id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
5127062
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 功能实现:返回列表中除第一个元素外的所有元素。 解读: 如果列表的长度大于1,则使用切片表示法返回最后一个元素。 否则,返回整个列表。 """ def tail(lst): return lst[1:] if len(lst) > 1 else lst # Examples print(tail([1, 2, 3])) print(tail([1])) # output: # [2, 3] # [1]
StarcoderdataPython
11268924
"""PyMC4.""" from . import utils from .coroutine_model import Model, model from .scopes import name_scope, variable_name from . import coroutine_model from . import distributions from . import flow from .flow import ( evaluate_model_transformed, evaluate_model, evaluate_model_posterior_predictive, evaluate_meta_model, evaluate_meta_posterior_predictive_model, ) from . import inference from .distributions import * from .forward_sampling import sample_prior_predictive, sample_posterior_predictive from .inference.sampling import sample from .mcmc.samplers import * from . import gp from . import mcmc from .variational import * __version__ = "4.0a2"
StarcoderdataPython
6495656
#!/usr/bin/env python from __future__ import print_function import sys, os, glob, operator, time if sys.version_info < (2, 7): sys.exit("ERROR: need python 2.7 or later for dep.py") if __name__ == "__main__": dt = float(sys.argv[3])-float(sys.argv[2]) hours, rem = divmod(dt, 3600) minutes, seconds = divmod(rem, 60) dtstr = str(int(seconds)) + " seconds" if minutes > 0: dtstr = str(int(minutes)) + " minutes " + dtstr if hours > 0: dtstr = str(int(hours)) + " hours " + dtstr print("Total build time is", dtstr) print("More details are available at", sys.argv[1]) log_file_name = sys.argv[1] log_file_dir = os.path.dirname(log_file_name) log_files = glob.glob(os.path.join(log_file_dir,"*.log")) build_time_results = {} for logf in log_files: f = open(logf,'r') t0 = float(f.readline()) t1 = float(f.readline()) build_time_results[os.path.basename(logf)[:-4]] = t1-t0 f.close() f = open(log_file_name,'w') f.write("# (File Name, Built Time in seconds)\n") for it in sorted(build_time_results.items(), key=operator.itemgetter(1),reverse=True): f.write(str(it)+'\n') f.close()
StarcoderdataPython
6570909
<reponame>devkral/oscar-web-payments default_app_config = "demo.apps.OscarDemoConfig"
StarcoderdataPython
3455341
import os import sys import bioframe import click import cooler import cooltools import cooltools.expected import matplotlib.pyplot as plt import matplotlib.gridspec as gridspec from matplotlib.lines import Line2D import numpy as np import pandas as pd import pairlib import pairlib.scalings import pairtools from diskcache import Cache # peri-centromeric/-telomeric region to remove from both sides of chromosomal arms cache = Cache("~/.hic.cache") @click.group() def cli(): pass def plot_scalings( scalings, avg_trans_levels, plot_slope, label_subplots, labels, title, out_path ): """ Plot scaling curves from a list of (bin, pair frequencies) tuples. """ fig = plt.figure(constrained_layout=False) gs = gridspec.GridSpec(1, 2, width_ratios=[3, 2], wspace=0.4, figure=fig) scale_ax = fig.add_subplot(gs[0, 0]) slope_ax = fig.add_subplot(gs[0, 1]) if plot_slope else None for idx, scalings in enumerate(scalings): dist_bin_mids, pair_frequencies = scalings scale_ax.loglog(dist_bin_mids, pair_frequencies, label=labels[idx], lw=1) if avg_trans_levels: scale_ax.axhline( avg_trans_levels[idx], ls="dotted", c=scale_ax.get_lines()[-1].get_color(), lw=1, ) if slope_ax is not None: slope_ax.semilogx( np.sqrt(dist_bin_mids.values[1:] * dist_bin_mids.values[:-1]), np.diff(np.log10(pair_frequencies.values)) / np.diff(np.log10(dist_bin_mids.values)), label=labels[idx], lw=1, ) scale_ax.grid(lw=0.5, color="gray") scale_ax.set_aspect(1.0) scale_ax.set_xlim(1e3, 1e6) scale_ax.set_ylim(0.0001, 2.0) scale_ax.set_xlabel("genomic separation (bp)") scale_ax.set_ylabel("contact frequency") scale_ax.set_anchor("S") handles, labels = scale_ax.get_legend_handles_labels() if avg_trans_levels: handles.append(Line2D([0], [0], color="black", lw=1, ls="dotted")) labels.append("average trans") scale_ax.legend( handles, labels, loc="upper left", bbox_to_anchor=(1.1, 1.0), frameon=False ) if slope_ax is not None: slope_ax.grid(lw=0.5, color="gray") slope_ax.set_xlim(1e3, 1e6) slope_ax.set_ylim(-3.0, 0.0) slope_ax.set_yticks(np.arange(-3, 0.5, 0.5)) slope_ax.set_aspect(1.0) slope_ax.set_xlabel("distance (bp)") slope_ax.set_ylabel("log-log slope") slope_ax.set_anchor("S") if label_subplots: scale_ax.set_title("(a)") slope_ax.set_title("(b)") fig.suptitle(title) plt.savefig( out_path, dpi=300, bbox_inches="tight", facecolor="white", transparent=False ) plt.show() plt.close() def open_pairs_file(path: str) -> pd.DataFrame: header, pairs_body = pairtools._headerops.get_header( pairtools._fileio.auto_open(path, "r") ) cols = pairtools._headerops.extract_column_names(header) return pd.read_csv(pairs_body, header=None, names=cols, sep="\t") def calc_pair_freqs(scalings, trans_levels, calc_avg_trans, normalized): dist_bin_mids = np.sqrt(scalings.min_dist * scalings.max_dist) pair_frequencies = scalings.n_pairs / scalings.n_bp2 mask = pair_frequencies > 0 avg_trans = None if calc_avg_trans: avg_trans = ( trans_levels.n_pairs.astype("float64").sum() / trans_levels.np_bp2.astype("float64").sum() ) if normalized: norm_fact = pairlib.scalings.norm_scaling_factor( dist_bin_mids, pair_frequencies, anchor=int(1e3) ) pair_frequencies = pair_frequencies / norm_fact avg_trans = avg_trans / norm_fact if avg_trans else None return (dist_bin_mids[mask], pair_frequencies[mask]), avg_trans @cli.command("compute-scaling") @click.argument("pairs_paths", nargs=-1, type=click.Path(exists=True), required=True) @click.option( "--out", "-o", "out_path", required=True, type=click.Path(), help="The path to the scaling plot output file.", ) @click.option( "--region", "-r", "region", type=str, help="UCSC-style coordinates of the genomic region to calculate scalings for.", ) @click.option( "--exclude-chrom", "exclude_chroms", type=str, multiple=True, help='Exclude the specified chromosome from the scalings. Optionally add ":left" or ":right" to the argument to only exclude the corresponding arm of the chromosome.', ) @click.option( "--exclude-end-regions", "exclude_end_regions", type=int, default=10000, help="Centromeric and telomeric regions of chromosomal arms in bp to exclude from scalings. Default is 10,000.", ) @click.option( "--assembly", "-a", "assembly", type=str, nargs=1, help="Assembly name to be used for downloading chromsizes.", ) @click.option( "--centromeres", "centromeres_path", type=click.Path(exists=True), help="Path to a text file containing centromere start and end positions. If not provided, a download will be attempted.", ) @click.option( "--normalized", "-n", is_flag=True, help="Normalize the contact frequency up to 1.0.", ) @click.option( "--split-arms", is_flag=True, default=False, help="Plot scalings of left and right chromosomal arms per chromosome, per pairs file. Caching is disabled for this option.", ) @click.option( "--plot-slope", is_flag=True, default=False, help="Plot the slopes of the scaling curves.", ) @click.option( "--label-subplots", is_flag=True, default=False, help="Label subplots as (a) and (b). Disabled by default.", ) @click.option( "--show-average-trans", is_flag=True, help="Show average trans contact frequency." ) @click.option( "--label", "-l", "labels", type=str, multiple=True, help="One or more labels for the scaling plot curves.", ) @click.option( "--title", "-t", "title", type=str, nargs=1, help="Title text for the scaling plot." ) @click.option( "--no-cache", is_flag=True, help="Do not use cached values. Caching is enabled by default.", ) def compute_scaling( pairs_paths, out_path, region, exclude_chroms, exclude_end_regions, assembly, centromeres_path, split_arms, normalized, plot_slope, label_subplots, show_average_trans, labels, title, no_cache, ): """ Compute and plot contact frequency vs genomic separation curves for one or more pairs files. """ labels = list(labels) # parse left/right arm parameter of chromosomes to exclude exclude_chroms = [chrom.split(":") for chrom in exclude_chroms] chromsizes = bioframe.fetch_chromsizes(assembly, filter_chroms=False, as_bed=True) chromsizes = chromsizes[~chromsizes.chrom.isin(exclude_chroms)] if centromeres_path: centromeres = {} with open(centromeres_path) as file: for line in file: cols = line.split(" ") centromeres[cols[0]] = (int(cols[1]) + int(cols[2])) // 2 else: centromeres = bioframe.fetch_centromeres(assembly) centromeres.set_index("chrom", inplace=True) centromeres = centromeres.mid.to_dict() if len(labels) != 0 and len(pairs_paths) != len(labels) and not split_arms: sys.exit("Please provide as many labels as pairs paths.") if region: regions = bioframe.select(chromsizes, region).reset_index() else: # use chromosomal arms as separate regions if no regions are specified arms = bioframe.split(chromsizes, centromeres) # remove user-excluded chromosomes/arms for chrom in exclude_chroms: if len(chrom) == 1: # no arm specified, remove entire chromosome arms = arms[arms.chrom != chrom[0]] elif chrom[1] == "left": # remove specified chromosome with start == 0 (left arm) arms = arms[~((arms.chrom == chrom[0]) & (arms.start == 0))] elif chrom[1] == "right": # remove specified chromosome with start != 0 (right arm) arms = arms[~((arms.chrom == chrom[0]) & (arms.start != 0))] # remove 40kb from each side (80kb total) of an arm to remove centromere and telomere regions arms = bioframe.ops.expand(arms, -exclude_end_regions) # remove arms arms with a length of < 0 after removing side regions regions = arms[arms.start < arms.end].reset_index() all_scalings = [] all_avg_trans_levels = [] for idx, path in enumerate(pairs_paths): cis_scalings, avg_trans = None, None if split_arms: # calculate scalings per arm per chromosome cis_scalings, trans_levels = pairlib.scalings.compute_scaling( path, regions, chromsizes, dist_range=(int(1e1), int(1e9)), n_dist_bins=128, chunksize=int(1e7), ) # remove unassigned pairs with start/end positions < 0 cis_scalings = cis_scalings[ (cis_scalings.start1 > 0) & (cis_scalings.end1 > 0) & (cis_scalings.start2 > 0) & (cis_scalings.end2 > 0) ] sc_agg = ( cis_scalings.groupby(["chrom1", "start1", "min_dist", "max_dist"]) .agg({"n_pairs": "sum", "n_bp2": "sum"}) .reset_index() ) avail_chroms = set(sc_agg.chrom1) for chrom in avail_chroms: # calculate scalings for left/right arms (left arms start at position 0 + exclude_end_regions) sc_left, avg_trans_left = calc_pair_freqs( sc_agg[ (sc_agg.chrom1 == chrom) & (sc_agg.start1 == exclude_end_regions) ], trans_levels, show_average_trans, normalized, ) sc_right, avg_trans_right = calc_pair_freqs( sc_agg[ (sc_agg.chrom1 == chrom) & (sc_agg.start1 != exclude_end_regions) ], trans_levels, show_average_trans, normalized, ) dir_path = os.path.join( os.path.dirname(out_path), os.path.basename(path) ) if not os.path.exists(dir_path): os.mkdir(dir_path) chrom_path = os.path.join( dir_path, "_".join((chrom, os.path.basename(out_path))) ) ( plot_scalings( scalings=[sc_left, sc_right], avg_trans_levels=[avg_trans_left, avg_trans_right], plot_slope=plot_slope, labels=["left", "right"], title=chrom, out_path=chrom_path, ) ) else: if not no_cache: # get cached values cached = cache.get(path) if cached is not None: cis_scalings = ( cached["cis_scalings"] if cached["normalized"] == normalized else None ) avg_trans = cached["avg_trans"] if ( no_cache or cis_scalings is None or (avg_trans is None and show_average_trans) ): print( f"Computing scalings for file {idx + 1}/{len(pairs_paths)} ...", end="\r", ) # caching disabled or no cached values found cis_scalings, trans_levels = pairlib.scalings.compute_scaling( path, regions, chromsizes, dist_range=(int(1e1), int(1e9)), n_dist_bins=128, chunksize=int(1e7), ) # remove unassigned pairs with start/end positions < 0 cis_scalings = cis_scalings[ (cis_scalings.start1 >= 0) & (cis_scalings.end1 >= 0) & (cis_scalings.start2 >= 0) & (cis_scalings.end2 >= 0) ] sc_agg = ( cis_scalings.groupby(["min_dist", "max_dist"]) .agg({"n_pairs": "sum", "n_bp2": "sum"}) .reset_index() ) cis_scalings, avg_trans = calc_pair_freqs( sc_agg, trans_levels, show_average_trans, normalized ) if not no_cache: cache.set( path, { "cis_scalings": cis_scalings, "avg_trans": avg_trans, "normalized": normalized, }, ) else: print( f"Retrieved cached values for file {idx + 1}/{len(pairs_paths)}.", end="\r", ) # use file names as labels if labels have not been provided labels.append(os.path.basename) if len(labels) < len(pairs_paths) else None all_scalings.append(cis_scalings) all_avg_trans_levels.append(avg_trans) if avg_trans is not None else None if len(all_scalings) > 0 and not split_arms: plot_scalings( all_scalings, all_avg_trans_levels, plot_slope, label_subplots, labels, title, out_path, ) @cli.command("compute-trans-scaling") @click.argument("cooler_path", nargs=1, type=click.Path(exists=True), required=True) @click.option( "--out", "-o", "out_path", type=click.Path(), help="The path to the scaling plot output file.", ) @click.option( "--resolution", nargs=1, type=int, default=1000, help="Resolution of the Hi-C data in a .mcool file.", ) @click.option( "--region1", "-r1", "regions1", type=str, multiple=True, help="The first region of interactions.", ) @click.option( "--region2", "-r2", "regions2", type=str, multiple=True, help="The second region of interactions.", ) @click.option( "--label", "-l", "labels", type=str, multiple=True, help="One or more labels for the interaction frequency curves.", ) @click.option( "--title", "-t", "title", type=str, nargs=1, help="Title text for the plot." ) def compute_trans_scaling( cooler_path, out_path, resolution, regions1, regions2, labels, title ): chromsizes = bioframe.fetch_chromsizes("sacCer3", filter_chroms=False, as_bed=True) avg_contacts = cooltools.expected.diagsum_asymm( clr=cooler.Cooler("::/resolutions/".join((cooler_path, str(resolution)))), supports1=list(regions1), supports2=list(regions2), transforms={"balanced": lambda p: p["count"] * p["weight1"] * p["weight2"]}, ) avg_contacts["balanced.avg"] = avg_contacts["balanced.sum"] / avg_contacts( "n_valid" ) print("...") @cli.command("clear-cache") def clear_cache(): """ Erase all cached values. """ cache.clear() print("Cache cleared.") if __name__ == "__main__": np.seterr(divide="ignore", invalid="ignore") cli()
StarcoderdataPython
5167637
<reponame>gmachadoads/mach556 import sqlite3 from sqlite3 import Error from tkinter import * from tkinter import messagebox import os c = os.path.dirname(__file__) nomeArquivo = c+'\\nomes.txt' def ConexaoBanco(): caminho = r'C:\Users\rjgug\OneDrive\Documentos\Python MACH556\MACH556.db' con = None try: con = sqlite3.connect(caminho) except Error as ex: print('Erro na conexão com BD.') print(ex) return con vcon = ConexaoBanco() def inserir(conexao, sql): try: c = conexao.cursor() c.execute(sql) conexao.commit() print('Registro inserido.') except Error as ex: print('Erro na inserção de dados.') print(ex) def gravarDados(): if tb_cpf.get() != '': vcpf = tb_cpf.get() vnome = tb_nome.get() vtel = tb_tel.get() vend = tb_end.get() vnum = tb_num.get() vbairro = tb_bairro.get() vemail = tb_email.get() vobs = tb_obs.get('1.0', END) vsql = 'INSERT INTO tb_clientes' \ ' (CPF, NOME, TELEFONE, ENDERECO, NUMERO, BAIRRO, EMAIL, OBS)' \ 'VALUES("' + vcpf + '", "' + vnome + '", "' + vtel + '", "' + vend + '", "' + vnum + '", "' + vbairro + '", "' + vemail + '", "' + vobs + '")' inserir(vcon, vsql) tb_cpf.delete(0, END) tb_nome.delete(0, END) tb_tel.delete(0, END) tb_end.delete(0, END) tb_num.delete(0, END) tb_bairro.delete(0, END) tb_email.delete(0, END) tb_obs.delete('1.0', END) print('Dados gravados!') else: print('ERRO!') def msg(): messagebox.showinfo(title='BD', message='Dados gravados!') app = Tk() app.title('MACH556 Informática') app.geometry('700x550') app.configure(bg='#585858') imgLogo = PhotoImage(file=c+'\\Logo.gif') l_logo = Label(app, image=imgLogo) l_logo.place(x=80, y=5) Label(app, text='CPF', bg='#585858', fg='#F2F2F2', anchor=W).place(x=10, y=110, width=100, height=20) tb_cpf = Entry(app) tb_cpf.place(x=10, y=130, width=200, height=20) Label(app, text='Nome', bg='#585858', fg='#F2F2F2', anchor=W).place(x=230, y=110, width=100, height=20) tb_nome = Entry(app) tb_nome.place(x=230, y=130, width=200, height=20) Label(app, text='Telefone', bg='#585858', fg='#F2F2F2', anchor=W).place(x=460, y=110, width=100, height=20) tb_tel = Entry(app) tb_tel.place(x=460, y=130, width=200, height=20) Label(app, text='Endereço', bg='#585858', fg='#F2F2F2', anchor=W).place(x=10, y=160, width=100, height=20) tb_end = Entry(app) tb_end.place(x=10, y=180, width=200, height=20) Label(app, text='Numero', bg='#585858', fg='#F2F2F2', anchor=W).place(x=230, y=160, width=100, height=20) tb_num = Entry(app) tb_num.place(x=230, y=180, width=200, height=20) Label(app, text='Bairro', bg='#585858', fg='#F2F2F2', anchor=W).place(x=460, y=160, width=100, height=20) tb_bairro = Entry(app) tb_bairro.place(x=460, y=180, width=200, height=20) Label(app, text='E-Mail', bg='#585858', fg='#F2F2F2', anchor=W).place(x=10, y=210, width=100, height=20) tb_email = Entry(app) tb_email.place(x=10, y=230, width=300, height=20) Label(app, text='OBS', bg='#585858', fg='#F2F2F2', anchor=W).place(x=10, y=260, width=100, height=20) tb_obs = Text(app) tb_obs.place(x=10, y=280, width=650, height=100) Button(app, text='GRAVAR', command=gravarDados, bg='#fff').place(x=300, y=450, width=100, height=50) app.mainloop()
StarcoderdataPython
11398113
# Step 1 - Authenticate consumer_key= 'dNPO3EUKQLJSpofg5vm8oE1Mu' consumer_secret= '<KEY>' access_token='<KEY>' access_token_secret='<KEY>' from twitter import Api api = Api(consumer_key=consumer_key, consumer_secret=consumer_secret, access_token_key=access_token, access_token_secret=access_token_secret) results = api.GetSearch( raw_query="max_id=1244222306924351487&q=corona&count=10&include_entities=1&result_type=recent" , return_json=True ) print(len(results['statuses'])) # print(type(results[0])) print(results ) # for key , value in results[0].AsDict().items() : # print(key , value ,"\n" )
StarcoderdataPython
9749555
<reponame>nishithshowri006/bonk-slaps from django.apps import AppConfig class BonkConfig(AppConfig): name = 'bonk'
StarcoderdataPython
1702789
# Lint as: python3 # Copyright 2020 Google LLC. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Factory for instantiating rewriters. NOTE: For your rewriter to be instanitated, please include it as an import and a constant for ease of invoking the new rewriter. """ import importlib from typing import Text from tfx.components.trainer.rewriting import rewriter TFLITE_REWRITER = 'TFLiteRewriter' TFJS_REWRITER = 'TFJSRewriter' def _load_tflite_rewriter(): importlib.import_module('tfx.components.trainer.rewriting.tflite_rewriter') def _load_tfjs_rewriter(): try: importlib.import_module('tensorflowjs') except ImportError as e: raise RuntimeError( 'tensorflowjs is not installed. Please install [tfjs] extra ' 'dependencies to use tfjs_rewriter.') from e else: importlib.import_module('tfx.components.trainer.rewriting.tfjs_rewriter') class _RewriterFactory: """Factory class for rewriters.""" _LOADERS = { TFLITE_REWRITER.lower(): _load_tflite_rewriter, TFJS_REWRITER.lower(): _load_tfjs_rewriter, } _loaded = set() @classmethod def _maybe_load_public_rewriter(cls, lower_rewriter_type: Text): if (lower_rewriter_type in cls._LOADERS and lower_rewriter_type not in cls._loaded): cls._LOADERS[lower_rewriter_type]() cls._loaded.add(lower_rewriter_type) @classmethod def get_rewriter_cls(cls, rewriter_type: Text): rewriter_type = rewriter_type.lower() cls._maybe_load_public_rewriter(rewriter_type) for subcls in rewriter.BaseRewriter.__subclasses__(): if subcls.__name__.lower() == rewriter_type: return subcls raise ValueError('Failed to find rewriter: {}'.format(rewriter_type)) def create_rewriter(rewriter_type: Text, *args, **kwargs) -> rewriter.BaseRewriter: """Instantiates a new rewriter with the given type and constructor arguments. Args: rewriter_type: The rewriter subclass to instantiate (can be all lowercase). *args: Positional initialization arguments to pass to the rewriter. **kwargs: Keyward initialization arguments to pass to the rewriter. Returns: The instantiated rewriter. Raises: ValueError: If unable to instantiate the rewriter. """ return _RewriterFactory.get_rewriter_cls(rewriter_type)(*args, **kwargs)
StarcoderdataPython
32840
# # See top-level LICENSE.rst file for Copyright information # # -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from collections import OrderedDict from ..defs import (task_name_sep, task_state_to_int, task_int_to_state) from ...util import option_list from ...io import findfile from .base import (BaseTask, task_classes) from desiutil.log import get_logger import sys,re,os,glob import numpy as np # NOTE: only one class in this file should have a name that starts with "Task". class TaskPSFNight(BaseTask): """Class containing the properties of one PSF combined night task. """ def __init__(self): super(TaskPSFNight, self).__init__() # then put int the specifics of this class # _cols must have a state self._type = "psfnight" self._cols = [ "night", "band", "spec", "state" ] self._coltypes = [ "integer", "text", "integer", "integer" ] # _name_fields must also be in _cols self._name_fields = ["night","band","spec"] self._name_formats = ["08d","s","d"] def _paths(self, name): """See BaseTask.paths. """ props = self.name_split(name) camera = "{}{}".format(props["band"], props["spec"]) return [ findfile("psfnight", night=props["night"], camera=camera, groupname=None, nside=None, band=props["band"], spectrograph=props["spec"]) ] def _deps(self, name, db, inputs): """See BaseTask.deps. """ return dict() def _run_max_procs(self): # This is a serial task. return 1 def _run_time(self, name, procs, db): # Run time on one proc on machine with scale factor == 1.0 return 2.0 def _run_defaults(self): """See BaseTask.run_defaults. """ return {} def _option_dict(self, name, opts): """Build the full list of options. This includes appending the filenames and incorporating runtime options. """ from .base import task_classes, task_type options = OrderedDict() options["output"] = self.paths(name)[0] # look for psf for this night on disk options["input"] = [] props = self.name_split(name) camera = "{}{}".format(props["band"], props["spec"]) dummy_expid = 99999999 template_input = findfile("psf", night=props["night"], expid=dummy_expid, camera=camera, band=props["band"], spectrograph=props["spec"]) template_input = template_input.replace("{:08d}".format(dummy_expid),"????????") options["input"] = glob.glob(template_input) return options def _option_list(self, name, opts): """Build the full list of options. This includes appending the filenames and incorporating runtime options. """ return option_list(self._option_dict(name,opts)) def _run_cli(self, name, opts, procs, db): """See BaseTask.run_cli. """ optlist = self._option_list(name, opts) com = "# command line for psfnight not implemented" return com def _run(self, name, opts, comm, db): """See BaseTask.run. """ from ...scripts import specex optdict = self._option_dict(name, opts) specex.mean_psf(optdict["input"], optdict["output"]) return def getready(self, db, name, cur): """Checks whether dependencies are ready""" log = get_logger() # look for the state of psf with same night,band,spectro props = self.name_split(name) cmd = "select state from psf where night={} and band='{}' and spec={}".format(props["night"],props["band"],props["spec"]) cur.execute(cmd) states = np.array([ x for (x,) in cur.fetchall() ]) log.debug("states={}".format(states)) # psfnight ready if all psf from the night have been processed, and at least one is done (failures are allowed) n_done = np.sum(states==task_state_to_int["done"]) n_failed = np.sum(states==task_state_to_int["failed"]) ready = (n_done > 0) & ( (n_done + n_failed) == states.size ) if ready : self.state_set(db=db,name=name,state="ready",cur=cur) def postprocessing(self, db, name, cur): """For successful runs, postprocessing on DB""" # run getready for all extraction with same night,band,spec props = self.name_split(name) log = get_logger() tt = "traceshift" cmd = "select name from {} where night={} and band='{}' and spec={} and state=0".format(tt,props["night"],props["band"],props["spec"]) cur.execute(cmd) tasks = [ x for (x,) in cur.fetchall() ] log.debug("checking {}".format(tasks)) for task in tasks : task_classes[tt].getready( db=db,name=task,cur=cur)
StarcoderdataPython
4804463
<gh_stars>1-10 # coding=utf-8 from sentry_sdk import init as sentry_init from sentry_sdk.integrations import sqlalchemy as sentry_sqlalchemy from sqlalchemy.engine import create_engine from app import settings from ._base import ( Base, session, enable_time_logging, ) from .task import Task from .user import User config = settings.load_config( (settings.SQLAlchemySettings, settings.SentrySetting,) ) if config.QUERY_TIME_LOGGING: enable_time_logging(config.QUERY_TIME_THRESHOLD) engine = create_engine( # pylint: disable=C0103 config.SQLALCHEMY_DATABASE_URI, convert_unicode=True, echo=bool(config.SQLALCHEMY_ENGINE_LOG) ) session.configure(bind=engine) sentry_init( dsn=config.SENTRY_DSN, integrations=(sentry_sqlalchemy.SqlalchemyIntegration(),) )
StarcoderdataPython
6550053
<filename>lib/python/treadmill/traits.py<gh_stars>1-10 """Server traits. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import logging from treadmill import plugin_manager from treadmill import sysinfo _LOGGER = logging.getLogger(__name__) def format_traits(code, value): """Format traits as list of names. """ result = [] for trait in code: if value & code[trait]: result.append(trait) result.sort() return ','.join(result) def detect(traits): """Detect traits usign plugins. """ result = [] for trait in traits: try: plugin = plugin_manager.load('treadmill.server.traits', trait) if plugin(): result.append(trait) except Exception: # pylint: disable=W0703 _LOGGER.exception('Error processing trait plugin: %s', trait) return result def create_code(traits): """Assign bits to list of traits. """ if not traits: return {} result = {} code = 1 for trait in traits: result[trait] = code code = code << 1 return result def encode(code, traits): """Code the list of traits into a number. """ result = 0 for trait in traits: if trait in code: result |= code[trait] else: _LOGGER.error('Unknown trait %s', trait) return result def has_sse4(): """Return true if current cpu has sse4 flag. """ flags = sysinfo.cpu_flags() return 'sse4_1' in flags and 'sse4_2' in flags def has_rdtscp(): """Return true if current cpu has rdtscp flag. """ flags = sysinfo.cpu_flags() return 'rdtscp' in flags
StarcoderdataPython
3412809
#!/usr/bin/env python3 import timeit import numpy as np from pwtools.crys import Trajectory from pwtools import crys, num, timer rand = np.random.rand # example session on 4-core box, _flob compiled w/ OpenMP (make gfortran-omp) # --------------------------------------------------------------------------- # # $ export OMP_NUM_THREADS=1 # --TagTimer--: py_bigmen: time: 3.56550598145 # --TagTimer--: py_loop: time: 0.456802129745 # --TagTimer--: f: time: 0.437112092972 # # $ export OMP_NUM_THREADS=2 # --TagTimer--: f: time: 0.206064939499 # # $ export OMP_NUM_THREADS=4 # --TagTimer--: f: time: 0.125560998917 def pydist_bigmem(traj, pbc=True): # Pure numpy version w/ big temp arrays. Also slowest. # # (nstep, natoms, natoms, 3) distvecs_frac = ( traj.coords_frac[:, :, None, :] - traj.coords_frac[:, None, :, :] ) if pbc: distvecs_frac = crys.min_image_convention(distvecs_frac) distvecs = np.empty((nstep, natoms, natoms, 3)) for ii in range(traj.nstep): distvecs[ii, ...] = np.dot(distvecs_frac[ii, ...], traj.cell[ii, ...]) # (nstep, natoms, natoms) dists = np.sqrt((distvecs ** 2.0).sum(axis=-1)) return dists def pydist_loop(traj, pbc=True): dists = np.empty((nstep, natoms, natoms)) for ii, struct in enumerate(traj): dists[ii, ...] = crys.distances(struct, pbc=pbc) return dists def fdist(traj): return crys.distances_traj(traj, pbc=True) if __name__ == "__main__": natoms = 100 nstep = 1000 cell = rand(nstep, 3, 3) stress = rand(nstep, 3, 3) forces = rand(nstep, natoms, 3) coords_frac = rand(nstep, natoms, 3) symbols = ["H"] * natoms traj = Trajectory(coords_frac=coords_frac, cell=cell, symbols=symbols) ##assert np.allclose(pydist_bigmem(traj), pydist_loop(traj)) ##print("... ok") ##assert np.allclose(pydist_loop(traj), fdist(traj)) ##print("... ok") globs = globals() statements = [ "pydist_bigmem(traj)", "pydist_loop(traj)", "fdist(traj)", ] for stmt in statements: number = 1 times = np.array( timeit.repeat(stmt, globals=globs, number=number, repeat=5) ) print( f"{number} loops: {times.mean():6.3f} +- {times.std():.4f}: {stmt}" )
StarcoderdataPython
4990884
import os import sys from PIL import Image def jpg(filename: str, savename: str = "resized.jpg", width: int = 1024, height: int = 1024): if not(filename.lower().endswith(".jpg")): filename += ".jpg" if not(savename.lower().endswith(".jpg")): savename += ".jpg" try: imgjpg = Image.open(filename) except FileNotFoundError: sys.exit("No file found in " + str(os.getcwd())) except Exception as e: sys.exit("Error: " + str(e)) imgjpg_resized = imgjpg.resize((width, height)) imgjpg_resized.save(savename) def jpeg(filename: str, savename: str = "resized.jpeg", width: int = 1024, height: int = 1024): if not(filename.lower().endswith(".jpeg")): filename += ".jpeg" if not(savename.lower().endswith(".jpeg")): savename += ".jpeg" try: imgjpeg = Image.open(filename) except FileNotFoundError: sys.exit("No file found in " + str(os.getcwd())) except Exception as e: sys.exit("Error: " + str(e)) imgjpeg_resized = imgjpeg.resize((width, height)) imgjpeg_resized.save(savename) def png(filename: str, savename: str = "resized.png", width: int = 1024, height: int = 1024): if not(filename.lower().endswith(".png")): filename += ".png" if not(savename.lower().endswith(".png")): savename += ".png" try: imgpng = Image.open(filename) except FileNotFoundError: sys.exit("No file found in " + str(os.getcwd())) except Exception as e: sys.exit("Error: " + str(e)) imgpng_resized = imgpng.resize((width, height)) imgpng_resized.save(savename) for filename in os.listdir(os.getcwd()): if filename.lower().endswith("jpg"): jpg(filename=filename, savename=filename, width=1024, height=1024) elif filename.lower().endswith("jpeg"): jpeg(filename=filename, savename=filename, width=1024, height=1024) elif filename.lower().endswith("png"): png(filename=filename, savename=filename, width=1024, height=1024)
StarcoderdataPython
3446056
<reponame>UCBerkeley-SCET/DataX-Berkeley # -*- coding: utf-8 -*- """ Created on Mon Nov 23 11:59:55 2020 @author: tobias.grab """ from skimage.transform import rotate from skimage.transform import downscale_local_mean import keras from keras.layers import Input, Dense, Conv2D, MaxPooling2D, UpSampling2D, BatchNormalization, Flatten, Reshape from keras.models import Model from keras import backend as K from keras.callbacks import EarlyStopping from keras.callbacks import ModelCheckpoint import tensorflow as tf from skimage import exposure import matplotlib.pyplot as plt import sys sys.path.append('/usr/local/lib/python2.7/site-packages') from os import listdir import cv2 import numpy as np from scipy import spatial import tensorflow_addons as tfa import time import pandas as pd if __name__ == "__main__": top_k=5 implemented_algos=["sift","surf","brisk","akaze","kaze"] # implemented_algos=["sift"] database_size=[100,200,400,800,1600,3200] # database_size=[100,200] data_path=r"C:\Users\tobias.grab\IWK_data\timetest" files=listdir(data_path) path_testimgs=r"C:\Users\tobias.grab\IWK_data\test_testimgs" test_files=listdir(path_testimgs) test_imgs=[cv2.imread(path_testimgs + "\\" + filename,0) for ind,filename in enumerate(test_files)] alg="brisk" ##### Init matching Algorithm for alg in implemented_algos: print(alg) creation=[] mean_times=[] std_times=[] for database_size_now in database_size: if alg=="sift": ftAlg = cv2.xfeatures2d.SIFT_create() category="old but gold" if alg=="surf": ftAlg = cv2.xfeatures2d.SURF_create() category="old but gold" if alg=="brisk": ftAlg = cv2.BRISK_create() category="old but gold" if alg=="akaze": ftAlg = cv2.AKAZE_create() category="old but gold" if alg=="kaze": ftAlg = cv2.KAZE_create() category="old but gold" bf = cv2.BFMatcher() start=time.time() nrOfFiles=len(files) precomputed_fts=[] start_creation=time.time() for file in files[:database_size_now]: img_from_database = cv2.imread(data_path+'\\'+file,0) precomputed_fts.append(ftAlg.detectAndCompute(img_from_database, None)) end_creation=time.time()-start_creation creation.append(end_creation) times=[] for ind, test_img in enumerate(test_imgs): name_testimg=test_files[ind] (kps1, descs1) = ftAlg.detectAndCompute(test_img, None) nrOfGoodPerImage=np.zeros([nrOfFiles,1]) DistPerImage=np.zeros([nrOfFiles,1]) bauteilnr=0 start_matching=time.time() for kps2, descs2 in precomputed_fts: matches = bf.knnMatch(descs1,descs2,k=2) matchesMask = [[0,0] for i in range(len(matches))] for i,(m,n) in enumerate(matches): if m.distance < 0.75*n.distance: matchesMask[i]=[1,0] nrOfGoodPerImage[bauteilnr]=np.sum(matchesMask[:]) bauteilnr=bauteilnr+1 idx = np.argpartition(-nrOfGoodPerImage[:,0], top_k) topk_scores=abs(nrOfGoodPerImage[idx[:top_k]]) stop_matching=elapsed=time.time()-start_matching # print(stop_matching) times.append(stop_matching) mean_times.append(np.mean(times)) std_times.append(np.std(times)) print(alg) print("mean\n") [print(t) for t in mean_times] print("std\n") [print(t) for t in std_times] print("create\n") [print(t) for t in creation]
StarcoderdataPython
8147087
from robpy import kw, test @test def foo(): bar() @kw def bar(): print 'bar'
StarcoderdataPython
6603595
<filename>reader.py # -*- coding: utf-8 -*- """ File Name: reader Description : 读取图像信息 Author : mick.yi date: 2018/12/26 """ import os import codecs import matplotlib.pyplot as plt def get_mslm_infos(annotation_file, img_dir): """ 读取mslm数据集信息 :param annotation_file: 标注文件路径 :param img_dir: 图像存放路径 :return: """ with codecs.open(annotation_file, 'r', 'utf-8') as f: lines = f.readlines() img_infos = [] label_set = set() for id, line in enumerate(lines): img_name, label = line.split('\t') img_info = dict() img_info['img_path'] = os.path.join(img_dir, img_name) img_info['label'] = label img_info['img_id'] = id # 增加图像id编号 img_infos.append(img_info) label_set.add(label) return img_infos, label_set def load_img(img_path): img = plt.imread(img_path) return img[:, :, :3]
StarcoderdataPython
11375576
r"""Compute action detection performance for the AVA dataset. Please send any questions about this code to the Google Group ava-dataset-users: https://groups.google.com/forum/#!forum/ava-dataset-users Example usage: python -O get_ava_performance.py \ -l ava/ava_action_list_v2.1_for_activitynet_2018.pbtxt.txt \ -g ava_val_v2.1.csv \ -e ava_val_excluded_timestamps_v2.1.csv \ -d your_results.csv """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import argparse from collections import defaultdict import csv import logging import pprint import sys import time import numpy as np import matplotlib.pyplot as plt import seaborn as sns from ava import object_detection_evaluation from ava import standard_fields def print_time(message, start): logging.info("==> %g seconds to %s", time.time() - start, message) def make_image_key(video_id, timestamp): """Returns a unique identifier for a video id & timestamp.""" return "%s,%04d" % (video_id, int(timestamp)) def read_csv(csv_file, class_whitelist=None): """Loads boxes and class labels from a CSV file in the AVA format. CSV file format described at https://research.google.com/ava/download.html. Args: csv_file: A file object. class_whitelist: If provided, boxes corresponding to (integer) class labels not in this set are skipped. Returns: boxes: A dictionary mapping each unique image key (string) to a list of boxes, given as coordinates [y1, x1, y2, x2]. labels: A dictionary mapping each unique image key (string) to a list of integer class lables, matching the corresponding box in `boxes`. scores: A dictionary mapping each unique image key (string) to a list of score values lables, matching the corresponding label in `labels`. If scores are not provided in the csv, then they will default to 1.0. """ start = time.time() boxes = defaultdict(list) labels = defaultdict(list) scores = defaultdict(list) reader = csv.reader(csv_file) for row in reader: assert len(row) in [7, 8], "Wrong number of columns: " + row image_key = make_image_key(row[0], row[1]) x1, y1, x2, y2 = [float(n) for n in row[2:6]] action_id = int(row[6]) if class_whitelist and action_id not in class_whitelist: continue score = 1.0 if len(row) == 8: score = float(row[7]) boxes[image_key].append([y1, x1, y2, x2]) labels[image_key].append(action_id) scores[image_key].append(score) print_time("read file " + csv_file.name, start) return boxes, labels, scores def read_exclusions(exclusions_file): """Reads a CSV file of excluded timestamps. Args: exclusions_file: A file object containing a csv of video-id,timestamp. Returns: A set of strings containing excluded image keys, e.g. "aaaaaaaaaaa,0904", or an empty set if exclusions file is None. """ excluded = set() if exclusions_file: reader = csv.reader(exclusions_file) for row in reader: assert len(row) == 2, "Expected only 2 columns, got: " + row excluded.add(make_image_key(row[0], row[1])) return excluded def read_labelmap(labelmap_file): """Reads a labelmap without the dependency on protocol buffers. Args: labelmap_file: A file object containing a label map protocol buffer. Returns: labelmap: The label map in the form used by the object_detection_evaluation module - a list of {"id": integer, "name": classname } dicts. class_ids: A set containing all of the valid class id integers. """ labelmap = [] class_ids = set() name = "" class_id = "" for line in labelmap_file: if line.startswith(" name:"): name = line.split('"')[1] elif line.startswith(" id:") or line.startswith(" label_id:"): class_id = int(line.strip().split(" ")[-1]) labelmap.append({"id": class_id, "name": name}) class_ids.add(class_id) return labelmap, class_ids def split_list(alist, wanted_parts=1): length = len(alist) return [alist[i * length // wanted_parts: (i + 1) * length // wanted_parts] for i in range(wanted_parts)] def split_interleave(A): lists = split_list(A, wanted_parts=4) D = [val for tup in zip(*lists) for val in tup] return D def run_evaluation_threshold(labelmap, groundtruth, exclusions, iou): # sns.palplot(sns.diverging_palette(128, 240, n=10)) # seq_col_brew = sns.color_palette("Blues_r", 4) # For sequential, blue gradient in reverse # Qualitative data palette # current_palette = sns.color_palette("Paired") # sns.set_palette(current_palette) # Make sure not to mess this up filters = [] filters.append("0.1") filters.append("0.2") filters.append("0.3") filters.append("0.4") filters.append("0.5") filters.append("0.6") filters.append("0.7") filters.append("0.8") filters.append("0.9") root_dir = '../../../data/AVA/files/' ftype = "fusion" all_detections = [] ts = "1809281055" for f in filters: all_detections.append(open("../thresholds/context_" + ftype + "/predictions_fusion_avg_fovea_" + ts + "_" + f + ".csv", 'rb')) all_gndtruths = [] for i in range(len(filters)): all_gndtruths.append(open(root_dir + "AVA_Val_Custom_Corrected.csv", 'rb')) #all_gndtruths.append(open("AVA_Test_Custom_Corrected.csv", 'rb')) #all_gndtruths.append(open("AVA_Test_Custom_Corrected.csv", 'rb')) """Runs evaluations given input files. Args: labelmap: file object containing map of labels to consider, in pbtxt format groundtruth: file object detections: file object exclusions: file object or None. """ categories, class_whitelist = read_labelmap(labelmap) logging.info("CATEGORIES (%d):\n%s", len(categories), pprint.pformat(categories, indent=2)) excluded_keys = read_exclusions(exclusions) # Reads detections data. x_axis = [] xpose_ax = [] xobj_ax = [] xhuman_ax = [] ypose_ax = [] yobj_ax = [] yhuman_ax = [] colors_pose = [] colors_obj = [] colors_human = [] finalmAPs = [] colors = [] maxY = -1.0 for detections, gndtruth, filter_type in zip(all_detections, all_gndtruths, filters): pascal_evaluator = None metrics = None actions = None start = 0 pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories, matching_iou_threshold=iou) # Reads the ground truth data. boxes, labels, _ = read_csv(gndtruth, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in ground truth: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: np.array(boxes[image_key], dtype=float), standard_fields.InputDataFields.groundtruth_classes: np.array(labels[image_key], dtype=int), standard_fields.InputDataFields.groundtruth_difficult: np.zeros(len(boxes[image_key]), dtype=bool) }) print_time("convert groundtruth", start) # Run evaluation boxes, labels, scores = read_csv(detections, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in detections: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: np.array(boxes[image_key], dtype=float), standard_fields.DetectionResultFields.detection_classes: np.array(labels[image_key], dtype=int), standard_fields.DetectionResultFields.detection_scores: np.array(scores[image_key], dtype=float) }) print_time("convert detections", start) start = time.time() metrics = pascal_evaluator.evaluate() print_time("run_evaluator", start) # TODO Show a pretty histogram here besides pprint actions = list(metrics.keys()) final_value = 0.0 for m in actions: ms = m.split("/")[-1] if ms == 'mAP@' + str(iou) + 'IOU': final_value = metrics[m] finalmAPs.append(final_value) else: # x_axis.append(ms) # y_axis.append(metrics[m]) for cat in categories: if cat['name'].split("/")[-1] == ms: if maxY < metrics[m]: maxY = metrics[m] if cat['id'] <= 10: xpose_ax.append("(" + filter_type + ") " + ms) ypose_ax.append(metrics[m]) colors_pose.append('red') elif cat['id'] <= 22: xobj_ax.append("(" + filter_type + ") " + ms) yobj_ax.append(metrics[m]) colors_obj.append('blue') else: xhuman_ax.append("(" + filter_type + ") " + ms) yhuman_ax.append(metrics[m]) colors_human.append('green') # Make a confusion matrix for this run pascal_evaluator = None x_axis = split_interleave(xpose_ax) + split_interleave(xobj_ax) + split_interleave(xhuman_ax) y_axis = split_interleave(ypose_ax) + split_interleave(yobj_ax) + split_interleave(yhuman_ax) colors = split_interleave(colors_pose) + split_interleave(colors_obj) + split_interleave(colors_human) print(filters) print(finalmAPs) plt.ylabel('frame-mAP') top = 0.1 # offset a bit so it looks good sns.set_style("whitegrid") clrs = ['blue' if (x < max(finalmAPs)) else 'red' for x in finalmAPs] g = sns.barplot(filters, finalmAPs, palette=clrs) ax = g # annotate axis = seaborn axis for p in ax.patches: ax.annotate("%.4f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', fontsize=10, color='gray', rotation=90, xytext=(0, 20), textcoords='offset points') _ = g.set_ylim(0, top) # To make space for the annotations plt.show() def run_evaluation(labelmap, groundtruth, exclusions, iou): root_dir = '../../../data/AVA/files/' test_dir = "../test_outputs/" # Make sure not to mess this up experiments_filters = {} experiments_detections = {} experiments_filters['pose'] = ['Pose'] experiments_detections['pose'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb')] experiments_filters['rgb-streams-aug'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['rgb-streams-aug'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['flow vs flowcrop'] = ['Flow', 'Flowcrop'] experiments_detections['flow vs flowcrop'] = [open(test_dir + "/flow/output_test_flowcrop.csv", 'rb'), ] #all_detections.append(open(test_dir + "/flow/output_test_flow.csv", 'rb')) experiments_filters['two-streams'] = ['Two-Stream-RGB', 'Two-Stream-Crop', 'Two-Stream-Gauss', 'Two-Stream-Fovea'] experiments_detections['two-streams'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['two-streams-aug'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['two-streams-aug'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['mlp vs lstm'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['mlp vs lstm'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['lstmA vs lstmB'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['lstmA vs lstmB'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['context-fusion mlp vs lstm'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['context-fusion mlp vs lstm'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing sampling'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing sampling'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing weights'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing weights'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] experiments_filters['balancing prior'] = ['RGB', 'Crop', 'Gauss', 'Fovea'] experiments_detections['balancing prior'] = [open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb'), open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb'), open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb'), open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')] # experiment = filters = [] # filters.append("pose") # filters.append("rgb-base") # filters.append("rgb-prior") # filters.append("rgb-sampling") # filters.append("rgb-weights") # filters.append("rgb-kinetics") # filters.append("flow-kinetics") # filters.append("rgb") # filters.append("crop") # filters.append("gauss") # filters.append("fovea") # filters.append("flowcrop") # filters.append("flow") # filters.append("MLP") #filters.append("best case scenario thresh 0.1") #filters.append("two pass scenario thresh 0.1") filters.append("fovea") filters.append("dense-gt") #filters.append("sampling no aug") filters.append("dense-2pass") #filters.append("weights no aug") # filters.append("LSTM5-A-512") # filters.append("random") # filters.append("LSTM5-B-512") # filters.append("LSTM10") # filters.append("2st(rgb)") # filters.append("2st(crop)") # filters.append("2st(gauss)") # filters.append("2st(fovea)") #filters.append("2st(crop) + flowcrop") #filters.append("2st(gauss) + flowcrop") #filters.append("2st(fovea) + flowcrop") #filters.append("2st(fovea) + mlp") #filters.append("2st(crop) + mlp") #filters.append("2st(gauss) + mlp") # filters.append("2stream") #filters.append("2stream + lstm (extra pass)") # filters.append("gauss") #filters.append("gauss aug") #filters.append("LSTMA 512 5 2") #filters.append("LSTMA 512 5 3") #filters.append("LSTMA 512 5 3") #filters.append("LSTMA 1024 5 3") #filters.append("LSTMA 2048 5 3") #filters.append("LSTMB 512 3 3") #filters.append("LSTMB 1024 3 3") #filters.append("LSTMB 2048 3 3") # filters.append("2st(gauss) + lstm") all_detections = [] #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_1024_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_2048_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_1024_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_2048_3_3.csv", 'rb')) # Pose # all_detections.append(open(test_dir + "output_test_flowcrop.csv", 'rb')) # Balancing #all_detections.append(open(test_dir + "output_test_flowcrop.csv", 'rb')) #all_detections.append(open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/predictions_rgb_gauss_1807241628_1000.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/output_test_sampling_gauss_1809221859.csv", 'rb')) #all_detections.append(open(test_dir + "/augmentation/output_test_weights_gauss_1809221904.csv", 'rb')) # RGB Streams #all_detections.append(open(test_dir + "/kinetics_init/output_test_rgb_kineticsinit_gauss_1809220212.csv", 'rb')) #all_detections.append(open(test_dir + "/kinetics_init/output_test_flow_kineticsinit_1809220244.csv", 'rb')) # Flow Streams # Context (LSTMs) #filters.append("LSTMB 512 3 3") #filters.append("LSTMB 512 3 2") #filters.append("LSTMB 512 3 1") #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_1.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_2.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_1.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_2.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_3_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_5_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_32_10_3.csv", 'rb')) #all_detections.append(open(test_dir + "context/mlp/output_test_ctx.csv", 'rb')) #all_detections.append(open(test_dir + "context/mlp/output_test_ctx_mlp_1809212356.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmA/output_test_ctx_lstm_512_5_3_1809220010.csv", 'rb')) #all_detections.append(open(test_dir + "random/output_test_random_1809221552.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_512_5_3_1809211924.csv", 'rb')) #all_detections.append(open(test_dir + "context/lstmB/output_test_ctx_lstm_128_10_3_1809211930.csv", 'rb')) # 6 2-streams + baseline #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_rgb_1809220100.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_crop.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_gauss.csv", 'rb')) all_detections.append(open(test_dir + "/two-streams/output_test_2stream_fovea.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_crop_1809220117.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_gauss_1809220152.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_fovea_1809220136.csv", 'rb')) # Context Fusions # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_fovea.csv", 'rb')) # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_crop.csv", 'rb')) # all_detections.append(open(test_dir + "/context_fusion/output_test_3stream_gauss.csv", 'rb')) all_detections.append(open(test_dir + "/context_fusion/output_test_LSTM_FCfusion_contextGT_gauss_1810011737.csv", 'rb')) all_detections.append(open(test_dir + "/context_fusion/output_test_LSTM_FCfusion_context_secondpass_gauss_1810011754.csv", 'rb')) # LSTMs #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_rgb_1809220100.