id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
149215
import os from flask import Blueprint, request from flask_cors import CORS from service.astra_service import astra_service credentials_controller = Blueprint('credentials_controller', __name__) CORS(credentials_controller) # This controller handles the functionality for connecting to the database # # Here we define the REST API endpoints and call our Astra Service # to send the request to the underlying Data Access Objects @credentials_controller.route("/api/credentials", methods=['GET', 'POST']) def connect(): if request.method == 'POST': temp_zip_path = os.path.abspath('temp_bundle.zip') temp_zip = open(temp_zip_path, 'wb') with temp_zip as f: f.write(request.get_data()) try: astra_service.save_credentials(request.args['username'], request.args['password'], request.args['keyspace'], temp_zip_path) astra_service.connect() finally: os.remove(temp_zip_path) return {'connected': True}, 200 if request.method == 'GET': resp = astra_service.check_connection() if resp is True: status_code = 200 else: status_code = 401 return str(resp), status_code @credentials_controller.route("/api/credentials/test", methods=['POST']) def test_credentials(): temp_zip_path = os.path.abspath('temp_bundle.zip') temp_zip = open(temp_zip_path, 'wb') with temp_zip as f: f.write(request.get_data()) resp = {'success': False} status_code = 400 try: test_connection = astra_service.test_credentials(request.args['username'], request.args['password'], request.args['keyspace'], temp_zip_path) resp = {'success': test_connection} if resp['success'] is True: status_code = 200 else: status_code = 401 finally: os.remove(temp_zip_path) return resp, status_code
StarcoderdataPython
6508174
from kivymd.theming import ThemableBehavior from kivymd.uix.screen import MDScreen class CraneSleepScreen(ThemableBehavior, MDScreen): pass
StarcoderdataPython
3571412
#!/usr/bin/python # -*- coding: UTF-8 -*- """ Criado em 17 de Agosto de 2016. Descricao: esta biblioteca possui as seguintes funcoes: geraDados: esta funcao gera um histograma dos dados fornecida uma imagem em formato numpy (imagem esta resultante da combinacao de uma amostra de imagens da serie de dados). Sobre esses dados e calculado a media, mediana, desvio padrao e desvio padrao absoluto. Alem disso, e gerado um segundo histograma normalizado em relacao a media e desvio padrao obtidos para servir de comparacao. Um intervalo de 7 sigmas e estipulado ao redor da mediana para o calculo do histograma e de suas informacoes. plothist: esta funcao e responsavel pelo plot do histograma dos dados e do shitograma normalizado; sobre ele sao expressao informacoes como valor medio e intervalo de valores dentro da media +/- sigma. Essas dados sao obtidos atraves de uma interpolacao cubica, retornando-os a um vetor para posterior exibicao. returnIndex: esta funcao retorna o indice de um vetor para qual seu valor seja igual a de um parametro fornecido. drawLine: esta funcao desenha uma linha vertical sobre o grafico, identificando seu valor do par coordenado. histograma: esta funcao faz a chamada de todas as outras funcoes para gerar o histograma da imagens. @author: <NAME> & <NAME> Laboratorio Nacional de Astrofisica, Brazil. """ __version__ = "1.0" __copyright__ = """ Copyright (c) ... All rights reserved. """ import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import returnMax import copy from scipy.stats import mode from scipy.interpolate import interp1d from algarismoSig import algarismoSig import astropy.io.fits as fits import RNhistograma listImage = ['DC_00.fits','DC_10.fits','DC_14.fits'] imagens=[] for img in listImage: imagens.append(fits.getdata(img)[0]) plt.figure(figsize=(10,10)) mean, median, std, stdAbs, value, base, x, y = RNhistograma.calcHistograma(imagens[1]) RNhistograma.plothist(base, value, x, y, mean, median, std, stdAbs) plt.show()
StarcoderdataPython
1879829
#This problem was asked by Amazon.[EASY} #Given n numbers, find the greatest common denominator between them. #For example, given the numbers [42, 56, 14], return 14. #Solution using numpy import numpy as np A = [14,56,42] print(np.gcd.reduce(A)) #Solution: Scaling for any number of input values n = int(input('HOW MANY NUMBERS YOU WANT TO CALCULATE GCD?: ')) a = list(map(int,input('ENTER THE NUMBER TO COMPUTE GCD: ').strip().split()))[:n] def compute_gcd(num1,num2): x = 1 while x: if max(num1,num2) % min(num1,num2) == 0: return min(num1,num2) x = 0 else : r = max(num1,num2)%min(num1,num2) return compute_gcd(max(num1,num2),r) while True: a[0] = compute_gcd(a[0],a[1]) a.pop(1) if len(set(a))>2: a.pop(2) if len(set(a)) == 1: break a = set(a) print(f"GCD OF {n} NUMBERS IS {a}") #Solution by Euclidean algo with loops for more than 2 numbers def compute_gcd(x, y): while(y): x, y = y, x % y return x # Driver Code l = [ 42, 56, 14] num1 = l[0] num2 = l[1] gcd = compute_gcd(num1, num2) for i in range(2, len(l)): gcd = compute_gcd(gcd, l[i]) print(f"the gcd among the numbers {l} is {gcd}") #Solution using functools: import functools as f A = [56, 42, 14] g = lambda a,b:a if b==0 else g(b,a%b) #Gcd for two numbers print(f.reduce(lambda x,y:g(x,y),A)) #Calling gcd function throughout the list. # Solution using maths in fixed set of numbers: import math A=[56,42,14] b=A[0] for j in range(1,len(A)): s=math.gcd(b,A[j]) b=s print(f'GCD of array elements is {b}.') # Solution using maths.gcd for n numbers import math def compute_gcd(lst): if len(lst) == 0: # trivial case return -1 while len(lst) > 1: a = lst.pop() b = lst.pop() c = math.gcd(a,b) if a >= b else math.gcd(b, a) lst.append(c) return lst.pop() def test_gcd(): assert compute_gcd([42, 56, 14]) == 14 assert compute_gcd([3, 6]) == 3 assert compute_gcd([1]) == 1 assert compute_gcd([]) == -1 if __name__ == "__main__": test_gcd()
StarcoderdataPython
5092868
<gh_stars>1-10 # Copyright 2020 Hamal, Inc.
StarcoderdataPython
3215789
# CamJam EduKit 3 - Robotics # Worksheet 7 - Controlling the motors with PWM import time # Import the Time library from gpiozero import CamJamKitRobot # Import the CamJam GPIO Zero Library robot = CamJamKitRobot() # Set the relative speeds of the two motors, between 0.0 and 1.0 motorspeed = 0.5 motorforward = (motorspeed, motorspeed) motorbackward = (-motorspeed, -motorspeed) motorleft = (motorspeed, 0) motorright = (0, motorspeed) robot.value = motorforward time.sleep(1) robot.value = motorbackward time.sleep(1) # Pause for 1 second robot.value = motorleft time.sleep(1) # Pause for 1 second robot.value = motorright time.sleep(1) # Pause for 1 second robot.stop()
StarcoderdataPython
5101645
class MetricInterface(object): ID = 'NONE' def __init__(self, **kwargs): pass def evaluate(self, individual, framework): raise NotImplementedError("Function evaluateIndividual has to be inplemented!") @staticmethod def getMetricByName(name='NONE'): stack = [MetricInterface] while stack: cls = stack.pop(0) if cls.__name__ == name: return cls stack.extend(cls.__subclasses__()) raise Exception("Couldn't find class with name: " + name)
StarcoderdataPython
12834551
import copy import crcmod from opendbc.can.can_define import CANDefine from selfdrive.car.tesla.values import CANBUS class TeslaCAN: def __init__(self, dbc_name, packer): self.can_define = CANDefine(dbc_name) self.packer = packer self.crc = crcmod.mkCrcFun(0x11d, initCrc=0x00, rev=False, xorOut=0xff) @staticmethod def checksum(msg_id, dat): # TODO: get message ID from name instead ret = (msg_id & 0xFF) + ((msg_id >> 8) & 0xFF) ret += sum(dat) return ret & 0xFF def create_steering_control(self, angle, enabled, frame): values = { "DAS_steeringAngleRequest": -angle, "DAS_steeringHapticRequest": 0, "DAS_steeringControlType": 1 if enabled else 0, "DAS_steeringControlCounter": (frame % 16), } data = self.packer.make_can_msg("DAS_steeringControl", CANBUS.chassis, values)[2] values["DAS_steeringControlChecksum"] = self.checksum(0x488, data[:3]) return self.packer.make_can_msg("DAS_steeringControl", CANBUS.chassis, values) def create_action_request(self, msg_stw_actn_req, cancel, bus, counter): values = copy.copy(msg_stw_actn_req) if cancel: values["SpdCtrlLvr_Stat"] = 1 values["MC_STW_ACTN_RQ"] = counter data = self.packer.make_can_msg("STW_ACTN_RQ", bus, values)[2] values["CRC_STW_ACTN_RQ"] = self.crc(data[:7]) return self.packer.make_can_msg("STW_ACTN_RQ", bus, values)
StarcoderdataPython
11265867
class EventParser: def __init__(): pass def Parse(self, packet): if packet[0] == 'E': print("Hurrah") class Event: def __init__(command, args): pass
StarcoderdataPython
3332263
<filename>src/tests/test_node.py import unittest from gerel.genome.edge import Edge from gerel.genome.node import Node import itertools class TestNodeClass(unittest.TestCase): def setUp(self): # reset innovation number Node.innov_iter = itertools.count() Edge.innov_iter = itertools.count() Node.registry = {} Edge.registry = {} def test_node_init(self): n1 = Node(0, 0, 0) n2 = Node(0, 1, 0) n3 = Node(1, 0, 0) n4 = Node(1, 1, 0) # Check correct nodes self.assertEqual(n1.innov, 0) self.assertEqual(n2.innov, 1) self.assertEqual(n3.innov, 2) self.assertEqual(n4.innov, 3) def test_node_copy(self): n = Node(0, 0, 0) m = Node.copy(n) self.assertNotEqual(n, m) self.assertEqual(n.innov, m.innov) self.assertEqual(n.layer_num, m.layer_num) self.assertEqual(n.layer_ind, m.layer_ind)
StarcoderdataPython
6514772
<filename>skadi/__init__.py<gh_stars>10-100 from __future__ import absolute_import import collections as c import copy import io as _io import itertools as it import math def enum(**enums): _enum = type('Enum', (), enums) _enum.tuples = enums return _enum Peek = c.namedtuple('Peek', 'tick, kind, tell, size, compressed') from skadi import * from skadi.engine import string_table as stab from skadi.engine.dt import prop as dt_p from skadi.engine.dt import send as dt_s from skadi.index.demo import prologue as id_prologue from skadi.index.embed import packet as ie_packet from skadi.index.embed import send_tables as ie_send_tables from skadi.io.protobuf import demo as d_io from skadi.io.protobuf import packet as p_io from skadi.io.unpacker import string_table as u_st from skadi.protoc import demo_pb2 as pb_d from skadi.protoc import netmessages_pb2 as pb_n try: from skadi.io import cBitstream as b_io except ImportError: from skadi.io import bitstream as b_io try: from skadi.engine.dt import cRecv as dt_r except ImportError: from skadi.engine.dt import recv as dt_r Meta = c.namedtuple('Meta', ['file_header', 'server_info', 'voice_init']) FileHeader = c.namedtuple('FileHeader', [ 'demo_file_stamp', 'network_protocol', 'server_name', 'client_name', 'map_name', 'game_directory', 'fullpackets_version' ]) ServerInfo = c.namedtuple('ServerInfo', [ 'protocol', 'server_count', 'is_dedicated', 'is_hltv', 'c_os', 'map_crc', 'client_crc', 'string_table_crc', 'max_clients', 'max_classes', 'player_slot', 'tick_interval', 'game_dir', 'map_name', 'sky_name', 'host_name' ]) VoiceInit = c.namedtuple('VoiceInit', ['quality', 'codec']) Prologue = c.namedtuple('Prologue', [ 'meta', 'recv_tables', 'string_tables', 'game_event_list', 'class_bits' ]) test_needs_decoder = lambda st: st.needs_decoder class InvalidDemo(RuntimeError): pass def load(io, tick=0): demo_io = d_io.construct(io) prologue = id_prologue.construct(demo_io) # mash all packet svc messages together, then index them signon_packets = list(prologue.all_dem_signon_packet) data = ''.join([pb.data for _, pb in signon_packets]) packet = ie_packet.construct(p_io.construct(data)) # meta: file header _, pbmsg = prologue.dem_file_header file_header = FileHeader(*[getattr(pbmsg, a) for a in FileHeader._fields]) # meta: server info _, pbmsg = packet.svc_server_info server_info = ServerInfo(*[getattr(pbmsg, a) for a in ServerInfo._fields]) # meta: voice init _, pbmsg = packet.svc_voice_init voice_init = VoiceInit(*[getattr(pbmsg, a) for a in VoiceInit._fields]) # prologue: meta meta = Meta(file_header, server_info, voice_init) # prologue: send tables _, pbmsg = prologue.dem_send_tables _send_tables = ie_send_tables.construct(p_io.construct(pbmsg.data)) send_tables = c.OrderedDict() for pbmsg in [pb for _, pb in _send_tables.all_svc_send_table]: if pbmsg.is_end: break send_table = _parse_cdemo_send_table(pbmsg) send_tables[send_table.dt] = send_table # prologue: recv tables flattener = Flattener(send_tables) recv_tables = c.OrderedDict() _, pbmsg = prologue.dem_class_info class_info = c.OrderedDict() for cls in pbmsg.classes: _id, dt, name = str(cls.class_id), cls.table_name, cls.network_name class_info[_id] = (dt, name) for st in filter(test_needs_decoder, send_tables.values()): props = flattener.flatten(st) cls = next(_id for _id, (dt, _) in class_info.items() if dt == st.dt) recv_tables[cls] = dt_r.construct(st.dt, props) # prologue: string tables pbmsgs = [pb for _, pb in packet.all_svc_create_string_table] string_tables = _parse_all_csvc_create_string_tables(pbmsgs) # prologue: game event list _, pbmsg = packet.svc_game_event_list game_event_list = c.OrderedDict() for desc in pbmsg.descriptors: _id, name = desc.eventid, desc.name keys = [(k.type, k.name) for k in desc.keys] game_event_list[_id] = (name, keys) # prologue: class bits class_bits = server_info.max_classes.bit_length() return Prologue(meta, recv_tables, string_tables, game_event_list, class_bits) def _parse_cdemo_send_table(pbmsg): dt, props = pbmsg.net_table_name, [] for p in pbmsg.props: attributes = { 'var_name': p.var_name, 'type': p.type, 'flags': p.flags, 'num_elements': p.num_elements, 'num_bits': p.num_bits, 'dt_name': p.dt_name, 'priority': p.priority, 'low_value': p.low_value, 'high_value': p.high_value } props.append(dt_p.construct(dt, attributes)) # assign properties used for parsing array elements for i, p in enumerate(props): if p.type == dt_p.Type.Array: p.array_prop = props[i - 1] return dt_s.construct(dt, props, pbmsg.is_end, pbmsg.needs_decoder) def _parse_all_csvc_create_string_tables(pbmsgs): string_tables = c.OrderedDict() for pbmsg in pbmsgs: ne = pbmsg.num_entries eb = int(math.ceil(math.log(pbmsg.max_entries, 2))) sf = pbmsg.user_data_fixed_size sb = pbmsg.user_data_size_bits bs = b_io.construct(pbmsg.string_data) entries = list(u_st.construct(bs, ne, eb, sf, sb)) name = pbmsg.name string_tables[name] = stab.construct(name, eb, sf, sb, entries) return string_tables class Flattener(object): def __init__(self, send_tables): self.send_tables = send_tables def flatten(self, st): aggregate = [] exclusions = self._aggregate_exclusions(st) self._build(st, aggregate, exclusions, []) return aggregate def _build(self, st, aggregate, exclusions, props, proxy_for=None): self._compile(st, aggregate, exclusions, props) for p in props: if proxy_for: _p = copy.copy(p) _p.var_name = '{}.{}'.format(p.origin_dt, p.var_name).encode('UTF-8') _p.origin_dt = proxy_for else: _p = p aggregate.append(_p) def _compile(self, st, aggregate, exclusions, props): def test_excluded(p): return for p in st.props: excluded = (st.dt, p.var_name) in exclusions ineligible = p.flags & (dt_p.Flag.Exclude | dt_p.Flag.InsideArray) if excluded or ineligible: continue if p.type == dt_p.Type.DataTable: _st = self.send_tables[p.dt_name] if dt_p.test_collapsible(p): self._compile(_st, aggregate, exclusions, props) else: self._build(_st, aggregate, exclusions, [], proxy_for=p.origin_dt) else: props.append(p) def _aggregate_exclusions(self, st): def recurse(_dt_prop): st = self.send_tables[_dt_prop.dt_name] return self._aggregate_exclusions(st) inherited = map(recurse, st.dt_props) return st.exclusions + list(it.chain(*inherited))
StarcoderdataPython
1610776
from opencmiss.zinc.context import Context from opencmiss.zinc.material import Material from mapclientplugins.lungmodelstep.model.meshmodel import MeshModel class LungModel(object): def __init__(self): self._context = Context("LungModelView") self._logger = self._context.getLogger() self._initialize() self._leftRegion = self.setRegion('leftregion') self._rightRegion = self.setRegion('rightregion') self._meshModel = MeshModel(self._leftRegion, self._rightRegion, self._materialModule) def getContext(self): return self._context def setRegion(self, name): region = self._context.getDefaultRegion().createChild(name) return region def _initialize(self): tess = self._context.getTessellationmodule().getDefaultTessellation() tess.setRefinementFactors(12) self._materialModule = self._context.getMaterialmodule() self._materialModule.defineStandardMaterials() solidBlue = self._materialModule.createMaterial() solidBlue.setName('solidBlue') solidBlue.setManaged(True) solidBlue.setAttributeReal3(Material.ATTRIBUTE_AMBIENT, [0.0, 0.2, 0.6]) solidBlue.setAttributeReal3(Material.ATTRIBUTE_DIFFUSE, [0.0, 0.7, 1.0]) solidBlue.setAttributeReal3(Material.ATTRIBUTE_EMISSION, [0.0, 0.0, 0.0]) solidBlue.setAttributeReal3(Material.ATTRIBUTE_SPECULAR, [0.1, 0.1, 0.1]) solidBlue.setAttributeReal(Material.ATTRIBUTE_SHININESS, 0.2) transBlue = self._materialModule.createMaterial() transBlue.setName('transBlue') transBlue.setManaged(True) transBlue.setAttributeReal3(Material.ATTRIBUTE_AMBIENT, [0.0, 0.2, 0.6]) transBlue.setAttributeReal3(Material.ATTRIBUTE_DIFFUSE, [0.0, 0.7, 1.0]) transBlue.setAttributeReal3(Material.ATTRIBUTE_EMISSION, [0.0, 0.0, 0.0]) transBlue.setAttributeReal3(Material.ATTRIBUTE_SPECULAR, [0.1, 0.1, 0.1]) transBlue.setAttributeReal(Material.ATTRIBUTE_ALPHA, 0.3) transBlue.setAttributeReal(Material.ATTRIBUTE_SHININESS, 0.2) solidTissue = self._materialModule.createMaterial() solidTissue.setName('solidTissue') solidTissue.setManaged(True) solidTissue.setAttributeReal3(Material.ATTRIBUTE_AMBIENT, [0.9, 0.7, 0.5]) solidTissue.setAttributeReal3(Material.ATTRIBUTE_DIFFUSE, [0.9, 0.7, 0.5]) solidTissue.setAttributeReal3(Material.ATTRIBUTE_EMISSION, [0.0, 0.0, 0.0]) solidTissue.setAttributeReal3(Material.ATTRIBUTE_SPECULAR, [0.2, 0.2, 0.3]) solidTissue.setAttributeReal(Material.ATTRIBUTE_ALPHA, 1.0) solidTissue.setAttributeReal(Material.ATTRIBUTE_SHININESS, 0.2) glyphmodule = self._context.getGlyphmodule() glyphmodule.defineStandardGlyphs() def getScene(self): return self._leftRegion.getScene(), self._rightRegion.getScene() def getMeshModel(self): return self._meshModel
StarcoderdataPython
6629331
<gh_stars>0 """ APIQuery should start by checking if a cached completion exists. If it doesn't- prompt the API for a completion, cache it and use it. """ import openai, os, json, re, IO.io as io from encoder.encoder import get_encoder MAX_TOKENS = 2048; with open('config.json') as configFile: config = json.loads(configFile.read()); openai.api_key = config['OPENAI_API_KEY']; encoder = get_encoder(); def clamp(num, min_value, max_value): # https://www.tutorialspoint.com/How-to-clamp-floating-numbers-in-Pythons return max(min(num, max_value), min_value); def tokenizePrompt(prompt): return encoder.encode(prompt); def handleCompletion(completion): # Get the text of a completion and prepare it assert completion and completion != '', 'Unable to handle no/blank completion'; completionText = completion['choices'][0]['text']; # Get the text from the first (Best) completion choice completionText = re.sub(r'^\s+', '', completionText); # Remove the new lines from the start of the text return completionText; def getCachedCompletions(): if (os.path.exists('completionsCache.json')): with open('completionsCache.json', 'r') as cacheFile: try: completions = json.loads(cacheFile.read()); return completions; except (json.JSONDecodeError): return {}; return {}; def getCachedCompletion(prompt): completions = getCachedCompletions(); if (prompt in completions): return completions[prompt]; def cacheCompletion(prompt, completion): completions = getCachedCompletions(); completions[prompt] = completion; with open('completionsCache.json', 'w') as cacheFile: cacheFile.write(json.dumps(completions)); def promptGPT3(prompt, APIEngine, maxTokens): cachedCompletion = getCachedCompletion(prompt); if (cachedCompletion): io.out(handleCompletion(cachedCompletion)); return; tokens = tokenizePrompt(prompt); completion = openai.Completion.create( engine = APIEngine, prompt = prompt, temperature = 0.65, max_tokens = clamp(MAX_TOKENS - len(tokens), 1, maxTokens) ); if (completion and 'choices' in completion): cacheCompletion(prompt, completion); io.out(handleCompletion(completion)); return; io.out('Sorry. I don\'t know that one.'); def APIQuery(query, APIEngine, maxTokens): promptGPT3(query, APIEngine, maxTokens);
StarcoderdataPython
8085536
# Define imports import pygame from pygame import * import random # Define helpers from GameMenu import Menu from GameModel import Model from GameView import View from GameController import Controller if __name__ == "__main__": # Initialize pygame pygame.init() # Initialize menu menu = Menu() # Set number of players selected in menu num_players = menu.get_player_select() # Initialize the player list player_list = {} # Create the players for player in range(1, num_players + 1): # Assign a random color to each player color = (random.randint(0, 255), random.randint(0, 255), random.randint(0, 255)) player_list[player] = color # Create a new game model with previous number of players and list of players model = Model(num_players, player_list) # Create a new game view with previous model view = View(model) # Create a new game controller with previous view controller = Controller(view) # Play the game controller.play()
StarcoderdataPython
6630746
<reponame>renhongl/electron #!/usr/bin/env python import argparse import os import subprocess import sys from lib.config import LIBCHROMIUMCONTENT_COMMIT, BASE_URL, PLATFORM, \ enable_verbose_mode, is_verbose_mode, get_target_arch from lib.util import execute_stdout, get_atom_shell_version, scoped_cwd SOURCE_ROOT = os.path.abspath(os.path.dirname(os.path.dirname(__file__))) VENDOR_DIR = os.path.join(SOURCE_ROOT, 'vendor') PYTHON_26_URL = 'https://chromium.googlesource.com/chromium/deps/python_26' if os.environ.has_key('CI'): NPM = os.path.join(SOURCE_ROOT, 'node_modules', '.bin', 'npm') else: NPM = 'npm' if sys.platform in ['win32', 'cygwin']: NPM += '.cmd' def main(): os.chdir(SOURCE_ROOT) args = parse_args() if not args.yes and PLATFORM != 'win32': check_root() if args.verbose: enable_verbose_mode() if sys.platform == 'cygwin': update_win32_python() if PLATFORM != 'win32': update_clang() update_submodules() setup_python_libs() update_node_modules('.') bootstrap_brightray(args.dev, args.url, args.target_arch, args.libcc_source_path, args.libcc_shared_library_path, args.libcc_static_library_path) if PLATFORM == 'linux': download_sysroot(args.target_arch) create_chrome_version_h() touch_config_gypi() run_update() update_electron_modules('spec', args.target_arch) def parse_args(): parser = argparse.ArgumentParser(description='Bootstrap this project') parser.add_argument('-u', '--url', help='The base URL from which to download ' 'libchromiumcontent (i.e., the URL you passed to ' 'libchromiumcontent\'s script/upload script', default=BASE_URL, required=False) parser.add_argument('-v', '--verbose', action='store_true', help='Prints the output of the subprocesses') parser.add_argument('-d', '--dev', action='store_true', help='Do not download static_library build') parser.add_argument('-y', '--yes', '--assume-yes', action='store_true', help='Run non-interactively by assuming "yes" to all ' \ 'prompts.') parser.add_argument('--target_arch', default=get_target_arch(), help='Manually specify the arch to build for') parser.add_argument('--libcc_source_path', required=False, help='The source path of libchromiumcontent. ' \ 'NOTE: All options of libchromiumcontent are ' \ 'required OR let electron choose it') parser.add_argument('--libcc_shared_library_path', required=False, help='The shared library path of libchromiumcontent.') parser.add_argument('--libcc_static_library_path', required=False, help='The static library path of libchromiumcontent.') return parser.parse_args() def check_root(): if os.geteuid() == 0: print "We suggest not running this as root, unless you're really sure." choice = raw_input("Do you want to continue? [y/N]: ") if choice not in ('y', 'Y'): sys.exit(0) def update_submodules(): execute_stdout(['git', 'submodule', 'sync']) execute_stdout(['git', 'submodule', 'update', '--init', '--recursive']) def setup_python_libs(): for lib in ('requests', 'boto'): with scoped_cwd(os.path.join(VENDOR_DIR, lib)): execute_stdout([sys.executable, 'setup.py', 'build']) def bootstrap_brightray(is_dev, url, target_arch, libcc_source_path, libcc_shared_library_path, libcc_static_library_path): bootstrap = os.path.join(VENDOR_DIR, 'brightray', 'script', 'bootstrap') args = [ '--commit', LIBCHROMIUMCONTENT_COMMIT, '--target_arch', target_arch, url ] if is_dev: args = ['--dev'] + args if (libcc_source_path != None and libcc_shared_library_path != None and libcc_static_library_path != None): args += ['--libcc_source_path', libcc_source_path, '--libcc_shared_library_path', libcc_shared_library_path, '--libcc_static_library_path', libcc_static_library_path] execute_stdout([sys.executable, bootstrap] + args) def update_node_modules(dirname, env=None): if env is None: env = os.environ if PLATFORM == 'linux': # Use prebuilt clang for building native modules. llvm_dir = os.path.join(SOURCE_ROOT, 'vendor', 'llvm-build', 'Release+Asserts', 'bin') env['CC'] = os.path.join(llvm_dir, 'clang') env['CXX'] = os.path.join(llvm_dir, 'clang++') env['npm_config_clang'] = '1' with scoped_cwd(dirname): args = [NPM, 'install'] if is_verbose_mode(): args += ['--verbose'] # Ignore npm install errors when running in CI. if os.environ.has_key('CI'): try: execute_stdout(args, env) except subprocess.CalledProcessError: pass else: execute_stdout(args, env) def update_electron_modules(dirname, target_arch): env = os.environ.copy() env['npm_config_arch'] = target_arch env['npm_config_target'] = get_atom_shell_version() env['npm_config_disturl'] = 'https://atom.io/download/atom-shell' update_node_modules(dirname, env) def update_win32_python(): with scoped_cwd(VENDOR_DIR): if not os.path.exists('python_26'): execute_stdout(['git', 'clone', PYTHON_26_URL]) def update_clang(): execute_stdout([os.path.join(SOURCE_ROOT, 'script', 'update-clang.sh')]) def download_sysroot(target_arch): if target_arch == 'ia32': target_arch = 'i386' if target_arch == 'x64': target_arch = 'amd64' execute_stdout([sys.executable, os.path.join(SOURCE_ROOT, 'script', 'install-sysroot.py'), '--arch', target_arch]) def create_chrome_version_h(): version_file = os.path.join(SOURCE_ROOT, 'vendor', 'brightray', 'vendor', 'libchromiumcontent', 'VERSION') target_file = os.path.join(SOURCE_ROOT, 'atom', 'common', 'chrome_version.h') template_file = os.path.join(SOURCE_ROOT, 'script', 'chrome_version.h.in') with open(version_file, 'r') as f: version = f.read() with open(template_file, 'r') as f: template = f.read() content = template.replace('{PLACEHOLDER}', version.strip()) # We update the file only if the content has changed (ignoring line ending # differences). should_write = True if os.path.isfile(target_file): with open(target_file, 'r') as f: should_write = f.read().replace('r', '') != content.replace('r', '') if should_write: with open(target_file, 'w') as f: f.write(content) def touch_config_gypi(): config_gypi = os.path.join(SOURCE_ROOT, 'vendor', 'node', 'config.gypi') with open(config_gypi, 'w+') as f: content = "\n{'variables':{}}" if f.read() != content: f.write(content) def run_update(): update = os.path.join(SOURCE_ROOT, 'script', 'update.py') execute_stdout([sys.executable, update]) if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
11390299
<reponame>ok97465/spyder # -*- coding: utf-8 -*- # # Copyright © Spyder Project Contributors # Licensed under the terms of the MIT License # (see spyder/__init__.py for details) """ Working Directory widget. """ # Standard library imports import os import os.path as osp # Third party imports from qtpy.compat import getexistingdirectory from qtpy.QtCore import Signal, Slot # Local imports from spyder.api.config.decorators import on_conf_change from spyder.api.translations import get_translation from spyder.api.widgets.main_container import PluginMainContainer from spyder.api.widgets.toolbars import ApplicationToolbar from spyder.config.base import get_home_dir from spyder.utils.misc import getcwd_or_home from spyder.widgets.comboboxes import PathComboBox # Localization _ = get_translation('spyder') # --- Constants # ---------------------------------------------------------------------------- class WorkingDirectoryActions: Previous = 'previous_action' Next = "next_action" Browse = "browse_action" Parent = "parent_action" class WorkingDirectoryToolbarSections: Main = "main_section" # --- Widgets # ---------------------------------------------------------------------------- class WorkingDirectoryToolbar(ApplicationToolbar): ID = 'working_directory_toolbar' # --- Container # ---------------------------------------------------------------------------- class WorkingDirectoryContainer(PluginMainContainer): """Container for the working directory toolbar.""" # Signals sig_current_directory_changed = Signal(str) """ This signal is emitted when the current directory has changed. Parameters ---------- new_working_directory: str The new new working directory path. """ # ---- PluginMainContainer API # ------------------------------------------------------------------------ def setup(self): # Variables self.history = self.get_conf('history', []) self.histindex = None # Widgets title = _('Current working directory') self.toolbar = WorkingDirectoryToolbar(self, title) self.pathedit = PathComboBox( self, adjust_to_contents=self.get_conf('working_dir_adjusttocontents'), ) # Widget Setup self.toolbar.setWindowTitle(title) self.toolbar.setObjectName(title) self.pathedit.setToolTip( _( "This is the working directory for newly\n" "opened IPython consoles, for the Files\n" "and Find panes and for new files\n" "created in the editor" ) ) self.pathedit.setMaxCount(self.get_conf('working_dir_history')) self.pathedit.selected_text = self.pathedit.currentText() # Signals self.pathedit.open_dir.connect(self.chdir) self.pathedit.activated[str].connect(self.chdir) # Actions self.previous_action = self.create_action( WorkingDirectoryActions.Previous, text=_('Back'), tip=_('Back'), icon=self.create_icon('previous'), triggered=self.previous_directory, ) self.next_action = self.create_action( WorkingDirectoryActions.Next, text=_('Next'), tip=_('Next'), icon=self.create_icon('next'), triggered=self.next_directory, ) browse_action = self.create_action( WorkingDirectoryActions.Browse, text=_('Browse a working directory'), tip=_('Browse a working directory'), icon=self.create_icon('DirOpenIcon'), triggered=self.select_directory, ) parent_action = self.create_action( WorkingDirectoryActions.Parent, text=_('Change to parent directory'), tip=_('Change to parent directory'), icon=self.create_icon('up'), triggered=self.parent_directory, ) for item in [self.previous_action, self.next_action, self.pathedit, browse_action, parent_action]: self.add_item_to_toolbar( item, self.toolbar, section=WorkingDirectoryToolbarSections.Main, ) def update_actions(self): self.previous_action.setEnabled( self.histindex is not None and self.histindex > 0) self.next_action.setEnabled( self.histindex is not None and self.histindex < len(self.history) - 1 ) @on_conf_change(option='history') def on_history_update(self, value): self.history = value # --- API # ------------------------------------------------------------------------ def get_workdir(self): """ Get the working directory from our config system or return the user home directory if none could be found. Returns ------- str: The current working directory. """ if self.get_conf('startup/use_fixed_directory', ''): workdir = self.get_conf('startup/fixed_directory') elif self.get_conf('console/use_project_or_home_directory', ''): workdir = get_home_dir() else: workdir = self.get_conf('console/fixed_directory', '') if not osp.isdir(workdir): workdir = get_home_dir() return workdir @Slot() def select_directory(self, directory=None): """ Select working directory. Parameters ---------- directory: str, optional The directory to change to. Notes ----- If directory is None, a get directory dialog will be used. """ if directory is None: self.sig_redirect_stdio_requested.emit(False) directory = getexistingdirectory( self, _("Select directory"), getcwd_or_home(), ) self.sig_redirect_stdio_requested.emit(True) if directory: self.chdir(directory) @Slot() def previous_directory(self): """Select the previous directory.""" self.histindex -= 1 self.chdir(directory='', browsing_history=True) @Slot() def next_directory(self): """Select the next directory.""" self.histindex += 1 self.chdir(directory='', browsing_history=True) @Slot() def parent_directory(self): """Change working directory to parent one.""" self.chdir(osp.join(getcwd_or_home(), osp.pardir)) @Slot(str) @Slot(str, bool) @Slot(str, bool, bool) def chdir(self, directory, browsing_history=False, emit=True): """ Set `directory` as working directory. Parameters ---------- directory: str The new working directory. browsing_history: bool, optional Add the new `directory` to the browsing history. Default is False. emit: bool, optional Emit a signal when changing the working directory. Default is True. """ if directory: directory = osp.abspath(str(directory)) # Working directory history management if browsing_history: directory = self.history[self.histindex] elif directory in self.history: self.histindex = self.history.index(directory) else: if self.histindex is None: self.history = [] else: self.history = self.history[:self.histindex + 1] self.history.append(directory) self.histindex = len(self.history) - 1 # Changing working directory try: os.chdir(directory) self.pathedit.add_text(directory) self.update_actions() if emit: self.sig_current_directory_changed.emit(directory) except OSError: self.history.pop(self.histindex) def get_history(self): """ Get the current history list. Returns ------- list List of string paths. """ return [str(self.pathedit.itemText(index)) for index in range(self.pathedit.count())] def set_history(self, history): """ Set the current history list. Parameters ---------- history: list List of string paths. """ self.set_conf('history', history) if history: self.pathedit.addItems(history) if self.get_conf('workdir', None) is None: workdir = self.get_workdir() else: workdir = self.get_conf('workdir') self.chdir(workdir)
