id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
4849459
WIDTH = 200 HEIGHT = 200 PIXELSIZE = 4 BRUSHSIZE = 1 # COLORS BACKGROUND = (0, 0, 0) CURSOR = (90, 90, 90) CURSORALPHA = 90 GRID = (30, 30, 30) DEFAULTTEMP = 297.5 GLOBAL_TEMP_FACTOR = 0.2 GLOBAL_TEMP_RATE = 0.6 MAXUPDATE = 60 # frames that an element needs to be stationary before it freezes BORDER = [2, 2, 2, 256] # top, right, down, left FILETYPES = ("Sandbox Files", '*.sbx') THEME = "theme"
StarcoderdataPython
6516545
import binascii import struct import hashlib import math import bittensor import rich import time import torch import numbers import pandas from typing import Tuple, List, Union, Optional def indexed_values_to_dataframe ( prefix: Union[str, int], index: Union[list, torch.LongTensor], values: Union[list, torch.Tensor], filter_zeros: bool = False ) -> 'pandas.DataFrame': # Type checking. if not isinstance(prefix, str) and not isinstance(prefix, numbers.Number): raise ValueError('Passed prefix must have type str or Number') if isinstance(prefix, numbers.Number): prefix = str(prefix) if not isinstance(index, list) and not isinstance(index, torch.Tensor): raise ValueError('Passed uids must have type list or torch.Tensor') if not isinstance(values, list) and not isinstance(values, torch.Tensor): raise ValueError('Passed values must have type list or torch.Tensor') if not isinstance(index, list): index = index.tolist() if not isinstance(values, list): values = values.tolist() index = [ idx_i for idx_i in index if idx_i < len(values) and idx_i >= 0 ] dataframe = pandas.DataFrame(columns=[prefix], index = index ) for idx_i in index: value_i = values[ idx_i ] if value_i > 0 or not filter_zeros: dataframe.loc[idx_i] = pandas.Series( { str(prefix): value_i } ) return dataframe def unbiased_topk( values, k, dim=0, sorted = True, largest = True): r""" Selects topk as in torch.topk but does not bias lower indices when values are equal. Args: values: (torch.Tensor) Values to index into. k: (int): Number to take. Return: topk: (torch.Tensor): topk k values. indices: (torch.LongTensor) indices of the topk values. """ permutation = torch.randperm(values.shape[ dim ]) permuted_values = values[ permutation ] topk, indices = torch.topk( permuted_values, k, dim = dim, sorted=sorted, largest=largest ) return topk, permutation[ indices ] def hex_bytes_to_u8_list( hex_bytes: bytes ): hex_chunks = [int(hex_bytes[i:i+2], 16) for i in range(0, len(hex_bytes), 2)] return hex_chunks def u8_list_to_hex( values: list ): total = 0 for val in reversed(values): total = (total << 8) + val return total def create_seal_hash( block_hash:bytes, nonce:int ) -> bytes: nonce_bytes = binascii.hexlify(nonce.to_bytes(8, 'little')) block_bytes = block_hash.encode('utf-8')[2:] pre_seal = nonce_bytes + block_bytes seal = hashlib.sha256( bytearray(hex_bytes_to_u8_list(pre_seal)) ).digest() return seal def seal_meets_difficulty( seal:bytes, difficulty:int ): seal_number = int.from_bytes(seal, "big") product = seal_number * difficulty limit = int(math.pow(2,256) - 1) if product > limit: return False else: return True def solve_for_difficulty( block_hash, difficulty ): meets = False nonce = -1 while not meets: nonce += 1 seal = create_seal_hash( block_hash, nonce ) meets = seal_meets_difficulty( seal, difficulty ) if nonce > 1: break return nonce, seal def solve_for_difficulty_fast( subtensor ): block_number = subtensor.get_current_block() difficulty = subtensor.difficulty block_hash = subtensor.substrate.get_block_hash( block_number ) while block_hash == None: block_hash = subtensor.substrate.get_block_hash( block_number ) block_bytes = block_hash.encode('utf-8')[2:] meets = False nonce = -1 limit = int(math.pow(2,256) - 1) best = math.inf update_interval = 100000 start_time = time.time() console = bittensor.__console__ with console.status("Solving") as status: while not meets: nonce += 1 # Create seal. nonce_bytes = binascii.hexlify(nonce.to_bytes(8, 'little')) pre_seal = nonce_bytes + block_bytes seal = hashlib.sha256( bytearray(hex_bytes_to_u8_list(pre_seal)) ).digest() seal_number = int.from_bytes(seal, "big") product = seal_number * difficulty if product - limit < best: best = product - limit best_seal = seal if product < limit: return nonce, block_number, block_hash, difficulty, seal if nonce % update_interval == 0: itrs_per_sec = update_interval / (time.time() - start_time) start_time = time.time() difficulty = subtensor.difficulty block_number = subtensor.get_current_block() block_hash = subtensor.substrate.get_block_hash( block_number) while block_hash == None: block_hash = subtensor.substrate.get_block_hash( block_number) block_bytes = block_hash.encode('utf-8')[2:] status.update("Solving\n Nonce: [bold white]{}[/bold white]\n Iters: [bold white]{}/s[/bold white]\n Difficulty: [bold white]{}[/bold white]\n Block: [bold white]{}[/bold white]\n Best: [bold white]{}[/bold white]".format( nonce, int(itrs_per_sec), difficulty, block_hash.encode('utf-8'), binascii.hexlify(best_seal) )) def create_pow( subtensor ): nonce, block_number, block_hash, difficulty, seal = solve_for_difficulty_fast( subtensor ) return { 'nonce': nonce, 'difficulty': difficulty, 'block_number': block_number, 'block_hash': block_hash, 'work': binascii.hexlify(seal) }
StarcoderdataPython
9732547
# Generated by Django 3.0.10 on 2020-09-11 16:02 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('djcelery_model', '0003_auto_20200713_1254'), ] operations = [ migrations.AlterField( model_name='modeltaskmeta', name='object_id', field=models.IntegerField(db_index=True), ), ]
StarcoderdataPython
9710100
#!/usr/bin/env python -tt """ unittests.test_security """ try: import unittest2 as unittest except ImportError: import unittest import logging import os # import sys import dbsign.logger as L import dbsign.security as S import dbsign.shell as sh log = L.get_logger(__name__) @unittest.skip("need to mock identity/p12 file") class TestIdentity(unittest.TestCase): def setUp(self): self.keyfile = S.keychain_to_file("debugsign_test") self.password = "<PASSWORD>" self.identity = 'debug_codesign' # store and override loglevel self.init_loglevel = L._root.level L.set_level(logging.CRITICAL) # create test keychain self.assertTrue(S.create_keychain(self.keyfile, self.password)) def tearDown(self): # restore loglevel L.set_level(self.init_loglevel) # force remove test keychain if os.path.exists(self.keyfile): os.remove(self.keyfile) @unittest.skip("need to mock p12 file") def test_import_exists(self): # type: () -> () keydb = self.keyfile passwd = <PASSWORD> ident = self.identity id_file = None self.assertFalse(S.find_identity(keydb, ident)) self.assertTrue(S.import_identity(keydb, ident, id_file, passwd)) self.assertTrue(S.find_identity(keydb, ident)) @unittest.skip("need to mock p12 file") @unittest.skipUnless(os.getenv(S.UNSAFE_FLAG), "Requires --unsafe") def test_trust(self): # type: () -> () keydb = self.keyfile passwd = <PASSWORD> ident = self.identity id_file = None self.assertTrue(S.import_identity(keydb, ident, id_file, passwd)) self.assertTrue(S.find_identity(keydb, ident)) self.assertTrue(S.trust_identity(keydb, ident)) @unittest.skip("need to mock a trusted identity") def test_verify(self): # type: () -> () self.fail() @unittest.skip("need to mock a trusted identity") def test_verify_filename(self): # type: () -> () self.fail() @unittest.skip("need to mock p12 file") def test_delete(self): # type: () -> () self.fail() class TestKeychain(unittest.TestCase): def setUp(self): self.keyfile = S.keychain_to_file("debugsign_test") self.password = "<PASSWORD>" self.init_loglevel = L._root.level L.set_level(logging.CRITICAL) def tearDown(self): L.set_level(self.init_loglevel) if os.path.exists(self.keyfile): os.remove(self.keyfile) def test_keychain_to_file(self): ext = S._KEYCHAIN_EXT login_path = os.path.expanduser( os.path.join("~/Library/Keychains", "login." + ext)) self.assertTrue(login_path, S.keychain_to_file('login')) def test_derive_keychain_extension(self): """ Because the tested method is itself guesswork, the test is rather simplistic: - generate expected location of user's login keychain - verify that "$HOME/Library/Keychains/login.${keychain_extension}" exists and is valid """ login_keychain = os.path.expanduser( "~/Library/Keychains/login.{}".format( S.derive_keychain_extension())) self.assertTrue(os.path.exists(login_keychain)) self.assertTrue(os.access(login_keychain, os.R_OK)) def test_keychain_exists(self): """ - assert existing keychain => True - assert non-existent keychain => False """ valid_keychain = S.keychain_to_file("login") with self.subTest(keychain=valid_keychain): self.assertTrue(S.keychain_exists(valid_keychain)) invalid_keychain = S.keychain_to_file("invalid") with self.subTest(keychain=invalid_keychain): self.assertFalse(S.keychain_exists(invalid_keychain)) def test_keychain_operations(self): """ - assert keychain does not exist - create keychain and assert exists - lock keychain - unlock keychain and assert exists """ keyfile = self.keyfile password = <PASSWORD> # some assorted negatives self.assertFalse(S.create_keychain('/tmp', password)) # assert keychain does not exist self.assertFalse(S.keychain_exists(keyfile)) # create and assert success res_create = S.create_keychain(keyfile, password) self.assertTrue(res_create) self.assertTrue(S.keychain_exists(keyfile)) # assert second creation succeeds self.assertTrue(S.create_keychain(keyfile, password)) # keychain is unlocked at creation; lock it to test unlocking cmd_lock = sh.run(['security', 'lock-keychain', keyfile]) self.assertTrue(cmd_lock) self.assertFalse(S.unlock_keychain(keyfile, '')) self.assertTrue(S.unlock_keychain(keyfile, password)) # ensure keychain settings were set correctly cmd_info = sh.run(['security', 'show-keychain-info', keyfile]) self.assertTrue(cmd_info) self.assertRegexpMatches(cmd_info.stderr, r"\bno-timeout\b", cmd_info) # delete with backup res_delete = S.delete_keychain(keyfile, backup=True) self.assertTrue(res_delete) backup_file = res_delete.value # assert backup was made self.assertTrue(os.path.exists(backup_file)) # assert keychain is gone self.assertFalse(S.keychain_exists(keyfile)) self.assertFalse(os.path.exists(keyfile)) # cleanup backup file os.unlink(backup_file)
StarcoderdataPython
4853787
<gh_stars>1-10 # -*- coding: utf-8 -*- # # urls.py for app 'page' # from django.conf.urls import patterns, include, url from notice.views import ListNoticeView urlpatterns = patterns('', # notice list view url(r'^list/$', ListNoticeView.as_view(), name='list_notice'), )
StarcoderdataPython
140139
<filename>webapp/apps/test_assets/utils.py import json import os import sys from ..taxbrain.compute import MockCompute from ..taxbrain.models import TaxSaveInputs, OutputUrl from ..taxbrain.forms import PersonalExemptionForm from ..dynamic import views from ..taxbrain import views from django.core.files.uploadedfile import SimpleUploadedFile NUM_BUDGET_YEARS = int(os.environ.get("NUM_BUDGET_YEARS", "10")) def get_dropq_compute_from_module(module_import_path, attr='dropq_compute', MockComputeObj=MockCompute, **mc_args): """ mocks dropq compute object from specified module returns: mocked dropq compute object """ module_views = sys.modules[module_import_path] setattr(module_views, attr, MockComputeObj(**mc_args)) return getattr(module_views, attr) def do_micro_sim(client, data, tb_dropq_compute=None, dyn_dropq_compute=None, compute_count=None, post_url='/taxbrain/'): """ do the proper sequence of HTTP calls to run a microsim tb_dropq_compute: mocked taxbrain dropq_compute object; set to default config if None dyn_dropq_compute: mocked dynamic dropq_compute object; set to default config if None compute_count: number of jobs submitted; only checked in quick_calc tests post_url: url to post data; is also set to /taxbrain/file/ for file_input tests returns: response object, taxbrain mock dropq compute object, dynamic dropq compute object, primary key for model run """ #Monkey patch to mock out running of compute jobs if tb_dropq_compute is None: tb_dropq_compute = get_dropq_compute_from_module( 'webapp.apps.taxbrain.views', num_times_to_wait=0 ) if dyn_dropq_compute is None: dyn_dropq_compute = get_dropq_compute_from_module( 'webapp.apps.dynamic.views', num_times_to_wait=1 ) response = client.post(post_url, data) # Check that redirect happens assert response.status_code == 302 idx = response.url[:-1].rfind('/') assert response.url[:idx].endswith("taxbrain") # Check for good response response2 = client.get(response.url) # TODO: check compute count once NUM_BUDGET_YEARS env variable issue is # resolved assert response2.status_code == 200 if compute_count is not None: assert tb_dropq_compute.count == compute_count # return response return {"response": response, "tb_dropq_compute": tb_dropq_compute, "dyn_dropq_compute": dyn_dropq_compute, "pk": response.url[idx+1:-1]} def check_posted_params(mock_compute, params_to_check, start_year): """ Make sure posted params match expected results user_mods: parameters that are actually passed to taxcalc params_to_check: gives truth value for parameters that we want to check (formatted as taxcalc dict style reform) """ last_posted = mock_compute.last_posted user_mods = json.loads(last_posted["user_mods"]) assert last_posted["first_budget_year"] == int(start_year) for year in params_to_check: for param in params_to_check[year]: act = user_mods["policy"][str(year)][param] exp = params_to_check[year][param] assert exp == act def get_post_data(start_year, _ID_BenefitSurtax_Switches=True, quick_calc=False): """ Convenience function for posting GUI data """ data = {u'has_errors': [u'False'], u'start_year': unicode(start_year), 'csrfmiddlewaretoken':'abc123'} if _ID_BenefitSurtax_Switches: switches = {u'ID_BenefitSurtax_Switch_0': [u'True'], u'ID_BenefitSurtax_Switch_1': [u'True'], u'ID_BenefitSurtax_Switch_2': [u'True'], u'ID_BenefitSurtax_Switch_3': [u'True'], u'ID_BenefitSurtax_Switch_4': [u'True'], u'ID_BenefitSurtax_Switch_5': [u'True'], u'ID_BenefitSurtax_Switch_6': [u'True']} data.update(switches) if quick_calc: data['quick_calc'] = 'Quick Calculation!' return data def get_file_post_data(start_year, reform_text, assumptions_text=None, quick_calc=False): """ Convenience function for posting file input data """ tc_file = SimpleUploadedFile("test_reform.json", reform_text) data = {u'docfile': tc_file, u'has_errors': [u'False'], u'start_year': unicode(start_year), u'quick_calc': quick_calc, 'csrfmiddlewaretoken':'<PASSWORD>'} if assumptions_text is not None: tc_file2 = SimpleUploadedFile("test_assumptions.json", assumptions_text) data['assumpfile'] = tc_file2 return data def get_taxbrain_model(fields, first_year=2017, quick_calc=False, taxcalc_vers="0.13.0", webapp_vers="1.2.0", exp_comp_datetime = "2017-10-10"): fields = fields.copy() del fields['_state'] del fields['creation_date'] del fields['id'] for key in fields: if isinstance(fields[key], list): fields[key] = ','.join(map(str, fields[key])) personal_inputs = PersonalExemptionForm(first_year, fields) model = personal_inputs.save() model.job_ids = '1,2,3' model.json_text = None model.first_year = first_year model.quick_calc = quick_calc model.save() unique_url = OutputUrl() unique_url.taxcalc_vers = taxcalc_vers unique_url.webapp_vers = webapp_vers unique_url.unique_inputs = model unique_url.model_pk = model.pk unique_url.exp_comp_datetime = exp_comp_datetime unique_url.save() return unique_url
StarcoderdataPython
11354918
import Currency n = float(input('Please, type a value (R$): ')) Currency.Resume(n)
StarcoderdataPython
301430
#!/usr/bin/env python3 """ Plotting routines dedicated to time-series or temporal trends """ import numpy as np import pandas as pd import matplotlib import matplotlib.pyplot as plt from matplotlib import cm # import seaborn as sns #-------------------------------------- # Time-Series Plots #-------------------------------------- def OccurancePlot(archive, searchterms, fields=None, alpha=0.2, startdate=None, enddate=None): """ Plots a time-series of occurances of a given set of search terms in the collection as a scatter plot of vertical lines Inputs: archive (obj) : archive.Archive() object searchterms (list) : Terms for which to search. fields (list) : Metadata fields in which to look. Shorthand expected. Default searches through all in config.fields_short. alpha (float) : Alpha of marker face startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. """ # Instantiate figure plt.figure(figsize=(8,len(searchterms)*1.3/3), dpi=200) # Handle colors (tab10 or brg) colors = cm.tab10(np.arange(len(searchterms)) \ / float(len(searchterms))) np.random.shuffle(colors) for ii, term in enumerate(searchterms): # Find filenames with search terms in field sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate=startdate, enddate=enddate) # Plot scatterplot w/ default spacing settings plt.scatter(data['CreateDate'], np.ones(len(data['CreateDate']))*(len(searchterms)-ii), s=400, color=colors[ii], marker='|', alpha=alpha) plt.ylim([0.5, len(searchterms) + 0.5]) plt.yticks(list(range(len(searchterms),0,-1)), searchterms) plt.title('Occurances by Date') return def OccuranceMagnitude(archive, searchterms, fields=None, alpha=0.4, scale=5, startdate=None, enddate=None): """ Plots a scatterplot time-series of occurances of a given set of search terms in the collection, with sizes of each marker reflecting the number of appearances that day Inputs: archive (obj) : archive.Archive() object searchterms (list) : Terms for which to search. fields (list) : Metadata fields in which to look. Shorthand expected. Default searches through all in config.fields_short. alpha (float) : Alpha of marker face scale (int) : Scaling factor to apply to all markers startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. """ # Instantiate figure plt.figure(figsize=(8,len(searchterms)*1.3/3), dpi=300) # Get array of colors from hsv: colors = cm.hsv(np.arange(len(searchterms)) \ / float(len(searchterms))) colors = np.array(colors) colors[:,3] = alpha np.random.shuffle(colors) for ii, term in enumerate(searchterms): # Find filenames with search terms in field sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate=startdate, enddate=enddate) # Count totals by day counts = data['CreateDate'].dt.normalize().value_counts() dates = counts.index.to_series() # Plot scatterplot w/ default spacing settings plt.scatter(dates, np.ones(len(dates))*(len(searchterms)-ii), s=counts*scale, color=colors[ii], marker='o', edgecolors=(0,0,0,1), linewidth=0.5) plt.ylim([0.5, len(searchterms) + 0.5]) plt.yticks(list(range(len(searchterms),0,-1)), searchterms) plt.title('Occurances by Date') return def ViolinPlot(archive, terms, fields, startdate=None, enddate=None, refdate='19800101_000000', palette='Set2', inner='points', scale='area', cut=0, linewidth=0.8): """ Wrapper for the Seaborn violin plot function. For each keyword in terms, find files for which that keyword appears in fields, and plot a violin of occurances by date. Most other attributes are aesthetic adjustments fed into seaborn.violinplots() Inputs: archive (obj) : archive.Archive() object terms (list) : Keywords to search for in Archive, fed into Archive.FindSource() fields (list) : Exif fields in which to search for terms, fed into Archive.FindSource() startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. refdate (str) : Reference date which is used to convert pandas datetime to numeric dates, ideally a value similar to the dates returned from the collection palette, inner, scale, cut, linewidth : See requirements for seaborn.violinplot() """ # Check if Seaborn is available try: import seaborn as sns except ImportError: print("Function unavailable, requires installation of Seaborn") print("Perform full setup for auxilary packages") return sns.set_theme(style="whitegrid") dates = [] refdate = pd.to_datetime(refdate, format="%Y%m%d_%H%M%S") for n, term in enumerate(terms): # Create a random dataset across several variables sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate, enddate) # Convert to numeric date data['epoch'] = (data['CreateDate']-refdate)//pd.Timedelta("1d") # Save to list dates.append(data['epoch']/365.0 + refdate.year) # Append all the dates into a new dataframe df = pd.concat(dates, axis=1, keys=terms) # Show each distribution with both violins and points fig, ax = plt.subplots(figsize=(3,len(terms)/1.5), dpi=200) ax = sns.violinplot(data=df, ax=ax, width=0.95, orient='h', palette=palette, inner=inner, scale=scale, cut=cut, linewidth=linewidth) return def RidgePlot(archive, terms, fields, startdate=None, enddate=None, refdate='19800101_000000', palette='deep', bw_adjust=0.5, aspect=8, height=0.8): """ Wrapper for the Seaborn Ridge plot. For each keyword in terms, find files for which that keyword appears in fields, and plot a kernel of occurances by date. Most other attributes are aesthetic adjustments fed into seaborn, see example at https://seaborn.pydata.org/examples/kde_ridgeplot.html Inputs: archive (obj) : archive.Archive() object terms (list) : Keywords to search for in Archive, fed into Archive.FindSource() fields (list) : Exif fields in which to search for terms, fed into Archive.FindSource() startdate (str) : Datetime (YYYYmmdd_HHMMSS) after which to return data. enddate (str) : Datetime (YYYYmmdd_HHMMSS) before which to return data. refdate (str) : Reference date which is used to convert pandas datetime to numeric dates, ideally a value similar to the dates returned from the collection palette (str) : Seaborn color palette bw_adjust (float) : Smoothness of the kernel aspect (float) : width/height of figure height (float) : height of each FacetGrid """ # Check if Seaborn is available try: import seaborn as sns except ImportError: print("Function unavailable, requires installation of Seaborn") print("Perform full setup for auxilary packages") return sns.set_theme(style="white", rc={"axes.facecolor": (0, 0, 0, 0)}) dates = [] refdate = pd.to_datetime(refdate, format="%Y%m%d_%H%M%S") for n, term in enumerate(terms): # Create a random dataset across several variables sourcefiles = archive.FindSource([term], fields) # Grab and filter by datetimes data = archive.GrabData(sourcefiles, ['CreateDate'], startdate, enddate) dfl = pd.DataFrame() # Convert to numeric date dfl['epoch'] = (data['CreateDate']-refdate)//pd.Timedelta("1d") dfl['epoch'] = dfl['epoch']/365.0 + refdate.year # Create term column to create long-form tidy df dfl['term'] = np.tile(term, len(dfl['epoch'])) dates.append(dfl) # Append all the dates into a new dataframe df = pd.concat(dates) # Initialize the FacetGrid object g = sns.FacetGrid(df, row="term", hue="term", aspect=aspect, height=height, palette=palette) # Draw the densities in a few steps g.map(sns.kdeplot, "epoch", bw_adjust=bw_adjust, clip_on=False, fill=True, alpha=1, linewidth=1.5) g.map(sns.kdeplot, "epoch", clip_on=False, color="w", lw=2, bw_adjust=bw_adjust) g.map(plt.axhline, y=0, lw=2, clip_on=False) # Define and use a simple function to label the plot in axes coordinates def label(x, color, label): ax = plt.gca() ax.text(0, .2, label, fontweight="bold", color=color, ha="left", va="center", transform=ax.transAxes, fontsize=14) g.map(label, "epoch") # Set the subplots to overlap g.fig.subplots_adjust(hspace=-0.25) # Other minor details for tuning the plot g.set_titles("") g.set(yticks=[]) g.despine(bottom=True, left=True) ax = plt.gca() ax.tick_params(axis='x', which='major', labelsize=10, color='k') ax.set_xlabel(None) plt.gcf().set_dpi(200) return
StarcoderdataPython
17295
<gh_stars>1-10 from open_anafi.models import Indicator, IndicatorParameter, IndicatorLibelle from open_anafi.serializers import IndicatorSerializer from .frame_tools import FrameTools from open_anafi.lib import parsing_tools from open_anafi.lib.ply.parsing_classes import Indic import re from django.db import transaction from django.core.exceptions import ObjectDoesNotExist class IndicatorTools: @staticmethod def calculate_max_depth(indicator): """Calculates the depth of an indicator (the max depth of all its parameters) :param indicator: The indicator to evaluate :type indicator: class:`open_anafi.models.Indicator` """ depth = 0 for parameter in indicator.parameters.all(): if parameter.depth > depth: depth = parameter.depth indicator.max_depth = depth indicator.save() @staticmethod def update_depth(indicator): """Updates the depth of an indicator after an update. Recursively updates all the affected indicators/frames :param indicator: The indicator to evaluate :type indicator: class:`open_anafi.models.Indicator` """ parameters = IndicatorParameter.objects.filter(original_equation__contains=indicator.name) indicators_to_update = list(set([param.indicator for param in parameters])) frames_to_update = list(indicator.frames.all()) if len(indicators_to_update) > 0: for indic in indicators_to_update: for frame in indic.frames.all(): frames_to_update.append(frame) # For each indicator, we update the depth of all the parameters, then we calculate the max depth of the indicator for param in indic.parameters.all(): IndicatorParameterTools.calculate_depth(param) IndicatorTools.calculate_max_depth(indic) for indic in indicators_to_update: IndicatorTools.update_depth(indic) # We update the depth of the frames frames_to_update = list(set(frames_to_update)) if len(frames_to_update) > 0: for frame in frames_to_update: FrameTools.calculate_depth(frame) #This method can be optimized @staticmethod def update_indicator(equation, description, id, libelle=None): """Update an indicator. Note that we cannot modify the indicator's name. :param equation: The updated equation (updated or not) :type equation: str :param description: The updated description :type description: str :param id: The indicator's id :type id: int :param libelle: An extra libelle for the indicator :type libelle: str :return: The updated indicator :rtype: class:`open_anafi.models.Indicator` """ indic = Indicator.objects.get(id=id) if libelle is not None: indicator_libelle = IndicatorLibelle.objects.filter(indicator=indic) if len(indicator_libelle) > 1: raise Exception('Cet indicateur possède plusieurs libellés') elif len(indicator_libelle) == 0: indicator_libelle = IndicatorLibelle.objects.create(libelle=libelle, indicator=indic) indicator_libelle.save() else: indicator_libelle = indicator_libelle[0] indicator_libelle.libelle = libelle indicator_libelle.save() if description is not None : with transaction.atomic(): indic.description = description indic.save() if equation is not None: # with transaction.atomic(): backup_indicator = IndicatorSerializer(indic).data old_params = IndicatorParameter.objects.filter(indicator=indic) old_params_ids = [ p.id for p in old_params].copy() if len(backup_indicator.get('libelles')) > 1: raise Exception('Cet indicateur possède plusieurs libellés') parsing_tools.update_formula(equation, indic) for parameter in IndicatorParameter.objects.filter(id__in=old_params_ids): parameter.delete() indic = Indicator.objects.get(name=backup_indicator.get('name')) indic.save() IndicatorTools.update_depth(indic) return indic.name @staticmethod def check_equation_element(element): if type(element) is Indic: try: Indicator.objects.get(name=element.name) except ObjectDoesNotExist: raise Exception(f"L'indicateur {element.name} n'existe pas.") @staticmethod def check_equation(equation): try: parsed_indicator = parsing_tools.parse_equation(equation) for eq in parsed_indicator: if type(eq['tree']) is tuple: for element in eq['tree']: IndicatorTools.check_equation_element(element) else: IndicatorTools.check_equation_element(eq['tree']) except Exception as e: raise Exception(f"Erreur dans la formule : {str(e)}") @staticmethod def check_indicator_usages_in_formulas(indicator): """ Checks if an indicator is part of a formula of any other indicator. Used to check if an indicator is safe to remove. :param indicator: The indicator to check :type indicator: :class:`open_anafi.models.Indicator` """ result = [indicator_parameter.indicator.name for indicator_parameter in IndicatorParameter.objects.filter(original_equation__icontains=indicator.name)] return result class IndicatorParameterTools: @staticmethod def calculate_depth(indicator_parameter): """Calculates the depth of an indicator parameter, given that all the indicators present in its equation already exist and have the correct depth. :param indicator_parameter: The indicator parameter to evaluate :type indicator_parameter: class:`open_anafi.models.IndicatorParameter` """ depth = 0 indicators = IndicatorParameterTools.extract_indicators_from_equation(indicator_parameter.original_equation) if len(indicators) == 0: indicator_parameter.depth = 1 indicator_parameter.save() for indicator in indicators: if indicator.max_depth > depth: depth = indicator.max_depth indicator_parameter.depth = depth + 1 indicator_parameter.save() @staticmethod def extract_indicators_from_equation(equation): """Retrieves all the indicator objects contained in a equation :param equation: An equation according to the defined language :type equation: str :return: The list of all the indicator objects present in the equation :rtype: list of class:`open_anafi.models.Indicator` """ exp = re.compile('[\-+/*^(\[)\]]') is_indicator = re.compile('[A-Z0-9]+(_[A-Z0-9]+)+') split_equation = list(filter(None, map(str.strip, exp.split(equation)))) indicators = [] for item in split_equation: if not is_indicator.match(item) : continue try: indic = Indicator.objects.get(name = item) indicators.append(indic) except ObjectDoesNotExist: raise Exception(f"L'indicateur {item} n'existe pas.") return indicators
StarcoderdataPython
6656411
<reponame>daniele-sartiano/biaffine-parser # -*- coding: utf-8 -*- import argparse from datetime import datetime from parser import Model from parser.cmds.cmd import CMD from parser.utils.corpus import Corpus, TextCorpus from parser.utils.data import TextDataset, batchify import torch class Predict(CMD): def add_subparser(self, name, parser): subparser = parser.add_parser( name, help='Use a trained model to make predictions.' ) subparser.add_argument('--prob', action='store_true', help='whether to output probs') subparser.add_argument('--fdata', default='data/ptb/test.conllx', help='path to dataset') subparser.add_argument('--fpred', default='pred.conllx', help='path to predicted result') subparser.add_argument('--raw-text', action='store_true', help='raw text as input') subparser.add_argument('--tokenizer-lang', default=None, help='tokenizer language') subparser.add_argument('--tokenizer-dir', default='.tokenizer-models', help='path to saved tokenizer models') return subparser def __call__(self, args): super(Predict, self).__call__(args) print("Load the dataset") if args.prob: self.fields = self.fields._replace(PHEAD=Field('probs')) if args.raw_text: if args.tokenizer_lang is None: raise argparse.ArgumentTypeError('With --raw-text param, it is mandatory specify the --tokenizer-lang param') corpus = TextCorpus.load(args.fdata, self.fields, args.tokenizer_lang, args.tokenizer_dir, use_gpu=args.device != 1) else: corpus = Corpus.load(args.fdata, self.fields) dataset = TextDataset(corpus, [self.WORD, self.FEAT], args.buckets) # set the data loader dataset.loader = batchify(dataset, args.batch_size) print(f"{len(dataset)} sentences, " f"{len(dataset.loader)} batches") print("Load the model") self.model = Model.load(args.model) self.model.args = args print(f"{self.model}\n") print("Make predictions on the dataset") start = datetime.now() pred_arcs, pred_rels, pred_probs = self.predict(dataset.loader) total_time = datetime.now() - start # restore the order of sentences in the buckets indices = torch.tensor([i for bucket in dataset.buckets.values() for i in bucket]).argsort() corpus.arcs = [pred_arcs[i] for i in indices] corpus.rels = [pred_rels[i] for i in indices] if args.prob: corpus.probs = [pred_probs[i] for i in indices] print(f"Save the predicted result to {args.fpred}") corpus.save(args.fpred) print(f"{total_time}s elapsed, " f"{len(dataset) / total_time.total_seconds():.2f} Sents/s")
StarcoderdataPython
6660929
<reponame>chavarera/Selenium_Screenshot import os import sys import time DATA_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.insert(0, os.path.abspath(os.path.dirname(DATA_DIR))) from Screenshot.Screenshot_Clipping import Screenshot from selenium import webdriver iedriver_path = os.path.abspath(DATA_DIR + '/IEDriverServer.exe') def test_IE(): sc = Screenshot() driver = webdriver.Ie(executable_path=iedriver_path) url = 'http://yandex.ru' driver.get(url) time.sleep(10) sc.full_Screenshot(driver, save_path='.', image_name='testimage.png',load_wait_time=5,is_load_at_runtime=True) driver.close() driver.quit()
StarcoderdataPython
4967622
<reponame>Waytoaniket/Myguard import boto3 import csv import os import random import string import shutil import time import datetime import base64 from dotenv import load_dotenv from flask import Blueprint, current_app, render_template, url_for, redirect, request, session, flash from werkzeug.utils import secure_filename from ..extensions import mongo register = Blueprint("register", __name__, static_folder="images", template_folder="templates") @register.route("/") def register_details(): return render_template("register_details.html") @register.route("/form-result", methods=['POST','GET']) def register_form_result(): if request.method == 'POST': name = request.form['name'] user_id = str('MG-'+''.join(random.choices(string.ascii_uppercase + string.digits, k = 4)) ) if 'file' not in request.files: flash('No image found') file = request.files['image'] # print(file.read(),'===============>') if file.filename == '': flash('No image selected') else: image = request.files['image'] image_string = base64.b64encode(image.read()) image_string = image_string.decode('utf-8') if file: # filename = secure_filename(str(user_id)+".jpg") # if(not os.path.exists(current_app.config['REGISTER_IMAGES_FOLDER'])): # print(current_app.config['REGISTER_IMAGES_FOLDER']) # os.makedirs(current_app.config['REGISTER_IMAGES_FOLDER']) # file.save(os.path.join(current_app.config['REGISTER_IMAGES_FOLDER'], filename)) image = str(user_id)+".jpg" #AWS Bucket upload load_dotenv() print(os.environ["ACCESS_KEY_ID"]) s3 = boto3.resource('s3', aws_access_key_id = os.environ["ACCESS_KEY_ID"], aws_secret_access_key = os.environ["SECRET_ACCESS_KEY"], region_name='us-east-2') file.seek(0) data = file.read() s3.Bucket('my-guard-bucket').put_object(Key=str(image), Body=data) result = request.form timestamp = datetime.datetime.fromtimestamp(time.time()).strftime('%Y-%m-%d %H:%M:%S') # MongoDB Atlas user_entry = { "mg_id": user_id, "name": name, "timestamp": timestamp } print(mongo) print(mongo.db) print(mongo.db.users) user_collection = mongo.db.users user_collection.insert_one(user_entry) return render_template("register_form-result.html", result = result, file=image_string, user_id=user_id, name=name, timestamp=timestamp) @register.route("/users") def users(): # Mongo DB Atlas - Users results = mongo.db.users.find({}) return render_template("users.html", results=results)
StarcoderdataPython
3379699