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_crop.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_fovea.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_fusion_thresh_512_5_3_1809242315.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_512_5_3_1809242252.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavggoodpedro_512_5_3_1809242338.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_twophase_thresh02_512_5_3_1809281219.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_threephase_512_5_3_1809281317.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstm_fusion_thresh01_512_5_3_1809281400.csv", 'rb')) #all_detections.append(open(test_dir + "/context_fusion/output_test_ctx_lstmavg_twophase_thresh01_512_5_3_1809281423.csv", 'rb')) #all_detections.append(open(test_dir + "rgb_gauss/output_test_gauss.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_sampling_gauss_1809221859.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_samplingnoaug_gauss_1809281439.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_weightsnew_gauss_1809291104.csv", 'rb')) #all_detections.append(open(test_dir + "augmentation/output_test_weightsaug_gauss_1809261228.csv", 'rb')) # output_test_ctx_lstm_512_5_3_1809242252.csv #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_crop_1809220117.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_gauss_1809220152.csv", 'rb')) #all_detections.append(open(test_dir + "/two-streams/output_test_2stream_flowcrop_fovea_1809220136.csv", 'rb')) # --------------------------------- # New run to compare new flow #all_detections.append(open(test_dir + "/flow/output_test_flowcrop.csv", 'rb')) #all_detections.append(open(test_dir + "/flow/output_test_flow.csv", 'rb')) # New 2 and 3 streams # all_detections.append(open(test_dir + "output_test_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_gauss_extra.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_3stream_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "output_test_3stream_crop.csv", 'rb')) # Flow, context, 2-stream, 3-stream run #all_detections.append(open(test_dir + "output_test_ctx.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_flow.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_2stream.csv", 'rb')) #all_detections.append(open(test_dir + "output_test_3stream.csv", 'rb')) # RGB run # all_detections.append(open(test_dir + "/rgb_rgb/output_test_rgb.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_crop/output_test_crop.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_gauss/output_test_gauss.csv", 'rb')) # all_detections.append(open(test_dir + "/rgb_fovea/output_test_fovea.csv", 'rb')) balancing = False all_gndtruths = [] for i in range(len(all_detections)): if balancing is False: all_gndtruths.append(open(root_dir + "AVA_Test_Custom_Corrected.csv", 'rb')) else: all_gndtruths.append(open(root_dir + "AVA_Test_Custom_Corrected_Balanced.csv", 'rb')) """Runs evaluations given input files. Args: labelmap: file object containing map of labels to consider, in pbtxt format groundtruth: file object detections: file object exclusions: file object or None. """ categories, class_whitelist = read_labelmap(labelmap) logging.info("CATEGORIES (%d):\n%s", len(categories), pprint.pformat(categories, indent=2)) excluded_keys = read_exclusions(exclusions) # Reads detections data. x_axis = [] xpose_ax = [] xobj_ax = [] xhuman_ax = [] ypose_ax = [] yobj_ax = [] yhuman_ax = [] colors_pose = [] colors_obj = [] colors_human = [] finalmAPs = [] colors = [] maxY = -1.0 for detections, gndtruth, filter_type in zip(all_detections, all_gndtruths, filters): pascal_evaluator = None metrics = None actions = None start = 0 pascal_evaluator = object_detection_evaluation.PascalDetectionEvaluator( categories, matching_iou_threshold=iou) # Reads the ground truth data. boxes, labels, _ = read_csv(gndtruth, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in ground truth: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_ground_truth_image_info( image_key, { standard_fields.InputDataFields.groundtruth_boxes: np.array(boxes[image_key], dtype=float), standard_fields.InputDataFields.groundtruth_classes: np.array(labels[image_key], dtype=int), standard_fields.InputDataFields.groundtruth_difficult: np.zeros(len(boxes[image_key]), dtype=bool) }) print_time("convert groundtruth", start) # Run evaluation boxes, labels, scores = read_csv(detections, class_whitelist) start = time.time() for image_key in boxes: if image_key in excluded_keys: logging.info(("Found excluded timestamp in detections: %s. " "It will be ignored."), image_key) continue pascal_evaluator.add_single_detected_image_info( image_key, { standard_fields.DetectionResultFields.detection_boxes: np.array(boxes[image_key], dtype=float), standard_fields.DetectionResultFields.detection_classes: np.array(labels[image_key], dtype=int), standard_fields.DetectionResultFields.detection_scores: np.array(scores[image_key], dtype=float) }) print_time("convert detections", start) start = time.time() metrics = pascal_evaluator.evaluate() print_time("run_evaluator", start) # TODO Show a pretty histogram here besides pprint actions = list(metrics.keys()) final_value = 0.0 for m in actions: ms = m.split("/")[-1] if ms == 'mAP@' + str(iou) + 'IOU': final_value = metrics[m] finalmAPs.append(final_value) else: # x_axis.append(ms) # y_axis.append(metrics[m]) for cat in categories: if cat['name'].split("/")[-1] == ms: if maxY < metrics[m]: maxY = metrics[m] if cat['id'] <= 10: xpose_ax.append("[" + filter_type + "] " + ms) ypose_ax.append(metrics[m]) colors_pose.append('pose') elif cat['id'] <= 22: xobj_ax.append("[" + filter_type + "] " + ms) yobj_ax.append(metrics[m]) colors_obj.append('human-object') else: xhuman_ax.append("[" + filter_type + "] " + ms) yhuman_ax.append(metrics[m]) colors_human.append('human-human') # Make a confusion matrix for this run pascal_evaluator = None x_axis = split_interleave(xpose_ax) + split_interleave(xobj_ax) + split_interleave(xhuman_ax) y_axis = split_interleave(ypose_ax) + split_interleave(yobj_ax) + split_interleave(yhuman_ax) colors = split_interleave(colors_pose) + split_interleave(colors_obj) + split_interleave(colors_human) plt.ylabel('frame-mAP') top = maxY + 0.1 # offset a bit so it looks good sns.set_style("whitegrid") g = sns.barplot(y_axis, x_axis, hue=colors, palette=['red', 'blue', 'green']) ax = g #ax.legend(loc='lower right') # annotate axis = seaborn axis # for p in ax.patches: # ax.annotate("%.3f" % p.get_height(), (p.get_x() + p.get_width() / 2., p.get_height()), # ha='center', va='center', fontsize=10, color='gray', rotation=90, xytext=(0, 20), # textcoords='offset points') # ax.set_ylim(-1, len(y_axis)) sns.set() ax.tick_params(labelsize=6) for p in ax.patches: p.set_height(p.get_height() * 3) ax.annotate("%.3f" % p.get_width(), (p.get_x() + p.get_width(), p.get_y()), xytext=(5, -5), fontsize=8, color='gray', textcoords='offset points') _ = g.set_xlim(0, top) # To make space for the annotations pprint.pprint(metrics, indent=2) ax.set(ylabel="", xlabel="AP") plt.xticks(rotation=0) title = "" file = open("results.txt", "w") for filter_type, mAP in zip(filters, finalmAPs): ft = filter_type + ': mAP@' + str(iou) + 'IOU = ' + str(mAP) + '\n' title += ft file.write(ft) file.close() # ax.figure.tight_layout() ax.figure.subplots_adjust(left=0.2) # change 0.3 to suit your needs. plt.title(title) plt.gca().xaxis.grid(True) plt.show() if len(all_detections) == 1: sz = 2 grid_sz = [1, 1] elif len(all_detections) == 2: sz = 3 grid_sz = [1, 2] elif len(all_detections) == 3: sz = 4 grid_sz = [2, 2] else: sz = 5 grid_sz = [2, 2] for i in range(1, sz): print(i) plt.subplot(grid_sz[0], grid_sz[1], i) if i <= len(all_detections): # Confusion matrix classes = [] for k in categories: classes.append(k['name']) cm = confusion_matrix(all_gndtruths[i - 1], all_detections[i - 1], x_axis) g = sns.heatmap(cm, annot=True, fmt="d", xticklabels=classes[:10], yticklabels=classes[:10], linewidths=0.5, linecolor='black', cbar=True) #t = 0 # for ytick_label, xtick_label in zip(g.axes.get_yticklabels(), g.axes.get_xticklabels()): # if t <= 9: # ytick_label.set_color("r") # xtick_label.set_color("r") # elif t <= 22: # ytick_label.set_color("b") # xtick_label.set_color("b") # else: # ytick_label.set_color("g") # xtick_label.set_color("g") # t += 1 plt.xticks(rotation=-90) plt.title("Pose Confusion Matrix (" + filters[i - 1] + ")") plt.show() def confusion_matrix(groundtruth, detections, x_axis): # cm = np.zeros([len(x_axis), len(x_axis)], np.int32) cm = np.zeros([10, 10], np.int32) gnd_dict = {} det_dict = {} # print(groundtruth) # print(detections) # Load gndtruth groundtruth.seek(0) reader = csv.reader(groundtruth) # print("Parsing file") sep = "@" for row in reader: video = row[0] kf = row[1] #bbs = str(row[2]) + "@" + str(row[3]) + "@" + str(row[4]) + "@" + str(row[5]) bbs = str("{:.3f}".format(float(row[2]))) + sep + str("{:.3f}".format(float(row[3]))) + sep + \ str("{:.3f}".format(float(row[4]))) + sep + str("{:.3f}".format(float(row[5]))) i = video + "@" + kf.lstrip("0") + "@" + bbs gnd_dict[i] = [] groundtruth.seek(0) for row in reader: video = row[0] kf = row[1] #bbs = str(row[2]) + "@" + str(row[3]) + "@" + str(row[4]) + "@" + str(row[5]) bbs = str("{:.3f}".format(float(row[2]))) + sep + str("{:.3f}".format(float(row[3]))) + sep + \ str("{:.3f}".format(float(row[4]))) + sep + str("{:.3f}".format(float(row[5]))) i = video + "@" + kf.lstrip("0") + "@" + bbs gnd_dict[i].append(row[6]) # Load predictions detections.seek(0) reader = csv.reader(detections) for row in reader: video = row[0] kf = row[1] # bbs = str(row[2]) + "@" + str(row[3]) + "@" + str(row[4]) + "@" + str(row[5]) bbs = str("{:.3f}".format(float(row[2]))) + sep + str("{:.3f}".format(float(row[3]))) + sep + \ str("{:.3f}".format(float(row[4]))) + sep + str("{:.3f}".format(float(row[5]))) i = video + "@" + kf.lstrip("0") + "@" + bbs det_dict[i] = [] detections.seek(0) for row in reader: video = row[0] kf = row[1] # bbs = str(row[2]) + "@" + str(row[3]) + "@" + str(row[4]) + "@" + str(row[5]) bbs = str("{:.3f}".format(float(row[2]))) + sep + str("{:.3f}".format(float(row[3]))) + sep + \ str("{:.3f}".format(float(row[4]))) + sep + str("{:.3f}".format(float(row[5]))) i = video + "@" + kf.lstrip("0") + "@" + bbs det_dict[i].append(row[6]) # TODO For softmax actions normal count for key, gnd_acts in gnd_dict.items(): # print("KEY: " + key) det_acts = det_dict[key] # print(gnd_acts) # print(det_acts) gnd_pose = -1 det_pose = -1 for a in gnd_acts: if int(a) <= 10: # print(a) gnd_pose = int(a) - 1 for a in det_acts: if int(a) <= 10: det_pose = int(a) - 1 if gnd_pose != -1 and det_pose != -1: cm[gnd_pose, det_pose] += 1 cm[det_pose, gnd_pose] += 1 # TODO For the other two, if there is a correct predicted action count it, if there is an incorrect prediction either count it as None (if there was no action) # or add 1 to all the other correct actions return cm def parse_arguments(): """Parses command-line flags. Returns: args: a named tuple containing three file objects args.labelmap, args.groundtruth, and args.detections. """ parser = argparse.ArgumentParser() parser.add_argument( "-l", "--labelmap", help="Filename of label map", type=argparse.FileType("r"), default="../ava_action_list_newsplit_v2.1_for_activitynet_2018.pbtxt.txt") parser.add_argument( "-g", "--groundtruth", help="CSV file containing ground truth.", type=argparse.FileType("rb"), required=True) parser.add_argument( "-e", "--exclusions", help=("Optional CSV file containing videoid,timestamp pairs to exclude " "from evaluation."), type=argparse.FileType("r"), required=False) parser.add_argument( "-i", "--iou", help="Optional IoU value ", type=float, required=False) return parser.parse_args() def main(): # Wheter or not to test thresholds threshold = False logging.basicConfig(level=logging.INFO) args = parse_arguments() print(args) if threshold is False: run_evaluation(**vars(args)) else: run_evaluation_threshold(**vars(args)) if __name__ == "__main__": main()
StarcoderdataPython
4838949
import glob import logging import os import docker from tabulate import tabulate import yaml logging.basicConfig( format='%(asctime)s - %(message)s', level=logging.INFO, datefmt='%Y-%m-%d %H:%M:%S' ) SKIP_IMAGES = [ 'ceph-ansible', 'installer', 'kolla-ansible', 'osism-ansible', 'rally' ] SKIP_LATEST_IMAGES = [ 'aptly', 'ara_server', 'ara_web', 'cobbler' ] OSISM_VERSION = os.environ.get("OSISM_VERSION", "latest") DRY_RUN = os.environ.get("DRY_RUN", False) == "True" if not DRY_RUN: DOCKER_CLIENT = docker.APIClient(base_url='unix:///var/run/docker.sock') IMAGES = os.environ.get("IMAGES", None) if IMAGES: IMAGES = IMAGES.split(",") def process(version): logging.info("processing version %s" % version) with open("etc/images.yml", "rb") as fp: images = yaml.load(fp, Loader=yaml.SafeLoader) result = [] all_docker_images = [] repository_version = version for filename in glob.glob("%s/*.yml" % version): with open(filename, "rb") as fp: versions = yaml.load(fp, Loader=yaml.SafeLoader) all_docker_images.append(versions.get('docker_images', {})) if os.path.basename(filename) == 'base.yml' and version != 'latest': repository_version = versions['repository_version'] for docker_images in all_docker_images: for image in docker_images: if IMAGES and image not in IMAGES: logging.info("skipping - %s" % image) continue logging.info("checking - %s" % image) if image in SKIP_IMAGES: logging.info("skipping - %s" % image) continue if image in SKIP_LATEST_IMAGES and repository_version == 'latest': logging.info("skipping - %s" % image) continue if image not in images: logging.error("skipping - definiton of %s is missing in etc/images.yml" % image) continue if not images[image][:5] == 'osism': if image == 'ceph': target = 'osism/ceph-daemon' else: target = "osism/" + images[image][images[image].find('/') + 1:] else: target = images[image] source = images[image] target_tag = repository_version source_tag = docker_images[image] if image in ['cephclient', 'openstackclient']: target_tag = docker_images[image] + '-' + target_tag if image == 'ceph' and 'stable-3.1' in source_tag: target_tag = "%s-%s" % (source_tag.split("-")[-1], target_tag) source_tag = "%s-ubuntu-16.04-x86_64" % source_tag if image == 'ceph' and ('stable-3.2' in source_tag or 'stable-4.0' in source_tag): target_tag = "%s-%s" % (source_tag.split("-")[-1], target_tag) source = 'osism/ceph-daemon' source_tag = "%s-centos-7-x86_64" % source_tag if image == 'ceph' and ('stable-5.0' in source_tag): target_tag = "%s-%s" % (source_tag.split("-")[-1], target_tag) source = 'osism/ceph-daemon' source_tag = "%s-centos-8-x86_64" % source_tag if image == 'ceph' and 'latest' in source_tag: logging.info("skipping - %s (latest)" % image) continue if image == 'cephclient' and 'latest' in source_tag: logging.info("skipping - %s (latest)" % image) continue if image == 'openstackclient' and 'latest' in source_tag: logging.info("skipping - %s (latest)" % image) continue logging.info("pulling - %s:%s" % (source, source_tag)) if not DRY_RUN: DOCKER_CLIENT.pull(source, source_tag) docker_image = DOCKER_CLIENT.inspect_image("%s:%s" % (source, source_tag)) result.append([source, source_tag, docker_image["Id"], docker_image["Created"]]) logging.info("tagging - %s:%s" % (target, target_tag)) if not DRY_RUN: DOCKER_CLIENT.tag("%s:%s" % (source, source_tag), target, target_tag) logging.info("pushing - %s:%s" % (target, target_tag)) if not DRY_RUN: DOCKER_CLIENT.push(target, target_tag) logging.info("removing - %s:%s" % (source, source_tag)) if not DRY_RUN: DOCKER_CLIENT.remove_image("%s:%s" % (source, source_tag)) logging.info("removing - %s:%s" % (target, target_tag)) if not DRY_RUN: DOCKER_CLIENT.remove_image("%s:%s" % (target, target_tag)) return result result = process(OSISM_VERSION) if not DRY_RUN: print(tabulate(result, headers=["Image", "Tag", "Hash", "Created"]))
StarcoderdataPython
3406192
<reponame>CareBT/carebt # Copyright 2021 <NAME> (<EMAIL>) # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime from unittest.mock import call from carebt.abstractLogger import LogLevel from carebt.behaviorTreeRunner import BehaviorTreeRunner from carebt.nodeStatus import NodeStatus from tests.actionNodes import AddTwoNumbersAction from tests.actionNodes import AddTwoNumbersActionMissingOutput from tests.actionNodes import AddTwoNumbersActionWithFailure from tests.actionNodes import AddTwoNumbersLongRunningAction from tests.actionNodes import AddTwoNumbersLongRunningActionMissingCallback from tests.actionNodes import AddTwoNumbersLongRunningActionMissingCallback2 from tests.actionNodes import AddTwoNumbersLongRunningActionWithAbort from tests.actionNodes import AddTwoNumbersMultiTickActionWithTimeout from tests.actionNodes import AddTwoNumbersThrottledMultiTickAction from tests.actionNodes import HelloWorldAction from tests.global_mock import mock class TestActionNode: """Tests the `ActionNode`.""" ######################################################################## def test_HelloWorldAction(self): """Tests HelloWorldAction.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.get_logger().set_log_level(LogLevel.INFO) bt_runner.run(HelloWorldAction) assert mock.called assert bt_runner.get_tick_count() == 1 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' print(mock.call_args_list) assert mock.call_args_list == [call('__init__ HelloWorldAction'), call('HelloWorldAction: Hello World !!!'), call('__del__ HelloWorldAction')] def test_HelloWorldAction_alice(self): """Tests HelloWorldAction with name = Alice.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.get_logger().set_log_level(LogLevel.INFO) bt_runner.run(HelloWorldAction, '"Alice"') assert mock.called assert bt_runner.get_tick_count() == 1 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' print(mock.call_args_list) assert mock.call_args_list == [call('__init__ HelloWorldAction'), call('HelloWorldAction: Hello Alice !!!'), call('__del__ HelloWorldAction')] def test_HelloWorldAction_empty(self): """Tests HelloWorldAction with name = empty string.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.get_logger().set_log_level(LogLevel.INFO) bt_runner.run(HelloWorldAction, '""') assert mock.called assert bt_runner.get_tick_count() == 1 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' print(mock.call_args_list) assert mock.call_args_list == [call('__init__ HelloWorldAction'), call('HelloWorldAction: Hello !!!'), call('__del__ HelloWorldAction')] ######################################################################## def test_AddTwoNumbersActionMissingOutput(self): """Tests the case when the output is not bound.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.get_logger().set_log_level(LogLevel.INFO) bt_runner.run(AddTwoNumbersActionMissingOutput, '2 3 => ?result') assert mock.called assert bt_runner.get_tick_count() == 1 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersActionMissingOutput'), call('on_init AddTwoNumbersActionMissingOutput'), call('on_tick AddTwoNumbersActionMissingOutput'), call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] ######################################################################## def test_AddTwoNumbersAction_3_5(self): """Test two valid inputs one output.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersAction, '3 5 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersAction'), call('on_init AddTwoNumbersAction'), call('AddTwoNumbersAction: calculating: 3 + 5 = 8'), call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersAction_0_0(self): """Test two valid inputs (0 + 0) one output.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersAction, '0 0 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersAction'), call('on_init AddTwoNumbersAction'), call('AddTwoNumbersAction: calculating: 0 + 0 = 0'), call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] assert bt_runner._instance._result == 0 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersAction_9(self): """Test one input is missing, but default of missing ?y is 5678.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersAction, '9 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersAction'), call('on_init AddTwoNumbersAction'), call('AddTwoNumbersAction: calculating: 9 + 5678 = 5687'), call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] assert bt_runner._instance._result == 5687 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersAction(self): """Test both inputs are missing, but default of missing ?x is 1234 and ?y is 5678.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersAction, '=> ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersAction'), call('on_init AddTwoNumbersAction'), call('AddTwoNumbersAction: calculating: 1234 + 5678 = 6912'), # noqa: E501 call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] assert bt_runner._instance._result == 6912 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersAction_missing_out(self): """Test both inputs present, but output is missing.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersAction, '1 2') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersAction'), call('on_init AddTwoNumbersAction'), call('AddTwoNumbersAction: calculating: 1 + 2 = 3'), call('on_delete AddTwoNumbersAction'), call('__del__ AddTwoNumbersAction')] assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' ######################################################################## def test_AddTwoNumbersActionWithFailure_3_5(self): """Test two valid inputs one output.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersActionWithFailure, '3 5 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersActionWithFailure'), call('on_init AddTwoNumbersActionWithFailure'), call('AddTwoNumbersActionWithFailure: calculating: 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersActionWithFailure'), call('__del__ AddTwoNumbersActionWithFailure')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersActionWithFailure_7(self): """Test one input missing -> node should fail.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.run(AddTwoNumbersActionWithFailure, '7 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersActionWithFailure'), call('on_init AddTwoNumbersActionWithFailure'), call('AddTwoNumbersActionWithFailure: You did not provide two numbers!'), # noqa: E501 call('on_delete AddTwoNumbersActionWithFailure'), call('__del__ AddTwoNumbersActionWithFailure')] assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.FAILURE assert bt_runner._instance.get_contingency_message() == 'NOT_TWO_NUMBERS_PROVIDED' ######################################################################## def test_AddTwoNumbersMultiTickActionWithTimeout_5_3_5(self): """Test that calculation takes 5 ticks and one tick takes 10ms.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.set_tick_rate_ms(10) start = datetime.now() bt_runner.run(AddTwoNumbersMultiTickActionWithTimeout, '5 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 55 assert int(delta.total_seconds() * 1000) < 70 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersMultiTickActionWithTimeout'), call('on_init AddTwoNumbersMultiTickActionWithTimeout'), call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 1/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 2/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 3/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 4/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 5/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: DONE 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersMultiTickActionWithTimeout'), call('__del__ AddTwoNumbersMultiTickActionWithTimeout')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' assert bt_runner.get_tick_count() == 6 def test_AddTwoNumbersMultiTickActionWithTimeout_5_3_5_timeout(self): """Test that calculation takes 5 ticks and one tick takes 500ms -> the timeout occures.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.set_tick_rate_ms(500) bt_runner.run(AddTwoNumbersMultiTickActionWithTimeout, '5 3 5 => ?result') print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersMultiTickActionWithTimeout'), call('on_init AddTwoNumbersMultiTickActionWithTimeout'), call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 1/5)'), # noqa: E501 call('AddTwoNumbersMultiTickActionWithTimeout: (tick_count = 2/5)'), # noqa: E501 call('on_timeout AddTwoNumbersMultiTickActionWithTimeout'), # noqa: E501 call('on_delete AddTwoNumbersMultiTickActionWithTimeout'), call('__del__ AddTwoNumbersMultiTickActionWithTimeout')] assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.ABORTED assert bt_runner._instance.get_contingency_message() == 'TIMEOUT' ######################################################################## def test_AddTwoNumbersThrottledMultiTickAction_5_3_5(self): """Test that calculation takes 5 ticks and this forwarded ticks are throttled to 500ms.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.set_tick_rate_ms(10) start = datetime.now() bt_runner.run(AddTwoNumbersThrottledMultiTickAction, '5 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 2400 assert int(delta.total_seconds() * 1000) < 2600 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersThrottledMultiTickAction'), call('on_init AddTwoNumbersThrottledMultiTickAction'), call('AddTwoNumbersThrottledMultiTickAction: (tick_count = 1/5)'), # noqa: E501 call('AddTwoNumbersThrottledMultiTickAction: (tick_count = 2/5)'), # noqa: E501 call('AddTwoNumbersThrottledMultiTickAction: (tick_count = 3/5)'), # noqa: E501 call('AddTwoNumbersThrottledMultiTickAction: (tick_count = 4/5)'), # noqa: E501 call('AddTwoNumbersThrottledMultiTickAction: (tick_count = 5/5)'), # noqa: E501 call('AddTwoNumbersThrottledMultiTickAction: DONE 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersThrottledMultiTickAction'), call('__del__ AddTwoNumbersThrottledMultiTickAction')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' ######################################################################## def test_AddTwoNumbersLongRunningAction_500_3_5(self): """Test a long running calculation.""" mock.reset_mock() bt_runner = BehaviorTreeRunner() start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningAction, '500 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 500 assert int(delta.total_seconds() * 1000) < 600 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningAction'), call('on_init AddTwoNumbersLongRunningAction'), call('AddTwoNumbersLongRunningAction: calculating 500 ms ...'), # noqa: E501 call('AddTwoNumbersLongRunningAction: done: 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersLongRunningAction'), call('__del__ AddTwoNumbersLongRunningAction')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' ######################################################################## def test_AddTwoNumbersLongRunningActionWithAbort_100_3_5(self): """Test a long running calculation which is faster (100ms) than the timeout (1000ms).""" mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.set_tick_rate_ms(10) start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningActionWithAbort, '100 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 100 assert int(delta.total_seconds() * 1000) < 200 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningActionWithAbort'), call('on_init AddTwoNumbersLongRunningActionWithAbort'), call('AddTwoNumbersLongRunningActionWithAbort: calculating 100 ms ... (timeout = 1000 ms)'), # noqa: E501 call('AddTwoNumbersLongRunningActionWithAbort: done_callback: 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersLongRunningActionWithAbort'), call('__del__ AddTwoNumbersLongRunningActionWithAbort')] assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersLongRunningActionWithAbort_1500_3_5(self): """Test AddTwoNumbersLongRunningActionWithAbort example node. Test a long running calculation which is slower (1500ms) than the timeout (1000ms). In the timeout handler, the node is aborted with message `TIMEOUT`. The `?result` is not set. """ mock.reset_mock() bt_runner = BehaviorTreeRunner() start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningActionWithAbort, '1500 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 1000 assert int(delta.total_seconds() * 1000) < 1100 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningActionWithAbort'), call('on_init AddTwoNumbersLongRunningActionWithAbort'), call('AddTwoNumbersLongRunningActionWithAbort: calculating 1500 ms ... (timeout = 1000 ms)'), # noqa: E501 call('on_timeout AddTwoNumbersLongRunningActionWithAbort'), call('on_abort AddTwoNumbersLongRunningActionWithAbort'), call('on_delete AddTwoNumbersLongRunningActionWithAbort'), call('__del__ AddTwoNumbersLongRunningActionWithAbort')] assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.ABORTED assert bt_runner._instance.get_contingency_message() == 'TIMEOUT' ######################################################################## def test_AddTwoNumbersLongRunningActionMissingCallback_100_3_5(self): """Test AddTwoNumbersLongRunningActionMissingCallback example node. Test a long running calculation which is faster (100ms) than the timeout (1000ms) """ mock.reset_mock() bt_runner = BehaviorTreeRunner() bt_runner.set_tick_rate_ms(10) start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningActionMissingCallback, '100 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 100 assert int(delta.total_seconds() * 1000) < 200 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('on_init AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('AddTwoNumbersLongRunningActionMissingCallback: calculating 100 ms ... (timeout = 1000 ms)'), # noqa: E501 call('AddTwoNumbersLongRunningActionMissingCallback: done_callback: 3 + 5 = 8'), # noqa: E501 call('on_delete AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('__del__ AddTwoNumbersLongRunningActionMissingCallback')] # noqa: E501 assert bt_runner._instance._result == 8 assert bt_runner._instance.get_status() == NodeStatus.SUCCESS assert bt_runner._instance.get_contingency_message() == '' def test_AddTwoNumbersLongRunningActionMissingCallback_1500_3_5(self): """Test AddTwoNumbersLongRunningActionMissingCallback example node. Tests a long running calculation which is slower (1500ms) than the timeout (1000ms). the timeout handler is not overridden. """ mock.reset_mock() bt_runner = BehaviorTreeRunner() start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningActionMissingCallback, '1500 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 1000 assert int(delta.total_seconds() * 1000) < 1100 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('on_init AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('AddTwoNumbersLongRunningActionMissingCallback: calculating 1500 ms ... (timeout = 1000 ms)'), # noqa: E501 call('on_abort AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('on_delete AddTwoNumbersLongRunningActionMissingCallback'), # noqa: E501 call('__del__ AddTwoNumbersLongRunningActionMissingCallback')] # noqa: E501 assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.ABORTED assert bt_runner._instance.get_contingency_message() == 'TIMEOUT' ######################################################################## def test_AddTwoNumbersLongRunningActionMissingCallback2_1500_3_5(self): """Test AddTwoNumbersLongRunningActionMissingCallback2 example node. Test a long running calculation which is slower (1500ms) than the timeout (1000ms). on_timeout handler is not overridden and also on_abort is not overridden. """ mock.reset_mock() bt_runner = BehaviorTreeRunner() start = datetime.now() bt_runner.run(AddTwoNumbersLongRunningActionMissingCallback2, '1500 3 5 => ?result') end = datetime.now() delta = end - start assert int(delta.total_seconds() * 1000) > 1000 assert int(delta.total_seconds() * 1000) < 1100 print(mock.call_args_list) assert mock.call_args_list == [call('__init__ AddTwoNumbersLongRunningActionMissingCallback2'), # noqa: E501 call('on_init AddTwoNumbersLongRunningActionMissingCallback2'), # noqa: E501 call('AddTwoNumbersLongRunningActionMissingCallback2: calculating 1500 ms ... (timeout = 1000 ms)'), # noqa: E501 call('on_delete AddTwoNumbersLongRunningActionMissingCallback2'), # noqa: E501 call('__del__ AddTwoNumbersLongRunningActionMissingCallback2')] # noqa: E501 assert not hasattr(bt_runner._instance, '_result') assert bt_runner._instance.get_status() == NodeStatus.ABORTED assert bt_runner._instance.get_contingency_message() == 'TIMEOUT'
StarcoderdataPython
119551
from gym_pcgrl.envs.pcgrl_env import PcgrlEnv from gym_pcgrl.envs.pcgrl_env_3D import PcgrlEnv3D
StarcoderdataPython
1932210
#!/usr/bin/python # -*- coding: utf-8 -*- """ Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging try: from http.server import HTTPServer, BaseHTTPRequestHandler except ImportError: from BaseHTTPServer import HTTPServer, BaseHTTPRequestHandler try: import socketserver except ImportError: import SocketServer as socketserver import socket import ssl import mimetypes import webbrowser import struct import base64 import hashlib import sys import threading import signal import time import os import re try: from urllib import unquote from urllib import quote from urlparse import urlparse from urlparse import parse_qs except ImportError: from urllib.parse import unquote from urllib.parse import quote from urllib.parse import unquote_to_bytes from urllib.parse import urlparse from urllib.parse import parse_qs import cgi import weakref import zlib import select def gzip_encode(content): gzip_compress = zlib.compressobj(9, zlib.DEFLATED, zlib.MAX_WBITS | 16) data = gzip_compress.compress(content) + gzip_compress.flush() return data clients = {} runtimeInstances = weakref.WeakValueDictionary() pyLessThan3 = sys.version_info < (3,) _MSG_ACK = '3' _MSG_JS = '2' _MSG_UPDATE = '1' def to_websocket(data): # encoding end decoding utility function if pyLessThan3: return quote(data) return quote(data, encoding='utf-8') def from_websocket(data): # encoding end decoding utility function if pyLessThan3: return unquote(data) return unquote(data, encoding='utf-8') def encode_text(data): if not pyLessThan3: return data.encode('utf-8') return data def get_method_by_name(root_node, name): val = None if hasattr(root_node, name): val = getattr(root_node, name) return val def get_method_by_id(_id): global runtimeInstances return runtimeInstances.get(str(_id), None) def parse_session_cookie(cookie_to_cook): """ cookie_to_cook = http_header['cookie'] """ #print("cookie_to_cook: %s"%str(cookie_to_cook)) session_value = None tokens = cookie_to_cook.split(";") for tok in tokens: if 'remi_session=' in tok: #print("found session id: %s"%str(tok)) try: session_value = int(tok.replace('remi_session=', '')) except Exception: pass return session_value class WebSocketsHandler(socketserver.StreamRequestHandler): magic = b'258EAFA5-E914-47DA-95CA-C5AB0DC85B11' def __init__(self, headers, *args, **kwargs): self.headers = headers self.handshake_done = False self._log = logging.getLogger('remi.server.ws') socketserver.StreamRequestHandler.__init__(self, *args, **kwargs) def setup(self): socketserver.StreamRequestHandler.setup(self) self._log.info('connection established: %r' % (self.client_address,)) self.handshake_done = False def handle(self): global clients self._log.debug('handle') # on some systems like ROS, the default socket timeout # is less than expected, we force it to infinite (None) as default socket value self.request.settimeout(None) if self.handshake(): while True: if not self.read_next_message(): clients[self.session].websockets.discard(self) self.handshake_done = False self._log.debug('ws ending websocket service') break @staticmethod def bytetonum(b): if pyLessThan3: b = ord(b) return b def read_next_message(self): # noinspection PyBroadException try: try: length = self.rfile.read(2) except ValueError: # socket was closed, just return without errors return False length = self.bytetonum(length[1]) & 127 if length == 126: length = struct.unpack('>H', self.rfile.read(2))[0] elif length == 127: length = struct.unpack('>Q', self.rfile.read(8))[0] masks = [self.bytetonum(byte) for byte in self.rfile.read(4)] decoded = '' for char in self.rfile.read(length): decoded += chr(self.bytetonum(char) ^ masks[len(decoded) % 4]) self.on_message(from_websocket(decoded)) except socket.timeout: return False except Exception: self._log.error('Error managing incoming websocket message', exc_info=True) return False return True def send_message(self, message): if not self.handshake_done: self._log.warning("ignoring message %s (handshake not done)" % message[:10]) return False self._log.debug('send_message: %s... -> %s' % (message[:10], self.client_address)) out = bytearray() out.append(129) length = len(message) if length <= 125: out.append(length) elif 126 <= length <= 65535: out.append(126) out += struct.pack('>H', length) else: out.append(127) out += struct.pack('>Q', length) if not pyLessThan3: message = message.encode('utf-8') out = out + message readable, writable, errors = select.select([], [self.request,], [], 0) #last parameter is timeout, when 0 is non blocking #self._log.debug('socket status readable=%s writable=%s errors=%s'%((self.request in readable), (self.request in writable), (self.request in error$ writable = self.request in writable if not writable: return False self.request.sendall(out) return True def handshake(self): self._log.debug('handshake') key = self.headers['Sec-WebSocket-Key'] self.session = None if 'cookie' in self.headers: if self.headers['cookie']!=None: self.session = parse_session_cookie(self.headers['cookie']) if self.session == None: return False if not self.session in clients.keys(): return False digest = hashlib.sha1((key.encode("utf-8")+self.magic)) digest = digest.digest() digest = base64.b64encode(digest) response = 'HTTP/1.1 101 Switching Protocols\r\n' response += 'Upgrade: websocket\r\n' response += 'Connection: Upgrade\r\n' response += 'Sec-WebSocket-Accept: %s\r\n\r\n' % digest.decode("utf-8") self._log.info('handshake complete') self.request.sendall(response.encode("utf-8")) self.handshake_done = True #if an update happens since the websocket connection to its handshake, # it gets not displayed. it is required to inform App about handshake done, # to get a full refresh clients[self.session].websocket_handshake_done(self) return True def on_message(self, message): global runtimeInstances self.send_message(_MSG_ACK) with clients[self.session].update_lock: # noinspection PyBroadException try: # saving the websocket in order to update the client if self not in clients[self.session].websockets: clients[self.session].websockets.add(self) # parsing messages chunks = message.split('/') self._log.debug('on_message: %s' % chunks[0]) if len(chunks) > 3: # msgtype,widget,function,params # if this is a callback msg_type = 'callback' if chunks[0] == msg_type: widget_id = chunks[1] function_name = chunks[2] params = message[ len(msg_type) + len(widget_id) + len(function_name) + 3:] param_dict = parse_parametrs(params) callback = get_method_by_name(runtimeInstances[widget_id], function_name) if callback is not None: callback(**param_dict) except Exception: self._log.error('error parsing websocket', exc_info=True) def close(self, terminate_server=True): try: self.request.setblocking(False) self.request.shutdown(socket.SHUT_RDWR) self.finish() if terminate_server: self.server.shutdown() except Exception: self._log.error("exception in WebSocketsHandler.close method", exc_info=True) def parse_parametrs(p): """ Parses the parameters given from POST or websocket reqs expecting the parameters as: "11|par1='asd'|6|par2=1" returns a dict like {par1:'asd',par2:1} """ ret = {} while len(p) > 1 and p.count('|') > 0: s = p.split('|') l = int(s[0]) # length of param field if l > 0: p = p[len(s[0]) + 1:] field_name = p.split('|')[0].split('=')[0] field_value = p[len(field_name) + 1:l] p = p[l + 1:] ret[field_name] = field_value return ret # noinspection PyPep8Naming class App(BaseHTTPRequestHandler, object): """ This class will handles any incoming request from the browser The main application class can subclass this In the do_POST and do_GET methods it is expected to receive requests such as: - function calls with parameters - file requests """ re_static_file = re.compile(r"^([\/]*[\w\d]+:[-_. $@?#£'%=()\/\[\]!+°§^,\w\d]+)") #https://regex101.com/r/uK1sX1/6 re_attr_call = re.compile(r"^/*(\w+)\/(\w+)\?{0,1}(\w*\={1}(\w|\.)+\&{0,1})*$") def __init__(self, request, client_address, server, **app_args): self._app_args = app_args self.root = None self._log = logging.getLogger('remi.request') super(App, self).__init__(request, client_address, server) def _get_list_from_app_args(self, name): try: v = self._app_args[name] if isinstance(v, (tuple, list)): vals = v else: vals = [v] except KeyError: vals = [] return vals def _instance(self): global clients global runtimeInstances """ This method is used to get the Application instance previously created managing on this, it is possible to switch to "single instance for multiple clients" or "multiple instance for multiple clients" execution way """ self.session = 0 #checking previously defined session if 'cookie' in self.headers: self.session = parse_session_cookie(self.headers['cookie']) #if not a valid session id if self.session == None: self.session = 0 if not self.session in clients.keys(): self.session = 0 #if no session id if self.session == 0: if self.server.multiple_instance: self.session = int(time.time()*1000) #send session to browser del self.headers['cookie'] #if the client instance doesn't exist if not(self.session in clients): self.update_interval = self.server.update_interval from remi import gui head = gui.HEAD(self.server.title) # use the default css, but append a version based on its hash, to stop browser caching head.add_child('internal_css', "<link href='/res:style.css' rel='stylesheet' />\n") body = gui.BODY() body.add_class('remi-main') body.onload.connect(self.onload) body.ononline.connect(self.ononline) body.onpagehide.connect(self.onpagehide) body.onpageshow.connect(self.onpageshow) body.onresize.connect(self.onresize) self.page = gui.HTML() self.page.add_child('head', head) self.page.add_child('body', body) if not hasattr(self, 'websockets'): self.websockets = set() self.update_lock = threading.RLock() if not hasattr(self, '_need_update_flag'): self._need_update_flag = False self._stop_update_flag = False if self.update_interval > 0: self._update_thread = threading.Thread(target=self._idle_loop) self._update_thread.setDaemon(True) self._update_thread.start() runtimeInstances[str(id(self))] = self clients[self.session] = self else: #restore instance attributes client = clients[self.session] self.websockets = client.websockets self.page = client.page self.update_lock = client.update_lock self.update_interval = client.update_interval self._need_update_flag = client._need_update_flag if hasattr(client, '_update_thread'): self._update_thread = client._update_thread net_interface_ip = self.headers.get('Host', "%s:%s"%(self.connection.getsockname()[0],self.server.server_address[1])) websocket_timeout_timer_ms = str(self.server.websocket_timeout_timer_ms) pending_messages_queue_length = str(self.server.pending_messages_queue_length) self.page.children['head'].set_internal_js(str(id(self)), net_interface_ip, pending_messages_queue_length, websocket_timeout_timer_ms) def main(self, *_): """ Subclasses of App class *must* declare a main function that will be the entry point of the application. Inside the main function you have to declare the GUI structure and return the root widget. """ raise NotImplementedError("Applications must implement 'main()' function.") def _idle_loop(self): """ This is used to exec the idle function in a safe context and a separate thread """ while not self._stop_update_flag: time.sleep(self.update_interval) with self.update_lock: try: self.idle() except Exception: self._log.error("exception in App.idle method", exc_info=True) if self._need_update_flag: try: self.do_gui_update() except Exception: self._log.error('''exception during gui update. It is advisable to use App.update_lock using external threads.''', exc_info=True) def idle(self): """ Idle function called every UPDATE_INTERVAL before the gui update. Useful to schedule tasks. """ pass def _need_update(self, emitter=None, child_ignore_update=False): if child_ignore_update: #the widgets tree is processed to make it available for a intentional # client update and to reset the changed flags of changed widget. # Otherwise it will be updated on next update cycle. changed_widget_dict = {} self.root.repr(changed_widget_dict) return if self.update_interval == 0: #no interval, immadiate update self.do_gui_update() else: #will be updated after idle loop self._need_update_flag = True def do_gui_update(self): """ This method gets called also by Timer, a new thread, and so needs to lock the update """ with self.update_lock: changed_widget_dict = {} self.root.repr(changed_widget_dict) for widget in changed_widget_dict.keys(): html = changed_widget_dict[widget] __id = str(widget.identifier) self._send_spontaneous_websocket_message(_MSG_UPDATE + __id + ',' + to_websocket(html)) self._need_update_flag = False def websocket_handshake_done(self, ws_instance_to_update): msg = "" with self.update_lock: msg = "0" + self.root.identifier + ',' + to_websocket(self.page.children['body'].innerHTML({})) ws_instance_to_update.send_message(msg) def set_root_widget(self, widget): self.page.children['body'].append(widget, 'root') self.root = widget self.root.disable_refresh() self.root.attributes['data-parent-widget'] = str(id(self)) self.root._parent = self self.root.enable_refresh() msg = "0" + self.root.identifier + ',' + to_websocket(self.page.children['body'].innerHTML({})) self._send_spontaneous_websocket_message(msg) def _send_spontaneous_websocket_message(self, message): for ws in list(self.websockets): # noinspection PyBroadException try: if ws.send_message(message): #if message sent ok, continue with nect client continue except Exception: self._log.error("sending websocket spontaneous message", exc_info=True) self._log.debug("removing websocket instance, communication error with client") #here arrives if the message was not sent ok, then the client is removed try: self.websockets.remove(ws) except Exception: pass # happens when there are multiple clients else: ws.close(terminate_server=False) def execute_javascript(self, code): self._send_spontaneous_websocket_message(_MSG_JS + code) def notification_message(self, title, content, icon=""): """This function sends "javascript" message to the client, that executes its content. In this particular code, a notification message is shown """ code = """ var options = { body: "%(content)s", icon: "%(icon)s" } if (!("Notification" in window)) { alert("%(content)s"); }else if (Notification.permission === "granted") { var notification = new Notification("%(title)s", options); }else if (Notification.permission !