id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
16358
from django.apps import AppConfig from django.db.models.signals import post_migrate from django.utils.translation import gettext_lazy as _ class SitesConfig(AppConfig): name = 'src.base' verbose_name = _("Modulo de Frontend")
StarcoderdataPython
12813584
import sys from pony_barn import client as pony from base import GitBuild class PonyBuild(GitBuild): def __init__(self): super(PonyBuild, self).__init__() self.name = "surlex" self.repo_url = 'git://github.com/codysoyland/surlex.git' if __name__ == '__main__': build = PonyBuild() sys.exit(build.execute(sys.argv))
StarcoderdataPython
93840
<reponame>TakesxiSximada/dumpcar<filename>scripts/get-db-raw-snapshot-mysql.py import getpass import argparse import subprocess parser = argparse.ArgumentParser() parser.add_argument('host') parser.add_argument('user') parser.add_argument('db') args = parser.parse_args() child = subprocess.run('mysqldump -h {} -u {} {}'.format( args.host, args.user, args.db), shell=True) child.wait() child = subprocess.run('mysqldump -h {} -u {} {}'.format( args.host, args.user, args.db), shell=True) child.wait()
StarcoderdataPython
3422660
<reponame>baiyanquan/k8sTools # -*- coding: utf-8 -* class K8sRepository(object): def __init__(self): pass @staticmethod def create_k8s_namespace_view_model(result): success = [] try: for each_host in result['success']: for each_resource in result['success'][each_host.encode('raw_unicode_escape')]['resources']: temp = dict() temp['creationTimestamp'] = each_resource['metadata']['creationTimestamp'] temp['name'] = each_resource['metadata']['name'] temp['uid'] = each_resource['metadata']['uid'] success.append(temp) except: success = {} result['detail'] = result['success'] result['success'] = success return result @staticmethod def create_k8s_node_view_model(result): success = [] try: for each_host in result['success']: for each_resource in result['success'][each_host.encode('raw_unicode_escape')]['resources']: temp = dict() temp['creationTimestamp'] = each_resource['metadata']['creationTimestamp'] temp['labels'] = each_resource['metadata']['labels']['kubernetes.io/role'] temp['name'] = each_resource['metadata']['name'] temp['uid'] = each_resource['metadata']['uid'] success.append(temp) except: success = {} result['detail'] = result['success'] result['success'] = success return result @staticmethod def create_k8s_svc_view_model(result): success = [] try: for each_host in result['success']: for each_resource in result['success'][each_host.encode('raw_unicode_escape')]['resources']: temp = dict() temp['creationTimestamp'] = each_resource['metadata']['creationTimestamp'] temp['labels'] = each_resource['metadata']['labels'] temp['name'] = each_resource['metadata']['name'] temp['namespace'] = each_resource['metadata']['namespace'] temp['clusterIP'] = each_resource['spec']['clusterIP'] success.append(temp) except: success = {} result['detail'] = result['success'] result['success'] = success return result @staticmethod def create_k8s_deployment_view_model(result): success = [] try: for each_host in result['success']: for each_resource in result['success'][each_host.encode('raw_unicode_escape')]['resources']: temp = dict() temp['creationTimestamp'] = each_resource['metadata']['creationTimestamp'] temp['labels'] = each_resource['metadata']['labels'] temp['name'] = each_resource['metadata']['name'] temp['namespace'] = each_resource['metadata']['namespace'] temp['container_spec'] = each_resource['spec']['template']['spec']['containers'] success.append(temp) except: success = {} result['detail'] = result['success'] result['success'] = success return result @staticmethod def create_k8s_pods_view_model(result): success = [] try: for each_host in result['success']: for each_resource in result['success'][each_host.encode('raw_unicode_escape')]['resources']: temp = dict() temp['creationTimestamp'] = each_resource['metadata']['creationTimestamp'] temp['labels'] = each_resource['metadata']['labels'] temp['name'] = each_resource['metadata']['name'] temp['namespace'] = each_resource['metadata']['namespace'] temp['nodeName'] = each_resource['spec']['nodeName'] temp['hostIP'] = each_resource['status']['hostIP'] temp['podIP'] = each_resource['status']['podIP'] success.append(temp) except: success = {} result['detail'] = result['success'] result['success'] = success return result
StarcoderdataPython
1651285
<reponame>DiceNameIsMy/recruiting<gh_stars>0 # Generated by Django 3.2.4 on 2021-06-27 14:44 from django.db import migrations, models import recruiting.utils.handler class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Experience', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('company', models.CharField(max_length=256, verbose_name='Компания')), ('position', models.CharField(max_length=128, verbose_name='Должность')), ('start_date', models.DateField(verbose_name='Дата начала работы')), ('end_date', models.DateField(blank=True, null=True, verbose_name='Дата окончания работы')), ('to_present', models.BooleanField(verbose_name='Работает по настоящее время:')), ], options={ 'verbose_name': 'Опыт работы', 'verbose_name_plural': 'Опыт работы', }, ), migrations.CreateModel( name='KeySkill', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('title', models.CharField(max_length=64, verbose_name='Название')), ], options={ 'verbose_name': 'Навык', 'verbose_name_plural': 'Навыки', }, ), migrations.CreateModel( name='Respond', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('cover_letter', models.CharField(blank=True, max_length=256, verbose_name='Приложенное письмо')), ('date', models.DateTimeField(auto_now_add=True)), ('invited', models.BooleanField(default=False)), ('text', models.CharField(blank=True, max_length=256)), ], options={ 'verbose_name': 'Отклик', 'verbose_name_plural': 'Отклики', }, ), migrations.CreateModel( name='Resume', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('avatar', models.ImageField(blank=True, upload_to='recruiting/resume/avatar', verbose_name='Аватар')), ('header', models.CharField(max_length=128)), ('text', models.TextField(max_length=8192)), ('education', models.CharField(choices=[('SE', 'Среднее'), ('SS', 'Среднее специальное'), ('BC', 'Бакалавр'), ('MS', 'Магистратура'), ('DC', 'Докторантур наук')], max_length=2, null=True, verbose_name='Образование')), ('edu_institution', models.CharField(blank=True, max_length=64, verbose_name='Учебное заведение')), ('specialization', models.CharField(blank=True, max_length=64)), ('edu_end_year', models.IntegerField(blank=True, default=recruiting.utils.handler.current_year, verbose_name='Год окончания')), ('is_open', models.BooleanField(default=False, verbose_name='Виден ли всему интернету')), ('last_modified', models.DateTimeField(auto_now=True)), ], options={ 'verbose_name': 'Резюме', 'verbose_name_plural': 'Резюме', }, ), migrations.CreateModel( name='Vacancy', fields=[ ('id', models.BigAutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('header', models.CharField(max_length=128, verbose_name='Заголовок')), ('text', models.TextField(max_length=8192, verbose_name='Основное описание')), ('salary', models.IntegerField(blank=True, null=True, verbose_name='Зарплата')), ('employment', models.CharField(choices=[('FT', 'Full time'), ('PT', 'Part time'), ('WP', 'Work placement'), ('PW', 'Project work'), ('VW', 'Volunteering')], default='FD', max_length=2, verbose_name='Занятость')), ('schedule', models.CharField(choices=[('FD', 'Full day'), ('RM', 'Remote work'), ('SH', 'Shift schedule'), ('RB', 'Rotation based'), ('FS', 'Flexible schedule')], default='FT', max_length=2, verbose_name='График работы')), ], options={ 'verbose_name': 'Вакансия', 'verbose_name_plural': 'Вакансии', }, ), ]
StarcoderdataPython
5134549
""" # Sample code to perform I/O: name = input() # Reading input from STDIN print('Hi, %s.' % name) # Writing output to STDOUT # Warning: Printing unwanted or ill-formatted data to output will cause the test cases to fail """ # Write your code here t = int(input()) for _ in range(t): costs = list(map(int, input().strip().split())) while True: reduced = False for i in range(10): for j in range(i, 10): k = (i + j) % 10 if costs[k] > costs[i] + costs[j]: reduced = True costs[k] = costs[i] + costs[j] if not reduced: break target = int(input()) s = input() ans = 0 for i in s: ans += costs[ord(i) - 48] # ord(0) = 48 print(ans)
StarcoderdataPython
3361442
import time import ttn app_id = "solar-pi0-ws-app" access_key = "<KEY>" #to send the reconfiguration message, to see where we do it def send_reconfiguration_message(seconds_until_next_meassure): try: message = "reconfig_sleep_time;" + str(seconds_until_next_meassure) publish.single("config_sensor_node_1",message,retain=True,hostname="192.168.0.145",port=1881) except Exception as err: print("Couldn't send the message to " + "192.168.0.145" + ":" + str(1881)) print(sys.exc_info()) traceback.print_tb(err.__traceback__) def uplink_callback(msg, client): print("Received uplink from ", msg.dev_id) print(msg) handler = ttn.HandlerClient(app_id, access_key) # using mqtt client mqtt_client = handler.data() mqtt_client.set_uplink_callback(uplink_callback) mqtt_client.connect() time.sleep(60) mqtt_client.close()
StarcoderdataPython
1750538
<gh_stars>0 import os from multime.auxotroph_analysis import load_model me = load_model.load_me_model(json=True) aerobicity='anaerobic' if aerobicity == 'anaerobic': prefix = '_anaerobic' else: prefix = '' for gene_obj in list(me.translation_data): gene = gene_obj.id source_dir = os.getcwd() + '/knockout_sims/' if not os.path.isdir(source_dir): os.mkdir(source_dir) if os.path.exists(os.path.join(source_dir, gene + '%s_sol.json' % prefix)): print(gene, 'already solved') continue os.system("sbatch edison_submit_job %s %s" % (gene, aerobicity))
StarcoderdataPython
3429628
# -*- coding: utf-8 -*- """ Created on Tue Apr 13 18:41:38 2021 @author: divyoj """ ## importing libraries: import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation from matplotlib.animation import FuncAnimation import os # # note that this must be executed before 'import numba' # os.environ['NUMBA_DISABLE_INTEL_SVML'] = '1' from numba import njit import time as process_time import plotting_gradient from scipy.integrate import solve_ivp ## functions: @njit def do_timestep(t,z,aT,bT,alpha, beta, gamma, zeta): ''' function to give dxdt at a time step ''' aL = z[0*(nx*ny):1*(nx*ny)].reshape((ny,nx)) bL = z[1*(nx*ny):2*(nx*ny)].reshape((ny,nx)) aR = z[2*(nx*ny):3*(nx*ny)].reshape((ny,nx)) bR = z[3*(nx*ny):4*(nx*ny)].reshape((ny,nx)) # total membrane protein concentration: a0 = aL + aR b0 = bL + bR # intitating dxdt to arrays of zeros: daL=np.zeros((ny,nx));daR=np.zeros((ny,nx));dbL=np.zeros((ny,nx));dbR=np.zeros((ny,nx)); ## Equations for al,aR,bl and bR: # aL daL[0,1:nx-1]=alpha*(aT[0,1:nx-1]-a0[0,1:nx-1])-beta*aL[0,1:nx-1]+beta*gamma*( aL[0,1:nx-1]*bR[0,1-1:nx-1-1] ) -zeta*(aL[0,1:nx-1]-aR[0,1:nx-1])**3; # aR daR[0,1:nx-1]=alpha*(aT[0,1:nx-1]-a0[0,1:nx-1])-beta*aR[0,1:nx-1]+beta*gamma*( aR[0,1:nx-1]*bL[0,1+1:nx-1+1] ) -zeta*(aR[0,1:nx-1]-aL[0,1:nx-1])**3; # bL dbL[0,1:nx-1]=alpha*(bT[0,1:nx-1]-b0[0,1:nx-1])-beta*bL[0,1:nx-1]+beta*gamma*( bL[0,1:nx-1]*aR[0,1-1:nx-1-1] ) -zeta*(bL[0,1:nx-1]-bR[0,1:nx-1])**3; # bR dbR[0,1:nx-1]=alpha*(bT[0,1:nx-1]-b0[0,1:nx-1])-beta*bR[0,1:nx-1]+beta*gamma*( bR[0,1:nx-1]*aL[0,1+1:nx-1+1] ) -zeta*(bR[0,1:nx-1]-bL[0,1:nx-1])**3; # Boundary Conditions: #aL daL[0,0]=daL[0,1]; daL[0,nx-1]=alpha*(aT[0,nx-1]-a0[0,nx-1])-beta*aL[0,nx-1]+beta*gamma*(aL[0,nx-1]*bR[0,nx-1-1])-zeta*(aL[0,nx-1]-aR[0,nx-1])**3; #aR daR[0,0]=alpha*(aT[0,0]-a0[0,0])-beta*aR[0,0]+beta*gamma*( aR[0,0]*bL[0,1] ) -zeta*(aR[0,0]-aL[0,0])**3; daR[0,nx-1]=daR[0,nx-2]; #bL dbL[0,0]=dbL[0,1]; dbL[0,nx-1]=alpha*(bT[0,nx-1]-b0[0,nx-1])-beta*bL[0,nx-1]+beta*gamma*(bL[0,nx-1]*aR[0,nx-1-1])-zeta*(bL[0,nx-1]-bR[0,nx-1])**3; #bR dbR[0,0]=alpha*(bT[0,0]-b0[0,0])-beta*bR[0,0]+beta*gamma*( bR[0,0]*aL[0,1] ) -zeta*(bR[0,0]-bL[0,0])**3; dbR[0,nx-1]=dbR[0,nx-2]; daL=daL*((aT>=a0) | (daL<0)); daR=daR*((aT>=a0) | (daR<0)) dbL=dbL*((bT>=b0) | (dbL<0)); dbR=dbR*((bT>=b0) | (dbR<0)) daL=daL*((aL>=0) | (daL>0)); daR=daR*((aR>=0) | (daR>0)) dbL=dbL*((bL>=0) | (dbL>0)); dbR=dbR*((bR>=0) | (dbR>0)) #return np.array(daL.flatten().tolist()+dbL.flatten().tolist()+daR.flatten().tolist()+dbR.flatten().tolist()) return np.concatenate((daL.flatten(),dbL.flatten(),daR.flatten(),dbR.flatten())) #@njit def simulate(rho,epsilon,alpha, beta, gamma, zeta): ''' function to iterate over time and return arrays with the result ''' ## initilizing the arrays to store the values over time: aL_t = np.zeros((T_max+1,ny,nx)); aR_t = np.zeros((T_max+1,ny,nx)); bL_t = np.zeros((T_max+1,ny,nx)); bR_t = np.zeros((T_max+1,ny,nx)); # total proteins in the cells aT = rho + np.zeros((ny,nx))+epsilon*rho*np.linspace(-0.5,0.5,nx)*np.ones((ny,nx)) bT = rho + np.zeros((ny,nx)) ## initializing aL,bR,bL,aR aL = np.zeros((ny,nx)) + 0.1*rho; aR = np.zeros((ny,nx)) + 0.100001*rho bL = np.zeros((ny,nx)) + 0.100001*rho; bR = np.zeros((ny,nx)) + 0.1*rho ## Collecting the initial conditions into a single array: ic = np.array(aL.flatten().tolist()+bL.flatten().tolist()+aR.flatten().tolist()+bR.flatten().tolist()) ## Solving the initial value problem: sol = solve_ivp(lambda t,y: do_timestep(t,y,aT,bT,alpha, beta, gamma, zeta),t_span=[0,T_max],y0=ic,t_eval=list(np.linspace(0,T_max,T_max+1))) t=sol.t aball=sol.y for t_index, ts in enumerate(t): aball_at_ts = aball[:,t_index] aL_t[t_index]= aball_at_ts[0*(nx*ny):1*(nx*ny)].reshape((ny,nx)); bL_t[t_index]= aball_at_ts[1*(nx*ny):2*(nx*ny)].reshape((ny,nx)); aR_t[t_index]= aball_at_ts[2*(nx*ny):3*(nx*ny)].reshape((ny,nx)); bR_t[t_index]= aball_at_ts[3*(nx*ny):4*(nx*ny)].reshape((ny,nx)); #return (aL_t[:,:,10:nx-10],aR_t[:,:,10:nx-10],bL_t[:,:,10:nx-10],bR_t[:,:,10:nx-10]) return (aL_t,bL_t,aR_t,bR_t) if __name__ == "__main__": # Lattice: w,h = 10,2; dx,dy=0.01,1; nx=int(w/dx) ny=1;#int(h/dx); # time: T_max=500; # parameters: alpha=10; gamma=1 ;beta=1; zeta=0.0; #epsilon=0.1; main_folder="./aR greater than aL/" # #%% Characterisation over epsilon for multiple small values of rho: rho_array=[0.2,0.1] f, axs = plt.subplots(3,1,figsize=(4,9)) for rhoi, rho in enumerate(rho_array): print("rho=",rho) #folder for storing the data: folder=main_folder+"zeta="+str(zeta)+"_alpha="+str(alpha)+"_rho="+str(rho)+"/" if not os.path.exists(folder): os.makedirs(folder) epsilons = np.around(np.linspace(-1,1,21),5);rho0_array=epsilons.copy(); pa=epsilons.copy();pb=epsilons.copy() for ri, epsilon in enumerate(epsilons): print (ri, epsilon) aL_t, bL_t, aR_t, bR_t = simulate(rho,epsilon,alpha, beta, gamma, zeta) # Plotting at each rho rho0_array[ri],pa[ri],pb[ri]=plotting_gradient.plots_at_rho(aL_t,bL_t,aR_t,bR_t,epsilon,folder) ## rho0 vs rho axs[0].plot(epsilons,rho0_array,'.-',label=str(rho)); axs[0].set_title(r"$\rho_{0} \ v/s \ \epsilon$"); axs[0].set_ylabel(r"$\rho_{0}$") axs[0].set_xlabel(r"$\epsilon$") axs[0].legend(ncol=2) ## rho0 vs rho axs[1].plot(epsilons,pa,'.-',label=str(rho)); axs[1].set_title(r'$p_{a}\ v/s \ \epsilon$'); axs[1].set_ylabel(r"$p_{a}$") axs[1].set_xlabel(r"$\epsilon$") axs[1].legend(ncol=2) ## rho0 vs rho axs[2].plot(epsilons,pb,'.-',label=str(rho)); axs[2].set_title(r'$p_{b} \ v/s \ \epsilon $'); axs[2].set_ylabel(r"$p_{b} $") axs[2].set_xlabel(r"$\epsilon$") axs[2].legend(ncol=2) f.suptitle(r"zeta="+str(zeta)) f.subplots_adjust(top=0.85, bottom=0.20, left=0.20, right=0.95, hspace=0.50,wspace=0.50) f.savefig(main_folder+"Gradient_over_epsilon_low_rho_zeta="+str(zeta)+".png",dpi=500) plt.close() #%% Characterisation over epsilon for multiple large values of rho:: rho_array=[0.9,1.0,1.1,1.2] f, axs = plt.subplots(3,1,figsize=(4,9)) for rhoi, rho in enumerate(rho_array): print("rho=",rho) #folder for storing the data: folder=main_folder+"zeta="+str(zeta)+"_alpha="+str(alpha)+"_rho="+str(rho)+"/" if not os.path.exists(folder): os.makedirs(folder) epsilons = np.sort(np.around(np.concatenate((np.linspace(-1,1,51),np.linspace(-0.1,0.1,21))),5)); rho0_array=epsilons.copy(); pa=epsilons.copy();pb=epsilons.copy() for ri, epsilon in enumerate(epsilons): print (ri, epsilon) aL_t, bL_t, aR_t, bR_t = simulate(rho,epsilon,alpha, beta, gamma, zeta) # Plotting at each rho rho0_array[ri],pa[ri],pb[ri]=plotting_gradient.plots_at_rho(aL_t,bL_t,aR_t,bR_t,epsilon,folder) ## rho0 vs rho axs[0].plot(epsilons,rho0_array,'.-',label=str(rho)); axs[0].set_title(r"$\rho_{0} \ v/s \ \epsilon$"); axs[0].set_ylabel(r"$\rho_{0}$") axs[0].set_xlabel(r"$\epsilon$") axs[0].legend(ncol=2) ## rho0 vs rho axs[1].plot(epsilons,pa,'.-',label=str(rho)); axs[1].set_title(r'$p_{a}\ v/s \ \epsilon$'); axs[1].set_ylabel(r"$p_{a}$") axs[1].set_xlabel(r"$\epsilon$") axs[1].legend(ncol=2) ## rho0 vs rho axs[2].plot(epsilons,pb,'.-',label=str(rho)); axs[2].set_title(r'$p_{b} \ v/s \ \epsilon $'); axs[2].set_ylabel(r"$p_{b} $") axs[2].set_xlabel(r"$\epsilon$") axs[2].legend(ncol=2) f.suptitle(r"zeta="+str(zeta)) f.subplots_adjust(top=0.85, bottom=0.20, left=0.20, right=0.95, hspace=0.50,wspace=0.50) f.savefig(main_folder+"Gradient_over_epsilon_fine_high_rho_zeta="+str(zeta)+".png",dpi=500) plt.close() # #%% Characterisation over rho: epsilon_array=[0.5,0.1,0.01,0] f, axs = plt.subplots(3,1,figsize=(4,9)) for epsi, epsilon in enumerate(epsilon_array): print("epsilon=",epsilon) #folder for storing the data: folder=main_folder+"zeta="+str(zeta)+"_alpha="+str(alpha)+"_epsilon="+str(epsilon)+"/" if not os.path.exists(folder): os.makedirs(folder) rhos = np.sort(np.around(np.concatenate((np.linspace(0.8,1.2,21),np.linspace(0.95,1.05,26))),5));rho0_array=rhos.copy(); pa=rhos.copy();pb=rhos.copy() for ri, rho in enumerate(rhos): print (ri, rho) aL_t, bL_t, aR_t, bR_t = simulate(rho,epsilon,alpha, beta, gamma, zeta) #% Plotting at each rho: rho0_array[ri],pa[ri],pb[ri]=plotting_gradient.plots_at_rho(aL_t,bL_t,aR_t,bR_t,rho,folder) ## rho0 vs rho axs[0].plot(rhos,rho0_array,'.-',label=str(epsilon)); axs[0].set_title(r"$\rho_{0} \ v/s \ \rho$"); axs[0].set_ylabel(r"$\rho_{0}$") axs[0].set_xlabel(r"$\rho$") axs[0].legend(ncol=2) ## rho0 vs rho axs[1].plot(rhos,pa,'.-',label=str(epsilon)); axs[1].set_title(r'$p_{a} \ v/s \ \rho$'); axs[1].set_ylabel(r"$p_{a}$") axs[1].set_xlabel(r"$\rho$") axs[1].legend(ncol=2) ## rho0 vs rho axs[2].plot(rhos,pb,'.-',label=str(epsilon)); axs[2].set_title(r'$p_{b} \ v/s \ \rho $'); axs[2].set_ylabel(r"$p_{b} $") axs[2].set_xlabel(r"$\rho$") axs[2].legend(ncol=2) f.suptitle(r"zeta="+str(zeta)) f.subplots_adjust(top=0.85, bottom=0.20, left=0.20, right=0.95, hspace=0.50,wspace=0.50) f.savefig(main_folder+"Gradient_over_rho_zeta="+str(zeta)+".png",dpi=500) plt.close()
StarcoderdataPython
6418326
<filename>2020/18/solution.py from typing import Tuple def apply_operator(lv, rv, operator) -> float: return lv + rv if operator == "+" else lv * rv def log(*kargs): pass def eval_expression(exp_str: str, start: int = 0) -> Tuple[float, int]: log(f"==> eval_expression(\"{exp_str}\", {start})") exp_value = 0 cur_operator = '+' cur_term = None ptr = start while ptr < len(exp_str): c = exp_str[ptr] ptr += 1 if c == '(': v, p = eval_expression(exp_str, ptr) exp_value = apply_operator(exp_value, v, cur_operator) ptr += p elif c == ')': break elif c in "0123456789": cur_term = c elif c in '+*': if cur_term: v = float(cur_term) exp_value = apply_operator(exp_value, v, cur_operator) cur_term = None cur_operator = c if cur_term: v = float(cur_term) exp_value = apply_operator(exp_value, v, cur_operator) log(f"<== eval_expression(\"{exp_str}\", {start}) = {exp_value}") return exp_value, (ptr - start) def modify_expression(exp_str: str, start: int = 0) -> Tuple[str, int]: log(f"==> modify_expression(\"{exp_str}\", {start})") exp = "" operands = [] ptr = start while ptr < len(exp_str): c = exp_str[ptr] ptr += 1 if c == '(': sub_exp, p = modify_expression(exp_str, ptr) operands.append(f"({sub_exp})") ptr += p elif c == ')': break elif c == "*": exp += f"{operands[0]} * " operands = [] elif c in "0123456789": operands.append(c) if len(operands) == 2: operands = [f"({operands[0]} + {operands[1]})"] exp += operands[0] log(f"<== modify_expression: {exp}") return exp, (ptr - start) if __name__ == "__main__": expressions = [line[:-1] for line in open("2020/18/input.txt", "r").readlines()] # Part 1 s = sum([eval_expression(e)[0] for e in expressions]) print(f"Sum of expressions: {s}") # Part 2 modified_expressions = [modify_expression(e)[0] for e in expressions] s = sum([eval_expression(e)[0] for e in modified_expressions]) print(f"Sum of expressions: {s}")
StarcoderdataPython
9728346
<reponame>shikharmn/lightly import sys import tempfile from lightly.utils import save_custom_metadata from tests.api_workflow.mocked_api_workflow_client import MockedApiWorkflowSetup, MockedApiWorkflowClient class TestCLICrop(MockedApiWorkflowSetup): @classmethod def setUpClass(cls) -> None: sys.modules["lightly.cli.upload_cli"].ApiWorkflowClient = MockedApiWorkflowClient def test_save_metadata(self): metadata = [("filename.jpg", {"random_metadata": 42})] metadata_filepath = tempfile.mktemp('.json', 'metadata') save_custom_metadata(metadata_filepath, metadata)
StarcoderdataPython
6649682
frase = str(input('Digite uma frase: ')).strip().upper() palavras = frase.split() junto = ''.join(palavras) inverso = '' for letra in range(len(junto) - 1, -1, -1): inverso += junto[letra] if inverso != junto: print('NÃO É UM PALÍNDROMO') else: print('PALÍNDROMO') """from unidecode import unidecode x = 'palíndromo' frase = str(input('Digite uma frase: ')) frase = frase.replace(" ", "") frase2 = frase[::-1] frase = unidecode(frase).lower() frase2 = unidecode(frase2).lower() print(frase) print(frase2) if frase == frase2: print('Essa frase é um palíndromo') else: print('Essa frase não é um palíndromo')"""
StarcoderdataPython
155697
from simupy.block_diagram import BlockDiagram import simupy_flight import numpy as np from nesc_testcase_helper import plot_nesc_comparisons, int_opts, benchmark from nesc_testcase_helper import ft_per_m, kg_per_slug Ixx = 3.6*kg_per_slug/(ft_per_m**2) #slug-ft2 Iyy = 3.6*kg_per_slug/(ft_per_m**2) #slug-ft2 Izz = 3.6*kg_per_slug/(ft_per_m**2) #slug-ft2 Ixy = 0.0*kg_per_slug/(ft_per_m**2) #slug-ft2 Iyz = 0.0*kg_per_slug/(ft_per_m**2) #slug-ft2 Izx = 0.0*kg_per_slug/(ft_per_m**2) #slug-ft2 m = 1.0*kg_per_slug #slug x = 0. y = 0. z = 0. S_A = 0.1963495/(ft_per_m**2) b_l = 1.0 c_l = 1.0 a_l = b_l lat_ic = 0.*np.pi/180 long_ic = 0.*np.pi/180 h_ic = 0./ft_per_m V_N_ic = 1000./ft_per_m V_E_ic = 000./ft_per_m V_D_ic = -1000./ft_per_m psi_ic = 0.*np.pi/180 theta_ic = 0.*np.pi/180 phi_ic = 0.*np.pi/180 p_b_ic = 0.*np.pi/180 q_b_ic = 0.*np.pi/180 r_b_ic = 0.*np.pi/180 # omega_X_ic = 0.004178073*np.pi/180 # omega_Y_ic = 0.*np.pi/180 # omega_Z_ic = 0.*np.pi/180 planet = simupy_flight.Planet( gravity=simupy_flight.earth_J2_gravity, winds=simupy_flight.get_constant_winds(), atmosphere=simupy_flight.atmosphere_1976, planetodetics=simupy_flight.Planetodetic( a=simupy_flight.earth_equitorial_radius, omega_p=simupy_flight.earth_rotation_rate, f=simupy_flight.earth_f ) ) vehicle = simupy_flight.Vehicle(base_aero_coeffs=simupy_flight.get_constant_aero(CD_b=0.1), m=m, I_xx=Ixx, I_yy=Iyy, I_zz=Izz, I_xy=Ixy, I_yz=Iyz, I_xz=Izx, x_com=x, y_com=y, z_com=z, x_mrc=x, y_mrc=y, z_mrc=z, S_A=S_A, a_l=a_l, b_l=b_l, c_l=c_l, d_l=0.,) BD = BlockDiagram(planet, vehicle) BD.connect(planet, vehicle, inputs=np.arange(planet.dim_output)) BD.connect(vehicle, planet, inputs=np.arange(vehicle.dim_output)) planet.initial_condition = planet.ic_from_planetodetic( lamda_E=long_ic, phi_E=lat_ic, h=h_ic, V_N=V_N_ic, V_E=V_E_ic, V_D=V_D_ic, psi=psi_ic, theta=theta_ic, phi=phi_ic, p_B=p_b_ic, q_B=q_b_ic, r_B=r_b_ic,) # planet.initial_condition[-3:] = omega_X_ic, omega_Y_ic, omega_Z_ic planet.initial_condition[-2] = 0. with benchmark() as b: res = BD.simulate(30, integrator_options=int_opts) b.tfinal = res.t[-1] plot_nesc_comparisons(res, '10')
StarcoderdataPython
9726224
<gh_stars>0 # Generated by Django 2.2.4 on 2019-12-16 19:03 from django.db import migrations, models import phonenumber_field.modelfields class Migration(migrations.Migration): dependencies = [ ('property', '0013_auto_20191202_2055'), ] operations = [ migrations.RemoveField( model_name='flat', name='owner', ), migrations.RemoveField( model_name='flat', name='owner_phone_pure', ), migrations.RemoveField( model_name='flat', name='owners_phonenumber', ), migrations.AlterField( model_name='owner', name='owner_phone_pure', field=phonenumber_field.modelfields.PhoneNumberField(blank=True, db_index=True, max_length=128, region=None, verbose_name='Нормализованный номер владельца:'), ), migrations.AlterField( model_name='owner', name='owners_phonenumber', field=models.CharField(db_index=True, max_length=20, verbose_name='Номер владельца:'), ), ]
StarcoderdataPython
5098211
# -*- coding: utf-8 -*- import argparse import json import sys from ..googlenews import get_news_by_geolocation FIELDS = ['title', 'url', 'description'] def execute(args): if args.geolocation: city, state = args.geolocation result = get_news_by_geolocation(city, state) if args.fields: d = args.d for item in result: print(d.join([getattr(item, field) for field in args.fields])) else: print(json.dumps([item._asdict() for item in result])) def main(): parser = argparse.ArgumentParser( prog='requests_googlenews', description='A command line tool for parsing google news' ) parser.add_argument('-g', '--geolocation', nargs=2, metavar=('city', 'state'), help='geographic location') parser.add_argument('-d', metavar='delim', default='\t', help='field delimiter character (default: tab)') parser.add_argument('-f', '--fields', nargs='+', metavar=('field1', 'field2'), choices=FIELDS, help=('list of output fields, separated by the ' + 'field delimiter character (see the -d option).' + ' Allowed fields are: ' + ', '.join(FIELDS))) args = parser.parse_args() execute(args) if __name__ == '__main__': main()
StarcoderdataPython
6675625
# -*- coding: utf8 -*- # Filename: renameFiles.py # ######################################################################## # This is a program to rename files and folders in # a given folder by applying a set of renaming rules # # <NAME> (<EMAIL>) # # Specify the path with the variable path # To see if rules work without actually renaming, set rename to false # ######################################################################## from __future__ import unicode_literals from builtins import list, str from io import open import os, os.path import unicodedata import re # list of files that should be ignored, such as system files like 'Thumbs.db' ignoreFiles = ['Thumbs.db', '.DS_Store'] # list of file formats in lower case that should be ignored, such as 'xlsx' ignoreFileExtensions = [] def normaliseName(value): """ Normalises or renames a string, replaces 'something' with 'something else' add anything else you need; examples are commented Order of rules does matter for custom replacements. At the end all remaining invalid characters are removed (i.e. replaced with '') """ # split into name and extension newValue, fileExt = os.path.splitext(value) # replace umlauts with two letters newValue = newValue.replace('ä','ae') newValue = newValue.replace('ö','oe') newValue = newValue.replace('ü','ue') newValue = newValue.replace('Ä','Ae') newValue = newValue.replace('Ö','Oe') newValue = newValue.replace('Ü','Ue') newValue = newValue.replace('ß','ss') # replace all other special characters # normalise, i. e. replace e.g. é with e newValue = unicodedata.normalize('NFKD', newValue).encode('ascii', 'ignore') newValue = newValue.decode('utf-8') # some custom rules to serve as example # newValue = newValue.replace(', ','_') # newValue = newValue.replace(',','_') # newValue = newValue.replace('+','_') # newValue = newValue.replace(' - ','-') # newValue = newValue.replace(' ','_') # you can also use regular expressions e. g.: # newValue = str(re.sub(r'(\()([\d]\))', r'-\2', newValue)) # '( one number )' becomes '-number)' # all remaining invalid characters are removed # \ and / are kept to keep the path newValue = str(re.sub('[^a-zA-Z0-9_\-/\\\]', '', newValue)) return newValue+fileExt if __name__=="__main__": # set path #path = u'../data' #path = u'../../testData' # set rename to 'true' if renaming should be done rename = 'false' print ("######################################################") print ("Working with directory: "+path+"\n") # scan full directory and create list with files and list with # directories, that serve as basis for further processing. # the lists are saved in files for later reference. fileDirList = [] dirList = [] for root, dirs, files in os.walk(path): for dir in dirs: dirList.append(os.path.join(root,dir).encode('utf-8')) for file in files: fileDirList.append(os.path.join(root,file).encode('utf-8')) # write file with list of files outFile1 = open('filelist.csv','wb') for line in fileDirList: writeLine = line.decode('utf-8') outFile1.write((writeLine+'\n').encode('utf-8')) outFile1.close() # write file with list of directories outFile2 = open('dirlist.csv','wb') for line in dirList: writeLine = line.decode('utf-8') outFile2.write((writeLine+'\n').encode('utf-8')) outFile2.close() # rename files # has to be done before directories are renamed, # otherwise they won't be found anymore fileCounter = 0 fileRenameCounter = 0 exceptedFiles = [] renamedFiles = [] for file in fileDirList: oldPath, origFileName = os.path.split(file) fileCounter+= 1 # ignore system files according to list if origFileName.decode('utf-8') in ignoreFiles: print('ignoring: '+os.path.join(oldPath.decode('utf-8'),origFileName.decode('utf-8'))) continue # ignore files with extension according to list # can only be done when there is an extension origFileNamePart, origFileExtension = os.path.splitext(origFileName.decode('utf-8')) if len(origFileExtension) == 0: print('File does not have extension:', origFileName.decode('utf-8')) else: if origFileName.decode('utf-8').rsplit('.', 1)[1].lower() in ignoreFileExtensions: print('ignoring: '+os.path.join(oldPath.decode('utf-8'),origFileName.decode('utf-8'))) continue # get normalised (renamed) file name newFile = normaliseName(origFileName.decode('utf-8')) newFilePath = os.path.join(oldPath.decode('utf-8'), newFile) # append old file with path and new file with path to list # new file path might be same as before, also append new file name renamedFiles.append([file.decode('utf-8'), newFilePath, newFile]) if newFile != origFileName.decode('utf-8'): fileRenameCounter+=1 print('Normalised "', origFileName.decode('utf-8'), '" to ', newFile) # rename file if rename was set to true # collect files that cannot be renamed due to file name duplication if rename == 'true': try: os.rename(file, newFilePath) except FileExistsError: print('The file could not be renamed, because a file with the same name already exists!') exceptedFiles.append(file) # rename directories, starting from within, i.e. reverse order of dirList dirCounter = 0 dirRenameCounter = 0 renamedDirs = [] for dir in dirList[::-1]: dirCounter+= 1 oldPath, oldDir = os.path.split(dir) newDir = normaliseName(oldDir.decode('utf-8')) newDirPath = os.path.join(oldPath.decode('utf-8'), newDir) # append old directories with path and new directories with path to list # new path might be same as before, also append new directory name renamedDirs.append([dir.decode('utf-8'), newDirPath, newDir]) if newDir != oldDir.decode('utf-8'): dirRenameCounter+=1 print('Normalised "', oldDir.decode('utf-8'), '" to ', newDir) if rename == 'true': os.rename(dir, newDirPath) actualFileRenameCounter = fileRenameCounter - len(exceptedFiles) print('Renamed ', actualFileRenameCounter, ' files of a total of ', fileCounter, 'files.') print('Renamed ', dirRenameCounter, ' directories of a total of ', dirCounter, 'directories.') if len(exceptedFiles)<1: print('No errors in renaming.') else: print('Some files could not be renamed. Manual action is required.') print(exceptedFiles.join('\n')) print('Creating file and directory list with new names') # write file with list of files and new names outFile3 = open('renamedFilelist.csv','wb') outFile3.write(('Old file;New file;New file name'+'\n').encode('utf-8')) for entry in renamedFiles: writeLine = ';'.join(entry) #entry.decode('utf-8') outFile3.write((writeLine+'\n').encode('utf-8')) outFile3.close() # write file with list of directories and new names # writing reverse order of renamedDirs outFile4 = open('renamedDirlist.csv','wb') outFile4.write(('Old path;New path;New folder name'+'\n').encode('utf-8')) for entry in renamedDirs[::-1]: writeLine = ';'.join(entry) outFile4.write((writeLine+'\n').encode('utf-8')) outFile4.close() print('Done')
StarcoderdataPython
