id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
6661948
<filename>base/decorators.py<gh_stars>0 import functools def abstract(f): @functools.wraps(f) def abstract(*args, **kwargs): f(*args, **kwargs) raise NotImplementedError() return abstract
StarcoderdataPython
4887460
<filename>tests/cache/test_cache_storage.py<gh_stars>0 import pytest from chocs_middleware.cache import InMemoryCacheStorage, CollectableInMemoryCacheStorage, ICacheStorage, CacheItem, \ CacheError def test_can_instantiate() -> None: # given instance = InMemoryCacheStorage() # then assert isinstance(instance, InMemoryCacheStorage) assert isinstance(instance, ICacheStorage) assert instance.is_empty def test_can_store_item() -> None: # given instance = InMemoryCacheStorage() # when instance.set(CacheItem("1", b"test_data")) # then assert "1" in instance._cache assert not instance.is_empty def test_can_get_item() -> None: # given instance = InMemoryCacheStorage() item = CacheItem("1", b"test_data") # when instance.set(item) retrieved = instance.get("1") # then assert retrieved == item def test_fail_to_get_item() -> None: # given instance = InMemoryCacheStorage() # then with pytest.raises(CacheError): instance.get("1") def test_can_delete_item() -> None: # given instance = CollectableInMemoryCacheStorage() item = CacheItem.empty("1") # when instance.set(item) # then assert not instance.is_empty instance.get(item.id) # when instance.collect(item) # then with pytest.raises(CacheError): instance.get(item.id) assert instance.is_empty
StarcoderdataPython
5167340
"""**Concrete implementations of** `torchdatasets.Dataset` **and** `torchdatasets.Iterable`. Classes below extend and/or make it easier for user to implement common functionalities. To use standard PyTorch datasets defined by, for example, `torchvision`, you can use `WrapDataset` or `WrapIterable` like this:: import torchdatasets import torchvision dataset = torchdatasets.datasets.WrapDataset( torchvision.datasets.MNIST("./data", download=True) ) After that you can use `map`, `apply` and other functionalities like you normally would with either `torchdatasets.Dataset` or `torchdatasets.Iterable`. """ import abc import functools import pathlib import typing from torch.utils.data import ChainDataset as TorchChain from torch.utils.data import ConcatDataset as TorchConcatDataset from torch.utils.data import Dataset as TorchDataset from torch.utils.data import IterableDataset as TorchIterable from torch.utils.data import TensorDataset as TorchTensorDataset from ._base import Base, MetaDataset, MetaIterable from .cachers import Memory try: from typing import GenericMeta except ImportError: # in python > 3.7, genericmeta doesn't exist class GenericMeta(type): pass try: from torch.utils.data import _typing class MetaIterableWrapper(MetaIterable, GenericMeta, _typing._DataPipeMeta): pass except ImportError: # for pytorch < 1.9 _typing does not exist class MetaIterableWrapper(MetaIterable): pass class _DatasetBase(Base): def __init__(self, concat_object, chain_object): self._maps = [] self._concat_object = concat_object self._chain_object = chain_object def map(self, function: typing.Callable): r"""**Map function to each element of dataset.** Function has no specified signature; it is user's responsibility to ensure it is taking correct arguments as returned from `__getitem__` (in case of `Dataset`) or `__iter__` (in case of `Iterable`). Parameters ---------- function: typing.Callable Function (or functor) taking arguments returned from `__getitem__` and returning anything. Returns ------- self """ self._maps.append(function) return self def apply(self, function): r"""**Apply function to every element of the dataset.** Specified function has to take Python generator as first argument. This generator yields consecutive samples from the dataset and the function is free to do whatever it wants with them. Other arguments will be forwarded to function. **WARNING:** This function returns anything that's returned from function and it's up to user to ensure correct pipeline functioning after using this transformation. **Example**:: class Dataset(torchdatasets.Dataset): def __init__(self, max: int): super().__init__() # This is necessary self.range = list(range(max)) def __getitem__(self, index): return self.range[index] def __len__(self): return len(self.range) def summation(generator): return sum(value for value in generator) summed_dataset = Dataset(101).apply(summation) # Returns 5050 Parameters ---------- function : typing.Callable Function (or functional object) taking item generator as first object and variable list of other arguments (if necessary). Returns ------- typing.Any Value returned by function """ return function((value for value in self)) def __or__(self, other): r"""**Concatenate {self} and another {self} compatible object.** During iteration, items from both dataset will be returned as `tuple`. Another object could be PyTorch's base class of this object. Length of resulting dataset is equal to `min(len(self), len(other))` Parameters ---------- other : {self} or PyTorch's base counterpart Dataset instance whose sample will be iterated over together Returns ------- {concat_object} Proxy object responsible for concatenation between samples. Can be used in the same manner as this object. """.format( self=self, concat_object=self._concat_object ) return self._concat_object((self, other)) def __add__(self, other): r"""**Chain {self} and another {self} compatible object.** During iteration, items from self will be returned first and items from other dataset after those. Length of such dataset is equal to `len(self) + len(other)` Parameters ---------- other : {self} or PyTorch's base counterpart Dataset whose sample will be yielded after this dataset. Returns ------- {chain_object} Proxy object responsible for chaining datasets. Can be used in the same manner as this object. """.format( self=self, chain_object=self._chain_object ) return self._chain_object((self, other)) class Iterable(TorchIterable, _DatasetBase, metaclass=MetaIterableWrapper): r"""`torch.utils.data.IterableDataset` **dataset with extended capabilities**. This class inherits from `torch.utils.data.IterableDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset>`__, co can be used in the same manner after inheritance. It allows user to perform following operations: - `map` - apply function to each element of dataset - `apply` - apply function to **all** elements of dataset - `filter` - return elements for which `predicate` returns `True` **Example**:: # Based on original PyTorch example class Dataset(torchdatasets.Iterable): def __init__(self, start: int, end: int): super().__init__() # This is necessary self.start: int = start self.end: int = end def __iter__(self): return iter(range(self.start, self.end)) # range(1,25) originally, mapped to range(13, 37) dataset = Dataset(1, 25).map(lambda value: value + 12) # Sample-wise concatenation, yields range(13, 37) and range(1, 25) for first, second in dataset | Dataset(1, 25): print(first, second) # 13 1 up to 37 25 """ @abc.abstractmethod def __iter__(self): pass def __init__(self): _DatasetBase.__init__(self, ConcatIterable, ChainIterable) self._filters = [] self._which = [0] def filter(self, predicate: typing.Callable): r"""**Filtered data according to** `predicate`. Values are filtered based on value returned after every operation (including `map`) specified before `filter`, for example:: dataset = ( ExampleIterable(0, 100) .map(lambda value: value + 50) .filter(lambda elem: elem % 2 == 0) ) Above will return elements `[50, 100]` divisible by `2`. Parameters ---------- predicate: Callable -> bool Function returning bool and taking single argument (which is whatever is returned from the dataset when `filter` is applied). If `True`, sample will be returned, otherwise it is skipped. Returns ------- Dataset Returns self """ self._which.append(len(self._maps)) self._filters.append(predicate) return self class MetaDatasetWrapper(MetaDataset, GenericMeta): pass class Dataset(TorchDataset, _DatasetBase, metaclass=MetaDatasetWrapper): r"""`torch.utils.data.Dataset` **with extended capabilities.** This class inherits from `torch.utils.data.Dataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset>`__, co can be used in the same manner after inheritance. It allows user to perform the following operations: - `cache` - cache all/part of data in memory or on disk - `map` - apply function to each element of dataset - `apply` - apply function to **all** elements of dataset - `reduce` - reduce dataset to single value with specified function **Important:** - Last cache which is able to hold sample is used. Does not matter whether it's in-memory or on-disk or user-specified. - Although multiple cache calls in different parts of `map` should work, users are encouraged to use it as rare as possible and possibly as late as possible for best performance. **Example**:: import torchvision from PIL import Image # Image loading dataset (use Files for more serious business) class Dataset(torchdatasets.Dataset): def __init__(self, path: pathlib.Path): super().__init__() # This is necessary self.files = [file for file in path.glob("*")] def __getitem__(self, index): return Image.open(self.files[index]) def __len__(self, index): return len(self.files) # Map PIL to Tensor and cache dataset dataset = Dataset("data").map(torchvision.transforms.ToTensor()).cache() # Create DataLoader as normally dataloader = torch.utils.data.DataLoader(dataset) """ def __init__(self): _DatasetBase.__init__(self, ConcatDataset, ConcatIterable) self._cachers = [] self._which = [] @abc.abstractmethod def __len__(self): pass @abc.abstractmethod def __getitem__(self, index): pass def cache(self, cacher: typing.Callable = None): r"""**Cache data in memory, disk or specify custom caching.** By default all samples are cached in memory. To change this behaviour specify `cacher` argument. Some `cacher` implementations can be found in `torchdatasets.cacher` module or you can provide your own by inheriting from `torchdatasets.cacher.Cacher` and implementing appropriate methods. Parameters ---------- cacher : torchdatasets.cacher.Cacher, optional Instance of `torchdatasets.cacher.Cacher` (or any other object with compatible interface). Check `cacher` module documentation for more information. Default: `torchdatasets.cacher.Memory` which caches data in-memory Returns ------- Dataset Returns self """ if cacher is None: cacher = Memory() self._cachers.append(cacher) self._which.append(len(self._maps)) return self def reduce(self, function: typing.Callable, initializer=None): r"""**Reduce dataset to single element with function.** Works like `functools.reduce <https://docs.python.org/3/library/functools.html#functools.reduce>`__. **Example**:: class Dataset(torchdatasets.Dataset): def __init__(self, max: int): super().__init__() # This is necessary self.range = list(range(max)) def __getitem__(self, index): return self.range[index] def __len__(self): return len(self.range) summed_dataset = Dataset(10).reduce(lambda x, y: x + y) # Returns 45 Parameters ---------- function : typing.Callable Two argument function returning single value used to `reduce` dataset. initializer: typing.Any, optional Value with which reduction will start. Returns ------- typing.Any Reduced value """ if initializer is None: return functools.reduce(function, (item for item in self)) return functools.reduce(function, (item for item in self), initializer) def reset(self, cache: bool = True, maps: bool = True): r"""**Reset dataset state.** `cache` and `maps` can be resetted separately. Parameters ---------- cache : bool, optional Reset current cache. Default: `True` maps : bool, optional Reset current disk cache. Default: `True` """ if cache: self._cachers = [] if maps: self._maps = [] ################################################################################ # # Dataset Concatenations # ################################################################################ class ConcatDataset(Dataset): r"""**Concrete** `torchdatasets.Dataset` **responsible for sample-wise concatenation.** This class is returned when `|` (logical or operator) is used on instance of `torchdatasets.Dataset` (original `torch.utils.data.Dataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.Dataset>`__ can be used as well). **Important:** This class is meant to be more of a proxy for `|` operator, you can use it directly though. **Example**:: dataset = ( torchdatasets.ConcatDataset([dataset1, dataset2, dataset3]) .map(lambda sample: sample[0] + sample[1] + sample[2])) ) Any `Dataset` methods can be used normally. Attributes ---------- datasets : List[Union[torchdatasets.Dataset, torch.utils.data.Dataset]] List of datasets to be concatenated sample-wise. """ def __init__(self, datasets: typing.List): super().__init__() self.datasets = datasets def __getitem__(self, index): return tuple(dataset[index] for dataset in self.datasets) def __len__(self): return min(len(dataset) for dataset in self.datasets) class ConcatIterable(Iterable): r"""**Concrete** `Iterable` **responsible for sample-wise concatenation.** This class is returned when `|` (logical or operator) is used on instance of `Iterable` (original `torch.utils.data.IterableDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.IterableDataset>`__ can be used as well). .. note:: This class is meant to be more of a proxy for `|` operator, you can use it directly though. **Example**:: dataset = ( torchdatasets.ConcatIterable([dataset1, dataset2, dataset3]) .map(lambda x, y, z: (x + y, z)) ) Any `IterableDataset` methods can be used normally. Attributes ---------- datasets : List[Union[torchdatasets.Iterable, torch.utils.data.IterableDataset]] List of datasets to be concatenated sample-wise. """ def __init__(self, datasets: typing.List): super().__init__() self.datasets = datasets def __iter__(self): yield from zip(*self.datasets) def __getitem__(self, index): return tuple(dataset[index] for dataset in self.datasets) def __len__(self): return min(len(dataset) for dataset in self.datasets) class ChainDataset(TorchConcatDataset, Dataset): r"""**Concrete** `torchdatasets.Dataset` **responsible for chaining multiple datasets.** This class is returned when `+` (logical or operator) is used on instance of `torchdatasets.Dataset` (original `torch.utils.data.Dataset` can be used as well). Acts just like PyTorch's `+` or rather `torch.utils.data.ConcatDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.ConcatDataset>`__ .. note:: This class is meant to be more of a proxy for `+` operator, you can use it directly though. **Example**:: # Iterate over 3 datasets consecutively dataset = torchdatasets.ChainDataset([dataset1, dataset2, dataset3]) Any `Dataset` methods can be used normally. Attributes ---------- datasets : List[Union[torchdatasets.Dataset, torch.utils.data.Dataset]] List of datasets to be chained. """ def __init__(self, datasets): Dataset.__init__(self) TorchConcatDataset.__init__(self, datasets) class ChainIterable(TorchChain, Iterable): r"""**Concrete** `torchdatasets.Iterable` **responsible for chaining multiple datasets.** This class is returned when `+` (logical or operator) is used on instance of `torchdatasets.Iterable` (original `torch.utils.data.Iterable` can be used as well). Acts just like PyTorch's `+` and `ChainDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.ChainDataset>`__. .. note:: This class is meant to be more of a proxy for `+` operator, you can use it directly though. **Example**:: # Iterate over 3 iterable datasets consecutively dataset = torchdatasets.ChainDataset([dataset1, dataset2, dataset3]) Any `Iterable` methods can be used normally. Attributes ---------- datasets : List[Union[torchdatasets.Iterable, torch.utils.data.IterableDataset]] List of datasets to be chained. """ def __init__(self, datasets): Iterable.__init__(self) TorchChain.__init__(self, datasets) ############################################################################### # # CONCRETE CLASSES # ############################################################################### class Files(Dataset): r"""**Create** `Dataset` **from list of files.** Each file is a separate sample. User can use this class directly as all necessary methods are implemented. `__getitem__` uses Python's `open <https://docs.python.org/3/library/functions.html#open>`__ and returns file. It's implementation looks like:: # You can modify open behaviour by passing args nad kwargs to __init__ with open(self.files[index], *self.args, **self.kwargs) as file: return file you can use `map` method in order to modify returned `file` or you can overload `__getitem__` (image opening example below):: import torchdatasets import torchvision from PIL import Image # Image loading dataset class ImageDataset(torchdatasets.datasets.FilesDataset): def __getitem__(self, index): return Image.open(self.files[index]) # Useful class methods are inherited as well dataset = ImageDataset.from_folder("./data", regex="*.png").map( torchvision.transforms.ToTensor() ) `from_folder` class method is available for common case of creating dataset from files in folder. Parameters ---------- files : List[pathlib.Path] List of files to be used. regex : str, optional Regex to be used for filtering. Default: `*` (all files) *args Arguments saved for `__getitem__` **kwargs Keyword arguments saved for `__getitem__` """ @classmethod def from_folder(cls, path: pathlib.Path, regex: str = "*", *args, **kwargs): r"""**Create dataset from** `pathlib.Path` **-like object.** Path should be a directory and will be extended via `glob` method taking `regex` (if specified). Varargs and kwargs will be saved for use for `__getitem__` method. Parameters ---------- path : pathlib.Path Path object (directory) containing samples. regex : str, optional Regex to be used for filtering. Default: `*` (all files) *args Arguments saved for `__getitem__` **kwargs Keyword arguments saved for `__getitem__` Returns ------- FilesDataset Instance of your file based dataset. """ files = [file for file in path.glob(regex)] return cls(files, *args, **kwargs) def __init__(self, files: typing.List[pathlib.Path], *args, **kwargs): super().__init__() self.files = files self.args = args self.kwargs = kwargs def __len__(self): return len(self.files) def __getitem__(self, index): with open(self.files[index], *self.args, **self.kwargs) as file: return file def filter(self, predicate: typing.Callable): r"""**Remove** `files` **for which predicate returns** `False`**.** **Note:** This is different from `torchdatasets.Iterable`'s `filter` method, as the filtering is done when called, not during iteration. Parameters ---------- predicate : Callable Function-like object taking file as argument and returning boolean indicating whether to keep a file. Returns ------- FilesDataset Modified self """ self.files = [file for file in self.files if predicate(file)] return self def sort(self, key=None, reverse=False): r"""**Sort files using Python's built-in** `sorted` **method.** Arguments are passed directly to `sorted`. Parameters ---------- key: Callable, optional Specifies a function of one argument that is used to extract a comparison key from each element. Default: `None` (compare the elements directly). reverse: bool, optional Whether `sorting` should be descending. Default: `False` Returns ------- FilesDataset Modified self """ self.files = sorted(self.files, key=key, reverse=reverse) return self class TensorDataset(TorchTensorDataset, Dataset): r"""**Dataset wrapping** `torch.tensors` **.** `cache`, `map` etc. enabled version of `torch.utils.data.TensorDataset <https://pytorch.org/docs/stable/data.html#torch.utils.data.TensorDataset>`__. Parameters: ----------- *tensors : torch.Tensor List of `tensors` to be wrapped. """ def __init__(self, *tensors): Dataset.__init__(self) TorchTensorDataset.__init__(self, *tensors) class Generator(Iterable): r"""**Iterable wrapping any generator expression.** Parameters: ----------- expression: Generator expression Generator from which one can `yield` via `yield from` syntax. """ def __init__(self, expression): super().__init__() self.expression = expression def __iter__(self): yield from self.expression class _Wrap: def __getattr__(self, name): return getattr(self.dataset, name) class WrapDataset(_Wrap, Dataset): r"""**Dataset wrapping standard** `torch.data.utils.Dataset` **and making it** `torchdatasets.Dataset` **compatible.** All attributes of wrapped dataset can be used normally, for example:: dataset = td.datasets.WrapDataset( torchvision.datasets.MNIST("./data") ) dataset.train # True, has all MNIST attributes Parameters: ----------- dataset: `torch.data.utils.Dataset` Dataset to be wrapped """ def __init__(self, dataset): self.dataset = dataset Dataset.__init__(self) def __getitem__(self, index): return self.dataset[index] def __len__(self): return len(self.dataset) class WrapIterable(_Wrap, Iterable): r"""**Iterable wrapping standard** `torch.data.utils.IterableDataset` **and making it** `torchdatasets.Iterable` **compatible.** All attributes of wrapped dataset can be used normally as is the case for `torchdatasets.datasets.WrapDataset`. Parameters: ----------- dataset: `torch.data.utils.Dataset` Dataset to be wrapped """ def __init__(self, dataset): Iterable.__init__(self) self.dataset = dataset def __iter__(self): yield from self.dataset
StarcoderdataPython
3380518
<gh_stars>1-10 import pandas as pd import numpy as np from pandas_datareader import data as pdr import yfinance as yf import datetime as dt import datetime import matplotlib.pyplot as plt import plotly.express as px import plotly.graph_objects as go import math class ModelAnalysis(): def __init__(self,start_date, end_date, stock_name): self.start_date = start_date self.end_date = end_date self.stock_name = stock_name self.col_name = None self.data = pd.DataFrame() self.ticker_list = list() self.buy_sell_data = pd.DataFrame() yf.pdr_override() def get_stock_name(self): try: self.data = pdr.get_data_yahoo(self.stock_name,start=self.start_date,end=self.end_date) ###startes self.data['%change'] = np.nan for j in range(1,self.data.shape[0]): self.data['%change'][j] = ((self.data['Close'][j] - self.data['Close'][j-1])/self.data['Close'][j]) * 100 ###endes #self.data = self.data.style.applymap(self.color_negative_red) return self.data except Exception as e: return None def get_plot(self,col_name): self.col_name = col_name title = self.col_name + " Stocks for " + self.stock_name fig = px.line(self.data, x=self.data.index, y=self.col_name, title=title) fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ) ) return fig def compare_stocks(self, compare_ticker): Data = pd.DataFrame() no_stock_list = list() for stock in compare_ticker: try: df = pdr.get_data_yahoo(stock,start=self.start_date,end=self.end_date) df['Ticker'] = stock df['%change'] = np.nan for j in range(1,df.shape[0]): df['%change'][j] = ( (df['Close'][j] - df['Close'][j-1])/df['Close'][j])*100 Data = Data.append(df) del df except Exception as e: no_stock_list.append(stock) Title = "Compare stocks with " length = 0 for s in compare_ticker: if length == len(compare_ticker) - 1: Title += s else: Title += s + " and " length += 1 fig = px.line(Data, x=Data.index, y=self.col_name, color='Ticker',title=Title) return fig, no_stock_list def ewa_sma(self): EMA = self.data[self.col_name].ewm(span=20, adjust = False).mean() SMA = self.data[self.col_name].rolling(window=20).mean() self.data['EMA'] = EMA self.data['SMA'] = SMA #df = self.data[self.data[self.col_name] == self.stock_name] #df[df['name'] == 'name'] fig = px.line(self.data, x=self.data.index, y=self.col_name) fig.add_scatter(x=self.data.index, y=self.data['EMA'], mode='lines',name='Expotential Weighted Avg') return fig def candle_plot(self): fig = go.Figure(data=[go.Candlestick(x=self.data.index, open=self.data['Open'], high=self.data['High'], low=self.data['Low'], close=self.data['Close'])]) return fig def color_negative_red(self, val): color = 'red' if val < 0 else 'black' return 'color: %s' % color def buy_sell(self, ticker_list): self.ticker_list = ticker_list today = datetime.date.today() prev = today - datetime.timedelta(days=4) for ticker in self.ticker_list: try: df = pdr.get_data_yahoo( ticker, start=prev, end=dt.datetime.now()).iloc[-1:,:] df['Ticker'] = ticker self.buy_sell_data = self.buy_sell_data.append(df) del df except Exception as e: pass self.buy_sell_data['Buy'] = "don't buy" self.buy_sell_data['Sell'] = "don't sell" for i in range(self.buy_sell_data.shape[0]): if np.floor(self.buy_sell_data['Open'][i]) == np.floor(self.buy_sell_data['Low'][i]): self.buy_sell_data['Buy'][i] = "Buy" elif np.floor(self.buy_sell_data['Open'][i]) == np.floor(self.buy_sell_data['High'][i]): self.buy_sell_data['Sell'][i] = "Sell" else: pass value_change = [] data = pd.DataFrame() today = datetime.date.today() prev = today - datetime.timedelta(days=4) #curr = datetime.date.today() for i in range(len(self.ticker_list)): try: df = pdr.get_data_yahoo(self.ticker_list[i],start=prev,end=dt.datetime.now()) df['ticker'] = self.ticker_list[i] df['change'] = np.nan for j in range(1,df.shape[0]): df['change'][j] = ((df['Close'][j] - df['Close'][j-1])/df['Close'][j]) * 100 #print(df['change'][j]) #value_change.append(df.iloc[-1:,-1:]['change'][0]) data = data.append(df) del df except Exception as e: print("No data available for {}".format(self.ticker_list[i])) self.buy_sell_data['change'] = np.nan #for i in range(2,data.shape[0],3): # value_change.append(data['change'][i]) #self.buy_sell_data['%_change'] = value_change #self.buy_sell_data.style.applymap(self.color_negative_red) data['count'] = np.nan for i in range(data.shape[0]): data['count'][i] = i data.set_index('count',drop=True,inplace=True) index_missing = list() for i in range(1,data.shape[0]): try: index_missing.append( data['change'].index[data['change'].apply(np.isnan)][i] ) except Exception as e: pass index_missing.append(data['change'][data.shape[0] - 1]) change_index = list() for i in range(len(index_missing) - 1): change_index.append(data['change'][index_missing[i] - 1]) change_index.append(data['change'][data.shape[0] - 1]) self.buy_sell_data['change'] = change_index return self.buy_sell_data #return data
StarcoderdataPython
3397884
<reponame>nwestbury/StockAnalyzer<filename>src/sa/__oldbots/basebot.py #!/usr/bin/env python3 import json from abc import ABCMeta, abstractmethod class BaseBot(metaclass=ABCMeta): """ Parent class of all python-based bots, it is presumed that the function "guess" will be defined in all children classes. """ @property @abstractmethod def name(self): raise NotImplemented @abstractmethod def guess(self): raise NotImplemented def __call__(self): """ Returns a json string in the appropriate format. """ json_guess = json.dumps({"name": self.name, "guess": self.guess()}) return json_guess
StarcoderdataPython
8206
<reponame>YuraHavrylko/revenuecat_python from enum import Enum class SubscriptionPlatform(Enum): ios = 'ios' android = 'android' macos = 'macos' uikitformac = 'uikitformac' stripe = 'stripe' class AttributionNetworkCode(Enum): apple_search_ads = 0 adjust = 1 apps_flyer = 2 branch = 3 tenjin = 4 facebook = 5
StarcoderdataPython
6632785
<filename>src/api-engine/api/auth.py import logging import os from django.conf import settings from django.core.exceptions import ObjectDoesNotExist from rest_framework import authentication from rest_framework.permissions import BasePermission from rest_framework.exceptions import AuthenticationFailed from rest_framework_jwt.serializers import VerifyJSONWebTokenSerializer from api.common.enums import UserRole from api.models import UserProfile LOG = logging.getLogger(__name__) TOKEN_INFO_URL = getattr(settings, "TOKEN_INFO_URL", "") SUPER_USER_TOKEN = os.environ.get("ADMIN_TOKEN", "") ADMIN_NAME = os.getenv("ADMIN_USERNAME") class CustomAuthenticate(authentication.BaseAuthentication): def authenticate(self, request): authorization = request.META.get("HTTP_AUTHORIZATION", None) if not authorization or not authorization.startswith("JWT"): return None token = authorization.split(" ")[-1] if token == SUPER_USER_TOKEN: username = ADMIN_NAME try: user = UserProfile.objects.get(username=username) except ObjectDoesNotExist: return None return user, None else: return None class TokenAuth(authentication.BaseAuthentication): def authenticate(self, request): token = {"token": request.META.get('HTTP_AUTHORIZATION', None)} valid_data = VerifyJSONWebTokenSerializer().validate(token) user = valid_data['user'] organization = user.organization #organization_id = user.organization.id #organization_name = user.organization.name #request.user. if user: return else: raise AuthenticationFailed('认证失败') class IsAdminAuthenticated(BasePermission): """ Allows access only to authenticated users. """ def has_permission(self, request, view): return ( request.user and request.user.role == UserRole.Administrator.name.lower() ) class IsOperatorAuthenticated(BasePermission): """ Allows access only to operators. """ def has_permission(self, request, view): return ( request.user and request.user.role == UserRole.Operator.name.lower() ) class IsSuperUserAuthenticated(BasePermission): """ Allows access only to authenticated users. """ def has_permission(self, request, view): return ( request.user and request.user.is_authenticated and request.user.is_super_user )
StarcoderdataPython
8160195
<reponame>chetan201/PVMismatch # -*- coding: utf-8 -*- """ This is the PVMismatch Package. It contains :mod:`~pvmismatch.pvmismatch_lib` and :mod:`~pvmismatch.pvmismatch_tk`. :mod:`~pvmismatch.pvmismatch_lib` ================================= This package contains the basic library modules, methods, classes and attributes to model PV system mismatch. .. note:: The main library classes and modules are exposed through this package for convenience. For example:: >>> from pvmismatch import PVcell # imports the PVcell class >>> # import pvconstants, pvcell, pvmodule, pvstring and pvsystem >>> from pvmismatch import * :mod:`~pvmismatch.pvmismatch_tk` ================================ This package contains an application that can be run using :mod:`pvmismatch.pv_tk`. """ import os import importlib # try to import Dulwich or create dummies try: from dulwich.contrib.release_robot import get_current_version from dulwich.repo import NotGitRepository except ImportError: NotGitRepository = NotImplementedError def get_current_version(*args, **kwargs): raise NotGitRepository # import pvmismatch_lib modules so to match old API import pvmismatch.pvmismatch_lib.pvconstants as pvconstants import pvmismatch.pvmismatch_lib.pvcell as pvcell import pvmismatch.pvmismatch_lib.pvmodule as pvmodule import pvmismatch.pvmismatch_lib.pvstring as pvstring import pvmismatch.pvmismatch_lib.pvsystem as pvsystem import pvmismatch.pvmismatch_lib.pvexceptions as pvexceptions # expose constructors to package's top level PVconstants = pvconstants.PVconstants PVcell = pvcell.PVcell PVmodule = pvmodule.PVmodule PVstring = pvstring.PVstring PVsystem = pvsystem.PVsystem # Dulwich Release Robot BASEDIR = os.path.dirname(__file__) # this directory PROJDIR = os.path.dirname(BASEDIR) VER_FILE = 'version' # name of file to store version # use release robot to try to get current Git tag try: GIT_TAG = get_current_version(PROJDIR) except NotGitRepository: GIT_TAG = None # check version file try: version = importlib.import_module('%s.%s' % (__name__, VER_FILE)) except ImportError: VERSION = None else: VERSION = version.VERSION # update version file if it differs from Git tag if GIT_TAG is not None and VERSION != GIT_TAG: with open(os.path.join(BASEDIR, VER_FILE + '.py'), 'w') as vf: vf.write('VERSION = "%s"\n' % GIT_TAG) else: GIT_TAG = VERSION # if Git tag is none use version file VERSION = GIT_TAG # version __author__ = '<NAME>' __email__ = u'<EMAIL>' __url__ = u'https://github.com/SunPower/PVMismatch' __version__ = VERSION __release__ = 'Kenya Ketchup' __all__ = ['pvconstants', 'pvcell', 'pvmodule', 'pvstring', 'pvsystem']
StarcoderdataPython
4852442
#!/usr/bin/env python ''' parse a MAVLink protocol XML file and generate a C# implementation Copyright <NAME> 2018 Released under GNU GPL version 3 or later ''' import sys, textwrap, os, time, re from . import mavparse, mavtemplate t = mavtemplate.MAVTemplate() enumtypes = {} map = { 'float' : 'float', 'double' : 'double', 'char' : 'byte', 'int8_t' : 'sbyte', 'uint8_t' : 'byte', 'uint8_t_mavlink_version' : 'B', 'int16_t' : 'short', 'uint16_t' : 'ushort', 'int32_t' : 'int', 'uint32_t' : 'uint', 'int64_t' : 'long', 'uint64_t' : 'ulong', } def generate_message_header(f, xml_list): dedup = {} for xml in xml_list: print("generate_message_header " + xml.basename) if xml.little_endian: xml.mavlink_endian = "MAVLINK_LITTLE_ENDIAN" else: xml.mavlink_endian = "MAVLINK_BIG_ENDIAN" if xml.crc_extra: xml.crc_extra_define = "1" else: xml.crc_extra_define = "0" if xml.command_24bit: xml.command_24bit_define = "1" else: xml.command_24bit_define = "0" if xml.sort_fields: xml.aligned_fields_define = "1" else: xml.aligned_fields_define = "0" # work out the included headers xml.include_list = [] for i in xml.include: base = i[:-4] xml.include_list.append(mav_include(base)) if not hasattr(xml , 'message_names_enum'): xml.message_names_enum = '' # and message CRCs array if not hasattr(xml , 'message_infos_array'): xml.message_infos_array = '' if xml.command_24bit: # we sort with primary key msgid, secondary key dialect for msgid in sorted(xml.message_names.keys()): name = xml.message_names[msgid] if name not in dedup: dedup[name] = 1 xml_list[0].message_infos_array += ' new message_info(%u, "%s", %u, %u, %u, typeof( mavlink_%s_t )),\n' % (msgid, name, xml.message_crcs[msgid], xml.message_min_lengths[msgid], xml.message_lengths[msgid], name.lower()) xml_list[0].message_names_enum += '\n %s = %u,' % (name, msgid) else: for msgid in range(256): crc = xml.message_crcs.get(msgid, None) name = xml.message_names.get(msgid, None) length = xml.message_lengths.get(msgid, None) if name is not None and name not in dedup: dedup[name] = 1 xml_list[0].message_infos_array += ' new message_info(%u, "%s", %u, %u, %u, typeof( mavlink_%s_t )), // none 24 bit\n' % (msgid, name, crc, length, length, name.lower()) xml_list[0].message_names_enum += '\n %s = %u,' % (name, msgid) # add some extra field attributes for convenience with arrays for m in xml.enum: for fe in m.entry[:]: fe.name = fe.name.replace("NAV_","") t.write(f, ''' using System; using System.Collections.Generic; using System.Text; using System.Runtime.InteropServices; public partial class MAVLink { public const string MAVLINK_BUILD_DATE = "${parse_time}"; public const string MAVLINK_WIRE_PROTOCOL_VERSION = "${wire_protocol_version}"; public const int MAVLINK_MAX_PAYLOAD_LEN = ${largest_payload}; public const byte MAVLINK_CORE_HEADER_LEN = 9;///< Length of core header (of the comm. layer) public const byte MAVLINK_CORE_HEADER_MAVLINK1_LEN = 5;///< Length of MAVLink1 core header (of the comm. layer) public const byte MAVLINK_NUM_HEADER_BYTES = (MAVLINK_CORE_HEADER_LEN + 1);///< Length of all header bytes, including core and stx public const byte MAVLINK_NUM_CHECKSUM_BYTES = 2; public const byte MAVLINK_NUM_NON_PAYLOAD_BYTES = (MAVLINK_NUM_HEADER_BYTES + MAVLINK_NUM_CHECKSUM_BYTES); public const int MAVLINK_MAX_PACKET_LEN = (MAVLINK_MAX_PAYLOAD_LEN + MAVLINK_NUM_NON_PAYLOAD_BYTES + MAVLINK_SIGNATURE_BLOCK_LEN);///< Maximum packet length public const byte MAVLINK_SIGNATURE_BLOCK_LEN = 13; public const int MAVLINK_LITTLE_ENDIAN = 1; public const int MAVLINK_BIG_ENDIAN = 0; public const byte MAVLINK_STX = ${protocol_marker}; public const byte MAVLINK_STX_MAVLINK1 = 0xFE; public const byte MAVLINK_ENDIAN = ${mavlink_endian}; public const bool MAVLINK_ALIGNED_FIELDS = (${aligned_fields_define} == 1); public const byte MAVLINK_CRC_EXTRA = ${crc_extra_define}; public const byte MAVLINK_COMMAND_24BIT = ${command_24bit_define}; public const bool MAVLINK_NEED_BYTE_SWAP = (MAVLINK_ENDIAN == MAVLINK_LITTLE_ENDIAN); // msgid, name, crc, minlength, length, type public static message_info[] MAVLINK_MESSAGE_INFOS = new message_info[] { ${message_infos_array} }; public const byte MAVLINK_VERSION = ${version}; public const byte MAVLINK_IFLAG_SIGNED= 0x01; public const byte MAVLINK_IFLAG_MASK = 0x01; public struct message_info { public uint msgid { get; internal set; } public string name { get; internal set; } public byte crc { get; internal set; } public uint minlength { get; internal set; } public uint length { get; internal set; } public Type type { get; internal set; } public message_info(uint msgid, string name, byte crc, uint minlength, uint length, Type type) { this.msgid = msgid; this.name = name; this.crc = crc; this.minlength = minlength; this.length = length; this.type = type; } public override string ToString() { return String.Format("{0} - {1}",name,msgid); } } public enum MAVLINK_MSG_ID { ${message_names_enum} } ''', xml_list[0]) def generate_message_enum_types(xml): print("generate_message_enum_types: " + xml.filename) for m in xml.message: for fld in m.fields: if fld.array_length == 0: fld.type = map[fld.type] if fld.enum != "" and fld.array_length == 0: enumtypes[fld.enum] = fld.type print(fld.enum + " is type " + fld.type) def cleanText(text): text = text.replace("\n"," ") text = text.replace("\r"," ") return text.replace("\"","'") def generate_message_enums(f, xml): print("generate_message_enums: " + xml.filename) # add some extra field attributes for convenience with arrays for m in xml.enum: m.description = cleanText(m.description) m.flags = "" if m.description.lower().find("bitmask") >= 0 or m.name.lower().find("_flags") >= 0: m.flags = "[Flags]\n\t" m.enumtype = enumtypes.get(m.name,"int /*default*/") for fe in m.entry: if fe.name.endswith('ENUM_END'): m.entry.remove(fe) continue fe.description = cleanText(fe.description) fe.name = fe.name.replace(m.name + "_","") firstchar = re.search('^([0-9])', fe.name ) if firstchar != None and firstchar.group(): fe.name = '_%s' % fe.name if hasattr(fe, "deprecated") and fe.deprecated is True: fe.name = '''[Obsolete] %s''' % fe.name t.write(f, ''' ${{enum: ///<summary> ${description} </summary> ${flags}public enum ${name}: ${enumtype} { ${{entry:///<summary> ${description} |${{param:${description}| }} </summary> [Description("${description}")] ${name}=${value}, }} }; }} ''', xml) def generate_message_footer(f, xml): t.write(f, ''' } ''', xml) f.close() def generate_message_h(f, directory, m): '''generate per-message header for a XML file''' m.obsolete = "" if hasattr(m, "deprecated") and m.deprecated is True: m.obsolete = "[Obsolete]" t.write(f, ''' ${obsolete} /// extensions_start ${extensions_start} [StructLayout(LayoutKind.Sequential,Pack=1,Size=${wire_length})] ///<summary> ${description} </summary> public struct mavlink_${name_lower}_t { public mavlink_${name_lower}_t(${{ordered_fields:${type} ${name},}}) { ${{ordered_fields: this.${name} = ${name}; }} } ${{ordered_fields: /// <summary>${description} ${enum} ${units} ${display}</summary> [Units("${units}")] [Description("${description}")] ${array_prefix} ${type} ${name}; }} }; ''', m) class mav_include(object): def __init__(self, base): self.base = base def generate_one(fh, basename, xml): '''generate headers for one XML file''' directory = os.path.join(basename, xml.basename) print("Generating CSharp implementation for %s" % xml.basename) # add some extra field attributes for convenience with arrays for m in xml.message: m.msg_name = m.name if xml.crc_extra: m.crc_extra_arg = ", %s" % m.crc_extra else: m.crc_extra_arg = "" m.msg_nameid = "MAVLINK_MSG_ID_${name} = ${id}" m.description = cleanText(m.description) if m.extensions_start is None: m.extensions_start = 0; for f in m.fields: f.description = cleanText(f.description) if f.array_length != 0: f.array_prefix = '[MarshalAs(UnmanagedType.ByValArray,SizeConst=%u)]\n\t\tpublic' % f.array_length f.array_arg = ', %u' % f.array_length f.array_return_arg = '%u, ' % (f.array_length) f.array_tag = '' f.array_const = 'const ' f.decode_left = "%s.%s = " % (m.name_lower, f.name) f.decode_right = '' f.return_type = 'void' f.return_value = 'void' f.type = "%s%s" % (map[f.type], '[]') else: if f.enum != "": f.type = "/*" +f.enum + "*/" + f.type; #f.type = "/*" +f.type + "*/" + f.enum; f.array_suffix = '' f.array_prefix = 'public ' f.array_tag = 'BitConverter.To%s' % f.type if f.type == 'byte': f.array_tag = 'getByte' if f.name == 'fixed': # this is a keyword f.name = '@fixed' f.array_arg = '' f.array_return_arg = '' f.array_const = '' f.decode_left = "%s.%s = " % (m.name_lower, f.name) f.decode_right = '' f.get_arg = '' f.c_test_value = f.test_value f.return_type = f.type # cope with uint8_t_mavlink_version for m in xml.message: m.arg_fields = [] m.array_fields = [] m.scalar_fields = [] for f in m.ordered_fields: if f.array_length != 0: m.array_fields.append(f) else: m.scalar_fields.append(f) for f in m.fields: if not f.omit_arg: m.arg_fields.append(f) f.putname = f.name else: f.putname = f.const_value for m in xml.message: generate_message_h(fh, directory, m) def copy_fixed_headers(directory, xml): '''copy the fixed protocol headers to the target directory''' import shutil, filecmp hlist = { "1.0": [ 'MavlinkCRC.cs', 'MAVLinkMessage.cs', 'MavlinkParse.cs', 'MavlinkUtil.cs', 'MAVLink.csproj' ], "2.0": [ 'MavlinkCRC.cs', 'MAVLinkMessage.cs', 'MavlinkParse.cs', 'MavlinkUtil.cs', 'MAVLink.csproj' ] } basepath = os.path.dirname(os.path.realpath(__file__)) srcpath = os.path.join(basepath, 'CS') print("Copying fixed headers for protocol %s to %s" % (xml.wire_protocol_version, directory)) for h in hlist[xml.wire_protocol_version]: src = os.path.realpath(os.path.join(srcpath, h)) dest = os.path.realpath(os.path.join(directory, h)) if src == dest or (os.path.exists(dest) and filecmp.cmp(src, dest)): continue shutil.copy(src, dest) def generate(basename, xml_list): '''generate complete MAVLink CSharp implemenation''' print("generate for protocol %s to %s" % (xml_list[0].wire_protocol_version, basename)) directory = basename if not os.path.exists(directory): os.makedirs(directory) f = open(os.path.join(directory, "mavlink.cs"), mode='w') generate_message_header(f, xml_list) for xml1 in xml_list: generate_message_enum_types(xml1) for xml2 in xml_list: generate_message_enums(f, xml2) for xml3 in xml_list: generate_one(f, basename, xml3) generate_message_footer(f,xml_list[0]) copy_fixed_headers(basename, xml_list[0])
