id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
9655535
<gh_stars>0 #!/usr/bin/env python """This file contains various utility classes used by GRR data stores.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import collections import os import re import stat from grr_response_core.lib import rdfvalue from grr_response_core.lib import utils def ConvertStringToFilename(name): """Converts an unicode string to a filesystem safe filename. For maximum compatibility we escape all chars which are not alphanumeric (in the unicode sense). Args: name: a unicode string that is part of a subject. Returns: A safe filename with escaped special chars. """ return re.sub( r"\W", lambda x: "%%%02X" % ord(x.group(0)), name, flags=re.UNICODE).rstrip("/") def Components(subject): if not isinstance(subject, rdfvalue.RDFURN): subject = rdfvalue.RDFURN(subject) return subject.Split() def ResolveSubjectDestination(subject, regexes): """Returns the directory/filename where the subject will be stored. Args: subject: The subject. regexes: The list of regular expressions by priority. Returns: File name and directory. """ components = Components(subject) if not components: # No components to work with. return "aff4", "" # Make all the components safe to use. path = utils.JoinPath(*[ConvertStringToFilename(x) for x in components]) for route in regexes: m = route.match(path) if m: value = m.group("path") if value: base = os.path.basename(value) dirname = os.path.dirname(value) return base, dirname # Default value if nothing else matches. return "aff4", "" def MakeDestinationKey(directory, filename): """Creates a name that identifies a database file.""" return utils.SmartStr(utils.JoinPath(directory, filename)).lstrip("/") def DatabaseDirectorySize(root_path, extension): """Compute size (in bytes) and number of files of a file-based data store.""" directories = collections.deque([root_path]) total_size = 0 total_files = 0 while directories: directory = directories.popleft() try: items = os.listdir(directory) except OSError: continue for comp in items: path = os.path.join(directory, comp) try: statinfo = os.lstat(path) if stat.S_ISLNK(statinfo.st_mode): continue if stat.S_ISDIR(statinfo.st_mode): directories.append(path) elif stat.S_ISREG(statinfo.st_mode): if comp.endswith(extension): total_size += statinfo.st_size total_files += 1 except OSError: continue return total_size, total_files
StarcoderdataPython
9647643
# -*- coding: utf8 -*- import unittest import os import sys import mock # Change path so we find sdk sys.path.insert(1, os.path.join(sys.path[0], '..')) from sdk.api.resource import * class TestResourcesAPI(unittest.TestCase): __TEST_TOKEN = "test" __USER_AGENT = "SDK v2" __API_CLIENT = "6918a2e6-86e8-4be3-9800-e658dd37e760" __TEST_HEADERS = { "Authorization": "bearer {0}".format(__TEST_TOKEN), "User-Agent": __USER_AGENT, "X-API-CLIENT": __API_CLIENT } def mocked_requests_get(*args, **kwargs): class MockResponse: def __init__(self, json_data, status_code): self.json_data = json_data self.status_code = status_code self.raise_for_status = None def json(self): if self.status_code != 200: raise Exception return self.json_data return MockResponse({'msg': 'Not found'}, 200) def setUp(self): self.bot_ips = Resource(base_url='https://api.blueliv.com', name='botips', token=self.__TEST_TOKEN, http_timeout=60) self.crimeservers = Resource(base_url='https://api.blueliv.com', name='crimeservers', token=self.__TEST_TOKEN, http_timeout=60) self.malwares = Resource(base_url='https://api.blueliv.com', name='malwares', token=self.__TEST_TOKEN, http_timeout=60) self.hacktivism_ops = Resource(base_url='https://api.blueliv.com', name='hacktivism_ops', token=self.__TEST_TOKEN, http_timeout=60) self.hacktivism_country = Resource(base_url='https://api.blueliv.com', name='hacktivism_country', token=self.__TEST_TOKEN, http_timeout=60) def test_token_headers(self): self.assertEqual(self.bot_ips.headers, self.__TEST_HEADERS) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_bot_ips_feed(self, mock_get): self.bot_ips.recent('non-pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.bot_ips.last('non-pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_crimeservers_feed(self, mock_get): self.crimeservers.recent() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/crimeserver/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.crimeservers.last() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/crimeserver/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.crimeservers.online() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/crimeserver/online?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_bot_ips_pos_feed(self, mock_get): self.bot_ips.recent(feed_type='pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/pos/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.bot_ips.last(feed_type='pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/pos/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_bot_ips_full_feed(self, mock_get): self.bot_ips.recent(feed_type='pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/pos/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.bot_ips.last(feed_type='pos') self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/pos/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_malwares__feed(self, mock_get): self.malwares.recent() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/malware/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.malwares.last() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/malware/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_hacktivism__feed(self, mock_get): self.hacktivism_ops.recent() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/hacktivism/ops/recent?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.hacktivism_country.last() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/hacktivism/country/last?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.hacktivism_ops.current() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/hacktivism/ops/current?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) def test_non_existant_feed(self): self.assertRaises(InvalidResource, self.bot_ips.recent, ('p0s')) self.assertRaises(InvalidResource, self.bot_ips.last, ('p0s')) self.assertRaises(InvalidResource, self.crimeservers.recent, ('xx')) self.assertRaises(InvalidResource, self.crimeservers.last, ('xx')) @mock.patch('requests.get', side_effect=mocked_requests_get) def test_debug_endpoint(self, mock_get): self.bot_ips.test() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/ip/test?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) self.crimeservers.test() self.assertIn(mock.call(self.bot_ips.base_url + '/v1/crimeserver/test?key={0}'.format(self.__API_CLIENT), headers=self.__TEST_HEADERS, proxies=None, timeout=60, verify=True), mock_get.call_args_list) if __name__ == '__main__': suite = unittest.TestLoader().loadTestsFromTestCase(TestResourcesAPI) unittest.TextTestRunner(verbosity=2).run(suite)
StarcoderdataPython
6684663
<gh_stars>0 """ Django settings for test_opa project. For more information on this file, see https://docs.djangoproject.com/en/1.7/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.7/ref/settings/ """ # Build paths inside the project like this: os.path.join(BASE_DIR, ...) import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) # Quick-start development settings - unsuitable for production # See https://docs.djangoproject.com/en/1.7/howto/deployment/checklist/ # SECURITY WARNING: keep the secret key used in production secret! SECRET_KEY = '<KEY>' # SECURITY WARNING: don't run with debug turned on in production! DEBUG = True TEMPLATE_DEBUG = True ALLOWED_HOSTS = [] LOGIN_REDIRECT_URL = 'payments:dash_payments' LOGIN_URL = 'login' LOGOUT_URL = 'logout' # Application definition INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'catalog', 'paints', 'sales', 'payments', 'django_celery_beat', 'django_celery_results', ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ) ROOT_URLCONF = 'conf.urls' WSGI_APPLICATION = 'conf.wsgi.application' # Database # https://docs.djangoproject.com/en/1.7/ref/settings/#databases DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': os.path.join(BASE_DIR, 'db.sqlite3'), } } # Internationalization # https://docs.djangoproject.com/en/1.7/topics/i18n/ LANGUAGE_CODE = 'pt-br' TIME_ZONE = 'America/Fortaleza' USE_I18N = True USE_L10N = True USE_TZ = False # Static files (CSS, JavaScript, Images) # https://docs.djangoproject.com/en/1.7/howto/static-files/ from django.conf.global_settings import TEMPLATE_CONTEXT_PROCESSORS as DEFAULT_TEMPLATE_CONTEXT_PROCESSORS TEMPLATE_CONTEXT_PROCESSORS = DEFAULT_TEMPLATE_CONTEXT_PROCESSORS + ( 'django.core.context_processors.request', ) TEMPLATE_DIRS = ( os.path.join(BASE_DIR, 'templates'), ) STATICFILES_DIRS = ( os.path.join(BASE_DIR, 'static'), ) MEDIA_ROOT = os.path.join(BASE_DIR,'media') MEDIA_URL = '/media/' STATIC_ROOT = os.path.join(BASE_DIR,'static_files') STATIC_URL = '/static/' BROKER_URL = 'redis://localhost:6379/0' CELERY_ACCEPT_CONTENT = ['json'] CELERY_TASK_SERIALIZER = 'json' CELERY_RESULT_SERIALIZER = 'json'
StarcoderdataPython
6418887
<gh_stars>0 # -*- coding:utf-8 -*- import xmensur men1 = xmensur.Men() men2 = xmensur.Men(1) men11 = men1 print(men1 == men2) print(men1 == men11)
StarcoderdataPython
5152758
<reponame>pawan3091/pawan import numpy as np import matplotlib.pyplot as plt import pandas as pd def RK2(func, X0,tmin,tmax,h,cons): N=int((tmax-tmin)/h) t = np.linspace(tmin,tmax,N) X = np.zeros([N, len(X0)]) X[0] = X0 for i in range(N-1): k1 =h* func(t[i],X[i],cons) k2 = h*func( t[i] + h,X[i] + k1,cons) X[i+1] = X[i] + (k1 +k2 )/2 return X,t def f2(t,X,cons): k,m,b=cons x,z=X dx_dt=z dx2_dt2=-b*z/m-k*x/m return np.array([dx_dt, dx2_dt2]) def f3(t,X,cons): g,L=cons th,z=X dth_dt=z dth2_dt2=-g*th/L return np.array([dth_dt, dth2_dt2]) def f4(t,X,cons): k,m,g,L=cons w0=np.sqrt(g/L) xa,z1,xb,z2=X xb=np.radians(xb) xa=np.radians(xa) e1=z1 e2=-(w0**2)*xa-(k/m)*(xa-xb) e3=z2 e4=-(w0**2)*xb+(k/m)*(xa-xb) return np.array([e1,e2,e3,e4]) #3a IC=[2,0];tmin=0;m=0.5;k=4;h=0.01;b=0#SI units tp=2*np.pi*np.sqrt(m/k) tmax=5*tp cons=(k,m,b) S=RK2(f2,IC,tmin,tmax,h,cons) x,v= S[0].T t=S[1] t1=t/tp fig, axs = plt.subplots(2) fig.suptitle('SIMPLE HARMONIC OSCILLATOR',c="r") axs[0].plot(t1,x,marker="*",c="orange") axs[0].set(xlabel="time/time period ",ylabel="Dispacement") axs[0].grid() axs[1].plot(t1,v,marker="*",c="cyan") axs[1].set(xlabel=" Time/Time Period ",ylabel="Velocity") axs[1].grid() plt.show() print("----------------------------- SIMPLE HARMONIC OSCILLATOR---------------------------------") d={"No. of time periods":t1,"Displacement":x,"Velocity":v} print(pd.DataFrame(d)) #3b https://scipy-lectures.org/intro/scipy/auto_examples/plot_odeint_damped_spring_mass.html (ref) IC=[1,0];tmin=0;h=0.1;m=0.5;k=4 #SI units tmax=100 dis=[];vel=[];time=[] ba=[0.2,np.sqrt(4*m*k),3] for b in ba: cons=(m,k,b) S=RK2(f2,IC,tmin,tmax,h,cons) x,v= S[0].T t=S[1] dis.append(x) vel.append(v) fig, ax = plt.subplots(3,2) fig.suptitle('DAMPED HARMONIC OSCILLATOR',c="r") ax[0,0].plot(t,dis[0],marker="*",c="r") ax[0,0].set(xlabel="time ",ylabel="Dispacement",title="Underdamped") ax[0,0].grid() ax[0,1].plot(t,vel[0],marker="*",c="green") ax[0,1].set(xlabel="time ",ylabel="Velocity",title="Underdamped") ax[0,1].grid() ax[1,0].plot(t,dis[1],marker="*",c="purple") ax[1,0].set(xlabel="time ",ylabel="Dispacement",title="Critically Damped") ax[1,0].grid() ax[1,1].plot(t,vel[1],marker="*",c="darkblue") ax[1,1].set(xlabel="time ",ylabel="Velocity",title="Critically Damped") ax[1,1].grid() ax[2,0].plot(t,dis[2],marker="*",c="brown") ax[2,0].set(xlabel="time ",ylabel="Dispacement",title="Overdamped") ax[2,0].grid() ax[2,1].plot(t,vel[2],marker="*",c="violet") ax[2,1].set(xlabel="time ",ylabel="Velocity",title="Overdamped") ax[2,1].grid() plt.show() print("---------------------- DAMPED HARMONIC OSCILLATOR (UNDERDAMPED)-----------------------") d={"Time":t,"Displacement":dis[0],"Velocity":vel[0]} print(pd.DataFrame(d)) print("---------------------- DAMPED HARMONIC OSCILLATOR (CRITICALLY DAMPED)-----------------------") d={"Time":t,"Displacement":dis[1],"Velocity":vel[1]} print(pd.DataFrame(d)) print("---------------------- DAMPED HARMONIC OSCILLATOR (OVERDAMPED)-----------------------") d={"Time":t,"Displacement":dis[2],"Velocity":vel[2]} print(pd.DataFrame(d)) #3c IC=[1,0];tmin=0;g=9.8;L=2 #SI units cons1=(g,L) tp=2*np.pi*np.sqrt(L/g) tmax=10*tp h=tp/50 S=RK2(f3,IC,tmin,tmax,h,cons1) x,v= S[0].T t=S[1] t1=t/tp fig, axs = plt.subplots(2) fig.suptitle('SIMPLE PENDULUM',c="r") axs[0].plot(t1,x,marker="*",c="r") axs[0].set(xlabel="Time/Time Period ",ylabel="Angular Dispacement") axs[0].grid() axs[1].plot(t1,v,marker="*",c="green") axs[1].set(xlabel=" Time/Time Period ",ylabel="Angular Velocity") axs[1].grid() plt.show() print("------------------------------ SIMPLE PENDULUM------------------------------") d={"No. of time periods":t,"Angular Displacement":x,"Angular Velocity":v} print(pd.DataFrame(d)) #3d IC=[10,0,-10,0];tmax=80;tmin=0;h=0.01;m1=10;k1=90;g1=9.8;l1=10 #SI units cons1=(k1,m1,g1,l1) S=RK2(f4,IC,tmin,tmax,h,cons1) x1,v1,x2,v2= S[0].T t3=S[1] fig, axs = plt.subplots(2, 2) fig.suptitle('COUPLED SYSTEM',c="r") axs[0, 0].plot(t3,x1,c="r") axs[0,0].set(xlabel=" Time",ylabel="Displacement",title="Mass A") axs[0,0].grid() axs[0, 1].plot(t3,v1,c="green") axs[0,1].set(xlabel=" Time",ylabel="Velocity",title="Mass A") axs[0,1].grid() axs[1, 0].plot(t3,x2,c="magenta") axs[1,0].set(xlabel=" Time",ylabel="Displacement",title="Mass B") axs[1,0].grid() axs[1, 1].plot(t3,v2,c="green") axs[1,1].set(xlabel=" Time",ylabel="Velocity",title="Mass B") axs[1,1].grid() plt.show() print("---------------------- COUPLED PENDULUM-----------------------") print("-------------------------------- MASS A ---------------------------------") d={"Time":t3,"Displacement":x1,"Velocity":v1} print(pd.DataFrame(d)) print("-------------------------------- MASS B ---------------------------------") d={"Time":t3,"Displacement":x2,"Velocity":v2} print(pd.DataFrame(d))
StarcoderdataPython
6684512
"""CLI command to run shell commands on a Lambda Function.""" import json import os import subprocess from pprint import pformat from typing import Any, Dict, List, Optional import typer from boto3 import Session from .exceptions import LambdaInvocationFailed, ShellCommandFailed, UnexpectedResponse from .helpers import get_aws_account_information def run_fargate_shell( aws_account: Dict[str, Any], shell_args: Optional[List[str]] ) -> None: """ Run a shell command in an ECS container through aws ecs exec-command. `stdout` and and `stderr` from the ran command are printed locally to stdout. The output comes from the AWS CLI `exec-command`. A `ShellCommandFailed` exception is raised if it is not possible to execute the command. The return code of the command is not captured. The output needs to be parsed in order to detect if the command executed properly or not. """ ecs_client = Session( aws_access_key_id=aws_account["credentials"]["aws_access_key_id"], aws_secret_access_key=aws_account["credentials"]["aws_secret_access_key"], aws_session_token=aws_account["credentials"]["aws_session_token"], region_name=aws_account["credentials"]["region_name"], ).client("ecs") task_arn = ecs_client.list_tasks( cluster=aws_account["ecs_cluster"], serviceName=aws_account["worker_service"] or aws_account["web_service"], )["taskArns"][0] process = subprocess.Popen( [ "aws", "ecs", "execute-command", "--cluster", aws_account["ecs_cluster"], "--task", task_arn, "--container", "WebContainer", "--interactive", "--command", " ".join(shell_args), ], env={ **os.environ, **{ "AWS_ACCESS_KEY_ID": aws_account["credentials"]["aws_access_key_id"], "AWS_SECRET_ACCESS_KEY": aws_account["credentials"][ "aws_secret_access_key" ], "AWS_SESSION_TOKEN": aws_account["credentials"]["aws_session_token"], "AWS_REGION": aws_account["credentials"]["region_name"], }, }, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, ) success = True for line in iter(lambda: process.stdout.readline(), b""): if b"----------ERROR-------" in line: success = False typer.echo(line.rstrip()) if not success: raise ShellCommandFailed("Shell command failed") def run_lambda_shell( aws_account: Dict[str, Any], shell_args: Optional[List[str]], log_result: bool ) -> None: """ Run a shell command in the Tasks lambda function. `stdout` and and `stderr` from the ran command are printed locally in their corresponding stream. The python process exits with the same return code from the command. If the lambda function fails to execute or it is not possible to execute the shell command, an exception is raised. """ lambda_client = Session( aws_access_key_id=aws_account["credentials"]["aws_access_key_id"], aws_secret_access_key=aws_account["credentials"]["aws_secret_access_key"], aws_session_token=aws_account["credentials"]["aws_session_token"], region_name=aws_account["credentials"]["region_name"], ).client("lambda") payload = { "args": shell_args, "log_result": log_result, "handler_path": "pd_aws_lambda.handlers.shell.handler", } typer.echo("Invoking Lambda function") response = lambda_client.invoke( FunctionName=aws_account["tasks_function"], Payload=json.dumps(payload).encode(), ) if response["StatusCode"] != 200: raise LambdaInvocationFailed( "Lambda execution failed", response.get("FunctionError") ) result = json.loads(response["Payload"].read().decode()) if not isinstance(result, dict): raise UnexpectedResponse(result) if "FunctionError" in response: typer.echo(pformat(result["errorMessage"]), err=True) raise ShellCommandFailed("Shell command failed", result["errorType"]) if result["stdout"]: typer.echo(result["stdout"].strip("\n")) if result["stderr"]: typer.echo(result["stderr"].strip("\n"), err=True) exit(result["returncode"]) def run_command( shell_args: Optional[List[str]] = typer.Argument(None, help="Command to execute."), log_result: bool = typer.Option( False, help="Log the results into AWS CloudWatch. (Only for Lambda applications)", ), app_id: str = typer.Option( os.environ.get("PD_APP_ID"), help="PythonDeploy application id. Default: environment variable PD_APP_ID", ), api_key: str = typer.Option( os.environ.get("PD_API_KEY"), help="PythonDeploy api key. Default: environment variable PD_API_KEY", ), ) -> None: """ Execute a remote commands in your application. --- For Fargate applications, run a shell command in an ECS container through `aws ecs exec-command`. `stdout` and and `stderr` from the ran command are printed locally to stdout. The output comes from the AWS CLI `exec-command`. A `ShellCommandFailed` exception is raised if it is not possible to execute the command. The return code of the command is not captured. The output needs to be parsed in order to detect if the command executed properly or not. --- For Lambda applications, run a shell command in the Tasks lambda function. `stdout` and and `stderr` from the ran command are printed locally in their corresponding stream. The python process exits with the same return code from the command. If the lambda function fails to execute or it is not possible to execute the shell command, an exception is raised. """ aws_account = get_aws_account_information(app_id, api_key) if aws_account["manager"] == "LambdaFunctionManager": run_lambda_shell(aws_account, shell_args, log_result) return if aws_account["manager"] == "FargateFunctionManager": run_fargate_shell(aws_account, shell_args) return
StarcoderdataPython
279424
<gh_stars>0 # Generated by Django 3.1.7 on 2021-03-20 17:56 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('integration', '0004_auto_20210320_1207'), ] operations = [ migrations.CreateModel( name='Broker', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('id_broker', models.IntegerField(blank=True, null=True)), ('operadora', models.CharField(blank=True, choices=[('OI', 'OI'), ('CLARO', 'CLARO'), ('VIVO', 'VICO'), ('TIM', 'TIM'), ('NEXTEL', 'NEXTEL')], max_length=15, null=True)), ], ), ]
StarcoderdataPython
6573226
<filename>pyGPs/GraphExtensions/__init__.py<gh_stars>100-1000 from __future__ import absolute_import from . import graphKernels from . import graphUtil from . import nodeKernels
StarcoderdataPython
8156029
from django.shortcuts import render from django.core.paginator import Paginator from django.shortcuts import render, redirect from django.http import HttpResponse from django.http import JsonResponse from django.core.paginator import Paginator from django.db import connection from django.contrib.auth import authenticate, login from django.contrib.auth.models import User from .forms import UsersLoginForm, UsersRegisterForm from .forms import UsersRegisterForm from .forms import AddCommunity from .forms import AddPosttype from .forms import SendPrimitives from .forms import AddTextEntry, AddTextEntryEnum, AddTagPost, AddTextPost, AddTextAreaPost, AddImagePost, AddAudioPost, AddVideoPost, AddBooleanPost, AddEmailPost, AddIpAddressPost, AddUrlPost, AddDatePost, AddTimePost, AddDateTimePost, AddIntegerPost, AddDecimalPost, AddFloatPost, AddEnumaratedPost, AddLocationPost, textComment, ReportPost, EditCommunity from .forms import AddTextEntry, AddTextEntryEnum, AddTagSearch, AddTextSearch, AddTextAreaSearch, AddImageSearch, AddAudioSearch, AddVideoSearch, AddBooleanSearch, AddEmailSearch, AddIpAddressSearch, AddUrlSearch, AddDateSearch, AddTimeSearch, AddDateTimeSearch, AddIntegerSearch, AddDecimalSearch, AddFloatSearch, AddEnumaratedSearch, AddLocationSearch from .forms import posttypeList, searchList, freeSearchField, EditUser from django.contrib.auth import logout from django.http import HttpResponseRedirect from django.http import JsonResponse from django.template.loader import render_to_string, get_template from django.template import RequestContext from django.core.files.storage import FileSystemStorage from django.conf import settings import json import requests import uuid import hashlib from datetime import datetime from streampage.models import Primitives,communityUsers,Communities,Datatypes,DatatypeFields,PostsMetaHash,Posts,PostComments,CommunityTags,DatatTypeTags,PostTags,UserTags,ActivityStreams,ReportedPosts,UserCircle from django.core.serializers.json import DjangoJSONEncoder from django.db.models import Q from countryinfo import CountryInfo from unicode_tr import unicode_tr def saveTagSearch_view(src): SEARCHPAGE = src PARAMS = { "action":"wbsearchentities", "format": "json", "limit": "50", "language":"en", "search": SEARCHPAGE } Srch = requests.Session() URL = "https://wikidata.org/w/api.php" Res = Srch.get(url=URL, params=PARAMS) DATA = Res.json()['search'] titles = "" items = "" for tt in DATA: titles = titles + tt['label']+"," items = items + tt['id']+"," return {'TITLE' : titles, "ITEM" : items} def saveTag_view(returneditems): looping = returneditems.replace("#",",").split(",") titles="" items="" for iter in looping: if iter != '': resp=saveTagSearch_view(iter) try: titles = titles + resp["TITLE"] items = items + resp["ITEM"] except: print("!") print({'TITLE' : titles, "ITEM" : items}) return {'TITLE' : titles, "ITEM" : items} def LoginPage(request): return render(request, 'login.html', {'community_resp': 'test'}) def index(request): if request.user.is_authenticated: user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] userphoto = userModel.userPhoto PosttypeList = Datatypes.objects.filter(subscribers=userModel) followingList = [] subscriptionList = [] for i in PosttypeList: subscriptionList.append(i.name) if len(UserCircle.objects.filter(circleOwner=userModel)) > 0: for i in UserCircle.objects.get(circleOwner=userModel).circleUsers.all(): followingList.append(i.nickName) queriesUser = [Q(detail__actor__name=following) for following in followingList] queries = queriesUser + [Q(detail__object__name=posttypename) for posttypename in subscriptionList] else: queries = [Q(detail__object__name=posttypename) for posttypename in subscriptionList] if len(queries) > 0: query = queries.pop() for item in queries: query |= item activityDetailList = ActivityStreams.objects.filter(query).order_by('-id') paginator = Paginator(activityDetailList, 10) page = request.GET.get('page') index_resp = paginator.get_page(page) return render(request, 'index.html', {'activities': activityDetailList, 'index_resp': index_resp, 'userPhoto':userphoto}) else: return render(request, 'index.html', {}) else: return HttpResponseRedirect("/streampage/login") def browsePage(request): if Communities.objects.all(): Community_List = Communities.objects.filter(communityPrv=False).order_by('-communityCreationDate') paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'browse.html', {'community_resp': community_resp}) else: return render(request, 'login.html', {}) def PosttypePageBrowse(request): try: CommunityHash = request.GET.get('showDataTypes') Community_List = Communities.objects.filter(communityHash=CommunityHash) currentCommunity = Community_List[0] postEntries={} c = connection.cursor() postHashQuery='select "entryHash" from streampage_posts where "relatedCommunityforPost_id" ='+str(currentCommunity.id)+' group by "entryHash"' c.execute(postHashQuery) posts=c.fetchall() postInstance=[] for hashes in posts: currentObject={} postInfo = PostsMetaHash.objects.filter(postMetaHash=hashes[0])[0] currentObject['postList']=Posts.objects.filter(entryHash=hashes[0]) currentObject['posttype']=Posts.objects.filter(entryHash=hashes[0])[0].relatedDatatypes.datatypefields_set.all() currentObject['comments']=postInfo.postcomments_set.all().order_by('-id') postInstance.append(currentObject) postEntries['postInstances']=postInstance print(postEntries) paginator = Paginator(posts, 5) page = request.GET.get('page') post_resp = paginator.get_page(page) comment=textComment() return render(request, 'browseDatatypes.html', {'postEntries':postEntries, 'comment': comment, 'post_resp': post_resp, 'community_Hash':CommunityHash, 'community':Community_List[0]}) except: return HttpResponseRedirect("/streampage/login") def showPostDetailsBrowse_view(request): try: EntryHash = request.GET.get('postHash') queryPost = Posts.objects.filter(entryHash=EntryHash) currentPost = queryPost[0] relatedCommunity = currentPost.relatedCommunityforPost relatedPosttype = currentPost.relatedDatatypes postEntries={} postInstance=[] currentObject={} postInfo = PostsMetaHash.objects.filter(postMetaHash=EntryHash)[0] currentObject['postList']=Posts.objects.filter(entryHash=EntryHash) currentObject['posttype']=Posts.objects.filter(entryHash=EntryHash)[0].relatedDatatypes.datatypefields_set.all() currentObject['comments']=postInfo.postcomments_set.all().order_by('-id') postInstance.append(currentObject) postEntries['postInstances']=postInstance comment=textComment() return render(request, 'postDetailsBrowse.html', {'postEntries':postEntries, 'comment': comment, 'community':relatedCommunity, 'posttype': relatedPosttype }) except: return HttpResponseRedirect("/streampage/login") def communityPage(request): if request.user.is_authenticated: if Communities.objects.all(): Community_List = Communities.objects.all().order_by('-communityCreationDate') Cuser = request.user UserList = communityUsers.objects.filter(nickName=Cuser)[0] userphoto = UserList.userPhoto User_communities = UserList.members.all().order_by('-id') paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'community.html', {'community_resp': community_resp, 'User_communities': User_communities, 'userPhoto':userphoto}) else: return render(request, 'community.html', {}) else: return HttpResponseRedirect("/streampage/login") def communityForm(request): form = AddCommunity() return render(request, 'modal.html', {'form': form}) def populateProvince(request): country = request.GET.__getitem__("country") provinceList = [] if(str(country) == "Turkey"): provinceList = ['Adana', 'Adıyaman', 'Afyon', 'Ağrı', 'Aksaray', 'Amasya', 'Ankara', 'Antalya', 'Ardahan', 'Artvin', 'Aydın', 'Balıkesir', 'Bartın', 'Batman', 'Bayburt', 'Bilecik', 'Bingöl', 'Bitlis', 'Bolu', 'Burdur', 'Bursa', 'Çanakkale', 'Çankırı', 'Çorum', 'Denizli', 'Diyarbakır', 'Düzce', 'Edirne', 'Elazığ', 'Erzincan', 'Erzurum', 'Eskişehir', 'Gaziantep', 'Giresun', 'Gümüşhane', 'Hakkari', 'Hatay', 'Içel', 'Iğdır', 'Isparta', 'İstanbul', 'İzmir', 'Kahramanmaraş', 'Karabük', 'Karaman', 'Kars', 'Kastamonu', 'Kayseri', 'Kilis', 'Kırıkkale', 'Kırklareli', 'Kırşehir', 'Kocaeli', 'Konya', 'Kütahya', 'Malatya', 'Manisa', 'Mardin', 'Muğla', 'Muş', 'Nevşehir', 'Niğde', 'Ordu', 'Osmaniye', 'Rize', 'Sakarya', 'Samsun', 'Şanlıurfa', 'Siirt', 'Sinop', 'Şırnak', 'Sivas', 'Tekirdağ', 'Tokat', 'Trabzon', 'Tunceli', 'Uşak', 'Van', 'Yalova', 'Yozgat', 'Zonguldak'] else: try: if CountryInfo(str(country)).provinces() != None: for province in CountryInfo(str(country)).provinces(): provinceList.append(province) except: print("exception") return JsonResponse({'provinceList': provinceList}) def handle_uploaded_file(f): filepath = 'streampage/static/uploads/communities/'+f.name with open(filepath, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) return "/"+filepath.split("/")[1]+"/"+filepath.split("/")[2]+"/"+filepath.split("/")[3]+"/"+filepath.split("/")[4]+"/" def CreateCommunity_view(request): form = AddCommunity(request.POST, request.FILES) c_image=request.FILES.get("Community_Image") image_path=handle_uploaded_file(c_image) comm = Communities() comm.name = request.POST.get("Community_Name") comm.description = request.POST.get("Community_Description") salt = uuid.uuid4().hex commhash = hashlib.sha256(salt.encode() + comm.name.encode()).hexdigest() + salt comm.communityHash = commhash if request.POST.get("Private_Community"): comm.communityPrv = True else: comm.communityPrv = False comm.communityPhoto = image_path comm.communityCountry = request.POST.get("Community_Country") comm.communityLocation = request.POST.get("Community_Location") comm.communityTags = request.POST.get("Community_Tags") comm.communityCreationDate = datetime.now() comm.communityCreator = communityUsers.objects.get(nickName=request.user) comm.save() comm.communityMembers.add(communityUsers.objects.get(nickName=request.user)) comm.save() Tags = saveTag_view(request.POST.get("Community_Tags")) tagentry = CommunityTags() relatedComm = Communities.objects.filter(communityHash=commhash)[0] tagentry.communityTag = relatedComm tagentry.tagName = Tags["TITLE"] tagentry.tagItem = Tags["ITEM"] tagentry.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "created", "published": str(comm.communityCreationDate), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Community", "name": comm.name, "hash": comm.communityHash } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Community is created Successfully!"}) def EditCommunityModal_view(request): form = EditCommunity() return render(request, 'modal.html', {'form': form}) def EditCommunity_view(request): try: form = EditCommunity(request.POST, request.FILES) c_image=request.FILES.get("Community_Image") image_path=handle_uploaded_file(c_image) communityHash = request.POST.get("community_Hash") comm = Communities.objects.filter(communityHash=communityHash)[0] comm.description = request.POST.get("Community_Description") if request.POST.get("Private_Community"): comm.communityPrv = True else: comm.communityPrv = False comm.communityPhoto = image_path comm.communityTags = request.POST.get("Community_Tags") comm.communityCreationDate = datetime.now() comm.communityCreator = communityUsers.objects.get(nickName=request.user) comm.save() comm.communityMembers.add(communityUsers.objects.get(nickName=request.user)) comm.save() Tags = saveTag_view(request.POST.get("Community_Tags")) tagentry = CommunityTags() relatedComm = comm tagentry.communityTag = relatedComm tagentry.tagName = Tags["TITLE"] tagentry.tagItem = Tags["ITEM"] tagentry.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "edited", "published": str(comm.communityCreationDate), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Community", "name": comm.name, "hash": comm.communityHash } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Community is Edited Successfully!"}) except: return render(None, 'tagSearch.html', {'form' : "Community cannot be Edited Successfully!"}) def JoinCommunity_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Comm = Communities.objects.get(communityHash=request.POST.get("community_Hash")) Comm.communityMembers.add(userModel) Comm.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "joined", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Community", "name": Comm.name, "hash": Comm.communityHash } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You joined to Community Successfully!"}) def LeaveCommunity_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Comm = Communities.objects.get(communityHash=request.POST.get("community_Hash")) Comm.communityMembers.remove(userModel) Comm.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "left", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Community", "name": Comm.name, "hash": Comm.communityHash } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You left from Community successfully!"}) def CheckMembership_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] if Communities.objects.filter(communityMembers=userModel,communityHash=request.POST.get("community_Hash")): return render(None, 'tagSearch.html', {'form': "Yes"}) else: return render(None, 'tagSearch.html', {'form': "No"}) def VoteCommunity_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Comm = Communities.objects.get(communityHash=request.POST.get("community_Hash")) Comm.communityPopularity.add(userModel) return render(request, 'tagSearch.html', {'form': form}) def DeleteCommunity_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Comm = Communities.objects.get(communityHash=request.POST.get("community_Hash")) name = Comm.name comCreator = Comm.communityCreator if str(user) == str(comCreator): try: Comm.delete() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Community", "name": name, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': name+" Community has been Deleted Successfully !"}) except: return render(None, 'tagSearch.html', {'form': name+" Community cannot be Deleted!"}) def posttypeForm(request): form = AddPosttype() return render(request, 'modal.html', {'form': form}) def searchTag_view(request): txtSRC = request.GET.get('search_text') SEARCHPAGE = txtSRC PARAMS = { "action":"wbsearchentities", "format": "json", "limit": "50", "language":"en", "search": SEARCHPAGE } Srch = requests.Session() URL = "https://wikidata.org/w/api.php" Res = Srch.get(url=URL, params=PARAMS) DATA = Res.json()['search'] titles="" for tt in DATA: if tt['label'] not in titles: titles+="#"+tt['label'] return render(None, 'tagSearch.html', {'form' : titles}) #TODO def PosttypePageBCK(request): if request.user.is_authenticated: CommunityHash = request.GET.get('showDataTypes') Community_List = Communities.objects.filter(communityHash=CommunityHash) c = connection.cursor() execution_string = 'select "entryHash",json_object_agg("propertyName","propertyValue") from (select "entryHash","propertyName","propertyValue" from streampage_posts) S GROUP BY "entryHash"' c.execute(execution_string) posts=c.fetchall() paginator = Paginator(posts, 5) page = request.GET.get('page') post_resp = paginator.get_page(page) comment=textComment() return render(request, 'datatypes.html', {'comment': comment, 'post_resp': post_resp, 'community_Hash':CommunityHash, 'community':Community_List[0]}) else: return HttpResponseRedirect("/streampage/login") def PosttypePage(request): if request.user.is_authenticated: CommunityHash = request.GET.get('showDataTypes') Community_List = Communities.objects.filter(communityHash=CommunityHash) User = communityUsers.objects.filter(nickName=request.user)[0] userphoto = User.userPhoto currentCommunity = Community_List[0] postEntries={} c = connection.cursor() postHashQuery='select "entryHash", "postCreationDate" from streampage_posts where "relatedCommunityforPost_id" ='+str(currentCommunity.id)+' group by "entryHash","postCreationDate" order by "postCreationDate" desc ' c.execute(postHashQuery) posts=c.fetchall() hashList=[] for tuples in posts: hashList.append(tuples[0]) cleanPosts = list(dict.fromkeys(hashList)) postInstance=[] for hashes in cleanPosts: currentObject={} postInfo = PostsMetaHash.objects.filter(postMetaHash=hashes)[0] currentObject['postList']=Posts.objects.filter(entryHash=hashes).order_by('-id') currentObject['posttype']=Posts.objects.filter(entryHash=hashes)[0].relatedDatatypes.datatypefields_set.all().order_by('-id') currentObject['comments']=postInfo.postcomments_set.all().order_by('-id') postInstance.append(currentObject) postEntries['postInstances']=postInstance print(postEntries) paginator = Paginator(posts, 5) page = request.GET.get('page') post_resp = paginator.get_page(page) comment=textComment() return render(request, 'datatypes.html', {'postEntries':postEntries, 'comment': comment, 'post_resp': post_resp, 'community_Hash':CommunityHash, 'community':Community_List[0], 'userPhoto':userphoto}) else: return HttpResponseRedirect("/streampage/login") def showPostDetails_view(request): if request.user.is_authenticated: EntryHash = request.GET.get('postHash') User = communityUsers.objects.filter(nickName=request.user)[0] userphoto = User.userPhoto queryPost = Posts.objects.filter(entryHash=EntryHash) currentPost = queryPost[0] relatedCommunity = currentPost.relatedCommunityforPost relatedPosttype = currentPost.relatedDatatypes postEntries={} postInstance=[] currentObject={} postInfo = PostsMetaHash.objects.filter(postMetaHash=EntryHash)[0] currentObject['postList']=Posts.objects.filter(entryHash=EntryHash) currentObject['posttype']=Posts.objects.filter(entryHash=EntryHash)[0].relatedDatatypes.datatypefields_set.all() currentObject['comments']=postInfo.postcomments_set.all().order_by('-id') postInstance.append(currentObject) postEntries['postInstances']=postInstance comment=textComment() return render(request, 'postDetails.html', {'postEntries':postEntries, 'comment': comment, 'community':relatedCommunity, 'posttype': relatedPosttype, 'userPhoto':userphoto }) else: return HttpResponseRedirect("/streampage/login") def PostPage(request): if request.user.is_authenticated: DatatypeResult = Datatypes.objects.filter(datatypeHash=request.GET.get('showPosts')) DatatypeHash = DatatypeResult[0].datatypeHash DatatypeId = DatatypeResult[0].id RCommunityFilter = DatatypeResult[0].relatedCommunity RCommunity = Communities.objects.filter(name=RCommunityFilter.name) Primitive_List = DatatypeResult[0].datatypefields_set.all() c = connection.cursor() execution_string = 'select "entryHash",json_object_agg("propertyName","propertyValue") from (select "entryHash","propertyName","propertyValue" from streampage_posts where "relatedDatatypes_id"='+str(DatatypeId)+') S GROUP BY "entryHash"' c.execute(execution_string) posts=c.fetchall() paginator = Paginator(posts, 5) page = request.GET.get('page') post_resp = paginator.get_page(page) return render(request, 'posts.html', {'post_resp': post_resp,'table_fields':Primitive_List,'Datatype_Id':DatatypeHash, 'Datatype_Name':DatatypeResult, 'Community_Name': RCommunity}) else: return HttpResponseRedirect("/streampage/login") def handle_uploaded_datatypefile(f): filepath = 'streampage/static/uploads/datatypes/'+f.name with open(filepath, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) return "/"+filepath.split("/")[1]+"/"+filepath.split("/")[2]+"/"+filepath.split("/")[3]+"/"+filepath.split("/")[4]+"/" def CreatePosttype_view(request): form = AddPosttype(request.POST, request.FILES) dt = Datatypes() dt.name = request.POST.get("Posttype_Name") salt = uuid.uuid4().hex communityHash=request.POST.get("community_Hash") DtHash = hashlib.sha256(salt.encode() + dt.name.encode()).hexdigest() + salt dt.datatypeHash = DtHash dt.relatedCommunity=Communities.objects.get(communityHash=request.POST.get("community_Hash")) dt.datatypeTags = request.POST.get("Posttype_Tags") dt.datatypeCreationDate = datetime.now() dt.datatypeCreator = communityUsers.objects.get(nickName=request.user) dt.save() Tags = saveTag_view(request.POST.get("Posttype_Tags")) tagentry = DatatTypeTags() relatedDt = Datatypes.objects.filter(datatypeHash=DtHash)[0] tagentry.datatypeTag = relatedDt tagentry.tagName = Tags["TITLE"] tagentry.tagItem = Tags["ITEM"] tagentry.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "created", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": dt.name, }, "target": { "id": "", "type": "Community", "name": dt.relatedCommunity.name, "hash": dt.relatedCommunity.communityHash, } } ActivityStreams.objects.create(detail = description) return JsonResponse({'form' : "Posttype is created Successfully!",'communityHash' : communityHash, 'posttypeHash':DtHash}) def EditPosttypeMeta_view(request): dt_hash = request.POST.get("Posttype_Hash") dt = Datatypes.objects.filter(datatypeHash = dt_hash)[0] dt.name = request.POST.get("Posttype_Name") dt.datatypeTags = request.POST.get("Posttype_Tags") dt.datatypeCreationDate = datetime.now() dt.datatypeCreator = communityUsers.objects.get(nickName=request.user) dt.save() Tags = saveTag_view(request.POST.get("Posttype_Tags")) tagentry = DatatTypeTags() relatedDt = Datatypes.objects.filter(datatypeHash=dt_hash)[0] tagentry.datatypeTag = relatedDt tagentry.tagName = Tags["TITLE"] tagentry.tagItem = Tags["ITEM"] tagentry.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "edited", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": dt.name, }, "target": { "id": "", "type": "Community", "name": dt.relatedCommunity.name, "hash": dt.relatedCommunity.communityHash } } ActivityStreams.objects.create(detail = description) return JsonResponse({'form' : "Posttype is updated Successfully!",'posttypeHash':dt_hash}) def DeletePosttypeMeta_view(request): dt_hash = request.POST.get("Posttype_Hash") dt = Datatypes.objects.filter(datatypeHash = dt_hash)[0] activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": dt.name, }, "target": { "id": "", "type": "Community", "name": dt.relatedCommunity.name, "hash": dt.relatedCommunity.communityHash } } ActivityStreams.objects.create(detail = description) dt.delete() return JsonResponse({'form' : "Posttype is deleted Successfully!",'posttypeHash':dt_hash}) def addPosttypeField_view(request): EnField = request.POST.get("Enumeration") if EnField == 'on': form = AddTextEntryEnum() else: form = AddTextEntry() return render(None, 'modalPost.html', {'form' : form }) def SavePrimitives_view(request): name = request.POST.get("name") type = request.POST.get("Types") req = request.POST.get("Required") show = request.POST.get("ShowPage") CommunityHash = request.POST.get("CommunityHash") DatatypeHash = request.POST.get("PosttypeHash") postType = Datatypes.objects.filter(datatypeHash=DatatypeHash)[0] try: checkName = postType.datatypefields_set.filter(name=name)[0].name if checkName == name: Enumeration = request.POST.get("Enum") dtFields = DatatypeFields.objects.filter(name=name,relatedDatatype=postType)[0] dtFields.fieldCreationDate = datetime.now() dtFields.fieldCreator = communityUsers.objects.get(nickName=request.user) if req == 'on': dtFields.fieldRequired = True else: dtFields.fieldRequired = False if show == 'on': dtFields.fronttableShow = True else: dtFields.fronttableShow = False if name == '': return render(None, 'tagSearch.html', {'form' : "Please Enter The Name!!"}) elif type == '': return render(None, 'tagSearch.html', {'form' : "Please Choose The Type!!"}) else: if Enumeration is None: typefield = Primitives.objects.get(name=type) dtFields.name = name dtFields.relatedDatatype = Datatypes.objects.get(datatypeHash=DatatypeHash) dtFields.relatedComm = Communities.objects.get(communityHash=CommunityHash) dtFields.relatedPrimitives = typefield dtFields.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "updated", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "PosttypeField", "name": Datatypes.objects.get(datatypeHash=DatatypeHash).name }, "target": { "id": "", "type": "Community", "name": Communities.objects.get(communityHash=CommunityHash).name, "hash": Communities.objects.get(communityHash=CommunityHash).communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Data is updated!"}) else: if Enumeration == '': return render(None, 'tagSearch.html', {'form' : "Please Enter the Enumeration Fields!"}) else: typefield = Primitives.objects.get(name=type) dtFields.name = name dtFields.relatedDatatype = Datatypes.objects.get(datatypeHash=DatatypeHash) dtFields.relatedComm = Communities.objects.get(communityHash=CommunityHash) dtFields.relatedPrimitives = typefield dtFields.enumerations = Enumeration dtFields.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "updated", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "PosttypeField", "name": Datatypes.objects.get(datatypeHash=DatatypeHash).name }, "target": { "id": "", "type": "Community", "name": Communities.objects.get(communityHash=CommunityHash).name, "hash": Communities.objects.get(communityHash=CommunityHash).communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Data is updated!"}) except: Enumeration = request.POST.get("Enum") dtFields = DatatypeFields() dtFields.fieldCreationDate = datetime.now() dtFields.fieldCreator = communityUsers.objects.get(nickName=request.user) if req == 'on': dtFields.fieldRequired = True else: dtFields.fieldRequired = False if show == 'on': dtFields.fronttableShow = True else: dtFields.fronttableShow = False if name == '': return render(None, 'tagSearch.html', {'form' : "Please Enter The Name!!"}) elif type == '': return render(None, 'tagSearch.html', {'form' : "Please Choose The Type!!"}) else: if Enumeration is None: typefield = Primitives.objects.get(name=type) dtFields.name = name dtFields.relatedDatatype = Datatypes.objects.get(datatypeHash=DatatypeHash) dtFields.relatedComm = Communities.objects.get(communityHash=CommunityHash) dtFields.relatedPrimitives = typefield dtFields.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "added", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "PosttypeField", "name": Datatypes.objects.get(datatypeHash=DatatypeHash).name }, "target": { "id": "", "type": "Community", "name": Communities.objects.get(communityHash=CommunityHash).name, "hash": Communities.objects.get(communityHash=CommunityHash).communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Data is saved!"}) else: if Enumeration == '': return render(None, 'tagSearch.html', {'form' : "Please Enter the Enumeration Fields!"}) else: typefield = Primitives.objects.get(name=type) dtFields.name = name dtFields.relatedDatatype = Datatypes.objects.get(datatypeHash=DatatypeHash) dtFields.relatedComm = Communities.objects.get(communityHash=CommunityHash) dtFields.relatedPrimitives = typefield dtFields.enumerations = Enumeration dtFields.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "added", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "PosttypeField", "name": Datatypes.objects.get(datatypeHash=DatatypeHash).name }, "target": { "id": "", "type": "Community", "name": Communities.objects.get(communityHash=CommunityHash).name, "hash": Communities.objects.get(communityHash=CommunityHash).communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Data is saved!"}) def DeletePosttypeFields_view(request): CommunityHash = request.POST.get("CommunityHash") DatatypeHash = request.POST.get("DatatypeHash") Dt= Datatypes.objects.filter(datatypeHash=DatatypeHash)[0] name = request.POST.get("name") activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "PosttypeField", "name": Datatypes.objects.get(datatypeHash=DatatypeHash).name }, "target": { "id": "", "type": "Community", "name": Communities.objects.get(communityHash=CommunityHash).name, "hash": Communities.objects.get(communityHash=CommunityHash).communityHash, } } ActivityStreams.objects.create(detail = description) HiddenPosts= Posts.objects.filter(propertyName=name,relatedDatatypes=Dt).delete() DatatypeFields.objects.filter(name=name,relatedDatatype=Dt).delete() return render(None, 'tagSearch.html', {'form' : "Posttyype Field is Deleted Successfully!"}) def EditPosttypes_view(request): CommunityHash = request.GET.get("community_Hash") context={} form=posttypeList(cHash=CommunityHash) return render(request, 'modal.html', {'form': form}) def ShowPosttypeFields_view(request): CommunityHash = request.POST.get("CommunityHash") PosttypeName = request.POST.get("PosttypeEntry") Cm = Communities.objects.filter(communityHash=CommunityHash)[0] Dt = Cm.datatypes_set.filter(name=PosttypeName)[0] PostFields = DatatypeFields.objects.filter(relatedDatatype=Dt) if DatatypeFields.objects.filter(relatedDatatype = Dt): PtFields = DatatypeFields.objects.filter(relatedDatatype = Dt) context = {} iter=0 for fields in PtFields: name = fields.name Types = fields.relatedPrimitives Required = fields.fieldRequired Show = fields.fronttableShow if fields.enumerations: Enum = fields.enumerations form = AddTextEntryEnum(initial={'name': name, 'Types': Types, 'Required': Required, 'ShowPage': Show, 'Enum': Enum}) context['form'+str(iter)]=form else: form = AddTextEntry(initial={'name': name, 'Types': Types, 'Required': Required, 'ShowPage': Show}) context['form'+str(iter)]=form iter +=1 return render(None, 'showDataTypeFields.html', {'form':context, 'posttypeHash':Dt.datatypeHash}) else: return render(None, 'showDataTypeFields.html', {'form':"Yes", 'posttypeHash':Dt.datatypeHash}) def DeletePosttypes_view(request): CommunityHash = request.POST.get("CommunityHash") PosttypeName = request.POST.get("PosttypeEntry") Cm = Communities.objects.filter(communityHash=CommunityHash)[0] Dt = Cm.datatypes_set.filter(name=PosttypeName)[0].delete() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": PosttypeName, }, "target": { "id": "", "type": "Community", "name": Cm.name, "hash": Cm.communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form':"Selected posttype is deleted succesfully!"}) def addPosttypeEditField_view(request): EnField = request.POST.get("Enumeration") if EnField == 'on': form = AddTextEntryEnum() else: form = AddTextEntry() return render(None, 'modalPostEdit.html', {'form' : form }) def subscribePosttype_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Posttype = Posts.objects.filter(entryHash=request.POST.get("post_Hash"))[0].relatedDatatypes Posttype.subscribers.add(userModel) Posttype.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "subscribed", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": Posttype.name, }, "target": { "id": "", "type": "Community", "name": Posttype.relatedCommunity.name, "hash": Posttype.relatedCommunity.communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You Subscribed to the Community Successfully!"}) def unsubscribePosttype_view(request): user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] Posttype = Posts.objects.filter(entryHash=request.POST.get("post_Hash"))[0].relatedDatatypes Posttype.subscribers.remove(userModel) Posttype.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "unsubscribed", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Posttype", "name": Posttype.name, }, "target": { "id": "", "type": "Community", "name": Posttype.relatedCommunity.name, "hash": Posttype.relatedCommunity.communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You Unsubscribed from the Community Successfully!"}) def reportPostModal_view(request): form = ReportPost() return render(None, 'tagSearch.html', {'form' : form }) def reportPost_view(request): PostHash = request.POST.get("post_Hash") try: PosttypeMeta = PostsMetaHash.objects.filter(postMetaHash=PostHash)[0] Cm = PosttypeMeta.relatedCommunity user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] salt = uuid.uuid4().hex reportHash = hashlib.sha256(salt.encode() + request.POST.get("Report_Reason").encode()).hexdigest() + salt reportEntry = ReportedPosts() reportEntry.relatedCommunity = Cm reportEntry.relatedMeta = PosttypeMeta reportEntry.reportHash = reportHash reportEntry.reason = request.POST.get("Report_Reason") reportEntry.description = request.POST.get("Description") reportEntry.reportPostCreator = userModel reportEntry.reportPostCreationDate = datetime.now() reportEntry.save() return render(None, 'tagSearch.html', {'form' : 'You successfully reported the post!' }) except: return render(None, 'tagSearch.html', {'form' : 'Reporting is unsuccessfull!' }) def reportPostDelete_view(request): PostHash = request.POST.get("post_Hash") try: user = request.user userModel = communityUsers.objects.filter(nickName=user)[0] reportEntry = ReportedPosts.objects.get(reportHash=PostHash) reportEntry.delete() return render(None, 'tagSearch.html', {'form' : 'The Report is Removed!' }) except: return render(None, 'tagSearch.html', {'form' : 'The Report cannot be Removed!' }) def ReturnPostFields_view(request): CommunityHash = request.POST.get("community_Hash") PosttypeName = request.POST.get("PosttypeEntry") Cm = Communities.objects.filter(communityHash=CommunityHash)[0] Dt = Cm.datatypes_set.filter(name=PosttypeName)[0] PostFields = DatatypeFields.objects.filter(relatedDatatype=Dt) iter=0 context={} for fields in PostFields: if fields.enumerations is not None: name = fields.name types = fields.relatedPrimitives.name req = fields.fieldRequired show = fields.fronttableShow enum = fields.enumerations enumList = enum.split(",") context[fields.name]=AddEnumaratedPost(en=enumList,nm=name) else: print(fields.relatedPrimitives.name) if fields.relatedPrimitives.name == "Text": context[fields.name]=AddTextPost() elif fields.relatedPrimitives.name == "Text Area": context[fields.name]=AddTextAreaPost() elif fields.relatedPrimitives.name == "Audio": context[fields.name]=AddAudioPost(request.POST, request.FILES) elif fields.relatedPrimitives.name == "Boolean": context[fields.name]=AddBooleanPost() elif fields.relatedPrimitives.name == "Date": context[fields.name]=AddDatePost() elif fields.relatedPrimitives.name == "DateTime": context[fields.name]=AddDateTimePost() elif fields.relatedPrimitives.name == "Decimal": context[fields.name]=AddDecimalPost() elif fields.relatedPrimitives.name == "E-mail": context[fields.name]=AddEmailPost() elif fields.relatedPrimitives.name == "Float": context[fields.name]=AddFloatPost() elif fields.relatedPrimitives.name == "IP Address": context[fields.name]=AddIpAddressPost() elif fields.relatedPrimitives.name == "Image": context[fields.name]=AddImagePost(request.POST, request.FILES) elif fields.relatedPrimitives.name == "Integer": context[fields.name]=AddIntegerPost() elif fields.relatedPrimitives.name == "Location": context[fields.name]=AddLocationPost() elif fields.relatedPrimitives.name == "Time": context[fields.name]=AddTimePost() elif fields.relatedPrimitives.name == "URL": context[fields.name]=AddUrlPost() elif fields.relatedPrimitives.name == "Video": context[fields.name]=AddVideoPost(request.POST, request.FILES) name = fields.name types = fields.relatedPrimitives.name req = fields.fieldRequired show = fields.fronttableShow iter += 1 print(context) context["Tags"]=AddTagPost() return render(None, 'entryReturnFields.html', {'form' : context, 'posttypeHash':Dt.datatypeHash}) def AddPostModal_view(request): CommunityHash = request.POST.get("community_Hash") context={} form=posttypeList(cHash=CommunityHash) return render(request, 'modal.html', {'form': form}) def handle_uploaded_postfile(f): filepath = 'streampage/static/uploads/posts/'+f.name with open(filepath, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) return "/"+filepath.split("/")[1]+"/"+filepath.split("/")[2]+"/"+filepath.split("/")[3]+"/"+filepath.split("/")[4]+"/" def CreatePost_view(request): CommunityHash = request.POST.get("community_Hash") DatatypeHash = request.POST.get("PosttypeHash") Dt = Datatypes.objects.filter(datatypeHash=DatatypeHash)[0] PostFields = DatatypeFields.objects.filter(relatedDatatype=Dt) print(PostFields[0].name) salt = uuid.uuid4().hex try: PostHash = hashlib.sha256(salt.encode() + request.POST.get(PostFields[0].name).encode()).hexdigest() + salt except: PostHash = hashlib.sha256(salt.encode() + uuid.uuid4().hex.upper()[0:9].encode()).hexdigest() + salt PostTime = datetime.now() metaPost = PostsMetaHash() metaPost.relatedCommunity = Communities.objects.get(communityHash=CommunityHash) metaPost.relatedDatatypes = Datatypes.objects.get(datatypeHash=DatatypeHash) metaPost.postCreator = communityUsers.objects.get(nickName=request.user) metaPost.postCreationDate = PostTime metaPost.postMetaHash = PostHash metaPost.save() for fields in PostFields: if (fields.relatedPrimitives.name == "Image" or fields.relatedPrimitives.name == "Audio" or fields.relatedPrimitives.name == "Video") and request.POST.get(fields.name) != "": p_image=request.FILES.get(fields.name) file_path=handle_uploaded_postfile(p_image) entry = Posts() entry.propertyName = fields.name entry.propertyValue = file_path entry.relatedDatatypes = Datatypes.objects.get(datatypeHash=DatatypeHash) entry.relatedCommunityforPost = Communities.objects.get(communityHash=CommunityHash) entry.entryHash = PostHash entry.relatedMeta = PostsMetaHash.objects.get(postMetaHash = PostHash) entry.postCreator = communityUsers.objects.get(nickName=request.user) entry.postCreationDate = PostTime entry.postTag = request.POST.get("Tags") entry.save() elif request.POST.get(fields.name) != "" and fields.relatedPrimitives.name != "Boolean": entry = Posts() entry.propertyName = fields.name entry.propertyValue = request.POST.get(fields.name) entry.relatedDatatypes = Datatypes.objects.get(datatypeHash=DatatypeHash) entry.relatedCommunityforPost = Communities.objects.get(communityHash=CommunityHash) entry.entryHash = PostHash entry.relatedMeta = PostsMetaHash.objects.get(postMetaHash = PostHash) entry.postCreator = communityUsers.objects.get(nickName=request.user) entry.postCreationDate = PostTime entry.postTag = request.POST.get("Tags") entry.save() elif fields.relatedPrimitives.name == "Boolean" and request.POST.get(fields.name) != "": entry = Posts() entry.propertyName = fields.name if entry.propertyValue == "on": entry.propertyValue = "Yes" entry.relatedDatatypes = Datatypes.objects.get(datatypeHash=DatatypeHash) entry.relatedCommunityforPost = Communities.objects.get(communityHash=CommunityHash) entry.entryHash = PostHash entry.relatedMeta = PostsMetaHash.objects.get(postMetaHash = PostHash) entry.postCreator = communityUsers.objects.get(nickName=request.user) entry.postCreationDate = PostTime entry.postTag = request.POST.get("Tags") entry.save() else: entry.propertyValue = "No" entry.relatedDatatypes = Datatypes.objects.get(datatypeHash=DatatypeHash) entry.relatedCommunityforPost = Communities.objects.get(communityHash=CommunityHash) entry.entryHash = PostHash entry.relatedMeta = PostsMetaHash.objects.get(postMetaHash = PostHash) entry.postCreator = communityUsers.objects.get(nickName=request.user) entry.postCreationDate = PostTime entry.postTag = request.POST.get("Tags") entry.save() else: if fields.fieldRequired == True: return render(None, 'tagSearch.html', {'form' : fields.name+" is required!"}) Tags = saveTag_view(request.POST.get("Tags")) tagentry = PostTags() relatedPost = Posts.objects.filter(entryHash=PostHash)[0] tagentry.relatedPostTag = relatedPost tagentry.tagName = Tags["TITLE"] tagentry.tagItem = Tags["ITEM"] tagentry.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "created", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "Post", "hash": entry.relatedMeta.postMetaHash, "posttype": Dt.name }, "target": { "id": "", "type": "Community", "name": entry.relatedCommunityforPost.name, "hash": entry.relatedCommunityforPost.communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "The Entry is Created Successfully"}) def DeletePost_view(request): PostHash = request.POST.get("PostHash") activityStream = ActivityStreams() entry = Posts.objects.filter(entryHash=PostHash)[0] description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "Post", "posttype": entry.relatedDatatypes.name }, "target": { "id": "", "type": "Community", "name": entry.relatedCommunityforPost.name, "hash": entry.relatedCommunityforPost.communityHash, } } ActivityStreams.objects.create(detail = description) Posts.objects.filter(entryHash=PostHash).delete() return render(None, 'tagSearch.html', {'form' : "The Entry is deleted Successfully"}) def CreatePostComment_view(request): CommunityHash = request.POST.get("community_Hash") postHash = request.POST.get("post_Hash") salt = uuid.uuid4().hex commentHash = hashlib.sha256(salt.encode() + request.POST.get("Comment").encode()).hexdigest() + salt commentTime = datetime.now() test = Posts.objects.filter(entryHash = postHash)[0] entryComment = PostComments() entryComment.relatedCommunityforComment = Communities.objects.get(communityHash=CommunityHash) entryComment.relatedMeta = PostsMetaHash.objects.get(postMetaHash = postHash) entryComment.commentHash = commentHash entryComment.commentText = request.POST.get("Comment") entryComment.postCommentCreator = communityUsers.objects.get(nickName=request.user) entryComment.postCommentCreationDate = commentTime entryComment.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "commented", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "Comment", "hash": entryComment.relatedMeta.postMetaHash, "name": entryComment.commentText, "posttype": entryComment.relatedMeta.relatedDatatypes.name, }, "target": { "id": "", "name": entryComment.relatedCommunityforComment.name, "hash": entryComment.relatedCommunityforComment.communityHash, } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "Successfully Commented on the Post!"}) def deletePostComment_view(request): commentHash = request.POST.get("comment_Hash") comment = PostComments.objects.filter(commentHash=commentHash)[0] try: activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "deleted", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "Comment", "hash": comment.relatedMeta.postMetaHash, "name": comment.commentText, "posttype": comment.relatedMeta.relatedDatatypes.name }, "target": { "id": "", "type": "Post", "name": comment.relatedCommunityforComment.name, "hash": comment.relatedCommunityforComment.communityHash, } } comment.delete() ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : "The Comment is Deleted Successfully!"}) except: return render(None, 'tagSearch.html', {'form' : "The Comment cannot be deleted!"