StarcoderdataPython
1611245
<reponame>youssefaz94/leshy<filename>src/resolvers/resolver.py import logging as lg from src.scrap.statusEnum import StateWorker from src.resolvers.resolverFact import ResolverFact _logger = lg.getLogger(__name__) class Resolver: def __init__(self, sources, worker_to_source_map, master, statuskeeper): self._sources = sources self._workerStateSource = {} self._resolver_fact = None self._master = master self._statuskeeper = statuskeeper self.start(worker_to_source_map) def start(self, worker_to_source_map): self._resolver_fact = ResolverFact(resolver = self, master= self._master, statuskeeper= self._statuskeeper) for _worker, _source in worker_to_source_map.items(): self._workerStateSource[_worker] = {"failed": [], "current":_source, "pending": list(filter( lambda x: x != _source, self._sources))} def resolve(self, worker, failure: Exception): return self._resolver_fact.get_resolver(failure).resolve(worker) def killWorker(self, worker): self._workerStateSource[worker]["failed"] = self._workerStateSource[worker]["current"] self._workerStateSource[worker]["current"] = None def switchSource(self, worker): self._workerStateSource[worker]["failed"] = self._workerStateSource[worker]["current"] new_source = self._workerStateSource[worker]["current"]["pending"].pop() self._workerStateSource[worker]["current"] = new_source self._master.setWorkerSource(worker, new_source) return
StarcoderdataPython
6564830
import contextlib import csv import pprint import sys from datetime import datetime from nesteddict import NestedDict import pymongo class CursorFormatter(object): ''' Output a set of cursor elements by iterating over then. If root is a file name output the content to that file. ''' def __init__(self, cursor, filename="", formatter="json", results=None): ''' Data from cursor output to <filename>suffix.ext. ''' self._results = [] self._cursor = cursor if (isinstance(cursor, pymongo.cursor.Cursor) or isinstance(cursor, pymongo.command_cursor.CommandCursor)): self._format = formatter self._filename = filename if results: self._results = results else: raise ValueError("aggregate argument to CursorFormatter is not of class pymongo cursor") def results(self): return self._results @contextlib.contextmanager def _smart_open(self, filename=None): if filename and filename != '-': fh = open(filename, 'w') else: fh = sys.stdout try: yield fh finally: if fh is not sys.stdout: fh.close() @staticmethod def dateMapField(doc, field, time_format=None): ''' Given a field that contains a datetime we want it to be output as a string otherwise pprint and other functions will abondon ship when they meet BSON time objects ''' if time_format is None: time_format = "%d-%b-%Y %H:%M" d = NestedDict(doc) if field in d: value = d[field] if isinstance(value, datetime): d[field] = value.strftime(time_format) else: d[field] = datetime.fromtimestamp(value/1000) return dict(d) @staticmethod def fieldMapper(doc, fields): """ Take 'doc' and create a new doc using only keys from the 'fields' list. Supports referencing fields using dotted notation "a.b.c" so we can parse nested fields the way MongoDB does. """ if fields is None or len(fields) == 0: return doc new_doc = NestedDict() old_doc = NestedDict(doc) for i in fields: if i in old_doc: # print( "doc: %s" % doc ) # print( "i: %s" %i ) new_doc[i] = old_doc[i] return dict(new_doc) @staticmethod def dateMapper(doc, date_map, time_format=None): ''' For all the fields in "datemap" find that key in doc and map the datetime object to a strftime string. This pprint and others will print out readable datetimes. ''' if date_map: for i in date_map: if isinstance(i, datetime): CursorFormatter.dateMapField(doc, i, time_format=time_format) return doc def printCSVCursor(self, c, fieldnames, datemap, time_format=None): ''' Output CSV format. items are separated by commas. We only output the fields listed in the 'fieldnames'. We datemap fields listed in 'datemap'. If a datemap listed field is not a datetime object we will thow an exception. ''' with self._smart_open(self._filename) as output: writer = csv.DictWriter(output, fieldnames=fieldnames) writer.writeheader() count = 0 for i in c: self._results.append(i) count = count + 1 d = CursorFormatter.fieldMapper(i, fieldnames) d = CursorFormatter.dateMapper(d, datemap, time_format) writer.writerow(d) return count def printJSONCursor(self, c, fieldnames, datemap, time_format=None): """ Output plan json objects. :param c: collection :param fieldnames: fieldnames to include in output :param datemap: fieldnames to map dates to date strings :param time_format: field names to map to a specific time format :return: """ count = 0 with self._smart_open(self._filename) as output: for i in c: # print( "processing: %s" % i ) # print( "fieldnames: %s" % fieldnames ) self._results.append(i) d = CursorFormatter.fieldMapper(i, fieldnames) # print( "processing fieldmapper: %s" % d ) d = CursorFormatter.dateMapper(d, datemap, time_format) pprint.pprint(d, output) count = count + 1 return count def printCursor(self, c, fieldnames=None, datemap=None, time_format=None): ''' Output a cursor to a filename or stdout if filename is "-". fmt defines whether we output CSV or JSON. ''' if self._format == 'csv': count = self.printCSVCursor(c, fieldnames, datemap, time_format) else: count = self.printJSONCursor(c, fieldnames, datemap, time_format) return count def output(self, fieldNames=None, datemap=None, time_format=None, aggregate=True): ''' Output all fields using the fieldNames list. for fields in the list datemap indicates the field must be date ''' count = self.printCursor(self._cursor, fieldNames, datemap, time_format)
StarcoderdataPython
5150480
from setuptools import setup, find_packages with open("README.md", "r") as fh: long_description = fh.read() setup( name="rotten_tomatoes_cli_fork", description="Rotten Tomatoes Command Line Tool", long_description=long_description, long_description_content_type="text/markdown", author="<NAME>", author_email="<EMAIL>", url="https://github.com/jaebradley/rotten_tomatoes_cli", version="0.0.3", packages=find_packages(exclude=["tests"]), include_package_data=True, python_requires=">=3.4", install_requires=[ "Click>=6.7", "rotten_tomatoes_client @ git+https://github.com/seanbreckenridge/rotten_tomatoes_client@master#egg=rotten_tomatoes_client", "terminaltables>=3.1.0", "termcolor>=1.1.0" ], entry_points={ "console_scripts": [ "rotten= scripts.rotten:rotten" ], }, keywords=[ "Movies", "Rotten Tomatoes", ], classifiers=[] )
StarcoderdataPython
6405750
from clearml import Task default_mlops_settings = { 'project_name': 'Default Project', 'task_name': 'default_task', 'connect_frameworks': { 'matplotlib': False, 'tensorflow': False, 'tensorboard': False, 'pytorch': False, 'xgboost': False, 'scikit': False, 'fastai': False, 'lightgbm': False, 'hydra': False } } class MLOpsTask(object): """ This class instantiates encapsulates ClearML instance of MLOps task - """ def __init__( self, settings ): """ This method initializes parameters :return: None """ self.settings = settings self._task = None @property def task(self): if not self.settings["use_mlops"]: return None if self._task is not None: return self._task self._task = Task.init(project_name=self.settings["project_name"], task_name=self.settings["task_name"], auto_connect_frameworks=self.settings["connect_frameworks"]) return self._task def log_configuration(self, config_dict, name): self.task.connect(config_dict, name)
StarcoderdataPython
6632541
from django.http import HttpResponse, HttpResponseRedirect import json from django.core.mail import send_mail from django.core.exceptions import ObjectDoesNotExist from string import letters, digits import random from random import choice from django.conf import settings from grid_user.forms import CreateUserForm import xlab.settings from models import TempUser, User from slipstream.user.account import UserAccount import logging from django.shortcuts import render log = logging.getLogger("[GRID_USER]: ") def ajax_checkusername(request): datadict = {} username = request.POST.get('username', '') user = User.objects.filter(username=username) tempuser = TempUser.objects.filter(username=username) if user or tempuser: datadict['available'] = False datadict['username'] = username else: datadict['available'] = True datadict['username'] = username return HttpResponse(json.dumps(datadict), content_type="text/json") def ajax_register_user(request): if not request.is_ajax(): return HttpResponse(content="Invalid Request Method.", status=400) form = CreateUserForm(request.POST) if form.is_valid(): data = request.POST email = data['email'] firstname = data['firstname'] lastname = data['lastname'] password = data['password'] username = data['username'] key = ''.join(choice(letters + digits) for i in range(64)) log.info('Key Created: %s' % key) # Test for existing email / avatar name locally test = '' xtest = '' try: test = User.objects.get(firstname=firstname, lastname=lastname) xtest += "Firstname and Lastname exists" except ObjectDoesNotExist: pass try: test = User.objects.get(email=email) xtest += " Email exists" except ObjectDoesNotExist: pass try: test = User.objects.get(username=username) xtest += " Username exists" except ObjectDoesNotExist: pass x_user = UserAccount( data['firstname'], data['lastname'], data['password'], data['email'], ) activation_server = settings.ACCOUNT_SERVER_ADDRESS account_server = settings.ACCOUNT_SERVER_URL from_address = settings.ACCOUNT_ADMIN_EMAIL # Test for existing user on grid if not x_user.test_account(account_server) or xtest != '': #if xtest != '': datadict = {'status': False} datadict['err_message'] = 'Existing Account Of Same %s: Please register with different credentials'%xtest return HttpResponse(json.dumps(datadict), content_type="text/json") # Attempt to create a temporary user # try: # tmp_user = TempUser.objects.create_temp_user( # data['email'], data['firstname'], data['lastname'], # key, data['password'] # ) tmp_user ="" try: tmp_user = form.save(commit=False) tmp_user.activation_key = key tmp_user.save() except: datadict = {'status': False} datadict['err_message'] = 'Existing Account: Please register with different credentials' return HttpResponse(json.dumps(datadict), content_type="text/json") # activate_link = '%s:%s'%(request.META['SERVER_NAME'], request.META['SERVER_PORT']) send_mail('Account activation link', 'Please use the link to activate your account: %s/activate?key=%s' % (activation_server, key), from_address, [email]) datadict = {'status': True} datadict['firstname'] = firstname datadict['lastname'] = lastname datadict['email'] = email datadict['id'] = tmp_user.id return HttpResponse(json.dumps(datadict), content_type="text/json") else: datadict = {'status': False, 'error': form.errors} return HttpResponse( content=json.dumps(datadict), mimetype='application/json' ) def ajax_accounttype_user(request): if request.method == 'POST': lastrid = request.POST['user_id'] user = TempUser.objects.get(id=lastrid) user.accounttype = "basic membership" user.save() return HttpResponse(content_type="text/json", status=200) def ajax_checkpassword(request): datadict = {} if not request.is_ajax(): return HttpResponse(content="Invalid Request Method.", status=400) currentpass = request.POST.get('password', None) try: check = request.user.check_password(currentpass) except: check = False if check: datadict['status'] = True else: datadict['status'] = False return HttpResponse(json.dumps(datadict), content_type="text/json")
StarcoderdataPython
3502569
import os from tqdm import tqdm import json car_model_dir = '/data/Kaggle/pku-autonomous-driving/car_models_json' obj_output_dir = '/data/Kaggle/pku-autonomous-driving/car_model_obj' car_model_dict = {} for car_name in tqdm(os.listdir(car_model_dir)): with open(os.path.join(car_model_dir, car_name)) as json_file: json_dict = json.load(json_file) output_obj = os.path.join(obj_output_dir, car_name.replace('json', 'obj')) with open(output_obj, 'w') as f: f.write("# OBJ file\n") for vertices in json_dict['vertices']: f.write("v") for v in vertices: f.write(" %.4f" % v) f.write('\n') for faces in json_dict['faces']: f.write("f") for face in faces: f.write(" %d" % (face + 1)) f.write("\n")
StarcoderdataPython
140492
import itertools import time import numpy as np import scipy.ndimage as ndi import pytest from mrrt.utils import ImageGeometry, ellipse_im from mrrt.mri import mri_exp_approx __all__ = ["test_mri_exp_approx"] def _test_mri_exp_approx1( segments=4, nx=64, tmax=25e-3, dt=5e-6, autocorr=False, use_rmap=True, atype="hist,time,unif", nhist=None, ctest=True, verbose=False, tol=None, ): if verbose: from matplotlib import pyplot as plt from pyvolplot import subplot_stack ti = np.arange(0, tmax, dt) if True: # Generate a synthetic fieldmap fmap = np.zeros((64, 64)) fmap[6:27, 9:20] = 90 fmap[36:57, 9:20] = 120 fmap[5:26, 29:60] = 30 fmap[37:58, 29:60] = 60 if nx != 64: fmap = ndi.zoom(fmap, nx / 64, order=0) kernel_size = int(np.round(5 * nx / 64)) smoothing_kernel = np.ones((kernel_size, kernel_size)) / ( kernel_size ** 2 ) ndi.convolve(fmap, smoothing_kernel, output=fmap) fmap = fmap + 10 if verbose: plt.figure() plt.imshow(fmap, interpolation="nearest", cmap="gray") plt.title("Field Map") if use_rmap: # generate a T2 relaxation map rmap = ( np.asarray( [[0, 0, 18, 23, 0, 20 * 64 / nx], [6, 0, 8, 8, 0, 3 * 64 / nx]] ) * nx / 64 ) ig = ImageGeometry(shape=(nx, nx), fov=(nx, nx)) rmap, params = 1 * ellipse_im(ig, rmap, oversample=3) if verbose: plt.figure() plt.imshow(rmap, cmap="gray", interpolation="nearest") plt.title("Relax Map"), else: rmap = 0 zmap = rmap + (2j * np.pi) * fmap if not nhist: if not np.any(rmap > 0): nhist = [40] else: nhist = [40, 10] # autocorr_arg = ['autocorr', True] # test autocorrelation version if True: # convert to single precision ti = np.asarray(ti, dtype="float32") zmap = np.asarray(zmap, dtype="complex64") # single precision complex if isinstance(segments, int): pass elif isinstance(segments, (list, tuple)) and len(segments) == 2: pass else: raise ValueError("Invalid choice for segments") kwargs = {"autocorr": autocorr, "ctest": ctest, "verbose": verbose} tstart = time.time() if tol is None: B, C, hk, zk = mri_exp_approx( ti, zmap, segments, approx_type=(atype, nhist), **kwargs ) else: B, C, hk, zk = mri_exp_approx( ti, zmap, [segments, tol], approx_type=(atype, nhist), **kwargs ) print("\tduration=%g s" % (time.time() - tstart)) if ctest: Eh = np.exp(-ti[:, np.newaxis] * zk.ravel()[np.newaxis, :]) else: Eh = np.exp(-ti[:, np.newaxis] * zmap.ravel()[np.newaxis, :]) Ep = np.dot(B, C) # matrix product err = np.abs(Eh - Ep) mse = np.mean(np.power(err, 2), axis=0) if ctest: wrms = np.sqrt(np.dot(mse, hk) / np.sum(hk)) else: wrms = -1 if verbose: subplot_stack(1000 * ti, B, title="Basis Components", colors=["k", "m"]) nf = np.floor(nhist[0] / 4) if len(nhist) == 2: ik = np.array([0, nf, 2 * nf, 3 * nf, nhist[1] - 1]) + 2 * nf * nhist[1] ik = ik.tolist() elif len(nhist) == 1: ik = [0, nf, 2 * nf, 3 * nf, nhist[0] - 1] ik = np.asarray(ik, dtype=int) mse_mean = mse.mean() max_err = err.max() if verbose: fig = subplot_stack(1000 * ti, Eh[:, ik], colors=["g", "k"]) fig = subplot_stack( 1000 * ti, Ep[:, ik], colors=["b--", "r--"], fig=fig, title="True and Approx", ) fig = subplot_stack( 1000 * ti, err[:, ik], colors=["b--", "r--"], title="True and Approx", ) print( "\tfor L=%d, wrms=%g, mse = %g, max_err=%g" % (B.shape[1], wrms, mse_mean, max_err) ) return wrms, mse_mean, max_err @pytest.mark.parametrize( "use_rmap, alg", itertools.product( [False, True], [ "hist,svd", "hist,time,unif", "time,unif", "hist,fs,unif", "hist,fs,prctile", "hist,fs,kmeans", ], ), ) @pytest.mark.filterwarnings("ignore:the matrix subclass is not") def test_mri_exp_approx(use_rmap, alg, verbose=False): if alg == ["hist,fs,kmeans"]: pytest.importorskip("sklearn") tmax = 25e-3 # overall time duration (s) wrms, mse_mean, max_err = _test_mri_exp_approx1( segments=8, # number of segments nx=64, tmax=tmax, dt=1e-3, autocorr=False, use_rmap=use_rmap, atype=alg, nhist=None, ctest=True, verbose=verbose, ) if alg == "hist,fs,prctile" or (use_rmap and alg == "hist,fs,kmeans"): # may want to just remove these options, as they perform relatively # poorly assert mse_mean < 0.01 else: assert mse_mean < 1e-5
StarcoderdataPython
3355570
# Run Grtrans with rrjet model # The rrjet model is defined in "fluid_model_rrjet.py" # NOTE -- currently the power law emissivity is very slow because paralleization is off # First make grtrans with 'make' # Then run this in python import numpy as np import grtrans_batch as gr import matplotlib.pyplot as plt import scipy.ndimage.filters as filt ang=20. name = 'rrjet'+str(ang) mu = np.cos(ang*np.pi/180.) size = 300. uout = 1./(10*size) npix = 100 ngeo = 5000 cmperMpc = 3.086e24 MBH = 6.7e9 DTOBH = 16.528*cmperMpc RADPERUAS = np.pi/180./3600./1.e6 psize_rg = 2*size/npix cmperrg = 147708.8 * MBH psize_cm = psize_rg * cmperrg psize_rad = psize_cm / DTOBH psize_uas = psize_rad / RADPERUAS pp= 2.001 RF = 43.e9 cfun = 'jet' cfun2 = 'seismic' RERUN = True FNAME = 'grtrans_jet_compare.txt' def main(): # run grtrans x=gr.grtrans() x.write_grtrans_inputs(name+'.in', oname=name+'.out', fname='RRJET',phi0=0., betaeconst=1.e-4, ximax=10., nfreq=1,fmin=RF,fmax=RF, gmin=10., gmax=1.e35, p2=pp, p1=pp, #ename='SYNCHPL', ename='POLSYNCHPL', nvals=4, fpositron=0, spin=0., standard=1, uout=uout, mbh=MBH, #epcoefindx=[1,1,1,1,1,1,1], #epcoefindx=[1,1,1,1,0,0,0], mdotmin=1.57e15,mdotmax=1.57e15,nmdot=1, nmu=1,mumin=mu,mumax=mu, gridvals=[-size,size,-size,size], nn=[npix,npix,ngeo], hindf=1,hnt=1, muval=1.) if RERUN: x.run_grtrans() # load image x.read_grtrans_output() x.convert_to_Jy(DTOBH) #grt_obj=x save_grtrans_image(x) display_grtrans_image(x) def save_grtrans_image(grt_obj): """quick save, not ehtim compatible""" I_im = grt_obj.ivals[:,0,0].reshape(npix,npix).flatten() Q_im = grt_obj.ivals[:,1,0].reshape(npix,npix).flatten() U_im = grt_obj.ivals[:,2,0].reshape(npix,npix).flatten() V_im = grt_obj.ivals[:,3,0].reshape(npix,npix).flatten() # convert to Tb factor = 3.254e13/(RF**2 * psize_rad**2) I_im *= factor Q_im *= factor U_im *= factor V_im *= factor x = np.array([[i for i in range(npix)] for j in range(npix)]).flatten() y = np.array([[j for i in range(npix)] for j in range(npix)]).flatten() x -= npix/2 y -= npix/2 x = x*psize_uas y = y*psize_uas outdat = np.vstack((x.T,y.T,I_im.T,Q_im.T,U_im.T,V_im.T)).T np.savetxt('../rrjet_and_riaf/'+FNAME,outdat) #np.savetxt('../rrjet_and_riaf/grtrans_jet_compare_positron_noconv.txt',outdat) return def display_grtrans_image(grt_obj,nvec=20,veccut=0.005,blur_kernel=1.25): plt.close('all') I_im = grt_obj.ivals[:,0,0].reshape(npix,npix) Q_im = grt_obj.ivals[:,1,0].reshape(npix,npix) U_im = grt_obj.ivals[:,2,0].reshape(npix,npix) V_im = grt_obj.ivals[:,3,0].reshape(npix,npix) I_im = filt.gaussian_filter(I_im, (blur_kernel, blur_kernel)) Q_im = filt.gaussian_filter(Q_im, (blur_kernel, blur_kernel)) U_im = filt.gaussian_filter(U_im, (blur_kernel, blur_kernel)) V_im = filt.gaussian_filter(V_im, (blur_kernel, blur_kernel)) # convert to Tb factor = 3.254e13/(RF**2 * psize_rad**2) I_im *= factor Q_im *= factor U_im *= factor V_im *= factor # Polarization Vectors P_im = np.abs(Q_im + 1j*U_im) m_im = P_im/I_im thin = npix//nvec mask = I_im > veccut * np.max(I_im) mask2 = mask[::thin, ::thin] m = m_im[::thin, ::thin][mask2] x = (np.array([[i for i in range(npix)] for j in range(npix)])[::thin, ::thin]) x = x[mask2] y = (np.array([[j for i in range(npix)] for j in range(npix)])[::thin, ::thin]) y = y[mask2] a = (-np.sin(np.angle(Q_im+1j*U_im)/2)[::thin, ::thin]) a = a[mask2] #a = m*a b = ( np.cos(np.angle(Q_im+1j*U_im)/2)[::thin, ::thin]) b = b[mask2] #b = m*b P_im[np.logical_not(mask)]=0. m_im[np.logical_not(mask)]=0. # ticks xticks = ticks(npix, 2*size/npix) yticks = ticks(npix, 2*size/npix) # display Stokes I plt.figure(0) im = plt.imshow(I_im, cmap=plt.get_cmap(cfun), interpolation='gaussian') cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") cb.set_label('Tb (K)', fontsize=14) plt.title(("Stokes I, %.2f GHz " % (RF/1e9)), fontsize=16) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('x/rg') plt.ylabel('y/rg') # display Stokes Q plt.figure(1) im = plt.imshow(Q_im, cmap=plt.get_cmap(cfun2), interpolation='gaussian') cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") cb.set_label('Tb (K)', fontsize=14) plt.title(("Stokes Q, %.2f GHz " % (RF/1e9)), fontsize=16) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('x/rg') plt.ylabel('y/rg') # display Stokes U plt.figure(2) im = plt.imshow(U_im, cmap=plt.get_cmap(cfun2), interpolation='gaussian') cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") cb.set_label('Tb (K)', fontsize=14) plt.title(("Stokes U, %.2f GHz " % (RF/1e9)), fontsize=16) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('x/rg') plt.ylabel('y/rg') # display Stokes V plt.figure(3) im = plt.imshow(V_im, cmap=plt.get_cmap(cfun2), interpolation='gaussian') cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") cb.set_label('Tb (K)', fontsize=14) plt.title(("Stokes V, %.2f GHz " % (RF/1e9)), fontsize=16) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('x/rg') plt.ylabel('y/rg') # display P # plt.figure(4) # im = plt.imshow(P_im, cmap=plt.get_cmap(cfun), interpolation='gaussian') # cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") # cb.set_label('Tb (K)', fontsize=14) # plt.title(("P, %.2f GHz " % (RF/1e9)), fontsize=16) # plt.xticks(xticks[0], xticks[1]) # plt.yticks(yticks[0], yticks[1]) # plt.xlabel('x/rg') # plt.ylabel('y/rg') # # display m # plt.figure(5) # im = plt.imshow(m_im, cmap=plt.get_cmap('viridis'), interpolation='gaussian') # cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") # cb.set_label('P/I', fontsize=14) # plt.title(("P/I, %.2f GHz " % (RF/1e9)), fontsize=16) # plt.xticks(xticks[0], xticks[1]) # plt.yticks(yticks[0], yticks[1]) # plt.xlabel('x/rg') # plt.ylabel('y/rg') # display I with pol ticks plt.figure(6) im = plt.imshow(I_im, cmap=plt.get_cmap(cfun), interpolation='gaussian') cb = plt.colorbar(im, fraction=0.046, pad=0.04, orientation="vertical") cb.set_label('Tb (K)', fontsize=14) plt.title(("I, %.2f GHz " % (RF/1e9)), fontsize=16) plt.xticks(xticks[0], xticks[1]) plt.yticks(yticks[0], yticks[1]) plt.xlabel('x/rg') plt.ylabel('y/rg') plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.01*npix, units='x', pivot='mid', color='k', angles='uv', scale=1.0/thin) plt.quiver(x, y, a, b, headaxislength=20, headwidth=1, headlength=.01, minlength=0, minshaft=1, width=.005*npix, units='x', pivot='mid', color='w', angles='uv', scale=1.1/thin) plt.show() def ticks(axisdim, psize, nticks=8): """Return a list of ticklocs and ticklabels psize should be in desired units """ axisdim = int(axisdim) nticks = int(nticks) if not axisdim % 2: axisdim += 1 if nticks % 2: nticks -= 1 tickspacing = float((axisdim-1))/nticks ticklocs = np.arange(0, axisdim+1, tickspacing) - 0.5 ticklabels= np.around(psize * np.arange((axisdim-1)/2.0, -(axisdim)/2.0, -tickspacing), decimals=1) return (ticklocs, ticklabels) if __name__=='__main__': main()
StarcoderdataPython
6639444
<gh_stars>10-100 from tests.base import TestCase, main, assets, create_ocrd_file, create_ocrd_file_with_defaults from ocrd_utils import MIMETYPE_PAGE from ocrd_models import OcrdMets from ocrd_modelfactory import ( exif_from_filename, page_from_image, page_from_file ) SAMPLE_IMG = assets.path_to('kant_aufklaerung_1784/data/OCR-D-IMG/INPUT_0017.tif') SAMPLE_PAGE = assets.path_to('kant_aufklaerung_1784/data/OCR-D-GT-PAGE/PAGE_0017_PAGE.xml') class TestModelFactory(TestCase): def test_exif_from_filename(self): exif_from_filename(SAMPLE_IMG) with self.assertRaisesRegex(Exception, "Must pass 'image_filename' to 'exif_from_filename'"): exif_from_filename(None) def test_page_from_file(self): f = create_ocrd_file_with_defaults(mimetype='image/tiff', local_filename=SAMPLE_IMG, ID='file1') self.assertEqual(f.mimetype, 'image/tiff') p = page_from_file(f) self.assertEqual(p.pcGtsId, f.ID) self.assertEqual(p.get_Page().imageWidth, 1457) def test_page_from_file_page(self): f = create_ocrd_file_with_defaults(mimetype=MIMETYPE_PAGE, local_filename=SAMPLE_PAGE) p = page_from_file(f) self.assertEqual(p.get_Page().imageWidth, 1457) def test_page_from_file_no_local_filename(self): with self.assertRaisesRegex(ValueError, "input_file must have 'local_filename' property"): page_from_file(create_ocrd_file_with_defaults(mimetype='image/tiff')) def test_page_from_file_no_existe(self): with self.assertRaisesRegex(FileNotFoundError, "File not found: 'no-existe'"): mets = OcrdMets.empty_mets() ocrd_file = mets.add_file('FOO', ID='foo', local_filename='no-existe', mimetype='foo/bar') page_from_file(ocrd_file) def test_page_from_file_unsupported_mimetype(self): with self.assertRaisesRegex(ValueError, "Unsupported mimetype"): page_from_file(create_ocrd_file_with_defaults(local_filename=__file__, mimetype='foo/bar')) def test_imports_from_generateds(self): from ocrd_models.ocrd_page import MetadataItemType if __name__ == '__main__': main(__file__)
StarcoderdataPython
3385286
<filename>devices/master/splthread.py #!/usr/bin/env python # -*- coding: utf-8 -*- import sys import os import threading from abc import ABCMeta, abstractmethod class SplThread(metaclass=ABCMeta): '''Partly abstract class to implement threading & message handling ''' def __init__(self, msg_handler, child): self.msg_handler = msg_handler self.child = child @abstractmethod def _run(self): ''' starts the thread loop ''' pass @abstractmethod def _stop(self): ''' stops the thread loop ''' pass @abstractmethod def event_listener(self, queue_event): ''' handler for system events ''' pass @abstractmethod def query_handler(self, queue_event, max_result_count): ''' handler for system queries ''' pass def run(self): ''' starts the child thread ''' # Create a Thread with a function without any arguments #th = threading.Thread(target=_ws_main, args=(server,)) self.th = threading.Thread(target=self.child._run) # Start the thread self.th.setDaemon(True) self.th.start() def stop(self, timeout=0): ''' stops the child thread. If timeout > 0, it will wait timeout secs for the thread to finish ''' self.child._stop() if timeout > 0: self.th.join(timeout) return self.th.isAlive()
StarcoderdataPython
3581355
<reponame>kynk94/torch-firewood<gh_stars>1-10 from . import gan, semantic_segmentation
StarcoderdataPython
8129718