StarcoderdataPython
11337617
<gh_stars>0 from ._BoundingBox3d import * from ._BoundingBoxes3d import *
StarcoderdataPython
3520195
from .facility_models import * # noqa # from .infrastructure import *
StarcoderdataPython
9608676
<reponame>gruber-sciencelab/MAPP """ ############################################################################## # # Filter the protein-coding set of exons that have valid(long-enough) # regions around 5/3-splice-site. # # AUTHOR: Maciej_Bak # AFFILIATION: University_of_Basel # AFFILIATION: Swiss_Institute_of_Bioinformatics # CONTACT: <EMAIL> # CREATED: 26-03-2020 # LICENSE: Apache_2.0 # ############################################################################## """ # imports import os import time import logging import logging.handlers from argparse import ArgumentParser, RawTextHelpFormatter from GTF import * import pandas as pd def parse_arguments(): """Parser of the command-line arguments.""" parser = ArgumentParser(description=__doc__, formatter_class=RawTextHelpFormatter) parser.add_argument( "-v", "--verbosity", dest="verbosity", choices=("DEBUG", "INFO", "WARN", "ERROR", "CRITICAL"), default="ERROR", help="Verbosity/Log level. Defaults to ERROR", ) parser.add_argument( "-l", "--logfile", dest="logfile", help="Store log to this file." ) parser.add_argument( "--in", dest="input", required=True, help="Path to the SUPPA file with SE events.", ) parser.add_argument( "--gtf", dest="gtf", required=True, help="Path to the annotation file in gtf format.", ) parser.add_argument( "--biotype_filters", dest="biotype_filters", required=True, help="Comma-separated list of biotypes to filter the gtf ('all' string turns off the filtering).", ) parser.add_argument( "--out", dest="output", required=True, help="Path for the output file." ) parser.add_argument( "--region_size_3ss_up", dest="region_size_3ss_up", required=True, help="Size of the region upstream 3' splicing site.", ) parser.add_argument( "--region_size_3ss_down", dest="region_size_3ss_down", required=True, help="Size of the region downstream 3' splicing site.", ) parser.add_argument( "--region_size_5ss_up", dest="region_size_5ss_up", required=True, help="Size of the region upstream 5' splicing site.", ) parser.add_argument( "--region_size_5ss_down", dest="region_size_5ss_down", required=True, help="Size of the region downstream 5' splicing site.", ) parser.add_argument( "--fai", dest="fai", required=True, help="Path to the genome index in fai format.", ) parser.add_argument( "--filtering-logfile", dest="filter_log", required=True, help="Path to the file for filtering logs.", ) return parser ############################################################################## def main(): """Main body of the script.""" # get dict of chrom. lengths with open(options.fai, "r") as fai: chrom_len_dict = {line.split("\t")[0]: int(line.split("\t")[1]) for line in fai} df_gtf = dataframe(options.gtf) # from GTF.py df_exons = pd.read_csv(options.input, sep="\t") df_exons["ID"] = df_exons.apply( lambda x: str(x.seqname) + ":" + x.event_id.split("-")[1].replace(":", "-") + ":" + x.event_id[-1], axis=1, ) with open(options.filter_log, "w") as log: log.write("filter-exons.py" + os.linesep) log.write(str(df_gtf.shape[0]) + "\tentries in GTF file" + os.linesep) # get rid of duplicates (that differ on other fields) here. if options.biotype_filters != "all": df_gtf = ( df_gtf[["seqname", "start", "end", "strand", "feature", "gene_biotype"]] .copy() .drop_duplicates() ) else: df_gtf = ( df_gtf[["seqname", "start", "end", "strand", "feature"]] .copy() .drop_duplicates() ) df_gtf["name"] = ( df_gtf["seqname"] + ":" + df_gtf["start"] + "-" + df_gtf["end"] + ":" + df_gtf["strand"] ) # get only exons and filter on gene_biotype (optionally) df_gtf = df_gtf[df_gtf["feature"] == "exon"].copy() log.write(str(df_gtf.shape[0]) + "\tunique exons in GTF" + os.linesep) if options.biotype_filters != "all": biotypes = options.biotype_filters.split(",") df_gtf = df_gtf[df_gtf["gene_biotype"].isin(biotypes)].copy() log.write( str(df_gtf.shape[0]) + "\texons filtered on the gene biotype" + os.linesep ) else: log.write("gene_biotype filtering turned off" + os.linesep) df_gtf[["start", "end"]] = df_gtf[["start", "end"]].astype(int) # filter on minimal length df_gtf["len"] = df_gtf["end"] - df_gtf["start"] df_gtf = df_gtf[ df_gtf["len"] > max(int(options.region_size_3ss_down), int(options.region_size_5ss_up)) ].copy() log.write( str(df_gtf.shape[0]) + "\tlength > max(3ss_down,5ss_up) so that 3/5 exonic regions do not overlap with intronic sites" + os.linesep ) # filter on chrom beg: df_gtf = df_gtf[ df_gtf["start"] - int(options.region_size_3ss_up) > 0 ].copy() # for exons on + strand log.write( str(df_gtf.shape[0]) + "\tmore than 3ss_up_region_size nucleotides down-stream chromosome start" + os.linesep ) df_gtf = df_gtf[ df_gtf["start"] - int(options.region_size_5ss_down) > 0 ].copy() # for exons on - strand log.write( str(df_gtf.shape[0]) + "\tmore than 5ss_down_region_size nucleotides down-stream chromosome start" + os.linesep ) # filter on chrom end: index_list = [] for i, row in df_gtf.iterrows(): # indices are meaningless but unique # watch out for +/- strand! if ( chrom_len_dict[row.seqname] > row.end + int(options.region_size_5ss_down) ) and ( chrom_len_dict[row.seqname] > row.end + int(options.region_size_3ss_up) ): index_list.append(i) df_gtf = df_gtf[df_gtf.index.isin(index_list)].copy() log.write( str(df_gtf.shape[0]) + "\tmore than 5ss_down_region_size and 3ss_up_region_size nucleotides up-stream chromosome end" + os.linesep ) # intersect SUPPA events with this exon list df_exons[df_exons["ID"].isin(list(df_gtf["name"]))].copy() del df_exons["ID"] # retain the sorting from SUPPA ioe output file # IMPORTANT! # suppa in not-deterministic when it comes to the order of compatible transcripts for a given event # therefore the output file will be affected df_exons.to_csv(options.output, sep="\t", index=False) ############################################################################## if __name__ == "__main__": try: # parse the command-line arguments options = parse_arguments().parse_args() # set up logging during the execution formatter = logging.Formatter( fmt="[%(asctime)s] %(levelname)s - %(message)s", datefmt="%d-%b-%Y %H:%M:%S", ) console_handler = logging.StreamHandler() console_handler.setFormatter(formatter) logger = logging.getLogger("logger") logger.setLevel(logging.getLevelName(options.verbosity)) logger.addHandler(console_handler) if options.logfile is not None: logfile_handler = logging.handlers.RotatingFileHandler( options.logfile, maxBytes=50000, backupCount=2 ) logfile_handler.setFormatter(formatter) logger.addHandler(logfile_handler) # execute the body of the script start_time = time.time() logger.info("Starting script") main() seconds = time.time() - start_time # log the execution time minutes, seconds = divmod(seconds, 60) hours, minutes = divmod(minutes, 60) logger.info( "Successfully finished in {hours}h:{minutes}m:{seconds}s", hours=int(hours), minutes=int(minutes), seconds=int(seconds) if seconds > 1.0 else 1, ) # log the exception in case it happens except Exception as e: logger.exception(str(e)) raise e
StarcoderdataPython
9672662
<reponame>ASH1998/SuZu from ..logthings import get_module_logger
StarcoderdataPython
6428937
import os import sys from flask import send_from_directory curr_path = os.path.dirname(os.path.abspath(__file__)) src_path = os.path.abspath(os.path.join(curr_path, "../")) def _build_path(): build_path = os.path.join(src_path, 'ui/build/') if not os.path.exists(build_path): raise Exception("Client UI was not built before attempting to serve via Flask.") return build_path def _serve_ui(path=''): build_path = _build_path() req_path = os.path.join(build_path, path) if req_path == build_path or not os.path.exists(req_path): path = "index.html" return send_from_directory(build_path, path) def init_ui(app): if not app.config['SERVE_UI']: return app.static_folder = os.path.join(_build_path(), "static") app.add_url_rule("/", view_func=_serve_ui) app.add_url_rule("/<path:path>", view_func=_serve_ui)
StarcoderdataPython
11284181
import numpy as np from sklearn.base import BaseEstimator from HTMLParser import HTMLParser class FeatureMapper: def __init__(self, features): self.features = features def fit(self, X, y=None): for feature_name, column_name, extractor in self.features: extractor.fit(X[column_name], y) def transform(self, X): extracted = [] for feature_name, column_name, extractor in self.features: fea = extractor.transform(X[column_name]) if hasattr(fea, "toarray"): extracted.append(fea.toarray()) else: extracted.append(fea) if len(extracted) > 1: return np.concatenate(extracted, axis=1) else: return extracted[0] def fit_transform(self, X, y=None): extracted = [] for feature_name, column_name, extractor in self.features: fea = extractor.fit_transform(X[column_name], y) if hasattr(fea, "toarray"): extracted.append(fea.toarray()) else: extracted.append(fea) if len(extracted) > 1: return np.concatenate(extracted, axis=1) else: return extracted[0] def identity(x): return x class SimpleTransform(BaseEstimator): def __init__(self, transformer=identity): self.transformer = transformer def fit(self, X, y=None): return self def fit_transform(self, X, y=None): return self.transform(X) def transform(self, X, y=None): return np.array([self.transformer(x) for x in X], ndmin=2).T
StarcoderdataPython
1880543
<reponame>K-A-R-T/JacMLDash<filename>mldash/web/ui_methods/config.py #! /usr/bin/env python3 # -*- coding: utf-8 -*- # File : config.py # Author : <NAME> # Email : <EMAIL> # Date : 09/06/2019 # # This file is part of JacMLDash. # Distributed under terms of the MIT license. import functools __all__ = ['register_ui_methods', 'get_ui_methods'] _custom_ui_methods = None def register_ui_methods(cls): global _custom_ui_methods _custom_ui_methods = cls def get_ui_methods(): from . import ui_methods return ui_methods def get_custom_ui_method(name): if _custom_ui_methods is not None and hasattr(_custom_ui_methods, name): return getattr(_custom_ui_methods, name) return None def allow_custom_ui_method(func): @functools.wraps(func) def wrapped(*args, **kwargs): custom = get_custom_ui_method(func.__name__) if custom is not None: return custom(*args, **kwargs) return func(*args, **kwargs) return wrapped
StarcoderdataPython
1824553
<filename>src/dsalgo/subsequence_test.py import unittest import dsalgo.subsequence class Test(unittest.TestCase): def test_count_common_subsequences(self) -> None: a = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] b = [1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1] self.assertEqual( dsalgo.subsequence.count_common_subsequences(a, b, 10**9 + 7), 846527861, ) def test_longest_common_subsequence(self) -> None: s = "algorithm" t = "datastructure" self.assertEqual( dsalgo.subsequence.longest_common_subsequence(s, t), ["a", "r", "t"], ) if __name__ == "__main__": unittest.main()
StarcoderdataPython
11262059
from __future__ import annotations from dataclasses import dataclass from datetime import datetime from iso8601 import parse_date @dataclass class SourceSystem: """Class for describing an Argus Source system""" pk: int = None name: str = None type: str = None user: int = None base_url: str = None @classmethod def from_json(cls, data: dict) -> SourceSystem: """Returns a SourceSystem object initalized from an Argus JSON dict""" kwargs = data.copy() kwargs["type"] = kwargs["type"]["name"] return cls(**kwargs) @dataclass class Incident: """Class for describing an Argus Incident""" pk: int = None start_time: datetime = None end_time: datetime = None source: SourceSystem = None source_incident_id: str = None details_url: str = None description: str = None level: int = None ticket_url: str = None tags: dict = None stateful: bool = None open: bool = None acked: bool = None @classmethod def from_json(cls, data: dict) -> Incident: """Returns an Incident object initalized from an Argus JSON dict""" kwargs = data.copy() if kwargs["start_time"]: kwargs["start_time"] = parse_date(kwargs["start_time"]) if kwargs["end_time"]: kwargs["end_time"] = ( parse_date(kwargs["end_time"]) if kwargs["end_time"] != "infinity" else datetime.max ) kwargs["source"] = SourceSystem.from_json(kwargs["source"]) tags = [tag["tag"] for tag in kwargs["tags"]] tags = dict(tag.split("=", maxsplit=1) for tag in tags) kwargs["tags"] = tags return cls(**kwargs) def to_json(self) -> dict: """Despite the name, this serializes this object into a dict that is suitable for feeding to the stdlib JSON serializer. """ result = {} for field in self.__dataclass_fields__: value = getattr(self, field) if value or field == "end_time": if field == "start_time" and isinstance(value, datetime): value = value.isoformat() if field == "end_time" and isinstance(value, datetime): value = value.isoformat() if value != datetime.max else "infinity" if field == "source": continue # Source will be assigned by Argus when posted if field == "tags": tags = ("{}={}".format(k, v) for k, v in value.items()) value = [{"tag": t} for t in tags] result[field] = value if "tags" not in result: # API requires tags to be present, but it can be empty result["tags"] = [] return result @dataclass class Event: """Class for describing an Argus Incident Event""" pk: int = None actor: str = None description: str = None incident: int = None received: datetime = None timestamp: datetime = None type: str = None @classmethod def from_json(cls, data: dict) -> Event: """Returns an Event object initalized from an Argus JSON dict""" kwargs = data.copy() kwargs["actor"] = kwargs.get("actor", {}).get("username") if kwargs["received"]: kwargs["received"] = parse_date(kwargs["received"]) if kwargs["timestamp"]: kwargs["timestamp"] = parse_date(kwargs["timestamp"]) kwargs["type"] = kwargs["type"]["value"] return cls(**kwargs) def to_json(self) -> dict: """Despite the name, this serializes this object into a dict that is suitable for feeding to the stdlib JSON serializer. """ result = {} for field in self.__dataclass_fields__: value = getattr(self, field) if value: if field == "actor": continue # Actor is decided by Argus if field == "received": continue # Received timestamp is decided by Argus if field == "timestamp" and isinstance(value, datetime): value = value.isoformat() result[field] = value return result @dataclass class Acknowledgement: """Class for describing an Argus Acknowledgement""" pk: int = None expiration: datetime = None event: Event = None @classmethod def from_json(cls, data: dict) -> Acknowledgement: """Returns an Acknowledgement object initalized from an Argus JSON dict""" kwargs = { "pk": data["pk"], "event": Event.from_json(data["event"]), "expiration": parse_date(data["expiration"]) if data["expiration"] else None, } return cls(**kwargs)
StarcoderdataPython
8063886
import angr path_to_bin = "../binaries/02_angr_find_condition" # Find callback def good_job(state): # Get the output of the state stdout = state.posix.dumps(1) # If the program echo'ed "Good Job." then we've found a good state return "Good Job." in str(stdout) # Avoid callback def try_again(state): # Get the output of the state stdout = state.posix.dumps(1) # If the program echo'ed "Try again." then we found a state that we want to avoid return "Try again." in str(stdout) # Create an angr project project = angr.Project(path_to_bin) # Create the begin state starting from the entry point entry_state = project.factory.entry_state(args=[path_to_bin]) # Create a simulation manager simulation_manager = project.factory.simulation_manager(entry_state) # Pass callbacks for states that we should find and avoid simulation_manager.explore(avoid=try_again, find=good_job) # If simulation manager has found a state if simulation_manager.found: found_state = simulation_manager.found[0] # Dump the input that was fed to the binary to get to this state input_str = found_state.posix.dumps(0) print(input_str) # Get flag! else: print("No path found...")
StarcoderdataPython
1730285
import dis import opcode import weakref import types import copy import importlib def is_class_instance(o): return bool(type(o).__flags__ & (1 << 9)) def walk_global_ops(code): for instr in dis.get_instructions(code): op = instr.opcode if op in (opcode.opmap['STORE_GLOBAL'], opcode.opmap['DELETE_GLOBAL'], opcode.opmap['LOAD_GLOBAL']): yield op, instr.arg def extract_code_globals(co): out_names = weakref.WeakKeyDictionary().get(co) if out_names is None: names = co.co_names out_names = {names[oparg] for _, oparg in walk_global_ops(co)} if co.co_consts: for const in co.co_consts: if isinstance(const, types.CodeType): out_names |= extract_code_globals(const) weakref.WeakKeyDictionary()[co] = out_names return out_names def refactor_dict(obj): new_obj = copy.copy(obj) for i in new_obj: if type(new_obj[i]) in (int, float, bool, str, type(None)): continue elif type(new_obj[i]) is list: new_obj[i] = refactor_list(new_obj[i]) elif type(new_obj[i]) is tuple: new_obj[i] = refactor_list(list(new_obj[i])) elif isinstance(new_obj[i], types.FunctionType) or isinstance(new_obj, types.MethodType): new_obj[i] = function_to_dict(new_obj[i]) elif isinstance(new_obj[i], type): new_obj[i] = class_to_dict(new_obj[i]) elif type(new_obj[i]) is dict: new_obj[i] = refactor_dict(new_obj[i]) elif is_class_instance(new_obj[i]): new_obj[i] = class_instance_to_dict(new_obj[i]) else: raise ValueError(f"{type(new_obj)} isn't supported") return new_obj def refactor_list(obj): new_obj = copy.copy(obj) for i in range(len(new_obj)): if type(new_obj[i]) in (int, float, bool, str, type(None)): continue elif type(new_obj[i]) is list: new_obj[i] = refactor_list(new_obj[i]) elif type(new_obj[i]) is tuple: new_obj[i] = refactor_list(list(new_obj[i])) elif isinstance(new_obj[i], types.FunctionType) or isinstance(new_obj, types.MethodType): new_obj[i] = function_to_dict(new_obj[i]) elif isinstance(new_obj[i], type): new_obj[i] = class_to_dict(new_obj[i]) elif type(new_obj[i]) is dict: new_obj[i] = refactor_dict(new_obj[i]) elif is_class_instance(new_obj[i]): new_obj[i] = class_instance_to_dict(new_obj[i]) else: raise ValueError(f"{type(new_obj)} isn't supported") return new_obj def refactor_object(obj): new_obj = copy.copy(obj) if type(new_obj) in (int, float, bool, str, type(None)): return new_obj elif type(new_obj) is list: return refactor_list(new_obj) elif type(new_obj) is tuple: return refactor_list(list(new_obj)) elif isinstance(new_obj, types.FunctionType) or isinstance(new_obj, types.MethodType): return function_to_dict(new_obj) elif type(new_obj) is dict: return refactor_dict(new_obj) elif isinstance(new_obj, type): return class_to_dict(obj) elif is_class_instance(new_obj): return class_instance_to_dict(new_obj) else: raise ValueError(f"{type(new_obj)} isn't supported") def restore_object(obj): if type(obj) in (int, float, bool, str, type(None)): pass elif type(obj) is list: for i in range(len(obj)): obj[i] = restore_object(obj[i]) elif type(obj) is dict: if obj.get('type') == 'function': obj = dict_to_function(obj) elif obj.get('type') == 'class': obj = dict_to_class(obj) elif obj.get('type') == 'class_instance': obj = dict_to_class_instance(obj) else: for i in obj: obj[i] = restore_object(obj[i]) return obj def function_to_dict(obj): used_globals_names = [item for item in extract_code_globals(obj.__code__)] globs_dct = {} for x in used_globals_names: if obj.__globals__.get(x) is not None: if isinstance(obj.__globals__.get(x), types.ModuleType): globs_dct[x] = "module" else: globs_dct[x] = obj.__globals__[x] globs_dct['__builtins__'] = 'module' source = get_function_code_attributes(obj) return {'type': 'function', 'source': source, "globals": globs_dct} def dict_to_function(obj): source = obj['source'] function_globals = obj['globals'] for key in function_globals: if function_globals[key] == 'module': if globals().get(key) is not None: function_globals[key] = globals()[key] else: function_globals[key] = importlib.import_module(key) function_code = types.CodeType(source[0], source[1], source[2], source[3], source[4], source[5], bytes.fromhex(source[6]), tuple(source[7]), tuple(source[8]), tuple(source[9]), source[10], source[11], source[12], bytes.fromhex(source[13])) return types.FunctionType(function_code, function_globals) def class_to_dict(obj): class_attributes = {} for attribute in dir(obj): if not attribute.startswith('__'): value = getattr(obj, attribute) elif attribute == '__init__': value = getattr(obj, attribute) if not isinstance(value, types.FunctionType): continue else: continue class_attributes[attribute] = refactor_object(value) return {'type': 'class', 'name': obj.__name__, 'attributes': class_attributes} def dict_to_class(obj): return type(obj['name'], (), restore_object(obj['attributes'])) def class_instance_to_dict(obj): class_attributes = {} for attribute in dir(obj): if not attribute.startswith('__'): value = getattr(obj, attribute) else: continue class_attributes[attribute] = refactor_object(value) return {'type': 'class_instance', 'name': obj.__class__.__name__, 'attributes': class_attributes} def dict_to_class_instance(obj): return type(obj['name'], (), restore_object(obj['attributes']))() def get_function_code_attributes(obj): source = [ obj.__code__.co_argcount, obj.__code__.co_posonlyargcount, obj.__code__.co_kwonlyargcount, obj.__code__.co_nlocals, obj.__code__.co_stacksize, obj.__code__.co_flags, obj.__code__.co_code.hex(), list(obj.__code__.co_consts), list(obj.__code__.co_names), list(obj.__code__.co_varnames), obj.__code__.co_filename, obj.__code__.co_name, obj.__code__.co_firstlineno, obj.__code__.co_lnotab.hex() ] return source
StarcoderdataPython
6627680
<gh_stars>1000+ from collections import OrderedDict from imagededup.methods.hashing import Hashing from imagededup.handlers.search.bktree import BKTree, BkTreeNode # Test BkTreeNode def initialize_for_bktree(): hash_dict = OrderedDict( {'a': '9', 'b': 'D', 'c': 'A', 'd': 'F', 'e': '2', 'f': '6', 'g': '7', 'h': 'E'} ) dist_func = Hashing.hamming_distance return hash_dict, dist_func def test_bktreenode_correct_initialization(): node_name, node_value, parent_name = 'test_node', '1aef', None node = BkTreeNode(node_name, node_value, parent_name) assert node.node_name == 'test_node' assert node.node_value == '1aef' assert node.parent_name is None assert len(node.children) == 0 # test BKTree class def test_insert_tree(): # initialize root node and add 1 new node, check it goes as root's child and has it's parent as root _, dist_func = initialize_for_bktree() hash_dict = {'a': '9', 'b': 'D'} bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' assert 'b' in list(bk.dict_all['a'].children.keys()) assert bk.dict_all['b'].parent_name == 'a' def test_insert_tree_collision(): # initialize root node, add 1 new node and enter another node with same distance from root, check it goes not as # root's child but the other node's child _, dist_func = initialize_for_bktree() hash_dict = OrderedDict( {'a': '9', 'b': 'D', 'c': '8'} ) # to guarantee that 'a' is the root of the tree bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' assert len(bk.dict_all[bk.ROOT].children) == 1 assert 'c' in list(bk.dict_all['b'].children.keys()) def test_insert_tree_different_nodes(): # initialize root node, add 1 new node and enter another node with different distance from root, check it goes as # root's child and not as the other node's child _, dist_func = initialize_for_bktree() hash_dict = OrderedDict( {'a': '9', 'b': 'D', 'c': 'F'} ) # to guarantee that 'a' is the root of the tree bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' assert len(bk.dict_all[bk.ROOT].children) == 2 assert set(['b', 'c']) <= set(bk.dict_all[bk.ROOT].children.keys()) def test_insert_tree_check_distance(): # initialize root node, add 1 new node and enter another node with different distance from root, check that the # distance recorded in the root's children dictionary is as expected _, dist_func = initialize_for_bktree() hash_dict = OrderedDict( {'a': '9', 'b': 'D', 'c': 'F'} ) # to guarantee that 'a' is the root of the tree bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' assert bk.dict_all[bk.ROOT].children['b'] == 1 assert bk.dict_all[bk.ROOT].children['c'] == 2 def test_construct_tree(): # Input a complete tree and check for each node the children and parents hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) # check root assert bk.ROOT == 'a' # check that expected leaf nodes have no children (they're actually leaf nodes) leaf_nodes = set( [k for k in bk.dict_all.keys() if len(bk.dict_all[k].children) == 0] ) expected_leaf_nodes = set(['b', 'd', 'f', 'h']) assert leaf_nodes == expected_leaf_nodes # check that root node ('a') has 4 children assert len(bk.dict_all[bk.ROOT].children) == 4 # check that 'c' has 'd' as it's child at distance 2 assert bk.dict_all['c'].children['d'] == 2 def test_search(): # Input a tree and send a search query, check whether correct number of retrievals are returned hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) query = '5' valid_retrievals = bk.search(query, tol=2) assert len(valid_retrievals) == 5 def test_search_correctness(): # Input a tree and send a search query, check whether correct retrievals are returned hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) query = '5' valid_retrievals = bk.search(query, tol=2) assert set([i[0] for i in valid_retrievals]) == set(['a', 'f', 'g', 'd', 'b']) def test_search_zero_tolerance(): # Input a tree and send a search query, check whether zero retrievals are returned for zero tolerance hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) query = '5' valid_retrievals = bk.search(query, tol=0) assert len(valid_retrievals) == 0 def test_search_dist(): # Input a tree and send a search query, check whether correct distance for a retrieval is returned hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) query = '5' valid_retrievals = bk.search(query, tol=2) assert [i for i in valid_retrievals if i[0] == 'a'][0][1] == 2 def test_get_next_candidates_valid(): # Give a partial tree as input and check that for a query, expected candidates and validity flag are obtained hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' query = '5' candidates, validity, dist = bk._get_next_candidates( query, bk.dict_all[bk.ROOT], tolerance=2 ) candidates = set(candidates) assert candidates <= set(['b', 'c', 'e', 'f']) assert validity def test_get_next_candidates_invalid(): # Give a tree as input and check that for a query, validity flag is 0 hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' query = '5' _, validity, _ = bk._get_next_candidates(query, bk.dict_all[bk.ROOT], tolerance=1) assert not validity def test_tolerance_affects_retrievals(): # Give a partial tree as input and check that for a query, increased tolerance gives more retrievals as expected for # the input tree hash_dict, dist_func = initialize_for_bktree() bk = BKTree(hash_dict, dist_func) assert bk.ROOT == 'a' query = '5' candidates, _, _ = bk._get_next_candidates(query, bk.dict_all[bk.ROOT], tolerance=1) low_tolerance_candidate_len = len(candidates) candidates, _, _ = bk._get_next_candidates(query, bk.dict_all[bk.ROOT], tolerance=2) high_tolerance_candidate_len = len(candidates) assert high_tolerance_candidate_len > low_tolerance_candidate_len
StarcoderdataPython
1653769
<filename>backend/restful_api/urls.py<gh_stars>0 from django.conf.urls import url from django.urls import include from rest_framework import routers from rest_framework_swagger.views import get_swagger_view from . import views router = routers.DefaultRouter() router.register(r'user_attributes', views.UserAttributesViewSet) router.register(r'solved_mission', views.solvedMissionViewSet) router.register(r'placed_towers', views.placedTowersViewSet) router.register(r'placed_landmarks', views.placedLandmarksViewSet) router.register(r'all_solved_missions', views.AllSolvedMissionViewSet) schema_view = get_swagger_view(title='Kort-cept API') urlpatterns = [ # Rest api url(r'^api/', include(router.urls)), url(r'^api-auth/', include('rest_framework.urls', namespace='rest_framework')), # noqa url(r'^auth/', include('djoser.urls')), url(r'^auth/', include('djoser.urls.authtoken')), url(r'^auth/', include('djoser.urls.jwt')), # swagger url(r'^swagger', schema_view) ]
StarcoderdataPython
1826050
# automatically generated by the FlatBuffers compiler, do not modify # namespace: flattrs_test import flatbuffers class AllScalars(object): __slots__ = ['_tab'] @classmethod def GetRootAsAllScalars(cls, buf, offset): n = flatbuffers.encode.Get(flatbuffers.packer.uoffset, buf, offset) x = AllScalars() x.Init(buf, n + offset) return x # AllScalars def Init(self, buf, pos): self._tab = flatbuffers.table.Table(buf, pos) # AllScalars def Boolean(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(4)) if o != 0: return bool(self._tab.Get(flatbuffers.number_types.BoolFlags, o + self._tab.Pos)) return False # AllScalars def Uint8(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(6)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint8Flags, o + self._tab.Pos) return 0 # AllScalars def Uint16(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(8)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint16Flags, o + self._tab.Pos) return 0 # AllScalars def Uint32(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(10)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint32Flags, o + self._tab.Pos) return 0 # AllScalars def Uint64(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(12)) if o != 0: return self._tab.Get(flatbuffers.number_types.Uint64Flags, o + self._tab.Pos) return 0 # AllScalars def Int8(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(14)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int8Flags, o + self._tab.Pos) return 0 # AllScalars def Int16(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(16)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int16Flags, o + self._tab.Pos) return 0 # AllScalars def Int32(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(18)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int32Flags, o + self._tab.Pos) return 0 # AllScalars def Int64(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(20)) if o != 0: return self._tab.Get(flatbuffers.number_types.Int64Flags, o + self._tab.Pos) return 0 # AllScalars def Float32(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(22)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float32Flags, o + self._tab.Pos) return 0.0 # AllScalars def Float64(self): o = flatbuffers.number_types.UOffsetTFlags.py_type(self._tab.Offset(24)) if o != 0: return self._tab.Get(flatbuffers.number_types.Float64Flags, o + self._tab.Pos) return 0.0 def AllScalarsStart(builder): builder.StartObject(11) def AllScalarsAddBoolean(builder, boolean): builder.PrependBoolSlot(0, boolean, 0) def AllScalarsAddUint8(builder, uint8): builder.PrependUint8Slot(1, uint8, 0) def AllScalarsAddUint16(builder, uint16): builder.PrependUint16Slot(2, uint16, 0) def AllScalarsAddUint32(builder, uint32): builder.PrependUint32Slot(3, uint32, 0) def AllScalarsAddUint64(builder, uint64): builder.PrependUint64Slot(4, uint64, 0) def AllScalarsAddInt8(builder, int8): builder.PrependInt8Slot(5, int8, 0) def AllScalarsAddInt16(builder, int16): builder.PrependInt16Slot(6, int16, 0) def AllScalarsAddInt32(builder, int32): builder.PrependInt32Slot(7, int32, 0) def AllScalarsAddInt64(builder, int64): builder.PrependInt64Slot(8, int64, 0) def AllScalarsAddFloat32(builder, float32): builder.PrependFloat32Slot(9, float32, 0.0) def AllScalarsAddFloat64(builder, float64): builder.PrependFloat64Slot(10, float64, 0.0) def AllScalarsEnd(builder): return builder.EndObject()
StarcoderdataPython
5137273
__version__ = "1.0.3" from .DialogTag import DialogTag
StarcoderdataPython
6515706
<reponame>Rob2n/macro_pack VBA = \ """ 'Create A Text and fill it ' Will overwrite existing file Private Sub CreateTxtFile(FilePath As String, FileContent As String) Dim fso As Object Set fso = CreateObject("Scripting.FileSystemObject") Dim Fileout As Object Set Fileout = fso.CreateTextFile(FilePath, True, True) Fileout.Write FileContent Fileout.Close End Sub """
StarcoderdataPython
4819517
# Code for "TSM: Temporal Shift Module for Efficient Video Understanding" # arXiv:1811.08383 # <NAME>*, <NAME>, <NAME> # {jilin, <EMAIL>, <EMAIL> import pdb import torch import torch.nn as nn import torch.nn.functional as F import torchvision import sys sys.path.append("..") from archs import repvgg class TemporalShift(nn.Module): def __init__(self, net, input_channels, n_segment=3, n_div=8, inplace=False, soft=False, init_mode="shift"): super(TemporalShift, self).__init__() self.net = net # self.input_channels = net.in_channels self.input_channels = input_channels self.n_segment = n_segment self.fold_div = n_div self.fold = self.input_channels // self.fold_div self.inplace = inplace self.soft = soft self.mode = init_mode if self.soft: self.conv_shift = nn.Conv1d( self.input_channels, self.input_channels, kernel_size=3, padding=1, groups=self.input_channels, bias=False) # weight_size: (self.input_channels, 1, 3) # 以下是3种初始化方法 if self.mode == 'shift': # import pdb; pdb.set_trace() self.conv_shift.weight.requires_grad = True self.conv_shift.weight.data.zero_() self.conv_shift.weight.data[:self.fold, 0, 2] = 1 # shift left self.conv_shift.weight.data[self.fold: 2 * self.fold, 0, 0] = 1 # shift right if 2*self.fold < self.input_channels: self.conv_shift.weight.data[2 * self.fold:, 0, 1] = 1 # fixed elif self.mode == 'fixed': self.conv_shift.weight.requires_grad = True self.conv_shift.weight.data.zero_() self.conv_shift.weight.data[:, 0, 1] = 1 # fixed elif self.mode == 'norm': self.conv_shift.weight.requires_grad = True if inplace: print('=> Using in-place shift...') print('=> Using fold div: {}'.format(self.fold_div)) def forward(self, x): if self.soft: # 可学习的 1D Temporal kernel nt, c, h, w = x.size() n_batch = nt // self.n_segment x = x.view(n_batch, self.n_segment, c, h, w) x = x.permute([0, 3, 4, 2, 1]) # (n_batch, h, w, c, n_segment) x = x.contiguous().view(n_batch*h*w, c, self.n_segment) x = self.conv_shift(x) # (n_batch*h*w, c, n_segment) x = x.view(n_batch, h, w, c, self.n_segment) x = x.permute([0, 4, 3, 1, 2]) # (n_batch, n_segment, c, h, w) x = x.contiguous().view(nt, c, h, w) else: x = self.shift(x, self.n_segment, fold_div=self.fold_div, inplace=self.inplace) return self.net(x) @staticmethod def shift(x, n_segment, fold_div=8, inplace=False): nt, c, h, w = x.size() n_batch = nt // n_segment x = x.view(n_batch, n_segment, c, h, w) fold = c // fold_div if inplace: # Due to some out of order error when performing parallel computing. # May need to write a CUDA kernel. raise NotImplementedError # out = InplaceShift.apply(x, fold) else: out = torch.zeros_like(x) out[:, :-1, :fold] = x[:, 1:, :fold] # shift left out[:, 1:, fold: 2 * fold] = x[:, :-1, fold: 2 * fold] # shift right out[:, :, 2 * fold:] = x[:, :, 2 * fold:] # not shift return out.view(nt, c, h, w) class InplaceShift(torch.autograd.Function): # Special thanks to @raoyongming for the help to this function @staticmethod def forward(ctx, input, fold): # not support higher order gradient # input = input.detach_() ctx.fold_ = fold n, t, c, h, w = input.size() buffer = input.data.new(n, t, fold, h, w).zero_() buffer[:, :-1] = input.data[:, 1:, :fold] input.data[:, :, :fold] = buffer buffer.zero_() buffer[:, 1:] = input.data[:, :-1, fold: 2 * fold] input.data[:, :, fold: 2 * fold] = buffer return input @staticmethod def backward(ctx, grad_output): # grad_output = grad_output.detach_() fold = ctx.fold_ n, t, c, h, w = grad_output.size() buffer = grad_output.data.new(n, t, fold, h, w).zero_() buffer[:, 1:] = grad_output.data[:, :-1, :fold] grad_output.data[:, :, :fold] = buffer buffer.zero_() buffer[:, :-1] = grad_output.data[:, 1:, fold: 2 * fold] grad_output.data[:, :, fold: 2 * fold] = buffer return grad_output, None class TemporalPool(nn.Module): def __init__(self, net, n_segment): super(TemporalPool, self).__init__() self.net = net self.n_segment = n_segment def forward(self, x): x = self.temporal_pool(x, n_segment=self.n_segment) return self.net(x) @staticmethod def temporal_pool(x, n_segment): nt, c, h, w = x.size() n_batch = nt // n_segment x = x.view(n_batch, n_segment, c, h, w).transpose(1, 2) # n, c, t, h, w x = F.max_pool3d(x, kernel_size=(3, 1, 1), stride=(2, 1, 1), padding=(1, 0, 0)) x = x.transpose(1, 2).contiguous().view(nt // 2, c, h, w) return x def make_temporal_shift(net, n_segment, n_div=8, soft = False, init_mode="shift", place='blockres', temporal_pool=False, deploy=False): ''' 1D时序卷积参数初始化:"shift" 初始化 [0,0,1] 左移;"fixed" 无偏初始化[1, 1, 1];"norm" 随机初始化 normal ''' if temporal_pool: n_segment_list = [n_segment, n_segment // 2, n_segment // 2, n_segment // 2] else: n_segment_list = [n_segment] * 4 assert n_segment_list[-1] > 0 print('=> n_segment per stage: {}'.format(n_segment_list)) # for 0.5 resnet18 >>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>> if isinstance(net, torchvision.models.ResNet): # if 1: # for 0.5 resnet18 <<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<< if place == 'block': def make_block_temporal(stage, this_segment): blocks = list(stage.children()) print('=> Processing stage with {} blocks'.format(len(blocks))) for i, b in enumerate(blocks): # import pdb; pdb.set_trace() blocks[i] = TemporalShift(b, b.conv1.in_channels, n_segment=this_segment, n_div=n_div, soft=soft, init_mode=init_mode) return nn.Sequential(*(blocks)) net.layer1 = make_block_temporal(net.layer1, n_segment_list[0]) net.layer2 = make_block_temporal(net.layer2, n_segment_list[1]) net.layer3 = make_block_temporal(net.layer3, n_segment_list[2]) net.layer4 = make_block_temporal(net.layer4, n_segment_list[3]) elif 'blockres' in place: n_round = 1 if len(list(net.layer3.children())) >= 23: # > res101 n_round = 2 print('=> Using n_round {} to insert temporal shift'.format(n_round)) def make_block_temporal(stage, this_segment): blocks = list(stage.children()) print('=> Processing stage with {} blocks residual'.format(len(blocks))) for i, b in enumerate(blocks): # import pdb; pdb.set_trace() if i % n_round == 0: blocks[i].conv1 = TemporalShift(b.conv1, b.conv1.in_channels, n_segment=this_segment, n_div=n_div) return nn.Sequential(*blocks) net.layer1 = make_block_temporal(net.layer1, n_segment_list[0]) net.layer2 = make_block_temporal(net.layer2, n_segment_list[1]) net.layer3 = make_block_temporal(net.layer3, n_segment_list[2]) net.layer4 = make_block_temporal(net.layer4, n_segment_list[3]) elif isinstance(net, repvgg.RepVGG): if place == 'block': def make_block_temporal(stage, this_segment): blocks = list(stage.children()) print('=> Processing stage with {} blocks'.format(len(blocks))) for i, b in enumerate(blocks): # import pdb; pdb.set_trace() blocks[i] = TemporalShift(b, b.in_channels, n_segment=this_segment, n_div=n_div, soft=soft, init_mode=init_mode) return nn.Sequential(*(blocks)) net.stage1 = make_block_temporal(net.stage1, n_segment_list[0]) net.stage2 = make_block_temporal(net.stage2, n_segment_list[1]) net.stage3 = make_block_temporal(net.stage3, n_segment_list[2]) net.stage4 = make_block_temporal(net.stage4, n_segment_list[3]) elif 'blockres' in place: n_round = 1 # repvgg最深的 stage3 最多才16层,最少14层,没必要隔层添加shift module了 print('=> Using n_round {} to insert temporal shift'.format(n_round)) def make_block_temporal(stage, this_segment): blocks = list(stage.children()) print('=> Processing stage with {} blocks residual'.format(len(blocks))) for i, b in enumerate(blocks): # import pdb; pdb.set_trace() if i % n_round == 0: if deploy: blocks[i].rbr_reparam = TemporalShift(b.rbr_reparam, b.rbr_reparam.in_channels, n_segment=this_segment, n_div=n_div, soft=soft, init_mode=init_mode) else: if blocks[i].rbr_dense: blocks[i].rbr_dense.conv = TemporalShift(b.rbr_dense.conv, b.rbr_dense.conv.in_channels, n_segment=this_segment, n_div=n_div, soft=soft, init_mode=init_mode) if blocks[i].rbr_1x1: blocks[i].rbr_1x1.conv = TemporalShift(b.rbr_1x1.conv, b.rbr_1x1.conv.in_channels, n_segment=this_segment, n_div=n_div, soft=soft, init_mode=init_mode) return nn.Sequential(*blocks) # net.stage0 = make_block_temporal(net.stage0, n_segment_list[0]) # 加了就在低层进行时序融合 net.stage1 = make_block_temporal(net.stage1, n_segment_list[0]) net.stage2 = make_block_temporal(net.stage2, n_segment_list[1]) net.stage3 = make_block_temporal(net.stage3, n_segment_list[2]) net.stage4 = make_block_temporal(net.stage4, n_segment_list[3]) else: raise NotImplementedError(place) def make_temporal_pool(net, n_segment): import torchvision if isinstance(net, torchvision.models.ResNet): print('=> Injecting nonlocal pooling') net.layer2 = TemporalPool(net.layer2, n_segment) else: raise NotImplementedError if __name__ == '__main__': print('=== Temporal Soft Shift RepVGG ===') from archs.repvgg import repvgg_A0, repvgg_B1g2 # imagenet pretrained, deploy MODE is_deploy = False model1 = repvgg_A0(pretrained=True, deploy=is_deploy) # model1 = repvgg_B1g2(pretrained=True, deploy=is_deploy) # model1 = getattr(torchvision.models, "resnet18")(True) # model4 = getattr(torchvision.models, "resnet50")(True) print("Origin Net:", model1) # make_temporal_shift(model3, n_segment=8, n_div=8, place="block", temporal_pool=False) make_temporal_shift(model1, n_segment=8, n_div=8, place="blockres", temporal_pool=False, deploy=is_deploy, soft=True) print("\n\nTSM:", model1) import pdb; pdb.set_trace() print('=> Testing CPU...') # test forward print('=> Testing forward...') with torch.no_grad(): for i in range(10): print(i) x = torch.rand(2 * 8, 3, 224, 224) # (16, 3, 224, 224) y = model1(x) # (16, 1000) print(y.shape) # test backward print('=> Testing backword...') with torch.enable_grad(): for i in range(10): print(i) x1 = torch.rand(2 * 8, 3, 224, 224) x1.requires_grad_() y1 = model1(x1) grad1 = torch.autograd.grad((y1 ** 2).mean(), [x1])[0] print('=> Testing GPU...') model1.cuda() # test forward print('=> Testing forward...') with torch.no_grad(): for i in range(10): print(i) x = torch.rand(2 * 8, 3, 224, 224).cuda() y1 = model1(x) # test backward print('=> Testing backward...') with torch.enable_grad(): for i in range(10): print(i) x1 = torch.rand(2 * 8, 3, 224, 224).cuda() x1.requires_grad_() y1 = model1(x1) grad1 = torch.autograd.grad((y1 ** 2).mean(), [x1])[0] print('Test passed.')
