id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
3396468
# Copyright 2021 VMware, Inc. # SPDX-License-Identifier: Apache-2.0 import inspect import logging import os import pandas as pd import requests from vdk.api.job_input import IJobInput log = logging.getLogger(__name__) def run(job_input: IJobInput): """ Download datasets required by the scenario and put them in the data lake. """ log.info(f"Starting job step {__name__}") api_key = job_input.get_property("api_key") start = 1 rows = 100 basic_url = f"https://api.europeana.eu/record/v2/search.json?wskey={api_key}&query=who:%22Vincent%20Van%20Gogh%22" url = f"{basic_url}&rows={rows}&start={start}" response = requests.get(url) response.raise_for_status() payload = response.json() n_items = int(payload["totalResults"]) while start < n_items: if start > n_items - rows: rows = n_items - start + 1 url = f"{basic_url}&rows={rows}&start={start}" response = requests.get(url) response.raise_for_status() payload = response.json()["items"] df = pd.DataFrame(payload) job_input.send_tabular_data_for_ingestion( df.itertuples(index=False), destination_table="assets", column_names=df.columns.tolist(), ) start = start + rows # df = pd.read_csv(url, dtype=dtypes).replace("'", "''", regex=True) # df.columns = df.columns.str.replace(" ", "") # job_input.send_tabular_data_for_ingestion( # df.itertuples(index=False), # destination_table="life_expectancy_2010_2015", # column_names=df.columns.tolist(), # )
StarcoderdataPython
3254592
"""Sk-learn module.""" from deployml.sklearn.models.decision_tree import DecisionTree from deployml.sklearn.models.logistic_regression import LogisticRegressionBase from deployml.sklearn.models.neural_network import NeuralNetworkBase
StarcoderdataPython
3496632
<filename>VA/main/utils/heatmaps.py<gh_stars>100-1000 import numpy as np from .math import normalpdf2d from .pose import get_visible_joints class HeatMaps2D(): def __init__(self, poses, numbins, variance=0.3): assert (poses.shape[-1] == 2) or ((poses.shape[-1] == 3)), \ 'Poses are expected to by 2D or 3D!' self.poses = poses if len(poses.shape) == 4: self.num_frames = poses.shape[1] else: self.num_frames = None self.numbins = numbins self.variance = variance self.num_joints = int(poses.shape[-2]) def __getitem__(self, key): p = self.poses[key] if isinstance(key, int): return pose_heatmaps(p, self.numbins, self.num_joints, variance=self.variance, num_frames=self.num_frames) if isinstance(key, slice): indices = key.indices(len(self)) key = range(*indices) x = np.zeros((len(key),) + self.shape[1:]) for i in range(len(key)): x[i,:] = pose_heatmaps(p[i], self.numbins, self.num_joints, variance=self.variance, num_frames=self.num_frames) return x def __len__(self): return len(self.poses) @property def shape(self): if self.num_frames is None: return (len(self),) + (self.numbins, self.numbins, self.num_joints) else: return (len(self),) + (self.num_frames, self.numbins, self.numbins, self.num_joints) def pose_heatmaps(p, num_bins, num_joints, variance=0.1, num_frames=None): if num_frames is None: h = np.zeros((num_bins, num_bins, num_joints)) v = get_visible_joints(p[:, 0:2]) points = num_bins * p[:, 0:2] for j in range(num_joints): if v[j]: h[:,:,j] = normalpdf2d(num_bins, points[j,0], points[j,1], variance) else: h = np.zeros((num_frames, num_bins, num_bins, num_joints)) for f in range(num_frames): v = get_visible_joints(p[f][:, 0:2]) points = num_bins * p[f][:, 0:2] for j in range(num_joints): if v[j]: h[f,:,:,j] = normalpdf2d(num_bins, points[j,0], points[j,1], variance) return h
StarcoderdataPython
12823434
__doc__ = """Muscular snake example from <NAME>. al. Nature Comm 2019 paper.""" import sys import numpy as np sys.path.append("../../") from elastica import * from examples.MuscularSnake.post_processing import ( plot_video_with_surface, plot_snake_velocity, ) from examples.MuscularSnake.muscle_forces import MuscleForces from elastica.experimental.connection_contact_joint.parallel_connection import ( SurfaceJointSideBySide, get_connection_vector_straight_straight_rod, ) # Set base simulator class class MuscularSnakeSimulator( BaseSystemCollection, Constraints, Connections, Forcing, CallBacks ): pass muscular_snake_simulator = MuscularSnakeSimulator() # Simulation parameters final_time = 16.0 time_step = 5e-6 total_steps = int(final_time / time_step) rendering_fps = 30 step_skip = int(1.0 / (rendering_fps * time_step)) rod_list = [] # Snake body n_elem_body = 100 density_body = 1000 base_length_body = 1.0 base_radius_body = 0.025 E = 1e7 nu = 4e-3 shear_modulus = E / 2 * (0.5 + 1.0) poisson_ratio = 0.5 direction = np.array([1.0, 0.0, 0.0]) normal = np.array([0.0, 0.0, 1.0]) start = np.array([0.0, 0.0, base_radius_body]) snake_body = CosseratRod.straight_rod( n_elem_body, start, direction, normal, base_length_body, base_radius_body, density_body, nu, youngs_modulus=E, shear_modulus=shear_modulus, ) body_elem_length = snake_body.rest_lengths[0] # Define muscle fibers n_muscle_fibers = 8 # Muscle force amplitudes muscle_force_amplitudes = ( np.array([22.96, 22.96, 20.95, 20.95, 9.51, 9.51, 13.7, 13.7])[::-1] / 2 ) # Set connection index of first node of each muscle with body muscle_start_connection_index = [4, 4, 33, 33, 23, 23, 61, 61] muscle_end_connection_index = [] muscle_glue_connection_index = ( [] ) # These are the middle node idx of muscles that are glued to body muscle_rod_list = [] """ The muscle density is higher than the physiological one, since we lump many muscles (SSP-SP, LD and IC) into one actuator. These rods also represent the two tendons on the sides of the muscle which biologically have a higher density than the muscle itself. For these reasons,we set the muscle density to approximately twice the biological value. """ density_muscle = 2000 E_muscle = 1e4 nu_muscle = nu shear_modulus_muscle = E_muscle / 2 * (0.5 + 1.0) # Muscle group 1 and 3, define two antagonistic muscle pairs n_elem_muscle_group_one_to_three = 13 * 3 base_length_muscle = 0.39 """ In our simulation, we lump many biological tendons into one computational tendon. As a result, our computational tendon is bigger in size, set as elements other than 4-8 below. """ muscle_radius = np.zeros((n_elem_muscle_group_one_to_three)) muscle_radius[:] = 0.003 # First set tendon radius for whole rod. muscle_radius[4 * 3 : 9 * 3] = 0.006 # Change the radius of muscle elements for i in range(int(n_muscle_fibers / 2)): index = muscle_start_connection_index[i] # Chose which side of body we are attaching the muscles. Note that these muscles are antagonistic pairs. # So they are at the opposite sides of the body and side_sign determines that. side_sign = -1 if i % 2 == 0 else 1 start_muscle = np.array( [ index * body_elem_length, side_sign * (base_radius_body + 0.003), base_radius_body, ] ) muscle_rod = CosseratRod.straight_rod( n_elem_muscle_group_one_to_three, start_muscle, direction, normal, base_length_muscle, muscle_radius, density_muscle, nu_muscle, youngs_modulus=E_muscle, shear_modulus=shear_modulus_muscle, ) """ The biological tendons have a high Young's modulus E.,but are very slender. As a result, they resist extension (stretch) but can bend easily. Due to our decision to lump tendons and in order to mimic the above behavior of the biological tendons, we use a lower Young's Modulus and harden the stiffness of the shear and stretch modes only. Numerically, this is done by putting a pre-factor of 50000 before the shear/stretch matrix below. The actual value of the prefactor does not matter, what is important is that it is a high value to high stretch/shear stiffness. """ muscle_rod.shear_matrix[..., : 4 * 3] *= 50000 muscle_rod.shear_matrix[..., 9 * 3 :] *= 50000 muscle_rod_list.append(muscle_rod) muscle_end_connection_index.append(index + n_elem_muscle_group_one_to_three) muscle_glue_connection_index.append( np.hstack( ( np.arange(0, 4 * 3, 1, dtype=np.int64), np.arange(9 * 3, n_elem_muscle_group_one_to_three, 1, dtype=np.int64), ) ) ) # Muscle group 2 and 4, define two antagonistic muscle pairs n_elem_muscle_group_two_to_four = 33 base_length_muscle = 0.33 """ In our simulation, we lump many biological tendons into one computational tendon. As a result, our computational tendon is bigger in size, set as rm_t below. """ muscle_radius = np.zeros((n_elem_muscle_group_two_to_four)) muscle_radius[:] = 0.003 # First set tendon radius for whole rod. muscle_radius[4 * 3 : 9 * 3] = 0.006 # Change the radius of muscle elements for i in range(int(n_muscle_fibers / 2), n_muscle_fibers): index = muscle_start_connection_index[i] # Chose which side of body we are attaching the muscles. Note that these muscles are antagonistic pairs. # So they are at the opposite sides of the body and side_sign determines that. side_sign = -1 if i % 2 == 0 else 1 start_muscle = np.array( [ index * body_elem_length, side_sign * (base_radius_body + 0.003), base_radius_body, ] ) muscle_rod = CosseratRod.straight_rod( n_elem_muscle_group_two_to_four, start_muscle, direction, normal, base_length_muscle, muscle_radius, density_muscle, nu_muscle, youngs_modulus=E_muscle, shear_modulus=shear_modulus_muscle, ) """ The biological tendons have a high Young's modulus E.,but are very slender. As a result, they resist extension (stretch) but can bend easily. Due to our decision to lump tendons and in order to mimic the above behavior of the biological tendons, we use a lower Young's Modulus and harden the stiffness of the shear and stretch modes only. Numerically, this is done by putting a pre-factor of 50000 before the shear/stretch matrix below. The actual value of the prefactor does not matter, what is important is that it is a high value to high stretch/shear stiffness. """ muscle_rod.shear_matrix[..., : 4 * 3] *= 50000 muscle_rod.shear_matrix[..., 9 * 3 :] *= 50000 muscle_rod_list.append(muscle_rod) muscle_end_connection_index.append(index + n_elem_muscle_group_two_to_four) muscle_glue_connection_index.append( # np.array([0,1, 2, 3, 9, 10 ], dtype=np.int) np.hstack( ( np.arange(0, 4 * 3, 1, dtype=np.int64), np.arange(9 * 3, n_elem_muscle_group_two_to_four, 1, dtype=np.int64), ) ) ) # After initializing the rods append them on to the simulation rod_list.append(snake_body) rod_list = rod_list + muscle_rod_list for _, my_rod in enumerate(rod_list): muscular_snake_simulator.append(my_rod) # Muscle actuation post_processing_forces_dict_list = [] for i in range(n_muscle_fibers): post_processing_forces_dict_list.append(defaultdict(list)) muscle_rod = muscle_rod_list[i] side_of_body = 1 if i % 2 == 0 else -1 time_delay = muscle_start_connection_index[::-1][i] * 1.0 / 101.76 muscular_snake_simulator.add_forcing_to(muscle_rod).using( MuscleForces, amplitude=muscle_force_amplitudes[i], wave_number=2.0 * np.pi / 1.0, arm_length=(base_radius_body + 0.003), time_delay=time_delay, side_of_body=side_of_body, muscle_start_end_index=np.array([4 * 3, 9 * 3], np.int64), step=step_skip, post_processing=post_processing_forces_dict_list[i], ) straight_straight_rod_connection_list = [] straight_straight_rod_connection_post_processing_dict = defaultdict(list) for idx, rod_two in enumerate(muscle_rod_list): rod_one = snake_body ( rod_one_direction_vec_in_material_frame, rod_two_direction_vec_in_material_frame, offset_btw_rods, ) = get_connection_vector_straight_straight_rod( rod_one, rod_two, (muscle_start_connection_index[idx], muscle_end_connection_index[idx]), (0, rod_two.n_elems), ) straight_straight_rod_connection_list.append( [ rod_one, rod_two, rod_one_direction_vec_in_material_frame.copy(), rod_two_direction_vec_in_material_frame.copy(), offset_btw_rods.copy(), ] ) for k in range(rod_two.n_elems): rod_one_index = k + muscle_start_connection_index[idx] rod_two_index = k k_conn = ( rod_one.radius[rod_one_index] * rod_two.radius[rod_two_index] / (rod_one.radius[rod_one_index] + rod_two.radius[rod_two_index]) * body_elem_length * E / (rod_one.radius[rod_one_index] + rod_two.radius[rod_two_index]) ) if k < 12 or k >= 27: scale = 1 * 2 scale_contact = 20 else: scale = 0.01 * 5 scale_contact = 20 muscular_snake_simulator.connect( first_rod=rod_one, second_rod=rod_two, first_connect_idx=rod_one_index, second_connect_idx=rod_two_index, ).using( SurfaceJointSideBySide, k=k_conn * scale, nu=1e-4, k_repulsive=k_conn * scale_contact, rod_one_direction_vec_in_material_frame=rod_one_direction_vec_in_material_frame[ ..., k ], rod_two_direction_vec_in_material_frame=rod_two_direction_vec_in_material_frame[ ..., k ], offset_btw_rods=offset_btw_rods[k], post_processing_dict=straight_straight_rod_connection_post_processing_dict, step_skip=step_skip, ) # Friction forces # Only apply to the snake body. gravitational_acc = -9.81 muscular_snake_simulator.add_forcing_to(snake_body).using( GravityForces, acc_gravity=np.array([0.0, 0.0, gravitational_acc]) ) origin_plane = np.array([0.0, 0.0, 0.0]) normal_plane = normal slip_velocity_tol = 1e-8 froude = 0.1 period = 1.0 mu = base_length_body / (period * period * np.abs(gravitational_acc) * froude) kinetic_mu_array = np.array( [1.0 * mu, 1.5 * mu, 2.0 * mu] ) # [forward, backward, sideways] static_mu_array = 2 * kinetic_mu_array muscular_snake_simulator.add_forcing_to(snake_body).using( AnisotropicFrictionalPlane, k=1e1, nu=40, plane_origin=origin_plane, plane_normal=normal_plane, slip_velocity_tol=slip_velocity_tol, static_mu_array=static_mu_array, kinetic_mu_array=kinetic_mu_array, ) class MuscularSnakeCallBack(CallBackBaseClass): def __init__(self, step_skip: int, callback_params: dict): CallBackBaseClass.__init__(self) self.every = step_skip self.callback_params = callback_params def make_callback(self, system, time, current_step: int): if current_step % self.every == 0: self.callback_params["time"].append(time) self.callback_params["step"].append(current_step) self.callback_params["position"].append(system.position_collection.copy()) self.callback_params["com"].append(system.compute_position_center_of_mass()) self.callback_params["radius"].append(system.radius.copy()) self.callback_params["velocity"].append(system.velocity_collection.copy()) self.callback_params["avg_velocity"].append( system.compute_velocity_center_of_mass() ) self.callback_params["center_of_mass"].append( system.compute_position_center_of_mass() ) post_processing_dict_list = [] for idx, rod in enumerate(rod_list): post_processing_dict_list.append(defaultdict(list)) muscular_snake_simulator.collect_diagnostics(rod).using( MuscularSnakeCallBack, step_skip=step_skip, callback_params=post_processing_dict_list[idx], ) muscular_snake_simulator.finalize() timestepper = PositionVerlet() integrate(timestepper, muscular_snake_simulator, final_time, total_steps) plot_video_with_surface( post_processing_dict_list, video_name="muscular_snake.mp4", fps=rendering_fps, step=1, # The following parameters are optional x_limits=(-0.1, 1.0), # Set bounds on x-axis y_limits=(-0.3, 0.3), # Set bounds on y-axis z_limits=(-0.3, 0.3), # Set bounds on z-axis dpi=100, # Set the quality of the image vis3D=True, # Turn on 3D visualization vis2D=True, # Turn on projected (2D) visualization ) plot_snake_velocity( post_processing_dict_list[0], period=period, filename="muscular_snake_velocity.png" )
StarcoderdataPython
86376
<reponame>flyflyinit/GUI-admin-tool from PyQt5.QtCore import Qt try: from PyQt5.QtWidgets import QWidget, QVBoxLayout, QProgressBar, QPushButton, QSpinBox, QLabel, QLineEdit, \ QFormLayout, \ QHBoxLayout, QListWidget, QMessageBox, QCheckBox except ImportError as e: print( f'package PyQt5 Not Found\n{e}\ntry :\npip3 install --user pyqt5\nOR\ndnf install python3-pyqt5, yum install python3-pyqt5\n') try: import subprocess import concurrent.futures from datetime import datetime except ImportError as e: print(f'package not found\n{e}\n') class CreateUsersWindow(QWidget): def __init__(self): super().__init__() self.setGeometry(200, 50, 300, 400) self.setWindowTitle("Add Users") self.layouts() self.widgets() def layouts(self): self.mainLayout = QVBoxLayout() self.topLayout = QVBoxLayout() self.topLayout.setContentsMargins(20, 20, 20, 20) self.bottomLayout = QHBoxLayout() self.progeesBar = QProgressBar() self.progeesBar.setHidden(True) self.okBtn = QPushButton("Ok") self.okBtn.clicked.connect(self.cancelAction) self.okBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px solid #27ae60") self.okBtn.setHidden(True) self.submitBtn = QPushButton("Submit") self.submitBtn.clicked.connect(self.submitAction) self.cancelBtn = QPushButton("Cancel") self.cancelBtn.clicked.connect(self.cancelAction) self.submitBtn.setHidden(False) self.cancelBtn.setHidden(False) self.okBtn.setFixedHeight(30) self.submitBtn.setFixedHeight(30) self.cancelBtn.setFixedHeight(30) self.submitBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px solid #27ae60") self.cancelBtn.setStyleSheet("color: #ecf0f1; background-color: #e74c3c; border: 0px solid #e74c3c") self.bottomLayout.addWidget(self.okBtn) self.bottomLayout.addWidget(self.submitBtn) self.bottomLayout.addWidget(self.cancelBtn) self.mainLayout.addLayout(self.topLayout) self.mainLayout.addStretch() self.mainLayout.addWidget(self.progeesBar) self.mainLayout.addLayout(self.bottomLayout) self.setLayout(self.mainLayout) def widgets(self): self.usersNbr = QSpinBox(self) self.usersNbr.setMinimum(1) self.usersNbr.setMaximum(1000) self.usersNbr.setSuffix(" user") self.createHomeDir = QCheckBox('Create Home Directory') self.form = QFormLayout() self.editLineUsername = QLineEdit('') self.editLineUsername.setPlaceholderText('enter username') self.form.addRow(QLabel('Username :'), self.editLineUsername) self.editLineUserShell = QLineEdit('') self.editLineUserShell.setPlaceholderText('enter shell') self.form.addRow(QLabel('User Shell :'), self.editLineUserShell) self.editLineUserComment = QLineEdit('') self.editLineUserComment.setPlaceholderText('enter comment') self.form.addRow(QLabel('Comment :'), self.editLineUserComment) self.note = QLabel('') self.topLayout.addWidget(self.usersNbr) self.topLayout.addWidget(self.editLineUsername) self.topLayout.addWidget(self.editLineUserShell) self.topLayout.addWidget(self.editLineUserComment) self.topLayout.addWidget(self.createHomeDir) self.topLayout.addWidget(self.note) def submitAction(self): self.setCursor(Qt.WaitCursor) self.progeesBar.setHidden(False) self.progeesBar.setMaximum(self.usersNbr.value()) self.progeesBar.setValue(0) usersList = self.generateList() txt = '' nbr = 0 with concurrent.futures.ThreadPoolExecutor() as executor: results = executor.map(self.createuserThreading, usersList) for result in results: nbr += 1 self.progeesBar.setValue(nbr) txt = txt + result + "\n" self.note.setText(txt) self.setCursor(Qt.ArrowCursor) self.okBtn.setHidden(False) self.submitBtn.setHidden(True) self.cancelBtn.setHidden(True) def generateList(self): usersList = [] homeDir = 'False' if self.createHomeDir.isChecked(): homeDir = 'True' if int(self.usersNbr.value()) == 1: usersList.append( [self.editLineUsername.text(), self.editLineUserComment.text(), self.editLineUserShell.text(), homeDir]) else: for user in range(self.usersNbr.value()): usersList.append( [self.editLineUsername.text() + str(user + 1), self.editLineUserComment.text() + str(user + 1), self.editLineUserShell.text(), homeDir]) return usersList def createuserThreading(self, user): if user[3] == 'True': homedir = '-m' else: homedir = '' try: c = f'useradd {homedir} -s {user[2]} -c "{user[1]}" {user[0]}' subprocess.run(c, stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, shell=True, check=True) except subprocess.CalledProcessError: return f"error occured during creating {user[0]} " else: return f"{user[0]} has been created succesfully!" def cancelAction(self): self.close() class EditUsersWindow(QWidget): def __init__(self, userDetails): super().__init__() self.setGeometry(200, 50, 500, 500) self.setWindowTitle("Edit User") self.userDetails = userDetails self.layouts() self.widgets() def layouts(self): self.mainLayout = QVBoxLayout() self.topLayout = QVBoxLayout() self.middleLayout = QHBoxLayout() self.topLayout.setContentsMargins(20, 20, 20, 20) self.bottomLayout = QHBoxLayout() self.text = QLabel('') self.progeesBar = QProgressBar() self.progeesBar.setHidden(True) self.submitBtn = QPushButton("Submit") self.submitBtn.clicked.connect(self.submitAction) self.cancelBtn = QPushButton("Cancel") self.cancelBtn.clicked.connect(self.cancelAction) self.okBtn = QPushButton("Ok") self.okBtn.clicked.connect(self.okAction) self.okBtn.setHidden(True) self.submitBtn.setFixedHeight(30) self.cancelBtn.setFixedHeight(30) self.okBtn.setFixedHeight(30) self.submitBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px") self.okBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px") self.cancelBtn.setStyleSheet("color: #ecf0f1; background-color: #e74c3c; border: 0px") self.bottomLayout.addWidget(self.submitBtn) self.bottomLayout.addWidget(self.cancelBtn) self.bottomLayout.addWidget(self.okBtn) self.mainLayout.addLayout(self.topLayout) self.mainLayout.addStretch() self.mainLayout.addLayout(self.bottomLayout) self.setLayout(self.mainLayout) def widgets(self): self.form = QFormLayout() print(self.userDetails) self.username = QLineEdit(self.userDetails[0]) self.form.addRow(QLabel('Username :'), self.username) self.id = QLineEdit(self.userDetails[1]) self.form.addRow(QLabel('User ID :'), self.id) self.primaryGroup = self.userDetails[2].split('(')[1].split(')')[0] self.priGroup = QLineEdit(self.primaryGroup) self.form.addRow(QLabel('Primary Group :'), self.priGroup) self.comment = QLineEdit(self.userDetails[4]) self.form.addRow(QLabel('Comment :'), self.comment) self.homeDir = QLineEdit(self.userDetails[5]) self.form.addRow(QLabel('Home Directory :'), self.homeDir) self.shell = QLineEdit(self.userDetails[6]) self.form.addRow(QLabel('Shell :'), self.shell) if self.userDetails[7] == 'never': self.expirationDate = QLineEdit() else: import dateutil.parser as parser self.expirationDate_adapted = datetime.strptime(self.userDetails[7], '%b %d, %Y').strftime('%Y-%m-%d') date = parser.parse(self.expirationDate_adapted) self.expirationDate = QLineEdit(date.isoformat().split('T')[0]) self.form.addRow(QLabel('Expiration Date :'), self.expirationDate) self.groupsBtns = QVBoxLayout() self.lineEditAddGroup = QLineEdit() self.lineEditAddGroup.setPlaceholderText('enter group name') self.addGroupBtn = QPushButton('Add') self.addGroupBtn.clicked.connect(self.addGroup) self.deleteGroupBtn = QPushButton('Delete') self.deleteGroupBtn.clicked.connect(self.deleteGroup) self.deleteAllGroupsBtn = QPushButton('Delete All') self.deleteAllGroupsBtn.clicked.connect(self.deleteAllGroups) self.groupsBtns.addWidget(self.lineEditAddGroup) self.groupsBtns.addWidget(self.addGroupBtn) self.groupsBtns.addWidget(self.deleteGroupBtn) self.groupsBtns.addWidget(self.deleteAllGroupsBtn) self.groupsBtns.addStretch() self.listGroups = QListWidget() self.form.addRow(QLabel('Groups :'), self.middleLayout) groups = self.userDetails[3].split(',') for group in groups: grp = group.split('(')[1].split(')')[0] if grp == self.primaryGroup: continue else: self.listGroups.addItem(grp) self.middleLayout.addWidget(self.listGroups) self.middleLayout.addLayout(self.groupsBtns) self.topLayout.addLayout(self.form) self.topLayout.addWidget(self.text) self.topLayout.addWidget(self.progeesBar) def addGroup(self): group = self.lineEditAddGroup.text() if group == "": pass else: self.listGroups.addItem(group) def deleteGroup(self): listGroups = self.listGroups.selectedItems() if not listGroups: return for group in listGroups: self.listGroups.takeItem(self.listGroups.row(group)) def deleteAllGroups(self): self.listGroups.clear() def submitAction(self): try: self.setCursor(Qt.WaitCursor) self.progeesBar.setHidden(False) self.progeesBar.setMaximum(1) self.progeesBar.setValue(0) self.edituser() except subprocess.CalledProcessError: QMessageBox.warning(self, 'warning', f"error occured during editing this user\n") else: self.setCursor(Qt.ArrowCursor) self.submitBtn.setHidden(True) self.cancelBtn.setHidden(True) self.okBtn.setHidden(False) def okAction(self): self.close() def edituser(self): usernamee = self.username.text() idd = self.id.text() priGroupp = self.priGroup.text() commentt = self.comment.text() homeDirr = self.homeDir.text() shelll = self.shell.text() expirationDatee = self.expirationDate.text() txt = '' groupsitems = [] for index in range(self.listGroups.count()): groupsitems.append(str(self.listGroups.item(index).text())) groupsitemsstring = ",".join(groupsitems) print(groupsitemsstring) if expirationDatee == "never": QMessageBox.warning(self, 'expiration field error', "expiration field can't be 'never' ") return 0 elif expirationDatee == '': pass else: try: subprocess.run(f'usermod -e {expirationDatee} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing expiration date for this user\n" self.text.setText(txt) else: txt = txt + "expiration date edited succesfully\n" self.text.setText(txt) try: subprocess.run(f'usermod -g {priGroupp} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing primary group for this user\n" self.text.setText(txt) else: txt = txt + "primary group edited succesfully\n" self.text.setText(txt) try: subprocess.run(f'usermod -G {groupsitemsstring} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing supplementary groups for this user\n" self.text.setText(txt) else: txt = txt + "supplementary groups edited succesfully\n" self.text.setText(txt) try: subprocess.run(f'usermod -s {shelll} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing shell for this user\n" self.text.setText(txt) else: txt = txt + "shell edited succesfully\n" self.text.setText(txt) try: subprocess.run(f'usermod -d {homeDirr} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing home directory for this user\n" self.text.setText(txt) else: txt = txt + "home directory edited succesfully\n" self.text.setText(txt) try: subprocess.run(f"usermod -c '{commentt}' {self.userDetails[0]}", stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing comment for this user\n" self.text.setText(txt) else: txt = txt + "comment edited succesfully\n" self.text.setText(txt) try: subprocess.run(f"usermod -u {idd} {self.userDetails[0]}", stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing user id for this user\n" self.text.setText(txt) else: txt = txt + "user id edited succesfully\n" self.text.setText(txt) try: subprocess.run(f'usermod -l {usernamee} {self.userDetails[0]}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: txt = txt + "error occured during editing username for this user\n" self.text.setText(txt) else: txt = txt + "username edited succesfully\n" self.text.setText(txt) self.progeesBar.setValue(1) def cancelAction(self): self.close() class DeleteUsersWindow(QWidget): def __init__(self, d): super().__init__() self.setGeometry(200, 50, 300, 300) self.setWindowTitle("Delete Users") self.listUsersToDelete = d self.layouts() self.widgets() def layouts(self): self.mainLayout = QVBoxLayout() self.topLayout = QVBoxLayout() self.topLayout.setContentsMargins(20, 20, 20, 20) self.bottomLayout = QHBoxLayout() self.progeesBar = QProgressBar() self.progeesBar.setHidden(True) self.submitBtn = QPushButton("Submit") self.submitBtn.clicked.connect(self.submitAction) self.cancelBtn = QPushButton("Cancel") self.cancelBtn.clicked.connect(self.cancelAction) self.okBtn = QPushButton("Ok") self.okBtn.clicked.connect(self.okAction) self.okBtn.setHidden(True) self.submitBtn.setFixedHeight(30) self.cancelBtn.setFixedHeight(30) self.okBtn.setFixedHeight(30) self.submitBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px") self.okBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px") self.cancelBtn.setStyleSheet("color: #ecf0f1; background-color: #e74c3c; border: 0px") self.bottomLayout.addWidget(self.submitBtn) self.bottomLayout.addWidget(self.cancelBtn) self.bottomLayout.addWidget(self.okBtn) self.mainLayout.addLayout(self.topLayout) self.mainLayout.addStretch() self.mainLayout.addLayout(self.bottomLayout) self.setLayout(self.mainLayout) def widgets(self): self.a = ', '.join(self.listUsersToDelete) self.text = QLabel(f'Are You Sure You want To Delete The Following Users :\n\n{self.a}') self.text2 = QLabel() self.topLayout.addWidget(self.text) self.topLayout.addWidget(self.text2) self.topLayout.addWidget(self.progeesBar) def submitAction(self): try: self.setCursor(Qt.WaitCursor) self.progeesBar.setHidden(False) self.progeesBar.setMaximum(len(self.listUsersToDelete)) self.progeesBar.setValue(0) self.deleteuser() except subprocess.CalledProcessError: QMessageBox.warning(self, 'warning', f"error occured during setting this hostname\n") else: self.setCursor(Qt.ArrowCursor) self.submitBtn.setHidden(True) self.cancelBtn.setHidden(True) self.okBtn.setHidden(False) def okAction(self): self.close() def deleteuserThreading(self, username): try: subprocess.run(f'userdel -r {username}', stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL, check=True, shell=True) except subprocess.CalledProcessError: return f"error occured during deleting {username}" else: return f"{username} deleted succesfully!" def deleteuser(self): with concurrent.futures.ThreadPoolExecutor() as executor: results = executor.map(self.deleteuserThreading, self.listUsersToDelete) i = 0 r = '' for result in results: i = i + 1 r = r + "\n" + result self.progeesBar.setValue(i) self.text2.setText(r) def cancelAction(self): self.close() class MoreUsersWindow(QWidget): def __init__(self, text, username): super().__init__() self.setGeometry(200, 50, 300, 300) self.setWindowTitle(username) self.text = text self.layouts() def layouts(self): self.mainLayout = QVBoxLayout() self.topLayout = QVBoxLayout() self.topLayout.setContentsMargins(20, 20, 20, 20) self.bottomLayout = QHBoxLayout() self.label = QLabel(self.text) self.okBtn = QPushButton("Ok") self.okBtn.clicked.connect(self.okAction) self.okBtn.setFixedHeight(30) self.okBtn.setStyleSheet("color: #ecf0f1; background-color: #27ae60 ; border: 0px") self.topLayout.addWidget(self.label) self.bottomLayout.addWidget(self.okBtn) self.mainLayout.addLayout(self.topLayout) self.mainLayout.addStretch() self.mainLayout.addLayout(self.bottomLayout) self.setLayout(self.mainLayout) def okAction(self): self.close()
StarcoderdataPython
360238
<reponame>varun97/Python<filename>minimax.py def minimax(arr): arr.sort() max = 0 min = 0 for i in range(len(arr)): if i!=0: max += arr[i] if i!=4: min += arr[i] print(min,max) if __name__=="__main__": arr = list(map(int, input().rstrip().split())) minimax(arr)
StarcoderdataPython
4803881