}) def login_view(request): form = UsersLoginForm(request.POST or None) if form.is_valid(): username = form.cleaned_data.get("username") password = form.cleaned_data.get("password") user = authenticate(username = username, password = password) login(request, user) activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "login", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto } } ActivityStreams.objects.create(detail = description) return redirect("/streampage") return render(request, "login.html", { "form" : form, "title" : "Login",}) def register_view(request): form = UsersRegisterForm(request.POST or None) if form.is_valid(): user = form.save() password = form.cleaned_data.get("password") user.set_password(password) user.save() comUsers = communityUsers() comUsers.userMail = user.email comUsers.nickName = user.username comUsers.save() new_user = authenticate(username = user.username, password = password) login(request, new_user) return redirect("/streampage/login") return render(request, "login.html", { "title" : "Register", "form" : form, }) def logout_view(request): activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "logged out", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto } } logout(request) ActivityStreams.objects.create(detail = description) return HttpResponseRedirect("/streampage/login") def profilePage(request): if request.user.is_authenticated: username=request.user CUser = communityUsers.objects.filter(nickName=username)[0] userphoto = CUser.userPhoto Community_List = CUser.creator.all() reportList = [] for comm in Community_List: reports = comm.reportedposts_set.all() for rp in reports: reportList.append(rp) Datatype_List = CUser.datatypecreator.all() Post_List = CUser.postcreator.all() joined_Communities = CUser.members.all() activityDetailList = ActivityStreams.objects.filter(detail__actor__name = str(username)).order_by('-id') subscriptionList = Datatypes.objects.filter(subscribers = CUser) followingList = [] if len(UserCircle.objects.filter(circleOwner=CUser)) > 0: for i in UserCircle.objects.get(circleOwner=CUser).circleUsers.all(): followingList.append(i.nickName) followerList = [] for i in communityUsers.objects.get(nickName=username).Followers.all(): followerList.append(i.circleOwner.nickName) return render(request, "profile.html", { "Communities" : Community_List, "Datatypes" : Datatype_List, "Posts" : Post_List, "Joined" : joined_Communities, "UserInfo" : CUser, "ReportList": reportList, "activities":activityDetailList, "followers" : followerList, "following" : followingList, "subscriptionList": subscriptionList, "userPhoto":userphoto }) else: return HttpResponseRedirect("/streampage/login") def chooseSearch_view(request): CommunityHash = request.POST.get("community_Hash") form=searchList(cHash=CommunityHash) return render(request, 'modal.html', {'form': form}) def ReturnSearchFields_view(request): CommunityHash = request.POST.get("community_Hash") DatatypeHash = request.POST.get("DatatypeHash") PostfieldName = request.POST.get("searchEntry") Cm = Communities.objects.filter(communityHash=CommunityHash)[0] PostFields = DatatypeFields.objects.filter(name=PostfieldName) fields=PostFields[0] context={} if fields.enumerations is not None: name = fields.name types = fields.relatedPrimitives.name req = fields.fieldRequired show = fields.fronttableShow enum = fields.enumerations enumList = enum.split(",") context[fields.name]=AddEnumaratedSearch(en=enumList,nm=name) else: if fields.relatedPrimitives.name == "Text": context[fields.name]=AddTextSearch() elif fields.relatedPrimitives.name == "Text Area": context[fields.name]=AddTextAreaSearch() elif fields.relatedPrimitives.name == "Audio": context[fields.name]=AddAudioSearch(request.POST, request.FILES) elif fields.relatedPrimitives.name == "Boolean": context[fields.name]=AddBooleanSearch() elif fields.relatedPrimitives.name == "Date": context[fields.name]=AddDateSearch() elif fields.relatedPrimitives.name == "DateTime": context[fields.name]=AddDateTimeSearch() elif fields.relatedPrimitives.name == "Decimal": context[fields.name]=AddDecimalSearch() elif fields.relatedPrimitives.name == "E-mail": context[fields.name]=AddEmailSearch() elif fields.relatedPrimitives.name == "Float": context[fields.name]=AddFloatSearch() elif fields.relatedPrimitives.name == "IP Address": context[fields.name]=AddIpAddressSearch() elif fields.relatedPrimitives.name == "Image": context[fields.name]=AddImageSearch(request.POST, request.FILES) elif fields.relatedPrimitives.name == "Integer": context[fields.name]=AddIntegerSearch() elif fields.relatedPrimitives.name == "Location": context[fields.name]=AddLocationSearch() elif fields.relatedPrimitives.name == "Time": context[fields.name]=AddTimeSearch() elif fields.relatedPrimitives.name == "URL": context[fields.name]=AddUrlSearch() elif fields.relatedPrimitives.name == "Video": context[fields.name]=AddVideoSearch(request.POST, request.FILES) name = fields.name types = fields.relatedPrimitives.name req = fields.fieldRequired show = fields.fronttableShow #context["Tags"]=AddTagSearch() return render(None, 'entrySearchFields.html', {'form' : context}) def ReturnFreeSearchFields_view(request): CommunityHash = request.POST.get("community_Hash") Cm = Communities.objects.filter(communityHash=CommunityHash)[0] context={} context["Free Search"]=freeSearchField() return render(None, 'entrySearchFields.html', {'form' : context}) def ReturnEntrySearchResults_view(request): CommunityHash = request.POST.get('CommunityHash') Community_List = Communities.objects.filter(communityHash=CommunityHash) User = communityUsers.objects.filter(nickName=request.user)[0] userphoto = User.userPhoto currentCommunity = Community_List[0] postEntries={} Dtfields = currentCommunity.datatypefields_set.all() if request.user.is_authenticated: querylist=[] querylistFree=[] for fields in Dtfields: print(request.POST.get("Free Search_Value")) subquery="" subqueryFree="" if request.POST.get(fields.name+"_Value"): if request.POST.get(fields.name+"_Condition") == "equals": subquery = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" = "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "not equal": subquery = "\"entryHash\" not in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" = "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "contains": subquery = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" ~ "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "not contain": subquery = "\"entryHash\" not in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" ~ "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "less than": subquery = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND CAST(\"propertyValue\" as INTEGER)"+" < "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "more than": subquery = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND CAST(\"propertyValue\" as INTEGER)"+" > "+"'"+request.POST.get(fields.name+"_Value")+"')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition"): if request.POST.get(fields.name+"_Condition") == "equals": subquery = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" = "+"'No')" querylist.append(subquery) elif request.POST.get(fields.name+"_Condition") == "not equal": subquery = "\"entryHash\" not in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" = "+"'No')" querylist.append(subquery) if request.POST.get("Free Search_Value"): subqueryFree = "\"entryHash\" in (select \"entryHash\" from streampage_posts where \"propertyName\""+" = "+"'"+fields.name+"' AND \"propertyValue\""+" ~ "+"'"+request.POST.get("Free Search_Value")+"')" querylistFree.append(subqueryFree) querystring = " and ".join(querylist) querystringFree = " or ".join(querylistFree) RCommunity = Communities.objects.filter(communityHash=CommunityHash) c = connection.cursor() if querystring != "": execution_string = 'select "entryHash" from streampage_posts where '+querystring+' and "relatedCommunityforPost_id" ='+str(currentCommunity.id)+' GROUP BY "entryHash"' elif querystringFree != "": execution_string = 'select "entryHash" from streampage_posts where '+querystringFree+' and "relatedCommunityforPost_id" ='+str(currentCommunity.id)+' GROUP BY "entryHash"' c.execute(execution_string) posts=c.fetchall() postInstance=[] for hashes in posts: currentObject={} postInfo = PostsMetaHash.objects.filter(postMetaHash=hashes[0])[0] currentObject['postList']=Posts.objects.filter(entryHash=hashes[0]) currentObject['posttype']=Posts.objects.filter(entryHash=hashes[0])[0].relatedDatatypes.datatypefields_set.all() currentObject['comments']=postInfo.postcomments_set.all() postInstance.append(currentObject) postEntries['postInstances']=postInstance print(querystring) paginator = Paginator(posts, 5) page = request.GET.get('page') post_resp = paginator.get_page(page) comment=textComment() return render(request, 'datatypes.html', {'postEntries':postEntries, 'comment': comment, 'post_resp': post_resp, 'community_Hash':CommunityHash, 'community':Community_List[0], 'userPhoto': userphoto}) else: return HttpResponseRedirect("/streampage/login") def uploadPhotoForm_view(request): form = AddImagePost() return render(request, 'tagSearch.html', {'form': form}) def handle_uploaded_profilefile(f): filepath = 'streampage/static/uploads/profiles/'+f.name with open(filepath, 'wb+') as destination: for chunk in f.chunks(): destination.write(chunk) return "/"+filepath.split("/")[1]+"/"+filepath.split("/")[2]+"/"+filepath.split("/")[3]+"/"+filepath.split("/")[4]+"/" def uploadPhoto_view(request): if request.user.is_authenticated: try: u_image = request.FILES.get("ImageEntry") userProfile = communityUsers.objects.get(nickName=request.user) image_path = handle_uploaded_profilefile(u_image) userProfile.userPhoto = image_path userProfile.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "uploaded", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "ProfilePhoto", "name": image_path, }, "target": { "id": "", "type": "Profile", } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : 'The Photo is Saved Successfully!'}) except: return render(None, 'tagSearch.html', {'form' : 'The Photo cannot be Saved!'}) def EditUserModal_view(request): form = EditUser() return render(request, 'modal.html', {'form': form}) def EditUser_view(request): if request.user.is_authenticated: try: name = request.POST.get("name") surname = request.POST.get("surname") birthday= request.POST.get("birth") email = request.POST.get("email") bio = request.POST.get("bio") userProfile = communityUsers.objects.get(nickName=request.user) userProfile.userName = name userProfile.userSurname = surname userProfile.userBirthDay = birthday userProfile.userMail = email userProfile.userBio = bio userProfile.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "updated", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto, }, "object": { "id": "", "type": "ProfileInformation", "email": email, "bio" : bio, }, "target": { "id": "", "type": "Profile Information", } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form' : 'The Information is Updated Successfully!'}) except: return render(None, 'tagSearch.html', {'form' : 'The Information cannot be Updated!'}) def UserPage_view(request): if request.user.is_authenticated: Username = request.GET.get('user') CUser = communityUsers.objects.filter(nickName=Username)[0] userphoto = communityUsers.objects.filter(nickName=request.user)[0].userPhoto Community_List = CUser.creator.all() Datatype_List = CUser.datatypecreator.all() Post_List = CUser.postcreator.all() joined_Communities = CUser.members.all() activityDetailList = ActivityStreams.objects.filter(detail__actor__name = str(Username)).order_by('-id') subscriptionList = Datatypes.objects.filter(subscribers = CUser) followingList = [] if len(UserCircle.objects.filter(circleOwner=CUser)) > 0: for i in UserCircle.objects.get(circleOwner=CUser).circleUsers.all(): followingList.append(i.nickName) followerList = [] for i in communityUsers.objects.get(nickName=Username).Followers.all(): followerList.append(i.circleOwner.nickName) if str(request.user) == str(Username): return render(request, "profile.html", { "Communities" : Community_List, "Datatypes" : Datatype_List, "Posts" : Post_List, "Joined" : joined_Communities, "UserInfo" : CUser, "activities": activityDetailList, "followers" : followerList, "following" : followingList, "subscriptionList": subscriptionList, "userPhoto": userphoto }) else: return render(request, "user.html", { "Communities" : Community_List, "Datatypes" : Datatype_List, "Posts" : Post_List, "Joined" : joined_Communities, "UserInfo" : CUser, "activities": activityDetailList, "followers" : followerList, "following" : followingList, "subscriptionList": subscriptionList, "userPhoto": userphoto }) else: return HttpResponseRedirect("/streampage/login") def FollowUser_view(request): user = request.user Username = request.POST.get('user') userModel = communityUsers.objects.filter(nickName=user)[0] followingUser = communityUsers.objects.filter(nickName=Username)[0] try: circUser = UserCircle.objects.get(circleOwner=userModel) circUser.circleUsers.add(followingUser) circUser.save() except: circUser = UserCircle() circUser.circleOwner = userModel circUser.save() addFollower = UserCircle.objects.get(circleOwner=userModel) addFollower.circleUsers.add(followingUser) addFollower.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "followed", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Username", "name": str(followingUser.nickName), } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You are following the user!"}) def UnFollowUser_view(request): user = request.user Username = request.POST.get('user') userModel = communityUsers.objects.filter(nickName=user)[0] followingUser = communityUsers.objects.filter(nickName=Username)[0] circUser = UserCircle.objects.get(circleOwner=userModel) circUser.circleUsers.remove(followingUser) circUser.save() activityStream = ActivityStreams() description = { "@context": "https://www.w3.org/ns/activitystreams", "type": "unfollowed", "published": str(datetime.now()), "actor": { "id": "", "name": communityUsers.objects.get(nickName=request.user).nickName, "photo": communityUsers.objects.get(nickName=request.user).userPhoto }, "object": { "id": "", "type": "Username", "name": str(followingUser.nickName), } } ActivityStreams.objects.create(detail = description) return render(None, 'tagSearch.html', {'form': "You are unfollowing the user!"}) def communityPageSearch_view(request): if request.user.is_authenticated: if request.GET.get('keyword'): if Communities.objects.all(): searchString = request.GET.get('keyword') Community_List = Communities.objects.filter(description__contains=searchString).order_by( '-communityCreationDate') | Communities.objects.filter(name__contains=searchString).order_by( '-communityCreationDate') Cuser = request.user UserList = communityUsers.objects.filter(nickName=Cuser)[0] userphoto = UserList.userPhoto User_communities = UserList.members.all() paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'community.html', {'community_resp': community_resp, 'User_communities': User_communities, 'userPhoto': userphoto}) else: return render(request, 'community.html', {}) else: if Communities.objects.all(): Community_List = Communities.objects.all().order_by('-communityCreationDate') Cuser = request.user UserList = communityUsers.objects.filter(nickName=Cuser)[0] userphoto = UserList.userPhoto User_communities = UserList.members.all() paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'community.html', {'community_resp': community_resp, 'User_communities': User_communities, 'userPhoto': userphoto}) else: return render(request, 'community.html', {}) else: return HttpResponseRedirect("/streampage/login") def communityLocationPageSearch_view(request): if request.user.is_authenticated: if request.GET.get('keyword'): if Communities.objects.all(): searchString = request.GET.get('keyword') text_true = unicode_tr(searchString) print(text_true.capitalize()) Community_List = Communities.objects.filter( communityCountry__icontains=text_true.capitalize()).order_by( '-communityCreationDate') | Communities.objects.filter( communityLocation__icontains=text_true.capitalize()).order_by( '-communityCreationDate') Cuser = request.user UserList = communityUsers.objects.filter(nickName=Cuser)[0] userphoto = UserList.userPhoto User_communities = UserList.members.all() paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'community.html', {'community_resp': community_resp, 'User_communities': User_communities, 'userPhoto': userphoto}) else: return render(request, 'community.html', {}) else: if Communities.objects.all(): Community_List = Communities.objects.all().order_by('-communityCreationDate') Cuser = request.user UserList = communityUsers.objects.filter(nickName=Cuser)[0] userphoto = UserList.userPhoto User_communities = UserList.members.all() paginator = Paginator(Community_List, 3) page = request.GET.get('page') community_resp = paginator.get_page(page) return render(request, 'community.html', {'community_resp': community_resp, 'User_communities': User_communities, 'userPhoto': userphoto}) else: return render(request, 'community.html', {}) else: return HttpResponseRedirect("/streampage/login")
StarcoderdataPython
271205
from __future__ import annotations from typing import TYPE_CHECKING, Dict import logging import threading from kubernetes import watch, client import ipaddress from k8s_netem.match import LabelSelector from k8s_netem.resource import Resource if TYPE_CHECKING: from k8s_netem.direction import Rule class Namespace: def __init__(self, peer, name=None): self.peer = peer self.name = name self.logger = logging.getLogger(f'namespace:{name}') self.thread = threading.Thread(target=self.watch_pods) self.watch = None def init(self): self.logger.info('Initialize namespace watcher %s', self.name) self.thread.start() def deinit(self): self.logger.info('Deinitialize namespace watcher %s', self.name) if self.thread.is_alive(): if self.watch: self.watch.stop() self.thread.join(0.0) def watch_pods(self): self.logger.info('Started watching pods for %s', self.peer.spec) self.watch = watch.Watch() v1 = client.CoreV1Api() selector = LabelSelector(self.peer.spec['podSelector']).to_labelselector() stream_args = { 'label_selector': selector } if self.name: stream_func = v1.list_namespaced_pod stream_args['namespace': self.name] else: stream_func = v1.list_pod_for_all_namespaces for event in self.watch.stream(stream_func, **stream_args): self.peer.handle_pod_event(event) class Peer(Resource): def __init__(self, rule: Rule, index: int, spec): super().__init__(spec) self.logger = logging.getLogger(f'peer:{rule.direction.name}-{rule.index}-{index}') self.rule = rule self.index = index self.thread = threading.Thread(target=self.watch_namespaces) self.namespaces: Dict[str, Namespace] = {} self.watch = None def init(self): self.logger.info('Initialize peer: %s', self.spec) if 'namespaceSelector' in self.spec: self.thread.start() elif 'podSelector' in self.spec: ns = Namespace(self) ns.init() self.namespaces['all'] = ns def deinit(self): self.logger.info('Deinitialize peer: %s', self.spec) if self.thread.is_alive(): if self.watch: self.watch.stop() self.thread.join(0.0) for _, ns in self.namespaces.items(): ns.deinit() def watch_namespaces(self, peer): self.logger.info('Started watching namespaces for %s', peer) self.watch = watch.Watch() v1 = client.CoreV1Api() selector = LabelSelector(peer['namespaceSelector']).to_labelselector() stream_args = { 'selector': selector } for event in self.watch.stream(v1.list_namespace, **stream_args): self.handle_namespace_event(event) def handle_namespace_event(self, event): type = event['type'] ns = event['object'] uid = ns.metadata.uid self.logger.info('%s %s %s', type.capitalize(), ns.kind, ns.metadata.name) if type == 'ADDED': ns = Namespace(self, ns.metadata.name) ns.init() self.namespaces[uid] = ns elif type == 'DELETED': ns = self.namespaces[uid] ns.deinit() del self.namespaces[uid] def handle_pod_event(self, event): pod = event['object'] type = event['type'] if pod.status.pod_ip is None: self.logger.debug('Pod is missing IP address. Skipping') return verb = { 'MODIFIED': 'in', 'ADDED': 'to', 'DELETED': 'from' } if type in ['MODIFIED', 'ADDED', 'DELETED']: self.logger.info('%s %s %s set %s for pod %s/%s', type.capitalize(), pod.status.pod_ip, verb[type], self.rule.set_nets_name, pod.metadata.namespace, pod.metadata.name) cidr = ipaddress.IPv4Network(pod.status.pod_ip) if type == 'DELETED': self.rule.delete_net(cidr) else: self.rule.add_net(cidr, f'{pod.metadata.namespace}/{pod.metadata.name}')
StarcoderdataPython
317767
<gh_stars>1-10 # coding: utf-8 ## pip install tabula-py # # Actually, it extracted the table in PDF by tabula-java commond line. # dependences: java jdk >= v1.7.0 # import tabula import pandas as pd # Convert to DataFrame. # df = tabula.read_pdf("c.pdf") # Convert to CSV. tabula.convert_into("c.pdf", "c.csv", output_format="csv", pages="all", multiple_tables=True) print("Done")
StarcoderdataPython
1631820
# -*- coding: utf-8 -*- import re import json from socialoauth.sites.base import OAuth2 from socialoauth.exception import SocialAPIError QQ_OPENID_PATTERN = re.compile('\{.+\}') class QQApp(OAuth2): AUTHORIZE_URL = 'https://graph.qq.com/oauth2.0/authorize' ACCESS_TOKEN_URL = 'https://graph.qq.com/oauth2.0/token' OPENID_URL = 'https://graph.qq.com/oauth2.0/me' @property def authorize_url(self): url = super(QQApp, self).authorize_url return '%s&state=socialoauth' % url def get_access_token(self, code): super(QQApp, self).get_access_token(code, method='GET', parse=False) def build_api_url(self, url): return url def build_api_data(self, **kwargs): data = { 'access_token': self.access_token, 'oauth_consumer_key': self.CLIENT_ID, 'openid': self.uid } data.update(kwargs) return data def parse_token_response(self, res): self.uid = res['userid'] self.access_token = res['access_token'] self.expires_in = 0 self.refresh_token = None _url = 'https://graph.qq.com/user/get_user_info' res = self.api_call_get(_url) if res['ret'] != 0: raise SocialAPIError(self.site_name, _url, res) self.name = res['nickname'] self.avatar = res['figureurl_qq_1'] self.avatar_large = res['figureurl_qq_2'] self.gender = res['gender'] == u"男" and "M" or "F"
StarcoderdataPython
3571069
from .models import * from django import forms class SearchForm(forms.Form): """Configure and return a search form.""" q = forms.CharField(required=True, widget=forms.TextInput(attrs={'class': 'validate'})) def __init__(self, *args, **kwargs): super(SearchForm, self).__init__(*args, **kwargs) self.fields['q'].label = 'Search'
StarcoderdataPython
1643362
import struct PROP_PAYLOAD_FORMAT_INDICATOR = 1 PROP_MESSAGE_EXPIRY_INTERVAL = 2 PROP_CONTENT_TYPE = 3 PROP_RESPONSE_TOPIC = 8 PROP_CORRELATION_DATA = 9 PROP_SUBSCRIPTION_IDENTIFIER = 11 PROP_SESSION_EXPIRY_INTERVAL = 17 PROP_ASSIGNED_CLIENT_IDENTIFIER = 18 PROP_SERVER_KEEP_ALIVE = 19 PROP_AUTHENTICATION_METHOD = 21 PROP_AUTHENTICATION_DATA = 22 PROP_REQUEST_PROBLEM_INFO = 23 PROP_WILL_DELAY_INTERVAL = 24 PROP_REQUEST_RESPONSE_INFO = 25 PROP_RESPONSE_INFO = 26 PROP_SERVER_REFERENCE = 28 PROP_REASON_STRING = 31 PROP_RECEIVE_MAXIMUM = 33 PROP_TOPIC_ALIAS_MAXIMUM = 34 PROP_TOPIC_ALIAS = 35 PROP_MAXIMUM_QOS = 36 PROP_RETAIN_AVAILABLE = 37 PROP_USER_PROPERTY = 38 PROP_MAXIMUM_PACKET_SIZE = 39 PROP_WILDCARD_SUB_AVAILABLE = 40 PROP_SUBSCRIPTION_ID_AVAILABLE = 41 PROP_SHARED_SUB_AVAILABLE = 42 def gen_byte_prop(identifier, byte): prop = struct.pack('BB', identifier, byte) return prop def gen_uint16_prop(identifier, word): prop = struct.pack('!BH', identifier, word) return prop def gen_uint32_prop(identifier, word): prop = struct.pack('!BI', identifier, word) return prop def gen_string_prop(identifier, s): s = s.encode("utf-8") prop = struct.pack('!BH%ds'%(len(s)), identifier, len(s), s) return prop def gen_string_pair_prop(identifier, s1, s2): s1 = s1.encode("utf-8") s2 = s2.encode("utf-8") prop = struct.pack('!BH%dsH%ds'%(len(s1), len(s2)), identifier, len(s1), s1, len(s2), s2) return prop def gen_varint_prop(identifier, val): v = pack_varint(val) return struct.pack("!B"+str(len(v))+"s", identifier, v) def pack_varint(varint): s = b"" while True: byte = varint % 128 varint = varint // 128 # If there are more digits to encode, set the top bit of this digit if varint > 0: byte = byte | 0x80 s = s + struct.pack("!B", byte) if varint == 0: return s def prop_finalise(props): return pack_varint(len(props)) + props
StarcoderdataPython
11350966
#!/usr/bin/env python """ @package mi.dataset.parser.test @file marine-integrations/mi/dataset/parser/test/test_flort_dj_sio.py @author <NAME>, <NAME> (telemetered) @brief Test code for a flort_dj_sio data parser """ import os from nose.plugins.attrib import attr from mi.core.exceptions import UnexpectedDataException from mi.core.log import get_logger from mi.dataset.dataset_parser import DataSetDriverConfigKeys from mi.dataset.driver.flort_dj.sio.resource import RESOURCE_PATH from mi.dataset.parser.flort_dj_sio import FlortDjSioParser, \ FlortdRecoveredParserDataParticle from mi.dataset.parser.utilities import particle_to_yml from mi.dataset.test.test_parser import ParserUnitTestCase log = get_logger() @attr('UNIT', group='mi') class FlortDjSioParserUnitTestCase(ParserUnitTestCase): def setUp(self): ParserUnitTestCase.setUp(self) self.telem_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.flort_dj_sio', DataSetDriverConfigKeys.PARTICLE_CLASS: 'FlortdParserDataParticle' } self.recov_config = { DataSetDriverConfigKeys.PARTICLE_MODULE: 'mi.dataset.parser.flort_dj_sio', DataSetDriverConfigKeys.PARTICLE_CLASS: 'FlortdRecoveredParserDataParticle' } # particles from FLO15908.DAT and FLO_short.DAT self.particle_a_recov = FlortdRecoveredParserDataParticle( '51EC760117/12/13\t00:00:05\t700\t4130\t695\t700\t460\t4130\t547') self.particle_b_recov = FlortdRecoveredParserDataParticle( '51EC798517/12/13\t00:15:04\t700\t4130\t695\t708\t460\t4130\t548') self.particle_c_recov = FlortdRecoveredParserDataParticle( '51EC7D0917/12/13\t00:30:04\t700\t4130\t695\t702\t460\t4130\t548') self.particle_d_recov = FlortdRecoveredParserDataParticle( '51EC808D17/12/13\t00:45:04\t700\t4130\t695\t710\t460\t4130\t548') self.particle_e_recov = FlortdRecoveredParserDataParticle( '51EC841117/12/13\t01:00:04\t700\t4130\t695\t708\t460\t4130\t548') self.particle_f_recov = FlortdRecoveredParserDataParticle( '51EC879517/12/13\t01:15:04\t700\t4130\t695\t700\t460\t4130\t548') # particles from FLO15908.DAT self.particle_long_before_last = FlortdRecoveredParserDataParticle( '51EDC07917/12/13\t23:30:05\t700\t4130\t695\t677\t460\t4130\t545') self.particle_long_last = FlortdRecoveredParserDataParticle( '51EDC3FD17/12/13\t23:45:05\t700\t4130\t695\t674\t460\t4130\t545') self.stream_handle = None def assert_result(self, result, particle): self.assertEqual(result, [particle]) def build_telem_parser(self): """ Build a telemetered parser, storing it in self.parser """ if self.stream_handle is None: self.fail("Must set stream handle before building telemetered parser") self.parser = FlortDjSioParser(self.telem_config, self.stream_handle, self.exception_callback) def build_recov_parser(self): """ Build a telemetered parser, storing it in self.parser This requires stream handle to be set before calling it """ if self.stream_handle is None: self.fail("Must set stream handle before building recovered parser") self.parser = FlortDjSioParser(self.recov_config, self.stream_handle, self.exception_callback) def test_simple_recov(self): """ Test that we can pull out data particles one at a time from for a recovered parser and file. """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'FLO_short.DAT')) self.build_recov_parser() # get all 6 records in this file one at a time, comparing the state and particle result = self.parser.get_records(1) self.assert_result(result, self.particle_a_recov) result = self.parser.get_records(1) self.assert_result(result, self.particle_b_recov) result = self.parser.get_records(1) self.assert_result(result, self.particle_c_recov) result = self.parser.get_records(1) self.assert_result(result, self.particle_d_recov) result = self.parser.get_records(1) self.assert_result(result, self.particle_e_recov) result = self.parser.get_records(1) self.assert_result(result, self.particle_f_recov) # make sure there are no more records result = self.parser.get_records(1) self.assertEqual(result, []) # make sure there were no exceptions self.assertEqual(self.exception_callback_value, []) self.stream_handle.close() def test_get_many(self): """ Read test data from the file and pull out multiple data particles a few a time. Assert that the results are those we expected. """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node59p1_0.flort.dat')) self.build_telem_parser() # get 18 total result = self.parser.get_records(3) result.extend(self.parser.get_records(10)) result.extend(self.parser.get_records(5)) particle_to_yml(result, os.path.join(RESOURCE_PATH, 'node59p1_0.flort.yml')) self.stream_handle.close() self.assert_particles(result, "node59p1_0.flort.yml", RESOURCE_PATH) # make sure there were no exceptions self.assertEqual(self.exception_callback_value, []) def test_get_many_recov(self): """ Read recovered test data from the file and pull out multiple data particles at one time. Assert that the results are those we expected. """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'FLO_short.DAT')) self.build_recov_parser() # get all 6 records result = self.parser.get_records(6) # compare returned particles self.assertEqual(result, [self.particle_a_recov, self.particle_b_recov, self.particle_c_recov, self.particle_d_recov, self.particle_e_recov, self.particle_f_recov]) # make sure there were no exceptions self.assertEqual(self.exception_callback_value, []) def test_dash(self): """ Test that the particle with a field replaced by dashes is found """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node59p1_0_dash.flort.dat')) self.build_telem_parser() result = self.parser.get_records(18) particle_to_yml(result, os.path.join(RESOURCE_PATH, 'node59p1_0_dash.flort.yml')) self.assert_particles(result, "node59p1_0_dash.flort.yml", RESOURCE_PATH) # make sure there were no exceptions self.assertEqual(self.exception_callback_value, []) def test_long_stream(self): """ Read test data and pull out telemetered data particles and compare against yml """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'node59p1_0.flort.dat')) self.build_telem_parser() particles = self.parser.get_records(18) particle_to_yml(particles, os.path.join(RESOURCE_PATH, 'node59p1_0.flort.yml')) self.assert_particles(particles, "node59p1_0.flort.yml", RESOURCE_PATH) # confirm no exceptions occurred self.assertEqual(self.exception_callback_value, []) def test_long_stream_recov(self): """ test that a longer file can be read and compare the end particles """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'FLO15908.DAT')) self.build_recov_parser() result = self.parser.get_records(96) for particle in result: log.debug(particle.generate()) # compare returned particles at the start of the file self.assertEqual(result[0], self.particle_a_recov) self.assertEqual(result[1], self.particle_b_recov) self.assertEqual(result[2], self.particle_c_recov) # compare returned particles at the end of the file self.assertEqual(result[-2], self.particle_long_before_last) self.assertEqual(result[-1], self.particle_long_last) # make sure there were no exceptions self.assertEqual(self.exception_callback_value, []) def test_against_yml_recov(self): """ Read test data and pull out recovered data particles and compare against yml """ self.stream_handle = open(os.path.join(RESOURCE_PATH, 'FLO15908.DAT')) self.build_recov_parser() # get 20 particles particles = self.parser.get_records(96) particle_to_yml(particles, os.path.join(RESOURCE_PATH, 'FLO15908.yml')) self.assert_particles(particles, "FLO15908.yml", RESOURCE_PATH) # confirm no exceptions occurred self.assertEqual(self.exception_callback_value, []) def test_bad_header(self): """ The file used in this test has a header with 'D0' instead of 'FL' in the first record. (A dosta_abcdjm_sio record was copied in for the test.) This results in 5 particles being retrieved instead of 6, and also result in the exception callback being called. """ log.debug('===== START TEST BAD HEADER =====') num_particles_to_request = 6 num_expected_particles = 5 self.stream_handle = open(os.path.join(RESOURCE_PATH, 'FLO_bad_header.DAT')) self.build_recov_parser() particles = self.parser.get_records(num_particles_to_request) self.assertEquals(len(particles), num_expected_particles) particle_to_yml(particles, os.path.join(RESOURCE_PATH, 'flo_bad_header.yml')) self.assert_particles(particles, "flo_bad_header.yml", RESOURCE_PATH) log.debug('Exceptions : %s', self.exception_callback_value) self.assert_(isinstance(self.exception_callback_value[0], UnexpectedDataException)) log.debug('===== END TEST BAD HEADER =====')
StarcoderdataPython
3585539
<filename>csv_specs_generator.py<gh_stars>1-10 import numpy as np import pandas as pd import torch import random import functools import os from trajectories_trans_tools import * import argparse parser = argparse.ArgumentParser() parser.add_argument("--path_to_data", help="Path to the original Trajnet data") parser.add_argument("--output_file", help="output csv file path and name") args = parser.parse_args() path = args.path_to_data def compute_relative_angle(trajectories): ''' Compute relative orientation of the trajectories passed in parameter with respect to a vector facing up (having an angle of 90 degrees with the x-axis ) Parameters ---------- trajectories : pytorch tensor of size (nb_trajectories*nb_frames*2) Returns ------- mean_angles : Mean rotation of the trajectory with respect to a vector facing up across all frames for every trajectory max_angles : Maximum rotation of the trajectory with respect to a vector facing up across all frames for every trajectory is_static : List of boolean values of size nb_trajectory which determines if a pedestrian does not move during the observed nb_frames ''' speeds = compute_speeds(trajectories[:, :, [2, 3]])[:, 1:, :] # Remove static positions cond = (torch.sqrt(speeds[:, :, 0]**2 + speeds[:, :, 1]**2)) > 1 trajectories_without_stops = [] is_static = [] for idx, traj in enumerate(speeds): is_static_t = False # Check if the pedestrian does not move if (len(cond[idx, :].nonzero().size()) == 0): trajectories_without_stops.append(en_cuda(torch.Tensor([[0, 1]]))) is_static_t = True else: trajectories_without_stops.append( traj[cond[idx, :].nonzero().squeeze(1), :]) is_static.append(is_static_t) mean_angles = [] max_angles = [] # Compute angle wrt starting position for idx in range(len(trajectories_without_stops)): angles = torch.abs(torch.atan2(trajectories_without_stops[idx][ :, 1], trajectories_without_stops[idx][:, 0]) - (0.5 * np.pi)) angles[angles > np.pi] = 2 * np.pi - angles[angles > np.pi] mean_angles.append(torch.mean(angles)) max_angles.append(torch.max(angles)) return np.degrees(np.array(mean_angles)), np.degrees(np.array(max_angles)), is_static # Dataframe to save df_infos = [] for dataset in os.listdir(path): if(not dataset.startswith('.') and dataset not in ['validation']): print('Reading {} dataset'.format(dataset)) dts = [] for file in os.listdir(path + '/' + dataset): if(not file.startswith('.')): print('\tReading {}'.format(file)) # Load tracklets and transform them res = generate_tracklets(path + '/' + dataset + '/' + file) rotated = [] nb_critical_neigbors, nb_neigbors, mean_contact, mean_nb_neighbors, mean_nb_critical_neighbors = [], [], [], [], [] # For every transformed tracklet append the corresponding infos # to the dataframe to Save (generate_tracklets doc for more # infos) for result in transform_tracklets_trajectories(res, compute_neighbors=False): rotated.append(result[0].unsqueeze(0)) nb_critical_neigbors.append( result[2]['nb_critical_neighb']) nb_neigbors.append(len(result[2]['neighb'])) mean_nb_neighbors.append( result[2]['mean_nb_neighbors_per_frame']) mean_nb_critical_neighbors.append( result[2]['mean_nb_critical_neighbors_per_frame']) mean_contact.append(result[2]['mean_contact']) rotated = torch.cat(rotated, 0) # Compute the mean and max deviation of the trajectories with respect to the vector (0,1) # (Which has a similar orientation to the vector between the first point and second point of every trajectory) mean, max_, is_static = compute_relative_angle(rotated) # tracklet specs df_tmp = pd.DataFrame(columns=['Dataset', 'File', 'Track_ID', 'Mean_rotation', 'nb_neighbors', 'nb_critical_neighbors', 'mean_nb_neighbors_per_frame', 'mean_nb_critical_neighbors_per_frame', 'mean_contact', 'is_static']) df_tmp['Mean_rotation'] = mean df_tmp['Dataset'] = dataset df_tmp['File'] = file df_tmp['Track_ID'] = rotated[:, 0, 1].cpu().numpy() df_tmp['nb_neighbors'] = nb_neigbors df_tmp['mean_contact'] = mean_contact df_tmp['nb_critical_neighbors'] = nb_critical_neigbors df_tmp['is_static'] = is_static df_tmp['mean_nb_neighbors_per_frame'] = mean_nb_neighbors df_tmp[ 'mean_nb_critical_neighbors_per_frame'] = mean_nb_critical_neighbors df_infos.append(df_tmp) # Save final Dataframe df = pd.concat(df_infos).reset_index().drop(['index'], axis=1) df.to_csv(args.output_file) print('CSV file saved')
StarcoderdataPython
122636
<gh_stars>0 from game_states import * pygame.init() FPS = 60 DISPLAY_WIDTH = 600 DISPLAY_HEIGHT = 600 DISPLAY = pygame.display.set_mode([DISPLAY_WIDTH, DISPLAY_HEIGHT]) clock = pygame.time.Clock() def main_loop(): # TODO: Add a dedicated state manager for this. game_state = Game_State(DISPLAY_WIDTH, DISPLAY_HEIGHT) while True: # Temporary fix. The player's model for some reason does not update as # it should and smears across the screen. This fixes that, though in # a messy way. DISPLAY.fill(BLACK) pressed_buttons = pygame.key.get_pressed() game_state.handle_events(pressed_buttons, DISPLAY_WIDTH, DISPLAY_HEIGHT) game_state.update() game_state.render(DISPLAY) pygame.display.update() clock.tick(FPS) main_loop()
StarcoderdataPython
3587615
#!/usr/bin/env python2 """ Reads PDFs in the parent directory, creates directories based on their names, splits the PDFs and exports the pages into directories based on the original filename. @Author: <NAME> Required: - pip install pyPdf Inspired by: - http://stackoverflow.com/questions/490195/split-a-multi-page-pdf-file-into-multiple-pdf-files-with-python - http://stackoverflow.com/questions/273192/how-to-check-if-a-directory-exists-and-create-it-if-necessary/14364249#14364249 """ import os from pyPdf import PdfFileWriter, PdfFileReader # List all the filenames in the parent directory and filter to PDFs only. os.chdir('..') files = os.listdir('.') files = filter(lambda x: x.lower().endswith('.pdf'), files) for f in files: print 'Processing {}'.format(f) # Remove file extension. folder = f[:-4] + '_pages' # Create directory for split output if it does not exist. try: os.makedirs(folder) except OSError: if not os.path.isdir(folder): raise # Read in PDF. inputpdf = PdfFileReader(open(f, "rb")) # Export pages of PDF. for i in xrange(inputpdf.numPages): output = PdfFileWriter() output.addPage(inputpdf.getPage(i)) outPath = os.path.join(folder, "{}.pdf".format(i+1)) with open(outPath, "wb") as outputStream: output.write(outputStream) print '{} pages created'.format(inputpdf.numPages) print
StarcoderdataPython
4871246
<reponame>NeuroDataDesign/lids-bloby import sys import numpy as np import matplotlib.pyplot as plt import os import progressbar from image_processing import ( ImageStack, read_tif ) from detectors import ( DoG, find_negative_curvative_points, blob_descriptors, post_prune, is_well_connected ) #REMOVE THIS CODE LATER import sys sys.path.append('../clarity-f17s18/src/util/') from ImageDrawer import ImageDrawer import tifffile as tiff class BlobDetector(): print_level = 1 @classmethod def detect_3d_blobs(cls, fname, batch_process=False, inverted=0, output_dir='./output/'): # Read in images. # If batch is true then image is broken up for faster processing print_level = cls.print_level img_stack = read_tif(fname, batch=batch_process, print_level=print_level) # Compute SIFT features DoG_stack = [] detected_blobs = [] for i in range(img_stack.stack_size): if print_level: if img_stack.stack_size == 1: print("Computing DoG for image") else: print("Computing DoG for image {}".format(i+1)) DoG_stack = DoG(img_stack.images[i], dark=inverted, print_level=print_level) # Find concave points U = set() bar = progressbar.ProgressBar() concave_point_bar = bar(DoG_stack) if not print_level: concave_point_bar = DoG_stack else: print("Computing concave points") for sigma, DoG_img in concave_point_bar: indices = find_negative_curvative_points(DoG_img) for idx in range(indices.shape[0]): U.add(tuple(indices[idx,:].astype(int))) if print_level: print("{} concave points found".format(len(U))) # Compute blob descriptors # TODO: calculating the blob descriptors is taking way to long. We need to trunate U stack_iter = zip(DoG_stack, img_stack.images) if print_level: bar = progressbar.ProgressBar() stack_iter = bar([x for x in stack_iter]) print("Computing blob descriptors") blob_candidates_T = {} for (sigma, DoG_img), intensity_img in stack_iter: blob_candidates_T[sigma] = blob_descriptors(DoG_img, intensity_img, sigma, U) # Auto post-pruning using GMM detected_blobs = post_prune(blob_candidates_T) outfile_path = output_dir + 'detected_blob_centers_stack_{}.csv'.format(i+1) print("Writing detected blobs to {} ...".format(outfile_path)) outfile = open(outfile_path, 'w') for blob in detected_blobs: outfile.write(','.join(str(x) for x in blob) + '\n') outfile.close() print("Done") if __name__ == "__main__": file_path = './img/blurred_147_cells.tif' BlobDetector.detect_3d_blobs(file_path, batch_process=True)
StarcoderdataPython
1688197
<reponame>PwC-FaST/fast-webapp # Generated by Django 2.1.2 on 2019-01-02 16:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('core', '0001_initial'), ('farming', '0001_initial'), ] operations = [ migrations.CreateModel( name='FarmParcelCropNeeds', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('target_yield', models.FloatField()), ('is_active', models.BooleanField(default=True)), ('estimated_nitrogen_needed', models.FloatField(blank=True, null=True)), ('estimated_phosphorus_needed', models.FloatField(blank=True, null=True)), ('estimated_potassium_needed', models.FloatField(blank=True, null=True)), ('priority_order', models.IntegerField(blank=True, null=True)), ('farm_parcel', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='crop_needs', to='farming.FarmParcel')), ], ), migrations.CreateModel( name='FarmParcelNutrientPlanResult', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('manure_quantity', models.FloatField(default=0)), ('chemical_quantity', models.FloatField(default=0)), ('chemical_type', models.CharField(blank=True, max_length=25, null=True)), ('farm_parcel_crop_needs', models.OneToOneField(on_delete=django.db.models.deletion.CASCADE, related_name='nutrient_plan_result', to='nmp.FarmParcelCropNeeds')), ], ), migrations.CreateModel( name='ImportedOrExportedLivestockManure', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('purity', models.FloatField()), ('nitrogen_content', models.FloatField()), ('phosphorus_content', models.FloatField()), ('potassium_content', models.FloatField()), ('total_quantity', models.FloatField()), ('livestock_species', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='imported_or_exported_livestock_manures', to='farming.LivestockSpecies')), ], ), migrations.CreateModel( name='Plan', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created_at', models.DateTimeField(auto_now_add=True)), ('updated_at', models.DateTimeField(auto_now=True)), ('name', models.CharField(max_length=50)), ('is_active', models.BooleanField(default=False)), ('created_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='nmp_plans_created', to='core.FaSTUser')), ('farm', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='nmp_plans', to='farming.Farm')), ('updated_by', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='nmp_plans_updated', to='core.FaSTUser')), ], ), migrations.CreateModel( name='ProducedLivestockManure', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('purity', models.FloatField()), ('nitrogen_content', models.FloatField()), ('phosphorus_content', models.FloatField()), ('potassium_content', models.FloatField()), ('number_of_heads', models.IntegerField()), ('storage_days', models.IntegerField()), ('liters_per_head_per_day', models.FloatField()), ('livestock_species', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='produced_livestock_manures', to='farming.LivestockSpecies')), ('plan', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='produced_livestock_manures', to='nmp.Plan')), ], ), migrations.AddField( model_name='importedorexportedlivestockmanure', name='plan', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='imported_or_exported_livestock_manures', to='nmp.Plan'), ), migrations.AddField( model_name='farmparcelcropneeds', name='plan', field=models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='farm_parcel_crop_needs', to='nmp.Plan'), ), ]
StarcoderdataPython
8041778
<filename>src/smart_enums/option.py """The `Option` type represents an optional value. An Option is either Some, which contains a value or Nothing, which doesn't. """ from typing import Any class Some: content: str def __init__(self, content: Any) -> None: self.content: Any = content class Nothing: pass class Option: Some: Some Nothing: Nothing def __init__(self, option: Any) -> None: if isinstance(option, Some): self.Some = option elif isinstance(option, Nothing): self.Nothing = option elif hasattr(option, "__name__") and option.__name__ == "Nothing": self.Nothing = option else: raise NotImplementedError( "Option only takes a Some or Nothing object") def is_some(self) -> bool: """Returns true if the `Option` contains the `Some` enum. Returns: bool: Returns true if the Some value contains a value. """ if hasattr(self, "Some"): return True return False def is_nothing(self) -> bool: """Returns true if the `Option` contains the `Nothing` enum. Returns: bool: Returns true if the `Option` is a `Nothing` value. """ if hasattr(self, "Nothing"): return True return False def get_content(self) -> Any: """Returns the content of the `Some` value. Returns: Any: Returns the content of `Some` """ if hasattr(self, "Some"): return self.Some.content return None
StarcoderdataPython
4847006
from collections import OrderedDict import numpy as np from ..Operation import Operation inputs = OrderedDict(x_y_arrays=[]) outputs = OrderedDict(x_ymean=None) class ArrayYMean(Operation): """ Average the second column of one or more n-by-2 arrays """ def __init__(self): super(ArrayYMean, self).__init__(inputs,outputs) self.input_doc['x_y_arrays'] = 'list of n-by-2 arrays' self.output_doc['x_ymean'] = 'n-by-2 array of x and mean(y)' def run(self): x_y_arrays = self.inputs['x_y_arrays'] x_ymean = None if len(x_y_arrays) > 0: x_ymean = np.zeros(x_y_arrays[0].shape) x_ymean[:,0] = x_y_arrays[0][:,0] x_ymean[:,1] = np.mean([xy[:,1] for xy in x_y_arrays],axis=0) self.outputs['x_ymean'] = x_ymean return self.outputs
StarcoderdataPython
4996463
#!/usr/bin/env python from argparse import ArgumentParser from subprocess import Popen app = "britecore-test" def build(*args, **kwargs): cmd = "docker build -t %s:latest ." % app execute_cmd(cmd) def start(*args, **kwargs): cmd = "docker run --name %s --rm -p 8080:8080 %s:latest" % (app, app) execute_cmd(cmd) def stop(*args, **kwargs): cmd = "docker rm -f -v %s" % app execute_cmd(cmd) def ssh(*args, **kwargs): cmd = "docker exec -it %s /bin/bash" % app execute_cmd(cmd) def run_tests(*args, **kwargs): cmd = "docker exec -it %s /app/run_tests.sh" % app execute_cmd(cmd) def watch_sass(*args, **kwargs): sass_cmd = "sass --watch /app/web/static/css:/app/web/static/css" cmd = "docker exec -it %s sh -c '%s'" % (app, sass_cmd) execute_cmd(cmd) def execute_cmd(cmd): res = Popen(cmd, shell=True) output, error = res.communicate() if res.returncode != 0 and error is not None: print error if __name__ == "__main__": parser = ArgumentParser(description="Docker Helper") subparser = parser.add_subparsers(title="Available commands", dest="command") sp_build_docker = subparser.add_parser("build") sp_start_docker = subparser.add_parser("start") sp_stop_docker = subparser.add_parser("stop") sp_ssh_docker = subparser.add_parser("ssh") sp_run_tests_docker = subparser.add_parser("run_tests") sp_watch_sass_docker = subparser.add_parser("watch_sass") args = parser.parse_args() params = dict(vars(args)) try: locals()[args.command](**params) except Exception as e: print(e)
StarcoderdataPython
225001
<filename>get-of-metrics/usr/bin/get-of-metrics.py #!/usr/bin/python3 import threading import json import logging import paramiko import argparse from time import sleep from prometheus_client import start_http_server from prometheus_client.core import REGISTRY, CounterMetricFamily from datetime import datetime from re import finditer, sub data = '' ALIAS = "alias" HOST = "host" HOSTS = "hosts" USER_NAME = "user" USER_PASSWORD = "password" DELAY_TIME = "delay" PORT = "port" RX_PACKETS = 'rx_packets' TX_PACKETS = 'tx_packets' RX_BYTES = 'rx_bytes' TX_BYTES = 'tx_bytes' RX_ERRORS = 'rx_errors' TX_ERRORS = 'tx_errors' RX_DROPS = 'rx_drops' TX_DROPS = 'tx_drops' RX_FRAME_ERR = 'rx_frame_err' RX_OVER_ERR = 'rx_over_err' RX_CRC_ERR = 'rx_crc_err' COLLISIONS = 'collisions' NODE_NAME = 'node_name' DEVICE = 'device' DESCRIPTION = 'Custom metrics' class Collector(object): def __init__(self, alias_name=''): self.alias_name = alias_name self.log = logging.getLogger(alias_name) self.log.addHandler(logging.StreamHandler()) self.log.setLevel(logging.INFO) def collect(self): # metric list to be exposed metrics = { TX_PACKETS: CounterMetricFamily(TX_PACKETS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_PACKETS: CounterMetricFamily(RX_PACKETS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_BYTES: CounterMetricFamily(RX_BYTES, DESCRIPTION, labels=[NODE_NAME, DEVICE]), TX_BYTES: CounterMetricFamily(TX_BYTES, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_ERRORS: CounterMetricFamily(RX_ERRORS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), TX_ERRORS: CounterMetricFamily(TX_ERRORS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_DROPS: CounterMetricFamily(RX_DROPS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), TX_DROPS: CounterMetricFamily(TX_DROPS, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_FRAME_ERR: CounterMetricFamily(RX_FRAME_ERR, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_OVER_ERR: CounterMetricFamily(RX_OVER_ERR, DESCRIPTION, labels=[NODE_NAME, DEVICE]), RX_CRC_ERR: CounterMetricFamily(RX_CRC_ERR, DESCRIPTION, labels=[NODE_NAME, DEVICE]), COLLISIONS: CounterMetricFamily(COLLISIONS, DESCRIPTION, labels=[NODE_NAME, DEVICE]) } # Regex (Regular Expression) allows us to find and group the parts of the content that meet certain rules. # The finditer in the re library scans left-to-right, and matches are returned in the order found # As a result, key and value are obtained with match.group(1) and match.group(2). # Also, finditer saves time and memory. To see how the regex expression reacts to the .prom file content # check the link : regex101.com/r/biJY82/3 # This regex expression finds "key = value" strings and groups them. # "[]" matches a single character present in the set such [\w. ]. # "\w" matches any word character (equal to [a-zA-Z0-9_]). # "+" matches between one and unlimited times, as many times as possible, giving back as needed (greedy). # "\s" matches any whitespace character (equal to [\r\n\t\f\v ]). # (?!word|word|..) matches the words in the set. regex = r"\s(?!mac|config|state|speed)(\w+)\s=\s([\w.]+)" # logs the output data from switch self.save_output() try: matches = finditer(regex, data) port = 'port' for match in matches: key = match.group(1) value = match.group(2) if key == 'index': port = 'port%s' % value # otherwise, it writes the metrics in the .prom file else: metrics[key].add_metric([self.alias_name, port], float(value)) for _ in metrics: yield metrics[_] except Exception as e: connect_error_msg1 = 'Regex Error:' self.save_log(connect_error_msg1, data) self.save_log(connect_error_msg1, e) self.log.info('%s %s' %(connect_error_msg1, e)) # save_log, to record the error that occurs in the functions def save_log(self, err_msg1, err_msg2): try: error_log_file = open('/var/log/get-of-metrics/logs/regex_errors_%s.log' % self.alias_name, 'a+') error_log_file.write('%s %s %s\n' % (str(datetime.now()), err_msg1, err_msg2)) finally: error_log_file.close() # save_output to record the last output from switch def save_output(self): try: output_log_file = open('/var/log/get-of-metrics/logs/output_log_%s.log' % self.alias_name, 'w+') output_log_file.write('%s:\n%s\n' % (str(datetime.now()), data)) finally: output_log_file.close() # parse_args function allows us to control the script and get the parameters in commandline def parse_args(): parent_parser = argparse.ArgumentParser(add_help=False) parent_parser.add_argument("-t", dest=DELAY_TIME, required=False, help="<Optional> Enter a delay time. Every time " "it waits for the next scraping. Default " "value is 5 seconds ", default=5, type=float) argument_parser = argparse.ArgumentParser( description="This Python script enables to scrape and parse the scaled data from Broadcom switches for " "Prometheus and Node Exporter. Based on github.com/Broadcom-Switch/of-dpa. " "Saves the files as _*alias_name*_.prom and in specified directory or if not " "specified the directory, the same directory where the script placed. " "Host Name, Host HOST, Username and User Password must be entered to run the script " "It has a time delay to wait for the next scraping and default delay is 5 seconds " "The directory must be created before the script run. Because Node Exporter will read the " "directory you defined in the Node Exporter config file.", parents=[parent_parser]) argument_parser.add_argument("-a", dest=ALIAS, required=True, help="<Required> Enter a alias name", type=str) argument_parser.add_argument("-i", dest=HOST, required=True, help="<Required> Enter a host ip or host name", type=str) argument_parser.add_argument("-u", dest=USER_NAME, required=True, help="<Required> Enter the root username", type=str) argument_parser.add_argument("-p", dest=USER_PASSWORD, required=True, help="<Required> Enter the user password", type=str) args = vars(argument_parser.parse_args()) return args class GetMetrics: def __init__(self, alias_name, ip, user_name, user_password, delay_time): self.alias_name = alias_name self.ip = ip self.user_name = user_name self.user_password = <PASSWORD> self.delay_time = delay_time self.ssh = paramiko.SSHClient() self.log = logging.getLogger(str(ip)) self.log.addHandler(logging.StreamHandler()) self.log.setLevel(logging.INFO) # connect function, to establish connection and reconnection. If in the first connection, an error occurs script # will stop running. If the connection lost while script running. It tries to reconnect with 60 seconds intervals. # set_connect is set to 1 to say this is the first connection. With this way, if connection lost, it will enter # the reconnection phase while the script running. def connect(self, set_connect): status_code = 3 try: # in reconnection, close the session if set_connect == 0: self.log.info("Connection manually closed") self.ssh.close() # connects to the server via ssh self.ssh.set_missing_host_key_policy(paramiko.AutoAddPolicy()) self.ssh.connect(self.ip, username=self.user_name, password=self.user_password) except paramiko.AuthenticationException: connect_error_msg1 = 'Connect Error: Failed to connect' connect_error_msg2 = 'due to wrong username/password' self.log.info("Failed to connect to %s due to wrong username/password" % self.ip) status_code = 1 self.ssh.close() except Exception as e: self.log.info('Not connected to %s' % self.ip) connect_error_msg1 = 'Connect Error:' connect_error_msg2 = str(e) self.ssh.close() if set_connect == 1: status_code = 1 else: status_code = 0 connect_error_msg1 = 'Reconnect Error:' self.log.info("Server is down. Reconnecting...") sleep(60) finally: if status_code == 1: self.save_log(connect_error_msg1, connect_error_msg2) exit(status_code) elif status_code == 0: self.save_log(connect_error_msg1, connect_error_msg2) else: if set_connect == 1: self.log.info("Connected to %s" % self.ip) self.log.info("Scraping the metrics has been initialized...") elif set_connect == 0: self.log.info("Reconnected") # collect function, executing the shell code and extracting the output def collect(self, set_connect): SHELL_CODE = 'client_port_table_dump --stats' try: # the data is in std_out std_in, std_out, std_err = self.ssh.exec_command(SHELL_CODE, timeout=10) # wait for the given time, and it is important that we have to put the delay here to get the data # https://stackoverflow.com/a/32758464/14091937 sleep(self.delay_time) # if exit_status is 0, it means command executed successfully if (out := ''.join(std_out.readlines())) != "None": return out # if not, there is a problem. else: err = ''.join(std_err.readlines()) connect_error_msg1 = 'Collect Error: %s' % str(err) connect_error_msg2 = 'stdError Return Code' self.save_log(connect_error_msg1, connect_error_msg2) except Exception as e: connect_error_msg1 = 'Collect Error:' connect_error_msg2 = str(e) self.save_log(connect_error_msg1, connect_error_msg2) # reconnection self.connect(0) # save_log, to record the error that occurs in the functions def save_log(self, err_msg1, err_msg2): try: error_log_file = open('/var/log/get-of-metrics/errors_%s.log' % self.alias_name, 'a+') error_log_file.write('%s %s %s\n' % (str(datetime.now()), err_msg1, err_msg2)) finally: error_log_file.close() # execute function to execute the all the function in the exact order and checks the connection and output def execute(self): global data self.connect(1) # constantly registers the metrics constantly and works in their own threads REGISTRY.register(Collector(self.alias_name)) while True: data = self.collect(0) sleep(self.delay_time) # the main function to execute the all the function in the exact order and checks the connection and output if __name__ == "__main__": # Start up the server to expose the metrics. start_http_server(8080) connection_list = parse_args() GetMetrics(connection_list[ALIAS], connection_list[HOST], connection_list[USER_NAME], \ connection_list[USER_PASSWORD], connection_list[DELAY_TIME]).execute()
StarcoderdataPython
1658851
class range: def __init__(self, a, b=None): if b: self.index = a self.end = b else: self.index = 0 self.end = a def __iter__(self): return self def __next__(self): if self.index < self.end: index = self.index self.index += 1 return index raise StopIteration def range(a, b=None): out = list() while index < end: out.append(index) index += 1 return out def repr(obj): if obj is object: return "<class 'object'>" return obj.__repr__() def print(*args): out = JSArray() for arg in args: if jscode('arg.__class__ !== undefined'): r = jstype(repr(arg)) jscode('out.push(r)') elif jscode('arg.__metaclass__ !== undefined'): name = jscode('arg.__name__') jscode("""out.push("<class '"+ name +"'>")""") else: jscode('out.push(arg)') jscode('console.log.apply(console, out)') class map: def __init__(self, func, iterable): self.func = func self.iterable = iter(iterable) def __iter__(self): return self def __next__(self): n = next(self.iterable) r = self.func(n) return r def __repr__(self): return '<builtins.map xxx>' def jstype(obj): return obj.__jstype__() def hash(obj): return obj.__hash__() def iter(obj): return obj.__iter__() def next(obj): if jscode('obj.next !== undefined'): r = jscode('obj.next()') if jscode('r.done'): raise StopIteration else: return jscode('r.value') return obj.__next__() def len(obj): return obj.__len__() def abs(obj): return obj.__abs__() def all(iterable): for element in iterable: if not element: return False return True def any(iterable): for element in iterable: if element: return True return False def callable(obj): if jscode("{}.toString.call(obj) == '[object Function]'"): return True if jscode('obj.__metaclass__ !== undefined'): return True if jscode("lookup(obj, '__call__')"): return True return False def classmethod(func): func.classmethod = True return func def staticmethod(func): func.staticmethod = True return func class enumerate: def __init__(self, iterator): self.iterator = iter(iterator) self.index = 0 def __repr__(self): return '<enumerate object at 0x1234567890>' def __iter__(self): return self def __next__(self): index = self.index self.index = self.index + 1 return (index, next(self.iterator)) def getattr(obj, attr, d): r = lookup(obj, attr) if jscode('r === undefined'): if jscode('d === undefined'): raise AttributeError else: return d else: return r
StarcoderdataPython
8086375
import requests from bs4 import BeautifulSoup import json def get_pinned(github_user): URL = f"https://github.com/{github_user}" page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") pinned_data = soup.find_all("div", {"class": "pinned-item-list-item-content"}) pinned_posts = [] for post in pinned_data: pinned_posts.append(post.find("a")["href"]) return pinned_posts def get_projects(github_user, query): URL = f"https://github.com/{github_user}?tab=repositories&q={query}&type=source" page = requests.get(URL) soup = BeautifulSoup(page.content, "html.parser") projects = soup.body.find("ul", {"data-filterable-for": "your-repos-filter"}) if not projects: return [] projects = projects.find_all("li") projects_parsed = [] for project in projects: project_data = {} title = project.find("h3").a project_data["name"] = title.text.strip().replace("-", " ").capitalize() project_data["link"] = title["href"] project_data["tags"] = [query] impact = project.find("div", class_="f6 color-text-secondary mt-2") if impact: impact = impact.find_all("a") for data in impact: project_data[data["href"].split("/")[-1]] = int(data.text.strip()) if "stargazers" not in project_data: project_data["stargazers"] = 0 if "members" not in project_data: project_data["members"] = 0 project_data["score"] = project_data["stargazers"] + project_data["members"] * 5 else: project_data["score"] = 0 projects_parsed.append(project_data) return projects_parsed def get_youtube_data(youtube_username): initial_data = "var ytInitialData = " final_data = ";" url = f"https://www.youtube.com/{youtube_username}/videos" page = requests.get(url) soup = BeautifulSoup(page.content, "html.parser") scripts = soup.body.find_all("script") videos_data = [] for script in scripts: data = script.encode_contents().decode(errors="replace") if initial_data not in data: continue data = data.replace(initial_data, "").replace(final_data, "") tab_renderers = json.loads(data)["contents"] tab_renderers = tab_renderers["twoColumnBrowseResultsRenderer"]["tabs"] for tab in tab_renderers: if "tabRenderer" not in tab: continue if tab["tabRenderer"]["title"] != "Videos": continue videos = tab["tabRenderer"]["content"]["sectionListRenderer"] videos = videos["contents"][0]["itemSectionRenderer"] videos = videos["contents"][0]["gridRenderer"]["items"] for video in videos: if "gridVideoRenderer" not in video: continue video = video["gridVideoRenderer"] published = "" if "publishedTimeText" in video: published = video["publishedTimeText"]["simpleText"] view_count_text = "" if "simpleText" in video["viewCountText"]: view_count_text = video["viewCountText"]["simpleText"] video_data = { "thumbnail": video["thumbnail"]["thumbnails"][-1]["url"], "title": video["title"]["runs"][0]["text"], "published": published, "viewCountText": view_count_text, "url": f"https://www.youtube.com/watch?v={video['videoId']}", } videos_data.append(video_data) return videos_data
StarcoderdataPython
5036123
#!/usr/bin/env python # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # # <NAME> # California Institute of Technology # (C) 1998-2005 All Rights Reserved # # <LicenseText> # # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ # from .AbstractNode import AbstractNode class Composition(AbstractNode): def onBlock(self, body): self._setOperand(body) return def onCone(self, body): self._setOperand(body) return def onCylinder(self, body): self._setOperand(body) return def onPrism(self, body): self._setOperand(body) return def onPyramid(self, body): self._setOperand(body) return def onSphere(self, body): self._setOperand(body) return def onTorus(self, body): self._setOperand(body) return def onGeneralizedCone(self, body): self._setOperand(body) return def onDifference(self, body): self._setOperand(body) return def onIntersection(self, body): self._setOperand(body) return def onUnion(self, body): self._setOperand(body) return def onDilation(self, body): self._setOperand(body) return def onReflection(self, body): self._setOperand(body) return def onReversal(self, body): self._setOperand(body) return def onRotation(self, body): self._setOperand(body) return def onTranslation(self, body): self._setOperand(body) return # version __id__ = "$Id: Composition.py,v 1.1.1.1 2005/03/08 16:13:45 aivazis Exp $" # End of file
StarcoderdataPython
5193325
from mountequist.impostors.http import Http from mountequist.impostors.https import Https
StarcoderdataPython
1960892
<filename>src/features/.ipynb_checkpoints/word2vec_features-checkpoint.py import pickle import numpy as np from sklearn.preprocessing import MultiLabelBinarizer from src.eval_metrics import * from sklearn.model_selection import train_test_split with open('data/processed/movies_with_overviews.pkl','rb') as f: final_movies_set=pickle.load(f) from gensim import models model2 = models.KeyedVectors.load_word2vec_format('data/external/GoogleNews-vectors-negative300.bin', binary=True) from nltk.tokenize import RegexpTokenizer from stop_words import get_stop_words tokenizer = RegexpTokenizer(r'\w+') # create English stop words list en_stop = get_stop_words('en') movie_mean_wordvec=np.zeros((len(final_movies_set),300)) genres=[] rows_to_delete=[] for i in range(len(final_movies_set)): mov=final_movies_set[i] movie_genres=mov['genre_ids'] genres.append(movie_genres) overview=mov['overview'] tokens = tokenizer.tokenize(overview) stopped_tokens = [k for k in tokens if not k in en_stop] count_in_vocab=0 s=0 if len(stopped_tokens)==0: rows_to_delete.append(i) genres.pop(-1) # print overview # print "sample ",i,"had no nonstops" else: for tok in stopped_tokens: if tok.lower() in model2.vocab: count_in_vocab+=1 s+=model2[tok.lower()] if count_in_vocab!=0: movie_mean_wordvec[i]=s/float(count_in_vocab) else: rows_to_delete.append(i) genres.pop(-1) # print overview # print "sample ",i,"had no word2vec" mask2=[] for row in range(len(movie_mean_wordvec)): if row in rows_to_delete: mask2.append(False) else: mask2.append(True) X=movie_mean_wordvec[mask2] mlb=MultiLabelBinarizer() Y=mlb.fit_transform(genres) textual_features=(X,Y) with open('data/processed/textual_features.pkl','wb') as f: pickle.dump(textual_features,f) with open('models/mlb.pkl','wb') as f: pickle.dump(mlb,f)
StarcoderdataPython
6679747
global_context = {}
StarcoderdataPython
3342080
<reponame>brightway-lca/brightway2-regional from bw2data import geomapping from voluptuous import Invalid from bw2regional.intersection import Intersection from bw2regional.tests import BW2RegionalTest class IntersectionTestCase(BW2RegionalTest): def test_add_geomappings(self): inter = Intersection(("foo", "bar")) inter.register() self.assertFalse(("foo", "bar") in geomapping) self.assertFalse("baz" in geomapping) inter.write([[("foo", "bar"), "baz", 42]]) self.assertTrue(("foo", "bar") in geomapping) self.assertTrue("baz" in geomapping) def test_validation(self): inter = Intersection(("foo", "bar")) self.assertTrue(inter.validate([])) self.assertTrue(inter.validate([[1, 2, 3]])) self.assertTrue(inter.validate([["foo", "bar", 3.0]])) with self.assertRaises(Invalid): inter.validate(()) with self.assertRaises(Invalid): inter.validate([[1, 2]]) with self.assertRaises(Invalid): inter.validate([[1, 2, {"amount": 3.0}]])
StarcoderdataPython
5043240
from subsystems.lightsubsystem import LightSubsystem import typing from commands2 import CommandBase class RelayControl(CommandBase): def __init__(self, controller: LightSubsystem, controlPercent: typing.Callable[[], float]) -> None: CommandBase.__init__(self) self.control = controller self.controlPercentCommand = controlPercent self.setOutputPercent = lambda percent: self.control.light.set(percent) self.addRequirements([self.control]) self.setName(__class__.__name__) def execute(self) -> None: self.setOutputPercent(self.controlPercentCommand()) def end(self, interrupted: bool) -> None: self.setOutputPercent(0.0)
StarcoderdataPython
8037974