import shutil import pytest from pytest import approx import pandas as pd import calliope from calliope.test.common.util import check_error_or_warning class TestModelPreproccesing: def test_preprocess_national_scale(self): calliope.examples.national_scale() def test_preprocess_time_clustering(self): calliope.examples.time_clustering() def test_preprocess_time_resampling(self): calliope.examples.time_resampling() def test_preprocess_urban_scale(self): calliope.examples.urban_scale() @pytest.mark.filterwarnings("ignore:(?s).*Integer:calliope.exceptions.ModelWarning") def test_preprocess_milp(self): calliope.examples.milp() def test_preprocess_operate(self): calliope.examples.operate() def test_preprocess_time_masking(self): calliope.examples.time_masking() class TestNationalScaleExampleModelSenseChecks: def example_tester(self, solver='cbc', solver_io=None): override = { 'model.subset_time': '2005-01-01', 'run.solver': solver, } if solver_io: override['run.solver_io'] = solver_io model = calliope.examples.national_scale(override_dict=override) model.run() assert model.results.storage_cap.to_pandas()['region1-1::csp'] == approx(45129.950) assert model.results.storage_cap.to_pandas()['region2::battery'] == approx(6675.173) assert model.results.energy_cap.to_pandas()['region1-1::csp'] == approx(4626.588) assert model.results.energy_cap.to_pandas()['region2::battery'] == approx(1000) assert model.results.energy_cap.to_pandas()['region1::ccgt'] == approx(30000) assert float(model.results.cost.sum()) == approx(38988.7442) assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.063543, abs=0.000001) assert float( model.results.systemwide_capacity_factor.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.2642256, abs=0.000001) def test_nationalscale_example_results_cbc(self): self.example_tester() def test_nationalscale_example_results_gurobi(self): try: import gurobipy # pylint: disable=unused-import self.example_tester(solver='gurobi', solver_io='python') except ImportError: pytest.skip('Gurobi not installed') def test_nationalscale_example_results_cplex(self): if shutil.which('cplex'): self.example_tester(solver='cplex') else: pytest.skip('CPLEX not installed') def test_nationalscale_example_results_glpk(self): if shutil.which('glpsol'): self.example_tester(solver='glpk') else: pytest.skip('GLPK not installed') def test_considers_supply_generation_only_in_total_levelised_cost(self): # calculation of expected value: # costs = model.get_formatted_array("cost").sum(dim="locs") # gen = model.get_formatted_array("carrier_prod").sum(dim=["timesteps", "locs"]) # lcoe = costs.sum(dim="techs") / gen.sel(techs=["ccgt", "csp"]).sum(dim="techs") model = calliope.examples.national_scale() model.run() assert model.results.total_levelised_cost.item() == approx(0.067005, abs=1e-5) def test_fails_gracefully_without_timeseries(self): override = { "locations.region1.techs.demand_power.constraints.resource": -200, "locations.region2.techs.demand_power.constraints.resource": -400, "techs.csp.constraints.resource": 100 } with pytest.raises(calliope.exceptions.ModelError): calliope.examples.national_scale(override_dict=override) class TestNationalScaleExampleModelInfeasibility: def example_tester(self): model = calliope.examples.national_scale( scenario='check_feasibility', override_dict={'run.cyclic_storage': False} ) model.run() assert model.results.attrs['termination_condition'] in ['infeasible', 'other'] # glpk gives 'other' as result assert 'systemwide_levelised_cost' not in model.results.data_vars assert 'systemwide_capacity_factor' not in model.results.data_vars def test_nationalscale_example_results_cbc(self): self.example_tester() class TestNationalScaleExampleModelOperate: def example_tester(self): with pytest.warns(calliope.exceptions.ModelWarning) as excinfo: model = calliope.examples.national_scale( override_dict={'model.subset_time': ['2005-01-01', '2005-01-03']}, scenario='operate') model.run() expected_warnings = [ 'Energy capacity constraint removed from region1::demand_power as force_resource is applied', 'Energy capacity constraint removed from region2::demand_power as force_resource is applied', 'Resource capacity constraint defined and set to infinity for all supply_plus techs' ] assert check_error_or_warning(excinfo, expected_warnings) assert all(model.results.timesteps == pd.date_range('2005-01', '2005-01-03 23:00:00', freq='H')) def test_nationalscale_example_results_cbc(self): self.example_tester() class TestNationalScaleResampledExampleModelSenseChecks: def example_tester(self, solver='cbc', solver_io=None): override = { 'model.subset_time': '2005-01-01', 'run.solver': solver, } if solver_io: override['run.solver_io'] = solver_io model = calliope.examples.time_resampling(override_dict=override) model.run() assert model.results.storage_cap.to_pandas()['region1-1::csp'] == approx(23563.444) assert model.results.storage_cap.to_pandas()['region2::battery'] == approx(6315.78947) assert model.results.energy_cap.to_pandas()['region1-1::csp'] == approx(1440.8377) assert model.results.energy_cap.to_pandas()['region2::battery'] == approx(1000) assert model.results.energy_cap.to_pandas()['region1::ccgt'] == approx(30000) assert float(model.results.cost.sum()) == approx(37344.221869) assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.063543, abs=0.000001) assert float( model.results.systemwide_capacity_factor.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.25, abs=0.000001) def test_nationalscale_resampled_example_results_cbc(self): self.example_tester() def test_nationalscale_resampled_example_results_glpk(self): if shutil.which('glpsol'): self.example_tester(solver='glpk') else: pytest.skip('GLPK not installed') class TestNationalScaleClusteredExampleModelSenseChecks: def model_runner(self, solver='cbc', solver_io=None, how='closest', storage_inter_cluster=False, cyclic=False, storage=True): override = { 'model.time.function_options': { 'how': how, 'storage_inter_cluster': storage_inter_cluster }, 'run.solver': solver, 'run.cyclic_storage': cyclic } if storage is False: override.update({ 'techs.battery.exists': False, 'techs.csp.exists': False }) if solver_io: override['run.solver_io'] = solver_io model = calliope.examples.time_clustering(override_dict=override) model.run() return model def example_tester_closest(self, solver='cbc', solver_io=None): model = self.model_runner(solver=solver, solver_io=solver_io, how='closest') # Full 1-hourly model run: 22312488.670967 assert float(model.results.cost.sum()) == approx(49670627.15297682) # Full 1-hourly model run: 0.296973 assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.137105, abs=0.000001) # Full 1-hourly model run: 0.064362 assert float( model.results.systemwide_capacity_factor.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.064501, abs=0.000001) def example_tester_mean(self, solver='cbc', solver_io=None): model = self.model_runner(solver=solver, solver_io=solver_io, how='mean') # Full 1-hourly model run: 22312488.670967 assert float(model.results.cost.sum()) == approx(22172253.328) # Full 1-hourly model run: 0.296973 assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.127783, abs=0.000001) # Full 1-hourly model run: 0.064362 assert float( model.results.systemwide_capacity_factor.loc[dict(carriers='power')].to_pandas().T['battery'] ) == approx(0.044458, abs=0.000001) def example_tester_storage_inter_cluster(self): model = self.model_runner(storage_inter_cluster=True) # Full 1-hourly model run: 22312488.670967 assert float(model.results.cost.sum()) == approx(21825515.304) # Full 1-hourly model run: 0.296973 assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.100760, abs=0.000001) # Full 1-hourly model run: 0.064362 assert float( model.results.systemwide_capacity_factor.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.091036, abs=0.000001) def test_nationalscale_clustered_example_closest_results_cbc(self): self.example_tester_closest() def test_nationalscale_clustered_example_closest_results_glpk(self): if shutil.which('glpsol'): self.example_tester_closest(solver='glpk') else: pytest.skip('GLPK not installed') def test_nationalscale_clustered_example_mean_results_cbc(self): self.example_tester_mean() @pytest.mark.skip(reason='GLPK is useless and delivering different results on different operating systems') def test_nationalscale_clustered_example_mean_results_glpk(self): if shutil.which('glpsol'): self.example_tester_mean(solver='glpk') else: pytest.skip('GLPK not installed') def test_nationalscale_clustered_example_storage_inter_cluster(self): self.example_tester_storage_inter_cluster() def test_storage_inter_cluster_cyclic(self): model = self.model_runner(storage_inter_cluster=True, cyclic=True) # Full 1-hourly model run: 22312488.670967 assert float(model.results.cost.sum()) == approx(18904055.722) # Full 1-hourly model run: 0.296973 assert float( model.results.systemwide_levelised_cost.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.122564, abs=0.000001) # Full 1-hourly model run: 0.064362 assert float( model.results.systemwide_capacity_factor.loc[{'carriers': 'power', 'techs': 'battery'}].item() ) == approx(0.075145, abs=0.000001) def test_storage_inter_cluster_no_storage(self): with pytest.warns(calliope.exceptions.ModelWarning) as excinfo: self.model_runner(storage_inter_cluster=True, storage=False) expected_warnings = [ 'Tech battery was removed by setting ``exists: False``', 'Tech csp was removed by setting ``exists: False``' ] assert check_error_or_warning(excinfo, expected_warnings) class TestUrbanScaleExampleModelSenseChecks: def example_tester(self, resource_unit, solver='cbc', solver_io=None): unit_override = { 'techs.pv.constraints': { 'resource': 'file=pv_resource.csv:{}'.format(resource_unit), 'resource_unit': 'energy_{}'.format(resource_unit) }, 'run.solver': solver } override = {'model.subset_time': '2005-07-01', **unit_override} if solver_io: override['run.solver_io'] = solver_io model = calliope.examples.urban_scale(override_dict=override) model.run() assert model.results.energy_cap.to_pandas()['X1::chp'] == approx(250.090112) # GLPK isn't able to get the same answer both times, so we have to account for that here if resource_unit == 'per_cap' and solver == 'glpk': heat_pipe_approx = 183.45825 else: heat_pipe_approx = 182.19260 assert model.results.energy_cap.to_pandas()['X2::heat_pipes:N1'] == approx(heat_pipe_approx) assert model.results.carrier_prod.sum('timesteps').to_pandas()['X3::boiler::heat'] == approx(0.18720) assert model.results.resource_area.to_pandas()['X2::pv'] == approx(830.064659) assert float(model.results.carrier_export.sum()) == approx(122.7156) # GLPK doesn't agree with commercial solvers, so we have to account for that here cost_sum = 430.097399 if solver == 'glpk' else 430.089188 assert float(model.results.cost.sum()) == approx(cost_sum) def test_urban_example_results_area(self): self.example_tester('per_area') def test_urban_example_results_area_gurobi(self): try: import gurobipy # pylint: disable=unused-import self.example_tester('per_area', solver='gurobi', solver_io='python') except ImportError: pytest.skip('Gurobi not installed') def test_urban_example_results_cap(self): self.example_tester('per_cap') def test_urban_example_results_cap_gurobi(self): try: import gurobipy # pylint: disable=unused-import self.example_tester('per_cap', solver='gurobi', solver_io='python') except ImportError: pytest.skip('Gurobi not installed') @pytest.mark.filterwarnings("ignore:(?s).*Integer:calliope.exceptions.ModelWarning") def test_milp_example_results(self): model = calliope.examples.milp( override_dict={'model.subset_time': '2005-01-01', 'run.solver_options.mipgap': 0.001} ) model.run() assert model.results.energy_cap.to_pandas()['X1::chp'] == 300 assert model.results.energy_cap.to_pandas()['X2::heat_pipes:N1'] == approx(188.363137) assert model.results.carrier_prod.sum('timesteps').to_pandas()['X1::supply_gas::gas'] == approx(12363.173036) assert float(model.results.carrier_export.sum()) == approx(0) assert model.results.purchased.to_pandas()['X2::boiler'] == 1 assert model.results.units.to_pandas()['X1::chp'] == 1 assert float(model.results.operating_units.sum()) == 24 assert float(model.results.cost.sum()) == approx(540.780779) def test_operate_example_results(self): model = calliope.examples.operate( override_dict={'model.subset_time': ['2005-07-01', '2005-07-04']} ) with pytest.warns(calliope.exceptions.ModelWarning) as excinfo: model.run() expected_warnings = [ 'Energy capacity constraint removed', 'Resource capacity constraint defined and set to infinity for all supply_plus techs' ] assert check_error_or_warning(excinfo, expected_warnings) assert all(model.results.timesteps == pd.date_range('2005-07', '2005-07-04 23:00:00', freq='H'))
StarcoderdataPython
4973656
<gh_stars>0 x, y, z = 2, 5, 107 # ÖDÜLLÜ SORULAR - ÖDÜL 20 TL PARA # 1- Kullanıcıdan aldığınız 2 sayının çarpımı ile x,y,z toplamının farkı nedir # a = int(input('1.sayı: ')) # b = int(input('2.sayı: ')) # result = (a*b) - (x+y+z) # 2- y' nin x' e kalansız bölümünü hesaplayınız result = y // x # 3- (x,y,z) toplamının mod 3 'ü nedir ? toplam = (x+ y+ z) result = toplam % 3 # 4- y'nin x. kuvvetini hesaplayınız. result = y ** x # 5- x, *y, z = numbers işlemine göre z' nin küpü kaçtır ? numbers = 1, 5, 7, 10, 6 x, *y ,z = numbers result = z ** 3 # 6- x, *y, z = numbers işlemine göre y ' nin değerleri toplamı kaçtır ? numbers = 1, 5, 7, 10, 6 x, *y ,z = numbers result = y[0] + y[1] + y[2] print(result)
StarcoderdataPython
3288433
# This example assumes servers to load balance # already exist and will be pool members import libcloud from libcloud.loadbalancer.base import Algorithm def create_load_balancer(): # Compute driver to retrieve servers to be pool members (the nodes) cls = libcloud.get_driver(libcloud.DriverType.COMPUTE, libcloud.DriverType.COMPUTE.NTTCIS) compute_driver = cls('my_username', '<PASSWORD>', region='eu') net_domain_name = 'sdk_test_1' net_domains = compute_driver.ex_list_network_domains(location='EU6') net_domain_id = [d for d in net_domains if d.name == net_domain_name][0].id # Load balancer driver to create and/or edit load balanceers cls = libcloud.get_driver(libcloud.DriverType.LOADBALANCER, libcloud.DriverType.LOADBALANCER.NTTCIS) lbdriver = cls('my_username', net_domain_id, 'my_pass', region='eu') member1 = compute_driver.list_nodes(ex_name='web1')[0] member2 = compute_driver.list_nodes(ex_name='web2')[0] members = [member1, member2] name = 'sdk_test_balancer' port = '80' listener_port = '8000' protocol = 'TCP' algorithm = Algorithm.LEAST_CONNECTIONS_MEMBER members = [m for m in members] ex_listener_ip_address = "192.168.3.11" lb = lbdriver.create_balancer( name, listener_port=listener_port, port=port, protocol=protocol, algorithm=algorithm, members=members, optimization_profile='TCP', ex_listener_ip_address=ex_listener_ip_address ) print(lb)
StarcoderdataPython
8062849
<reponame>John1001Song/Big-Data-Robo-Adviser<gh_stars>1-10 import os from os.path import isfile, join from os import listdir import pandas as pd from pandas import ExcelWriter from pandas import ExcelFile N_fs_growth_ann_path = '../datasets/NASDAQ/financial_statement/growth/annual/' N_fs_growth_qua_path = '../datasets/NASDAQ/financial_statement/growth/quarterly/' N_stock_path = '../datasets/NASDAQ/stock_price/' def get_all_file_name(file_path, file_format): # get all files names files_names = [f for f in listdir(file_path) if isfile(join(file_path, f))] name_array = [] for name in files_names: if file_format in name: name_array.append(name) return name_array def match(ann_list, qua_list): for ann_ele in ann_list: if ann_ele not in qua_list: print('annual file: ', ann_ele, ' is not in the quarterly folder') for quar_ele in qua_list: if quar_ele not in ann_list: print('quarterly file: ', quar_ele, 'is not in the annual folder') if __name__ == '__main__': ann_list = get_all_file_name(N_fs_growth_ann_path, '.xlsx') qua_list = get_all_file_name(N_fs_growth_qua_path, '.xlsx') stock_list = get_all_file_name(N_stock_path, '.csv') print(len(ann_list)) print(len(qua_list)) print(len(stock_list)) match(ann_list, qua_list)
StarcoderdataPython
1640128
# Get the first n-digit pandigital prime. # FAST (<1.1s) # # APPROACH: # - Use the permutations that are genererated by itertools.permutation # to generate them sorted. # - Generate primes only until sqrt(987654321), the max possible n-digit pandigital prime, # so it can be checked that the numbers are prime. from .helpers import primes_until from itertools import permutations from math import floor limit = floor(987654321 ** .5) primes = tuple(primes_until(limit))[3:] def transform_to_num(t): return int(''.join(t)) def is_prime(n): if not n % 3: return False bound = floor(n**.5) for p in primes: if p > bound: return True elif not n % p: return False def get_result(): for n in range(9, 3, -1): for i in permutations(str(s) for s in range(n, 0, -1)): if i[-1] in '24685': continue if is_prime(transform_to_num(i)): return transform_to_num(i) result = get_result()
StarcoderdataPython
5140301
from ddpg import * #from new_ddpg import * #from pretrained_ddpg import * import rec_env import sys import gc gc.enable() EPISODES = 100000 TEST_NUM = 10 flag_test = False def main(): env = rec_env.Env() agent = DDPG(env.state_space, env.action_dim) for episode in range(EPISODES): env.reset() # Train for step in range(env.timestep_limit): state,action,reward,next_state,done = env.step() agent.perceive(state,action,reward,next_state,done) if done: break # Testing: if flag_test and episode > 0: total_reward = 0 for i in xrange(TEST_NUM): state = env.rand() for step in range(env.timestep_limit): action = agent.action(state) # direct action for test state, reward = env.search(state, action) total_reward += reward ave_reward = total_reward/TEST_NUM print ('episode: ',episode,'Evaluation Average Reward:',ave_reward) if __name__ == '__main__': main()
StarcoderdataPython
5041234
""" Modules in this directory smooth over importing functionality that may be present in different libraries, depending on the users' system. """
StarcoderdataPython
1972604
from dataflows import Flow, update_package from dgp.core.base_enricher import enrichments_flows, BaseEnricher from dgp.config.consts import RESOURCE_NAME, CONFIG_PRIMARY_KEY from dgp_server.log import logger class LoadMetadata(BaseEnricher): def test(self): return self.config._unflatten().get('extra', {}).get('metadata') def postflow(self): metadata = self.config._unflatten().get('extra', {}).get('metadata') logger.info('UPDATING WITH METADATA %r', metadata) return Flow( update_package(**metadata) ) class Deduplicator(BaseEnricher): def test(self): logger.info('DEDPULICATING %r', self.config.get('extra.deduplicate')) return self.config.get('extra.deduplicate') def postflow(self): key_field_names = [ ct.replace(':', '-') for ct in self.config.get(CONFIG_PRIMARY_KEY) ] used = set() def dedup(rows): if rows.res.name == RESOURCE_NAME: logger.info('DEDPULICATING with KEYS %r', key_field_names) for row in rows: key = tuple(row.get(k) for k in key_field_names) if key not in used: used.add(key) yield row else: yield from rows steps = [ dedup, ] f = Flow(*steps) return f # class Deduplicator(BaseEnricher): # def test(self): # logger.info('DEDPULICATING %r', self.config.get('extra.deduplicate')) # return self.config.get('extra.deduplicate') # def postflow(self): # key_field_names = [ # ct.replace(':', '-') # for ct in self.config.get(CONFIG_PRIMARY_KEY) # ] # value_field_names = [ # mapping['columnType'].replace(':', '-') # for mapping in self.config.get(CONFIG_MODEL_MAPPING) # if ('columnType' in mapping and # mapping['columnType'].split(':')[0] == 'value') # ] # steps = [ # join_with_self( # RESOURCE_NAME, # key_field_names, # { # **dict((f, {}) for f in key_field_names), # **dict((f, dict(aggregate='sum')) for f in value_field_names), # '*': dict(aggregate='last') # } # ), # ] # logger.info('DEDPULICATING with KEYS %r', key_field_names) # f = Flow(*steps) # return f def flows(config, context): return enrichments_flows( config, context, Deduplicator, LoadMetadata, )
StarcoderdataPython
113857
import dnd.parse from typing import TYPE_CHECKING if TYPE_CHECKING: from typing import Optional, Any import dnd.table _EMPTY_DICT = dict() class Template(object): def __init__(self, text: "str") -> None: self._text = text self._parts = list() self._values = None # type: Optional[dict[str, Any]] self._tables = None # type: Optional[dict[str, dnd.table.Table]] self._error_behavior = 0 rest = text while "{{" in rest: start = rest.index("{{") end = rest.index("}}", start + 2) statement = rest[start + 2 : end].strip() strpart = rest[0:start] if len(strpart) > 0: self._parts.append((0, strpart)) rest = rest[end + 2 :] try: self._parts.append((1, dnd.parse.expression(statement))) except ValueError: self._parts.append((2, statement)) if len(rest) > 0: self._parts.append((0, rest)) @property def text(self) -> "str": return self._text @property def values(self) -> "Optional[dict[str, Any]]": return self._values @values.setter def values(self, values: "Optional[dict[str, Any]]") -> None: self._values = values @property def tables(self) -> "Optional[dict[str, Any]]": return self._tables @tables.setter def tables(self, tables: "Optional[dict[str, dnd.table.Table]]") -> None: self._tables = tables def raise_on_error(self) -> None: self._error_behavior = 0 def print_on_error(self) -> None: self._error_behavior = 1 def ignore_on_error(self) -> None: self._error_behavior = 2 def evaluate( self, values: "Optional[dict[str,Any]]" = None, tables: "Optional[dict[str, dnd.table.Table]]" = None, ) -> "str": if values is None: values = self._values if self._values is not None else _EMPTY_DICT if tables is None: tables = self._tables if self._tables is not None else _EMPTY_DICT result = "" for t, v in self._parts: if t == 0: # String result += v elif t == 1: # Dice Expression result += str(v()) elif t == 2: # Value/Table lookup if v in values: try: # E.g. a Dice object or Expression Node result += str(values[v]()) except Exception: result += str(values[v]) elif v in tables: result += tables[v].random().template.evaluate(values, tables) else: # This may raise an error, or continue self._error("statement {} not in values or tables".format(repr(v))) result += "<ERROR>" return result def _error(self, message: "str"): if self._error_behavior == 0: raise ValueError(message) elif self._error_behavior == 1: print(message) def __repr__(self) -> "str": return "Template({})".format(repr(self._text)) def __str__(self) -> "str": if self._values is not None or self._tables is not None: return self.evaluate() return self._text
StarcoderdataPython
3303384
# encoding: utf-8 import sys import re import argparse from workflow.workflow import MATCH_ATOM, MATCH_STARTSWITH, MATCH_SUBSTRING, MATCH_ALL, MATCH_INITIALS, MATCH_CAPITALS, MATCH_INITIALS_STARTSWITH, MATCH_INITIALS_CONTAIN from workflow import Workflow, ICON_WEB, ICON_WARNING, ICON_BURN, ICON_SWITCH, ICON_HOME, ICON_COLOR, ICON_INFO, ICON_SYNC, web, PasswordNotFound from common import qnotify, error, st_api, get_device, get_scene log = None def get_devices(wf, api_key): """Retrieve all devices Returns a has of devices. """ items = [] i = 0 while True: result = st_api(wf, api_key, 'devices', dict(max=200, page=i)) if 'items' in result: items.extend(result['items']) if '_links' in result and 'next' in result['_links']: i += 1 else: break return items def get_scenes(wf, api_key): """Retrieve all scenes Returns a has of scenes. """ return st_api(wf, api_key, 'scenes', dict(max=200))['items'] def get_colors(): r = web.get('https://raw.githubusercontent.com/jonathantneal/color-names/master/color-names.json') flip_colors = r.json() colors = {v.lower().replace(' ',''): k for k, v in flip_colors.items()} return colors def get_color(name, colors): name = name.lower().replace(' ','') if re.match('[0-9a-f]{6}', name): return '#'+name.upper() elif name in colors: return colors[name].upper() return '' def get_device_capabilities(device): capabilities = [] if device['components'] and len(device['components']) > 0 and \ device['components'][0]['capabilities'] and len(device['components'][0]['capabilities']) > 0: capabilities = list(map( lambda x: x['id'], device['components'][0]['capabilities'])) return capabilities def get_device_commands(device, commands): result = [] capabilities = get_device_capabilities(device) for capability in capabilities: for command, map in commands.items(): if capability == map['capability']: result.append(command) return result def preprocess_device_command(wf, api_key, args, commands): if 'toggle' == args.device_command: status = st_api(wf, api_key, '/devices/'+args.device_uid+'/status') if status and 'components' in status and 'main' in status['components'] and 'switch' in status['components']['main'] and 'switch' in status['components']['main']['switch'] and 'value' in status['components']['main']['switch']['switch']: state = status['components']['main']['switch']['switch']['value'] log.debug("Toggle Switch state is "+state) if 'on' == state: args.device_command = 'off' else: args.device_command = 'on' return args.device_command def handle_device_commands(wf, api_key, args, commands): if not args.device_uid or args.device_command not in commands.keys(): return args.device_command = preprocess_device_command(wf, api_key, args, commands) command = commands[args.device_command] device = get_device(wf, args.device_uid) device_name = device['label'] capabilities = get_device_capabilities(device) if command['capability'] not in capabilities: error('Unsupported command for device') # eval all lambdas in arguments if 'arguments' in command and command['arguments']: for i, arg in enumerate(command['arguments']): if callable(arg): command['arguments'][i] = arg() elif isinstance(arg, dict): for key, value in arg.items(): if callable(value): arg[key] = value() data = {'commands': [command]} log.debug("Executing Switch Command: "+device_name+" "+args.device_command) result = st_api(wf, api_key,'devices/'+args.device_uid+'/commands', None, 'POST', data) result = (result and result['results'] and len(result['results']) > 0 and result['results'][0]['status'] and 'ACCEPTED' == result['results'][0]['status']) if result: qnotify("SmartThings", device_name+" turned "+args.device_command+' '+(args.device_params[0] if args.device_params else '')) log.debug("Switch Command "+device_name+" "+args.device_command+" "+(args.device_params[0] if args.device_params else '')+' '+("succeeded" if result else "failed")) return result def handle_scene_commands(wf, api_key, args): if not args.scene_uid: return scene = get_scene(wf, args.scene_uid) scene_name = scene['sceneName'] log.debug("Executing Scene Command: "+scene_name) result = st_api(wf, api_key,'scenes/'+args.scene_uid+'/execute', None, 'POST') result = (result and result['status'] and 'success' == result['status']) if result: qnotify("SmartThings", "Ran "+scene_name) log.debug("Scene Command "+scene_name+" "+("succeeded" if result else "failed")) return result def main(wf): # retrieve cached devices and scenes devices = wf.stored_data('devices') scenes = wf.stored_data('scenes') colors = wf.stored_data('colors') # build argument parser to parse script args and collect their # values parser = argparse.ArgumentParser() # add an optional (nargs='?') --apikey argument and save its # value to 'apikey' (dest). This will be called from a separate "Run Script" # action with the API key parser.add_argument('--apikey', dest='apikey', nargs='?', default=None) parser.add_argument('--showstatus', dest='showstatus', nargs='?', default=None) # add an optional (nargs='?') --update argument and save its # value to 'apikey' (dest). This will be called from a separate "Run Script" # action with the API key parser.add_argument('--update', dest='update', action='store_true', default=False) # reinitialize parser.add_argument('--reinit', dest='reinit', action='store_true', default=False) # device name, uid, command and any command params parser.add_argument('--device-uid', dest='device_uid', default=None) parser.add_argument('--device-command', dest='device_command', default='') parser.add_argument('--device-params', dest='device_params', nargs='*', default=[]) # scene name, uid, command and any command params parser.add_argument('--scene-uid', dest='scene_uid', default=None) # add an optional query and save it to 'query' parser.add_argument('query', nargs='?', default=None) # parse the script's arguments args = parser.parse_args(wf.args) log.debug("args are "+str(args)) words = args.query.split(' ') if args.query else [] # list of commands commands = { 'status': { 'capability': 'global' }, 'on': { 'component': 'main', 'capability': 'switch', 'command': 'on' }, 'toggle': { 'component': 'main', 'capability': 'switch', 'command': 'on' }, 'off': { 'component': 'main', 'capability': 'switch', 'command': 'off' }, 'dim': { 'component': 'main', 'capability': 'switchLevel', 'command': 'setLevel', 'arguments': [ lambda: int(args.device_params[0]), ] }, 'lock': { 'component': 'main', 'capability': 'lock', 'command': 'lock' }, 'unlock': { 'component': 'main', 'capability': 'lock', 'command': 'unlock' }, 'color': { 'component': 'main', 'capability': 'colorControl', 'command': 'setColor', 'arguments': [ { 'hex': lambda: get_color(args.device_params[0], colors) } ] }, 'mode': { 'component': 'main', 'capability': 'thermostatMode', 'command': 'setThermostatMode', 'arguments': [ lambda: str(args.device_params[0]) ] }, 'heat': { 'component': 'main', 'capability': 'thermostatHeatingSetpoint', 'command': 'setHeatingSetpoint', 'arguments': [ lambda: int(args.device_params[0]), ] }, 'cool': { 'component': 'main', 'capability': 'thermostatCoolingSetpoint', 'command': 'setCoolingSetpoint', 'arguments': [ lambda: int(args.device_params[0]), ] } } # Reinitialize if necessary if args.reinit: wf.reset() wf.delete_password('smartthings_api_key') qnotify('SmartThings', 'Workflow reinitialized') return 0 if args.showstatus: if args.showstatus in ['on', 'off']: wf.settings['showstatus'] = args.showstatus wf.settings.save() qnotify('SmartThings', 'Show Status '+args.showstatus) return 0 #################################################################### # Save the provided API key #################################################################### # save API key if that is passed in if args.apikey: # Script was passed an API key log.debug("saving api key "+args.apikey) # save the key wf.save_password('smartthings_api_key', args.apikey) qnotify('SmartThings', 'API Key Saved') return 0 # 0 means script exited cleanly #################################################################### # Check that we have an API key saved #################################################################### try: api_key = wf.get_password('smartthings_api_key') except PasswordNotFound: # API key has not yet been set error('API Key not found') return 0 # Update devices if that is passed in if args.update: # update devices and scenes devices = get_devices(wf, api_key) scenes = get_scenes(wf, api_key) colors = get_colors() wf.store_data('devices', devices) wf.store_data('scenes', scenes) wf.store_data('colors', colors) qnotify('SmartThings', 'Devices and Scenes updated') return 0 # 0 means script exited cleanly # handle any device or scene commands there may be handle_device_commands(wf, api_key, args, commands) handle_scene_commands(wf, api_key, args) if __name__ == u"__main__": wf = Workflow(update_settings={ 'github_slug': 'schwark/alfred-smartthings-py' }) log = wf.logger sys.exit(wf.run(main))
StarcoderdataPython
5117430
print('-=-=-=-=-= DESAFIO 95 -=-=-=-=') print() print('=-='*15) print(f'{"APROVEITAMENTO DO JOGADOR":^45}') print('=-='*15) jogador = {} time = [] while True: gols = [] jogador['nome'] = str(input('Nome: ')).title() partidas = int(input(f'Quantas partidas {jogador["nome"]} jogou? ')) for c in range(1, partidas+1): gols.append(int(input(f'Gols na partida {c}: '))) jogador['gols'] = gols jogador['total'] = sum(gols) time.append(jogador.copy()) continuar = ' ' print('-'*45) while continuar not in 'SN': continuar = str(input('Quer continuar? [S/N] ')).strip().upper()[0] if continuar == 'N': print('=-='*15) break print('-'*45) # TABELA print(f'{"COD":5}', end='') for k in jogador.keys(): print(f'{k.upper():15}', end='') print() print('-'*41) for i, j in enumerate(time): print(f'{i:<5}', end='') for v in j.values(): print(f'{str(v):<15}', end='') print() print('-'*41) while True: op = int(input('Mostrar dados de qual jogador? (999 para SAIR) ')) if op == 999: break if op >= len(time): print(f'ERRO! Não existe jogador com código {op}. Tente novamente...') else: print(f'-- LEVANTAMENTO DO JOGADOR {time[op]["nome"]}:') for c, gl in enumerate(time[op]['gols']): print(f' Na partida {c+1}, fez {gl} gols.') print('-'*41) print() print('<< VOLTE SEMPRE! >>')
StarcoderdataPython
5177830
<gh_stars>1-10 import sys import time import pdb from copy import deepcopy from multiprocessing import Pool import numpy as np import matplotlib.pyplot as plt import matplotlib import seaborn as sns import pandas as pd from sklearn.preprocessing import StandardScaler from scipy.stats import multivariate_normal from scipy.stats import truncnorm import nevergrad as ng class Dropo(object): """ Domain Randomization Off-Policy Optimization (DROPO) Official implementation of DROPO as in the paper "DROPO: Sim-to-Real Transfer with Offline Domain Randomization". View the file test_dropo.py for a sample usage of the class. Public repo at: https://github.com/gabrieletiboni/dropo Main methods ------- optimize_dynamics_distribution(...) Starts the main DROPO optimization problem set_offline_dataset(...) Sets the offline dataset of transitions used for running DROPO MSE(means), MSE_trajectories(means) Compute the MSE in state space with <means> as dynamics parameters (respectively for --sparse-mode and trajectory mode) """ def __init__(self, sim_env, t_length, seed=0, scaling=False, sync_parall=True): """ Parameters ---------- sim_env : gym simulated environment object. t_length : int, Lambda hyperparameter as in our paper. Specifies how many consecutive actions are executed for each likelihood evaluation. seed : int, optional scaling : boolean, optional If True, each state observation dimension is rescaled to get similar scaling across different dimensions. sync_parall : boolean, optional If True, explicitly adjust the number of evaluations in the opt. problem to match CMA's population size w.r.t. the number of parallel workers used. """ assert t_length > 0 self.sim_env = sim_env self.sim_env.reset() self._raw_mjstate = deepcopy(self.sim_env.get_sim_state()) # Save fresh full mjstate self.t_length = t_length self.current_t_length = -self.t_length self.scaling = scaling self.scaler = (StandardScaler(copy=True) if self.scaling else None) self.T = None self.seed = seed self.sync_parall = sync_parall return def set_offline_dataset(self, T, indexes=None, n=None, sparse_mode=False): """Sets the offline state transitions used for running DROPO. In general, we can select a subset of all of the transitions contained in the target dataset `T`, to speed up the opt. problem or for debugging. Specify the value `n` to subselect a number of trajectories. Parameters ---------- T : dict, Offline dataset with keys: ['observations', 'next_observations', 'actions', 'terminals' ] T['observations'] : ndarray, 2D array (t, n) containing the current state information for each timestep `t` T['next_observations'] : ndarray 2D array (t, n) containing the next-state information for each timestep `t` T['actions'] : ndarray 2D array (t, a) containing the action commanded to the agent at the current timestep `t` T['terminals'] : ndarray 1D array (t,) of booleans indicating whether or not the current state transition is terminal (ends the episode) indexes : list, optional List of integers indicating the subset of transitions used for running DROPO. If None, transitions are automatically selected based on `n` and `sparse_mode`. (default: none) n : int, optional Number of trajectories sampled from `T`, if `indexes` is not explicitly specified. NOTE: if --sparse-mode is selected, then `n` refers to number of single sparse transitions instead. sparse_mode : boolean, optional if True, DROPO is run on random sparse transitions, rather than full episodes. In this mode, `n` is treated as the number of transitions. """ assert ('observations' in T and 'next_observations' in T and 'actions' in T and 'terminals' in T) self.T = T self.sparse_mode = sparse_mode if indexes is None: if self.sparse_mode: if n is None: # Use all transitions in `T` self.transitions = list(range(len(self.T['observations'])-self.t_length)) else: # Get a subset of `n` sparse transitions randomly sampled in `T` self.transitions = self._get_subset_sparse_transitions(n) else: # Get a subset of `n` trajectories randomly sampled in `T` self.transitions = self._get_ordered_n_trajectories(n) else: self.transitions = indexes if self.scaling: # Fit scaler self.scaler.fit(self.T['next_observations']) return def get_means(self, phi): return np.array(phi)[::2] def get_stdevs(self, phi): return np.array(phi)[1::2] def pretty_print_bounds(self, phi): assert ( self.sim_env is not None and isinstance(self.sim_env.dynamics_indexes, dict) ) return '\n'.join([str(self.sim_env.dynamics_indexes[i])+':\t'+str(round(phi[i*2],5))+', '+str(round(phi[i*2+1],5)) for i in range(len(phi)//2)]) def optimize_dynamics_distribution(self, opt, budget=1000, additive_variance=False, epsilon=1e-3, sample_size=100, now=1, learn_epsilon=False, normalize=False, logstdevs=False): """Starts the main DROPO optimization problem Parameters ---------- budget : int, Number of objective function evaluations for CMA-ES additive_variance : boolean, if True, add --epsilon to the diagonal of the cov_matrix to regularize the next-state distribution inference epsilon : float sample_size : int, Number of dynamics parameters sampled from the domain randomization distribution now : int, number of parallel workers learn_epsilon : boolean, if True, learn the --epsilon parameter by adding it as a parameter to the opt. problem normalize : boolean, if True, normalize mean and st.devs. in the search space to the interval [0, 4] (recommended) logstdevs : boolean, if True, denormalize st.devs. for objective function evaluation in log-space """ dim_task = len(self.sim_env.get_task()) search_space = [] search_space_bounds = [] self.parameter_bounds = np.empty((dim_task, 2, 2), float) self.normalized_width = 4 self.logstdevs = logstdevs assert hasattr(self.sim_env, 'set_task_search_bounds') self.sim_env.set_task_search_bounds() for i in range(dim_task): width = self.sim_env.max_task[i]-self.sim_env.min_task[i] # Search interval for this parameter # MEAN initial_mean = (self.sim_env.min_task[i]+width/4) + np.random.rand()*((self.sim_env.max_task[i]-width/4)-(self.sim_env.min_task[i]+width/4)) # Initialize it somewhat around the center if normalize: # Normalize parameter mean to interval [0, 4] search_space.append(ng.p.Scalar(init=self.normalized_width*0.5).set_bounds(lower=0, upper=self.normalized_width)) else: search_space.append(ng.p.Scalar(init=initial_mean).set_bounds(lower=self.sim_env.min_task[i], upper=self.sim_env.max_task[i])) self.parameter_bounds[i, 0, 0] = self.sim_env.min_task[i] self.parameter_bounds[i, 0, 1] = self.sim_env.max_task[i] # STANDARD DEVIATION initial_std = width/8 # This may sometimes lead to a stdev smaller than the lower threshold of 0.00001, so take the minimum stdev_lower_bound = np.min([0.00001, initial_std-1e-5]) stdev_upper_bound = width/4 if normalize: # Normalize parameter stdev to interval [0, 4] if self.logstdevs: # Recommended: optimize stdevs in log-space search_space.append(ng.p.Scalar(init=self.normalized_width/2).set_bounds(lower=0, upper=self.normalized_width)) else: # Linearly optimize stdevs search_space.append(ng.p.Scalar(init=self.normalized_width * (initial_std-stdev_lower_bound) / (stdev_upper_bound - stdev_lower_bound) ).set_bounds(lower=0, upper=self.normalized_width)) else: # Optimize parameters in their original scale (not recommended when using CMA-ES with the identity matrix as starting cov_matrix) search_space.append(ng.p.Scalar(init=initial_std).set_bounds(lower=stdev_lower_bound, upper=stdev_upper_bound)) self.parameter_bounds[i, 1, 0] = stdev_lower_bound self.parameter_bounds[i, 1, 1] = stdev_upper_bound search_space_bounds.append(self.sim_env.min_task[i]) search_space_bounds.append(self.sim_env.max_task[i]) if learn_epsilon: search_space.append( ng.p.Log(init=1e-3).set_bounds(lower=1e-15, upper=1e-1) ) epsilon = None params = ng.p.Tuple(*search_space) instru = ng.p.Instrumentation(bounds=params, sample_size=sample_size, epsilon=epsilon, additive_variance=additive_variance, learn_epsilon=learn_epsilon, normalize=normalize) Optimizer = self.