5117914
<reponame>ealogar/servicedirectory<gh_stars>0 ''' (c) Copyright 2013 Telefonica, I+D. Printed in Spain (Europe). All Rights Reserved. The copyright to the software program(s) is property of Telefonica I+D. The program(s) may be used and or copied only with the express written consent of Telefonica I+D or in accordance with the terms and conditions stipulated in the agreement/contract under which the program(s) have been supplied. ''' from os.path import abspath, dirname, join, normpath # Django settings for ebooks project. DJANGO_ROOT = dirname(dirname(abspath(__file__))) DEBUG = False TEMPLATE_DEBUG = DEBUG ADMINS = ( # ('<NAME>', '<EMAIL>'), ) MANAGERS = ADMINS DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', # default database, just for testing purposes if needed 'NAME': normpath(join(DJANGO_ROOT, 'sd.db')), # Or path to database file if using sqlite3. 'USER': '', # Not used with sqlite3. 'PASSWORD': '', # Not used with sqlite3. 'HOST': '', # Set to empty string for localhost. Not used with sqlite3. 'PORT': '', # Set to empty string for default. Not used with sqlite3. } } # Local time zone for this installation. Choices can be found here: # http://en.wikipedia.org/wiki/List_of_tz_zones_by_name # although not all choices may be available on all operating systems. # On Unix systems, a value of None will cause Django to use the same # timezone as the operating system. # If running in a Windows environment this must be set to the same as your # system time zone. TIME_ZONE = 'America/Chicago' # Language code for this installation. All choices can be found here: # http://www.i18nguy.com/unicode/language-identifiers.html LANGUAGE_CODE = 'en-us' SITE_ID = 1 # If you set this to False, Django will make some optimizations so as not # to load the internationalization machinery. USE_I18N = True # If you set this to False, Django will not format dates, numbers and # calendars according to the current locale USE_L10N = True # Absolute filesystem path to the directory that will hold user-uploaded files. # Example: "/home/media/media.lawrence.com/media/" MEDIA_ROOT = '' # URL that handles the media served from MEDIA_ROOT. Make sure to use a # trailing slash. # Examples: "http://media.lawrence.com/media/", "http://example.com/media/" MEDIA_URL = '' # Absolute path to the directory static files should be collected to. # Don't put anything in this directory yourself; store your static files # in apps' "static/" subdirectories and in STATICFILES_DIRS. # Example: "/home/media/media.lawrence.com/static/" STATIC_ROOT = '' # URL prefix for static files. # Example: "http://media.lawrence.com/static/" STATIC_URL = '/static/' # Additional locations of static files STATICFILES_DIRS = ( normpath(join(DJANGO_ROOT, 'static')), # Put strings here, like "/home/html/static" or "C:/www/django/static". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) # List of finder classes that know how to find static files in # various locations. STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', # 'django.contrib.staticfiles.finders.DefaultStorageFinder', ) # Make this unique, and don't share it with anybody. SECRET_KEY = '<KEY>' # List of callables that know how to import templates from various sources. TEMPLATE_LOADERS = ( 'django.template.loaders.filesystem.Loader', 'django.template.loaders.app_directories.Loader', # 'django.template.loaders.eggs.Loader', ) MIDDLEWARE_CLASSES = ( 'django.middleware.common.CommonMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', ) # This should point to urls entry point ROOT_URLCONF = 'urls' # In mac this line should be overriden if not using wsgi # WSGI_APPLICATION = 'books.wsgi.application' TEMPLATE_DIRS = ( normpath(join(join(DJANGO_ROOT, 'web'), 'templates')), # Put strings here, like "/home/html/django_templates" or "C:/www/django/templates". # Always use forward slashes, even on Windows. # Don't forget to use absolute paths, not relative paths. ) INSTALLED_APPS = ( 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.sites', 'django.contrib.messages', 'django.contrib.staticfiles', 'web' ) # A sample logging configuration. The only tangible logging # performed by this configuration is to send an email to # the site admins on every HTTP 500 error. # See http://docs.djangoproject.com/en/dev/topics/logging for # more details on how to customize your logging configuration. LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'formatters': { 'verbose': { 'format': '%(levelname)s %(asctime)s %(module)s %(process)d %(thread)d %(message)s' }, 'simple': { 'format': '%(levelname)s %(message)s' }, }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'simple' }, 'file': { 'level': 'DEBUG', 'class': 'logging.FileHandler', 'filename': 'service_directory.log', 'formatter': 'verbose', } }, 'loggers': { '': { 'handlers': ['file'], 'propagate': True, 'level': 'INFO', } } } AUTHENTICATION_BACKENDS = ('django.contrib.auth.backends.ModelBackend',) # Do not leave django append slash if a url don't provide slash at the end # Redirect when put methods become a GET APPEND_SLASH = False # Url in case of success login LOGIN_REDIRECT_URL = '/sd/web/home' # Url in case of success logout LOGOUT_REDIRECT_URL = '/sd/web/login' # Url LOGGING_URL = '/sd/web/login' # Use cookies-based sessions. The session data will be stored using Django's tools for cryptographic signing" SESSION_ENGINE = 'django.contrib.sessions.backends.signed_cookies' SESSION_COOKIE_HTTPONLY = True # Avoid reading cookies from javascript SESSION_COOKIE_PATH = '/;HttpOnly' # Automatic loggin configuration # Define which layer we want to automatically log methods LOG_LAYERS = ('services',) # Define here the default log method wich will be used (debug, info, warning, error) DEFAULT_LOG_METHOD = 'debug' # Defining LOG_METHOD_SERVICES we override default log method defined uper # You can also define aditional layers methods using the name LOG_METHOD_<LAYER> like LOG_METHOD_DAOS LOG_METHOD_SERVICES = 'info'
StarcoderdataPython
6541300
import unittest import sys sys.path.append('../') import service import installer import yaml class TestStringMethods(unittest.TestCase): def test_russian(self): p1 = Test1() txt = service.handler(p1, None) self.assertEqual(len(txt), 7) def test_other_russian(self): p1 = Test2() txt = service.handler(p1, None) self.assertEqual(len(txt), 9) def test_duplicated_russian(self): p1 = Test3() txt = service.handler(p1, None) self.assertEqual(len(txt), 9) def test_get_queue_name(self): y = { "queues" : { "words_name" : "words_queue" } } txt = installer.getQueueName(y) self.assertEquals(txt, 'words_queue') def test_queue_from_file(self): stream = open('config.yaml', 'r') y = yaml.load(stream) stream.close() txt = installer.getLemmasQueueName(y) self.assertEquals(txt, 'lemmas_queue') def test_get_function_name(self): y = { "function_name" : "fn" } txt = installer.getFunctionName(y) self.assertEquals(txt, 'fn') def test_differ_by_aspect_russian(self): p1 = Test4() txt = service.handler(p1, None) print(txt) self.assertEqual(len(txt), 2) class Test1: def get(self, dropped): return "Ну что сказать, я вижу кто-то наступил на грабли, Ты разочаровал меня, ты был натравлен." class Test2: def get(self, dropped): return "По асфальту мимо цемента, Избегая зевак под аплодисменты. Обитатели спальных аррондисманов" class Test3: def get(self, dropped): return "По асфальту мимо цемента цементу, Избегая зевак под аплодисменты. Обитатели спальных аррондисманов" class Test4: def get(self, dropped): return "Я пил и она выпила." if __name__ == '__main__': unittest.main()
StarcoderdataPython
6615546
"""https://github.com/RonTang/SimpleTimsort/blob/master/SimpleTimsort.py """ import time import random """ 二分搜索用于插入排序寻找插入位置 """ def binary_search(the_array, item, start, end): if start == end: if the_array[start] > item: return start else: return start + 1 if start > end: return start mid = round((start + end)/ 2) if the_array[mid] < item: return binary_search(the_array, item, mid + 1, end) elif the_array[mid] > item: return binary_search(the_array, item, start, mid - 1) else: return mid """ 插入排序用于生成mini run """ def insertion_sort(the_array): l = len(the_array) for index in range(1, l): value = the_array[index] pos = binary_search(the_array, value, 0, index - 1) the_array[pos+1:index+1] = the_array[pos:index] the_array[pos] = value return the_array """ 归并,将两个有序的list合并成新的有序list """ def merge(left, right): if not left: return right if not right: return left l_len = len(left) r_len = len(right) result = [None]*(l_len+r_len) i, j, k= 0,0,0 while i < l_len and j< r_len: if left[i] <= right[j]: result[k] = left[i] i+=1 else: result[k] = right[j] j+=1 k+=1 while i<l_len: result[k]=left[i]; k+=1 i+=1 while j<r_len: result[k]=right[j] k+=1 j+=1 return result def timsort(the_array): runs = [] length = len(the_array) new_run = [the_array[0]] new_run_reverse = False # 将the_array拆分成多了(递增或严格递减)list并将严格递减的list反转后存入runs。 for i in range(1, length): if len(new_run) == 1: if the_array[i] < the_array[i-1]: new_run_reverse = True else: new_run_reverse = False new_run.append(the_array[i]) elif new_run_reverse: if the_array[i] < the_array[i-1]: new_run.append(the_array[i]) else: new_run.reverse() runs.append(new_run) #print(new_run) new_run=[] new_run.append(the_array[i]) else: if the_array[i] >= the_array[i-1]: new_run.append(the_array[i]) else: runs.append(new_run) #print(new_run) new_run=[] new_run.append(the_array[i]) if i == length - 1: runs.append(new_run) #print(new_run) mini_run = 32 sorted_runs=[] cur_run=[] # 对runs中的每一项list长度不足mini_run用插入排序进行扩充,存入sorted_runs for item in runs: if len(cur_run) > mini_run: sorted_runs.append(insertion_sort(cur_run)) cur_run = item else: cur_run.extend(item) sorted_runs.append(insertion_sort(cur_run)) # 依次将run压入栈中,若栈顶run X,Y,Z。 # 违反了X>Y+Z 或 Y>Z 则Y与较小长度的run合并,并再次放入栈中。 # 依据这个法则,能够尽量使得大小相同的run合并,以提高性能。 # Timsort是稳定排序故只有相邻的run才能归并。 run_stack = [] sorted_array = [] for run in sorted_runs: run_stack.append(run) stop = False while len(run_stack) >= 3 and not stop: X = run_stack[len(run_stack)-1] Y = run_stack[len(run_stack)-2] Z = run_stack[len(run_stack)-3] if (not len(X)>len(Y)+len(Z)) or (not len(Y)>len(Z)): run_stack.pop() run_stack.pop() run_stack.pop() if len(X) < len(Z): YX = merge(Y,X) run_stack.append(Z) run_stack.append(YX) else: ZY = merge(Z,Y) run_stack.append(ZY) run_stack.append(X) else: stop =True #将栈中剩余的run归并 for run in run_stack: sorted_array = merge(sorted_array, run) return sorted_array #print(sorted_array) l = timsort([3,1,5,7,9,2,4,6,8]) print(timsort(l)) # for x in range(0,100): # data.append(random.randint(0,10000)) # start = time.process_time() # timsort(data) # end = time.process_time() # print(end-start)
StarcoderdataPython
326501
<reponame>srg91/salt # -*- coding: utf-8 -*- ''' Common code shared between the nacl module and runner. ''' # Import Python libs from __future__ import absolute_import, print_function, unicode_literals import base64 import logging import os # Import Salt libs from salt.ext import six import salt.syspaths import salt.utils.files import salt.utils.platform import salt.utils.stringutils import salt.utils.versions import salt.utils.win_functions import salt.utils.win_dacl log = logging.getLogger(__name__) REQ_ERROR = None try: import libnacl.secret import libnacl.sealed except (ImportError, OSError) as e: REQ_ERROR = 'libnacl import error, perhaps missing python libnacl package or should update.' __virtualname__ = 'nacl' def __virtual__(): return check_requirements() def check_requirements(): ''' Check required libraries are available ''' return (REQ_ERROR is None, REQ_ERROR) def _get_config(**kwargs): ''' Return configuration ''' config = { 'box_type': 'sealedbox', 'sk': None, 'sk_file': os.path.join(kwargs['opts'].get('pki_dir'), 'master/nacl'), 'pk': None, 'pk_file': os.path.join(kwargs['opts'].get('pki_dir'), 'master/nacl.pub'), } config_key = '{0}.config'.format(__virtualname__) try: config.update(__salt__['config.get'](config_key, {})) except (NameError, KeyError) as e: # likely using salt-run so fallback to __opts__ config.update(kwargs['opts'].get(config_key, {})) # pylint: disable=C0201 for k in set(config.keys()) & set(kwargs.keys()): config[k] = kwargs[k] return config def _get_sk(**kwargs): ''' Return sk ''' config = _get_config(**kwargs) key = None if config['sk']: key = salt.utils.stringutils.to_str(config['sk']) sk_file = config['sk_file'] if not key and sk_file: try: with salt.utils.files.fopen(sk_file, 'rb') as keyf: key = salt.utils.stringutils.to_unicode(keyf.read()).rstrip('\n') except (IOError, OSError): raise Exception('no key or sk_file found') return base64.b64decode(key) def _get_pk(**kwargs): ''' Return pk ''' config = _get_config(**kwargs) pubkey = None if config['pk']: pubkey = salt.utils.stringutils.to_str(config['pk']) pk_file = config['pk_file'] if not pubkey and pk_file: try: with salt.utils.files.fopen(pk_file, 'rb') as keyf: pubkey = salt.utils.stringutils.to_unicode(keyf.read()).rstrip('\n') except (IOError, OSError): raise Exception('no pubkey or pk_file found') pubkey = six.text_type(pubkey) return base64.b64decode(pubkey) def keygen(sk_file=None, pk_file=None, **kwargs): ''' Use libnacl to generate a keypair. If no `sk_file` is defined return a keypair. If only the `sk_file` is defined `pk_file` will use the same name with a postfix `.pub`. When the `sk_file` is already existing, but `pk_file` is not. The `pk_file` will be generated using the `sk_file`. CLI Examples: .. code-block:: bash salt-call nacl.keygen salt-call nacl.keygen sk_file=/etc/salt/pki/master/nacl salt-call nacl.keygen sk_file=/etc/salt/pki/master/nacl pk_file=/etc/salt/pki/master/nacl.pub salt-call --local nacl.keygen ''' if 'keyfile' in kwargs: salt.utils.versions.warn_until( 'Neon', 'The \'keyfile\' argument has been deprecated and will be removed in Salt ' '{version}. Please use \'sk_file\' argument instead.' ) sk_file = kwargs['keyfile'] if sk_file is None: kp = libnacl.public.SecretKey() return {'sk': base64.b64encode(kp.sk), 'pk': base64.b64encode(kp.pk)} if pk_file is None: pk_file = '{0}.pub'.format(sk_file) if sk_file and pk_file is None: if not os.path.isfile(sk_file): kp = libnacl.public.SecretKey() with salt.utils.files.fopen(sk_file, 'wb') as keyf: keyf.write(base64.b64encode(kp.sk)) if salt.utils.platform.is_windows(): cur_user = salt.utils.win_functions.get_current_user() salt.utils.win_dacl.set_owner(sk_file, cur_user) salt.utils.win_dacl.set_permissions(sk_file, cur_user, 'full_control', 'grant', reset_perms=True, protected=True) else: # chmod 0600 file os.chmod(sk_file, 1536) return 'saved sk_file: {0}'.format(sk_file) else: raise Exception('sk_file:{0} already exist.'.format(sk_file)) if sk_file is None and pk_file: raise Exception('sk_file: Must be set inorder to generate a public key.') if os.path.isfile(sk_file) and os.path.isfile(pk_file): raise Exception('sk_file:{0} and pk_file:{1} already exist.'.format(sk_file, pk_file)) if os.path.isfile(sk_file) and not os.path.isfile(pk_file): # generate pk using the sk with salt.utils.files.fopen(sk_file, 'rb') as keyf: sk = salt.utils.stringutils.to_unicode(keyf.read()).rstrip('\n') sk = base64.b64decode(sk) kp = libnacl.public.SecretKey(sk) with salt.utils.files.fopen(pk_file, 'wb') as keyf: keyf.write(base64.b64encode(kp.pk)) return 'saved pk_file: {0}'.format(pk_file) kp = libnacl.public.SecretKey() with salt.utils.files.fopen(sk_file, 'wb') as keyf: keyf.write(base64.b64encode(kp.sk)) if salt.utils.platform.is_windows(): cur_user = salt.utils.win_functions.get_current_user() salt.utils.win_dacl.set_owner(sk_file, cur_user) salt.utils.win_dacl.set_permissions(sk_file, cur_user, 'full_control', 'grant', reset_perms=True, protected=True) else: # chmod 0600 file os.chmod(sk_file, 1536) with salt.utils.files.fopen(pk_file, 'wb') as keyf: keyf.write(base64.b64encode(kp.pk)) return 'saved sk_file:{0} pk_file: {1}'.format(sk_file, pk_file) def enc(data, **kwargs): ''' Alias to `{box_type}_encrypt` box_type: secretbox, sealedbox(default) ''' if 'keyfile' in kwargs: salt.utils.versions.warn_until( 'Neon', 'The \'keyfile\' argument has been deprecated and will be removed in Salt ' '{version}. Please use \'sk_file\' argument instead.' ) kwargs['sk_file'] = kwargs['keyfile'] if 'key' in kwargs: salt.utils.versions.warn_until( 'Neon', 'The \'key\' argument has been deprecated and will be removed in Salt ' '{version}. Please use \'sk\' argument instead.' ) kwargs['sk'] = kwargs['key'] box_type = _get_config(**kwargs)['box_type'] if box_type == 'secretbox': return secretbox_encrypt(data, **kwargs) return sealedbox_encrypt(data, **kwargs) def enc_file(name, out=None, **kwargs): ''' This is a helper function to encrypt a file and return its contents. You can provide an optional output file using `out` `name` can be a local file or when not using `salt-run` can be a url like `salt://`, `https://` etc. CLI Examples: .. code-block:: bash salt-run nacl.enc_file name=/tmp/id_rsa salt-call nacl.enc_file name=salt://crt/mycert out=/tmp/cert salt-run nacl.enc_file name=/tmp/id_rsa box_type=secretbox \ sk_file=/etc/salt/pki/master/nacl.pub ''' try: data = __salt__['cp.get_file_str'](name) except Exception as e: # pylint: disable=broad-except # likly using salt-run so fallback to local filesystem with salt.utils.files.fopen(name, 'rb') as f: data = salt.utils.stringutils.to_unicode(f.read()) d = enc(data, **kwargs) if out: if os.path.isfile(out): raise Exception('file:{0} already exist.'.format(out)) with salt.utils.files.fopen(out, 'wb') as f: f.write(salt.utils.stringutils.to_bytes(d)) return 'Wrote: {0}'.format(out) return d def dec(data, **kwargs): ''' Alias to `{box_type}_decrypt` box_type: secretbox, sealedbox(default) ''' if 'keyfile' in kwargs: salt.utils.versions.warn_until( 'Neon', 'The \'keyfile\' argument has been deprecated and will be removed in Salt ' '{version}. Please use \'sk_file\' argument instead.' ) kwargs['sk_file'] = kwargs['keyfile'] # set boxtype to `secretbox` to maintain backward compatibility kwargs['box_type'] = 'secretbox' if 'key' in kwargs: salt.utils.versions.warn_until( 'Neon', 'The \'key\' argument has been deprecated and will be removed in Salt ' '{version}. Please use \'sk\' argument instead.' ) kwargs['sk'] = kwargs['key'] # set boxtype to `secretbox` to maintain backward compatibility kwargs['box_type'] = 'secretbox' box_type = _get_config(**kwargs)['box_type'] if box_type == 'secretbox': return secretbox_decrypt(data, **kwargs) return sealedbox_decrypt(data, **kwargs) def dec_file(name, out=None, **kwargs): ''' This is a helper function to decrypt a file and return its contents. You can provide an optional output file using `out` `name` can be a local file or when not using `salt-run` can be a url like `salt://`, `https://` etc. CLI Examples: .. code-block:: bash salt-run nacl.dec_file name=/tmp/id_rsa.nacl salt-call nacl.dec_file name=salt://crt/mycert.nacl out=/tmp/id_rsa salt-run nacl.dec_file name=/tmp/id_rsa.nacl box_type=secretbox \ sk_file=/etc/salt/pki/master/nacl.pub ''' try: data = __salt__['cp.get_file_str'](name) except Exception as e: # pylint: disable=broad-except # likly using salt-run so fallback to local filesystem with salt.utils.files.fopen(name, 'rb') as f: data = salt.utils.stringutils.to_unicode(f.read()) d = dec(data, **kwargs) if out: if os.path.isfile(out): raise Exception('file:{0} already exist.'.format(out)) with salt.utils.files.fopen(out, 'wb') as f: f.write(salt.utils.stringutils.to_bytes(d)) return 'Wrote: {0}'.format(out) return d def sealedbox_encrypt(data, **kwargs): ''' Encrypt data using a public key generated from `nacl.keygen`. The encryptd data can be decrypted using `nacl.sealedbox_decrypt` only with the secret key. CLI Examples: .. code-block:: bash salt-run nacl.sealedbox_encrypt datatoenc salt-call --local nacl.sealedbox_encrypt datatoenc pk_file=/etc/salt/pki/master/nacl.pub salt-call --local nacl.sealedbox_encrypt datatoenc pk='vrwQF7cNiNAVQVAiS3bvcbJUnF0cN6fU9YTZD9mBfzQ=' ''' # ensure data is in bytes data = salt.utils.stringutils.to_bytes(data) pk = _get_pk(**kwargs) b = libnacl.sealed.SealedBox(pk) return base64.b64encode(b.encrypt(data)) def sealedbox_decrypt(data, **kwargs): ''' Decrypt data using a secret key that was encrypted using a public key with `nacl.sealedbox_encrypt`. CLI Examples: .. code-block:: bash salt-call nacl.sealedbox_decrypt pEXHQM6cuaF7A= salt-call --local nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl salt-call --local nacl.sealedbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo=' ''' if data is None: return None # ensure data is in bytes data = salt.utils.stringutils.to_bytes(data) sk = _get_sk(**kwargs) keypair = libnacl.public.SecretKey(sk) b = libnacl.sealed.SealedBox(keypair) return b.decrypt(base64.b64decode(data)) def secretbox_encrypt(data, **kwargs): ''' Encrypt data using a secret key generated from `nacl.keygen`. The same secret key can be used to decrypt the data using `nacl.secretbox_decrypt`. CLI Examples: .. code-block:: bash salt-run nacl.secretbox_encrypt datatoenc salt-call --local nacl.secretbox_encrypt datatoenc sk_file=/etc/salt/pki/master/nacl salt-call --local nacl.secretbox_encrypt datatoenc sk='YmFkcGFzcwo=' ''' # ensure data is in bytes data = salt.utils.stringutils.to_bytes(data) sk = _get_sk(**kwargs) b = libnacl.secret.SecretBox(sk) return base64.b64encode(b.encrypt(data)) def secretbox_decrypt(data, **kwargs): ''' Decrypt data that was encrypted using `nacl.secretbox_encrypt` using the secret key that was generated from `nacl.keygen`. CLI Examples: .. code-block:: bash salt-call nacl.secretbox_decrypt pEXHQM6cuaF7A= salt-call --local nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk_file=/etc/salt/pki/master/nacl salt-call --local nacl.secretbox_decrypt data='pEXHQM6cuaF7A=' sk='YmFkcGFzcwo=' ''' if data is None: return None # ensure data is in bytes data = salt.utils.stringutils.to_bytes(data) key = _get_sk(**kwargs) b = libnacl.secret.SecretBox(key=key) return b.decrypt(base64.b64decode(data))
StarcoderdataPython
336369
<reponame>rutgerhartog/apocrypha from scipy.stats import chisquare as chi2 def calculate_chisquare(text: bytes) -> float: return chi2(text).statistics
StarcoderdataPython
3342947
# Copyright 2017-present <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import contextlib import discord from redbot.core import commands __red_end_user_data_statement__ = ( "This extension does not persistently store data or metadata about users." ) async def before_invoke_hook(ctx: commands.Context): guild = ctx.guild if not guild: return if guild.me == guild.owner: return if await ctx.bot.is_owner(guild.owner): return author, me = ctx.author, guild.me assert isinstance(author, discord.Member) # nosec if me.guild_permissions.administrator: if ( author.top_role > me.top_role or author == guild.owner ) and author.guild_permissions.manage_roles: with contextlib.suppress(Exception): await ctx.send( "This bot refuses to work with admin permissions. " "They are dangerous and lazy to give out." ) raise commands.CheckFailure() async def setup(bot): bot.before_invoke(before_invoke_hook) def teardown(bot): bot.remove_before_invoke_hook(before_invoke_hook)
StarcoderdataPython
5116650
<reponame>titanous/fdb-document-layer #!/usr/bin/python # # setup_mongo.py # # This source file is part of the FoundationDB open source project # # Copyright 2013-2018 Apple Inc. and the FoundationDB project authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # MongoDB is a registered trademark of MongoDB, Inc. # from pymongo import MongoClient, errors import pymongo import argparse import preload_database def init_replica_set(shard_port, shard_addresses, index): repl_set = {} try: shard = MongoClient(shard_addresses[0], shard_port) members = [] for shard_id in range(len(shard_addresses)): members.append({"_id": shard_id, "host": shard_addresses[shard_id] + ":" + str(shard_port)}) repl_set = {"_id": "rs" + str(index) + ".0", "members": members} shard.admin.command('replSetInitiate', repl_set) print 'Replica set initialized with: ' print repl_set except errors.OperationFailure as e: if 'already initialized' in str(e.message): print 'Replica set already initialized, continuing.' else: raise e return repl_set def add_shard(mongos, replSet): try: mongos.admin.command('addShard', replSet['_id'] + "/" + replSet['members'][0]['host']) print 'Shard added.' except errors.OperationFailure as e: if 'duplicate key' in str(e.message): print 'Shard already added, continuing.' elif 'exists in another' in str(e.message): print 'Shard already added and enabled for DB, continuing.' else: raise e def enable_sharding_on_d_b(mongos, db_name): try: mongos.admin.command('enableSharding', db_name) print 'Sharding enabled on DB.' except errors.OperationFailure as e: if 'already enabled' in str(e.message): print 'Sharding already enabled on DB, continuing.' else: raise e def enable_sharding_on_collection(mongos, db_name, collection_name): try: collection = mongos[db_name][collection_name] collection.ensure_index([("_id", pymongo.HASHED)]) mongos.admin.command('shardCollection', db_name + "." + collection_name, key={"_id": "hashed"}) print 'Sharded collection.' except errors.OperationFailure as e: if 'already sharded' in str(e.message): print 'Collection already sharded, continuing.' else: raise e def group(lst, n): for i in range(0, len(lst), n): val = lst[i:i + n] if len(val) == n: yield tuple(val) if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument('-s', '--shard-port', type=int, default=27018) parser.add_argument('-m', '--mongos-port', type=int, default=27017) parser.add_argument('-d', '--db_name', default='test') parser.add_argument('-c', '--collection', default='test') parser.add_argument('-a', '--addresses', nargs='+', help="shard addresses (also used for mongos)") parser.add_argument('-l', '--load-data', default=False, help="Load seed data") parser.add_argument('--subnet', help="used to calculate shard addresses") parser.add_argument('--address-count', type=int, help="used to calculate shard addresses") ns = vars(parser.parse_args()) shard_port = 27018 mongos_port = 27017 db_name = 'test' collection_name = 'abc' shard_addresses = ns['addresses'] if ns['addresses'] is None and ns['subnet'] is not None and ns['address_count']: shard_addresses = [] for index in range(1, ns['address_count'] + 1): shard_addresses.append(ns['subnet'] + str(index)) grouped_shard_addresses = list(group(shard_addresses, 3)) if len(grouped_shard_addresses) > 0: mongos = MongoClient(shard_addresses[0], mongos_port) for index in range(len(grouped_shard_addresses)): replSet = init_replica_set(shard_port, grouped_shard_addresses[index], index) print("Giving the replica set a few seconds to initialize...") import time time.sleep(10) add_shard(mongos, replSet) enable_sharding_on_d_b(mongos, db_name) enable_sharding_on_collection(mongos, db_name, collection_name) if (ns['load_data']): preload_database.preload_database({ "host": shard_addresses[0], "port": mongos_port, "collection": collection_name, "number": 1, "no_numeric_fieldnames": True, "no_nulls": True, "big_documents": True }) else: print "Incorrected or missing shard addresses - exiting.."
