id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
3441271
from django.http import HttpResponse from django.conf import settings from django.urls import reverse from falmer.auth.utils import create_magic_link_for_user from falmer.auth.models import FalmerUser from falmer.slack.models import SlackUser from .utils import verify_slack_hook, get_slacker_instance @verify_slack_hook def open_falmer(request): slack_user_id = request.POST.get('user_id') slack = get_slacker_instance() slack_profile = slack.users.profile.get(slack_user_id).body['profile'] slack_user_email = slack_profile['email'] try: slack_account = SlackUser.objects.get(slack_user_id=slack_user_id) user = slack_account.user if slack_account.first_name != slack_profile.get('first_name', ''): slack_account.first_name = slack_profile.get('first_name', '') slack_account.save() if slack_account.last_name != slack_profile.get('last_name', ''): slack_account.last_name = slack_profile.get('last_name', '') slack_account.save() except SlackUser.DoesNotExist: slack.chat.post_message( '#falmer', '<@{new_slack_id}> opened Falmer for the first time!'.format(new_slack_id=slack_user_id) ) try: user = FalmerUser.objects.get(identifier=slack_user_email) except FalmerUser.DoesNotExist: user = FalmerUser.objects.create( identifier=slack_user_email, authority='IS', ) SlackUser.objects.create( user=user, slack_user_id=slack_user_id, first_name=slack_profile.get('first_name', ''), last_name=slack_profile.get('last_name', '') ) link = create_magic_link_for_user(user, '') return HttpResponse('Here\'s a magic link to login: {}{}'.format(settings.PUBLIC_HOST, link))
StarcoderdataPython
3334254
<reponame>mohammadfayaj/Django-Pro-Eshop<filename>checkout/urls.py<gh_stars>0 from django.urls import path from . import views app_name = "checkout" urlpatterns = [ path('address_info_/<int:id>/', views.check_out_view ,name='check-out'), path('payment_option_/', views.payment_option ,name='payment-options'), path ('Success_url/<int:id>/', views.success_page , name='success-page'), path('get_delivery_charges/', views.get_ajax_data, name= 'get_ajax_data_load'), path('export_pdf/<int:id>/', views.export_pdf, name= 'export_as_pdf'), path('stripe/', views.stripe_payment_view ,name='stripe-payment'), path ('cash_on_delivery/<int:id>/', views.cash_on_delivery , name='cash-on-process'), path('bkash/<int:id>/',views.Bkash, name='bkash_pyment'), path('paypal/', views.Paypal, name='paypal_payment'), ]
StarcoderdataPython
5058327
import json import scrapy from ..settings import * from ..items import * class XimaTargetsSpider(scrapy.Spider): TARGET_CATES = [ '有声书', '段子', '情感生活', '娱乐', '影视', '儿童', '历史', '商业财经', 'IT科技', '个人成长', '头条', '二次元', '旅游', '汽车', '人文' ] target_cates_len = len(TARGET_CATES) name = 'xima_targets' cates = {} my_target = TargetAlbums() def start_requests(self): with open(JSONS_DIR + '/' + CATE_INFO_STORE, 'r') as f: self.cates = json.load(f) # for c in self.cates['lv2'].keys(): for c in self.TARGET_CATES: url = ALBUM_TARGETS + 'category=' + self.cates['lv2'][c]['pinyin'] yield scrapy.Request(url, callback=self.parse, meta={'cate': c}) def parse(self, response, **kwargs): cate = response.meta['cate'] data = response.json()['data'] albums_list = [{ 'albumId': album['albumId'], 'link': album['link'], 'playCount': album['playCount'], 'trackCount': album['trackCount'],} for album in data['albums']] self.my_target.xima[cate] = albums_list yield response.follow(ALBUM_RSS_FEED + str()) yield self.my_target
StarcoderdataPython
1882630
<filename>Collections-a-installer/community-general-2.4.0/scripts/inventory/landscape.py #!/usr/bin/env python # (c) 2015, <NAME> <<EMAIL>> # # This file is part of Ansible. # # GNU General Public License v3.0+ (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import (absolute_import, division, print_function) __metaclass__ = type # Dynamic inventory script which lets you use nodes discovered by Canonical's # Landscape (http://www.ubuntu.com/management/landscape-features). # # Requires the `landscape_api` Python module # See: # - https://landscape.canonical.com/static/doc/api/api-client-package.html # - https://landscape.canonical.com/static/doc/api/python-api.html # # Environment variables # --------------------- # - `LANDSCAPE_API_URI` # - `LANDSCAPE_API_KEY` # - `LANDSCAPE_API_SECRET` # - `LANDSCAPE_API_SSL_CA_FILE` (optional) import argparse import collections import os import sys from landscape_api.base import API, HTTPError import json _key = 'landscape' class EnvironmentConfig(object): uri = os.getenv('LANDSCAPE_API_URI') access_key = os.getenv('LANDSCAPE_API_KEY') secret_key = os.getenv('LANDSCAPE_API_SECRET') ssl_ca_file = os.getenv('LANDSCAPE_API_SSL_CA_FILE') def _landscape_client(): env = EnvironmentConfig() return API( uri=env.uri, access_key=env.access_key, secret_key=env.secret_key, ssl_ca_file=env.ssl_ca_file) def get_landscape_members_data(): return _landscape_client().get_computers() def get_nodes(data): return [node['hostname'] for node in data] def get_groups(data): groups = collections.defaultdict(list) for node in data: for value in node['tags']: groups[value].append(node['hostname']) return groups def get_meta(data): meta = {'hostvars': {}} for node in data: meta['hostvars'][node['hostname']] = {'tags': node['tags']} return meta def print_list(): data = get_landscape_members_data() nodes = get_nodes(data) groups = get_groups(data) meta = get_meta(data) inventory_data = {_key: nodes, '_meta': meta} inventory_data.update(groups) print(json.dumps(inventory_data)) def print_host(host): data = get_landscape_members_data() meta = get_meta(data) print(json.dumps(meta['hostvars'][host])) def get_args(args_list): parser = argparse.ArgumentParser( description='ansible inventory script reading from landscape cluster') mutex_group = parser.add_mutually_exclusive_group(required=True) help_list = 'list all hosts from landscape cluster' mutex_group.add_argument('--list', action='store_true', help=help_list) help_host = 'display variables for a host' mutex_group.add_argument('--host', help=help_host) return parser.parse_args(args_list) def main(args_list): args = get_args(args_list) if args.list: print_list() if args.host: print_host(args.host) if __name__ == '__main__': main(sys.argv[1:])
StarcoderdataPython
3296321
from guide.main import handler true = True false = False response = { "response": {"text": "Задаю простой вопрос...", "tts": "Задаю простой вопрос..."}, "version": "1.0", "session_state": {"scene": "SimpleQuestion"}, } REQUEST = { "meta": { "locale": "ru-RU", "timezone": "UTC", "client_id": "ru.yandex.searchplugin/7.16 (none none; android 4.4.2)", "interfaces": {"screen": {}, "payments": {}, "account_linking": {}}, }, "session": { "message_id": 2, "session_id": "bc84469e-56d3-4828-8f86-219ddeac004f", "skill_id": "03f46589-d3c4-43b1-b8b6-c8118b9ae151", "new": false, }, "request": { "command": "простой", "original_utterance": "Простой", "nlu": { "tokens": ["простой"], "entities": [], "intents": { "game_question": { "slots": { "question_type": { "type": "QuestionType", "tokens": {"start": 0, "end": 1}, "value": "simple", } } } }, }, "markup": {"dangerous_context": false}, "type": "SimpleUtterance", }, "state": { "session": {"scene": "StartGame", "screen": "start_tour"}, "user": {}, "application": {}, }, "version": "1.0", } REQUEST_ANSWER = { "meta": { "locale": "ru-RU", "timezone": "UTC", "client_id": "ru.yandex.searchplugin/7.16 (none none; android 4.4.2)", "interfaces": { "screen": {}, "payments": {}, "account_linking": {}, "geolocation_sharing": {}, }, }, "session": { "message_id": 15, "session_id": "8f977edd-e362-4201-a5ee-738e7a3941c3", "skill_id": "1f835d35-c640-4c36-b3bc-74ecaa0f71f1", "user": { "user_id": "5416FF55E3C40C32A49D45D68AA101F9AE1445387749DE5B7BEAAB9CD6557C1D" }, "application": { "application_id": "218AE790B7125C9F67E9E3234671E8861D9603BD2627726710B9EF8A1CE9748D" }, "user_id": "218AE790B7125C9F67E9E3234671E8861D9603BD2627726710B9EF8A1CE9748D", "new": false, }, "request": { "command": "7", "original_utterance": "7", "nlu": { "tokens": ["7"], "entities": [ {"type": "YANDEX.NUMBER", "tokens": {"start": 0, "end": 1}, "value": 7} ], "intents": {}, }, "markup": {"dangerous_context": false}, "type": "SimpleUtterance", }, "state": { "session": { "scene": "QuestionScene", "question_id": "3", "question_type": "simple", }, "user": {}, "application": {}, }, "version": "1.0", } REQUEST_ACCEPT = { "meta": { "locale": "ru-RU", "timezone": "UTC", "client_id": "ru.yandex.searchplugin/7.16 (none none; android 4.4.2)", "interfaces": { "screen": {}, "payments": {}, "account_linking": {}, "geolocation_sharing": {}, }, }, "session": { "message_id": 2, "session_id": "0585cf18-518f-45e8-b353-e621e9fa05d9", "skill_id": "1f835d35-c640-4c36-b3bc-74ecaa0f71f1", "user": { "user_id": "5416FF55E3C40C32A49D45D68AA101F9AE1445387749DE5B7BEAAB9CD6557C1D" }, "application": { "application_id": "218AE790B7125C9F67E9E3234671E8861D9603BD2627726710B9EF8A1CE9748D" }, "user_id": "218AE790B7125C9F67E9E3234671E8861D9603BD2627726710B9EF8A1CE9748D", "new": false, }, "request": { "command": "хорошо", "original_utterance": "Хорошо", "nlu": { "tokens": ["хорошо"], "entities": [], "intents": {"YANDEX.CONFIRM": {"slots": {}}}, }, "markup": {"dangerous_context": false}, "type": "SimpleUtterance", }, "state": { "session": {"scene": "StartGame", "question_type": "simple"}, "user": {}, "application": {}, }, "version": "1.0", } def test_play_game(): response = handler(REQUEST, None) assert response assert "Задаю простой вопрос" in response["response"]["text"] def test_answer_question(): response = handler(REQUEST_ANSWER, None) assert response assert ( response["session_state"]["question_type"] == "attention" ) # Сохранили тип вопроса assert "Верно" in response["response"]["text"] def test_accept(): response = handler(REQUEST_ACCEPT, None) assert response assert "Задаю простой вопрос" in response["response"]["text"]
StarcoderdataPython
4967344
# Copyright (c) Twisted Matrix Laboratories. # See LICENSE for details. """ Tests for implementations of L{IReactorThreads}. """ __metaclass__ = type from weakref import ref import gc, threading from twisted.python.threadable import isInIOThread from twisted.internet.test.reactormixins import ReactorBuilder from twisted.python.threadpool import ThreadPool from twisted.internet.interfaces import IReactorThreads class ThreadTestsBuilder(ReactorBuilder): """ Builder for defining tests relating to L{IReactorThreads}. """ requiredInterfaces = (IReactorThreads,) def test_getThreadPool(self): """ C{reactor.getThreadPool()} returns an instance of L{ThreadPool} which starts when C{reactor.run()} is called and stops before it returns. """ state = [] reactor = self.buildReactor() pool = reactor.getThreadPool() self.assertIsInstance(pool, ThreadPool) self.assertFalse(pool.started, "Pool should not start before reactor.run") def f(): # Record the state for later assertions state.append(pool.started) state.append(pool.joined) reactor.stop() reactor.callWhenRunning(f) self.runReactor(reactor, 2) self.assertTrue(state[0], "Pool should start after reactor.run") self.assertFalse(state[1], "Pool should not be joined before reactor.stop") self.assertTrue(pool.joined, "Pool should be stopped after reactor.run returns") def test_suggestThreadPoolSize(self): """ C{reactor.suggestThreadPoolSize()} sets the maximum size of the reactor threadpool. """ reactor = self.buildReactor() reactor.suggestThreadPoolSize(17) pool = reactor.getThreadPool() self.assertEqual(pool.max, 17) def test_delayedCallFromThread(self): """ A function scheduled with L{IReactorThreads.callFromThread} invoked from a delayed call is run immediately in the next reactor iteration. When invoked from the reactor thread, previous implementations of L{IReactorThreads.callFromThread} would skip the pipe/socket based wake up step, assuming the reactor would wake up on its own. However, this resulted in the reactor not noticing an insert into the thread queue at the right time (in this case, after the thread queue has been processed for that reactor iteration). """ reactor = self.buildReactor() def threadCall(): reactor.stop() # Set up the use of callFromThread being tested. reactor.callLater(0, reactor.callFromThread, threadCall) before = reactor.seconds() self.runReactor(reactor, 60) after = reactor.seconds() # We specified a timeout of 60 seconds. The timeout code in runReactor # probably won't actually work, though. If the reactor comes out of # the event notification API just a little bit early, say after 59.9999 # seconds instead of after 60 seconds, then the queued thread call will # get processed but the timeout delayed call runReactor sets up won't! # Then the reactor will stop and runReactor will return without the # timeout firing. As it turns out, select() and poll() are quite # likely to return *slightly* earlier than we ask them to, so the # timeout will rarely happen, even if callFromThread is broken. So, # instead we'll measure the elapsed time and make sure it's something # less than about half of the timeout we specified. This is heuristic. # It assumes that select() won't ever return after 30 seconds when we # asked it to timeout after 60 seconds. And of course like all # time-based tests, it's slightly non-deterministic. If the OS doesn't # schedule this process for 30 seconds, then the test might fail even # if callFromThread is working. self.assertTrue(after - before < 30) def test_callFromThread(self): """ A function scheduled with L{IReactorThreads.callFromThread} invoked from another thread is run in the reactor thread. """ reactor = self.buildReactor() result = [] def threadCall(): result.append(threading.currentThread()) reactor.stop() reactor.callLater(0, reactor.callInThread, reactor.callFromThread, threadCall) self.runReactor(reactor, 5) self.assertEqual(result, [threading.currentThread()]) def test_stopThreadPool(self): """ When the reactor stops, L{ReactorBase._stopThreadPool} drops the reactor's direct reference to its internal threadpool and removes the associated startup and shutdown triggers. This is the case of the thread pool being created before the reactor is run. """ reactor = self.buildReactor() threadpool = ref(reactor.getThreadPool()) reactor.callWhenRunning(reactor.stop) self.runReactor(reactor) gc.collect() self.assertIsNone(threadpool()) def test_stopThreadPoolWhenStartedAfterReactorRan(self): """ We must handle the case of shutting down the thread pool when it was started after the reactor was run in a special way. Some implementation background: The thread pool is started with callWhenRunning, which only returns a system trigger ID when it is invoked before the reactor is started. This is the case of the thread pool being created after the reactor is started. """ reactor = self.buildReactor() threadPoolRefs = [] def acquireThreadPool(): threadPoolRefs.append(ref(reactor.getThreadPool())) reactor.stop() reactor.callWhenRunning(acquireThreadPool) self.runReactor(reactor) gc.collect() self.assertIsNone(threadPoolRefs[0]()) def test_cleanUpThreadPoolEvenBeforeReactorIsRun(self): """ When the reactor has its shutdown event fired before it is run, the thread pool is completely destroyed. For what it's worth, the reason we support this behavior at all is because Trial does this. This is the case of the thread pool being created without the reactor being started at al. """ reactor = self.buildReactor() threadPoolRef = ref(reactor.getThreadPool()) reactor.fireSystemEvent("shutdown") if reactor.__class__.__name__ == "AsyncioSelectorReactor": self.assertIsNone(reactor.threadpool) # ReactorBase.__init__ sets self.crash as a 'shutdown' # event, which in turn calls stop on the underlying # asyncio event loop, which in turn sets a _stopping # attribute on it that's only unset after an iteration of # the loop. Subsequent tests can only reuse the asyncio # loop if it's allowed to run and unset that _stopping # attribute. self.runReactor(reactor) else: gc.collect() self.assertIsNone(threadPoolRef()) def test_isInIOThread(self): """ The reactor registers itself as the I/O thread when it runs so that L{twisted.python.threadable.isInIOThread} returns C{True} if it is called in the thread the reactor is running in. """ results = [] reactor = self.buildReactor() def check(): results.append(isInIOThread()) reactor.stop() reactor.callWhenRunning(check) self.runReactor(reactor) self.assertEqual([True], results) def test_isNotInIOThread(self): """ The reactor registers itself as the I/O thread when it runs so that L{twisted.python.threadable.isInIOThread} returns C{False} if it is called in a different thread than the reactor is running in. """ results = [] reactor = self.buildReactor() def check(): results.append(isInIOThread()) reactor.callFromThread(reactor.stop) reactor.callInThread(check) self.runReactor(reactor) self.assertEqual([False], results) globals().update(ThreadTestsBuilder.makeTestCaseClasses())
StarcoderdataPython
324834
<reponame>KawashiroNitori/epicteller<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- import time from typing import List, Optional, Iterable, Dict import base62 from sqlalchemy import select, and_, desc from epicteller.core.model.message import Message, TextMessageContent, ImageMessageContent, DiceMessageContent, \ MessageContent from epicteller.core.tables import table from epicteller.core.util import ObjectDict from epicteller.core.util.enum import MessageType from epicteller.core.util.seq import get_id def _format_message(result) -> Optional[Message]: if not result: return None message_type = MessageType(result.type) if message_type == MessageType.TEXT: content = TextMessageContent.parse_obj(result.content) elif message_type == MessageType.IMAGE: content = ImageMessageContent.parse_obj(result.content) elif message_type == MessageType.DICE: content = DiceMessageContent.parse_obj(result.content) else: content = MessageContent() message = Message( id=result.id, url_token=result.url_token, campaign_id=result.campaign_id, episode_id=result.episode_id, character_id=result.character_id, type=MessageType(result.type), is_removed=bool(result.is_removed), is_gm=bool(result.is_gm), content=content, created=result.created, updated=result.updated, ) return message class MessageDAO: t = table.message select_clause = select([ t.c.id, t.c.url_token, t.c.campaign_id, t.c.episode_id, t.c.character_id, t.c.type, t.c.is_removed, t.c.is_gm, t.c.content, t.c.created, t.c.updated, ]) @classmethod async def batch_get_message_by_id(cls, message_ids: Iterable[int]) -> Dict[int, Message]: query = cls.select_clause.where(cls.t.c.id.in_(message_ids)) result = await table.execute(query) rows = await result.fetchall() return {row.id: _format_message(row) for row in rows} @classmethod async def batch_get_message_by_url_token(cls, url_tokens: Iterable[str]) -> Dict[str, Message]: query = cls.select_clause.where(cls.t.c.url_token.in_(url_tokens)) result = await table.execute(query) rows = await result.fetchall() return {row.url_token: _format_message(row) for row in rows} @classmethod async def get_episode_latest_messages(cls, episode_id: int, limit: int) -> List[Message]: query = cls.select_clause.where(and_( cls.t.c.episode_id == episode_id, cls.t.c.is_removed == 0, )).order_by(desc(cls.t.c.id)).limit(limit) results = await table.execute(query) messages = [_format_message(result) for result in await results.fetchall()] messages.reverse() return messages @classmethod async def get_episode_messages_from_oldest(cls, episode_id: int, oldest: int, limit: int) -> List[Message]: query = cls.select_clause.where(and_( cls.t.c.episode_id == episode_id, cls.t.c.is_removed == 0, cls.t.c.id > oldest, )).limit(limit) results = await table.execute(query) messages = [_format_message(result) for result in await results.fetchall()] return messages @classmethod async def get_episode_messages_to_latest(cls, episode_id: int, latest: int, limit: int) -> List[Message]: query = cls.select_clause.where(and_( cls.t.c.episode_id == episode_id, cls.t.c.is_removed == 0, cls.t.c.id < latest, )).order_by(desc(cls.t.c.id)).limit(limit) results = await table.execute(query) messages = [_format_message(result) for result in await results.fetchall()] messages.reverse() return messages @classmethod async def update_message(cls, message_id: int, **kwargs) -> None: if 'updated' not in kwargs: kwargs['updated'] = int(time.time()) query = cls.t.update().values(kwargs).where(cls.t.c.id == message_id) await table.execute(query) @classmethod async def create_message(cls, campaign_id: int, episode_id: int, character_id: int, message_type: MessageType, content: dict, is_gm: bool, created: Optional[int] = None) -> Message: url_token = base62.encode(get_id()) if not created: created = int(time.time()) values = ObjectDict( url_token=url_token, campaign_id=campaign_id, episode_id=episode_id, character_id=character_id, type=int(message_type), is_removed=0, is_gm=int(is_gm), content=content, created=created, updated=created, ) query = cls.t.insert().values(values) result = await table.execute(query) values.id = result.lastrowid message = _format_message(values) return message @classmethod async def scan_messages(cls, start_id: int = 0, limit: int = 1000) -> List[Message]: query = cls.select_clause.where(cls.t.c.id > start_id).limit(limit) results = await table.execute(query) messages = [_format_message(result) for result in await results.fetchall()] return messages
StarcoderdataPython
6480281
import requests import json ''' BOOK PREFIX VALUE genesis - gen, exodus - ex, leviticus - lev, numbers - num, deuteronomy - deu, joshua - joashua, judges - judges, 1 sammuel - 1sam, 2 samuel - 2sam ''' def get_book_prefix(book): prefix ="" if (book == "genesis"): prefix = "gen" elif (book == "exodus"): prefix = "ex" elif (book == "leviticus"): prefix = "lev" elif (book == "numbers"): prefix = "num" elif (book == "deuteronomy"): prefix = "deu" elif (book == "joshua"): prefix = "joshua" elif (book == "1 samuel"): prefix = "1sam" elif (book == "2 samuel"): prefix = "2sam" elif (book == "ruth"): prefix = "ruth" elif (book == "1 kings"): prefix ="1kings" elif (book == "2 kings"): prefix ="2kings" elif (book == "1 chronicles"): prefix ="1chronicles" elif (book == "2 chronicles"): prefix ="2chronicles" elif (book == "ezra"): prefix ="ezra" elif (book == "nehemiah"): prefix ="nehemiah" elif (book == "esther"): prefix ="esther" elif (book == "job"): prefix ="job" elif (book == "psalm"): prefix ="ps" elif (book == "1 kings"): prefix ="1kings" elif (book == "matthew"): prefix = "matthew" elif (book == "john"): prefix = "jn" elif (book == "mark"): prefix = "mark" else: prefix = "wrong input for book" return prefix def get_book(book): url = f"https://getbible.net/json?passage={book}&raw=true" response = requests.get(url) data = json.loads(response.text) chapters = data["book"] print(f"There are {len(chapters)} chapters. Choose a chapter between 1 - {len(chapters)}") def get_passage(book, chapter): url = f"http://getbible.net/json?passage={book}{chapter}&raw=true" print((url)) response = requests.get(url) jdata = json.loads(response.text) #print(response.status_code, response.headers) chapter = jdata["chapter"] for line in chapter.items(): linenum = line[0] linedict = line[1] verse = linedict["verse"] print(linenum, verse) def get_verse(book, chapter, verse): url = f"http://getbible.net/json?passage={book}{chapter}:{verse}&raw=true" print(url) response = requests.get(url) data = json.loads(response.text) book = data["book"] chapter = book[0] chapter_verse = chapter["chapter"] versej = chapter_verse[verse] num = versej["verse_nr"] v = versej["verse"] print(f"{num} {v}") def menu(): print("\nBIBLE MENU OPTIONS") print("Press 1 - Search for a book") print("Press 2 - Search for a passage") print("Press 3 - Search for a verse") choice = str(input("Option #: ")) if (choice == "1"): book = str(input("What book would you like me to open? (eg. Genesis): ")) prefix = get_book_prefix(book.lower()) get_book(prefix) chapter = str(input("What chapter would you like me to open?: ")) get_passage(prefix, chapter) elif (choice == "2"): book = str(input("Book (eg. Matthew): ")) prefix = get_book_prefix(book.lower()) chapter = str(input("What chapter do you want to look at?: ")) get_passage(prefix, chapter) elif (choice == "3"): book = str(input("Book: ")) prefix = get_book_prefix(book.lower()) chapter = str(input("Chapter: ")) verse = str(input("Verse num: ")) get_verse(prefix,chapter,verse) else: print("Invalid choice") def terminate_loop(): answer = str(input("Continue (Y/N)?: ")) terminate = False if (answer == 'Y' or answer == 'y'): terminate = True elif (answer == 'N' or answer == 'n'): terminate = False return terminate def main(): #get_passage(get_book_prefix(book.lower()), chapter) loop = True try: while(loop): menu() loop = terminate_loop() print("Hope you enjoy the word. bless u!") except KeyError: print("Wrong spelling for inputs") except ValueError: print("Failed to decode json") if __name__ == '__main__': main()
StarcoderdataPython
1765125
<reponame>hayesla/sunpy-soar<filename>sunpy_soar/attrs.py<gh_stars>1-10 import warnings import sunpy.net.attrs as a from sunpy.net.attr import AttrAnd, AttrOr, AttrWalker, DataAttr, SimpleAttr from sunpy.util.exceptions import SunpyDeprecationWarning __all__ = ['Product'] class Product(SimpleAttr): """ The data product identifier to search for. """ class Identifier(Product): """ The data product identifier to search for. """ def __init__(self, *args, **kwargs): warnings.warn( "'a.soar.Identifier' is deprecated; use 'a.soar.Product' instead.", SunpyDeprecationWarning) super().__init__(*args, **kwargs) walker = AttrWalker() @walker.add_creator(AttrOr) def create_or(wlk, tree): """ Creator for OR. Loops through the next level down in the tree and appends the individual results to a list. """ results = [] for sub in tree.attrs: results.append(wlk.create(sub)) return results @walker.add_creator(AttrAnd, DataAttr) def create_and(wlk, tree): """ Creator for And and other simple attributes. No walking needs to be done, so simply call the applier function. """ result = [] wlk.apply(tree, result) return [result] @walker.add_applier(AttrAnd) def apply_and(wlk, and_attr, params): """ Applier for And. Parameters ---------- wlk : AttrWalker and_attr : AttrAnd The AND attribute being applied. The individual attributes being AND'ed together are accesible with ``and_attr.attrs``. params : list[str] List of search parameters. """ for iattr in and_attr.attrs: wlk.apply(iattr, params) """ Below are appliers for individual attributes. The all convert the attribute object into a query string, that will eventually be passed as a query to the SOAR server. They all have the signature: Parameters ---------- wlk : AttrWalker The attribute walker. attr : The attribute being applied. params : list[str] List of search parameters. """ @walker.add_applier(a.Time) def _(wlk, attr, params): start = attr.start.strftime('%Y-%m-%d+%H:%M:%S') end = attr.end.strftime('%Y-%m-%d+%H:%M:%S') params.append(f"begin_time>='{start}'+AND+begin_time<='{end}'") @walker.add_applier(a.Level) def _(wlk, attr, params): level = int(attr.value) params.append(f"level='L{level}'") @walker.add_applier(a.Instrument) def _(wlk, attr, params): params.append(f"instrument='{attr.value}'") @walker.add_applier(Product, Identifier) def _(wlk, attr, params): params.append(f"descriptor='{attr.value}'")
StarcoderdataPython
8101755
# -*- coding: utf-8 -*- # Copyright 2021 Red Hat # GNU General Public License v3.0+ # (see COPYING or https://www.gnu.org/licenses/gpl-3.0.txt) from __future__ import absolute_import, division, print_function __metaclass__ = type """ The Ntp_global parser templates file. This contains a list of parser definitions and associated functions that facilitates both facts gathering and native command generation for the given network resource. """ import re from ansible_collections.ansible.netcommon.plugins.module_utils.network.common.rm_base.network_template import ( NetworkTemplate, ) class Ntp_globalTemplate(NetworkTemplate): def __init__(self, lines=None, module=None): super(Ntp_globalTemplate, self).__init__( lines=lines, tmplt=self, module=module ) # fmt: off PARSERS = [ { "name": "peer", "getval": re.compile( r""" ^ntp\saccess-group (\s(?P<ipv4>ipv4))? (\s(?P<ipv6>ipv6))? \speer \s(?P<access_list>\S+) (\s(?P<kod>kod))? $""", re.VERBOSE), "setval": "ntp access-group" "{{ ' ipv4' if ipv4 is defined else '' }}" "{{ ' ipv6' if ipv6 is defined else '' }}" " peer " "{{ access_list }}" "{{ ' kod' if kod|d(False) else '' }}", "result": { "access_group": { "peer": [ { "access_list": "{{ access_list }}", "kod": "{{ not not kod }}", "ipv4": "{{ not not ipv4 }}", "ipv6": "{{ not not ipv6 }}", }, ], }, }, }, { "name": "query_only", "getval": re.compile( r""" ^ntp\saccess-group (\s(?P<ipv4>ipv4))? (\s(?P<ipv6>ipv6))? \squery-only \s(?P<access_list>\S+) (\s(?P<kod>kod))? $""", re.VERBOSE), "setval": "ntp access-group" "{{ ' ipv4' if ipv4 is defined else '' }}" "{{ ' ipv6' if ipv6 is defined else '' }}" " query-only " "{{ access_list }}" "{{ ' kod' if kod|d(False) else '' }}", "result": { "access_group": { "query_only": [ { "access_list": "{{ access_list }}", "kod": "{{ not not kod }}", "ipv4": "{{ not not ipv4 }}", "ipv6": "{{ not not ipv6 }}", }, ], }, }, }, { "name": "serve", "getval": re.compile( r""" ^ntp\saccess-group (\s(?P<ipv4>ipv4))? (\s(?P<ipv6>ipv6))? \sserve \s(?P<access_list>\S+) (\s(?P<kod>kod))? $""", re.VERBOSE), "setval": "ntp access-group" "{{ ' ipv4' if ipv4 is defined else '' }}" "{{ ' ipv6' if ipv6 is defined else '' }}" " serve " "{{ access_list }}" "{{ ' kod' if kod|d(False) else '' }}", "result": { "access_group": { "serve": [ { "access_list": "{{ access_list }}", "kod": "{{ not not kod }}", "ipv4": "{{ not not ipv4 }}", "ipv6": "{{ not not ipv6 }}", }, ], }, }, }, { "name": "serve_only", "getval": re.compile( r""" ^ntp\saccess-group (\s(?P<ipv4>ipv4))? (\s(?P<ipv6>ipv6))? \sserve-only \s(?P<access_list>\S+) (\s(?P<kod>kod))? $""", re.VERBOSE), "setval": "ntp access-group" "{{ ' ipv4' if ipv4 is defined else '' }}" "{{ ' ipv6' if ipv6 is defined else '' }}" " serve-only " "{{ access_list }}" "{{ ' kod' if kod|d(False) else '' }}", "result": { "access_group": { "serve_only": [ { "access_list": "{{ access_list }}", "kod": "{{ not not kod }}", "ipv4": "{{ not not ipv4 }}", "ipv6": "{{ not not ipv6 }}", }, ], }, }, }, { "name": "allow.control.rate_limit", "getval": re.compile( r""" ^ntp\sallow\smode\scontrol\s(?P<rate_limit>\d+) $""", re.VERBOSE), "setval": "ntp allow mode control {{ allow.control.rate_limit }}", "result": { "allow": { "control": { "rate_limit": "{{ rate_limit }}", }, }, }, }, { "name": "allow.private", "getval": re.compile( r""" ^ntp\sallow\smode\s(?P<private>private) $""", re.VERBOSE), "setval": "ntp allow mode private", "result": { "allow": { "private": "{{ not not private }}", }, }, }, { "name": "authenticate", "getval": re.compile( r""" ^ntp\s(?P<authenticate>authenticate) $""", re.VERBOSE), "setval": "ntp authenticate", "result": { "authenticate": "{{ not not authenticate }}", }, }, { "name": "authentication_keys", "getval": re.compile( r""" ^ntp\sauthentication-key\s(?P<id>\d+) \s(?P<algorithm>\S+) \s(?P<key>\S+) \s(?P<encryption>\d+) $""", re.VERBOSE), "setval": "ntp authentication-key {{ id }} {{ algorithm }} {{ key }} {{ encryption }}", "result": { "authentication_keys": [ { "id": "{{ id }}", "algorithm": "{{ algorithm }}", "key": "{{ key }}", "encryption": "{{ encryption }}", }, ], }, }, { "name": "broadcast_delay", "getval": re.compile( r""" ^ntp\sbroadcastdelay\s(?P<broadcast_delay>\d+) $""", re.VERBOSE), "setval": "ntp broadcastdelay {{ broadcast_delay }}", "result": { "broadcast_delay": "{{ broadcast_delay }}", }, }, { "name": "clock_period", "getval": re.compile( r""" ^ntp\sclock-period\s(?P<clock_period>\d+) $""", re.VERBOSE), "setval": "ntp clock-period {{ clock_period }}", "result": { "clock_period": "{{ clock_period }}", }, }, { "name": "logging", "getval": re.compile( r""" ^ntp\s(?P<logging>logging) $""", re.VERBOSE), "setval": "ntp logging", "result": { "logging": "{{ not not logging }}", }, }, { "name": "master.enabled", "getval": re.compile( r""" ^ntp\s(?P<master>master) $""", re.VERBOSE), "setval": "ntp master", "result": { "master": { "enabled": "{{ not not master }}", }, }, }, { "name": "master.stratum", "getval": re.compile( r""" ^ntp\smaster\s(?P<stratum>\d+) $""", re.VERBOSE), "setval": "ntp master {{ master.stratum }}", "result": { "master": { "stratum": "{{ stratum }}", }, }, }, { "name": "max_associations", "getval": re.compile( r""" ^ntp\smax-associations\s(?P<max_associations>\d+) $""", re.VERBOSE), "setval": "ntp max-associations {{ max_associations }}", "result": { "max_associations": "{{ max_associations }}", }, }, { "name": "max_distance", "getval": re.compile( r""" ^ntp\smaxdistance\s(?P<max_distance>\d+) $""", re.VERBOSE), "setval": "ntp maxdistance {{ max_distance }}", "result": { "max_distance": "{{ max_distance }}", }, }, { "name": "min_distance", "getval": re.compile( r""" ^ntp\smindistance\s(?P<min_distance>\d+) $""", re.VERBOSE), "setval": "ntp mindistance {{ min_distance }}", "result": { "min_distance": "{{ min_distance }}", }, }, { "name": "orphan", "getval": re.compile( r""" ^ntp\sorphan\s(?P<orphan>\d+) $""", re.VERBOSE), "setval": "ntp orphan {{ orphan }}", "result": { "orphan": "{{ orphan }}", }, }, { "name": "panic_update", "getval": re.compile( r""" ^ntp\spanic\s(?P<update>update) $""", re.VERBOSE), "setval": "ntp panic update", "result": { "panic_update": "{{ not not update }}", }, }, { "name": "passive", "getval": re.compile( r""" ^ntp\s(?P<passive>passive) $""", re.VERBOSE), "setval": "ntp passive", "result": { "passive": "{{ not not passive }}", }, }, { "name": "peers", "getval": re.compile( r""" ^ntp\speer (\svrf\s(?P<vrf>\S+))? (\s(?P<ipv4>ip))? (\s(?P<ipv6>ipv6))? \s(?P<peer>\S+) (\s(?P<burst>burst))? (\s(?P<iburst>iburst))? (\skey\s(?P<key>\d+))? (\sminpoll\s(?P<minpoll>\d+))? (\smaxpoll\s(?P<maxpoll>\d+))? (\s(?P<normal_sync>normal-sync))? (\s(?P<prefer>prefer))? (\ssource\s(?P<source>\S+))? (\sversion\s(?P<version>\d+))? $""", re.VERBOSE), "setval": "ntp peer" "{{ (' vrf ' + vrf) if vrf is defined else '' }}" "{{ ' ip' if use_ipv4|d(False) else ''}}" "{{ ' ipv6' if use_ipv6|d(False) else ''}}" "{{ ( ' ' + peer ) if peer is defined else '' }}" "{{ ' burst ' if burst|d(False) else ''}}" "{{ ' iburst ' if iburst|d(False) else ''}}" "{{ (' key ' + key_id|string) if key_id is defined else '' }}" "{{ (' minpoll ' + minpoll|string) if minpoll is defined else '' }}" "{{ (' maxpoll ' + maxpoll|string) if maxpoll is defined else '' }}" "{{ ' normal-sync ' if normal_sync is defined else ''}}" "{{ ' prefer' if prefer|d(False) else ''}}" "{{ (' source ' + source) if source is defined else '' }}" "{{ (' version ' + version|string) if version is defined else '' }}", "result": { "peers": [ { "peer": "{{ peer }}", "use_ipv4": "{{ not not ipv4 }}", "use_ipv6": "{{ not not ipv6 }}", "vrf": "{{ vrf }}", "burst": "{{ not not burst }}", "iburst": "{{ not not iburst }}", "key_id": "{{ key }}", "minpoll": "{{ minpoll }}", "maxpoll": "{{ maxpoll }}", "normal_sync": "{{ not not normal_sync }}", "prefer": "{{ not not prefer }}", "source": "{{ source }}", "version": "{{ version }}", }, ], }, }, { "name": "servers", "getval": re.compile( r""" ^ntp\sserver (\svrf\s(?P<vrf>\S+))? (\s(?P<ipv4>ip))? (\s(?P<ipv6>ipv6))? \s(?P<server>\S+) (\s(?P<burst>burst))? (\s(?P<iburst>iburst))? (\skey\s(?P<key>\d+))? (\sminpoll\s(?P<minpoll>\d+))? (\smaxpoll\s(?P<maxpoll>\d+))? (\s(?P<normal_sync>normal-sync))? (\s(?P<prefer>prefer))? (\ssource\s(?P<source>\S+))? (\sversion\s(?P<version>\d+))? $""", re.VERBOSE), "setval": "ntp server" "{{ (' vrf ' + vrf) if vrf is defined else '' }}" "{{ ' ip' if use_ipv4|d(False) else ''}}" "{{ ' ipv6' if use_ipv6|d(False) else ''}}" "{{ ( ' ' + server ) if server is defined else '' }}" "{{ ' burst ' if burst|d(False) else ''}}" "{{ ' iburst ' if iburst|d(False) else ''}}" "{{ (' key ' + key_id|string) if key_id is defined else '' }}" "{{ (' minpoll ' + minpoll|string) if minpoll is defined else '' }}" "{{ (' maxpoll ' + maxpoll|string) if maxpoll is defined else '' }}" "{{ ' normal-sync ' if normal_sync is defined else ''}}" "{{ ' prefer' if prefer|d(False) else ''}}" "{{ (' source ' + source) if source is defined else '' }}" "{{ (' version ' + version|string) if version is defined else '' }}", "result": { "servers": [ { "server": "{{ server }}", "use_ipv4": "{{ not not ipv4 }}", "use_ipv6": "{{ not not ipv6 }}", "vrf": "{{ vrf }}", "burst": "{{ not not burst }}", "iburst": "{{ not not iburst }}", "key_id": "{{ key }}", "minpoll": "{{ minpoll }}", "maxpoll": "{{ maxpoll }}", "normal_sync": "{{ not not normal_sync }}", "prefer": "{{ not not prefer }}", "source": "{{ source }}", "version": "{{ version }}", }, ], }, }, { "name": "source", "getval": re.compile( r""" ^ntp\ssource\s(?P<source>\S+) $""", re.VERBOSE), "setval": "ntp source {{ source }}", "result": { "source": "{{ source }}", }, }, { "name": "trusted_keys", "getval": re.compile( r""" ^ntp\strusted-key \s((?P<range_start>\d+)) (\s\-\s)? ((?P<range_end>\d+))? $""", re.VERBOSE), "setval": "ntp trusted-key {{ range_start }}" "{{ (' - ' + range_end|string) if range_end is defined else '' }}", "result": { "trusted_keys": [ { "range_start": "{{ range_start }}", "range_end": "{{ range_end }}", }, ], }, }, { "name": "update_calendar", "getval": re.compile( r""" ^ntp\s(?P<update_calendar>update-calendar) $""", re.VERBOSE), "setval": "ntp update-calendar", "result": { "update_calendar": "{{ not not update_calendar }}", }, }, ] # fmt: on
StarcoderdataPython