__get_ng_optimizer(opt) optim = Optimizer(parametrization=instru, budget=budget, num_workers=now) start = time.time() if not self.sparse_mode: loss_function = self._L_target_given_phi_trajectories loss_function_parallel = self._L_target_given_phi_trajectories_parallel else: loss_function = self._L_target_given_phi loss_function_parallel = self._L_target_given_phi_parallel # Run optimization problem if now == 1: recommendation = optim.minimize(loss_function) else: print('Parallelization with num workers:', optim.num_workers) if self.sync_parall: budget_used = 0 while budget_used < budget: fit, X = [], [] while len(X) < optim.es.popsize: solutions = [] remaining = optim.es.popsize - len(X) curr_now = np.min([now, remaining]) for nw in range(curr_now): solutions.append(optim.ask()) X.append(solutions[-1]) f_args = zip(range(now), [dict(item.kwargs) for item in solutions]) pool = Pool(processes=curr_now) res = pool.map(loss_function_parallel, f_args) pool.close() pool.join() for r in res: fit.append(r) for x, r in zip(X, fit): optim.tell(x, r) budget_used += optim.es.popsize recommendation = optim.recommend() # Get final minimum found else: for u in range(budget // now): xs = [] for i in range(now): xs.append(optim.ask()) f_args = zip(range(now), [dict(item.kwargs) for item in xs]) pool = Pool(processes=now) res = pool.map(loss_function_parallel, f_args) pool.close() pool.join() for x, r in zip(xs, res): optim.tell(x, r) recommendation = optim.recommend() # Get final minimum found end = time.time() elapsed = end-start if normalize: if learn_epsilon: return self._denormalize_bounds(recommendation.value[1]['bounds'][:-1]), loss_function(**recommendation.kwargs), elapsed, recommendation.value[1]['bounds'][-1] else: return self._denormalize_bounds(recommendation.value[1]['bounds']), loss_function(**recommendation.kwargs), elapsed, None else: if learn_epsilon: return recommendation.value[1]['bounds'][:-1], loss_function(**recommendation.kwargs), elapsed, recommendation.value[1]['bounds'][-1] else: return recommendation.value[1]['bounds'], loss_function(**recommendation.kwargs), elapsed, None def _L_target_given_phi_parallel(self, args): i, args = args np.random.seed(i+self.seed) return self._L_target_given_phi(**args) def _L_target_given_phi_trajectories_parallel(self, args): i, args = args np.random.seed(i+self.seed) return self._L_target_given_phi_trajectories(**args) def _L_target_given_phi(self, bounds, sample_size=100, epsilon=1e-3, additive_variance=False, learn_epsilon=False, normalize=False): """Objective function evaluation for --sparse-mode""" likelihood = 0 if learn_epsilon: epsilon = bounds[-1] bounds = bounds[:-1] if normalize: bounds = self._denormalize_bounds(bounds) sample = self.sample_truncnormal(bounds, sample_size*len(self.transitions)) t_length = self.t_length # For each transition, map the sample to the state space, # estimate the next-state distribution, and compute the likelihood # of the real next state. for k, t in enumerate(self.transitions): ob = self.T['observations'][t] target_ob_prime = self.T['next_observations'][t+t_length-1] mapped_sample = [] for ss in range(sample_size): r = self.sim_env.reset() task = sample[k*sample_size + ss] self.sim_env.set_task(*task) self.sim_env.set_sim_state(self.sim_env.get_full_mjstate(ob, self._raw_mjstate)) if hasattr(self.sim_env.sim, 'forward'): self.sim_env.sim.forward() else: raise ValueError('No forward() method found. This environment is not supported.') for j in range(t, t+t_length): action = self.T['actions'][j] s_prime, reward, done, _ = self.sim_env.step(action) mapped_sample.append(s_prime) mapped_sample = np.array(mapped_sample) if self.scaling: target_ob_prime = self.scaler.transform(target_ob_prime.reshape(1,-1))[0] mapped_sample = self.scaler.transform(mapped_sample) # Infer covariance matrix and mean cov_matrix = np.cov(mapped_sample, rowvar=0) mean = np.mean(mapped_sample, axis=0) if additive_variance: cov_matrix = cov_matrix + np.diag(np.repeat(epsilon, mean.shape[0])) multi_normal = multivariate_normal(mean=mean, cov=cov_matrix, allow_singular=True) logdensity = multi_normal.logpdf(target_ob_prime) likelihood += logdensity if np.isinf(likelihood): print('WARNING: infinite likelihood encountered.') return -1*likelihood def _L_target_given_phi_trajectories(self, bounds, sample_size=100, additive_variance=False, epsilon=1e-3, normalize=False, learn_epsilon=False): """Objective function evaluation for standard trajectory mode""" if learn_epsilon: epsilon = bounds[-1] bounds = bounds[:-1] if normalize: bounds = self._denormalize_bounds(bounds) sample = self.sample_truncnormal(bounds, sample_size) r = self.sim_env.reset() mapped_sample_per_transition = np.zeros((len(self.transitions), sample_size, r.shape[0]), float) target_ob_prime_per_transition = np.zeros((len(self.transitions), r.shape[0]), float) lambda_steps = self.t_length effective_transitions = [] first_pass = True for i, ss in enumerate(range(sample_size)): task = sample[ss] self.sim_env.set_task(*task) reset_next = True lambda_count = -1 # Reproduce trajectories with this task from the phi for k, t in enumerate(self.transitions): lambda_count += 1 if lambda_count < 0 or lambda_count%lambda_steps != 0: continue # Check if any of the next lambda_steps transitions are ending states, including current one for l in range(k, k+lambda_steps): if self.T['terminals'][self.transitions[l]] == True: reset_next = True lambda_count = -1 break if lambda_count == -1: continue if first_pass: effective_transitions.append(k) ob = self.T['observations'][t] target_ob_prime = self.T['next_observations'][t+lambda_steps-1] if reset_next: # Initialize simulator at the beginning of the episode r = self.sim_env.reset() self.sim_env.set_sim_state(self.sim_env.get_initial_mjstate(ob, self._raw_mjstate)) if hasattr(self.sim_env.sim, 'forward'): self.sim_env.sim.forward() else: raise ValueError('No forward() method found. This environment is not supported.') reset_next = False else: # Reset simulator after last transition self.sim_env.set_sim_state(self.sim_env.get_full_mjstate(ob, self.sim_env.get_sim_state())) if hasattr(self.sim_env.sim, 'forward'): self.sim_env.sim.forward() else: raise ValueError('No forward() method found. This environment is not supported.') for j in range(t, t+lambda_steps): action = self.T['actions'][j] s_prime, reward, done, _ = self.sim_env.step(action) mapped_sample = np.array(s_prime) if self.scaling: target_ob_prime = self.scaler.transform(target_ob_prime.reshape(1,-1))[0] mapped_sample = self.scaler.transform(mapped_sample.reshape(1, -1))[0] mapped_sample_per_transition[k, i, :] = mapped_sample target_ob_prime_per_transition[k, :] = target_ob_prime first_pass = False likelihood = 0 for i, k in enumerate(effective_transitions): mapped_sample = mapped_sample_per_transition[k] target_ob_prime = target_ob_prime_per_transition[k] # Infer next-state distribution parameters cov_matrix = np.cov(mapped_sample, rowvar=0) mean = np.mean(mapped_sample, axis=0) if additive_variance: cov_matrix = cov_matrix + np.diag(np.repeat(epsilon, mean.shape[0])) multi_normal = multivariate_normal(mean=mean, cov=cov_matrix, allow_singular=True) logdensity = multi_normal.logpdf(target_ob_prime) likelihood += logdensity if np.isinf(likelihood): print('WARNING: infinite likelihood encountered.') return -1*likelihood def _denormalize_bounds(self, phi): """Denormalize means and stdevs in phi back to their original space for evaluating the likelihood.""" new_phi = [] for i in range(len(phi)//2): norm_mean = phi[i*2] norm_std = phi[i*2 + 1] mean = (norm_mean * (self.parameter_bounds[i,0,1]-self.parameter_bounds[i,0,0]))/self.normalized_width + self.parameter_bounds[i,0,0] if not self.logstdevs: std = (norm_std * (self.parameter_bounds[i,1,1]-self.parameter_bounds[i,1,0]))/self.normalized_width + self.parameter_bounds[i,1,0] else: std = self.parameter_bounds[i,1,0] * ((self.parameter_bounds[i,1,1]/self.parameter_bounds[i,1,0])**(norm_std/self.normalized_width)) # a × (b/a)^(x/10) ≥ 0. new_phi.append(mean) new_phi.append(std) return new_phi def MSE(self, means): """Compute the MSE in state space with means as dynamics parameters (--sparse-mode). Refer to our paper (Section IV.A) for a detailed explanation on how the MSE is computed. """ distance = 0 task = np.array(means) self.sim_env.set_task(*task) for t in self.transitions: ob = self.T['observations'][t] action = self.T['actions'][t] target_ob_prime = self.T['observations'][t+1] mapped_sample = [] self.sim_env.set_sim_state(self.sim_env.get_full_mjstate(ob, self._raw_mjstate)) s_prime, reward, done, _ = self.sim_env.step(action) mapped_sample.append(list(s_prime)) mapped_sample = np.array(mapped_sample) if self.scaling: mapped_sample = self.scaler.transform(mapped_sample) target_ob_prime = self.scaler.transform(target_ob_prime.reshape(1,-1))[0] mapped_sample = mapped_sample[0,:] distance += np.linalg.norm(target_ob_prime-mapped_sample)**2 mean_distance = distance / len(self.transitions) return mean_distance def MSE_trajectories(self, means): """Compute the MSE in state space with means as dynamics parameters. Refer to our paper (Section IV.A) for a detailed explanation on how the MSE is computed. """ distance = [] task = np.array(means) self.sim_env.set_task(*task) reset_next = True for k, t in enumerate(self.transitions): if self.T['terminals'][t] == True: reset_next = True continue target_s = self.T['observations'][t] target_s_prime = self.T['observations'][t+1] if reset_next: r = self.sim_env.reset() self.sim_env.set_sim_state(self.sim_env.get_initial_mjstate(target_s, self._raw_mjstate)) if hasattr(self.sim_env.sim, 'forward'): self.sim_env.sim.forward() elif hasattr(self.sim_env.sim.env.sim, 'forward'): self.sim_env.sim.env.sim.forward() else: raise ValueError('No forward() method found. This environment is not supported.') reset_next = False else: self.sim_env.set_sim_state(self.sim_env.get_full_mjstate(target_s, self.sim_env.get_sim_state())) action = self.T['actions'][t] sim_s_prime, reward, done, _ = self.sim_env.step(action) sim_s_prime = np.array(sim_s_prime) if self.scaling: sim_s_prime = self.scaler.transform(sim_s_prime.reshape(1, -1))[0] target_s_prime = self.scaler.transform(target_s_prime.reshape(1, -1))[0] distance.append(np.linalg.norm(sim_s_prime - target_s_prime)**2) return np.mean(distance) def sample_truncnormal(self, phi, size=1): """Sample <size> observations from the dynamics distribution parameterized by <phi>. A truncnormal density function is used, truncating values more than 2 standard deviations away => happens around 5% of the time otherwise. """ a,b = -2, 2 sample = [] for i in range(len(phi)//2): mean = phi[i*2] std = phi[i*2 + 1] if hasattr(self.sim_env, 'get_task_lower_bound'): lower_bound = self.sim_env.get_task_lower_bound(i) else: lower_bound = 0.0001 if hasattr(self.sim_env, 'get_task_upper_bound'): upper_bound = self.sim_env.get_task_upper_bound(i) else: upper_bound = 1000000000 # Make sure all samples belong to [lower_bound, upper_bound] attempts = 0 obs = truncnorm.rvs(a, b, loc=mean, scale=std, size=size) while np.any((obs<lower_bound) | (obs>upper_bound)): obs[((obs < lower_bound) | (obs > upper_bound))] = truncnorm.rvs(a, b, loc=mean, scale=std, size=len(obs[((obs < lower_bound) | (obs > upper_bound))])) attempts += 1 if attempts > 20: obs[obs < lower_bound] = lower_bound obs[obs > upper_bound] = upper_bound print(f"Warning - Not all samples were above >= {lower_bound} or below {upper_bound} after 20 attempts. Setting them to their min/max bound values, respectively.") sample.append(obs) return np.array(sample).T def _distance(self, target, sim_state): if self.scaling: d = np.linalg.norm( self.scaler.transform(target.reshape(1,-1)) - self.scaler.transform(sim_state.reshape(1,-1)) )**2 else: d = np.linalg.norm(target - sim_state)**2 return d def _get_trajectories_indexes(self, n=None): """Returns starting index of each trajectory""" terminals = self.T['terminals'] arr = np.where(terminals==True)[0] arr = np.insert(-1, 1, arr) # Insert first trajectory arr = arr[:-1] # Remove last terminal state (no trajectory after it) arr = arr+1 # Starting state is the one after the previous episode has finished if n is not None: ts = np.random.choice(arr, size=n, replace=False) else: ts = list(arr) return ts def _get_ordered_n_trajectories(self, n=None): """Returns indexes of n trajectories randomly sampled from self.T""" terminals = self.T['terminals'] arr = np.where(terminals==True)[0] arr = np.insert(-1, 1, arr) # Insert first trajectory arr = arr[:-1] # Remove last terminal state (no trajectory after it) arr = arr+1 # Starting state is the one after the previous episode has finished if n is not None: ts = np.random.choice(arr, size=n, replace=False) else: ts = list(arr) transitions = [] for t in ts: duration = np.argmax(self.T['terminals'][t:]) for toadd in range(t, t+duration+1): transitions.append(toadd) return transitions def _get_subset_sparse_transitions(self, n): if self.t_length < 1: raise ValueError('Invalid lambda value') if n < 1: raise ValueError('Invalid number of transitions') c = 0 valid_ts = [] size = len(self.T['observations']) while c < n: t = np.random.randint(0, size-self.t_length) valid = True for i in range(t, t+self.t_length): if self.T['terminals'][i]: valid = False break if not valid: continue valid_ts.append(t) c+=1 return valid_ts def __get_ng_optimizer(self, opt_string): """Get Nevergrad optimizer https://facebookresearch.github.io/nevergrad/optimization.html#choosing-an-optimizer """ opts = { 'oneplusone': ng.optimizers.OnePlusOne, # simple robust method for continuous parameters with num_workers < 8. 'bayesian': ng.optimizers.BO, # Bayesian optimization 'twopointsde': ng.optimizers.TwoPointsDE, # excellent in many cases, including very high num_workers 'pso': ng.optimizers.PSO, # excellent in terms of robustness, high num_workers ok 'tbpsa': ng.optimizers.TBPSA, # excellent for problems corrupted by noise, in particular overparameterized (neural) ones; very high num_workers ok). 'random': ng.optimizers.RandomSearch, # the classical random search baseline; don’t use softmax with this optimizer. 'meta': ng.optimizers.NGOpt, # “meta”-optimizer which adapts to the provided settings (budget, number of workers, parametrization) and should therefore be a good default. 'cma': ng.optimizers.CMA # CMA-ES (https://en.wikipedia.org/wiki/CMA-ES) } if opt_string not in opts: raise NotImplementedError('Optimizer not found') return opts[opt_string]
StarcoderdataPython
5108300
<gh_stars>0 #print('__init__') import sys import importlib def reload(): # print('reload') importlib.reload(formatter) importlib.reload(functionmaker) importlib.reload(logger) importlib.reload(mawk) from . import arguments, formatter, functionmaker, logger, mawk, utils #from .__main__ import main #print('leaving init')
StarcoderdataPython
213600
<filename>OSINT-Reconnaissance/nwatch/nwatch.py #!/usr/bin/python #GNU GPLv3 # nWatch.py - handy tool for host discovery, portscanning and operating system fingerprinting. # Copyright (C) <2016> <<NAME>> # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU General Public License as published by # the Free Software Foundation; either version 2 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU General Public License along # with this program; if not, write to the Free Software Foundation, Inc., # 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA. import sys import logging from colorama import Fore, init, Style logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import * import time import nmap from socket import AF_INET, AF_INET6, inet_ntop from ctypes import * import ctypes, ctypes.util #c-lib load libc = ctypes.cdll.LoadLibrary(ctypes.util.find_library('c')) #structs class struct_sockaddr(Structure): _fields_ = [ ('sa_family', c_ushort),('sa_data', c_byte * 14),] class struct_sockaddr_in(Structure): _fields_ = [ ('sin_family', c_ushort),('sin_port', c_uint16),('sin_addr', c_byte * 4)] class struct_sockaddr_in6(Structure): _fields_ = [ ('sin6_family', c_ushort), ('sin6_port', c_uint16), ('sin6_flowinfo', c_uint32), ('sin6_addr', c_byte * 16), ('sin6_scope_id', c_uint32)] class union_ifa_ifu(Union): _fields_ = [('ifu_broadaddr', POINTER(struct_sockaddr)),('ifu_dstaddr', POINTER(struct_sockaddr)),] class struct_ifaddrs(Structure): pass struct_ifaddrs._fields_ = [ ('ifa_next', POINTER(struct_ifaddrs)), ('ifa_name', c_char_p), ('ifa_flags', c_uint), ('ifa_addr', POINTER(struct_sockaddr)), ('ifa_netmask', POINTER(struct_sockaddr)), ('ifa_ifu', union_ifa_ifu), ('ifa_data', c_void_p),] class IFAGTR(object): def __init__(self, name): self.name = name self.addresses = {} def __str__(self): return "%s<splitter>%s<splitter>%s" % ( self.name, self.addresses.get(AF_INET)[0], self.addresses.get(AF_INET6)[0]) def ARPscan(interface,target): hosts = {} try: ans, unans = srp(Ether(dst="ff:ff:ff:ff:ff:ff")/ARP(pdst=target), timeout=4, verbose=0, iface=interface) for i in range(0,len(ans)): hosts[str(ans[i][1].psrc)] = str(ans[i][1].hwsrc) except Exception, ex: try: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Exception('%s') occured\n\t%s-> Errno : %d\n\t-> Error : %s"%(type(ex).__name__,Style.DIM,ex.args[0],ex.args[1]) except: print "["+Fore.RED+"-"+Style.RESET_ALL+"] %s"%(str(ex)) sys.exit() return hosts def RFA(sa): SA_FAMILY, SIN_ADDR= sa.sa_family, None if SA_FAMILY == AF_INET: sa = cast(pointer(sa), POINTER(struct_sockaddr_in)).contents SIN_ADDR = inet_ntop(SA_FAMILY, sa.sin_addr) elif SA_FAMILY == AF_INET6: sa = cast(pointer(sa), POINTER(struct_sockaddr_in6)).contents SIN_ADDR = inet_ntop(SA_FAMILY, sa.sin6_addr) return SA_FAMILY, SIN_ADDR def DHCPDiscover(): DHCPlst=[] conf.checkIPaddr = False fam,hw = get_if_raw_hwaddr(conf.iface) dhcp_discover = Ether(dst="ff:ff:ff:ff:ff:ff")/IP(src="0.0.0.0",dst="255.255.255.255")/UDP(sport=68,dport=67)/BOOTP(chaddr=hw)/DHCP(options=[("message-type","discover"),"end"]) ans, unans = srp(dhcp_discover, multi=False, verbose=False) for i in ans: DHCPlst.append(i[1][IP].src) return DHCPlst def pIFGen(ifap): ifa = ifap.contents while True: yield ifa if not ifa.ifa_next:break ifa = ifa.ifa_next.contents def getInterfaces(): ifap = POINTER(struct_ifaddrs)() if libc.getifaddrs(pointer(ifap)):raise OSError(get_errno()) try: IFADCT = {} for ifa in pIFGen(ifap): name = ifa.ifa_name.decode("UTF-8") i = IFADCT.get(name) if not i:i = IFADCT[name] = IFAGTR(name) SA_FAMILY, SIN_ADDR = RFA(ifa.ifa_addr.contents) if SIN_ADDR: if SA_FAMILY not in i.addresses:i.addresses[SA_FAMILY] = list() i.addresses[SA_FAMILY].append(SIN_ADDR) return IFADCT.values() finally: libc.freeifaddrs(ifap) def pgrntIF(): count = 1 LIF = getInterfaces() print "" print "-"*90 print "|"+Fore.YELLOW+" Sl-no"+Style.RESET_ALL+" | "+Fore.YELLOW+"Interface name "+Style.RESET_ALL+"| "+\ Fore.YELLOW+"IPv4-address"+Style.RESET_ALL+" |%s"%(" "*14)+Fore.YELLOW+"IPv6-address%s"%(" "*14)+Style.RESET_ALL+"|" print "-"*90 for i in LIF: rdata = str(i).split("<splitter>") rdata[0] = rdata[0].center(16,' ') rdata[1] = rdata[1].center(22,' ') rdata[2] = rdata[2].center(40,' ') if '127.' in rdata[1]:rdata.append(Fore.RED+"<= DO NOT USE LOCALHOST"+Style.RESET_ALL) else:rdata.append(" ") rdata = '|'.join(rdata) print '|'+str(count).center(7,' ')+'|'+rdata count += 1 print "-"*90 choice = "" while 1: try: choice = int(raw_input("choose an interface> ")) if(choice<=len(LIF)): print "["+Fore.YELLOW+"*"+Style.RESET_ALL+"] Interface => %s"%(str(LIF[choice-1]).split('<splitter>')[0].replace(' ', '')) break else: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Invalid choice" except KeyboardInterrupt: print "\n["+Fore.YELLOW+"!"+Style.RESET_ALL+"] Exiting..." sys.exit() except: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Invalid choice" return str(LIF[choice-1]).split("<splitter>")[0].replace(' ',''), str(LIF[choice-1]).split("<splitter>")[1].replace(' ','') def prettyPrint(host,mac, nFP, isdhcp): print "-"*(len(host)+4) print ("| "+Fore.GREEN+str(host)+Style.RESET_ALL+" |") print "-"*(len(host)+4) print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"MAC"+Style.RESET_ALL+" : %s"%(mac)) hostname=Fore.YELLOW+"-unknown-" if(nFP[host].hostname()!=""): hostname=nFP[host].hostname() print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"Hostname"+Style.RESET_ALL+" : %s"%(hostname)) if isdhcp: print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"DHCP server"+Style.RESET_ALL+" : True") print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"State"+Style.RESET_ALL+" : %s"%(nFP[host].state())) if nFP[host].all_protocols(): print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"Ports"+Style.RESET_ALL) for proto in nFP[host].all_protocols(): ports = list(nFP[host][proto].keys()) ports.sort() print(" "*((len(host)+4)/2) + "|"+'\t'+"["+Fore.GREEN+Style.DIM+"+"+Style.RESET_ALL+'] Protocol : %s' % proto) print(" "*((len(host)+4)/2) + "|"+'\t\tPort\t\tState') print(" "*((len(host)+4)/2) + "|"+'\t\t====\t\t=====') for port in ports: print(" "*((len(host)+4)/2) + "|"+'\t\t%s\t\t%s' % (port, nFP[host][proto][port]['state'])) else: print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"Ports"+Style.RESET_ALL+Style.RESET_ALL+" : %s"%((Fore.YELLOW+"-none-"))) print (" "*((len(host)+4)/2) + "|_ "+Fore.GREEN+Style.DIM+"OS fingerprinting"+Style.RESET_ALL) if nFP[host].has_key('osclass'): for osclass in nFP[host]['osclass']: print('\t\t'+"["+Fore.GREEN+Style.DIM+"+"+Style.RESET_ALL+"] Type : {0}".format(osclass['type'])) print('\t\t Vendor : {0}'.format(osclass['vendor'])) print('\t\t OS-Family : {0}'.format(osclass['osfamily'])) print('\t\t OS-Gen : {0}'.format(osclass['osgen'])) print('\t\t Accuracy : {0}%'.format(osclass['accuracy'])) return True elif nFP[host].has_key('osmatch'): for osmatch in nFP[host]['osmatch']: print('\t\t'+"["+Fore.GREEN+Style.DIM+"+"+Style.RESET_ALL+"] Name : {0} (accuracy {1}%)".format(osmatch['name'],osmatch['accuracy'])) return True elif nFP[host].has_key('fingerprint'): print('\t\t* Fingerprint : {0}'.format(nFP[host]['fingerprint'])) return True def postAS(hostslist): hosts = [host for host, x in hostslist.items()] macs = [mac for x, mac in hostslist.items()] try: nm = nmap.PortScanner() except Exception, ex: try: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Exception('%s') occured\n\t%s-> Errno : %d\n\t-> Error : %s"%(type(ex).__name__,Style.DIM,ex.args[0],ex.args[1]) except: print "["+Fore.RED+"-"+Style.RESET_ALL+"] %s"%(str(ex)) sys.exit(0) try: FiFlag, isDHCP = False, False isDHCPlst = [] try: isDHCPlst=DHCPDiscover() except: pass for host, mac in hostslist.items(): if host in isDHCPlst: isDHCP = True else: isDHCP = False nm.scan(str(host), arguments="-O") FiFlag = prettyPrint(host,mac, nm, isDHCP) if not(FiFlag): print "["+Fore.YELLOW+"*"+Style.RESET_ALL+"] Warning : couldn't detect to OS" except Exception, ex: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Error in OS fingerprinting, continuing..." if __name__ == '__main__': init(autoreset=True) print ''' 888 888 888 888 888 o 888 888 888 888 d8b 888 888 888 88888b. 888 d888b 888 8888b. 888888 .d8888b 88888b. 888 "88b 888d88888b888 "88b 888 d88P" 888 "88b 888 888 88888P Y88888 .d888888 888 888 888 888 888 888 8888P Y8888 888 888 Y88b. Y88b. 888 888 888 888 888P Y888 "Y888888 "Y888 "Y8888P 888 888 '''+'['+Fore.YELLOW+'&'+Style.RESET_ALL+'] Created by suraj ('+Fore.RED+'#r00t'+Style.RESET_ALL+')' print "["+Fore.GREEN+"+"+Style.RESET_ALL+"] Started at %s"%(time.strftime("%X")) print "["+Fore.YELLOW+"*"+Style.RESET_ALL+"] Choose a network interface" iface, ip_addr = pgrntIF() if not(ip_addr.startswith("127.")): subnet = ip_addr+"/24" else: print "["+Fore.RED+"-"+Style.RESET_ALL+"] Cannot scan localhost("+Fore.YELLOW+"%s"%(ip_addr)+Style.RESET_ALL+"), exiting..." sys.exit() t1 = time.time() print "["+Fore.YELLOW+"*"+Style.RESET_ALL+"] Scanning subnet(%s) on %s interface"%(subnet,iface) hosts = ARPscan(iface,subnet) postAS(hosts) t2 = time.time() print "\n["+Fore.YELLOW+"*"+Style.RESET_ALL+"] Scanning took %d seconds, task completed at %s."%(t2-t1,time.strftime('%X')) sys.exit()
StarcoderdataPython
4859078
<gh_stars>10-100 #!/usr/bin/env python3 # reproduce_character_models.py # Reproduce predictive modeling of characters. # This script assumes that you have subset.tar.gz # in the parent directory of the /train_models directory # directory. It also expects to have a /temp directory # as a sibling (at the same level as /train_models). # When it's asked to create a model it extracts # characters from the tar.gz file and puts them # in temp. Inefficient? Yes! But it means I can # use versatiletrainer without having to edit it # to take data from a tarfile. # It also assumes that character metadata is in # /metadata/balanced_character_subset.csv. # Finally, it wants a folder '../models', again # placed as a sibling, where it can put various # intermediate lexicons and metadata. import csv, os, sys, pickle, math, tarfile import versatiletrainer as train import pandas as pd import numpy as np from scipy.stats import pearsonr def select_subset_to_model(modelname, metadatapath, numexamples, startdate, enddate): ''' Creates metadata for a model of gender trained on a balanced sample of the whole timeline. In keeping with Python practice, the date range is inclusive at the bottom, but not the top. It returns a path to the metadata created. ''' allmeta = pd.read_csv(metadatapath) timeslice = allmeta[(allmeta.firstpub >= startdate) & (allmeta.firstpub < enddate)] m = timeslice[timeslice.gender == 'm'] f = timeslice[timeslice.gender == 'f'] msample = m.sample(n = numexamples) fsample = f.sample(n = numexamples) general_sample = pd.concat([msample, fsample]) outpath = '../models/' + modelname + '_meta.csv' general_sample.to_csv(outpath) return outpath, general_sample.docid def authgender_subset_to_model(modelname, agender, metadatapath, numexamples, startdate, enddate): ''' Creates metadata for a subset of characters drawn only from books written by authors of a specified gender (agender). It returns a path to the metadata created. ''' allmeta = pd.read_csv(metadatapath) timeslice = allmeta[(allmeta.authgender == agender) & (allmeta.firstpub >= startdate) & (allmeta.firstpub < enddate)] m = timeslice[timeslice.gender == 'm'] f = timeslice[timeslice.gender == 'f'] msample = m.sample(n = numexamples) fsample = f.sample(n = numexamples) general_sample = pd.concat([msample, fsample]) outpath = '../models/' + modelname + '_meta.csv' general_sample.to_csv(outpath) return outpath, general_sample.docid def subset_to_predict_authgender(modelname, metadatapath, num, startdate, enddate): ''' Creates metadata that can be used to actually predict authgender. It returns a path to the metadata created. ''' allmeta = pd.read_csv(metadatapath) timeslice = allmeta[(allmeta.firstpub >= startdate) & (allmeta.firstpub < enddate)] mbym = timeslice[(timeslice.authgender == 'm') & (timeslice.gender == 'm')] fbym = timeslice[(timeslice.authgender == 'm') & (timeslice.gender == 'f')] mbyf = timeslice[(timeslice.authgender == 'f') & (timeslice.gender == 'm')] fbyf = timeslice[(timeslice.authgender == 'f') & (timeslice.gender == 'f')] general_sample = pd.concat([mbym.sample(n = num), fbym.sample(n = num), mbyf.sample(n = num), fbyf.sample(n = num)]) outpath = '../models/' + modelname + '_meta.csv' general_sample['tags'] = general_sample.authgender # that's the line that actually ensures we are predicting # author gender rather than character gender general_sample.to_csv(outpath) return outpath, np.mean(general_sample.firstpub) def refresh_temp(list_of_docids): ''' Empties the temporary folder and restocks it, using a list of docids that are in subset.tar.gz. ''' folder = '../temp' for the_file in os.listdir(folder): file_path = os.path.join(folder, the_file) try: if os.path.isfile(file_path): os.unlink(file_path) except Exception as e: print(e) with tarfile.open('../subset.tar.gz', 'r:gz') as tar: for d in list_of_docids: tarmember = 'charactersubset/' + d + '.tsv' destination = '../temp/' + d + '.tsv' data = tar.extractfile(tarmember).read().decode('utf-8') with open(destination, mode = 'w', encoding = 'utf-8') as f: f.write(data) def gridsearch_a_model(metadatapath, sourcefolder, c_range, ftstart, ftend, ftstep, positive_tags = ['f'], negative_tags = ['m']): ''' Function does a gridsearch to identify an optimal number of features and setting of the regularization constant; then produces that model. Note that we do not use this for models of specific decades. Just initially for model selection.''' modelname = metadatapath.replace('.//models/', '').replace('_meta.csv', '') extension = '.tsv' vocabpath = metadatapath.replace('_meta', '_vocab') if os.path.exists(vocabpath): print('Vocabulary for ' + modelname + ' already exists. Using it.') outputpath = metadatapath.replace('_meta', '') ## EXCLUSIONS. # not used in this project excludeif = dict() excludeifnot = dict() excludeabove = dict() excludebelow = dict() sizecap = 2000 # CLASSIFY CONDITIONS # not used in this project testconditions = set() datetype = "firstpub" numfeatures = ftend regularization = .000075 # linting the code would get rid of regularization, which is at this # point an unused dummy parameter paths = (sourcefolder, extension, metadatapath, outputpath, vocabpath) exclusions = (excludeif, excludeifnot, excludebelow, excludeabove, sizecap) classifyconditions = (positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions) modelparams = 'logistic', 12, ftstart, ftend, ftstep, c_range matrix, rawaccuracy, allvolumes, coefficientuples = train.tune_a_model(paths, exclusions, classifyconditions, modelparams) print('If we divide the dataset with a horizontal line at 0.5, accuracy is: ', str(rawaccuracy)) tiltaccuracy = train.diachronic_tilt(allvolumes, 'linear', []) print("Divided with a line fit to the data trend, it's ", str(tiltaccuracy)) def crossvalidate_one_model(metadatapath, sourcefolder, c_range, ftstart, ftend, ftstep, positive_tags = ['f'], negative_tags = ['m']): ''' ''' modelname = metadatapath.replace('.//models/', '').replace('_meta.csv', '') extension = '.tsv' vocabpath = metadatapath.replace('_meta', '_vocab') if os.path.exists(vocabpath): os.unlink(vocabpath) # we rebuild vocab each time outputpath = metadatapath.replace('_meta', '') ## EXCLUSIONS. # not used in this project excludeif = dict() excludeifnot = dict() excludeabove = dict() excludebelow = dict() sizecap = 2000 # CLASSIFY CONDITIONS # not used in this project testconditions = set() datetype = "firstpub" numfeatures = ftend regularization = .000075 # linting the code would get rid of regularization, which is at this # point an unused dummy parameter paths = (sourcefolder, extension, metadatapath, outputpath, vocabpath) exclusions = (excludeif, excludeifnot, excludebelow, excludeabove, sizecap) classifyconditions = (positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions) modelparams = 'logistic', 12, ftstart, ftend, ftstep, c_range rawaccuracy, allvolumes, coefficientuples = train.crossvalidate_single_model(paths, exclusions, classifyconditions, modelparams) print(rawaccuracy) return rawaccuracy def crossvalidate_across_L2_range(metadatapath, sourcefolder, c_range, ftstart, ftend, ftstep, positive_tags = ['f'], negative_tags = ['m']): ''' For a given set of characters, crossvalidates a model at multiple L2 settings, and returns all the accuracies. ''' modelname = metadatapath.replace('.//models/', '').replace('_meta.csv', '') extension = '.tsv' vocabpath = metadatapath.replace('_meta', '_vocab') if os.path.exists(vocabpath): os.unlink(vocabpath) # we rebuild vocab each time outputpath = metadatapath.replace('_meta', '') ## EXCLUSIONS. # not used in this project excludeif = dict() excludeifnot = dict() excludeabove = dict() excludebelow = dict() sizecap = 2000 # CLASSIFY CONDITIONS # not used in this project testconditions = set() datetype = "firstpub" numfeatures = ftend regularization = .000075 # linting the code would get rid of regularization, which is at this # point an unused dummy parameter paths = (sourcefolder, extension, metadatapath, outputpath, vocabpath) exclusions = (excludeif, excludeifnot, excludebelow, excludeabove, sizecap) classifyconditions = (positive_tags, negative_tags, datetype, numfeatures, regularization, testconditions) accuracydict = dict() for c_setting in c_range: cparam = [c_setting] modelparams = 'logistic', 10, ftstart, ftend, ftstep, cparam rawaccuracy, allvolumes, coefficientuples = train.crossvalidate_single_model(paths, exclusions, classifyconditions, modelparams) accuracydict[c_setting] = rawaccuracy return accuracydict def applymodel(modelpath, metapath, outpath): ''' This function applies a specified model (modelpath) to a specified metadata set (metapath), and sends the results to outpath. ''' sourcefolder = '/Users/tunder/data/character_subset/' extension = '.tsv' metadatapath = metapath = '../metadata/balanced_character_subset.csv' newmetadict = train.apply_pickled_model(modelpath, sourcefolder, extension, metadatapath) print('Got predictions for that model.') newmetadict.to_csv(outpath) def correlate_models(firstpath, secondpath): one = pd.read_csv(firstpath, index_col = 'docid') two = pd.read_csv(secondpath, index_col = 'docid') justpredictions = pd.concat([one['logistic'], two['logistic']], axis=1, keys=['one', 'two']) justpredictions.dropna(inplace = True) r, p = pearsonr(justpredictions.one, justpredictions.two) return r def comparison(selfmodel, othermodel, modelname): totalvolumes = 0 right = 0 for v in selfmodel.index: realgenre = selfmodel.loc[v, 'realclass'] v = str(v) otherprediction = othermodel.loc[v, modelname] if realgenre > .5 and otherprediction > 0.5: right += 1 elif realgenre < .5 and otherprediction < 0.5: right += 1 totalvolumes +=1 return totalvolumes, right def getacc(filelist): allofem = 0 allright = 0 for afile in filelist: df = pd.read_csv(afile) totalcount = len(df.realclass) tp = sum((df.realclass > 0.5) & (df.logistic > 0.5)) tn = sum((df.realclass <= 0.5) & (df.logistic <= 0.5)) fp = sum((df.realclass <= 0.5) & (df.logistic > 0.5)) fn = sum((df.realclass > 0.5) & (df.logistic <= 0.5)) assert totalcount == (tp + fp + tn + fn) allofem += totalcount allright += (tp + tn) return allright / allofem if __name__ == '__main__': args = sys.argv command = args[1] metapath = '../metadata/balanced_character_subset.csv' sourcefolder = '/Users/tunder/data/character_subset/' if command == 'optimize_general_model': c_range = [.000003, .00001, .00003, .00009, .0003, .0009, .002, .004, .008] featurestart = 1000 featureend = 3200 featurestep = 100 generalmetapath, general_docids = select_subset_to_model('wholetimeline', metapath, numexamples = 800, startdate = 1780, enddate = 2010) gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) if command == 'optimize_fifty_years': # this option creates a model that can be used for comparison to # the model of fictional prestige, which spans only 1850-1950 c_range = [.0001] featurestart = 2450 featureend = 2700 featurestep = 50 generalmetapath, general_docids = select_subset_to_model('fiftypost1950', metapath, numexamples = 1500, startdate = 1950, enddate = 2050) # The number of examples is higher here, because we want this model to be maximally # accurate, and we're not trying to use this as a guide for other 800-character # models. gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'test_decades': c_range = [.0004] featurestart = 2300 featureend = 2300 featurestep = 100 with open('../dataforR/speechlessdecademodels.tsv', mode = 'w', encoding = 'utf-8') as f: f.write('decade\taccuracy\n') for dec in range (1790, 2010, 10): if dec == 1790: floor = 1780 ceiling = 1800 else: floor = dec ceiling = dec + 10 modelname = 'decade' + str(dec) for i in range(15): decademetapath, docids = select_subset_to_model(modelname, metapath, numexamples = 800, startdate = floor, enddate = ceiling) accuracy = crossvalidate_one_model(decademetapath, sourcefolder, c_range, featurestart, featureend, featurestep) f.write(str(dec) + '\t' + str(accuracy) + '\n') elif command == 'optimize_20c': c_range = [.000003, .00001, .00003, .00009, .0003, .0009, .002, .004, .008] featurestart = 1100 featureend = 3000 featurestep = 100 generalmetapath, general_docids = select_subset_to_model('wholetwentieth', metapath, numexamples = 800, startdate = 1900, enddate = 2000) gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'optimize_19c': c_range = [.000003, .00001, .00003, .00009, .0003, .0009, .002, .004, .008] featurestart = 1100 featureend = 3000 featurestep = 100 generalmetapath, general_docids = select_subset_to_model('wholenineteenth', metapath, numexamples = 800, startdate = 1800, enddate = 1900) gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'optimize_thirty': decade = int(args[2]) c_range = [.000003, .00001, .00003, .00009, .0003, .0009, .002, .004, .008] featurestart = 1900 featureend = 3000 featurestep = 100 modelname = 'optimalthirty' + str(decade) generalmetapath, general_docids = select_subset_to_model(modelname, metapath, numexamples = 1500, startdate = decade - 10, enddate = decade + 20) gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'decade_grid': # This is the function I finally used. Keeps the number of features # fixed at 2200, but generates a new lexicon for each decade (and each # sample of 800 characters within the decade). Tests each decade at # multiple L2 settings, and records them all, so we can take the # optimal setting but also figure out how much of a difference that's # making. c_range = [.00003, .0001, .0003, .001] featurestart = 2200 featureend = 2200 featurestep = 100 with open('../dataforR/decadegrid.tsv', mode = 'w', encoding = 'utf-8') as f: f.write('decade\tL2\taccuracy\titer\n') for dec in range (1790, 2010, 10): if dec == 1790: floor = 1780 ceiling = 1800 else: floor = dec ceiling = dec + 10 modelname = 'decade' + str(dec) for i in range(15): decademetapath, docids = select_subset_to_model(modelname, metapath, numexamples = 800, startdate = floor, enddate = ceiling) accuracydict = crossvalidate_across_L2_range(decademetapath, sourcefolder, c_range, featurestart, featureend, featurestep) for L2setting, accuracy in accuracydict.items(): f.write(str(dec) + '\t' + str(L2setting) + '\t' + str(accuracy) + '\t' + str(i) + '\n') elif command == 'decade_grid_for_differentiation_plot': # This is the function I finally used. Keeps the number of features # fixed at 2200, but generates a new lexicon for each decade (and each # sample of 800 characters within the decade). Tests each decade at # multiple L2 settings, and records them all, so we can take the # optimal setting but also figure out how much of a difference that's # making. c_range = [.0001] featurestart = 2300 featureend = 2300 featurestep = 100 for dec in range (1790, 2010, 10): floor = dec - 10 ceiling = dec + 20 modelname = 'thirty' + str(dec) decademetapath, docids = select_subset_to_model(modelname, metapath, numexamples = 1500, startdate = floor, enddate = ceiling) accuracy = crossvalidate_one_model(decademetapath, sourcefolder, c_range, featurestart, featureend, featurestep) print(str(dec) + '\t' + str(accuracy) + '\n') elif command == 'auth_specific_charpredict_grid': # This is the function I finally used. Keeps the number of features # fixed at 2200, but generates a new lexicon for each decade (and each # sample of 800 characters within the decade). Tests each decade at # multiple L2 settings, and records them all, so we can take the # optimal setting but also figure out how much of a difference that's # making. c_range = [.00003, .0001, .0003, .001] featurestart = 2200 featureend = 2200 featurestep = 100 metapath = '../metadata/balanced_authgender_subset.csv' sourcefolder = '/Users/tunder/data/authgender_subset/' with open('../dataforR/auth_specific_charpredict.tsv', mode = 'w', encoding = 'utf-8') as f: f.write('decade\tauthgender\tL2\taccuracy\titer\n') for dec in range (1800, 2000, 20): if dec == 1790: floor = 1780 ceiling = 1800 else: floor = dec ceiling = dec + 20 for agender in ['m', 'f']: modelname = agender + 'author' + '_' + str(dec) for i in range(5): decademetapath, docids = authgender_subset_to_model(modelname, agender, metapath, numexamples = 800, startdate = floor, enddate = ceiling) accuracydict = crossvalidate_across_L2_range(decademetapath, sourcefolder, c_range, featurestart, featureend, featurestep) for L2setting, accuracy in accuracydict.items(): f.write(str(dec) + '\t' + agender + '\t' + str(L2setting) + '\t' + str(accuracy) + '\t' + str(i) + '\n') elif command == 'predict_authgender': # This is the function I finally used. Keeps the number of features # fixed at 2200, but generates a new lexicon for each decade (and each # sample of 800 characters within the decade). Tests each decade at # multiple L2 settings, and records them all, so we can take the # optimal setting but also figure out how much of a difference that's # making. c_range = [.0001, .0003, .001, .003] featurestart = 2500 featureend = 2500 featurestep = 100 metapath = '../metadata/balanced_authgender_subset.csv' sourcefolder = '/Users/tunder/data/authgender_subset/' with open('../dataforR/authgender_predictions.tsv', mode = 'w', encoding = 'utf-8') as f: f.write('meandate\tL2\taccuracy\titer\n') for dec in range (1795, 2010, 17): if dec == 1790: floor = 1780 ceiling = 1800 else: floor = dec ceiling = dec + 17 modelname = 'predict_authgender' + '_' + str(dec) for i in range(9): decademetapath, meandate = subset_to_predict_authgender(modelname, metapath, num = 400, startdate = floor, enddate = ceiling) # note that in this case num is not the total number of male or female examples, # but the number for each cell of a 2x2 contingency matrix of author gender # versus character gender so 400 produces 1600 total instances accuracydict = crossvalidate_across_L2_range(decademetapath, sourcefolder, c_range, featurestart, featureend, featurestep) for L2setting, accuracy in accuracydict.items(): f.write(str(meandate) + '\t' + str(L2setting) + '\t' + str(accuracy) + '\t' + str(i) + '\n') elif command == 'optimize_authgender': c_range = [.000003, .00001, .00003, .00009, .0003, .0009, .002, .004, .008, .03, 1] featurestart = 800 featureend = 3600 featurestep = 100 metapath = '../metadata/balanced_authgender_subset.csv' sourcefolder = '/Users/tunder/data/authgender_subset/' generalmetapath, general_docids = subset_to_predict_authgender('general_authgender', metapath, num = 400, startdate = 1780, enddate = 2010) gridsearch_a_model(generalmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'onlywomenwriters': c_range = [.0003] featurestart = 2500 featureend = 2600 featurestep = 100 womensmetapath, docids = authgender_subset_to_model('onlywomenwritersC', 'f', metapath, numexamples = 1500, startdate = 1800, enddate = 2000) gridsearch_a_model(womensmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'onlymalewriters': c_range = [.0003] featurestart = 2500 featureend = 2600 featurestep = 100 womensmetapath, docids = authgender_subset_to_model('onlymalewritersC', 'm', metapath, numexamples = 1500, startdate = 1800, enddate = 2000) gridsearch_a_model(womensmetapath, sourcefolder, c_range, featurestart, featureend, featurestep) elif command == 'compare_models': men = ['onlymalewriters', 'onlymalewritersB', 'onlymalewritersC'] women = ['onlywomenwriters', 'onlywomenwritersB', 'onlywomenwritersC'] # test_subset_path, test_docids = select_subset_to_model('test_metadata', metapath, numexamples = 1000, startdate = 1800, enddate = 2000) test_subset_path = '../models/test_metadata_meta.csv' generaloutpath = '/Users/tunder/Dropbox/python/character/future_work/appliedmodels/' masculineperspective = [] feminineperspective = [] for m in men: modelpath = '../models/' + m + '.pkl' outpath = generaloutpath + m + '.results' if not os.path.exists(outpath): applymodel(modelpath, test_subset_path, outpath) masculineperspective.append(outpath) for w in women: modelpath = '../models/' + w + '.pkl' outpath = generaloutpath + w + '.results' if not os.path.exists(outpath): applymodel(modelpath, test_subset_path, outpath) feminineperspective.append(outpath) print('among men:') r = [] r.append(correlate_models(masculineperspective[0], masculineperspective[1])) r.append(correlate_models(masculineperspective[1], masculineperspective[2])) r.append(correlate_models(masculineperspective[0], masculineperspective[2])) print(sum(r) / len(r)) print('among women:') r = [] r.append(correlate_models(feminineperspective[0], feminineperspective[1])) r.append(correlate_models(feminineperspective[1], feminineperspective[2])) r.append(correlate_models(feminineperspective[0], feminineperspective[2])) print(sum(r) / len(r)) print('between genders:') r = [] r.append(correlate_models(masculineperspective[0], feminineperspective[0])) r.append(correlate_models(masculineperspective[1], feminineperspective[0])) r.append(correlate_models(masculineperspective[1], feminineperspective[1])) r.append(correlate_models(masculineperspective[1], feminineperspective[2])) r.append(correlate_models(masculineperspective[0], feminineperspective[2])) r.append(correlate_models(masculineperspective[2], feminineperspective[2])) print(sum(r) / len(r)) else: print("I don't know that command.")