StarcoderdataPython
9651377
<filename>hostlock/apps.py from django.apps import AppConfig class HostlockConfig(AppConfig): name = 'hostlock'
StarcoderdataPython
4938603
# -*- coding: utf-8 -*- # Generated by Django 1.11.6 on 2018-04-12 09:47 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('cms_test2', '0006_auto_20180412_0942'), ] operations = [ migrations.CreateModel( name='MovieInfo', fields=[ ('movie_info_id', models.AutoField(primary_key=True, serialize=False)), ], ), migrations.CreateModel( name='MovieLangPack', fields=[ ('movie_langpack_id', models.AutoField(primary_key=True, serialize=False)), ('is_default', models.PositiveIntegerField(blank=True, choices=[(0, 'not default language'), (1, 'is default language')], null=True)), ('title', models.CharField(blank=True, max_length=100, null=True)), ('description', models.CharField(blank=True, max_length=1000, null=True)), ('actors', models.ManyToManyField(related_name='_movielangpack_actors_+', to='cms_test2.Actor')), ('directors', models.ManyToManyField(related_name='_movielangpack_directors_+', to='cms_test2.Director')), ('language', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='cms_test2.Language')), ('movie_info', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='cms_test2.MovieInfo')), ('thumbnails', models.ManyToManyField(related_name='_movielangpack_thumbnails_+', to='cms_test2.Thumbnail')), ], ), migrations.AddField( model_name='video', name='episode_info', field=models.OneToOneField(blank=True, null=True, on_delete=django.db.models.deletion.SET_NULL, to='cms_test2.EpisodeInfo'), ), ]
StarcoderdataPython
4971971
# Authors: <NAME> <<EMAIL>> # # License: BSD (3-clause) import numpy as np from ..utils import logger, verbose from ..parallel import parallel_func from ..io.pick import channel_type, pick_types def _time_gen_one_fold(clf, X, y, train, test, scoring): """Aux function of time_generalization""" from sklearn.metrics import SCORERS n_times = X.shape[2] scores = np.zeros((n_times, n_times)) scorer = SCORERS[scoring] for t_train in range(n_times): X_train = X[train, :, t_train] clf.fit(X_train, y[train]) for t_test in range(n_times): X_test = X[test, :, t_test] scores[t_test, t_train] += scorer(clf, X_test, y[test]) return scores @verbose def time_generalization(epochs_list, clf=None, cv=5, scoring="roc_auc", shuffle=True, random_state=None, n_jobs=1, verbose=None): """Fit decoder at each time instant and test at all others The function returns the cross-validation scores when the train set is from one time instant and the test from all others. The decoding will be done using all available data channels, but will only work if 1 type of channel is availalble. For example epochs should contain only gradiometers. Parameters ---------- epochs_list : list of Epochs The epochs in all the conditions. clf : object | None A object following scikit-learn estimator API (fit & predict). If None the classifier will be a linear SVM (C=1.) after feature standardization. cv : integer or cross-validation generator, optional If an integer is passed, it is the number of fold (default 5). Specific cross-validation objects can be passed, see sklearn.cross_validation module for the list of possible objects. scoring : {string, callable, None}, optional, default: "roc_auc" A string (see model evaluation documentation in scikit-learn) or a scorer callable object / function with signature ``scorer(estimator, X, y)``. shuffle : bool If True, shuffle the epochs before splitting them in folds. random_state : None | int The random state used to shuffle the epochs. Ignored if shuffle is False. n_jobs : int Number of jobs to eggie in parallel. Each fold is fit in parallel. Returns ------- scores : array, shape (n_times, n_times) The scores averaged across folds. scores[i, j] contains the generalization score when learning at time j and testing at time i. The diagonal is the cross-validation score at each time-independant instant. Notes ----- The function implements the method used in: <NAME>, <NAME>, <NAME>, <NAME> and <NAME>, "Two distinct dynamic modes subtend the detection of unexpected sounds", PLOS ONE, 2013 """ from sklearn.base import clone from sklearn.utils import check_random_state from sklearn.svm import SVC from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler from sklearn.cross_validation import check_cv if clf is None: scaler = StandardScaler() svc = SVC(C=1, kernel='linear') clf = Pipeline([('scaler', scaler), ('svc', svc)]) info = epochs_list[0].info data_picks = pick_types(info, meg=True, eeg=True, exclude='bads') # Make arrays X and y such that : # X is 3d with X.shape[0] is the total number of epochs to classify # y is filled with integers coding for the class to predict # We must have X.shape[0] equal to y.shape[0] X = [e.get_data()[:, data_picks, :] for e in epochs_list] y = [k * np.ones(len(this_X)) for k, this_X in enumerate(X)] X = np.concatenate(X) y = np.concatenate(y) cv = check_cv(cv, X, y, classifier=True) ch_types = set([channel_type(info, idx) for idx in data_picks]) logger.info('Running time generalization on %s epochs using %s.' % (len(X), ch_types.pop())) if shuffle: rng = check_random_state(random_state) order = np.argsort(rng.randn(len(X))) X = X[order] y = y[order] parallel, p_time_gen, _ = parallel_func(_time_gen_one_fold, n_jobs) scores = parallel(p_time_gen(clone(clf), X, y, train, test, scoring) for train, test in cv) scores = np.mean(scores, axis=0) return scores
StarcoderdataPython
4936293
<reponame>sulealothman/arbraille<filename>braille/__init__.py<gh_stars>1-10 from .BrailleToAlphabet import BrailleToAlphabet from .AlphabetToBraille import AlphabetToBraille from .BrailleFile import BrailleFile #from .ConvertToArabic import BrailleToArabic from .Main import Main
StarcoderdataPython
1792920
<filename>Python-Data-Structures-and-Algorithms-master/Chapter05/stack_queue_1.py class Queue: def __init__(self): self.inbound_stack = [] self.outbound_stack = [] def dequeue(self): if not self.outbound_stack: while self.inbound_stack: self.outbound_stack.append(self.inbound_stack.pop()) return self.outbound_stack.pop() def enqueue(self, data): self.inbound_stack.append(data) queue = Queue() queue.enqueue(5) queue.enqueue(6) queue.enqueue(7) print(queue.inbound_stack) queue.dequeue() print(queue.inbound_stack) print(queue.outbound_stack) queue.dequeue() print(queue.outbound_stack) """ import time start_time = time.time() for i in range(100000): #print i array_queue.enqueue(i) for i in range(100000): #print i array_queue.dequeue() print("--- %s seconds ---" % (time.time() - start_time)) import time start_time = time.time() for i in range(10000): for j in range(100): array_queue.push(i) for k in range(10): array_queue.pop() print("--- %s seconds ---" % (time.time() - start_time)) """
StarcoderdataPython
5019189
from .pkg import a
StarcoderdataPython
4892187
<reponame>jcferrara/fantasy-football-start-or-sit #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Sep 1 01:25:36 2021 @author: JustinFerrara """ import pandas as pd def get_gamelog(player_code, year): player_url = 'https://www.pro-football-reference.com' + player_code[0:len(player_code)-4] + '/gamelog/' + str(year) + '/' table = pd.read_html(player_url) table = table[0] col_names = [] for col in table.columns: col_names.append(col[0] + "_" + col[1]) table.columns = col_names table = table.rename(columns={"Unnamed: 0_level_0_Rk":"row_tracker", "Unnamed: 1_level_0_Date":"date", "Unnamed: 2_level_0_G#":"game_number", "Unnamed: 3_level_0_Week":"week_number", "Unnamed: 4_level_0_Age":"player_age", "Unnamed: 5_level_0_Tm":"player_team", "Unnamed: 6_level_0_Unnamed: 6_level_1":"game_setting", "Unnamed: 7_level_0_Opp":"game_opponent", "Unnamed: 8_level_0_Result":"game_result", "Unnamed: 9_level_0_GS":"game_started"}) table.drop(table.tail(1).index, inplace = True) table['game_started'] = table['game_started'].astype(str) table['game_played'] = table['game_started'].apply(lambda x: "*" if x == "nan" else x) table = table[table['game_played'] == "*"] table = table.astype(str) table['player_code'] = player_code table['game_setting'] = table['game_setting'].apply(lambda x: "Away" if x == "@" else "Home") table = table.replace({'%': ''}, regex=True) return(table) game_stats = pd.DataFrame() num = 0 for i in players['player_code']: for y in ['2020', '2019']: try: gamelog = get_gamelog(i, y) game_stats = pd.concat([game_stats, gamelog]) except: continue num += 1 print(num) game_stats = game_stats[['date', 'week_number', 'player_team', 'game_setting', 'game_opponent', 'game_result', 'Passing_Cmp', 'Passing_Att', 'Passing_Cmp%', 'Passing_Yds', 'Passing_TD', 'Passing_Int', 'Passing_Rate', 'Passing_Sk', 'Passing_Y/A', 'Rushing_Att', 'Rushing_Yds', 'Rushing_Y/A', 'Rushing_TD', 'Receiving_Tgt', 'Receiving_Rec', 'Receiving_Yds', 'Receiving_Y/R', 'Receiving_TD', 'Receiving_Ctch%', 'Receiving_Y/Tgt', 'Scoring_TD', 'Scoring_Pts', 'Fumbles_Fmb', 'Fumbles_FL', 'Fumbles_FR', 'Off. Snaps_Num', 'Off. Snaps_Pct', 'ST Snaps_Num', 'ST Snaps_Pct', 'player_code']] game_stats.columns = ['date', 'week_number', 'player_team', 'game_setting', 'game_opponent', 'game_result', 'passing_completions', 'passing_attempts', 'passing_completion_pct', 'passing_yards', 'passing_td', 'passing_int', 'passing_qbr', 'passing_sacks', 'passing_yards_per_att', 'rushing_attempts', 'rushing_yards', 'rushing_yards_per_att', 'rushing_td', 'receiving_targets', 'receiving_receptions', 'receiving_yards', 'receiving_yards_per_reception', 'receiving_td', 'receiving_catch_pct', 'receiving_yards_per_target', 'scoring_total_td', 'scoring_total_points', 'fumbles_num', 'fumbles_num_lost', 'fumbles_num_recovered', 'num_off_snaps', 'pct_off_snaps', 'num_st_snaps', 'pct_st_snaps', 'player_code'] game_stats = game_stats.replace("nan", "0") game_stats = game_stats.fillna("0") game_stats[[ 'passing_completions', 'passing_attempts', 'passing_completion_pct', 'passing_yards', 'passing_td', 'passing_int', 'passing_qbr', 'passing_sacks', 'passing_yards_per_att', 'rushing_attempts', 'rushing_yards', 'rushing_yards_per_att', 'rushing_td', 'receiving_targets', 'receiving_receptions', 'receiving_yards', 'receiving_yards_per_reception', 'receiving_td', 'receiving_catch_pct', 'receiving_yards_per_target', 'scoring_total_td', 'scoring_total_points', 'fumbles_num', 'fumbles_num_lost', 'fumbles_num_recovered', 'num_off_snaps', 'pct_off_snaps', 'num_st_snaps', 'pct_st_snaps']] = game_stats[[ 'passing_completions', 'passing_attempts', 'passing_completion_pct', 'passing_yards', 'passing_td', 'passing_int', 'passing_qbr', 'passing_sacks', 'passing_yards_per_att', 'rushing_attempts', 'rushing_yards', 'rushing_yards_per_att', 'rushing_td', 'receiving_targets', 'receiving_receptions', 'receiving_yards', 'receiving_yards_per_reception', 'receiving_td', 'receiving_catch_pct', 'receiving_yards_per_target', 'scoring_total_td', 'scoring_total_points', 'fumbles_num', 'fumbles_num_lost', 'fumbles_num_recovered', 'num_off_snaps', 'pct_off_snaps', 'num_st_snaps', 'pct_st_snaps']].apply(pd.to_numeric) game_stats.to_csv('game_stats_db.csv', index = False)
StarcoderdataPython
6662149
<reponame>Saebasol/Heliotrope """ MIT License Copyright (c) 2021 SaidBySolo Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from dataclasses import dataclass from typing import Literal, Optional from heliotrope.types import HitomiTagJSON @dataclass class Tag: index_id: int male: Optional[Literal["", "1"]] female: Optional[Literal["", "1"]] tag: str url: str id: Optional[int] = None def to_dict(self) -> HitomiTagJSON: hitomi_tag_json = HitomiTagJSON(url=self.url, tag=self.tag) if self.male is not None: hitomi_tag_json["male"] = self.male if self.female is not None: hitomi_tag_json["female"] = self.female return hitomi_tag_json @classmethod def from_dict(cls, index_id: int, d: HitomiTagJSON) -> "Tag": return cls( index_id=index_id, male=d.get("male"), female=d.get("female"), tag=d["tag"], url=d["url"], )
StarcoderdataPython
5026364
<reponame>synxlin/chinese-chat-bot #/usr/bin/env python3 #-*- coding: utf-8 -*- import gc import pyaudio import wave import numpy as np from os import path import subprocess from queue import Queue, Empty from threading import Thread, Lock from time import sleep from .recognizer import Recognizer from .jarvis import Jarvis class VoiceRecorder(object): """ Realtime Recorder """ def __init__(self): self.status = 'off' self._pyaudio = pyaudio.PyAudio() self._stream = None self._speech_queue = Queue() self._frame_queue = Queue() self._save_root = 'audio/' # voice format self._format = pyaudio.paInt16 self._threshold = 500 self._rate = 16000 self._frame_size = 1024 # 1024 / 16000 = 0.064s self._channels = 1 self._frame_length = float(self._frame_size) / float(self._rate) # speech self._min_sentence_length = 0.5 # sec self._min_sentence_frame_num = int(self._min_sentence_length / self._frame_length) self._min_pause_length = 0.5 # pause between sentences, sec self._min_pause_frame_num = int(self._min_pause_length / self._frame_length) # self._max_buffer_length = 2 # self._max_buffer_frame_num = self._max_buffer_length / self._frame_length self._power_threshold = 0.0002 self._zcr_threshold = 0.05 self._auto_threshold_length = 2 # sec self._auto_threshold_frame_num = int(self._auto_threshold_length / self._frame_length) self._auto_threshold_dropout = 0.5 self._auto_threshold_power_mult = 3 self._auto_threshold_zcr_mult = 3 self._noise = [] self._noise_frame_num = 10 # stream lock self.lock = Lock() def save(self, frame, filename): path = self._save_root + filename with wave.open(path, 'wb') as fout: fout.setparams((self._channels, 2, self._rate, 0, 'NONE', 'not compressed')) fout.writeframes(frame) return path def on(self, frame_preprocess=True): assert self.status == 'off' # start audio stream self._stream = self._pyaudio.open(format=self._format, \ channels=self._channels, rate=self._rate, input=True, \ output=False, frames_per_buffer=self._frame_size) # start recording self.status = 'on' Thread(target=self._record).start() if frame_preprocess: Thread(target=self._frame_preprocess).start() def off(self): # assert self.status == 'on' self.status = 'off' #if self._stream is not None: # self._stream.close() # self._stream = None # clear queue try: while True: self._frame_queue.get_nowait() except Empty: pass try: while True: self._speech_queue.get_nowait() except Empty: pass def auto_set_threshold(self): assert self.status == 'off' print('auto setting threshold.') self.on(frame_preprocess=False) powers = [] zcrs = [] for i in range(self._auto_threshold_frame_num): frame = self._frame_queue.get() power, zcr = self._frame_power_zcr(frame) powers.append(power) zcrs.append(zcr) self.off() powers.sort() zcrs.sort() dropout = self._auto_threshold_dropout dropout_st = int(len(powers)*dropout*0.5) dropout_ed = int(len(powers)*(1 - dropout*0.5)) powers = powers[dropout_st:dropout_ed] zcrs = zcrs[dropout_st:dropout_ed] self._power_threshold = self._auto_threshold_power_mult * sum(powers) / len(powers) self._zcr_threshold = self._auto_threshold_zcr_mult * sum(zcrs) / len(zcrs) print('power threshold:', self._power_threshold) print('zcr threshold:', self._zcr_threshold) def get_speech_nowait(self): return self._speech_queue.get_nowait() def set_save_root(self, root): self._save_root = root def _record(self): while self.status == 'on': # read only, thread safe assert self._stream is not None frame = self._stream.read(self._frame_size) self._frame_queue.put(frame) if self._stream is not None: self._stream.close() self._stream = None def _frame_preprocess(self): # frame -> sentences speech_frames = [] background_frames = [] while self.status == 'on': try: while True: frame = self._frame_queue.get_nowait() is_speech = self._is_speech(frame) if is_speech: if len(speech_frames) == 0 or len(background_frames) == 0: speech_frames.append(frame) background_frames.clear() elif len(speech_frames) > 0 and len(background_frames) > 0: speech_frames.extend(background_frames) speech_frames.append(frame) background_frames.clear() else: assert False # impossible if not is_speech: if len(self._noise) == self._noise_frame_num: self._noise = self._noise[1:] self._noise.append(frame) # modeling background noise if len(speech_frames) == 0: pass # Do nothing elif len(speech_frames) > 0: background_frames.append(frame) if len(background_frames) > self._min_pause_frame_num: if len(speech_frames) > self._min_sentence_frame_num: sentence = self._concat_frames(speech_frames) # denoise if self._noise: sentence = self._denoise(sentence) self._speech_queue.put(sentence) self.status = 'off' background_frames.clear() speech_frames.clear() except Empty: sleep(self._frame_length) def _frame_power_zcr(self, frame): numdata = self._frame_to_nparray(frame) power = self._power(numdata) zcr = self._zcr(numdata) return power, zcr def _frame_to_nparray(self, frame): assert self._format == pyaudio.paInt16 numdata = np.fromstring(frame, dtype=np.int16) numdata = numdata / 2**15 # max val of int16 = 2**15-1 return numdata def _nparray_to_frame(self, numdata): numdata = numdata * 2**15 numdata = numdata.astype(np.int16) frame = numdata.tobytes() return frame def _power(self, numdata): return np.mean(numdata**2) def _zcr(self, numdata): zc = numdata[1:] * numdata[:-1] < 0 zcr = sum(zc) / len(zc) return zcr def _is_speech(self, frame): power, zcr = self._frame_power_zcr(frame) voiced_sound = power > self._power_threshold unvoiced_sound = zcr > self._zcr_threshold return voiced_sound or unvoiced_sound def _concat_frames(self, frames): return b''.join(frames) def _denoise(self, speech): # Spectral Subtraction speech_val = self._frame_to_nparray(speech) noise_val = self._frame_to_nparray(b''.join(self._noise)) speech_fft_mag = np.abs(np.fft.fft(speech_val)) noise_fft_mag = np.abs(np.fft.fft(noise_val)) speech_freq = np.linspace(0, self._rate, len(speech_val)) noise_freq = np.linspace(0, self._rate, len(noise_val)) noise_fft_interp = np.interp(speech_freq, noise_freq, noise_fft_mag) denoised_fft_mag = np.maximum(speech_fft_mag - noise_fft_interp, np.zeros(speech_fft_mag.shape)) denoised_fft = np.fft.fft(speech_val) * denoised_fft_mag / speech_fft_mag denoised_val = np.real(np.fft.ifft(denoised_fft)) denoised = self._nparray_to_frame(denoised_val) return denoised class Controller(object): def __init__(self): self.recognizer = Recognizer() self.recorder = VoiceRecorder() self.jarvis = Jarvis() self.timer = 0 self._status = None # None, 'online' self._texts = [] self._responses = [] self._cnt = 0 self._interval = 0.1 def get_texts(self): return self._texts[:] def get_response(self): return self._responses[:] def clear_texts(self): assert self._status == None # or use a mutex self._texts = [] self._responses = [] def online(self): assert self._status == None self._cnt = 0 self._status = 'online' self.recorder.on() self.recognizer.on() Thread(target=self._online_loop).start() def stop(self): status = self._status self._status = None if status == 'online': self.recorder.off() self.recognizer.off() self.jarvis.off() def _online_loop(self): while self._status == 'online': result = None speech = None try: result = self.recognizer.get_result_nowait() except Empty: pass try: speech = self.recorder.get_speech_nowait() except Empty: pass if result: self._texts.append(result) self.jarvis.off() self.jarvis.put_question(result) response = self.jarvis.get_response() self._responses.append(response + '\n') gc.collect() subprocess.run(['ekho','\" %s\"' % response]) sleep(self._interval) # self.stop() if speech and self._cnt == 0: filename = 'data.wav' filepath = self.recorder.save(speech, filename) print('saving to ', filename) self.recognizer.put_speech(filepath) self._cnt += 1 if not result and not speech: sleep(self._interval)
StarcoderdataPython
6619919
import numpy as np from sklearn.svm import LinearSVC from sklearn.datasets import load_svmlight_file import random #data data = load_svmlight_file("leu") # subSampling l =len(data[1]) start = int(round(l*0.70,0)) #N = random.sample(range(start,l), 1) N = int(round(l*0.80,0)) print("Number of sub sample %d" %N) i = np.random.choice(np.arange(data[0].shape[0]), N, replace=False) sub_data = data[0][i.tolist()] sub_sample = data[1][i.tolist()] # check for this step X_1 = sub_data.todense().tolist() y_1 = map(int,sub_sample) #L1 SVM l1svc = LinearSVC(penalty='l1', dual=False).fit(X_1, y_1) #print(len(l1svc.coef_[0])) coef = l1svc.coef_.tolist()[0] #print(coef[0]) #print(l1svc.coef_.tolist()[0]) #print[i for i, j in enumerate(coef) if j 0] #print(len(l1svc.coef_.tolist()[0])) print("Number of features have non-zero weight vector coefficients %d " %sum(1 for i in coef if i != 0)) #For each feature compute a score that is the number of sub-samples for which that feature yielded a non-zero weight vector coefficient ''' sampleListCoef = [] print(len(l1svc.coef_[0].tolist())) for k in range(0,len(l1svc.coef_[0].tolist())): for j in range(start,l): i = np.random.choice(np.arange(data[0].shape[0]), j, replace=False) sub_data = data[0][i.tolist()] sub_sample = data[1][i.tolist()] # check for this step X_1 = sub_data.todense().tolist() # samples 72 features above 7129 y_1 = map(int,sub_sample) # classes 2 #L1 SVM l1svc = LinearSVC(penalty='l1', dual=False).fit(X_1, y_1) coef = map(int,np.asarray(l1svc.coef_[0])) if(coef[k] > 0): sampleListCoef.append[j] else: sampleListCoef + [0] print("Number of sub-samples for which that feature yielded a non-zero weight vector coefficient :") print(sampleListCoef) '''
StarcoderdataPython
5184463
""" This example demonstrates the use of a newly implemented oak-d worker: hand_asl To implement a new worker, please refer to the following steps: 1. Define a new oak-d node type in: <cep_root>/src/curt/curt/modules/vision/oakd_node_types.py In this example, the new type is "hand_asl" 2. Implement the actual logic of the worker in: <cep_root>/src/curt/curt/modules/vision/oakd_hand_asl.py 3. Add this new woker in: <cep_root>/src/curt/curt/module_configs.json In this example, a new worker "oakd_hand_asl" and its class name "OAKDASL" is added. 4. When curt backend restarts, the newly implemented worker will be advertised and available to use. The code below demonstrates its use. """ from curt.command import CURTCommands # Modify these to your own workers # Format is "<host_name>/<module_type>/<service_name>/<worker_name>" OAKD_PIPELINE_WORKER = "charlie/vision/oakd_service/oakd_pipeline" RGB_CAMERA_WORKER = "charlie/vision/oakd_service/oakd_rgb_camera_input" HAND_LADNMARKS_WORKER = "charlie/vision/oakd_service/oakd_hand_landmarks" HAND_ASL_WORKER = "charlie/vision/oakd_service/oakd_hand_asl" preview_width = 640 preview_heigth = 360 palm_detection_nn_input_size = 128 hand_landmarks_nn_input_size = 224 hand_asl_nn_input_size = 224 CURTCommands.initialize() oakd_pipeline_config = [ ["add_rgb_cam_node", preview_width, preview_heigth], ["add_rgb_cam_preview_node"], ["add_nn_node", "palm_detection", "palm_detection_sh6.blob", palm_detection_nn_input_size, palm_detection_nn_input_size], ["add_nn_node", "hand_landmarks", "hand_landmark_sh6.blob", hand_landmarks_nn_input_size, hand_landmarks_nn_input_size], ["add_nn_node", "hand_asl", "hand_asl_6_shaves.blob", hand_asl_nn_input_size, hand_asl_nn_input_size], ] oakd_pipeline_worker = CURTCommands.get_worker( OAKD_PIPELINE_WORKER ) config_handler = CURTCommands.config_worker(oakd_pipeline_worker, oakd_pipeline_config) success = CURTCommands.get_result(config_handler)["dataValue"]["data"] rgb_camera_worker = CURTCommands.get_worker( RGB_CAMERA_WORKER ) hand_landmarks_worker = CURTCommands.get_worker( HAND_LADNMARKS_WORKER ) hand_asl_worker = CURTCommands.get_worker(HAND_ASL_WORKER) while True: rgb_frame_handler = CURTCommands.request(rgb_camera_worker, params=["get_rgb_frame"]) hand_landmarks_handler = CURTCommands.request( hand_landmarks_worker, params=[rgb_frame_handler] ) hand_asl_handler = CURTCommands.request( hand_asl_worker, params=[hand_landmarks_handler, rgb_frame_handler] ) hand_asl_results = CURTCommands.get_result(hand_asl_handler)["dataValue"]["data"] print(hand_asl_handler)
StarcoderdataPython
3473392
""" A wechat personal account api project See: https://github.com/littlecodersh/ItChat """ from setuptools import setup, find_packages from codecs import open from os import path import itchat here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.rst'), encoding='utf-8') as f: long_description = f.read() setup( name='itchat', version=itchat.__version__, description='A complete wechat personal account api', long_description=long_description, url='https://github.com/littlecodersh/ItChat', author='LittleCoder', author_email='<EMAIL>', license='MIT', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Developers', 'Topic :: Software Development :: Libraries :: Python Modules', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', ], keywords='wechat itchat api robot weixin personal extend', # You can just specify the packages manually here if your project is # simple. Or you can use find_packages(). packages=find_packages(), install_requires=['requests', 'pyqrcode', 'pypng'], # List additional groups of dependencies here extras_require={}, )
StarcoderdataPython
9642222
import pyowm import pyowm.utils import json import requests import re def varosLekerese(): data = json.loads(requests.get("http://ipinfo.io/json").text) return data["city"] parancs = self.parancs beszed = self.beszed h = self.h hangFelismeres = self.hangFelismeres if "időjárás" in parancs.lower() or "hőmérséklet" in parancs.lower() or "hány fok van" in parancs.lower(): if "milyen az időjárás" == parancs.lower() or "milyen a hőmérséklet" == parancs.lower() or "hány fok van" == parancs.lower(): varos = varosLekerese() elif bool(re.search("^milyen a.*időjárás$", parancs.lower())): varos = h.stem(parancs.split()[2])[0] else: varos = h.stem(parancs.split()[-1])[0] owm = pyowm.OWM("bc12083e70d2d22298c2df1cec7101d9") mgr = owm.weather_manager() megfigyeles = mgr.weather_at_place(varos) idojaras = megfigyeles.weather homerseklet = idojaras.temperature('celsius')['temp'] beszed(f"A {varos}i hőmérséklet {homerseklet} celsius fok") quit()
StarcoderdataPython
6672190
<filename>HeapSort/HeapSort.py<gh_stars>0 #!/bin/python def Heapify(DataList, Size): Layer = 1 ParentIndex = 1 while ParentIndex < Size: ParentIndex = ParentIndex << 1 Layer += 1 ParentIndex = 2**(Layer-1) - 2 while ParentIndex >= 0: LeftIndex = 2 * ParentIndex + 1 if LeftIndex < Size: TmpParent = ParentIndex TmpChildL = LeftIndex TmpChildR = TmpChildL + 1 while TmpChildL < Size: if DataList[TmpChildL] > DataList[TmpParent]: if TmpChildR < Size and DataList[TmpChildL] < DataList[TmpChildR]: DataList[TmpParent] , DataList[TmpChildR] = DataList[TmpChildR] , DataList[TmpParent] TmpParent = TmpParent * 2 + 2 TmpChildL = TmpChildR * 2 + 1 else: DataList[TmpParent] , DataList[TmpChildL] = DataList[TmpChildL] , DataList[TmpParent] TmpParent = TmpParent * 2 + 1 TmpChildL = TmpChildL * 2 + 1 elif TmpChildR < Size and DataList[TmpChildR] > DataList[TmpParent]: DataList[TmpParent] , DataList[TmpChildR] = DataList[TmpChildR] , DataList[TmpParent] TmpParent = TmpParent * 2 + 2 TmpChildL = TmpChildR * 2 + 1 else: break TmpChildR = TmpChildL + 1 ParentIndex = ParentIndex - 1 def HeapSort(DataList): Size = len(DataList) Iterator = len(DataList) Heapify(DataList, Size) while(Size > 0): print DataList[7] DataList[0], DataList[Size - 1] = DataList[Size - 1], DataList[0] Size = Size - 1 Heapify(DataList, Size) DataList = [1,0,2,1,1,1,2,0] #Heapify(DataList, len(DataList)) HeapSort(DataList) print (" ".join( str(data) for data in DataList)) # 8 # 12 9 # 7 22 3 26 # 14 11 15 22 # # 26 # 22 9 # 14 22 3 8 # 7 11 15 12
StarcoderdataPython
245427
<filename>tweet-reader/tweet_producer.py import pandas as pd from tweepy.streaming import StreamListener from tweepy import OAuthHandler from tweepy import Stream from kafka import KafkaProducer from get_authentication import get_authentication auth_dict = get_authentication() auth = OAuthHandler(auth_dict['CONSUMER_KEY'], auth_dict['CONSUMER_SECRET']) auth.set_access_token(auth_dict['ACCESS_TOKEN'], auth_dict['ACCESS_SECRET']) topic_name = 'TWEETS' producer = KafkaProducer( bootstrap_servers=['broker:9092']) print("Producer created") def get_ticker_list(): # For demonstration purposes we query tweets # with a couple of well-known companies # instead of simply querying the quote we also quote # the alias as most people refer to the company # not by its stock quote (duh!) but by the company name df = pd.DataFrame(columns=['Symbol'] , data=['AAPL', 'apple', 'MSFT', 'microsoft', 'AMZN', 'amazon', 'FB', 'facebook', 'GOOG', 'google', 'NVDA', 'nvidia', 'ADBE', 'adobe']) #df = pd.read_csv("NASDAQ_tickers.csv").iloc[:10] return ['#'+x for x in df.Symbol.values.tolist()] class Listener(StreamListener): def on_status(self, raw_data): print(raw_data.text) producer.send(topic_name, str.encode(raw_data.text)) return True def get_tweets(lst): print(lst) while True: listener = Listener() stream = Stream(auth, listener) stream.filter(track=lst, stall_warnings=True) if __name__ == "__main__": lst = get_ticker_list() get_tweets(lst)
StarcoderdataPython
12846719
<filename>scripts/figures/gene_abundance.py #%% import scanpy as sc import pandas as pd from pathlib import Path from vectorseq.utils import check_gene_abundance, create_dir from vectorseq.marker_constants import BrainGenes data_dir = Path("/spare_volume/vectorseq-data") figure_save_dir = create_dir(data_dir / "gene_abundance") #%% [markdown] # ## Gene Abundance Table for Experiment: 3250, Brain Region: v1 #%% experiment_id = "3250" brain_region = "v1" run_dir = data_dir / experiment_id / brain_region all_cells_output_dir = create_dir(run_dir / "all_cells") adata = sc.read_h5ad(all_cells_output_dir / "filter" / "adata.h5ad") filtered_tg_list = [ gene for gene in BrainGenes.TG_MARKERS if gene.upper() in adata.obs.columns ] endogenous_genes_list = [ "Snap25", "Rbfox3", "Slc17a6", "Camk2a", "Gad1", "Gad2", "Mog", "Flt1", ] gene_list = filtered_tg_list + endogenous_genes_list count_fractions_df = pd.DataFrame() for gene in gene_list: temp = check_gene_abundance(adata, gene_of_interest=gene) if not temp.empty: count_fractions_df = count_fractions_df.append( pd.DataFrame.from_dict( { "gene": gene, "number_of_expressing_cells": temp.shape[0], "number_of_reads": temp.goi_counts.sum(), "abundance_in_expressing_cells": f"{round(temp.percent_count_goi.mean(),2)} +/- {round(temp.percent_count_goi.std(),2)}", }, orient="index", ).T ) print(f"{gene} detected.") else: print(f"{gene} not detected.") count_fractions_df.set_index(keys="gene", drop=True, inplace=True) count_fractions_df.to_csv( figure_save_dir / f"{experiment_id}_{brain_region}_all_cells_gene_abundance.csv" ) # %% #%% [markdown] # ## Gene Abundance Table for Experiment: 3382, Brain Region: snr #%% experiment_id = "3382" brain_region = "snr" run_dir = data_dir / experiment_id / brain_region all_cells_output_dir = create_dir(run_dir / "all_cells") adata = sc.read_h5ad(all_cells_output_dir / "filter" / "adata.h5ad") filtered_tg_list = [ gene for gene in BrainGenes.TG_MARKERS if gene.upper() in adata.obs.columns ] endogenous_genes_list = [ "Snap25", "Rbfox3", "Slc17a6", "Camk2a", "Gad1", "Gad2", "Mog", "Flt1", ] gene_list = filtered_tg_list + endogenous_genes_list count_fractions_df = pd.DataFrame() for gene in gene_list: temp = check_gene_abundance(adata, gene_of_interest=gene) if not temp.empty: count_fractions_df = count_fractions_df.append( pd.DataFrame.from_dict( { "gene": gene, "number_of_expressing_cells": temp.shape[0], "number_of_reads": temp.goi_counts.sum(), "abundance_in_expressing_cells": f"{round(temp.percent_count_goi.mean(),2)} +/- {round(temp.percent_count_goi.std(),2)}", }, orient="index", ).T ) print(f"{gene} detected.") else: print(f"{gene} not detected.") count_fractions_df.set_index(keys="gene", drop=True, inplace=True) count_fractions_df.to_csv( figure_save_dir / f"{experiment_id}_{brain_region}_all_cells_gene_abundance.csv" ) # %% #%% [markdown] # ## Gene Abundance Table for Experiment: 3454, Brain Region: sc #%% data_dir = Path("/spare_volume/vectorseq-data") experiment_id = "3454" brain_region = "sc" run_dir = data_dir / experiment_id / brain_region all_cells_output_dir = create_dir(run_dir / "all_cells") adata = sc.read_h5ad(all_cells_output_dir / "filter" / "adata.h5ad") filtered_tg_list = [ gene for gene in BrainGenes.TG_MARKERS if gene.upper() in adata.obs.columns ] endogenous_genes_list = [ "Snap25", "Rbfox3", "Slc17a6", "Camk2a", "Gad1", "Gad2", "Mog", "Flt1", ] gene_list = filtered_tg_list + endogenous_genes_list count_fractions_df = pd.DataFrame() for gene in gene_list: temp = check_gene_abundance(adata, gene_of_interest=gene) if not temp.empty: count_fractions_df = count_fractions_df.append( pd.DataFrame.from_dict( { "gene": gene, "number_of_expressing_cells": temp.shape[0], "number_of_reads": temp.goi_counts.sum(), "abundance_in_expressing_cells": f"{round(temp.percent_count_goi.mean(),2)} +/- {round(temp.percent_count_goi.std(),2)}", }, orient="index", ).T ) print(f"{gene} detected.") else: print(f"{gene} not detected.") count_fractions_df.set_index(keys="gene", drop=True, inplace=True) count_fractions_df.to_csv( figure_save_dir / f"{experiment_id}_{brain_region}_all_cells_gene_abundance.csv" ) #%%
StarcoderdataPython