from django.conf import settings from django.core.urlresolvers import reverse from django.contrib.gis.db import models from django.contrib.gis.measure import D from django.db.utils import IntegrityError from django.template.defaultfilters import slugify from django.utils.translation import ugettext_lazy as _ from django.utils.html import strip_tags from django.db.models import Count from django.contrib.gis.db.models import Extent, Union from django.contrib.gis.geos import fromstr from django.db.models import Q import random from sorl.thumbnail import get_thumbnail import re import logging logger = logging.getLogger(__name__) # south introspection rules try: from south.modelsinspector import add_introspection_rules add_introspection_rules([], ['^django\.contrib\.gis\.db\.models\.fields\.PointField']) add_introspection_rules([], ['^django\.contrib\.gis\.db\.models\.fields\.MultiPolygonField']) except ImportError: pass def get_extent_for_openlayers(geoqueryset, srid): """ Accepts a GeoQuerySet and SRID. Returns the extent as a GEOS object in the Google Maps projection system favored by OpenLayers. The result can be directly passed out for direct use in a JavaScript map. """ extent = fromstr('MULTIPOINT (%s %s, %s %s)' % geoqueryset.extent(), srid=srid) extent.transform(4326) return extent class Event(models.Model): name = models.CharField(max_length=100, blank=True, null=True) slug = models.SlugField(max_length=100, blank=True, null=True) description = models.TextField(blank=True, null=True) def __unicode__(self): return self.name def save(self): """ Auto-populate an empty slug field from the MyModel name and if it conflicts with an existing slug then append a number and try saving again. """ if not self.slug: self.slug = slugify(self.name) # Where self.name is the field used for 'pre-populate from' while True: try: super(Event, self).save() # Assuming the IntegrityError is due to a slug fight except IntegrityError: match_obj = re.match(r'^(.*)-(\d+)$', self.slug) if match_obj: next_int = int(match_obj.group(2)) + 1 self.slug = match_obj.group(1) + '-' + str(next_int) else: self.slug += '-2' else: break class Neighborhood(models.Model): """ Neighborhood or town if no neighborhoods are available. """ n_id = models.CharField('Neighborhood ID', max_length=20, help_text='ID derived from GIS, not necessarily unique since we are mixing neighborhood types.') name = models.CharField(max_length=50) slug = models.SlugField(max_length=100, blank=True, null=True) geometry = models.MultiPolygonField(srid=26986) objects = models.GeoManager() class Meta: verbose_name = _('Neighborhood') verbose_name_plural = _('Neighborhoods') ordering = ['name'] def __unicode__(self): return self.name @models.permalink def get_absolute_url(self): return ('neighborhood', [slugify(self.name)]) def save(self, *args, **kwargs): """Auto-populate an empty slug field from the MyModel name and if it conflicts with an existing slug then append a number and try saving again. """ if not self.slug: self.slug = slugify(self.name) # Where self.name is the field used for 'pre-populate from' super(Neighborhood, self).save(*args, **kwargs) class Parktype(models.Model): name = models.CharField(max_length=50, blank=True, null=True) class Meta: verbose_name = _('Parktype') verbose_name_plural = _('Parktypes') def __unicode__(self): return self.name class Parkowner(models.Model): name = models.CharField(max_length=50, blank=True, null=True) class Meta: verbose_name = _('Parkowner') verbose_name_plural = _('Parkowners') def __unicode__(self): return self.name class Friendsgroup(models.Model): name = models.CharField(max_length=100) url = models.URLField(blank=True, null=True) class Parkimage(models.Model): """ Image taken in a park. """ image = models.ImageField(upload_to='parkimages') caption = models.TextField(default='', blank=True) hero_image = models.BooleanField(default=False) default = models.BooleanField(default=False) hide = models.BooleanField(default=False) class Meta: verbose_name = _('Parkimage') verbose_name_plural = _('Parkimages') ordering = ['pk'] def __unicode__(self): caption = getattr(self, 'caption', '') return '%i: %s' % (self.pk, caption) def get_thumbnail(self, include_large=False): TN_DEFAULT_WIDTH = 300 TN_DEFAULT_HEIGHT = 200 TN_DEFAULT_SIZE = '300x200' LARGE_SIZE = '950x600' TN_MED_LANDSCAPE = '600x400' TN_MED_PORTRAIT = '300x400' PLACEHOLDER = 'http://placehold.it/300x200' image = { 'src': PLACEHOLDER, 'masonry_src': PLACEHOLDER, 'caption': self.caption, 'default': self.default, 'width': TN_DEFAULT_WIDTH, 'height': TN_DEFAULT_HEIGHT } try: image['large_src'] = get_thumbnail(self.image, LARGE_SIZE, crop='center', quality=100).url tn = get_thumbnail(self.image, TN_DEFAULT_SIZE, crop='center', quality=80) image['src'], image['masonry_src'] = tn.url, tn.url #if if self.default: image['width'], image['height'] = tn.width, tn.height else: if random.random() < 0.75: image['ratio'] = self.image.width / self.image.height if image['ratio'] == 0: medium_image_portrait = get_thumbnail(self.image, TN_MED_PORTRAIT, crop='center', quality=100) image['src'], image['masonry_src'] = tn.url, medium_image_portrait.url image['width'], image['height'] = medium_image_portrait.width, medium_image_portrait.height else: medium_image_landscape = get_thumbnail(self.image, TN_MED_LANDSCAPE, crop='center', quality=100) image['src'], image['masonry_src'] = tn.url, medium_image_landscape.url image['width'], image['height'] = medium_image_landscape.width, medium_image_landscape.height except Exception as e: return None return image def thumbnail(self): if self.image: thumb = get_thumbnail(self.image.file, settings.ADMIN_THUMBS_SIZE, crop='center', quality=80) return u'<img width="%s" height="%s" src="%s" alt="%s" />' % (thumb.width, thumb.height, thumb.url, self.caption) else: return None thumbnail.short_description = 'Image' thumbnail.allow_tags = True get_thumbnail.allow_tags = True def get_parks_string(self): parks = [p.name for p in self.parks.all()] return ", ".join(parks) get_parks_string.short_description = 'Parks' class Park(models.Model): """ Park or similar Open Space. """ ACCESS_CHOICES = ( ('y', 'Yes'), ('n', 'No'), ('u', 'Unknown'), ) os_id = models.CharField('OS ID', max_length=9, null=True, blank=True, help_text='Refers to MassGIS OS_ID') name = models.CharField(max_length=100, blank=True, null=True) slug = models.SlugField(max_length=100, blank=True, null=True, unique=True) alt_name = models.CharField('Alternative name', max_length=100, blank=True, null=True) description = models.TextField(blank=True, null=True) address = models.CharField(max_length=50, blank=True, null=True) phone = models.CharField(max_length=50, blank=True, null=True) neighborhoods = models.ManyToManyField(Neighborhood, related_name='neighborhoods', blank=True) parktype = models.ForeignKey(Parktype, blank=True, null=True) parkowner = models.ForeignKey(Parkowner, blank=True, null=True) friendsgroup = models.ForeignKey("Friendsgroup", blank=True, null=True) events = models.ManyToManyField("Event", related_name="events", blank=True, null=True) access = models.CharField(max_length=1, blank=True, null=True, choices=ACCESS_CHOICES) area = models.FloatField(blank=True, null=True) images = models.ManyToManyField(Parkimage, blank=True, null=True, related_name='parks') featured = models.BooleanField(default=False) geometry = models.MultiPolygonField(srid=26986) objects = models.GeoManager() class Meta: verbose_name = _('Park') verbose_name_plural = _('Parks') def __unicode__(self): return self.name @classmethod def featured_with_images(cls): return ( cls.objects .annotate(num_of_images=Count('images')) .filter(featured=True, num_of_images__gt=0) ) @models.permalink def get_absolute_url(self): return ('park', ['%s-%d' % (slugify(self.name), self.id)]) def area_acres(self): return round((self.area / 4047), 1) def lat_long(self): self.geometry.transform(4326) return [self.geometry.centroid.y, self.geometry.centroid.x] def point_on_surface(self): self.geometry.transform(4326) return list(self.geometry.point_on_surface) def get_image_thumbnails(self, include_large=False): images = [] for i in self.images.filter(default=False): try: images.append(i.get_thumbnail(include_large=include_large)) except IOError, e: logger.error(e) except Exception as e: logger.error(e) if not images: for i in self.images.filter(default=True): try: images.append(i.get_thumbnail(include_large=include_large)) except IOError, e: logger.error(e) except Exception as e: logger.error(e) return images def to_external_document(self, user, include_large=False, include_extra_info=False): change_url = None if user.has_perm('parks.change_park'): change_url = reverse('admin:parks_park_change', args=(self.id,)) def image_format(park): image = park.get_image_thumbnails(include_large=include_large)[:1] return image[0] if image else {} facilities = Activity.objects.filter(activity__park=self.id).distinct() doc = { 'id': self.id, 'url': self.get_absolute_url(), 'name': self.name, 'area': self.area_acres(), 'description': self.description, 'images': self.get_image_thumbnails(include_large=include_large), 'access': self.get_access_display(), 'address': self.address, 'owner': self.parkowner.name, 'point_on_surface': self.point_on_surface(), 'change_url': change_url } if include_extra_info: filtered_queryset = Park.objects.filter(name=self.name) # doesn't yet transform correctly after aggregated extent = get_extent_for_openlayers(filtered_queryset, 26986) doc['nearby_parks'] = [{'id': p.pk, 'url': p.get_absolute_url(), 'name': p.name, 'image': image_format(p)} for p in self.nearest_parks_by_distance(0.25)] doc['recommended_parks'] = [{'id': p.pk, 'url': p.get_absolute_url(), 'name': p.name, 'image': image_format(p)} for p in self.recommended_parks()] doc['activities'] = [{'name': p.name, 'slug': p.slug, 'id': p.id } for p in facilities] doc['bbox'] = list(extent.coords) return doc def nearest_parks_by_distance(self, distance_in_miles): return Park.objects.filter(geometry__distance_lt=(self.geometry, D(mi=distance_in_miles))).filter(~Q(name=self.name)).distinct('name') def recommended_parks(self): return self.nearest_parks_by_distance(0.25).filter(parktype=self.parktype).filter(~Q(name=self.name)).distinct('name') # all_facilities = [] # for id in facilities: # all_facilities.push(id) # return Parks.objects.filter(pk__in=self.id).distinct() def get_facilities(self, park_id): """ Returns facilities as JSON for park id """ park = Park.objects.get(pk=park_id) facilities = Facility.objects.transform(4326).filter(park=park).select_related('facilitytype').prefetch_related('activity') features = [] for f in facilities: activities = [a.name for a in f.activity.all()] geojson_prop = dict( name=f.name, icon=f.facilitytype.icon.url, activities=activities, status=f.status, access=f.access, notes=f.notes, ) response = dict(type='FeatureCollection') return facilities def save(self, *args, **kwargs): self.area = self.geometry.area # FIXME: we need a better slugify routine self.slug = '%s-%d' % (slugify(self.name), self.id) super(Park, self).save(*args, **kwargs) try: # cache containing neighorhood # doesn't work with admin forms, m2m get cleared during admin save # FIXME: improve routine - compare neighborhoods we intersect with against already stored neighborhoods neighborhoods = Neighborhood.objects.filter(geometry__intersects=self.geometry) self.neighborhoods.clear() self.neighborhoods.add(*neighborhoods) except TypeError: self.neighborhoods = None class Activity(models.Model): name = models.CharField(max_length=50, blank=True, null=True) slug = models.SlugField(max_length=100, blank=True, null=True) class Meta: verbose_name = _('Activity') verbose_name_plural = _('Activities') ordering = ['name'] def __unicode__(self): return self.name def save(self, *args, **kwargs): if not self.slug: self.slug = slugify(self.name) # Where self.name is the field used for 'pre-populate from' super(Activity, self).save(*args, **kwargs) class Facilitytype(models.Model): name = models.CharField(max_length=50, blank=True, null=True) icon = models.ImageField(blank=False, upload_to="icons", null=False, help_text="Must be 32x37px to function properly") class Meta: verbose_name = _('Facilitytype') verbose_name_plural = _('Facilitytypes') def __unicode__(self): return self.name class Facility(models.Model): """ Facility in or outside a park. """ name = models.CharField(max_length=50, blank=True, null=True) facilitytype = models.ForeignKey(Facilitytype) activity = models.ManyToManyField(Activity, related_name='activity') location = models.CharField(max_length=50, blank=True, null=True, help_text='Address, nearby Landmark or similar location information.') status = models.CharField(max_length=50, blank=True, null=True) # FIXME: choices? park = models.ForeignKey(Park, blank=True, null=True) notes = models.TextField(blank=True,) access = models.TextField(blank=True,) geometry = models.PointField(srid=26986) objects = models.GeoManager() class Meta: verbose_name = _('Facility') verbose_name_plural = _('Facilities') def activity_string(self): out = [] for activity in self.activity.all(): out.append(activity.name) return ", ".join(out) activity_string.short_description = 'Activities' def parktype_string(self): return self.park.parktype def icon_url(self): if self.facilitytype.icon: return '%s' % (self.facilitytype.icon.url,) return '%sparks/img/icons/%s.png' % (settings.STATIC_URL, slugify(self.facilitytype)) def admin_url(self): return reverse('admin:parks_facility_change', args=(self.id,)) def __unicode__(self): return self.name def save(self, *args, **kwargs): try: # cache containing park self.park = Park.objects.get(geometry__contains=self.geometry) except: self.park = None super(Facility, self).save(*args, **kwargs) class Story(models.Model): RATING_CHOICES = ( ('1', "Happy"), ('2', "Blah"), ('3', "Idea"), ('4', "Sad"), ) date = models.DateTimeField(auto_now_add=True) title = models.CharField(max_length=100, blank=False, null=False) rating = models.CharField(max_length=1, default='0', blank=False, null=False, choices=RATING_CHOICES) text = models.TextField(blank=False, null=False) email = models.EmailField(max_length=100, blank=False, null=False) park = models.ForeignKey(Park, blank=True, null=False) objectionable_content = models.BooleanField(default=False) class Meta: ordering = ('-date',) @models.permalink def get_absolute_url(self): return ('parks.views.story', [str(self.id)])
StarcoderdataPython
3242636
<filename>run_experiments.py #!/usr/bin/env python # -*- coding: utf-8 -*- import json from collections import OrderedDict import spam PATHS = [ 'data/csv/enron1_clean_dataset.csv', 'data/csv/enron2_clean_dataset.csv', 'data/csv/enron3_clean_dataset.csv', 'data/csv/enron4_clean_dataset.csv', 'data/csv/enron5_clean_dataset.csv', 'data/csv/enron6_clean_dataset.csv', ] if __name__ == '__main__': for path in PATHS: with open(CONFIG_FILENAME, 'r') as f: CONFIG = json.load(f, object_pairs_hook=OrderedDict) CONFIG['preprocess']['params']['read_csv_filepath'] = path with open(CONFIG_FILENAME, 'w+') as f: json.dump(CONFIG, f, indent=4) spam() print('\n{}\n'.format('=' * 50))
StarcoderdataPython
3516490
<filename>user_test.py import unittest from user import User class TestUser(unittest.TestCase): ''' Test class that defines test cases for our accounts class behaviours. Args: unittest.TestCase: Testcase class that helps in creating test cases ''' def setUp(self): ''' set up method to clear before each test case. ''' self.new_user = User("<NAME>","<EMAIL>", "12345") def tearDown(self): ''' Method that does clean up after each test case has run ''' User.user_list = [] def test_account_init(self): ''' Test case to test if the object is initializzed properly ''' self.assertEqual(self.new_user.login_name, "<NAME>") self.assertEqual(self.new_user.email,"<EMAIL>") self.assertEqual(self.new_user.password, "<PASSWORD>") def test_save_user(self): ''' Test case to test that the user object is saved into the user_list ''' self.new_user.save_user() self.assertEqual(len(User.user_list),1) def test_save_multiple_users(self): ''' test case to see if multiple users can be saved into user_list ''' self.new_user.save_user() User("<NAME>","<EMAIL>","12345").save_user() self.assertEqual(len(User.user_list),2) def test_user_login(self): ''' Test case to test user login ''' self.new_user.save_user() test_user = User("<NAME>","<EMAIL>","12345") test_user.save_user() find_user = User.user_login("<EMAIL>") self.assertEqual(find_user.email,test_user.email) def test_user_exists(self): ''' Test case to acertain that a user exists ''' self.new_user.save_user() test_user = User("<NAME>","<EMAIL>","12345").save_user() user_exists = User.user_exist("<EMAIL>") self.assertTrue(user_exists) if __name__ == '__main__': unittest.main()
StarcoderdataPython
252755
"""Test cases completing Checkout step 2""" from module_06.src.elements.inventory_item import InventoryItem from module_06.src.pages.inventory import InventorySortOptions from module_06.src.pages.login import LoginPage from module_06.src.pages.cart import CartPage from module_06.tests.common.test_base import TestBase from module_06.src.pages.checkout_first import CheckoutFirstStep from module_06.src.pages.checkout_overview import CheckoutPage _DEF_USER = 'standard_user' _DEF_PASSWORD = '<PASSWORD>' class TestCheckoutStep2(TestBase): def test_completing_checkout(self): login = LoginPage(self.driver) login.open() inventory_page = login.login(_DEF_USER, _DEF_PASSWORD) first_item = inventory_page.products[0] first_item: InventoryItem details_page = first_item.open_details() details_page.add_to_cart() cart_page = inventory_page.open_cart() cart_page.checkout() contact_info_page = CheckoutFirstStep(self.driver) contact_info_page.fill_info("Angie", "Garcia", "44540") contact_info_page.checkout() checkout_page = CheckoutPage(self.driver) print('\n') print(f'Label: {checkout_page.get_title_text()}') assert checkout_page.get_title_text() == 'CHECKOUT: OVERVIEW', 'Checkout page title should be CHECKOUT: OVERVIEW' checkout_page.finish_buy() assert checkout_page.get_thanks_text() == 'THANK YOU FOR YOUR ORDER', 'Success page label should be THANK YOU FOR YOUR ORDER' assert checkout_page.get_img() != 'False', 'Image Pony OK' def test_validation_prices(self): login = LoginPage(self.driver) login.open() inventory_page = login.login(_DEF_USER, _DEF_PASSWORD) first_item = inventory_page.products[0] first_item: InventoryItem details_page = first_item.open_details() details_page.add_to_cart() cart_page = inventory_page.open_cart() cart_page.checkout() contact_info_page = CheckoutFirstStep(self.driver) contact_info_page.fill_info("Angie", "Garcia", "44540") contact_info_page.checkout() checkout_page = CheckoutPage(self.driver) assert checkout_page.get_subtotal_text() == "Item total: $29.99" assert checkout_page.get_tax_text() == "Tax: $2.40" assert checkout_page.get_total_text() == "Total: $32.39" def test_cancel_checkout(self): login = LoginPage(self.driver) login.open() inventory_page = login.login(_DEF_USER, _DEF_PASSWORD) first_item = inventory_page.products[0] first_item: InventoryItem details_page = first_item.open_details() details_page.add_to_cart() cart_page = inventory_page.open_cart() cart_page.checkout() contact_info_page = CheckoutFirstStep(self.driver) contact_info_page.fill_info("Angie", "Garcia", "44540") contact_info_page.checkout() checkout_page = CheckoutPage(self.driver) checkout_page.cancel_checkout() assert inventory_page.get_label() == 'PRODUCTS', 'Inventory page label should be Products'
StarcoderdataPython
8127666
# -*- coding: utf-8 -*- from functools import partial from trytond.model import ModelView, ModelSQL, fields, Unique from trytond.pool import PoolMeta from trytond.pyson import Eval from trytond.transaction import Transaction from nereid import url_for, current_website from flask import json from babel import numbers __all__ = [ 'Template', 'Product', 'ProductVariationAttributes', 'ProductAttribute', ] __metaclass__ = PoolMeta class Template: "Product Template" __name__ = 'product.template' variation_attributes = fields.One2Many( 'product.variation_attributes', 'template', 'Variation Attributes', ) @classmethod def __setup__(cls): super(Template, cls).__setup__() cls._error_messages.update({ 'missing_attributes': "Please define following attributes for product %s: %s" }) def validate_variation_attributes(self): for product in self.products_displayed_on_eshop: product.validate_attributes() @classmethod def validate(cls, templates): super(Template, cls).validate(templates) for template in templates: template.validate_variation_attributes() def _get_product_variation_data(self): """ This method returns the variation data in a serializable format for the main API. Extend this module to add data that your customization may need. In most cases, just extending the serialize api method in product and variation should be sufficient. """ variation_attributes = map( lambda variation: variation.serialize(), self.variation_attributes ) variants = [] for product in self.products_displayed_on_eshop: variant_data = product.serialize(purpose='variant_selection') variant_data['attributes'] = {} for variation in self.variation_attributes: if variation.attribute.type_ == 'selection': # Selection option objects are obviously not serializable # So get the name variant_data['attributes'][variation.attribute.id] = \ str( product.get_attribute_value(variation.attribute).id ) else: variant_data['attributes'][variation.attribute.name] = \ product.get_attribute_value(variation.attribute) variants.append(variant_data) rv = { 'variants': variants, 'variation_attributes': variation_attributes, } return rv def get_product_variation_data(self): """ Returns json data for product for variants. The data returned by this method should be sufficient to render a product selection interface based on variation data. The structure of the data returned is:: { 'variants': [ # A list of active records of the variants if not # requested as JSON. If JSON, the record is serialized # with type JSON. { # see documentation of the serialize method # on product.product to see values sent. } ], 'variation_attributes': [ { # see documentation of the serialize method # on product.varying_attribute to see values sent. } ... ] } .. tip:: If your downstream module needs more information in the JSON, subclass and implement _get_product_variation_data which returns a dictionary. Otherwise, it would require you to deserialize, add value and then serialize again. """ return json.dumps(self._get_product_variation_data()) class Product: "Product" __name__ = 'product.product' @classmethod def __setup__(cls): super(Product, cls).__setup__() cls._error_messages.update({ 'missing_attributes': "Please define following attributes for product %s: %s" }) @classmethod def copy(cls, products, default=None): with Transaction().set_context(_copy=True): # Inject a context variable to let other methods know that # control is coming from copy method. return super(Product, cls).copy(products, default) def validate_attributes(self): """Check if product defines all the attributes specified in template variation attributes. """ if Transaction().context.get('_copy'): # While copying, attributes are added later so first time # validation will always result in error saying there are # missing attributes, hence skip the validation if its coming # from copy method. return if not self.displayed_on_eshop: return required_attrs = set( [v.attribute for v in self.template.variation_attributes] ) missing = required_attrs - \ set(map(lambda attr: attr.attribute, self.attributes)) if missing: missing = map(lambda attr: attr.name, missing) self.raise_user_error( "missing_attributes", (self.rec_name, ', '.join(missing)) ) @classmethod def validate(cls, products): super(Product, cls).validate(products) for product in products: product.validate_attributes() def get_attribute_value(self, attribute, silent=True): """ :param attribute: Active record of attribute """ for product_attr in self.attributes: if product_attr.attribute == attribute: return getattr( product_attr, 'value_%s' % attribute.type_ ) else: if silent: return True raise AttributeError(attribute.name) def serialize(self, purpose=None): """ Return serializable dictionary suitable for use with variant selection. """ if purpose != 'variant_selection': return super(Product, self).serialize(purpose) currency_format = partial( numbers.format_currency, currency=current_website.company.currency.code, locale=current_website.default_locale.language.code ) return { 'id': self.id, 'rec_name': self.rec_name, 'name': self.name, 'code': self.code, 'price': currency_format(self.sale_price(1)), 'url': url_for('product.product.render', uri=self.uri), 'image_urls': [ { 'large': ( image.transform_command().thumbnail(500, 500, 'a') .url() ), 'thumbnail': ( image.transform_command().thumbnail(120, 120, 'a') .url() ), 'regular': image.url, } for image in self.get_images() ], } class ProductVariationAttributes(ModelSQL, ModelView): "Variation attributes for product template" __name__ = 'product.variation_attributes' sequence = fields.Integer('Sequence') template = fields.Many2One('product.template', 'Template', required=True) attribute = fields.Many2One( 'product.attribute', 'Attribute', required=True, domain=[('sets', '=', Eval('_parent_template', {}).get('attribute_set', -1))], ) widget = fields.Selection([ ('dropdown', 'Dropdown'), ('swatches', 'Swatches'), ], 'Widget', required=True) @staticmethod def default_widget(): return 'dropdown' @staticmethod def default_sequence(): return 10 def serialize(self, purpose=None): """ Returns serialized version of the attribute:: { 'sequence': 1, # Integer id to determine order 'name': 'shirt color', # Internal name of the attribute 'display_name': 'Color', # (opt) display name of attr 'rec_name': 'Color', # The name that should be shown 'widget': 'swatch', # clue on how to render widget 'options': [ # id, value of the options available to choose from (12, 'Blue'), (13, 'Yellow'), ... ] } """ if self.attribute.type_ == 'selection': # The attribute type needs options to choose from. # Send only the options that the products displayed on webshop # can have, instead of the exhaustive list of attribute options # the attribute may have. # # For example, the color attribute values could be # ['red', 'yellow', 'orange', 'green', 'black', 'blue'] # but the shirt itself might only be available in # ['red', 'yellow'] # # This can be avoided by returning options based on the product # rather than on the attributes list of values options = set() for product in self.template.products_displayed_on_eshop: value = product.get_attribute_value(self.attribute) options.add((value.id, value.name)) else: options = [] return { 'sequence': self.sequence, 'name': self.attribute.name, 'display_name': self.attribute.display_name, 'widget': self.widget, 'options': list(options), 'attribute_id': self.attribute.id, } class ProductAttribute: __name__ = 'product.attribute' @classmethod def __setup__(cls): super(ProductAttribute, cls).__setup__() table = cls.__table__() cls._sql_constraints += [ ('unique_name', Unique(table, table.name), 'Attribute name must be unique!'), ]
StarcoderdataPython
5157271
import traceback from _pytest.logging import LogCaptureFixture from click.testing import Result def assert_dict_key_and_val_in_stdout(dict_, stdout): """Use when stdout contains color info and command chars""" for key, val in dict_.items(): if isinstance(val, dict): assert key in stdout assert_dict_key_and_val_in_stdout(val, stdout) else: assert key in stdout assert str(val) in stdout def assert_no_logging_messages_or_tracebacks(my_caplog, click_result): """ Use this assertion in all CLI tests unless you have a very good reason. Without this assertion, it is easy to let errors and tracebacks bubble up to users without being detected, unless you are manually inspecting the console output (stderr and stdout), as well as logging output from every test. Usage: ``` def test_my_stuff(caplog): ... result = runner.invoke(...) ... assert_no_logging_messages_or_tracebacks(caplog, result) ``` :param my_caplog: the caplog pytest fixutre :param click_result: the Result object returned from click runner.invoke() """ assert_no_logging_messages(my_caplog) assert_no_tracebacks(click_result) def assert_no_logging_messages(my_caplog): """ Assert no logging output messages. :param my_caplog: the caplog pytest fixutre """ assert isinstance( my_caplog, LogCaptureFixture ), "Please pass in the caplog object from your test." messages = my_caplog.messages assert isinstance(messages, list) if messages: print("Found logging messages:\n") print("\n".join([m for m in messages])) assert not messages def assert_no_tracebacks(click_result): """ Assert no tracebacks. :param click_result: the Result object returned from click runner.invoke() """ assert isinstance( click_result, Result ), "Please pass in the click runner invoke result object from your test." if click_result.exc_info: # introspect the call stack to make sure no exceptions found there way through # https://docs.python.org/2/library/sys.html#sys.exc_info _type, value, _traceback = click_result.exc_info if not isinstance(value, SystemExit): # SystemExit is a known "good" exit type print("".join(traceback.format_tb(_traceback))) assert False, "Found exception of type {} with message {}".format( _type, value ) if not isinstance(click_result.exception, SystemExit): # Ignore a SystemeExit, because some commands intentionally exit in an error state assert not click_result.exception, "Found exception {}".format( click_result.exception ) assert ( "traceback" not in click_result.output.lower() ), "Found a traceback in the console output: {}".format(click_result.output) assert ( "traceback" not in click_result.stdout.lower() ), "Found a traceback in the console output: {}".format(click_result.stdout) try: assert ( "traceback" not in click_result.stderr.lower() ), "Found a traceback in the console output: {}".format(click_result.stderr) except ValueError as ve: # sometimes stderr is not captured separately pass
StarcoderdataPython
12807671
<filename>.leetcode/781.rabbits-in-forest.py # @lc app=leetcode id=781 lang=python3 # # [781] Rabbits in Forest # # https://leetcode.com/problems/rabbits-in-forest/description/ # # algorithms # Medium (55.99%) # Likes: 563 # Dislikes: 446 # Total Accepted: 32.1K # Total Submissions: 57.5K # Testcase Example: '[1,1,2]' # # There is a forest with an unknown number of rabbits. We asked n rabbits "How # many rabbits have the same color as you?" and collected the answers in an # integer array answers where answers[i] is the answer of the i^th rabbit. # # Given the array answers, return the minimum number of rabbits that could be # in the forest. # # # Example 1: # # # Input: answers = [1,1,2] # Output: 5 # Explanation: # The two rabbits that answered "1" could both be the same color, say red. # The rabbit that answered "2" can't be red or the answers would be # inconsistent. # Say the rabbit that answered "2" was blue. # Then there should be 2 other blue rabbits in the forest that didn't answer # into the array. # The smallest possible number of rabbits in the forest is therefore 5: 3 that # answered plus 2 that didn't. # # # Example 2: # # # Input: answers = [10,10,10] # Output: 11 # # # # Constraints: # # # 1 <= answers.length <= 1000 # 0 <= answers[i] < 1000 # # # # @lc tags=hash-table;string;stack # @lc imports=start from imports import * # @lc imports=end # @lc idea=start # # 深林里有兔子,求兔子数量,问n只兔子,多少与其颜色相同的兔子。 # 统计。 # # @lc idea=end # @lc group= # @lc rank= # @lc code=start class Solution: def numRabbits(self, answers: List[int]) -> int: d = defaultdict(int) for a in answers: d[a + 1] += 1 res = 0 for c in d: v = d[c] t = ((v - 1) // c + 1) * c res += t return res pass # @lc code=end # @lc main=start if __name__ == '__main__': print('Example 1:') print('Input : ') print('answers = [1,1,2]') print('Exception :') print('5') print('Output :') print(str(Solution().numRabbits([1, 1, 2]))) print() print('Example 2:') print('Input : ') print('answers = [10,10,10]') print('Exception :') print('11') print('Output :') print(str(Solution().numRabbits([10, 10, 10]))) print() pass # @lc main=end
StarcoderdataPython
5040711
"""Binarized model.""" import numpy as np from .base_model import BaseModel from ...core import Task class BinarizedClassifier(BaseModel): def __init__(self, model, data_type, label_index): """ Initialize a Model. Args: model (torch.nn.Module): model to wrap. data_type (depiction.core.DataType): data type. label_index (int): index of the label to consider as positive. """ super(BinarizedClassifier, self).__init__(Task.BINARY, data_type) self.model = model self.label_index = label_index def predict(self, sample, *args, **kwargs): """ Run the model for inference on a given sample and with the provided parameters. Args: sample (np.ndarray): an input sample for the model. args (list): list of arguments for prediction. kwargs (dict): list of key-value arguments for prediction. Returns: int: 1 or 0 depending on the highest logit. """ y = self.model.predict(sample, *args, **kwargs) return (np.argmax(y, axis=1) == self.label_index).astype(np.int)
StarcoderdataPython
8130001