== 'denied') { Notification.requestPermission(function (permission) { if (permission === "granted") { var notification = new Notification("%(title)s", options); } }); } """ % {'title': title, 'content': content, 'icon': icon} self.execute_javascript(code) def do_POST(self): self._instance() file_data = None # listener_widget = None # listener_function = None try: # Parse the form data posted filename = self.headers['filename'] listener_widget = runtimeInstances[self.headers['listener']] listener_function = self.headers['listener_function'] form = cgi.FieldStorage(fp=self.rfile, headers=self.headers, environ={'REQUEST_METHOD': 'POST', 'CONTENT_TYPE': self.headers['Content-Type']}) # Echo back information about what was posted in the form for field in form.keys(): field_item = form[field] if field_item.filename: # The field contains an uploaded file file_data = field_item.file.read() file_len = len(file_data) self._log.debug('post: uploaded %s as "%s" (%d bytes)\n' % (field, field_item.filename, file_len)) get_method_by_name(listener_widget, listener_function)(file_data, filename) else: # Regular form value self._log.debug('post: %s=%s\n' % (field, form[field].value)) if file_data is not None: # the filedata is sent to the listener self._log.debug('GUI - server.py do_POST: fileupload name= %s' % (filename)) self.send_response(200) except Exception: self._log.error('post: failed', exc_info=True) self.send_response(400) self.send_header('Content-type', 'text/plain') self.end_headers() def do_HEAD(self): self.send_response(200) self.end_headers() def do_AUTHHEAD(self): self.send_response(401) self.send_header('WWW-Authenticate', 'Basic realm=\"Protected\"') self.send_header('Content-type', 'text/html') self.end_headers() def do_GET(self): # check here request header to identify the type of req, if http or ws # if this is a ws req, instance a ws handler, add it to App's ws list, return if "Upgrade" in self.headers: if self.headers['Upgrade'].lower() == 'websocket': #passing arguments to websocket handler, otherwise it will lost the last message, # and will be unable to handshake ws = WebSocketsHandler(self.headers, self.request, self.client_address, self.server) return """Handler for the GET requests.""" do_process = False if self.server.auth is None: do_process = True else: if not ('Authorization' in self.headers) or self.headers['Authorization'] is None: self._log.info("Authenticating") self.do_AUTHHEAD() self.wfile.write(encode_text('no auth header received')) elif self.headers['Authorization'] == 'Basic ' + self.server.auth.decode(): do_process = True else: self.do_AUTHHEAD() self.wfile.write(encode_text(self.headers['Authorization'])) self.wfile.write(encode_text('not authenticated')) if do_process: path = str(unquote(self.path)) # noinspection PyBroadException try: self._instance() # build the page (call main()) in user code, if not built yet with self.update_lock: # build the root page once if necessary if not 'root' in self.page.children['body'].children.keys(): self._log.info('built UI (path=%s)' % path) self.set_root_widget(self.main(*self.server.userdata)) self._process_all(path) except Exception: self._log.error('error processing GET request', exc_info=True) def _get_static_file(self, filename): filename = filename.replace("..", "") #avoid backdirs __i = filename.find(':') if __i < 0: return None key = filename[:__i] path = filename[__i+1:] key = key.replace("/","") paths = {'res': os.path.join(os.path.dirname(__file__), "res")} static_paths = self._app_args.get('static_file_path', {}) if not type(static_paths)==dict: self._log.error("App's parameter static_file_path must be a Dictionary.", exc_info=False) static_paths = {} paths.update(static_paths) if not key in paths: return None return os.path.join(paths[key], path) def _process_all(self, func): self._log.debug('get: %s' % func) static_file = self.re_static_file.match(func) attr_call = self.re_attr_call.match(func) if (func == '/') or (not func): self.send_response(200) self.send_header("Set-Cookie", "remi_session=%s; SameSite=Lax"%(self.session)) self.send_header('Content-type', 'text/html') self.end_headers() with self.update_lock: # render the HTML page_content = self.page.repr() self.wfile.write(encode_text("<!DOCTYPE html>\n")) self.wfile.write(encode_text(page_content)) elif static_file: filename = self._get_static_file(static_file.groups()[0]) if not filename: self.send_response(404) return mimetype, encoding = mimetypes.guess_type(filename) self.send_response(200) self.send_header('Content-type', mimetype if mimetype else 'application/octet-stream') if self.server.enable_file_cache: self.send_header('Cache-Control', 'public, max-age=86400') self.end_headers() with open(filename, 'rb') as f: content = f.read() self.wfile.write(content) elif attr_call: with self.update_lock: param_dict = parse_qs(urlparse(func).query) # parse_qs returns patameters as list, here we take the first element for k in param_dict: param_dict[k] = param_dict[k][0] widget, func = attr_call.group(1, 2) try: content, headers = get_method_by_name(get_method_by_id(widget), func)(**param_dict) if content is None: self.send_response(503) return self.send_response(200) except IOError: self._log.error('attr %s/%s call error' % (widget, func), exc_info=True) self.send_response(404) return except (TypeError, AttributeError): self._log.error('attr %s/%s not available' % (widget, func)) self.send_response(503) return for k in headers: self.send_header(k, headers[k]) self.end_headers() try: self.wfile.write(content) except TypeError: self.wfile.write(encode_text(content)) def close(self): """ Command to initiate an App to close """ self._log.debug('shutting down...') self.server.server_starter_instance.stop() def on_close(self): """ Called by the server when the App have to be terminated """ self._stop_update_flag = True for ws in list(self.websockets): ws.close() def onload(self, emitter): """ WebPage Event that occurs on webpage loaded """ self._log.debug('App.onload event occurred') def onerror(self, message, source, lineno, colno, error): """ WebPage Event that occurs on webpage errors """ self._log.debug("""App.onerror event occurred in webpage: \nMESSAGE:%s\nSOURCE:%s\nLINENO:%s\nCOLNO:%s\ERROR:%s\n"""%(message, source, lineno, colno, error)) def ononline(self, emitter): """ WebPage Event that occurs on webpage goes online after a disconnection """ self._log.debug('App.ononline event occurred') def onpagehide(self, emitter): """ WebPage Event that occurs on webpage when the user navigates away """ self._log.debug('App.onpagehide event occurred') def onpageshow(self, emitter, width, height): """ WebPage Event that occurs on webpage gets shown """ self._log.debug('App.onpageshow event occurred') def onresize(self, emitter, width, height): """ WebPage Event that occurs on webpage gets resized """ self._log.debug('App.onresize event occurred. Width:%s Height:%s'%(width, height)) class ThreadedHTTPServer(socketserver.ThreadingMixIn, HTTPServer): daemon_threads = False # noinspection PyPep8Naming def __init__(self, server_address, RequestHandlerClass, auth, multiple_instance, enable_file_cache, update_interval, websocket_timeout_timer_ms, pending_messages_queue_length, title, server_starter_instance, certfile, keyfile, ssl_version, *userdata): HTTPServer.__init__(self, server_address, RequestHandlerClass) self.auth = auth self.multiple_instance = multiple_instance self.enable_file_cache = enable_file_cache self.update_interval = update_interval self.websocket_timeout_timer_ms = websocket_timeout_timer_ms self.pending_messages_queue_length = pending_messages_queue_length self.title = title self.server_starter_instance = server_starter_instance self.userdata = userdata self.certfile = certfile self.keyfile = keyfile self.ssl_version = ssl_version if self.ssl_version!=None: self.socket = ssl.wrap_socket(self.socket, keyfile=self.keyfile, certfile=self.certfile, server_side=True, ssl_version=self.ssl_version, do_handshake_on_connect=True) class Server(object): # noinspection PyShadowingNames def __init__(self, gui_class, title='', start=True, address='127.0.0.1', port=0, username=None, password=<PASSWORD>, multiple_instance=False, enable_file_cache=True, update_interval=0.1, start_browser=True, websocket_timeout_timer_ms=1000, pending_messages_queue_length=1000, certfile=None, keyfile=None, ssl_version=None, userdata=()): self._gui = gui_class self._title = title or gui_class.__name__ self._sserver = None self._sth = None self._base_address = '' self._address = address self._sport = port self._multiple_instance = multiple_instance self._enable_file_cache = enable_file_cache self._update_interval = update_interval self._start_browser = start_browser self._websocket_timeout_timer_ms = websocket_timeout_timer_ms self._pending_messages_queue_length = pending_messages_queue_length self._certfile = certfile self._keyfile = keyfile self._ssl_version = ssl_version self._userdata = userdata if username and password: self._auth = base64.b64encode(encode_text("%s:%s" % (username, password))) else: self._auth = None if not isinstance(userdata, tuple): raise ValueError('userdata must be a tuple') self._log = logging.getLogger('remi.server') self._alive = True if start: self._myid = threading.Thread.ident self.start() self.serve_forever() @property def title(self): return self._title @property def address(self): return self._base_address def start(self): # Create a web server and define the handler to manage the incoming # request self._sserver = ThreadedHTTPServer((self._address, self._sport), self._gui, self._auth, self._multiple_instance, self._enable_file_cache, self._update_interval, self._websocket_timeout_timer_ms, self._pending_messages_queue_length, self._title, self, self._certfile, self._keyfile, self._ssl_version, *self._userdata) shost, sport = self._sserver.socket.getsockname()[:2] self._log.info('Started httpserver http://%s:%s/'%(shost,sport)) # when listening on multiple net interfaces the browsers connects to localhost if shost == '0.0.0.0': shost = '127.0.0.1' self._base_address = 'http://%s:%s/' % (shost,sport) if self._start_browser: try: import android android.webbrowser.open(self._base_address) except ImportError: # use default browser instead of always forcing IE on Windows if os.name == 'nt': webbrowser.get('windows-default').open(self._base_address) else: webbrowser.open(self._base_address) self._sth = threading.Thread(target=self._sserver.serve_forever) self._sth.daemon = False self._sth.start() def serve_forever(self): # we could join on the threads, but join blocks all interrupts (including # ctrl+c, so just spin here # noinspection PyBroadException try: def sig_manager(sig, callstack): self.stop() self._log.info('*** signal %d received.' % sig) return signal.SIG_IGN prev_handler = signal.signal(signal.SIGINT, sig_manager) except Exception: # signal.pause() is missing for Windows; wait 1ms and loop instead pass except KeyboardInterrupt: pass while self._alive: try: time.sleep(1) except Exception: self._alive = False self._log.debug(' ** serve_forever() quitting') def stop(self): global clients self._alive = False self._sserver.shutdown() for client in clients.values(): client.on_close() class StandaloneServer(Server): def __init__(self, gui_class, title='', width=800, height=600, resizable=True, fullscreen=False, start=True, userdata=()): Server.__init__(self, gui_class, title=title, start=False, address='127.0.0.1', port=0, username=None, password=<PASSWORD>, multiple_instance=False, enable_file_cache=True, update_interval=0.1, start_browser=False, websocket_timeout_timer_ms=1000, pending_messages_queue_length=1000, userdata=userdata) self._application_conf = {'width': width, 'height': height, 'resizable': resizable, 'fullscreen': fullscreen} if start: self.serve_forever() def serve_forever(self): try: import webview except ImportError: raise ImportError('PyWebView is missing. Please install it by:\n ' 'pip install pywebview\n ' 'more info at https://github.com/r0x0r/pywebview') else: Server.start(self) webview.create_window(self.title, self.address, **self._application_conf) webview.start() Server.stop(self) def start(main_gui_class, **kwargs): """This method starts the webserver with a specific App subclass.""" debug = True if sys.flags.debug else kwargs.pop('debug', False) standalone = kwargs.pop('standalone', False) logging.basicConfig(level=logging.DEBUG if debug else logging.INFO, format='%(name)-16s %(levelname)-8s %(message)s') logging.getLogger('remi').setLevel( level=logging.DEBUG if debug else logging.INFO) if standalone: s = StandaloneServer(main_gui_class, start=True, **kwargs) else: s = Server(main_gui_class, start=True, **kwargs)
StarcoderdataPython
3476835
version = '1.0.0b5'
StarcoderdataPython
22251
# -*- coding: utf-8 -*- # Citations from flask import (Blueprint, request, render_template, flash, url_for, redirect, session) from flask.ext.login import login_required, current_user import logging, sys, re from sqlalchemy.exc import IntegrityError, InvalidRequestError from DictionaryOfNewZealandEnglish.database import db from DictionaryOfNewZealandEnglish.headword.citation.forms import * from DictionaryOfNewZealandEnglish.headword.citation.models import * import datetime as dt blueprint = Blueprint("citations", __name__, url_prefix='/headwords/citations', static_folder="../static") @blueprint.route("/edit", methods=["GET", "POST"]) @login_required def edit(): if not current_user.is_admin: return redirect(url_for('public.home')) headword = Headword.query.get( request.args.get('headword_id') ) citation_id = request.args.get('citation_id') citation = Citation.query.get( citation_id ) form = CitationForm(request.form, obj=citation) if request.method == "GET": date = __pretty_print_date(citation) return render_template("headwords/citations/edit.html", form=form, citation_id=citation_id, date=date, headword=headword) if request.method == "POST": data = __set_data_for_citation(citation, form) citation = Citation.query.get( citation_id ) date = __pretty_print_date(citation) return render_template("headwords/citations/edit.html", form=form, citation_id=citation_id, date=date, headword=headword) @blueprint.route("/new", methods=["GET"]) @login_required def new(): if not current_user.is_admin: return redirect(url_for('public.home')) headword = Headword.query.get( request.args.get('headword_id') ) form = CitationForm(request.form) return render_template("headwords/citations/new.html", form=form, headword=headword) @blueprint.route("/create", methods=["POST"]) @login_required def create(): if not current_user.is_admin: return redirect(url_for('public.home')) form = CitationForm(request.form) headword = Headword.query.get( request.args.get('headword_id') ) try: citation_id = __create_citation(form, headword) circa = "" if form.circa.data: circa = "circa " date_obj = __form_date(form) date = __pretty_print_date(date_obj, form.circa.data) flash("New citation created: {0} ({1}{2})".format(form.author.data, circa, date, 'success')) return render_template("headwords/citations/edit.html", form=form, citation_id=citation_id, date=date, headword=headword) except (IntegrityError) as e: db.session.rollback() flash("Input error %s" % e) return render_template("headwords/citations/new.html", form=form, headword=headword) except (InvalidRequestError): return render_template("headwords/citations/new.html", form=form, headword=headword) @blueprint.route("/delete", methods=["GET"]) @login_required def delete(): if not current_user.is_admin: return redirect(url_for('public.home')) citation = Citation.query.get( request.args.get('citation_id') ) headword = Headword.query.get( request.args.get('headword_id') ) if citation in headword.citations: headword.citations.remove(citation) db.session.add(headword) db.session.commit() citations = headword.citations return render_template("headwords/show.html", headword=headword, citations=citations) ############################################################################# ### Private def __create_citation(form, headword): date = __form_date(form) citation = Citation.create( date = date, circa = form.circa.data, author = form.author.data, source_id = form.source.data.id, vol_page = form.vol_page.data, edition = form.edition.data, quote = form.quote.data, notes = form.notes.data, archived = False, updated_at = dt.datetime.utcnow(), updated_by = current_user.username ) h = Headword.query.get(headword.id) h.citations.append(citation) db.session.add(h) db.session.commit() return citation.id def __form_date(form): if form.date.data == "": flash("No date entered.", 'warning') raise InvalidRequestError form_date = re.split(r'/\s*', form.date.data) if len(form_date) < 3: if form.circa.data: # pad out data to fit into datetime type if len(form_date) == 2: y = form_date[1].strip() m = form_date[0].strip() d = "1" if len(form_date) == 1: y = form_date[0].strip() m = "1" d = "1" else: flash("Partial date entered, perhaps 'Circa' should be checked.", 'warning') raise InvalidRequestError else: y = form_date[2].strip() m = form_date[1].strip() d = form_date[0].strip() # dt.datetime(y, m, d) print "### form_date {0} / {1} / {2}".format(y,m,d) date = dt.datetime(int(y), int(m), int(d)) return date def __pretty_print_date(obj, circa=False): print "### citation {0} {1}".format(obj, circa) if isinstance(obj, Citation): d = obj.date.day m = obj.date.month y = obj.date.year circa = obj.circa if isinstance(obj, dt.datetime): d = obj.day m = obj.month y = obj.year if circa: if d == 1: if m == 1: m = "" else: m = "{0} / ".format(m) d = "" else: d = "{0} / ".format(d) m = "{0} / ".format(m) print "test 1 {0}{1}{2}".format(d, m, y) return "{0}{1}{2}".format(d, m, y) else: print "test 2 {0} / {1} / {2}".format(d, m, y) return "{0} / {1} / {2}".format(d, m, y) def __set_data_for_citation(citation, form): try: date = __form_date(form) Citation.update(citation, date = date, circa = form.circa.data, author = form.author.data, source_id = form.source.data.id, vol_page = form.vol_page.data, edition = form.edition.data, quote = form.quote.data, notes = form.notes.data, archived = form.archived.data, updated_at = dt.datetime.utcnow(), updated_by = current_user.username ) flash("Edit of citation is saved.", 'success') return True except (IntegrityError, InvalidRequestError): db.session.rollback() flash("Edit of citation failed.", 'warning') return False
StarcoderdataPython
4879493
<filename>engine/__init__.py from .celery import app as celery_app ____all___ = ('celery_app',)
StarcoderdataPython
3337335
from collections import defaultdict N, NUM_EDGES, Q = [int(x) for x in input().split()] edges = defaultdict(list) for i in range(NUM_EDGES): v1, v2 = [int(x) for x in input().split()] edges[v1].append(v2) edges[v2].append(v1) colors = [int(x) for x in input().split()] for i in range(Q): # print(colors) f, *v = [int(x) for x in input().split()] # print(f, v) if f == 1: n, = v c = colors[n - 1] print(c) # sprincle # print(edges) for v in edges[n]: colors[v - 1] = c elif f == 2: n, c = v print(colors[n - 1]) colors[n - 1] = c
StarcoderdataPython
3451303
<reponame>santiagomvc/code2doc import pandas as pd import os import yaml from datetime import datetime from utils.transform_text_utils import create_vocab, transform_examples from utils.code2doc_utils import Code2DocTrain class ReadParams: def __init__(self, config): super().__init__() self.config = config def run(self): # Reading files config = self.config with open(config['FILES']['base_params_file'], 'r') as base_params_file: params = yaml.safe_load(base_params_file) if os.path.exists(config['FILES']['train_params_file']): with open(config['FILES']['train_params_file'], 'r') as train_params_file: train_params = yaml.safe_load(train_params_file) params = {**params, **train_params} if 'run_date' in params.keys(): params['run_date'] = datetime.strptime(params['run_date'], '%Y-%m-%d') else: params['run_date'] = datetime.now() # updating config with params language = params['language'] config_names = config['NAMES'] data_dir = config['PATHS']['data_dir'] extra_data_path = config['PATHS']['extra_data_path'] language_dir = f'{data_dir}/{language}' raw_data_dir = f'{language_dir}/{language}/{extra_data_path}' config['PATHS']['language_dir'] = language_dir config['PATHS']['raw_data_dir'] = raw_data_dir config['PATHS']['train_dir'] = f"{raw_data_dir}/{config_names['train_dir_name']}" config['PATHS']['valid_dir'] = f"{raw_data_dir}/{config_names['valid_dir_name']}" config['PATHS']['test_dir'] = f"{raw_data_dir}/{config_names['test_dir_name']}" return config, params class DownloadData: def __init__(self, config, params): super().__init__() self.config = config self.params = params def run(self): # Importing liraries import os import shutil import zipfile import requests # Reading configuations language = self.params['language'] language_dir = self.config['PATHS']['language_dir'] zip_name = f'{language}.zip' raw_data_url = self.config['PATHS']['raw_data_url'] url = f'{raw_data_url}/{zip_name}' # Deleting folder if already exists if os.path.exists(language_dir) and os.path.isdir(language_dir): shutil.rmtree(language_dir) # Creating folder to save the files os.makedirs(language_dir, exist_ok=True) # Download the zipped files to a temporal location r = requests.get(url = url) with open(zip_name,'wb') as fd: fd.write(r.content) # Unzipping files into defined folder with zipfile.ZipFile(zip_name, 'r') as zip_ref: zip_ref.extractall(language_dir) # removing temp file os.remove(zip_name) class ReadData: def __init__(self, config, params): super().__init__() self.config = config self.params = params def run(self): # Reading folder paths train_dir = self.config['PATHS']['train_dir'] valid_dir = self.config['PATHS']['valid_dir'] test_dir = self.config['PATHS']['test_dir'] training_data = [] # iterates over each folder for data_dir in [train_dir, valid_dir, test_dir]: # Empty list to save results dfs_list = [] # List files in the folder data_dir_files = os.listdir(data_dir) # Saves each file as a DF in a list for data_file in data_dir_files: train_df_partition = pd.read_json(f'{data_dir}/{data_file}', compression = 'gzip', lines=True) dfs_list.append(train_df_partition) # Creates ands saves a df with all the data in the folder df = pd.concat(dfs_list, ignore_index=True) training_data.append(df) return training_data class PrepareData: def __init__(self, config, params): super().__init__() self.config = config self.params = params def run(self, training_data): training_sets_list = [] for df in training_data: training_sets_list.append(df.code_tokens.values.tolist()) training_sets_list.append(df.docstring_tokens.values.tolist()) training_sets_names = ['X_train', 'Y_train', 'X_valid', 'Y_valid', 'X_test', 'Y_test'] training_sets = dict(zip(training_sets_names, training_sets_list)) return(training_sets) class TransformText: def __init__(self, config, params): super().__init__() self.config = config self.params = params def run(self, training_sets): # import libraries import numpy as np # Extracting parameters min_input_len = self.params['min_input_len'] min_output_len = self.params['min_output_len'] max_input_len = self.params['max_input_len'] max_output_len = self.params['max_output_len'] # Extracting training sets code_train, doc_train = training_sets['X_train'], training_sets['Y_train'] code_valid, doc_valid = training_sets['X_valid'], training_sets['Y_valid'] # Creating vocabulary (code_idx2tkn, code_tkn2idx) = create_vocab(code_train) (doc_idx2tkn, doc_tkn2idx) = create_vocab(doc_train) # defining parameters for transforming examples code_params = {'tkn2idx': code_tkn2idx, 'min_len': min_input_len, 'max_len': max_input_len} doc_params = {'tkn2idx': doc_tkn2idx, 'min_len': min_output_len, 'max_len': max_output_len} # indexing and padding the sequences X_train, Y_train = transform_examples(code_train, doc_train, code_params, doc_params) X_valid, Y_valid = transform_examples(code_valid, doc_valid, code_params, doc_params) # Creating a dictionary with the training data training_input = { 'X_train': X_train, 'Y_train': Y_train, 'X_valid': X_valid, 'Y_valid': Y_valid } # Creating a dictionary with all the vocabs vocabs = { 'code_i2t': code_idx2tkn, 'code_t2i': code_tkn2idx, 'doc_i2t': doc_idx2tkn, 'doc_t2i': doc_tkn2idx } # Return X_train and Y_train return(training_input, vocabs) class BuildModel: def __init__(self, config, params): super().__init__() self.config = config self.params = params def run(self, training_input, vocabs): # Importing required libraries from datetime import datetime from tensorflow import keras # Extracting needed params loss = self.params['loss'] optimizer = self.params['optimizer'] metrics = self.params['metrics'] batch_size = self.params['batch_size'] epochs = self.params['epochs'] model_save_dir = self.config['PATHS']['trainings_dir'] model_save_file = self.config['FILES']['model_file'] model_save_logs = self.config['PATHS']['trainings_log_dir'] # Creating folder to save model if it doesn't exists os.makedirs(model_save_dir, exist_ok=True) # Extracting training input X_train, Y_train = training_input['X_train'], training_input['Y_train'] X_valid, Y_valid = training_input['X_valid'], training_input['Y_valid'] # definign inputs for training data enc_input_train = X_train dec_input_train = Y_train[:,:-1] dec_output_train = Y_train[:,1:] # definign inputs for validation data enc_input_valid = X_valid dec_input_valid = Y_valid[:,:-1] dec_output_valid = Y_valid[:,1:] # Extracting needed data _, enc_dim = enc_input_train.shape _, dec_dim = dec_input_train.shape enc_vocab_size = len(vocabs['code_t2i'].keys()) dec_vocab_size = len(vocabs['doc_t2i'].keys()) # Defining keras logging callback logdir = model_save_logs + '/' + datetime.now().strftime("%Y%m%d-%H%M%S") tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir) # Creating the model class code2doc = Code2DocTrain(enc_dim, dec_dim, enc_vocab_size, dec_vocab_size) # Extracting the model object model = code2doc.enc_dec_model() # Defining hyperparameters for the model model.compile(loss=loss, optimizer=optimizer, metrics=metrics) # Fitting the model to the data model.fit([enc_input_train, dec_input_train], dec_output_train, batch_size=batch_size, epochs=epochs, validation_data=([enc_input_valid, dec_input_valid], dec_output_valid), callbacks=[tensorboard_callback]) #Saving the model model.save(model_save_file) return(model) # class EvalModel: # def __init__(self, config, params): # super().__init__() # self.config = config # self.params = params # def run(self, model, training_sets, vocabs): # # Extracting parameters # min_input_len = self.params['min_input_len'] # min_output_len = self.params['min_output_len'] # max_input_len = self.params['max_input_len'] # max_output_len = self.params['max_output_len'] # score_save_dir = self.config['PATHS']['trainings_dir'] # score_save_file = self.config['FILES']['model_score'] # # Creating folder to save score if it doesn't exists # os.makedirs(score_save_dir, exist_ok=True) # # getting dictionaries with vocabulary # code_tkn2idx = vocabs['code_t2i'] # doc_tkn2idx = vocabs['doc_t2i'] # # defining parameters for transforming examples # code_params = {'tkn2idx': code_tkn2idx, 'min_len': min_input_len, 'max_len': max_input_len} # doc_params = {'tkn2idx': doc_tkn2idx, 'min_len': min_output_len, 'max_len': max_output_len} # # Extracting eval data # code_val, doc_val = training_sets['X_valid'], training_sets['Y_valid'] # # indexing and padding the sequences # X_valid, Y_valid = transform_examples(code_val, doc_val, code_params, doc_params) # # Defining inputs and outputs # enc_input = X_valid # dec_input = Y_valid[:,:-1] # dec_output = Y_valid[:,1:] # # evaluating model performance # score = model.evaluate([enc_input, dec_input], dec_output) # # Saving model performance # with open(score_save_file, 'w') as f: # print(score, file=f) # return(score)
StarcoderdataPython
3427177
import os,json import snakemake as smk from utils import * import pathlib channel_files = snakemake.input if isinstance(channel_files,str): if channel_files.split('.')[-1] == 'chanlist': with open(channel_files) as f: channel_files = f.read().splitlines() else: channel_files = [channel_files] out_dict = {} for channel in channel_files: with open(channel,"r") as r: channel_dict = json.load(r) name, experiment, period, run,channel_name, tier = os.path.basename(channel).split("-") out_dict[channel_name] = channel_dict pathlib.Path(os.path.dirname(snakemake.output[0])).mkdir(parents=True, exist_ok=True) with open(snakemake.output[0],"w") as w: json.dump(out_dict, w,indent=4)
StarcoderdataPython
11242472
<gh_stars>0 from django.urls import path from . import views urlpatterns = [ path("create_user/<slug:name>/<slug:email>", views.create_user, name="create_user"), path("get_user/<slug:name>", views.get_user, name="get user info"), path("transfer/<slug:src>/<slug:dst>/<int:amount>", views.transfer, name="transfer") ]
StarcoderdataPython
9644405
<gh_stars>0 # Program to handle unique game IDs per player def new_game_id(): game_id = 0 # REIMPLEMENT TO GET UNIQUE VALUE NOT IN GLOBAL ARRAY return game_id
StarcoderdataPython
11207815
""" Implement atoi which converts a string to an integer. The function first discards as many whitespace characters as necessary until the first non-whitespace character is found. Then, starting from this character, takes an optional initial plus or minus sign followed by as many numerical digits as possible, and interprets them as a numerical value. The string can contain additional characters after those that form the integral number, which are ignored and have no effect on the behavior of this function. If the first sequence of non-whitespace characters in str is not a valid integral number, or if no such sequence exists because either str is empty or it contains only whitespace characters, no conversion is performed. If no valid conversion could be performed, a zero value is returned. Note: Only the space character ' ' is considered as whitespace character. Assume we are dealing with an environment which could only store integers within the 32-bit signed integer range: [−231, 231 − 1]. If the numerical value is out of the range of representable values, INT_MAX (231 − 1) or INT_MIN (−231) is returned. Example 1: Input: "42" Output: 42 Example 2: Input: " -42" Output: -42 Explanation: The first non-whitespace character is '-', which is the minus sign. Then take as many numerical digits as possible, which gets 42. Example 3: Input: "4193 with words" Output: 4193 Explanation: Conversion stops at digit '3' as the next character is not a numerical digit. Example 4: Input: "words and 987" Output: 0 Explanation: The first non-whitespace character is 'w', which is not a numerical digit or a +/- sign. Therefore no valid conversion could be performed. Example 5: Input: "-91283472332" Output: -2147483648 Explanation: The number "-91283472332" is out of the range of a 32-bit signed integer. Thefore INT_MIN (−231) is returned. """ # V0 class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ str = str.strip() try: res = re.search('(^[\+\-]?\d+)', str).group() # res = re.search(r"\d+", s).group() res = int(res) res = res if res <= 2147483647 else 2147483647 # 2**31 == 2147483648 res = res if res >= -2147483648 else -2147483648 # -(1)*(2**31) == - 2147483648 except: res = 0 return res # V1 # https://blog.csdn.net/coder_orz/article/details/52053932 class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ if not str: return 0 str = str.strip() number, flag = 0, 1 if str[0] == '-': str = str[1:] flag = -1 elif str[0] == '+': str = str[1:] for c in str: if c >= '0' and c <= '9': # '3' > '2' -> True number = 10*number + ord(c) - ord('0') # string to integer else: break number = flag * number number = number if number <= 2147483647 else 2147483647 number = number if number >= -2147483648 else -2147483648 return number # V1' # https://blog.csdn.net/coder_orz/article/details/52053932 # IDEA : REGULAR EXPRESSION class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ str = str.strip() try: res = re.search('(^[\+\-]?\d+)', str).group() res = int(res) res = res if res <= 2147483647 else 2147483647 res = res if res >= -2147483648 else -2147483648 except: res = 0 return res # V1'' # https://www.jiuzhang.com/solution/string-to-integer-atoi/#tag-highlight-lang-python class Solution(object): # string -> int, remove prefix and +, -. Please note the max, min interval of int when transform def atoi(self, str): str = str.strip() if str == "" : return 0 i = 0 sign = 1 ret = 0 length = len(str) MaxInt = (1 << 31) - 1 if str[i] == '+': i += 1 elif str[i] == '-' : i += 1 sign = -1 for i in range(i, length) : if str[i] < '0' or str[i] > '9' : break ret = ret * 10 + int(str[i]) if ret > sys.maxint: break ret *= sign if ret >= MaxInt: return MaxInt if ret < MaxInt * -1 : return MaxInt * - 1 - 1 return ret # V2 class Solution(object): def myAtoi(self, str): """ :type str: str :rtype: int """ INT_MAX = 2147483647 INT_MIN = -2147483648 result = 0 if not str: return result i = 0 while i < len(str) and str[i].isspace(): i += 1 if len(str) == i: return result sign = 1 if str[i] == "+": i += 1 elif str[i] == "-": sign = -1 i += 1 while i < len(str) and '0' <= str[i] <= '9': if result > (INT_MAX - int(str[i])) / 10: return INT_MAX if sign > 0 else INT_MIN result = result * 10 + int(str[i]) i += 1 return sign * result
StarcoderdataPython
3307299
<reponame>begyy/PayMe from .methods_subscribe_api import PayComResponse class Paycom(PayComResponse): ORDER_FOUND = 200 ORDER_NOT_FOND = -31050 INVALID_AMOUNT = -31001 def check_order(self, amount, account, *args, **kwargs): """ >>> self.check_order(amount=amount, account=account) """ pass def successfully_payment(self, account, transaction, *args, **kwargs): """ >>> self.successfully_payment(account=account, transaction=transaction) """ pass def cancel_payment(self, account, transaction, *args, **kwargs): """ >>> self.cancel_payment(account=account,transaction=transaction) """ pass
StarcoderdataPython
11376515
#!/usr/bin/env python # -*- coding: utf-8 -*- import json from alipay.aop.api.response.AlipayResponse import AlipayResponse class AlipaySocialQuestionnareTaskPublishResponse(AlipayResponse): def __init__(self): super(AlipaySocialQuestionnareTaskPublishResponse, self).__init__() self._ext_info = None self._out_request_no = None self._qstn_id = None self._rmt_qstn_id = None @property def ext_info(self): return self._ext_info @ext_info.setter def ext_info(self, value): self._ext_info = value @property def out_request_no(self): return self._out_request_no @out_request_no.setter def out_request_no(self, value): self._out_request_no = value @property def qstn_id(self): return self._qstn_id @qstn_id.setter def qstn_id(self, value): self._qstn_id = value @property def rmt_qstn_id(self): return self._rmt_qstn_id @rmt_qstn_id.setter def rmt_qstn_id(self, value): self._rmt_qstn_id = value def parse_response_content(self, response_content): response = super(AlipaySocialQuestionnareTaskPublishResponse, self).parse_response_content(response_content) if 'ext_info' in response: self.ext_info = response['ext_info'] if 'out_request_no' in response: self.out_request_no = response['out_request_no'] if 'qstn_id' in response: self.qstn_id = response['qstn_id'] if 'rmt_qstn_id' in response: self.rmt_qstn_id = response['rmt_qstn_id']
StarcoderdataPython
12831199
from chess_game.models.board import Board def test_board_init(): board = Board() assert 8 == len(board.board) for row in board.board: assert 8 == len(row) def test_game_board_has_pawns(): board = Board() board_white_pawn_row = board.board[1] for cell in board_white_pawn_row: assert 'wp0' == str(cell) board_black_pawn_row = board.board[6] for cell in board_black_pawn_row: assert 'bp0' == str(cell) def test_game_board_has_empty_spaces(): board = Board() for row in range(2, 6): board_row = board.board[row] for cell in board_row: assert '' == str(cell) def test_game_board_has_white_pieces(): expected_white_pieces = ["wr0", "wh0", "wb0", "wk0", "wq0", "wb0", "wh0", "wr0"] board = Board() white_row = board.board[0] for index, cell in enumerate(white_row): assert str(cell) == expected_white_pieces[index] def test_game_board_has_black_pieces(): expected_black_pieces = ["br0", "bh0", "bb0", "bk0", "bq0", "bb0", "bh0", "br0"] board = Board() black_row = board.board[7] for index, cell in enumerate(black_row): assert str(cell) == expected_black_pieces[index]
StarcoderdataPython
8114282
import math import random import obnlib as z APP_CODE = "#H02" APP_NAME = "<NAME>" APP_RELEASE = "2022" APP_VERSION = "V0.1" APP_FPS = 50 last_score = 0 #------------------------------------------------------------------------------ IMAGE_TITLE = z.Image(\ b"\xFF\xFF\xFF\x30\x30\x30\x30\xFF\xFF\xFF\x00\xE0\xF0\xF8\x18\x18" \ b"\x18\xF8\xF0\xE0\x00\xFF\xFF\xFF\x00\xFF\xFF\xFF\x00\xE0\xF0\xF8" \ b"\x18\x18\x18\xF8\xF0\xE0\x00\x18\xF8\xF8\xF8\x00\xF0\x38\xF8\xF8" \ b"\xC0\xF0\xF8\x18\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00" \ b"\x00\x00\x00\x00\x00\x00\x07\x87\xC7\xE0\xE0\xE0\xF0\xF7\xF7\xF7" \ b"\xF0\xF1\xE3\xC7\x06\x06\x06\x07\x03\x01\x00\xC7\xE7\xF7\x30\x37" \ b"\x77\x07\x00\x01\x03\x87\x86\x86\x86\x07\x03\x01\x00\x00\x81\x87" \ b"\x87\x87\x01\x00\x01\xF7\xF7\xF7\x01\x80\x80\x80\x80\x00\x00\x80" \ b"\x80\x80\x80\x00\x00\x00\x80\x80\x80\x00\x80\x80\x00\x03\x07\x1F" \ b"\x7F\xFF\xFF\xFF\x71\x3F\x3F\x7F\x78\x7F\x3F\x00\x00\x00\x00\x00" \ b"\x00\x71\x63\x67\x67\x7F\x3E\x1C\x00\x1E\x3F\x7F\x6D\x6D\x6F\x6F" \ b"\x0E\x00\x1E\x3F\x7F\x6D\x6D\x6F\x6F\x0E\x00\x7F\x7F\x7F\x0C\x7F" \ b"\x7F\x73\x40\x1E\x3F\x7F\x6D\x6D\x6F\x6F\x0E\x00\x7F\x7F\x7F\x01" \ b"\x01\x01", 70, 24) class TitleState: ID = 0 def prepare(self): menu_items = [z.Menu.Item("START GAME", self.menu_start_game), z.Menu.Item(None, self.menu_sound), z.Menu.Item("CREDIT", self.menu_credit)] self.menu_item_sound = menu_items[1] self.set_sound_menu_label() self.menu = z.Menu(menu_items) self.start = False self.credit = False self.dirty = True def update(self): if self.credit: if z.btn_d(z.BTN_A|z.BTN_B): self.credit = False self.dirty = True z.click() else: self.menu.update() return GameState.ID if self.start else self.ID def draw(self): if self.dirty: z.cls() if self.credit: z.credit(APP_NAME, APP_RELEASE) else: z.blit(IMAGE_TITLE, 1, 0) global last_score if last_score > 0: z.text(str(last_score), z.SCRN_W + 1, 0, z.TEXT_R, 1, True) if not self.credit and (self.dirty or self.menu.dirty): self.menu.draw() self.dirty = False def menu_start_game(self): self.start = True def menu_sound(self): z.sound(not z.sound_on) self.set_sound_menu_label() z.click() def menu_credit(self): self.credit = True self.dirty = True z.click() def set_sound_menu_label(self): label = "SOUND " + ("ON" if z.sound_on else "OFF") self.menu_item_sound.label = label #------------------------------------------------------------------------------ UNIT = 5 IMAGE_PLAYER = z.Image([ b"\x03\x1F\x0F\x19\x0E", b"\x13\x0F\x0F\x09\x1E", b"\x16\x1E\x1E\x12\x1C", b"\x03\x1F\x0F\x1B\x0E", b"\x03\x0F\x1F\x09\x0E"], 5, 5) class GameState: ID = 1 def prepare(self): global last_score last_score = 0 self.cave = Cave() self.player = Player() self.dots = Dots() self.pause = False self.gameover = False self.counter = APP_FPS * 2 self.dirty = True z.play("O4S6CDEFG12", 3) def update(self): next_state = self.ID dir = 0 forward = 0.0 if self.counter == 0: dir = (z.btn(z.BTN_R) or z.btn(z.BTN_A)) - z.btn(z.BTN_L) forward = 1.0 if z.btn_d(z.BTN_B): self.pause = not self.pause self.dirty = True else: self.counter -= 1 if self.gameover: forward = 0.5 if z.btn_d(z.BTN_A): self.prepare() elif z.btn_d(z.BTN_B) or self.counter == 0: next_state = TitleState.ID else: dir = 1 if not self.pause and z.frames & 1: self.dirty = True self.cave.update(forward) self.player.update(self.cave, dir) if forward > 0: self.dots.update(self.cave) if self.cave.phase >= Cave.PHASE_SHAKE: z.tone(random.randint(40, 100), 40) if self.player.move == UNIT - 1 and self.counter == 0: z.play("O6S1DBF", 1) if not self.gameover and self.player.dead: global last_score last_score = self.cave.score self.gameover = True self.counter = APP_FPS * 8 z.play("O4S6ED+DS8C+C<BS12A+A", 2) return next_state def draw(self): if not self.dirty: return z.cls() self.cave.draw() self.player.draw(self.cave) self.dots.draw() if self.gameover: z.text("GAMEOVER", 36, 0, z.TEXT_C, 1, True) z.text("SCORE " + str(self.cave.score), 36, 35, z.TEXT_C, 1, True) elif self.counter > 0: z.text("READY?", 36, 10, z.TEXT_C, 1, True) elif self.pause: z.text("PAUSE", 36, 10, z.TEXT_C, 1, True) elif self.player.pos >= Cave.COLUMN_MID - 1: z.text(str(self.cave.score), 0, 0, z.TEXT_L, 1, True) self.dirty = False class Cave: HEIGHT = z.SCRN_H GAP_MAX_INIT = HEIGHT / 2 COLUMN_MAX = 16 COLUMN_MID = COLUMN_MAX // 2 PHASE_MAX = 256 PHASE_SHAKE = PHASE_MAX - 12 def __init__(self): self.score = 0 self.hollow_cnt = 2 self.columns = [] top = self.HEIGHT/2 bottom = top + Player.HEIGHT for _ in range(self.COLUMN_MID): self.columns.append(Column(top, bottom)) for _ in range(self.COLUMN_MID, self.COLUMN_MAX): self.add_column() self.phase = 0 self.gap_max = self.GAP_MAX_INIT self.gap = 0 self.base_top = 0 self.base_bottom = 0 self.offset = 0 def update(self, forward): self.gap = int((1.0 - math.cos(self.phase*math.pi*2.0/self.PHASE_MAX)) * self.gap_max / 2.0) self.base_bottom = self.gap // 2 self.base_top = self.base_bottom - self.gap self.phase += forward if self.phase >= self.PHASE_MAX: self.phase = 0 self.gap_max += 0.5 elif self.phase >= self.PHASE_SHAKE and self.phase % 2 < 1: self.base_top += 1 self.base_bottom += 1 def add_column(self): c = self.columns[-1] last_diff = c.bottom - c.top diff = random.randrange(2) self.hollow_cnt -= 1 if self.hollow_cnt <= 0: diff = Player.HEIGHT - diff self.hollow_cnt = random.randint(2 + self.score//128, 2 + self.score//64) adjust = (c.bottom - (self.HEIGHT+Player.HEIGHT)/2 + 1.5) // 3 r = Player.HEIGHT*2 + 1 - abs(diff - last_diff) - abs(adjust) bottom = c.bottom + random.randrange(int(r)) - Player.HEIGHT if diff > last_diff: bottom += diff - last_diff if adjust < 0: bottom -= adjust self.columns.append(Column(bottom - diff, bottom)) def draw(self): for i, c in enumerate(self.columns): x = int(i*UNIT - self.offset) top = int(self.base_top + c.top - 1) bottom = int(self.base_bottom + c.bottom) if i > 0: if top < last_top: z.line(x - 1, top, x - 1, last_top) if top > last_top: z.line(x, last_top, x, top) if bottom < last_bottom: z.line(x, bottom, x, last_bottom) if bottom > last_bottom: z.line(x - 1, last_bottom, x - 1, bottom) z.line(x, top, x + 4, top) z.line(x, bottom, x + 4, bottom) z.pset(x + c.tx, top - c.ty) z.pset(x + c.bx, bottom + c.by) last_top = top last_bottom = bottom class Column: def __init__(self, top, bottom): self.top = top self.bottom = bottom self.tx = random.randrange(UNIT) self.ty = random.randrange(Cave.HEIGHT // 2) self.bx = random.randrange(UNIT) self.by = random.randrange(Cave.HEIGHT // 2) class Player: HEIGHT = IMAGE_PLAYER.h def __init__(self): self.dir = 0 self.pos = 0 self.jump = 0 self.move = 0 self.dead = False def update(self, cave, dir): if self.dead: return c = cave.columns[self.pos] if dir != 0 and self.move == 0 and self.pos + dir >= 0: self.dir = dir c = cave.columns[self.pos] n = cave.columns[self.pos + dir] diff = min(c.bottom, n.bottom) - max(c.top, n.top) if diff + cave.gap >= Player.HEIGHT: self.pos += dir self.move = UNIT self.jump = c.bottom - n.bottom c = n if self.move > 0: self.move -= 1 if self.pos >= Cave.COLUMN_MID: cave.offset += 1 if self.move == 0: cave.score += 1 cave.offset -= UNIT cave.columns.pop(0) cave.add_column() self.pos -= 1 if cave.phase == 0 and c.bottom - c.top < self.HEIGHT/2: self.dead = True def draw(self, cave): c = cave.columns[self.pos] x = self.pos*UNIT - self.move*self.dir - cave.offset if self.dead: y = cave.base_bottom + c.top else: y = cave.base_bottom + c.bottom + self.jump*self.move/UNIT + 0.5 if y > z.SCRN_H: y = z.SCRN_H y -= self.HEIGHT if cave.base_top + c.top > y: y = cave.base_top + c.top z.blit(IMAGE_PLAYER, int(x), int(y), self.move, 0, self.dir<0) class Dots: def __init__(self): self.dots = [] self.offset = 0 def update(self, cave): scroll = 1 if self.offset != cave.offset else 0 self.offset = cave.offset base = cave.base_bottom for d in reversed(self.dots): if d.update(scroll, base): self.dots.remove(d) if random.random() > cave.phase/Cave.PHASE_MAX + 0.25: x = random.randrange(z.SCRN_W) c = cave.columns[(x+cave.offset) // UNIT] self.dots.append(Dot(x, c.top + cave.base_top - 1, c.bottom)) def draw(self): for d in self.dots: d.draw() class Dot: def __init__(self, x, y, b): self.x = x self.y = y self.b = b self.v = 0 def update(self, scroll, base): self.x -= scroll self.y += self.v self.v += 0.125 return self.x < 0 or self.y >= self.b + base def draw(self): z.pset(self.x, int(self.y)) #------------------------------------------------------------------------------ if z.check(0.02): z.start(APP_FPS, APP_CODE, APP_VERSION, [TitleState(), GameState()])
StarcoderdataPython
355198
<gh_stars>1-10 from __future__ import unicode_literals from django.apps import apps def handler_process_signal(sender, **kwargs): Quota = apps.get_model(app_label='quotas', model_name='Quota') for quota in Quota.objects.filter(enabled=True): backend_instance = quota.get_backend_instance() if backend_instance.sender == sender and kwargs['signal'].__class__ == backend_instance.signal.__class__: backend_instance.process(**kwargs)
StarcoderdataPython
6439159
<gh_stars>1-10 from abaqusConstants import * from .Constraint import Constraint from ..Region.Region import Region class MultipointConstraint(Constraint): """The MultipointConstraint object defines a constraint between a group of MultipointConstraint nodes located on a region and a reference point. The MultipointConstraint object is derived from the ConstrainedSketchConstraint object. Attributes ---------- suppressed: Boolean A Boolean specifying whether the constraint is suppressed or not. The default value is OFF. Notes ----- This object can be accessed by: .. code-block:: python import interaction mdb.models[name].constraints[name] The corresponding analysis keywords are: - MPC """ # A Boolean specifying whether the constraint is suppressed or not. The default value is # OFF. suppressed: Boolean = OFF def __init__(self, name: str, surface: Region, controlPoint: Region, mpcType: SymbolicConstant, csys: str = None, userType: int = 0, userMode: SymbolicConstant = DOF_MODE_MPC): """This method creates a MultipointConstraint object. Notes ----- This function can be accessed by: .. code-block:: python mdb.models[name].MultipointConstraint Parameters ---------- name A String specifying the constraint repository key. surface A Region object specifying the surface on which the MultipointConstraint nodes are located. controlPoint A Region object specifying the constraint control point. mpcType A SymbolicConstant specifying the MPC type of the constraint. Possible values are BEAM_MPC, ELBOW_MPC, PIN_MPC, LINK_MPC, TIE_MPC, and USER_MPC. csys None or a DatumCsys object specifying the initial orientation of the local coordinate system for the MultipointConstraint's degrees of freedom. If *localCsys*=None, the MultipointConstraint is defined in the global coordinate system. The default value is None. userType An Int specifying to differentiate between different constraint types in a user-defined MultipointConstraint. The default value is 0.The *userType* argument applies only when *mpcType*=USER_MPC. userMode A SymbolicConstant specifying the mode of the constraint when it is user-defined. Possible values are DOF_MODE_MPC and NODE_MODE_MPC. The default value is DOF_MODE_MPC.The *userMode* argument applies only when *mpcType*=USER_MPC. Returns ------- A MultipointConstraint object. """ super().__init__() pass def setValues(self, csys: str = None, userType: int = 0, userMode: SymbolicConstant = DOF_MODE_MPC): """This method modifies the MultipointConstraint object. Parameters ---------- csys None or a DatumCsys object specifying the initial orientation of the local coordinate system for the MultipointConstraint's degrees of freedom. If *localCsys*=None, the MultipointConstraint is defined in the global coordinate system. The default value is None. userType An Int specifying to differentiate between different constraint types in a user-defined MultipointConstraint. The default value is 0.The *userType* argument applies only when *mpcType*=USER_MPC. userMode A SymbolicConstant specifying the mode of the constraint when it is user-defined. Possible values are DOF_MODE_MPC and NODE_MODE_MPC. The default value is DOF_MODE_MPC.The *userMode* argument applies only when *mpcType*=USER_MPC. """ pass
StarcoderdataPython
3358294
# Copyright (C) 2010 by the Massachusetts Institute of Technology. # All rights reserved. # Export of this software from the United States of America may # require a specific license from the United States Government. # It is the responsibility of any person or organization contemplating # export to obtain such a license before exporting. # # WITHIN THAT CONSTRAINT, permission to use, copy, modify, and # distribute this software and its documentation for any purpose and # without fee is hereby granted, provided that the above copyright # notice appear in all copies and that both that copyright notice and # this permission notice appear in supporting documentation, and that # the name of M.I.T. not be used in advertising or publicity pertaining # to distribution of the software without specific, written prior # permission. Furthermore if you modify this software you must label # your software as modified software and not distribute it in such a # fashion that it might be confused with the original M.I.T. software. # M.I.T. makes no representations about the suitability of # this software for any purpose. It is provided "as is" without express # or implied warranty. # Invoked by the testrealm target in the top-level Makefile. Creates # a test realm and spawns a shell pointing at it, for convenience of # manual testing. If a numeric argument is present after options, # creates that many fully connected test realms and point the shell at # the first one. from k5test import * # A list of directories containing programs in the build tree. progpaths = [ 'kdc', os.path.join('kadmin', 'server'), os.path.join('kadmin', 'cli'), os.path.join('kadmin', 'dbutil'), os.path.join('kadmin', 'ktutil'), os.path.join('clients', 'kdestroy'), os.path.join('clients', 'kinit'), os.path.join('clients', 'klist'), os.path.join('clients', 'kpasswd'), os.path.join('clients', 'ksu'), os.path.join('clients', 'kvno'), os.path.join('clients', 'kswitch'), 'slave' ] # Add program directories to the beginning of PATH. def supplement_path(env): # Construct prefixes; these will end in a trailing separator. path_prefix = manpath_prefix = '' for dir in progpaths: path_prefix += os.path.join(buildtop, dir) + os.pathsep # Assume PATH exists in env for simplicity. env['PATH'] = path_prefix + env['PATH'] if args: realms = cross_realms(int(args[0]), start_kadmind=True) realm = realms[0] else: realm = K5Realm(start_kadmind=True) env = realm.env.copy() supplement_path(env) pwfilename = os.path.join('testdir', 'passwords') pwfile = open(pwfilename, 'w') pwfile.write('user: %s\nadmin: %s\n' % (password('<PASSWORD>'), password('<PASSWORD>'))) pwfile.close() print print 'Realm files are in %s' % realm.testdir print 'KRB5_CONFIG is %s' % env['KRB5_CONFIG'] print 'KRB5_KDC_PROFILE is %s' % env['KRB5_KDC_PROFILE'] print 'KRB5CCNAME is %s' % env['KRB5CCNAME'] print 'KRB5_KTNAME is %s' % env['KRB5_KTNAME'] print 'KRB5RCACHEDIR is %s' % env['KRB5RCACHEDIR'] print 'Password for user is %s (see also %s)' % (password('<PASSWORD>'), pwfilename) print 'Password for admin is %s' % password('admin') print subprocess.call([os.getenv('SHELL')], env=env) success('Create test krb5 realm.')