StarcoderdataPython
12827184
from tenx_missile import MissileLauncher _VALID_CODES = ['DPRK', 'BOOM', 'ACME'] class Missile: def __init__(self): self._launcher = MissileLauncher() def fire(self): self._launcher.fire() def launch_missile(missile, code): if check_code(code): missile.fire() def check_code(code): return code in _VALID_CODES ############# # TEST CODE # ############# # DUMMY WHOT? def test_launch_missile_with_invalid_code(): pass # launch_missile(¿?¿?, 'INVALID')
StarcoderdataPython
12816046
<filename>test/crs/test_crs_maker.py<gh_stars>1-10 import pytest from pyproj.crs import ( BoundCRS, CompoundCRS, DerivedGeographicCRS, GeographicCRS, ProjectedCRS, VerticalCRS, ) from pyproj.crs.coordinate_operation import ( AlbersEqualAreaConversion, LambertConformalConic2SPConversion, RotatedLatitudeLongitudeConversion, ToWGS84Transformation, TransverseMercatorConversion, UTMConversion, ) from pyproj.crs.coordinate_system import Cartesian2DCS, Ellipsoidal3DCS, VerticalCS from pyproj.crs.datum import CustomDatum from pyproj.crs.enums import VerticalCSAxis def test_make_projected_crs(): aeaop = AlbersEqualAreaConversion(0, 0) pc = ProjectedCRS(conversion=aeaop, name="Albers") assert pc.name == "Albers" assert pc.type_name == "Projected CRS" assert pc.coordinate_operation == aeaop def test_make_geographic_crs(): gc = GeographicCRS(name="WGS 84") assert gc.name == "WGS 84" assert gc.type_name == "Geographic 2D CRS" assert gc.to_authority() == ("OGC", "CRS84") def test_make_geographic_3d_crs(): gcrs = GeographicCRS(ellipsoidal_cs=Ellipsoidal3DCS()) assert gcrs.type_name == "Geographic 3D CRS" assert gcrs.to_authority() == ("IGNF", "WGS84GEODD") def test_make_derived_geographic_crs(): conversion = RotatedLatitudeLongitudeConversion(o_lat_p=0, o_lon_p=0) dgc = DerivedGeographicCRS(base_crs=GeographicCRS(), conversion=conversion) assert dgc.name == "undefined" assert dgc.type_name == "Geographic 2D CRS" assert dgc.coordinate_operation == conversion def test_vertical_crs(): vc = VerticalCRS( name="NAVD88 height", datum="North American Vertical Datum 1988", geoid_model="GEOID12B", ) assert vc.name == "NAVD88 height" assert vc.type_name == "Vertical CRS" assert vc.coordinate_system == VerticalCS() assert vc.to_json_dict()["geoid_model"]["name"] == "GEOID12B" @pytest.mark.parametrize( "axis", [ VerticalCSAxis.UP, VerticalCSAxis.UP_FT, VerticalCSAxis.DEPTH, VerticalCSAxis.DEPTH_FT, VerticalCSAxis.GRAVITY_HEIGHT_FT, ], ) def test_vertical_crs__chance_cs_axis(axis): vc = VerticalCRS( name="NAVD88 height", datum="North American Vertical Datum 1988", vertical_cs=VerticalCS(axis=axis), ) assert vc.name == "NAVD88 height" assert vc.type_name == "Vertical CRS" assert vc.coordinate_system == VerticalCS(axis=axis) def test_compund_crs(): vertcrs = VerticalCRS( name="NAVD88 height", datum="North American Vertical Datum 1988", vertical_cs=VerticalCS(), geoid_model="GEOID12B", ) projcrs = ProjectedCRS( name="NAD83 / Pennsylvania South", conversion=LambertConformalConic2SPConversion( latitude_false_origin=39.3333333333333, longitude_false_origin=-77.75, latitude_first_parallel=40.9666666666667, latitude_second_parallel=39.9333333333333, easting_false_origin=600000, northing_false_origin=0, ), geodetic_crs=GeographicCRS(datum="North American Datum 1983"), cartesian_cs=Cartesian2DCS(), ) compcrs = CompoundCRS( name="NAD83 / Pennsylvania South + NAVD88 height", components=[projcrs, vertcrs] ) assert compcrs.name == "NAD83 / Pennsylvania South + NAVD88 height" assert compcrs.type_name == "Compound CRS" assert compcrs.sub_crs_list[0].type_name == "Projected CRS" assert compcrs.sub_crs_list[1].type_name == "Vertical CRS" def test_bound_crs(): proj_crs = ProjectedCRS(conversion=UTMConversion(12)) bound_crs = BoundCRS( source_crs=proj_crs, target_crs="WGS 84", transformation=ToWGS84Transformation( proj_crs.geodetic_crs, 1, 2, 3, 4, 5, 6, 7 ), ) assert bound_crs.type_name == "Bound CRS" assert bound_crs.source_crs.coordinate_operation.name == "UTM zone 12N" assert bound_crs.coordinate_operation.towgs84 == [1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0] assert bound_crs.target_crs.name == "WGS 84" def test_bound_crs__example(): proj_crs = ProjectedCRS( conversion=TransverseMercatorConversion( latitude_natural_origin=0, longitude_natural_origin=15, false_easting=2520000, false_northing=0, scale_factor_natural_origin=0.9996, ), geodetic_crs=GeographicCRS( datum=CustomDatum(ellipsoid="International 1909 (Hayford)") ), ) bound_crs = BoundCRS( source_crs=proj_crs, target_crs="WGS 84", transformation=ToWGS84Transformation( proj_crs.geodetic_crs, -122.74, -34.27, -22.83, -1.884, -3.4, -3.03, -15.62 ), ) with pytest.warns(UserWarning): assert bound_crs.to_dict() == { "ellps": "intl", "k": 0.9996, "lat_0": 0, "lon_0": 15, "no_defs": None, "proj": "tmerc", "towgs84": [-122.74, -34.27, -22.83, -1.884, -3.4, -3.03, -15.62], "type": "crs", "units": "m", "x_0": 2520000, "y_0": 0, }
StarcoderdataPython
1922838
<reponame>veritaem/Twitoff """ Initializes directory for Flask app """ from .app import create_app APP = create_app()
StarcoderdataPython
6601417
<gh_stars>0 from flask import Blueprint, render_template blueprint = Blueprint("viewer", __name__) @blueprint.route("/viewer") def viewer(): return render_template("viewer/viewer.html")
StarcoderdataPython
8002230
import time import chipwhisperer as cw def cwconnect(offset=1250, totalsamples=3000): scope = cw.scope() target = cw.target(scope) # setup scope parameters scope.gain.gain = 45 scope.adc.samples = int(totalsamples) scope.adc.offset = int(offset) scope.adc.basic_mode = "rising_edge" scope.clock.clkgen_freq = 7370000 scope.clock.adc_src = "clkgen_x4" scope.trigger.triggers = "tio4" scope.io.tio1 = "serial_rx" scope.io.tio2 = "serial_tx" scope.io.hs2 = "clkgen" target.baud = 38400 target.protver = '1.0' target.key_cmd = 'k$KEY$\n' target.go_cmd = 'p$TEXT$\n' target.output_cmd = 'r$RESPONSE$\n' return (cw, scope, target) def measure_AES(scope, target, plaintext, key): plaintext = [int(p) for p in plaintext] key = [int(k) for k in key] target.init() # run aux stuff that should run before the scope arms here target.reinit() target.setModeEncrypt() # only does something for targets that support it target.loadEncryptionKey(key) target.loadInput(plaintext) scope.arm() # run aux stuff that should run after the scope arms here timeout = 50 target.go() # wait for target to finish while target.isDone() is False and timeout: timeout -= 1 time.sleep(0.01) try: ret = scope.capture() if ret: print('Timeout happened during acquisition') except IOError as e: print('IOError: %s' % str(e)) # run aux stuff that should happen after trace here trace = list(scope.getLastTrace()) textout = list(target.readOutput()) return (textout, trace)
StarcoderdataPython
11255846
# from web.web1.web3 import cal #from web.web1.web3.cal import add # from web.web1 import web3 #执行web3的__init__文件,唯一不支持的调用方式 # print(web3.cal.add(2,6)) from web.web1.web3 import cal cal.add(3,8)
StarcoderdataPython
6444175
<filename>make_animation.py<gh_stars>0 from __future__ import print_function import os import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation import tifffile import skimage.exposure import scipy.ndimage.filters as filters def ani_frame(images,firstIm,lastImage,subtract_first=True,filtering=None, sigma=1.,out_name='demo.mp4',fps=10,dpi=100): """ images must be a numpy array """ n_images, dimX, dimY = images.shape fig = plt.figure() ax = fig.add_subplot(111) ax.set_aspect('equal') ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) if filtering: print("Filtering...") #image = skimage.exposure.equalize_hist(image) images = filters.gaussian_filter(images, sigma) print("Done.") if subtract_first: image = images[firstIm+1] - images[firstIm] average = np.int(np.mean(image)) firstIm += 1 else: image = images[firstIm] im = ax.imshow(image,cmap='gray',interpolation='nearest') #im.set_clim([0,1]) #fig.set_size_inches([5,5]) #plt.tight_layout() def update_img(n): try: if subtract_first: image = images[n] - images[firstIm] + average else: image = images[n] #print(".",end="") im.set_data(image) #im.set_array(image) except: print(n) return im #legend(loc=0) ani = animation.FuncAnimation(fig,update_img,range(firstIm,lastImage), interval=10, blit=False) writer = animation.writers['ffmpeg'](fps=fps) ani.save(out_name,writer=writer,dpi=dpi) plt.close(fig.number) return ani if __name__ == "__main__": if True: #mainDir = "/home/gf/Meas/Creep/CoFeB/Film/Irradiated" #mainDir = "/home/gf/Meas/Creep/CoFeB/Film/Non-irradiated/Moon/run6" mainDir = "/home/gf/Meas/Creep/CoFeB/Wires/Irradiated/run1_2" for subDir in sorted(os.listdir(mainDir)): s = os.path.join(mainDir, subDir) for filename in os.listdir(s): basename, extension = os.path.splitext(filename) if extension == '.mp4': break if extension == '.tif': print(filename) f = os.path.join(s, filename) try: with tifffile.TiffFile(f) as tif: im = tif.asarray() # Need to transform into a int16 except: print("There is a problem with the tif file, skipping") break im = np.asarray(im, dtype=np.int16) fout = os.path.join(s, basename+".mp4") lastImage, dimX, dimY = im.shape ani_frame(im,1,lastImage,subtract_first=True,filtering=True, sigma=1.,dpi=600,out_name=fout) else: mainDir = "/home/gf/Meas/Creep/CoFeB/Film/Irradiated/07_irradiatedFilm_0.20A_10fps" f = "07_irradiatedFilm_0.20A_10fps_MMStack_Pos0.ome.tif" fout = "07_irradiatedFilm_0.20A_10fps_MMStack_Pos0.ome.mp4" filename = os.path.join(mainDir, f) print(filename) with tifffile.TiffFile(filename) as tif: im = tif.asarray() im = np.asarray(im, dtype=np.int16) fout = os.path.join(mainDir, fout) lastImage, dimX, dimY = im.shape ani_frame(im,1,lastImage,subtract_first=True,dpi=600, filtering=True, out_name=fout)
StarcoderdataPython
5040578
<filename>sdk/python/pulumi_alicloud/ess/attachment.py # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities __all__ = ['AttachmentArgs', 'Attachment'] @pulumi.input_type class AttachmentArgs: def __init__(__self__, *, instance_ids: pulumi.Input[Sequence[pulumi.Input[str]]], scaling_group_id: pulumi.Input[str], force: Optional[pulumi.Input[bool]] = None): """ The set of arguments for constructing a Attachment resource. :param pulumi.Input[Sequence[pulumi.Input[str]]] instance_ids: ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. :param pulumi.Input[str] scaling_group_id: ID of the scaling group of a scaling configuration. :param pulumi.Input[bool] force: Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. """ pulumi.set(__self__, "instance_ids", instance_ids) pulumi.set(__self__, "scaling_group_id", scaling_group_id) if force is not None: pulumi.set(__self__, "force", force) @property @pulumi.getter(name="instanceIds") def instance_ids(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. """ return pulumi.get(self, "instance_ids") @instance_ids.setter def instance_ids(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "instance_ids", value) @property @pulumi.getter(name="scalingGroupId") def scaling_group_id(self) -> pulumi.Input[str]: """ ID of the scaling group of a scaling configuration. """ return pulumi.get(self, "scaling_group_id") @scaling_group_id.setter def scaling_group_id(self, value: pulumi.Input[str]): pulumi.set(self, "scaling_group_id", value) @property @pulumi.getter def force(self) -> Optional[pulumi.Input[bool]]: """ Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. """ return pulumi.get(self, "force") @force.setter def force(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "force", value) @pulumi.input_type class _AttachmentState: def __init__(__self__, *, force: Optional[pulumi.Input[bool]] = None, instance_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, scaling_group_id: Optional[pulumi.Input[str]] = None): """ Input properties used for looking up and filtering Attachment resources. :param pulumi.Input[bool] force: Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. :param pulumi.Input[Sequence[pulumi.Input[str]]] instance_ids: ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. :param pulumi.Input[str] scaling_group_id: ID of the scaling group of a scaling configuration. """ if force is not None: pulumi.set(__self__, "force", force) if instance_ids is not None: pulumi.set(__self__, "instance_ids", instance_ids) if scaling_group_id is not None: pulumi.set(__self__, "scaling_group_id", scaling_group_id) @property @pulumi.getter def force(self) -> Optional[pulumi.Input[bool]]: """ Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. """ return pulumi.get(self, "force") @force.setter def force(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "force", value) @property @pulumi.getter(name="instanceIds") def instance_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. """ return pulumi.get(self, "instance_ids") @instance_ids.setter def instance_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "instance_ids", value) @property @pulumi.getter(name="scalingGroupId") def scaling_group_id(self) -> Optional[pulumi.Input[str]]: """ ID of the scaling group of a scaling configuration. """ return pulumi.get(self, "scaling_group_id") @scaling_group_id.setter def scaling_group_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "scaling_group_id", value) class Attachment(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, force: Optional[pulumi.Input[bool]] = None, instance_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, scaling_group_id: Optional[pulumi.Input[str]] = None, __props__=None): """ Attaches several ECS instances to a specified scaling group or remove them from it. > **NOTE:** ECS instances can be attached or remove only when the scaling group is active and it has no scaling activity in progress. > **NOTE:** There are two types ECS instances in a scaling group: "AutoCreated" and "Attached". The total number of them can not larger than the scaling group "MaxSize". ## Example Usage ```python import pulumi import pulumi_alicloud as alicloud config = pulumi.Config() name = config.get("name") if name is None: name = "essattachmentconfig" default_zones = alicloud.get_zones(available_disk_category="cloud_efficiency", available_resource_creation="VSwitch") default_instance_types = alicloud.ecs.get_instance_types(availability_zone=default_zones.zones[0].id, cpu_core_count=2, memory_size=4) default_images = alicloud.ecs.get_images(name_regex="^ubuntu_18.*64", most_recent=True, owners="system") default_network = alicloud.vpc.Network("defaultNetwork", vpc_name=name, cidr_block="172.16.0.0/16") default_switch = alicloud.vpc.Switch("defaultSwitch", vpc_id=default_network.id, cidr_block="172.16.0.0/24", zone_id=default_zones.zones[0].id) default_security_group = alicloud.ecs.SecurityGroup("defaultSecurityGroup", vpc_id=default_network.id) default_security_group_rule = alicloud.ecs.SecurityGroupRule("defaultSecurityGroupRule", type="ingress", ip_protocol="tcp", nic_type="intranet", policy="accept", port_range="22/22", priority=1, security_group_id=default_security_group.id, cidr_ip="172.16.0.0/24") default_scaling_group = alicloud.ess.ScalingGroup("defaultScalingGroup", min_size=0, max_size=2, scaling_group_name=name, removal_policies=[ "OldestInstance", "NewestInstance", ], vswitch_ids=[default_switch.id]) default_scaling_configuration = alicloud.ess.ScalingConfiguration("defaultScalingConfiguration", scaling_group_id=default_scaling_group.id, image_id=default_images.images[0].id, instance_type=default_instance_types.instance_types[0].id, security_group_id=default_security_group.id, force_delete=True, active=True, enable=True) default_instance = [] for range in [{"value": i} for i in range(0, 2)]: default_instance.append(alicloud.ecs.Instance(f"defaultInstance-{range['value']}", image_id=default_images.images[0].id, instance_type=default_instance_types.instance_types[0].id, security_groups=[default_security_group.id], internet_charge_type="PayByTraffic", internet_max_bandwidth_out=10, instance_charge_type="PostPaid", system_disk_category="cloud_efficiency", vswitch_id=default_switch.id, instance_name=name)) default_attachment = alicloud.ess.Attachment("defaultAttachment", scaling_group_id=default_scaling_group.id, instance_ids=[ default_instance[0].id, default_instance[1].id, ], force=True) ``` ## Import ESS attachment can be imported using the id or scaling group id, e.g. ```sh $ pulumi import alicloud:ess/attachment:Attachment example asg-abc123456 ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] force: Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. :param pulumi.Input[Sequence[pulumi.Input[str]]] instance_ids: ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. :param pulumi.Input[str] scaling_group_id: ID of the scaling group of a scaling configuration. """ ... @overload def __init__(__self__, resource_name: str, args: AttachmentArgs, opts: Optional[pulumi.ResourceOptions] = None): """ Attaches several ECS instances to a specified scaling group or remove them from it. > **NOTE:** ECS instances can be attached or remove only when the scaling group is active and it has no scaling activity in progress. > **NOTE:** There are two types ECS instances in a scaling group: "AutoCreated" and "Attached". The total number of them can not larger than the scaling group "MaxSize". ## Example Usage ```python import pulumi import pulumi_alicloud as alicloud config = pulumi.Config() name = config.get("name") if name is None: name = "essattachmentconfig" default_zones = alicloud.get_zones(available_disk_category="cloud_efficiency", available_resource_creation="VSwitch") default_instance_types = alicloud.ecs.get_instance_types(availability_zone=default_zones.zones[0].id, cpu_core_count=2, memory_size=4) default_images = alicloud.ecs.get_images(name_regex="^ubuntu_18.*64", most_recent=True, owners="system") default_network = alicloud.vpc.Network("defaultNetwork", vpc_name=name, cidr_block="172.16.0.0/16") default_switch = alicloud.vpc.Switch("defaultSwitch", vpc_id=default_network.id, cidr_block="172.16.0.0/24", zone_id=default_zones.zones[0].id) default_security_group = alicloud.ecs.SecurityGroup("defaultSecurityGroup", vpc_id=default_network.id) default_security_group_rule = alicloud.ecs.SecurityGroupRule("defaultSecurityGroupRule", type="ingress", ip_protocol="tcp", nic_type="intranet", policy="accept", port_range="22/22", priority=1, security_group_id=default_security_group.id, cidr_ip="172.16.0.0/24") default_scaling_group = alicloud.ess.ScalingGroup("defaultScalingGroup", min_size=0, max_size=2, scaling_group_name=name, removal_policies=[ "OldestInstance", "NewestInstance", ], vswitch_ids=[default_switch.id]) default_scaling_configuration = alicloud.ess.ScalingConfiguration("defaultScalingConfiguration", scaling_group_id=default_scaling_group.id, image_id=default_images.images[0].id, instance_type=default_instance_types.instance_types[0].id, security_group_id=default_security_group.id, force_delete=True, active=True, enable=True) default_instance = [] for range in [{"value": i} for i in range(0, 2)]: default_instance.append(alicloud.ecs.Instance(f"defaultInstance-{range['value']}", image_id=default_images.images[0].id, instance_type=default_instance_types.instance_types[0].id, security_groups=[default_security_group.id], internet_charge_type="PayByTraffic", internet_max_bandwidth_out=10, instance_charge_type="PostPaid", system_disk_category="cloud_efficiency", vswitch_id=default_switch.id, instance_name=name)) default_attachment = alicloud.ess.Attachment("defaultAttachment", scaling_group_id=default_scaling_group.id, instance_ids=[ default_instance[0].id, default_instance[1].id, ], force=True) ``` ## Import ESS attachment can be imported using the id or scaling group id, e.g. ```sh $ pulumi import alicloud:ess/attachment:Attachment example asg-abc123456 ``` :param str resource_name: The name of the resource. :param AttachmentArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(AttachmentArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, force: Optional[pulumi.Input[bool]] = None, instance_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, scaling_group_id: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = AttachmentArgs.__new__(AttachmentArgs) __props__.__dict__["force"] = force if instance_ids is None and not opts.urn: raise TypeError("Missing required property 'instance_ids'") __props__.__dict__["instance_ids"] = instance_ids if scaling_group_id is None and not opts.urn: raise TypeError("Missing required property 'scaling_group_id'") __props__.__dict__["scaling_group_id"] = scaling_group_id super(Attachment, __self__).__init__( 'alicloud:ess/attachment:Attachment', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None, force: Optional[pulumi.Input[bool]] = None, instance_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, scaling_group_id: Optional[pulumi.Input[str]] = None) -> 'Attachment': """ Get an existing Attachment resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[bool] force: Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. :param pulumi.Input[Sequence[pulumi.Input[str]]] instance_ids: ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. :param pulumi.Input[str] scaling_group_id: ID of the scaling group of a scaling configuration. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = _AttachmentState.__new__(_AttachmentState) __props__.__dict__["force"] = force __props__.__dict__["instance_ids"] = instance_ids __props__.__dict__["scaling_group_id"] = scaling_group_id return Attachment(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def force(self) -> pulumi.Output[Optional[bool]]: """ Whether to remove forcibly "AutoCreated" ECS instances in order to release scaling group capacity "MaxSize" for attaching ECS instances. Default to false. """ return pulumi.get(self, "force") @property @pulumi.getter(name="instanceIds") def instance_ids(self) -> pulumi.Output[Sequence[str]]: """ ID of the ECS instance to be attached to the scaling group. You can input up to 20 IDs. """ return pulumi.get(self, "instance_ids") @property @pulumi.getter(name="scalingGroupId") def scaling_group_id(self) -> pulumi.Output[str]: """ ID of the scaling group of a scaling configuration. """ return pulumi.get(self, "scaling_group_id")
StarcoderdataPython
9690876
<filename>cpgan_model.py # <NAME>, March 2020 # Common code for PyTorch implementation of Copy-Pasting GAN import math import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from cpgan_data import * from cpgan_tools import * def create_gaussian_filter(blur_sigma): bs_round = int(blur_sigma) kernel_size = bs_round * 2 + 1 x_cord = torch.arange(kernel_size) x_grid = x_cord.repeat(kernel_size).view(kernel_size, kernel_size) y_grid = x_grid.t() xy_grid = torch.stack([x_grid, y_grid], dim=-1) mean = (kernel_size - 1.0) / 2.0 variance = blur_sigma ** 2.0 gaussian_kernel = (1./(2.*math.pi*variance)) *\ torch.exp( -torch.sum((xy_grid - mean)**2., dim=-1) /\ (2*variance) ) gaussian_kernel = gaussian_kernel / torch.sum(gaussian_kernel) gaussian_kernel = gaussian_kernel.view(1, 1, kernel_size, kernel_size) gaussian_kernel = gaussian_kernel.repeat(3, 1, 1, 1) gaussian_filter = nn.Conv2d(3, 3, kernel_size=kernel_size, padding=bs_round, groups=3, bias=False) gaussian_filter.weight.data = gaussian_kernel gaussian_filter.weight.requires_grad = False return gaussian_filter # ==== Code below is adapted from ==== # https://github.com/milesial/Pytorch-UNet # Adapted for CP-GAN: 3, 64, 128, 256, 512, 256, 128, 64, C class MyUNet(nn.Module): def __init__(self, n_channels, n_classes, bilinear=False, blur_sigma=0.0, border_zero=False): super(MyUNet, self).__init__() self.n_channels = n_channels self.n_classes = n_classes self.bilinear = bilinear self.blur_sigma = blur_sigma self.border_zero = border_zero self.inc = nn.Conv2d(n_channels, 64, kernel_size=3, padding=1) self.down1 = MyDown(64, 128) self.down2 = MyDown(128, 256) self.down3 = MyDown(256, 512) # Fully connected layers for discriminator output score self.avg = nn.Sequential( nn.AdaptiveAvgPool2d(1), nn.Flatten(), nn.Linear(512, 256), nn.LeakyReLU(0.01), nn.Linear(256, 1) ) self.up1 = MyUp(768, 256, bilinear) self.up2 = MyUp(384, 128, bilinear) self.up3 = MyUp(192, 64, bilinear) self.outc = nn.Conv2d(64, n_classes, kernel_size=1) if blur_sigma: self.gaussian_filter = create_gaussian_filter(blur_sigma) # print(gaussian_filter.weight.data) # sums to 1 per channel def forward(self, x): # First blur if specified if self.blur_sigma: x = self.gaussian_filter(x) x1 = self.inc(x) x2 = self.down1(x1) x3 = self.down2(x2) x4 = self.down3(x3) score = F.sigmoid(self.avg(x4)) # value in range [0, 1] x5 = self.up1(x4, x3) x6 = self.up2(x5, x2) x7 = self.up3(x6, x1) output = F.sigmoid(self.outc(x7)) # mask in range [0, 1] return output, score class MyDown(nn.Module): def __init__(self, in_channels, out_channels): super().__init__() self.my_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=2, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(0.01) ) def forward(self, x): return self.my_conv(x) class MyUp(nn.Module): def __init__(self, in_channels, out_channels, bilinear=False): super().__init__() if bilinear: self.up = nn.UpsamplingBilinear2d(scale_factor=2) else: self.up = nn.Upsample(scale_factor=2, mode='nearest') self.my_conv = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1), nn.InstanceNorm2d(out_channels), nn.LeakyReLU(0.01) ) def forward(self, x1, x2): x1 = self.up(x1) # input is CHW diffY = torch.tensor([x2.size()[2] - x1.size()[2]]) diffX = torch.tensor([x2.size()[3] - x1.size()[3]]) x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2, diffY // 2, diffY - diffY // 2]) # if you have padding issues, see # https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a # https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd x = torch.cat([x2, x1], dim=1) return self.my_conv(x)
StarcoderdataPython
1621086
<reponame>kancurochat/mcx import jax.numpy as np from jax import random, scipy from mcx.distributions import constraints from mcx.distributions.distribution import Distribution from mcx.distributions.shapes import broadcast_batch_shape class StudentT(Distribution): parameters = {"df": constraints.strictly_positive} support = constraints.real def __init__(self, df): self.event_shape = () self.batch_shape = broadcast_batch_shape(np.shape(df)) self.df = df def sample(self, rng_key, sample_shape=()): shape = sample_shape + self.batch_shape + self.event_shape return random.t(rng_key, self.df, shape) def logpdf(self, x): return scipy.stats.t.logpdf(x, self.df)
StarcoderdataPython
208506
from __future__ import print_function try: import argparse import os import numpy as np import matplotlib import matplotlib.pyplot as plt import pandas as pd from torch.autograd import Variable from torch.autograd import grad as torch_grad import torch import torchvision import torch.nn as nn import torch.nn.functional as F from torch.utils.data import DataLoader from torchvision import datasets import torchvision.transforms as transforms from torchvision.utils import save_image from itertools import chain as ichain from clusgan.definitions import DATASETS_DIR, RUNS_DIR from clusgan.models import Generator_CNN, Encoder_CNN, Discriminator_CNN from clusgan.utils import save_model, calc_gradient_penalty, sample_z, cross_entropy from clusgan.datasets import get_dataloader, dataset_list from clusgan.plots import plot_train_loss except ImportError as e: print(e) raise ImportError def main(): global args parser = argparse.ArgumentParser(description="Convolutional NN Training Script") parser.add_argument("-r", "--run_name", dest="run_name", default='clusgan', help="Name of training run") parser.add_argument("-n", "--n_epochs", dest="n_epochs", default=200, type=int, help="Number of epochs") parser.add_argument("-b", "--batch_size", dest="batch_size", default=64, type=int, help="Batch size") parser.add_argument("-s", "--dataset_name", dest="dataset_name", default='mnist', choices=dataset_list, help="Dataset name") parser.add_argument("-w", "--wass_metric", dest="wass_metric", action='store_true', help="Flag for Wasserstein metric") parser.add_argument("-g", "-–gpu", dest="gpu", default=0, type=int, help="GPU id to use") parser.add_argument("-k", "-–num_workers", dest="num_workers", default=1, type=int, help="Number of dataset workers") args = parser.parse_args() run_name = args.run_name dataset_name = args.dataset_name device_id = args.gpu num_workers = args.num_workers # Training details n_epochs = args.n_epochs batch_size = args.batch_size test_batch_size = 5000 lr = 1e-4 b1 = 0.5 b2 = 0.9 #99 decay = 2.5*1e-5 n_skip_iter = 1 #5 img_size = 28 channels = 1 # Latent space info latent_dim = 30 n_c = 10 betan = 10 betac = 10 # Wasserstein metric flag # Wasserstein metric flag wass_metric = args.wass_metric mtype = 'van' if (wass_metric): mtype = 'wass' # Make directory structure for this run sep_und = '_' run_name_comps = ['%iepoch'%n_epochs, 'z%s'%str(latent_dim), mtype, 'bs%i'%batch_size, run_name] run_name = sep_und.join(run_name_comps) run_dir = os.path.join(RUNS_DIR, dataset_name, run_name) data_dir = os.path.join(DATASETS_DIR, dataset_name) imgs_dir = os.path.join(run_dir, 'images') models_dir = os.path.join(run_dir, 'models') os.makedirs(data_dir, exist_ok=True) os.makedirs(run_dir, exist_ok=True) os.makedirs(imgs_dir, exist_ok=True) os.makedirs(models_dir, exist_ok=True) print('\nResults to be saved in directory %s\n'%(run_dir)) x_shape = (channels, img_size, img_size) cuda = True if torch.cuda.is_available() else False cuda = False device = torch.device('cuda:0' if cuda else 'cpu') # Loss function bce_loss = torch.nn.BCELoss() xe_loss = torch.nn.CrossEntropyLoss() mse_loss = torch.nn.MSELoss() # Initialize generator and discriminator generator = Generator_CNN(latent_dim, n_c, x_shape) encoder = Encoder_CNN(latent_dim, n_c) discriminator = Discriminator_CNN(wass_metric=wass_metric) if cuda: torch.cuda.set_device(device_id) generator.cuda() encoder.cuda() discriminator.cuda() bce_loss.cuda() xe_loss.cuda() mse_loss.cuda() Tensor = torch.FloatTensor if cuda else torch.FloatTensor # Configure training data loader dataloader = get_dataloader(dataset_name=dataset_name, data_dir=data_dir, batch_size=batch_size, num_workers=num_workers) # Test data loader testdata = get_dataloader(dataset_name=dataset_name, data_dir=data_dir, batch_size=test_batch_size, train_set=False) test_imgs, test_labels = next(iter(testdata)) test_imgs = Variable(test_imgs.type(Tensor)) ge_chain = ichain(generator.parameters(), encoder.parameters()) optimizer_GE = torch.optim.Adam(ge_chain, lr=lr, betas=(b1, b2), weight_decay=decay) optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2)) #optimizer_D = torch.optim.Adam(discriminator.parameters(), lr=lr, betas=(b1, b2), weight_decay=decay) # ---------- # Training # ---------- ge_l = [] d_l = [] c_zn = [] c_zc = [] c_i = [] images = [] # Training loop print('\nBegin training session with %i epochs...\n'%(n_epochs)) for epoch in range(n_epochs): for i, (imgs, itruth_label) in enumerate(dataloader): # Ensure generator/encoder are trainable generator.train() encoder.train() # Zero gradients for models generator.zero_grad() encoder.zero_grad() discriminator.zero_grad() # Configure input real_imgs = Variable(imgs.type(Tensor)) # --------------------------- # Train Generator + Encoder # --------------------------- optimizer_GE.zero_grad() # Sample random latent variables zn, zc, zc_idx = sample_z(shape=imgs.shape[0], latent_dim=latent_dim, n_c=n_c) # Generate a batch of images gen_imgs = generator(zn, zc) # Discriminator output from real and generated samples D_gen = discriminator(gen_imgs) D_real = discriminator(real_imgs) # Step for Generator & Encoder, n_skip_iter times less than for discriminator if (i % n_skip_iter == 0): # Encode the generated images enc_gen_zn, enc_gen_zc, enc_gen_zc_logits = encoder(gen_imgs) # Calculate losses for z_n, z_c zn_loss = mse_loss(enc_gen_zn, zn) zc_loss = xe_loss(enc_gen_zc_logits, zc_idx) #zc_loss = cross_entropy(enc_gen_zc_logits, zc) # Check requested metric if wass_metric: # Wasserstein GAN loss ge_loss = torch.mean(D_gen) + betan * zn_loss + betac * zc_loss else: # Vanilla GAN loss valid = Variable(Tensor(gen_imgs.size(0), 1).fill_(1.0), requires_grad=False) v_loss = bce_loss(D_gen, valid) ge_loss = v_loss + betan * zn_loss + betac * zc_loss ge_loss.backward(retain_graph=True) optimizer_GE.step() # --------------------- # Train Discriminator # --------------------- optimizer_D.zero_grad() # Measure discriminator's ability to classify real from generated samples if wass_metric: # Gradient penalty term grad_penalty = calc_gradient_penalty(discriminator, real_imgs, gen_imgs) # Wasserstein GAN loss w/gradient penalty d_loss = torch.mean(D_real) - torch.mean(D_gen) + grad_penalty else: # Vanilla GAN loss fake = Variable(Tensor(gen_imgs.size(0), 1).fill_(0.0), requires_grad=False) real_loss = bce_loss(D_real, valid) fake_loss = bce_loss(D_gen, fake) d_loss = (real_loss + fake_loss) / 2 d_loss.backward() optimizer_D.step() # Save training losses d_l.append(d_loss.item()) ge_l.append(ge_loss.item()) # Generator in eval mode generator.eval() encoder.eval() # Set number of examples for cycle calcs n_sqrt_samp = 5 n_samp = n_sqrt_samp * n_sqrt_samp ## Cycle through test real -> enc -> gen t_imgs, t_label = test_imgs.data, test_labels #r_imgs, i_label = real_imgs.data[:n_samp], itruth_label[:n_samp] # Encode sample real instances e_tzn, e_tzc, e_tzc_logits = encoder(t_imgs) # Generate sample instances from encoding teg_imgs = generator(e_tzn, e_tzc) # Calculate cycle reconstruction loss img_mse_loss = mse_loss(t_imgs, teg_imgs) # Save img reco cycle loss c_i.append(img_mse_loss.item()) ## Cycle through randomly sampled encoding -> generator -> encoder zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_samp, latent_dim=latent_dim, n_c=n_c) # Generate sample instances gen_imgs_samp = generator(zn_samp, zc_samp) # Encode sample instances zn_e, zc_e, zc_e_logits = encoder(gen_imgs_samp) # Calculate cycle latent losses lat_mse_loss = mse_loss(zn_e, zn_samp) lat_xe_loss = xe_loss(zc_e_logits, zc_samp_idx) #lat_xe_loss = cross_entropy(zc_e_logits, zc_samp) # Save latent space cycle losses c_zn.append(lat_mse_loss.item()) c_zc.append(lat_xe_loss.item()) # Save cycled and generated examples! r_imgs, i_label = real_imgs.data[:n_samp], itruth_label[:n_samp] e_zn, e_zc, e_zc_logits = encoder(r_imgs) reg_imgs = generator(e_zn, e_zc) # we just want the generated examples # save_image(r_imgs.data[:n_samp], # '%s/real_%06i.png' %(imgs_dir, epoch), # nrow=n_sqrt_samp, normalize=True) # save_image(reg_imgs.data[:n_samp], # '%s/reg_%06i.png' %(imgs_dir, epoch), # nrow=n_sqrt_samp, normalize=True) save_image(gen_imgs_samp.data[:n_samp], '%s/gen_%06i.png' %(imgs_dir, epoch), nrow=n_sqrt_samp, normalize=True) if epoch % 10 == 0: images.append(gen_imgs_samp.data[:n_samp]) if epoch == 0: imgs = [np.array(to_pil_image(img)) for img in images] imageio.mimsave('/content/drive/MyDrive/outputs/clusterGAN_fashion.gif', images) ## Generate samples for specified classes stack_imgs = [] for idx in range(n_c): # Sample specific class zn_samp, zc_samp, zc_samp_idx = sample_z(shape=n_c, latent_dim=latent_dim, n_c=n_c, fix_class=idx) # Generate sample instances gen_imgs_samp = generator(zn_samp, zc_samp) if (len(stack_imgs) == 0): stack_imgs = gen_imgs_samp else: stack_imgs = torch.cat((stack_imgs, gen_imgs_samp), 0) # Save class-specified generated examples! save_image(stack_imgs, '%s/gen_classes_%06i.png' %(imgs_dir, epoch), nrow=n_c, normalize=True) # imgs = [np.array(to_pil_image(img)) for img in stack_imgs] # imageio.mimsave('/content/drive/MyDrive/outputs/generator_images.gif', imgs) print ("[Epoch %d/%d] \n"\ "\tModel Losses: [D: %f] [GE: %f]" % (epoch, n_epochs, d_loss.item(), ge_loss.item()) ) print("\tCycle Losses: [x: %f] [z_n: %f] [z_c: %f]"%(img_mse_loss.item(), lat_mse_loss.item(), lat_xe_loss.item()) ) # now that the training is done, we want to save the gif imgs = [np.array(to_pil_image(img)) for img in images] imageio.mimsave('/content/drive/MyDrive/outputs/generator_images.gif', images) # Save training results train_df = pd.DataFrame({ 'n_epochs' : n_epochs, 'learning_rate' : lr, 'beta_1' : b1, 'beta_2' : b2, 'weight_decay' : decay, 'n_skip_iter' : n_skip_iter, 'latent_dim' : latent_dim, 'n_classes' : n_c, 'beta_n' : betan, 'beta_c' : betac, 'wass_metric' : wass_metric, 'gen_enc_loss' : ['G+E', ge_l], 'disc_loss' : ['D', d_l], 'zn_cycle_loss' : ['$||Z_n-E(G(x))_n||$', c_zn], 'zc_cycle_loss' : ['$||Z_c-E(G(x))_c||$', c_zc], 'img_cycle_loss' : ['$||X-G(E(x))||$', c_i] }) train_df.to_csv('%s/training_details.csv'%(run_dir)) # Plot some training results plot_train_loss(df=train_df, arr_list=['gen_enc_loss', 'disc_loss'], figname='%s/training_model_losses.png'%(run_dir) ) plot_train_loss(df=train_df, arr_list=['zn_cycle_loss', 'zc_cycle_loss', 'img_cycle_loss'], figname='%s/training_cycle_loss.png'%(run_dir) ) # Save current state of trained models model_list = [discriminator, encoder, generator] save_model(models=model_list, out_dir=models_dir) if __name__ == "__main__": main()