StarcoderdataPython
9608629
<gh_stars>1-10 from conans import ConanFile, CMake, tools, errors import os, re from six import StringIO # Python 2 and 3 compatible def find_all_headers(root): result = [] entries = os.walk(root) for entry in entries: for file in entry[2]: if file.endswith('.h'): result.append(os.path.join(entry[0], file)) return result def fix(all_headers, src): f = open(src, "r") base = os.path.dirname(src) regex = r'^#include\s*"([^"]*)"' result = "" for line in f: match = re.match(regex, line) if match: if not os.path.exists(os.path.join(base, match.group(1))): matches = [x for x in all_headers if os.path.basename(x) == os.path.basename(match.group(1))] if len(matches) == 1: relpath = os.path.relpath(matches[0], base) result += '#include "%s"\n' % relpath continue result += line f.close() f = open(src, "w") f.write(result) def merge_two_dicts(x, y): z = x.copy() # start with x's keys and values z.update(y) # modifies z with y's keys and values & returns None return z class SkiaConan(ConanFile): name = "skia" version = "master" license = "<Put the package license here>" author = "<NAME> <<EMAIL>>" url = "https://github.com/Maddimax/conan-skia.git" description = "A 2D/3D Vector rendering engine" topics = ("render", "vector", "2d", "3d") settings = "os", "compiler", "build_type", "arch" skia_options = { "skia_enable_atlas_text" : [True, False], "skia_enable_ccpr" : [True, False], "skia_enable_discrete_gpu" : [True, False], "skia_enable_flutter_defines" : [True, False], "skia_enable_fontmgr_android" : [True, False], "skia_enable_fontmgr_custom" : [True, False], "skia_enable_fontmgr_custom_empty" : [True, False], "skia_enable_fontmgr_empty" : [True, False], "skia_enable_fontmgr_fuchsia" : [True, False], "skia_enable_fontmgr_win" : [True, False], "skia_enable_fontmgr_win_gdi" : [True, False], "skia_enable_gpu" : [True, False], "skia_enable_nima" : [True, False], "skia_enable_nvpr" : [True, False], "skia_enable_particles" : [True, False], "skia_enable_pdf" : [True, False], "skia_enable_skottie" : [True, False], "skia_enable_skpicture" : [True, False], "skia_enable_skshaper" : [True, False], "skia_enable_spirv_validation" : [True, False], "skia_enable_tools" : [True, False], "skia_enable_vulkan_debug_layers" : [True, False], "skia_generate_workarounds" : [True, False], "skia_use_angle" : [True, False], "skia_use_dng_sdk" : [True, False], "skia_use_egl" : [True, False], "skia_use_expat" : [True, False], "skia_use_fixed_gamma_text" : [True, False], "skia_use_fontconfig" : [True, False], "skia_use_fonthost_mac" : [True, False], "skia_use_freetype" : [True, False], "skia_use_harfbuzz" : [True, False], "skia_use_icu" : [True, False], "skia_use_libheif" : [True, False], "skia_use_libjpeg_turbo" : [True, False], "skia_use_libpng" : [True, False], "skia_use_libwebp" : [True, False], "skia_use_lua" : [True, False], "skia_use_metal" : [True, False], "skia_use_opencl" : [True, False], "skia_use_piex" : [True, False], "skia_use_sfntly" : [True, False], "skia_use_system_expat" : [True, False], "skia_use_system_harfbuzz" : [True, False], "skia_use_system_icu" : [True, False], "skia_use_system_libjpeg_turbo" : [True, False], "skia_use_system_libpng" : [True, False], "skia_use_system_libwebp" : [True, False], "skia_use_system_zlib" : [True, False], "skia_use_vulkan" : [True, False], "skia_use_wuffs" : [True, False], "skia_use_x11" : [True, False], "skia_use_xps" : [True, False], "skia_use_zlib" : [True, False], "is_official_build" : [True, False] } options = merge_two_dicts({ "shared": [True, False] }, skia_options) default_options = { "shared":False, "harfbuzz:with_icu" : True, # Skia options "skia_enable_atlas_text" : False, "skia_enable_ccpr" : True, "skia_enable_discrete_gpu" : True, "skia_enable_flutter_defines" : False, "skia_enable_fontmgr_android" : False, "skia_enable_fontmgr_custom" : False, "skia_enable_fontmgr_custom_empty" : False, "skia_enable_fontmgr_empty" : False, "skia_enable_fontmgr_fuchsia" : False, "skia_enable_fontmgr_win" : False, "skia_enable_fontmgr_win_gdi" : False, "skia_enable_gpu" : False, "skia_enable_nima" : False, "skia_enable_nvpr" : True, "skia_enable_particles" : True, "skia_enable_pdf" : True, "skia_enable_skottie" : True, "skia_enable_skpicture" : True, "skia_enable_skshaper" : True, "skia_enable_spirv_validation" : False, "skia_enable_tools" : False, "skia_enable_vulkan_debug_layers" : False, "skia_generate_workarounds" : False, "skia_use_angle" : False, "skia_use_dng_sdk" : True, "skia_use_egl" : False, "skia_use_expat" : True, "skia_use_fixed_gamma_text" : False, "skia_use_fontconfig" : False, "skia_use_fonthost_mac" : True, "skia_use_freetype" : False, "skia_use_harfbuzz" : True, "skia_use_icu" : True, "skia_use_libheif" : False, "skia_use_libjpeg_turbo" : True, "skia_use_libpng" : True, "skia_use_libwebp" : True, "skia_use_lua" : False, "skia_use_metal" : False, "skia_use_opencl" : False, "skia_use_piex" : True, "skia_use_sfntly" : True, "skia_use_system_expat" : True, "skia_use_system_harfbuzz" : True, "skia_use_system_icu" : True, "skia_use_system_libjpeg_turbo" : True, "skia_use_system_libpng" : False, "skia_use_system_libwebp" : False, "skia_use_system_zlib" : False, "skia_use_vulkan" : False, "skia_use_wuffs" : False, "skia_use_x11" : False, "skia_use_xps" : True, "skia_use_zlib" : True, "is_official_build" : True } generators = "cmake" build_policy = "missing" scm = { "type": "git", "url": "auto", "revision": "auto", "submodule" : "shallow" } revision_mode = "scm" def get_skia_option_value(self, option_name): buf = StringIO() self.run('bin/gn args out/conan-build --list=%s --short' % (option_name), output=buf, cwd='skia') output = buf.getvalue() pattern = r'%s = (.*)' % (option_name) match = re.match(pattern, output) if match: if match.group(1) == 'true': return True elif match.group(1) == 'false': return False raise errors.ConanInvalidConfiguration("Could not parse gn comfiguration options") def requirements(self): if self.options.skia_use_system_icu and self.options.skia_use_icu: self.requires("icu/63.1@bincrafters/stable") if self.options.skia_use_system_libjpeg_turbo and self.options.skia_use_libjpeg_turbo: self.requires("libjpeg-turbo/1.5.2@bincrafters/stable") if self.options.skia_use_system_harfbuzz and self.options.skia_use_harfbuzz: self.requires("harfbuzz/2.4.0@maddimax/stable") if self.options.skia_use_system_libpng and self.options.skia_use_libpng: self.requires("libpng/1.6.36@bincrafters/stable") def source(self): # Fix include paths ... self.output.info("Fixing headers:") all_headers = find_all_headers(os.path.join(self.source_folder, "skia")) for header in all_headers: fix(all_headers, header) if len(all_headers) == 0: print("Error: No header files found") exit(1) self.output.info("Fixed %i files" % (len(all_headers))) # Fetch dependencies self.run('/usr/local/bin/python skia/tools/git-sync-deps') def configure(self): if self.options.skia_use_metal: if not self.settings.os == "iOS" and not self.settings.os == "Macos": raise errors.ConanInvalidConfiguration("Metal is only supported on darwin platforms: %s" % self.settings.os) if self.settings.os == "iOS": self.options.skia_use_fonthost_mac = False self.options.skia_use_system_expat = False self.options.skia_use_system_expat = False self.options.skia_use_system_harfbuzz = False self.options.skia_use_system_icu = False self.options.skia_use_system_libjpeg_turbo = False self.options.skia_use_system_libpng = False self.options.skia_use_system_libwebp = False self.options.skia_use_system_zlib = False def build(self): flags = [] for k,v in self.deps_cpp_info.dependencies: self.output.info("Adding dependency: %s - %s" %(k, v.rootpath)) flags += ['\\"-I%s/include\\"' % (v.rootpath), '\\"-I%s/include/%s\\"' % (v.rootpath, k)] flag_str = 'extra_cflags_cc=[%s]' % ",".join(flags) opts = [flag_str] for k,v in self.options.items(): if k in self.skia_options: opts += [("%s=%s" % (k,v)).lower()] if self.settings.build_type == "Debug": opts += ["is_debug=true"] else: opts += ["is_debug=false"] if self.settings.os == "iOS": opts += ['target_os=\\"ios\\"'] if self.settings.arch == "armv8": opts += ['target_cpu=\\"arm64\\"'] else: opts += ['target_cpu=\\"x86_64\\"'] if len(opts) > 0: opts = '"--args=%s"' % " ".join(opts) else: opts = "" self.output.info("gn options: %s" % (opts)) self.run('bin/gn gen out/conan-build %s ' %(opts), cwd="skia") failed = False for k,v in self.options.items(): if k in self.skia_options: actual = self.get_skia_option_value(k) if not ("%s" % actual) == ("%s" % v): failed = True self.output.warn("Mismatch in %s: %s => %s" % ( k, v, actual )) if failed: raise errors.ConanInvalidConfiguration("Final gn configuration did not match requested config") self.run('ninja -C out/conan-build', cwd="skia") def package(self): self.copy("*.h", dst="include/skia", src="skia", keep_path=True) self.copy("*.dll", dst="bin", src="skia/out/conan-build",keep_path=False) self.copy("*.so", dst="lib", src="skia/out/conan-build",keep_path=False) self.copy("*.dylib", dst="lib", src="skia/out/conan-build",keep_path=False) self.copy("*.a", dst="lib", src="skia/out/conan-build", keep_path=False) # if self.settings.build_type == "Release": # libs = os.listdir(os.path.join(self.package_folder, "lib")) # self.output.info("Trying to strip: %s" %(libs)) # for lib in libs: # self.run('strip -S %s' % (os.path.join(self.package_folder, "lib" ,lib))) def package_info(self): libs = os.listdir(os.path.join(self.package_folder, "lib")) libs = [(x[3:])[:-2] for x in libs] self.cpp_info.libs = libs if self.settings.os == "Macos": self.cpp_info.exelinkflags += ["-framework AppKit"] if self.options.skia_use_metal: self.cpp_info.defines += ["SK_METAL=1"] self.cpp_info.exelinkflags += ["-framework Metal", "-framework MetalKit"]
StarcoderdataPython
6476855
''' @author: <NAME> (jakpra) @copyright: Copyright 2020, <NAME> @license: Apache 2.0 ''' import sys, argparse from collections import Counter import json from tree_st.util import argparse from tree_st.util.reader import ASTDerivationsReader, AUTODerivationsReader, StaggedDerivationsReader from tree_st.util.statistics import print_counter_stats from tree_st.ccg.category import Slashes as sl def main(args): out = open(args.out, 'w', newline='\n') if args.out else sys.stdout if args.training_format == 'ast': dr = ASTDerivationsReader elif args.training_format == 'stagged': dr = StaggedDerivationsReader else: dr = AUTODerivationsReader # combinators = Counter() atomic_categories = Counter() categories = Counter() # category_shapes = Counter() # depths = Counter() # slashes = Counter() # tl_slashes = Counter() # addresses = Counter() # unary = Counter() # unary_levels = Counter() # sentence_unary = Counter() for filepath in args.training_files: ds = dr(filepath, validate=False) for d in ds: deriv = d['DERIVATION'] print(d['ID'], file=sys.stderr) if args.derivation: print(d['ID'], file=out) print(deriv, file=out) lex = deriv.get_lexical(ignore_attr=False) # combinators.update(deriv.count_combinators()) for dln in lex: atomic_categories.update(dln.category1.count_atomic_categories(concat_attr=True)) categories[dln.category1] += 1 ds.close() # print('Category depths', '---------------', sep='\n', file=out) # print_counter_stats(depths, 'depth', None, file=out) # # print(file=out) # print('Categories', '-----------------', sep='\n', file=out) # print_counter_stats(categories, 'category', None, file=out) # # print(file=out) # print('Category shapes', '-----------------', sep='\n', file=out) # print_counter_stats(category_shapes, 'shape', None, file=out) # # print(file=out) # print('Top-level slashes', '-----------', sep='\n', file=out) # print_counter_stats(tl_slashes, 'slash', None, file=out) # # print(file=out) # print('Slash addresses', '-----------', sep='\n', file=out) # print_counter_stats(addresses, 'address', None, file=out) # # print(file=out) # print('Slashes', '-----------', sep='\n', file=out) # print_counter_stats(slashes, 'slash', None, file=out) # # print(file=out) # print('Atomic categories', '-----------------', sep='\n', file=out) # print_counter_stats(atomic_categories, 'category', None, file=out) # # print(file=out) # print('Combinators', '-----------', sep='\n', file=out) # print_counter_stats(combinators, 'combinator', None, file=out) # # print(file=out) # print('# unary combinators in a row', '-----------', sep='\n', file=out) # print_counter_stats(unary, 'unaries in a row', None, file=out) # # print(file=out) # print('Level of unary combinators', '-----------', sep='\n', file=out) # print_counter_stats(unary_levels, 'level', None, file=out) # # print(file=out) # print('Unary combinators per sentence', '-----------', sep='\n', file=out) # print_counter_stats(sentence_unary, 'unaries per sentence', None, file=out) # print freqs # # for i, (k, v) in enumerate(categories.most_common(len(categories))): # print(v, file=out) most_frequent = {} # unstructured tagset # for i, (k, v) in enumerate(categories.most_common(len(categories))): print(i, k, v, sep='\t') if v >= args.freq_threshold: most_frequent[f'({k})'] = i # atomic tagset # # for i, (k, v) in enumerate(atomic_categories.most_common(len(atomic_categories))): # print(i, k, v, sep='\t') # if v >= args.freq_threshold: # most_frequent[f'({k})'] = i json.dump(most_frequent, out, indent=2) out.close() if __name__ == '__main__': args = argparse.main() main(args)
StarcoderdataPython
5144271
import json from typing import List, Tuple import pandas as pd from softnanotools.logger import Logger logger = Logger(__name__) from ..system import System from ..topology import Topology from ...generators import Gel class CoreReader: def __init__( self, particles: dict = None, topologies: list = None, metadata: dict = None ): if not particles: self._particles = {} if not topologies: self._topologies = [] if not metadata: self.metadata = {} def add_particles(self, name, value): self._particles[name] = value @property def particles(self) -> dict: return self._particles def add_topology( self, name, sequence, positions, edges, cls = None, ): if cls == None: cls = Topology else: cls = { 'Topology': Topology, 'Gel': Gel, }[cls] topology = cls( name, sequence=sequence, positions=positions, edges=edges ) self._topologies.append(topology) @property def topologies(self) -> List[Topology]: return self._topologies def system(self, **kwargs) -> System: if 'box' in self.metadata: system = System(self.metadata['box'], unit_system=None) else: system = System(kwargs['box'], unit_system=None) self.configure(system, **kwargs) return system def configure( self, system, diffusion_constant: float = None, diffusion_dictionary: float = None, bonding: List[dict] = None, **kwargs ): if diffusion_dictionary != None and diffusion_constant != None: raise ValueError('Please provide only one form for the diffusion constants!') metadata = self.metadata topologies = self._topologies particles = self._particles logger.debug('Configuring system using reader...') logger.debug(f'\tmetadata: {metadata}') logger.debug(f'\ttopologies: {topologies}') logger.debug(f'\tparticles: {particles}') logger.debug('Using reader to insert topologies...') for topology in self.topologies: logger.info(f'Processing topology: {topology}') if topology.top_type not in bonding: raise TypeError( f'Topology ({topology.top_type}) has been found' f' but no bonds can be found in the bonding dictionary:' f'\n{json.dumps(bonding, indent=2)}' ) settings = bonding[topology.top_type] if isinstance(settings, list): topology.add_bond(settings) else: topology.add_bond(**settings) system.insert_topology( topology, diffusion_dictionary=diffusion_dictionary, diffusion_constant=diffusion_constant ) logger.debug(f'Using reader to insert species...') if diffusion_constant: logger.debug(f'Using diffusion_constant ({diffusion_constant})') diffusion = diffusion_constant for name, value in self.particles.items(): logger.debug(f'Adding {name}') system.insert_species(name, diffusion, value) elif diffusion_dictionary: logger.debug(f'Using diffusion_dictionary: {diffusion_dictionary}') diffusion = diffusion_dictionary for name, value in self.particles.items(): logger.debug(f'Adding {name}') system.insert_species(name, diffusion[name], value) return
StarcoderdataPython
128316
# import pandas, numpy, and matplotlib import pandas as pd from feature_engine.encoding import OneHotEncoder from category_encoders.hashing import HashingEncoder from sklearn.model_selection import train_test_split pd.set_option('display.width', 200) pd.set_option('display.max_columns', 20) pd.set_option('display.max_rows', 200) pd.options.display.float_format = '{:,.0f}'.format covidtotals = pd.read_csv("data/covidtotals.csv") feature_cols = ['location','population', 'aged_65_older','diabetes_prevalence','region'] covidtotals = covidtotals[['total_cases'] + feature_cols].dropna() # Separate into train and test sets X_train, X_test, y_train, y_test = \ train_test_split(covidtotals[feature_cols],\ covidtotals[['total_cases']], test_size=0.3, random_state=0) # use the one hot encoder for region X_train.region.value_counts() ohe = OneHotEncoder(top_categories=6, variables=['region']) covidtotals_ohe = ohe.fit_transform(covidtotals) covidtotals_ohe.filter(regex='location|region', axis="columns").sample(5, random_state=99).T # use the hashing encoder for region he = HashingEncoder(cols=['region'], n_components=16) covidtotals['region2'] = covidtotals.region covidtotals_enc = he.fit_transform(covidtotals) covidtotals_enc.filter(regex='col|reg', axis="columns") covidtotals_enc.groupby(['col_0','col_1','col_2','col_3','col_4','col_5','col_6','col_7','col_8','col_9','col_10','col_11','col_12','col_13','col_14','col_15','region2']).size().reset_index()
StarcoderdataPython
3594755
from collections.abc import MutableMapping from typing import Any from unittest import TestCase from .variable import ( IllegalReferenceError, UndefinedVariableError, VariableError, replace, ) class VariableTest(TestCase): def test_replace_empty(self) -> None: self.assertEqual(({}, []), replace({})) def test_replace_no_variables(self) -> None: data = {"a": 1} self.assertEqual((data, []), replace(data)) def test_replace_remove_variables_item(self) -> None: data = {"variables": {"var": 2}, "a": 1} self.assertEqual(({"a": 1}, []), replace(data)) def test_replace_variables(self) -> None: data = {"variables": {"a": 1}, "a": "$a"} self.assertEqual(({"a": 1}, []), replace(data)) def test_replace_variables_in_dict(self) -> None: data = {"variables": {"b": 1}, "a": {"b": "$b"}} self.assertEqual(({"a": {"b": 1}}, []), replace(data)) def test_replace_variables_in_list(self) -> None: data = {"variables": {"x": 1, "y": 2}, "a": ["$x", "$y"]} self.assertEqual(({"a": [1, 2]}, []), replace(data)) def test_replace_undefined_variable_error(self) -> None: self._assert_error(UndefinedVariableError("a.$a"), {"a": "$a"}) self._assert_error(UndefinedVariableError("a[0].$a"), {"a": ["$a"]}) self._assert_error(UndefinedVariableError("a.b.$a"), {"a": {"b": "$a"}}) def test_replace_invalid_variable_error(self) -> None: self._assert_error(IllegalReferenceError("$a"), {"$a": 1}) self._assert_error(IllegalReferenceError("a.$b"), {"a": {"$b": 1}}) def _assert_error( self, error: VariableError, data: MutableMapping[str, Any] ) -> None: self.assertEqual(({}, [error]), replace(data))
StarcoderdataPython
11202750
#! /usr/bin/env python import logging import logging.handlers from autopyfactory.apfexceptions import ThreadRegistryInvalidKind class ThreadsRegistry(object): def __init__(self, kinds=['plugin','queue','util','core']): self.log = logging.getLogger('autopyfactory') # the kinds of threads allowed # to be registered, # sorted in the order they will be join()'ed self.kinds = kinds # initialization of the registry self.threads = {} for kind in self.kinds: self.threads[kind] = [] def add(self, kind, thread): """ adds a new thread to the registry. Inputs: ------- - kind: the type of thread It must be one of the keys in the self.threads dictionary. - thread: the object to be added to the registry """ self.log.debug('adding a thread of type %s: %s' %(kind, thread.__class__.__name__)) if kind not in self.kinds: raise ThreadRegistryInvalidKind(kind, thread) self.threads[kind].append(thread) def join(self): """ stops all threads registered, in the right order. """ for kind in self.kinds: self.join_kind(kind) def join_kind(self, kind): """ stops all threads registered of a given kind Inputs: ------- - kind: the type of threads to join(). It must be one of the keys in the self.threads dictionary. """ threads = self.threads[kind] msg = 'stopping %s %s thread(s)' %(len(threads), kind) self.log.debug(msg) for thread in threads: msg = 'stopping another %s thread' %kind self.log.debug(msg) thread.join(5)
StarcoderdataPython
53958
from django.test import TestCase from .models import Posts,Location,Category # Create your tests here. class locationTest(TestCase): def setUp(self): self.new_location = Location(location="nairobi") def test_instance(self): self.assertTrue(isinstance(self.new_location,Location)) def test_data(self): self.assertTrue(self.new_location.location,"nairobi") def test_save(self): self.new_location.save() location = Location.objects.all() self.assertTrue(len(location)>0) def test_delete(self): location = Location.objects.filter(id=1) location.delete() locale = Location.objects.all() self.assertTrue(len(locale)==0) def test_update_location(self): self.new_location.save() self.update_location = Location.objects.filter(location='nairobi').update(location = 'Kenya') self.updated_location = Location.objects.get(location='Kenya') self.assertTrue(self.updated_location.location, 'Kenya') def test_get_location_by_id(self): self.new_location.save() locale = Location.objects.get(id=1) self.assertTrue(locale.location,'nairobi') class CategoryTest(TestCase): def setUp(self): self.new_category = Category(name="test") def test_instance(self): self.assertTrue(isinstance(self.new_category,Category)) def test_data(self): self.assertTrue(self.new_category.name,"test") def test_save(self): self.new_category.save() categories = Category.objects.all() self.assertTrue(len(categories)>0) def test_delete(self): category = Category.objects.filter(id=1) category.delete() cat = Category.objects.all() self.assertTrue(len(cat)==0) def test_update_category(self): self.new_category.save() self.update_cat = Category.objects.filter(name='test').update(name = 'wedding') self.updated_cat = Category.objects.get(name='wedding') self.assertTrue(self.updated_cat.name,'wedding') def test_get_category_by_id(self): self.new_category.save() cat = Category.objects.get(id=1) self.assertTrue(cat.name,'test') class postsTest(TestCase): def setUp(self): self.new_location = Location(location="nairobi") # self.new_category = Category(name="test") self.new_location.save() # self.new_category.save() self.new_post = Posts(name="sheila",description="like eating",location=self.new_location) def test_instance(self): self.assertTrue(isinstance(self.new_post,Posts)) def test_data(self): self.assertTrue(self.new_post.name,"sheila") self.assertTrue(self.new_post.description,"like eating") def test_save(self): self.new_post.save() posts = Posts.objects.all() self.assertTrue(len(posts)>0) def test_delete(self): post = Posts.objects.filter(id=1) post.delete() posts = Posts.objects.all() self.assertTrue(len(posts)==0) def test_update_post(self): self.new_post.save() self.update_post = Posts.objects.filter(name='sheila').update(name = 'cake') self.updated_post = Posts.objects.get(name='cake') self.assertTrue(self.updated_post.name,'cake') def test_get_post_by_id(self): self.new_post.save() posts = Posts.objects.get(id=1) self.assertTrue(posts.name,'sheila')
StarcoderdataPython
4809517
<reponame>FermentAI/Fermentation-Station from engine import Subroutine from pyfoomb import BioprocessModel import numpy as np class MyModel(BioprocessModel): """ Defines the model class. Always named MyModel. Always inherits from BioprocessModel Must define rhs(self,t,y) as a system of ODEs. """ def rhs(self, t, y): """ An exothermic stirred tank reactor where the objective is to control the reactor temperature through manipulation of cooling water through the reactor cooling jacket. \n By <NAME> \n https://jckantor.github.io/CBE30338/04.11-Implementing-PID-Control-in-Nonlinear-Simulations.html """ # Unpacks the state vector. The states are alphabetically ordered. C,T,Tc = y # Unpacks the model parameters. # Here both manipualted variables and parameters are considered "model_parameters" q = self.model_parameters['q'] Cf = self.model_parameters['Cf'] Tf = self.model_parameters['Tf'] Tcf = self.model_parameters['Tcf'] qc = self.model_parameters['qc'] Vc = self.model_parameters['Vc'] V = self.model_parameters['V'] rho = self.model_parameters['rho'] Cp = self.model_parameters['Cp'] dHr = self.model_parameters['dHr'] UA = self.model_parameters['UA'] # Defines the derivatives. dCdt = (q/V)*(Cf - C) - self.k(T)*C dTdt = (q/V)*(Tf - T) + (-dHr/rho/Cp)*self.k(T)*C + (UA/V/rho/Cp)*(Tc - T) dTcdt = (qc/Vc)*(Tcf - Tc) + (UA/Vc/rho/Cp)*(T - Tc) # Returns the derivative as list (or numpy array). # The order corresponds to the state vector. return [dCdt, dTdt, dTcdt] ############################################### """ Other methods can also be defined """ # Arrhenius rate expression def k(self,T): Ea = self.model_parameters['Ea'] R = self.model_parameters['R'] k0 = self.model_parameters['k0'] return k0*np.exp(-Ea/R/T) class MySubroutines(Subroutine): """ Defines the subroutine class. Always named MySubroutines. Always inherits from Subroutine. The Subroutine class runs all its NOT underscored functions before iterating at every time step. """ def _initialization(self): ''' This will only be run once in the first integration iteration. Useful for initializing variables. ''' # initialize errors for discrete time calculations self.qLog = [] self.TLog = [] eP_, _, eD_ = self._temperature_error() self._update_error([eP_,eD_,eD_]) def temperature_pid_coolant_flowratea(self): ''' Discrete time PID implementation ''' dt = self.simulator_vars['dt'] kp = self.subroutine_vars['kp'] ki = self.subroutine_vars['ki'] kd = self.subroutine_vars['kd'] new_qc = self.model_parameters['qc'] # calculate current error eP, eI, eD = self._temperature_error() # calculate manipulated varibale based on error new_qc -= kp*(eP - self.eP_) + ki*dt*eI + kd*(eD - 2*self.eD_ + self.eD__)/dt # check for saturation new_qc = self._coolant_flowrate_saturation(new_qc) # update manipulated variable self.model_parameters['qc'] = new_qc self.qLog.append(new_qc) # update errors self._update_error([eP,eD,self.eD_]) return True # other helper functions for Temperature PID def _update_error(self, new_error): self.eP_ = new_error[0] self.eD_ = new_error[1] self.eD__ = new_error[2] def _temperature_error(self): ''' Reactor temperature error with setpoint weighting ''' T = self.model_state['T'] Tsp = self.subroutine_vars['Tsp'] beta = self.subroutine_vars['beta'] gamma = self.subroutine_vars['gamma'] eP = beta*Tsp - T eI = Tsp - T eD = gamma*Tsp - T self.TLog.append(T) return eP,eI,eD def _coolant_flowrate_saturation(self, qc): ''' Clamping of coolant flowrate ''' qc_min = self.subroutine_vars['qc_min'] qc_max = self.subroutine_vars['qc_max'] return max(qc_min, min(qc_max,qc))
StarcoderdataPython
55272
from unittest.mock import patch, MagicMock, PropertyMock import pytest from cincoconfig.core import ConfigFormat from cincoconfig.formats.json import JsonConfigFormat from cincoconfig.formats.bson import BsonConfigFormat from cincoconfig.formats.yaml import YamlConfigFormat from cincoconfig.formats.xml import XmlConfigFormat from cincoconfig.formats.pickle import PickleConfigFormat class TestFormatRegistry: def setup_method(self, _): ConfigFormat._ConfigFormat__registry = {} ConfigFormat._ConfigFormat__initialized = False def test_register(self): fmt = MagicMock ConfigFormat.register('blah', fmt) assert ConfigFormat._ConfigFormat__registry['blah'] is fmt def test_get(self): fmt = MagicMock() fmt.return_value = 'hello' ConfigFormat._ConfigFormat__registry['blah'] = fmt ConfigFormat._ConfigFormat__initialized = True check = ConfigFormat.get('blah', x=1, y='2') fmt.assert_called_once_with(x=1, y='2') assert check == 'hello' @patch.object(ConfigFormat, 'initialize_registry') def test_get_initialize(self, mock_init): ConfigFormat._ConfigFormat__registry['blah'] = MagicMock() ConfigFormat.get('blah') mock_init.assert_called_once() def test_get_no_exists(self): with pytest.raises(KeyError): ConfigFormat.get('asdfasdfasdf') def test_base_formats(self): ConfigFormat.initialize_registry() assert ConfigFormat._ConfigFormat__registry == { 'json': JsonConfigFormat, 'yaml': YamlConfigFormat, 'bson': BsonConfigFormat, 'pickle': PickleConfigFormat, 'xml': XmlConfigFormat } def test_initialize_cache(self): ConfigFormat.initialize_registry() reg = ConfigFormat._ConfigFormat__registry = object() ConfigFormat.initialize_registry() assert ConfigFormat._ConfigFormat__registry is reg
StarcoderdataPython
225396
import re import calendar import json import functools from datetime import datetime from random import random from .common import InfoExtractor from ..compat import ( compat_urllib_parse_urlparse, compat_urlparse ) from ..utils import ( bug_reports_message, ExtractorError, get_first, int_or_none, OnDemandPagedList, parse_qs, srt_subtitles_timecode, traverse_obj, ) class PanoptoBaseIE(InfoExtractor): BASE_URL_RE = r'(?P<base_url>https?://[\w.-]+\.panopto.(?:com|eu)/Panopto)' # see panopto core.js _SUB_LANG_MAPPING = { 0: 'en-US', 1: 'en-GB', 2: 'es-MX', 3: 'es-ES', 4: 'de-DE', 5: 'fr-FR', 6: 'nl-NL', 7: 'th-TH', 8: 'zh-CN', 9: 'zh-TW', 10: 'ko-KR', 11: 'ja-JP', 12: 'ru-RU', 13: 'pt-PT', 14: 'pl-PL', 15: 'en-AU', 16: 'da-DK', 17: 'fi-FI', 18: 'hu-HU', 19: 'nb-NO', 20: 'sv-SE', 21: 'it-IT' } def _call_api(self, base_url, path, video_id, data=None, fatal=True, **kwargs): response = self._download_json( base_url + path, video_id, data=json.dumps(data).encode('utf8') if data else None, fatal=fatal, headers={'accept': 'application/json', 'content-type': 'application/json'}, **kwargs) if not response: return error_code = traverse_obj(response, 'ErrorCode') if error_code == 2: self.raise_login_required(method='cookies') elif error_code is not None: msg = f'Panopto said: {response.get("ErrorMessage")}' if fatal: raise ExtractorError(msg, video_id=video_id, expected=True) else: self.report_warning(msg, video_id=video_id) return response @staticmethod def _parse_fragment(url): return {k: json.loads(v[0]) for k, v in compat_urlparse.parse_qs(compat_urllib_parse_urlparse(url).fragment).items()} @staticmethod def _extract_urls(webpage): return [m.group('url') for m in re.finditer( r'<iframe[^>]+src=["\'](?P<url>%s/Pages/(Viewer|Embed|Sessions/List)\.aspx[^"\']+)' % PanoptoIE.BASE_URL_RE, webpage)] class PanoptoIE(PanoptoBaseIE): _VALID_URL = PanoptoBaseIE.BASE_URL_RE + r'/Pages/(Viewer|Embed)\.aspx.*(?:\?|&)id=(?P<id>[a-f0-9-]+)' _TESTS = [ { 'url': 'https://demo.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=26b3ae9e-4a48-4dcc-96ba-0befba08a0fb', 'info_dict': { 'id': '26b3ae9e-4a48-4dcc-96ba-0befba08a0fb', 'title': 'Panopto for Business - Use Cases', 'timestamp': 1459184200, 'thumbnail': r're:https://demo\.hosted\.panopto\.com/.+', 'upload_date': '20160328', 'ext': 'mp4', 'cast': [], 'chapters': [], 'duration': 88.17099999999999, 'average_rating': int, 'uploader_id': '2db6b718-47a0-4b0b-9e17-ab0b00f42b1e', 'channel_id': 'e4c6a2fc-1214-4ca0-8fb7-aef2e29ff63a', 'channel': 'Showcase Videos' }, }, { 'url': 'https://demo.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=ed01b077-c9e5-4c7b-b8ff-15fa306d7a59', 'info_dict': { 'id': 'ed01b077-c9e5-4c7b-b8ff-15fa306d7a59', 'title': 'Overcoming Top 4 Challenges of Enterprise Video', 'uploader': 'Panopto Support', 'timestamp': 1449409251, 'thumbnail': r're:https://demo\.hosted\.panopto\.com/.+', 'upload_date': '20151206', 'ext': 'mp4', 'chapters': 'count:12', 'cast': ['Panopto Support'], 'uploader_id': 'a96d1a31-b4de-489b-9eee-b4a5b414372c', 'average_rating': int, 'description': 'md5:4391837802b3fc856dadf630c4b375d1', 'duration': 1088.2659999999998, 'channel_id': '9f3c1921-43bb-4bda-8b3a-b8d2f05a8546', 'channel': 'Webcasts', }, }, { # Extra params in URL 'url': 'https://howtovideos.hosted.panopto.com/Panopto/Pages/Viewer.aspx?randomparam=thisisnotreal&id=5fa74e93-3d87-4694-b60e-aaa4012214ed&advance=true', 'info_dict': { 'id': '5fa74e93-3d87-4694-b60e-aaa4012214ed', 'ext': 'mp4', 'duration': 129.513, 'cast': ['<NAME>'], 'uploader_id': '316a0a58-7fa2-4cd9-be1c-64270d284a56', 'timestamp': 1569845768, 'tags': ['Viewer', 'Enterprise'], 'chapters': [], 'upload_date': '20190930', 'thumbnail': r're:https://howtovideos\.hosted\.panopto\.com/.+', 'description': 'md5:2d844aaa1b1a14ad0e2601a0993b431f', 'title': 'Getting Started: View a Video', 'average_rating': int, 'uploader': '<NAME>', 'channel_id': 'fb93bc3c-6750-4b80-a05b-a921013735d3', 'channel': 'Getting Started', } }, { # Does not allow normal Viewer.aspx. AUDIO livestream has no url, so should be skipped and only give one stream. 'url': 'https://unisa.au.panopto.com/Panopto/Pages/Embed.aspx?id=9d9a0fa3-e99a-4ebd-a281-aac2017f4da4', 'info_dict': { 'id': '9d9a0fa3-e99a-4ebd-a281-aac2017f4da4', 'ext': 'mp4', 'cast': ['LTS CLI Script'], 'chapters': [], 'duration': 2178.45, 'description': 'md5:ee5cf653919f55b72bce2dbcf829c9fa', 'channel_id': 'b23e673f-c287-4cb1-8344-aae9005a69f8', 'average_rating': int, 'uploader_id': '38377323-6a23-41e2-9ff6-a8e8004bf6f7', 'uploader': 'LTS CLI Script', 'timestamp': 1572458134, 'title': 'WW2 Vets Interview 3 <NAME>', 'thumbnail': r're:https://unisa\.au\.panopto\.com/.+', 'channel': 'World War II Veteran Interviews', 'upload_date': '20191030', }, }, { # Slides/storyboard 'url': 'https://demo.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=a7f12f1d-3872-4310-84b0-f8d8ab15326b', 'info_dict': { 'id': 'a7f12f1d-3872-4310-84b0-f8d8ab15326b', 'ext': 'mhtml', 'timestamp': 1448798857, 'duration': 4712.681, 'title': 'Cache Memory - CompSci 15-213, Lecture 12', 'channel_id': 'e4c6a2fc-1214-4ca0-8fb7-aef2e29ff63a', 'uploader_id': 'a96d1a31-b4de-489b-9eee-b4a5b414372c', 'upload_date': '20151129', 'average_rating': 0, 'uploader': 'Panopto Support', 'channel': 'Showcase Videos', 'description': 'md5:55e51d54233ddb0e6c2ed388ca73822c', 'cast': ['ISR Videographer', 'Panopto Support'], 'chapters': 'count:28', 'thumbnail': r're:https://demo\.hosted\.panopto\.com/.+', }, 'params': {'format': 'mhtml', 'skip_download': True} }, { 'url': 'https://na-training-1.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=8285224a-9a2b-4957-84f2-acb0000c4ea9', 'info_dict': { 'id': '8285224a-9a2b-4957-84f2-acb0000c4ea9', 'ext': 'mp4', 'chapters': [], 'title': 'Company Policy', 'average_rating': 0, 'timestamp': 1615058901, 'channel': 'Human Resources', 'tags': ['HumanResources'], 'duration': 1604.243, 'thumbnail': r're:https://na-training-1\.hosted\.panopto\.com/.+', 'uploader_id': '8e8ba0a3-424f-40df-a4f1-ab3a01375103', 'uploader': 'Cait M.', 'upload_date': '20210306', 'cast': ['Cait M.'], 'subtitles': {'en-US': [{'ext': 'srt', 'data': 'md5:a3f4d25963fdeace838f327097c13265'}], 'es-ES': [{'ext': 'srt', 'data': 'md5:57e9dad365fd0fbaf0468eac4949f189'}]}, }, 'params': {'writesubtitles': True, 'skip_download': True} }, { # On Panopto there are two subs: "Default" and en-US. en-US is blank and should be skipped. 'url': 'https://na-training-1.hosted.panopto.com/Panopto/Pages/Viewer.aspx?id=940cbd41-f616-4a45-b13e-aaf1000c915b', 'info_dict': { 'id': '940cbd41-f616-4a45-b13e-aaf1000c915b', 'ext': 'mp4', 'subtitles': 'count:1', 'title': 'HR Benefits Review Meeting*', 'cast': ['Panopto Support'], 'chapters': [], 'timestamp': 1575024251, 'thumbnail': r're:https://na-training-1\.hosted\.panopto\.com/.+', 'channel': 'Zoom', 'description': 'md5:04f90a9c2c68b7828144abfb170f0106', 'uploader': 'Panopto Support', 'average_rating': 0, 'duration': 409.34499999999997, 'uploader_id': 'b6ac04ad-38b8-4724-a004-a851004ea3df', 'upload_date': '20191129', }, 'params': {'writesubtitles': True, 'skip_download': True} }, { 'url': 'https://ucc.cloud.panopto.eu/Panopto/Pages/Viewer.aspx?id=0e8484a4-4ceb-4d98-a63f-ac0200b455cb', 'only_matching': True }, { 'url': 'https://brown.hosted.panopto.com/Panopto/Pages/Embed.aspx?id=0b3ff73b-36a0-46c5-8455-aadf010a3638', 'only_matching': True }, ] @classmethod def suitable(cls, url): return False if PanoptoPlaylistIE.suitable(url) else super().suitable(url) def _mark_watched(self, base_url, video_id, delivery_info): duration = traverse_obj(delivery_info, ('Delivery', 'Duration'), expected_type=float) invocation_id = delivery_info.get('InvocationId') stream_id = traverse_obj(delivery_info, ('Delivery', 'Streams', ..., 'PublicID'), get_all=False, expected_type=str) if invocation_id and stream_id and duration: timestamp_str = f'/Date({calendar.timegm(datetime.utcnow().timetuple())}000)/' data = { 'streamRequests': [ { 'ClientTimeStamp': timestamp_str, 'ID': 0, 'InvocationID': invocation_id, 'PlaybackSpeed': 1, 'SecondsListened': duration - 1, 'SecondsRejected': 0, 'StartPosition': 0, 'StartReason': 2, 'StopReason': None, 'StreamID': stream_id, 'TimeStamp': timestamp_str, 'UpdatesRejected': 0 }, ]} self._download_webpage( base_url + '/Services/Analytics.svc/AddStreamRequests', video_id, fatal=False, data=json.dumps(data).encode('utf8'), headers={'content-type': 'application/json'}, note='Marking watched', errnote='Unable to mark watched') @staticmethod def _extract_chapters(timestamps): chapters = [] for timestamp in timestamps or []: caption = timestamp.get('Caption') start, duration = int_or_none(timestamp.get('Time')), int_or_none(timestamp.get('Duration')) if not caption or start is None or duration is None: continue chapters.append({ 'start_time': start, 'end_time': start + duration, 'title': caption }) return chapters @staticmethod def _extract_mhtml_formats(base_url, timestamps): image_frags = {} for timestamp in timestamps or []: duration = timestamp.get('Duration') obj_id, obj_sn = timestamp.get('ObjectIdentifier'), timestamp.get('ObjectSequenceNumber'), if timestamp.get('EventTargetType') == 'PowerPoint' and obj_id is not None and obj_sn is not None: image_frags.setdefault('slides', []).append({ 'url': base_url + f'/Pages/Viewer/Image.aspx?id={obj_id}&number={obj_sn}', 'duration': duration }) obj_pid, session_id, abs_time = timestamp.get('ObjectPublicIdentifier'), timestamp.get('SessionID'), timestamp.get('AbsoluteTime') if None not in (obj_pid, session_id, abs_time): image_frags.setdefault('chapter', []).append({ 'url': base_url + f'/Pages/Viewer/Thumb.aspx?eventTargetPID={obj_pid}&sessionPID={session_id}&number={obj_sn}&isPrimary=false&absoluteTime={abs_time}', 'duration': duration, }) for name, fragments in image_frags.items(): yield { 'format_id': name, 'ext': 'mhtml', 'protocol': 'mhtml', 'acodec': 'none', 'vcodec': 'none', 'url': 'about:invalid', 'fragments': fragments } @staticmethod def _json2srt(data, delivery): def _gen_lines(): for i, line in enumerate(data): start_time = line['Time'] duration = line.get('Duration') if duration: end_time = start_time + duration else: end_time = traverse_obj(data, (i + 1, 'Time')) or delivery['Duration'] yield f'{i + 1}\n{srt_subtitles_timecode(start_time)} --> {srt_subtitles_timecode(end_time)}\n{line["Caption"]}' return '\n\n'.join(_gen_lines()) def _get_subtitles(self, base_url, video_id, delivery): subtitles = {} for lang in delivery.get('AvailableLanguages') or []: response = self._call_api( base_url, '/Pages/Viewer/DeliveryInfo.aspx', video_id, fatal=False, note='Downloading captions JSON metadata', query={ 'deliveryId': video_id, 'getCaptions': True, 'language': str(lang), 'responseType': 'json' } ) if not isinstance(response, list): continue subtitles.setdefault(self._SUB_LANG_MAPPING.get(lang) or 'default', []).append({ 'ext': 'srt', 'data': self._json2srt(response, delivery), }) return subtitles def _extract_streams_formats_and_subtitles(self, video_id, streams, **fmt_kwargs): formats = [] subtitles = {} for stream in streams or []: stream_formats = [] http_stream_url = stream.get('StreamHttpUrl') stream_url = stream.get('StreamUrl') if http_stream_url: stream_formats.append({'url': http_stream_url}) if stream_url: media_type = stream.get('ViewerMediaFileTypeName') if media_type in ('hls', ): m3u8_formats, stream_subtitles = self._extract_m3u8_formats_and_subtitles(stream_url, video_id) stream_formats.extend(m3u8_formats) subtitles = self._merge_subtitles(subtitles, stream_subtitles) else: stream_formats.append({ 'url': stream_url }) for fmt in stream_formats: fmt.update({ 'format_note': stream.get('Tag'), **fmt_kwargs }) formats.extend(stream_formats) return formats, subtitles def _real_extract(self, url): base_url, video_id = self._match_valid_url(url).group('base_url', 'id') delivery_info = self._call_api( base_url, '/Pages/Viewer/DeliveryInfo.aspx', video_id, query={ 'deliveryId': video_id, 'invocationId': '', 'isLiveNotes': 'false', 'refreshAuthCookie': 'true', 'isActiveBroadcast': 'false', 'isEditing': 'false', 'isKollectiveAgentInstalled': 'false', 'isEmbed': 'false', 'responseType': 'json', } ) delivery = delivery_info['Delivery'] session_start_time = int_or_none(delivery.get('SessionStartTime')) timestamps = delivery.get('Timestamps') # Podcast stream is usually the combined streams. We will prefer that by default. podcast_formats, podcast_subtitles = self._extract_streams_formats_and_subtitles( video_id, delivery.get('PodcastStreams'), format_note='PODCAST') streams_formats, streams_subtitles = self._extract_streams_formats_and_subtitles( video_id, delivery.get('Streams'), preference=-10) formats = podcast_formats + streams_formats formats.extend(self._extract_mhtml_formats(base_url, timestamps)) subtitles = self._merge_subtitles( podcast_subtitles, streams_subtitles, self.extract_subtitles(base_url, video_id, delivery)) self._sort_formats(formats) self.mark_watched(base_url, video_id, delivery_info) return { 'id': video_id, 'title': delivery.get('SessionName'), 'cast': traverse_obj(delivery, ('Contributors', ..., 'DisplayName'), default=[], expected_type=lambda x: x or None), 'timestamp': session_start_time - 11640000000 if session_start_time else None, 'duration': delivery.get('Duration'), 'thumbnail': base_url + f'/Services/FrameGrabber.svc/FrameRedirect?objectId={video_id}&mode=Delivery&random={random()}', 'average_rating': delivery.get('AverageRating'), 'chapters': self._extract_chapters(timestamps), 'uploader': delivery.get('OwnerDisplayName') or None, 'uploader_id': delivery.get('OwnerId'), 'description': delivery.get('SessionAbstract'), 'tags': traverse_obj(delivery, ('Tags', ..., 'Content')), 'channel_id': delivery.get('SessionGroupPublicID'), 'channel': traverse_obj(delivery, 'SessionGroupLongName', 'SessionGroupShortName', get_all=False), 'formats': formats, 'subtitles': subtitles } class PanoptoPlaylistIE(PanoptoBaseIE): _VALID_URL = PanoptoBaseIE.BASE_URL_RE + r'/Pages/(Viewer|Embed)\.aspx.