""" Implementation of the beta-geometric/NBD (BG/NBD) model from '"Counting Your train_df" the Easy Way: An Alternative to the Pareto/NBD Model' (Fader, Hardie and Lee 2005) http://brucehardie.com/papers/018/fader_et_al_mksc_05.pdf and accompanying technical note http://www.brucehardie.com/notes/004/ Apache 2 License """ from math import log, exp, sqrt import numpy as np import pandas as pd import pickle import datetime from scipy.optimize import minimize from scipy.special import gammaln from sklearn.metrics import r2_score from sklearn.metrics import mean_squared_error from sklearn.metrics import mean_absolute_error from lifetimes import BetaGeoFitter from lifetimes import ModifiedBetaGeoFitter from lifetimes import ParetoNBDFitter # from lifetimes import BetaGeoBetaBinomFitter from convert_df import split_test_df_by_pred_period, txt_to_df, df_transform, train_test_split __author__ = '<NAME>' ''' To do: - Change input format - Add conditional expectation - Convert functions to a class ''' class BgNbd(object): ''' class for creating BG/ NBD for non contractual transactions, takes a csv file as input with the following columns: customer ID, number of transactions x, time of last transaction, time customer could make a repeated transaction (T) ''' def __init__(self, train_df, first_purch_weeks=25, train_weeks=52, max_iter=150): self.train_weeks = train_weeks self.train_df = train_df.reset_index() self.first_purch_weeks = first_purch_weeks self.max_iter = max_iter def log_likelihood_individual(self, r, alpha, a, b, x, tx, t): """Log of the likelihood function for a given randomly chosen individual with purchase history = (x, tx, t) where x is the number of transactions in time period (0, t] and tx (0 < tx <= t) is the time of the last transaction - sheet BGNBD Estimation""" ln_a1 = gammaln(r + x) - gammaln(r) + r * log(alpha) ln_a2 = gammaln(a + b) + gammaln(b + x) - gammaln(b) - gammaln(a + b + x) ln_a3 = -(r + x) * log(alpha + t) a4 = 0 if x > 0: a4 = exp(log(a) - log(b + x - 1) - (r + x) * log(alpha + tx)) return ln_a1 + ln_a2 + log(exp(ln_a3) + a4) def log_likelihood(self, r, alpha, a, b, train_df): """Returns sum of the individual log likelihoods equal to cell B5 in sheet BGNBD Estimation""" # can't put constraints on n-m minimizer so fake them here if r <= 0 or alpha <= 0 or a <= 0 or b <= 0: return -np.inf train_df['ll'] = train_df.apply(lambda row: self.log_likelihood_individual(r, alpha, a, b, row['frequency'], row['recency'], row['T']), axis=1) return train_df.ll.sum() def maximize(self, train_df): '''Minimize (negative of maximizing) the log_likelihood function, i.e. change r, alpha, a and b so that the sum of indiviual log likelihoods is maximized''' negative_ll = lambda params: -self.log_likelihood(*params, train_df=train_df) params0 = np.array([1., 1., 1., 1.]) res = minimize(negative_ll, params0, method='nelder-mead', options={'xtol': 1e-4}) return res def lifetimes_fit(self, train_df, penalizer_coef=0.0): ''' fit but then using lifetimes library --> faster ''' bgf = BetaGeoFitter(penalizer_coef=penalizer_coef) data = train_df bgf.fit(data['frequency'], data['recency'], data['T']) params = bgf.params_ self.r = params['r'] self.alpha = params['alpha'] self.a = params['a'] self.b = params['b'] return params def modified_fit(self, train_df, penalizer_coef=0.0): ''' Modified BetaGeometric NBD model from lifetimes ''' mbgf = ModifiedBetaGeoFitter(penalizer_coef=penalizer_coef) mbgf.fit(train_df['frequency'], train_df['recency'], train_df['T']) params = mbgf.params_ self.r = params['r'] self.alpha = params['alpha'] self.a = params['a'] self.b = params['b'] return params def pareto_fit(self, train_df, penalizer_coef=0.0): ''' The difference between the models is that the BG/BB is used to describe situations in which customers have discrete transaction opportunities, rather than being able to make transactions at any time ''' pareto = ParetoNBDFitter() data = train_df pareto.fit(data['frequency'], data['recency'], data['T']) params = pareto.params_ self.r = params['r'] self.alpha = params['alpha'] self.s = params['s'] self.beta = params['beta'] return params def _negative_log_likelihood(self, params, freq, rec, T, penalizer_coef): if np.any(np.asarray(params) <= 0.): return np.inf r, alpha, s, beta = params x = freq r_s_x = r + s + x A_1 = gammaln(r + x) - gammaln(r) + r * log(alpha) + s * log(beta) log_A_0 = ParetoNBDFitter._log_A_0(params, freq, rec, T) A_2 = np.logaddexp(-(r + x) * log(alpha + T) - s * log(beta + T), log(s) + log_A_0 - log(r_s_x)) penalizer_term = penalizer_coef * sum(np.asarray(params) ** 2) return -(A_1 + A_2).mean() + penalizer_term def pareto_conditional_expected_number_of_purchases_up_to_time(self, pred_weeks, frequency, recency, T): """ Calculate the expected number of repeat purchases up to time t for a randomly choose individual from the population, given they have purchase history (frequency, recency, T) Parameters: t: a scalar or array of times. frequency: a scalar: historical frequency of customer. recency: a scalar: historical recency of customer. T: a scalar: age of the customer. Returns: a scalar or array """ x, t_x = frequency, recency params = self.r, self.alpha, self.s, self.beta r, alpha, s, beta = self.r, self.alpha, self.s, self.beta likelihood = -self._negative_log_likelihood(params, x, t_x, T, 0) first_term = gammaln(r + x) - gammaln(r) + r*log(alpha) + s*log(beta) - (r + x)*log(alpha + T) - s*log(beta + T) second_term = log(r + x) + log(beta + T) - log(alpha + T) third_term = log((1 - ((beta + T) / (beta + T + pred_weeks)) ** (s - 1))/(s - 1)) return exp(first_term + second_term + third_term - likelihood) def pareto_total_conditional_prediction(self, pred_weeks): ''' Make a single prediction for all train_df and return sum over a specific period of time returns a matrix of expected sales by customer and the total sales prediction ''' self.train_df['pred'] = 0. self.train_df['actual'] = 0. pred_df = self.train_df[['customer_id', 'pred', 'actual']] self.pred_actual_matrix = pred_df.as_matrix() total_freq = 0 for i in range(0, self.train_df.shape[0]): ID = self.train_df.iloc[i]['customer_id'] x = self.train_df.iloc[i]['frequency'] recency = self.train_df.iloc[i]['recency'] T = self.train_df.iloc[i]['T'] pred = self.pareto_conditional_expected_number_of_purchases_up_to_time(pred_weeks, x, recency, T) self.pred_actual_matrix[i][1] = pred total_freq += pred return self.pred_actual_matrix, total_freq def pareto_pred_and_actuals_matrix(self, test_df, pred_weeks): ''' Adds column of actual values next to predicted values ''' self.pred_actual_matrix, total_freq = self.pareto_total_conditional_prediction(pred_weeks) # add column of zeros to pred_matrix, fill in with actual values test_dict = split_test_df_by_pred_period(test_df, pred_weeks) for i in xrange(self.pred_actual_matrix.shape[0]): self.pred_actual_matrix[i][2] = test_dict.get(self.pred_actual_matrix[i][0], 0) return self.pred_actual_matrix def fit(self, train_df): res = self.maximize(train_df) if res.status != 0: raise Exception(res.message) self.r, self.alpha, self.a, self.b = res.x return self.r, self.alpha, self.a, self.b def params_(self): return 'r: {}, alpha: {}, a: {}, b: {}'.format(self.r, self.alpha, self.a, self.b) def create_ext_df(self, max_iter=150): ''' - EXt = the expected number of transactions for a randomly-chosen individual in a time period of length t given r, alpha, a and b - returns df with the gaussian hypergeometric cost function for every day Iterates untill uj is close to 0 or maximum iterations is reached ''' # self.r, self.alpha, self.a, self.b = 0.243, 4.414, 0.793, 2.426 total_weeks = self.train_weeks + self.pred_weeks ext_df = pd.DataFrame(0, index=range(0, total_weeks), columns=['t', 'ext', '2F1', 'z']) ext_df['t'] = ext_df.apply(lambda x: x +1/7.).cumsum() ext_df['z'] = ext_df.t.apply(lambda x: x/ float(self.alpha + x)) ext_df['2F1'] = ext_df.z.apply(lambda row: self.gaussian_hypergeometric(row, max_iter)) ext_df['ext'] = ext_df.apply(lambda row: (self.a + self.b - 1)/ (self.a - 1) * (1 - (self.alpha/ (self.alpha + row['t'])) **self.r * row['2F1']), axis=1) return ext_df def gaussian_hypergeometric(self, row_z, max_iter): '''used for to calculate gaussian hypergeometric cost function, for every day, see lambda function 2F1''' gaus_cost = 1 uj = 1 for i in range(max_iter): u_new = uj * row_z * (self.r + i) * (self.b + i)/ ((self.a + self.b - 1 + i) * (i + 1)) gaus_cost += u_new uj = u_new return gaus_cost def first_purchase_count_id(self): ''' Counts the number of transactions per customer ID. ''' self.train_df['first_purch'] = self.train_df.apply(lambda row: self.train_weeks - row['T'], axis = 1) first_purch_cnt = self.train_df.groupby('first_purch')['customer_id'].count().reset_index(name="cnt") first_purch_cnt.first_purch = first_purch_cnt.first_purch.round(2) first_purch_df = pd.DataFrame(0, index=range(0, self.first_purch_weeks * 7), columns=['first_purch']) first_purch_df['first_purch'] = first_purch_df.apply(lambda x: x +1/7.).cumsum().round(2) return first_purch_df.set_index('first_purch').join(first_purch_cnt.set_index('first_purch')).fillna(0).reset_index() def cummulative_repeated_sales(self, cum_weeks=10): ''' Creates a forecast of repeat purchasing by calculating the expected number of weekly repeat transactions (cummulative)''' ext_df = self.create_ext_df() n_s = self.first_purchase_count_id() cum_rpt_sls = 0 i_ext = cum_weeks * 7 - 2 for i in xrange(cum_weeks * 7 - 1): cum_rpt_sls += ext_df['ext'][i_ext] * n_s['cnt'][i] i_ext -= 1 return cum_rpt_sls def single_conditional_prediction(self, ID, x, recency, T, pred_weeks=''): ''' For a randomly-chosen individual, computes the expected number of transactions in a time period of length t (pred_weeks) is Predicts a particular customer`s future purchasing, given information about his past behavior and the parameter estimates of the four models. ''' self.max_iter = 150 if pred_weeks == '': pred_weeks = self.pred_weeks a_id = self.r + x b_id = self.b + x c_id = self.a + self.b + x - 1 z_id = pred_weeks/ (self.alpha + T + pred_weeks) gaus_cost = 1 # == 2F1 in paper uj = 1 for i in xrange(1, self.max_iter): u_new = uj * (a_id + i - 1) * (b_id + i - 1)/ ((c_id + i - 1) * i) * z_id gaus_cost += u_new uj = u_new return (self.a + self.b + x - 1)/ (self.a - 1) * (1 - ((self.alpha + T) / (self.alpha + T + pred_weeks)) ** (self.r + x) * gaus_cost)/ (1 + (x > 0) * self.a / (self.b + x - 1) * ((self.alpha + T)/ (self.alpha + recency)) ** (self.r + x)) def total_conditional_prediction(self, pred_weeks=''): ''' Make a single prediction for all train_df and return sum over a specific period of time returns a matrix of expected sales by customer and the total sales prediction ''' if pred_weeks == '': pred_weeks = self.pred_weeks self.train_df['pred'] = 0. self.train_df['actual'] = 0. pred_df = self.train_df[['customer_id', 'pred', 'actual']] self.pred_actual_matrix = pred_df.as_matrix() total_freq = 0 for i in range(0, self.train_df.shape[0]): ID = self.train_df.iloc[i]['customer_id'] x = self.train_df.iloc[i]['frequency'] recency = self.train_df.iloc[i]['recency'] T = self.train_df.iloc[i]['T'] pred = self.single_conditional_prediction(ID, x, recency, T , pred_weeks) self.pred_actual_matrix[i][1] = pred total_freq += pred return self.pred_actual_matrix, total_freq def conditional_prediction_total_freq_only(self, pred_weeks): ''' Similar than total_conditional_prediction but excludes making a matrix > faster Use this function for total_prediction_over_time ''' total_freq = 0 for i in range(0, self.train_df.shape[0]): ID = self.train_df.iloc[i]['customer_id'] x = self.train_df.iloc[i]['frequency'] recency = self.train_df.iloc[i]['recency'] T = self.train_df.iloc[i]['T'] pred = self.single_conditional_prediction(ID, x, recency, T , pred_weeks) total_freq += pred return total_freq def total_prediction_over_time(self, test_df, total_pred_weeks=39): ''' Create dataframe from test, with a row for every day and create a cumsum for the num of transactions loop over every day and get the total_freq from total_conditional_prediction(), and append to dataframe ''' # cut off transactions that are outside the prediction period test_df = test_df[test_df['test_weeks'] <= total_pred_weeks] # filter on same customer ids as used in the train_df. Group by date to get the num of transactions per date test_df = test_df[test_df.customer_id.isin(self.train_df['customer_id'].tolist())] # create empty df to fill in the results columns = ['act_cumsum', 'pred_x', 'pred_cumsum'] index = np.linspace(1/float(7), total_pred_weeks, total_pred_weeks*7) pred_by_day_df = pd.DataFrame(index=index, columns=columns) pred_by_day_df = pred_by_day_df.fillna(0.) # with floats 0s rather than NaNs pred_by_day_df = pred_by_day_df.join(test_df.groupby('test_weeks')['cnt_trans'].sum()) pred_by_day_df = pred_by_day_df.rename(columns={'cnt_trans': 'acrecency'}) pred_by_day_df.acrecency = pred_by_day_df.acrecency.fillna(0) pred_by_day_df['act_cumsum'] = pred_by_day_df.acrecency.cumsum() pred_by_day_df = pred_by_day_df.reset_index() pred_by_day_df['pred_x'] = pred_by_day_df['index'].apply(lambda row: self.conditional_prediction_total_freq_only( pred_weeks=row)) pred_by_day_df['pred_cumsum'] = pred_by_day_df.pred_x.cumsum() pred_by_day_df['perc_similar'] = pred_by_day_df['pred_cumsum'] / pred_by_day_df[ 'act_cumsum'] return pred_by_day_df def pred_and_actuals_matrix(self, test_df, pred_weeks): ''' Adds column of actual values next to predicted values ''' if pred_weeks == '': pred_weeks = self.pred_weeks self.pred_actual_matrix, total_freq = self.total_conditional_prediction(pred_weeks) # add column of zeros to pred_matrix, fill in with actual values test_dict = split_test_df_by_pred_period(test_df, pred_weeks) for i in xrange(self.pred_actual_matrix.shape[0]): self.pred_actual_matrix[i][2] = test_dict.get(self.pred_actual_matrix[i][0], 0) return self.pred_actual_matrix def r2(self): y_true = self.pred_actual_matrix[:, 2] y_pred = self.pred_actual_matrix[:, 1] return r2_score(y_true, y_pred) def rmse(self): y_true = self.pred_actual_matrix[:, 2] y_pred = self.pred_actual_matrix[:, 1] return sqrt(mean_squared_error(y_true, y_pred)) def mean_absolute_error(self): y_true = self.pred_actual_matrix[:, 2] y_pred = self.pred_actual_matrix[:, 1] return mean_absolute_error(y_true, y_pred) def rmsle(self): ''' it basically acts as a % incorrect so it scales with parameter values ''' y_true = self.pred_actual_matrix[:, 2].astype(float) y_pred = self.pred_actual_matrix[:, 1].astype(float) return np.sqrt(np.square(np.log(y_pred + 1) - np.log(y_true + 1)).mean()) if __name__ == '__main__': main() # '''Sample data consist of train_df who made their first transaction in week 0 to 12, we have info on their repeat purchasing behavior up to the week 39 and make predictions up to week 78''' # df = pd.read_csv('../data/test.csv', sep='\t') # df = pd.read_csv('../data/test/train_df_test.csv', sep='\t') # print df.head() # print 'r: {}, alpha: {}, a: {}, b: {}'.format(r, alpha, a, b) # loaded_model = pickle.load(open(filename, 'rb')) # result = loaded_model.total_conditional_prediction(pred_weeks=10) # pred_matrix, total_freq = loaded_model.total_conditional_prediction(train_df) # r2_result = loaded_model.r2(test_df) # print bgnbd.total_conditional_prediction(pred_weeks=12, max_iter=2) # print lifetimes_fit(train_df) # check '381568065'
StarcoderdataPython
3311196
<reponame>viniciusfeitosa/basic-gevent-tutorial import gevent import signal def run_forever(): gevent.sleep(1000) if __name__ == '__main__': gevent.signal(signal.SIGQUIT, gevent.kill) thread = gevent.spawn(run_forever) thread.join()
StarcoderdataPython
6626290
from __future__ import division, print_function, absolute_import import numpy as np from numpy.testing import (assert_allclose, assert_equal, assert_almost_equal, assert_array_equal, assert_array_almost_equal) from scipy.ndimage import convolve1d from scipy.signal import savgol_coeffs, savgol_filter from scipy.signal._savitzky_golay import _polyder def check_polyder(p, m, expected): dp = _polyder(p, m) assert_array_equal(dp, expected) def test_polyder(): cases = [ ([5], 0, [5]), ([5], 1, [0]), ([3, 2, 1], 0, [3, 2, 1]), ([3, 2, 1], 1, [6, 2]), ([3, 2, 1], 2, [6]), ([3, 2, 1], 3, [0]), ([[3, 2, 1], [5, 6, 7]], 0, [[3, 2, 1], [5, 6, 7]]), ([[3, 2, 1], [5, 6, 7]], 1, [[6, 2], [10, 6]]), ([[3, 2, 1], [5, 6, 7]], 2, [[6], [10]]), ([[3, 2, 1], [5, 6, 7]], 3, [[0], [0]]), ] for p, m, expected in cases: check_polyder(np.array(p).T, m, np.array(expected).T) #-------------------------------------------------------------------- # savgol_coeffs tests #-------------------------------------------------------------------- def alt_sg_coeffs(window_length, polyorder, pos): """This is an alternative implementation of the SG coefficients. It uses numpy.polyfit and numpy.polyval. The results should be equivalent to those of savgol_coeffs(), but this implementation is slower. window_length should be odd. """ if pos is None: pos = window_length // 2 t = np.arange(window_length) unit = (t == pos).astype(int) h = np.polyval(np.polyfit(t, unit, polyorder), t) return h def test_sg_coeffs_trivial(): # Test a trivial case of savgol_coeffs: polyorder = window_length - 1 h = savgol_coeffs(1, 0) assert_allclose(h, [1]) h = savgol_coeffs(3, 2) assert_allclose(h, [0, 1, 0], atol=1e-10) h = savgol_coeffs(5, 4) assert_allclose(h, [0, 0, 1, 0, 0], atol=1e-10) h = savgol_coeffs(5, 4, pos=1) assert_allclose(h, [0, 0, 0, 1, 0], atol=1e-10) h = savgol_coeffs(5, 4, pos=1, use='dot') assert_allclose(h, [0, 1, 0, 0, 0], atol=1e-10) def compare_coeffs_to_alt(window_length, order): # For the given window_length and order, compare the results # of savgol_coeffs and alt_sg_coeffs for pos from 0 to window_length - 1. # Also include pos=None. for pos in [None] + list(range(window_length)): h1 = savgol_coeffs(window_length, order, pos=pos, use='dot') h2 = alt_sg_coeffs(window_length, order, pos=pos) assert_allclose(h1, h2, atol=1e-10, err_msg=("window_length = %d, order = %d, pos = %s" % (window_length, order, pos))) def test_sg_coeffs_compare(): # Compare savgol_coeffs() to alt_sg_coeffs(). for window_length in range(1, 8, 2): for order in range(window_length): compare_coeffs_to_alt(window_length, order) def test_sg_coeffs_exact(): polyorder = 4 window_length = 9 halflen = window_length // 2 x = np.linspace(0, 21, 43) delta = x[1] - x[0] # The data is a cubic polynomial. We'll use an order 4 # SG filter, so the filtered values should equal the input data # (except within half window_length of the edges). y = 0.5 * x ** 3 - x h = savgol_coeffs(window_length, polyorder) y0 = convolve1d(y, h) assert_allclose(y0[halflen:-halflen], y[halflen:-halflen]) # Check the same input, but use deriv=1. dy is the exact result. dy = 1.5 * x ** 2 - 1 h = savgol_coeffs(window_length, polyorder, deriv=1, delta=delta) y1 = convolve1d(y, h) assert_allclose(y1[halflen:-halflen], dy[halflen:-halflen]) # Check the same input, but use deriv=2. d2y is the exact result. d2y = 3.0 * x h = savgol_coeffs(window_length, polyorder, deriv=2, delta=delta) y2 = convolve1d(y, h) assert_allclose(y2[halflen:-halflen], d2y[halflen:-halflen]) def test_sg_coeffs_deriv(): # The data in `x` is a sampled parabola, so using savgol_coeffs with an # order 2 or higher polynomial should give exact results. i = np.array([-2.0, 0.0, 2.0, 4.0, 6.0]) x = i ** 2 / 4 dx = i / 2 d2x = 0.5 * np.ones_like(i) for pos in range(x.size): coeffs0 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot') assert_allclose(coeffs0.dot(x), x[pos], atol=1e-10) coeffs1 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=1) assert_allclose(coeffs1.dot(x), dx[pos], atol=1e-10) coeffs2 = savgol_coeffs(5, 3, pos=pos, delta=2.0, use='dot', deriv=2) assert_allclose(coeffs2.dot(x), d2x[pos], atol=1e-10) def test_sg_coeffs_large(): # Test that for large values of window_length and polyorder the array of # coefficients returned is symmetric. The aim is to ensure that # no potential numeric overflow occurs. coeffs0 = savgol_coeffs(31, 9) assert_array_almost_equal(coeffs0, coeffs0[::-1]) coeffs1 = savgol_coeffs(31, 9, deriv=1) assert_array_almost_equal(coeffs1, -coeffs1[::-1]) #-------------------------------------------------------------------- # savgol_filter tests #-------------------------------------------------------------------- def test_sg_filter_trivial(): """ Test some trivial edge cases for savgol_filter().""" x = np.array([1.0]) y = savgol_filter(x, 1, 0) assert_equal(y, [1.0]) # Input is a single value. With a window length of 3 and polyorder 1, # the value in y is from the straight-line fit of (-1,0), (0,3) and # (1, 0) at 0. This is just the average of the three values, hence 1.0. x = np.array([3.0]) y = savgol_filter(x, 3, 1, mode='constant') assert_almost_equal(y, [1.0], decimal=15) x = np.array([3.0]) y = savgol_filter(x, 3, 1, mode='nearest') assert_almost_equal(y, [3.0], decimal=15) x = np.array([1.0] * 3) y = savgol_filter(x, 3, 1, mode='wrap') assert_almost_equal(y, [1.0, 1.0, 1.0], decimal=15) def test_sg_filter_basic(): # Some basic test cases for savgol_filter(). x = np.array([1.0, 2.0, 1.0]) y = savgol_filter(x, 3, 1, mode='constant') assert_allclose(y, [1.0, 4.0 / 3, 1.0]) y = savgol_filter(x, 3, 1, mode='mirror') assert_allclose(y, [5.0 / 3, 4.0 / 3, 5.0 / 3]) y = savgol_filter(x, 3, 1, mode='wrap') assert_allclose(y, [4.0 / 3, 4.0 / 3, 4.0 / 3]) def test_sg_filter_2d(): x = np.array([[1.0, 2.0, 1.0], [2.0, 4.0, 2.0]]) expected = np.array([[1.0, 4.0 / 3, 1.0], [2.0, 8.0 / 3, 2.0]]) y = savgol_filter(x, 3, 1, mode='constant') assert_allclose(y, expected) y = savgol_filter(x.T, 3, 1, mode='constant', axis=0) assert_allclose(y, expected.T) def test_sg_filter_interp_edges(): # Another test with low degree polynomial data, for which we can easily # give the exact results. In this test, we use mode='interp', so # savgol_filter should match the exact solution for the entire data set, # including the edges. t = np.linspace(-5, 5, 21) delta = t[1] - t[0] # Polynomial test data. x = np.array([t, 3 * t ** 2, t ** 3 - t]) dx = np.array([np.ones_like(t), 6 * t, 3 * t ** 2 - 1.0]) d2x = np.array([np.zeros_like(t), 6 * np.ones_like(t), 6 * t]) window_length = 7 y = savgol_filter(x, window_length, 3, axis=-1, mode='interp') assert_allclose(y, x, atol=1e-12) y1 = savgol_filter(x, window_length, 3, axis=-1, mode='interp', deriv=1, delta=delta) assert_allclose(y1, dx, atol=1e-12) y2 = savgol_filter(x, window_length, 3, axis=-1, mode='interp', deriv=2, delta=delta) assert_allclose(y2, d2x, atol=1e-12) # Transpose everything, and test again with axis=0. x = x.T dx = dx.T d2x = d2x.T y = savgol_filter(x, window_length, 3, axis=0, mode='interp') assert_allclose(y, x, atol=1e-12) y1 = savgol_filter(x, window_length, 3, axis=0, mode='interp', deriv=1, delta=delta) assert_allclose(y1, dx, atol=1e-12) y2 = savgol_filter(x, window_length, 3, axis=0, mode='interp', deriv=2, delta=delta) assert_allclose(y2, d2x, atol=1e-12) def test_sg_filter_interp_edges_3d(): # Test mode='interp' with a 3-D array. t = np.linspace(-5, 5, 21) delta = t[1] - t[0] x1 = np.array([t, -t]) x2 = np.array([t ** 2, 3 * t ** 2 + 5]) x3 = np.array([t ** 3, 2 * t ** 3 + t ** 2 - 0.5 * t]) dx1 = np.array([np.ones_like(t), -np.ones_like(t)]) dx2 = np.array([2 * t, 6 * t]) dx3 = np.array([3 * t ** 2, 6 * t ** 2 + 2 * t - 0.5]) # z has shape (3, 2, 21) z = np.array([x1, x2, x3]) dz = np.array([dx1, dx2, dx3]) y = savgol_filter(z, 7, 3, axis=-1, mode='interp', delta=delta) assert_allclose(y, z, atol=1e-10) dy = savgol_filter(z, 7, 3, axis=-1, mode='interp', deriv=1, delta=delta) assert_allclose(dy, dz, atol=1e-10) # z has shape (3, 21, 2) z = np.array([x1.T, x2.T, x3.T]) dz = np.array([dx1.T, dx2.T, dx3.T]) y = savgol_filter(z, 7, 3, axis=1, mode='interp', delta=delta) assert_allclose(y, z, atol=1e-10) dy = savgol_filter(z, 7, 3, axis=1, mode='interp', deriv=1, delta=delta) assert_allclose(dy, dz, atol=1e-10) # z has shape (21, 3, 2) z = z.swapaxes(0, 1).copy() dz = dz.swapaxes(0, 1).copy() y = savgol_filter(z, 7, 3, axis=0, mode='interp', delta=delta) assert_allclose(y, z, atol=1e-10) dy = savgol_filter(z, 7, 3, axis=0, mode='interp', deriv=1, delta=delta) assert_allclose(dy, dz, atol=1e-10)
StarcoderdataPython
6448875
<reponame>sumau/PredictCode """ kde ~~~ A variety of "other" KDE methods, not drawn directly from the literature. """ from . import predictor import open_cp.predictors import tkinter as tk import tkinter.ttk as ttk import open_cp.kde import open_cp.gui.tk.util as util import open_cp.gui.tk.richtext as richtext import open_cp.gui.tk.tooltips as tooltips import open_cp.gui.tk.mtp as mtp import enum import numpy as np _text = { "main" : ("Other Kernel Density Estimation methods\n\n" + "A selection of other KDE (kernel density estimation) methods; to be compared with " + "the 'Scipy KDE naive estimator' (we here offer more options) or the 'Retrospective' and " + "'Prospective' hotspotting algorithms (which are explicitly explained in the scientific " + "literature, whereas the methods here are not).\n" + "We offer two ways to customise the algorithm: the choice of the KDE algorithm to be " + "applied to the spacial coordinates (estimating a continuous risk profile from the location " + "of events) and how (or not) to weight time.\n\n" + "Training Data usage: Can either be ignored, or directly used." ), "no_data" : "No data points found in time range: have enough crime types been selected?", "sk" : "Space kernel: ", "sktt" : "How the spatial locations of points are converted to a continuous risk profile", "sks" : "Space kernel settings", "skernals" : ["Scipy KDE", "Nearest neighbour variable bandwidth"], "tk" : "Treatment of timestamps: ", "tktt" : "How we should treat timestamps", "tks" : "Timestamp adjustment settings", "tchoices" : ["Training data only", "All time in window", "Exponential decay", "Quadratic decay"], "scipy_main" : "Uses the SciPY builtin Gaussian KDE method. This is thus like the 'naive' predictor, but with improved control over the usage of time information.", "nkde_main" : "Uses a variable bandwidth `k`th nearest neighbour Gaussian KDE. Tends to identify clusters better.", "nkde_k" : "Which nearest neighbour to use:", "nkde_k_tt" : "The bandwidth for the contribution to a kernel at a point is chosen by looking at the distance from the point to this nearest neighbour. Larger values lead to a 'smoother' kernel. Values in the range 15 to 100 are common.", "to_main" : "Only use the training date range of data to compute the kernel. All points are treated equally. Probably of mostly academic interest.", "wi_main" : "Use all data in a window of time before the prediction date. All points are treated equally.", "wi_days" : "Days in window: ", "wi_days_tt" : "The time window will be this many days in length", "ex_main" : "The weighting given to points decays exponentially in the time between the event occurring and the prediction date.", "ex_scale" : "Scale in days: ", "ex_scale_tt" : "The 'scale' of the exponential, which is the time period over which the intensity falls to about 37% of the base intensity.", "qu_main" : "The weighting given to points decays exponentially in the time between the event occurring and the prediction date.", "qu_scale" : "Scale in days: ", "qu_scale_tt" : "The 'scale' of the decay. The larger this value, the longer in time it takes for events to have less intensity. See the graph for the effect.", "days" : "Days", "int" : "Relative weighting", "kdeplot" : "Preview of the selected KDE method, as applied to the entire data-set, assuming a valid coordinate projector is selected. No timestamp adjustment is made.", } class KDE(predictor.Predictor): def __init__(self, model): super().__init__(model) self.space_kernel = 0 self._sk_model = [ScipyKDE(self), NeatestKDE(self)] self.time_kernel = 0 self._tk_model = [TrainOnly(), Window(), ExpDecay(), QuadDecay()] @staticmethod def describe(): return "Kernel density estimation predictor" @staticmethod def order(): return predictor._TYPE_GRID_PREDICTOR def make_view(self, parent): return KDEView(parent, self) @property def name(self): return "KDE predictor ({},{})".format(self.space_kernel.name, self.time_kernel.name) @property def settings_string(self): out = [self.space_kernel_model.settings_string, self.time_kernel_model.settings_string] out = [x for x in out if x != ""] return ", ".join(out) def to_dict(self): data = {"space_kernel" : self.space_kernel.value} data["space_models"] = { model.name : model.to_dict() for model in self._sk_model } data["time_models"] = { model.name : model.to_dict() for model in self._tk_model } return data def from_dict(self, data): self.space_kernel = int(data["space_kernel"]) for name, d in data["space_models"].items(): for model in self._sk_model: if model.name == name: model.from_dict(d) for name, d in data["time_models"].items(): for model in self._tk_model: if model.name == name: model.from_dict(d) def make_tasks(self): return [self.Task(self)] class Task(predictor.GridPredictorTask): def __init__(self, parent): super().__init__() self._kde = parent def __call__(self, analysis_model, grid_task, project_task): timed_points = self.projected_data(analysis_model, project_task) if timed_points.number_data_points == 0: raise predictor.PredictionError(_text["no_data"]) grid = grid_task(timed_points) train_start, train_end, _, _ = analysis_model.time_range time_task = self._kde.time_kernel_model.select_data_task(train_start, train_end) time_kernel = self._kde.time_kernel_model.make_kernel() space_kernel_provider = self._kde.space_kernel_model.make_kernel() return KDE.SubTask(timed_points, grid, time_task, time_kernel, space_kernel_provider) class SubTask(predictor.SingleGridPredictor): def __init__(self, timed_points, grid, time_task, time_kernel, space_kernel_provider): super().__init__() self._timed_points = timed_points self._time_task = time_task self._grid = grid self._time_kernel = time_kernel self._space_kernel_provider = space_kernel_provider def __call__(self, predict_time, length=None): start_time, end_time, time_unit = self._time_task(predict_time) predictor = open_cp.kde.KDE(grid=self._grid) predictor.data = self._timed_points predictor.time_unit = time_unit predictor.time_kernel = self._time_kernel predictor.space_kernel = self._space_kernel_provider return predictor.predict(start_time = start_time, end_time = end_time) def config(self): return {"resize": True} def test_coords(self): return self._projected_coords() class SpaceKernel(enum.Enum): scipy = 0 nearest = 1 @property def space_kernel(self): return self._space_kernel @space_kernel.setter def space_kernel(self, value): self._space_kernel = self.SpaceKernel(value) @property def space_kernel_model(self): return self._sk_model[self.space_kernel.value] class TimeKernel(enum.Enum): training = 0 window = 1 exponential = 2 quadratic = 3 @property def time_kernel(self): return self._time_kernel @time_kernel.setter def time_kernel(self, value): self._time_kernel = self.TimeKernel(value) @property def time_kernel_model(self): return self._tk_model[self.time_kernel.value] class BaseKDEView(): def find_min_max(self, coords): xmin, xmax = np.min(coords), np.max(coords) xd = xmax - xmin return xmin - xd / 20, xmax + xd / 20 def sample_kernel(self, kernel_provider, data, ax): data = np.asarray(data) kernel = kernel_provider(data) xmin, xmax = self.find_min_max(data[0]) xs = np.linspace(xmin, xmax, 100) ymin, ymax = self.find_min_max(data[1]) ys = np.linspace(ymin, ymax, 100) matrix = np.empty((100,100)) for yi, y in enumerate(ys): matrix[yi,:] = kernel([xs, np.asarray([y] * len(xs))]) ax.pcolormesh(xs, ys, matrix) def make_plot_task(self, kernel_provider, coords): def task(): fig = mtp.new_figure((6,6)) ax = fig.add_subplot(1,1,1) xcs, ycs = coords self.sample_kernel(kernel_provider, [xcs, ycs], ax) ax.set_aspect(1) fig.set_tight_layout("tight") return fig return task class ScipyKDE(): def __init__(self, main_model): self.main_model = main_model @property def name(self): return "scipy" @property def settings_string(self): return "" def to_dict(self): return {} def from_dict(self, data): pass def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.GaussianBaseProvider() class View(ttk.Frame, BaseKDEView): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [2], [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["scipy_main"]) self._plot = mtp.CanvasFigure(self) self._plot.grid(row=2, column=0, sticky=tk.NSEW) tooltips.ToolTipYellow(self._plot, _text["kdeplot"]) coords = self.model.main_model.test_coords() if coords is None: return kernel_provider = self.model.make_kernel() task = self.make_plot_task(kernel_provider, coords) self._plot.set_figure_task(task) class NeatestKDE(): def __init__(self, main_model): self.main_model = main_model self._k = 15 @property def name(self): return "nearest" @property def settings_string(self): return str(self.k) def to_dict(self): return {"k" : self.k} def from_dict(self, data): self.k = data["k"] @property def k(self): return self._k @k.setter def k(self, v): self._k = int(v) def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.GaussianNearestNeighbourProvider(self.k) class View(ttk.Frame, BaseKDEView): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [2], [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["nkde_main"]) frame = ttk.Frame(self) frame.grid(row=1, column=0, sticky=tk.W) label = ttk.Label(frame, text=_text["nkde_k"]) label.grid(row=0, column=0, padx=2, pady=2) tooltips.ToolTipYellow(label, _text["nkde_k_tt"]) self._k_value = tk.StringVar() entry = ttk.Entry(frame, textvariable=self._k_value) entry.grid(row=0, column=1, padx=2, pady=2) util.IntValidator(entry, self._k_value, callback=self._k_changed) self._plot = mtp.CanvasFigure(self) self._plot.grid(row=2, column=0, sticky=tk.NSEW) tooltips.ToolTipYellow(self._plot, _text["kdeplot"]) self.update() def update(self): self._k_value.set(self.model.k) coords = self.model.main_model.test_coords() if coords is None: return kernel_provider = self.model.make_kernel() task = self.make_plot_task(kernel_provider, coords) self._plot.set_figure_task(task) def _k_changed(self): self.model.k = self._k_value.get() self.update() class TrainOnly(): def __init__(self): pass @property def name(self): return "training dates only" @property def settings_string(self): return "" def to_dict(self): return {} def from_dict(self, data): pass def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.ConstantTimeKernel() def select_data_task(self, train_start, train_end): return self.SelectDataTask(train_start, train_end) class SelectDataTask(): def __init__(self, train_start, train_end): self._times = train_start, train_end def __call__(self, predict_time): return (*self._times, np.timedelta64(1, "s")) class View(ttk.Frame): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_columns(self, [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["to_main"]) class Window(): def __init__(self): self.days = 30 @property def name(self): return "time window" @property def settings_string(self): return "{} days".format(self.days) def to_dict(self): return {"days" : self.days} def from_dict(self, data): self.days = data["days"] @property def days(self): return self._days @days.setter def days(self, value): self._days = float(value) def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.ConstantTimeKernel() def select_data_task(self, train_start=None, train_end=None): return self.SelectDataTask(self.days) class SelectDataTask(): def __init__(self, days_back): self._days = ( (np.timedelta64(1, "D") / np.timedelta64(1, "s")) * days_back * np.timedelta64(1, "s") ) def __call__(self, predict_time): end_time = np.datetime64(predict_time) start_time = end_time - self._days return start_time, end_time, np.timedelta64(1, "s") class View(ttk.Frame): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [2], [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["wi_main"]) frame = ttk.Frame(self) frame.grid(row=1, column=0, sticky=tk.W) label = ttk.Label(frame, text=_text["wi_days"]) label.grid(row=0, column=0, padx=2, pady=2) tooltips.ToolTipYellow(label, _text["wi_days_tt"]) self._days_value = tk.StringVar() entry = ttk.Entry(frame, textvariable=self._days_value) entry.grid(row=0, column=1, padx=2, pady=2) util.FloatValidator(entry, self._days_value, callback=self._days_changed) self._plot = mtp.CanvasFigure(self) self._plot.grid(row=2, column=0, sticky=tk.NSEW) self.update() def update(self): self._days_value.set(self.model.days) def task(): fig = mtp.new_figure((6,4)) ax = fig.add_subplot(1,1,1) x = [0, self.model.days, self.model.days, self.model.days*1.1] y = [1,1,0,0] ax.plot(x, y) ax.set(xlabel=_text["days"], ylabel=_text["int"], xlim=[0, self.model.days*1.1], ylim=[-0.1,1.1]) return fig self._plot.set_figure_task(task) def _days_changed(self): self.model.days = self._days_value.get() self.update() class ExpDecay(): def __init__(self): self.scale = 20 @property def name(self): return "exponential decay" @property def settings_string(self): return "{} days".format(self.scale) def to_dict(self): return {"scale" : self.scale} def from_dict(self, data): self.scale = data["scale"] @property def scale(self): return self._scale @scale.setter def scale(self, value): self._scale = float(value) def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.ExponentialTimeKernel(self.scale) def select_data_task(self, train_start=None, train_end=None): return self.SelectDataTask(self.scale) class SelectDataTask(): def __init__(self, scale): # < 0.1 % of full intensity self._days = ( (np.timedelta64(1, "D") / np.timedelta64(1, "s")) * scale * 7 * np.timedelta64(1, "s") ) def __call__(self, predict_time): end_time = np.datetime64(predict_time) start_time = end_time - self._days return start_time, end_time, np.timedelta64(1, "s") class View(ttk.Frame): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [2], [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["ex_main"]) frame = ttk.Frame(self) frame.grid(row=1, column=0, sticky=tk.W) label = ttk.Label(frame, text=_text["ex_scale"]) label.grid(row=0, column=0, padx=2, pady=2) tooltips.ToolTipYellow(label, _text["ex_scale_tt"]) self._scale_value = tk.StringVar() entry = ttk.Entry(frame, textvariable=self._scale_value) entry.grid(row=0, column=1, padx=2, pady=2) util.FloatValidator(entry, self._scale_value, callback=self._days_changed) self._plot = mtp.CanvasFigure(self) self._plot.grid(row=2, column=0, sticky=tk.NSEW) self.update() def update(self): self._scale_value.set(self.model.scale) def task(): fig = mtp.new_figure((6,4)) ax = fig.add_subplot(1,1,1) x = np.linspace(0, self.model.scale*5, 100) kernel = self.model.make_kernel() ax.plot(x, kernel(x)) ax.set(xlabel=_text["days"], ylabel=_text["int"], xlim=[0, self.model.scale*5], ylim=[0,1]) fig.set_tight_layout("tight") return fig self._plot.set_figure_task(task) def _days_changed(self): self.model.scale = self._scale_value.get() self.update() class QuadDecay(): def __init__(self): self.scale = 20 @property def name(self): return "quadratic decay" @property def settings_string(self): return "{} days".format(self.scale) def to_dict(self): return {"scale" : self.scale} def from_dict(self, data): self.scale = data["scale"] @property def scale(self): return self._scale @scale.setter def scale(self, value): self._scale = float(value) def make_view(self, parent): return self.View(self, parent) def make_kernel(self): return open_cp.kde.QuadDecayTimeKernel(self.scale) def select_data_task(self, train_start=None, train_end=None): return self.SelectDataTask(self.scale) class SelectDataTask(): def __init__(self, scale): # < 0.1 % of full intensity self._days = ( (np.timedelta64(1, "D") / np.timedelta64(1, "s")) * scale * 32 * np.timedelta64(1, "s") ) def __call__(self, predict_time): end_time = np.datetime64(predict_time) start_time = end_time - self._days return start_time, end_time, np.timedelta64(1, "s") class View(ttk.Frame): def __init__(self, model, parent): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [2], [0]) text = richtext.RichText(self, height=3, scroll="v") text.grid(row=0, column=0, sticky=tk.NSEW) text.add_text(_text["qu_main"]) frame = ttk.Frame(self) frame.grid(row=1, column=0, sticky=tk.W) label = ttk.Label(frame, text=_text["qu_scale"]) label.grid(row=0, column=0, padx=2, pady=2) tooltips.ToolTipYellow(label, _text["qu_scale_tt"]) self._scale_value = tk.StringVar() entry = ttk.Entry(frame, textvariable=self._scale_value) entry.grid(row=0, column=1, padx=2, pady=2) util.FloatValidator(entry, self._scale_value, callback=self._days_changed) self._plot = mtp.CanvasFigure(self) self._plot.grid(row=2, column=0, sticky=tk.NSEW) self.update() def update(self): self._scale_value.set(self.model.scale) def task(): fig = mtp.new_figure((6,4)) ax = fig.add_subplot(1,1,1) x = np.linspace(0, self.model.scale*5, 100) kernel = self.model.make_kernel() ax.plot(x, kernel(x)) ax.set(xlabel=_text["days"], ylabel=_text["int"], xlim=[0, self.model.scale*5], ylim=[0,1]) return fig self._plot.set_figure_task(task) def _days_changed(self): self.model.scale = self._scale_value.get() self.update() class KDEView(tk.Frame): def __init__(self, parent, model): super().__init__(parent) self.model = model util.stretchy_rows_cols(self, [1], [0]) self._text = richtext.RichText(self, height=12, scroll="v") self._text.grid(row=0, column=0, sticky=tk.NSEW) self._text.add_text(_text["main"]) frame = ttk.Frame(self) self.add_widgets(frame) frame.grid(row=1, column=0, sticky=tk.NSEW) self.update() def update(self): self._update_space() self._update_time() def add_widgets(self, frame): util.stretchy_rows_cols(frame, [1], [0,1]) subframe = ttk.Frame(frame) subframe.grid(row=0, column=0, sticky=tk.NSEW, padx=1, pady=1) label = ttk.Label(subframe, text=_text["sk"]) label.grid(row=0, column=0, padx=2) tooltips.ToolTipYellow(label, _text["sktt"]) self._space_cbox = ttk.Combobox(subframe, height=5, state="readonly", width=40, values=_text["skernals"]) self._space_cbox.bind("<<ComboboxSelected>>", self._space_changed) self._space_cbox.grid(row=0, column=1, padx=2) self._space_frame = ttk.LabelFrame(frame, text=_text["sks"]) self._space_frame.grid(row=1, column=0, sticky=tk.NSEW, padx=1, pady=1) util.stretchy_rows_cols(self._space_frame, [0], [0]) subframe = ttk.Frame(frame) subframe.grid(row=0, column=1, sticky=tk.NSEW, padx=1, pady=1) label = ttk.Label(subframe, text=_text["tk"]) label.grid(row=0, column=0, padx=2) tooltips.ToolTipYellow(label, _text["tktt"]) self._time_cbox = ttk.Combobox(subframe, height=5, state="readonly", width=40, values=_text["tchoices"]) self._time_cbox.bind("<<ComboboxSelected>>", self._time_changed) self._time_cbox.grid(row=0, column=1, padx=2) self._time_frame = ttk.LabelFrame(frame, text=_text["tks"]) self._time_frame.grid(row=1, column=1, sticky=tk.NSEW, padx=1, pady=1) util.stretchy_rows_cols(self._time_frame, [0], [0]) def _space_changed(self, event=None): self.model.space_kernel = int(self._space_cbox.current()) self._update_space() def _update_space(self): self._space_cbox.current(self.model.space_kernel.value) for w in self._space_frame.winfo_children(): w.destroy() view = self.model.space_kernel_model.make_view(self._space_frame) view.grid(sticky=tk.NSEW) def _time_changed(self, event=None): self.model.time_kernel = int(self._time_cbox.current()) self._update_time() def _update_time(self): self._time_cbox.current(self.model.time_kernel.value) for w in self._time_frame.winfo_children(): w.destroy() view = self.model.time_kernel_model.make_view(self._time_frame) view.grid(sticky=tk.NSEW) def test(root): ll = KDE(predictor.test_model()) predictor.test_harness(ll, root)