<gh_stars>10-100 import json import os import shutil from datetime import date from pathlib import Path import pytest from ruamel.yaml import YAML from typing import List, Dict, Any from vcr import VCR from vcr.persisters.filesystem import FilesystemPersister from simple_smartsheet import Smartsheet, AsyncSmartsheet from simple_smartsheet.models import Column, Sheet, Row, ColumnType SMARTSHEET_TOKEN = os.getenv("SMARTSHEET_API_TOKEN", "") yaml = YAML(typ="safe") yaml.default_flow_style = False class MyPersister(FilesystemPersister): @classmethod def load_cassette(cls, cassette_path, serializer): path = Path(cassette_path) if path.is_file(): path.unlink() raise ValueError("Cassette was deleted") def pytest_addoption(parser): """Add custom command line options""" parser.addoption( "--delete-cassettes", action="store_true", help="Delete all cassettes", ) parser.addoption( "--disable-vcr", action="store_true", help="Disable VCR", ) @pytest.fixture(scope="session") def custom_cassette_dir(pytestconfig): return Path(pytestconfig.rootdir) / "tests/sandbox/crud/cassettes" @pytest.fixture(scope="session") def custom_vcr(pytestconfig, custom_cassette_dir): """Session VCR fixture for fixture setup/teardown""" record_mode = pytestconfig.getoption("--record-mode") config = { "cassette_library_dir": str(custom_cassette_dir), "decode_compressed_response": True, "filter_headers": [("authorization", "[REDACTED]")], "record_mode": record_mode, } if pytestconfig.getoption("--disable-vcr"): config["record_mode"] = "new_episodes" config["before_record_response"] = lambda *args, **kwargs: None vcr = VCR(**config) # if record_mode == "all": # vcr.register_persister(MyPersister) return vcr @pytest.fixture(scope="module") def vcr_config(pytestconfig): """Overwriting pytest-recording 'vcr-config' fixture""" config = { "decode_compressed_response": True, "filter_headers": [("authorization", "[REDACTED]")], } if pytestconfig.getoption("--disable-vcr"): config["record_mode"] = "new_episodes" config["before_record_response"] = lambda *args, **kwargs: None return config # @pytest.fixture # def vcr(vcr, pytestconfig): # """Overwriting pytest-recording 'vcr' fixture""" # record_mode = pytestconfig.getoption("--record-mode") # if record_mode == "all": # vcr.register_persister(MyPersister) # return vcr def columns_gen() -> List[Column]: return [ Column(primary=True, title="Full Name", type=ColumnType.TEXT_NUMBER), Column(title="Email address", type=ColumnType.TEXT_NUMBER), Column(title="Company", type=ColumnType.TEXT_NUMBER), Column(title="Number of children", type=ColumnType.TEXT_NUMBER), Column( title="Maintains", type=ColumnType.MULTI_PICKLIST, options=["simple-smartsheet", "nornir", "napalm", "netmiko", "pydantic"], ), Column(title="Birth date", type=ColumnType.DATE), Column(title="Married", type=ColumnType.CHECKBOX), ] # noinspection PyArgumentList @pytest.fixture def placeholder_sheet() -> Sheet: return Sheet(name="[TEST] Placeholder", columns=columns_gen()) def rows_data_gen() -> List[Dict[str, Any]]: return [ { "Full Name": "<NAME>", "Email address": "<EMAIL>", "Company": "ACME", "Number of children": 2, "Married": True, "Maintains": ["simple-smartsheet", "nornir"], }, { "Full Name": "<NAME>", "Email address": "<EMAIL>.com", "Company": "Globex", "Maintains": ["napalm", "nornir"], }, { "Full Name": "<NAME>", "Email address": "<EMAIL>", "Company": "ACME", "Number of children": 1, "Birth date": date(1990, 1, 1), "Married": False, "Maintains": ["napalm", "netmiko", "nornir"], }, ] def additional_row_data_gen() -> Dict[str, Any]: return { "Full Name": "<NAME>", "Email address": "<EMAIL>", "Company": "Globex", "Number of children": 3, "Birth date": date(1980, 1, 1), "Married": True, "Maintains": ["pydantic"], } @pytest.fixture def rows_data() -> List[Dict[str, Any]]: return rows_data_gen() @pytest.fixture def additional_row_data() -> Dict[str, Any]: return additional_row_data_gen() @pytest.fixture def additional_rows_data() -> List[Dict[str, Any]]: return [ { "Full Name": "<NAME>", "Email address": "<EMAIL>", "Company": "Globex", "Number of children": 3, "Birth date": date(1980, 1, 1), "Married": True, "Maintains": ["pydantic"], }, { "Full Name": "<NAME>", "Email address": "<EMAIL>", "Company": "ACME", "Number of children": 2, "Birth date": date(1985, 1, 1), "Married": True, }, ] @pytest.fixture def mocked_sheet(pytestconfig) -> Sheet: path = Path(pytestconfig.rootdir) / "tests/sandbox/data/mocked_sheet.json" with open(path) as f: data = json.load(f) sheet = Sheet.load(data) return sheet def fix_cassette(path: Path): # noinspection PyTypeChecker with open(path, "r+") as f: data = yaml.load(f) changed = False for i, req_resp in enumerate(data["interactions"]): request = req_resp["request"] url = request["uri"] method = request["method"] response = req_resp["response"] tests_sheets_data = [] if method == "GET" and url in { "https://api.smartsheet.com/2.0/sheets?includeAll=true", "https://api.smartsheet.com/2.0/reports?includeAll=true", }: body = json.loads(response["body"]["string"]) num_sheets = body["totalCount"] sheets = body["data"] for sheet_data in sheets: sheet_name = sheet_data["name"] if sheet_name.startswith("[TEST]"): tests_sheets_data.append(sheet_data) if len(tests_sheets_data) != num_sheets: body["totalCount"] = len(tests_sheets_data) body["data"] = tests_sheets_data changed = True f.seek(0) response["body"]["string"] = json.dumps(body) f.truncate() if changed: f.seek(0) yaml.dump(data, f) def remove_all_rw_objects(custom_vcr): with custom_vcr.use_cassette("remove_all_rw_objects.yaml"): with Smartsheet(SMARTSHEET_TOKEN) as smartsheet: for sheet in smartsheet.sheets.list(): if sheet.name.startswith("[TEST]") and not any( pattern in sheet.name for pattern in ("[TEST] Report",) ): smartsheet.sheets.delete(id=sheet.id) def create_sheets_for_reports(vcr): with vcr.use_cassette("setup_sheets_for_reports.yaml"): with Smartsheet(SMARTSHEET_TOKEN) as smartsheet: report_sheet1 = Sheet(name="[TEST] Report Sheet 1", columns=columns_gen()) result = smartsheet.sheets.create(report_sheet1) report_sheet1 = result.obj rows = [ Row(to_top=True, cells=report_sheet1.make_cells(row_data)) for row_data in rows_data_gen() ] smartsheet.sheets.add_rows(report_sheet1.id, rows) report_sheet2 = Sheet(name="[TEST] Report Sheet 2", columns=columns_gen()) result = smartsheet.sheets.create(report_sheet2) report_sheet2 = result.obj row = Row( to_top=True, cells=report_sheet2.make_cells(additional_row_data_gen()) ) smartsheet.sheets.add_row(report_sheet2.id, row) def create_session_objects(vcr): with vcr.use_cassette("create_session_objects.yaml"): with Smartsheet(SMARTSHEET_TOKEN) as smartsheet: read_only_sheet = Sheet( name="[TEST] Read-only Sheet", columns=columns_gen() ) result = smartsheet.sheets.create(read_only_sheet) read_only_sheet = result.obj rows = [ Row(to_top=True, cells=read_only_sheet.make_cells(row_data)) for row_data in rows_data_gen() ] smartsheet.sheets.add_rows(read_only_sheet.id, rows) @pytest.fixture(scope="session", autouse=True) def setup_teardown(request, custom_vcr, custom_cassette_dir): os.environ["SIMPLE_SMARTSHEET_STRICT_VALIDATION"] = "1" delete_cassettes = request.config.getoption("--delete-cassettes") if delete_cassettes: shutil.rmtree(custom_cassette_dir) custom_cassette_dir.mkdir(parents=True, exist_ok=True) remove_all_rw_objects(custom_vcr) create_session_objects(custom_vcr) yield @pytest.fixture def smartsheet(): with Smartsheet(SMARTSHEET_TOKEN) as smartsheet: yield smartsheet @pytest.fixture async def async_smartsheet(): async with AsyncSmartsheet(SMARTSHEET_TOKEN) as smartsheet: yield smartsheet
StarcoderdataPython
8194477
<reponame>mycolab/ncbi-blast<gh_stars>0 #!/usr/bin/env python # $Id: python-config.py 503831 2016-06-08 14:54:36Z ucko $ from distutils import sysconfig import sys def lookup(want): if want == 'VERSION': return sysconfig.get_config_var('VERSION') elif want == 'INCLUDE': return ('-I%s -I%s' % (sysconfig.get_python_inc(), sysconfig.get_python_inc(True))) elif want == 'LIBPATH': return ' '.join(sysconfig.get_config_vars('LIBDIR', 'LIBPL')) elif want == 'DEPS': return ' '.join(sysconfig.get_config_vars('LIBS', 'SYSLIBS')) elif want == 'LDVERSION': return (sysconfig.get_config_var('LDVERSION') or sysconfig.get_config_var('VERSION')) elif want == 'LIBS': return '-lpython' + lookup('LDVERSION') + ' ' + lookup('DEPS') else: raise RuntimeError('Unsupported mode ' + want) print(lookup(sys.argv[1].lstrip('-').upper()))
StarcoderdataPython
1870113
# coding=utf8 # Copyright 2018 JDCLOUD.COM # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # # NOTE: This class is auto generated by the jdcloud code generator program. class CCProtectionConfigSpec(object): def __init__(self, level, ccThreshold=None, hostQps=None, hostUrlQps=None, ipHostQps=None, ipHostUrlQps=None): """ :param level: 防护等级, 0: 正常, 1: 宽松, 2: 紧急, 3: 自定义 :param ccThreshold: (Optional) HTTP 请求数阈值, 防护等级为自定义时必传 :param hostQps: (Optional) Host 的防护阈值, 防护等级为自定义时必传 :param hostUrlQps: (Optional) Host + Url 的防护阈值, 防护等级为自定义时必传 :param ipHostQps: (Optional) 每个源 IP 对 Host 的防护阈值, 防护等级为自定义时必传 :param ipHostUrlQps: (Optional) 每个源 IP 对 Host + Url 的防护阈值, 防护等级为自定义时必传 """ self.level = level self.ccThreshold = ccThreshold self.hostQps = hostQps self.hostUrlQps = hostUrlQps self.ipHostQps = ipHostQps self.ipHostUrlQps = ipHostUrlQps
StarcoderdataPython
29087
from django.core.serializers.json import DjangoJSONEncoder class CallableJSONEncoder(DjangoJSONEncoder): def default(self, obj): if callable(obj): return obj() return super().default(obj)
StarcoderdataPython
1773680
#!/usr/bin/env python ############################################ # # Login to supercomputer and cd to current work directory # Apr11 ; greatly simplified by using read_pm functions # Apr4 ; add option for custom ip addr # Mar19 ; translated to python by genki # next logs will be on the git commits # ############################################ import argparse import os import subprocess import read_data_pm as readpm parser = argparse.ArgumentParser() parser.add_argument('--cluster', '-c', type=str) parser.add_argument('--username', '-u', type=str) parser.add_argument('--dir', '-d', type=str) parser.add_argument('--ip', '-i', type=str) parser.add_argument('--shell', '-s', type=str, choices=['tcsh', 'bash'], default='bash') args = parser.parse_args() cname = args.cluster if args.cluster else readpm.specify_cluster() uname = args.username if args.username else readpm.get_uname(cname) datapm = readpm.read_perl_module_hashes(readpm.DATAPM) c1 = datapm['clusters']['unified'] c2 = datapm['clusters'][cname] path = args.dir if args.dir else readpm.c2path(c1, c2, uname, cname) sshcd = [ 'ssh', '-t', readpm.c2ip(c2, uname), 'cd {}; {}'.format(path, args.shell) ] print(' '.join(sshcd)) subprocess.call(sshcd)
StarcoderdataPython
1996783
# #!/usr/bin/env python # # """ # @package ion.agents.platform.rsn.test.oms_simple # @file ion/agents/platform/rsn/test/oms_simple.py # @author <NAME> # @brief Program that connects to the real RSN OMS endpoint to do basic # verification of the operations. Note that VPN is required. # Also, port 5000 on the localhost (via corresponding fully-qualified # domain name as returned by socket.getfqdn()) needs to be accessible # from OMS for the event notification to be received here. # # For usage, call: # bin/python ion/agents/platform/rsn/test/oms_simple.py --help # # @see https://confluence.oceanobservatories.org/display/CIDev/RSN+OMS+endpoint+implementation+verification # @see https://confluence.oceanobservatories.org/display/syseng/CIAD+MI+SV+CI-OMS+interface # """ # # __author__ = '<NAME>' # __license__ = 'Apache 2.0' # # # from ion.agents.platform.rsn.oms_event_listener import OmsEventListener # from ion.agents.platform.responses import InvalidResponse # from pyon.util.breakpoint import breakpoint # # import xmlrpclib # import sys # import pprint # import socket # # # DEFAULT_RSN_OMS_URI = "http://alice:[email protected]:9021/" # DEFAULT_MAX_WAIT = 70 # # INVALID_PLATFORM_ID = InvalidResponse.PLATFORM_ID # # # use full-qualified domain name as the external host for the registration # HTTP_SERVER_HOST = socket.getfqdn() # HTTP_SERVER_PORT = 5000 # # EVENT_LISTENER_URL = "http://%s:%d/oms" % (HTTP_SERVER_HOST, HTTP_SERVER_PORT) # # # max time to wait to receive the test event # max_wait = 0 # # # launch IPython shell? # launch_breakpoint = False # # tried = {} # # # def launch_listener(): # pragma: no cover # def notify_driver_event(evt): # print("notify_driver_event received: %s" % str(evt.event_instance)) # # print 'launching listener, port=%d ...' % HTTP_SERVER_PORT # oms_event_listener = OmsEventListener("dummy_plat_id", notify_driver_event) # oms_event_listener.keep_notifications() # oms_event_listener.start_http_server(host='', port=HTTP_SERVER_PORT) # print 'listener launched' # return oms_event_listener # # # def main(uri): # pragma: no cover # oms_event_listener = launch_listener() # # print '\nconnecting to %r ...' % uri # proxy = xmlrpclib.ServerProxy(uri, allow_none=True) # print 'connection established.' # # pp = pprint.PrettyPrinter() # # def show_listeners(): # from datetime import datetime # from ion.agents.platform.util import ntp_2_ion_ts # # event_listeners = proxy.event.get_registered_event_listeners() # print("Event listeners (%d):" % len(event_listeners)) # for a, b in sorted(event_listeners.iteritems(), # lambda a, b: int(a[1] - b[1])): # time = datetime.fromtimestamp(float(ntp_2_ion_ts(b)) / 1000) # print(" %s %s" % (time, a)) # print # # def format_val(value): # prefix = "\t\t" # print "\n%s%s" % (prefix, pp.pformat(value).replace("\n", "\n" + prefix)) # # def format_err(msg): # prefix = "\t\t" # print "\n%s%s" % (prefix, msg.replace("\n", "\n" + prefix)) # # def get_method(handler_name, method_name): # """ # Gets the method from the proxy. # @param handler_name Name of the handler; can be None to indicate get # method directly from proxy. # @param method_name Method's name # # @return callable; None if any error getting the method # """ # # # get method: # if handler_name: # # get handler: # try: # handler = getattr(proxy, handler_name) # except Exception as e: # print "error getting handler %s: %s: %s" % (handler_name, type(e), str(e)) # return None # try: # method = getattr(handler, method_name) # return method # except Exception as e: # print "error method %s.%s: %s: %s" % (handler_name, method_name, type(e), str(e)) # return None # else: # try: # method = getattr(proxy, method_name) # return method # except Exception as e: # print "error getting proxy's method %s: %s: %s" % (method_name, type(e), str(e)) # return None # # def run(full_method_name, *args): # """ # Runs a method against the proxy. # # @param full_method_name # @param args # """ # global tried # # tried[full_method_name] = "" # # handler_name, method_name = full_method_name.split(".") # # # get the method # method = get_method(handler_name, method_name) # if method is None: # tried[full_method_name] = "could not get handler or method" # return # # sargs = ", ".join(["%r" % a for a in args]) # # sys.stdout.write("\n%s(%s) -> " % (full_method_name, sargs)) # sys.stdout.flush() # # # run method # retval, reterr = None, None # try: # retval = method(*args) # tried[full_method_name] = "OK" # # print "%r" % retval # format_val(retval) # except xmlrpclib.Fault as e: # if e.faultCode == 8001: # reterr = "-- NOT FOUND (fault %s)" % e.faultCode # else: # reterr = "-- Fault %d: %s" % (e.faultCode, e.faultString) # # raise # # print "Exception: %s: %s" % (type(e), str(e)) # # tried[full_method_name] = str(e) # # tried[full_method_name] = reterr # format_err(reterr) # # return retval, reterr # # def verify_entry_in_dict(retval, reterr, entry): # if reterr is not None: # return retval, reterr # # if not isinstance(retval, dict): # reterr = "-- expecting a dict with entry %r" % entry # elif entry not in retval: # reterr = "-- expecting a dict with entry %r" % entry # else: # retval = retval[entry] # # print("full_method_name = %s" % full_method_name) # if reterr: # tried[full_method_name] = reterr # format_err(reterr) # # return retval, reterr # # def verify_test_event_notified(retval, reterr, event): # print("waiting for a max of %d secs for test event to be notified..." % max_wait) # import time # # wait_until = time.time() + max_wait # got_it = False # while not got_it and time.time() <= wait_until: # time.sleep(1) # for evt in oms_event_listener.notifications: # if event['message'] == evt['message']: # got_it = True # break # # # print("Received external events: %s" % oms_event_listener.notifications) # if not got_it: # reterr = "error: didn't get expected test event notification within %d " \ # "secs. (Got %d event notifications.)" % ( # max_wait, len(oms_event_listener.notifications)) # # print("full_method_name = %s" % full_method_name) # if reterr: # tried[full_method_name] = reterr # format_err(reterr) # # return retval, reterr # # show_listeners() # # if launch_breakpoint: # breakpoint(locals()) # # print "Basic verification of the operations:\n" # # #---------------------------------------------------------------------- # full_method_name = "hello.ping" # retval, reterr = run(full_method_name) # if retval and retval.lower() != "pong": # error = "expecting 'pong'" # tried[full_method_name] = error # format_err(error) # # #---------------------------------------------------------------------- # full_method_name = "config.get_platform_types" # retval, reterr = run(full_method_name) # if retval and not isinstance(retval, dict): # error = "expecting a dict" # tried[full_method_name] = error # format_err(error) # # platform_id = "dummy_platform_id" # # #---------------------------------------------------------------------- # full_method_name = "config.get_platform_map" # retval, reterr = run(full_method_name) # if retval is not None: # if isinstance(retval, list): # if len(retval): # if isinstance(retval[0], (tuple, list)): # platform_id = retval[0][0] # else: # reterr = "expecting a list of tuples or lists" # else: # reterr = "expecting a non-empty list" # else: # reterr = "expecting a list" # if reterr: # tried[full_method_name] = reterr # format_err(reterr) # # #---------------------------------------------------------------------- # full_method_name = "config.get_platform_metadata" # retval, reterr = run(full_method_name, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # # #---------------------------------------------------------------------- # full_method_name = "attr.get_platform_attributes" # retval, reterr = run(full_method_name, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # # #---------------------------------------------------------------------- # full_method_name = "attr.get_platform_attribute_values" # retval, reterr = run(full_method_name, platform_id, []) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # # #---------------------------------------------------------------------- # full_method_name = "attr.set_platform_attribute_values" # retval, reterr = run(full_method_name, platform_id, {}) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # # port_id = "dummy_port_id" # # #---------------------------------------------------------------------- # full_method_name = "port.get_platform_ports" # retval, reterr = run(full_method_name, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # if retval is not None: # if isinstance(retval, dict): # if len(retval): # port_id = retval.keys()[0] # else: # reterr = "empty dict of ports for platform %r" % platform_id # else: # reterr = "expecting a dict {%r: ...}. got: %s" % (platform_id, type(retval)) # if reterr: # tried[full_method_name] = reterr # format_err(reterr) # # instrument_id = "dummy_instrument_id" # # if reterr is None: # full_method_name = "port.get_platform_ports" # retval, reterr = run(full_method_name, "dummy_platform_id") # orig_retval = retval # retval, reterr = verify_entry_in_dict(retval, reterr, "dummy_platform_id") # if retval != INVALID_PLATFORM_ID: # reterr = "expecting dict {%r: %r}. got: %r" % ( # "dummy_platform_id", INVALID_PLATFORM_ID, orig_retval) # tried[full_method_name] = reterr # format_err(reterr) # # instrument_id = "dummy_instrument_id" # # #---------------------------------------------------------------------- # full_method_name = "instr.connect_instrument" # retval, reterr = run(full_method_name, platform_id, port_id, instrument_id, {}) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, port_id) # retval, reterr = verify_entry_in_dict(retval, reterr, instrument_id) # # connect_instrument_error = reterr # # #---------------------------------------------------------------------- # full_method_name = "instr.get_connected_instruments" # retval, reterr = run(full_method_name, platform_id, port_id) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, port_id) # # note, in case of error in instr.connect_instrument, don't expect the # # instrument_id to be reported: # if connect_instrument_error is None: # retval, reterr = verify_entry_in_dict(retval, reterr, instrument_id) # # #---------------------------------------------------------------------- # full_method_name = "instr.disconnect_instrument" # retval, reterr = run(full_method_name, platform_id, port_id, instrument_id) # retval, reterr = verify_entry_in_dict(retval, reterr, platform_id) # retval, reterr = verify_entry_in_dict(retval, reterr, port_id) # retval, reterr = verify_entry_in_dict(retval, reterr, instrument_id) # # #---------------------------------------------------------------------- # full_method_name = "port.turn_on_platform_port" # retval, reterr = run(full_method_name, platform_id, port_id) # # #---------------------------------------------------------------------- # full_method_name = "port.turn_off_platform_port" # retval, reterr = run(full_method_name, platform_id, port_id) # # #---------------------------------------------------------------------- # url = EVENT_LISTENER_URL # # #---------------------------------------------------------------------- # full_method_name = "event.register_event_listener" # retval, reterr = run(full_method_name, url) # retval, reterr = verify_entry_in_dict(retval, reterr, url) # # #---------------------------------------------------------------------- # full_method_name = "event.get_registered_event_listeners" # retval, reterr = run(full_method_name) # urls = retval # retval, reterr = verify_entry_in_dict(retval, reterr, url) # # #---------------------------------------------------------------------- # full_method_name = "event.unregister_event_listener" # if isinstance(urls, dict): # # this part just as a convenience to unregister listeners that were # # left registered by some error in a prior interaction. # prefix = "http://127.0.0.1:" # or some other needed prefix # for url2 in urls: # if url2.find(prefix) >= 0: # retval, reterr = run(full_method_name, url2) # retval, reterr = verify_entry_in_dict(retval, reterr, url2) # if reterr is not None: # break # if reterr is None: # retval, reterr = run(full_method_name, url) # retval, reterr = verify_entry_in_dict(retval, reterr, url) # # #---------------------------------------------------------------------- # full_method_name = "config.get_checksum" # retval, reterr = run(full_method_name, platform_id) # # # the following to specifically verify reception of test event # if max_wait: # full_method_name = "event.register_event_listener" # retval, reterr = run(full_method_name, EVENT_LISTENER_URL) # retval, reterr = verify_entry_in_dict(retval, reterr, EVENT_LISTENER_URL) # # full_method_name = "event.generate_test_event" # event = { # 'message' : "fake event triggered from CI using OMS' generate_test_event", # 'platform_id' : "fake_platform_id", # 'severity' : "3", # 'group ' : "power", # } # retval, reterr = run(full_method_name, event) # # if max_wait: # verify_test_event_notified(retval, reterr, event) # # full_method_name = "event.unregister_event_listener" # retval, reterr = run(full_method_name, EVENT_LISTENER_URL) # retval, reterr = verify_entry_in_dict(retval, reterr, EVENT_LISTENER_URL) # elif not reterr: # ok_but = "OK (but verification of event reception was not performed)" # tried[full_method_name] = ok_but # format_err(ok_but) # # show_listeners() # # ####################################################################### # print("\nSummary of basic verification:") # okeys = 0 # for full_method_name, result in sorted(tried.iteritems()): # print("%20s %-40s: %s" % ("", full_method_name, result)) # if result.startswith("OK"): # okeys += 1 # print("OK methods %d out of %s" % (okeys, len(tried))) # # # if __name__ == "__main__": # pragma: no cover # # import argparse # # parser = argparse.ArgumentParser(description="Basic CI-OMS verification program") # parser.add_argument("-u", "--uri", # help="RSN OMS URI (default: %s)" % DEFAULT_RSN_OMS_URI, # default=DEFAULT_RSN_OMS_URI) # parser.add_argument("-w", "--wait", # help="Max wait time for test event (default: %d)" % DEFAULT_MAX_WAIT, # default=DEFAULT_MAX_WAIT) # parser.add_argument("-b", "--breakpoint", # help="Launch IPython shell at beginning", # action='store_const', const=True) # # opts = parser.parse_args() # # uri = opts.uri # max_wait = int(opts.wait) # launch_breakpoint = bool(opts.breakpoint) # # main(uri)
StarcoderdataPython
1765850
import cv2 import numpy as np img = cv2.imread("4.2 face.png") # casede dosyamızı ekliyoruz face_cascade = cv2.CascadeClassifier("4.3 frontalface.xml") gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) faces = face_cascade.detectMultiScale(gray, 1.3, 7) # 1.3 ölçeklemek için ve 4 değeri 4 pencere ile kıyaslayıp yüz olduğunu anlamak için # faces 4 parametreye sahiptir # x ve y başlangış noktaları w ve h en boy oranları for (x, y, w, h) in faces: cv2.rectangle(img, (x, y), (x + w, y + h), (0, 0, 255), 2) cv2.imshow("Image", img) cv2.waitKey(0) cv2.destroyAllWindows()
StarcoderdataPython
9739927
"""The Modified Differential Multiplier Method (MDMM) for PyTorch.""" from .mdmm import (ConstraintReturn, Constraint, EqConstraint, MaxConstraint, MaxConstraintHard, MinConstraint, MinConstraintHard, BoundConstraintHard, MDMMReturn, MDMM) __version__ = '0.1.3'
StarcoderdataPython
4870823
from ..core.ControllerService import ControllerService class GCPCredentialsControllerService(ControllerService): def __init__(self, name=None, credentials_location=None, json_path=None, raw_json=None): super(GCPCredentialsControllerService, self).__init__(name=name) self.service_class = 'GCPCredentialsControllerService' if credentials_location is not None: self.properties['Credentials Location'] = credentials_location if json_path is not None: self.properties['Service Account JSON File'] = json_path if raw_json is not None: self.properties['Service Account JSON'] = raw_json
StarcoderdataPython
1804461
from django.db import models from django.utils.translation import gettext_lazy as _ # class MyModel(models.Model): # # title = models.CharField(_('Title'), max_length=100, help_text=_('Description')) # # class Meta: # verbose_name = _('Model') # verbose_name_plural = _('Models') # # def __str__(self): # return self.title
StarcoderdataPython
8066411
<reponame>git-wwts/pysyte """Some keyboard handling code""" import sys from pysyte.oss import getch def _get_chosen_chars(chooser): while True: key = getch.get_as_key() try: if chooser(key): return key except AttributeError: print(key) continue def get_digit(): return _get_chosen_chars(lambda x: x.isdigit()) def get_letter(): return _get_chosen_chars(lambda x: x.isupper() or x.islower()) def quit_on_q(): try: key = getch.get_as_key() if key in "qQ": sys.exit() return key except KeyboardInterrupt: sys.exit()
StarcoderdataPython
6448
<gh_stars>0 # MINLP written by GAMS Convert at 01/15/21 11:37:33 # # Equation counts # Total E G L N X C B # 1486 571 111 804 0 0 0 0 # # Variable counts # x b i s1s s2s sc si # Total cont binary integer sos1 sos2 scont sint # 865 685 180 0 0 0 0 0 # FX 0 0 0 0 0 0 0 0 # # Nonzero counts # Total const NL DLL # 3373 3193 180 0 # # Reformulation has removed 1 variable and 1 equation from pyomo.environ import * model = m = ConcreteModel() m.x2 = Var(within=Reals,bounds=(0,40),initialize=0) m.x3 = Var(within=Reals,bounds=(0,40),initialize=0) m.x4 = Var(within=Reals,bounds=(0,40),initialize=0) m.x5 = Var(within=Reals,bounds=(0,None),initialize=0) m.x6 = Var(within=Reals,bounds=(0,None),initialize=0) m.x7 = Var(within=Reals,bounds=(0,None),initialize=0) m.x8 = Var(within=Reals,bounds=(0,None),initialize=0) m.x9 = Var(within=Reals,bounds=(0,None),initialize=0) m.x10 = Var(within=Reals,bounds=(0,None),initialize=0) m.x11 = Var(within=Reals,bounds=(0,None),initialize=0) m.x12 = Var(within=Reals,bounds=(0,None),initialize=0) m.x13 = Var(within=Reals,bounds=(0,None),initialize=0) m.x14 = Var(within=Reals,bounds=(0,None),initialize=0) m.x15 = Var(within=Reals,bounds=(0,None),initialize=0) m.x16 = Var(within=Reals,bounds=(0,None),initialize=0) m.x17 = Var(within=Reals,bounds=(0,None),initialize=0) m.x18 = Var(within=Reals,bounds=(0,None),initialize=0) m.x19 = Var(within=Reals,bounds=(0,None),initialize=0) m.x20 = Var(within=Reals,bounds=(0,None),initialize=0) m.x21 = Var(within=Reals,bounds=(0,None),initialize=0) m.x22 = Var(within=Reals,bounds=(0,None),initialize=0) m.x23 = Var(within=Reals,bounds=(0,None),initialize=0) m.x24 = Var(within=Reals,bounds=(0,None),initialize=0) m.x25 = Var(within=Reals,bounds=(0,None),initialize=0) m.x26 = Var(within=Reals,bounds=(0,None),initialize=0) m.x27 = Var(within=Reals,bounds=(0,None),initialize=0) m.x28 = Var(within=Reals,bounds=(0,None),initialize=0) m.x29 = Var(within=Reals,bounds=(0,None),initialize=0) m.x30 = Var(within=Reals,bounds=(0,None),initialize=0) m.x31 = Var(within=Reals,bounds=(0,None),initialize=0) m.x32 = Var(within=Reals,bounds=(0,None),initialize=0) m.x33 = Var(within=Reals,bounds=(0,None),initialize=0) m.x34 = Var(within=Reals,bounds=(0,None),initialize=0) m.x35 = Var(within=Reals,bounds=(0,30),initialize=0) m.x36 = Var(within=Reals,bounds=(0,30),initialize=0) m.x37 = Var(within=Reals,bounds=(0,30),initialize=0) m.x38 = Var(within=Reals,bounds=(0,None),initialize=0) m.x39 = Var(within=Reals,bounds=(0,None),initialize=0) m.x40 = Var(within=Reals,bounds=(0,None),initialize=0) m.x41 = Var(within=Reals,bounds=(0,None),initialize=0) m.x42 = Var(within=Reals,bounds=(0,None),initialize=0) m.x43 = Var(within=Reals,bounds=(0,None),initialize=0) m.x44 = Var(within=Reals,bounds=(0,None),initialize=0) m.x45 = Var(within=Reals,bounds=(0,None),initialize=0) m.x46 = Var(within=Reals,bounds=(0,None),initialize=0) m.x47 = Var(within=Reals,bounds=(0,None),initialize=0) m.x48 = Var(within=Reals,bounds=(0,None),initialize=0) m.x49 = Var(within=Reals,bounds=(0,None),initialize=0) m.x50 = Var(within=Reals,bounds=(0,None),initialize=0) m.x51 = Var(within=Reals,bounds=(0,None),initialize=0) m.x52 = Var(within=Reals,bounds=(0,None),initialize=0) m.x53 = Var(within=Reals,bounds=(0,None),initialize=0) m.x54 = Var(within=Reals,bounds=(0,None),initialize=0) m.x55 = Var(within=Reals,bounds=(0,None),initialize=0) m.x56 = Var(within=Reals,bounds=(0,None),initialize=0) m.x57 = Var(within=Reals,bounds=(0,None),initialize=0) m.x58 = Var(within=Reals,bounds=(0,None),initialize=0) m.x59 = Var(within=Reals,bounds=(0,None),initialize=0) m.x60 = Var(within=Reals,bounds=(0,None),initialize=0) m.x61 = Var(within=Reals,bounds=(0,None),initialize=0) m.x62 = Var(within=Reals,bounds=(0,None),initialize=0) m.x63 = Var(within=Reals,bounds=(0,None),initialize=0) m.x64 = Var(within=Reals,bounds=(0,None),initialize=0) m.x65 = Var(within=Reals,bounds=(0,None),initialize=0) m.x66 = Var(within=Reals,bounds=(0,None),initialize=0) m.x67 = Var(within=Reals,bounds=(0,None),initialize=0) m.x68 = Var(within=Reals,bounds=(0,None),initialize=0) m.x69 = Var(within=Reals,bounds=(0,None),initialize=0) m.x70 = Var(within=Reals,bounds=(0,None),initialize=0) m.x71 = Var(within=Reals,bounds=(0,None),initialize=0) m.x72 = Var(within=Reals,bounds=(0,None),initialize=0) m.x73 = Var(within=Reals,bounds=(0,None),initialize=0) m.x74 = Var(within=Reals,bounds=(0,None),initialize=0) m.x75 = Var(within=Reals,bounds=(0,None),initialize=0) m.x76 = Var(within=Reals,bounds=(0,None),initialize=0) m.x77 = Var(within=Reals,bounds=(0,None),initialize=0) m.x78 = Var(within=Reals,bounds=(0,None),initialize=0) m.x79 = Var(within=Reals,bounds=(0,None),initialize=0) m.x80 = Var(within=Reals,bounds=(0,None),initialize=0) m.x81 = Var(within=Reals,bounds=(0,None),initialize=0) m.x82 = Var(within=Reals,bounds=(0,None),initialize=0) m.x83 = Var(within=Reals,bounds=(0,None),initialize=0) m.x84 = Var(within=Reals,bounds=(0,None),initialize=0) m.x85 = Var(within=Reals,bounds=(0,None),initialize=0) m.x86 = Var(within=Reals,bounds=(0,20),initialize=0) m.x87 = Var(within=Reals,bounds=(0,20),initialize=0) m.x88 = Var(within=Reals,bounds=(0,20),initialize=0) m.x89 = Var(within=Reals,bounds=(0,20),initialize=0) m.x90 = Var(within=Reals,bounds=(0,20),initialize=0) m.x91 = Var(within=Reals,bounds=(0,20),initialize=0) m.x92 = Var(within=Reals,bounds=(0,None),initialize=0) m.x93 = Var(within=Reals,bounds=(0,None),initialize=0) m.x94 = Var(within=Reals,bounds=(0,None),initialize=0) m.x95 = Var(within=Reals,bounds=(0,None),initialize=0) m.x96 = Var(within=Reals,bounds=(0,None),initialize=0) m.x97 = Var(within=Reals,bounds=(0,None),initialize=0) m.x98 = Var(within=Reals,bounds=(0,None),initialize=0) m.x99 = Var(within=Reals,bounds=(0,None),initialize=0) m.x100 = Var(within=Reals,bounds=(0,None),initialize=0) m.x101 = Var(within=Reals,bounds=(0,None),initialize=0) m.x102 = Var(within=Reals,bounds=(0,None),initialize=0) m.x103 = Var(within=Reals,bounds=(0,None),initialize=0) m.x104 = Var(within=Reals,bounds=(0,None),initialize=0) m.x105 = Var(within=Reals,bounds=(0,None),initialize=0) m.x106 = Var(within=Reals,bounds=(0,None),initialize=0) m.x107 = Var(within=Reals,bounds=(0,None),initialize=0) m.x108 = Var(within=Reals,bounds=(0,None),initialize=0) m.x109 = Var(within=Reals,bounds=(0,None),initialize=0) m.x110 = Var(within=Reals,bounds=(0,None),initialize=0) m.x111 = Var(within=Reals,bounds=(0,None),initialize=0) m.x112 = Var(within=Reals,bounds=(0,None),initialize=0) m.x113 = Var(within=Reals,bounds=(0,None),initialize=0) m.x114 = Var(within=Reals,bounds=(0,None),initialize=0) m.x115 = Var(within=Reals,bounds=(0,None),initialize=0) m.x116 = Var(within=Reals,bounds=(0,None),initialize=0) m.x117 = Var(within=Reals,bounds=(0,None),initialize=0) m.x118 = Var(within=Reals,bounds=(0,None),initialize=0) m.x119 = Var(within=Reals,bounds=(0,None),initialize=0) m.x120 = Var(within=Reals,bounds=(0,None),initialize=0) m.x121 = Var(within=Reals,bounds=(0,None),initialize=0) m.x122 = Var(within=Reals,bounds=(0,None),initialize=0) m.x123 = Var(within=Reals,bounds=(0,None),initialize=0) m.x124 = Var(within=Reals,bounds=(0,None),initialize=0) m.x125 = Var(within=Reals,bounds=(0,None),initialize=0) m.x126 = Var(within=Reals,bounds=(0,None),initialize=0) m.x127 = Var(within=Reals,bounds=(0,None),initialize=0) m.x128 = Var(within=Reals,bounds=(0,None),initialize=0) m.x129 = Var(within=Reals,bounds=(0,None),initialize=0) m.x130 = Var(within=Reals,bounds=(0,None),initialize=0) m.x131 = Var(within=Reals,bounds=(0,None),initialize=0) m.x132 = Var(within=Reals,bounds=(0,None),initialize=0) m.x133 = Var(within=Reals,bounds=(0,None),initialize=0) m.x134 = Var(within=Reals,bounds=(0,None),initialize=0) m.x135 = Var(within=Reals,bounds=(0,None),initialize=0) m.x136 = Var(within=Reals,bounds=(0,None),initialize=0) m.x137 = Var(within=Reals,bounds=(0,None),initialize=0) m.x138 = Var(within=Reals,bounds=(0,None),initialize=0) m.x139 = Var(within=Reals,bounds=(0,None),initialize=0) m.x140 = Var(within=Reals,bounds=(0,None),initialize=0) m.x141 = Var(within=Reals,bounds=(0,None),initialize=0) m.x142 = Var(within=Reals,bounds=(0,None),initialize=0) m.x143 = Var(within=Reals,bounds=(0,None),initialize=0) m.x144 = Var(within=Reals,bounds=(0,None),initialize=0) m.x145 = Var(within=Reals,bounds=(0,None),initialize=0) m.x146 = Var(within=Reals,bounds=(0,None),initialize=0) m.x147 = Var(within=Reals,bounds=(0,None),initialize=0) m.x148 = Var(within=Reals,bounds=(0,None),initialize=0) m.x149 = Var(within=Reals,bounds=(0,None),initialize=0) m.x150 = Var(within=Reals,bounds=(0,None),initialize=0) m.x151 = Var(within=Reals,bounds=(0,None),initialize=0) m.x152 = Var(within=Reals,bounds=(0,None),initialize=0) m.x153 = Var(within=Reals,bounds=(0,None),initialize=0) m.x154 = Var(within=Reals,bounds=(0,None),initialize=0) m.x155 = Var(within=Reals,bounds=(0,None),initialize=0) m.x156 = Var(within=Reals,bounds=(0,None),initialize=0) m.x157 = Var(within=Reals,bounds=(0,None),initialize=0) m.x158 = Var(within=Reals,bounds=(0,None),initialize=0) m.x159 = Var(within=Reals,bounds=(0,None),initialize=0) m.x160 = Var(within=Reals,bounds=(0,None),initialize=0) m.x161 = Var(within=Reals,bounds=(0,None),initialize=0) m.x162 = Var(within=Reals,bounds=(0,None),initialize=0) m.x163 = Var(within=Reals,bounds=(0,None),initialize=0) m.x164 = Var(within=Reals,bounds=(0,None),initialize=0) m.x165 = Var(within=Reals,bounds=(0,None),initialize=0) m.x166 = Var(within=Reals,bounds=(0,None),initialize=0) m.x167 = Var(within=Reals,bounds=(0,None),initialize=0) m.x168 = Var(within=Reals,bounds=(0,None),initialize=0) m.x169 = Var(within=Reals,bounds=(0,None),initialize=0) m.x170 = Var(within=Reals,bounds=(0,30),initialize=0) m.x171 = Var(within=Reals,bounds=(0,30),initialize=0) m.x172 = Var(within=Reals,bounds=(0,30),initialize=0) m.x173 = Var(within=Reals,bounds=(0,None),initialize=0) m.x174 = Var(within=Reals,bounds=(0,None),initialize=0) m.x175 = Var(within=Reals,bounds=(0,None),initialize=0) m.x176 = Var(within=Reals,bounds=(0,None),initialize=0) m.x177 = Var(within=Reals,bounds=(0,None),initialize=0) m.x178 = Var(within=Reals,bounds=(0,None),initialize=0) m.x179 = Var(within=Reals,bounds=(0,None),initialize=0) m.x180 = Var(within=Reals,bounds=(0,None),initialize=0) m.x181 = Var(within=Reals,bounds=(0,None),initialize=0) m.x182 = Var(within=Reals,bounds=(0,None),initialize=0) m.x183 = Var(within=Reals,bounds=(0,None),initialize=0) m.x184 = Var(within=Reals,bounds=(0,None),initialize=0) m.x185 = Var(within=Reals,bounds=(0,None),initialize=0) m.x186 = Var(within=Reals,bounds=(0,None),initialize=0) m.x187 = Var(within=Reals,bounds=(0,None),initialize=0) m.x188 = Var(within=Reals,bounds=(0,None),initialize=0) m.x189 = Var(within=Reals,bounds=(0,None),initialize=0) m.x190 = Var(within=Reals,bounds=(0,None),initialize=0) m.x191 = Var(within=Reals,bounds=(0,None),initialize=0) m.x192 = Var(within=Reals,bounds=(0,None),initialize=0) m.x193 = Var(within=Reals,bounds=(0,None),initialize=0) m.x194 = Var(within=Reals,bounds=(0,None),initialize=0) m.x195 = Var(within=Reals,bounds=(0,None),initialize=0) m.x196 = Var(within=Reals,bounds=(0,None),initialize=0) m.x197 = Var(within=Reals,bounds=(0,None),initialize=0) m.x198 = Var(within=Reals,bounds=(0,None),initialize=0) m.x199 = Var(within=Reals,bounds=(0,None),initialize=0) m.x200 = Var(within=Reals,bounds=(0,None),initialize=0) m.x201 = Var(within=Reals,bounds=(0,None),initialize=0) m.x202 = Var(within=Reals,bounds=(0,None),initialize=0) m.x203 = Var(within=Reals,bounds=(0,None),initialize=0) m.x204 = Var(within=Reals,bounds=(0,None),initialize=0) m.x205 = Var(within=Reals,bounds=(0,None),initialize=0) m.x206 = Var(within=Reals,bounds=(0,None),initialize=0) m.x207 = Var(within=Reals,bounds=(0,None),initialize=0) m.x208 = Var(within=Reals,bounds=(0,None),initialize=0) m.x209 = Var(within=Reals,bounds=(0,None),initialize=0) m.x210 = Var(within=Reals,bounds=(0,None),initialize=0) m.x211 = Var(within=Reals,bounds=(0,None),initialize=0) m.x212 = Var(within=Reals,bounds=(0,None),initialize=0) m.x213 = Var(within=Reals,bounds=(0,None),initialize=0) m.x214 = Var(within=Reals,bounds=(0,None),initialize=0) m.x215 = Var(within=Reals,bounds=(0,None),initialize=0) m.x216 = Var(within=Reals,bounds=(0,None),initialize=0) m.x217 = Var(within=Reals,bounds=(0,None),initialize=0) m.x218 = Var(within=Reals,bounds=(0,None),initialize=0) m.x219 = Var(within=Reals,bounds=(0,None),initialize=0) m.x220 = Var(within=Reals,bounds=(0,None),initialize=0) m.x221 = Var(within=Reals,bounds=(0,None),initialize=0) m.x222 = Var(within=Reals,bounds=(0,None),initialize=0) m.x223 = Var(within=Reals,bounds=(0,None),initialize=0) m.x224 = Var(within=Reals,bounds=(0,None),initialize=0) m.x225 = Var(within=Reals,bounds=(0,None),initialize=0) m.x226 = Var(within=Reals,bounds=(0,None),initialize=0) m.x227 = Var(within=Reals,bounds=(0,None),initialize=0) m.x228 = Var(within=Reals,bounds=(0,None),initialize=0) m.x229 = Var(within=Reals,bounds=(0,None),initialize=0) m.x230 = Var(within=Reals,bounds=(0,None),initialize=0) m.x231 = Var(within=Reals,bounds=(0,None),initialize=0) m.x232 = Var(within=Reals,bounds=(0,None),initialize=0) m.x233 = Var(within=Reals,bounds=(0,None),initialize=0) m.x234 = Var(within=Reals,bounds=(0,None),initialize=0) m.x235 = Var(within=Reals,bounds=(0,None),initialize=0) m.x236 = Var(within=Reals,bounds=(0,None),initialize=0) m.x237 = Var(within=Reals,bounds=(0,None),initialize=0) m.x238 = Var(within=Reals,bounds=(0,None),initialize=0) m.x239 = Var(within=Reals,bounds=(0,None),initialize=0) m.x240 = Var(within=Reals,bounds=(0,None),initialize=0) m.x241 = Var(within=Reals,bounds=(0,None),initialize=0) m.x242 = Var(within=Reals,bounds=(0,None),initialize=0) m.x243 = Var(within=Reals,bounds=(0,None),initialize=0) m.x244 = Var(within=Reals,bounds=(0,None),initialize=0) m.x245 = Var(within=Reals,bounds=(0,None),initialize=0) m.x246 = Var(within=Reals,bounds=(0,None),initialize=0) m.x247 = Var(within=Reals,bounds=(0,None),initialize=0) m.x248 = Var(within=Reals,bounds=(0,None),initialize=0) m.x249 = Var(within=Reals,bounds=(0,None),initialize=0) m.x250 = Var(within=Reals,bounds=(0,None),initialize=0) m.x251 = Var(within=Reals,bounds=(0,None),initialize=0) m.x252 = Var(within=Reals,bounds=(0,None),initialize=0) m.x253 = Var(within=Reals,bounds=(0,None),initialize=0) m.x254 = Var(within=Reals,bounds=(0,None),initialize=0) m.x255 = Var(within=Reals,bounds=(0,None),initialize=0) m.x256 = Var(within=Reals,bounds=(0,None),initialize=0) m.x257 = Var(within=Reals,bounds=(0,None),initialize=0) m.x258 = Var(within=Reals,bounds=(0,None),initialize=0) m.x259 = Var(within=Reals,bounds=(0,None),initialize=0) m.x260 = Var(within=Reals,bounds=(0,None),initialize=0) m.x261 = Var(within=Reals,bounds=(0,None),initialize=0) m.x262 = Var(within=Reals,bounds=(0,None),initialize=0) m.x263 = Var(within=Reals,bounds=(0,None),initialize=0) m.x264 = Var(within=Reals,bounds=(0,None),initialize=0) m.x265 = Var(within=Reals,bounds=(0,None),initialize=0) m.x266 = Var(within=Reals,bounds=(0,None),initialize=0) m.x267 = Var(within=Reals,bounds=(0,None),initialize=0) m.x268 = Var(within=Reals,bounds=(0,None),initialize=0) m.x269 = Var(within=Reals,bounds=(0,None),initialize=0) m.x270 = Var(within=Reals,bounds=(0,None),initialize=0) m.x271 = Var(within=Reals,bounds=(0,None),initialize=0) m.x272 = Var(within=Reals,bounds=(0,None),initialize=0) m.x273 = Var(within=Reals,bounds=(0,None),initialize=0) m.x274 = Var(within=Reals,bounds=(0,None),initialize=0) m.x275 = Var(within=Reals,bounds=(0,None),initialize=0) m.x276 = Var(within=Reals,bounds=(0,None),initialize=0) m.x277 = Var(within=Reals,bounds=(0,None),initialize=0) m.x278 = Var(within=Reals,bounds=(0,None),initialize=0) m.x279 = Var(within=Reals,bounds=(0,None),initialize=0) m.x280 = Var(within=Reals,bounds=(0,None),initialize=0) m.x281 = Var(within=Reals,bounds=(0,None),initialize=0) m.x282 = Var(within=Reals,bounds=(0,None),initialize=0) m.x283 = Var(within=Reals,bounds=(0,None),initialize=0) m.x284 = Var(within=Reals,bounds=(0,None),initialize=0) m.x285 = Var(within=Reals,bounds=(0,None),initialize=0) m.x286 = Var(within=Reals,bounds=(0,None),initialize=0) m.x287 = Var(within=Reals,bounds=(0,None),initialize=0) m.x288 = Var(within=Reals,bounds=(0,None),initialize=0) m.x289 = Var(within=Reals,bounds=(0,None),initialize=0) m.x290 = Var(within=Reals,bounds=(0,None),initialize=0) m.x291 = Var(within=Reals,bounds=(0,None),initialize=0) m.x292 = Var(within=Reals,bounds=(0,None),initialize=0) m.x293 = Var(within=Reals,bounds=(0,None),initialize=0) m.x294 = Var(within=Reals,bounds=(0,None),initialize=0) m.x295 = Var(within=Reals,bounds=(0,None),initialize=0) m.x296 = Var(within=Reals,bounds=(0,None),initialize=0) m.x297 = Var(within=Reals,bounds=(0,None),initialize=0) m.x298 = Var(within=Reals,bounds=(0,None),initialize=0) m.x299 = Var(within=Reals,bounds=(0,None),initialize=0) m.x300 = Var(within=Reals,bounds=(0,None),initialize=0) m.x301 = Var(within=Reals,bounds=(0,None),initialize=0) m.x302 = Var(within=Reals,bounds=(0,None),initialize=0) m.x303 = Var(within=Reals,bounds=(0,None),initialize=0) m.x304 = Var(within=Reals,bounds=(0,None),initialize=0) m.x305 = Var(within=Reals,bounds=(0,None),initialize=0) m.x306 = Var(within=Reals,bounds=(0,None),initialize=0) m.x307 = Var(within=Reals,bounds=(0,None),initialize=0) m.x308 = Var(within=Reals,bounds=(0,None),initialize=0) m.x309 = Var(within=Reals,bounds=(0,None),initialize=0) m.x310 = Var(within=Reals,bounds=(0,None),initialize=0) m.x311 = Var(within=Reals,bounds=(0,None),initialize=0) m.x312 = Var(within=Reals,bounds=(0,None),initialize=0) m.x313 = Var(within=Reals,bounds=(0,None),initialize=0) m.x314 = Var(within=Reals,bounds=(0,None),initialize=0) m.x315 = Var(within=Reals,bounds=(0,None),initialize=0) m.x316 = Var(within=Reals,bounds=(0,None),initialize=0) m.x317 = Var(within=Reals,bounds=(0,None),initialize=0) m.x318 = Var(within=Reals,bounds=(0,None),initialize=0) m.x319 = Var(within=Reals,bounds=(0,None),initialize=0) m.x320 = Var(within=Reals,bounds=(0,None),initialize=0) m.x321 = Var(within=Reals,bounds=(0,None),initialize=0) m.x322 = Var(within=Reals,bounds=(0,None),initialize=0) m.x323 = Var(within=Reals,bounds=(0,None),initialize=0) m.x324 = Var(within=Reals,bounds=(0,None),initialize=0) m.x325 = Var(within=Reals,bounds=(0,None),initialize=0) m.x326 = Var(within=Reals,bounds=(0,None),initialize=0) m.x327 = Var(within=Reals,bounds=(0,None),initialize=0) m.x328 = Var(within=Reals,bounds=(0,None),initialize=0) m.x329 = Var(within=Reals,bounds=(0,None),initialize=0) m.x330 = Var(within=Reals,bounds=(0,None),initialize=0) m.x331 = Var(within=Reals,bounds=(0,None),initialize=0) m.x332 = Var(within=Reals,bounds=(0,None),initialize=0) m.x333 = Var(within=Reals,bounds=(0,None),initialize=0) m.x334 = Var(within=Reals,bounds=(0,None),initialize=0) m.x335 = Var(within=Reals,bounds=(0,None),initialize=0) m.x336 = Var(within=Reals,bounds=(0,None),initialize=0) m.x337 = Var(within=Reals,bounds=(0,None),initialize=0) m.x338 = Var(within=Reals,bounds=(0,None),initialize=0) m.x339 = Var(within=Reals,bounds=(0,None),initialize=0) m.x340 = Var(within=Reals,bounds=(0,None),initialize=0) m.x341 = Var(within=Reals,bounds=(0,None),initialize=0) m.x342 = Var(within=Reals,bounds=(0,None),initialize=0) m.x343 = Var(within=Reals,bounds=(0,None),initialize=0) m.x344 = Var(within=Reals,bounds=(0,None),initialize=0) m.x345 = Var(within=Reals,bounds=(0,None),initialize=0) m.x346 = Var(within=Reals,bounds=(0,None),initialize=0) m.x347 = Var(within=Reals,bounds=(0,None),initialize=0) m.x348 = Var(within=Reals,bounds=(0,None),initialize=0) m.x349 = Var(within=Reals,bounds=(0,None),initialize=0) m.x350 = Var(within=Reals,bounds=(0,None),initialize=0) m.x351 = Var(within=Reals,bounds=(0,None),initialize=0) m.x352 = Var(within=Reals,bounds=(0,None),initialize=0) m.x353 = Var(within=Reals,bounds=(0,None),initialize=0) m.x354 = Var(within=Reals,bounds=(0,None),initialize=0) m.x355 = Var(within=Reals,bounds=(0,None),initialize=0) m.x356 = Var(within=Reals,bounds=(0,None),initialize=0) m.x357 = Var(within=Reals,bounds=(0,None),initialize=0) m.x358 = Var(within=Reals,bounds=(0,None),initialize=0) m.x359 = Var(within=Reals,bounds=(0,None),initialize=0) m.x360 = Var(within=Reals,bounds=(0,None),initialize=0) m.x361 = Var(within=Reals,bounds=(0,None),initialize=0) m.x362 = Var(within=Reals,bounds=(0,None),initialize=0) m.x363 = Var(within=Reals,bounds=(0,None),initialize=0) m.x364 = Var(within=Reals,bounds=(0,None),initialize=0) m.x365 = Var(within=Reals,bounds=(0,None),initialize=0) m.x366 = Var(within=Reals,bounds=(0,None),initialize=0) m.x367 = Var(within=Reals,bounds=(0,None),initialize=0) m.x368 = Var(within=Reals,bounds=(0,None),initialize=0) m.x369 = Var(within=Reals,bounds=(0,None),initialize=0) m.x370 = Var(within=Reals,bounds=(0,None),initialize=0) m.x371 = Var(within=Reals,bounds=(0,None),initialize=0) m.x372 = Var(within=Reals,bounds=(0,None),initialize=0) m.x373 = Var(within=Reals,bounds=(0,None),initialize=0) m.x374 = Var(within=Reals,bounds=(0,None),initialize=0) m.x375 = Var(within=Reals,bounds=(0,None),initialize=0) m.x376 = Var(within=Reals,bounds=(0,None),initialize=0) m.x377 = Var(within=Reals,bounds=(0,None),initialize=0) m.x378 = Var(within=Reals,bounds=(0,None),initialize=0) m.x379 = Var(within=Reals,bounds=(0,None),initialize=0) m.x380 = Var(within=Reals,bounds=(0,None),initialize=0) m.x381 = Var(within=Reals,bounds=(0,None),initialize=0) m.x382 = Var(within=Reals,bounds=(0,None),initialize=0) m.x383 = Var(within=Reals,bounds=(0,None),initialize=0) m.x384 = Var(within=Reals,bounds=(0,None),initialize=0) m.x385 = Var(within=Reals,bounds=(0,None),initialize=0) m.x386 = Var(within=Reals,bounds=(0,None),initialize=0) m.x387 = Var(within=Reals,bounds=(0,None),initialize=0) m.x388 = Var(within=Reals,bounds=(0,None),initialize=0) m.x389 = Var(within=Reals,bounds=(0,None),initialize=0) m.x390 = Var(within=Reals,bounds=(0,None),initialize=0) m.x391 = Var(within=Reals,bounds=(0,None),initialize=0) m.x392 = Var(within=Reals,bounds=(0,None),initialize=0) m.x393 = Var(within=Reals,bounds=(0,None),initialize=0) m.x394 = Var(within=Reals,bounds=(0,None),initialize=0) m.x395 = Var(within=Reals,bounds=(0,None),initialize=0) m.x396 = Var(within=Reals,bounds=(0,None),initialize=0) m.x397 = Var(within=Reals,bounds=(0,None),initialize=0) m.x398 = Var(within=Reals,bounds=(0,None),initialize=0) m.x399 = Var(within=Reals,bounds=(0,None),initialize=0) m.x400 = Var(within=Reals,bounds=(0,None),initialize=0) m.x401 = Var(within=Reals,bounds=(0,None),initialize=0) m.x402 = Var(within=Reals,bounds=(0,None),initialize=0) m.x403 = Var(within=Reals,bounds=(0,None),initialize=0) m.x404 = Var(within=Reals,bounds=(0,None),initialize=0) m.x405 = Var(within=Reals,bounds=(0,None),initialize=0) m.x406 = Var(within=Reals,bounds=(0,None),initialize=0) m.x407 = Var(within=Reals,bounds=(0,None),initialize=0) m.x408 = Var(within=Reals,bounds=(0,None),initialize=0) m.x409 = Var(within=Reals,bounds=(0,None),initialize=0) m.x410 = Var(within=Reals,bounds=(0,None),initialize=0) m.x411 = Var(within=Reals,bounds=(0,None),initialize=0) m.x412 = Var(within=Reals,bounds=(0,None),initialize=0) m.x413 = Var(within=Reals,bounds=(0,None),initialize=0) m.x414 = Var(within=Reals,bounds=(0,None),initialize=0) m.x415 = Var(within=Reals,bounds=(0,None),initialize=0) m.x416 = Var(within=Reals,bounds=(0,None),initialize=0) m.x417 = Var(within=Reals,bounds=(0,None),initialize=0) m.x418 = Var(within=Reals,bounds=(0,None),initialize=0) m.x419 = Var(within=Reals,bounds=(0,None),initialize=0) m.x420 = Var(within=Reals,bounds=(0,None),initialize=0) m.x421 = Var(within=Reals,bounds=(0,None),initialize=0) m.x422 = Var(within=Reals,bounds=(0,None),initialize=0) m.x423 = Var(within=Reals,bounds=(0,None),initialize=0) m.x424 = Var(within=Reals,bounds=(0,None),initialize=0) m.x425 = Var(within=Reals,bounds=(0,None),initialize=0) m.x426 = Var(within=Reals,bounds=(0,None),initialize=0) m.x427 = Var(within=Reals,bounds=(0,None),initialize=0) m.x428 = Var(within=Reals,bounds=(0,None),initialize=0) m.x429 = Var(within=Reals,bounds=(0,None),initialize=0) m.x430 = Var(within=Reals,bounds=(0,None),initialize=0) m.x431 = Var(within=Reals,bounds=(0,None),initialize=0) m.x432 = Var(within=Reals,bounds=(0,None),initialize=0) m.x433 = Var(within=Reals,bounds=(0,None),initialize=0) m.x434 = Var(within=Reals,bounds=(0,None),initialize=0) m.x435 = Var(within=Reals,bounds=(0,None),initialize=0) m.x436 = Var(within=Reals,bounds=(0,None),initialize=0) m.x437 = Var(within=Reals,bounds=(0,None),initialize=0) m.x438 = Var(within=Reals,bounds=(0,None),initialize=0) m.x439 = Var(within=Reals,bounds=(0,None),initialize=0) m.x440 = Var(within=Reals,bounds=(0,None),initialize=0) m.x441 = Var(within=Reals,bounds=(0,None),initialize=0) m.x442 = Var(within=Reals,bounds=(0,None),initialize=0) m.x443 = Var(within=Reals,bounds=(0,None),initialize=0) m.x444 = Var(within=Reals,bounds=(0,None),initialize=0) m.x445 = Var(within=Reals,bounds=(0,None),initialize=0) m.x446 = Var(within=Reals,bounds=(0,None),initialize=0) m.x447 = Var(within=Reals,bounds=(0,None),initialize=0) m.x448 = Var(within=Reals,bounds=(0,None),initialize=0) m.x449 = Var(within=Reals,bounds=(0,None),initialize=0) m.x450 = Var(within=Reals,bounds=(0,None),initialize=0) m.x451 = Var(within=Reals,bounds=(0,None),initialize=0) m.x452 = Var(within=Reals,bounds=(0,None),initialize=0) m.x453 = Var(within=Reals,bounds=(0,None),initialize=0) m.x454 = Var(within=Reals,bounds=(0,None),initialize=0) m.x455 = Var(within=Reals,bounds=(0,None),initialize=0) m.x456 = Var(within=Reals,bounds=(0,None),initialize=0) m.x457 = Var(within=Reals,bounds=(0,None),initialize=0) m.x458 = Var(within=Reals,bounds=(0,None),initialize=0) m.x459 = Var(within=Reals,bounds=(0,None),initialize=0) m.x460 = Var(within=Reals,bounds=(0,None),initialize=0) m.x461 = Var(within=Reals,bounds=(0,None),initialize=0) m.x462 = Var(within=Reals,bounds=(0,None),initialize=0) m.x463 = Var(within=Reals,bounds=(0,None),initialize=0) m.x464 = Var(within=Reals,bounds=(0,None),initialize=0) m.x465 = Var(within=Reals,bounds=(0,None),initialize=0) m.x466 = Var(within=Reals,bounds=(0,None),initialize=0) m.x467 = Var(within=Reals,bounds=(0,None),initialize=0) m.x468 = Var(within=Reals,bounds=(0,None),initialize=0) m.x469 = Var(within=Reals,bounds=(0,None),initialize=0) m.x470 = Var(within=Reals,bounds=(0,None),initialize=0) m.x471 = Var(within=Reals,bounds=(0,None),initialize=0) m.x472 = Var(within=Reals,bounds=(0,None),initialize=0) m.x473 = Var(within=Reals,bounds=(0,None),initialize=0) m.x474 = Var(within=Reals,bounds=(0,None),initialize=0) m.x475 = Var(within=Reals,bounds=(0,None),initialize=0) m.x476 = Var(within=Reals,bounds=(0,None),initialize=0) m.x477 = Var(within=Reals,bounds=(0,None),initialize=0) m.x478 = Var(within=Reals,bounds=(0,None),initialize=0) m.x479 = Var(within=Reals,bounds=(0,None),initialize=0) m.x480 = Var(within=Reals,bounds=(0,None),initialize=0) m.x481 = Var(within=Reals,bounds=(0,None),initialize=0) m.x482 = Var(within=Reals,bounds=(0,None),initialize=0) m.x483 = Var(within=Reals,bounds=(0,None),initialize=0) m.x484 = Var(within=Reals,bounds=(0,None),initialize=0) m.x485 = Var(within=Reals,bounds=(0,None),initialize=0) m.x486 = Var(within=Reals,bounds=(0,None),initialize=0) m.x487 = Var(within=Reals,bounds=(0,None),initialize=0) m.x488 = Var(within=Reals,bounds=(0,None),initialize=0) m.x489 = Var(within=Reals,bounds=(0,None),initialize=0) m.x490 = Var(within=Reals,bounds=(0,None),initialize=0) m.x491 = Var(within=Reals,bounds=(0,None),initialize=0) m.x492 = Var(within=Reals,bounds=(0,None),initialize=0) m.x493 = Var(within=Reals,bounds=(0,None),initialize=0) m.x494 = Var(within=Reals,bounds=(0,None),initialize=0) m.x495 = Var(within=Reals,bounds=(0,None),initialize=0) m.x496 = Var(within=Reals,bounds=(0,None),initialize=0) m.x497 = Var(within=Reals,bounds=(0,None),initialize=0) m.x498 = Var(within=Reals,bounds=(0,None),initialize=0) m.x499 = Var(within=Reals,bounds=(0,None),initialize=0) m.x500 = Var(within=Reals,bounds=(0,None),initialize=0) m.x501 = Var(within=Reals,bounds=(0,None),initialize=0) m.x502 = Var(within=Reals,bounds=(0,None),initialize=0) m.x503 = Var(within=Reals,bounds=(0,None),initialize=0) m.x504 = Var(within=Reals,bounds=(0,None),initialize=0) m.x505 = Var(within=Reals,bounds=(0,None),initialize=0) m.x506 = Var(within=Reals,bounds=(0,None),initialize=0) m.x507 = Var(within=Reals,bounds=(0,None),initialize=0) m.x508 = Var(within=Reals,bounds=(0,None),initialize=0) m.x509 = Var(within=Reals,bounds=(0,None),initialize=0) m.x510 = Var(within=Reals,bounds=(0,None),initialize=0) m.x511 = Var(within=Reals,bounds=(0,None),initialize=0) m.x512 = Var(within=Reals,bounds=(0,None),initialize=0) m.x513 = Var(within=Reals,bounds=(0,None),initialize=0) m.x514 = Var(within=Reals,bounds=(0,None),initialize=0) m.x515 = Var(within=Reals,bounds=(0,None),initialize=0) m.x516 = Var(within=Reals,bounds=(0,None),initialize=0) m.x517 = Var(within=Reals,bounds=(0,None),initialize=0) m.x518 = Var(within=Reals,bounds=(0,None),initialize=0) m.x519 = Var(within=Reals,bounds=(0,None),initialize=0) m.x520 = Var(within=Reals,bounds=(0,None),initialize=0) m.x521 = Var(within=Reals,bounds=(0,None),initialize=0) m.x522 = Var(within=Reals,bounds=(0,None),initialize=0) m.x523 = Var(within=Reals,bounds=(0,None),initialize=0) m.x524 = Var(within=Reals,bounds=(0,None),initialize=0) m.x525 = Var(within=Reals,bounds=(0,None),initialize=0) m.x526 = Var(within=Reals,bounds=(0,None),initialize=0) m.x527 = Var(within=Reals,bounds=(0,None),initialize=0) m.x528 = Var(within=Reals,bounds=(0,None),initialize=0) m.x529 = Var(within=Reals,bounds=(0,None),initialize=0) m.x530 = Var(within=Reals,bounds=(0,None),initialize=0) m.x531 = Var(within=Reals,bounds=(0,None),initialize=0) m.x532 = Var(within=Reals,bounds=(0,None),initialize=0) m.x533 = Var(within=Reals,bounds=(0,None),initialize=0) m.x534 = Var(within=Reals,bounds=(0,None),initialize=0) m.x535 = Var(within=Reals,bounds=(0,None),initialize=0) m.x536 = Var(within=Reals,bounds=(0,None),initialize=0) m.x537 = Var(within=Reals,bounds=(0,None),initialize=0) m.x538 = Var(within=Reals,bounds=(0,None),initialize=0) m.x539 = Var(within=Reals,bounds=(0,None),initialize=0) m.x540 = Var(within=Reals,bounds=(0,None),initialize=0) m.x541 = Var(within=Reals,bounds=(0,None),initialize=0) m.x542 = Var(within=Reals,bounds=(0,None),initialize=0) m.x543 = Var(within=Reals,bounds=(0,None),initialize=0) m.x544 = Var(within=Reals,bounds=(0,None),initialize=0) m.x545 = Var(within=Reals,bounds=(0,None),initialize=0) m.x546 = Var(within=Reals,bounds=(0,None),initialize=0) m.x547 = Var(within=Reals,bounds=(0,None),initialize=0) m.x548 = Var(within=Reals,bounds=(0,None),initialize=0) m.x549 = Var(within=Reals,bounds=(0,None),initialize=0) m.x550 = Var(within=Reals,bounds=(0,None),initialize=0) m.x551 = Var(within=Reals,bounds=(0,None),initialize=0) m.x552 = Var(within=Reals,bounds=(0,None),initialize=0) m.x553 = Var(within=Reals,bounds=(0,None),initialize=0) m.x554 = Var(within=Reals,bounds=(0,None),initialize=0) m.x555 = Var(within=Reals,bounds=(0,None),initialize=0) m.x556 = Var(within=Reals,bounds=(0,None),initialize=0) m.x557 = Var(within=Reals,bounds=(0,None),initialize=0) m.x558 = Var(within=Reals,bounds=(0,None),initialize=0) m.x559 = Var(within=Reals,bounds=(0,None),initialize=0) m.x560 = Var(within=Reals,bounds=(0,None),initialize=0) m.x561 = Var(within=Reals,bounds=(0,None),initialize=0) m.x562 = Var(within=Reals,bounds=(0,None),initialize=0) m.x563 = Var(within=Reals,bounds=(0,None),initialize=0) m.x564 = Var(within=Reals,bounds=(0,None),initialize=0) m.x565 = Var(within=Reals,bounds=(0,None),initialize=0) m.x566 = Var(within=Reals,bounds=(0,None),initialize=0) m.x567 = Var(within=Reals,bounds=(0,None),initialize=0) m.x568 = Var(within=Reals,bounds=(0,None),initialize=0) m.x569 = Var(within=Reals,bounds=(0,None),initialize=0) m.x570 = Var(within=Reals,bounds=(0,None),initialize=0) m.x571 = Var(within=Reals,bounds=(0,None),initialize=0) m.x572 = Var(within=Reals,bounds=(0,None),initialize=0) m.x573 = Var(within=Reals,bounds=(0,None),initialize=0) m.x574 = Var(within=Reals,bounds=(0,None),initialize=0) m.x575 = Var(within=Reals,bounds=(0,None),initialize=0) m.x576 = Var(within=Reals,bounds=(0,None),initialize=0) m.x577 = Var(within=Reals,bounds=(0,None),initialize=0) m.x578 = Var(within=Reals,bounds=(0,None),initialize=0) m.x579 = Var(within=Reals,bounds=(0,None),initialize=0) m.x580 = Var(within=Reals,bounds=(0,None),initialize=0) m.x581 = Var(within=Reals,bounds=(0,None),initialize=0) m.x582 = Var(within=Reals,bounds=(0,None),initialize=0) m.x583 = Var(within=Reals,bounds=(0,None),initialize=0) m.x584 = Var(within=Reals,bounds=(0,None),initialize=0) m.x585 = Var(within=Reals,bounds=(0,None),initialize=0) m.x586 = Var(within=Reals,bounds=(0,None),initialize=0) m.x587 = Var(within=Reals,bounds=(0,None),initialize=0) m.x588 = Var(within=Reals,bounds=(0,None),initialize=0) m.x589 = Var(within=Reals,bounds=(0,None),initialize=0) m.x590 = Var(within=Reals,bounds=(0,None),initialize=0) m.x591 = Var(within=Reals,bounds=(0,None),initialize=0) m.x592 = Var(within=Reals,bounds=(0,None),initialize=0) m.x593 = Var(within=Reals,bounds=(0,None),initialize=0) m.x594 = Var(within=Reals,bounds=(0,None),initialize=0) m.x595 = Var(within=Reals,bounds=(0,None),initialize=0) m.b596 = Var(within=Binary,bounds=(0,1),initialize=0) m.b597 = Var(within=Binary,bounds=(0,1),initialize=0) m.b598 = Var(within=Binary,bounds=(0,1),initialize=0) m.b599 = Var(within=Binary,bounds=(0,1),initialize=0) m.b600 = Var(within=Binary,bounds=(0,1),initialize=0) m.b601 = Var(within=Binary,bounds=(0,1),initialize=0) m.b602 = Var(within=Binary,bounds=(0,1),initialize=0) m.b603 = Var(within=Binary,bounds=(0,1),initialize=0) m.b604 = Var(within=Binary,bounds=(0,1),initialize=0) m.b605 = Var(within=Binary,bounds=(0,1),initialize=0) m.b606 = Var(within=Binary,bounds=(0,1),initialize=0) m.b607 = Var(within=Binary,bounds=(0,1),initialize=0) m.b608 = Var(within=Binary,bounds=(0,1),initialize=0) m.b609 = Var(within=Binary,bounds=(0,1),initialize=0) m.b610 = Var(within=Binary,bounds=(0,1),initialize=0) m.b611 = Var(within=Binary,bounds=(0,1),initialize=0) m.b612 = Var(within=Binary,bounds=(0,1),initialize=0) m.b613 = Var(within=Binary,bounds=(0,1),initialize=0) m.b614 = Var(within=Binary,bounds=(0,1),initialize=0) m.b615 = Var(within=Binary,bounds=(0,1),initialize=0) m.b616 = Var(within=Binary,bounds=(0,1),initialize=0) m.b617 = Var(within=Binary,bounds=(0,1),initialize=0) m.b618 = Var(within=Binary,bounds=(0,1),initialize=0) m.b619 = Var(within=Binary,bounds=(0,1),initialize=0) m.b620 = Var(within=Binary,bounds=(0,1),initialize=0) m.b621 = Var(within=Binary,bounds=(0,1),initialize=0) m.b622 = Var(within=Binary,bounds=(0,1),initialize=0) m.b623 = Var(within=Binary,bounds=(0,1),initialize=0) m.b624 = Var(within=Binary,bounds=(0,1),initialize=0) m.b625 = Var(within=Binary,bounds=(0,1),initialize=0) m.b626 = Var(within=Binary,bounds=(0,1),initialize=0) m.b627 = Var(within=Binary,bounds=(0,1),initialize=0) m.b628 = Var(within=Binary,bounds=(0,1),initialize=0) m.b629 = Var(within=Binary,bounds=(0,1),initialize=0) m.b630 = Var(within=Binary,bounds=(0,1),initialize=0) m.b631 = Var(within=Binary,bounds=(0,1),initialize=0) m.b632 = Var(within=Binary,bounds=(0,1),initialize=0) m.b633 = Var(within=Binary,bounds=(0,1),initialize=0) m.b634 = Var(within=Binary,bounds=(0,1),initialize=0) m.b635 = Var(within=Binary,bounds=(0,1),initialize=0) m.b636 = Var(within=Binary,bounds=(0,1),initialize=0) m.b637 = Var(within=Binary,bounds=(0,1),initialize=0) m.b638 = Var(within=Binary,bounds=(0,1),initialize=0) m.b639 = Var(within=Binary,bounds=(0,1),initialize=0) m.b640 = Var(within=Binary,bounds=(0,1),initialize=0) m.b641 = Var(within=Binary,bounds=(0,1),initialize=0) m.b642 = Var(within=Binary,bounds=(0,1),initialize=0) m.b643 = Var(within=Binary,bounds=(0,1),initialize=0) m.b644 = Var(within=Binary,bounds=(0,1),initialize=0) m.b645 = Var(within=Binary,bounds=(0,1),initialize=0) m.b646 = Var(within=Binary,bounds=(0,1),initialize=0) m.b647 = Var(within=Binary,bounds=(0,1),initialize=0) m.b648 = Var(within=Binary,bounds=(0,1),initialize=0) m.b649 = Var(within=Binary,bounds=(0,1),initialize=0) m.b650 = Var(within=Binary,bounds=(0,1),initialize=0) m.b651 = Var(within=Binary,bounds=(0,1),initialize=0) m.b652 = Var(within=Binary,bounds=(0,1),initialize=0) m.b653 = Var(within=Binary,bounds=(0,1),initialize=0) m.b654 = Var(within=Binary,bounds=(0,1),initialize=0) m.b655 = Var(within=Binary,bounds=(0,1),initialize=0) m.b656 = Var(within=Binary,bounds=(0,1),initialize=0) m.b657 = Var(within=Binary,bounds=(0,1),initialize=0) m.b658 = Var(within=Binary,bounds=(0,1),initialize=0) m.b659 = Var(within=Binary,bounds=(0,1),initialize=0) m.b660 = Var(within=Binary,bounds=(0,1),initialize=0) m.b661 = Var(within=Binary,bounds=(0,1),initialize=0) m.b662 = Var(within=Binary,bounds=(0,1),initialize=0) m.b663 = Var(within=Binary,bounds=(0,1),initialize=0) m.b664 = Var(within=Binary,bounds=(0,1),initialize=0) m.b665 = Var(within=Binary,bounds=(0,1),initialize=0) m.b666 = Var(within=Binary,bounds=(0,1),initialize=0) m.b667 = Var(within=Binary,bounds=(0,1),initialize=0) m.b668 = Var(within=Binary,bounds=(0,1),initialize=0) m.b669 = Var(within=Binary,bounds=(0,1),initialize=0) m.b670 = Var(within=Binary,bounds=(0,1),initialize=0) m.b671 = Var(within=Binary,bounds=(0,1),initialize=0) m.b672 = Var(within=Binary,bounds=(0,1),initialize=0) m.b673 = Var(within=Binary,bounds=(0,1),initialize=0) m.b674 = Var(within=Binary,bounds=(0,1),initialize=0) m.b675 = Var(within=Binary,bounds=(0,1),initialize=0) m.b676 = Var(within=Binary,bounds=(0,1),initialize=0) m.b677 = Var(within=Binary,bounds=(0,1),initialize=0) m.b678 = Var(within=Binary,bounds=(0,1),initialize=0) m.b679 = Var(within=Binary,bounds=(0,1),initialize=0) m.b680 = Var(within=Binary,bounds=(0,1),initialize=0) m.b681 = Var(within=Binary,bounds=(0,1),initialize=0) m.b682 = Var(within=Binary,bounds=(0,1),initialize=0) m.b683 = Var(within=Binary,bounds=(0,1),initialize=0) m.b684 = Var(within=Binary,bounds=(0,1),initialize=0) m.b685 = Var(within=Binary,bounds=(0,1),initialize=0) m.b686 = Var(within=Binary,bounds=(0,1),initialize=0) m.b687 = Var(within=Binary,bounds=(0,1),initialize=0) m.b688 = Var(within=Binary,bounds=(0,1),initialize=0) m.b689 = Var(within=Binary,bounds=(0,1),initialize=0) m.b690 = Var(within=Binary,bounds=(0,1),initialize=0) m.b691 = Var(within=Binary,bounds=(0,1),initialize=0) m.b692 = Var(within=Binary,bounds=(0,1),initialize=0) m.b693 = Var(within=Binary,bounds=(0,1),initialize=0) m.b694 = Var(within=Binary,bounds=(0,1),initialize=0) m.b695 = Var(within=Binary,bounds=(0,1),initialize=0) m.b696 = Var(within=Binary,bounds=(0,1),initialize=0) m.b697 = Var(within=Binary,bounds=(0,1),initialize=0) m.b698 = Var(within=Binary,bounds=(0,1),initialize=0) m.b699 = Var(within=Binary,bounds=(0,1),initialize=0) m.b700 = Var(within=Binary,bounds=(0,1),initialize=0) m.b701 = Var(within=Binary,bounds=(0,1),initialize=0) m.b702 = Var(within=Binary,bounds=(0,1),initialize=0) m.b703 = Var(within=Binary,bounds=(0,1),initialize=0) m.b704 = Var(within=Binary,bounds=(0,1),initialize=0) m.b705 = Var(within=Binary,bounds=(0,1),initialize=0) m.b706 = Var(within=Binary,bounds=(0,1),initialize=0) m.b707 = Var(within=Binary,bounds=(0,1),initialize=0) m.b708 = Var(within=Binary,bounds=(0,1),initialize=0) m.b709 = Var(within=Binary,bounds=(0,1),initialize=0) m.b710 = Var(within=Binary,bounds=(0,1),initialize=0) m.b711 = Var(within=Binary,bounds=(0,1),initialize=0) m.b712 = Var(within=Binary,bounds=(0,1),initialize=0) m.b713 = Var(within=Binary,bounds=(0,1),initialize=0) m.b714 = Var(within=Binary,bounds=(0,1),initialize=0) m.b715 = Var(within=Binary,bounds=(0,1),initialize=0) m.b716 = Var(within=Binary,bounds=(0,1),initialize=0) m.b717 = Var(within=Binary,bounds=(0,1),initialize=0) m.b718 = Var(within=Binary,bounds=(0,1),initialize=0) m.b719 = Var(within=Binary,bounds=(0,1),initialize=0) m.b720 = Var(within=Binary,bounds=(0,1),initialize=0) m.b721 = Var(within=Binary,bounds=(0,1),initialize=0) m.b722 = Var(within=Binary,bounds=(0,1),initialize=0) m.b723 = Var(within=Binary,bounds=(0,1),initialize=0) m.b724 = Var(within=Binary,bounds=(0,1),initialize=0) m.b725 = Var(within=Binary,bounds=(0,1),initialize=0) m.b726 = Var(within=Binary,bounds=(0,1),initialize=0) m.b727 = Var(within=Binary,bounds=(0,1),initialize=0) m.b728 = Var(within=Binary,bounds=(0,1),initialize=0) m.b729 = Var(within=Binary,bounds=(0,1),initialize=0) m.b730 = Var(within=Binary,bounds=(0,1),initialize=0) m.b731 = Var(within=Binary,bounds=(0,1),initialize=0) m.b732 = Var(within=Binary,bounds=(0,1),initialize=0) m.b733 = Var(within=Binary,bounds=(0,1),initialize=0) m.b734 = Var(within=Binary,bounds=(0,1),initialize=0) m.b735 = Var(within=Binary,bounds=(0,1),initialize=0) m.b736 = Var(within=Binary,bounds=(0,1),initialize=0) m.b737 = Var(within=Binary,bounds=(0,1),initialize=0) m.b738 = Var(within=Binary,bounds=(0,1),initialize=0) m.b739 = Var(within=Binary,bounds=(0,1),initialize=0) m.b740 = Var(within=Binary,bounds=(0,1),initialize=0) m.b741 = Var(within=Binary,bounds=(0,1),initialize=0) m.b742 = Var(within=Binary,bounds=(0,1),initialize=0) m.b743 = Var(within=Binary,bounds=(0,1),initialize=0) m.b744 = Var(within=Binary,bounds=(0,1),initialize=0) m.b745 = Var(within=Binary,bounds=(0,1),initialize=0) m.b746 = Var(within=Binary,bounds=(0,1),initialize=0) m.b747 = Var(within=Binary,bounds=(0,1),initialize=0) m.b748 = Var(within=Binary,bounds=(0,1),initialize=0) m.b749 = Var(within=Binary,bounds=(0,1),initialize=0) m.b750 = Var(within=Binary,bounds=(0,1),initialize=0) m.b751 = Var(within=Binary,bounds=(0,1),initialize=0) m.b752 = Var(within=Binary,bounds=(0,1),initialize=0) m.b753 = Var(within=Binary,bounds=(0,1),initialize=0) m.b754 = Var(within=Binary,bounds=(0,1),initialize=0) m.b755 = Var(within=Binary,bounds=(0,1),initialize=0) m.b756 = Var(within=Binary,bounds=(0,1),initialize=0) m.b757 = Var(within=Binary,bounds=(0,1),initialize=0) m.b758 = Var(within=Binary,bounds=(0,1),initialize=0) m.b759 = Var(within=Binary,bounds=(0,1),initialize=0) m.b760 = Var(within=Binary,bounds=(0,1),initialize=0) m.b761 = Var(within=Binary,bounds=(0,1),initialize=0) m.b762 = Var(within=Binary,bounds=(0,1),initialize=0) m.b763 = Var(within=Binary,bounds=(0,1),initialize=0) m.b764 = Var(within=Binary,bounds=(0,1),initialize=0) m.b765 = Var(within=Binary,bounds=(0,1),initialize=0) m.b766 = Var(within=Binary,bounds=(0,1),initialize=0) m.b767 = Var(within=Binary,bounds=(0,1),initialize=0) m.b768 = Var(within=Binary,bounds=(0,1),initialize=0) m.b769 = Var(within=Binary,bounds=(0,1),initialize=0) m.b770 = Var(within=Binary,bounds=(0,1),initialize=0) m.b771 = Var(within=Binary,bounds=(0,1),initialize=0) m.b772 = Var(within=Binary,bounds=(0,1),initialize=0) m.b773 = Var(within=Binary,bounds=(0,1),initialize=0) m.b774 = Var(within=Binary,bounds=(0,1),initialize=0) m.b775 = Var(within=Binary,bounds=(0,1),initialize=0) m.x776 = Var(within=Reals,bounds=(None,None),initialize=0) m.x777 = Var(within=Reals,bounds=(None,None),initialize=0) m.x778 = Var(within=Reals,bounds=(None,None),initialize=0) m.x779 = Var(within=Reals,bounds=(None,None),initialize=0) m.x780 = Var(within=Reals,bounds=(None,None),initialize=0) m.x781 = Var(within=Reals,bounds=(None,None),initialize=0) m.x782 = Var(within=Reals,bounds=(None,None),initialize=0) m.x783 = Var(within=Reals,bounds=(None,None),initialize=0) m.x784 = Var(within=Reals,bounds=(None,None),initialize=0) m.x785 = Var(within=Reals,bounds=(None,None),initialize=0) m.x786 = Var(within=Reals,bounds=(None,None),initialize=0) m.x787 = Var(within=Reals,bounds=(None,None),initialize=0) m.x788 = Var(within=Reals,bounds=(None,None),initialize=0) m.x789 = Var(within=Reals,bounds=(None,None),initialize=0) m.x790 = Var(within=Reals,bounds=(None,None),initialize=0) m.x791 = Var(within=Reals,bounds=(None,None),initialize=0) m.x792 = Var(within=Reals,bounds=(None,None),initialize=0) m.x793 = Var(within=Reals,bounds=(None,None),initialize=0) m.x794 = Var(within=Reals,bounds=(None,None),initialize=0) m.x795 = Var(within=Reals,bounds=(None,None),initialize=0) m.x796 = Var(within=Reals,bounds=(None,None),initialize=0) m.x797 = Var(within=Reals,bounds=(None,None),initialize=0) m.x798 = Var(within=Reals,bounds=(None,None),initialize=0) m.x799 = Var(within=Reals,bounds=(None,None),initialize=0) m.x800 = Var(within=Reals,bounds=(None,None),initialize=0) m.x801 = Var(within=Reals,bounds=(None,None),initialize=0) m.x802 = Var(within=Reals,bounds=(None,None),initialize=0) m.x803 = Var(within=Reals,bounds=(None,None),initialize=0) m.x804 = Var(within=Reals,bounds=(None,None),initialize=0) m.x805 = Var(within=Reals,bounds=(None,None),initialize=0) m.x806 = Var(within=Reals,bounds=(None,None),initialize=0) m.x807 = Var(within=Reals,bounds=(None,None),initialize=0) m.x808 = Var(within=Reals,bounds=(None,None),initialize=0) m.x809 = Var(within=Reals,bounds=(None,None),initialize=0) m.x810 = Var(within=Reals,bounds=(None,None),initialize=0) m.x811 = Var(within=Reals,bounds=(None,None),initialize=0) m.x812 = Var(within=Reals,bounds=(None,None),initialize=0) m.x813 = Var(within=Reals,bounds=(None,None),initialize=0) m.x814 = Var(within=Reals,bounds=(None,None),initialize=0) m.x815 = Var(within=Reals,bounds=(None,None),initialize=0) m.x816 = Var(within=Reals,bounds=(None,None),initialize=0) m.x817 = Var(within=Reals,bounds=(None,None),initialize=0) m.x818 = Var(within=Reals,bounds=(None,None),initialize=0) m.x819 = Var(within=Reals,bounds=(None,None),initialize=0) m.x820 = Var(within=Reals,bounds=(None,None),initialize=0) m.x821 = Var(within=Reals,bounds=(None,None),initialize=0) m.x822 = Var(within=Reals,bounds=(None,None),initialize=0) m.x823 = Var(within=Reals,bounds=(None,None),initialize=0) m.x824 = Var(within=Reals,bounds=(None,None),initialize=0) m.x825 = Var(within=Reals,bounds=(None,None),initialize=0) m.x826 = Var(within=Reals,bounds=(None,None),initialize=0) m.x827 = Var(within=Reals,bounds=(None,None),initialize=0) m.x828 = Var(within=Reals,bounds=(None,None),initialize=0) m.x829 = Var(within=Reals,bounds=(None,None),initialize=0) m.x830 = Var(within=Reals,bounds=(None,None),initialize=0) m.x831 = Var(within=Reals,bounds=(None,None),initialize=0) m.x832 = Var(within=Reals,bounds=(None,None),initialize=0) m.x833 = Var(within=Reals,bounds=(None,None),initialize=0) m.x834 = Var(within=Reals,bounds=(None,None),initialize=0) m.x835 = Var(within=Reals,bounds=(None,None),initialize=0) m.x836 = Var(within=Reals,bounds=(None,None),initialize=0) m.x837 = Var(within=Reals,bounds=(None,None),initialize=0) m.x838 = Var(within=Reals,bounds=(None,None),initialize=0) m.x839 = Var(within=Reals,bounds=(None,None),initialize=0) m.x840 = Var(within=Reals,bounds=(None,None),initialize=0) m.x841 = Var(within=Reals,bounds=(None,None),initialize=0) m.x842 = Var(within=Reals,bounds=(None,None),initialize=0) m.x843 = Var(within=Reals,bounds=(None,None),initialize=0) m.x844 = Var(within=Reals,bounds=(None,None),initialize=0) m.x845 = Var(within=Reals,bounds=(None,None),initialize=0) m.x846 = Var(within=Reals,bounds=(None,None),initialize=0) m.x847 = Var(within=Reals,bounds=(None,None),initialize=0) m.x848 = Var(within=Reals,bounds=(None,None),initialize=0) m.x849 = Var(within=Reals,bounds=(None,None),initialize=0) m.x850 = Var(within=Reals,bounds=(None,None),initialize=0) m.x851 = Var(within=Reals,bounds=(None,None),initialize=0) m.x852 = Var(within=Reals,bounds=(None,None),initialize=0) m.x853 = Var(within=Reals,bounds=(None,None),initialize=0) m.x854 = Var(within=Reals,bounds=(None,None),initialize=0) m.x855 = Var(within=Reals,bounds=(None,None),initialize=0) m.x856 = Var(within=Reals,bounds=(None,None),initialize=0) m.x857 = Var(within=Reals,bounds=(None,None),initialize=0) m.x858 = Var(within=Reals,bounds=(None,None),initialize=0) m.x859 = Var(within=Reals,bounds=(None,None),initialize=0) m.x860 = Var(within=Reals,bounds=(None,None),initialize=0) m.x861 = Var(within=Reals,bounds=(None,None),initialize=0) m.x862 = Var(within=Reals,bounds=(None,None),initialize=0) m.x863 = Var(within=Reals,bounds=(None,None),initialize=0) m.x864 = Var(within=Reals,bounds=(None,None),initialize=0) m.x865 = Var(within=Reals,bounds=(None,None),initialize=0) m.obj = Objective(expr= - m.x2 - m.x3 - m.x4 + 5*m.x20 + 10*m.x21 + 5*m.x22 - 2*m.x35 - m.x36 - 2*m.x37 - 10*m.x86 - 5*m.x87 - 5*m.x88 - 5*m.x89 - 5*m.x90 - 5*m.x91 + 40*m.x110 + 30*m.x111 + 15*m.x112 + 15*m.x113 + 20*m.x114 + 25*m.x115 + 10*m.x116 + 30*m.x117 + 40*m.x118 + 30*m.x119 + 20*m.x120 + 20*m.x121 + 35*m.x122 + 50*m.x123 + 20*m.x124 + 20*m.x125 + 30*m.x126 + 35*m.x127 + 25*m.x128 + 50*m.x129 + 10*m.x130 + 15*m.x131 + 20*m.x132 + 20*m.x133 + 30*m.x155 + 40*m.x156 + 40*m.x157 - m.x170 - m.x171 - m.x172 + 80*m.x194 + 90*m.x195 + 120*m.x196 + 285*m.x197 + 390*m.x198 + 350*m.x199 + 290*m.x200 + 405*m.x201 + 190*m.x202 + 280*m.x203 + 400*m.x204 + 430*m.x205 + 290*m.x206 + 300*m.x207 + 240*m.x208 + 350*m.x209 + 250*m.x210 + 300*m.x211 - 5*m.b686 - 4*m.b687 - 6*m.b688 - 8*m.b689 - 7*m.b690 - 6*m.b691 - 6*m.b692 - 9*m.b693 - 4*m.b694 - 10*m.b695 - 9*m.b696 - 5*m.b697 - 6*m.b698 - 10*m.b699 - 6*m.b700 - 7*m.b701 - 7*m.b702 - 4*m.b703 - 4*m.b704 - 3*m.b705 - 2*m.b706 - 5*m.b707 - 6*m.b708 - 7*m.b709 - 2*m.b710 - 5*m.b711 - 2*m.b712 - 4*m.b713 - 7*m.b714 - 4*m.b715 - 3*m.b716 - 9*m.b717 - 3*m.b718 - 7*m.b719 - 2*m.b720 - 9*m.b721 - 3*m.b722 - m.b723 - 9*m.b724 - 2*m.b725 - 6*m.b726 - 3*m.b727 - 4*m.b728 - 8*m.b729 - m.b730 - 2*m.b731 - 5*m.b732 - 2*m.b733 - 3*m.b734 - 4*m.b735 - 3*m.b736 - 5*m.b737 - 7*m.b738 - 6*m.b739 - 2*m.b740 - 8*m.b741 - 4*m.b742 - m.b743 - 4*m.b744 - m.b745 - 2*m.b746 - 5*m.b747 - 2*m.b748 - 9*m.b749 - 2*m.b750 - 9*m.b751 - 5*m.b752 - 8*m.b753 - 4*m.b754 - 2*m.b755 - 3*m.b756 - 8*m.b757 - 10*m.b758 - 6*m.b759 - 3*m.b760 - 4*m.b761 - 8*m.b762 - 7*m.b763 - 7*m.b764 - 3*m.b765 - 9*m.b766 - 4*m.b767 - 8*m.b768 - 6*m.b769 - 2*m.b770 - m.b771 - 3*m.b772 - 8*m.b773 - 3*m.b774 - 4*m.b775, sense=maximize) m.c2 = Constraint(expr= m.x2 - m.x5 - m.x8 == 0) m.c3 = Constraint(expr= m.x3 - m.x6 - m.x9 == 0) m.c4 = Constraint(expr= m.x4 - m.x7 - m.x10 == 0) m.c5 = Constraint(expr= - m.x11 - m.x14 + m.x17 == 0) m.c6 = Constraint(expr= - m.x12 - m.x15 + m.x18 == 0) m.c7 = Constraint(expr= - m.x13 - m.x16 + m.x19 == 0) m.c8 = Constraint(expr= m.x17 - m.x20 - m.x23 == 0) m.c9 = Constraint(expr= m.x18 - m.x21 - m.x24 == 0) m.c10 = Constraint(expr= m.x19 - m.x22 - m.x25 == 0) m.c11 = Constraint(expr= m.x23 - m.x26 - m.x29 - m.x32 == 0) m.c12 = Constraint(expr= m.x24 - m.x27 - m.x30 - m.x33 == 0) m.c13 = Constraint(expr= m.x25 - m.x28 - m.x31 - m.x34 == 0) m.c14 = Constraint(expr= m.x38 - m.x47 - m.x50 == 0) m.c15 = Constraint(expr= m.x39 - m.x48 - m.x51 == 0) m.c16 = Constraint(expr= m.x40 - m.x49 - m.x52 == 0) m.c17 = Constraint(expr= m.x44 - m.x53 - m.x56 - m.x59 == 0) m.c18 = Constraint(expr= m.x45 - m.x54 - m.x57 - m.x60 == 0) m.c19 = Constraint(expr= m.x46 - m.x55 - m.x58 - m.x61 == 0) m.c20 = Constraint(expr= m.x68 - m.x80 - m.x83 == 0) m.c21 = Constraint(expr= m.x69 - m.x81 - m.x84 == 0) m.c22 = Constraint(expr= m.x70 - m.x82 - m.x85 == 0) m.c23 = Constraint(expr= - m.x71 - m.x89 + m.x92 == 0) m.c24 = Constraint(expr= - m.x72 - m.x90 + m.x93 == 0) m.c25 = Constraint(expr= - m.x73 - m.x91 + m.x94 == 0) m.c26 = Constraint(expr= m.x74 - m.x95 - m.x98 == 0) m.c27 = Constraint(expr= m.x75 - m.x96 - m.x99 == 0) m.c28 = Constraint(expr= m.x76 - m.x97 - m.x100 == 0) m.c29 = Constraint(expr= m.x77 - m.x101 - m.x104 - m.x107 == 0) m.c30 = Constraint(expr= m.x78 - m.x102 - m.x105 - m.x108 == 0) m.c31 = Constraint(expr= m.x79 - m.x103 - m.x106 - m.x109 == 0) m.c32 = Constraint(expr= m.x134 - m.x137 == 0) m.c33 = Constraint(expr= m.x135 - m.x138 == 0) m.c34 = Constraint(expr= m.x136 - m.x139 == 0) m.c35 = Constraint(expr= m.x137 - m.x140 - m.x143 == 0) m.c36 = Constraint(expr= m.x138 - m.x141 - m.x144 == 0) m.c37 = Constraint(expr= m.x139 - m.x142 - m.x145 == 0) m.c38 = Constraint(expr= - m.x146 - m.x149 + m.x152 == 0) m.c39 = Constraint(expr= - m.x147 - m.x150 + m.x153 == 0) m.c40 = Constraint(expr= - m.x148 - m.x151 + m.x154 == 0) m.c41 = Constraint(expr= m.x152 - m.x155 - m.x158 == 0) m.c42 = Constraint(expr= m.x153 - m.x156 - m.x159 == 0) m.c43 = Constraint(expr= m.x154 - m.x157 - m.x160 == 0) m.c44 = Constraint(expr= m.x158 - m.x161 - m.x164 - m.x167 == 0) m.c45 = Constraint(expr= m.x159 - m.x162 - m.x165 - m.x168 == 0) m.c46 = Constraint(expr= m.x160 - m.x163 - m.x166 - m.x169 == 0) m.c47 = Constraint(expr= m.x173 - m.x182 - m.x185 == 0) m.c48 = Constraint(expr= m.x174 - m.x183 - m.x186 == 0) m.c49 = Constraint(expr= m.x175 - m.x184 - m.x187 == 0) m.c50 = Constraint(expr= m.x179 - m.x188 - m.x191 - m.x194 == 0) m.c51 = Constraint(expr= m.x180 - m.x189 - m.x192 - m.x195 == 0) m.c52 = Constraint(expr= m.x181 - m.x190 - m.x193 - m.x196 == 0) m.c53 = Constraint(expr=(m.x224/(0.001 + 0.999*m.b596) - log(1 + m.x212/(0.001 + 0.999*m.b596)))*(0.001 + 0.999*m.b596) <= 0) m.c54 = Constraint(expr=(m.x225/(0.001 + 0.999*m.b597) - log(1 + m.x213/(0.001 + 0.999*m.b597)))*(0.001 + 0.999*m.b597) <= 0) m.c55 = Constraint(expr=(m.x226/(0.001 + 0.999*m.b598) - log(1 + m.x214/(0.001 + 0.999*m.b598)))*(0.001 + 0.999*m.b598) <= 0) m.c56 = Constraint(expr= m.x215 == 0) m.c57 = Constraint(expr= m.x216 == 0) m.c58 = Constraint(expr= m.x217 == 0) m.c59 = Constraint(expr= m.x227 == 0) m.c60 = Constraint(expr= m.x228 == 0) m.c61 = Constraint(expr= m.x229 == 0) m.c62 = Constraint(expr= m.x5 - m.x212 - m.x215 == 0) m.c63 = Constraint(expr= m.x6 - m.x213 - m.x216 == 0) m.c64 = Constraint(expr= m.x7 - m.x214 - m.x217 == 0) m.c65 = Constraint(expr= m.x11 - m.x224 - m.x227 == 0) m.c66 = Constraint(expr= m.x12 - m.x225 - m.x228 == 0) m.c67 = Constraint(expr= m.x13 - m.x226 - m.x229 == 0) m.c68 = Constraint(expr= m.x212 - 40*m.b596 <= 0) m.c69 = Constraint(expr= m.x213 - 40*m.b597 <= 0) m.c70 = Constraint(expr= m.x214 - 40*m.b598 <= 0) m.c71 = Constraint(expr= m.x215 + 40*m.b596 <= 40) m.c72 = Constraint(expr= m.x216 + 40*m.b597 <= 40) m.c73 = Constraint(expr= m.x217 + 40*m.b598 <= 40) m.c74 = Constraint(expr= m.x224 - 3.71357206670431*m.b596 <= 0) m.c75 = Constraint(expr= m.x225 - 3.71357206670431*m.b597 <= 0) m.c76 = Constraint(expr= m.x226 - 3.71357206670431*m.b598 <= 0) m.c77 = Constraint(expr= m.x227 + 3.71357206670431*m.b596 <= 3.71357206670431) m.c78 = Constraint(expr= m.x228 + 3.71357206670431*m.b597 <= 3.71357206670431) m.c79 = Constraint(expr= m.x229 + 3.71357206670431*m.b598 <= 3.71357206670431) m.c80 = Constraint(expr=(m.x230/(0.001 + 0.999*m.b599) - 1.2*log(1 + m.x218/(0.001 + 0.999*m.b599)))*(0.001 + 0.999* m.b599) <= 0) m.c81 = Constraint(expr=(m.x231/(0.001 + 0.999*m.b600) - 1.2*log(1 + m.x219/(0.001 + 0.999*m.b600)))*(0.001 + 0.999* m.b600) <= 0) m.c82 = Constraint(expr=(m.x232/(0.001 + 0.999*m.b601) - 1.2*log(1 + m.x220/(0.001 + 0.999*m.b601)))*(0.001 + 0.999* m.b601) <= 0) m.c83 = Constraint(expr= m.x221 == 0) m.c84 = Constraint(expr= m.x222 == 0) m.c85 = Constraint(expr= m.x223 == 0) m.c86 = Constraint(expr= m.x233 == 0) m.c87 = Constraint(expr= m.x234 == 0) m.c88 = Constraint(expr= m.x235 == 0) m.c89 = Constraint(expr= m.x8 - m.x218 - m.x221 == 0) m.c90 = Constraint(expr= m.x9 - m.x219 - m.x222 == 0) m.c91 = Constraint(expr= m.x10 - m.x220 - m.x223 == 0) m.c92 = Constraint(expr= m.x14 - m.x230 - m.x233 == 0) m.c93 = Constraint(expr= m.x15 - m.x231 - m.x234 == 0) m.c94 = Constraint(expr= m.x16 - m.x232 - m.x235 == 0) m.c95 = Constraint(expr= m.x218 - 40*m.b599 <= 0) m.c96 = Constraint(expr= m.x219 - 40*m.b600 <= 0) m.c97 = Constraint(expr= m.x220 - 40*m.b601 <= 0) m.c98 = Constraint(expr= m.x221 + 40*m.b599 <= 40) m.c99 = Constraint(expr= m.x222 + 40*m.b600 <= 40) m.c100 = Constraint(expr= m.x223 + 40*m.b601 <= 40) m.c101 = Constraint(expr= m.x230 - 4.45628648004517*m.b599 <= 0) m.c102 = Constraint(expr= m.x231 - 4.45628648004517*m.b600 <= 0) m.c103 = Constraint(expr= m.x232 - 4.45628648004517*m.b601 <= 0) m.c104 = Constraint(expr= m.x233 + 4.45628648004517*m.b599 <= 4.45628648004517) m.c105 = Constraint(expr= m.x234 + 4.45628648004517*m.b600 <= 4.45628648004517) m.c106 = Constraint(expr= m.x235 + 4.45628648004517*m.b601 <= 4.45628648004517) m.c107 = Constraint(expr= - 0.75*m.x236 + m.x260 == 0) m.c108 = Constraint(expr= - 0.75*m.x237 + m.x261 == 0) m.c109 = Constraint(expr= - 0.75*m.x238 + m.x262 == 0) m.c110 = Constraint(expr= m.x239 == 0) m.c111 = Constraint(expr= m.x240 == 0) m.c112 = Constraint(expr= m.x241 == 0) m.c113 = Constraint(expr= m.x263 == 0) m.c114 = Constraint(expr= m.x264 == 0) m.c115 = Constraint(expr= m.x265 == 0) m.c116 = Constraint(expr= m.x26 - m.x236 - m.x239 == 0) m.c117 = Constraint(expr= m.x27 - m.x237 - m.x240 == 0) m.c118 = Constraint(expr= m.x28 - m.x238 - m.x241 == 0) m.c119 = Constraint(expr= m.x38 - m.x260 - m.x263 == 0) m.c120 = Constraint(expr= m.x39 - m.x261 - m.x264 == 0) m.c121 = Constraint(expr= m.x40 - m.x262 - m.x265 == 0) m.c122 = Constraint(expr= m.x236 - 4.45628648004517*m.b602 <= 0) m.c123 = Constraint(expr= m.x237 - 4.45628648004517*m.b603 <= 0) m.c124 = Constraint(expr= m.x238 - 4.45628648004517*m.b604 <= 0) m.c125 = Constraint(expr= m.x239 + 4.45628648004517*m.b602 <= 4.45628648004517) m.c126 = Constraint(expr= m.x240 + 4.45628648004517*m.b603 <= 4.45628648004517) m.c127 = Constraint(expr= m.x241 + 4.45628648004517*m.b604 <= 4.45628648004517) m.c128 = Constraint(expr= m.x260 - 3.34221486003388*m.b602 <= 0) m.c129 = Constraint(expr= m.x261 - 3.34221486003388*m.b603 <= 0) m.c130 = Constraint(expr= m.x262 - 3.34221486003388*m.b604 <= 0) m.c131 = Constraint(expr= m.x263 + 3.34221486003388*m.b602 <= 3.34221486003388) m.c132 = Constraint(expr= m.x264 + 3.34221486003388*m.b603 <= 3.34221486003388) m.c133 = Constraint(expr= m.x265 + 3.34221486003388*m.b604 <= 3.34221486003388) m.c134 = Constraint(expr=(m.x266/(0.001 + 0.999*m.b605) - 1.5*log(1 + m.x242/(0.001 + 0.999*m.b605)))*(0.001 + 0.999* m.b605) <= 0) m.c135 = Constraint(expr=(m.x267/(0.001 + 0.999*m.b606) - 1.5*log(1 + m.x243/(0.001 + 0.999*m.b606)))*(0.001 + 0.999* m.b606) <= 0) m.c136 = Constraint(expr=(m.x268/(0.001 + 0.999*m.b607) - 1.5*log(1 + m.x244/(0.001 + 0.999*m.b607)))*(0.001 + 0.999* m.b607) <= 0) m.c137 = Constraint(expr= m.x245 == 0) m.c138 = Constraint(expr= m.x246 == 0) m.c139 = Constraint(expr= m.x247 == 0) m.c140 = Constraint(expr= m.x272 == 0) m.c141 = Constraint(expr= m.x273 == 0) m.c142 = Constraint(expr= m.x274 == 0) m.c143 = Constraint(expr= m.x29 - m.x242 - m.x245 == 0) m.c144 = Constraint(expr= m.x30 - m.x243 - m.x246 == 0) m.c145 = Constraint(expr= m.x31 - m.x244 - m.x247 == 0) m.c146 = Constraint(expr= m.x41 - m.x266 - m.x272 == 0) m.c147 = Constraint(expr= m.x42 - m.x267 - m.x273 == 0) m.c148 = Constraint(expr= m.x43 - m.x268 - m.x274 == 0) m.c149 = Constraint(expr= m.x242 - 4.45628648004517*m.b605 <= 0) m.c150 = Constraint(expr= m.x243 - 4.45628648004517*m.b606 <= 0) m.c151 = Constraint(expr= m.x244 - 4.45628648004517*m.b607 <= 0) m.c152 = Constraint(expr= m.x245 + 4.45628648004517*m.b605 <= 4.45628648004517) m.c153 = Constraint(expr= m.x246 + 4.45628648004517*m.b606 <= 4.45628648004517) m.c154 = Constraint(expr= m.x247 + 4.45628648004517*m.b607 <= 4.45628648004517) m.c155 = Constraint(expr= m.x266 - 2.54515263975353*m.b605 <= 0) m.c156 = Constraint(expr= m.x267 - 2.54515263975353*m.b606 <= 0) m.c157 = Constraint(expr= m.x268 - 2.54515263975353*m.b607 <= 0) m.c158 = Constraint(expr= m.x272 + 2.54515263975353*m.b605 <= 2.54515263975353) m.c159 = Constraint(expr= m.x273 + 2.54515263975353*m.b606 <= 2.54515263975353) m.c160 = Constraint(expr= m.x274 + 2.54515263975353*m.b607 <= 2.54515263975353) m.c161 = Constraint(expr= - m.x248 + m.x278 == 0) m.c162 = Constraint(expr= - m.x249 + m.x279 == 0) m.c163 = Constraint(expr= - m.x250 + m.x280 == 0) m.c164 = Constraint(expr= - 0.5*m.x254 + m.x278 == 0) m.c165 = Constraint(expr= - 0.5*m.x255 + m.x279 == 0) m.c166 = Constraint(expr= - 0.5*m.x256 + m.x280 == 0) m.c167 = Constraint(expr= m.x251 == 0) m.c168 = Constraint(expr= m.x252 == 0) m.c169 = Constraint(expr= m.x253 == 0) m.c170 = Constraint(expr= m.x257 == 0) m.c171 = Constraint(expr= m.x258 == 0) m.c172 = Constraint(expr= m.x259 == 0) m.c173 = Constraint(expr= m.x281 == 0) m.c174 = Constraint(expr= m.x282 == 0) m.c175 = Constraint(expr= m.x283 == 0) m.c176 = Constraint(expr= m.x32 - m.x248 - m.x251 == 0) m.c177 = Constraint(expr= m.x33 - m.x249 - m.x252 == 0) m.c178 = Constraint(expr= m.x34 - m.x250 - m.x253 == 0) m.c179 = Constraint(expr= m.x35 - m.x254 - m.x257 == 0) m.c180 = Constraint(expr= m.x36 - m.x255 - m.x258 == 0) m.c181 = Constraint(expr= m.x37 - m.x256 - m.x259 == 0) m.c182 = Constraint(expr= m.x44 - m.x278 - m.x281 == 0) m.c183 = Constraint(expr= m.x45 - m.x279 - m.x282 == 0) m.c184 = Constraint(expr= m.x46 - m.x280 - m.x283 == 0) m.c185 = Constraint(expr= m.x248 - 4.45628648004517*m.b608 <= 0) m.c186 = Constraint(expr= m.x249 - 4.45628648004517*m.b609 <= 0) m.c187 = Constraint(expr= m.x250 - 4.45628648004517*m.b610 <= 0) m.c188 = Constraint(expr= m.x251 + 4.45628648004517*m.b608 <= 4.45628648004517) m.c189 = Constraint(expr= m.x252 + 4.45628648004517*m.b609 <= 4.45628648004517) m.c190 = Constraint(expr= m.x253 + 4.45628648004517*m.b610 <= 4.45628648004517) m.c191 = Constraint(expr= m.x254 - 30*m.b608 <= 0) m.c192 = Constraint(expr= m.x255 - 30*m.b609 <= 0) m.c193 = Constraint(expr= m.x256 - 30*m.b610 <= 0) m.c194 = Constraint(expr= m.x257 + 30*m.b608 <= 30) m.c195 = Constraint(expr= m.x258 + 30*m.b609 <= 30) m.c196 = Constraint(expr= m.x259 + 30*m.b610 <= 30) m.c197 = Constraint(expr= m.x278 - 15*m.b608 <= 0) m.c198 = Constraint(expr= m.x279 - 15*m.b609 <= 0) m.c199 = Constraint(expr= m.x280 - 15*m.b610 <= 0) m.c200 = Constraint(expr= m.x281 + 15*m.b608 <= 15) m.c201 = Constraint(expr= m.x282 + 15*m.b609 <= 15) m.c202 = Constraint(expr= m.x283 + 15*m.b610 <= 15) m.c203 = Constraint(expr=(m.x314/(0.001 + 0.999*m.b611) - 1.25*log(1 + m.x284/(0.001 + 0.999*m.b611)))*(0.001 + 0.999* m.b611) <= 0) m.c204 = Constraint(expr=(m.x315/(0.001 + 0.999*m.b612) - 1.25*log(1 + m.x285/(0.001 + 0.999*m.b612)))*(0.001 + 0.999* m.b612) <= 0) m.c205 = Constraint(expr=(m.x316/(0.001 + 0.999*m.b613) - 1.25*log(1 + m.x286/(0.001 + 0.999*m.b613)))*(0.001 + 0.999* m.b613) <= 0) m.c206 = Constraint(expr= m.x287 == 0) m.c207 = Constraint(expr= m.x288 == 0) m.c208 = Constraint(expr= m.x289 == 0) m.c209 = Constraint(expr= m.x320 == 0) m.c210 = Constraint(expr= m.x321 == 0) m.c211 = Constraint(expr= m.x322 == 0) m.c212 = Constraint(expr= m.x47 - m.x284 - m.x287 == 0) m.c213 = Constraint(expr= m.x48 - m.x285 - m.x288 == 0) m.c214 = Constraint(expr= m.x49 - m.x286 - m.x289 == 0) m.c215 = Constraint(expr= m.x62 - m.x314 - m.x320 == 0) m.c216 = Constraint(expr= m.x63 - m.x315 - m.x321 == 0) m.c217 = Constraint(expr= m.x64 - m.x316 - m.x322 == 0) m.c218 = Constraint(expr= m.x284 - 3.34221486003388*m.b611 <= 0) m.c219 = Constraint(expr= m.x285 - 3.34221486003388*m.b612 <= 0) m.c220 = Constraint(expr= m.x286 - 3.34221486003388*m.b613 <= 0) m.c221 = Constraint(expr= m.x287 + 3.34221486003388*m.b611 <= 3.34221486003388) m.c222 = Constraint(expr= m.x288 + 3.34221486003388*m.b612 <= 3.34221486003388) m.c223 = Constraint(expr= m.x289 + 3.34221486003388*m.b613 <= 3.34221486003388) m.c224 = Constraint(expr= m.x314 - 1.83548069293539*m.b611 <= 0) m.c225 = Constraint(expr= m.x315 - 1.83548069293539*m.b612 <= 0) m.c226 = Constraint(expr= m.x316 - 1.83548069293539*m.b613 <= 0) m.c227 = Constraint(expr= m.x320 + 1.83548069293539*m.b611 <= 1.83548069293539) m.c228 = Constraint(expr= m.x321 + 1.83548069293539*m.b612 <= 1.83548069293539) m.c229 = Constraint(expr= m.x322 + 1.83548069293539*m.b613 <= 1.83548069293539) m.c230 = Constraint(expr=(m.x326/(0.001 + 0.999*m.b614) - 0.9*log(1 + m.x290/(0.001 + 0.999*m.b614)))*(0.001 + 0.999* m.b614) <= 0) m.c231 = Constraint(expr=(m.x327/(0.001 + 0.999*m.b615) - 0.9*log(1 + m.x291/(0.001 + 0.999*m.b615)))*(0.001 + 0.999* m.b615) <= 0) m.c232 = Constraint(expr=(m.x328/(0.001 + 0.999*m.b616) - 0.9*log(1 + m.x292/(0.001 + 0.999*m.b616)))*(0.001 + 0.999* m.b616) <= 0) m.c233 = Constraint(expr= m.x293 == 0) m.c234 = Constraint(expr= m.x294 == 0) m.c235 = Constraint(expr= m.x295 == 0) m.c236 = Constraint(expr= m.x332 == 0) m.c237 = Constraint(expr= m.x333 == 0) m.c238 = Constraint(expr= m.x334 == 0) m.c239 = Constraint(expr= m.x50 - m.x290 - m.x293 == 0) m.c240 = Constraint(expr= m.x51 - m.x291 - m.x294 == 0) m.c241 = Constraint(expr= m.x52 - m.x292 - m.x295 == 0) m.c242 = Constraint(expr= m.x65 - m.x326 - m.x332 == 0) m.c243 = Constraint(expr= m.x66 - m.x327 - m.x333 == 0) m.c244 = Constraint(expr= m.x67 - m.x328 - m.x334 == 0) m.c245 = Constraint(expr= m.x290 - 3.34221486003388*m.b614 <= 0) m.c246 = Constraint(expr= m.x291 - 3.34221486003388*m.b615 <= 0) m.c247 = Constraint(expr= m.x292 - 3.34221486003388*m.b616 <= 0) m.c248 = Constraint(expr= m.x293 + 3.34221486003388*m.b614 <= 3.34221486003388) m.c249 = Constraint(expr= m.x294 + 3.34221486003388*m.b615 <= 3.34221486003388) m.c250 = Constraint(expr= m.x295 + 3.34221486003388*m.b616 <= 3.34221486003388) m.c251 = Constraint(expr= m.x326 - 1.32154609891348*m.b614 <= 0) m.c252 = Constraint(expr= m.x327 - 1.32154609891348*m.b615 <= 0) m.c253 = Constraint(expr= m.x328 - 1.32154609891348*m.b616 <= 0) m.c254 = Constraint(expr= m.x332 + 1.32154609891348*m.b614 <= 1.32154609891348) m.c255 = Constraint(expr= m.x333 + 1.32154609891348*m.b615 <= 1.32154609891348) m.c256 = Constraint(expr= m.x334 + 1.32154609891348*m.b616 <= 1.32154609891348) m.c257 = Constraint(expr=(m.x338/(0.001 + 0.999*m.b617) - log(1 + m.x269/(0.001 + 0.999*m.b617)))*(0.001 + 0.999*m.b617) <= 0) m.c258 = Constraint(expr=(m.x339/(0.001 + 0.999*m.b618) - log(1 + m.x270/(0.001 + 0.999*m.b618)))*(0.001 + 0.999*m.b618) <= 0) m.c259 = Constraint(expr=(m.x340/(0.001 + 0.999*m.b619) - log(1 + m.x271/(0.001 + 0.999*m.b619)))*(0.001 + 0.999*m.b619) <= 0) m.c260 = Constraint(expr= m.x275 == 0) m.c261 = Constraint(expr= m.x276 == 0) m.c262 = Constraint(expr= m.x277 == 0) m.c263 = Constraint(expr= m.x341 == 0) m.c264 = Constraint(expr= m.x342 == 0) m.c265 = Constraint(expr= m.x343 == 0) m.c266 = Constraint(expr= m.x41 - m.x269 - m.x275 == 0) m.c267 = Constraint(expr= m.x42 - m.x270 - m.x276 == 0) m.c268 = Constraint(expr= m.x43 - m.x271 - m.x277 == 0) m.c269 = Constraint(expr= m.x68 - m.x338 - m.x341 == 0) m.c270 = Constraint(expr= m.x69 - m.x339 - m.x342 == 0) m.c271 = Constraint(expr= m.x70 - m.x340 - m.x343 == 0) m.c272 = Constraint(expr= m.x269 - 2.54515263975353*m.b617 <= 0) m.c273 = Constraint(expr= m.x270 - 2.54515263975353*m.b618 <= 0) m.c274 = Constraint(expr= m.x271 - 2.54515263975353*m.b619 <= 0) m.c275 = Constraint(expr= m.x275 + 2.54515263975353*m.b617 <= 2.54515263975353) m.c276 = Constraint(expr= m.x276 + 2.54515263975353*m.b618 <= 2.54515263975353) m.c277 = Constraint(expr= m.x277 + 2.54515263975353*m.b619 <= 2.54515263975353) m.c278 = Constraint(expr= m.x338 - 1.26558121681553*m.b617 <= 0) m.c279 = Constraint(expr= m.x339 - 1.26558121681553*m.b618 <= 0) m.c280 = Constraint(expr= m.x340 - 1.26558121681553*m.b619 <= 0) m.c281 = Constraint(expr= m.x341 + 1.26558121681553*m.b617 <= 1.26558121681553) m.c282 = Constraint(expr= m.x342 + 1.26558121681553*m.b618 <= 1.26558121681553) m.c283 = Constraint(expr= m.x343 + 1.26558121681553*m.b619 <= 1.26558121681553) m.c284 = Constraint(expr= - 0.9*m.x296 + m.x344 == 0) m.c285 = Constraint(expr= - 0.9*m.x297 + m.x345 == 0) m.c286 = Constraint(expr= - 0.9*m.x298 + m.x346 == 0) m.c287 = Constraint(expr= m.x299 == 0) m.c288 = Constraint(expr= m.x300 == 0) m.c289 = Constraint(expr= m.x301 == 0) m.c290 = Constraint(expr= m.x347 == 0) m.c291 = Constraint(expr= m.x348 == 0) m.c292 = Constraint(expr= m.x349 == 0) m.c293 = Constraint(expr= m.x53 - m.x296 - m.x299 == 0) m.c294 = Constraint(expr= m.x54 - m.x297 - m.x300 == 0) m.c295 = Constraint(expr= m.x55 - m.x298 - m.x301 == 0) m.c296 = Constraint(expr= m.x71 - m.x344 - m.x347 == 0) m.c297 = Constraint(expr= m.x72 - m.x345 - m.x348 == 0) m.c298 = Constraint(expr= m.x73 - m.x346 - m.x349 == 0) m.c299 = Constraint(expr= m.x296 - 15*m.b620 <= 0) m.c300 = Constraint(expr= m.x297 - 15*m.b621 <= 0) m.c301 = Constraint(expr= m.x298 - 15*m.b622 <= 0) m.c302 = Constraint(expr= m.x299 + 15*m.b620 <= 15) m.c303 = Constraint(expr= m.x300 + 15*m.b621 <= 15) m.c304 = Constraint(expr= m.x301 + 15*m.b622 <= 15) m.c305 = Constraint(expr= m.x344 - 13.5*m.b620 <= 0) m.c306 = Constraint(expr= m.x345 - 13.5*m.b621 <= 0) m.c307 = Constraint(expr= m.x346 - 13.5*m.b622 <= 0) m.c308 = Constraint(expr= m.x347 + 13.5*m.b620 <= 13.5) m.c309 = Constraint(expr= m.x348 + 13.5*m.b621 <= 13.5) m.c310 = Constraint(expr= m.x349 + 13.5*m.b622 <= 13.5) m.c311 = Constraint(expr= - 0.6*m.x302 + m.x350 == 0) m.c312 = Constraint(expr= - 0.6*m.x303 + m.x351 == 0) m.c313 = Constraint(expr= - 0.6*m.x304 + m.x352 == 0) m.c314 = Constraint(expr= m.x305 == 0) m.c315 = Constraint(expr= m.x306 == 0) m.c316 = Constraint(expr= m.x307 == 0) m.c317 = Constraint(expr= m.x353 == 0) m.c318 = Constraint(expr= m.x354 == 0) m.c319 = Constraint(expr= m.x355 == 0) m.c320 = Constraint(expr= m.x56 - m.x302 - m.x305 == 0) m.c321 = Constraint(expr= m.x57 - m.x303 - m.x306 == 0) m.c322 = Constraint(expr= m.x58 - m.x304 - m.x307 == 0) m.c323 = Constraint(expr= m.x74 - m.x350 - m.x353 == 0) m.c324 = Constraint(expr= m.x75 - m.x351 - m.x354 == 0) m.c325 = Constraint(expr= m.x76 - m.x352 - m.x355 == 0) m.c326 = Constraint(expr= m.x302 - 15*m.b623 <= 0) m.c327 = Constraint(expr= m.x303 - 15*m.b624 <= 0) m.c328 = Constraint(expr= m.x304 - 15*m.b625 <= 0) m.c329 = Constraint(expr= m.x305 + 15*m.b623 <= 15) m.c330 = Constraint(expr= m.x306 + 15*m.b624 <= 15) m.c331 = Constraint(expr= m.x307 + 15*m.b625 <= 15) m.c332 = Constraint(expr= m.x350 - 9*m.b623 <= 0) m.c333 = Constraint(expr= m.x351 - 9*m.b624 <= 0) m.c334 = Constraint(expr= m.x352 - 9*m.b625 <= 0) m.c335 = Constraint(expr= m.x353 + 9*m.b623 <= 9) m.c336 = Constraint(expr= m.x354 + 9*m.b624 <= 9) m.c337 = Constraint(expr= m.x355 + 9*m.b625 <= 9) m.c338 = Constraint(expr=(m.x356/(0.001 + 0.999*m.b626) - 1.1*log(1 + m.x308/(0.001 + 0.999*m.b626)))*(0.001 + 0.999* m.b626) <= 0) m.c339 = Constraint(expr=(m.x357/(0.001 + 0.999*m.b627) - 1.1*log(1 + m.x309/(0.001 + 0.999*m.b627)))*(0.001 + 0.999* m.b627) <= 0) m.c340 = Constraint(expr=(m.x358/(0.001 + 0.999*m.b628) - 1.1*log(1 + m.x310/(0.001 + 0.999*m.b628)))*(0.001 + 0.999* m.b628) <= 0) m.c341 = Constraint(expr= m.x311 == 0) m.c342 = Constraint(expr= m.x312 == 0) m.c343 = Constraint(expr= m.x313 == 0) m.c344 = Constraint(expr= m.x359 == 0) m.c345 = Constraint(expr= m.x360 == 0) m.c346 = Constraint(expr= m.x361 == 0) m.c347 = Constraint(expr= m.x59 - m.x308 - m.x311 == 0) m.c348 = Constraint(expr= m.x60 - m.x309 - m.x312 == 0) m.c349 = Constraint(expr= m.x61 - m.x310 - m.x313 == 0) m.c350 = Constraint(expr= m.x77 - m.x356 - m.x359 == 0) m.c351 = Constraint(expr= m.x78 - m.x357 - m.x360 == 0) m.c352 = Constraint(expr= m.x79 - m.x358 - m.x361 == 0) m.c353 = Constraint(expr= m.x308 - 15*m.b626 <= 0) m.c354 = Constraint(expr= m.x309 - 15*m.b627 <= 0) m.c355 = Constraint(expr= m.x310 - 15*m.b628 <= 0) m.c356 = Constraint(expr= m.x311 + 15*m.b626 <= 15) m.c357 = Constraint(expr= m.x312 + 15*m.b627 <= 15) m.c358 = Constraint(expr= m.x313 + 15*m.b628 <= 15) m.c359 = Constraint(expr= m.x356 - 3.04984759446376*m.b626 <= 0) m.c360 = Constraint(expr= m.x357 - 3.04984759446376*m.b627 <= 0) m.c361 = Constraint(expr= m.x358 - 3.04984759446376*m.b628 <= 0) m.c362 = Constraint(expr= m.x359 + 3.04984759446376*m.b626 <= 3.04984759446376) m.c363 = Constraint(expr= m.x360 + 3.04984759446376*m.b627 <= 3.04984759446376) m.c364 = Constraint(expr= m.x361 + 3.04984759446376*m.b628 <= 3.04984759446376) m.c365 = Constraint(expr= - 0.9*m.x317 + m.x416 == 0) m.c366 = Constraint(expr= - 0.9*m.x318 + m.x417 == 0) m.c367 = Constraint(expr= - 0.9*m.x319 + m.x418 == 0) m.c368 = Constraint(expr= - m.x374 + m.x416 == 0) m.c369 = Constraint(expr= - m.x375 + m.x417 == 0) m.c370 = Constraint(expr= - m.x376 + m.x418 == 0) m.c371 = Constraint(expr= m.x323 == 0) m.c372 = Constraint(expr= m.x324 == 0) m.c373 = Constraint(expr= m.x325 == 0) m.c374 = Constraint(expr= m.x377 == 0) m.c375 = Constraint(expr= m.x378 == 0) m.c376 = Constraint(expr= m.x379 == 0) m.c377 = Constraint(expr= m.x419 == 0) m.c378 = Constraint(expr= m.x420 == 0) m.c379 = Constraint(expr= m.x421 == 0) m.c380 = Constraint(expr= m.x62 - m.x317 - m.x323 == 0) m.c381 = Constraint(expr= m.x63 - m.x318 - m.x324 == 0) m.c382 = Constraint(expr= m.x64 - m.x319 - m.x325 == 0) m.c383 = Constraint(expr= m.x86 - m.x374 - m.x377 == 0) m.c384 = Constraint(expr= m.x87 - m.x375 - m.x378 == 0) m.c385 = Constraint(expr= m.x88 - m.x376 - m.x379 == 0) m.c386 = Constraint(expr= m.x110 - m.x416 - m.x419 == 0) m.c387 = Constraint(expr= m.x111 - m.x417 - m.x420 == 0) m.c388 = Constraint(expr= m.x112 - m.x418 - m.x421 == 0) m.c389 = Constraint(expr= m.x317 - 1.83548069293539*m.b629 <= 0) m.c390 = Constraint(expr= m.x318 - 1.83548069293539*m.b630 <= 0) m.c391 = Constraint(expr= m.x319 - 1.83548069293539*m.b631 <= 0) m.c392 = Constraint(expr= m.x323 + 1.83548069293539*m.b629 <= 1.83548069293539) m.c393 = Constraint(expr= m.x324 + 1.83548069293539*m.b630 <= 1.83548069293539) m.c394 = Constraint(expr= m.x325 + 1.83548069293539*m.b631 <= 1.83548069293539) m.c395 = Constraint(expr= m.x374 - 20*m.b629 <= 0) m.c396 = Constraint(expr= m.x375 - 20*m.b630 <= 0) m.c397 = Constraint(expr= m.x376 - 20*m.b631 <= 0) m.c398 = Constraint(expr= m.x377 + 20*m.b629 <= 20) m.c399 = Constraint(expr= m.x378 + 20*m.b630 <= 20) m.c400 = Constraint(expr= m.x379 + 20*m.b631 <= 20) m.c401 = Constraint(expr= m.x416 - 20*m.b629 <= 0) m.c402 = Constraint(expr= m.x417 - 20*m.b630 <= 0) m.c403 = Constraint(expr= m.x418 - 20*m.b631 <= 0) m.c404 = Constraint(expr= m.x419 + 20*m.b629 <= 20) m.c405 = Constraint(expr= m.x420 + 20*m.b630 <= 20) m.c406 = Constraint(expr= m.x421 + 20*m.b631 <= 20) m.c407 = Constraint(expr=(m.x422/(0.001 + 0.999*m.b632) - log(1 + m.x329/(0.001 + 0.999*m.b632)))*(0.001 + 0.999*m.b632) <= 0) m.c408 = Constraint(expr=(m.x423/(0.001 + 0.999*m.b633) - log(1 + m.x330/(0.001 + 0.999*m.b633)))*(0.001 + 0.999*m.b633) <= 0) m.c409 = Constraint(expr=(m.x424/(0.001 + 0.999*m.b634) - log(1 + m.x331/(0.001 + 0.999*m.b634)))*(0.001 + 0.999*m.b634) <= 0) m.c410 = Constraint(expr= m.x335 == 0) m.c411 = Constraint(expr= m.x336 == 0) m.c412 = Constraint(expr= m.x337 == 0) m.c413 = Constraint(expr= m.x425 == 0) m.c414 = Constraint(expr= m.x426 == 0) m.c415 = Constraint(expr= m.x427 == 0) m.c416 = Constraint(expr= m.x65 - m.x329 - m.x335 == 0) m.c417 = Constraint(expr= m.x66 - m.x330 - m.x336 == 0) m.c418 = Constraint(expr= m.x67 - m.x331 - m.x337 == 0) m.c419 = Constraint(expr= m.x113 - m.x422 - m.x425 == 0) m.c420 = Constraint(expr= m.x114 - m.x423 - m.x426 == 0) m.c421 = Constraint(expr= m.x115 - m.x424 - m.x427 == 0) m.c422 = Constraint(expr= m.x329 - 1.32154609891348*m.b632 <= 0) m.c423 = Constraint(expr= m.x330 - 1.32154609891348*m.b633 <= 0) m.c424 = Constraint(expr= m.x331 - 1.32154609891348*m.b634 <= 0) m.c425 = Constraint(expr= m.x335 + 1.32154609891348*m.b632 <= 1.32154609891348) m.c426 = Constraint(expr= m.x336 + 1.32154609891348*m.b633 <= 1.32154609891348) m.c427 = Constraint(expr= m.x337 + 1.32154609891348*m.b634 <= 1.32154609891348) m.c428 = Constraint(expr= m.x422 - 0.842233385663186*m.b632 <= 0) m.c429 = Constraint(expr= m.x423 - 0.842233385663186*m.b633 <= 0) m.c430 = Constraint(expr= m.x424 - 0.842233385663186*m.b634 <= 0) m.c431 = Constraint(expr= m.x425 + 0.842233385663186*m.b632 <= 0.842233385663186) m.c432 = Constraint(expr= m.x426 + 0.842233385663186*m.b633 <= 0.842233385663186) m.c433 = Constraint(expr= m.x427 + 0.842233385663186*m.b634 <= 0.842233385663186) m.c434 = Constraint(expr=(m.x428/(0.001 + 0.999*m.b635) - 0.7*log(1 + m.x362/(0.001 + 0.999*m.b635)))*(0.001 + 0.999* m.b635) <= 0) m.c435 = Constraint(expr=(m.x429/(0.001 + 0.999*m.b636) - 0.7*log(1 + m.x363/(0.001 + 0.999*m.b636)))*(0.001 + 0.999* m.b636) <= 0) m.c436 = Constraint(expr=(m.x430/(0.001 + 0.999*m.b637) - 0.7*log(1 + m.x364/(0.001 + 0.999*m.b637)))*(0.001 + 0.999* m.b637) <= 0) m.c437 = Constraint(expr= m.x365 == 0) m.c438 = Constraint(expr= m.x366 == 0) m.c439 = Constraint(expr= m.x367 == 0) m.c440 = Constraint(expr= m.x431 == 0) m.c441 = Constraint(expr= m.x432 == 0) m.c442 = Constraint(expr= m.x433 == 0) m.c443 = Constraint(expr= m.x80 - m.x362 - m.x365 == 0) m.c444 = Constraint(expr= m.x81 - m.x363 - m.x366 == 0) m.c445 = Constraint(expr= m.x82 - m.x364 - m.x367 == 0) m.c446 = Constraint(expr= m.x116 - m.x428 - m.x431 == 0) m.c447 = Constraint(expr= m.x117 - m.x429 - m.x432 == 0) m.c448 = Constraint(expr= m.x118 - m.x430 - m.x433 == 0) m.c449 = Constraint(expr= m.x362 - 1.26558121681553*m.b635 <= 0) m.c450 = Constraint(expr= m.x363 - 1.26558121681553*m.b636 <= 0) m.c451 = Constraint(expr= m.x364 - 1.26558121681553*m.b637 <= 0) m.c452 = Constraint(expr= m.x365 + 1.26558121681553*m.b635 <= 1.26558121681553) m.c453 = Constraint(expr= m.x366 + 1.26558121681553*m.b636 <= 1.26558121681553) m.c454 = Constraint(expr= m.x367 + 1.26558121681553*m.b637 <= 1.26558121681553) m.c455 = Constraint(expr= m.x428 - 0.572481933717686*m.b635 <= 0) m.c456 = Constraint(expr= m.x429 - 0.572481933717686*m.b636 <= 0) m.c457 = Constraint(expr= m.x430 - 0.572481933717686*m.b637 <= 0) m.c458 = Constraint(expr= m.x431 + 0.572481933717686*m.b635 <= 0.572481933717686) m.c459 = Constraint(expr= m.x432 + 0.572481933717686*m.b636 <= 0.572481933717686) m.c460 = Constraint(expr= m.x433 + 0.572481933717686*m.b637 <= 0.572481933717686) m.c461 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x368/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c462 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x369/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c463 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x370/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c464 = Constraint(expr=(m.x434/(0.001 + 0.999*m.b638) - 0.65*log(1 + m.x380/(0.001 + 0.999*m.b638)))*(0.001 + 0.999* m.b638) <= 0) m.c465 = Constraint(expr=(m.x435/(0.001 + 0.999*m.b639) - 0.65*log(1 + m.x381/(0.001 + 0.999*m.b639)))*(0.001 + 0.999* m.b639) <= 0) m.c466 = Constraint(expr=(m.x436/(0.001 + 0.999*m.b640) - 0.65*log(1 + m.x382/(0.001 + 0.999*m.b640)))*(0.001 + 0.999* m.b640) <= 0) m.c467 = Constraint(expr= m.x371 == 0) m.c468 = Constraint(expr= m.x372 == 0) m.c469 = Constraint(expr= m.x373 == 0) m.c470 = Constraint(expr= m.x383 == 0) m.c471 = Constraint(expr= m.x384 == 0) m.c472 = Constraint(expr= m.x385 == 0) m.c473 = Constraint(expr= m.x437 == 0) m.c474 = Constraint(expr= m.x438 == 0) m.c475 = Constraint(expr= m.x439 == 0) m.c476 = Constraint(expr= m.x83 - m.x368 - m.x371 == 0) m.c477 = Constraint(expr= m.x84 - m.x369 - m.x372 == 0) m.c478 = Constraint(expr= m.x85 - m.x370 - m.x373 == 0) m.c479 = Constraint(expr= m.x92 - m.x380 - m.x383 == 0) m.c480 = Constraint(expr= m.x93 - m.x381 - m.x384 == 0) m.c481 = Constraint(expr= m.x94 - m.x382 - m.x385 == 0) m.c482 = Constraint(expr= m.x119 - m.x434 - m.x437 == 0) m.c483 = Constraint(expr= m.x120 - m.x435 - m.x438 == 0) m.c484 = Constraint(expr= m.x121 - m.x436 - m.x439 == 0) m.c485 = Constraint(expr= m.x368 - 1.26558121681553*m.b638 <= 0) m.c486 = Constraint(expr= m.x369 - 1.26558121681553*m.b639 <= 0) m.c487 = Constraint(expr= m.x370 - 1.26558121681553*m.b640 <= 0) m.c488 = Constraint(expr= m.x371 + 1.26558121681553*m.b638 <= 1.26558121681553) m.c489 = Constraint(expr= m.x372 + 1.26558121681553*m.b639 <= 1.26558121681553) m.c490 = Constraint(expr= m.x373 + 1.26558121681553*m.b640 <= 1.26558121681553) m.c491 = Constraint(expr= m.x380 - 33.5*m.b638 <= 0) m.c492 = Constraint(expr= m.x381 - 33.5*m.b639 <= 0) m.c493 = Constraint(expr= m.x382 - 33.5*m.b640 <= 0) m.c494 = Constraint(expr= m.x383 + 33.5*m.b638 <= 33.5) m.c495 = Constraint(expr= m.x384 + 33.5*m.b639 <= 33.5) m.c496 = Constraint(expr= m.x385 + 33.5*m.b640 <= 33.5) m.c497 = Constraint(expr= m.x434 - 2.30162356062425*m.b638 <= 0) m.c498 = Constraint(expr= m.x435 - 2.30162356062425*m.b639 <= 0) m.c499 = Constraint(expr= m.x436 - 2.30162356062425*m.b640 <= 0) m.c500 = Constraint(expr= m.x437 + 2.30162356062425*m.b638 <= 2.30162356062425) m.c501 = Constraint(expr= m.x438 + 2.30162356062425*m.b639 <= 2.30162356062425) m.c502 = Constraint(expr= m.x439 + 2.30162356062425*m.b640 <= 2.30162356062425) m.c503 = Constraint(expr= - m.x386 + m.x440 == 0) m.c504 = Constraint(expr= - m.x387 + m.x441 == 0) m.c505 = Constraint(expr= - m.x388 + m.x442 == 0) m.c506 = Constraint(expr= m.x389 == 0) m.c507 = Constraint(expr= m.x390 == 0) m.c508 = Constraint(expr= m.x391 == 0) m.c509 = Constraint(expr= m.x443 == 0) m.c510 = Constraint(expr= m.x444 == 0) m.c511 = Constraint(expr= m.x445 == 0) m.c512 = Constraint(expr= m.x95 - m.x386 - m.x389 == 0) m.c513 = Constraint(expr= m.x96 - m.x387 - m.x390 == 0) m.c514 = Constraint(expr= m.x97 - m.x388 - m.x391 == 0) m.c515 = Constraint(expr= m.x122 - m.x440 - m.x443 == 0) m.c516 = Constraint(expr= m.x123 - m.x441 - m.x444 == 0) m.c517 = Constraint(expr= m.x124 - m.x442 - m.x445 == 0) m.c518 = Constraint(expr= m.x386 - 9*m.b641 <= 0) m.c519 = Constraint(expr= m.x387 - 9*m.b642 <= 0) m.c520 = Constraint(expr= m.x388 - 9*m.b643 <= 0) m.c521 = Constraint(expr= m.x389 + 9*m.b641 <= 9) m.c522 = Constraint(expr= m.x390 + 9*m.b642 <= 9) m.c523 = Constraint(expr= m.x391 + 9*m.b643 <= 9) m.c524 = Constraint(expr= m.x440 - 9*m.b641 <= 0) m.c525 = Constraint(expr= m.x441 - 9*m.b642 <= 0) m.c526 = Constraint(expr= m.x442 - 9*m.b643 <= 0) m.c527 = Constraint(expr= m.x443 + 9*m.b641 <= 9) m.c528 = Constraint(expr= m.x444 + 9*m.b642 <= 9) m.c529 = Constraint(expr= m.x445 + 9*m.b643 <= 9) m.c530 = Constraint(expr= - m.x392 + m.x446 == 0) m.c531 = Constraint(expr= - m.x393 + m.x447 == 0) m.c532 = Constraint(expr= - m.x394 + m.x448 == 0) m.c533 = Constraint(expr= m.x395 == 0) m.c534 = Constraint(expr= m.x396 == 0) m.c535 = Constraint(expr= m.x397 == 0) m.c536 = Constraint(expr= m.x449 == 0) m.c537 = Constraint(expr= m.x450 == 0) m.c538 = Constraint(expr= m.x451 == 0) m.c539 = Constraint(expr= m.x98 - m.x392 - m.x395 == 0) m.c540 = Constraint(expr= m.x99 - m.x393 - m.x396 == 0) m.c541 = Constraint(expr= m.x100 - m.x394 - m.x397 == 0) m.c542 = Constraint(expr= m.x125 - m.x446 - m.x449 == 0) m.c543 = Constraint(expr= m.x126 - m.x447 - m.x450 == 0) m.c544 = Constraint(expr= m.x127 - m.x448 - m.x451 == 0) m.c545 = Constraint(expr= m.x392 - 9*m.b644 <= 0) m.c546 = Constraint(expr= m.x393 - 9*m.b645 <= 0) m.c547 = Constraint(expr= m.x394 - 9*m.b646 <= 0) m.c548 = Constraint(expr= m.x395 + 9*m.b644 <= 9) m.c549 = Constraint(expr= m.x396 + 9*m.b645 <= 9) m.c550 = Constraint(expr= m.x397 + 9*m.b646 <= 9) m.c551 = Constraint(expr= m.x446 - 9*m.b644 <= 0) m.c552 = Constraint(expr= m.x447 - 9*m.b645 <= 0) m.c553 = Constraint(expr= m.x448 - 9*m.b646 <= 0) m.c554 = Constraint(expr= m.x449 + 9*m.b644 <= 9) m.c555 = Constraint(expr= m.x450 + 9*m.b645 <= 9) m.c556 = Constraint(expr= m.x451 + 9*m.b646 <= 9) m.c557 = Constraint(expr=(m.x452/(0.001 + 0.999*m.b647) - 0.75*log(1 + m.x398/(0.001 + 0.999*m.b647)))*(0.001 + 0.999* m.b647) <= 0) m.c558 = Constraint(expr=(m.x453/(0.001 + 0.999*m.b648) - 0.75*log(1 + m.x399/(0.001 + 0.999*m.b648)))*(0.001 + 0.999* m.b648) <= 0) m.c559 = Constraint(expr=(m.x454/(0.001 + 0.999*m.b649) - 0.75*log(1 + m.x400/(0.001 + 0.999*m.b649)))*(0.001 + 0.999* m.b649) <= 0) m.c560 = Constraint(expr= m.x401 == 0) m.c561 = Constraint(expr= m.x402 == 0) m.c562 = Constraint(expr= m.x403 == 0) m.c563 = Constraint(expr= m.x455 == 0) m.c564 = Constraint(expr= m.x456 == 0) m.c565 = Constraint(expr= m.x457 == 0) m.c566 = Constraint(expr= m.x101 - m.x398 - m.x401 == 0) m.c567 = Constraint(expr= m.x102 - m.x399 - m.x402 == 0) m.c568 = Constraint(expr= m.x103 - m.x400 - m.x403 == 0) m.c569 = Constraint(expr= m.x128 - m.x452 - m.x455 == 0) m.c570 = Constraint(expr= m.x129 - m.x453 - m.x456 == 0) m.c571 = Constraint(expr= m.x130 - m.x454 - m.x457 == 0) m.c572 = Constraint(expr= m.x398 - 3.04984759446376*m.b647 <= 0) m.c573 = Constraint(expr= m.x399 - 3.04984759446376*m.b648 <= 0) m.c574 = Constraint(expr= m.x400 - 3.04984759446376*m.b649 <= 0) m.c575 = Constraint(expr= m.x401 + 3.04984759446376*m.b647 <= 3.04984759446376) m.c576 = Constraint(expr= m.x402 + 3.04984759446376*m.b648 <= 3.04984759446376) m.c577 = Constraint(expr= m.x403 + 3.04984759446376*m.b649 <= 3.04984759446376) m.c578 = Constraint(expr= m.x452 - 1.04900943706034*m.b647 <= 0) m.c579 = Constraint(expr= m.x453 - 1.04900943706034*m.b648 <= 0) m.c580 = Constraint(expr= m.x454 - 1.04900943706034*m.b649 <= 0) m.c581 = Constraint(expr= m.x455 + 1.04900943706034*m.b647 <= 1.04900943706034) m.c582 = Constraint(expr= m.x456 + 1.04900943706034*m.b648 <= 1.04900943706034) m.c583 = Constraint(expr= m.x457 + 1.04900943706034*m.b649 <= 1.04900943706034) m.c584 = Constraint(expr=(m.x458/(0.001 + 0.999*m.b650) - 0.8*log(1 + m.x404/(0.001 + 0.999*m.b650)))*(0.001 + 0.999* m.b650) <= 0) m.c585 = Constraint(expr=(m.x459/(0.001 + 0.999*m.b651) - 0.8*log(1 + m.x405/(0.001 + 0.999*m.b651)))*(0.001 + 0.999* m.b651) <= 0) m.c586 = Constraint(expr=(m.x460/(0.001 + 0.999*m.b652) - 0.8*log(1 + m.x406/(0.001 + 0.999*m.b652)))*(0.001 + 0.999* m.b652) <= 0) m.c587 = Constraint(expr= m.x407 == 0) m.c588 = Constraint(expr= m.x408 == 0) m.c589 = Constraint(expr= m.x409 == 0) m.c590 = Constraint(expr= m.x461 == 0) m.c591 = Constraint(expr= m.x462 == 0) m.c592 = Constraint(expr= m.x463 == 0) m.c593 = Constraint(expr= m.x104 - m.x404 - m.x407 == 0) m.c594 = Constraint(expr= m.x105 - m.x405 - m.x408 == 0) m.c595 = Constraint(expr= m.x106 - m.x406 - m.x409 == 0) m.c596 = Constraint(expr= m.x131 - m.x458 - m.x461 == 0) m.c597 = Constraint(expr= m.x132 - m.x459 - m.x462 == 0) m.c598 = Constraint(expr= m.x133 - m.x460 - m.x463 == 0) m.c599 = Constraint(expr= m.x404 - 3.04984759446376*m.b650 <= 0) m.c600 = Constraint(expr= m.x405 - 3.04984759446376*m.b651 <= 0) m.c601 = Constraint(expr= m.x406 - 3.04984759446376*m.b652 <= 0) m.c602 = Constraint(expr= m.x407 + 3.04984759446376*m.b650 <= 3.04984759446376) m.c603 = Constraint(expr= m.x408 + 3.04984759446376*m.b651 <= 3.04984759446376) m.c604 = Constraint(expr= m.x409 + 3.04984759446376*m.b652 <= 3.04984759446376) m.c605 = Constraint(expr= m.x458 - 1.11894339953103*m.b650 <= 0) m.c606 = Constraint(expr= m.x459 - 1.11894339953103*m.b651 <= 0) m.c607 = Constraint(expr= m.x460 - 1.11894339953103*m.b652 <= 0) m.c608 = Constraint(expr= m.x461 + 1.11894339953103*m.b650 <= 1.11894339953103) m.c609 = Constraint(expr= m.x462 + 1.11894339953103*m.b651 <= 1.11894339953103) m.c610 = Constraint(expr= m.x463 + 1.11894339953103*m.b652 <= 1.11894339953103) m.c611 = Constraint(expr=(m.x464/(0.001 + 0.999*m.b653) - 0.85*log(1 + m.x410/(0.001 + 0.999*m.b653)))*(0.001 + 0.999* m.b653) <= 0) m.c612 = Constraint(expr=(m.x465/(0.001 + 0.999*m.b654) - 0.85*log(1 + m.x411/(0.001 + 0.999*m.b654)))*(0.001 + 0.999* m.b654) <= 0) m.c613 = Constraint(expr=(m.x466/(0.001 + 0.999*m.b655) - 0.85*log(1 + m.x412/(0.001 + 0.999*m.b655)))*(0.001 + 0.999* m.b655) <= 0) m.c614 = Constraint(expr= m.x413 == 0) m.c615 = Constraint(expr= m.x414 == 0) m.c616 = Constraint(expr= m.x415 == 0) m.c617 = Constraint(expr= m.x467 == 0) m.c618 = Constraint(expr= m.x468 == 0) m.c619 = Constraint(expr= m.x469 == 0) m.c620 = Constraint(expr= m.x107 - m.x410 - m.x413 == 0) m.c621 = Constraint(expr= m.x108 - m.x411 - m.x414 == 0) m.c622 = Constraint(expr= m.x109 - m.x412 - m.x415 == 0) m.c623 = Constraint(expr= m.x134 - m.x464 - m.x467 == 0) m.c624 = Constraint(expr= m.x135 - m.x465 - m.x468 == 0) m.c625 = Constraint(expr= m.x136 - m.x466 - m.x469 == 0) m.c626 = Constraint(expr= m.x410 - 3.04984759446376*m.b653 <= 0) m.c627 = Constraint(expr= m.x411 - 3.04984759446376*m.b654 <= 0) m.c628 = Constraint(expr= m.x412 - 3.04984759446376*m.b655 <= 0) m.c629 = Constraint(expr= m.x413 + 3.04984759446376*m.b653 <= 3.04984759446376) m.c630 = Constraint(expr= m.x414 + 3.04984759446376*m.b654 <= 3.04984759446376) m.c631 = Constraint(expr= m.x415 + 3.04984759446376*m.b655 <= 3.04984759446376) m.c632 = Constraint(expr= m.x464 - 1.18887736200171*m.b653 <= 0) m.c633 = Constraint(expr= m.x465 - 1.18887736200171*m.b654 <= 0) m.c634 = Constraint(expr= m.x466 - 1.18887736200171*m.b655 <= 0) m.c635 = Constraint(expr= m.x467 + 1.18887736200171*m.b653 <= 1.18887736200171) m.c636 = Constraint(expr= m.x468 + 1.18887736200171*m.b654 <= 1.18887736200171) m.c637 = Constraint(expr= m.x469 + 1.18887736200171*m.b655 <= 1.18887736200171) m.c638 = Constraint(expr=(m.x482/(0.001 + 0.999*m.b656) - log(1 + m.x470/(0.001 + 0.999*m.b656)))*(0.001 + 0.999*m.b656) <= 0) m.c639 = Constraint(expr=(m.x483/(0.001 + 0.999*m.b657) - log(1 + m.x471/(0.001 + 0.999*m.b657)))*(0.001 + 0.999*m.b657) <= 0) m.c640 = Constraint(expr=(m.x484/(0.001 + 0.999*m.b658) - log(1 + m.x472/(0.001 + 0.999*m.b658)))*(0.001 + 0.999*m.b658) <= 0) m.c641 = Constraint(expr= m.x473 == 0) m.c642 = Constraint(expr= m.x474 == 0) m.c643 = Constraint(expr= m.x475 == 0) m.c644 = Constraint(expr= m.x485 == 0) m.c645 = Constraint(expr= m.x486 == 0) m.c646 = Constraint(expr= m.x487 == 0) m.c647 = Constraint(expr= m.x140 - m.x470 - m.x473 == 0) m.c648 = Constraint(expr= m.x141 - m.x471 - m.x474 == 0) m.c649 = Constraint(expr= m.x142 - m.x472 - m.x475 == 0) m.c650 = Constraint(expr= m.x146 - m.x482 - m.x485 == 0) m.c651 = Constraint(expr= m.x147 - m.x483 - m.x486 == 0) m.c652 = Constraint(expr= m.x148 - m.x484 - m.x487 == 0) m.c653 = Constraint(expr= m.x470 - 1.18887736200171*m.b656 <= 0) m.c654 = Constraint(expr= m.x471 - 1.18887736200171*m.b657 <= 0) m.c655 = Constraint(expr= m.x472 - 1.18887736200171*m.b658 <= 0) m.c656 = Constraint(expr= m.x473 + 1.18887736200171*m.b656 <= 1.18887736200171) m.c657 = Constraint(expr= m.x474 + 1.18887736200171*m.b657 <= 1.18887736200171) m.c658 = Constraint(expr= m.x475 + 1.18887736200171*m.b658 <= 1.18887736200171) m.c659 = Constraint(expr= m.x482 - 0.78338879230327*m.b656 <= 0) m.c660 = Constraint(expr= m.x483 - 0.78338879230327*m.b657 <= 0) m.c661 = Constraint(expr= m.x484 - 0.78338879230327*m.b658 <= 0) m.c662 = Constraint(expr= m.x485 + 0.78338879230327*m.b656 <= 0.78338879230327) m.c663 = Constraint(expr= m.x486 + 0.78338879230327*m.b657 <= 0.78338879230327) m.c664 = Constraint(expr= m.x487 + 0.78338879230327*m.b658 <= 0.78338879230327) m.c665 = Constraint(expr=(m.x488/(0.001 + 0.999*m.b659) - 1.2*log(1 + m.x476/(0.001 + 0.999*m.b659)))*(0.001 + 0.999* m.b659) <= 0) m.c666 = Constraint(expr=(m.x489/(0.001 + 0.999*m.b660) - 1.2*log(1 + m.x477/(0.001 + 0.999*m.b660)))*(0.001 + 0.999* m.b660) <= 0) m.c667 = Constraint(expr=(m.x490/(0.001 + 0.999*m.b661) - 1.2*log(1 + m.x478/(0.001 + 0.999*m.b661)))*(0.001 + 0.999* m.b661) <= 0) m.c668 = Constraint(expr= m.x479 == 0) m.c669 = Constraint(expr= m.x480 == 0) m.c670 = Constraint(expr= m.x481 == 0) m.c671 = Constraint(expr= m.x491 == 0) m.c672 = Constraint(expr= m.x492 == 0) m.c673 = Constraint(expr= m.x493 == 0) m.c674 = Constraint(expr= m.x143 - m.x476 - m.x479 == 0) m.c675 = Constraint(expr= m.x144 - m.x477 - m.x480 == 0) m.c676 = Constraint(expr= m.x145 - m.x478 - m.x481 == 0) m.c677 = Constraint(expr= m.x149 - m.x488 - m.x491 == 0) m.c678 = Constraint(expr= m.x150 - m.x489 - m.x492 == 0) m.c679 = Constraint(expr= m.x151 - m.x490 - m.x493 == 0) m.c680 = Constraint(expr= m.x476 - 1.18887736200171*m.b659 <= 0) m.c681 = Constraint(expr= m.x477 - 1.18887736200171*m.b660 <= 0) m.c682 = Constraint(expr= m.x478 - 1.18887736200171*m.b661 <= 0) m.c683 = Constraint(expr= m.x479 + 1.18887736200171*m.b659 <= 1.18887736200171) m.c684 = Constraint(expr= m.x480 + 1.18887736200171*m.b660 <= 1.18887736200171) m.c685 = Constraint(expr= m.x481 + 1.18887736200171*m.b661 <= 1.18887736200171) m.c686 = Constraint(expr= m.x488 - 0.940066550763924*m.b659 <= 0) m.c687 = Constraint(expr= m.x489 - 0.940066550763924*m.b660 <= 0) m.c688 = Constraint(expr= m.x490 - 0.940066550763924*m.b661 <= 0) m.c689 = Constraint(expr= m.x491 + 0.940066550763924*m.b659 <= 0.940066550763924) m.c690 = Constraint(expr= m.x492 + 0.940066550763924*m.b660 <= 0.940066550763924) m.c691 = Constraint(expr= m.x493 + 0.940066550763924*m.b661 <= 0.940066550763924) m.c692 = Constraint(expr= - 0.75*m.x494 + m.x518 == 0) m.c693 = Constraint(expr= - 0.75*m.x495 + m.x519 == 0) m.c694 = Constraint(expr= - 0.75*m.x496 + m.x520 == 0) m.c695 = Constraint(expr= m.x497 == 0) m.c696 = Constraint(expr= m.x498 == 0) m.c697 = Constraint(expr= m.x499 == 0) m.c698 = Constraint(expr= m.x521 == 0) m.c699 = Constraint(expr= m.x522 == 0) m.c700 = Constraint(expr= m.x523 == 0) m.c701 = Constraint(expr= m.x161 - m.x494 - m.x497 == 0) m.c702 = Constraint(expr= m.x162 - m.x495 - m.x498 == 0) m.c703 = Constraint(expr= m.x163 - m.x496 - m.x499 == 0) m.c704 = Constraint(expr= m.x173 - m.x518 - m.x521 == 0) m.c705 = Constraint(expr= m.x174 - m.x519 - m.x522 == 0) m.c706 = Constraint(expr= m.x175 - m.x520 - m.x523 == 0) m.c707 = Constraint(expr= m.x494 - 0.940066550763924*m.b662 <= 0) m.c708 = Constraint(expr= m.x495 - 0.940066550763924*m.b663 <= 0) m.c709 = Constraint(expr= m.x496 - 0.940066550763924*m.b664 <= 0) m.c710 = Constraint(expr= m.x497 + 0.940066550763924*m.b662 <= 0.940066550763924) m.c711 = Constraint(expr= m.x498 + 0.940066550763924*m.b663 <= 0.940066550763924) m.c712 = Constraint(expr= m.x499 + 0.940066550763924*m.b664 <= 0.940066550763924) m.c713 = Constraint(expr= m.x518 - 0.705049913072943*m.b662 <= 0) m.c714 = Constraint(expr= m.x519 - 0.705049913072943*m.b663 <= 0) m.c715 = Constraint(expr= m.x520 - 0.705049913072943*m.b664 <= 0) m.c716 = Constraint(expr= m.x521 + 0.705049913072943*m.b662 <= 0.705049913072943) m.c717 = Constraint(expr= m.x522 + 0.705049913072943*m.b663 <= 0.705049913072943) m.c718 = Constraint(expr= m.x523 + 0.705049913072943*m.b664 <= 0.705049913072943) m.c719 = Constraint(expr=(m.x524/(0.001 + 0.999*m.b665) - 1.5*log(1 + m.x500/(0.001 + 0.999*m.b665)))*(0.001 + 0.999* m.b665) <= 0) m.c720 = Constraint(expr=(m.x525/(0.001 + 0.999*m.b666) - 1.5*log(1 + m.x501/(0.001 + 0.999*m.b666)))*(0.001 + 0.999* m.b666) <= 0) m.c721 = Constraint(expr=(m.x526/(0.001 + 0.999*m.b667) - 1.5*log(1 + m.x502/(0.001 + 0.999*m.b667)))*(0.001 + 0.999* m.b667) <= 0) m.c722 = Constraint(expr= m.x503 == 0) m.c723 = Constraint(expr= m.x504 == 0) m.c724 = Constraint(expr= m.x505 == 0) m.c725 = Constraint(expr= m.x530 == 0) m.c726 = Constraint(expr= m.x531 == 0) m.c727 = Constraint(expr= m.x532 == 0) m.c728 = Constraint(expr= m.x164 - m.x500 - m.x503 == 0) m.c729 = Constraint(expr= m.x165 - m.x501 - m.x504 == 0) m.c730 = Constraint(expr= m.x166 - m.x502 - m.x505 == 0) m.c731 = Constraint(expr= m.x176 - m.x524 - m.x530 == 0) m.c732 = Constraint(expr= m.x177 - m.x525 - m.x531 == 0) m.c733 = Constraint(expr= m.x178 - m.x526 - m.x532 == 0) m.c734 = Constraint(expr= m.x500 - 0.940066550763924*m.b665 <= 0) m.c735 = Constraint(expr= m.x501 - 0.940066550763924*m.b666 <= 0) m.c736 = Constraint(expr= m.x502 - 0.940066550763924*m.b667 <= 0) m.c737 = Constraint(expr= m.x503 + 0.940066550763924*m.b665 <= 0.940066550763924) m.c738 = Constraint(expr= m.x504 + 0.940066550763924*m.b666 <= 0.940066550763924) m.c739 = Constraint(expr= m.x505 + 0.940066550763924*m.b667 <= 0.940066550763924) m.c740 = Constraint(expr= m.x524 - 0.994083415506506*m.b665 <= 0) m.c741 = Constraint(expr= m.x525 - 0.994083415506506*m.b666 <= 0) m.c742 = Constraint(expr= m.x526 - 0.994083415506506*m.b667 <= 0) m.c743 = Constraint(expr= m.x530 + 0.994083415506506*m.b665 <= 0.994083415506506) m.c744 = Constraint(expr= m.x531 + 0.994083415506506*m.b666 <= 0.994083415506506) m.c745 = Constraint(expr= m.x532 + 0.994083415506506*m.b667 <= 0.994083415506506) m.c746 = Constraint(expr= - m.x506 + m.x536 == 0) m.c747 = Constraint(expr= - m.x507 + m.x537 == 0) m.c748 = Constraint(expr= - m.x508 + m.x538 == 0) m.c749 = Constraint(expr= - 0.5*m.x512 + m.x536 == 0) m.c750 = Constraint(expr= - 0.5*m.x513 + m.x537 == 0) m.c751 = Constraint(expr= - 0.5*m.x514 + m.x538 == 0) m.c752 = Constraint(expr= m.x509 == 0) m.c753 = Constraint(expr= m.x510 == 0) m.c754 = Constraint(expr= m.x511 == 0) m.c755 = Constraint(expr= m.x515 == 0) m.c756 = Constraint(expr= m.x516 == 0) m.c757 = Constraint(expr= m.x517 == 0) m.c758 = Constraint(expr= m.x539 == 0) m.c759 = Constraint(expr= m.x540 == 0) m.c760 = Constraint(expr= m.x541 == 0) m.c761 = Constraint(expr= m.x167 - m.x506 - m.x509 == 0) m.c762 = Constraint(expr= m.x168 - m.x507 - m.x510 == 0) m.c763 = Constraint(expr= m.x169 - m.x508 - m.x511 == 0) m.c764 = Constraint(expr= m.x170 - m.x512 - m.x515 == 0) m.c765 = Constraint(expr= m.x171 - m.x513 - m.x516 == 0) m.c766 = Constraint(expr= m.x172 - m.x514 - m.x517 == 0) m.c767 = Constraint(expr= m.x179 - m.x536 - m.x539 == 0) m.c768 = Constraint(expr= m.x180 - m.x537 - m.x540 == 0) m.c769 = Constraint(expr= m.x181 - m.x538 - m.x541 == 0) m.c770 = Constraint(expr= m.x506 - 0.940066550763924*m.b668 <= 0) m.c771 = Constraint(expr= m.x507 - 0.940066550763924*m.b669 <= 0) m.c772 = Constraint(expr= m.x508 - 0.940066550763924*m.b670 <= 0) m.c773 = Constraint(expr= m.x509 + 0.940066550763924*m.b668 <= 0.940066550763924) m.c774 = Constraint(expr= m.x510 + 0.940066550763924*m.b669 <= 0.940066550763924) m.c775 = Constraint(expr= m.x511 + 0.940066550763924*m.b670 <= 0.940066550763924) m.c776 = Constraint(expr= m.x512 - 30*m.b668 <= 0) m.c777 = Constraint(expr= m.x513 - 30*m.b669 <= 0) m.c778 = Constraint(expr= m.x514 - 30*m.b670 <= 0) m.c779 = Constraint(expr= m.x515 + 30*m.b668 <= 30) m.c780 = Constraint(expr= m.x516 + 30*m.b669 <= 30) m.c781 = Constraint(expr= m.x517 + 30*m.b670 <= 30) m.c782 = Constraint(expr= m.x536 - 15*m.b668 <= 0) m.c783 = Constraint(expr= m.x537 - 15*m.b669 <= 0) m.c784 = Constraint(expr= m.x538 - 15*m.b670 <= 0) m.c785 = Constraint(expr= m.x539 + 15*m.b668 <= 15) m.c786 = Constraint(expr= m.x540 + 15*m.b669 <= 15) m.c787 = Constraint(expr= m.x541 + 15*m.b670 <= 15) m.c788 = Constraint(expr=(m.x566/(0.001 + 0.999*m.b671) - 1.25*log(1 + m.x542/(0.001 + 0.999*m.b671)))*(0.001 + 0.999* m.b671) <= 0) m.c789 = Constraint(expr=(m.x567/(0.001 + 0.999*m.b672) - 1.25*log(1 + m.x543/(0.001 + 0.999*m.b672)))*(0.001 + 0.999* m.b672) <= 0) m.c790 = Constraint(expr=(m.x568/(0.001 + 0.999*m.b673) - 1.25*log(1 + m.x544/(0.001 + 0.999*m.b673)))*(0.001 + 0.999* m.b673) <= 0) m.c791 = Constraint(expr= m.x545 == 0) m.c792 = Constraint(expr= m.x546 == 0) m.c793 = Constraint(expr= m.x547 == 0) m.c794 = Constraint(expr= m.x569 == 0) m.c795 = Constraint(expr= m.x570 == 0) m.c796 = Constraint(expr= m.x571 == 0) m.c797 = Constraint(expr= m.x182 - m.x542 - m.x545 == 0) m.c798 = Constraint(expr= m.x183 - m.x543 - m.x546 == 0) m.c799 = Constraint(expr= m.x184 - m.x544 - m.x547 == 0) m.c800 = Constraint(expr= m.x197 - m.x566 - m.x569 == 0) m.c801 = Constraint(expr= m.x198 - m.x567 - m.x570 == 0) m.c802 = Constraint(expr= m.x199 - m.x568 - m.x571 == 0) m.c803 = Constraint(expr= m.x542 - 0.705049913072943*m.b671 <= 0) m.c804 = Constraint(expr= m.x543 - 0.705049913072943*m.b672 <= 0) m.c805 = Constraint(expr= m.x544 - 0.705049913072943*m.b673 <= 0) m.c806 = Constraint(expr= m.x545 + 0.705049913072943*m.b671 <= 0.705049913072943) m.c807 = Constraint(expr= m.x546 + 0.705049913072943*m.b672 <= 0.705049913072943) m.c808 = Constraint(expr= m.x547 + 0.705049913072943*m.b673 <= 0.705049913072943) m.c809 = Constraint(expr= m.x566 - 0.666992981045719*m.b671 <= 0) m.c810 = Constraint(expr= m.x567 - 0.666992981045719*m.b672 <= 0) m.c811 = Constraint(expr= m.x568 - 0.666992981045719*m.b673 <= 0) m.c812 = Constraint(expr= m.x569 + 0.666992981045719*m.b671 <= 0.666992981045719) m.c813 = Constraint(expr= m.x570 + 0.666992981045719*m.b672 <= 0.666992981045719) m.c814 = Constraint(expr= m.x571 + 0.666992981045719*m.b673 <= 0.666992981045719) m.c815 = Constraint(expr=(m.x572/(0.001 + 0.999*m.b674) - 0.9*log(1 + m.x548/(0.001 + 0.999*m.b674)))*(0.001 + 0.999* m.b674) <= 0) m.c816 = Constraint(expr=(m.x573/(0.001 + 0.999*m.b675) - 0.9*log(1 + m.x549/(0.001 + 0.999*m.b675)))*(0.001 + 0.999* m.b675) <= 0) m.c817 = Constraint(expr=(m.x574/(0.001 + 0.999*m.b676) - 0.9*log(1 + m.x550/(0.001 + 0.999*m.b676)))*(0.001 + 0.999* m.b676) <= 0) m.c818 = Constraint(expr= m.x551 == 0) m.c819 = Constraint(expr= m.x552 == 0) m.c820 = Constraint(expr= m.x553 == 0) m.c821 = Constraint(expr= m.x575 == 0) m.c822 = Constraint(expr= m.x576 == 0) m.c823 = Constraint(expr= m.x577 == 0) m.c824 = Constraint(expr= m.x185 - m.x548 - m.x551 == 0) m.c825 = Constraint(expr= m.x186 - m.x549 - m.x552 == 0) m.c826 = Constraint(expr= m.x187 - m.x550 - m.x553 == 0) m.c827 = Constraint(expr= m.x200 - m.x572 - m.x575 == 0) m.c828 = Constraint(expr= m.x201 - m.x573 - m.x576 == 0) m.c829 = Constraint(expr= m.x202 - m.x574 - m.x577 == 0) m.c830 = Constraint(expr= m.x548 - 0.705049913072943*m.b674 <= 0) m.c831 = Constraint(expr= m.x549 - 0.705049913072943*m.b675 <= 0) m.c832 = Constraint(expr= m.x550 - 0.705049913072943*m.b676 <= 0) m.c833 = Constraint(expr= m.x551 + 0.705049913072943*m.b674 <= 0.705049913072943) m.c834 = Constraint(expr= m.x552 + 0.705049913072943*m.b675 <= 0.705049913072943) m.c835 = Constraint(expr= m.x553 + 0.705049913072943*m.b676 <= 0.705049913072943) m.c836 = Constraint(expr= m.x572 - 0.480234946352917*m.b674 <= 0) m.c837 = Constraint(expr= m.x573 - 0.480234946352917*m.b675 <= 0) m.c838 = Constraint(expr= m.x574 - 0.480234946352917*m.b676 <= 0) m.c839 = Constraint(expr= m.x575 + 0.480234946352917*m.b674 <= 0.480234946352917) m.c840 = Constraint(expr= m.x576 + 0.480234946352917*m.b675 <= 0.480234946352917) m.c841 = Constraint(expr= m.x577 + 0.480234946352917*m.b676 <= 0.480234946352917) m.c842 = Constraint(expr=(m.x578/(0.001 + 0.999*m.b677) - log(1 + m.x527/(0.001 + 0.999*m.b677)))*(0.001 + 0.999*m.b677) <= 0) m.c843 = Constraint(expr=(m.x579/(0.001 + 0.999*m.b678) - log(1 + m.x528/(0.001 + 0.999*m.b678)))*(0.001 + 0.999*m.b678) <= 0) m.c844 = Constraint(expr=(m.x580/(0.001 + 0.999*m.b679) - log(1 + m.x529/(0.001 + 0.999*m.b679)))*(0.001 + 0.999*m.b679) <= 0) m.c845 = Constraint(expr= m.x533 == 0) m.c846 = Constraint(expr= m.x534 == 0) m.c847 = Constraint(expr= m.x535 == 0) m.c848 = Constraint(expr= m.x581 == 0) m.c849 = Constraint(expr= m.x582 == 0) m.c850 = Constraint(expr= m.x583 == 0) m.c851 = Constraint(expr= m.x176 - m.x527 - m.x533 == 0) m.c852 = Constraint(expr= m.x177 - m.x528 - m.x534 == 0) m.c853 = Constraint(expr= m.x178 - m.x529 - m.x535 == 0) m.c854 = Constraint(expr= m.x203 - m.x578 - m.x581 == 0) m.c855 = Constraint(expr= m.x204 - m.x579 - m.x582 == 0) m.c856 = Constraint(expr= m.x205 - m.x580 - m.x583 == 0) m.c857 = Constraint(expr= m.x527 - 0.994083415506506*m.b677 <= 0) m.c858 = Constraint(expr= m.x528 - 0.994083415506506*m.b678 <= 0) m.c859 = Constraint(expr= m.x529 - 0.994083415506506*m.b679 <= 0) m.c860 = Constraint(expr= m.x533 + 0.994083415506506*m.b677 <= 0.994083415506506) m.c861 = Constraint(expr= m.x534 + 0.994083415506506*m.b678 <= 0.994083415506506) m.c862 = Constraint(expr= m.x535 + 0.994083415506506*m.b679 <= 0.994083415506506) m.c863 = Constraint(expr= m.x578 - 0.690184503917672*m.b677 <= 0) m.c864 = Constraint(expr= m.x579 - 0.690184503917672*m.b678 <= 0) m.c865 = Constraint(expr= m.x580 - 0.690184503917672*m.b679 <= 0) m.c866 = Constraint(expr= m.x581 + 0.690184503917672*m.b677 <= 0.690184503917672) m.c867 = Constraint(expr= m.x582 + 0.690184503917672*m.b678 <= 0.690184503917672) m.c868 = Constraint(expr= m.x583 + 0.690184503917672*m.b679 <= 0.690184503917672) m.c869 = Constraint(expr= - 0.9*m.x554 + m.x584 == 0) m.c870 = Constraint(expr= - 0.9*m.x555 + m.x585 == 0) m.c871 = Constraint(expr= - 0.9*m.x556 + m.x586 == 0) m.c872 = Constraint(expr= m.x557 == 0) m.c873 = Constraint(expr= m.x558 == 0) m.c874 = Constraint(expr= m.x559 == 0) m.c875 = Constraint(expr= m.x587 == 0) m.c876 = Constraint(expr= m.x588 == 0) m.c877 = Constraint(expr= m.x589 == 0) m.c878 = Constraint(expr= m.x188 - m.x554 - m.x557 == 0) m.c879 = Constraint(expr= m.x189 - m.x555 - m.x558 == 0) m.c880 = Constraint(expr= m.x190 - m.x556 - m.x559 == 0) m.c881 = Constraint(expr= m.x206 - m.x584 - m.x587 == 0) m.c882 = Constraint(expr= m.x207 - m.x585 - m.x588 == 0) m.c883 = Constraint(expr= m.x208 - m.x586 - m.x589 == 0) m.c884 = Constraint(expr= m.x554 - 15*m.b680 <= 0) m.c885 = Constraint(expr= m.x555 - 15*m.b681 <= 0) m.c886 = Constraint(expr= m.x556 - 15*m.b682 <= 0) m.c887 = Constraint(expr= m.x557 + 15*m.b680 <= 15) m.c888 = Constraint(expr= m.x558 + 15*m.b681 <= 15) m.c889 = Constraint(expr= m.x559 + 15*m.b682 <= 15) m.c890 = Constraint(expr= m.x584 - 13.5*m.b680 <= 0) m.c891 = Constraint(expr= m.x585 - 13.5*m.b681 <= 0) m.c892 = Constraint(expr= m.x586 - 13.5*m.b682 <= 0) m.c893 = Constraint(expr= m.x587 + 13.5*m.b680 <= 13.5) m.c894 = Constraint(expr= m.x588 + 13.5*m.b681 <= 13.5) m.c895 = Constraint(expr= m.x589 + 13.5*m.b682 <= 13.5) m.c896 = Constraint(expr= - 0.6*m.x560 + m.x590 == 0) m.c897 = Constraint(expr= - 0.6*m.x561 + m.x591 == 0) m.c898 = Constraint(expr= - 0.6*m.x562 + m.x592 == 0) m.c899 = Constraint(expr= m.x563 == 0) m.c900 = Constraint(expr= m.x564 == 0) m.c901 = Constraint(expr= m.x565 == 0) m.c902 = Constraint(expr= m.x593 == 0) m.c903 = Constraint(expr= m.x594 == 0) m.c904 = Constraint(expr= m.x595 == 0) m.c905 = Constraint(expr= m.x191 - m.x560 - m.x563 == 0) m.c906 = Constraint(expr= m.x192 - m.x561 - m.x564 == 0) m.c907 = Constraint(expr= m.x193 - m.x562 - m.x565 == 0) m.c908 = Constraint(expr= m.x209 - m.x590 - m.x593 == 0) m.c909 = Constraint(expr= m.x210 - m.x591 - m.x594 == 0) m.c910 = Constraint(expr= m.x211 - m.x592 - m.x595 == 0) m.c911 = Constraint(expr= m.x560 - 15*m.b683 <= 0) m.c912 = Constraint(expr= m.x561 - 15*m.b684 <= 0) m.c913 = Constraint(expr= m.x562 - 15*m.b685 <= 0) m.c914 = Constraint(expr= m.x563 + 15*m.b683 <= 15) m.c915 = Constraint(expr= m.x564 + 15*m.b684 <= 15) m.c916 = Constraint(expr= m.x565 + 15*m.b685 <= 15) m.c917 = Constraint(expr= m.x590 - 9*m.b683 <= 0) m.c918 = Constraint(expr= m.x591 - 9*m.b684 <= 0) m.c919 = Constraint(expr= m.x592 - 9*m.b685 <= 0) m.c920 = Constraint(expr= m.x593 + 9*m.b683 <= 9) m.c921 = Constraint(expr= m.x594 + 9*m.b684 <= 9) m.c922 = Constraint(expr= m.x595 + 9*m.b685 <= 9) m.c923 = Constraint(expr= 5*m.b686 + m.x776 == 0) m.c924 = Constraint(expr= 4*m.b687 + m.x777 == 0) m.c925 = Constraint(expr= 6*m.b688 + m.x778 == 0) m.c926 = Constraint(expr= 8*m.b689 + m.x779 == 0) m.c927 = Constraint(expr= 7*m.b690 + m.x780 == 0) m.c928 = Constraint(expr= 6*m.b691 + m.x781 == 0) m.c929 = Constraint(expr= 6*m.b692 + m.x782 == 0) m.c930 = Constraint(expr= 9*m.b693 + m.x783 == 0) m.c931 = Constraint(expr= 4*m.b694 + m.x784 == 0) m.c932 = Constraint(expr= 10*m.b695 + m.x785 == 0) m.c933 = Constraint(expr= 9*m.b696 + m.x786 == 0) m.c934 = Constraint(expr= 5*m.b697 + m.x787 == 0) m.c935 = Constraint(expr= 6*m.b698 + m.x788 == 0) m.c936 = Constraint(expr= 10*m.b699 + m.x789 == 0) m.c937 = Constraint(expr= 6*m.b700 + m.x790 == 0) m.c938 = Constraint(expr= 7*m.b701 + m.x791 == 0) m.c939 = Constraint(expr= 7*m.b702 + m.x792 == 0) m.c940 = Constraint(expr= 4*m.b703 + m.x793 == 0) m.c941 = Constraint(expr= 4*m.b704 + m.x794 == 0) m.c942 = Constraint(expr= 3*m.b705 + m.x795 == 0) m.c943 = Constraint(expr= 2*m.b706 + m.x796 == 0) m.c944 = Constraint(expr= 5*m.b707 + m.x797 == 0) m.c945 = Constraint(expr= 6*m.b708 + m.x798 == 0) m.c946 = Constraint(expr= 7*m.b709 + m.x799 == 0) m.c947 = Constraint(expr= 2*m.b710 + m.x800 == 0) m.c948 = Constraint(expr= 5*m.b711 + m.x801 == 0) m.c949 = Constraint(expr= 2*m.b712 + m.x802 == 0) m.c950 = Constraint(expr= 4*m.b713 + m.x803 == 0) m.c951 = Constraint(expr= 7*m.b714 + m.x804 == 0) m.c952 = Constraint(expr= 4*m.b715 + m.x805 == 0) m.c953 = Constraint(expr= 3*m.b716 + m.x806 == 0) m.c954 = Constraint(expr= 9*m.b717 + m.x807 == 0) m.c955 = Constraint(expr= 3*m.b718 + m.x808 == 0) m.c956 = Constraint(expr= 7*m.b719 + m.x809 == 0) m.c957 = Constraint(expr= 2*m.b720 + m.x810 == 0) m.c958 = Constraint(expr= 9*m.b721 + m.x811 == 0) m.c959 = Constraint(expr= 3*m.b722 + m.x812 == 0) m.c960 = Constraint(expr= m.b723 + m.x813 == 0) m.c961 = Constraint(expr= 9*m.b724 + m.x814 == 0) m.c962 = Constraint(expr= 2*m.b725 + m.x815 == 0) m.c963 = Constraint(expr= 6*m.b726 + m.x816 == 0) m.c964 = Constraint(expr= 3*m.b727 + m.x817 == 0) m.c965 = Constraint(expr= 4*m.b728 + m.x818 == 0) m.c966 = Constraint(expr= 8*m.b729 + m.x819 == 0) m.c967 = Constraint(expr= m.b730 + m.x820 == 0) m.c968 = Constraint(expr= 2*m.b731 + m.x821 == 0) m.c969 = Constraint(expr= 5*m.b732 + m.x822 == 0) m.c970 = Constraint(expr= 2*m.b733 + m.x823 == 0) m.c971 = Constraint(expr= 3*m.b734 + m.x824 == 0) m.c972 = Constraint(expr= 4*m.b735 + m.x825 == 0) m.c973 = Constraint(expr= 3*m.b736 + m.x826 == 0) m.c974 = Constraint(expr= 5*m.b737 + m.x827 == 0) m.c975 = Constraint(expr= 7*m.b738 + m.x828 == 0) m.c976 = Constraint(expr= 6*m.b739 + m.x829 == 0) m.c977 = Constraint(expr= 2*m.b740 + m.x830 == 0) m.c978 = Constraint(expr= 8*m.b741 + m.x831 == 0) m.c979 = Constraint(expr= 4*m.b742 + m.x832 == 0) m.c980 = Constraint(expr= m.b743 + m.x833 == 0) m.c981 = Constraint(expr= 4*m.b744 + m.x834 == 0) m.c982 = Constraint(expr= m.b745 + m.x835 == 0) m.c983 = Constraint(expr= 2*m.b746 + m.x836 == 0) m.c984 = Constraint(expr= 5*m.b747 + m.x837 == 0) m.c985 = Constraint(expr= 2*m.b748 + m.x838 == 0) m.c986 = Constraint(expr= 9*m.b749 + m.x839 == 0) m.c987 = Constraint(expr= 2*m.b750 + m.x840 == 0) m.c988 = Constraint(expr= 9*m.b751 + m.x841 == 0) m.c989 = Constraint(expr= 5*m.b752 + m.x842 == 0) m.c990 = Constraint(expr= 8*m.b753 + m.x843 == 0) m.c991 = Constraint(expr= 4*m.b754 + m.x844 == 0) m.c992 = Constraint(expr= 2*m.b755 + m.x845 == 0) m.c993 = Constraint(expr= 3*m.b756 + m.x846 == 0) m.c994 = Constraint(expr= 8*m.b757 + m.x847 == 0) m.c995 = Constraint(expr= 10*m.b758 + m.x848 == 0) m.c996 = Constraint(expr= 6*m.b759 + m.x849 == 0) m.c997 = Constraint(expr= 3*m.b760 + m.x850 == 0) m.c998 = Constraint(expr= 4*m.b761 + m.x851 == 0) m.c999 = Constraint(expr= 8*m.b762 + m.x852 == 0) m.c1000 = Constraint(expr= 7*m.b763 + m.x853 == 0) m.c1001 = Constraint(expr= 7*m.b764 + m.x854 == 0) m.c1002 = Constraint(expr= 3*m.b765 + m.x855 == 0) m.c1003 = Constraint(expr= 9*m.b766 + m.x856 == 0) m.c1004 = Constraint(expr= 4*m.b767 + m.x857 == 0) m.c1005 = Constraint(expr= 8*m.b768 + m.x858 == 0) m.c1006 = Constraint(expr= 6*m.b769 + m.x859 == 0) m.c1007 = Constraint(expr= 2*m.b770 + m.x860 == 0) m.c1008 = Constraint(expr= m.b771 + m.x861 == 0) m.c1009 = Constraint(expr= 3*m.b772 + m.x862 == 0) m.c1010 = Constraint(expr= 8*m.b773 + m.x863 == 0) m.c1011 = Constraint(expr= 3*m.b774 + m.x864 == 0) m.c1012 = Constraint(expr= 4*m.b775 + m.x865 == 0) m.c1013 = Constraint(expr= m.b596 - m.b597 <= 0) m.c1014 = Constraint(expr= m.b596 - m.b598 <= 0) m.c1015 = Constraint(expr= m.b597 - m.b598 <= 0) m.c1016 = Constraint(expr= m.b599 - m.b600 <= 0) m.c1017 = Constraint(expr= m.b599 - m.b601 <= 0) m.c1018 = Constraint(expr= m.b600 - m.b601 <= 0) m.c1019 = Constraint(expr= m.b602 - m.b603 <= 0) m.c1020 = Constraint(expr= m.b602 - m.b604 <= 0) m.c1021 = Constraint(expr= m.b603 - m.b604 <= 0) m.c1022 = Constraint(expr= m.b605 - m.b606 <= 0) m.c1023 = Constraint(expr= m.b605 - m.b607 <= 0) m.c1024 = Constraint(expr= m.b606 - m.b607 <= 0) m.c1025 = Constraint(expr= m.b608 - m.b609 <= 0) m.c1026 = Constraint(expr= m.b608 - m.b610 <= 0) m.c1027 = Constraint(expr= m.b609 - m.b610 <= 0) m.c1028 = Constraint(expr= m.b611 - m.b612 <= 0) m.c1029 = Constraint(expr= m.b611 - m.b613 <= 0) m.c1030 = Constraint(expr= m.b612 - m.b613 <= 0) m.c1031 = Constraint(expr= m.b614 - m.b615 <= 0) m.c1032 = Constraint(expr= m.b614 - m.b616 <= 0) m.c1033 = Constraint(expr= m.b615 - m.b616 <= 0) m.c1034 = Constraint(expr= m.b617 - m.b618 <= 0) m.c1035 = Constraint(expr= m.b617 - m.b619 <= 0) m.c1036 = Constraint(expr= m.b618 - m.b619 <= 0) m.c1037 = Constraint(expr= m.b620 - m.b621 <= 0) m.c1038 = Constraint(expr= m.b620 - m.b622 <= 0) m.c1039 = Constraint(expr= m.b621 - m.b622 <= 0) m.c1040 = Constraint(expr= m.b623 - m.b624 <= 0) m.c1041 = Constraint(expr= m.b623 - m.b625 <= 0) m.c1042 = Constraint(expr= m.b624 - m.b625 <= 0) m.c1043 = Constraint(expr= m.b626 - m.b627 <= 0) m.c1044 = Constraint(expr= m.b626 - m.b628 <= 0) m.c1045 = Constraint(expr= m.b627 - m.b628 <= 0) m.c1046 = Constraint(expr= m.b629 - m.b630 <= 0) m.c1047 = Constraint(expr= m.b629 - m.b631 <= 0) m.c1048 = Constraint(expr= m.b630 - m.b631 <= 0) m.c1049 = Constraint(expr= m.b632 - m.b633 <= 0) m.c1050 = Constraint(expr= m.b632 - m.b634 <= 0) m.c1051 = Constraint(expr= m.b633 - m.b634 <= 0) m.c1052 = Constraint(expr= m.b635 - m.b636 <= 0) m.c1053 = Constraint(expr= m.b635 - m.b637 <= 0) m.c1054 = Constraint(expr= m.b636 - m.b637 <= 0) m.c1055 = Constraint(expr= m.b638 - m.b639 <= 0) m.c1056 = Constraint(expr= m.b638 - m.b640 <= 0) m.c1057 = Constraint(expr= m.b639 - m.b640 <= 0) m.c1058 = Constraint(expr= m.b641 - m.b642 <= 0) m.c1059 = Constraint(expr= m.b641 - m.b643 <= 0) m.c1060 = Constraint(expr= m.b642 - m.b643 <= 0) m.c1061 = Constraint(expr= m.b644 - m.b645 <= 0) m.c1062 = Constraint(expr= m.b644 - m.b646 <= 0) m.c1063 = Constraint(expr= m.b645 - m.b646 <= 0) m.c1064 = Constraint(expr= m.b647 - m.b648 <= 0) m.c1065 = Constraint(expr= m.b647 - m.b649 <= 0) m.c1066 = Constraint(expr= m.b648 - m.b649 <= 0) m.c1067 = Constraint(expr= m.b650 - m.b651 <= 0) m.c1068 = Constraint(expr= m.b650 - m.b652 <= 0) m.c1069 = Constraint(expr= m.b651 - m.b652 <= 0) m.c1070 = Constraint(expr= m.b653 - m.b654 <= 0) m.c1071 = Constraint(expr= m.b653 - m.b655 <= 0) m.c1072 = Constraint(expr= m.b654 - m.b655 <= 0) m.c1073 = Constraint(expr= m.b656 - m.b657 <= 0) m.c1074 = Constraint(expr= m.b656 - m.b658 <= 0) m.c1075 = Constraint(expr= m.b657 - m.b658 <= 0) m.c1076 = Constraint(expr= m.b659 - m.b660 <= 0) m.c1077 = Constraint(expr= m.b659 - m.b661 <= 0) m.c1078 = Constraint(expr= m.b660 - m.b661 <= 0) m.c1079 = Constraint(expr= m.b662 - m.b663 <= 0) m.c1080 = Constraint(expr= m.b662 - m.b664 <= 0) m.c1081 = Constraint(expr= m.b663 - m.b664 <= 0) m.c1082 = Constraint(expr= m.b665 - m.b666 <= 0) m.c1083 = Constraint(expr= m.b665 - m.b667 <= 0) m.c1084 = Constraint(expr= m.b666 - m.b667 <= 0) m.c1085 = Constraint(expr= m.b668 - m.b669 <= 0) m.c1086 = Constraint(expr= m.b668 - m.b670 <= 0) m.c1087 = Constraint(expr= m.b669 - m.b670 <= 0) m.c1088 = Constraint(expr= m.b671 - m.b672 <= 0) m.c1089 = Constraint(expr= m.b671 - m.b673 <= 0) m.c1090 = Constraint(expr= m.b672 - m.b673 <= 0) m.c1091 = Constraint(expr= m.b674 - m.b675 <= 0) m.c1092 = Constraint(expr= m.b674 - m.b676 <= 0) m.c1093 = Constraint(expr= m.b675 - m.b676 <= 0) m.c1094 = Constraint(expr= m.b677 - m.b678 <= 0) m.c1095 = Constraint(expr= m.b677 - m.b679 <= 0) m.c1096 = Constraint(expr= m.b678 - m.b679 <= 0) m.c1097 = Constraint(expr= m.b680 - m.b681 <= 0) m.c1098 = Constraint(expr= m.b680 - m.b682 <= 0) m.c1099 = Constraint(expr= m.b681 - m.b682 <= 0) m.c1100 = Constraint(expr= m.b683 - m.b684 <= 0) m.c1101 = Constraint(expr= m.b683 - m.b685 <= 0) m.c1102 = Constraint(expr= m.b684 - m.b685 <= 0) m.c1103 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1104 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1105 = Constraint(expr= m.b686 + m.b687 <= 1) m.c1106 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1107 = Constraint(expr= m.b686 + m.b688 <= 1) m.c1108 = Constraint(expr= m.b687 + m.b688 <= 1) m.c1109 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1110 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1111 = Constraint(expr= m.b689 + m.b690 <= 1) m.c1112 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1113 = Constraint(expr= m.b689 + m.b691 <= 1) m.c1114 = Constraint(expr= m.b690 + m.b691 <= 1) m.c1115 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1116 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1117 = Constraint(expr= m.b692 + m.b693 <= 1) m.c1118 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1119 = Constraint(expr= m.b692 + m.b694 <= 1) m.c1120 = Constraint(expr= m.b693 + m.b694 <= 1) m.c1121 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1122 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1123 = Constraint(expr= m.b695 + m.b696 <= 1) m.c1124 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1125 = Constraint(expr= m.b695 + m.b697 <= 1) m.c1126 = Constraint(expr= m.b696 + m.b697 <= 1) m.c1127 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1128 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1129 = Constraint(expr= m.b698 + m.b699 <= 1) m.c1130 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1131 = Constraint(expr= m.b698 + m.b700 <= 1) m.c1132 = Constraint(expr= m.b699 + m.b700 <= 1) m.c1133 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1134 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1135 = Constraint(expr= m.b701 + m.b702 <= 1) m.c1136 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1137 = Constraint(expr= m.b701 + m.b703 <= 1) m.c1138 = Constraint(expr= m.b702 + m.b703 <= 1) m.c1139 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1140 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1141 = Constraint(expr= m.b704 + m.b705 <= 1) m.c1142 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1143 = Constraint(expr= m.b704 + m.b706 <= 1) m.c1144 = Constraint(expr= m.b705 + m.b706 <= 1) m.c1145 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1146 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1147 = Constraint(expr= m.b707 + m.b708 <= 1) m.c1148 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1149 = Constraint(expr= m.b707 + m.b709 <= 1) m.c1150 = Constraint(expr= m.b708 + m.b709 <= 1) m.c1151 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1152 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1153 = Constraint(expr= m.b710 + m.b711 <= 1) m.c1154 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1155 = Constraint(expr= m.b710 + m.b712 <= 1) m.c1156 = Constraint(expr= m.b711 + m.b712 <= 1) m.c1157 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1158 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1159 = Constraint(expr= m.b713 + m.b714 <= 1) m.c1160 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1161 = Constraint(expr= m.b713 + m.b715 <= 1) m.c1162 = Constraint(expr= m.b714 + m.b715 <= 1) m.c1163 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1164 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1165 = Constraint(expr= m.b716 + m.b717 <= 1) m.c1166 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1167 = Constraint(expr= m.b716 + m.b718 <= 1) m.c1168 = Constraint(expr= m.b717 + m.b718 <= 1) m.c1169 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1170 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1171 = Constraint(expr= m.b719 + m.b720 <= 1) m.c1172 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1173 = Constraint(expr= m.b719 + m.b721 <= 1) m.c1174 = Constraint(expr= m.b720 + m.b721 <= 1) m.c1175 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1176 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1177 = Constraint(expr= m.b722 + m.b723 <= 1) m.c1178 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1179 = Constraint(expr= m.b722 + m.b724 <= 1) m.c1180 = Constraint(expr= m.b723 + m.b724 <= 1) m.c1181 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1182 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1183 = Constraint(expr= m.b725 + m.b726 <= 1) m.c1184 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1185 = Constraint(expr= m.b725 + m.b727 <= 1) m.c1186 = Constraint(expr= m.b726 + m.b727 <= 1) m.c1187 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1188 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1189 = Constraint(expr= m.b728 + m.b729 <= 1) m.c1190 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1191 = Constraint(expr= m.b728 + m.b730 <= 1) m.c1192 = Constraint(expr= m.b729 + m.b730 <= 1) m.c1193 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1194 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1195 = Constraint(expr= m.b731 + m.b732 <= 1) m.c1196 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1197 = Constraint(expr= m.b731 + m.b733 <= 1) m.c1198 = Constraint(expr= m.b732 + m.b733 <= 1) m.c1199 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1200 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1201 = Constraint(expr= m.b734 + m.b735 <= 1) m.c1202 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1203 = Constraint(expr= m.b734 + m.b736 <= 1) m.c1204 = Constraint(expr= m.b735 + m.b736 <= 1) m.c1205 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1206 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1207 = Constraint(expr= m.b737 + m.b738 <= 1) m.c1208 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1209 = Constraint(expr= m.b737 + m.b739 <= 1) m.c1210 = Constraint(expr= m.b738 + m.b739 <= 1) m.c1211 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1212 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1213 = Constraint(expr= m.b740 + m.b741 <= 1) m.c1214 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1215 = Constraint(expr= m.b740 + m.b742 <= 1) m.c1216 = Constraint(expr= m.b741 + m.b742 <= 1) m.c1217 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1218 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1219 = Constraint(expr= m.b743 + m.b744 <= 1) m.c1220 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1221 = Constraint(expr= m.b743 + m.b745 <= 1) m.c1222 = Constraint(expr= m.b744 + m.b745 <= 1) m.c1223 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1224 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1225 = Constraint(expr= m.b746 + m.b747 <= 1) m.c1226 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1227 = Constraint(expr= m.b746 + m.b748 <= 1) m.c1228 = Constraint(expr= m.b747 + m.b748 <= 1) m.c1229 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1230 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1231 = Constraint(expr= m.b749 + m.b750 <= 1) m.c1232 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1233 = Constraint(expr= m.b749 + m.b751 <= 1) m.c1234 = Constraint(expr= m.b750 + m.b751 <= 1) m.c1235 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1236 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1237 = Constraint(expr= m.b752 + m.b753 <= 1) m.c1238 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1239 = Constraint(expr= m.b752 + m.b754 <= 1) m.c1240 = Constraint(expr= m.b753 + m.b754 <= 1) m.c1241 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1242 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1243 = Constraint(expr= m.b755 + m.b756 <= 1) m.c1244 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1245 = Constraint(expr= m.b755 + m.b757 <= 1) m.c1246 = Constraint(expr= m.b756 + m.b757 <= 1) m.c1247 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1248 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1249 = Constraint(expr= m.b758 + m.b759 <= 1) m.c1250 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1251 = Constraint(expr= m.b758 + m.b760 <= 1) m.c1252 = Constraint(expr= m.b759 + m.b760 <= 1) m.c1253 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1254 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1255 = Constraint(expr= m.b761 + m.b762 <= 1) m.c1256 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1257 = Constraint(expr= m.b761 + m.b763 <= 1) m.c1258 = Constraint(expr= m.b762 + m.b763 <= 1) m.c1259 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1260 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1261 = Constraint(expr= m.b764 + m.b765 <= 1) m.c1262 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1263 = Constraint(expr= m.b764 + m.b766 <= 1) m.c1264 = Constraint(expr= m.b765 + m.b766 <= 1) m.c1265 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1266 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1267 = Constraint(expr= m.b767 + m.b768 <= 1) m.c1268 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1269 = Constraint(expr= m.b767 + m.b769 <= 1) m.c1270 = Constraint(expr= m.b768 + m.b769 <= 1) m.c1271 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1272 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1273 = Constraint(expr= m.b770 + m.b771 <= 1) m.c1274 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1275 = Constraint(expr= m.b770 + m.b772 <= 1) m.c1276 = Constraint(expr= m.b771 + m.b772 <= 1) m.c1277 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1278 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1279 = Constraint(expr= m.b773 + m.b774 <= 1) m.c1280 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1281 = Constraint(expr= m.b773 + m.b775 <= 1) m.c1282 = Constraint(expr= m.b774 + m.b775 <= 1) m.c1283 = Constraint(expr= m.b596 - m.b686 <= 0) m.c1284 = Constraint(expr= - m.b596 + m.b597 - m.b687 <= 0) m.c1285 = Constraint(expr= - m.b596 - m.b597 + m.b598 - m.b688 <= 0) m.c1286 = Constraint(expr= m.b599 - m.b689 <= 0) m.c1287 = Constraint(expr= - m.b599 + m.b600 - m.b690 <= 0) m.c1288 = Constraint(expr= - m.b599 - m.b600 + m.b601 - m.b691 <= 0) m.c1289 = Constraint(expr= m.b602 - m.b692 <= 0) m.c1290 = Constraint(expr= - m.b602 + m.b603 - m.b693 <= 0) m.c1291 = Constraint(expr= - m.b602 - m.b603 + m.b604 - m.b694 <= 0) m.c1292 = Constraint(expr= m.b605 - m.b695 <= 0) m.c1293 = Constraint(expr= - m.b605 + m.b606 - m.b696 <= 0) m.c1294 = Constraint(expr= - m.b605 - m.b606 + m.b607 - m.b697 <= 0) m.c1295 = Constraint(expr= m.b608 - m.b698 <= 0) m.c1296 = Constraint(expr= - m.b608 + m.b609 - m.b699 <= 0) m.c1297 = Constraint(expr= - m.b608 - m.b609 + m.b610 - m.b700 <= 0) m.c1298 = Constraint(expr= m.b611 - m.b701 <= 0) m.c1299 = Constraint(expr= - m.b611 + m.b612 - m.b702 <= 0) m.c1300 = Constraint(expr= - m.b611 - m.b612 + m.b613 - m.b703 <= 0) m.c1301 = Constraint(expr= m.b614 - m.b704 <= 0) m.c1302 = Constraint(expr= - m.b614 + m.b615 - m.b705 <= 0) m.c1303 = Constraint(expr= - m.b614 - m.b615 + m.b616 - m.b706 <= 0) m.c1304 = Constraint(expr= m.b617 - m.b707 <= 0) m.c1305 = Constraint(expr= - m.b617 + m.b618 - m.b708 <= 0) m.c1306 = Constraint(expr= - m.b617 - m.b618 + m.b619 - m.b709 <= 0) m.c1307 = Constraint(expr= m.b620 - m.b710 <= 0) m.c1308 = Constraint(expr= - m.b620 + m.b621 - m.b711 <= 0) m.c1309 = Constraint(expr= - m.b620 - m.b621 + m.b622 - m.b712 <= 0) m.c1310 = Constraint(expr= m.b623 - m.b713 <= 0) m.c1311 = Constraint(expr= - m.b623 + m.b624 - m.b714 <= 0) m.c1312 = Constraint(expr= - m.b623 - m.b624 + m.b625 - m.b715 <= 0) m.c1313 = Constraint(expr= m.b626 - m.b716 <= 0) m.c1314 = Constraint(expr= - m.b626 + m.b627 - m.b717 <= 0) m.c1315 = Constraint(expr= - m.b626 - m.b627 + m.b628 - m.b718 <= 0) m.c1316 = Constraint(expr= m.b629 - m.b719 <= 0) m.c1317 = Constraint(expr= - m.b629 + m.b630 - m.b720 <= 0) m.c1318 = Constraint(expr= - m.b629 - m.b630 + m.b631 - m.b721 <= 0) m.c1319 = Constraint(expr= m.b632 - m.b722 <= 0) m.c1320 = Constraint(expr= - m.b632 + m.b633 - m.b723 <= 0) m.c1321 = Constraint(expr= - m.b632 - m.b633 + m.b634 - m.b724 <= 0) m.c1322 = Constraint(expr= m.b635 - m.b725 <= 0) m.c1323 = Constraint(expr= - m.b635 + m.b636 - m.b726 <= 0) m.c1324 = Constraint(expr= - m.b635 - m.b636 + m.b637 - m.b727 <= 0) m.c1325 = Constraint(expr= m.b638 - m.b728 <= 0) m.c1326 = Constraint(expr= - m.b638 + m.b639 - m.b729 <= 0) m.c1327 = Constraint(expr= - m.b638 - m.b639 + m.b640 - m.b730 <= 0) m.c1328 = Constraint(expr= m.b641 - m.b731 <= 0) m.c1329 = Constraint(expr= - m.b641 + m.b642 - m.b732 <= 0) m.c1330 = Constraint(expr= - m.b641 - m.b642 + m.b643 - m.b733 <= 0) m.c1331 = Constraint(expr= m.b644 - m.b734 <= 0) m.c1332 = Constraint(expr= - m.b644 + m.b645 - m.b735 <= 0) m.c1333 = Constraint(expr= - m.b644 - m.b645 + m.b646 - m.b736 <= 0) m.c1334 = Constraint(expr= m.b647 - m.b737 <= 0) m.c1335 = Constraint(expr= - m.b647 + m.b648 - m.b738 <= 0) m.c1336 = Constraint(expr= - m.b647 - m.b648 + m.b649 - m.b739 <= 0) m.c1337 = Constraint(expr= m.b650 - m.b740 <= 0) m.c1338 = Constraint(expr= - m.b650 + m.b651 - m.b741 <= 0) m.c1339 = Constraint(expr= - m.b650 - m.b651 + m.b652 - m.b742 <= 0) m.c1340 = Constraint(expr= m.b653 - m.b743 <= 0) m.c1341 = Constraint(expr= - m.b653 + m.b654 - m.b744 <= 0) m.c1342 = Constraint(expr= - m.b653 - m.b654 + m.b655 - m.b745 <= 0) m.c1343 = Constraint(expr= m.b656 - m.b746 <= 0) m.c1344 = Constraint(expr= - m.b656 + m.b657 - m.b747 <= 0) m.c1345 = Constraint(expr= - m.b656 - m.b657 + m.b658 - m.b748 <= 0) m.c1346 = Constraint(expr= m.b659 - m.b749 <= 0) m.c1347 = Constraint(expr= - m.b659 + m.b660 - m.b750 <= 0) m.c1348 = Constraint(expr= - m.b659 - m.b660 + m.b661 - m.b751 <= 0) m.c1349 = Constraint(expr= m.b662 - m.b752 <= 0) m.c1350 = Constraint(expr= - m.b662 + m.b663 - m.b753 <= 0) m.c1351 = Constraint(expr= - m.b662 - m.b663 + m.b664 - m.b754 <= 0) m.c1352 = Constraint(expr= m.b665 - m.b755 <= 0) m.c1353 = Constraint(expr= - m.b665 + m.b666 - m.b756 <= 0) m.c1354 = Constraint(expr= - m.b665 - m.b666 + m.b667 - m.b757 <= 0) m.c1355 = Constraint(expr= m.b668 - m.b758 <= 0) m.c1356 = Constraint(expr= - m.b668 + m.b669 - m.b759 <= 0) m.c1357 = Constraint(expr= - m.b668 - m.b669 + m.b670 - m.b760 <= 0) m.c1358 = Constraint(expr= m.b671 - m.b761 <= 0) m.c1359 = Constraint(expr= - m.b671 + m.b672 - m.b762 <= 0) m.c1360 = Constraint(expr= - m.b671 - m.b672 + m.b673 - m.b763 <= 0) m.c1361 = Constraint(expr= m.b674 - m.b764 <= 0) m.c1362 = Constraint(expr= - m.b674 + m.b675 - m.b765 <= 0) m.c1363 = Constraint(expr= - m.b674 - m.b675 + m.b676 - m.b766 <= 0) m.c1364 = Constraint(expr= m.b677 - m.b767 <= 0) m.c1365 = Constraint(expr= - m.b677 + m.b678 - m.b768 <= 0) m.c1366 = Constraint(expr= - m.b677 - m.b678 + m.b679 - m.b769 <= 0) m.c1367 = Constraint(expr= m.b680 - m.b770 <= 0) m.c1368 = Constraint(expr= - m.b680 + m.b681 - m.b771 <= 0) m.c1369 = Constraint(expr= - m.b680 - m.b681 + m.b682 - m.b772 <= 0) m.c1370 = Constraint(expr= m.b683 - m.b773 <= 0) m.c1371 = Constraint(expr= - m.b683 + m.b684 - m.b774 <= 0) m.c1372 = Constraint(expr= - m.b683 - m.b684 + m.b685 - m.b775 <= 0) m.c1373 = Constraint(expr= m.b596 + m.b599 == 1) m.c1374 = Constraint(expr= m.b597 + m.b600 == 1) m.c1375 = Constraint(expr= m.b598 + m.b601 == 1) m.c1376 = Constraint(expr= - m.b602 + m.b611 + m.b614 >= 0) m.c1377 = Constraint(expr= - m.b603 + m.b612 + m.b615 >= 0) m.c1378 = Constraint(expr= - m.b604 + m.b613 + m.b616 >= 0) m.c1379 = Constraint(expr= - m.b611 + m.b629 >= 0) m.c1380 = Constraint(expr= - m.b612 + m.b630 >= 0) m.c1381 = Constraint(expr= - m.b613 + m.b631 >= 0) m.c1382 = Constraint(expr= - m.b614 + m.b632 >= 0) m.c1383 = Constraint(expr= - m.b615 + m.b633 >= 0) m.c1384 = Constraint(expr= - m.b616 + m.b634 >= 0) m.c1385 = Constraint(expr= - m.b605 + m.b617 >= 0) m.c1386 = Constraint(expr= - m.b606 + m.b618 >= 0) m.c1387 = Constraint(expr= - m.b607 + m.b619 >= 0) m.c1388 = Constraint(expr= - m.b617 + m.b635 + m.b638 >= 0) m.c1389 = Constraint(expr= - m.b618 + m.b636 + m.b639 >= 0) m.c1390 = Constraint(expr= - m.b619 + m.b637 + m.b640 >= 0) m.c1391 = Constraint(expr= - m.b608 + m.b620 + m.b623 + m.b626 >= 0) m.c1392 = Constraint(expr= - m.b609 + m.b621 + m.b624 + m.b627 >= 0) m.c1393 = Constraint(expr= - m.b610 + m.b622 + m.b625 + m.b628 >= 0) m.c1394 = Constraint(expr= - m.b620 + m.b638 >= 0) m.c1395 = Constraint(expr= - m.b621 + m.b639 >= 0) m.c1396 = Constraint(expr= - m.b622 + m.b640 >= 0) m.c1397 = Constraint(expr= - m.b623 + m.b641 + m.b644 >= 0) m.c1398 = Constraint(expr= - m.b624 + m.b642 + m.b645 >= 0) m.c1399 = Constraint(expr= - m.b625 + m.b643 + m.b646 >= 0) m.c1400 = Constraint(expr= - m.b626 + m.b647 + m.b650 + m.b653 >= 0) m.c1401 = Constraint(expr= - m.b627 + m.b648 + m.b651 + m.b654 >= 0) m.c1402 = Constraint(expr= - m.b628 + m.b649 + m.b652 + m.b655 >= 0) m.c1403 = Constraint(expr= m.b596 + m.b599 - m.b602 >= 0) m.c1404 = Constraint(expr= m.b597 + m.b600 - m.b603 >= 0) m.c1405 = Constraint(expr= m.b598 + m.b601 - m.b604 >= 0) m.c1406 = Constraint(expr= m.b596 + m.b599 - m.b605 >= 0) m.c1407 = Constraint(expr= m.b597 + m.b600 - m.b606 >= 0) m.c1408 = Constraint(expr= m.b598 + m.b601 - m.b607 >= 0) m.c1409 = Constraint(expr= m.b596 + m.b599 - m.b608 >= 0) m.c1410 = Constraint(expr= m.b597 + m.b600 - m.b609 >= 0) m.c1411 = Constraint(expr= m.b598 + m.b601 - m.b610 >= 0) m.c1412 = Constraint(expr= m.b602 - m.b611 >= 0) m.c1413 = Constraint(expr= m.b603 - m.b612 >= 0) m.c1414 = Constraint(expr= m.b604 - m.b613 >= 0) m.c1415 = Constraint(expr= m.b602 - m.b614 >= 0) m.c1416 = Constraint(expr= m.b603 - m.b615 >= 0) m.c1417 = Constraint(expr= m.b604 - m.b616 >= 0) m.c1418 = Constraint(expr= m.b605 - m.b617 >= 0) m.c1419 = Constraint(expr= m.b606 - m.b618 >= 0) m.c1420 = Constraint(expr= m.b607 - m.b619 >= 0) m.c1421 = Constraint(expr= m.b608 - m.b620 >= 0) m.c1422 = Constraint(expr= m.b609 - m.b621 >= 0) m.c1423 = Constraint(expr= m.b610 - m.b622 >= 0) m.c1424 = Constraint(expr= m.b608 - m.b623 >= 0) m.c1425 = Constraint(expr= m.b609 - m.b624 >= 0) m.c1426 = Constraint(expr= m.b610 - m.b625 >= 0) m.c1427 = Constraint(expr= m.b608 - m.b626 >= 0) m.c1428 = Constraint(expr= m.b609 - m.b627 >= 0) m.c1429 = Constraint(expr= m.b610 - m.b628 >= 0) m.c1430 = Constraint(expr= m.b611 - m.b629 >= 0) m.c1431 = Constraint(expr= m.b612 - m.b630 >= 0) m.c1432 = Constraint(expr= m.b613 - m.b631 >= 0) m.c1433 = Constraint(expr= m.b614 - m.b632 >= 0) m.c1434 = Constraint(expr= m.b615 - m.b633 >= 0) m.c1435 = Constraint(expr= m.b616 - m.b634 >= 0) m.c1436 = Constraint(expr= m.b617 - m.b635 >= 0) m.c1437 = Constraint(expr= m.b618 - m.b636 >= 0) m.c1438 = Constraint(expr= m.b619 - m.b637 >= 0) m.c1439 = Constraint(expr= m.b617 - m.b638 >= 0) m.c1440 = Constraint(expr= m.b618 - m.b639 >= 0) m.c1441 = Constraint(expr= m.b619 - m.b640 >= 0) m.c1442 = Constraint(expr= m.b623 - m.b641 >= 0) m.c1443 = Constraint(expr= m.b624 - m.b642 >= 0) m.c1444 = Constraint(expr= m.b625 - m.b643 >= 0) m.c1445 = Constraint(expr= m.b623 - m.b644 >= 0) m.c1446 = Constraint(expr= m.b624 - m.b645 >= 0) m.c1447 = Constraint(expr= m.b625 - m.b646 >= 0) m.c1448 = Constraint(expr= m.b626 - m.b647 >= 0) m.c1449 = Constraint(expr= m.b627 - m.b648 >= 0) m.c1450 = Constraint(expr= m.b628 - m.b649 >= 0) m.c1451 = Constraint(expr= m.b626 - m.b650 >= 0) m.c1452 = Constraint(expr= m.b627 - m.b651 >= 0) m.c1453 = Constraint(expr= m.b628 - m.b652 >= 0) m.c1454 = Constraint(expr= m.b626 - m.b653 >= 0) m.c1455 = Constraint(expr= m.b627 - m.b654 >= 0) m.c1456 = Constraint(expr= m.b628 - m.b655 >= 0) m.c1457 = Constraint(expr= - m.b653 + m.b656 + m.b659 >= 0) m.c1458 = Constraint(expr= - m.b654 + m.b657 + m.b660 >= 0) m.c1459 = Constraint(expr= - m.b655 + m.b658 + m.b661 >= 0) m.c1460 = Constraint(expr= - m.b662 + m.b671 + m.b674 >= 0) m.c1461 = Constraint(expr= - m.b663 + m.b672 + m.b675 >= 0) m.c1462 = Constraint(expr= - m.b664 + m.b673 + m.b676 >= 0) m.c1463 = Constraint(expr= - m.b665 + m.b677 >= 0) m.c1464 = Constraint(expr= - m.b666 + m.b678 >= 0) m.c1465 = Constraint(expr= - m.b667 + m.b679 >= 0) m.c1466 = Constraint(expr= m.b653 - m.b656 >= 0) m.c1467 = Constraint(expr= m.b654 - m.b657 >= 0) m.c1468 = Constraint(expr= m.b655 - m.b658 >= 0) m.c1469 = Constraint(expr= m.b653 - m.b659 >= 0) m.c1470 = Constraint(expr= m.b654 - m.b660 >= 0) m.c1471 = Constraint(expr= m.b655 - m.b661 >= 0) m.c1472 = Constraint(expr= m.b662 - m.b671 >= 0) m.c1473 = Constraint(expr= m.b663 - m.b672 >= 0) m.c1474 = Constraint(expr= m.b664 - m.b673 >= 0) m.c1475 = Constraint(expr= m.b662 - m.b674 >= 0) m.c1476 = Constraint(expr= m.b663 - m.b675 >= 0) m.c1477 = Constraint(expr= m.b664 - m.b676 >= 0) m.c1478 = Constraint(expr= m.b665 - m.b677 >= 0) m.c1479 = Constraint(expr= m.b666 - m.b678 >= 0) m.c1480 = Constraint(expr= m.b667 - m.b679 >= 0) m.c1481 = Constraint(expr= m.b668 - m.b680 >= 0) m.c1482 = Constraint(expr= m.b669 - m.b681 >= 0) m.c1483 = Constraint(expr= m.b670 - m.b682 >= 0) m.c1484 = Constraint(expr= m.b668 - m.b683 >= 0) m.c1485 = Constraint(expr= m.b669 - m.b684 >= 0) m.c1486 = Constraint(expr= m.b670 - m.b685 >= 0)
StarcoderdataPython
3523684
<filename>justree/bfs.py from collections import deque from typing import Iterable, List, Tuple, Deque, Optional, Union from .tools import reversed_enumerate, T from .tree_node import TreeNode def non_recursive_tree_bfs_forward_original(self: T) -> Iterable[T]: assert isinstance(self, TreeNode) q: Deque[TreeNode] = deque([self]) while q: t = q.popleft() q.extend(t._children) yield t def non_recursive_tree_bfs_forward_mirror(self: T) -> Iterable[T]: assert isinstance(self, TreeNode) q: Deque[TreeNode] = deque([self]) while q: t = q.popleft() q.extend(reversed(t._children)) yield t def non_recursive_tree_bfs_reverse_original(self: T) -> List[T]: assert isinstance(self, TreeNode) q: Deque[TreeNode] = deque([self]) r: List[TreeNode] = [self] while q: t = q.popleft() q.extend(t._children) r.extend(t._children) r.reverse() return r def non_recursive_tree_bfs_reverse_mirror(self: T) -> List[T]: assert isinstance(self, TreeNode) q: Deque[TreeNode] = deque([self]) r: List[TreeNode] = [self] while q: t = q.popleft() q.extend(reversed(t._children)) r.extend(reversed(t._children)) r.reverse() return r _Int = Union[int, float] def bfs_ex_preparation(depth: Optional[_Int]) -> _Int: return float('inf') if depth is None else depth def non_recursive_tree_bfs_forward_original_ex(self: T, depth: Optional[_Int] = None) \ -> Iterable[Tuple[T, int, Tuple[int, ...]]]: assert isinstance(self, TreeNode) depth = bfs_ex_preparation(depth) q: Deque[Tuple[TreeNode, int, Tuple[int, ...]]] = deque([(self, 1, ())]) while q: t, d, i = q.popleft() if d < depth: q.extend((ct, d + 1, i + (ci,)) for ci, ct in enumerate(t._children)) yield t, d, i def non_recursive_tree_bfs_forward_mirror_ex(self: T, depth: Optional[_Int] = None) \ -> Iterable[Tuple[T, int, Tuple[int, ...]]]: assert isinstance(self, TreeNode) depth = bfs_ex_preparation(depth) q: Deque[Tuple[TreeNode, int, Tuple[int, ...]]] = deque([(self, 1, ())]) while q: t, d, i = q.popleft() if d < depth: q.extend((ct, d + 1, i + (ci,)) for ci, ct in reversed_enumerate(t._children)) yield t, d, i def non_recursive_tree_bfs_reverse_original_ex(self: T, depth: Optional[_Int] = None) \ -> List[Tuple[T, int, Tuple[int, ...]]]: assert isinstance(self, TreeNode) depth = bfs_ex_preparation(depth) q: Deque[Tuple[TreeNode, int, Tuple[int, ...]]] = deque([(self, 1, ())]) r: List[Tuple[TreeNode, int, Tuple[int, ...]]] = [(self, 1, ())] while q: t, d, i = q.popleft() if d < depth: q.extend((ct, d + 1, i + (ci,)) for ci, ct in enumerate(t._children)) r.extend((ct, d + 1, i + (ci,)) for ci, ct in enumerate(t._children)) r.reverse() return r def non_recursive_tree_bfs_reverse_mirror_ex(self: T, depth: Optional[_Int] = None) \ -> List[Tuple[T, int, Tuple[int, ...]]]: assert isinstance(self, TreeNode) depth = bfs_ex_preparation(depth) q: Deque[Tuple[TreeNode, int, Tuple[int, ...]]] = deque([(self, 1, ())]) r: List[Tuple[TreeNode, int, Tuple[int, ...]]] = [(self, 1, ())] while q: t, d, i = q.popleft() if d < depth: q.extend((ct, d + 1, i + (ci,)) for ci, ct in reversed_enumerate(t._children)) r.extend((ct, d + 1, i + (ci,)) for ci, ct in reversed_enumerate(t._children)) r.reverse() return r
StarcoderdataPython
12839846
# -*- coding: utf-8 -*- """Test functions that get data.""" import os import unittest from bio2bel_uniprot import get_mappings_df HERE = os.path.abspath(os.path.dirname(__file__)) URL = os.path.join(HERE, 'test.tsv') class TestGet(unittest.TestCase): """Test getting data.""" def test_get_mappings(self): """Test getting the full mappings file.""" df = get_mappings_df(url=URL) self.assertEqual(6, len(df.index))
StarcoderdataPython
3293728
from hattori.base import BaseAnonymizer, faker from users.models import User class UserAnonimizer(BaseAnonymizer): model = User attributes = [ ('first_name', faker.first_name), ('last_name', faker.last_name), ('email', faker.email), ('username', faker.ssn), ] def run(self, *args, **kwargs): result = super().run(*args, **kwargs) self.set_simple_password_for_all_remaining_users() return result def get_query_set(self): return User.objects.filter(is_staff=False) def set_simple_password_for_all_remaining_users(self): print('Setting password «<PASSWORD>» to all staff users:', end=' ') # noqa T001 updated = list() for user in User.objects.exclude(pk__in=self.get_query_set().values_list('pk')): user.set_password('<PASSWORD>') user.save() updated.append(user.username) print(', '.join(updated)) # noqa T001
StarcoderdataPython
11373166
<reponame>robashaw/basisopt from basisopt import bse_wrapper as bsew import basis_set_exchange as bse from tests.data import shells as shell_data import pytest def test_make_bse_shell(): internal_vdz = shell_data.get_vdz_internal() vdz_h = internal_vdz['h'] bse_s_shell = bsew.make_bse_shell(vdz_h[0]) assert bse_s_shell['angular_momentum'][0] == 0 assert len(bse_s_shell['exponents']) == shell_data._nsexp assert len(bse_s_shell['coefficients']) == shell_data._nsfuncs def test_make_internal_shell(): bse_vdz = bse.get_basis('cc-pvdz', ['H'])['elements']['1'] internal_s_shell = bsew.make_internal_shell(bse_vdz['electron_shells'][0]) assert internal_s_shell.l == 's' assert len(internal_s_shell.exps) == shell_data._nsexp assert len(internal_s_shell.coefs) == shell_data._nsfuncs def test_fetch_basis(): internal_vdz_ref = shell_data.get_vdz_internal() internal_vdz_fetch = bsew.fetch_basis('cc-pvdz', ['H']) assert 'h' in internal_vdz_fetch.keys() h_ref = internal_vdz_ref['h'] h_fetch = internal_vdz_fetch['h'] assert len(h_ref) == len(h_fetch) for s1, s2 in zip(h_ref, h_fetch): assert shell_data.shells_are_equal(s1, s2)
StarcoderdataPython
8100085
# --------------------------------------------------------------------------------------------------------------------- # lfsr_template.py # --------------------------------------------------------------------------------------------------------------------- # Generate Verilog LFSR module and testbench # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- # More Imports # --------------------------------------------------------------------------------------------------------------------- from argparse import ArgumentParser, Namespace from lfsr_helper import FeedbackModeEnum, ResetTypeEnum, LFSR_Formatter, LFSR_Params # --------------------------------------------------------------------------------------------------------------------- class Defaults: FeedbackMode = FeedbackModeEnum.Fibonacci InitValue = "0x1" ResetType = ResetTypeEnum.SyncHigh ModuleName = 'lfsr' # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- def parse_args() -> Namespace: # create parser parser = ArgumentParser(description="Generate Verilog LFSR module and testbench") # configure feedback_mode feedback_mode_parent = parser.add_argument_group('Feedback mode selection', 'default is %s' % Defaults.FeedbackMode.value) feedback_mode_group = feedback_mode_parent.add_mutually_exclusive_group() feedback_mode_group.add_argument('-f', '--fibonacci', action='store_const', const=FeedbackModeEnum.Fibonacci, dest='feedback_mode', help="Generate Fibonacci LFSR") feedback_mode_group.add_argument('-g', '--galois', action='store_const', const=FeedbackModeEnum.Galois, dest='feedback_mode', help="Generate Galois LFSR") parser.set_defaults(feedback_mode=Defaults.FeedbackMode) # configure init_mode init_mode_parent = parser.add_argument_group('Initial value selection', 'default is %s' % Defaults.InitValue) init_mode_group = init_mode_parent.add_mutually_exclusive_group() init_mode_group.add_argument("-i", "--init-value", default=Defaults.InitValue, help="Initial value of LFSR shift register (specify as hex number," " can also be random, see below)") init_mode_group.add_argument("-j", "--init-random", action='store_true', help="Generate random initial value") # configure reset_type parser.add_argument("-r", "--reset-type", default=Defaults.ResetType.value, choices=[rst.value for rst in ResetTypeEnum], help="Type of reset to use (default is '%s')" % Defaults.ResetType.value) # configure other arguments parser.add_argument("-p", "--poly", default=None, help="Feedback polynomial to use (specify as hex number, default is to generate a random one)") parser.add_argument("-m", "--module-name", default=None, help="Name of module to generate (default is '%s<width>')" % Defaults.ModuleName) parser.add_argument("-c", "--clock-enable", action='store_true', help="Add clock enable port (default is no clock enable)") parser.add_argument("-v", "--verbose", action='store_true', help="Be verbose and print internal operation details") # configure width parser.add_argument('width', type=int, help="Width of LFSR in bits") # TODO: Add argument to decide what to generate. Default is both targets, but someone might need just the module # itself or only the testbench (why?) # TODO: Add argument to print what was generated instead of always writing to files. # TODO: Consider refusing to overwrite already existing output files. Maybe add an argument to force overwrite. # parse command line return parser.parse_args() # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- def main() -> None: # create lfsr generator instance lfsr = LFSR_Formatter() # parse arguments and turn them into parameters args = parse_args() params = LFSR_Params(args, Defaults.ModuleName) # generate and save output products (module and testbench) for output in lfsr.OutputEnum: verilog = lfsr.generate_output(output, params) lfsr.write_output(output, verilog, params) # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- if __name__ == "__main__": main() # --------------------------------------------------------------------------------------------------------------------- # --------------------------------------------------------------------------------------------------------------------- # End of File # ---------------------------------------------------------------------------------------------------------------------
StarcoderdataPython
1670956
<filename>py_hawkesn_sir/py_hawkesn_sir/hawkesn_seir_sympy.py # from scipy.optimize import fmin_l_bfgs_b import numpy as np import matplotlib.pyplot as plt from sympy import derive_by_array, exp, lambdify, log, Piecewise, symbols class HawkesN: def __init__(self, history): """ Parameters ---------- history : sympy.Array Array containing the observed event times in ascending order. """ self.his = history def exp_intensity_sigma_neq_gamma(self, sum_less_equal=True): """ Calculate the (exponential) intensity of a (SEIR-)HawkesN process symbolically. Parameters ---------- sum_less_equal : bool, default: True If True, we sum over all event times <= time t. Otherwise, we sum over all event times < time t. Returns ------- exp_intensity_ : sympy.core.mul.Mul A sympy expression containing the symbols beta, sigma, gamma, n, and t. """ beta, sigma, gamma, n, t = symbols("beta sigma gamma n t") events_until_t = sum( [Piecewise((1, h <= t), (0, True)) for h in self.his] ) return (1 - events_until_t / n) * (beta * sigma / (gamma-sigma)) * sum( [Piecewise( ( exp(-sigma * (t - h)) - exp(-gamma * (t - h)), h <= t if sum_less_equal else h < t ), (0, True) ) for h in self.his]) def exp_intensity_sigma_eq_gamma(self, sum_less_equal=True): """ Calculate the (exponential) intensity of a (SEIR-)HawkesN process symbolically. Parameters ---------- sum_less_equal : bool, default: True If True, we sum over all event times <= time t. Otherwise, we sum over all event times < time t. Returns ------- exp_intensity_ : sympy.core.mul.Mul A sympy expression containing the symbols beta, gamma, n, and t. The symbol sigma is not contained as sigma=gamma holds in the case considered by this function. """ beta, gamma, n, t = symbols("beta gamma n t") events_until_t = sum( [Piecewise((1, h <= t), (0, True)) for h in self.his] ) return (1 - events_until_t / n) * beta * gamma * sum( [Piecewise( ( (t - h) * exp(-gamma * (t - h)), h <= t if sum_less_equal else h < t ), (0, True) ) for h in self.his]) def plot_exp_intensity(self, t_max, beta, sigma, gamma, n, step=0.01, width=5.51, height=4, n_xticks=6, fname=None, sum_less_equal=True): """ Plot (or save the plot of) the exponential intensity function from t=0 until t=t_max. Parameters ---------- t_max : float Define the time horizon of the plot. The time axis will contain values from 0 to t_max. beta : float Parameter beta of the SEIR model. sigma : float or None Parameter sigma of the SEIR model. If None, then sigma=gamma is assumed. gamma : float Parameter gamma of the SEIR model. n : int Population size. step : float, default: 0.01 Interval on the x-axis between two successive points. width : float, default: 5.51 Width of the plot. height : float, default: 4.0 Height of the plot. n_xticks : int (must be non-negative) Number of ticks on the time axis. fname : str or None Name (without extension) of the file the plot is saved to. If `None`, the plot is not saved. sum_less_equal : bool This arg is used in :meth:`self.exp_intensity`. """ if sigma is None: sigma = gamma subs_list = [("beta", beta), ("sigma", sigma), ("gamma", gamma), ("n", n)] if sigma == gamma: exp_intensity = self.exp_intensity_sigma_eq_gamma( sum_less_equal=sum_less_equal).subs(subs_list) else: exp_intensity = self.exp_intensity_sigma_neq_gamma( sum_less_equal=sum_less_equal).subs(subs_list) exp_intensity = lambdify("t", exp_intensity) time = np.arange(0, t_max, step) plt.figure(dpi=300, figsize=(width, height)) plt.plot(time, exp_intensity(time)) plt.xlabel("$t$") plt.xlim(0, t_max) plt.xticks(np.linspace(0, t_max, n_xticks)) plt.ylabel("Intensity") plt.grid() title = "Intensity of a HawkesN process" if self.his is not None and beta is not None and sigma is not None \ and gamma is not None and n is not None: title += " with event history \{" \ + ",".join(str(i) for i in self.his[:4]) \ + (", ..." if len(self.his) > 4 else "") \ + "\} \nand parameters: beta=" + str(beta) \ + ", sigma=" + str(sigma) + ", gamma=" + str(gamma) \ + ", $N$=" + str(n) title += "." plt.title(title) if fname is not None: plt.savefig(fname + ".pdf") def llf_sigma_neq_gamma(self, sum_less_equal=True): """ Parameters ---------- sum_less_equal : bool, default: True This arg is used in :meth:`self.exp_intensity_sigma_neq_gamma`. Returns ------- llf : sympy.core.add.Add The log-likelihood function as symbolic expression (containing the symbols `beta`, `sigma`, `gamma`, and `n`). """ beta, sigma, gamma, n = symbols("beta sigma gamma n") intensity = self.exp_intensity_sigma_neq_gamma(sum_less_equal) # for h in self.his: # print("intensity at", h, "is:", intensity.subs("t", h)) first_event = len(self.his) - sum(1 for t in self.his if t > 0) his_pos = self.his[first_event:] addend_sum = sum(log(intensity.subs("t", h)) for h in his_pos) # print("SUM PART", addend_sum.subs([("scale", .5), ("decay", .5), ("n", 100)])) addend_int = (beta * sigma / (gamma-sigma)) * sum( (n - (i + 1)) / n * ( ( exp(-sigma * (self.his[i] - self.his[j])) - exp(-sigma * (self.his[i + 1] - self.his[j])) ) / sigma - ( exp(-gamma * (self.his[i] - self.his[j])) - exp(-gamma * (self.his[i + 1] - self.his[j])) ) / gamma ) for i in range(len(self.his)-1) for j in range(i+1)) # print("INT PART", addend_int.subs([("scale", .5), ("decay", .5), ("n", 100)])) return addend_sum - addend_int def llf_sigma_eq_gamma(self, sum_less_equal=True): """ Parameters ---------- sum_less_equal : bool, default: True This arg is used in :meth:`self.exp_intensity_sigma_eq_gamma`. Returns ------- llf : sympy.core.add.Add The log-likelihood function as symbolic expression (containing the symbols `beta`, `sigma`, `gamma`, and `n`). """ beta, gamma, n = symbols("beta gamma n") intensity = self.exp_intensity_sigma_eq_gamma(sum_less_equal) # for h in self.his: # print("intensity at", h, "is:", intensity.subs("t", h)) first_event = len(self.his) - sum(1 for t in self.his if t > 0) his_pos = self.his[first_event:] addend_sum = sum(log(intensity.subs("t", h)) for h in his_pos) # print("SUM PART", addend_sum.subs([("scale", .5), ("decay", .5), ("n", 100)])) addend_int = beta * sum( (n - (i + 1)) / n * ( ( exp(-gamma * (self.his[i] - self.his[j])) * (gamma * (self.his[i] - self.his[j]) + 1) - exp(-gamma * (self.his[i + 1] - self.his[j])) * (gamma * (self.his[i + 1] - self.his[j]) + 1) ) / gamma ) for i in range(len(self.his)-1) for j in range(i+1)) # print("INT PART", addend_int.subs([("scale", .5), ("decay", .5), ("n", 100)])) return addend_sum - addend_int def llf_gradient_sigma_neq_gamma(self, sum_less_equal=True): """ Calculate the gradient of the log-likelihood function symbolically. Parameters ---------- sum_less_equal : bool, default: True This arg is passed to :meth:`self.llf_sigma_eq_gamma`. Returns ------- gradient : sympy.Array An array containing four entries. The first (second) [third] {fourth} entry is the derivative of the log-likelihood function w.r.t. beta (sigma) [gamma] {N} parameter. """ beta, sigma, gamma, n = symbols("beta sigma gamma n") return derive_by_array( self.llf_sigma_neq_gamma(sum_less_equal), [beta, sigma, gamma, n] ) def llf_gradient_sigma_eq_gamma(self, sum_less_equal=True): """ Calculate the gradient of the log-likelihood function symbolically. Parameters ---------- sum_less_equal : bool, default: True This arg is passed to :meth:`self.llf_sigma_eq_gamma`. Returns ------- gradient : sympy.Array An array containing four entries. The first [second] {third} entry is the derivative of the log-likelihood function w.r.t. beta [gamma] {N} parameter. There is no derivative w.r.t. sigma as it is considered equal to gamma in the case considered by this function. """ beta, gamma, n = symbols("beta gamma n") return derive_by_array( self.llf_sigma_eq_gamma(sum_less_equal), [beta, gamma, n] ) # def fit(self, scale_start, decay_start, n_start): # """ # Parameters # ---------- # scale_start : float # Starting value for the likelihood maximization. # decay_start : float # Starting value for the likelihood maximization. # n_start : float # Starting value for the likelihood maximization. # # Returns # ------- # ... # """ # llf_sym = self.llf() # llf_grad_sym = self.llf_gradient() # def negative_llf(scale_decay_n): # """ # Parameters # ---------- # scale_decay_n : np.array (shape (3)) # Values for the scale and decay parameter and the parameter N # a single array. # # Returns # ------- # neg_llf : float # The negative log-likelihood. # """ # result = llf_sym.subs([("scale", scale_decay_n[0]), # ("decay", scale_decay_n[1]), # ("n", scale_decay_n[2])]) # print("llf", result) # return result # # def negative_llf_gradient(scale_decay_n): # result = -llf_grad_sym.subs([("scale", scale_decay_n[0]), # ("decay", scale_decay_n[1]), # ("n", scale_decay_n[2])]) # print("-grad:", result) # return np.array(result, dtype=np.float64) # # eps = np.finfo(float).eps # # return fmin_l_bfgs_b( # func=negative_llf, # minimize this # x0=np.array([scale_start, decay_start, n_start]), # initial guess # fprime=negative_llf_gradient, # bounds=[(eps, None), (eps, None), (len(self.his), None)], # iprint=101 # )
StarcoderdataPython
8183585
""" MIT License Copyright (c) 2018 <NAME> Institute of Molecular Physiology Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import pytest import pandas as pd import numpy as np from .. import star OUTPUT_TEST_FOLDER = 'OUTPUT_TESTS_DUMP' class TestStarHeader: def test_create_star_header_four_list(self): """ """ header_names = [ 'Test1', 'Test2', 'Test3', 'Test4', ] expected_output = [ '', 'data_', '', 'loop_', '_rlnTest1 #1', '_rlnTest2 #2', '_rlnTest3 #3', '_rlnTest4 #4', ] assert star.create_star_header(names=header_names, prefix='rln') == expected_output def test_create_star_header_four_array(self): """ """ header_names = np.array([ 'Test1', 'Test2', 'Test3', 'Test4', ], dtype=str) expected_output = [ '', 'data_', '', 'loop_', '_rlnTest1 #1', '_rlnTest2 #2', '_rlnTest3 #3', '_rlnTest4 #4', ] assert star.create_star_header(names=header_names, prefix='rln') == expected_output def test_create_star_header_single_list(self): """ """ header_names = [ 'Test1', ] expected_output = [ '', 'data_', '', 'loop_', '_rlnTest1 #1', ] assert star.create_star_header(names=header_names, prefix='rln') == expected_output def test_create_star_header_single_array(self): """ """ header_names = np.array([ 'Test1', ], dtype=str) expected_output = [ '', 'data_', '', 'loop_', '_rlnTest1 #1', ] assert star.create_star_header(names=header_names, prefix='rln') == expected_output class TestDumpStar: def test_dump_star_four(self, tmpdir): """ """ data_1 = np.arange(4) data_2 = ['a', 'b', 'c', 'd'] data_3 = np.array(np.arange(4), dtype=float) data_4 = [1]*4 data = pd.DataFrame({ 'MicrographName': data_1, 'ImageName': data_2, 'CoordinateX': data_3, 'CoordinateY': data_4, }) data_output = pd.DataFrame({ 'MicrographName': data_1, 'ImageName': data_2, 'CoordinateX': data_3, 'CoordinateY': data_4, }) output_file: str = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_dump_star_four.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star(file_name=output_file).equals(data_output) def test_dump_star_single(self, tmpdir): """ """ data_1 = np.arange(4) data = pd.DataFrame({ 'CoordinateX': data_1, }) data_output = pd.DataFrame({ 'CoordinateX': data_1, }) output_file: str = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_dump_star_single.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star(file_name=output_file).equals(data_output) def test_dump_star_single_empty(self, tmpdir): """ """ data = pd.DataFrame({ }) output_file: str = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_dump_star_single_empty.star') with pytest.raises(AssertionError): star.dump_star(file_name=output_file, data=data, version='relion_2') class TestLoadStarHeader: def test_load_star_header_single(self, tmpdir): data_1 = np.arange(4) data = pd.DataFrame({ 'MicrographName': data_1, }) data_output = ['_rlnMicrographName'] output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_header_single.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star_header(file_name=output_file) == (data_output, 5) def test_load_star_header_four(self, tmpdir): data_1 = np.arange(4) data_2 = ['a', 'b', 'c', 'd'] data_3 = np.array(np.arange(4), dtype=float) data_4 = [1]*4 data = pd.DataFrame({ 'MicrographName': data_1, 'ImageName': data_2, 'CoordinateX': data_3, 'CoordinateY': data_4, }) output_header = [ '_rlnMicrographName', '_rlnImageName', '_rlnCoordinateX', '_rlnCoordinateY', ] output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_header_four.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star_header(file_name=output_file) == (output_header, 8) def test_load_star_header_four_wrong_export(self, tmpdir): data_1 = np.arange(4) data_2 = ['a', 'b', 'c', 'd'] data_3 = np.array(np.arange(4), dtype=float) data_4 = [1]*4 data = pd.DataFrame({ 'MicrographName': data_1, 'ImageName': data_2, 'CoordinateX': data_3, 'SgdNextSubset': data_4, }) output_header = [ '_rlnMicrographName', '_rlnImageName', '_rlnCoordinateX', ] output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_header_four_wrong_export.star') star.dump_star(file_name=output_file, data=data, version='relion_3') assert star.load_star_header(file_name=output_file) == (output_header, 7) class TestLoadStar: def test_load_star_single(self, tmpdir): data_1 = np.arange(4) data = pd.DataFrame({ 'MicrographName': data_1, }) output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_single.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star(file_name=output_file).equals(data) def test_load_star_four(self, tmpdir): data_1 = np.arange(4) data_2 = ['a', 'b', 'c', 'd'] data_3 = np.array(np.arange(4), dtype=float) data_4 = [1]*4 data = pd.DataFrame({ 'MicrographName': data_1, 'ImageName': data_2, 'CoordinateX': data_3, 'CoordinateY': data_4, }) output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_four.star') star.dump_star(file_name=output_file, data=data, version='relion_2') assert star.load_star(file_name=output_file).equals(data) def test_load_star_single_empty(self, tmpdir): """ """ output_file = tmpdir.mkdir(OUTPUT_TEST_FOLDER).join('test_load_star_single_empty.star') with open(output_file, 'w'): pass with pytest.raises(IOError): star.load_star(file_name=output_file) class TestImportStarHeader: def test_MicrographName_outputs_MicrographName(self): """ """ out_dict = star.import_star_header(['_rlnMicrographName']) assert ['MicrographName'] == out_dict def test_SgdSkipAnneal_outputs_SgdSkipAnneal(self): """ """ out_dict = star.import_star_header(['_rlnSgdSkipAnneal']) assert ['SgdSkipAnneal'] == out_dict def test_SgdNextSubset_outputs_SgdNextSubset(self): """ """ out_dict = star.import_star_header(['_rlnSgdNextSubset']) assert ['SgdNextSubset'] == out_dict def test_testii_raises_AssertionError(self): """ """ with pytest.raises(AssertionError): star.import_star_header(['testii']) def test_empty_header_raises_AssertionError(self): """ """ with pytest.raises(AssertionError): star.import_star_header([]) class TestExportStarHeader: def test_input_relion2_outputs_relion2_correct_out_header(self): out_header, _, _ = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_2', ) assert ['MicrographName', 'SgdNextSubset'] == out_header def test_input_relion2_outputs_relion2_correct_old_header(self): _, old_header, _ = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_2' ) assert ['MicrographName', 'SgdNextSubset'] == old_header def test_input_relion2_outputs_relion2_correct_prefix(self): _, _, prefix = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_2' ) assert 'rln' == prefix def test_input_relion2_outputs_relion3_correct_out_header(self): out_header, _, _ = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_3' ) assert ['MicrographName'] == out_header def test_input_relion2_outputs_relion3_correct_old_header(self): _, old_header, _ = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_3' ) assert ['MicrographName'] == old_header def test_input_relion2_outputs_relion3_correct_prefix(self): _, _, prefix = star.export_star_header( ['MicrographName', 'SgdNextSubset'], version='relion_3' ) assert 'rln' == prefix
StarcoderdataPython
1900081
# -*- coding: UTF-8 -*- import sys import os dir_path = os.path.dirname(os.path.realpath(__file__)) parent_dir_path = os.path.abspath(os.path.join(dir_path, os.pardir)) sys.path.insert(0, parent_dir_path) from db.SaUsersDB import dbUsersHelper """ Set synology nas host ip and port to database """ def SetNasHostIPPort(ip,port): duh = dbUsersHelper() duh.setNasHostIPPort(ip,port) if __name__ == "__main__": if len(sys.argv[1:])>=2: SetNasHostIPPort(sys.argv[1],sys.argv[2])
StarcoderdataPython
5079311
<gh_stars>0 from ctypes import * import time msvcrt = cdll.msvcrt counter = 0 while 1: msvcrt.printf("Loop iteration %d!\n" % counter) time.sleep(2) counter += 1
StarcoderdataPython
8177402
<gh_stars>1-10 #!/usr/bin/env python from http.client import HTTPConnection import json import re def parse_args(parts): (typ, req) = ({}, set()) for i in range(2, len(parts), 2): arg = re.sub(r'\W', '', parts[i+1]) typ[arg] = parts[i] if arg == parts[i+1]: req.add(arg) return (typ, req) def validate_typ(nam, val, typ): if str(type(val)).find(typ) < 0: raise TypeError('%s=%s (%s), but expected %s!' % (nam, str(val), type(val), typ)) def validate_args(args, typ, req): for k, v in args.items(): validate_typ(k, v, typ.get(k)) for k in req: if k not in args: raise ValueError('%s is required!' % k) class ClientStub: def __init__(self, sign, addr=('127.0.0.1', 1992), serv=''): self.sign = re.sub(r'\s+', ' ', sign).strip() parts = re.sub(r'[^\w\[\]]+', ' ', self.sign).strip().split(' ') (self.retn_typ, self.name) = parts[0:2] (self.args_typ, self.args_req) = parse_args(parts) (self.addr, self.serv) = (addr, serv) def path(self): if self.serv is None or len(self.serv) == 0: return '/'+self.name return '/'+self.serv+'/'+self.name def call_post(self, args): (host, port) = self.addr conn = HTTPConnection(host, port) conn.request('POST', self.path(), body=json.dumps(args)) resp = conn.getresponse() data = json.loads(resp.read()) if 'error' in data: raise Exception(data['error']) return data['return'] def call(self, args): validate_args(args, self.args_typ, self.args_req) retn = self.call_post(args) validate_typ('return', retn, self.retn_typ) return retn # a = ClientStub('int test(int a, int b)') # r = a.call({'a': 1, 'b': 2}) # print(r)
StarcoderdataPython
1832243
<reponame>jorgemauricio/proyectoCaborca #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Jul 17 16:17:25 2017 @author: jorgemauricio """ # librerías import os import urllib.request import time from time import gmtime, strftime import matplotlib.pyplot as plt from mpl_toolkits.basemap import Basemap from numpy import meshgrid from scipy.interpolate import griddata as gd import os from netCDF4 import Dataset import numpy as np import pandas as pd # programa principal def main(): # descargar información print("Iniciar descarga de archivos") iniciarDescarga() # procesamiento información print("Iniciar procesamiento de archivos") iniciarProcesamiento() def iniciarDescarga(): # ***** constantes URL_DESCARGA = "http://satepsanone.nesdis.noaa.gov/pub/FIRE/GBBEPx" # elementos arrayElementos = ['bc','co', 'co2','oc','pm25','so2'] # Mac /Users/jorgemauricio/Documents/Research/proyectoCaborca # Linux /home/jorge/Documents/Research/proyectoCaborca URL_CARPETA = "/Users/jorgemauricio/Documents/Research/proyectoCaborca" # fecha actual fechaActual = strftime("%Y-%m-%d") # fecha -1 anio, mes, dia = generarDiaAnterior(fechaActual) # nombre de la ruta para la descarga rutaDeCarpetaParaDescarga = '{}/data/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para guardar temporales rutaDeCarpetaParaTemporales = '{}/temp/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para guardar mapas rutaDeCarpetaParaMapas = '{}/maps/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # nombre de la ruta para shapes rutaParaArchivosShapes = '{}/shapes/Estados.shp'.format(URL_CARPETA) # crear carpeta para descarga if not os.path.exists(rutaDeCarpetaParaDescarga): os.mkdir(rutaDeCarpetaParaDescarga) else: print("***** Carpeta descarga ya existe") # crear carpeta para guardar mapas # crear carpeta para descarga if not os.path.exists(rutaDeCarpetaParaMapas): os.mkdir(rutaDeCarpetaParaMapas) else: print("***** Carpeta mapas ya existe") # crear carpeta para guardar archivos temporales if not os.path.exists(rutaDeCarpetaParaTemporales): os.mkdir(rutaDeCarpetaParaTemporales) else: print("***** Carpeta temporales ya existe") # cambiar a carpeta de descarga os.chdir(rutaDeCarpetaParaDescarga) # ciclo de descarga for i in arrayElementos: # crear nombre temporal de archivo a descargar urlDescarga = "{}/GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(URL_DESCARGA,i,anio,mes,dia) nombreDelArchivo = "GBBEPx.emis_{}.001.{}{:02d}{:02d}.nc".format(i,anio,mes,dia) print("***** Descarga de archivo: {}".format(nombreDelArchivo)) descargaArchivo(urlDescarga, nombreDelArchivo) def descargaArchivo(ud, na): """ Función que permite la descarga del archivo indicado param: ud: url de descarga param: na: nombre del archivo """ urllib.request.urlretrieve(ud, na) def generarDiaAnterior(f): """ Función que permite conocer el día anterior para descargar el archivo param: f: fecha actual """ anio, mes, dia = f.split('-') anio = int(anio) mes = int(mes) dia = int(dia) dia -= 1 if dia == 0: mes -= 1 if mes == 0: anio -= 1 mes = 12 diasEnElMes = numeroDeDiasEnElMes(mes) return (anio, mes, dia) def numeroDeDiasEnElMes(m): """ Función que permite saber el número de días en un mes param: m: mes actual """ if mes == 2 and anio % 4 == 0: return 29 elif mes == 2 and anio % 4 != 0: return 28 elif mes == 1 or mes == 3 or mes == 5 or mes == 7 or mes == 8 or mes == 10 or mes == 12: return 31 elif mes == 4 or mes == 6 or mes == 9 or mes == 11: return 30 def iniciarProcesamiento(): # Mac /Users/jorgemauricio/Documents/Research/proyectoCaborca # Linux /home/jorge/Documents/Research/proyectoCaborca URL_CARPETA = "/Users/jorgemauricio/Documents/Research/proyectoCaborca" # ruta para acceder a los archivos shapes# nombre de la ruta para shapes rutaParaArchivosShapes = '{}/shapes/Estados'.format(URL_CARPETA) # coordenadas estaciones dataEstaciones = pd.read_csv("/Users/jorgemauricio/Documents/Research/proyectoCaborca/data/coordenadas_estaciones.csv") # fecha actual fechaActual = strftime("%Y-%m-%d") # fecha -1 anio, mes, dia = generarDiaAnterior(fechaActual) # nombre de la ruta para la descarga rutaDeCarpetaParaElProcesamiento = '{}/data/{}-{:02d}-{:02d}'.format(URL_CARPETA,anio,mes,dia) # constantes LONG_MIN = -115.65 LONG_MAX = -107.94 LAT_MIN = 25.41 LAT_MAX = 33.06 # archivos a procesar listaDeArchivos = [x for x in os.listdir(rutaDeCarpetaParaElProcesamiento) if x.endswith('.nc')] # ciclo de procesamiento for archivo in listaDeArchivos: # nombre del archivo # nombreArchivo = "GBBEPx.emis_so2.001.20180118.nc" arrayNombreArchivo = archivo.split(".") arrayComponente = arrayNombreArchivo[1].split("_") nombreParaMapa = arrayComponente[1] rutaArchivo = "{}/{}".format(rutaDeCarpetaParaElProcesamiento, archivo) # leer el archivo netcdf dataset = Dataset(rutaArchivo) # generar las arreglos de las variables biomass = dataset.variables['biomass'][:] Latitude = dataset.variables['Latitude'][:] Longitude = dataset.variables['Longitude'][:] # variable para generar CSV dataText = "Long,Lat,Biomass\n" # procesamiento de información for i in range(Longitude.shape[0]): for j in range(Latitude.shape[0]): tempText = "{},{},{}\n".format(Longitude[i], Latitude[j], biomass[0,j,i]) dataText += tempText # generar archivo temporal csv fileName = "{}/temp/{}-{:02d}-{:02d}/{}.csv".format(URL_CARPETA, anio, mes, dia, nombreParaMapa) textFile = open(fileName, "w") textFile.write(dataText) textFile.close() # leer el archivo temporal csv data = pd.read_csv(fileName) # limites longitud > -115.65 y < -107.94 data = data.loc[data['Long'] > LONG_MIN] data = data.loc[data['Long'] < LONG_MAX] # limites latitud > 25.41 y < 33.06 data = data.loc[data['Lat'] > LAT_MIN] data = data.loc[data['Lat'] < LAT_MAX] # ug/m3 a ppm data['Biomass'] = data['Biomass'] * 10000000000 # obtener valores de x, y lons = np.array(data['Long']) lats = np.array(data['Lat']) #%% iniciar la gráfica plt.clf() # agregar locación de estaciones xC = np.array(dataEstaciones['Long']) yC = np.array(dataEstaciones['Lat']) m = Basemap(projection='mill',llcrnrlat=LAT_MIN,urcrnrlat=LAT_MAX,llcrnrlon=LONG_MIN,urcrnrlon=LONG_MAX,resolution='h') # generar lats, lons x, y = m(lons, lats) # numero de columnas y filas numCols = len(x) numRows = len(y) # generar xi, yi xi = np.linspace(x.min(), x.max(), numCols) yi = np.linspace(y.min(), y.max(), numRows) # generar el meshgrid xi, yi = np.meshgrid(xi, yi) # generar zi z = np.array(data['Biomass']) zi = gd((x,y), z, (xi,yi), method='cubic') # generar clevs stepVariable = 1 step = (z.max() - z.min()) / 10 # verificar el valor del intervalo if step <= 1: stepVariable = 1 clevs = np.linspace(z.min(), z.max() + stepVariable , 10) #clevs = [1,2,3,4,5,6,7,8,9,10] # contour plot cs = m.contourf(xi,yi,zi, clevs, zorder=5, alpha=0.5, cmap='PuBu') # agregar archivo shape de estados m.readshapefile(rutaParaArchivosShapes, 'Estados') # agregar puntos de estaciones m.scatter(xC, yC, latlon=True,s=1, marker='o', color='r', zorder=25) # colorbar cbar = m.colorbar(cs, location='right', pad="5%") cbar.set_label('pm') tituloTemporalParaElMapa = "{} {}-{:02d}-{:02d}".format(nombreParaMapa,anio,mes,dia) plt.title(tituloTemporalParaElMapa) # Mac /Users/jorgemauricio/Documents/Research/proyectoGranizo/Maps/{}_{}.png # Linux /home/jorge/Documents/Research/proyectoGranizo/Maps/{}_{}.png nombreTemporalParaElMapa = "/Users/jorgemauricio/Documents/Research/proyectoCaborca/maps/{}-{:02d}-{:02d}/{}.png".format(anio, mes, dia, nombreParaMapa) plt.annotate('@2018 INIFAP', xy=(-109,29), xycoords='figure fraction', xytext=(0.45,0.45), color='g', zorder=50) plt.savefig(nombreTemporalParaElMapa, dpi=300) print('****** Genereate: {}'.format(nombreTemporalParaElMapa)) if __name__ == '__main__': main()
StarcoderdataPython
3549821
<reponame>jacksonicson/paper.IS2015<filename>control/Control/src/balancer/placement_nextfit.py from logs import sonarlog import conf_domainsize as domainsize import conf_nodes as nodes import model import placement import conf_schedule # Setup Sonar logging logger = sonarlog.getLogger('placement') class NextFit(placement.PlacementBase): def __init__(self, model): super(NextFit, self).__init__(model) self.active_node = None def _get_inactive_nodes(self): # Get list of inactive nodes inactive_nodes = [] print 'total nodes %i' % len(self.model.get_hosts(model.types.NODE)) for node in self.model.get_hosts(model.types.NODE): if not node.domains: inactive_nodes.append(node) print 'inactive nodes %i' % len(inactive_nodes) return inactive_nodes def placement(self, domain): # Get list of inactive nodes inactive_nodes = self.__get_inactive_nodes() # Set initial active node if self.active_node is None: self.active_node = inactive_nodes.pop() # Domain specification of the new domain to place domain_spec = domainsize.get_domain_spec(domain.size) # Calculate total demand of all active domains running on selected node cpu_demand = 0 mem_demand = 0 for active_domain in self.active_node.domains.values(): active_domain_configuration = active_domain.domain_configuration active_domain_spec = domainsize.get_domain_spec(active_domain_configuration.size) cpu_demand += active_domain_spec.total_cpu_cores() mem_demand += active_domain_spec.total_memory() # Calculate residual capacity cpu_demand = nodes.NODE_CPU_CORES - domain_spec.total_cpu_cores() - cpu_demand mem_demand = nodes.NODE_MEM - domain_spec.total_memory() - mem_demand # Get new node if current one is overloaded if cpu_demand < 0 or mem_demand < 0: try: self.active_node = inactive_nodes.pop() except: print 'inactive nodes length: %i' % len(inactive_nodes) self.model.dump() print 'PROBLEM IN SCHEDULE ID: %i' %conf_schedule.SCHEDULE_ID raise ValueError('FATAL error: No more free nodes available %i - sc %i' % (len(inactive_nodes), conf_schedule.SCHEDULE_ID)) # Return selected node return self.active_node.name