*(?:\?|&)pid=(?P<id>[a-f0-9-]+)' _TESTS = [ { 'url': 'https://howtovideos.hosted.panopto.com/Panopto/Pages/Viewer.aspx?pid=f3b39fcf-882f-4849-93d6-a9f401236d36&id=5fa74e93-3d87-4694-b60e-aaa4012214ed&advance=true', 'info_dict': { 'title': 'Featured Video Tutorials', 'id': 'f3b39fcf-882f-4849-93d6-a9f401236d36', 'description': '', }, 'playlist_mincount': 36 }, { 'url': 'https://utsa.hosted.panopto.com/Panopto/Pages/Viewer.aspx?pid=e2900555-3ad4-4bdb-854d-ad2401686190', 'info_dict': { 'title': 'Library Website Introduction Playlist', 'id': 'e2900555-3ad4-4bdb-854d-ad2401686190', 'description': 'md5:f958bca50a1cbda15fdc1e20d32b3ecb', }, 'playlist_mincount': 4 }, ] def _entries(self, base_url, playlist_id, session_list_id): session_list_info = self._call_api( base_url, f'/Api/SessionLists/{session_list_id}?collections[0].maxCount=500&collections[0].name=items', playlist_id) items = session_list_info['Items'] for item in items: if item.get('TypeName') != 'Session': self.report_warning('Got an item in the playlist that is not a Session' + bug_reports_message(), only_once=True) continue yield { '_type': 'url', 'id': item.get('Id'), 'url': item.get('ViewerUri'), 'title': item.get('Name'), 'description': item.get('Description'), 'duration': item.get('Duration'), 'channel': traverse_obj(item, ('Parent', 'Name')), 'channel_id': traverse_obj(item, ('Parent', 'Id')) } def _real_extract(self, url): base_url, playlist_id = self._match_valid_url(url).group('base_url', 'id') video_id = get_first(parse_qs(url), 'id') if video_id: if self.get_param('noplaylist'): self.to_screen('Downloading just video %s because of --no-playlist' % video_id) return self.url_result(base_url + f'/Pages/Viewer.aspx?id={video_id}', ie_key=PanoptoIE.ie_key(), video_id=video_id) else: self.to_screen(f'Downloading playlist {playlist_id}; add --no-playlist to just download video {video_id}') playlist_info = self._call_api(base_url, f'/Api/Playlists/{playlist_id}', playlist_id) return self.playlist_result( self._entries(base_url, playlist_id, playlist_info['SessionListId']), playlist_id=playlist_id, playlist_title=playlist_info.get('Name'), playlist_description=playlist_info.get('Description')) class PanoptoListIE(PanoptoBaseIE): _VALID_URL = PanoptoBaseIE.BASE_URL_RE + r'/Pages/Sessions/List\.aspx' _PAGE_SIZE = 250 _TESTS = [ { 'url': 'https://demo.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#folderID=%22e4c6a2fc-1214-4ca0-8fb7-aef2e29ff63a%22', 'info_dict': { 'id': 'e4c6a2fc-1214-4ca0-8fb7-aef2e29ff63a', 'title': 'Showcase Videos' }, 'playlist_mincount': 140 }, { 'url': 'https://demo.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx#view=2&maxResults=250', 'info_dict': { 'id': 'panopto_list', 'title': 'panopto_list' }, 'playlist_mincount': 300 }, { # Folder that contains 8 folders and a playlist 'url': 'https://howtovideos.hosted.panopto.com/Panopto/Pages/Sessions/List.aspx?noredirect=true#folderID=%224b9de7ae-0080-4158-8496-a9ba01692c2e%22', 'info_dict': { 'id': '4b9de7ae-0080-4158-8496-a9ba01692c2e', 'title': 'Video Tutorials' }, 'playlist_mincount': 9 } ] def _fetch_page(self, base_url, query_params, display_id, page): params = { 'sortColumn': 1, 'getFolderData': True, 'includePlaylists': True, **query_params, 'page': page, 'maxResults': self._PAGE_SIZE, } response = self._call_api( base_url, '/Services/Data.svc/GetSessions', f'{display_id} page {page+1}', data={'queryParameters': params}, fatal=False) for result in get_first(response, 'Results', default=[]): # This could be a video, playlist (or maybe something else) item_id = result.get('DeliveryID') yield { '_type': 'url', 'id': item_id, 'title': result.get('SessionName'), 'url': traverse_obj(result, 'ViewerUrl', 'EmbedUrl', get_all=False) or (base_url + f'/Pages/Viewer.aspx?id={item_id}'), 'duration': result.get('Duration'), 'channel': result.get('FolderName'), 'channel_id': result.get('FolderID'), } for folder in get_first(response, 'Subfolders', default=[]): folder_id = folder.get('ID') yield self.url_result( base_url + f'/Pages/Sessions/List.aspx#folderID="{folder_id}"', ie_key=PanoptoListIE.ie_key(), video_id=folder_id, title=folder.get('Name')) def _extract_folder_metadata(self, base_url, folder_id): response = self._call_api( base_url, '/Services/Data.svc/GetFolderInfo', folder_id, data={'folderID': folder_id}, fatal=False) return { 'title': get_first(response, 'Name', default=[]) } def _real_extract(self, url): mobj = self._match_valid_url(url) base_url = mobj.group('base_url') query_params = self._parse_fragment(url) folder_id, display_id = query_params.get('folderID'), 'panopto_list' if query_params.get('isSubscriptionsPage'): display_id = 'subscriptions' if not query_params.get('subscribableTypes'): query_params['subscribableTypes'] = [0, 1, 2] elif query_params.get('isSharedWithMe'): display_id = 'sharedwithme' elif folder_id: display_id = folder_id query = query_params.get('query') if query: display_id += f': query "{query}"' info = { '_type': 'playlist', 'id': display_id, 'title': display_id, } if folder_id: info.update(self._extract_folder_metadata(base_url, folder_id)) info['entries'] = OnDemandPagedList( functools.partial(self._fetch_page, base_url, query_params, display_id), self._PAGE_SIZE) return info
StarcoderdataPython
6419495
<reponame>kahbenya/k8-test-api from flask import Flask , request import random import requests import json app = Flask(__name__) @app.route("/") def index(): return "Testing 1 1 2 3\n" @app.route("/create" , methods=['POST']) def create(): message = request.json['message'] if not message: return "need a message" # create with k8 api # get the template from the file hellorc_tmpl = open('hellorc.json').read() # generate an id rid = random.randint(100000,2000000000) hellorc_tmpl = hellorc_tmpl.replace("{% ID %}",str(rid)) hellorc_tmpl = hellorc_tmpl.replace("{% USER MSG %}", "App: hello-%d | Message: %s" % (rid,message)) # now use the k8 api to create the rc # should we pull the api info from env vars ? headers = {'Content-Type' : 'application/json'} #create rc rc_req = requests.post("http://localhost:8001/api/v1/namespaces/default/replicationcontrollers", data=hellorc_tmpl, headers=headers) # create the corresponding servcie nodeport = random.randint(30200,30300) hellosvc_tmpl = open('hellosvc.json').read() hellosvc_tmpl = hellosvc_tmpl.replace("{% ID %}",str(rid)) hellosvc_tmpl = hellosvc_tmpl.replace("{% NODEPORT %}",str(nodeport)) svc_req = requests.post("http://localhost:8001/api/v1/namespaces/default/services", data=hellosvc_tmpl,headers=headers) if svc_req.status_code != 200: return svc_req.text, svc_req.status_code #print svc_req.status_code #print svc_req.text # create service return "done" if __name__ == "__main__": app.run(debug=True, host='0.0.0.0',port=5000)
StarcoderdataPython
4991758
<filename>util/mongoback.py #encode=utf-8 import os from config import mongo_back_path import time def back_mongo(): path = mongo_back_path+"/"+str(time.time()) command = "mkdir " + path back_mongo_command = "/usr/bin/mongodump -d ss -o "+path try: os.system(command) os.system(back_mongo_command) return True except Exception as e: pass return False # if __name__ == "__main__": # back_mongo()
StarcoderdataPython
3519628
# -*- coding: utf-8 -*- __author__ = 'minhtule' from unittest import TestCase from gap.parameter import * class TestParameter(TestCase): def test_value(self): self.assertTrue(Parameter("key1", "right format", "text")) self.assertTrue(Parameter("key2", -54.234, "currency")) self.assertTrue(Parameter("key3", True, "boolean")) self.assertTrue(Parameter("key4", 343, "integer")) with self.assertRaises(ValidateException): Parameter("key5", 2.34, Parameter.VALUE_TYPE_TEXT) Parameter("key6", "wrong format", Parameter.VALUE_TYPE_CURRENCY) Parameter("key7", 4, Parameter.VALYE_TYPE_BOOLEAN) Parameter("key8", True, Parameter.VALUE_TYPE_INTEGER) def test_url_format_basic(self): param_text = Parameter("key1", " 2 ^ 3 * a", "text") self.assertEqual(param_text.url_format(), u"key1=%202%20%5E%203%20%2A%20a") param_currency = Parameter("key%2", -22.343, "currency") self.assertEqual(param_currency.url_format(), u"key%252=-22.343") param_boolean = Parameter("key/3", True, "boolean") self.assertEqual(param_boolean.url_format(), u"key%2F3=1") param_integer = Parameter("key_4", 8343, "integer") self.assertEqual(param_integer.url_format(), u"key_4=8343") def test_url_format_advance(self): param1 = Parameter("dp", "/my page €", "text") self.assertEqual(param1.url_format(), u"dp=%2Fmy%20page%20%E2%82%AC") def test_protocol_version(self): protocol_version = ProtocolVersion() self.assertEqual(protocol_version.value, "1") def test_tracking_id(self): self.assertTrue(TrackingID("UA-42620910-11")) with self.assertRaises(ValidateException): TrackingID("UUA-42620910-11") TrackingID("UA-4262091a-11") TrackingID("UA-42620910-1a") def test_anonymize_ip(self): self.assertTrue(AnonymizeIP()) with self.assertRaises(ValidateException): AnonymizeIP(1) AnonymizeIP("1")
StarcoderdataPython
125156
<filename>btn_cache/api_types.py # Copyright (c) 2021 AllSeeingEyeTolledEweSew # # Permission to use, copy, modify, and/or distribute this software for any # purpose with or without fee is hereby granted. # # THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH # REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY # AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT, # INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM # LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR # OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR # PERFORMANCE OF THIS SOFTWARE. import enum from typing import Any from typing import Dict from typing import Sequence from typing_extensions import TypedDict class TorrentEntry(TypedDict): Category: str Codec: str Container: str DownloadURL: str GroupID: str GroupName: str ImdbID: str InfoHash: str Leechers: str Origin: str ReleaseName: str Resolution: str Seeders: str Series: str SeriesBanner: str SeriesID: str SeriesPoster: str Size: str Snatched: str Source: str Time: str TorrentID: str TvdbID: str TvrageID: str YoutubeTrailer: str TORRENT_ENTRY_KEYS = { "Category", "Codec", "Container", "DownloadURL", "GroupID", "GroupName", "ImdbID", "InfoHash", "Leechers", "Origin", "ReleaseName", "Resolution", "Seeders", "Series", "SeriesBanner", "SeriesID", "SeriesPoster", "Size", "Snatched", "Source", "Time", "TorrentID", "TvdbID", "TvrageID", "YoutubeTrailer", } class GetTorrentsResult(TypedDict): results: str torrents: Dict[str, TorrentEntry] class SnatchEntryTorrentInfo(TypedDict): GroupName: str Series: str Year: str Source: str Container: str Codec: str Resolution: str class SnatchEntry(TypedDict): Downloaded: str IsSeeding: str Ratio: str Seedtime: str SnatchTime: str TorrentID: str TorrentInfo: SnatchEntryTorrentInfo Uploaded: str SNATCH_ENTRY_KEYS = { "Downloaded", "IsSeeding", "Ratio", "Seedtime", "SnatchTime", "TorrentID", "TorrentInfo", "Uploaded", } class GetUserSnatchlistResult(TypedDict): results: str torrents: Dict[str, SnatchEntry] class Request(TypedDict): jsonrpc: str id: Any method: str params: Sequence[Any] class ErrorCode(enum.IntEnum): INVALID_API_KEY = -32001 CALL_LIMIT_EXCEEDED = -32002 class Error(TypedDict): message: str code: ErrorCode class Response(TypedDict, total=False): id: Any result: Any error: Error
StarcoderdataPython
9715956
# tests.test_classifier.test_classification_report # Tests for the classification report visualizer # # Author: <NAME> <<EMAIL>> # Author: <NAME> <<EMAIL>> # Created: Sun Mar 18 16:57:27 2018 -0400 # # ID: test_classification_report.py [] <EMAIL> $ """ Tests for the classification report visualizer """ ########################################################################## ## Imports ########################################################################## import pytest import yellowbrick as yb import matplotlib.pyplot as plt from yellowbrick.classifier.classification_report import * from tests.base import VisualTestCase from tests.dataset import DatasetMixin from sklearn.svm import LinearSVC from sklearn.naive_bayes import GaussianNB from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_classification from sklearn.model_selection import train_test_split as tts from sklearn.linear_model import LassoCV, LogisticRegression try: import pandas as pd except ImportError: pd = None ########################################################################## ## Test for Classification Report ########################################################################## @pytest.mark.usefixtures("binary", "multiclass") class ClassificationReportTests(VisualTestCase, DatasetMixin): """ ClassificationReport visualizer tests """ def test_binary_class_report(self): """ Correctly generates a report for binary classification with LinearSVC """ _, ax = plt.subplots() viz = ClassificationReport(LinearSVC(), ax=ax) viz.fit(self.binary.X.train, self.binary.y.train) viz.score(self.binary.X.test, self.binary.y.test) self.assert_images_similar(viz) assert viz.scores_ == { 'precision': {0: 0.7446808510638298, 1: 0.8490566037735849}, 'recall': {0: 0.813953488372093, 1: 0.7894736842105263}, 'f1': {0: 0.7777777777777778, 1: 0.8181818181818182} } def test_multiclass_class_report(self): """ Correctly generates report for multi-class with LogisticRegression """ _, ax = plt.subplots() viz = ClassificationReport(LogisticRegression(random_state=12), ax=ax) viz.fit(self.multiclass.X.train, self.multiclass.y.train) viz.score(self.multiclass.X.test, self.multiclass.y.test) self.assert_images_similar(viz) assert viz.scores_ == { 'precision': { 0: 0.5333333333333333, 1: 0.5, 2: 0.45, 3: 0.4, 4: 0.4, 5: 0.5882352941176471 }, 'recall': { 0: 0.42105263157894735, 1: 0.5625, 2: 0.6428571428571429, 3: 0.3157894736842105, 4: 0.375, 5: 0.625 }, 'f1': { 0: 0.47058823529411764, 1: 0.5294117647058824, 2: 0.5294117647058824, 3: 0.35294117647058826, 4: 0.38709677419354843, 5: 0.6060606060606061 }} @pytest.mark.skipif(pd is None, reason="test requires pandas") def test_pandas_integration(self): """ Test with Pandas DataFrame and Series input """ _, ax = plt.subplots() # Load the occupancy dataset from fixtures data = self.load_data('occupancy') target = 'occupancy' features = [ "temperature", "relative_humidity", "light", "C02", "humidity" ] # Create instances and target X = pd.DataFrame(data[features]) y = pd.Series(data[target].astype(int)) # Create train/test splits splits = tts(X, y, test_size=0.2, random_state=4512) X_train, X_test, y_train, y_test = splits classes = ['unoccupied', 'occupied'] # Create classification report model = GaussianNB() viz = ClassificationReport(model, ax=ax, classes=classes) viz.fit(X_train, y_train) viz.score(X_test, y_test) self.assert_images_similar(viz, tol=0.1) # Ensure correct classification scores under the hood assert viz.scores_ == { 'precision': { 'unoccupied': 0.999347471451876, 'occupied': 0.8825214899713467 }, 'recall': { 'unoccupied': 0.9613935969868174, 'occupied': 0.9978401727861771 }, 'f1': { 'unoccupied': 0.9800031994880819, 'occupied': 0.9366447034972124 }} @pytest.mark.skip(reason="requires random state in quick method") def test_quick_method(self): """ Test the quick method with a random dataset """ X, y = make_classification( n_samples=400, n_features=20, n_informative=8, n_redundant=8, n_classes=2, n_clusters_per_class=4, random_state=27 ) _, ax = plt.subplots() classification_report(DecisionTreeClassifier(), X, y, ax=ax) self.assert_images_similar(ax=ax) def test_isclassifier(self): """ Assert that only classifiers can be used with the visualizer. """ message = ( 'This estimator is not a classifier; ' 'try a regression or clustering score visualizer instead!' ) with pytest.raises(yb.exceptions.YellowbrickError, match=message): ClassificationReport(LassoCV())
StarcoderdataPython
6521910
<reponame>JasonTheDeveloper/Custom-Vision-Autotrainer from enum import Enum class Platform(Enum): DOCKER = "DockerFile" CORE_ML = "CoreML" TENSORFLOW = "TensorFlow" ONNX = "ONNX" def __str__(self): return self.value class Flavour(Enum): Linux = "Linux" Windows = "Windows" ONNX10 = "ONNX10" ONNX12 = "ONNX12" def __str__(self): return self.value
StarcoderdataPython
1928667
# Copyright 2018 The TensorFlow Probability Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """The Dirichlet distribution class.""" # Dependency imports import numpy as np import tensorflow.compat.v2 as tf from tensorflow_probability.python.bijectors import softmax_centered as softmax_centered_bijector from tensorflow_probability.python.bijectors import softplus as softplus_bijector from tensorflow_probability.python.distributions import distribution from tensorflow_probability.python.distributions import gamma as gamma_lib from tensorflow_probability.python.distributions import kullback_leibler from tensorflow_probability.python.internal import assert_util from tensorflow_probability.python.internal import distribution_util from tensorflow_probability.python.internal import dtype_util from tensorflow_probability.python.internal import parameter_properties from tensorflow_probability.python.internal import prefer_static as ps from tensorflow_probability.python.internal import reparameterization from tensorflow_probability.python.internal import tensor_util from tensorflow_probability.python.internal import tensorshape_util __all__ = [ 'Dirichlet', ] _dirichlet_sample_note = """Note: `value` must be a non-negative tensor with dtype `self.dtype` and be in the `(self.event_shape() - 1)`-simplex, i.e., `tf.reduce_sum(value, -1) = 1`. It must have a shape compatible with `self.batch_shape() + self.event_shape()`.""" class Dirichlet(distribution.AutoCompositeTensorDistribution): """Dirichlet distribution. The Dirichlet distribution is defined over the [`(k-1)`-simplex](https://en.wikipedia.org/wiki/Simplex) using a positive, length-`k` vector `concentration` (`k > 1`). The Dirichlet is identically the Beta distribution when `k = 2`. #### Mathematical Details The Dirichlet is a distribution over the open `(k-1)`-simplex, i.e., ```none S^{k-1} = { (x_0, ..., x_{k-1}) in R^k : sum_j x_j = 1 and all_j x_j > 0 }. ``` The probability density function (pdf) is, ```none pdf(x; alpha) = prod_j x_j**(alpha_j - 1) / Z Z = prod_j Gamma(alpha_j) / Gamma(sum_j alpha_j) ``` where: * `x in S^{k-1}`, i.e., the `(k-1)`-simplex, * `concentration = alpha = [alpha_0, ..., alpha_{k-1}]`, `alpha_j > 0`, * `Z` is the normalization constant aka the [multivariate beta function]( https://en.wikipedia.org/wiki/Beta_function#Multivariate_beta_function), and, * `Gamma` is the [gamma function]( https://en.wikipedia.org/wiki/Gamma_function). The `concentration` represents mean total counts of class occurrence, i.e., ```none concentration = alpha = mean * total_concentration ``` where `mean` in `S^{k-1}` and `total_concentration` is a positive real number representing a mean total count. Distribution parameters are automatically broadcast in all functions; see examples for details. Warning: Some components of the samples can be zero due to finite precision. This happens more often when some of the concentrations are very small. Make sure to round the samples to `np.finfo(dtype).tiny` before computing the density. Samples of this distribution are reparameterized (pathwise differentiable). The derivatives are computed using the approach described in the paper [<NAME>, <NAME>, <NAME>. Implicit Reparameterization Gradients, 2018](https://arxiv.org/abs/1805.08498) #### Examples ```python import tensorflow_probability as tfp tfd = tfp.distributions # Create a single trivariate Dirichlet, with the 3rd class being three times # more frequent than the first. I.e., batch_shape=[], event_shape=[3]. alpha = [1., 2, 3] dist = tfd.Dirichlet(alpha) dist.sample([4, 5]) # shape: [4, 5, 3] # x has one sample, one batch, three classes: x = [.2, .3, .5] # shape: [3] dist.prob(x) # shape: [] # x has two samples from one batch: x = [[.1, .4, .5], [.2, .3, .5]] dist.prob(x) # shape: [2] # alpha will be broadcast to shape [5, 7, 3] to match x. x = [[...]] # shape: [5, 7, 3] dist.prob(x) # shape: [5, 7] ``` ```python # Create batch_shape=[2], event_shape=[3]: alpha = [[1., 2, 3], [4, 5, 6]] # shape: [2, 3] dist = tfd.Dirichlet(alpha) dist.sample([4, 5]) # shape: [4, 5, 2, 3] x = [.2, .3, .5] # x will be broadcast as [[.2, .3, .5], # [.2, .3, .5]], # thus matching batch_shape [2, 3]. dist.prob(x) # shape: [2] ``` Compute the gradients of samples w.r.t. the parameters: ```python alpha = tf.constant([1.0, 2.0, 3.0]) dist = tfd.Dirichlet(alpha) samples = dist.sample(5) # Shape [5, 3] loss = tf.reduce_mean(tf.square(samples)) # Arbitrary loss function # Unbiased stochastic gradients of the loss function grads = tf.gradients(loss, alpha) ``` """ def __init__(self, concentration, validate_args=False, allow_nan_stats=True, force_probs_to_zero_outside_support=False, name='Dirichlet'): """Initialize a batch of Dirichlet distributions. Args: concentration: Positive floating-point `Tensor` indicating mean number of class occurrences; aka "alpha". Implies `self.dtype`, and `self.batch_shape`, `self.event_shape`, i.e., if `concentration.shape = [N1, N2, ..., Nm, k]` then `batch_shape = [N1, N2, ..., Nm]` and `event_shape = [k]`. validate_args: Python `bool`, default `False`. When `True` distribution parameters are checked for validity despite possibly degrading runtime performance. When `False` invalid inputs may silently render incorrect outputs. allow_nan_stats: Python `bool`, default `True`. When `True`, statistics (e.g., mean, mode, variance) use the value "`NaN`" to indicate the result is undefined. When `False`, an exception is raised if one or more of the statistic's batch members are undefined. force_probs_to_zero_outside_support: If `True`, force `prob(x) == 0` and `log_prob(x) == -inf` for values of x outside the distribution support. name: Python `str` name prefixed to Ops created by this class. """ parameters = dict(locals()) self._force_probs_to_zero_outside_support = ( force_probs_to_zero_outside_support) with tf.name_scope(name) as name: dtype = dtype_util.common_dtype([concentration], dtype_hint=tf.float32) self._concentration = tensor_util.convert_nonref_to_tensor( concentration, dtype=dtype, name='concentration') super(Dirichlet, self).__init__( dtype=self._concentration.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, reparameterization_type=reparameterization.FULLY_REPARAMETERIZED, parameters=parameters, name=name) @classmethod def _parameter_properties(cls, dtype, num_classes=None): # pylint: disable=g-long-lambda return dict( concentration=parameter_properties.ParameterProperties( event_ndims=1, default_constraining_bijector_fn=( lambda: softplus_bijector.Softplus(low=dtype_util.eps(dtype))))) # pylint: enable=g-long-lambda @property def concentration(self): """Concentration parameter; expected counts for that coordinate.""" return self._concentration @property def force_probs_to_zero_outside_support(self): return self._force_probs_to_zero_outside_support def _event_shape_tensor(self): # NOTE: In TF1, tf.shape(x) can call `tf.convert_to_tensor(x)` **twice**, # so we pre-emptively convert-to-tensor. concentration = tf.convert_to_tensor(self.concentration) return ps.shape(concentration)[-1:] def _event_shape(self): return tensorshape_util.with_rank(self.concentration.shape[-1:], rank=1) def _sample_n(self, n, seed=None): # We use the log-space gamma sampler to avoid the bump-up-from-0 correction, # and to apply the concentration < 1 recurrence in log-space. This improves # accuracy for small concentrations. log_gamma_sample = gamma_lib.random_gamma( shape=[n], concentration=self.concentration, seed=seed, log_space=True) return tf.math.exp( log_gamma_sample - tf.math.reduce_logsumexp(log_gamma_sample, axis=-1, keepdims=True)) @distribution_util.AppendDocstring(_dirichlet_sample_note) def _log_prob(self, x): concentration = tf.convert_to_tensor(self.concentration) lp = (tf.reduce_sum(tf.math.xlogy(concentration - 1., x), axis=-1) - tf.math.lbeta(concentration)) if self._force_probs_to_zero_outside_support: eps = np.finfo(dtype_util.as_numpy_dtype(x.dtype)).eps in_support = ( tf.reduce_all(x >= 0, axis=-1) & # Reusing the logic of tf.debugging.assert_near, 10 * np.finfo.eps (tf.math.abs(tf.reduce_sum(x, axis=-1) - 1.) < 10 * eps)) return tf.where(in_support, lp, -float('inf')) return lp @distribution_util.AppendDocstring(_dirichlet_sample_note) def _prob(self, x): return tf.exp(self._log_prob(x)) def _entropy(self): concentration = tf.convert_to_tensor(self.concentration) k = tf.cast(tf.shape(concentration)[-1], self.dtype) total_concentration = tf.reduce_sum(concentration, axis=-1) return (tf.math.lbeta(concentration) + ((total_concentration - k) * tf.math.digamma(total_concentration)) - tf.reduce_sum((concentration - 1.) * tf.math.digamma(concentration), axis=-1)) def _mean(self): concentration = tf.convert_to_tensor(self.concentration) total_concentration = tf.reduce_sum(concentration, axis=-1, keepdims=True) return concentration / total_concentration def _covariance(self): concentration = tf.convert_to_tensor(self.concentration) total_concentration = tf.reduce_sum(concentration, axis=-1, keepdims=True) mean = concentration / total_concentration scale = tf.math.rsqrt(1. + total_concentration) x = scale * mean variance = x * (scale - x) return tf.linalg.set_diag( tf.matmul(-x[..., tf.newaxis], x[..., tf.newaxis, :]), variance) def _variance(self): concentration = tf.convert_to_tensor(self.concentration) total_concentration = tf.reduce_sum(concentration, axis=-1, keepdims=True) mean = concentration / total_concentration scale = tf.math.rsqrt(1. + total_concentration) x = scale * mean return x * (scale - x) @distribution_util.AppendDocstring( """Note: The mode is undefined when any `concentration <= 1`. If `self.allow_nan_stats` is `True`, `NaN` is used for undefined modes. If `self.allow_nan_stats` is `False` an exception is raised when one or more modes are undefined.""") def _mode(self): concentration = tf.convert_to_tensor(self.concentration) k = tf.cast(tf.shape(concentration)[-1], self.dtype) total_concentration = tf.reduce_sum(concentration, axis=-1) mode = (concentration - 1.) / (total_concentration[..., tf.newaxis] - k) if self.allow_nan_stats: return tf.where( tf.reduce_all(concentration > 1., axis=-1, keepdims=True), mode, dtype_util.as_numpy_dtype(self.dtype)(np.nan)) assertions = [ assert_util.assert_less( tf.ones([], self.dtype), concentration, message='Mode undefined when any concentration <= 1') ] with tf.control_dependencies(assertions): return tf.identity(mode) def _default_event_space_bijector(self): # TODO(b/145620027) Finalize choice of bijector. return softmax_centered_bijector.SoftmaxCentered( validate_args=self.validate_args) def _sample_control_dependencies(self, x): """Checks the validity of a sample.""" assertions = [] if not self.validate_args: return assertions assertions.append(assert_util.assert_non_negative( x, message='Samples must be non-negative.')) assertions.append(assert_util.assert_near( tf.ones([], dtype=self.dtype), tf.reduce_sum(x, axis=-1), message='Sample last-dimension must sum to `1`.')) return assertions def _parameter_control_dependencies(self, is_init): """Checks the validity of the concentration parameter.""" assertions = [] # In init, we can always build shape and dtype checks because # we assume shape doesn't change for Variable backed args. if is_init: if not dtype_util.is_floating(self.concentration.dtype): raise TypeError('Argument `concentration` must be float type.') msg = 'Argument `concentration` must have rank at least 1.' ndims = tensorshape_util.rank(self.concentration.shape) if ndims is not None: if ndims < 1: raise ValueError(msg) elif self.validate_args: assertions.append(assert_util.assert_rank_at_least( self.concentration, 1, message=msg)) msg = 'Argument `concentration` must have `event_size` at least 2.' event_size = tf.compat.dimension_value(self.concentration.shape[-1]) if event_size is not None: if event_size < 2: raise ValueError(msg) elif self.validate_args: assertions.append(assert_util.assert_less( 1, tf.shape(self.concentration)[-1], message=msg)) if not self.validate_args: assert not assertions # Should never happen. return [] if is_init != tensor_util.is_ref(self.concentration): assertions.append(assert_util.assert_positive( self.concentration, message='Argument `concentration` must be positive.')) return assertions @kullback_leibler.RegisterKL(Dirichlet, Dirichlet) def _kl_dirichlet_dirichlet(d1, d2, name=None): """Batchwise KL divergence KL(d1 || d2) with d1 and d2 Dirichlet. Args: d1: instance of a Dirichlet distribution object. d2: instance of a Dirichlet distribution object. name: Python `str` name to use for created operations. Default value: `None` (i.e., `'kl_dirichlet_dirichlet'`). Returns: kl_div: Batchwise KL(d1 || d2) """ with tf.name_scope(name or 'kl_dirichlet_dirichlet'): # The KL between Dirichlet distributions can be derived as follows. We have # # Dir(x; a) = 1 / B(a) * prod_i[x[i]^(a[i] - 1)] # # where B(a) is the multivariate Beta function: # # B(a) = Gamma(a[1]) * ... * Gamma(a[n]) / Gamma(a[1] + ... + a[n]) # # The KL is # # KL(Dir(x; a), Dir(x; b)) = E_Dir(x; a){log(Dir(x; a) / Dir(x; b))} # # so we'll need to know the log density of the Dirichlet. This is # # log(Dir(x; a)) = sum_i[(a[i] - 1) log(x[i])] - log B(a) # # The only term that matters for the expectations is the log(x[i]). To # compute the expectation of this term over the Dirichlet density, we can # use the following facts about the Dirichlet in exponential family form: # 1. log(x[i]) is a sufficient statistic # 2. expected sufficient statistics (of any exp family distribution) are # equal to derivatives of the log normalizer with respect to # corresponding natural parameters: E{T[i](x)} = dA/d(eta[i]) # # To proceed, we can rewrite the Dirichlet density in exponential family # form as follows: # # Dir(x; a) = exp{eta(a) . T(x) - A(a)} # # where '.' is the dot product of vectors eta and T, and A is a scalar: # # eta[i](a) = a[i] - 1 # T[i](x) = log(x[i]) # A(a) = log B(a) # # Now, we can use fact (2) above to write # # E_Dir(x; a)[log(x[i])] # = dA(a) / da[i] # = d/da[i] log B(a) # = d/da[i] (sum_j lgamma(a[j])) - lgamma(sum_j a[j]) # = digamma(a[i])) - digamma(sum_j a[j]) # # Putting it all together, we have # # KL[Dir(x; a) || Dir(x; b)] # = E_Dir(x; a){log(Dir(x; a) / Dir(x; b)} # = E_Dir(x; a){sum_i[(a[i] - b[i]) log(x[i])} - (lbeta(a) - lbeta(b)) # = sum_i[(a[i] - b[i]) * E_Dir(x; a){log(x[i])}] - lbeta(a) + lbeta(b) # = sum_i[(a[i] - b[i]) * (digamma(a[i]) - digamma(sum_j a[j]))] # - lbeta(a) + lbeta(b)) concentration1 = tf.convert_to_tensor(d1.concentration) concentration2 = tf.convert_to_tensor(d2.concentration) digamma_sum_d1 = tf.math.digamma( tf.reduce_sum(concentration1, axis=-1, keepdims=True)) digamma_diff = tf.math.digamma(concentration1) - digamma_sum_d1 concentration_diff = concentration1 - concentration2 return ( tf.reduce_sum(concentration_diff * digamma_diff, axis=-1) - tf.math.lbeta(concentration1) + tf.math.lbeta(concentration2))
StarcoderdataPython
8079614
<gh_stars>1-10 """Author: <NAME>, Copyright 2019""" from best_first.caption_utils import Insertion from abc import ABC, abstractmethod import numpy as np class Ordering(ABC): def __init__( self, max_violations=0 ): self.max_violations = max_violations def get_orderings( self, split_words, split_tags, candidate_words, candidate_tags, candidate_slots, order_violations, closed ): orderings = self.expand( split_words, split_tags, left_words=candidate_words, left_tags=candidate_tags, slots=candidate_slots, violations=order_violations, closed=closed) if split_words.size > 0 else [] insertion_index = np.argmax(self.score(candidate_words, candidate_tags)) return orderings + [Insertion( words=np.concatenate([[2], split_words, [3]]), tags=np.concatenate([[1], split_tags, [1]]), next_word=candidate_words[insertion_index], next_tag=candidate_tags[insertion_index], slot=candidate_slots[insertion_index], violations=order_violations)] def expand( self, words, tags, left_words=np.zeros([0], dtype=np.int32), left_tags=np.zeros([0], dtype=np.int32), slots=np.zeros([0], dtype=np.int32), violations=0, closed=None ): orderings = [] closed = closed if closed is not None else set() removal_index = np.argmin(self.score(words, tags)) for i, (word, tag) in enumerate(zip(words, tags)): order_violations = violations if i == removal_index else violations + 1 if order_violations <= self.max_violations: split_words = np.append(words[:i], words[i + 1:]) if split_words.tostring() not in closed: closed.add(split_words.tostring()) split = 0 while split < slots.size and slots[split] <= i: split += 1 orderings.extend(self.get_orderings( split_words, np.append(tags[:i], tags[i + 1:]), np.concatenate([left_words[:split], [word], left_words[split:]]), np.concatenate([left_tags[:split], [tag], left_tags[split:]]), np.concatenate([slots[:split], [i], slots[split:] - 1]), order_violations, closed)) return orderings @abstractmethod def score( self, words, tags, ): return NotImplemented
StarcoderdataPython
1826642
from typing import List, Optional import matplotlib.pyplot as plt import numpy from matplotlib.figure import Figure from tifffile import imread from hylfm.plot.plotting import turbo_colormap def plot_img_projections(img: numpy.ndarray, b=0) -> Figure: assert len(img.shape) == 5 # bczyx img = img[b] assert img.shape[0] == 1 # singleton channel axis img = img[0] z_len, y_len, x_len = img.shape fig = plt.figure(constrained_layout=False) gs = fig.add_gridspec(2, 2, width_ratios=[x_len, z_len], height_ratios=[z_len, y_len]) # ax1 ax1 = fig.add_subplot(gs[1, 0], anchor="E") ax1.set_xlabel("x") ax1.set_ylabel("y") # ax2 ax2 = fig.add_subplot(gs[1, 1], sharey=ax1, anchor="W") # ax2.set_ylabel('y') ax2.set_xlabel("z") plt.setp(ax2.get_yticklabels(), visible=False) # ax3 ax3 = fig.add_subplot(gs[0, 0], sharex=ax1, anchor="E") # ax3.set_xlabel("x") ax3.set_ylabel("z") plt.setp(ax3.get_xticklabels(), visible=False) ax1.imshow(img.max(0), cmap=turbo_colormap) ax2.imshow(img.max(2).transpose(), cmap=turbo_colormap) ax3.imshow(img.max(1), cmap=turbo_colormap) plt.tight_layout() fig.subplots_adjust(wspace=0, hspace=0) return fig def plot_img_projections_with_beads( img: numpy.ndarray, bead_pos: List[numpy.ndarray], other_bead_pos: Optional[List[numpy.ndarray]] = None, b=0, z_min=None, z_max=None, ) -> Figure: assert len(img.shape) == 5 # bczyx img = img[b] assert img.shape[0] == 1 # singleton channel axis img = img[0] z_len, y_len, x_len = img.shape bead_pos = bead_pos[b] assert len(bead_pos.shape) == 2 if z_min is not None: bead_pos = bead_pos[z_min <= bead_pos[:, 0]] if z_max is not None: bead_pos = bead_pos[z_max >= bead_pos[:, 0]] fig = plt.figure(constrained_layout=False) gs = fig.add_gridspec(2, 2, width_ratios=[x_len, z_len], height_ratios=[z_len, y_len]) # ax1 ax1 = fig.add_subplot(gs[1, 0], anchor="E") ax1.set_xlabel("x") ax1.set_ylabel("y") # ax2 ax2 = fig.add_subplot(gs[1, 1], sharey=ax1, anchor="W") # ax2.set_ylabel('y') ax2.set_xlabel("z") plt.setp(ax2.get_yticklabels(), visible=False) # ax3 ax3 = fig.add_subplot(gs[0, 0], sharex=ax1, anchor="E") # ax3.set_xlabel('x') ax3.set_ylabel("z") plt.setp(ax3.get_xticklabels(), visible=False) ax1.imshow(img.max(0), cmap=turbo_colormap) ax2.imshow(img.max(2).transpose(), cmap=turbo_colormap) ax3.imshow(img.max(1), cmap=turbo_colormap) ax1.scatter(bead_pos[:, 2], bead_pos[:, 1], c=abs(bead_pos[:, 0] - 25), marker="1") ax2.scatter(bead_pos[:, 0], bead_pos[:, 1], c=abs(bead_pos[:, 0] - 25), marker="1") ax3.scatter(bead_pos[:, 2], bead_pos[:, 0], c=abs(bead_pos[:, 0] - 25), marker="1") if other_bead_pos is not None: other_bead_pos = other_bead_pos[b] assert len(other_bead_pos.shape) == 2 ax1.scatter(other_bead_pos[:, 2], other_bead_pos[:, 1], c=abs(other_bead_pos[:, 0] - 25), marker="2") ax2.scatter(other_bead_pos[:, 0], other_bead_pos[:, 1], c=abs(other_bead_pos[:, 0] - 25), marker="2") ax3.scatter(other_bead_pos[:, 2], other_bead_pos[:, 0], c=abs(other_bead_pos[:, 0] - 25), marker="2") plt.tight_layout() fig.subplots_adjust(wspace=0, hspace=0) return fig if __name__ == "__main__": tgt = ( imread("K:/beuttenm/repos/lnet/logs/beads/19-08-23_18-32_c307a5a_aux1_/result/test/target/0000.tif")[None, ...] / numpy.iinfo(numpy.uint16).max ) pred = ( imread("K:/beuttenm/repos/lnet/logs/beads/19-08-23_18-32_c307a5a_aux1_/result/test/prediction/0000.tif")[ None, ... ] / numpy.iinfo(numpy.uint16).max ) plot_img_projections(tgt) plt.show() plot_img_projections(pred) plt.show()
StarcoderdataPython
5180849