StarcoderdataPython
3212455
<filename>emailextract/core/emailextractor.py # emailextractor.py # Copyright 2017 <NAME> # Licence: See LICENCE (BSD licence) """Extract text from emails and save for application specific extraction. These classes assume text from emails are held in files in a directory, with no sub-directories, where each file contains a single email. Each file may start with a 'From ' line, formatted as in mbox mailbox files, but lines within the email which start 'From ' will only have been changed to lines starting '>From ' if the email client which accepted delivery of the email did so. It depends on which mailbox format the email client uses. """ # A slightly modified results.core.emailextractor version 2.2, with all the # stuff specific to the ChessResults application reomoved, is the initial # version of this module. import os from datetime import date import re from email import message_from_binary_file from email.utils import parseaddr, parsedate_tz from email.message import EmailMessage import email.header from time import strftime import subprocess import io import csv import difflib import shutil import tkinter.messagebox import zipfile import xml.etree.ElementTree import base64 try: import tnefparse except ImportError: # Not ModuleNotFoundError for Pythons earlier than 3.6 tnefparse = None try: import xlsx2csv except: xlsx2csv = None try: import pdfminer from pdfminer import pdfinterp, layout, converter except: pdfminer = None # Added when finding out how to use pdfminer3k to extract data from PDF files, # and how to use xlsx2csv to extract data fron xlsx files. import sys from solentware_misc.core.utilities import AppSysDate # Directory which holds emails one per file copied from email client mailboxes. # Use imported COLLECTED attribute if available because emailextract expects to # work with the emailstore package but can work with arbitrary collections of # emails. try: from emailstore.core.emailcollector import COLLECTED except: COLLECTED = "collected" # Python is installed in C: by default on Microsft Windows, so it is deemed # acceptable to install pdftotext.exe in HOME even though this is done by # direct copying rather than by an installer. Per user installation is done by # copying pdftotext.exe to HOMEDRIVE. if sys.platform != "win32": _PDFTOTEXT = "pdftotext" else: _PDFTOTEXT = "pdftotext.exe" # xpdf installation notes for Microsoft Windows say 'copy everything to an # installation directory, e.g. C:/Program Files/Xpdf'. # Try to choose the 32-bit or 64-bit executable as appropriate. if sys.maxsize > 2 ** 32: xpdf = os.path.join("Xpdf", "bin64") else: xpdf = os.path.join("Xpdf", "bin32") if os.path.isfile( os.path.join(os.environ["USERPROFILE"], xpdf, _PDFTOTEXT) ): _PDFTOTEXT = os.path.join(os.environ["USERPROFILE"], xpdf, _PDFTOTEXT) elif os.path.isfile( os.path.join(os.environ["HOMEDRIVE"], xpdf, _PDFTOTEXT) ): _PDFTOTEXT = os.path.join(os.environ["HOMEDRIVE"], xpdf, _PDFTOTEXT) else: _PDFTOTEXT = None del xpdf # ssconvert, a tool supplied with Gnumeric, converts many spreadsheet formats # to csv files. # Python provides a module to handle csv files almost trivially. # In September 2014 it was noticed that gnumeric.org withdrew all pre-built # binaries of Gnumeric for Microsoft Windows in August 2014, citing crashes # with profiles suggesting Gtk+ problems and lack of resources to do anything # about it. # I had downloaded the pre-built binary for Gnumeric-1-9-16 in March 2010. # Later versions introduced support for putting each sheet in a separate csv # file, but I never downloaded a Microsoft Windows binary. # xls2csv and xlsx2csv were considered as alternatives to ssconvert to do the # spreadsheet to csv file conversion. # xls2csv works only on Python 2. I do not know it's capabilities. # xlsx2csv handles xlsx format only, and it's output is not compatible with the # output from ssconvert as far as this application is concerned. # For cross-platform consistency a date format has to be specified to xlsx2csv # otherwise one may get the raw number representing a date output as text to # the csv file. ssconvert outputs a date according to the formatting given # for the cell in the source spreadsheet. # The workaround is attach csv files created using the spreadsheet application # to the email. _SSTOCSV = "ssconvert.exe" if sys.platform != "win32": _SSTOCSV = "ssconvert" else: # Version directories exist in ../Program Files/Gnumeric for each version # of Gnumeric installed. Pick one of them, effectively at random, if any # exist. # If Gnumeric is not installed, look for xlsx2csv.py in site-packages. sstocsvdir = os.path.join(os.environ["PROGRAMFILES"], "Gnumeric") if os.path.isdir(sstocsvdir): sstocsv = set(os.listdir(sstocsvdir)) else: sstocsv = None if sstocsv: sstocsv = os.path.join(sstocsvdir, sstocsv.pop(), "bin", _SSTOCSV) if os.path.isfile(sstocsv): _SSTOCSV = sstocsv else: _SSTOCSV = None else: _SSTOCSV = None del sstocsvdir, sstocsv # _SSTOCSV is left alone so that ssconvert is used if it is available, despite # the problems cited in August 2014. _MAIL_STORE = "mailstore" _EARLIEST_DATE = "earliestdate" _MOST_RECENT_DATE = "mostrecentdate" _EMAIL_SENDER = "emailsender" IGNORE_EMAIL = "ignore" # The name of the configuration file for extracting text from emails. EXTRACTED_CONF = "extracted.conf" # The extract configuration file entry naming the collect configuration file # for collecting emails from email client mailboxes. COLLECT_CONF = "collect_conf" # MEDIA_TYPES directory holds csv files of media types in the format provided # by https://www.iana.org/assignments/media-types/media-types.xhtml MEDIA_TYPES = "media_types" # Directory which holds difference files of text extracted from emails. EXTRACTED = "extracted" # Identify a pdf content-type to be included in the extracted data PDF_CONTENT_TYPE = "pdf_content_type" # Identify a text content-type to be included in the extracted data TEXT_CONTENT_TYPE = "text_content_type" # Identify a spreadsheet content-type to be included in the extracted data _SS_CONTENT_TYPE = "ss_content_type" # Identify a comma separated value (csv) content-type to be included in the # extracted data CSV_CONTENT_TYPE = "csv_content_type" # Identify a spreadsheet sheet name or csv file name to be included or # excluded in the extracted data. # Probably want to do ss version but maybe not csv, not done for pdf or text. # Maybe this should be done in application specific configuration too, so # there is choice about best place to do this. INCLUDE_CSV_FILE = "include_csv_file" EXCLUDE_CSV_FILE = "exclude_csv_file" INCLUDE_SS_FILE_SHEET = "include_ss_file_sheet" EXCLUDE_SS_FILE_SHEET = "exclude_ss_file_sheet" # csv files should not contain '\x00' bytes but in practice some do. # _NUL is used when decoding a csv email attachment to offer the opportunity of # not processing such csv files. _NUL = "\x00" # Identify an Office Open XML word processing content-type to be included in # the extracted data. Also known as (Microsoft) docx format. DOCX_CONTENT_TYPE = "docx_content_type" # Identify an Office Open XML spreadsheet content-type to be included in the # extracted data. Also known as (Microsoft) xlsx format. XLSX_CONTENT_TYPE = "xlsx_content_type" # Identify an Open Office XML word processing content-type to be included in # the extracted data. Also known as Open Document Format (*.odt). ODT_CONTENT_TYPE = "odt_content_type" # Identify an Open Office XML spreadsheet content-type to be included in the # extracted data. Also known as Open Document Format (*.ods). ODS_CONTENT_TYPE = "ods_content_type" # Constants to handle TNEF attachments easily with non-TNEF attachments. # Non-TNEF can use content-type for attachment directly but TNEF is # content-type application/ms-tnef and we use the extension to decide. The # non-TNEF version sets the appropriate constant below. # _SS is any spreadsheet, so do not set to an extension: cannot use TNEF here. # TNEF means emails sent by Microsoft Outlook in some circumstances. _PDF = ".pdf" _SS = None _XLSX = ".xlsx" _ODS = ".ods" _CSV = ".csv" _TXT = ".txt" _DOCX = ".docx" _ODT = ".odt" class EmailExtractorError(Exception): pass # There are two distinct sets of configuration settings; email selection and # parsing rules. EmailExtractor will end up a subclass of "Parse" which can be # shared with EventSeason for text parsing rules. class EmailExtractor(object): """Extract emails matching selection criteria from email client store. By default look for emails sent or received using the Opera email client in the most recent twelve months. """ email_select_line = re.compile( "".join( ( "\A", "(?:", "(?:", # whitespace line "\s*", ")|", "(?:", # comment line "\s*#.*", ")|", "(?:", # parameter line "\s*(\S+?)\s+([^#]*).*", ")", ")", "\Z", ) ) ) replace_value_columns = re.compile("\+|\*") def __init__( self, folder, configuration=None, parser=None, extractemail=None, parent=None, ): """Define the email extraction rules from configuration. folder - the directory containing the event's data configuration - the rules for extracting emails """ self.configuration = configuration self.criteria = None self.email_client = None self._folder = folder self.parent = parent if parser is None: self._parser = Parser else: self._parser = parser if extractemail is None: self._extractemail = ExtractEmail else: self._extractemail = extractemail def parse(self): """ """ self.criteria = None criteria = self._parser(parent=self.parent).parse(self.configuration) if criteria: self.criteria = criteria return True if criteria is False: return False return True def _select_emails(self): """ """ if self.criteria is None: return self.email_client = self._extractemail( eventdirectory=self._folder, **self.criteria ) return self.email_client.selected_emails @property def selected_emails(self): """ """ if self.email_client: return self.email_client.selected_emails return self._select_emails() @property def excluded_emails(self): """ """ if not self.email_client: if not self._select_emails(): return return self.email_client.excluded_emails @property def eventdirectory(self): """ """ return self.email_client.eventdirectory @property def outputdirectory(self): """ """ return self.email_client._extracts def copy_emails(self): """ """ difference_tags = [] additional = [] for e, em in enumerate(self.selected_emails): # The interaction between universal newlines and difflib can cause # problems. In particular when \r is used as a field separator. # This way such text extracted from an email is readable because # \r shows up as a special glyph in the tkinter Text widget. # Later, when processing text, it shows up as a newline (\n). if tuple( (s.rstrip("\r\n"), s[-1] in "\r\n") for s in "\n".join(em.extracted_text).splitlines(True) ) != tuple( (s.rstrip("\r\n"), s[-1] in "\r\n") for s in list(difflib.restore(em.edit_differences, 1)) ): difference_tags.append("x".join(("T", str(e)))) if em.difference_file_exists is False: additional.append(em) if difference_tags: return difference_tags, None elif additional: w = " emails " if len(additional) > 1 else " email " if ( tkinter.messagebox.askquestion( parent=self.parent, title="Update Extracted Text", message="".join( ( "Confirm that text from ", str(len(additional)), w, " be added to version held in database.", ) ), ) != tkinter.messagebox.YES ): return else: return None, additional try: os.mkdir(os.path.dirname(additional[0].difference_file_path)) except FileExistsError: pass for em in additional: try: em.write_additional_file() except FileNotFoundError as exc: excdir = os.path.basename(os.path.dirname(exc.filename)) tkinter.messagebox.showinfo( parent=self.parent, title="Update Extracted Text", message="".join( ( "Write additional file to directory\n\n", os.path.basename(os.path.dirname(exc.filename)), "\n\nfailed.\n\nHopefully because the directory ", "does not exist yet: it could have been deleted.", ) ), ) return return None, additional def ignore_email(self, filename): """ """ if self.email_client.ignore is None: self.email_client.ignore = set() self.email_client.ignore.add(filename) def include_email(self, filename): """ """ if self.email_client.ignore is None: self.email_client.ignore = set() self.email_client.ignore.remove(filename) class Parser(object): """Parse configuration file.""" def __init__(self, parent=None): self.parent = parent # Rules for processing conf file self.keyword_rules = { _MAIL_STORE: self.assign_value, _EARLIEST_DATE: self.assign_value, _MOST_RECENT_DATE: self.assign_value, _EMAIL_SENDER: self.add_value_to_set, IGNORE_EMAIL: self.add_value_to_set, COLLECT_CONF: self.assign_value, COLLECTED: self.assign_value, EXTRACTED: self.assign_value, MEDIA_TYPES: self.assign_value, PDF_CONTENT_TYPE: self.add_value_to_set, TEXT_CONTENT_TYPE: self.add_value_to_set, _SS_CONTENT_TYPE: self.add_value_to_set, DOCX_CONTENT_TYPE: self.add_value_to_set, ODT_CONTENT_TYPE: self.add_value_to_set, XLSX_CONTENT_TYPE: self.add_value_to_set, ODS_CONTENT_TYPE: self.add_value_to_set, CSV_CONTENT_TYPE: self.add_value_to_set, INCLUDE_CSV_FILE: self.add_value_to_set, EXCLUDE_CSV_FILE: self.add_value_to_set, INCLUDE_SS_FILE_SHEET: self.add_values_to_dict_of_sets, EXCLUDE_SS_FILE_SHEET: self.add_values_to_dict_of_sets, } def assign_value(self, v, args, args_key): args[args_key] = v def add_value_to_set(self, v, args, args_key): if args_key not in args: args[args_key] = set() args[args_key].add(v) def add_values_to_dict_of_sets(self, v, args, args_key): sep = v[0] v = v.split(sep=v[0], maxsplit=2) if len(v) < 3: args[args_key].setdefault(v[-1], set()) return if args_key not in args: args[args_key] = dict() args[args_key].setdefault(v[1], set()).update(v[2].split(sep=sep)) def _parse_error_dialogue(self, message): tkinter.messagebox.showinfo( parent=self.parent, title="Configuration File", message="".join( ( "Extraction rules are invalid.\n\nFailed rule is:\n\n", message, ) ), ) def parse(self, configuration): args = {} for line in configuration.split("\n"): g = EmailExtractor.email_select_line.match(line) if not g: self._parse_error_dialogue(line) return False key, value = g.groups() if key is None: continue if not value: self._parse_error_dialogue(line) return False args_type = self.keyword_rules.get(key.lower()) if args_type is None: self._parse_error_dialogue(line) return False try: args_type(value, args, key.lower()) except (re.error, ValueError): self._parse_error_dialogue(line) return False return args class MessageFile(EmailMessage): """Extend EmailMessage class with a method to generate a filename. The From and Date headers are used. """ def generate_filename(self): """Return a base filename or None when headers are no available.""" t = parsedate_tz(self.get("Date")) f = parseaddr(self.get("From"))[-1] if t and f: ts = strftime("%Y%m%d%H%M%S", t[:-1]) utc = "".join((format(t[-1] // 3600, "0=+3"), "00")) return "".join((ts, f, utc, ".mbs")) else: return False class ExtractEmail(object): """Extract emails matching selection criteria from email store.""" def __init__( self, extracttext=None, earliestdate=None, mostrecentdate=None, emailsender=None, eventdirectory=None, ignore=None, collect_conf=None, collected=None, extracted=None, media_types=None, pdf_content_type=None, text_content_type=None, ss_content_type=None, csv_content_type=None, docx_content_type=None, odt_content_type=None, xlsx_content_type=None, ods_content_type=None, include_csv_file=None, exclude_csv_file=None, include_ss_file_sheet=None, exclude_ss_file_sheet=None, parent=None, **soak ): """Define the email extraction rules from configuration. mailstore - the directory containing the email files earliestdate - emails before this date are ignored mostrecentdate - emails after this date are ignored emailsender - iterable of from addressees to select emails eventdirectory - directory to contain the event's data ignore - iterable of email filenames to be ignored schedule - difference file for event schedule reports - difference file for event result reports """ self.parent = parent if extracttext is None: self._extracttext = ExtractText else: self._extracttext = extracttext if collect_conf: try: cc = open( os.path.join(eventdirectory, collect_conf), encoding="utf8" ) try: for line in cc.readlines(): line = line.split(" ", 1) if line[0] == COLLECTED: if len(line) == 2: from_conf = line[1].strip() if from_conf: collected = from_conf except: tkinter.messagebox.showinfo( parent=self.parent, title="Read Configuration File", message="".join( ( "Unable to determine collected directory.\n\n", "Using name from extract configuration.", ) ), ) finally: cc.close() except: pass if collected is None: ms = COLLECTED else: ms = os.path.join(eventdirectory, collected) self.mailstore = os.path.expanduser(os.path.expandvars(ms)) if extracted is None: self._extracts = os.path.join(eventdirectory, EXTRACTED) else: self._extracts = os.path.join(eventdirectory, extracted) d = AppSysDate() if earliestdate is not None: if d.parse_date(earliestdate) == -1: tkinter.messagebox.showinfo( parent=self.parent, title="Read Configuration File", message="".join( ( "Format error in earliest date argument.\n\n", "Please fix configuration file.", ) ), ) self.earliestdate = False else: self.earliestdate = d.iso_format_date() else: self.earliestdate = earliestdate if mostrecentdate is not None: if d.parse_date(mostrecentdate) == -1: tkinter.messagebox.showinfo( parent=self.parent, title="Read Configuration File", message="".join( ( "Format error in most recent date argument.\n\n", "Please fix configuration file.", ) ), ) self.mostrecentdate = False else: self.mostrecentdate = d.iso_format_date() else: self.mostrecentdate = mostrecentdate self.emailsender = emailsender self.eventdirectory = eventdirectory self.ignore = ignore self._selected_emails = None self._selected_emails_text = None self._text_extracted_from_emails = None if pdf_content_type: self.pdf_content_type = pdf_content_type else: self.pdf_content_type = frozenset() if text_content_type: self.text_content_type = text_content_type else: self.text_content_type = frozenset() if ss_content_type: self.ss_content_type = ss_content_type else: self.ss_content_type = frozenset() if csv_content_type: self.csv_content_type = csv_content_type else: self.csv_content_type = frozenset() if docx_content_type: self.docx_content_type = docx_content_type else: self.docx_content_type = frozenset() if odt_content_type: self.odt_content_type = odt_content_type else: self.odt_content_type = frozenset() if xlsx_content_type: self.xlsx_content_type = xlsx_content_type else: self.xlsx_content_type = frozenset() if ods_content_type: self.ods_content_type = ods_content_type else: self.ods_content_type = frozenset() if include_csv_file is None: self.include_csv_file = [] else: self.include_csv_file = include_csv_file if exclude_csv_file is None: self.exclude_csv_file = [] else: self.exclude_csv_file = exclude_csv_file if include_ss_file_sheet is None: self.include_ss_file_sheet = [] else: self.include_ss_file_sheet = include_ss_file_sheet if exclude_ss_file_sheet is None: self.exclude_ss_file_sheet = [] else: self.exclude_ss_file_sheet = exclude_ss_file_sheet def get_emails(self): """Return email files in order stored in mail store. Each email is stored in a file named: <self.mailstore>/yyyymmddHHMMSS<sender><utc offset>.mbs """ emails = [] if self.earliestdate is not None: try: date(*tuple([int(d) for d in self.earliestdate.split("-")])) except: tkinter.messagebox.showinfo( parent=self.parent, title="Get Emails", message="".join( ( "Earliest date format error.\n\n", "Please fix configuration file.", ) ), ) return emails if self.mostrecentdate is not None: try: date(*tuple([int(d) for d in self.mostrecentdate.split("-")])) except: tkinter.messagebox.showinfo( parent=self.parent, title="Get Emails", message="".join( ( "Most recent date format error.\n\n", "Please fix configuration file.", ) ), ) return emails try: ms = self.mailstore ems = self.emailsender for a in os.listdir(ms): if self.ignore: if a in self.ignore: continue if ems: for e in ems: if e == a[8 : 8 + len(e)]: break else: continue emd = "-".join((a[:4], a[4:6], a[6:8])) if self.earliestdate is not None: if emd < self.earliestdate: continue if self.mostrecentdate is not None: if emd > self.mostrecentdate: continue emails.append(self._extracttext(a, self)) except FileNotFoundError: emails.clear() tkinter.messagebox.showinfo( parent=self.parent, title="Get Emails", message="".join( ( "Attempt to get files in directory\n\n", str(self.mailstore), "\n\nfailed.", ) ), ) emails.sort() return emails def _get_emails_for_from_addressees(self): """Return selected email files in order stored in mail store. Emails are selected by 'From Adressee' using the email addresses in the emailsender argument of ExtractEmail() call. """ return [ e for e in self.get_emails() if e.is_from_addressee_in_selection(self.emailsender) ] @property def selected_emails(self): """ """ if self._selected_emails is None: self._selected_emails = self._get_emails_for_from_addressees() return self._selected_emails @property def excluded_emails(self): """ """ if not self.ignore: return set() return set(self.ignore) class ExtractText(object): """Repreresent the stages in processing an email.""" def __init__(self, filename, emailstore): """ """ self.filename = filename self._emailstore = emailstore self._message = None self._encoded_text = None self._extracted_text = None self._edit_differences = None self._difference_file_exists = None self._date = None self._delivery_date = None def __eq__(self, other): """Return True if self.filename == other.filename.""" return self.filename == other.filename def __lt__(self, other): """Return True if self.filename < other.filename.""" return self.filename < other.filename @property def email_path(self): """ """ return os.path.join(self._emailstore.mailstore, self.filename) @property def difference_file_path(self): """ """ return os.path.join( self._emailstore._extracts, os.path.splitext(self.filename)[0] ) @property def difference_file_exists(self): """Return True if difference file existed when edit_differences set. True means the email does not change the original text. False means the edited version of text is copied from the email text. None means answer is unknown because edit_differences has not been set. """ return self._difference_file_exists def is_from_addressee_in_selection(self, selection): """ """ if selection is None: return True from_ = parseaddr(self.message.get("From"))[-1] if not selection: return self.message.generate_filename() # Ignore emails not sent by someone in self.emailsender. # Account owners may be in that set, so emails sent from one # account owner to another can get selected. if from_ in selection: return self.message.generate_filename() else: return False @property def message(self): """ """ if self._message is None: mf = open(self.email_path, "rb") try: self._message = message_from_binary_file( mf, _class=MessageFile ) self._date = [ parsedate_tz(d)[:-1] for d in self.message.get_all("date", []) ] self._delivery_date = [ parsedate_tz(d)[:-1] for d in self.message.get_all("delivery-date", []) ] finally: mf.close() return self._message @property def encoded_text(self): """ """ if self._encoded_text is None: ems = self._emailstore text = [] for p in self.message.walk(): cte = p.get("Content-Transfer-Encoding") if cte: if cte.lower() == "base64": t = p.get_payload(decode=True) if t: text.append(t) # If no text at all is extracted return a single blank line. if not text: text.append(b"\n") # Ensure the extracted text ends with a newline so that editing of # the last line causes difflib processing to append the '? ---\n' # or '? +++\n' as a separate line in the difference file. # This may make the one character adjustment done by # _insert_entry() in the SourceEdit class redundant. # The reason to not do this all along was to avoid making any # change at all between the selected email payload and the original # version held in the difference file, including an extra newline. # Attempts to wrap difflib functions to cope seem not worth it, if # such prove possible at all. if not text[-1].endswith(b"\n"): text[-1] = b"".join((text[-1], b"\n")) self._encoded_text = text return self._encoded_text def _extract_text( self, content_type, filename, payload, text, charset=None ): ems = self._emailstore if content_type == _PDF: if _PDFTOTEXT: self._get_pdf_text_using_xpdf(filename, payload, text) elif pdfminer: self.get_pdf_text_using_pdfminer3k(None, payload, text) elif content_type == _SS: if _SSTOCSV: self._get_ss_text_using_gnumeric(filename, payload, text) elif content_type == _XLSX: if _SSTOCSV: self._get_ss_text_using_gnumeric(filename, payload, text) elif xlsx2csv: self._get_ss_text_using_xlsx2csv(filename, payload, text) elif content_type == _ODS: if _SSTOCSV: self._get_ss_text_using_gnumeric(filename, payload, text) else: self._get_ods_text_using_python_xml(filename, payload, text) elif content_type == _CSV: if ems.include_csv_file: if filename not in ems.include_csv_file: return elif ems.exclude_csv_file: if filename in ems.exclude_csv_file: return text.append(self.get_csv_text(payload, charset)) elif content_type == _TXT: text.append(payload.decode(charset)) elif content_type == _DOCX: text.append(self.get_docx_text(payload, ems.eventdirectory)) elif content_type == _ODT: text.append(self.get_odt_text(payload, ems.eventdirectory)) @property def extracted_text(self): """ """ if self._extracted_text is None: ems = self._emailstore text = [] for p in self.message.walk(): ct = p.get_content_type() if ct in ems.pdf_content_type: self._extract_text( _PDF, p.get_filename(), p.get_payload(decode=True), text, ) elif ct in ems.ss_content_type: self._extract_text( _SS, p.get_filename(), p.get_payload(decode=True), text ) elif ct in ems.xlsx_content_type: self._extract_text( _XLSX, p.get_filename(), p.get_payload(decode=True), text, ) elif ct in ems.ods_content_type: self._extract_text( _ODS, p.get_filename(), p.get_payload(decode=True), text, ) elif ct in ems.csv_content_type: self._extract_text( _CSV, p.get_filename(), p.get_payload(decode=True), text, charset=p.get_param("charset", failobj="utf-8"), ) elif ct in ems.text_content_type: self._extract_text( _TXT, p.get_filename(), p.get_payload(decode=True), text, charset=p.get_param("charset", failobj="iso-8859-1"), ) elif ct in ems.docx_content_type: self._extract_text( _DOCX, p.get_filename(), p.get_payload(decode=True), text, ) elif ct in ems.odt_content_type: self._extract_text( _ODT, p.get_filename(), p.get_payload(decode=True), text, ) elif ct == "application/ms-tnef": if not tnefparse: text.append( "".join( ( "Cannot process attachment: ", "tnefparse is not installed.", ) ) ) continue # I do not know if the wrapped attachment type names are # encoded within the application/ms-tnef attachment, or the # mapping if so. Fall back on assumption from file name # extension. # Similar point applies for charset argument used when # extracting csv or txt attachments. # As far as I know, the only application/ms-tnef # attachments ever received by me at time of writing # contain just *.txt attachments. These are not processed # by this route. tnef = tnefparse.TNEF(base64.b64decode(p.get_payload())) for attachment in tnef.attachments: name = attachment.name for e in _PDF, _XLSX, _ODS, _CSV, _TXT, _DOCX, _ODT: if name.lower().endswith(e): self._extract_text( e, attachment.name, attachment.data, text, charset="iso-8859-1", ) break else: text.append( "".join( ( "Cannot process '", name, "' extracted from application/", "ms-tnef attachment.", ) ) ) # If no text at all is extracted return a single blank line. if not text: text.append("\n") # Ensure the extracted text ends with a newline so that editing of # the last line causes difflib processing to append the '? ---\n' # or '? +++\n' as a separate line in the difference file. # This may make the one character adjustment done by # _insert_entry() in the SourceEdit class redundant. # The reason to not do this all along was to avoid making any # change at all between the selected email payload and the original # version held in the difference file, including an extra newline. # Attempts to wrap difflib functions to cope seem not worth it, if # such prove possible at all. if not text[-1].endswith("\n"): text[-1] = "".join((text[-1], "\n")) self._extracted_text = text return self._extracted_text def _is_attachment_to_be_extracted(self, attachment_filename): ems = self._emailstore if ems.include_ss_file_sheet: if attachment_filename not in ems.include_ss_file_sheet: return elif ems.exclude_ss_file_sheet: if attachment_filename in ems.exclude_ss_file_sheet: return if _decode_header(attachment_filename) is None: tkinter.messagebox.showinfo( parent=self._emailstore.parent, title="Extract Spreadsheet Data", message="Spreadsheet attachment does not have a filename.", ) return return True def _create_temporary_attachment_file(self, filename, payload, dirbase): a = _decode_header(filename) try: os.mkdir(os.path.join(dirbase, "xls-attachments")) except: pass op = open(os.path.join(dirbase, "xls-attachments", a), "wb") try: op.write(payload) finally: op.close() return a def _get_ss_text_using_gnumeric(self, filename, payload, text): fn = filename if not self._is_attachment_to_be_extracted(fn): return ems = self._emailstore taf = self._create_temporary_attachment_file( filename, payload, ems.eventdirectory ) process = subprocess.Popen( (_SSTOCSV, "--recalc", "-S", taf, "%s.csv"), cwd=os.path.join(ems.eventdirectory, "xls-attachments"), ) process.wait() if process.returncode == 0: sstext = [] for sheet, sheettext in self.get_spreadsheet_text( ems.eventdirectory ): if fn in ems.include_ss_file_sheet: if ems.include_ss_file_sheet[fn]: if sheet not in ems.include_ss_file_sheet[fn]: continue elif fn in ems.exclude_ss_file_sheet: if ems.exclude_ss_file_sheet[fn]: if sheet in ems.exclude_ss_file_sheet[fn]: continue else: continue sstext.append(sheettext) text.append("\n\n".join(sstext)) shutil.rmtree( os.path.join(ems.eventdirectory, "xls-attachments"), ignore_errors=True, ) def _get_ss_text_using_xlsx2csv(self, filename, payload, text): fn = filename if not self._is_attachment_to_be_extracted(fn): return ems = self._emailstore taf = os.path.join( ems.eventdirectory, "xls-attachments", self._create_temporary_attachment_file( filename, payload, ems.eventdirectory ), ) # Extract all sheets and filter afterwards. # xlsx2csv can do the filtering and will be used to do so later. # outputencoding has to be given, even though it is default value, to # avoid a KeyError exception on options passed to Xlsx2csv in Python 3. # The defaults of other arguments are used as expected. xlsx2csv.Xlsx2csv( taf, skip_empty_lines=True, sheetid=0, dateformat="%Y-%m-%d", outputencoding="utf-8", ).convert( os.path.join(ems.eventdirectory, "xls-attachments"), sheetid=0 ) sstext = [] for sheet, sheettext in self.get_spreadsheet_text(ems.eventdirectory): if fn in ems.include_ss_file_sheet: if ems.include_ss_file_sheet[fn]: if sheet not in ems.include_ss_file_sheet[fn]: continue elif fn in ems.exclude_ss_file_sheet: if ems.exclude_ss_file_sheet[fn]: if sheet in ems.exclude_ss_file_sheet[fn]: continue else: continue sstext.append(sheettext) text.append("\n\n".join(sstext)) shutil.rmtree( os.path.join(ems.eventdirectory, "xls-attachments"), ignore_errors=True, ) def _get_ods_text_using_python_xml(self, filename, payload, text): nstable = "{urn:oasis:names:tc:opendocument:xmlns:table:1.0}" nstext = "{urn:oasis:names:tc:opendocument:xmlns:text:1.0}" nsoffice = "{urn:oasis:names:tc:opendocument:xmlns:office:1.0}" def get_rows(table): rows = [] for row in