class Queen: def __init__(self, row, column): if row < 0 or row > 7 or column < 0 or column > 7: raise ValueError(r".+") self.row = row self.col = column def can_attack(self, another_queen): if self.row == another_queen.row and self.col == another_queen.col: raise ValueError(r".+") return self.row == another_queen.row \ or self.col == another_queen.col \ or abs(self.row - another_queen.row) == abs(self.col - another_queen.col)
StarcoderdataPython
11374070
# Variables with Global Scope name = 'XXX' employee_id = 0 salary = 0.0 is_manager = False def get_employee_details(): print("Starting the Function") name = input('Enter your name: ') # Creating the Local Variable print(f"Local Name: {name}") print("Starting the Program") get_employee_details() # Invoking the function print(f"Name: {name}")
StarcoderdataPython
3269358
from axiom.test.historic.stubloader import StubbedTest from xmantissa.ixmantissa import INavigableElement from xquotient.compose import Composer, Drafts class DraftsUpgradeTest(StubbedTest): """ Test that the Drafts item has been removed and is no longer a powerup for a composer. """ def test_upgrade(self): self.assertEqual(self.store.count(Drafts), 0) composer = self.store.findUnique(Composer) for pup in composer.powerupsFor(INavigableElement): self.failIf(isinstance(pup, Drafts))
StarcoderdataPython
8026000
#! /usr/bin/python # # riak_python_delete.py # # Feb/09/2015 # # ------------------------------------------------------------------ import cgi import sys # sys.path.append ('/var/www/data_base/common/python_common') # from cgi_manipulate import parse_parameter from curl_get import curl_delete_proc # ------------------------------------------------------------------ # print ("Content-type: text/html\n\n") # # url_base = 'http://host_ubuntu1:8098/riak/shimane' # array_bb = parse_parameter () # for it in range (len(array_bb)): key_in = array_bb[it] url_target = url_base + '/' + key_in curl_delete_proc (url_target) # print ("*** OK ***<br />") # # ---------------------------------------------------------------
StarcoderdataPython
9627250
<filename>run.py<gh_stars>0 import os import yaml import arxiv import textwrap import smtplib, ssl from time import sleep from pathlib import Path from datetime import date, datetime today = date.today() def build_query(domains, keyword): query = '(' for i, domain in enumerate(domains): query += f'cat:{domain}' if i != len(domains) - 1: query += ' OR ' query += f') AND ({keyword})' return query def build_content(config): domains = config['domains'] keywords = config['keywords'] query_config = config['query_config'] total_mail = len(config['keywords']) subject_placeholder = 'arXiv newsletter ' + str(today) + ' {index}/' + str(total_mail) content_placeholder = '\n' + '*' * 35 + '\n ' + subject_placeholder + ' \n' + '*' * 35 + '\n' entry_placeholder = '{index}. {title}\n{authors}\nPublished at: {publish}\nUpdated at: {update}\nCategories: {categories}\n{notes}\n{link}\n\nAbstract:\n{abstract}\n' messages = [] for i, keyword in enumerate(keywords): query = build_query(domains, keyword) while True: try: results = arxiv.query(query=query, **query_config) break except: pass entries = '' for j, result in enumerate(results): entry = entry_placeholder.format( index=j + 1, title=result.title, authors=', '.join(result.authors), publish=result.published, update=result.updated, categories=', '.join([tag.term for tag in result.tags]), link=result.arxiv_url, abstract=result.summary, notes=f'Comments: {result.arxiv_comment}\n' if result.arxiv_comment is not None else '' ) entries += entry + '\n' subject = subject_placeholder.format(index=i + 1) content = content_placeholder.format(index=i + 1) content += '\nQuery: ' + keyword + '\n\n' + entries # content = textwrap.wrap(content, width=80, replace_whitespace=False) # content = '\n'.join(content) messages.append((subject, content)) return messages def send_mail(config): mail_config = config['mail'] smtp_server = mail_config['server'] port = mail_config['port'] sender = mail_config['user'] password = mail_config['password'] context = ssl.create_default_context() comments = '\nPowered by arXiv-newsletter \nhttps://github.com/SXKDZ/arXiv-newsletter\n' messages = build_content(config) for recipient in mail_config['recipient']: for i, each_message in enumerate(messages): subject, content = each_message header = f'To: {recipient}\nFrom: arXiv-bot <{sender}>\nSubject: {subject}\n' message = header + content + comments print(header) with open(f'{today}/{i + 1}.txt', 'w+') as f: f.write(message) try: with smtplib.SMTP_SSL(smtp_server, port, context=context) as server: server.login(sender, password) server.sendmail(sender, recipient, message.encode('ascii', 'ignore').decode('ascii')) except smtplib.SMTPDataError as e: print(e.smtp_error) print() def main(): os.chdir(Path(__file__).parent.absolute()) try: os.mkdir(f'{today}') except OSError: pass with open('config.yml', 'r') as f: config = yaml.load(f, Loader=yaml.SafeLoader) send_mail(config) if __name__ == '__main__': main()
StarcoderdataPython
5193340
#!/usr/bin/env python3 # coding: utf8 # Author: <NAME>, 2015 ''' Send an email with attachments. ''' # Adapted from: # http://stackoverflow.com/a/3363254/5272432 # http://stackoverflow.com/questions/73781 import smtplib from os.path import basename from collections import namedtuple from subprocess import Popen, PIPE from email.mime.application import MIMEApplication from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText from email.utils import COMMASPACE, formatdate ConnectionSet = namedtuple('ConnectionSet', 'address server port user pwd') def send_mail(send_from, send_to, connection, **msg_contents): ''' Send an email with attachments. ''' if not isinstance(send_to, list): raise TypeError('Argument `send_to`: expected list, got %s' % type(send_to)) msg = compose_message(send_from, send_to, **msg_contents) if connection.server: # Use a remote SMTP server. send_with_smtplib(msg, send_from, send_to, connection) else: # Use Unix `sendmail`. send_with_ssmtp(msg) def compose_message(send_from, send_to, subject='', text='', files=()): ''' Generate a properly formatted MIME message. ''' msg = MIMEMultipart() msg['From'] = send_from msg['To'] = COMMASPACE.join(send_to) msg['Date'] = formatdate(localtime=True) msg['Subject'] = subject msg.attach(MIMEText(text)) for f in files or []: with open(f, "rb") as fil: msg.attach(MIMEApplication( fil.read(), Content_Disposition='attachment; filename="%s"' % basename(f), Name=basename(f) )) return msg.as_string() def send_with_ssmtp(msg): ''' Use Unix' sendmail/ssmtp command for sending. ''' p = Popen(['sendmail', '-t', '-oi'], stdin=PIPE) p.communicate(msg.encode('utf8')) def send_with_smtplib(msg, send_from, send_to, connection): ''' Login to an SMTP server for sending. ''' server = smtplib.SMTP(connection.server, connection.port) server.ehlo() server.starttls() server.login(connection.user, connection.pwd) server.sendmail(send_from, send_to, msg) server.close()
StarcoderdataPython
8156844
"""! @brief Templates for tests of SyncPR (oscillatory network based on Kuramoto model for pattern recognition). @authors <NAME> (<EMAIL>) @date 2014-2020 @copyright BSD-3-Clause """ # Generate images without having a window appear. import matplotlib; matplotlib.use('Agg'); from pyclustering.nnet import solve_type; from pyclustering.nnet.syncpr import syncpr, syncpr_visualizer; class SyncprTestTemplates: @staticmethod def templateOutputDynamic(solver, ccore): net = syncpr(5, 0.1, 0.1, ccore); output_dynamic = net.simulate(10, 10, [-1, 1, -1, 1, -1], solver, True); assert len(output_dynamic) == 11; # 10 steps without initial values. @staticmethod def templateOutputDynamicLengthStaticSimulation(collect_flag, ccore_flag): net = syncpr(5, 0.1, 0.1, ccore_flag); output_dynamic = net.simulate_static(10, 10, [-1, 1, -1, 1, -1], solution = solve_type.FAST, collect_dynamic = collect_flag); if (collect_flag is True): assert len(output_dynamic) == 11; # 10 steps without initial values. else: assert len(output_dynamic) == 1; @staticmethod def templateOutputDynamicLengthDynamicSimulation(collect_flag, ccore_flag): net = syncpr(5, 0.1, 0.1, ccore_flag); output_dynamic = net.simulate_dynamic([-1, 1, -1, 1, -1], solution = solve_type.FAST, collect_dynamic = collect_flag); if (collect_flag is True): assert len(output_dynamic) > 1; else: assert len(output_dynamic) == 1; @staticmethod def templateIncorrectPatternForSimulation(pattern, ccore_flag): net = syncpr(10, 0.1, 0.1, ccore=ccore_flag); try: net.simulate(10, 10, pattern); except: return; assert False; @staticmethod def templateTrainNetworkAndRecognizePattern(ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); patterns = []; patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; net.train(patterns); # recognize it for i in range(len(patterns)): output_dynamic = net.simulate(10, 10, patterns[i], solve_type.RK4, True); ensembles = output_dynamic.allocate_sync_ensembles(0.5); assert len(ensembles) == 2; assert len(ensembles[0]) == len(ensembles[1]); # sort results ensembles[0].sort(); ensembles[1].sort(); assert (ensembles[0] == [0, 1, 2, 3, 4]) or (ensembles[0] == [5, 6, 7, 8, 9]); assert (ensembles[1] == [0, 1, 2, 3, 4]) or (ensembles[1] == [5, 6, 7, 8, 9]); @staticmethod def templateIncorrectPatternForTraining(patterns, ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); try: net.train(patterns); except: return; assert False; @staticmethod def templatePatternVisualizer(collect_dynamic, ccore_flag = False): net = syncpr(5, 0.1, 0.1, ccore = ccore_flag); output_dynamic = net.simulate(10, 10, [-1, 1, -1, 1, -1], solve_type.RK4, collect_dynamic); syncpr_visualizer.show_pattern(output_dynamic, 5, 2); syncpr_visualizer.animate_pattern_recognition(output_dynamic, 1, 5); @staticmethod def templateMemoryOrder(ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); patterns = []; patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; net.train(patterns); assert net.memory_order(patterns[0]) < 0.8; assert net.memory_order(patterns[1]) < 0.8; for pattern in patterns: net.simulate(20, 10, pattern, solve_type.RK4); memory_order = net.memory_order(pattern); assert (memory_order > 0.95) and (memory_order <= 1.000005); @staticmethod def templateStaticSimulation(ccore_falg): net = syncpr(10, 0.1, 0.1, ccore_falg); patterns = []; patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; net.train(patterns); net.simulate_static(20, 10, patterns[0], solve_type.RK4); memory_order = net.memory_order(patterns[0]); assert (memory_order > 0.95) and (memory_order <= 1.000005); @staticmethod def templateDynamicSimulation(ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); patterns = []; patterns += [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; net.train(patterns); net.simulate_dynamic(patterns[0], order = 0.998, solution = solve_type.RK4); memory_order = net.memory_order(patterns[0]); assert (memory_order > 0.998) and (memory_order <= 1.0); @staticmethod def templateGlobalSyncOrder(ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); patterns = [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; global_sync_order = net.sync_order(); assert (global_sync_order < 1.0) and (global_sync_order > 0.0); net.train(patterns); global_sync_order = net.sync_order(); assert (global_sync_order < 1.0) and (global_sync_order > 0.0); @staticmethod def templateLocalSyncOrder(ccore_flag): net = syncpr(10, 0.1, 0.1, ccore_flag); patterns = [ [1, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -1, -1, -1, -1, 1, 1, 1, 1, 1] ]; local_sync_order = net.sync_local_order(); assert (local_sync_order < 1.0) and (local_sync_order > 0.0); net.train(patterns); local_sync_order = net.sync_local_order(); assert (local_sync_order < 1.0) and (local_sync_order > 0.0); @staticmethod def templateIncorrectPatternValues(ccore_flag): patterns = []; patterns += [ [2, 1, 1, 1, 1, -1, -1, -1, -1, -1] ]; patterns += [ [-1, -2, -1, -1, -1, 1, 1, 1, 1, 1] ]; SyncprTestTemplates.templateIncorrectPatternForTraining(patterns, ccore_flag);
StarcoderdataPython
104712
import urllib.request import re import argparse import sys import os from time import sleep __version__ = "1.0" banner = """ \033[1m\033[91m .d888888b. d88888888b 8888 8888 8888 8888 8888 8888 .d888888b. 8888 8888 d88888888b 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 8888 d88P 8888 8888 8888 888888888888888b. 8888 8888 "88888888888888 8888888888888P" 8888 8888 Y8888888888888 8888 8888 "888 888" Y888888Y \033[93mMusical.ly Downloader (\033[91mMusicalSave\033[93m) \033[94mMade with <3 by: \033[93mSadCode Official (\033[91mSadCode\033[93m) \033[94mVersion: \033[93m{} \033[0m """ def download(url): print("\033[1;92m [+] Visiting -->\033[93m", url) response = urllib.request.urlopen(url) html = response.read().decode('utf-8') print("\033[1;92m [+] Extracting Video") file_url = re.search('http(.*)mp4', html) file_url = file_url[0] file_name = file_url.split("/")[-1] path = file_name print("\033[1;92m [+] Downloading -->\033[93m", path) urllib.request.urlretrieve(file_url, path) print("\033[1;33m [!] Successfully Downloaded To -->\033[93m", os.getcwd()+"/"+str(file_name), "\033[0m") def main(): parser = argparse.ArgumentParser(description = "Musical.ly Downloader") parser.add_argument("-u", "--url", help = "URL to the Musical.ly video.") parser.add_argument("-v", "--version", action='store_true', help = "Get the current version.") args = parser.parse_args() if args.version: print(__version__) elif args.url: print(banner.format(__version__)) download(args.url) elif len(sys.argv) == 1: parser.print_help() main()
StarcoderdataPython
208929
<gh_stars>0 # -*- coding: utf-8 -*- """save_princess_peach.constants.py Constants for save-princes-peach. """ # Default file used as grid DEFAULT_GRID = '/Users/JFermin/Documents/GitHub/itsMeMario/tests/test_grids/init_grid.txt' # players BOWSER = 'b' PEACH = 'p' MARIO = 'm' PLAYERS = [BOWSER, PEACH, MARIO] # additional tiles HAZARDS = '*' SAFE = '-' VISITED = "v" ALL_POSITIONS = [BOWSER, PEACH, MARIO, HAZARDS, SAFE, VISITED] SAFE_POSITION = [SAFE, PEACH, BOWSER] # Movements UP = 'UP' DOWN = 'DOWN' LEFT = 'LEFT' RIGHT = 'RIGHT'
StarcoderdataPython
3333420
import math print("Calculator") a = int(input("Give the first number: ")) b = int(input("Give the second number: ")) while True: print("(1) +\n(2) -\n(3) *\n(4) /\n(5)sin(number1/number2)\n(6)cos(number1/number2)\n(7) Change numbers\n(8) Quit\nCurrent numbers: ", a, b) choice = int(input("Please select something (1-8): ")) if(choice == 1): result = a + b print("The result is:", result) elif(choice == 2): result = a - b print("The result is:", result) elif(choice == 3): result = a * b print("The result is:", result) elif(choice == 4): result = a / b print("The result is:", result) elif(choice == 5): result = math.sin(a/b) print("The result is:", result) elif(choice == 6): result = math.cos(a/b) print("The result is:", result) elif(choice == 7): a = int(input("Give the first number: ")) b = int(input("Give the second number: ")) elif(choice == 8): print("Thank you!") break else: print("Selection was not correct.")
StarcoderdataPython
1998413
info = [] contents = "" with open("AoC4.txt", "r") as File1: for line in File1: contents += line info = contents.split("\n\n") valid = 0 for thing in info: if "byr" in thing and \ "iyr" in thing and \ "eyr" in thing and \ "hgt" in thing and \ "hcl" in thing and \ "ecl" in thing and \ "pid" in thing: valid += 1 print(valid)
StarcoderdataPython
4960811
# Copyright 2006-2021 by <NAME>. All rights reserved. # # This file is part of the Biopython distribution and governed by your # choice of the "Biopython License Agreement" or the "BSD 3-Clause License". # Please see the LICENSE file that should have been included as part of this # package. """Bio.Align support module (not for general use). Unless you are writing a new parser or writer for Bio.Align, you should not use this module. It provides base classes to try and simplify things. """ from abc import ABC from abc import abstractmethod from Bio import StreamModeError class AlignmentIterator(ABC): """Base class for building Alignment iterators. You should write a parse method that returns an Alignment generator. You may wish to redefine the __init__ method as well. """ def __init__(self, source, mode="t", fmt=None): """Create an AlignmentIterator object. Arguments: - source - input file stream, or path to input file This method MAY be overridden by any subclass. Note when subclassing: - there should be a single non-optional argument, the source. - you can add additional optional arguments. """ try: self.stream = open(source, "r" + mode) self.should_close_stream = True except TypeError: # not a path, assume we received a stream if mode == "t": if source.read(0) != "": raise StreamModeError( "%s files must be opened in text mode." % fmt ) from None elif mode == "b": if source.read(0) != b"": raise StreamModeError( "%s files must be opened in binary mode." % fmt ) from None else: raise ValueError("Unknown mode '%s'" % mode) from None self.stream = source self.should_close_stream = False try: self.alignments = self.parse(self.stream) except Exception: if self.should_close_stream: self.stream.close() raise def __next__(self): """Return the next entry.""" try: return next(self.alignments) except Exception: if self.should_close_stream: self.stream.close() raise def __iter__(self): """Iterate over the entries as Alignment objects. This method SHOULD NOT be overridden by any subclass. It should be left as is, which will call the subclass implementation of __next__ to actually parse the file. """ return self @abstractmethod def parse(self, stream): """Start parsing the file, and return an Alignment iterator.""" class AlignmentWriter: """Base class for alignment writers. This class should be subclassed. It is intended for sequential file formats with an (optional) header, one or more alignments, and an (optional) footer. The user may call the write_file() method to write a complete file containing the alignments. Alternatively, users may call the write_header(), followed by multiple calls to write_alignment() and/or write_alignments(), followed finally by write_footer(). Note that write_header() cannot require any assumptions about the number of alignments. """ def __init__(self, target, mode="w"): """Create the writer object.""" if mode == "w": try: target.write("") except TypeError: # target was opened in binary mode raise StreamModeError("File must be opened in text mode.") from None except AttributeError: # target is a path stream = open(target, mode) else: stream = target elif mode == "wb": try: target.write(b"") except TypeError: # target was opened in text mode raise StreamModeError("File must be opened in binary mode.") from None except AttributeError: # target is a path stream = open(target, mode) else: stream = target else: raise RuntimeError("Unknown mode '%s'" % mode) self._target = target self.stream = stream def write_header(self, alignments): """Write the file header to the output file.""" pass ################################################## # You MUST implement this method in the subclass # # if the file format defines a file header. # ################################################## def write_footer(self): """Write the file footer to the output file.""" pass ################################################## # You MUST implement this method in the subclass # # if the file format defines a file footer. # ################################################## def write_alignment(self, alignment): """Write a single alignment to the output file. alignment - an Alignment object """ raise NotImplementedError("This method should be implemented") ################################################### # You MUST implement this method in the subclass. # ################################################### def write_alignments(self, alignments, maxcount=None): """Write alignments to the output file, and return the number of alignments. alignments - A list or iterator returning Alignment objects maxcount - The maximum number of alignments allowed by the file format, or None if there is no maximum. """ count = 0 if maxcount is None: for alignment in alignments: self.write_alignment(alignment) count += 1 else: for alignment in alignments: if count == maxcount: if maxcount == 1: raise ValueError("More than one alignment found") else: raise ValueError( "Number of alignments is larger than %d" % maxcount ) self.write_alignment(alignment) count += 1 return count def write_file(self, alignments, mincount=0, maxcount=None): """Write a file with the alignments, and return the number of alignments. alignments - A list or iterator returning Alignment objects """ try: self.write_header(alignments) count = self.write_alignments(alignments, maxcount) self.write_footer() finally: if self.stream is not self._target: self.stream.close() if count < mincount: if mincount == 1: # Common case raise ValueError("Must have one alignment") elif mincount == maxcount: raise ValueError( "Number of alignments is %d (expected %d)" % (count, mincount) ) else: raise ValueError( "Number of alignmnets is %d (expected at least %d)" % (count, mincount) ) return count
StarcoderdataPython
11371127
def horspool(t, w, n, m): LAST = suffix.last_occurrence(w[:-1]) i = 1 while i <= n - m + 1: c = t[i + m - 1] if w[m] == c: j = 1 while j < m and t[i + j - 1] == w[j]: j = j + 1 if j == m: yield i bad_character = LAST.get(c, 0) i = i + (m - bad_character)
StarcoderdataPython
4907795
from threading import Timer, Thread from time import time class RepeatedTimer(): def __init__(self, interval, function, timelimit = None, countlimit = None, callback = None): # announce interval to class self.interval = interval # announce target function to class self.function = function # init variable for self.is_running = False # error catching assert not ((timelimit is not None) and (countlimit is not None)), 'Cannot use both time limit and count limit' assert not ((timelimit is None) and (countlimit is None)), 'Time limit xor count limit must be defined' # announce countlimit self.countlimit = countlimit if timelimit is not None: # announce timelimit self.timelimit = timelimit elif self.countlimit is not None: # convert countlimit to timelimit self.timelimit = self.interval*countlimit - self.interval/2 # recalibrate time limit to take into account first run at time t=0 self.timelimit = self.timelimit - self.interval # announce callback function self.callback = callback def __run(self): self.is_running = False self.start_it() self.function() def start_it(self): if not self.is_running and (time() - self.time_init) < self.timelimit: self.next_call += self.interval self._timer = Timer(self.next_call - time(), self.__run) self._timer.start() self.is_running = True else: self.stop() def start_all(self): # get starting time for time limit self.time_init = time() # start 0th instance initial_thread = Thread(target=self.function) initial_thread.start() # get starting time for 0th timed call self.next_call = time() self.start_it() def stop(self): self._timer.cancel() self.is_running = False if self.callback is not None: self.callback()
StarcoderdataPython
6468973
from .load_model import load_model from .SiameseModel import SiameseModel __all__ = [ "load_model", "SiameseModel", ]
StarcoderdataPython
3237279
<filename>web/blueprints/task/__init__.py from dataclasses import asdict from typing import NoReturn from flask import Blueprint, jsonify, url_for, abort, flash, redirect, request, \ render_template from flask_login import current_user from pycroft.exc import PycroftException from pycroft.lib.task import cancel_task, task_type_to_impl, \ manually_execute_task, reschedule_task from pycroft.model import session from pycroft.model.facilities import Building from pycroft.model.task import Task, TaskStatus from web.blueprints import redirect_or_404 from web.blueprints.access import BlueprintAccess from web.blueprints.helpers.user import get_user_or_404 from web.blueprints.navigation import BlueprintNavigation from web.blueprints.task.forms import RescheduleTaskForm from web.blueprints.task.tables import TaskTable from web.table.table import datetime_format from web.template_filters import datetime_filter bp = Blueprint('task', __name__) access = BlueprintAccess(bp, required_properties=['user_show']) nav = BlueprintNavigation(bp, "Tasks", icon='fa-tasks', blueprint_access=access) def format_parameters(parameters): """Make task parameters human readable by looking up objects behind ids""" # Replace building_id by the buildings short name if bid := parameters.get("building_id"): if building := Building.get(bid): parameters["building"] = building.short_name del parameters["building_id"] return parameters def task_row(task: Task): task_impl = task_type_to_impl.get(task.type) T = TaskTable return { "id": task.id, "user": T.user.value( href=url_for('user.user_show', user_id=task.user.id), title=task.user.name ), "name": task_impl.name, "type": task.type.name, "status": task.status.name, "parameters": format_parameters(asdict(task.parameters)), "errors": task.errors if task.errors is not None else list(), "due": datetime_format(task.due, default='', formatter=datetime_filter), "created": task.created.strftime("%Y-%m-%d %H:%M:%S"), "creator": T.creator.value( href=url_for('user.user_show', user_id=task.creator.id), title=task.creator.name ), 'actions': [ T.actions.single_value( href=url_for( '.cancel_user_task', task_id=task.id, redirect=url_for('user.user_show', user_id=task.user.id, _anchor='tasks') ), title="Abbrechen", icon='fa-times', btn_class='btn-link' ), T.actions.single_value( href=url_for( '.reschedule_user_task', task_id=task.id, redirect=url_for('user.user_show', user_id=task.user.id, _anchor='tasks') ), title="Datum Ändern", icon='fa-calendar-alt', btn_class='btn-link' ), T.actions.single_value( href=url_for( '.manually_execute_user_task', task_id=task.id, redirect=url_for('user.user_show', user_id=task.user.id, _anchor='tasks') ), title="Sofort ausführen", icon='fa-fast-forward', btn_class='btn-link' ) ] if task.status == TaskStatus.OPEN else None, } @bp.route("/user/<int:user_id>/json") def json_tasks_for_user(user_id): user = get_user_or_404(user_id) return jsonify(items=[task_row(task) for task in user.tasks]) @bp.route("/user/json") def json_user_tasks(): failed_only = bool(request.args.get("failed_only", False)) open_only = bool(request.args.get("open_only", False)) tasks = Task.q.order_by(Task.status.desc(), Task.due.asc())\ if failed_only: tasks = tasks.filter_by(status=TaskStatus.FAILED).all() elif open_only: tasks = tasks.filter_by(status=TaskStatus.OPEN).all() else: tasks = tasks.all() return jsonify(items=[task_row(task) for task in tasks]) def get_task_or_404(task_id) -> Task | NoReturn: if task := session.session.get(Task, task_id): return task abort(404) @bp.route("/<int:task_id>/manually_execute") @access.require('user_change') def manually_execute_user_task(task_id: int): task = get_task_or_404(task_id) try: manually_execute_task(task, processor=current_user) session.session.commit() except Exception as e: if not isinstance(e, PycroftException): import logging logging.getLogger('pycroft.web').error( "Unexpected error in manual task execution: %s", e, exc_info=True ) flash(f"Fehler bei der Ausführung: {e}", 'error') session.session.rollback() else: flash("Aufgabe erfolgreich ausgeführt", 'success') return redirect_or_404(request.args.get("redirect")) @bp.route("/<int:task_id>/cancel") @access.require('user_change') def cancel_user_task(task_id): task = get_task_or_404(task_id) cancel_task(task, current_user) session.session.commit() flash('Aufgabe erfolgreich abgebrochen.', 'success') return redirect_or_404(request.args.get("redirect")) @bp.route("/<int:task_id>/reschedule", methods=['GET', 'POST']) @access.require('user_change') def reschedule_user_task(task_id): task = get_task_or_404(task_id) form = RescheduleTaskForm() return_url = url_for('user.user_show', user_id=task.user.id, _anchor='tasks') if form.validate_on_submit(): reschedule_task(task, form.full_datetime, processor=current_user) session.session.commit() flash(f'Datum erfolgreich auf {form.full_datetime} geändert.', 'success') return redirect(return_url) return render_template( "task/reschedule_task.html", form_args={'form': form, 'cancel_to': return_url} ) @bp.route("/user") @nav.navigate("Tasks") def user_tasks(): return render_template( "task/tasks.html", task_table=TaskTable(data_url=url_for('.json_user_tasks', open_only=1)), task_failed_table=TaskTable(data_url=url_for('.json_user_tasks', failed_only=1), sort_order='desc'), page_title="Aufgaben (Nutzer)" )
StarcoderdataPython
11216962
<reponame>fau-fablab/etiketten # -*- coding: utf-8 -*- from __future__ import unicode_literals, print_function """ Performs some tests with pyBarcode. All created barcodes where saved in the tests subdirectory with a tests.html to watch them. """ __docformat__ = 'restructuredtext en' import codecs import os import sys import webbrowser from barcode import get_barcode, get_barcode_class, __version__ try: from barcode.writer import ImageWriter except ImportError: ImageWriter = None PATH = os.path.dirname(os.path.abspath(__file__)) TESTPATH = os.path.join(PATH, 'tests') HTMLFILE = os.path.join(TESTPATH, 'tests.html') HTML = """<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01//EN" "http://www.w3.org/TR/html4/strict.dtd"> <html> <head> <title>pyBarcode {version} Test</title> <meta http-equiv="Content-Type" content="text/html; charset=utf-8" /> </head> <body> <h1>pyBarcode {version} Tests</h1> {body} </body> </html> """ OBJECTS = ('<p><h2>{name}</h2><br />\n' '<object data="{filename}" type="image/svg+xml">\n' '<param name="src" value="{filename}" /></object>') IMAGES = ('<h3>As PNG-Image</h3><br />\n' '<img src="{filename}" alt="{name}" /></p>\n') NO_PIL = '<h3>PIL was not found. No PNG-Image created.</h3></p>\n' TESTCODES = ( ('ean8', '40267708'), ('ean13', '5901234123457'), ('upca', '36000291453'), ('jan', '4901234567894'), ('isbn10', '3-12-517154-7'), ('isbn13', '978-3-16-148410-0'), ('issn', '1144875X'), ('code39', 'Example Code 39'), ('pzn', '487780'), ) def test(): if not os.path.isdir(TESTPATH): try: os.mkdir(TESTPATH) except OSError, e: print('Test not run.') print('Error:', e) sys.exit(1) objects = [] append = lambda x, y: objects.append(OBJECTS.format(filename=x, name=y)) append_img = lambda x, y: objects.append(IMAGES.format(filename=x, name=y)) options = dict(module_width=0.495, module_height=25.0) for codename, code in TESTCODES: bcode = get_barcode(codename, code) filename = bcode.save(os.path.join(TESTPATH, codename)) print('Code: {0}, Input: {1}, Output: {2}'.format( bcode.name, code, bcode.get_fullcode())) append(filename, bcode.name) if ImageWriter is not None: bcodec = get_barcode_class(codename) bcode = bcodec(code, writer=ImageWriter()) opts = dict(font_size=14, text_distance=1) if codename.startswith('i'): opts['center_text'] = False filename = bcode.save(os.path.join(TESTPATH, codename), opts) append_img(filename, bcode.name) else: objects.append(NO_PIL) # Save htmlfile with all objects with codecs.open(HTMLFILE, 'w', encoding='utf-8') as f: obj = '\n'.join(objects) f.write(HTML.format(version=__version__, body=obj)) if __name__ == '__main__': test() webbrowser.open(HTMLFILE)
StarcoderdataPython
42802
# NOTE: override the kaolin one from .renderer.base import Renderer as DIBRenderer
StarcoderdataPython
5047246