StarcoderdataPython
11388443
from flask import current_app from testAuxiliaryFuncs import decryptAES, getDecryptor, encryptAES from bson import json_util, ObjectId def test_allsites(client, auth, app): token = auth.login('test1', '<PASSWORD>') response = client.get('/api/AllSites', headers={"token": token}) with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) response = json_util.dumps(response) # check if both sites are returned assert "test_login_site1.com" in response assert "test_login_site2.com" in response # check if endpoint returns id of LoginData assert "_id" in response def test_get_logindata(client, auth, app): token = auth.login('test1', '<PASSWORD>') response = client.get('/api/AllSites', headers={"token": token}) with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) response = client.get('/api/LoginData/' + str(response[1]['_id']), headers={"token": token}) with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) # check if proper user credentials are returned assert response['login'] == 'test_login2' assert response['password'] == '<PASSWORD>' def test_post_logindata(client, auth, app): token = auth.login('test1', '<PASSWORD>') js = { "site": "post_test.com", "login": "post_test_login", "password": "<PASSWORD>", "note": "post_test_note" } with app.app_context(): response = client.post('/api/LoginData', json=encryptAES(js, current_app.server_key_pem), headers={"token": token}) # check response status code assert response.status_code == 201 check = current_app.db.passwordManager.accounts.find_one( { 'login': current_app.client_encryption.encrypt("test1", "AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic", current_app.data_key_id), 'logindata.site': js['site'] }, { '_id': 0, 'logindata.$': 1 } ) check = check['logindata'][0] # check if login data has been updated assert js.items() <= check.items() def test_put_logindata(client, auth, app): token = auth.login('test1', 'test1') response = client.get('/api/AllSites', headers={"token": token}) with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) logindata_id = str(response[1]['_id']) js = { "site": "put_test.com", "login": "put_test_login", "password": "<PASSWORD>", "note": "put_test_note" } response = client.put('/api/LoginData/' + logindata_id, json=encryptAES(js, current_app.server_key_pem), headers={"token": token}) # check response status code assert response.status_code == 201 check = current_app.db.passwordManager.accounts.find_one( { 'login': current_app.client_encryption.encrypt("test1", "AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic", current_app.data_key_id), 'logindata._id': ObjectId(logindata_id) }, { '_id': 0, 'logindata.$': 1 } ) check = check['logindata'][0] # check if login date has been updated assert js.items() <= check.items() def test_delete_logindata(client, auth, app): token = auth.login('test1', '<PASSWORD>') response = client.get('/api/AllSites', headers={"token": token}) with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) logindata_id = str(response[1]['_id']) response = client.delete('/api/LoginData/' + logindata_id, headers={"token": token}) # check response status code assert response.status_code == 200 # check if logindata record has been deleted from db with app.app_context(): assert ( current_app.db.passwordManager.accounts.find_one( { 'login': current_app.client_encryption.encrypt("test1", "AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic", current_app.data_key_id), 'logindata._id': ObjectId(logindata_id) } ) is None ) def test_backup(client, auth, app): token = auth.login('test1', '<PASSWORD>') response = client.get('/api/Backup', headers={"token": token}) # check response status code assert response.status_code == 200 with app.app_context(): response = decryptAES(json_util.loads(response.data), getDecryptor(current_app.rsa_private)) check = current_app.db.passwordManager.accounts.find_one( { 'login': current_app.client_encryption.encrypt("test1", "AEAD_AES_256_CBC_HMAC_SHA_512-Deterministic", current_app.data_key_id) }, { '_id': 0, 'logindata': 1 } ) # check if proper data has been returned assert check['logindata'] == response
StarcoderdataPython
11201120
# !/usr/bin/env python3 # -*- coding:utf-8 -*- # # Author: <NAME> - <EMAIL> # Blog: zhouyichu.com # # Python release: 3.6.0 # # Date: 2020-03-20 10:56:58 # Last modified: 2020-12-28 15:30:23 """ Data structure for probing. """ # import logging from collections import Counter from functools import total_ordering import heapq from typing import List # from multiprocessing import Pool # import numpy as np # import torch # from tqdm import tqdm # from tqdm import trange # from joblib import Parallel, delayed class Cluster: # __slots__ is used here because there will be # so many Cluster object during the probing, I # want to save as much memory as possible. __slots__ = ('indices', 'major_label', '_hash_value', 'children', 'labels') def __init__(self, indices: List[int], labels: List[int]): """Initialize a new cluster with indices Args: - indices: The index of each point. - labels: The label of each point. """ assert len(indices) == len(labels) self.indices = sorted(indices) self.labels = labels self.major_label = Counter(labels).most_common(1)[0][0] self._hash_value = ' '.join([str(i) for i in self.indices]) self._hash_value = hash(self._hash_value) # The children is used to track the path of merging # This can be used to speed up the probing during later steps. self.children = set() @property def purity(self) -> float: n = sum([1 for i in self.labels if i == self.major_label]) return n / len(self.labels) @staticmethod def merge(A: 'Cluster', B: 'Cluster') -> 'Cluster': """Merge two clusters and produce a new cluster. """ assert type(A) == Cluster assert type(B) == Cluster indices = A.indices + B.indices labels = A.labels + B.labels reval = Cluster(indices, labels) reval.children = A.children | B.children # Do not forget A and B themselves. reval.children.add(A) reval.children.add(B) return reval def __hash__(self): return self._hash_value def __eq__(self, other): return self._hash_value == other._hash_value def __repr__(self): n = len(self.indices) idx = ' '.join([str(self.indices[i]) for i in range(n)]) labels = ' '.join([str(self.labels[i]) for i in range(n)]) s = 'Cluster(Indices:{a}, labels:{b}, major_label={c}, purity={d})' s = s.format(a=str(idx), b=labels, c=self.major_label, d=self.purity) return s @total_ordering class ClusterDisPair: """This is a intermediate class which is used to compute the distance between two clusters. This class should not be exposed to the end user. """ __slots__ = ('i', 'j', 'dis', '_hash_value') def __init__(self, i: int, j: int, dis: float): """ Be note, here the index i and index j is not the index of points, instead they are the indices of clusters. Args: i: The index of the cluster. j: The index of the cluster. dis: The distance between these two clusters. """ assert i != j self.i = min(i, j) self.j = max(i, j) self.dis = dis self._hash_value = hash((self.i, self.j, dis)) def __hash__(self): return self._hash_value def __eq__(self, other): return self._hash_value == other._hash_value def __lt__(self, other): return self.dis < other.dis def __le__(self, other): return self.dis <= other.dis def __repr__(self): s = 'ClusterDisPair(i:{a}, j:{b}, dis:{c})' s = s.format(a=str(self.i), b=str(self.j), c=str(self.dis)) return s @total_ordering class ClusterDisList: """ A heap list of pair of clusters. Each list represents all the pair distance of (idx, i), i < idx. Here, idx and i are the indices of clusters. """ __slots__ = ('dis_list', 'idx', '_hash_value') def __init__(self, dis_list: List[ClusterDisPair], idx: int): self.dis_list = dis_list heapq.heapify(self.dis_list) self.idx = idx self._hash_value = hash(idx) def min(self) -> ClusterDisPair: """Return the pair of minimum distance of this list. """ return heapq.heappop(self.dis_list) def deactive(self): self.dis_list = [] def __hash__(self): return self._hash_value def __eq__(self, other): if not self.dis_list and not other.dis_list: return True elif not self.dis_list or not other.dis_list: return False else: return self.dis_list[0] == other.dis_list[0] def __lt__(self, other): if not self.dis_list: return False if not other.dis_list: return True return self.dis_list[0] < other.dis_list[0] def __le__(self, other): if not self.dis_list: return False if not other.dis_list: return True return self.dis_list[0] <= other.dis_list[0] def __repr__(self): if not self.dis_list: s = 'Index:{a} is deactivate' s = s.format(a=str(self.idx)) else: s = 'Index:{a} has minimum value {b}' s = s.format(a=str(self.idx), b=str(self.dis_list[0])) return s if __name__ == '__main__': import random n = 3 array = [] for i in range(n): for j in range(n): array.append(ClusterDisPair(i, j, i+j)) random.shuffle(array) print(array) array.sort() print(array)
StarcoderdataPython
1702271
<reponame>carmenchilson/BirdRoostDetection """Read in csv and create train, test, and validation splits for ML.""" import BirdRoostDetection.LoadSettings as settings import os import pandas def ml_splits_by_date(csv_input_path, csv_output_path, k=5): """Split labeled data for k-fold cross validation. For machine learning, you need a training, validation, and test set. This method will read in a csv from csv_input_path. This data should be formatted like the ml_labels_example file. It will then create k splits of the data. Each time the data is used for training, k - 2 splits will be used for training, 1 split will be used for testing, and 1 split will be used for validating. This method will split the data by date (to avoid cross contamination of the datasets) and then write out a csv used to look up which file belongs to which split. Args: csv_input_path: The input file location. Formated like example_labels.csv, a string. csv_output_path: The output csv location path, a string. The output csv will be saved to this location. k: The size of k for k fold cross validation. """ pd = pandas.read_csv(csv_input_path) basenames = {} file_list = list(pd['AWS_file']) is_roost_list = list(pd['Roost']) fold_images = [[] for split_index in range(k)] index = 0 for i, file_name in enumerate(file_list): basename = file_name[4:12] if basename not in basenames: basenames[basename] = index index = (index + 1) % 5 hash = basenames[basename] for split_index in range(k): if hash == split_index: fold_images[split_index].append([file_name, is_roost_list[i]]) output = [] for split_index in range(k): for file_name in fold_images[split_index]: output.append({ 'split_index': split_index, 'AWS_file': file_name[0], 'Roost': file_name[1]}) output_pd = pandas.DataFrame.from_dict(output) output_pd.to_csv(csv_output_path, index=False) def main(): ml_splits_by_date(csv_input_path=settings.LABEL_CSV, csv_output_path=settings.ML_SPLITS_DATA, k=5) if __name__ == "__main__": os.chdir(settings.WORKING_DIRECTORY) main()
StarcoderdataPython
1679004
from binaryninja.architecture import Architecture from binaryninja.function import RegisterInfo, InstructionInfo, InstructionTextToken from binaryninja.enums import Endianness, InstructionTextTokenType, BranchType, SegmentFlag, SectionSemantics from binaryninja.log import log_info from .view import Chip8View from .disasm import Disassembler class Chip8(Architecture): name = 'CHIP-8' endianness = Endianness.BigEndian address_size = 2 default_int_size = 2 instr_alignment = 2 max_instr_length = 2 opcode_display_length = 2 regs = { 'PC': RegisterInfo('PC', 2), 'SP': RegisterInfo('SP', 1), 'I': RegisterInfo('I', 2), 'DT': RegisterInfo('DT', 1), 'ST': RegisterInfo('ST', 1), 'V0': RegisterInfo('V0', 1), 'V1': RegisterInfo('V1', 1), 'V2': RegisterInfo('V2', 1), 'V3': RegisterInfo('V3', 1), 'V4': RegisterInfo('V4', 1), 'V5': RegisterInfo('V5', 1), 'V6': RegisterInfo('V6', 1), 'V7': RegisterInfo('V7', 1), 'V8': RegisterInfo('V8', 1), 'V9': RegisterInfo('V9', 1), 'Va': RegisterInfo('Va', 1), 'Vb': RegisterInfo('Vb', 1), 'Vc': RegisterInfo('Vc', 1), 'Vd': RegisterInfo('Vd', 1), 'Ve': RegisterInfo('Ve', 1), 'Vf': RegisterInfo('Vf', 1) } stack_pointer = 'SP' def __init__(self): super().__init__() self.dis = Disassembler() def get_instruction_info(self, data, addr): """ Establishes instruction length and branch info """ if len(data) > 2: data = data[:2] result = InstructionInfo() result.length = 2 vars = self.dis._vars(data) baddr = vars['addr'] binfo = self.dis.get_branch_info(data) if binfo == BranchType.UnconditionalBranch or binfo == BranchType.CallDestination: result.add_branch(binfo, baddr) elif binfo == BranchType.FunctionReturn or binfo == BranchType.IndirectBranch: result.add_branch(binfo) elif binfo == BranchType.TrueBranch: result.add_branch(BranchType.TrueBranch, addr + 4) result.add_branch(BranchType.FalseBranch, addr + 2) elif binfo == BranchType.FalseBranch: result.add_branch(BranchType.TrueBranch, addr + 4) result.add_branch(BranchType.FalseBranch, addr + 2) return result def get_instruction_text(self, data, addr): """ Display text for tokanized instruction """ if len(data) > 2: data = data[:2] tokens = self.dis.disasm(data, addr) if not tokens: tokens = [InstructionTextToken(InstructionTextTokenType.InstructionToken, '_emit'), InstructionTextToken(InstructionTextTokenType.TextToken, ' '), InstructionTextToken(InstructionTextTokenType.IntegerToken, hex(data[0]), data[0]), InstructionTextToken(InstructionTextTokenType.OperandSeparatorToken, ', '), InstructionTextToken(InstructionTextTokenType.IntegerToken, hex(data[1]), data[1])] return tokens, 2 def get_instruction_low_level_il(self, data, addr, il): """ TODO: Implement a lifter here """ return None
StarcoderdataPython
1975308
# -*- coding: utf-8 -*- # snapshottest: v1 - https://goo.gl/zC4yUc from __future__ import unicode_literals from snapshottest import Snapshot snapshots = Snapshot() snapshots['test_schema[updateMap-all-options] 1'] = { 'data': { 'updateMap': { 'map': { 'mapId': '1001', 'name': 'new-name' } } } } snapshots['test_schema[updateMap-all-options] 2'] = { 'data': { 'map': { 'beams': { 'edges': [ ] }, 'datePosted': '2020-02-18', 'mapFilePaths': { 'edges': [ { 'node': { 'path': 'nersc:/go/to/my/maps' } } ] }, 'mapper': 'pwg-xyz', 'name': 'new-name', 'note': '- Note 123' } } } snapshots['test_schema[updateMap-selective-options] 1'] = { 'data': { 'updateMap': { 'map': { 'mapId': '1001', 'name': 'new-name' } } } } snapshots['test_schema[updateMap-selective-options] 2'] = { 'data': { 'map': { 'beams': { 'edges': [ ] }, 'datePosted': '2019-02-13', 'mapFilePaths': { 'edges': [ { 'node': { 'path': 'nersc:/go/to/my/maps' } } ] }, 'mapper': 'pwg-xyz', 'name': 'new-name', 'note': '''- This is a dummy test with a lat map - This should not depend on any beam''' } } }
StarcoderdataPython
13917
#!/usr/bin/env python # Copyright 2018-present Facebook, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from __future__ import absolute_import, division, print_function, unicode_literals import os import shutil import subprocess # The location of the generate grammar kit script DIR = os.path.dirname(__file__) # The location of the plugin directory PLUGIN_PATH = os.path.abspath(os.path.join(DIR, "..")) # The location of the grammar-kit directory GRAMMAR_KIT = os.path.abspath( os.path.join(DIR, "../../../third-party/java/grammar-kit/") ) OUT_DIR = os.path.join(PLUGIN_PATH, "gen") FLEX_OUT_DIR = os.path.join(OUT_DIR, "com/facebook/buck/intellij/ideabuck/lang") GRAMMAR_KIT_JAR = os.path.join(GRAMMAR_KIT, "grammar-kit.jar") GRAMMAR_KIT_JFLEX_JAR = os.path.join(GRAMMAR_KIT, "JFlex.jar") JFLEX_SKELETON = os.path.join(PLUGIN_PATH, "resources/idea-flex.skeleton") FLEX_FILE = os.path.join( PLUGIN_PATH, "src/com/facebook/buck/intellij/ideabuck/lang/Buck.flex" ) BNF_FILE = os.path.join( PLUGIN_PATH, "src/com/facebook/buck/intellij/ideabuck/lang/Buck.bnf" ) def subprocess_call(cmd): print("Running: %s" % (" ".join(cmd))) subprocess.call(cmd) shutil.rmtree(OUT_DIR, ignore_errors=True) subprocess_call(["java", "-jar", GRAMMAR_KIT_JAR, OUT_DIR, BNF_FILE]) subprocess_call( [ "java", "-jar", GRAMMAR_KIT_JFLEX_JAR, "-sliceandcharat", "-skel", JFLEX_SKELETON, "-d", FLEX_OUT_DIR, FLEX_FILE, ] )
StarcoderdataPython
9722580
<gh_stars>0 from product_details import product_details def current_firefox_regexp(): current_firefox = int(product_details.firefox_versions['LATEST_FIREFOX_VERSION'].split('.')[0]) versions = ['%s' % i for i in range(current_firefox, current_firefox + 4)] return '|'.join(versions)
StarcoderdataPython
388815
""" ddtrace.vendor ============== Install vendored dependencies under a different top level package to avoid importing `ddtrace/__init__.py` whenever a dependency is imported. Doing this allows us to have a little more control over import order. Dependencies ============ six --- Website: https://six.readthedocs.io/ Source: https://github.com/benjaminp/six Version: 1.11.0 License: MIT Notes: `six/__init__.py` is just the source code's `six.py` `curl https://raw.githubusercontent.com/benjaminp/six/1.11.0/six.py > ddtrace/vendor/six/__init__.py` wrapt ----- Website: https://wrapt.readthedocs.io/en/latest/ Source: https://github.com/GrahamDumpleton/wrapt/ Version: 1.11.1 License: BSD 2-Clause "Simplified" License Notes: `wrapt/__init__.py` was updated to include a copy of `wrapt`'s license: https://github.com/GrahamDumpleton/wrapt/blob/1.11.1/LICENSE `setup.py` will attempt to build the `wrapt/_wrappers.c` C module dogstatsd --------- Website: https://datadogpy.readthedocs.io/en/latest/ Source: https://github.com/DataDog/datadogpy Version: 0.28.0 License: Copyright (c) 2015, Datadog <<EMAIL>> Notes: `dogstatsd/__init__.py` was updated to include a copy of the `datadogpy` license: https://github.com/DataDog/datadogpy/blob/master/LICENSE Only `datadog.dogstatsd` module was vendored to avoid unnecessary dependencies `datadog/util/compat.py` was copied to `dogstatsd/compat.py` monotonic --------- Website: https://pypi.org/project/monotonic/ Source: https://github.com/atdt/monotonic Version: 1.5 License: Apache License 2.0 Notes: The source `monotonic.py` was added as `monotonic/__init__.py` No other changes were made debtcollector ------------- Website: https://docs.openstack.org/debtcollector/latest/index.html Source: https://github.com/openstack/debtcollector Version: 1.22.0 License: Apache License 2.0 Notes: Removed dependency on `pbr` and manually set `__version__` psutil ------ Website: https://github.com/giampaolo/psutil Source: https://github.com/giampaolo/psutil Version: 5.6.7 License: BSD 3 attrs ----- Website: http://www.attrs.org/ Source: https://github.com/python-attrs/attrs Version: 19.3.0 License: MIT """ # Initialize `ddtrace.vendor.datadog.base.log` logger with our custom rate limited logger # DEV: This helps ensure if there are connection issues we do not spam their logs # DEV: Overwrite `base.log` instead of `get_logger('datadog.dogstatsd')` so we do # not conflict with any non-vendored datadog.dogstatsd logger from ..internal.logger import get_logger from .dogstatsd import base base.log = get_logger('ddtrace.vendor.dogstatsd')
StarcoderdataPython
124760
<filename>Trolls/migrations/0001_initial.py # -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2017-12-13 07:33 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='UserInfo', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Name', models.CharField(max_length=250)), ('UserId', models.CharField(max_length=250)), ('Link', models.CharField(max_length=1000)), ('UserPhoto', models.CharField(max_length=1000)), ], ), migrations.CreateModel( name='UserLocation', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('Location', models.CharField(max_length=500)), ], ), migrations.AddField( model_name='userinfo', name='location', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='Trolls.UserLocation'), ), ]
StarcoderdataPython
8095979
from django.shortcuts import render from rest_framework import viewsets, status, generics , permissions, authentication # Create your views here. from rest_framework.authentication import TokenAuthentication from rest_framework.decorators import api_view from rest_framework.generics import ListAPIView from rest_framework.pagination import PageNumberPagination from rest_framework.permissions import IsAuthenticated, AllowAny from rest_framework.response import Response from rest_framework.views import APIView from rest_framework_simplejwt.tokens import RefreshToken from .models import NewUser from .serializers import CustomUserSerializer class UserGCList(generics.ListCreateAPIView): queryset = NewUser.objects.all() serializer_class = CustomUserSerializer authentication_classes = [ authentication.TokenAuthentication, authentication.SessionAuthentication] permission_classes = [permissions.IsAuthenticated] pagination_class = PageNumberPagination class UserGCDetail(generics.RetrieveUpdateDestroyAPIView): queryset = NewUser.objects.all() serializer_class = CustomUserSerializer class UserCreate(APIView): permission_classes = [AllowAny] def post(self, request, format='json'): serializer = CustomUserSerializer(data=request.data) if serializer.is_valid(): user = serializer.save() if user: json = serializer.data return Response(json, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) class BlacklistTokenUpdateView(APIView): permission_classes = [AllowAny] authentication_classes = () def post(self, request): try: refresh_token = request.data["refresh_token"] token = RefreshToken(refresh_token) token.blacklist() return Response(status=status.HTTP_205_RESET_CONTENT) except Exception as e: return Response(status=status.HTTP_400_BAD_REQUEST) #//////////////////////////// class UserViewset(viewsets.ViewSet): def list(self,request): users = NewUser.objects.all() serializer = CustomUserSerializer(users, many=True) return Response(serializer.data) @api_view(['GET','POST']) def apifunction(request): """ List all code snippets, or create a new snippet. """ if request.method == 'GET': users = NewUser.objects.all() serializer = CustomUserSerializer(users, many=True) items = { "items": serializer.data } return Response(items) elif request.method == 'POST': serializer = CustomUserSerializer(data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data, status=status.HTTP_201_CREATED) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) @api_view(['GET', 'PUT', 'DELETE']) def user_detail(request, pk): """ Retrieve, update or delete a code snippet. """ try: user = NewUser.objects.get(pk=pk) except NewUser.DoesNotExist: return Response(status=status.HTTP_404_NOT_FOUND) if request.method == 'GET': serializer = CustomUserSerializer(user) return Response(serializer.data) elif request.method == 'PUT': serializer = CustomUserSerializer(user, data=request.data) if serializer.is_valid(): serializer.save() return Response(serializer.data) return Response(serializer.errors, status=status.HTTP_400_BAD_REQUEST) elif request.method == 'DELETE': user.delete() return Response(status=status.HTTP_204_NO_CONTENT)
StarcoderdataPython
8125232
from dataclasses import dataclass, field from functools import partial from operator import le from typing import Optional from more_properties import cached_property from toposort import toposort __all__ = ["RefinementDict", "AmbiguousKeyError"] class AmbiguousKeyError(KeyError): pass @dataclass class RefinementDict: """ A dictionary where the keys are themselves collections Indexing an element of these collections returns the value associated with the most precise collection containing that element. A KeyError is raised if no such collection is found. """ lookup: dict = field(default_factory=dict) fallback: "Optional[RefinementDict]" = None is_subset: callable = le is_element: callable = lambda elem, st: elem in st @cached_property def dependencies(self): return { st: { subst for subst in self.lookup if subst != st and self.is_subset(subst, st) } for st in self.lookup } @dependencies.deleter def dependencies(self): del self.dependency_orders @partial(cached_property, fdel=lambda self: None) def dependency_orders(self): return list(toposort(self.dependencies)) def __getitem__(self, key): for order in self.dependency_orders: ancestors = {st for st in order if self.is_element(key, st)} if len(ancestors) > 1: raise AmbiguousKeyError(f"{key!r} in all of {ancestors!r}") if ancestors: return self.lookup[ancestors.pop()] if self.fallback is not None: return self.fallback[key] raise KeyError(f"{key!r}") def __setitem__(self, key, value): del self.dependencies self.lookup[key] = value def setdefault(self, key, value): if self.fallback is None: self.fallback = RefinementDict( is_subset=self.is_subset, is_element=self.is_element ) self.fallback[key] = value
StarcoderdataPython
12845383
texts = { "browse":"🗂️ Browse categories", "orders":"📥 My orders", "cart":"🛒 My cart", "settings":"⚙ Settings", "contact":"📞 Contact us", "home":"🏠 Home", "contact1":"{Store_name} - {store_phone}", }
StarcoderdataPython
364924
# coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from .. import _utilities from . import outputs from ._enums import * from ._inputs import * __all__ = ['DomainConfigurationArgs', 'DomainConfiguration'] @pulumi.input_type class DomainConfigurationArgs: def __init__(__self__, *, authorizer_config: Optional[pulumi.Input['DomainConfigurationAuthorizerConfigArgs']] = None, domain_configuration_name: Optional[pulumi.Input[str]] = None, domain_configuration_status: Optional[pulumi.Input['DomainConfigurationStatus']] = None, domain_name: Optional[pulumi.Input[str]] = None, server_certificate_arns: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_type: Optional[pulumi.Input['DomainConfigurationServiceType']] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input['DomainConfigurationTagArgs']]]] = None, validation_certificate_arn: Optional[pulumi.Input[str]] = None): """ The set of arguments for constructing a DomainConfiguration resource. """ if authorizer_config is not None: pulumi.set(__self__, "authorizer_config", authorizer_config) if domain_configuration_name is not None: pulumi.set(__self__, "domain_configuration_name", domain_configuration_name) if domain_configuration_status is not None: pulumi.set(__self__, "domain_configuration_status", domain_configuration_status) if domain_name is not None: pulumi.set(__self__, "domain_name", domain_name) if server_certificate_arns is not None: pulumi.set(__self__, "server_certificate_arns", server_certificate_arns) if service_type is not None: pulumi.set(__self__, "service_type", service_type) if tags is not None: pulumi.set(__self__, "tags", tags) if validation_certificate_arn is not None: pulumi.set(__self__, "validation_certificate_arn", validation_certificate_arn) @property @pulumi.getter(name="authorizerConfig") def authorizer_config(self) -> Optional[pulumi.Input['DomainConfigurationAuthorizerConfigArgs']]: return pulumi.get(self, "authorizer_config") @authorizer_config.setter def authorizer_config(self, value: Optional[pulumi.Input['DomainConfigurationAuthorizerConfigArgs']]): pulumi.set(self, "authorizer_config", value) @property @pulumi.getter(name="domainConfigurationName") def domain_configuration_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "domain_configuration_name") @domain_configuration_name.setter def domain_configuration_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "domain_configuration_name", value) @property @pulumi.getter(name="domainConfigurationStatus") def domain_configuration_status(self) -> Optional[pulumi.Input['DomainConfigurationStatus']]: return pulumi.get(self, "domain_configuration_status") @domain_configuration_status.setter def domain_configuration_status(self, value: Optional[pulumi.Input['DomainConfigurationStatus']]): pulumi.set(self, "domain_configuration_status", value) @property @pulumi.getter(name="domainName") def domain_name(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "domain_name") @domain_name.setter def domain_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "domain_name", value) @property @pulumi.getter(name="serverCertificateArns") def server_certificate_arns(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "server_certificate_arns") @server_certificate_arns.setter def server_certificate_arns(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "server_certificate_arns", value) @property @pulumi.getter(name="serviceType") def service_type(self) -> Optional[pulumi.Input['DomainConfigurationServiceType']]: return pulumi.get(self, "service_type") @service_type.setter def service_type(self, value: Optional[pulumi.Input['DomainConfigurationServiceType']]): pulumi.set(self, "service_type", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['DomainConfigurationTagArgs']]]]: return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['DomainConfigurationTagArgs']]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="validationCertificateArn") def validation_certificate_arn(self) -> Optional[pulumi.Input[str]]: return pulumi.get(self, "validation_certificate_arn") @validation_certificate_arn.setter def validation_certificate_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "validation_certificate_arn", value) class DomainConfiguration(pulumi.CustomResource): @overload def __init__(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, authorizer_config: Optional[pulumi.Input[pulumi.InputType['DomainConfigurationAuthorizerConfigArgs']]] = None, domain_configuration_name: Optional[pulumi.Input[str]] = None, domain_configuration_status: Optional[pulumi.Input['DomainConfigurationStatus']] = None, domain_name: Optional[pulumi.Input[str]] = None, server_certificate_arns: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_type: Optional[pulumi.Input['DomainConfigurationServiceType']] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DomainConfigurationTagArgs']]]]] = None, validation_certificate_arn: Optional[pulumi.Input[str]] = None, __props__=None): """ Create and manage a Domain Configuration :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. """ ... @overload def __init__(__self__, resource_name: str, args: Optional[DomainConfigurationArgs] = None, opts: Optional[pulumi.ResourceOptions] = None): """ Create and manage a Domain Configuration :param str resource_name: The name of the resource. :param DomainConfigurationArgs args: The arguments to use to populate this resource's properties. :param pulumi.ResourceOptions opts: Options for the resource. """ ... def __init__(__self__, resource_name: str, *args, **kwargs): resource_args, opts = _utilities.get_resource_args_opts(DomainConfigurationArgs, pulumi.ResourceOptions, *args, **kwargs) if resource_args is not None: __self__._internal_init(resource_name, opts, **resource_args.__dict__) else: __self__._internal_init(resource_name, *args, **kwargs) def _internal_init(__self__, resource_name: str, opts: Optional[pulumi.ResourceOptions] = None, authorizer_config: Optional[pulumi.Input[pulumi.InputType['DomainConfigurationAuthorizerConfigArgs']]] = None, domain_configuration_name: Optional[pulumi.Input[str]] = None, domain_configuration_status: Optional[pulumi.Input['DomainConfigurationStatus']] = None, domain_name: Optional[pulumi.Input[str]] = None, server_certificate_arns: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, service_type: Optional[pulumi.Input['DomainConfigurationServiceType']] = None, tags: Optional[pulumi.Input[Sequence[pulumi.Input[pulumi.InputType['DomainConfigurationTagArgs']]]]] = None, validation_certificate_arn: Optional[pulumi.Input[str]] = None, __props__=None): if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = _utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = DomainConfigurationArgs.__new__(DomainConfigurationArgs) __props__.__dict__["authorizer_config"] = authorizer_config __props__.__dict__["domain_configuration_name"] = domain_configuration_name __props__.__dict__["domain_configuration_status"] = domain_configuration_status __props__.__dict__["domain_name"] = domain_name __props__.__dict__["server_certificate_arns"] = server_certificate_arns __props__.__dict__["service_type"] = service_type __props__.__dict__["tags"] = tags __props__.__dict__["validation_certificate_arn"] = validation_certificate_arn __props__.__dict__["arn"] = None __props__.__dict__["domain_type"] = None __props__.__dict__["server_certificates"] = None super(DomainConfiguration, __self__).__init__( 'aws-native:iot:DomainConfiguration', resource_name, __props__, opts) @staticmethod def get(resource_name: str, id: pulumi.Input[str], opts: Optional[pulumi.ResourceOptions] = None) -> 'DomainConfiguration': """ Get an existing DomainConfiguration resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param pulumi.Input[str] id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = DomainConfigurationArgs.__new__(DomainConfigurationArgs) __props__.__dict__["arn"] = None __props__.__dict__["authorizer_config"] = None __props__.__dict__["domain_configuration_name"] = None __props__.__dict__["domain_configuration_status"] = None __props__.__dict__["domain_name"] = None __props__.__dict__["domain_type"] = None __props__.__dict__["server_certificate_arns"] = None __props__.__dict__["server_certificates"] = None __props__.__dict__["service_type"] = None __props__.__dict__["tags"] = None __props__.__dict__["validation_certificate_arn"] = None return DomainConfiguration(resource_name, opts=opts, __props__=__props__) @property @pulumi.getter def arn(self) -> pulumi.Output[str]: return pulumi.get(self, "arn") @property @pulumi.getter(name="authorizerConfig") def authorizer_config(self) -> pulumi.Output[Optional['outputs.DomainConfigurationAuthorizerConfig']]: return pulumi.get(self, "authorizer_config") @property @pulumi.getter(name="domainConfigurationName") def domain_configuration_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "domain_configuration_name") @property @pulumi.getter(name="domainConfigurationStatus") def domain_configuration_status(self) -> pulumi.Output[Optional['DomainConfigurationStatus']]: return pulumi.get(self, "domain_configuration_status") @property @pulumi.getter(name="domainName") def domain_name(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "domain_name") @property @pulumi.getter(name="domainType") def domain_type(self) -> pulumi.Output['DomainConfigurationDomainType']: return pulumi.get(self, "domain_type") @property @pulumi.getter(name="serverCertificateArns") def server_certificate_arns(self) -> pulumi.Output[Optional[Sequence[str]]]: return pulumi.get(self, "server_certificate_arns") @property @pulumi.getter(name="serverCertificates") def server_certificates(self) -> pulumi.Output[Sequence['outputs.DomainConfigurationServerCertificateSummary']]: return pulumi.get(self, "server_certificates") @property @pulumi.getter(name="serviceType") def service_type(self) -> pulumi.Output[Optional['DomainConfigurationServiceType']]: return pulumi.get(self, "service_type") @property @pulumi.getter def tags(self) -> pulumi.Output[Optional[Sequence['outputs.DomainConfigurationTag']]]: return pulumi.get(self, "tags") @property @pulumi.getter(name="validationCertificateArn") def validation_certificate_arn(self) -> pulumi.Output[Optional[str]]: return pulumi.get(self, "validation_certificate_arn")
StarcoderdataPython
5027322
<gh_stars>1-10 """Functions to Plot RoboJam Performances """ import matplotlib.pyplot as plt from robojam import divide_performance_into_swipes input_colour = 'darkblue' gen_colour = 'firebrick' def plot_2D(perf_df, name="foo", saving=False, figsize=(8, 8)): """Plot a 2D representation of a performance 2D""" swipes = divide_performance_into_swipes(perf_df) plt.figure(figsize=figsize) for swipe in swipes: p = plt.plot(swipe.x, swipe.y, 'o-') plt.setp(p, color=gen_colour, linewidth=5.0) plt.ylim(1.0,0) plt.xlim(0,1.0) plt.xticks([]) plt.yticks([]) if saving: plt.savefig(name+".png", bbox_inches='tight') plt.close() else: plt.show() def plot_double_2d(perf1, perf2, name="foo", saving=False, figsize=(8, 8)): """Plot two performances in 2D""" plt.figure(figsize=figsize) swipes = divide_performance_into_swipes(perf1) for swipe in swipes: p = plt.plot(swipe.x, swipe.y, 'o-') plt.setp(p, color=input_colour, linewidth=5.0) swipes = divide_performance_into_swipes(perf2) for swipe in swipes: p = plt.plot(swipe.x, swipe.y, 'o-') plt.setp(p, color=gen_colour, linewidth=5.0) plt.ylim(1.0,0) plt.xlim(0,1.0) plt.xticks([]) plt.yticks([]) if saving: plt.savefig(name+".png", bbox_inches='tight') plt.close() else: plt.show()