table.iter(nstable + "table-row"): rows.append({}) cells = rows[-1] for cell in row.iter(nstable + "table-cell"): repeat = int( cell.attrib.get( nstable + "number-columns-repeated", "1" ) ) if cell.attrib.get(nsoffice + "value-type") == "date": paragraphs = [cell.attrib[nsoffice + "date-value"]] else: paragraphs = [] for element in cell.iter(nstext + "p"): if element.text is not None: paragraphs.append(element.text) text = "\n\n".join(paragraphs) for r in range(repeat): cells[len(cells)] = text if paragraphs else None # Discard leading and trailing empty columns, and empty rows. # No need to convert remaining Nones to ''s because csv module # DictWriter.writerows() method does it. trailing = -1 leading = max(len(r) for r in rows) for r in rows: notnone = sorted(k for k, v in r.items() if v is not None) if notnone: trailing = max(notnone[-1], trailing) leading = min(notnone[0], leading) for r in rows: columns = list(r.keys()) for c in columns: if c > trailing or c < leading: del r[c] return [ r for r in rows if len([v for v in r.values() if v is not None]) ] ems = self._emailstore fn = filename if ems.include_ss_file_sheet: if fn not in ems.include_ss_file_sheet: return elif ems.exclude_ss_file_sheet: if fn in ems.exclude_ss_file_sheet: return xmlzip = zipfile.ZipFile(io.BytesIO(payload)) archive = {} for n in xmlzip.namelist(): with xmlzip.open(n) as f: archive[n] = f.read() for k, v in archive.items(): if os.path.basename(k) == "content.xml": tree = xml.etree.ElementTree.XML(v) sstext = [] for spreadsheet in tree.iter(nsoffice + "spreadsheet"): for table in spreadsheet.iter(nstable + "table"): sheet = table.attrib[nstable + "name"] if fn in ems.include_ss_file_sheet: if ems.include_ss_file_sheet[fn]: if sheet not in ems.include_ss_file_sheet[fn]: continue elif fn in ems.exclude_ss_file_sheet: if ems.exclude_ss_file_sheet[fn]: if sheet in ems.exclude_ss_file_sheet[fn]: continue else: continue rows = get_rows(table) if not rows: continue fieldnames = [c for c in sorted(rows[0].keys())] csvfile = io.StringIO() writer = csv.DictWriter(csvfile, fieldnames=fieldnames) writer.writerows(rows) try: sstext.append( self.extract_text_from_csv( csvfile, sheet=sheet ) ) except KeyError: raise EmailExtractorError text.append("\n\n".join(sstext)) def get_docx_text(self, payload, dirbase): """Return text extracted from part, an Office Open XML email attachment. This is Microsoft's *.docx format, not to be confused with *.odt format which is Open Office XML (or Open Document Format). """ # Thanks to # http://etienned.github.io/posts/extract-text-from-word-docs-simply/ # for which pieces to take from *.docx file. nsb = "{http://schemas.openxmlformats.org/wordprocessingml/2006/main}" xmlzip = zipfile.ZipFile(io.BytesIO(payload)) archive = {} for n in xmlzip.namelist(): with xmlzip.open(n) as f: archive[n] = f.read() text = [] for k, v in archive.items(): if os.path.basename((os.path.splitext(k)[0])) == "document": paragraphs = [] tree = xml.etree.ElementTree.XML(v) for p in tree.iter(nsb + "p"): t = [n.text for n in p.iter(nsb + "t") if n.text] if t: paragraphs.append("".join(t)) text.append("\n\n".join(paragraphs)) return "\n".join(text) def get_odt_text(self, payload, dirbase): """Return text extracted from part, an Open Office XML email attachment. This is *.odt format (or Open Document Format), not to be confused with Microsoft's *.docx format (or Office Open XML). """ nsb = "{urn:oasis:names:tc:opendocument:xmlns:text:1.0}" topelems = {nsb + "p", nsb + "h"} def get_text(element): # Thanks to https://github.com/deanmalmgren/textract # for which pieces to take from *.odt file. text = [] if element.text is not None: text.append(element.text) for child in element: if child.tag == nsb + "tab": text.append("\t") if child.tail is not None: text.append(child.tail) elif child.tag == nsb + "s": text.append(" ") if child.get(nsb + "c") is not None: text.append(" " * (int(child.get(nsb + "c")) - 1)) if child.tail is not None: text.append(child.tail) else: text.append(get_text(child)) if element.tail is not None: text.append(element.tail) return "".join(text) xmlzip = zipfile.ZipFile(io.BytesIO(payload)) archive = {} for n in xmlzip.namelist(): with xmlzip.open(n) as f: archive[n] = f.read() text = [] for k, v in archive.items(): if os.path.basename((os.path.splitext(k)[0])) == "content": for child in xml.etree.ElementTree.fromstring(v).iter(): if child.tag in topelems: text.append(get_text(child)) return "\n".join(text) def _get_pdf_text_using_xpdf(self, filename, payload, text): """Use pdf2text utility (part of xpdf) to extract text.""" a = _decode_header(filename) aout = a + ".txt" if a is None: tkinter.messagebox.showinfo( parent=self._emailstore.parent, title="Extract PDF Data", message="PDF attachment does not have a filename.", ) return "" dirbase = self._emailstore.eventdirectory try: os.mkdir(os.path.join(dirbase, "pdf-attachments")) except: pass op = open(os.path.join(dirbase, "pdf-attachments", a), "wb") try: op.write(payload) finally: op.close() process = subprocess.Popen( ( _PDFTOTEXT, "-nopgbrk", # no way of saying this in pdfminer3k. "-layout", a, aout, ), cwd=os.path.join(dirbase, "pdf-attachments"), ) process.wait() if process.returncode == 0: if os.path.exists(os.path.join(dirbase, "pdf-attachments", aout)): op = open( os.path.join(dirbase, "pdf-attachments", aout), "r", encoding="iso-8859-1", ) try: text.append(op.read()) finally: op.close() shutil.rmtree( os.path.join(dirbase, "pdf-attachments"), ignore_errors=True ) def get_pdf_text_using_pdfminer3k( self, filename, payload, text, char_margin=150, word_margin=1, **k ): """Use pdfminer3k functions to extract text from pdf by line (row). The char_margin and word_margin defaults give a reasonable fit to pdftotext (part of xpdf) behaviour with the '-layout' option. char_margin seems to have no upper limit as far as fitting with the '-layout' option is concerned, but a word_margin value of 1.5 caused words to be concatenated from the PDF document tried. However the word_margin default (0.1) caused 'W's at the start of a word to be treated as a separate word: 'Winchester' becomes 'W inchester'. There must be something else going on because 'Winchester' remained as 'Winchester' in another, less tabular, PDF document. The PDF document has a tabular layout (read each row) which seems to get treated as a column layout (read each column) with the LAParams defaults set out below. **k captures other arguments which override defaults for pdfminer3k's LAParams class. At pdfminer3k-1.3.1 the arguments and their defaults are: line_overlap=0.5 char_margin=2.0 line_margin=0.5 word_margin=0.1 boxes_flow=0.5 detect_vertical=False all_texts=False paragraph_indent=None heuristic_word_margin=False """ # Adapted from pdf2txt.py script included in pdfminer3k-1.3.1. # On some *.pdf inputs the script raises UnicodeEncodeError: # 'ascii' codec can't encode character ... # which does not happen with the adaption below. # A sample ... is '\u2019 in position 0: ordinal not in range(128)'. # Changing 'outfp = io.open(...)' to 'outfp = open(...)' was sufficient # but here it is most convenient to say 'outfp = io.StringIO()'. caching = True rsrcmgr = pdfinterp.PDFResourceManager(caching=caching) laparams = layout.LAParams( char_margin=char_margin, word_margin=word_margin ) for a in laparams.__dict__: if a in k: laparams.__dict__[a] = k[a] outfp = io.StringIO() device = converter.TextConverter(rsrcmgr, outfp, laparams=laparams) try: fp = io.BytesIO(payload) try: pdfinterp.process_pdf( rsrcmgr, device, fp, pagenos=set(), maxpages=0, password="", caching=caching, check_extractable=True, ) finally: fp.close() finally: device.close() text.append(outfp.getvalue()) outfp.close() def get_spreadsheet_text(self, dirbase): """Return (sheetname, text) from spreadsheet attachment part. dirbase is the event directory where a temporary directory is created to hold temporary files for the attachment extracts. """ text = [] for fn in os.listdir(os.path.join(dirbase, "xls-attachments")): sheetname, e = os.path.splitext(fn) if e.lower() != ".csv": continue sheetname = sheetname.lower() csvp = os.path.join(dirbase, "xls-attachments", fn) if not os.path.exists(csvp): continue try: text.append( ( sheetname, self.extract_text_from_csv( self._read_file(csvp), sheet=sheetname ), ) ) except KeyError: raise EmailExtractorError except csv.Error as exc: tkinter.messagebox.showinfo( parent=self._emailstore.parent, title="Extract Text from CSV", message="".join( ( str(exc), "\n\nreported by csv module for sheet\n\n", os.path.splitext(fn)[0], "\n\nwhich is not included in extracted text.", ) ), ) return text def extract_text_from_csv(self, text, sheet=None, filename=None): """Return text if it looks like CSV format, otherwise ''. A csv.Sniffer determines the csv dialect and text is accepted as csv format if the delimeiter seems to be in ',/t;:'. """ text = text.getvalue() dialect = csv.Sniffer().sniff(text) if dialect.delimiter not in ",/t;:": return "" # All the translation in code taken from results.core.emailextractor # at results-2.2 is removed because it is specific to application. # Maybe this method should return the list of rows in case caller will # do more filtering? (and the other extract_* methods) return text def get_csv_text(self, payload, charset): """Return text from part, a csv attachment to an email.""" try: return self.extract_text_from_csv( io.StringIO(self._decode_payload(payload, charset)) ) except KeyError: raise EmailExtractorError def _decode_payload(self, payload, charset): """Return decoded payload; try 'utf-8' then 'iso-8859-1'. iso-8859-1 should not fail but if it does fall back to ascii with replacement of bytes that do not decode. The current locale is not used because the decode must be the same every time it is done. """ for c in charset, "iso-8859-1": try: return self._accept_csv_file_with_nul_characters( payload.decode(encoding=c) ) return t except UnicodeDecodeError: pass else: return self._accept_csv_file_with_nul_characters( payload.decode(encoding="ascii", errors="replace") ) def _accept_csv_file_with_nul_characters(self, csvstring): """Dialogue asking what to do with csv file with NULs""" nulcount = csvstring.count(_NUL) if nulcount: if ( tkinter.messagebox.askquestion( parent=self._emailstore.parent, title="Update Extracted Text", message="".join( ( "A csv file attachment to an email contains NUL ", "characters.\n\nDo you wish to include the ", "significant characters from this file?\n\n", str(len(csvstring)), " characters in file.\n", str(nulcount), " NULs in file.\n", str(len(csvstring) - nulcount), " significant characters in file.", ) ), ) != tkinter.messagebox.YES ): return "" csvstring = csvstring.replace(_NUL, "") return csvstring def _read_file(self, csvpath): """Return StringIO object containing decoded payload. Try 'utf-8' then 'iso-8859-1' and finally 'ascii' with errors replaced. """ for c in "utf-8", "iso-8859-1": csvfile = open(csvpath, encoding=c) try: return io.StringIO(csvfile.read()) except UnicodeDecodeError: pass finally: csvfile.close() else: csvfile = open(csvpath, encoding="ascii", errors="replace") try: return io.StringIO(csvfile.read()) except UnicodeDecodeError: pass finally: csvfile.close() @property def edit_differences(self): """Return list(difflin.ndiff()) of original and edited email text.""" if self._edit_differences is None: try: text = self._read_file(self.difference_file_path).readlines() self._difference_file_exists = True except FileNotFoundError: lines = "\n".join(self.extracted_text).splitlines(1) text = list(difflib.ndiff(lines, lines)) self._difference_file_exists = False self._edit_differences = text return self._edit_differences def write_additional_file(self): """Write difference file, utf-8 encoding, if file does not exist.""" if self._difference_file_exists is False: f = open( self.difference_file_path, mode="w", encoding="utf8", ) try: f.writelines(self.edit_differences) self._difference_file_exists = True finally: f.close() @property def dates(self): """Return tuple(date, delivery_dates).""" return self._date, self._delivery_date def _decode_header(value): """Decode a parameter according to RFC2231 and return the decoded string.""" b, c = email.header.decode_header(value)[0] return b if c is None else b.decode(c)
StarcoderdataPython
1875525
<reponame>siweisun/hw-subterranean #!/usr/bin/python2 # -*- coding: utf-8 -*- import binascii SUBTERRANEAN_SIZE = 257 def bits_to_hex_string(in_bits, big_endian=True): string_state = "" if(len(in_bits)%8 == 0): final_position = len(in_bits) - 8 else: final_position = len(in_bits) - (len(in_bits)%8) for i in range(0, final_position, 8): temp_value = in_bits[i] + 2*in_bits[i+1] + 4*in_bits[i+2] + 8*in_bits[i+3] + 16*in_bits[i+4] + 32*in_bits[i+5] + 64*in_bits[i+6] + 128*in_bits[i+7] if(big_endian): string_state = string_state + "{0:02x}".format(temp_value) else: string_state = "{0:02x}".format(temp_value) + string_state mult_factor = 1 temp_value = 0 for i in range(final_position, len(in_bits)): temp_value += mult_factor*in_bits[i] mult_factor *= 2 if(big_endian): string_state = string_state + "{0:02x}".format(temp_value) else: string_state = "{0:02x}".format(temp_value) + string_state return string_state def bytearray_to_bits(value): value_bits = [((int(value[i//8]) & (1 << (i%8))) >> (i%8)) for i in range(len(value)*8)] return value_bits def bits_to_bytearray(value): value_bytearray = bytearray((len(value)+7)//8) if(len(value) != 0): if(len(value)%8 == 0): final_position = len(value) - 8 else: final_position = len(value) - (len(value)%8) j = 0 for i in range(0, final_position, 8): value_bytearray[j] = value[i] + 2*value[i+1] + 4*value[i+2] + 8*value[i+3] + 16*value[i+4] + 32*value[i+5] + 64*value[i+6] + 128*value[i+7] j += 1 mult_factor = 1 value_bytearray[j] = 0 for i in range(final_position, len(value)): value_bytearray[j] += mult_factor*value[i] mult_factor *= 2 return value_bytearray def subterranean_round(state_bits): # Chi step new_state_bits = [state_bits[i] ^ ((1 ^ state_bits[(i+1) % SUBTERRANEAN_SIZE]) & state_bits[(i+2) % SUBTERRANEAN_SIZE]) for i in range(SUBTERRANEAN_SIZE)] # Iota step new_state_bits[0] ^= 1 # Theta step new_state_bits = [new_state_bits[i] ^ new_state_bits[(i+3) % SUBTERRANEAN_SIZE] ^ new_state_bits[(i+8) % SUBTERRANEAN_SIZE] for i in range(SUBTERRANEAN_SIZE)] # Pi step new_state_bits = [new_state_bits[(12*i) % SUBTERRANEAN_SIZE] for i in range(SUBTERRANEAN_SIZE)] return new_state_bits def subterranean_init(): state = [0 for i in range(SUBTERRANEAN_SIZE)] return state def subterranean_duplex(state, sigma): # s <= R(s) new_state = subterranean_round(state) # sbar <= sbar + sigma index_j = 1; for i in range(len(sigma)): new_state[index_j] ^= sigma[i] index_j = (176*index_j) % SUBTERRANEAN_SIZE # sbar <= sbar + (1||0*) new_state[index_j] ^= 1 return new_state def subterranean_extract(state): value_out = [0 for i in range(32)] # value_out <= extract index_j = 1; for i in range(32): value_out[i] = state[index_j] ^ state[SUBTERRANEAN_SIZE-index_j] index_j = (176*index_j) % SUBTERRANEAN_SIZE return value_out def subterranean_absorb_unkeyed(state, value_in): new_state = [state[i] for i in range(len(state))] i = 0 while(i < len(value_in) - 7): new_state = subterranean_duplex(new_state, value_in[i:i+8]) new_state = subterranean_duplex(new_state, []) i += 8 new_state = subterranean_duplex(new_state, value_in[i:]) new_state = subterranean_duplex(new_state, []) return new_state def subterranean_absorb_keyed(state, value_in): new_state = [state[i] for i in range(len(state))] i = 0 while(i < len(value_in) - 31): new_state = subterranean_duplex(new_state, value_in[i:i+32]) i += 32 new_state = subterranean_duplex(new_state, value_in[i:]) return new_state def subterranean_absorb_encrypt(state, value_in): new_state = [state[i] for i in range(len(state))] # Y <= * value_out = [] i = 0 while(i < len(value_in) - 31): temp_value_state = subterranean_extract(new_state) temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(32)] new_state = subterranean_duplex(new_state, value_in[i:i+32]) value_out = value_out + temp_value_out i += 32 temp_value_state = subterranean_extract(new_state) temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(len(value_in)-i)] new_state = subterranean_duplex(new_state, value_in[i:]) value_out = value_out + temp_value_out return new_state, value_out def subterranean_absorb_decrypt(state, value_in): new_state = [state[i] for i in range(len(state))] # Y <= * value_out = [] i = 0 while(i < len(value_in) - 31): temp_value_state = subterranean_extract(new_state) temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(32)] new_state = subterranean_duplex(new_state, temp_value_out) value_out = value_out + temp_value_out i += 32 temp_value_state = subterranean_extract(new_state) temp_value_out = [value_in[i+j] ^ temp_value_state[j] for j in range(len(value_in)-i)] new_state = subterranean_duplex(new_state, temp_value_out) value_out = value_out + temp_value_out return new_state, value_out def subterranean_blank(state, r_calls): new_state = [state[i] for i in range(len(state))] for i in range(r_calls): new_state = subterranean_duplex(new_state, []) return new_state def subterranean_squeeze(state, size_l): new_state = [state[i] for i in range(len(state))] # Z <= * Z = [] i = 0 while(i < size_l - 32): temp_value_out = subterranean_extract(new_state) new_state = subterranean_duplex(new_state, []) Z = Z + temp_value_out i += 32 temp_value_out = subterranean_extract(new_state) new_state = subterranean_duplex(new_state, []) Z = Z + temp_value_out[:(size_l-i)] return new_state, Z def subterranean_xof_init(): # S <= Subterranean() state = subterranean_init() return state def subterranean_xof_update(state, message): new_state = subterranean_absorb_unkeyed(state, message) return new_state def subterranean_xof_finalize(state, size_l): # S.blank(8) new_state = subterranean_blank(state, 8) # Z <= S.squeeze(l) new_state, z = subterranean_squeeze(new_state, size_l) return new_state, z def subterranean_xof_direct(message, size_l): # S <= Subterranean() state = subterranean_init() # Only one single message to absorb state = subterranean_absorb_unkeyed(state, message) # S.blank(8) state = subterranean_blank(state, 8) # Z <= S.squeeze(l) state, z = subterranean_squeeze(state, size_l) return z def subterranean_deck_init(key): # S <= Subterranean() state = subterranean_init() # S.absorb(K,MAC) state = subterranean_absorb_keyed(state, key) return state def subterranean_deck_update(state, message): new_state = subterranean_absorb_keyed(state, message) return new_state def subterranean_deck_finalize(state, size_l): # S.blank(8) new_state = subterranean_blank(state, 8) # Z <= S.squeeze(l) new_state, z = subterranean_squeeze(new_state, size_l) return new_state, z def subterranean_deck_direct(key, message, size_l): # S <= Subterranean() state = subterranean_init() # S.absorb(K,MAC) state = subterranean_absorb_keyed(key) # Only one single message to absorb state = subterranean_absorb_keyed(state, message) # S.blank(8) state = subterranean_blank(state, 8) # Z <= S.squeeze(l) z = subterranean_squeeze(state, size_l) return z def subterranean_SAE_start(key, nonce): # S <= Subterranean() state = subterranean_init() # S.absorb(K) state = subterranean_absorb_keyed(state, key) # S.absorb(N) state = subterranean_absorb_keyed(state, nonce) # S.blank(8) state = subterranean_blank(state, 8) return state def subterranean_SAE_wrap_encrypt(state, associated_data, text, tag_length): # S.absorb(A,MAC) new_state = subterranean_absorb_keyed(state, associated_data) # Y <= S.absorb(X,op) new_state, new_text = subterranean_absorb_encrypt(new_state, text) # S.blank(8) new_state = subterranean_blank(new_state, 8) # T <= S.squeeze(tau) new_state, new_tag = subterranean_squeeze(new_state, tag_length) return new_state, new_text, new_tag def subterranean_SAE_wrap_decrypt(state, associated_data, text, tag, tag_length): # S.absorb(A,MAC) new_state = subterranean_absorb_keyed(state, associated_data) # Y <= S.absorb(X,op) new_state, new_text = subterranean_absorb_decrypt(new_state, text) # S.blank(8) new_state = subterranean_blank(new_state, 8) # T <= S.squeeze(tau) new_state, new_tag = subterranean_squeeze(new_state, tag_length) # if op = decrypt AND (tag != new_tag) then (Y,T) = (*,*) if(tag != new_tag): new_text = [] new_tag = [] return new_state, new_text, new_tag def subterranean_SAE_direct_encrypt(key, nonce, associated_data, text, tag_length): # S <= Subterranean() state = subterranean_init() #print(bits_to_hex_string(state, False)) # S.absorb(K) state = subterranean_absorb_keyed(state, key) #print(bits_to_hex_string(state, False)) # S.absorb(N) state = subterranean_absorb_keyed(state, nonce) #print(bits_to_hex_string(state, False)) # S.blank(8) state = subterranean_blank(state, 8) #print(bits_to_hex_string(state, False)) # S.absorb(A,MAC) state = subterranean_absorb_keyed(state, associated_data) #print(bits_to_hex_string(state, False)) # Y <= S.absorb(X,op) state, new_text = subterranean_absorb_encrypt(state, text) #print(bits_to_hex_string(state, False)) # S.blank(8) state = subterranean_blank(state, 8) #print(bits_to_hex_string(state, False)) # T <= S.squeeze(tau) state, new_tag = subterranean_squeeze(state, tag_length) #print(bits_to_hex_string(state, False)) return new_text, new_tag def subterranean_SAE_direct_decrypt(key, nonce, associated_data, text, tag, tag_length): # S <= Subterranean() state = subterranean_init() # S.absorb(K) state = subterranean_absorb_keyed(state, key) # S.absorb(N) state = subterranean_absorb_keyed(state, nonce) # S.blank(8) state = subterranean_blank(state, 8) # S.absorb(A,MAC) state = subterranean_absorb_keyed(state, associated_data) # Y <= S.absorb(X,op) state, new_text = subterranean_absorb_decrypt(state, text) # S.blank(8) state = subterranean_blank(state, 8) # T <= S.squeeze(tau) state, new_tag = subterranean_squeeze(state, tag_length) # if op = decrypt AND (tag != new_tag) then (Y,T) = (*,*) if(tag != new_tag): print(tag) print(new_tag) new_text = [] new_tag = [] return new_text, new_tag def crypto_hash(m, out_length_bytes): m_bits = bytearray_to_bits(m) hash_bits = subterranean_xof_direct(m_bits, out_length_bytes*8) hash_out = bits_to_bytearray(hash_bits) return hash_out def crypto_aead_encrypt(m, ad, nsec, npub, k, t_length_bytes): m_bits = bytearray_to_bits(m) ad_bits = bytearray_to_bits(ad) npub_bits = bytearray_to_bits(npub) k_bits = bytearray_to_bits(k) c_bits, t_bits = subterranean_SAE_direct_encrypt(k_bits, npub_bits, ad_bits, m_bits, t_length_bytes*8) joined_c_bits = c_bits + t_bits joined_c = bits_to_bytearray(joined_c_bits) return joined_c def crypto_aead_decrypt(c, ad, nsec, npub, k, t_length_bytes): joined_c_bits = bytearray_to_bits(c) c_bits = joined_c_bits[:len(joined_c_bits)-t_length_bytes*8] t_prime_bits = joined_c_bits[len(joined_c_bits)-t_length_bytes*8:] ad_bits = bytearray_to_bits(ad) npub_bits = bytearray_to_bits(npub) k_bits = bytearray_to_bits(k) m_bits, t_bits = subterranean_SAE_direct_decrypt(k_bits, npub_bits, ad_bits, c_bits, t_prime_bits, t_length_bytes*8) if(t_bits == []): return None m = bits_to_bytearray(m_bits) return m if __name__ == "__main__": k = bytearray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) k = bytearray([0x50, 0x95, 0x3C, 0x61, 0x25, 0x4B, 0xA5, 0xEA, 0x4E, 0xB5, 0xB7, 0x8C, 0xE3, 0x46, 0xC5, 0x46]) npub = bytearray([0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]) npub = bytearray([0xCF, 0x39, 0xCD, 0x54, 0x28, 0x5D, 0x19, 0x5E, 0xB8, 0x07, 0x65, 0xC6, 0x7B, 0x6E, 0x44, 0x77]) t_length_bytes = 16 m = bytearray([]) ad = bytearray([]) joined_c = crypto_aead_encrypt(m, ad, 0, npub, k, t_length_bytes) print(binascii.hexlify(bytearray(joined_c)))
StarcoderdataPython
3364104
from .graclus import graclus_cluster from .grid import grid_cluster from .fps import fps from .nearest import nearest __version__ = '1.2.0' __all__ = [ 'graclus_cluster', 'grid_cluster', 'fps', 'nearest', '__version__', ]
StarcoderdataPython
5047828
<reponame>Zotkin/incremental_learning.pytorch<filename>inclearn/lib/loops/__init__.py from .generators import * from .loops import *
StarcoderdataPython
3403563
from gevent.wsgi import WSGIServer from config import CONTAINER_CONFIG from ContainerService import container_service visualizer_service_server = WSGIServer(('', CONTAINER_CONFIG["port"]), container_service) visualizer_service_server.serve_forever()
StarcoderdataPython
291845
# -*- coding: utf-8 -*- """DNACenterAPI Application Policy API fixtures and tests. Copyright (c) 2019 Cisco and/or its affiliates. Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import click import pytest from json import loads from tests.environment import DNA_CENTER_VERSION pytestmark = pytest.mark.skipif(DNA_CENTER_VERSION != '2.1.1', reason='version does not match') def is_valid_get_applications_count(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_get_applications_count(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'get-applications-count', """--"""]) assert not result.exception assert is_valid_get_applications_count(result) def is_valid_create_application_set(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_create_application_set(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'create-application-set', """--active_validation=True""", """--payload='{"name": "string"}'"""]) assert not result.exception assert is_valid_create_application_set(result) def is_valid_edit_application(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_edit_application(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'edit-application', """--active_validation=True""", """--payload='{"id": "string", "name": "string", "networkApplications": [{"id": "string", "appProtocol": "string", "applicationSubType": "string", "applicationType": "string", "categoryId": "string", "displayName": "string", "engineId": "string", "helpString": "string", "longDescription": "string", "name": "string", "popularity": "string", "rank": "string", "trafficClass": "string", "serverName": "string", "url": "string", "dscp": "string", "ignoreConflict": "string"}], "networkIdentity": [{"id": "string", "displayName": "string", "lowerPort": "string", "ports": "string", "protocol": "string", "upperPort": "string"}], "applicationSet": {"idRef": "string"}}'"""]) assert not result.exception assert is_valid_edit_application(result) def is_valid_delete_application_set(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_delete_application_set(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'delete-application-set', """--id='string'"""]) assert not result.exception assert is_valid_delete_application_set(result) def is_valid_get_applications(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_get_applications(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'get-applications', """--limit=500""", """--name='string'""", """--offset=1"""]) assert not result.exception assert is_valid_get_applications(result) def is_valid_get_application_sets_count(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_get_application_sets_count(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'get-application-sets-count', """--"""]) assert not result.exception assert is_valid_get_application_sets_count(result) def is_valid_get_application_sets(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_get_application_sets(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'get-application-sets', """--limit=500""", """--name='string'""", """--offset=1"""]) assert not result.exception assert is_valid_get_application_sets(result) def is_valid_delete_application(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_delete_application(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'delete-application', """--id='string'"""]) assert not result.exception assert is_valid_delete_application(result) def is_valid_create_application(result): data = result.output.strip() return True if data else False @pytest.mark.application_policy def test_create_application(runner, cli, auth_options): result = runner.invoke(cli, ['-v', '2.1.1', *auth_options, 'application-policy', 'create-application', """--active_validation=True""", """--payload='{"name": "string", "networkApplications": [{"appProtocol": "string", "applicationSubType": "string", "applicationType": "string", "categoryId": "string", "displayName": "string", "engineId": "string", "helpString": "string", "longDescription": "string", "name": "string", "popularity": "string", "rank": "string", "trafficClass": "string", "serverName": "string", "url": "string", "dscp": "string", "ignoreConflict": "string"}], "networkIdentity": [{"displayName": "string", "lowerPort": "string", "ports": "string", "protocol": "string", "upperPort": "string"}], "applicationSet": {"idRef": "string"}}'"""]) assert not result.exception assert is_valid_create_application(result)
StarcoderdataPython
3204171
__all__ = ['Ring', 'CommutativeRing'] from ..basealgebra import Algebra from .interface import RingInterface from ..core import init_module, classes init_module.import_heads() init_module.import_numbers() @init_module def _init(m): from ..arithmetic import mpq Ring.coefftypes = (int, long, mpq) class Ring(Algebra, RingInterface): """ Ring represents algebraic ring (R, +, *) where (R, +) is abelian group, (R,*) is monoid, with distributivity. """ @classmethod def get_function_algebra(cls): return classes.FunctionRing def __str__(self): h, d = self.pair return h.data_to_str_and_precedence(type(self), d)[0] def __pos__(self): return self def __neg__(self): return self.head.neg(type(self), self) def __add__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.add_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.add(cls, self, other) __radd__ = __add__ def __iadd__(self, other): cls = type(self) if type(other) is not cls: other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.inplace_add(cls, self, other) def __sub__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.sub_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.sub(cls, self, other) def __rsub__(self, other): return other + (-self) def __isub__(self, other): cls = type(self) if type(other) is not cls: other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.inplace_add(cls, self, -other) def __mul__(self, other): cls = type(self) tother = type(other) if cls is not tother: if tother in numbertypes_set: return self.head.non_commutative_mul_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.non_commutative_mul(cls, self, other) def __rmul__(self, other): cls = type(self) tother = type(other) if cls is not tother: if tother in numbertypes_set: return self.head.non_commutative_rmul_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return other.head.non_commutative_mul(cls, other, self) def __pow__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.pow_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.pow(cls, self, other) def __rpow__(self, other): cls = type(self) tother = type(other) if cls is not tother: other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return other.head.pow(cls, other, self) def __div__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.non_commutative_div_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self * other**-1 def __rdiv__(self, other): cls = type(self) tother = type(other) if cls is not tother: other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return other * self**-1 __truediv__ = __div__ def expand(self): return self.head.expand(type(self), self) def evalf(self, n=None): return self.head.evalf(type(self), self, n) class CommutativeRing(Ring): def __mul__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.commutative_mul_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.commutative_mul(cls, self, other) __rmul__ = __mul__ def __imul__(self, other): cls = type(self) if type(other) is not cls: other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.inplace_commutative_mul(cls, self, other) def __div__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.commutative_div_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return self.head.commutative_div(cls, self, other) def __rdiv__(self, other): cls = type(self) tother = type(other) if tother is not cls: if tother in numbertypes_set: return self.head.commutative_rdiv_number(cls, self, other) other = cls.convert(other, typeerror=False) if other is NotImplemented: return NotImplemented return other * self**-1 def to(self, target, *args): """ Convert expression to target representation. The following targets are recognized: EXP_COEFF_DICT - convert expression to exponents-coefficient representation, additional arguments are variables. When no arguments are specified, variables will be all symbols and non-power expressions used in the expression. TERM_COEFF_DICT - convert expression to term-coefficient representation. Note that the returned result may have actual head NUMBER, SYMBOL, TERM_COEFF, POW, or BASE_EXP_DICT instead of TERM_COEFF_DICT. """ head, data = self.pair if target is head: return self if target is EXP_COEFF_DICT: return head.to_EXP_COEFF_DICT(type(self), data, self, args or None) if target is TERM_COEFF_DICT: return head.to_TERM_COEFF_DICT(type(self), data, self) raise NotImplementedError('%s.to(target=%r)' % (type(self), target)) def diff(self, symbol, order=1): if order==0: return self cls = type(self) if type(symbol) is cls: assert symbol.head is SYMBOL,`symbol.pair` symbol = symbol.data elif isinstance(symbol, str): pass else: raise TypeError('diff(symbol, order) first argument must be str or %s instance but got %s instance' % (cls.__name__, type(symbol).__name__)) try: cache = {} result = self.head.diff(cls, self.data, self, symbol, order, cache=cache) finally: cache.clear() return result def integrate(self, x): cls = type(self) t = type(x) if t is tuple: x, a, b = x t = type(x) else: a, b = None, None if t is cls: assert x.head is SYMBOL,`x.pair` x = x.data elif t is str: pass else: raise TypeError('integrate(x,..), x must be str or %s instance but got %s instance' % (cls.__name__, type(symbol).__name__)) if a is None: return self.head.integrate_indefinite(cls, self.data, self, x) if type(a) is not cls: a = cls(a) if type(b) is not cls: b = cls(b) return self.head.integrate_definite(cls, self.data, self, x, a, b) classes.Ring = Ring classes.CommutativeRing = CommutativeRing
StarcoderdataPython
305426
from flask import jsonify, make_response from flask import render_template, Blueprint main = Blueprint('main', __name__, template_folder='templates') @main.route('/') def index(): return render_template('main/index.html') @main.route('/json') def json(): return make_response(jsonify(response='Hello world'), 200)
StarcoderdataPython
9712482
