplementedError() def render_element_poly(self, poly): """Render an element poly. Args: poly (Poly): Poly to render Raises: NotImplementedError: Function not written yet """ # To avoid linting message in a subclass: Method 'render_element_poly' # is abstract in class 'QRenderer' but is not overridden # have this method do something. type(poly) raise NotImplementedError()
StarcoderdataPython
4880517
<filename>scripts/game_handler.py<gh_stars>0 #game_handler.py global game global board def printGame(): global game global board wasSeparated=[] for _ in range(len(board[0])): wasSeparated.append(False) # loop over all rows of board for rownum in range(len(board)): gamerow=game[rownum] boardrow=board[rownum] printstr = "" topstr = "" lastval = "0" # for every char from board list figure out if vertical seperation is needed -> insert "|" otherwise space for valuenum in range(len(boardrow)): boardvalue=boardrow[valuenum] gamevalue=gamerow[valuenum] lastSeparated=False if(boardvalue==lastval): printstr += " "+gamevalue else: printstr += "|"+gamevalue lastSeparated=True lastval=boardvalue #generate the row above this row by combining "-" and "+" to fit to grid if(rownum==0): if("0"==boardvalue): if(wasSeparated[valuenum] or lastSeparated): topstr+="+ " else: topstr+=" " else: if(wasSeparated[valuenum] or lastSeparated): topstr+="+—" else: topstr+="——" else: if(board[rownum-1][valuenum]==boardvalue): if(wasSeparated[valuenum] or lastSeparated): topstr+="+ " else: topstr+=" " else: if(wasSeparated[valuenum] or lastSeparated): topstr+="+—" else: topstr+="——" wasSeparated[valuenum]=lastSeparated print(topstr) print(printstr) # function for importing .board files def readBoard(boardfilepath): global game global board board = [] game = [] boardfile = open(boardfilepath,'r') # loop over rows for rowdata in boardfile.readlines(): # row for board list row=[] # row for game list gamerow = [] # append 0 for to make printing easier(cf. printBoard), does not affect game rowdata+="0" # convert chars from file into 2d board list and create same size empty game list for char in rowdata: if(not char=='\n'): row.append(char) gamerow.append(" ") # append lists to board and game list board.append(row) game.append(gamerow) lastrow= [] # add 0s for easier printing at the bottom for _ in range(len(row)): lastrow.append('0') board.append(lastrow) game.append(gamerow) # function to modify game list to reflect a move made by a player def makeMove(player,move): global game global board move=(int(move[0]),int(move[1])) if(game[move[1]][move[0]]==" " and (not board[move[1]][move[0]]=="0")): if(player=="max"): game[move[1]][move[0]]="a" else: game[move[1]][move[0]]="i" # undo move -> no need to copy game list every time it is modified def undoMove(move): global game global board move=(int(move[0]),int(move[1])) game[move[1]][move[0]]=" " # generate a list of lists containing the coordinates of the spots corresponding to the seperate plates def generateTilesInfo(): global board tiles = [] knownValues=[] for rownum in range(len(board)): row = board[rownum] for valuenum in range(len(row)): value=row[valuenum] if(not value=="0"): isKnown=False for testVal in knownValues: if(testVal==value): isKnown=True if(not isKnown): tile = [] for testrownum in range(len(board)): testrow = board[testrownum] for testvaluenum in range(len(testrow)): testvalue=testrow[testvaluenum] if(testvalue==value): tile.append((testvaluenum,testrownum)) tiles.append(tile) knownValues.append(value) return tiles # count points based on tilesInfo retrieved from above function def countPoints(tilesInfo): global game count=0 for tile in tilesInfo: tilecount=0 for x,y in tile: x,y = int(x),int(y) if(game[y][x]=="a"): tilecount+=1 elif(game[y][x]=="i"): tilecount-=1 if(tilecount>0): count+=len(tile) elif(tilecount<0): count-=len(tile) return count # get all possible moves given the last two moves and the game list def possibleMoves(secLastX,secLastY,lastX,lastY): global game global board moves = [] secLastX,secLastY,lastX,lastY=int(secLastX),int(secLastY),int(lastX),int(lastY) for testX in range(len(game[0])): if(game[lastY][testX]==" "): if(not board[lastY][testX]=="0"): if(not board[lastY][lastX]==board[lastY][testX]): if(not board[secLastY][secLastX]==board[lastY][testX]): moves.append((testX,lastY)) for testY in range(len(game)): if(game[testY][lastX]==" "): if(not board[testY][lastX]=="0"): if(not board[lastY][lastX]==board[testY][lastX]): if(not board[secLastY][secLastX]==board[testY][lastX]): moves.append((lastX,testY)) return moves