StarcoderdataPython
369872
<gh_stars>0 import requests import contextlib from .path import Path from urllib.parse import urlparse from tqdm import tqdm from .pbar import file_proc_bar def download_bar(iterable, chunk_size = None, total_size = None, exist_size = 0): def bar(): with file_proc_bar(total=total_size) as pbar: pbar.update(exist_size) for x in iterable: yield x pbar.update(chunk_size) return bar() class URL: def __init__(self, url): self.url = url self.o = urlparse(url) def to_str(self, ts = str): return ts(self.url) def __str__(self): return self.to_str(str) def __repr__(self): return self.to_str(repr) @property def path(self): return self.o.path @property def name(self): return self.path.split('/')[-1] def download(self, save_path, continuous = False, enable_print = True, enable_bar = True, chunk_size = 4<<10): url = self.url save_path = Path(save_path) r = requests.get(url, stream = True) total_size = int(r.headers['Content-Length'] ) exist_size = 0 if continuous and save_path.exists(): assert(save_path.is_file()) exist_size = save_path.size if exist_size: r.close() if exist_size == total_size: #has downloaded if enable_print: print(f'Downloading: {url}') print(f'Save as: {save_path}') if enable_bar: with file_proc_bar(total=total_size) as pbar: pbar.update(total_size) return #redo request r = requests.get(url, stream = True, headers = {'Range': f'bytes={exist_size}-'}) fw = save_path.open('ab') else: #none was downloaded fw = save_path.open('wb') else: save_path.prnt.mkdir() fw = save_path.open('wb') it = r.iter_content(chunk_size=chunk_size) if enable_print: if enable_bar: it = download_bar(it, chunk_size = chunk_size, total_size = total_size, exist_size = exist_size) print(f'Downloading: {url}') print(f'Save as: {save_path}') for data in it: fw.write(data) fw.close() r.close() __all__ = ['URL']
StarcoderdataPython
5041137
import torch import unittest from magic_vnet.nestvnet import * class NestVNetTest(unittest.TestCase): data = torch.rand((1, 1, 32, 32, 32)) target_size = torch.Size([1, 1, 32, 32, 32]) def test_nestvnet(self): model = NestVNet(1, 2) out = model(self.data) self.assertEqual(out.size(), self.target_size) def test_nestvnet_cse(self): model = NestVNet_CSE(1, 2) out = model(self.data) self.assertEqual(out.size(), self.target_size) def test_nestvnet_sse(self): model = NestVNet_SSE(1, 2) out = model(self.data) self.assertEqual(out.size(), self.target_size) def test_nestvbnet(self): model = NestVBNet(1, 2) out = model(self.data) self.assertEqual(out.size(), self.target_size) def test_sknestvnet(self): model = SK_NestVNet(1, 2, se_type=True) out = model(self.data) self.assertEqual(out.size(), self.target_size) if __name__ == '__main__': unittest.main()
StarcoderdataPython
5030351
import sys import random sys.path.append('../LU_model') import db sys.path.pop() sys.path.append('../data_resource') import CrawlerTimeTable DB_IP = "172.16.17.32" # doctorbot GCP ip DB_PORT = 27017 # default MongoDB port DB_NAME = "doctorbot" # use the collection class intent_slot_generator(object): def __init__(self): client = db.MongoClient(DB_IP, DB_PORT) collection_division = client[DB_NAME]["division"] collection_disease = client[DB_NAME]["disease"] disease_list = [line.rstrip('\n') for line in open("../data_resource/disease_dict.txt", "r")] #print(disease_list) notfind = True while notfind : notfind = False disease = disease_list[random.randint(0, len(disease_list)-1)] #print(disease) while collection_division.find({"disease": disease}).count() < 1: disease = disease_list[random.randint(0, len(disease_list) - 1)] #print(disease) for collection in collection_disease.find({"disease_c": disease}): division = collection['department'][0] doctor_list = [] for collection in collection_division.find({"disease": disease}): doctor_list.extend(collection['doctor']) #print(doctor_list) if len(doctor_list) is 0: notfind = True elif len(doctor_list) > 1: name = doctor_list[random.randint(0, len(doctor_list)-1)] else: name = doctor_list[0] if not notfind: time_list = CrawlerTimeTable.Timetable(name).get_time() #print(time_list) if len(time_list) is 0: notfind = True elif len(time_list) > 1: time = time_list[random.randint(0, len(time_list)-1)] else: time = time_list[0] self.goal = {'intent': random.randint(1, 5), 'slot': {'disease': disease, 'division': division, 'doctor': name, 'time': time}} #def main(): #print(intent_slot_generator().goal) #if __name__ == '__main__': # main()
StarcoderdataPython
5125788
# -*- coding: utf-8 -*- import scrapy import csv class WikiSpider(scrapy.Spider): name = 'wiki' start_urls = ['https://en.wikipedia.org/wiki/List_of_countries_by_intentional_homicide_rate'] def parse(self, response): country_names_pre = response.xpath('(//table)[2]//a/text()').getall() country_names = country_names_pre[3:] rank = [] for i in response.xpath('(//table)[2]//td[1]/text()').getall(): data = i.replace('\n','').replace(' ','') if len(data) > 0 and int(data): rank.append(data) area = [] for i in response.xpath('(//table)[2]//td[2]/text()').getall(): data = i.replace('\n','') if len(data) > 0: area.append(data) subarea = [] for i in response.xpath('(//table)[2]//td[3]/text()').getall(): data = i.replace('\n','') if len(data) > 0: subarea.append(data) rate = [] for i in response.xpath('(//table)[2]//td[4]/text()').getall(): data = i.replace('\n','') if len(data) > 0: rate.append(data) count = [] for i in response.xpath('(//table)[2]//td[5]/text()').getall(): data = i.replace('\n','') if len(data) > 0: count.append(data) year = [] for i in response.xpath('(//table)[2]//td[6]/text()').getall(): data = i.replace('\n','') if len(data) > 0: year.append(data) array = [] for key,name in enumerate(country_names): buff = [] buff.append(name) buff.append(rank[key]) buff.append(area[key]) buff.append(subarea[key]) buff.append(rate[key]) buff.append(count[key]) buff.append(year[key]) array.append(buff) print(buff) with open('intentional_homicide_rates.csv','w') as write: writer = csv.writer(write) for i in array: writer.writerow(i)
StarcoderdataPython
3336545
import os import torch from torch.nn import functional as F from stft_core.modeling.utils import cat from stft_core.structures.bounding_box import BoxList #infer from stft_core.structures.boxlist_ops import boxlist_iou INF = 100000000 def get_num_gpus(): return int(os.environ["WORLD_SIZE"]) if "WORLD_SIZE" in os.environ else 1 def reduce_sum(tensor): if get_num_gpus() <= 1: return tensor import torch.distributed as dist tensor = tensor.clone() dist.all_reduce(tensor, op=dist.ReduceOp.SUM) return tensor def sigmoid_focal_loss( inputs, targets, alpha: float = -1, gamma: float = 2, reduction: str = "none", ): p = torch.sigmoid(inputs) ce_loss = F.binary_cross_entropy_with_logits( inputs, targets, reduction="none" ) p_t = p * targets + (1 - p) * (1 - targets) loss = ce_loss * ((1 - p_t) ** gamma) if alpha >= 0: alpha_t = alpha * targets + (1 - alpha) * (1 - targets) loss = alpha_t * loss if reduction == "mean": loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss sigmoid_focal_loss_jit = torch.jit.script( sigmoid_focal_loss ) # type: torch.jit.ScriptModule def iou_loss(inputs, targets, weight=None, box_mode="xyxy", loss_type="iou", reduction="none"): """ Compute iou loss of type ['iou', 'giou', 'linear_iou'] Args: inputs (tensor): pred values targets (tensor): target values weight (tensor): loss weight box_mode (str): 'xyxy' or 'ltrb', 'ltrb' is currently supported. loss_type (str): 'giou' or 'iou' or 'linear_iou' reduction (str): reduction manner Returns: loss (tensor): computed iou loss. """ if box_mode == "ltrb": inputs = torch.cat((-inputs[..., :2], inputs[..., 2:]), dim=-1) targets = torch.cat((-targets[..., :2], targets[..., 2:]), dim=-1) elif box_mode != "xyxy": raise NotImplementedError eps = torch.finfo(torch.float32).eps inputs_area = (inputs[..., 2] - inputs[..., 0]).clamp_(min=0) \ * (inputs[..., 3] - inputs[..., 1]).clamp_(min=0) targets_area = (targets[..., 2] - targets[..., 0]).clamp_(min=0) \ * (targets[..., 3] - targets[..., 1]).clamp_(min=0) w_intersect = (torch.min(inputs[..., 2], targets[..., 2]) - torch.max(inputs[..., 0], targets[..., 0])).clamp_(min=0) h_intersect = (torch.min(inputs[..., 3], targets[..., 3]) - torch.max(inputs[..., 1], targets[..., 1])).clamp_(min=0) area_intersect = w_intersect * h_intersect area_union = targets_area + inputs_area - area_intersect ious = area_intersect / area_union.clamp(min=eps) if loss_type == "iou": loss = -ious.clamp(min=eps).log() elif loss_type == "linear_iou": loss = 1 - ious elif loss_type == "giou": g_w_intersect = torch.max(inputs[..., 2], targets[..., 2]) \ - torch.min(inputs[..., 0], targets[..., 0]) g_h_intersect = torch.max(inputs[..., 3], targets[..., 3]) \ - torch.min(inputs[..., 1], targets[..., 1]) ac_uion = g_w_intersect * g_h_intersect gious = ious - (ac_uion - area_union) / ac_uion.clamp(min=eps) loss = 1 - gious else: raise NotImplementedError if weight is not None: loss = loss * weight.view(loss.size()) if reduction == "mean": loss = loss.sum() / max(weight.sum().item(), eps) else: if reduction == "mean": loss = loss.mean() if reduction == "sum": loss = loss.sum() return loss def smooth_l1_loss(input, target, beta: float, reduction: str = "none", size_average=False): """ Smooth L1 loss defined in the Fast R-CNN paper as: | 0.5 * x ** 2 / beta if abs(x) < beta smoothl1(x) = | | abs(x) - 0.5 * beta otherwise, where x = input - target. """ if beta < 1e-5: # if beta == 0, then torch.where will result in nan gradients when # the chain rule is applied due to pytorch implementation details # (the False branch "0.5 * n ** 2 / 0" has an incoming gradient of # zeros, rather than "no gradient"). To avoid this issue, we define # small values of beta to be exactly l1 loss. loss = torch.abs(input - target) else: n = torch.abs(input - target) cond = n < beta loss = torch.where(cond, 0.5 * n**2 / beta, n - 0.5 * beta) if reduction == "mean" or size_average: loss = loss.mean() elif reduction == "sum": loss = loss.sum() return loss def permute_to_N_HWA_K(tensor, K): """ Transpose/reshape a tensor from (N, (A x K), H, W) to (N, (HxWxA), K) """ assert tensor.dim() == 4, tensor.shape N, _, H, W = tensor.shape tensor = tensor.view(N, -1, K, H, W) tensor = tensor.permute(0, 3, 4, 1, 2) tensor = tensor.reshape(N, -1, K) # Size=(N,HWA,K) return tensor def permute_all_cls_and_box_to_N_HWA_K_and_concat( box_cls, box_delta, box_center, border_cls, border_delta, num_classes=2): """ Rearrange the tensor layout from the network output, i.e.: list[Tensor]: #lvl tensors of shape (N, A x K, Hi, Wi) to per-image predictions, i.e.: Tensor: of shape (N x sum(Hi x Wi x A), K) """ # for each feature level, permute the outputs to make them be in the # same format as the labels. Note that the labels are computed for # all feature levels concatenated, so we keep the same representation # for the objectness, the box_delta and the centerness box_cls_flattened = [permute_to_N_HWA_K(x, num_classes) for x in box_cls] box_delta_flattened = [permute_to_N_HWA_K(x, 4) for x in box_delta] box_center_flattened = [permute_to_N_HWA_K(x, 1) for x in box_center] border_cls_flattened = [permute_to_N_HWA_K(x, num_classes) for x in border_cls] border_delta_flattened = [permute_to_N_HWA_K(x, 4) for x in border_delta] # concatenate on the first dimension (representing the feature levels), to # take into account the way the labels were generated (with all feature maps # being concatenated as well) box_cls = cat(box_cls_flattened, dim=1).view(-1, num_classes) box_delta = cat(box_delta_flattened, dim=1).view(-1, 4) box_center = cat(box_center_flattened, dim=1).view(-1, 1) border_cls = cat(border_cls_flattened, dim=1).view(-1, num_classes) border_delta = cat(border_delta_flattened, dim=1).view(-1, 4) return box_cls, box_delta, box_center, border_cls, border_delta class Shift2BoxTransform(object): def __init__(self, weights): """ Args: weights (4-element tuple): Scaling factors that are applied to the (dl, dt, dr, db) deltas. """ self.weights = weights def get_deltas(self, shifts, boxes): """ Get box regression transformation deltas (dl, dt, dr, db) that can be used to transform the `shifts` into the `boxes`. That is, the relation ``boxes == self.apply_deltas(deltas, shifts)`` is true. Args: shifts (Tensor): shifts, e.g., feature map coordinates boxes (Tensor): target of the transformation, e.g., ground-truth boxes. """ assert isinstance(shifts, torch.Tensor), type(shifts) assert isinstance(boxes, torch.Tensor), type(boxes) deltas = torch.cat((shifts - boxes[..., :2], boxes[..., 2:] - shifts), dim=-1) * shifts.new_tensor(self.weights) return deltas def apply_deltas(self, deltas, shifts): """ Apply transformation `deltas` (dl, dt, dr, db) to `shifts`. Args: deltas (Tensor): transformation deltas of shape (N, k*4), where k >= 1. deltas[i] represents k potentially different class-specific box transformations for the single shift shifts[i]. shifts (Tensor): shifts to transform, of shape (N, 2) """ assert torch.isfinite(deltas).all().item() shifts = shifts.to(deltas.dtype) if deltas.numel() == 0: return torch.empty_like(deltas) deltas = deltas.view(deltas.size()[:-1] + (-1, 4)) / shifts.new_tensor(self.weights) boxes = torch.cat((shifts.unsqueeze(-2) - deltas[..., :2], shifts.unsqueeze(-2) + deltas[..., 2:]), dim=-1).view(deltas.size()[:-2] + (-1, )) return boxes class BorderLossComputation(object): """ This class computes the FCOS losses. """ def __init__(self, cfg): self.num_classes = cfg.MODEL.FCOS.NUM_CLASSES - 1 self.fpn_strides = cfg.MODEL.FCOS.FPN_STRIDES self.object_sizes_of_interest = [ [-1, 64], [64, 128], [128, 256], [256, 512], [512, INF], ] self.shift2box_transform = Shift2BoxTransform( weights=(1.0, 1.0, 1.0, 1.0)) self.focal_loss_alpha = cfg.MODEL.FCOS.LOSS_ALPHA self.focal_loss_gamma = cfg.MODEL.FCOS.LOSS_GAMMA self.iou_loss_type = cfg.MODEL.FCOS.IOU_LOSS_TYPE self.center_sampling_radius = cfg.MODEL.FCOS.CENTER_SAMPLING_RADIUS self.border_iou_thresh = cfg.MODEL.BORDER.IOU_THRESH self.border_bbox_std = cfg.MODEL.BORDER.BBOX_STD @torch.no_grad() def get_ground_truth(self, shifts, targets, pre_boxes_list): """ Args: shifts (list[list[Tensor]]): a list of N=#image elements. Each is a list of #feature level tensors. The tensors contains shifts of this image on the specific feature level. targets (list[Instances]): a list of N `Instances`s. The i-th `Instances` contains the ground-truth per-instance annotations for the i-th input image. Specify `targets` during training only. Returns: gt_classes (Tensor): An integer tensor of shape (N, R) storing ground-truth labels for each shift. R is the total number of shifts, i.e. the sum of Hi x Wi for all levels. Shifts in the valid boxes are assigned their corresponding label in the [0, K-1] range. Shifts in the background are assigned the label "K". Shifts in the ignore areas are assigned a label "-1", i.e. ignore. gt_shifts_deltas (Tensor): Shape (N, R, 4). The last dimension represents ground-truth shift2box transform targets (dl, dt, dr, db) that map each shift to its matched ground-truth box. The values in the tensor are meaningful only when the corresponding shift is labeled as foreground. gt_centerness (Tensor): An float tensor (0, 1) of shape (N, R) whose values in [0, 1] storing ground-truth centerness for each shift. border_classes (Tensor): An integer tensor of shape (N, R) storing ground-truth labels for each shift. R is the total number of shifts, i.e. the sum of Hi x Wi for all levels. Shifts in the valid boxes are assigned their corresponding label in the [0, K-1] range. Shifts in the background are assigned the label "K". Shifts in the ignore areas are assigned a label "-1", i.e. ignore. border_shifts_deltas (Tensor): Shape (N, R, 4). The last dimension represents ground-truth shift2box transform targets (dl, dt, dr, db) that map each shift to its matched ground-truth box. The values in the tensor are meaningful only when the corresponding shift is labeled as foreground. """ gt_classes = [] gt_shifts_deltas = [] gt_centerness = [] border_classes = [] border_shifts_deltas = [] for shifts_per_image, targets_per_image, pre_boxes in zip(shifts, targets, pre_boxes_list): object_sizes_of_interest = torch.cat([ shifts_i.new_tensor(size).unsqueeze(0).expand( shifts_i.size(0), -1) for shifts_i, size in zip( shifts_per_image, self.object_sizes_of_interest) ], dim=0) shifts_over_all_feature_maps = torch.cat(shifts_per_image, dim=0) gt_boxes = targets_per_image.bbox area = targets_per_image.area() center = targets_per_image.center() deltas = self.shift2box_transform.get_deltas( shifts_over_all_feature_maps, gt_boxes.unsqueeze(1)) if self.center_sampling_radius > 0: centers = targets_per_image.center() is_in_boxes = [] for stride, shifts_i in zip(self.fpn_strides, shifts_per_image): radius = stride * self.center_sampling_radius center_boxes = torch.cat(( torch.max(centers - radius, gt_boxes[:, :2]), torch.min(centers + radius, gt_boxes[:, 2:]), ), dim=-1) center_deltas = self.shift2box_transform.get_deltas( shifts_i, center_boxes.unsqueeze(1)) is_in_boxes.append(center_deltas.min(dim=-1).values > 0) is_in_boxes = torch.cat(is_in_boxes, dim=1) else: # no center sampling, it will use all the locations within a ground-truth box is_in_boxes = deltas.min(dim=-1).values > 0 max_deltas = deltas.max(dim=-1).values # limit the regression range for each location is_cared_in_the_level = \ (max_deltas >= object_sizes_of_interest[None, :, 0]) & \ (max_deltas <= object_sizes_of_interest[None, :, 1]) gt_positions_area = targets_per_image.area().unsqueeze(1).repeat( 1, shifts_over_all_feature_maps.size(0)) gt_positions_area[~is_in_boxes] = INF gt_positions_area[~is_cared_in_the_level] = INF # if there are still more than one objects for a position, # we choose the one with minimal area positions_min_area, gt_matched_idxs = gt_positions_area.min(dim=0) # ground truth box regression gt_shifts_reg_deltas_i = self.shift2box_transform.get_deltas( shifts_over_all_feature_maps, targets_per_image[gt_matched_idxs].bbox) labels_per_im = targets_per_image.get_field("labels") # ground truth classes has_gt = len(targets_per_image) > 0 if has_gt: gt_classes_i = labels_per_im[gt_matched_idxs] # Shifts with area inf are treated as background. gt_classes_i[positions_min_area == INF] = self.num_classes+1 #value is 2 for not gt else: gt_classes_i = torch.zeros_like(gt_matched_idxs)+self.num_classes+1 #value is 2 for not gt # ground truth centerness left_right = gt_shifts_reg_deltas_i[:, [0, 2]] top_bottom = gt_shifts_reg_deltas_i[:, [1, 3]] gt_centerness_i = torch.sqrt( (left_right.min(dim=-1).values / left_right.max(dim=-1).values).clamp_(min=0) * (top_bottom.min(dim=-1).values / top_bottom.max(dim=-1).values).clamp_(min=0) ) gt_classes.append(gt_classes_i) gt_shifts_deltas.append(gt_shifts_reg_deltas_i) gt_centerness.append(gt_centerness_i) # border iou = boxlist_iou(BoxList(pre_boxes, targets_per_image.size, targets_per_image.mode), targets_per_image) (max_iou, argmax_iou) = iou.max(dim=1) invalid = max_iou < self.border_iou_thresh gt_target = gt_boxes[argmax_iou] border_cls_target = labels_per_im[argmax_iou] border_cls_target[invalid] = self.num_classes+1 border_bbox_std = pre_boxes.new_tensor(self.border_bbox_std) pre_boxes_wh = pre_boxes[:, 2:4] - pre_boxes[:, 0:2] pre_boxes_wh = torch.cat([pre_boxes_wh, pre_boxes_wh], dim=1) border_off_target = (gt_target - pre_boxes) / (pre_boxes_wh * border_bbox_std) border_classes.append(border_cls_target) border_shifts_deltas.append(border_off_target) return ( torch.stack(gt_classes), torch.stack(gt_shifts_deltas), torch.stack(gt_centerness), torch.stack(border_classes), torch.stack(border_shifts_deltas), ) def __call__(self, shifts, pred_class_logits, pred_shift_deltas, pred_centerness, targets, bd_based_box, border_box_cls, border_bbox_reg): ( gt_classes, gt_shifts_deltas, gt_centerness, gt_classes_border, gt_deltas_border, ) = self.get_ground_truth(shifts, targets, bd_based_box) ( pred_class_logits, pred_shift_deltas, pred_centerness, border_class_logits, border_shift_deltas, ) = permute_all_cls_and_box_to_N_HWA_K_and_concat( pred_class_logits, pred_shift_deltas, pred_centerness, border_box_cls, border_bbox_reg, self.num_classes ) # Shapes: (N x R, K) and (N x R, 4), respectively. # fcos gt_classes = gt_classes.flatten().long() gt_shifts_deltas = gt_shifts_deltas.view(-1, 4) gt_centerness = gt_centerness.view(-1, 1) valid_idxs = gt_classes >= 0 foreground_idxs = (gt_classes >= 0) & (gt_classes != (self.num_classes+1)) num_foreground = foreground_idxs.sum() acc_centerness_num = gt_centerness[foreground_idxs].sum() gt_classes_target = torch.zeros_like(pred_class_logits) gt_classes_target[foreground_idxs, gt_classes[foreground_idxs]-1] = 1 num_gpus = get_num_gpus() # sync num_pos from all gpus num_foreground_avg_per_gpu = max(reduce_sum(num_foreground).item() / float(num_gpus), 1.0) acc_centerness_num_avg_per_gpu = max(reduce_sum(acc_centerness_num).item() / float(num_gpus), 1.0) # logits loss loss_cls = sigmoid_focal_loss_jit( pred_class_logits[valid_idxs], gt_classes_target[valid_idxs], alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="sum", ) / num_foreground_avg_per_gpu # regression loss loss_box_reg = iou_loss( pred_shift_deltas[foreground_idxs], gt_shifts_deltas[foreground_idxs], gt_centerness[foreground_idxs], box_mode="ltrb", loss_type=self.iou_loss_type, reduction="sum", ) / acc_centerness_num_avg_per_gpu # centerness loss loss_centerness = F.binary_cross_entropy_with_logits( pred_centerness[foreground_idxs], gt_centerness[foreground_idxs], reduction="sum", ) / num_foreground_avg_per_gpu # borderdet gt_classes_border = gt_classes_border.flatten().long() gt_deltas_border = gt_deltas_border.view(-1, 4) valid_idxs_border = gt_classes_border >= 0. foreground_idxs_border = (gt_classes_border >= 0) & (gt_classes_border != (self.num_classes+1)) num_foreground_border = foreground_idxs_border.sum() gt_classes_border_target = torch.zeros_like(border_class_logits) gt_classes_border_target[ foreground_idxs_border, gt_classes_border[foreground_idxs_border]-1] = 1 num_foreground_border = max(reduce_sum(num_foreground_border).item() / float(num_gpus), 1.0) # loss_border_cls loss_border_cls = sigmoid_focal_loss_jit( border_class_logits[valid_idxs_border], gt_classes_border_target[valid_idxs_border], alpha=self.focal_loss_alpha, gamma=self.focal_loss_gamma, reduction="sum", ) / num_foreground_border if foreground_idxs_border.numel() > 0: loss_border_reg = ( smooth_l1_loss( border_shift_deltas[foreground_idxs_border], gt_deltas_border[foreground_idxs_border], beta=0, reduction="sum" ) / num_foreground_border ) else: loss_border_reg = border_shift_deltas.sum() return loss_cls, loss_box_reg, loss_centerness, loss_border_cls, loss_border_reg def make_border_loss_evaluator(cfg): loss_evaluator = BorderLossComputation(cfg) return loss_evaluator
StarcoderdataPython
6581524
<reponame>billyevans/prefix_storage<filename>fill.py #!/usr/bin/env python # -*- coding: utf-8 -*- import httplib2 import sys import md5 if __name__ == '__main__': count = 0 for line in sys.stdin: conn = httplib2.HTTPConnectionWithTimeout("localhost", int(sys.argv[1])) key = line.rstrip() val = md5.md5(key) conn.request("POST", "/" + key, val.hexdigest()) res = conn.getresponse() if res.status != 200: raise Exception("Wrong status - {0}".format(res.status)) count += 1 print("{0} keys written.".format(count))
StarcoderdataPython
12823261
<filename>APPRoot/loveword/middleware/meipai_parse.py # -*- coding:utf-8 -*- import base64 import requests import json import re import execjs """ # 方法一: class MeiPai(object): def __init__(self, url): self.url = url self.session = requests.Session() with open("static/loveword/js/meipai_encrypt.js", "r", encoding="utf-8") as f: resource = f.read() self.ctx = execjs.compile(resource) def get_video(self): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36", "Upgrade-Insecure-Requests": "1", "Host": "www.meipai.com", "Referer": "http://www.meipai.com/" } pattern = re.compile('data-video="(.*?)"', re.S) pattern2 = re.compile('<meta name="description" content="(.*?)"', re.S) try: response = self.session.get(url=self.url, headers=headers, timeout=10) if response.status_code == 200: video_bs64 = re.findall(pattern, response.text)[0] title = re.findall(pattern2, response.text)[0] video_url = self.ctx.call("getmp4", video_bs64) info = { "title": title, "video": "https:"+video_url } return json.dumps(info, ensure_ascii=False) except Exception as e: return json.dumps({"info": "暂无相关数据,请检查相关数据:" + str(e)}, ensure_ascii=False) """ # 方法二 class MeiPai(object): def __init__(self, url): self.url = url self.session = requests.Session() def getHex(self, a): hex_1 = a[:4][::-1] str_1 = a[4:] return str_1, hex_1 def getDec(self, a): b = str(int(a, 16)) c = list(b[:2]) d = list(b[2:]) return c, d def substr(self, a, b): k = int(b[0]) c = a[:k] d = a[k:k + int(b[1])] temp = a[int(b[0]):].replace(d, "") result = c + temp return result def getPos(self, a, b): b[0] = len(a) - int(b[0]) - int(b[1]) return b def get_video(self): headers = { "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/84.0.4147.125 Safari/537.36", "Upgrade-Insecure-Requests": "1", "Host": "www.meipai.com", "Referer": "http://www.meipai.com/" } pattern = re.compile('data-video="(.*?)"', re.S) pattern2 = re.compile('<meta name="description" content="(.*?)"', re.S) try: response = self.session.get(url=self.url, headers=headers, timeout=10) if response.status_code == 200: video_bs64 = re.findall(pattern, response.text)[0] title = re.findall(pattern2, response.text)[0] str1, hex1 = self.getHex(video_bs64) pre, tail = self.getDec(hex1) d = self.substr(str1, pre) kk = self.substr(d, self.getPos(d, tail)) a = base64.b64decode(kk) info = { "title": title, "video": "https:"+a.decode(encoding='utf-8') } return json.dumps(info, ensure_ascii=False) except Exception as e: return json.dumps({"info": "暂无相关数据,请检查相关数据:" + str(e)}, ensure_ascii=False)
StarcoderdataPython
138699
<gh_stars>0 from collections import defaultdict from itertools import chain from .graphutils import * from .milltypes import (WordType, WordType, AtomicType, FunctorType, DiamondType, BoxType, EmptyType, ModalType, invariance_check) from functools import reduce from .transformations import majority_vote, _cats_of_type, order_nodes, body_replacements # # # Extraction variables # # # # Mapping from phrasal categories and POS tags to Atomic Types _CatDict = {'advp': 'ADV', 'ahi': 'AHI', 'ap': 'AP', 'cp': 'CP', 'detp': 'DETP', 'inf': 'INF', 'np': 'NP', 'oti': 'OTI', 'pp': 'PP', 'ppart': 'PPART', 'ppres': 'PPRES', 'rel': 'REL', 'smain': 'SMAIN', 'ssub': 'SSUB', 'sv1': 'SV1', 'svan': 'SVAN', 'ti': 'TI', 'whq': 'WHQ', 'whrel': 'WHREL', 'whsub': 'WHSUB'} _PtDict = {x: x.upper() for x in {'adj', 'bw', 'let', 'lid', 'n', 'spec', 'tsw', 'tw', 'vg', 'vnw', 'vz', 'ww'}} CatDict = {k: AtomicType(v) for k, v in _CatDict.items()} PtDict = {k: AtomicType(v) for k, v in _PtDict.items()} # Head and modifier dependencies HeadDeps = frozenset(['hd', 'rhd', 'whd', 'cmp', 'crd', 'det']) ModDeps = frozenset(['mod', 'predm', 'app']) # Obliqueness Hierarchy ObliquenessOrder = ( ('mod', 'app', 'predm'), # modifiers ('body', 'relcl', 'whbody', 'cmpbody'), # clause bodies ('sup',), # preliminary subject ('su',), # primary subject ('pobj',), # preliminary object ('obj1',), # primary object ('predc', 'obj2', 'se', 'pc', 'hdf'), # verb secondary arguments ('ld', 'me', 'vc'), # verb complements ('obcomp',), # comparison complement ('svp',), # separable verb part ('det',), # NP head ) ArgSeq = List[Tuple[WordType, Optional[str]]] # Callable version class ObliquenessSort(object): def __init__(self, order: Iterable[Iterable[str]]): order = {k: i for i, k in enumerate(reversed(list(chain.from_iterable(order))))} self.order = defaultdict(lambda: -1, {**order, **{'cnj': -2}}) def __call__(self, argcolors: ArgSeq) -> ArgSeq: return sorted(argcolors, key=lambda x: (self.order[snd(x)], str(fst(x))), reverse=True) _obliqueness_sort = ObliquenessSort(ObliquenessOrder) class ExtractionError(AssertionError): def __init__(self, message: str, meta: Any = None): super().__init__(message) self.message = message self.meta = meta def is_gap(dag: DAG, node: Node, head_deps: FrozenSet[str] = HeadDeps) -> bool: incoming = set(map(lambda edge: edge.dep, dag.incoming(node))) return len(incoming) > 1 and len(incoming.intersection(head_deps)) > 0 def is_copy(dag: DAG, node: Node) -> bool: incoming = list(map(lambda edge: edge.dep, dag.incoming(node))) return len(incoming) > 1 and any(map(lambda inc: len(list(filter(lambda other: other == inc, incoming))) > 1, incoming)) def get_type_plain(dag: DAG, node: Node, type_dict: Dict[str, AtomicType], pos_set: str) -> AtomicType: if pos_set in dag.attribs[node]: return type_dict[dag.attribs[node][pos_set]] else: cat = dag.attribs[node]['cat'] if cat == 'conj': return type_dict[majority_vote(dag, dag.successors(node), pos_set)] else: return type_dict[cat] def make_functor(argument: WordType, result: WordType, dep: Optional[str]) -> Union[FunctorType, ModalType]: if dep is None: return FunctorType(argument=argument, result=result) if dep in ModDeps: return BoxType(FunctorType(argument=argument, result=result), dep) if dep == 'np_hd': return BoxType(FunctorType(argument=argument, result=result), 'det') return FunctorType(DiamondType(argument, dep), result) def make_ho_functor(argument: WordType, result: WordType, dep: Optional[str]) -> FunctorType: if dep is None or dep in HeadDeps or dep == 'np_hd': return make_functor(argument, result, None) return make_functor(argument, result, dep) def modifier_of(modified: WordType, dep: str) -> BoxType: return BoxType(FunctorType(modified, modified), dep) def get_argument(wordtype: WordType) -> WordType: if isinstance(wordtype, FunctorType): return wordtype.argument if isinstance(wordtype, ModalType) and isinstance(wordtype.content, FunctorType): return wordtype.content.argument raise TypeError(f'Cannot extract argument from {wordtype} of type {type(wordtype)}') def binarize(argcolors: List[Tuple[WordType, Optional[str]]], result: WordType, sorting_fn: Callable[[ArgSeq], ArgSeq] = _obliqueness_sort) -> Union[FunctorType, ModalType]: argcolors = sorting_fn(argcolors) return reduce(lambda x, y: make_functor(argument=y[0], result=x, dep=y[1]), argcolors, result) def binarize_hots(argcolors: List[Tuple[WordType, Optional[str]]], result: WordType, sorting_fn: Callable[[ArgSeq], ArgSeq] = _obliqueness_sort) -> WordType: argcolors = sorting_fn(argcolors) return reduce(lambda x, y: make_ho_functor(argument=y[0], result=x, dep=y[1]), argcolors, result) def rebinarize(argcolors: List[Tuple[WordType, Optional[str]]], result: WordType, sorting_fn: Callable[[ArgSeq], ArgSeq] = _obliqueness_sort) -> Union[ModalType, FunctorType]: if not argcolors: return result arguments, colors = list(zip(*argcolors)) x = result while isinstance(x, DiamondType): arguments += (x.argument,) colors += (x.diamond,) x = x.result return binarize(list(zip(arguments, colors)), result, sorting_fn) def type_top(dag: DAG, type_dict: Dict[str, AtomicType], pos_set: str) -> None: root = fst(list(dag.get_roots())) root_type = get_type_plain(dag, root, type_dict, pos_set) dag.attribs[root]['type'] = root_type def type_bot(dag: DAG, type_dict: Dict[str, AtomicType], pos_set: str, hd_deps: FrozenSet[str] = HeadDeps, mod_deps: FrozenSet[str] = ModDeps) -> bool: heads = set(map(lambda edge: edge.target, list(filter(lambda edge: edge.dep in hd_deps, dag.edges)))) heads = heads.difference(set(filter(lambda node: is_gap(dag, node, hd_deps), dag.nodes))) typed = set(filter(lambda node: 'type' in dag.attribs[node].keys(), dag.nodes)) fringe = heads.union(typed) changed = False while True: fringe, attribs = type_bot_step(dag, fringe, type_dict, pos_set, hd_deps, mod_deps) if not attribs: break dag.attribs.update(attribs) changed = True return changed def type_bot_step(dag: DAG[Node, str], fringe: Nodes, type_dict: Dict[str, AtomicType], pos_set: str, hd_deps: FrozenSet[str] = HeadDeps, mod_deps: FrozenSet[str] = ModDeps) \ -> Tuple[Nodes, Dict[Node, Dict]]: def is_fringe(_node: Node) -> bool: is_fn = len(set(filter(lambda edge: edge.dep in mod_deps.union({'cnj'}), dag.incoming(_node)))) in_fringe = _node in fringe is_leaf = dag.is_leaf(_node) has_no_daughters = all(list(map(lambda out: out.dep in mod_deps or out.target in fringe or dag.attribs[out.source]['cat'] == 'conj', dag.outgoing(_node)))) return not is_fn and (is_leaf or has_no_daughters) and not in_fringe def is_cnj_fringe(_node: Node) -> bool: gap = is_gap(dag, _node, hd_deps) typed = 'type' in dag.attribs[_node].keys() single_inc = len(set(dag.incoming(_node))) == 1 is_cnj = single_inc and fst(list(dag.incoming(_node))).dep == 'cnj' typed_parent = single_inc and 'type' in dag.attribs[fst(list(dag.incoming(_node))).source] return not gap and not typed and is_cnj and typed_parent new_fringe = set(filter(lambda n: is_fringe(n), dag.nodes)) new_cnj_fringe = set(filter(lambda n: is_cnj_fringe(n), dag.nodes)) if new_cnj_fringe.intersection(new_fringe): raise ExtractionError('Fringes overlap', meta=dag.meta) fringe_types = [(node, get_type_plain(dag, node, type_dict, pos_set)) for node in new_fringe] + \ [(node, dag.attribs[fst(list(dag.incoming(node))).source]['type']) for node in new_cnj_fringe] return (new_cnj_fringe.union(new_fringe).union(fringe), {**{node: {**dag.attribs[node], **{'type': _type}} for node, _type in fringe_types}}) def type_mods(dag: DAG, mod_deps: FrozenSet[str] = ModDeps) -> bool: changed = False while True: temp = type_mods_step(dag, mod_deps) if not temp: break changed = True dag.attribs.update(temp) return changed def type_mods_step(dag: DAG[Node, str], mod_deps: FrozenSet[str]) -> Dict[Node, Dict]: typed_nodes = set(filter(lambda node: 'type' in dag.attribs[node].keys(), dag.nodes)) modding_edges = list(filter(lambda edge: edge.source in typed_nodes and edge.dep in mod_deps and edge.target not in typed_nodes, dag.edges)) mod_types = [(edge.target, modifier_of(dag.attribs[edge.source]['type'], edge.dep)) for edge in modding_edges] return {node: {**dag.attribs[node], **{'type': _type}} for node, _type in mod_types} def type_heads_step(dag: DAG, head_deps: FrozenSet[str], mod_deps: FrozenSet[str]) -> Optional[Dict[str, Dict]]: def make_hd_functor(result: WordType, argcs: Tuple[List[WordType], List[str]]) -> Union[FunctorType, ModalType]: # noinspection PyTypeChecker return rebinarize(list(zip(*argcs)), result) if argcs else result _heading_edges: List[Edge] = list(filter(lambda edge: edge.dep in head_deps and 'type' in dag.attribs[edge.source].keys() and 'type' not in dag.attribs[edge.target].keys() and not is_gap(dag, edge.target, head_deps), dag.edges)) heads_nodes = list(map(lambda edge: (edge, order_nodes(dag, list(set(map(lambda e2: e2.target, filter(lambda e1: e1.dep in head_deps, dag.outgoing(edge.source))))))), _heading_edges)) double_heads = list(map(lambda edge: edge.target, map(fst, filter(lambda pair: fst(pair).target != fst(snd(pair)), heads_nodes)))) single_heads = list(map(fst, filter(lambda pair: fst(pair) not in double_heads, heads_nodes))) heading_edges: List[Tuple[Edge, List[Edge]]] \ = list(filter(lambda pair: all(list(map(lambda out: 'type' in dag.attribs[out.target].keys(), snd(pair)))), map(lambda pair: (fst(pair), list(filter(lambda edge: edge.dep not in mod_deps and edge != fst(pair) and edge.target not in double_heads, snd(pair)))), map(lambda edge: (edge, dag.outgoing(edge.source)), single_heads)))) targets: List[str] = list(map(lambda pair: fst(pair).target, heading_edges)) types: List[WordType] = list(map(lambda pair: dag.attribs[fst(pair).source]['type'], heading_edges)) def extract_argcs(edges: List[Edge]) -> Tuple[List[WordType], List[str]]: args = list(map(lambda edge: dag.attribs[edge.target]['type'], edges)) cs = list(map(lambda edge: edge.dep, edges)) return args, cs argcolors: List[Tuple[List[WordType], List[str]]] = list(map(lambda pair: extract_argcs(snd(pair)), heading_edges)) head_types = [(node, make_hd_functor(res, argcs)) for node, res, argcs in zip(targets, types, argcolors)] + \ [(node, EmptyType()) for node in double_heads] return {**{node: {**dag.attribs[node], **{'type': _type}} for node, _type in head_types}} def type_heads(dag: DAG, head_deps: FrozenSet[str] = HeadDeps, mod_deps: FrozenSet[str] = ModDeps) -> bool: changed = False while True: attribs = type_heads_step(dag, head_deps, mod_deps) if not attribs: break changed = True dag.attribs.update(attribs) return changed def type_core(dag: DAG, type_dict: Dict[str, AtomicType], pos_set: str, head_deps: FrozenSet[str], mod_deps: FrozenSet[str]): changed = True while changed: bot = type_bot(dag, type_dict, pos_set, head_deps, mod_deps) mod = type_mods(dag, mod_deps) head = type_heads(dag, head_deps, mod_deps) changed = mod or head or bot def type_gaps(dag: DAG, head_deps: FrozenSet[str] = HeadDeps): def make_gap_functor(emb_type: WordType, interm: Tuple[WordType, str], top: Tuple[WordType, str]) -> FunctorType: argument = FunctorType(argument=DiamondType(emb_type, modality=snd(interm)), result=fst(interm)) outer_dep = body_replacements[snd(top)] if snd(top) != 'hd' else 'hd' return FunctorType(argument=DiamondType(argument, modality=outer_dep), result=fst(top)) def get_interm_top(gap: Node) -> Tuple[Tuple[WordType, str], Tuple[WordType, str]]: incoming = dag.incoming(gap) top_ = list(filter(lambda inc: inc.dep in head_deps, incoming)) if len(set(map(lambda edge: dag.attribs[edge.source]['type'], top_))) != 1: raise ExtractionError('Multiple top types.') top = fst(top_) top_type: WordType = dag.attribs[top.source]['type'] top_dep: str = top.dep interm = list(filter(lambda node: gap in dag.points_to(node), dag.successors(top.source))) if len(interm) != 1: raise ExtractionError('Multiple intermediate nodes.') interm_type: WordType = dag.attribs[fst(interm)]['type'] interm_color_ = list(map(lambda edge: edge.dep, filter(lambda edge: edge.dep not in head_deps, incoming))) if len(set(interm_color_)) > 1: raise ExtractionError('Multiple intermediate colors.') interm_color = fst(interm_color_) return (interm_type, interm_color), (top_type, top_dep) gap_nodes = list(filter(lambda node: is_gap(dag, node, head_deps), dag.nodes)) gap_nodes = list(filter(lambda node: '_gap_typed' not in dag.attribs[node].keys(), gap_nodes)) if not gap_nodes: return None if any(list(map(lambda node: 'type' not in dag.attribs[node].keys(), gap_nodes))): raise ExtractionError('Untyped gap.') emb_types = list(map(lambda node: dag.attribs[node]['type'], gap_nodes)) interms, tops = list(zip(*map(get_interm_top, gap_nodes))) gap_types_ = list(map(make_gap_functor, emb_types, interms, tops)) gap_types = {node: {**dag.attribs[node], **{'type': gap_type, '_gap_typed': 1}} for node, gap_type in zip(gap_nodes, gap_types_)} dag.attribs.update(gap_types) non_term_gaps = list(filter(lambda node: not dag.is_leaf(node), gap_nodes)) descendants = list(chain.from_iterable(map(dag.points_to, non_term_gaps))) # clear type information from non-terminal gap descendants descendant_attribs = {node: {k: v for k, v in dag.attribs[node].items() if k != 'type' and k != '_gap_typed'} for node in descendants} dag.attribs.update(descendant_attribs) def type_copies(dag: DAG[Node, str], head_deps: FrozenSet[str] = HeadDeps, mod_deps: FrozenSet[str] = ModDeps): def daughterhood_conditions(daughter: Edge[Node, str]) -> bool: return daughter.dep not in head_deps.union(mod_deps) def normalize_gap_copies(typecolors: List[Tuple[WordType, Set[str]]]) -> ArgSeq: def normalize_gap_copy(tc: Tuple[WordType, Set[str]]) -> Tuple[WordType, str]: if len(snd(tc)) == 1: return fst(tc), fst(list(snd(tc))) elif len(snd(tc)) == 2: color = fst(list(filter(lambda c: c not in head_deps, snd(tc)))) return get_argument(get_argument(fst(tc))).content, color if color not in mod_deps else None # return fst(tc).content.argument.content.argument, color if color not in mod_deps else None else: raise ExtractionError('Multi-colored copy.', meta=dag.meta) return list(map(normalize_gap_copy, typecolors)) def make_polymorphic_x(initial: WordType, missing: ArgSeq) -> WordType: # missing = list(map(lambda pair: (fst(pair), snd(pair) if snd(pair) not in mod_deps else 'embedded'), # missing)) return binarize_hots(missing, initial) def make_crd_type(poly_x: WordType, repeats: int) -> WordType: ret = poly_x while repeats: ret = FunctorType(DiamondType(poly_x, 'cnj'), ret) repeats -= 1 return ret conjuncts = list(_cats_of_type(dag, 'conj')) gap_conjuncts = list(filter(lambda node: is_gap(dag, node, head_deps), conjuncts)) if gap_conjuncts: raise ExtractionError('Gap conjunction.') # the edges coming out of each conjunct conj_outgoing_edges: List[Edges] = list(map(lambda c: dag.outgoing(c), conjuncts)) # the list of coordinator edges coming out of each conjunct crds = list(map(lambda cg: list(filter(lambda edge: edge.dep == 'crd', cg)), conj_outgoing_edges)) if any(list(map(lambda conj_group: len(conj_group) == 0, crds))): raise ExtractionError('Headless conjunction.', meta={'dag': dag.meta}) # the list of non-excluded edges coming out of each conjunct conj_outgoing_edges = list(map(lambda cg: set(filter(daughterhood_conditions, cg)), conj_outgoing_edges)) # the list of non-excluded nodes pointed by each conjunct conj_targets: List[Nodes] = list(map(lambda cg: set(map(lambda edge: edge.target, cg)), conj_outgoing_edges)) # the list including only typed branches conj_targets = list(filter(lambda cg: all(list(map(lambda daughter: 'type' in dag.attribs[daughter].keys(), cg))), conj_targets)) initial_typegroups: List[Set[WordType]] \ = list(map(lambda conj_group: set(map(lambda daughter: dag.attribs[daughter]['type'], conj_group)), conj_targets)) if any(list(map(lambda conj_group: len(conj_group) != 1, initial_typegroups))): raise ExtractionError('Non-polymorphic conjunction.', meta={'dag': dag.meta}) initial_types: List[WordType] = list(map(lambda conj_group: fst(list(conj_group)), initial_typegroups)) downsets: List[List[Nodes]] \ = list(map(lambda group_targets: list(map(lambda daughter: dag.points_to(daughter).union({daughter}), group_targets)), conj_targets)) common_downsets: List[Nodes] = list(map(lambda downset: set.intersection(*downset), downsets)) minimal_downsets: List[Nodes] = list(map(lambda downset: set(filter(lambda node: len(dag.pointed_by(node).intersection(downset)) == 0, downset)), common_downsets)) accounted_copies = set.union(*minimal_downsets) if common_downsets else set() all_copies = set(filter(lambda node: is_copy(dag, node), dag.nodes)) if accounted_copies != all_copies: raise ExtractionError('Unaccounted copies.', meta=dag.meta) if any(list(map(lambda acc: 'type' not in dag.attribs[acc].keys(), accounted_copies))): raise ExtractionError('Untyped copies.', meta=dag.meta) copy_colorsets = list(map(lambda downset: list(map(lambda node: (dag.attribs[node]['type'], set(map(lambda edge: edge.dep, dag.incoming(node)))), downset)), minimal_downsets)) copy_types_and_colors = list(map(normalize_gap_copies, copy_colorsets)) polymorphic_xs = list(map(make_polymorphic_x, initial_types, copy_types_and_colors)) crd_types = list(map(make_crd_type, polymorphic_xs, list(map(len, conj_targets)))) secondary_crds = list(map(lambda crd: crd.target, chain.from_iterable(crd[1::] for crd in crds))) primary_crds = list(map(lambda crd: crd.target, map(fst, crds))) copy_types = {crd: {**dag.attribs[crd], **{'type': crd_type}} for crd, crd_type in zip(primary_crds, crd_types)} dag.attribs.update(copy_types) secondary_types = {crd: {**dag.attribs[crd], **{'type': EmptyType()}} for crd in secondary_crds} dag.attribs.update(secondary_types) def type_dag(dag: DAG[str, str], type_dict: Dict[str, AtomicType], pos_set: str, hd_deps: FrozenSet[str], mod_deps: FrozenSet[str], check: bool = True) -> DAG: def fully_typed(dag_: DAG) -> bool: return all(list(map(lambda node: 'type' in dag.attribs[node].keys(), dag_.nodes))) type_top(dag, type_dict, pos_set) while not fully_typed(dag): type_core(dag, type_dict, pos_set, hd_deps, mod_deps) type_gaps(dag, hd_deps) type_copies(dag, hd_deps, mod_deps) if check: try: premises = list(map(lambda node: dag.attribs[node]['type'], dag.get_leaves())) except KeyError: raise ExtractionError('Untyped leaves.') goal = dag.attribs[fst(list(dag.get_roots()))]['type'] if not invariance_check(premises, goal): raise ExtractionError('Invariance check failed.', meta=dag.meta) return dag def untype_dag(dag: DAG) -> None: for k in dag.attribs.keys(): if 'type' in dag.attribs[k].keys(): del dag.attribs[k]['type'] if '_gap_typed' in dag.attribs[k].keys(): del dag.attribs[k]['_gap_typed'] class Extraction: def __init__(self, cat_dict: Dict[str, AtomicType], pos_dict: Dict[str, AtomicType], pos_set: str, head_deps: FrozenSet[str], mod_deps: FrozenSet[str], ): self.type_dict = {**cat_dict, **pos_dict} self.pos_set = pos_set self.head_deps = head_deps self.mod_deps = mod_deps def __call__(self, dag: DAG, raise_errors: bool = False) -> Optional[DAG]: try: return type_dag(dag, self.type_dict, self.pos_set, self.head_deps, self.mod_deps) except ExtractionError as error: if raise_errors: raise error else: return None extractor = Extraction(CatDict, PtDict, 'pt', HeadDeps, ModDeps)
StarcoderdataPython
5164917
# # Copyright 2020-2021 Xilinx, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # This script accepts an 8-bit, YUV420, pre-encoded file and will send the encoded output to a user-defined output path. # The aspect ratio must 16:9 and the resolution 720p or more. # The script starts by automatically detecting the number of devices available in the system and then determines how many # jobs can be run on each device based on the resolution of the input. The input file is then split in as many segments # of equal length. Parallel FFmpeg jobs are submited to transcode all the segments simultaneously. The '-xlnx_hwdev' option # is used to dispatch each job on a specific device. Once all the segments have been processed, FFmpeg is used to concatenate # the results and form the final output stream. # Usage: python 13_ffmpeg_transcode_only_split_stitch.py [options] # Options: # -s INPUT_FILE, --sourcefile=INPUT_FILE # input file to convert # -d OUTPUT_FILE, --destinationfile=OUTPUT_FILE # output file path # -i INPUT_FORMAT, --icodec=INPUT_FORMAT # input file algorithm standard <h264, hevc, h265> # default: h264 # -o OUTPUT_FORMAT, --ocodec=OUTPUT_FORMAT # output file algorithm standard <h264, hevc, h265> # default: hevc # -b BITRATE, --bitrate=BITRATE # output bitrate in Mbit/s. Must be a float or integer value between 1.0 and 25.0 # default: 5.0 # (example: use -b 3 to specify an output bitrate of 3Mbits/sec) ASPECT_RATIO = (16/9) import subprocess from optparse import OptionParser import time from datetime import datetime import json import re def count_substrings(string, substring): string_size = len(string) substring_size = len(substring) count = 0 for i in range(0,string_size-substring_size+1): if string[i:i+substring_size] == substring: count+=1 return count def main(): (filename, ofilename, input_encoder, output_encoder, bitrate) = parse_options() output = subprocess.Popen("xbutil scan", shell = True, stdout = subprocess.PIPE).stdout.read() outputS = str(output) result = outputS.find('Found total ') if (result == -1): print ("Can't determine number of U30s in the system, exiting ...") raise SystemExit num_devices = int(re.search(r'\d+', outputS).group()) print ("There are " + str(int(num_devices/2)) + " cards, " + str(num_devices) + " devices in the system") xres = int(re.search(r'\d+', outputS).group()) if input_encoder == "h265": input_encoder = "hevc" if input_encoder != "hevc" and input_encoder != "h264": print ("Input encoder needs to be h264, h265 or hevc") raise SystemExit if output_encoder == "h265": output_encoder = "hevc" if output_encoder != "hevc" and output_encoder != "h264": print ("Output encoder needs to be h264, h265 or hevc") raise SystemExit if bitrate < 1.0 or bitrate > 25.0: print ("Bitrate should be between 1.0 ... 25.0 Mbit/s") raise SystemExit br =str(bitrate) if ofilename[-4:] != ".mp4": print ("Only mp4 output file format supported") raise SystemExit if filename[-4:] != ".mp4" and filename[-4:] != ".mov" and filename[-4:] != ".mkv" and filename[-4:] != ".MOV": print ("Only mp4 & mov & mkv input file format supported") raise SystemExit if filename == ofilename: print ("Source and destination filename cannot be the same") raise SystemExit startSec = time.time() #ffprobe -v error -select_streams v:0 -show_entries stream=width,height,duration,r_frame_rate -of default=nw=1 output = subprocess.Popen("ffprobe -v error -select_streams v:0 -show_entries stream=width -of default=nw=1 "+filename+" 2>&1", shell = True, stdout = subprocess.PIPE).stdout.read() outputS = str(output) result = outputS.find('width=') if (result == -1): print ("Can't determine clip resolution, exiting ...") raise SystemExit xres = int(re.search(r'\d+', outputS).group()) output = subprocess.Popen("ffprobe -v error -select_streams v:0 -show_entries stream=height -of default=nw=1 "+filename+" 2>&1", shell = True, stdout = subprocess.PIPE).stdout.read() outputS = str(output) result = outputS.find('height=') if (result == -1): print ("Can't determine clip resolution, exiting ...") raise SystemExit yres = int(re.search(r'\d+', outputS).group()) # find out length of the clip such that we can determine segments sizes output = subprocess.Popen("ffprobe "+filename+" 2>&1", shell = True, stdout = subprocess.PIPE).stdout.read() outputS = str(output) #extract the framerate from the string result = outputS.find('fps, ') if (result == -1): print ("Can't determine framerate, exiting ...") raise SystemExit tmpS = outputS[result+5:result+14] framerateS = tmpS.split() framerate = float (framerateS[0]) print("") #extract the video duration from the string result = outputS.find('Duration: ') if (result == -1): print ("Can't determine video length, exiting ...") raise SystemExit video_lengthS = outputS[result+10:result+18] try: pt = datetime.strptime(video_lengthS,'%H:%M:%S') video_length = pt.second + pt.minute*60 + pt.hour*3600 print("Video clip parameters:") print (" length in seconds : "+str(video_length)) print (" length in hh:mm:ss: "+video_lengthS) except ValueError: print ("Can't determine video length, exiting ...") raise SystemExit print(" resolution: "+ str(xres)+"x"+str(yres)) print(" framerate: "+ str(framerate)) totFrames = video_length * framerate if float((xres/yres)/(ASPECT_RATIO)) != 1.0 : print ("Example script only supports 16:9 aspect ratios (e.g. 4k, 1080p, 720p)") raise SystemExit elif xres == 3840: device_split_count = 1 * (int(60/framerate)) maxFPS=num_devices * 60 elif xres == 1920: device_split_count = 4 * (int(60/framerate)) maxFPS=num_devices * 240 elif xres == 1280: device_split_count = 9 * (int(60/framerate)) maxFPS=num_devices * 540 else: print ("Resolutions lower than 720p not implemented, exiting!") raise SystemExit split_count = device_split_count * num_devices framesinClip = framerate * video_length / split_count split_length = int(video_length / split_count) + 1 print ("") print ("Start splitting clip in " + str(split_count)+ " segments") # creating cmd to be run for splitting into segments if split_count != 1: split_cmd = "ffmpeg -nostdin -loglevel info -vsync 0 -i " + filename + " -c copy -f segment -segment_time " \ + str(split_length) + " -y tmpfile" + "%2d." + filename[-3:] + " > stdout.log 2>&1 \n" else: split_cmd = "cp " + filename + " tmpfile00." + filename[-3:] # run the command in a blocking way output = subprocess.Popen(split_cmd, shell = True, stdout = subprocess.PIPE).stdout.read() # check if the number of segments written equals the desired split_count output = subprocess.Popen("ls tmpfile* | wc -l", shell = True, stdout = subprocess.PIPE).stdout.read() if int(output) < split_count: print ("Video file may not be splittable ...") print ("Only able to create " + str(int(output)) + " segments for parallel processing") raise SystemExit if int(output) > split_count: print ("Too many tmpfiles; Please delete old tmpfiles ...") raise SystemExit print ("") clipNum = 0 for n in range(0, num_devices): for m in range(0, device_split_count): transcode_cmd = "ffmpeg -loglevel info -xlnx_hwdev "+ str(n)+" -vsync 0 -c:v mpsoc_vcu_" + input_encoder + " -i tmpfile" + \ format(clipNum, '02d') + filename[-4:] + \ " -periodicity-idr 120 -b:v " + br + "M -max-bitrate " + \ br + "M -c:v mpsoc_vcu_" \ + output_encoder + " -y tmpfileout" + \ format(clipNum, '02d') + ofilename[-4:] + " > stdout" +str(n)+".log 2>&1 & \n" output = subprocess.Popen(transcode_cmd, shell = True) time.sleep(0.1) clipNum += 1 print ("Start transcoding segments") # wait until all ffmpeg processes are done pidsExist = True tail_cmd = "tail -1 stdout0.log" ps_cmd = "ps -ef | grep ffmpeg" percentDone = 10 print("") print(" 0 percent of transcoding completed") while pidsExist: time.sleep(0.1) output = subprocess.Popen(ps_cmd, shell = True, stdout = subprocess.PIPE).stdout.read() nr = count_substrings(str(output), "ffmpeg -loglevel info -xlnx_hwdev") if nr == 0: pidsExist = False output = subprocess.Popen(tail_cmd, shell = True, stdout = subprocess.PIPE).stdout.read() outputS = str(output) outputpartS = outputS[-150:] result = outputpartS.find('frame=') if result != -1: frameS = outputpartS[result+6:result+20].split() frame = int(frameS[0]) if int(100.0 * frame/framesinClip) > percentDone: if percentDone > 95: percentDone = 150 else: print(" " + str(percentDone) + " percent of transcoding completed") if percentDone > 89: percentDone = percentDone + 5 else: percentDone = percentDone + 10 print("100 percent of transcoding completed") #start concatenating the transcoded files print("") print ("Start concatenating segments into final clip") cmd = "printf \"file '%s'\\n\" tmpfileout* > mylist.txt" output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() cmd = "rm -f " + ofilename output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() cmd = "ffmpeg -f concat -safe 0 -i mylist.txt -c copy " + ofilename + " > stdout.log 2>&1" output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() cmd = "rm tmpfile*" output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() cmd = "rm mylist.txt" output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() cmd = "rm stdout*.log" # output = subprocess.Popen(cmd, shell = True, stdout = subprocess.PIPE).stdout.read() endSec = time.time() totSec = int(endSec-startSec) print(" ") if totSec > 119: print("Time from start to completion : "+ str(totSec) + \ " seconds (" + str(int(totSec/60)) + " minutes and " + \ str(totSec - 60*(int(totSec/60))) + " seconds)") elif totSec > 59: print("Time from start to completion : "+ str(totSec) + \ " seconds (1 minute and " + \ str(totSec - 60) + " seconds)") else: print("Time from start to completion : "+ str(totSec) + \ " seconds") print(" ") print("This clip was processed "+str(round(1.0*video_length/totSec,1))+" times faster than realtime") print(" ") print("This clip was effectively processed at " + str(round(totFrames/totSec,2)) + " FPS") print(" ") print("Efficiency=" + str(round((totFrames/totSec)/maxFPS,2)*100) + "%") def destroy(): # Release resource print("Exiting ...") def parse_options(): parser = OptionParser() parser.add_option("-s", "--sourcefile", dest = "ifilename", help = "input file to convert", type = "string", action = "store" ) parser.add_option("-d", "--destinationfile", dest = "ofilename", help = "output file", type = "string", action = "store" ) parser.add_option("-i", "--icodec", dest = "input_encoder", help = "input encode standard <h264, hevc, h265> \ default h264", type = "string", action = "store", default = "h264" ) parser.add_option("-o", "--ocodec", dest = "output_encoder", help = "output encode standard <h264, hevc, h265> \ default hevc", type = "string", action = "store", default = "hevc" ) parser.add_option("-b", "--bitrate", dest = "bitrate", help = "output bitrate in Mbit/s. Must be a float or integer value between 1.0 and 25.0 (example: use -b 3 to specify an output bitrate of 3Mbits/sec) \ default 5.0", type = "float", action = "store", default = 5.0 ) (options, args) = parser.parse_args() if options.ifilename and options.ofilename: return (options.ifilename, options.ofilename, \ options.input_encoder, options.output_encoder,options.bitrate) else: parser.print_help() raise SystemExit if __name__ == '__main__': try: main() # When 'Ctrl+C' is pressed, the child program # destroy() will be executed. except KeyboardInterrupt: destroy()
StarcoderdataPython