8025624
import requests to_predict_dict = { "data": [ [4.8, 3, 1.4, 0.3], [2, 1, 3.2, 1.1] ] } url = 'http://1172.16.31.10:8000/api' r = requests.post(url, json=to_predict_dict) print(r.json())
StarcoderdataPython
3261159
from setuptools import setup, find_packages import os version = '1.3.0' # the number version of the package is the same than less.js version def read(*rnames): return open(os.path.join(os.path.dirname(__file__), *rnames)).read() long_description = ( read('README.txt') + '\n' + read('js', 'lesscss', 'test_less.txt') + '\n' + read('CHANGES.txt')) setup( name='js.lesscss', version=version, description="Fanstatic packaging of less", long_description=long_description, classifiers=[], keywords='', author='<NAME>', author_email='<EMAIL>', license='BSD', packages=find_packages(), namespace_packages=['js'], include_package_data=True, zip_safe=False, install_requires=[ 'fanstatic', 'setuptools', ], entry_points={ 'fanstatic.libraries': [ 'less = js.lesscss:library', ], 'console_scripts': [ 'jslessc = js.lesscss:main', ], }, )
StarcoderdataPython
3237803
# str_repr_test.py class foo: def __repr__(self): return "foo.repr" def __str__(self): return "foo.str" f = foo() print(f) print("str", str(f)) print("repr", repr(f)) print("{}", f"{f}") print("{!r}", f"{f!r}") print("{!s}", f"{f!s}")
StarcoderdataPython
1929106
"""The tests for the uptime sensor platform.""" import asyncio from datetime import timedelta import unittest from unittest.mock import patch from homeassistant.components.uptime.sensor import UptimeSensor from homeassistant.setup import setup_component from tests.common import get_test_home_assistant class TestUptimeSensor(unittest.TestCase): """Test the uptime sensor.""" def setUp(self): """Set up things to run when tests begin.""" self.hass = get_test_home_assistant() def tearDown(self): """Stop everything that was started.""" self.hass.stop() def test_uptime_min_config(self): """Test minimum uptime configuration.""" config = {"sensor": {"platform": "uptime"}} assert setup_component(self.hass, "sensor", config) def test_uptime_sensor_name_change(self): """Test uptime sensor with different name.""" config = {"sensor": {"platform": "uptime", "name": "foobar"}} assert setup_component(self.hass, "sensor", config) def test_uptime_sensor_config_hours(self): """Test uptime sensor with hours defined in config.""" config = {"sensor": {"platform": "uptime", "unit_of_measurement": "hours"}} assert setup_component(self.hass, "sensor", config) def test_uptime_sensor_config_minutes(self): """Test uptime sensor with minutes defined in config.""" config = {"sensor": {"platform": "uptime", "unit_of_measurement": "minutes"}} assert setup_component(self.hass, "sensor", config) def test_uptime_sensor_days_output(self): """Test uptime sensor output data.""" sensor = UptimeSensor("test", "days") assert sensor.unit_of_measurement == "days" new_time = sensor.initial + timedelta(days=1) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 1.00 new_time = sensor.initial + timedelta(days=111.499) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 111.50 def test_uptime_sensor_hours_output(self): """Test uptime sensor output data.""" sensor = UptimeSensor("test", "hours") assert sensor.unit_of_measurement == "hours" new_time = sensor.initial + timedelta(hours=16) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 16.00 new_time = sensor.initial + timedelta(hours=72.499) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 72.50 def test_uptime_sensor_minutes_output(self): """Test uptime sensor output data.""" sensor = UptimeSensor("test", "minutes") assert sensor.unit_of_measurement == "minutes" new_time = sensor.initial + timedelta(minutes=16) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 16.00 new_time = sensor.initial + timedelta(minutes=12.499) with patch("homeassistant.util.dt.now", return_value=new_time): asyncio.run_coroutine_threadsafe( sensor.async_update(), self.hass.loop ).result() assert sensor.state == 12.50
StarcoderdataPython
264846
# Copyright 2016 The TensorFlow Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== # %% Borrowed utils from here: https://github.com/pkmital/tensorflow_tutorials/ #import tensorflow as tf import numpy as np import csv def conv2d(x, n_filters, k_h=5, k_w=5, stride_h=2, stride_w=2, stddev=0.02, activation=lambda x: x, bias=True, padding='SAME', name="Conv2D"): """2D Convolution with options for kernel size, stride, and init deviation. Parameters ---------- x : Tensor Input tensor to convolve. n_filters : int Number of filters to apply. k_h : int, optional Kernel height. k_w : int, optional Kernel width. stride_h : int, optional Stride in rows. stride_w : int, optional Stride in cols. stddev : float, optional Initialization's standard deviation. activation : arguments, optional Function which applies a nonlinearity padding : str, optional 'SAME' or 'VALID' name : str, optional Variable scope to use. Returns ------- x : Tensor Convolved input. """ with tf.variable_scope(name): w = tf.get_variable( 'w', [k_h, k_w, x.get_shape()[-1], n_filters], initializer=tf.truncated_normal_initializer(stddev=stddev)) conv = tf.nn.conv2d( x, w, strides=[1, stride_h, stride_w, 1], padding=padding) if bias: b = tf.get_variable( 'b', [n_filters], initializer=tf.truncated_normal_initializer(stddev=stddev)) conv = conv + b return conv def linear(x, n_units, scope=None, stddev=0.02, activation=lambda x: x): """Fully-connected network. Parameters ---------- x : Tensor Input tensor to the network. n_units : int Number of units to connect to. scope : str, optional Variable scope to use. stddev : float, optional Initialization's standard deviation. activation : arguments, optional Function which applies a nonlinearity Returns ------- x : Tensor Fully-connected output. """ shape = x.get_shape().as_list() with tf.variable_scope(scope or "Linear"): matrix = tf.get_variable("Matrix", [shape[1], n_units], tf.float32, tf.random_normal_initializer(stddev=stddev)) return activation(tf.matmul(x, matrix)) # %% def weight_variable(shape): '''Helper function to create a weight variable initialized with a normal distribution Parameters ---------- shape : list Size of weight variable ''' #initial = tf.random_normal(shape, mean=0.0, stddev=0.01) initial = tf.zeros(shape) return tf.Variable(initial) # %% def bias_variable(shape): '''Helper function to create a bias variable initialized with a constant value. Parameters ---------- shape : list Size of weight variable ''' initial = tf.random_normal(shape, mean=0.0, stddev=0.01) return tf.Variable(initial) # %% def dense_to_one_hot(labels, n_classes=2): """Convert class labels from scalars to one-hot vectors.""" labels = np.array(labels).astype('int32') n_labels = labels.shape[0] index_offset = (np.arange(n_labels) * n_classes).astype('int32') labels_one_hot = np.zeros((n_labels, n_classes), dtype=np.float32) labels_one_hot.flat[index_offset + labels.ravel()] = 1 return labels_one_hot def prepare_trainVal_img_list(img_list, num_subjs): #num_imgs_per_subj =np.zeros([num_subjs]) id_label_list = [] for row in img_list: id_label = int(row[8]) #num_imgs_per_subj[id_label] += 1 id_label_list.append(id_label) id_label_list = np.asarray(id_label_list) id_label_list = np.reshape(id_label_list, [-1]) train_indices_list = [] valid_indices_list= [] eval_train_indices_list = [] eval_valid_indices_list = [] for i in range(num_subjs): print(i) curr_subj_idx = np.nonzero(id_label_list == i)[0] tmp = np.random.permutation(curr_subj_idx) per80 = np.floor(len(curr_subj_idx) * 0.8) t_inds = tmp[0:per80] v_inds = tmp[per80:] train_indices_list.append(t_inds) valid_indices_list.append(v_inds) eval_train_indices_list.append(t_inds[0]) eval_valid_indices_list.append(v_inds[0]) train_indices_list = np.asarray(train_indices_list) valid_indices_list = np.asarray(valid_indices_list) eval_train_indices_list = np.asarray(eval_train_indices_list) eval_valid_indices_list = np.asarray(eval_valid_indices_list) #print(train_indices_list, train_indices_list.shape train_indices_list = np.hstack(train_indices_list).astype('int') valid_indices_list = np.hstack(valid_indices_list).astype('int') eval_train_indices_list = np.hstack(eval_train_indices_list).astype('int') eval_valid_indices_list = np.hstack(eval_valid_indices_list).astype('int') print(train_indices_list.shape, valid_indices_list.shape, eval_train_indices_list.shape, eval_valid_indices_list.shape) img_list = np.asarray(img_list) print(img_list.shape) train_list = img_list[train_indices_list] valid_list = img_list[valid_indices_list] eval_train_list = img_list[eval_train_indices_list] eval_valid_list = img_list[eval_valid_indices_list] np.savez("Oxford_trainVal_data_3DSTN.npz", train_list=train_list, valid_list=valid_list, eval_train_list=eval_train_list, eval_valid_list=eval_valid_list) def select_eval_img_list(img_list, num_subjs, save_file_name): # number of validation subjects id_label_list = [] for row in img_list: id_label = int(row[8]) id_label_list.append(id_label) id_label_list = np.asarray(id_label_list) id_label_list = np.reshape(id_label_list, [-1]) eval_indices_list = [] for i in range(num_subjs): print(i) curr_subj_idx = np.nonzero(id_label_list == i)[0] tmp = np.random.permutation(curr_subj_idx) inds = tmp[0:min(5, len(curr_subj_idx))] eval_indices_list.append(inds) eval_indices_list = np.asarray(eval_indices_list) eval_indices_list = np.hstack(eval_indices_list).astype('int') print(eval_indices_list.shape) img_list = np.asarray(img_list) print(img_list.shape) eval_list = img_list[eval_indices_list] np.savez(save_file_name, eval_list=eval_list) """ # Record the number of images per subject num_imgs_per_subj =np.zeros([num_subjs]) for row in valid_img_list: id_label = int(row[8]) num_imgs_per_subj[id_label] += 1 hist_subj = np.zeros([num_subjs]) idx = 0 count = 0 for row in valid_img_list: count += 1 print(count image_key = row[0] image_path = row[1] id_label = int(row[8]) if idx >= num_subjs: break if hist_subj[idx] < min(1, num_imgs_per_subj[idx]): if id_label == idx: with open(save_file_name, "a") as f: f.write(image_key + "," + image_path + "," + row[2] + "," + row[3] + "," + row[4] + "," + row[5] + "," + row[6] + "," + row[7] + "," + str(id_label) + "\n") hist_subj[idx] += 1 else: idx += 1 """ def input_processing(images, pose_labels, id_labels, train_mean_vec, mean_labels, std_labels, num_imgs, image_size, num_classes): images = images.reshape([num_imgs, image_size, image_size, 3]) pose_labels = pose_labels.reshape([num_imgs, 6]) id_labels = id_labels.reshape([num_imgs, 1]) id_labels = dense_to_one_hot(id_labels, num_classes) # Subtract train image mean images = images / 255. train_mean_mat = train_mean_vec2mat(train_mean_vec, images) normalized_images = images - train_mean_mat # Normalize labels normalized_pose_labels = (pose_labels - mean_labels) / (std_labels + 0.000000000000000001) return normalized_images, normalized_pose_labels, id_labels def train_mean_vec2mat(train_mean, images_array): height = images_array.shape[1] width = images_array.shape[2] #batch = images_array.shape[0] train_mean_R = np.matlib.repmat(train_mean[0],height,width) train_mean_G = np.matlib.repmat(train_mean[1],height,width) train_mean_B = np.matlib.repmat(train_mean[2],height,width) R = np.reshape(train_mean_R, (height,width,1)) G = np.reshape(train_mean_G, (height,width,1)) B = np.reshape(train_mean_B, (height,width,1)) train_mean_image = np.append(R, G, axis=2) train_mean_image = np.append(train_mean_image, B, axis=2) return train_mean_image def create_file_list(csv_file_path): with open(csv_file_path, 'r') as csvfile: csvreader = csv.reader(csvfile, delimiter=',') csv_list = list(csvreader) return csv_list
StarcoderdataPython
6484957
<filename>paas-ce/paas/paas/common/tests.py<gh_stars>100-1000 # -*- coding: utf-8 -*- """ Tencent is pleased to support the open source community by making 蓝鲸智云PaaS平台社区版 (BlueKing PaaS Community Edition) available. Copyright (C) 2017-2018 THL A29 Limited, a Tencent company. All rights reserved. Licensed under the MIT License (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://opensource.org/licenses/MIT Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ # noqa from __future__ import unicode_literals from django.conf import settings from django.test import TestCase import mock import requests from common.constants import LogoImgRelatedDirEnum from common.http import _gen_header, http_delete, http_get, http_post from common.utils import file_size_bytes_to_m, get_app_logo, should_update_logo class CommonUtilsTestCase(TestCase): def test_file_size_bytes_to_m(self): size = None self.assertEqual(size, file_size_bytes_to_m(size)) size = 0 self.assertEqual(size, file_size_bytes_to_m(0)) size = 1024 * 1024 self.assertEqual(1.0, file_size_bytes_to_m(size)) def test_get_app_logo(self): app_code = 'bk_framework' logo_name = '{}/{}.png'.format(LogoImgRelatedDirEnum.APP.value, app_code) result = '{}{}'.format(settings.MEDIA_URL, logo_name) self.assertEqual(result, get_app_logo(app_code)) app_code = "not_exists" self.assertEqual("", get_app_logo(app_code)) def test_should_update_logo(self): app_code = "test" app_logo_name = "{}/{}.png".format(LogoImgRelatedDirEnum.APP.value, app_code) ok, _ = should_update_logo(app_code, app_logo_name) self.assertFalse(ok) ok, logo_name = should_update_logo('test1', app_logo_name) self.assertTrue(ok) class CommonHttpTestCase(TestCase): def _mock_response(self, status=200, content="CONTENT", json_data=None, raise_for_status=None): """ https://gist.github.com/evansde77/45467f5a7af84d2a2d34f3fcb357449c since we typically test a bunch of different requests calls for a service, we are going to do a lot of mock responses, so its usually a good idea to have a helper function that builds these things """ mock_resp = mock.Mock() # mock raise_for_status call w/optional error mock_resp.raise_for_status = mock.Mock() if raise_for_status: mock_resp.raise_for_status.side_effect = raise_for_status # set status code and content mock_resp.status_code = status mock_resp.content = content # add json data if provided if json_data: mock_resp.json = mock.Mock( return_value=json_data ) return mock_resp @mock.patch('requests.get') def test_http_get(self, mock_get): # 200 mock_resp = self._mock_response(status=200) mock_get.return_value = mock_resp ok, data = http_get("http://not_exists.com/", data={}) self.assertTrue(ok) # 200, with json json_data = {"a": 1, "b": 2} mock_resp = self._mock_response(status=200, json_data=json_data) mock_get.return_value = mock_resp ok, data = http_get("http://not_exists.com/", data={}) self.assertTrue(ok) self.assertEqual(json_data, data) # not 200 mock_resp = self._mock_response(status=400) mock_get.return_value = mock_resp ok, data = http_get("http://not_exists.com/", data={}) self.assertFalse(ok) # timeout # https://stackoverflow.com/questions/48723711/python-mock-requests-post-to-throw-exception mock_get.side_effect = requests.exceptions.Timeout() ok, data = http_get("http://not_exists.com/", data={}) self.assertFalse(ok) @mock.patch('requests.post') def test_http_post(self, mock_post): # 200 mock_resp = self._mock_response(status=200) mock_post.return_value = mock_resp ok, data = http_post("http://not_exists.com/", data={}) self.assertTrue(ok) # 200, with json json_data = {"a": 1, "b": 2} mock_resp = self._mock_response(status=200, json_data=json_data) mock_post.return_value = mock_resp ok, data = http_post("http://not_exists.com/", data={}) self.assertTrue(ok) self.assertEqual(json_data, data) @mock.patch('requests.delete') def test_http_delete(self, mock_delete): # 200 mock_resp = self._mock_response(status=200) mock_delete.return_value = mock_resp ok, data = http_delete("http://not_exists.com/", data={}) self.assertTrue(ok) # 200, with json json_data = {"a": 1, "b": 2} mock_resp = self._mock_response(status=200, json_data=json_data) mock_delete.return_value = mock_resp ok, data = http_delete("http://not_exists.com/", data={}) self.assertTrue(ok) self.assertEqual(json_data, data) def test_default_header(self): headers = { "Content-Type": "application/json", } self.assertEqual(headers, _gen_header())
StarcoderdataPython
3406367
<gh_stars>1-10 # Generated by Django 4.0.2 on 2022-03-06 20:10 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("boardmanlab", "0008_alter_helpsession_is_inperson_and_more"), ] operations = [ migrations.AlterField( model_name="helpsession", name="notes", field=models.TextField(blank=True, max_length=1000, null=True), ), migrations.AlterField( model_name="helpsession", name="remote_link", field=models.TextField(blank=True, max_length=200, null=True), ), ]
StarcoderdataPython
4958267
def sumofpowersof2(n): # say n is 2 : 2**0+2**1+2**2 return (1<<n )-1 print sumofpowersof2(4)
StarcoderdataPython
5030136
# high res ocean regions import numpy as np import xarray as xr from xr_DataArrays import example_file, depth_lat_lon_names from paths import path_samoc from paths import file_ex_ocn_rect, file_RMASK_ocn, file_RMASK_ocn_rect, file_RMASK_ocn_low ocn_file = example_file('ocn') bll_AMO = (( 0, 60), (- 80, 0)) # (0-60N, 0-80W) bll_N34 = (( -5, 5), (-170,-120)) # (5N-5S, 170W-120W) bll_SOM = ((-50,-35), (- 50, 0)) # (50S-35S, 50W-0W) `SOM` region in Le Bars et al. (2016) bll_SMV = ((-80,-50), (- 30, 80)) # (80S-50S, 30W-80E) `WGKP` region in Jüling et al. (2018) bll_TPI1 = (( 25, 40), ( 140,-145)) # (25N-45N, 140E-145W) bll_TPI2 = ((-10, 10), ( 170,- 90)) # (10S-10N, 170E-90W) bll_TPI3 = ((-50,-15), ( 150,-160)) # (50S-15S, 150E-160W) # 'ocn' # AMO_area = {'nlat':slice(1081,1858), 'nlon':slice( 500,1100)} # North Atlantic (0-60N, 0-80W) Drake_Passage = {'nlat':slice( 268, 513), 'nlon':410 } DP_North = {'nlat':512 , 'nlon':410 } global_ocean = {'nlat':slice( 0,2400), 'nlon':slice( 0,3600)} # global ocean Nino12 = {'nlat':slice(1081,1181), 'nlon':slice( 200, 300)} # Niño 1+2 (0-10S, 90W-80W) Nino34 = {'nlat':slice(1131,1232), 'nlon':slice(3000,3500)} # Niño 3.4 (5N-5S, 170W-120W) sinking_area = {'nlat':slice( 283, 353), 'nlon':slice(1130,1210)} SOM_ocn = {'nlat':slice( 603, 808), 'nlon':slice( 600,1100)} # (50S-35S, 0E-50W) # TexT_area = {'nlat':slice( 427,1858) } # tropic + extratropics (60S-60N) WGKP_area = {'nlat':slice( 0, 603), 'nlon':slice( 750,1900)} WG_center = {'nlat':321 , 'nlon':877 } # [64.9S,337.8E] # 'ocn_rect' # SOM_area_rect = {'t_lat': slice(-50,-35), 't_lon': slice(0, 50)} gl_ocean_rect = {'t_lat': slice(-80, 90), 't_lon': slice(0,360)} SOM_rect = {'t_lat': slice(-50,-35), 't_lon': slice(310,360)} # 'ocn_low' ! displaced dipole: not strictly lat-lon in NH # AMO_area_low = {'nlat':slice( 187, 353), 'nlon':slice( 284,35)} # North Atlantic (0-60N, 0-80W) Nino12_low = {'nlat':slice( 149, 187), 'nlon':slice( 275, 284)} # Niño 1+2 (0-10S, 90W-80W) Nino34_low = {'nlat':slice( 168, 205), 'nlon':slice( 204, 248)} # Niño 3.4 (5N-5S, 170W-120W) gl_ocean_low = {'nlat':slice( 0, 384), 'nlon':slice( 0, 320)} SOM_low = {'nlat':slice( 55, 83), 'nlon':slice( -9, 36)} # 'ocn_had' SOM_had = {'latitude':slice( -35.5, -49.5), 'longitude':slice(-49.5, -.5)} # 'atm' Uwind_eq_Pa = {'lat':slice(-6,6), 'lon':slice(180,200)} regions_dict = {-14: 'Caspian_Sea', -13: 'Black_Sea', # -1: 'no calculations', # 0: 'continents', 0: 'Global_Ocean', 1: 'Southern_Ocean', 2: 'Pacific_Ocean', 3: 'Indian_Ocean', 4: 'Persian_Gulf', 5: 'Red_Sea', 6: 'Atlantic_Ocean', 7: 'Mediterranean', 8: 'Labrador_Sea', 9: 'Greenland_Sea', 10: 'Arctic_Ocean', 11: 'Hudson_Bay', 12: 'Baltic_Sea', } OSNAP = {'IC0':(-35.1, 59.2), 'IC1':(-33.7, 59.2), 'IC2':(-32.7, 59.0), 'IC3':(-31.95, 58.96), 'IC4':(-31.3, 58.9) } def boolean_mask(domain, mask_nr, rounded=False): """ selects a region by number, returns xr DataArray """ assert domain in ['ocn', 'ocn_low', 'ocn_rect', 'ocn_had', 'ocn_ersst', 'ocn_cobe'] RMASK = xr.open_dataarray(f'{path_samoc}/grid/RMASK_{domain}.nc') # created in regrid_tutorial.ipynb MASK = RMASK.copy() if mask_nr==0: # global ocean MASK_np = np.where(RMASK>0, 1, 0) else: MASK_np = np.where(RMASK==mask_nr, 1, 0) MASK.values = MASK_np if rounded==True and 'TLAT' in MASK.coords and 'TLONG' in MASK.coords: MASK['TLAT' ] = MASK['TLAT' ].round(decimals=2) MASK['TLONG'] = MASK['TLONG'].round(decimals=2) return MASK def combine_mask(MASK, numbers): """ combines submasks of MASK into single boolean mask input: MASK .. xr DataArray with integer numbers for masks numbers .. list of IDs of submasks to be combined """ assert len(numbers)>1 NEW_MASK = xr.where(MASK==numbers[0], 1, 0) for number in numbers[1:]: NEW_MASK = xr.where(MASK==number, 1, NEW_MASK) return NEW_MASK def Atlantic_mask(domain): assert domain in ['ocn', 'ocn_low'] ds = xr.open_dataset(example_file(domain), decode_times=False) ATLANTIC_MASK = combine_mask(ds.REGION_MASK, [6,8,9]) return ATLANTIC_MASK def mask_box_in_region(domain, mask_nr, bounding_lats=None, bounding_lons=None): """ boolean mask of region limited by bounding_lats/lons """ MASK = boolean_mask(domain=domain, mask_nr=mask_nr) if domain=='ocn_rect': lat, lon = 't_lat', 't_lon' elif domain in ['ocn', 'ocn_low']: lat, lon = 'TLAT', 'TLONG' elif domain in ['ocn_had', 'ocn_ersst', 'ocn_cobe']: lat, lon = 'latitude', 'longitude' if bounding_lats!=None: assert type(bounding_lats)==tuple (latS, latN) = bounding_lats assert latS<latN MASK = MASK.where(MASK[lat]<latN, 0) MASK = MASK.where(MASK[lat]>latS, 0) if bounding_lons!=None: assert type(bounding_lons)==tuple (lonW, lonE) = bounding_lons assert lonW!=lonE if domain in ['ocn', 'ocn_low', 'ocn_rect', 'ocn_ersst', 'ocn_cobe']: if lonW<0: lonW = lonW+360. if lonE<0: lonE = lonE+360. assert lonW>=0 assert lonW<=360 assert lonE>=0 assert lonE<=360 elif domain=='ocn_had': if lonW>180: lonW = lonW-360. if lonE>180: lonE = lonE-360. if lonW<lonE: MASK = MASK.where(MASK[lon]<lonE, 0) MASK = MASK.where(MASK[lon]>lonW, 0) else: # crossing grid boundary MASK = MASK.where(MASK[lon]<lonE, 0) + MASK.where(MASK[lon]>lonW, 0) return MASK def AMO_mask(domain): file = example_file(domain) TLAT = xr.open_dataset(file, decode_times=False).TLAT if domain=='ocn_low': MASK = boolean_mask(domain, mask_nr=6) elif domain=='ocn': MASK = Atlantic_mask(domain) MASK = np.where(TLAT> 0, MASK, 0) MASK = np.where(TLAT<60, MASK, 0) return MASK def TexT_mask(domain): file = example_file(domain) TLAT = xr.open_dataset(file, decode_times=False).TLAT MASK = boolean_mask(domain, mask_nr=0) MASK = np.where(TLAT>-60, MASK, 0) MASK = np.where(TLAT< 60, MASK, 0) return MASK def TPI_masks(domain, region_nr): file = example_file(domain) TLAT = xr.open_dataset(file, decode_times=False).TLAT TLONG = xr.open_dataset(file, decode_times=False).TLONG MASK = boolean_mask(domain, mask_nr=0) if region_nr==1: # (25N-45N, 140E-145W) MASK = np.where(TLAT > 25, MASK, 0) MASK = np.where(TLAT < 45, MASK, 0) MASK = np.where(TLONG>140, MASK, 0) MASK = np.where(TLONG>215, MASK, 0) elif region_nr==2: # (10S-10N, 170E-90W) MASK = np.where(TLAT >-10, MASK, 0) MASK = np.where(TLAT < 10, MASK, 0) MASK = np.where(TLONG>170, MASK, 0) MASK = np.where(TLONG>270, MASK, 0) elif region_nr==3: # (50S-15S, 150E-160W) MASK = np.where(TLAT >-50, MASK, 0) MASK = np.where(TLAT <-15, MASK, 0) MASK = np.where(TLONG>150, MASK, 0) MASK = np.where(TLONG>200, MASK, 0) return MASK def SST_index_bounds(name): if name=='TPI1': bounds = (140,215, 25, 45) elif name=='TPI2': bounds = (170,270,-10, 10) elif name=='TPI3': bounds = (150,200,-50,-15) elif name=='SOM' : bounds = (310,360,-50,-35) elif name=='SMV' : bounds = (-30, 80,-80,-50) elif name=='AMO' : bounds = (280,360, 0, 60) elif name=='AMV' : bounds = (280,360, 0, 60) elif name=='PDO' : bounds = (110,255, 20, 68) elif name=='PMV' : bounds = (110,255, 20, 68) elif name=='IPO' : bounds = (110,255,-38, 68) elif name=='PMV_Eq' : bounds = (110,255,0, 68) return bounds
StarcoderdataPython
273958
########################################################################## # # Copyright 2010 VMware, Inc. # All Rights Reserved. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # ##########################################################################/ """Generated an header, glproc.hpp, which does pretty much what GLEW does, but covers all the functions we support. """ from __future__ import print_function import sys from dispatch import Dispatcher import specs.stdapi as stdapi from specs.gles12api import glesapi from specs.eglapi import eglapi def ResetFuncPtrsInAPI(api): for func in api.functions: print(' _'+func.name+'_ptr = NULL;') def ResetGLFuncPtrs(): print('void ResetGLFuncPtrs()') print('{') ResetFuncPtrsInAPI(glesapi) print('}') if __name__ == '__main__': # glClientSideBufferData is a fake api to update client-side memory glesapi.delFunctionByName("glClientSideBufferData") glesapi.delFunctionByName("glClientSideBufferSubData") glesapi.delFunctionByName("glCreateClientSideBuffer") glesapi.delFunctionByName("glDeleteClientSideBuffer") glesapi.delFunctionByName("glCopyClientSideBuffer") glesapi.delFunctionByName("glPatchClientSideBuffer") # glGenGraphicBuffer_ARM, glGraphicBufferData_ARM and glDeleteGraphicBuffer are fake APIs to use GraphicBuffer on Android or to use DMA buffer on Linux glesapi.delFunctionByName("glGenGraphicBuffer_ARM") glesapi.delFunctionByName("glGraphicBufferData_ARM") glesapi.delFunctionByName("glDeleteGraphicBuffer_ARM") dispatcher = Dispatcher() ############################################################# sys.stdout = open('eglproc_auto.hpp', 'w') print('// Generated by', sys.argv[0]) print('#ifndef _DISPATCH_EGLPROC_HPP_') print('#define _DISPATCH_EGLPROC_HPP_') print() print('#include "eglimports.hpp"') print('#include "common/os.hpp"') print() print('#ifndef GLES_CALLCONVENTION') print('#define GLES_CALLCONVENTION') print('#endif') print() print('void * _getProcAddress(const char *procName);') print('void ResetGLFuncPtrs();') print() dispatcher.dispatchApi(eglapi) print() dispatcher.dispatchApi(glesapi) print() print('#endif /* !_DISPATCH_EGLPROC_HPP_ */') print() ############################################################# sys.stdout = open('eglproc_auto.cpp', 'w') print('// Generated by', sys.argv[0]) print('#include <dispatch/eglproc_auto.hpp>') print() dispatcher.defineFptrs(eglapi) print() dispatcher.defineFptrs(glesapi) print() ResetGLFuncPtrs() print()
StarcoderdataPython
4813353
# coding=utf-8 # Copyright 2014 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import (absolute_import, division, generators, nested_scopes, print_function, unicode_literals, with_statement) import os from pants.backend.python.code_generator import CodeGenerator from pants.base.build_environment import get_buildroot from pants.base.exceptions import TaskError from pants.ivy.bootstrapper import Bootstrapper from pants.ivy.ivy import Ivy from pants.util.dirutil import safe_mkdir class PythonAntlrBuilder(CodeGenerator): """ Antlr builder. """ def run_antlrs(self, output_dir): # TODO(<NAME>): graduate to a JvmToolTask and/or merge with the java code gen AntlrGen # task. args = [ '-dependency', 'org.antlr', 'antlr', self.target.antlr_version, '-types', 'jar', '-main', 'org.antlr.Tool', '--', '-fo', output_dir ] for source in self.target.sources_relative_to_buildroot(): abs_path = os.path.join(get_buildroot(), source) args.append(abs_path) try: ivy = Bootstrapper.default_ivy() ivy.execute(args=args) # TODO: Needs a workunit, when we have a context here. except (Bootstrapper.Error, Ivy.Error) as e: raise TaskError('ANTLR generation failed! {0}'.format(e)) def generate(self): # Create the package structure. path = self.sdist_root package = '' for module_name in self.target.module.split('.'): path = os.path.join(path, module_name) if package == '': package = module_name else: package = package + '.' + module_name safe_mkdir(path) with open(os.path.join(path, '__init__.py'), 'w') as f: if package != self.target.module: # Only write this in the non-leaf modules. f.write("__import__('pkg_resources').declare_namespace(__name__)") self.created_namespace_packages.add(package) self.created_packages.add(package) # autogenerate the python files that we bundle up self.run_antlrs(path)
StarcoderdataPython
106861
from exp.experiment import Experiment from exp.auctions import Auction def test_experiment_generates_auctions(): experiment = Experiment() assert experiment.auctions is not None assert len(experiment.auctions) > 0 for aid, auction in experiment.auctions.items(): assert type(auction) is Auction assert type(aid) is int
StarcoderdataPython
3591706