<gh_stars>100-1000 # coding: utf-8 import os import warnings from pathlib import Path from functools import reduce from itertools import chain from collections import Counter import numpy as np import pandas as pd import gender_guesser.detector as gender from sklearn.preprocessing import MultiLabelBinarizer warnings.filterwarnings("ignore") DATA_PATH = Path("data/airbnb") fname = "listings.csv.gz" if not os.path.exists(DATA_PATH): os.makedirs(DATA_PATH) df_original = pd.read_csv(DATA_PATH / fname) print(df_original.shape) df_original.head() # this is just subjective. One can choose some other columns keep_cols = [ "id", "host_id", "description", "house_rules", "host_name", "host_listings_count", "host_identity_verified", "neighbourhood_cleansed", "latitude", "longitude", "is_location_exact", "property_type", "room_type", "accommodates", "bathrooms", "bedrooms", "beds", "amenities", "price", "security_deposit", "cleaning_fee", "guests_included", "extra_people", "minimum_nights", "instant_bookable", "cancellation_policy", "reviews_per_month", ] df = df_original[keep_cols] df = df[~df.reviews_per_month.isna()] df = df[~df.description.isna()] df = df[~df.host_listings_count.isna()] print(df.shape) # This is a preprocessing stage before preparing the data to be passed to WideDeep # Let's go "column by column" # house rules # # I will simply include a binary column with 1/0 if the property has/has not # house rules. df["has_house_rules"] = df["house_rules"] df.has_house_rules.fillna(0, inplace=True) df["has_house_rules"][df.has_house_rules != 0] = 1 df.drop("house_rules", axis=1, inplace=True) # host_name # # I will use names to infer gender using `gender_guesser` host_name = df.host_name.tolist() d = gender.Detector() host_gender = [d.get_gender(n) for n in host_name] replace_dict = {"mostly_male": "male", "mostly_female": "female", "andy": "unknown"} host_gender = [replace_dict.get(item, item) for item in host_gender] Counter(host_gender) df["host_gender"] = host_gender df.drop("host_name", axis=1, inplace=True) df.head() # property_type, room_type, accommodates, bathrooms, bedrooms, beds and # guests_included, host_listings_count, minimum_nights # # Here some standard pre-processing df.property_type.value_counts() replace_prop_type = [ val for val in df.property_type.unique().tolist() if val not in ["Apartment", "House"] ] replace_prop_type = {k: "other" for k in replace_prop_type} df.property_type.replace(replace_prop_type, inplace=True) df["property_type"] = df.property_type.apply(lambda x: "_".join(x.split(" ")).lower()) df.room_type.value_counts() df["room_type"] = df.room_type.apply(lambda x: "_".join(x.split(" ")).lower()) df["bathrooms"][(df.bathrooms.isna()) & (df.room_type == "private_room")] = 0 df["bathrooms"][(df.bathrooms.isna()) & (df.room_type == "entire_home/apt")] = 1 df.bedrooms.fillna(1, inplace=True) df.beds.fillna(1, inplace=True) # Encode some as categorical categorical_cut = [ ("accommodates", 3), ("guests_included", 3), ("minimum_nights", 3), ("host_listings_count", 3), ("bathrooms", 1.5), ("bedrooms", 3), ("beds", 3), ] for col, cut in categorical_cut: new_colname = col + "_catg" df[new_colname] = df[col].apply(lambda x: cut if x >= cut else x) df[new_colname] = df[new_colname].round().astype(int) # Amenities # # I will just add a number of dummy columns with 1/0 if the property has/has # not that particular amenity amenity_repls = ( ('"', ""), ("{", ""), ("}", ""), (" / ", "_"), ("/", "_"), (" ", "_"), ("(s)", ""), ) amenities_raw = df.amenities.str.lower().tolist() amenities = [ reduce(lambda a, kv: a.replace(*kv), amenity_repls, s).split(",") for s in amenities_raw ] all_amenities = list(chain(*amenities)) all_amenities_count = Counter(all_amenities) all_amenities_count # having a look to the list we see that one amenity is empty and two are # "translation missing:..." keep_amenities = [] for k, v in all_amenities_count.items(): if k and "missing" not in k: keep_amenities.append(k) final_amenities = [ [amenity for amenity in house_amenities if amenity in keep_amenities] for house_amenities in amenities ] # some properties have no amenities aparently final_amenities = [ ["no amenities"] if not amenity else amenity for amenity in final_amenities ] final_amenities = [ ["amenity_" + amenity for amenity in amenities] for amenities in final_amenities ] # let's build the dummy df df_list_of_amenities = pd.DataFrame({"groups": final_amenities}, columns=["groups"]) s = df_list_of_amenities["groups"] mlb = MultiLabelBinarizer() df_amenities = pd.DataFrame(mlb.fit_transform(s), columns=mlb.classes_, index=df.index) df.drop("amenities", axis=1, inplace=True) df = pd.concat([df, df_amenities], axis=1) df.head() # Price, security_deposit, cleaning_fee, extra_people money_columns = ["price", "security_deposit", "cleaning_fee", "extra_people"] tmp_money_df = df[money_columns].fillna("$0") money_repls = (("$", ""), (",", "")) for col in money_columns: val_str = tmp_money_df[col].tolist() val_num = [ float(st) for st in [ reduce(lambda a, kv: a.replace(*kv), money_repls, s) for s in val_str ] ] tmp_money_df[col] = val_num high_price, high_deposit, high_cleaning_fee, high_extra_people = 1000, 2000, 200, 100 high_price_count = (tmp_money_df.price >= high_price).sum() high_deposit_count = (tmp_money_df.security_deposit >= high_deposit).sum() high_cleaning_fee_count = (tmp_money_df.cleaning_fee >= high_cleaning_fee).sum() high_extra_people_count = (tmp_money_df.extra_people >= high_extra_people).sum() print("properties with very high price: {}".format(high_price_count)) print("properties with very high security deposit: {}".format(high_deposit_count)) print("properties with very high cleaning fee: {}".format(high_cleaning_fee_count)) print("properties with very high extra people cost: {}".format(high_extra_people_count)) # We will now just concat and we will drop high values later one df.drop(money_columns, axis=1, inplace=True) df = pd.concat([df, tmp_money_df], axis=1) df = df[ (df.price < high_price) & (df.price != 0) & (df.security_deposit < high_deposit) & (df.cleaning_fee < high_cleaning_fee) & (df.extra_people < high_extra_people) ] df.head() print(df.shape) # let's make sure there are no nan left has_nan = df.isnull().any(axis=0) has_nan = [df.columns[i] for i in np.where(has_nan)[0]] if not has_nan: print("no NaN, all OK") # Computing a proxi for yield # Yield is defined as price * occupancy rate. Occupancy rate can be calculated # by multiplying ((reviews / review rate) * average length of stay), where # review rate and average length of stay are normally taken as a factor based # in some model. For example, in the San Francisco model a review rate of 0.5 # is used to convert reviews to estimated bookings (i.e. we assume that only # half of the guests will leave a review). An average length of stay of 3 # nights multiplied by the estimated bookings over a period gives the # occupancy rate. Therefore, in the expression I have used below, if you want # to turn my implementation of 'yield' into a "proper" one under the San # Francisco model assumptions simply multiply my yield by 6 (3 * (1/0.5)) or # by 72 (3 * 2 * 12) if you prefer per year. df["yield"] = (df["price"] + df["cleaning_fee"]) * (df["reviews_per_month"]) df.drop(["price", "cleaning_fee", "reviews_per_month"], axis=1, inplace=True) # we will focus in cases with yield below 600 (we lose ~3% of the data). # No real reason for this, simply removing some "outliers" df = df[df["yield"] <= 600] df.to_csv(DATA_PATH / "listings_processed.csv", index=False) print("data preprocessed finished. Final shape: {}".format(df.shape))
StarcoderdataPython
1618215
<reponame>schlauch/DataFinder # # $Filename$ # $Authors$ # Last Changed: $Date$ $Committer$ $Revision-Id$ # # Copyright (c) 2003-2011, German Aerospace Center (DLR) # # All rights reserved. #Redistribution and use in source and binary forms, with or without #modification, are permitted provided that the following conditions are # #met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the # distribution. # # * Neither the name of the German Aerospace Center nor the names of # its contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # #THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT #LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR #A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT #OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, #SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT #LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, #DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY #THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT #(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE #OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ Handles encoding/decoding of Python objects to a custom string format. This module is intended to be replaced. Make sure to use L{JSON Format <datafinder.persistence.metadata.value_mapping.json_format>} for new implementations. This module can handle the following data types: - Numerics (float, int C{decimal.Decimal} - Booleans - Strings (unicode, str) - Date time (C{datetime.datetime}, Decoding works from: ISO8601, RFC822, time stamp. Encoding works from local time to UTC and decoding vice versa. - Lists (CANNOT not be nested) - Dictionaries (Already uses the new JSON format) """ import datetime import decimal import re import sys from datafinder.persistence.common import datetime_util from datafinder.persistence.error import PersistenceError from datafinder.persistence.metadata.value_mapping import json_format __version__ = "$Revision-Id$" _LIST_SEPARATOR = ";" _ESCAPED_LIST_SEPARATOR = "\\" + _LIST_SEPARATOR _NONE_PERSISTENCE_REPRESENTATION = "" _EMPTY_LIST_REPRESENTATION = "____EMPTY____LIST____" _ESCAPED_EMPTY_LIST = "\\" + _EMPTY_LIST_REPRESENTATION class MetadataValue(object): """ Wrapper around a meta data value which represents a restored value. """ def __init__(self, persistedValue, expectedType=None): """ @param persistedValue: The persistence representation of a property value. @type persistedValue: C{basestring} @param expectedType: Type to which the value should be converted. Type comparison is performed using built-in C{type} function. @type expectedType: C{object} @raise PersistenceError: The persistence value is no string. """ if not isinstance(persistedValue, basestring): raise PersistenceError("No valid persistence string has been provided. %s" % str(persistedValue)) self._expectedType = expectedType self._persistedValue = persistedValue self._conversionFunctions = list() self._conversionFunctions.append(self._convertToBool) self._conversionFunctions.append(self._convertToDecimal) self._conversionFunctions.append(self._convertToDatetime) self._conversionFunctions.append(self._convertToList) self._conversionFunctions.append(self._convertToDict) self._conversionFunctions.append(self._convertToUnicode) @property def persistedValue(self): """ Value represented by its persistence format. """ return self._persistedValue @property def value(self): """ Returns the most probable value. """ representations = self.guessRepresentation() if not self._expectedType is None: for representation in representations: if type(representation) == self._expectedType: return representation return representations[0] def guessRepresentation(self): """ Tries to convert the retrieved value to the expected type. If the conversion fails an empty list is returned. @return: List of possible value representations. @rtype: C{list} of C{object} """ result = list() if _NONE_PERSISTENCE_REPRESENTATION == self._persistedValue: result.append(None) else: convertedValue = None for conversionFunction in self._conversionFunctions: convertedValue = conversionFunction(self._persistedValue) if not convertedValue is None: result.append(convertedValue) return result def _convertToList(self, value): result = None stringList = re.split("(?<!\\\\);", value) # does not split at: \; if len(stringList) > 0 and stringList[0] != value: typedList = list() for item in stringList: if item == _NONE_PERSISTENCE_REPRESENTATION: convertedValue = None else: for conversionFunction in self._conversionFunctions: convertedValue = conversionFunction(item) if not convertedValue is None: break typedList.append(convertedValue) result = typedList elif value == _EMPTY_LIST_REPRESENTATION: result = list() return result @staticmethod def _convertToDict(value): try: dictValue = json_format.convertFromPersistenceFormat(value) except PersistenceError: dictValue = None else: if not isinstance(dictValue, dict): dictValue = None return dictValue @staticmethod def _convertToUnicode(value): if _ESCAPED_LIST_SEPARATOR in value: value = value.replace(_ESCAPED_LIST_SEPARATOR, _LIST_SEPARATOR) elif value == _ESCAPED_EMPTY_LIST: value = _EMPTY_LIST_REPRESENTATION return value @staticmethod def _convertToBool(value): try: intValue = int(value) except (ValueError, TypeError): return None else: if intValue in [0, 1]: return bool(intValue) @staticmethod def _convertToDecimal(value): try: value = decimal.Decimal(value) except (decimal.InvalidOperation, ValueError, TypeError): value = None return value @staticmethod def _convertToDatetime(value): return datetime_util.convertToDatetime(value) def __cmp__(self, other): return cmp(self.persistedValue, other) def __hash__(self): return hash(self.persistedValue) def __repr__(self): return repr(self.value) def getPersistenceRepresentation(value): """ Converts the given value to the persistence string format. @param value: Value to persist. @type value: C{object} @return: Persistence representation. @rtype: C{basestring} @raise PersistenceError: Indicating unsupported value type or problems during conversion. """ if value is None: return _NONE_PERSISTENCE_REPRESENTATION else: typeConversionFunctionMap = {str: _convertFromUnicode, unicode: _convertFromUnicode, int: _convertFromDecimal, float: _convertFromDecimal, bool: _convertFromBool, decimal.Decimal: _convertFromDecimal, list: _convertFromList, datetime.datetime: _convertFromDatetime, dict: _convertFromDict} valueType = type(value) if valueType in typeConversionFunctionMap: return typeConversionFunctionMap[valueType](value) else: raise PersistenceError("Persistence support for values of type " \ + "'%s' is not available." % str(valueType)) def _convertFromDatetime(value): return datetime_util.convertToIso8601(value) def _convertFromDecimal(value): return unicode(value) def _convertFromBool(value): return unicode(int(value)) def _convertFromList(value): listAsString = "" for item in value: convertedItem = getPersistenceRepresentation(item) listAsString += convertedItem + _LIST_SEPARATOR if len(listAsString) == 0: listAsString = _EMPTY_LIST_REPRESENTATION return listAsString def _convertFromDict(value): return json_format.convertToPersistenceFormat(value) def _convertFromUnicode(value): if not isinstance(value, unicode): encoding = sys.getdefaultencoding() or "ascii" try: value = unicode(value, encoding) except UnicodeError, error: errorMessage = "Problem during string conversion: '%s'" \ % str(error) raise PersistenceError(errorMessage) value = _escapeSpecialSequence(value) return value def _escapeSpecialSequence(value): if _LIST_SEPARATOR in value: value = value.replace(_LIST_SEPARATOR, _ESCAPED_LIST_SEPARATOR) elif value == _EMPTY_LIST_REPRESENTATION: value = _ESCAPED_EMPTY_LIST return value
StarcoderdataPython
3550637
import os resultsDir = "./results/" os.chdir("..") for filename in os.listdir(resultsDir): if ".out" in filename: print(filename) falsePositives = 0 falseNegatives = 0 trueNegatives = 0 truePositives = 0 tokens = filename.split(".") labelFileName = tokens[0] + ".lbl" labelFile = open(resultsDir + labelFileName) outputFile = open(resultsDir + filename) labelData = labelFile.readline() outputData = outputFile.readline() labelDataLength = len(labelData) outputDataLength = len(outputData) shorterLength = min([labelDataLength, outputDataLength]) first_fire_frame_truth = 0 first_fire_frame_predicted = 0 for i in range(0, shorterLength): labelDataValue = labelData[i] outputDataValue = outputData[i] if labelDataValue == "1" and first_fire_frame_truth == 0: first_fire_frame_truth = i if outputDataValue == "1" and first_fire_frame_predicted == 0 and first_fire_frame_truth != 0: first_fire_frame_predicted = i if labelDataValue == "0" and outputDataValue == "0": trueNegatives += 1 elif labelDataValue == "1" and outputDataValue == "0": falseNegatives += 1 elif labelDataValue == "0" and outputDataValue == "1": falsePositives += 1 elif labelDataValue == "1" and outputDataValue == "1": truePositives += 1 analFile = open(resultsDir + tokens[0] + ".anl", "w") analFile.write("tpos: {}\ntneg: {}\nfpos: {}\nfneg: {}\n" .format(truePositives, trueNegatives, falsePositives, falseNegatives)) analFile.write("frames_to_detect: {}".format(first_fire_frame_predicted - first_fire_frame_truth)) print("tpos: {} tneg: {} fpos: {} fneg: {}" .format(truePositives, trueNegatives, falsePositives, falseNegatives))
StarcoderdataPython
8040811
<gh_stars>0 from ..lib import OpenIncludedFile import threading import time import sys import os import webview # pywebview class WindowManager: api = None windows = None def __init__(self, api): self.windows = {} self.api = api def LaunchWindow(self, window_id, window_title, html_path, parent_window_id = None): # test if window exists if window_id in self.windows.keys(): raise Exception(f'Window with window_id {window_id} already exists. Call ActivateWindow() instead.') self.CreateWindow( window_id, window_title, html_path, parent_window_id) def ActivateWindow(self, window_id): # test if window exists if window_id not in self.windows.keys(): raise Exception(f'Window with window_id {window_id} does not exist. Call LaunchWindow() instead.') # [todo] figure out how to raise the window on top def DestroyWindow(self, window_id): # test if window exists if window_id not in self.windows.keys(): raise Exception(f'Window with window_id {window_id} does not exist. Cannot destroy.') # destroy window object self.windows[window_id]['window'].destroy() # activate parent window (necessary?) self.ActivateWindow(self.windows[window_id]['parent_id']) # remove window record from the window manager self.windows.pop('window_id', None) def CreateWindow(self, window_id, window_title, html_path, parent_window_id = None): # fetch html html = OpenIncludedFile('installer/dist/' + html_path) # template html html = html.replace('{{window_id}}', window_id) # create record for window self.windows[window_id] = { 'parent_id': parent_window_id, 'window_title': window_title, 'html_path': html_path, 'window': None } # create window self.windows[window_id]['window'] = webview.create_window(window_title, html=html, js_api=self.api)
StarcoderdataPython
5063612
<reponame>invenio-toaster/invenio-pidrelations # -*- coding: utf-8 -*- # # This file is part of Invenio. # Copyright (C) 2017-2019 CERN. # # Invenio is free software; you can redistribute it and/or modify it # under the terms of the MIT License; see LICENSE file for more details. """Minimal Flask application example. First install Invenio-PIDRelations, setup the application and load fixture data by running: .. code-block:: console $ pip install -e .[all] $ cd examples $ ./app-setup.sh $ ./app-fixtures.sh Next, start the development server: .. code-block:: console $ export FLASK_APP=app.py FLASK_DEBUG=1 $ flask run and open the example application in your browser: .. code-block:: console $ open http://127.0.0.1:5000/ To reset the example application run: .. code-block:: console $ ./app-teardown.sh """ from __future__ import absolute_import, print_function from flask import Flask, redirect, render_template, request, url_for from invenio_db import InvenioDB, db from invenio_indexer import InvenioIndexer from invenio_indexer.signals import before_record_index from invenio_pidstore import InvenioPIDStore from invenio_pidstore.models import PersistentIdentifier, PIDStatus from invenio_pidstore.providers.recordid import RecordIdProvider from invenio_pidstore.resolver import Resolver from invenio_records import InvenioRecords from invenio_records.api import Record from invenio_records_ui import InvenioRecordsUI from marshmallow import Schema, fields from invenio_pidrelations import InvenioPIDRelations from invenio_pidrelations.contrib.versioning import PIDNodeVersioning, \ versioning_blueprint from invenio_pidrelations.indexers import index_relations from invenio_pidrelations.models import PIDRelation from invenio_pidrelations.utils import resolve_relation_type_config # Create Flask application app = Flask(__name__, template_folder='.') app.config.update(dict( TEMPLATES_AUTO_RELOAD=True, CELERY_ALWAYS_EAGER=True, CELERY_RESULT_BACKEND='cache', CELERY_CACHE_BACKEND='memory')) InvenioDB(app) InvenioPIDStore(app) InvenioPIDRelations(app) app.register_blueprint(versioning_blueprint) InvenioIndexer(app) InvenioRecords(app) InvenioRecordsUI(app) before_record_index.connect(index_relations, sender=app) record_resolver = Resolver( pid_type='recid', object_type='rec', getter=Record.get_record ) class SimpleRecordSchema(Schema): """Tiny schema for our simple record.""" recid = fields.Str() title = fields.Str() body = fields.Str() @app.route('/') def index(): relation_id = resolve_relation_type_config('version').id heads = ( PersistentIdentifier.query .join( PIDRelation, PIDRelation.parent_id == PersistentIdentifier.id) .filter( PIDRelation.relation_type == relation_id) .distinct()) return render_template('index.html', heads=heads) @app.route('/create', methods=['POST']) def create(): create_simple_record(request.form) return redirect(url_for('index')) @app.template_filter() def to_record(pid): schema = SimpleRecordSchema() schema.context = dict(pid=pid) rec = schema.dump(record_resolver.resolve(pid.pid_value)[1]) return rec.data def create_simple_record(data): # Create the record and mint a PID metadata, errors = SimpleRecordSchema().load(data) parent = data.get('parent') if parent != 'new': metadata['conceptrecid'] = parent rec = Record.create(metadata) record_minter(rec.id, rec) db.session.commit() def record_minter(record_uuid, data): parent = data.get('conceptrecid') if not parent: parent_pid = RecordIdProvider.create(object_type='rec', object_uuid=None, status=PIDStatus.REGISTERED).pid data['conceptrecid'] = parent_pid.pid_value else: parent_pid = PersistentIdentifier.get( pid_type=RecordIdProvider.pid_type, pid_value=parent) provider = RecordIdProvider.create('rec', record_uuid) data['recid'] = provider.pid.pid_value versioning = PIDNodeVersioning(pid=parent_pid) versioning.insert_child(child_pid=provider.pid) return provider.pid
StarcoderdataPython
4951604
<gh_stars>0 from model.contact import Contact from model.group import Group from fixture.orm import ORMFixture from random import random orm = ORMFixture(host="127.0.0.1", name="addressbook", user="root", password="") def test_del_contact_from_group(app, db): # добавляем группу и контакт, если их нет if len(db.get_contact_list()) == 0: app.contact.create_contact(Contact(firstname="Kseniya", email="<EMAIL>", homephone="234234234")) if len(db.get_group_list()) == 0: app.group.create_group(Group(name="147", header="555", footer="666")) # добавляем контакт в группу, если его нет if len(db.groups_with_contacts()) == 0: group_free = random.choice(db.get_group_list()) contact_free = random.choice(db.get_contact_list()) app.contact.add_contact_to_group(contact_free.id, group_free.id) group = db.groups_with_contacts()[0] contact = orm.get_contacts_in_group(Group(id='%s' % group.id))[0] # генерим список контактов в группе old_group_content = orm.get_contacts_in_group(Group(id='%s' % group.id)) # удаляем контакт app.contact.del_contact_from_group(contact.id, group.id) # обновляем список контактов в группе и генерим новый список контактов old_group_content.remove(contact) new_group_content = app.contact.see_group_content(group.id) # сверяем списки assert sorted(old_group_content, key=Contact.id_or_max) == sorted(new_group_content, key=Contact.id_or_max)
StarcoderdataPython
3372414
#!/usr/bin/env python # -*- coding: utf-8 -*- import modules.update_data import modules.update_domaine
StarcoderdataPython
237565
# Smart Instant Pot Evaluation Script # This will process a CSV file with input images and their expected digit # detection. Each image will be processed by the detection code and the actual # result compared to the expected to generate statistics on how well the # algorithm is working. import argparse import csv import os import cv2 import smart_instant_pot.detector as detector import smart_instant_pot.digit_reader as digit_reader # Setup command line arguments. parser = argparse.ArgumentParser(description='Smart Instant Pot Evaluation') parser.add_argument('input_csv', help='input CSV with columns for input image and expected result') parser.add_argument('result_csv', nargs='?', help='optional output CSV with columns for input image, expected, actual pot detected (boolean), actual digit value (string)') parser.add_argument('--panel_image', metavar='FILENAME', default='/home/jovyan/work/test_images/pi_control_panel.jpg', help='control panel template for detection (default is an image from Pi camera with wide angle lens)') args = parser.parse_args() # Check input file exists and load all the input image filenames and expected # results from the CSV. if not os.path.isfile(args.input_csv): raise RuntimeError('Failed to find input CSV file!') with open(args.input_csv, 'r') as infile: reader = csv.reader(infile) input_data = [row for row in reader] print('Processing {0} images...'.format(len(input_data)), end='') # Change to the directory of the CSV so images are loaded relative to its location. start_dir = os.getcwd() os.chdir(os.path.dirname(args.input_csv)) # Setup detector and digit reader. if not os.path.isfile(args.panel_image): raise RuntimeError('Failed to find control panel template image!') pot_detector = detector.Detector(cv2.imread(args.panel_image)) pot_digit_reader = digit_reader.DigitReader() # Loop through the input images and run detection logic to compute actual result. results = [] found_pot = 0 correct_digits = 0 for i, row in enumerate(input_data): # Print a dot every 10 images to show the script is still running. if i % 10 == 0: print('.', end='') image_file, expected = row # Look for the pot control panel in the input image. panel_image = pot_detector.detect_panel(cv2.imread(image_file)) if panel_image is None: results.append((image_file, expected, False, None)) continue # Found a control panel, now detect the digits and save result. found_pot += 1 digits = pot_digit_reader.read_digits(panel_image) if digits == expected: correct_digits += 1 results.append((image_file, expected, True, digits)) print() # Print stats of the detection results. total_input = len(input_data) found_pot_percent = found_pot / total_input * 100.0 correct_digits_percent = correct_digits / total_input * 100.0 print('Found the pot in {0} images: {1:0.2f}%'.format(found_pot, found_pot_percent)) print('Correctly detected digits in {0} images: {1:0.2f}%'.format(correct_digits, correct_digits_percent)) # Write output results if a file was specified. if args.result_csv is not None: # Change back to the directory the script was run to create output relative to it. os.chdir(start_dir) with open(args.result_csv, 'w') as outfile: writer = csv.writer(outfile) writer.writerows(results) print('Wrote results to: {0}'.format(args.result_csv))
StarcoderdataPython
8080848
<filename>tests/unit/utils/test_request_handler.py # Standard lib imports from http import client import unittest # Third party imports import requests_mock # Project level imports from pywebhooks.utils.request_handler import RequestHandler def suite(): test_suite = unittest.TestSuite() test_suite.addTest(WhenTestingRequestHandler()) return test_suite class WhenTestingRequestHandler(unittest.TestCase): def setUp(self): pass def test_get(self): with requests_mock.Mocker() as mocker: mocker.register_uri('GET', 'http://localhost?test=123', json={'test': 'value'}, status_code=200) request_handler = RequestHandler() data, status = request_handler.get( 'http://localhost', params={'test': 123}, api_key='12345', username='johndoe' ) self.assertEqual(status, client.OK) self.assertEqual({'test': 'value'}, data) self.assertEqual(request_handler.headers['username'], 'johndoe') self.assertEqual(request_handler.headers['api-key'], '12345') self.assertEqual( request_handler.headers['Content-Type'], 'application/json') self.assertEqual( request_handler.headers['Accept'], 'application/json') def test_put(self): with requests_mock.Mocker() as mocker: mocker.register_uri('PUT', 'http://localhost', json={'test': 'value'}, status_code=200) request_handler = RequestHandler() data, status = request_handler.put( 'http://localhost', json_payload={'hello': 'world'}, api_key='555', username='janedoe' ) self.assertEqual(status, client.OK) self.assertEqual({'test': 'value'}, data) self.assertEqual(request_handler.headers['username'], 'janedoe') self.assertEqual(request_handler.headers['api-key'], '555') self.assertEqual( request_handler.headers['Content-Type'], 'application/json') self.assertEqual( request_handler.headers['Accept'], 'application/json') def test_post(self): with requests_mock.Mocker() as mocker: mocker.register_uri('POST', 'http://localhost', json={'test': 'value'}, status_code=201) request_handler = RequestHandler() data, status = request_handler.post( 'http://localhost', json_payload={'hello': 'world'}, api_key='8900', username='samjones', event='myevent', signature='mysignature' ) self.assertEqual(status, client.CREATED) self.assertEqual({'test': 'value'}, data) self.assertEqual(request_handler.headers['username'], 'samjones') self.assertEqual(request_handler.headers['api-key'], '8900') self.assertEqual(request_handler.headers['event'], 'myevent') self.assertEqual( request_handler.headers['pywebhooks-signature'], 'mysignature') self.assertEqual( request_handler.headers['Content-Type'], 'application/json') self.assertEqual( request_handler.headers['Accept'], 'application/json') def test_patch(self): with requests_mock.Mocker() as mocker: mocker.register_uri('PATCH', 'http://localhost', json={'test': 'value'}, status_code=200) request_handler = RequestHandler() data, status = request_handler.patch( 'http://localhost', json_payload={'hello': 'world'}, api_key='01245', username='natml' ) self.assertEqual(status, client.OK) self.assertEqual({'test': 'value'}, data) self.assertEqual(request_handler.headers['username'], 'natml') self.assertEqual(request_handler.headers['api-key'], '01245') self.assertEqual( request_handler.headers['Content-Type'], 'application/json') self.assertEqual( request_handler.headers['Accept'], 'application/json') def test_delete(self): with requests_mock.Mocker() as mocker: mocker.register_uri('DELETE', 'http://localhost/45678', json={'test': 'value'}, status_code=200) request_handler = RequestHandler() data, status = request_handler.delete( 'http://localhost/45678', api_key='765434', username='birk' ) self.assertEqual(status, client.OK) self.assertEqual({'test': 'value'}, data) self.assertEqual(request_handler.headers['username'], 'birk') self.assertEqual(request_handler.headers['api-key'], '765434') self.assertEqual( request_handler.headers['Content-Type'], 'application/json') self.assertEqual( request_handler.headers['Accept'], 'application/json')
StarcoderdataPython
9686513
print('-=' * 10, '10 termos de uma PA', '-=' * 10) p = int(input('Primeiro termo: ')) r = int(input('Razão: ')) d = p + (10 - 1) * r for n in range(p, d + r, r): print(n, end=' ')
StarcoderdataPython
6654345
<reponame>timclipsham/lmdirect """lmdirect connection class.""" import asyncio import logging from datetime import datetime, timedelta from functools import partial from authlib.integrations.base_client.errors import OAuthError from authlib.integrations.httpx_client import AsyncOAuth2Client from .aescipher import AESCipher from .const import * from .msgs import ( AUTO_BITFIELD, AUTO_BITFIELD_MAP, AUTO_SCHED_MAP, CURRENT_PULSE_COUNT, DAYS_SINCE_BUILT, DIVIDE_KEYS, DRINK_OFFSET_MAP, FIRMWARE_VER, FRONT_PANEL_DISPLAY, GATEWAY_DRINK_MAP, HEATING_STATE, HEATING_VALUES, HOUR, KEY_ACTIVE, MIN, MSGS, OFF, ON, SERIAL_NUMBERS, TIME, TOTAL_COFFEE, TOTAL_COFFEE_ACTIVATIONS, TOTAL_FLUSHING, UPDATE_AVAILABLE, Elem, Msg, ) _LOGGER = logging.getLogger(__name__) class Connection: def __init__(self, machine_info): """Init LMDirect.""" self._reader = None self._writer = None self._read_response_task = None self._read_reaper_task = None self._current_status = {} self._responses_waiting = [] self._run = True self._callback_list = [] self._raw_callback_list = [] self._cipher = None self._machine_info = machine_info self._start_time = None self._connected = False self._lock = asyncio.Lock() self._first_time = True self._update_available = None self._initialized_machine_info = False """Maintain temporary states for device states that take a while to update""" self._temp_state = {} def _get_key(self, k): """Construct tag name if needed.""" if isinstance(k, tuple): k = "_".join(k) return k async def retrieve_machine_info(self, machine_info): """Retrieve the machine info from the cloud APIs.""" _LOGGER.debug(f"Retrieving machine info") async with AsyncOAuth2Client( client_id=machine_info[CLIENT_ID], client_secret=machine_info[CLIENT_SECRET], token_endpoint=TOKEN_URL, ) as client: headers = { "client_id": machine_info[CLIENT_ID], "client_secret": machine_info[CLIENT_SECRET], } try: await client.fetch_token( url=TOKEN_URL, username=machine_info[USERNAME], password=machine_info[PASSWORD], headers=headers, ) except OAuthError as err: raise AuthFail("Authorization failure") from err except Exception as err: raise AuthFail(f"Caught: {type(err)}, {err}") from err """Only retrieve info if we're missing something.""" if any( x not in machine_info for x in [KEY, SERIAL_NUMBER, MACHINE_NAME, MODEL_NAME] ): cust_info = await client.get(CUSTOMER_URL) if cust_info: fleet = cust_info.json()["data"]["fleet"][0] machine_info[KEY] = fleet["communicationKey"] machine_info[SERIAL_NUMBER] = fleet["machine"]["serialNumber"] machine_info[MACHINE_NAME] = fleet["name"] machine_info[MODEL_NAME] = fleet["machine"]["model"]["name"] """Add the machine and model names to the dict so that they're avaialble for attributes""" self._current_status.update({MACHINE_NAME: machine_info[MACHINE_NAME]}) self._current_status.update({MODEL_NAME: machine_info[MODEL_NAME]}) if any( self._get_key(x) not in self._current_status for x in DRINK_OFFSET_MAP.values() ): drink_info = await client.get( DRINK_COUNTER_URL.format(serial_number=machine_info[SERIAL_NUMBER]) ) if drink_info: data = drink_info.json().get("data") if data: self._current_status.update( { self._get_key(GATEWAY_DRINK_MAP[x["coffeeType"]]): x["count"] for x in data } ) if UPDATE_AVAILABLE not in self._current_status: update_info = await client.get(UPDATE_URL) if update_info: data = update_info.json().get("data") self._update_available = "Yes" if data else "No" self._initialized_machine_info = True _LOGGER.debug(f"Finished machine info") return machine_info async def _connect(self): """Conmnect to espresso machine.""" if self._connected: return self._machine_info _LOGGER.debug(f"Connecting") if not self._initialized_machine_info: try: self._machine_info = await self.retrieve_machine_info( self._machine_info ) except Exception as err: raise ConnectionFail( f"Exception retrieving machine info: {err}" ) from err if not self._cipher: self._cipher = AESCipher(self._machine_info[KEY]) """Connect to the machine.""" try: self._reader, self._writer = await asyncio.wait_for( asyncio.open_connection( self._machine_info[HOST], self._machine_info[PORT] ), timeout=3, ) except asyncio.TimeoutError: _LOGGER.warning("Connection Timeout, skipping") return None except Exception as err: raise ConnectionFail(f"Cannot connect to machine: {err}") from err """Start listening for responses.""" await self.start_read_task() self._connected = True _LOGGER.debug("Finished Connecting") return self._machine_info async def start_read_task(self): """Start listening for responses.""" loop = asyncio.get_event_loop() self._read_response_task = loop.create_task( self.read_response_task(), name="Response Task" ) """Reap the results and any any exceptions""" self._read_reaper_task = loop.create_task( self.read_reaper(), name="Read Reaper" ) async def _close(self): """Close the connection to the machine.""" if not self._connected: return if self._writer is not None: self._writer.close() if self._read_response_task: self._read_response_task.cancel() self._reader = self._writer = None self._connected = False _LOGGER.debug("Finished closing") async def read_reaper(self): _LOGGER.debug("Starting read reaper") try: await asyncio.gather(self._read_response_task) except Exception as err: _LOGGER.error(f"Exception in read_response_task: {err}") await self._close() self._read_response_task = None self._first_time = False _LOGGER.debug("Finished reaping read task") def _call_callbacks(self, **kwargs): """Call the callbacks.""" if self._callback_list is not None: [ elem( current_status=self._current_status, **kwargs, ) for elem in self._callback_list ] async def read_response_task(self): """Start thread to receive responses.""" BUFFER_SIZE = 1000 handle = None _LOGGER.debug("Starting read task") if self._start_time is None: self._start_time = datetime.now() while self._run: encoded_data = await self._reader.readuntil(separator=b"%") if encoded_data is not None: loop = asyncio.get_event_loop() fn = partial(self._cipher.decrypt, encoded_data[1:-1]) plaintext = await loop.run_in_executor(None, fn) if not plaintext: continue await self.process_data(plaintext) if not self._first_time: if handle: handle.cancel() handle = None """Coalesce callbacks within a 5s window.""" handle = loop.call_later(5, self._call_callbacks) else: self._call_callbacks() """Exit if we've been reading longer than 10s since the last command.""" if datetime.now() > self._start_time + timedelta(seconds=10): _LOGGER.debug(f"Exiting loop: {self._responses_waiting}") """Flush the wait list.""" self._responses_waiting = [] break async def process_data(self, plaintext): """Process incoming packet.""" """Separate the mesg from the data.""" msg_type = plaintext[0] raw_data = plaintext[1:] msg = raw_data[:8] retval = True """Chop off the message and check byte.""" data = raw_data[8:-2] finished = not len(self._responses_waiting) _LOGGER.debug(f"Message={msg}, Data={data}") msg_id = None if msg_type == Msg.WRITE: if Msg.RESPONSE_GOOD not in data: _LOGGER.error(f"Command Failed: {msg}: {data}") retval = False else: _LOGGER.debug(f"Command Succeeded: {msg}: {data}") else: """Find the matching item or returns None.""" msg_id = next( ( x for x in MSGS if MSGS[x].msg == msg and MSGS[x].msg_type == msg_type ), None, ) if msg_id is not None: cur_msg = MSGS[msg_id] """Notify any listeners for this message.""" [ await x[1]((msg_id, x[1]), data) for x in self._raw_callback_list if MSGS[x[0]].msg == msg ] if cur_msg.map is not None: await self._populate_items(data, cur_msg) else: _LOGGER.error(f"Unexpected response: {plaintext}") retval = False if msg in self._responses_waiting: self._responses_waiting.remove(msg) finished = not len(self._responses_waiting) if finished: _LOGGER.debug("Received all responses") return retval def calculate_auto_sched_times(self, key): time_on_key = self._get_key((key, ON, TIME)) hour_on_key = self._get_key((key, ON, HOUR)) min_on_key = self._get_key((key, ON, MIN)) time_off_key = self._get_key((key, OFF, TIME)) hour_off_key = self._get_key((key, OFF, HOUR)) min_off_key = self._get_key((key, OFF, MIN)) """Set human-readable "on" time""" self._current_status[ time_on_key ] = f"{'%02d' % self._current_status[hour_on_key]}:{'%02d' % self._current_status[min_on_key]}" """Set human-readable "off" time""" self._current_status[ time_off_key ] = f"{'%02d' % self._current_status[hour_off_key]}:{'%02d' % self._current_status[min_off_key]}" async def _populate_items(self, data, cur_msg): def handle_cached_value(element, value): """See if we've stored a temporary value that may take a while to update on the machine""" if element in self._temp_state: if value == self._temp_state[element]: """Value has updated, so remove the temp value""" _LOGGER.debug( f"Element {element} has updated to {value}, pop the cached value" ) self._temp_state.pop(element, None) else: """Value hasn't updated yet, so use the cached value""" _LOGGER.debug( f"Element {element} hasn't updated yet, so use the cached value {value}" ) value = self._temp_state[element] return value """Process all the fields and populate shared dict.""" map = cur_msg.map for elem in map: value = None """Don't decode a value if we just plan to calculate it""" if elem.index != CALCULATED_VALUE: """The strings are ASCII-encoded hex, so each value takes 2 bytes.""" index = elem.index * 2 size = elem.size * 2 """Extract value for this field.""" value = data[index : index + size] if elem.type == Elem.INT: """Convert from ascii-encoded hex.""" value = int(value, 16) raw_key = map[elem] """Construct key name if needed.""" key = self._get_key(raw_key) if any(x in key for x in DIVIDE_KEYS): value = value / 10 elif key == FIRMWARE_VER: value = "%0.2f" % (value / 100) elif key in SERIAL_NUMBERS: value = "".join( [chr(int(value[i : i + 2], 16)) for i in range(0, len(value), 2)] ) """Chop off any trailing nulls.""" value = value.partition("\0")[0] elif key == AUTO_BITFIELD: bitfield = value for item in AUTO_BITFIELD_MAP: setting = ENABLED if bitfield & 0x01 else DISABLED processed_key = self._get_key(AUTO_BITFIELD_MAP[item]) self._current_status[processed_key] = handle_cached_value( processed_key, setting ) bitfield = bitfield >> 1 elif raw_key in DRINK_OFFSET_MAP: if key == TOTAL_FLUSHING: value = ( self._current_status[TOTAL_COFFEE_ACTIVATIONS] - self._current_status[TOTAL_COFFEE] ) offset_key = self._get_key(DRINK_OFFSET_MAP[raw_key]) if key not in self._current_status: """If we haven't seen the value before, calculate the offset.""" self._current_status.update( {offset_key: value - self._current_status.get(offset_key, 0)} ) """Apply the offset to the value.""" value = value - self._current_status.get(offset_key, 0) elif key == DAYS_SINCE_BUILT: """Convert hours to days.""" value = round(value / 24) elif key == HEATING_STATE: value = [x for x in HEATING_VALUES if HEATING_VALUES[x] & value] """Don't add attribute and remove it if machine isn't currently running.""" if not value: self._current_status.pop(key, None) continue elif key in [KEY_ACTIVE, CURRENT_PULSE_COUNT]: """Don't add attributes and remove them if machine isn't currently running.""" if not value: self._current_status.pop(key, None) continue elif key == FRONT_PANEL_DISPLAY: value = ( bytes.fromhex(value) .decode("latin-1") .replace("\xdf", "\u00b0") # Degree symbol .replace( "\xdb", "\u25A1" ) # turn a block into an outline block (heating element off) .replace( "\xff", "\u25A0" ) # turn \xff into a solid block (heating element on) ) elif key in AUTO_SCHED_MAP.values() and elem.index == CALCULATED_VALUE: self.calculate_auto_sched_times(key) continue self._current_status[key] = handle_cached_value(key, value) async def _send_msg(self, msg_id, data=None, base=None): """Send command to the espresso machine.""" msg = MSGS[msg_id] _LOGGER.debug(f"Sending {msg.msg} with {data} {base}") await self._send_raw_msg(msg.msg, msg.msg_type, data, base) async def _send_raw_msg(self, msg, msg_type, data=None, base=None): def checksum(buffer): """Compute check byte.""" buffer = bytes(buffer, "utf-8") return "%0.2X" % (sum(buffer) % 256) """Prevent race conditions - can be called from different tasks.""" async with self._lock: """Connect if we don't have an active connection.""" result = await self._connect() if not result: raise ConnectionFail("Connection failed.") if not self._writer: raise ConnectionFail(f"self._writer={self._writer}") """If a key was provided, replace the second byte of the message.""" msg_to_send = msg if not base else msg[:2] + base + msg[4:] plaintext = msg_type + msg_to_send if data is not None: plaintext += data """Add the check byte.""" plaintext += checksum(plaintext) loop = asyncio.get_event_loop() fn = partial(self._cipher.encrypt, plaintext) ciphertext = ( "@" + (await loop.run_in_executor(None, fn)).decode("utf-8") + "%" ) self._writer.write(bytes(ciphertext, "utf-8")) await self._writer.drain() """Remember that we're waiting for a response.""" self._responses_waiting.append(msg_to_send) """Note when the command was sent.""" self._start_time = datetime.now() class AuthFail(Exception): """Error to indicate there is invalid auth info.""" def __init__(self, msg): super().__init__(msg) class ConnectionFail(Exception): """Error to indicate there is no connection.""" def __init__(self, msg): super().__init__(msg)
StarcoderdataPython
3449069