9689187
# Copyright (c) 2020 Rik079, <NAME>, Zibadian, Micro-T. All rights reserved. __version__ = "Alpha" # Discord login Token token = "" # Path to modules folder modulepath = "./modules" # AWS credentials aws_id = '' aws_secret = '' aws_region = 'us-west-2' # Staff # ------------------------ # Admins adminids = [] # Tech guys botadminids = []
StarcoderdataPython
1950126
<reponame>prodProject/WorkkerAndConsumerServer from enum import Enum from CommonCode.passwordHashOrDehashHelper import PasswordHasherOrDeHasher from Enums.passwordEnum import PasswordMode from Password.passwordHelper import PasswordHelper from Services.loginService import LoginService class States(Enum): START = 0, GET_PASSWORD_MODE = 1, GENEREATE_PASSWORD = 2, GET_LOGIN = 3, VERIFY_PASSWORD = 4, DONE = 5, class GenereateAndVerifyPassword: m_helper = PasswordHelper() m_loginService = LoginService() m_passwordEncrytorOrDecryptor = PasswordHasherOrDeHasher(); m_login = None pb = None mode = None m_isValid = False def start(self, pb, mode): self.pb = pb self.mode = mode self.controlFlow(currentState=States.GET_PASSWORD_MODE) def done(self): if (self.mode == PasswordMode.GENERATE_PASSWORD): return self.pb else: return self.m_isValid def getPasswordMode(self): if (self.mode == PasswordMode.GENERATE_PASSWORD): self.controlFlow(currentState=States.GENEREATE_PASSWORD) elif (self.mode == PasswordMode.VERIFY_PASSWORD): self.controlFlow(currentState=States.GET_LOGIN) else: self.controlFlow(currentState=States.DONE) def getGenreatePassword(self): self.pb.password = self.m_passwordEncrytorOrDecryptor.getMd5hashFromPassWord( password=self.m_helper.getPasswordFromLoginPb(loginPb=self.pb)) self.controlFlow(currentState=States.DONE) def getLogin(self): self.m_login = self.m_loginService.get(id=self.pb.dbInfo.id) self.controlFlow(currentState=States.VERIFY_PASSWORD) def getVerifyPassWord(self): self.m_isValid = self.m_passwordEncrytorOrDecryptor.getMd5PasswordMatch( actualPassword=self.m_helper.getPasswordFromLoginPb(loginPb=self.pb), hashedPassword=self.m_login.password) self.controlFlow(currentState=States.DONE) def controlFlow(self, currentState): if (currentState == States.GET_PASSWORD_MODE): self.getPasswordMode() elif (currentState == States.GENEREATE_PASSWORD): self.getGenreatePassword() elif (currentState == States.GET_LOGIN): self.getLogin() elif (currentState == States.VERIFY_PASSWORD): self.getVerifyPassWord() elif (currentState == States.DONE): self.done()
StarcoderdataPython
8086206
<gh_stars>0 from generator import User from generator import Database def generator_bot(): print("Bienvenido al sistema de gestión de usuarios!") Database.create_table() menu() def menu(): res = input('Quiere crear, eliminar o buscar un usuario? \n[a] Crear \n[b] Eliminar \n[c] Buscar \n> ') if res == "a": return create_user() elif res == "b": return delete_user() elif res == "c": return get_user() else: print_message() return menu() def create_user(): name = input("Ingrese el nombre: ", ).capitalize() surname = input("Ingrese el apellido: ", ).capitalize() area = input("Ingrese el área: ", ).upper() user1 = User(name, surname) username = user1.username() codigo = username.encode('utf-8').hex()[:6].upper() vm = virtual_machine(codigo, area) data = Database(name, surname, area, username, vm) data.put_in() print("Usuario creado satisfactoriamente... ") data.get_user(username) close_question() def virtual_machine(codigo, area): res = input("Por favor, seleccione el Sistema Operativo de la VM: \n[a] Windows \n[b] Linux \n>") if res == "a": return "VMW" + codigo + area[:3] + str(User.today.month) elif res == "b": return "VML" + codigo + area[:3] + str(User.today.month) else: print_message() virtual_machine() def delete_user(): res = input('Por favor ingrese el nombre de usuario que desea eliminar: ', ) Database.get_user(res) query = Database.delete(res) close_question() def get_user(): res = input('Por favor ingrese el nombre de usuario que desea buscar: ', ) Database.get_user(res) close_question() def print_message(): print("Selección equivocada, por favor vuelva a seleccionar.") def close_question(): res = input('Desea hacer algo más? \n[a] Si \n[b] No \n> ') if res == "a": return menu() elif res == "b": print("Usted ha finalizado sesión.") else: print_message() return close_question() generator_bot()
StarcoderdataPython
9676701
import logging from ..settings import azure_configs from ..settings import local_configs from ..settings import gcp_configs from .base import BlobStorage from .gcp import GoogleCloudStorage from .azure import AzureStorage from .local import LocalStorage def BlobStorageFactory(provider="local") -> BlobStorage: """Create a storage provider. Args: provider: the name of the storage provider. Choose among `local` and `gcp`. Return: a storage provider of the class `BlobStorage`. """ if provider == "local": root = local_configs.get("root") return LocalStorage(root) if provider == "gcp": project_id = gcp_configs.get("project_id") bucket_name = gcp_configs.get("bucket_name") service_account_file = gcp_configs.get("service_account_file") return GoogleCloudStorage(project_id=project_id, bucket_name=bucket_name, service_account_file=service_account_file) if provider == "azure": # Set logging level connection_string = azure_configs.get("connection_string") container_name = azure_configs.get("container_name") log_level = int(azure_configs.get("log_level")) logging.getLogger("azure.storage.common.storageclient")\ .setLevel(log_level) return AzureStorage(connection_string=connection_string, container_name=container_name) raise ValueError("Uknown provider: "+provider)
StarcoderdataPython
168935
<filename>vendor/iptables-1.8.7/iptables-test.py #!/usr/bin/env python # # (C) 2012-2013 by <NAME> <<EMAIL>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This software has been sponsored by <NAME> <http://www.sophos.com> # from __future__ import print_function import sys import os import subprocess import argparse IPTABLES = "iptables" IP6TABLES = "ip6tables" ARPTABLES = "arptables" EBTABLES = "ebtables" IPTABLES_SAVE = "iptables-save" IP6TABLES_SAVE = "ip6tables-save" ARPTABLES_SAVE = "arptables-save" EBTABLES_SAVE = "ebtables-save" #IPTABLES_SAVE = ['xtables-save','-4'] #IP6TABLES_SAVE = ['xtables-save','-6'] EXTENSIONS_PATH = "extensions" LOGFILE="/tmp/iptables-test.log" log_file = None class Colors: HEADER = '\033[95m' BLUE = '\033[94m' GREEN = '\033[92m' YELLOW = '\033[93m' RED = '\033[91m' ENDC = '\033[0m' def print_error(reason, filename=None, lineno=None): ''' Prints an error with nice colors, indicating file and line number. ''' print(filename + ": " + Colors.RED + "ERROR" + Colors.ENDC + ": line %d (%s)" % (lineno, reason)) def delete_rule(iptables, rule, filename, lineno): ''' Removes an iptables rule ''' cmd = iptables + " -D " + rule ret = execute_cmd(cmd, filename, lineno) if ret == 1: reason = "cannot delete: " + iptables + " -I " + rule print_error(reason, filename, lineno) return -1 return 0 def run_test(iptables, rule, rule_save, res, filename, lineno, netns): ''' Executes an unit test. Returns the output of delete_rule(). Parameters: :param iptables: string with the iptables command to execute :param rule: string with iptables arguments for the rule to test :param rule_save: string to find the rule in the output of iptables -save :param res: expected result of the rule. Valid values: "OK", "FAIL" :param filename: name of the file tested (used for print_error purposes) :param lineno: line number being tested (used for print_error purposes) ''' ret = 0 cmd = iptables + " -A " + rule if netns: cmd = "ip netns exec ____iptables-container-test " + EXECUTEABLE + " " + cmd ret = execute_cmd(cmd, filename, lineno) # # report failed test # if ret: if res == "OK": reason = "cannot load: " + cmd print_error(reason, filename, lineno) return -1 else: # do not report this error return 0 else: if res == "FAIL": reason = "should fail: " + cmd print_error(reason, filename, lineno) delete_rule(iptables, rule, filename, lineno) return -1 matching = 0 splitted = iptables.split(" ") if len(splitted) == 2: if splitted[1] == '-4': command = IPTABLES_SAVE elif splitted[1] == '-6': command = IP6TABLES_SAVE elif len(splitted) == 1: if splitted[0] == IPTABLES: command = IPTABLES_SAVE elif splitted[0] == IP6TABLES: command = IP6TABLES_SAVE elif splitted[0] == ARPTABLES: command = ARPTABLES_SAVE elif splitted[0] == EBTABLES: command = EBTABLES_SAVE command = EXECUTEABLE + " " + command if netns: command = "ip netns exec ____iptables-container-test " + command args = splitted[1:] proc = subprocess.Popen(command, shell=True, stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) out, err = proc.communicate() # # check for segfaults # if proc.returncode == -11: reason = "iptables-save segfaults: " + cmd print_error(reason, filename, lineno) delete_rule(iptables, rule, filename, lineno) return -1 # find the rule matching = out.find(rule_save.encode('utf-8')) if matching < 0: reason = "cannot find: " + iptables + " -I " + rule print_error(reason, filename, lineno) delete_rule(iptables, rule, filename, lineno) return -1 # Test "ip netns del NETNS" path with rules in place if netns: return 0 return delete_rule(iptables, rule, filename, lineno) def execute_cmd(cmd, filename, lineno): ''' Executes a command, checking for segfaults and returning the command exit code. :param cmd: string with the command to be executed :param filename: name of the file tested (used for print_error purposes) :param lineno: line number being tested (used for print_error purposes) ''' global log_file if cmd.startswith('iptables ') or cmd.startswith('ip6tables ') or cmd.startswith('ebtables ') or cmd.startswith('arptables '): cmd = EXECUTEABLE + " " + cmd print("command: {}".format(cmd), file=log_file) ret = subprocess.call(cmd, shell=True, universal_newlines=True, stderr=subprocess.STDOUT, stdout=log_file) log_file.flush() # generic check for segfaults if ret == -11: reason = "command segfaults: " + cmd print_error(reason, filename, lineno) return ret def run_test_file(filename, netns): ''' Runs a test file :param filename: name of the file with the test rules ''' # # if this is not a test file, skip. # if not filename.endswith(".t"): return 0, 0 if "libipt_" in filename: iptables = IPTABLES elif "libip6t_" in filename: iptables = IP6TABLES elif "libxt_" in filename: iptables = IPTABLES elif "libarpt_" in filename: # only supported with nf_tables backend if EXECUTEABLE != "xtables-nft-multi": return 0, 0 iptables = ARPTABLES elif "libebt_" in filename: # only supported with nf_tables backend if EXECUTEABLE != "xtables-nft-multi": return 0, 0 iptables = EBTABLES else: # default to iptables if not known prefix iptables = IPTABLES f = open(filename) tests = 0 passed = 0 table = "" total_test_passed = True if netns: execute_cmd("ip netns add ____iptables-container-test", filename, 0) for lineno, line in enumerate(f): if line[0] == "#" or len(line.strip()) == 0: continue if line[0] == ":": chain_array = line.rstrip()[1:].split(",") continue # external non-iptables invocation, executed as is. if line[0] == "@": external_cmd = line.rstrip()[1:] if netns: external_cmd = "ip netns exec ____iptables-container-test " + external_cmd execute_cmd(external_cmd, filename, lineno) continue # external iptables invocation, executed as is. if line[0] == "%": external_cmd = line.rstrip()[1:] if netns: external_cmd = "ip netns exec ____iptables-container-test " + EXECUTEABLE + " " + external_cmd execute_cmd(external_cmd, filename, lineno) continue if line[0] == "*": table = line.rstrip()[1:] continue if len(chain_array) == 0: print("broken test, missing chain, leaving") sys.exit() test_passed = True tests += 1 for chain in chain_array: item = line.split(";") if table == "": rule = chain + " " + item[0] else: rule = chain + " -t " + table + " " + item[0] if item[1] == "=": rule_save = chain + " " + item[0] else: rule_save = chain + " " + item[1] res = item[2].rstrip() ret = run_test(iptables, rule, rule_save, res, filename, lineno + 1, netns) if ret < 0: test_passed = False total_test_passed = False break if test_passed: passed += 1 if netns: execute_cmd("ip netns del ____iptables-container-test", filename, 0) if total_test_passed: print(filename + ": " + Colors.GREEN + "OK" + Colors.ENDC) f.close() return tests, passed def show_missing(): ''' Show the list of missing test files ''' file_list = os.listdir(EXTENSIONS_PATH) testfiles = [i for i in file_list if i.endswith('.t')] libfiles = [i for i in file_list if i.startswith('lib') and i.endswith('.c')] def test_name(x): return x[0:-2] + '.t' missing = [test_name(i) for i in libfiles if not test_name(i) in testfiles] print('\n'.join(missing)) # # main # def main(): parser = argparse.ArgumentParser(description='Run iptables tests') parser.add_argument('filename', nargs='*', metavar='path/to/file.t', help='Run only this test') parser.add_argument('-H', '--host', action='store_true', help='Run tests against installed binaries') parser.add_argument('-l', '--legacy', action='store_true', help='Test iptables-legacy') parser.add_argument('-m', '--missing', action='store_true', help='Check for missing tests') parser.add_argument('-n', '--nftables', action='store_true', help='Test iptables-over-nftables') parser.add_argument('-N', '--netns', action='store_true', help='Test netnamespace path') args = parser.parse_args() # # show list of missing test files # if args.missing: show_missing() return global EXECUTEABLE EXECUTEABLE = "xtables-legacy-multi" if args.nftables: EXECUTEABLE = "xtables-nft-multi" if os.getuid() != 0: print("You need to be root to run this, sorry") return if not args.host: os.putenv("XTABLES_LIBDIR", os.path.abspath(EXTENSIONS_PATH)) os.putenv("PATH", "%s/iptables:%s" % (os.path.abspath(os.path.curdir), os.getenv("PATH"))) test_files = 0 tests = 0 passed = 0 # setup global var log file global log_file try: log_file = open(LOGFILE, 'w') except IOError: print("Couldn't open log file %s" % LOGFILE) return if args.filename: file_list = args.filename else: file_list = [os.path.join(EXTENSIONS_PATH, i) for i in os.listdir(EXTENSIONS_PATH) if i.endswith('.t')] file_list.sort() if not args.netns: try: import unshare unshare.unshare(unshare.CLONE_NEWNET) except: print("Cannot run in own namespace, connectivity might break") for filename in file_list: file_tests, file_passed = run_test_file(filename, args.netns) if file_tests: tests += file_tests passed += file_passed test_files += 1 print("%d test files, %d unit tests, %d passed" % (test_files, tests, passed)) if __name__ == '__main__': main()
StarcoderdataPython
1930740
<filename>.venv/lib/python3.8/site-packages/opencensus/trace/span_context.py<gh_stars>0 # Copyright 2017, OpenCensus Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """SpanContext encapsulates the current context within the request's trace.""" import six import logging import random import re from opencensus.trace import trace_options as trace_options_module _INVALID_TRACE_ID = '0' * 32 INVALID_SPAN_ID = '0' * 16 TRACE_ID_PATTERN = re.compile('[0-9a-f]{32}?') SPAN_ID_PATTERN = re.compile('[0-9a-f]{16}?') # Default options, don't force sampling DEFAULT_OPTIONS = '0' class SpanContext(object): """SpanContext includes 3 fields: traceId, spanId, and an trace_options flag which indicates whether or not the request is being traced. It contains the current context to be propagated to the child spans. :type trace_id: str :param trace_id: (Optional) Trace_id is a 32 digits uuid for the trace. If not given, will generate one automatically. :type span_id: str :param span_id: (Optional) Identifier for the span, unique within a trace. :type trace_options: :class: `~opencensus.trace.trace_options.TraceOptions` :param trace_options: (Optional) TraceOptions indicates 8 trace options. :type from_header: bool :param from_header: (Optional) Indicates whether the trace context is generated from request header. """ def __init__( self, trace_id=None, span_id=None, trace_options=None, tracestate=None, from_header=False): if trace_id is None: trace_id = generate_trace_id() if trace_options is None: trace_options = trace_options_module.TraceOptions(DEFAULT_OPTIONS) self.from_header = from_header self.trace_id = self._check_trace_id(trace_id) self.span_id = self._check_span_id(span_id) self.trace_options = trace_options self.tracestate = tracestate def __repr__(self): """Returns a string form of the SpanContext. :rtype: str :returns: String form of the SpanContext. """ fmt = '{}(trace_id={}, span_id={}, trace_options={}, tracestate={})' return fmt.format( type(self).__name__, self.trace_id, self.span_id, self.trace_options, self.tracestate, ) def _check_span_id(self, span_id): """Check the format of the span_id to ensure it is 16-character hex value representing a 64-bit number. If span_id is invalid, logs a warning message and returns None :type span_id: str :param span_id: Identifier for the span, unique within a span. :rtype: str :returns: Span_id for the current span. """ if span_id is None: return None assert isinstance(span_id, six.string_types) if span_id is INVALID_SPAN_ID: logging.warning( 'Span_id %s is invalid (cannot be all zero)', span_id) self.from_header = False return None match = SPAN_ID_PATTERN.match(span_id) if match: return span_id else: logging.warning( 'Span_id %s does not the match the ' 'required format', span_id) self.from_header = False return None def _check_trace_id(self, trace_id): """Check the format of the trace_id to ensure it is 32-character hex value representing a 128-bit number. If trace_id is invalid, returns a randomly generated trace id :type trace_id: str :param trace_id: :rtype: str :returns: Trace_id for the current context. """ assert isinstance(trace_id, six.string_types) if trace_id is _INVALID_TRACE_ID: logging.warning( 'Trace_id %s is invalid (cannot be all zero), ' 'generating a new one.', trace_id) self.from_header = False return generate_trace_id() match = TRACE_ID_PATTERN.match(trace_id) if match: return trace_id else: logging.warning( 'Trace_id %s does not the match the required format,' 'generating a new one instead.', trace_id) self.from_header = False return generate_trace_id() def generate_span_id(): """Return the random generated span ID for a span. Must be a 16 character hexadecimal encoded string :rtype: str :returns: 16 digit randomly generated hex trace id. """ return '{:016x}'.format(random.getrandbits(64)) def generate_trace_id(): """Generate a random 32 char hex trace_id. :rtype: str :returns: 32 digit randomly generated hex trace id. """ return '{:032x}'.format(random.getrandbits(128))
StarcoderdataPython
11382232
<filename>services/ap_to_redis.py #!/usr/bin/env python3 from mycelium.components import RedisBridge, Connector from mycelium_utils import Scripter class ScripterExt(Scripter): def run_main(self): rb = RedisBridge(db=self.rd_cfg.databases['robot']) self.conn = Connector(self.cfg.ap_to_redis, self.cfg.connection_baudrate, 1, 0) params = self.rd_cfg.robot while not self.exit_threads: try: self.conn.send_heartbeat() m = self.conn.get_callbacks(params) if m is not None: rb.add_key(m.to_json(), m.get_type(), to_json=False) except: pass def close_script(self): try: self.conn.disconnect() except: pass scripter = ScripterExt(log_source="ap_to_redis") scripter.run()
StarcoderdataPython
3359377
<gh_stars>0 """ Common utilities """ import numpy as np import torch from shapely.geometry import Polygon def check_numpy_to_torch(x): if isinstance(x, np.ndarray): return torch.from_numpy(x).float(), True return x, False def check_contain_nan(x): if isinstance(x, dict): return any(check_contain_nan(v) for k, v in x.items()) if isinstance(x, list): return any(check_contain_nan(itm) for itm in x) if isinstance(x, int) or isinstance(x, float): return False if isinstance(x, np.ndarray): return np.any(np.isnan(x)) return torch.any(x.isnan()).detach().cpu().item() def rotate_points_along_z(points, angle): """ Args: points: (B, N, 3 + C) angle: (B), radians, angle along z-axis, angle increases x ==> y Returns: """ points, is_numpy = check_numpy_to_torch(points) angle, _ = check_numpy_to_torch(angle) cosa = torch.cos(angle) sina = torch.sin(angle) zeros = angle.new_zeros(points.shape[0]) ones = angle.new_ones(points.shape[0]) rot_matrix = torch.stack(( cosa, sina, zeros, -sina, cosa, zeros, zeros, zeros, ones ), dim=1).view(-1, 3, 3).float() points_rot = torch.matmul(points[:, :, 0:3].float(), rot_matrix) points_rot = torch.cat((points_rot, points[:, :, 3:]), dim=-1) return points_rot.numpy() if is_numpy else points_rot def rotate_points_along_z_2d(points, angle): """ Rorate the points along z-axis. Parameters ---------- points : torch.Tensor / np.ndarray (N, 2). angle : torch.Tensor / np.ndarray (N,) Returns ------- points_rot : torch.Tensor / np.ndarray Rorated points with shape (N, 2) """ points, is_numpy = check_numpy_to_torch(points) angle, _ = check_numpy_to_torch(angle) cosa = torch.cos(angle) sina = torch.sin(angle) # (N, 2, 2) rot_matrix = torch.stack((cosa, sina, -sina, cosa), dim=1).view(-1, 2, 2).float() points_rot = torch.einsum("ik, ikj->ij", points.float(), rot_matrix) return points_rot.numpy() if is_numpy else points_rot def remove_ego_from_objects(objects, ego_id): """ Avoid adding ego vehicle to the object dictionary. Parameters ---------- objects : dict The dictionary contained all objects. ego_id : int Ego id. """ if ego_id in objects: del objects[ego_id] def retrieve_ego_id(base_data_dict): """ Retrieve the ego vehicle id from sample(origin format). Parameters ---------- base_data_dict : dict Data sample in origin format. Returns ------- ego_id : str The id of ego vehicle. """ ego_id = None for cav_id, cav_content in base_data_dict.items(): if cav_content['ego']: ego_id = cav_id break return ego_id def compute_iou(box, boxes): """ Compute iou between box and boxes list Parameters ---------- box : shapely.geometry.Polygon Bounding box Polygon. boxes : list List of shapely.geometry.Polygon. Returns ------- iou : np.ndarray Array of iou between box and boxes. """ # Calculate intersection areas iou = [box.intersection(b).area / box.union(b).area for b in boxes] return np.array(iou, dtype=np.float32) def convert_format(boxes_array): """ Convert boxes array to shapely.geometry.Polygon format. Parameters ---------- boxes_array : np.ndarray (N, 4, 2) or (N, 8, 3). Returns ------- list of converted shapely.geometry.Polygon object. """ polygons = [Polygon([(box[i, 0], box[i, 1]) for i in range(4)]) for box in boxes_array] return np.array(polygons) def torch_tensor_to_numpy(torch_tensor): """ Convert a torch tensor to numpy. Parameters ---------- torch_tensor : torch.Tensor Returns ------- A numpy array. """ return torch_tensor.numpy() if not torch_tensor.is_cuda else \ torch_tensor.cpu().detach().numpy()
StarcoderdataPython
11336293
"""This module contains custom mpld3 plugins to add useful features to the graph. The JavaScript in the Python files was built from the TypeScript source files in the `mpld3-plugins` directory. Classes ------- InteractiveLegend Class defining an mpld3 plugin to create an interactive legend. RangeSelectorButtons Class defining an mpld3 plugin to create range selector buttons. SaveImageButtons Class defining an mpld3 plugin to create save as image buttons. TimeSeriesTooltip Class defining an mpld3 plugin to create line graph tooltips. """ from autoplot.plugins.interactive_legend import InteractiveLegend from autoplot.plugins.range_selector_buttons import RangeSelectorButtons from autoplot.plugins.save_image_buttons import SaveImageButtons from autoplot.plugins.time_series_tooltip import TimeSeriesTooltip
StarcoderdataPython
11374782
<gh_stars>1-10 from unittest.result import TestResult, failfast from instant_coverage import clear_url_caches from django.http import HttpResponse from django.test import SimpleTestCase from django.test.utils import setup_test_environment, teardown_test_environment from django.views.generic import View from mock import patch import six def mocked_patterns(patterns): clear_url_caches() return patch('instant_coverage.tests.urls.urlpatterns', patterns) class PickyTestResult(TestResult): """ A TestResult subclass that will retain just exceptions and messages from tests run, rather than storing an entire traceback. """ @failfast def addFailure(self, test, err): self.failures.append((test, err)) def get_results_for(test_name, mixin=None, **test_attributes): from instant_coverage import InstantCoverageMixin if mixin is None: class EverythingTest(InstantCoverageMixin, SimpleTestCase): pass else: class EverythingTest(mixin, InstantCoverageMixin, SimpleTestCase): pass try: setup_test_environment() except RuntimeError: # look, this is gross, but what we're doing here to make an in-test # fake test environment is pretty gross already, so let's just placate # django for now: teardown_test_environment() setup_test_environment() test = EverythingTest(test_name) for attribute, value in six.iteritems(test_attributes): setattr(test, attribute, value) result = PickyTestResult() if hasattr(test, '_pre_setup'): test._pre_setup() test.run(result) if not result.errors == []: # there should only ever be failures; if there's an error we should # throw something useful raise Exception(result.errors[0][1]) return result class WorkingView(View): def get(self, request, *args, **kwargs): return HttpResponse() class BrokenView(View): def get(self, request, *args, **kwargs): raise Exception('this view is broken')
StarcoderdataPython
3399899
import requests import json import re import psycopg2.extensions import bot.secret as secret def reply_text(cur, reply_token, REPLY_ENDPOINT, HEADER, text, userid): reply = '' """ url= secret.WCDAPI response = requests.get(url) tenki = json.loads(response.text) """ if re.match('登録 ', text): memo = text[3:] cur.execute("INSERT INTO touroku(userid, data) VALUES(%s, %s);", [ userid, memo]) reply += "「" + memo + '」を登録しました。' elif re.match('削除 ', text): memo = text[3:] if memo == '全部' or memo == 'ぜんぶ' or memo == 'すべて' or memo == '全て': cur.execute("DELETE FROM touroku WHERE userid=%s", [userid]) reply += "すべてのメモを削除しました。" elif memo == '最後' or memo == 'さいご': cur.execute("SELECT * FROM touroku WHERE userid=%s", [userid]) sakujo_taplelist = cur.fetchall() last_memo = len(sakujo_taplelist) - 1 idz = sakujo_taplelist[last_memo][0] reply += "「" + sakujo_taplelist[last_memo][2] + "」を削除しました。" cur.execute("DELETE FROM touroku WHERE id=%s", [idz]) else: memo = int(memo) - 1 cur.execute("SELECT * FROM touroku WHERE userid=%s", [userid]) sakujo_taplelist = cur.fetchall() idz = sakujo_taplelist[memo][0] reply += "「" + sakujo_taplelist[memo][2] + "」を削除しました。" cur.execute("DELETE FROM touroku WHERE id=%s", [idz]) elif text == '一覧': cur.execute("SELECT * FROM touroku WHERE userid = %s", [userid]) itiran_taplelist = cur.fetchall() if len(itiran_taplelist) is not 0: print(itiran_taplelist) for i, j in enumerate(itiran_taplelist): reply += str(i+1) + " " + j[2] + '\n' reply = reply[:-1] else: reply += "何も登録されていません!" elif re.match('おうむがえし ', text): reply += text[7:] elif re.match('userid', text): reply += userid payload = { "replyToken": reply_token, "messages": [ { "type": "text", "text": reply } ] } requests.post(REPLY_ENDPOINT, headers=HEADER, data=json.dumps(payload)) # LINEにデータを送信 return reply
StarcoderdataPython
3298573
""" Testing tool to validate serialization and deserialization. WARNING: Not for production use. Specifically constructed to assist with json loading and dumping within the library. As a secondary case, this displays how many python serializers/deserializers should be able to take advantage of the dataclass usage. """ from dataclasses import asdict, is_dataclass from enum import Enum import json import os from pathlib import Path from typing import Any, Callable, List, Optional, Type, TypeVar, Union, cast from pydantic.json import pydantic_encoder from pydantic.tools import parse_raw_as, parse_obj_as from electionguard.group import hex_to_int, int_to_hex T = TypeVar("T") def construct_path( target_file_name: str, target_path: Optional[Path] = None, target_file_extension="json", ) -> Path: """Construct path from file name, path, and extension.""" target_file = f"{target_file_name}.{target_file_extension}" return os.path.join(target_path, target_file) def from_raw(type_: Type[T], obj: Any) -> T: """Deserialize raw as type.""" obj = custom_decoder(obj) return cast(type_, parse_raw_as(type_, obj)) def to_raw(data: Any) -> Any: """Serialize data to raw json format.""" return json.dumps(data, indent=4, default=custom_encoder) def from_file_to_dataclass(dataclass_type_: Type[T], path: Union[str, Path]) -> T: """Deserialize file as dataclass type.""" with open(path, "r") as json_file: data = json.load(json_file) data = custom_decoder(data) return parse_obj_as(dataclass_type_, data) def from_list_in_file_to_dataclass( dataclass_type_: Type[T], path: Union[str, Path] ) -> T: """Deserialize list of objects in file as dataclass type.""" with open(path, "r") as json_file: data = json.load(json_file) data = custom_decoder(data) return cast(dataclass_type_, parse_obj_as(List[dataclass_type_], data)) def to_file( data: Any, target_file_name: str, target_path: Optional[Path] = None, target_file_extension="json", ) -> None: """Serialize object to file (defaultly json).""" if not os.path.exists(target_path): os.makedirs(target_path) with open( construct_path(target_file_name, target_path, target_file_extension), "w" ) as outfile: json.dump(data, outfile, indent=4, default=custom_encoder) # Color and abbreviation can both be of type hex but should not be converted banlist = ["color", "abbreviation", "is_write_in"] def _recursive_replace(object, type_: Type, replace: Callable[[Any], Any]): """Iterate through object to replace.""" if isinstance(object, dict): for key, item in object.items(): if isinstance(item, (dict, list)): object[key] = _recursive_replace(item, type_, replace) if isinstance(item, type_) and key not in banlist: object[key] = replace(item) if isinstance(object, list): for index, item in enumerate(object): if isinstance(item, (dict, list)): object[index] = _recursive_replace(item, type_, replace) if isinstance(item, type_): object[index] = replace(item) return object class NumberEncodeOption(Enum): """Option for encoding numbers.""" Int = "int" Hex = "hex" # Base64 = "base64" OPTION = NumberEncodeOption.Hex def _get_int_encoder() -> Callable[[Any], Any]: if OPTION is NumberEncodeOption.Hex: return int_to_hex return lambda x: x def custom_encoder(obj: Any) -> Any: """Integer encoder to convert int representations to type for json.""" if is_dataclass(obj): new_dict = asdict(obj) obj = _recursive_replace(new_dict, int, _get_int_encoder()) return obj return pydantic_encoder(obj) def _get_int_decoder() -> Callable[[Any], Any]: def safe_hex_to_int(input: str) -> Union[int, str]: try: return hex_to_int(input) except ValueError: return input if OPTION is NumberEncodeOption.Hex: return safe_hex_to_int return lambda x: x def custom_decoder(obj: Any) -> Any: """Integer decoder to convert json stored int back to int representations.""" return _recursive_replace(obj, str, _get_int_decoder())
StarcoderdataPython
8020301
#!/usr/bin/env python2 # -*- coding: utf-8 -*- """ Created on Tue Apr 10 11:01:52 2018 @author: alex """ import mechanize import re import time from selenium import webdriver browser = webdriver.Firefox() #mechanize can not work correctly def login(): browser = mechanize.Browser() browser.set_handle_robots(False) browser.open("https://www.linkedin.com/") browser.select_form(class_="login-form") #browser.select_form(name="login-form") browser["session_key"] = "your user name" browser["session_password"] = "<PASSWORD>" response = browser.submit() print response.read() #selenium can work def selelogin(url): browser.get(url) loginInput = browser.find_element_by_name('session_key') loginInput.send_keys('your user name') passwd = browser.find_element_by_name('session_password') passwd.send_keys('<PASSWORD>') btn = browser.find_element_by_id('login-submit') btn.click() #networks() time.sleep(3) # can not work effectively #networkicon = browser.find_element_by_class_name('nav-item__icon') #networkicon = browser.find_element_by_id('mynetwork-nav-item') #networkicon = browser.find_element_by_class_name('nav-item__link nav-item__link--underline') networkicon = browser.find_element_by_link_text('My Network') networkicon.click() time.sleep(3) seeall = browser.find_element_by_link_text('See all') #eeall = browser.find_element_by_id('ember2962') seeall.click() time.sleep(3) connects = browser.find_element_by_class_name('ember-view') print(connects.text) #for i in connects: # print(i) time.sleep(3) #store the pagesource in a file to validata it print(browser.page_source) f = open('te.html','w') f.write(browser.page_source.encode('utf-8')) f.flush() f.close() #source = browser.page_source #source = source.decode(encoding='UTF-8') #print source #get and analysis the items soup = BeautifulSoup((browser.page_source).encode('utf-8'),'lxml') #soup = BeautifulSoup(browser.page_source, 'lxml') #print soup.find('li',class_="mn-pymk-list__card display-flex flex-column").text for i in soup.find('li',class_="mn-pymk-list__card display-flex flex-column").text: #print i url = i #connects = browser.find_element_by_class_name('pymk-card__link') #connects.click() #print(connects.text) #for i in connects: # print(i) def networks(): browser.get('http://www.linkedin.com/feed/') networkicon = browser.find_element_by_class_name('nav-item__link nav-item__link--underline js-nav-item-link active') networkicon.click() def close(): browser.close() if __name__ == '__main__': myurl ='https://www.linkedin.com/' #newspider(myurl) selelogin(myurl) #fetchfriend(myurl)