# Code modified from the AlexNet implementation of torchvision(https://github.com/pytorch/vision/blob/master/torchvision/models/alexnet.py) import torch import logging import torch.nn as nn from torch.utils.model_zoo import load_url as load_state_dict_from_url from .qa import Quantization _name_translation = { 'features.0': 'features_0.0', 'features.3': 'features_1.1', 'features.6': 'features_2.1', 'features.8': 'features_2.3', 'features.10': 'features_2.5', 'classifier.1': 'classifier_0.1', 'classifier.4': 'classifier_1.1', 'classifier.6': 'classifier_1.3' } class AlexNet(nn.Module): def __init__(self, num_classes=1000, QA_flag=False, QA_bias=None, QA_values=None, QA_beta=None, QA_outlier_gamma=0.001): super(AlexNet, self).__init__() self.ac_quan_values = QA_values self.ac_quan_bias = QA_bias self.ac_beta = QA_beta self.QA_flag = QA_flag self.QA_inited = False self.count = 0 if num_classes == 1000: self.c = [64, 192, 384, 256, 256] self.ks = [11, 5, 3, 3, 3] self.s = [4, 1, 1, 1, 1] self.p = [2, 2, 1, 1, 1] self.pool_ks = 3 else: self.c = [64, 192, 384, 256, 256] self.ks = [3, 3, 3, 3, 3] self.s = [2, 1, 1, 1, 1] self.p = [1, 1, 1, 1, 1] self.pool_ks = 2 self.features_0 = nn.Sequential( nn.Conv2d(3, self.c[0], kernel_size=self.ks[0], stride=self.s[0], padding=self.p[0]), nn.ReLU(inplace=True), ) self.features_1 = nn.Sequential( nn.MaxPool2d(kernel_size=self.pool_ks, stride=2), nn.Conv2d(self.c[0], self.c[1], kernel_size=self.ks[1], stride=self.s[1], padding=self.p[1]), nn.ReLU(inplace=True), ) self.features_2 = nn.Sequential( nn.MaxPool2d(kernel_size=self.pool_ks, stride=2), nn.Conv2d(self.c[1], self.c[2], kernel_size=self.ks[2], stride=self.s[2], padding=self.p[2]), nn.ReLU(inplace=True), nn.Conv2d(self.c[2], self.c[3], kernel_size=self.ks[3], stride=self.s[3], padding=self.p[3]), nn.ReLU(inplace=True), nn.Conv2d(self.c[3], self.c[4], kernel_size=self.ks[4], stride=self.s[4], padding=self.p[4]), nn.ReLU(inplace=True), ) self.maxpool = nn.MaxPool2d(kernel_size=self.pool_ks, stride=2) self.classifier_0 = nn.Sequential( nn.Dropout(p=0.1), nn.Linear(256 * 6 * 6 if num_classes == 1000 else 256 * 2 * 2, 4096), nn.ReLU(inplace=True), ) self.classifier_1 = nn.Sequential( nn.Dropout(p=0.1), nn.Linear(4096, 4096), nn.ReLU(inplace=True), nn.Linear(4096, num_classes), ) if self.QA_flag: self.quan0 = Quantization(quant_values=self.ac_quan_values, outlier_gamma=QA_outlier_gamma) self.quan1 = Quantization(quant_values=self.ac_quan_values, outlier_gamma=QA_outlier_gamma) self.quan2 = Quantization(quant_values=self.ac_quan_values, outlier_gamma=QA_outlier_gamma) self.quan3 = Quantization(quant_values=self.ac_quan_values, outlier_gamma=QA_outlier_gamma) self.count = 4 def forward(self, x, input_ac_T=1): x = self.features_0(x) if self.QA_flag: x = self.quan0(x, input_ac_T) x = self.features_1(x) if self.QA_flag: x = self.quan1(x, input_ac_T) x = self.features_2(x) if self.QA_flag: x = self.quan2(x, input_ac_T) x = self.maxpool(x) x = torch.flatten(x, 1) x = self.classifier_0(x) if self.QA_flag: x = self.quan3(x, input_ac_T) x = self.classifier_1(x) return x def alexnet(pretrained=False, **kwargs): model = AlexNet(**kwargs) if pretrained: if 'num_classes' in kwargs.keys() and kwargs['num_classes'] != 1000: logging.info('Can\'t load pre-trained model because target classes number isn\'t 1000(ImageNet).') return model model_path = 'https://download.pytorch.org/models/alexnet-owt-4df8aa71.pth' state_dict = load_state_dict_from_url(model_path) new_state_dict = dict() # Names should be translated to meet for key, value in state_dict.items(): split_name = key.split('.') module_name = split_name[0] + '.' + split_name[1] if module_name in _name_translation.keys(): new_state_dict[_name_translation[module_name] + key[len(module_name):]] = value else: new_state_dict[key] = value model.load_state_dict(new_state_dict) return model
StarcoderdataPython
6560189
<filename>ultracart/models/order_billing.py # coding: utf-8 """ UltraCart Rest API V2 UltraCart REST API Version 2 OpenAPI spec version: 2.0.0 Contact: <EMAIL> Generated by: https://github.com/swagger-api/swagger-codegen.git """ from pprint import pformat from six import iteritems import re class OrderBilling(object): """ NOTE: This class is auto generated by the swagger code generator program. Do not edit the class manually. """ """ Attributes: swagger_types (dict): The key is attribute name and the value is attribute type. attribute_map (dict): The key is attribute name and the value is json key in definition. """ swagger_types = { 'address1': 'str', 'address2': 'str', 'cc_emails': 'list[str]', 'city': 'str', 'company': 'str', 'country_code': 'str', 'day_phone': 'str', 'email': 'str', 'evening_phone': 'str', 'first_name': 'str', 'last_name': 'str', 'postal_code': 'str', 'state_region': 'str', 'title': 'str' } attribute_map = { 'address1': 'address1', 'address2': 'address2', 'cc_emails': 'cc_emails', 'city': 'city', 'company': 'company', 'country_code': 'country_code', 'day_phone': 'day_phone', 'email': 'email', 'evening_phone': 'evening_phone', 'first_name': 'first_name', 'last_name': 'last_name', 'postal_code': 'postal_code', 'state_region': 'state_region', 'title': 'title' } def __init__(self, address1=None, address2=None, cc_emails=None, city=None, company=None, country_code=None, day_phone=None, email=None, evening_phone=None, first_name=None, last_name=None, postal_code=None, state_region=None, title=None): """ OrderBilling - a model defined in Swagger """ self._address1 = None self._address2 = None self._cc_emails = None self._city = None self._company = None self._country_code = None self._day_phone = None self._email = None self._evening_phone = None self._first_name = None self._last_name = None self._postal_code = None self._state_region = None self._title = None self.discriminator = None if address1 is not None: self.address1 = address1 if address2 is not None: self.address2 = address2 if cc_emails is not None: self.cc_emails = cc_emails if city is not None: self.city = city if company is not None: self.company = company if country_code is not None: self.country_code = country_code if day_phone is not None: self.day_phone = day_phone if email is not None: self.email = email if evening_phone is not None: self.evening_phone = evening_phone if first_name is not None: self.first_name = first_name if last_name is not None: self.last_name = last_name if postal_code is not None: self.postal_code = postal_code if state_region is not None: self.state_region = state_region if title is not None: self.title = title @property def address1(self): """ Gets the address1 of this OrderBilling. Address line 1 :return: The address1 of this OrderBilling. :rtype: str """ return self._address1 @address1.setter def address1(self, address1): """ Sets the address1 of this OrderBilling. Address line 1 :param address1: The address1 of this OrderBilling. :type: str """ if address1 is not None and len(address1) > 50: raise ValueError("Invalid value for `address1`, length must be less than or equal to `50`") self._address1 = address1 @property def address2(self): """ Gets the address2 of this OrderBilling. Address line 2 :return: The address2 of this OrderBilling. :rtype: str """ return self._address2 @address2.setter def address2(self, address2): """ Sets the address2 of this OrderBilling. Address line 2 :param address2: The address2 of this OrderBilling. :type: str """ if address2 is not None and len(address2) > 50: raise ValueError("Invalid value for `address2`, length must be less than or equal to `50`") self._address2 = address2 @property def cc_emails(self): """ Gets the cc_emails of this OrderBilling. CC emails. Multiple allowed, but total length of all emails can not exceed 100 characters. :return: The cc_emails of this OrderBilling. :rtype: list[str] """ return self._cc_emails @cc_emails.setter def cc_emails(self, cc_emails): """ Sets the cc_emails of this OrderBilling. CC emails. Multiple allowed, but total length of all emails can not exceed 100 characters. :param cc_emails: The cc_emails of this OrderBilling. :type: list[str] """ self._cc_emails = cc_emails @property def city(self): """ Gets the city of this OrderBilling. City :return: The city of this OrderBilling. :rtype: str """ return self._city @city.setter def city(self, city): """ Sets the city of this OrderBilling. City :param city: The city of this OrderBilling. :type: str """ if city is not None and len(city) > 32: raise ValueError("Invalid value for `city`, length must be less than or equal to `32`") self._city = city @property def company(self): """ Gets the company of this OrderBilling. Company :return: The company of this OrderBilling. :rtype: str """ return self._company @company.setter def company(self, company): """ Sets the company of this OrderBilling. Company :param company: The company of this OrderBilling. :type: str """ if company is not None and len(company) > 50: raise ValueError("Invalid value for `company`, length must be less than or equal to `50`") self._company = company @property def country_code(self): """ Gets the country_code of this OrderBilling. ISO-3166 two letter country code :return: The country_code of this OrderBilling. :rtype: str """ return self._country_code @country_code.setter def country_code(self, country_code): """ Sets the country_code of this OrderBilling. ISO-3166 two letter country code :param country_code: The country_code of this OrderBilling. :type: str """ if country_code is not None and len(country_code) > 2: raise ValueError("Invalid value for `country_code`, length must be less than or equal to `2`") self._country_code = country_code @property def day_phone(self): """ Gets the day_phone of this OrderBilling. Day time phone :return: The day_phone of this OrderBilling. :rtype: str """ return self._day_phone @day_phone.setter def day_phone(self, day_phone): """ Sets the day_phone of this OrderBilling. Day time phone :param day_phone: The day_phone of this OrderBilling. :type: str """ if day_phone is not None and len(day_phone) > 25: raise ValueError("Invalid value for `day_phone`, length must be less than or equal to `25`") self._day_phone = day_phone @property def email(self): """ Gets the email of this OrderBilling. Email :return: The email of this OrderBilling. :rtype: str """ return self._email @email.setter def email(self, email): """ Sets the email of this OrderBilling. Email :param email: The email of this OrderBilling. :type: str """ if email is not None and len(email) > 100: raise ValueError("Invalid value for `email`, length must be less than or equal to `100`") self._email = email @property def evening_phone(self): """ Gets the evening_phone of this OrderBilling. Evening phone :return: The evening_phone of this OrderBilling. :rtype: str """ return self._evening_phone @evening_phone.setter def evening_phone(self, evening_phone): """ Sets the evening_phone of this OrderBilling. Evening phone :param evening_phone: The evening_phone of this OrderBilling. :type: str """ if evening_phone is not None and len(evening_phone) > 25: raise ValueError("Invalid value for `evening_phone`, length must be less than or equal to `25`") self._evening_phone = evening_phone @property def first_name(self): """ Gets the first_name of this OrderBilling. First name :return: The first_name of this OrderBilling. :rtype: str """ return self._first_name @first_name.setter def first_name(self, first_name): """ Sets the first_name of this OrderBilling. First name :param first_name: The first_name of this OrderBilling. :type: str """ if first_name is not None and len(first_name) > 30: raise ValueError("Invalid value for `first_name`, length must be less than or equal to `30`") self._first_name = first_name @property def last_name(self): """ Gets the last_name of this OrderBilling. Last name :return: The last_name of this OrderBilling. :rtype: str """ return self._last_name @last_name.setter def last_name(self, last_name): """ Sets the last_name of this OrderBilling. Last name :param last_name: The last_name of this OrderBilling. :type: str """ if last_name is not None and len(last_name) > 30: raise ValueError("Invalid value for `last_name`, length must be less than or equal to `30`") self._last_name = last_name @property def postal_code(self): """ Gets the postal_code of this OrderBilling. Postal code :return: The postal_code of this OrderBilling. :rtype: str """ return self._postal_code @postal_code.setter def postal_code(self, postal_code): """ Sets the postal_code of this OrderBilling. Postal code :param postal_code: The postal_code of this OrderBilling. :type: str """ if postal_code is not None and len(postal_code) > 20: raise ValueError("Invalid value for `postal_code`, length must be less than or equal to `20`") self._postal_code = postal_code @property def state_region(self): """ Gets the state_region of this OrderBilling. State for United States otherwise region or province for other countries :return: The state_region of this OrderBilling. :rtype: str """ return self._state_region @state_region.setter def state_region(self, state_region): """ Sets the state_region of this OrderBilling. State for United States otherwise region or province for other countries :param state_region: The state_region of this OrderBilling. :type: str """ if state_region is not None and len(state_region) > 32: raise ValueError("Invalid value for `state_region`, length must be less than or equal to `32`") self._state_region = state_region @property def title(self): """ Gets the title of this OrderBilling. Title :return: The title of this OrderBilling. :rtype: str """ return self._title @title.setter def title(self, title): """ Sets the title of this OrderBilling. Title :param title: The title of this OrderBilling. :type: str """ if title is not None and len(title) > 50: raise ValueError("Invalid value for `title`, length must be less than or equal to `50`") self._title = title def to_dict(self): """ Returns the model properties as a dict """ result = {} for attr, _ in iteritems(self.swagger_types): value = getattr(self, attr) if isinstance(value, list): result[attr] = list(map( lambda x: x.to_dict() if hasattr(x, "to_dict") else x, value )) elif hasattr(value, "to_dict"): result[attr] = value.to_dict() elif isinstance(value, dict): result[attr] = dict(map( lambda item: (item[0], item[1].to_dict()) if hasattr(item[1], "to_dict") else item, value.items() )) else: result[attr] = value return result def to_str(self): """ Returns the string representation of the model """ return pformat(self.to_dict()) def __repr__(self): """ For `print` and `pprint` """ return self.to_str() def __eq__(self, other): """ Returns true if both objects are equal """ if not isinstance(other, OrderBilling): return False return self.__dict__ == other.__dict__ def __ne__(self, other): """ Returns true if both objects are not equal """ return not self == other
StarcoderdataPython
140363
import collections import dominoes import unittest class TestSeries(unittest.TestCase): def test_init(self): s1 = dominoes.Series() self.assertEqual(len(s1.games), 1) self.assertEqual(len(s1.games[0].board), 1) self.assertEqual(s1.games[0].board.left_end(), 6) self.assertEqual(s1.games[0].board.right_end(), 6) hand_lengths1 = collections.Counter(len(h) for h in s1.games[0].hands) self.assertEqual(hand_lengths1[6], 1) self.assertEqual(hand_lengths1[7], 3) self.assertTrue(s1.games[0].turn in range(4)) self.assertTrue(bool(s1.games[0].valid_moves)) self.assertIsNone(s1.games[0].result) self.assertEqual(s1.scores, [0, 0]) self.assertEqual(s1.target_score, 200) s2 = dominoes.Series(target_score=100) self.assertEqual(len(s2.games), 1) self.assertEqual(len(s2.games[0].board), 1) self.assertEqual(s2.games[0].board.left_end(), 6) self.assertEqual(s2.games[0].board.right_end(), 6) hand_lengths2 = collections.Counter(len(h) for h in s2.games[0].hands) self.assertEqual(hand_lengths2[6], 1) self.assertEqual(hand_lengths2[7], 3) self.assertTrue(s2.games[0].turn in range(4)) self.assertTrue(bool(s2.games[0].valid_moves)) self.assertIsNone(s2.games[0].result) self.assertEqual(s2.scores, [0, 0]) self.assertEqual(s2.target_score, 100) d = dominoes.Domino(1, 2) s3 = dominoes.Series(starting_domino=d) self.assertEqual(len(s3.games), 1) self.assertEqual(len(s3.games[0].board), 1) self.assertEqual(s3.games[0].board.left_end(), 1) self.assertEqual(s3.games[0].board.right_end(), 2) hand_lengths3 = collections.Counter(len(h) for h in s3.games[0].hands) self.assertEqual(hand_lengths3[6], 1) self.assertEqual(hand_lengths3[7], 3) self.assertTrue(s3.games[0].turn in range(4)) self.assertTrue(bool(s3.games[0].valid_moves)) self.assertIsNone(s3.games[0].result) self.assertEqual(s3.scores, [0, 0]) self.assertEqual(s3.target_score, 200) def test_is_over(self): s = dominoes.Series() self.assertFalse(s.is_over()) s.scores = [199, 199] self.assertFalse(s.is_over()) s.scores = [200, 199] self.assertTrue(s.is_over()) s.scores = [199, 200] self.assertTrue(s.is_over()) s.scores = [200, 200] self.assertTrue(s.is_over()) s.scores = [201, 201] self.assertTrue(s.is_over()) def test_next_game(self): s = dominoes.Series() str1 = str(s) repr1 = repr(s) self.assertRaises(dominoes.GameInProgressException, s.next_game) self.assertEqual(len(s.games), 1) self.assertEqual(len(s.games[0].board), 1) self.assertTrue(bool(s.games[0].valid_moves)) self.assertIsNone(s.games[0].result) self.assertEqual(s.scores, [0, 0]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str1) self.assertTrue('Team 0 has 0 points.' in str1) self.assertTrue('Team 1 has 0 points.' in str1) self.assertEqual(str1, repr1) scores = [200, 200] s.scores = scores str2 = str(s) repr2 = repr(s) self.assertRaises(dominoes.SeriesOverException, s.next_game) self.assertEqual(len(s.games), 1) self.assertEqual(len(s.games[0].board), 1) self.assertTrue(bool(s.games[0].valid_moves)) self.assertIsNone(s.games[0].result) self.assertEqual(s.scores, scores) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str2) self.assertTrue('Team 0 has 200 points.' in str2) self.assertTrue('Team 1 has 200 points.' in str2) self.assertEqual(str2, repr2) s.scores = [0, 0] s.games[0].result = dominoes.Result(0, True, 50) g1 = s.next_game() str3 = str(s) repr3 = repr(s) self.assertEqual(len(s.games), 2) self.assertEqual(len(g1.board), 0) self.assertEqual(g1.turn, 0) self.assertTrue(bool(g1.valid_moves)) self.assertIsNone(g1.result) self.assertEqual(s.scores, [50, 0]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str3) self.assertTrue('Team 0 has 50 points.' in str3) self.assertTrue('Team 1 has 0 points.' in str3) self.assertEqual(str3, repr3) s.games[1].result = dominoes.Result(1, False, 50) g2 = s.next_game() str4 = str(s) repr4 = repr(s) self.assertEqual(len(s.games), 3) self.assertEqual(len(g2.board), 0) self.assertEqual(g2.turn, 2) self.assertTrue(bool(g2.valid_moves)) self.assertIsNone(g2.result) self.assertEqual(s.scores, [100, 0]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str4) self.assertTrue('Team 0 has 100 points.' in str4) self.assertTrue('Team 1 has 0 points.' in str4) self.assertEqual(str4, repr4) s.games[2].result = dominoes.Result(2, True, 50) g3 = s.next_game() str5 = str(s) repr5 = repr(s) self.assertEqual(len(s.games), 4) self.assertEqual(len(g3.board), 0) self.assertEqual(g3.turn, 2) self.assertTrue(bool(g3.valid_moves)) self.assertIsNone(g3.result) self.assertEqual(s.scores, [150, 0]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str5) self.assertTrue('Team 0 has 150 points.' in str5) self.assertTrue('Team 1 has 0 points.' in str5) self.assertEqual(str5, repr5) s.games[3].result = dominoes.Result(3, False, -50) g4 = s.next_game() str6 = str(s) repr6 = repr(s) self.assertEqual(len(s.games), 5) self.assertEqual(len(g4.board), 0) self.assertEqual(g4.turn, 3) self.assertTrue(bool(g4.valid_moves)) self.assertIsNone(g4.result) self.assertEqual(s.scores, [150, 50]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str6) self.assertTrue('Team 0 has 150 points.' in str6) self.assertTrue('Team 1 has 50 points.' in str6) self.assertEqual(str6, repr6) s.games[4].result = dominoes.Result(2, False, 0) g5 = s.next_game() str7 = str(s) repr7 = repr(s) self.assertEqual(len(s.games), 6) self.assertEqual(len(g5.board), 0) self.assertEqual(g5.turn, 3) self.assertTrue(bool(g5.valid_moves)) self.assertIsNone(g5.result) self.assertEqual(s.scores, [150, 50]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str7) self.assertTrue('Team 0 has 150 points.' in str7) self.assertTrue('Team 1 has 50 points.' in str7) self.assertEqual(str7, repr7) s.games[5].result = dominoes.Result(0, True, 100) self.assertIsNone(s.next_game()) str8 = str(s) repr8 = repr(s) self.assertEqual(len(s.games), 6) self.assertEqual(s.scores, [250, 50]) self.assertEqual(s.target_score, 200) self.assertTrue('Series to 200 points:' in str8) self.assertTrue('Team 0 has 250 points.' in str8) self.assertTrue('Team 1 has 50 points.' in str8) self.assertEqual(str8, repr8) if __name__ == '__main__': unittest.main()
StarcoderdataPython
62958
<filename>tests/__init__.py __author__ = 'Elad'
StarcoderdataPython
3302975
<reponame>Hoter11/WebProject # -*- coding: utf-8 -*- # Generated by Django 1.10.6 on 2017-04-19 10:25 from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blog', '0003_entry_text'), ] operations = [ migrations.AddField( model_name='entry', name='identifier', field=models.CharField(default=None, max_length=4), preserve_default=False, ), ]
StarcoderdataPython
4939423
<gh_stars>1-10 import smtplib from email.mime.multipart import MIMEMultipart from email.mime.text import MIMEText import json import getpass """ We start an SMTP server with gmail (the 587 is a port number). smtp_mailer.ehlo() sends a command to the server to identify ourselves. The smtplib documentation says we don't need to call the ehlo() function explicitly, but we'll do it anyway for reference and just to make sure we understand kind of what happens in the smtplib module. We then use smtp_mailer.starttls() to start the TLS protocol, to allow the emails to be sent securely. """ smtp_mailer = smtplib.SMTP("smtp.gmail.com", 587) smtp_mailer.ehlo() smtp_mailer.starttls() """ Load and use details.json to prefill some fields in the email message that is eventually sent, makes it easier for testing. """ with open("../supporting_files/details.json") as details: json_data = json.loads(details.read()) user_email = json_data["MyEmail"] # Always asks for user password instead of storing, for security user_password = getpass.getpass(f"Enter the password for {user_email} (The password will not show " "up for security purposes): ") smtp_mailer.login(user_email, user_password) print("Login successful") message = MIMEMultipart() message["From"] = user_email message["To"] = json_data["To"] message["Subject"] = json_data["Subject"] email_body = json_data["Body"] message.attach(MIMEText(email_body, "plain")) smtp_mailer.send_message(message) smtp_mailer.quit()
StarcoderdataPython
12804274
''' This is based on cnn35_64. This is after the first pilot. Changes: -don't filter out # in the tokenizer, tokenize both together. or save tokenizer https://stackoverflow.com/questions/45735070/keras-text-preprocessing-saving-tokenizer-object-to-file-for-scoring -use 'number' w2v as representation for any digit -shuffling problem should be check before advancing: plot random selection of conv1 layers. theys should all be 14 or 15. -tune hyperparameters. ''' from sklearn.linear_model import LogisticRegression import time import datetime import numpy as np import pandas as pd from keras.preprocessing.text import Tokenizer import pickle from sklearn.svm import LinearSVC from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer, TfidfVectorizer from sklearn.pipeline import Pipeline from sklearn.metrics import classification_report, confusion_matrix import matplotlib.pyplot as plt plt.switch_backend('agg') from keras.utils import np_utils from numpy.random import seed seed(123) import os import data_helpers import config import matplotlib.pyplot as plt plt.switch_backend('agg') # Parameters # ===================================================================== categories = config.categories verbose = config.verbose save_checkpoints = config.save_checkpoints plot_RSA = config.plot_RSA if config.local_or_cluster: categories = categories[:3] epochs=1 verbose=1 else: epochs = config.epochs # it will probably need more. # epochs = 6 # save_checkpoints=False print('running for '+str(epochs)+' epochs') if config.local_or_cluster: # directory_name = 'svm_gs0_test' directory_name = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S") file_name = 'logreg_tfidf' else: # directory_name = 'svm_gs0_test' directory_name = datetime.datetime.now().strftime("%y-%m-%d-%H-%M-%S") file_name = os.path.basename(__file__) print('running '+directory_name+' '+file_name) categories = ['University','Decoration','MilitaryConflict','MilitaryPerson','Politician', 'Monarch'] Xtrain, Ytrain = data_helpers.load_all_data(config.train_path,config.validation_path, categories, shuffle=False) # I changed this so it combines train and test Xtest, Ytest = data_helpers.load_data(config.test_path, categories) # Xtest_raw, Ytest_raw = data_helpers.load_data_raw(config.test_path, categories) # X, y= data_helpers.load_whole_dataset(config.train_path, config.validation_path, config.test_path,categories,load_all=True, shuffle=False,one_hot=False) # Remove Stopwords # with open('stopwords-it2.txt', 'r') as f: # sw = f.readlines() # # italian_stop_words = [n.replace('\n','') for n in sw] # # Xtrain2 = [] # for sentence in Xtrain: # sentence_no_stopwords = ' '.join([word for word in sentence.split() if word not in italian_stop_words]) # Xtrain2.append(sentence_no_stopwords) # # Xtest2 = [] # for sentence in Xtest: # sentence_no_stopwords = ' '.join([word for word in sentence.split() if word not in italian_stop_words]) # Xtest2.append(sentence_no_stopwords) # # # # ## Encode Ytrain # # # ===================================================================================== # # one hot encode and integer encode # # Ytrain_encoded = np_utils.to_categorical(Ytrain) # # Ytrain_integer = np.array(Ytrain) # # Ytest_encoded = np_utils.to_categorical(Ytest) # # Ytest_integer = np.array(Ytest) # # # # # Zero pad (encode) Xtrain and Xtest # # # ================================================================================================== # tokenizer = Tokenizer(filters='') #depending on word embedding, set lower=False. # tokenizer.fit_on_texts(np.append(np.array(Xtrain2), np.array(Xtest2))) # sequences = tokenizer.texts_to_sequences(Xtrain2) # sequences2 = tokenizer.texts_to_sequences(Xtest2) # # sequences3 = tokenizer.texts_to_sequences(X) # word_index = tokenizer.word_index # print('Found %s unique tokens.' % len(word_index)) # # # Xtrain_encoded = pad_sequences(sequences, maxlen=sequence_length, padding='post') # # Xtest_encoded = pad_sequences(sequences2, maxlen=sequence_length, padding='post') # # X_encoded = pad_sequences(sequences3, maxlen=sequence_length, padding='post') # # def load_obj(path_and_filename): # with open(path_and_filename, 'rb') as f: # return pickle.load(f) # # embeddings_index = load_obj(config.word_embeddings_path+'/gensim_it_w2v.pkl') #dictionary embeddings_index.get('è') returns word embedding # # # # number = np.random.normal(0., 0.23, 300) # # embedding_dim = 300 # # embedding_matrix = np.zeros((len(word_index) + 1, embedding_dim)) # this will be all embeddings for my vocabulary # # for word, i in word_index.items(): # embedding_vector = embeddings_index.get(word) # if embedding_vector is not None: # # words not found in embedding index will be all-zeros. # embedding_matrix[i] = embedding_vector # elif "#" in word: # embedding_matrix[i] = number # Create average sentence vectors # Xtrain = [] # for sequence in sequences: # all_word_embeddings = [] # for word_id in sequence: # embedding = embedding_matrix[word_id] # if np.sum(embedding)!=0.0: # all_word_embeddings.append(embedding) # mean_sentence_vector = list(pd.DataFrame(all_word_embeddings).mean()) # if len(mean_sentence_vector)==0: # mean_sentence_vector = list(np.random.normal(0., 0.23, 300)) # Xtrain.append(mean_sentence_vector) # # Xtest = [] # for sequence in sequences2: # all_word_embeddings = [] # for word_id in sequence: # embedding = embedding_matrix[word_id] # all_word_embeddings.append(embedding) # mean_sentence_vector = list(pd.DataFrame(all_word_embeddings).mean()) # if len(mean_sentence_vector)==0: # mean_sentence_vector = list(np.random.normal(0., 0.23, 300)) # Xtest.append(mean_sentence_vector) path_to_dir = os.path.join(config.save_to, directory_name + '/') try: os.makedirs(path_to_dir) except: pass print('directory_name: '+directory_name) print('path_to_dir: '+path_to_dir) # Xtrain = np.array(Xtrain) # Xtest = np.array(Xtest) # # np.save(config.word_embeddings_path+'Xtrain_w2v_mean', Xtrain) # np.save(config.word_embeddings_path+'Xtest_w2v_mean', Xtest) # Model ## ====================================================================================================== print("Creating Model...") with open(path_to_dir + 'log.txt', 'a+') as f: f.write(file_name + '\n') f.write(directory_name+ '\n\n') # Cs = [0.01, 0.1, 1, 10] # kernels = ['linear', 'rbf'] # kernels = ['linear'] # max_features_all = [100000,None] # stop_words = [italian_stop_words, None] # Final # Top1 and Top5 accuracy on test set. # clf = LinearSVC(verbose=verbose) if config.local_or_cluster: Xtrain_toy = [] for i in range(0,len(Xtrain), 100): Xtrain_toy.append(Xtrain[i]) Ytrain_toy = [] for i in range(0, len(Ytrain), 100): Ytrain_toy.append(Ytrain[i]) Xtest_toy = [] for i in range(0,len(Xtest), 100): Xtest_toy.append(Xtest[i]) Ytest_toy = [] for i in range(0, len(Ytest), 100): Ytest_toy.append(Ytest[i]) Xtrain = Xtrain_toy[:] Ytrain = Ytrain_toy[:] Xtest = Xtest_toy[:] Ytest = Ytest_toy[:] start = time.time() pipeline = Pipeline([('vect', CountVectorizer(ngram_range=(1, 3), min_df=2, max_features=None)), ('tfidf', TfidfTransformer()), ('clf', LogisticRegression(verbose=verbose, n_jobs=-1)), ]) pipeline.fit(Xtrain, Ytrain) probs = pipeline.predict_proba(Xtest) best_1 = np.argsort(probs, axis=1) best_1 = [n[-1] for n in best_1] top1_accuracy = np.round(np.sum(np.array(Ytest)==np.array(best_1))/len(Ytest),4) best_2 = np.argsort(probs, axis=1) best_2 = [n[-2:] for n in best_2] top2_acc = [] for i in range(len(best_2)): if Ytest[i] in best_2[i]: top2_acc.append(1) else: top2_acc.append(0) top2_accuracy = np.round(np.sum(top2_acc)/len(Ytest),4) best_3 = np.argsort(probs, axis=1) best_3 = [n[-3:] for n in best_3] top3_acc = [] for i in range(len(best_3)): if Ytest[i] in best_3[i]: top3_acc.append(1) else: top3_acc.append(0) top3_accuracy = np.round(np.sum(top3_acc)/len(Ytest),4) # # best_5 = np.argsort(probs, axis=1) # best_5 = [n[-5:] for n in best_5] # top5_acc = [] # for i in range(len(best_5)): # if Ytest[i] in best_5[i]: # top5_acc.append(1) # else: # top5_acc.append(0) # top5_accuracy = np.round(np.sum(top5_acc)/len(Ytest),4) # Ypredict_encoded = np_utils.to_categorical(Ypredict.argmax(axis=-1)) # Ypredict_integer = Ypredict.argmax(axis=-1) # Save outputs np.save(path_to_dir + 'Ypredict_integer', best_1) np.save(path_to_dir + 'accuracy_integer_top3', top3_acc) # np.save(path_to_dir + 'accuracy_integer_top5', top5_acc) import plot_outputs clas_rep = classification_report(Ytest, best_1,target_names=categories) df_clas_rep, df_clas_rep_latex = plot_outputs.classification_report_df(clas_rep) cm = confusion_matrix(y_true=Ytest, y_pred=best_1,sample_weight=None) # TODO:change to test set for final model pd.DataFrame(cm, columns=categories, index=categories).to_csv(path_to_dir+'cm.csv') with open(path_to_dir + 'log.txt', 'a+') as f: end = time.time() f.write(str(i)+'=================\n') f.write('time: ' + str(np.round(end - start, 2))+'\n') f.write('Top-1 Accuracy: ' +str(top1_accuracy)+'\n') f.write('Top-2 Accuracy: ' + str(top2_accuracy) + '\n') f.write('Top-3 Accuracy: ' + str(top3_accuracy) + '\n') # f.write('Top-5 Accuracy: ' + str(top5_accuracy) + '\n') f.write(str(pipeline.get_params())+'\n\n') f.write('Classification Report: \n'+df_clas_rep_latex) # # # # CV # # ==================================================================== # from sklearn.model_selection import cross_val_score # # start = time.time() # scores = cross_val_score(pipeline, Xtrain, Ytrain, cv=5, n_jobs=-1) # # with open(path_to_dir + 'log.txt', 'a+') as f: # end = time.time() # f.write(str(i)+'=================\n') # f.write('time: ' + str(np.round(end - start, 2))+'\n') # f.write(str(scores)+'\n') # f.write('The mean score and the 95% confidence interval of the score estimate are hence given by:'+ '\n') # f.write('Accuracy: '+str(np.round(scores.mean(),4))+' +/- '+str((scores.std() * 2).round(2))+ '\n') # f.write('SD: '+str(scores.std())+' variance: '+str(scores.var())+ '\n') # TIFIDF # ================================================================================================ # def top_tfidf_feats(row, features, top_n=20): # ''' Get top n tfidf values in row and return them with their corresponding feature names.''' # topn_ids = np.argsort(row)[::-1][:top_n] # top_feats = [(features[i], row[i]) for i in topn_ids] # df = pd.DataFrame(top_feats) # df.columns = ['feature', 'tfidf'] # return df # # # def top_feats_in_doc(Xtr, features, row_id, top_n=25): # # ''' Top tfidf features in specific document (matrix row) ''' # # row = np.squeeze(Xtr[row_id].toarray()) # # return top_tfidf_feats(row, features, top_n) # # # def top_mean_feats(Xtr, features, grp_ids=None, min_tfidf=0.1, top_n=25): # ''' Return the top n features that on average are most important amongst documents in rows # indentified by indices in grp_ids. ''' # if grp_ids: # D = Xtr[grp_ids].toarray() # else: # D = Xtr.toarray() # D[D < min_tfidf] = 0 # tfidf_means = np.mean(D, axis=0) # return top_tfidf_feats(tfidf_means, features, top_n) # # def top_feats_by_class(Xtr, y, features, min_tfidf=0.1, top_n=25): # ''' Return a list of dfs, where each df holds top_n features and their mean tfidf value # calculated across documents with the same class label. ''' # dfs = [] # labels = np.unique(y) # for label in labels: # ids = np.where(y==label) # feats_df = top_mean_feats(Xtr, features, ids, min_tfidf=min_tfidf, top_n=top_n) # feats_df.label = label # dfs.append(feats_df) # return dfs # # # # def plot_tfidf_classfeats_h(dfs): # ''' Plot the data frames returned by the function plot_tfidf_classfeats(). ''' # fig = plt.figure(figsize=(12, 9), facecolor="w") # x = np.arange(len(dfs[0])) # for i, df in enumerate(dfs): # ax = fig.add_subplot(1, len(dfs), i+1) # ax.spines["top"].set_visible(False) # ax.spines["right"].set_visible(False) # ax.set_frame_on(False) # ax.get_xaxis().tick_bottom() # ax.get_yaxis().tick_left() # ax.set_xlabel("Mean Tf-Idf Score", labelpad=16, fontsize=14) # ax.set_title("label = " + str(df.label), fontsize=16) # ax.ticklabel_format(axis='x', style='sci', scilimits=(-2,2)) # ax.barh(x, df.tfidf, align='center', color='#3F5D7D') # ax.set_yticks(x) # ax.set_ylim([-1, x[-1]+1]) # yticks = ax.set_yticklabels(df.feature) # plt.subplots_adjust(bottom=0.09, right=0.97, left=0.15, top=0.95, wspace=0.52) # plt.show() # # # tfidf = TfidfVectorizer(min_df=2, max_features=None, ngram_range=(1, 3)) # # Xtr = tfidf.fit_transform(np.array(Xtrain)) # feature_array = np.array(tfidf.get_feature_names()) # response = tfidf.transform(['it can fly']) # tfidf_sorting = np.argsort(np.array(response)).flatten()[::-1] # n = 3 # top_n = feature_array[tfidf_sorting][:n] # # # # # # vec = vec_pipe.named_steps['vec'] # features = vec.get_feature_names() # # dfs = top_feats_by_class(Xtr, Ytrain, features, min_tfidf=0.1, top_n=20) # plot_tfidf_classfeats_h(dfs) # Gridsearch # ============= # # Cs = [1] # # kernels = ['linear', 'rbf'] # kernels = ['linear'] # max_features_all = [None] # # stop_words = [None] # # # l=[] # for kernel in kernels: # for C in Cs: # for max_features in max_features_all: # l.append([kernel, C, max_features]) # # # gs_numb = int(sys.argv[1]) # i = int(sys.argv[1]) # print(i) # for parameters in l[gs_numb:gs_numb+6]: # # drop, batch_size, optimizer, activation2 = parameters # # kernel, C, max_features = parameters # # if kernel == 'linear': # # pipeline = Pipeline([('vect', CountVectorizer(ngram_range=(1, 3), min_df=2, max_features=max_features)), # # ('tfidf', TfidfTransformer()), # # ('clf', LogisticRegression(C=C, verbose=verbose, n_jobs=-1)), ]) # # else: # # pipeline = Pipeline([('vect', CountVectorizer(ngram_range=(1, 3), min_df=2, max_features=max_features)), # # ('tfidf', TfidfTransformer()), # # ('clf', SVC(C=C, kernel=kernel, verbose=verbose)), ]) # clf = LogisticRegression(C=C, verbose=verbose, n_jobs=-1) # start = time.time() # clf.fit(Xtrain, Ytrain) # accuracy = clf.score(Xtest, Ytest) # with open(path_to_dir + 'log.txt', 'a+') as f: # end = time.time() # f.write(str(i)+'=================\n') # f.write('time: ' + str(np.round(end - start, 2))+'\n') # f.write('Parameters: '+str(parameters)+'\n') # f.write('Loss and Accuracy: ' +str(accuracy)+'\n') # f.write(str(np.round(accuracy,4)) + '\n\n') # i += 1 # # if save_checkpoints: # filepath = path_to_dir+"weights-improvement-{epoch:02d}-{val_acc:.2f}.hdf5" #https://machinelearningmastery.com/check-point-deep-learning-models-keras/ # checkpoint = ModelCheckpoint(filepath, monitor='val_acc', verbose=verbose, save_best_only=True, mode='auto') # # print("Training Model...") # if save_checkpoints: # history = model.fit(Xtrain_encoded, Ytrain_encoded, batch_size=batch_size, epochs=epochs, verbose=verbose, callbacks=[checkpoint]) # starts training # else: # history = model.fit(Xtrain_encoded,Ytrain_encoded, batch_size=batch_size, epochs=epochs, verbose=verbose) # starts training # outputs: # ============================================================================================================================ # SAVE