""" Hello World example """ import quasargui from quasargui import * def run_program(): layout.notify('Hello, {name}!'.format( name=input_name.value )) input_name = QInput( # # uncomment these lines if you want to display notification message on change: # value='', # events={'change': run_program} ) btn_submit = QButton( 'Submit', classes='text-primary', props={'unelevated': True, 'size': 'lg'}, events={'click': run_program}) layout = Div( styles={ 'max-width': '30em', 'margin-left': 'auto', 'margin-right': 'auto', }, classes='q-mt-xl text-center', children=[ "What's your name?", input_name, btn_submit]) quasargui.run(layout, size=(500, 300))
StarcoderdataPython
34413
# coding=utf-8 from OTLMOW.OTLModel.Datatypes.KeuzelijstField import KeuzelijstField from OTLMOW.OTLModel.Datatypes.KeuzelijstWaarde import KeuzelijstWaarde # Generated with OTLEnumerationCreator. To modify: extend, do not edit class KlVerlichtingstoestelModelnaam(KeuzelijstField): """De modelnaam van het verlichtingstoestel.""" naam = 'KlVerlichtingstoestelModelnaam' label = 'Verlichtingstoestel modelnaam' objectUri = 'https://wegenenverkeer.data.vlaanderen.be/ns/abstracten#KlVerlichtingstoestelModelnaam' definition = 'De modelnaam van het verlichtingstoestel.' codelist = 'https://wegenenverkeer.data.vlaanderen.be/id/conceptscheme/KlVerlichtingstoestelModelnaam' options = { 'ARC': KeuzelijstWaarde(invulwaarde='ARC', label='ARC', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/ARC'), 'Belgica': KeuzelijstWaarde(invulwaarde='Belgica', label='Belgica', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Belgica'), 'Calypso': KeuzelijstWaarde(invulwaarde='Calypso', label='Calypso', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Calypso'), 'Corus': KeuzelijstWaarde(invulwaarde='Corus', label='Corus', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Corus'), 'DTN': KeuzelijstWaarde(invulwaarde='DTN', label='DTN', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/DTN'), 'Evolo': KeuzelijstWaarde(invulwaarde='Evolo', label='Evolo', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Evolo'), 'Focal': KeuzelijstWaarde(invulwaarde='Focal', label='Focal', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Focal'), 'GSM': KeuzelijstWaarde(invulwaarde='GSM', label='GSM', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/GSM'), 'GTMB': KeuzelijstWaarde(invulwaarde='GTMB', label='GTMB', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/GTMB'), 'GTNB': KeuzelijstWaarde(invulwaarde='GTNB', label='GTNB', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/GTNB'), 'GZM': KeuzelijstWaarde(invulwaarde='GZM', label='GZM', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/GZM'), 'Gema': KeuzelijstWaarde(invulwaarde='Gema', label='Gema', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Gema'), 'HCI-TS': KeuzelijstWaarde(invulwaarde='HCI-TS', label='HCI-TS', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/HCI-TS'), 'Iridium': KeuzelijstWaarde(invulwaarde='Iridium', label='Iridium', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Iridium'), 'MNF300': KeuzelijstWaarde(invulwaarde='MNF300', label='MNF300', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/MNF300'), 'MWF230': KeuzelijstWaarde(invulwaarde='MWF230', label='MWF230', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/MWF230'), 'MY11': KeuzelijstWaarde(invulwaarde='MY11', label='MY11', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/MY11'), 'Neos': KeuzelijstWaarde(invulwaarde='Neos', label='Neos', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Neos'), 'Onyx': KeuzelijstWaarde(invulwaarde='Onyx', label='Onyx', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Onyx'), 'RT3NB': KeuzelijstWaarde(invulwaarde='RT3NB', label='RT3NB', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/RT3NB'), 'RT3SB': KeuzelijstWaarde(invulwaarde='RT3SB', label='RT3SB', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/RT3SB'), 'RXN': KeuzelijstWaarde(invulwaarde='RXN', label='RXN', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/RXN'), 'RXS': KeuzelijstWaarde(invulwaarde='RXS', label='RXS', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/RXS'), 'Radial': KeuzelijstWaarde(invulwaarde='Radial', label='Radial', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Radial'), 'SRS201': KeuzelijstWaarde(invulwaarde='SRS201', label='SRS201', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/SRS201'), 'Safir': KeuzelijstWaarde(invulwaarde='Safir', label='Safir', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Safir'), 'Saturnus': KeuzelijstWaarde(invulwaarde='Saturnus', label='Saturnus', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Saturnus'), 'Squalo': KeuzelijstWaarde(invulwaarde='Squalo', label='Squalo', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Squalo'), 'Syntra': KeuzelijstWaarde(invulwaarde='Syntra', label='Syntra', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Syntra'), 'VTP': KeuzelijstWaarde(invulwaarde='VTP', label='VTP', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/VTP'), 'Z18': KeuzelijstWaarde(invulwaarde='Z18', label='Z18', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Z18'), 'Z2': KeuzelijstWaarde(invulwaarde='Z2', label='Z2', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Z2'), 'Z21': KeuzelijstWaarde(invulwaarde='Z21', label='Z21', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/Z21'), 'ampera': KeuzelijstWaarde(invulwaarde='ampera', label='Ampera', definitie='Ampera', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/ampera'), 'andere': KeuzelijstWaarde(invulwaarde='andere', label='andere', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/andere'), 'brugleuning': KeuzelijstWaarde(invulwaarde='brugleuning', label='brugleuning', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/brugleuning'), 'clear-field': KeuzelijstWaarde(invulwaarde='clear-field', label='ClearField', definitie='ClearField', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/clear-field'), 'digi-street': KeuzelijstWaarde(invulwaarde='digi-street', label='DigiStreet', definitie='DigiStreet', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/digi-street'), 'izylum': KeuzelijstWaarde(invulwaarde='izylum', label='Izylum', definitie='Izylum', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/izylum'), 'luma': KeuzelijstWaarde(invulwaarde='luma', label='Luma', definitie='Luma', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/luma'), 'lumi-street': KeuzelijstWaarde(invulwaarde='lumi-street', label='LumiStreet', definitie='LumiStreet', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/lumi-street'), 'projector': KeuzelijstWaarde(invulwaarde='projector', label='projector', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/projector'), 'teceo': KeuzelijstWaarde(invulwaarde='teceo', label='Teceo', definitie='Teceo', objectUri='https://wegenenverkeer.data.vlaanderen.be/id/concept/KlVerlichtingstoestelModelnaam/teceo') }
StarcoderdataPython
129805
<gh_stars>0 from turtle import * from random import randrange from freegames import square, vector food = vector(0, 0) snake = [vector(10, 0)] aim = vector(0, -10) def change(x, y): "Change snake direction." aim.x = x aim.y = y def inside(head): "Return True if head inside boundaries." return -200 < head.x < 190 and -200 < head.y < 190 def move(): "Move snake forward one segment." head = snake[-1].copy() head.move(aim) if not inside(head) or head in snake: square(head.x, head.y, 9, 'red') update() return snake.append(head) if head == food: print('Snake:', len(snake)) food.x = randrange(-15, 15) * 10 food.y = randrange(-15, 15) * 10 else: snake.pop(0) clear() for body in snake: square(body.x, body.y, 9, 'green') square(food.x, food.y, 9, 'red') update() ontimer(move, 100) hideturtle() tracer(False) listen() onkey(lambda: change(10, 0), 'Right') onkey(lambda: change(-10, 0), 'Left') onkey(lambda: change(0, 10), 'Up') onkey(lambda: change(0, -10), 'Down') move() done()
StarcoderdataPython
1743844
#!/usr/bin/env python2 import re import pprint import subprocess descs = { "double": "Double", "galvanic_mock": "Galvanic-mock", "mock_derive": "Mock_Derive", "mock_it": "Mock-it", "mockall": "Mockall", "mockers": "Mockers", "mockiato": "Mockiato", "mocktopus": "Mocktopus", "pseudo": "Pseudo", "simulacrum": "Simulacrum", "associated_types": "Associated types", "checkpoint": "Checkpoints", "closures": "Closures", "reference_parameters": "Reference parameters", "consume_parameters": "Consume parameters", "consume_self": "Consume self", "doctest": "Doctest", "external_trait": "External traits", "foreign": "Foreign", "generic_method": "Generic methods", "generic_method_with_lifetime": "Generic methods with lifetime parameters", "generic_return": "Generic return", "generic_struct": "Generic structs", "generic_trait": "Generic traits", "impl_trait": "Impl Trait", "inherited_trait": "Inherited traits", "match_method": "Match function", "mock_struct": "Structs", "mock_trait": "Traits", "multi_trait": "Multiple traits", "return_call_with_args": "Return call with args", "return_reference": "Return reference", "return_mutable_reference": "Return mutable reference", "return_owned": "Return owned", "return_parameters": "Return parameters", "send": "Send", "sequence": "Sequence", "static_method": "Static methods", "times_range": "Times range", "where_clause": "Where clauses", "derive": "Derive", "fallback": "Fallback", "match_combo": "Match combinations", "match_constant": "Match constant", "match_operator": "Match operator", "match_pattern": "Match pattern", "match_range": "Match range", "match_wildcard": "Match wildcard", "modules": "Mock modules", "return_constant": "Return a constant", "return_default": "Return default", "return_panic": "Return panic", "times_once": "Times once", "times_any": "Times any", "times_n": "Times n", "times_never": "Times never", "many_args": "Maximum arguments", "rustc": "Rustc", "first_release": "First release", "version": "Tested version", "link": "Current version", } def format_cell(s): words = s.split(" ") result = words[-1] text = " ".join(words[0:-1]) if '<img ' in text: bg = "white" elif result == "ok": if re.match("^0\.[0-9]+\.[0-9]+", text): bg = "#fe7d37" else: bg = "#ADEBAD" elif result == "warn": bg = "#FFEF99" elif result == "-": bg = "white" else: bg = "#EB9999" if not text: text = {"error": "no", "ok": "yes", "FAILED": "no"}[result] return "{background:%s}.%s" % (bg, text) def print_row(feature, results): result_details = "|".join([format_cell(results[l][feature]) for l in libnames]) print "|%21s|%s|" % (descs[feature], result_details) # First, run the tests and collect results results = {} p1 = subprocess.Popen(["cargo", "+nightly", "test", "-v", "--no-fail-fast", "--", "--nocapture", "--test-threads=1"], stdout=subprocess.PIPE) output = p1.communicate()[0] for line in output.splitlines(): match = re.match("^test t_(\w+)::(?:mod_t::)?t::(\w+) \.\.\. (.+)$", line) if not match: match = re.match( "^test src/t_(\w+)\.rs - \w+::(doctest) \(line \d+\) \.\.\. (\w+)", line) if match: lib = match.group(1) feature = match.group(2) result = match.group(3) if not results.has_key(lib): results[lib] = {} results[lib][feature] = result # Manually add a few more data results['double']['rustc'] = "stable ok" results['galvanic_mock']['rustc'] = "nightly warn" # results['mock_derive']['rustc'] = "nightly < 1.28.0 error" results['mockall']['rustc'] = "stable ok" results['mockers']['rustc'] = "stable ok" results['mockiato']['rustc'] = "stable ok" results['mocktopus']['rustc'] = "nightly warn" results['pseudo']['rustc'] = "stable ok" results['simulacrum']['rustc'] = "stable ok" results['mock_it']['rustc'] = "stable ok" results['double']['first_release'] = "Dec-12-2017 -" results['galvanic_mock']['first_release'] = "Aug-13-2017 -" # results['mock_derive']['first_release'] = "Jul-16-2017 -" results['mockall']['first_release'] = "Jul-3-2019 -" results['mockers']['first_release'] = "Apr-6-2016 -" results['mockiato']['first_release'] = "Feb-11-2019 -" results['mocktopus']['first_release'] = "Sep-5-2017 -" results['pseudo']['first_release'] = "Mar-23-2017 -" results['simulacrum']['first_release'] = "Dec-17-2017 -" results['mock_it']['first_release'] = "Mar-11-2018 -" # Finally, generate the table libnames = sorted(results.keys()) lib_headers = "|_. ".join([descs[l] for l in libnames]) print "|_. |_.%s|" % lib_headers essential_features = ["associated_types", "checkpoint", "closures", "reference_parameters", "consume_parameters", "consume_self", "doctest", "external_trait", "foreign", "generic_method", "generic_method_with_lifetime", "generic_return", "generic_struct", "generic_trait", "inherited_trait", "match_method", "mock_struct", "mock_trait", "multi_trait", "return_call_with_args", "return_reference", "return_mutable_reference", "return_owned", "return_parameters", "send", "sequence", "static_method", "times_range", "where_clause"] convenience_features = [ "derive", "fallback", "impl_trait", "match_combo", "match_constant", "match_operator", "match_pattern", "match_range", "match_wildcard", "modules", "return_constant", "return_default", "return_panic", "times_once", "times_any", "times_n", "times_never"] other_features = [ "many_args", "rustc", "first_release", "version", "link"] print "|\\10=. Essential Features|" for feature in essential_features: print_row(feature, results) print "|\\10=. Convenience Features|" for feature in convenience_features: print_row(feature, results) print "|\\10=. Other|" for feature in other_features: print_row(feature, results)
StarcoderdataPython
6525502
<reponame>Pennsieve/timeseries-processor<gh_stars>0 # -*- coding: utf-8 -*- """ Modified: <NAME> (20180423) Created on Mon Jan 2 12:49:21 2017 setup.py file for pymef3 library Ing.,Mgr. (MSc.) <NAME> Biomedical engineering International Clinical Research Center St. Anne's University Hospital in Brno Czech Republic & Mayo systems electrophysiology lab Mayo Clinic 200 1st St SW Rochester, MN United States """ from setuptools import setup, Extension from setuptools.command.build_ext import build_ext as _build_ext class build_ext(_build_ext): def finalize_options(self): _build_ext.finalize_options(self) # Prevent numpy from thinking it is still in its setup process: __builtins__.__NUMPY_SETUP__ = False import numpy self.include_dirs.append(numpy.get_include()) # the c extension module mef_file_ext = Extension("pymef.mef_file.pymef3_file", ["pymef/mef_file/pymef3_file.c"]) setup(name = "pymef", version="0.2.0", packages = ["pymef","pymef.mef_file"], cmdclass={'build_ext':build_ext}, ext_modules=[mef_file_ext], ) # This line needed for MSEL (+ the import at the beginning)
StarcoderdataPython
8014384
<reponame>NazaninBayati/SCA<gh_stars>0 import understand import sys file_list=[] final_list=[] file_dependency=[] file_dependentby=[] cls_CallPairs=[] CallPairs=[] def included_files(db): for file in sorted(db.ents("File")): file_dependency.append(list(file.depends())) def used_by_file(db): for file in sorted(db.ents("File")): file_dependentby.append(list(file.dependsby())) def file_dependency_list(file): i = 0 dep_list=[] while i < len(file_dependency): j = 1 while j < len(file_dependency[i]): if file_dependency[i][0]==file: dep_list.append(str(file_dependency[i][j])) j = j +1 i = i + 1 return dep_list def file_dependent_list(file): i = 0 dep_list=[] while i < len(file_dependentby): j = 1 while j < len(file_dependentby[i]): if file_dependentby[i][0]==file: dep_list.append(str(file_dependentby[i][j])) j = j +1 i = i + 1 return dep_list def Language(pfix): pfix = pfix[0] db_analyze_language = '' if pfix == 'cpp' or pfix == 'h' or pfix == 'C' or pfix == 'hpp' or pfix == 'hxx' or pfix == 'cxx' or \ pfix == 'H' or pfix == 'inl' or pfix == 'cc' or pfix == 'hh': db_analyze_language = 'C++' if pfix == 'c': db_analyze_language = 'C' if pfix == 'a' or pfix == 'ads' or pfix == 'gpr' or pfix == 'ada' or pfix == 'adb_analyze': db_analyze_language = 'Ada' if pfix == 'cgi' or pfix == 'pl' or pfix == 'pm': db_analyze_language = 'Perl' if pfix == 'css': db_analyze_language = 'CSS' if pfix == 'dpr' or pfix == 'dfm': db_analyze_language = 'Delphi' if pfix == 'f77' or pfix == 'f' or pfix == 'f90' or pfix == 'for' or pfix == 'f03' or \ pfix == 'f95' or pfix == 'ftn': db_analyze_language = 'Fortran' if pfix == 'jov' or pfix == 'cpl': db_analyze_language = 'Jovidal' if pfix == 'mm': db_analyze_language = 'Objective-C++' if pfix == 'py': db_analyze_language = 'Python' if pfix == 'sql': db_analyze_language = 'Sql' if pfix == 'tsx' or pfix == 'ts': db_analyze_language = 'TypeScript' if pfix == 'vb': db_analyze_language = 'Basic' if pfix == 'vhdl' or pfix == 'vhd': db_analyze_language = 'VHDL' if pfix == 'asm' or pfix == 's': db_analyze_language = 'Assembly' if pfix == 'cbl' or pfix == 'cob' or pfix == 'cpy': db_analyze_language = 'COBOL' if pfix == 'htm' or pfix == 'html': db_analyze_language = 'Html' if pfix == 'js': db_analyze_language = 'Javascript' if pfix == 'pas' or pfix == 'sp': db_analyze_language = 'Pascal' if pfix == 'plm': db_analyze_language = 'Plm' if pfix == 'tcl': db_analyze_language = 'Tcl' if pfix == 'txt' or pfix == 'TXT': db_analyze_language = 'Text' if pfix == 'vh' or pfix == 'v': db_analyze_language = 'Verilog' if pfix == 'xml': db_analyze_language = 'Xml' if pfix == 'bat': db_analyze_language = 'MSDos Batch' if pfix == 'cs': db_analyze_language = 'C#' if pfix == 'java': db_analyze_language = 'Java' if pfix == 'm': db_analyze_language = 'Objective-C' if pfix == 'php': db_analyze_language = 'Php' return db_analyze_language def fileList(file): location=[] last2=[] file_qname = file.longname() file_name_Qualified = file_qname.split('/') location.append(file_qname) last = file_name_Qualified[file_name_Qualified.__len__() - 1].split('.') last2.append(file_name_Qualified[0:len(file_name_Qualified)-1]) last2[0].append(last[0]) last2=last2[0] last = ".".join(last2[1:last2.__len__()]) qlast = [] qlast.append(location[0]) qlast.append(last) file_name_Qualified = '.'.join(qlast[1:qlast.__len__()-1]) return (qlast[1], location[0]) def cls_printCallPairs(ent): lineString = '' defineAref = ent.ref("definein") if defineAref is not None: lineString = ent.longname() + "," lineString += defineAref.file().longname() return lineString def printCallPairs(ent): lineString = '' defineAref = ent.ref("definein") if defineAref is not None: lineString = ent.longname() + "," lineString += defineAref.file().longname() return lineString def class_cont(file): list_ret = [] for item in cls_CallPairs: list_cls = item.split(',') if list_cls[1] == str(file.longname()): list_ret.append(list_cls[0]) return list_ret def function_cont(file): list_ret = [] for item in CallPairs: list_func = item.split(',') if list_func[1] == str(file.longname()): list_ret.append(list_func[0]) return list_ret def metric(file): file_metric = [] metrics = file.metric(file.metrics()) for k, v in sorted(metrics.items()): file_metric.append(v) return file_metric if __name__ == '__main__': # Open Database args = sys.argv # db = understand.open(args[1]) db = understand.open("/home/nazanin/cephDB.udb") included_files(db) used_by_file(db) for ent in sorted(db.ents("class,method,struct,procedure"), key=lambda ent: ent.name()): seen = {} calls = cls_printCallPairs(ent) if calls != '': cls_CallPairs.append(calls) for ent in sorted(db.ents("function ~unknown ~unresolved"), key=lambda ent: ent.name()): seen = {} calls = printCallPairs(ent) if calls != '': CallPairs.append(calls) for file in sorted(db.ents("File")): if file.library() != "Standard": file_name=(file.name()) db_analyze_pfix = file_name.split('.') if len(db_analyze_pfix) > 1: file_lang = (Language(db_analyze_pfix[1])) name_qname_loc = fileList(file) file_metric = metric(file) contained_classes = class_cont(file) contained_function = function_cont(file) dep = (file_dependency_list(file)) depBy = (file_dependent_list(file)) file_list.append(str(file.name())) file_list.append(file_lang) file_list.append(name_qname_loc[0]) file_list.append(name_qname_loc[1]) file_list.append(file_metric) file_list.append(contained_function) file_list.append(contained_classes) file_list.append(dep) file_list.append(depBy) final_list.append(file_list) print(final_list) header = 'Filename,ProgrammingLanguage,FileQualifiedname,Location,Metrics,ContainedFunctions,ContainedClasses,calledFiles,CalledByFiles' with open('FileLevel Report.txt', 'w') as classhandle: i = 0 classhandle.write(header) classhandle.write('\n') for listitem in file_list: classhandle.write('%s;' % listitem) i = i + 1 if i % 9 == 0: classhandle.write('\n')
StarcoderdataPython
1864098
import itertools import logging import os from typing import Collection, List import click from exposurescrawler.dbt.exposure import DbtExposure from exposurescrawler.dbt.manifest import DbtManifest from exposurescrawler.tableau.graphql_client import ( retrieve_custom_sql, retrieve_native_sql, ) from exposurescrawler.tableau.models import WorkbookModelsMapping from exposurescrawler.tableau.rest_client import TableauRestClient from exposurescrawler.utils.logger import logger from exposurescrawler.utils.query_parsing import search_model_in_query def _should_ignore_workbook(workbook, projects_to_ignore: Collection[str]) -> bool: return workbook.project_name in projects_to_ignore def _parse_tables_from_sql(workbooks_sqls: WorkbookModelsMapping, models) -> WorkbookModelsMapping: """ Receives a map of workbook (references) and their respective SQLs (list), and look for occurrences of `models` in the SQLs. :param workbooks_sqls: map of workbook (references) to SQLs :param models: the node dict coming from the manifest.json :return: another map, but instead of workbooks to SQLs, it has workbooks to models """ logger().info('⚙️ Parsing SQL: looking for references to models') output: WorkbookModelsMapping = {} for workbook_reference, custom_sqls in workbooks_sqls.items(): # a list of dbt model represented as their original dicts from the manifest all_found: List[dict] = [] for custom_sql in custom_sqls: if models_found_query := search_model_in_query(custom_sql, models): all_found.extend(models_found_query.values()) if all_found: logger().debug( ' ✅ {}: found models {}'.format( workbook_reference.name, [model['materialized_name'] for model in all_found], ) ) output[workbook_reference] = all_found else: logger().debug(f' ❌ {workbook_reference.name}: found no models') logger().info(f'⚙️ Found {len(output.keys())} workbooks with linked models') return output def tableau_crawler( manifest_path: str, dbt_package_name: str, tableau_projects_to_ignore: Collection[str], verbose: bool, ) -> None: # Enable verbose logging if verbose: logger().setLevel(logging.DEBUG) # Parse arguments manifest_path = os.path.expandvars(manifest_path) manifest_path = os.path.expanduser(manifest_path) # Parse the dbt manifest JSON file manifest: DbtManifest = DbtManifest.from_file(manifest_path) # Retrieve all models models = manifest.retrieve_models_and_sources() # Configure the Tableau REST client tableau_client = TableauRestClient( os.environ['TABLEAU_URL'], os.environ['TABLEAU_USERNAME'], os.environ['TABLEAU_PASSWORD'], ) # Retrieve custom SQLs and find model references workbooks_custom_sqls = retrieve_custom_sql(tableau_client, 'snowflake') workbooks_custom_sql_models = _parse_tables_from_sql(workbooks_custom_sqls, models) # Retrieve native SQLs and find model references workbooks_native_sqls = retrieve_native_sql(tableau_client, 'snowflake') workbooks_native_sql_models = _parse_tables_from_sql(workbooks_native_sqls, models) # Merge the results by chaining the iterables # Here it is fine to have duplicates on the list # Duplicates will be handled in the DbtExposure class workbooks_models: WorkbookModelsMapping = {} for workbook_reference, found in itertools.chain( workbooks_custom_sql_models.items(), workbooks_native_sql_models.items() ): workbooks_models.setdefault(workbook_reference, []).extend(found) logger().info('') logger().info( '💡 Results merged: {} + {} = {} workbooks'.format( len(workbooks_custom_sql_models), len(workbooks_native_sql_models), len(workbooks_models), ) ) logger().info('') logger().info('🌏 Retrieving workbooks and authors metadata from the Tableau REST API') # For every workbook and the models found, create exposures and add # to the manifest (in-memory) for workbook_reference, found in workbooks_models.items(): workbook = tableau_client.retrieve_workbook(workbook_reference.id) owner = tableau_client.retrieve_user(workbook.owner_id) if _should_ignore_workbook(workbook, tableau_projects_to_ignore): logger().debug( f'⏩ Skipping workbook: {workbook.name} ({workbook.project_name} is ignored)' ) continue exposure = DbtExposure.from_tableau_workbook(dbt_package_name, workbook, owner, found) manifest.add_exposure(exposure, found) # Terminate the Tableau client tableau_client.sign_out() # Persist the modified manifest logger().info('') logger().info(f'💾 Writing results to file: {manifest_path}') manifest.save(manifest_path) @click.command() @click.option( '--manifest-path', required=True, metavar='PATH', help='The path to the dbt manifest artifact', ) @click.option( '--dbt-package-name', required=True, metavar='PROJECT_NAME', help='The name of the dbt pacakge where the exposures should be added. If in doubt, check the ' 'name of your dbt project on dbt_project.yml', ) @click.option( '--tableau-ignore-projects', 'tableau_projects_to_ignore', default=[], help='The name of Tableau projects (folders) to ignore', ) @click.option('-v', '--verbose', is_flag=True, default=False, help='Enable verbose logging') def tableau_crawler_command( manifest_path: str, dbt_package_name: str, tableau_projects_to_ignore: Collection[str], verbose: bool, ): tableau_crawler(manifest_path, dbt_package_name, tableau_projects_to_ignore, verbose) if __name__ == '__main__': tableau_crawler_command()
StarcoderdataPython
60716
TARGET_URL = '/{tail:.*}' EXCLUDED_HEADERS = { # 'Accept-CH', # 'Accept-CH-Lifetime', # 'Cache-Control', # 'Content-Encoding', # 'Content-Security-Policy', # 'Content-Type', # 'Date', # 'Expires', # 'Last-Modified', # 'P3P', # 'Set-Cookie', 'Transfer-Encoding', 'X-Target-Url', 'Content-Length', # 'Host', # 'X-Content-Type-Options', # 'X-Frame-Options' }
StarcoderdataPython
4929907
<filename>students/k3343/practical_works/Kozyreva_Alena/simple_django_web_project/django_project_kozyreva/project_first_app/migrations/0003_delete_geeksmodel.py # Generated by Django 3.0.5 on 2020-04-15 16:51 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('project_first_app', '0002_auto_20200415_1843'), ] operations = [ migrations.DeleteModel( name='GeeksModel', ), ]
StarcoderdataPython
9747679
<filename>src_assignemnt_2/src2.py import math def f(): total = 0 for x in range(1000000): total += math.sin(x) return total print(f())
StarcoderdataPython
1952155
def inside_or_outside(number, lower, upper): if number >= lower or number < upper: print("Inside") else: print("Outside")
StarcoderdataPython
3545124
Import("env") import gzip import os import sys ''' try: from css_html_js_minify import process_single_html_file, process_single_js_file, process_single_css_file, html_minify, js_minify, css_minify except ImportError: env.Execute("$PYTHONEXE -m pip install -vvv css_html_js_minify") from css_html_js_minify import process_single_html_file, process_single_js_file, process_single_css_file, html_minify, js_minify, css_minify def minify(filename, outfilename): _ , file_extension = os.path.splitext(filename) file_extension = file_extension.lower() if file_extension == '.html' or file_extension == '.htm': process_single_html_file(filename,output_path=outfilename) elif file_extension == '.css': process_single_css_file(filename,output_path=outfilename) elif file_extension == '.js': process_single_js_file(filename,output_path=outfilename) ''' def compress(filename, outfilename): with open(filename, 'rb') as src, gzip.open(outfilename, 'wb') as dst: dst.writelines(src) def bin2c(filename, outfilename): varname = os.path.basename(filename) varname=varname.replace('.','_') varname_size = varname+'_size' with open(outfilename,'wb') as result_file: result_file.write(b"//Don't edit this file, it's automatically generated\n") result_file.write(b'const long int %s = %d;\n' % (varname_size.encode('utf-8'), os.stat(filename).st_size)) result_file.write(b'const unsigned char %s[] = {\n' % varname.encode('utf-8')) counter = 0 first = True for b in open(filename, 'rb').read(): counter = counter + 1 if counter == 16: result_file.write(b'\n') counter = 0 if first: first = False else: result_file.write(b',') result_file.write(b'0x%02X' % b) result_file.write(b'\n};') with os.scandir('./main/html') as it : for entry in it: if entry.is_file() and entry.name.endswith('.html') or entry.name.endswith('.css') or entry.name.endswith('.js'): ''' min_file = entry.path+'.min' minify(entry.path,min_file) ''' gz_file=entry.path+'.gz' compress(entry.path, gz_file) h_file = gz_file+'.h' bin2c(gz_file,h_file) '''os.remove(min_file)''' os.remove(gz_file)
StarcoderdataPython
11233611
<reponame>RafayelGardishyan/Memorears from django.db import models # Create your models here. class Theme(models.Model): name = models.CharField(max_length=255) description = models.TextField(max_length=1000) class Image(models.Model): image = models.ImageField(upload_to="images") theme = models.ForeignKey(Theme, on_delete=models.CASCADE)
StarcoderdataPython
1828055
# -*- coding: utf-8 -*- """ Created on Wed Jul 19 2018 @author: kfinc """ import pandas as pd import numpy as np from sklearn import preprocessing def motion_24_friston(dataframe): """Simple function that calculates 24 motion parameters from pandas dataframe. Parameters ---------- dataframe: pandas dataframe including 6 movement parameters with headers Returns ------- motion_24_friston: pandas dataframe including 24 motion parameters - the first 6 are the motion parameters - the next 6 are the temporal difference of motion parameters ('_td' suffix) - the next 12 are the square of the motion parameters and the differenced values ('_sqrt' suffix) """ motion_24_friston = dataframe for col in dataframe.columns: temp_diff = np.roll(dataframe[col], 1, axis = 0) temp_diff[0] = 0 temp_diff = pd.DataFrame(temp_diff) motion_24_friston[col + '_td'] = temp_diff for col in motion_24_friston.columns: sqrt = motion_24_friston[col] ** 2 motion_24_friston[col + '_sqrt'] = sqrt return motion_24_friston def scrubbing(fd, thr = 0.5, before = True, after = True): """Function that calculates motion outliers (frames with motion above threshold_. Parameters ---------- fd: pandas dataframe including frame-wise displacement (FD) thr: threshold (default: 0.5) before: marks frames before outlier datapoint (default: True) after: marks frames after outlier datapoint (default: True) Returns ------- scrubbing: pandas dataframe including all ourliers datapoints """ scrubbing = pd.DataFrame() fd.loc[0] = 0 fd = fd.astype(float) scrub1 = fd > thr scrub1 = scrub1.astype(int) scrubbing['scrubbing'] = scrub1 if before == True: scrub2 = np.roll(scrubbing['scrubbing'], -1, axis = 0) scrub2[0] = 0 scrubbing['scrubbing_bef'] = scrub2 if after == True: scrub3 = np.roll(scrubbing['scrubbing'], 1, axis = 0) scrub3[0] = 0 scrubbing['scrubbing_aft'] = scrub3 return scrubbing def standardize(dataframe): """ Normalizes each column and returns values set to unit variance. Parameters ---------- dataframe: pandas dataframe including columns of interest Returns ------- dataframe_stand: pandas dataframe with standarized values """ dataframe_stand = pd.DataFrame() val = dataframe.values standardize = preprocessing.StandardScaler() val_scaled = standardize.fit_transform(val) dataframe_stand = pd.DataFrame(val_scaled, columns = dataframe.columns) return dataframe_stand
StarcoderdataPython
3568590
from .run import run_pipeline from .data import get_pricing
StarcoderdataPython
6700321
class Logger: def __init__(self): pass def log(self, msg): pass
StarcoderdataPython
11317549
<reponame>RDFLib/PyRDFa #!/usr/bin/env python # -*- coding: utf-8 -*- from xml.dom.minidom import parse, parseString from datetime import date def one_entry(term) : return "\t'%s'\t\t\t: 'http://www.w3.org/1999/xhtml/vocab#%s'," % (term,term) def getText(nodelist): rc = [] for node in nodelist: if node.nodeType == node.TEXT_NODE: rc.append(node.data) return ''.join(rc) def manage_dom(dom) : for record in dom.getElementsByTagName("record") : term = "" desc = "" for child in record.childNodes : if child.nodeType == child.ELEMENT_NODE and child.nodeName == "value" : term = getText(child.childNodes) if term != "describedby" : print one_entry(term.encode('utf-8')) ############################# Header = """initial_context["http://www.w3.org/2011/rdfa-context/html-rdfa-1.1"].terms = {""" Footer = """ 'p3pv1' : 'http://www.w3.org/1999/xhtml/vocab#p3pv1', 'transformation' : 'http://www.w3.org/2003/g/data-view#transformation', 'itsRules' : 'http://www.w3.org/1999/xhtml/vocab#itsRules', 'role' : 'http://www.w3.org/1999/xhtml/vocab#role', } """ if __name__ == '__main__': print Header dom = parse('/Users/ivan/W3C/WWW/2011/rdfa-context/link-relations.xml') manage_dom(dom) print Footer
StarcoderdataPython
5091655
class PhysicalCoordinate(object): def __init__(self, header): phys_coord = "" # check if physical coordinate is defined. FIXME! for C in ["P", "L"]: try: if (header["WCSTY1" + C].strip() == "PHYSICAL") \ and (header["WCSTY2" + C].strip() == "PHYSICAL"): phys_coord = C except KeyError: pass try: if (header["CTYPE1" + C].strip() == "X") \ and (header["CTYPE2" + C].strip() == "Y"): phys_coord = C except KeyError: pass if phys_coord: C = phys_coord cv1, cr1, cd1 = header["CRVAL1" + C], header["CRPIX1" + C], header[" CDELT1" + C] cv2, cr2, cd2 = header["CRVAL2" + C], header["CRPIX2" + C], header[" CDELT2" + C] self._physical_coord_not_defined = False self.cv1_cr1_cd1 = cv1, cr1, cd1 self.cv2_cr2_cd2 = cv2, cr2, cd2 self.cdelt = (cd1 * cd2) ** .5 else: self._physical_coord_not_defined = True self.cv1_cr1_cd1 = 0, 0, 1 self.cv2_cr2_cd2 = 0, 0, 1 self.cdelt = 1 def to_physical(self, imx, imy): if self._physical_coord_not_defined: return imx, imy cv1, cr1, cd1 = self.cv1_cr1_cd1 cv2, cr2, cd2 = self.cv2_cr2_cd2 phyx = cv1 + (imx - cr1) * cd1 phyy = cv2 + (imy - cr2) * cd2 return phyx, phyy def to_image(self, phyx, phyy): if self._physical_coord_not_defined: return phyx, phyy cv1, cr1, cd1 = self.cv1_cr1_cd1 cv2, cr2, cd2 = self.cv2_cr2_cd2 imx = cr1 + (phyx - cv1) / cd1 imy = cr2 + (phyy - cv2) / cd2 return imx, imy def to_physical_distance(self, im_distance): if self._physical_coord_not_defined: return im_distance return im_distance * self.cdelt def to_image_distance(self, im_physical): if self._physical_coord_not_defined: return im_physical return im_physical / self.cdelt
StarcoderdataPython
8021302
<gh_stars>1-10 ''' Core types for the connectivity model of an articulated mechanism. ''' import logging, enum import networkx as nx import io import kgprim.core as gr class Joint: ''' A placeholder for a joint of a mechanism. A joint only has a name and a kind, the latter being one of the values defined in `JointKind`. A joint always connects two and only two `Link`s. ''' def __init__(self, name, kind): self.name = name self.kind = kind def __eq__(self, rhs): return isinstance(rhs, Joint) and\ self.name==rhs.name and self.kind==rhs.kind def __hash__(self): return 31 * hash(self.name) + 97 * hash(self.kind) def __str__(self): return self.name def __repr__(self): return self.name class JointKind(enum.Enum): prismatic="prismatic", revolute ="revolute" class Link(gr.RigidBody): ''' A placeholder for a rigid link of a mechanism. A `Link` is just a named instance of `kgprim.gr.RigidBody`. ''' def __init__(self, name): super().__init__(name) def __eq__(self, rhs): return isinstance(rhs, Link) and self.name==rhs.name def __hash__(self): return 47 * hash(self.name) def __str__(self): return self.name class KPair: ''' A Kinematic-Pair, that is a pair of links connected by a joint ''' def __init__(self, joint, link1, link2): self.joint = joint self.link1 = link1 self.link2 = link2 class Robot: ''' The connectivity model of an articulated robot. ''' def __init__(self, name, links, joints, pairs): self.log = logging.getLogger('robot') self._name = name self.links = links # by-name map self.joints= joints # by-name map # A map from joint to links in the pair self.pairs = {kp.joint: (kp.link1, kp.link2) for kp in pairs} self.nB = len(self.links) # number of bodies self.nJ = len(self.joints) # number of joints self.nLoopJ = self.nJ - (self.nB - 1) # number of loop joints # The connectivity graph. # Note that it can be used as a map bewteen link-pairs to joint self.graph = nx.Graph() self.graph.add_edges_from( [ (p.link1, p.link2, {'joint': p.joint}) for p in pairs ] ) self.loops = nx.cycle_basis(self.graph) self._checks() @property def name(self) : return self._name def hasLoops(self): return self.nLoopJ > 0 def linkPairToJoint(self, link1, link2): ''' The `Joint` connecting the two given links, `None` if the links are not part of a pair. ''' if not self.graph.has_edge(link1, link2) : return None return self.graph[link1][link2]['joint'] def jointToLinkPair(self, joint): ''' The `KPair` object whose joint is the given joint ''' return self.pairs[joint] def path(self, link1, link2): return nx.shortest_path(self.graph, link1, link2) def __str__(self): text = 'Robot ' + self.name + '\n' for l in self.links.values(): text += ' ' + l.name + '\n' text += '\n' for ed in self.graph.edges(data=True): text += ed[2]['joint'].name + ' between ' + ed[0].name + ' and ' + ed[1].name + '\n' return text def _checks(self): if not nx.connected.is_connected( self.graph ) : self.log.error('The robot graph is not connected') else : self.log.debug("OK, the robot graph is connected") def fromDict(data): ''' Create a connectivity model from input data in a dictionary. The dictionary is expected to have the following format: - a key 'name' with the robot name - a key 'links' which is a list of robot link names - a key 'joints' which is a list of dictionaries, each having the entries 'name' and 'kind' which are both strings - a key 'pairs' which is a list of dictionaries, each having three entries: 'joint', 'link1', 'link2', each having a name as the value This format is the same as the YAML connectivity model format used in this, project. See the sample models in the repository. ''' rname = data['name'] links = { name:Link(name) for name in data['links'] } joints= { j['name']:Joint(j['name'], JointKind[j['kind']]) for j in data['joints'] } pairs = [ KPair( joints[ p['joint'] ], links [ p['link1'] ], links [ p['link2'] ] ) for p in data['pairs'] ] return Robot(rname, links, joints, pairs) def graphToString(graph): text = '' for link in graph.nodes() : text += link.name + ' ' return text
StarcoderdataPython
6610157
import numpy as np import matplotlib import matplotlib.pyplot as plt import seaborn as sns """ Some notations: d = number of features including W_0 n = number of observations """ def prepare_X(X:np.ndarray, degree:int = 1)-> np.ndarray: ''' Expands X as per degrees and appends a column of ones in the begining Input: X: (n*1) Input matrix degress: expanding X to number of degrees Returns: X_new : (n * d) matrix ''' assert X.ndim == 2 n = X.shape[0] X_new = X.copy() if degree>1: for d in range(2,degree+1): X_new = np.hstack((X_new, X**d)) # append column of ones' X_new = np.hstack((np.ones([n,1]), X_new)) return X_new def normaliz_data(X): ''' Z- normalized data and array of means and sds to normalize validation data Input: X: (n*d) matrix Returns: X_norm : n*d , z-normalized data mean = np array of means of all columns std = np array of std of all columns ''' mean = X.mean(axis=0) std = X.std(axis=0) mean[0] = 0 # the first columns is column of ones. std[0] = 1 # the first columns is column of ones. X_norm = (X - mean)/ std return X_norm, mean, std def w_closedForm(X,y): ''' Finds the optimal w using closed form solution Input: X = 2D array, N*(D+1) data matrix y = 1D array, N lenghth vector of y values Output: w = 1D array, (D+1) lengthe vector ''' w = np.dot(np.linalg.pinv(X),y) return w def give_squared_loss_grad(X, y, w, overPred_penalty=1, underPred_penalty=1): ''' Gives squared loss and grandient given X, w and other parameters Input: X = 2D array; n*d input matrix y = 1D array; (n,) output array w = 1D array; (), weights array overPred_penalty = [-Inf, Inf] penulty for over prediction underPred_penalty = [-Inf, Inf] penulty for under prediction Returns: loss: float = squared loss grad: (d*1) array of gradients ''' n = X.shape[0] # errors e = np.dot(X,w) - y # Penalty for Over/ Under Prediction penulty_vect = (e>0.).astype(float) penulty_vect[penulty_vect==1] = overPred_penalty penulty_vect[penulty_vect==0] = underPred_penalty # Asymmetric Loss asym_e = np.multiply(penulty_vect, e) # Normalised Squared Loss loss = np.dot(np.transpose(asym_e), asym_e) /(2*n) # Gradient grad = (np.dot(X.T, asym_e)) / n return loss, grad def GradDescent_LinReg(X, y, overPred_penalty=1, underPred_penalty=1, lr=0.1 , maxIt = 10000, verbose=False): ''' Finds the optimal w using Gradient Descent method Input: X = 2D array; n*d input matrix y = 1D array; (n,) output array w = 1D array; (), weights array overPred_penalty = [-Inf, Inf] penulty for over prediction underPred_penalty = [-Inf, Inf] penulty for under prediction lr = learing rate maxIt = Maximum Iterations Returns: w = (d*1) array of weights ''' n,d = X.shape if verbose: itr_data = [] # initialize W randomly w = np.random.rand(d,1) for i in range(maxIt): loss, grad = give_squared_loss_grad(X, y, w, overPred_penalty, underPred_penalty) if verbose: itr_data.append(loss[0][0]) w = w - (lr*grad) if verbose: return itr_data, w return w def find_best_model_plot_results(X_train, y_train, X_val, y_val, method:str, overPred_penalty=1, underPred_penalty=1, lr=0.1 , maxIt = 10000 ): # checking for degrees till 5 degrees = [i for i in range(1,6)] # storing the best model min_loss = np.Inf best_model = {} all_model = {} # for plotting fig = matplotlib.pyplot.gcf() fig.set_size_inches(11, 7) plt.plot(X_train, y_train, 'k.') x_axis_data = np.linspace(min(X_train)-0.1, max(X_train)+-.1, num=100) # below loop: for each polynomial degree finds the w*, finds the val loss and plots the fitted curve for d in degrees: X = prepare_X(X_train, degree=d) X_norm, X_mean, X_std = normaliz_data(X) if method == 'ClosedForm': w = w_closedForm(X_norm, y_train) if method == "GradientDescent": w = GradDescent_LinReg(X_norm, y_train, overPred_penalty, underPred_penalty, lr, maxIt) train_loss = give_squared_loss_grad(X_norm, y_train, w)[0] # for validation loss X_val_prep = prepare_X(X_val, degree=d) X_val_norm = (X_val_prep - X_mean) / X_std val_loss = give_squared_loss_grad(X_val_norm, y_val, w)[0] all_model['degree:'+str(d)] = {'train_loss':train_loss, 'val_loss':val_loss, 'w':w} if val_loss < min_loss: min_loss = val_loss best_model['degree'] = d best_model['w'] = w best_model['train_loss'] = train_loss best_model['val_loss'] = val_loss if method == "GradientDescent": best_model['OverPred Penalty'] = overPred_penalty best_model['UnderPred Penalty'] = underPred_penalty best_model['learning_rate'] = lr best_model['maxIt'] : maxIt # to plot the line X_graph = ((prepare_X(x_axis_data, degree=d))-X_mean) / X_std y_axis_data = np.dot(X_graph,w) color = {1:'b', 2:'g', 3:'r', 4:'y', 5:'c'}[d] plt.plot(x_axis_data, y_axis_data, color, label = "deg:"+str(d)) plt.legend() return best_model