StarcoderdataPython
5088177
<filename>bokeh/protocol/messages/pull_doc_reply.py from __future__ import absolute_import, print_function from ..exceptions import ProtocolError from ..message import Message from . import register import logging log = logging.getLogger(__name__) @register class pull_doc_reply_1(Message): ''' Define the ``PULL-DOC-REPLY`` message (revision 1) for replying to Document pull requests from clients The ``content`` fragment of for this message is has the form: .. code-block:: python { 'doc' : <Document JSON> } ''' msgtype = 'PULL-DOC-REPLY' revision = 1 def __init__(self, header, metadata, content): super(pull_doc_reply_1, self).__init__(header, metadata, content) @classmethod def create(cls, request_id, document, **metadata): ''' Create an ``PULL-DOC-REPLY`` message Args: request_id (str) : The message ID for the message that issues the pull request document (Document) : The Document to reply with Any additional keyword arguments will be put into the message ``metadata`` fragment as-is. ''' header = cls.create_header(request_id=request_id) content = { 'doc' : document.to_json() } msg = cls(header, metadata, content) return msg def push_to_document(self, doc): if 'doc' not in self.content: raise ProtocolError("No doc in PULL-DOC-REPLY") doc.replace_with_json(self.content['doc'])
StarcoderdataPython
5165271
<filename>gibson/core/physics/robot_bases.py ## Author: pybullet, <NAME> import pybullet as p import gym, gym.spaces, gym.utils import numpy as np import os, inspect currentdir = os.path.dirname(os.path.abspath(inspect.getfile(inspect.currentframe()))) parentdir = os.path.dirname(currentdir) os.sys.path.insert(0,parentdir) import pybullet_data from gibson import assets from transforms3d.euler import euler2quat from transforms3d import quaternions def quatWXYZ2quatXYZW(wxyz): return np.concatenate((wxyz[1:], wxyz[:1])) def quatXYZW2quatWXYZ(wxyz): return np.concatenate((wxyz[-1:], wxyz[:-1])) class BaseRobot: """ Base class for mujoco .xml/ROS urdf based agents. Handles object loading """ def __init__(self, model_file, robot_name, scale = 1, env = None): self.parts = None self.jdict = None self.ordered_joints = None self.robot_body = None self.robot_ids = None self.model_file = model_file self.robot_name = robot_name self.physics_model_dir = os.path.join(os.path.dirname(os.path.abspath(assets.__file__)), "models") self.scale = scale self._load_model() self.eyes = self.parts["eyes"] self.env = env def addToScene(self, bodies): if self.parts is not None: parts = self.parts else: parts = {} if self.jdict is not None: joints = self.jdict else: joints = {} if self.ordered_joints is not None: ordered_joints = self.ordered_joints else: ordered_joints = [] dump = 0 for i in range(len(bodies)): if p.getNumJoints(bodies[i]) == 0: part_name, robot_name = p.getBodyInfo(bodies[i], 0) robot_name = robot_name.decode("utf8") part_name = part_name.decode("utf8") parts[part_name] = BodyPart(part_name, bodies, i, -1, self.scale, model_type=self.model_type) for j in range(p.getNumJoints(bodies[i])): p.setJointMotorControl2(bodies[i],j,p.POSITION_CONTROL,positionGain=0.1,velocityGain=0.1,force=0) ## TODO (hzyjerry): the following is diabled due to pybullet update #_,joint_name,joint_type, _,_,_, _,_,_,_, _,_, part_name = p.getJointInfo(bodies[i], j) _,joint_name,joint_type, _,_,_, _,_,_,_, _,_, part_name, _,_,_,_ = p.getJointInfo(bodies[i], j) joint_name = joint_name.decode("utf8") part_name = part_name.decode("utf8") if dump: print("ROBOT PART '%s'" % part_name) if dump: print("ROBOT JOINT '%s'" % joint_name) # limits = %+0.2f..%+0.2f effort=%0.3f speed=%0.3f" % ((joint_name,) + j.limits()) ) parts[part_name] = BodyPart(part_name, bodies, i, j, self.scale, model_type=self.model_type) if part_name == self.robot_name: self.robot_body = parts[part_name] if i == 0 and j == 0 and self.robot_body is None: # if nothing else works, we take this as robot_body parts[self.robot_name] = BodyPart(self.robot_name, bodies, 0, -1, self.scale, model_type=self.model_type) self.robot_body = parts[self.robot_name] if joint_name[:6] == "ignore": Joint(joint_name, bodies, i, j, self.scale).disable_motor() continue if joint_name[:8] != "jointfix" and joint_type != p.JOINT_FIXED: joints[joint_name] = Joint(joint_name, bodies, i, j, self.scale, model_type=self.model_type) ordered_joints.append(joints[joint_name]) joints[joint_name].power_coef = 100.0 debugmode = 0 if debugmode: for j in ordered_joints: print(j, j.power_coef) return parts, joints, ordered_joints, self.robot_body def _load_model(self): if self.model_type == "MJCF": self.robot_ids = p.loadMJCF(os.path.join(self.physics_model_dir, self.model_file), flags=p.URDF_USE_SELF_COLLISION+p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS) if self.model_type == "URDF": self.robot_ids = (p.loadURDF(os.path.join(self.physics_model_dir, self.model_file), flags=p.URDF_USE_SELF_COLLISION+p.URDF_USE_SELF_COLLISION_EXCLUDE_ALL_PARENTS, globalScaling = self.scale), ) self.parts, self.jdict, self.ordered_joints, self.robot_body = self.addToScene(self.robot_ids) def reset(self): if self.robot_ids is None: self._load_model() self.robot_body.reset_orientation(quatWXYZ2quatXYZW(euler2quat(*self.config["initial_orn"]))) self.robot_body.reset_position(self.config["initial_pos"]) self.reset_random_pos() self.robot_specific_reset() state = self.calc_state() return state def reset_random_pos(self): '''Add randomness to resetted initial position ''' if not self.config["random"]["random_initial_pose"]: return pos = self.robot_body.current_position() orn = self.robot_body.current_orientation() x_range = self.config["random"]["random_init_x_range"] y_range = self.config["random"]["random_init_y_range"] z_range = self.config["random"]["random_init_z_range"] r_range = self.config["random"]["random_init_rot_range"] new_pos = [ pos[0] + self.np_random.uniform(low=x_range[0], high=x_range[1]), pos[1] + self.np_random.uniform(low=y_range[0], high=y_range[1]), pos[2] + self.np_random.uniform(low=z_range[0], high=z_range[1])] new_orn = quaternions.qmult(quaternions.axangle2quat([1, 0, 0], self.np_random.uniform(low=r_range[0], high=r_range[1])), orn) self.robot_body.reset_orientation(new_orn) self.robot_body.reset_position(new_pos) def reset_new_pos(self, pos, orn): self.robot_body.reset_orientation(orn) self.robot_body.reset_position(pos) def calc_potential(self): return 0 class Pose_Helper: # dummy class to comply to original interface def __init__(self, body_part): self.body_part = body_part def xyz(self): return self.body_part.current_position() def rpy(self): return p.getEulerFromQuaternion(self.body_part.current_orientation()) def orientation(self): return self.body_part.current_orientation() class BodyPart: def __init__(self, body_name, bodies, bodyIndex, bodyPartIndex, scale, model_type): self.bodies = bodies self.body_name = body_name self.bodyIndex = bodyIndex self.bodyPartIndex = bodyPartIndex if model_type=="MJCF": self.scale = scale else: self.scale = 1 self.initialPosition = self.current_position() / self.scale self.initialOrientation = self.current_orientation() self.bp_pose = Pose_Helper(self) def get_name(self): return self.body_name def state_fields_of_pose_of(self, body_id, link_id=-1): # a method you will most probably need a lot to get pose and orientation if link_id == -1: (x, y, z), (a, b, c, d) = p.getBasePositionAndOrientation(body_id) else: (x, y, z), (a, b, c, d), _, _, _, _ = p.getLinkState(body_id, link_id) x, y, z = x * self.scale, y * self.scale, z * self.scale return np.array([x, y, z, a, b, c, d]) def get_pose(self): return self.state_fields_of_pose_of(self.bodies[self.bodyIndex], self.bodyPartIndex) def speed(self): if self.bodyPartIndex == -1: (vx, vy, vz), _ = p.getBaseVelocity(self.bodies[self.bodyIndex]) else: (x,y,z), (a,b,c,d), _,_,_,_, (vx, vy, vz), (vr,vp,vyaw) = p.getLinkState(self.bodies[self.bodyIndex], self.bodyPartIndex, computeLinkVelocity=1) return np.array([vx, vy, vz]) def angular_speed(self): if self.bodyPartIndex == -1: _, (vr,vp,vyaw) = p.getBaseVelocity(self.bodies[self.bodyIndex]) else: (x,y,z), (a,b,c,d), _,_,_,_, (vx, vy, vz), (vr,vp,vyaw) = p.getLinkState(self.bodies[self.bodyIndex], self.bodyPartIndex, computeLinkVelocity=1) return np.array([vr, vp, vyaw]) def current_position(self): """Get position in physics simulation (unscaled) """ return self.get_pose()[:3] def current_orientation(self): """Get orientation in physics simulation """ return self.get_pose()[3:] def reset_position(self, position): p.resetBasePositionAndOrientation(self.bodies[self.bodyIndex], np.array(position) / self.scale, self.current_orientation()) def reset_orientation(self, orientation): p.resetBasePositionAndOrientation(self.bodies[self.bodyIndex], self.current_position() / self.scale, orientation) def reset_pose(self, position, orientation): p.resetBasePositionAndOrientation(self.bodies[self.bodyIndex], np.array(position) / self.scale, orientation) def pose(self): return self.bp_pose def contact_list(self): return p.getContactPoints(self.bodies[self.bodyIndex], -1, self.bodyPartIndex, -1) class Joint: def __init__(self, joint_name, bodies, bodyIndex, jointIndex, scale, model_type): self.bodies = bodies self.bodyIndex = bodyIndex self.jointIndex = jointIndex self.joint_name = joint_name _,_,_,_,_,_,_,_,self.lowerLimit, self.upperLimit,_,_,_, _,_,_,_ = p.getJointInfo(self.bodies[self.bodyIndex], self.jointIndex) self.power_coeff = 0 if model_type=="mjcf": self.scale = scale else: self.scale = 1 def set_state(self, x, vx): p.resetJointState(self.bodies[self.bodyIndex], self.jointIndex, x, vx) def current_position(self): # just some synonyme method state = self.get_state state[:3] = state[:3] * self.scale return state def current_relative_position(self): pos, vel = self.get_state() pos_mid = 0.5 * (self.lowerLimit + self.upperLimit); return ( 2 * (pos - pos_mid) / (self.upperLimit - self.lowerLimit), 0.1 * vel ) def get_state(self): x, vx,_,_ = p.getJointState(self.bodies[self.bodyIndex],self.jointIndex) return x * self.scale, vx def set_position(self, position): p.setJointMotorControl2(self.bodies[self.bodyIndex],self.jointIndex,p.POSITION_CONTROL, targetPosition=np.array(position) / self.scale) def set_velocity(self, velocity): p.setJointMotorControl2(self.bodies[self.bodyIndex],self.jointIndex,p.VELOCITY_CONTROL, targetVelocity=velocity) def set_motor_torque(self, torque): # just some synonyme method self.set_torque(torque) def set_torque(self, torque): p.setJointMotorControl2(bodyIndex=self.bodies[self.bodyIndex], jointIndex=self.jointIndex, controlMode=p.TORQUE_CONTROL, force=torque) #, positionGain=0.1, velocityGain=0.1) def set_motor_velocity(self, vel): p.setJointMotorControl2(bodyIndex=self.bodies[self.bodyIndex], jointIndex=self.jointIndex, controlMode=p.VELOCITY_CONTROL, targetVelocity=vel) # , positionGain=0.1, velocityGain=0.1) def reset_current_position(self, position, velocity): # just some synonyme method self.reset_position(position / self.scale, velocity) def reset_position(self, position, velocity): p.resetJointState(self.bodies[self.bodyIndex],self.jointIndex,targetValue= np.array(position) / self.scale, targetVelocity=velocity) self.disable_motor() def disable_motor(self): p.setJointMotorControl2(self.bodies[self.bodyIndex],self.jointIndex,controlMode=p.POSITION_CONTROL, targetPosition=0, targetVelocity=0, positionGain=0.1, velocityGain=0.1, force=0)
StarcoderdataPython
5191103
#!/usr/bin/python """ Copyright (c) 2018 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import os import sys import time import logging from lockfile import locked from logging.handlers import RotatingFileHandler from common import * @locked(LOCKFILE) def main(): if os.fork() != 0: sys.exit() time.sleep(3) output = os.popen('mount').read() for line in filter(lambda x: x.find('ifuse') == 0, output.split('\n')): path = line.split()[2] logger.info('Unmounting %s ...' % path) umount(path) logger.info('Deleting DSM share named %s...' % os.path.basename(path)) del_share(path) if __name__ == '__main__': logger.info('--- umounting.py started ---') try: main() except Exception as e: logger.error(str(e)) logger.info('--- umounting.py end ---')
StarcoderdataPython
4899242
from __future__ import division, print_function import numpy as np import sys,os sys.path.append("..") import pyrads from scipy.integrate import trapz,simps,cumtrapz ### ----------------------------------- ### Helpers class Dummy: pass ### ----------------------------------- # --- ## setup thermodynamic parameters params = Dummy() params.Rv = pyrads.phys.H2O.R # moist component params.cpv = pyrads.phys.H2O.cp params.Lvap = pyrads.phys.H2O.L_vaporization_TriplePoint params.satvap_T0 = pyrads.phys.H2O.TriplePointT params.satvap_e0 = pyrads.phys.H2O.TriplePointP params.esat = lambda T: pyrads.Thermodynamics.get_satvps(T,params.satvap_T0,params.satvap_e0,params.Rv,params.Lvap) params.R = pyrads.phys.air.R # dry component params.cp = pyrads.phys.air.cp params.ps_dry = 1e5 # surface pressure of dry component params.g = 9.8 # surface gravity params.cosThetaBar = 3./5. # average zenith angle used in 2stream eqns params.RH = 1. # relative humidity params.R_CO2 = pyrads.phys.CO2.R params.ppv_CO2 = 400e-6 # --- ## setup resolution (vertical,spectral) #N_press = 60 # N_press = 15 # wavenr_min = 0.1 # [cm^-1] wavenr_max = 3500. # #dwavenr = 0.01 # dwavenr = 0.1 # Tstrat = 150. # stratospheric temperature # --- ## setup range of temperatures, and if/where output is saved to: #Ts_grid = np.arange(170.,370.1,10.) Ts_grid = np.arange(170.,370.1,20.) filename = 'output.compute_olr_h2o.01.100RH.numba.txt' saveOutput = True # Save the output/plots? [Yes/No] if saveOutput: OUTDIR = "./" print( "Saving output to ",OUTDIR) if not os.path.isdir( OUTDIR ): os.makedirs( OUTDIR ) ### ----------------------------------- ## MAIN LOOP # save resolution etc for a given loop to file: if saveOutput: f = open(OUTDIR+filename,'w') f.write("wavenr_min,wavenr_max,dwave [cm^-1] = %.4f,%.4f,%.4f" % (wavenr_min,wavenr_max,dwavenr) ) f.write("\n") f.write("N_press = %.1f" % N_press ) f.write("\n") f.write("\n") f.write("Ts [K],\tps [bar],\tolr [W/m2],\tsurface contribution to olr [W/m2],\tTransmission int[T dBdT(Ts) dn]/int[ dBdT(Ts) dn],\tSimple feedback model int[dB/dT*T]") f.write("\n") f.close() ## main loop here for Ts in Ts_grid: f = open(OUTDIR+filename,'a') # setup grid: g = pyrads.SetupGrids.make_grid( Ts,Tstrat,N_press,wavenr_min,wavenr_max,dwavenr,params, RH=params.RH ) # compute optical thickness: # -> this is the computationally most intensive step g.tau,tmp,tmp2 = pyrads.OpticalThickness.compute_tau_H2ON2_CO2dilute(g.p,g.T,g.q,params.ppv_CO2,g,params, RH=params.RH, use_numba=True ) # compute Planck functions etc: # -> here: fully spectrally resolved! T_2D = np.tile( g.T, (g.Nn,1) ).T # [press x wave] g.B_surf = np.pi* pyrads.Planck.Planck_n( g.n,Ts ) # [wave] g.B = np.pi* pyrads.Planck.Planck_n( g.wave, T_2D ) # [press x wave] # compute OLR etc: olr_spec = pyrads.Get_Fluxes.Fplus_alternative(0,g) # (spectrally resolved=irradiance) olr = simps(olr_spec,g.n) # compute fraction of surface flux that makes it to space surf_spec = g.B_surf * np.exp(-g.tau[-1,:]) surf = simps(surf_spec,x=g.n) # compute spectrally averaged transmission function... weight = np.pi* pyrads.Planck.dPlanckdT_n( g.n,Ts ) trans = trapz( np.exp(-g.tau[-1,:]) * weight,x=g.n ) / trapz( weight,x=g.n ) # Simple feedback model (like above, without normalization) weight = np.pi* pyrads.Planck.dPlanckdT_n( g.n,Ts ) lam = trapz( np.exp(-g.tau[-1,:]) * weight,x=g.n ) print( "\n",Ts,g.ps/1e5,olr,surf, "\n") f.write("%.2f,\t%.4f,\t%.8f,\t%.8f,\t%.8f,\t%.8f" % (Ts,g.ps/1e5,olr,surf,trans,lam) ) f.write("\n") f.close()
StarcoderdataPython
3430040
import datetime from enum import Enum from pydantic import BaseModel, Field class SchoolDistricts(Enum): davis_district = "Davis District" alpine_district = "Alpine District" canyons_district = "Canyons District" granite_district = "Granite District" jordan_district = "Jordan District" nebo_district = "Nebo District" cache_district = "Cache District" weber_district = "Weber District" tooele_district = "Tooele District" wasatch_district = "Wasatch District" murray_district = "Murray District" sevier_district = "Sevier District" salt_lake_district = "Salt Lake District" provo_district = "Provo District" iron_district = "Iron District" park_city_district = "Park City District" washington_district = "Washington District" box_elder_district = "Box Elder District" logan_city_district = "Logan City District" carbon_district = "Carbon District" south_summit_district = "South Summit District" beaver_district = "Beaver District" duchesne_district = "Duchesne District" juab_district = "Juab District" ogden_city_district = "Ogden City District" south_sanpete_district = "South Sanpete District" uintah_district = "Uintah District" emery_district = "Emery District" kane_district = "Kane District" morgan_district = "Morgan District" north_summit_district = "North Summit District" daggett_district = "Daggett District" garfield_district = "Garfield District" grand_district = "Grand District" millard_district = "Millard District" north_sanpete_district = "North Sanpete District" piute_district = "Piute District" rich_district = "Rich District" san_juan_district = "San Juan District" tintic_district = "Tintic District" wayne_district = "Wayne District" salt_lake_county_private = "Salt Lake County - Private" utah_county_private = "Utah County - Private" bear_river_private = "Bear River - Private" central_utah_private = "Central Utah - Private" davis_county_private = "Davis County - Private" southwest_utah_private = "Southwest Utah - Private" weber_morgan_private = "Weber-Morgan - Private" salt_lake_county_charter = "Salt Lake County - Charter" utah_county_charter = "Utah County - Charter" davis_county_charter = "Davis County - Charter" bear_river_charter = "Bear River - Charter" tooele_county_charter_private = "Tooele County - Charter/Private" weber_morgan_charter = "Weber-Morgan - Charter" southeast_utah_charter = "Southeast Utah - Charter" southwest_utah_charter = "Southwest Utah - Charter" summit_county_charter_private = "Summit County - Charter/Private" tri_county_charter_private = "TriCounty - Charter/Private" wasatch_county_charter_private = "Wasatch County - Charter/Private" class Jurisdiction(Enum): weber_morgan = "Weber-Morgan" wasatch_county = "Wasatch County" utah_county = "Utah County" tri_county = "TriCounty" tooele_county = "Tooele County" summit_county = "Summit County" southwest_utah = "Southwest Utah" southeast_utah = "Southeast Utah" san_juan = "San Juan" salt_lake_county = "Salt Lake County" davis_county = "Davis County" central_utah = "Central Utah" bear_river = "Bear River" class SchoolCasesByDistrict(BaseModel): school_district: SchoolDistricts = Field(..., alias="School District") jurisdiction: Jurisdiction = Field(..., alias="Jurisdiction") active_cases: str = Field(..., alias="Active Cases") total_cases: int = Field(..., alias="Total Cases") class DBSchoolCasesByDistrict(SchoolCasesByDistrict): date: datetime.datetime
StarcoderdataPython
9763199
import torch import numpy as np import cv2 import os class PawpularDataset(torch.utils.data.Dataset): def __init__(self, csv, data_path, mode='train', augmentations=None, meta_features=None): self.csv = csv self.data_path = data_path self.mode = mode self.augmentations = augmentations self.meta_features = meta_features def __len__(self): return len(self.csv) def __getitem__(self, index): row = self.csv.iloc[index] image_path = os.path.join(self.data_path, self.mode, f'{row["Id"]}.jpg') image = cv2.imread(image_path) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) if self.augmentations: augmented = self.augmentations(image=image) image = augmented["image"] image = np.transpose(image, (2, 0, 1)).astype(np.float32) if self.meta_features: data = (torch.tensor(image, dtype=torch.float), torch.tensor(row[self.meta_features], dtype=torch.float)) else: data = torch.tensor(image, dtype=torch.float) # if self.mode == 'test': # return data return data, torch.tensor([row['Pawpularity'] / 100.], dtype=torch.float)
StarcoderdataPython
6677050
<filename>utils/builder/register_builder/riscv/BootPriority.py # # Copyright (C) [2020] Futurewei Technologies, Inc. # # FORCE-RISCV is licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, WITHOUT WARRANTIES OF ANY KIND, EITHER # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO NON-INFRINGEMENT, MERCHANTABILITY OR # FIT FOR A PARTICULAR PURPOSE. # See the License for the specific language governing permissions and # limitations under the License. # #************************************************************************************************** # BootPriority.py # # This file defines the BootPriority helper class. #************************************************************************************************** #************************************************************************************************** # The boot priority class defines helper methods associated with boot priority. #************************************************************************************************** class BootPriority: ## Returns the appropriate boot priority based on the name and type of register provided along # with if the register is write only def getBootPriority(aName = None, aType = None, aWriteOnly = 0): #if aType is this_particular_type: #return a_particular_boot_priority #if aName is this_particular_name: #return a_particular_boot_priority return 1
StarcoderdataPython
3450821
<filename>core/client.py """ Hbtn Module """ from typing import List, Dict, Union, Any import requests from bs4 import BeautifulSoup JsonType = Dict[str, Union[List[Dict[str, Union[list, Any]]], Any]] class Hbtn: """ Class that authenticates to the intranet website, and fetches json data of a project referenced by URL. """ __loginURL = "https://intranet.hbtn.io/auth/sign_in" __headers = {'user-agent': "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (HTML, like Gecko) " "Chrome/80.0.3987.87 Safari/537.36"} def __init__(self, username: str, password: str): """ :param username: intranet username. :param password: <PASSWORD>. """ # Initiate session with requests.Session() as session: session.headers.update(self.__headers) self.__session = session assert self.authenticate( username, password), "Double check your credentials [Authentication Failed]" @staticmethod def get_token(html_content: str) -> str: """ Returns extracted auth token from html """ soup = BeautifulSoup(html_content, features='lxml') return soup.find('input', attrs={'name': 'authenticity_token'})['value'] @staticmethod def preprocess_data(json_data: JsonType) -> JsonType: """ Cleans the retrieved data. """ return { "name": json_data["name"], 'github_repo': json_data['tasks'][0]['github_repo'], 'github_dir': json_data['tasks'][0]['github_dir'], "tasks": [ { 'title': task['title'], 'github_file': [ file.strip() for file in task['github_file'].split(',') if file.split('.')[-1] not in ['png', 'jpeg', 'icon', 'jpg'] ] } for task in json_data['tasks']] } def get_login_page(self) -> str: """Get login page. :return: response.text """ with self.__session.get(self.__loginURL) as res: return res.text def authenticate(self, username: str, password: str) -> bool: """ Handles authentication with website using username && password. """ login_page = self.get_login_page() payload = { 'authenticity_token': self.get_token(login_page), 'user[login]': username, 'user[password]': password, 'user[remember_me]': '0', 'commit': 'Log ' + 'in'} # login to website with self.__session.post(self.__loginURL, data=payload) as res: return 'Invalid Email or password.' not in res.text def fetch_project_details(self, url: str) -> Union[JsonType, Dict]: """Fetch project details referenced by project URL. :param url: project URL. :return: json data or empty dict. """ with self.__session.get(url + ".json") as res: if res.status_code in range(200, 299): data = self.preprocess_data(res.json()) data['tasks'].append( { # Add README.md file :) 'title': "README.md file", 'github_file': ["README.md"] } ) return data return {}
StarcoderdataPython
3406737
import fridge.Constituent.Smear as Smear import fridge.utilities.mcnpCreatorFunctions as mcnpCF class FuelCoolant(Smear.Smear): """Creates the coolant surrounding the fuel pin. This coolant is a homogenized material consisting of the coolant material and the wirewrap.""" def __init__(self, unitInfo, voidMaterial='', voidPercent=1.0): super().__init__(unitInfo, voidMaterial=voidMaterial, voidPercent=voidPercent) self.cladSurfaceNum = 0 def makeComponent(self, coolantInfo): self.flat2flat = coolantInfo[0] self.height = coolantInfo[1] self.cladSurfaceNum = coolantInfo[2] surfaceComment = "$Pin: Coolant - 1% higher than fuel" cellComment = "$Pin: Wirewrap + Coolant" self.surfaceCard = mcnpCF.getRHP(self.flat2flat, self.height, self.position, self.surfaceNum, surfaceComment) self.cellCard = mcnpCF.getOutsideCell(self.cellNum, self.materialNum, self.material.atomDensity, self.cladSurfaceNum, self.universe, cellComment)
StarcoderdataPython
322039
import os import base64 import requests from io import BytesIO from PIL import Image, ImageDraw, ImageOps, ImageColor from abc import abstractmethod from flask import request, abort from flask_restful import Resource class ImageFunctions(object): @staticmethod def get_color(color): try: return ImageColor.getrgb(color) except (AttributeError, ValueError): return def add_avatar_border(self, avatar, width=10, outline=None): outline = self.get_color(outline or "#ffffff") drawer = ImageDraw.Draw(avatar) drawer.ellipse((0, 0) + avatar.size, width=width, outline=outline) return avatar @staticmethod def get_round_avatar(avatar): avatar_mask = Image.new("L", avatar.size) avatar_drawer = ImageDraw.Draw(avatar_mask) avatar_drawer.ellipse((0, 0) + avatar.size, fill=225) avatar = ImageOps.fit(avatar, avatar_mask.size) avatar.putalpha(avatar_mask) return avatar def draw_circular_progress(self, base, value, max_value, box, width=30, fill=None): fill = self.get_color(fill) angle = ((value / max_value) * 360) - 90 drawer = ImageDraw.Draw(base) drawer.arc(box, -90, angle, width=width, fill=fill) class ApiResourceBase(ImageFunctions, Resource): ROUTE = str() REQUIRED_DATA = list() TEMPLATES_PATH = "app/api_resources/templates/" def __new__(cls, *args, **kwargs): if not cls.ROUTE: raise NotImplementedError return super().__new__(cls, *args, **kwargs) IMAGE_CACHE_PATH = "cache/images/" FONT_PATH = "app/api_resources/templates/fonts/" MEDIA_MAX_SIZE = 4200000 @staticmethod def encode_url(url): return base64.urlsafe_b64encode(url.encode("ascii")).decode("ascii") @staticmethod def get_image_from_url(url: str, max_size=MEDIA_MAX_SIZE): response = requests.get(url, stream=True) for chunk in response.iter_content(chunk_size=max_size): if len(chunk) >= max_size: raise OverflowError image_bytes = BytesIO(chunk) image_bytes.seek(0) return image_bytes def get_cached_image_from_url(self, url: str, max_size=MEDIA_MAX_SIZE): file_path = self.IMAGE_CACHE_PATH + self.encode_url(url) try: with open(file_path, "rb") as file: return BytesIO(file.read()) except FileNotFoundError: image_bytes = self.get_image_from_url(url, max_size) try: with open(file_path, "wb") as file: file.write(image_bytes.read()) except FileNotFoundError: os.makedirs(self.IMAGE_CACHE_PATH) return image_bytes @abstractmethod def _process(self, **kwargs): raise NotImplementedError @staticmethod def to_bytes(image: Image.Image, image_format: str = "png"): image_bytes = BytesIO() if isinstance(image, list): image_format = "gif" image[0].save( image_bytes, save_all=True, append_images=image[1:], format=image_format.upper(), optimize=True) else: image.save(image_bytes, format=image_format.upper()) image_bytes.seek(0) return image_bytes, image_format def get_json(self): payload = request.get_json() if not all(key in payload for key in self.REQUIRED_DATA): abort(400) return payload
StarcoderdataPython
306157
<reponame>brystmar/greeting-cards<filename>backend/config.py """Defines the object to configure parameters for our Flask app.""" from logging import getLogger from os import environ, path logger = getLogger() class Config(object): logger.debug("Start of the Config() class.") # If the app is running locally, our environment variables can be applied directly # from the local .env file if "pycharm" in path.abspath(path.dirname(__file__)).lower(): logger.debug("Applying variables from local .env file") from env_tools import apply_env apply_env() logger.info("Local .env variables applied") # App-related variables APP_NAME = "greeting-cards" BOUND_PORT = 5000 SECRET_KEY = environ.get("SECRET_KEY") or "<KEY>" WHITELISTED_ORIGIN = environ.get('WHITELISTED_ORIGIN') WHITELISTED_ORIGINS = environ.get('WHITELISTED_ORIGINS') # TODO: Determine which variable is actually needed # Database SQLALCHEMY_DATABASE_URI = environ.get("SQLALCHEMY_DATABASE_URI") logger.debug(f"SQLAlchemy db URI: {SQLALCHEMY_DATABASE_URI}") # Should SQLAlchemy send a notification to the app every time an object changes? SQLALCHEMY_TRACK_MODIFICATIONS = False # Log a warning if the fallback secret key was used if SECRET_KEY != environ.get("SECRET_KEY"): logger.warning("Error loading SECRET_KEY! Temporarily using a hard-coded key.") logger.debug("End of the Config() class.")
StarcoderdataPython
393207
<reponame>vadim-ivlev/STUDY def twoStacks(x, a, b): score = 0 total = 0 while total < x: if a != [] and b != []: if a[0] < b[0]: if total+a[0] < x: total += a.pop(0) score += 1 else: break else: if total+b[0] < x: total += b.pop(0) score += 1 else: break elif a != []: if total+a[0] < x: total += a.pop(0) score += 1 else: break elif b != []: if total+b[0] < x: total += b.pop(0) score += 1 else: break return score print(twoStacks(10, [4, 2, 4, 6, 1], [2, 1, 8, 5]))
StarcoderdataPython
1605795
#---------------------------- # Author: <NAME> #---------------------------- from collections import namedtuple import numpy as np import math FILE_TYPE = "P2" # to verify the file type PGMFile = namedtuple('PGMFile', ['max_shade', 'data']) # named tuple # This function receives the name of a file, reads it in, verifies that # the type is P2, and returns the corresponding PGMFile def read_pgm(filename): rows = 0 cols = 0 max_shade = 0 pixel_array = [] line_no = 1 try: f = open(filename) except: print(f"\nError: The file named \'{filename}\' does not exist!") else: try: for line in f: # reading one line at a time from the file if line != "\n": # checking for blank lines end_index = line.find("\n") line = line[0:end_index] if line.find("#") != -1: # checking for annoying cooments end_index = line.find("#") line = line[0:end_index] line = line.strip() if len(line) != 0: if line_no == 1: # checking for file type in line 1 if line == FILE_TYPE: line_no += 1 else: print("Error: The input file is not a P2 image!") elif line_no == 2: # getting the width and height of the image from line 2 dimensions = line.split() rows = int(dimensions[1]) # rows = height cols = int(dimensions[0]) # columns = width line_no += 1 elif line_no == 3: # getting the maximum shade value from line 3 max_shade = int(line) line_no += 1 else: line_array = line.split() # storing all the numbers into a list after removing all the white spaces for i in range(len(line_array)): pixel_array.append(int(line_array[i])) except: print("\nError: The input file could not be read properly!") else: data = np.array(pixel_array).reshape(rows, cols) # creating a 2D numpy array return PGMFile(max_shade, data) # returning the corresponding PGMFile # This function receives a file name and a PGMFile, and creates the corresponding image file def create_image(filename, pgm): with open(filename, "w") as f: print(f"{FILE_TYPE}\n{pgm.data.shape[1]} {pgm.data.shape[0]}\n{pgm.max_shade}\n", file=f) for row in pgm.data: for i in range(0, len(row)): print(str(row[i]), end=" ", file=f) print("", file=f) # This function reflects a pgm image from left to right def reflect_left_to_right(pgm_file): matrix = np.flip(pgm_file.data, axis=1) return PGMFile(pgm_file.max_shade, matrix) # This function reflects a pgm image from top to bottom def reflect_top_to_bottom(pgm_file): matrix = np.flip(pgm_file.data, axis=0) return PGMFile(pgm_file.max_shade, matrix) # This function inverts the black and white pixels in a pgm image def invert_black_white(pgm_file): matrix = np.subtract(pgm_file.max_shade, pgm_file.data) return PGMFile(pgm_file.max_shade, matrix) # This function brightens a pgm image by 10% def brighten(pgm_file, increase_by): brightness = int((increase_by/100) * (np.sum(pgm_file.data, dtype=np.uint64) / pgm_file.data.size)) matrix = np.add(brightness, pgm_file.data) # adding the brightness value to each pixel of the image matrix = np.clip(matrix, 0, pgm_file.max_shade) # some pixels will be > 255, so bringing those values down to 255 return PGMFile(pgm_file.max_shade, matrix) # A function that receives a standard deviation σ and number of neighbors r, and returns the corresponding # 1D dimensional Gaussian kernel of length 2r+ 1, normalized so that its entries sum to 1 def one_d_gaussian_kernel(sigma, r): size = (2*r)+1 gaussian_kernel = [] for i in range(size): x = i-r p_x = 1/(sigma*math.sqrt(2*math.pi)) * (math.pow(math.e, (-1/2)*(math.pow(x, 2)/math.pow(sigma, 2)))) gaussian_kernel.append(p_x) gaussian_kernel = np.array(gaussian_kernel) gaussian_kernel = np.divide(gaussian_kernel, np.sum(gaussian_kernel)) return gaussian_kernel # A helper function to truncate and normalize the 1D Gaussian kernel def truncate_normalize_1d_gaussian(kernel, left, right): highest_col_index = kernel.size-1 new_kernel = np.copy(kernel) if left != 0: col_nums = [y for y in range(left)] # storing the column numbers to be deleted from the left, in a list new_kernel = np.delete(new_kernel, col_nums) highest_col_index = new_kernel.size - 1 if right != 0: col_nums = [highest_col_index-y for y in range(right)] # storing the column numbers to be deleted from the right, in a list new_kernel = np.delete(new_kernel, col_nums) new_kernel = np.divide(new_kernel, np.sum(new_kernel)) # normalizing the kernel return new_kernel def convolve_1dkernel_hrzntl(kernel, image_matrix): r = kernel.size // 2 num_rows, num_cols = image_matrix.shape # traversing through the image matrix for row in range(num_rows): for col in range(num_cols): left = col # num of cols to the left of current pixel right = (num_cols-1) - col # num of cols to the right of current pixel trunc_left = 0 trunc_right = 0 if left < r: trunc_left = r - left # num of cols to truncate from left of 1D Gaussian if right < r: trunc_right = r - right # num of cols to truncate from left of 1D Gaussian new_kernel = truncate_normalize_1d_gaussian(kernel, trunc_left, trunc_right) curr_pixel_value = 0 if left > r: for x in range(new_kernel.size): curr_pixel_value += new_kernel[x] * image_matrix[row][x+(left-r)] else: for x in range(new_kernel.size): curr_pixel_value += new_kernel[x] * image_matrix[row][x] image_matrix[row][col] = curr_pixel_value # updating the current pixel value return image_matrix # A function that convolves a 2D image with a 1D kernel twice in succession: first horizontally, then vertically def convolve_1dkernel(kernel, pgm_file): img_matrix = np.copy(pgm_file.data) img_matrix = convolve_1dkernel_hrzntl(kernel, img_matrix) # convolving horizontally img_matrix = np.transpose(img_matrix) # changing the orientation of the image img_matrix = convolve_1dkernel_hrzntl(kernel, img_matrix) # convolving vertically img_matrix = np.transpose(img_matrix) # changing the orientation of the image max_pixel = np.amax(img_matrix) return PGMFile(max_pixel, img_matrix) # A helper function to build the gradient vector matrix def get_gradient_vector(smooth_image): img_matrix = smooth_image.data num_rows, num_cols = img_matrix.shape gradient_vector = [] cd_j = 0 # in j direction - horizontal cd_k = 0 # in k direction - vertical for row in range(num_rows): top = row bottom = (num_rows-1)-row cols = [] for col in range(num_cols): left = col right = (num_cols-1)-col if left >= 1 and right >= 1: cd_j = (img_matrix[row][col+1] - img_matrix[row][col-1])/2 elif left < 1 and right >= 1: cd_j = img_matrix[row][col+1] - img_matrix[row][col] elif left >= 1 and right < 1: cd_j = img_matrix[row][col] - img_matrix[row][col-1] if top >= 1 and bottom >= 1: cd_k = (img_matrix[row+1][col] - img_matrix[row-1][col])/2 elif top < 1 and bottom >= 1: cd_k = img_matrix[row+1][col] - img_matrix[row][col] elif top >= 1 and bottom < 1: cd_k = img_matrix[row][col] - img_matrix[row-1][col] cols.append((cd_j, cd_k)) gradient_vector.append(cols) return gradient_vector # returns gradient vector matrix as a matrix of tuples # a helper function to get the theta of the gradient vector def get_angle(gradient_vector): result = 0 angle = np.arctan2(gradient_vector[1], gradient_vector[0]) * 180 / np.pi if angle > 337.5 or angle <= 22.5 or (angle > 157.5 and angle <= 202.5): result = 0 elif (angle > 22.5 and angle <= 67.5) or (angle > 202.5 and angle <= 247.5): result = 45 elif (angle > 67.5 and angle <= 112.5) or (angle > 247.5 and angle <= 292.5): result = 90 elif (angle > 112.5 and angle <= 157.5) or (angle > 292.5 and angle <= 337.5): result = 135 return result # A function to detect edges in the image def edge_detection(pgm_file, gradient_vector_matrix): img_matrix = pgm_file.data num_rows, num_cols = img_matrix.shape temp_matrix = np.copy(pgm_file.data) for row in range(num_rows): for col in range(num_cols): gradient_vector = gradient_vector_matrix[row][col] mag_grad_vector = math.sqrt(math.pow(gradient_vector[0], 2) + math.pow(gradient_vector[1], 2)) temp_matrix[row][col] = mag_grad_vector max_pixel = np.amax(temp_matrix) return PGMFile(max_pixel, temp_matrix) # A function to thin the edges in the image def edge_thinning(pgm_file, gradient_vector_matrix): img_matrix = pgm_file.data num_rows, num_cols = img_matrix.shape temp_matrix = np.copy(pgm_file.data) for row in range(num_rows): top = row bottom = (num_rows-1)-row for col in range(num_cols): left = col right = (num_cols-1)-col gradient_vector = gradient_vector_matrix[row][col] angle = get_angle(gradient_vector) curr_pixel = img_matrix[row][col] if angle == 0: if left >= 1 and right >= 1: if curr_pixel < img_matrix[row][col-1] or curr_pixel < img_matrix[row][col+1]: temp_matrix[row][col] = 0 elif left < 1 and right >= 1: if curr_pixel < img_matrix[row][col+1]: temp_matrix[row][col] = 0 elif left >= 1 and right < 1: if curr_pixel < img_matrix[row][col-1]: temp_matrix[row][col] = 0 elif angle == 45: if left >= 1 and right >= 1 and top >= 1 and bottom >= 1: if curr_pixel < img_matrix[row-1][col+1] or curr_pixel < img_matrix[row+1][col-1]: temp_matrix[row][col] = 0 elif left >= 1 and bottom >= 1: if curr_pixel < img_matrix[row+1][col-1]: temp_matrix[row][col] = 0 elif right >= 1 and top >= 1: if curr_pixel < img_matrix[row-1][col+1]: temp_matrix[row][col] = 0 elif angle == 90: if top >= 1 and bottom >= 1: if curr_pixel < img_matrix[row-1][col] or curr_pixel < img_matrix[row+1][col]: temp_matrix[row][col] = 0 elif top < 1 and bottom >= 1: if curr_pixel < img_matrix[row+1][col]: temp_matrix[row][col] = 0 elif top >= 1 and bottom < 1: if curr_pixel < img_matrix[row-1][col]: temp_matrix[row][col] = 0 elif angle == 135: if left >= 1 and right >= 1 and top >= 1 and bottom >= 1: if curr_pixel < img_matrix[row-1][col-1] or curr_pixel < img_matrix[row+1][col+1]: temp_matrix[row][col] = 0 elif left >= 1 and top >= 1: if curr_pixel < img_matrix[row-1][col-1]: temp_matrix[row][col] = 0 elif right >= 1 and bottom >= 1: if curr_pixel < img_matrix[row+1][col+1]: temp_matrix[row][col] = 0 max_pixel = np.amax(temp_matrix) return PGMFile(max_pixel, temp_matrix) # A function tosuppress the noise in the image def noise_suppress(pgm_file, low_thresh, high_thresh): img_matrix = pgm_file.data num_rows, num_cols = img_matrix.shape temp_matrix = np.copy(pgm_file.data) max_pixel = np.amax(img_matrix) low_thresh = low_thresh * max_pixel high_thresh = high_thresh * max_pixel for row in range(num_rows): top = row bottom = (num_rows-1)-row for col in range(num_cols): left = col right = (num_cols-1)-col curr_pixel = img_matrix[row][col] if left >= 1 and right >= 1 and top >= 1 and bottom >= 1: if curr_pixel < low_thresh: temp_matrix[row][col] = 0 elif low_thresh <= curr_pixel < high_thresh: if img_matrix[row][col-1] <= high_thresh: if img_matrix[row-1][col-1] <= high_thresh: if img_matrix[row-1][col] <= high_thresh: if img_matrix[row-1][col+1] <= high_thresh: if img_matrix[row][col+1] <= high_thresh: if img_matrix[row+1][col+1] <= high_thresh: if img_matrix[row+1][col] <= high_thresh: if img_matrix[row+1][col-1] <= high_thresh: temp_matrix[row][col] = 0 max_pixel = np.amax(temp_matrix) return PGMFile(max_pixel, temp_matrix)
StarcoderdataPython
203483
import os import importlib from pathlib import Path import getpass import inspect import pickle from unittest.mock import Mock import pytest import yaml import numpy as np from ploomber.env.env import Env from ploomber.env.decorators import with_env, load_env from ploomber.env import validate from ploomber.env.envdict import EnvDict from ploomber.env import expand from ploomber.env.expand import (EnvironmentExpander, expand_raw_dictionary, cast_if_possible, iterate_nested_dict, expand_raw_dictionaries_and_extract_tags) from ploomber.util import default from ploomber import repo from ploomber.exceptions import BaseException def test_env_repr_and_str(cleanup_env, monkeypatch): mock = Mock() mock.datetime.now().isoformat.return_value = 'current-timestamp' monkeypatch.setattr(expand, "datetime", mock) env = Env({'user': 'user', 'cwd': 'cwd', 'root': 'root'}) d = { 'user': 'user', 'cwd': 'cwd', 'now': 'current-timestamp', 'root': 'root' } assert repr(env) == f"Env({d})" assert str(env) == str(d) def test_env_repr_and_str_when_loaded_from_file(tmp_directory, cleanup_env, monkeypatch): mock = Mock() mock.datetime.now().isoformat.return_value = 'current-timestamp' monkeypatch.setattr(expand, "datetime", mock) path_env = Path('env.yaml') d = { 'user': 'user', 'cwd': 'cwd', 'now': 'current-timestamp', 'root': 'root', } path_env.write_text(yaml.dump(d)) env = Env() path = str(path_env.resolve()) expected = f"Env({d!r}) (from file: {path})" assert repr(env) == expected assert str(env) == str(d) def test_includes_path_in_repr_if_init_from_file(cleanup_env, tmp_directory): Path('env.yaml').write_text('a: 1') env = Env('env.yaml') assert 'env.yaml' in repr(env) def test_init_with_arbitrary_name(cleanup_env, tmp_directory): Path('some_environment.yaml').write_text('a: 1') assert Env('some_environment.yaml') def test_init_with_null_value(cleanup_env, tmp_directory): Path('env.yaml').write_text('a: null') assert Env('env.yaml') def test_init_with_absolute_path(cleanup_env, tmp_directory): Path('env.yaml').write_text('a: 1') assert Env(Path(tmp_directory, 'env.yaml')) def test_includes_function_module_and_name_if_decorated(cleanup_env): @with_env({'a': 1}) def my_fn(env): return env # NOTE: pytest sets the module name to the current filename assert 'test_env.my_fn' in repr(my_fn()) def test_cannot_start_env_if_one_exists_already(cleanup_env): Env({'a': 1}) with pytest.raises(RuntimeError): Env({'a': 2}) def test_can_initialize_env_after_failed_attempt(cleanup_env): try: # underscores are not allowed, this will fail, but before raising # the exception, the instance (created in __new__) must be discarded Env({'_a': 1}) except ValueError: pass # if we can initialize another object, it means the previous call was # corerctly discarded assert Env({'a': 1}).a == 1 def test_context_manager(cleanup_env): with Env({'a': 1}) as env: value = env.a # should be able to initialize another env now Env({'a': 2}) assert value == 1 def test_load_env_with_name(tmp_directory, cleanup_env): Path('env.some_name.yaml').write_text(yaml.dump({'a': 1})) Env('env.some_name.yaml') def test_load_env_default_name(tmp_directory, cleanup_env): Path('env.yaml').write_text(yaml.dump({'a': 1})) Env() def test_path_returns_Path_objects(cleanup_env): env = Env( {'path': { 'a': '/tmp/path/file.txt', 'b': '/another/path/file.csv' }}) assert isinstance(env.path.a, Path) assert isinstance(env.path.b, Path) def test_automatically_creates_path(cleanup_env, tmp_directory): Env({'path': {'home': 'some_path/'}}) assert Path('some_path').exists() and Path('some_path').is_dir() def test_path_expandsuser(cleanup_env): env = Env({'path': {'home': '~'}}) assert env.path.home == Path('~').expanduser() def test_init_with_module_key(cleanup_env): env = Env({'_module': 'test_pkg'}) expected = Path(importlib.util.find_spec('test_pkg').origin).parent assert env._module == expected def test_init_with_nonexistent_package(cleanup_env): with pytest.raises(ValueError) as exc_info: Env({'_module': 'i_do_not_exist'}) expected = ('Could not resolve _module "i_do_not_exist", ' 'it is not a valid module nor a directory') assert exc_info.value.args[0] == expected def test_init_with_file(tmp_directory, cleanup_env): Path('not_a_package').touch() with pytest.raises(ValueError) as exc_info: Env({'_module': 'not_a_package'}) expected = ('Could not resolve _module "not_a_package", ' 'expected a module or a directory but got a file') assert exc_info.value.args[0] == expected def test_module_is_here_placeholder_raises_error_if_init_w_dict(cleanup_env): with pytest.raises(ValueError) as exc_info: Env({'_module': '{{here}}'}) expected = '_module cannot be {{here}} if not loaded from a file' assert exc_info.value.args[0] == expected def test_module_with_here_placeholder(tmp_directory, cleanup_env): Path('env.yaml').write_text('_module: "{{here}}"') env = Env() assert env._module == Path(tmp_directory).resolve() def test_expand_version(cleanup_env): env = Env({'_module': 'test_pkg', 'version': '{{version}}'}) assert env.version == 'VERSION' def test_expand_git_with_underscode_module(monkeypatch, cleanup_env): monkeypatch.setattr(repo, 'git_location', lambda _: 'git-location') monkeypatch.setattr(repo, 'git_hash', lambda _: 'git-hash') env = Env({ '_module': 'test_pkg', 'git': '{{git}}', 'git_hash': '{{git_hash}}', }) assert env.git == 'git-location' assert env.git_hash == 'git-hash' def test_expand_git(monkeypatch, cleanup_env, tmp_git): monkeypatch.setattr(repo, 'git_location', lambda _: 'git-location') monkeypatch.setattr(repo, 'git_hash', lambda _: 'git-hash') Path('env.yaml').write_text( yaml.dump({ 'git': '{{git}}', 'git_hash': '{{git_hash}}', })) # need to initialize from a file for this to work, since Env will use # the env.yaml location to run the git command env = Env('env.yaml') assert env.git == 'git-location' assert env.git_hash == 'git-hash' def test_can_create_env_from_dict(cleanup_env): e = Env({'a': 1}) assert e.a == 1 def test_can_instantiate_env_if_located_in_sample_dir(tmp_sample_dir, cleanup_env): Env() def test_raise_file_not_found_if(cleanup_env): with pytest.raises(FileNotFoundError): Env('env.non_existing.yaml') def test_with_env_initialized_from_path(cleanup_env, tmp_directory): Path('env.yaml').write_text('{"a": 42}') @with_env('env.yaml') def my_fn(env): return env.a assert my_fn() == 42 def test_with_env_initialized_from_path_looks_recursively( cleanup_env, tmp_directory): Path('env.yaml').write_text('{"a": 42}') Path('dir').mkdir() os.chdir('dir') @with_env('env.yaml') def my_fn(env): return env.a assert my_fn() == 42 def test_with_env_decorator(cleanup_env): @with_env({'a': 1}) def my_fn(env, b): return env.a, b assert (1, 2) == my_fn(2) def test_with_env_modifies_signature(cleanup_env): @with_env({'a': 1}) def my_fn(env, b): return env.a, b assert tuple(inspect.signature(my_fn).parameters) == ('b', ) # TODO: try even more nested def test_with_env_casts_paths(cleanup_env): @with_env({'path': {'data': '/some/path'}}) def my_fn(env): return env.path.data returned = my_fn(env__path__data='/another/path') assert returned == Path('/another/path') def test_with_env_fails_if_no_env_arg(cleanup_env): with pytest.raises(RuntimeError): @with_env({'a': 1}) def my_fn(not_env): pass def test_with_env_fails_if_fn_takes_no_args(cleanup_env): with pytest.raises(RuntimeError): @with_env({'a': 1}) def my_fn(): pass def test_replace_defaults(cleanup_env): @with_env({'a': {'b': 1}}) def my_fn(env, c): return env.a.b + c assert my_fn(1, env__a__b=100) == 101 def test_with_env_without_args(tmp_directory, cleanup_env): Path('env.yaml').write_text('key: value') @with_env def my_fn(env): return 1 assert my_fn() == 1 def test_env_dict_is_available_upon_decoration(): @with_env({'a': 1}) def make(env, param, optional=1): pass assert make._env_dict['a'] == 1 def test_replacing_defaults_also_expand(monkeypatch, cleanup_env): @with_env({'user': 'some_user'}) def my_fn(env): return env.user def mockreturn(): return 'expanded_username' monkeypatch.setattr(getpass, 'getuser', mockreturn) assert my_fn(env__user='{{user}}') == 'expanded_username' def test_replacing_raises_error_if_key_does_not_exist(): @with_env({'a': {'b': 1}}) def my_fn(env, c): return env.a.b + c with pytest.raises(KeyError): my_fn(1, env__c=100) def test_with_env_shows_name_and_module_if_invalid_env(cleanup_env): with pytest.raises(RuntimeError) as excinfo: @with_env({'_a': 1}) def some_function(env): pass # NOTE: pytest sets the module name to the current filename assert 'test_env.some_function' in str(excinfo.getrepr()) def test_with_env_shows_function_names_if_env_exists(cleanup_env): @with_env({'a': 1}) def first(env): pass @with_env({'a': 1}) def second(env): first() with pytest.raises(RuntimeError) as excinfo: second() # NOTE: pytest sets the module name to the current filename assert 'test_env.first' in str(excinfo.getrepr()) assert 'test_env.second' in str(excinfo.getrepr()) def test_get_all_dict_keys(): got = validate.get_keys_for_dict({'a': 1, 'b': {'c': {'d': 10}}}) assert set(got) == {'a', 'b', 'c', 'd'} def test_double_underscore_raises_error(): msg = r"Keys cannot have double underscores, got: \['b\_\_c'\]" with pytest.raises(ValueError, match=msg): Env({'a': {'b__c': 1}}) def test_leading_underscore_in_top_key_raises_error(cleanup_env): msg = ("Error validating env.\nTop-level keys cannot start with " "an underscore, except for {'_module'}. Got: ['_a']") with pytest.raises(ValueError) as exc_info: Env({'_a': 1}) assert exc_info.value.args[0] == msg def test_can_decorate_w_load_env_without_initialized_env(): @load_env def fn(env): pass def test_load_env_modifies_signature(cleanup_env): @load_env def fn(env): pass assert tuple(inspect.signature(fn).parameters) == () def test_load_env_decorator(cleanup_env): Env({'a': 10}) @load_env def fn(env): return env.a assert fn() == 10 def test_expand_tags(monkeypatch, tmp_directory): def mockreturn(): return 'username' monkeypatch.setattr(getpass, "getuser", mockreturn) # this is required to enable {{root}} Path('setup.py').touch() Path('src', 'package').mkdir(parents=True) Path('src', 'package', 'pipeline.yaml').touch() raw = { 'a': '{{user}}', 'b': { 'c': '{{user}} {{user}}' }, 'cwd': '{{cwd}}', 'root': '{{root}}', } expander = EnvironmentExpander(preprocessed={}) env_expanded = expander.expand_raw_dictionary(raw) assert env_expanded == { 'a': 'username', 'b': { 'c': 'username username' }, 'cwd': str(Path(tmp_directory).resolve()), 'root': str(Path(tmp_directory).resolve()), } def test_error_if_no_project_root(tmp_directory): raw = {'root': '{{root}}'} expander = EnvironmentExpander(preprocessed={}) with pytest.raises(BaseException) as excinfo: expander.expand_raw_dictionary(raw) assert ('An error happened while expanding placeholder {{root}}' in str(excinfo.getrepr())) assert ('could not find a setup.py in a parent folder' in str(excinfo.getrepr())) def test_root_expands_relative_to_path_to_here(tmp_directory): path = Path('some', 'nested', 'dir').resolve() path.mkdir(parents=True) (path / 'pipeline.yaml').touch() raw = {'root': '{{root}}'} expander = EnvironmentExpander(preprocessed={}, path_to_here=path) out = expander.expand_raw_dictionary(raw) assert out['root'] == str(path.resolve()) def test_here_placeholder(tmp_directory, cleanup_env): Path('env.yaml').write_text(yaml.dump({'here': '{{here}}'})) env = Env() assert env.here == str(Path(tmp_directory).resolve()) def test_serialize_env_dict(): # this tests an edge case due to EnvDict's implementation: to enable # accessing values in the underlying dictionary as attributes, we are # customizing __getattr__, however, when an object is unserialized, # Python tries to look for __getstate__ (which triggers calling # __getattr__), since it cannot find it, it will go to __getitem__ # (given the current implementation of __getattr__). But __getitem__ # uses self.preprocessed. At unserialization time, this attribute does # not exist yet!, which will cause another call to __getattr__. To avoid # this recursive loop, we have to prevent special methods to call # __getitem__ if they do not exist - EnvDict and Env objects are not # expected to be serialized but we have fix it anyway env = EnvDict({'a': 1}) assert pickle.loads(pickle.dumps(env)) def test_replace_flatten_key_env_dict(): env = EnvDict({'a': 1}) new_env = env._replace_flatten_key(2, 'env__a') assert new_env.a == 2 and env is not new_env # must return a copy def test_replace_nested_flatten_key_env_dict(): env = EnvDict({'a': {'b': 1}}) new_env = env._replace_flatten_key(2, 'env__a__b') assert new_env.a.b == 2 and env is not new_env # must return a copy def test_replace_nested_flatten_keys_env_dict(): env = EnvDict({'a': {'b': 1, 'c': 1}}) new_env = env._replace_flatten_keys({'env__a__b': 2, 'env__a__c': 2}) assert (new_env.a.b == 2 and new_env.a.c == 2 and env is not new_env) # must return a copy def test_error_when_flatten_key_doesnt_exist(): env = EnvDict({'a': 1}) with pytest.raises(KeyError): env._replace_flatten_key(2, 'env__b') @pytest.mark.parametrize( 'data, keys', [ [{ 'a': 1 }, ('a', )], # added this to fix an edge case [{ 'a': { 'b': 1 } }, ('a', 'b')], ]) def test_env_dict_initialized_with_env_dict(data, keys): original = EnvDict(data) env = EnvDict(original) # ensure we initialized the object correctly assert repr(env) assert str(env) # check default keys are correctly copied assert original._default_keys == env._default_keys # check we can access nested keys for key in keys: env = env[key] assert env == 1 def test_env_dict_initialized_with_replaced_env_dict(): a = EnvDict({'a': {'b': 1}}) a_mod = a._replace_flatten_keys({'env__a__b': 2}) b = EnvDict(a_mod) # make sure the new object has the updated values assert b['a']['b'] == 2 def test_expand_raw_dictionary(): mapping = EnvDict({'key': 'value'}) d = {'some_setting': '{{key}}'} assert expand_raw_dictionary(d, mapping) == {'some_setting': 'value'} def test_expand_raw_dictionaries_and_extract_tags(): mapping = EnvDict({'key': 'value'}) d = [{'some_setting': '{{key}}'}, {'another_setting': '{{key}}'}] expanded, tags = expand_raw_dictionaries_and_extract_tags(d, mapping) assert expanded == ( { 'some_setting': 'value', }, { 'another_setting': 'value' }, ) assert tags == {'key'} def test_expand_raw_dict_nested(): mapping = EnvDict({'key': 'value'}) d = { 'section': { 'some_settting': '{{key}}' }, 'list': ['{{key}}', '{{key}}'] } assert (expand_raw_dictionary(d, mapping) == { 'section': { 'some_settting': 'value' }, 'list': ['value', 'value'] }) def test_envdict_git_ignored_if_git_command_fails_and_no_git_placeholder( tmp_directory): env = EnvDict({'tag': 'value'}, path_to_here='.') assert set(env) == {'cwd', 'here', 'now', 'tag', 'user'} def test_expand_raw_dict_error_if_missing_key(): mapping = EnvDict({'another_key': 'value'}) d = {'some_stuff': '{{key}}'} with pytest.raises(BaseException) as excinfo: expand_raw_dictionary(d, mapping) assert "Error replacing placeholders:" in str(excinfo.value) assert "* {{key}}: Ensure the placeholder is defined" in str(excinfo.value) def test_expand_raw_dictionary_parses_literals(): raw = {'a': '{{a}}', 'b': '{{b}}'} mapping = EnvDict({'a': [1, 2, 3], 'b': {'z': 1}}) out = expand_raw_dictionary(raw, mapping) assert out['a'] == [1, 2, 3] assert out['b'] == {'z': 1} @pytest.mark.parametrize('constructor', [list, tuple, np.array]) def test_iterate_nested_dict(constructor): numbers = constructor([1, 2, 3]) c = {'c': numbers} b = {'b': c} g = iterate_nested_dict({'a': b}) parent, key, value, preffix = next(g) assert parent is numbers and key == 0 and value == 1, preffix == [ 'a', 'b', 'c', 0 ] parent, key, value, preffix = next(g) assert parent is numbers and key == 1 and value == 2, preffix == [ 'a', 'b', 'c', 1 ] parent, key, value, preffix = next(g) assert parent is numbers and key == 2 and value == 3, preffix == [ 'a', 'b', 'c', 2 ] def test_iterate_nested_dict_with_str(): assert list(iterate_nested_dict({'a': 'string'})) == [({ 'a': 'string' }, 'a', 'string', ['a'])] @pytest.mark.parametrize('value, expected', [ ('True', True), ('false', False), ('100', 100), ('0.11', 0.11), ('string', 'string'), (True, True), (False, False), (10, 10), (10.1, 10.1), (None, None), ('None', None), ('none', None), ('NULL', None), ('null', None), ]) def test_cast_if_possible(value, expected): assert cast_if_possible(value) == expected def test_replace_value_casts_if_possible(): env = EnvDict({'a': False, 'b': 1, 'c': 1.1}) env._replace_value('True', ['a']) env._replace_value('2', ['b']) env._replace_value('2.2', ['c']) assert env.a is True assert env.b == 2 assert env.c == 2.2 def test_attribute_error_message(): env = EnvDict({'user': 'user', 'cwd': 'cwd', 'root': 'root'}) with pytest.raises(AttributeError) as excinfo_attr: env.aa with pytest.raises(KeyError) as excinfo_key: env['aa'] assert str(excinfo_attr.value) == f"{env!r} object has no atttribute 'aa'" assert str(excinfo_key.value) == f'"{env!r} object has no key \'aa\'"' @pytest.mark.parametrize('content, type_', [['a', 'str'], ['- a', 'list'], ['', 'NoneType']]) def test_error_when_loaded_obj_is_not_dict(content, type_, tmp_directory): path = Path(tmp_directory, 'file.yaml') path.write_text(content) with pytest.raises(ValueError) as excinfo: EnvDict('file.yaml') expected = ("Expected object loaded from 'file.yaml' to be " "a dict but got '{}' instead, " "verify the content").format(type_) assert str(excinfo.value) == expected def test_default(monkeypatch): monkeypatch.setattr(getpass, 'getuser', Mock(return_value='User')) monkeypatch.setattr(os, 'getcwd', Mock(return_value='/some_path')) env = EnvDict(dict()) assert env.cwd == str(Path('/some_path').resolve()) assert env.user == 'User' def test_default_with_here_relative(tmp_directory): Path('dir').mkdir() env = EnvDict(dict(), path_to_here='dir') assert env.here == str(Path(tmp_directory, 'dir').resolve()) def test_default_with_here_absolute(tmp_directory): here = str(Path(tmp_directory, 'dir').resolve()) env = EnvDict(dict(), path_to_here=here) assert env.here == here def test_default_with_root(monkeypatch): mock = Mock(return_value='some_value') monkeypatch.setattr(default, 'find_root_recursively', mock) env = EnvDict(dict()) assert env.root == 'some_value' @pytest.mark.parametrize('kwargs, expected', [ [ dict(source={'cwd': 'some_value'}, path_to_here='value'), {'here', 'user', 'now'} ], [dict(source={'cwd': 'some_value'}), {'user', 'now'}], [dict(source={'user': 'some_value'}), {'cwd', 'now'}], ]) def test_default_keys(kwargs, expected): assert EnvDict(**kwargs).default_keys == expected def test_adds_default_keys_if_they_dont_exist(monkeypatch): monkeypatch.setattr(getpass, 'getuser', Mock(return_value='User')) monkeypatch.setattr(os, 'getcwd', Mock(return_value='/some_path')) mock = Mock(return_value='some_value') monkeypatch.setattr(default, 'find_root_recursively', mock) monkeypatch.setattr(expand.default, 'find_root_recursively', mock) env = EnvDict({'a': 1}, path_to_here='/dir') assert env.cwd == str(Path('/some_path').resolve()) assert env.here == str(Path('/dir').resolve()) assert env.user == 'User' assert env.root == 'some_value' assert env.default_keys == {'cwd', 'here', 'user', 'root', 'now'} def test_find(tmp_directory): path = Path('some', 'dir') path.mkdir(parents=True) Path('some', 'env.yaml').write_text('key: value') expected_here = str(Path('some').resolve()) os.chdir(path) env = EnvDict.find('env.yaml') assert env.cwd == str(Path('.').resolve()) assert env.here == expected_here @pytest.mark.parametrize('value, error', [ ['{{git}}', 'Ensure git is installed and git repository exists'], ['{{git_hash}}', 'Ensure git is installed and git repository exists'], ['{{here}}', 'Ensure the spec was initialized from a file'], ['{{root}}', 'Ensure a pipeline.yaml or setup.py exist'], ['{{another}}', 'Ensure the placeholder is defined'], ]) def test_error_message_if_missing_default_placeholder(tmp_directory, value, error): Path('env.yaml').write_text(yaml.dump({'key': 'value'})) env = EnvDict('env.yaml') with pytest.raises(BaseException) as excinfo: expand_raw_dictionary({ 'a': value, }, env) assert error in str(excinfo.value)
StarcoderdataPython
302561
from Crypto.PublicKey import RSA from Crypto.Cipher import AES from Crypto import Random import ast, os, random, struct, string class AES_cipher(): def __init__(self, passcode): self.passcode = passcode self.iv = bytes(16*'\x00'.encode()) self._add_padding() def _add_padding(self): """ set the length of passcode and iv to 16, 24, 32 """ if len(self.passcode) in [16,24,32]: return if len(self.passcode) < 16: for i in range(16 - len(self.passcode)): self.passcode = self.passcode + random.choice(string.ascii_letters) #self.passcode = self.passcode + random.choice('a') elif len(self.passcode) < 24: for i in range(24 - len(self.passcode)): self.passcode = self.passcode + random.choice(string.ascii_letters) #self.passcode = self.passcode + random.choice('a') elif len(self.passcode) < 32: for i in range(32 - len(self.passcode)): self.passcode = self.passcode + random.choice(string.ascii_letters) #self.passcode = self.passcode + random.choice('a') def encrypt_file(self, in_filename, out_filename=None, chunksize=64*1024): passcode = self.passcode if out_filename is None: out_filename = in_filename + '.enc' #iv = ''.join(chr(random.randint(0, 0xFF)) for i in range(16)) iv = self.iv encryptor = AES.new(passcode, AES.MODE_CBC, iv) filesize = os.path.getsize(in_filename) with open(in_filename, 'rb') as infile: with open(out_filename, 'wb') as outfile: outfile.write(struct.pack('<Q', filesize)) outfile.write(iv) while True: chunk = infile.read(chunksize) if len(chunk) == 0: break elif len(chunk) % 16 != 0: chunk += bytes((16 - len(chunk) % 16)*' '.encode()) outfile.write(encryptor.encrypt(chunk)) def decrypt_file(self,in_filename, out_filename=None, chunksize=24*1024): """ Decrypts a file using AES (CBC mode) with the given key. Parameters are similar to encrypt_file, with one difference: out_filename, if not supplied will be in_filename without its last extension (i.e. if in_filename is 'aaa.zip.enc' then out_filename will be 'aaa.zip') """ passcode = self.passcode if out_filename is None: out_filename = os.path.splitext(in_filename)[0] + ".dec" with open(in_filename, 'rb') as infile: origsize = struct.unpack('<Q', infile.read(struct.calcsize('Q')))[0] iv = infile.read(16) decryptor = AES.new(passcode, AES.MODE_CBC, iv) with open(out_filename, 'wb') as outfile: while True: chunk = infile.read(chunksize) if len(chunk) == 0: break outfile.write(decryptor.decrypt(chunk)) outfile.truncate(origsize) class RSA_cipher(): # public key algorithm def __init__(self, username=None): self.usename = None if username is None: self.username = "noname" else: self.username = username self.key = None self.pubkey = None def init(self, username=None): if username is not None: self.username = username self.random_generator = Random.new().read self.key = RSA.generate(1024, self.random_generator) self.pubkey = self.key.publickey() with open("key/{}.priv".format(self.username), "wb") as privkey: privkey.write(self.key.exportKey(format='PEM')) with open("key/{}.pub".format(self.username), "wb") as pubkey: pubkey.write(self.pubkey.exportKey(format='PEM')) #self.prikey = self.key.privatekey() def importKey(self, keypath=None): # pubkey_path or priv_path if keypath.endswith(".pub"): pubkey_text = open(keypath, "rb") self.pubkey = RSA.importKey(pubkey_text.read()) pubkey_text.close() if keypath.endswith(".priv"): prikey_text = open(keypath, "rb") self.key = RSA.importKey(prikey_text.read()) self.pubkey = self.key.publickey() prikey_text.close() def importKeyAsString(self, pub_text=None): self.pubkey = RSA.importKey(pub_text) def encrypt_with_public(self, msg): encrypted = self.pubkey.encrypt(msg.encode('utf-8'), 32) self.encrypted = encrypted[0] return encrypted[0] def encrypt_with_private(self, msg): raise NotImplementedError def decrypt_with_public(self, msg): raise NotImplementedError def decrypt_with_private(self, msg=None): if msg is None: msg = str(self.encrypted) #print(ast.literal_eval(str(msg))) decrypted = self.key.decrypt(ast.literal_eval(str(msg))) #decrypted = self.key.decrypt(bytes(msg)) return decrypted def restore_key(self, priv_path): pass def printParams(self): attr = [attr for attr in vars(self).items() if not attr[0].startswith('__')] print(attr) return attr if __name__ == '__main__': rsa = RSA_cipher() rsa.init() print(type(rsa.pubkey))
StarcoderdataPython
9742508