StarcoderdataPython
382470
from __future__ import absolute_import, division, print_function, unicode_literals import hashlib import io import warnings from diskcache import Cache from ._base import Backend SIZE_LIMIT = 5e9 CACHE_VERSION = "v0" class CachingBackend(Backend): def __init__(self, cacheroot, authoritative_backend): self._cacheroot = cacheroot self._authoritative_backend = authoritative_backend self._cache = Cache(cacheroot, size_limit=int(SIZE_LIMIT)) def read_contextmanager(self, name, checksum_sha256=None, seekable=False): if checksum_sha256 is not None: return _CachingBackendContextManager( self._authoritative_backend, self._cache, name, checksum_sha256) else: return self._authoritative_backend.read_contextmanager( name, checksum_sha256, seekable=seekable) def write_file_handle(self, name): return self._authoritative_backend.write_file_handle(name) class _CachingBackendContextManager(object): def __init__(self, authoritative_backend, cache, name, checksum_sha256): self.authoritative_backend = authoritative_backend self.cache = cache self.name = name self.checksum_sha256 = checksum_sha256 self.handle = None def __enter__(self): cache_key = "{}-{}".format(CACHE_VERSION, self.checksum_sha256) try: file_data = self.cache.read(cache_key) except KeyError: # not in cache :( with self.authoritative_backend.read_contextmanager(self.name) as sfh: file_data = sfh.read() # TODO: consider removing this if we land a more generalized solution that # protects against corruption regardless of backend. sha256 = hashlib.sha256(file_data).hexdigest() if sha256 != self.checksum_sha256: warnings.warn( "Checksum of tile data does not match the manifest checksum! Not " "writing to cache") else: self.cache.set(cache_key, file_data) self.handle = io.BytesIO(file_data) else: # If the data is small enough, the DiskCache library returns the cache data # as bytes instead of a buffered reader. # In that case, we want to wrap it in a file-like object. if isinstance(file_data, io.IOBase): self.handle = file_data else: self.handle = io.BytesIO(file_data) return self.handle.__enter__() def __exit__(self, exc_type, exc_val, exc_tb): if self.handle is not None: return self.handle.__exit__(exc_type, exc_val, exc_tb)
StarcoderdataPython
8150334
<reponame>felixfrank/Open3D # Open3D: www.open3d.org # The MIT License (MIT) # See license file or visit www.open3d.org for details from open3d import * import numpy as np if __name__ == "__main__": set_verbosity_level(VerbosityLevel.Debug) pcds = [] for i in range(3): pcd = read_point_cloud( "../../TestData/ICP/cloud_bin_%d.pcd" % i) downpcd = voxel_down_sample(pcd, voxel_size = 0.02) pcds.append(downpcd) draw_geometries(pcds) pose_graph = PoseGraph() odometry = np.identity(4) pose_graph.nodes.append(PoseGraphNode(odometry)) n_pcds = len(pcds) for source_id in range(n_pcds): for target_id in range(source_id + 1, n_pcds): source = pcds[source_id] target = pcds[target_id] print("Apply point-to-plane ICP") icp_coarse = registration_icp(source, target, 0.3, np.identity(4), TransformationEstimationPointToPlane()) icp_fine = registration_icp(source, target, 0.03, icp_coarse.transformation, TransformationEstimationPointToPlane()) transformation_icp = icp_fine.transformation information_icp = get_information_matrix_from_point_clouds( source, target, 0.03, icp_fine.transformation) print(transformation_icp) # draw_registration_result(source, target, np.identity(4)) print("Build PoseGraph") if target_id == source_id + 1: # odometry case odometry = np.dot(transformation_icp, odometry) pose_graph.nodes.append( PoseGraphNode(np.linalg.inv(odometry))) pose_graph.edges.append( PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain = False)) else: # loop closure case pose_graph.edges.append( PoseGraphEdge(source_id, target_id, transformation_icp, information_icp, uncertain = True)) print("Optimizing PoseGraph ...") option = GlobalOptimizationOption( max_correspondence_distance = 0.03, edge_prune_threshold = 0.25, reference_node = 0) global_optimization(pose_graph, GlobalOptimizationLevenbergMarquardt(), GlobalOptimizationConvergenceCriteria(), option) print("Transform points and display") for point_id in range(n_pcds): print(pose_graph.nodes[point_id].pose) pcds[point_id].transform(pose_graph.nodes[point_id].pose) draw_geometries(pcds)
StarcoderdataPython
3561096
<reponame>davjohnst/fundamentals<filename>fundamentals/binary_search_tree/binary_search_tree.py #!/usr/bin/env python class BSTNode(object): def __init__(self, parent, left, right, value): self.parent = parent self.left = left self.right = right self.value = value class BST(object): def __init__(self): self.root = None def put(self, val): if self.root is None: self.root = BSTNode(None, None, None, val) else: self._put(val, self.root) def _put(self, val, current_node): if val < current_node.value: if current_node.left is None: current_node.left = BSTNode(current_node, None, None, val) else: self._put(val, current_node.left) else: if current_node.right is None: current_node.right = BSTNode(current_node, None, None, val) else: self._put(val, current_node.right) def contains(self, val): current_node = self.root while current_node is not None: if current_node.value == val: return True elif val < current_node.value: current_node = current_node.left else: current_node = current_node.right return False def pre_order_traversal(self, func): self._pre_order_traversal(self.root, func) def _pre_order_traversal(self, node, func): if node is not None: func(node) if node.left is not None: self._pre_order_traversal(node.left, func) if node.right is not None: self._pre_order_traversal(node.right, func) def main(): b = BST() b.put(10) b.put(4) b.put(14) b.put(2) b.put(1) def print_val(node): print node.value b.pre_order_traversal(print_val) print b.contains(1) print b.contains(3) if __name__ == "__main__": main()
StarcoderdataPython
9619358
<filename>1020.py<gh_stars>1-10 n = int(input()) h = int(n // 365) n -= h * 365 m = int(n // 30) n -= m * 30 print(h, 'ano(s)') print(m, 'mes(es)') print(n, 'dia(s)')
StarcoderdataPython
4976109
import unittest from cache_gs.utils.timestamp import (base64_to_int, int_to_base64, section_key_hash) class TestTimeStamp(unittest.TestCase): def test_base64(self): b = int_to_base64(10) i = base64_to_int(b) self.assertEqual(10, i) def test_lenght(self): i = 1 len_base64 = len(int_to_base64(0)) igual = True last = 2**32 while i <= last and igual: igual = len(int_to_base64(i)) == len_base64 i *= 2 self.assertTrue(igual) def test_section_key_hash(self): hash = section_key_hash('section', 'key') self.assertIsNotNone(hash)
StarcoderdataPython
12858804
import numpy as np import torch from torchvision.utils import make_grid from base import BaseTrainer from utils import inf_loop, MetricTracker, confusion_matrix_image import copy import sys import time from model.metric import Accuracy, TopkAccuracy def get_top_k(x, ratio): """it will sample the top 1-ratio of the samples.""" x_data = x.view(-1) x_len = x_data.nelement() top_k = max(1, int(x_len * (1 - ratio))) # get indices and the corresponding values if top_k == 1: _, selected_indices = torch.max(x_data.abs(), dim=0, keepdim=True) else: _, selected_indices = torch.topk( x_data.abs(), top_k, largest=True, sorted=False ) return x_data[selected_indices], selected_indices def get_mask(flatten_arr, indices): mask = torch.zeros_like(flatten_arr) mask[indices] = 1 mask = mask.bool() return mask.float(), (~mask).float() class Trainer(BaseTrainer): """ Trainer class """ def __init__(self, model, criterion, metric_ftns, optimizer, config, data_loader, valid_data_loader=None, lr_scheduler=None, len_epoch=None): super().__init__(model, criterion, metric_ftns, optimizer, config) self.config = config self.data_loader = data_loader if len_epoch is None: # epoch-based training self.len_epoch = len(self.data_loader) else: # iteration-based training self.data_loader = inf_loop(data_loader) self.len_epoch = len_epoch self.valid_data_loader = valid_data_loader self.do_validation = self.valid_data_loader is not None self.lr_scheduler = lr_scheduler self.log_step = int(np.sqrt(data_loader.batch_size)) self.deployed_model = copy.deepcopy(self.model) self.init_model = copy.deepcopy(self.model) self.init_model.eval() self.deployed_model.eval() self.accuracy = Accuracy() self.topkaccuracy = TopkAccuracy() self.train_metrics = MetricTracker('loss', *[m.__name__ for m in self.metric_ftns], writer=self.writer) self.valid_metrics = MetricTracker('loss', *[m.__name__ for m in self.metric_ftns], writer=self.writer) def _train_epoch(self, epoch): """ Training logic for an epoch :param epoch: Integer, current training epoch. :return: A log that contains average loss and metric in this epoch. """ start = time.time() self.model.train() total_batch = 0 self.train_metrics.reset() training_time = 0 for batch_idx, (data, target) in enumerate(self.data_loader): data, target = data.to(self.device), target.to(self.device) batch_start = time.time() self.optimizer.zero_grad() output = self.model(data) loss = self.criterion(output, target) loss.backward() self.optimizer.step() training_time += time.time() - batch_start self.writer.set_step((epoch - 1) * self.len_epoch + batch_idx) self.train_metrics.update('loss', loss.item()) for met in self.metric_ftns: self.train_metrics.update(met.__name__, met(output, target)) total_batch += time.time() - batch_start if batch_idx % self.log_step == 0: self.logger.info('Train Epoch: {} {} Loss: {:.6f} Time per batch (ms) {}'.format( epoch, self._progress(batch_idx), loss.item(), total_batch * 1000 / (batch_idx + 1))) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) # valid_log = self._valid_deployed(batch_idx) # print logged informations to the screen # for key, value in valid_log.items(): # self.logger.info('Valid deployed {:15s}: {}'.format(str(key), value)) if batch_idx == self.len_epoch: break log = self.train_metrics.result() if self.do_validation: val_log = self._valid_epoch(epoch) log.update(**{'val_' + k: v for k, v in val_log.items()}) log['time (sec)'] = time.time() - start log['training_time'] = training_time if self.lr_scheduler is not None: self.lr_scheduler.step() return log def _valid_epoch(self, epoch): """ Validate after training an epoch :param epoch: Integer, current training epoch. :return: A log that contains information about validation """ self.model.eval() self.valid_metrics.reset() avg_loss =0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (data, target) in enumerate(self.valid_data_loader): data, target = data.to(self.device), target.to(self.device) output = self.model(data) loss = self.criterion(output, target) avg_loss += loss.item()/len(self.valid_data_loader) pred = torch.argmax(output, dim=1) correct += torch.sum(pred == target).item() total += len(target) self.writer.set_step(epoch, 'valid') self.writer.add_scalar('loss', avg_loss) self.writer.add_scalar('accuracy', correct/total) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) # add histogram of model parameters to the tensorboard # for name, p in self.model.named_parameters(): # self.writer.add_histogram(name, p, bins='auto') return self.valid_metrics.result() def _valid_deployed(self, batch): """ Validate after training a batch :param epoch: Integer, current training epoch. :return: A log that contains information about validation """ self.deployed_model.eval() self.valid_metrics.reset() with torch.no_grad(): for batch_idx, (data, target) in enumerate(self.valid_data_loader): data, target = data.to(self.device), target.to(self.device) output = self.model(data) loss = self.criterion(output, target) self.writer.set_step((batch - 1) * len(self.valid_data_loader) + batch_idx*len(target), 'valid') self.valid_metrics.update('loss', loss.item()) for met in self.metric_ftns: self.valid_metrics.update(met.__name__, met) # self.writer.add_image('input', make_grid(data.cpu(), nrow=8, normalize=True)) # self.writer.add_figure('confusion_matrix', confusion_matrix_image(output, target)) return self.valid_metrics.result() def _progress(self, batch_idx): base = '[{}/{} ({:.0f}%)]' if hasattr(self.data_loader, 'n_samples'): current = batch_idx * self.data_loader.batch_size total = self.data_loader.n_samples else: current = batch_idx total = self.len_epoch return base.format(current, total, 100.0 * current / total)
StarcoderdataPython
4811873
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """ test syntax for logic expression """ import mindspore.nn as nn from mindspore import context context.set_context(mode=context.GRAPH_MODE) class IdentityIsNot(nn.Cell): def __init__(self, x, y): super(IdentityIsNot, self).__init__() self.x = x self.y = y def construct(self): in_v = self.x is not self.y return in_v def test_ms_syntax_operator_int_is_not_int(): net = IdentityIsNot(1, 2) ret = net() print(ret) def test_ms_syntax_operator_int_is_not_none(): net = IdentityIsNot(1, None) ret = net() print(ret) def test_ms_syntax_operator_int_is_not_true(): net = IdentityIsNot(1, True) ret = net() print(ret) def test_ms_syntax_operator_bool_is_not_none(): net = IdentityIsNot(True, None) ret = net() print(ret) def test_ms_syntax_operator_bool_is_not_false(): net = IdentityIsNot(True, False) ret = net() print(ret)
StarcoderdataPython
6677462
# Generated by Django 2.2 on 2019-04-17 13:45 from django.conf import settings import django.contrib.auth.models from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('is_staff', models.BooleanField(default=False, help_text='Designates whether the user can log into this admin site.', verbose_name='staff status')), ('is_active', models.BooleanField(default=True, help_text='Designates whether this user should be treated as active. Unselect this instead of deleting accounts.', verbose_name='active')), ('date_joined', models.DateTimeField(default=django.utils.timezone.now, verbose_name='date joined')), ('user_id', models.AutoField(primary_key=True, serialize=False)), ('username', models.CharField(max_length=60, unique=True)), ('first_name', models.CharField(max_length=60)), ('last_name', models.CharField(blank=True, max_length=80, null=True)), ('email', models.CharField(max_length=120)), ], options={ 'verbose_name': 'user', 'verbose_name_plural': 'users', 'abstract': False, }, managers=[ ('objects', django.contrib.auth.models.UserManager()), ], ), migrations.CreateModel( name='Group', fields=[ ('group_id', models.AutoField(primary_key=True, serialize=False)), ('group_name', models.CharField(max_length=60, unique=True)), ('created', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Movie', fields=[ ('movie_id', models.AutoField(primary_key=True, serialize=False)), ('title', models.CharField(max_length=100)), ('slug', models.SlugField(max_length=100)), ('rated', models.CharField(blank=True, choices=[('G', 'G'), ('PG', 'PG'), ('PG-13', 'PG-13'), ('R', 'R'), ('NC-17', 'NC-17')], default='PG-13', max_length=5, null=True)), ('released', models.DateField()), ('runtime_minutes', models.IntegerField()), ('genre', models.CharField(blank=True, max_length=20, null=True)), ('director', models.CharField(blank=True, max_length=80, null=True)), ('plot', models.TextField(blank=True, null=True)), ('poster_link', models.CharField(blank=True, max_length=250, null=True)), ('imdb_rating', models.FloatField(blank=True, null=True)), ('rt_rating', models.IntegerField(blank=True, null=True)), ('added_to_db', models.DateTimeField(auto_now_add=True)), ], ), migrations.CreateModel( name='Rating', fields=[ ('rating_id', models.AutoField(primary_key=True, serialize=False)), ('rating', models.FloatField()), ('comment', models.TextField(blank=True, null=True)), ('timestamp', models.DateTimeField(auto_now_add=True)), ('movie', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ratings', to='ratings.Movie')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='ratings', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='Invitation', fields=[ ('invitation_id', models.AutoField(primary_key=True, serialize=False)), ('status', models.CharField(choices=[('sent', 'sent'), ('ignored', 'ignored')], default='sent', max_length=8)), ('sent', models.DateTimeField(auto_now_add=True)), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='invitations_to_join', to='ratings.Group')), ('receiver', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='received_invitations', to=settings.AUTH_USER_MODEL)), ('sender', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, related_name='sent_invitations', to=settings.AUTH_USER_MODEL)), ], ), migrations.CreateModel( name='GroupAdminMember', fields=[ ('group_admin_id', models.AutoField(primary_key=True, serialize=False)), ('group', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='ratings.Group')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], ), migrations.AddField( model_name='user', name='group', field=models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='users', to='ratings.Group'), ), migrations.AddField( model_name='user', name='groups', field=models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
StarcoderdataPython
11312560
<gh_stars>1-10 from django.views.decorators.csrf import csrf_exempt from rest_framework.generics import GenericAPIView from rest_framework.response import Response from rest_framework import status from glbl.serializers import ConfigSerializer from glbl.models import GlobalConfig class ConfigView(GenericAPIView): serializer_class = ConfigSerializer @csrf_exempt def get(self, request): r = GlobalConfig().get_config() if r: return Response(r, status=status.HTTP_200_OK) else: return Response( {"error": "configuration not found"}, status=status.HTTP_404_NOT_FOUND ) @csrf_exempt def post(self, request): serializer = ConfigSerializer(data=request.data) if serializer.is_valid(): if GlobalConfig.update_config(request.data): return Response({"acknowledge": True}, status=status.HTTP_200_OK) else: return Response( {"acknowledge": False, "error": "data not accepted"}, status=status.HTTP_200_OK, )
StarcoderdataPython
179600
''' TODO: Median trimmer ''' import numpy as np def mad(arr,axis=None): mid = np.median(arr,axis=axis) return np.median(abs(arr-mid),axis=axis) def bin_median(x,y,nbin): binsize = (x.max()-x.min()) / (2*nbin) bin_centers = np.linspace(x.min()+binsize,x.max()-binsize,nbin) binned = np.empty(nbin) error = np.empty(nbin) for c in range(bin_centers.size): mask = (x >= bin_centers[c]-binsize) & (x <= bin_centers[c]+binsize) binned[c] = np.median(y[mask]) error[c] = np.std(y[mask])/np.sqrt(np.sum(mask)) return bin_centers,binned,error def bin_mean(x,y,nbin): binsize = (x.max()-x.min()) / (2*nbin) bin_centers = np.linspace(x.min()+binsize,x.max()-binsize,nbin) binned = np.empty(nbin) error = np.empty(nbin) for c in range(bin_centers.size): mask = (x >= bin_centers[c]-binsize) & (x <= bin_centers[c]+binsize) binned[c] = np.mean(y[mask]) error[c] = np.std(y[mask])/np.sqrt(np.sum(mask)) return bin_centers,binned,error def bin_sum(data, nbin): binsize = (data.max()-data.min()) / (2*nbin) bin_centers = np.linspace(data.min()+binsize, data.max()-binsize, nbin) binned = np.empty(nbin) for c in range(bin_centers.size): mask = (data >= bin_centers[c]-binsize) & (data <= bin_centers[c] + binsize) binned[c] = np.sum(mask) return bin_centers, binned def csmooth(x, y, interval, eval=None): if eval is None: eval = x n_points = np.zeros(eval.size) sums = np.zeros(eval.size) for i in range(y.size): mask = (x > x[i]) & (x < x[i]+interval) if np.sum(mask) > 4: p = np.polyfit(x[mask], y[mask], 3) eval_mask = (eval > x[i]) & (eval < x[i]+interval) sums[eval_mask] += np.polyval(p, eval[eval_mask]) n_points[eval_mask] += 1 n_points[n_points == 0] = 1 return sums/n_points def jackknife_variance(func,data,N=None,args=()): estimate = func(data,*args) if N is None: N = data.size omit_points = np.arange(N) else: omit_points = np.randint(0,data.size,N) other_estimates = np.empty(N) for i in range(N): other_estimates[i] = func(np.delete(data,i),*args) return (data.size-1)/N * np.sum((estimate-other_estimates)**2) ''' under construction ''' def median_filter(x,y,width=1): lbound = np.zeros(y.size) ubound = np.zeros(x.size) cen = np.zeros(x.size) for i in range(y.size): lo = max(i-width,0) hi = min(i+width,y.size) tsec = x[lo:hi] fsec = y[lo:hi] fitmid = np.polyval(np.polyfit(tsec, fsec, 2), tsec) normid = np.median(fsec) mad = min(np.median(abs(fsec-fitmid)), np.median(abs(fsec-normid))) cen[i] = normid sigma = 1.4826*mad ubound[i] = normid+3*sigma lbound[i] = normid-3*sigma from matplotlib import pyplot as plt plt.plot(x,lbound,'g-') plt.plot(x,ubound,'g-') plt.plot(x,cen,'b-') #plt.plot(x,y,'k.') plt.ylim(y.min(),y.max()) plt.show() exit() mask = ((y < ubound) & (y > lbound)) return x[mask],y[mask] ''' Median filter test code ''' if __name__ == '__main__': import os from astropy.io import fits os.chdir('/home/ben/research/kepler_llc/007500161') files = [f for f in os.listdir('.') if f.endswith('_llc.fits')] contents = fits.open(files[0])[1].data x = contents['TIME'] y = contents['PDCSAP_FLUX'] mask = np.invert(np.isnan(x) | np.isnan(y)) x = x[mask] y = y[mask] median_filter(x,y,11)
StarcoderdataPython
6422674
# -------------- #Importing header files import pandas as pd import numpy as np import matplotlib.pyplot as plt #Path of the file data = pd.read_csv(path) data.rename(columns = {'Total':"Total_Medals"}, inplace = True) data.head() #Code starts here # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt data['Better_Event'] = np.where(data['Total_Summer'] > data['Total_Winter'], 'Summer', 'Winter') data['Better_Event'] = np.where(data['Total_Summer'] == data['Total_Winter'], 'Both', data['Better_Event']) better_event = data['Better_Event'].value_counts().index.values[0] print('Better_Event', better_event) # -------------- #Code starts here import pandas as pd import numpy as np import matplotlib.pyplot as plt top_countries = data[['Country_Name', 'Total_Summer', 'Total_Winter','Total_Medals']] top_countries= top_countries[:-1] def top_ten(data, col): country_list = [] country_list=list((data.nlargest(10,col)['Country_Name'])) return country_list top_10_summer = top_ten(top_countries,'Total_Summer') print('Top_10_Summer:\n',top_10_summer,'\n') top_10_winter = top_ten(top_countries,'Total_Winter') print('Top_10_Winter:\n', top_10_winter,'Total_Winter') top_10 = top_ten(top_countries,'Total_Medals') print('Total_Medals:\n',top_10,'\n') common = list(set(top_10_summer) & set(top_10_winter) & set(top_10)) print('Common Countries :\n',common,'\n') # -------------- #Code starts here import matplotlib.pyplot as plt summer_df=data[data['Country_Name'].isin(top_10_summer)] winter_df=data[data['Country_Name'].isin(top_10_winter)] top_df=data[data['Country_Name'].isin(top_10)] plt.figure(figsize=(20,20)) plt.bar(top_df['Country_Name'], top_df['Total_Medals']) plt.title('Top 10') plt.xlabel('Country_Name') plt.ylabel('Total Medals') # -------------- #Code starts here import matplotlib.pyplot as plt summer_df['Golden_Ratio']=summer_df['Gold_Summer'] / summer_df['Total_Summer'] summer_max_ratio=max(summer_df['Golden_Ratio']) summer_country_gold=summer_df.loc[summer_df['Golden_Ratio'].idxmax(),'Country_Name'] winter_df['Golden_Ratio']=winter_df['Gold_Winter'] / winter_df['Total_Winter'] winter_max_ratio=max(winter_df['Golden_Ratio']) winter_country_gold=winter_df.loc[winter_df['Golden_Ratio'].idxmax(),'Country_Name'] top_df['Golden_Ratio'] = top_df['Gold_Total'] / top_df['Total_Medals'] top_max_ratio=max(top_df['Golden_Ratio']) top_country_gold=top_df.loc[top_df['Golden_Ratio'].idxmax(), 'Country_Name'] # -------------- #Code starts here data_1 = data[:-1] data_1['Total_Points'] = data_1['Gold_Total'] * 3 + data_1['Silver_Total'] *2 + data_1['Bronze_Total']*1 most_points = max(data_1['Total_Points']) best_country = data_1.loc[data_1['Total_Points'].idxmax(), 'Country_Name'] print('The maximum points acheived is ', most_points, 'by',best_country) # -------------- #Code starts here best = data[data['Country_Name'] == best_country] best = best[['Gold_Total', 'Silver_Total', 'Bronze_Total']] best.plot.bar(stacked = True) plt.xlabel('United States') plt.ylabel('Medals') plt.xticks(rotation = 45)
StarcoderdataPython
3470850
<reponame>matiastang/matias-python<gh_stars>0 #!/usr/bin/python3 #coding=utf-8 def d_debug(): print(__name__) def d_one(): print('d_one') def d_two(): print('d_two')
StarcoderdataPython
3310210
<reponame>cristina-mt/biosoft_SAXS """ Test code for analysing SAXS data from ESRF Created on Fri Nov 24 2017 Last modification on Mon Jan 8 2018 version: 0.0 @author: <NAME> """ # Import modules and functions import numpy as np; import matplotlib.pyplot as plt from scipy import interpolate from saxs_open_v0 import OpenSAXS, ShowSAXS from saxs_matrix_v0 import BuildMatrix from saxs_basic_v0 import Integrate, Filtering, Fitting # ======================================================================================== # Files to read filedir = '[Replace with base file directory]' file_poni = filedir + '[Replace with .poni file]' file_mask = filedir + '[Replace with mask file]' file_blank = filedir + '[Replace with .edf file containing the blank]' file_sample = filedir + '[Replace with .edf file containing the sample]' # Variables to choose how data is processed norm_factor = True # Additional normalisation of background image. # Set to True to extract the value from calibration information in poni file # Set to False to ignore it (value equals 1) # Set to a value between 0-1 to adjust manually the value # Note: It's not clear what is this normalisation, to be checked with Daniel res_vect = 1 # Resolution of the radial integration, in pixels. Recommended value: 1 a_der = 5. # Width of the gaussian filter used to subtract scattering trendline in radial profile qmin_pl = 0.05 # Lower limit to fit log(I) = beta*log(q) qmax_pl = 0.15 # Upper limit peak_pos0 = 0.3 # Expected position of scattering peak, used for gauss fit qmin_fg = 0.22 # Lower limit to fit the scattered peak qmax_fg = 0.38 # Upper limit # Display 'checkpoints' checkpoint_0 = 0 # Raw data check checkpoint_1 = 0 # Background subtraction in 2D image checkpoint_2 = 0 # Radial profile # ======================================================================================== # ======================================================================================== # Read files and store content in variables cal_info = OpenSAXS.read_poni(file_poni) if file_mask[-3:] == 'edf' : mask = OpenSAXS.read_mask_edf(file_mask) elif file_mask[-3:] == 'txt' : mask = OpenSAXS.read_mask_txt(file_mask) img_blank, header_blank = OpenSAXS.read_edf(file_blank) img_sample, header_sample = OpenSAXS.read_edf(file_sample) # -------------------------------------------- # CHECKPOINT 0 : Correct reading of raw data. # Display the input data if checkpoint_0 == 1: ShowSAXS.mask(mask) # Shows mask (binary) ShowSAXS.raw_img(img_blank, vmin = 3, vmax = 8) # Shows blank image plt.title('...'+file_blank[-30:]) ShowSAXS.raw_img(img_sample, vmin = 3, vmax = 8) # Shows sample image plt.title('...'+file_sample[-30:]) ShowSAXS.img_wmask(img_sample, mask, vmin = 3, vmax = 8) # Shows overlay mask on sample image plt.show() # ======================================================================================== # Variables used for normalisation, obtained from calibration info in poni file photo_sample = np.float(header_sample.get('Photo')) monitor_sample = np.float(header_sample.get('Monitor')) photo_blank = np.float(header_blank.get('Photo')) monitor_blank = np.float(header_blank.get('Monitor')) # Choose the given normalisation factor for background (See notes in line ~24 above if norm_factor == True: abs_corr = (photo_sample/monitor_sample)/(photo_blank/monitor_blank) elif norm_factor == False: abs_corr = 1. else: abs_corr = 1.*norm_factor # Normalise each saxs data and subtract background from sample img_corr = (img_sample/photo_sample) - (img_blank/photo_blank)*abs_corr img_corr[mask==1] = -1 # ------------------------------------------------------------ # CHECKPOINT 1: Data normalisation and background subtraction if checkpoint_1 == 1: ShowSAXS.raw_img(img_corr, vmin = -9, vmax = -3) plt.title('Corrected Image sample') plt.show() # ======================================================================================== # Build coordinate matrices used for analysis center, mat_dist = BuildMatrix.distance(img_sample.shape, cal_info) # Distance matrix (in m) mat_qvalues = BuildMatrix.qvalues(mat_dist, cal_info) # matrix of q values mat_qvalues[mask == 1] = -1 # Radial integration, the resolution of the qvector [res_vect] is given in pixels, # needs to be converted o q value qdiff = np.abs(mat_qvalues[int(center[0]):,1:] - mat_qvalues[int(center[0]):,:-1]) qmin = np.mean(qdiff[qdiff>0]) qres = res_vect*qmin # Plots I(q) in loglog scale radial_profile, q_vector = Integrate.radial(img_corr, mat_qvalues, qres) radial_profile = np.array(radial_profile) q_vector = np.array(q_vector) # ------------------------------------------------------------ # CHECKPOINT 2: Radial profile if checkpoint_2 == 1: plt.figure() plt.loglog(q_vector, radial_profile, c = 'k') plt.xlabel('q (1/m)') plt.ylabel ('I(q) (a.u.)') plt.show() # ======================================================================================== # Fit line to log(I) = beta*log(q) to extract power-law, in the range qmin_pl, qmax_pl beta = Fitting.q_powerlaw_lin([qmin_pl, qmax_pl], q_vector, radial_profile) # Mirror the radial profile, and then apply first derivative of a gaussian as a kernel # If the kernel is applied with a width large enough, it should subtract the trendline # Less subjective way of subtracting the 'regular scattering' profile from the scattering peak # All the interpolated mirrored signals, are in logscale offset_nan, mirror_qv, mirror_rp = Filtering.mirror_logsignal_1D(q_vector, radial_profile) interp_mq = np.linspace(mirror_qv[0], mirror_qv[-1], np.power(int(len(mirror_qv)/2),2)) # interpolation, power of 2 for filtering interp_mr = mirror_rp(interp_mq) # Choose filter width based on fraction of the one order of magnitude number_decades = len(np.unique([int(mq) for mq in interp_mq])) a_scale_der = int(len(interp_mr)/number_decades/a_der) # Derivate and extract local trendline from radial profile der_rp = Filtering.gauss_der_1D_fixed(interp_mr, float(a_scale_der)) trendline_rp = -der_rp*(interp_mq)-interp_mq corr_radial_profile = interp_mr-trendline_rp # Go back to measured q range, still in logspace inv_interp_corr_rp = interpolate.interp1d( interp_mq, corr_radial_profile, kind = 'slinear') inv_corr_radial_profile = inv_interp_corr_rp(np.log10(q_vector[offset_nan:])) # Fit scattering peak in logspace (Note: Is it better?) peak_gfit, error_gfit, rs_gfit = Fitting.qpeak_loggauss( peak_pos0, [qmin_fg, qmax_fg], q_vector[offset_nan:], inv_corr_radial_profile) peak_pos = np.power(10, peak_gfit[2]) peak_width = np.power(10, 2*np.sqrt(2*np.log(2))*peak_gfit[3]) width_error = 2*np.sqrt(2*np.log(2))*error_gfit[3] lq = 2*np.pi/peak_pos # Characteristic length of q value # ======================================================================================== # ======================================================================================== print('Peak position: ' + str(peak_pos) +\ '\nPeak position error: ' + str(error_gfit[2]) +\ '\nPeak width: ' + str(peak_width) +\ '\nPeak width error: ' +str(width_error) +\ '\nR-square Fit: ' +str(rs_gfit) +\ '\nCharacteristic length: ' +str(lq) ) plt.figure() plt.loglog(q_vector, radial_profile, c = 'k', label = 'Data') plt.loglog(q_vector[offset_nan:], np.power(10, inv_corr_radial_profile), c = [0.7,0.7,0.7], label = 'Trendline correction') plt.loglog([qmin_pl,qmax_pl], np.min(radial_profile[~np.isnan(radial_profile)])*([qmin_pl, qmax_pl]**beta), c = 'c', label = 'Power-law fit') plt.text(qmax_pl, 2*np.min(radial_profile[~np.isnan(radial_profile)])*qmax_pl**beta, r'$\beta$ = ' +str(-beta)[:4]) plt.loglog(q_vector[offset_nan:], np.power(10,Fitting.gauss_fit( np.log10(q_vector[offset_nan:]), peak_gfit[0], peak_gfit[1], peak_gfit[2], peak_gfit[3])), '-', c = 'cyan', lw = 1, label = 'Gauss Fit Peak') plt.loglog([peak_pos,peak_pos], [0,1], '--', lw = 1, c = 'm') plt.text(peak_pos*1.5, np.mean(radial_profile[~np.isnan(radial_profile)]), 'q = ' + str(peak_pos)[:5] +r'nm$^{-1}$'+'\n l = ' + str(lq)[:5] + 'nm') plt.xlim([3e-2, 5]) plt.ylim([0.9*np.min(radial_profile[~np.isnan(radial_profile)]), 1.1*np.max(radial_profile[~np.isnan(radial_profile)])]) plt.xlabel('q (1/m)') plt.ylabel ('I(q) (a.u.)') plt.title('...'+file_sample[-40:-4]) plt.legend() plt.show()
StarcoderdataPython
5105060