StarcoderdataPython
9638303
""" You have to write the perc_train function that trains the feature weights using the perceptron algorithm for the CoNLL 2000 chunking task. Each element of train_data is a (labeled_list, feat_list) pair. Inside the perceptron training loop: - Call perc_test to get the tagging based on the current feat_vec and compare it with the true output from the labeled_list - If the output is incorrect then we have to update feat_vec (the weight vector) - In the notation used in the paper we have w = w_0, w_1, ..., w_n corresponding to \phi_0(x,y), \phi_1(x,y), ..., \phi_n(x,y) - Instead of indexing each feature with an integer we index each feature using a string we called feature_id - The feature_id is constructed using the elements of feat_list (which correspond to x above) combined with the output tag (which correspond to y above) - The function perc_test shows how the feature_id is constructed for each word in the input, including the bigram feature "B:" which is a special case - feat_vec[feature_id] is the weight associated with feature_id - This dictionary lookup lets us implement a sparse vector dot product where any feature_id not used in a particular example does not participate in the dot product - To save space and time make sure you do not store zero values in the feat_vec dictionary which can happen if \phi(x_i,y_i) - \phi(x_i,y_{perc_test}) results in a zero value - If you are going word by word to check if the predicted tag is equal to the true tag, there is a corner case where the bigram 'T_{i-1} T_i' is incorrect even though T_i is correct. """ import perc import sys, optparse, os from collections import defaultdict def train_tags(train): output = [] i = 0 while(i < len(train)): x = train[i].split() output.append(x[2]) i = i + 1 return output def word_list(train): output = [] i = 0 while(i < len(train)): x = train[i].split() output.append(x[0]) i = i + 1 return output def pos_list(train): output = [] i = 0 while(i < len(train)): x = train[i].split() output.append(x[1]) i = i + 1 return output def add_one_feat(feat_vec,key_z,key_true): if key_z != None: if feat_vec[key_z] != None: feat_vec[key_z] -= 1 #if feat_vec[key_z] <= 0: # feat_vec.pop(key_z) if key_true != None: if feat_vec[key_true] == None: feat_vec[key_true] = 1 else: feat_vec[key_true] += 1 return def strip(feat_vec): items_to_pop = [] for i in feat_vec: if feat_vec[i] <= 0: items_to_pop.append(i) for i in range(0,len(items_to_pop)): feat_vec.pop(items_to_pop[i]) #Every Feat function uses the feature that ranges from feat_00 to feat_22 def feat_00(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position - 2) < 0): return if(tag_list[position-2] != z_list[position-2]): key_z = ("U00:" + word_list[position-2], z_list[position-2]) key_true = ("U00:" + word_list[position-2], tag_list[position-2]) add_one_feat(feat_vec,key_z,key_true) def feat_01(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position - 1) < 0): return if(tag_list[position-1] != z_list[position-1]): key_z = ("U01:" + word_list[position-1], z_list[position-1]) key_true = ("U01:" + word_list[position-1], tag_list[position-1]) add_one_feat(feat_vec,key_z,key_true) def feat_02(feat_vec,word_list,pos_list,tag_list,z_list,position): if(tag_list[position] != z_list[position]): key_z = ("U02:" + word_list[position], z_list[position]) key_true = ("U02:" + word_list[position], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) return def feat_03(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position + 1) > len(z_list) - 1): return if(tag_list[position+1] != z_list[position+1]): key_z = ("U03:" + word_list[position+1], z_list[position+1]) key_true = ("U03:" + word_list[position+1], tag_list[position+1]) add_one_feat(feat_vec,key_z,key_true) def feat_04(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position + 2) > len(z_list) - 1): return if(tag_list[position+2] != z_list[position+2]): key_z = ("U04:" + word_list[position+2], z_list[position+2]) key_true = ("U04:" + word_list[position+2], tag_list[position+2]) add_one_feat(feat_vec,key_z,key_true) def feat_05(feat_vec,word_list,pos_list,tag_list,z_list,position): offset = 1 if ((position - offset) < 0): return if(tag_list[position -offset] == tag_list[position]): if(z_list[position -offset] == z_list[position]): if(z_list[position] != tag_list[position]): key_z = ("U05:" + word_list[position-1] + "/" + word_list[position], z_list[position]) key_true = ("U05:" + word_list[position-1] + "/" + word_list[position], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U05:" + word_list[position-1] + "/" + word_list[position], z_list[position-1]) key_z2 = ("U05:" + word_list[position-1] + "/" + word_list[position], z_list[position]) key_true = ("U05:" + word_list[position-1] + "/" + word_list[position], tag_list[position]) add_one_feat(feat_vec,key_z1,key_true) add_one_feat(feat_vec,key_z2,key_true) add_one_feat(feat_vec,None,key_true) def feat_06(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position + 1) > len(z_list) - 1): return if(tag_list[position +1] == tag_list[position]): if(z_list[position +1] == z_list[position]): if(z_list[position] != tag_list[position]): key_z = ("U06:" + word_list[position] + "/" + word_list[position+1], z_list[position]) key_true = ("U06:" + word_list[position] + "/" + word_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U06:" + word_list[position] + "/" + word_list[position+1], z_list[position]) key_z2 = ("U06:" + word_list[position] + "/" + word_list[position+1], z_list[position+1]) key_true = ("U06:" + word_list[position] + "/" + word_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z1,key_true) add_one_feat(feat_vec,key_z2,key_true) add_one_feat(feat_vec,None,key_true) def feat_10(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position -2) < 0): return if(tag_list[position-2] != z_list[position-2]): key_z = ("U10:" + pos_list[position-2], z_list[position-2]) key_true = ("U10:" + pos_list[position-2], tag_list[position-2]) add_one_feat(feat_vec,key_z,key_true) def feat_11(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position -1) < 0): return if(tag_list[position-1] != z_list[position-1]): key_z = ("U11:" + pos_list[position-1], z_list[position-1]) key_true = ("U11:" + pos_list[position-1], tag_list[position-1]) add_one_feat(feat_vec,key_z,key_true) def feat_12(feat_vec,word_list,pos_list,tag_list,z_list,position): if(tag_list[position] != z_list[position]): key_z = ("U12:" + pos_list[position] + "q", z_list[position]) key_true = ("U12:" + pos_list[position] + "q", tag_list[position]) add_one_feat(feat_vec,key_z,key_true) def feat_13(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position +1) > len(z_list) - 1): return if(tag_list[position+1] != z_list[position+1]): key_z = ("U13:" + pos_list[position+1], z_list[position+1]) key_true = ("U13:" + pos_list[position+1], tag_list[position+1]) add_one_feat(feat_vec,key_z,key_true) def feat_14(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position +2) > len(z_list) - 1): return if(tag_list[position+2] != z_list[position+2]): key_z = ("U14:" + pos_list[position+2], z_list[position+2]) key_true = ("U14:" + pos_list[position+2], tag_list[position+2]) add_one_feat(feat_vec,key_z,key_true) def feat_15(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position - 2) < 0): return if(tag_list[position -2] == tag_list[position-1]): if(z_list[position -2] == z_list[position-1]): if(z_list[position-1] != tag_list[position-1]): key_z = ("U15:" + pos_list[position-2] + "/" + pos_list[position-1], z_list[position-1]) key_true = ("U15:" + pos_list[position-2] + "/" + pos_list[position-1], tag_list[position-1]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U15:" + pos_list[position-2] + "/" + pos_list[position-1], z_list[position-2]) key_z2 = ("U15:" + pos_list[position-2] + "/" + pos_list[position-1], z_list[position-1]) key_true = ("U15:" + pos_list[position-2] + "/" + pos_list[position-1], tag_list[position-1]) add_one_feat(feat_vec,None,key_true) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) def feat_16(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position - 1) < 0): return if(tag_list[position -1] == tag_list[position]): if(z_list[position -1] == z_list[position]): if(z_list[position] != tag_list[position]): key_z = ("U16:" + pos_list[position-1] + "/" + pos_list[position], z_list[position]) key_true = ("U16:" + pos_list[position-1] + "/" + pos_list[position], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U16:" + pos_list[position-1] + "/" + pos_list[position], z_list[position-1]) key_z2 = ("U16:" + pos_list[position-1] + "/" + pos_list[position], z_list[position]) key_true = ("U16:" + pos_list[position-1] + "/" + pos_list[position], tag_list[position]) add_one_feat(feat_vec,None,key_true) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) def feat_17(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position + 1) > len(z_list) - 1): return if(tag_list[position] == tag_list[position+1]): if(z_list[position] == z_list[position+1]): if(z_list[position] != tag_list[position]): key_z = ("U17:" + pos_list[position] + "/" + pos_list[position+1], z_list[position]) key_true = ("U17:" + pos_list[position] + "/" + pos_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U17:" + pos_list[position] + "/" + pos_list[position+1], z_list[position]) key_z2 = ("U17:" + pos_list[position] + "/" + pos_list[position+1], z_list[position+1]) key_true = ("U17:" + pos_list[position] + "/" + pos_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) add_one_feat(feat_vec,None,key_true) def feat_18(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position + 2) > len(z_list) - 1): return if(tag_list[position+1] == tag_list[position+2]): if(z_list[position+1] == z_list[position+2]): if(z_list[position+1] != tag_list[position+1]): key_z = ("U18:" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position+1]) key_true = ("U18:" + pos_list[position+1] + "/" + pos_list[position+2], tag_list[position+1]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U18:" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position+1]) key_z2 = ("U18:" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position+2]) key_true = ("U18:" + pos_list[position+1] + "/" + pos_list[position+2], tag_list[position+1]) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) add_one_feat(feat_vec,None,key_true) def feat_20(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position -2 ) < 0): return if((tag_list[position-2] == tag_list[position-1]) and (tag_list[position-1] == tag_list[position])): if((z_list[position-2] == z_list[position-1]) and (z_list[position-1] == z_list[position])): if(z_list[position] != tag_list[position]): key_z = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], z_list[position]) key_true = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], z_list[position-2]) key_z2 = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], z_list[position-1]) key_z3 = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], z_list[position]) key_true = ("U20:" + pos_list[position-2] + "/" + pos_list[position-1] + "/" + pos_list[position], tag_list[position]) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) add_one_feat(feat_vec,key_z3,None) add_one_feat(feat_vec,None,key_true) def feat_21(feat_vec,word_list,pos_list,tag_list,z_list,position): if ((position - 1) < 0): return if ((position + 1) > len(z_list) - 1): return if((tag_list[position-1] == tag_list[position]) and (tag_list[position] == tag_list[position+1])): if((z_list[position-1] == z_list[position]) and (z_list[position] == z_list[position+1])): if(z_list[position] != tag_list[position]): key_z = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], z_list[position]) key_true = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], z_list[position-1]) key_z2 = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], z_list[position]) key_z3 = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], z_list[position+1]) key_true = ("U21:" + pos_list[position-1] + "/" + pos_list[position] + "/" + pos_list[position+1], tag_list[position]) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) add_one_feat(feat_vec,key_z3,None) add_one_feat(feat_vec,None,key_true) def feat_22(feat_vec,word_list,pos_list,tag_list,z_list,position): if((position +2 ) > len(z_list) - 1): return if((tag_list[position] == tag_list[position+1]) and (tag_list[position+2] == tag_list[position])): if((z_list[position] == z_list[position+1]) and (z_list[position+2] == z_list[position])): if(z_list[position] != tag_list[position]): key_z = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position]) key_true = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], tag_list[position]) add_one_feat(feat_vec,key_z,key_true) else: key_z1 = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position]) key_z2 = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position+1]) key_z3 = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], z_list[position+2]) key_true = ("U22:" + pos_list[position] + "/" + pos_list[position+1] + "/" + pos_list[position+2], tag_list[position]) add_one_feat(feat_vec,key_z1,None) add_one_feat(feat_vec,key_z2,None) add_one_feat(feat_vec,key_z3,None) add_one_feat(feat_vec,None,key_true) #The check and change function calls all the features that may either add or def check_and_change(feat_vec,word_list,pos_list,tag_list,z_list,position): feat_00(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_01(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_02(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_03(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_04(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_05(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_06(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_10(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_11(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_12(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_13(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_14(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_15(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_16(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_17(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_18(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_20(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_21(feat_vec,word_list,pos_list,tag_list,z_list,position) feat_22(feat_vec,word_list,pos_list,tag_list,z_list,position) strip(feat_vec) #perc train calls the viterbi algorithm then calls the check and change function to manipulate the weights def perc_train(train_data,tagset,numepochs): feat_vec = defaultdict(int) tags = {} for i in range(0,numepochs): for j in range(0,len(train_data)): label_list = train_data[j][0] feat_list = train_data[j][1] z = perc.perc_test(feat_vec,label_list, feat_list,tagset,tagset[0]) for k in range(0,len(z)): temp = train_tags(label_list) if(z[k] != temp[k]): check_and_change(feat_vec,word_list(label_list),pos_list(label_list),train_tags(label_list),z,k) return feat_vec if __name__ == '__main__': optparser = optparse.OptionParser() optparser.add_option("-t", "--tagsetfile", dest="tagsetfile", default=os.path.join("data", "tagset.txt"), help="tagset that contains all the labels produced in the output, i.e. the y in \phi(x,y)") optparser.add_option("-i", "--trainfile", dest="trainfile", default=os.path.join("data", "train.txt.gz"), help="input data, i.e. the x in \phi(x,y)") optparser.add_option("-f", "--featfile", dest="featfile", default=os.path.join("data", "train.feats.gz"), help="precomputed features for the input data, i.e. the values of \phi(x,_) without y") optparser.add_option("-e", "--numepochs", dest="numepochs", default=int(10), help="number of epochs of training; in each epoch we iterate over over all the training examples") optparser.add_option("-m", "--modelfile", dest="modelfile", default=os.path.join("data", "default.model"), help="weights for all features stored on disk") (opts, _) = optparser.parse_args() # each element in the feat_vec dictionary is: # key=feature_id value=weight feat_vec = {} tagset = [] train_data = [] tagset = perc.read_tagset(opts.tagsetfile) print >>sys.stderr, "reading data ..." train_data = perc.read_labeled_data(opts.trainfile, opts.featfile) print >>sys.stderr, "done." feat_vec = perc_train(train_data, tagset, int(opts.numepochs)) perc.perc_write_to_file(feat_vec, opts.modelfile)
StarcoderdataPython
3486890
import cv2 import json from tqdm import tqdm import pandas as pd from .bb_polygon import * def draw_arrow(image, start_point, end_point, color): start_point = tuple(start_point) end_point = tuple(end_point) image = cv2.line(image, start_point, end_point, color, 3) image = cv2.circle(image, end_point, 8, color, -1) return image def draw_start_last_points(ori_im, start_point, last_point, color=(0, 255, 0)): return draw_arrow(ori_im, start_point, last_point, color) def draw_one_box(img, box, key=None, value=None, color=None, line_thickness=None): tl = line_thickness or int(round(0.001 * max(img.shape[0:2]))) # line thickness coord = [box[0], box[1], box[2], box[3]] c1, c2 = (int(coord[0]), int(coord[1])), (int(coord[2]), int(coord[3])) img = cv2.rectangle(img, c1, c2, color, thickness=tl*2) if key is not None and value is not None: header = f'{key} || {value}' tf = max(tl - 2, 1) # font thickness s_size = cv2.getTextSize(f'| {value}', 0, fontScale=float(tl) / 3, thickness=tf)[0] t_size = cv2.getTextSize(f'{key} |', 0, fontScale=float(tl) / 3, thickness=tf)[0] c2 = c1[0] + t_size[0] + s_size[0] + 15, c1[1] - t_size[1] - 3 img = cv2.rectangle(img, c1, c2, color, -1) # filled img = cv2.putText(img, header, (c1[0], c1[1] - 2), 0, float(tl) / 3, [0, 0, 0], thickness=tf, lineType=cv2.FONT_HERSHEY_SIMPLEX) return img def draw_text( img, text, uv_top_left=None, color=(255, 255, 255), fontScale=0.75, thickness=1, fontFace=cv2.FONT_HERSHEY_SIMPLEX, outline_color=(0, 0, 0), line_spacing=1.5, ): """ Draws multiline with an outline. """ assert isinstance(text, str) lines = text.splitlines() if uv_top_left is None: # set the text start position, at the bottom left of video (w, h), _ = cv2.getTextSize( text=lines[0], fontFace=fontFace, fontScale=fontScale, thickness=thickness, ) text_offset_x = 10 text_offset_y = img.shape[0] - h*(len(lines)+3) uv_top_left = (text_offset_x, text_offset_y) uv_top_left = np.array(uv_top_left, dtype=float) assert uv_top_left.shape == (2,) for line in lines: (w, h), _ = cv2.getTextSize( text=line, fontFace=fontFace, fontScale=fontScale, thickness=thickness, ) uv_bottom_left_i = uv_top_left + [0, h] org = tuple(uv_bottom_left_i.astype(int)) if outline_color is not None: cv2.putText( img, text=line, org=org, fontFace=fontFace, fontScale=fontScale, color=outline_color, thickness=thickness * 3, lineType=cv2.LINE_AA, ) cv2.putText( img, text=line, org=org, fontFace=fontFace, fontScale=fontScale, color=color, thickness=thickness, lineType=cv2.LINE_AA, ) uv_top_left += [0, h * line_spacing] return img def draw_anno(image, polygon=None, paths=None): colors = [(0, 0, 255), # red 0 (0, 255, 0), # green 1 (255, 0, 0), # blue 2 (0, 255, 255), # cyan 3 (128, 0, 128), # purple 4 (0, 0, 0), # black 5 (255, 255, 255)] # white 6 if polygon: polygon = np.array(polygon, np.int32) polygon = polygon.reshape((-1, 1, 2)) image = cv2.polylines(image, [polygon], True, colors[0], 5) if paths: for path, points in paths.items(): points = np.array(points, np.int32) image = draw_arrow(image, points[0], points[1], colors[5]) image = cv2.putText(image, path, (points[1][0], points[1][1]), cv2.FONT_HERSHEY_PLAIN, fontScale=1.5, color=colors[5], thickness=3) return image def draw_frame_count(img, frame_id): text = f"Frame:{frame_id}" text_offset = (10, 25) return draw_text(img, text, text_offset, color=(0,255,0)) def load_zone_anno(zone_path): with open(zone_path, 'r') as f: anno = json.load(f) directions = {} zone = anno['shapes'][0]['points'] for i in anno['shapes']: if i['label'].startswith('direction'): directions[i['label'][-2:]] = i['points'] return zone, directions def find_best_match_direction(obj_vector,paths): """ paths: dict {key: vector,...} """ directions = list(paths.keys()) best_score = 0 best_match = directions[0] for direction_id in directions: vector = paths[direction_id] score = cosin_similarity(obj_vector, vector) if score > best_score: best_score = score best_match = direction_id return best_match def save_tracking_to_csv(track_dict, filename): num_classes = len(track_dict) obj_dict = { 'track_id': [], 'frame_id': [], 'box': [], 'color': [], 'label': [], 'direction': [], 'fpoint': [], 'lpoint': [], 'fframe': [], 'lframe': [] } for label_id in range(num_classes): for track_id in track_dict[label_id].keys(): direction = track_dict[label_id][track_id]['direction'] boxes = track_dict[label_id][track_id]['boxes'] frames = track_dict[label_id][track_id]['frames'] color = track_dict[label_id][track_id]['color'] frame_first = frames[0] frame_last = frames[-1] box_first = boxes[0] box_last = boxes[-1] center_point_first = ((box_first[2]+box_first[0]) / 2, (box_first[3] + box_first[1])/2) center_point_last = ((box_last[2]+box_last[0]) / 2, (box_last[3] + box_last[1])/2) for i in range(len(track_dict[label_id][track_id]['boxes'])): obj_dict['track_id'].append(track_id) obj_dict['frame_id'].append(frames[i]) obj_dict['box'].append(boxes[i].tolist()) obj_dict['color'].append(color) obj_dict['label'].append(label_id) obj_dict['direction'].append(direction) obj_dict['fpoint'].append(center_point_first) obj_dict['lpoint'].append(center_point_last) obj_dict['fframe'].append(frame_first) obj_dict['lframe'].append(frame_last) df = pd.DataFrame(obj_dict) df.to_csv(filename, index=False) def convert_frame_dict(track_dict): """ return result dict: { frame_id: { 'boxes': [], 'colors': [], 'fpoints': [], 'lpoints': [] } } """ result_dict = {} num_classes = len(track_dict) for label_id in range(num_classes): for track_id in track_dict[label_id].keys(): direction = track_dict[label_id][track_id]['direction'] boxes = track_dict[label_id][track_id]['boxes'] frames = track_dict[label_id][track_id]['frames'] color = track_dict[label_id][track_id]['color'] for i in range(len(track_dict[label_id][track_id])): frame_id = frames[i] box = boxes[i] if frame_id not in result_dict.keys(): result_dict[frame_id] = { 'boxes': [], 'colors': [], 'fpoints': [], 'lpoints': [], 'labels': [], 'directions': [] } first_box = box[0] last_box = box[-1] center_point_first = ((first_box[2]+first_box[0]) / 2, (first_box[3] + first_box[1])/2) center_point_last = ((last_box[2]+last_box[0]) / 2, (last_box[3] + last_box[1])/2) result_dict[frame_id]['boxes'].append(box) result_dict[frame_id]['fpoints'].append(center_point_first) result_dict[frame_id]['lpoints'].append(center_point_last) result_dict[frame_id]['directions'].append(direction) result_dict[frame_id]['colors'].append(color) result_dict[frame_id]['labels'].append(label_id) return result_dict def visualize_one_frame(img, df): # track_id frame_id box color label direction fpoint lpoint fframe lframe anns = [ i for i in zip( df.track_id, df.box, df.color, df.label, df.fpoint) ] for (track_id, box, color, label, fpoint) in anns: box = eval(box) fpoint = np.array(eval(fpoint)).astype(int) color = eval(color) cpoint = np.array([(box[2]+box[0]) / 2, (box[3] + box[1])/2]).astype(int) img = draw_start_last_points(img, fpoint, cpoint, color) img = draw_one_box( img, box, key=f'id: {track_id}', value=f'cls: {label}', color=color) return img def count_frame_directions(df, count_dict): anns = [ i for i in zip( df.frame_id, df.label, df.direction, df.lframe) ] for (frame_id, label, direction, lframe) in anns: if lframe == frame_id: count_dict[direction][label] += 1 count_text = [] for dir in count_dict.keys(): tmp_text = f"direction:{dir} || " for cls_id in count_dict[dir].keys(): tmp_text += f"{cls_id}:{count_dict[dir][cls_id]} | " count_text.append(tmp_text) count_text = "\n".join(count_text) return count_dict, count_text def visualize_merged(videoloader, csv_path, directions, zones, num_classes, outvid): df = pd.read_csv(csv_path) count_dict = { int(dir): { label: 0 for label in range(num_classes) } for dir in directions } prev_text = None # Delay direction text by one frame for batch in tqdm(videoloader): if batch is None: continue imgs = batch['ori_imgs'] frame_ids = batch['frames'] for idx in range(len(imgs)): frame_id = frame_ids[idx] img = imgs[idx].copy() tmp_df = df[df.frame_id.astype(int) == frame_id] count_dict, text = count_frame_directions(tmp_df, count_dict) img = draw_anno(img, zones, directions) if len(tmp_df) > 0: img = visualize_one_frame(img, tmp_df) if prev_text: img = draw_text(img, prev_text) prev_text=text img = draw_frame_count(img, frame_id) outvid.write(img)
StarcoderdataPython
11322754
import numpy as np from theano import gof, tensor class Minimal(gof.Op): # TODO : need description for class # if the Op has any attributes, consider using them in the eq function. # If two Apply nodes have the same inputs and the ops compare equal... # then they will be MERGED so they had better have computed the same thing! __props__ = () def __init__(self): # If you put things here, think about whether they change the outputs # computed by # self.perform() # - If they do, then you should take them into consideration in # __eq__ and __hash__ # - If they do not, then you should not use them in # __eq__ and __hash__ super().__init__() def make_node(self, *args): # HERE `args` must be THEANO VARIABLES return gof.Apply(op=self, inputs=args, outputs=[tensor.lscalar()]) def perform(self, node, inputs, out_): (output,) = out_ # HERE `inputs` are PYTHON OBJECTS # do what you want here, # but do not modify any of the arguments [inplace]. print("perform got %i arguments" % len(inputs)) print("Max of input[0] is ", np.max(inputs[0])) # return some computed value. # do not return something that is aliased to one of the inputs. output[0] = np.asarray(0, dtype="int64") minimal = Minimal()
StarcoderdataPython
3479987
import asyncio import functools import types import typing as t from contextlib import suppress from discord import Member, NotFound from discord.ext import commands from discord.ext.commands import Cog, Context from bot.constants import Channels, DEBUG_MODE, RedirectOutput from bot.log import get_logger from bot.utils import function, scheduling from bot.utils.checks import ContextCheckFailure, in_whitelist_check from bot.utils.function import command_wraps log = get_logger(__name__) def in_whitelist( *, channels: t.Container[int] = (), categories: t.Container[int] = (), roles: t.Container[int] = (), redirect: t.Optional[int] = Channels.bot_commands, fail_silently: bool = False, ) -> t.Callable: """ Check if a command was issued in a whitelisted context. The whitelists that can be provided are: - `channels`: a container with channel ids for whitelisted channels - `categories`: a container with category ids for whitelisted categories - `roles`: a container with role ids for whitelisted roles If the command was invoked in a context that was not whitelisted, the member is either redirected to the `redirect` channel that was passed (default: #bot-commands) or simply told that they're not allowed to use this particular command (if `None` was passed). """ def predicate(ctx: Context) -> bool: """Check if command was issued in a whitelisted context.""" return in_whitelist_check(ctx, channels, categories, roles, redirect, fail_silently) return commands.check(predicate) class NotInBlacklistCheckFailure(ContextCheckFailure): """Raised when the 'not_in_blacklist' check fails.""" def not_in_blacklist( *, channels: t.Container[int] = (), categories: t.Container[int] = (), roles: t.Container[int] = (), override_roles: t.Container[int] = (), redirect: t.Optional[int] = Channels.bot_commands, fail_silently: bool = False, ) -> t.Callable: """ Check if a command was not issued in a blacklisted context. The blacklists that can be provided are: - `channels`: a container with channel ids for blacklisted channels - `categories`: a container with category ids for blacklisted categories - `roles`: a container with role ids for blacklisted roles If the command was invoked in a context that was blacklisted, the member is either redirected to the `redirect` channel that was passed (default: #bot-commands) or simply told that they're not allowed to use this particular command (if `None` was passed). The blacklist can be overridden through the roles specified in `override_roles`. """ def predicate(ctx: Context) -> bool: """Check if command was issued in a blacklisted context.""" not_blacklisted = not in_whitelist_check(ctx, channels, categories, roles, fail_silently=True) overridden = in_whitelist_check(ctx, roles=override_roles, fail_silently=True) success = not_blacklisted or overridden if not success and not fail_silently: raise NotInBlacklistCheckFailure(redirect) return success return commands.check(predicate) def has_no_roles(*roles: t.Union[str, int]) -> t.Callable: """ Returns True if the user does not have any of the roles specified. `roles` are the names or IDs of the disallowed roles. """ async def predicate(ctx: Context) -> bool: try: await commands.has_any_role(*roles).predicate(ctx) except commands.MissingAnyRole: return True else: # This error is never shown to users, so don't bother trying to make it too pretty. roles_ = ", ".join(f"'{item}'" for item in roles) raise commands.CheckFailure(f"You have at least one of the disallowed roles: {roles_}") return commands.check(predicate) def redirect_output( destination_channel: int, bypass_roles: t.Optional[t.Container[int]] = None, channels: t.Optional[t.Container[int]] = None, categories: t.Optional[t.Container[int]] = None, ping_user: bool = True ) -> t.Callable: """ Changes the channel in the context of the command to redirect the output to a certain channel. Redirect is bypassed if the author has a bypass role or if it is in a channel that can bypass redirection. If ping_user is False, it will not send a message in the destination channel. This decorator must go before (below) the `command` decorator. """ def wrap(func: types.FunctionType) -> types.FunctionType: @command_wraps(func) async def inner(self: Cog, ctx: Context, *args, **kwargs) -> None: if ctx.channel.id == destination_channel: log.trace(f"Command {ctx.command} was invoked in destination_channel, not redirecting") await func(self, ctx, *args, **kwargs) return if bypass_roles and any(role.id in bypass_roles for role in ctx.author.roles): log.trace(f"{ctx.author} has role to bypass output redirection") await func(self, ctx, *args, **kwargs) return elif channels and ctx.channel.id not in channels: log.trace(f"{ctx.author} used {ctx.command} in a channel that can bypass output redirection") await func(self, ctx, *args, **kwargs) return elif categories and ctx.channel.category.id not in categories: log.trace(f"{ctx.author} used {ctx.command} in a category that can bypass output redirection") await func(self, ctx, *args, **kwargs) return redirect_channel = ctx.guild.get_channel(destination_channel) old_channel = ctx.channel log.trace(f"Redirecting output of {ctx.author}'s command '{ctx.command.name}' to {redirect_channel.name}") ctx.channel = redirect_channel if ping_user: await ctx.send(f"Here's the output of your command, {ctx.author.mention}") scheduling.create_task(func(self, ctx, *args, **kwargs)) message = await old_channel.send( f"Hey, {ctx.author.mention}, you can find the output of your command here: " f"{redirect_channel.mention}" ) if RedirectOutput.delete_invocation: await asyncio.sleep(RedirectOutput.delete_delay) with suppress(NotFound): await message.delete() log.trace("Redirect output: Deleted user redirection message") with suppress(NotFound): await ctx.message.delete() log.trace("Redirect output: Deleted invocation message") return inner return wrap def respect_role_hierarchy(member_arg: function.Argument) -> t.Callable: """ Ensure the highest role of the invoking member is greater than that of the target member. If the condition fails, a warning is sent to the invoking context. A target which is not an instance of discord.Member will always pass. `member_arg` is the keyword name or position index of the parameter of the decorated command whose value is the target member. This decorator must go before (below) the `command` decorator. """ def decorator(func: types.FunctionType) -> types.FunctionType: @command_wraps(func) async def wrapper(*args, **kwargs) -> t.Any: log.trace(f"{func.__name__}: respect role hierarchy decorator called") bound_args = function.get_bound_args(func, args, kwargs) target = function.get_arg_value(member_arg, bound_args) if not isinstance(target, Member): log.trace("The target is not a discord.Member; skipping role hierarchy check.") return await func(*args, **kwargs) ctx = function.get_arg_value(1, bound_args) cmd = ctx.command.name actor = ctx.author if target.top_role >= actor.top_role: log.info( f"{actor} ({actor.id}) attempted to {cmd} " f"{target} ({target.id}), who has an equal or higher top role." ) await ctx.send( f":x: {actor.mention}, you may not {cmd} " "someone with an equal or higher top role." ) else: log.trace(f"{func.__name__}: {target.top_role=} < {actor.top_role=}; calling func") return await func(*args, **kwargs) return wrapper return decorator def mock_in_debug(return_value: t.Any) -> t.Callable: """ Short-circuit function execution if in debug mode and return `return_value`. The original function name, and the incoming args and kwargs are DEBUG level logged upon each call. This is useful for expensive operations, i.e. media asset uploads that are prone to rate-limits but need to be tested extensively. """ def decorator(func: t.Callable) -> t.Callable: @functools.wraps(func) async def wrapped(*args, **kwargs) -> t.Any: """Short-circuit and log if in debug mode.""" if DEBUG_MODE: log.debug(f"Function {func.__name__} called with args: {args}, kwargs: {kwargs}") return return_value return await func(*args, **kwargs) return wrapped return decorator
StarcoderdataPython
11285449
# coding=utf-8 import argparse import os import tensorflow as tf import tqdm from feature_extraction.extract_model import ExtractModel from feature_extraction.data_set import get_testing_set from model_loader import load_model, save_model from data_set_args import get_rab_set_args, get_ked_set_args,\ get_bdl_set_args, get_jmk_set_args, get_slt_set_args,\ get_mix2_set_args, get_mix3_set_args def get_args(): parser = argparse.ArgumentParser(description="GlottalNet") parser.add_argument("--save_path", type=str, default="./save/mix3/") parser.add_argument("--log_path", type=str, default="./log/mix3/") parser.add_argument("--training_epochs", type=int, default=100) parser.add_argument("--training_batch_size", type=int, default=128) parser.add_argument("--validation_batch_size", type=int, default=128) parser.add_argument("--save_per_epochs", type=int, default=10) parser.add_argument("--validation_per_epochs", type=int, default=1) return parser.parse_args() def main(): tf.logging.set_verbosity(tf.logging.INFO) args = get_args() data_set_args = get_mix3_set_args() net = ExtractModel() graph = tf.Graph() with graph.as_default(): with tf.variable_scope("data"): training_set = get_testing_set(key=data_set_args.training_set_name, epochs=args.training_epochs, batch_size=args.training_batch_size) validation_set = get_testing_set(key=data_set_args.validation_set_name, epochs=args.training_epochs // args.validation_per_epochs, batch_size=args.validation_batch_size) iterator = training_set.make_one_shot_iterator() next_element = iterator.get_next() training_init_op = iterator.make_initializer(training_set) validation_init_op = iterator.make_initializer(validation_set) with tf.variable_scope("extract_model"): tensor_dict = net.build(next_element, training=True) """training summary""" loss_summary = tf.summary.scalar("loss", tensor_dict["loss"]) accuracy_summary = tf.summary.scalar("accuracy", tensor_dict["accuracy"]) recall_summary = tf.summary.scalar("recall", tensor_dict["recall"]) precision_summary = tf.summary.scalar("precision", tensor_dict["precision"]) f1_score_summary = tf.summary.scalar("f1_score", tensor_dict["f1_score"]) """validation summary""" validation_loss = tf.placeholder(tf.float32, shape=()) validation_accuracy = tf.placeholder(tf.float32, shape=()) validation_recall = tf.placeholder(tf.float32, shape=()) validation_precision = tf.placeholder(tf.float32, shape=()) validation_f1_score = tf.placeholder(tf.float32, shape=()) validation_loss_summary = tf.summary.scalar("loss", validation_loss) validation_accuracy_summary = tf.summary.scalar("accuracy", validation_accuracy) validation_recall_summary = tf.summary.scalar("recall", validation_recall) validation_precision_summary = tf.summary.scalar("precision", validation_precision) validation_f1_score_summary = tf.summary.scalar("f1_score", validation_f1_score) """training""" global_step = tf.Variable(0, dtype=tf.int32, name="global_step") opt = tf.train.AdamOptimizer(1e-3) extra_update_ops = tf.get_collection(tf.GraphKeys.UPDATE_OPS) with tf.control_dependencies(extra_update_ops): upd = opt.minimize(tensor_dict["loss"], global_step=global_step) saver = tf.train.Saver(max_to_keep=50) config = tf.ConfigProto() config.gpu_options.allow_growth = True with tf.Session(graph=graph, config=config) as sess: sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) save_path = os.path.join(args.save_path, net.name) if not load_model(saver, sess, save_path): tf.logging.info("Run on an initialized graph.") sess.run([tf.global_variables_initializer(), tf.local_variables_initializer()]) training_writer = tf.summary.FileWriter(os.path.join(args.log_path, "training"), sess.graph) validation_writer = tf.summary.FileWriter(os.path.join(args.log_path, "validation"), sess.graph) global_step_eval = sess.run(global_step) training_steps = args.training_epochs * data_set_args.training_set_size // args.training_batch_size save_steps = args.save_per_epochs * data_set_args.training_set_size // args.training_batch_size validation_steps = args.validation_per_epochs * data_set_args.training_set_size // args.training_batch_size pbar = tqdm.tqdm(total=training_steps) pbar.update(global_step_eval) sess.run(training_init_op) while global_step_eval < training_steps: """validation""" if global_step_eval % validation_steps == 0: sess.run(validation_init_op) total_loss = 0.0 total_accuracy = 0.0 total_recall = 0.0 total_precision = 0.0 validation_steps = data_set_args.validation_set_size // args.validation_batch_size for s in range(validation_steps): tensor_dict_eval = sess.run(tensor_dict) total_loss += tensor_dict_eval["loss"] total_accuracy += tensor_dict_eval["accuracy"] total_recall += tensor_dict_eval["recall"] total_precision += tensor_dict_eval["precision"] total_loss /= validation_steps total_accuracy /= validation_steps total_recall /= validation_steps total_precision /= validation_steps total_f1_score = 2 * total_recall * total_precision / (total_recall + total_precision) feed_dict = {validation_loss: total_loss, validation_accuracy: total_accuracy, validation_recall: total_recall, validation_precision: total_precision, validation_f1_score: total_f1_score} validation_list = [validation_loss_summary, validation_accuracy_summary, validation_recall_summary, validation_precision_summary, validation_f1_score_summary] validation_loss_summary_eval, validation_accuracy_summary_eval, validation_recall_summary_eval,\ validation_precision_summary_eval, validation_f1_score_summary_eval = sess.run(validation_list, feed_dict=feed_dict) validation_writer.add_summary(validation_loss_summary_eval, global_step=global_step_eval) validation_writer.add_summary(validation_accuracy_summary_eval, global_step=global_step_eval) validation_writer.add_summary(validation_recall_summary_eval, global_step=global_step_eval) validation_writer.add_summary(validation_precision_summary_eval, global_step=global_step_eval) validation_writer.add_summary(validation_f1_score_summary_eval, global_step=global_step_eval) tf.logging.info("Validation done.") sess.run(training_init_op) """training""" training_list = [loss_summary, accuracy_summary, recall_summary, precision_summary, f1_score_summary, global_step, upd] training_loss_summary_eval, training_accuracy_summary_eval, training_recall_summary_eval,\ training_precision_summary_eval, training_f1_score_summary_eval, global_step_eval,\ _ = sess.run(training_list) training_writer.add_summary(training_loss_summary_eval, global_step=global_step_eval) training_writer.add_summary(training_accuracy_summary_eval, global_step=global_step_eval) training_writer.add_summary(training_recall_summary_eval, global_step=global_step_eval) training_writer.add_summary(training_precision_summary_eval, global_step=global_step_eval) training_writer.add_summary(training_f1_score_summary_eval, global_step=global_step_eval) """save model""" if global_step_eval % save_steps == 0: if not os.path.exists(args.save_path) or not os.path.isdir(args.save_path): os.makedirs(args.save_path) save_model(saver, sess, save_path, global_step_eval) pbar.update(1) tf.logging.info("Congratulations!") if __name__ == "__main__": main()
StarcoderdataPython