6655320
from marionette_driver import Wait, expected from marionette_harness import MarionetteTestCase class Test(MarionetteTestCase): # Starting 84, opening the security level panel by clicking the button # started to fail (the panel was not visible). Opening via JavaScript # seems to still work for 84 and 78. def open_security_level_panel(self): m = self.marionette with m.using_context('chrome'): self.marionette.execute_script( 'document.getElementById("security-level-button").click();') def test_security_level_ui(self): custom_pref = 'javascript.options.wasm' m = self.marionette m.timeout.implicit = 5 with m.using_context('chrome'): self.open_security_level_panel() m.find_element( 'id', 'securityLevel-advancedSecuritySettings').click() with m.using_context('content'): # Test whether changing the security level value works spotlight = m.find_element('class name', 'spotlight') self.assertEqual( spotlight.get_attribute("data-subcategory"), "securitylevel") self.assertEqual(4, m.get_pref( 'extensions.torbutton.security_slider')) m.find_element( 'css selector', '#securityLevel-vbox-safer radio').click() self.assertEqual(2, m.get_pref( 'extensions.torbutton.security_slider')) m.find_element( 'css selector', '#securityLevel-vbox-safest radio').click() self.assertEqual(1, m.get_pref( 'extensions.torbutton.security_slider')) m.find_element( 'css selector', '#securityLevel-vbox-standard radio').click() self.assertEqual(4, m.get_pref( 'extensions.torbutton.security_slider')) # Test custom security settings elem = m.find_element('id', 'securityLevel-restoreDefaults') self.assertEqual(elem.is_displayed(), False) m.set_pref(custom_pref, False) self.assertEqual(elem.is_displayed(), True) elem.click() self.assertEqual(True, m.get_pref(custom_pref)) # Test Learn More link m.find_element('id', 'securityLevel-learnMore').click() Wait(m, timeout=m.timeout.page_load).until( lambda _: len(m.window_handles) > 1) m.switch_to_window(m.window_handles[1]) Wait(m, timeout=m.timeout.page_load).until( lambda _: m.get_url() != "about:blank") self.assertTrue( m.get_url() in ["https://tb-manual.torproject.org/en-US/security-settings/", "https://tb-manual.torproject.org/security-settings/"]) # Test Learn More link from panel self.open_security_level_panel() m.find_element('id', 'securityLevel-learnMore').click() Wait(m, timeout=m.timeout.page_load).until( lambda _: len(m.window_handles) > 2) with m.using_context('content'): m.switch_to_window(m.window_handles[2]) Wait(m, timeout=m.timeout.page_load).until( lambda _: m.get_url() != "about:blank") self.assertTrue( m.get_url() in ["https://tb-manual.torproject.org/en-US/security-settings/", "https://tb-manual.torproject.org/security-settings/"]) # Test custom settings from panel m.set_pref(custom_pref, False) elem = m.find_element('id', 'securityLevel-restoreDefaults') self.assertEqual(elem.is_displayed(), False) self.open_security_level_panel() self.assertEqual(elem.is_displayed(), True) elem.click() self.assertEqual(True, m.get_pref(custom_pref))
StarcoderdataPython
8114183
<reponame>ikstream/Zeus-Scanner<gh_stars>100-1000 #!/usr/bin/env python import io import sys import time import shlex import warnings import subprocess from var import blackwidow from var.search import selenium_search from var.auto_issue.github import request_issue_creation from lib.header_check import main_header_check from lib.core.parse import ZeusParser from lib.core.errors import ( InvalidInputProvided, InvalidProxyType, ZeusArgumentException ) from lib.core.common import ( start_up, shutdown, prompt ) from lib.core.settings import ( setup, logger, set_color, get_latest_log_file, get_random_dork, fix_log_file, config_headers, config_search_engine, find_running_opts, run_attacks, CURRENT_LOG_FILE_PATH, SPIDER_LOG_PATH, URL_REGEX, URL_QUERY_REGEX, URL_LOG_PATH, BANNER ) warnings.simplefilter("ignore") if __name__ == "__main__": # this will take care of most of the Unicode errors. reload(sys) sys.setdefaultencoding("utf-8") sys.setrecursionlimit(1500) opt = ZeusParser.cmd_parser() ZeusParser().single_show_args(opt) # verify all the arguments passed before we continue # with the process ZeusParser().verify_args() # run the setup on the program setup(verbose=opt.runInVerbose) if not opt.hideBanner: print(BANNER) start_up() if opt.runInVerbose: being_run = find_running_opts(opt) logger.debug(set_color( "running with options '{}'".format(being_run), level=10 )) logger.info(set_color( "log file being saved to '{}'".format(get_latest_log_file(CURRENT_LOG_FILE_PATH)) )) def __run_attacks_main(**kwargs): """ main method to run the attacks """ log_to_use = kwargs.get("log", None) if log_to_use is None: options = (opt.dorkToUse, opt.useRandomDork, opt.dorkFileToUse) log_to_use = URL_LOG_PATH if any(o for o in options) else SPIDER_LOG_PATH try: urls_to_use = get_latest_log_file(log_to_use) except TypeError: urls_to_use = None else: urls_to_use = log_to_use if urls_to_use is None: logger.error(set_color( "unable to run attacks appears that no file was created for the retrieved data", level=40 )) shutdown() options = [ opt.runSqliScan, opt.runPortScan, opt.adminPanelFinder, opt.runXssScan, opt.performWhoisLookup, opt.performClickjackingScan, opt.pgpLookup ] if any(options): with open(urls_to_use) as urls: for i, url in enumerate(urls.readlines(), start=1): current = i if "webcache" in url: logger.warning(set_color( "ran into unexpected webcache URL skipping", level=30 )) current -= 1 else: if not url.strip() == "http://" or url == "https://": logger.info(set_color( "currently running on '{}' (target #{})".format( url.strip(), current ), level=25 )) logger.info(set_color( "fetching target meta-data" )) identified = main_header_check( url, verbose=opt.runInVerbose, agent=agent_to_use, proxy=proxy_to_use, xforward=opt.forwardedForRandomIP, identify_plugins=opt.identifyPlugin, identify_waf=opt.identifyProtection, show_description=opt.showPluginDescription ) if not identified: logger.error(set_color( "target is refusing to allow meta-data dumping, skipping", level=40 )) run_attacks( url.strip(), sqlmap=opt.runSqliScan, nmap=opt.runPortScan, pgp=opt.pgpLookup, xss=opt.runXssScan, whois=opt.performWhoisLookup, admin=opt.adminPanelFinder, clickjacking=opt.performClickjackingScan, github=opt.searchGithub, verbose=opt.runInVerbose, batch=opt.runInBatch, auto_start=opt.autoStartSqlmap, xforward=opt.forwardedForRandomIP, sqlmap_args=opt.sqlmapArguments, nmap_args=opt.nmapArguments, show_all=opt.showAllConnections, do_threading=opt.threadPanels, tamper_script=opt.tamperXssPayloads, timeout=opt.controlTimeout, proxy=proxy_to_use, agent=agent_to_use, conf_file=opt.sqlmapConfigFile, threads=opt.amountOfThreads, force_ssl=opt.forceSSL ) print("\n") else: logger.warning(set_color( "malformed URL discovered, skipping", level=30 )) proxy_to_use, agent_to_use = config_headers( proxy=opt.proxyConfig, proxy_file=opt.proxyFileRand, p_agent=opt.usePersonalAgent, rand_agent=opt.useRandomAgent, verbose=opt.runInVerbose ) search_engine = config_search_engine( verbose=opt.runInVerbose, ddg=opt.useDDG, aol=opt.useAOL, bing=opt.useBing, enum=opt.fileToEnumerate ) try: # use a personal dork as the query if opt.dorkToUse is not None and not opt.searchMultiplePages: logger.info(set_color( "starting dork scan with query '{}'".format(opt.dorkToUse) )) try: selenium_search.parse_search_results( opt.dorkToUse, search_engine, verbose=opt.runInVerbose, proxy=proxy_to_use, agent=agent_to_use, pull_all=opt.noExclude, parse_webcache=opt.parseWebcache, forward_for=opt.forwardedForRandomIP, tor=opt.useTor, batch=opt.runInBatch, show_success=opt.showSuccessRate ) except InvalidProxyType: supported_proxy_types = ("socks5", "socks4", "https", "http") logger.fatal(set_color( "the provided proxy is not valid, specify the protocol and try again, supported " "proxy protocols are {} (IE socks5://127.0.0.1:9050)".format( ", ".join(list(supported_proxy_types))), level=50 )) except Exception as e: if "Permission denied:" in str(e): logger.fatal(set_color( "your permissions are not allowing Zeus to run, " "try running Zeus with sudo", level=50 )) shutdown() else: logger.exception(set_color( "ran into exception '{}'".format(e), level=50 )) request_issue_creation() pass __run_attacks_main() # search multiple pages of Google elif opt.dorkToUse is not None or opt.useRandomDork and opt.searchMultiplePages: if opt.dorkToUse is not None: dork_to_use = opt.dorkToUse elif opt.useRandomDork: dork_to_use = get_random_dork() else: dork_to_use = None if dork_to_use is None: logger.warning(set_color( "there has been no dork to specified to do the searching, defaulting to random dork", level=30 )) dork_to_use = get_random_dork() dork_to_use = dork_to_use.strip() if opt.amountToSearch is None: logger.warning(set_color( "did not specify amount of links to find defaulting to 75", level=30 )) link_amount_to_search = 75 else: link_amount_to_search = opt.amountToSearch logger.info(set_color( "searching Google using dork '{}' for a total of {} links".format( dork_to_use, link_amount_to_search ) )) try: selenium_search.search_multiple_pages( dork_to_use, link_amount_to_search, proxy=proxy_to_use, agent=agent_to_use, verbose=opt.runInVerbose, xforward=opt.forwardedForRandomIP, batch=opt.runInBatch, show_success=opt.showSuccessRate ) except Exception as e: if "Error 400" in str(e): logger.fatal(set_color( "failed to connect to search engine".format(e), level=50 )) else: logger.exception(set_color( "failed with unexpected error '{}'".format(e), level=50 )) shutdown() __run_attacks_main() # use a file full of dorks as the queries elif opt.dorkFileToUse is not None: with io.open(opt.dorkFileToUse, encoding="utf-8") as dorks: for dork in dorks.readlines(): dork = dork.strip() logger.info(set_color( "starting dork scan with query '{}'".format(dork) )) try: selenium_search.parse_search_results( dork, search_engine, verbose=opt.runInVerbose, proxy=proxy_to_use, agent=agent_to_use, pull_all=opt.noExclude, parse_webcache=opt.parseWebcache, tor=opt.useTor, batch=opt.runInBatch ) except Exception as e: logger.exception(set_color( "ran into exception '{}'".format(e), level=50 )) request_issue_creation() pass __run_attacks_main() # use a random dork as the query elif opt.useRandomDork: random_dork = get_random_dork().strip() if opt.runInVerbose: logger.debug(set_color( "choosing random dork from etc/dorks.txt", level=10 )) logger.info(set_color( "using random dork '{}' as the search query".format(random_dork) )) try: selenium_search.parse_search_results( random_dork, search_engine, verbose=opt.runInVerbose, proxy=proxy_to_use, agent=agent_to_use, pull_all=opt.noExclude, parse_webcache=opt.parseWebcache, tor=opt.useTor, batch=opt.runInBatch ) __run_attacks_main() except Exception as e: logger.exception(set_color( "ran into exception '{}' and cannot continue, saved to current log file".format(e), level=50 )) request_issue_creation() pass # spider a given webpage for all available URL's elif opt.spiderWebSite: problem_identifiers = ["http://", "https://"] if not URL_REGEX.match(opt.spiderWebSite): err_msg = "URL did not match a true URL{}" if not any(m in opt.spiderWebSite for m in problem_identifiers): err_msg = err_msg.format(" issue seems to be that http:// " "or https:// is not present in the URL") else: err_msg = err_msg.format("") raise InvalidInputProvided( err_msg ) else: if URL_QUERY_REGEX.match(opt.spiderWebSite): question_msg = ( "it is recommended to not use a URL that has a GET(query) parameter in it, " "would you like to continue" ) if not opt.runInBatch: is_sure = prompt( question_msg, opts="yN" ) else: is_sure = prompt( question_msg, opts="yN", default="y" ) if is_sure.lower().startswith("y"): pass else: shutdown() blackwidow.blackwidow_main(opt.spiderWebSite, agent=agent_to_use, proxy=proxy_to_use, verbose=opt.runInVerbose, forward=opt.forwardedForRandomIP) __run_attacks_main() # enumerate a file and run attacks on the URL's provided elif opt.fileToEnumerate is not None: logger.info(set_color( "found a total of {} URL's to enumerate in given file".format( len(open(opt.fileToEnumerate).readlines()) ) )) __run_attacks_main(log=opt.fileToEnumerate) else: logger.critical(set_color( "failed to provide a mandatory argument, you will be redirected to the help menu", level=50 )) time.sleep(2) zeus_help_menu_command = shlex.split("python zeus.py --help") subprocess.call(zeus_help_menu_command) except IOError as e: if "Invalid URL" in str(e): logger.exception(set_color( "URL provided is not valid, schema appears to be missing", level=50 )) request_issue_creation() shutdown() elif "HTTP Error 429: Too Many Requests" in str(e): logger.fatal(set_color( "WhoIs doesn't like it when you send to many requests at one time, " "try updating the timeout with the --time-sec flag (IE --time-sec 10)", level=50 )) shutdown() elif "No such file or directory" in str(e): logger.fatal(set_color( "provided file does not exist, make sure you have the full path", level=50 )) shutdown() else: logger.exception(set_color( "Zeus has hit an unexpected error and cannot continue, error code '{}'".format(e), level=50 )) request_issue_creation() except KeyboardInterrupt: logger.fatal(set_color( "user aborted process", level=50 )) shutdown() except UnboundLocalError: logger.warning(set_color( "do not interrupt the browser when selenium is running, " "it will cause Zeus to crash", level=30 )) except ZeusArgumentException: shutdown() except Exception as e: if "url did not match a true url" in str(e).lower(): logger.error(set_color( "you did not provide a URL that is capable of being processed, " "the URL provided to the spider needs to contain protocol as well " "ie. 'http://google.com' (it is advised not to add the GET parameter), " "fix the URL you want to scan and try again", level=40 )) shutdown() elif "Service geckodriver unexpectedly exited" in str(e): logger.fatal(set_color( "it seems your firefox version is not compatible with the geckodriver version, " "please re-install Zeus and try again", level=50 )) shutdown() elif "Max retries exceeded with url" in str(e): logger.fatal(set_color( "you have hit the max retries, to continue using Zeus " "it is recommended to use a proxy (--proxy/--proxy-file) " "along with a new user-agent (--random-agent/--agent).", level=50 )) shutdown() else: logger.exception(set_color( "ran into exception '{}' exception has been saved to log file".format(e), level=50 )) request_issue_creation() # fix the log file before shutting down incase you want to look at it fix_log_file() shutdown()
StarcoderdataPython
3260485
# from app import ssp_app, mail from app.ssp_module.models import User from app.app import create_app, db from flask import render_template, request, flash, redirect, url_for from flask_login import current_user, login_user, login_required, logout_user from flask_mail import Message from flask import Blueprint from app.utils import get_reset_token, decode_user_token, send_mail ssp_bp = Blueprint('ssp', __name__, url_prefix='/') @ssp_bp.route('/') @ssp_bp.route('/index') def index(): return render_template('index.html') @ssp_bp.route('/login_page') def login_page(): return render_template('login.html') @ssp_bp.route('/about') def about(): return render_template('about.html') @ssp_bp.route('/forgot') def forgot_password(): return render_template('forgot_password.html') @ssp_bp.route('/contact') def contact_us(): return render_template('contact.html') @ssp_bp.route('/desk') @login_required def desk(): return render_template('desk/dashboard.html') @ssp_bp.route('/login', methods=['POST']) def login(): try: email, password = request.form.get('username'), request.form.get('password') user_ = User.query.filter_by(email=email).first() if not User.query.filter_by(email=email).first() or not user_.check_password(password): flash('Invalid username or password') return redirect(url_for('login_page')) flash('Logged in successfully') login_user(user_, remember=user_) return redirect(url_for('ssp.desk')) except Exception as e: return redirect(url_for('ssp.login_page')) @ssp_bp.route('/logout') @login_required def logout(): logout_user() return redirect(url_for('ssp.login_page')) @ssp_bp.route('/forgot_password', methods=['POST']) def sendnew_password(): from app.app import mail, create_app user = User.query.filter_by(email=request.form.get('username')).first() if not user: flash("Oops, it seems we dont have your account" , "danger") return redirect(url_for('ssp.forgot_password')) try: token = request.url_root + "/verify/"+ token_details(create_app, request.form.get('username')) send_mail(subject="Password Reset Instruction", recipients=[request.form.get('username')], template = 'reset_password_mail.html', data={'user': user.full_name, 'token': token}, flash_msg="Password intruction sent successfully") except Exception as e: raise e return redirect(url_for('ssp.forgot_password')) def token_details(app, user): token = {'data': user, 'key': app().secret_key} return get_reset_token(token) @ssp_bp.route('/verify/<token>', methods=['GET', 'POST']) def verify_token(token): try: decode, app = decode_user_token(token), create_app() if decode.get('identity').get('key') == app.secret_key and request.method == 'GET': return render_template('reset_password.html') elif decode.get('identity').get('key') == app.secret_key and request.method == 'POST': user = decode.get('identity').get('data') user = User.query.filter_by(email=user).first() user.set_password(request.form.get('password')) db.session.add(user) db.session.commit() flash("Password has been set successfully", "success") return render_template('reset_password.html') except Exception as e: raise e
StarcoderdataPython
3510018
#!/usr/bin/env python # -*- coding: UTF-8 -*- import pprint from collections import Counter from base import BaseObject from datadict import LoadStopWords from nlusvc import TextAPI class AddLanguageVariability(BaseObject): """ Service to Augment the Synonyms ('Language Variability') file with new entries all output from this file represents net-new non-duplicated entries into KB """ _text_api = TextAPI(is_debug=False) _stopwords = LoadStopWords(is_debug=True).load(refresh_cache=True) def __init__(self, is_debug: bool = True): """ Created: 25-Jul-2019 <EMAIL> * https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/493 Updated: 10-Aug-2019 <EMAIL> * completely reritten in pursuit of https://github.ibm.com/GTS-CDO/unstructured-analytics/issues/701 * Developer's Note: it's likely that we'll end up with multiple recipes for language variability each recipe will be a separate domain component and all will be orchestrated via a service Updated: 13-Jan-2020 """ BaseObject.__init__(self, __name__) self.is_debug = is_debug def _count_tokens(self, terms: list) -> Counter: """ Purpose: Tokenize input and count the tokens :param terms: a list of unstructured text the list may be of any size each item in the list may be of any size :return: a collection.Counter instance containing a count of tokens in the list """ c = Counter() for term in terms: [c.update({x: 1}) for x in term.lower().split(' ') if x not in self._stopwords] return c @staticmethod def _filter_tokens_by_count(c: Counter, min_threshold: int = 1) -> Counter: """ Purpose: filter a collection.Counter instance by count :param c: a collection.Counter instance :param min_threshold: the minimium valid count :return: a new collection.Counter instance """ return Counter({x: c[x] for x in c if c[x] >= min_threshold}) @staticmethod def _subsumed(c: Counter) -> set: """ Purpose: Find Subsumed Tokens Sample Input: [ 'redhat_certified_system_administrator', 'open_stack', 'system_administrator', 'redhat' ] Sample Output: [ 'redhat_certified_system_administrator', 'system_administrator', 'redhat' ] a 'subsumed' token is one that contains another known token as a sub-string :param c: a collection.Counter instance :return: a set of subsumed tokens """ subsumed = set() for t1 in c: for t2 in c: if t1 == t2: continue if t1 in t2 or t2 in t1: subsumed.add(t1) subsumed.add(t2) return subsumed @staticmethod def _patterns(delta: set, subsumed: set) -> list: """ Purpose: Create a list of patterns for token formation :param delta: a set of tokens that are not subsumed by any other token Sample Input: { 'open_stack' } :param subsumed: a set of subsumed tokens (generated from the 'subsumed' function) Sample Input: { 'redhat_certified_system_administrator', 'system_administrator', 'redhat' } :return: a list of candidate patterns """ s = set() for t1 in subsumed: for t2 in delta: if t1 == t2: continue s.add(f"{t1}+{t2}") s.add(f"{t1}_{t2}") return sorted(s) def process(self, terms: list, min_threshold: int = 2) -> list: """ Purpose: Given a list of terms, create variations for the synonyms_kb.csv file :param terms: any list of terms or phrases :param min_threshold: the minimum token count that is acceptable any token beneath this threshold is typically considered low-value perhaps useful only for outlier and edge patterns :return: the variations """ c = self._count_tokens(terms) if self.is_debug: self.logger.debug('\n'.join([ "Token Count:", pprint.pformat(c.most_common(25))])) c = self._filter_tokens_by_count(c, min_threshold) if self.is_debug: self.logger.debug('\n'.join([ f"Token Filter (min-threshold={min_threshold}):", pprint.pformat(c.most_common(25))])) tokens = set([x for x in c]) subsumed = self._subsumed(c) if self.is_debug: self.logger.debug(f"Token Subsumption: {subsumed}") delta = tokens.difference(subsumed) if self.is_debug: self.logger.debug(f"Token Delta: {delta}") patterns = self._patterns(delta, subsumed) if self.is_debug: self.logger.debug(f"Pattern Generation: {patterns}") return patterns
StarcoderdataPython
8185575
#!/usr/bin/python3 # -*- coding:utf-8 -*- import tensorflow as tf from tensorflow.contrib import rnn class Decoder(): def __init__(self, vocab_size, rnn_size, embeddings): self.vocab_size = vocab_size self.rnn_size = rnn_size self.embeddings = embeddings self.decoder_inputs = None self.decoder_targets = None self.decoder_outputs = None self.decoder_state = None def lstm_model(self, encoder_final_state): self.decoder_inputs = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_input') self.decoder_targets = tf.placeholder(shape=(None, None), dtype=tf.int32, name='decoder_targets') decoder_inputs_embedded = tf.nn.embedding_lookup(self.embeddings, self.decoder_inputs) decoder_cell = rnn.LSTMCell(self.rnn_size) self.decoder_outputs, self.decoder_state = tf.nn.dynamic_rnn(decoder_cell, decoder_inputs_embedded, initial_state=encoder_final_state, dtype=tf.float32, time_major=True, scope='plain_decoder') return self.decoder_outputs, self.decoder_state def optimization(self): decoder_logits = tf.contrib.layers.linear(self.decoder_outputs, self.vocab_size) decoder_prediction = tf.argmax(decoder_logits, 2) stepwise_cross_entropy = tf.nn.softmax_cross_entropy_with_logits(labels=tf.one_hot(self.decoder_targets, depth=self.vocab_size, dtype=tf.float32), logits=decoder_logits) loss = tf.reduce_mean(stepwise_cross_entropy) train_op = tf.train.AdamOptimizer().minimize(loss) return train_op, loss, decoder_prediction
StarcoderdataPython
9771399
# encoding: utf-8 import sys from setuptools import setup, find_packages from setuptools.command.test import test as TestCommand __version__ = '0.0.6' class PyTest(TestCommand): user_options = [('pytest-args=', 'a', 'Arguments to pass to py.test')] def initialize_options(self): TestCommand.initialize_options(self) self.pytest_args = ['-x', 'flask_accept/test'] def finalize_options(self): TestCommand.finalize_options(self) self.test_args = [] self.test_suite = True def run_tests(self): import pytest errno = pytest.main(self.pytest_args) sys.exit(errno) def readme(): with open('README.rst') as f: return f.read() setup( name='flask_accept', version=__version__, description='Custom Accept header routing support for Flask', classifiers=[ 'Development Status :: 4 - Beta', 'Environment :: Console', 'Natural Language :: English', 'License :: OSI Approved :: MIT License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2', 'Programming Language :: Python :: 2.7', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Intended Audience :: Developers', ], keywords='flask accept mimetype headers api versioning', author='<NAME>', author_email='<EMAIL>', url='http://github.com/di/flask-accept', long_description=readme(), packages=find_packages(exclude=['examples', 'tests']), include_package_data=True, zip_safe=False, install_requires=['flask'], tests_require=[ 'pytest', 'flake8', 'flask_restful', 'readme_renderer', 'flask_restplus' ], cmdclass={'test': PyTest}, )
StarcoderdataPython
3258701
<filename>ppf/core/controller.py class controller(object): def __init__(self, trade, model, env, historical_df = 0): self.__trade = trade self.__model = model self.__env = env self.__historical_df = historical_df self.__symbol_table = {} self.__event = None def get_trade(self): return self.__trade def get_model(self): return self.__model def get_environment(self): return self.__env def get_event(self): return self.__event def set_event(self, event): self.__event = event def get_adjuvant_table(self): leg = self.__trade.legs()[self.__event.leg_id()] adjuvant_table = None if leg.has_adjuvant_table(): adjuvant_table = leg.adjuvant_table() return adjuvant_table def insert_symbol(self, name, at): self.__symbol_table[name] = (at, self.__model.state().create_variable()) def update_symbol(self, name, symbol, at): self.__symbol_table[name] = (at, symbol) def retrieve_symbol(self, name): if not self.__symbol_table.has_key(name): raise RuntimeError, "name not found in symbol table" return self.__symbol_table.get(name)[1] def retrieve_symbol_update_time(self, name): if not self.__symbol_table.has_key(name): raise RuntimeError, "name not found in symbol table" return self.__symbol_table.get(name)[0] def retrieve_symbols_to_rollback(self, at): symbols = [] for symbol in self.__symbol_table: pair = self.__symbol_table.get(symbol) if pair[0] > at: symbols.append(symbol) return symbols def pay_df(self, t, state): if t < 0: historical_df = self.__model.state().create_variable() historical_df = self.__historical_df return historical_df else: flow = self.__event.flow() fill = self.__model.fill() requestor = self.__model.requestor() T = self.__env.relative_date(flow.pay_date())/365.0 return fill.numeraire_rebased_bond(t, T, flow.pay_currency(), self.__env, requestor, state) endif def libor(self, t, state): flow = self.__event.flow() id = self.__event.reset_id() obs = flow.observables()[id] if t < 0: fix = obs.fix() if fix.is_fixed(): fixing = self.__model.state().create_variable() fixing = fix.value() return fixing else: raise RuntimeError, 'libor in the past with no fixing' endif else: fill = self.__model.fill() requestor = self.__model.requestor() return fill.libor(t, obs, self.__env, requestor, state) endif def swap(self, t, state): id = self.__event.reset_id() obs = flow.observables()[id] if t < 0: fix = obs.fix() if fix.is_fixed(): fixing = self.__model.state().create_variable() fixing = fix.value() return fixing else: raise RuntimeError, 'libor in the past with no fixing' endif else: fill = self.__model.fill() requestor = self.__model.requestor() return fill.swap(t, obs, self.__env, requestor, state) endif def rollback(self, T, t, symbol): requestor = self.__model.requestor() state = self.__model.state() return self.__model.rollback().rollback(t, T, state, requestor, self.__env, symbol) def rollback_max(self, T, t, symbol_one, symbol_two): requestor = self.__model.requestor() state = self.__model.state() res1 = self.__model.rollback().rollback(t, T, state, requestor, self.__env, symbol_one) res2 = self.__model.rollback().rollback_max(t, T, state, requestor, self.__env, symbol_two-symbol_one) return res1+res2 def evolve(self, t, T): requestor = self.__model.requestor() state = self.__model.state() self.__model.evolve().evolve(t, T, state, requestor, self.__env) def numeraire(self, t): if t < 0: raise RuntimeError, "attempting to call 'numeraire' in the past" fill = self.__model.fill() requestor = self.__model.requestor() state = self.__model.state().fill(t, requestor, self.__env) return fill.numeraire(t, self.__event.pay_currency(), self.__env, requestor, state) def explanatory_variables(self, t): if t < 0: raise RuntimeError, "attempting to call 'explanatory_variables' in the past" fill = self.__model.fill() requestor = self.__model.requestor() state = self.__model.state().fill(t, requestor, self.__env) exercise = self.__model.exercise() return exercise(t, fill, state, requestor, self.__env) def __call__(self, t): leg = self.__trade.legs()[self.__event.leg_id()] payoff = leg.payoff() pay_rcv = leg.pay_receive() return pay_rcv*payoff(t, self)
StarcoderdataPython
4951512
from django.test import TestCase from .models import Location, Category, Image from unittest import skip class LocationTestClass(TestCase): ''' Class that tests the location ''' def setUp(self): ''' Creates new instances before a test ''' self.nairobi = Location(name = "nairobi") self.nairobi.save_location() def tearDown(self): ''' Clears database after each test ''' Location.objects.all().delete() def test_location_instance(self): ''' This will test whether the new location created is an instance of the Location class ''' self.assertTrue(isinstance(self.nairobi, Location)) def test_save_location_method(self): ''' This tests whether new loaction is added to the db ''' self.nairobi.save_location() locations = Location.objects.all() self.assertTrue(len(locations)> 0) def test_delete_location(self): ''' This tests whether location is deleted ''' self.nairobi.save_location() locations1= Location.objects.all() self.assertEqual(len(locations1),1) self.nairobi.delete_location() locations2= Location.objects.all() self.assertEqual(len(locations2),0) def test_update_location(self): ''' Tests whether the location name is updated ''' self.nairobi.save_location() self.nairobi.update_location(self.nairobi.id,'naivasha') new_update = Location.objects.get(name = "naivasha") self.assertEqual(new_update.name, 'naivasha') def test_display_locations(self): ''' This tests whether the display location function is getting the locations from the db ''' self.nairobi.save_location() self.assertEqual(len(Location.display_all_locations()), 1) class CategoryTestClass(TestCase): ''' Class that tests the category ''' def setUp(self): ''' Creates new instances before a test ''' self.nature = Category(name = "nature") self.nature.save_category() def tearDown(self): ''' Clears database after each test ''' Category.objects.all().delete() def test_category_instance(self): ''' This will test whether the new location created is an instance of the Location class ''' self.assertTrue(isinstance(self.nature, Category)) def test_save_category_method(self): ''' This tests whether new loaction is added to the db ''' self.nature.save_category() categories = Category.objects.all() self.assertTrue(len(categories)> 0) def test_delete_category(self): ''' This tests whether category is deleted ''' self.nature.save_category() categories1 = Category.objects.all() self.assertEqual(len(categories1),1) self.nature.delete_category() categories2 = Category.objects.all() self.assertEqual(len(categories2),0) def test_update_category(self): ''' Tests whether the category name is updated ''' self.nature.save_category() self.nature.update_category(self.nature.id,'natural') new_update = Category.objects.get(name = "natural") self.assertEqual(new_update.name, 'natural') class ImageTestClass(TestCase): ''' Class that tests the images ''' def setUp(self): ''' Creates new instances before a test ''' self.nature = Category( name= "nature") self.nairobi = Location(name = "nairobi") self.flower = Image(image = "image", name ='flower', description = 'beautiful', category= self.nature, location= self.nairobi) self.nature.save_category() self.nairobi.save_location() self.flower.save_image() def tearDown(self): ''' Clears database after each test ''' Image.objects.all().delete() Category.objects.all().delete() Location.objects.all().delete() def test_image_instance(self): ''' This will test whether the new image created is an instance of the Image class ''' self.assertTrue(isinstance(self.flower, Image)) def test_save_image_method(self): ''' This tests whether new image is added to the db ''' self.flower.save_image() images = Image.objects.all() self.assertTrue(len(images)> 0) def test_display_images(self): ''' This tests whether the display image function is getting the images from the db ''' self.flower.save_image() self.assertEqual(len(Image.display_all_images()), 1) def test_delete_images(self): ''' This tests whether image is deleted ''' self.flower.save_image() images1 = Image.objects.all() self.assertEqual(len(images1),1) self.flower.delete_image() images2 = Image.objects.all() self.assertEqual(len(images2),0) def test_update_image_description(self): ''' Tests whether the image description is updated ''' self.flower.save_image() self.flower.update_image_description(self.flower.id,'pink') new_update = Image.objects.get(name = "flower") self.assertEqual(new_update.description, 'pink') def test_get_image_by_id(self): ''' Tests whether image is retrieved by id ''' self.flower.save_image() image = Image.get_image_by_id(self.flower.id) self.assertEqual(image.name, self.flower.name) def test_search_image(self): ''' Tests whether image is retrieved by category ''' self.nature.save_category() self.flower.save_image() images = Image.search_image("nature") self.assertTrue(len(images) > 0) def test_search_location(self): ''' Tests whether image is retrieved by location ''' self.nairobi.save_location() self.flower.save_image() images = Image.filter_by_location("nairobi") self.assertTrue(len(images) > 0)
StarcoderdataPython
5066663
#!/usr/bin/env python3 """ Module to contain the runtime options for the CCPP Framework. Function to parse arguments to the CCPP Framework and store them in an object which allows various framework functions to access CCPP Framework runtime information and parameter values. """ # Python library imports import argparse import os _EPILOG = ''' ''' ############################################################################### class CCPPFrameworkEnv: ############################################################################### """Object and methods to hold the runtime environment and parameter options for the CCPP Framework""" def __init__(self, logger, ndict=None, verbose=0, clean=False, host_files=None, scheme_files=None, suites=None, preproc_directives=[], generate_docfiles=False, host_name='', kind_types=[], use_error_obj=False, force_overwrite=False, output_root=os.getcwd(), ccpp_datafile="datatable.xml"): """Initialize a new CCPPFrameworkEnv object from the input arguments. <ndict> is a dict with the parsed command-line arguments (or a dictionary created with the necessary arguments). <logger> is a logger to be used by users of this object. """ emsg = '' esep = '' if ndict and ('verbose' in ndict): self.__verbosity = ndict['verbose'] del ndict['verbose'] else: self.__verbosity = verbose # end if if ndict and ('clean' in ndict): self.__clean = ndict['clean'] del ndict['clean'] else: self.__clean = clean # end if if ndict and ('host_files' in ndict): self.__host_files = ndict['host_files'] del ndict['host_files'] if host_files and logger: wmsg = "CCPPFrameworkEnv: Using ndict, ignoring 'host_files'" logger.warning(wmsg) # end if elif host_files is None: emsg += esep + "Error: 'host_files' list required" esep = '\n' else: self.__host_files = host_files # end if if ndict and ('scheme_files' in ndict): self.__scheme_files = ndict['scheme_files'] del ndict['scheme_files'] if scheme_files and logger: wmsg = "CCPPFrameworkEnv: Using ndict, ignoring 'scheme_files'" logger.warning(wmsg) # end if elif scheme_files is None: emsg += esep + "Error: 'scheme_files' list required" esep = '\n' else: self.__scheme_files = scheme_files # end if if ndict and ('suites' in ndict): self.__suites = ndict['suites'] del ndict['suites'] if suites and logger: wmsg = "CCPPFrameworkEnv: Using ndict, ignoring 'suites'" logger.warning(wmsg) # end if elif suites is None: emsg += esep + "Error: 'suites' list required" esep = '\n' else: self.__suites = suites # end if if ndict and ('preproc_directives' in ndict): preproc_defs = ndict['preproc_directives'] del ndict['preproc_directives'] else: preproc_defs = preproc_directives # end if # Turn preproc_defs into a dictionary, start with a list to process if isinstance(preproc_defs, list): # Someone already handed us a list preproc_list = preproc_defs elif (not preproc_defs) or (preproc_defs == 'UNSET'): # No preprocessor definitions preproc_list = list() elif ',' in preproc_defs: # String of definitions, separated by commas preproc_list = [x.strip() for x in preproc_defs.split(',')] elif isinstance(preproc_defs, str): # String of definitions, separated by spaces preproc_list = [x.strip() for x in preproc_defs.split(' ') if x] else: wmsg = "Error: Bad preproc list type, '{}'" emsg += esep + wmsg.format(type(preproc_defs)) esep = '\n' # end if # Turn the list into a dictionary self.__preproc_defs = {} for item in preproc_list: tokens = [x.strip() for x in item.split('=', 1)] if len(tokens) > 2: emsg += esep + "Error: Bad preproc def, '{}'".format(item) esep = '\n' else: key = tokens[0] if key[0:2] == '-D': key = key[2:] # end if if len(tokens) > 1: value = tokens[1] else: value = None # end if self.__preproc_defs[key] = value # end if # end for if ndict and ('generate_docfiles' in ndict): self.__generate_docfiles = ndict['generate_docfiles'] del ndict['generate_docfiles'] else: self.__generate_docfiles = generate_docfiles # end if if ndict and ('host_name' in ndict): self.__host_name = ndict['host_name'] del ndict['host_name'] else: self.__host_name = host_name # end if self.__generate_host_cap = self.host_name != '' self.__kind_dict = {} if ndict and ("kind_type" in ndict): kind_list = ndict["kind_type"] del ndict["kind_type"] else: kind_list = kind_types # end if # Note that the command line uses repeated calls to 'kind_type' for kind in kind_list: kargs = [x.strip() for x in kind.strip().split('=')] if len(kargs) != 2: emsg += esep emsg += "Error: '{}' is not a valid kind specification " emsg += "(should be of the form <kind_name>=<kind_spec>)" emsg = emsg.format(kind) esep = '\n' else: kind_name, kind_spec = kargs # Do not worry about duplicates, just use last value self.__kind_dict[kind_name] = kind_spec # end if # end for # We always need a kind_phys so add a default if necessary if "kind_phys" not in self.__kind_dict: self.__kind_dict["kind_phys"] = "REAL64" # end if if ndict and ('use_error_obj' in ndict): self.__use_error_obj = ndict['use_error_obj'] del ndict['use_error_obj'] else: self.__use_error_obj = use_error_obj # end if if ndict and ('force_overwrite' in ndict): self.__force_overwrite = ndict['force_overwrite'] del ndict['force_overwrite'] else: self.__force_overwrite = force_overwrite # end if # Make sure we know where output is going if ndict and ('output_root' in ndict): self.__output_root = ndict['output_root'] del ndict['output_root'] else: self.__output_root = output_root # end if self.__output_dir = os.path.abspath(self.output_root) # Make sure we can create output database if ndict and ('ccpp_datafile' in ndict): self.__datatable_file = os.path.normpath(ndict['ccpp_datafile']) del ndict['ccpp_datafile'] else: self.__datatable_file = ccpp_datafile # end if if not os.path.isabs(self.datatable_file): self.__datatable_file = os.path.join(self.output_dir, self.datatable_file) # end if self.__logger = logger ## Check to see if anything is left in dictionary if ndict: for key in ndict: emsg += esep + "Error: Unknown key in <ndict>, '{}'".format(key) esep = '\n' # end for # end if # Raise an exception if any errors were found if emsg: raise ValueError(emsg) # end if @property def verbosity(self): """Return the <verbosity> property for this CCPPFrameworkEnv object.""" return self.__verbosity @property def clean(self): """Return the <clean> property for this CCPPFrameworkEnv object.""" return self.__clean @property def host_files(self): """Return the <host_files> property for this CCPPFrameworkEnv object.""" return self.__host_files @property def scheme_files(self): """Return the <scheme_files> property for this CCPPFrameworkEnv object.""" return self.__scheme_files @property def suites(self): """Return the <suites> property for this CCPPFrameworkEnv object.""" return self.__suites @property def preproc_defs(self): """Return the <preproc_defs> property for this CCPPFrameworkEnv object.""" return self.__preproc_defs @property def generate_docfiles(self): """Return the <generate_docfiles> property for this CCPPFrameworkEnv object.""" return self.__generate_docfiles @property def host_name(self): """Return the <host_name> property for this CCPPFrameworkEnv object.""" return self.__host_name @property def generate_host_cap(self): """Return the <generate_host_cap> property for this CCPPFrameworkEnv object.""" return self.__generate_host_cap def kind_spec(self, kind_type): """Return the kind specification for kind type, <kind_type> for this CCPPFrameworkEnv object. If there is no entry for <kind_type>, return None.""" kind_spec = None if kind_type in self.__kind_dict: kind_spec = self.__kind_dict[kind_type] # end if return kind_spec def kind_types(self): """Return a list of all kind types defined in this CCPPFrameworkEnv object.""" return self.__kind_dict.keys() @property def use_error_obj(self): """Return the <use_error_obj> property for this CCPPFrameworkEnv object.""" return self.__use_error_obj @property def force_overwrite(self): """Return the <force_overwrite> property for this CCPPFrameworkEnv object.""" return self.__force_overwrite @property def output_root(self): """Return the <output_root> property for this CCPPFrameworkEnv object.""" return self.__output_root @property def output_dir(self): """Return the <output_dir> property for this CCPPFrameworkEnv object.""" return self.__output_dir @property def datatable_file(self): """Return the <datatable_file> property for this CCPPFrameworkEnv object.""" return self.__datatable_file @property def logger(self): """Return the <logger> property for this CCPPFrameworkEnv object.""" return self.__logger ############################################################################### def parse_command_line(args, description, logger=None): ############################################################################### """Create an ArgumentParser to parse and return a CCPPFrameworkEnv object containing the command-line arguments and related quantities.""" ap_format = argparse.RawTextHelpFormatter parser = argparse.ArgumentParser(description=description, formatter_class=ap_format, epilog=_EPILOG) parser.add_argument("--host-files", metavar='<host files filename>', type=str, required=True, help="""Comma separated list of host filenames to process Filenames with a '.meta' suffix are treated as host model metadata files Filenames with a '.txt' suffix are treated as containing a list of .meta filenames""") parser.add_argument("--scheme-files", metavar='<scheme files filename>', type=str, required=True, help="""Comma separated list of scheme filenames to process Filenames with a '.meta' suffix are treated as scheme metadata files Filenames with a '.txt' suffix are treated as containing a list of .meta filenames""") parser.add_argument("--suites", metavar='<Suite definition file(s)>', type=str, required=True, help="""Comma separated list of suite definition filenames to process Filenames with a '.xml' suffix are treated as suite definition XML files Other filenames are treated as containing a list of .xml filenames""") parser.add_argument("--preproc-directives", metavar='VARDEF1[,VARDEF2 ...]', type=str, default='', help="Proprocessor directives used to correctly parse source files") parser.add_argument("--ccpp-datafile", type=str, metavar='<data table XML filename>', default="datatable.xml", help="Filename for information on content generated by the CCPP Framework") parser.add_argument("--output-root", type=str, metavar='<directory for generated files>', default=os.getcwd(), help="directory for generated files") parser.add_argument("--host-name", type=str, default='', help='''Name of host model to use in CCPP API If this option is passed, a host model cap is generated''') parser.add_argument("--clean", action='store_true', default=False, help='Remove files created by this script, then exit') parser.add_argument("--kind-type", type=str, action='append', metavar="kind_type", default=list(), help="""Data size for real(<kind_type>) data. Entry in the form of <kind_type>=<kind_val> e.g., --kind-type "kind_phys=REAL64" Enter more than one --kind-type entry to define multiple CCPP kinds. <kind_val> SHOULD be a valid ISO_FORTRAN_ENV type""") parser.add_argument("--generate-docfiles", metavar='HTML | Latex | HTML,Latex', type=str, help="Generate LaTeX and/or HTML documentation") parser.add_argument("--use-error-obj", action='store_true', default=False, help="""Host model and caps use an error object instead of ccpp_error_message and ccpp_error_code.""") parser.add_argument("--force-overwrite", action='store_true', default=False, help="""Overwrite all CCPP-generated files, even if unmodified""") parser.add_argument("--verbose", action='count', default=0, help="Log more activity, repeat for increased output") pargs = parser.parse_args(args) return CCPPFrameworkEnv(logger, vars(pargs))
StarcoderdataPython
13125