from dataclasses import dataclass, field from decimal import Decimal from typing import List, Optional, Union @dataclass class Item: class Meta: name = "ITEM" quantity: Optional[int] = field( default=None, metadata={ "type": "Attribute", } ) price: Optional[Decimal] = field( default=None, metadata={ "type": "Attribute", "min_inclusive": Decimal("0"), } ) @dataclass class LongItemDefn(Item): class Meta: name = "LONG_ITEM_DEFN" description: Optional[str] = field( default=None, metadata={ "type": "Element", "namespace": "", "required": True, } ) @dataclass class ShortItemDefn(Item): class Meta: name = "SHORT_ITEM_DEFN" id: Optional[str] = field( default=None, metadata={ "type": "Attribute", } ) @dataclass class Poitems: class Meta: name = "POITEMS" item: List[Union[Item, ShortItemDefn, LongItemDefn]] = field( default_factory=list, metadata={ "type": "Element", "namespace": "", "min_occurs": 1, } )
StarcoderdataPython
5024307
<gh_stars>0 import pygame import pygame.gfxdraw from typing import List, Union, Tuple from .. import ui_manager from ..core.ui_element import UIElement from ..elements import ui_text_box class UITooltip(UIElement): """ A tool tip is a floating block of text that gives additional information after a user hovers over an interactive part of a GUI for a short time. In Pygame GUI the tooltip's text is style-able with HTML. At the moment the tooltips are only available as an option on UIButton elements. Tooltips also don't allow a container as they are designed to overlap normal UI boundaries and be contained only within the 'root' window/container, which is synonymous with the pygame display surface. :param html_text: Text styled with HTML, to be displayed on the tooltip. :param hover_distance: Distance in pixels between the tooltip and the thing being hovered. :param manager: The UIManager that manages this element. :param parent_element: The element this element 'belongs to' in the theming hierarchy. :param object_id: A custom defined ID for fine tuning of theming. """ def __init__(self, html_text: str, hover_distance: Tuple[int, int], manager: ui_manager.UIManager, parent_element: UIElement = None, object_id: Union[str, None] = None): new_element_ids, new_object_ids = self.create_valid_ids(parent_element=parent_element, object_id=object_id, element_id='tool_tip') super().__init__(relative_rect=pygame.Rect((0, 0), (-1, -1)), manager=manager, container=None, starting_height=manager.get_sprite_group().get_top_layer(), layer_thickness=1, element_ids=new_element_ids, object_ids=new_object_ids) rect_width = 170 rect_width_string = self.ui_theme.get_misc_data(self.object_ids, self.element_ids, 'rect_width') if rect_width_string is not None: rect_width = int(rect_width_string) self.hover_distance_from_target = hover_distance self.text_block = ui_text_box.UITextBox(html_text, pygame.Rect(0, 0, rect_width, -1), manager=self.ui_manager, layer_starting_height=self._layer+1, parent_element=self) self.relative_rect.height = self.text_block.rect.height self.relative_rect.width = self.text_block.rect.width self.rect.width = self.text_block.rect.width self.rect.height = self.text_block.rect.height # Get a shadow from the shadow generator self.image = pygame.Surface((0, 0)) def kill(self): """ Overrides the UIElement's default kill method to also kill the text block element that helps make up the complete tool tip. """ self.text_block.kill() super().kill() def find_valid_position(self, position: pygame.math.Vector2) -> bool: """ Finds a valid position for the tool tip inside the root container of the UI. The algorithm starts from the position of the target we are providing a tool tip for then it tries to fit the rectangle for the tool tip onto the screen by moving it above, below, to the left and to the right, until we find a position that fits the whole tooltip rectangle on the screen at once. If we fail to manage this then the method will return False. Otherwise it returns True and set the position of the tool tip to our valid position. :param position: A 2D vector representing the position of the target this tool tip is for. :return bool: returns True if we find a valid (visible) position and False if we do not. """ window_rect = self.ui_manager.get_window_stack().get_root_window().get_container().rect self.rect.centerx = position.x self.rect.top = position.y + self.hover_distance_from_target[1] if window_rect.contains(self.rect): self.text_block.rect.x = self.rect.x self.text_block.rect.y = self.rect.y return True else: if self.rect.bottom > window_rect.bottom: self.rect.bottom = position.y - self.hover_distance_from_target[1] if self.rect.right > window_rect.right: self.rect.right = window_rect.right - self.hover_distance_from_target[0] if self.rect.left < window_rect.left: self.rect.left = window_rect.left + self.hover_distance_from_target[0] if window_rect.contains(self.rect): self.text_block.rect.x = self.rect.x self.text_block.rect.y = self.rect.y return True else: return False
StarcoderdataPython
345567
import os import pytest from django.conf import settings from django.core.files.uploadedfile import SimpleUploadedFile pytestmark = pytest.mark.django_db def test_image_delete_from_folder(foobar): banner = SimpleUploadedFile( name="banner.png", content=open("artists/tests/test_banner.png", "rb").read(), content_type="image/png", ) assert not os.path.exists(f"{settings.MEDIA_ROOT}/artist_banner/banner.png") foobar.artist_banner = banner foobar.save() assert os.path.exists(f"{settings.MEDIA_ROOT}/artist_banner/banner.png") foobar.delete() assert not os.path.exists(f"{settings.MEDIA_ROOT}/artist_banner/banner.png")
StarcoderdataPython
3314451
# -*- coding: utf-8 -*- import lemoncheesecake.api as lcc from lemoncheesecake.matching import check_that_in, check_that, has_length, is_integer, is_dict, is_list, require_that, \ equal_to from common.base_test import BaseTest SUITE = { "description": "Method 'lookup_account_names'" } @lcc.prop("main", "type") @lcc.prop("positive", "type") @lcc.tags("api", "database_api", "database_api_accounts", "lookup_account_names") @lcc.suite("Check work of method 'lookup_account_names'", rank=1) class LookupAccountNames(BaseTest): def __init__(self): super().__init__() self.__database_api_identifier = None def check_fields_account_ids_format(self, response, field): if not self.validator.is_account_id(response[field]): lcc.log_error("Wrong format of '{}', got: {}".format(field, response[field])) else: lcc.log_info("'{}' has correct format: account_object_type".format(field)) def check_account_structure(self, account_info): if check_that("account_info", account_info, has_length(16)): check_that_in( account_info, "network_fee_percentage", is_integer(), "active", is_dict(), "options", is_dict(), "whitelisting_accounts", is_list(), "blacklisting_accounts", is_list(), "whitelisted_accounts", is_list(), "blacklisted_accounts", is_list(), "active_special_authority", is_list(), "top_n_control_flags", is_integer(), "accumulated_reward", is_integer(), "extensions", is_list(), quiet=True ) self.check_fields_account_ids_format(account_info, "id") if not self.validator.is_account_id(account_info["registrar"]): lcc.log_error("Wrong format of 'registrar', got: {}".format(account_info["registrar"])) else: lcc.log_info("'registrar' has correct format: account_object_type") if not self.validator.is_account_name(account_info["name"]): lcc.log_error("Wrong format of 'name', got: {}".format(account_info["name"])) else: lcc.log_info("'name' has correct format: account_name") if not self.validator.is_echorand_key(account_info["echorand_key"]): lcc.log_error("Wrong format of 'echorand_key', got: {}".format(account_info["echorand_key"])) else: lcc.log_info("'echorand_key' has correct format: echo_rand_key") if not self.validator.is_account_statistics_id(account_info["statistics"]): lcc.log_error("Wrong format of 'statistics', got: {}".format(account_info["statistics"])) else: lcc.log_info("'statistics' has correct format: account_statistics_object_type") if len(account_info) == 21: if not self.validator.is_vesting_balance_id(account_info["cashback_vb"]): lcc.log_error("Wrong format of 'cashback_vb', got: {}".format(account_info["cashback_vb"])) else: lcc.log_info("'cashback_vb' has correct format: vesting_balance_object_type") lcc.set_step("Check 'active' field") if check_that("active", account_info["active"], has_length(3)): check_that_in( account_info["active"], "weight_threshold", is_integer(), "account_auths", is_list(), "key_auths", is_list(), quiet=True ) lcc.set_step("Check 'options' field") if check_that("active", account_info["options"], has_length(3)): delegating_account = account_info["options"]["delegating_account"] if not self.validator.is_account_id(delegating_account): lcc.log_error("Wrong format of 'delegating_account'got: {}".format(delegating_account)) else: lcc.log_info("'{}' has correct format: account_object_type".format(delegating_account)) check_that_in( account_info["options"], "delegate_share", is_integer(), "extensions", is_list(), quiet=True ) def setup_suite(self): super().setup_suite() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__database_api_identifier = self.get_identifier("database") lcc.log_info("Database API identifier is '{}'".format(self.__database_api_identifier)) @lcc.test("Simple work of method 'lookup_account_names'") def method_main_check(self): lcc.set_step("Get info about default account") params = [self.accounts[0], self.accounts[1], self.accounts[2]] response_id = self.send_request(self.get_request("lookup_account_names", [params]), self.__database_api_identifier) response = self.get_response(response_id, log_response=True) lcc.log_info("Call method 'lookup_account_names' with param: {}".format(params)) lcc.set_step("Check length of received accounts") require_that( "'list of received accounts'", response["result"], has_length(len(params)) ) for account_num, account_info in enumerate(response["result"]): lcc.set_step("Checking account #{} - '{}'".format(account_num, params[account_num])) self.check_account_structure(account_info) @lcc.prop("positive", "type") @lcc.tags("api", "database_api", "database_api_accounts", "lookup_account_names") @lcc.suite("Positive testing of method 'lookup_account_names'", rank=2) class PositiveTesting(BaseTest): def __init__(self): super().__init__() self.__database_api_identifier = None self.__registration_api_identifier = None self.echo_acc0 = None @staticmethod def compare_accounts(account, performed_account): check_that_in( account, "registrar", equal_to(performed_account["registrar"]), "name", equal_to(performed_account["name"]), "active", equal_to(performed_account["active"]), "echorand_key", equal_to(performed_account["echorand_key"]), "options", equal_to(performed_account["options"]) ) def setup_suite(self): super().setup_suite() self._connect_to_echopy_lib() lcc.set_step("Setup for {}".format(self.__class__.__name__)) self.__database_api_identifier = self.get_identifier("database") self.__registration_api_identifier = self.get_identifier("registration") lcc.log_info( "API identifiers are: database='{}', registration='{}'".format(self.__database_api_identifier, self.__registration_api_identifier)) self.echo_acc0 = self.get_account_id(self.accounts[0], self.__database_api_identifier, self.__registration_api_identifier) lcc.log_info("Echo account is '{}'".format(self.echo_acc0)) def teardown_suite(self): self._disconnect_to_echopy_lib() super().teardown_suite() @lcc.test("Create accounts using account_create operation and get info about them") @lcc.depends_on("DatabaseApi.Accounts.LookupAccountNames.LookupAccountNames.method_main_check") def get_info_about_created_accounts(self, get_random_valid_account_name): accounts = ["{}{}".format(get_random_valid_account_name, num) for num in range(2)] accounts_public_keys = [self.generate_keys(), self.generate_keys()] lcc.set_step("Perform two account creation operations and store accounts ids") accounts = self.utils.get_account_id(self, accounts, accounts_public_keys, self.__database_api_identifier, need_operations=True) lcc.log_info("Two accounts created, ids: 1='{}', 2='{}'".format(accounts.get("accounts_ids")[0], accounts.get("accounts_ids")[1])) lcc.set_step("Get a list of created accounts by names") response_id = self.send_request(self.get_request("lookup_account_names", [accounts.get("account_names")]), self.__database_api_identifier) response = self.get_response(response_id) lcc.log_info("Call method 'lookup_account_names' with params: {}".format(accounts.get("account_names"))) accounts_info = response["result"] for account_num, account in enumerate(accounts_info): lcc.set_step("Checking account #{}".format(account_num)) perform_operation = accounts.get("list_operations")[account_num][0][1] self.compare_accounts(account, perform_operation) @lcc.test("Create account using account_create operation and " "compare response from 'lookup_account_names' and 'get_objects'") @lcc.depends_on("DatabaseApi.Accounts.LookupAccountNames.LookupAccountNames.method_main_check") def compare_with_method_get_objects(self, get_random_valid_account_name): account_name = get_random_valid_account_name public_key = self.generate_keys()[1] lcc.set_step("Perform account creation operation") operation = self.echo_ops.get_account_create_operation(self.echo, account_name, public_key, public_key, registrar=self.echo_acc0, signer=self.echo_acc0) collected_operation = self.collect_operations(operation, self.__database_api_identifier) broadcast_result = self.echo_ops.broadcast(echo=self.echo, list_operations=collected_operation, log_broadcast=False) if not self.is_operation_completed(broadcast_result, expected_static_variant=1): raise Exception("Account is not created") operation_result = self.get_operation_results_ids(broadcast_result) lcc.log_info("Account is created, id='{}'".format(operation_result)) lcc.set_step("Get account by name") response_id = self.send_request(self.get_request("lookup_account_names", [[account_name]]), self.__database_api_identifier) account_info_1 = self.get_response(response_id)["result"] lcc.log_info("Call method 'get_account_by_name' with param: {}".format(account_name)) lcc.set_step("Get account by id") account_id = self.get_account_by_name(account_name, self.__database_api_identifier).get("result").get("id") response_id = self.send_request(self.get_request("get_objects", [[account_id]]), self.__database_api_identifier) account_info_2 = self.get_response(response_id)["result"] lcc.log_info("Call method 'get_objects' with param: {}".format(account_id)) lcc.set_step("Checking created account") for i, result in enumerate(account_info_1): self.compare_accounts(result, account_info_2[i])
StarcoderdataPython
9654488
""" Sort an XML file according to one or more provided schemas. Based on https://github.com/OpenDataServices/iati-utils/blob/master/sort_iati.py Copyright (c) 2013-2014 <NAME> Copyright (c) 2016 Open Data Services Co-operative Limited Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from collections import OrderedDict from warnings import warn try: import lxml.etree as ET # Note that lxml is now "required" - it's listed as a requirement in # setup.py and is needed for the tests to pass. # However, stdlib etree still exists as an unsupported feature. except ImportError: import xml.etree.ElementTree as ET warn('Using stdlib etree may work, but is not supported. Please install lxml.') # Namespaces necessary for opening schema files namespaces = { 'xsd': 'http://www.w3.org/2001/XMLSchema' } class XMLSchemaWalker(object): """ Class for traversing one or more XML schemas. Based on the Schema2Doc class in https://github.com/IATI/IATI-Standard-SSOT/blob/version-2.02/gen.py """ def __init__(self, schemas): """ schema -- the filename of the schema to use, e.g. 'iati-activities-schema.xsd' """ self.trees = [ET.parse(schema) for schema in schemas] def get_schema_element(self, tag_name, name_attribute): """ Return the specified element from the schema. tag_name -- the name of the tag in the schema, e.g. 'complexType' name_attribute -- the value of the 'name' attribute in the schema, ie. the name of the element/type etc. being described, e.g. iati-activities """ for tree in self.trees: schema_element = tree.find("xsd:{0}[@name='{1}']".format(tag_name, name_attribute), namespaces=namespaces) if schema_element is not None: return schema_element return schema_element def element_loop(self, element, path): """ Return information about the children of the supplied element. """ a = element.attrib type_elements = [] if 'type' in a: complexType = self.get_schema_element('complexType', a['type']) if complexType is not None: type_elements = ( complexType.findall('xsd:choice/xsd:element', namespaces=namespaces) + complexType.findall('xsd:sequence/xsd:element', namespaces=namespaces)) children = ( element.findall( 'xsd:complexType/xsd:choice/xsd:element', namespaces=namespaces) + element.findall( 'xsd:complexType/xsd:sequence/xsd:element', namespaces=namespaces) + element.findall( 'xsd:complexType/xsd:all/xsd:element', namespaces=namespaces) + type_elements) child_tuples = [] for child in children: a = child.attrib if 'name' in a: child_tuples.append((a['name'], child, None, a.get('minOccurs'), a.get('maxOccurs'))) else: child_tuples.append((a['ref'], None, child, a.get('minOccurs'), a.get('maxOccurs'))) return child_tuples def create_schema_dict(self, parent_name, parent_element=None): """ Create a nested OrderedDict representing the structure (and order!) of elements in the provided schema. """ if parent_element is None: parent_element = self.get_schema_element('element', parent_name) if parent_element is None: return {} return OrderedDict([ (name, self.create_schema_dict(name, element)) for name, element, _, _, _ in self.element_loop(parent_element, '')]) def sort_element(element, schema_subdict): """ Sort the given element's children according to the order of schema_subdict. """ children = list(element) for child in children: element.remove(child) keys = list(schema_subdict.keys()) def index_key(x): if x.tag in keys: return keys.index(x.tag) else: return len(keys) + 1 for child in sorted(children, key=index_key): element.append(child) sort_element(child, schema_subdict.get(child.tag, {}))
StarcoderdataPython
207792
<filename>test/test_profile.py from flask import url_for from flask_login import current_user from config import TRACKER_PASSWORD_LENGTH_MAX from config import TRACKER_PASSWORD_LENGTH_MIN from tracker.form.user import ERROR_PASSWORD_CONTAINS_USERNAME from tracker.form.user import ERROR_PASSWORD_INCORRECT from tracker.form.user import ERROR_PASSWORD_REPEAT_MISMATCHES from tracker.user import random_string from .conftest import DEFAULT_USERNAME from .conftest import assert_logged_in from .conftest import assert_not_logged_in from .conftest import logged_in @logged_in def test_change_password(db, client): new_password = <PASSWORD>[::-1] resp = client.post(url_for('tracker.edit_own_user_profile'), follow_redirects=True, data=dict(password=<PASSWORD>, password_repeat=<PASSWORD>, password_current=DEFAULT_USERNAME)) assert resp.status_code == 200 # logout and test if new password was applied resp = client.post(url_for('tracker.logout'), follow_redirects=True) assert_not_logged_in(resp) resp = client.post(url_for('tracker.login'), follow_redirects=True, data=dict(username=DEFAULT_USERNAME, password=<PASSWORD>)) assert_logged_in(resp) assert DEFAULT_USERNAME == current_user.name @logged_in def test_invalid_password_length(db, client): resp = client.post(url_for('tracker.edit_own_user_profile'), follow_redirects=True, data=dict(password='<PASSWORD>', new_password='<PASSWORD>', password_current=DEFAULT_USERNAME)) assert 'Field must be between {} and {} characters long.' \ .format(TRACKER_PASSWORD_LENGTH_MIN, TRACKER_PASSWORD_LENGTH_MAX) in resp.data.decode() assert resp.status_code == 200 @logged_in def test_password_must_not_contain_username(db, client): new_password = <PASSWORD>'.<PASSWORD>(DEFAULT_USERNAME) resp = client.post(url_for('tracker.edit_own_user_profile'), follow_redirects=True, data=dict(password=<PASSWORD>, password_repeat=<PASSWORD>, password_current=DEFAULT_USERNAME)) assert resp.status_code == 200 assert ERROR_PASSWORD_CONTAINS_USERNAME in resp.data.decode() @logged_in def test_password_repeat_mismatches(db, client): new_password = <PASSWORD>() resp = client.post(url_for('tracker.edit_own_user_profile'), follow_redirects=True, data=dict(password=<PASSWORD>, password_repeat=<PASSWORD>[::-1], password_current=DEFAULT_USERNAME)) assert resp.status_code == 200 assert ERROR_PASSWORD_REPEAT_MISMATCHES in resp.data.decode() @logged_in def test_current_password_incorrect(db, client): new_password = <PASSWORD>() resp = client.post(url_for('tracker.edit_own_user_profile'), follow_redirects=True, data=dict(password=<PASSWORD>, password_repeat=<PASSWORD>, password_current=<PASSWORD>)) assert resp.status_code == 200 assert ERROR_PASSWORD_INCORRECT in resp.data.decode()
StarcoderdataPython
3597285
import boto3 exceptions = boto3.client('workmail').exceptions DirectoryServiceAuthenticationFailedException = exceptions.DirectoryServiceAuthenticationFailedException DirectoryUnavailableException = exceptions.DirectoryUnavailableException EmailAddressInUseException = exceptions.EmailAddressInUseException EntityAlreadyRegisteredException = exceptions.EntityAlreadyRegisteredException EntityNotFoundException = exceptions.EntityNotFoundException EntityStateException = exceptions.EntityStateException InvalidConfigurationException = exceptions.InvalidConfigurationException InvalidParameterException = exceptions.InvalidParameterException InvalidPasswordException = exceptions.InvalidPasswordException MailDomainNotFoundException = exceptions.MailDomainNotFoundException MailDomainStateException = exceptions.MailDomainStateException NameAvailabilityException = exceptions.NameAvailabilityException OrganizationNotFoundException = exceptions.OrganizationNotFoundException OrganizationStateException = exceptions.OrganizationStateException ReservedNameException = exceptions.ReservedNameException UnsupportedOperationException = exceptions.UnsupportedOperationException
StarcoderdataPython
9665525
# -------------- # Import packages import numpy as np import pandas as pd from scipy.stats import mode # code starts here bank = pd.read_csv(path) categorical_var = bank.select_dtypes(include = 'object') print(categorical_var) numerical_var = bank.select_dtypes(include = 'number') #print(numerical_var) # code ends here # -------------- # code starts here banks = bank.drop(['Loan_ID'],axis=1) null = bank.isnull().sum() bank_mode = banks.mode() banks = banks.fillna('bank_mode') #code ends here # -------------- # Code starts here avg_loan_amount = pd.pivot_table(banks,index = ['Gender','Married','Self_Employed'],values ='LoanAmount',aggfunc = np.mean) print(avg_loan_amount) # code ends here # -------------- # code starts here cond1=banks[(banks['Self_Employed'] == 'Yes') & (banks['Loan_Status'] == 'Y')] loan_approved_se = len(cond1) print(loan_approved_se) loan_approved_nse = len(banks[(banks['Self_Employed'] == 'No') & (banks['Loan_Status'] == 'Y')]) print(loan_approved_nse) percentage_se = (loan_approved_se / 614 ) * 100 percentage_nse = (loan_approved_nse /614) * 100 print(percentage_se) print(percentage_nse) # code ends here # -------------- # code starts here count = 0 loan_term = banks['Loan_Amount_Term'].apply(lambda x :int(x)/ 12) for i in loan_term: if i >=25: count = count + 1 print(count) big_loan_term = count # code ends here # -------------- # code starts here loan_groupby = banks.groupby('Loan_Status') loan_groupby = loan_groupby[['ApplicantIncome','Credit_History']] mean_values = loan_groupby.mean() print(mean_values) # code ends here
StarcoderdataPython
3229962
from botocore.exceptions import ClientError from mock import MagicMock, patch, call from sceptre_s3_packager.s3_packager import KeyResolver, UploadHook from sceptre.stack import Stack class TestKeyResolver(object): def setup_method(self, method): self.key_resolver = KeyResolver() self.key_resolver.argument = './tests/testdata' def test_simple(self): key = self.key_resolver.resolve() assert key == 'sceptre/55cdcd252b548216c5b4a0088de166b8' class TestUploadHook(object): def setup_method(self, method): self.upload_hook = UploadHook() self.upload_hook.argument = './tests/testdata' self.upload_hook.stack = MagicMock(spec=Stack) self.upload_hook.stack.region = 'eu-central-1' self.upload_hook.stack_stack_name = 'my-stack' self.upload_hook.stack.profile = None self.upload_hook.stack.external_name = None self.upload_hook.stack.sceptre_user_data = { 'Code': { 'S3Bucket': 'my-bucket' } } @patch('sceptre.connection_manager.ConnectionManager.call') def test_with_upload(self, mock_call): mock_call.side_effect = [ClientError({ 'Error': { 'Code': '404' } }, 'dummy'), None] self.upload_hook.run() mock_call.assert_has_calls([ call( service='s3', command='head_object', kwargs={ 'Bucket': 'my-bucket', 'Key': 'sceptre/55cdcd252b548216c5b4a0088de166b8' }, ), call( service='s3', command='put_object', kwargs={ 'Bucket': 'my-bucket', 'Key': 'sceptre/55cdcd252b548216c5b4a0088de166b8', 'Body': b'PK\x03\x04\x14\x00\x00\x00\x00\x00\x00\x00!L\xbd\xbf\x0cg\x1e\x00\x00\x00\x1e\x00\x00\x00\x0b\x00\x00\x00my_file.txtContent for automated testing\nPK\x01\x02\x14\x03\x14\x00\x00\x00\x00\x00\x00\x00!L\xbd\xbf\x0cg\x1e\x00\x00\x00\x1e\x00\x00\x00\x0b\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\x00\xa4\x81\x00\x00\x00\x00my_file.txtPK\x05\x06\x00\x00\x00\x00\x01\x00\x01\x009\x00\x00\x00G\x00\x00\x00\x00\x00' # noqa: E501 }, ) ]) @patch('sceptre.connection_manager.ConnectionManager.call') def test_without_upload(self, mock_call): self.upload_hook.run() mock_call.assert_has_calls([ call( service='s3', command='head_object', kwargs={ 'Bucket': 'my-bucket', 'Key': 'sceptre/55cdcd252b548216c5b4a0088de166b8' }, ), ])
StarcoderdataPython
8027269
import numpy as np import pandas as pd from pandas import DataFrame from sklearn.cluster import DBSCAN from sklearn import preprocessing import traceback from datetime import datetime def LTV_class_probability(value_series): value_list = value_series.values.tolist() class_1_prob = value_list.count(1) class_2_prob = value_list.count(2)*2 class_3_prob = value_list.count(3)*5 total_prob = class_1_prob + class_2_prob + class_3_prob + 1e-10 output_dict = { "Low_Class": round(class_1_prob/total_prob,2), "Mid_Class": round(class_2_prob/total_prob,2), "High_Class": round(class_3_prob/total_prob,2) } return output_dict def generated_final_cluster(low_class_prob, mid_class_prob, high_class_prob): max_prob = max(low_class_prob, mid_class_prob, high_class_prob) if high_class_prob >= max_prob: return 3 elif mid_class_prob >= max_prob: return 2 elif low_class_prob>= max_prob: return 1 else: return -1 def guest_type_cols(LTV_Class, Final_Cluster): if LTV_Class >= 1: return "Returning Guest" elif Final_Cluster == -1: return "Ignore 1st-Time Guest" else: return "1st-Time Guest" def construct_ground_truth_file(folder_path: str): """ Load datafile from directory and contruct the ground truth Dataframe Pandas for processing """ print(f"Start Construct Ground Truth File") df_long_time_guests = DataFrame() df_short_time_guests = DataFrame() df_ground_truth = DataFrame() try: df_long_time_guests = pd.read_csv(folder_path + "LTV_class_of_long_time_guests.csv") df_short_time_guests = pd.read_csv(folder_path + "LTV_class_of_short_time_guests.csv") df_returning_guest = pd.concat([df_long_time_guests, df_short_time_guests]).reset_index() df_returning_guest["LTV_Class"].replace({"CLV_Low_Prob": "1", "CLV_Mid_Prob": "2", "CLV_High_Prob": "3"}, inplace=True) df_ground_truth = df_returning_guest.drop(columns = ["index", "CLV_Low_Prob", "CLV_Mid_Prob", "CLV_High_Prob"]) df_ground_truth["GuestID"] = df_ground_truth["GuestID"].astype(int) df_ground_truth["LTV_Class"] = df_ground_truth["LTV_Class"].astype(int) except Exception as error_sum: print("___") print("Error summary: \n", error_sum) error_log = traceback.format_exc() print("Error Details: \n", str(error_log)) print("___") print(f"Construct Ground-Truth File With Total {len(df_ground_truth)} observations. ({len(df_long_time_guests)} observations from segmentations and {len(df_short_time_guests)} observations from classification.)") if len(df_ground_truth) > 0: print(f"\t* LTV Low-Class Guest: {len(df_ground_truth[df_ground_truth['LTV_Class']==1])} observations") print(f"\t* LTV Mid-Class Guest: {len(df_ground_truth[df_ground_truth['LTV_Class']==2])} observations") print(f"\t* LTV High-Class Guest: {len(df_ground_truth[df_ground_truth['LTV_Class']==3])} observations") print(f"__________________________") return df_ground_truth, df_returning_guest def construct_1st_time_reservation_file(folder_path: str): """ Load datafile from directory and contruct the 1st-time reservation Dataframe Pandas for processing """ print(f"Start Construct 1st-time Reservation File") df_1st_reservation_returning_guest = DataFrame() df_1st_reservation_1st_time_guest = DataFrame() df_1st_reservation_combine = DataFrame() try: df_1st_reservation_combine = pd.read_csv(folder_path + "1st_reservation_processed.csv") df_1st_reservation_returning_guest = df_1st_reservation_combine[df_1st_reservation_combine["is1stVisit"]==False] df_1st_reservation_1st_time_guest = df_1st_reservation_combine[df_1st_reservation_combine["is1stVisit"]==True] # df_1st_reservation_combine = pd.concat([df_1st_reservation_returning_guest, df_1st_reservation_1st_time_guest]).reset_index().drop(columns = ['index']) except Exception as error_sum: print("___") print("Error summary: \n", error_sum) error_log = traceback.format_exc() print("Error Details: \n", str(error_log)) print("___") print(f"Construct 1st-time Reservation File With Total {len(df_1st_reservation_combine)} Observations.\n\ * Returning Guest: {len(df_1st_reservation_returning_guest)} observations\n\ * 1st-time Guest: {len(df_1st_reservation_1st_time_guest)} observations") print(f"__________________________") return df_1st_reservation_combine def DBSCAN_clustering(df_input: DataFrame): """ Run the DBSCAN clustering algorithm to return dataframe with cluster group Parameters ---------- Input df_input : DataFrame Output: DataFrame with cluster group by guest ID """ print(f"Start Apply DBSCAN Clustering Algorithm") start_time = datetime.now() try: X = np.array(df_input.drop(['GuestID', 'LTV_Class', 'is1stVisit'], 1).astype(float)) X = preprocessing.StandardScaler().fit_transform(X) clf = DBSCAN(min_samples=2, eps=100, algorithm='kd_tree', n_jobs=-1) clf.fit(X) labels = clf.labels_ df_input['cluster_group'] = np.nan for i in range(len(X)): df_input['cluster_group'].iloc[i] = labels[i] except Exception as error_sum: print("___") print("Error summary: \n", error_sum) error_log = traceback.format_exc() print("Error Details: \n", str(error_log)) print("___") end_time = datetime.now() process_time = str(end_time - start_time) print(f"DBSCAN Clustering Algorithm Time Consuming: {process_time} with total {len(df_input)} observations") print(f"__________________________") return df_input def probability_applied(df_input: DataFrame): """ Run the Probability clustering algorithm to return dataframe with cluster group Parameters ---------- Input df_input : DataFrame Output: DataFrame with cluster group by guest ID """ print(f"Start Apply Probability Algorithm") df_output = DataFrame() try: df_simplify_input = df_input[['GuestID', 'LTV_Class', 'cluster_group']].copy() df_filter = df_input[df_input['cluster_group']!=-1][['GuestID', 'LTV_Class', 'cluster_group']].sort_values(by=['cluster_group']) df_filter['LTV_Class'] = df_filter['LTV_Class'].fillna(-1) df_filter = df_filter[df_filter['LTV_Class']!=-1] df_groupby_cluster_group = df_filter.groupby('cluster_group')['LTV_Class'].apply(LTV_class_probability) df_groupby_cluster_group = df_groupby_cluster_group.reset_index() df_groupby_cluster_group = df_groupby_cluster_group.rename(columns={'LTV_Class':'Final_Cluster', 'level_1': 'Returning_Cluster'}) df_groupby_cluster_group = df_groupby_cluster_group.pivot(index='cluster_group', columns='Returning_Cluster', values='Final_Cluster').reset_index() df_output = df_simplify_input.merge(df_groupby_cluster_group, left_on="cluster_group", right_on="cluster_group", how="left") df_output["Final_Cluster"] = df_output.apply(lambda df_output: generated_final_cluster(df_output["Low_Class"], df_output["Mid_Class"], df_output["High_Class"]), axis=1) df_output["Guest_Type"] = df_output.apply(lambda df_output: guest_type_cols(df_output["LTV_Class"], df_output["Final_Cluster"]), axis=1) df_output['LTV_Class'] = df_output['LTV_Class'].fillna(df_output['Final_Cluster']) df_output = df_output.drop(columns = ['cluster_group', 'Final_Cluster']) except Exception as error_sum: print("___") print("Error summary: \n", error_sum) error_log = traceback.format_exc() print("Error Details: \n", str(error_log)) print("___") print(f"Probability Algorithm Completed") print(f"__________________________") if len(df_output) > 0: Counter = df_output['Guest_Type'].value_counts() for guest_type in ['Returning Guest', '1st-Time Guest', 'Ignore 1st-Time Guest']: if guest_type not in Counter.index: Counter.loc[guest_type] = 0 print(f"Data File Output: {len(df_output)} observations.\n\ \t* Returning Guest: {Counter.loc['Returning Guest']} observations.\n\ \t* 1st-Time Guest: {Counter.loc['1st-Time Guest'] + Counter.loc['Ignore 1st-Time Guest']} observations:\n\ \t\t + Potential Guest: {Counter.loc['1st-Time Guest']} observations\n\ \t\t + Ignore Guest: {Counter.loc['Ignore 1st-Time Guest']} observations") return df_output def Potential_model(folder_path: str): df_ground_truth, df_returning_guest = construct_ground_truth_file(folder_path) df_1st_reservation_combine = construct_1st_time_reservation_file(folder_path) df_combine = df_1st_reservation_combine.merge(df_ground_truth, left_on="GuestID", right_on="GuestID", how="left") df_combine = DBSCAN_clustering(df_combine.copy()) df_combine.to_csv(folder_path + "DBSCAN_output.csv", index=False) df_potential_model = probability_applied(df_combine.copy()) df_potential_model.to_csv(folder_path + "potential_model_output.csv", index=False) df_potential_model = df_potential_model.rename(columns={'High_Class':'CLV_High_Prob', 'Low_Class': 'CLV_Low_Prob', 'Mid_Class': 'CLV_Mid_Prob'}) df_potential_model = df_potential_model[df_potential_model['Guest_Type'] != 'Returning Guest'] df_returning_guest['Guest_Type'] = "Returning Guest" df_all_guest_merge = pd.concat([df_returning_guest.drop(columns=["index"]), df_potential_model]).reset_index().drop(columns=["index"]) df_input_guest_id = pd.read_csv(str(folder_path) + "data_input_with_guest_id.csv") df_final_output = df_input_guest_id.merge(df_all_guest_merge, left_on="GuestID", right_on="GuestID", how="left") df_final_output = df_final_output[df_final_output["Guest_Type"] != "Ignore 1st-Time Guest"] df_final_output = df_final_output[["LastName","FirstName","Email","GuestID","LTV_Class","CLV_Low_Prob","CLV_Mid_Prob","CLV_High_Prob","Guest_Type"]].drop_duplicates(subset=["LastName","FirstName","Email"]) try: print(f"Return The DataFrame Output") print(df_final_output.head(10)) print(f"__________________________") except: pass df_final_output[["LastName","FirstName","Email","GuestID","LTV_Class","CLV_Low_Prob","CLV_Mid_Prob","CLV_High_Prob","Guest_Type"]].to_json(folder_path + "final_output.json", orient='records')