# Copyright 2016 Autodesk Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import moldesign as mdt from ..molecules import MolecularProperties from ..utils import exports from .base import QMMMBase class QMMMEmbeddingBase(QMMMBase): """ Abstract class for standard QM/MM embedding models. To use any of this classes' subclasses, the MM models must support the ability to calculate the internal energies and interaction energies between subsystems, using the ``calculation_groups`` parameter. """ def __init__(self, *args, **kwargs): super(QMMMEmbeddingBase, self).__init__(*args, **kwargs) self.qmmol = None self.mmmol = None self.qm_atoms = None self.qm_link_atoms = None self._qm_index_set = None # TODO: add `qm_atom_indices` to QMMMBase parameters def calculate(self, requests): self.prep() self.mmmol.positions = self.mol.positions self._set_qm_positions() qmprops = self.qmmol.calculate(requests) mmprops = self.mmmol.calculate(requests) potential_energy = mmprops.potential_energy+qmprops.potential_energy forces = mmprops.forces.copy() for iatom, realatom in enumerate(self.qm_atoms): forces[realatom.index] = qmprops.forces[iatom] for atom in self.qm_link_atoms: self._distribute_linkatom_forces(forces, atom) properties = MolecularProperties(self.mol, mmprops=mmprops, qmprops=qmprops, potential_energy=potential_energy, forces=forces) if 'wfn' in qmprops: properties.wfn = qmprops.wfn return properties def prep(self): if self._prepped: return None self.params.qm_atom_indices.sort() self.qm_atoms = [self.mol.atoms[idx] for idx in self.params.qm_atom_indices] self._qm_index_set = set(self.params.qm_atom_indices) self.qmmol = self._setup_qm_subsystem() self.mmmol = mdt.Molecule(self.mol, name='%s MM subsystem' % self.mol.name) self.mol.ff.copy_to(self.mmmol) self._turn_off_qm_forcefield(self.mmmol.ff) self.mmmol.set_energy_model(self.params.mm_model) self._prepped = True return True def _setup_qm_subsystem(self): raise NotImplemented("%s is an abstract class, use one of its subclasses" % self.__class__.__name__) def _turn_off_qm_forcefield(self, ff): self._remove_internal_qm_bonds(ff.parmed_obj) self._exclude_internal_qm_ljterms(ff.parmed_obj) def _exclude_internal_qm_ljterms(self, pmdobj): # Turn off QM/QM LJ interactions (must be done AFTER _remove_internal_qm_bonds) numqm = len(self.params.qm_atom_indices) for i in range(numqm): for j in range(i+1, numqm): pmdobj.atoms[i].exclude(pmdobj.atoms[j]) def _remove_internal_qm_bonds(self, pmdobj): for i, iatom in enumerate(self.params.qm_atom_indices): pmdatom = pmdobj.atoms[iatom] allterms = ((pmdatom.bonds, 2), (pmdatom.angles, 3), (pmdatom.dihedrals, 4), (pmdatom.impropers, 4)) for termlist, numatoms in allterms: for term in termlist[:]: # make a copy so it doesn't change during iteration if self._term_in_qm_system(term, numatoms): term.delete() @staticmethod def _distribute_linkatom_forces(fullforces, linkatom): """ Distribute forces according to the apparently indescribable and unciteable "lever rule" """ # TODO: CHECK THIS!!!! mmatom = linkatom.metadata.mmatom qmatom = linkatom.metadata.mmpartner dfull = mmatom.distance(qmatom) d_mm = linkatom.distance(mmatom) p = (dfull - d_mm)/dfull fullforces[qmatom.index] += p*linkatom.force fullforces[mmatom.index] += (1.0-p) * linkatom.force def _set_qm_positions(self): for qmatom, realatom in zip(self.qmmol.atoms, self.qm_atoms): qmatom.position = realatom.position mdt.helpers.qmmm.set_link_atom_positions(self.qm_link_atoms) def _term_in_qm_system(self, t, numatoms): """ Check if an FF term is entirely within the QM subsystem """ for iatom in range(numatoms): attrname = 'atom%i' % (iatom + 1) if not getattr(t, attrname).idx in self._qm_index_set: return True else: return False @exports class MechanicalEmbeddingQMMM(QMMMEmbeddingBase): """ Handles _non-covalent_ QM/MM with mechanical embedding. No electrostatic interactions will be calculated between the QM and MM subsystems. No covalent bonds are are allowed between the two susbystems. """ def prep(self): if not super(MechanicalEmbeddingQMMM, self).prep(): return # was already prepped # Set QM partial charges to 0 self.mmmol.energy_model._prepped = False pmdobj = self.mmmol.ff.parmed_obj for i, iatom in enumerate(self.params.qm_atom_indices): pmdatom = pmdobj.atoms[iatom] pmdatom.charge = 0.0 def _setup_qm_subsystem(self): """ QM subsystem for mechanical embedding is the QM atoms + any link atoms """ qm_atoms = [self.mol.atoms[iatom] for iatom in self.params.qm_atom_indices] self.qm_link_atoms = mdt.helpers.qmmm.create_link_atoms(self.mol, qm_atoms) qmmol = mdt.Molecule(qm_atoms + self.qm_link_atoms, name='%s QM subsystem' % self.mol.name) for real_atom, qm_atom in zip(self.qm_atoms, qmmol.atoms): qm_atom.metadata.real_atom = real_atom qmmol.set_energy_model(self.params.qm_model) return qmmol @exports class ElectrostaticEmbeddingQMMM(QMMMEmbeddingBase): """ Handles _non-covalent_ QM/MM with electrostaic embedding. No bonds allowed across the QM/MM boundaries. To support this calculation type, the QM model must support the ability to denote a subset of atoms as the "QM" atoms, using the ``qm_atom_indices`` parameter. To support this calculation type, the QM model must support the ability to denote a subset of atoms as the "QM" atoms, using the ``qm_atom_indices`` parameter. The MM models must support the ability to turn of _internal_ interactions for a certain subset of the system, using the ``no_internal_calculations`` parameter. """ def prep(self): if not super(ElectrostaticEmbeddingQMMM, self).prep(): return # was already prepped if not self.params.qm_model.supports_parameter('qm_atom_indices'): raise TypeError('Supplied QM model ("%s") does not support QM/MM' % self.params.qm_model.__name__) def _setup_qm_subsystem(self): qmmol = mdt.Molecule(self.mol) self.mol.ff.copy_to(qmmol) self.qm_link_atoms = mdt.helpers.qmmm.create_link_atoms(self.mol, self.qm_atoms) if self.qm_link_atoms: raise ValueError('The %s model does not support link atoms' % self.__class__.__name__) qmmol.set_energy_model(self.params.qm_model) qmmol.energy_model.params.qm_atom_indices = self.params.qm_atom_indices return qmmol
StarcoderdataPython
11299440
<reponame>animator/orange3-scoring<gh_stars>1-10 import numpy as np from AnyQt.QtWidgets import QGridLayout, QSizePolicy as Policy from AnyQt.QtCore import QSize from Orange.widgets.widget import OWWidget, Msg, Output from Orange.data import Table, DiscreteVariable, Domain, ContinuousVariable from Orange.widgets import gui from Orange.evaluation import Results from orangecontrib.scoring.lib.model import ScoringModel from orangecontrib.scoring.lib.utils import prettifyText class OWEvaluate(OWWidget): # Each widget has a name description and a set of input/outputs (referred to as the widget’s meta description). # Widget's name as displayed in the canvas name = "Evaluate PMML/PFA Model" # Orange Canvas looks for widgets using an orange.widgets entry point. id = "orange.widgets.scoring.evaluate" # Short widget description description = "Evaluate PFA (*.json, *.yaml), PMML (*.xml) or ONNX (*.onnx) model" # An icon resource file path for this widget # (a path relative to the module where this widget is defined) icon = "icons/evaluate.svg" # Each Orange widget belongs to a category and has an associated priority within that category. priority = 2 category = "Scoring" keywords = ["scoring", "inference", "load", "pfa", "pmml", "onnx"] # Widget's inputs; here, a single input named "Number", of type int inputs = [("Data", Table, "set_data"), ("Scoring Model", ScoringModel, "set_model")] # Widget's outputs; here, a single output named "Number", of type int class Outputs: predictions = Output("Predictions", Table, doc="Scored results") evaluations_results = Output("Evaluation Results", Results) # Basic (convenience) GUI definition: # a simple 'single column' GUI layout # want_main_area = False # with a fixed or resizable geometry. resizing_enabled = True class Error(OWWidget.Error): connection = Msg("{}") def __init__(self): super().__init__() self.data = None self.model = None self.output_data = None self.eval_results = None self.inputDataAsArray = None self.inputWithoutFieldName = None # ensure the widget has some decent minimum width. self.controlArea.hide() box = gui.vBox(self.mainArea, "Info") self.infolabel = gui.widgetLabel(box, 'No model or data loaded.') self.warnings = gui.widgetLabel(box, '') box = gui.hBox(self.mainArea) gui.rubber(box) self.apply_button = gui.button( box, self, "Score", callback=self.score) self.apply_button.setEnabled(False) self.progressBarInit() @staticmethod def sizeHint(): return QSize(320, 100) def connect(self): return True def handleNewSignals(self): self.progressBarSet(0) self.output_data = None self.eval_results = None self.send_data() self.Error.clear() if self.data is not None and self.model is not None: conforms, fieldNamesChecked, inputFieldsChecked = self.describeFields() if conforms: self.inputDataAsArray = not inputFieldsChecked self.inputWithoutFieldName = not fieldNamesChecked self.apply_button.setEnabled(True) def describeFields(self): TAB = '&nbsp;&nbsp;&nbsp;&nbsp;' BR = '<br/>' SP = '&nbsp;' doFieldNameCheck = True doInputFieldsCheck = True X = self.data.X inputColumnNames = [field.name for field in self.data.domain.attributes] self.infolabel.setText('') text = "Input Data:" text += BR + "Rows - " + str(len(X)) text += BR + "<br/>".join(prettifyText(inputColumnNames, pre="Column Names - ")) text += BR text += BR + "{0} Model: ".format(self.model.type) inputFields = [name for name, _ in self.model.inputFields] inputDataTypes = [type for _, type in self.model.inputFields] text += BR + "<br/>".join(prettifyText(inputFields, pre="Model Field Names - ")) text += BR text += BR + 'Processing INFO:' if self.model.type == "PFA": if len(inputFields) == 1: if inputFields[0] == "input_value": doFieldNameCheck = False text += BR + '- PFA input is of primitive Avrotype with no column name. Skipping field names check.' if "array" in inputDataTypes[0]: doInputFieldsCheck = False text += BR + '- PFA input is of array Avrotype so value of all fields of the input data will' +\ BR + SP + SP + 'be converted into an array. Skipping field name and number of input fields check.' if doInputFieldsCheck: if len(inputFields) != len(inputColumnNames): text += BR + 'Error: No. of columns in Data is not equal to the no. of input fields of the model.' self.infolabel.setText(text) return False, doFieldNameCheck, doInputFieldsCheck text += BR + '- No. of columns in Data is equal to the no. of input fields of the model.' if doFieldNameCheck: if sorted(inputFields) != sorted(inputColumnNames): text += BR + 'Error: Column names in Data do not match the input field names of the model.' self.infolabel.setText(text) return False, doFieldNameCheck, doInputFieldsCheck text += BR + '- Column names in Data match with the input field names of the model.' self.infolabel.setText(text) return True, doFieldNameCheck, doInputFieldsCheck def send_data(self): self.Outputs.predictions.send(self.output_data) self.Outputs.evaluations_results.send(self.eval_results) self.apply_button.setEnabled(False) def set_data(self, data): self.data = data self.handleNewSignals() def set_model(self, model): self.model = model self.handleNewSignals() def score(self): self.output_data = None self.progressBarSet(0) #cv = ["null", "boolean", "integer", "int", "long", "float", "double"] dv = ["string", "bytes"] res = [] inputColumnNames = [field.name for field in self.data.domain.attributes] dvFieldSet = {name: [] for name, type in self.model.outputFields if type in dv} nRows = len(self.data.X) for cnt, row in enumerate(self.data.X): self.progressBarSet(int(100*cnt/nRows) -10) datum = None if self.inputWithoutFieldName: datum = row[0] elif self.inputDataAsArray: datum = {self.model.inputFields[0][0]: list(row)} else: datum = dict(zip(inputColumnNames, row)) if datum is not None: result = self.model.predict(datum) if "output_value" == self.model.outputFields[0][0]: if "output_value" in dvFieldSet.keys(): if result in dvFieldSet["output_value"]: result = dvFieldSet["output_value"].index(result) else: dvFieldSet["output_value"].append(result) result = len(dvFieldSet["output_value"]) - 1 res.append([result, ]) else: resRow = [] for name, _ in self.model.outputFields: if name in dvFieldSet.keys(): if result[name] in dvFieldSet[name]: resRow.append(dvFieldSet[name].index(result[name])) else: dvFieldSet[name].append(result[name]) resRow.append(len(dvFieldSet[name])-1) else: resRow.append(result[name]) res.append(resRow) else: raise RuntimeError("Error detecting input data row - {0}".format(row)) DomainX = self.data.domain.attributes DomainY = [DiscreteVariable(name, values=dvFieldSet[name]) if name in dvFieldSet.keys() else ContinuousVariable(name) \ for name, _ in self.model.outputFields] DomainM = self.data.domain.class_vars output_data_domain = Domain(DomainX, class_vars=DomainY, metas=DomainM) self.output_data = Table.from_numpy(output_data_domain, self.data.X, Y=np.array(res), metas=self.data._Y) self.output_data.name = "Result Table" if len(DomainM) > 0 and len(res[0])==1: self.eval_result_matrix(np.array(res), DomainY) self.send_data() self.progressBarSet(100) def eval_result_matrix(self, predicted_results, domain_results): self.eval_results = Results(self.data, nrows=len(self.data), row_indices = np.arange(len(self.data)), actual=self.data.Y, predicted=np.array([predicted_results.ravel()])) if __name__ == "__main__": from Orange.widgets.utils.widgetpreview import WidgetPreview # since Orange 3.20.0 from orangecontrib.scoring.lib.readers import PFAFormat import os pfaFile = os.path.join(os.path.dirname(os.path.realpath(__file__)), "../tests/sample_iris.json") WidgetPreview(OWEvaluate).run(set_data=Table("iris"), set_model=PFAFormat.get_reader(pfaFile).read())
StarcoderdataPython
11323393
'''Implements the infrastructure to spread indexing tasks over a single :class:`~.RandomAccessScanSource` across multiple processes for speed. The primary function in this module is :func:`index`, which will perform this dispatch. ''' import multiprocessing import logging import dill from .scan_index import ExtendedScanIndex from .scan_interval_tree import ( ScanIntervalTree, extract_intervals, make_rt_tree) logger = logging.getLogger(__name__) n_cores = multiprocessing.cpu_count() def indexing_iterator(reader, start, end, index): """A helper function which will iterate over an interval of a :class:`~.RandomAccessScanSource` while feeding each yielded :class:`~.ScanBunch` into a provided :class:`~.ExtendedScanIndex`. [description] Parameters ---------- reader : :class:`~.RandomAccessScanSource` or :class:`~.ScanIterator` The scan data source to loop over. start : int The starting index end : int The stopping index index : :class:`~.ExtendedScanIndex` The scan index to fill. Yields ------ :class:`~.ScanBunch` """ assert end >= start, "End cannot precede Start" try: iterator = reader.start_from_scan(index=start, grouped=True) except AttributeError: if start != 0: raise iterator = reader for scan_bunch in iterator: try: ix = scan_bunch.precursor.index except AttributeError: ix = scan_bunch.products[0].index if ix > end: break index.add_scan_bunch(scan_bunch) yield scan_bunch def index_chunk(reader, start, end): """The task function for :func:`quick_index`, which will build an :class:`~.ExtendedIndex` and :class:`ScanIntervalTree` from an index range over a :class:`~.ScanIterator` Parameters ---------- reader : :class:`~.ScanIterator` or :class:`~.RandomAccessScanSource` The scan source to iterate over start : int The starting index end : int The stopping index Returns ------- start: int The starting index for this chunk end: int The stopping index for this chunk index: :class:`~.ExtendedIndex` The constructed scan metadata index for this chunk intervals: :class:`~.ScanIntervalTree The constructed scan interval tree for this chunk """ index = ExtendedScanIndex() iterator = indexing_iterator(reader, start, end, index) intervals = extract_intervals(iterator) return (start, end, index, intervals) def partition_work(n_items, n_workers, start_index=0): """Given an index range and a number of workers to work on them, break the index range into approximately evenly sized sub-intervals. This is a helper function for :func:`run_task_in_chunks` used to compute the chunks. Parameters ---------- n_items : int The maximum value of the index range n_workers : int The number of workers to split the work between start_index : int, optional The starting value of the index range (the default is 0) Returns ------- list: A list of (start, end) pairs defining the index ranges each worker will handle. """ if n_workers == 1: return [[start_index, start_index + n_items]] chunk_size = int(n_items / n_workers) n_items += start_index intervals = [] start = start_index intervals.append([start, start + chunk_size]) start += chunk_size while start + chunk_size < (n_items): end = start + chunk_size intervals.append([start, end]) start = end # Make sure that the last chunk actually covers the end of # the interval. last = intervals[-1] if last[1] > n_items: last[1] = n_items else: last[1] += (n_items - last[1]) return intervals class _Indexer(object): '''A pickle-able callable object which wraps :func:`index_chunk` for the call signature used by :func:`run_task_in_chunks` ''' def __call__(self, payload): reader, start, end = payload try: result = index_chunk(reader, start, end) except Exception as e: print(reader, start, end, e) import traceback traceback.print_exc() raise e return result class _TaskWrapper(object): '''A simple wrapper for a callable to capture the index range for a chunk created by :func:`run_task_in_chunks`, so that the start index of the chunk is known. ''' def __init__(self, task): self.task = task def __getstate__(self): state = { "task": dill.dumps(self.task) } return state def __setstate__(self, state): self.task = dill.loads(state['task']) def __call__(self, payload): _reader, start, _end = payload out = self.task(payload) return start, out class _TaskPayload(object): """A wrapper for the input to the distributed task which transmits the :class:`~.RandomAccessScanSource` via :mod:`dill` to make pickling of any wrapped file objects possible. Mocks a subset of the :class:`~.Sequence` API to allow it to be treated like a :class:`tuple` Attributes ---------- reader: :class:`~.RandomAccessScanSource` The scan data source to be shared with the worker. start: int The scan index to start processing from end: int The scan index to stop processing at. options: dict A dictionary of extra arguments that the task might use. """ def __init__(self, reader, start, end, **kwargs): self.reader = reader self.start = start self.end = end self.options = kwargs def __iter__(self): yield self.reader yield self.start yield self.end def __getitem__(self, i): if i == 0: return self.reader elif i == 1: return self.start elif i == 2: return self.end else: raise IndexError(i) def __len__(self): return 3 def __getstate__(self): state = { "reader": dill.dumps(self.reader, -1), "start": self.start, "end": self.end, "options": self.options } return state def __setstate__(self, state): self.reader = dill.loads(state['reader']) self.start = state['start'] self.end = state['end'] self.options = state['options'] def __repr__(self): template = "{self.__class__.__name__}({self.reader}, {self.start}, {self.end}, {self.options})" return template.format(self=self) def run_task_in_chunks(reader, n_processes=None, n_chunks=None, scan_interval=None, task=None, progress_indicator=None): """Run a :class:`~.Callable` `task` over a :class:`~.ScanIterator` in chunks across multiple processes. This function breaks apart a :class:`~.ScanIterator`'s scans over `scan_interval`, or the whole sequence if not provided. Parameters ---------- reader : :class:`~.ScanIterator` The set of :class:`~.Scan` objects to operate on n_processes : int, optional The number of worker processes to use (the default is 4 or the number of cores available, whichever is lower) n_chunks : int, optional The number of chunks to break the scan range into (the default is equal to `n_processes`) scan_interval : :class:`tuple` of (:class:`int`, :class:`int`), optional The start and stop scan index to apply the task over. If omitted, the entire scan range will be used. If either entry is :const:`None`, then the index will be assumed to be the first or last scan respectively. task : :class:`~.Callable` The callable object which will be executed on each chunk in a sub-process. It must take one argument, a :class:`tuple` of (`reader`, `start index`, `stop index`), and it must return a pickle-able object. progress_indicator : :class:`~.Callable`, optional A callable object which will be used to report progress as chunks finish processing. It must take one argument, a :class:`float` which represents the fraction of all work completed. Returns ------- :class:`list`: The result of `task` on each chunk of `reader` in index sorted order. """ if n_processes is None: n_processes = min(n_cores, 4) if task is None or not callable(task): raise ValueError("The task must be callable!") if scan_interval is None: start_scan = 0 end_scan = len(reader.index) else: start_scan, end_scan = scan_interval if start_scan is None: start_scan = 0 if end_scan is None: end_scan = len(reader.index) if n_chunks is None: n_chunks = n_processes n_items = end_scan - start_scan pool = multiprocessing.Pool(n_processes) scan_ranges = partition_work(n_items, n_chunks, start_scan) feeder = ( _TaskPayload(reader, scan_range[0], scan_range[1]) for scan_range in scan_ranges) result = [] for i, block in enumerate(pool.imap_unordered(_TaskWrapper(task), feeder), 1): result.append(block) if progress_indicator is not None: progress_indicator(i / float(n_chunks)) pool.close() pool.join() result.sort(key=lambda x: x[0]) result = [x[1] for x in result] return result def _merge_indices(indices): index = indices[0] for ind in indices: index = index.merge(ind) return index def _make_interval_tree(intervals): concat = [] for i in intervals: concat.extend(i) return ScanIntervalTree(make_rt_tree(concat), None) def index(reader, n_processes=4, scan_interval=None, progress_indicator=None): """Generate a :class:`~.ExtendedScanIndex` and :class:`~.ScanIntervalTree` for `reader` between `scan_interval` start and end points across `n_processes` worker processes. If a :class:`~.ScanIterator` is passed instead of a :class:`~.RandomAccessScanSource`, only a single process will be used. Parameters ---------- reader : :class:`~.RandomAccessScanSource` or :class:`~.ScanIterator` The scan data source to index. n_processes : int, optional The number of worker processes to use (the default is 4 or however many CPUs are available, whichever is lower) scan_interval : tuple, optional The start and stop scan indices to operate on (the default is None, which will index the entire file) progress_indicator : :class:`Callable`, optional A callable object which will be used to report progress as chunks finish processing. It must take one argument, a :class:`float` which represents the fraction of all work completed. Returns ------- :class:`~.ExtendedScanIndex`: The extended metadata index for this data file. :class:`~.ScanIntervalTree`: The scan interval tree for this data file. See Also -------- run_task_in_chunks """ task = _Indexer() # indexing a :class:`ScanIterator` without random access, have to go in sequence if not hasattr(reader, 'start_from_scan'): logger.info("A non-random access ScanIterator was passed, defaulting to a single worker.") reader.make_iterator(grouped=True) chunks = [task(_TaskPayload(reader, 0, len(reader)))] n_processes = 1 else: chunks = run_task_in_chunks( reader, n_processes, scan_interval=scan_interval, task=task, progress_indicator=progress_indicator) indices = [chunk[2] for chunk in chunks] intervals = [chunk[3] for chunk in chunks] index = _merge_indices(indices) interval_tree = _make_interval_tree(intervals) return index, interval_tree def multi_index(readers, n_processes=4, scan_interval=None): index_collection = [] interval_collection = [] for reader in readers: chunks = run_task_in_chunks( reader, n_processes, scan_interval=scan_interval, task=_Indexer()) indices = [chunk[2] for chunk in chunks] intervals = [chunk[3] for chunk in chunks] index_collection.append(indices) interval_collection.append(intervals)
StarcoderdataPython
11261382
__all__ = ['pcap', 'logger']
StarcoderdataPython
1819330
<filename>app/model.py import json class Post(): def __init__(self, title, image, summary, post, author, author_id): self.summary = summary self.image = image self.post = post self.title = title self.author = author self.author_id = author_id def toJSON(self): return json.dumps(self, default=lambda o: o.__dict__, sort_keys=True, indent=4) # class PitchSchema(ma.Schema): # class Meta: # fields = ('id', 'title', 'description', 'summary', 'posted')
StarcoderdataPython
1710933
<filename>src/medius/mediuspackets/getallclanmessagesresponse.py from enums.enums import MediusEnum, CallbackStatus from utils import utils from enums.enums import MediusIdEnum class GetAllClanMessagesResponseSerializer: data_dict = [ {'name': 'mediusid', 'n_bytes': 2, 'cast': None} ] @classmethod def build(self, message_id, callback_status, clan_message_id, message, clan_message_status, end_of_list ): packet = [ {'name': __name__}, {'mediusid': MediusIdEnum.GetAllClanMessagesResponse}, {'message_id': message_id}, {'buf': utils.hex_to_bytes("000000")}, {'callback_status': utils.int_to_bytes_little(4, callback_status, signed=True)}, {'clan_id': utils.int_to_bytes_little(4, clan_message_id)}, {'message': utils.str_to_bytes(message, MediusEnum.CLANMSG_MAXLEN)}, {'clan_message_status': utils.int_to_bytes_little(4, clan_message_id)}, {'end_of_list': utils.int_to_bytes_little(4, end_of_list)}, ] return packet class GetAllClanMessagesResponseHandler: def process(self, serialized, monolith, con): raise Exception('Unimplemented Handler: GetAllClanMessagesResponseHandler')
StarcoderdataPython
373607
<gh_stars>1-10 from bs4 import BeautifulSoup import pytest import shutil @pytest.mark.sphinx("html", testroot="hiddendirectives") def test_warning(app, warnings): """Test warning thrown during the build""" build_path = app.srcdir.joinpath("_build") shutil.rmtree(build_path) app.build() assert ( "_enum_hidden.rst: WARNING: duplicate label: ex-hidden-number;" ) in warnings(app) @pytest.mark.sphinx("html", testroot="hiddendirectives") @pytest.mark.parametrize( "idir", [ "_enum_hidden.html", "_unenum_hidden.html", ], ) def test_hidden_exercise(app, idir, file_regression): """Test exercise directive markup.""" app.build() path_to_directive = app.outdir / idir assert path_to_directive.exists() # get content markup soup = BeautifulSoup(path_to_directive.read_text(encoding="utf8"), "html.parser") exercise = soup.select("div.exercise") assert len(exercise) == 0 @pytest.mark.sphinx("html", testroot="hiddendirectives") @pytest.mark.parametrize( "docname", [ "_enum_hidden", "_unenum_hidden", ], ) def test_hidden_exercise_doctree(app, docname, file_regression, get_sphinx_app_doctree): app.build() get_sphinx_app_doctree( app, docname, resolve=False, regress=True, ) @pytest.mark.sphinx("html", testroot="hiddendirectives") @pytest.mark.parametrize( "idir", [ "_linked_enum_hidden.html", "_linked_unenum_hidden.html", ], ) def test_hidden_solution(app, idir, file_regression): """Test exercise directive markup.""" app.build() path_to_directive = app.outdir / idir assert path_to_directive.exists() # get content markup soup = BeautifulSoup(path_to_directive.read_text(encoding="utf8"), "html.parser") solution = soup.select("div.solution") assert len(solution) == 0 @pytest.mark.sphinx("html", testroot="hiddendirectives") @pytest.mark.parametrize( "docname", [ "_linked_enum_hidden", "_linked_unenum_hidden", ], ) def test_hidden_solution_doctree(app, docname, file_regression, get_sphinx_app_doctree): app.build() get_sphinx_app_doctree( app, docname, resolve=False, regress=True, )
StarcoderdataPython
1686683
<filename>spectrum/django/spectrum.py FIRE_HOSE = { 'version': 1, 'disable_existing_loggers': False, 'root': { 'level': 'DEBUG', 'handlers': ['console', 'root'] }, 'filters': { 'request_id': { '()': 'spectrum.filters.RequestIdFilter' } }, 'formatters': { 'verbose': { 'format': '[%(name)s][%(levelname)s] %(message)s' } }, 'loggers': { 'django': { 'handlers': ['django'], 'level': 'DEBUG', 'propagate': False, }, 'django.request': { 'handlers': ['django.request'], 'level': 'DEBUG', 'propagate': False, }, 'django.db.backends': { 'handlers': ['django.db.backends'], 'level': 'DEBUG', 'propagate': False, }, 'celery': { 'handlers': ['celery'], 'level': 'DEBUG', 'propagate': False, }, }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', 'filters': ['request_id'] }, 'root': { 'level': 'DEBUG', 'class': 'spectrum.handlers.RestSpectrum', 'sublevel': '', 'filters': ['request_id'] }, 'django': { 'level': 'DEBUG', 'class': 'spectrum.handlers.RestSpectrum', 'sublevel': 'django', 'filters': ['request_id'] }, 'django.request': { 'level': 'DEBUG', 'class': 'spectrum.handlers.RestSpectrum', 'sublevel': 'django.request', 'filters': ['request_id'] }, 'celery': { 'level': 'DEBUG', 'class': 'spectrum.handlers.RestSpectrum', 'sublevel': 'celery', 'filters': ['request_id'] }, 'django.db.backends': { 'level': 'DEBUG', 'class': 'spectrum.handlers.RestSpectrum', 'sublevel': 'django.db.backends', }, }, } FIRE_HOSE_UDP = { 'version': 1, 'disable_existing_loggers': False, 'root': { 'level': 'DEBUG', 'handlers': ['console', 'root'] }, 'filters': { 'request_id': { '()': 'spectrum.filters.RequestIdFilter' } }, 'formatters': { 'verbose': { 'format': '[%(name)s][%(levelname)s] %(message)s' } }, 'loggers': { 'django': { 'handlers': ['django'], 'level': 'DEBUG', 'propagate': False, }, 'django.request': { 'handlers': ['django.request'], 'level': 'DEBUG', 'propagate': False, }, 'django.db.backends': { 'handlers': ['django.db.backends'], 'level': 'DEBUG', 'propagate': False, }, 'celery': { 'handlers': ['celery'], 'level': 'DEBUG', 'propagate': False, }, }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', 'filters': ['request_id'] }, 'root': { 'level': 'DEBUG', 'class': 'spectrum.handlers.UDPSpectrum', 'sublevel': '', }, 'django': { 'level': 'DEBUG', 'class': 'spectrum.handlers.UDPSpectrum', 'sublevel': 'django', }, 'django.request': { 'level': 'DEBUG', 'class': 'spectrum.handlers.UDPSpectrum', 'sublevel': 'django.request', }, 'celery': { 'level': 'DEBUG', 'class': 'spectrum.handlers.UDPSpectrum', 'sublevel': 'celery', }, 'django.db.backends': { 'level': 'DEBUG', 'class': 'spectrum.handlers.UDPSpectrum', 'sublevel': 'django.db.backends', }, }, } FIRE_HOSE_WS = { 'version': 1, 'disable_existing_loggers': False, 'root': { 'level': 'DEBUG', 'handlers': ['console', 'root'] }, 'filters': { 'request_id': { '()': 'spectrum.filters.RequestIdFilter' } }, 'formatters': { 'verbose': { 'format': '[%(name)s][%(levelname)s] %(message)s' } }, 'loggers': { 'django': { 'handlers': ['django'], 'level': 'DEBUG', 'propagate': False, }, 'django.request': { 'handlers': ['django.request'], 'level': 'DEBUG', 'propagate': False, }, 'django.db.backends': { 'handlers': ['django.db.backends'], 'level': 'DEBUG', 'propagate': False, }, 'celery': { 'handlers': ['celery'], 'level': 'DEBUG', 'propagate': False, }, }, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler', 'formatter': 'verbose', 'filters': ['request_id'] }, 'root': { 'level': 'DEBUG', 'class': 'spectrum.handlers.WebsocketSpectrum', 'sublevel': '', }, 'django': { 'level': 'DEBUG', 'class': 'spectrum.handlers.WebsocketSpectrum', 'sublevel': 'django', }, 'django.request': { 'level': 'DEBUG', 'class': 'spectrum.handlers.WebsocketSpectrum', 'sublevel': 'django.request', }, 'celery': { 'level': 'DEBUG', 'class': 'spectrum.handlers.WebsocketSpectrum', 'sublevel': 'celery', }, 'django.db.backends': { 'level': 'DEBUG', 'class': 'spectrum.handlers.WebsocketSpectrum', 'sublevel': 'django.db.backends', }, }, } def fire_hose(base_config=None, log_db=True, levels=None, handler_kwargs=None): """ A convenience method to get and modify predefined logging configurations. Arguments ~~~~~~~~~ * ``base_config``: Defaults to `FIRE_HOSE`, which uses the REST HTTP stream on ``http://127.0.0.1:9000/`` * ``log_db``: shortcut for toggling the level of ``django.db.backends`` logging. Defaults to ``True`` * ``levels``: if provided, a 2-tuples iterable of logger names and their level. * ``handler_kwargs``: if provided, kwargs to pass to the handles. Use this to override default settings such as ip / port Spectrum is running on. Examples ~~~~~~~~ :: from spectrum.django import fire_hose, FIRE_HOSE_UDP LOGGING = fire_hose() LOGGING = fire_hose(log_db=False) LOGGING = fire_hose(levels=( ('my.overly.verbose.module', 'WARNING'), ('some.other.module', 'CRITICAL'), ) LOGGING = fire_hose(FIRE_HOSE_UDP, handler_kwargs={'url': '127.0.0.1:12345'}) """ if base_config is None: base_config = FIRE_HOSE if levels is None: levels = tuple() if handler_kwargs is None: handler_kwargs = {} if log_db is False: base_config['loggers']['django.db.backends']['level'] = 'WARNING' for silenced, level in levels: if silenced not in base_config['loggers']: base_config['loggers'][silenced] = {} base_config['loggers'][silenced]['level'] = level for handler, handler_config in base_config['handlers'].items(): handler_config.update(handler_kwargs) return base_config
StarcoderdataPython
3594136
# Here goes the ball class import pygame from config import BALL_VELOCITY, SCREEN_HEIGHT, SCREEN_WIDTH, colors class Ball_1(pygame.sprite.Sprite): def __init__(self, width, height): super().__init__() self.image = pygame.Surface([width, height]) self.width = width self.height = height self.bonus = False self.color = colors["Blue_ball"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) self.rect = self.image.get_rect() self.vel = [BALL_VELOCITY, BALL_VELOCITY] def update(self): self.rect.x += self.vel[0] self.rect.y -= self.vel[1] def bounce(self): self.vel[0] = -self.vel[0] self.vel[1] = +self.vel[1] def change_colors(self): if self.bonus is True: self.color = colors["Black"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) else: self.color = colors["Blue_ball"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) class Ball_2(pygame.sprite.Sprite): def __init__(self, width, height): super().__init__() self.image = pygame.Surface([width, height]) self.width = width self.height = height self.bonus = False self.color = colors["Red_ball"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) self.rect = self.image.get_rect() self.vel = [BALL_VELOCITY, BALL_VELOCITY] def update(self): self.rect.x -= self.vel[0] self.rect.y += self.vel[1] def bounce(self): self.vel[0] = -self.vel[0] self.vel[1] = +self.vel[1] def change_colors(self): if self.bonus is True: self.color = colors["Black"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) else: self.color = colors["Red_ball"] pygame.draw.rect(self.image, self.color, [0, 0, self.width, self.height]) class Ball_PU(pygame.sprite.Sprite): def __init__(self, width, height): super().__init__() self.image = pygame.Surface([width, height]) self.color = colors["White"] self.direction = ["Left", "Right"] pygame.draw.rect(self.image, self.color, [0, 0, width, height]) self.rect = self.image.get_rect() self.vel = BALL_VELOCITY self.direction = 0 def update(self): if self.direction == 0: self.rect.x -= self.vel if self.direction == 1: self.rect.x += self.vel
StarcoderdataPython
9714762
<reponame>LauraOlivera/gammapy<gh_stars>0 # Licensed under a 3-clause BSD style license - see LICENSE.rst """Spectral models for Gammapy.""" import operator import numpy as np import scipy.optimize import scipy.special import astropy.units as u from astropy import constants as const from astropy.table import Table from astropy.utils.decorators import classproperty from astropy.visualization import quantity_support from gammapy.maps import MapAxis, RegionNDMap from gammapy.modeling import Parameter, Parameters from gammapy.utils.integrate import trapz_loglog from gammapy.utils.interpolation import ( ScaledRegularGridInterpolator, interpolation_scale, ) from gammapy.utils.scripts import make_path from .core import Model from gammapy.utils.roots import find_roots def scale_plot_flux(flux, energy_power=0): """Scale flux to plot Parameters ---------- flux : `Map` Flux map energy_power : int, optional Power of energy to multiply flux axis with Returns ------- flux : `Map` Scaled flux map """ energy = flux.geom.get_coord(sparse=True)["energy"] try: eunit = [_ for _ in flux.unit.bases if _.physical_type == "energy"][0] except IndexError: eunit = energy.unit y = flux * np.power(energy, energy_power) return y.to_unit(flux.unit * eunit ** energy_power) def integrate_spectrum(func, energy_min, energy_max, ndecade=100): """Integrate 1d function using the log-log trapezoidal rule. Internally an oversampling of the energy bins to "ndecade" is used. Parameters ---------- func : callable Function to integrate. energy_min : `~astropy.units.Quantity` Integration range minimum energy_max : `~astropy.units.Quantity` Integration range minimum ndecade : int, optional Number of grid points per decade used for the integration. Default : 100 """ num = np.max(ndecade * np.log10(energy_max / energy_min)) energy = np.geomspace(energy_min, energy_max, num=int(num), axis=-1) integral = trapz_loglog(func(energy), energy, axis=-1) return integral.sum(axis=0) class SpectralModel(Model): """Spectral model base class.""" _type = "spectral" def __call__(self, energy): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy) return self.evaluate(energy, **kwargs) @classproperty def is_norm_spectral_model(cls): """Whether model is a norm spectral model""" return "Norm" in cls.__name__ @staticmethod def _convert_evaluate_unit(kwargs_ref, energy): kwargs = {} for name, quantity in kwargs_ref.items(): if quantity.unit.physical_type == "energy": quantity = quantity.to(energy.unit) kwargs[name] = quantity return kwargs def __add__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.add) def __mul__(self, other): if isinstance(other, SpectralModel): return CompoundSpectralModel(self, other, operator.mul) else: raise TypeError(f"Multiplication invalid for type {other!r}") def __radd__(self, model): return self.__add__(model) def __sub__(self, model): if not isinstance(model, SpectralModel): model = ConstantSpectralModel(const=model) return CompoundSpectralModel(self, model, operator.sub) def __rsub__(self, model): return self.__sub__(model) def _propagate_error(self, epsilon, fct, **kwargs): """Evaluate error for a given function with uncertainty propagation. Parameters ---------- fct : `~astropy.units.Quantity` Function to estimate the error. epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. **kwargs : dict Keyword argument Returns ------- f_cov : `~astropy.units.Quantity` Error of the given function. """ eps = np.sqrt(np.diag(self.covariance)) * epsilon n, f_0 = len(self.parameters), fct(**kwargs) shape = (n, len(np.atleast_1d(f_0))) df_dp = np.zeros(shape) for idx, parameter in enumerate(self.parameters): if parameter.frozen or eps[idx] == 0: continue parameter.value += eps[idx] df = fct(**kwargs) - f_0 df_dp[idx] = df.value / eps[idx] parameter.value -= eps[idx] f_cov = df_dp.T @ self.covariance @ df_dp f_err = np.sqrt(np.diagonal(f_cov)) return u.Quantity([f_0.value, f_err], unit=f_0.unit) def evaluate_error(self, energy, epsilon=1e-4): """Evaluate spectral model with error propagation. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to evaluate epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. Returns ------- dnde, dnde_error : tuple of `~astropy.units.Quantity` Tuple of flux and flux error. """ return self._propagate_error(epsilon=epsilon, fct=self, energy=energy) def integral(self, energy_min, energy_max, **kwargs): r"""Integrate spectral model numerically if no analytical solution defined. .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} \phi(E) dE Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to :func:`~gammapy.utils.integrate.integrate_spectrum` """ if hasattr(self, "evaluate_integral"): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy_min) return self.evaluate_integral(energy_min, energy_max, **kwargs) else: return integrate_spectrum(self, energy_min, energy_max, **kwargs) def integral_error(self, energy_min, energy_max, epsilon=1e-4, **kwargs): """Evaluate the error of the integral flux of a given spectrum in a given energy range. Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. Returns ------- flux, flux_err : tuple of `~astropy.units.Quantity` Integral flux and flux error betwen energy_min and energy_max. """ return self._propagate_error( epsilon=epsilon, fct=self.integral, energy_min=energy_min, energy_max=energy_max, **kwargs, ) def energy_flux(self, energy_min, energy_max, **kwargs): r"""Compute energy flux in given energy range. .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}} E \phi(E) dE Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. **kwargs : dict Keyword arguments passed to func:`~gammapy.utils.integrate.integrate_spectrum` """ def f(x): return x * self(x) if hasattr(self, "evaluate_energy_flux"): kwargs = {par.name: par.quantity for par in self.parameters} kwargs = self._convert_evaluate_unit(kwargs, energy_min) return self.evaluate_energy_flux(energy_min, energy_max, **kwargs) else: return integrate_spectrum(f, energy_min, energy_max, **kwargs) def energy_flux_error(self, energy_min, energy_max, epsilon=1e-4, **kwargs): """Evaluate the error of the energy flux of a given spectrum in a given energy range. Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. epsilon : float Step size of the gradient evaluation. Given as a fraction of the parameter error. Returns ------- energy_flux, energy_flux_err : tuple of `~astropy.units.Quantity` Energy flux and energy flux error betwen energy_min and energy_max. """ return self._propagate_error( epsilon=epsilon, fct=self.energy_flux, energy_min=energy_min, energy_max=energy_max, **kwargs, ) def reference_fluxes(self, energy_axis): """Get reference fluxes for a given energy axis. Parameters ---------- energy_axis : `MapAxis` Energy axis Returns ------- fluxes : dict of `~astropy.units.Quantity` Reference fluxes """ energy = energy_axis.center energy_min, energy_max = energy_axis.edges_min, energy_axis.edges_max return { "e_ref": energy, "e_min": energy_min, "e_max": energy_max, "ref_dnde": self(energy), "ref_flux": self.integral(energy_min, energy_max), "ref_eflux": self.energy_flux(energy_min, energy_max), "ref_e2dnde": self(energy) * energy ** 2, } def _get_plot_flux(self, energy, sed_type): flux = RegionNDMap.create(region=None, axes=[energy]) flux_err = RegionNDMap.create(region=None, axes=[energy]) if sed_type in ["dnde", "norm"]: flux.quantity, flux_err.quantity = self.evaluate_error(energy.center) elif sed_type == "e2dnde": flux.quantity, flux_err.quantity = energy.center ** 2 * self.evaluate_error(energy.center) elif sed_type == "flux": flux.quantity, flux_err.quantity = self.integral_error(energy.edges_min, energy.edges_max) elif sed_type == "eflux": flux.quantity, flux_err.quantity = self.energy_flux_error(energy.edges_min, energy.edges_max) else: raise ValueError(f"Not a valid SED type: '{sed_type}'") return flux, flux_err def plot( self, energy_bounds, ax=None, sed_type="dnde", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model curve. kwargs are forwarded to `matplotlib.pyplot.plot` By default a log-log scaling of the axes is used, if you want to change the y axis scaling to linear you can use:: from gammapy.modeling.models import ExpCutoffPowerLawSpectralModel from astropy import units as u pwl = ExpCutoffPowerLawSpectralModel() ax = pwl.plot(energy_bounds=(0.1, 100) * u.TeV) ax.set_yscale('linear') Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_bounds : `~astropy.units.Quantity` Plot energy bounds passed to MapAxis.from_energy_bounds sed_type : {"dnde", "flux", "eflux", "e2dnde"} Evaluation methods of the model energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes **kwargs : dict Keyword arguments forwared to `~matplotlib.pyplot.plot` Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ from gammapy.estimators.flux_map import DEFAULT_UNIT import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax if self.is_norm_spectral_model: sed_type = "norm" energy_min, energy_max = energy_bounds energy = MapAxis.from_energy_bounds( energy_min, energy_max, n_points, ) kwargs.setdefault("yunits", DEFAULT_UNIT[sed_type] * energy.unit ** energy_power) flux, _ = self._get_plot_flux(sed_type=sed_type, energy=energy) flux = scale_plot_flux(flux, energy_power=energy_power) with quantity_support(): ax.plot(energy.center, flux.quantity[:, 0, 0], **kwargs) self._plot_format_ax(ax, energy_power, sed_type) return ax def plot_error( self, energy_bounds, ax=None, sed_type="dnde", energy_power=0, n_points=100, **kwargs, ): """Plot spectral model error band. .. note:: This method calls ``ax.set_yscale("log", nonpositive='clip')`` and ``ax.set_xscale("log", nonposx='clip')`` to create a log-log representation. The additional argument ``nonposx='clip'`` avoids artefacts in the plot, when the error band extends to negative values (see also https://github.com/matplotlib/matplotlib/issues/8623). When you call ``plt.loglog()`` or ``plt.semilogy()`` explicitely in your plotting code and the error band extends to negative values, it is not shown correctly. To circumvent this issue also use ``plt.loglog(nonposx='clip', nonpositive='clip')`` or ``plt.semilogy(nonpositive='clip')``. Parameters ---------- ax : `~matplotlib.axes.Axes`, optional Axis energy_bounds : `~astropy.units.Quantity` Plot energy bounds passed to MapAxis.from_energy_bounds sed_type : {"dnde", "flux", "eflux", "e2dnde"} Evaluation methods of the model energy_power : int, optional Power of energy to multiply flux axis with n_points : int, optional Number of evaluation nodes **kwargs : dict Keyword arguments forwarded to `matplotlib.pyplot.fill_between` Returns ------- ax : `~matplotlib.axes.Axes`, optional Axis """ from gammapy.estimators.flux_map import DEFAULT_UNIT import matplotlib.pyplot as plt ax = plt.gca() if ax is None else ax if self.is_norm_spectral_model: sed_type = "norm" energy_min, energy_max = energy_bounds energy = MapAxis.from_energy_bounds( energy_min, energy_max, n_points, ) kwargs.setdefault("facecolor", "black") kwargs.setdefault("alpha", 0.2) kwargs.setdefault("linewidth", 0) kwargs.setdefault("yunits", DEFAULT_UNIT[sed_type] * energy.unit ** energy_power) flux, flux_err = self._get_plot_flux(sed_type=sed_type, energy=energy) y_lo = scale_plot_flux(flux - flux_err, energy_power).quantity[:, 0, 0] y_hi = scale_plot_flux(flux + flux_err, energy_power).quantity[:, 0, 0] with quantity_support(): ax.fill_between(energy.center, y_lo, y_hi, **kwargs) self._plot_format_ax(ax, energy_power, sed_type) return ax @staticmethod def _plot_format_ax(ax, energy_power, sed_type): ax.set_xlabel(f"Energy [{ax.xaxis.units}]") if energy_power > 0: ax.set_ylabel(f"e{energy_power} * {sed_type} [{ax.yaxis.units}]") else: ax.set_ylabel(f"{sed_type} [{ax.yaxis.units}]") ax.set_xscale("log", nonpositive="clip") ax.set_yscale("log", nonpositive="clip") def spectral_index(self, energy, epsilon=1e-5): """Compute spectral index at given energy. Parameters ---------- energy : `~astropy.units.Quantity` Energy at which to estimate the index epsilon : float Fractional energy increment to use for determining the spectral index. Returns ------- index : float Estimated spectral index. """ f1 = self(energy) f2 = self(energy * (1 + epsilon)) return np.log(f1 / f2) / np.log(1 + epsilon) def inverse(self, value, energy_min=0.1 * u.TeV, energy_max=100 * u.TeV): """Return energy for a given function value of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. energy_min : `~astropy.units.Quantity` Lower energy bound of the roots finding energy_max : `~astropy.units.Quantity` Upper energy bound of the roots finding Returns ------- energy : `~astropy.units.Quantity` Energies at which the model has the given ``value``. """ eunit = "TeV" energy_min = energy_min.to(eunit) energy_max = energy_max.to(eunit) def f(x): # scale by 1e12 to achieve better precision energy = u.Quantity(x, eunit, copy=False) y = self(energy).to_value(value.unit) return 1e12 * (y - value.value) roots, res = find_roots(f, energy_min, energy_max, points_scale="log") return roots def inverse_all(self, values, energy_min=0.1 * u.TeV, energy_max=100 * u.TeV): """Return energies for multiple function values of the spectral model. Calls the `scipy.optimize.brentq` numerical root finding method. Parameters ---------- values : `~astropy.units.Quantity` Function values of the spectral model. energy_min : `~astropy.units.Quantity` Lower energy bound of the roots finding energy_max : `~astropy.units.Quantity` Upper energy bound of the roots finding Returns ------- energy : list of `~astropy.units.Quantity` each element contain the energies at which the model has corresponding value of ``values``. """ energies = [] for val in np.atleast_1d(values): res = self.inverse(val, energy_min, energy_max) energies.append(res) return energies class ConstantSpectralModel(SpectralModel): r"""Constant model. For more information see :ref:`constant-spectral-model`. Parameters ---------- const : `~astropy.units.Quantity` :math:`k` """ tag = ["ConstantSpectralModel", "const"] const = Parameter("const", "1e-12 cm-2 s-1 TeV-1") @staticmethod def evaluate(energy, const): """Evaluate the model (static function).""" return np.ones(np.atleast_1d(energy).shape) * const class CompoundSpectralModel(SpectralModel): """Arithmetic combination of two spectral models. For more information see :ref:`compound-spectral-model`. """ tag = ["CompoundSpectralModel", "compound"] def __init__(self, model1, model2, operator): self.model1 = model1 self.model2 = model2 self.operator = operator super().__init__() @property def parameters(self): return self.model1.parameters + self.model2.parameters def __str__(self): return ( f"{self.__class__.__name__}\n" f" Component 1 : {self.model1}\n" f" Component 2 : {self.model2}\n" f" Operator : {self.operator.__name__}\n" ) def __call__(self, energy): val1 = self.model1(energy) val2 = self.model2(energy) return self.operator(val1, val2) def to_dict(self, full_output=False): return { "type": self.tag[0], "model1": self.model1.to_dict(full_output), "model2": self.model2.to_dict(full_output), "operator": self.operator.__name__, } @classmethod def from_dict(cls, data): from gammapy.modeling.models import SPECTRAL_MODEL_REGISTRY model1_cls = SPECTRAL_MODEL_REGISTRY.get_cls(data["model1"]["type"]) model1 = model1_cls.from_dict(data["model1"]) model2_cls = SPECTRAL_MODEL_REGISTRY.get_cls(data["model2"]["type"]) model2 = model2_cls.from_dict(data["model2"]) op = getattr(operator, data["operator"]) return cls(model1, model2, op) class PowerLawSpectralModel(SpectralModel): r"""Spectral power-law model. For more information see :ref:`powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` See Also -------- PowerLaw2SpectralModel, PowerLawNormSpectralModel """ tag = ["PowerLawSpectralModel", "pl"] index = Parameter("index", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) @staticmethod def evaluate(energy, index, amplitude, reference): """Evaluate the model (static function).""" return amplitude * np.power((energy / reference), -index) @staticmethod def evaluate_integral(energy_min, energy_max, index, amplitude, reference): r"""Integrate power law analytically (static function). .. math:: F(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}\phi(E)dE = \left. \phi_0 \frac{E_0}{-\Gamma + 1} \left( \frac{E}{E_0} \right)^{-\Gamma + 1} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range """ val = -1 * index + 1 prefactor = amplitude * reference / val upper = np.power((energy_max / reference), val) lower = np.power((energy_min / reference), val) integral = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): integral[mask] = (amplitude * reference * np.log(energy_max / energy_min))[ mask ] return integral @staticmethod def evaluate_energy_flux(energy_min, energy_max, index, amplitude, reference): r"""Compute energy flux in given energy range analytically (static function). .. math:: G(E_{min}, E_{max}) = \int_{E_{min}}^{E_{max}}E \phi(E)dE = \left. \phi_0 \frac{E_0^2}{-\Gamma + 2} \left( \frac{E}{E_0} \right)^{-\Gamma + 2} \right \vert _{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ val = -1 * index + 2 prefactor = amplitude * reference ** 2 / val upper = (energy_max / reference) ** val lower = (energy_min / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = ( amplitude * reference ** 2 * np.log(energy_max / energy_min)[mask] ) return energy_flux def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ base = value / self.amplitude.quantity return self.reference.quantity * np.power(base, -1.0 / self.index.value) @property def pivot_energy(self): r"""The decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf """ index_err = self.index.error reference = self.reference.quantity amplitude = self.amplitude.quantity cov_index_ampl = self.covariance.data[0, 1] * amplitude.unit return reference * np.exp(cov_index_ampl / (amplitude * index_err ** 2)) class PowerLawNormSpectralModel(SpectralModel): r"""Spectral power-law model with normalized amplitude parameter. Parameters ---------- tilt : `~astropy.units.Quantity` :math:`\Gamma` norm : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` See Also -------- PowerLawSpectralModel, PowerLaw2SpectralModel """ tag = ["PowerLawNormSpectralModel", "pl-norm"] norm = Parameter("norm", 1, unit="", interp="log") tilt = Parameter("tilt", 0, frozen=True) reference = Parameter("reference", "1 TeV", frozen=True) @staticmethod def evaluate(energy, tilt, norm, reference): """Evaluate the model (static function).""" return norm * np.power((energy / reference), -tilt) @staticmethod def evaluate_integral(energy_min, energy_max, tilt, norm, reference): """Evaluate pwl integral.""" val = -1 * tilt + 1 prefactor = norm * reference / val upper = np.power((energy_max / reference), val) lower = np.power((energy_min / reference), val) integral = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): integral[mask] = (norm * reference * np.log(energy_max / energy_min))[mask] return integral @staticmethod def evaluate_energy_flux(energy_min, energy_max, tilt, norm, reference): """Evaluate the energy flux (static function)""" val = -1 * tilt + 2 prefactor = norm * reference ** 2 / val upper = (energy_max / reference) ** val lower = (energy_min / reference) ** val energy_flux = prefactor * (upper - lower) mask = np.isclose(val, 0) if mask.any(): # see https://www.wolframalpha.com/input/?i=a+*+x+*+(x%2Fb)+%5E+(-2) # for reference energy_flux[mask] = ( norm * reference ** 2 * np.log(energy_max / energy_min)[mask] ) return energy_flux def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ base = value / self.norm.quantity return self.reference.quantity * np.power(base, -1.0 / self.tilt.value) @property def pivot_energy(self): r"""The decorrelation energy is defined as: .. math:: E_D = E_0 * \exp{cov(\phi_0, \Gamma) / (\phi_0 \Delta \Gamma^2)} Formula (1) in https://arxiv.org/pdf/0910.4881.pdf """ tilt_err = self.tilt.error reference = self.reference.quantity norm = self.norm.quantity cov_tilt_norm = self.covariance.data[0, 1] * norm.unit return reference * np.exp(cov_tilt_norm / (norm * tilt_err ** 2)) class PowerLaw2SpectralModel(SpectralModel): r"""Spectral power-law model with integral as amplitude parameter. For more information see :ref:`powerlaw2-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` Spectral index :math:`\Gamma` amplitude : `~astropy.units.Quantity` Integral flux :math:`F_0`. emin : `~astropy.units.Quantity` Lower energy limit :math:`E_{0, min}`. emax : `~astropy.units.Quantity` Upper energy limit :math:`E_{0, max}`. See Also -------- PowerLawSpectralModel, PowerLawNormSpectralModel """ tag = ["PowerLaw2SpectralModel", "pl-2"] amplitude = Parameter("amplitude", "1e-12 cm-2 s-1", scale_method="scale10", interp="log") index = Parameter("index", 2) emin = Parameter("emin", "0.1 TeV", frozen=True) emax = Parameter("emax", "100 TeV", frozen=True) @staticmethod def evaluate(energy, amplitude, index, emin, emax): """Evaluate the model (static function).""" top = -index + 1 # to get the energies dimensionless we use a modified formula bottom = emax - emin * (emin / emax) ** (-index) return amplitude * (top / bottom) * np.power(energy / emax, -index) @staticmethod def evaluate_integral(energy_min, energy_max, amplitude, index, emin, emax): r"""Integrate power law analytically. .. math:: F(E_{min}, E_{max}) = F_0 \cdot \frac{E_{max}^{\Gamma + 1} \ - E_{min}^{\Gamma + 1}}{E_{0, max}^{\Gamma + 1} \ - E_{0, min}^{\Gamma + 1}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ temp1 = np.power(energy_max, -index.value + 1) temp2 = np.power(energy_min, -index.value + 1) top = temp1 - temp2 temp1 = np.power(emax, -index.value + 1) temp2 = np.power(emin, -index.value + 1) bottom = temp1 - temp2 return amplitude * top / bottom def inverse(self, value, *args): """Return energy for a given function value of the spectral model. Parameters ---------- value : `~astropy.units.Quantity` Function value of the spectral model. """ amplitude = self.amplitude.quantity index = self.index.value energy_min = self.emin.quantity energy_max = self.emax.quantity # to get the energies dimensionless we use a modified formula top = -index + 1 bottom = energy_max - energy_min * (energy_min / energy_max) ** (-index) term = (bottom / top) * (value / amplitude) return np.power(term.to_value(""), -1.0 / index) * energy_max class BrokenPowerLawSpectralModel(SpectralModel): r"""Spectral broken power-law model. For more information see :ref:`broken-powerlaw-spectral-model`. Parameters ---------- index1 : `~astropy.units.Quantity` :math:`\Gamma1` index2 : `~astropy.units.Quantity` :math:`\Gamma2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` ebreak : `~astropy.units.Quantity` :math:`E_{break}` See Also -------- SmoothBrokenPowerLawSpectralModel """ tag = ["BrokenPowerLawSpectralModel", "bpl"] index1 = Parameter("index1", 2.0) index2 = Parameter("index2", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") ebreak = Parameter("ebreak", "1 TeV") @staticmethod def evaluate(energy, index1, index2, amplitude, ebreak): """Evaluate the model (static function).""" energy = np.atleast_1d(energy) cond = energy < ebreak bpwl = amplitude * np.ones(energy.shape) bpwl[cond] *= (energy[cond] / ebreak) ** (-index1) bpwl[~cond] *= (energy[~cond] / ebreak) ** (-index2) return bpwl class SmoothBrokenPowerLawSpectralModel(SpectralModel): r"""Spectral smooth broken power-law model. For more information see :ref:`smooth-broken-powerlaw-spectral-model`. Parameters ---------- index1 : `~astropy.units.Quantity` :math:`\Gamma1` index2 : `~astropy.units.Quantity` :math:`\Gamma2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ebreak : `~astropy.units.Quantity` :math:`E_{break}` beta : `~astropy.units.Quantity` :math:`\beta` See Also -------- BrokenPowerLawSpectralModel """ tag = ["SmoothBrokenPowerLawSpectralModel", "sbpl"] index1 = Parameter("index1", 2.0) index2 = Parameter("index2", 2.0) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") ebreak = Parameter("ebreak", "1 TeV") reference = Parameter("reference", "1 TeV", frozen=True) beta = Parameter("beta", 1, frozen=True) @staticmethod def evaluate(energy, index1, index2, amplitude, ebreak, reference, beta): """Evaluate the model (static function).""" beta *= np.sign(index2 - index1) pwl = amplitude * (energy / reference) ** (-index1) brk = (1 + (energy / ebreak) ** ((index2 - index1) / beta)) ** (-beta) return pwl * brk class PiecewiseNormSpectralModel(SpectralModel): """ Piecewise spectral correction with a free normalization at each fixed energy nodes. For more information see :ref:`piecewise-norm-spectral`. Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given (nodes). norms : `~numpy.ndarray` or list of `Parameter` Array with the initial norms of the model at energies ``energy``. A normalisation parameters is created for each value. Default is one at each node. interp : str Interpolation scaling in {"log", "lin"}. Default is "log" """ tag = ["PiecewiseNormSpectralModel", "piecewise-norm"] def __init__(self, energy, norms=None, interp="log"): self._energy = energy self._interp = interp if norms is None: norms = np.ones(len(energy)) if len(norms) != len(energy): raise ValueError("dimension mismatch") if len(norms) < 2: raise ValueError("Input arrays must contain at least 2 elements") if not isinstance(norms[0], Parameter): parameters = Parameters( [Parameter(f"norm_{k}", norm) for k, norm in enumerate(norms)] ) else: parameters = Parameters(norms) self.default_parameters = parameters super().__init__() @property def energy(self): """Energy nodes""" return self._energy @property def norms(self): """Norm values""" return u.Quantity(self.parameters.value) def evaluate(self, energy, **norms): scale = interpolation_scale(scale=self._interp) e_eval = scale(np.atleast_1d(energy.value)) e_nodes = scale(self.energy.to(energy.unit).value) v_nodes = scale(self.norms) log_interp = scale.inverse(np.interp(e_eval, e_nodes, v_nodes)) return log_interp def to_dict(self, full_output=False): data = super().to_dict(full_output=full_output) data["energy"] = { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), } return data @classmethod def from_dict(cls, data): """Create model from dict""" energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) parameters = Parameters.from_dict(data["parameters"]) return cls.from_parameters(parameters, energy=energy) @classmethod def from_parameters(cls, parameters, **kwargs): """Create model from parameters""" return cls(norms=parameters, **kwargs) class ExpCutoffPowerLawSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model. For more information see :ref:`exp-cutoff-powerlaw-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` lambda_ : `~astropy.units.Quantity` :math:`\lambda` alpha : `~astropy.units.Quantity` :math:`\alpha` See Also -------- ExpCutoffPowerLawNormSpectralModel """ tag = ["ExpCutoffPowerLawSpectralModel", "ecpl"] index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True) @staticmethod def evaluate(energy, index, amplitude, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff @property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = \left(\frac{2 - \Gamma}{\alpha}\right)^{1/\alpha} / \lambda """ reference = self.reference.quantity index = self.index.quantity lambda_ = self.lambda_.quantity alpha = self.alpha.quantity if index >= 2 or lambda_ == 0.0 or alpha == 0.0: return np.nan * reference.unit else: return np.power((2 - index) / alpha, 1 / alpha) / lambda_ class ExpCutoffPowerLawNormSpectralModel(SpectralModel): r"""Norm spectral exponential cutoff power-law model. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` norm : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` lambda_ : `~astropy.units.Quantity` :math:`\lambda` alpha : `~astropy.units.Quantity` :math:`\alpha` See Also -------- ExpCutoffPowerLawSpectralModel """ tag = ["ExpCutoffPowerLawNormSpectralModel", "ecpl-norm"] index = Parameter("index", 1.5) norm = Parameter("norm", 1, unit="", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) lambda_ = Parameter("lambda_", "0.1 TeV-1") alpha = Parameter("alpha", "1.0", frozen=True) @staticmethod def evaluate(energy, index, norm, reference, lambda_, alpha): """Evaluate the model (static function).""" pwl = norm * (energy / reference) ** (-index) cutoff = np.exp(-np.power(energy * lambda_, alpha)) return pwl * cutoff class ExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral exponential cutoff power-law model used for 3FGL. For more information see :ref:`exp-cutoff-powerlaw-3fgl-spectral-model`. Parameters ---------- index : `~astropy.units.Quantity` :math:`\Gamma` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = ["ExpCutoffPowerLaw3FGLSpectralModel", "ecpl-3fgl"] index = Parameter("index", 1.5) amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV") @staticmethod def evaluate(energy, index, amplitude, reference, ecut): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index) cutoff = np.exp((reference - energy) / ecut) return pwl * cutoff class SuperExpCutoffPowerLaw3FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 3FGL. For more information see :ref:`super-exp-cutoff-powerlaw-3fgl-spectral-model`. .. math:: \phi(E) = \phi_0 \cdot \left(\frac{E}{E_0}\right)^{-\Gamma_1} \exp \left( \left(\frac{E_0}{E_{C}} \right)^{\Gamma_2} - \left(\frac{E}{E_{C}} \right)^{\Gamma_2} \right) Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` ecut : `~astropy.units.Quantity` :math:`E_{C}` """ tag = ["SuperExpCutoffPowerLaw3FGLSpectralModel", "secpl-3fgl"] amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) ecut = Parameter("ecut", "10 TeV") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2) @staticmethod def evaluate(energy, amplitude, reference, ecut, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp((reference / ecut) ** index_2 - (energy / ecut) ** index_2) return pwl * cutoff class SuperExpCutoffPowerLaw4FGLSpectralModel(SpectralModel): r"""Spectral super exponential cutoff power-law model used for 4FGL. For more information see :ref:`super-exp-cutoff-powerlaw-4fgl-spectral-model`. Parameters ---------- index_1 : `~astropy.units.Quantity` :math:`\Gamma_1` index_2 : `~astropy.units.Quantity` :math:`\Gamma_2` amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` expfactor : `~astropy.units.Quantity` :math:`a`, given as dimensionless value but internally assumes unit of :math:`[E_0]` power :math:`-\Gamma_2` """ tag = ["SuperExpCutoffPowerLaw4FGLSpectralModel", "secpl-4fgl"] amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "1 TeV", frozen=True) expfactor = Parameter("expfactor", "1e-2") index_1 = Parameter("index_1", 1.5) index_2 = Parameter("index_2", 2) @staticmethod def evaluate(energy, amplitude, reference, expfactor, index_1, index_2): """Evaluate the model (static function).""" pwl = amplitude * (energy / reference) ** (-index_1) cutoff = np.exp( expfactor / reference.unit ** index_2 * (reference ** index_2 - energy ** index_2) ) return pwl * cutoff class LogParabolaSpectralModel(SpectralModel): r"""Spectral log parabola model. For more information see :ref:`logparabola-spectral-model`. Parameters ---------- amplitude : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` alpha : `~astropy.units.Quantity` :math:`\alpha` beta : `~astropy.units.Quantity` :math:`\beta` See Also -------- LogParabolaNormSpectralModel """ tag = ["LogParabolaSpectralModel", "lp"] amplitude = Parameter("amplitude", "1e-12 cm-2 s-1 TeV-1", scale_method="scale10", interp="log") reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 2) beta = Parameter("beta", 1) @classmethod def from_log10(cls, amplitude, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(amplitude=amplitude, reference=reference, alpha=alpha, beta=beta_) @staticmethod def evaluate(energy, amplitude, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return amplitude * np.power(xx, exponent) @property def e_peak(self): r"""Spectral energy distribution peak energy (`~astropy.units.Quantity`). This is the peak in E^2 x dN/dE and is given by: .. math:: E_{Peak} = E_{0} \exp{ (2 - \alpha) / (2 * \beta)} """ reference = self.reference.quantity alpha = self.alpha.quantity beta = self.beta.quantity return reference * np.exp((2 - alpha) / (2 * beta)) class LogParabolaNormSpectralModel(SpectralModel): r"""Norm spectral log parabola model. Parameters ---------- norm : `~astropy.units.Quantity` :math:`\phi_0` reference : `~astropy.units.Quantity` :math:`E_0` alpha : `~astropy.units.Quantity` :math:`\alpha` beta : `~astropy.units.Quantity` :math:`\beta` See Also -------- LogParabolaSpectralModel """ tag = ["LogParabolaNormSpectralModel", "lp-norm"] norm = Parameter("norm", 1, unit="", interp="log") reference = Parameter("reference", "10 TeV", frozen=True) alpha = Parameter("alpha", 2) beta = Parameter("beta", 1) @classmethod def from_log10(cls, norm, reference, alpha, beta): """Construct from :math:`log_{10}` parametrization.""" beta_ = beta / np.log(10) return cls(norm=norm, reference=reference, alpha=alpha, beta=beta_) @staticmethod def evaluate(energy, norm, reference, alpha, beta): """Evaluate the model (static function).""" xx = energy / reference exponent = -alpha - beta * np.log(xx) return norm * np.power(xx, exponent) class TemplateSpectralModel(SpectralModel): """A model generated from a table of energy and value arrays. For more information see :ref:`template-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Array of energies at which the model values are given values : array Array with the values of the model at energies ``energy``. interp_kwargs : dict Interpolation keyword arguments passed to `scipy.interpolate.RegularGridInterpolator`. By default all values outside the interpolation range are set to zero. If you want to apply linear extrapolation you can pass `interp_kwargs={'fill_value': 'extrapolate', 'kind': 'linear'}`. If you want to choose the interpolation scaling applied to values, you can use `interp_kwargs={"values_scale": "log"}`. meta : dict, optional Meta information, meta['filename'] will be used for serialization """ tag = ["TemplateSpectralModel", "template"] def __init__( self, energy, values, interp_kwargs=None, meta=None, ): self.energy = energy self.values = u.Quantity(values, copy=False) self.meta = dict() if meta is None else meta interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("points_scale", ("log",)) self._evaluate = ScaledRegularGridInterpolator( points=(energy,), values=values, **interp_kwargs ) super().