from django.shortcuts import render from django.http import HttpResponse # Create your views here. def index(request): my_dict = {'insert_me': "Hello I'm from views.py"} return render(request, 'first_app/index.html', context=my_dict) def help(request): help_dict = {'help_me': 'hello from views.py'} return render(request, 'first_app/help.html', context=help_dict)
StarcoderdataPython
1949869
#!/usr/bin/env python2.7 # Forked from crowd-api # 15/12/2017 version 1.0 by <NAME> # - Add feature to update user metadata # - Add feature to get all active users import requests import json import random import string import logging class client(object): def __init__(self, **kwargs): if 'api_url' not in kwargs: raise ValueError("Crowd API URL must be given") self.api_url = kwargs['api_url'] if 'app_name' not in kwargs: raise ValueError("Crowd API application name must be given") if 'app_password' not in kwargs: raise ValueError("Crowd API application password must be given") self.auth = (kwargs['app_name'], kwargs['app_password']) def api_get(self, query): req = requests.get(self.api_url + query, headers = {"Content-Type": "application/json", "Accept": "application/json"}, auth = self.auth) return req def api_post(self, query, data): req = requests.post(self.api_url + query, headers = {"Content-Type": "application/json", "Accept": "application/json"}, auth = self.auth, data = json.dumps(data)) return req def api_put(self, query, data): req = requests.put(self.api_url + query, headers = {"Content-Type": "application/json", "Accept": "application/json"}, auth = self.auth, data = json.dumps(data)) return req def get_user(self, **kwargs): if "username" in kwargs: if kwargs['username'] == 'all': req = self.api_get("/search?entity-type=user&restriction=active%3Dtrue&max-results=10000") return req.json() else: req = self.api_get("/user?username=" + kwargs['username'] + "&expand=attributes") if req.status_code == 200: return {"status": True, "user": req.json()} if req.status_code == 404: return {"status": False, "user": None} else: return {"status": False, "code": req.status_code, "reason": req.content} else: raise ValueError("Must pass username") def update_user(self, **kwargs): if "username" not in kwargs: raise ValueError("Must pass username") if "data" not in kwargs: raise ValueError("Must pass data") req = self.api_put("/user/?username=" + kwargs['username'], kwargs['data']) print req.status_code if req.status_code == 204: return {"status": True} else: return {"status": False, "code": req.status_code, "reason": req.content} def get_user_groups(self, **kwargs): groups = [] if "username" not in kwargs: raise ValueError("Must pass username") req = self.api_get("/user/group/direct?username=" + kwargs['username']) if req.status_code == 200: for group in req.json()['groups']: groups.append(group['name']) return {"status": True, "groups": groups} if req.status_code == 404: return {"status": False, "groups": []} else: return {"status": False, "code": req.status_code, "reason": req.content} def set_user_attribute(self, **kwargs): if "username" not in kwargs: raise ValueError("Must pass username") if "attribute_name" not in kwargs: raise ValueError("Must pass attribute_name") if "attribute_value" not in kwargs: raise ValueError("Must pass attribute_value") else: if not isinstance(kwargs['attribute_value'], list): kwargs['attribute_value'] = [ kwargs['attribute_value'] ] req = self.api_post("/user/attribute?username=" + kwargs['username'], {"attributes": [{"name": kwargs['attribute_name'], "values": kwargs['attribute_value']}]}) if req.status_code == 204: return {"status": True} else: return {"status": False, "code": req.status_code, "reason": req.content} def create_user(self, **kwargs): user = {} for k, v in kwargs.iteritems(): user[k.replace('_', '-')] = v if 'password' not in kwargs: user['password'] = {} user['password']['value'] = ''.join(random.choice(string.ascii_uppercase + string.digits) for _ in range(8)) req_password_change = True else: req_password_change = False user['active'] = True req = self.api_post("/user", user) if req.status_code == 201: # user should change the password at their next login if req_password_change: self.set_user_attribute(username = user['name'], attribute_name = "requiresPasswordChange", attribute_value = True) return {"status": True, "password": user['password']['value']} else: return {"status": True} else: return {"status": False, "code": req.status_code, "reason": req.content} def create_group(self, **kwargs): req = self.api_post("/group", {"groupname": kwargs['name'], "type": "GROUP", "description": kwargs['description'], "active": True}) if req.status_code == 201: return {"status": True} else: return {"status": False, "code": req.status_code, "reason": req.content} def add_user_to_group(self, **kwargs): req = self.api_post("/user/group/direct?username=" + kwargs['username'], {"name": kwargs['groupname']}) if req.status_code == 201: return {"status": True} else: return {"status": False, "code": req.status_code, "reason": req.content}
StarcoderdataPython
4870378
#!/usr/bin/env python from iris_sdk.models.base_resource import BaseData from iris_sdk.models.maps.contact import ContactMap class Contact(ContactMap, BaseData): pass
StarcoderdataPython
385615
<reponame>Dheer08/Python-Projects programming_dictonary = { "Bug":"An error in program that prevents the program running as expected", "Function":"A piece of code that you can call over and over again", } # Retreive print(programming_dictonary["Bug"]) # Adding items programming_dictonary["Loop"] = "The action of doing something again and again" empty_list = [] empty_dictonary = {} # wipe an existing dictonary - helpful in wiping out data of game # programming_dictonary = {} print(programming_dictonary.keys()) print(programming_dictonary.values()) # editing dictonary values programming_dictonary["Bug"] = "An moth in your computer" print(programming_dictonary) # Loop through dictonary for key in programming_dictonary: print(key,end=" : ") print(programming_dictonary[key])
StarcoderdataPython
12855633
<gh_stars>0 import pytest from GraphModels.models.Sarah.model_agricultural_water import AgriculturalWaterNodes from GraphModels.models.Sarah.model_freshwater_available import FreshwaterAvailableNodes from GraphModels.models.Sarah.model_municipal_water import MunicipalWaterNodes nodes_list = AgriculturalWaterNodes + FreshwaterAvailableNodes + MunicipalWaterNodes computationnal_nodes = [node for node in nodes_list if 'computation' in node.keys()] @pytest.mark.parametrize(('node'), nodes_list) def test_node_minimal_keys(node): assert set(['type', 'unit', 'id', 'name']) <= set(node.keys()) @pytest.mark.parametrize(('node'), computationnal_nodes) def test_node_computationnal(node): assert set(['formula', 'name']) == set(node['computation'].keys()) def test_inputs_computation(): inputs_computation = [val for sublist in [node['in'] for node in nodes_list if 'in' in node] for val in sublist] node_ids = [node['id'] for node in nodes_list] assert set(inputs_computation) <= set(node_ids)
StarcoderdataPython
6625395
#!/usr/local/subliminal/env/bin/python from application.db import Session, Directory from application.direct import Subliminal, scan, notify import os import sys import argparse class Scanner(object): def __init__(self, directory_id): self.directory_id = directory_id self.session = Session() def daemonize(self): """Do the UNIX double-fork magic, see Stevens' "Advanced Programming in the UNIX Environment" for details (ISBN 0201563177) http://www.erlenstar.demon.co.uk/unix/faq_2.html#SEC16 """ try: pid = os.fork() if pid > 0: # exit first parent sys.exit(0) except OSError, e: sys.stderr.write('Fork #1 failed: %d (%s)\n' % (e.errno, e.strerror)) sys.exit(1) # decouple from parent environment os.chdir('/') os.setsid() os.umask(0) # do second fork try: pid = os.fork() if pid > 0: # exit from second parent sys.exit(0) except OSError, e: sys.stderr.write('Fork #2 failed: %d (%s)\n' % (e.errno, e.strerror)) sys.exit(1) def start(self): """Start the application and daemonize""" self.daemonize() self.run() def run(self): directory = self.session.query(Directory).get(self.directory_id) if not os.path.exists(directory.path): return 0 s = Subliminal() results = scan(directory.path, s.config, temp_cache=True) if s.config['General']['dsm_notifications']: notify('Downloaded %d subtitle(s) for %d video(s) in directory %s' % (sum([len(s) for s in results.itervalues()]), len(results), directory.name)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='Directory scanner') parser.add_argument('id', help='directory id to scan', metavar='ID') args = parser.parse_args() scanner = Scanner(args.id) scanner.start()
StarcoderdataPython
3589348
<reponame>nikhiljain-413/Hacktoberfest2021_beginner # AUTHOR: <NAME> # Python3 Concept:String traversing # GITHUB: https://github.com/AadityaKumra #capitalize first letter of each word. #input-nikhil jain #output-Nikhil Jain def Capatalize_string(a): a = s.split(' ') n = (' '.join(word.capitalize() for word in a)) return n s = input() final_string = Capatalize_string(s) print(final_string)
StarcoderdataPython
11230494
# Generated by Django 2.2.7 on 2020-02-17 23:01 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('komax_app', '0003_auto_20200217_2235'), ] operations = [ migrations.AlterField( model_name='harnesschart', name='wire_type', field=models.CharField(max_length=256), ), ]
StarcoderdataPython
1864203
# Copyright 2016 Open Source Robotics Foundation, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import rclpy from rclpy.node import Node # import board from std_msgs.msg import String from std_msgs.msg import Int32MultiArray, Int16 from sensor_msgs.msg import Joy, Imu import time import argparse import threading import math euler = [0.0, 0.0, 0.0] class Robot(Node): def __init__( self, simulation=False, debug=False, steer_gain=0.8, speed_limit=0.3, left_trim=-0, right_trim=0, *args, **kwargs ): super().__init__("robot") self.steer_gain = steer_gain self.speed_limit = speed_limit self.left_trim = left_trim self.right_trim = right_trim self.simulation = simulation self.debug = debug self.joy_topic = self.create_subscription(Joy, "joy", self.joy_topic, 10) self.joy_web = self.create_subscription(String, "joy_web", self.joy_web, 10) self.imu_topic = self.create_subscription(Imu, "/imu", self.imu_topic, 10) from simple_pid import PID self.max_speed = 0.002 self.GpioPins_MA = [13, 11, 15, 12] self.GpioPins_MB = [37, 33, 35, 16] # Max spees is [-0.002,0.002], will need to divide teh PID value accorgingly self.pid = PID( 1, 0, 0, output_limits=(-200, 200), setpoint=41, sample_time=0.08 ) # Initialize motors if not self.simulation: from .stepper_lib import BYJMotor # Declare an named instance of class pass a name and type of motor # type of motor(Nema) is case sensitive self.motor_A = BYJMotor("motor_A", "Nema") self.motor_B = BYJMotor("motor_B", "Nema") self.get_logger().info("Motors initialized successfully") def set_steer_gain(self, steer_gain): self.steer_gain = steer_gain def set_speed_limit(self, speed_limit): self.speed_limit = speed_limit def set_left_trim(self, left_trim): self.left_trim = left_trim def set_right_trim(self, right_trim): self.right_trim = right_trim def move(self, speed, steer): speed_l = speed speed_r = speed if not self.simulation: time.sleep(0.1) t1 = threading.Thread( target=self.motor_A.motor_run, args=(self.GpioPins_MA, speed_l / 10000, 1, True, False, "full", 1), ) # motor_A.motor_run(GpioPins_MA, s, 200, True, True, "full", 1) t1.start() t2 = threading.Thread( target=self.motor_B.motor_run, args=(self.GpioPins_MB, -speed_r / 10000, 1, True, False, "full", 1), ) t2.start() else: self.get_logger().info( "Simulation mode: " + str(round(speed_l / 10000, 7)) + "," + str(round(speed_r, 2)) + "angle: " + str(round(euler[0], 2)) + ")" ) def imu_topic(self, msg): global euler euler = euler_from_quaternion( msg.orientation.x, msg.orientation.y, msg.orientation.z, msg.orientation.w, False, 1, ) print( "PID: " + str(round(self.pid(euler[0] / 10000), 7)) + "\t: " + str(euler[0]) + "\t: " + str(euler[1]) + "\t: " + str(euler[2]) ) self.move(self.pid(euler[0]), 0) def joy_topic(self, msg): if self.debug: self.get_logger().info( "joy X: " + str(msg.axes[0]) + " Y: " + str(msg.axes[1]) ) self.move(msg.axes[1], -msg.axes[0]) # These are the buttons to do fine adjustments to the position of the robot if msg.axes[7] != 0: self.move(msg.axes[7] * self.speed_limit - self.left_trim, 0) if msg.axes[6] != 0: self.move(0, -(msg.axes[6] * self.speed_limit - self.left_trim)) if msg.buttons[2] == 1: self.move(0, 0) def joy_web(self, msg): speed = msg.data.split(",") self.move(speed[1], speed[0]) # print(msg.data) def euler_from_quaternion(x, y, z, w, rad=False, approx=1): """ Convert a quaternion into euler angles (roll, pitch, yaw) roll is rotation around x in radians (counterclockwise) pitch is rotation around y in radians (counterclockwise) yaw is rotation around z in radians (counterclockwise) """ t0 = +2.0 * (w * x + y * z) t1 = +1.0 - 2.0 * (x * x + y * y) roll_x = math.atan2(t0, t1) t2 = +2.0 * (w * y - z * x) t2 = +1.0 if t2 > +1.0 else t2 t2 = -1.0 if t2 < -1.0 else t2 pitch_y = math.asin(t2) t3 = +2.0 * (w * z + x * y) t4 = +1.0 - 2.0 * (y * y + z * z) yaw_z = math.atan2(t3, t4) if not rad: roll_x = round(math.degrees(roll_x), approx) pitch_y = round(math.degrees(pitch_y), approx) yaw_z = round(math.degrees(yaw_z), approx) return roll_x, pitch_y, yaw_z # in radians def main(args=None): rclpy.init(args=args) # Construct an argument parser parser = argparse.ArgumentParser() # Add arguments to the parser parser.add_argument( "-s", "--simulation", required=False, action="store_true", default=False, help="Simulation mode: motors are not imported, a message is displayed to simuate the signal", ) parser.add_argument( "-d", "--debug", required=False, action="store_true", default=False, help="Debug mode: robot will print extra log info in the console", ) args = parser.parse_args() robot = Robot(simulation=args.simulation, debug=args.debug) print("Robot ready") if args.debug: print("Debug mode") if args.simulation: print("Simulation mode") rclpy.spin(robot) # Destroy the node explicitly # (optional - otherwise it will be done automatically # when the garbage collector destroys the node object) robot.destroy_node() rclpy.shutdown() if __name__ == "__main__": main()
StarcoderdataPython
11211691
<reponame>sakagarwal/python-aiplatform # -*- coding: utf-8 -*- # Copyright 2021 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import abc from typing import Callable, Dict from werkzeug import Response class BasePlugin(abc.ABC): """Base plugin for cloud training tools endpoints. The plugins support registering http handlers to be used for AI Platform training jobs. """ @staticmethod @abc.abstractmethod def setup() -> None: """Run any setup code for the plugin before webserver is launched.""" raise NotImplementedError @staticmethod @abc.abstractmethod def can_initialize() -> bool: """Check whether a plugin is able to be initialized. Used for checking if correct dependencies are installed, system requirements, etc. Returns: Bool indicating whether the plugin can be initialized. """ raise NotImplementedError @staticmethod @abc.abstractmethod def post_setup_check() -> bool: """Check if after initialization, we need to use the plugin. Example: Web server only needs to run for main node for training, others just need to have 'setup()' run to start the rpc server. Returns: A boolean indicating whether post setup checks pass. """ raise NotImplementedError @abc.abstractmethod def get_routes(self) -> Dict[str, Callable[..., Response]]: """Get the mapping from path to handler. This is the method in which plugins can assign different routes to different handlers. Returns: A mapping from a route to a handler. """ raise NotImplementedError
StarcoderdataPython
9639423
import torch import torch.nn as nn def L2_loss(l1,l2): loss = nn.MSELoss() losses = loss(l1,l2) return losses def L1_loss(l1,l2): loss = nn.L1Loss() losses = loss(l1,l2) return losses def cosine(l1,l2): loss = nn.CosineSimilarity() losses = loss(l1,l2) return losses
StarcoderdataPython
1968457
"""Switch for Cozytouch.""" import logging from cozytouchpy.constant import DeviceType from homeassistant.components.switch import SwitchEntity from homeassistant.helpers.update_coordinator import CoordinatorEntity from .const import CONF_COZYTOUCH_ACTUATOR, COORDINATOR, DOMAIN _LOGGER = logging.getLogger(__name__) async def async_setup_entry(hass, config_entry, async_add_entities): """Set the sensor platform.""" coordinator = hass.data[DOMAIN][config_entry.entry_id][COORDINATOR] actuator = hass.data[DOMAIN][CONF_COZYTOUCH_ACTUATOR] devices = [] for device in coordinator.data.devices.values(): if actuator == "all": devices.append(CozytouchSwitch(device, coordinator)) elif actuator == "pass" and device.widget == DeviceType.PILOT_WIRE_INTERFACE: devices.append(CozytouchSwitch(device, coordinator)) elif actuator == "i2g" and device.widget == DeviceType.HEATER: devices.append(CozytouchSwitch(device, coordinator)) async_add_entities(devices) class CozytouchSwitch(CoordinatorEntity, SwitchEntity): """Header switch (on/off).""" def __init__(self, device, coordinator): """Initialize switch.""" self.heater = device self.coordinator = coordinator @property def unique_id(self): """Return the unique id of this switch.""" return self.heater.id @property def name(self): """Return the display name of this switch.""" return "{heater}".format(heater=self.heater.name) @property def is_on(self): """Return true if switch is on.""" return self.coordinator.data.devices[self.unique_id].is_on @property def device_class(self): """Return the device class.""" return "heat" @property def device_info(self): """Return the device info.""" return { "name": self.name, "identifiers": {(DOMAIN, self.unique_id)}, "manufacturer": "Cozytouch", "via_device": (DOMAIN, self.heater.data["placeOID"]), } async def async_turn_on(self, **kwargs) -> None: """Turn the entity on.""" await self.heater.turn_on() await self.coordinator.async_request_refresh() async def async_turn_off(self, **kwargs): """Turn the entity off.""" await self.heater.turn_off() await self.coordinator.async_request_refresh()
StarcoderdataPython
8059873
<filename>my_slackclient.py import subprocess from slackclient import SlackClient import requests from requests.packages.urllib3.exceptions import InsecurePlatformWarning from requests.packages.urllib3.exceptions import SNIMissingWarning requests.packages.urllib3.disable_warnings(InsecurePlatformWarning) requests.packages.urllib3.disable_warnings(SNIMissingWarning) class my_slackclient(SlackClient): def __init__(self, token): super(my_slackclient, self).__init__(token) @staticmethod def _run_command(command): p = subprocess.Popen(command, stdout = subprocess.PIPE, stderr = subprocess.STDOUT) return iter(p.stdout.readline, b'') def post_message(self, channel, text): return self.api_call('chat.postMessage', channel = channel, text = text, as_user = True, unfurl_links = False, link_names = True) def update_message(self, channel, text, id): return self.api_call('chat.update', channel = channel, ts = id, text = text, as_user = True, unfurl_links = False, link_names = True) def delete_message(self, channel, ts): return self.api_call('chat.delete', channel = channel, ts = ts, as_user = True) def show_is_typing(self, channel): self.server.send_to_websocket({'type': 'typing', 'channel': channel, 'id': 1}) def get_user(self, user): try: json_data = self.api_call('users.info', user = user) if 'ok' in json_data and json_data['ok'] and 'user' in json_data and 'name' in json_data['user']: return json_data['user'] except Exception as e: pass return user def upload_file(self, channel, filename): command = 'curl -F file=@' + filename + ' -F channels=' + channel + ' -F token=' + self.token + ' https://slack.com/api/files.upload' self._run_command(command.split()) def upload_files(self, channel, filenames): for filename in filenames: command = 'curl -s -F file=@' + filename + ' -F channels=' + channel + ' -F token=' + self.token + ' https://slack.com/api/files.upload' p = subprocess.Popen(command, shell=True, stdout = subprocess.PIPE, stderr = subprocess.STDOUT) p.communicate()
StarcoderdataPython
6427569
<gh_stars>10-100 import pytest from wh_habitica import default API_STATUS_UP = {default.JSON_STATUS: default.JSON_UP} LOCAL_NAME = '<NAME>' FACEBOOK_NAME = 'John Facebook' FACEBOOK_ID = '1337' GOOGLE_NAME = '<NAME>' USER_EMAIL = '<EMAIL>' API_USER = { default.JSON_ID: 42, default.JSON_AUTH: { default.JSON_FACEBOOK: {}, default.JSON_GOOGLE: {}, default.JSON_LOCAL: {default.JSON_USERNAME: LOCAL_NAME, default.JSON_EMAIL: USER_EMAIL}, } } API_USER_FACEBOOK = { default.JSON_ID: 42, default.JSON_AUTH: { default.JSON_LOCAL: {}, default.JSON_GOOGLE: {}, default.JSON_FACEBOOK: { default.JSON_DISPLAY_NAME: FACEBOOK_NAME, default.JSON_ID: FACEBOOK_ID, } } } API_USER_GOOGLE = { default.JSON_ID: 42, default.JSON_AUTH: { default.JSON_LOCAL: {}, default.JSON_FACEBOOK: {}, default.JSON_GOOGLE: { default.JSON_DISPLAY_NAME: GOOGLE_NAME, default.JSON_GOOGLE_EMAILS: [{default.JSON_TYPE: u'account', default.JSON_VALUE: USER_EMAIL}], } } } API_USER_INVALID = { default.JSON_ID: 42, default.JSON_AUTH: { default.JSON_FACEBOOK: {}, default.JSON_GOOGLE: {}, default.JSON_LOCAL: {}, 'Invalid_Provider': {default.JSON_USERNAME: LOCAL_NAME, default.JSON_EMAIL: USER_EMAIL}, } } API_TASK = {default.JSON_DELTA: 1} @pytest.fixture def mock_habitica_api(monkeypatch): monkeypatch.setattr('habitica.api.Habitica.status', lambda x: API_STATUS_UP, raising=False) monkeypatch.setattr('habitica.api.Habitica.user', lambda x: API_USER, raising=False) monkeypatch.setattr('wh_habitica.api.HabiticaApi.post_task', lambda x, task_id: API_TASK, raising=False) @pytest.fixture def mock_habitica_api_facebook(monkeypatch): monkeypatch.setattr('habitica.api.Habitica.user', lambda x: API_USER_FACEBOOK, raising=False) @pytest.fixture def mock_habitica_api_google(monkeypatch): monkeypatch.setattr('habitica.api.Habitica.user', lambda x: API_USER_GOOGLE, raising=False) @pytest.fixture def mock_habitica_api_invalid_provider(monkeypatch): monkeypatch.setattr('habitica.api.Habitica.user', lambda x: API_USER_INVALID, raising=False)
StarcoderdataPython
6565310
import numpy as np import json def dump_beautiful_json(annotation, path: str): def convert(o): if isinstance(o, np.generic): return o.item() raise TypeError # now write output to a file json_file = open(path, "w") # magic happens here to make it pretty-printed json_file.write(json.dumps(annotation, indent=4, sort_keys=True, default=convert)) json_file.close()
StarcoderdataPython
3285357
<reponame>wzh99/GSL from typing import Optional, List from tvm import transform import rule from gsl import attr, pat, op, spec, Workload, Subst from gsl.util import Timer class AlgCmp: def create_workload(self) -> Workload: raise NotImplementedError() def get_pass(self) -> Optional[transform.Pass]: pass def gsl_rules(self) -> List[Subst]: raise NotImplementedError() def run(self): # Create workload wl = self.create_workload() # Apply pass timer = Timer() f_pass = self.get_pass() if f_pass is not None: timer.begin() f_pass(wl.mod) print(f'Built-in pass: {timer.end()} s') # Apply GSL rules Subst.profile = True for idx, subst in enumerate(self.gsl_rules()): print(f'Rule {idx + 1}') for _ in range(15): subst(wl, fold_params=False) class InceptionV3(AlgCmp): def create_workload(self) -> Workload: from tvm.relay.testing import inception_v3 net, params = inception_v3.get_workload() wl = Workload(net, params) for subst in [ rule.lower_batch_norm(), rule.conv_mul() ]: wl = subst(wl) return wl def gsl_rules(self) -> List[Subst]: conv_attrs = ['strides', 'padding', 'dilation', 'groups'] def parallel_two_conv(num_ops: int): # Input x = pat.Wildcard() w1 = pat.Variable() w2 = pat.Variable(shape=(None, None, w1.shape[2], w1.shape[3])) # Source pattern conv1 = op.Conv2D(x, w1, groups=1) conv2 = op.Conv2D(x, w2, **pat.same_attr(conv1, conv_attrs)) src = [conv1, conv2] biases = [pat.Variable(), pat.Variable()] if num_ops >= 2: src = [op.BiasAdd(y, b, axis=1) for y, b in zip(src, biases)] if num_ops >= 3: src = [op.ReLU(y) for y in src] # Target pattern w = op.Concatenate((w1, w2), axis=0) y = op.Conv2D(x, w, **pat.same_attr(conv1, conv_attrs)) if num_ops >= 2: y = op.BiasAdd(y, op.Concatenate(biases, axis=0)) if num_ops >= 3: y = op.ReLU(y) split = op.Split(y, indices_or_sections=(w1.shape[0],), axis=1) tgt = [split[0], split[1]] # Build substitution return Subst(src, tgt) def parallel_three_conv(num_ops: int): # Input x = pat.Wildcard() w1 = pat.Variable() w2 = pat.Variable(shape=(None, None, w1.shape[2], w1.shape[3])) w3 = pat.Variable(shape=(None, None, w1.shape[2], w1.shape[3])) # Source pattern conv1 = op.Conv2D(x, w1, groups=1) conv2 = op.Conv2D(x, w2, **pat.same_attr(conv1, conv_attrs)) conv3 = op.Conv2D(x, w3, **pat.same_attr(conv1, conv_attrs)) src = [conv1, conv2, conv3] biases = [pat.Variable() for _ in range(3)] if num_ops >= 2: src = [op.BiasAdd(y, b, axis=1) for y, b in zip(src, biases)] if num_ops >= 3: src = [op.ReLU(y) for y in src] # Target pattern w = op.Concatenate((w1, w2, w3), axis=0) y = op.Conv2D(x, w, **pat.same_attr(conv1, conv_attrs)) if num_ops >= 2: y = op.BiasAdd(y, op.Concatenate(biases, axis=0)) if num_ops >= 3: y = op.ReLU(y) split = op.Split(y, indices_or_sections=(w1.shape[0], w1.shape[0] + w2.shape[0]), axis=1) tgt = [split[0], split[1], split[2]] # Build substitution return Subst(src, tgt) def parallel_conv_variadic(num_ops: int): # Input x = pat.Wildcard() w1 = pat.Variable() w = pat.Variable(shape=(None, None, w1.shape[2], w1.shape[3])) b1 = pat.Variable() b = pat.Variable() # Source pattern conv1 = op.Conv2D(x, w1, groups=1) conv = op.Conv2D(x, w, **pat.same_attr(conv1, conv_attrs)) templates = [conv, w] first = [conv1, w1] y, y1 = conv, conv1 if num_ops >= 2: y1 = bias_add1 = op.BiasAdd(y1, b1, axis=1) y = bias_add = op.BiasAdd(y, b, axis=1) templates += [bias_add, b] first += [bias_add1, b1] if num_ops >= 3: relu1 = op.ReLU(y1) y = relu = op.ReLU(y) templates += [relu] first += [relu1] src = pat.Variadic(y, templates=templates, first=first, min_len=2) # Target pattern i = attr.Symbol() w_inst = src(w, i) concat = op.Concatenate( pat.Variadic(w_inst, templates=[w_inst], index=i, length=src.length), axis=0) y = op.Conv2D(x, concat, **pat.same_attr(conv1, conv_attrs)) if num_ops >= 2: i = attr.Symbol() b_inst = src(b, i) bias_add = op.Concatenate(pat.Variadic(b_inst, templates=[b_inst], index=i, length=src.length), axis=0) y = op.BiasAdd(y, bias_add, axis=1) if num_ops >= 3: y = op.ReLU(y) split = op.Split(y, axis=1, indices_or_sections=attr.Variadic( lambda j: attr.ReduceIndexed(attr.BinaryOp.ADD, lambda k: src(w, k).shape[0], j + 1), length=src.length - 1)) i = attr.Symbol() item = split[i] tgt = pat.Variadic(item, templates=[item], index=i) # Build substitution return Subst(src, tgt) return [ parallel_two_conv(3), parallel_three_conv(3), parallel_conv_variadic(3), ] class Transformer(AlgCmp): def create_workload(self) -> Workload: from model import transformer return transformer.get_workload(6, 64, 4, 128) def gsl_rules(self) -> List[Subst]: def parallel_three_dense(): # Input x = pat.Wildcard() w1 = pat.Variable() w2 = pat.Variable() w3 = pat.Variable() weights = [w1, w2, w3] # Source pattern src = [op.Dense(x, w) for w in weights] # Target pattern dense = op.Dense(x, op.Concatenate(weights, axis=0)) split = op.Split(dense, indices_or_sections=(w1.shape[0], w1.shape[0] + w2.shape[0]), axis=-1) tgt = [split[0], split[1], split[2]] # Build substitution return Subst(src, tgt) return [ rule.parallel_dense(), parallel_three_dense(), rule.parallel_dense_variadic(), ] class NASNet(AlgCmp): def create_workload(self) -> Workload: from model import nasnet model = nasnet.get_model(6) return Workload.from_keras(model, {'input_1': nasnet.batch_shape_nchw}) def gsl_rules(self) -> List[Subst]: def merge_three_element_wise(): # Input x = pat.Wildcard() # Source pattern ew_op = pat.OpWithTrait(spec.OpTrait.ELEMENT_WISE) ew1 = pat.Call(ew_op, x) ew2 = pat.Call(ew_op, x) ew3 = pat.Call(ew_op, x) # Target pattern ew = pat.Call(ew_op, x) # Build substitution return Subst([ew1, ew2, ew3], [ew, ew, ew]) return [ rule.merge_element_wise(), merge_three_element_wise(), rule.merge_element_wise_variadic(), ] if __name__ == '__main__': for cls in [ # InceptionV3, # Transformer, # NASNet, ]: cls().run()
StarcoderdataPython
3494660
from sklearn.cluster import KMeans from .kmeans_torch import kmeans_torch import torch import numpy as np def localize_kmeans_sklearn(threshold=120, tol=1e-4): def localize(image, prev_location): n_flies = prev_location.shape[0] fly_pixels = torch.nonzero(image < threshold).type(torch.float32) fit = KMeans(n_clusters=n_flies, n_init=1, init=prev_location, tol=tol).fit( fly_pixels ) locations = torch.tensor(fit.cluster_centers_) # we do tracking at the end, so we approximate the distance by summing over all the flies. fly_space_distance = torch.linalg.norm( locations.sum(axis=0) - prev_location.sum(axis=0) ) return locations, fly_space_distance return localize def localize_kmeans_torch(threshold=120, tol=1e-4, device="cuda"): def localize(image, prev_location): fly_pixels = torch.nonzero(image < threshold).type(torch.float32) locations, _ = kmeans(fly_pixels, prev_location) # we do tracking at the end, so we approximate the distance by summing over all the flies. fly_space_distance = torch.linalg.norm( locations.sum(axis=0) - prev_location.sum(axis=0) ) return locations, fly_space_distance kmeans = kmeans_torch(tol=tol, device=device) return localize
StarcoderdataPython
3526293
from unittest import TestCase from funpy.fundict import FunDict from logging_config_for_tests import logging_config logging_config() class TestFunDict(TestCase): def test_fundict(self): def filter_gr_1(k: str, v: str) -> bool: return k != '3' d = FunDict({1: 2, 2: 3, 3: 4}) res = (d .map(lambda k, v: (k + 1, v)) .map(lambda k, v: (str(k), str(v))) .print("message1") .filter(lambda k, v: k != '2') .filter(filter_gr_1) .print("message2") .to_list() .py() ) assert res == [('4', '4')]
StarcoderdataPython
5104170