StarcoderdataPython
393670
from .robust_kalman import RobustKalman from . import utils
StarcoderdataPython
3296498
#!/usr/bin/env python3 import argparse import json import requests import sys from datetime import datetime SUPPORTED_BUILDS = { 6002: 'https://support.microsoft.com/en-us/help/4343218', # 2008 SP2 7601: 'https://support.microsoft.com/en-us/help/4009469', # 7 / 2008R2 SP1 9200: 'https://support.microsoft.com/en-us/help/4009471', # 2012 9600: 'https://support.microsoft.com/en-us/help/4009470', # 8.1 / 2012R2 10240: 'https://support.microsoft.com/en-us/help/4000823', # Windows 10 1507 "RTM" "Threshold 1" 10586: 'https://support.microsoft.com/en-us/help/4000824', # Windows 10 1511 "November Update" "Threshold 2" 14393: 'https://support.microsoft.com/en-us/help/4000825', # Windows 10 1607 "Anniversary Update" "Redstone 1" / Server 2016 15063: 'https://support.microsoft.com/en-us/help/4018124', # Windows 10 1703 "Creators Update" "Redstone 2" 16299: 'https://support.microsoft.com/en-us/help/4043454', # Windows 10 1709 "Fall Creators Update" "Redstone 3" 17134: 'https://support.microsoft.com/en-us/help/4099479', # Windows 10 1803 "Redstone 4" 17763: 'https://support.microsoft.com/en-us/help/4464619', # Windows 10 1809 "Redstone 5" / Server 2019 } BEGIN_MARKER = '"minorVersions":' END_MARKER = ']\n' DATE_FORMAT = '%Y-%m-%dT%H:%M:%S' # Updates types and whether they are cumulative or not UPDATE_TYPES = { '': False, # legacy discontinued non-cumulative updates 'security-only update': False, 'monthly rollup': True, 'os build monthly rollup': True, 'preview of monthly rollup': True, } def fetch_security_updates(url): html = requests.get(url).text html = html.replace('\r\n', '\n') json_begin = html.find(BEGIN_MARKER) if json_begin == -1: sys.stderr.write('Unable to find marker {} in {}\n'.format( BEGIN_MARKER, url)) sys.exit(1) json_begin += len(BEGIN_MARKER) json_end = html.find(END_MARKER, json_begin) if json_end == -1: sys.stderr.write('Unable to find marker {} in {}\n'.format( END_MARKER, url)) sys.exit(1) json_end += len(END_MARKER) updates_json = html[json_begin:json_end] updates_json = json.loads(updates_json) updates = [] for update in updates_json: if not set(('releaseVersion','id','releaseDate')).issubset(set(update.keys())): sys.stderr.write('Can\'t handle updates without id/releaseVersion/releaseDate\n') sys.exit(1) update_type = update['releaseVersion'].lower().strip() if 'os build' in update_type: # new >= 10.0 updates type name format, they are all cumulative update_type = 'monthly rollup' if update_type not in UPDATE_TYPES: sys.stderr.write('Update with unknown releaseVersion "{}"\n'.format( update['releaseVersion'])) sys.stderr.write('\n' + str(update) + '\n') sys.exit(1) is_cumulative = UPDATE_TYPES[update_type] date = datetime.strptime(update['releaseDate'], DATE_FORMAT).date() updates.append((date, is_cumulative, update['id'])) updates.sort(key=lambda x: x[0]) return updates if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('--csv', type=argparse.FileType('w'), default=None) parser.add_argument('--sql', type=argparse.FileType('w'), default=None) args = parser.parse_args() if args.sql is None and args.csv is None: args.csv = sys.stdout if args.csv is not None: args.csv.write('build_number\tis_cumulative\tpublish_date\tkb_id\n') for build, url in SUPPORTED_BUILDS.items(): updates = fetch_security_updates(url) for (date, is_cumulative, kb) in updates: args.csv.write('{}\t{}\t{}/{}/{}\t{}\n'.format(build, ("1" if is_cumulative else "0"), date.year, date.month, date.day, kb)) if args.sql is not None: args.sql.write('\n') args.sql.write('''CREATE TABLE [kb_list]( [build] [int] NOT NULL, [cumulative] [bit] NOT NULL, [id] [varchar](255) NOT NULL, [date] [date] NOT NULL)\n''') args.sql.write('INSERT INTO [kb_list] VALUES ') sql = [] for build, url in SUPPORTED_BUILDS.items(): updates = fetch_security_updates(url) for (date, is_cumulative, kb) in updates: sql.append("({},{},'KB{}','{}-{}-{}')".format( build, (1 if is_cumulative else 0), kb, date.year, date.month, date.day)) args.sql.write(',\n '.join(sql) + ';')
StarcoderdataPython
11356498
"""Test suite for phlsys_textconvert.""" from __future__ import absolute_import from __future__ import division from __future__ import print_function import string import unittest import phlsys_textconvert class Test(unittest.TestCase): def _check_unicode_to_ascii(self, src, dst): value = phlsys_textconvert.lossy_unicode_to_ascii(src) self.assertEqual(value, dst) self.assertIsInstance(value, type(dst)) def test_empty(self): self._check_unicode_to_ascii(u"", "") def test_ascii_printable(self): self._check_unicode_to_ascii( unicode(string.printable), str(string.printable)) def test_trailing_leading_space(self): self._check_unicode_to_ascii(u"trailing ", "trailing ") self._check_unicode_to_ascii(u" leading", " leading") self._check_unicode_to_ascii(u"trailing\t\t", "trailing\t\t") self._check_unicode_to_ascii(u"\t\tleading", "\t\tleading") def test_newlines(self): self._check_unicode_to_ascii(u"new\nline", "new\nline") self._check_unicode_to_ascii(u"windows\r\nline", "windows\r\nline") self._check_unicode_to_ascii(u"\nline", "\nline") self._check_unicode_to_ascii(u"\r\nline", "\r\nline") self._check_unicode_to_ascii(u"new\n", "new\n") self._check_unicode_to_ascii(u"windows\r\n", "windows\r\n") def test_nuls(self): self._check_unicode_to_ascii(u"nul\0middle", "nul\0middle") self._check_unicode_to_ascii(u"nul-end\0", "nul-end\0") self._check_unicode_to_ascii(u"\0nul-start", "\0nul-start") def test_ellipses(self): self._check_unicode_to_ascii(u"time passed\u2026", "time passed...") def test_hyphenation_point(self): self._check_unicode_to_ascii(u"hy\u2027phen\u2027ate", "hy?phen?ate") def test_dashes(self): self._check_unicode_to_ascii(u"\u2010", "-") self._check_unicode_to_ascii(u"\u2011", "-") self._check_unicode_to_ascii(u"\u2013", "-") self._check_unicode_to_ascii(u"\u2013", "-") self._check_unicode_to_ascii(u"\u2014", "-") self._check_unicode_to_ascii(u"\u2015", "-") self._check_unicode_to_ascii(u"\u2212", "-") def test_quotes(self): self._check_unicode_to_ascii(u"\u00b4", "'") self._check_unicode_to_ascii(u"\u2018", "'") self._check_unicode_to_ascii(u"\u2019", "'") self._check_unicode_to_ascii(u"\u201c", '"') self._check_unicode_to_ascii(u"\u201d", '"') def test_bullets(self): self._check_unicode_to_ascii(u"\u00b7", "*") self._check_unicode_to_ascii(u"\u2022", "*") self._check_unicode_to_ascii(u"\u2023", ">") self._check_unicode_to_ascii(u"\u2024", "*") self._check_unicode_to_ascii(u"\u2043", "-") self._check_unicode_to_ascii(u"\u25b8", ">") self._check_unicode_to_ascii(u"\u25e6", "o") def test_A_Breathing(self): # test we can convert unicode to unicode phlsys_textconvert.to_unicode(unicode('hello')) # test we can convert str to unicode self.assertIsInstance( phlsys_textconvert.to_unicode('hello'), unicode) # test invalid characters get replaced by the replacement character self.assertEqual( phlsys_textconvert.to_unicode('\xFF'), u'\uFFFD') # test 'horizontal ellipses' as UTF8 get replaced self.assertEqual( phlsys_textconvert.to_unicode('\xe2\x80\xa6'), u'\uFFFD\uFFFD\uFFFD') # test we can convert ascii to ascii phlsys_textconvert.ensure_ascii('hello') # test str stays str self.assertIsInstance( phlsys_textconvert.ensure_ascii('hello'), str) # test invalid characters get replaced by '?' self.assertEqual( phlsys_textconvert.ensure_ascii('\xFF'), '?') # test 'horizontal ellipses' as UTF8 get replaced self.assertEqual( phlsys_textconvert.ensure_ascii('\xe2\x80\xa6'), '???') # ----------------------------------------------------------------------------- # Copyright (C) 2013-2014 Bloomberg Finance L.P. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ------------------------------ END-OF-FILE ----------------------------------
StarcoderdataPython
3250768
<reponame>jonesholger/lbann #!/usr/bin/python import common
StarcoderdataPython
11232827
<reponame>jjacob/DailyPythonScripts<gh_stars>0 ''' Created on Nov 22, 2011 @author: <NAME> Email: <EMAIL> important features: - read MC and data histograms and combine them - set styles and colors - allow switches for log-scale, cumulitative histograms, underflow/overflow bins, error sources ''' import tools.PlottingUtilities as plotting import FILES import ROOTFileReader as reader import QCDRateEstimation def plot(histpath, qcdShapeFrom, qcdShapeForSystematics, qcdRateEstimate, rebin=1, suffixes=[]): inputFiles = FILES.files #get histograms if len(suffixes) > 0: for suffix in suffixes: hist = histpath + '_' + suffix histograms = reader.getHistogramDictionary(histpath, inputFiles) else: histograms = reader.getHistogramDictionary(histpath, inputFiles) if __name__ == "__main__": inputFiles = FILES.files estimateQCD = QCDRateEstimation.estimateQCDWithRelIso plot(histpath='TTbarEplusJetsPlusMetAnalysis/Ref selection/MET/patMETsPFlow/Angle_lepton_MET', qcdShapeFrom ='TTbarEplusJetsPlusMetAnalysis/Ref selection/QCDConversions/MET/patMETsPFlow/Angle_lepton_MET', qcdShapeForSystematics = 'TTbarEplusJetsPlusMetAnalysis/Ref selection/QCD non iso e+jets/MET/patMETsPFlow/Angle_lepton_MET', qcdRateEstimate=estimateQCD, rebin=1, suffixes=['0btag', '1btag', '2orMoreBtags'])
StarcoderdataPython
4832023
<reponame>arnoyu-hub/COMP0016miemie<gh_stars>0 import numpy as np import pytest import pandas as pd import pandas._testing as tm from pandas.arrays import BooleanArray from pandas.core.arrays.boolean import coerce_to_array def test_boolean_array_constructor(): values = np.array([True, False, True, False], dtype="bool") mask = np.array([False, False, False, True], dtype="bool") result = BooleanArray(values, mask) expected = pd.array([True, False, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) with pytest.raises(TypeError, match="values should be boolean numpy array"): BooleanArray(values.tolist(), mask) with pytest.raises(TypeError, match="mask should be boolean numpy array"): BooleanArray(values, mask.tolist()) with pytest.raises(TypeError, match="values should be boolean numpy array"): BooleanArray(values.astype(int), mask) with pytest.raises(TypeError, match="mask should be boolean numpy array"): BooleanArray(values, None) with pytest.raises(ValueError, match="values must be a 1D array"): BooleanArray(values.reshape(1, -1), mask) with pytest.raises(ValueError, match="mask must be a 1D array"): BooleanArray(values, mask.reshape(1, -1)) def test_boolean_array_constructor_copy(): values = np.array([True, False, True, False], dtype="bool") mask = np.array([False, False, False, True], dtype="bool") result = BooleanArray(values, mask) assert result._data is values assert result._mask is mask result = BooleanArray(values, mask, copy=True) assert result._data is not values assert result._mask is not mask def test_to_boolean_array(): expected = BooleanArray( np.array([True, False, True]), np.array([False, False, False]) ) result = pd.array([True, False, True], dtype="boolean") tm.assert_extension_array_equal(result, expected) result = pd.array(np.array([True, False, True]), dtype="boolean") tm.assert_extension_array_equal(result, expected) result = pd.array(np.array([True, False, True], dtype=object), dtype="boolean") tm.assert_extension_array_equal(result, expected) # with missing values expected = BooleanArray( np.array([True, False, True]), np.array([False, False, True]) ) result = pd.array([True, False, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) result = pd.array(np.array([True, False, None], dtype=object), dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_to_boolean_array_all_none(): expected = BooleanArray(np.array([True, True, True]), np.array([True, True, True])) result = pd.array([None, None, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) result = pd.array(np.array([None, None, None], dtype=object), dtype="boolean") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "a, b", [ ([True, False, None, np.nan, pd.NA], [True, False, None, None, None]), ([True, np.nan], [True, None]), ([True, pd.NA], [True, None]), ([np.nan, np.nan], [None, None]), (np.array([np.nan, np.nan], dtype=float), [None, None]), ], ) def test_to_boolean_array_missing_indicators(a, b): result = pd.array(a, dtype="boolean") expected = pd.array(b, dtype="boolean") tm.assert_extension_array_equal(result, expected) @pytest.mark.parametrize( "values", [ ["foo", "bar"], ["1", "2"], # "foo", [1, 2], [1.0, 2.0], pd.date_range("20130101", periods=2), np.array(["foo"]), np.array([1, 2]), np.array([1.0, 2.0]), [np.nan, {"a": 1}], ], ) def test_to_boolean_array_error(values): # error in converting existing arrays to BooleanArray msg = "Need to pass bool-like value" with pytest.raises(TypeError, match=msg): pd.array(values, dtype="boolean") def test_to_boolean_array_from_integer_array(): result = pd.array(np.array([1, 0, 1, 0]), dtype="boolean") expected = pd.array([True, False, True, False], dtype="boolean") tm.assert_extension_array_equal(result, expected) # with missing values result = pd.array(np.array([1, 0, 1, None]), dtype="boolean") expected = pd.array([True, False, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_to_boolean_array_from_float_array(): result = pd.array(np.array([1.0, 0.0, 1.0, 0.0]), dtype="boolean") expected = pd.array([True, False, True, False], dtype="boolean") tm.assert_extension_array_equal(result, expected) # with missing values result = pd.array(np.array([1.0, 0.0, 1.0, np.nan]), dtype="boolean") expected = pd.array([True, False, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_to_boolean_array_integer_like(): # integers of 0's and 1's result = pd.array([1, 0, 1, 0], dtype="boolean") expected = pd.array([True, False, True, False], dtype="boolean") tm.assert_extension_array_equal(result, expected) # with missing values result = pd.array([1, 0, 1, None], dtype="boolean") expected = pd.array([True, False, True, None], dtype="boolean") tm.assert_extension_array_equal(result, expected) def test_coerce_to_array(): # TODO this is currently not public API values = np.array([True, False, True, False], dtype="bool") mask = np.array([False, False, False, True], dtype="bool") result = BooleanArray(*coerce_to_array(values, mask=mask)) expected = BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) assert result._data is values assert result._mask is mask result = BooleanArray(*coerce_to_array(values, mask=mask, copy=True)) expected = BooleanArray(values, mask) tm.assert_extension_array_equal(result, expected) assert result._data is not values assert result._mask is not mask # mixed missing from values and mask values = [True, False, None, False] mask = np.array([False, False, False, True], dtype="bool") result = BooleanArray(*coerce_to_array(values, mask=mask)) expected = BooleanArray( np.array([True, False, True, True]), np.array([False, False, True, True]) ) tm.assert_extension_array_equal(result, expected) result = BooleanArray(*coerce_to_array(np.array(values, dtype=object), mask=mask)) tm.assert_extension_array_equal(result, expected) result = BooleanArray(*coerce_to_array(values, mask=mask.tolist())) tm.assert_extension_array_equal(result, expected) # raise errors for wrong dimension values = np.array([True, False, True, False], dtype="bool") mask = np.array([False, False, False, True], dtype="bool") with pytest.raises(ValueError, match="values must be a 1D list-like"): coerce_to_array(values.reshape(1, -1)) with pytest.raises(ValueError, match="mask must be a 1D list-like"): coerce_to_array(values, mask=mask.reshape(1, -1)) def test_coerce_to_array_from_boolean_array(): # passing BooleanArray to coerce_to_array values = np.array([True, False, True, False], dtype="bool") mask = np.array([False, False, False, True], dtype="bool") arr = BooleanArray(values, mask) result = BooleanArray(*coerce_to_array(arr)) tm.assert_extension_array_equal(result, arr) # no copy assert result._data is arr._data assert result._mask is arr._mask result = BooleanArray(*coerce_to_array(arr), copy=True) tm.assert_extension_array_equal(result, arr) assert result._data is not arr._data assert result._mask is not arr._mask with pytest.raises(ValueError, match="cannot pass mask for BooleanArray input"): coerce_to_array(arr, mask=mask) def test_coerce_to_numpy_array(): # with missing values -> object dtype arr = pd.array([True, False, None], dtype="boolean") result = np.array(arr) expected = np.array([True, False, pd.NA], dtype="object") tm.assert_numpy_array_equal(result, expected) # also with no missing values -> object dtype arr = pd.array([True, False, True], dtype="boolean") result = np.array(arr) expected = np.array([True, False, True], dtype="object") tm.assert_numpy_array_equal(result, expected) # force bool dtype result = np.array(arr, dtype="bool") expected = np.array([True, False, True], dtype="bool") tm.assert_numpy_array_equal(result, expected) # with missing values will raise error arr = pd.array([True, False, None], dtype="boolean") msg = ( "cannot convert to 'bool'-dtype NumPy array with missing values. " "Specify an appropriate 'na_value' for this dtype." ) with pytest.raises(ValueError, match=msg): np.array(arr, dtype="bool") def test_to_boolean_array_from_strings(): result = BooleanArray._from_sequence_of_strings( np.array(["True", "False", "1", "1.0", "0", "0.0", np.nan], dtype=object) ) expected = BooleanArray( np.array([True, False, True, True, False, False, False]), np.array([False, False, False, False, False, False, True]), ) tm.assert_extension_array_equal(result, expected) def test_to_boolean_array_from_strings_invalid_string(): with pytest.raises(ValueError, match="cannot be cast"): BooleanArray._from_sequence_of_strings(["donkey"]) @pytest.mark.parametrize("box", [True, False], ids=["series", "array"]) def test_to_numpy(box): con = pd.Series if box else pd.array # default (with or without missing values) -> object dtype arr = con([True, False, True], dtype="boolean") result = arr.to_numpy() expected = np.array([True, False, True], dtype="object") tm.assert_numpy_array_equal(result, expected) arr = con([True, False, None], dtype="boolean") result = arr.to_numpy() expected = np.array([True, False, pd.NA], dtype="object") tm.assert_numpy_array_equal(result, expected) arr = con([True, False, None], dtype="boolean") result = arr.to_numpy(dtype="str") expected = np.array([True, False, pd.NA], dtype="<U5") tm.assert_numpy_array_equal(result, expected) # no missing values -> can convert to bool, otherwise raises arr = con([True, False, True], dtype="boolean") result = arr.to_numpy(dtype="bool") expected = np.array([True, False, True], dtype="bool") tm.assert_numpy_array_equal(result, expected) arr = con([True, False, None], dtype="boolean") with pytest.raises(ValueError, match="cannot convert to 'bool'-dtype"): result = arr.to_numpy(dtype="bool") # specify dtype and na_value arr = con([True, False, None], dtype="boolean") result = arr.to_numpy(dtype=object, na_value=None) expected = np.array([True, False, None], dtype="object") tm.assert_numpy_array_equal(result, expected) result = arr.to_numpy(dtype=bool, na_value=False) expected = np.array([True, False, False], dtype="bool") tm.assert_numpy_array_equal(result, expected) result = arr.to_numpy(dtype="int64", na_value=-99) expected = np.array([1, 0, -99], dtype="int64") tm.assert_numpy_array_equal(result, expected) result = arr.to_numpy(dtype="float64", na_value=np.nan) expected = np.array([1, 0, np.nan], dtype="float64") tm.assert_numpy_array_equal(result, expected) # converting to int or float without specifying na_value raises with pytest.raises(ValueError, match="cannot convert to 'int64'-dtype"): arr.to_numpy(dtype="int64") with pytest.raises(ValueError, match="cannot convert to 'float64'-dtype"): arr.to_numpy(dtype="float64") def test_to_numpy_copy(): # to_numpy can be zero-copy if no missing values arr = pd.array([True, False, True], dtype="boolean") result = arr.to_numpy(dtype=bool) result[0] = False tm.assert_extension_array_equal( arr, pd.array([False, False, True], dtype="boolean") ) arr = pd.array([True, False, True], dtype="boolean") result = arr.to_numpy(dtype=bool, copy=True) result[0] = False tm.assert_extension_array_equal(arr, pd.array([True, False, True], dtype="boolean")) # FIXME: don't leave commented out # TODO when BooleanArray coerces to object dtype numpy array, need to do conversion # manually in the indexing code # def test_indexing_boolean_mask(): # arr = pd.array([1, 2, 3, 4], dtype="Int64") # mask = pd.array([True, False, True, False], dtype="boolean") # result = arr[mask] # expected = pd.array([1, 3], dtype="Int64") # tm.assert_extension_array_equal(result, expected) # # missing values -> error # mask = pd.array([True, False, True, None], dtype="boolean") # with pytest.raises(IndexError): # result = arr[mask]
StarcoderdataPython
4866093
import FWCore.ParameterSet.Config as cms from ElectroWeakAnalysis.ZMuMu.ZMuMuCategoriesSequences_cff import * import copy #### vertex refit for loose cut goodZToMuMuVtxedAtLeast1HLTLoose = cms.EDProducer( "KalmanVertexFitCompositeCandProducer", src = cms.InputTag("goodZToMuMuAtLeast1HLTLoose") ) goodZToMuMuPathLoose.__iadd__(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuPathLoose.setLabel("goodZToMuMuLoose") goodZToMuMuVtxed2HLTLoose = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuVtxed2HLTLoose.src = cms.InputTag("goodZToMuMu2HLTLoose") goodZToMuMu2HLTPathLoose.__iadd__(goodZToMuMuVtxed2HLTLoose) goodZToMuMu2HLTPathLoose.setLabel("goodZToMuMu2HLTLoose") goodZToMuMuVtxed1HLTLoose = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuVtxed1HLTLoose.src = cms.InputTag("goodZToMuMu1HLTLoose") goodZToMuMu1HLTPathLoose.__iadd__(goodZToMuMuVtxed1HLTLoose) goodZToMuMu1HLTPathLoose.setLabel("goodZToMuMu1HLTLoose") goodZToMuMuVtxedBB2HLTLoose = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuVtxedBB2HLTLoose.src = cms.InputTag("goodZToMuMuBB2HLTLoose") goodZToMuMuBB2HLTPathLoose.__iadd__(goodZToMuMuVtxedBB2HLTLoose) goodZToMuMuBB2HLTPathLoose.setLabel("goodZToMuMuBB2HLTLoose") goodZToMuMuVtxedAB1HLTLoose = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuVtxedAB1HLTLoose.src = cms.InputTag("goodZToMuMuAB1HLTLoose") goodZToMuMuAB1HLTPathLoose.__iadd__(goodZToMuMuVtxedAB1HLTLoose) goodZToMuMuAB1HLTPathLoose.setLabel("goodZToMuMuAB1HLTLoose") ## oneNonIsolatedZToMuMuVtxed= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLT) ## oneNonIsolatedZToMuMuVtxed.src= cms.InputTag("oneNonIsolatedZToMuMuAtLeast1HLT") ## oneNonIsolatedZToMuMuPath.__iadd__(oneNonIsolatedZToMuMuVtxed) ## oneNonIsolatedZToMuMuPath.setLabel("oneNonIsolatedZToMuMu") ## twoNonIsolatedZToMuMuVtxed = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLT) ## twoNonIsolatedZToMuMuVtxed.src = cms.InputTag("twoNonIsolatedZToMuMuAtLeast1HLT") ## twoNonIsolatedZToMuMuPath.__iadd__(twoNonIsolatedZToMuMuVtxed) ## twoNonIsolatedZToMuMuPath.setLabel("twoNonIsolatedZToMuMu") ## goodZToMuMuSameCharge2HLTVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) ## goodZToMuMuSameCharge2HLTVtxedLoose.src = cms.InputTag("goodZToMuMuSameCharge2HLTLoose") ## goodZToMuMuSameCharge2HLTPathLoose.__iadd__(goodZToMuMuSameCharge2HLTVtxedLoose) ## goodZToMuMuSameCharge2HLTPathLoose.setLabel("goodZToMuMuSameCharge2HLTLoose") ## goodZToMuMuSameCharge1HLTVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) ## goodZToMuMuSameCharge1HLTVtxedLoose.src = cms.InputTag("goodZToMuMuSameCharge1HLTLoose") ## goodZToMuMuSameCharge1HLTPathLoose.__iadd__(goodZToMuMuSameCharge1HLTVtxedLoose) ## goodZToMuMuSameCharge1HLTPathLoose.setLabel("goodZToMuMuSameCharge1HLTLoose") goodZToMuMuSameChargeVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuSameChargeVtxedLoose.src = cms.InputTag("goodZToMuMuSameChargeAtLeast1HLTLoose") goodZToMuMuSameChargePathLoose.__iadd__(goodZToMuMuSameChargeVtxedLoose) goodZToMuMuSameChargePathLoose.setLabel("goodZToMuMuSameChargeLoose") goodZToMuMuOneStandAloneVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuOneStandAloneVtxedLoose.src = cms.InputTag("goodZToMuMuOneStandAloneMuonFirstHLTLoose") goodZToMuMuOneStandAloneMuonPathLoose.__iadd__(goodZToMuMuOneStandAloneVtxedLoose) goodZToMuMuOneStandAloneMuonPathLoose.setLabel("goodZToMuMuOneStandAloneMuonLoose") goodZToMuMuOneTrackVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuOneTrackVtxedLoose.src = cms.InputTag("goodZToMuMuOneTrackFirstHLTLoose") goodZToMuMuOneTrackPathLoose.__iadd__(goodZToMuMuOneTrackVtxedLoose) goodZToMuMuOneTrackPathLoose.setLabel("goodZToMuMuOneTrackLoose") goodZToMuMuOneTrackerMuonVtxedLoose= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTLoose) goodZToMuMuOneTrackerMuonVtxedLoose.src = cms.InputTag("goodZToMuMuOneTrackerMuonFirstHLTLoose") goodZToMuMuOneTrackerMuonPathLoose.__iadd__(goodZToMuMuOneTrackerMuonVtxedLoose) goodZToMuMuOneTrackerMuonPathLoose.setLabel("goodZToMuMuOneTrackerMuonLoose") ### ntuples.... goodZToMuMuVtxedNtupleLoose = cms.EDProducer( "CandViewNtpProducer", src = cms.InputTag("goodZToMuMuVtxedLoose"), variables = cms.VPSet( cms.PSet( tag = cms.untracked.string("mass"), quantity = cms.untracked.string("mass") ), cms.PSet( tag = cms.untracked.string("vertexNdof"), quantity = cms.untracked.string("vertexNdof") ), cms.PSet( tag = cms.untracked.string("vertexNormalizedChi2"), quantity = cms.untracked.string("vertexNormalizedChi2") ), ) ) goodZToMuMuVtxed2HLTNtupleLoose = copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxed2HLTNtupleLoose.src= cms.InputTag("goodZToMuMuVtxed2HLTLoose") goodZToMuMu2HLTPathLoose.__iadd__(goodZToMuMuVtxed2HLTNtupleLoose) goodZToMuMu2HLTPathLoose.setLabel("goodZToMuMu2HLTLoose") goodZToMuMuVtxed1HLTNtupleLoose = copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxed1HLTNtupleLoose.src= cms.InputTag("goodZToMuMuVtxed1HLTLoose") goodZToMuMu1HLTPathLoose.__iadd__(goodZToMuMuVtxed1HLTNtupleLoose) goodZToMuMu1HLTPathLoose.setLabel("goodZToMuMu1HLTLoose") goodZToMuMuVtxedBB2HLTNtupleLoose = copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedBB2HLTNtupleLoose.src= cms.InputTag("goodZToMuMuVtxedBB2HLTLoose") goodZToMuMuBB2HLTPathLoose.__iadd__(goodZToMuMuVtxedBB2HLTNtupleLoose) goodZToMuMuBB2HLTPathLoose.setLabel("goodZToMuMuBB2HLTLoose") goodZToMuMuVtxedAB1HLTNtupleLoose = copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedAB1HLTNtupleLoose.src= cms.InputTag("goodZToMuMuVtxedAB1HLTLoose") goodZToMuMuAB1HLTPathLoose.__iadd__(goodZToMuMuVtxedAB1HLTNtupleLoose) goodZToMuMuAB1HLTPathLoose.setLabel("goodZToMuMuAB1HLTLoose") ## oneNonIsolatedZToMuMuVtxedNtuple = copy.deepcopy(goodZToMuMuVtxedNtuple) ## oneNonIsolatedZToMuMuVtxedNtuple.src = cms.InputTag("oneNonIsolatedZToMuMuVtxed") ## oneNonIsolatedZToMuMuPath.__iadd__(oneNonIsolatedZToMuMuVtxedNtuple) ## oneNonIsolatedZToMuMuPath.setLabel("oneNonIsolatedZToMuMu") ## twoNonIsolatedZToMuMuVtxedNtuple = copy.deepcopy(goodZToMuMuVtxedNtuple) ## twoNonIsolatedZToMuMuVtxedNtuple.src = cms.InputTag("twoNonIsolatedZToMuMuVtxed") ## twoNonIsolatedZToMuMuPath.__iadd__(twoNonIsolatedZToMuMuVtxedNtuple) ## twoNonIsolatedZToMuMuPath.setLabel("twoNonIsolatedZToMuMu") ## goodZToMuMuVtxedSameCharge2HLTNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) ## goodZToMuMuVtxedSameCharge2HLTNtupleLoose.src = cms.InputTag("goodZToMuMuVtxedSameCharge2HLTLoose") ## goodZToMuMuSameCharge2HLTPathLoose.__iadd__(goodZToMuMuVtxedSameCharge2HLTNtupleLoose) ## goodZToMuMuSameCharge2HLTPathLoose.setLabel("goodZToMuMuVtxedSameCharge2HLTLoose") ## goodZToMuMuVtxedSameCharge1HLTNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) ## goodZToMuMuVtxedSameCharge1HLTNtupleLoose.src = cms.InputTag("goodZToMuMuVtxedSameCharge1HLTLoose") ## goodZToMuMuSameCharge1HLTPathLoose.