StarcoderdataPython
1968940
from .baserepository import BaseRepository from factories.customer import CustomerFactory from connection.results.customersigninresult import CustomerSignInResult from .actions.customer import CustomerActions from decorators.repositories import RepositoryConnected #from decorators.decorators import RequiredParams from requests.exceptions import HTTPError class CustomerRepository(BaseRepository): _endpoint = 'customers' _factory = CustomerFactory _actions_module = CustomerActions @RepositoryConnected() def create(self, customer_draft): return CustomerSignInResult(repository=self, **super()._create(customer_draft)) @RepositoryConnected() def get(self, id: str = None, key: str = None, email_token: str = None, password_token: str = None): if email_token: return self.new(**self.client.get(path='customers/email-token=%s' % (email_token)).json()) elif password_token: return self.new(**self.client.get(path='customers/password-token=%s' % (email_token)).json()) return super().get(id, key) # @RequiredParams(('obj'), ('id', 'version')) @RepositoryConnected() def change_password(self, current_password: str, new_password: str, obj=None, id: str = None, version: int = None, force=False): try: if obj: return self.new(**self.client.post(path='customers/password', json={'id': obj.id, 'version': obj.version, 'currentPassword': <PASSWORD>, 'newPassword': <PASSWORD>}).json()) if not id or not version: raise Exception('Please, provide id and version') return self.new(**self.client.post(path='customers/password', json={'id': id, 'version': version, 'currentPassword': <PASSWORD>, 'newPassword': <PASSWORD>}).json()) except HTTPError as error: if force and error.response.status_code == 409: if obj: _obj = self.get(obj.id) else: _obj = self.get(id) return self.change_password(current_password, new_password, _obj, id, _obj.version, force) raise error
StarcoderdataPython
4911300
from typing import List # O(n) time complexity and O(n) space complexity # def backspaceCompare(self, s: str, t: str) -> bool: # return back(s, []) == back(t, []) # # def back(s: str, stack: List): # for i in s: # if i != "#": # stack.append(i) # elif stack: # stack.pop() # # return stack def backspaceCompare(s, t): p1 = len(s) - 1 p2 = len(t) - 1 while p1 >= 0 or p2 >= 0: char1 = char2 = "" if p1 >= 0: char1, p1 = getChar(s, p1) if p2 >= 0: char2, p2 = getChar(t, p2) if char1 != char2: return False return True def getChar(s, p): char, count = '', 0 while p >= 0 and not char: if s[p] == '#': count += 1 elif count == 0: char = s[p] else: count -= 1 p -= 1 return char, p
StarcoderdataPython
11325429
<reponame>KarsSloeserwij/SimpleAStarPython import math class Astar(): def __init__(self, board): self.board = board pass def get_distance(self, a, b): return abs(a.x - b.x) + abs(a.y - b.y) def retrace_path(self, start, end): print("FOUND PATH") path = [] currentState = end; while(currentState != start): path.append(currentState); currentState = currentState.parent; #print("Removing Parent: " + path[path.size() - 1].name); path[len(path) - 1].parent = None; path.reverse() print(path) return path; pass; def find_path(self, start, end): open_set = [] closed_set = [] open_set.append(start); while len(open_set) > 0: current_node = open_set[0] for i in range(len(open_set)): if(open_set[i].f_cost() <= current_node.f_cost() or open_set[i].h_cost < current_node.h_cost): current_node = open_set[i] open_set.remove(current_node); closed_set.append(current_node); print(current_node.x, current_node.y) print(end.x, end.y) #current_node.checked = True if current_node == end: return self.retrace_path(start, end) for neighbour in self.board.get_cell_neighbours(current_node.x , current_node.y): if(neighbour in closed_set): continue; new_movement_cost = current_node.g_cost + self.get_distance(current_node, neighbour); if new_movement_cost < neighbour.g_cost or neighbour not in open_set: neighbour.g_cost = new_movement_cost; neighbour.h_cost = self.get_distance(neighbour, end); neighbour.parent = current_node; if ( neighbour not in open_set): open_set.append(neighbour);
StarcoderdataPython
11317134
from django.apps import AppConfig class DocumentsConfig(AppConfig): name = 'documents' verbose_name = 'Mục Tài Liệu' verbose_name_plural = 'Mục Tài Liệu'
StarcoderdataPython
8015142
import sys import time from os import getpid from queue import Queue, Empty import traceback from _thread import allocate_lock, start_new_thread from speedysvc.logger.std_logging.LoggerServer import LoggerServer from speedysvc.client_server.shared_memory.SHMClient import SHMClient from speedysvc.client_server.base_classes.ClientMethodsBase import ClientMethodsBase from speedysvc.logger.std_logging.log_entry_types import \ NOTSET, DEBUG, INFO, ERROR, WARNING, CRITICAL, STDOUT, STDERR # We'll use a queue here sending in a thread rather # than synchronous logging, so as to minimise the # risk of recursive log writes, etc log_queue = Queue() _old_stdout = sys.stdout _old_stderr = sys.stderr class LoggerClient(ClientMethodsBase): def __init__(self, service_server_methods): """ A basic logger which sends stderr/stdout output to a logging server """ self.lock = allocate_lock() self.pid = getpid() # Note that ClientMethodsBase will have a set of server methods # associated with the log service. These are the server methods # associated with the service itself. self.service_server_methods = service_server_methods self.client = SHMClient(LoggerServer, port=f'{service_server_methods.port}_log', use_spinlock=False, use_in_process_lock=True) ClientMethodsBase.__init__(self, client_provider=self.client) self.stderr_logger = self._StdErrLogger(self) self.stdout_logger = self._StdOutLogger(self) self.__shut_me_down = False start_new_thread(self.__log_thread, ()) def shutdown(self): self.__shut_me_down = True #=================================================================# # RPC Methods # #=================================================================# def __log_thread(self): """ A lot of the time, it can be hard to know where stderr/stdout starts and ends (e.g. print('foo', 'bar') might print foo, bar, and \n separately) This tries to treat stdout/stderr data as a sequence of directly following strings and merges it together, assuming they occur almost immediately after each other (up to 0.01 seconds). I've made stdout/stderr output as [INFO/ERROR]+9 level """ cur_stderr_msg = None cur_stdout_msg = None method_stats_last_updated = 0 while not self.__shut_me_down: try: if cur_stderr_msg or cur_stdout_msg: item = log_queue.get(timeout=0.01) else: item = log_queue.get(timeout=2.0) if item[-1] == STDOUT: if cur_stdout_msg: # Append to the previous stdout call cur_stdout_msg[-2] += item[-2] else: cur_stdout_msg = list(item) elif item[-1] == STDERR: if cur_stderr_msg: # Append to the previous stderr call cur_stderr_msg[-2] += item[-2] else: cur_stderr_msg = list(item) else: self._write_to_log_(item) except Empty: if cur_stdout_msg: # If Empty is raised, a timeout has occurred # Assume this is the end of the data that's being sent to stdout self._write_to_log_(tuple(cur_stdout_msg[:-1]+[INFO+9])) cur_stdout_msg = None if cur_stderr_msg: # The same, but for stderr self._write_to_log_(tuple(cur_stderr_msg[:-1]+[ERROR+9])) cur_stderr_msg = None if time.time()-method_stats_last_updated >= 4: # Periodically inform the management server how long methods # are taking/how many times they're being called for benchmarks self._update_method_stats_() method_stats_last_updated = time.time() elif not cur_stderr_msg and not cur_stderr_msg and sys.platform == 'win32': # win32 doesn't seem to allow for timeouts with the queue here time.sleep(2.0) except Exception as e: # WARNING WARNING - should (hopefully) never get here # I'm printing errors directly to the old stderr # to prevent the risk of recursive exceptions import traceback _old_stderr.write(traceback.format_exc()) time.sleep(1) def _write_to_log_(self, log_params): """ Should not be called directly! :param log_params: :return: """ self.send(LoggerServer._write_to_log_, log_params) def _update_method_stats_(self): """ Send method statistics to the central management interface to allow for benchmarks periodically """ DStats = {} for name in dir(self.service_server_methods): attr = getattr(self.service_server_methods, name) if hasattr(attr, 'metadata'): # DMetadata = {'num_calls': ..., 'total_time': ...} DStats[name] = attr.metadata self.send(LoggerServer._update_method_stats_, [self.pid, DStats]) #=========================================================# # Service Status # #=========================================================# def get_service_status(self): return self.send(LoggerServer.get_service_status, []) def set_service_status(self, status): return self.send(LoggerServer.set_service_status, [status]) #=========================================================# # Service Time Series Data # #=========================================================# def get_last_record(self): return self.send(LoggerServer.get_last_record, []) def get_average_over(self, from_time, to_time): return self.send(LoggerServer.get_average_over, [from_time, to_time]) def add_pid(self, pid): return self.send(LoggerServer.add_pid, [pid]) def remove_pid(self, pid): return self.send(LoggerServer.remove_pid, [pid]) def start_collecting(self): return self.send(LoggerServer.start_collecting, []) def stop_collecting(self): return self.send(LoggerServer.stop_collecting, []) #=================================================================# # User-Callable Methods # #=================================================================# def __call__(self, msg, level=NOTSET): """ Output a message. This allows going self.log() as shorthand for self.log.notset(msg) Note this puts onto a log queue running in a different thread, so as to prevent potential deadlocks when one thread tries to write at the same time :param msg: the string message :param level: the log level, e.g. DEBUG or INFO """ pid = self.pid #print(hasattr(self, 'server_methods')) if hasattr(self.service_server_methods, 'port'): port = self.service_server_methods.port else: port = -1 if hasattr(self.service_server_methods, 'name'): service_name = self.service_server_methods.name else: service_name = '(unknown service)' log_queue.put( (int(time.time()), pid, port, service_name, msg, level) ) def notset(self, msg): """ Output a message of whose level is not defined :param msg: the string message """ self(msg, NOTSET) def debug(self, msg): """ Output a debug message :param msg: the string message """ self(msg, DEBUG) def info(self, msg): """ Output an informational message :param msg: the string message """ self(msg, INFO) information = info def error(self, msg): """ Output an error message :param msg: the string message """ self(msg, ERROR) def warn(self, msg): """ Output a warning message :param msg: the string message """ self(msg, WARNING) warning = warn def critical(self, msg): """ Output a critical/fatal message :param msg: the string message """ self(msg, CRITICAL) #=================================================================# # StdOut/StdErr Backwards Compatibility # #=================================================================# class _StdOutLogger: def __init__(self, logger_client): sys.stdout = self self.logger_client = logger_client def flush(self): _old_stdout.flush() def write(self, s): _old_stdout.write(s) self.logger_client(s, STDOUT) class _StdErrLogger: def __init__(self, logger_client): sys.stderr = self self.logger_client = logger_client def flush(self): _old_stderr.flush() def write(self, s): _old_stderr.write(s) self.logger_client(s, STDERR)
StarcoderdataPython
3531607
from django.urls import path from .views import register app_name = 'accounts' urlpatterns = [ path('cadastro-usuario/', register, name='register'), ]
StarcoderdataPython
4852204
import sys import time import threading from ns4help import * class Model: def __init__(self, func, *args, **kwargs): self.func = func self.args = args self.kwargs = kwargs def run(self, t_run: int): try: t_model = ModelFunc(self.func, *self.args, **self.kwargs) t_htime = ModelTimeHandler(t_run) if checksyn(*sys.argv): t_htime.start() t_model.start() else: gethelp(*sys.argv, **self.kwargs) except IndexError as err: errreport(err) class ModelFunc(threading.Thread): tRun = None event = False errorEvent = True def __init__(self, func, *args, **kwargs): threading.Thread.__init__(self) self.func = func self.args = args self.kwargs = kwargs def run(self): if not ModelFunc.errorEvent: # l_time = ModelFunc.tRun s_time = time.asctime() while not ModelFunc.event: l_time = time.asctime() self.func(s_time, l_time, *self.args, **self.kwargs) # l_time -= 1 pass class ModelTimeHandler(threading.Thread): def __init__(self, t_run): threading.Thread.__init__(self) ModelFunc.tRun = t_run def run(self): ModelFunc.errorEvent = False time.sleep(ModelFunc.tRun) ModelFunc.event = True print('Done!\n')
StarcoderdataPython
51689
import unittest import prody import numpy as np import pytest import itertools from path import Path from ..mhc_peptide import BasePDB from ..sampling.generate_peptides import PeptideSampler from .. import utils from ..helpers import isolate, isolated_filesystem @pytest.fixture() def default_mhc(): return utils.load_gdomains_mhc('1ao7') @pytest.fixture() def default_pep(): return utils.load_gdomains_peptide('1ao7') @isolate def test_instantiate_with_seq(): sampler = PeptideSampler('ADCHTRTAC') assert sampler.pep.numAtoms() > 10 @isolate def test_instantiate_with_short_seq(): with pytest.raises(RuntimeError): PeptideSampler('ADCH') @isolate def test_instantiate_with_long_seq(): with pytest.raises(RuntimeError): PeptideSampler('ADCHLKKKKKKKKKKKK') @isolate def test_instantiate_with_wrong_letters_seq(): with pytest.raises(RuntimeError): PeptideSampler('ADCHLBBKK') @isolate def test_instantiate_with_pdb(): prody.writePDB('pep.pdb', utils.load_gdomains_peptide('1ao7')) sampler = PeptideSampler(pep='pep.pdb') assert sampler.pep.numAtoms() > 10 @isolate def test_instantiate_with_pep_and_mhc(): prody.writePDB('pep.pdb', utils.load_gdomains_peptide('1ao7')) prody.writePDB('mhc.pdb', utils.load_gdomains_mhc('1ao7')) sampler = PeptideSampler(pep='pep.pdb', rec='mhc.pdb') assert sampler.pep.numAtoms() > 10 assert sampler.rec.numAtoms() > 100 @isolate def test_instantiate_with_seq_and_custom_template(): prody.writePDB('template.pdb', utils.load_gdomains_peptide('1ao7')) sampler = PeptideSampler('ADCHTRTAC', custom_template='template.pdb') assert sampler.pep.numAtoms() > 10 @pytest.mark.parametrize('nsamples', [1, 10, 100, 1000, 15000]) def test_generate_simple(nsamples): with isolated_filesystem(): sampler = PeptideSampler(pep=utils.load_gdomains_peptide('1ao7')) sampler.generate_peptides(nsamples, 1, 0.3, 123) assert sampler.brikard.numCoordsets() == nsamples @isolate def test_generate_with_template(): prody.writePDB('template.pdb', utils.load_gdomains_peptide('1ao7')) sampler = PeptideSampler('ADCHTRTAC', custom_template='template.pdb') sampler.generate_peptides(10, 1, 0.2, 123) assert sampler.brikard.numCoordsets() == 10 @pytest.mark.parametrize('pep,rec', itertools.product(['1a1m', '1t22', '2bvo'], ['1a1m', '1t22', '2bvo'])) def test_generate_with_rec(pep, rec): with isolated_filesystem(): sampler = PeptideSampler(pep=utils.load_gdomains_peptide(pep), rec=utils.load_gdomains_mhc(rec)) sampler.generate_peptides(10, 1, 0.2, 123) assert sampler.brikard.numCoordsets() == 10 # check that receptor is fixed by default during sampling def test_generate_receptor_fixed(default_mhc, default_pep): with isolated_filesystem(): sampler = PeptideSampler(pep=default_pep, rec=default_mhc) sampler.generate_peptides(10, 1, 0.2, 123) assert sampler.brikard.numCoordsets() == 10 rec_fixed = sampler.brikard.select('chain A') assert np.all(rec_fixed.getCoordsets(0) == rec_fixed.getCoordsets(1)) # check that receptor is flexible with sample_resi_within parameter set def test_generate_receptor_flexible(default_mhc, default_pep): with isolated_filesystem(): sampler = PeptideSampler(pep=default_pep, rec=default_mhc) sampler.generate_peptides(10, 1, 0.2, 123, sample_resi_within=7) assert sampler.brikard.numCoordsets() == 10 rec_flex = sampler.brikard.select('chain A') assert np.any(rec_flex.getCoordsets(0) != rec_flex.getCoordsets(1)) @pytest.mark.parametrize('radius', range(1, 7, 2)) def test_generate_receptor_variable_radius(default_mhc, default_pep, radius): with isolated_filesystem(): sampler = PeptideSampler(pep=default_pep, rec=default_mhc) sampler.generate_peptides(10, 1, 0.2, 123, sample_resi_within=radius) assert sampler.brikard.numCoordsets() == 10
StarcoderdataPython
80184
import discord from discord.ext import commands import octorest class OctoPrint(commands.Cog): def __init__(self, bot: commands.AutoShardedBot): self.bot = bot #bot.loop.create_task(self.connect_printer()) async def connect_printer(self): await self.bot.wait_until_ready() try: client = octorest.OctoRest(url="127.0.0.1:5000", apikey=apikey) return client except ConnectionError as ex: # Handle exception as you wish print(ex)
StarcoderdataPython
3238076
#!/usr/bin/env python ''' This script starts all Turtlebot control services which are defined under `srv/` folder. The key setence is: turtle_services = TurtlebotControlRosServices() turtle_services.start() WARNING: `SetPose` is not supported for real robot, only for Gazebo simulation. ''' from ros_turtlebot_control.srv import GetPose, GetPoseResponse from ros_turtlebot_control.srv import MoveToPoint, MoveToPointResponse from ros_turtlebot_control.srv import MoveToPose, MoveToPoseResponse from ros_turtlebot_control.srv import MoveToRelativePoint, MoveToRelativePointResponse from ros_turtlebot_control.srv import MoveToRelativePose, MoveToRelativePoseResponse from ros_turtlebot_control.srv import ResetPose, ResetPoseResponse from ros_turtlebot_control.srv import SetPose, SetPoseResponse from ros_turtlebot_control.srv import StopMoving, StopMovingResponse from ros_turtlebot_control.srv import IsMoving, IsMovingResponse import rospy import threading import yaml import os import sys from turtle_lib import Turtle from utils.commons import read_yaml_file ROOT = os.path.dirname(os.path.abspath(__file__))+"/" CONFIG_FILEPATH = ROOT + "config.yaml" NODE_NAME = 'run_turtlebot_control_server' SRV_NAMESPACE, turtle = None, None # To be initialized later. # ============================================================================== # def _srv_callback_wrapper(callback_func): ''' Print messages before and after the callback function. ''' def new_callback_func(self, req): '''Argument: `req` is the input of the ROS service call. ''' rospy.loginfo("Service: " + self._srv_name + ": Receive request: {}".format(req)) response = callback_func(self, req) rospy.loginfo("Service: " + self._srv_name + ": Request has been sent to turtlebot_lib.py!") return response return new_callback_func class _SrvTemplate(object): ''' A template for creating ROS service. ''' def __init__(self, srv_name, srv_in_type, srv_out_type): if SRV_NAMESPACE: srv_name = SRV_NAMESPACE + "/" + srv_name # Add name space self._srv = rospy.Service( srv_name, srv_in_type, self._callback) rospy.loginfo(" Service starts: " + srv_name) self._srv_name = srv_name self._srv_in_type = srv_in_type self._srv_out_type = srv_out_type def _callback(self, req): raise NotImplementedError("Please overload this function!") # ============================================================================== # class TurtlebotControlRosServices(object): def __init__(self): self._is_start = False def start(self): self._h1 = TurtlebotControlRosServices.ServiceMoveToPoint() self._h2 = TurtlebotControlRosServices.ServiceMoveToPose() self._h3 = TurtlebotControlRosServices.ServiceMoveToRelativePoint() self._h4 = TurtlebotControlRosServices.ServiceMoveToRelativePose() self._h5 = TurtlebotControlRosServices.ServiceStopMoving() self._h6 = TurtlebotControlRosServices.ServiceSetPose() self._h7 = TurtlebotControlRosServices.ServiceResetPose() self._h8 = TurtlebotControlRosServices.ServiceGetPose() self._h9 = TurtlebotControlRosServices.ServiceIsMoving() self._is_start = True def __del__(self): if self._is_start: turtle.stop_moving() class ServiceMoveToPoint(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceMoveToPoint, self).__init__( srv_name='move_to_point', srv_in_type=MoveToPoint, srv_out_type=MoveToPointResponse, ) def _callback(self, req): turtle.move_to_pose(x_goal_w=req.x, y_goal_w=req.y) return self._srv_out_type() class ServiceMoveToPose(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceMoveToPose, self).__init__( srv_name='move_to_pose', srv_in_type=MoveToPose, srv_out_type=MoveToPoseResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.move_to_pose(x_goal_w=req.x, y_goal_w=req.y, theta_goal_w=req.theta) return self._srv_out_type() class ServiceMoveToRelativePoint(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceMoveToRelativePoint, self).__init__( srv_name='move_to_relative_point', srv_in_type=MoveToRelativePoint, srv_out_type=MoveToRelativePointResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.move_to_relative_pose( x_goal_r=req.x, y_goal_r=req.y) return self._srv_out_type() class ServiceMoveToRelativePose(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceMoveToRelativePose, self).__init__( srv_name='move_to_relative_pose', srv_in_type=MoveToRelativePose, srv_out_type=MoveToRelativePoseResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.move_to_relative_pose( x_goal_r=req.x, y_goal_r=req.y, theta_goal_r=req.theta) return self._srv_out_type() class ServiceStopMoving(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceStopMoving, self).__init__( srv_name='stop_moving', srv_in_type=StopMoving, srv_out_type=StopMovingResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.stop_moving() return self._srv_out_type() class ServiceSetPose(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceSetPose, self).__init__( srv_name='set_pose', srv_in_type=SetPose, srv_out_type=SetPoseResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.set_pose(req.x, req.y, req.theta) return self._srv_out_type() class ServiceResetPose(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceResetPose, self).__init__( srv_name='reset_pose', srv_in_type=ResetPose, srv_out_type=ResetPoseResponse, ) @_srv_callback_wrapper def _callback(self, req): turtle.reset_pose() return self._srv_out_type() class ServiceGetPose(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceGetPose, self).__init__( srv_name='get_pose', srv_in_type=GetPose, srv_out_type=GetPoseResponse, ) def _callback(self, req): res = GetPoseResponse() x, y, theta = turtle.get_pose() return GetPoseResponse(x, y, theta) class ServiceIsMoving(_SrvTemplate): def __init__(self): super(TurtlebotControlRosServices.ServiceIsMoving, self).__init__( srv_name='is_moving', srv_in_type=IsMoving, srv_out_type=IsMovingResponse, ) def _callback(self, req): is_moving = turtle.is_moving() return IsMovingResponse(is_moving) def main(): rospy.init_node(NODE_NAME) rospy.loginfo("Node starts: " + NODE_NAME) # Define global variables. global turtle, SRV_NAMESPACE turtle = Turtle(CONFIG_FILEPATH) SRV_NAMESPACE = read_yaml_file(CONFIG_FILEPATH)["srv_namespace"] # ROS Node deconstructor. rospy.on_shutdown(lambda: turtle.stop_moving()) # Start ROS services. turtle_services = TurtlebotControlRosServices() turtle_services.start() # Loop. rospy.spin() rospy.loginfo("Node stops: " + NODE_NAME) if __name__ == "__main__": main()
StarcoderdataPython
11222390
<filename>scriptbase/disk.py # Copyright 2016-19 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Disk-related utilities for Unix-like systems. Some functions deal with MacOS differences. Some are only implemented for MacOS for now. """ import sys import os import re import subprocess from glob import glob from decimal import Decimal from . import command from . import console from . import shell from . import utility RE_MOUNT = re.compile('^(/[a-z0-9_/]+) on (/[a-z0-9_/ ]+)( [(][^)]*[)])?', re.IGNORECASE) def iter_mounted_volumes(): """Iterate mounted volume paths.""" with command.Command('mount') as cmd: for line in cmd: matched = RE_MOUNT.match(line) if matched: yield matched.group(2), matched.group(1) def mounts_check(*mountpoints): """Return True if all passed mount points have mounted volumes.""" mounted = dict(iter_mounted_volumes()) for mountpoint in mountpoints: if mountpoint not in mounted: return False return True def _get_version(path): try: return int(os.path.splitext(path)[0].split('-')[-1]) except ValueError: return -1 def get_versioned_path(path, suffix): """Convert path to versioned path by adding suffix and counter when necessary.""" (base, ext) = os.path.splitext(path) re_strip_version = re.compile('(.*)-%s(-[0-9]*)?' % suffix) matched = re_strip_version.match(base) if matched: base = matched.group(1) path = '%s-%s%s' % (base, suffix, ext) if not os.path.exists(path): return path max_version = 1 for chk in glob('%s-%s-[0-9]*%s' % (base, suffix, ext)): version = _get_version(chk) if version > max_version: max_version = version suffix2 = '%s-%d' % (suffix, max_version + 1) return '%s-%s%s' % (base, suffix2, ext) def purge_versions(path, suffix, num_keep, reverse=False): """ Purge file versions created by get_versioned_path. Purge specified quantity in normal or reverse sequence. """ (base, ext) = os.path.splitext(path) re_strip_version = re.compile('(.*)-%s(-[0-9]*)?' % suffix) matched = re_strip_version.match(base) if matched: base = matched.group(1) versions = [version for version in glob('%s-%s*%s' % (base, suffix, ext))] versions.sort(key=_get_version, reverse=reverse) num_purge = len(versions) - num_keep if num_purge > len(versions): num_purge = 0 if num_purge > 0: for version_path in versions[:num_purge]: os.remove(version_path) return num_purge class DiskVolume(utility.DumpableObject): """Data for a disk volume.""" unit_labels = ['B', 'KB', 'MB', 'GB', 'TB', 'PB', 'EB'] def __init__( self, volume_dev, disk_dev, raw_disk_dev, filesystem, size, name, uuid, mountpoint): self.volume_dev = volume_dev self.disk_dev = disk_dev self.raw_disk_dev = raw_disk_dev self.filesystem = filesystem self.size = int(size) self.name = name self.uuid = uuid self.mountpoint = mountpoint utility.DumpableObject.__init__(self) @classmethod def format_disk_size(cls, size, places=2): """Return adjusted size string with unit.""" threshold = 1000 ** (len(cls.unit_labels) - 1) for i in range(len(cls.unit_labels) - 1, 0, -1): if size >= threshold: value_str = str(Decimal(size) / threshold) dec_pos = value_str.find('.') if dec_pos == -1: return '{}.00 {}'.format(value_str, cls.unit_labels[i]) value_places = len(value_str) - dec_pos - 1 if value_places < places: zeros = '0' * (places - value_places) return '{}{} {}'.format(value_str, zeros, cls.unit_labels[i]) if value_places > places: return '{} {}'.format(value_str[:(places - value_places)], cls.unit_labels[i]) return (value_str, cls.unit_labels[i]) threshold //= 1000 return '{} {}'.format(size, cls.unit_labels[0]) def short_summary(self): """Short summary string to for user consumption.""" return 'label: {label}, disk: {disk}, volume: {volume}, size: {size}'.format( label=self.name, disk=self.disk_dev, volume=self.volume_dev, size=self.format_disk_size(self.size), ) FILESYSTEM_NAME_TRANSLATIONS_1 = { 'Apple_APFS': 'APFS', 'Apple_HFS': 'HFS', 'EFI': 'EFI', 'Windows_FAT_32': 'FAT32', } FILESYSTEM_NAME_TRANSLATIONS_2 = { 'Windows_NTFS': 'NTFS', 'UFSD_NTFS': 'NTFS', 'Journaled HFS+': 'HFS+', } def volumes_list(): """Provide data for currently visible volumes.""" if sys.platform != 'darwin': console.abort('Currently, volumes_list() is only implemented for MacOS') import plistlib volumes = [] proc = subprocess.run(['diskutil', 'list', '-plist', 'physical'], capture_output=True, check=True) list_data = plistlib.loads(proc.stdout) for disk_or_partition in list_data['AllDisksAndPartitions']: for volume in disk_or_partition.get('Partitions', []): # Assume that "useful" user volumes have UUIDs. uuid = volume.get('VolumeUUID') if uuid: filesystem = FILESYSTEM_NAME_TRANSLATIONS_1.get(volume.get('Content')) if not filesystem: proc2 = subprocess.run(['diskutil', 'info', '-plist', uuid], capture_output=True, check=True) info_data = plistlib.loads(proc2.stdout) filesystem = info_data['FilesystemName'] if filesystem in FILESYSTEM_NAME_TRANSLATIONS_2: filesystem = FILESYSTEM_NAME_TRANSLATIONS_2[filesystem] volumes.append(DiskVolume( '/dev/{}'.format(volume.get('DeviceIdentifier')), '/dev/{}'.format(disk_or_partition['DeviceIdentifier']), '/dev/r{}'.format(disk_or_partition['DeviceIdentifier']), filesystem, volume.get('Size'), volume.get('VolumeName', '(unnamed)'), uuid, volume.get('MountPoint'), )) return volumes def volume_unmount(volume): """Unmount a volume based on a mountpoint.""" if sys.platform != 'darwin': console.abort('Currently, volume_unmount() is only implemented for MacOS') subprocess.run(['diskutil', 'unmount', volume.mountpoint], check=True) def volumes_for_identifier(identifier): """Find volume by volume name, mountpoint, UUID, or device name.""" return [ volume for volume in volumes_list() if identifier in [ volume.name, volume.mountpoint, volume.uuid, volume.disk_dev, ] ] def volume_for_identifier(identifier): """Find exactly one volume by identifier (see volumes_for_identifier()).""" volumes = volumes_for_identifier(identifier) if not volumes: console.abort('No volume "{}" was found.'.format(identifier)) if len(volumes) != 1: console.abort('There are {} volumes for "{}".'.format(len(volumes), identifier)) return volumes[0] class Compressor: """Compressor data.""" def __init__(self, name, uncompress_cmd, *compress_cmds): self.name = name self.uncompress_cmd = uncompress_cmd self.compress_cmds = compress_cmds def get_compress_command(self): """Check for and return compress command.""" progs = [] cmd = None for compress_cmd in self.compress_cmds: prog = compress_cmd.split()[0] if shell.find_executable(prog): cmd = compress_cmd break progs.append(prog) else: console.abort('Unable to find {} compression program: {}' .format(self.name, ' '.join(progs))) return cmd def get_expand_command(self): """Check for and return expansion command.""" prog = self.uncompress_cmd.split()[0] if not shell.find_executable(prog): console.abort('Unable to find {} expansion program: {}'.format(self.name, prog)) return self.uncompress_cmd class Compressors: """Access compression/expansion commands.""" compressors = [ Compressor('gzip', 'gzcat', 'pigz -c -f -', 'gzip -c -f -'), Compressor('xz', 'xzcat', 'xz -c -T0 -f -'), ] @classmethod def get_compressor(cls, name): """Return an appropriate compressor, if available.""" compressor = None for check_compressor in cls.compressors: if check_compressor.name == name: compressor = check_compressor break else: console.abort('No {} compressor found.'.format(name)) return compressor @classmethod def get_compress_command(cls, name): """Return compression command, if available.""" compressor = cls.get_compressor(name) return compressor.get_compress_command() @classmethod def get_expand_command(cls, name): """Return expansion command, if available.""" compressor = cls.get_compressor(name) return compressor.get_expand_command() def backup_device(device_path, output_path, compression=None): #pylint: disable=unused-argument """Copy input device to gzip-compressed output file.""" ctx = utility.DictObject(**locals()) if compression: ctx.compress_cmd = Compressors.get_compress_command(compression) ctx.compress_prog = ctx.compress_cmd.split()[0] cmd = 'sudo dd if={device_path} bs=1M | {compress_cmd} > "{output_path}"' msg = 'Reading device with dd and writing image with {compress_prog}.' else: cmd = 'sudo dd if={device_path} of="{output_path}" bs=1M' msg = 'Reading device and writing image with dd.' console.info([ctx.format(msg), 'Press CTRL-T for status.']) cmd = ctx.format(cmd) console.info(cmd) ctx.retcode = os.system(cmd) if ctx.retcode != 0: console.abort(ctx.format('Image restore command failed with return code {retcode}.')) def restore_device(device_path, input_path, compression=None): #pylint: disable=unused-argument """Uncompress input file and copy to output device.""" ctx = utility.DictObject(**locals()) if compression: ctx.expand_cmd = Compressors.get_expand_command(compression) msg = ('Uncompressing image file with {} and writing to device with dd.' .format(ctx.expand_cmd)) cmd = ctx.format('{expand_cmd} "{input_path}" | sudo dd of={device_path} bs=64K') else: msg = 'Reading from image file and writing to device with dd.' cmd = ctx.format('sudo dd if="{input_path}" of={device_path} bs=1M') console.info([msg, 'Press CTRL-T for status.']) console.info(cmd) ctx.retcode = os.system(cmd) if ctx.retcode != 0: console.abort(ctx.format('Image restore command failed with return code {retcode}.'))