from __future__ import unicode_literals from django import forms from django.views.generic import TemplateView, DetailView from django.views.generic.edit import FormMixin from django.http import HttpResponseRedirect from multipageforms.forms.multiform import MultiForm from multipageforms.forms.multipageform import MultiPageForm from multipageforms.views.generic import AbstractFieldFileMapperMixin from multipageforms.views.generic import ModelMapperMixin from multipageforms.views.generic import UpdateMultiFormView from multipageforms.views.generic import UpdateMultiPageFormView from demo.demoapp.models import FormStorage, FileStorage, Person class TextForm(forms.Form): text = forms.CharField(required=True) class IntegerForm(forms.Form): integer = forms.IntegerField(required=True) class BooleanForm(forms.Form): boolean = forms.BooleanField(required=True) class OptionalTextForm(forms.Form): optional_text = forms.CharField(required=False) class FileForm(forms.Form): document = forms.FileField() class OptionalFileForm(forms.Form): optional_document = forms.FileField(required=False) class OptionalForm(forms.Form): optional_text = forms.CharField(required=False) optional_document = forms.FileField(required=False) class ChoiceForm(forms.Form): CHOICES = (('choice1', 'choice1'), ('choice2', 'choice2')) choice = forms.MultipleChoiceField(choices=CHOICES) chance = forms.ChoiceField(choices=CHOICES) class PersonForm(forms.ModelForm): class Meta: model = Person fields = ('name',) class DemoMultiForm(MultiForm): slug = 'form1' formclasses = ( TextForm, IntegerForm, BooleanForm, PersonForm, ChoiceForm, OptionalForm ) class DemoMultiFormWithFiles(MultiForm): slug = 'form1' formclasses = ( TextForm, IntegerForm, BooleanForm, PersonForm, FileForm, OptionalFileForm, ChoiceForm, OptionalForm ) class IndexView(TemplateView): template_name = 'demoapp/index.html' class CreateMultiFormView(TemplateView): _url = '/multiform/%i/' def post(self, request, *args, **kwargs): formstorage = FormStorage.objects.create(storage='{}') url = self._url % (formstorage.pk) return HttpResponseRedirect(url) class CreateMultiFormWithFilesView(CreateMultiFormView): _url = '/multiform-files/%i/' class DemoFileMapperMixin(AbstractFieldFileMapperMixin): filefield = 'storage' filemodel = FileStorage def get_files_from_field(self, fieldname): return self.object.filestorage_set.filter(html_field_name=fieldname) def upload_files_to_field(self, fileobj, field, instance=None): try: doc = self.filemodel.objects.get(form=instance, html_field_name=field) doc.storage = fileobj except self.filemodel.DoesNotExist: doc = self.filemodel(storage=fileobj, html_field_name=field, form=instance) doc.save() return doc class MultiFormView(UpdateMultiFormView): template_name = 'demoapp/multiform.html' model = FormStorage datafield = 'storage' form_class = DemoMultiForm _url = '/multiform/%i/preview/' def get_success_url(self): obj = self.get_object() return self._url % obj.pk class MultiFormWithFilesView(DemoFileMapperMixin, MultiFormView): form_class = DemoMultiFormWithFiles _url = '/multiform-files/%i/preview/' class PreviewMultiFormView(ModelMapperMixin, FormMixin, DetailView): template_name = 'demoapp/preview_multiform.html' model = FormStorage filefield = 'storage' filemodel = FileStorage form_class = DemoMultiForm datafield = 'storage' def get_context_data(self, **kwargs): kwargs = super(PreviewMultiFormView, self).get_context_data(**kwargs) form_kwargs = self.get_form_kwargs() kwargs['form'] = self.form_class(**form_kwargs) return kwargs class PreviewMultiFormWithFilesView(DemoFileMapperMixin, PreviewMultiFormView): form_class = DemoMultiFormWithFiles class DemoMultiPageForm(MultiPageForm): class Page1MultiForm(MultiForm): slug = 'page1' formclasses = (TextForm, IntegerForm) class Page2MultiForm(MultiForm): slug = 'page2' formclasses = (BooleanForm,) class Page3MultiForm(MultiForm): slug = 'page3' formclasses = (PersonForm,) class Page4MultiForm(MultiForm): slug = 'page4' formclasses = (ChoiceForm,) class Page5MultiForm(MultiForm): slug = 'page5' formclasses = (OptionalForm,) pages = ( Page1MultiForm, Page2MultiForm, Page3MultiForm, Page4MultiForm, Page5MultiForm, ) class DemoMultiPageFormWithFiles(DemoMultiPageForm): class Page1MultiForm(MultiForm): slug = 'page1' formclasses = (TextForm, IntegerForm) class Page2MultiForm(MultiForm): slug = 'page2' formclasses = (BooleanForm,) class Page3MultiForm(MultiForm): slug = 'page3' formclasses = (PersonForm,) class Page4MultiForm(MultiForm): slug = 'page4' formclasses = (ChoiceForm,) class Page5MultiForm(MultiForm): slug = 'page5' formclasses = (OptionalForm,) class Page6MultiForm(MultiForm): slug = 'page6' formclasses = (FileForm, OptionalFileForm) pages = ( Page1MultiForm, Page2MultiForm, Page3MultiForm, Page4MultiForm, Page5MultiForm, Page6MultiForm, ) class CreateMultiPageFormView(TemplateView): form_class = DemoMultiPageForm _url = '/multipageform/%i/%s' def post(self, request, *args, **kwargs): mpf = self.form_class() first_page = mpf.first_page().slug formstorage = FormStorage.objects.create(storage='{}') url = self._url % (formstorage.pk, first_page) return HttpResponseRedirect(url) class CreateMultiPageFormWithFilesView(CreateMultiPageFormView): _url = '/multipageform-files/%i/%s' class MultiPageFormView(UpdateMultiPageFormView): template_name = 'demoapp/multipageform.html' model = FormStorage form_class = DemoMultiPageForm datafield = 'storage' _url = '/multipageform/%i/%s/' def get_success_url(self): obj = self.get_object() page = self.get_form_class() return self._url % (obj.pk, page.slug) class MultiPageFormWithFilesView(DemoFileMapperMixin, MultiPageFormView): form_class = DemoMultiPageFormWithFiles _url = '/multipageform-files/%i/%s/' class PreviewMultiPageFormView(ModelMapperMixin, FormMixin, DetailView): template_name = 'demoapp/preview_multipageform.html' model = FormStorage form_class = DemoMultiPageForm datafield = 'storage' def get_context_data(self, **kwargs): kwargs = super(PreviewMultiPageFormView, self).get_context_data(**kwargs) form_kwargs = self.get_form_kwargs() kwargs['pages'] = self.form_class(**form_kwargs) kwargs['pageslug'] = 'preview' return kwargs class PreviewMultiPageFormWithFilesView(DemoFileMapperMixin, PreviewMultiPageFormView): form_class = DemoMultiPageFormWithFiles
StarcoderdataPython
1732234
<reponame>JasonLearning/dzdp_spider class ValidationFailure(RuntimeError): """ Raised by :meth:`Model.validate()` when the value given for a particular field is not valid. :ivar field_name: The value of the field's ``name`` attribute. :ivar description: A description of the failure. """ def __init__(self, field_name, description): self.field_name = field_name self.description = description def __str__(self): return "In field '%s': %s" % (self.field_name, self.description) class UnknownAttribute(ValidationFailure): """ Raised by :meth:`Model.validate()` when ``allow_unknown_data`` is ``False`` and an unknown attribute is encountered. Inherits from :class:`.ValidationFailure`. """ def __init__(self, attribute_name): self.attribute_name = attribute_name def __str__(self): return "Unknown attribute '%s'." % (self.attribute_name, )
StarcoderdataPython
1932934
<filename>examples/example_deviceiocontrol/processes.py from process_base import * from targets import * import subprocess import os class ProcessDeviceIo(ProcessBase): def __init__(self, Controller, crashdump_folder, breakpoint_handler, pid, ph, unique_identifier, verbose, logger): # Specific options self.path_to_exe = b"C:\\Windows\\System32\\notepad.exe" self.command_line = b"notepad.exe" self.logger = logger # Initialize self.initialize(Controller, self.__class__.__name__, crashdump_folder, breakpoint_handler, pid, ph, unique_identifier, verbose) def on_debugger_attached(self, Engine): # Set the types self.Engine = Engine self.types = meddle_types(Engine) # Add the targets Engine.AddTarget(Target_Handles) Engine.AddTarget(Target_DeviceIoControl) # Handle process loaded Engine.HandleProcessLoaded() # Start an auto-it script try: subprocess.Popen(['autoit3.exe', os.path.join(os.path.dirname(__file__), "..", "autoit", "notepad_print.au3"), str(self.pid), ">nul"], shell=True) except: print "Warning: autoit3.exe not found on path. Please install it and add it to path to increase the attack surface." # Resume the process that we created suspended. This is called just after the debugger has been attached. if self.start_th >= 0: windll.kernel32.ResumeThread(self.start_th); def log_csv(self, fields): self.logger.log_event(fields)
StarcoderdataPython
4828442
# Generated by Django 2.2.12 on 2020-05-29 12:15 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('video_pipeline', '0003_coursevideouploadsenabledbydefault_videouploadsenabledbydefault'), ] operations = [ migrations.CreateModel( name='VEMPipelineIntegration', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('change_date', models.DateTimeField(auto_now_add=True, verbose_name='Change date')), ('enabled', models.BooleanField(default=False, verbose_name='Enabled')), ('client_name', models.CharField(default='VEM-Prod', help_text='Oauth client name of VEM service.', max_length=100)), ('api_url', models.URLField(help_text='video encode manager API URL.', verbose_name='Internal API URL')), ('service_username', models.CharField(default='vem_service_user', help_text='Username created for VEM Integration, e.g. vem_service_user.', max_length=100)), ('changed_by', models.ForeignKey(editable=False, null=True, on_delete=django.db.models.deletion.PROTECT, to=settings.AUTH_USER_MODEL, verbose_name='Changed by')), ], options={ 'ordering': ('-change_date',), 'abstract': False, }, ), ]
StarcoderdataPython
5110816
<filename>synced_side_bar_watcher.py import os import sublime import sublime_plugin isNotSyncedSideBarEnabled = True class SyncedSideBarRevealInSideBarCommand(sublime_plugin.WindowCommand): def run(self): self.window.run_command ("reveal_in_side_bar") def is_visible(self): # print( 'isNotSyncedSideBarEnabled: %s, not not self.window.folders: %s' % ( isNotSyncedSideBarEnabled, not not self.window.folders() ) ) return isNotSyncedSideBarEnabled and not not self.window.folders() def plugin_loaded(): global isNotSyncedSideBarEnabled userSettings = sublime.load_settings('Preferences.sublime-settings') packageSettings = sublime.load_settings('SyncedSideBar.sublime-settings') def updateIsSyncedSideBarEnabled(): # print(' updateIsSyncedSideBarEnabled!!!!') updateGlobalData( packageSettings, is_package_enabled( userSettings, "SyncedSideBar" ) ) def updateGlobalData( packageSettings, isEnabled ): global isNotSyncedSideBarEnabled if isEnabled: isEnabled = packageSettings.get( "reveal-on-activate" ) isNotSyncedSideBarEnabled = not isEnabled else: isNotSyncedSideBarEnabled = True # print( 'isNotSyncedSideBarEnabled: ' + str( isNotSyncedSideBarEnabled ) ) def read_pref_async(): # print('READ_PREF_ASYNC!!!!') updateIsSyncedSideBarEnabled() def read_user_preferences(): # print('READ_package_PREFERENCES!!!!') userSettings = sublime.load_settings('Preferences.sublime-settings') updateIsSyncedSideBarEnabled() def read_package_preferences(): # print('READ_package_PREFERENCES!!!!') packageSettings = sublime.load_settings('SyncedSideBar.sublime-settings') updateIsSyncedSideBarEnabled() # read initial setting, after all packages being loaded sublime.set_timeout_async( read_pref_async, 10000 ) # listen for changes packageSettings.add_on_change( "Preferences", read_user_preferences ) packageSettings.add_on_change( "SyncedSideBar", read_package_preferences ) # print( packageSettings.get( "reveal-on-activate" ) ) # print( userSettings.get( "ignored_packages" ) ) def is_package_enabled( userSettings, package_name ): # print( "is_package_enabled = " + sublime.packages_path() # + "/All Autocomplete/ is dir? " \ # + str( os.path.isdir( sublime.packages_path() + "/" + package_name ) ) ) # print( "is_package_enabled = " + sublime.installed_packages_path() # + "/All Autocomplete.sublime-package is file? " \ # + str( os.path.isfile( sublime.installed_packages_path() + "/" + package_name + ".sublime-package" ) ) ) ignoredPackages = userSettings.get('ignored_packages') if ignoredPackages is not None: return ( os.path.isdir( sublime.packages_path() + "/" + package_name ) \ or os.path.isfile( sublime.installed_packages_path() + "/" + package_name + ".sublime-package" ) ) \ and not package_name in ignoredPackages return os.path.isdir( sublime.packages_path() + "/" + package_name ) \ or os.path.isfile( sublime.installed_packages_path() + "/" + package_name + ".sublime-package" ) class SyncedSideBarToggleSideBarCommand(sublime_plugin.WindowCommand): def run(self): # if self.window.is_sidebar_visible(): # self.window.run_command ("toggle_side_bar") # else: self.window.run_command ("reveal_in_side_bar")
StarcoderdataPython
1784990
from socket import * import threading from threading import Thread import tkinter import pyaudio import time def Receive(): while True: try: msg = client_socket.recv(BuffferSize).decode("utf8") if msg[0:12] == "{modifyList}": setNameList(msg[12:]) else: msg_list.insert(tkinter.END, msg) except OSError: break def setNameList(ll): online_list.delete('0','end') name_list = ll.split(",") for i in range(len(name_list)): online_list.insert(tkinter.END, name_list[i]) return def Receive_audio(): CHUNK = 1024 FORMAT = 8 CHANNELS = 2 RATE = 44100 p = pyaudio.PyAudio() stream = p.open(format=FORMAT, channels=CHANNELS, rate=RATE, output=True) Break = False first_time_end = threading.local() first_time_end = True while True: try: data = audio_socket.recv(CHUNK) except: p.terminate() sn_socket.close() audio_socket.close() break while len(data) > 0 and any(data): first_time_end = True if Playing: stream.write(data) try: data = audio_socket.recv(CHUNK) except: p.terminate() sn_socket.close() audio_socket.close() Break = True break else: p.terminate() sn_socket.close() audio_socket.close() Break = True break if first_time_end: try: song_name = sn_socket.recv(1024).decode("utf8") except: p.terminate() sn_socket.close() audio_socket.close() break playing_name.config(text=song_name) first_time_end = False if Break: break def Send(event=None): msg = my_msg.get() my_msg.set("") client_socket.send(bytes(msg, "utf8")) def Leave(event=None): my_msg.set("{quit}") Send() audio_socket.close() client_socket.close() sn_socket.close() Window.quit() def PlayPause(event=None): global Playing, Host, audio_port, audio_socket, sn_socket, sn_port if Playing: audio_socket.close() play_button.config(text="▶︎") playing_name.config(text="None") Playing = False else: Playing = True play_button.config(text="◼︎") audio_socket = socket(AF_INET, SOCK_STREAM) audio_socket.connect((Host, audio_port)) sn_socket = socket(AF_INET, SOCK_STREAM) sn_socket.connect((Host, sn_port)) song_name = sn_socket.recv(1024).decode("utf8") playing_name.config(text=song_name) audio_receive_thread = Thread(target=Receive_audio) audio_receive_thread.start() def On_Closing(event=None): my_msg.set("{quit}") Send() audio_socket.close() client_socket.close() sn_socket.close() Window.quit() # tkinter gui Window = tkinter.Tk() Window.title("Chat Room") Window.geometry("608x427+379+173") Window.minsize(1, 1) Window.maxsize(1425, 870) Window.resizable(1, 1) # main message display msg_list = tkinter.Listbox(Window, font=('Arial', 14)) msg_list.place(relx=0.033, rely=0.141, relheight=0.714, relwidth=0.683) msg_list.configure(background="#d9d9d9") msg_list.configure(relief="flat") my_msg = tkinter.StringVar() my_msg.set("Type your messages here...") # online label online_label = tkinter.Label(Window, font=('Arial', 17)) online_label.place(relx=0.757, rely=0.164, height=28, width=106) online_label.configure(background="#ffffff") online_label.configure(text="Online User") # online list online_list = tkinter.Listbox(Window, font=('Arial', 17), justify = "center") online_list.place(relx=0.74, rely=0.234, relheight=0.571, relwidth=0.204) online_list.configure(background="#90A4AE") online_list.configure(relief="flat") # typing field entry_field = tkinter.Entry(Window, font=('Arial', 14), textvariable=my_msg) entry_field.bind("<Return>", Send) entry_field.place(relx=0.03, rely=0.867,height=40, relwidth=0.683) # send button send_button = tkinter.Button(Window, text="Send", font=('Arial', 20), command=Send) send_button.place(relx=0.757, rely=0.867,width=100, height=40) send_button.configure(foreground="black") send_button.configure(highlightbackground="#1565C0") send_button.configure(relief="flat") # leave button leave_button = tkinter.Button(Window, text="Leave", font=('Arial', 14), command=Leave) leave_button.place(relx=0.872, rely=0.023, height=28, width=69) leave_button.configure(foreground="black") leave_button.configure(highlightbackground="#D32F2F") # play button play_button = tkinter.Button(Window, text="▶︎", font=('Arial', 25), command=PlayPause) play_button.configure(anchor = 's') play_button.place(relx=0.033, rely=0.023, height=40, width=60) play_button.configure(highlightbackground="#FFC400") # now playing label now_playing = tkinter.Label(Window, text="Now Playing:", font=('Arial', 18)) now_playing.place(relx=0.140, rely=0.023, height=48) # playing name label playing_name = tkinter.Label(Window, text="None", font=('Arial', 18)) playing_name.place(relx=0.320, rely=0.047, height=28) Window.protocol("WM_DELETE_WINDOW", On_Closing) # main Host = '127.0.0.1' Port = 12000 BuffferSize = 1024 Addr = (Host, Port) Playing = False name_list = [] client_socket = socket(AF_INET, SOCK_STREAM) client_socket.connect(Addr) audio_socket = socket(AF_INET, SOCK_STREAM) audio_port = 12002 sn_socket = socket(AF_INET, SOCK_STREAM) sn_port = 12003 receive_thread = Thread(target=Receive) receive_thread.start() tkinter.mainloop() # loop GUI execution. receive_thread.join()
StarcoderdataPython
11307105
<reponame>vyvojer/django-chatbot import logging from django_chatbot.models import Update from testapp.models import Note log = logging.getLogger(__name__) def default(update: Update): update.message.reply("I don't understand you :( /help") def start(update: Update): update.message.reply(""" Command list: /help - help /add - add note /delete - delete note /count - count notes """) # noqa def count(update: Update): user = update.message.from_user note_count = Note.objects.filter(user=user).count() update.message.reply(f"Note(s) count: {note_count}")
StarcoderdataPython
12852277
<reponame>dcdanko/MetaSUB_CAP<filename>scripts/alpha_diversity_stats.py #! /usr/bin/env python3 import sys import math import argparse as ap from json import dumps as jdumps from random import choices class LevelNotFoundException(Exception): pass def checkLevel(taxon, level): if level == 'species': return ('s__' in taxon) and ('t__' not in taxon) elif level == 'genus': return ('g__' in taxon) and ('s__' not in taxon) raise LevelNotFoundException() class Sample: def __init__(self, tool, level): self.tool = tool self.level = level self.abunds = {} self._total = None def addLine(self, line): taxon, abund = line.split() if checkLevel(taxon, self.level): self.abunds[taxon] = float(abund) @classmethod def parseMPA(ctype, tool, mpaFile, level): sample = Sample(tool, level) with open(mpaFile) as mF: for line in mF: sample.addLine(line) return sample def subset(self, n): if n == self.total(): return self brkpoints = [0] rmap = {} for i, (key, val) in enumerate(self.abunds.items()): brkpoints.append(brkpoints[i] + val) rmap[i] = key i = 0 outAbunds = {} indices = range(int(self.total())) indices = sorted(choices(indices, k=n)) for ind in indices: while ind >= brkpoints[i + 1]: i += 1 key = rmap[i] try: outAbunds[key] += 1 except KeyError: outAbunds[key] = 1 outSamp = Sample(self.tool, self.level) outSamp.abunds = outAbunds return outSamp def total(self): if self._total is None: self._total = sum(self.abunds.values()) return self._total def richness(self): return len(self.abunds) def shannonIndex(self): H = 0 for count in self.abunds.values(): p = count / self.total() assert p <= 1 H += p * math.log(p) if H < 0: H *= -1 return H def ginisimpson(self): H = 0 for count in self.abunds.values(): p = count / self.total() assert p <= 1 H += p * p H = 1 - H return H def chao1(self): sings, doubs = 0, 1 # give doubles a pseudocount to avoid div by zero for val in self.abunds.values(): if val == 1: sings += 1 elif val == 2: doubs += 1 est = (sings * sings) / (2 * doubs) return self.richness() + est def getSubsets(N): vals = [1, 5, 10, 100, 500, 1000, 10 * 1000] vals = [el * 1000 for el in vals] out = [] for val in vals: if val < N: out.append(val) else: out.append(N) break return out def handleCounts(tool, fname): obj = { 'species': { 'richness': {}, 'shannon_index': {}, 'gini-simpson': {}, 'chao1': {} }, 'genus': { 'richness': {}, 'shannon_index': {}, 'gini-simpson': {}, 'chao1': {} } } for level in obj.keys(): sample = Sample.parseMPA(tool, fname, level) for subsetSize in getSubsets(sample.total()): subsample = sample.subset(subsetSize) key = str(subsetSize) if subsample == sample: key = 'all_reads' obj[level]['shannon_index'][key] = subsample.shannonIndex() obj[level]['richness'][key] = subsample.richness() obj[level]['gini-simpson'][key] = subsample.ginisimpson() obj[level]['chao1'][key] = subsample.chao1() return obj def handleProportions(tool, fname): obj = { 'species': { 'richness': {}, 'shannon_index': {}, 'gini-simpson': {} }, 'genus': { 'richness': {}, 'shannon_index': {}, 'gini-simpson': {} } } for level in obj.keys(): sample = Sample.parseMPA(tool, fname, level) key = 'all_reads' obj[level]['richness'][key] = sample.richness() obj[level]['shannon_index'][key] = sample.shannonIndex() obj[level]['gini-simpson'][key] = sample.ginisimpson() return obj def main(): args = parseArgs() outobj = {} for mpaFilePair in args.mpa_files: tool, mpaFile = mpaFilePair.split(',') if tool.lower() == 'kraken': outobj['kraken'] = handleCounts(tool, mpaFile) elif tool.lower() == 'metaphlan2': outobj['metaphlan2'] = handleProportions(tool, mpaFile) else: sys.stderr.write('tool {} unsupported'.format(tool)) sys.stdout.write(jdumps(outobj)) def parseArgs(): parser = ap.ArgumentParser() parser.add_argument('mpa_files', nargs='+', help='pairs of tool_name,mpa_file') args = parser.parse_args() return args if __name__ == '__main__': main()
StarcoderdataPython
4856670
<reponame>fusion-research/TrajectoryNet<gh_stars>10-100 from __future__ import absolute_import from __future__ import division from __future__ import print_function import time import math import numpy as np import tensorflow as tf from sklearn import preprocessing import os import inspect import sys import datetime import cProfile from enum import Enum from sklearn import metrics from sklearn.metrics import recall_score from sklearn.metrics import average_precision_score import threading from tensorflow.python.platform import flags from sklearn.metrics import confusion_matrix from tensorflow.python.client import timeline from customized_activations import maxout from customized_rnncell import NewGRUCell import Learning_rate import Monitor from param import RNNType from MyThread import MyThread from Log import Log from Evaluate import evaluate_accuracy, evaluate_stat, evaluate_confusion import Data import Config # for testing only import cProfile # check num of parameters if len(sys.argv) < 2: dconfile = 'config.json' elif (sys.argv[1].isdigit()): dconfile = 'config.json' test_task = int(sys.argv[1]) # speed up testing else: dconfile = sys.argv[1] logPath = './log/' dataPath = './data/' conf = Config.DataConfig(confile=dconfile) task = conf.task # overwrite testing task try: test_task except NameError: pass else: conf.test_id = [test_task] # this data are generated from create_npy.py x_file = 'x_mobility_context.npy' y_file = 'y_mobility_point.npy' mmsi_file = 'mmsi_mobility_point.npy' # selection of cell type rnnType = RNNType.GRU_b gpuMode = conf.useGPU exp_seq_len = conf.truncated_seq_len deep_output = False use_dropout = False weight_initializer = conf.weight_initializer evaluate_freq = conf.evaluate_freq bias_initializer = tf.random_uniform_initializer(0, 0.001) if conf.activation == "maxout": rnnCell = NewGRUCell activation_function = tf.nn.tanh else: rnnCell = tf.contrib.rnn.GRUCell if conf.activation == "sigmoid": activation_function = tf.nn.sigmoid elif conf.activation == "relu": activation_function = tf.nn.relu else: activation_function = tf.nn.tanh lr = Learning_rate.Learning_rate(global_lr=0.001, decay_rate=0.999, decay_step=50) # load data x = np.load(dataPath + x_file) y = np.load(dataPath+y_file) mmsi = np.load(dataPath+mmsi_file) # feature selection def filter_features(x): print("warning: not all featuers are used") x = x[:, :, 0:40] return x #x = filter_features(x) def filter_classes(x, y, mmsi, cls): valid_index = np.concatenate([np.where(mmsi == i) for i in cls], axis=1)[0] num_features = x.shape[2] (x, y, mmsi) = Data.Data.reorganizeSeq(x, y, mmsi, exp_seq_len) num_examples = x.shape[0] unique_mmsi = np.unique(mmsi[0]) num_classes = len(np.unique(y)) test_vessel = conf.test_id val_vessel = conf.val_id if conf.testmode == "lobo": (train_index, test_index, valid_index) = Data.Data.splitDataset(mmsi[0], test_vessel, val_vessel) elif conf.testmode == "random": (train_index, test_index, valid_index) = Data.Data.randomSplitDataset(mmsi[0], train_perc = conf.train_ratio, val_perc = conf.val_ratio) print(train_index) train_seq_len = mmsi[1][train_index] test_seq_len = mmsi[1][test_index] valid_seq_len = mmsi[1][valid_index] num_class = np.unique(y).size log = Log(task, logPath, num_class) monitor = Monitor.Monitor(loss=True, num_class=num_class) def encode_label(y): """encode label into a matrix based on the number of classes""" num_class = np.unique(y).size if num_class > 2: # multi-class lb = preprocessing.LabelBinarizer() lb.fit(range(num_class)) labels = np.array([lb.transform(i) for i in y]) #labels = lb.transform(y) else: # 2-class # the labels are stored in reserve in the numpy array # fishing is labeled 0 Y0 = np.logical_not(y) * 1 # Y1 represents fishing Y1 = y # Y0 represents non-fishing labels = np.array([Y0, Y1]) labels = labels.transpose(1,2,0) # dim: [example; length; classes] return labels #labels = encode_label(y) # no need to encode y labels = y def get_all_data(conf): """generate data for all vessels""" early = mmsi[1] X = x.transpose((1, 0, 2)) return (X, labels, early) class VesselModel(object): """The vessel classification lstm model.""" def __init__(self, config): self.num_threads = conf.num_threads self.hidden_size = conf.hidden_size self.learning_rate = conf.learning_rate self.num_layers = conf.num_layers self.num_epochs = conf.num_epochs self.batch_size = config.batch_size self.is_training = config.is_training self.is_validation = config.is_validation self.current_step = tf.Variable(0) # place holder for sequence that we will provide at runtime # batch size will be different for training and testing set self._input_data = tf.placeholder(tf.float32, [exp_seq_len, self.batch_size, num_features], name="input-data") # target for one batch self._targets = tf.placeholder(tf.int64, [self.batch_size, exp_seq_len], name = "y-target") # get the length of all training and test sequences if self.is_training: self.seq_len = exp_seq_len*self.batch_size #sum(train_seq_len) elif self.is_validation: self.seq_len = sum(valid_seq_len) else: self.seq_len = sum(test_seq_len) with tf.name_scope("lstm-cell") as scope: rnn_cell = self.get_rnn_cell() with tf.name_scope("multi-rnn-cell") as scope: cell = self.get_multi_rnn_cell(rnn_cell) # what timesteps we want to stop at, notice it's different for each batch self._early_stop = tf.placeholder(tf.int64, shape=[self.batch_size], name = "early-stop") self.set_initial_states(cell) #with tf.name_scope("dropout") as scope: # if self.is_training and config.keep_prob < 1: # self._input_data = tf.nn.dropout(self._input_data, config.keep_prob) outputs = [] # Creates a recurrent neural network specified by RNNCell "cell # inputs for rnn needs to be a list, each item being a timestep. # Args: # cell: An instance of RNNCell. # inputs: A length T list of inputs, each a tensor of shape # [batch_size, cell.input_size]. # initial_state: (optional) An initial state for the RNN. This must be # a tensor of appropriate type and shape [batch_size x cell.state_size]. # dtype: (optional) The data type for the initial state. Required if # initial_state is not provided. # sequence_length: Specifies the length of each sequence in inputs. # An int32 or int64 vector (tensor) size [batch_size]. Values in [0, T). # scope: VariableScope for the created subgraph; defaults to "RNN". # # Returns: # A pair (outputs, state) where: # outputs is a length T list of outputs (one for each input) # state is the final state with tf.name_scope("rnn-outputs") as scope: self.get_outputs(cell) self.valid_target = self.get_valid_sequence(tf.reshape(self._targets, [exp_seq_len * self.batch_size]), num_classes) # valid digit target self.lstm_output = self.valid_output if deep_output: with tf.name_scope("deep-output-layer") as scope: softmax_size = self.hidden_size * 2 if rnnType == RNNType.LSTM_b or rnnType == RNNType.GRU_b else self.hidden_size softmax_wout = tf.get_variable("softmax_w_deepout", [softmax_size, self.higher_hidden_size]) softmaxb_dout = tf.get_variable("softmax_b_deepout", [self.higher_hidden_size]) self.valid_output = tf.sigmoid(tf.matmul(self.valid_output, softmax_wout) + softmaxb_dout) if use_dropout: self.valid_output = tf.nn.dropout(self.valid_output, keep_prob = 0.5) #softmax_wout2 = tf.get_variable("softmax_w_deepout2", [self.hidden_size, self.hidden_size]) #softmaxb_dout2 = tf.get_variable("softmax_b_deepout2", [self.hidden_size]) #self.valid_output = tf.matmul(self.valid_output, softmax_wout2) + softmaxb_dout2 #if use_dropout: # self.valid_output = tf.nn.dropout(self.valid_output, keep_prob = 0.5) with tf.name_scope("softmax-W") as scope: softmax_w = self.get_softmax_layer() self.w = softmax_w with tf.name_scope("softmax-b") as scope: softmax_b = tf.get_variable("softmax_b", [num_classes], initializer=bias_initializer) with tf.name_scope("softmax-predictions") as scope: self._predictions = tf.matmul(self.valid_output, softmax_w) + softmax_b self._prob_predictions = tf.nn.softmax(self._predictions) self.digit_predictions = tf.argmax(self._prob_predictions, axis=1) with tf.name_scope("confusion-matrix") as scope: self.confusion_matrix = tf.confusion_matrix(self.valid_target, self.digit_predictions) # Weighted cross-entropy loss for a sequence of logits (per example). # at: tensorflow/python/ops/seq2seq.py # Args: # logits: List of 2D Tensors of shape [batch_size x num_decoder_symbols]. # targets: List of 1D batch-sized int32 Tensors of the same length as logits. # weights: List of 1D batch-sized float-Tensors of the same length as logits. with tf.name_scope("seq2seq-loss-by-example") as scpoe: self.loss = tf.contrib.legacy_seq2seq.sequence_loss_by_example( [self._predictions], [self.valid_target], [tf.ones([int(self.getTensorShape(self.valid_target)[0])])]) self._cost = tf.reduce_mean(self.loss) self._accuracy = tf.contrib.metrics.accuracy(self.digit_predictions, self.valid_target) # Add summary ops to collect data if conf.tensorboard: self.w_hist = tf.summary.histogram("weights", softmax_w) self.b_hist = tf.summary.histogram("biases", softmax_b) self.y_hist_train = tf.summary.histogram("train-predictions", self._predictions) self.y_hist_test = tf.summary.histogram("test-predictions", self._predictions) self.mse_summary_train = tf.summary.scalar("train-cross-entropy-cost", self._cost) self.mse_summary_test = tf.summary.scalar("test-cross-entropy-cost", self._cost) with tf.name_scope("optimization") as scope: self._train_op = tf.train.AdamOptimizer(self.learning_rate).minimize(self._cost, global_step=self.current_step) #self._train_op = tf.train.GradientDescentOptimizer(self.learning_rate).minimize(self._cost, global_step=self.current_step) def get_rnn_cell(self): """Create rnn_cell based on RNN type""" if rnnType == RNNType.LSTM_b: lstm_cell_fw = tf.contrib.rnn.LSTMCell(self.hidden_size, state_is_tuple=True, use_peepholes=conf.peephole) lstm_cell_bw = tf.contrib.rnn.LSTMCell(self.hidden_size, state_is_tuple=True, use_peepholes=conf.peephole) return (lstm_cell_fw, lstm_cell_bw) elif rnnType == RNNType.LSTM_u: lstm_cell = rnn_cell.BasicLSTMCell(self.hidden_size, forget_bias=1, state_is_tuple=True, orthogonal_scale_factor=conf.init_scale, initializer = weight_initializer) return lstm_cell elif rnnType == RNNType.GRU: gru_cell = rnnCell(self.hidden_size, activation=activation_function) return gru_cell else: lstm_cell_fw = rnnCell(self.hidden_size, activation=activation_function) lstm_cell_bw = rnnCell(self.hidden_size, activation=activation_function) return (lstm_cell_fw, lstm_cell_bw) def get_multi_rnn_cell(self, rnn_cell): """Create multiple layers of rnn_cell based on RNN type""" if rnnType == RNNType.LSTM_b or rnnType == RNNType.GRU_b: (lstm_cell_fw, lstm_cell_bw) = rnn_cell cell_fw = tf.contrib.rnn.MultiRNNCell([rnnCell(self.hidden_size, activation=activation_function) for _ in range(self.num_layers)]) cell_bw = tf.contrib.rnn.MultiRNNCell([rnnCell(self.hidden_size, activation=activation_function) for _ in range(self.num_layers)]) return (lstm_cell_fw, lstm_cell_bw) elif rnnType == RNNType.LSTM_u or rnnType == RNNType.GRU: cell = tf.contrib.rnn.MultiRNNCell([rnnCell(self.hidden_size, activation=activation_function) for _ in range(self.num_layers)]) return cell def set_initial_states(self, cell): """set initial states based on RNN types""" # Initial state of the LSTM memory # If `state_size` is an int or TensorShape, then the return value is a # `N-D` tensor of shape `[batch_size x state_size]` filled with zeros. # If `state_size` is a nested list or tuple, then the return value is # a nested list or tuple (of the same structure) of `2-D` tensors with # the shapes `[batch_size x s]` for each s in `state_size`. if rnnType == RNNType.LSTM_b or rnnType == RNNType.GRU_b: (cell_fw, cell_bw) = cell self.initial_state_fw = cell_fw.zero_state(self.batch_size, tf.float32) self.initial_state_bw = cell_bw.zero_state(self.batch_size, tf.float32) elif rnnType == RNNType.LSTM_u or rnnType == RNNType.GRU: self._initial_state = cell.zero_state(self.batch_size, tf.float32) def get_outputs(self, cell): """ get output tensor of the RNN""" # At: tensorflow/tensorflow/python/ops/rnn.py # Args: # Unlike `rnn`, the input `inputs` is not a Python list of `Tensors`. Instead, # it is a single `Tensor` where the maximum time is either the first or second # dimension (see the parameter `time_major`). The corresponding output is # a single `Tensor` having the same number of time steps and batch size. # # If time_major == False (default), this must be a tensor of shape: # `[batch_size, max_time, input_size]`, or a nested tuple of such elements # If time_major == True, this must be a tensor of shape: # `[max_time, batch_size, input_size]`, or a nested tuple of such elements # # Returns: # If time_major == False (default), this will be a `Tensor` shaped: # `[batch_size, max_time, cell.output_size]`. # If time_major == True, this will be a `Tensor` shaped: # `[max_time, batch_size, cell.output_size]`. if rnnType == RNNType.LSTM_b or rnnType == RNNType.GRU_b: (cell_fw, cell_bw) = cell self.outputs, self.state = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, self._input_data, sequence_length=self._early_stop, initial_state_fw=self.initial_state_fw, initial_state_bw=self.initial_state_bw, time_major=True, dtype='float32') output_fw, output_bw = self.outputs output_fw = tf.transpose(output_fw, perm=[1, 0, 2]) output_bw = tf.transpose(output_bw, perm=[1, 0, 2]) outputs = tf.concat(axis=2, values=[output_fw, output_bw]) # Concatenates tensors along one dimension. # this will flatten the dimension of the matrix to [batch_size * num_steps, num_hidden_nodes] # However, this is not the true output sequence, since padding added a number of empty elements # Extra padding elements should be removed from the output sequence. # Here first concatenate all vessels into one long sequence, including paddings self.output = tf.reshape(tf.concat(axis=0, values=outputs), [exp_seq_len * self.batch_size, self.hidden_size*2]) # Remove padding here self.valid_output = self.get_valid_sequence(self.output, self.hidden_size*2) elif rnnType == RNNType.LSTM_u or rnnType == RNNType.GRU: self.outputs, self.state = tf.nn.dynamic_rnn(cell, self._input_data, sequence_length=self._early_stop, initial_state=self._initial_state, time_major=True, dtype='float32') # This is a workaround with tf.reshape(). # To make data with the same vessel continguous after reshape, # we need to transpose it first. outputs = tf.transpose(self.outputs, perm=[1, 0, 2]) # Concatenates tensors along one dimension. # this will flatten the dimension of the matrix to [batch_size * num_steps, num_hidden_nodes] # However, this is not the true output sequence, since padding added a number of empty elements # Extra padding elements should be removed from the output sequence. # Here first concatenate all vessels into one long sequence, including paddings self.output = tf.reshape(tf.concat(axis=0, values=outputs), [exp_seq_len * self.batch_size, self.hidden_size]) # Remove padding here self.valid_output = self.get_valid_sequence(self.output, self.hidden_size) def get_softmax_layer(self): if deep_output: softmax_w = tf.get_variable("softmax_w", [self.higher_hidden_size, num_classes]) elif rnnType == RNNType.LSTM_b or rnnType == RNNType.GRU_b: softmax_w = tf.get_variable("softmax_w", [self.hidden_size*2, num_classes]) elif rnnType == RNNType.LSTM_u or rnnType == RNNType.GRU: softmax_w = tf.get_variable("softmax_w", [self.hidden_size, num_classes]) return softmax_w def get_valid_sequence(self, seq, feature_size): """remove padding from sequences""" if self.is_training: stop = train_seq_len elif self.is_validation: stop = valid_seq_len else: stop = test_seq_len valid_sequence_list = [] for i in range(self.batch_size): if len(tf.Tensor.get_shape(seq)) == 2: sub_seq = tf.slice(seq, [exp_seq_len*i, 0], [ stop[i], feature_size]) else: sub_seq = tf.slice(seq, [exp_seq_len*i], [stop[i]]) valid_sequence_list.append(sub_seq) valid_sequence = tf.concat(axis=0, values=valid_sequence_list) return valid_sequence def getTensorShape(this, tensor): return tf.Tensor.get_shape(tensor) @property def prob_predictions(self): return self._prob_predictions @property def input_data(self): return self._input_data @property def inputs(self): return self._inputs @property def targets(self): return self._targets @property def predictions(self): return self._predictions @property def early_stop(self): return self._early_stop @property def initial_state(self): return self._initial_state @property def cost(self): return self._cost @property def accuracy(self): return self._accuracy @property def train_op(self): return self._train_op @property def final_state(self): return self._final_state def test_model(sess, minibatch): # test and validate model if conf.test_mode: run_batch(sess, mtest, test_data, tf.no_op(), minibatch) t_train = MyThread(run_batch, (sess, m, train_data, tf.no_op(), minibatch)) t_test = MyThread(run_batch, (sess, mtest, test_data, tf.no_op(), minibatch)) t_val = MyThread(run_batch, (sess, mval, val_data, tf.no_op(), minibatch)) t_train.start() t_test.start() t_val.start() t_train.join() result_train = t_train.get_result() t_test.join() result_test = t_test.get_result() t_val.join() result_val = t_val.get_result() result = result_train + result_test + result_val monitor.new(result, minibatch) return result def run_batch(session, m, data, eval_op, minibatch): """Runs the model on the given data.""" # prepare data for input x, y, e_stop = data epoch_size = x.shape[1] // m.batch_size # record results, keep results for each minibatch in list costs = [] correct = [] for batch in range(epoch_size): x_batch = x[:,batch*m.batch_size : (batch+1)*m.batch_size,:] y_batch = y[batch*m.batch_size : (batch+1)*m.batch_size,:] e_batch = e_stop[batch*m.batch_size : (batch+1)*m.batch_size] temp_dict = {m.input_data: x_batch} temp_dict.update({m.targets: y_batch}) temp_dict.update({m.early_stop: e_batch}) #m.learning_rate = lr.get_lr() # train the model if m.is_training and eval_op == m.train_op: _ = session.run([eval_op], feed_dict=temp_dict) print("minibatch {0}: {1}/{2}, lr={3:0.5f}\r".format(minibatch, batch, epoch_size,m.learning_rate),) lr.increase_global_step() # track stats every 10 minibatches if minibatch % evaluate_freq == 0: result = test_model(session, minibatch) # recursive function log.write(result, minibatch) minibatch += 1 # test the model else: cost, confusion, accuracy, _ = session.run([m.cost, m.confusion_matrix, m._accuracy, eval_op], feed_dict=temp_dict) # keep results for this minibatch costs.append(cost) correct.append(accuracy * sum(e_batch)) # print test confusion matrix if not m.is_training and not m.is_validation: print(confusion) # output predictions in test mode if conf.test_mode: pred = session.run([m._prob_predictions], feed_dict=temp_dict) pred = np.array(pred) np.set_printoptions(threshold=np.nan) print(pred.shape) print(pred) #results = np.column_stack((tar, pred)) #np.savetxt("results/prediction.result", pred)#, fmt='%.3f') print("output target and predictions to file prediction.csv") exit() if batch == epoch_size - 1: accuracy = sum(correct) / float(sum(e_stop)) return(sum(costs)/float(epoch_size), accuracy) # training: keep track of minibatch number return(minibatch) def getPredFileName(minibatch): """get the output of the prediction files""" return (logPath+str(test_vessel[0])+'/pred-'+task + str(minibatch)+'.csv') def getLearnedParameters(param_name='model/bidirectional_rnn/fw/gru_cell/candidate/weights:0', filename='learned_embedding'): #print(tf.trainable_variables()) var = [v for v in tf.trainable_variables() if v.name == param_name][0] x = var.eval() np.savetxt(filename, x) def main(_): now = time.time() # get config train_conf = Config.TrainingConfig(is_training = True, is_validation = False, batch_size = conf.batch_size) test_conf = Config.TrainingConfig(is_training = False, is_validation = False, batch_size = len(test_index)) valid_conf = Config.TrainingConfig(is_training = False, is_validation = True, batch_size = len(valid_index)) # prepare all data to evaluate with tf.Session() as session: X_all, Y_all, e_stop_all = get_all_data(test_conf) # random shuffle, very important for stochastic gradient descent with minibatch np.random.shuffle(train_index) # specify training and test vessels X_train = X_all[:,train_index,:] y_train = Y_all[train_index,:] stop_train = e_stop_all[train_index] #print(X_train.shape) #(X_train, y_train, stop_train) = Data.Data.upsample((X_train, y_train, stop_train), cls=1, times=4) #print(X_train.shape) perm = np.random.permutation(X_train.shape[1]) X_train = X_all[:,perm,:] y_train = Y_all[perm,:] stop_train = e_stop_all[perm] X_test = X_all[:,test_index,:] y_test = Y_all[test_index,:] stop_test = e_stop_all[test_index] X_valid = X_all[:,valid_index,:] y_valid = Y_all[valid_index,:] stop_valid = e_stop_all[valid_index] # delete variables to save RAM del X_all del Y_all del e_stop_all global train_data train_data = (X_train, y_train, stop_train) global test_data test_data = (X_test, y_test, stop_test) global val_data val_data = (X_valid, y_valid, stop_valid) config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.1 config.intra_op_parallelism_threads=conf.num_threads # config.log_device_placement=True session = tf.Session(config=config) minibatch = 0 with tf.Graph().as_default(), session as sess: tf.set_random_seed(0) if weight_initializer == "uniform": initializer = tf.random_uniform_initializer(0, conf.init_scale) elif weight_initializer == "orthogonal": initializer = tf.orthogonal_initializer(gain=conf.init_scale) else: print("Error: wrong weight initializer") exit() with tf.variable_scope("model", reuse=None, initializer=initializer): global m m = VesselModel(config=train_conf) with tf.variable_scope("model", reuse=True, initializer=initializer): global mtest mtest = VesselModel(config=test_conf) with tf.variable_scope("model", reuse=True, initializer=initializer): global mval mval = VesselModel(config=valid_conf) if conf.checkpoint or conf.restore: # Add ops to save and restore all the variables. saver = tf.train.Saver() if conf.tensorboard: global writer writer = tf.summary.FileWriter(logPath+"tf-logs", sess.graph_def) if not conf.restore: tf.global_variables_initializer().run() #initialize all variables in the model else: saver.restore(sess, dataPath+task) print("Model restored.") # training for i in range(conf.num_epochs): print("running epoch {0}".format(i)) minibatch = run_batch(sess, m, train_data, m.train_op, minibatch) # get best results best = monitor.getBest() log.write(best, monitor.minibatch) log.close() # save the model if conf.checkpoint: # Save the variables to disk save_path = saver.save(sess, dataPath+task) print("Model saved in file: %s" % save_path) later = time.time() difference = int(later - now) print('time elapsed: {:} seconds'.format(difference)) def prof(main=None): f = flags.FLAGS f._parse_flags() main = main or sys.modules['__main__'].main profile=cProfile.Profile() profile.run('main(sys.argv)') kProfile=lsprofcalltree.KCacheGrind(profile) kFile=open('profile','w+') kProfile.output(kFile) kFile.close() if __name__ == "__main__": if not gpuMode: with tf.device('/cpu:0'): tf.app.run() else: tf.app.run()
StarcoderdataPython
5086433
<filename>examples/cp/basic/house_building.py # -------------------------------------------------------------------------- # Source file provided under Apache License, Version 2.0, January 2004, # http://www.apache.org/licenses/ # (c) Copyright IBM Corp. 2015, 2016 # -------------------------------------------------------------------------- """ This problem schedule a series of tasks of varying durations where some tasks must finish before others start. And assign workers to each of the tasks such that each worker is assigned to only one task to a given time. The objective of the problem is to maximize the matching worker skill level to the tasks. Please refer to documentation for appropriate setup of solving configuration. """ from docplex.cp.model import CpoModel from collections import namedtuple #----------------------------------------------------------------------------- # Initialize the problem data #----------------------------------------------------------------------------- # Number of Houses to build NB_HOUSES = 5 # Max number of periods for the schedule MAX_SCHEDULE = 318 # House construction tasks Task = (namedtuple("Task", ["name", "duration"])) TASKS = {Task("masonry", 35), Task("carpentry", 15), Task("plumbing", 40), Task("ceiling", 15), Task("roofing", 5), Task("painting", 10), Task("windows", 5), Task("facade", 10), Task("garden", 5), Task("moving", 5), } # The tasks precedences TaskPrecedence = (namedtuple("TaskPrecedence", ["beforeTask", "afterTask"])) TASK_PRECEDENCES = {TaskPrecedence("masonry", "carpentry"), TaskPrecedence("masonry", "plumbing"), TaskPrecedence("masonry", "ceiling"), TaskPrecedence("carpentry", "roofing"), TaskPrecedence("ceiling", "painting"), TaskPrecedence("roofing", "windows"), TaskPrecedence("roofing", "facade"), TaskPrecedence("plumbing", "facade"), TaskPrecedence("roofing", "garden"), TaskPrecedence("plumbing", "garden"), TaskPrecedence("windows", "moving"), TaskPrecedence("facade", "moving"), TaskPrecedence("garden", "moving"), TaskPrecedence("painting", "moving"), } # Workers Name and level for each of there skill Skill = (namedtuple("Skill", ["worker", "task", "level"])) SKILLS = {Skill("Joe", "masonry", 9), Skill("Joe", "carpentry", 7), Skill("Joe", "ceiling", 5), Skill("Joe", "roofing", 6), Skill("Joe", "windows", 8), Skill("Joe", "facade", 5), Skill("Joe", "garden", 5), Skill("Joe", "moving", 6), Skill("Jack", "masonry", 5), Skill("Jack", "plumbing", 7), Skill("Jack", "ceiling", 8), Skill("Jack", "roofing", 7), Skill("Jack", "painting", 9), Skill("Jack", "facade", 5), Skill("Jack", "garden", 5), Skill("Jim", "carpentry", 5), Skill("Jim", "painting", 6), Skill("Jim", "windows", 5), Skill("Jim", "garden", 9), Skill("Jim", "moving", 8) } # Worker and continuity requirements: if the Task 1 is done on the house, he must do the task 2 in this house Continuity = (namedtuple("Continuity", ["worker", "task1", "task2"])) CONTINUITIES = {Continuity("Joe", "masonry", "carpentry"), Continuity("Jack", "roofing", "facade"), Continuity("Joe", "carpentry", "roofing"), Continuity("Jim", "garden", "moving") } #----------------------------------------------------------------------------- # Prepare the data for modeling #----------------------------------------------------------------------------- # Find_tasks: return the task it refers to in the Tasks vector def find_tasks(name): return next(t for t in TASKS if t.name == name) # Find_skills: return the skill it refers to in the Skills vector def find_skills(worker, task): return next(s for s in SKILLS if (s.worker == worker) and (s.task == task)) # Iterator on houses numbers HOUSES = range(1, NB_HOUSES + 1) # Build the list of all worker names WORKERS = set(sk.worker for sk in SKILLS) #----------------------------------------------------------------------------- # Build the model #----------------------------------------------------------------------------- # Create model mdl = CpoModel() # Variables of the model tasks = {} # dict of interval variable for each house and task wtasks = {} # dict of interval variable for each house and skill for house in HOUSES: for task in TASKS: v = (0, MAX_SCHEDULE) tasks[(house, task)] = mdl.interval_var(v, v, size=task.duration, name="house {} task {}".format(house, task)) for task in SKILLS: wtasks[(house, task)] = mdl.interval_var(optional=True, name="house {} skill {}".format(house, task)) # Maximization objective of the model obj2 = mdl.sum([s.level * mdl.presence_of(wtasks[(h, s)]) for s in SKILLS for h in HOUSES]) mdl.add(mdl.maximize(obj2)) # Constraints of the model for h in HOUSES: # Temporal constraints for p in TASK_PRECEDENCES: mdl.add(mdl.end_before_start(tasks[(h, find_tasks(p.beforeTask))], tasks[(h, find_tasks(p.afterTask))])) # Alternative workers for t in TASKS: mdl.add(mdl.alternative(tasks[(h, t)], [wtasks[(h, s)] for s in SKILLS if (s.task == t.name)], 1)) # Continuity constraints for c in CONTINUITIES: mdl.add(mdl.presence_of(wtasks[(h, find_skills(c.worker, c.task1))]) == mdl.presence_of(wtasks[(h, find_skills(c.worker, c.task2))])) # No overlap constraint for w in WORKERS: mdl.add(mdl.no_overlap([wtasks[(h, s)] for h in HOUSES for s in SKILLS if s.worker == w])) #----------------------------------------------------------------------------- # Solve the model and display the result #----------------------------------------------------------------------------- print("\nSolving model....") msol = mdl.solve(TimeLimit=20, trace_log=False) # Print solution print("Solve status: " + msol.get_solve_status()) if msol.is_solution(): # Sort tasks in increasing begin order ltasks = [] for hs in HOUSES: for tsk in TASKS: (beg, end, dur) = msol[tasks[(hs, tsk)]] ltasks.append((hs, tsk, beg, end, dur)) ltasks = sorted(ltasks, key = lambda x : x[2]) # Print solution print("\nList of tasks in increasing start order:") for tsk in ltasks: print("From " + str(tsk[2]) + " to " + str(tsk[3]) + ", " + tsk[1].name + " in house " + str(tsk[0]))
StarcoderdataPython
1852492
# Part 1 my_tuple = 1, my_tuple my_tuple[1] = 2 # Part 2 - Will Throw an Error # TypeError: 'tuple' object does not support item assignment person = ('Jim', 29, 'Austin, TX') name, age, hometown = person name age hometown
StarcoderdataPython
1706681
<reponame>danielroa98/mariAI import retro # Create the enviroment env = retro.make('SuperMarioBros-Nes', 'Level1-1') env.reset() # We need to loop while not DONE done = False while not done: # See whats happenin env.render() # Call a random button press from the controller # action = env.action_space.sample() action = [0,0,1,0,0,0,0,1,1,1,0,0] #print(action) # ob = image of the screen at the time of the action # reward = amount of reward that he earns from the scenario.json file # done = if the done # info = data.json ob, reward, done, info = env.step(action) # Send vars to the enviroment print(reward)
StarcoderdataPython
9634480
from . import mass, redshift, spin
StarcoderdataPython
1605723
<reponame>Willtech/DistributedUrandom #!/usr/bin/python ## Distributed Urandom Increment Global CoOperative # DUIGCO API # entropy.py script # Source Code produced by Willtech 2021 # v0.1 hand coded by HRjJ ## setup dependencies import requests import time ##URL for delay from API *should be on local system* api_url = "http://127.0.0.1/urandomapi.php?delay" api_entropy = "http://127.0.0.1/urandomapi.php?api" ## Flush API request #entropy_burn = True entropy_burn = False #debug = True debug = False ## MAIN Program while True: try: ##get value for delay r = requests.get(api_url) except: print "DELAY HTTP API GET FAILURE" try: if r.status_code == 200: print "Entropy Wait " + r.text[0:1] time.sleep(int(r.text[0:1])) else: print "Invalid API response detected" print "Retry Wait 10" time.sleep(10) except: print "Invalid API response detected" print "Wait 10" time.sleep(10) if entropy_burn == True: try: ##get entropy e = requests.get(api_entropy) except: print "ENTROPY HTTP API GET FAILURE" try: if e.status_code == 200: print "Entropy Burn" entropy = e.text[0:1000] if debug == True: print entropy print(len(entropy)) #684 else: print "No Entropy Burn" except: print "Invalid API response detected" print "No Entropy Burn"
StarcoderdataPython
9724220
<filename>base/utils.py from django.contrib.auth.models import User from .models import SystemConfig def get_admin_config(): admin_users = User.objects.filter(is_superuser=True) system_config = SystemConfig.objects.all() if admin_users.count() == 0: raise RuntimeError('Please create a superuser!') if system_config.count() == 0: raise RuntimeError('Please login admin site and set system config!') elif system_config.count() != 1: raise RuntimeError('Please login admin site and delete other system config!') if system_config[0].user.config is None: raise RuntimeError( 'Please login admin site and create a config for user {}!'.format(system_config[0].user.username) ) return system_config[0].user.config.server_username, \ system_config[0].user.config.server_private_key_path, \ system_config[0].gpustat_path
StarcoderdataPython
8123650
<filename>fdk_client/platform/models/CompanyProfileValidator.py """Class Validators.""" from marshmallow import fields, Schema from marshmallow.validate import OneOf from ..enums import * from ..models.BaseSchema import BaseSchema class CompanyProfileValidator: class updateCompany(BaseSchema): company_id = fields.Str(required=False) class cbsOnboardGet(BaseSchema): company_id = fields.Str(required=False) class getCompanyMetrics(BaseSchema): company_id = fields.Str(required=False) class editBrand(BaseSchema): company_id = fields.Str(required=False) brand_id = fields.Str(required=False) class getBrand(BaseSchema): company_id = fields.Str(required=False) brand_id = fields.Str(required=False) class createBrand(BaseSchema): company_id = fields.Str(required=False) class createCompanyBrandMapping(BaseSchema): company_id = fields.Str(required=False) class getBrands(BaseSchema): company_id = fields.Str(required=False) page_no = fields.Int(required=False) page_size = fields.Int(required=False) q = fields.Str(required=False) class createLocation(BaseSchema): company_id = fields.Str(required=False) class getLocations(BaseSchema): company_id = fields.Str(required=False) store_type = fields.Str(required=False) q = fields.Str(required=False) stage = fields.Str(required=False) page_no = fields.Int(required=False) page_size = fields.Int(required=False) class updateLocation(BaseSchema): company_id = fields.Str(required=False) location_id = fields.Str(required=False) class getLocationDetail(BaseSchema): company_id = fields.Str(required=False) location_id = fields.Str(required=False) class createLocationBulk(BaseSchema): company_id = fields.Str(required=False)
StarcoderdataPython
8127925
<reponame>GuangC-iScience/rnn-viscoelasticity #!/usr/bin/env python #! author: GC @ 11/25/2020 customized class for stacked RNN layers import numpy as np import tensorflow as tf import tensorflow.keras.backend as K from tensorflow.keras.models import load_model from tensorflow.keras.layers import LSTM, Dense, TimeDistributed def RNN_VE(strain_arr, RNNmodel, states=None): """ RNN model of VE constitutive law of one sequence Inputs: strains with the shape (timesteps, n_features) 2-dim inputs Outputs: the stress prediction values """ stress = [] # loop around the timesteps for i in range(strain_arr.shape[0]): inputs = strain_arr[i,:] inputs=np.reshape(inputs, (1, 1, inputs.shape[0])) # inputs should be in 3-dim outputs, h_state0, c_state0, h_state1, c_state1 = RNNmodel.pred(inputs, states) istress = K.get_value(outputs) stress.append(istress) states = [h_state0, c_state0, h_state1, c_state1] return np.asarray(stress) class myLSTM(): def __init__(self, n_hidden, n_features, n_out, model_file): self._n_hidden = n_hidden self._n_features = n_features self._n_out = n_out self._model_file = model_file # self._initial_states = [tf.zeros((1, n_hidden)) for i in range(4)] # obtain the weights best_model = load_model(self._model_file) weights_list = best_model.weights # for the LSTM cell self._kernel_0 = K.get_value(weights_list[0]) self._rec_kernel_0 = K.get_value(weights_list[1]) self._bias_rnn_0 = K.get_value(weights_list[2]) self._kernel_1 = K.get_value(weights_list[3]) self._rec_kernel_1 = K.get_value(weights_list[4]) self._bias_rnn_1 = K.get_value(weights_list[5]) self._kernel_dense = K.get_value(weights_list[6]) self._bias_dense = K.get_value(weights_list[7]) # set up 3 layers self.lstm_layer1 = LSTM(n_hidden, return_sequences=True, return_state=True) self.lstm_layer2 = LSTM(n_hidden, return_sequences=True, return_state=True) self.DenseLayer = TimeDistributed(Dense(n_out, input_shape=(None, 1, self._n_hidden))) # set up the model inputs = tf.keras.Input(shape=(1, self._n_features)) # set the first LSTM layer LSTMout0, h_state0, c_state0 = self.lstm_layer1(inputs) # , initial_state=self._initial_states[0:2]) # set the first LSTM layer LSTMout1, h_state1, c_state1 = self.lstm_layer2(LSTMout0) #, initial_state=self._initial_states[2:]) # get the outputs outputs = self.DenseLayer(LSTMout1) # construct the model self.myRNNet = tf.keras.Model(inputs=inputs, outputs=[outputs, h_state0, c_state0, h_state1, c_state1]) # set up the weights # self.myRNNet.set_weights(weights_list) self.myRNNet.layers[1].set_weights([self._kernel_0, \ self._rec_kernel_0, \ self._bias_rnn_0] ) self.myRNNet.layers[2].set_weights([self._kernel_1, \ self._rec_kernel_1, \ self._bias_rnn_1] ) self.myRNNet.layers[3].set_weights([self._kernel_dense, \ self._bias_dense ]) def pred(self, input_strains, states=None): """ inputs: the (1,1,6) strain input at a single time step The model has to be inherite from Model so that it can be called directly.!!! """ if states is None: # set the first LSTM layer LSTMout0, h_state0, c_state0 = self.lstm_layer1(input_strains) # set the first LSTM layer LSTMout1, h_state1, c_state1 = self.lstm_layer2(LSTMout0) # get the outputs outputs = self.DenseLayer(LSTMout1) else: # set the first LSTM layer LSTMout0, h_state0, c_state0 = self.lstm_layer1(input_strains, initial_state = states[0:2]) # set the first LSTM layer LSTMout1, h_state1, c_state1 = self.lstm_layer2(LSTMout0, initial_state = states[2:]) # get the outputs outputs = self.DenseLayer(LSTMout1) # # construct the model # self.myRNNet = tf.keras.Model(inputs=inputs, outputs=[outputs, h_state0, c_state0, h_state1, c_state1]) return outputs, h_state0, c_state0, h_state1, c_state1
StarcoderdataPython
3595597
<reponame>acocuzzo/python-pubsub # Copyright 2017, Google LLC All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from enum import Enum from google.api_core.exceptions import GoogleAPICallError from typing import Optional class AcknowledgeStatus(Enum): SUCCESS = 1 PERMISSION_DENIED = 2 FAILED_PRECONDITION = 3 INVALID_ACK_ID = 4 OTHER = 5 class AcknowledgeError(GoogleAPICallError): """Error during ack/modack/nack operation on exactly-once-enabled subscription.""" def __init__(self, error_code: AcknowledgeStatus, info: Optional[str]): self.error_code = error_code self.info = info message = None if info: message = str(self.error_code) + " : " + str(self.info) else: message = str(self.error_code) super(AcknowledgeError, self).__init__(message) __all__ = ("AcknowledgeError",)
StarcoderdataPython
5050960
import math import scipy import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from scipy import stats from sklearn import metrics from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import mean_absolute_error, mean_squared_error from sklearn.model_selection import cross_val_score, cross_val_predict, train_test_split, GridSearchCV bike_df = pd.read_csv('data/day.csv') print(f"Shape of the dataset: {bike_df.shape}") print() print("Data types: ") print(bike_df.dtypes) print() print("Data: ") print(bike_df.head(5)) print() print("Description: ") print(bike_df.describe()) print() bike_df['dteday'] = pd.to_datetime(bike_df.dteday) bike_df['season'] = bike_df.season.astype('category') bike_df['yr'] = bike_df.yr.astype('category') bike_df['mnth'] = bike_df.mnth.astype('category') bike_df['holiday'] = bike_df.holiday.astype('category') bike_df['weekday'] = bike_df.weekday.astype('category') bike_df['workingday'] = bike_df.workingday.astype('category') bike_df['weathersit'] = bike_df.weathersit.astype('category') # check missing values print("Missing Values:") print(bike_df.isnull().sum()) print() # Histograms plt.figure(figsize=(15, 8)) sns.barplot(x='mnth', y='cnt', data=bike_df[[ 'mnth', 'cnt', 'season']], hue='season') plt.title('Season monthly distribution') plt.savefig('day-results/season.png') plt.clf() print("Seasonwise distribution: 'day-results/season.png'") print() plt.figure(figsize=(15, 8)) sns.barplot(x='mnth', y='cnt', data=bike_df[[ 'mnth', 'cnt', 'weekday']], hue='weekday') plt.title('Weekday monthly distribution') plt.savefig('day-results/weekday.png') plt.clf() print("Weekday distribution: 'day-results/weekday.png'") print() # Violin Plot plt.figure(figsize=(15, 8)) sns.violinplot(x='yr', y='cnt', data=bike_df[['yr', 'cnt']]) plt.title('Yearly distribution') plt.savefig('day-results/year.png') plt.clf() print("Yearly distribution: 'day-results/year.png'") print() plt.figure(figsize=(15, 8)) sns.barplot(data=bike_df, x='holiday', y='cnt', hue='season') plt.title('Holiday distribution') plt.savefig('day-results/holiday.png') plt.clf() print("Holiday distribution: 'day-results/holiday.png'") print() plt.figure(figsize=(15, 8)) sns.barplot(data=bike_df, x='workingday', y='cnt', hue='season') plt.title('Workingday wise distribution of counts') plt.savefig('day-results/workday.png') plt.clf() print("Workingday distribution: 'day-results/workday.png'") print() # outliers plt.figure(figsize=(15, 8)) sns.boxplot(data=bike_df[['temp', 'windspeed', 'hum']]) plt.title('Temp_windspeed_humidity_outiers') plt.savefig('day-results/outliers.png') plt.clf() print("Outliers: 'day-results/outliers.png'") print() # Replace and impute outliers wind_hum = pd.DataFrame(bike_df, columns=['windspeed', 'hum']) cnames = ['windspeed', 'hum'] for i in cnames: q75, q25 = np.percentile(wind_hum.loc[:, i], [75, 25]) iqr = q75 - q25 min = q25 - (iqr * 1.5) max = q75 + (iqr * 1.5) wind_hum.loc[wind_hum.loc[:, i] < min, :i] = np.nan wind_hum.loc[wind_hum.loc[:, i] > max, :i] = np.nan wind_hum['windspeed'] = wind_hum['windspeed'].fillna( wind_hum['windspeed'].mean()) wind_hum['hum'] = wind_hum['hum'].fillna(wind_hum['hum'].mean()) bike_df['windspeed'] = bike_df['windspeed'].replace(wind_hum['windspeed']) bike_df['hum'] = bike_df['hum'].replace(wind_hum['hum']) print("Imputed data: ") print(bike_df.head(5)) print() # Normal plot plt.figure(figsize=(15, 8)) stats.probplot(bike_df.cnt.tolist(), dist='norm', plot=plt) plt.savefig('day-results/normal.png') plt.clf() print("Normal Plot: 'day-results/normal.png'") print() # Correlation Matrix # Create the correlation matrix correMtr = bike_df.corr() fig = sns.heatmap(correMtr, annot=True, square=True) fig = fig.get_figure() fig.savefig('day-results/correlation.png') plt.clf() print("Correlation Matrix: 'day-results/correlation.png'") print() # Modelling the dataset X_train, X_test, y_train, y_test = train_test_split( bike_df.iloc[:, 0:-3], bike_df.iloc[:, -1], test_size=0.3, random_state=43) X_train.reset_index(inplace=True) y_train = y_train.reset_index() X_test.reset_index(inplace=True) y_test = y_test.reset_index() print(f"Training data shape: {X_train.shape}, {y_train.shape}") print() print(f"Testing data shape: {X_test.shape}, {y_test.shape}") print() print(f"Training data: \n{y_train.head()}") print() print(f"Testing data: \n{y_test.head()}") print() train_attributes = X_train[['season', 'mnth', 'yr', 'weekday', 'holiday', 'workingday', 'weathersit', 'hum', 'temp', 'windspeed']] test_attributes = X_test[['season', 'mnth', 'yr', 'weekday', 'holiday', 'workingday', 'hum', 'temp', 'windspeed', 'weathersit']] cat_attributes = ['season', 'holiday', 'workingday', 'weathersit', 'yr'] num_attributes = ['temp', 'windspeed', 'hum', 'mnth', 'weekday'] train_encoded_attributes = pd.get_dummies( train_attributes, columns=cat_attributes) print('Shape of training data: ', train_encoded_attributes.shape) print() print(train_encoded_attributes.head()) print() X_train = train_encoded_attributes y_train = y_train.cnt.values # print("Performing GridSearch...") # print() # regressor = RandomForestRegressor() # parameters = [{'n_estimators': [150, 200, 250, 300], # 'max_features': ['auto', 'sqrt', 'log2']}] # grid_search = GridSearchCV( # estimator=regressor, param_grid=parameters, n_jobs=-1) # grid_search = grid_search.fit(X_train, y_train) # best_parameters = grid_search.best_params_ # print(best_parameters) # print() test_encoded_attributes = pd.get_dummies( test_attributes, columns=cat_attributes) print('Shape test data: ', test_encoded_attributes.shape) print() print(test_encoded_attributes.head()) print() X_test = test_encoded_attributes y_test = y_test.cnt.values regressor = RandomForestRegressor(n_estimators=150) regressor.fit(X_train, y_train) r_score = regressor.score(X_test, y_test) print("Accuracy of the model: ", r_score) print() y_pred = regressor.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f"Mean Absolute Error: {mae}") print() rmse = math.sqrt(mean_squared_error(y_test, y_pred)) print(f"Root Mean Squared Error: {rmse}") print() feature_importance = regressor.feature_importances_ feature_importance = 100.0 * (feature_importance / feature_importance.max()) sorted_idx = np.argsort(feature_importance) pos = np.arange(sorted_idx.shape[0]) + .5 plt.figure(figsize=(12, 10)) plt.barh(pos, feature_importance[sorted_idx], align='center') plt.yticks(pos, X_train.columns[sorted_idx]) plt.xlabel('Relative Importance') plt.title('Variable Importance') plt.savefig('day-results/features.png') plt.clf() print(f"Important features saved: 'day-results/features.png'") print() plt.plot([obj for obj in y_test[:150]], color='b', label='Actual') plt.plot(y_pred[:150], color='r', label='Predicted') plt.xlabel('Values') plt.ylabel('Count') plt.legend() plt.title('Actual Count vs Predicted Count') plt.savefig('day-results/prediction.png') plt.clf() print(f"Actual vs Prediction Results saved: 'day-results/prediction.png'") print() with open('day-results/output.txt', 'w') as file: file.write("Predictions vs Actual: \n\n") file.write(" Prediction: Actual:\n") i = 0 for obj in y_test: file.write(" {0:15} {1}\n".format(y_pred[i], obj)) i += 1 file.write("\n") print("Text format for prediction saved: 'day-results/output.txt") print()
StarcoderdataPython
6497854
import torch import torch.nn as nn from torchdiffeq import odeint_adjoint as odeint from .wrappers.cnf_regularization import RegularizedODEfunc __all__ = ["CNF"] class CNF(nn.Module): def __init__(self, odefunc, T=1.0, train_T=False, regularization_fns=None, solver='dopri5', atol=1e-5, rtol=1e-5): super(CNF, self).__init__() if train_T: self.register_parameter("sqrt_end_time", nn.Parameter(torch.sqrt(torch.tensor(T)))) else: self.register_buffer("sqrt_end_time", torch.sqrt(torch.tensor(T))) nreg = 0 if regularization_fns is not None: odefunc = RegularizedODEfunc(odefunc, regularization_fns) nreg = len(regularization_fns) self.odefunc = odefunc self.nreg = nreg self.regularization_states = None self.solver = solver self.atol = atol self.rtol = rtol self.test_solver = solver self.test_atol = atol self.test_rtol = rtol self.solver_options = {} def forward(self, z, logpz=None, integration_times=None, reverse=False): if logpz is None: _logpz = torch.zeros(z.shape[0], 1).to(z) else: _logpz = logpz if integration_times is None: integration_times = torch.tensor([0.0, self.sqrt_end_time * self.sqrt_end_time]).to(z) if reverse: integration_times = _flip(integration_times, 0) # Refresh the odefunc statistics. self.odefunc.before_odeint() # Add regularization states. reg_states = tuple(torch.tensor(0).to(z) for _ in range(self.nreg)) if self.training: state_t = odeint( self.odefunc, (z, _logpz) + reg_states, integration_times.to(z), atol=self.atol, rtol=self.rtol, method=self.solver, options=self.solver_options, ) else: state_t = odeint( self.odefunc, (z, _logpz), integration_times.to(z), atol=self.test_atol, rtol=self.test_rtol, method=self.test_solver, ) if len(integration_times) == 2: state_t = tuple(s[1] for s in state_t) z_t, logpz_t = state_t[:2] self.regularization_states = state_t[2:] if logpz is not None: return z_t, logpz_t else: return z_t def get_regularization_states(self): reg_states = self.regularization_states self.regularization_states = None return reg_states def num_evals(self): return self.odefunc._num_evals.item() def _flip(x, dim): indices = [slice(None)] * x.dim() indices[dim] = torch.arange(x.size(dim) - 1, -1, -1, dtype=torch.long, device=x.device) return x[tuple(indices)]