StarcoderdataPython
98642
from typing import Final from django.db import models from django.utils.translation import gettext from django.utils.translation import gettext_lazy as _ class Choice(models.Model): title = models.CharField(max_length=4096) def __str__(self): return self.title class Meta: verbose_name = _("Choice") verbose_name_plural = _("Choices") class Question(models.Model): TYPE_CHOICES: Final[tuple] = ( ('text', gettext('Text')), ('one', gettext('One option')), ('many', gettext('Many options')), ) title = models.CharField(verbose_name=_("Title"), max_length=4096) question_type = models.CharField( verbose_name=_("Type"), max_length=4, choices=TYPE_CHOICES ) choices = models.ManyToManyField( Choice, verbose_name=_("Choices"), related_name='questions' ) is_active = models.BooleanField( verbose_name=_("Question enabled"), default=True ) def __str__(self): return self.title def delete(self, *args, **kwargs): self.is_active = False self.save() class Meta: verbose_name = _("Question") verbose_name_plural = _("Questions") unique_together = ['title', 'question_type'] class Poll(models.Model): title = models.CharField(verbose_name=_("Title"), max_length=120) started_at = models.DateTimeField(verbose_name=_("Start time")) finish_at = models.DateTimeField(verbose_name=_("Finish time")) description = models.TextField( verbose_name=_("Description"), blank=True ) is_active = models.BooleanField( verbose_name=_("Poll enabled"), default=True, db_index=True ) questions = models.ManyToManyField( Question, verbose_name=_("Questions"), related_name='polls' ) def __str__(self): return self.title def delete(self, *args, **kwargs): self.is_active = False self.save() class Meta: verbose_name = _("Poll") verbose_name_plural = _("Polls") class Answer(models.Model): user = models.IntegerField() question = models.ForeignKey( Question, verbose_name=_("Question"), related_name='answers', on_delete=models.CASCADE, ) choice = models.ForeignKey( Choice, verbose_name=_("Choice"), related_name='answers_one', on_delete=models.CASCADE, blank=True, null=True, ) choices = models.ManyToManyField( Choice, verbose_name=_("Choices"), related_name='answers_many', blank=True, ) choice_text = models.TextField( verbose_name=_("Choice text"), blank=True, null=True, ) poll = models.ForeignKey( Poll, verbose_name=_("Poll"), related_name='answers', on_delete=models.CASCADE ) def __str__(self): return self.choice.title class Meta: verbose_name = _("Answer") verbose_name_plural = _("Answers") unique_together = ('user', 'question', 'poll',)
StarcoderdataPython
9679407
from flask import Flask from flask_sqlalchemy import SQLAlchemy import pymysql pymysql.install_as_MySQLdb() app = Flask(__name__) #import os #print os.environ.keys() #print os.environ.get('FLASKR_SETTINGS') #加载配置文件内容 app.config.from_object('myWeb.setting') #模块下的setting文件名,不用加py后缀 app.config.from_envvar('FLASKR_SETTINGS') #环境变量,指向配置文件setting的路径 #创建数据库对象 db = SQLAlchemy(app) #只有在app对象之后声明,用于导入view模块 from myWeb.controller import blog_message
StarcoderdataPython
3576637
<reponame>AR0EN/film-exif<gh_stars>0 # References # [Exchangeable Image File Format] | (http://www.cipa.jp/std/documents/e/DC-008-2012_E.pdf) # [Piexif] | (https://github.com/hMatoba/Piexif) # Import import os import sys import copy import piexif as pxf from PIL import Image # Constants TAG = 'Film Exif Utility' IPHOTOS_DIR = 'input' # Path to input photos' directory OPHOTOS_DIR = 'output' # Path to output directory IPHOTO_EXTS = ['.jpg', '.JPG', '.png', '.PNG'] OPHOTO_EXT = '.jpg' AUTHOR = u'<NAME>' CAMERA_MANUFACTURER = u'Kyocera Japan' CAMERA_MODEL = u'Contax S2 Titanium 60 Years Limited' CAMERA_SERIAL = u'003643' LENS_MODEL = u'Carl Zeiss Planar 1,4/50 T* (C/Y)' LENS_SERIAL = u'9552246' LENS_FOCAL_LENGTH = 50 LENS_FOCAL_LENGTH_35MM = 50 FILM = u'Kodak Ultramax 400' ImageIFDCustomized = { pxf.ImageIFD.Make:u'Kyocera Japan', pxf.ImageIFD.Model:u'Contax S2 Titanium 60 Years Limited', pxf.ImageIFD.ImageDescription:u'Kodak Ultramax 400', } ExifIFDCustomized = { pxf.ExifIFD.BodySerialNumber:u'003643', pxf.ExifIFD.CameraOwnerName:u'<NAME>', pxf.ExifIFD.LensMake:u'Kyocera Japan', pxf.ExifIFD.LensModel:u'Carl Zeiss Planar 1,4/50 T* (C/Y)', pxf.ExifIFD.LensSerialNumber:u'9552246', pxf.ExifIFD.FocalLength:[5000, 100], pxf.ExifIFD.FocalLengthIn35mmFilm:50, } ExifCustomized = [] ExifCustomized.append(['0th', ImageIFDCustomized]) ExifCustomized.append(['Exif', ExifIFDCustomized]) # Local functions def log(msg, tag = None, f = sys.stdout): if tag is not None: text = '[{0:s}] {1:s}\n'.format(tag, msg) else: text = '{0:s}\n'.format(msg) f.write(text) def logErr(msg, tag = None): log(msg, f = sys.stderr) def getFileExtension(filePath): ext = None if filePath is not None: SEPARATOR = '.' fileName = os.path.basename(filePath) _ext = '{0:s}{1:s}'.format('.', fileName.split(SEPARATOR)[-1]) if(_ext in filePath): ext = _ext else: ext = None else: ext = None return ext def dumpExif(photo): exif = pxf.load(photo) for ifd in ("0th", "Exif", "GPS", "1st"): for tag in exif[ifd]: print(ifd, pxf.TAGS[ifd][tag]["name"], exif[ifd][tag]) def updateExif(iPhotoPath): # Load photo and original Exif imgData = Image.open(iPhotoPath) exifOrg = pxf.load(imgData.info["exif"]) # Clone Exif exifNew = copy.deepcopy(exifOrg) # Update Exif for ifd in ExifCustomized: for etag in ifd[1]: exifNew[ifd[0]][etag] = ifd[1][etag] photoName = os.path.basename(iPhotoPath) oPhotoPath = '{0:s}/{1:s}'.format(OPHOTOS_DIR, photoName) imgData.save(oPhotoPath, exif=pxf.dump(exifNew)) def main(): # Scan through all images for f in os.listdir(IPHOTOS_DIR): fullPath = '{0:s}/{1:s}'.format(IPHOTOS_DIR, f) log('{0:s}'.format(fullPath), TAG) ext = getFileExtension(f) if ((ext is not None) and (ext in IPHOTO_EXTS)): updateExif(fullPath) if __name__ == "__main__": main()
StarcoderdataPython
4921523
# Generated by Django 3.2.1 on 2021-05-05 08:39 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('hood', '0005_auto_20210505_0757'), ] operations = [ migrations.AddField( model_name='profile', name='neighborhood', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='hood.neighbourhood'), ), ]
StarcoderdataPython
9655334
<gh_stars>1-10 #!/usr/bin/env python """ Usage: python num_parameters.py <model_file>.pkl Prints the number of parameters in a saved model (total number of scalar elements in all the arrays parameterizing the model). """ __author__ = "<NAME>" import sys from pylearn2.utils import serial def num_parameters(model): """ .. todo:: WRITEME """ params = model.get_params() return sum(map(lambda x: x.get_value().size, params)) if __name__ == '__main__': _, model_path = sys.argv model = serial.load(model_path) print num_parameters(model)
StarcoderdataPython
4909934
"""Fix the name of modules This module is useful when you want to rename many of the modules in your project. That can happen specially when you want to change their naming style. For instance:: fixer = FixModuleNames(project) changes = fixer.get_changes(fixer=str.lower) project.do(changes) Here it renames all modules and packages to use lower-cased chars. You can tell it to use any other style by using the ``fixer`` argument. """ from rope.base import taskhandle from rope.contrib import changestack from rope.refactor import rename class FixModuleNames(object): def __init__(self, project): self.project = project def get_changes(self, fixer=str.lower, task_handle=taskhandle.NullTaskHandle()): """Fix module names `fixer` is a function that takes and returns a `str`. Given the name of a module, it should return the fixed name. """ stack = changestack.ChangeStack(self.project, "Fixing module names") jobset = task_handle.create_jobset( "Fixing module names", self._count_fixes(fixer) + 1 ) try: while True: for resource in self._tobe_fixed(fixer): jobset.started_job(resource.path) renamer = rename.Rename(self.project, resource) changes = renamer.get_changes(fixer(self._name(resource))) stack.push(changes) jobset.finished_job() break else: break finally: jobset.started_job("Reverting to original state") stack.pop_all() jobset.finished_job() return stack.merged() def _count_fixes(self, fixer): return len(list(self._tobe_fixed(fixer))) def _tobe_fixed(self, fixer): for resource in self.project.get_python_files(): modname = self._name(resource) if modname != fixer(modname): yield resource def _name(self, resource): modname = resource.name.rsplit(".", 1)[0] if modname == "__init__": modname = resource.parent.name return modname
StarcoderdataPython
321589
<reponame>ask/metasyntactic<filename>metasyntactic/themes/muses.py # -*- coding: utf-8 -*- ''' ########################## Acme::MetaSyntactic::muses ########################## **** NAME **** Acme::MetaSyntactic::muses - Greek Muses *********** DESCRIPTION *********** The nine muses from Greek mythology. ************ CONTRIBUTORS ************ Abigail, <NAME> (BooK) ******* CHANGES ******* - \* 2012-05-21 - v1.001 Made multilingual. Added translations for \ *de*\ , \ *en*\ , \ *eo*\ , \ *es*\ , \ *fr*\ , \ *it*\ , \ *la*\ (the default), \ *nl*\ , \ *pl*\ , \ *pt*\ . Published in Acme-MetaSyntactic-Themes version 1.002. - \* 2012-05-14 - v1.000 Introduced in Acme-MetaSyntactic-Themes version 1.001. - \* 2005-10-24 Submitted by Abigail. ******** SEE ALSO ******** `Acme::MetaSyntactic <http://search.cpan.org/search?query=Acme%3a%3aMetaSyntactic&mode=module>`_, `Acme::MetaSyntactic::List <http://search.cpan.org/search?query=Acme%3a%3aMetaSyntactic%3a%3aList&mode=module>`_. ''' name = 'muses' DATA = '''\ # default la # names de Kalliope Klio Erato Euterpe Melpomene Polyhymnia Terpsichore Thalia Urania # names en Calliope Clio Erato Euterpe Melpomene Polyhymnia Terpsichore Thalia Urania # names eo Kaliopo Klio Erato Euterpo Melpomeno Polimnio Terpsihoro Talio Uranio # names es Caliope <NAME> Euterpe Melpomene Polimnia Terpsicore Talia Urania # names fr <NAME> Euterpe Melpomene Polymnie Terpsichore Thalie Uranie # names it <NAME> Euterpe Melpomene Polimnia Tersicore Talia Urania # names la <NAME> Euterpe Melpomene Polyhymnia Terpsichore Thalia Urania # names nl Kal<NAME> Euterpe Melpomene Polyhymnia Terpsichore Thaleia Urania # names pl <NAME> Euterpe Melpomene Polihymnia Terpsychora Talia Urania # names pt Caliope <NAME>uterpe Melpomene Polimnia Terpsicore Talia Urania\ ''' from metasyntactic.base import parse_data from random import choice, shuffle from six import iteritems data = parse_data(DATA) def default(): try: if 'default' in data: return data['default'][0] except (KeyError, IndexError): pass return 'en' def all(): acc = set() for category, names in iteritems(data['names']): if names: acc |= names return acc def names(category=None): if not category: category = default() if category == ':all': return list(all()) category = category.replace('/', ' ') return list(data['names'][category]) def random(n=1, category=None): got = names(category) if got: shuffle(got) if n == 1: return choice(got) return got[:n] def categories(): return set(data['names'])
StarcoderdataPython
11372456
from django.apps import AppConfig class StockInquiryConfig(AppConfig): name = 'stock_inquiry'
StarcoderdataPython
6497291
''' Desenvolva um que pergunta a distância de uma viagem em KM. Calcule o preço da passagem. Cobrando R$ 0,50 por KM para viagens de até 200km e R$ 0,45 para viagens mais longas. ''' distancia = float(input("Digite a distância que você tem que percorrer: ")) precoCurto = 0.50 precoLongo = 0.45 if distancia <= 200: print("Você vai percorrer {} km e vai ter que pagar R$ {}".format(distancia, precoCurto * distancia)) elif distancia >200: print("Você vai percorrer {} km longo caminho e vai pagar R$ {} de passagem.".format(distancia, precoLongo * distancia))
StarcoderdataPython
12848923
<reponame>veqtor/veqtor_keras import tensorflow as tf from tensorflow.keras.utils import custom_object_scope from tensorflow.python.keras.testing_utils import layer_test from veqtor_keras.layers.time_delay_layers import TimeDelayLayer1D, DepthGroupwiseTimeDelayLayer1D, \ DepthGroupwiseTimeDelayLayerFake2D, TimeDelayLayerFake2D class TimeDelayLayer1DTest(tf.test.TestCase): def test_simple(self): with custom_object_scope({'TimeDelayLayer1D': TimeDelayLayer1D}): layer_test( TimeDelayLayer1D, kwargs={'output_dim': 4}, input_shape=(5, 32, 3)) class SeparableTimeDelayLayer1DTest(tf.test.TestCase): def test_simple(self): with custom_object_scope( {'DepthGroupwiseTimeDelayLayer1D': DepthGroupwiseTimeDelayLayer1D, 'TimeDelayLayer1D': TimeDelayLayer1D}): layer_test( DepthGroupwiseTimeDelayLayer1D, kwargs={'output_mul': 2}, input_shape=(5, 32, 3)) class SeparableTimeDelayLayerFake2DTest(tf.test.TestCase): def test_simple(self): with custom_object_scope({'DepthGroupwiseTimeDelayLayerFake2D': DepthGroupwiseTimeDelayLayerFake2D}): layer_test( DepthGroupwiseTimeDelayLayerFake2D, input_shape=(5, 16, 16, 3)) class TimeDelayLayerFake2DTest(tf.test.TestCase): def test_simple(self): with custom_object_scope({'TimeDelayLayerFake2D': TimeDelayLayerFake2D}): layer_test( TimeDelayLayerFake2D, kwargs={'output_dim': 4}, input_shape=(5, 16, 16, 3)) if __name__ == '__main__': tf.test.main()
StarcoderdataPython
152923
<gh_stars>0 import contextlib import os from functools import partial import click out = partial(click.secho, bold=True, err=True) err = partial(click.secho, fg="red", err=True) @contextlib.contextmanager def suppress_stdout(): null_fds = [os.open(os.devnull, os.O_RDWR) for x in range(2)] # Save the actual stdout (1) and stderr (2) file descriptors. save_fds = [os.dup(1), os.dup(2)] os.dup2(null_fds[0], 1) os.dup2(null_fds[1], 2) yield # Re-assign the real stdout/stderr back to (1) and (2) os.dup2(save_fds[0], 1) os.dup2(save_fds[1], 2) # Close the null files for fd in null_fds + save_fds: os.close(fd)
StarcoderdataPython
1999887
# coding=utf-8 # -------------------------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. See License.txt in the project root for # license information. # # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from .tracked_resource_py3 import TrackedResource class Profile(TrackedResource): """Class representing a Traffic Manager profile. :param id: Fully qualified resource Id for the resource. Ex - /subscriptions/{subscriptionId}/resourceGroups/{resourceGroupName}/providers/Microsoft.Network/trafficManagerProfiles/{resourceName} :type id: str :param name: The name of the resource :type name: str :param type: The type of the resource. Ex- Microsoft.Network/trafficmanagerProfiles. :type type: str :param tags: Resource tags. :type tags: dict[str, str] :param location: The Azure Region where the resource lives :type location: str :param profile_status: The status of the Traffic Manager profile. Possible values include: 'Enabled', 'Disabled' :type profile_status: str or ~azure.mgmt.trafficmanager.models.ProfileStatus :param traffic_routing_method: The traffic routing method of the Traffic Manager profile. Possible values include: 'Performance', 'Priority', 'Weighted', 'Geographic' :type traffic_routing_method: str or ~azure.mgmt.trafficmanager.models.TrafficRoutingMethod :param dns_config: The DNS settings of the Traffic Manager profile. :type dns_config: ~azure.mgmt.trafficmanager.models.DnsConfig :param monitor_config: The endpoint monitoring settings of the Traffic Manager profile. :type monitor_config: ~azure.mgmt.trafficmanager.models.MonitorConfig :param endpoints: The list of endpoints in the Traffic Manager profile. :type endpoints: list[~azure.mgmt.trafficmanager.models.Endpoint] :param traffic_view_enrollment_status: Indicates whether Traffic View is 'Enabled' or 'Disabled' for the Traffic Manager profile. Null, indicates 'Disabled'. Enabling this feature will increase the cost of the Traffic Manage profile. Possible values include: 'Enabled', 'Disabled' :type traffic_view_enrollment_status: str or ~azure.mgmt.trafficmanager.models.TrafficViewEnrollmentStatus """ _attribute_map = { 'id': {'key': 'id', 'type': 'str'}, 'name': {'key': 'name', 'type': 'str'}, 'type': {'key': 'type', 'type': 'str'}, 'tags': {'key': 'tags', 'type': '{str}'}, 'location': {'key': 'location', 'type': 'str'}, 'profile_status': {'key': 'properties.profileStatus', 'type': 'str'}, 'traffic_routing_method': {'key': 'properties.trafficRoutingMethod', 'type': 'str'}, 'dns_config': {'key': 'properties.dnsConfig', 'type': 'DnsConfig'}, 'monitor_config': {'key': 'properties.monitorConfig', 'type': 'MonitorConfig'}, 'endpoints': {'key': 'properties.endpoints', 'type': '[Endpoint]'}, 'traffic_view_enrollment_status': {'key': 'properties.trafficViewEnrollmentStatus', 'type': 'str'}, } def __init__(self, *, id: str=None, name: str=None, type: str=None, tags=None, location: str=None, profile_status=None, traffic_routing_method=None, dns_config=None, monitor_config=None, endpoints=None, traffic_view_enrollment_status=None, **kwargs) -> None: super(Profile, self).__init__(id=id, name=name, type=type, tags=tags, location=location, **kwargs) self.profile_status = profile_status self.traffic_routing_method = traffic_routing_method self.dns_config = dns_config self.monitor_config = monitor_config self.endpoints = endpoints self.traffic_view_enrollment_status = traffic_view_enrollment_status
StarcoderdataPython
9649229
<reponame>stefanlack/ods-project-quickstarters #!/usr/bin/env python import setuptools setuptools.setup(name='airflow-dag-dependencies', version='0.1', description='DAG dependencies', url='https://www.python.org/sigs/distutils-sig/', packages=setuptools.find_packages(), install_requires=[] )
StarcoderdataPython
9693358
<gh_stars>1-10 Board=[i for i in range(0,9)] User,Computer='X','O' Picks=[i for i in range(1,10)] winners=((0,1,2),(3,4,5),(6,7,8),(0,3,6),(1,4,7),(2,5,8),(0,4,8),(2,4,6)) def print_board(): x=1 for i in Board: if x%3==0: if i in('X','O'):print( i ,end='\n' + '---------'+'\n') else:print( i+1 ,end='\n' + '---------'+'\n') if x%3!=0: if i in('X','O'):print( i ,end=' | ') else:print( i+1 ,end=' | ') x+=1 def space_exist(): return Board.count('X')+Board.count('O')!=9 def can_move(brd,plyr,mve): if mve in Picks and brd[mve-1]==mve-1: return True def can_win(brd,plyr,mve): for i in winners: win=True for j in i: if brd[j]!=plyr: win=False break if win == True:break return win def make_move(brd,plyr,mve,undo=False): if can_move(brd,plyr,mve): brd[mve-1]=plyr win=can_win(brd,plyr,mve) if undo: brd[mve-1]=mve-1 return(True,win) else:return(False,False) def computer_move(): move=-1 for i in range(1,10): if make_move(Board,Computer,i,True)[1]: move=i break if move==-1: for i in range(1,10): if make_move(Board,User,i,True)[1]: move=i break if move==-1: for i in range(1,10): if can_move(Board,Computer,i): move=i return make_move(Board,Computer,move) while space_exist(): print_board() move=int(input("Pick a number [1-9]" )) moved,won=make_move(Board,User,move) if not moved: print("pick another number you dumbfuck") continue if won: print("You won!") elif computer_move()[1]: print("You Lost") break if not space_exist(): print("Tie") print_board()
StarcoderdataPython
5009640
"""Sample API Client.""" from __future__ import annotations import asyncio import socket from typing import Any import ssl import aiohttp import async_timeout import requests from requests import adapters from urllib3 import poolmanager from .const import LOGGER, REVERSE_GEOCODE_URL, POWER_URL, HEAT_URL API_HEADERS = {aiohttp.hdrs.CONTENT_TYPE: "application/json; charset=UTF-8"} class ApiClientException(Exception): """Api Client Exception.""" class TauronOutagesApiClient: def __init__( self, latitude: float, longitude: float, session: aiohttp.ClientSession, ) -> None: """Sample API Client.""" self._latitude = latitude self._longitude = longitude self._session = session async def async_get_reverse_geocode(self) -> dict[str, Any]: """Get reverse geocode (address, postcode etc).""" geocode_url = ( f"{REVERSE_GEOCODE_URL}&lat={self._latitude}&lon={self._longitude}" ) return await self.api_wrapper("get", geocode_url) async def async_get_city_gaid(self, reverse_geocode) -> dict[str, Any]: """Get City Gaid""" postcode = reverse_geocode.get("address").get("postcode") get_cities_url = f"{POWER_URL}city/GetCities?partName={postcode}" return await self.api_wrapper("get", get_cities_url) async def async_get_street_gaid(self, reverse_geocode, city_gaid) -> dict[str, Any]: """Get Street Gaid""" road = reverse_geocode.get("address").get("road") get_streets_url = ( f"{POWER_URL}street/GetStreets?ownerGaid={city_gaid}&partName={road}" ) return await self.api_wrapper("get", get_streets_url) async def async_get_power_outage_data(self, street_gaid) -> dict[str, Any]: """Get data from the Power Outages API.""" get_outages_url = f"{POWER_URL}outage/GetOutages?gaid={street_gaid}&type=street" return await self.api_wrapper("get", get_outages_url) async def async_get_heat_outage_data(self, street_gaid) -> dict[str, Any]: """Get data from the Heat Outages API.""" get_outages_url = f"{HEAT_URL}outage/GetOutages?gaid={street_gaid}&type=street" return await self.api_wrapper("get", get_outages_url) async def api_wrapper( self, method: str, url: str, data: dict[str, Any] = {}, headers: dict = {"cache-control": "no-cache"}, ) -> dict[str, Any] | None: """Get information from the API.""" try: async with async_timeout.timeout(10, loop=asyncio.get_event_loop()): sslcontext = ssl.create_default_context() sslcontext.set_ciphers("DEFAULT@SECLEVEL=1") sslcontext.check_hostname = False LOGGER.info(url) response = await self._session.request( method=method, url=url, headers=headers, json=data, ssl=sslcontext ) if method == "get": return await response.json() except asyncio.TimeoutError as exception: raise ApiClientException( f"Timeout error fetching information from {url}" ) from exception except (KeyError, TypeError) as exception: raise ApiClientException( f"Error parsing information from {url} - {exception}" ) from exception except (aiohttp.ClientError, socket.gaierror) as exception: raise ApiClientException( f"Error fetching information from {url} - {exception}" ) from exception except Exception as exception: # pylint: disable=broad-except raise ApiClientException(exception) from exception # to fix the SSLError class TLSAdapter(adapters.HTTPAdapter): def init_poolmanager(self, connections, maxsize, block=False): """Create and initialize the urllib3 PoolManager.""" ctx = ssl.create_default_context() ctx.set_ciphers("DEFAULT@SECLEVEL=1") ctx.check_hostname = False self.poolmanager = poolmanager.PoolManager( num_pools=connections, maxsize=maxsize, block=block, ssl_version=ssl.PROTOCOL_TLS, ssl_context=ctx, )
StarcoderdataPython
5041156
from time import strftime import apollocaffe import numpy as np import os class TrainLogger(object): def __init__(self, display_interval, log_file="/tmp/apollocaffe_log.txt"): self.display_interval = display_interval self.log_file = log_file os.system("touch %s" % self.log_file) def log(self, idx, meta_data): meta_data['start_iter'] = meta_data.get('start_iter', 0) if idx % self.display_interval == 0: log_line = "" try: loss = np.mean(meta_data['train_loss'][-self.display_interval:]) log_line = "%s - Iteration %4d - Train Loss: %g" % \ (strftime("%Y-%m-%d %H:%M:%S"), idx, loss) except Exception as ex: log_line += str(ex) log_line = "Skipping training log: Unknown Error" try: with open(self.log_file, 'ab+') as lfile: lfile.write("%s\n" % log_line) except IOError: print "Trainer Logger Error: %s does not exist." % self.log_file except Exception as e: print e print log_line class TestLogger(object): def __init__(self, display_interval, log_file="/tmp/apollocaffe_log.txt"): self.display_interval = display_interval self.log_file = log_file os.system("touch %s" % self.log_file) def log(self, idx, meta_data): if idx % self.display_interval == 0: try: loss = np.mean(meta_data['test_loss'][-self.display_interval:]) log_line = "%s - Iteration %4d - Test Loss: %g" % \ (strftime("%Y-%m-%d %H:%M:%S"), idx, loss) except IndexError: log_line = "Skipping Test log: \ No test_loss provided" except Exception as e: log_line = "Skipping test log: Unknown Error" print e try: with open(self.log_file, 'ab+') as lfile: lfile.write("%s\n" % log_line) except IOError: print "TestLogger Error: %s does not exist." % self.log_file except Exception as e: print e print log_line class SnapshotLogger(object): def __init__(self, snapshot_interval, snapshot_prefix='/tmp/model', log_file="/tmp/apollocaffe_log.txt"): self.snapshot_interval = snapshot_interval self.snapshot_prefix = snapshot_prefix self.log_file = log_file os.system("touch %s" % self.log_file) def log(self, idx, meta_data): meta_data['start_iter'] = meta_data.get('start_iter', 0) if idx % self.snapshot_interval == 0 and idx > meta_data['start_iter']: try: filename = '%s_%d.h5' % (self.snapshot_prefix, idx) log_line = "%s - Iteration %4d - Saving net to %s" % \ (strftime("%Y-%m-%d %H:%M:%S"), idx, filename) print(log_line) meta_data['apollo_net'].save(filename) filename = '%s_%d.caffemodel' % (self.snapshot_prefix, idx) # added by <NAME> meta_data['apollo_net'].save(filename) except Exception as e: print e print('Saving failed')
StarcoderdataPython
6475356
import argparse from typing import List, Optional import torch from omegaconf import OmegaConf from classy.utils.optional_deps import requires try: import uvicorn from fastapi import FastAPI except ImportError: uvicorn = None FastAPI = None from classy.utils.commons import get_local_ip_address from classy.utils.lightning import ( load_classy_module_from_checkpoint, load_prediction_dataset_conf_from_checkpoint, ) from classy.utils.log import get_project_logger logger = get_project_logger(__name__) @requires("uvicorn", "serve") @requires("fastapi", "serve") def serve( model_checkpoint_path: str, port: int, cuda_device: int, token_batch_size: int, prediction_params: Optional[str] = None, ): # load model model = load_classy_module_from_checkpoint(model_checkpoint_path) model.to(torch.device(cuda_device if cuda_device != -1 else "cpu")) model.freeze() if prediction_params is not None: model.load_prediction_params(dict(OmegaConf.load(prediction_params))) # load dataset conf dataset_conf = load_prediction_dataset_conf_from_checkpoint(model_checkpoint_path) # mock call to load resources next(model.predict(samples=[], dataset_conf=dataset_conf), None) # for better readability on the OpenAPI docs # why leak the inner confusing class names class InputSample(model.serve_input_class): pass class OutputSample(model.serve_output_class): pass app = FastAPI(title="Classy Serve") @app.post("/", response_model=List[OutputSample], description="Prediction endpoint") def predict(input_samples: List[InputSample]) -> List[OutputSample]: output_samples = [] for predicted_sample in model.predict( model=model, samples=[input_sample.unmarshal() for input_sample in input_samples], dataset_conf=dataset_conf, token_batch_size=token_batch_size, ): output_samples.append(OutputSample.marshal(predicted_sample)) return output_samples @app.get("/healthz") def healthz(): return "ok" local_ip_address = get_local_ip_address() print(f"Model exposed at http://{local_ip_address}:{port}") print(f"Remember you can checkout the API at http://{local_ip_address}:{port}/docs") uvicorn.run(app, host="0.0.0.0", port=port) def main(): args = parse_args() serve( model_checkpoint_path=args.model_checkpoint, prediction_params=args.prediction_params, port=args.p, cuda_device=args.cuda_device, token_batch_size=args.token_batch_size, ) def parse_args(): parser = argparse.ArgumentParser() parser.add_argument( "model_checkpoint", type=str, help="Path to pl_modules checkpoint" ) parser.add_argument( "--prediction-params", type=str, default=None, help="Path to prediction params" ) parser.add_argument( "-p", type=int, default=8000, help="Port on which to expose the model" ) parser.add_argument("--cuda-device", type=int, default=-1, help="Cuda device") parser.add_argument( "--token-batch-size", type=int, default=128, help="Token batch size" ) return parser.parse_args() if __name__ == "__main__": main()
StarcoderdataPython
6704135
"""Implement mixture of probability distribution layers""" import torch from torch import Tensor, nn from torch.nn import Module import torch.nn.functional as F from typing import List, Union, Tuple __all__ = ['MixtureOfGaussian', 'MixtureOfExpert'] class MixtureOfGaussian(nn.Linear): """ A layer that generates means, stds and mixing coefficients of a mixture of gaussian distributions. Used as the final layer of a mixture of (Gaussian) density network. Only support isotropic covariances for the components. References: <NAME>. "Pattern Recognition and Machine Learning" """ def __init__(self, in_features: int, out_features: int, n_dist: int, bias: bool=True): assert n_dist > 0 and in_features > 0 and out_features > 0 self.n_dist = n_dist super(MixtureOfGaussian, self).__init__(in_features, n_dist * (2 + out_features), bias) def forward(self, input: Tensor) -> Tuple[Tensor, Tensor, Tensor]: """ :param input: :return: means, stds and mixing coefficients """ features = super().forward(input) mixing_coeffs = F.softmax(features[:, :self.n_dist], dim=-1) stds = torch.exp(features[:, self.n_dist:self.n_dist * 2]) means = features[:, self.n_dist * 2:] return means, stds, mixing_coeffs class MixtureOfExpert(Module): def __init__(self, experts: List[Module], gate: Module, return_mixture: bool=True): """ :param experts: list of separate expert networks. Each must take the same input and return output of same dimensionality :param gate: take the input and output (un-normalized) score for each expert """ super(MixtureOfExpert, self).__init__() self.experts = nn.ModuleList(experts) self.gate = gate self.softmax = nn.Softmax(dim=-1) self.return_mixture = return_mixture def forward(self, input: Tensor) -> Union[Tuple[Tensor, Tensor], Tensor]: """ :param input: :return: if return_mixture, return the mixture of expert output; else return both expert score and expert output (with the n_expert channel coming last) """ expert_scores = self.softmax(self.gate(input)) expert_outputs = torch.stack([expert(input) for expert in self.experts], dim=-1) expert_scores = expert_scores.view( list(expert_scores.shape)[:-1] + [1 for _ in range(len(expert_outputs.shape) - len(expert_scores.shape))] + list(expert_scores.shape)[-1:] ) if self.return_mixture: return torch.sum(expert_outputs * expert_scores, dim=-1) else: return expert_outputs, expert_scores
StarcoderdataPython
158331
<gh_stars>10-100 from tmu.tsetlin_machine import TMClassifier import numpy as np from time import time number_of_features = 20 noise = 0.1 X_train = np.random.randint(0, 2, size=(5000, number_of_features), dtype=np.uint32) Y_train = np.logical_xor(X_train[:,0], X_train[:,1]).astype(dtype=np.uint32) Y_train = np.where(np.random.rand(5000) <= noise, 1-Y_train, Y_train) # Adds noise X_test = np.random.randint(0, 2, size=(5000, number_of_features), dtype=np.uint32) Y_test = np.logical_xor(X_test[:,0], X_test[:,1]).astype(dtype=np.uint32) tm = TMClassifier(10, 15, 3.0, platform='CUDA', boost_true_positive_feedback=0) for i in range(20): tm.fit(X_train, Y_train) print("Accuracy:", 100*(tm.predict(X_test) == Y_test).mean()) np.set_printoptions(threshold=np.inf, linewidth=200, precision=2, suppress=True) print("\nClass 0 Positive Clauses:\n") precision = tm.clause_precision(0, 0, X_test, Y_test) recall = tm.clause_recall(0, 0, X_test, Y_test) for j in range(5): print("Clause #%d W:%d P:%.2f R:%.2f " % (j, tm.get_weight(0, 0, j), precision[j], recall[j]), end=' ') l = [] for k in range(number_of_features*2): if tm.get_ta_action(0, 0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) else: l.append("¬x%d" % (k-number_of_features)) print(" ∧ ".join(l)) print("\nClass 0 Negative Clauses:\n") precision = tm.clause_precision(0, 1, X_test, Y_test) recall = tm.clause_recall(0, 1, X_test, Y_test) for j in range(5): print("Clause #%d W:%d P:%.2f R:%.2f " % (j, tm.get_weight(0, 1, j), precision[j], recall[j]), end=' ') l = [] for k in range(number_of_features*2): if tm.get_ta_action(0, 1, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) else: l.append("¬x%d" % (k-number_of_features)) print(" ∧ ".join(l)) print("\nClass 1 Positive Clauses:\n") precision = tm.clause_precision(1, 0, X_test, Y_test) recall = tm.clause_recall(1, 0, X_test, Y_test) for j in range(5): print("Clause #%d W:%d P:%.2f R:%.2f " % (j, tm.get_weight(1, 0, j), precision[j], recall[j]), end=' ') l = [] for k in range(number_of_features*2): if tm.get_ta_action(1, 0, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) else: l.append("¬x%d" % (k-number_of_features)) print(" ∧ ".join(l)) print("\nClass 1 Negative Clauses:\n") precision = tm.clause_precision(1, 1, X_test, Y_test) recall = tm.clause_recall(1, 1, X_test, Y_test) for j in range(5): print("Clause #%d W:%d P:%.2f R:%.2f " % (j, tm.get_weight(1, 1, j), precision[j], recall[j]), end=' ') l = [] for k in range(number_of_features*2): if tm.get_ta_action(1, 1, j, k) == 1: if k < number_of_features: l.append(" x%d" % (k)) else: l.append("¬x%d" % (k-number_of_features)) print(" ∧ ".join(l)) print("\nClause Co-Occurence Matrix:\n") print(tm.clause_co_occurrence(X_test, percentage=True).toarray()) print("\nLiteral Frequency:\n") print(tm.literal_clause_frequency())
StarcoderdataPython
131264
<filename>python/graphscope/analytical/app/pagerank_nx.py<gh_stars>1000+ #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # Copyright 2020 Alibaba Group Holding Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from graphscope.framework.app import AppAssets from graphscope.framework.app import not_compatible_for from graphscope.framework.app import project_to_simple __all__ = ["pagerank_nx"] @project_to_simple @not_compatible_for("arrow_property", "dynamic_property") def pagerank_nx(graph, alpha=0.85, max_iter=100, tol=1e-06): """Evalute PageRank on a graph in NetworkX version. Args: graph (Graph): A projected simple graph. alpha (float, optional): Dumping factor. Defaults to 0.85. max_iter (int, optional): Maximum number of iteration. Defaults to 100. tol (float, optional): Error tolerance used to check convergence in power method solver. Returns: :class:`graphscope.framework.context.VertexDataContextDAGNode`: A context with each vertex assigned with the pagerank value, evaluated in eager mode. Examples: .. code:: python import graphscope as gs sess = gs.session() g = sess.g() pg = g.project(vertices={"vlabel": []}, edges={"elabel": []}) r = gs.pagerank(pg, alpha=0.85, max_iter=10) s.close() """ alpha = float(alpha) max_iter = int(max_iter) return AppAssets(algo="pagerank_nx", context="vertex_data")( graph, alpha, max_iter, tol )
StarcoderdataPython
5157030
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ _____________________________________________________________________________ Created By : <NAME> - Bacnv6 Created Date: Mon November 03 10:00:00 VNT 2020 Project : AkaOCR core _____________________________________________________________________________ This file contain unit test for models _____________________________________________________________________________ """ import argparse import sys sys.path.append("../") import torch from models.detec.heatmap import HEAT from models.recog.atten import Atten from models.modules.converters import AttnLabelConverter from engine.config import setup, load_yaml_config, dict2namespace device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def test_model_detec(): model = HEAT() model = model.to(device) x = torch.randn(1, 3, 768, 768).to(device) print(x.shape) y = model(x) print(y[0].shape) print(y[1].shape) def test_model_recog(config_recog_yaml): config = load_yaml_config(config_recog_yaml) config = dict2namespace(config) config.MODEL.NUM_CLASS = 3210 config.SOLVER.DEVICE = device model = Atten(config) model.to(device=device) x = torch.randn(1, 1, 32, 128) x = x.cuda() x = x.to(device=device) text = ["xxx"] converter = AttnLabelConverter(["x", "X", "o"], device=device) text, length = converter.encode(text, max_label_length=config.MODEL.MAX_LABEL_LENGTH) y = model(x, text) print(y.shape) def main(): parser = argparse.ArgumentParser() parser.add_argument('--config_recog', type=str, help='path to recog data', default='../data/attention_resnet_base_v1.yaml') opt = parser.parse_args() test_model_detec() test_model_recog(opt.config_recog) if __name__ == '__main__': main()
StarcoderdataPython
3520224