StarcoderdataPython
1990083
<reponame>swreinehr/katana def test_import_applications_property_graph(): import galois.lonestar.analytics.bfs import galois.lonestar.analytics.jaccard import galois.lonestar.analytics.pagerank import galois.lonestar.analytics.connected_components import galois.lonestar.analytics.kcore def test_import_loops(): import galois.loops def test_import_property_graph(): import galois.property_graph def test_import_graph(): import galois.graphs def test_import_datastructures(): import galois.datastructures def test_import_atomic(): import galois.atomic def test_import_numba(): import galois.numba_support.pyarrow import galois.numba_support.galois
StarcoderdataPython
9755208
from datetime import datetime from bson import json_util from mongoengine import StringField, connect, Document, DateField, ReferenceField, ListField, QuerySet connect("article") class CustomQuerySet(QuerySet): def to_json(self): return "[%s]" % (",".join([doc.to_json() for doc in self])) class Tag(Document): name = StringField(max_length=50, unique=True) color = StringField(max_length=10, unique=False, default="#007bff") class Article(Document): title = StringField(required=True, max_length=200, unique=True) author = StringField(required=True, max_length=25) body = StringField(required=True) summary = StringField(required=True) date = DateField(required=True, default=datetime.utcnow) tags = ListField(ReferenceField(Tag)) meta = {'queryset_class': CustomQuerySet} def to_json(self): data = self.to_mongo() data["tags"] = [{'name': tag.name, 'color': tag.color} for tag in self.tags] return json_util.dumps(data)
StarcoderdataPython
8033903
<reponame>opensciencegrid/network_analytics import threading class ConnectionListener(object): """ This class should be used as a base class for objects registered using Connection.set_listener(). """ def on_connecting(self, host_and_port): """ Called by the STOMP connection once a TCP/IP connection to the STOMP server has been established or re-established. Note that at this point, no connection has been established on the STOMP protocol level. For this, you need to invoke the "connect" method on the connection. \param host_and_port a tuple containing the host name and port number to which the connection has been established. """ pass def on_connected(self, headers, body): """ Called by the STOMP connection when a CONNECTED frame is received, that is after a connection has been established or re-established. \param headers a dictionary containing all headers sent by the server as key/value pairs. \param body the frame's payload. This is usually empty for CONNECTED frames. """ pass def on_disconnected(self): """ Called by the STOMP connection when a TCP/IP connection to the STOMP server has been lost. No messages should be sent via the connection until it has been reestablished. """ pass def on_heartbeat_timeout(self): """ Called by the STOMP connection when a heartbeat message has not been received beyond the specified period. """ pass def on_message(self, headers, body): """ Called by the STOMP connection when a MESSAGE frame is received. \param headers a dictionary containing all headers sent by the server as key/value pairs. \param body the frame's payload - the message body. """ pass def on_receipt(self, headers, body): """ Called by the STOMP connection when a RECEIPT frame is received, sent by the server if requested by the client using the 'receipt' header. \param headers a dictionary containing all headers sent by the server as key/value pairs. \param body the frame's payload. This is usually empty for RECEIPT frames. """ pass def on_error(self, headers, body): """ Called by the STOMP connection when an ERROR frame is received. \param headers a dictionary containing all headers sent by the server as key/value pairs. \param body the frame's payload - usually a detailed error description. """ pass def on_send(self, headers, body): """ Called by the STOMP connection when it is in the process of sending a message \param headers a dictionary containing the headers that will be sent with this message \param body the message payload """ pass class WaitingListener(ConnectionListener): """ A listener which waits for a specific receipt to arrive """ def __init__(self, receipt): self.condition = threading.Condition() self.receipt = receipt self.received = False def on_receipt(self, headers, body): if 'receipt-id' in headers and headers['receipt-id'] == self.receipt: self.condition.acquire() self.received = True self.condition.notify() self.condition.release() def wait_on_receipt(self): self.condition.acquire() while not self.received: self.condition.wait() self.condition.release() class StatsListener(ConnectionListener): """ A connection listener for recording statistics on messages sent and received. """ def __init__(self): self.errors = 0 self.connections = 0 self.messages_recd = 0 self.messages_sent = 0 def on_error(self, headers, message): """ \see ConnectionListener::on_error """ self.errors += 1 def on_connecting(self, host_and_port): """ \see ConnectionListener::on_connecting """ self.connections += 1 def on_message(self, headers, message): """ \see ConnectionListener::on_message """ self.messages_recd += 1 def on_send(self, headers, message): """ \see ConnectionListener::on_send """ self.messages_sent += 1 def __str__(self): """ Return a string containing the current statistics (messages sent and received, errors, etc) """ return '''Connections: %s Messages sent: %s Messages received: %s Errors: %s''' % (self.connections, self.messages_sent, self.messages_recd, self.errors)
StarcoderdataPython
11381200
""" Data related to configuration """ import copy import pkg_resources import asdf def get_defaults(): filename = pkg_resources.resource_filename( 'pydrad', 'configure/data/defaults.asdf', ) with asdf.open(filename) as af: return copy.deepcopy(dict(af.tree))
StarcoderdataPython
369293
<gh_stars>1-10 { "targets": [ { "target_name": "addon", "sources": [ "src/logql.cc" ], "libraries": [ "<!(pwd)/logql.so" ] } ] }
StarcoderdataPython
5018171
<reponame>caoyukun0430/Computer-Networking-A-Top-Down-Approach-NOTES from socket import * import os import sys import struct import time import select import binascii ICMP_ECHO_REQUEST = 8 ICMP_ECHO_REPLY = 0 PING_NUMBER = 4 def checksum(str): csum = 0 countTo = (len(str) / 2) * 2 count = 0 while count < countTo: thisVal = str[count+1] * 256 + str[count] csum = csum + thisVal csum = csum & 0xffffffff count = count + 2 if countTo < len(str): csum = csum + str[len(str) - 1].decode() csum = csum & 0xffffffff csum = (csum >> 16) + (csum & 0xffff) csum = csum + (csum >> 16) answer = ~csum answer = answer & 0xffff answer = answer >> 8 | (answer << 8 & 0xff00) return answer def receiveOnePing(mySocket, ID, timeout, destAddr): timeLeft = timeout while 1: startedSelect = time.time() whatReady = select.select([mySocket], [], [], timeLeft) howLongInSelect = (time.time() - startedSelect) if whatReady[0] == []: # Timeout return None timeReceived = time.time() recPacket, addr = mySocket.recvfrom(1024) #Fetch the ICMP header from the IP packet # ICMP is in the 20 to 28 byte of the header header = recPacket[20: 28] type, code, checksum, packetid, sequence = struct.unpack("bbHHh", header) # Type and code must be set to 0. # identifier should be same for request and reply # dstaddr should match if addr[0] == str(destAddr) and type == ICMP_ECHO_REPLY and code == 0 and packetid == ID: # calculate the data size byte_in_double = struct.calcsize("d") timeSent = struct.unpack("d", recPacket[28: 28 + byte_in_double])[0] rtt = timeReceived - timeSent # TTL is in header 8-9 byte, has format recPacket[8:9] (b'-',) # ASCII characters - is the TTL ttl = ord(struct.unpack("c", recPacket[8: 9])[0].decode()) return (byte_in_double, rtt, ttl) timeLeft = timeLeft - howLongInSelect if timeLeft <= 0: return None def sendOnePing(mySocket, destAddr, ID): # Header is type (8), code (8), checksum (16), id (16), sequence (16) myChecksum = 0 # Make a dummy header with a 0 checksum. # struct -- Interpret strings as packed binary data, "bbHHh" is format header = struct.pack("bbHHh", ICMP_ECHO_REQUEST, 0, myChecksum, ID, 1) data = struct.pack("d", time.time()) # Calculate the checksum on the data and the dummy header. myChecksum = checksum(header + data) # Get the right checksum, and put in the header # htons() function converts a 16 bit positive integer from host byte order to network byte order. # https://pythontic.com/modules/socket/byteordering-coversion-functions # so we can either use htons() or pack using (struct.pack("!bbHHh") if sys.platform == 'darwin': myChecksum = htons(myChecksum) & 0xffff #Convert 16-bit integers from host to network byte order. else: myChecksum = htons(myChecksum) header = struct.pack("bbHHh", ICMP_ECHO_REQUEST, 0, myChecksum, ID, 1) packet = header + data mySocket.sendto(packet, (destAddr, 1)) # AF_INET address must be tuple, not str #Both LISTS and TUPLES consist of a number of objects #which can be referenced by their position number within the object def doOnePing(destAddr, timeout): icmp = getprotobyname("icmp") #SOCK_RAW is a powerful socket type. For more details see: http://sock-raw.org/papers/sock_raw #Create Socket here # mySocket = socket(AF_INET, SOCK_RAW, IPPROTO_ICMP) mySocket = socket(AF_INET, SOCK_RAW, icmp) myID = os.getpid() & 0xFFFF #Return the current process i sendOnePing(mySocket, destAddr, myID) res = receiveOnePing(mySocket, myID, timeout, destAddr) mySocket.close() return res def ping(host, timeout=1): #timeout=1 means: If one second goes by without a reply from the server, #the client assumes that either the client’s ping or the server’s pong is lost dest = gethostbyname(host) print("Pinging " + dest + " using Python:") print("") loss = 0 rtt_arr = [] #Send ping requests to a server separated by approximately one second # while 1 : # instead of keeping pinging, we run default PING_NUMBER=4 times for i in range(0, PING_NUMBER): res = doOnePing(dest, timeout) if not res: print("Request timed out.") loss += 1 else: byte_in_double = res[0] rtt = int(res[1]*1000) rtt_arr.append(rtt) ttl = res[2] print("Received from %s: byte(s) = %d delay = %dms TTL = %d" % (dest, byte_in_double, rtt, ttl)) time.sleep(1)# one second print("Packet: sent = %d received = %d lost = %d (%.0f%%)" % (PING_NUMBER, PING_NUMBER - loss, loss, loss/PING_NUMBER*100)) print("Round Trip Time (rtt): min = %dms max = %dms avg = %dms" % (min(rtt_arr), max(rtt_arr), int(sum(rtt_arr)/len(rtt_arr)))) return ping("www.google.com")
StarcoderdataPython
1964926
import json import math from elasticsearch import ConnectionError, NotFoundError import falcon from reach.web.views import template def _get_pages(current_page, last_page): """Return a list of pages to be used in the rendered template from the last page number.""" pages = [] if current_page > 3: pages.append(1) if current_page > 4: pages.append('...') pages.extend( range( max(current_page - 2, 1), min(current_page + 3, last_page) ) ) if current_page < last_page - 3: pages.append('...') if last_page not in pages: pages.append(last_page) return pages def _search_es(es, params, explain=False): """Run a search on the elasticsearch database. Args: es: An Elasticsearch active connection. params: The request's parameters. Shoud include 'term' and at least a field ([text|title|organisation]). explain: A boolean to enable|disable elasticsearch's explain. Returns: True|False: The search success status es.search()|str: A dict containing the result of the search if it succeeded or a string explaining why it failed """ try: fields = params.get('fields', []).split(',') page = params.get('page', 1) size = params.get('size', 50) es.cluster.health(wait_for_status='yellow') es_body = { 'from': (page - 1) * size, 'size': size, 'query': { 'multi_match': { 'query': params.get('term'), 'type': "best_fields", 'fields': ['.'.join(['doc', f]) for f in fields] } } } return True, es.search( index='policy-test-docs', body=json.dumps(es_body), explain=explain ) except ConnectionError: message = 'Could not join the elasticsearch server.' raise falcon.HTTPServiceUnavailable(description=message) except NotFoundError: message = 'No results found.' return False, {'message': message} except Exception as e: raise falcon.HTTPError(description=str(e)) class FulltextApi: """Let you search for terms in publications fulltexts. Returns a json. Args: es: An elasticsearch connection es_explain: A boolean to enable|disable elasticsearch's explain. """ def __init__(self, es, es_explain): self.es = es self.es_explain = es_explain def on_get(self, req, resp): """Returns the result of a search on the elasticsearch cluster. Args: req: The request passed to this controller resp: The reponse object to be returned """ if req.params: status, response = _search_es(self.es, req.params, self.es_explain) if status: response['status'] = 'success' resp.body = json.dumps(response) else: resp.body = json.dumps({ 'status': 'error', 'message': response }) else: resp.body = json.dumps({ 'status': 'error', 'message': "The request doesn't contain any parameters" }) resp.status = falcon.HTTP_400 class FulltextPage(template.TemplateResource): """Let you search for terms in publications fulltexts. Returns a web page. Args: es: An elasticsearch connection es_explain: A boolean to enable|disable elasticsearch's explain. """ def __init__(self, template_dir, es, es_explain, context=None): self.es = es self.es_explain = es_explain super(FulltextPage, self).__init__(template_dir, context) def on_get(self, req, resp): if req.params: params = { "term": req.params.get('term', ''), # es returns none on empty "fields": "text,organisation", # search_es is expects a str "page": int(req.params.get('page', 1)), "size": int(req.params.get('size', 50)), } status, response = _search_es(self.es, params, True) self.context['es_response'] = response self.context['es_status'] = status if (not status) or (response.get('message')): self.context.update(params) super(FulltextPage, self).render_template( resp, '/results/policy-docs', ) return self.context['pages'] = _get_pages( params['page'], math.ceil( float(response['hits']['total']['value']) / params['size']) ) self.context.update(params) super(FulltextPage, self).render_template( resp, '/results/policy-docs', ) else: super(FulltextPage, self).on_get(req, resp)
StarcoderdataPython
1708136
<filename>dataset.py import time import torch import numpy as np import pandas as pd import scipy from h5py import File import itertools, random from tqdm import tqdm from loguru import logger import torch.utils.data as tdata from typing import List, Dict class TrainHDF5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5filedict: Dict, h5labeldict: Dict, label_type='soft', transform=None): super(TrainHDF5Dataset, self).__init__() self._h5filedict = h5filedict self._h5labeldict = h5labeldict self._datasetcache = {} self._labelcache = {} self._len = len(self._h5labeldict) # IF none is passed still use no transform at all self._transform = transform assert label_type in ('soft', 'hard', 'softhard', 'hardnoise') self._label_type = label_type self.idx_to_item = { idx: item for idx, item in enumerate(self._h5labeldict.keys()) } first_item = next(iter(self._h5filedict.keys())) with File(self._h5filedict[first_item], 'r') as store: self.datadim = store[first_item].shape[-1] def __len__(self): return self._len def __del__(self): for k, cache in self._datasetcache.items(): cache.close() for k, cache in self._labelcache.items(): cache.close() def __getitem__(self, index: int): fname: str = self.idx_to_item[index] h5file: str = self._h5filedict[fname] labelh5file: str = self._h5labeldict[fname] if not h5file in self._datasetcache: self._datasetcache[h5file] = File(h5file, 'r') if not labelh5file in self._labelcache: self._labelcache[labelh5file] = File(labelh5file, 'r') data = self._datasetcache[h5file][f"{fname}"][()] speech_target = self._labelcache[labelh5file][f"{fname}/speech"][()] noise_target = self._labelcache[labelh5file][f"{fname}/noise"][()] speech_clip_target = self._labelcache[labelh5file][ f"{fname}/clipspeech"][()] noise_clip_target = self._labelcache[labelh5file][ f"{fname}/clipnoise"][()] noise_clip_target = np.max(noise_clip_target) # take max around axis if self._label_type == 'hard': noise_clip_target = noise_clip_target.round() speech_target = speech_target.round() noise_target = noise_target.round() speech_clip_target = speech_clip_target.round() elif self._label_type == 'hardnoise': # only noise yay noise_clip_target = noise_clip_target.round() noise_target = noise_target.round() elif self._label_type == 'softhard': r = np.random.permutation(noise_target.shape[0] // 4) speech_target[r] = speech_target[r].round() target_clip = torch.tensor((noise_clip_target, speech_clip_target)) data = torch.as_tensor(data).float() target_time = torch.as_tensor( np.stack((noise_target, speech_target), axis=-1)).float() if self._transform: data = self._transform(data) return data, target_time, target_clip, fname class HDF5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5file: File, h5label: File, fnames, transform=None): super(HDF5Dataset, self).__init__() self._h5file = h5file self._h5label = h5label self.fnames = fnames self.dataset = None self.label_dataset = None self._len = len(fnames) # IF none is passed still use no transform at all self._transform = transform with File(self._h5file, 'r') as store, File(self._h5label, 'r') as labelstore: self.datadim = store[self.fnames[0]].shape[-1] def __len__(self): return self._len def __getitem__(self, index): if self.dataset is None: self.dataset = File(self._h5file, 'r') self.label_dataset = File(self._h5label, 'r') fname = self.fnames[index] data = self.dataset[fname][()] speech_target = self.label_dataset[f"{fname}/speech"][()] noise_target = self.label_dataset[f"{fname}/noise"][()] speech_clip_target = self.label_dataset[f"{fname}/clipspeech"][()] noise_clip_target = self.label_dataset[f"{fname}/clipnoise"][()] noise_clip_target = np.max(noise_clip_target) # take max around axis target_clip = torch.tensor((noise_clip_target, speech_clip_target)) data = torch.as_tensor(data).float() target_time = torch.as_tensor( np.stack((noise_target, speech_target), axis=-1)).float() if self._transform: data = self._transform(data) return data, target_time, target_clip, fname class EvalH5Dataset(tdata.Dataset): """ HDF5 dataset indexed by a labels dataframe. Indexing is done via the dataframe since we want to preserve some storage in cases where oversampling is needed ( pretty likely ) """ def __init__(self, h5file: File, fnames=None): super(EvalH5Dataset, self).__init__() self._h5file = h5file self._dataset = None # IF none is passed still use no transform at all with File(self._h5file, 'r') as store: if fnames is None: self.fnames = list(store.keys()) else: self.fnames = fnames self.datadim = store[self.fnames[0]].shape[-1] self._len = len(store) def __len__(self): return self._len def __getitem__(self, index): if self._dataset is None: self._dataset = File(self._h5file, 'r') fname = self.fnames[index] data = self._dataset[fname][()] data = torch.as_tensor(data).float() return data, fname class MinimumOccupancySampler(tdata.Sampler): """ docstring for MinimumOccupancySampler samples at least one instance from each class sequentially """ def __init__(self, labels, sampling_mode='same', random_state=None): self.labels = labels data_samples, n_labels = labels.shape label_to_idx_list, label_to_length = [], [] self.random_state = np.random.RandomState(seed=random_state) for lb_idx in range(n_labels): label_selection = labels[:, lb_idx] if scipy.sparse.issparse(label_selection): label_selection = label_selection.toarray() label_indexes = np.where(label_selection == 1)[0] self.random_state.shuffle(label_indexes) label_to_length.append(len(label_indexes)) label_to_idx_list.append(label_indexes) self.longest_seq = max(label_to_length) self.data_source = np.empty((self.longest_seq, len(label_to_length)), dtype=np.uint32) # Each column represents one "single instance per class" data piece for ix, leng in enumerate(label_to_length): # Fill first only "real" samples self.data_source[:leng, ix] = label_to_idx_list[ix] self.label_to_idx_list = label_to_idx_list self.label_to_length = label_to_length if sampling_mode == 'same': self.data_length = data_samples elif sampling_mode == 'over': # Sample all items self.data_length = np.prod(self.data_source.shape) def _reshuffle(self): # Reshuffle for ix, leng in enumerate(self.label_to_length): leftover = self.longest_seq - leng random_idxs = np.random.randint(leng, size=leftover) self.data_source[leng:, ix] = self.label_to_idx_list[ix][random_idxs] def __iter__(self): # Before each epoch, reshuffle random indicies self._reshuffle() n_samples = len(self.data_source) random_indices = self.random_state.permutation(n_samples) data = np.concatenate( self.data_source[random_indices])[:self.data_length] return iter(data) def __len__(self): return self.data_length class MultiBalancedSampler(tdata.sampler.Sampler): """docstring for BalancedSampler Samples for Multi-label training Sampling is not totally equal, but aims to be roughtly equal """ def __init__(self, Y, replacement=False, num_samples=None): assert Y.ndim == 2, "Y needs to be one hot encoded" if scipy.sparse.issparse(Y): raise ValueError("Not supporting sparse amtrices yet") class_counts = np.sum(Y, axis=0) class_weights = 1. / class_counts class_weights = class_weights / class_weights.sum() classes = np.arange(Y[0].shape[0]) # Revert from many_hot to one class_ids = [tuple(classes.compress(idx)) for idx in Y] sample_weights = [] for i in range(len(Y)): # Multiple classes were chosen, calculate average probability weight = class_weights[np.array(class_ids[i])] # Take the mean of the multiple classes and set as weight weight = np.mean(weight) sample_weights.append(weight) self._weights = torch.as_tensor(sample_weights, dtype=torch.float) self._len = num_samples if num_samples else len(Y) self._replacement = replacement def __len__(self): return self._len def __iter__(self): return iter( torch.multinomial(self._weights, self._len, self._replacement).tolist()) def gettraindataloader(h5files, h5labels, label_type=False, transform=None, **dataloader_kwargs): dset = TrainHDF5Dataset(h5files, h5labels, label_type=label_type, transform=transform) return tdata.DataLoader(dset, collate_fn=sequential_collate, **dataloader_kwargs) def getdataloader(h5file, h5label, fnames, transform=None, **dataloader_kwargs): dset = HDF5Dataset(h5file, h5label, fnames, transform=transform) return tdata.DataLoader(dset, collate_fn=sequential_collate, **dataloader_kwargs) def pad(tensorlist, padding_value=0.): lengths = [len(f) for f in tensorlist] max_len = np.max(lengths) # max_len = 2000 batch_dim = len(lengths) data_dim = tensorlist[0].shape[-1] out_tensor = torch.full((batch_dim, max_len, data_dim), fill_value=padding_value, dtype=torch.float32) for i, tensor in enumerate(tensorlist): length = tensor.shape[0] out_tensor[i, :length, ...] = tensor[:length, ...] return out_tensor, torch.tensor(lengths) def sequential_collate(batches): # sort length wise data, targets_time, targets_clip, fnames = zip(*batches) data, lengths_data = pad(data) targets_time, lengths_tar = pad(targets_time, padding_value=0) targets_clip = torch.stack(targets_clip) assert lengths_data.shape == lengths_tar.shape return data, targets_time, targets_clip, fnames, lengths_tar if __name__ == '__main__': import utils label_df = pd.read_csv( 'data/csv_labels/unbalanced_from_unbalanced/unbalanced.csv', sep='\s+') data_df = pd.read_csv("data/data_csv/unbalanced.csv", sep='\s+') merged = data_df.merge(label_df, on='filename') common_idxs = merged['filename'] data_df = data_df[data_df['filename'].isin(common_idxs)] label_df = label_df[label_df['filename'].isin(common_idxs)] label = utils.df_to_dict(label_df) data = utils.df_to_dict(data_df) trainloader = gettraindataloader( h5files=data, h5labels=label, transform=None, label_type='soft', batch_size=64, num_workers=3, shuffle=False, ) with tqdm(total=len(trainloader)) as pbar: for batch in trainloader: inputs, targets_time, targets_clip, filenames, lengths = batch pbar.set_postfix(inp=inputs.shape) pbar.update()
StarcoderdataPython
12860663
<filename>modules/tankshapes/__init__.py """ Tank shapes package for Guns. This init file marks the package as a usable module. """
StarcoderdataPython
4939461
from django.apps import AppConfig class PersoonlijkConfig(AppConfig): default_auto_field = 'django.db.models.BigAutoField' name = 'persoonlijk'
StarcoderdataPython
8060684
<reponame>mpolson64/Ax-1 #!/usr/bin/env python3 # Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the MIT license found in the # LICENSE file in the root directory of this source tree. import json from typing import Any, Callable, Type, Dict from ax.core.experiment import Experiment from ax.storage.json_store.decoder import object_from_json from ax.storage.json_store.registry import ( CORE_CLASS_DECODER_REGISTRY, CORE_DECODER_REGISTRY, ) def load_experiment( filepath: str, decoder_registry: Dict[str, Type] = CORE_DECODER_REGISTRY, class_decoder_registry: Dict[ str, Callable[[Dict[str, Any]], Any] ] = CORE_CLASS_DECODER_REGISTRY, ) -> Experiment: """Load experiment from file. 1) Read file. 2) Convert dictionary to Ax experiment instance. """ with open(filepath, "r") as file: json_experiment = json.loads(file.read()) return object_from_json( json_experiment, decoder_registry, class_decoder_registry )
StarcoderdataPython
1891595
"""Entry point for CLI commands.""" import click from .predict import predict from .preprocess import preprocess from .test import test from .train import train @click.group() def entry_point(): """Entry point for CLI commands.""" # TODO: configure logging on app start entry_point.add_command(preprocess) entry_point.add_command(predict) entry_point.add_command(train) entry_point.add_command(test)
StarcoderdataPython
11354184
<gh_stars>1-10 import urllib.request import os URLS = ( 'https://raw.githubusercontent.com/maigfrga/spark-streaming-book/master/data/movielens/tags.csv', # noqa 'https://raw.githubusercontent.com/maigfrga/spark-streaming-book/master/data/movielens/ratings.csv', # noqa 'https://raw.githubusercontent.com/maigfrga/spark-streaming-book/master/data/movielens/movies.csv' # noqa, ) def main(): """ Download the reduced version of movieles dataset """ def download(url): response = urllib.request.urlopen(url) data = response.read() data = data.decode('utf-8') fname = url.split('/')[-1] with open(os.path.join( os.environ['SPARK_DATA'], fname), 'w') as f: f.write(data) for url in URLS: download(url) if __name__ == '__main__': if 'SPARK_DATA' not in os.environ: print('Error. Please define SPARK_DATA variable') exit(1) main()
StarcoderdataPython
282234
#!/usr/bin/python # Project : diafuzzer # Copyright (C) 2017 Orange # All rights reserved. # This software is distributed under the terms and conditions of the 'BSD 3-Clause' # license which can be found in the file 'LICENSE' in this package distribution. from struct import pack, unpack from cStringIO import StringIO import time import re from pprint import pformat import Dia from random import randint from copy import deepcopy import sys import scenario from socket import inet_pton, inet_ntop, AF_INET, AF_INET6 class IncompleteBuffer(Exception): pass class MsgInvalidLength(Exception): pass class AVPInvalidLength(Exception): pass '''can be triggered at runtime by script''' class RecvMismatch(Exception): pass U16_MAX = pow(2,16)-1 U24_MAX = pow(2,24)-1 def pack24(x): assert(x >= 0 and x <= U24_MAX) s = pack('!L', x) return s[1:] def unpack24(x): xp = '\x00' + x return unpack('!L', xp)[0] assert(pack24(0) == '\x00\x00\x00') assert(0 == unpack24('\x00\x00\x00')) def read_exactly(f, n): b = f.read(n) if len(b) != n: raise IncompleteBuffer() return b def get_matcher(elm): m = re.match(r'code=(\d+)(?:,vendor=(\d+))?(?:\[(\d+)\])?', elm) assert(m) (code, vendor, index) = m.groups() if index is None: index = 0 else: index = int(index, 0) if vendor is None: vendor = 0 else: vendor = int(vendor, 0) code = int(code, 0) return lambda x, code=code, vendor=vendor: x.code == code and x.vendor == vendor def get_filter(elm): m = re.match(r'code=(\d+)(?:,vendor=(\d+))?(?:\[(\d+)\])?', elm) assert(m) (code, vendor, index) = m.groups() if index is None: index = 0 else: index = int(index, 0) if vendor is None: vendor = 0 else: vendor = int(vendor, 0) code = int(code, 0) def find_it(elms): avps = [e for e in elms if e.code == code and e.vendor == vendor] return avps[index] return find_it sys.setrecursionlimit(10000) class Msg: def __init__(self, **kwds): self.version = 1 self.length = None self.R = False self.P = False self.E = False self.T = False self.reserved = None self.code = 0 self.app_id = 0 self.e2e_id = None self.h2h_id = None self.avps = [] for k in kwds: setattr(self, k, kwds[k]) def __repr__(self, offset=0, indent=2): attrs = {} for k in ['code', 'app_id', 'e2e_id', 'h2h_id', 'avps']: attrs[k] = getattr(self, k) comment = '' if hasattr(self, 'model'): comment = self.model.name if self.R: attrs['R'] = True if self.P: attrs['P'] = True if self.E: attrs['E'] = True if self.T: attrs['T'] = True if self.version != 1: attrs['version'] = self.version if self.length is not None: attrs['length'] = self.length r = '' r += ' '*offset + 'Msg(' elms = [] for k in ['version', 'R', 'P', 'E', 'T', 'reserved', 'code', 'app_id']: if k in attrs: if k == 'app_id': elms.append('%s=0x%x' % (k, attrs[k])) else: elms.append('%s=%r' % (k, attrs[k])) r += ', '.join(elms) if 'avps' in attrs: r += ', avps=[ # %s \n' % comment for a in self.avps: r += a.