StarcoderdataPython
157246
<filename>riko/modules/yql.py<gh_stars>0 # -*- coding: utf-8 -*- # vim: sw=4:ts=4:expandtab """ riko.modules.yql ~~~~~~~~~~~~~~~~ Provides functions for fetching the result of a [YQL](http://developer.yahoo.com/yql) query. YQL exposes a SQL-like SELECT syntax that is both familiar to developers and expressive enough for getting the right data. To use YQL, simply enter a YQL statement, e.g., `select * from feed where url='http://digg.com/rss/index.xml'`. To drill down further into the result set you can use either the sub-element module or projection in a YQL statement. For example: `select title from feed where url='http://digg.com/rss/index.xml'` returns only the titles from the Digg RSS feed. The YQL module has 2 viewing modes: Results only or Diagnostics and results. Diagnostics provides additional data such as: count, language type and more. A more complex query that finds Flickr photos tagged "fog" in San Francisco: select * from flickr.photos.info where photo_id in ( select id from flickr.photos.search where woe_id in ( select woeid from geo.places where text="san francisco, ca") and tags = "fog") Examples: basic usage:: >>> from riko import get_path >>> from riko.utils import fetch, get_abspath >>> from riko.modules.yql import pipe >>> >>> feed = 'http://feeds.feedburner.com/TechCrunch/' >>> conf = {'query': "select * from feed where url='%s'" % feed} >>> url = get_abspath(get_path('yql.xml')) >>> >>> with fetch(url) as f: ... next(pipe(conf=conf, response=f))['title'] 'Bring pizza home' Attributes: OPTS (dict): The default pipe options DEFAULTS (dict): The default parser options """ from __future__ import ( absolute_import, division, print_function, unicode_literals) import pygogo as gogo from builtins import * # noqa pylint: disable=unused-import from . import processor from riko.parsers import xml2etree, etree2dict from riko.utils import fetch from riko.bado import coroutine, return_value, util, requests as treq OPTS = {'ftype': 'none'} # we use the default format of xml since json looses some structure DEFAULTS = {'url': 'http://query.yahooapis.com/v1/public/yql', 'debug': False} logger = gogo.Gogo(__name__, monolog=True).logger @coroutine def async_parser(_, objconf, skip=False, **kwargs): """ Asynchronously parses the pipe content Args: _ (None): Ignored objconf (obj): The pipe configuration (an Objectify instance) skip (bool): Don't parse the content kwargs (dict): Keyword arguments Kwargs: assign (str): Attribute to assign parsed content (default: content) stream (dict): The original item Returns: Deferred: twisted.internet.defer.Deferred stream Examples: >>> from six.moves.urllib.request import urlopen >>> from riko import get_path >>> from riko.bado import react >>> from riko.bado.mock import FakeReactor >>> from riko.utils import get_abspath >>> from meza.fntools import Objectify >>> >>> feed = 'http://feeds.feedburner.com/TechCrunch/' >>> url = 'http://query.yahooapis.com/v1/public/yql' >>> query = "select * from feed where url='%s'" % feed >>> f = urlopen(get_abspath(get_path('yql.xml'))) >>> >>> def run(reactor): ... callback = lambda x: print(next(x)['title']) ... conf = {'query': query, 'url': url, 'debug': False} ... objconf = Objectify(conf) ... kwargs = {'stream': {}, 'response': f} ... d = async_parser(None, objconf, **kwargs) ... d.addCallbacks(callback, logger.error) ... d.addCallback(lambda _: f.close()) ... return d >>> >>> try: ... react(run, _reactor=FakeReactor()) ... except SystemExit: ... pass ... finally: ... f.close() Bring pizza home """ if skip: stream = kwargs['stream'] else: f = kwargs.get('response') if not f: params = {'q': objconf.query, 'diagnostics': objconf.debug} r = yield treq.get(objconf.url, params=params) f = yield treq.content(r) tree = yield util.xml2etree(f) results = next(tree.getElementsByTagName('results')) stream = map(util.etree2dict, results.childNodes) return_value(stream) def parser(_, objconf, skip=False, **kwargs): """ Parses the pipe content Args: _ (None): Ignored objconf (obj): The pipe configuration (an Objectify instance) skip (bool): Don't parse the content kwargs (dict): Keyword arguments Kwargs: assign (str): Attribute to assign parsed content (default: content) stream (dict): The original item Returns: Iter[dict]: The stream of items Examples: >>> from riko import get_path >>> from riko.utils import get_abspath >>> from meza.fntools import Objectify >>> >>> feed = 'http://feeds.feedburner.com/TechCrunch/' >>> url = 'http://query.yahooapis.com/v1/public/yql' >>> query = "select * from feed where url='%s'" % feed >>> conf = {'query': query, 'url': url, 'debug': False} >>> objconf = Objectify(conf) >>> url = get_abspath(get_path('yql.xml')) >>> >>> with fetch(url) as f: ... kwargs = {'stream': {}, 'response': f} ... result = parser(None, objconf, **kwargs) >>> >>> next(result)['title'] 'Bring pizza home' """ if skip: stream = kwargs['stream'] else: f = kwargs.get('response') if not f: params = {'q': objconf.query, 'diagnostics': objconf.debug} if objconf.memoize and not objconf.cache_type: objconf.cache_type = 'auto' f = fetch(params=params, **objconf) # TODO: consider paging for large result sets root = xml2etree(f).getroot() results = root.find('results') stream = map(etree2dict, results) return stream @processor(DEFAULTS, isasync=True, **OPTS) def async_pipe(*args, **kwargs): """A source that asynchronously fetches the content of a given website as DOM nodes or a string. Args: item (dict): The entry to process kwargs (dict): The keyword arguments passed to the wrapper Kwargs: conf (dict): The pipe configuration. Must contain the key 'query'. May contain the keys 'url' or 'debug'. url (str): The API to query (default: 'http://query.yahooapis.com/v1/public/yql') query (str): The API query debug (bool): Enable diagnostics mode (default: False) assign (str): Attribute to assign parsed content (default: content) response (str): The API query response (used for offline testing) Returns: dict: twisted.internet.defer.Deferred stream of items Examples: >>> from six.moves.urllib.request import urlopen >>> from riko import get_path >>> from riko.bado import react >>> from riko.bado.mock import FakeReactor >>> from riko.utils import get_abspath >>> >>> feed = 'http://feeds.feedburner.com/TechCrunch/' >>> query = "select * from feed where url='%s'" % feed >>> f = urlopen(get_abspath(get_path('yql.xml'))) >>> >>> def run(reactor): ... callback = lambda x: print(next(x)['title']) ... d = async_pipe(conf={'query': query}, response=f) ... d.addCallbacks(callback, logger.error) ... d.addCallback(lambda _: f.close()) ... return d >>> >>> try: ... react(run, _reactor=FakeReactor()) ... except SystemExit: ... pass ... finally: ... f.close() Bring pizza home """ return async_parser(*args, **kwargs) @processor(DEFAULTS, **OPTS) def pipe(*args, **kwargs): """A source that fetches the result of a given YQL query. Args: item (dict): The entry to process kwargs (dict): The keyword arguments passed to the wrapper Kwargs: conf (dict): The pipe configuration. Must contain the key 'query'. May contain the keys 'url' or 'debug'. url (str): The API to query (default: 'http://query.yahooapis.com/v1/public/yql') query (str): The API query debug (bool): Enable diagnostics mode (default: False) assign (str): Attribute to assign parsed content (default: content) response (str): The API query response (used for offline testing) Yields: dict: an item of the result Examples: >>> from riko import get_path >>> from riko.utils import get_abspath >>> >>> feed = 'http://feeds.feedburner.com/TechCrunch/' >>> conf = {'query': "select * from feed where url='%s'" % feed} >>> url = get_abspath(get_path('yql.xml')) >>> >>> with fetch(url) as f: ... result = next(pipe(conf=conf, response=f)) ... sorted(result.keys()) ['alarmTime', 'begin', 'duration', 'place', 'title', 'uid'] >>> result['title'] 'Bring pizza home' """ return parser(*args, **kwargs)