<filename>asteroids/whatsobservable.py import datetime import ephem import os.path import os import numpy as np import pdb from pandas import DataFrame __version__ = '0.1.2' class Error(Exception): pass def _convert_datetime_to_pyephem_date_string(in_datetime): return in_datetime.strftime('%Y/%m/%d %H:%M:%S') def _find_cached_file(filename): base = os.path.expanduser('~/') # Look in a few likely locations before doing a giant search filenames_to_test = [os.path.join(base, filename), os.path.join(base, 'refdata', filename), os.path.join(base, 'Dropbox', filename), os.path.join(base, 'Dropbox', 'refdata', filename)] for cur_filename in filenames_to_test: if os.path.isfile(cur_filename): return cur_filename # didn't find it, so do a giant search for root, dirs, files in os.walk(base): if filename in files: return os.path.join(root, filename) return "File Not Found" def get_latlon_from_observatory_code(code): if type(code) is int: code = '%03i' % code elif type(code) is str: code = code[:3] # trim any remainder, like @399 try: obscode_filename = _find_cached_file('ObsCodes.html') # TODO: add a verbose option to print path to ObsCodes.html obscodes = open(obscode_filename, 'r').read().splitlines() except: raise Error("Problem reading ObsCodes.html file from disk. \n" "Most likely you need to go download a copy from: \n" " http://www.minorplanetcenter.net/iau/lists/ObsCodes.html") curobsline = [a for a in obscodes if a.startswith(code)][0] output = {'obscode':curobsline[0:3], 'longitude':float(curobsline[4:13]), 'cos':float(curobsline[13:21]), 'sin':float(curobsline[21:30]), 'name':curobsline[30:].strip()} # From the documentation: # "The following list gives the observatory code, longitude (in degrees east of Greenwich) and the parallax # constants (rho cos phi' and rho sin phi', where phi' is the geocentric latitude and rho is the geocentric # distance in earth radii) for each observatory. It is updated nightly." output['latitude'] = np.degrees(np.arctan2(output['sin'], output['cos'])) # Unsure where the following comment came from: # geocentric distance in earth radii: # output['sin']/np.sin(np.radians(output['latitude'])) # NOTE: while ObsCodes.html is clear about being geocentric, it is unclear what pyephem wants, so blaze ahead # TODO: confirm whether pyephem wants geocentric return output def pack_mpc_date(in_datetime): """ Convert a datetime.date or datetime.datetime object into the MPC packed date format, as described at: http://www.minorplanetcenter.net/iau/info/PackedDates.html Copy of the packing definition from the above web page: Packed Dates Dates of the form YYYYMMDD may be packed into five characters to conserve space. The first two digits of the year are packed into a single character in column 1 (I = 18, J = 19, K = 20). Columns 2-3 contain the last two digits of the year. Column 4 contains the month and column 5 contains the day, coded as detailed below: Month Day Character Day Character in Col 4 or 5 in Col 4 or 5 Jan. 1 1 17 H Feb. 2 2 18 I Mar. 3 3 19 J Apr. 4 4 20 K May 5 5 21 L June 6 6 22 M July 7 7 23 N Aug. 8 8 24 O Sept. 9 9 25 P Oct. 10 A 26 Q Nov. 11 B 27 R Dec. 12 C 28 S 13 D 29 T 14 E 30 U 15 F 31 V 16 G Examples: 1996 Jan. 1 = J9611 1996 Jan. 10 = J961A 1996 Sept.30 = J969U 1996 Oct. 1 = J96A1 2001 Oct. 22 = K01AM This system can be extended to dates with non-integral days. The decimal fraction of the day is simply appended to the five characters defined above. Examples: 1998 Jan. 18.73 = J981I73 2001 Oct. 22.138303 = K01AM138303 """ if in_datetime.year >= 1800 and in_datetime.year < 1900: century = 'I' elif in_datetime.year >= 1900 and in_datetime.year < 2000: century = 'J' elif in_datetime.year >= 2000 and in_datetime.year < 2100: century = 'K' else: raise Error("Year is not within 1800-2099: " + in_datetime.isoformat()) year = in_datetime.strftime('%y') translate = {} for i in range(10): translate[i] = str(i) for i in range(10,32): translate[i] = chr(ord('A') + i - 10) month = translate[in_datetime.month] day = translate[in_datetime.day] try: decimaldays = ('%7.5f' % ((in_datetime.hour + (in_datetime.minute / 60.) + (in_datetime.second / 3600.)) / 24.))[2:] except: decimaldays = '' return century + year + month + day + decimaldays def unpack_mpc_date(in_packed): """ Convert a MPC packed date format (as described below) to a datetime.date or datetime.datetime object http://www.minorplanetcenter.net/iau/info/PackedDates.html Copy of the packing definition from the above web page: Packed Dates Dates of the form YYYYMMDD may be packed into five characters to conserve space. The first two digits of the year are packed into a single character in column 1 (I = 18, J = 19, K = 20). Columns 2-3 contain the last two digits of the year. Column 4 contains the month and column 5 contains the day, coded as detailed below: Month Day Character Day Character in Col 4 or 5 in Col 4 or 5 Jan. 1 1 17 H Feb. 2 2 18 I Mar. 3 3 19 J Apr. 4 4 20 K May 5 5 21 L June 6 6 22 M July 7 7 23 N Aug. 8 8 24 O Sept. 9 9 25 P Oct. 10 A 26 Q Nov. 11 B 27 R Dec. 12 C 28 S 13 D 29 T 14 E 30 U 15 F 31 V 16 G Examples: 1996 Jan. 1 = J9611 1996 Jan. 10 = J961A 1996 Sept.30 = J969U 1996 Oct. 1 = J96A1 2001 Oct. 22 = K01AM This system can be extended to dates with non-integral days. The decimal fraction of the day is simply appended to the five characters defined above. Examples: 1998 Jan. 18.73 = J981I73 2001 Oct. 22.138303 = K01AM138303 """ translate = {} for i in range(10): translate[str(i)] = i for i in range(10,32): translate[chr(ord('A') + i - 10)] = i if in_packed[0] == 'I': year = 1800 elif in_packed[0] == 'J': year = 1900 elif in_packed[0] == 'K': year = 2000 else: raise Error('Unrecognized century code at start of: ' + in_packed) year += int(in_packed[1:3]) month = translate[in_packed[3]] day = translate[in_packed[4]] if len(in_packed) == 5: return datetime.date(year, month, day) else: decimaldays = float('0.' + in_packed[5:]) hour = int(decimaldays * 24.) minute = int((decimaldays * 24. - hour) * 60.) second = int(round(decimaldays * 24. * 60. * 60. - (hour * 3600.) - (minute * 60.))) return datetime.datetime(year, month, day, hour, minute, second) #TODO: clean up the following comments and incorporate into the code # can get all numbered asteroids (and other junk) from minor planet center in MPCORB.DAT file: # [MPCORB.DAT](http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT) # [Format is described in more detail](http://www.minorplanetcenter.org/iau/info/MPOrbitFormat.html) # 944 Hidalgo line as of 2013-07-26 is: #Des'n H G Epoch M Peri. Node Incl. e n a Reference #Obs #Opp Arc rms Perts Computer #00944 10.77 0.15 K134I 215.40344 56.65077 21.56494 42.54312 0.6617811 0.07172582 5.7370114 0 MPO263352 582 21 1920-2010 0.77 M-v 38h MPCLINUX 0000 (944) Hidalgo 20100222 # But, I want in xephem format, [described here](http://www.clearskyinstitute.com/xephem/help/xephem.html#mozTocId468501) # and minor planet provides a subset in xephem format [here](http://www.minorplanetcenter.net/iau/Ephemerides/Bright/2013/Soft03Bright.txt): # though to ensure I was comparing same exact orbit solutions, used 944 Hidalgo from # http://www.minorplanetcenter.net/iau/Ephemerides/Distant/Soft03Distant.txt # From MPO263352 #944 Hidalgo,e,42.5431,21.5649,56.6508,5.737011,0.0717258,0.66178105,215.4034,04/18.0/2013,2000,H10.77,0.15 # So, for my purposes, the xephem format, separated by commas is: # NUMBER NAME - easy enough.... # e - for ecliptic elliptical orbit # i = inclination, degrees (directly from MPCORB.DAT) # O = longitude of ascending node, degrees (directly from MPCORB.DAT) # o = argument of perihelion, degrees (directly from MPCORB.DAT) # a = mean distance (aka semi-major axis), AU (directly from MPCORB.DAT) # n = mean daily motion, degrees per day (computed from a**3/2 if omitted) (directly from MPCORB.DAT) # e = eccentricity, must be < 1 (directly from MPCORB.DAT) # M = mean anomaly, i.e., degrees from perihelion (directly from MPCORB.DAT) # E = epoch date, i.e., time of M MM/DD.D/YYYY # in MPCORB.DAT epoch date is packed according to rules: # http://www.minorplanetcenter.net/iau/info/PackedDates.html # Subfield 10A First date these elements are valid, optional # SubField 10B Last date these elements are valid, optional # D = the equinox year, i.e., time of i, O and o (always J2000.0 in MPCORB.DAT, so 2000 # First component of magnitude model, either g from (g,k) or H from (H,G). Specify which by preceding the number with a "g" or an "H". In absence of either specifier the default is (H,G) model. See Magnitude models. # corresponds to H in MPCORB.DAT, just need to preface with an 'H' # Second component of magnitude model, either k or G (directly from MPCORB.DAT) # s = angular size at 1 AU, arc seconds, optional - I don't care, so skip.... def convert_mpcorb_to_xephem(input): """ convert from, e.g.: [MPCORB.DAT](http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT) [Format is described in more detail](http://www.minorplanetcenter.org/iau/info/MPOrbitFormat.html) Des'n H G Epoch M Peri. Node Incl. e n a Reference #Obs #Opp Arc rms Perts Computer # 944 Hidalgo line as of 2013-07-26 is: 00944 10.77 0.15 K134I 215.40344 56.65077 21.56494 42.54312 0.6617811 0.07172582 5.7370114 0 MPO263352 582 21 1920-2010 0.77 M-v 38h MPCLINUX 0000 (944) Hidalgo 20100222 to # From MPO263352 944 Hidalgo,e,42.5431,21.5649,56.6508,5.737011,0.0717258,0.66178105,215.4034,04/18.0/2013,2000,H10.77,0.15 input is a single line of text, output will include a newline character within it (but no newline at end) """ output = '# From ' + input[107:116] + '\n' output += input[166:194].strip().replace('(','').replace(')','') + ',' output += 'e,' output += input[59:68].strip() + ',' # i = inclination, degrees output += input[48:57].strip() + ',' # O = longitude of ascending node, degrees output += input[37:46].strip() + ',' # o = argument of perihelion, degrees output += input[92:103].strip() + ',' # a = mean distance (aka semi-major axis), AU output += input[80:91].strip() + ',' # n = mean daily motion, degrees per day (computed from a**3/2 if omitted) output += input[70:79].strip() + ',' # e = eccentricity, must be < 1 output += input[26:35].strip() + ',' # M = mean anomaly, i.e., degrees from perihelion output += unpack_mpc_date(input[20:25].strip()).strftime('%m/%d/%Y') + ',' # E = epoch date, i.e., time of M output += '2000,' # D = the equinox year, i.e., time of i, O and o (always J2000.0 in MPCORB.DAT output += 'H' + input[8:13].strip() + ',' # First component of magnitude model output += input[14:19].strip() # Second component of magnitude model return output def minorplanets(in_datetime, observatory_code, max_objects=None, max_magnitude=None, require_magnitude=True, max_zenithdistance_deg=90.0, min_heliocentric_distance_AU=None, max_heliocentric_distance_AU=None, min_topocentric_distance_AU=None, max_topocentric_distance_AU=None): """ in_datetime - datetime.datetime(), e.g. datetime.datetime.utcnow() observatory_code - the Code of the observatory in http://www.minorplanetcenter.net/iau/lists/ObsCodes.html can be either string or integer. max_objects - default is None, otherwise limits the return to this number of observable objects max_magnitude - default is None, otherwise limits return to objects brighter than or equal to this magnitude (as calculated by PyEphem from the MPC data) (TODO: confirm whether this is V-band, R-band, or other...) require_magnitude - default is True. If False and max_magnitude is None, then return all objects, whether PyEphem can calculate a magnitude or not. max_zenithdistance_deg - default is 90 degrees (horizon) min/max_heliocentric_distance_AU - defaults are None min/max_topocentric_distance_AU - defaults are None """ obs_info = get_latlon_from_observatory_code(observatory_code) obs = ephem.Observer() obs.lat = np.radians(obs_info['latitude']) obs.lon = np.radians(obs_info['longitude']) obs.date = _convert_datetime_to_pyephem_date_string(in_datetime) mpc_filename = _find_cached_file('MPCORB.DAT') if mpc_filename == 'File Not Found': raise Error("Problem reading MPCORB.DAT file from disk. \n" "Most likely you need to go download a copy from: \n" " http://www.minorplanetcenter.net/iau/MPCORB/MPCORB.DAT") if max_magnitude is not None: require_magnitude = True matching_objects = [] with open(mpc_filename) as f: in_header = True for line in f: if in_header is False and len(line) > 1: if (not require_magnitude) or (require_magnitude and (line[8:13] != ' ')): eph = ephem.readdb(convert_mpcorb_to_xephem(line).splitlines()[1]) eph.compute(obs) if (max_magnitude is None) or (eph.mag <= max_magnitude): if ((max_zenithdistance_deg is None) or (np.degrees(np.pi/2. - eph.alt) <= max_zenithdistance_deg)): if ((min_heliocentric_distance_AU is None) or (eph.sun_distance >= min_heliocentric_distance_AU)): if ((max_heliocentric_distance_AU is None) or (eph.sun_distance <= max_heliocentric_distance_AU)): if ((min_topocentric_distance_AU is None) or (eph.earth_distance >= min_topocentric_distance_AU)): if ((max_topocentric_distance_AU is None) or (eph.earth_distance <= max_topocentric_distance_AU)): matching_objects.append(eph) else: if line.startswith('-------------------'): in_header = False if max_objects is not None: if len(matching_objects) >= max_objects: break name = [a.name for a in matching_objects] d = {} d['rise_time'] = [a.rise_time.datetime() if a.rise_time is not None else np.nan for a in matching_objects] d['transit_time'] = [a.transit_time.datetime() if a.transit_time is not None else np.nan for a in matching_objects] d['set_time'] = [a.set_time.datetime() if a.set_time is not None else np.nan for a in matching_objects] d['raJ2000_deg'] = [np.degrees(a.a_ra) for a in matching_objects] d['decJ2000_deg'] = [np.degrees(a.a_dec) for a in matching_objects] d['mag'] = [a.mag for a in matching_objects] d['R_AU'] = [a.sun_distance for a in matching_objects] d['delta_AU'] = [a.earth_distance for a in matching_objects] moon = ephem.Moon() moon.compute(obs.date) d['O-E-M_deg'] = [np.degrees(ephem.separation(moon, a)) for a in matching_objects] output = DataFrame(d, index=name) output = output[['rise_time', 'transit_time', 'set_time', 'raJ2000_deg', 'decJ2000_deg', 'mag', 'R_AU', 'delta_AU', 'O-E-M_deg']] # re-order columns to something sensible return output
StarcoderdataPython
4994092
<reponame>axfontai/HermesServer #librairies indispensables : bokeh - pandas from bokeh.io import curdoc, show from bokeh.plotting import figure, output_file from bokeh.transform import jitter, factor_cmap, dodge from bokeh.models import (ColumnDataSource, Drag, PanTool, BoxZoomTool, LassoSelectTool, WheelZoomTool, ResetTool, SaveTool, HoverTool, BoxSelectTool, LinearColorMapper, BasicTicker, PrintfTickFormatter, ColorBar, ) from bokeh.models.widgets import MultiSelect, DateRangeSlider, Panel, Tabs, Button, Select from bokeh.models.annotations import Span from bokeh.palettes import Set3, Spectral6, RdYlGn4, Category10 from bokeh.layouts import column, row from bokeh.models.glyphs import Text from bokeh.tile_providers import STAMEN_TERRAIN import pandas as pd import sqlalchemy as sqlal import numpy as np # Utiliser la commande bokeh serve --show BokehServerHermes3.py pour #lancer le serveur local et profiter des callbacks # dir dans lequel sont installés les db sqlite3 SQLiteDir = "C:\\Users\\afontaine\\Documents\\Python\\SQLite\\" HermesDB = "Hermes2018.db" #DB sqlite3 avec donnees des véhicules MeldpuntenDB = "Meldpunten.db" #DB sqlite3 avec données th des pts d'emission #SQLite => SQLAlchemy engine hermes_engine = sqlal.create_engine('sqlite:///' + SQLiteDir + HermesDB) meldpunten_engine = sqlal.create_engine('sqlite:///' + SQLiteDir + MeldpuntenDB) # liste des b3s dans la base de donnée hermes B3S_list=sqlal.inspect(hermes_engine).get_table_names() #carrefour affiché en premier CurrentB3S = 'B3S274' StartDate = pd.Timestamp('2018-09-14 00:00:00') FirstDate = '2017-01-01 00:00:00' FirstDate = pd.Timestamp('2018-01-01 00:00:00') def List_to_SQL(list): first = True sql_str = '' for i in list: if first: sql_str = str(i) + ')' first = False else: sql_str = str(i) + ',' + sql_str sql_str = '(' + sql_str return sql_str def list_kiko(b3s): # Extrait en en liste et str les kikos de la db ListKiKo = pd.read_sql_query('SELECT DISTINCT KiKo FROM ' + b3s + ';', hermes_engine) ListKiKoStr = List_to_SQL(ListKiKo['KiKo']) ListKiKo = ListKiKo['KiKo'].tolist() ListKiKo = [str(i) for i in ListKiKo] return ListKiKoStr, ListKiKo def list_lignes(b3s): # Extrait en en liste et str les numeros de lignes de la db ListLignes = pd.read_sql_query('SELECT DISTINCT NumLigne FROM ' + b3s + ';', hermes_engine) ListLignesStr = List_to_SQL(ListLignes['NumLigne']) ListLignes = ListLignes['NumLigne'].tolist() ListLignes = [str(i) for i in ListLignes] return ListLignesStr, ListLignes def first_date(b3s): # Extrait en Timestamp la date la plus ancienne de la db FirstDate = pd.read_sql_query('SELECT min(Jour) FROM ' + b3s + ';', hermes_engine) FirstDate = list(FirstDate['min(Jour)']) # FirstDateStr = FirstDate[0] FirstDate = pd.Timestamp(FirstDate[0]) return FirstDate def last_date(b3s): # Extrait en Timestamp la date la plus récente de la db LastDate = pd.read_sql_query('SELECT max(Jour) FROM ' + b3s + ';', hermes_engine) LastDate = list(LastDate['max(Jour)']) LastDateStr = str(LastDate[0]) LastDateTimestamp = pd.Timestamp(LastDate[0]) return LastDateStr, LastDateTimestamp def FormatDataFrame(DataFrame): # Formatte la DF pour qu'elle soit lisible DataFrame['JourDatetime'] = pd.to_datetime(DataFrame['Jour'], format='%Y-%m-%d %H:%M:%S') DataFrame['H_VA'] = pd.to_datetime(DataFrame['H_VA'], format='%H:%M:%S') DataFrame['H_AA'] = pd.to_datetime(DataFrame['H_AA'], format='%H:%M:%S') DataFrame['H_LF'] = pd.to_datetime(DataFrame['H_LF'], format='%H:%M:%S') DataFrame['H_AF'] = pd.to_datetime(DataFrame['H_AF'], format='%H:%M:%S') DataFrame['TpsVA_LF'] = DataFrame['H_LF'].sub(DataFrame['H_VA']) DataFrame['TpsVA_LF'] = DataFrame['TpsVA_LF'].dt.total_seconds() DataFrame = DataFrame.replace(0.0, np.NaN) return DataFrame def SQLquery(b3s, KiKo, NumLigne, StartDate, EndDate): # Cree une requete SQL lisible par sqlite3 ColumnInDF = """ Jour, NumLigne, H_VA, H_AA, H_LF, H_AF, KiKo, NumParc, WeekDay, TpsVA_AA, SpeedVA_AA, TpsAA_LF, SpeedAA_LF, TpsLF_AF, SpeedLF_AF, SpeedVA_AF, X_VA_merc, Y_VA_merc, X_AA_merc, Y_AA_merc, X_AF_merc, Y_AF_merc """ RemoveFalseX = ' AND X_VA BETWEEN 4.2 AND 4.5 AND X_AA BETWEEN 4.2 AND 4.5 AND X_LF BETWEEN 4.2 AND 4.5 AND X_AF BETWEEN 4.2 AND 4.5' RemoveFalseY = ' AND Y_VA BETWEEN 50.2 AND 51 AND Y_AA BETWEEN 50.2 AND 51 AND Y_LF BETWEEN 50.2 AND 51 AND Y_AF BETWEEN 50.2 AND 51' RemoveNaN = ' AND SpeedVA_AF != 0.0 AND SpeedVA_AF < 80' query = 'SELECT' + ColumnInDF + 'FROM ' + b3s + ' WHERE KiKo IN ' + KiKo + ' AND NumLigne IN ' + NumLigne + ' AND Jour BETWEEN ' + '"' + StartDate + '"' + ' AND ' + '"' + EndDate + '"' + RemoveFalseX + RemoveFalseY + RemoveNaN + ';' DataFrame = pd.read_sql(query, hermes_engine) DataFrame = FormatDataFrame(DataFrame) return DataFrame def Meldpuntenquery(b3s, KiKo, NumLigne): # Cree une requete pour SQL pour extraire une DF depuis sql ColumnInDF = """ KiKo, NumLigne, Type_Message, Priorite, Sens, Type_Gestion, Power, X_effectif_webmerc, Y_effectif_webmerc, TpsTheoriques """ query = 'SELECT' + ColumnInDF + 'FROM ' + b3s + ' WHERE KiKo IN ' + KiKo + ' AND NumLigne IN ' + NumLigne + ';' Dataframe = pd.read_sql_query(query, meldpunten_engine) # Dataframe['TpsTheoriques'] = Dataframe.apply(lambda row: float(row['TpsTheorique']), axis=1) return Dataframe # Recupère les valeurs de base pour travailler sur la db ListKiKoStr, ListKiKo = list_kiko(CurrentB3S) ListlignesStr, ListLignes = list_lignes(CurrentB3S) LastDateStr, LastDateTimestamp = last_date(CurrentB3S) # cree un Column Data Source lisible par bokeh et utilisee par les graphes StartDict = dict(Jour=[], NumLigne=[], H_VA=[], H_AA=[], H_LF=[], H_AF=[], KiKo=[], NumParc=[], WeekDay=[], TpsVA_LF=[], TpsLF_AF=[], SpeedLF_AF=[], SpeedVA_AF=[], X_VA_merc=[], Y_VA_merc=[], X_AA_merc=[], Y_AA_merc=[] , X_AF_merc=[], Y_AF_merc=[], JourDatetime=[]) events_sources = ColumnDataSource(data=StartDict) StartDictMeldpunten = dict(KiKo=[], NumLigne=[], Type_Message=[], Priorite=[], Sens=[], Type_Gestion=[], Power=[], X_effectif_webmerc=[], Y_effectif_webmerc=[], TpsTheorique=[]) meldpunten_source = ColumnDataSource(data=StartDictMeldpunten) # cree les curseurs utilisees avec les valeurs par defaut # B3S à Selectionner B3SSelect = Select(title="Carrefour", value=CurrentB3S, options=B3S_list, width=200) # Dates pour les points: DeltaDates = DateRangeSlider(title="Dates a prendre en compte", start=FirstDate, end=LastDateTimestamp, value=(StartDate, LastDateTimestamp), step=1, width=450) # KiKos multi_select_KiKo = MultiSelect(title="KiKos a selectionner", value=ListKiKo, options=ListKiKo, width=200) # Lignes multi_select_Lignes = MultiSelect(title="Lignes a selectionner", value=ListLignes, options=ListLignes, width=200) # Bouton pour faire l'update button_update = Button(label="Changer les dates", width=100) # GRAPHE DES DONNEES # cree un graphe scatter avec tout les elements repartis par heure et jour de la semaine DAYS = ['Dim', 'Sam', 'Ven', 'Jeu', 'Mer', 'Mar', 'Lun'] hover = HoverTool(tooltips=[("Jour", "@Jour"), ("Ligne", "@NumLigne"), ("Véhicule", "@NumParc"), ("KiKo", "@KiKo"), ("Vitesse", "@SpeedVA_AF")]) TOOLS = [PanTool(), BoxZoomTool(), LassoSelectTool(), BoxSelectTool(), WheelZoomTool(), ResetTool(), SaveTool(), hover] Jitter = figure(plot_width=560, plot_height=370, y_range=DAYS, x_axis_type='datetime', tools=TOOLS, output_backend="webgl") Jitter.xaxis[0].formatter.days = ['%Hh'] Jitter.x_range.range_padding = 0 Jitter.ygrid.grid_line_color = None tab_points = Panel(child=Jitter, title="Données") # données du graphe scatter avec tout les elements repartis par heure et jour de la semaine CircleChart = Jitter.circle(x='H_VA', y=jitter('WeekDay', width=0.8, range=Jitter.y_range), size=3, legend="KiKo", color=factor_cmap('KiKo', palette=Category10[10], factors=ListKiKo), source=events_sources, alpha=0.8, hover_color='gold') # GRAPHE DES VITESSES MOYENNES # initialise les données VitessesStartDict = dict(heure=[], Jour=[], rate=[]) VitesseSource = ColumnDataSource(data=VitessesStartDict) # fonction pour extraire les vitesses depuis la DataFrame def vitesses_mediannes(df): DAYS = ['Lun', 'Mar', 'Mer', 'Jeu', 'Ven', 'Sam', 'Dim'] d = {'heure': [], 'Lun': [], 'Mar': [], 'Mer': [], 'Jeu': [], 'Ven': [], 'Sam': [], 'Dim': []} heure1 = pd.to_datetime('1900-01-01 00:00:00') for i in range(48): templist = [] heure2 = heure1 + pd.Timedelta(minutes=30) for day in DAYS: d[day].append(df['SpeedVA_AF'][(df['H_VA'] > heure1) & (df['H_VA'] < heure2) & (df['WeekDay'] == day)].mean( skipna=True)) d['heure'].append(heure1 + pd.Timedelta(minutes=15)) heure1 = heure2 df = pd.DataFrame(data=d) return df def vitesse_df(Dataframe): VitesseDF = vitesses_mediannes(Dataframe) VitesseDF = VitesseDF.set_index('heure') VitesseDF.columns.name = 'Jour' VitesseSource = pd.DataFrame(VitesseDF.stack(), columns=['rate']).reset_index() return VitesseSource # cree un graphe avec les vitesses mediannes par demi-heure colors = ["#550b1d", "#550b1d", "#933b41", "#cc7878", "#ddb7b1", "#dfccce", '#e2e2e2', "#c9d9d3", "#a5bab7", "#75968f", "#577C74", "#577C74", '#33514B', '#33514B', "#1F3631", "#1F3631"] mapper = LinearColorMapper(palette=colors, low=0, high=40) TOOLS_vitesse = "hover,save,pan,box_zoom,reset,wheel_zoom" Vitesses = figure(plot_width=597, plot_height=370, x_axis_type='datetime', y_range=DAYS, tools=TOOLS_vitesse) Vitesses.grid.grid_line_color = None Vitesses.axis.major_tick_line_color = None Vitesses.xaxis[0].formatter.days = ['%Hh'] Vitesses.x_range.range_padding = 0 # barre de légende bar = ColorBar(color_mapper=mapper, location=(0, -10), major_label_text_font_size="5pt", width=5, height=335) Vitesses.add_layout(bar, 'right') tab_vitesses = Panel(child=Vitesses, title="Vitesses Moyennes") Vitesses.select_one(HoverTool).tooltips = [('vitesse moyenne', '@rate'), ] # données du graphe de vitesses VitessesChart = Vitesses.rect(x='heure', y='Jour', width=1800000, height=1, source=VitesseSource, fill_color={'field': 'rate', 'transform': mapper}, line_color=None) # CARTE # cree une carte avec les points TOOLS3 = [PanTool(), BoxZoomTool(), LassoSelectTool(), BoxSelectTool(), WheelZoomTool(), ResetTool(), SaveTool(), hover] map = figure(plot_width=600, plot_height=600, tools=TOOLS3, match_aspect=True, aspect_scale=1.0) map.add_tile(STAMEN_TERRAIN) map.axis.visible = False # données de la carte MapAF = map.circle(x='X_AF_merc', y='Y_AF_merc', size=4, alpha=0.05, color='green', source=events_sources, hover_color='gold') MapVA = map.circle(x='X_VA_merc', y='Y_VA_merc', size=4, alpha=0.05, color='red', source=events_sources, hover_color='gold') MapAA = map.circle(x='X_AA_merc', y='Y_AA_merc', size=4, alpha=0.05, color='blue', source=events_sources, hover_color='gold') colormap = ['darkred', 'darkblue', 'darkgreen'] messages = ['VA', 'AA', 'AF'] MapTh = map.square(x='X_effectif_webmerc', y='Y_effectif_webmerc', size=10, source=meldpunten_source, color=factor_cmap('Type_Message', palette=colormap, factors=messages)) # HISTOGRAMMES # cree un histogramme avec les valeurs de temps de parcours TOOLS2 = [PanTool(), BoxZoomTool(), WheelZoomTool(), ResetTool(), SaveTool(), HoverTool()] hist = figure(title="Distribution temps de parcours pour le " + CurrentB3S, plot_width=1200, plot_height=400, tools=TOOLS2, x_range=(0, 120), y_range=(0,0.5)) hist.xaxis.axis_label = 'temps en secondes' # initialise les données des histogrammes histVA_LF, edgesVA_LF = np.histogram([0, 120], density=True, bins=range(0, 121)) histAA_LF, edgesAA_LF = np.histogram([0, 120], density=True, bins=range(0, 121)) histLF_AF, edgesLF_AF = np.histogram([0, 120], density=True, bins=range(0, 121)) HistLF_AF = hist.quad(top=histLF_AF, bottom=0, left=edgesLF_AF[:-1], right=edgesLF_AF[1:], fill_color='yellowgreen', fill_alpha=0.5, line_color='darkgreen') HistVA_LF = hist.quad(top=histVA_LF, bottom=0, left=edgesVA_LF[:-1], right=edgesVA_LF[1:], fill_color='coral', fill_alpha=0.5, line_color='red') HistAA_LF = hist.quad(top=histAA_LF, bottom=0, left=edgesAA_LF[:-1], right=edgesAA_LF[1:], fill_color='steelblue', fill_alpha=0.5, line_color='navy') # donnees theoriques du tableau TempsTheoriques = dict(TpsTheoriques=[], TpsTheoriques2=[]) Spans = hist.quad(top=0.5, bottom=0, left='TpsTheorique', right='TpsTheorique', source=meldpunten_source, color=factor_cmap('Type_Message', palette=colormap, factors=messages)) BoxTh = hist.quad(top=0.5, bottom=0.4, left='TpsTheorique', right='TpsTheorique', source=meldpunten_source, color=factor_cmap('Type_Message', palette=colormap, factors=messages)) # Initialise le tableau avec les donnees des histogrammes dans l'histogramme des temps de parcours GlyphSource = ColumnDataSource(dict(x=[60, 80, 90, 100], y=[0.1, 0.1, 0.1, 0.1], text=["", "", "", ""], colors=['black', 'coral', 'steelblue', 'yellowgreen'])) glyph = Text(x='x', y='y', text='text', text_font_size='12pt', text_baseline='bottom', text_color='colors', text_font_style='bold') hist.add_glyph(GlyphSource, glyph) def update_database(): # mise a jour des valeurs et de la nouvelle DataFrame # Reset des valeurs de la requete newb3s = B3SSelect.value newKiKo = multi_select_KiKo.value newKiKo = List_to_SQL(newKiKo) newNumLigne = multi_select_Lignes.value newNumLigne = List_to_SQL(newNumLigne) newStartDate = DeltaDates.value_as_datetime[0].strftime('%Y-%m-%d %H:%M:%S') newEndDate = DeltaDates.value_as_datetime[1].strftime('%Y-%m-%d %H:%M:%S') # mise a jour des Datasource des donnees vehicules pour la carte et le graphes des données NewDataFrame = SQLquery(newb3s, newKiKo, newNumLigne, newStartDate, newEndDate) events_sources.data = dict(Jour=NewDataFrame['Jour'], NumLigne=NewDataFrame['NumLigne'], H_VA=NewDataFrame['H_VA'], H_AA=NewDataFrame['H_AA'], H_LF=NewDataFrame['H_LF'], H_AF=NewDataFrame['H_AF'], KiKo=NewDataFrame['KiKo'], NumParc=NewDataFrame['NumParc'], WeekDay=NewDataFrame['WeekDay'], TpsVA_LF=NewDataFrame['TpsVA_LF'], TpsLF_AF=NewDataFrame['TpsLF_AF'], SpeedLF_AF=NewDataFrame['SpeedLF_AF'], SpeedVA_AF=NewDataFrame['SpeedVA_AF'], X_VA_merc=NewDataFrame['X_VA_merc'], Y_VA_merc=NewDataFrame['Y_VA_merc'], X_AA_merc=NewDataFrame['X_AA_merc'], Y_AA_merc=NewDataFrame['Y_AA_merc'], X_AF_merc=NewDataFrame['X_AF_merc'], Y_AF_merc=NewDataFrame['Y_AF_merc'], JourDatetime=NewDataFrame['JourDatetime']) # mise a jour des Datasource des donnees theoriques pour la carte NewMeldpuntenDataFrame = Meldpuntenquery(newb3s, newKiKo, newNumLigne) meldpunten_source.data = dict(KiKo=NewMeldpuntenDataFrame['KiKo'], NumLigne=NewMeldpuntenDataFrame['NumLigne'], Type_Message=NewMeldpuntenDataFrame['Type_Message'], Priorite=NewMeldpuntenDataFrame['Priorite'], Sens=NewMeldpuntenDataFrame['Sens'], Type_Gestion=NewMeldpuntenDataFrame['Type_Gestion'], Power=NewMeldpuntenDataFrame['Power'], X_effectif_webmerc=NewMeldpuntenDataFrame['X_effectif_webmerc'], Y_effectif_webmerc=NewMeldpuntenDataFrame['Y_effectif_webmerc'], TpsTheorique=NewMeldpuntenDataFrame['TpsTheoriques']) # Nouvelle Source pour le graphe des vitesses vitesse_NewDF = vitesse_df(NewDataFrame) VitesseSource.data = dict(heure=vitesse_NewDF['heure'], Jour=vitesse_NewDF['Jour'], rate=vitesse_NewDF['rate']) # données de l'histogramme avec les valeurs de temps de parcours histVA_LF, edgesVA_LF = np.histogram(NewDataFrame['TpsVA_LF'], density=True, bins=range(0, 121)) histAA_LF, edgesAA_LF = np.histogram(NewDataFrame['TpsAA_LF'], density=True, bins=range(0, 121)) histLF_AF, edgesLF_AF = np.histogram(NewDataFrame['TpsLF_AF'], density=True, bins=range(0, 121)) # mise a jour des histogrammes HistVA_LF.data_source.data["top"] = histVA_LF HistAA_LF.data_source.data["top"] = histAA_LF HistLF_AF.data_source.data["top"] = histLF_AF # Mise a jour du Tableau avec les donnees des histogrammes dans l'histogramme des temps de parcours label_text_lignes = ("Moyenne = \nMediane = \nEcart-type = ") label_text_VA_LF = ("VA_LF \n" + str(NewDataFrame['TpsVA_LF'].mean())[:6] + '\n' + str( NewDataFrame['TpsVA_LF'].median())[:6] + '\n' + str(NewDataFrame['TpsVA_LF'].std())[:6]) label_text_AA_LF = ("AA_LF \n" + str(NewDataFrame['TpsAA_LF'].mean())[:6] + '\n' + str( NewDataFrame['TpsAA_LF'].median())[:6] + '\n' + str(NewDataFrame['TpsAA_LF'].std())[:6]) label_text_LF_AF = ("LF_AF \n" + str(NewDataFrame['TpsLF_AF'].mean())[:6] + '\n' + str( NewDataFrame['TpsLF_AF'].median())[:6] + '\n' + str(NewDataFrame['TpsLF_AF'].std())[:6]) GlyphSource.data["text"] = [label_text_lignes, label_text_VA_LF, label_text_AA_LF, label_text_LF_AF] #conn.commit() def update_b3s(): # Si la requete se fait sur le b3s newb3s = B3SSelect.value # Changements des KiKos NewListKiKoStr, NewListKiKo = list_kiko(newb3s) multi_select_KiKo.value = NewListKiKo multi_select_KiKo.options = NewListKiKo # Changement des Lignes NewListlignesStr, NewListLignes = list_lignes(newb3s) multi_select_Lignes.value = NewListLignes multi_select_Lignes.options = NewListLignes update_database() controls = [multi_select_KiKo, multi_select_Lignes] for control in controls: control.on_change('value', lambda attr, old, new: update_database()) button_update.on_click(update_database) B3SSelect.on_change('value', lambda attr, old, new: update_b3s()) # mise en page initiale TabsDays = Tabs(tabs=[tab_vitesses, tab_points]) layout = column( row(column(row(B3SSelect, multi_select_KiKo, multi_select_Lignes), row(DeltaDates, button_update), TabsDays), map), row(hist)) # initialise les données update_database() output_file('Hermes3.html') curdoc().add_root(layout) # show(layout) a utiliser sans "bokeh serve"
StarcoderdataPython
6664400
import requests from api import http def test_adjust_paging_with_no_params(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?per_page=20" actual = target.__adjust_paging__(url, 20) assert expected == actual def test_adjust_paging_with_existing_params(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=20" actual = target.__adjust_paging__(url, 20) assert expected == actual def test_adjust_paging_with_existing_per_page_query_param(): target = http.Http(lambda: requests.Session()) url = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=20" expected = "https://gitlab.com/api/v4/projects/14171783/jobs?scope=success&scope=failed&per_page=10" actual = target.__adjust_paging__(url, 10) assert expected == actual
StarcoderdataPython
303701
<filename>solutions/week-1/ending.py<gh_stars>1-10 n = int(input()) if 0 <= n <= 1000: if n == 0: print(n, "программистов", sep=" ") elif n % 100 >= 10 and n % 100 <= 20: print(n, "программистов", sep=" ") elif n % 10 == 1: print(n, "программист", sep=" ") elif n % 10 >= 2 and n % 10 <= 4: print(n, "программиста", sep=" ") else: print(n, "программистов", sep=" ") else: print("Входные данные должны быть в интервале 0≤n≤1000")
StarcoderdataPython
9685058
<reponame>eBertolina/toradocu import csv import sys # Check command line arguments. if len(sys.argv) < 2 or len(sys.argv) > 3: print("""\ This script must be invoked with the following arguments: 1. CSV file to parse; 2. (Optional) Number of missing translation to be considered to compute overall recall; Output will be printed on the standard output. """) sys.exit(1) COLUMNS = [ 'CORRECT PARAM CONDITIONS', 'WRONG PARAM CONDITIONS', 'UNEXPECTED PARAM CONDITIONS', 'MISSING PARAM CONDITIONS', 'CORRECT THROWS CONDITIONS', 'WRONG THROWS CONDITIONS', 'UNEXPECTED THROWS CONDITIONS', 'MISSING THROWS CONDITIONS', 'CORRECT RETURN CONDITIONS', 'WRONG RETURN CONDITIONS', 'UNEXPECTED RETURN CONDITIONS', 'MISSING RETURN CONDITIONS', ] # Load information from the input CSV file. with open(sys.argv[1], 'r') as stats_file: data = list(csv.DictReader(stats_file)) results = dict() for column in COLUMNS: results[column] = 0 for row in data: for column in COLUMNS: results[column] += int(row.get(column, 0)) correct_param = results.get('CORRECT PARAM CONDITIONS', 0) wrong_param = results.get('WRONG PARAM CONDITIONS', 0) unexpected_param = results.get('UNEXPECTED PARAM CONDITIONS', 0) missing_param = results.get('MISSING PARAM CONDITIONS', 0) correct_throws = results.get('CORRECT THROWS CONDITIONS', 0) wrong_throws = results.get('WRONG THROWS CONDITIONS', 0) unexpected_throws = results.get('UNEXPECTED THROWS CONDITIONS', 0) missing_throws = results.get('MISSING THROWS CONDITIONS', 0) correct_return = results.get('CORRECT RETURN CONDITIONS', 0) wrong_return = results.get('WRONG RETURN CONDITIONS', 0) unexpected_return = results.get('UNEXPECTED RETURN CONDITIONS', 0) missing_return = results.get('MISSING RETURN CONDITIONS', 0) param_precision = 0 if correct_param == 0 else float(correct_param) / (correct_param + wrong_param + unexpected_param) param_recall = 0 if correct_param == 0 else float(correct_param) / (correct_param + wrong_param + missing_param) return_precision = 0 if correct_return == 0 else float(correct_return) / (correct_return + wrong_return + unexpected_return) return_recall = 0 if correct_return == 0 else float(correct_return) / (correct_return + wrong_return + missing_return) throws_precision = 0 if correct_throws == 0 else float(correct_throws) / (correct_throws + wrong_throws + unexpected_throws) throws_recall = 0 if correct_throws == 0 else float(correct_throws) / (correct_throws + wrong_throws + missing_throws) overall_correct = correct_param + correct_return + correct_throws additional_missing = 0 if len(sys.argv) == 2 else int(sys.argv[2]) overall_missing = missing_param + missing_return + missing_throws + additional_missing overall_wrong = wrong_param + wrong_return + wrong_throws overall_unexpected = unexpected_param + unexpected_return + unexpected_throws overall_precision = 0 if overall_correct == 0 else float(overall_correct) / (overall_correct + overall_wrong + overall_unexpected) overall_recall = 0 if overall_correct == 0 else float(overall_correct) / (overall_correct + overall_wrong + overall_missing) fmeasure = 0 if overall_precision + overall_recall == 0 else (2 * overall_precision * overall_recall) / (overall_precision + overall_recall) output = "{:.2f}".format(param_precision) if (correct_param + wrong_param) > 0 else "n.a." # param_precision output += " & {:.2f} && ".format(param_recall) # param_recall output += "{:.2f}".format(return_precision) if (correct_return + wrong_return) > 0 else "n.a." # return_precision output += " & {:.2f} && ".format(return_recall) # return_recall output += "{:.2f}".format(throws_precision) if (correct_throws + wrong_throws) > 0 else "n.a." # throws_precision output += " & {:.2f} && ".format(throws_recall) # throws_recall output += "{:.2f} & {:.2f} & {:.2f} \\\\".format(overall_precision, overall_recall, fmeasure) # overall precision, recall, and fmeasure print output
StarcoderdataPython
5122743
<reponame>aletuf93/analogistics import pandas as pd import numpy as np import matplotlib.pyplot as plt def updateGlobalInventory(D_SKUs: pd.DataFrame, inventoryColumn: str): """ Update the global inventory of the warehouse Args: D_SKUs (pd.DataFrame): Input SKUs dataframe. inventoryColumn (str): column name with the inventory. Returns: D_inventory (pd.DataFrame): Output DataFrame with inventory values. """ D_inventory = pd.DataFrame([], columns=['WH_INVENTORY_VOLUME', 'WH_INVENTORY_NORMALISED']) givenVolumes = 0 # count the number of SKUs with a given volume for i in range(0, len(D_SKUs)): # i=33159 volume = D_SKUs.iloc[i]['VOLUME'] list_days = D_SKUs.iloc[i]['INVENTORY_DAYS'] # go on only if an inventory has been saved if isinstance(list_days, list): list_inventory = np.array(D_SKUs.iloc[i][inventoryColumn]) list_inventory = np.nan_to_num(list_inventory) # convert nan to 0 list_inventory_volume = list_inventory * volume list_inventory_normalised = (list_inventory - min(list_inventory)) / (max(list_inventory) - min(list_inventory)) D_temp = pd.DataFrame(list_inventory_normalised, index=list_days, columns=['SKU_INVENTORY_NORMALISED']) D_inventory = pd.concat([D_temp, D_inventory], axis=1, sort=False) D_inventory = D_inventory.fillna(0) D_inventory['WH_INVENTORY_NORMALISED'] = D_inventory['WH_INVENTORY_NORMALISED'] + D_inventory['SKU_INVENTORY_NORMALISED'] D_inventory = D_inventory.drop(columns=['SKU_INVENTORY_NORMALISED']) if str(volume) != 'nan': # if volume is not nan D_temp = pd.DataFrame(list_inventory_volume, index=list_days, columns=['SKU_INVENTORY_VOLUME']) D_inventory = pd.concat([D_temp, D_inventory], axis=1, sort=False) D_inventory = D_inventory.fillna(0) D_inventory['WH_INVENTORY_VOLUME'] = D_inventory['WH_INVENTORY_VOLUME'] + D_inventory['SKU_INVENTORY_VOLUME'] D_inventory = D_inventory.drop(columns=['SKU_INVENTORY_VOLUME']) givenVolumes = givenVolumes + 1 return D_inventory def _cumulativeFunction(ser: pd.Series): ser = ser.sort_values() cum_dist = np.linspace(0., 1., len(ser)) ser_cdf = pd.Series(cum_dist, index=ser) return ser_cdf def inventoryAnalysis(D_global_inventory: pd.DataFrame): """ Perform analysis on the inventory values Args: D_global_inventory (pd.DataFrame): Input Dataframe with inventory values. Returns: dict: Output dict containing figures. """ output_figures = {} # plot histogram fig1 = plt.figure() plt.hist(D_global_inventory['WH_INVENTORY_VOLUME'], color='orange') plt.xlabel('Inventory values') plt.ylabel('Frequency') plt.title('Inventory histogram') output_figures['INVENTORY_HIST'] = fig1 fig2 = plt.figure() plt.hist(D_global_inventory['WH_INVENTORY_NORMALISED'], color='orange') plt.xlabel('Normalised Inventory values') plt.ylabel('Frequency') plt.title('Normalised inventory histogram') output_figures['INVENTORY_NORM_HIST'] = fig2 # plot trend fig3 = plt.figure() plt.plot(D_global_inventory.index, D_global_inventory['WH_INVENTORY_VOLUME'], color='orange') plt.xlabel('Timeline') plt.ylabel('Inventory values') plt.title('Inventory time series') plt.xticks(rotation=45) output_figures['INVENTORY_TS'] = fig3 fig4 = plt.figure() plt.plot(D_global_inventory.index, D_global_inventory['WH_INVENTORY_NORMALISED'], color='orange') plt.xlabel('Timeline') plt.ylabel('Normalised inventory values') plt.title('Normalised inventory time series') plt.xticks(rotation=45) output_figures['INVENTORY_NORM_TS'] = fig4 # cumulative function cdf_inventory = _cumulativeFunction(D_global_inventory['WH_INVENTORY_NORMALISED']) fig5 = plt.figure() cdf_inventory.plot(drawstyle='steps', color='orange') plt.xlabel('Normalised inventory values') plt.ylabel('Probability') plt.title('Normalised inventory cumulative probability function') output_figures['INVENTORY_NORM_CUM'] = fig5 cdf_inventory = _cumulativeFunction(D_global_inventory['WH_INVENTORY_VOLUME']) fig6 = plt.figure() cdf_inventory.plot(drawstyle='steps', color='orange') plt.xlabel('Inventory values') plt.ylabel('Probability') plt.title('Inventory cumulative probability function') output_figures['INVENTORY_CUM'] = fig6 return output_figures def defineStockoutCurve(inventorySeries: pd.DataFrame): """ Define the stockout risk curve Args: inventorySeries (pd.DataFrame): Input Dataframe with inventory values. Returns: output_figure (TYPE): Output dict containing figures. """ output_figure = {} # calculate the cumulative and the risk cumulative = _cumulativeFunction(inventorySeries) risk = 1 - cumulative # plot the curve fig1 = plt.figure() plt.plot(cumulative.index, cumulative.values, drawstyle='steps', color='skyblue') plt.plot(risk.index, risk.values, drawstyle='steps', color='orange') plt.legend(['Cumulative distribution function', 'Stockout risk']) plt.title("Stockout risk function") plt.xlabel("Inventory value") plt.ylabel("Risk or probability") output_figure['stockout curve'] = fig1 return output_figure
StarcoderdataPython
3220581
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # # PROGRAMMER: <NAME>. # DATE CREATED: 19 Nov 2020 # REVISED DATE: 13 dic 2020 # PURPOSE: A Class to analyze a dataset of numbers and apply the Benfords Law counting the frequency of the first digit # from 1 - 9 # # Usage: # 1. Create a new object with the class Benford, with an numpy array or list, or # 2. Load a dataset with the method: load_dataset(args) or # 3. Load an image with the method: load_image(args) # 4. Analyze the data with the mehtod: apply_benford(args) # 5. Plot the results or export to a file # 6. Export the results to a file # # Imports python modules import pandas as pd import numpy as np import matplotlib.pyplot as plt from PIL import Image class Benford: ''' A Class to perform the Benford´S Law analysis for the first leading digits [1-9] Atributes: ----------------------- dataset : numpy array of integers with the numbers to analyzed normalized : boolean, flag to indicate if the output is normalized with the total values or the digits frequency digits: numpy array with digits 1 to 9 digits_count: numpy array to store the leading digits frequency reference: The Benford´s theorical reference for the leading digits Methods: ------------------------ __init__ : Method to initialize the attributes load_daaset : Method to read a .csv file and load the dataset load_image: Method to load an image and load the dataset benford_analysis: Mehtod to analyze the leading digits using the Benford´s Law plot : Method to plot the resuls in a bar chart export_to_csv : Method to export the results to a .csv file ''' def __init__(self, dataset=None, normalized=True): """ Function to initialize the class Parameters: ------------------------- dataset: numpy array, A dataset containing numbers normalized: boolean """ self.dataset = dataset self.normalized = normalized self.digits = np.array(range(1,10)) self.digits_count = np.zeros(9) self.reference = np.array([30.1,17.6,12.5,9.7,7.9,6.7,5.8,5.1,4.6]) return None def load_dataset(self, dir, sep=','): """ Function to read a dataset using pandas Parameters: ------------- dir: str, address of the dataset and name Returns: ------------- None """ try: dataset = pd.read_csv(dir, sep=sep ) dataset = np.asarray(dataset) self.dataset = dataset except: print('The dataset could not be read, please check the address') #if not type(x) is int: # raise TypeError("Only integers are allowed") return None def load_image(self, path): """ Function to read an image using numpy Parameters: ------------- path: str, address of the image, a local file or a http address Returns: ------------- None """ try: image = np.array(Image.open(path)) print('Image read') self.dataset = image except: print('The image could not be read, please check the address') return None def benford_analysis(self): """ Function to analyze a dataset using the Benford´s Law, counting the frequency of first digits Parameters: ------------- dataset: a numpy array containing integers Returns: ------------- self.digits_count: Updated with the digits frequency normalized """ self.dataset = np.abs(self.dataset) #Convert all values to positive self.dataset = self.dataset[self.dataset > 0] #Remove the values with 0 numbers, counts = np.unique(self.dataset, return_counts = True) # Count the numbers in the dataset and their frequency numerical_units = np.log10(numbers).astype(int) # Get the int part of log base 10 of the numbers to know the number of units (10s, 100s, 1000s) first_digit = numbers//10**numerical_units # Get the first digit using numbers // 10^numerical_units # Summarize the first digit counts for digit in self.digits: self.digits_count[digit-1] = counts[first_digit==digit].sum() if self.normalized: # If normalized, get the digits probability self.digits_count = self.digits_count/self.digits_count.sum()*100 return None def plot(self, figsize=(12, 6)): """ Function to plot the benford results Parameters: ------------- figsize = tuple, size of the figure to plot self.digits self.digits_count Returns: ------------- A bar chart display in the screen """ fig, ax = plt.subplots(nrows=1, ncols=1, figsize=figsize) ax.set_title('Benford Law Analysis Results',fontsize=20) ax.set_xlabel('Digits', fontsize=16) if not self.normalized: ax.set_ylabel('Freq', fontsize=16) if self.normalized: df = pd.DataFrame({'Benford Reference':[30.1,17.6,12.5,9.7,7.9,6.7,5.8,5.1,4.6],'P(D) Results':self.digits_count},index=self.digits) df.plot.bar(ax=ax,grid=False, color=['teal','#5cb85c'], width=0.8) for p in ax.patches: value = '{:.01f}'.format(p.get_height()) # Get the value length offset = (8 - len(value)) // 2 / 30 # Calculate the offset to center the label on the bar ax.annotate('{:.01f}'.format(p.get_height()), (p.get_x()+offset, p.get_height()+0.1),fontsize=9, weight='bold') else: ax.bar(self.digits, self.digits_count, color='g') ax.set_xticklabels(ax.get_xticklabels(), rotation=0, ha='right') ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_yaxis().set_ticks([]) plt.show() return None def export_to_csv(self, path): """ Function to export the benford analysis results to a file as a dataframe, including the benford reference values Parameters: ------------- path = str, path and filename where to save the results Returns: ------------- A saved .csv file """ df = pd.DataFrame({'Benford Reference':[30.1,17.6,12.5,9.7,7.9,6.7,5.8,5.1,4.6],'P(D) results':self.digits_count},index=self.digits) df.index.rename('Digits',inplace=True) try: df.to_csv(path, header=True) except: print('File can not be saved, check the path') return None
StarcoderdataPython
11243856
<gh_stars>0 import re import time from collections import Mapping from glob import glob from os import makedirs from os.path import dirname from os.path import exists as p_exists, join as p_join, isfile as p_isfile, isdir as p_isdir, getctime import numpy as np from torch import load as torch_load, save as torch_save import yaml import logging import logging.config def is_file(path): return p_exists(path) and p_isfile(path) def is_directory(path): return p_exists(path) and p_isdir(path) def make_directories_for_file(path): directory = dirname(path) if not p_exists(directory): makedirs(directory) def get_htr_logger(name): with open('../configs/logging_config.yaml', 'r') as f: make_directories_for_file(p_join("../logs/info.log")) config = yaml.safe_load(f.read()) logging.config.dictConfig(config) return logging.getLogger(name) logger = get_htr_logger(__name__) class TimeMeasure(object): def __init__(self, enter_msg="", exit_msg="{}.", writer=logger.debug, print_enabled=True): self.__enter_msg = enter_msg self.__exit_msg = exit_msg self.__writer = writer self.__time = None self.__print_enabled = print_enabled def __enter__(self): self.__start = time.time() if self.__print_enabled and self.__enter_msg: self.__writer(self.__enter_msg) return self def __exit__(self, exc_type, exc_val, exc_tb): if self.__print_enabled: self.__writer(self.__exit_msg.format(pretty_time_interval(self.delta))) @property def delta(self): delta = time.time() - self.__start delta = int(delta * 1000) return delta def save_checkpoint(path, total_epochs, model, loss, environment): make_directories_for_file(path) dictionary = dict() dictionary["total_epochs"] = total_epochs dictionary["model_states"] = model.state_dict() dictionary["loss"] = loss dictionary["environment"] = environment.to_dict() torch_save(dictionary, path) logger.info(f"Saved checkpoint in epoch {total_epochs} to '{path}'.") def load_checkpoint(path): if is_checkpoint(path): return torch_load(path) else: raise RuntimeError("Checkpoint at '{}' does not exist!".format(path)) def is_checkpoint(path: str): return is_file(path) and path.endswith(".pt") def load_latest_checkpoint(directory): list_of_files = glob(p_join(directory, '*.pt')) latest_file = max(list_of_files, key=getctime) return load_checkpoint(latest_file) class WordDeEnCoder(object): def __init__(self, chars): self.__chars = chars self.__idx_to_char = {i: c for i, c in enumerate(chars)} self.__char_to_idx = {v: k for k, v in self.__idx_to_char.items()} @property def idx_to_char(self): return self.__idx_to_char @property def char_to_idx(self): return self.__char_to_idx def encode_words(self, words): return [np.asarray([self.char_to_idx[letter] for letter in word]) for word in words] def decode_word(self, encoded_word): return "".join([self.idx_to_char[num] for num in encoded_word]) def inject(value, my_locals): if type(value) == str and value.startswith("locals://"): path = value.split("//")[1].split("/") obj = my_locals[path[0]] for i in range(1, len(path)): obj = getattr(obj, path[i]) value = obj return value class FrozenDict(Mapping): def __init__(self, *args, **kwargs): self._d = dict(*args, **kwargs) self._hash = None def __iter__(self): return iter(self._d) def __len__(self): return len(self._d) def __getitem__(self, key): return self._d[key] def __hash__(self): return hash(tuple(sorted(self._d.items()))) def pretty_time_interval(millis): seconds, millis = divmod(millis, 1000) minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) days, hours = divmod(hours, 24) return f"{days}d {hours}h {minutes}min {seconds}sec {millis}ms" def build_phrased_regex(left, right): return re.compile(r"(?P<left>\|)?" + r"(?P<leftCore>" + left + r")" + r"\|(?P<core>[a-zA-Z0-9.\s|]+)\|" + "(?P<rightCore>" + right + r")" + r"(?P<right>\|)?") class Replacer(object): def __init__(self): phrased_regex = build_phrased_regex(left='"', right='"') par_regex = build_phrased_regex(left=r'\(', right=r'\)') self._regex_pipeline = (phrased_regex, par_regex) self._abbreviation = re.compile(r"(\w+\.)\|(\w+)") self._left_pipe = re.compile(r"(\|([\s!\\\"#&'()*+,\-./:;?]+))") self._right_pipe = re.compile(r"(([\s!\\\"#&'()*+,\-./:;?]+)\|)") def __call__(self, line): result = line.replace("|,|", ", ") for reg in self._regex_pipeline: result = reg.sub(r'\g<left> \g<leftCore>\g<core>\g<rightCore>\g<right> ', result) result = self._abbreviation.sub(r'\g<1> \g<2>', result) result = self._abbreviation.sub(r'\g<1> \g<2>', result) result = self._left_pipe.sub(r'\g<2>', result) result = self._right_pipe.sub(r'\g<2>', result) result = result.replace(") :", "):") result = result.replace('|', ' ').replace(" ", " ") #if result.count("-") > 1 and len(result) is 53: # logger.error(f"{line} {result}") return result
StarcoderdataPython
3422122
# -*- coding: utf-8 -*- """ PDF document reader. """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals from pdfminer.converter import PDFPageAggregator from pdfminer.layout import LAParams, LTTextLine, LTTextBox, LTFigure from pdfminer.pdfdocument import PDFDocument from pdfminer.pdfinterp import PDFResourceManager, PDFPageInterpreter from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser import six from ..doc.document import Document from ..doc.text import Paragraph from .base import BaseReader from ..errors import ReaderError class PdfReader(BaseReader): """""" def detect(self, fstring, fname=None): """""" if fname and not fname.endswith('.pdf'): return False return True def _process_layout(self, layout): """Process an LTPage layout and return a list of elements.""" # Here we just group text into paragraphs elements = [] for lt_obj in layout: if isinstance(lt_obj, LTTextBox) or isinstance(lt_obj, LTTextLine): elements.append(Paragraph(lt_obj.get_text().strip())) elif isinstance(lt_obj, LTFigure): # Recursive... elements.extend(self._process_layout(lt_obj)) return elements def parse(self, fstring): try: f = six.BytesIO(fstring) parser = PDFParser(f) document = PDFDocument(parser) if not document.is_extractable: raise ReaderError('PDF text extraction not allowed') rsrcmgr = PDFResourceManager() laparams = LAParams() device = PDFPageAggregator(rsrcmgr, laparams=laparams) interpreter = PDFPageInterpreter(rsrcmgr, device) elements = [] for page in PDFPage.create_pages(document): interpreter.process_page(page) layout = device.get_result() elements.extend(self._process_layout(layout)) return Document(*elements) except Exception as e: raise ReaderError(e) # Functions to determine captions from layout analysis # # def get_element_type(l, el_type): # """Return a flat list of all of one element type from a nested list of LT objects.""" # elements = [] # for el in l: # if isinstance(el, el_type): # elements.append(el) # elif isinstance(el, collections.Iterable) and not isinstance(el, LTItem): # elements.extend(get_element_type(el, el_type)) # return elements # # # def pair_up(images, captions): # """Pair up each caption with the image most likely to correspond to it.""" # pairs = [] # for cap in captions: # possibles = [] # for im in images: # if cap.bbox[3] < im.bbox[1] and cap.bbox[0] < im.bbox[2] and cap.bbox[2] > im.bbox[0]: # possibles.append(im) # if possibles: # closest = possibles[0] # for im in possibles: # if get_distance(im, cap) < get_distance(closest, cap): # closest = im # pairs.append({'ltimage':closest,'ltcap':cap}) # return pairs # # # def get_distance(fig, cap): # """Return the distance between the top-centre of cap and the bottom-centre of fig.""" # figcen = [(fig.bbox[0]+fig.bbox[2])/2,fig.bbox[1]] # capcen = [(cap.bbox[0]+cap.bbox[2])/2,cap.bbox[3]] # distance = math.sqrt(pow(abs(figcen[0]-capcen[0]),2) + pow(abs(figcen[1]-capcen[1]),2)) # return distance # # # def add_image_numbers(fig_caps, all_images): # """Add the figure number and image number to each fig_cap.""" # for fig_cap in fig_caps: # for i, im in enumerate(all_images): # if fig_cap['ltimage'].name == im.name: # fig_cap['imnum'] = i # fig_num = fig_cap['ltcap'].get_text().split(None,2)[1] # if not fig_num.isdigit(): # fig_num = re.split('\D', fig_num)[0] # fig_cap['fignum'] = fig_num # return fig_caps # # # def remove_false_positives(fig_caps): # """If two captions have the same figure number remove the one farthest from its image.""" # to_delete = [] # for i in range(len(fig_caps)): # for j in range(i): # if fig_caps[i]['fignum'] == fig_caps[j]['fignum']: # # Check if fig_caps[i]['ltcap'] or fig_caps[j]['ltcap'] has "shows" or "illustrates" # try: # captext1 = fig_caps[i]['ltcap'].get_text().split(None,2)[2] # captext2 = fig_caps[j]['ltcap'].get_text().split(None,2)[2] # except IndexError: # captext1 = fig_caps[i]['ltcap'].get_text() # captext2 = fig_caps[j]['ltcap'].get_text() # # reports, presents # if captext1.startswith('shows') or captext1.startswith('illustrates') or captext1.startswith('displays') or captext1.startswith('reports') or captext1.startswith('presents'): # to_delete.append(i) # elif captext2.startswith('shows') or captext2.startswith('illustrates') or captext2.startswith('displays') or captext2.startswith('reports') or captext2.startswith('presents'): # to_delete.append(j) # else: # dis1 = get_distance(fig_caps[i]['ltimage'], fig_caps[i]['ltcap']) # dis2 = get_distance(fig_caps[j]['ltimage'], fig_caps[j]['ltcap']) # if dis1 > dis2: # to_delete.append(i) # else: # to_delete.append(j) # fig_caps = [i for j, i in enumerate(fig_caps) if j not in to_delete] # return fig_caps
StarcoderdataPython
122263
<filename>python/data_sutram/scraper/perform__.py<gh_stars>10-100 import json from selenium import webdriver from selenium.webdriver.common.desired_capabilities import DesiredCapabilities options = webdriver.ChromeOptions() #options.binary_location = "/Applications/Google Chrome.app/Contents/MacOS/Google Chrome" chrome_driver_binary = "../chromedriver" driver = webdriver.Chrome(chrome_driver_binary, chrome_options=options) """ caps = DesiredCapabilities.CHROME caps['loggingPrefs'] = {'performance': 'ALL'} driver = webdriver.Chrome(desired_capabilities=caps) """ driver.get('https://stackoverflow.com/questions/52633697/selenium-python-how-to-capture-network-traffics-response') def process_browser_log_entry(entry): response = json.loads(entry['message'])['message'] return response browser_log = driver.get_log('performance') events = [process_browser_log_entry(entry) for entry in browser_log] events = [event for event in events if 'Network.response' in event['method']] print(events)
StarcoderdataPython
8184965
<reponame>Belvarm/roguelike-tutorial from __future__ import annotations from typing import Optional, TYPE_CHECKING import graphic from actions import Impossible if TYPE_CHECKING: from actions import ActionWithItem from location import Location from inventory import Inventory class Item(graphic.Graphic): render_order = 1 def __init__(self) -> None: self.owner: Optional[Inventory] = None self.location: Optional[Location] = None def lift(self) -> None: """Remove this item from any of its containers.""" if self.owner: self.owner.contents.remove(self) self.owner = None if self.location: item_list = self.location.map.items[self.location.xy] item_list.remove(self) if not item_list: del self.location.map.items[self.location.xy] self.location = None def place(self, location: Location) -> None: """Place this item on the floor at the given location.""" assert not self.location, "This item already has a location." assert not self.owner, "Can't be placed because this item is currently owned." self.location = location items = location.map.items try: items[location.xy].append(self) except KeyError: items[location.xy] = [self] def plan_activate(self, action: ActionWithItem) -> ActionWithItem: """Item activated as part of an action. Assume that action has an actor which is holding this items entity. """ return action def action_activate(self, action: ActionWithItem) -> None: raise Impossible(f"You can do nothing with the {self.name}.") def consume(self, action: ActionWithItem) -> None: """Remove this item from the actors inventory.""" assert action.item is self action.item.lift() def action_drink(self, action: ActionWithItem) -> None: """Drink this item.""" raise Impossible("You can't drink that.") def action_eat(self, action: ActionWithItem) -> None: """Eat this item.""" raise Impossible("You can't eat that.")