__repr__(offset+indent, indent) + ',\n' r += ' '*offset + ']' r += ')' return r @staticmethod def recv(f, _timeout=5.0): f.settimeout(_timeout) data = scenario.unpack_frame(f) return Msg.decode(data) def send(self, f): data = self.encode() scenario.pack_frame(f, data) @staticmethod def decode(s, tag=False): f = StringIO(s) attrs = {} attrs['version'] = unpack('!B', read_exactly(f, 1))[0] attrs['total_length'] = unpack24(read_exactly(f, 3)) flags = unpack('!B', read_exactly(f, 1))[0] if flags & 0x80: attrs['R'] = True if flags & 0x40: attrs['P'] = True if flags & 0x20: attrs['E'] = True if flags & 0x10: attrs['T'] = True reserved = flags & 0x0f if reserved: attrs['reserved'] = reserved attrs['code'] = unpack24(read_exactly(f, 3)) attrs['app_id'] = unpack('!L', read_exactly(f, 4))[0] attrs['h2h_id'] = unpack('!L', read_exactly(f, 4))[0] attrs['e2e_id'] = unpack('!L', read_exactly(f, 4))[0] length = attrs['total_length'] length -= 20 if length < 0: raise MsgInvalidLength() avps = [] data = read_exactly(f, length) while True: a = Avp.decode(data) avps.append(a) assert(a.padded_length % 4 == 0) data = data[a.padded_length:] if len(data) == 0: break attrs['avps'] = avps m = Msg(**attrs) if tag: Dia.Directory.tag(m) return m def encode(self): f = StringIO() content = '' for a in self.avps: content += a.encode() if self.length: length = self.length else: length = len(content) + 20 f.write(pack('!B', self.version)) f.write(pack24(length)) flags = 0 if self.R: flags |= 0x80 if self.P: flags |= 0x40 if self.E: flags |= 0x20 if self.T: flags |= 0x10 if self.reserved: flags |= self.reserved f.write(pack('!B', flags)) f.write(pack24(self.code)) f.write(pack('!L', self.app_id)) if self.h2h_id is None: self.h2h_id = randint(0, pow(2, 32)-1) f.write(pack('!L', self.h2h_id)) if self.e2e_id is None: self.e2e_id = randint(0, pow(2, 32)-1) f.write(pack('!L', self.e2e_id)) f.write(content) return f.getvalue() def all_avps(self): for a in self.avps: for sub_a in a.all_avps(): yield sub_a def eval_path(self, path): elms = path.split('/')[1:] a = get_filter(elms[0])(self.avps) return a.eval_path(elms[1:]) def modify_value(self, path, value): '''traverse AVP tree down to target, and set intermediate length to None in order to force fixup.''' elms = path.split('/')[1:] a = get_filter(elms[0])(self.avps) a.length = None a.modify_value(elms[1:], value) def suppress_avps(self, path): elms = path.split('/')[1:] assert(len(elms) >= 1) if len(elms) == 1: self.length = None m = get_matcher(elms[0]) new_avps = [] for a in self.avps: if not m(a): new_avps.append(a) self.avps = new_avps else: a = get_filter(elms[0])(self.avps) a.length = None a.suppress_avps(elms[1:]) def overflow_avps(self, path, count): elms = path.split('/')[1:] assert(len(elms) >= 1) if len(elms) == 1: self.length = None m = get_matcher(elms[0]) existing_avps = [a for a in self.avps if m(a)] existing_count = len(existing_avps) assert(existing_count > 0) self.avps.extend([existing_avps[-1]] * (count-existing_count)) else: a = get_filter(elms[0])(self.avps) a.length = None a.overflow_avps(elms[1:], count) def compute_path(self, avp): avps = [a for a in self.avps if a.code == avp.code and a.vendor == avp.vendor] assert(len(avps) > 0) attrs = {} if avp.code != 0: attrs['code'] = avp.code if avp.vendor != 0: attrs['vendor'] = avp.vendor path = '/' for name in attrs: path += '%s=%d' % (name, attrs[name]) if len(avps) == 1: return path else: return '%s[%d]' % (path, avps.index(avp)) class Avp: def __init__(self, **kwds): self.code = 0 self.V = False self.M = False self.P = False self.reserved = None self.vendor = 0 self.avps = [] self.data = None self.length = None self.model = None for k in kwds: if k == 'u32': self.data = pack('!L', kwds[k]) elif k == 's32': self.data = pack('!I', kwds[k]) elif k == 'u64': self.data = pack('!Q', kwds[k]) elif k == 'f32': self.data = pack('!f', kwds[k]) elif k == 'f64': self.data = pack('!d', kwds[k]) elif k == 'v4': self.data = pack('!H', 1) + inet_pton(AF_INET, kwds[k]) elif k == 'v6': self.data = pack('!H', 2) + inet_pton(AF_INET6, kwds[k]) else: setattr(self, k, kwds[k]) def __repr__(self, offset=0, indent=2): attrs = {} attrs['code'] = self.code for k in ['reserved', 'vendor', 'data', 'length']: if getattr(self, k) is not None: attrs[k] = getattr(self, k) model_avp = None if hasattr(self, 'model_avp'): model_avp = self.model_avp if self.V: attrs['V'] = True if self.M: attrs['M'] = True if self.P: attrs['P'] = True if len(self.avps) > 0: attrs['avps'] = self.avps r = '' if model_avp is not None: r += ' '*offset + '# %s\n' % model_avp.name r += ' '*offset + 'Avp(' elms = [] for k in ['code', 'V', 'M', 'P', 'reserved', 'vendor']: if k in attrs: elms.append('%s=%r' % (k, attrs[k])) r += ', '.join(elms) if hasattr(self, 'var'): r += ', data=%s' % getattr(self, 'var') elif 'avps' in attrs: r += ', avps=[\n' for a in self.avps: r += a.__repr__(offset+indent, indent) + ',\n' r += ' '*offset + ']' elif 'data' in attrs: if model_avp is not None: if model_avp.datatype in ['Unsigned32']: r += ', u32=%d' % unpack('!L', attrs['data'])[0] elif model_avp.datatype in ['Integer32', 'Enumerated']: r += ', u32=%d' % unpack('!L', attrs['data'])[0] elif model_avp.datatype in ['Unsigned64']: r += ', u64=%d' % unpack('!Q', attrs['data'])[0] elif model_avp.datatype == 'Address': family = unpack('!H', attrs['data'][:2])[0] if family == 1: r += ', v4=%r' % inet_ntop(AF_INET, attrs['data'][2:]) elif family == 2: r += ', v6=%r' % inet_ntop(AF_INET6, attrs['data'][2:]) else: r += ', data=%r' % attrs['data'] else: r += ', data=%r' % attrs['data'] if self.model: r += ', conformant=%r' % self.model r += ')' return r def __eq__(self, other): if isinstance(other, self.__class__): return self.__dict__ == other.__dict__ else: return False def __ne__(self, other): return not self.__eq__(other) @staticmethod def decode(s): f = StringIO(s) attrs = {} attrs['code'] = unpack('!L', read_exactly(f, 4))[0] flags = unpack('!B', read_exactly(f, 1))[0] if flags & 0x80: attrs['V'] = True if flags & 0x40: attrs['M'] = True if flags & 0x20: attrs['P'] = True reserved = flags & 0x1f if reserved: attrs['reserved'] = reserved length = unpack24(read_exactly(f, 3)) attrs['length'] = length data_length = length data_length -= 8 if flags & 0x80 != 0: attrs['vendor'] = unpack('!L', read_exactly(f, 4))[0] data_length -= 4 if data_length < 0: raise AVPInvalidLength() data = read_exactly(f, data_length) attrs['padded_length'] = length if data_length % 4 != 0: padding = 4 - (data_length % 4) read_exactly(f, padding) attrs['padded_length'] += padding attrs['data'] = data if len(data) < 12: return Avp(**attrs) try: avps = [] while True: cld_a = Avp.decode(data) avps.append(cld_a) assert(cld_a.padded_length % 4 == 0) data = data[cld_a.padded_length:] if len(data) == 0: break attrs['avps'] = avps except: pass return Avp(**attrs) def encode(self): f = StringIO() f.write(pack('!L', self.code)) flags = 0 if self.V: flags |= 0x80 if self.M: flags |= 0x40 if self.P: flags |= 0x20 if self.reserved: flags |= self.reserved f.write(pack('!B', flags)) content = '' if self.avps: content = '' for a in self.avps: content += a.encode() elif self.data: content = self.data length = self.length if length is None: length = len(content) length += 8 if self.V: length += 4 f.write(pack24(length)) if self.V: f.write(pack('!L', self.vendor)) if content: f.write(content) if length % 4 != 0: padding = 4 - (length % 4) f.write('\x00' * padding) return f.getvalue() def all_avps(self): yield self for a in self.avps: for sub_a in a.all_avps(): yield sub_a def eval_path(self, elms): if len(elms) == 0: return self a = get_filter(elms[0])(self.avps) return a.eval_path(elms[1:]) def modify_value(self, elms, value): '''traverse AVP tree down to target, and set intermediate length to None in order to force fixup.''' if len(elms) == 0: self.length = None self.data = value self.avps = [] return a = get_filter(elms[0])(self.avps) a.length = None a.modify_value(elms[1:], value) def suppress_avps(self, elms): if len(elms) == 1: self.length = None m = get_matcher(elms[0]) new_avps = [] for a in self.avps: if not m(a): new_avps.append(a) self.avps = new_avps else: a = get_filter(elms[0])(self.avps) a.length = None a.suppress_avps(elms[1:]) def overflow_avps(self, elms, count): if len(elms) == 1: self.length = None m = get_matcher(elms[0]) existing_avps = [a for a in self.avps if m(a)] existing_count = len(existing_avps) assert(existing_count > 0) self.avps.extend([existing_avps[-1]] * (count-existing_count)) else: a = get_filter(elms[0])(self.avps) a.length = None a.overflow_avps(elms[1:], count) def compute_path(self, avp): index = None found = False seen = 0 for a in self.avps: if a.code == avp.code and a.vendor == avp.vendor: seen += 1 if a == avp: assert(index is None) index = seen-1 assert(index is not None and seen >= 1) if seen == 1: return '/code=%d,vendor=%d' % (avp.code, avp.vendor) else: return '/code=%d,vendor=%d[%d]' % (avp.code, avp.vendor, seen-1) def overflow_stacking(self, depth=128): new_avp = deepcopy(self) for x in range(depth): stack_avp = deepcopy(self) stack_avp.length = None stack_avp.avps.append(new_avp) new_avp = stack_avp data = '' for a in self.avps: data += a.encode() data += new_avp.encode() return data if __name__ == '__main__': from binascii import unhexlify as ux from binascii import hexlify as x UNPADDED_AVP = ux('0000012b4000000c00000000') a = Avp.decode(UNPADDED_AVP) assert(a.encode() == UNPADDED_AVP) PADDED_AVP = ux('0000010d400000334d75205365727669636520416e616c797a6572204469616d6574657220496d706c656d656e746174696f6e00') a = Avp.decode(PADDED_AVP) assert(a.encode() == PADDED_AVP) CER = ux('010000c88000010100000000000000000000000000000108400000113132372e302e302e3100000000000128400000166473742e646f6d61696e2e636f6d0000000001014000000e00017f00000100000000010a4000000c000000000000010d400000334d75205365727669636520416e616c797a6572204469616d6574657220496d706c656d656e746174696f6e000000012b4000000c000000000000010c4000000c000007d100000104400000200000010a4000000c000028af000001024000000c01000000') m = Msg.decode(CER) assert(m.encode() == CER) m = Msg(avps=[Avp(code=280, data='toto'), Avp(code=280, data='toto'), Avp(code=280, data='tata')]) p = m.compute_path(Avp(code=280, data='toto')) assert(p == '/code=280[0]') p = m.compute_path(Avp(code=280, data='tata')) assert(p == '/code=280[2]') m = Msg(avps=[Avp(code=280, data='toto'), Avp(code=281, data='toto'), Avp(code=282, data='tata')]) p = m.compute_path(Avp(code=280, data='toto')) assert(p == '/code=280') m = Msg(avps=[Avp(code=280, data='toto'), Avp(code=281, data='toto'), Avp(code=282, data='tata')]) p = m.compute_path(Avp(code=280, data='toto')) assert(p == '/code=280') m = Msg(avps=[Avp(code=280, data='toto'), Avp(code=280, data='toto'), Avp(code=280, data='tata')]) a = m.eval_path('/code=280') assert(a == Avp(code=280, data='toto')) a = m.eval_path('/code=280[1]') assert(a == Avp(code=280, data='toto')) a = m.eval_path('/code=280,vendor=0[1]') assert(a == Avp(code=280, data='toto')) a = m.eval_path('/code=280[2]') assert(a == Avp(code=280, data='tata')) a = Avp(code=257, v4='127.0.0.1') assert(a.encode() == ux('000001010000000e00017f0000010000'))
StarcoderdataPython
11289188
from django.urls import path, include from rest_framework.routers import DefaultRouter from .views import ( PuntoVenditaViewSet, ) # Create a router and register our viewsets with it. ROUTER = DefaultRouter() ROUTER.register('punti-vendita', PuntoVenditaViewSet) # The API URLs are now determined automatically by the router. # Additionally, we include the login URLs for the browsable API. urlpatterns = [ path('', include(ROUTER.urls)), ]
StarcoderdataPython
5025006
<filename>test/command_line/test_refine_bravais_settings.py from __future__ import absolute_import, division, print_function import json import os import pytest from cctbx import sgtbx, uctbx from dxtbx.serialize import load from dials.command_line import refine_bravais_settings def test_refine_bravais_settings_i04_weak_data(dials_regression, tmpdir): data_dir = os.path.join(dials_regression, "indexing_test_data", "i04_weak_data") pickle_path = os.path.join(data_dir, "indexed.pickle") experiments_path = os.path.join(data_dir, "experiments.json") with tmpdir.as_cwd(): refine_bravais_settings.run( [ pickle_path, experiments_path, "reflections_per_degree=5", "minimum_sample_size=500", "beam.fix=all", "detector.fix=all", "prefix=tst_", ] ) for i in range(1, 10): assert tmpdir.join("tst_bravais_setting_%i.expt" % i).check() experiments_list = load.experiment_list( tmpdir.join("tst_bravais_setting_9.expt").strpath, check_format=False ) assert len(experiments_list) == 1 assert ( experiments_list[0] .crystal.get_unit_cell() .is_similar_to(uctbx.unit_cell((57.782, 57.782, 150.011, 90, 90, 90))) ) assert experiments_list[0].crystal.get_space_group().type().hall_symbol() == " P 4" assert tmpdir.join("tst_bravais_summary.json").check() with tmpdir.join("tst_bravais_summary.json").open("rb") as fh: bravais_summary = json.load(fh) assert set(bravais_summary) == {"1", "2", "3", "4", "5", "6", "7", "8", "9"} assert set(bravais_summary["9"]).issuperset( {"bravais", "max_angular_difference", "unit_cell", "rmsd", "nspots"} ) assert bravais_summary["9"]["unit_cell"] == pytest.approx( [57.78, 57.78, 150.0, 90.0, 90.0, 90.0], abs=1e-1 ) assert bravais_summary["9"]["bravais"] == "tP" assert bravais_summary["9"]["recommended"] is True assert bravais_summary["9"]["rmsd"] == pytest.approx(0.047, abs=1e-2) def test_refine_bravais_settings_multi_sweep(dials_regression, tmpdir): data_dir = os.path.join(dials_regression, "indexing_test_data", "multi_sweep") pickle_path = os.path.join(data_dir, "indexed.pickle") experiments_path = os.path.join(data_dir, "experiments.json") with tmpdir.as_cwd(): refine_bravais_settings.run([pickle_path, experiments_path]) for i in range(1, 10): assert tmpdir.join("bravais_setting_%i.expt" % i).check() experiments_list = load.experiment_list( tmpdir.join("bravais_setting_9.expt").strpath, check_format=False ) assert len(experiments_list) == 4 assert len(experiments_list.crystals()) == 1 assert ( experiments_list[0] .crystal.get_unit_cell() .is_similar_to(uctbx.unit_cell((7.31, 7.31, 6.82, 90.00, 90.00, 90.00))) ) assert experiments_list[0].crystal.get_space_group().type().hall_symbol() == " I 4" assert tmpdir.join("bravais_summary.json").check() with tmpdir.join("bravais_summary.json").open("rb") as fh: bravais_summary = json.load(fh) for i in range(1, 23): assert str(i) in bravais_summary assert bravais_summary["9"]["unit_cell"] == pytest.approx( [7.31, 7.31, 6.82, 90.00, 90.00, 90.00], abs=1e-1 ) assert bravais_summary["9"]["bravais"] == "tI" assert bravais_summary["9"]["rmsd"] == pytest.approx(0.103, abs=1e-2) assert bravais_summary["9"]["recommended"] is True def test_refine_bravais_settings_trypsin(dials_regression, tmpdir): data_dir = os.path.join(dials_regression, "indexing_test_data", "trypsin") pickle_path = os.path.join(data_dir, "indexed.pickle") experiments_path = os.path.join(data_dir, "experiments.json") with tmpdir.as_cwd(): refine_bravais_settings.run([pickle_path, experiments_path, "crystal_id=1"]) for i in range(1, 10): assert tmpdir.join("bravais_setting_%i.expt" % i).check() experiments_list = load.experiment_list( tmpdir.join("bravais_setting_5.expt").strpath, check_format=False ) assert len(experiments_list) == 1 assert ( experiments_list[0] .crystal.get_unit_cell() .is_similar_to(uctbx.unit_cell((54.37, 58.29, 66.51, 90.00, 90.00, 90.00))) ) assert ( experiments_list[0].crystal.get_space_group().type().hall_symbol() == " P 2 2" ) assert tmpdir.join("bravais_summary.json").check() with tmpdir.join("bravais_summary.json").open("rb") as fh: bravais_summary = json.load(fh) assert set(bravais_summary) == {"1", "2", "3", "4", "5", "6", "7", "8", "9"} assert bravais_summary["5"]["unit_cell"] == pytest.approx( [54.37, 58.29, 66.51, 90.00, 90.00, 90.00], abs=1e-1 ) assert bravais_summary["5"]["bravais"] == "oP" assert bravais_summary["5"]["rmsd"] == pytest.approx(0.1200, abs=1e-2) assert bravais_summary["5"]["recommended"] is True assert bravais_summary["9"]["recommended"] is False def test_refine_bravais_settings_554(dials_regression, tmpdir): data_dir = os.path.join(dials_regression, "dials-554") pickle_path = os.path.join(data_dir, "indexed.pickle") experiments_path = os.path.join(data_dir, "experiments.json") with tmpdir.as_cwd(): refine_bravais_settings.run([pickle_path, experiments_path]) for i in range(1, 5): assert tmpdir.join("bravais_setting_%i.expt" % i).check() experiments_list = load.experiment_list( tmpdir.join("bravais_setting_5.expt").strpath, check_format=False ) assert len(experiments_list) == 7 assert len(experiments_list.crystals()) == 1 crystal = experiments_list.crystals()[0] assert crystal.get_unit_cell().is_similar_to( uctbx.unit_cell((4.75863, 4.75863, 12.9885, 90, 90, 120)) ) assert crystal.get_space_group().type().hall_symbol() == " R 3" # assert all of the detectors are different for expt in experiments_list[1:]: assert expt.detector != experiments_list[0].detector for i in (0, 1, 6): assert experiments_list[i].detector[0].get_origin() == pytest.approx( (-41, 5.5, -135), abs=1 ) for i in (2, 3, 4, 5): assert experiments_list[i].detector[0].get_origin() == pytest.approx( (-41, 91, -99), abs=1 ) assert tmpdir.join("bravais_summary.json").check() with tmpdir.join("bravais_summary.json").open("rb") as fh: bravais_summary = json.load(fh) for i in range(1, 5): assert str(i) in bravais_summary assert bravais_summary["5"]["unit_cell"] == pytest.approx( [4.75863, 4.75863, 12.9885, 90, 90, 120], abs=1e-1 ) assert bravais_summary["5"]["bravais"] == "hR" assert bravais_summary["5"]["rmsd"] == pytest.approx(0.104, abs=1e-2) assert bravais_summary["5"]["recommended"] is True @pytest.mark.parametrize( "best_monoclinic_beta,expected_space_group,expected_unit_cell", [ (True, "I 1 2 1", (44.47, 52.85, 111.46, 90.00, 99.91, 90.00)), (False, "C 1 2 1", (112.67, 52.85, 44.47, 90.00, 102.97, 90.00)), ], ) def test_setting_c2_vs_i2( best_monoclinic_beta, expected_space_group, expected_unit_cell, dials_data, tmpdir, capsys, ): data_dir = dials_data("mpro_x0305_processed") refl_path = data_dir.join("indexed.refl") experiments_path = data_dir.join("indexed.expt") with tmpdir.as_cwd(): refine_bravais_settings.run( [ experiments_path.strpath, refl_path.strpath, "best_monoclinic_beta=%s" % best_monoclinic_beta, ] ) expts_orig = load.experiment_list(experiments_path.strpath, check_format=False) expts = load.experiment_list( tmpdir.join("bravais_setting_2.expt").strpath, check_format=False ) expts[0].crystal.get_space_group().type().lookup_symbol() == expected_space_group assert expts[0].crystal.get_unit_cell().parameters() == pytest.approx( expected_unit_cell, abs=1e-2 ) with tmpdir.join("bravais_summary.json").open("rb") as fh: bravais_summary = json.load(fh) # Verify that the cb_op converts from the input setting to the refined setting cb_op = sgtbx.change_of_basis_op(str(bravais_summary["2"]["cb_op"])) assert ( expts_orig[0] .crystal.change_basis(cb_op) .get_unit_cell() .is_similar_to( expts[0].crystal.get_unit_cell(), relative_length_tolerance=0.1, absolute_angle_tolerance=1, ) ) captured = capsys.readouterr() assert bravais_summary["2"]["cb_op"] in captured.out
StarcoderdataPython
1606025
<reponame>diegushko/utils import torch import torch.nn as nn from math import ceil base_model = [ # expand_ratio, channels, repeats, stride, kernel_size [1, 16, 1, 1, 3], [6, 24, 2, 2, 3], [6, 40, 2, 2, 5], [6, 80, 3, 2, 3], [6, 112, 3, 1, 5], [6, 192, 4, 2, 5], [6, 320, 1, 1, 3] ] pthi_values = { # pthi_value, resolution, drop_rate "b0": (0, 244, 0.2), # alpha (depth), beta (width), gamma (resolution) "b1": (0.5, 240, 0.2), "b2": (1, 260, 0.3), "b3": (2, 300, 0.3), "b4": (3, 380, 0.4), "b5": (4, 456, 0.4), "b6": (5, 528, 0.5), "b7": (6, 600, 0.5) } class CNNBlock(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride, padding, groups=1): super(CNNBlock, self).__init__() self.cnn = nn.Conv2d( in_channels, out_channels, kernel_size, stride, padding, groups=groups, # If we set group=1 as we did by default, then this is a normal conv \ bias=False # if we set it to groups=in_channels, then it is a Depthwise convolution. ) self.bn = nn.BatchNorm2d(out_channels) self.silu = nn.SiLU() # SiLU > Swish def forward(self, x): return self.silu(self.bn(self.cnn(x))) class SqueezeExcitation(nn.Module): def __init__(self, in_channels, reduced_dim): super(SqueezeExcitation, self).__init__() self.se = nn.Sequential( nn.AdaptiveAvgPool2d(1), # C x H x W -> C x 1 x 1 nn.Conv2d(in_channels, reduced_dim, 1), nn.SiLU(), nn.Conv2d(reduced_dim, in_channels, 1), nn.Sigmoid() ) def forward(self, x): return x * self.se(x) class InvertedResidualBlock(nn.Module): def __init__( self, in_channels, out_channels, kernel_size, stride, padding, expand_ratio, reduction=4, # squeeze excitation survival_prob=0.8 # for stochastic depth ): super(InvertedResidualBlock, self).__init__() self.survival_prob = 0.8 self.use_residual = in_channels == out_channels and stride == 1 hidden_dim = in_channels * expand_ratio self.expand = in_channels != hidden_dim reduced_dim = int(in_channels / reduction) if self.expand: self.expand_conv = CNNBlock( in_channels, hidden_dim, kernel_size=3, stride=1, padding=1 ) self.conv = nn.Sequential( CNNBlock( hidden_dim, hidden_dim, kernel_size, stride, padding, groups=hidden_dim ), SqueezeExcitation(hidden_dim, reduced_dim), nn.Conv2d ) class EfficientNet(nn.Module): pass
StarcoderdataPython
11271216
<filename>replicable/spec.py<gh_stars>0 from __future__ import print_function, unicode_literals, division, generators import contextlib from itertools import product import numpy as np import xxhash try: import itertools.imap as map except ImportError: pass try: import itertools.izip as zip except ImportError: pass @contextlib.contextmanager def state(seed): rng_state = np.random.get_state() np.random.seed(seed) try: yield finally: np.random.set_state(rng_state) def dict_hash(d): h = xxhash.xxh64() stuff = sorted(''.join(list(map(str, d.keys())) + list(map(str, d.values())))) h.update(stuff) return h class Parameters(dict): @property def hash(self): return dict_hash(self) class Variable(object): def __init__(self, names): self.names = names def __add__(self, other): return Specification(self, other) @property def shape(self): return len(self.names), @property def size(self): return np.prod(*self.shape) def iterate(self, seed=0): return Specification(self).iterate(seed) class Constant(Variable): def __init__(self, names, values): super(Constant, self).__init__(names) self.values = np.atleast_1d(values) def __repr__(self): return "<ConstantParameter({})>".format({n:v for n, v in zip(self.names, self.values)}) def __getitem__(self, item): try: return self.values[self.names.index(item)] except ValueError: raise KeyError("key {} is not present".format(item)) def __eq__(self, other): if self.size != other.size: return False try: return all((other[i] == self[i]) and (type(other[i]) == type(self[i])) for i in self.names) except KeyError: return False @property def shape(self): return self.values.shape class Stochastic(Variable): def __init__(self, names, sampler, n): super(Stochastic, self).__init__(names) self.sampler = sampler self.n = n @property def shape(self): return self.n, def sample(self, rng, n=1): yield {name: values for name, values in zip(self.names, self.sampler(rng, n))} class IntegrityError(Exception): pass class Specification(object): def __init__(self, *parameters): self.parameters = parameters self.gridded = [p for p in self.parameters if isinstance(p, Constant)] self.stochastic = [p for p in self.parameters if isinstance(p, Stochastic)] self.unpacked_gridded = [(name, value) for p in self.gridded for name, value in zip(p.names, p.values)] assert len(set(self.names)) == len(self.names), "Unique parameter names must be used" @property def names(self): return [p for params in self.parameters for p in params.names] @property def size(self): return np.prod([p.size for p in self.parameters]) def __len__(self): return self.size @property def shape(self): return reduce(lambda a, b: a + b, [p.shape for p in self.parameters]) def __call__(self, directory, seed, mode='r'): """use a directory for storing simulations together with a seed to create them""" return PersistedSpecificationIndex(directory, self, seed, mode) def iterate(self, seed=0): """ Iterate over all parameters :param seed: int: Seed for stochastic components :return: generator """ rng = np.random.RandomState(seed) names, ranges = zip(*self.unpacked_gridded) prod = product(*ranges) griddeds = ({n: p for n, p in zip(names, ps)} for ps in prod) iterators = [p.sample(rng, 1) for p in self.stochastic] + [griddeds] while True: parameters = reduce(lambda a, b: a.update(b), map(next, iterators)) yield Parameters(**parameters) # def __enter__(self): # self.index_fname = os.path.join(self.directory, 'index-{}.h5'.format(self.hash_name)) # if not os.path.exists(self.index_fname): # self.overwrite_index() # else: # self.validate_integrity(verbose=True) # return self # # def __exit__(self, exc_type, exc_val, exc_tb): # self.directory, self.seed = None, None # def overwrite_index(self): # with h5py.File(self.index_fname, 'w', libver='latest') as f: # pass # store = pd.HDFStore(self.index_fname, 'r+') # for paramset, hsh in tqdm(self.iterate(), total=self.size, desc='building index'): # df = pd.DataFrame(paramset) # df['hash'] = hsh.hexdigest() # store.append('index', df, format='table', data_columns=True) # @property # def files(self): # _files = [] # for root, dirs, _files in os.walk(self.directory): # pass # _files = [os.path.join(self.directory, f) for f in _files if f != self.index_fname] # return _files # def _create_virtual_link(self, dataset_names, verbose=True): # parameter_generator = tqdm(self._iterate(), total=self.size, dsec='linking', disable=not verbose) # first_fname = next(parameter_generator)[0] # with h5py.File(os.path.join(self.directory, first_fname), 'r') as first: # layouts = [h5py.VirtualLayout(shape=(self.size, )+first[ds].shape, dtype=first[ds].dtype) for ds in dataset_names] # # for i, (file, hash) in enumerate(parameter_generator): # vsources = [h5py.VirtualSource(file, ds, shape=first.shape, dtype=first.dtype)] # layout[i] = vsource # # # Add virtual dataset to output file # with h5py.File(self.index_fname, 'a', libver='latest') as f: # f.create_virtual_dataset('data', layout, fillvalue=np.nan) # # def read_parameter(self, parameter): # with h5py.File(self.index_fname, 'r') as f: # return f['parameters'][parameter] # # def validate_integrity(self, verbose=True): # """ # Validates the integrity of the index: # Are all files present? # Does the total hash for the files match that which is expected by the specification? # :return: True if valid # """ # nmissing = len(self) - len(self.files) # if nmissing > 0: # raise IntegrityError("Missing {} files, run `integrity_audit` to identify them".format(nmissing)) # elif nmissing < 0: # raise IntegrityError("There are {} more valid files than were expected, run `integrity_audit` " # "to identify them.".format(-nmissing)) # hsh = xxhash.xxh64() # for f in tqdm(self.files, desc='Hashing files', disable=not verbose): # hsh.update(os.path.basename(f).strip('.h5')) # file_hash = hsh.hexdigest() # hsh = xxhash.xxh64() # for paramset, hsh in tqdm(self.iterate(), total=self.size, desc='Hashing parameters', disable=not verbose): # hsh.update(hsh) # param_hash = hsh.hexdigest() # if file_hash != param_hash: # raise IntegrityError("Hash mismatch: files are corrupted or mislabelled, run `integrity_audit` to identify" # "the problematic ones") # return True # def integrity_audit(self, test_existence=True, test_read=False, verbose=True): # missing = [] # for i, (paramset, hash) in enumerate(tqdm(self.iterate(), total=self.size, desc='Hashing parameters', # disable=not verbose)): # fname = os.path.join(self.directory, '{}.h5') # if test_existence: # if not os.path.exists(fname): # missing.append((i, hash)) # def save(self, results, outnames, params, param_hash): # """ # Save results from a function mapped to a simulation dataset # :param results: The list of outputs from the function # :param outnames: Names for each output in the results list # :param params: The simulation parameters used to create the results # :param param_hash: The hash of the parameters # :return: # """ # h = param_hash.hexdigest() # fname = os.path.join(self.directory, h+'.h5') # with h5py.File(fname, 'a', libver='latest') as f: # f.attrs['hash'] = h # parameters = f.require_group('parameters') # outputs = f.require_group('output') # for key, value in params.items(): # parameters.require_dataset(key, value.shape, value.dtype, exact=True) # for result, outname in zip(results, outnames): # outputs.require_dataset(outname, dtype=result.dtype, shape=result.shape, exact=True, data=result) # def map(self, function, outnames, verbose=True): # for paramset, hsh in tqdm(self.iterate(), total=self.size, disable=not verbose): # results = function(**paramset) # assert len(results) == len(outnames), "Length of `outnames` must be the same as length of function output" # self.save(results, outnames, paramset, hsh)
StarcoderdataPython
5192107
<filename>src/creationals/scraper_factory.py ''' @author: oluiscabral ''' from scrapers.url import URL from actioners.interfaces.i_login_control import ILoginControl from scrapers.composites.compare_scraper import CompareScraper from creationals.stockreport_factory import StockReportScraperFactory from creationals.compare_factory import CompareScraperFactory from creationals.balance_factory import BalanceScraperFactory from creationals.income_factory import IncomeScraperFactory from creationals.cashflow_factory import CashflowScraperFactory from scrapers.names import STOCKREPORT, COMPARE, BALANCE, INCOME, CASHFLOW class ScraperFactory: @staticmethod def create_compare_scraper(login_control): compare_scraper = CompareScraper(COMPARE, URL('https://app.stockopedia.com/compare?tickers=${}'), login_control) compare_scraper.create_stockreport_scraper(ScraperFactory) return compare_scraper @staticmethod def create(t:str, login_control:ILoginControl): if t == STOCKREPORT: return StockReportScraperFactory.create(login_control) if t == COMPARE: return CompareScraperFactory.create(login_control) if t == BALANCE: return BalanceScraperFactory.create(login_control) if t == INCOME: return IncomeScraperFactory.create(login_control) if t == CASHFLOW: return CashflowScraperFactory.create(login_control)
StarcoderdataPython
8106115
""" Very thin wrapper around Fabric. We basically re-implement the ``fab`` executable. We use this when we need to create PyCharm run configurations that run Fabric tasks. """ if __name__ == '__main__': from fabric.main import main main()
StarcoderdataPython
6687934
import matplotlib.pyplot as plt import numpy as np import csv from learningModels.process import LearningProcess, compute_avg_return, points_history from learningModels.GameEnv import SnakeGameEnv def write_data(file, data): """Save the data in csv file. file (str): Path where the file will be saved. data (array): data to be saved. """ with open(file, 'w') as f: data_writer = csv.writer(f, delimiter=',') for row in data: data_writer.writerow(row) def read_data(file): """Read and load the data from csv file. file (str): Path where the file will be saved. """ data = [] with open(file, 'r') as f: data_reader = csv.reader(f, delimiter=',') for row in data_reader: data.append([float(i) for i in row]) return data def training_loops(snakes_games, rewards, redundance): """Total training loop for multiple types of games and rewards, each type of game will be proved with all the rewards an n number of iterations. snake_games (list): List of objects to be train. rewards (list): List of dictionaries (rewards of the snake game). redundance (int): Number of iterations. """ for snake in snakes_games: for num, reward in enumerate(rewards): agent_environment = SnakeGameEnv(snake, reward, len(snake.state())) Lp = LearningProcess(agent_environment) for i in range(redundance): print('*-*'*15) print('iteration {} using the reward {} with the rules/game {} and input {}'.format(i, reward, snake.__class__.__name__, len(snake.state()))) Lp.pre_learning_process() returns, losses = Lp.training() path = Lp.policy_saver(num, i) save_returns = path + '/returns.csv' save_losses = path + '/losses.csv' write_data(save_returns, returns) write_data(save_losses, losses) def sampler(snake, reward, num_reward=0, iteration=0, num_episodes=30, points=False): """Evaluates n samples of a trained network. snake (object): type of game. reward (dictionary): reward of the snake game environment. num_reward (int): Number wich indentifies the reward. iteration (int): Number of the iteration. num_episodes (int): amount of samples to be taken. points (bool): If its true then the return will be the a list of lists wich contains the amount of points per step. The lists have a length accord with the number of steps the snake 'survived'. """ agent_environment = SnakeGameEnv(snake, reward, len(snake.state())) Lp = LearningProcess(agent_environment) policy = Lp.load_previous_policy(num_reward, iteration) if points: return points_history(Lp.sample_env, policy, num_episodes) else: return compute_avg_return(Lp.sample_env, policy, num_episodes)
StarcoderdataPython
88587
<reponame>astro-projects/astro from astro.files.base import File, get_files # noqa: F401 # skipcq: PY-W2000
StarcoderdataPython
6437261