StarcoderdataPython
6554636
<reponame>cjolowicz/cutty<filename>src/cutty/filesystems/adapters/git.py """Git-based filesystem using libgit2.""" import pathlib from collections.abc import Iterator import pygit2 from cutty.filesystems.domain.filesystem import Access from cutty.filesystems.domain.nodefs import FilesystemNode from cutty.filesystems.domain.nodefs import NodeFilesystem from cutty.filesystems.domain.purepath import PurePath class GitFilesystemNode(FilesystemNode): """A node in a git filesystem.""" def __init__(self, node: pygit2.Object) -> None: """Initialize.""" self.node = node def is_dir(self) -> bool: """Return True if the node is a directory.""" return isinstance(self.node, pygit2.Tree) def is_file(self) -> bool: """Return True if the node is a regular file.""" return ( isinstance(self.node, pygit2.Blob) and self.node.filemode != pygit2.GIT_FILEMODE_LINK ) def is_symlink(self) -> bool: """Return True if the node is a symbolic link.""" return ( isinstance(self.node, pygit2.Blob) and self.node.filemode == pygit2.GIT_FILEMODE_LINK ) def read_bytes(self) -> bytes: """Return the file contents.""" data: bytes = self.node.data return data def read_text(self) -> str: """Return the file contents.""" return self.read_bytes().decode() def readlink(self) -> PurePath: """Return the link target.""" target: str = self.node.data.decode(errors="surrogateescape") parts = pathlib.PurePosixPath(target).parts return PurePath(*parts) def iterdir(self) -> Iterator[str]: """Iterate over the directory entries.""" for entry in self.node: yield entry.name def __truediv__(self, entry: str) -> FilesystemNode: """Return the given directory entry.""" try: return GitFilesystemNode(self.node / entry) except KeyError: raise FileNotFoundError() def access(self, mode: Access) -> bool: """Return True if the user can access the node.""" return ( Access.EXECUTE not in mode or self.node.filemode == pygit2.GIT_FILEMODE_BLOB_EXECUTABLE ) class GitFilesystem(NodeFilesystem): """Git-based filesystem.""" def __init__(self, repository: pathlib.Path, ref: str = "HEAD") -> None: """Inititalize.""" repo = pygit2.Repository(repository) tree = repo.revparse_single(ref).peel(pygit2.Tree) self.root = GitFilesystemNode(tree)
StarcoderdataPython
12829869
<filename>slurminade/conf.py """ This file saves the default configuration for slurm. """ import json import os.path from pathlib import Path def _load_default_conf(): default_conf_file = os.path.join(Path.home(), ".slurminade_default.json") try: if os.path.isfile(default_conf_file): with open(default_conf_file, "r") as f: return json.load(f) else: return {} except Exception as e: print( f"slurminade could not open default configuration {default_conf_file}!\n{str(e)}" ) return {} __default_conf = _load_default_conf() def update_default_configuration(conf=None, **kwargs): if conf: __default_conf.update(conf) if kwargs: __default_conf.update(kwargs) def set_default_configuration(conf=None, **kwargs): __default_conf = {} update_default_configuration(conf, **kwargs) def _get_conf(conf=None): conf = conf if conf else {} conf_ = __default_conf.copy() conf_.update(conf) return conf_
StarcoderdataPython
3217717
<reponame>VisualComputingInstitute/CROWDBOT_perception<gh_stars>1-10 from .coco_stuff_dataset import make_coco_stuff from .coco_panoptic_dataset import make_coco_panoptic
StarcoderdataPython
5109431