StarcoderdataPython
366895
import pandas as pd old = pd.read_csv('user_reviews.csv') new = pd.read_csv('user_reviews.csv') # if then elif else (new) # create new column new['qualitative_rating'] = '' # assign 'qualitative_rating' based on 'grade' with .loc new.loc[new.grade < 5, 'qualitative_rating'] = 'bad' new.loc[new.grade == 5, 'qualitative_rating'] = 'ok' new.loc[new.grade > 5, 'qualitative_rating'] = 'good' # create column based on other column (old) # create new column old['len_text'] = '' # calculate length of column value with loop for index in old.index: old.loc[index, 'len_text'] = len(old.loc[index, 'text']) # create column based on other column (new) # create new column new['len_text'] = '' # calculate length of column value by converting to str new['len_text'] = new['text'].str.len()
StarcoderdataPython
294313
# -*- coding: utf-8 -*- """ Python Script Created on Sunday August 2017 10:17:41 @author: <NAME> [desc] Support vector machines (SVMs) are a set of supervised learning methods used for classification, regression and outliers detection. The advantages of support vector machines are: - Effective in high dimensional spaces. - Still effective in cases where number of dimensions is greater than the number of samples. - Uses a subset of training points in the decision function (called support vectors), so it is also memory efficient. - Versatile: different Kernel functions can be specified for the decision function. Common kernels are provided, but it is also possible to specify custom kernels. The disadvantages of support vector machines include: - If the number of features is much greater than the number of samples, the method is likely to give poor performances. - SVMs do not directly provide probability estimates, these are calculated using an expensive five-fold cross-validation. The support vector machines in scikit-learn support both dense (numpy.ndarray and convertible to that by numpy.asarray) and sparse (any scipy.sparse) sample vectors as input. However, to use an SVM to make predictions for sparse data, it must have been fit on such data. For optimal performance, use C-ordered numpy.ndarray (dense) or scipy.sparse.csr_matrix (sparse) with dtype=float64. [/desc] ARGUMENTS: ---------- <inp> _data : data </inp> <inp>_target : target </inp> <inp>_features : features </inp> <inp>_predict : predict </inp> <inp>_algorithm : [optional] - [int] - [1] Support Vector Machines Algorithm Options: 1->Support Vector Classifier SVC 2->Linear Support Vector Classifier LinSVC 3->Nu Support Vector Classifier NuSVC 4->Support Vector Regression SVR 5->Linear Support Vector Regression LinSVR 6->Nu Support Vector Regression NuSVR 7->One Class Support Vector Machines </inp> <inp>_parameters_ : [optional] Parameters of the Support Vector Machine Model, such as : C, kernel, degree, gamma, coef0, probability, shrinking, tol, chach_size, class_weight, verbose, max_iter ,decision_function_shape and random_state</inp> RETURN: log_ = output log output_ = predict Data score_ score value """ import numpy as np import pickle _data = np.array(_data) _target = np.array(_target) def main( _data, _target, _features, _algorithm = 1): ''' this is the main function ''' allModels ={1:"SVC", 2:"LinearSVC", 3:"NuSVC", 4:"SVR", 5:"LinearSVR", 6:"NuSVR", 7:"OneClassSVM"} if(_algorithm == None): _algorithm =1 try: exec("from sklearn.svm import "+ allModels[_algorithm]+"\n" + "log = "+ allModels[_algorithm]+".__doc__") exec("model = "+allModels[_algorithm]+"()") try: model.fit(_data, _target) prediction = model.predict(_predict) try: score = model.score(_data, _target) except: score = "Not defined" except: f1 = open(_data, 'r') f2 = open(_target, 'r') data1 = f1.read() target1 = f2.read() f1.close() f2.close() model.fit(pickle.loads(data1), pickle.loads(target1)) prediction = model.predict(_predict) try: score = model.score(pickle.loads(data1),pickle.loads(target1)) except: score = "Not defined" except Exception as e: print str(e) return [log, prediction, score] if(_data != None and _target!= None and _predict!=None): log_, output_, score_ = main( _data, _target, _features, _algorithm) else: print "Please Complete all the required data"
StarcoderdataPython
6626532
"""Module with all classes related to links. Links are low level abstractions representing connections between two interfaces. """ import hashlib import json import random from kytos.core.common import GenericEntity from kytos.core.exceptions import (KytosLinkCreationError, KytosNoTagAvailableError) from kytos.core.interface import TAGType class Link(GenericEntity): """Define a link between two Endpoints.""" def __init__(self, endpoint_a, endpoint_b): """Create a Link instance and set its attributes. Two kytos.core.interface.Interface are required as parameters. """ if endpoint_a is None: raise KytosLinkCreationError("endpoint_a cannot be None") if endpoint_b is None: raise KytosLinkCreationError("endpoint_b cannot be None") self.endpoint_a = endpoint_a self.endpoint_b = endpoint_b super().__init__() def __hash__(self): return hash(self.id) def is_enabled(self): """Override the is_enabled method. We consider a link enabled when all the interfaces are enabled. Returns: boolean: True if both interfaces are enabled, False otherwise. """ return (self._enabled and self.endpoint_a.is_enabled() and self.endpoint_b.is_enabled()) def is_active(self): """Override the is_active method. We consider a link active whether all the interfaces are active. Returns: boolean: True if the interfaces are active, othewrise False. """ return (self._active and self.endpoint_a.is_active() and self.endpoint_b.is_active()) def __eq__(self, other): """Check if two instances of Link are equal.""" return self.id == other.id @property def id(self): # pylint: disable=invalid-name """Return id from Link intance. Returns: string: link id. """ dpid_a = self.endpoint_a.switch.dpid port_a = self.endpoint_a.port_number dpid_b = self.endpoint_b.switch.dpid port_b = self.endpoint_b.port_number if dpid_a < dpid_b: elements = (dpid_a, port_a, dpid_b, port_b) elif dpid_a > dpid_b: elements = (dpid_b, port_b, dpid_a, port_a) elif port_a < port_b: elements = (dpid_a, port_a, dpid_b, port_b) else: elements = (dpid_b, port_b, dpid_a, port_a) str_id = "%s:%s:%s:%s" % elements return hashlib.sha256(str_id.encode('utf-8')).hexdigest() @property def available_tags(self): """Return the available tags for the link. Based on the endpoint tags. """ return [tag for tag in self.endpoint_a.available_tags if tag in self.endpoint_b.available_tags] def use_tag(self, tag): """Remove a specific tag from available_tags if it is there. Deprecated: use only the get_next_available_tag method. """ if self.is_tag_available(tag): self.endpoint_a.use_tag(tag) self.endpoint_b.use_tag(tag) return True return False def is_tag_available(self, tag): """Check if a tag is available.""" return (self.endpoint_a.is_tag_available(tag) and self.endpoint_b.is_tag_available(tag)) def get_next_available_tag(self): """Return the next available tag if exists.""" # Copy the available tags because in case of error # we will remove and add elements to the available_tags available_tags_a = self.endpoint_a.available_tags.copy() available_tags_b = self.endpoint_b.available_tags.copy() random.shuffle(available_tags_a) random.shuffle(available_tags_b) for tag in available_tags_a: # Tag does not exist in endpoint B. Try another tag. if tag not in available_tags_b: continue # Tag already in use. Try another tag. if not self.endpoint_a.use_tag(tag): continue # Tag already in use in B. Mark the tag as available again. if not self.endpoint_b.use_tag(tag): self.endpoint_a.make_tag_available(tag) continue # Tag used successfully by both endpoints. Returning. return tag raise KytosNoTagAvailableError(self) def make_tag_available(self, tag): """Add a specific tag in available_tags.""" if not self.is_tag_available(tag): self.endpoint_a.make_tag_available(tag) self.endpoint_b.make_tag_available(tag) return True return False def available_vlans(self): """Get all available vlans from each interface in the link.""" vlans_a = self._get_available_vlans(self.endpoint_a) vlans_b = self._get_available_vlans(self.endpoint_b) return [vlan for vlan in vlans_a if vlan in vlans_b] @staticmethod def _get_available_vlans(endpoint): """Return all vlans from endpoint.""" tags = endpoint.available_tags return [tag for tag in tags if tag.tag_type == TAGType.VLAN] def as_dict(self): """Return the Link as a dictionary.""" return {'id': self.id, 'endpoint_a': self.endpoint_a.as_dict(), 'endpoint_b': self.endpoint_b.as_dict(), 'metadata': self.get_metadata_as_dict(), 'active': self.is_active(), 'enabled': self.is_enabled()} def as_json(self): """Return the Link as a JSON string.""" return json.dumps(self.as_dict())
StarcoderdataPython
12810237
import pytest from flask_controller_bundle import Controller from flask_controller_bundle.attr_constants import CONTROLLER_ROUTES_ATTR from flask_controller_bundle.route import Route class TestRoute: def test_should_register_defaults_to_true(self): route = Route('/path', lambda: 'view_func') assert route.should_register(None) is True def test_should_register_with_boolean(self): route = Route('/path', lambda: 'view_func', only_if=True) assert route.should_register(None) is True def test_should_register_with_callable(self): route = Route('/path', lambda: 'view_func', only_if=lambda x: x) assert route.should_register(True) is True assert route.should_register(False) is False def test_full_rule_requires_rule_with_a_controller(self): class SomeController(Controller): def index(self): pass route = getattr(SomeController, CONTROLLER_ROUTES_ATTR)['index'][0] with pytest.raises(Exception) as e: fail = route.full_rule assert 'not fully initialized' in str(e) def test_full_name_with_controller(self): class SomeController(Controller): def index(self): pass route = getattr(SomeController, CONTROLLER_ROUTES_ATTR)['index'][0] assert route.full_name == 'tests.test_route.SomeController.index' def test_full_name_with_func(self): def a_view(): pass route = Route('/foo', a_view) assert route.full_name == 'tests.test_route.a_view'
StarcoderdataPython
3261681
<filename>pysnmp/CISCO-SYSLOG-CAPABILITY.py # # PySNMP MIB module CISCO-SYSLOG-CAPABILITY (http://snmplabs.com/pysmi) # ASN.1 source file:///Users/davwang4/Dev/mibs.snmplabs.com/asn1/CISCO-SYSLOG-CAPABILITY # Produced by pysmi-0.3.4 at Mon Apr 29 17:57:14 2019 # On host DAVWANG4-M-1475 platform Darwin version 18.5.0 by user davwang4 # Using Python version 3.7.3 (default, Mar 27 2019, 09:23:15) # ObjectIdentifier, Integer, OctetString = mibBuilder.importSymbols("ASN1", "ObjectIdentifier", "Integer", "OctetString") NamedValues, = mibBuilder.importSymbols("ASN1-ENUMERATION", "NamedValues") ConstraintsIntersection, SingleValueConstraint, ConstraintsUnion, ValueRangeConstraint, ValueSizeConstraint = mibBuilder.importSymbols("ASN1-REFINEMENT", "ConstraintsIntersection", "SingleValueConstraint", "ConstraintsUnion", "ValueRangeConstraint", "ValueSizeConstraint") ciscoAgentCapability, = mibBuilder.importSymbols("CISCO-SMI", "ciscoAgentCapability") AgentCapabilities, ModuleCompliance, NotificationGroup = mibBuilder.importSymbols("SNMPv2-CONF", "AgentCapabilities", "ModuleCompliance", "NotificationGroup") IpAddress, ModuleIdentity, Counter32, MibScalar, MibTable, MibTableRow, MibTableColumn, Counter64, Integer32, MibIdentifier, iso, TimeTicks, Gauge32, Bits, ObjectIdentity, Unsigned32, NotificationType = mibBuilder.importSymbols("SNMPv2-SMI", "IpAddress", "ModuleIdentity", "Counter32", "MibScalar", "MibTable", "MibTableRow", "MibTableColumn", "Counter64", "Integer32", "MibIdentifier", "iso", "TimeTicks", "Gauge32", "Bits", "ObjectIdentity", "Unsigned32", "NotificationType") TextualConvention, DisplayString = mibBuilder.importSymbols("SNMPv2-TC", "TextualConvention", "DisplayString") ciscoSyslogCapability = ModuleIdentity((1, 3, 6, 1, 4, 1, 9, 7, 61)) ciscoSyslogCapability.setRevisions(('2010-01-22 14:32', '2008-08-11 00:00', '2008-06-08 00:00', '2006-10-26 00:00', '2006-05-25 00:00', '2004-02-03 00:00',)) if mibBuilder.loadTexts: ciscoSyslogCapability.setLastUpdated('201001221432Z') if mibBuilder.loadTexts: ciscoSyslogCapability.setOrganization('Cisco Systems, Inc.') ciscoSyslogCapCatOSV08R0101 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 1)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCatOSV08R0101 = ciscoSyslogCapCatOSV08R0101.setProductRelease('Cisco CatOS 8.1(1).') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCatOSV08R0101 = ciscoSyslogCapCatOSV08R0101.setStatus('current') ciscoSyslogCapACSWV03R000 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 2)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapACSWV03R000 = ciscoSyslogCapACSWV03R000.setProductRelease('ACSW (Application Control Software) 3.0\n \n for Application Control Engine(ACE)\n\n Service Module.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapACSWV03R000 = ciscoSyslogCapACSWV03R000.setStatus('current') ciscoSyslogCapCTSV100 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 3)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCTSV100 = ciscoSyslogCapCTSV100.setProductRelease('Cisco TelePresence System (CTS) 1.0.0.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCTSV100 = ciscoSyslogCapCTSV100.setStatus('current') ciscoSyslogCapCTMV1000 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 4)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCTMV1000 = ciscoSyslogCapCTMV1000.setProductRelease('Cisco TelePresence Manager (CTM) 1.0.0.0.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapCTMV1000 = ciscoSyslogCapCTMV1000.setStatus('current') ciscoSyslogCapc4710aceVA1R70 = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 5)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapc4710aceVA1R70 = ciscoSyslogCapc4710aceVA1R70.setProductRelease('ACSW (Application Control Software) A1(7)\n for ACE 4710 Application Control Engine \n Appliance.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapc4710aceVA1R70 = ciscoSyslogCapc4710aceVA1R70.setStatus('current') ciscoSyslogCapVqe = AgentCapabilities((1, 3, 6, 1, 4, 1, 9, 7, 61, 6)) if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapVqe = ciscoSyslogCapVqe.setProductRelease('VQE 3.5 release.') if getattr(mibBuilder, 'version', (0, 0, 0)) > (4, 4, 0): ciscoSyslogCapVqe = ciscoSyslogCapVqe.setStatus('current') mibBuilder.exportSymbols("CISCO-SYSLOG-CAPABILITY", ciscoSyslogCapCTSV100=ciscoSyslogCapCTSV100, ciscoSyslogCapability=ciscoSyslogCapability, ciscoSyslogCapACSWV03R000=ciscoSyslogCapACSWV03R000, PYSNMP_MODULE_ID=ciscoSyslogCapability, ciscoSyslogCapCTMV1000=ciscoSyslogCapCTMV1000, ciscoSyslogCapc4710aceVA1R70=ciscoSyslogCapc4710aceVA1R70, ciscoSyslogCapCatOSV08R0101=ciscoSyslogCapCatOSV08R0101, ciscoSyslogCapVqe=ciscoSyslogCapVqe)
StarcoderdataPython
9620701
<reponame>HereIsANiceNickname/CAS19 import logging import os import matplotlib.pyplot as plt import networkx as nx import yaml from networkx import write_yaml from actors import Actor from fractories import Graphs, Actors, Distributions, Rules log = logging.getLogger(__name__) BASE_PATH_LAYOUT = "{}/{}.{}" class Stats: def __init__(self, name, path, config): self.name = name self.config = config self.path = BASE_PATH_LAYOUT.format(path, name, "yml") self.number_of_nodes = -1 self.number_of_edges = -1 self.average_orientation = -1 self.graph_density = -1 self.graph_transitivity = -1 def update(self, simulation): actives = self.config["active"] self.number_of_nodes = len(simulation.graph.nodes) self.number_of_edges = len(simulation.graph.edges) e = self.number_of_edges n = self.number_of_nodes if "average_orientation" in actives: sum_of_orientation = 0 for node_a, node_b in simulation.graph.edges: actor_a = simulation.graph.nodes[node_a]["actor"] actor_b = simulation.graph.nodes[node_b]["actor"] sum_of_orientation += actor_a.orientation(actor_b) self.average_orientation = -1 if e == 0 else float((1 / e) * sum_of_orientation) if "graph_density" in actives: self.graph_density = nx.density(simulation.graph) if "graph_transitivity" in actives: self.graph_transitivity = nx.transitivity(simulation.graph) def flush(self, n, ): with open(self.path, "a+") as f: data = {n: {k: self.__dict__[k] for k in self.__dict__ if k in self.config["active"]}} yaml.dump(data=data, stream=f) class Simulation: def __init__(self, config): self._config = config self._name = self._config.get("name", "Not Defined") self._paths = {"snapshot_root": "./snapshots/", "picture_root": "./pictures/", "stat_root": "./stats/"} self._create_paths() # changes the _paths variable!!! self._num_of_nodes = self._config.get("nodes") self._snapshot_number = 0 self._draw_number = 0 self._stats = Stats(name=self._name, path=self._paths["stat_root"], config=self._config.get("stats")) self.graph = self._create_graph() self.n = 0 def _create_paths(self): for key in self._paths: cur_path = self._paths[key] n = 0 if not os.path.exists(cur_path): os.mkdir(cur_path) test_path = "{root}{n}".format(root=cur_path, n=n) while os.path.exists(test_path): if not [s for s in os.listdir(test_path) if self._name in s]: log.debug("Didn't found a File in the directory.") break n += 1 test_path = "{root}{n}".format(root=cur_path, n=n) cur_path = test_path if not os.path.exists(cur_path): os.mkdir(cur_path) self._paths.update({key: cur_path}) def update(self): log.info("Update Simulation: {}".format(self._name)) actions = self._generate_action() for action in actions: for sub_action in action: if sub_action["name"] is "remove_edge": log.debug("Remove Edge") self._remove_edge_(sub_action) elif sub_action["name"] is "add_edge": log.debug("Add Edge") self._add_edge(sub_action) elif sub_action["name"] is "add_node": log.debug("Add Node") self.graph.add_node() elif sub_action["name"] is "remove_node": log.debug("Remove Node") self.graph.remove_node(sub_action["node_x"]) self.n += 1 def _remove_edge_(self, action): node_x = action["node_x"] node_z = action["node_z"] if self.graph.has_edge(node_x, node_z): self.graph.remove_edge(node_x, node_z) def _add_edge(self, action): node_x = action["node_x"] node_z = action["node_z"] if not self.graph.has_edge(node_x, node_z): self.graph.add_edge(node_x, node_z) def _generate_action(self): result = [] for edge in self.graph.edges: for conf in self._config.get("rules"): result.append(Rules.create_actions_by_name(edge=edge, graph=self.graph, conf=conf)) return result def stats(self): log.info("Creates Stats: {}".format(self._name)) self._stats.update(self) self._stats.flush(self.n) def create_snapshot(self): log.info("Creates Snapshot: {}_{}".format(self._name, self._snapshot_number)) write_yaml(self.graph, BASE_PATH_LAYOUT.format(self._paths["snapshot_root"], self._name, "yml")) self._snapshot_number += 1 def draw(self): log.info("Drawing Graph") #plt.subplot(212) #nx.draw(self.graph) #plt.savefig(BASE_PATH_LAYOUT.format(self._paths["picture_root"], # "_".join([self._name, str(self._draw_number)]), # "pdf")) self._draw_number += 1 def _create_graph(self): return self._populate_graph(self._generate_graph()) def _generate_graph(self): settings = self._config.get("graph").get("generator_function") function_name = settings.get("name") options = dict(settings.get("options", {})) options.update({"n": self._num_of_nodes}) return Graphs.func_by_name(function_name)(**options) def _populate_graph(self, graph): actor_settings = self._config.get("actor") gen_settings = actor_settings.get("generator_function") dis_settings = actor_settings.get("distribution_function") gen_function_name = gen_settings.get("name") gen_options = gen_settings.get("options") dis_function_name = dis_settings.get("name") log.debug(dis_function_name) dis_options = dict(dis_settings.get("options", {})) # Makes a copy because i don't want a mutable config. dis_options.update({"graph": graph}) positions = Distributions.func_by_name(dis_function_name)(**dis_options) actors = [Actors.func_by_name(gen_function_name)(**gen_options) for x in range(len(graph.nodes))] log.info("Populate Graph with Actors.") for pos, actor in zip(positions, actors): actor = Actor(actor) graph.nodes[pos]["actor"] = actor return graph
StarcoderdataPython
3516271
EDA_URL = "https://eda.ru"
StarcoderdataPython
9663344
''' Todo list schemas ''' from pydantic import BaseModel class ListInput(BaseModel): ''' List model for input data ''' list_name: str def to_orm(self): return dict(name=self.list_name) class ListSchema(ListInput): ''' List model to represent data from base ''' list_id: int @classmethod def from_orm(cls, orm_obj): return cls(list_id=orm_obj.id, list_name=orm_obj.name) class ItemInput(BaseModel): ''' Item model for input data ''' todo_item_name: str def to_orm(self): return dict(name=self.todo_item_name) class ItemSchema(ItemInput): ''' Item model to represent data from base ''' todo_item_id: int @classmethod def from_orm(cls, obj): return cls(todo_item_id=obj.id, todo_item_name=obj.name)
StarcoderdataPython
1935040
"""This solves problem #387 of Project Euler (https://projecteuler.net). Harshad Numbers Problem 387 A Harshad or Niven number is a number that is divisible by the sum of its digits. 201 is a Harshad number because it is divisible by 3 (the sum of its digits.) When we truncate the last digit from 201, we get 20, which is a Harshad number. When we truncate the last digit from 20, we get 2, which is also a Harshad number. Let's call a Harshad number that, while recursively truncating the last digit, always results in a Harshad number a right truncatable Harshad number. Also: 201/3=67 which is prime. Let's call a Harshad number that, when divided by the sum of its digits, results in a prime a strong Harshad number. Now take the number 2011 which is prime. When we truncate the last digit from it we get 201, a strong Harshad number that is also right truncatable. Let's call such primes strong, right truncatable Harshad primes. You are given that the sum of the strong, right truncatable Harshad primes less than 10000 is 90619. You are given that the sum of the strong, right truncatable Harshad primes less than 10^8 is 130459097. Find the sum of the strong, right truncatable Harshad primes less than 10^14. """ from collections import defaultdict from itertools import takewhile, count from helpers import chronometric from mathext import is_prime, digit_sum EXPONENT = 14 LIMIT = 10 ** (EXPONENT - 1) harshad_numbers = defaultdict(list) harshad_numbers[0] += [1, 2, 3, 4, 5, 6, 7, 8, 9] harshad_strong_right_truncatable_primes = [] def right_truncatable_harshad_numbers(): for ex in takewhile(lambda x: x <= EXPONENT, count(start=1)): for h in harshad_numbers[ex - 1]: k = 10 * h for d in range(10): candidate = k + d if not (candidate % digit_sum(candidate)): harshad_numbers[ex].append(candidate) yield candidate def is_strong(h): return is_prime(h / digit_sum(h)) @chronometric def sum_strong_right_truncatable_harshad_primes(): result = 0 for h in takewhile(lambda x: x < LIMIT, right_truncatable_harshad_numbers()): if is_strong(h): for d in range(1, 10, 2): candidate = 10 * h + d if is_prime(candidate): result += candidate return result def run_application(): solution, elapsed = sum_strong_right_truncatable_harshad_primes() print('Solution =', solution) print('Runtime =', elapsed, 'seconds') if __name__ == '__main__': run_application() # last line of code
StarcoderdataPython
6465264
<reponame>BrentG-1849260/PyVoxelizer import sys import os import numpy as np from ctypes import cdll, Structure, c_float class Point3(Structure): _fields_ = [ ("x", c_float), ("y", c_float), ("z", c_float) ] class Triangle3(Structure): _fields_ = [ ("v1", Point3), ("v2", Point3), ("v3", Point3) ] triangle_lib = None script_dir = os.path.dirname(os.path.realpath(__file__)) try: if sys.platform.startswith('linux') and sys.maxsize == 9223372036854775807: file_path_library = os.path.join(script_dir, 'triangleCube_linux64.so') if os.path.exists(file_path_library): triangle_lib = cdll.LoadLibrary(file_path_library) elif sys.platform.startswith("win") and sys.maxsize == 2147483647: file_path_library = os.path.join(script_dir, 'triangleCube_win32.so') if os.path.exists(file_path_library): triangle_lib = cdll.LoadLibrary(file_path_library) except OSError: triangle_lib = None """ Code conversion into python from: 'https://github.com/erich666/GraphicsGems/blob/master/gemsiii/triangleCube.c' """ INSIDE = 0 OUTSIDE = 1 EPS = 1e-5 # EPS = 0.0 # print(EPS) def cross_product(a, b): return ( a[1] * b[2] - a[2] * b[1], -a[0] * b[2] + a[2] * b[0], a[0] * b[1] - a[1] * b[0]) def sign3(point): sign_code = 0 if point[0] < EPS: sign_code |= 4 if point[0] > -EPS: sign_code |= 32 if point[1] < EPS: sign_code |= 2 if point[1] > -EPS: sign_code |= 16 if point[2] < EPS: sign_code |= 1 if point[2] > -EPS: sign_code |= 8 return sign_code def lerp(alpha, a, b): return a + alpha * (b - a) class Triangle(object): """ @type v1: numpy.ndarray @type v2: numpy.ndarray @type v3: numpy.ndarray """ def __init__(self): """ """ self.v1 = 0 self.v2 = 0 self.v3 = 0 def set(self, vertex_1, vertex_2, vertex_3): """ @type vertex_1: numpy.ndarray @type vertex_2: numpy.ndarray @type vertex_3: numpy.ndarray """ self.v1 = vertex_1 self.v2 = vertex_2 self.v3 = vertex_3 def min(self, index): if self.v1[index] < self.v2[index] and self.v1[index] < self.v3[index]: return self.v1[index] elif self.v2[index] < self.v3[index]: return self.v2[index] else: return self.v3[index] def max(self, index): if self.v1[index] > self.v2[index] and self.v1[index] > self.v3[index]: return self.v1[index] elif self.v2[index] > self.v3[index]: return self.v2[index] else: return self.v3[index] def vertexes_to_c_triangle(vertex_1, vertex_2, vertex_3): return Triangle3( Point3(vertex_1[0], vertex_1[1], vertex_1[2]), Point3(vertex_2[0], vertex_2[1], vertex_2[2]), Point3(vertex_3[0], vertex_3[1], vertex_3[2]) ) def face_plane(point): """ Which of the six face-plane(s) is point P outside of? @type point: numpy.ndarray | (float, float, float) """ face_plane_code = 0 if point[0] >= .5: face_plane_code |= 0x01 if point[0] < -.5: face_plane_code |= 0x02 if point[1] >= .5: face_plane_code |= 0x04 if point[1] < -.5: face_plane_code |= 0x08 if point[2] >= .5: face_plane_code |= 0x10 if point[2] < -.5: face_plane_code |= 0x20 return face_plane_code def bevel_2d(point): """ Which of the twelve edge plane(s) is point P outside of? """ edge_plane_code = 0 if point[0] + point[1] >= 1.0: edge_plane_code |= 0x001 if point[0] - point[1] >= 1.0: edge_plane_code |= 0x002 if -point[0] + point[1] > 1.0: edge_plane_code |= 0x004 if -point[0] - point[1] > 1.0: edge_plane_code |= 0x008 if point[0] + point[2] >= 1.0: edge_plane_code |= 0x010 if point[0] - point[2] >= 1.0: edge_plane_code |= 0x020 if -point[0] + point[2] > 1.0: edge_plane_code |= 0x040 if -point[0] - point[2] > 1.0: edge_plane_code |= 0x080 if point[1] + point[2] >= 1.0: edge_plane_code |= 0x100 if point[1] - point[2] >= 1.0: edge_plane_code |= 0x200 if -point[1] + point[2] > 1.0: edge_plane_code |= 0x400 if -point[1] - point[2] > 1.0: edge_plane_code |= 0x800 return edge_plane_code def bevel_3d(point): """ Which of the eight corner plane(s) is point P outside of? """ corner_plane_code = 0 if (point[0] + point[1] + point[2]) >= 1.5: corner_plane_code |= 0x01 if (point[0] + point[1] - point[2]) >= 1.5: corner_plane_code |= 0x02 if (point[0] - point[1] + point[2]) >= 1.5: corner_plane_code |= 0x04 if (point[0] - point[1] - point[2]) >= 1.5: corner_plane_code |= 0x08 if (-point[0] + point[1] + point[2]) > 1.5: corner_plane_code |= 0x10 if (-point[0] + point[1] - point[2]) > 1.5: corner_plane_code |= 0x20 if (-point[0] - point[1] + point[2]) > 1.5: corner_plane_code |= 0x40 if (-point[0] - point[1] - point[2]) > 1.5: corner_plane_code |= 0x80 return corner_plane_code def check_point(point_a, point_b, alpha, mask): """ Test the point "alpha" of the way from P1 to P2 See if it is on a face of the cube Consider only faces in "mask" """ plane_point_x = lerp(alpha, point_a[0], point_b[0]) plane_point_y = lerp(alpha, point_a[1], point_b[1]) plane_point_z = lerp(alpha, point_a[2], point_b[2]) plane_point = (plane_point_x, plane_point_y, plane_point_z) return face_plane(plane_point) & mask def check_line(point_a, point_b, outcode_diff): """ /* Compute intersection of P1 --> P2 line segment with face planes */ /* Then test intersection point to see if it is on cube face */ /* Consider only face planes in "outcode_diff" */ /* Note: Zero bits in "outcode_diff" means face line is outside of */ """ if (0x01 & outcode_diff) != 0: if check_point(point_a, point_b, (0.5 - point_a[0])/(point_b[0] - point_a[0]), 0x3e) == INSIDE: return INSIDE if (0x02 & outcode_diff) != 0: if check_point(point_a, point_b, (-0.5 - point_a[0])/(point_b[0] - point_a[0]), 0x3d) == INSIDE: return INSIDE if (0x04 & outcode_diff) != 0: if check_point(point_a, point_b, (0.5 - point_a[1])/(point_b[1] - point_a[1]), 0x3b) == INSIDE: return INSIDE if (0x08 & outcode_diff) != 0: if check_point(point_a, point_b, (-0.5 - point_a[1])/(point_b[1] - point_a[1]), 0x37) == INSIDE: return INSIDE if (0x10 & outcode_diff) != 0: if check_point(point_a, point_b, (0.5 - point_a[2])/(point_b[2] - point_a[2]), 0x2f) == INSIDE: return INSIDE if (0x20 & outcode_diff) != 0: if check_point(point_a, point_b, (-0.5 - point_a[2])/(point_b[2] - point_a[2]), 0x1f) == INSIDE: return INSIDE return OUTSIDE def point_triangle_intersection(p, t): """ Test if 3D point is inside 3D triangle @type p: list[float] @type t: Triangle """ # /* First, a quick bounding-box test: */ # /* If P is outside triangle bbox, there cannot be an intersection. */ # add/sub EPS as buffer to avoid an floating point issue if p[0] > t.max(0) + EPS: return OUTSIDE if p[1] > t.max(1) + EPS: return OUTSIDE if p[2] > t.max(2) + EPS: return OUTSIDE if p[0] < t.min(0) - EPS: return OUTSIDE if p[1] < t.min(1) - EPS: return OUTSIDE if p[2] < t.min(2) - EPS: return OUTSIDE # /* For each triangle side, make a vector out of it by subtracting vertexes; */ # /* make another vector from one vertex to point P. */ # /* The crossproduct of these two vectors is orthogonal to both and the */ # /* signs of its X,Y,Z components indicate whether P was to the inside or */ # /* to the outside of this triangle side. */ vect12 = np.subtract(t.v1, t.v2) vect1h = np.subtract(t.v1, p) cross12_1p = cross_product(vect12, vect1h) sign12 = sign3(cross12_1p) # /* Extract X,Y,Z signs as 0..7 or 0...63 integer */ vect23 = np.subtract(t.v2, t.v3) vect2h = np.subtract(t.v2, p) cross23_2p = cross_product(vect23, vect2h) sign23 = sign3(cross23_2p) vect31 = np.subtract(t.v3, t.v1) vect3h = np.subtract(t.v3, p) cross31_3p = cross_product(vect31, vect3h) sign31 = sign3(cross31_3p) # /* If all three cross product vectors agree in their component signs, */ # /* then the point must be inside all three. */ # /* P cannot be OUTSIDE all three sides simultaneously. */ if (sign12 & sign23 & sign31) == 0: return OUTSIDE return INSIDE def t_c_intersection(triangle): """ /**********************************************/ /* This is the main algorithm procedure. */ /* Triangle t is compared with a unit cube, */ /* centered on the origin. */ /* It returns INSIDE (0) or OUTSIDE(1) if t */ /* intersects or does not intersect the cube. */ /**********************************************/ @type triangle: Triangle """ # long v1_test,v2_test,v3_test; # float d,denom; # Point3 vect12,vect13,norm; # Point3 hitpp,hitpn,hitnp,hitnn; # /* First compare all three vertexes with all six face-planes */ # /* If any vertex is inside the cube, return immediately! */ v1_test = face_plane(triangle.v1) v2_test = face_plane(triangle.v2) v3_test = face_plane(triangle.v3) if v1_test == INSIDE: return INSIDE if v2_test == INSIDE: return INSIDE if v3_test == INSIDE: return INSIDE # /* If all three vertexes were outside of one or more face-planes, */ # /* return immediately with a trivial rejection! */ if (v1_test & v2_test & v3_test) != INSIDE: return OUTSIDE # /* Now do the same trivial rejection test for the 12 edge planes */ v1_test |= bevel_2d(triangle.v1) << 8 v2_test |= bevel_2d(triangle.v2) << 8 v3_test |= bevel_2d(triangle.v3) << 8 if (v1_test & v2_test & v3_test) != INSIDE: return OUTSIDE # /* Now do the same trivial rejection test for the 8 corner planes */ v1_test |= bevel_3d(triangle.v1) << 24 v2_test |= bevel_3d(triangle.v2) << 24 v3_test |= bevel_3d(triangle.v3) << 24 if (v1_test & v2_test & v3_test) != INSIDE: return OUTSIDE # /* If vertex 1 and 2, as a pair, cannot be trivially rejected */ # /* by the above tests, then see if the v1-->v2 triangle edge */ # /* intersects the cube. Do the same for v1-->v3 and v2-->v3. */ # /* Pass to the intersection algorithm the "OR" of the outcode */ # /* bits, so that only those cube faces which are spanned by */ # /* each triangle edge need be tested. */ if (v1_test & v2_test) == 0: if check_line(triangle.v1, triangle.v2, v1_test | v2_test) == INSIDE: return INSIDE if (v1_test & v3_test) == 0: if check_line(triangle.v1, triangle.v3, v1_test | v3_test) == INSIDE: return INSIDE if (v2_test & v3_test) == 0: if check_line(triangle.v2, triangle.v3, v2_test | v3_test) == INSIDE: return INSIDE # /* By now, we know that the triangle is not off to any side, */ # /* and that its sides do not penetrate the cube. We must now */ # /* test for the cube intersecting the interior of the triangle. */ # /* We do this by looking for intersections between the cube */ # /* diagonals and the triangle...first finding the intersection */ # /* of the four diagonals with the plane of the triangle, and */ # /* then if that intersection is inside the cube, pursuing */ # /* whether the intersection point is inside the triangle itself. */ # /* To find plane of the triangle, first perform crossproduct on */ # /* two triangle side vectors to compute the normal vector. */ vect12 = np.subtract(triangle.v1, triangle.v2) vect13 = np.subtract(triangle.v1, triangle.v3) norm = cross_product(vect12, vect13) # /* The normal vector "norm" X,Y,Z components are the coefficients */ # /* of the triangles AX + BY + CZ + D = 0 plane equation. If we */ # /* solve the plane equation for X=Y=Z (a diagonal), we get */ # /* -D/(A+B+C) as a metric of the distance from cube center to the */ # /* diagonal/plane intersection. If this is between -0.5 and 0.5, */ # /* the intersection is inside the cube. If so, we continue by */ # /* doing a point/triangle intersection. */ # /* Do this for all four diagonals. */ d = norm[0] * triangle.v1[0] + norm[1] * triangle.v1[1] + norm[2] * triangle.v1[2] # /* if one of the diagonals is parallel to the plane, the other will intersect the plane */ denom = norm[0] + norm[1] + norm[2] hitpp = [0.0, 0.0, 0.0] if abs(denom) > EPS: # /* skip parallel diagonals to the plane; division by 0 can occur */ hitpp[0] = hitpp[1] = hitpp[2] = d / denom if abs(hitpp[0]) <= 0.5: if point_triangle_intersection(hitpp, triangle) == INSIDE: return INSIDE denom = norm[0] + norm[1] - norm[2] hitpn = [0.0, 0.0, 0.0] if abs(denom) > EPS: hitpn[0] = hitpn[1] = d / denom hitpn[2] = -hitpn[0] if abs(hitpn[0]) <= 0.5: if point_triangle_intersection(hitpn, triangle) == INSIDE: return INSIDE denom = norm[0] - norm[1] + norm[2] hitnp = [0.0, 0.0, 0.0] if abs(denom) > EPS: hitnp[0] = hitnp[2] = d / denom hitnp[1] = -hitnp[0] if abs(hitnp[0]) <= 0.5: if point_triangle_intersection(hitnp, triangle) == INSIDE: return INSIDE denom = norm[0] - norm[1] - norm[2] hitnn = [0.0, 0.0, 0.0] if abs(denom) > EPS: hitnn[0] = d / denom hitnn[1] = hitnn[2] = -hitnn[0] if abs(hitnn[0]) <= 0.5: if point_triangle_intersection(hitnn, triangle) == INSIDE: return INSIDE # /* No edge touched the cube; no cube diagonal touched the triangle. */ # /* We're done...there was no intersection. */ return OUTSIDE
StarcoderdataPython
11236434
def reverse_number(x): """ :type x: int :rtype: reversed number """ reverse = 0 while(x != 0): remainder = x % 10 reverse = reverse * 10 + remainder x //= 10 return print(f'The reversed number is:{reverse}') reverse_number(123)
StarcoderdataPython
11306256
import unittest from evo_tests.examples import ExampleLOC, ExampleLOTC, ExampleConfigurations, ExampleDealers from evo_json.convert_py_json.convert_trait import convert_from_pj_loc from evo_json.process_json.process_configuration import convert_config_to_dealer, convert_dealer_to_config class TestConvert(unittest.TestCase): def setUp(self): self.ex_loc = ExampleLOC() self.ex_lotc = ExampleLOTC() self.ex_config = ExampleConfigurations() self.ex_dealer = ExampleDealers() def test_convert_loc(self): self.assertEqual(convert_from_pj_loc(self.ex_loc.loc1), self.ex_lotc.lotc1) def test_convert_to_config(self): self.assertEqual(convert_dealer_to_config(self.ex_dealer.dealer_all_veg), self.ex_config.config) def test_convert_from_config(self): self.assertEqual(convert_config_to_dealer(self.ex_config.config), self.ex_dealer.dealer_all_veg)
StarcoderdataPython
12835310
#!/usr/bin/env python # coding: utf-8 # <a href="https://colab.research.google.com/github/nagi1995/sarcastic-comment-detection/blob/main/Sarcastic_Comments.ipynb" target="_parent"><img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/></a> # In[1]: from google.colab import drive drive.mount('/content/drive') # In[2]: get_ipython().system('ln -s /content/drive/MyDrive /mygdrive') # In[3]: get_ipython().system('ls /mygdrive') # In[4]: get_ipython().system('cp /mygdrive/Sarcasm_Headlines_Dataset_v2.json ./') get_ipython().system('cp /mygdrive/Sarcasm_Headlines_Dataset.json ./') # # Import Libraries # In[38]: import pandas as pd import numpy as np get_ipython().run_line_magic('matplotlib', 'inline') from matplotlib import pyplot as plt import seaborn as sns import re from collections import Counter from wordcloud import WordCloud, STOPWORDS from sklearn.preprocessing import OneHotEncoder, StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.linear_model import LogisticRegression from sklearn.metrics import roc_curve, confusion_matrix, auc, accuracy_score from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier import xgboost as xgb import pickle import cv2 import tensorflow as tf import tensorflow_hub as hub from tensorflow.keras.preprocessing.sequence import pad_sequences from tensorflow.keras.preprocessing.text import Tokenizer from tensorflow.keras.callbacks import * from tensorflow.keras import Model, Input, Sequential from datetime import datetime from tensorflow.keras import Input, Model from tensorflow.keras.layers import * from tensorflow.keras.utils import plot_model from google.colab.patches import cv2_imshow from tqdm import tqdm # In[1]: from prettytable import PrettyTable # In[6]: tf.__version__, xgb.__version__, cv2.__version__, hub.__version__ # # Load data # In[7]: test = pd.read_json("Sarcasm_Headlines_Dataset.json", lines=True) test.head() # In[8]: test.info() # In[9]: train = pd.read_json("Sarcasm_Headlines_Dataset_v2.json", lines=True) train.head() # In[10]: train.info() # In[11]: plt.figure() sns.countplot(data = train, x = "is_sarcastic") plt.title("Class distribution") plt.show() # In[12]: def length(phrase): return len(phrase.split()) # In[13]: train["length"] = train["headline"].apply(length) train.head() # In[14]: plt.figure() sns.displot(data = train, x = "length", kde = True) plt.title("distribution of number of words in headlines") plt.show() # In[15]: for i in [0, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100]: print("{0}th percentile is {1}".format(i, np.percentile(train["length"], i))) print() for i in [90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]: print("{0}th percentile is {1}".format(i, np.percentile(train["length"], i))) print() for i in [99, 99.10, 99.20, 99.30, 99.40, 99.50, 99.60, 99.70, 99.80, 99.90]: print("{0}th percentile is {1}".format(i, np.percentile(train["length"], i))) print() # In[16]: # Reference: https://stackoverflow.com/a/47091490/6645883 def decontracted(phrase): # specific phrase = re.sub(r"won\'t", "will not", phrase) phrase = re.sub(r"can\'t", "can not", phrase) # general phrase = re.sub(r"n\'t", " not", phrase) phrase = re.sub(r"\'re", " are", phrase) phrase = re.sub(r"\'s", " is", phrase) phrase = re.sub(r"\'d", " would", phrase) phrase = re.sub(r"\'ll", " will", phrase) phrase = re.sub(r"\'t", " not", phrase) phrase = re.sub(r"\'ve", " have", phrase) phrase = re.sub(r"\'m", " am", phrase) return phrase.lower() # In[17]: train["headline"] = train["headline"].apply(decontracted) test["headline"] = test["headline"].apply(decontracted) # In[18]: # Reference: # https://www.geeksforgeeks.org/generating-word-cloud-python/ def wordcloud_plot(df): comment_words = "" stopwords = set(STOPWORDS) # iterate through the csv file for val in df.headline: # typecaste each val to string val = str(val) # split the value tokens = val.split() # Converts each token into lowercase for i in range(len(tokens)): tokens[i] = tokens[i].lower() comment_words += " ".join(tokens)+" " wordcloud = WordCloud(width = 800, height = 800, background_color = "white", stopwords = stopwords, min_font_size = 10).generate(comment_words) # plot the WordCloud image plt.figure(figsize = (8, 8), facecolor = None) plt.imshow(wordcloud) plt.axis("off") plt.tight_layout(pad = 0) plt.show() # In[56]: wordcloud_plot(train) # In[57]: wordcloud_plot(test) # # BoW # In[19]: vectorizer = CountVectorizer(min_df = 10, max_df = 5000, ngram_range = (1, 3)) vectorizer.fit(train["headline"]) x_train = vectorizer.transform(train["headline"]) x_test = vectorizer.transform(test["headline"]) y_train = train["is_sarcastic"] y_test = test["is_sarcastic"] x_train.shape, x_test.shape # ### Logistic Regression # In[17]: model = LogisticRegression(n_jobs = -1) params = {"C" : [0.0001, .00033, .001, .0033, .01, .033, .1, .33, 1, 3.3, 10, 33, 100]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True) gridsearch.fit(x_train, y_train) # In[18]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_C']) results.head() # In[19]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_C'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.xscale("log") plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[73]: model = LogisticRegression(C = 1, max_iter = 200) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### Naive Bayes # In[83]: model = MultinomialNB(class_prior = [.5, .5]) params = {"alpha" : [0.0001, .00033, .001, .0033, .01, .033, .1, .33, 1, 3.3, 10, 33, 100]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True) gridsearch.fit(x_train, y_train) # In[84]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_alpha']) results.head() # In[85]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_alpha'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.xscale("log") plt.legend() plt.xlabel("alpha: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[21]: model = MultinomialNB(alpha = .033) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### Random Forest # In[94]: get_ipython().run_cell_magic('time', '', '\nmodel = RandomForestClassifier()\nparams = {"n_estimators" : [10, 50, 100, 150]}\n\ngridsearch = GridSearchCV(model, params, \n cv = 5, scoring = "accuracy", \n return_train_score = True, \n verbose = 1, n_jobs = -1)\ngridsearch.fit(x_train, y_train)') # In[96]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_n_estimators']) results.head() # In[98]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_n_estimators'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.legend() plt.xlabel("number of trees: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[23]: model = RandomForestClassifier(n_estimators = 50) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### GBDT # In[131]: model = xgb.XGBClassifier(verbosity = 1, use_label_encoder = False) params = {"n_estimators" : [10, 50, 100, 150], "max_depth" : [4, 8, 16, 32]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True, verbose = 1, n_jobs = -1) gridsearch.fit(x_train, y_train) # In[132]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results.head() # In[133]: hmap = results.pivot("param_max_depth", "param_n_estimators", "mean_train_score") sns.heatmap(hmap, linewidth = 1, annot = True) plt.ylabel("max_depth") plt.xlabel("n_estimators") plt.title("train accuracy in heatmap") plt.show() # In[134]: hmap = results.pivot("param_max_depth", "param_n_estimators", "mean_test_score") sns.heatmap(hmap, linewidth = 1, annot = True) plt.ylabel("max_depth") plt.xlabel("n_estimators") plt.title("cv accuracy in heatmap") plt.show() # In[24]: model = xgb.XGBClassifier(n_estimators = 150, max_depth = 32, verbosity = 1, use_label_encoder = False) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # # TFIDF # In[25]: vectorizer = TfidfVectorizer(min_df = 10, max_df = 5000, ngram_range = (1, 3)) vectorizer.fit(train["headline"]) x_train = vectorizer.transform(train["headline"]) x_test = vectorizer.transform(test["headline"]) y_train = train["is_sarcastic"] y_test = test["is_sarcastic"] x_train.shape, x_test.shape # ### Logistic Regression # In[109]: model = LogisticRegression(n_jobs = -1) params = {"C" : [0.0001, .00033, .001, .0033, .01, .033, .1, .33, 1, 3.3, 10, 33, 100]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True) gridsearch.fit(x_train, y_train) # In[110]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_C']) results.head() # In[111]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_C'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.xscale("log") plt.legend() plt.xlabel("C: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[26]: model = LogisticRegression(C = 3.3, max_iter = 200) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### Naive Bayes # In[115]: model = MultinomialNB(class_prior = [.5, .5]) params = {"alpha" : [0.0001, .00033, .001, .0033, .01, .033, .1, .33, 1, 3.3, 10, 33, 100]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True) gridsearch.fit(x_train, y_train) # In[116]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_alpha']) results.head() # In[117]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_alpha'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.xscale("log") plt.legend() plt.xlabel("alpha: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[27]: model = MultinomialNB(alpha = .01) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### Random Forest # In[121]: get_ipython().run_cell_magic('time', '', '\nmodel = RandomForestClassifier()\nparams = {"n_estimators" : [10, 50, 100, 150]}\n\ngridsearch = GridSearchCV(model, params, \n cv = 5, scoring = "accuracy", \n return_train_score = True, \n verbose = 1, n_jobs = -1)\ngridsearch.fit(x_train, y_train)') # In[122]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results = results.sort_values(['param_n_estimators']) results.head() # In[123]: train_auc= results['mean_train_score'] train_auc_std= results['std_train_score'] cv_auc = results['mean_test_score'] cv_auc_std= results['std_test_score'] K = results['param_n_estimators'] plt.plot(K, train_auc, "bo-", label='Train accuracy') plt.plot(K, cv_auc, "ro-", label='CV accuracy') plt.legend() plt.xlabel("number of trees: hyperparameter") plt.ylabel("accuracy") plt.title("Hyper parameter Vs accuracy plot") plt.grid() plt.show() # In[28]: model = RandomForestClassifier(n_estimators = 50) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # ### GBDT # In[125]: model = xgb.XGBClassifier(verbosity = 1, use_label_encoder = False) params = {"n_estimators" : [10, 50, 100, 150], "max_depth" : [4, 8, 16, 32]} gridsearch = GridSearchCV(model, params, cv = 5, scoring = "accuracy", return_train_score = True, verbose = 1, n_jobs = -1) gridsearch.fit(x_train, y_train) # In[126]: results = pd.DataFrame.from_dict(gridsearch.cv_results_) results.head() # In[127]: hmap = results.pivot("param_max_depth", "param_n_estimators", "mean_train_score") sns.heatmap(hmap, linewidth = 1, annot = True) plt.ylabel("max_depth") plt.xlabel("n_estimators") plt.title("train accuracy in heatmap") plt.show() # In[128]: hmap = results.pivot("param_max_depth", "param_n_estimators", "mean_test_score") sns.heatmap(hmap, linewidth = 1, annot = True) plt.ylabel("max_depth") plt.xlabel("n_estimators") plt.title("test accuracy in heatmap") plt.show() # In[29]: model = xgb.XGBClassifier(n_estimators = 150, max_depth = 32, verbosity = 1, use_label_encoder = False) model.fit(x_train, y_train) y_pred = model.predict(x_test) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # # Deep learning # In[50]: label_encoder = OneHotEncoder() label_encoder.fit(np.array(train["is_sarcastic"]).reshape(-1, 1)) y_train_ohe = label_encoder.transform(np.array(train["is_sarcastic"]).reshape(-1, 1)) y_test_ohe = label_encoder.transform(np.array(test["is_sarcastic"]).reshape(-1, 1)) y_train_ohe.shape, y_test_ohe.shape # In[51]: with open("/mygdrive/glove_vectors", "rb") as fi: glove_model = pickle.load(fi) glove_words = set(glove_model.keys()) # In[52]: t = Tokenizer() t.fit_on_texts(train["headline"]) encoded_train = t.texts_to_sequences(train["headline"]) encoded_test = t.texts_to_sequences(test["headline"]) max_length = 25 padded_train = pad_sequences(encoded_train, maxlen = max_length, padding = "post", truncating = "post") padded_test = pad_sequences(encoded_test, maxlen = max_length, padding = "post", truncating = "post") print(padded_train.shape, padded_test.shape, type(padded_train)) vocab_size = len(t.word_index) + 1 vocab_size # In[53]: embedding_matrix = np.zeros((vocab_size, 300)) # vector len of each word is 300 for word, i in t.word_index.items(): if word in glove_words: vec = glove_model[word] embedding_matrix[i] = vec embedding_matrix.shape # ### callbacks # In[26]: get_ipython().run_line_magic('load_ext', 'tensorboard') # In[54]: def checkpoint_path(): return "./model/weights.