<filename>run.py #! /usr/bin/env python import argparse from tensorflow.keras import models from hts.preprocess import * from hts.visualize import predict_plot from hts.utils import merge_data, load_raw_data, parse from hts.model import Model import datetime parser = argparse.ArgumentParser() parser.add_argument('--type', type=str, default='lstm', choices=['lstm', 'gru', 'mlp', 'tcn'], help='RNN architecture type.') parser.add_argument('--activation', type=str, default=None, choices=['tanh', 'elu', 'relu'], help='Activation function.') parser.add_argument('--optimizer', type=str, default='adam', choices=['sgd', 'rmsprop', 'adam'], help='Algorithm for the minimization of loss function.') parser.add_argument('--loss_fn', type=str, default='mse', choices=['mse', 'mae', 'msle'], help='Loss function.') parser.add_argument('--num_layers', type=int, default=2, help='Number of hidden layers.') parser.add_argument('--num_neurons', type=int, default=50, help='Number of neurons per hidden layer.') parser.add_argument('--learning_rate', type=float, default=0.01, help='Learning rate for the optimizer.') parser.add_argument('--epochs', type=int, default=100, help='Number of training epochs.') parser.add_argument('--batch_size', type=int, default=64, help='Batch size.') parser.add_argument('--dataset', type=str, default='deep', choices=['deep', 'shallow'], help='Two current dataset generated by deep and shalow LoRa sensor.') parser.add_argument('--split_ratio', type=float, default=0.8, help='Ratio for train-test split.') parser.add_argument('--step', type=int, default=18, help='Value for timestamp.') parser.add_argument('--sensor_test', action='store_true', help='Test the model on other sensor.') parser.add_argument('--derivate', action='store_true', help='Using derivation of variables') parser.add_argument('--save_checkpoint', action='store_true', help='Save the best model after the training is done.') args = parser.parse_args() model_name_prefix = datetime.datetime.now().strftime('%Y%m%d-%H%M%S') air_path = 'hts/data/Senzor_zraka.csv' pressure_path = 'hts/data/DHMZ.csv' if args.dataset == 'deep': soil_path = 'hts/data/Senzor_zemlje_2.csv' test_soil_path = 'hts/data/sensor_earth1.csv' # TEST SENSOR save_dir = f'saved_models/{model_name_prefix}-deep.h5' elif args.dataset == 'shallow': soil_path = 'hts/data/Senzor_zemlje.csv' save_dir = f'saved_models/{model_name_prefix}-shallow.h5' soil_raw, pressure_raw, air_raw = load_raw_data(soil_path, pressure_path, air_path) soil = clean_soil(soil_raw, absolute=False) pressure = clean_air(pressure_raw) air = clean_air(air_raw) # TEST SENSOR test_soil_raw, pressure_raw, air_raw = load_raw_data(test_soil_path, pressure_path, air_path) test_soil = parse_json_data(test_soil_raw) test_soil = clean_soil(test_soil, absolute=False) data = merge_data(pressure, air, soil, drop_duplicate_time=True) test_data = merge_data(pressure, air, test_soil, drop_duplicate_time=True) # TEST SENSOR #data, means = parse(data) #test_data, test_means = parse(test_data) """ For adding derivation to data """ if args.derivate: data = additional_processing(data) test_data = additional_processing(test_data) if args.type == 'lstm' or args.type == 'gru' or args.type == 'tcn': if args.sensor_test: x_train, y_train, x_valid, y_valid, x_test, y_test, \ scaler = process_data_rnn(data, args.step, args.split_ratio, test_data) else: x_train, y_train, x_valid, y_valid, x_test, y_test, \ scaler = process_data_rnn(data, args.step, args.split_ratio) elif args.type == 'mlp': data_reframed = series_to_supervised(data.values, n_in=1) data_reframed.drop('var6(t-1)', axis=1, inplace=True) if args.sensor_test: data_test_reframed = series_to_supervised(test_data.values, n_in=1) data_test_reframed.drop('var6(t-1)', axis=1, inplace=True) x_train, y_train, x_valid, y_valid, x_test, y_test, scaler = \ process_data_mlp(data, args.split_ratio, data) else: x_train, y_train, x_valid, y_valid, x_test, y_test, scaler = \ process_data_mlp(data, args.split_ratio) if args.type == 'lstm' or args.type == 'gru' or args.type == 'tcn': net = Model( type=args.type, input_shape=(x_train.shape[1], x_train.shape[2]), num_layers=args.num_layers, num_neurons=args.num_neurons ) elif args.type == 'mlp': net = Model( type=args.type, input_shape=(x_train.shape[1],), num_layers=args.num_layers, num_neurons=args.num_neurons ) net.build( optimizer=args.optimizer, learning_rate=args.learning_rate, loss_fn=args.loss_fn, activation=args.activation ) print('\nTrain set shape: Input {} Target {}'.format(x_train.shape, y_train.shape)) print('Valid set shape: Input {} Target {}'.format(x_valid.shape, y_valid.shape)) print('Test set shape: Input {} Target {}\n'.format(x_test.shape, y_test.shape)) model, losses = net.train( x_train=x_train, y_train=y_train, x_valid=x_valid, y_valid=y_valid, epochs=args.epochs, batch_size=args.batch_size, save_checkpoint=args.save_checkpoint, save_dir=save_dir ) if args.save_checkpoint: model = models.load_model(save_dir) print('\n---Loaded model checkpoint---\n') predict_plot(model, x_train, y_train, x_valid, y_valid, x_test, y_test, scaler, losses=losses, nn_type=args.type, mean_list=None, test_mean_list=None) #predict_plot(model, x_train, y_train, x_valid, y_valid, x_test, y_test, scaler, losses=losses) if not args.save_checkpoint: decision = input("\nSave model? [y,n] ") if decision == "y": model.save(save_dir) else: pass
StarcoderdataPython
6496458
# Copyright 2015 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import mock import pytest import webtest import main @pytest.fixture def app(testbed): return webtest.TestApp(main.app) def test_get(app): main.Greeting( parent=main.guestbook_key('default_guestbook'), author='123', content='abc' ).put() response = app.get('/') # Let's check if the response is correct. assert response.status_int == 200 def test_post(app): with mock.patch('main.images') as mock_images: mock_images.resize.return_value = 'asdf' response = app.post('/sign', {'content': 'asdf'}) mock_images.resize.assert_called_once_with(mock.ANY, 32, 32) # Correct response is a redirect assert response.status_int == 302 def test_img(app): greeting = main.Greeting( parent=main.guestbook_key('default_guestbook'), id=123 ) greeting.author = 'asdf' greeting.content = 'asdf' greeting.avatar = b'123' greeting.put() response = app.get('/img?img_id=%s' % greeting.key.urlsafe()) assert response.status_int == 200 def test_img_missing(app): # Bogus image id, should get error app.get('/img?img_id=123', status=500) def test_post_and_get(app): with mock.patch('main.images') as mock_images: mock_images.resize.return_value = 'asdf' app.post('/sign', {'content': 'asdf'}) response = app.get('/') assert response.status_int == 200
StarcoderdataPython
3598920
import pygame class Label(pygame.sprite.Sprite): msg: str position: str def __init__(self, font_size, position): pygame.sprite.Sprite.__init__(self) self.position = position self.font = pygame.font.Font("28_Days_Later.ttf", font_size) self.msg = "" self.image = self.font.render(self.msg, 1, (0, 0, 0)) self.rect = self.image.get_rect() self.rect.center = position self.color = (0, 0, 0) def set_color(self, color): self.color = color def set_position(self, position): self.rect.center = position def set_msg(self, msg: str): self.msg = msg self.image = self.font.render(self.msg, 1, self.color) self.image.get_rect() self.rect.center = self.position class Timer(Label): minute: int second: int frame_rate: int def __init__(self, font_size, position, minute, second, frame_rate): Label.__init__(self, font_size, position) self.frame_rate = frame_rate self.minute, self.second = self.convert(minute, second) def convert(self, minute, second): minute += int(second / 60) second = (second % 60) * self.frame_rate return minute, second def get_real_second(self): return int(self.second / 30) def time_up(self): return self.minute <= 0 and self.get_real_second() <= 0 def update(self): if self.second < 0: self.minute -= 1 self.second = 60 * self.frame_rate if self.minute < 10: real_minure = "0" + str(self.minute) else: real_minure = str(self.minute) if int(self.second / 30) < 10: real_second = "0" + str(int(self.second / 30)) else: real_second = str(int(self.second / 30)) time_string = "%s %s" %(real_minure, real_second) self.set_msg(time_string) self.second -= 1 class TempLabel(Label): def __init__(self, font_size, position, real_time, frame_rate, color=(0, 255, 0)): Label.__init__(self, font_size, position) self.frame_time = real_time * frame_rate self.set_color(color) def update(self): self.frame_time -= 1 if self.frame_time < 0: self.kill() class Pointer(Label): def __init__(self, font_size, positions, values): Label.__init__(self, font_size, positions[0]) self.positions = positions self.values = values self.index = 0 self.set_msg("*") def move_next(self): if self.index == len(self.positions)-1: self.index = 0 else: self.index += 1 self.rect.center = self.positions[self.index] def move_previous(self): if self.index == 0: self.index = len(self.positions)-1 else: self.index -= 1 self.rect.center = self.positions[self.index] def get_value(self): return self.values[self.index]
StarcoderdataPython
167768
import sys def check_leap_year(year): if (year % 4) == 0: if (year % 100) == 0: if (year % 400) == 0: return 1 else: return 0 else: return 1 else: return 0 def get_next_date(dd, mm, yy): if check_leap_year(yy): if mm == 2: if dd == 29: dd = 1 mm += 1 else : dd += 1 if mm == 12: mm = 1 yy += 1 print("{0}/{1}/{2}".format(dd,mm,yy)) else: if dd == 31 or dd == 30: dd = 1 mm += 1 else: dd += 1 if mm == 12: mm = 1 yy += 1 print("{0}/{1}/{2}".format(dd,mm,yy)) else: if mm == 2: if dd == 28: dd = 1 mm += 1 else: dd += 1 if mm == 12: mm = 1 yy += 1 print("{0}/{1}/{2}".format(dd,mm,yy)) else: if dd == 31 or dd == 30: dd = 1 mm += 1 else: dd += 1 if mm == 12: mm = 1 yy += 1 print("{0}/{1}/{2}".format(dd,mm,yy)) def validate_input(dd,mm,yy): if check_leap_year(yy): if dd > 29: print("Invalid day") sys.exit(0) else: if dd > 28: print("Invalid Date") sys.exit(0) if mm > 12: print("Invalid date") sys.exit(0) if mm % 2 == 0 and mm > 30: print("Invalid Date") sys.exit(0) if mm % 2 != 0 and mm > 31: print("Invalid Date") sys.exit(0) dd = int(input("Enter date")) mm = int(input("Enter month")) yy = int(input("Enter year")) validate_input(dd,mm,yy) get_next_date(dd,mm,yy)
StarcoderdataPython
5188027
<filename>mall/superadmin/models.py #coding=utf-8 from mall.database import Column, Model, SurrogatePK, db, reference_col, relationship import datetime as dt #系统更新版本号 class SystemVersion(SurrogatePK,Model): __tablename__ = 'system_versions' #版本号 number = Column(db.String(20)) #标题 title = Column(db.String(100)) #描述 summary = Column(db.String(200)) #内容 context = Column(db.UnicodeText) created_at = Column(db.DateTime, nullable=False, default=dt.datetime.now) #基础的商品数据,当输入名称自动查找关联,省去了店家的输入,管理员操作 class BaseProducts(SurrogatePK, Model): __tablename__ = 'base_products' #商品名称 title = Column(db.String(255)) #原价 original_price = Column(db.Numeric(15,2)) #优惠价 special_price = Column(db.Numeric(15,2)) #详情 note = Column(db.UnicodeText()) #分类 category_id = Column(db.Integer()) #附加字段 attach_key = Column(db.String(200)) #附加值 attach_value = Column(db.String(500)) #首页展示图 main_photo = Column(db.String(200)) #条码 ean = Column(db.String(50)) #规格 unit = Column(db.Integer,default=1) #商品分类 class Category(SurrogatePK,Model): __tablename__ = 'categorys' #:自身上级,引用自身无限级分类 parent_id = reference_col('categorys') children = relationship("Category",lazy="joined",join_depth=2) goods_id = relationship('Goods', backref='category') #分类名称 name = Column(db.String(100)) #分类图标 ico = Column(db.String(100)) #排序 sort = Column(db.Integer(),default=100) #状态 status = Column(db.Integer(),default=1) #是否启用 active = Column(db.Boolean,default=True)
StarcoderdataPython
318356
<reponame>dmrib/linguicator-predictor<gh_stars>0 import asyncio import websockets import logging from linguicator_predictor.websocket import handle_websocket_connection from linguicator_predictor.models.en.distilgpt2 import DistilGPT2 PORT = 8765 HOST = '0.0.0.0' LOGGING_FORMAT = '%(asctime)s - %(levelname)s - %(message)s' LOGGING_DATE_FORMAT = '%m/%d/%Y %I:%M:%S %p' def main(): """ I start the server. :returns: nothing :rtype: None """ # configure predictor global model model = DistilGPT2() # configure logger logging.basicConfig(format=LOGGING_FORMAT, datefmt=LOGGING_DATE_FORMAT, level=logging.INFO) # start server logging.info('Starting server...') start_server = websockets.serve(handle_websocket_connection, HOST, PORT) asyncio.get_event_loop().run_until_complete(start_server) asyncio.get_event_loop().run_forever()
StarcoderdataPython
3443242
<reponame>YuriSpiridonov/LeetCode<gh_stars>10-100 """ Design a parking system for a parking lot. The parking lot has three kinds of parking spaces: big, medium, and small, with a fixed number of slots for each size. Implement the ParkingSystem class: - ParkingSystem(int big, int medium, int small) Initializes object of the ParkingSystem class. The number of slots for each parking space are given as part of the constructor. - bool addCar(int carType) Checks whether there is a parking space of carType for the car that wants to get into the parking lot. carType can be of three kinds: big, medium, or small, which are represented by 1, 2, and 3 respectively. A car can only park in a parking space of its carType. If there is no space available, return false, else park the car in that size space and return true. Example: Input ["ParkingSystem", "addCar", "addCar", "addCar", "addCar"] [[1, 1, 0], [1], [2], [3], [1]] Output [null, true, true, false, false] Explanation ParkingSystem parkingSystem = new ParkingSystem(1, 1, 0); parkingSystem.addCar(1); // return true because there is 1 available slot for a big car parkingSystem.addCar(2); // return true because there is 1 available slot for a medium car parkingSystem.addCar(3); // return false because there is no available slot for a small car parkingSystem.addCar(1); // return false because there is no available slot for a big car. It is already occupied. Constraints: - 0 <= big, medium, small <= 1000 - carType is 1, 2, or 3 - At most 1000 calls will be made to addCar """ #Difficulty: Easy #102 / 102 test cases passed. #Runtime: 136 ms #Memory Usage: 14.5 MB #Runtime: 136 ms, faster than 79.04% of Python3 online submissions for Design Parking System. #Memory Usage: 14.5 MB, less than 69.90% of Python3 online submissions for Design Parking System. class ParkingSystem: def __init__(self, big: int, medium: int, small: int): self.parking = {1 : big, 2 : medium, 3 : small} def addCar(self, carType: int) -> bool: self.parking[carType] -= 1 return self.parking[carType] >= 0 # Your ParkingSystem object will be instantiated and called as such: # obj = ParkingSystem(big, medium, small) # param_1 = obj.addCar(carType)
StarcoderdataPython
3271890
<reponame>alex-evans/fgolf from django.db import models from bs4 import BeautifulSoup import requests class Player(models.Model): name = models.CharField(max_length=200, unique=True) class Meta: ordering = ['name'] def __str__(self): return self.name class Person(models.Model): name = models.CharField(max_length=200) email = models.CharField(max_length=200) total_winnings = models.IntegerField(blank=True) class Meta: ordering = ['name'] def __str__(self): return self.name class Tournament(models.Model): name = models.CharField(max_length=200) file_name = models.CharField(max_length=200, blank=True) start_date = models.DateField('start date') end_date = models.DateField('end date') leaderboard_url = models.CharField(max_length=200, blank=True) class Meta: ordering = ['name'] def __str__(self): return self.name class TournamentPlayer(models.Model): tournament = models.ForeignKey(Tournament, on_delete=models.CASCADE) player = models.ForeignKey(Player, on_delete=models.CASCADE) group = models.CharField(max_length=1, blank=True) winnings = models.IntegerField(blank=True) class Meta: ordering = ['tournament','player'] def __str__(self): return f'{self.tournament} - {self.player} - {self.group}' class TournamentPick(models.Model): tournament = models.ForeignKey(Tournament, on_delete=models.CASCADE) person = models.ForeignKey(Person, on_delete=models.CASCADE) pick_a = models.ForeignKey(TournamentPlayer, on_delete=models.CASCADE, related_name='pick_a') pick_b = models.ForeignKey(TournamentPlayer, on_delete=models.CASCADE, related_name='pick_b') pick_c = models.ForeignKey(TournamentPlayer, on_delete=models.CASCADE, related_name='pick_c') pick_d = models.ForeignKey(TournamentPlayer, on_delete=models.CASCADE, related_name='pick_d') total_winnings = models.IntegerField(blank=True) def save(self, *args, **kwargs): self.total_winnings = self.pick_a.winnings + self.pick_b.winnings + self.pick_c.winnings + self.pick_d.winnings super().save(*args, **kwargs) def __str__(self): return self.tournament.name + " - " + self.person.name + " - " + self.pick_a.player.name + ", " + self.pick_b.player.name + ", " + self.pick_c.player.name + ", " + self.pick_d.player.name
StarcoderdataPython
397261
# The MIT License (MIT) # Copyright (c) 2022 by the xcube development team and contributors # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import collections.abc import fnmatch from typing import Dict, Tuple, Hashable, Optional, Mapping, Union import numpy as np import xarray as xr from deprecated import deprecated from xcube.util.assertions import assert_instance, assert_in, assert_true AGG_METHODS = 'auto', 'first', 'min', 'max', 'mean', 'median' DEFAULT_INT_AGG_METHOD = 'first' DEFAULT_FLOAT_AGG_METHOD = 'mean' AggMethod = Union[None, str] AggMethods = Union[AggMethod, Mapping[str, AggMethod]] def subsample_dataset( dataset: xr.Dataset, step: int, xy_dim_names: Optional[Tuple[str, str]] = None, agg_methods: AggMethods = None ) -> xr.Dataset: """ Subsample *dataset* with given integer subsampling *step*. Only data variables with spatial dimensions given by *xy_dim_names* are subsampled. :param dataset: the dataset providing the variables :param step: the integer subsampling step size in pixels in the x and y directions. For aggregation methods other than "first" it defines the window size for the aggregation. :param xy_dim_names: the spatial dimension names :param agg_methods: Optional aggregation methods. May be given as string or as mapping from variable name pattern to aggregation method. Valid aggregation methods are "auto", "first", "min", "max", "mean", "median". If "auto", the default, "first" is used for integer variables and "mean" for floating point variables. """ assert_instance(dataset, xr.Dataset, name='dataset') assert_instance(step, int, name='step') assert_valid_agg_methods(agg_methods) x_name, y_name = xy_dim_names or ('y', 'x') new_data_vars = dict() new_coords = None # used to collect coordinates from coarsen for var_name, var in dataset.data_vars.items(): if x_name in var.dims or y_name in var.dims: agg_method = find_agg_method(agg_methods, var_name, var.dtype) if agg_method == 'first': slices = get_variable_subsampling_slices( var, step, xy_dim_names=xy_dim_names ) assert slices is not None new_var = var[slices] else: dim = dict() if x_name in var.dims: dim[x_name] = step if y_name in var.dims: dim[y_name] = step var_coarsen = var.coarsen(dim=dim, boundary='pad', coord_func='min') new_var: xr.DataArray = getattr(var_coarsen, agg_method)() if new_var.dtype != var.dtype: # We don't want, e.g. "mean", to turn data # from dtype unit16 into float64 new_var = new_var.astype(var.dtype) new_var.attrs.update(var.attrs) new_var.encoding.update(var.encoding) # coarsen() recomputes spatial coordinates. # Collect them, so we can later apply them to the # variables that are subsampled by "first" # (= slice selection). if new_coords is None: new_coords = dict(new_var.coords) else: new_coords.update(new_var.coords) else: new_var = var new_data_vars[var_name] = new_var if not new_data_vars: return dataset if new_coords: # Make sure all variables use the same modified # spatial coordinates from coarsen new_data_vars = { k: v.assign_coords({ d: new_coords[d] for d in v.dims if d in new_coords }) for k, v in new_data_vars.items() } return xr.Dataset(data_vars=new_data_vars, attrs=dataset.attrs) def assert_valid_agg_methods(agg_methods: AggMethods): """Assert that the given *agg_methods* are valid.""" assert_instance(agg_methods, (type(None), str, collections.abc.Mapping), name='agg_methods') if isinstance(agg_methods, str): assert_in( agg_methods, AGG_METHODS, name='agg_methods' ) elif agg_methods is not None: enum = (None, *AGG_METHODS) for k, v in agg_methods.items(): assert_true( isinstance(k, str), message='keys in agg_methods must be strings' ) assert_true( v in enum, message=f'values in agg_methods must be one of {enum}' ) def find_agg_method(agg_methods: AggMethods, var_name: Hashable, var_dtype: np.dtype) -> str: """ Find aggregation method in *agg_methods* for given *var_name* and *var_dtype*. """ assert_valid_agg_methods(agg_methods) if isinstance(agg_methods, str) and agg_methods != 'auto': return agg_methods if isinstance(agg_methods, collections.abc.Mapping): for var_name_pat, agg_method in agg_methods.items(): if var_name == var_name_pat or fnmatch.fnmatch(str(var_name), var_name_pat): if agg_method in (None, 'auto'): break return agg_method # here: agg_method is either None or 'auto' if np.issubdtype(var_dtype, np.integer): return 'first' else: return 'mean' _FULL_SLICE = slice(None, None, None) @deprecated(version='0.10.3', reason='no longer in use') def get_dataset_subsampling_slices( dataset: xr.Dataset, step: int, xy_dim_names: Optional[Tuple[str, str]] = None ) -> Dict[Hashable, Optional[Tuple[slice, ...]]]: """ Compute subsampling slices for variables in *dataset*. Only data variables with spatial dimensions given by *xy_dim_names* are considered. :param dataset: the dataset providing the variables :param step: the integer subsampling step :param xy_dim_names: the spatial dimension names """ assert_instance(dataset, xr.Dataset, name='dataset') assert_instance(step, int, name='step') slices_dict: Dict[Tuple[Hashable, ...], Tuple[slice, ...]] = dict() vars_dict: Dict[Hashable, Optional[Tuple[slice, ...]]] = dict() for var_name, var in dataset.data_vars.items(): var_index = slices_dict.get(var.dims) if var_index is None: var_index = get_variable_subsampling_slices( var, step, xy_dim_names=xy_dim_names ) if var_index is not None: slices_dict[var.dims] = var_index if var_index is not None: vars_dict[var_name] = var_index return vars_dict def get_variable_subsampling_slices( variable: xr.DataArray, step: int, xy_dim_names: Optional[Tuple[str, str]] = None ) -> Optional[Tuple[slice, ...]]: """ Compute subsampling slices for *variable*. Return None, if *variable* does not contain spatial dimensions. :param variable: the dataset providing the variables :param step: the integer subsampling step :param xy_dim_names: the spatial dimension names """ assert_instance(variable, xr.DataArray, name='variable') assert_instance(step, int, name='step') x_dim_name, y_dim_name = xy_dim_names or ('x', 'y') var_index = None for index, dim_name in enumerate(variable.dims): if dim_name == x_dim_name or dim_name == y_dim_name: if var_index is None: var_index = index * [_FULL_SLICE] var_index.append(slice(None, None, step)) elif var_index is not None: var_index.append(_FULL_SLICE) return tuple(var_index) if var_index is not None else None
StarcoderdataPython
128780
#-*- coding: utf-8 import json import time import requests from bs4 import BeautifulSoup # pixiv url and login url. PIXIV = 'https://www.pixiv.net' LOGIN_URL = 'https://accounts.pixiv.net/login' LOGIN_POST_URL = 'https://accounts.pixiv.net/api/login?lang=zh_tw' # user-agnet. headers = {'User-Agent' : 'Mozilla/5.0 (Windows NT 6.1; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/62.0.3202.94 Safari/537.36'} # login data. LOGIN_PARAM = { 'lang' : 'zh_tw', 'source' : 'pc', 'view_type' : 'page', 'ref' : 'wwwtop_accounts_index', } LOGIN_POST_DATA = { 'pixiv_id' : '', 'captcha' : '', 'g_recaptcha_response' : '', 'password' : '', 'post_key' : '', 'source' : 'pc', 'ref' : 'wwwtop_accounts_index', 'return_to' : 'https://www.pixiv.net/', } ''' PixivApiException: deal with PixivApi Exception. ''' class PixivApiException(Exception): def __init__(self, error_message): self.error_message = error_message def __str__(self): return self.error_message class PixivApi(object): ''' set your pixiv_id and password, make you can fetch all image(over 18). pixiv = PixivApi(pixiv_id, password) ''' def __init__(self, pixiv_id, password): self.pixiv_id = pixiv_id self.password = password self.session = requests.Session() self.session.headers.update(headers) self.login() ''' Input: image_url : image's url. file_name : store file name. Output: None, download the image. ''' def download(self, image_url, file_name=None): if file_name is None: file_name = image_url.split('/')[-1] else: file_type = image_url.split('.')[-1] file_name_name += '.' + file_type response = self.session.get(image_url, stream=True) # check whether can download. if response.status_code != 200: raise PixivApiException('Download {} fail, {}.'.format(image_url, response.status_code)) with open(file_name, 'wb') as f: for chunk in response.iter_content(chunk_size=1024): if chunk: f.write(chunk) ''' login your acount. ''' def login(self): response = self.session.get(LOGIN_URL, params=LOGIN_PARAM) parser = BeautifulSoup(response.text, 'html.parser') post_key = parser.select('[name=post_key]')[0]['value'] # prevent to fast. time.sleep(0.5) LOGIN_POST_DATA.update({'pixiv_id' : self.pixiv_id, 'password' : <PASSWORD>, 'post_key' : post_key,}) self.session.post(LOGIN_POST_URL, data=LOGIN_POST_DATA) # use r18 rank to check whether success login. check_login_url = 'https://www.pixiv.net/ranking.php?mode=daily_r18&content=illust' response = self.session.get(check_login_url) if response.status_code != 200: raise PixivApiException('Login fail, {}.'.format(response.status_code)) ''' Input: page : which page that you want to fetch. Output: list of image link {'url' : image_url, 'id' : image_id}. ''' def get_follow(self, page=1): assert page>0, 'pages must > 0.' target_url = 'https://www.pixiv.net/bookmark_new_illust.php?p={}' imagePool = [] response = self.session.get(target_url.format(page)) parser = BeautifulSoup(response.text, 'html.parser') for block in parser.select('#js-mount-point-latest-following'): data = json.loads(block['data-items']) for image_item in data: imagePool.append( { 'url' : image_item['url'].replace('\\',''), 'id' : image_item['illustId'] }) return imagePool ''' Input: author_id : author's pixiv id. page : which page your want to fetch. Output: image link list {'url' : image_url, 'id' : image_id}. ''' def get_author_images(self, author_id, page=1): assert page>0, 'page must > 0.' target_url = 'https://www.pixiv.net/member_illust.php?id={}&type=all&p={}' response = self.session.get(target_url.format(author_id, page)) # check whether author exits. if response.status_code != 200: raise PixivApiException('Author id {} doesn\'t exist, {}.'.format(author_id, response.status_code)) parser = BeautifulSoup(response.text, 'html.parser') imagePool = [] for item in parser.select('._layout-thumbnail'): imagePool.append( { 'url' : item.img['data-src'], 'id' : item.img['data-id'] }) return imagePool ''' Input: images : numbers of image you want to crawl. Output: list content rank male image's link and author's link. [ {'url': image_link, 'author': author_link, 'id' : image_id} ] ''' def get_rank(self, page=1, male=True, daily=False, r18=False): mode = None # decide whether use daily. if daily: mode = 'daily_r18' if r18 else 'daily' else: mode = 'male' if male else 'female' if r18: mode += '_r18' target_url = 'https://www.pixiv.net/ranking.php?mode={}&p={}&format=json'.format(mode, page) response = self.session.get(target_url) # check whether can get page. if response.status_code != 200: raise PixivApiException('Get rank {} fail, {}.'.format(target_url, response.status_code)) imagePool = [] pixiv_json = response.json() if pixiv_json.get('error', None) is None: for item in pixiv_json['contents']: imagePool.append({'url' : item['url'], 'author_id' : item['user_id'], 'id' : item['illust_id']}) return imagePool def __del__(self): self.session.close() def close(self): self.session.close()
StarcoderdataPython
333912
import os import sys _PWEG_ROOT = os.path.dirname(os.path.dirname(os.path.abspath(__file__))).replace('\\', '/') sys.path.insert(0, '%s/thirdparty_packages' % _PWEG_ROOT) # to include QtPy package from qtpy.QtWidgets import QApplication class PluginBase(object): def __init__(self): pass def _connect_to_app(self, plugin_name, app_call_js_op, debug, info, warning, error, is_modal_dialog): self.plugin_name = plugin_name self.app_functions = { 'debug': debug, 'info': info, 'warning': warning, 'error': error, 'call_js_op': app_call_js_op, } self.is_modal_dialog = is_modal_dialog def debug(self, msg): self.app_functions['debug'](msg) def info(self, msg): self.app_functions['info'](msg) def warning(self, msg): self.app_functions['warning'](msg) def error(self, msg): self.app_functions['error'](msg) def critical(self, msg): self.app_functions['critical'](msg) def call_plugin_js_op(self, plugin_js_function_name, op_data): plugin_op = 'Plugin|%s|%s' % (self.plugin_name, plugin_js_function_name) self.app_functions['call_js_op'](plugin_op, op_data) def process_events(self): if self.is_modal_dialog: QApplication.instance().processEvents()
StarcoderdataPython
1955896
import numpy as np from node import Node def main(): nodes=[] num_pwr_cycles = 10 t_on_sunlight = 0.5 # t_s (or t_on) when nodes in sleep mode under sunlight t_off_sunlight = 0.5 # t_off when nodes under sunlight t_on_shadow = 0.1 # t_s (or t_on) when nodes in sleep mode in shadow t_off_shadow = 2 # t_off when nodes in shadow nodes_in_shadow = 0.2 for i in np.arange(num_pwr_cycles): if np.random.uniform() < nodes_in_shadow: nodes.append(Node(num_pwr_cycles, t_on_shadow, t_off_shadow)) else: nodes.append(Node(num_pwr_cycles, t_on_sunlight, t_off_sunlight)) print(time_span(nodes)) # for node in nodes: # print(node) def time_span(nodes): span=0 sorted_nodes = sorted(nodes, key=lambda node:node.wake_up_time) num_nodes = len(sorted_nodes) print("Number of nodes: ", num_nodes) # removing completely overlapping nodes idx = 0 while idx < num_nodes-1: if (sorted_nodes[idx].wake_up_time+sorted_nodes[idx].on_time) > \ sorted_nodes[idx+1].wake_up_time+(sorted_nodes[idx+1].on_time): del sorted_nodes[idx+1] # do not advance the counter because you delete a node num_nodes-=1 # reduce the total number of nodes # print("Remaining number of nodes: ", num_nodes) else: idx+=1 # calculate the total time span for i in np.arange(num_nodes-1): dif = sorted_nodes[i+1].wake_up_time - sorted_nodes[i].wake_up_time if dif > sorted_nodes[i].on_time: span+=sorted_nodes[i].on_time else: span+=dif span+=(sorted_nodes[-1].on_time) # add the on-time of the last node return span if __name__ == "__main__": main()
StarcoderdataPython
202404
<reponame>Syntle/PythonBot import discord class Embeds: def cooldown(h, m, s): description = None h = round(h) m = round(m) s = round(s) if int(h) is 0 and int(m) is 0: description = f'⏱️ Please wait {s} seconds before trying this command again!' elif int(h) is 0 and int(m) is not 0: description = f'⏱️ Please wait {m} minutes & {s} seconds before trying this command again!' else: description = f'⏱️ Please wait {h} hours, {m} minutes & {s} seconds before trying this command again!'\ embed = discord.Embed( description=description, color=discord.Colour.red() ) return embed def failure(error): embed = discord.Embed( description=error, color=discord.Colour.red() ) return embed
StarcoderdataPython
1809457
import os os.chdir('./data/') for data_file in os.listdir(): with open(data_file) as f: lines=f.readlines() header =lines[0] if not "v_{y}" in header: with open(data_file, "r+") as f: for line in lines[1:]: f.write(line) input("go to hell headers!!!")
StarcoderdataPython
5116135
<filename>dashboard/current.py import pandas as pd import numpy as np import plotly.graph_objects as go import dash_core_components as dcc EVEN_COLOR = "white" ODD_COLOR = "aliceblue" def plot_current(data, sort, ascending): df = data.get_dataset("countries_total") df_pivot = pd.pivot_table( df, index=["country", "updated"], columns="record", values="total" ) df_pivot.reset_index(inplace=True) df_pivot.sort_values(by=sort, ascending=ascending, inplace=True) df_pivot.rename(columns=dict(updated="last update"), inplace=True) header = [ f"<b>{c}</b>" for c in [ "Country", "Last Update", "Confirmed", "Active", "Recovered", "Deaths", ] ] cells = [ df_pivot["country"], df_pivot["last update"].dt.strftime("%d.%m.%Y %H:%M"), df_pivot["confirmed"], df_pivot["active"], df_pivot["recovered"], df_pivot["deaths"], ] fill_color = [ EVEN_COLOR if x % 2 else ODD_COLOR for x in np.arange(df_pivot.shape[0]) ] table = go.Table( header=dict(values=header), cells=dict(values=cells, fill_color=[fill_color * 6]), ) fig = dict(data=[table]) return dcc.Graph(figure=fig)
StarcoderdataPython