__iadd__(goodZToMuMuVtxedSameCharge1HLTNtupleLoose) ## goodZToMuMuSameCharge1HLTPathLoose.setLabel("goodZToMuMuSameCharge1HLTLoose") goodZToMuMuVtxedSameChargeNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedSameChargeNtupleLoose.src = cms.InputTag("goodZToMuMuSameChargeAtLeast1HLTLoose") goodZToMuMuSameChargePathLoose.__iadd__(goodZToMuMuVtxedSameChargeNtupleLoose) goodZToMuMuSameChargePathLoose.setLabel("goodZToMuMuSameChargeLoose") goodZToMuMuVtxedOneStandAloneNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedOneStandAloneNtupleLoose.src = cms.InputTag("goodZToMuMuOneStandAloneVtxedLoose") goodZToMuMuOneStandAloneMuonPathLoose.__iadd__(goodZToMuMuVtxedOneStandAloneNtupleLoose) goodZToMuMuOneStandAloneMuonPathLoose.setLabel("goodZToMuMuOneStandAloneMuonLoose") goodZToMuMuVtxedOneTrackNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedOneTrackNtupleLoose.src =cms.InputTag("goodZToMuMuOneTrackVtxedLoose") goodZToMuMuOneTrackPathLoose.__iadd__(goodZToMuMuVtxedOneTrackNtupleLoose) goodZToMuMuOneTrackPathLoose.setLabel("goodZToMuMuOneTrackLoose") goodZToMuMuVtxedOneTrackerMuonNtupleLoose= copy.deepcopy(goodZToMuMuVtxedNtupleLoose) goodZToMuMuVtxedOneTrackerMuonNtupleLoose.src =cms.InputTag("goodZToMuMuOneTrackerMuonVtxedLoose") goodZToMuMuOneTrackerMuonPathLoose.__iadd__(goodZToMuMuVtxedOneTrackerMuonNtupleLoose) goodZToMuMuOneTrackerMuonPathLoose.setLabel("goodZToMuMuOneTrackerMuonLoose") vtxedNtuplesOut = cms.OutputModule( "PoolOutputModule", fileName = cms.untracked.string('VtxedNtupleLoose_test.root'), outputCommands = cms.untracked.vstring( "drop *", # "keep *_goodZToMuMuOneStandAloneMuonNtuple_*_*", "keep *_goodZToMuMuVtxedNtupleLoose_*_*", "keep *_goodZToMuMuVtxed1HLTNtupleLoose_*_*", "keep *_goodZToMuMuVtxed2HLTNtupleLoose_*_*", "keep *_goodZToMuMuVtxedAB1HLTNtupleLoose_*_*", "keep *_goodZToMuMuVtxedBB2HLTNtupleLoose_*_*", # "keep *_goodZToMuMuVtxedSameCharge2HLTNtupleLoose_*_*", "keep *_goodZToMuMuVtxedSameChargeNtupleLoose_*_*", # "keep *_nonIsolatedZToMuMuVtxedNtuple_*_*", # "keep *_oneNonIsolatedZToMuMuVtxedNtuple_*_*", # "keep *_twoNonIsolatedZToMuMuVtxedNtuple_*_*", "keep *_goodZToMuMuVtxedOneStandAloneNtupleLoose_*_*", "keep *_goodZToMuMuVtxedOneTrackNtupleLoose_*_*", "keep *_goodZToMuMuVtxedOneTrackerMuonNtupleLoose_*_*", # "keep *_goodZToMuMu2HLTVtxedNtuple_*_*", ), SelectEvents = cms.untracked.PSet( SelectEvents = cms.vstring( "goodZToMuMuPathLoose", "goodZToMuMu1HLTPathLoose", "goodZToMuMu2HLTPathLoose", "goodZToMuMuAB1HLTPathLoose", "goodZToMuMuBB2HLTPathLoose", # "goodZToMuMuSameCharge2HLTPathLoose", "goodZToMuMuSameChargePathLoose", # "nonIsolatedZToMuMuPath", # "oneNonIsolatedZToMuMuPath", # "twoNonIsolatedZToMuMuPath", "goodZToMuMuOneTrackPathLoose", "goodZToMuMuOneTrackerMuonPathLoose", "goodZToMuMuOneStandAloneMuonPathLoose", ) ) ) vtxedNtuplesOut.setLabel("vtxedNtuplesOut") VtxedNtuplesOut.__iadd__(vtxedNtuplesOut) VtxedNtuplesOut.setLabel("VtxedNtuplesOut") ## ## vertex refit for tight cut ## goodZToMuMuVtxedAtLeast1HLTTight = cms.EDProducer( ## "KalmanVertexFitCompositeCandProducer", ## src = cms.InputTag("goodZToMuMuAtLeast1HLTTight") ## ) ## goodZToMuMuVtxed2HLTTight = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuVtxed2HLTTight.src = cms.InputTag("goodZToMuMu2HLTTight") ## goodZToMuMu2HLTPathTight.__iadd__(goodZToMuMuVtxed2HLTTight) ## goodZToMuMu2HLTPathTight.setLabel("goodZToMuMu2HLTTight") ## goodZToMuMuVtxed1HLTTight = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuVtxed1HLTTight.src = cms.InputTag("goodZToMuMu1HLTTight") ## goodZToMuMu1HLTPathTight.__iadd__(goodZToMuMuVtxed1HLTTight) ## goodZToMuMu1HLTPathTight.setLabel("goodZToMuMu1HLTTight") ## oneNonIsolatedZToMuMuVtxedTight= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## oneNonIsolatedZToMuMuVtxedTight.src= cms.InputTag("oneNonIsolatedZToMuMuAtLeast1HLTTight") ## oneNonIsolatedZToMuMuPathTight.__iadd__(oneNonIsolatedZToMuMuVtxedTight) ## oneNonIsolatedZToMuMuPathTight.setLabel("oneNonIsolatedZToMuMuTight") ## twoNonIsolatedZToMuMuVtxedTight = copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## twoNonIsolatedZToMuMuVtxedTight.src = cms.InputTag("twoNonIsolatedZToMuMuAtLeast1HLTTight") ## twoNonIsolatedZToMuMuPathTight.__iadd__(twoNonIsolatedZToMuMuVtxedTight) ## twoNonIsolatedZToMuMuPathTight.setLabel("twoNonIsolatedZToMuMuTight") ## goodZToMuMuSameCharge2HLTVtxedTight= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuSameCharge2HLTVtxedTight.src = cms.InputTag("goodZToMuMuSameCharge2HLTTight") ## goodZToMuMuSameCharge2HLTPathTight.__iadd__(goodZToMuMuSameCharge2HLTVtxedTight) ## goodZToMuMuSameCharge2HLTPathTight.setLabel("goodZToMuMuSameCharge2HLTTight") ## goodZToMuMuSameCharge1HLTVtxedTight= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuSameCharge1HLTVtxedTight.src = cms.InputTag("goodZToMuMuSameCharge1HLTTight") ## goodZToMuMuSameCharge1HLTPathTight.__iadd__(goodZToMuMuSameCharge1HLTVtxedTight) ## goodZToMuMuSameCharge1HLTPathTight.setLabel("goodZToMuMuSameCharge1HLTTight") ## goodZToMuMuOneStandAloneVtxedTight= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuOneStandAloneVtxedTight.src = cms.InputTag("goodZToMuMuOneStandAloneMuonFirstHLTTight") ## goodZToMuMuOneStandAloneMuonPathTight.__iadd__(goodZToMuMuOneStandAloneVtxedTight) ## goodZToMuMuOneStandAloneMuonPathTight.setLabel("goodZToMuMuOneStandAloneMuonTight") ## goodZToMuMuOneTrackVtxedTight= copy.deepcopy(goodZToMuMuVtxedAtLeast1HLTTight) ## goodZToMuMuOneTrackVtxedTight.src = cms.InputTag("goodZToMuMuOneTrackFirstHLTTight") ## goodZToMuMuOneTrackPathTight.__iadd__(goodZToMuMuOneTrackVtxedTight) ## goodZToMuMuOneTrackPathTight.setLabel("goodZToMuMuOneTrackTight") ## ### ntuples.... ## goodZToMuMuVtxedNtupleTight = cms.EDProducer( ## "CandViewNtpProducer", ## src = cms.InputTag("goodZToMuMuVtxedTight"), ## variables = cms.VPSet( ## cms.PSet( ## tag = cms.untracked.string("mass"), ## quantity = cms.untracked.string("mass") ## ), ## cms.PSet( ## tag = cms.untracked.string("vertexNdof"), ## quantity = cms.untracked.string("vertexNdof") ## ), ## cms.PSet( ## tag = cms.untracked.string("vertexNormalizedChi2"), ## quantity = cms.untracked.string("vertexNormalizedChi2") ## ), ## ) ## ) ## goodZToMuMuVtxed2HLTNtupleTight = copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxed2HLTNtupleTight.src= cms.InputTag("goodZToMuMuVtxed2HLTTight") ## goodZToMuMu2HLTPathTight.__iadd__(goodZToMuMuVtxed2HLTTightNtupleTight) ## goodZToMuMu2HLTPathTight.setLabel("goodZToMuMu2HLTTight") ## goodZToMuMuVtxed1HLTNtupleTight = copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxed1HLTNtupleTight.src= cms.InputTag("goodZToMuMuVtxed1HLTTight") ## goodZToMuMu1HLTPathTight.__iadd__(goodZToMuMuVtxed1HLTNtupleTight) ## goodZToMuMu1HLTPathTight.setLabel("goodZToMuMu1HLTTight") ## oneNonIsolatedZToMuMuVtxedNtupleTight = copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## oneNonIsolatedZToMuMuVtxedNtupleTight.src = cms.InputTag("oneNonIsolatedZToMuMuVtxedTight") ## oneNonIsolatedZToMuMuPathTight.__iadd__(oneNonIsolatedZToMuMuVtxedNtupleTight) ## oneNonIsolatedZToMuMuPathTight.setLabel("oneNonIsolatedZToMuMuTight") ## twoNonIsolatedZToMuMuVtxedNtupleTight = copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## twoNonIsolatedZToMuMuVtxedNtupleTight.src = cms.InputTag("twoNonIsolatedZToMuMuVtxed") ## twoNonIsolatedZToMuMuPathTight.__iadd__(twoNonIsolatedZToMuMuVtxedNtupleTight) ## twoNonIsolatedZToMuMuPathTight.setLabel("twoNonIsolatedZToMuMuTight") ## goodZToMuMuVtxedSameCharge2HLTNtupleTight= copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxedSameCharge2HLTNtupleTight.src = cms.InputTag("goodZToMuMuVtxedSameCharge2HLTTight") ## goodZToMuMuSameCharge2HLTPathTight.__iadd__(goodZToMuMuVtxedSameCharge2HLTNtupleTight) ## goodZToMuMuSameCharge2HLTPathTight.setLabel("goodZToMuMuVtxedSameCharge2HLTTight") ## goodZToMuMuVtxedSameCharge1HLTNtupleTight= copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxedSameCharge1HLTNtupleTight.src = cms.InputTag("goodZToMuMuVtxedSameCharge1HLTTight") ## goodZToMuMuSameCharge1HLTPathTight.__iadd__(goodZToMuMuVtxedSameCharge1HLTNtupleTight) ## goodZToMuMuSameCharge1HLTPathTight.setLabel("goodZToMuMuSameCharge1HLTTight") ## goodZToMuMuVtxedOneStandAloneNtupleTight= copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxedOneStandAloneNtupleTight.src = cms.InputTag("goodZToMuMuOneStandAloneVtxedTight") ## goodZToMuMuOneStandAloneMuonPathTight.__iadd__(goodZToMuMuVtxedOneStandAloneNtupleTight) ## goodZToMuMuOneStandAloneMuonPathTight.setLabel("goodZToMuMuOneStandAloneMuonTight") ## goodZToMuMuVtxedOneTrackNtupleTight= copy.deepcopy(goodZToMuMuVtxedNtupleTight) ## goodZToMuMuVtxedOneTrackNtupleTight.src =cms.InputTag("goodZToMuMuOneTrackVtxed") ## goodZToMuMuOneTrackPathTight.__iadd__(goodZToMuMuVtxedOneTrackNtupleTight) ## goodZToMuMuOneTrackPathTight.setLabel("goodZToMuMuOneTrackTight") ## vtxedNtuplesOutTight = cms.OutputModule( ## "PoolOutputModule", ## fileName = cms.untracked.string('VtxedNtupleTight_test.root'), ## outputCommands = cms.untracked.vstring( ## "drop *", ## # "keep *_goodZToMuMuOneStandAloneMuonNtuple_*_*", ## "keep *_goodZToMuMuVtxedNtupleTight_*_*", ## "keep *_goodZToMuMuVtxed1HLTNtupleTight_*_*", ## "keep *_goodZToMuMuVtxed2HLTNtupleTight_*_*", ## "keep *_goodZToMuMuVtxedSameCharge2HLTNtupleTight_*_*", ## "keep *_goodZToMuMuVtxedSameCharge1HLTNtupleTight_*_*", ## "keep *_nonIsolatedZToMuMuVtxedNtupleTight_*_*", ## "keep *_oneNonIsolatedZToMuMuVtxedNtupleTight_*_*", ## "keep *_twoNonIsolatedZToMuMuVtxedNtupleTight_*_*", ## "keep *_goodZToMuMuVtxedOneStandAloneNtupleTight_*_*", ## "keep *_goodZToMuMuVtxedOneTrackNtupleTight_*_*", ## # "keep *_goodZToMuMu2HLTVtxedNtuple_*_*", ## ), ## SelectEvents = cms.untracked.PSet( ## SelectEvents = cms.vstring( ## "goodZToMuMuPathTight", ## "goodZToMuMu1HLTPathTight", ## "goodZToMuMu2HLTPathTight", ## "goodZToMuMuSameCharge2HLTPathTight", ## "goodZToMuMuSameCharge1HLTPathTight", ## "nonIsolatedZToMuMuPathTight", ## "oneNonIsolatedZToMuMuPathTight", ## "twoNonIsolatedZToMuMuPathTight", ## "goodZToMuMuOneTrackPathTight", ## "goodZToMuMuOneStandAloneMuonPathTight", ## ) ## ) ## ) ## vtxedNtuplesOutTight.setLabel("vtxedNtuplesOutTight") ## VtxedNtuplesOutTight.__iadd__(vtxedNtuplesOutTight) ## VtxedNtuplesOutTight.setLabel("VtxedNtuplesOutTight")
StarcoderdataPython
11343162
# -*- coding: utf-8 -*- import datetime from south.db import db from south.v2 import SchemaMigration from django.db import models class Migration(SchemaMigration): def forwards(self, orm): # Adding model 'BaseModel' db.create_table('website_basemodel', ( ('id', self.gf('django.db.models.fields.AutoField')(primary_key=True)), ('last_modified', self.gf('django.db.models.fields.DateTimeField')(auto_now=True, blank=True)), )) db.send_create_signal('website', ['BaseModel']) # Adding model 'Facility' db.create_table('website_facility', ( ('basemodel_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['website.BaseModel'], unique=True, primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('main_schedule', self.gf('django.db.models.fields.related.ForeignKey')(related_name='facility_main', to=orm['website.Schedule'])), )) db.send_create_signal('website', ['Facility']) # Adding M2M table for field special_schedules on 'Facility' db.create_table('website_facility_special_schedules', ( ('id', models.AutoField(verbose_name='ID', primary_key=True, auto_created=True)), ('facility', models.ForeignKey(orm['website.facility'], null=False)), ('schedule', models.ForeignKey(orm['website.schedule'], null=False)) )) db.create_unique('website_facility_special_schedules', ['facility_id', 'schedule_id']) # Adding model 'Schedule' db.create_table('website_schedule', ( ('basemodel_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['website.BaseModel'], unique=True, primary_key=True)), ('name', self.gf('django.db.models.fields.CharField')(max_length=100)), ('valid_start', self.gf('django.db.models.fields.DateField')(null=True, blank=True)), ('valid_end', self.gf('django.db.models.fields.DateField')(null=True, blank=True)), )) db.send_create_signal('website', ['Schedule']) # Adding model 'OpenTime' db.create_table('website_opentime', ( ('basemodel_ptr', self.gf('django.db.models.fields.related.OneToOneField')(to=orm['website.BaseModel'], unique=True, primary_key=True)), ('schedule', self.gf('django.db.models.fields.related.ForeignKey')(related_name='open_times', to=orm['website.Schedule'])), ('start_day', self.gf('django.db.models.fields.IntegerField')()), ('start_time', self.gf('django.db.models.fields.TimeField')()), ('end_day', self.gf('django.db.models.fields.IntegerField')()), ('end_time', self.gf('django.db.models.fields.TimeField')()), )) db.send_create_signal('website', ['OpenTime']) def backwards(self, orm): # Deleting model 'BaseModel' db.delete_table('website_basemodel') # Deleting model 'Facility' db.delete_table('website_facility') # Removing M2M table for field special_schedules on 'Facility' db.delete_table('website_facility_special_schedules') # Deleting model 'Schedule' db.delete_table('website_schedule') # Deleting model 'OpenTime' db.delete_table('website_opentime') models = { 'website.basemodel': { 'Meta': {'object_name': 'BaseModel'}, 'id': ('django.db.models.fields.AutoField', [], {'primary_key': 'True'}), 'last_modified': ('django.db.models.fields.DateTimeField', [], {'auto_now': 'True', 'blank': 'True'}) }, 'website.opentime': { 'Meta': {'object_name': 'OpenTime', '_ormbases': ['website.BaseModel']}, 'basemodel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['website.BaseModel']", 'unique': 'True', 'primary_key': 'True'}), 'end_day': ('django.db.models.fields.IntegerField', [], {}), 'end_time': ('django.db.models.fields.TimeField', [], {}), 'schedule': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'open_times'", 'to': "orm['website.Schedule']"}), 'start_day': ('django.db.models.fields.IntegerField', [], {}), 'start_time': ('django.db.models.fields.TimeField', [], {}) }, 'website.facility': { 'Meta': {'object_name': 'Facility', '_ormbases': ['website.BaseModel']}, 'basemodel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['website.BaseModel']", 'unique': 'True', 'primary_key': 'True'}), 'main_schedule': ('django.db.models.fields.related.ForeignKey', [], {'related_name': "'facility_main'", 'to': "orm['website.Schedule']"}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'special_schedules': ('django.db.models.fields.related.ManyToManyField', [], {'blank': 'True', 'related_name': "'facility_special'", 'null': 'True', 'symmetrical': 'False', 'to': "orm['website.Schedule']"}) }, 'website.schedule': { 'Meta': {'object_name': 'Schedule', '_ormbases': ['website.BaseModel']}, 'basemodel_ptr': ('django.db.models.fields.related.OneToOneField', [], {'to': "orm['website.BaseModel']", 'unique': 'True', 'primary_key': 'True'}), 'name': ('django.db.models.fields.CharField', [], {'max_length': '100'}), 'valid_end': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}), 'valid_start': ('django.db.models.fields.DateField', [], {'null': 'True', 'blank': 'True'}) } } complete_apps = ['website']
StarcoderdataPython
8102827
from easydict import EasyDict as edict # init __C_SHHB = edict() cfg_data = __C_SHHB __C_SHHB.STD_SIZE = (768,1024) __C_SHHB.TRAIN_SIZE = (576,768) __C_SHHB.DATA_PATH = 'ProcessedData/shanghaitech_part_B' __C_SHHB.MEAN_STD = ([0.452016860247, 0.447249650955, 0.431981861591],[0.23242045939, 0.224925786257, 0.221840232611]) __C_SHHB.LABEL_FACTOR = 1 __C_SHHB.LOG_PARA = 100. __C_SHHB.RESUME_MODEL = ''#model path __C_SHHB.TRAIN_BATCH_SIZE = 6 #imgs __C_SHHB.VAL_BATCH_SIZE = 6 # __C_SHHB.NUM_WORKERS = 0
StarcoderdataPython
8049173
<filename>tricycle_kinematic.py """ Example tricycle_kinematic.py Author: <NAME> <<EMAIL>> GitHub: https://github.com/botprof/agv-examples """ # %% # SIMULATION SETUP import numpy as np import matplotlib.pyplot as plt from mobotpy.models import Tricycle from mobotpy.integration import rk_four # Set the simulation time [s] and the sample period [s] SIM_TIME = 15.0 T = 0.1 # Create an array of time values [s] t = np.arange(0.0, SIM_TIME, T) N = np.size(t) # Set the wheelbase and track of the vehicle [m] ELL_W = 2.50 ELL_T = 1.75 # %% # MODEL DEFINTION def tricycle_f(x, u): """Tricycle vehicle kinematic model.""" f = np.zeros(4) f[0] = u[0] * np.cos(x[2]) f[1] = u[0] * np.sin(x[2]) f[2] = u[0] * 1.0 / ELL_W * np.tan(x[3]) f[3] = u[1] return f # %% # RUN SIMULATION # Initialize arrays that will be populated with our inputs and states x = np.zeros((4, N)) u = np.zeros((2, N)) # Set the initial pose [m, m, rad, rad], velocities [m/s, rad/s] x[0, 0] = 0.0 x[1, 0] = 0.0 x[2, 0] = np.pi / 2.0 x[3, 0] = 0.0 u[0, 0] = 5.0 u[1, 0] = 0 # Run the simulation for k in range(1, N): x[:, k] = rk_four(tricycle_f, x[:, k - 1], u[:, k - 1], T) u[0, k] = 5.0 u[1, k] = 0.25 * np.sin(2.0 * t[k]) # %% # MAKE SOME PLOTS # Change some plot settings (optional) plt.rc("text", usetex=True) plt.rc("text.latex", preamble=r"\usepackage{cmbright,amsmath,bm}") plt.rc("savefig", format="pdf") plt.rc("savefig", bbox="tight") # Plot the states as a function of time fig1 = plt.figure(1) fig1.set_figheight(6.4) ax1a = plt.subplot(611) plt.plot(t, x[0, :]) plt.grid(color="0.95") plt.ylabel(r"$x$ [m]") plt.setp(ax1a, xticklabels=[]) ax1b = plt.subplot(612) plt.plot(t, x[1, :]) plt.grid(color="0.95") plt.ylabel(r"$y$ [m]") plt.setp(ax1b, xticklabels=[]) ax1c = plt.subplot(613) plt.plot(t, x[2, :] * 180.0 / np.pi) plt.grid(color="0.95") plt.ylabel(r"$\theta$ [deg]") plt.setp(ax1c, xticklabels=[]) ax1c = plt.subplot(614) plt.plot(t, x[3, :] * 180.0 / np.pi) plt.grid(color="0.95") plt.ylabel(r"$\phi$ [deg]") plt.setp(ax1c, xticklabels=[]) ax1c = plt.subplot(615) plt.step(t, u[0, :], "C1", where="post") plt.grid(color="0.95") plt.ylabel(r"$v_1$ [m/s]") plt.setp(ax1c, xticklabels=[]) ax1d = plt.subplot(616) plt.step(t, u[1, :], "C1", where="post") plt.grid(color="0.95") plt.ylabel(r"$v_2$ [deg/s]") plt.xlabel(r"$t$ [s]") # Save the plot plt.savefig("../agv-book/figs/ch3/tricycle_kinematic_fig1.pdf") # Let's now use the class Tricycle for plotting vehicle = Tricycle(ELL_W, ELL_T) # Plot the position of the vehicle in the plane fig2 = plt.figure(2) plt.plot(x[0, :], x[1, :]) plt.axis("equal") X_L, Y_L, X_R, Y_R, X_F, Y_F, X_B, Y_B = vehicle.draw( x[0, 0], x[1, 0], x[2, 0], x[3, 0] ) plt.fill(X_L, Y_L, "k") plt.fill(X_R, Y_R, "k") plt.fill(X_F, Y_F, "k") plt.fill(X_B, Y_B, "C2", alpha=0.5, label="Start") X_L, Y_L, X_R, Y_R, X_F, Y_F, X_B, Y_B = vehicle.draw( x[0, N - 1], x[1, N - 1], x[2, N - 1], x[3, N - 1] ) plt.fill(X_L, Y_L, "k") plt.fill(X_R, Y_R, "k") plt.fill(X_F, Y_F, "k") plt.fill(X_B, Y_B, "C3", alpha=0.5, label="End") plt.xlabel(r"$x$ [m]") plt.ylabel(r"$y$ [m]") plt.legend() # Save the plot plt.savefig("../agv-book/figs/ch3/tricycle_kinematic_fig2.pdf") # Show all the plots to the screen plt.show() # %% # MAKE AN ANIMATION # Create and save the animation ani = vehicle.animate(x, T, True, "../agv-book/gifs/ch3/tricycle_kinematic.gif") # Show the movie to the screen plt.show() # # Show animation in HTML output if you are using IPython or Jupyter notebooks # plt.rc('animation', html='jshtml') # display(ani) # plt.close()
StarcoderdataPython
1905582
from gather_texts import getTexts from ngrams import classify_text from ngrams import classify_text from server import classifyOffWorld print("Getting text from MongoDB...") texts = getTexts() #[0: 100] print("Finished") print("Concatenating text into a single file..") texts_list = [] for text in texts: texts_list.append( text['feed'] ) print("List created...") part_list = 250 # int(len(texts_list)/5.0) big_text = " ".join(texts_list[0:part_list]) big_text2 = " ".join(texts_list[part_list: 2*part_list]) print("Finished") print("Creating classifications...") owgrams1, owgrams2 = classifyOffWorld(big_text2) grams1, grams2 = classify_text(big_text) # find top 10 of 1-grams and 2-grams total_grams1 = {} for gram1 in owgrams1: total_grams1[ gram1[0] ] = gram1[1] total_grams2 = {} for gram2 in owgrams2: total_grams2[ gram2[0] ] = gram2[1] for gram1 in grams1: key = gram1[0] if not key in total_grams1.keys(): total_grams1[key] = gram1[1] else: total_grams1[key] += gram1[1] for gram2 in grams2: key = gram2[0] if not key in total_grams2.keys(): total_grams2[key] = gram2[1] else: total_grams2[key] += gram2[1] grams1 = sorted(total_grams1.items(), key = lambda kv: kv[1]) grams1.reverse() grams1 = (gram1 for gram1 in grams1[0:10]) grams2 = sorted(total_grams2.items(), key = lambda kv: kv[1]) grams2.reverse() grams2 = (gram2 for gram2 in grams2[0:10]) print("Finished") print("Writing classifications to file...") f = open("classifications.txt", "w") for gram1 in grams1: f.write(gram1[0] + "\n") for gram2 in grams2: f.write(gram2[0] + "\n") f.close() print("Finished")
StarcoderdataPython
4832870
<reponame>facebookresearch/uimnet<filename>uimnet/modules/spectral_normalization/spectral_embedding.py #!/usr/bin/env python3 # # # Copyright (c) 2021 Facebook, inc. and its affiliates. All Rights Reserved # # import torch import torch.nn as nn import torch.nn.functional as F from uimnet.modules.spectral_normalization.base import SN # Embedding layer with spectral norm # We use num_embeddings as the dim instead of embedding_dim here # for convenience sake class SNEmbedding(nn.Embedding, SN): def __init__(self, num_embeddings, embedding_dim, padding_idx=None, max_norm=None, norm_type=2, scale_grad_by_freq=False, sparse=False, _weight=None, num_svs=1, num_itrs=1, eps=1e-12, sn_coef=1): nn.Embedding.__init__(self, num_embeddings, embedding_dim, padding_idx, max_norm, norm_type, scale_grad_by_freq, sparse, _weight) SN.__init__(self, num_svs, num_itrs, num_embeddings, eps=eps, sn_coef=sn_coef) def forward(self, x): return F.embedding(x, self.W_()) if __name__ == '__main__': pass
StarcoderdataPython
195295
from django.apps import AppConfig class CustomThemeDemoAppConfig(AppConfig): name = 'django_cradmin.demo.custom_theme_demo' verbose_name = "Django CRadmin custom theme demo" def ready(self): from django_cradmin.apps.cradmin_kss_styleguide import styleguide_registry styleguide = styleguide_registry.CradminStyleGuide( unique_id='django_cradmin_theme_example', label='Django CRadmin example theme', appname='custom_theme_demo', sourcefolder='styles/cradmin_theme_example', sourcefile='styleguide.scss', ) styleguide_registry.Registry.get_instance().add(styleguide)
StarcoderdataPython
1847166
""" Factories for generating edXML for testing XModule import """ import inspect from tempfile import mkdtemp from factory import Factory, Sequence, lazy_attribute, post_generation from fs.osfs import OSFS from lxml import etree from xblock.mixins import HierarchyMixin from xmodule.modulestore import only_xmodules from xmodule.modulestore.inheritance import InheritanceMixin from xmodule.x_module import XModuleMixin class XmlImportData: """ Class to capture all of the data needed to actually run an XML import, so that the Factories have something to generate """ def __init__(self, xml_node, xml=None, course_id=None, default_class=None, policy=None, filesystem=None, parent=None, xblock_mixins=(), xblock_select=None): self._xml_node = xml_node self._xml_string = xml self.course_id = course_id self.default_class = default_class self.filesystem = filesystem self.xblock_mixins = xblock_mixins self.xblock_select = xblock_select self.parent = parent if policy is None: self.policy = {} else: self.policy = policy @property def xml_string(self): """Return the stringified version of the generated xml""" if self._xml_string is not None: return self._xml_string return etree.tostring(self._xml_node) def __repr__(self): return "XmlImportData{!r}".format(( self._xml_node, self._xml_string, self.course_id, self.default_class, self.policy, self.filesystem, self.parent, self.xblock_mixins, self.xblock_select, )) # Extract all argument names used to construct XmlImportData objects, # so that the factory doesn't treat them as XML attributes XML_IMPORT_ARGS = inspect.getargspec(XmlImportData.__init__).args # lint-amnesty, pylint: disable=deprecated-method class XmlImportFactory(Factory): """ Factory for generating XmlImportData's, which can hold all the data needed to run an XModule XML import """ class Meta: model = XmlImportData filesystem = OSFS(mkdtemp()) xblock_mixins = (InheritanceMixin, XModuleMixin, HierarchyMixin) xblock_select = only_xmodules url_name = Sequence(str) attribs = {} policy = {} inline_xml = True tag = 'unknown' course_id = 'edX/xml_test_course/101' @classmethod def _adjust_kwargs(cls, **kwargs): """ Adjust the kwargs to be passed to the generated class. Any kwargs that match :fun:`XmlImportData.__init__` will be passed through. Any other unknown `kwargs` will be treated as XML attributes :param tag: xml tag for the generated :class:`Element` node :param text: (Optional) specifies the text of the generated :class:`Element`. :param policy: (Optional) specifies data for the policy json file for this node :type policy: dict :param attribs: (Optional) specify attributes for the XML node :type attribs: dict """ tag = kwargs.pop('tag', 'unknown') kwargs['policy'] = {'{tag}/{url_name}'.format(tag=tag, url_name=kwargs['url_name']): kwargs['policy']} kwargs['xml_node'].text = kwargs.pop('text', None) kwargs['xml_node'].attrib.update(kwargs.pop('attribs', {})) # Make sure that the xml_module doesn't try and open a file to find the contents # of this node. inline_xml = kwargs.pop('inline_xml') if inline_xml: kwargs['xml_node'].set('not_a_pointer', 'true') for key in list(kwargs.keys()): if key not in XML_IMPORT_ARGS: kwargs['xml_node'].set(key, kwargs.pop(key)) if not inline_xml: kwargs['xml_node'].write( kwargs['filesystem'].open( '{}/{}.xml'.format(kwargs['tag'], kwargs['url_name']) ), encoding='utf-8' ) return kwargs @lazy_attribute def xml_node(self): """An :class:`xml.etree.Element`""" return etree.Element(self.tag) @post_generation def parent(self, _create, extracted, **_): """Hook to merge this xml into a parent xml node""" if extracted is None: return extracted._xml_node.append(self._xml_node) # pylint: disable=no-member, protected-access extracted.policy.update(self.policy) class CourseFactory(XmlImportFactory): """Factory for <course> nodes""" tag = 'course' name = '101' static_asset_path = 'xml_test_course' class ChapterFactory(XmlImportFactory): """Factory for <chapter> nodes""" tag = 'chapter' class SequenceFactory(XmlImportFactory): """Factory for <sequential> nodes""" tag = 'sequential' class VerticalFactory(XmlImportFactory): """Factory for <vertical> nodes""" tag = 'vertical' class ProblemFactory(XmlImportFactory): """Factory for <problem> nodes""" tag = 'problem' text = '<h1>Empty Problem!</h1>' class HtmlFactory(XmlImportFactory): """Factory for <html> nodes""" tag = 'html'
StarcoderdataPython
11231919
<filename>cloudrail/knowledge/rules/aws/context_aware/disallow_resources_in_default_vpc_rule.py from typing import List, Dict from cloudrail.knowledge.context.aws.networking_config.network_entity import NetworkEntity from cloudrail.knowledge.context.aws.aws_environment_context import AwsEnvironmentContext from cloudrail.knowledge.rules.aws.aws_base_rule import AwsBaseRule from cloudrail.knowledge.rules.base_rule import Issue from cloudrail.knowledge.rules.rule_parameters.base_paramerter import ParameterType class DisallowResourcesInDefaultVpcRule(AwsBaseRule): def execute(self, env_context: AwsEnvironmentContext, parameters: Dict[ParameterType, any]) -> List[Issue]: issues: List[Issue] = [] network_entity_list: List[NetworkEntity] = env_context.get_all_network_entities() for entity in network_entity_list: if entity.network_resource.vpc is not None and entity.network_resource.vpc.is_default: # some resources can be out of vpc issues.append(Issue(self._format_evidence(entity.get_friendly_name()), entity, entity)) return issues def get_id(self) -> str: return "disallow_default_vpc" @staticmethod def _format_evidence(entity: str) -> str: return f"~Default VPC~. `{entity}` is defined within the default VPC." def should_run_rule(self, environment_context: AwsEnvironmentContext) -> bool: return bool(environment_context.get_all_network_entities())
StarcoderdataPython
9679520
<filename>main.py import pandas as pd from constants import * from formatting import format_player_data # main execution function to read player list and generate fantasy teams. def main(): data = pd.read_csv('data/fav_players.csv') # Format data = format_player_data(data) print(data[:5]) # separate into postions defenders = pd.concat([data[data[POSITION1] == 'Defender'], data[data[POSITION2] == 'Defender']]) forwards = pd.concat([data[data[POSITION1] == 'Forward'], data[data[POSITION2] == 'Forward']]) midfielders = pd.concat([data[data[POSITION1] == 'Midfielder'], data[data[POSITION2] == 'Midfielder']]) rucks = pd.concat([data[data[POSITION1] == 'Ruck'], data[data[POSITION2] == 'Ruck']]) print(rucks) if __name__ == "__main__": main()
StarcoderdataPython
1619748
#!/usr/bin/env python # coding: utf-8 # demo """ Author: <NAME> Email: <EMAIL> Create_Date: 2019/05/21 """ import torch import torch.nn as nn import torchvision.transforms as transforms from torch.utils.data import DataLoader torch.backends.cudnn.deterministic = True torch.manual_seed(123) import os, argparse, sys import numpy as np import glob import matplotlib.pyplot as plt plt.switch_backend('agg') import warnings warnings.filterwarnings("ignore") from PIL import Image sys.path.append('models') import DepthNet # ======================= # demo # ======================= def demo(net, args): data_dir = args.data_dir img_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) ]) for im in os.listdir(data_dir): im_dir = os.path.join(data_dir, im) print('Processing img: {}'.format(im_dir)) # Read image img = Image.open(im_dir).convert('RGB') ori_width, ori_height = img.size int_width = args.img_size[0] int_height = args.img_size[1] img = img.resize((int_width, int_height), Image.ANTIALIAS) tensor_img = img_transform(img) # forward input_img = torch.autograd.Variable(tensor_img.cuda().unsqueeze(0), volatile=True) output = net(input_img) # Normalization and save results depth = output.squeeze().cpu().data.numpy() min_d, max_d = depth.min(), depth.max() depth_norm = (depth - min_d) / (max_d - min_d) * 255 depth_norm = depth_norm.astype(np.uint8) image_pil = Image.fromarray(depth_norm) output_dir = os.path.join(args.result_dir, im) image_pil = image_pil.resize((ori_width, ori_height), Image.BILINEAR) plt.imsave(output_dir, np.asarray(image_pil), cmap='inferno') if __name__ == '__main__': parser = argparse.ArgumentParser(description='MRDP Testing/Evaluation') parser.add_argument('--img_size', default=[448, 448], type=list, help='Image size of network input') parser.add_argument('--data_dir', default='examples', type=str, help='Data path') parser.add_argument('--result_dir', default='demo_results', type=str, help='Directory for saving results, default: demo_results') parser.add_argument('--gpu_id', default=0, type=int, help='GPU id, default:0') args = parser.parse_args() args.checkpoint = 'model.pth.tar' if not os.path.exists(args.result_dir): os.makedirs(args.result_dir) gpu_id = args.gpu_id torch.cuda.device(gpu_id) net = DepthNet.DepthNet() net = torch.nn.DataParallel(net, device_ids=[0]).cuda() checkpoint = torch.load(args.checkpoint) net.load_state_dict(checkpoint['state_dict']) net.eval() print('Begin to test ...') with torch.no_grad(): demo(net, args) print('Finished!')