{epoch:02d}-{val_accuracy:.4f}.hdf5" def log_dir(): return "./logs/fit/" + datetime.now().strftime("%Y-%m-%d-%H:%M:%S") earlystop = EarlyStopping(monitor = "val_accuracy", patience = 7, verbose = 1, restore_best_weights = True, mode = 'max') reduce_lr = ReduceLROnPlateau(monitor = "val_accuracy", factor = .4642, patience = 3, verbose = 1, min_delta = 0.001, mode = 'max') # ### model building # In[55]: tf.keras.backend.clear_session() input = Input(shape = (max_length, ), name = "input") embedding = Embedding(input_dim = vocab_size, output_dim = 300, # glove vector size weights = [embedding_matrix], trainable = False)(input) lstm = LSTM(32)(embedding) flatten = Flatten()(lstm) dense = Dense(16, activation = None, kernel_initializer = "he_uniform")(flatten) dropout = Dropout(.25)(dense) activation = Activation("relu")(dropout) output = Dense(2, activation = "softmax", name = "output")(activation) model = Model(inputs = input, outputs = output) model.compile(optimizer = "adam", loss = "sparse_categorical_crossentropy", metrics = ["accuracy"]) plot_model(model, to_file = "./model.png", show_shapes = True) model.summary() # In[56]: cv2_imshow(cv2.imread("./model.png")) # In[57]: get_ipython().system('rm -rf ./logs/') get_ipython().run_line_magic('tensorboard', '--logdir logs/fit') # ### training model # In[58]: tensorboard_callback = TensorBoard(log_dir = log_dir(), histogram_freq = 1, write_images = True) checkpoint = ModelCheckpoint(filepath = checkpoint_path(), monitor='val_accuracy', verbose = 1, save_best_only = True, mode = "max") callbacks_list = [checkpoint, tensorboard_callback, earlystop, reduce_lr] history = model.fit(padded_train, y_train, validation_data = (padded_test, y_test), epochs = 30, batch_size = 32, callbacks = callbacks_list) # In[59]: plt.figure() L = len(history.history["loss"]) + 1 plt.plot(range(1, L), history.history["loss"], "bo-", label = "loss") plt.plot(range(1, L), history.history["accuracy"], "g*-", label = "accuracy") plt.plot(range(1, L), history.history["val_loss"], "y^-", label = "val_loss") plt.plot(range(1, L), history.history["val_accuracy"], "ro-", label = "val_accuracy") plt.legend() plt.xlabel("epoch") plt.grid() plt.show() # ### testing model # In[60]: y_pred_softmax = model.predict(padded_test) y_pred = [] for i in range(len(y_pred_softmax)): if y_pred_softmax[i][0] >= 0.5: y_pred.append(0) else: y_pred.append(1) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # # BERT encodings # ### creating BERT model # In[20]: max_length = 27 # In[21]: tf.keras.backend.clear_session() input_word_ids = Input(shape = (max_length,), dtype = tf.int32, name = "input_word_ids") input_mask = Input(shape = (max_length,), dtype = tf.int32, name = "input_mask") segment_ids = Input(shape = (max_length,), dtype = tf.int32, name = "segment_ids") bert_layer = hub.KerasLayer("https://tfhub.dev/tensorflow/bert_en_uncased_L-12_H-768_A-12/1", trainable = False) pooled_output, sequence_output = bert_layer([input_word_ids, input_mask, segment_ids]) bert_model = Model(inputs = [input_word_ids, input_mask, segment_ids], outputs = pooled_output) # In[22]: bert_model.summary() # In[23]: bert_model.output # ### tokenization # In[24]: vocab_file = bert_layer.resolved_object.vocab_file.asset_path.numpy() do_lower_case = bert_layer.resolved_object.do_lower_case.numpy() # In[25]: get_ipython().system('pip install sentencepiece') from tokenization import FullTokenizer # In[26]: tokenizer = FullTokenizer(vocab_file, do_lower_case) # In[27]: def my_tokens_util(series, max_length): x_tokens = np.zeros((series.shape[0], max_length)) x_mask = np.ones((series.shape[0], max_length)) x_segment = np.zeros((series.shape[0], max_length)) for i in range(series.shape[0]): tokens = tokenizer.tokenize(series.values[0]) if len(tokens) >= max_length - 2: tokens = tokens[: (max_length - 2)] tokens = ["[CLS]", *tokens, "[SEP]"] pe_tokens = np.array(tokenizer.convert_tokens_to_ids(tokens)) length = len(tokens) if length >= max_length: x_tokens[i] = pe_tokens[:max_length] else: x_tokens[i, :length] = pe_tokens x_mask[i, length:] = list(np.zeros(max_length - length)) return np.array(series), x_tokens, x_mask, x_segment # In[28]: X_train, X_train_tokens, X_train_mask, X_train_segment = my_tokens_util(train["headline"], max_length) X_test, X_test_tokens, X_test_mask, X_test_segment = my_tokens_util(test["headline"], max_length) # In[29]: pickle.dump((X_train, X_train_tokens, X_train_mask, X_train_segment, y_train),open('/mygdrive/train_data.pkl','wb')) pickle.dump((X_test, X_test_tokens, X_test_mask, X_test_segment, y_test),open('/mygdrive/test_data.pkl','wb')) # In[30]: X_train, X_train_tokens, X_train_mask, X_train_segment, y_train = pickle.load(open("/mygdrive/train_data.pkl", 'rb')) X_test, X_test_tokens, X_test_mask, X_test_segment, y_test = pickle.load(open("/mygdrive/test_data.pkl", 'rb')) # ### embeddings from BERT model # In[31]: X_train_pooled_output = bert_model.predict([X_train_tokens, X_train_mask, X_train_segment]) X_test_pooled_output = bert_model.predict([X_test_tokens, X_test_mask, X_test_segment]) # In[33]: pickle.dump((X_train_pooled_output, X_test_pooled_output),open('/mygdrive/final_output.pkl','wb')) # In[20]: X_train_pooled_output, X_test_pooled_output = pickle.load(open('/mygdrive/final_output.pkl', 'rb')) # In[21]: X_train_pooled_output.shape, X_test_pooled_output.shape, y_train.shape, y_test.shape # In[39]: scaler = StandardScaler() scaler.fit(X_train_pooled_output) x_train = scaler.transform(X_train_pooled_output) x_test = scaler.transform(X_test_pooled_output) x_train.shape, x_test.shape # ### training a NN with 768 features # In[45]: tf.keras.backend.clear_session() model = Sequential() model.add(Dense(128, activation = "relu", kernel_initializer = "he_uniform", input_shape = (768, ))) model.add(Dropout(.5)) model.add(Dense(32, activation = "relu", kernel_initializer = "he_uniform")) model.add(Dropout(.5)) model.add(Dense(2, activation = "softmax")) model.compile(loss = "sparse_categorical_crossentropy", optimizer = "adam", metrics = ["accuracy"]) plot_model(model, to_file = "./model.png", show_shapes = True) model.summary() # In[46]: cv2_imshow(cv2.imread("./model.png")) # In[ ]: get_ipython().run_line_magic('tensorboard', '--logdir logs/fit') # In[47]: tensorboard_callback = TensorBoard(log_dir = log_dir(), histogram_freq = 1, write_images = True) checkpoint = ModelCheckpoint(filepath = checkpoint_path(), monitor='val_accuracy', verbose = 1, save_best_only = True, mode = "max") callbacks_list = [checkpoint, tensorboard_callback, earlystop, reduce_lr] history = model.fit(x_train, y_train, validation_data = (x_test, y_test), epochs = 30, batch_size = 32, callbacks = callbacks_list) # In[48]: plt.figure() L = len(history.history["loss"]) + 1 plt.plot(range(1, L), history.history["loss"], "bo-", label = "loss") plt.plot(range(1, L), history.history["accuracy"], "g*-", label = "accuracy") plt.plot(range(1, L), history.history["val_loss"], "y^-", label = "val_loss") plt.plot(range(1, L), history.history["val_accuracy"], "ro-", label = "val_accuracy") plt.legend() plt.xlabel("epoch") plt.grid() plt.show() # ### testing model # In[49]: y_pred_softmax = model.predict(x_test) y_pred = [] for i in range(len(y_pred_softmax)): if y_pred_softmax[i][0] >= 0.5: y_pred.append(0) else: y_pred.append(1) print("Accuracy:", 100*accuracy_score(y_test, y_pred)) cm = confusion_matrix(y_test, y_pred) sns.heatmap(cm, annot = True, fmt = "d") plt.xlabel("predicted label") plt.ylabel("actual label") plt.title("test confusion matrix") plt.show() # In[3]: p = PrettyTable(["Model", "Test Accuracy"]) p.add_row(["BoW with Logistic Regression", "91.3287%"]) p.add_row(["BoW with Naive Bayes", "86.9557%"]) p.add_row(["BoW with Random Forest", "99.8951%"]) p.add_row(["BoW with XGBoost", "87.9815%"]) p.add_row(["TF-IDF with Logistic Regression", "90.7671%"]) p.add_row(["TF-IDF with Naive Bayes", "87.0979%"]) p.add_row(["TF-IDF with Random Forest", "99.9063%"]) p.add_row(["TF-IDF with XGBoost", "91.1752%"]) p.add_row(["Neural network with Glove Embeddings", "99.9925%"]) print(p) # In[ ]:
StarcoderdataPython
9714724
<gh_stars>0 # Given n pairs of parentheses, write a function to generate all combinations of well-formed parentheses. # For example, given n = 3, a solution set is: # [ # "((()))", # "(()())", # "(())()", # "()(())", # "()()()" # ] # Backtracking - Problem solving approach that incrementally builds candidates to the solution, and # abandons a candidate ("backtracks") as soon as it fails some constraint. It takes a # complex problem with a wide decision space and narrows it down to the choices we make at # each stack frame of our recurssion. class Solution: def generateParenthesis(self, n: int) -> 'list[str]': res = [] self.generate('', n, n, res) return res def generate(self, p, left, right, res): if left: self.generate(p + '(', left - 1, right, res) if right > left: # can only close a bracket that has been opened, hence right > left constraint self.generate(p + ')', left, right - 1, res) if not right: res.append(p)
StarcoderdataPython
8173614
from __future__ import print_function, absolute_import, division from collections import abc from jinja2 import Template class VCSConfiguration(object): def __init__(self, name, options, global_variables, special_variables, commit_message=None, finish_release=True, include_files=None, include_all_files=False): self.name = name if commit_message is None: commit_message = \ "Version updated {{ current_version }} -> {{ new_version }}" commit_message_template = Template(commit_message) template_variables = {} template_variables.update(global_variables) template_variables.update(special_variables) self.commit_message = commit_message_template.render( **template_variables) self.finish_release = finish_release self.options = {} for key, value in options.items(): if isinstance(value, abc.Sequence): value_template = Template(value) self.options[key] = value_template.render(**template_variables) else: self.options[key] = value self.options.update(special_variables) self.include_files = include_files or [] self.include_all_files = include_all_files @classmethod def from_dict(cls, vcs_configuration_dict, global_variables, special_variables): return VCSConfiguration( vcs_configuration_dict['name'], vcs_configuration_dict.get('options', {}), global_variables, special_variables, vcs_configuration_dict.get( 'commit_message', None), vcs_configuration_dict.get( 'finish_release', True ), vcs_configuration_dict.get( 'include_files', None ), vcs_configuration_dict.get( 'include_all_files', False ) )
StarcoderdataPython
3351201
<filename>rosbag_decode/bag-decode.py from rosbags.rosbag2 import Reader from rosbags.serde import deserialize_cdr from datetime import datetime path = "rosbag_decode/test-logs/rosbag2_2021_06_01-19_24_43" def list_topics_test(): with Reader(path) as reader: # topic and msgtype information is available on .topics dict for topic, msgtype in reader.topics.items(): print(topic, msgtype) def deser_msg_test(): with Reader(path) as reader: for topic, msgtype, timestamp, rawdata in reader.messages(['/waverunner/sys/ctrl/scenario_sys_time']): msg = deserialize_cdr(rawdata, msgtype) #decode from nanosecond timestamp readable_timestamp = datetime.fromtimestamp(timestamp*1E-9) print(readable_timestamp) print(msg.data) if __name__ == "__main__": #deser_msg_test() list_topics_test()
StarcoderdataPython
4924883
#!/usr/bin/env python # -*- coding: utf-8 -*- """ 同数のデータ点数を持つS, Tに対し、点ごとの対応が既知であるとして 点群間の平行移動・回転・スケーリングを推定する """ from typing import Tuple from dataclasses import dataclass import numpy as np __all__ = ["MatchingResult", "minL2"] @dataclass class MatchingResult: cost: float offsetX: float offsetY: float angle: float scale: float movingCenterX: float movingCenterY: float def minL2(S: np.ndarray, T: np.ndarray) -> MatchingResult: r"""Find (s, R, t) \in Sim(2) which minimizes sum_i || sRS_i + t - T_i ||^2. Parameters ========== S: (N, 2) array_like Moving pointcloud. T: (N, 2) array_like Reference pointcloud. Returns ======= result: MatchingResult """ Smean = np.mean(S, axis=0) Tmean = np.mean(T, axis=0) S_ = S - Smean T_ = T - Tmean S_F2 = (S_ ** 2).sum() T_F2 = (T_ ** 2).sum() offset = Tmean - Smean U, s, V = np.linalg.svd(S_.T @ T_) rot = V @ U.T angle = np.arctan2(rot[1,0], rot[0,0]) trS = np.sum(s) scale = trS / S_F2 cost = T_F2 - trS ** 2 / S_F2 return MatchingResult( cost, offset[0], offset[1], angle, scale, Smean[0], Smean[1] )
StarcoderdataPython
187497
<reponame>debprakash/emr-view<filename>emr_mine_python_scipts/pq_tree/common_intervals.py ''' Created on Dec 29, 2010 @author: patnaik ''' #def naive_common_interval(pi_AB, C_prev = None): # n = len(pi_AB) # C = set() # for x in xrange(n-1): # l = u = pi_AB[x] # for y in xrange(x+1, n): # l = min(l, pi_AB[y]) # u = max(u, pi_AB[y]) # if u - l - (y - x) == 0 and (C_prev == None or (l,u) in C_prev): # C.add((l,u)) # return C def naive_common_interval_order(pi_AB, pos_map, C_prev): n = len(pi_AB) C = set() for x in xrange(n): l = u = pi_AB[x] for y in xrange(x, n): l = min(l, pi_AB[y]) u = max(u, pi_AB[y]) if (u - l) - (y - x) == 0 and (C_prev == None or (l,u) in C_prev): pos_map[(l,u)].append(x) C.add((l,u)) return C from pygraph.classes.digraph import digraph from pygraph.algorithms.critical import transitive_edges def reducegraph(edges): g = digraph() nodes = set() for (x, y) in edges: if x not in nodes: nodes.add(x) g.add_node(x) if y not in nodes: nodes.add(y) g.add_node(y) g.add_edge((x,y)) for (x,y) in transitive_edges(g): if (x,y) in edges: edges.remove((x,y)) return edges def make_tree(C, orders): node_map = dict([(tuple(C[k]), k) for k in xrange(len(C))]) #print node_map nodef = lambda x: node_map[C[x]] edges = set() for i in xrange(len(C)): for j in xrange(len(C)): if i == j: continue if C[i][0] <= C[j][0] and C[i][1] >= C[j][1]: edges.add((nodef(i), nodef(j))) edges = reducegraph(edges) edges = list(edges) edges.sort() for (i, j) in edges: print C[i], "->", C[j] def inv_map(seq_1, seq_2): #O(n) m = {} for i in xrange(len(seq_1)): m[seq_1[i]] = i return [m[x] for x in seq_2] def common_intervals(sequences, pos_map): C = None for i in xrange(0,len(sequences)): pi_AB = inv_map(sequences[0], sequences[i]) C = naive_common_interval_order(pi_AB, pos_map, C) #C = naive_common_interval(pi_AB, C) if C == None: C = [] else: C = list(C) C.sort() return C class Node(object): def __init__(self): self.parent = None self.value = 0 self.type = 'L' self.children = [] from collections import defaultdict if __name__ == '__main__': print 'Common interval' sequences = [(1,2,3,4,5,6,7,8,9), (9,8,4,5,6,7,1,2,3), (1,2,3,8,7,4,5,6,9)] #sequences = [(1,2,3,4,5,6), (3,1,2,4,5,6), (2,3,1,4,5,6)] #sequences = [(1,2,3), (2,3,1), (3,2,1)] #sequences = [(1,2,3,4), (2,1,3,4), (1,2,4,3), (2,1,4,3)] #sequences = [(1,2,3,4,5), (1,2,3,4,5)] pos_map = defaultdict(list) C = common_intervals(sequences, pos_map) for (l,u) in C: print "(%d,%d)" % (l, u), print " locations =", pos_map[(l,u)] #make_tree(C, pos_map)
StarcoderdataPython
221007
import os import sys import tempfile import subprocess def compute_metrics_from_files(path_to_reference, path_to_candidate, trec_eval_bin_path): trec_run_fd, trec_run_path = tempfile.mkstemp(text=True) try: with os.fdopen(trec_run_fd, 'w') as tmp: for line in open(path_to_candidate): qid, pid, rank = line.split() rank = int(rank) tmp.write(f"{qid} Q0 {pid} {rank} {1/rank} System\n") result = subprocess.check_output([ trec_eval_bin_path, "-c", "-mndcg_cut.10", path_to_reference, trec_run_path]) print(result) finally: os.remove(trec_run_path) def main(): """Command line: python test_trec_eval.py <path_to_reference_file> <path_to_candidate_file> """ print("Eval Started") if len(sys.argv) == 3: path_to_reference = sys.argv[1] path_to_candidate = sys.argv[2] trec_eval_bin_path = "./data/trec_eval" assert os.path.exists(trec_eval_bin_path) compute_metrics_from_files(path_to_reference, path_to_candidate, trec_eval_bin_path) else: print('Usage: test_trec_eval.py <reference ranking> <candidate ranking>') exit() if __name__ == '__main__': main()
StarcoderdataPython
9632094
import os from werkzeug.utils import secure_filename from flask import( Flask, jsonify, send_from_directory, request, redirect, url_for ) from flask_sqlalchemy import SQLAlchemy app = Flask(__name__) app.config.from_object("project.config.Config") db = SQLAlchemy(app) class User(db.Model): __tablename__ = "users" id = db.Column(db.Integer, primary_key=True) name = db.Column(db.String(128), unique=True, nullable=False) image = db.Column(db.String(128), nullable=False) def __init__(self, id, name, image): self.id = id self.name = name self.image = image @app.route("/") def hello_world(): return jsonify(hello="world") @app.route("/static/<path:filename>") def staticfiles(filename): return send_from_directory(app.config["STATIC_FOLDER"], filename) @app.route("/media/<path:filename>") def mediafiles(filename): return send_from_directory(app.config["MEDIA_FOLDER"], filename) @app.route("/upload", methods=["GET", "POST"]) def user(): if ('image' not in request.files): resp = jsonify({'message' : 'No file part in the request'}) resp.status_code = 400 return resp else: try: id = request.values['id'] name = request.values['name'] image = request.files['image'] filename = secure_filename(image.filename) if filename == '': resp = jsonify({'message' : 'No file selected for uploading'}) resp.status_code = 400 return resp else: image.save(os.path.join(app.config["MEDIA_FOLDER"], filename)) user = User(id, name, filename) db.session.add(user) db.session.commit() return jsonify({'id': id,'name': name, 'image': filename}), 201 except Exception as e: return jsonify({'message' : e}), 400
StarcoderdataPython
1701897
<gh_stars>1-10 """ Real time AEmotion (env: 'torch') """ # %% Import libs import pyaudio import numpy as np # import pickle # import librosa import keract import sys sys.path.append('..') from src.modeling.tcn.tcn import TCN import os import tensorflow as tf os.environ['CUDA_VISIBLE_DEVICES'] = '-1' from tensorflow.keras.models import model_from_json from sklearn.preprocessing import MinMaxScaler # import matplotlib.pyplot as plt # from IPython.display import clear_output from datetime import datetime as dtime import opensmile import paho.mqtt.client as mqtt #import the client1 def process(): # %% Initialize MQTT def on_message(client, userdata, message): print("message received " ,str(message.payload.decode("utf-8"))) print("message topic=",message.topic) # print("message qos=",message.qos) # print("message retain flag=",message.retain) def on_log(client, userdata, level, buf): print("log: ",buf) broker_address="172.16.31.10" broker_port = 2494 keepalive = 60 print("Inicializando usuário MQTT: Labinter02") client = mqtt.Client("Labinter02") #create new instance client.on_message=on_message #attach function to callback # client.on_log=on_log client.username_pw_set("participants", "prp1nterac") print("Conectando ao servidor ....") client.connect(broker_address, broker_port, keepalive) client.loop_start() #start the loop # %% Define the trained model # dataset = 'DEMOS' dataset = 'RAVDESS' # dataset = 'TESS' # dataset = 'RAVDESS_TESS' # dataset = 'AEMOTION' print("Carregando rede neural ASEmotion") # load model from file with open('model/model_smile_' +dataset+ '.json', 'r') as json_file: loaded_json = json_file.read() model = model_from_json(loaded_json, custom_objects={'TCN': TCN}) # restore weights model.load_weights('model/weights_smile_' +dataset+ '.h5') # %% Pre-process input # Config for opensmile feature set smile = opensmile.Smile( feature_set=opensmile.FeatureSet.eGeMAPSv02, feature_level=opensmile.FeatureLevel.LowLevelDescriptors, ) def input_prep(data, smile): X_smile = np.empty(shape=(1, 296, 25)) df_x = smile.process_signal(data, 16000) scaler = MinMaxScaler() X_smile[0,:,:] = scaler.fit_transform(df_x.values) return X_smile # %% Identificar dispositivos de audio do sistema------------------------- # os.system('cls||clear') print('Lista de dispositivos:') print('') p = pyaudio.PyAudio() info = p.get_host_api_info_by_index(0) numdevices = info.get('deviceCount') for i in range(0, numdevices): if (p.get_device_info_by_host_api_device_index(0, i).get('maxInputChannels')) > 0: print(" Dispositivo de audio ID ", i, " - ", p.get_device_info_by_host_api_device_index(0, i).get('name')) # %% Time streaming ####################################################### RATE = 16000 # Sample rate nn_time = 3 # signal length send to the network CHUNK = round(RATE*nn_time) # Frame size #input stream setup print('') print('') device_ch = input('Digite o número correspondente a ID dispositivo de audio: ') # pyaudio.paInt16 : representa resolução em 16bit stream=p.open(format = pyaudio.paFloat32, rate=RATE, channels=1, input_device_index = int(device_ch), input=True, frames_per_buffer=CHUNK) print('') print('') print('Inicializando modelo:') print('') print('....') print('') labels = ['Guilt', 'Disgust', 'Happy', 'Neutral', 'Anger', 'Surprise', 'Sad'] history_pred = [] hist_time = [] while True: data = np.frombuffer(stream.read(CHUNK), dtype=np.float32) x_infer = input_prep(data, smile) pred = model.predict(x_infer) predi = pred.argmax(axis=1) # history_pred = np.append(history_pred, predi[0]) # hist_time = np.append(hist_time, dtime.now().strftime('%H:%M:%S')) print("Classificação: " + labels[predi[0]] + " Volume do som: " + str(round(max(data), 2))+")") # GET ACTIVATIONS layername = 'activation' if dataset == 'DEMOS': layername = 'activation_1' l_weights = keract.get_activations(model, x_infer, layer_names=layername) w_values = np.squeeze(l_weights[layername]) # SEND TO MQTT BrOKER client.publish('hiper/labinter99_', labels[predi[0]]) str_display = "" for k in range(len(labels)): topic_pub = "hiper/labinter_" + labels[k] # client.subscribe(topic_pub) client.publish(topic_pub, str(w_values[k])) str_display = str_display + topic_pub + " " # SEND TO MQTT BrOKER # for k in range(len(labels)): # mqtt_client.publish_single(float(w_values[k]), topic=labels[k]) # plot # clear_output(wait=True) # plt.plot(w_values, 'b-') # plt.title(labels[predi[0]]) # plt.yticks(ticks=np.arange(0,1.1,0.1)) # plt.xticks(ticks=np.arange(0,7), labels=labels) # plt.xlabel('Emotion') # plt.ylabel('NN certainty') # plt.grid() # plt.show() # %% Plot history h=plt.figure() plt.scatter(range(0,len(history_pred)), history_pred) plt.yticks(range(0,7) , labels=labels) # plt.xticks(range(0,len(history_pred)) , labels=hist_time, rotation=90) plt.xlabel('Time (each dot represents a ' + str(nn_time)+ 's iteration)') plt.ylabel('Emotion') plt.title('AEmotion classification') plt.grid() plt.show() h.savefig("hist.pdf", bbox_inches='tight') if __name__ == "__main__": process() # %%
StarcoderdataPython
4953290
"""add credits billing fields Revision ID: <KEY> Revises: <KEY> Create Date: 2021-02-17 18:42:21.656755 """ import sqlalchemy as sa from alembic import op # revision identifiers, used by Alembic. revision = "<KEY>" down_revision = "<KEY>" branch_labels = None depends_on = None def upgrade() -> None: op.create_index( "jobs_fully_billed_index", "jobs", [sa.text("(((payload ->> 'fully_billed'::text))::boolean)")], ) def downgrade() -> None: op.drop_index("jobs_fully_billed_index", table_name="jobs")
StarcoderdataPython
3384104
<filename>stats-backend/api2/migrations/0003_rename_offer_offer_properties.py # Generated by Django 3.2.12 on 2022-04-14 11:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('api2', '0002_auto_20220414_1143'), ] operations = [ migrations.RenameField( model_name='offer', old_name='offer', new_name='properties', ), ]
StarcoderdataPython
12855914
<gh_stars>1-10 from django.apps import AppConfig class NativeShortuuidConfig(AppConfig): name = 'native_shortuuid'
StarcoderdataPython
11300233
<filename>python codes/FizzBuzz.py i=0 n = int(input("Enter the number of lines : ")) while i<n:i+=1;print('FizzBuzz'[i%~2&4:12&8+i%~4]or i)
StarcoderdataPython
8084800
<gh_stars>0 def main(): import interactive_plotter as ip import itertools import numpy as np x = np.linspace(-1, 1, 31) y = np.linspace(-1, 1, 29) xc = x[:-1] + 0.5 * np.diff(x) yc = y[:-1] + 0.5 * np.diff(y) time_step = 0.03 delta_t = time_step X, Y = np.meshgrid(x, y) Xc, Yc = np.meshgrid(xc, yc) def f(x, y): return np.sin(x + 3 * y) * np.cos(2 * x - y) def df_dx(x, y): return np.cos(x + 3 * y) * np.cos(2 * x - y) - 2 * np.sin(x + 3 * y) * np.sin(2 * x - y) def df_dy(x, y): return 3 * np.cos(x + 3 * y) * np.cos(2 * x - y) + np.sin(x + 3 * y) * np.sin(2 * x - y) velocity_x = 1 velocity_y = 1 offset_x = 0 offset_y = 0 C=f(Xc + offset_x, Yc + offset_y) U=df_dx(Xc + offset_x, Yc + offset_y) V=df_dy(Xc + offset_x, Yc + offset_y) iFig = ip.InteractiveFigure(figsize=(4,4)) iAx = iFig.get_interactive_axes() iAx.axes.axis("off") iQr = iAx.vector_field(Xc, Yc, U, V, color='black', scale=10) iQm = iAx.scalar_field(X, Y, C) iAx.axes.autoscale() iAx.axes.set_aspect('equal') iFig.render(pause=1) index = 0 while True: if offset_y > 2 * np.pi: break offset_x += velocity_x * delta_t offset_y += velocity_y * delta_t C=f(Xc + offset_x, Yc + offset_y) U=df_dx(Xc + offset_x, Yc + offset_y) V=df_dy(Xc + offset_x, Yc + offset_y) iQm.plot(C=C) iQr.plot(U=U, V=V) iFig.render(pause=time_step) iFig.savefig('fields.png', index=index, bbox_inches='tight', pad_inches = 0) index +=1 if __name__ == '__main__': main()
StarcoderdataPython
6627998
<filename>swift_undelete/tests/test_middleware.py #!/usr/bin/env python # Copyright (c) 2014 SwiftStack, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest from swift.common import swob from swift_undelete import middleware as md class FakeApp(object): def __init__(self): self.responses = [] # fill in later self._calls = [] def __call__(self, env, start_response): req = swob.Request(env) self._calls.append(( req.method, req.path, # mutable dict; keep a copy so subsequent calls can't change it swob.HeaderKeyDict(req.headers))) if len(self.responses) > 1: resp = self.responses.pop(0) else: resp = self.responses[0] status = resp['status'] headers = resp.get('headers', []) body_iter = resp.get('body_iter', []) start_response(status, headers) return body_iter @property def calls(self): """ Returns the calls received by this application as a list of (method, path) pairs. """ return [x[:2] for x in self._calls] @property def call_headers(self): """ Returns the list of headers received by this application as it was called """ return [x[2] for x in self._calls] @property def calls_with_headers(self): """ Returns the calls received by this application as a list of (method, path, headers) tuples. """ return self._calls class TestConfigParsing(unittest.TestCase): def test_defaults(self): app = FakeApp() undelete = md.filter_factory({})(app) self.assertEqual(undelete.trash_prefix, ".trash-") self.assertEqual(undelete.trash_lifetime, 86400 * 90) self.assertFalse(undelete.block_trash_deletes) def test_non_defaults(self): app = FakeApp() undelete = md.filter_factory({ 'trash_prefix': '.heap__', 'trash_lifetime': '31536000', 'block_trash_deletes': 'on', })(app) self.assertEqual(undelete.trash_prefix, ".heap__") self.assertEqual(undelete.trash_lifetime, 31536000) self.assertTrue(undelete.block_trash_deletes) class MiddlewareTestCase(unittest.TestCase): """ Just a base class for other test cases. Some setup, some utility methods. Nothing too exciting. """ def setUp(self): self.app = FakeApp() self.undelete = md.filter_factory({})(self.app) def call_mware(self, req, expect_exception=False): status = [None] headers = [None] def start_response(s, h, ei=None): status[0] = s headers[0] = h body_iter = self.undelete(req.environ, start_response) body = '' caught_exc = None try: for chunk in body_iter: body += chunk except Exception as exc: if expect_exception: caught_exc = exc else: raise headerdict = swob.HeaderKeyDict(headers[0]) if expect_exception: return status[0], headerdict, body, caught_exc else: return status[0], headerdict, body class TestPassthrough(MiddlewareTestCase): def test_account_passthrough(self): """ Account requests are passed through unmodified. """ self.app.responses = [{'status': '200 OK'}] req = swob.Request.blank('/v1/a') req.method = 'DELETE' status, _, _ = self.call_mware(req) self.assertEqual(status, "200 OK") self.assertEqual(self.app.calls, [('DELETE', '/v1/a')]) def test_container_passthrough(self): """ Container requests are passed through unmodified. """ self.app.responses = [{'status': '200 OK'}] req = swob.Request.blank('/v1/a/c') req.method = 'DELETE' status, _, _ = self.call_mware(req) self.assertEqual(status, "200 OK") self.assertEqual(self.app.calls, [('DELETE', '/v1/a/c')]) class TestObjectDeletion(MiddlewareTestCase): def test_deleting_nonexistent_object(self): # If the object isn't there, ignore the 404 on COPY and pass the # DELETE request through. It might be an expired object, in which case # the object DELETE will actually get it out of the container listing # and free up some space. self.app.responses = [ # COPY request {'status': '404 Not Found'}, # trash-versions container creation request # # Ideally we'd skip this stuff, but we can't tell the difference # between object-not-found (404) and # destination-container-not-found (also 404). {'status': '202 Accepted'}, # trash container creation request {'status': '202 Accepted'}, # second COPY attempt: {'status': '404 Not Found'}, # DELETE request {'status': '404 Not Found', 'headers': [('X-Exophagous', 'ungrassed')]}] req = swob.Request.blank('/v1/a/elements/Cf') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "404 Not Found") self.assertEqual(headers.get('X-Exophagous'), 'ungrassed') self.assertEqual(self.app.calls, [('COPY', '/v1/a/elements/Cf'), ('PUT', '/v1/a/.trash-elements-versions'), ('PUT', '/v1/a/.trash-elements'), ('COPY', '/v1/a/elements/Cf'), ('DELETE', '/v1/a/elements/Cf')]) def test_copy_to_existing_trash_container(self): self.undelete.trash_lifetime = 1997339 self.app.responses = [ # COPY request {'status': '201 Created', 'headers': [('X-Sir-Not-Appearing-In-This-Response', 'yup')]}, # DELETE request {'status': '204 No Content', 'headers': [('X-Decadation', 'coprose')]}] req = swob.Request.blank('/v1/MY_account/cats/kittens.jpg') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "204 No Content") # the client gets whatever the DELETE coughed up self.assertNotIn('X-Sir-Not-Appearing-In-This-Response', headers) self.assertEqual(headers['X-Decadation'], 'coprose') self.assertEqual(2, len(self.app.calls)) # First, we performed a COPY request to save the object into the trash. method, path, headers = self.app.calls_with_headers[0] self.assertEqual(method, 'COPY') self.assertEqual(path, '/v1/MY_account/cats/kittens.jpg') self.assertEqual(headers['Destination'], '.trash-cats/kittens.jpg') self.assertEqual(headers['X-Delete-After'], str(1997339)) # Second, we actually perform the DELETE request (and send that # response to the client unaltered) method, path, headers = self.app.calls_with_headers[1] self.assertEqual(method, 'DELETE') self.assertEqual(path, '/v1/MY_account/cats/kittens.jpg') def test_copy_to_existing_trash_container_no_expiration(self): self.undelete.trash_lifetime = 0 self.app.responses = [ # COPY request {'status': '201 Created'}, # DELETE request {'status': '204 No Content'}] req = swob.Request.blank('/v1/MY_account/cats/kittens.jpg') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "204 No Content") self.assertEqual(2, len(self.app.calls)) method, path, headers = self.app.calls_with_headers[0] self.assertEqual(method, 'COPY') self.assertEqual(path, '/v1/MY_account/cats/kittens.jpg') self.assertNotIn('X-Delete-After', headers) def test_copy_to_missing_trash_container(self): self.app.responses = [ # first COPY attempt: trash container doesn't exist {'status': '404 Not Found'}, # trash-versions container creation request {'status': '201 Created'}, # trash container creation request {'status': '201 Created'}, # second COPY attempt: {'status': '404 Not Found'}, # DELETE request {'status': '204 No Content'}] req = swob.Request.blank('/v1/a/elements/Lv') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "204 No Content") self.assertEqual(self.app.calls, [('COPY', '/v1/a/elements/Lv'), ('PUT', '/v1/a/.trash-elements-versions'), ('PUT', '/v1/a/.trash-elements'), ('COPY', '/v1/a/elements/Lv'), ('DELETE', '/v1/a/elements/Lv')]) def test_copy_error(self): self.app.responses = [ # COPY attempt: some mysterious error with some headers {'status': '503 Service Unavailable', 'headers': [('X-Scraggedness', 'Goclenian')], 'body_iter': ['dunno what happened boss']}] req = swob.Request.blank('/v1/a/elements/Te') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "503 Service Unavailable") self.assertEqual(headers.get('X-Scraggedness'), 'Goclenian') self.assertIn('what happened', body) self.assertEqual(self.app.calls, [('COPY', '/v1/a/elements/Te')]) def test_copy_missing_trash_container_error_creating_vrs_container(self): self.app.responses = [ # first COPY attempt: trash container doesn't exist {'status': '404 Not Found'}, # trash-versions container creation request: failure! {'status': '403 Forbidden', 'headers': [('X-Pupillidae', 'Barry')], 'body_iter': ['oh hell no']}] req = swob.Request.blank('/v1/a/elements/U') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "403 Forbidden") self.assertEqual(headers.get('X-Pupillidae'), 'Barry') self.assertIn('oh hell no', body) self.assertEqual(self.app.calls, [('COPY', '/v1/a/elements/U'), ('PUT', '/v1/a/.trash-elements-versions')]) def test_copy_missing_trash_container_error_creating_container(self): self.app.responses = [ # first COPY attempt: trash container doesn't exist {'status': '404 Not Found'}, # trash-versions container creation request {'status': '201 Created'}, # trash container creation request: fails! {'status': "418 I'm a teapot", 'headers': [('X-Body-Type', 'short and stout')], 'body_iter': ['here is my handle, here is my spout']}] req = swob.Request.blank('/v1/a/elements/Mo') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "418 I'm a teapot") self.assertEqual(headers.get('X-Body-Type'), 'short and stout') self.assertIn('spout', body) self.assertEqual(self.app.calls, [('COPY', '/v1/a/elements/Mo'), ('PUT', '/v1/a/.trash-elements-versions'), ('PUT', '/v1/a/.trash-elements')]) def test_delete_from_trash(self): """ Objects in trash containers don't get saved. """ self.app.responses = [{'status': '204 No Content'}] req = swob.Request.blank('/v1/a/.trash-borkbork/bork') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "204 No Content") self.assertEqual(self.app.calls, [('DELETE', '/v1/a/.trash-borkbork/bork')]) def test_delete_from_trash_blocked(self): self.undelete.block_trash_deletes = True req = swob.Request.blank('/v1/a/.trash-borkbork/bork') req.method = 'DELETE' status, headers, body = self.call_mware(req) self.assertEqual(status, "405 Method Not Allowed") self.assertEqual(self.app.calls, [])
StarcoderdataPython
263753
<gh_stars>1-10 # Generated by Django 2.0.2 on 2018-04-04 17:50 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('voter', '0018_convert_badlines'), ] operations = [ migrations.DeleteModel( name='BadLine', ), migrations.AlterUniqueTogether( name='badlinerange', unique_together={('filename', 'first_line_no')}, ), ]
StarcoderdataPython
5038721
<filename>src/modules/general.py<gh_stars>1-10 import datetime import typing import discord from discord.ext import commands import config import database import utils class GeneralCommands(commands.Cog, name="General"): def __init__(self, bot): self.bot = bot @commands.command(name="donate") async def donate(self, ctx): """ Donate to this bot UwU """ await ctx.send( "Please go to this site to donate: https://www.patreon.com/RandomGhost (PayPal only).\n" "I also accept Bitcoin and other crypto payments. Please contact me (RandomGhost#0666) " f"or on the support server (`{ctx.prefix}support`) for other payment methods.\n" "Thanks! <a:thanks:699004469610020964>" ) @commands.command(name="invite", aliases=["invitelink"]) async def invite_bot(self, ctx): """ Get the invite link for the bot's support server """ await ctx.send( "Bot invite link: https://top.gg/bot/506878658607054849 <:uwu:575372762583924757>" ) @commands.command(name="creator", aliases=["support"]) async def creator(self, ctx): """ Get to know the creator of this bot, so you can annoy him to fix the damn bugs! """ dev1 = ctx.bot.get_user(252297314394308608) or await ctx.bot.fetch_user(252297314394308608) dev2 = ctx.bot.get_user(532123382280355860) or await ctx.bot.fetch_user(532123382280355860) await ctx.send( f"Bot created by {dev1} and co-developed by {dev2}.\n" "Ask them for new features/bugs! <a:thanks:699004469610020964>\n" "To join support server, use `=help` or go to https://support.pinocchiobot.xyz." ) @commands.command(name="vote", enabled=(config.DBL_TOKEN is not None)) async def vote_bot(self, ctx): """ Vote for this bot! Isn't Pinocchio kawaii!?! Vote for her and make her happy """ await ctx.send( f"Vote for this bot and then claim your reward with `{ctx.prefix}claimreward`!\n" "**Vote URL:** https://top.gg/bot/506878658607054849/vote\n" "You can vote once every 12 hours. " "You get 2x rewards for voting on weekends.\n" ) @commands.command(name="poll") async def poll(self, ctx, title: str, *options): """ Create a reaction poll """ if len(options) < 2: return await ctx.send("Please add atleast 2 options!") if len(options) > 10: return await ctx.send("Max 10 options!") desc = "" for i, opt in enumerate(options): desc += ":{0}: : {1}\n".format(utils.num_to_emote[i], opt) embed = discord.Embed(title=title, color=ctx.author.color, description=desc) embed.set_footer( text=f"Poll made by: {ctx.author}", icon_url=ctx.author.avatar_url, ) msg = await ctx.send(embed=embed) for i, _ in enumerate(options): await msg.add_reaction(utils.num_to_uni_emote[i]) @commands.command(name="whois") async def whois(self, ctx, user: typing.Optional[discord.Member]): """ Get information about a user """ user = user or ctx.author embed = discord.Embed(title=f"{user.name}#{user.discriminator}", color=user.colour) tdelta = datetime.datetime.now() - user.joined_at embed.add_field(name="User ID", value=user.id) if user.nick: embed.add_field(name="Nickname", value=user.nick) if user.top_role: embed.add_field(name="Top Role", value=user.top_role) embed.add_field(name="Status", value=user.status) embed.add_field(name="Is Bot", value=user.bot) _perms = user.guild_permissions embed.add_field(name="Is Administrator", value=_perms.administrator) roles = user.roles[1:] if len(roles) > 0: role_str = ", ".join([i.name for i in roles]) else: role_str = "No roles set." embed.add_field(name="Roles", inline=False, value=role_str) embed.add_field( name="Account Created On", inline=False, value=discord.utils.snowflake_time(user.id).strftime("%A, %d %B, %Y. %I:%M:%S %p"), ) embed.add_field( name="In Server For", inline=False, value=f"{tdelta.days} days, {tdelta.seconds//3600} hours", ) perms_list = [ "kick_members", "ban_members", "manage_channels", "manage_guild", "add_reactions", "view_audit_log", "priority_speaker", "send_messages", "send_tts_messages", "manage_messages", "attach_files", "read_message_history", "mention_everyone", "embed_links", "external_emojis", "connect", "speak", "mute_members", "deafen_members", "move_members", "use_voice_activation", "change_nickname", "manage_nicknames", "manage_roles", "manage_webhooks", "manage_emojis", ] perms = [] for i in perms_list: if getattr(_perms, i): perms += [i.replace("_", " ").capitalize()] if perms == []: perms = ["No special permissions."] perms_str = ", ".join(perms) embed.add_field(name="Permissions", value=perms_str, inline=False) embed.set_thumbnail(url=user.avatar_url) await ctx.send(embed=embed) @commands.command(name="say") async def say(self, ctx, channel: typing.Optional[discord.TextChannel], *, text: str): """ Speak as Pinocchio. """ channel = channel or ctx.channel if not channel.permissions_for(ctx.author).send_messages: return await ctx.send( "You don't have the permissions to send messages in that channel!" ) if not channel.permissions_for(ctx.author).mention_everyone: text = discord.utils.escape_mentions(text) await channel.send(text) @commands.command(name="worldleaderboard", aliases=["wlb"]) async def world_leaderboard(self, ctx): """ View the world's leaderboard """ engine = await database.prepare_engine() query = """ SELECT id,M.member,tier,COALESCE(wsum,0) as waifu_sum,wallet,(COALESCE(wsum, 0)+wallet) as total FROM members M LEFT JOIN (select member_id, sum(purchased_for) as wsum from purchased_waifu group by member_id) PW ON (M.id = PW.member_id) WHERE wallet > 0 OR COALESCE(wsum, 0) > 0 ORDER BY total DESC LIMIT 50; """ results = await engine.fetch_all(query=query) txt = generate_leaderboard_text(ctx.bot, results) embed = discord.Embed( title=":trophy: World Leaderboards", colour=ctx.author.color, description=txt, ) top_user_name = "" for result in results: top_user = ctx.bot.get_user(result["member"]) if top_user is not None: top_user_name = top_user.name break embed.set_footer( text=f"Current World Champion is {top_user_name}.", ) await ctx.send(embed=embed) @commands.command(name="guildleaderboard", aliases=["glb"]) @utils.ensure_bot_ready() async def guild_leaderboard(self, ctx): """ View this guild's leaderboard """ engine = await database.prepare_engine() mlist = tuple([m.id for m in ctx.guild.members]) query = f""" SELECT id,M.member,tier,COALESCE(wsum,0) as waifu_sum,wallet,(COALESCE(wsum, 0)+wallet) as total FROM members M LEFT JOIN ( SELECT member_id,sum(purchased_for) as wsum FROM purchased_waifu WHERE guild = {ctx.guild.id} GROUP BY member_id) PW ON (M.id = PW.member_id) WHERE (wallet > 0 OR COALESCE(wsum, 0) > 0) AND M.member in {mlist} ORDER BY total DESC LIMIT 10; """ results = await engine.fetch_all(query=query) txt = generate_leaderboard_text(ctx.bot, results) embed = discord.Embed( title=":trophy: Guild Leaderboards", colour=ctx.author.color, description=txt, ) top_user_name = "" for result in results: top_user = ctx.bot.get_user(result["member"]) if top_user is not None: top_user_name = top_user.name break embed.set_footer( text=f"Current Guild Champion is {top_user_name}.", ) await ctx.send(embed=embed) def generate_leaderboard_text(client, results): rtxt = [] i = 1 for j in results: user = client.get_user(j["member"]) if user is None: continue if i <= 3: medal = "" if i == 1: medal = ":first_place:" elif i == 2: medal = ":second_place:" elif i == 3: medal = ":third_place:" rtxt.append( f"**[{str(i).zfill(2)}] __{user.name}__ {medal}**\nWallet: " f"{j['wallet']}, Waifu Value: {j['waifu_sum']}, **Total: {j['total']}**" ) # noqa else: rtxt.append( f"**[{str(i).zfill(2)}] {user.name}**\nWallet: {j['wallet']}, " f"Waifu Value: {j['waifu_sum']}, **Total: {j['total']}**" ) # noqa i += 1 if i == 11: break return "\n".join(rtxt)
StarcoderdataPython
45449
<reponame>VictorAtPL/Pascal-VOC12_Class-segmentation_Tensorflow-2.0.0 from tensorflow import keras from tensorflow.keras.applications import VGG16 from tensorflow.keras.layers import Conv2D, Conv2DTranspose, Activation from AbstractModel import AbstractModel from common import load_sets_count, get_input_fn_and_steps_per_epoch, pascal_voc2012_segmentation_annotated_parser, \ pascal_voc2012_segmentation_not_annotated_parser from constants import CLASS_NO, INPUT_WIDTH, INPUT_HEIGHT, TFRECORDS_SAVE_PATH from models import fcn8 class Model(AbstractModel): sets_count = load_sets_count() def get_model(self, **kwargs) -> keras.Model: # img_input = Input(shape=(INPUT_HEIGHT, INPUT_WIDTH, 3)) # Encoder - Load VGG16 # input_tensor = img_input, encoder = VGG16(weights='imagenet', input_shape=(INPUT_HEIGHT, INPUT_WIDTH, 3), include_top=False, pooling=None) # Encoder - Get intermediate VGG16 layers output pool2 = encoder.get_layer('block2_pool').output # Encoder conv6 = (Conv2D(filters=1024, kernel_size=(7, 7), activation='relu', padding='same', name='block6_conv1'))( pool2) conv7 = (Conv2D(filters=1024, kernel_size=(1, 1), activation='relu', padding='same', name='block7_conv1'))( conv6) # Decoder fcn32 = Conv2DTranspose(CLASS_NO, kernel_size=(7, 7), strides=(4, 4), padding='same', name='block10_deconv3', use_bias=False)(conv7) output = Activation('softmax')(fcn32) model = keras.Model(encoder.input, output) return model @classmethod def get_input_fn_and_steps_per_epoch(cls, set_name, batch_size=None): parser_fn = pascal_voc2012_segmentation_annotated_parser if 'test' in set_name: parser_fn = pascal_voc2012_segmentation_not_annotated_parser return get_input_fn_and_steps_per_epoch(set_name, parser_fn, TFRECORDS_SAVE_PATH, batch_size, cls.sets_count)
StarcoderdataPython
1776055
<filename>examples/scripts/location/create_location_object.py<gh_stars>0 import pyaurorax def main(): loc = pyaurorax.Location(lat=51.0447, lon=-114.0719) print(loc) # ---------- if (__name__ == "__main__"): main()
StarcoderdataPython
1949618
import random import pygame pygame.init() screenx, screeny = 1000, 800 window = pygame.display.set_mode((screenx, screeny)) font = pygame.font.SysFont('Arial', 30) pygame.display.set_caption("Pong") # RGB black = (0, 0, 0) white = (255, 255, 255) red = (255, 0, 0) class Player: def __init__(self, x, y, points): self.x = x self.y = y self.points = points self.rect = pygame.Rect(self.x, self.y, 25, 100) def move(self, direction, speed): self.y += direction * speed if self.y <= 0: self.y = 0 elif self.y + 100 >= screeny: self.y = screeny - 100 self.rect = pygame.Rect(self.x, self.y, 25, 100) class Ball: def __init__(self, x, y, speed): self.x = x self.y = y self.speed = speed self.reflect_count = 0 self.x_direction = random.choice((-1, 1)) self.y_direction = random.choice((-1, 1)) self.rect = pygame.Rect(self.x, self.y, 25, 25) def move(self): self.x += self.x_direction * self.speed self.y += self.y_direction * self.speed self.rect = pygame.Rect(self.x, self.y, 25, 25) def reflect(self, p1, bot): if 0 >= self.y or self.y + 25 >= screeny: self.y_direction *= -1 if self.rect.colliderect(p1.rect) or self.rect.colliderect(bot.rect): self.x_direction *= -1 self.reflect_count += 1 if self.reflect_count >= 10 and self.speed < 10: self.reflect_count = 0 self.speed += 1 def check_win(self, p1, bot): reset = False if self.x + 25 <= 0: bot.points += 1 reset = True elif self.x >= screenx: p1.points += 1 reset = True return reset def redraw_game_window(): window.fill(black) p_points = font.render(str(p1.points), True, red) b_points = font.render(str(bot.points), True, red) speed = font.render(f"Speed: {ball.speed}", True, red) window.blit(p_points, (10, 10)) window.blit(b_points, (990 - len(str(bot.points)) * 15, 10)) window.blit(speed, (10, screeny - 35)) pygame.draw.rect(window, white, (ball.x, ball.y, 25, 25)) pygame.draw.rect(window, white, (p1.x, p1.y, 25, 100)) pygame.draw.rect(window, white, (bot.x, bot.y, 25, 100)) pygame.display.update() run = True ball = Ball(screenx // 2, screeny // 2 + 25, 5) p1 = Player(50, screeny // 2, 0) bot = Player(screenx - 75, screeny // 2, 0) while run: pygame.time.Clock().tick(60) keys = pygame.key.get_pressed() for event in pygame.event.get(): if event.type == pygame.QUIT: run = False if keys[pygame.K_UP]: p1.move(-1, 8) elif keys[pygame.K_DOWN]: p1.move(1, 8) if ball.speed <= 8: bot_speed = ball.speed else: bot_speed = 8 bot.move(ball.y_direction, bot_speed) if ball.check_win(p1, bot): ball = Ball(screenx // 2, screeny // 2 + 25, 5) p1 = Player(50, screeny // 2, p1.points) bot = Player(screenx - 75, screeny // 2, bot.points) ball.move() ball.reflect(p1, bot) redraw_game_window() pygame.quit()
StarcoderdataPython
1748304
from hypothesis import given from tests.utils import (BoundPortedEdgesPair, equivalence) from . import strategies @given(strategies.edges_pairs, strategies.edges_pairs) def test_basic(first_edges_pair: BoundPortedEdgesPair, second_edges_pair: BoundPortedEdgesPair) -> None: first_bound, first_ported = first_edges_pair second_bound, second_ported = second_edges_pair assert equivalence(first_bound == second_bound, first_ported == second_ported)
StarcoderdataPython