8193434
<reponame>AronGreen/bpr-uml-shared from dataclasses import dataclass from typing import Optional from .mongo_document_base import MongoDocumentBase @dataclass class SomeItem(MongoDocumentBase): """ Dummy class for testing. Represents nothing in the domain. """ number: int text: str users: list random: Optional[str] = None
StarcoderdataPython
6416089
<gh_stars>0 import pytest from glados import GladosPlugin, RouteType, PluginImporter, BotImporter, GladosBot from glados.errors import GladosPathExistsError import logging from pathlib import Path import os PC_BASE_PATH = Path("tests", "plugins_config") PC1 = Path(PC_BASE_PATH, "TestPlugin1.yaml") PC2 = Path(PC_BASE_PATH, "TestPlugin2.yaml") PC3 = Path(PC_BASE_PATH, "TestPlugin3.yaml") @pytest.fixture def MockGladosBot(): return GladosBot("", "bot", "") @pytest.fixture def MockGladosPlugin(MockGladosBot): return GladosPlugin("mock", MockGladosBot) def check_only_one_file(): assert PC1.is_file() is True assert PC2.is_file() is False assert PC3.is_file() is False def cleanup(): os.remove(PC2) os.remove(PC3) check_only_one_file() def test_cant_add_existing(MockGladosPlugin): def mock_function(request): return "something" MockGladosPlugin.add_route(RouteType.SendMessage, "send_message", mock_function) assert len(MockGladosPlugin.routes) == 1 with pytest.raises(GladosPathExistsError): MockGladosPlugin.add_route(RouteType.SendMessage, "send_message", mock_function) def test_add_route(MockGladosPlugin): assert MockGladosPlugin.routes == [] MockGladosPlugin.add_route( RouteType.SendMessage, "send_message", lambda request: True ) assert len(MockGladosPlugin.routes) == 1 route = MockGladosPlugin.routes[0] assert route.route == "bot_send_message" assert route.function(None) def test_plugin_importer_discovery(): pi = PluginImporter("tests/plugins", "tests/plugins_config") pi.discover_plugins() assert len(pi.config_files) == 3 def test_plugin_importer_load_configs(): check_only_one_file() pi = PluginImporter("tests/plugins", "tests/plugins_config") pi.discover_plugins() pi.load_discovered_plugins_config() logging.info(pi.plugin_configs) assert len(pi.plugin_configs.keys()) == 3 assert PC1.is_file() is True assert PC2.is_file() is True assert PC3.is_file() is True cleanup() def test_plugin_importer_all(): # Import all the bots check_only_one_file() bot_importer = BotImporter("tests/bots_config") bot_importer.import_bots() bots = bot_importer.bots.copy() # Now import all the plugins pi = PluginImporter("tests/plugins", "tests/plugins_config") pi.discover_plugins() pi.load_discovered_plugins_config() pi.import_discovered_plugins(bots) # Test that the plugin was installed assert pi.plugins["TestPlugin1"].test_function("TESTING") == "TESTING" # Make sure that only 1 plugin was installed # Plugin #2 should have been disabled assert len(pi.plugins) == 1 assert pi.plugin_configs.get("TestPlugin2").enabled == False cleanup()
StarcoderdataPython
11284075
<filename>tests/test_utils_dataset.py """Test utils_dataset.""" import tempfile from pathlib import Path from dash_charts import utils_dataset def test_db_connect(): """Test DBConnect.""" with tempfile.TemporaryDirectory() as tmp_dir: tmp_dir = Path(tmp_dir) database = utils_dataset.DBConnect(tmp_dir / 'tmp.db') table = database.db.create_table('test') csv_filename = tmp_dir / 'tmp.csv' table.insert({'username': 'username', 'value': 1}) utils_dataset.export_table_as_csv(csv_filename, table) database.close() result = csv_filename.read_text() assert result == 'id,username,value\n1,username,1\n'
StarcoderdataPython
1827950
<filename>python-2-apps/fn_proofpoint_block_list/fn_proofpoint_block_list/components/proofpoint_add_to_block_group.py<gh_stars>0 # -*- coding: utf-8 -*- # pragma pylint: disable=unused-argument, no-self-use """Function implementation""" import logging from resilient_circuits import ResilientComponent, function, handler, StatusMessage, FunctionResult, FunctionError import fn_proofpoint_block_list.util.selftest as selftest import resilient import requests class FunctionComponent(ResilientComponent): """Component that implements Resilient function 'proofpoint_add_to_block_group""" def __init__(self, opts): """constructor provides access to the configuration options""" super(FunctionComponent, self).__init__(opts) self.options = opts.get("fn_proofpoint_block_list", {}) selftest.selftest_function(opts) @handler("reload") def _reload(self, event, opts): """Configuration options have changed, save new values""" self.options = opts.get("fn_proofpoint_block_list", {}) @function("proofpoint_add_to_block_group") def _proofpoint_add_to_block_group_function(self, event, *args, **kwargs): """Function: This function runs on the incident and extracts artifacts of type Email Sender and Email Receiver passing the sender email address into the block list of the email receivers address.""" # - method that retreives specific attributes needed for the function to run like credentials, etc... def get_config_option(option_name, optional=False): """Given option_name, checks if it is in app.config. Raises ValueError if a mandatory option is missing""" option = self.options.get(option_name) if option is None and optional is False: err = "'{0}' is mandatory and is not set in app.config file. You must set this value to run this function".format( option_name) raise ValueError(err) else: return option try: # Get the function parameters: incident_id = kwargs.get("incident_id") # number log = logging.getLogger(__name__) log.info("incident_id: %s", incident_id) # Talks to the config file and gets the auth credentials necessary to talk to Resilient REST API parser = resilient.ArgumentParser(config_file=resilient.get_config_file()) opts = parser.parse_args() client = resilient.get_client(opts) headers = { 'Content-Type': 'application/json', } # Authentication specific settings user_name = get_config_option("api_user") password = get_config_option("api_user_credentials") host = get_config_option("endpoint") port = get_config_option("port") completion = False # PUT YOUR FUNCTION IMPLEMENTATION CODE HERE yield StatusMessage("starting...") uri = "/incidents/{}/artifacts".format(incident_id) incident_artifacts = client.get(uri) # Stores the attachments from the incident into a list object email_senders = list() email_recipients = list() # For filtering on the Email Sender Artifact type and adding it to # the email sender list for incident_artifact in incident_artifacts: if incident_artifact['type'] is 9: email_senders.append(str(incident_artifact['value'])) # For filtering on the Email Recipient Artifact type and adding it to # the email recipient list for incident_artifact in incident_artifacts: if incident_artifact['type'] is 20: email_recipients.append(str(incident_artifact['value'])) # Gets the first item from each list and assigns it to the Proofpoint # Endpoint call that adds the sender email address to the blocklist of # the recipient email address account # TODO: Handle multiple additions to block list per recipient sender = email_senders[0] recipient = email_recipients[0] #data = '{"blocklist" : "%s"}' % email_senders - troubleshooting to isolate for just one element data = '{"blocklist" : "%s"}' % sender response = requests.put('https://{}:{}/rest/v1/enduser/{}'.format(host,port,recipient), headers=headers, data=data, verify=False, auth=(user_name, password)) #log.info(response.headers) #log.info(response.content) # TODO: extract either header or body information and write it to value variable # TODO: expand success in the code more around response submission_result = response.content completion = True yield StatusMessage("done...") results = { "success": completion, "payload": submission_result } # Produce a FunctionResult with the results yield FunctionResult(results) except Exception: yield FunctionError()
StarcoderdataPython
1668946
<gh_stars>0 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Fri Oct 4 19:27:35 2019 @author: debasish """ def qrs_detection(ecg,Fs): import numpy as np from scipy import signal import matplotlib.pyplot as plt #=============================================================Function Declarations==============================================================# def sthresh_update(spki,threshi1,npki,threshi2): spki=0.125*isig[i]+0.875*spki threshi1=npki+0.25*(spki-npki) threshi2=0.3*threshi1 return(spki,threshi1,threshi2) def nthresh_update(spki,threshi1,npki,threshi2): npki=0.125*isig[i]+0.875*npki threshi1=npki+0.25*(spki-npki) threshi2=0.3*threshi1 return(npki,threshi1,threshi2) def RR_update(): if np.size(RRinterval1)<8: RRaverage1=np.sum(RRinterval1)/np.size(RRinterval1) else: RRaverage1=np.sum(RRinterval1[np.size(RRinterval1)-7:])/8 if np.size(RRinterval2)<8: RRaverage2=np.sum(RRinterval2)/np.size(RRinterval2) else: RRaverage2=np.sum(RRinterval2[np.size(RRinterval2)-7:])/8 RR_low_limit=round(0.92*RRaverage2) RR_high_limit=round(1.16*RRaverage2) RR_missed_limit=round(1.66*RRaverage2) return(RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit) def check_T(i,Fs): slope1=np.average(np.diff(isig[i-np.round(round(0.075*Fs)):i])) slope2=np.average(np.diff(isig[beat_loc[-1]-np.round(round(0.075*Fs)):beat_loc[-1]])) if slope1<0.5*slope2 and i<=int(0.36*Fs)+beat_loc[-1]: return(True) else: return(False) def search_back(threshi2): val=-2 for k in n_loc: if isig[k]>=threshi2 and isig[k]>val: val=isig[k] index=k return index def peak_cond(loc,crange): val=(np.sum([x for x in np.sign(isigd[loc:loc+crange]) if x>0])-np.sum([x for x in np.sign(isigd[loc-crange:loc]) if x<0]))/(2*crange) if val<=0.15: return(True) else: return(False) #---------------Band Pass filtering--------------# b,a=signal.butter(3,[12/Fs,24/Fs],'bandpass') fsig=signal.filtfilt(b,a,ecg) # plt.figure(1) # plt.subplot(411) # plt.plot(fsig) #---------------derivative-----------------------# b=np.array([1,2,0,-2,-1])/8 a=1 dsig=signal.filtfilt(b,a,fsig) # plt.subplot(412) # plt.plot(dsig) #----------------squaring------------------------# ssig1=np.power(dsig,2) ssig=ssig1[int(0.30*Fs):] #First 300 ms data is neglected # plt.subplot(413) # plt.plot(ssig) #----------------integration---------------------# window1= int(0.150*Fs) isig1=ssig for i in range(1,window1): isig1=isig1+np.append(ssig[i:],np.zeros(i)) isig1=isig1/window1 isig1=np.power(isig1,2) isig1=np.round(isig1/(2*np.max(isig1)),10) window2= int(0.050*Fs) isig=isig1 for i in range(1,window2): isig=isig+np.append(isig1[i:],np.zeros(i)) isig=isig/window2 delay=(window1+window2)/2 # plt.subplot(414) # plt.plot(isig) #-----------------Fiducial Point detection------------------# #------------------training phase 1---------------------------# #for integrated signal npki=np.average(isig[:2*Fs])*0.75 spki=0.8*np.amax(isig[:2*Fs]) threshi1=npki+0.25*(spki-npki) threshi2=0.3*threshi1 #for filtered signal npkf=np.average(fsig[:2*Fs])*0.75 spkf=0.8*np.amax(fsig[:2*Fs]) threshf1=npkf+0.25*(spkf-npkf) threshf2=0.3*threshf1 #------------------training phase 2---------------------------# isigd=np.diff(isig) beat_loc=[np.argmax(isig[:2*Fs])] number_beats=1 crange=int(0.01*Fs) if beat_loc[-1]-int(0.2*Fs)>crange: i=crange+1 else: i=beat_loc[-1]+int(0.2*Fs) RRinterval1=[] RRinterval2=[] while (number_beats<2 and i<np.size(isigd)): if i<beat_loc[-1]: while i<beat_loc[0]-5: if isigd[i]<0 and isigd[i-1]>0 and peak_cond(i,crange): if isig[i]>=threshi1: i=i+np.argmax(isig[i:i+int(0.2*Fs)]) beat_loc=np.array([i,beat_loc[0]]) number_beats=number_beats+1 #updating threshold parameters (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() i=beat_loc[-1]+int(0.2*Fs) else: (npki,threshi1,threshi2)=nthresh_update(spki,threshi1,npki,threshi2) i=i+1 if i==beat_loc[-1]-5: i=beat_loc[-1]+int(0.2*Fs) break else: if isigd[i]<0 and isigd[i-1]>0 and peak_cond(i,crange): if isig[i]>=threshi1: i=i+np.argmax(isig[i:i+int(0.2*Fs)]) beat_loc=np.append(beat_loc,[i]) number_beats=number_beats+1 #updating threshold parameters (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() i=beat_loc[-1]+int(0.2*Fs) else: (npki,threshi1,threshi2)=nthresh_update(spki,threshi1,npki,threshi2) i=i+1 if np.size(beat_loc)==1: #print('recheck') beat_loc1=np.argmax(fsig[:int(1.8*Fs)]) beat_loc2=np.argmax(fsig[(beat_loc1+int(0.2*Fs)):(beat_loc1+int(1.7*Fs))])+beat_loc1+int(0.2*Fs) i=np.argmax(isig[beat_loc1+int(0.2*Fs):beat_loc2-int(0.2*Fs)])+beat_loc1+int(0.2*Fs) if isigd[i]<0 and isigd[i-1]>0 and peak_cond(i,crange) and (isig[i]>0.3*(isig[beat_loc1]+isig[beat_loc2])): beat_loc2=i number_beats=2 i=beat_loc2+int(0.2*Fs) beat_loc=np.array([beat_loc1,beat_loc2]) RRinterval1=[] RRinterval2=[] (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() #-----------------------------------------------------detection phase--------------------------------------------------# n_loc=[] #error=0 while (i<np.size(isigd)): if isigd[i]<0 and isigd[i-1]>0 and peak_cond(i,crange): if (isig[i]>=threshi1) and (~check_T(i,Fs)): i=i+np.argmax(isig[i:i+int(0.2*Fs)]) beat_loc=np.append(beat_loc,[i]) number_beats=number_beats+1 #updating threshold parameters (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) n_loc=[] #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) if (RR_high_limit>=[beat_loc[number_beats-1]-beat_loc[number_beats-2]]>=RR_low_limit): RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() i=i+int(0.2*Fs) else: n_loc.append(i) (npki,threshi1,threshi2)=nthresh_update(spki,threshi1,npki,threshi2) if i>RR_missed_limit+beat_loc[number_beats-1]: try: beat_loc=np.append(beat_loc,search_back(threshi2)) number_beats=number_beats+1 #updating threshold parameters (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) n_loc=[] #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) if (RR_high_limit>=[beat_loc[number_beats-1]-beat_loc[number_beats-2]]>=RR_low_limit): RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() i=i+int(0.2*Fs) except : #error=error+1 #print('Error occured:',error) if np.size(n_loc)==0: beat_loc=np.append(beat_loc,int(beat_loc[-1]+int(RRaverage2*1.1))) else: beat_loc=np.append(beat_loc,n_loc[np.argmax(isig[n_loc])]) number_beats=number_beats+1 #updating threshold parameters (spki,threshi1,threshi2)=sthresh_update(spki,threshi1,npki,threshi2) n_loc=[] #updating RR interval RRinterval1=np.append(RRinterval1,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) if (RR_high_limit>=[beat_loc[number_beats-1]-beat_loc[number_beats-2]]>=RR_low_limit): RRinterval2=np.append(RRinterval2,[beat_loc[number_beats-1]-beat_loc[number_beats-2]]) (RRaverage1,RRaverage2,RR_low_limit,RR_high_limit,RR_missed_limit)=RR_update() i=i+int(0.2*Fs) i=i+1 beat_loc=beat_loc+int(delay)+int(0.30*Fs) return(beat_loc,RRinterval1)
StarcoderdataPython
6688002
""" A representation of a ``while`` loop. """ from regression_tests.parsers.c_parser.exprs.expression import Expression from regression_tests.parsers.c_parser.stmts.loop import Loop from regression_tests.utils import memoize class WhileLoop(Loop): """A representation of a ``while`` loop.""" def is_while_loop(self): """Returns ``True``.""" return True @property @memoize def condition(self): """Condition of the statement (:class:`.Expression`).""" cond = next(self._node.get_children()) return Expression._from_clang_node(cond) def __repr__(self): return '<{} condition={}>'.format( self.__class__.__name__, self.condition ) def __str__(self): return 'while ({})'.format(self.condition)
StarcoderdataPython
8046089
#!/usr/bin/env python import mirheo as mir dt = 0.001 ranks = (1, 1, 1) domain = (8, 8, 8) u = mir.Mirheo(ranks, domain, debug_level=3, log_filename='log') pv = mir.ParticleVectors.ParticleVector('pv', mass = 1) ic = mir.InitialConditions.Uniform(number_density=10) u.registerParticleVector(pv, ic) dpd = mir.Interactions.Pairwise('dpd', rc=1.0, kind="DPD", a=10.0, gamma=10.0, kBT=1.0, power=0.5) u.registerInteraction(dpd) u.setInteraction(dpd, pv, pv) vv = mir.Integrators.VelocityVerlet('vv') u.registerIntegrator(vv) u.setIntegrator(vv, pv) u.registerPlugins(mir.Plugins.createStats('stats', every=200, filename="stats.csv")) u.run(2000, dt=dt) # nTEST: dump.stats # cd dump # mir.run --runargs "-n 2" ./stats.py > /dev/null # mir.post ../tools/dump_csv.py stats.csv time kBT vx vy vz --header > stats.out.txt
StarcoderdataPython
1918242
<reponame>mh-globus/globus-sdk-python from .client import GroupsClient from .errors import GroupsAPIError __all__ = ("GroupsClient", "GroupsAPIError")
StarcoderdataPython
326574
<reponame>randomchain/randbeacon<filename>extra_apps/verify.py<gh_stars>1-10 #!/usr/bin/env python3 # -*- coding: utf-8 -*- import os from pprint import pprint import click import merkletools import sloth import msgpack from randbeacon import utils import ujson as json SERIALIZED_FIELDS = ('COMMIT', 'PROOF') def verify_sloth(inp, out, witness, bits, iterations): s = sloth.Sloth(data=inp, final_hash=out, witness=witness, bits=bits, iterations=iterations) s.verify() s.wait() return s.valid def build_merkle_tree(leaves, hash_type, expected_root=None): mt = merkletools.MerkleTools(hash_type=hash_type) mt.leaves = leaves mt.make_tree() if expected_root is not None: assert mt.merkle_root == expected_root print("Root matches!") return mt def unpack_sequence(json_file): beacon_sequence = json.load(json_file) for k, v in beacon_sequence.items(): if k in SERIALIZED_FIELDS: beacon_sequence[k]['data'] = msgpack.unpackb(bytes.fromhex(v['data'])) return beacon_sequence @click.command() @click.argument('json', type=click.File()) @click.option('--inp', type=str, default=None) @click.option('--verbose', '-v', is_flag=True, default=False) def main(json, inp, verbose): b_seq = unpack_sequence(json) print('\n\n {:=^50}\n'.format(" Sequence Data ")) if verbose: pprint(b_seq, width=120) else: print("Sequence no.", b_seq['seq_no']) print("Output: {}\n{}".format(b_seq['OUTPUT']['data'], b_seq['OUTPUT']['timestamp'])) commit_data = b_seq['COMMIT']['data'] print('\n\n {:=^50}\n'.format(" Merkle Tree ")) mt = build_merkle_tree(commit_data[b'leaves'], commit_data[b'hash_type'].decode('ascii'), commit_data[b'root']) print("Merkle Tree:\n\tRoot -> {}\n\tLeaves -> {}".format(mt.merkle_root.hex(), len(mt.leaves))) if inp: inp = bytes.fromhex(inp) try: idx = mt.leaves.index(inp) except ValueError: print("Input '{}' not found in commitment!".format(inp.hex())) else: print("Proof") pprint(mt.get_proof(idx)) print('\n\n {:=^50}\n'.format(" Computation Verification ")) proof_data = b_seq['PROOF']['data'] print("Sloth parameters: {} bits, {} iterations".format(proof_data[b'bits'], proof_data[b'iterations'])) print("Sloth witness: {}".format(proof_data[b'witness'].hex())) valid = verify_sloth(mt.merkle_root, bytes.fromhex(b_seq['OUTPUT']['data']), proof_data[b'witness'], proof_data[b'bits'], proof_data[b'iterations']) print("VALID" if valid else "NOT VALID!") if __name__ == "__main__": main()
StarcoderdataPython
6447576
<reponame>KaranToor/MA450<filename>google-cloud-sdk/.install/.backup/lib/surface/compute/instance_groups/managed/set_autohealing.py # Copyright 2015 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Command for setting autohealing policy of managed instance group.""" from googlecloudsdk.api_lib.compute import base_classes from googlecloudsdk.api_lib.compute import managed_instance_groups_utils from googlecloudsdk.calliope import base from googlecloudsdk.command_lib.compute import flags from googlecloudsdk.command_lib.compute import scope as compute_scope from googlecloudsdk.command_lib.compute.instance_groups import flags as instance_groups_flags def _AddArgs(parser): """Adds args.""" managed_instance_groups_utils.AddAutohealingArgs(parser) @base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.ALPHA) class SetAutohealing(base_classes.BaseAsyncMutator): """Set autohealing policy of instance group manager.""" @staticmethod def Args(parser): _AddArgs(parser=parser) instance_groups_flags.MULTISCOPE_INSTANCE_GROUP_MANAGER_ARG.AddArgument( parser) @property def method(self): return 'SetAutoHealingPolicies' @property def service(self): return self.compute.instanceGroupManagers def CreateRequests(self, args): igm_ref = (instance_groups_flags.MULTISCOPE_INSTANCE_GROUP_MANAGER_ARG. ResolveAsResource)( args, self.resources, default_scope=compute_scope.ScopeEnum.ZONE, scope_lister=flags.GetDefaultScopeLister( self.compute_client, self.project)) auto_healing_policies = ( managed_instance_groups_utils.CreateAutohealingPolicies( self.resources, self.messages, args)) if igm_ref.Collection() == 'compute.instanceGroupManagers': service = self.compute.instanceGroupManagers request = ( self.messages. ComputeInstanceGroupManagersSetAutoHealingPoliciesRequest( project=self.project, zone=igm_ref.zone, instanceGroupManager=igm_ref.Name(), instanceGroupManagersSetAutoHealingRequest=( self.messages.InstanceGroupManagersSetAutoHealingRequest( autoHealingPolicies=auto_healing_policies)))) else: service = self.compute.regionInstanceGroupManagers request = ( self.messages. ComputeRegionInstanceGroupManagersSetAutoHealingPoliciesRequest( project=self.project, region=igm_ref.region, instanceGroupManager=igm_ref.Name(), regionInstanceGroupManagersSetAutoHealingRequest=( self.messages. RegionInstanceGroupManagersSetAutoHealingRequest( autoHealingPolicies=auto_healing_policies)))) return [(service, self.method, request)] SetAutohealing.detailed_help = { 'brief': 'Set autohealing policy for managed instance group.', 'DESCRIPTION': """ *{command}* updates the autohealing policy for an existing managed instance group. If --http-health-check or --https-health-check is specified, the resulting autohealing policy will be triggered by the health-check i.e. the autohealing action (RECREATE) on an instance will be performed if the health-check signals that the instance is UNHEALTHY. If neither --http-health-check nor --https-health-check is specified, the resulting autohealing policy will be triggered by instance's status i.e. the autohealing action (RECREATE) on an instance will be performed if the instance.status is not RUNNING. --initial-delay specifies the length of the period during which IGM will refrain from autohealing the instance even if the instance is reported as not RUNNING or UNHEALTHY. This value must be from range [0, 3600]. """, }
StarcoderdataPython
1801321
from django.http import HttpResponse from django.shortcuts import render from django.utils.encoding import smart_str import os, sys, inspect, StringIO, shutil, time, json, base64 current_path = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) cardiff_path = os.path.join(os.path.dirname(current_path), "Cardiff") sys.path.insert(0, cardiff_path) from Cardiff import Cardiff cardiff = Cardiff() cardiff_settings_path = os.path.join(cardiff_path, "settings.json") temp_path = os.path.join(".", "temp") def is_set(value): if value.startswith("<") and value.endswith(">"): return False else: return True def load(): cardiff.load_settings(cardiff_settings_path) def save(): cardiff.save_settings(cardiff_settings_path) def image_to_base64(image): with open(image, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) image_ext = image.split(".")[-1] return "data:image/{0};base64,{1}".format(image_ext, encoded_string) load() os.environ["SILENT_MODE"] = "1" def default(request): context = {} context["vcs"] = cardiff.settings["vcs"] if not is_set(cardiff.settings["repo"]["current"]): context["repo_set"] = False if not is_set(cardiff.settings["user.name"]): context["name_set"] = False else: context["signed"] = cardiff.settings["user.name"] context["name_set"] = cardiff.settings["user.name"] if not is_set(cardiff.settings["user.email"]): context["email_set"] = False else: context["email_set"] = cardiff.settings["user.email"] return render(request, "prepare.html", context) else: return repo(request) def login(request): if "username" in request.GET: cardiff.settings["user.name"] = request.GET["username"] if "useremail" in request.GET: cardiff.settings["user.email"] = request.GET["useremail"] save() return default(request) def logout(request): cardiff.settings["user.name"] = "<username>" cardiff.settings["user.email"] = "<useremail>" save() return default(request) def about(request): context = cardiff.settings["information"] if is_set(cardiff.settings["user.name"]): context["signed"] = cardiff.settings["user.name"] return render(request, "about.html", context) def explore(request): context = {} if is_set(cardiff.settings["user.name"]): context["signed"] = cardiff.settings["user.name"] current_repo = cardiff.settings["repo"]["current"].split("/")[-1] other_repos = list( o_repo.split("/")[-1] for o_repo in cardiff.settings["repo"]["others"]) repo_list = [] repo_list.append(current_repo) repo_list.extend(other_repos) new_repo_list = zip(repo_list[::2], repo_list[1::2]) if len(repo_list) % 2: new_repo_list.append((repo_list[-1], None)) context["repo_list"] = new_repo_list return render(request, "explore.html", context) def search(request): context = {} if is_set(cardiff.settings["user.name"]): context["signed"] = cardiff.settings["user.name"] if "keyword" not in request.GET or request.GET["keyword"] == "": return default(request) keywords = request.GET["keyword"].split() context["keywords"] = keywords return render(request, "search.html", context) def settings(request): context = { "cardiff": cardiff.settings } if is_set(cardiff.settings["user.name"]): context["signed"] = cardiff.settings["user.name"] if request.method == "POST": for key in request.POST: cardiff.settings[key] = request.POST[key] save() context["saved"] = True return render(request, "settings.html", context) def files(request): context = {} if "checkout" in request.GET: file_to_checkout = request.GET["checkout"] file_version = request.GET["version"] cardiff.exec_cmd(["checkout", file_to_checkout, file_version]) file_path = os.path.join(cardiff.settings["repo"]["current"], file_to_checkout) context["file_path"] = file_path if "download" in request.GET: file_to_checkout = request.GET["download"] file_version = request.GET["version"] cardiff.exec_cmd(["checkout", file_to_checkout, file_version]) file_path = os.path.join(cardiff.settings["repo"]["current"], file_to_checkout) context["file_path"] = file_path response = HttpResponse(file(file_path)) response['Content-Type'] = 'application/force-download' response['Content-Length'] = os.path.getsize(file_path) response['Content-Disposition'] = 'attachment; filename=%s' % smart_str(file_to_checkout) response['Accept-Ranges'] = 'bytes' return response if "diff" in request.GET: file_to_checkout = request.GET["diff"] file_version = request.GET["before"] cardiff.exec_cmd(["checkout", file_to_checkout, file_version]) file_path = os.path.join(cardiff.settings["repo"]["current"], file_to_checkout) file_format = os.path.splitext(os.path.basename(file_path))[-1] temp_file_name = os.path.basename(file_path).replace(file_format, "") temp_file_before = os.path.join(temp_path, temp_file_name + str(time.time()) + file_format) if not os.path.isdir(temp_path): os.mkdir(temp_path) shutil.copyfile(file_path, temp_file_before) context["temp_file"] = os.path.basename(temp_file_before) version_to_diff = request.GET["after"] cardiff.exec_cmd(["checkout", file_to_checkout, version_to_diff]) temp_file_after = os.path.join(temp_path, temp_file_name + str(time.time()) + file_format) shutil.copyfile(file_path, temp_file_after) context["temp_file_to_diff"] = os.path.basename(temp_file_after) file_diffs = cardiff.exec_cmd(["diff", file_to_checkout, file_version, version_to_diff]) diff_before_name = os.path.basename(file_diffs[0]) diff_before = os.path.join(temp_path, diff_before_name) shutil.copyfile(file_diffs[0], diff_before) context["temp_file_diff_before"] = diff_before_name diff_after_name = os.path.basename(file_diffs[1]) diff_after = os.path.join(temp_path, diff_after_name) shutil.copyfile(file_diffs[1], diff_after) context["temp_file_diff_after"] = diff_after_name with open(file_diffs[2], "r") as file_diff_parameters: context["temp_file_diff_parameters"] = json.load(file_diff_parameters) diff_type = { "image": "diffview/image.html" } if file_format in [".jpg", ".png", ".bmp", ".gif"]: context = { "file1": image_to_base64(temp_file_before), "file2": image_to_base64(temp_file_after) } if "changes" in request.GET: context = { "file1": image_to_base64(diff_before), "file2": image_to_base64(diff_after) } return render(request, diff_type["image"], context) return default(request) def view(request): context = { "diff": request.GET["diff"], "before": request.GET["before"], "after": request.GET["after"], "aspect_ratio": "80%", "diff_view": True } return render(request, "view.html", context) def branch(request): if "name" in request.GET: cardiff.exec_cmd(["branch", request.GET["name"]]) return repo(request) def repo(request): context = {} context["vcs"] = cardiff.settings["vcs"] if not is_set(cardiff.settings["user.name"]): context["name_set"] = False else: context["signed"] = cardiff.settings["user.name"] context["name_set"] = cardiff.settings["user.name"] if not is_set(cardiff.settings["user.email"]): context["email_set"] = False else: context["email_set"] = cardiff.settings["user.email"] if not is_set(cardiff.settings["repo"]["current"]) and request.method != "GET" and "init" not in request.GET: context["repo_set"] = False return render(request, "prepare.html", context) if is_set(cardiff.settings["repo"]["current"]): vcs = cardiff.setup_vcs() if request.method == "GET": if "init" in request.GET: if "username" in request.GET: cardiff.settings["user.name"] = request.GET["username"] if "useremail" in request.GET: cardiff.settings["user.email"] = request.GET["useremail"] initial_succeed = cardiff.exec_cmd(["init", request.GET["init"]]) if not initial_succeed: context["initial_failed"] = True context["initial_info"] = { "repo": request.GET["init"], "username": cardiff.settings["user.name"], "useremail": cardiff.settings["user.email"] } return render(request, "alert.html", context) save() if "switch" in request.GET: repo_to_switch = request.GET["switch"] cardiff.exec_cmd(["repo", repo_to_switch]) save() vcs = cardiff.setup_vcs() if request.method == "POST": if "commit_file" in request.FILES: up_file = request.FILES["commit_file"] up_file_name = up_file.name save_location = os.path.join(cardiff.settings["repo"]["current"], up_file_name) with open(save_location, 'wb+') as destination: for chunk in up_file.chunks(): destination.write(chunk) context["uploaded"] = up_file_name context["save_loc"] = save_location if "commit_msg" in request.POST: up_file = request.POST["uploaded_file"] commit_msg = request.POST["commit_msg"] cardiff.exec_cmd(["commit", up_file, commit_msg]) context["committed"] = up_file context["current_repo"] = cardiff.settings["repo"]["current"].split("/")[-1] context["other_repo"] = list( o_repo.split("/")[-1] for o_repo in cardiff.settings["repo"]["others"]) context["current_branch"] = cardiff.vcs_current_branch context["other_branches"] = cardiff.vcs_branches["other"] context["commit_logs"] = reversed(cardiff.vcs.get_commits()) return render(request, "repo.html", context)
StarcoderdataPython
9683136
<gh_stars>0 from macala import MancalaGame mg = MancalaGame() while not mg.is_over: print mg print "it is player %s's turn" % mg.player_turn mg.make_move(int(raw_input('> '))) print mg p0, p1 = mg.score if p0 < p1: print "player 1 wins!" elif p1 < p0: print "player 0 wins!" else: print "it's a tie!"
StarcoderdataPython
6468577
<gh_stars>0 from django.apps import AppConfig class DataimportConfig(AppConfig): name = 'microimprocessing'
StarcoderdataPython
4869243
<gh_stars>0 import os import pydicom print("Executando... Por favor aguarde.") arq = open('dicom.xml', 'w') texto = [] texto.append("<?xml version=\"1.0\"?>\n") path = os.getcwd() + '\\Exames de imagem\\' for r, d, f in os.walk(path): for file in f: if '.dcm' in file: path = str(r) + "\\" + str(file) texto.append("<data src=\"" + path + "\">\n") ds = pydicom.filereader.dcmread(path) for key in ds.dir(): data_element = ds.data_element(key) vr = str(data_element.VR) if (vr != "OW") and (vr != "LO"): tag = str(data_element.tag) vm = str(data_element.VM) name = str(data_element.name) value = str(data_element.value) lenght = str(len(value)) texto.append("\t<element vr=\"" + vr + "\" tag=\"" + tag + "\" vm=\"" + vm + "\" name=\"" + name + "\" len=\"" + lenght + "\">" + value + "</element>\n") texto.append("</data>\n") arq.writelines(texto) arq.close()
StarcoderdataPython
6411312
import scipy, numpy as np from tick.solver.base import SolverFirstOrderSto as SFOS from tick.prox.base.prox import Prox as TPROX from tick.base_model import ModelGeneralizedLinear as TMGL class DummySolver(SFOS): def _set_cpp_solver(self, dtype_or_object_with_dtype): return None def set_epoch_size(self, v): pass def set_rand_max(self, v): pass def set_model(self, model): pass class Solver(DummySolver): @staticmethod def CFUNC_RESOLVER(model, s = ""): X = model.features C = "s" if isinstance(X, scipy.sparse.csr.csr_matrix) else "d" T = "d" if X.dtype == np.dtype('float64') else "s" return model._MANGLING + s + C + T def __init__(self, **kwargs): object.__setattr__(self, "log_every_n_epochs", 10) if "log_every_n_epochs" in kwargs: object.__setattr__(self, "log_every_n_epochs", kwargs["log_every_n_epochs"]) object.__setattr__(self, "_solver", DummySolver()) object.__setattr__(self, "_dao", None) def set_super_model(self, SUPER, model: TMGL): import statick.solver.bin.statick_solver as statick_solver SUPER.set_model(self, model) func = self._s_name + "_" + Solver.CFUNC_RESOLVER(model, "_dao_") if self.n_threads > 1: object.__setattr__(self, "_dao", getattr(statick_solver, func)(model._dao, self.max_iter, self.epoch_size, self.n_threads)) self._dao.history.tol.val = self.tol else: object.__setattr__(self, "_dao", getattr(statick_solver, func)(model._dao)) if hasattr(self._dao, 'history'): self._dao.history.log_every_n_epochs = self.log_every_n_epochs if hasattr(self._dao, 'step'): self._dao.step = self.step return self def set_prox(self, prox: TPROX): if self.model is None: raise ValueError("Set model, then Prox") object.__setattr__(self, "_prox", prox._set_dao(self.model.features.dtype)) return self def solve(self): import statick.solver.bin.statick_solver as statick_solver f = "solve_" + self._s_name + "_" + Solver.CFUNC_RESOLVER(self.model, "_" + self._prox._MANGLING + "_") max_iter = self.max_iter if self.n_threads > 1: max_iter = 1 for i in range(max_iter): getattr(statick_solver, f)(self._dao, self.model._dao, self._prox._dao) if hasattr(self._dao, 'history'): object.__setattr__(self, "objectives", self._dao.history.objectives) object.__setattr__(self, "time_history", self._dao.history.time_history)
StarcoderdataPython
6556884
import unittest from typing import List class Solution: @staticmethod def exist(board: List[List[str]], word: str) -> bool: """ Given an m x n grid of characters board and a string word, return true if word exists in the grid. The word can be constructed from letters of sequentially adjacent cells, where adjacent cells are horizontally or vertically neighboring. The same letter cell may not be used more than once. Example 1: Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCCED" Output: true Example 2: Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "SEE" Output: true Example 3: Input: board = [["A","B","C","E"],["S","F","C","S"],["A","D","E","E"]], word = "ABCB" Output: false Constraints: m == board.length n = board[i].length 1 <= m, n <= 6 1 <= word.length <= 15 board and word consists of only lowercase and uppercase English letters. Follow up: Could you use search pruning to make your solution faster with a larger board? """ max_row, max_column = len(board), len(board[0]) for row_index in range(max_row): for column_index in range(max_column): visited_set = set() if Solution.dfs(board=board, row_index=row_index, column_index=column_index, visited_set=visited_set, word=word, max_row=max_row, max_column=max_column): return True return False @staticmethod def dfs(board, row_index, column_index, visited_set, word, max_row, max_column): current_index = (row_index, column_index) # If the word is processed fully if not word: return True # If we already visit this index if current_index in visited_set: return False # If we have a matching first character if board[row_index][column_index] == word[0]: if len(word) == 1: return True visited_set.add(current_index) changes = [(-1, 0), (0, 1), (1, 0), (0, -1)] for dy, dx in changes: new_row, new_column = row_index + dy, column_index + dx if 0 <= new_row < max_row and 0 <= new_column < max_column: result = Solution.dfs(board=board, row_index=new_row, column_index=new_column, visited_set=visited_set, word=word[1:], max_row=max_row, max_column=max_column) if result: return True visited_set.remove(current_index) return False class WordSearch(unittest.TestCase): def test_case_1(self): board, word = [['A', 'B', 'C', 'E'], ['S', 'F', 'C', 'S'], ['A', 'D', 'E', 'E']], 'ABCCED' expected_result = True self.assertEqual(expected_result, Solution.exist(board=board, word=word)) def test_case_2(self): board, word = [['A', 'B', 'C', 'E'], ['S', 'F', 'C', 'S'], ['A', 'D', 'E', 'E']], 'SEE' expected_result = True self.assertEqual(expected_result, Solution.exist(board=board, word=word)) def test_case_3(self): board, word = [['A', 'B', 'C', 'E'], ['S', 'F', 'C', 'S'], ['A', 'D', 'E', 'E']], 'ABCB' expected_result = False self.assertEqual(expected_result, Solution.exist(board=board, word=word)) def test_case_4(self): board, word = [['a']], 'a' expected_result = True self.assertEqual(expected_result, Solution.exist(board=board, word=word))
StarcoderdataPython
3529258
from gevent import monkey monkey.patch_all() import discord import os from flask import Flask from flask_compress import Compress from gevent.pywsgi import WSGIServer from threading import Thread client = discord.Client() def get_role(guild, name): return discord.utils.get(guild.roles, name=name) @client.event async def on_ready(): await client.change_presence(activity=discord.Activity(name="users changing voice chats", type=discord.ActivityType.listening)) @client.event async def on_voice_state_update(member, before, after): guild = member.guild if after.channel: channel_name = after.channel.name if not get_role(guild, channel_name): await guild.create_role(name=channel_name, mentionable=True) role = get_role(guild, channel_name) await member.add_roles(role) if before.channel: await member.remove_roles(get_role(guild, before.channel.name)) app = Flask('') @app.route('/') def home(): client.run(os.environ["token"]) return "Voice Chat Ping active!" def run(): WSGIServer(('0.0.0.0', 8080), app).serve_forever() compress = Compress() compress.init_app(app) Thread(target=run).start()
StarcoderdataPython
4971199
<filename>base/site-packages/jpush/push/__init__.py<gh_stars>100-1000 from .core import Push from .audience import ( tag, tag_and, tag_not, alias, registration_id, segment, abtest ) from .payload import ( android, ios, winphone, platform, cid, notification, message, audience, options, smsmessage, ) # Common selector for audience & platform all_ = "all" """Select all, to do a broadcast. Used in both ``audience`` and ``platform``. """ __all__ = [ all_, Push, tag, tag_and, tag_not, alias, registration_id, segment, abtest, notification, message, platform, cid, audience, options, smsmessage, ]
StarcoderdataPython
9705884
from chess_game_practice.board import make_board, _make_board_empty from chess_game_practice.pieces.pawn import Pawn def test_create_pawn(): game_board = make_board() pawn = Pawn('x', 'y', "b", game_board) assert "pawn" == pawn.piece_type assert game_board == pawn.board assert "b" == pawn.color assert 'x' == pawn.x assert 'y' == pawn.y def test_cant_move_on_self(): game_board = _make_board_empty() game_board[6][0] = "bp" pawn = Pawn(0, 6, "b", game_board) assert False == pawn.move(0, 6)
StarcoderdataPython