<gh_stars>1-10 """ Module for DishLeafNode utils """ # Imports import enum import math import re import logging module_logger = logging.getLogger(__name__) # In future, PointingState class will be moved to a file for all the enum attributes for DishLeafNode. class PointingState(enum.IntEnum): """ Pointing state of the dish. """ NONE = 0 READY = 1 SLEW = 2 TRACK = 3 SCAN = 4 UNKNOWN = 5 class UnitConverter: def __init__(self, logger=module_logger): self.logger = logger # TODO: FOR FUTURE USE def dms_to_rad(self, argin): """ Converts a number in Deg:Min:Sec to radians. :param argin: list of numbers in degrees, minutes, seconds respectively in string. Example: ['20', '30', '40'] :return: A number in radians. Example: 20.500193925472445 is the returned value for ['20', '30', '40'] input. """ try: degrees = float(argin[0]) minutes = float(argin[1]) seconds = float(argin[2]) rad_value = (math.pi / 180) * (degrees + (minutes / 60) + (seconds / 3600)) return rad_value except IndexError as error: log_msg = f"Error while converting Deg:Min:Sec to radians.{error}" self.logger.error(log_msg) except SyntaxError as error: log_msg = f"Error while converting Deg:Min:Sec to radians.{error}" self.logger.error(log_msg) # TODO: FOR FUTURE USE def rad_to_dms(self, argin): """ Converts a number in radians to Deg:Min:Sec. :param argin: A number in radians. Example: 0.123472 :return: List of numbers in degrees, minutes, seconds respectively in string. Example: [7.0, 4.0, 27.928156941480466] is returned value for input 0.123472. """ try: # Sign variable represents the sign of the number (in radians) received in input. # Sign should not be used in the radian to dms conversion. It should just be appended # to the resulting dms value as it is. sign = 1 if argin < 0: sign = -1 dms = [] frac_min, degrees = math.modf(abs(argin) * (180 / math.pi)) frac_sec, minutes = math.modf(frac_min * 60) seconds = frac_sec * 60 dms.append(int(degrees * sign)) dms.append(int(minutes)) dms.append(seconds) return dms except SyntaxError as error: log_msg = f"Error while converting radians to dig:min:sec.{error}" self.logger.error(log_msg) # TODO: FOR FUTURE USE def dms_to_dd(self, argin): """ Converts a number in dig:Min:sec to decimal degrees. :param argin: A number in Deg:Min:Sec. Example: 18:31:48.0 :return: A number in decimal Degrees. Example : "18.529999999999998" is the returned value for 18:31:48.0 input. """ try: dd = re.split("[:]+", argin) deg_dec = ( abs(float(dd[0])) + ((float(dd[1])) / 60) + ((float(dd[2])) / 3600) ) if "-" in dd[0]: return deg_dec * (-1) else: return deg_dec except IndexError as error: log_msg = f"Error while converting Deg:Min:Sec to decimal degrees.{error}" self.logger.error(log_msg) except SyntaxError as error: log_msg = f"Error while converting Deg:Min:Sec to decimal degrees.{error}" self.logger.error(log_msg) class DishMode(enum.IntEnum): UNKNOWN = 0 OFF = 1 STARTUP = 2 SHUTDOWN = 3 STANDBY_LP = 4 STANDBY_FP = 5 STOW = 6 CONFIG = 7 OPERATE = 8 MAINTENANCE = 9 FORBIDDEN = 10 ERROR = 11
StarcoderdataPython
8049394
from setuptools import setup, find_packages ANALYSIS_PLUGINS = [ "complexity = pordego_complexity.complexity_analysis:analyze_complexity" ] with open('LICENSE') as f: LICENSE = f.read() CLASSIFIERS = [ "Development Status :: 4 - Beta", "Intended Audience :: Developers", "License :: OSI Approved :: MIT License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 2.7" ] VERSION = "1.0.3" setup(name="pordego-complexity", version=VERSION, license=LICENSE, author="<NAME>", author_email="<EMAIL>", description="Pordego plugin for code complexity analysis using the Radon library", packages=find_packages(exclude=('tests', 'docs', "tests.*")), url="https://github.com/ttreptow/pordego-complexity", download_url="https://github.com/ttreptow/pordego-complexity/tarball/{}".format(VERSION), entry_points={"pordego.analysis": ANALYSIS_PLUGINS}, classifiers=CLASSIFIERS, install_requires=["radon==2.0.0"] )
StarcoderdataPython
181172
<reponame>lyraxvincent/phones-priceinkenya from urllib.request import urlopen, Request from bs4 import BeautifulSoup import re import numpy as np import pandas as pd # a function to clean phone titles so their search can yield better results def cleantitle(phonetitle): if str(phonetitle).endswith("GB") or "/" in str(phonetitle): phonetitle = ' '.join(phonetitle.split()[:-1]) if "(" in str(phonetitle): phonetitle = phonetitle.split("(")[0].strip() return phonetitle else: return phonetitle # read in csv file df = pd.read_csv("csv files/phonesdata.csv") df_ = df.copy() # make copy to avoid editing the original phone titles df_['Phone Title'] = df_['Phone Title'].apply(cleantitle) df_['Phone Title'] = df_['Phone Title'].apply(lambda s: s.replace(" ", "+")) # link syntax phonenames = list(df_['Phone Title']) prices = [] for i, phonename in enumerate(phonenames): site = "https://www.jumia.co.ke/catalog/?q={}".format(phonename) hdr = {'User-Agent': 'Mozilla/5.0'} req = Request(site, headers=hdr) page = urlopen(req) soup = BeautifulSoup(page, "html.parser") try: price = soup.find("div", {"class": "prc"}).get_text() prices.append(price) print(f"{i}:Added price for [{phonename}]") except: price = np.nan print(f"{i}:Price for [{phonename}] unavailable.") # add prices column to dataframe df['PriceJumia(Kshs)'] = pd.Series(prices) df.to_csv("csv files/phonesdata_with_pfj.csv", index=False)
StarcoderdataPython
1843103
from selenium import webdriver from .base import FunctionalTest from .list_page import ListPage from .my_lists_page import MyListsPage def quit_if_possible(browser): try: browser.quit() except: pass class SharingTest(FunctionalTest): def test_can_share_a_list_with_another_user(self): # Edith is a logged-in user self.create_pre_authenticated_session('<EMAIL>') edith_browser = self.browser self.addCleanup(lambda: quit_if_possible(edith_browser)) # Her friend Jerry is also hanging out on the lists site jerry_browser = webdriver.Chrome() self.addCleanup(lambda: quit_if_possible(jerry_browser)) self.browser = jerry_browser self.create_pre_authenticated_session('<EMAIL>') # Edith goes to the home page and starts a list self.browser = edith_browser self.browser.get(self.live_server_url) list_page = ListPage(self).add_list_item('Get help') # She notices a "Share the list" option share_box = list_page.get_share_box() self.assertEqual( share_box.get_attribute('placeholder'), '<EMAIL>' ) # She shares her list. # The page updates to that it's shared with Jerry: list_page.share_list_with('<EMAIL>') # Jerry now goes to the lists page with his browser self.browser = jerry_browser MyListsPage(self).go_to_my_lists_page() # He sees Edith's list in there! self.browser.find_element_by_link_text('Get help').click() # On the list page, Jerry can see that it's Edith's list self.wait_for(lambda: self.assertEqual( list_page.get_list_owner(), '<EMAIL>' )) # He adds an item to the list list_page.add_list_item('Hi Edith!') # When Edith refreshes the page, she sees Jerry's addition self.browser = edith_browser self.browser.refresh() list_page.wait_for_row_in_list_table('Hi Edith!', 2)
StarcoderdataPython
8012600
<filename>code/CM5_racine_main.py import math def racine_dicho(x): min, max, eps = 0, x, 1e-10 while True: r = (min + max) / 2 if abs(r * r - x) < eps: break elif r * r < x: min = r else: max = r return r if __name__ == "__main__": x = float(input("x ? ")) sq_dicho = racine_dicho(x) sq_math = math.sqrt(x) print(f"La racine carrée de {x} est {sq_dicho} (= {sq_math})")
StarcoderdataPython
36771
"""Librerias Importadas""" from flask import Flask from flask import render_template from flask import request App=Flask(__name__) @App.route('/') def index(): """Pagina Principal en donde se introduce el nombre, apellido, comision""" return render_template('index.html') @App.route('/porcentaje',methods=['POST']) def porcentaje(): if request.method=='POST': """:var file: es la variable que estoy utilizando para acceder al archivo y copiar en el.""" file=open("archivo.csv","w") """:var nombre: Donde se guarda el nombre obtenido en el html""" nombre=request.form['nombre'] """:var apellido: Donde se guarda el apellido obtenido en el html""" apellido=request.form['apellido'] """:var venta: la variable tipo venta se trae en tipo cadena y se combierte con el float para poder manipularla""" venta = float(request.form.get('venta')) if (venta > 100000): r = venta * 0.15 elif (venta > 75000): r = venta * 0.10 elif (venta > 50000): r = venta * 0.07 elif (venta > 25000): r = venta * 0.05 else: r = '¡Usted no ha realizado ventas en el Mes!' """Se esta escribiendo en el archivo csv""" file.write(nombre) file.write(",") file.write(apellido) file.write(",") file.write(str(venta)) file.write(",") file.write(str(r)) file.close() """:return render_templates: es el return que se hace para mandar los valores al html""" return render_template('porcentaje.html',nom=nombre,ape=apellido,ven=venta,rr=r) if __name__=="__main__": App.run()
StarcoderdataPython
12858346
__all__ = ["ComponentTestCase"] import os import sys import yaml import unittest from gada import component from test.utils import TestCaseBase class ComponentTestCase(TestCaseBase): def test_load(self): """Test loading the testnodes package that is in PYTHONPATH.""" # Load component configuration config = self.write_config_and_load(TestCaseBase.CONFIG_NODES) self.assertEqual(config["runner"], "generic", "incorrect configuration") # Get node configuration node_config = component.get_node_config(config, "hello") self.assertEqual( node_config["runner"], "generic", "incorrect node configuration" ) self.assertEqual(node_config["bin"], "python", "incorrect node configuration") self.assertEqual( node_config["argv"], r"${comp_dir}/__init__.py ${argv}", "incorrect node configuration", ) def test_load_not_found(self): """Test loading a package that is not in the PYTHONPATH.""" with self.assertRaises(Exception): comp = component.load("invalid") def test_load_config(self): """Test loading config.yml file from testnodes package.""" config = self.write_config_and_load(TestCaseBase.CONFIG_NO_NODES) self.assertEqual( config, TestCaseBase.CONFIG_NO_NODES, "incorrect loaded configuration" ) def test_load_config_empty(self): """Test loading an existing but empty config.yml file.""" with open(TestCaseBase.CONFIG_YML, "w+") as f: f.write("") config = self.load_config() self.assertIsNotNone(config, "invalid configuration") def test_load_config_not_found(self): """Test loading a non existing config.yml file.""" self.remove_config() with self.assertRaises(Exception): component.load_config(sys) def test_get_node_config_not_found(self): """Test loading a config.yml file with unknown node.""" config = self.write_config_and_load(TestCaseBase.CONFIG_NODES) with self.assertRaises(Exception): component.get_node_config(config, "invalid") if __name__ == "__main__": unittest.main()
StarcoderdataPython
8139518
<reponame>Jingil-Integrated-Management/JIM_backend<filename>apps/drawing/filters.py import django_filters from .models import Drawing class DrawingFilter(django_filters.FilterSet): created_at = django_filters.DateFilter( field_name='created_at', lookup_expr='exact') created_at__lte = django_filters.DateFilter( field_name='created_at', lookup_expr='lte') created_at__gte = django_filters.DateFilter( field_name='created_at', lookup_expr='gte') class Meta: model = Drawing fields = ['client', 'name', 'is_closed', 'is_outsource']
StarcoderdataPython
3492497
import coremltools coreml_model = coremltools.converters.keras.convert('recognizer.h5', input_names="image", image_input_names="image", image_scale=1/255.0, is_bgr=False, class_labels = ['Unknown', 'Seat', 'Piece 1', "Piece 2"]) coreml_model.save('FurnitureNet.mlmodel')
StarcoderdataPython
70934
# -*- coding: utf-8 -*- # ------------------------------------------------------------------ # Filename: core.py # Purpose: plugin for reading and writing Site object into various format # Author: microquake development team # Email: <EMAIL> # # Copyright (C) 2016 microquake development team # -------------------------------------------------------------------- """ plugin for reading and writing Site object into various format :copyright: microquake development team (<EMAIL>) :license: GNU Lesser General Public License, Version 3 (http://www.gnu.org/copyleft/lesser.html) """ from microquake.core import logger def read_csv(filename, site_code='', has_header=True, **kwargs): """ read a csv file containing sensor information The first line of the csv file should contain the site name The expected file structure is as follows and should contain one header line <network>, <sensor name>, <sensor type>, <no component>, x, y, z where x, y and z represents the location of the sensors expressed in a local coordinate system. Note that the <sensor name> is limited to four character because of NonLinLoc limitations. example of file strucuture 1. <Network>, <sensor long name>, <sensor code>, <sensor type>, <gain>, <sensitivity>, <sx>, <sy>, <sz>, <channel 1 code>, <azimuth>, <dip>, <channel 2 code>, <azimuth>, <dip>, <channel 3 code>, <azimuth>, <dip> :param filename: path to a csv file :type filename: string :param site_code: site code :type site_code: string :param has_header: whether or not the input file has an header :type has_header: bool :rparam: site object :rtype: ~microquake.core.station.Site """ from microquake.core.data.station import Site, Network, Station, Channel with open(filename) as ifile: networks = [] stations = [] for i, line in enumerate(ifile.readlines()): if has_header and (i == 0): continue tmp = line.split(',') nc = tmp[0] long_name = tmp[1] sc = tmp[2] st = tmp[3] smt = tmp[4] gain = tmp[5] sensitivity = tmp[6] sx = float(tmp[7]) sy = float(tmp[8]) sz = float(tmp[9]) channels = [] for c in range(0, 3): cc = tmp[4 * c + 10] if not cc: continue x = float(tmp[4 * c + 10 + 1]) y = float(tmp[4 * c + 10 + 2]) z = float(tmp[4 * c + 10 + 3]) # az = float(tmp[3 * c + 10 + 1]) # dip = float(tmp[3 * c + 10 + 2]) channel = Channel(code=cc) channel.orientation = [x, y, z] # channel.dip_azimuth = (dip, az) channels.append(channel) station = Station(long_name=long_name, code=sc, sensor_type=st, motion_type=smt, gain=gain, sensitivity=sensitivity, loc=[sx, sy, sz], channels=channels) index = None for j, net in enumerate(networks): if net.code == nc: index = j if index == None: network = Network(code=nc, stations=[]) networks.append(network) index = -1 networks[index].stations.append(station) site = Site(code=site_code, networks=networks) return site def read_pickle(filename, **kwargs): """ read site saved pickle format :param filename: :return: """ from microquake.core.data.station import Site import pickle as pickle try: site = pickle.load(open(filename)) except: logger.error('Not able to read %s' % filename) return None if not isinstance(site, Site): logger.error( "The pickle file does not contain and microquake.core.station.Site object") return None return site def write_csv(site, filename, **kwargs): """ write a Site object to disk in csv format :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int :rtype: None """ # TODO write a function to save the site object in csv format pass def write_pickle(site, filename, protocol=-1, **kwargs): """ write a Site object to disk in pickle (.pickle or .npy extension) format using the pickle module :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int """ import pickle as pickle with open(filename, 'w') as of: pickle.dump(site, of, protocol=protocol) def write_vtk(site, filename, **kwargs): """ write a Site object to disk in vtk format for viewing in Paraview for example :param filename: full path to file with extension :type filename: str :param site: site object to be saved :type site: ~microquake.core.data.station.Site :param protocol: pickling protocol level see pickle.dump documentation for more information :type protocol: int """ # TODO write a function to save the site object in vtk format for viewing # in paraview pass
StarcoderdataPython
11287882
<reponame>ebursztein/SiteFab<filename>sitefab/nlp.py<gh_stars>1-10 import numpy as np from perfcounters import PerfCounters from tabulate import tabulate from textacy import TextStats, make_spacy_doc, preprocessing from textacy.text_stats import readability from textacy.ke.yake import yake from textacy.ke.textrank import textrank from textacy.ke.sgrank import sgrank from textacy.ke.scake import scake from sitefab.utils import create_objdict, dict_to_objdict # FIXME: use the config NUM_TERMS = 50 SPACY_MODEL = 'en_core_web_sm' # 'en_core_web_lg' # python -m spacy download en_core_web_sm TERM_EXTRACTOR_ALGO = 'yake' # yake, sgrank, textrank NGRAMS = (1, 2, 3) # default def softmax(results, reverse=False): """Normalize results values via softmax. Args: results (array): term extraction results. reverse (bool, optional): [description]. Defaults to False. Returns: [type]: [description] """ if len(np.asarray(results).shape) == 1: # !case when there are less than 3 words as the rank algo won't work fill_value = 1 / len(results) x = np.full(len(results), fill_value) results = [[t, 0] for t in results] else: x = np.array([i[1] for i in results]) if reverse: x = 1 - x e_x = np.exp(x - np.max(x)) scores = e_x / e_x.sum() normalized_terms = [] for idx, s in enumerate(scores): normalized_terms.append([results[idx][0], float(s)]) return normalized_terms def extract_key_terms(doc, num_terms=50, ngrams=(1, 2, 3), algo='yake'): """Compute post most important terms This is particularly useful for the search and related posts Args: doc (Spacy.doc): Doc to extract terms from. num_terms (int, optional): How many terms to return. Defaults to 100. ngrams (int, optional): which size of ngrams to consider algo (str, optional): which algorithm to use to find key terms """ if not len(doc): return [] # special case if len(doc) < 3: return softmax(str(doc).split(' ')) if algo == 'textrank': return softmax(textrank(doc, n_keyterms=NUM_TERMS)) elif algo == 'yake': return softmax(yake(doc, ngrams=ngrams, topn=NUM_TERMS), reverse=True) elif algo == 'scake': return softmax(scake(doc, topn=NUM_TERMS)) elif algo == 'sgrank': return softmax(sgrank(doc, ngrams=ngrams, n_keyterms=NUM_TERMS)) else: err = 'Unknown key term extraction method:%s' % algo raise Exception(err) def text_cleanup(text): "cleanup our text" text = preprocessing.replace_emails(text, replace_with='') text = preprocessing.replace_urls(text, replace_with='') text = preprocessing.replace_hashtags(text, replace_with='') text = preprocessing.replace_phone_numbers(text, replace_with='') text = preprocessing.replace_numbers(text, replace_with='') text = preprocessing.remove_accents(text) text = preprocessing.remove_punctuation(text) text = preprocessing.normalize_quotation_marks(text) text = preprocessing.normalize_hyphenated_words(text) text = text.replace('\n', ' ').replace('\t', ' ') text = text.lower() text = preprocessing.normalize_whitespace(text) return text def generate_clean_fields(post): "Generate a cleaned up version of the post and its metadata" clean_fields = create_objdict() # cleaned up fields clean_fields.title = '' if post.meta.title: clean_fields.title = text_cleanup(post.meta.title) clean_fields.abstract = "" if post.meta.abstract: clean_fields.abstract = text_cleanup(post.meta.abstract) clean_fields.authors = [] if post.meta.authors: for author in post.meta.authors: clean_fields.authors.append(text_cleanup(author)) # conference clean_fields.conference_name = [] if post.meta.conference_name: clean_fields.conference_name = text_cleanup( post.meta.conference_name) clean_fields.conference_short_name = "" if post.meta.conference_short_name: clean_fields.conference_short_name = text_cleanup( post.meta.conference_short_name) # category, tags, etc clean_fields.category = "" if post.meta.category: clean_fields.category = text_cleanup(post.meta.category) clean_fields.tags = [] if post.meta.tags: for tag in post.meta.tags: clean_fields.tags.append(text_cleanup(tag)) # text clean_fields.text = '' if post.text: # !make sure to use post html and clean it to avoid markup keywords. clean_fields.text = text_cleanup(post.text) return clean_fields def benchmark_term_extractor(doc, counters): "benchmark various term extractor algorithms" # TL;DR: yake is probably the best. Feel free to experiment # see https://github.com/LIAAD/yake # sgrank is really really slow results = [] methods = ['textrank', 'yake', 'sgrank'] # 'cake', results = [] for method in methods: counters.start(method) results.append(extract_key_terms(doc, algo=method)) counters.stop(method) counters.report() table = [] for idx in range(20): row = [] for aidx in range(len(methods)): row.append(results[aidx][idx]) table.append(row) print(tabulate(table, headers=methods)) return counters def compute_stats(doc): ts = TextStats(doc) stats = create_objdict() counts = {'sentences': ts.n_sents, 'words': ts.n_words, 'unique_words': ts.n_unique_words, 'chars': ts.n_chars, 'chars_per_word': ts.n_chars_per_word, 'long_words': ts.n_long_words, 'syllables': ts.n_syllables, 'syllables_per_word': ts.n_syllables_per_word, 'monosyllable_words': ts.n_monosyllable_words, 'polysyllable_words': ts.n_polysyllable_words } stats.counts = dict_to_objdict(counts) readability = {} if stats.counts.words > 0: readability = {'flesch_kincaid_grade_level': ts.flesch_kincaid_grade_level, 'flesch_reading_ease': ts.flesch_reading_ease, 'smog_index': 0, 'gunning_fog_index': ts.gunning_fog_index, 'coleman_liau_index': ts.coleman_liau_index, 'automated_readability_index': ts.automated_readability_index, 'lix': ts.lix, } if stats.counts.sentences >= 30: readability['smog_index'] = ts.smog_index stats.readability = dict_to_objdict(readability) return stats def analyze_post(post, debug=False): "Perform NLP analysis" counters = PerfCounters() nlp = create_objdict() # clean fields counters.start('cleanup') clean_fields = generate_clean_fields(post) nlp.clean_fields = clean_fields counters.stop('cleanup') # creating spacy docs counters.start('make_spacy_docs') all_cleaned_content = ' '.join([clean_fields.title, clean_fields.category, " ".join(clean_fields.tags), clean_fields.abstract, clean_fields.text]) # overall terms cleaned_doc = make_spacy_doc(all_cleaned_content, lang=SPACY_MODEL) # title terms title_doc = make_spacy_doc(clean_fields.title, lang=SPACY_MODEL) # for statistics text_doc = make_spacy_doc(post.text, lang=SPACY_MODEL) counters.stop('make_spacy_docs') # terms extraction counters.start('extract_key_terms') nlp.terms = extract_key_terms(cleaned_doc, num_terms=NUM_TERMS, algo=TERM_EXTRACTOR_ALGO, ngrams=NGRAMS) # !note we restrict ngram to one as we only want the lemmized top terms. nlp.title_terms = extract_key_terms(title_doc, num_terms=NUM_TERMS, algo=TERM_EXTRACTOR_ALGO, ngrams=1) counters.stop('extract_key_terms') # text stats counters.start('text_stats') nlp.stats = compute_stats(text_doc) counters.stop('text_stats') if debug: counters.report() return nlp
StarcoderdataPython
4977574
<reponame>vaaliferov/119_dls2_nmt import re import torch import telegram import telegram.ext import youtokentome as yttm from plot import * from config import * from secret import * from model import Model src_tok = yttm.BPE(SRC_TOKENIZER_PATH) trg_tok = yttm.BPE(TRG_TOKENIZER_PATH) src_vocab_size = len(src_tok.vocab()) trg_vocab_size = len(trg_tok.vocab()) device = 'cuda' if torch.cuda.is_available() else 'cpu' model = Model(src_vocab_size, trg_vocab_size, device) state = torch.load(MODEL_PATH, map_location=device) model.load_state_dict(state, strict=True) def send_document(context, chat_id, file_path): with open(file_path, 'rb') as fd: context.bot.send_document(chat_id, fd) def handle_text(update, context): text = update.message.text user = update.message.from_user chat_id = update.message.chat_id attn_maps, beam_search = False, False if user['id'] != TG_BOT_OWNER_ID: msg = f"@{user['username']} {user['id']}" context.bot.send_message(TG_BOT_OWNER_ID, msg) context.bot.send_message(TG_BOT_OWNER_ID, text) if text == '/start': usage = 'Please, send me a text in Russian' context.bot.send_message(chat_id, usage) return None if text[-1] == '*': text = text[:-1] beam_search = True if text[-1] == '#': text = text[:-1] attn_maps = True p = '[^ЁёА-Яа-я0-9 ,.!?-]' text = re.sub(p, '', text) text = text.strip(' ') if len(text) < MIN_CHAR_NUM: usage = 'Please, send me a text in Russian' context.bot.send_message(chat_id, usage) return None text = text[0].upper() + text[1:] if text[-1] not in '.!?': text += '.' src = src_tok.encode(text, bos=True, eos=True) trg, enc_self_attn, dec_self_attn, dec_enc_attn = model.greedy_generate(src) result = trg_tok.decode(trg, ignore_ids=SPECIAL_IDS) context.bot.send_message(chat_id, result[0]) if beam_search and len(src) < 20: beam_trg, _, _, _ = model.beam_generate(src) beam_result = trg_tok.decode(beam_trg, ignore_ids=SPECIAL_IDS) beam_result = [f'{i+1}. {r}' for i, r in enumerate(beam_result)] context.bot.send_message(chat_id, '\n'.join(beam_result)) if attn_maps and len(src) < 20 and len(trg) < 20: context.bot.send_message(chat_id, 'please wait.. (~15s)') src_labels = [src_tok.id_to_subword(t) for t in src] trg_labels = [trg_tok.id_to_subword(t) for t in trg] plot_attn(enc_self_attn, src_labels, src_labels, ENC_SELF_ATTN_PLOT_PATH) plot_attn(dec_enc_attn, src_labels, trg_labels[1:], DEC_ENC_ATTN_PLOT_PATH) plot_attn(dec_self_attn, trg_labels[1:], trg_labels[1:], DEC_SELF_ATTN_PLOT_PATH) send_document(context, chat_id, ENC_SELF_ATTN_PLOT_PATH) send_document(context, chat_id, DEC_SELF_ATTN_PLOT_PATH) send_document(context, chat_id, DEC_ENC_ATTN_PLOT_PATH) f = telegram.ext.Filters.text h = telegram.ext.MessageHandler u = telegram.ext.Updater(TG_NMT_BOT_TOKEN) u.dispatcher.add_handler(h(f,handle_text)) u.start_polling(); u.idle()
StarcoderdataPython
3316583
<gh_stars>10-100 from pathlib import Path from typing import List class BaseFileExtractor: """ Base class for file extraction. """ def __init__(self, extenstion: str) -> None: self._extenstion = extenstion @staticmethod def _check_dir_compliance(path: Path) -> bool: return all((path.is_dir(), not path.name.startswith("."), not path.name.startswith("_"))) def _check_file_compliance(self, path: Path) -> bool: return all( ( not path.is_dir(), path.suffix == self._extenstion, not path.name.startswith("."), not path.name.startswith("_"), ) ) def _extract_recursively(self, folder: Path) -> List[Path]: files = [] for path in folder.iterdir(): if self._check_dir_compliance(path): subdirs = self._extract_recursively(path) files.extend(subdirs) continue if not self._check_file_compliance(path): continue files.append(path) return files
StarcoderdataPython
107531
PAD = 0 EOS = 1 BOS = 2 UNK = 3 UNK_WORD = '<unk>' PAD_WORD = '<pad>' BOS_WORD = '<s>' EOS_WORD = '</s>' NEG_INF = -10000 # -float('inf')
StarcoderdataPython
12838270
def swap(vet, i, j): aux = vet[i] vet[i] = vet[j] vet[j] = aux def partition(vet, left, right): i = left + 1 j = right pivot = vet[left] while i <= j: if vet[i] <= pivot: i += 1 else: if vet[j] >= pivot: j -= 1 else: if i <= j: swap(vet, i, j) i += 1 j -= 1 swap(vet, left, j) return j def quicksort(vet, left, right): if left < right: index = partition(vet, left, right) quicksort(vet, left, index - 1) quicksort(vet, index + 1, right) return vet def main(): vet = [6, 3, 4, 5, 2, 7, 1, 9, 8, 0, 10] print(quicksort(vet, 0, len(vet) - 1)) if __name__ == '__main__': main()
StarcoderdataPython
6491695
import tensorflow as tf def get_loss_func(phs, prs, pts, nhs, nrs, nts, args): triple_loss = None if args.loss == 'margin-based': triple_loss = margin_loss(phs, prs, pts, nhs, nrs, nts, args.margin, args.loss_norm) elif args.loss == 'logistic': triple_loss = logistic_loss(phs, prs, pts, nhs, nrs, nts, args.loss_norm) elif args.loss == 'limited': triple_loss = limited_loss(phs, prs, pts, nhs, nrs, nts, args.pos_margin, args.neg_margin, args.loss_norm) return triple_loss def margin_loss(phs, prs, pts, nhs, nrs, nts, margin, loss_norm): with tf.name_scope('margin_loss_distance'): pos_distance = phs + prs - pts neg_distance = nhs + nrs - nts with tf.name_scope('margin_loss'): if loss_norm == 'L1': # L1 normal pos_score = tf.reduce_sum(tf.abs(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.abs(neg_distance), axis=1) else: # L2 normal pos_score = tf.reduce_sum(tf.square(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.square(neg_distance), axis=1) loss = tf.reduce_sum(tf.nn.relu(tf.constant(margin) + pos_score - neg_score), name='margin_loss') return loss def positive_loss(phs, prs, pts, loss_norm): with tf.name_scope('positive_loss_distance'): pos_distance = phs + prs - pts with tf.name_scope('positive_loss_score'): if loss_norm == 'L1': # L1 score pos_score = tf.reduce_sum(tf.abs(pos_distance), axis=1) else: # L2 score pos_score = tf.reduce_sum(tf.square(pos_distance), axis=1) loss = tf.reduce_sum(pos_score, name='positive_loss') return loss def limited_loss(phs, prs, pts, nhs, nrs, nts, pos_margin, neg_margin, loss_norm, balance=1.0): with tf.name_scope('limited_loss_distance'): pos_distance = phs + prs - pts neg_distance = nhs + nrs - nts with tf.name_scope('limited_loss_score'): if loss_norm == 'L1': # L1 score pos_score = tf.reduce_sum(tf.abs(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.abs(neg_distance), axis=1) else: # L2 score pos_score = tf.reduce_sum(tf.square(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.square(neg_distance), axis=1) pos_loss = tf.reduce_sum(tf.nn.relu(pos_score - tf.constant(pos_margin))) neg_loss = tf.reduce_sum(tf.nn.relu(tf.constant(neg_margin) - neg_score)) loss = tf.add(pos_loss, balance * neg_loss, name='limited_loss') return loss def logistic_loss(phs, prs, pts, nhs, nrs, nts, loss_norm): with tf.name_scope('logistic_loss_distance'): pos_distance = phs + prs - pts neg_distance = nhs + nrs - nts with tf.name_scope('logistic_loss_score'): if loss_norm == 'L1': # L1 score pos_score = tf.reduce_sum(tf.abs(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.abs(neg_distance), axis=1) else: # L2 score pos_score = tf.reduce_sum(tf.square(pos_distance), axis=1) neg_score = tf.reduce_sum(tf.square(neg_distance), axis=1) pos_loss = tf.reduce_sum(tf.log(1 + tf.exp(pos_score))) neg_loss = tf.reduce_sum(tf.log(1 + tf.exp(-neg_score))) loss = tf.add(pos_loss, neg_loss, name='logistic_loss') return loss def mapping_loss(tes1, tes2, mapping, eye): mapped_tes2 = tf.matmul(tes1, mapping) map_loss = tf.reduce_sum(tf.reduce_sum(tf.pow(tes2 - mapped_tes2, 2), 1)) orthogonal_loss = tf.reduce_sum(tf.reduce_sum(tf.pow(tf.matmul(mapping, mapping, transpose_b=True) - eye, 2), 1)) return map_loss + orthogonal_loss
StarcoderdataPython
11358641
#!/usr/bin/env python from PyZ3950 import zoom def run (): conn = zoom.Connection ('amicus.nlc-bnc.ca', 210) conn.databaseName = 'NL' q = zoom.Query ('CCL', 'ti="1066"') ss = conn.scan (q) for s in ss[0:10]: print s if __name__ == '__main__': run ()
StarcoderdataPython
6580893
import json import os from .base_config import BaseConfig class DiceboxConfig(BaseConfig): def __init__(self, config_file: str = "dicebox.config"): super().__init__(config_file=config_file) ############################################################################### # Data Set Options ############################################################################### # Load user defined config if "DATASET" in os.environ: self.DATASET = os.environ["DATASET"] if "DICEBOX_COMPLIANT_DATASET" in os.environ: if os.environ["DICEBOX_COMPLIANT_DATASET"] == "True": self.DICEBOX_COMPLIANT_DATASET = True elif os.environ["DICEBOX_COMPLIANT_DATASET"] == "False": self.DICEBOX_COMPLIANT_DATASET = False else: raise if "NB_CLASSES" in os.environ: self.NB_CLASSES = int(os.environ["NB_CLASSES"]) if "IMAGE_WIDTH" in os.environ: self.IMAGE_WIDTH = int(os.environ["IMAGE_WIDTH"]) if "IMAGE_HEIGHT" in os.environ: self.IMAGE_HEIGHT = int(os.environ["IMAGE_HEIGHT"]) if "DATA_BASE_DIRECTORY" in os.environ: self.DATA_BASE_DIRECTORY = os.environ["DATA_BASE_DIRECTORY"] ############################################################################### # Build Calculated Configs ############################################################################### self.NETWORK_NAME = "%s_%ix%i" % (self.DATASET, self.IMAGE_WIDTH, self.IMAGE_HEIGHT) self.INPUT_SHAPE = (self.IMAGE_WIDTH, self.IMAGE_HEIGHT, 3) # 3 indicates the number of channels (RGB) so 3. self.DATA_DIRECTORY = "%s/%s/data/" % (self.DATA_BASE_DIRECTORY, self.NETWORK_NAME) ############################################################################### # Neural Network Taxonomy Options ############################################################################### if "MIN_NEURONS" in os.environ: self.MIN_NEURONS = int(os.environ["MIN_NEURONS"]) if "MAX_NEURONS" in os.environ: self.MAX_NEURONS = int(os.environ["MAX_NEURONS"]) if "MIN_LAYERS" in os.environ: self.MIN_LAYERS = int(os.environ["MIN_LAYERS"]) if "MAX_LAYERS" in os.environ: self.MAX_LAYERS = int(os.environ["MAX_LAYERS"]) if "LAYER_TYPES" in os.environ: self.LAYER_TYPES = os.environ["LAYER_TYPES"] if "ACTIVATION" in os.environ: self.ACTIVATION = os.environ["ACTIVATION"] if "OPTIMIZER" in os.environ: self.OPTIMIZER = os.environ["OPTIMIZER"] self.TAXONOMY = { "min_neurons": self.MIN_NEURONS, "max_neurons": self.MAX_NEURONS, "min_layers": self.MIN_LAYERS, "max_layers": self.MAX_LAYERS, "layer_types": json.loads(self.LAYER_TYPES), "activation": json.loads(self.ACTIVATION), "optimizer": json.loads(self.OPTIMIZER), } ############################################################################### # Evolution Options ############################################################################### if "EPOCHS" in os.environ: self.EPOCHS = int(os.environ["EPOCHS"]) # Number of times to evolve the population. if "GENERATIONS" in os.environ: self.GENERATIONS = int(os.environ["GENERATIONS"]) # Number of networks in each generation. if "POPULATION" in os.environ: self.POPULATION = int(os.environ["POPULATION"]) if "NOISE" in os.environ: self.NOISE = float(os.environ["NOISE"]) ############################################################################### # Training Options / Settings for the 1920x1080 dataset ############################################################################### if "BATCH_SIZE" in os.environ: self.BATCH_SIZE = int(os.environ["BATCH_SIZE"]) if "TRAIN_BATCH_SIZE" in os.environ: self.TRAIN_BATCH_SIZE = int(os.environ["TRAIN_BATCH_SIZE"]) if "TEST_BATCH_SIZE" in os.environ: self.TEST_BATCH_SIZE = int(os.environ["TEST_BATCH_SIZE"]) if "LOAD_BEST_WEIGHTS_ON_START" in os.environ: if os.environ["LOAD_BEST_WEIGHTS_ON_START"] == "False": self.LOAD_BEST_WEIGHTS_ON_START = False elif os.environ["LOAD_BEST_WEIGHTS_ON_START"] == "True": self.LOAD_BEST_WEIGHTS_ON_START = True else: raise ############################################################################### # Direcrtory Options ############################################################################### if "LOGS_DIR" in os.environ: self.LOGS_DIR = os.environ["LOGS_DIR"] if "WEIGHTS_DIR" in os.environ: self.WEIGHTS_DIR = os.environ["WEIGHTS_DIR"] if "TMP_DIR" in os.environ: self.TMP_DIR = os.environ["TMP_DIR"] if "POPULATION_DIR" in os.environ: self.POPULATION_DIR = os.environ["POPULATION_DIR"] ############################################################################### # Server Options ############################################################################### if "API_ACCESS_KEY" in os.environ: self.API_ACCESS_KEY = os.environ["API_ACCESS_KEY"] if "API_VERSION" in os.environ: self.API_VERSION = os.environ["API_VERSION"] if "LISTENING_HOST" in os.environ: self.LISTENING_HOST = os.environ["LISTENING_HOST"] if "FLASK_DEBUG" in os.environ: if os.environ["FLASK_DEBUG"] == "True": self.FLASK_DEBUG = True elif os.environ["FLASK_DEBUG"] == "False": self.FLASK_DEBUG = False else: raise if "MODEL_WEIGHTS_FILENAME" in os.environ: self.MODEL_WEIGHTS_FILENAME = os.environ["MODEL_WEIGHTS_FILENAME"] ############################################################################### # Sensory Service Options ############################################################################### if "SENSORY_SERVER" in os.environ: self.SENSORY_SERVER = os.environ["SENSORY_SERVER"] if "SENSORY_PORT" in os.environ: self.SENSORY_PORT = int(os.environ["SENSORY_PORT"]) if "SENSORY_URI" in os.environ: self.SENSORY_URI = os.environ["SENSORY_URI"] if "SENSORY_SERVICE_RABBITMQ_EXCHANGE" in os.environ: self.SENSORY_SERVICE_RABBITMQ_EXCHANGE = os.environ["SENSORY_SERVICE_RABBITMQ_EXCHANGE"] if "SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_ROUTING_KEY" in os.environ: self.SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_ROUTING_KEY = os.environ[ "SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_ROUTING_KEY" ] if "SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_TASK_QUEUE" in os.environ: self.SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_TASK_QUEUE = os.environ[ "SENSORY_SERVICE_RABBITMQ_BATCH_REQUEST_TASK_QUEUE" ] if "SENSORY_SERVICE_RABBITMQ_URI" in os.environ: self.SENSORY_SERVICE_RABBITMQ_URI = os.environ["SENSORY_SERVICE_RABBITMQ_URI"] if "SENSORY_SERVICE_RABBITMQ_USERNAME" in os.environ: self.SENSORY_SERVICE_RABBITMQ_USERNAME = os.environ["SENSORY_SERVICE_RABBITMQ_USERNAME"] if "SENSORY_SERVICE_RABBITMQ_PASSWORD" in os.environ: self.SENSORY_SERVICE_RABBITMQ_PASSWORD = os.environ["SENSORY_SERVICE_RABBITMQ_PASSWORD"] if "SENSORY_SERVICE_RABBITMQ_SERVER" in os.environ: self.SENSORY_SERVICE_RABBITMQ_SERVER = os.environ["SENSORY_SERVICE_RABBITMQ_SERVER"] if "SENSORY_SERVICE_RABBITMQ_PORT" in os.environ: self.SENSORY_SERVICE_RABBITMQ_PORT = int(os.environ["SENSORY_SERVICE_RABBITMQ_PORT"]) if "SENSORY_SERVICE_RABBITMQ_VHOST" in os.environ: self.SENSORY_SERVICE_RABBITMQ_VHOST = os.environ["SENSORY_SERVICE_RABBITMQ_VHOST"] self.SENSORY_SERVICE_RABBITMQ_URL = "%s%s:%s@%s:%s/%s" % ( self.SENSORY_SERVICE_RABBITMQ_URI, self.SENSORY_SERVICE_RABBITMQ_USERNAME, self.SENSORY_SERVICE_RABBITMQ_PASSWORD, self.SENSORY_SERVICE_RABBITMQ_SERVER, self.SENSORY_SERVICE_RABBITMQ_PORT, self.SENSORY_SERVICE_RABBITMQ_VHOST, ) if "SENSORY_SERVICE_SHARD_SIZE" in os.environ: self.SENSORY_SERVICE_SHARD_SIZE = int(os.environ["SENSORY_SERVICE_SHARD_SIZE"]) ############################################################################### # Training Service Options ############################################################################### if "TRAINING_SERVICE_RABBITMQ_EXCHANGE" in os.environ: self.TRAINING_SERVICE_RABBITMQ_EXCHANGE = os.environ["TRAINING_SERVICE_RABBITMQ_EXCHANGE"] if "TRAINING_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY" in os.environ: self.TRAINING_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY = os.environ[ "TRAINING_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY" ] if "TRAINING_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE" in os.environ: self.TRAINING_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE = os.environ[ "TRAINING_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE" ] if "TRAINING_SERVICE_RABBITMQ_RABBITMQ_URI" in os.environ: self.TRAINING_SERVICE_RABBITMQ_RABBITMQ_URI = os.environ["TRAINING_SERVICE_RABBITMQ_RABBITMQ_URI"] if "TRAINING_SERVICE_RABBITMQ_USERNAME" in os.environ: self.TRAINING_SERVICE_RABBITMQ_USERNAME = os.environ["TRAINING_SERVICE_RABBITMQ_USERNAME"] if "TRAINING_SERVICE_RABBITMQ_PASSWORD" in os.environ: self.TRAINING_SERVICE_RABBITMQ_PASSWORD = os.environ["TRAINING_SERVICE_RABBITMQ_PASSWORD"] if "TRAINING_SERVICE_RABBITMQ_SERVER" in os.environ: self.TRAINING_SERVICE_RABBITMQ_SERVER = os.environ["TRAINING_SERVICE_RABBITMQ_SERVER"] if "TRAINING_SERVICE_RABBITMQ_PORT" in os.environ: self.TRAINING_SERVICE_RABBITMQ_PORT = int(os.environ["TRAINING_SERVICE_RABBITMQ_PORT"]) if "TRAINING_SERVICE_RABBITMQ_VHOST" in os.environ: self.TRAINING_SERVICE_RABBITMQ_VHOST = os.environ["TRAINING_SERVICE_RABBITMQ_VHOST"] self.TRAINING_SERVICE_RABBITMQ_URL = "%s%s:%s@%s:%s/%s" % ( self.TRAINING_SERVICE_RABBITMQ_RABBITMQ_URI, self.TRAINING_SERVICE_RABBITMQ_USERNAME, self.TRAINING_SERVICE_RABBITMQ_PASSWORD, self.TRAINING_SERVICE_RABBITMQ_SERVER, self.TRAINING_SERVICE_RABBITMQ_PORT, self.TRAINING_SERVICE_RABBITMQ_VHOST, ) ############################################################################### # Training Processor Options ############################################################################### if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_EXCHANGE" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_EXCHANGE = os.environ[ "TRAINING_PROCESSOR_SERVICE_RABBITMQ_EXCHANGE" ] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY = os.environ[ "TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAINING_REQUEST_ROUTING_KEY" ] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE = os.environ[ "TRAINING_PROCESSOR_SERVICE_RABBITMQ_TRAIN_REQUEST_TASK_QUEUE" ] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_URI" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_URI = os.environ["TRAINING_PROCESSOR_SERVICE_RABBITMQ_URI"] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_USERNAME" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_USERNAME = os.environ[ "TRAINING_PROCESSOR_SERVICE_RABBITMQ_USERNAME" ] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_PASSWORD" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_PASSWORD = os.environ[ "TRAINING_PROCESSOR_SERVICE_RABBITMQ_PASSWORD" ] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_SERVER" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_SERVER = os.environ["TRAINING_PROCESSOR_SERVICE_RABBITMQ_SERVER"] if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_PORT" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_PORT = int(os.environ["TRAINING_PROCESSOR_SERVICE_RABBITMQ_PORT"]) if "TRAINING_PROCESSOR_SERVICE_RABBITMQ_VHOST" in os.environ: self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_VHOST = os.environ["TRAINING_PROCESSOR_SERVICE_RABBITMQ_VHOST"] self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_URL = "%s%s:%s@%s:%s/%s" % ( self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_URI, self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_USERNAME, self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_PASSWORD, self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_SERVER, self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_PORT, self.TRAINING_PROCESSOR_SERVICE_RABBITMQ_VHOST, ) ############################################################################### # Client Options ############################################################################### if "CLASSIFICATION_SERVER" in os.environ: self.CLASSIFICATION_SERVER = os.environ["CLASSIFICATION_SERVER"] if "CLASSIFICATION_SERVER_PORT" in os.environ: self.CLASSIFICATION_SERVER_PORT = int(os.environ["CLASSIFICATION_SERVER_PORT"]) if "CLASSIFICATION_SERVER_URI" in os.environ: self.CLASSIFICATION_SERVER_URI = os.environ["CLASSIFICATION_SERVER_URI"]
StarcoderdataPython
4969882
# Lint as: python3 # Copyright 2020 Google LLC # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Common rates related utilities.""" import collections import enum import tensorflow.compat.v2 as tf from tf_quant_finance.experimental import dates InterestRateMarket = collections.namedtuple( 'InterestRateMarket', [ # Instance of class RateCurve. The curve used for computing the forward # expectation of Libor rate. 'reference_curve', # Instance of class RateCurve. The curve used for discounting cashflows. 'discount_curve' ]) # TODO(b/149644030): Use daycounts.py for this. class AverageType(enum.Enum): """Averaging types.""" # Componded rate COMPOUNDING = 1 # Arthmatic average ARITHMATIC_AVERAGE = 2 class DayCountBasis(enum.Enum): """Day count basis for accrual.""" # Actual/360 day count basis ACTUAL_360 = 1 # Acutal/365 day count basis ACTUAL_365 = 2 def elapsed_time(date_1, date_2, dtype): """Computes elapsed time between two date tensors.""" days_in_year = 365. return tf.cast(date_1.days_until(date_2), dtype=dtype) / ( days_in_year) def get_daycount_fraction(date_start, date_end, basis, dtype): """Return the day count fraction between two dates using the input basis.""" default_values = tf.zeros(date_start.shape, dtype=dtype) basis_as_int = tf.constant([x.value for x in basis], dtype=tf.int16) year_fractions = tf.where( tf.math.equal(basis_as_int, tf.constant(DayCountBasis.ACTUAL_365.value, dtype=tf.int16)), dates.daycounts.actual_365_fixed( start_date=date_start, end_date=date_end, dtype=dtype), tf.where( tf.math.equal(basis_as_int, tf.constant( DayCountBasis.ACTUAL_360.value, dtype=tf.int16)), dates.daycounts.actual_360( start_date=date_start, end_date=date_end, dtype=dtype), default_values)) return year_fractions
StarcoderdataPython
6655927
<filename>cvpy61.py print("Gerador de PA") print("-" * 15) primeiro_termo = int(input("Primeiro termo: ")) razao_pa = int(input("Razão da PA: ")) soma = primeiro_termo contador = 10 while contador > 0: print(f"{soma} -> ", end="") soma += razao_pa contador -= 1 if contador == 0: print("FIM")
StarcoderdataPython
6591106
<reponame>toxinu/django-bagou # -*- coding: utf-8 -*- from message import broadcast
StarcoderdataPython
3315576
#!/usr/bin/env python from segments.segment import Segment import vector as vec import config import utils from matplotlib.patches import Arc from math import sin, cos, radians, degrees, sqrt def isAngleWithinRange(startAngle, endAngle, pointAngle): if not (0 <= startAngle <= 360 and 0 <= endAngle <= 360 and 0 <= pointAngle <= 360): raise ValueError("Angle outside range (0,360)") if startAngle <= endAngle: return pointAngle >= startAngle and pointAngle <= endAngle return pointAngle >= startAngle or pointAngle <= endAngle def isPointInsideCircleArc(point, circle): pAngle = degrees(vec.angle(point - circle.center)) return isAngleWithinRange(circle.theta1, circle.theta2, pAngle) class CircleArc(Segment): def __init__(self, data): self.center = vec.Point(data["center"][0], data["center"][1]) self.radius = data["radius"] self.theta1 = data["theta1"] self.theta2 = data["theta2"] self.startsFromA = data["startsFromA"] def draw(self, ax): arc = Arc( (self.center.x, self.center.y), self.radius * 2, self.radius * 2, 0, self.theta1, self.theta2, color=config.PATH_COLOR, ) ax.add_patch(arc) def getFrameRect(self): xCoords = [ self.center[0] + self.radius * cos(radians(self.theta1)), self.center[0] + self.radius * cos(radians(self.theta2)), ] yCoords = [ self.center[1] + self.radius * sin(radians(self.theta1)), self.center[1] + self.radius * sin(radians(self.theta2)), ] for angle in range(0, 360, 90): if isAngleWithinRange(self.theta1, self.theta2, angle): xCoords.append( self.center[0] + self.radius * round(cos(radians(angle))) ) yCoords.append( self.center[1] + self.radius * round(sin(radians(angle))) ) pMin = vec.Point(min(xCoords), min(yCoords)) pMax = vec.Point(max(xCoords), max(yCoords)) return (pMin, pMax) def intersectionWithLine(self, line): known, unknown = utils.checkLineParallelism(line) knownValue = -line[2] / line[known] if ( knownValue < self.center[known] - self.radius or knownValue > self.center[known] + self.radius ): return [] tmp = self.radius**2 - (knownValue - self.center[known]) ** 2 if tmp < 0: return [] unknownValue1 = self.center[unknown] + sqrt(tmp) unknownValue2 = self.center[unknown] - sqrt(tmp) if known: result = [ vec.Point(unknownValue1, knownValue), vec.Point(unknownValue2, knownValue), ] else: result = [ vec.Point(knownValue, unknownValue1), vec.Point(knownValue, unknownValue2), ] result = utils.removeDuplicatesPreservingOrder(result) # remove points outside arc return [p for p in result if isPointInsideCircleArc(p, self)] def orderPoints(self, points): points.sort( key=lambda p: vec.angle(p - self.center), reverse=not self.startsFromA ) if self.theta1 > self.theta2 and points: if self.startsFromA: if degrees(vec.angle(points[0] - self.center)) < self.theta1: while degrees(vec.angle(points[-1] - self.center)) >= self.theta1: points.insert(0, points.pop()) else: if degrees(vec.angle(points[0] - self.center)) > self.theta2: while degrees(vec.angle(points[-1] - self.center)) <= self.theta2: points.insert(0, points.pop()) return points
StarcoderdataPython
1934802
"""The django management command sync_from_asana""" import logging from asana.error import NotFoundError, InvalidTokenError, ForbiddenError from django.apps import apps from django.core.management.base import BaseCommand, CommandError from djasana.connect import client_connect from djasana.models import ( Attachment, Project, Story, SyncToken, Tag, Task, Team, User, Webhook, Workspace) from djasana.settings import settings from djasana.utils import ( pop_unsupported_fields, set_webhook, sync_attachment, sync_project, sync_story, sync_task) logger = logging.getLogger(__name__) class Command(BaseCommand): """Sync data from Asana to the database""" help = 'Import data from Asana and insert/update model instances' commit = True client = None process_archived = False synced_ids = [] # A running list of remote ids of tasks that have been synced. @staticmethod def get_client(): return client_connect() def add_arguments(self, parser): parser.add_argument( '--noinput', action='store_false', dest='interactive', default=True, help='If provided, no prompts will be issued to the user and the data will be synced.' ) parser.add_argument( "-w", "--workspace", action="append", default=[], help='Sync only the named workspace (can be used multiple times). ' 'By default all workspaces will be updated from Asana.' ) parser.add_argument( "-p", "--project", action="append", default=[], help='Sync only the named project (can be used multiple times). ' 'By default all projects will be updated from Asana.' ) parser.add_argument( "-m", "--model", action="append", default=[], help='Sync only the named model (can be used multiple times). ' 'By default all models will be updated from Asana.' ) parser.add_argument( "-mx", "--model-exclude", action="append", default=[], help='Exclude the named model (can be used multiple times).' ) parser.add_argument( "-a", "--archive", action="store_false", dest='archive', help='Sync project tasks etc. even if the project is archived. ' 'By default, only tasks of unarchived projects are updated from Asana. ' 'Regardless of this setting, the project itself will be updated, ' 'perhaps becoming marked as archived. ' ) parser.add_argument( '--nocommit', action='store_false', dest='commit', default=True, help='Will not commit changes to the database.' ) def handle(self, *args, **options): self.commit = not options.get('nocommit') if self.commit and options.get('interactive', True): self.stdout.write( 'WARNING: This will irreparably synchronize your local database from Asana.') if not self._confirm(): self.stdout.write("No action taken.") return self.process_archived = options.get('archive') models = self._get_models(options) if options.get('verbosity', 0) >= 1: message = "Synchronizing data from Asana." self.stdout.write(message) logger.info(message) workspaces = options.get('workspace') or [] if settings.ASANA_WORKSPACE: workspaces.append(settings.ASANA_WORKSPACE) # Allow client to be mocked: self.client = self.client or self.get_client() workspace_ids = self._get_workspace_ids(workspaces) projects = options.get('project') for workspace_id in workspace_ids: self._sync_workspace_id(workspace_id, projects, models) @staticmethod def _confirm(): yes_or_no = input("Are you sure you wish to continue? [y/N] ") return yes_or_no.lower().startswith('y') @staticmethod def _get_models(options): """Returns a list of models to sync""" models = options.get('model') models_exclude = options.get('model_exclude') app_models = list(apps.get_app_config('djasana').get_models()) if models: good_models = [] model_names = [model_.__name__.lower() for model_ in app_models] for model in models: try: index = model_names.index(model.lower()) except ValueError: raise CommandError('{} is not an Asana model'.format(model)) else: good_models.append(app_models[index]) models = good_models else: models = app_models if models_exclude: models = [model for model in models if model.__name__.lower() not in [m.lower() for m in models_exclude]] return models def _check_sync_project_id(self, project_id, workspace, models): """If we have a valid sync token for this project sync new events else sync the project""" new_sync = False try: sync_token = SyncToken.objects.get(project_id=project_id) try: events = self.client.events.get({'resource': project_id, 'sync': sync_token.sync}) self._process_events(project_id, events, models) self._set_webhook(workspace, project_id) return except InvalidTokenError as error: sync_token.sync = error.sync sync_token.save() except SyncToken.DoesNotExist: try: self.client.events.get({'resource': project_id}) except InvalidTokenError as error: new_sync = error.sync is_archived = self._sync_project_id(project_id, models) if not is_archived: self._set_webhook(workspace, project_id) if new_sync: SyncToken.objects.create(project_id=project_id, sync=new_sync) def _get_workspace_ids(self, workspaces): workspace_ids = [] bad_list = [] workspaces_ = self.client.workspaces.find_all() if workspaces: for workspace in workspaces: for wks in workspaces_: if workspace in (wks['gid'], wks['name']): workspace_ids.append(wks['gid']) break else: bad_list.append(workspace) else: workspace_ids = [wks['gid'] for wks in workspaces_] if bad_list: if len(bad_list) == 1: raise CommandError('{} is not an Asana workspace'.format(workspaces[0])) raise CommandError('Specified workspaces are not valid: {}'.format( ', '.join(bad_list))) # Return newer workspaces first so they get synced earlier return sorted(workspace_ids, reverse=True) def _get_project_ids(self, projects, workspace_id): project_ids = [] bad_list = [] projects_ = self.client.projects.find_all({'workspace': workspace_id}) if projects: for project in projects: for prj in projects_: if project in (prj['gid'], prj['name']): project_ids.append(prj['gid']) break else: bad_list.append(project) else: project_ids = [prj['gid'] for prj in projects_] if bad_list: if len(bad_list) == 1: raise CommandError('{} is not an Asana project'.format(bad_list[0])) raise CommandError('Specified projects are not valid: {}'.format(', '.join(bad_list))) # Return newer projects first so they get synced earlier return sorted(project_ids, reverse=True) def _set_webhook(self, workspace, project_id): """Sets a webhook if the setting is configured and a webhook does not currently exist""" if not (self.commit and settings.DJASANA_WEBHOOK_URL): return webhooks = [webhook for webhook in self.client.webhooks.get_all({ 'workspace': workspace.remote_id, 'resource': project_id})] if webhooks: # If there is exactly one, and it is active, we are good to go, # else delete them and start a new one. webhooks_ = Webhook.objects.filter(project_id=project_id) if len(webhooks) == webhooks_.count() == 1 and webhooks[0]['active']: return for webhook in webhooks: self.client.webhooks.delete_by_id(webhook['id']) Webhook.objects.filter(id__in=webhooks_.values_list('id', flat=True)[1:]).delete() set_webhook(self.client, project_id) def _process_events(self, project_id, events, models): project = Project.objects.get(remote_id=project_id) ignored_tasks = 0 for event in events['data']: if event['type'] == 'project': if Project in models: if event['action'] == 'removed': Project.objects.get(remote_id=event['resource']['gid']).delete() else: self._sync_project_id(project_id, models) else: ignored_tasks += 1 elif event['type'] == 'task': if Task in models: if event['action'] == 'removed': Task.objects.get(remote_id=event['resource']['gid']).delete() else: self._sync_task(event['resource'], project, models) else: ignored_tasks += 1 elif event['type'] == 'story': if Story in models: self._sync_story(event['resource']) else: ignored_tasks += 1 tasks_done = len(events['data']) - ignored_tasks if self.commit: message = 'Successfully synced {0} events for project {1}.'.format( tasks_done, project.name) if ignored_tasks: message += ' {0} events ignored for excluded models.'.format(ignored_tasks) self.stdout.write(self.style.SUCCESS(message)) logger.info(message) def _sync_project_id(self, project_id, models): """Sync this project by polling it. Returns boolean 'is archived?'""" project_dict = self.client.projects.find_by_id(project_id) logger.debug('Sync project %s', project_dict['name']) logger.debug(project_dict) if self.commit: project = sync_project(self.client, project_dict) if Task in models and not project_dict['archived'] or self.process_archived: for task in self.client.tasks.find_all({'project': project_id}): self._sync_task(task, project, models) # Delete local tasks for this project that are no longer in Asana. tasks_to_delete = Task.objects.filter(projects=project).exclude( remote_id__in=self.synced_ids).exclude(remote_id__isnull=True) if tasks_to_delete.count() > 0: id_list = list(tasks_to_delete.values_list('remote_id', flat=True)) tasks_to_delete.delete() message = 'Deleted {} tasks no longer present: {}'.format(len(id_list), id_list) self.stdout.write(self.style.SUCCESS(message)) logger.info(message) if self.commit: message = 'Successfully synced project {}.'.format(project.name) self.stdout.write(self.style.SUCCESS(message)) logger.info(message) return project_dict['archived'] def _sync_story(self, story): story_id = story.get('gid') try: story_dict = self.client.stories.find_by_id(story_id) except NotFoundError as error: logger.info(error.response) return logger.debug(story_dict) remote_id = story_dict['gid'] sync_story(remote_id, story_dict) def _sync_tag(self, tag, workspace): tag_dict = self.client.tags.find_by_id(tag['gid']) logger.debug(tag_dict) if self.commit: remote_id = tag_dict['gid'] tag_dict['workspace'] = workspace followers_dict = tag_dict.pop('followers') pop_unsupported_fields(tag_dict, Tag) tag = Tag.objects.get_or_create( remote_id=remote_id, defaults=tag_dict)[0] follower_ids = [follower['gid'] for follower in followers_dict] followers = User.objects.filter(id__in=follower_ids) tag.followers.set(followers) def _sync_task(self, task, project, models, skip_subtasks=False): """Sync this task and its parent, dependencies, and subtasks For parents and subtasks, this method is called recursively, so skip_subtasks True is passed when syncing a parent task from a subtask. """ task_id = task['gid'] try: task_dict = self.client.tasks.find_by_id(task_id) except (ForbiddenError, NotFoundError): try: Task.objects.get(remote_id=task_id).delete() except Task.DoesNotExist: pass return logger.debug('Sync task %s', task_dict['name']) logger.debug(task_dict) if Task in models and self.commit: remote_id = task_dict['gid'] parent = task_dict.pop('parent', None) dependencies = task_dict.pop('dependencies', None) or [] if parent: # If this is a task we already know about, assume it was just synced. parent_id = parent['gid'] if parent_id not in self.synced_ids and \ not Task.objects.filter(remote_id=parent_id).exists(): self._sync_task(parent, project, models, skip_subtasks=True) task_dict['parent_id'] = parent_id task_ = sync_task(remote_id, task_dict, project, sync_tags=Tag in models) self.synced_ids.append(remote_id) if not skip_subtasks: for subtask in self.client.tasks.subtasks(task_id): if subtask['gid'] not in self.synced_ids: self._sync_task(subtask, project, models) if dependencies: for subtask in dependencies: if subtask['gid'] not in self.synced_ids: self._sync_task(subtask, project, models) task_.dependencies.set( Task.objects.filter(remote_id__in=[dep['gid'] for dep in dependencies])) if Attachment in models and self.commit: for attachment in self.client.attachments.find_by_task(task_id): sync_attachment(self.client, task_, attachment['gid']) if Story in models and self.commit: for story in self.client.stories.find_by_task(task_id): self._sync_story(story) return def _sync_team(self, team): team_dict = self.client.teams.find_by_id(team['gid']) logger.debug(team_dict) if self.commit: remote_id = team_dict['gid'] organization = team_dict.pop('organization') team_dict['organization_id'] = organization['gid'] team_dict['organization_name'] = organization['name'] pop_unsupported_fields(team_dict, Team) Team.objects.get_or_create( remote_id=remote_id, defaults=team_dict) def _sync_user(self, user, workspace): user_dict = self.client.users.find_by_id(user['gid']) logger.debug(user_dict) if self.commit: remote_id = user_dict['gid'] user_dict.pop('workspaces') if user_dict['photo']: user_dict['photo'] = user_dict['photo']['image_128x128'] user = User.objects.update_or_create( remote_id=remote_id, defaults=user_dict)[0] if workspace: user.workspaces.add(workspace) def _sync_workspace_id(self, workspace_id, projects, models): workspace_dict = self.client.workspaces.find_by_id(workspace_id) logger.debug('Sync workspace %s', workspace_dict['name']) logger.debug(workspace_dict) if Workspace in models and self.commit: remote_id = workspace_dict['gid'] workspace_dict.pop('email_domains') workspace = Workspace.objects.update_or_create( remote_id=remote_id, defaults=workspace_dict)[0] else: workspace = None project_ids = self._get_project_ids(projects, workspace_id) if 'workspace_id' in self.client.options \ and workspace_id != self.client.options['workspace_id']: self.client.options['workspace_id'] = str(workspace_id) if User in models: for user in self.client.users.find_all({'workspace': workspace_id}): self._sync_user(user, workspace) if Tag in models: for tag in self.client.tags.find_by_workspace(workspace_id): self._sync_tag(tag, workspace) if Team in models: for team in self.client.teams.find_by_organization(workspace_id): self._sync_team(team) if Project in models: for project_id in project_ids: self._check_sync_project_id(project_id, workspace, models) if workspace: message = 'Successfully synced workspace {}.'.format(workspace.name) self.stdout.write(self.style.SUCCESS(message)) logger.info(message)
StarcoderdataPython
6575731
#!/usr/bin/env python import os import optparse from subprocess import Popen from subprocess import PIPE class WKOption(object): """ Build an option to be used throughout """ def __init__(self, name, shortcut, otype=str, action=None, dest=None, default=None, help=None, validate=None, \ validate_error=None, value=None): self.name = name self.shortcut = shortcut self.otype = bool if (default is True or default is False) else otype self.action = "store_true" if self.otype is bool else "store" self.dest = dest if dest else name.replace('-', '_') self.default = default self.help = help self._validate = validate self.validate_error = validate_error # if there's a value passed to us use it, else use the default if value is not None: self.value = value else: self.value = default def validate(self): if self.validate is None: return True # only try to validate if we have a function to do so if self.validate(self.value): return True else: return False, self.validate_error def long(self): return '--' + self.name.replace('_', '-') def to_cmd(self): """ Return the str of this command, bool is just --long, etc """ if self.otype is bool: if self.value: return self.long() else: return "" else: return " ".join([self.long(), str(self.value) if self.value is not None else ""]) OPTIONS = [ WKOption('enable-plugins', '-F', default=True, help="Use flash and other plugins."), WKOption('disable-javascript', '-J', default=False, help="Disable javascript."), WKOption('no-background', '-b', default=False, help="Do not print background."), WKOption('grayscale', '-g', default=False, help="Make greyscale."), WKOption( 'orientation', '-O', default="Portrait", help="Set page orientation.", validate=lambda x: x in ['Portrait', 'Landscape'], validate_error="Orientation argument must be either Portrait or Landscape" ), WKOption( 'page-size', '-s', default="A4", help="Set page size.", validate=lambda x: x in ['A4', 'Letter'], validate_error="Page size argument must be A4 or Letter" ), WKOption('print-media-type', '', default = False, help="Set print media type."), WKOption('dpi', '-D', default=100, help="Set DPI"), WKOption('username', '-U', default="", help="Set the HTTP username"), WKOption('password', '-P', default="", help="Set the HTTP password"), WKOption('margin-bottom', '-B', default=10, help="Bottom page margin."), WKOption('margin-top', '-T', default=10, help="Top page margin."), WKOption('margin-left', '-L', default=10, help="Left page margin."), WKOption('margin-right', '-R', default=10, help="Right page margin."), WKOption( 'disable-smart-shrinking', None, default=False, help="Disable the intelligent shrinking strategy used by WebKit that makes the pixel/dpi ratio none constant", ) ] class WKHtmlToPdf(object): """ Convert an html page via its URL into a pdf. """ def __init__(self, *args, **kwargs): self.url = None self.output_file = None # get the url and output_file options try: self.url, self.output_file = kwargs['url'], kwargs['output_file'] except KeyError: self.url, self.output_file = args[0], args[1] except IndexError: pass if not self.url or not self.output_file: raise Exception("Missing url and output file arguments") # save the file to /tmp if a full path is not specified output_path = os.path.split(self.output_file)[0] if not output_path: self.output_file = os.path.join('/tmp', self.output_file) # set the options per the kwargs coming in for option in OPTIONS: try: option.value = kwargs[option.dest] # try to get the value for that kwarg passed to us. except KeyError: pass # can't find? just ignore and move on self.params = [option.to_cmd() for option in OPTIONS] self.screen_resolution = [1024, 768] self.color_depth = 24 def render(self): """ Render the URL into a pdf and setup the evironment if required. """ # setup the environment if it isn't set up yet if not os.getenv('DISPLAY'): os.system("Xvfb :0 -screen 0 %sx%sx%s & " % ( self.screen_resolution[0], self.screen_resolution[1], self.color_depth )) os.putenv("DISPLAY", '127.0.0.1:0') # execute the command command = 'wkhtmltopdf %s "%s" "%s" >> /tmp/wkhtp.log' % ( " ".join([cmd for cmd in self.params]), self.url, self.output_file ) try: p = Popen(command, shell=True, stdout=PIPE, stderr=PIPE, close_fds=True) stdout, stderr = p.communicate() retcode = p.returncode if retcode == 0: # call was successful return elif retcode < 0: raise Exception("Terminated by signal: ", -retcode) else: raise Exception(stderr) except OSError, exc: raise exc def wkhtmltopdf(*args, **kwargs): wkhp = WKHtmlToPdf(*args, **kwargs) wkhp.render() if __name__ == '__main__': # parse through the system argumants usage = "Usage: %prog [options] url output_file" parser = optparse.OptionParser() for option in OPTIONS: if option.shortcut: parser.add_option( option.shortcut, option.long(), action=option.action, dest=option.dest, default=option.default, help=option.help ) else: parser.add_option( option.long(), action=option.action, dest=option.dest, default=option.default, help=option.help ) options, args = parser.parse_args() # call the main method with parsed argumants wkhtmltopdf(*args, **options.__dict__)
StarcoderdataPython
4968007
Task Given an integer, n, perform the following conditional actions: If n is odd, print Weird If n is even and in the inclusive range of to , print Not Weird If n is even and in the inclusive range of to , print Weird If n is even and greater than , print Not Weird Input Format A single line containing a positive integer, n. Constraints Output Format Print Weird if the number is weird; otherwise, print Not Weird. Sample Input 0 3 Sample Output 0 Weird Explanation 0 n=3 n is odd and odd numbers are weird, so we print Weird. Sample Input 1 24 Sample Output 1 Not Weird Explanation 1 n=24 n > 20 and n is even, so it isn't weird. Thus, we print Not Weird. Current Buffer (saved locally, editable) 1 #!/bin/python 2 ​ 3 import math 4 import os 5 import random 6 import re 7 import sys 8 ​ 9 ​ 10 if __name__ == '__main__': 11 n = int(raw_input()) 12 ​ 13 14 if n % 2 != 0: 15 print 'Weird' 16 elif n >= 2 and n <= 5: 17 print 'Not Weird' 18 elif n >= 6 and n <= 20: 19 print 'Weird' 20 elif n > 20: 21 print 'Not Weird' 22 ​ 23 ​ 24
StarcoderdataPython
11295087
<gh_stars>1-10 ########################################################################## # # Demonstrate how to create a transaction. # # We will need a running bitcoind installation to manage our wallet # and to retrieve UTXOs # # MIT license # # Copyright (c) 2018 christianb93 # Permission is hereby granted, free of charge, to # any person obtaining a copy of this software and # associated documentation files (the "Software"), # to deal in the Software without restriction, # including without limitation the rights to use, # copy, modify, merge, publish, distribute, # sublicense, and/or sell copies of the Software, # and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice # shall be included in all copies or substantial # portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY # OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT # LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, # ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE # OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # ########################################################################## import argparse import binascii import random import btc.txn import btc.script import btc.keys import btc.utils #################################################### # Parse arguments #################################################### def get_args(): parser = argparse.ArgumentParser() parser.add_argument("--amount", type=float, default="1.0", help="Amount in BTC to be transferred" ) parser.add_argument("--target", default="mpV4bFDWN8NrWX9u3V47UgzxD9wSLQivwj", help="Target address" ) args=parser.parse_args() return args #################################################### # Main #################################################### args = get_args() # # First we make an RPC call to retrieve unspent transaction output and # select the outputs that we are going to spend # listunspent = btc.utils.rpcCall("listunspent") # # Now extract transaction IDs and store that in a list of # dictionaries # # We split this list into one list of entries that are greater # than the amount we want to transfer and one list of entries # that are smaller # # smaller = [] greater = [] amount_to_spend = float(args.amount) for _ in listunspent: if _['spendable']: txid = _['txid'] vout = _['vout'] amount = float(_['amount']) address = _['address'] coin = {'txid': txid, 'vout': vout, 'amount': amount, 'address' : address} if amount > amount_to_spend: greater.append(coin) else: smaller.append(coin) # # Next we sort the lists. # greater.sort(key=lambda entry: entry['amount']) smaller.sort(key=lambda entry: entry['amount'], reverse=True) # # If greater is not emtpy, take the smallest (i.e. now first) # element # if len(greater) > 0: amount_funded = greater[0]['amount'] to_be_spent = [greater[0]] else: # # We need to combine more than one transaction output # to_be_spent = [] amount_funded = 0 for _ in smaller: if amount_funded < amount_to_spend: to_be_spent.append(_) amount_funded += _['amount'] if (amount_funded < amount_to_spend): # Failed, clean up list to_be_spent = [] if 0 == len(to_be_spent): print("Could not fund transaction") exit(1) else: print("Here is the list of transaction outputs that I will use: ") print(to_be_spent) # # Now go through the resulting list and build a list of private # keys. At the same time, we build a list of transaction outputs # txos = [] privateKeys = [] for _ in to_be_spent: tx = btc.txn.txn() raw = btc.utils.rpcCall("getrawtransaction", [_['txid']]) tx.deserialize(raw) # # Get private key using again an RPC call # privKey = btc.utils.rpcCall("dumpprivkey", [_['address']]) privKey = btc.keys.wifToPayloadBytes(privKey) privKey = int.from_bytes(privKey, "big") privateKeys.append(privKey) txos.append(tx.getOutputs()[_['vout']]) # # Next we create our transaction. First we create the transaction # inputs. We leave the signature scripts empty for the time # being # txn = btc.txn.txn() for _ in to_be_spent: txin = btc.txn.txin(prevTxid = _['txid'], vout = _['vout']) txn.addInput(txin) # # Next we do the outputs. For the time being, we use only one output # So we need to convert the address to a public key hash # publicKeyHash = btc.keys.ecAddressToPKH(args.target) publicKeyHash = binascii.hexlify(publicKeyHash).decode('ascii') # # Create locking script # lockingScript = btc.script.scriptPubKey(scriptType = btc.script.SCRIPTTYPE_P2PKH, pubKeyHash = publicKeyHash) # # and output # txout = btc.txn.txout(value = int(amount_to_spend * 100000000), scriptPubKey = lockingScript) txn.addOutput(txout) # # Sign it # txn = btc.script.signTransaction(txn, txos, privateKeys) # # and send it # print("Sending transaction") raw = txn.serialize() s = btc.utils.rpcCall("sendrawtransaction", [raw, True]) print("Done, resulting transaction ID: ") print(s)
StarcoderdataPython
5086880
<gh_stars>0 from django.core.exceptions import ValidationError class KolibriError(Exception): pass class KolibriValidationError(ValidationError, KolibriError): pass class KolibriUpgradeError(KolibriError): """ Should be used whenever an error arises that is due to an anticipated future incompatible change, for example: change in content database schemas, change in content that is not supported by old versions of Kolibri. """ pass
StarcoderdataPython