StarcoderdataPython
3562406
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. from typing import Dict, Optional, Union import numpy as np import pandas as pd import torch from torch.distributions import Distribution from gluonts.model.forecast import Forecast, Quantile, SampleForecast class DistributionForecast(Forecast): """ A `Forecast` object that uses a distribution directly. This can for instance be used to represent marginal probability distributions for each time point -- although joint distributions are also possible, e.g. when using MultiVariateGaussian). Parameters ---------- distribution Distribution object. This should represent the entire prediction length, i.e., if we draw `num_samples` samples from the distribution, the sample shape should be samples = trans_dist.sample(num_samples) samples.shape -> (num_samples, prediction_length) start_date start of the forecast freq forecast frequency info additional information that the forecaster may provide e.g. estimated parameters, number of iterations ran etc. """ def __init__( self, distribution: Distribution, start_date: pd.Timestamp, freq: str, item_id: Optional[str] = None, info: Optional[Dict] = None, ) -> None: self.distribution = distribution self.shape = distribution.batch_shape + distribution.event_shape self.prediction_length = self.shape[0] self.item_id = item_id self.info = info assert isinstance( start_date, pd.Timestamp ), "start_date should be a pandas Timestamp object" self.start_date = start_date assert isinstance(freq, str), "freq should be a string" self.freq = freq self._mean = None @property def mean(self) -> np.ndarray: """ Forecast mean. """ if self._mean is not None: return self._mean else: self._mean = self.distribution.mean.cpu().numpy() return self._mean @property def mean_ts(self) -> pd.Series: """ Forecast mean, as a pandas.Series object. """ return pd.Series(data=self.mean, index=self.index) def quantile(self, level: Union[float, str]) -> np.ndarray: level = Quantile.parse(level).value return self.distribution.icdf(torch.tensor([level])).cpu().numpy() def to_sample_forecast(self, num_samples: int = 200) -> SampleForecast: return SampleForecast( samples=self.distribution.sample((num_samples,)).cpu().numpy(), start_date=self.start_date, freq=self.freq, item_id=self.item_id, info=self.info, )
StarcoderdataPython
12841084
import torch from torch import Tensor from torch.nn.utils.rnn import pad_sequence from typing import List, Optional __all__ = [ 'to_tensor', 'truncate', 'add_token', ] def to_tensor(input: List[List[int]], padding_value: Optional[int] = None) -> Tensor: if padding_value is None: output = torch.tensor(input, dtype=torch.long) return output else: output = pad_sequence( [torch.tensor(ids, dtype=torch.long) for ids in input], batch_first=True, padding_value=float(padding_value) ) return output def truncate(input: List[List[int]], max_seq_len: int) -> List[List[int]]: output: List[List[int]] = [] for ids in input: output.append(ids[:max_seq_len]) return output def add_token(input: List[List[int]], token_id: int, begin: bool = True) -> List[List[int]]: output: List[List[int]] = [] if begin: for ids in input: output.append([token_id] + ids) else: for ids in input: output.append(ids + [token_id]) return output
StarcoderdataPython
6447173
<filename>src/LP/solver/solution.py """ <NAME> - March 2021 Solution analyzer of the optimized model """ # Reads instances from the solver and creates plots # you can check the example that used networkx. although it is not very helpful import matplotlib.pyplot as plt import networkx as nx def print_solution_x(x): pass def print_solution_y(y): pass def print_solution_r(y, x, node_pos, L, R): G = nx.DiGraph() list_nodes = list(range(1, L + 1)) G.add_nodes_from(list_nodes) for r in R: for i, j in enumerate(y) : G.add_edge(i, j) # Adding the position attribute to each node # node_pos = {1: (0, 0), 2: (2, 2), 3: (2, -2), 4: (5, 2), 5: (5, -2), 6: (7, 0)} # Create a list of edges in shortest path red_edges = [(i, j) for i, j in y if x[i, j].x > 0] # Create a list of nodes in shortest path for r in R: # If the node is in the shortest path, set it to red, else set it to white color node_col = ['white' if not node in x[r] else 'red' for node in G.nodes()] # If the edge is in the shortest path set it to red, else set it to white color edge_col = ['black' if not edge in red_edges else 'red' for edge in G.edges()] # Draw the nodes nx.draw_networkx(G, node_pos, node_color=node_col, node_size=450) # Draw the node labels # nx.draw_networkx_labels(G1, node_pos,node_color= node_col) # Draw the edges nx.draw_networkx_edges(G, node_pos, edge_color=edge_col) # Draw the edge labels nx.draw_networkx_edge_labels(G, node_pos, edge_color=edge_col, edge_labels=cost) # Remove the axis plt.axis('off') # TODO: Add description of the plot # TODO: Save the plot # Show the plot plt.show()
StarcoderdataPython
377622
""" Holds all global app variables. """ SUPPLIER_DEFAULT_INVENTORY_INTERVAL = 86400 THK_VERSION_NUMBER = "2.0.0" THK_VERSION_NAME = "Arrakis" THK_CYCLE_PID = "ThunderhawkCycle" THK_CYCLE_LAST_POSITION = "thunderhawk cycle last position" """ Collections. """ MONGO_USERS_COLLECTION = "Users" MONGO_SUPPLIER_REGISTER_COLLECTION = "SupplierRegister" MONGO_SUPPLIER_UNAVAILABLE_PRODUCT_COLLECTION = "UnavailableSupplierProducts" MONGO_SUPPLIER_PRODUCT_GROUPING_COLLECTION = "SupplierProductGroups" MONGO_SUPPLIER_HISTORICAL_PRODUCT_COLLECTION = "SupplierHistoricalProducts" MONGO_SUPPLIER_PRODUCT_COLLECTION = "SupplierProducts" MONGO_SUPPLIER_PRODUCT_IMAGE_COLLECTION = "SupplierProductImages" MONGO_SUPPLIER_PRODUCT_METAFIELDS_COLLECTION = "SupplierProductMetafields" MONGO_SUPPLIER_PRODUCT_METAFIELD_CONFIG_COLLECTION = "SupplierProductMetafieldConfig" MONGO_MASTER_PRODUCT_COLLECTION = "MasterProductData" MONGO_TAGS_TAG_FILTER_COLLECTION = "TagFilters" MONGO_MASTER_PRODUCT_OVERRIDES_COLLECTION = "MasterProductDataOverrides" MONGO_MASTER_PRODUCT_TAG_GROUPING_COLLECTION = "MasterProductTagGrouping" MONGO_MASTER_PRODUCT_TRANSPOSITIONS_COLLECTION = "MasterProductTranspositions" MONGO_MASTER_PRODUCT_BUILD_QUEUE_COLLECTION = "MasterProductBuildQueue" MONGO_REDIS_QUEUE_COLLECTION = "RedisQueueJobs" MONGO_THK_LOG_COLLECTION = "Log" MONGO_THK_REPORTS_COLLECTION = "Reports" MONGO_THK_SETTINGS_COLLECTION = "Settings" MONGO_THK_GOOGLEADS_COLLECTION = "GoogleAds" """ PATHS """ THK_DATA_DIR = "data" THK_FEEDS_DIR = "feeds" # Config file paths THK_CONFIG_DIR = "config" THK_CONFIG__FEEDS_DIR = "{}/{}".format(THK_CONFIG_DIR, "feeds") THK_CONFIG__SUPPLIERS_DIR = "{}/{}".format(THK_CONFIG_DIR, "suppliers") THK_CONFIG__TAGS_DIR = "{}/{}".format(THK_CONFIG_DIR, "tags") THK_CONFIG__ADVERTISING_DIR = "{}/{}".format(THK_CONFIG_DIR, "advertising") THK_CONFIG__ADWORDS_DIR = "{}/{}".format(THK_CONFIG__ADVERTISING_DIR, "adwords") THK_CONFIG__ADWORDS_CAMPAIGN_DIR = "{}/{}".format(THK_CONFIG__ADWORDS_DIR, "campaign") """ Global field/collection field names and tags. """ THK_ACTIVE = "active" THK_STAGED = "staged" THK_SUPPLIER = "supplier" THK_TIMESTAMP = "timestamp" THK_PRODUCT = "product" THK_PRODUCT_AVAILABLE = "available" THK_UNIQUE_FIELD = "uniqueField" THK_NEW_PRODUCT = "new" THK_REPORT = "report" THK_FIELDS = "fields" THK_METAFIELDS = "metafields" THK_THUMBNAIL = "thumbnail" THK_ALT_TEXT = "altText" THK_ALT = "alt" THK_ATTACHMENT = "attachment" THK_HISTORICAL_INVENTORY_LEVEL = "inventory" THK_HISTORICAL_INVENTORY_DIFFERENCE = "difference" THK_FILENAME = "filename" THK_FILESIZE = "filesize" THK_METAFIELD_LABEL = "label" THK_METAFIELD_VALUE = "value" THK_DEFAULT_IMAGE_DIR = "static/images" THK_DEFAULT_UNIQUE_FIELD = "SKU" THK_METAFIELD_MAPPING = "mapping" THK_TRANSPOSITION = "transposition" THK_METAFIELD_ACTIVE = "active" THK_METAFIELD_STORE_WEIGHT = "weight" THK_SUPPLIER_PRODUCT_OBJECT_ID = "supplierProductId" THK_MASTER_PRODUCT_OBJECT_ID = "masterProductId" """ Variants """ THK_VARIANTS = "variants" THK_VARIATION_GROUP = "group" THK_VARIATION_PRODUCTS = "products" THK_VARIATION_ATTRIBUTES__LABEL = "label" THK_VARIATION_ATTRIBUTES__FIELD = "field" THK_VARIATION_ATTRIBUTES__APPEND = "append" THK_VARIATION_ATTRIBUTES__FORMAT = "format" THK_VARIATION_ATTRIBUTES__METHOD = "method" """ Images """ THK_IMAGES = "images" THK_IMAGES__FILENAME = "filename" THK_IMAGES__URL = "url" THK_IMAGES__ALT = "alt" """ Tag Filters """ THK_TAG_FILTERS__NAME = "name" THK_TAG_FILTERS__MAPPING = "mapping" THK_TAG_FILTERS__SUPPLIER = "supplier" """ Settings """ THK_SETTINGS_GROUP = "group" THK_SETTINGS_DATA = "data" """ Settings Groups """ THK_SETTINGS_GROUP__THK = "thunderhawk" """ Supplier Register Variables """ THK_SUPPLIER_REGISTER__STAGING_QUEUE = "staging_queue" THK_SUPPLIER_REGISTER__PURGE_QUEUE = "purge_queue" """ Logging """ THK_LOG_MAX_ENTRIES = 10000 THK_LOG_CATEGORY = "category" THK_LOG_CATEGORY__SYSTEM = "system" THK_LOG_MESSAGE = "message" THK_LOG_STATUS_CODE = "code" THK_LOG_STATUS__INFO = "info" THK_LOG_STATUS__STATUS = "status" THK_LOG_STATUS__NOTICE = "notice" THK_LOG_STATUS__WARNING = "warning" THK_LOG_STATUS__ERROR = "error" THK_LOG_STATUS_CODES = [ THK_LOG_STATUS__INFO, THK_LOG_STATUS__STATUS, THK_LOG_STATUS__NOTICE, THK_LOG_STATUS__ERROR, THK_LOG_STATUS__WARNING, ] """ Supplier Purge Options """ THK_SUPPLIER_PURGE_OPTION__ALL = "All" THK_SUPPLIER_PURGE_OPTION__CURRENT = "Current Product Data" THK_SUPPLIER_PURGE_OPTION__HISTORICAL = "Historical Product Data" THK_SUPPLIER_PURGE_OPTION__IMAGES = "Image Data" THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCTS = "Master Product Data" THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCT_OVERRIDES = "Master Product Override Data" THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCT_QUEUE = "Master Product Queue Data" THK_SUPPLIER_PURGE_OPTION__METAFIELD_CONFIG = "Metafield Config Data" THK_SUPPLIER_PURGE_OPTION__METAFIELDS = "Metafield Data" THK_SUPPLIER_PURGE_OPTION__GROUPING = "Product Grouping Data" THK_SUPPLIER_PURGE_OPTION__UNAVAILABLE = "Unavailable Product Data" THK_SUPPLIER_PURGE_OPTIONS = ( THK_SUPPLIER_PURGE_OPTION__ALL, THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCTS, THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCT_OVERRIDES, THK_SUPPLIER_PURGE_OPTION__MASTER_PRODUCT_QUEUE, THK_SUPPLIER_PURGE_OPTION__CURRENT, THK_SUPPLIER_PURGE_OPTION__HISTORICAL, THK_SUPPLIER_PURGE_OPTION__METAFIELD_CONFIG, THK_SUPPLIER_PURGE_OPTION__METAFIELDS, THK_SUPPLIER_PURGE_OPTION__IMAGES, THK_SUPPLIER_PURGE_OPTION__GROUPING, THK_SUPPLIER_PURGE_OPTION__UNAVAILABLE, ) """ Possible Queue Actions """ THK_QUEUE_ACTIONS = "actions" THK_QUEUE_ACTION__REBUILD = "rebuild" THK_QUEUE_ACTION__DELETE = "delete" THK_QUEUE_AVAILABLE_ACTIONS = [ THK_QUEUE_ACTION__REBUILD, THK_QUEUE_ACTION__DELETE, ] """ Redis Queue Job Store Fields. """ REDIS_QUEUE__JOB_NAME = "name" REDIS_QUEUE__JOB_ID = "jobId" REDIS_QUEUE__DATA = "data" REDIS_QUEUE__TIMESTAMP = "timestamp" """ Redis Queue Job Names """ REDIS_QUEUE_JOB__CACHE_ADWORDS_CAMPAIGNS = "CacheAdWordsCampaigns" REDIS_QUEUE_JOB__CACHE_ADWORDS_ADGROUPS = "CacheAdWordsAdGroups" REDIS_QUEUE_JOB__GENERATE_ADWORDS_BID_STRUCTURE = "GenerateAdWordsBidStructure" REDIS_QUEUE_JOB__REBUILD_INVALID_VARIANT_REPORT = "RebuildInvalidVariantReport" REDIS_QUEUE_JOB__SYNC_FILTERED_TRANSPOSITION_PRODUCTS = "SyncFilteredTranspositionProducts" """ Redis Queue Job Settings """ REDIS_QUEUE_JOB__JOB_TIMEOUT__DEFAULT = "10m" REDIS_QUEUE_JOB__JOB_TIMEOUT__REPORTS_DEFAULT = "1h" REDIS_QUEUE_JOB__JOB_TIMEOUT__SYNC_FILTERED_TRANSPOSITION_PRODUCTS = "1h" """ Advertising Variables """ ADWORDS_CLIENT_VERSION = "v201809" ADWORDS_USER_AGENT = "Thunderhawk" ADWORDS_TYPE__CAMPAIGN = "campaign" ADWORDS_TYPE__ADGROUP = "ad group" ADWORDS_TYPE__PRODUCT_PARTITION = "product partition" ADWORDS_MICRO_AMOUNT_VALUE = 1000000 """ Reports """ REPORT__INVALID_VARIANT_REPORT = "InvalidVariantReport" REPORT__INVALID_VARIANT_REPORT__MISSING_ATTRIBUTES = "missing attributes" REPORT__INVALID_VARIANT_REPORT__DUPLICATE_ATTRIBUTES = "duplicate attributes" """ Thumbnail settings, these are used to display smaller versions of images for optimization purposed in the web ui. """ # The web dir should be the location a static # link can be made from. THK_THUMBNAILS_DIR = "web/static/assets/thumbs" THK_THUMBNAILS_WEB_DIR = "assets/thumbs" THK_THUMBNAILS_SIZE = (250, 250) """ Supplier Tag Map Globals """ SUPPLIER_TAG_MAP__METHOD = "method" SUPPLIER_TAG_MAP__FIELD = "field" SUPPLIER_TAG_MAP__FILTER = "filter" SUPPLIER_TAG_MAP__DELIMITER = "delimiter" SUPPLIER_TAG_MAP__VALUE = "value" # Tag Map Methods SUPPLIER_TAG_MAP__METHOD_SPLIT = "split" SUPPLIER_TAG_MAP__METHOD_VALUE = "value" SUPPLIER_TAG_MAP__METHOD_FILTER = "filter" """ Supplier products should be mapped to these fields name, when the transposer runs through, it will map any fields that have been mapped to these and assume these as their value. Metafields can be mapped when transposing in the supplier config file using $Metafields followed by a colon and then the metafield key i.e. $Metafields:_description will map the description from the metafields for a product if it has it available. """ MASTER_PRODUCT_FIELD__IDENTIFIER = "sku" MASTER_PRODUCT_FIELD__ATTRIBUTES = "attributes" MASTER_PRODUCT_FIELD__TYPE = "type" MASTER_PRODUCT_FIELD__TITLE = "title" MASTER_PRODUCT_FIELD__BODY = "body" MASTER_PRODUCT_FIELD__BARCODE = "barcode" MASTER_PRODUCT_FIELD__VENDOR = "vendor" # The Supplier Id MASTER_PRODUCT_FIELD__VENDOR_NAME = "vendor name" # The Supplier friendly name. MASTER_PRODUCT_FIELD__COLLECTION = "collection" MASTER_PRODUCT_FIELD__PRICE = "price" MASTER_PRODUCT_FIELD__COST = "cost" MASTER_PRODUCT_FIELD__STOCKQTY = "stockQty" MASTER_PRODUCT_FIELD__TAGS = "tags" MASTER_PRODUCT_FIELD__WEIGHT = "weight" MASTER_PRODUCT_FIELD__SEO_TITLE = "seo title" MASTER_PRODUCT_FIELD__SEO_DESCRIPTION = "seo description" # Metafields aren't added to the master product fields # because we map them during the transposition, not # from a config level. MASTER_PRODUCT_FIELD__METAFIELDS = "metafields" MASTER_PRODUCT_FIELDS = ( MASTER_PRODUCT_FIELD__IDENTIFIER, # The SKU of the product, should map to the suppliers unique field. MASTER_PRODUCT_FIELD__TAGS, # The tags for the product. MASTER_PRODUCT_FIELD__TITLE, # The product display title. MASTER_PRODUCT_FIELD__TYPE, # The product type i.e. Pendulum. MASTER_PRODUCT_FIELD__BODY, # Product description/body text containing HTML. MASTER_PRODUCT_FIELD__BARCODE, # Product barcode (ISBN, UPC, GTIN, etc.) MASTER_PRODUCT_FIELD__VENDOR, # The product vendor or supplier name. MASTER_PRODUCT_FIELD__COLLECTION, # The suppliers collection, separated by commas. MASTER_PRODUCT_FIELD__PRICE, # The supplier product cost with applied markup. MASTER_PRODUCT_FIELD__COST, # The supplier product cost. MASTER_PRODUCT_FIELD__STOCKQTY, # The stock level for the supplier product. MASTER_PRODUCT_FIELD__WEIGHT, # The weight for the supplier product. MASTER_PRODUCT_FIELD__SEO_TITLE, # The seo title for the supplier product. MASTER_PRODUCT_FIELD__SEO_DESCRIPTION, # The seo description for the supplier product. MASTER_PRODUCT_FIELD__ATTRIBUTES, # The product attributes for variants i.e. color, size. ) # Master Product fields that cannot be edited. MASTER_PRODUCT_DISALLOWED_EDIT_FIELDS = ( MASTER_PRODUCT_FIELD__IDENTIFIER, # The SKU of the product, should map to the suppliers unique field. MASTER_PRODUCT_FIELD__VENDOR, # The product vendor or supplier name. )
StarcoderdataPython
11246135
""" BACON = Building Autama's Core Overall Nature This file contains a class to handle generating an Autama's personality. """ from itertools import chain from random import choice, randint, seed from Nucleus.utils import get_dataset from Nucleus.tools import read_pickle class Bacon: def __init__(self): self.__nucleus = read_pickle("nucleus.pickle") self.__args = self.__nucleus.get_args() self.__tokenizer = self.__nucleus.get_tokenizer() self.__required_amount = 6 # The required amount of traits per personality # A method to generate a random personality with exactly the required amount of traits def generate_full_personality(self): personality = self.__generate_personality() return self.__fill_up(personality) # A method to generate a personality with half of a new user's personality and half random def make_hybrid_freak(self, user_personality: list): personality = self.__format_personality(user_personality) personality = self.__remove_name_trait(personality) personality = self.__choose_some(personality) return self.__fill_up(personality) # A method to check and remove name traits from user's personality when copying the personality to a new Autama def check_personality(self, user_personality: list): personality = self.__format_personality(user_personality) personality = self.__remove_name_trait(personality) return self.__fill_up(personality) # A method to generate a random personality. It returns a list of personality trait strings. def __generate_personality(self): encoded_personality = self.__generate_encoded_personality() decoded_personality = self.__decode_personality(encoded_personality) return self.__remove_name_trait(decoded_personality) # A method for generating one encoded personality # https://github.com/huggingface/transfer-learning-conv-ai/blob/master/interact.py def __generate_encoded_personality(self): dataset = get_dataset(self.__tokenizer, self.__args.dataset_path, self.__args.dataset_cache) personalities = [dialog["personality"] for dataset in dataset.values() for dialog in dataset] personality = choice(personalities) return personality # A method for decoding an encoded personality def __decode_personality(self, encoded_personality: list): encoded_personality_string = self.__tokenizer.decode(chain(*encoded_personality)) decoded_personality_list = [i + "." for i in encoded_personality_string.split(".")] decoded_personality_list.pop() return decoded_personality_list # A method that takes an existing personality and fills it up until it has the required amount of traits def __fill_up(self, personality: list): required = self.__required_amount copy_personality = personality[:] amount = len(copy_personality) # Loop until personality has the required amount or more while amount < required: new_personality = self.__generate_personality() new_amount = len(new_personality) # Determine if new personality has required amount if new_amount == required: copy_personality = new_personality amount = new_amount else: copy_personality = copy_personality + new_personality amount = len(copy_personality) difference = amount - required # Loop until personality is equal to required amount for i in range(difference): copy_personality.pop() amount = amount - 1 return copy_personality # A method that chooses some of the user's traits def __choose_some(self, user_personality: list): personality = user_personality[:] amount = len(personality) half = int(amount / 2) seed() for i in range(half): amount = amount - 1 index = randint(0, amount) personality.pop(index) return personality # A method to format a user's personality for copying def __format_personality(self, user_personality: list): personality = user_personality[:] personality = [trait.lower() for trait in personality] return personality # A method to check and remove Convai generated names (any traits with "my name is") def __remove_name_trait(self, personality: list): revised_personality = [] # Loop and keep traits that do not contain "my name is" for trait in personality: if "my name is" not in trait: revised_personality.append(trait) return revised_personality
StarcoderdataPython
74739
from fastapi import FastAPI from models import User, db app = FastAPI() db.init_app(app) @app.get("/") async def root(): # count number of users in DB return {"hello": "Hello!"} @app.get("/users") async def users(): # count number of users in DB return {"count_users": await db.func.count(User.id).gino.scalar()}
StarcoderdataPython
1789099
from pacman.model.routing_tables.multicast_routing_table import \ MulticastRoutingTable from pacman.model.routing_tables.multicast_routing_tables import \ MulticastRoutingTables from spinn_machine.multicast_routing_entry import MulticastRoutingEntry from spinn_machine.utilities.progress_bar import ProgressBar MAX_KEYS_SUPPORTED = 2048 MASK = 0xFFFFF800 class BasicRoutingTableGenerator(object): """ An basic algorithm that can produce routing tables """ def __call__( self, routing_infos, routing_table_by_partitions, machine): """ :param routing_infos: :param routing_table_by_partitions: :param machine: :return: """ progress_bar = ProgressBar( len(list(machine.chips)), "Generating routing tables") routing_tables = MulticastRoutingTables() for chip in machine.chips: partitions_in_table = routing_table_by_partitions.\ get_entries_for_router(chip.x, chip.y) if len(partitions_in_table) != 0: routing_table = MulticastRoutingTable(chip.x, chip.y) for partition in partitions_in_table: keys_and_masks = routing_infos.\ get_keys_and_masks_from_partition(partition) entry = partitions_in_table[partition] for key_and_mask in keys_and_masks: multicast_routing_entry = MulticastRoutingEntry( routing_entry_key=key_and_mask.key_combo, defaultable=entry.defaultable, mask=key_and_mask.mask, link_ids=entry.out_going_links, processor_ids=entry.out_going_processors) routing_table.add_mutlicast_routing_entry( multicast_routing_entry) routing_tables.add_routing_table(routing_table) progress_bar.update() progress_bar.end() return {"router_tables": routing_tables}
StarcoderdataPython
1815925
from typing import List import attr from . import helpers from .action_test_summary_identifiable_object import ( ActionTestSummaryIdentifiableObject, ) @attr.s class ActionTestSummaryGroup(ActionTestSummaryIdentifiableObject): subtests: List[ActionTestSummaryIdentifiableObject] = attr.ib() @classmethod def from_report(cls, report: dict): if report["_type"]["_name"] != "ActionTestSummaryGroup": raise ValueError("type error") return cls( cls.convert_name_field(report), cls.convert_identifier_field(report), helpers.list_from_report( ActionTestSummaryIdentifiableObject, report.get("subtests"), dict(default=[]), ), ) helpers.registry_subtype( ActionTestSummaryGroup, ActionTestSummaryIdentifiableObject )
StarcoderdataPython
1718927
# SPDX-License-Identifier: BSD-3-Clause # Copyright (c) 2022 Osyris contributors (https://github.com/osyris-project/osyris) from common import arrayclose, arraytrue, arrayequal from osyris import Array, units from copy import copy, deepcopy import numpy as np from pint.errors import DimensionalityError import pytest def test_constructor_ndarray(): a = np.arange(100.) array = Array(values=a, unit='m') assert array.unit == units('m') assert len(array) == len(a) assert array.shape == a.shape assert np.array_equal(array.values, a) def test_constructor_list(): alist = [1., 2., 3., 4., 5.] array = Array(values=alist, unit='s') assert array.unit == units('s') assert np.array_equal(array.values, alist) def test_constructor_int(): num = 15 array = Array(values=num, unit='m') assert array.unit == units('m') assert np.array_equal(array.values, np.array(num)) def test_constructor_float(): num = 154.77 array = Array(values=num, unit='m') assert array.unit == units('m') assert np.array_equal(array.values, np.array(num)) def test_constructor_quantity(): q = 6.7 * units('K') array = Array(values=q) assert array.unit == units('K') assert np.array_equal(array.values, np.array(q.magnitude)) def test_bad_constructor_quantity_with_unit(): q = 6.7 * units('K') with pytest.raises(ValueError): _ = Array(values=q, unit='s') def test_constructor_masked_array(): a = np.arange(5.) b = np.ma.masked_where(a > 2, a) array = Array(values=b, unit='m') assert array.unit == units('m') assert len(array) == len(b) assert array.shape == b.shape assert np.array_equal(array.values, b) assert np.array_equal(array.values.mask, [False, False, False, True, True]) def test_addition(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[7., 9., 11., 13., 15.], unit='m') assert arrayclose(a + b, expected) def test_addition_conversion(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='cm') expected = Array(values=[1.06, 2.07, 3.08, 4.09, 5.1], unit='m') assert arrayclose(a + b, expected) def test_addition_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='s') with pytest.raises(DimensionalityError): _ = a + b with pytest.raises(TypeError): _ = a + 3.0 def test_addition_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('m') expected = Array(values=[4.5, 5.5, 6.5, 7.5, 8.5], unit='m') assert arrayclose(a + b, expected) def test_addition_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[7., 9., 11., 13., 15.], unit='m') a += b assert arrayclose(a, expected) def test_addition_quantity_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('m') expected = Array(values=[4.5, 5.5, 6.5, 7.5, 8.5], unit='m') a += b assert arrayclose(a, expected) def test_subtraction(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[5., 5., 5., 5., 5.], unit='m') assert arrayclose(b - a, expected) def test_subtraction_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='s') with pytest.raises(DimensionalityError): _ = a - b with pytest.raises(TypeError): _ = a - 3.0 def test_subtraction_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('m') expected = Array(values=[-2.5, -1.5, -0.5, 0.5, 1.5], unit='m') assert arrayclose(a - b, expected) def test_subtraction_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[5., 5., 5., 5., 5.], unit='m') b -= a assert arrayclose(b, expected) def test_subtraction_quantity_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('m') expected = Array(values=[-2.5, -1.5, -0.5, 0.5, 1.5], unit='m') a -= b assert arrayclose(a, expected) def test_multiplication(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[6., 14., 24., 36., 50.], unit='m*m') assert arrayclose(a * b, expected) def test_multiplication_conversion(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='cm') expected = Array(values=[0.06, 0.14, 0.24, 0.36, 0.5], unit='m*m') assert arrayclose(a * b, expected) def test_multiplication_float(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.0 expected = Array(values=[3., 6., 9., 12., 15.], unit='m') assert arrayclose(a * b, expected) assert arrayclose(b * a, expected) def test_multiplication_ndarray(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = np.arange(5.) expected = Array(values=[0., 2., 6., 12., 20.], unit='m') assert arrayclose(a * b, expected) assert arrayclose(b * a, expected) def test_multiplication_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('s') expected = Array(values=[3.5, 7.0, 10.5, 14.0, 17.5], unit='m*s') assert arrayclose(a * b, expected) def test_multiplication_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[6., 14., 24., 36., 50.], unit='m*m') a *= b assert arrayclose(a, expected) def test_multiplication_float_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.0 expected = Array(values=[3., 6., 9., 12., 15.], unit='m') a *= b assert arrayclose(a, expected) def test_multiplication_ndarray_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = np.arange(5.) expected = Array(values=[0., 2., 6., 12., 20.], unit='m') a *= b assert arrayclose(a, expected) def test_multiplication_quantity_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3.5 * units('s') expected = Array(values=[3.5, 7.0, 10.5, 14.0, 17.5], unit='m*s') a *= b assert arrayclose(a, expected) def test_division(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[6., 3.5, 8. / 3., 2.25, 2.], unit='m/s') assert arrayclose(b / a, expected) def test_division_float(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = 3.0 expected = Array(values=[1. / 3., 2. / 3., 1., 4. / 3., 5. / 3.], unit='s') assert arrayclose(a / b, expected) expected = Array(values=[3., 3. / 2., 1., 3. / 4., 3. / 5.], unit='1/s') assert arrayclose(b / a, expected) def test_division_ndarray(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = np.arange(5., 10.) expected = Array(values=[1. / 5., 2. / 6., 3. / 7., 4. / 8., 5. / 9.], unit='s') assert arrayclose(a / b, expected) # expected = Array(values=[3., 3. / 2., 1., 3. / 4., 3. / 5.], unit='1/s') # assert arrayclose(b / a, expected) def test_division_quantity(): a = Array(values=[0., 2., 4., 6., 200.], unit='s') b = 2.0 * units('s') expected = Array(values=[0., 1., 2., 3., 100.], unit='dimensionless') assert arrayclose(a / b, expected) def test_division_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 8., 9., 10.], unit='m') expected = Array(values=[6., 3.5, 8. / 3., 2.25, 2.], unit='m/s') b /= a assert arrayclose(b, expected) def test_division_float_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = 3.0 expected = Array(values=[1. / 3., 2. / 3., 1., 4. / 3., 5. / 3.], unit='s') a /= b assert arrayclose(a, expected) def test_division_ndarray_inplace(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = np.arange(5., 10.) expected = Array(values=[1. / 5., 2. / 6., 3. / 7., 4. / 8., 5. / 9.], unit='s') a /= b assert arrayclose(a, expected) # expected = Array(values=[3., 3. / 2., 1., 3. / 4., 3. / 5.], unit='1/s') # assert arrayclose(b / a, expected) def test_division_quantity_inplace(): a = Array(values=[0., 2., 4., 6., 200.], unit='s') b = 2.0 * units('s') expected = Array(values=[0., 1., 2., 3., 100.], unit='dimensionless') a /= b assert arrayclose(a, expected) def test_power(): a = Array(values=[1., 2., 4., 6., 200.], unit='s') expected = Array(values=[1., 8., 64., 216., 8.0e6], unit='s**3') assert arrayclose(a**3, expected) def test_negative(): a = Array(values=[1., 2., 4., 6., 200.], unit='s') expected = Array(values=[-1., -2., -4., -6., -200.], unit='s') assert arrayequal(-a, expected) def test_equal(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[11., 2., 3., 4.1, 5.], unit='m') expected = [False, True, True, False, True] assert all((a == b).values == expected) def test_equal_conversion(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[1100., 200., 300., 410., 500.], unit='cm') expected = [False, True, True, False, True] assert all((a == b).values == expected) def test_equal_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[11., 2., 3., 4.1, 5.], unit='s') with pytest.raises(DimensionalityError): _ = a == b def test_equal_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([11., 2., 3., 4.1, 5.]) expected = [False, True, True, False, True] assert all((a == b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a == b def test_equal_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [False, False, True, False, False] assert all((a == b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a == b def test_equal_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [False, False, True, False, False] assert all((a == b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a == b def test_not_equal(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[11., 2., 3., 4.1, 5.], unit='m') expected = [True, False, False, True, False] assert all((a != b).values == expected) def test_not_equal_conversion(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[1100., 200., 300., 410., 500.], unit='cm') expected = [True, False, False, True, False] assert all((a != b).values == expected) def test_not_equal_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[11., 2., 3., 4.1, 5.], unit='s') with pytest.raises(DimensionalityError): _ = a != b def test_not_equal_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([11., 2., 3., 4.1, 5.]) expected = [True, False, False, True, False] assert all((a != b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a != b def test_not_equal_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [True, True, False, True, True] assert all((a != b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a != b def test_not_equal_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [True, True, False, True, True] assert all((a != b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a != b def test_less_than(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='s') expected = [True, True, False, False, True] assert all((a < b).values == expected) def test_less_than_conversion(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[600., 700., 100., 400., 1000.], unit='cm') expected = [True, True, False, False, True] assert all((a < b).values == expected) def test_less_than_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='m') with pytest.raises(DimensionalityError): _ = a < b def test_less_than_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([6., 7., 1., 4., 10.]) expected = [True, True, False, False, True] assert all((a < b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a < b def test_less_than_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [True, True, False, False, False] assert all((a < b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a < b def test_less_than_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [True, True, False, False, False] assert all((a < b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a < b def test_less_equal(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='s') expected = [True, True, False, True, True] assert all((a <= b).values == expected) def test_less_equal_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='m') with pytest.raises(DimensionalityError): _ = a <= b def test_less_equal_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([6., 7., 1., 4., 10.]) expected = [True, True, False, True, True] assert all((a <= b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a < b def test_less_equal_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [True, True, True, False, False] assert all((a <= b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a < b def test_less_equal_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [True, True, True, False, False] assert all((a <= b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a < b def test_greater_than(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='s') expected = [True, True, False, False, True] assert all((b > a).values == expected) def test_greater_than_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='K') with pytest.raises(DimensionalityError): _ = b > a def test_greater_than_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([6., 7., 1., 4., 10.]) expected = [False, False, True, False, False] assert all((a > b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a > b def test_greater_than_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [False, False, False, True, True] assert all((a > b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a > b def test_greater_than_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [False, False, False, True, True] assert all((a > b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a > b def test_greater_equal(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='s') expected = [True, True, False, True, True] assert all((b >= a).values == expected) def test_greater_equal_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='s') b = Array(values=[6., 7., 1., 4., 10.], unit='K') with pytest.raises(DimensionalityError): _ = b >= a def test_greater_equal_ndarray(): a = Array(values=[1., 2., 3., 4., 5.]) b = np.array([6., 7., 1., 4., 10.]) expected = [False, False, True, True, False] assert all((a >= b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a >= b def test_greater_equal_float(): a = Array(values=[1., 2., 3., 4., 5.]) b = 3. expected = [False, False, True, True, True] assert all((a >= b).values == expected) a.unit = 'm' with pytest.raises(DimensionalityError): _ = a >= b def test_greater_equal_quantity(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = 3. * units('m') expected = [False, False, True, True, True] assert all((a >= b).values == expected) b = 3. * units('s') with pytest.raises(DimensionalityError): _ = a >= b def test_logical_and(): a = Array(values=[True, True, True, False, False, False]) b = Array(values=[True, False, True, False, True, False]) expected = [True, False, True, False, False, False] assert all((b & a).values == expected) def test_logical_or(): a = Array(values=[True, True, True, False, False, False]) b = Array(values=[True, False, True, False, True, False]) expected = [True, True, True, False, True, False] assert all((b | a).values == expected) def test_logical_xor(): a = Array(values=[True, True, True, False, False, False]) b = Array(values=[True, False, True, False, True, False]) expected = [False, True, False, False, True, False] assert all((b ^ a).values == expected) def test_logical_invert(): a = Array(values=[True, True, False, False, True, False]) expected = [False, False, True, True, False, True] assert all((~a).values == expected) def test_to(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') b = Array(values=[1.0e-3, 2.0e-3, 3.0e-3, 4.0e-3, 5.0e-3], unit='km') assert arrayclose(a.to('km'), b) assert a.unit == units('m') def test_to_bad_units(): a = Array(values=[1., 2., 3., 4., 5.], unit='m') with pytest.raises(DimensionalityError): _ = a.to('s') def test_min(): a = Array(values=[1., -2., 3., 0.4, 0.5, 0.6], unit='m') assert (a.min() == Array(values=-2., unit='m')).values b = Array(values=np.array([1., -2., 3., 0.4, 0.5, 0.6]).reshape(2, 3), unit='m') assert (b.min() == Array(values=-2., unit='m')).values def test_max(): a = Array(values=[1., 2., 3., -15., 5., 6.], unit='m') assert (a.max() == Array(values=6.0, unit='m')).values b = Array(values=np.array([1., 2., 3., -15., 5., 6.]).reshape(2, 3), unit='m') assert (b.max() == Array(values=6.0, unit='m')).values def test_reshape(): a = Array(values=[1., 2., 3., 4., 5., 6.], unit='m') expected = Array(values=[[1., 2., 3.], [4., 5., 6.]], unit='m') assert arraytrue(np.ravel(a.reshape(2, 3) == expected)) def test_slicing(): a = Array(values=[11., 12., 13., 14., 15.], unit='m') assert a[2] == Array(values=[13.], unit='m') assert arraytrue(a[:4] == Array(values=[11., 12., 13., 14.], unit='m')) assert arraytrue(a[2:4] == Array(values=[13., 14.], unit='m')) def test_slicing_vector(): a = Array(values=np.arange(12.).reshape(4, 3), unit='m') assert arraytrue(np.ravel(a[2:3] == Array(values=[[6., 7., 8.]], unit='m'))) assert a[2:3].shape == (1, 3) assert arraytrue( np.ravel(a[:2] == Array(values=[[0., 1., 2.], [3., 4., 5.]], unit='m'))) def test_copy(): a = Array(values=[11., 12., 13., 14., 15.], unit='m') b = a.copy() a *= 10. assert arraytrue(b == Array(values=[11., 12., 13., 14., 15.], unit='m')) def test_copy_overload(): a = Array(values=[11., 12., 13., 14., 15.], unit='m') b = copy(a) a *= 10. assert arraytrue(b == Array(values=[11., 12., 13., 14., 15.], unit='m')) def test_deepcopy(): a = Array(values=[11., 12., 13., 14., 15.], unit='m') b = deepcopy(a) a *= 10. assert arraytrue(b == Array(values=[11., 12., 13., 14., 15.], unit='m')) def test_numpy_unary(): values = [1., 2., 3., 4., 5.] a = Array(values=values, unit='m') expected = np.log10(values) result = np.log10(a) assert np.allclose(result.values, expected) assert result.unit == units('m') def test_numpy_sqrt(): values = [1., 2., 3., 4., 5.] a = Array(values=values, unit='m*m') expected = np.sqrt(values) result = np.sqrt(a) assert np.allclose(result.values, expected) assert result.unit == units('m') def test_numpy_binary(): a_buf = [1., 2., 3., 4., 5.] b_buf = [6., 7., 8., 9., 10.] a = Array(values=a_buf, unit='m') b = Array(values=b_buf, unit='m') expected = np.dot(a_buf, b_buf) result = np.dot(a, b) assert result.values == expected assert result.unit == units('m') def test_numpy_iterable(): a_buf = [1., 2., 3., 4., 5.] b_buf = [6., 7., 8., 9., 10.] a = Array(values=a_buf, unit='m') b = Array(values=b_buf, unit='m') expected = np.concatenate([a_buf, b_buf]) result = np.concatenate([a, b]) assert np.array_equal(result.values, expected) assert result.unit == units('m') def test_numpy_multiply_with_ndarray(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = np.array([6., 7., 8., 9., 10.]) expected = np.multiply(a_buf, b) result = np.multiply(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m') result = np.multiply(b, a) assert np.array_equal(result.values, expected) assert result.unit == units('m') def test_numpy_multiply_with_quantity(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = 3.5 * units('s') expected = np.multiply(a_buf, b.magnitude) result = np.multiply(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m*s') def test_numpy_multiply_with_float(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = 3.5 expected = np.multiply(a_buf, b) result = np.multiply(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m') result = np.multiply(b, a) assert np.array_equal(result.values, expected) assert result.unit == units('m') def test_numpy_divide_with_ndarray(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = np.array([6., 7., 8., 9., 10.]) expected = np.divide(a_buf, b) result = np.divide(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m') expected = np.divide(b, a_buf) result = np.divide(b, a) assert np.array_equal(result.values, expected) assert result.unit == units('1/m') def test_numpy_divide_with_quantity(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = 3.5 * units('s') expected = np.divide(a_buf, b.magnitude) result = np.divide(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m/s') def test_numpy_divide_with_float(): a_buf = [1., 2., 3., 4., 5.] a = Array(values=a_buf, unit='m') b = 3.5 expected = np.divide(a_buf, b) result = np.divide(a, b) assert np.array_equal(result.values, expected) assert result.unit == units('m') expected = np.divide(b, a_buf) result = np.divide(b, a) assert np.array_equal(result.values, expected) assert result.unit == units('1/m')
StarcoderdataPython
9648453
""" Test for quest load/save handling system """ import pytest from semver import VersionInfo # type: ignore from tick import TickType from quest import Quest, Difficulty, QuestDefinitionError, DEBUG_QUEST_NAME from quest.stage import DebugStage from quest.loader import all_quests from quest.content.debug import DebugQuest class BadQuest(Quest): version = VersionInfo.parse("1.0.0") description = "Bad quest for testing, it is missing stuff" class BadStageCycle(Quest): version = VersionInfo.parse("1.0.0") difficulty = Difficulty.RESERVED description = "Bad quest for testing, it has malformed stages" class Start(DebugStage): children = ["Loop"] class Loop(DebugStage): """ This should form a cycle, and get flagged by test """ children = ["Start"] class BadStageNotExist(Quest): version = VersionInfo.parse("1.0.0") difficulty = Difficulty.RESERVED description = "Bad quest for testing, it has malformed stages" class Start(DebugStage): """ This references a stage that doesn't exist, and get flagged """ children = ["Loop"] def test_all_quest_instantiate(testing_quest_page): """Instantiate all quests to check abstract base class implementation and stage loading """ for quest_class in all_quests.values(): # should succeed if correctly implemented quest = quest_class(testing_quest_page) def test_fail_instantiate(testing_quest_page): """ Test bad quests that fail to instantiate """ with pytest.raises(TypeError): BadQuest(testing_quest_page) def test_fail_stage(testing_quest_page): """ Test bad quests that fail due to stage problems """ with pytest.raises(QuestDefinitionError): quest = BadStageCycle(testing_quest_page) with pytest.raises(QuestDefinitionError): quest = BadStageNotExist(testing_quest_page) def test_quest_has_stages(testing_quest_page): """ Tests if quest has stages """ quest = DebugQuest(testing_quest_page) stages = quest.stages assert len(stages) # check repr first_stage = next(iter(stages.values()))(quest) assert str(first_stage) assert repr(first_stage) def test_execute(testing_quest_page): """ Test quest execution """ # check we didn't start off with any completed stages assert not testing_quest_page.data.completed_stages # Debugquest is linear, so we expect to see only the start quest testing_quest_page.execute(TickType.FULL) assert len(testing_quest_page.data.completed_stages) == len( testing_quest_page.quest.stages ) def test_resume(testing_quest_page): """ Test quest resume """ # manually set completed stages testing_quest_page.data.completed_stages = ["Start"] # resume testing_quest_page.execute(TickType.FULL) assert len(testing_quest_page.data.completed_stages) == len( testing_quest_page.quest.stages ) def test_done_skip(testing_quest_page): """ Test quest execution skipping if done """ # check we have no completed stages assert not testing_quest_page.data.completed_stages testing_quest_page.mark_quest_complete() # excecution should just skip because we marked quest as complete testing_quest_page.execute(TickType.FULL) assert not testing_quest_page.data.completed_stages
StarcoderdataPython
285184
import sys import os def main(argv): print("") infile = "..\\days\\day3.txt" outfile = os.path.splitext(infile)[0] + '.dat' output = "day3_input:" + chr(10) with open(infile, 'r', encoding='utf-8-sig') as f: for line in f: line = line.strip() output += " dc.b\t'" + line + "'\n" output += "day3_input_end:" + chr(10) # Write fixed file fout = open(outfile, "wt") fout.write(output) fout.close() print("Done!") if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
4834327
import logging import re import shutil from chibi.file import Chibi_path from chibi_dl.site.base.site import Site logger = logging.getLogger( "chibi_dl.sites.manga_plus.episode" ) class Episode( Site ): def download( self, path ): logger.info( "iniciando la descarga de las {} imagenes del capitulo {}".format( len( self.images_urls ), self.number, ) ) raise NotImplementedError def compress( self, path_ouput, path_input, format="zip" ): logger.info( "comprimiendo capitulo usando {}".format( format ) ) result = Chibi_path( shutil.make_archive( path_ouput + self.number, format, path_input ) ) expected = result.replace_extensions( "cbz" ) result.move( expected ) return expected @property def file_name( self ): return "{}.{}".format( self.number, "cbz" ) @property def number( self ): re_float = re.compile( r"[-+]?([0-9]*\.[0-9]+|[0-9]+)" ) return re_float.findall( self.title )[0] @property def images_urls( self ): try: return self._images_urls except AttributeError: self.load_soup() return self._images_urls def load_soup( self ): page = self.get( self.url ) raise NotImplementedError return page.text def enumerate_images_urls( self ): for i, url in enumerate( self.images_urls ): ext = url.rsplit( '.', 1 )[-1] yield "{}.{}".format( i, ext ), url
StarcoderdataPython
8002986
import os from itertools import filterfalse from typing import Iterable from . import strings from .utils import is_python_module def validate_paths(paths: Iterable[str]) -> None: non_existent_paths = list(filterfalse(os.path.exists, paths)) if not non_existent_paths: return non_existent_paths_str = strings.join(map(strings.wrap_with_quotes, non_existent_paths)) err_msg = ('Next paths not found on file system:\n' '{paths}.' .format(paths=non_existent_paths_str)) raise FileNotFoundError(err_msg) def validate_modules_paths(paths: Iterable[str]) -> None: invalid_paths = list(filterfalse(is_python_module, paths)) if invalid_paths: err_msg = ('Next paths are not valid Python modules:\n' '{paths}'.format(paths=strings.join(invalid_paths))) raise OSError(err_msg)
StarcoderdataPython
11318003
# -*- coding: utf-8 -*- """QCDF-1.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/18Dia-C1cambzheRZ2fzIf1EAO0fte_0F """ !unzip "Captain Tsubasa.zip" import pandas as pd train = pd.read_csv('train.csv') train f = open("output.txt", "w") f.write(str(len(set(train['playerId'].tolist()))) + '\n') f.write('p_18\n') f.write('p_18,p_147\n') f.write('71') f.close() goals = [0] * 160 shoots = [0] * 160 for i, row in train.iterrows(): shoots[int(row['playerId'].split('_')[1]) - 1] += 1 if row['outcome'] == 'گُل': goals[int(row['playerId'].split('_')[1]) - 1] += 1 ratio = [] for i in range(len(goals)): ratio.append(goals[i] / shoots[i]) import math max = 0 for i, row in train.iterrows(): tmp = math.sqrt(row['x'] ** 2 + row['y'] ** 2) if tmp > max: max = tmp max
StarcoderdataPython
3470429
from django.db import models from django.conf import settings from django.apps import apps from django.contrib.auth.hashers import make_password, check_password class UserPasswordHistory(models.Model): DEFAULT_PASSWORD_COUNT = 5 user = models.OneToOneField(settings.AUTH_USER_MODEL, on_delete=models.CASCADE) password_1 = models.CharField(blank=True, null=True, max_length=128) password_2 = models.CharField(blank=True, null=True, max_length=128) password_3 = models.CharField(blank=True, null=True, max_length=128) password_4 = models.CharField(blank=True, null=True, max_length=128) password_5 = models.CharField(blank=True, null=True, max_length=128) updated_at = models.DateTimeField(auto_now=True) def password_is_used(self, password): pass_count = getattr( settings, "PREVIOUS_PASSWORD_COUNT", self.DEFAULT_PASSWORD_COUNT ) for x in range(1, min(pass_count, 5) + 1): f = getattr(self, f'password_{x}', None) if f is not None and check_password(password, f): return True return False def store_password(self): self.password_5 = self.<PASSWORD> self.password_4 = <PASSWORD> self.password_3 = <PASSWORD> self.password_2 = <PASSWORD> self.password_1 = <PASSWORD> self.save() def __str__(self): return self.user.email
StarcoderdataPython
1745537
from ps4a import * # # Test code # You don't need to understand how this test code works (but feel free to look it over!) # To run these tests, simply run this file (open up in your IDE, then run the file as normal) def test_getWordScore(): """ Unit test for getWordScore """ failure = False # dictionary of words and scores words = {("", 7): 0, ("it", 7): 4, ("was", 7): 18, ("scored", 7): 54, ("waybill", 7): 155, ("outgnaw", 7): 127, ("fork", 7): 44, ("fork", 4): 94} for (word, n) in words.keys(): score = getWordScore(word, n) if score != words[(word, n)]: print("FAILURE: test_getWordScore()") print("\tExpected", words[(word, n)], "points but got '" + str(score) + "' for word '" + word + "', n=" + str(n)) failure = True if not failure: print("SUCCESS: test_getWordScore()") # end of test_getWordScore def test_updateHand(): """ Unit test for updateHand """ # test 1 handOrig = {'a': 1, 'q': 1, 'l': 2, 'm': 1, 'u': 1, 'i': 1} handCopy = handOrig.copy() word = "quail" hand2 = updateHand(handCopy, word) expectedHand1 = {'l': 1, 'm': 1} expectedHand2 = {'a': 0, 'q': 0, 'l': 1, 'm': 1, 'u': 0, 'i': 0} if hand2 != expectedHand1 and hand2 != expectedHand2: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tReturned: ", hand2, "\n\t-- but expected:", expectedHand1, "or", expectedHand2) return # exit function if handCopy != handOrig: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tOriginal hand was", handOrig) print("\tbut implementation of updateHand mutated the original hand!") print("\tNow the hand looks like this:", handCopy) return # exit function # test 2 handOrig = {'e': 1, 'v': 2, 'n': 1, 'i': 1, 'l': 2} handCopy = handOrig.copy() word = "evil" hand2 = updateHand(handCopy, word) expectedHand1 = {'v': 1, 'n': 1, 'l': 1} expectedHand2 = {'e': 0, 'v': 1, 'n': 1, 'i': 0, 'l': 1} if hand2 != expectedHand1 and hand2 != expectedHand2: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tReturned: ", hand2, "\n\t-- but expected:", expectedHand1, "or", expectedHand2) return # exit function if handCopy != handOrig: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tOriginal hand was", handOrig) print("\tbut implementation of updateHand mutated the original hand!") print("\tNow the hand looks like this:", handCopy) return # exit function # test 3 handOrig = {'h': 1, 'e': 1, 'l': 2, 'o': 1} handCopy = handOrig.copy() word = "hello" hand2 = updateHand(handCopy, word) expectedHand1 = {} expectedHand2 = {'h': 0, 'e': 0, 'l': 0, 'o': 0} if hand2 != expectedHand1 and hand2 != expectedHand2: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tReturned: ", hand2, "\n\t-- but expected:", expectedHand1, "or", expectedHand2) return # exit function if handCopy != handOrig: print("FAILURE: test_updateHand('" + word + "', " + str(handOrig) + ")") print("\tOriginal hand was", handOrig) print("\tbut implementation of updateHand mutated the original hand!") print("\tNow the hand looks like this:", handCopy) return # exit function print("SUCCESS: test_updateHand()") # end of test_updateHand def test_isValidWord(wordList): """ Unit test for isValidWord """ failure = False # test 1 word = "hello" handOrig = getFrequencyDict(word) handCopy = handOrig.copy() if not isValidWord(word, handCopy, wordList): print("FAILURE: test_isValidWord()") print("\tExpected True, but got False for word: '" + word + "' and hand:", handOrig) failure = True # Test a second time to see if wordList or hand has been modified if not isValidWord(word, handCopy, wordList): print("FAILURE: test_isValidWord()") if handCopy != handOrig: print("\tTesting word", word, "for a second time - be sure you're not modifying hand.") print("\tAt this point, hand ought to be", handOrig, "but it is", handCopy) else: print("\tTesting word", word, "for a second time - have you modified wordList?") wordInWL = word in wordList print("The word", word, "should be in wordList - is it?", wordInWL) print("\tExpected True, but got False for word: '" + word + "' and hand:", handCopy) failure = True # test 2 hand = {'r': 1, 'a': 3, 'p': 2, 'e': 1, 't': 1, 'u': 1} word = "rapture" if isValidWord(word, hand, wordList): print("FAILURE: test_isValidWord()") print("\tExpected False, but got True for word: '" + word + "' and hand:", hand) failure = True # test 3 hand = {'n': 1, 'h': 1, 'o': 1, 'y': 1, 'd': 1, 'w': 1, 'e': 2} word = "honey" if not isValidWord(word, hand, wordList): print("FAILURE: test_isValidWord()") print("\tExpected True, but got False for word: '" + word + "' and hand:", hand) failure = True # test 4 hand = {'r': 1, 'a': 3, 'p': 2, 't': 1, 'u': 2} word = "honey" if isValidWord(word, hand, wordList): print("FAILURE: test_isValidWord()") print("\tExpected False, but got True for word: '" + word + "' and hand:", hand) failure = True # test 5 hand = {'e': 1, 'v': 2, 'n': 1, 'i': 1, 'l': 2} word = "evil" if not isValidWord(word, hand, wordList): print("FAILURE: test_isValidWord()") print("\tExpected True, but got False for word: '" + word + "' and hand:", hand) failure = True # test 6 word = "even" if isValidWord(word, hand, wordList): print("FAILURE: test_isValidWord()") print("\tExpected False, but got True for word: '" + word + "' and hand:", hand) print("\t(If this is the only failure, make sure isValidWord() isn't mutating its inputs)") failure = True if not failure: print("SUCCESS: test_isValidWord()") wordList = loadWords() print("----------------------------------------------------------------------") print("Testing getWordScore...") test_getWordScore() print("----------------------------------------------------------------------") print("Testing updateHand...") test_updateHand() print("----------------------------------------------------------------------") print("Testing isValidWord...") test_isValidWord(wordList) print("----------------------------------------------------------------------") print("All done!")
StarcoderdataPython
11270940
<filename>nascd/ImprovedFishes/keras_baseline.py import time import tensorflow as tf import numpy as np from nascd.ImprovedFishes.load_data import load_data import matplotlib.pyplot as plt from sklearn.metrics import r2_score (X_train, y_train), (X_valid,y_valid)= load_data() class MyModel(tf.keras.Model): def __init__(self): super(MyModel, self).__init__() self.dense1 = tf.keras.layers.Dense(10, activation=tf.nn.relu) self.dense11 = tf.keras.layers.Dense(10, activation=tf.nn.relu) self.dense12 = tf.keras.layers.Dense(10, activation=tf.nn.relu) self.dense2 = tf.keras.layers.Dense(5) # self.dropout = tf.keras.layers.Dropout(0.5) def call(self, inputs, training=False): x = self.dense1(inputs) x = self.dense11(x) x = self.dense12(x) # if training: # x = self.dropout(x, training=training) return self.dense2(x) model = MyModel() # code to bce loss: https://github.com/tensorflow/tensorflow/blob/v2.1.0/tensorflow/python/keras/backend.py#L4585-L4615 model.compile("adam", loss="mse", metrics=["mse"]) tstart = time.time() hist = model.fit(X_train, y_train, validation_data=(X_valid,y_valid), epochs=1000, batch_size=8).history t = time.time() - tstart pred = model.predict(X_valid) print("R2 SCORE",r2_score(y_valid, pred)) print(f"Training time: {t}") plt.plot(hist["loss"], 'b') plt.plot(hist["val_loss"], 'r') plt.xlabel("epochs") plt.ylabel("Loss: MSE") plt.show()
StarcoderdataPython
3470865
import pandas as pd from splinter import Browser from bs4 import BeautifulSoup def init_browser(): executable_path = {"executable_path":"/usr/local/bin/chromedriver"} return Browser("chrome", **executable_path, headless=False) url = "https://mars.nasa.gov/news/?page=0&per_page=40&order=publish_date+desc%2Ccreated_at+desc&search=&category=19%2C165%2C184%2C204&blank_scope=Latest" browser.visit(url) html = browser.html soup = BeautifulSoup(html, "html.parser") news_title = soup.find("div", class_="content_title").text news_p = soup.find("div", class_="article_teaser_body").text print(news_title) print("--------------------------------------------------------") print(news_p) # In[9]: #JPL Mars Space Images - Featured Image # In[10]: jpl_url = "https://www.jpl.nasa.gov" image_url = "https://www.jpl.nasa.gov/spaceimages/?search=&category=Mars" browser.visit(image_url) html = browser.html image_soup = BeautifulSoup(html, "html.parser") image_path = image_soup.find_all("img")[3]["src"] featured_image_url = jpl_url + image_path print(featured_image_url) # In[37]: #Mars Weather # In[31]: mars_weather_url = "https://twitter.com/marswxreport?lang=en" browser.visit(mars_weather_url) html = browser.html weather_soup = BeautifulSoup(html, "html.parser") mars_weather = weather_soup.find('p', class_='TweetTextSize TweetTextSize--normal js-tweet-text tweet-text').text print(mars_weather) # In[13]: #Mars Facts # In[14]: mars_facts_df = pd.read_html("https://space-facts.com/mars/")[1] mars_facts_df # In[15]: mars_html = mars_facts_df.to_html() print(mars_html) # In[24]: #Mars Hemispheres # In[23]: #Cerberus Hemisphere url = "https://astrogeology.usgs.gov/search/map/Mars/Viking/cerberus_enhanced" browser.visit(url) html = browser.html soup = BeautifulSoup(html, "html.parser") cerberus_url = soup.find('div', class_='downloads') link = cerberus_url.find('a') href_cerberus = link['href'] print(href_cerberus) # In[25]: #Schiaparelli Hemisphere url = "https://astrogeology.usgs.gov/search/map/Mars/Viking/schiaparelli_enhanced" browser.visit(url) html = browser.html soup = BeautifulSoup(html, "html.parser") schiaparelli_url = soup.find('div', class_='downloads') link = schiaparelli_url.find('a') href_schiaparelli = link['href'] print(href_schiaparelli) # In[26]: #Syrtis Hemisphere url = "https://astrogeology.usgs.gov/search/map/Mars/Viking/syrtis_major_enhanced" browser.visit(url) html = browser.html soup = BeautifulSoup(html, "html.parser") syrtis_url = soup.find('div', class_='downloads') link = syrtis_url.find('a') href_syrtis = link['href'] print(href_syrtis) # In[27]: #Valles Hemisphere url = "https://astrogeology.usgs.gov/search/map/Mars/Viking/valles_marineris_enhanced" browser.visit(url) html = browser.html soup = BeautifulSoup(html, "html.parser") valles_url = soup.find('div', class_='downloads') link = valles_url.find('a') href_valles = link['href'] print(href_valles) # In[30]: hemisphere_image_urls = [ {"title": "Cerberus Hemisphere", "img_url": href_cerberus}, {"title": "Schiaparelli Hemisphere", "img_url": href_schiaparelli}, {"title": "Syrtis Major Hemisphere", "img_url": href_syrtis}, {"title": "Valles Marineris Hemisphere", "img_url": href_valles} ] print(hemisphere_image_urls) # In[ ]:
StarcoderdataPython
8034612
<filename>torchwisdom/core/metrics/__init__.py from .metrics import *
StarcoderdataPython
1700709
<filename>setup.py from setuptools import setup, find_packages setup( name='currency-wallet', version='0.1.0', description="Track investment returns in multiple currencies through the National Bank of Poland's API.", packages=find_packages(include=['currency_wallet']), python_requires='>=3.6', entry_points={ 'console_scripts': ['currency-wallet=currency_wallet.cli:cli'], }, )
StarcoderdataPython
1776163
from __future__ import print_function, absolute_import, division from gi.repository import Gtk, cairo from toga.cassowary.widget import Container as CassowaryContainer class GtkContainer(Gtk.Fixed): def __init__(self, layout_manager): super(GtkContainer, self).__init__() self.layout_manager = layout_manager def do_get_preferred_width(self): # Calculate the minimum and natural width of the container. width = self.layout_manager.bounding_box.width.value # print "PREFERRED WIDTH", width return width, width def do_get_preferred_height(self): # Calculate the minimum and natural height of the container. height = self.layout_manager.bounding_box.height.value # print "PREFERRED HEIGHT", height return height, height def do_size_allocate(self, allocation): # print "Size allocate", allocation.width, 'x', allocation.height, ' @ ', allocation.x, 'x', allocation.y self.set_allocation(allocation) # Temporarily enforce a size requirement based on the allocation with self.layout_manager.layout(allocation.width, allocation.height): for widget in self.layout_manager.children: # print(widget, widget._bounding_box) if not widget._impl.get_visible(): print("CHILD NOT VISIBLE") else: min_width, preferred_width = widget._width_hint min_height, preferred_height = widget._height_hint x_pos = widget._bounding_box.x.value if widget._expand_horizontal: width = widget._bounding_box.width.value else: x_pos = x_pos + ((widget._bounding_box.width.value - preferred_width) / 2.0) width = preferred_width y_pos = widget._bounding_box.y.value if widget._expand_vertical: height = widget._bounding_box.height.value else: y_pos = y_pos + ((widget._bounding_box.height.value - preferred_height) / 2.0) height = preferred_height child_allocation = cairo.RectangleInt() child_allocation.x = x_pos child_allocation.y = y_pos child_allocation.width = width child_allocation.height = height widget._impl.size_allocate(child_allocation) class Container(CassowaryContainer): def __init__(self): super(Container, self).__init__() def _create_container(self): return GtkContainer(self._layout_manager) @property def _width_hint(self): return self._impl.get_preferred_width() @property def _height_hint(self): return self._impl.get_preferred_height()
StarcoderdataPython
1855232
import numpy as np import pytest from qflow.hamiltonians import HarmonicOscillator from qflow.samplers import ImportanceSampler from qflow.wavefunctions import SimpleGaussian, Dnn from qflow.wavefunctions.nn.layers import DenseLayer from qflow.wavefunctions.nn.activations import ( sigmoid, tanh, relu, identity, exponential, ) from qflow import DistanceCache small_system = np.zeros((2, 2)) large_system = np.zeros((50, 3)) samples = 10000 H0 = HarmonicOscillator() psi0 = SimpleGaussian(0.5) layers = [ DenseLayer(50 * 3, 32, activation=tanh, scale_factor=0.001), DenseLayer(32, 16, activation=tanh), DenseLayer(16, 1, activation=exponential), ] dnn = Dnn() for l in layers: dnn.add_layer(l) def local_energy_gradient(H, psi, sampler, samples): return H.local_energy_gradient(sampler, psi, samples) @pytest.mark.benchmark(group="evaluation", warmup=True) def test_dnn_eval(benchmark): benchmark(dnn, large_system) @pytest.mark.benchmark(group="gradient", warmup=True) def test_dnn_gradient(benchmark): benchmark(dnn.gradient, large_system) @pytest.mark.benchmark(group="laplacian", warmup=True) def test_dnn_laplacian(benchmark): benchmark(dnn.laplacian, large_system)
StarcoderdataPython
5094894
<reponame>goerz-testing/pypkg_bintray_01 """Tests for `pypkg_bintray_01` package.""" import pytest from pkg_resources import parse_version import pypkg_bintray_01 def test_valid_version(): """Check that the package defines a valid ``__version__``.""" v_curr = parse_version(pypkg_bintray_01.__version__) v_orig = parse_version("0.0.1-dev") assert v_curr >= v_orig
StarcoderdataPython
227452
<reponame>FarsetLabs/farset-nadine import os import time import urllib from datetime import datetime, timedelta, date import sys import tempfile import shutil import traceback from django.core.management.base import BaseCommand, CommandError from django.contrib.auth.models import User from django.conf import settings from django.utils import timezone class Command(BaseCommand): help = "Shows the billing information for a given user." args = "[username]" requires_system_checks = False def handle(self, *labels, **options): from staff.billing import Run if not labels or len(labels) != 1: raise CommandError('Enter one argument, a username.') username = int(labels[0]) try: user = User.objects.get(username=username) start_date = timezone.localtime(timezone.now()) - timedelta(days=365) end_date = timezone.localtime(timezone.now()) print('Run info for %s (%s - %s)' % (user, start_date, end_date)) run = Run(user, start_date, end_date, False) run.print_info() except: traceback.print_exc() print("Could not find user with username %s" % username) # Copyright 2010 Office Nomads LLC (http://www.officenomads.com/) Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.