#!/usr/bin/env python3 """Corpus reader for the Hungarian Webcorpus.""" from __future__ import absolute_import, division, print_function from contextlib import contextmanager from html.parser import HTMLParser # Needs future, too import io import itertools import re import tarfile from unicodedata import category from emLam.corpus.corpus_base import RawCorpus from emLam.utils import openall class Webcorpus(RawCorpus): NAME = 'hu_webcorpus' DESCRIPTION = 'Hungarian Webcorpus' rename_p = re.compile(r'\.tar(\.gz)$') def __init__(self, max_lines, compressed=True, max_entities=0.2): super(Webcorpus, self).__init__(max_lines) self.compressed = compressed self.max_entities = max_entities self.html_parser = HTMLParser() @contextmanager def instream(self, input_file): if self.compressed: input_stream = self.enumerate_tar else: input_stream = self.enumerate_file inf = itertools.chain.from_iterable(input_stream(input_file)) yield self.__read_sentence(inf) def outstream(self, output_file): """Removes the 'tar' from the name of the output file, if compressed.""" if self.compressed: output_file = self.rename_p.sub(r'\1', output_file) return super(Webcorpus, self).outstream(output_file) # def files_to_streams(self, input_file, output_file): # """ # Reads input_file according to the corpus format (compressed / not). In # the former case, modifies the output_file name so that the '.tar' part # is not included in it. # """ # if self.compressed: # output_file = self.rename_p.sub(r'\1', output_file) # input_stream = self.enumerate_tar # else: # input_stream = self.enumerate_file # with openall(output_file, 'wt', encoding='utf-8') as outf: # inf = itertools.chain.from_iterable(input_stream(input_file)) # yield self.__read_sentence(inf), outf def __read_sentence(self, input_stream): """Returns a sentence a time, cleaned of HTML entities.""" for line in input_stream: if line.startswith(u'<s>'): text = line[3:].strip() orig_text = text amps = text.count(u'&') if amps > 0: text = self.html_parser.unescape(text) entities = amps - text.count(u'&') self.logger.debug( u'Entities: {}, amps: {}, len: {}; ratio: {} => {}: {} ({})'.format( entities, amps, len(text), entities / float(len(text)), entities / float(len(text)) > self.max_entities, text.strip(), orig_text.strip()).encode('utf-8')) if entities / float(len(text)) > self.max_entities: # Skip sentence if too many entities (i.e. foreign script) continue clean_text = self.__clean_text(text) if clean_text != text: self.logger.debug(u'Filtered text: `{}` -> `{}`'.format( text, clean_text)) yield clean_text + u'\n' @staticmethod def __clean_text(text): """Cleans the text of all unicode shenanigans.""" clean_text = [] for c in text.replace(u'\t', u' '): # Get rid of extended Unicode characters, which are most likely # there by accident if ord(c) > 65535: continue cat = category(c) # Control characters are also bugs in the corpus if cat.startswith('C'): continue clean_text.append(c if not cat.startswith('Z') else ' ') return u''.join(clean_text) @staticmethod def enumerate_tar(archive): if not tarfile.is_tarfile(archive): return # TODO with tarfile.open(archive) as tf: for member in tf.getmembers(): if member.isfile(): member_f = tf.extractfile(member.name) # This should work, but alas, only from Python 3.3 # yield io.TextIOWrapper(member_f, encoding='iso-8859-2') yield io.TextIOWrapper(io.BytesIO(member_f.read()), encoding='iso-8859-2') yield [u'<s>\n'] # To separate files member_f.close() @staticmethod def enumerate_file(corp_file): with openall(corp_file, encoding='iso-8859-2') as inf: yield inf
StarcoderdataPython
8196141
# Write a program that read two numbers. # Print the first for the second multiplication result.Utilize only the operators of sum and subtration to calculate the result. # Remember that we can understand the multiplication of two numbers as the sucessive sums of one of them.So, 4 x 5 = 5 + 5 + 5 + 5 + 5 = 4 + 4 + 4 + 4 + 4 x=int(input("Type the first number: ")) y=int(input("Type the second number: ")) i=0 j=0 print(f"{x} x {y} =",end=" ") if i+1==y: print(x,end=" ") i=i+10 while i< y : #print(f"{x}X{y}={(x,end="+")}") print(x,end=" + ") i=i+1 if i+1==(y): print(x,end=" ") i=i+1 print("=",end=" ") if j+1==x: print(y,end=" ") j=j+10 while j< x: print(y,end=" + ") j=j+1 if j+1==(x): print(y,end=" ") j=j+1
StarcoderdataPython