StarcoderdataPython
5173181
#!/usr/bin/python2.5 """ Package for general database editor web interface. """
StarcoderdataPython
317543
<gh_stars>0 import requests # petition get def generate_request_get(url, params={}): response = requests.get(url, params=params) if response.status_code == 200: return response.json() # petition put def generate_request_put(url, data): response = requests.put(url, data=data) if response.status_code == 200: return response.json() # petition delete def generate_request_delete(url): response = requests.delete(url) if response.status_code == 200: return response.json() # petition post def generate_request_post(url, data): response = requests.post(url, data=data) if response.status_code == 200: return response.json() # get json clients def get_clients(params={}): response = generate_request_get('http://127.0.0.1:8000/api/v1/client', params) if response: clients = response.get('results') return clients return "" # delete request credit def delete_request(pk=None): response = generate_request_delete(f'http://127.0.0.1:8000/api/v1/request/{pk}') if response: request = response.get('message') return request return "" # put request credit def put_request(pk=None, data={}): response = generate_request_put(f'http://127.0.0.1:8000/api/v1/request/{pk}', data) if response: request = response.get('results') return request return "" # post request credit def post_request(pk=None, data={}): response = generate_request_post(f'http://127.0.0.1:8000/api/v1/request/{pk}', data) if response: request = response.get('results') return request return ""
StarcoderdataPython
11295642
from django.urls import include, path urlpatterns = [ path('profiles/', include('tango_user.urls')), path('video/', include('video.urls')), ]
StarcoderdataPython
3292299
<gh_stars>1000+ # -*- coding:utf-8 -*- # Author: hankcs # Date: 2019-12-28 23:15 from hanlp.components.ner_tf import TransformerNamedEntityRecognizerTF from hanlp.datasets.ner.msra import MSRA_NER_CHAR_LEVEL_TRAIN, MSRA_NER_CHAR_LEVEL_DEV, MSRA_NER_CHAR_LEVEL_TEST from tests import cdroot cdroot() recognizer = TransformerNamedEntityRecognizerTF() save_dir = 'data/model/ner/ner_albert_base_zh_msra_sparse_categorical_crossentropy' recognizer.fit(MSRA_NER_CHAR_LEVEL_TRAIN, MSRA_NER_CHAR_LEVEL_DEV, save_dir, transformer='albert_base_zh', learning_rate=5e-5, metrics='f1') recognizer.load(save_dir) print(recognizer.predict(list('上海华安工业(集团)公司董事长谭旭光和秘书张晚霞来到美国纽约现代艺术博物馆参观。'))) recognizer.evaluate(MSRA_NER_CHAR_LEVEL_TEST, save_dir=save_dir) print(f'Model saved in {save_dir}')
StarcoderdataPython
1787113
<filename>finalists/jun2tong/utils/train_ni.py import numpy as np import torch from torch.utils import data from .common import check_ext_mem, check_ram_usage from .wrapper import CustomTensorDataset def train_net(optimizer, scheduler, model, criterion, data_loader, reg_coef, train_ep, device="cpu"): cur_ep = 0 stats = {"ram": [], "disk": []} for ep in range(train_ep): stats['disk'].append(check_ext_mem("cl_ext_mem")) stats['ram'].append(check_ram_usage()) model.train() print("training ep: ", ep) correct_cnt, ave_loss = 0, 0 it = 0 for x_mb, y_mb, p_logits_mb in data_loader: x_mb = x_mb.to(device) y_mb = y_mb.to(device) all_out = model(x_mb)[0] loss = criterion["cls"](all_out, y_mb) dist_loss = 0 if not isinstance(p_logits_mb, list): p_logits_mb = p_logits_mb.to(device) dist_loss = criterion["dist"](torch.log_softmax(all_out, dim=1), torch.softmax(p_logits_mb, dim=1)) # dist_loss = criterion["dist"](all_out, p_logits_mb) all_loss = loss + reg_coef*dist_loss else: all_loss = loss ave_loss += all_loss.item() optimizer.zero_grad() all_loss.backward() optimizer.step() pred_label = torch.argmax(all_out, dim=1) correct_cnt += (pred_label.detach() == y_mb).sum().cpu() acc = correct_cnt.item() / ((it + 1) * y_mb.size(0)) ave_loss /= ((it + 1) * y_mb.size(0)) if it % 100 == 0: # print(f'==>>> it: {it}, avg. loss: {ave_loss: .6f}, running train acc: {acc: .3f}') print(f'==>>> it: {it}, dist. loss: {dist_loss: .6f}, cls loss: {loss: .6f}, running train acc: {acc: .3f}') it += 1 cur_ep += 1 scheduler.step() return stats def nn_mean_classify(model, test_set, mb_size, Mus, preproc=None, use_cuda="cpu", verbose=True): model.eval() acc_x_task = [] stats = {'accs': [], 'acc': []} preds = [] for (x, y), t in test_set: if preproc: x = preproc(x) ds = CustomTensorDataset(x, torch.from_numpy(y).type(torch.LongTensor)) dataloader = torch.utils.data.DataLoader(ds, batch_size=mb_size, shuffle=False, num_workers=4) model = model.to(use_cuda) correct_cnt, ave_loss = 0, 0 with torch.no_grad(): for x_mb, y_mb in dataloader: x_mb = x_mb.to(use_cuda) feas = model.features(x_mb) dists = torch.zeros(feas.shape[0], len(Mus)) for i in range(len(Mus)): dists[:, i] = torch.sqrt(torch.pow(feas.sub(Mus[i].to(use_cuda)), 2).sum(dim=1)) # pred_label = torch.argmin(dists, dim=1) pred_label = torch.topk(dists, 1, dim=1, largest=False)[1] correct_cnt += sum(pred_label.view(-1).numpy() == np.array(y_mb)) preds += list(pred_label) acc = correct_cnt / len(ds) if verbose: print(f'TEST Acc. Task {t}==>>> acc: {acc:.3f}') acc_x_task.append(acc) stats['accs'].append(acc) stats['acc'].append(np.mean(acc_x_task)) return stats, preds
StarcoderdataPython
9618254
from random import randint from time import sleep def sorteia(lista): print('Sorteando 5 valores') for cont in range(0, 5): n = randint(0, 10) lista.append(n) print(f' {n} ', end='', flush=True) sleep(0.3) print('PRONTO!') def somapar(): soma = 0 for v in número: if v % 2 == 0: soma += v print(soma) número = list() sorteia(número) print(número, end='') print('. A soma dos números pares vale ', end='') somapar()
StarcoderdataPython
11307550
from melodically.harmony import midi_to_std, get_root, harmonic_affinities, modes_dict class HarmonicState: """ This class allows to monitor and update an internal harmonic state, influenced by external notes inputs """ def __init__(self, buffer_size=16): # contains the input notes in std notation self.noteBuffer = [] # max size of the buffer self.bufferSize = buffer_size # mode dictionary used to represent a modal scale # root: root note of the scale # mode_signature_index: index of the interval scheme of a modal scale # mode_index: index of the mode inside a certain interval scheme self.currentMode = {'root': 'C', 'mode_signature_index': 0, 'mode_index': 0} def push_notes(self, new_notes): """ Pushes new note inside the buffer. If the buffer overflows, the older notes are discarded. :param new_notes: list of new notes """ self.noteBuffer = self.noteBuffer + new_notes while len(self.noteBuffer) > self.bufferSize: self.noteBuffer.pop(0) # removing old notes def update_scale(self): """ Updates the currentMode attribute based on the notes in the buffer, applying the harmonic_affinities function to them. :return: currentMode """ notes_std = [n for n in self.noteBuffer] if notes_std: root = get_root(notes_std) modes_affinities = harmonic_affinities(root, notes_std) mode_signature_index = modes_affinities.index(max(modes_affinities)) tmp = modes_affinities[mode_signature_index] # sequence with the lowest distance mode_index = tmp.index(max(tmp)) self.currentMode['root'] = root self.currentMode['mode_signature_index'] = mode_signature_index self.currentMode['mode_index'] = mode_index return self.currentMode def get_mode_notes(self): """ Gets the current notes of the current modal scale. :return: list of notes of the current modal scale """ self.update_scale() tmp = modes_dict[self.currentMode['root']] tmp = tmp[self.currentMode['mode_signature_index']] return tmp[self.currentMode['mode_index']]
StarcoderdataPython
1975353
from itertools import* (n,), *d = [[*map(int, o.split())] for o in open(0)] S, T = zip(*d) a = [0] * -~max(T) for s in S: a[s] += 1 *a, = accumulate(a) for s, t in d: print(a[t] - a[s])
StarcoderdataPython
11312976
#!/usr/bin/env python # coding=utf-8 """ Copyright (C) 2010-2013, <NAME> <<EMAIL>> This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. """ from __future__ import absolute_import import requests import json from celery import shared_task, Task from sdk.constants import WXMP_CONFIG, WXMP_ACCESS_TOKEN @shared_task def get_basic_info(open_id): access_token = Task.app.db.hget(WXMP_ACCESS_TOKEN, 'access_token') if not access_token or not open_id: print "Failed to get access_token or open_id when in get_basic_info()" return None url = "https://api.weixin.qq.com/cgi-bin/user/info?access_token={0}&openid={1}&lang=zh_CN".format( access_token, open_id ) try: resp = requests.get(url) resp = json.loads(resp.content) except Exception,e: print "Failed to get basic user info because of: {0}".format(e) return None if not isinstance(resp, dict): print "Invalid response format when get basic user info from Weixin server" return None if 'errcode' in resp.keys() and (resp['errcode'] != 0): print "Error response when get basic user info from Weixin server: {0}".format(resp['errmsg']) return None return resp
StarcoderdataPython
3583193
<reponame>dmadea/Spectra-Manipulator<filename>spectramanipulator/dialogs/stylewidget_gui.py<gh_stars>1-10 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'spectramanipulator/dialogs\stylewidget_gui.ui' # # Created by: PyQt5 UI code generator 5.15.2 # # WARNING: Any manual changes made to this file will be lost when pyuic5 is # run again. Do not edit this file unless you know what you are doing. from PyQt5 import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(419, 334) self.gridLayout_2 = QtWidgets.QGridLayout(Form) self.gridLayout_2.setObjectName("gridLayout_2") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setObjectName("verticalLayout") spacerItem = QtWidgets.QSpacerItem(20, 40, QtWidgets.QSizePolicy.Minimum, QtWidgets.QSizePolicy.Expanding) self.verticalLayout.addItem(spacerItem) self.gridLayout = QtWidgets.QGridLayout() self.gridLayout.setObjectName("gridLayout") self.combSymbol = QtWidgets.QComboBox(Form) self.combSymbol.setObjectName("combSymbol") self.gridLayout.addWidget(self.combSymbol, 6, 2, 1, 2) self.label_7 = QtWidgets.QLabel(Form) self.label_7.setObjectName("label_7") self.gridLayout.addWidget(self.label_7, 8, 0, 1, 1) self.label_6 = QtWidgets.QLabel(Form) self.label_6.setObjectName("label_6") self.gridLayout.addWidget(self.label_6, 7, 0, 1, 1) self.btnSymBrushColor = QtWidgets.QPushButton(Form) self.btnSymBrushColor.setAutoFillBackground(False) self.btnSymBrushColor.setObjectName("btnSymBrushColor") self.gridLayout.addWidget(self.btnSymBrushColor, 7, 2, 1, 1) self.btnSymFillColor = QtWidgets.QPushButton(Form) self.btnSymFillColor.setAutoFillBackground(False) self.btnSymFillColor.setObjectName("btnSymFillColor") self.gridLayout.addWidget(self.btnSymFillColor, 8, 2, 1, 1) self.sbSymBrushAlpha = QtWidgets.QSpinBox(Form) self.sbSymBrushAlpha.setMaximum(255) self.sbSymBrushAlpha.setObjectName("sbSymBrushAlpha") self.gridLayout.addWidget(self.sbSymBrushAlpha, 7, 3, 1, 1) self.cbSymBrushDefault = QtWidgets.QCheckBox(Form) self.cbSymBrushDefault.setObjectName("cbSymBrushDefault") self.gridLayout.addWidget(self.cbSymBrushDefault, 7, 4, 1, 1) self.cbSymFillDefault = QtWidgets.QCheckBox(Form) self.cbSymFillDefault.setObjectName("cbSymFillDefault") self.gridLayout.addWidget(self.cbSymFillDefault, 8, 4, 1, 1) self.sbSymFillAlpha = QtWidgets.QSpinBox(Form) self.sbSymFillAlpha.setMaximum(255) self.sbSymFillAlpha.setObjectName("sbSymFillAlpha") self.gridLayout.addWidget(self.sbSymFillAlpha, 8, 3, 1, 1) self.label_5 = QtWidgets.QLabel(Form) self.label_5.setObjectName("label_5") self.gridLayout.addWidget(self.label_5, 6, 0, 1, 1) self.label = QtWidgets.QLabel(Form) self.label.setObjectName("label") self.gridLayout.addWidget(self.label, 3, 0, 1, 1) self.btnColor = QtWidgets.QPushButton(Form) self.btnColor.setAutoFillBackground(False) self.btnColor.setObjectName("btnColor") self.gridLayout.addWidget(self.btnColor, 3, 2, 1, 1) self.sbAlpha = QtWidgets.QSpinBox(Form) self.sbAlpha.setMaximum(255) self.sbAlpha.setObjectName("sbAlpha") self.gridLayout.addWidget(self.sbAlpha, 3, 3, 1, 1) self.cbColor = QtWidgets.QCheckBox(Form) self.cbColor.setObjectName("cbColor") self.gridLayout.addWidget(self.cbColor, 3, 4, 1, 1) self.cbPlotLegend = QtWidgets.QCheckBox(Form) self.cbPlotLegend.setObjectName("cbPlotLegend") self.gridLayout.addWidget(self.cbPlotLegend, 10, 0, 1, 1) self.cbLineWidth = QtWidgets.QCheckBox(Form) self.cbLineWidth.setObjectName("cbLineWidth") self.gridLayout.addWidget(self.cbLineWidth, 4, 4, 1, 1) self.dsbLineWidth = QtWidgets.QDoubleSpinBox(Form) self.dsbLineWidth.setDecimals(1) self.dsbLineWidth.setSingleStep(0.1) self.dsbLineWidth.setObjectName("dsbLineWidth") self.gridLayout.addWidget(self.dsbLineWidth, 4, 2, 1, 2) self.cbLineType = QtWidgets.QCheckBox(Form) self.cbLineType.setObjectName("cbLineType") self.gridLayout.addWidget(self.cbLineType, 5, 4, 1, 1) self.label_3 = QtWidgets.QLabel(Form) self.label_3.setObjectName("label_3") self.gridLayout.addWidget(self.label_3, 5, 0, 1, 1) self.label_4 = QtWidgets.QLabel(Form) self.label_4.setObjectName("label_4") self.gridLayout.addWidget(self.label_4, 4, 0, 1, 1) self.label_2 = QtWidgets.QLabel(Form) self.label_2.setObjectName("label_2") self.gridLayout.addWidget(self.label_2, 2, 3, 1, 1) self.combLineType = QtWidgets.QComboBox(Form) self.combLineType.setObjectName("combLineType") self.gridLayout.addWidget(self.combLineType, 5, 2, 1, 2) self.label_8 = QtWidgets.QLabel(Form) self.label_8.setObjectName("label_8") self.gridLayout.addWidget(self.label_8, 9, 0, 1, 1) self.dsbSymSize = QtWidgets.QDoubleSpinBox(Form) self.dsbSymSize.setDecimals(1) self.dsbSymSize.setSingleStep(0.1) self.dsbSymSize.setObjectName("dsbSymSize") self.gridLayout.addWidget(self.dsbSymSize, 9, 2, 1, 2) self.verticalLayout.addLayout(self.gridLayout) self.horizontalLayout = QtWidgets.QHBoxLayout() self.horizontalLayout.setObjectName("horizontalLayout") self.btnSetDefauls = QtWidgets.QPushButton(Form) self.btnSetDefauls.setAutoFillBackground(False) self.btnSetDefauls.setObjectName("btnSetDefauls") self.horizontalLayout.addWidget(self.btnSetDefauls) self.btnCancel = QtWidgets.QPushButton(Form) self.btnCancel.setAutoFillBackground(False) self.btnCancel.setObjectName("btnCancel") self.horizontalLayout.addWidget(self.btnCancel) self.btnApply = QtWidgets.QPushButton(Form) self.btnApply.setAutoFillBackground(False) self.btnApply.setObjectName("btnApply") self.horizontalLayout.addWidget(self.btnApply) self.btnOK = QtWidgets.QPushButton(Form) self.btnOK.setAutoFillBackground(False) self.btnOK.setObjectName("btnOK") self.horizontalLayout.addWidget(self.btnOK) self.verticalLayout.addLayout(self.horizontalLayout) self.gridLayout_2.addLayout(self.verticalLayout, 0, 0, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): _translate = QtCore.QCoreApplication.translate Form.setWindowTitle(_translate("Form", "Form")) self.label_7.setText(_translate("Form", "Symbol fill color")) self.label_6.setText(_translate("Form", "Symbol brush color")) self.btnSymBrushColor.setText(_translate("Form", "Pick color")) self.btnSymFillColor.setText(_translate("Form", "Pick color")) self.cbSymBrushDefault.setText(_translate("Form", "Set same as line")) self.cbSymFillDefault.setText(_translate("Form", "Set same as line")) self.label_5.setText(_translate("Form", "Symbol type")) self.label.setText(_translate("Form", "Color")) self.btnColor.setText(_translate("Form", "Pick color")) self.cbColor.setText(_translate("Form", "Default")) self.cbPlotLegend.setText(_translate("Form", "Plot legend")) self.cbLineWidth.setText(_translate("Form", "Default")) self.cbLineType.setText(_translate("Form", "Default")) self.label_3.setText(_translate("Form", "Line type")) self.label_4.setText(_translate("Form", "Line width")) self.label_2.setText(_translate("Form", "Alpha")) self.label_8.setText(_translate("Form", "Symbol size")) self.btnSetDefauls.setText(_translate("Form", "Set defaults")) self.btnCancel.setText(_translate("Form", "Cancel")) self.btnApply.setText(_translate("Form", "Apply")) self.btnOK.setText(_translate("Form", "OK")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) Form = QtWidgets.QWidget() ui = Ui_Form() ui.setupUi(Form) Form.show() sys.exit(app.exec_())
StarcoderdataPython
3535813
<reponame>WangErFeiZi/Mei from flask_wtf import FlaskForm as Form from flask_login import current_user from ..models import User from wtforms import ValidationError, StringField, PasswordField, BooleanField, SubmitField from wtforms.validators import DataRequired, Length, Email, Regexp, EqualTo class LoginForm(Form): email = StringField('邮箱', validators=[DataRequired(), Length(1, 64), Email()]) password = PasswordField('密码', validators=[DataRequired()]) remember_me = BooleanField('记住我的登陆状态') submit = SubmitField('登陆') class ResetPasswordForm(Form): password = PasswordField('输入新的密码', validators=[DataRequired(), EqualTo('password2', message='两次输入的密码不一致。')]) password2 = PasswordField('<PASSWORD>', validators=[DataRequired()]) submit = SubmitField('更改') class ResetPasswordEmailForm(Form): email = StringField('邮箱', validators=[DataRequired(), Length(1, 64), Email()]) submit = SubmitField('发送') class ChangePasswordForm(Form): old_password = PasswordField('输入原来密码', validators=[DataRequired()]) password = PasswordField('输入<PASSWORD>', validators=[DataRequired(), EqualTo('password2', message='两次输入的密码不一致。')]) password2 = PasswordField('<PASSWORD>', validators=[DataRequired()]) submit = SubmitField('更改') def validate_old_password(self, field): if not current_user.verify_password(field.data): raise ValidationError('密码错误请重新输入。') def validate_password(self, field): if current_user.verify_password(field.data): raise ValidationError('新密码不能与当前密码一样。') class ChangeEmailForm(Form): email = StringField('新的邮箱地址', validators=[DataRequired(), Length(1, 64), Email() ]) submit = SubmitField('发送') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('该邮箱已被使用。') class RegistrationForm(Form): email = StringField('邮箱', validators=[DataRequired(), Length(1, 64), Email() ]) username = StringField('昵称', validators=[DataRequired(), Length(1, 64), Regexp('^[\u4e00-\u9fa5A-Za-z][\u4e00-\u9fa5A-Za-z0-9_.]*$', 0, 'Usernames must have only letters, ' 'numbers, dots or underscrores.')]) password = PasswordField('密码', validators=[DataRequired(), EqualTo('password2', message='两次输入的密码不一致。')]) password2 = PasswordField('再次输入密码', validators=[DataRequired()]) submit = SubmitField('注册') def validate_email(self, field): if User.query.filter_by(email=field.data).first(): raise ValidationError('该邮箱已被使用。') def validate_username(self, field): if User.query.filter_by(username=field.data).first(): raise ValidationError('该昵称已被使用。')
StarcoderdataPython
9720965
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function from libtbx.program_template import ProgramTemplate from mmtbx.validation import rama_z from mmtbx.validation.ramalyze import ramalyze from mmtbx.validation.ramalyze import res_type_labels from cctbx.maptbx.box import shift_and_box_model from libtbx.utils import Sorry, null_out from libtbx import Auto import os # ============================================================================= class Program(ProgramTemplate): description = ''' mmtbx.rama_z: Tool to calculate Rama-Z score. Validation of Ramachandran plot. Usage examples: mmtbx.rama_z model1.pdb ''' datatypes = ['model', 'phil'] master_phil_str = """\ write_HSL_models = False .type = bool write_HSL_plot = False .type = bool write_HSL_general_only = True .type = bool write_whole_plot = False .type = bool write_whole_general_only = True .type = bool """ # write everything: # write_HSL_models=True write_HSL_plot=True write_HSL_general_only=False write_whole_plot=True write_whole_general_only=False # write only general plots: # write_HSL_plot=True write_whole_plot=False # # --------------------------------------------------------------------------- def validate(self): print('Validating inputs', file=self.logger) self.data_manager.has_models() m = self.data_manager.get_model() print ('Inputs OK', file=self.logger) # --------------------------------------------------------------------------- def _write_plots_if_needed(self, model, label, type_of_plot='whole'): write_plot = getattr(self.params, "write_%s_plot" % type_of_plot) write_general_only = getattr(self.params, "write_%s_general_only" % type_of_plot) if write_plot: self.rama = ramalyze(model.get_hierarchy(), out=null_out()) self.plots = self.rama.get_plots( show_labels=False, point_style='.', markersize=3, markeredgecolor="red", dpi=300, markerfacecolor="yellow") plots_to_write = range(6) if write_general_only: plots_to_write = [0] for i in plots_to_write: file_label = res_type_labels[i].replace("/", "_") fn = "%s.png" % self.get_default_output_filename( prefix='%s_%s_' % (self.inp_fn, label), suffix=file_label, serial=Auto) if os.path.isfile(fn) and not self.params.output.overwrite: raise Sorry("%s already exists and overwrite is set to False." % fn) print("Saving:", fn, file=self.logger) self.plots[i].save_image(fn, dpi=300) def run(self): models = [] for model_name in self.data_manager.get_model_names(): models.append(self.data_manager.get_model(model_name)) # model = self.data_manager.get_model() self.inp_fn = os.path.basename(self.data_manager.get_default_model_name())[:-4] self.rama_z = rama_z.rama_z( models = models, log = self.logger) if len(models) == 1: model = models[0] cs = model.crystal_symmetry() if cs is None: model = shift_and_box_model(model) self._write_plots_if_needed(model, label='whole', type_of_plot='whole') helix_sel, sheet_sel, loop_sel = self.rama_z.get_ss_selections() if model.get_hierarchy().models_size() != 1: print ("Warning! Outputting partial models and plots are not supported \ for multi-model files", file=self.logger) else: for sel, label in [(helix_sel, "helix"), (sheet_sel, "sheet"), (loop_sel, "loop")]: selected_model = model.select(sel) if self.params.write_HSL_models: pdb_str = selected_model.model_as_pdb() fn = "%s" % self.get_default_output_filename( prefix='%s_' % self.inp_fn, suffix=label, serial=Auto) print("Writing out partial model: %s" % fn, file=self.logger) self.data_manager.write_model_file(selected_model, filename=fn) self._write_plots_if_needed(selected_model, label, type_of_plot='HSL') result = self.get_results() res_info = self.rama_z.get_detailed_values() print ("Individual residues info:", file=self.logger) print ("Residue name, type, SS, (phi, psi), Z", file=self.logger) for i in res_info: print ('%4s %10s %1s (%7.2f, %7.2f) %7.4f' % ( i[2], res_type_labels[i[1]], i[3], i[4], i[5], i[6]), file=self.logger) print(result.as_string(prefix=""), file = self.logger) # --------------------------------------------------------------------------- def get_results(self): return self.rama_z.get_result()
StarcoderdataPython
3485588
<filename>appengine/findit/dto/flake_try_job_report.py # Copyright 2017 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. from dto.isolated_tests import IsolatedTests from dto.try_job_report import TryJobReport class FlakeTryJobReport(TryJobReport): """Represents output of a flake try job.""" # Maps the step to the isolate sha of the compiled binaries. isolated_tests = IsolatedTests
StarcoderdataPython
5080863
def solution(A): if len(A) == 0: return 0 else: # head = A[0] # tail = A[head] # beans_list.append(tail) # while head != tail: # tail = A[tail] # beans_list.append(tail) all_beans_list = [] for index in range(len(A)): beans_list = [] head = A[index] tail = A[head] if head not in beans_list: beans_list.append(tail) while head != tail: tail = A[tail] beans_list.append(tail) all_beans_list.append(beans_list) max_list = len(max(all_beans_list)) return max_list if __name__ == '__main__': A = [5,4,0,3,1,6,2] result = solution(A) print(result)
StarcoderdataPython
145952
<filename>old-code/move-sitelinks.py import csv from sys import * reader = csv.DictReader(open('genes-wikipedia.tab', 'r'), delimiter='\t') gqs = {} for item in reader: iturl = item.get('p') qit = iturl[iturl.rfind('/')+1:] lang = item.get('lang') lemma = item.get('lemma') d = gqs.get(qit) if d is None: d = {} d[lang] = lemma gqs[qit] = d else: d[lang] = lemma reader = csv.DictReader(open('proteins-wikipedia.tab', 'r'), delimiter='\t') pqs = {} for item in reader: iturl = item.get('p') qit = iturl[iturl.rfind('/')+1:] lang = item.get('lang') lemma = item.get('lemma') d = pqs.get(qit) if d is None: d = {} d[lang] = lemma pqs[qit] = d else: d[lang] = lemma """ its = set() dits = set() reader = csv.DictReader(open('t.tab', 'r'), delimiter='\t') for item in reader: iturl = item.get('g') git = iturl[iturl.rfind('/')+1:] if git in its: dits.add(git) else: its.add(git) reader = csv.DictReader(open('tt.tab', 'r'), delimiter='\t') labs = {} for item in reader: iturl = item.get('p') qit = iturl[iturl.rfind('/')+1:] lab = item.get('pLabel') uni = item.get('u') labs[qit] = (lab,uni) reader = csv.DictReader(open('t.tab', 'r'), delimiter='\t') for item in reader: iturl = item.get('g') git = iturl[iturl.rfind('/')+1:] if git not in dits: continue iturl = item.get('p') pit = iturl[iturl.rfind('/')+1:] pl = item.get('pLabel') lem = item.get('lemma') print('"","{}","{}","{}","{}"'.format(lem,labs.get(pit),git,pit)) """ reader = csv.DictReader(open('ttt.csv', 'r'), delimiter=',') for item in reader: git = item.get('G') pit = item.get('P') lem = item.get('Name') g = gqs.get(git) p = pqs.get(pit) l = [] if g is None: continue for glang in g.keys(): if p is None or p.get(glang) is None: l.append((glang, g.get(glang))) for link in l: print('-{}|S{}wiki|""'.format(git, link[0])) print('{}|Lde|"{}"'.format(pit,lem)) print('{}|Dde|"Protein in Homo sapiens"'.format(pit)) for link in l: print('{}|S{}wiki|"{}"'.format(pit, link[0], link[1]))
StarcoderdataPython
12824081
<gh_stars>0 import string import nltk class Preprocesar: def __init__(self, corpus): self.corpus = corpus def __call__(self, pad='<PAD>'): """ Realiza el preproceso del texto para obtener vectores a partir de tokens a partir del texto, eliminando puntuación y palabras comunes del inglés. :param corpus: vector de textos :param pad: valor a utilizar para el padding, el cual se añade al vocabulario :return: un vector con palabras para cada texto y el vocabulario generado con el ínndice """ nltk.download('punkt') corpus_prep = [] vocab = [] for response in self.corpus: response_tokenized = nltk.word_tokenize(response) response_prep = [] # Eliminar puntuacion for word in response_tokenized: word = word.lower() if word not in string.punctuation: response_prep.append(word) vocab.append(word) corpus_prep.append(response_prep) vocab.append(pad) vocab = {x: index for index, x in enumerate(set(vocab))} return corpus_prep, vocab
StarcoderdataPython
6602331
<gh_stars>1-10 #!/usr/bin/python import re from optparse import OptionParser import sys def fextract(text, start=None, end=None): """Return the text between regular expressions start and end.""" if type(text) is list: text = ''.join(text) if start is not None: text = re.split(start, text)[1] if end is not None: text = re.split(end, text)[0] return text parser=OptionParser() parser.add_option('-f', '--file', dest='filename', help='Input data file', default=None) parser.add_option('-o', '--outputfile', dest='output', help='Output data file', default=None) parser.add_option('-s', '--start', dest='start', help='Start regexp', default=None) parser.add_option('-e', '--end', dest='end', help='End regexp', default=None) parser.usage = 'extract.py -s start -e end [options]' options, args = parser.parse_args(sys.argv[1:]) #print options, args ##if len(args) ==0: ## parser.print_usage() ## sys.exit() ##else: ## start = args[0] ## end = args[0] if options.filename is not None: text = open(options.filename,'r').readlines() else: text=sys.stdin.readlines() if options.output is None: output = sys.stdout else: output = open(options.output, 'w') out = fextract(text, options.start, options.end) output.writelines(out)
StarcoderdataPython
3457405
<reponame>MosyMosy/VDT from lab.tsne import plot # from lab.affines import plot # from lab.layers import plot # from lab.learning_curve import plot # from lab.tsne import plot # from lab.visual_domain import plot # from lab.autoencoder import transfer
StarcoderdataPython
9754602
import math import scipy.sparse as sp import torch import torch.nn as nn import torch.nn.functional as F import torch_sparse class SparseDropout(nn.Module): def __init__(self, p): super().__init__() self.p = p def forward(self, input): value_dropped = F.dropout(input.storage.value(), self.p, self.training) return torch_sparse.SparseTensor( row=input.storage.row(), rowptr=input.storage.rowptr(), col=input.storage.col(), value=value_dropped, sparse_sizes=input.sparse_sizes(), is_sorted=True) class MixedDropout(nn.Module): def __init__(self, p): super().__init__() self.dense_dropout = nn.Dropout(p) self.sparse_dropout = SparseDropout(p) def forward(self, input): if isinstance(input, torch_sparse.SparseTensor): return self.sparse_dropout(input) else: return self.dense_dropout(input) class MixedLinear(nn.Module): def __init__(self, in_features, out_features, bias=True): super().__init__() self.in_features = in_features self.out_features = out_features self.weight = nn.Parameter(torch.Tensor(in_features, out_features)) if bias: self.bias = nn.Parameter(torch.Tensor(out_features)) else: self.register_parameter('bias', None) self.reset_parameters() def reset_parameters(self): # Our fan_in is interpreted by PyTorch as fan_out (swapped dimensions) nn.init.kaiming_uniform_(self.weight, mode='fan_out', a=math.sqrt(5)) if self.bias is not None: _, fan_out = nn.init._calculate_fan_in_and_fan_out(self.weight) bound = 1 / math.sqrt(fan_out) nn.init.uniform_(self.bias, -bound, bound) def forward(self, input): if isinstance(input, torch_sparse.SparseTensor): res = input.matmul(self.weight) if self.bias: res += self.bias[None, :] else: if self.bias: res = torch.addmm(self.bias, input, self.weight) else: res = input.matmul(self.weight) return res def extra_repr(self): return 'in_features={}, out_features={}, bias={}'.format( self.in_features, self.out_features, self.bias is not None) def matrix_to_torch(X): if sp.issparse(X): return torch_sparse.SparseTensor.from_scipy(X) else: return torch.FloatTensor(X)
StarcoderdataPython
8157755
<reponame>felix9064/PythonProject #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Topic: 让对象支持上下文管理器,即兼容 with 语句 Desc : 为了让一个对象兼容 with 语句,你需要实现 __enter__() 和 __exit__() 方法 下面的例子是自定义一个网络连接 """ from socket import socket, AF_INET, SOCK_STREAM from functools import partial class LazyConnection: """ 这个类的关键特点在于它表示了一个网络连接,但是初始化的时候并不会做任何事情 (比如它并没有建立一个连接)。连接的建立和关闭是使用 with 语句自动完成的 """ def __init__(self, address, family=AF_INET, type=SOCK_STREAM): self.address = address self.family = family self.type = type self.sock = None def __enter__(self): if self.sock is not None: raise RuntimeError('Already Connected') self.sock = socket(self.family, self.type) self.sock.connect(self.address) return self.sock def __exit__(self, exc_type, exc_val, exc_tb): self.sock.close() self.sock = None if __name__ == '__main__': conn = LazyConnection(('www.python.org', 80)) with conn as s: # conn.__enter__() 会执行,连接建立 s.send(b'GET /index.html HTTP/1.1\r\n') s.send(b'Host: www.python.org\r\n') s.send(b'\r\n') resp = b''.join(iter(partial(s.recv, 8192), b'')) print(resp) # conn.__exit__() 会执行,连接关闭
StarcoderdataPython