StarcoderdataPython
9712352
""" Tests for Year, Quarter, and Month-based DateOffset subclasses """ import pytest import pandas as pd from pandas.tseries.offsets import ( BMonthBegin, BMonthEnd, BQuarterBegin, BQuarterEnd, BYearBegin, BYearEnd, MonthBegin, MonthEnd, QuarterBegin, QuarterEnd, YearBegin, YearEnd, ) @pytest.mark.parametrize("n", [-2, 1]) @pytest.mark.parametrize( "cls", [ MonthBegin, MonthEnd, BMonthBegin, BMonthEnd, QuarterBegin, QuarterEnd, BQuarterBegin, BQuarterEnd, YearBegin, YearEnd, BYearBegin, BYearEnd, ], ) def test_apply_index(cls, n): offset = cls(n=n) rng = pd.date_range(start="1/1/2000", periods=100000, freq="T") ser = pd.Series(rng) res = rng + offset assert res.freq is None # not retained assert res[0] == rng[0] + offset assert res[-1] == rng[-1] + offset res2 = ser + offset # apply_index is only for indexes, not series, so no res2_v2 assert res2.iloc[0] == ser.iloc[0] + offset assert res2.iloc[-1] == ser.iloc[-1] + offset
StarcoderdataPython
5149479
<filename>npt/search/__init__.py """ Query USGS/ODE API for image data products """ from npt import log def ode(dataset: str, bbox: dict, match: str = 'intersect', bbox_ref:str='C0'): """ Return GeoDataFrame with found data products as features Input: - dataset: name of the dataset (see `npt.datasets`) - bbox: bounding-box to query overlapping products. Dictionary keys: minlat, maxlat, westlon, eastlon; Latitude/longitude values range: (-90:90, -180:180) - match: how to consider overlapping matching footprints. Options are: 'intersect', 'contain' - filter: Not implemented yet. """ from npt.search._ode import ODE prods = ODE(dataset).query(bbox=bbox, match=match, bbox_ref=bbox_ref).parse() if not prods: return None return prods.to_dataframe()
StarcoderdataPython
4869612
import os import uuid from decouple import config # Django from django.conf import settings from django.contrib import messages from django.http import HttpResponseRedirect, HttpResponse from django.shortcuts import render, redirect from django.template import Context from django.template.loader import render_to_string from django.urls import reverse from django.utils import timezone from django.views.generic import ListView # SendGrid import sendgrid from sendgrid.helpers.mail import * # Permissions from .permissions import IsOwnerOrReadOnly # REST Framework from rest_framework import views, permissions, status, authentication, generics, pagination from rest_framework.response import Response from rest_framework.settings import api_settings from rest_framework.parsers import MultiPartParser, FormParser, JSONParser # JWT REST import rest_framework_jwt.authentication # Models from .models import User, JobPost, Membership, UserMembership, Subscription, Payment # Serializers from .api import ( JobPostSerializer, JobPreviewSerializer, UserIDSerializer, UserRegistrationSerializer, UserViewSerializer, MembershipSerializer, PaymentViewSerializer, JWTSerializer ) import stripe ################### NOTES ###################### # User creation is handled by Djoser, in settings.py / DJOSER / SERIALIZERS # Django REST Framework Generics reference: https://www.django-rest-framework.org/api-guide/generic-views/ # Django REST Framework Views reference: https://www.django-rest-framework.org/api-guide/views/ ################################################ def jwt_get_secret_key(user): return user.jwt_secret # determines extra field `user` added to returned JWT (payload itself is determined by payload_handler-> see jwt_config.py) def jwt_response_handler(token, user=None, request=None): return { 'token': token, 'user': JWTSerializer(user, context={'request': request}).data } class UserCreateView(generics.CreateAPIView): serializer_class = UserRegistrationSerializer # Methods create, perform_create, get_success_headers # all from Django REST Framework source-code mixins: # https://github.com/encode/django-rest-framework/blob/master/rest_framework/mixins.py # To customize, must overwrite but also add in default source-code. def create(self, request, *args, **kwargs): serializer = self.get_serializer(data=request.data) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) return Response(status=status.HTTP_201_CREATED, headers=headers) def perform_create(self, serializer): serializer.save() def get_success_headers(self, data): try: return {'Location': str(data[api_settings.URL_FIELD_NAME])} except (TypeError, KeyError): return {} # Create custom view because auth is handles by Django REST framework JWT Auth (not Djoser) class UserView(generics.RetrieveUpdateDestroyAPIView): serializer_class = UserViewSerializer authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) parser_classes = (MultiPartParser,) def get_queryset(self): id = self.request.user.pk return User.objects.filter(id=id) # Methods update, perform_update, partial_update, destroy, perform_destory # all from Django REST Framework source-code mixins: # https://github.com/encode/django-rest-framework/blob/master/rest_framework/mixins.py # To customize, must overwrite but also add in default source-code. def update(self, request, *args, **kwargs): user = self.get_object() # Check job company id matches user id if user.pk is not self.request.user.pk: message = {'FORBIDDEN'} return Response(message, status=status.HTTP_403_FORBIDDEN) # Determines if PUT or PATCH request partial = kwargs.pop('partial', False) if partial is False: message = { "detail": "Method \"PUT\" not allowed." } return Response(message, status=status.HTTP_405_METHOD_NOT_ALLOWED) serializer = self.get_serializer(user, data=request.data, partial=partial) serializer.is_valid(raise_exception=True) self.perform_update(serializer) if getattr(user, '_prefetched_objects_cache', None): # If 'prefetch_related' has been applied to a queryset, we need to # forcibly invalidate the prefetch cache on the user. user._prefetched_objects_cache = {} return Response(status=status.HTTP_204_NO_CONTENT) def perform_update(self, serializer): serializer.save() def partial_update(self, request, *args, **kwargs): kwargs['partial'] = True return self.update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): user = self.get_object() # Checks user id on request == user id making delete request: # (prevents company 1 deleting for company 2) if user.pk is not self.request.user.pk: message = {'FORBIDDEN'} return Response(message, status=status.HTTP_403_FORBIDDEN) self.perform_destroy(user) return Response(status=status.HTTP_204_NO_CONTENT) def perform_destroy(self, instance): instance.delete() # Resets the jwt_secret, invalidating all token issued class UserLogoutAllView(views.APIView): authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) def post(self, request, *args, **kwargs): user = request.user user.jwt_secret = uuid.uuid4() user.save() return Response(status=status.HTTP_204_NO_CONTENT) class PostPageNumberPagination(pagination.PageNumberPagination): page_size = 10 page_size_query_param = 'post' max_page_size = 20 class ListJobPost(generics.ListCreateAPIView): # returns first 10 most recently published jobs queryset = JobPost.objects.exclude(published_date=None)[:10] serializer_class = JobPreviewSerializer permission_classes = [permissions.IsAuthenticatedOrReadOnly] pagination_class = PostPageNumberPagination def perform_create(self, serializer): serializer.save(user=self.request.user) class ViewJobPost(generics.ListAPIView): serializer_class = JobPostSerializer # Override queryset: returns object whose id matches int passed in url params (self.kwargs) def get_queryset(self): return JobPost.objects.filter(id=self.kwargs['pk']) class ModifyJobPost(generics.RetrieveUpdateDestroyAPIView): serializer_class = JobPostSerializer authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) # Methods update, perform_update, partial_update, destroy, perform_destory # all from Django REST Framework source-code mixins: # https://github.com/encode/django-rest-framework/blob/master/rest_framework/mixins.py # To customize, must overwrite but also add in default source-code. # Override queryset: returns object whose id matches int passed in url params (self.kwargs) def get_queryset(self): return JobPost.objects.filter(id=self.kwargs['pk']) def update(self, request, *args, **kwargs): job = self.get_object() # Check job company id matches user id if job.company.pk is not self.request.user.pk: message = {'FORBIDDEN'} return Response(message, status=status.HTTP_403_FORBIDDEN) partial = kwargs.pop('partial', False) instance = self.get_object() serializer = self.get_serializer(instance, data=request.data, partial=partial) serializer.is_valid(raise_exception=True) self.perform_update(serializer) if getattr(instance, '_prefetched_objects_cache', None): # If 'prefetch_related' has been applied to a queryset, we need to # forcibly invalidate the prefetch cache on the instance. instance._prefetched_objects_cache = {} return Response(serializer.data) def perform_update(self, serializer): serializer.save() def partial_update(self, request, *args, **kwargs): kwargs['partial'] = True return self.update(request, *args, **kwargs) def destroy(self, request, *args, **kwargs): job = self.get_object() # Checks job id on request == user id making delete request: # (prevents company 1 deleting for company 2) if job.company.pk is not self.request.user.pk: message = {'FORBIDDEN'} return Response(message, status=status.HTTP_403_FORBIDDEN) self.perform_destroy(job) return Response(status=status.HTTP_204_NO_CONTENT) def perform_destroy(self, instance): instance.delete() # Returns list of Jobs posted by a company account class ListCompanyJobPosts(generics.ListCreateAPIView): serializer_class = JobPostSerializer authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) pagination_class = PostPageNumberPagination # lookup_field = "company" def get_queryset(self): company = self.request.user return JobPost.objects.filter(company=company) # print(self.request.data) # if self.request.data['is_active'] is True: # return JobPost.objects.filter(published_date=True) # else: # return JobPost.objects.filter(company=company) def post(self, request, *args, **kwargs): # print('REQUEST>>>>', request.user.pk) # Checks company id on request == user id making post request: # (prevents company 1 posting for company 2) if request.data['company'] is not self.request.user.pk: message = {'FORBIDDEN'} return Response(message, status=status.HTTP_403_FORBIDDEN) # If job post is published, set published_date to current time if request.data['is_active'] is True: request.data['published_date'] = timezone.now() # print('REQUEST>>>>', request.data) serializer = self.get_serializer(data=request.data) # print('SERIALIZER>>>>>>', serializer) serializer.is_valid(raise_exception=True) self.perform_create(serializer) headers = self.get_success_headers(serializer.data) # print('SERIALIZER.DATA>>>>>>', serializer.data) return Response(serializer.data, status=status.HTTP_201_CREATED, headers=headers) ########### Membership Views and Methods ########### def get_user_membership(request): user_membership_qs = UserMembership.objects.filter(user=request.user) if user_membership_qs.exists(): return user_membership_qs.first() return None def get_user_subscription(request): user_subscription_qs = Subscription.objects.filter( user_membership=get_user_membership(request)) if user_subscription_qs.exists(): user_subscription = user_subscription_qs.first() return user_subscription return None def send_email(request): sg = sendgrid.SendGridAPIClient( apikey=config('SENDGRID_API_KEY') ) from_email = Email('<EMAIL>') to_email = Email('<EMAIL>') subject = 'Testing!' msg_html = render_to_string('templates/email_confirm.html', {'email': sendgrid}) content = Content( html_message=msg_html, ) mail = Mail(from_email, subject, to_email, content) response = sg.client.mail.send.post(request_body=mail.get()) return HttpResponse('Email sent!') def get_selected_membership(request): membership_type = request.session['selected_membership_type'] selected_membership_qs = Membership.objects.filter( membership_type=membership_type) if selected_membership_qs.exists(): return selected_membership_qs.first() return None # for selecting a paid membership class MembershipSelectView(generics.ListAPIView): model = Membership queryset = Membership.objects.all() serializer_class = MembershipSerializer authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) def get_context_data(self, *args, **kwargs): context = super().get_context_data(**kwargs) current_membership = get_user_membership(self.request) context['current_membership'] = str(current_membership.membership) # print(context) return context def post(self, request, **kwargs): selected_membership_type = request.POST.get('membership_type') user_subscription = get_user_subscription(request) user_membership = get_user_membership(request) selected_membership_qs = Membership.objects.filter( membership_type=selected_membership_type ) if selected_membership_qs.exists(): selected_membership = selected_membership_qs.first() ''' ============ VALIDATION ============ ''' if user_membership.membership == selected_membership: if user_subscription != None: messages.info(request, "You already have this membership. Your next payment is due {}".format( 'get this value from Stripe')) return HttpResponseRedirect(request.META.get('HTTP_REFERER')) #assign any changes to membership type to the session request.session['selected_membership_type'] = selected_membership.membership_type return HttpResponseRedirect(reverse('memberships:payment')) class PaymentView(generics.CreateAPIView): queryset = Payment.objects.all() serializer_class = PaymentViewSerializer authentication_classes = ( rest_framework_jwt.authentication.JSONWebTokenAuthentication, authentication.SessionAuthentication, authentication.BasicAuthentication ) permission_classes = (permissions.IsAuthenticated,) # Tokenizes purchase # class PaymentView(generics.CreateAPIView): # user_membership = get_user_membership(request) # selected_membership = get_selected_membership(request) # publishKey = settings.STRIPE_PUBLISHABLE_KEY # if request.method == "POST": # try: # token = request.POST['stripeToken'] # subscription = stripe.Subscription.create( # customer=user_membership.stripe_customer_id, # items=[ # { # "plan": selected_membership.stripe_plan_id, # }, # ], # source=token # <PASSWORD> # ) # return redirect(reverse('memberships:update-transactions', # kwargs={ # 'subscription_id': subscription.id # })) # except stripe.CardError as e: # messages.info(request, "Your card has been declined") # context = { # 'publishKey': publishKey, # 'selected_membership': selected_membership # } # return render(request, "templates/membership_payment.html", context) # def updateTransactionRecords(request, subscription_id): # user_membership = get_user_membership(request) # selected_membership = get_selected_membership(request) # user_membership.membership = selected_membership # user_membership.save() # sub, created = Subscription.objects.get_or_create(user_membership=user_membership) # sub.stripe_subscription_id = subscription_id # sub.active = True # sub.save() # try: # del request.session['selected_membership_type'] # except: # pass # messages.info(request, 'Successfully created {} membership'.format(selected_membership)) # return redirect('/memberships') # def cancelSubscription(request): # user_sub = get_user_subscription(request) # if user_sub.active == False: # messages.info(request, "You dont have an active membership") # return HttpResponseRedirect(request.META.get('HTTP_REFERER')) # sub = stripe.Subscription.retrieve(user_sub.stripe_subscription_id) # sub.delete() # user_sub.active = False # user_sub.save() # free_membership = Membership.objects.filter(membership_type='Free').first() # user_membership = get_user_membership(request) # user_membership.membership = free_membership # user_membership.save() # messages.info(request, "Successfully cancelled membership. We have sent an email") # # sending an email here # return redirect('/memberships')
StarcoderdataPython
6608169
# Copyright (c) 2022 Food-X Technologies # # This file is part of foodx_backup_source. # # You should have received a copy of the MIT License along with # foodx_backup_source. If not, see <https://opensource.org/licenses/MIT>. import pathlib import typing import click import pytest from click.testing import CliRunner from foodx_backup_source._file_io import BackupDefinitions from foodx_backup_source._main import ( DEFAULT_OUTPUT_PATH, _launch_packaging, click_entry, ) from foodx_backup_source.schema import ApplicationDefinition, DependencyFile @pytest.fixture() def mock_gather(mocker): return mocker.patch("foodx_backup_source._main._launch_packaging") @pytest.fixture() def mock_runner(): return CliRunner() @pytest.fixture() def mock_path(mocker): def mock_convert( value: typing.Any, param: typing.Optional["Parameter"], ctx: typing.Optional["Context"], ) -> typing.Any: # don't do any checking on the parameter return pathlib.Path(value) mocker.patch.object(click.Path, "convert", side_effect=mock_convert) @pytest.fixture() def mock_definitions(load_yaml_content, mocker): content_text = """ --- context: dependencies: r1: backup: repo_url: "https://this.host/path" branch_name: master docker: image_name: r1-image tag_prefix: pp- release: ref: "3.1.4" """ data = DependencyFile.parse_obj(load_yaml_content(content_text)) definitions: BackupDefinitions = list() for name, configuration in data.context.dependencies.items(): this_element = ApplicationDefinition( name=name, configuration=configuration ) definitions.append(this_element) mocker.patch( "foodx_backup_source._main.load_backup_definitions", return_value=definitions, ) class TestLaunchPackaging: @pytest.mark.asyncio async def test_clean(self, mock_definitions, mocker): mock_snapshot = mocker.patch("foodx_backup_source._main.do_snapshot") mocker.patch("foodx_backup_source._main.tarfile.open") mocker.patch("foodx_backup_source._main.discover_backup_definitions") mocker.patch( "foodx_backup_source._main._isoformat_now", return_value="today" ) mock_hash_file = mocker.patch( "foodx_backup_source._main.create_hash_file" ) arguments = { "project_name": "this_project", "project_directory": pathlib.Path("some/project"), "output_directory": pathlib.Path("some/output"), "git_refs": dict(), "token": None, } await _launch_packaging(**arguments) mock_hash_file.assert_called_once_with( pathlib.Path("some/output/this_project-today.tar.gz") ) mock_snapshot.assert_called_once() @pytest.mark.asyncio async def test_git_ref(self, mock_definitions, mocker): mock_snapshot = mocker.patch("foodx_backup_source._main.do_snapshot") mocker.patch("foodx_backup_source._main.tarfile.open") mocker.patch("foodx_backup_source._main.discover_backup_definitions") mocker.patch( "foodx_backup_source._main._isoformat_now", return_value="today" ) mock_hash_file = mocker.patch( "foodx_backup_source._main.create_hash_file" ) arguments = { "project_name": "this_project", "project_directory": pathlib.Path("some/project"), "output_directory": pathlib.Path("some/output"), "token": None, "git_refs": {"r1": "abc123"}, } await _launch_packaging(**arguments) mock_hash_file.assert_called_once_with( pathlib.Path("some/output/this_project-today.tar.gz") ) mock_snapshot.assert_called_once() assert ( mock_snapshot.call_args[0][0].configuration.release.ref == "abc123" ) class TestMain: def test_default(self, mock_gather, mock_runner, mock_path): arguments = [ "this_project", "some/path", ] result = mock_runner.invoke(click_entry, arguments) assert result.exit_code == 0 mock_gather.assert_awaited_once_with( arguments[0], pathlib.Path(arguments[1]), DEFAULT_OUTPUT_PATH, None, dict(), ) def test_token_file_stdin( self, mock_gather, mock_runner, mock_path, mocker ): arguments = [ "this_project", "some/path", "--token-file", "-", ] result = mock_runner.invoke(click_entry, arguments, input="deadb33f") assert result.exit_code == 0 mock_gather.assert_awaited_once_with( mocker.ANY, mocker.ANY, mocker.ANY, "deadb33f", mocker.ANY, ) def test_token_file_whitespace( self, mock_gather, mock_runner, mock_path, mocker ): arguments = [ "this_project", "some/path", "--token-file", "-", ] result = mock_runner.invoke(click_entry, arguments, input=" deadb33f\n") assert result.exit_code == 0 mock_gather.assert_awaited_once_with( mocker.ANY, mocker.ANY, mocker.ANY, "deadb33f", mocker.ANY, ) def test_output(self, mock_gather, mock_runner, mock_path, mocker): arguments = [ "this_project", "some/path", "--output-dir", "output/dir", ] result = mock_runner.invoke(click_entry, arguments) assert result.exit_code == 0 mock_gather.assert_awaited_once_with( mocker.ANY, mocker.ANY, pathlib.Path("output/dir"), mocker.ANY, mocker.ANY, ) def test_git_ref(self, mock_gather, mock_runner, mock_path, mocker): arguments = [ "this_project", "some/path", "--git-ref", "r1=abc123", ] result = mock_runner.invoke(click_entry, arguments) assert result.exit_code == 0 mock_gather.assert_awaited_once_with( mocker.ANY, mocker.ANY, mocker.ANY, mocker.ANY, {"r1": "abc123"}, ) def test_multiple_git_ref( self, mock_gather, mock_runner, mock_path, mocker ): arguments = [ "this_project", "some/path", "--git-ref", "r1=abc123", "--git-ref", "r3=123abc", ] result = mock_runner.invoke(click_entry, arguments) assert result.exit_code == 0 mock_gather.assert_awaited_once_with( mocker.ANY, mocker.ANY, mocker.ANY, mocker.ANY, {"r1": "abc123", "r3": "123abc"}, )
StarcoderdataPython
213851
<gh_stars>1-10 # coding=utf-8 from tornado.web import authenticated from handlers.base_handler import BaseHandler from tornado.log import access_log as weblog from handlers.Project.project_manage_handler import get_project_list, get_user_list class TaskManageHandler(BaseHandler): @authenticated def get(self): weblog.info("%s.", self._request_summary()) task = dict() task['progress'] = 45 self.render("project/task.html", message="", projects=get_project_list(self), users=get_user_list(self), task=task) pass @authenticated def post(self): pass
StarcoderdataPython
5198866
<gh_stars>1-10 """ LLNotifyMixin """ from functools import partial from appdaemon import adbase as ad METHODS = ["success", "warning", "error", "alert", "confirm", "notify", "message"] METHODS_NO_MSG = ["dismiss_all", "ping"] class LLNotifyMixin(ad.ADBase): """ Helper function to make it easy to call add alerts to Lovelace. class MyHass(LLNotifyMixin, appdaemon.plugins.hass.hassapi.Hass): pass class MyApp(MyHass): def initialize(self): self.ll_success("This will create a success notification in Lovelace!", wait=0) Methods: * ll_success * ll_warning * ll_error * ll_alert * ll_confirm * ll_dismiss_all * ll_notify * ll_message * ll_ping """ def __init__(self, *args, **kwargs): super(ad.ADBase, self).__init__(*args, **kwargs) # For static analysis self.ll_success = self.__noop self.ll_warning = self.__noop self.ll_error = self.__noop self.ll_alert = self.__noop self.ll_confirm = self.__noop self.ll_dismiss_all = self.__noop self.ll_notify = self.__noop self.ll_message = self.__noop self.ll_ping = self.__noop # def initialize(self): # super().initialize() adbase = self.get_ad_api() if self.__ll_notify_component_installed(): self.__add_methods() else: adbase.log( "ll_notify component not installed. Any calls to ll_notify will be noops.", level="WARNING", ) def __ll_notify_component_installed(self) -> bool: adbase = self.get_ad_api() for service in adbase.list_services(): if service.get("domain") == "ll_notify": return True return False def __add_methods(self): def call_ll_notify_service(method, message, *args, **kwargs): """Pass through directly via call_service""" adbase = self.get_ad_api() return adbase.call_service(f"ll_notify/{method}", message=message, **kwargs) for method in METHODS: setattr(self, "ll_" + method, partial(call_ll_notify_service, method)) for method in METHODS_NO_MSG: setattr(self, "ll_" + method, partial(call_ll_notify_service, method, "")) @staticmethod def __noop(*args, **kwargs): pass
StarcoderdataPython
3434024
resnext101_32_path = 'resnext_101_32x4d.pth'
StarcoderdataPython
186887
<filename>Desenv_Web/Desenv_Web/views.py from django.shortcuts import render from django.http import HttpResponse def index(request): return render(request, 'index.html') def contato(request): if request.method == 'GET': return render(request, 'login.html') else: print('Acesso via POST') def login(request): if request.method == 'GET': print('Acesso via GET') else: request.POST.get("loginUser") request.POST.get("senhaUser") print('Acesso via POST') print("Acesso via POST com usuário", request.POST.get("loginUser"), "e senha", request.POST.get("senhaUser")) return render(request, 'login.html')
StarcoderdataPython
6685098
<filename>ldt/tests/dicts/morphology/test_wordnet.py # -*- coding: utf-8 -*- import unittest import os os.environ["TESTING_LDT"] = "TRUE" import ldt from ldt.helpers.ignore import ignore_warnings class Tests(unittest.TestCase): """ The tests in this block inspect the WordNet morphological functions: lemmatization and retrieval of possible POS tags for a query word. """ @ignore_warnings def test_dict_initialization(self): test_dict = ldt.dicts.morphology.wordnet.en.MorphWordNet() self.assertEqual(test_dict.language, "en") @ignore_warnings def test_pos_dict(self): test_dict = ldt.dicts.morphology.wordnet.en.MorphWordNet() res = test_dict.get_pos("cat") self.assertGreaterEqual(res["noun"], 8) @ignore_warnings def test_pos_list(self): test_dict = ldt.dicts.morphology.wordnet.en.MorphWordNet() res = test_dict.get_pos("cat", formatting="list") worked = len(res) >= 2 and "noun" in res self.assertTrue(worked) @ignore_warnings def test_lemmatize(self): test_dict = ldt.dicts.morphology.wordnet.en.MorphWordNet() res = test_dict.lemmatize("cats") worked = len(res) == 1 and "cat" in res self.assertTrue(worked) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4984331
from django.contrib.auth.mixins import AccessMixin from django.core.exceptions import ImproperlyConfigured from django.utils import six class GroupRequiredMixin(AccessMixin): group_required = None def get_required_group(self): if self.group_required is None: raise ImproperlyConfigured( '{0} is missing the group_required attribute. Define {0}.group_required, or override ' '{0}.get_required_group().'.format(self.__class__.__name__) ) if isinstance(self.group_required, six.string_types): return self.group_required raise ImproperlyConfigured( '{0}.group_required attribute must be a string. Define {0}.group_required, or override ' '{0}.get_required_group().'.format(self.__class__.__name__) ) def in_group(self): group = self.get_required_group() return self.request.user.groups.filter(name=group).exists() def dispatch(self, request, *args, **kwargs): if not self.in_group(): return self.handle_no_permission() return super(GroupRequiredMixin, self).dispatch(request, *args, **kwargs) class QueryMixin(object): def do_query(self, request, *args, **kwargs): raise NotImplemented def dispatch(self, request, *args, **kwargs): self.do_query(request, *args, **kwargs) return super(QueryMixin, self).dispatch(request, *args, **kwargs)
StarcoderdataPython
1681057
a=1000 b=1000 c=30 if a>b and a>c: print (a) elif b>a and b>c: print (b) elif c>a and c>b: print(c)
StarcoderdataPython
5185919
#!/usr/bin/env python3 # ===================== # Зависнуть над маркером # ===================== from turtle import circle import numpy as np import rospy import cv2 import cv2.aruco as aruco from sensor_msgs.msg import Image from cv_bridge import CvBridge from aruco_calibration import Calibration as clb from drone_api import * from math import pi, sqrt, sin, cos, atan2 import argparse import time FONT = cv2.FONT_HERSHEY_PLAIN class Circle: def __init__(self): self.__buffer = [None] * 25 self.__yaw = 0 self.__counter = 0 def write(self, pose): self.__buffer[self.__counter] = pose self.__yaw = pose[5] self.__counter += 1 if self.__counter >= len(self.__buffer): self.__counter = 0 def mean(self): num = 0 mean_pose = [0] * 6 for i in self.__buffer: if i is not None: num += 1 for j in range(len(mean_pose)): mean_pose[j] += i[j] if num != 0: for i in range(len(mean_pose) - 1): mean_pose[i] = mean_pose[i] / num mean_pose[5] = self.__yaw return mean_pose def erase_yaw(self): self.__yaw = 0 def toFixed(numObj, digits=0): return f'{numObj:.{digits}f}' # ARGPARSER parser = argparse.ArgumentParser() parser.add_argument('--write', dest='write', action='store_true', help='if set, video stream is written to a file') parser.add_argument('--show', dest='show', action='store_true', help='if set, video stream is displayed in the window') parser.add_argument('--output', dest='output', action='store_true', help='if set, ArUco recognition process is output to the terminal') args = parser.parse_args() parser.set_defaults(write=False) parser.set_defaults(show=False) parser.set_defaults(output=False) # OPEN VIDEO cap = cv2.VideoCapture(0) if not cap.isOpened(): print("Cannot open camera") exit() if args.write: import time time_now = time.gmtime(time.time()) video_file = f'{time.strftime("%Y.%m.%d %H:%M:%S", time.gmtime())}.avi' while True: ret, frame = cap.read() if ret: image_size = frame.shape[:2] print(f'Resolution: {image_size[1]}x{image_size[0]}') break fps = 25.0 out = cv2.VideoWriter(video_file, cv2.VideoWriter_fourcc(*'MJPG'), fps, (image_size[1], image_size[0])) # calibration_save.yaml - уже проведена калибровка camera_matrix, dist_coef = clb.loadCoefficients('calibration_save.yaml') aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_50) parameters = aruco.DetectorParameters_create() # DRONE PREPARATION drone = Drone_api() drone.start() rospy.loginfo('Drone armed') drone.sleep(5) drone.set_local_pose(0, 0, 4, 0) while not drone.point_is_reached() and not drone.is_shutdown(): drone.sleep(0.5) cir = Circle() # CYCLE while not drone.is_shutdown(): # Get ArUco pose ret, frame = cap.read() frame = cv2.flip(frame, -1) if not ret: print("Can't receive frame (stream end?). Exiting ...") break gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) corners, ids, rejectedImgPoints = aruco.detectMarkers(gray, aruco_dict, parameters=parameters, cameraMatrix=camera_matrix, distCoeff=dist_coef) if np.all(ids is not None): rvec, tvec, markerPoints = aruco.estimatePoseSingleMarkers(corners, 0.2, camera_matrix, dist_coef) aruco.drawDetectedMarkers(frame, corners) aruco.drawAxis(frame, camera_matrix, dist_coef, rvec[0], tvec[0], 0.2) cv2.putText(frame, ' id' + str(ids[0])[1:-1], (20, 30), FONT, 1, (255, 255, 255), 3, cv2.LINE_AA) cv2.putText(frame, ' id' + str(ids[0])[1:-1], (20, 30), FONT, 1, (0, 0, 0), 1, cv2.LINE_AA) drone_pose = drone.get_local_pose() x, y, z, roll, pitch, yaw = Camera_api.marker_local_pose(rvec[0][0], tvec[0][0], drone_pose, (0, 0, 0, 0, pi/2, 0)) cir.write([x, y, z, roll, pitch, yaw]) if args.output: rospy.loginfo(str(toFixed(x, 3) + ' ' + toFixed(y, 3) + ' ' + toFixed(z, 3) + ' ' + toFixed(roll, 3) + ' ' + toFixed(pitch, 3) + ' ' + toFixed(yaw, 3))) # Белая обводка и черный текст cv2.putText(frame, str(toFixed(x, 3)+' ' + toFixed(y, 3) + ' ' + toFixed(z, 3) + ' '), (20, 70+20), FONT, 1, (255, 255, 255), 3, cv2.LINE_AA) cv2.putText(frame, str(toFixed(x, 3) + ' ' + toFixed(y, 3) + ' ' + toFixed(z, 3) + ' '), (20, 70+20), FONT, 1, (0, 0, 0), 1, cv2.LINE_AA) cv2.putText(frame, str(toFixed(roll, 3)+' ' + toFixed(pitch, 3) + ' ' + toFixed(yaw, 3)), (20, 100+20), FONT, 1, (255, 255, 255), 3, cv2.LINE_AA) cv2.putText(frame, str(toFixed(roll, 3) + ' ' + toFixed(pitch, 3) + ' ' + toFixed(yaw, 3)), (20, 100+20), FONT, 1, (0, 0, 0), 1, cv2.LINE_AA) else: # Сбрасываем yaw маркера, чтобы, в случае потери маркера, дрон не продолжал кружиться cir.erase_yaw() if args.output: rospy.loginfo('NOT FOUND') cv2.putText(frame, 'NOT FOUND', (20, 30), FONT, 1, (255, 255, 255), 3, cv2.LINE_AA) cv2.putText(frame, 'NOT FOUND', (20, 30), FONT, 1, (0, 0, 0), 1, cv2.LINE_AA) if args.write: out.write(frame) if args.show: cv2.imshow('frame', frame) cv2.waitKey(1) # Set drone pose marker_pose = cir.mean() drone_pose = drone.get_local_pose() correct_drone_yaw = marker_pose[5] + drone_pose[5] # Чтобы исключить "дерганье" дрона из-за небольшой ошибки определения местоположения маркера: drone.set_local_pose(marker_pose[0], marker_pose[1], marker_pose[2] + 3, correct_drone_yaw) drone.sleep(0.5) rospy.loginfo('Drone disarmed') cap.release() if args.write: out.release() rospy.loginfo(f'Create {video_file}') cv2.destroyAllWindows()
StarcoderdataPython
6648692
opt = { "no_cuda": True, "task": "internal:blended_skill_talk,wizard_of_wikipedia,convai2,empathetic_dialogues", "multitask_weights": [ 1.0, 3.0, 3.0, 3.0 ], "init_model": "./data/models/blender/blender_90M/model", "dict_file":"./data/models/blender/blender_90M/model.dict", "embedding_size": 512, "n_layers": 8, "ffn_size": 2048, "dropout": 0.1, "n_heads": 16, "learn_positional_embeddings": True, "n_positions": 512, 'variant': 'xlm', 'activation': 'gelu', 'skip_generation': True, 'fp16': True, 'text-truncate': 512, 'label_truncate': 128, 'dict_tokenizer': 'bpe', 'dict_lower': True, 'lr': 1e-06, 'optimizer': 'adamax', 'lr_scheduler': 'reduceonplateau', 'gradient_clip': 0.1, 'veps': 0.25, "betas": [ 0.9, 0.999 ], "update_freq": 1, "attention_dropout": 0.0, "relu_dropout": 0.0, "skip_generation": False, 'vp': 15, 'stim': 60, 'vme': 20000, 'bs': 16, 'vmt': 'ppl', 'vmm': 'min', 'save_after_valid': True, 'model_file': '/tmp/test_train_90M', 'datapath': './custom/data/', 'history_size': -1, 'truncate': -1, 'rank_candidates': False, 'embeddings_scale': True, 'output_scaling': 1.0, 'embedding_type': 'random', 'gpu': -1 }
StarcoderdataPython
6424244
#https://github.com/MerosCrypto/Meros/issues/106. Specifically tests elements in Blocks (except MeritRemovals). #Types. from typing import Dict, List, IO, Any #Sketch class. from PythonTests.Libs.Minisketch import Sketch #Blockchain classes. from PythonTests.Classes.Merit.Blockchain import Block from PythonTests.Classes.Merit.Blockchain import Blockchain #VerificationPacket class. from PythonTests.Classes.Consensus.VerificationPacket import VerificationPacket #Transactions class. from PythonTests.Classes.Transactions.Transactions import Transactions #Meros classes. from PythonTests.Meros.RPC import RPC from PythonTests.Meros.Meros import MessageType #TestError Exception. from PythonTests.Tests.Errors import TestError #JSON standard lib. import json #pylint: disable=too-many-statements def HundredSixBlockElementsTest( rpc: RPC ) -> None: #Load the vectors. file: IO[Any] = open("PythonTests/Vectors/Consensus/HundredSix/BlockElements.json", "r") vectors: Dict[str, Any] = json.loads(file.read()) file.close() #Blockchain. Solely used to get the genesis Block hash. blockchain: Blockchain = Blockchain() #Transactions. transactions: Transactions = Transactions.fromJSON(vectors["transactions"]) #Parse the Blocks from the vectors. blocks: List[Block] = [] for block in vectors["blocks"]: blocks.append(Block.fromJSON({}, block)) for block in blocks: #Handshake with the node. rpc.meros.connect(254, 254, blockchain.blocks[0].header.hash) #Send the Block. rpc.meros.blockHeader(block.header) #Flag of if the Block's Body synced. blockBodySynced: bool = False #Handle sync requests. reqHash: bytes = bytes() while True: try: msg: bytes = rpc.meros.recv() except TestError: if not blockBodySynced: raise TestError("Node disconnected us before syncing the body.") #Verify the node didn't crash. try: if rpc.call("merit", "getHeight") != 1: raise Exception() except Exception: raise TestError("Node crashed after being sent a malformed Element.") #Since the node didn't crash, break out of this loop to trigger the next test case. break if MessageType(msg[0]) == MessageType.Syncing: rpc.meros.syncingAcknowledged() elif MessageType(msg[0]) == MessageType.BlockBodyRequest: reqHash = msg[1 : 33] if reqHash != block.header.hash: raise TestError("Meros asked for a Block Body that didn't belong to the Block we just sent it.") #Send the BlockBody. blockBodySynced = True rpc.meros.blockBody([], block) elif MessageType(msg[0]) == MessageType.SketchHashesRequest: if not block.body.packets: raise TestError("Meros asked for Sketch Hashes from a Block without any.") reqHash = msg[1 : 33] if reqHash != block.header.hash: raise TestError("Meros asked for Sketch Hashes that didn't belong to the Block we just sent it.") #Create the haashes. hashes: List[int] = [] for packet in block.body.packets: hashes.append(Sketch.hash(block.header.sketchSalt, packet)) #Send the Sketch Hashes. rpc.meros.sketchHashes(hashes) elif MessageType(msg[0]) == MessageType.SketchHashRequests: if not block.body.packets: raise TestError("Meros asked for Verification Packets from a Block without any.") reqHash = msg[1 : 33] if reqHash != block.header.hash: raise TestError("Meros asked for Verification Packets that didn't belong to the Block we just sent it.") #Create a lookup of hash to packets. packets: Dict[int, VerificationPacket] = {} for packet in block.body.packets: packets[Sketch.hash(block.header.sketchSalt, packet)] = packet #Look up each requested packet and respond accordingly. for h in range(int.from_bytes(msg[33 : 37], byteorder="big")): sketchHash: int = int.from_bytes(msg[37 + (h * 8) : 45 + (h * 8)], byteorder="big") if sketchHash not in packets: raise TestError("Meros asked for a non-existent Sketch Hash.") rpc.meros.packet(packets[sketchHash]) elif MessageType(msg[0]) == MessageType.TransactionRequest: reqHash = msg[1 : 33] if reqHash not in transactions.txs: raise TestError("Meros asked for a non-existent Transaction.") rpc.meros.transaction(transactions.txs[reqHash]) elif MessageType(msg[0]) == MessageType.SyncingOver: pass elif MessageType(msg[0]) == MessageType.BlockHeader: #Raise a TestError if the Block was added. raise TestError("Meros synced a Block with an invalid holder.") else: raise TestError("Unexpected message sent: " + msg.hex().upper()) #Reset the node. rpc.reset()
StarcoderdataPython
3339213
<reponame>khalili-itelligence/basic<gh_stars>0 # import argparse # parse = argparse.ArgumentParser(description="ForTest!") # parse.add_argument('integers', type=int) # print(parse.parse_args()) import sys print("Result:", sys.argv)
StarcoderdataPython
5047630
import matplotlib ''' To use the Agg backend ''' matplotlib.use('Agg') from pandas_datareader.data import DataReader import matplotlib.pyplot as plt import urllib.request import re import datetime '''gets historical prices from pandas datareader''' def getdata(ticker): data = DataReader(ticker, 'yahoo') return data ''' creates the Open Close Graph and saves it as svg ''' def getOpenClosegraph(ticker): fig = plt.figure(figsize=(20,10)) data = getdata(ticker) plt.plot(list(data.index), data['Open'], 'b-') plt.plot(list(data.index), data['Close'], 'r-') plt.legend(["Open", "Close"]) plt.title(ticker) plt.xticks(rotation=45) fig.savefig('finance\\static\\finance\\images\\openclose.svg') return "finance/images/openclose.svg" ''' creates the High Low Graph and saves it as svg ''' def getHighLowgraph(ticker): fig = plt.figure(figsize=(20,10)) data = getdata(ticker) plt.plot(list(data.index), data['High'], 'b-') plt.plot(list(data.index), data['Low'], 'r-') plt.legend(["High", "Low"]) plt.title(ticker) plt.xticks(rotation=45) fig.savefig('finance\\static\\finance\\images\\highlow.svg') return "finance/images/highlow.svg" '''get Industry Peers from MorningStar''' def getIndustryPeers(ticker): stringdata = "" try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-data.action?type=com&t=XNAS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-data.action?type=com&t=PINX:%s&region=usa&culture=en-US&ops=p&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-data.action?type=com&t=XNYS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: stringdata = "No Data" return stringdata '''gets the Price Quotes of Industry Peers from MorningStar''' def getIndustyPeersQuote(ticker): stringdata = "" try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=XNAS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=PINX:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=XNYS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff except IndexError: stringdata = "No Data" return(stringdata) '''get Key Ratios data from MorningStar''' def getKeyRatios(ticker): try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getKeyStatPart.html?&callback=?&t=XNAS:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('</ul>') html = html[1].split('style="display:none;"') data = "" for line in html: data += line data = data.split("</table>") for i in range(len(data)-1): splitdata = data[i].split("<table") data[i] = "<table" + splitdata[1] + "</table>" except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getKeyStatPart.html?&callback=?&t=PINX:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('</ul>') html = html[1].split('style="display:none;"') data = "" for line in html: data += line data = data.split("</table>") for i in range(len(data)-1): splitdata = data[i].split("<table") data[i] = "<table" + splitdata[1] + "</table>" except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getKeyStatPart.html?&callback=?&t=XNYS:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('</ul>') html = html[1].split('style="display:none;"') data = "" for line in html: data += line data = data.split("</table>") for i in range(len(data)-1): splitdata = data[i].split("<table") data[i] = "<table" + splitdata[1] + "</table>" except IndexError: data = "No Data" return data '''gets financials from morningstar''' def getFinancials(ticker): try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getFinancePart.html?&callback=?&t=XNAS:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('<table') html = '<table'+html[1] except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getFinancePart.html?&callback=?&t=PINX:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('<table') html = '<table'+html[1] except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/financials/getFinancePart.html?&callback=?&t=XNYS:%s&region=usa&culture=en-US&ops=clear&cur=&order=" % ticker) html = url.read() html = str(html, "utf-8").split('?({"componentData":"') html = html[1].split('"})') html = re.sub(r'\\', "", html[0]) html = html.split('<table') html = '<table'+html[1] except IndexError: html = "No Data" return html '''get quote summary from yahoo ''' def getSimpleSummary(ticker): url = urllib.request.urlopen("http://finance.yahoo.com/quote/%s" % ticker) html = url.read() html = str(html, "utf8").split('<div id=\"quote-summary\"') html[1] = '<div id=\"quote-summary\"' + html[1] html = html[1].split("Trade prices are not sourced from all markets") html[0] = html[0]+'</span></div>' return html[0] ''' get quote summary from morningstar''' def getCurrentPrice(ticker): url = urllib.request.urlopen("http://quotes.morningstar.com/stock/c-header?&t=XNAS:%s&region=usa&culture=en-US&version=RET" % ticker) html = url.read() if len(html) != 0: html = str(html, "utf8").split('<script type="text/javascript">') else: url = urllib.request.urlopen("http://quotes.morningstar.com/stock/c-header?&t=PINX:%s&region=usa&culture=en-US&version=RET" % ticker) html = url.read() if len(html) != 0: html = str(html, "utf8").split('<script type="text/javascript">') else: url = urllib.request.urlopen("http://quotes.morningstar.com/stock/c-header?&t=XNYS:%s&region=usa&culture=en-US&version=RET" % ticker) html = url.read() if len(html) != 0: html = str(html, "utf8").split('<script type="text/javascript">') else: return None return html[0] '''find recommend stocks based on whether for the past week, if the closing prices have been consective higher than the previous day's''' def getRecommendation(ticker): recommendlist = [] industrypeerlist = [] weekdatelist = [] stringdata = "" try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=XNAS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff stringdata = stringdata.split('<td align="left" scope="row" >') for i in range(2, len(stringdata)+1, 2): inddata = stringdata[i].split('</td>') industrypeerlist.append(inddata[0]) startdate = datetime.date.today()- datetime.timedelta(1) for i in range(7): nextdate = startdate -datetime.timedelta(i) if nextdate.isoweekday() < 6: weekdatelist.append(nextdate) for peers in industrypeerlist: comp = peers.strip() try: count = 0 data = DataReader(comp, 'yahoo', weekdatelist[len(weekdatelist)-1], weekdatelist[0]) for i in range(len(weekdatelist)-1, 0, -1): try: if data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] > 0: count += 1 elif data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] < 0: count = 0 except KeyError: continue if count >= 2: recommendlist.append(comp) except OSError: continue except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=PINX:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff stringdata = stringdata.split('<td align="left" scope="row" >') for i in range(2, len(stringdata)+1, 2): inddata = stringdata[i].split('</td>') industrypeerlist.append(inddata[0]) startdate = datetime.date.today()- datetime.timedelta(1) for i in range(7): nextdate = startdate -datetime.timedelta(i) if nextdate.isoweekday() < 6: weekdatelist.append(nextdate) for peers in industrypeerlist: comp = peers.strip() try: count = 0 data = DataReader(comp, 'yahoo', weekdatelist[len(weekdatelist)-1], weekdatelist[0]) for i in range(len(weekdatelist)-1): try: if data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] > 0: count += 1 elif data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] < 0: count = 0 except KeyError: continue if count >= 2: recommendlist.append(comp) except OSError: continue except IndexError: try: url = urllib.request.urlopen("http://financials.morningstar.com/competitors/industry-peer-quote.action?type=com&t=XNYS:%s&region=usa&culture=en-US&cur=" % ticker) html = url.read() html = str(html, "utf-8").split('<tbody>') data = html[2].split('</tbody>') data = data[0].split('</a>') for line in data: stuff = re.sub('[\<]{1}[aA]{1}[0-9a-zA-Z\D]*[\"]{1}[\>]{1}', "", line) stringdata += stuff stringdata = stringdata.split('<td align="left" scope="row" >') for i in range(2, len(stringdata)+1, 2): inddata = stringdata[i].split('</td>') industrypeerlist.append(inddata[0]) startdate = datetime.date.today()- datetime.timedelta(1) for i in range(7): nextdate = startdate -datetime.timedelta(i) if nextdate.isoweekday() < 6: weekdatelist.append(nextdate) for peers in industrypeerlist: comp = peers.strip() try: count = 0 data = DataReader(comp, 'yahoo', weekdatelist[len(weekdatelist)-1], weekdatelist[0]) for i in range(len(weekdatelist)-1): try: if data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] > 0: count += 1 elif data.ix[str(weekdatelist[i-1])]['Close']-data.ix[str(weekdatelist[i])]['Close'] < 0: count = 0 except KeyError: continue if count >= 2: recommendlist.append(comp) except OSError: continue except IndexError: recommendlist = None return recommendlist
StarcoderdataPython