<filename>minimumViableProductBasicGame.py import itertools WHITE = "white" BLACK = "black" class Game: #ive decided since the number of pieces is capped but the type of pieces is not (pawn transformations), I've already coded much of the modularity to support just using a dictionary of pieces def __init__(self): self.playersturn = BLACK self.message = "this is where prompts will go" self.gameboard = {} self.placePieces() print("chess program. enter moves in algebraic notation separated by space") self.main() def placePieces(self): for i in range(0,8): self.gameboard[(i,1)] = Pawn(WHITE,uniDict[WHITE][Pawn],1) self.gameboard[(i,6)] = Pawn(BLACK,uniDict[BLACK][Pawn],-1) placers = [Rook,Knight,Bishop,Queen,King,Bishop,Knight,Rook] for i in range(0,8): self.gameboard[(i,0)] = placers[i](WHITE,uniDict[WHITE][placers[i]]) self.gameboard[((7-i),7)] = placers[i](BLACK,uniDict[BLACK][placers[i]]) placers.reverse() def main(self): while True: self.printBoard() print(self.message) self.message = "" startpos,endpos = self.parseInput() try: target = self.gameboard[startpos] except: self.message = "could not find piece; index probably out of range" target = None if target: print("found "+str(target)) if target.Color != self.playersturn: self.message = "you aren't allowed to move that piece this turn" continue if target.isValid(startpos,endpos,target.Color,self.gameboard): self.message = "that is a valid move" self.gameboard[endpos] = self.gameboard[startpos] del self.gameboard[startpos] self.isCheck() if self.playersturn == BLACK: self.playersturn = WHITE else : self.playersturn = BLACK else : self.message = "invalid move" + str(target.availableMoves(startpos[0],startpos[1],self.gameboard)) print(target.availableMoves(startpos[0],startpos[1],self.gameboard)) else : self.message = "there is no piece in that space" def isCheck(self): #ascertain where the kings are, check all pieces of opposing color against those kings, then if either get hit, check if its checkmate king = King kingDict = {} pieceDict = {BLACK : [], WHITE : []} for position,piece in self.gameboard.items(): if type(piece) == King: kingDict[piece.Color] = position print(piece) pieceDict[piece.Color].append((piece,position)) #white if self.canSeeKing(kingDict[WHITE],pieceDict[BLACK]): self.message = "White player is in check" if self.canSeeKing(kingDict[BLACK],pieceDict[WHITE]): self.message = "Black player is in check" def canSeeKing(self,kingpos,piecelist): #checks if any pieces in piece list (which is an array of (piece,position) tuples) can see the king in kingpos for piece,position in piecelist: if piece.isValid(position,kingpos,piece.Color,self.gameboard): return True def parseInput(self): try: a,b = input().split() a = ((ord(a[0])-97), int(a[1])-1) b = (ord(b[0])-97, int(b[1])-1) print(a,b) return (a,b) except: print("error decoding input. please try again") return((-1,-1),(-1,-1)) """def validateInput(self, *kargs): for arg in kargs: if type(arg[0]) is not type(1) or type(arg[1]) is not type(1): return False return True""" def printBoard(self): print(" 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |") for i in range(0,8): print("-"*32) print(chr(i+97),end="|") for j in range(0,8): item = self.gameboard.get((i,j)," ") print(str(item)+' |', end = " ") print() print("-"*32) """game class. contains the following members and methods: two arrays of pieces for each player 8x8 piece array with references to these pieces a parse function, which turns the input from the user into a list of two tuples denoting start and end points a checkmateExists function which checks if either players are in checkmate a checkExists function which checks if either players are in check (woah, I just got that nonsequitur) a main loop, which takes input, runs it through the parser, asks the piece if the move is valid, and moves the piece if it is. if the move conflicts with another piece, that piece is removed. ischeck(mate) is run, and if there is a checkmate, the game prints a message as to who wins """ class Piece: def __init__(self,color,name): self.name = name self.position = None self.Color = color def isValid(self,startpos,endpos,Color,gameboard): if endpos in self.availableMoves(startpos[0],startpos[1],gameboard, Color = Color): return True return False def __repr__(self): return self.name def __str__(self): return self.name def availableMoves(self,x,y,gameboard): print("ERROR: no movement for base class") def AdNauseum(self,x,y,gameboard, Color, intervals): """repeats the given interval until another piece is run into. if that piece is not of the same color, that square is added and then the list is returned""" answers = [] for xint,yint in intervals: xtemp,ytemp = x+xint,y+yint while self.isInBounds(xtemp,ytemp): #print(str((xtemp,ytemp))+"is in bounds") target = gameboard.get((xtemp,ytemp),None) if target is None: answers.append((xtemp,ytemp)) elif target.Color != Color: answers.append((xtemp,ytemp)) break else: break xtemp,ytemp = xtemp + xint,ytemp + yint return answers def isInBounds(self,x,y): "checks if a position is on the board" if x >= 0 and x < 8 and y >= 0 and y < 8: return True return False def noConflict(self,gameboard,initialColor,x,y): "checks if a single position poses no conflict to the rules of chess" if self.isInBounds(x,y) and (((x,y) not in gameboard) or gameboard[(x,y)].Color != initialColor) : return True return False chessCardinals = [(1,0),(0,1),(-1,0),(0,-1)] chessDiagonals = [(1,1),(-1,1),(1,-1),(-1,-1)] def knightList(x,y,int1,int2): """sepcifically for the rook, permutes the values needed around a position for noConflict tests""" return [(x+int1,y+int2),(x-int1,y+int2),(x+int1,y-int2),(x-int1,y-int2),(x+int2,y+int1),(x-int2,y+int1),(x+int2,y-int1),(x-int2,y-int1)] def kingList(x,y): return [(x+1,y),(x+1,y+1),(x+1,y-1),(x,y+1),(x,y-1),(x-1,y),(x-1,y+1),(x-1,y-1)] class Knight(Piece): def availableMoves(self,x,y,gameboard, Color = None): if Color is None : Color = self.Color return [(xx,yy) for xx,yy in knightList(x,y,2,1) if self.noConflict(gameboard, Color, xx, yy)] class Rook(Piece): def availableMoves(self,x,y,gameboard ,Color = None): if Color is None : Color = self.Color return self.AdNauseum(x, y, gameboard, Color, chessCardinals) class Bishop(Piece): def availableMoves(self,x,y,gameboard, Color = None): if Color is None : Color = self.Color return self.AdNauseum(x, y, gameboard, Color, chessDiagonals) class Queen(Piece): def availableMoves(self,x,y,gameboard, Color = None): if Color is None : Color = self.Color return self.AdNauseum(x, y, gameboard, Color, chessCardinals+chessDiagonals) class King(Piece): def availableMoves(self,x,y,gameboard, Color = None): if Color is None : Color = self.Color return [(xx,yy) for xx,yy in kingList(x,y) if self.noConflict(gameboard, Color, xx, yy)] class Pawn(Piece): def __init__(self,color,name,direction): self.name = name self.Color = color #of course, the smallest piece is the hardest to code. direction should be either 1 or -1, should be -1 if the pawn is traveling "backwards" self.direction = direction def availableMoves(self,x,y,gameboard, Color = None): if Color is None : Color = self.Color answers = [] if (x+1,y+self.direction) in gameboard and self.noConflict(gameboard, Color, x+1, y+self.direction) : answers.append((x+1,y+self.direction)) if (x-1,y+self.direction) in gameboard and self.noConflict(gameboard, Color, x-1, y+self.direction) : answers.append((x-1,y+self.direction)) if (x,y+self.direction) not in gameboard and Color == self.Color : answers.append((x,y+self.direction))# the condition after the and is to make sure the non-capturing movement (the only fucking one in the game) is not used in the calculation of checkmate return answers uniDict = {WHITE : {Pawn : "♙", Rook : "♖", Knight : "♘", Bishop : "♗", King : "♔", Queen : "♕" }, BLACK : {Pawn : "♟", Rook : "♜", Knight : "♞", Bishop : "♝", King : "♚", Queen : "♛" }} Game()
StarcoderdataPython
3249420
<reponame>EpicEric/base_stations_django from collections import Counter from django.test import TestCase from django.contrib.gis.geos import Point from model_mommy import mommy from base_station.models import IdentifiedBaseStation class IdentifiedBaseStationTestCase(TestCase): def test_one_bs_inside_bounds(self): bs = mommy.make(IdentifiedBaseStation, point=Point(-46.5, -23.5)) bs_within_box = IdentifiedBaseStation.get_base_stations_inside_bounds( -46, -23, -47, -24) self.assertEqual(bs_within_box.first(), bs) def test_some_bs_inside_and_some_outside_bounds(self): bs_inside = [ mommy.make(IdentifiedBaseStation, point=Point(-46.5, -23.5)), mommy.make(IdentifiedBaseStation, point=Point(-46.2, -24.0)), mommy.make(IdentifiedBaseStation, point=Point(-46.0, -23.9))] bs_outside = [ mommy.make(IdentifiedBaseStation, point=Point(-47.5, -23.5)), mommy.make(IdentifiedBaseStation, point=Point(46.2, -24.0)), mommy.make(IdentifiedBaseStation, point=Point(-46.3, -24.1))] bs_within_box = IdentifiedBaseStation.get_base_stations_inside_bounds( -46, -23, -47, -24) self.assertEqual(Counter(bs_within_box), Counter(bs_inside)) def test_get_covered_area(self): #TODO pass
StarcoderdataPython
4892531
<filename>aerospike_helpers/operations/hll_operations.py ''' Helper functions to create HyperLogLog operation dictionary arguments for the :mod:`aerospike.Client.operate` and :mod:`aerospike.Client.operate_ordered` methods of the aerospike client. HyperLogLog bins and operations allow for your application to form fast, reasonable approximations of members in the union or intersection between multiple HyperLogLog bins. HyperLogLog’s estimates are a balance between complete accuracy and efficient savings in space and speed in dealing with extremely large datasets. .. note:: HyperLogLog operations require server version >= 4.9.0 .. seealso:: `HyperLogLog (Data Type) more info. <https://www.aerospike.com/docs/guide/hyperloglog.html>`_. Example:: from __future__ import print_function import sys import aerospike from aerospike import exception as ex from aerospike_helpers.operations import hll_operations as hll_ops from aerospike_helpers.operations import operations TEST_NS = "test" TEST_SET = "demo" NUM_INDEX_BITS = 12 NUM_MH_BITS = 24 # Configure the client. config = {"hosts": [("127.0.0.1", 3000)]} # Create a client and connect it to the cluster. try: client = aerospike.client(config).connect() except ex.ClientError as e: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(1) # Add HLL bins. customers = ["Amy", "Farnsworth", "Scruffy"] customer_record_keys = [ (TEST_NS, TEST_SET, "Amy"), (TEST_NS, TEST_SET, "Farnsworth"), (TEST_NS, TEST_SET, "Scruffy"), ] items_viewed = [ ("item%s" % str(i) for i in range(0, 500)), ("item%s" % str(i) for i in range(0, 750)), ("item%s" % str(i) for i in range(250, 1000)), ] for customer, key, items in zip(customers, customer_record_keys, items_viewed): ops = [ operations.write("name", customer), hll_ops.hll_add("viewed", list(items), NUM_INDEX_BITS, NUM_MH_BITS), ] try: client.operate(key, ops) except ex.ClientError as e: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(1) # Find out how many items viewed Amy, Farnsworth, and Scruffy have in common. Farnsworth_viewed = client.get(customer_record_keys[1])[2]["viewed"] Scruffy_viewed = client.get(customer_record_keys[2])[2]["viewed"] viewed = [Farnsworth_viewed, Scruffy_viewed] ops = [hll_ops.hll_get_intersect_count("viewed", viewed)] try: _, _, res = client.operate(customer_record_keys[0], ops) except ex.ClientError as e: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(1) print( "Estimated items viewed intersection: %d." % res["viewed"] ) print("Actual intersection: 250.\\n") # Find out how many unique products Amy, Farnsworth, and Scruffy have viewed. Farnsworth_viewed = client.get(customer_record_keys[1])[2]["viewed"] Scruffy_viewed = client.get(customer_record_keys[2])[2]["viewed"] viewed = [Farnsworth_viewed, Scruffy_viewed] ops = [hll_ops.hll_get_union_count("viewed", viewed)] try: _, _, res = client.operate(customer_record_keys[0], ops) except ex.ClientError as e: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(1) print( "Estimated items viewed union: %d." % res["viewed"] ) print("Actual union: 1000.\\n") # Find the similarity of Amy, Farnsworth, and Scruffy's product views. Farnsworth_viewed = client.get(customer_record_keys[1])[2]["viewed"] Scruffy_viewed = client.get(customer_record_keys[2])[2]["viewed"] viewed = [Farnsworth_viewed, Scruffy_viewed] ops = [hll_ops.hll_get_similarity("viewed", viewed)] try: _, _, res = client.operate(customer_record_keys[0], ops) except ex.ClientError as e: print("Error: {0} [{1}]".format(e.msg, e.code)) sys.exit(1) print( "Estimated items viewed similarity: %f%%." % (res["viewed"] * 100) ) print("Actual similarity: 25%.") """ Expected output: Estimated items viewed intersection: 235. Actual intersection: 250. Estimated items viewed union: 922. Actual union: 1000. Estimated items viewed similarity: 25.488069%. Actual similarity: 25%. """ ''' import aerospike OP_KEY = "op" BIN_KEY = "bin" HLL_POLICY_KEY = "hll_policy" INDEX_BIT_COUNT_KEY = "index_bit_count" MH_BIT_COUNT_KEY = "mh_bit_count" VALUE_LIST_KEY = "value_list" def hll_add(bin_name, values, index_bit_count=None, mh_bit_count=None, policy=None): """Creates a hll_add operation to be used with operate, or operate_ordered. Server will add the values to the hll bin. If the HLL bin does not exist, it will be created with index_bit_count and/or mh_bit_count if they have been supplied. Args: bin_name (str): The name of the bin to be operated on. values: The values to be added to the HLL set. index_bit_count: An optional number of index bits. Must be bewtween 4 and 16 inclusive. mh_bit_count: An optional number of min hash bits. Must be bewtween 4 and 58 inclusive. policy (dict): An optional dictionary of :ref:`hll policy options <aerospike_hll_policies>`. """ op_dict = { OP_KEY: aerospike.OP_HLL_ADD, BIN_KEY: bin_name, VALUE_LIST_KEY: values, INDEX_BIT_COUNT_KEY: -1 if index_bit_count is None else index_bit_count, MH_BIT_COUNT_KEY: -1 if mh_bit_count is None else mh_bit_count } if policy: op_dict[HLL_POLICY_KEY] = policy return op_dict def hll_describe(bin_name): """Creates a hll_describe operation to be used with operate, or operate_ordered. Server returns index and minhash bit counts used to create HLL bin in a list of integers. The list size is 2. Args: bin_name (str): The name of the bin to be operated on. """ op_dict = { OP_KEY: aerospike.OP_HLL_DESCRIBE, BIN_KEY: bin_name, } return op_dict def hll_fold(bin_name, index_bit_count): """Creates a hll_fold operation to be used with operate, or operate_ordered. Servers folds index_bit_count to the specified value. This can only be applied when minhash bit count on the HLL bin is 0. Server does not return a value. Args: bin_name (str): The name of the bin to be operated on. index_bit_count: number of index bits. Must be bewtween 4 and 16 inclusive. """ op_dict = { OP_KEY: aerospike.OP_HLL_FOLD, BIN_KEY: bin_name, INDEX_BIT_COUNT_KEY: index_bit_count } return op_dict def hll_get_count(bin_name): """Creates a hll_get_count operation to be used with operate, or operate_ordered. Server returns estimated count of elements in the HLL bin. Args: bin_name (str): The name of the bin to be operated on. """ op_dict = { OP_KEY: aerospike.OP_HLL_GET_COUNT, BIN_KEY: bin_name, } return op_dict def hll_get_intersect_count(bin_name, hll_list): """Creates a hll_get_intersect_count operation to be used with operate, or operate_ordered. Server returns estimate of elements that would be contained by the intersection of these HLL objects. Args: bin_name (str): The name of the bin to be operated on. hll_list (list): The HLLs to be intersected. """ op_dict = { OP_KEY: aerospike.OP_HLL_GET_INTERSECT_COUNT, BIN_KEY: bin_name, VALUE_LIST_KEY: hll_list } return op_dict def hll_get_similarity(bin_name, hll_list): """Creates a hll_get_similarity operation to be used with operate, or operate_ordered. Server returns estimated similarity of the HLL objects. Server returns a float. Args: bin_name (str): The name of the bin to be operated on. hll_list (list): The HLLs used for similarity estimation. """ op_dict = { OP_KEY: aerospike.OP_HLL_GET_SIMILARITY, BIN_KEY: bin_name, VALUE_LIST_KEY: hll_list } return op_dict def hll_get_union(bin_name, hll_list): """Creates a hll_get_union operation to be used with operate, or operate_ordered. Server returns an HLL object that is the union of all specified HLL objects in hll_list with the HLL bin. Args: bin_name (str): The name of the bin to be operated on. hll_list (list): The HLLs to be unioned. """ op_dict = { OP_KEY: aerospike.OP_HLL_GET_UNION, BIN_KEY: bin_name, VALUE_LIST_KEY: hll_list } return op_dict def hll_get_union_count(bin_name, hll_list): """Creates a hll_get_union_count operation to be used with operate, or operate_ordered. Server returns the estimated count of elements that would be contained by the union of all specified HLL objects in the list with the HLL bin. Args: bin_name (str): The name of the bin to be operated on. hll_list (list): The HLLs to be unioned. """ op_dict = { OP_KEY: aerospike.OP_HLL_GET_UNION_COUNT, BIN_KEY: bin_name, VALUE_LIST_KEY: hll_list } return op_dict def hll_init(bin_name, index_bit_count=None, mh_bit_count=None, policy=None): """Creates a hll_init operation to be used with operate, or operate_ordered. Server creates a new HLL or resets an existing HLL. If index_bit_count and mh_bit_count are None, an existing HLL bin will be reset but retain its configuration. If 1 of index_bit_count or mh_bit_count are set, an existing HLL bin will set that config and retain its current value for the unset config. If the HLL bin does not exist, index_bit_count is required to create it, mh_bit_count is optional. Server does not return a value. Args: bin_name (str): The name of the bin to be operated on. index_bit_count: An optional number of index bits. Must be bewtween 4 and 16 inclusive. mh_bit_count: An optional number of min hash bits. Must be bewtween 4 and 58 inclusive. policy (dict): An optional dictionary of :ref:`hll policy options <aerospike_hll_policies>`. """ op_dict = { OP_KEY: aerospike.OP_HLL_INIT, BIN_KEY: bin_name, INDEX_BIT_COUNT_KEY: -1 if index_bit_count is None else index_bit_count, MH_BIT_COUNT_KEY: -1 if mh_bit_count is None else mh_bit_count } if policy: op_dict[HLL_POLICY_KEY] = policy return op_dict def hll_refresh_count(bin_name): """Creates a hll_refresh_count operation to be used with operate, or operate_ordered. Server updates the cached count if it is stale. Server returns the count. Args: bin_name (str): The name of the bin to be operated on. """ op_dict = { OP_KEY: aerospike.OP_HLL_REFRESH_COUNT, BIN_KEY: bin_name, } return op_dict def hll_set_union(bin_name, hll_list, policy=None): """Creates a hll_set_union operation to be used with operate, or operate_ordered. Server sets the union of all specified HLL objects with the HLL bin. Server returns nothing. Args: bin_name (str): The name of the bin to be operated on. hll_list (list): The HLLs who's union will be set. policy (dict): An optional dictionary of :ref:`hll policy options <aerospike_hll_policies>`. """ op_dict = { OP_KEY: aerospike.OP_HLL_SET_UNION, BIN_KEY: bin_name, VALUE_LIST_KEY: hll_list } if policy: op_dict[HLL_POLICY_KEY] = policy return op_dict
StarcoderdataPython
5142882
""" <NAME> University of Manitoba September 10th, 2021 """ import os import numpy as np import matplotlib.pyplot as plt from umbms import get_proj_path, verify_path from umbms.loadsave import load_pickle ############################################################################### __OUT_DIR = os.path.join(get_proj_path(), 'output/g3/diagnostic-figs/') verify_path(__OUT_DIR) # Define RGB colors for plotting das_col = [0, 0, 0] dmas_col = [80, 80, 80] orr_col = [160, 160, 160] das_col = [ii / 255 for ii in das_col] dmas_col = [ii / 255 for ii in dmas_col] orr_col = [ii / 255 for ii in orr_col] ############################################################################### def plt_adi_ref_performance(): """Plot the diagnostic performance when adipose-only used as ref """ # Define x-coords for bars das_xs = [0, 3.5] dmas_xs = [1, 4.5] orr_xs = [2, 5.5] # Init plot plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) # Plot DAS sensitivity and specificity plt.bar(das_xs, height=[das_sens[0], das_spec], width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') # Plot DMAS sensitivity and specificity plt.bar(dmas_xs, height=[dmas_sens[0], dmas_spec], width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') # Plot plt.bar(orr_xs, height=[orr_sens[0], orr_spec], width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks([1, 4.5], ["Sensitivity", "Specificity"], size=20) plt.ylabel('Metric Value (%)', fontsize=22) # Put text on the bars das_text_ys = [15, 40] das_for_text = [das_sens[0], das_spec] dmas_text_ys = [16, 36] dmas_for_text = [dmas_sens[0], dmas_spec] gd_text_ys = [23, 52] gd_for_text = [orr_sens[0], orr_spec] for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(gd_text_ys)): plt.text(orr_xs[ii], gd_text_ys[ii], "%d" % gd_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save the figure plt.savefig(os.path.join(__OUT_DIR, 'sens_spec_adi_refs.png'), dpi=300, transparent=False) def plt_fib_ref_performance(): """Plot the diagnostic performance when healthy scan as reference """ # Define x-coords for bars das_xs = [0, 3.5] dmas_xs = [1, 4.5] orr_xs = [2, 5.5] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) plt.bar(das_xs, height=[das_sens[1], das_spec], width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=[dmas_sens[1], dmas_spec], width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=[orr_sens[1], orr_spec], width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks([1, 4.5], ["Sensitivity", "Specificity"], size=20) plt.ylabel('Metric Value (%)', fontsize=22) # Put text on the bars das_text_ys = [67, 40] das_for_text = [das_sens[1], das_spec] dmas_text_ys = [74, 36] dmas_for_text = [dmas_sens[1], dmas_spec] gd_text_ys = [78, 52] gd_for_text = [orr_sens[1], orr_spec] for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(gd_text_ys)): plt.text(orr_xs[ii], gd_text_ys[ii], "%d" % gd_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save fig plt.savefig(os.path.join(__OUT_DIR, 'sens_spec_fib_refs.png'), dpi=300, transparent=False) def plt_sens_by_tum_adi(): """Plot sensitivity as a function of tumour size with adi refs """ # Define x-coords of bars das_xs = [0, 3.5, 7, 10.5, 14] dmas_xs = [1, 4.5, 8, 11.5, 15] orr_xs = [2, 5.5, 9, 12.5, 16] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) plt.bar(das_xs, height=das_by_tum_adi, width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=dmas_by_tum_adi, width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=orr_by_tum_adi, width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper left', framealpha=0.95) plt.xticks(dmas_xs, ["30", "25", "20", "15", "10"], size=20) plt.ylabel('Sensitivity (%)', fontsize=22) plt.xlabel('Tumour Diameter (mm)', fontsize=22) # Put text on the fig das_text_ys = np.array(das_by_tum_adi) - 4 das_text_ys[np.array(das_by_tum_adi) == 0] = 4 das_for_text = das_by_tum_adi dmas_text_ys = np.array(dmas_by_tum_adi) - 4 dmas_text_ys[np.array(dmas_by_tum_adi) == 0] = 4 dmas_for_text = dmas_by_tum_adi orr_text_ys = np.array(orr_by_tum_adi) - 4 orr_text_ys[np.array(orr_by_tum_adi) == 0] = 4 orr_for_text = orr_by_tum_adi for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(orr_text_ys)): plt.text(orr_xs[ii], orr_text_ys[ii], "%d" % orr_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot # Save fig plt.savefig(os.path.join(__OUT_DIR, 'sens_by_tum_adi.png'), dpi=300, transparent=False) def plt_sens_by_tum_fib(): """Plot sensitivity vs tumour size when healthy scan used as refs """ # Define x-coords for bars das_xs = [0, 3.5, 7, 10.5, 14] dmas_xs = [1, 4.5, 8, 11.5, 15] orr_xs = [2, 5.5, 9, 12.5, 16] # Init fig plt.figure(figsize=(12, 6)) plt.rc('font', family='Times New Roman') plt.tick_params(labelsize=20) # Plot bars plt.bar(das_xs, height=das_by_tum_fib, width=0.75, linewidth=1, color=das_col, edgecolor='k', label='DAS') plt.bar(dmas_xs, height=dmas_by_tum_fib, width=0.75, capsize=10, linewidth=1, color=dmas_col, edgecolor='k', label='DMAS') plt.bar(orr_xs, height=orr_by_tum_fib, width=0.75, capsize=10, linewidth=1, color=orr_col, edgecolor='k', label='ORR') plt.legend(fontsize=18, loc='upper right', framealpha=0.95) plt.xticks(dmas_xs, ["30", "25", "20", "15", "10"], size=20) plt.ylabel('Sensitivity (%)', fontsize=22) plt.xlabel('Tumour Diameter (mm)', fontsize=22) das_text_ys = np.array(das_by_tum_fib) - 4 das_text_ys[np.array(das_by_tum_fib) == 0] = 4 das_for_text = das_by_tum_fib dmas_text_ys = np.array(dmas_by_tum_fib) - 4 dmas_text_ys[np.array(dmas_by_tum_fib) == 0] = 4 dmas_text_ys[np.array(dmas_by_tum_fib) == 5] = 5 dmas_for_text = dmas_by_tum_fib gd_text_ys = np.array(orr_by_tum_fib) - 4 gd_text_ys[np.array(orr_by_tum_fib) == 0] = 4 gd_for_text = orr_by_tum_fib for ii in range(len(das_text_ys)): plt.text(das_xs[ii], das_text_ys[ii], "%d" % das_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(dmas_text_ys)): plt.text(dmas_xs[ii], dmas_text_ys[ii], "%d" % dmas_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) for ii in range(len(gd_text_ys)): plt.text(orr_xs[ii], gd_text_ys[ii], "%d" % gd_for_text[ii], size=16, color='k', horizontalalignment='center', verticalalignment='center', bbox={'facecolor': 'w', 'alpha': 0.9}) # Set appropriate y-limit plt.ylim([0, 100]) plt.tight_layout() # Make everything fit nicely plt.show() # Display the plot plt.savefig(os.path.join(__OUT_DIR, 'sens_by_tum_fib.png'), dpi=300, transparent=False) ############################################################################### if __name__ == "__main__": # Load the sensitivities for adipose/adipose-fibroglandular # reference subtraction das_adi_sens, dmas_adi_sens, orr_adi_sens = \ (load_pickle( os.path.join(get_proj_path(), 'output/g3/', 'adi_sensitivities_at_target_threshold.pickle'))) das_fib_sens, dmas_fib_sens, orr_fib_sens = \ load_pickle( os.path.join(get_proj_path(), 'output/g3/', 'fib_sensitivities_at_target_threshold.pickle')) # Load the specificities das_spec, dmas_spec, orr_spec = \ (load_pickle( os.path.join(get_proj_path(), 'output/g3/', 'adi_specificities_at_target_threshold.pickle'))) # Define tuples for plots das_sens = das_adi_sens, das_fib_sens dmas_sens = dmas_adi_sens, dmas_fib_sens orr_sens = orr_adi_sens, orr_fib_sens # Load sensitivities as a function of tumour size das_by_tum_adi, dmas_by_tum_adi, orr_by_tum_adi = \ load_pickle(os.path.join(get_proj_path(), 'output/g3/', 'adi_sens_by_tums.pickle')) das_by_tum_fib, dmas_by_tum_fib, orr_by_tum_fib = \ load_pickle(os.path.join(get_proj_path(), 'output/g3/', 'fib_sens_by_tums.pickle')) # Plot diagnostic performance when adipose and # adipose-fibroglandular scans used as reference plt_fib_ref_performance() plt_adi_ref_performance() # Plot sensitivity as a function of tumour size when adipose # scans used as references plt_sens_by_tum_adi() plt_sens_by_tum_fib()
StarcoderdataPython
1817318
<filename>messdiener/serializers.py from rest_framework import serializers from .models import * class LocationSerializer(serializers.ModelSerializer): class Meta: model = Location fields = ('id', 'locationName') class RoleSerializer(serializers.ModelSerializer): class Meta: model = Role fields = ('id', 'roleName') class ClassificationSerializer(serializers.ModelSerializer): def create(self, validated_data): group = Group.objects.get(pk=self.context['view'].kwargs['group_pk']) validated_data['group'] = group return Classification.objects.create(**validated_data) class Meta: model = Classification fields = ('id', 'ageFrom', 'ageTo') class GroupSerializer(serializers.ModelSerializer): classifications = ClassificationSerializer(many=True, read_only=True) class Meta: model = Group fields = ('id', 'groupName', 'classifications') class RequirementSerializer(serializers.ModelSerializer): def create(self, validated_data): type = Type.objects.get(pk=self.context['view'].kwargs['type_pk']) requirement = Requirement.objects.create(type=type, quantity=validated_data['quantity'], role=validated_data['role']) requirement.classifications.set(validated_data['classifications']) return requirement class Meta: model = Requirement fields = ('id', 'quantity', 'role', 'classifications') class RuleSerializer(serializers.ModelSerializer): def create(self, validated_data): type = Type.objects.get(pk=self.context['view'].kwargs['type_pk']) validated_data['type'] = type return Rule.objects.create(**validated_data) class Meta: model = Rule fields = ('id', 'location', 'time', 'dayOfWeek') class TypeSerializer(serializers.ModelSerializer): requirements = RequirementSerializer(many=True, read_only=True) rules = RuleSerializer(many=True, read_only=True) class Meta: model = Type fields = ('id', 'typeName', 'requirements', 'rules') class AcolyteSerializer(serializers.ModelSerializer): class Meta: model = Acolyte fields = ('id', 'firstName', 'lastName', 'extra', 'birthday', 'group', 'inactive') class CreateRequirementClassificationSerializer(serializers.ModelSerializer): class Meta: model = Classification fields = ('id',) class PlanSerializer(serializers.ModelSerializer): class Meta: model = Plan fields = ('id', 'dateFrom', 'dateTo', 'public') class MassSerializer(serializers.ModelSerializer): def create(self, validated_data): plan = Plan.objects.get(pk=self.context['view'].kwargs['plan_pk']) validated_data['plan'] = plan return Mass.objects.create(**validated_data) class Meta: model = Mass fields = ('id', 'time', 'extra', 'location', 'type', 'canceled') class AcolyteMassSerializer(serializers.ModelSerializer): class Meta: model = MassAcolyteRole fields = ('id', 'mass', 'role') class MassAcolyteSerializer(serializers.ModelSerializer): def create(self, validated_data): mass = Mass.objects.get(pk=self.context['view'].kwargs['mass_pk']) validated_data['mass'] = mass return MassAcolyteRole.objects.create(**validated_data) class Meta: model = MassAcolyteRole fields = ('id', 'acolyte', 'role') write_only_fields = ('mass',) class CurrentPlanAcolyteSerializer(serializers.ModelSerializer): class Meta: model = Acolyte fields = ('firstName', 'lastName', 'extra',) class AcolyteRoleSerializer(serializers.ModelSerializer): role = serializers.SlugRelatedField( many=False, read_only=True, slug_field='roleName' ) acolyte = CurrentPlanAcolyteSerializer(many=False) class Meta: model = MassAcolyteRole fields = ('role', 'acolyte') class CurrentPlanSerializer(serializers.ModelSerializer): acolytes = serializers.SerializerMethodField() location = serializers.SlugRelatedField( many=False, read_only=True, slug_field='locationName' ) class Meta: model = Mass fields = ('time', 'extra', 'location', 'canceled', 'acolytes') def get_acolytes(self, obj): queryset = MassAcolyteRole.objects.filter(mass=obj) return AcolyteRoleSerializer(queryset, many=True).data
StarcoderdataPython
386878
""" Django settings for hc project. Generated by 'django-admin startproject' using Django 1.8.2. For more information on this file, see https://docs.djangoproject.com/en/1.8/topics/settings/ For the full list of settings and their values, see https://docs.djangoproject.com/en/1.8/ref/settings/ """ import logging import os import cssutils import dj_database_url cssutils.log.setLevel(logging.CRITICAL) BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) HOST = os.environ.get("HOST", "localhost") SECRET_KEY = os.environ.get("SECRET_KEY", "---") DEBUG = os.environ.get("DEBUG", "t").lower().startswith("t") ALLOWED_HOSTS = [HOST] ALLOWED_DOMAIN = os.environ.get("ALLOWED_DOMAIN") DEFAULT_FROM_EMAIL = os.environ.get( 'DEFAULT_FROM_EMAIL', '<EMAIL>') USE_PAYMENTS = False INSTALLED_APPS = ( 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.humanize', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'compressor', 'djmail', 'hc.accounts', 'hc.api', 'hc.front', 'hc.payments' ) MIDDLEWARE_CLASSES = ( 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.auth.middleware.SessionAuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', 'django.middleware.security.SecurityMiddleware', 'django.middleware.gzip.GZipMiddleware', 'hc.accounts.middleware.TeamAccessMiddleware', ) AUTHENTICATION_BACKENDS = ( 'hc.accounts.backends.EmailBackend', 'hc.accounts.backends.ProfileBackend' ) ROOT_URLCONF = 'hc.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [os.path.join(BASE_DIR, 'templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', 'hc.payments.context_processors.payments' ], }, }, ] WSGI_APPLICATION = 'hc.wsgi.application' TEST_RUNNER = 'hc.api.tests.CustomRunner' # Default database engine is SQLite. So one can just check out code, # install requirements.txt and do manage.py runserver and it works DATABASES = { 'default': { 'ENGINE': 'django.db.backends.sqlite3', 'NAME': './hc.sqlite', } } if 'DATABASE_URL' in os.environ: DATABASES['default'] = dj_database_url.config() # You can switch database engine to postgres or mysql using environment # variable 'DB'. Travis CI does this. if os.environ.get("DB") == "postgres": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': 'hc', 'USER': 'postgres', 'TEST': {'CHARSET': 'UTF8'} } } if os.environ.get("DB") == "mysql": DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'USER': 'root', 'NAME': 'hc', 'TEST': {'CHARSET': 'UTF8'} } } LANGUAGE_CODE = 'en-us' TIME_ZONE = os.environ.get('TIME_ZONE', 'UTC') USE_I18N = True USE_L10N = True USE_TZ = True SESSION_ENGINE = "django.contrib.sessions.backends.signed_cookies" PASSWORD_HASHERS = ('django.contrib.auth.hashers.MD5PasswordHasher',) SITE_ROOT = os.environ.get("SITE_ROOT", "http://localhost:8000") PING_ENDPOINT = SITE_ROOT + "/ping/" PING_EMAIL_DOMAIN = HOST STATIC_URL = '/static/' STATICFILES_DIRS = [os.path.join(BASE_DIR, "static")] STATIC_ROOT = os.path.join(BASE_DIR, 'static-collected') STATICFILES_FINDERS = ( 'django.contrib.staticfiles.finders.FileSystemFinder', 'django.contrib.staticfiles.finders.AppDirectoriesFinder', 'compressor.finders.CompressorFinder', ) COMPRESS_ENABLED = True COMPRESS_OFFLINE = False EMAIL_BACKEND = "djmail.backends.async.EmailBackend" if 'POSTMARK_API_KEY' in os.environ: POSTMARK_API_KEY = os.environ['POSTMARK_API_KEY'] POSTMARK_SENDER = DEFAULT_FROM_EMAIL POSTMARK_TRACK_OPENS = True DJMAIL_REAL_BACKEND = 'postmark.django_backend.EmailBackend' # Pushover integration PUSHOVER_API_TOKEN = None PUSHOVER_SUBSCRIPTION_URL = None PUSHOVER_EMERGENCY_RETRY_DELAY = 300 PUSHOVER_EMERGENCY_EXPIRATION = 86400 LOGGING = { 'version': 1, 'disable_existing_loggers': True, 'handlers': { 'console': { 'level': 'DEBUG', 'class': 'logging.StreamHandler' } }, 'loggers': { 'django': { 'handlers': ['console'] }, 'djmail': { 'handlers': ['console'] }, 'py.warnings': { 'handlers': ['console'], 'level': 'ERROR' } }, }
StarcoderdataPython
1919079
<reponame>alvations/USAAR-SemEval-2015 #!/usr/bin/env python -*- coding: utf-8 -*- import io, os from itertools import chain import numpy as np indir = 'Asiya-outputs/' def get_asiya_scores(): feature_data = {} for infile in os.listdir(indir): if not infile.startswith('features'): continue if infile in ['features.cp', 'features.sr', 'features.ne', 'features.esa']: continue data = [[float(i) for i in line.strip().split()] for line in io.open(indir+infile, 'r')] feature_data[infile] = data _seventy_seven = [i + j + k for i,j,k in zip(feature_data['features.meteor'], feature_data['features.sp'], feature_data['features.ngram'])] seventy_seven = [] to_remove = [] for i,j in enumerate(_seventy_seven): if len(j) != 76: to_remove.append(i) else: seventy_seven.append(j) return seventy_seven, to_remove def get_asiya_test_scores(): feature_data = {} for infile in os.listdir(indir): if not infile.startswith('features.test'): continue if infile not in ['features.test.meteor', 'features.test.sp', 'features.test.ngram']: continue data = [[float(i) for i in line.strip().split()] for line in io.open(indir+infile, 'r')] feature_data[infile] = data _seventy_seven = [i + j + k for i,j,k in zip(feature_data['features.test.meteor'], feature_data['features.test.sp'], feature_data['features.test.ngram'])] return _seventy_seven for i,j in enumerate(_seventy_seven): print i, len(j), j assert len(j) == 76 #def get_asiya_scores_for_test(): ''' indir = 'Asiya-outputs/' feature_data = {} for infile in os.listdir(indir): if not infile.startswith('report'): continue if infile not in ['report.test.meteor', 'report.test.sp', 'report.test.ngram']: continue for line in io.open(indir+infile, 'r'): print infile, line.split() break data = [[float(i) for i in line.strip().split()] for line in io.open(indir+infile, 'r')] feature_data[infile] = data for line in data: print len(line), line '''