__init__() @classmethod def read_xspec_model(cls, filename, param, **kwargs): """Read XSPEC table model. The input is a table containing absorbed values from a XSPEC model as a function of energy. TODO: Format of the file should be described and discussed in https://gamma-astro-data-formats.readthedocs.io/en/latest/index.html Parameters ---------- filename : str File containing the XSPEC model param : float Model parameter value Examples -------- Fill table from an EBL model (Franceschini, 2008) >>> from gammapy.modeling.models import TemplateSpectralModel >>> filename = '$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz' >>> table_model = TemplateSpectralModel.read_xspec_model(filename=filename, param=0.3) """ filename = make_path(filename) # Check if parameter value is in range table_param = Table.read(filename, hdu="PARAMETERS") pmin = table_param["MINIMUM"] pmax = table_param["MAXIMUM"] if param < pmin or param > pmax: raise ValueError(f"Out of range: param={param}, min={pmin}, max={pmax}") # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = table_energy["ENERG_LO"] energy_hi = table_energy["ENERG_HI"] # set energy to log-centers energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values (no interpolation, take closest value for param) table_spectra = Table.read(filename, hdu="SPECTRA") idx = np.abs(table_spectra["PARAMVAL"] - param).argmin() values = u.Quantity(table_spectra[idx][1], "", copy=False) # no dimension kwargs.setdefault("interp_kwargs", {"values_scale": "lin"}) return cls(energy=energy, values=values, **kwargs) def evaluate(self, energy): """Evaluate the model (static function).""" return self._evaluate((energy,), clip=True) def to_dict(self, full_output=False): return { "type": self.tag[0], "energy": { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), }, "values": { "data": self.values.data.tolist(), "unit": str(self.values.unit), }, } @classmethod def from_dict(cls, data): energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls(energy=energy, values=values) @classmethod def from_region_map(cls, map, **kwargs): """Create model from region map""" energy = map.geom.axes["energy_true"].center values = map.quantity[:, 0, 0] return cls(energy=energy, values=values, **kwargs) class ScaleSpectralModel(SpectralModel): """Wrapper to scale another spectral model by a norm factor. Parameters ---------- model : `SpectralModel` Spectral model to wrap. norm : float Multiplicative norm factor for the model value. """ tag = ["ScaleSpectralModel", "scale"] norm = Parameter("norm", 1, unit="", interp="log") def __init__(self, model, norm=norm.quantity): self.model = model self._covariance = None super().__init__(norm=norm) def evaluate(self, energy, norm): return norm * self.model(energy) def integral(self, energy_min, energy_max, **kwargs): return self.norm.value * self.model.integral(energy_min, energy_max, **kwargs) class EBLAbsorptionNormSpectralModel(SpectralModel): r"""Gamma-ray absorption models. For more information see :ref:`absorption-spectral-model`. Parameters ---------- energy : `~astropy.units.Quantity` Energy node values param : `~astropy.units.Quantity` Parameter node values data : `~astropy.units.Quantity` Model value redshift : float Redshift of the absorption model alpha_norm: float Norm of the EBL model interp_kwargs : dict Interpolation option passed to `ScaledRegularGridInterpolator`. By default the models are extrapolated outside the range. To prevent this and raise an error instead use interp_kwargs = {"extrapolate": False} """ tag = ["EBLAbsorptionNormSpectralModel", "ebl-norm"] alpha_norm = Parameter("alpha_norm", 1.0, frozen=True) redshift = Parameter("redshift", 0.1, frozen=True) def __init__(self, energy, param, data, redshift, alpha_norm, interp_kwargs=None): self.filename = None # set values log centers self.param = param self.energy = energy self.energy = energy self.data = u.Quantity(data, copy=False) interp_kwargs = interp_kwargs or {} interp_kwargs.setdefault("points_scale", ("lin", "log")) interp_kwargs.setdefault("values_scale", "log") interp_kwargs.setdefault("extrapolate", True) self._evaluate_table_model = ScaledRegularGridInterpolator( points=(self.param, self.energy), values=self.data, **interp_kwargs ) super().__init__(redshift=redshift, alpha_norm=alpha_norm) def to_dict(self, full_output=False): data = super().to_dict(full_output=full_output) if self.filename is None: data["energy"] = { "data": self.energy.data.tolist(), "unit": str(self.energy.unit), } data["param"] = { "data": self.param.data.tolist(), "unit": str(self.param.unit), } data["values"] = { "data": self.data.data.tolist(), "unit": str(self.data.unit), } else: data["filename"] = str(self.filename) return data @classmethod def from_dict(cls, data): redshift = [p["value"] for p in data["parameters"] if p["name"] == "redshift"][ 0 ] alpha_norm = [ p["value"] for p in data["parameters"] if p["name"] == "alpha_norm" ][0] if "filename" in data: return cls.read(data["filename"], redshift=redshift, alpha_norm=alpha_norm) else: energy = u.Quantity(data["energy"]["data"], data["energy"]["unit"]) param = u.Quantity(data["param"]["data"], data["param"]["unit"]) values = u.Quantity(data["values"]["data"], data["values"]["unit"]) return cls( energy=energy, param=param, data=values, redshift=redshift, alpha_norm=alpha_norm, ) @classmethod def read(cls, filename, redshift=0.1, alpha_norm=1, interp_kwargs=None): """Build object from an XSPEC model. Todo: Format of XSPEC binary files should be referenced at https://gamma-astro-data-formats.readthedocs.io/en/latest/ Parameters ---------- filename : str File containing the model. redshift : float Redshift of the absorption model alpha_norm: float Norm of the EBL model interp_kwargs : dict Interpolation option passed to `ScaledRegularGridInterpolator`. """ # Create EBL data array filename = make_path(filename) table_param = Table.read(filename, hdu="PARAMETERS") # TODO: for some reason the table contain duplicated values param, idx = np.unique(table_param[0]["VALUE"], return_index=True) # Get energy values table_energy = Table.read(filename, hdu="ENERGIES") energy_lo = u.Quantity( table_energy["ENERG_LO"], "keV", copy=False ) # unit not stored in file energy_hi = u.Quantity( table_energy["ENERG_HI"], "keV", copy=False ) # unit not stored in file energy = np.sqrt(energy_lo * energy_hi) # Get spectrum values table_spectra = Table.read(filename, hdu="SPECTRA") data = table_spectra["INTPSPEC"].data[idx, :] model = cls( energy=energy, param=param, data=data, redshift=redshift, alpha_norm=alpha_norm, interp_kwargs=interp_kwargs, ) model.filename = filename return model @classmethod def read_builtin( cls, reference="dominguez", redshift=0.1, alpha_norm=1, interp_kwargs=None ): """Read from one of the built-in absorption models. Parameters ---------- reference : {'franceschini', 'dominguez', 'finke'} name of one of the available model in gammapy-data redshift : float Redshift of the absorption model alpha_norm: float Norm of the EBL model References ---------- .. [1] Franceschini et al., "Extragalactic optical-infrared background radiation, its time evolution and the cosmic photon-photon opacity", `Link <https://ui.adsabs.harvard.edu/abs/2008A%26A...487..837F>`__ .. [2] Dominguez et al., " Extragalactic background light inferred from AEGIS galaxy-SED-type fractions" `Link <https://ui.adsabs.harvard.edu/abs/2011MNRAS.410.2556D>`__ .. [3] Finke et al., "Modeling the Extragalactic Background Light from Stars and Dust" `Link <https://ui.adsabs.harvard.edu/abs/2010ApJ...712..238F>`__ """ models = dict() models["franceschini"] = "$GAMMAPY_DATA/ebl/ebl_franceschini.fits.gz" models["dominguez"] = "$GAMMAPY_DATA/ebl/ebl_dominguez11.fits.gz" models["finke"] = "$GAMMAPY_DATA/ebl/frd_abs.fits.gz" return cls.read( models[reference], redshift, alpha_norm, interp_kwargs=interp_kwargs ) def evaluate(self, energy, redshift, alpha_norm): """Evaluate model for energy and parameter value.""" absorption = np.clip(self._evaluate_table_model((redshift, energy)), 0, 1) return np.power(absorption, alpha_norm) class NaimaSpectralModel(SpectralModel): r"""A wrapper for Naima models. For more information see :ref:`naima-spectral-model`. Parameters ---------- radiative_model : `~naima.models.BaseRadiative` An instance of a radiative model defined in `~naima.models` distance : `~astropy.units.Quantity`, optional Distance to the source. If set to 0, the intrinsic differential luminosity will be returned. Default is 1 kpc seed : str or list of str, optional Seed photon field(s) to be considered for the `radiative_model` flux computation, in case of a `~naima.models.InverseCompton` model. It can be a subset of the `seed_photon_fields` list defining the `radiative_model`. Default is the whole list of photon fields nested_models : dict Additionnal parameters for nested models not supplied by the radiative model, for now this is used only for synchrotron self-compton model """ tag = ["NaimaSpectralModel", "naima"] def __init__( self, radiative_model, distance=1.0 * u.kpc, seed=None, nested_models=None ): import naima self.radiative_model = radiative_model self._particle_distribution = self.radiative_model.particle_distribution self.distance = u.Quantity(distance) self.seed = seed if nested_models is None: nested_models = {} self.nested_models = nested_models if isinstance(self._particle_distribution, naima.models.TableModel): param_names = ["amplitude"] else: param_names = self._particle_distribution.param_names parameters = [] for name in param_names: value = getattr(self._particle_distribution, name) parameter = Parameter(name, value) parameters.append(parameter) # In case of a synchrotron radiative model, append B to the fittable parameters if "B" in self.radiative_model.param_names: value = getattr(self.radiative_model, "B") parameter = Parameter("B", value) parameters.append(parameter) # In case of a synchrotron self compton model, append B and Rpwn to the fittable parameters if ( isinstance(self.radiative_model, naima.models.InverseCompton) and "SSC" in self.nested_models ): B = self.nested_models["SSC"]["B"] radius = self.nested_models["SSC"]["radius"] parameters.append(Parameter("B", B)) parameters.append(Parameter("radius", radius, frozen=True)) for p in parameters: p.scale_method = "scale10" self.default_parameters = Parameters(parameters) super().__init__() def _evaluate_ssc( self, energy, ): """ Compute photon density spectrum from synchrotron emission for synchrotron self-compton model, assuming uniform synchrotron emissivity inside a sphere of radius R (see Section 4.1 of Atoyan & Aharonian 1996) based on : "https://naima.readthedocs.io/en/latest/examples.html#crab-nebula-ssc-model" """ import naima SYN = naima.models.Synchrotron( self._particle_distribution, B=self.B.quantity, Eemax=self.radiative_model.Eemax, Eemin=self.radiative_model.Eemin, ) Esy = np.logspace(-7, 9, 100) * u.eV Lsy = SYN.flux(Esy, distance=0 * u.cm) # use distance 0 to get luminosity phn_sy = Lsy / (4 * np.pi * self.radius.quantity ** 2 * const.c) * 2.24 # The factor 2.24 comes from the assumption on uniform synchrotron # emissivity inside a sphere if "SSC" not in self.radiative_model.seed_photon_fields: self.radiative_model.seed_photon_fields["SSC"] = { "isotropic": True, "type": "array", "energy": Esy, "photon_density": phn_sy, } else: self.radiative_model.seed_photon_fields["SSC"]["photon_density"] = phn_sy dnde = self.radiative_model.flux( energy, seed=self.seed, distance=self.distance ) + SYN.flux(energy, distance=self.distance) return dnde def evaluate(self, energy, **kwargs): """Evaluate the model.""" import naima for name, value in kwargs.items(): setattr(self._particle_distribution, name, value) if "B" in self.radiative_model.param_names: self.radiative_model.B = self.B.quantity if ( isinstance(self.radiative_model, naima.models.InverseCompton) and "SSC" in self.nested_models ): dnde = self._evaluate_ssc(energy.flatten()) elif self.seed is not None: dnde = self.radiative_model.flux( energy.flatten(), seed=self.seed, distance=self.distance ) else: dnde = self.radiative_model.flux(energy.flatten(), distance=self.distance) dnde = dnde.reshape(energy.shape) unit = 1 / (energy.unit * u.cm ** 2 * u.s) return dnde.to(unit) def to_dict(self, full_output=True): # for full_output to True otherwise broken return super().to_dict(full_output=True) @classmethod def from_dict(cls, data): raise NotImplementedError( "Currently the NaimaSpectralModel cannot be read from YAML" ) @classmethod def from_parameters(cls, parameters, **kwargs): raise NotImplementedError( "Currently the NaimaSpectralModel cannot be built from a list of parameters." ) class GaussianSpectralModel(SpectralModel): r"""Gaussian spectral model. For more information see :ref:`gaussian-spectral-model`. Parameters ---------- norm : `~astropy.units.Quantity` :math:`N_0` mean : `~astropy.units.Quantity` :math:`\bar{E}` sigma : `~astropy.units.Quantity` :math:`\sigma` """ tag = ["GaussianSpectralModel", "gauss"] norm = Parameter("norm", 1e-12 * u.Unit("cm-2 s-1"), interp="log") mean = Parameter("mean", 1 * u.TeV) sigma = Parameter("sigma", 2 * u.TeV) @staticmethod def evaluate(energy, norm, mean, sigma): return ( norm / (sigma * np.sqrt(2 * np.pi)) * np.exp(-((energy - mean) ** 2) / (2 * sigma ** 2)) ) def integral(self, energy_min, energy_max, **kwargs): r"""Integrate Gaussian analytically. .. math:: F(E_{min}, E_{max}) = \frac{N_0}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma})\right]_{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range """ # kwargs are passed to this function but not used # this is to get a consistent API with SpectralModel.integral() u_min = ( (energy_min - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") u_max = ( (energy_max - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") return ( self.norm.quantity / 2 * (scipy.special.erf(u_max) - scipy.special.erf(u_min)) ) def energy_flux(self, energy_min, energy_max): r"""Compute energy flux in given energy range analytically. .. math:: G(E_{min}, E_{max}) = \frac{N_0 \sigma}{\sqrt{2*\pi}}* \left[ - \exp(\frac{E_{min}-\bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} + \frac{N_0 * \bar{E}}{2} \left[ erf(\frac{E - \bar{E}}{\sqrt{2} \sigma}) \right]_{E_{min}}^{E_{max}} Parameters ---------- energy_min, energy_max : `~astropy.units.Quantity` Lower and upper bound of integration range. """ u_min = ( (energy_min - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") u_max = ( (energy_max - self.mean.quantity) / (np.sqrt(2) * self.sigma.quantity) ).to_value("") a = self.norm.quantity * self.sigma.quantity / np.sqrt(2 * np.pi) b = self.norm.quantity * self.mean.quantity / 2 return a * (np.exp(-(u_min ** 2)) - np.exp(-(u_max ** 2))) + b * ( scipy.special.erf(u_max) - scipy.special.erf(u_min) )
StarcoderdataPython
187895
<filename>application/api/dashboard.py from flask_restful import Resource, reqparse from application.common.common_exception import ResourceNotAvailableException from application.common.constants import APIMessages from application.common.response import (api_response, STATUS_OK) from application.common.token import token_required from application.model.models import Organization class SideBarMenu(Resource): """ URL: /api/sidebar-menu Returns the list of allowed modules for the given user for the given Organisation Actions: GET: - Returns the List of allowed permissions for the user in the given Organization. """ @token_required def get(self, session): sidebar_menu_parser = reqparse.RequestParser() sidebar_menu_parser.add_argument('org_id', help=APIMessages.PARSER_MESSAGE.format( 'org_id'), required=True, type=int, location='args') sidebar_menu_args = sidebar_menu_parser.parse_args() org_obj = Organization.query.filter_by( org_id=sidebar_menu_args['org_id']).first() if not org_obj: raise ResourceNotAvailableException( APIMessages.INVALID_ORG_ID) sidebar_menu = dict() sidebar_menu["org_name"] = org_obj.org_name sidebar_menu["org_id"] = org_obj.org_id sidebar_menu["allow_modules"] = ["user-mgt", "project-mgt", "test-suite", "list of all the module to load"] return api_response(True, APIMessages.SUCCESS, STATUS_OK, sidebar_menu)
StarcoderdataPython
78122
<filename>enaml/qt/qt_label.py #------------------------------------------------------------------------------ # Copyright (c) 2013, Nucleic Development Team. # # Distributed under the terms of the Modified BSD License. # # The full license is in the file COPYING.txt, distributed with this software. #------------------------------------------------------------------------------ from PyQt4.QtCore import Qt from PyQt4.QtGui import QLabel from atom.api import Typed from enaml.widgets.label import ProxyLabel from .qt_constraints_widget import size_hint_guard from .qt_control import QtControl ALIGN_MAP = { 'left': Qt.AlignLeft, 'right': Qt.AlignRight, 'center': Qt.AlignHCenter, 'justify': Qt.AlignJustify, } VERTICAL_ALIGN_MAP = { 'top': Qt.AlignTop, 'bottom': Qt.AlignBottom, 'center': Qt.AlignVCenter, } class QtLabel(QtControl, ProxyLabel): """ A Qt implementation of an Enaml ProxyLabel. """ #: A reference to the widget created by the proxy. widget = Typed(QLabel) #-------------------------------------------------------------------------- # Initialization API #-------------------------------------------------------------------------- def create_widget(self): """ Create the underlying label widget. """ self.widget = QLabel(self.parent_widget()) def init_widget(self): """ Initialize the underlying widget. """ super(QtLabel, self).init_widget() d = self.declaration self.set_text(d.text, sh_guard=False) self.set_align(d.align) self.set_vertical_align(d.vertical_align) #-------------------------------------------------------------------------- # ProxyLabel API #-------------------------------------------------------------------------- def set_text(self, text, sh_guard=True): """ Set the text in the widget. """ if sh_guard: with size_hint_guard(self): self.widget.setText(text) else: self.widget.setText(text) def set_align(self, align): """ Set the alignment of the text in the widget. """ widget = self.widget alignment = widget.alignment() alignment &= ~Qt.AlignHorizontal_Mask alignment |= ALIGN_MAP[align] widget.setAlignment(alignment) def set_vertical_align(self, align): """ Set the vertical alignment of the text in the widget. """ widget = self.widget alignment = widget.alignment() alignment &= ~Qt.AlignVertical_Mask alignment |= VERTICAL_ALIGN_MAP[align] widget.setAlignment(alignment)
StarcoderdataPython
3523222
from django.contrib.auth.models import User from django.db import models class UserProfile(models.Model): user = models.OneToOneField( User, null=True, blank=True, related_name='user_profile', on_delete=models.CASCADE) def __str__(self): return self.user.username if self.user else str(self.pk)
StarcoderdataPython
9677580
<reponame>ilindrey/whatyouknow<filename>apps/comments/urls.py from django.urls import path, include from .views import CommentListView, CreateCommentView, EditCommentView urlpatterns = [ path('ajax/', include([ path('load_comment_list', CommentListView.as_view(), name='comment_list'), path('create_comment', CreateCommentView.as_view(), name='comment_create'), path('<int:pk>/', include([ path('edit_comment', EditCommentView.as_view(), name='comment_edit') ])), ])), ]
StarcoderdataPython
1726150
import re from mongoframes.factory import blueprints from mongoframes.factory import makers from mongoframes.factory import quotas from mongoframes.factory.makers import selections as selection_makers from mongoframes.factory.makers import text as text_makers from tests.fixtures import * def test_maker(): """ The base maker class should provide context for the current target document. """ document = {'foo': 'bar'} maker = makers.Maker() # Check the target for the maker is correctly set using the `target` context # method. with maker.target(document): assert maker.document == document # Once the maker falls out of context check the document has been unset assert maker.document == None def test_dict_of(): """ `DictOf` makers should return a dictionary where each key's value is either a JSON type value the output of a maker. """ maker = makers.DictOf({ 'json_type': 'foo', 'maker': makers.Lambda(lambda doc: 'bar') }) # Check the assembled result assembled = maker._assemble() assert assembled == { 'json_type': None, 'maker': 'bar' } # Check the finished result finished = maker._finish(assembled) assert finished == { 'json_type': 'foo', 'maker': 'bar' } def test_faker(): """ `Faker` makers should call a faker library provider and return the output as the value. """ am_pm = {'AM', 'PM'} # Configured as assembler maker = makers.Faker('am_pm') # Check the assembled result assembled = maker._assemble() assert assembled in am_pm # Check the finished result finished = maker._finish(assembled) assert finished in am_pm # Configured as finisher maker = makers.Faker('am_pm', assembler=False) # Check the assembled result assembled = maker._assemble() assert assembled == None # Check the finished result finished = maker._finish(assembled) assert finished in am_pm # Configured with a different locale maker = makers.Faker('postcode', locale='en_GB') # Check the assembled result resembles a UK postcode assembled = maker._assemble() assert re.match('(\w+?\d{1,2}).*', assembled) and len(assembled) <= 8 def test_lambda(): """ `Lambda` makers should return the output of the function you initialize them with. """ # Configured as assembler maker = makers.Lambda(lambda doc: 'foo') # Check the assembled result assembled = maker._assemble() assert assembled == 'foo' # Check the finished result finished = maker._finish(assembled) assert finished == 'foo' # Configured as finisher maker = makers.Lambda(lambda doc, v: 'bar', assembler=False, finisher=True) # Check the assembled result assembled = maker._assemble() assert assembled == None # Check the finished result finished = maker._finish(assembled) assert finished == 'bar' # Configured as both an assembler and finisher def func(doc, value=None): if value: return value + 'bar' return 'foo' maker = makers.Lambda(func, finisher=True) # Check the assembled result assembled = maker._assemble() assert assembled == 'foo' # Check the finished result finished = maker._finish(assembled) assert finished == 'foobar' def test_list_of(): """ `ListOf` makers should return a list of values generated by calling a maker multiple times. """ # Configured to not reset sub-maker maker = makers.ListOf( selection_makers.Cycle(list('abcde')), quotas.Quota(6) ) # Check the assembled result assembled = maker._assemble() assert assembled == [[i, None] for i in [0, 1, 2, 3, 4, 0]] # Check the finished result finished = maker._finish(assembled) assert finished == list('abcdea') # Check that calling the maker again continues from where we left off assembled = maker._assemble() assert assembled == [[i, None] for i in [1, 2, 3, 4, 0, 1]] # Configured to reset sub-maker maker = makers.ListOf( selection_makers.Cycle(list('abcde')), quotas.Quota(6), reset_maker=True ) # Call the maker twice assembled = maker._assemble() assembled = maker._assemble() # Check the result was reset after the first call assert assembled == [[i, None] for i in [0, 1, 2, 3, 4, 0]] def test_static(): """`Static` makers should return the value you initialize them with""" # Configured as assembler value = {'foo': 'bar'} maker = makers.Static(value) # Check the assembled result assembled = maker._assemble() assert assembled == value # Check the finished result finished = maker._finish(assembled) assert finished == value # Configured as finisher value = {'foo': 'bar'} maker = makers.Static(value, assembler=False) # Check the assembled result assembled = maker._assemble() assert assembled == None # Check the finished result finished = maker._finish(assembled) assert finished == value def test_sub_factory(mocker): """ `SubFactory` makers should return a sub-frame/document using a blueprint. """ # Define a blueprint class InventoryBlueprint(blueprints.Blueprint): _frame_cls = Inventory gold = makers.Static(10) skulls = makers.Static(100) # Configure the maker maker = makers.SubFactory(InventoryBlueprint) # Check the assembled result assembled = maker._assemble() assert assembled == {'gold': 10, 'skulls': 100} # Check the finished result finished = maker._finish(assembled) assert isinstance(finished, Inventory) assert finished._document == {'gold': 10, 'skulls': 100} # Reset should reset the sub factories associated blueprint mocker.spy(InventoryBlueprint, 'reset') maker.reset() assert InventoryBlueprint.reset.call_count == 1 def test_unique(): """ `Unique` makers guarentee a unique value is return from the maker they are wrapped around. """ # Confifured as assembler maker = makers.Unique(makers.Faker('name')) # Generate 100 random names names = set([]) for i in range(0, 20): assembled = maker._assemble() assert assembled not in names names.add(assembled) # Confifured as finisher maker = makers.Unique(makers.Faker('name'), assembler=False) # Generate 100 random names names = set([]) for i in range(0, 20): finished = maker._finish(maker._assemble()) assert finished not in names names.add(finished) # Check that unique will eventually fail if it cannot generate a unique # response with a maker. maker = makers.Unique(makers.Static('foo')) failed = False try: for i in range(0, 100): finished = maker._finish(maker._assemble()) except AssertionError: failed = True assert failed # Check that we can include a set of initial exluded values maker = makers.Unique( text_makers.Sequence('test-{index}'), exclude={'test-3'} ) names = set([]) for i in range(0, 9): assembled = maker._assemble() names.add(assembled) assert 'test-3' not in names # Reset should clear the generate unique values from the maker and allow # those values to be generated again. maker = makers.Unique(makers.Static('foo'), assembler=False) failed = False try: for i in range(0, 100): finished = maker._finish(maker._assemble()) maker.reset() except AssertionError: failed = True assert not failed
StarcoderdataPython
6682917
from typing import Optional from .base import Base class TzInfo(Base): # Time zone in seconds from UTC offset: int # Name of the time zone name: str # Abbreviated name of the time zone abbr: Optional[str] # Daylight saving time dst: Optional[bool] class Info(Base): # The latitude (in degrees). lat: float # The longitude (in degrees) lon: float # Information about the time zone tzinfo: Optional[TzInfo] # The normal pressure for the given coordinates (mm Hg) def_pressure_mm: Optional[int] # The normal pressure for the given coordinates (hPa) def_pressure_pa: Optional[int] # Locality page on Yandex.Weather (https://yandex.ru/pogoda/) url: str
StarcoderdataPython
135206
#!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved import logging from typing import Any, Callable, Dict, List, Optional import torch.nn as nn from pytext.contrib.pytext_lib.data.datasets.batchers import Batcher from pytext.contrib.pytext_lib.data.datasets.pytext_dataset import PyTextDataset from pytext.data.sources.data_source import SafeFileWrapper from pytext.data.sources.tsv import TSV logger = logging.getLogger(__name__) class DeprecatedTsvDataset(PyTextDataset): def __init__( self, path: str, columns: List[Any] = None, column_mapping: Optional[Dict[str, str]] = None, delimiter: str = "\t", batch_size: Optional[int] = None, is_shuffle: bool = True, transform: Optional[nn.Module] = None, custom_batcher: Optional[Batcher] = None, collate_fn: Optional[Callable] = None, chunk_size: int = 1000, is_cycle: bool = False, length: Optional[int] = None, rank: int = 0, world_size: int = 1, *args, **kwargs, ): logger.debug(f"init TsvDataset from: {path}") columns = columns or ["text", "label"] if column_mapping: raise NotImplementedError("column mapping is not supported for tsv yet!") self.file = SafeFileWrapper(path, encoding="utf-8", errors="replace") tsv_iterator = TSV(self.file, field_names=columns, delimiter=delimiter) super().__init__( iterable=tsv_iterator, batch_size=batch_size, is_shuffle=is_shuffle, transform=transform, custom_batcher=custom_batcher, collate_fn=collate_fn, chunk_size=chunk_size, is_cycle=is_cycle, length=length, rank=rank, world_size=world_size, )
StarcoderdataPython
8070877
<reponame>zhnlks/ShiPanE-Python-SDK # -*- coding: utf-8 -*- import codecs import os import unittest import six from six.moves import configparser if six.PY2: ConfigParser = configparser.RawConfigParser else: ConfigParser = configparser.ConfigParser from shipane_sdk.joinquant.client import JoinQuantClient class JoinQuantClientTest(unittest.TestCase): def setUp(self): config = ConfigParser() dir_path = os.path.dirname(os.path.realpath(__file__)) config.readfp(codecs.open('{}/../../config/config.ini'.format(dir_path), encoding="utf_8_sig")) self._jq_client = JoinQuantClient(**dict(config.items('JoinQuant'))) def test_query(self): self._jq_client.login() transactions = self._jq_client.query() self.assertTrue(isinstance(transactions, list))
StarcoderdataPython
87548
<gh_stars>1-10 from typing import Dict import numpy as np from qulacs import QuantumCircuit from qulacs.gate import CNOT, TOFFOLI, DenseMatrix, to_matrix_gate def load_circuit_data() -> Dict[str, QuantumCircuit]: circuits = {} circuits["empty_circuit"] = empty_circuit() circuits["x_gate_circuit"] = x_gate_circuit() circuits["y_gate_circuit"] = y_gate_circuit() circuits["z_gate_circuit"] = z_gate_circuit() circuits["cz_gate_circuit"] = cz_gate_circuit() circuits["cnot_gate_circuit"] = cnot_gate_circuit() circuits["ctl_wire_should_not_overlap"] = ctl_wire_should_not_overlap() circuits["swap_circuit"] = swap_circuit() circuits[ "multiple_swap_gates_should_not_overlap" ] = multiple_swap_gates_should_not_overlap() circuits["dense_matrix_gate_circuit"] = dense_matrix_gate_circuit() circuits[ "dense_matrix_gate_with_target_bits" ] = dense_matrix_gate_with_target_bits() circuits[ "dense_matrix_gate_with_separated_target_bits" ] = dense_matrix_gate_with_separated_target_bits() circuits[ "dense_matrix_gate_should_not_overlap" ] = dense_matrix_gate_should_not_overlap() circuits["toffoli_gate_circuit"] = toffoli_gate_circuit() circuits["xyz_horizontal_circuit"] = xyz_horizontal_circuit() circuits["xyz_vertical_circuit"] = xyz_vertical_circuit() return circuits def empty_circuit() -> QuantumCircuit: return QuantumCircuit(3) def x_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(1) circuit.add_X_gate(0) return circuit def y_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(1) circuit.add_Y_gate(0) return circuit def z_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(1) circuit.add_Z_gate(0) return circuit def cz_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(2) circuit.add_CZ_gate(0, 1) circuit.add_CZ_gate(1, 0) return circuit def cnot_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(2) circuit.add_CNOT_gate(0, 1) circuit.add_CNOT_gate(1, 0) return circuit def ctl_wire_should_not_overlap() -> QuantumCircuit: circuit = QuantumCircuit(3) circuit.add_X_gate(1) circuit.add_CZ_gate(0, 2) circuit.add_X_gate(1) circuit.add_CNOT_gate(0, 2) circuit.add_X_gate(1) return circuit def swap_circuit() -> QuantumCircuit: circuit = QuantumCircuit(2) circuit.add_SWAP_gate(0, 1) circuit.add_SWAP_gate(1, 0) return circuit def multiple_swap_gates_should_not_overlap() -> QuantumCircuit: circuit = QuantumCircuit(4) circuit.add_SWAP_gate(0, 2) circuit.add_SWAP_gate(1, 3) return circuit def dense_matrix_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(2) circuit.add_dense_matrix_gate( [0, 1], [[1, 0, 0, 0], [0, 1, 0, 0], [0, 0, 0, 1], [0, 0, 1, 0]] ) return circuit def dense_matrix_gate_with_target_bits() -> QuantumCircuit: circuit = QuantumCircuit(3) # CCX0,1, 2 cx_gate = CNOT(1, 2) cx_mat_gate = to_matrix_gate(cx_gate) control_index = 0 control_with_value = 1 cx_mat_gate.add_control_qubit(control_index, control_with_value) circuit.add_gate(cx_mat_gate) return circuit def dense_matrix_gate_with_separated_target_bits() -> QuantumCircuit: circuit = QuantumCircuit(5) mat = np.identity(2 ** 3) # 3-qubit gate applied to [0,3,4], and [1] qubit is control-qubit c_dense_gate = DenseMatrix([0, 3, 4], mat) control_index = 1 control_with_value = 1 c_dense_gate.add_control_qubit(control_index, control_with_value) circuit.add_gate(c_dense_gate) return circuit def dense_matrix_gate_should_not_overlap() -> QuantumCircuit: circuit = QuantumCircuit(5) mat = np.identity(2 ** 3) # 3-qubit gate applied to [0,2,4] circuit.add_dense_matrix_gate([0, 2, 4], mat) # 2-qubit gate applied to [1,3] mat = np.identity(2 ** 2) circuit.add_dense_matrix_gate([1, 3], mat) return circuit def toffoli_gate_circuit() -> QuantumCircuit: circuit = QuantumCircuit(3) ccx = TOFFOLI(0, 1, 2) circuit.add_gate(ccx) ccx = TOFFOLI(1, 2, 0) circuit.add_gate(ccx) ccx = TOFFOLI(0, 2, 1) circuit.add_gate(ccx) return circuit def xyz_horizontal_circuit() -> QuantumCircuit: circuit = QuantumCircuit(1) circuit.add_X_gate(0) circuit.add_Y_gate(0) circuit.add_Z_gate(0) return circuit def xyz_vertical_circuit() -> QuantumCircuit: circuit = QuantumCircuit(3) circuit.add_X_gate(0) circuit.add_Y_gate(1) circuit.add_Z_gate(2) return circuit
StarcoderdataPython
288669
<gh_stars>100-1000 class Tape: """ Allows writing to end of a file-like object while maintaining the read pointer accurately. The read operation actually removes characters read from the buffer. """ def __init__(self, initial_value:str=''): """ :param initial_value: initialize the Tape with a preset string """ self._buffer = initial_value def read(self, size:int=None): """ :param size: number of characters to read from the buffer :return: string that has been read from the buffer """ if size: result = self._buffer[0:size] self._buffer = self._buffer[size:] return result else: result = self._buffer self._buffer = '' return result def write(self, s:str): """ :param s: some characters to write to the end of the tape :return: length of characters written """ self._buffer += s return len(s) def __len__(self): return len(self._buffer) def __str__(self): return self._buffer
StarcoderdataPython
3273137
<reponame>YoungxHelsinki/GoldenRatio import csv_lab csv_path = '/Users/young/datahackathon/vuokraovi_retrieve/no_decimal.csv' csv_list = csv_lab.csv_to_list(csv_path) pos = 5 columns = ['image'] new_path = 'no_decimal_imgage.csv' csv_lab.insert_column(csv_list, columns, 5, new_path)
StarcoderdataPython
396027
<reponame>daobook/myst-parser """Uses sphinx's pytest fixture to run builds. see conftest.py for fixture usage NOTE: sphinx 3 & 4 regress against different output files, the major difference being sphinx 4 uses docutils 0.17, which uses semantic HTML tags (e.g. converting `<div class="section">` to `<section>`) """ import os import re import pytest import sphinx from docutils import VersionInfo, __version_info__ SOURCE_DIR = os.path.abspath(os.path.join(os.path.dirname(__file__), "sourcedirs")) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "basic"), freshenv=True ) def test_basic( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """basic test.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" get_sphinx_app_doctree( app, docname="content", regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) get_sphinx_app_doctree( app, docname="content", resolve=True, regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) get_sphinx_app_output( app, filename="content.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) assert app.env.metadata["content"] == { "author": "<NAME>", "authors": ["<NAME>", "<NAME>"], "organization": "EPFL", "address": "1 Cedar Park Close\nThundersley\nEssex\n", "contact": "https://example.com", "version": "1.0", "revision": "1.1", "status": "good", "date": "2/12/1985", "copyright": "MIT", "other": "Something else", "wordcount": {"minutes": 0, "words": 57}, } @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "references"), freshenv=True, ) def test_references( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test reference resolution.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree(app, docname="index", regress=True) finally: get_sphinx_app_doctree(app, docname="index", resolve=True, regress=True) get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="singlehtml", srcdir=os.path.join(SOURCE_DIR, "references_singlehtml"), freshenv=True, confoverrides={"nitpicky": True}, ) def test_references_singlehtml( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test reference resolution for singlehtml builds.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" # try: # get_sphinx_app_doctree(app, docname="index", regress=True) # finally: # get_sphinx_app_doctree(app, docname="index", resolve=True, regress=True) try: get_sphinx_app_doctree( app, docname="other/other", regress=True, replace={"other\\other.md": "other/other.md"}, ) finally: get_sphinx_app_doctree( app, docname="other/other", resolve=True, regress=True, replace={"other\\other.md": "other/other.md"}, ) get_sphinx_app_output( app, filename="index.html", buildername="singlehtml", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "heading_slug_func"), freshenv=True, ) def test_heading_slug_func( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test heading_slug_func configuration.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree(app, docname="index", regress=True) finally: get_sphinx_app_doctree(app, docname="index", resolve=True, regress=True) get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "extended_syntaxes"), freshenv=True, ) def test_extended_syntaxes( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, monkeypatch, ): """test setting addition configuration values.""" from myst_parser.sphinx_renderer import SphinxRenderer monkeypatch.setattr(SphinxRenderer, "_random_label", lambda self: "mock-uuid") app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree( app, docname="index", regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) finally: get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "includes"), freshenv=True ) def test_includes( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test of include directive.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree( app, docname="index", regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", # fix for Windows CI replace={ r"subfolder\example2.jpg": "subfolder/example2.jpg", r"subfolder\\example2.jpg": "subfolder/example2.jpg", r"subfolder\\\\example2.jpg": "subfolder/example2.jpg", }, ) finally: get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", replace={ r"'subfolder\\example2'": "'subfolder/example2'", r'uri="subfolder\\example2"': 'uri="subfolder/example2"', "_images/example21.jpg": "_images/example2.jpg", }, ) @pytest.mark.skipif( __version_info__ < VersionInfo(0, 17, 0, "final", 0, True), reason="parser option added in docutils 0.17", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "include_from_rst"), freshenv=True, ) def test_include_from_rst( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test of include directive inside RST file.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" get_sphinx_app_doctree( app, docname="index", regress=True, regress_ext=".xml", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "footnotes"), freshenv=True ) def test_footnotes( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test of include directive.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree(app, docname="footnote_md", regress=True) finally: get_sphinx_app_output( app, filename="footnote_md.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "commonmark_only"), freshenv=True, ) def test_commonmark_only( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """test setting addition configuration values.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert "lexer name '{note}'" in warnings try: get_sphinx_app_doctree(app, docname="index", regress=True) finally: get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "substitutions"), freshenv=True, ) def test_substitutions( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, file_regression, ): """test setting addition configuration values.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree(app, docname="index", regress=True) file_regression.check( get_sphinx_app_doctree(app, docname="other").pformat(), extension=".other.xml", ) finally: get_sphinx_app_output(app, filename="index.html", regress_html=True) @pytest.mark.sphinx( buildername="gettext", srcdir=os.path.join(SOURCE_DIR, "gettext"), freshenv=True ) def test_gettext( app, status, warning, get_sphinx_app_output, remove_sphinx_builds, file_regression, ): """Test gettext message extraction.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" output = get_sphinx_app_output(app, filename="index.pot", buildername="gettext") output = re.sub(r"POT-Creation-Date: [0-9: +-]+", "POT-Creation-Date: ", output) output = re.sub(r"Copyright \(C\) [0-9]{4}", "Copyright (C) XXXX", output) file_regression.check(output, extension=f".sphinx{sphinx.version_info[0]}.pot") @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "gettext"), freshenv=True, confoverrides={"language": "fr", "gettext_compact": False, "locale_dirs": ["."]}, ) def test_gettext_html( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """Test gettext message extraction.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree( app, docname="index", regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) finally: get_sphinx_app_doctree( app, docname="index", resolve=True, regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", ) @pytest.mark.sphinx( buildername="gettext", srcdir=os.path.join(SOURCE_DIR, "gettext"), freshenv=True, confoverrides={ "gettext_additional_targets": [ "index", "literal-block", "doctest-block", "raw", "image", ], }, ) def test_gettext_additional_targets( app, status, warning, get_sphinx_app_output, remove_sphinx_builds, file_regression, ): """Test gettext message extraction.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" output = get_sphinx_app_output(app, filename="index.pot", buildername="gettext") output = re.sub(r"POT-Creation-Date: [0-9: +-]+", "POT-Creation-Date: ", output) output = re.sub(r"Copyright \(C\) [0-9]{4}", "Copyright (C) XXXX", output) file_regression.check(output, extension=f".sphinx{sphinx.version_info[0]}.pot") @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "mathjax"), freshenv=True ) def test_mathjax_warning( app, status, warning, remove_sphinx_builds, ): """Test mathjax config override warning.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert ( "overridden by myst-parser: 'other' -> 'tex2jax_process|mathjax_process|math|output_area'" in warnings ) @pytest.mark.sphinx( buildername="html", srcdir=os.path.join(SOURCE_DIR, "fieldlist"), freshenv=True, ) def test_fieldlist_extension( app, status, warning, get_sphinx_app_doctree, get_sphinx_app_output, remove_sphinx_builds, ): """test setting addition configuration values.""" app.build() assert "build succeeded" in status.getvalue() # Build succeeded warnings = warning.getvalue().strip() assert warnings == "" try: get_sphinx_app_doctree( app, docname="index", regress=True, regress_ext=f".sphinx{sphinx.version_info[0]}.xml", ) finally: get_sphinx_app_output( app, filename="index.html", regress_html=True, regress_ext=f".sphinx{sphinx.version_info[0]}.html", )
StarcoderdataPython
3543717
import warnings from dataclasses import dataclass from pathlib import Path from typing import List, Union, Dict from unittest import main, TestCase from openmaptiles.sql import collect_sql, sql_assert_table, sql_assert_func from openmaptiles.tileset import ParsedData, Tileset @dataclass class Case: id: str query: str reqs: Union[str, List[str], Dict[str, Union[str, List[str]]]] = None def expected_sql(case: Case): result = f"DO $$ BEGIN RAISE NOTICE 'Processing layer {case.id}'; END$$;\n\n" if isinstance(case.reqs, dict): # Use helper functions for SQL generation. Actual SQL is tested by integration tests for table in case.reqs.get('tables', []): result += sql_assert_table(table, case.reqs.get('helpText'), case.id) for func in case.reqs.get('functions', []): result += sql_assert_func(func, case.reqs.get('helpText'), case.id) result += f"""\ -- Layer {case.id} - {case.id}_s.yaml {case.query} DO $$ BEGIN RAISE NOTICE 'Finished layer {case.id}'; END$$; """ return result def parsed_data(layers: Union[Case, List[Case]]): return ParsedData(dict( tileset=(dict( attribution='test_attribution', bounds='test_bounds', center='test_center', defaults=dict(srs='test_srs', datasource=dict(srid='test_datasource')), id='id1', layers=[ ParsedData(dict( layer=dict( buffer_size='test_buffer_size', datasource=dict(query='test_query'), id=v.id, fields={}, requires=[v.reqs] if isinstance(v.reqs, str) else v.reqs or [] ), schema=[ParsedData(v.query, Path(v.id + '_s.yaml'))] if v.query else [], ), Path(f'./{v.id}.yaml')) for v in ([layers] if isinstance(layers, Case) else layers) ], maxzoom='test_maxzoom', minzoom='test_minzoom', name='test_name', pixel_scale='test_pixel_scale', version='test_version', ))), Path('./tileset.yaml')) class SqlTestCase(TestCase): def _test(self, name, layers: List[Case], expect: Dict[str, Union[Case, List[Case]]]): expected_first = """\ -- This SQL code should be executed first CREATE OR REPLACE FUNCTION slice_language_tags(tags hstore) RETURNS hstore AS $$ SELECT delete_empty_keys(slice(tags, ARRAY['int_name', 'loc_name', 'name', 'wikidata', 'wikipedia'])) $$ LANGUAGE SQL IMMUTABLE; """ expected_last = '-- This SQL code should be executed last\n' ts = parsed_data(layers) result = { k: '\n'.join( [expected_sql(vv) for vv in ([v] if isinstance(v, Case) else v)] ) for k, v in expect.items()} # Show entire diff in case assert fails self.maxDiff = None self.assertEqual(expected_first + '\n' + '\n'.join(result.values()) + '\n' + expected_last, collect_sql(ts, parallel=False), msg=f'{name} - single file') self.assertEqual((expected_first, result, expected_last), collect_sql(ts, parallel=True), msg=f'{name} - parallel') def test_require(self): c1 = Case('c1', 'SELECT 1;') c2 = Case('c2', 'SELECT 2;') c3r2 = Case('c3', 'SELECT 3;', reqs='c2') c4r12 = Case('c4', 'SELECT 4;', reqs=['c1', 'c2']) c5r3 = Case('c5', 'SELECT 5;', reqs='c3') c6r4 = Case('c6', 'SELECT 6;', reqs='c4') c7r2 = Case('c7', 'SELECT 7;', reqs=dict(layers='c2')) c8r12 = Case('c8', 'SELECT 8;', reqs=dict(layers=['c1', 'c2'])) c9 = Case('c9', 'SELECT 9;', reqs=dict(tables=['tbl1'])) c10 = Case('c10', 'SELECT 10;', reqs=dict(tables=['tbl1', 'tbl2'])) c11 = Case('c11', 'SELECT 11;', reqs=dict(functions=['fnc1'])) c12 = Case('c12', 'SELECT 12;', reqs=dict(functions=['fnc1', 'fnc2'])) c13 = Case('c13', 'SELECT 13;', reqs=dict(functions=['fnc1', 'fnc2'], helpText="Custom 'ERROR MESSAGE' for missing function - single quote")) c14 = Case('c14', 'SELECT 14;', reqs=dict(tables=['tbl1'], helpText='Custom "ERROR MESSAGE" for missing table - double quote')) self._test('a18', [c12], dict(c12=[c12])) self._test('a01', [], {}) self._test('a02', [c1], dict(c1=c1)) self._test('a03', [c1, c2], dict(c1=c1, c2=c2)) self._test('a04', [c1, c2], dict(c1=c1, c2=c2)) self._test('a05', [c2, c3r2], dict(c2__c3=[c2, c3r2])) self._test('a06', [c3r2, c2], dict(c2__c3=[c2, c3r2])) self._test('a07', [c1, c3r2, c2], dict(c1=c1, c2__c3=[c2, c3r2])) self._test('a08', [c1, c2, c4r12], dict(c1__c2__c4=[c1, c2, c4r12])) self._test('a09', [c2, c3r2, c5r3], dict(c2__c3__c5=[c2, c3r2, c5r3])) self._test('a10', [c5r3, c3r2, c2], dict(c2__c3__c5=[c2, c3r2, c5r3])) self._test('a11', [c1, c2, c4r12, c6r4], dict(c1__c2__c4__c6=[c1, c2, c4r12, c6r4])) self._test('a12', [c4r12, c3r2, c1, c2], dict(c1__c2__c4__c3=[c1, c2, c4r12, c3r2])) self._test('a13', [c2, c7r2], dict(c2__c7=[c2, c7r2])) self._test('a14', [c1, c2, c8r12], dict(c1__c2__c8=[c1, c2, c8r12])) self._test('a15', [c9], dict(c9=[c9])) self._test('a16', [c10], dict(c10=[c10])) self._test('a17', [c11], dict(c11=[c11])) self._test('a18', [c12], dict(c12=[c12])) self._test('a19', [c13], dict(c13=[c13])) self._test('a20', [c14], dict(c14=[c14])) def _ts_parse(self, reqs, expected_layers, expected_tables, expected_funcs, extra_cases=None): cases = [] if not extra_cases else list(extra_cases) cases.append(Case('my_id', 'my_query;', reqs=reqs)) ts = Tileset(parsed_data(cases)) self.assertEqual(ts.attribution, 'test_attribution') self.assertEqual(ts.bounds, 'test_bounds') self.assertEqual(ts.center, 'test_center') self.assertEqual(ts.defaults, dict(srs='test_srs', datasource=dict(srid='test_datasource'))) self.assertEqual(ts.id, 'id1') self.assertEqual(ts.maxzoom, 'test_maxzoom') self.assertEqual(ts.minzoom, 'test_minzoom') self.assertEqual(ts.name, 'test_name') self.assertEqual(ts.pixel_scale, 'test_pixel_scale') self.assertEqual(ts.version, 'test_version') self.assertEqual(len(ts.layers), len(cases)) layer = ts.layers_by_id['my_id'] self.assertEqual(layer.id, 'my_id') self.assertEqual(layer.requires_layers, expected_layers) self.assertEqual(layer.requires_tables, expected_tables) self.assertEqual(layer.requires_functions, expected_funcs) # This test can be deleted once we remove the deprecated property in some future version with warnings.catch_warnings(): warnings.filterwarnings('ignore', category=DeprecationWarning) self.assertEqual(layer.requires, expected_layers) def test_ts_parse(self): extra = [Case('c1', 'SELECT 1;')] self._ts_parse(None, [], [], []) self._ts_parse([], [], [], []) self._ts_parse({}, [], [], []) self._ts_parse('c1', ['c1'], [], [], extra) self._ts_parse(['c1'], ['c1'], [], [], extra) self._ts_parse(dict(layers='c1'), ['c1'], [], [], extra) self._ts_parse(dict(layers=['c1']), ['c1'], [], [], extra) self._ts_parse(dict(tables='a'), [], ['a'], []) self._ts_parse(dict(tables=['a', 'b']), [], ['a', 'b'], []) self._ts_parse(dict(functions='x'), [], [], ['x']) self._ts_parse(dict(functions=['x', 'y']), [], [], ['x', 'y']) self._ts_parse(dict(layers=['c1'], tables=['a', 'b'], functions=['x', 'y']), ['c1'], ['a', 'b'], ['x', 'y'], extra) if __name__ == '__main__': main()
StarcoderdataPython
1957278
<reponame>qianchilang/learning-pytest def test_option1(pytestconfig): print('host: %s' % pytestconfig.getoption('host')) print('port: %s' % pytestconfig.getoption('port')) def test_option2(config): print('host: %s' % config.getoption('host')) print('port: %s' % config.getoption('port'))
StarcoderdataPython
5019614
<reponame>nickgaya/acsearch<gh_stars>0 """ Implementation of the Aho-Corasick string search algorithm. See https://en.wikipedia.org/wiki/Aho-Corasick_algorithm """ from collections import deque from functools import wraps def cached_property(method): """ Decorator to create a lazy property that is cached on first access """ attr = '_'+method.__name__ @property @wraps(method) def func(self): try: return getattr(self, attr) except AttributeError: value = method(self) setattr(self, attr, value) return value return func class ACDictionary: """ Dictionary of words that builds an Aho-Corasick tree to support efficient string search. """ def __init__(self, words): """ Initialize the dictionary with the given words. The dictionary does not support modification once initialized. """ self._root = ACRootNode() self._len = sum(1 for word in words if self._add_word(word)) def _add_word(self, word): node = self._root for char in word: node = node.add_child(char) if node: was_word = node.is_word node.is_word = True return not was_word else: raise ValueError("Empty word: {!r}".format(word)) def findall(self, text): """ Return a list of dictionary words contained in the given text. Each word will appear once per occurrence in the text. """ return [str(wnode) for end, wnode in self._find(text)] def finditer(self, text): """ Yield a sequence of ACMatch objects for each dictionary word contained in the given text. """ for end, wnode in self._find(text): yield ACMatch(text, end-len(wnode), end) def _find(self, text): node = self._root for end, c in enumerate(text, 1): node = node.get_next(c) for wnode in node.get_words(): yield (end, wnode) def _nodes(self, bf=False, sort=False): nodes = deque() nodes.append(self._root) while nodes: node = nodes.popleft() if bf else nodes.pop() yield node nodes.extend((v for k, v in sorted(node.children.items(), reverse=not bf)) if sort else node.children.values()) def __iter__(self): """ Yield the words in the dictionary in sorted order """ for node in self._nodes(sort=True): if node.is_word: yield str(node) def __len__(self): return self._len class ACMatch: """ Object representing a matching substring of a given query """ def __init__(self, string, start, end): self.string = string self.start = start self.end = end def __str__(self): return self.string[self.start:self.end] class ACNode: """ Aho-Corasick tree node """ def __init__(self, char, parent, is_word=False): self.char = char self.parent = parent self.is_word = is_word self.children = {} self.len = parent.len + 1 def add_child(self, char, is_word=False): """ Add a child node containing the given char with the given word status. If a child node already exists for the given char, its word status will be or-ed with the given word_status. Returns the child node. """ child = self.children.get(char) if child: # Update word status of child child.is_word = child.is_word or is_word else: # Create new child child = ACNode(char, self, is_word) self.children[char] = child return child # Note: should not be accessed until the tree is fully built. @cached_property def suffix(self): """ Return the node corresponding to the longest dictionary prefix that is a proper suffix of the current node. """ return (self.parent.suffix.get_next(self.char) if self.parent else self.parent) # Note: should not be accessed until the tree is fully built. @cached_property def dict_suffix(self): """ Return the node corresponding to the longest dictionary word that is a proper suffix of the current node, or None if no such node exists. """ if self.suffix.is_word: return self.suffix else: return self.suffix.dict_suffix def get_next(self, char): """ Return the node corresponding to the longest dictionary prefix that is a suffix of the given char appended to the current node. """ if char in self.children: return self.children[char] else: return self.suffix.get_next(char) def get_words(self): """ Yield all nodes corresponding to dictionary words that are suffixes of the current node. """ node = self while node: if node.is_word: yield node node = node.dict_suffix def get_chars(self): """ Return a list of characters for the given node. """ chars = self.parent.get_chars() chars.append(self.char) return chars def __str__(self): return ''.join(self.get_chars()) def __len__(self): return self.len class ACRootNode(ACNode): """ Aho-Corasick root node """ def __init__(self): self.char = None self.parent = self self.is_word = False self.children = {} self.len = 0 self._dict_suffix = None def get_next(self, char): if char in self.children: return self.children[char] else: return self def get_chars(self): return []
StarcoderdataPython
11245901
# -*- coding: utf-8 -*- # vim: tabstop=4 shiftwidth=4 softtabstop=4 # # Copyright (C) 2015-2018 GEM Foundation # # OpenQuake is free software: you can redistribute it and/or modify it # under the terms of the GNU Affero General Public License as published # by the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # OpenQuake is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Affero General Public License for more details. # # You should have received a copy of the GNU Affero General Public License # along with OpenQuake. If not, see <http://www.gnu.org/licenses/>. import numpy from numpy.testing import assert_almost_equal as aae from nose.plugins.attrib import attr from openquake.qa_tests_data.scenario import ( case_1, case_2, case_3, case_4, case_5, case_6, case_7, case_8, case_9) from openquake.baselib.node import floatformat from openquake.calculators.export import export from openquake.calculators.tests import CalculatorTestCase def count_close(gmf_value, gmvs_site_one, gmvs_site_two, delta=0.1): """ Count the number of pairs of gmf values within the specified range. See https://bugs.launchpad.net/openquake/+bug/1097646 attached Scenario Hazard script. """ lower_bound = gmf_value - delta / 2. upper_bound = gmf_value + delta / 2. return sum((lower_bound <= v1 <= upper_bound) and (lower_bound <= v2 <= upper_bound) for v1, v2 in zip(gmvs_site_one, gmvs_site_two)) class ScenarioTestCase(CalculatorTestCase): def frequencies(self, case, fst_value, snd_value): [gmfa] = self.execute(case.__file__, 'job.ini').values() gmvs0 = gmfa[0, :, 0] gmvs1 = gmfa[1, :, 0] realizations = float(self.calc.oqparam.number_of_ground_motion_fields) gmvs_within_range_fst = count_close(fst_value, gmvs0, gmvs1) gmvs_within_range_snd = count_close(snd_value, gmvs0, gmvs1) return (gmvs_within_range_fst / realizations, gmvs_within_range_snd / realizations) def medians(self, case): [gmfa] = self.execute(case.__file__, 'job.ini').values() median = {imt: [] for imt in self.calc.oqparam.imtls} for imti, imt in enumerate(self.calc.oqparam.imtls): for sid in self.calc.sitecol.sids: gmvs = gmfa[sid, :, imti] median[imt].append(numpy.median(gmvs)) return median @attr('qa', 'hazard', 'scenario') def test_case_1(self): with floatformat('%5.1E'): out = self.run_calc(case_1.__file__, 'job.ini', exports='xml') self.assertEqualFiles('expected.xml', out['gmf_data', 'xml'][0]) @attr('qa', 'hazard', 'scenario') def test_case_1bis(self): # 2 out of 3 sites were filtered out out = self.run_calc(case_1.__file__, 'job.ini', maximum_distance='5.0', exports='csv') self.assertEqualFiles( 'BooreAtkinson2008_gmf.csv', out['gmf_data', 'csv'][0]) @attr('qa', 'hazard', 'scenario') def test_case_2(self): medians = self.medians(case_2)['PGA'] aae(medians, [0.37412136, 0.19021782, 0.1365383], decimal=2) @attr('qa', 'hazard', 'scenario') def test_case_3(self): medians_dict = self.medians(case_3) medians_pga = medians_dict['PGA'] medians_sa = medians_dict['SA(0.1)'] aae(medians_pga, [0.48155582, 0.21123045, 0.14484586], decimal=2) aae(medians_sa, [0.93913177, 0.40880148, 0.2692668], decimal=2) @attr('qa', 'hazard', 'scenario') def test_case_4(self): medians = self.medians(case_4)['PGA'] aae(medians, [0.41615372, 0.22797466, 0.1936226], decimal=2) # this is a case with a site model [fname] = export(('site_model', 'xml'), self.calc.datastore) self.assertEqualFiles('site_model.xml', fname) @attr('qa', 'hazard', 'scenario') def test_case_5(self): f1, f2 = self.frequencies(case_5, 0.5, 1.0) self.assertAlmostEqual(f1, 0.03, places=2) self.assertAlmostEqual(f2, 0.003, places=3) @attr('qa', 'hazard', 'scenario') def test_case_6(self): f1, f2 = self.frequencies(case_6, 0.5, 1.0) self.assertAlmostEqual(f1, 0.05, places=2) self.assertAlmostEqual(f2, 0.006, places=3) @attr('qa', 'hazard', 'scenario') def test_case_7(self): f1, f2 = self.frequencies(case_7, 0.5, 1.0) self.assertAlmostEqual(f1, 0.02, places=2) self.assertAlmostEqual(f2, 0.002, places=3) @attr('qa', 'hazard', 'scenario') def test_case_8(self): # test for a GMPE requiring hypocentral depth, since it was # broken: https://bugs.launchpad.net/oq-engine/+bug/1334524 # I am not really checking anything, only that it runs f1, f2 = self.frequencies(case_8, 0.5, 1.0) self.assertAlmostEqual(f1, 0) self.assertAlmostEqual(f2, 0) @attr('qa', 'hazard', 'scenario') def test_case_9(self): with floatformat('%10.6E'): out = self.run_calc(case_9.__file__, 'job.ini', exports='xml') f1, f2 = out['gmf_data', 'xml'] self.assertEqualFiles('LinLee2008SSlab_gmf.xml', f1) self.assertEqualFiles('YoungsEtAl1997SSlab_gmf.xml', f2) out = self.run_calc(case_9.__file__, 'job.ini', exports='csv,npz') f, _sitefile = out['gmf_data', 'csv'] self.assertEqualFiles('gmf.csv', f) # test the .npz export [fname] = out['gmf_data', 'npz'] with numpy.load(fname) as f: self.assertEqual(len(f.keys()), 2) # rlz-000 rlz-001 data1 = f['rlz-000'] data2 = f['rlz-001'] self.assertEqual(data1.dtype.names, ('lon', 'lat', 'PGA')) self.assertEqual(data1.shape, (3,)) self.assertEqual(data1['PGA'].shape, (3, 10)) self.assertEqual(data1.dtype.names, data2.dtype.names) self.assertEqual(data1.shape, data2.shape)
StarcoderdataPython
130677
""" implementation of criteo dataset """ # pylint: disable=unused-argument,missing-docstring import os import sys import re import random import numpy as np from intel_pytorch_extension import core import inspect # pytorch import torch from torch.utils.data import Dataset, RandomSampler import os # add dlrm code path try: dlrm_dir_path = os.environ['DLRM_DIR'] sys.path.append(dlrm_dir_path) except KeyError: print("ERROR: Please set DLRM_DIR environment variable to the dlrm code location") sys.exit(0) #import dataset import dlrm_data_pytorch as dp import data_loader_terabyte class CriteoCalib(Dataset): def __init__(self, data_path, name, test_num_workers=0, max_ind_range=-1, mlperf_bin_loader=False, sub_sample_rate=0.0, randomize="total", memory_map=False): super().__init__() self.random_offsets = [] self.use_fixed_size = True # fixed size queries self.samples_to_aggregate = 1 if name == "kaggle": raw_data_file = data_path + "/train.txt" processed_data_file = data_path + "/kaggleAdDisplayChallenge_processed.npz" elif name == "terabyte": raw_data_file = data_path + "/day" processed_data_file = data_path + "/terabyte_processed.npz" else: raise ValueError("only kaggle|terabyte dataset options are supported") self.use_mlperf_bin_loader = mlperf_bin_loader and memory_map and name == "terabyte" if self.use_mlperf_bin_loader: cal_data_file = os.path.join(data_path, 'calibration.npz') if os.path.isfile(cal_data_file): print("Found calibration.npz !!") self.cal_loader = data_loader_terabyte.CalibDataLoader( data_filename=cal_data_file, batch_size=1, ) else: counts_file = raw_data_file + '_fea_count.npz' validate_file = data_path + "/terabyte_processed_val.bin" if os.path.exists(validate_file): print("Found terabyte_processed_val.bin !!") self.val_data = data_loader_terabyte.CriteoBinDataset( data_file=validate_file, counts_file=counts_file, batch_size=self.samples_to_aggregate, max_ind_range=max_ind_range ) self.val_loader = torch.utils.data.DataLoader( self.val_data, batch_size=None, batch_sampler=None, shuffle=False, num_workers=0, collate_fn=None, pin_memory=False, drop_last=False, ) self.cal_loader = self.val_loader else: self.cal_loader = None else: self.val_data = dp.CriteoDataset( dataset=name, max_ind_range=max_ind_range, sub_sample_rate=sub_sample_rate, randomize=randomize, split="val", raw_path=raw_data_file, pro_data=processed_data_file, memory_map=memory_map ) self.val_loader = torch.utils.data.DataLoader( self.val_data, batch_size=self.samples_to_aggregate, shuffle=False, num_workers=test_num_workers, collate_fn=dp.collate_wrapper_criteo, pin_memory=False, drop_last=False, ) self.cal_loader = self.val_loader def get_calibration_data_loader(self): return self.cal_loader
StarcoderdataPython
317937
<gh_stars>0 from setuptools import setup, find_packages requirements = ['cycler==0.10.0', 'future==0.15.2', 'geopy==1.11.0', 'isodate==0.5.4', 'nose==1.3.7', 'numpy==1.14.4', 'pandas==0.20.2', 'patsy==0.4.1', 'py==1.4.31', 'pyparsing==2.1.9', 'pytest==3.0.3', 'python-dateutil==2.5.3', 'pytz==2018.4', 'requests==2.11.1', 'six==1.10.0', 'slisonner'] setup( name="slayer", version='0.3.27', author="<NAME>", author_email="<EMAIL>", description=("Index tabular data into volume slices, convert volumes to" "projects and environments."), packages=find_packages(), zip_safe=True, install_requires=requirements, dependency_links=['git+ssh://[email protected]/mathrioshka/slisonner.git#egg=slisonner'], classifiers=['Programming Language :: Python :: 3.6'] )
StarcoderdataPython
3312223
from abaqusConstants import * from .ConstrainedSketchGeometry import ConstrainedSketchGeometry class getPointAtDistance(ConstrainedSketchGeometry): def __init__(self, point: tuple[float], distance: str, percentage: Boolean = OFF): """This method returns a point offset along the given ConstrainedSketchGeometry from the given end by a specified arc length distance or a percentage of the total length of the ConstrainedSketchGeometry object. Parameters ---------- point A pair of Floats specifying the point from which the distance is to be measured. distance A float specifying the arc length distance along the ConstrainedSketchGeometry from the *point* at which the required point is situated. percentage A Boolean that specifies if the *distance* is an absolute distance or is a fraction relative to the length of the ConstrainedSketchGeometry object. Returns ------- A pair of floats representing the point along the edge. """ pass
StarcoderdataPython