StarcoderdataPython
5133925
from __future__ import division import os import time from glob import glob import tensorflow as tf import numpy as np from six.moves import xrange import random import utils from ops import * class SentimentRNN(object): def __init__(self, sess, vocab_size, n_classes, batch_size, keep_prob, max_length, n_recurrent_layers, n_fc_layers, recurrent_layer_width, fc_layer_width, checkpoint_dir, epoch): """Inits variables, builds model""" self.sess = sess self.vocab_size = vocab_size self.n_classes = n_classes self.batch_size = batch_size self.max_length = max_length self.n_recurrent_layers = n_recurrent_layers self.n_fc_layers = n_fc_layers self.recurrent_layer_width = recurrent_layer_width self.fc_layer_width = fc_layer_width self.checkpoint_dir = checkpoint_dir self.epoch = epoch self.build_model() def build_model(self): """Builds model and creates loss functions""" # X is our input data, a tensor of sentences # where each sentence is a list of 1-hot encodings of words # will be like [[[0, 0, 1, 0...], [1, 0, 1, 0...]...],[...]] self.X = tf.placeholder(tf.float32, [None, self.max_length, self.vocab_size]) # y is our labels # will be like [[1, 0, 0], [0, 0, 1]] self.y = tf.placeholder(tf.float32, [None, self.n_classes], name='y') # Set up keep prob placeholder variable self.keep_prob = tf.placeholder(tf.float32, name='keep_prob') # logits is our predictions # will be like [[1, 0, 0], [0, 0, 1]] self.logits = self.rnn_simple_model(self.X, self.y) # Construct loss function (mean of all cross-entropy losses) self.loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(self.logits, self.y)) # self.loss = tf.reduce_mean(-tf.reduce_sum(self.y * tf.log(self.logits), reduction_indices=[1])) self.loss_sum = tf.scalar_summary("loss", self.loss) # Print trainable variables (useful for debugging) print("Trainable Variables:", [var.name for var in tf.trainable_variables()]) self.t_vars =tf.trainable_variables() self.saver = tf.train.Saver() def train(self, config, X_train, y_train, X_test, y_test): """Train DeepPDF""" train_step = tf.train.AdamOptimizer(config.learning_rate, beta1=config.beta1).minimize(self.loss) correct_prediction = tf.equal(tf.argmax(self.logits,1), tf.argmax(self.y,1)) accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32)) self.sess.run(tf.initialize_all_variables()) self.writer = tf.train.SummaryWriter("./logs", self.sess.graph) counter = 1 start_time = time.time() if self.load(self.checkpoint_dir): print(" [*] Load SUCCESS") else: print(" [!] Load failed...") for epoch in range(self.epoch): all_minibatch_indices = utils.get_random_minibatch_indices(len(X_train), config.batch_size) num_minibatches = len(all_minibatch_indices) for minibatch_idx in range(num_minibatches): minibatch_indices = all_minibatch_indices[minibatch_idx] batch_x, batch_y = np.zeros([config.batch_size]+[X_train.shape][:-1], dtype='float32'), np.zeros([config.batch_size]+[y_train.shape][:-1], dtype='float32') batch_x = X_train[minibatch_indices,:,:] batch_y = y_train[minibatch_indices,:] # Update model weights # train_step.run(feed_dict={self.X:batch_x, self.y:batch_y, self.keep_prob: config.keep_prob}) optimizer = tf.train.GradientDescentOptimizer(0.0002).minimize(self.loss) # self.sess.run([train_step], feed_dict={self.X:batch_x, self.y:batch_y, self.keep_prob: config.keep_prob}) self.sess.run([optimizer], feed_dict={self.X:batch_x, self.y:batch_y, self.keep_prob: config.keep_prob}) batch_loss = self.sess.run(self.loss, feed_dict={self.X:batch_x, self.y:batch_y, self.keep_prob: 1.0}) tf.scalar_summary('batch_loss_cross_entropy', self.loss) counter += 1 if np.mod(counter, 5) == 1: print("Epoch: [%2d] [%4d/%4d] time: %4.4f, batch loss: %.8f" \ % (epoch, minibatch_idx, num_minibatches, time.time() - start_time, batch_loss)) if np.mod(counter, 500) == 2: self.save(config.checkpoint_dir, counter) with tf.name_scope('accuracy-metrics'): # Eval Accuracy after each epoch test_accuracy = accuracy.eval(feed_dict={self.X: X_test, self.y: y_test, self.keep_prob: 1.0}) print("Epoch %d, testing accuracy %g"%(epoch, test_accuracy)) test_loss = self.loss.eval(feed_dict={self.X: X_test, self.y: y_test, self.keep_prob: 1.0}) print("Epoch %d, test loss %g"%(epoch, test_loss)) training_accuracy = accuracy.eval(feed_dict={self.X: X_train, self.y: y_train, self.keep_prob: 1.0}) print("Epoch %d, training accuracy %g"%(epoch, training_accuracy)) training_loss = self.loss.eval(feed_dict={self.X: X_train, self.y: y_train, self.keep_prob: 1.0}) print("Epoch %d, training loss %g"%(epoch, training_loss)) tf.scalar_summary('test_accuracy', test_accuracy) tf.scalar_summary('test_loss', batch_loss) tf.scalar_summary('training_accuracy', batch_loss) tf.scalar_summary('training_loss', batch_loss) tf.scalar_summary('accuracy-metrics', accuracy) merged = tf.merge_all_summaries() def rnn_simple_model(self, X, y): """Returns Model Graph""" # print(X.get_shape()) with tf.name_scope("recurrent_layers") as scope: # Create LSTM Cell cell = tf.nn.rnn_cell.LSTMCell(self.recurrent_layer_width) cell = tf.nn.rnn_cell.DropoutWrapper( cell, output_keep_prob=self.keep_prob) stacked_cells = tf.nn.rnn_cell.MultiRNNCell([cell] * self.n_recurrent_layers) output, encoding = tf.nn.dynamic_rnn(stacked_cells, X, dtype=tf.float32) with tf.name_scope("fc_layers") as scope: # Connect RNN Embedding output into fully connected layers prev_layer = encoding for fc_index in range(0, self.n_fc_layers-1): fci = lrelu(linear(prev_layer, self.fc_layer_width, 'fc{}'.format(fc_index))) fc_prev = fci fc_final = linear(fc_prev, self.n_classes, 'fc{}'.format(self.n_fc_layers-1)) return tf.nn.softmax(fc_final) def save(self, checkpoint_dir, step): """Saves Model""" model_name = "sentiment.model" model_dir = "sentiment-%s" % (self.batch_size) checkpoint_dir = os.path.join(checkpoint_dir, model_dir) if not os.path.exists(checkpoint_dir): os.makedirs(checkpoint_dir) self.saver.save(self.sess, os.path.join(checkpoint_dir, model_name), global_step=step) def load(self, checkpoint_dir): """Loads Model""" print(" [*] Reading checkpoints...") model_dir = "sentiment-%s" % (self.batch_size) checkpoint_dir = os.path.join(checkpoint_dir, model_dir) ckpt = tf.train.get_checkpoint_state(checkpoint_dir) if ckpt and ckpt.model_checkpoint_path: ckpt_name = os.path.basename(ckpt.model_checkpoint_path) self.saver.restore(self.sess, os.path.join(checkpoint_dir, ckpt_name)) return True else: return False
StarcoderdataPython
11383329
# Copyright 2021 <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import asyncio import json import logging import threading import websockets import send_receive_sync_helper class DocumentInspector: # Types of the documents to be inspected. __GUI_DOC_TYPES = ['biDashboard', 'slide'] # Methods used in the sent messages. __GET_DOCUMENT = 'GetDocument' __GET_WIDGET_CONTAINER = 'GetWidgetContainer' __GET_WIDGET_PROPERTIES = 'GetWidgetProperties' def __init__(self, server_uri): self.__server_uri = server_uri self.__messages_counter = 0 self.__messages_counter_thread_lock = threading.Lock() def get_widgets(self, doc_id, timeout=60): """Gets information from all graphical components that belong to a given document. This method provides users a synchronized entry point, hiding the asynchronous processing complexity from them. Args: doc_id: The document identifier. timeout: Max seconds to wait. Returns: A ``list`` with the document's graphical components information. """ try: return self.__run_until_complete(self.__get_widgets(doc_id, timeout)) except Exception: logging.warning("error on get_widgets:", exc_info=True) return [] @classmethod def __run_until_complete(cls, future): event_loop = asyncio.new_event_loop() try: return event_loop.run_until_complete(future) except Exception: logging.info('Something wrong happened while the workload was running.') cls.__cancel_all_tasks(event_loop) raise finally: event_loop.close() async def __get_widgets(self, doc_id, timeout): async with self.__connect_websocket() as websocket: sync_helper = send_receive_sync_helper.SendReceiveSyncHelper() await self.__start_get_widgets_workload(websocket, doc_id, sync_helper) msg_sender = self.__send_get_widgets_messages msg_receiver = self.__receive_get_widgets_messages return await asyncio.wait_for( self.__hold_websocket_communication(msg_sender(websocket, sync_helper), msg_receiver(websocket, sync_helper)), timeout) def __connect_websocket(self): """Opens a websocket connection. Returns: An awaiting function that yields a :class:`WebSocketClientProtocol` which can then be used to send and receive messages. """ return websockets.connect(uri=self.__server_uri) async def __start_get_widgets_workload(self, websocket, doc_id, sync_helper): message_id = await self.__send_get_document_message(websocket, doc_id) sync_helper.add_pending_reply_id(message_id, self.__GET_DOCUMENT) @classmethod async def __hold_websocket_communication(cls, msg_sender, msg_receiver): """Holds a websocket communication session until the awaitable message sender and receiver are done. Args: msg_sender: A coroutine or future that sends messages. msg_receiver: A coroutine or future that receives messages. Returns: The result of the receiver. """ results = await asyncio.gather(*[msg_sender, msg_receiver]) # The ``results`` list is expected to have two elements. The first one stores the result of # the message sender and can be ignored. The second one stores the result of the receiver, # which means the object to be returned on successful execution. return results[1] @classmethod async def __receive_get_widgets_messages(cls, websocket, sync_helper): results = [] async for message in websocket: message_json = json.loads(message) message_id = message_json.get('id') if not message_id: logging.info('Unhandled API message: %s', message) continue logging.debug('Reply received: %d', message_id) if sync_helper.is_pending_reply(message_id, cls.__GET_WIDGET_PROPERTIES): results.append(message_json['result']) else: sync_helper.add_unhandled_reply(message_json) sync_helper.remove_pending_reply_id(message_id) sync_helper.notify_new_reply() return results async def __send_get_widgets_messages(self, websocket, sync_helper): while not sync_helper.were_all_replies_processed(): if not sync_helper.is_there_reply_notification(): await sync_helper.wait_for_replies() sync_helper.clear_reply_notifications() for reply in sync_helper.get_all_unhandled_replies(): await self.__send_follow_up_msg_get_widgets(websocket, sync_helper, reply) # Closes the websocket when there are no more replies to be processed. await websocket.close() async def __send_follow_up_msg_get_widgets(self, websocket, sync_helper, reply): message_id = reply.get('id') if sync_helper.is_method(message_id, self.__GET_DOCUMENT): await self.__handle_get_document_reply(websocket, sync_helper, reply) sync_helper.remove_unhandled_reply(reply) elif sync_helper.is_method(message_id, self.__GET_WIDGET_CONTAINER): await self.__handle_get_widget_container_reply(websocket, sync_helper, reply) sync_helper.remove_unhandled_reply(reply) async def __send_get_document_message(self, websocket, doc_id): """Sends a Get Document message. Returns: The message id. """ message_id = self.__generate_message_id() await websocket.send( json.dumps({ 'method': self.__GET_DOCUMENT, 'params': { 'id': doc_id }, 'id': message_id })) logging.debug('Get Document message sent: %d', message_id) return message_id async def __send_get_widget_container_message(self, websocket, container_id): """Sends a Get Widget Container message. Returns: The message id. """ message_id = self.__generate_message_id() await websocket.send( json.dumps({ 'method': self.__GET_WIDGET_CONTAINER, 'params': { 'id': container_id, }, 'id': message_id, })) logging.debug('Get Widget Container message sent: %d', message_id) return message_id async def __send_get_widget_properties_message(self, websocket, widget_id): """Sends a Get Widget Properties message. Returns: The message id. """ message_id = self.__generate_message_id() await websocket.send( json.dumps({ 'method': self.__GET_WIDGET_PROPERTIES, 'params': { 'id': widget_id, }, 'id': message_id, })) logging.debug('Get Widget Properties message sent: %d', message_id) return message_id async def __handle_get_document_reply(self, websocket, sync_helper, reply): result = reply['result'] if not result['type'] in self.__GUI_DOC_TYPES: return container_ids = result['widgetContainerIds'] get_widget_container_msg_ids = await asyncio.gather(*[ self.__send_get_widget_container_message(websocket, container_id) for container_id in container_ids ]) sync_helper.add_pending_reply_ids(get_widget_container_msg_ids, self.__GET_WIDGET_CONTAINER) async def __handle_get_widget_container_reply(self, websocket, sync_helper, reply): widget_id = reply['result']['widgetId'] get_widget_properties_msg_id = \ await self.__send_get_widget_properties_message(websocket, widget_id) sync_helper.add_pending_reply_id(get_widget_properties_msg_id, self.__GET_WIDGET_PROPERTIES) @classmethod def __cancel_all_tasks(cls, event_loop): logging.info('All tasks will be canceled...') for task in asyncio.Task.all_tasks(loop=event_loop): task.cancel() def __generate_message_id(self): with self.__messages_counter_thread_lock: self.__messages_counter += 1 return self.__messages_counter
StarcoderdataPython
11227242
import os import glob import pandas as pd import tarfile import urllib.request from experimentgenerator.experiment_generator import ExperimentGenerator from experimentgenerator.quantiled_cache import QuantiledCache from autoscalingsim.utils.error_check import ErrorChecker from autoscalingsim.utils.download_bar import DownloadProgressBar @ExperimentGenerator.register('azurefunctions') class AzureFunctionsExperimentGenerator(ExperimentGenerator): """ Generates the basic experiment configuration files based on the Azure functions dataset published at ATC'20: <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, <NAME>, & <NAME> (2020). Serverless in the Wild: Characterizing and Optimizing the Serverless Workload at a Large Cloud Provider. In 2020 USENIX Annual Technical Conference (USENIX ATC 20) (pp. 205–218). USENIX Association. """ dataset_link = 'https://azurecloudpublicdataset2.blob.core.windows.net/azurepublicdatasetv2/azurefunctions_dataset2019/azurefunctions-dataset2019.tar.xz' filename_pattern_invocations = 'invocations_per_function_md.anon.d{}.csv' filename_pattern_memory = 'app_memory_percentiles.anon.d{}.csv' filename_pattern_duration = 'function_durations_percentiles.anon.d{}.csv' @classmethod def enrich_experiment_generation_recipe(cls, specialized_generator_config : dict, experiment_generation_recipe : dict): data_path = ErrorChecker.key_check_and_load('data_path', specialized_generator_config) download_dataset = True if os.path.exists(data_path): download_dataset = len(glob.glob(data_path + '/*.csv')) == 0 else: os.makedirs(data_path) if download_dataset: print('Downloading the Azure functions archive...') downloaded_data_archive = os.path.join(data_path, 'azurefunctions-dataset2019.tar.xz') urllib.request.urlretrieve(cls.dataset_link, downloaded_data_archive, DownloadProgressBar()) print('Unpacking...') with tarfile.open(downloaded_data_archive) as f: f.extractall(data_path) print('Removing the archive...') os.remove(downloaded_data_archive) quantiled_cache = QuantiledCache.load_or_create(data_path) file_id_raw = ErrorChecker.key_check_and_load('file_id', specialized_generator_config) file_id = cls._file_id_to_str(file_id_raw) # Invocations filename_invocations = os.path.join(data_path, cls.filename_pattern_invocations.format(file_id)) invocations_data_raw = pd.read_csv(filename_invocations) invocations_data_http = invocations_data_raw[invocations_data_raw.Trigger == 'http'] invocations_data = pd.melt(invocations_data_http, id_vars = ['HashApp', 'HashFunction'], value_vars = invocations_data_http.columns[4:]).rename(columns = {'variable': 'datetime', 'value': 'invocations'}) invocations_data.datetime = pd.to_datetime(invocations_data.datetime, unit = 'm') invocations_data.set_index(['HashApp', 'HashFunction', 'datetime'], inplace = True) # Memory filename_memory = os.path.join(data_path, cls.filename_pattern_memory.format(file_id)) memory_data = pd.read_csv(filename_memory).set_index(['HashOwner', 'HashApp']) # Duration filename_duration = os.path.join(data_path, cls.filename_pattern_duration.format(file_id)) duration_data = pd.read_csv(filename_duration).set_index(['HashOwner', 'HashApp', 'HashFunction']) # Initializing generation parameters invocations_quantiles_for_apps_filtering = ErrorChecker.key_check_and_load('consider_applications_with_invocations_quantiles', specialized_generator_config) left_quantile_invocations = ErrorChecker.key_check_and_load('left_quantile', invocations_quantiles_for_apps_filtering) right_quantile_invocations = ErrorChecker.key_check_and_load('right_quantile', invocations_quantiles_for_apps_filtering) app_size_quantile = ErrorChecker.key_check_and_load('app_size_quantile_among_selected_based_on_invocations', specialized_generator_config) apps_in_diapazone = quantiled_cache.update_and_get(left_quantile_invocations, right_quantile_invocations, invocations_data) # TODO: below two lines take a lot of time to run -- think about optimizing/caching invocations_data_selected = invocations_data.loc[list(apps_in_diapazone)] #averaged_load_per_minute = invocations_data_selected.groupby(['datetime']).mean().round().astype({'invocations': 'int32'}) services_count = experiment_generation_recipe['application_recipe']['services'].get('services_count', None) if services_count is None: services_count = int(invocations_data_selected.reset_index().groupby(['HashApp'])['HashFunction'].nunique().quantile(app_size_quantile)) memory_data_aggregated = memory_data.groupby(['HashApp']).mean() memory_data_selected = memory_data_aggregated.reindex(apps_in_diapazone).dropna() memory_percentiles = memory_data_selected.mean()[2:] / services_count # TODO: consider using information about the function? e.g. distribution over the functions # we have to first select a function with its probabilities distribution... duration_data_aggregated = duration_data.groupby(['HashApp']).mean() duration_data_selected = duration_data_aggregated.reindex(apps_in_diapazone).dropna() duration_percentiles = duration_data_selected.mean()[5:] duration_percentiles_starts = [0] + list(duration_percentiles[:-1]) duration_percentiles_ends = list(duration_percentiles) memory_percentiles_starts = [0] + list(memory_percentiles[:-1]) memory_percentiles_ends = list(memory_percentiles) # Enriching the recipe # TODO: consider empirical distribution experiment_generation_recipe['application_recipe']['services']['services_count'] = services_count experiment_generation_recipe['requests_recipe']['duration'] = { 'percentiles': { 'starts': duration_percentiles_starts, 'ends': duration_percentiles_ends}, 'probabilities': [0.01, 0.24, 0.25, 0.25, 0.24, 0.01], 'unit': 'ms'} # TODO: change according to the format in experiment generator and agree with the possible overwrite by other data analyzer #experiment_generation_recipe['requests_recipe']['system_requirements']['memory'] = { 'percentiles': { 'starts': memory_percentiles_starts, 'ends': memory_percentiles_ends}, # 'probabilities': [0.01, 0.04, 0.20, 0.25, 0.25, 0.20, 0.04, 0.01], # 'unit': 'MB'} if experiment_generation_recipe['load_recipe']['load_kind'] == 'seasonal': invocations_data_per_app = invocations_data.groupby(['HashApp', 'datetime']).max() invocations_data_per_hour_per_app = invocations_data_per_app.groupby(['HashApp', pd.Grouper(freq='60T', level='datetime')]).sum().fillna(0).rename(columns = {'invocations': 'Load'}) invocations_data_per_hour = list(invocations_data_per_hour_per_app.groupby('datetime').mean().fillna(0)['Load'].astype(int))[:24] experiment_generation_recipe['load_recipe']['pattern'] = {'type': 'values', 'params': [ { 'month': 'all', 'day_of_week': 'all', 'values' : invocations_data_per_hour } ]} @classmethod def _file_id_to_str(cls, file_id : int): return '0' + str(file_id) if file_id < 10 else str(file_id)
StarcoderdataPython
3336621
# Copyright 2017 <NAME> import tensorflow as tf from layers import InputLayer from parameter import Parameter class INeuralNetwork: def get_input_layer(self, input_id): pass def set_input_layer(self, input_id, input_layer): pass def get_output_layer(self): pass def get_input_placeholder_layers(self): pass def compile(self, output): pass def is_compiled(self): pass def set_parameters(self, parameters): pass def get_parameters(self): pass def copy(self, new_name, reuse_parameters=False): pass def predict_batch(self, inputs): pass def predict(self, inputs): pass class NeuralNetwork(INeuralNetwork): def __init__(self, name, session, input_dims): self.name = name self.session = session self.input_dims = input_dims self.layers = [] self.connections = [] self.parameters = [] self.input_layers = [] self.input_placeholder_layers = [] for input_id, input_dim in enumerate(input_dims): input_layer = InputLayer(self.name + "_input_" + str(input_id), input_dim) self.input_layers.append(input_layer) self.input_placeholder_layers.append(input_layer) self.is_training = tf.placeholder(tf.bool, name=(name + "_is_training")) self.output_layer = None self.output_dim = None self.compiled = False def get_input_layer(self, input_id): return self.input_layers[input_id] def set_input_layer(self, input_id, input_layer): if self.compiled: raise Exception("Network is already compiled. Changes are not allowed!") if self.input_dims[input_id] != input_layer.get_size(): raise Exception("Input dimensions do not match!") self.input_placeholder_layers.remove(self.input_layers[input_id]) self.input_layers[input_id].set_input_layer(input_layer) def get_output_layer(self): return self.output_layer def get_input_placeholder_layers(self): return self.input_placeholder_layers def explore_layer_inputs(self, layer): for input_layer in layer.get_input_layers(): if input_layer.get_id() is None: self.explore_layer_inputs(input_layer) layer.set_id(len(self.layers)) self.layers.append(layer) self.connections.append([l.get_id() for l in layer.get_input_layers()]) def compile(self, output_layer, unconnected_layers=None): if self.compiled: raise Exception("Network is already compiled!") self.output_layer = output_layer self.output_dim = output_layer.get_size() self.layers = [] # search network backwards from output to find all connected layers self.explore_layer_inputs(output_layer) if unconnected_layers: for l in unconnected_layers: self.explore_layer_inputs(l) for input_layer in self.input_layers: if input_layer.get_id() is None: raise Exception("Output is unreachable from input " + input_layer.name + "!\nNetwork: " + str(self)) for layer in self.layers: layer.compile(self) self.parameters.extend(layer.get_parameters()) self.compiled = True def is_compiled(self): return self.compiled def set_parameters(self, parameters): if self.compiled: raise Exception("Cannot change parameters of compiled network!") expected_parameter_count = sum([l.get_parameter_count() for l in self.layers]) if len(parameters) != expected_parameter_count: raise Exception( "Expected " + str(expected_parameter_count) + " parameters, but got " + str(len(parameters)) + " instead!") for layer in self.layers: layer.set_parameters(parameters[0:layer.get_parameter_count()]) parameters = parameters[layer.get_parameter_count():] def get_parameters(self): return self.parameters def copy(self, new_name, reuse_parameters=False): if not self.compiled: raise Exception("Cannot make a copy of uncompiled network!") new_network = NeuralNetwork(new_name, self.session, self.input_dims) for layer_id, layer in enumerate(self.layers): is_input = False for input_id, input_layer in enumerate(self.input_layers): if layer == input_layer: is_input = True new_network.layers.append(new_network.input_layers[input_id]) break if is_input: continue input_layers = [new_network.layers[i] for i in self.connections[layer_id]] layer_copy = layer.copy(layer.name, input_layers) new_network.layers.append(layer_copy) if layer == self.output_layer: new_network.output_layer = layer_copy if reuse_parameters: new_network.set_parameters(self.parameters) return new_network def predict_batch(self, inputs): if not self.compiled: raise Exception("Network must be compiled first!") feed_dict = dict(zip([l.get_output() for l in self.input_placeholder_layers], inputs)) feed_dict[self.is_training] = False return self.session.run(self.output_layer.get_output(), feed_dict=feed_dict) def predict(self, inputs): return self.predict_batch([[i] for i in inputs])[0] def custom_fetch(self, inputs, fetch_layers): feed_dict = dict(zip([l.get_output() for l in self.input_placeholder_layers], inputs)) feed_dict[self.is_training] = False return self.session.run(fetch_layers, feed_dict=feed_dict) def __str__(self): network_str = "" for layer in self.layers: network_str += str([l.get_name() for l in layer.get_input_layers()]) + " --> " + layer.get_name() + "\n" return network_str class TargetNeuralNetwork(INeuralNetwork): def __init__(self, name, source_network, approach_rate): self.name = name self.source_network = source_network self.approach_rate = approach_rate if not source_network.is_compiled(): raise Exception("Cannot create a target network from uncompiled source network!") self.exponential_ma = tf.train.ExponentialMovingAverage(decay=approach_rate) self.approach_parameters_op = self.exponential_ma.apply([par.tf_variable for par in source_network.get_parameters()]) self.target_parameters = [Parameter(self.exponential_ma.average(par.tf_variable), trainable=False) for par in source_network.get_parameters()] self.target_network = source_network.copy(name) self.target_network.set_parameters(self.target_parameters) self.target_network.compile(self.target_network.get_output_layer()) self.session = self.source_network.session self.input_dims = source_network.input_dims self.is_training = self.target_network.is_training def approach_source_parameters(self): self.session.run(self.approach_parameters_op) def get_input_layer(self, input_id): return self.target_network.get_input(input_id) def set_input_layer(self, input_id, input_layer): return self.target_network.get_input(input_id) def get_output_layer(self): return self.target_network.get_output_layer() def get_input_placeholder_layers(self): return self.target_network.get_input_placeholder_layers() def compile(self, output): return self.target_network.compile(output) def is_compiled(self): return self.target_network.is_compiled() def set_parameters(self, parameters): raise Exception("Changing parameters of a target network is not supported!") def get_parameters(self): return self.target_parameters def copy(self, new_name, reuse_parameters=False): return self.target_network.copy(new_name, reuse_parameters) def predict_batch(self, inputs): return self.target_network.predict_batch(inputs) def predict(self, inputs): return self.target_network.predict(inputs)
StarcoderdataPython
294133
<gh_stars>0 from pwn import * # context.log_level = 'debug' p = process('./main_exe') p.send('\n') # start game p.sendline('q') # quit game p.sendline('TeamH4C') # input name p.sendline('asdf') # input comment p.sendline('H4C') # secret mode!!! p.recv() for repeat in range(5): print p.recvuntil('(New Wave!)') q = p.recv(2048).strip() for f in ['<[', ']>', '=>> ((???))', '!']: q = q.replace(f, '').strip() print('question:', q) num = [] oper = [] for idx, this in enumerate(q.split(' ')): if idx%2 != 0: # operater oper.append(this) else: # num num.append(int(this)) print(num, oper) ans = num[0] for i in range(4): if oper[i] in ('-', '/'): ans += num[i+1] elif oper[i] in ('+', '%'): ans -= num[i+1] else: ans *= num[i+1] print('answer:', ans) p.sendline(str(ans)) print [p.recvline()] log.success(str(repeat+1)) p.sendline(";$'\\x73\\x68'") # command injection p.interactive()
StarcoderdataPython
8016583
# Rock-paper-scissors-lizard-Spock template import random # The key idea of this program is to equate the strings # "rock", "paper", "scissors", "lizard", "Spock" to numbers # as follows: # # 0 - rock # 1 - Spock # 2 - paper # 3 - lizard # 4 - scissors # helper functions def name_to_number(name): # delete the following pass statement and fill in your code below if(name == "Spock" or name=="spock" or name=="SPOCK"): return 1 elif(name == "Rock" or name =="rock" or name=="ROCK"): return 0 elif(name == "Paper" or name=="paper" or name=="PAPER"): return 2 elif(name == "Lizard" or name=="lizard" or name == "LIZARD"): return 3 elif(name=="Scissors" or name=="scissors" or name=="SCISSORS"): return 4 else: ##-1 means invalid number return -1 # convert name to number using if/elif/else # don't forget to return the result! def number_to_name(number): # delete the following pass statement and fill in your code below if(number == 0): return "Rock" elif(number == 1): return "Spock" elif(number == 2): return "Paper" elif(number == 3): return "Lizard" elif(number==4): return "Scissors" else: return "Invalid number" # convert number to a name using if/elif/else # don't forget to return the result! def rpsls(player_choice): # delete the following pass statement and fill in your code below # print a blank line to separate consecutive games print "" # print out the message for the player's choice print "Player chooses: " + player_choice # convert the player's choice to player_number using the function name_to_number() player_number = name_to_number(player_choice) #print player_number # compute random guess for comp_number using random.randrange() comp_number = random.randrange(0,5) # convert comp_number to comp_choice using the function number_to_name() comp_choice = number_to_name(comp_number) # print out the message for computer's choice print "Computer chooses: " + comp_choice # compute difference of comp_number and player_number modulo five difference = (comp_number - player_number) %5 #print difference # use if/elif/else to determine winner, print winner message if(difference == 1 or difference == 2): print "Computer wins!" elif(difference == 3 or difference ==4): print "Player wins!" else: print "Tie game!" # test your code - THESE CALLS MUST BE PRESENT IN YOUR SUBMITTED CODE rpsls("rock") rpsls("Spock") rpsls("paper") rpsls("lizard") rpsls("scissors") # always remember to check your completed program against the grading rubric
StarcoderdataPython
12846007
# -*- coding: utf-8 -*- # # Copyright 2017 Google Inc. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Budou, an automatic CJK line break organizer.""" from __future__ import print_function from .cachefactory import load_cache import collections from xml.etree import ElementTree as ET import html5lib import re import six import unicodedata cache = load_cache() class Chunk(object): """Chunk object. This represents a unit for word segmentation. Attributes: word: Surface word of the chunk. (str) pos: Part of speech. (str) label: Label information. (str) dependency: Dependency to neighbor words. None for no dependency, True for dependency to the following word, and False for the dependency to the previous word. (bool or None) """ SPACE_POS = 'SPACE' BREAK_POS = 'BREAK' DEPENDENT_LABEL = ( 'P', 'SNUM', 'PRT', 'AUX', 'SUFF', 'AUXPASS', 'RDROP', 'NUMBER', 'NUM', 'PREF') def __init__(self, word, pos=None, label=None, dependency=None): self.word = word self.pos = pos self.label = label self.dependency = dependency self._add_dependency_if_punct() def __repr__(self): return 'Chunk(%s, %s, %s, %s)' % ( repr(self.word), self.pos, self.label, self.dependency) @classmethod def space(cls): """Creates space Chunk.""" chunk = cls(u' ', cls.SPACE_POS) return chunk @classmethod def breakline(cls): """Creates breakline Chunk.""" chunk = cls(u'\n', cls.BREAK_POS) return chunk def is_space(self): """Checks if this is space Chunk.""" return self.pos == self.SPACE_POS def has_cjk(self): """Checks if the word of the chunk contains CJK characters Using range from https://github.com/nltk/nltk/blob/develop/nltk/tokenize/util.py#L149 """ for char in self.word: if any([start <= ord(char) <= end for start, end in [(4352, 4607), (11904, 42191), (43072, 43135), (44032, 55215), (63744, 64255), (65072, 65103), (65381, 65500), (131072, 196607)] ]): return True return False def update_word(self, word): """Updates the word of the chunk.""" self.word = word def serialize(self): """Returns serialized chunk data in dictionary.""" return { 'word': self.word, 'pos': self.pos, 'label': self.label, 'dependency': self.dependency, 'has_cjk': self.has_cjk(), } def maybe_add_dependency(self, default_dependency_direction): """Adds dependency if any dependency is not assigned yet.""" if self.dependency is None and self.label in self.DEPENDENT_LABEL: self.dependency = default_dependency_direction def _add_dependency_if_punct(self): """Adds dependency if the chunk is punctuation.""" if self.pos == 'PUNCT': try: # Getting unicode category to determine the direction. # Concatenates to the following if it belongs to Ps or Pi category. # Ps: Punctuation, open (e.g. opening bracket characters) # Pi: Punctuation, initial quote (e.g. opening quotation mark) # Otherwise, concatenates to the previous word. # See also https://en.wikipedia.org/wiki/Unicode_character_property category = unicodedata.category(self.word) self.dependency = category in ('Ps', 'Pi') except: pass class ChunkList(list): """Chunk list. """ def get_overlaps(self, offset, length): """Returns chunks overlapped with the given range. Args: offset: Begin offset of the range. (int) length: Length of the range. (int) Returns: Overlapped chunks. (list of Chunk) """ # In case entity's offset points to a space just before the entity. if ''.join([chunk.word for chunk in self])[offset] == ' ': offset += 1 index = 0 result = [] for chunk in self: if offset < index + len(chunk.word) and index < offset + length: result.append(chunk) index += len(chunk.word) return result def swap(self, old_chunks, new_chunk): """Swaps old consecutive chunks with new chunk. Args: old_chunks: List of consecutive Chunks to be removed. (list of Chunk) new_chunk: A Chunk to be inserted. (Chunk) """ indexes = [self.index(chunk) for chunk in old_chunks] del self[indexes[0]:indexes[-1] + 1] self.insert(indexes[0], new_chunk) class Budou(object): """A parser for CJK line break organizer. Attributes: service: A Resource object with methods for interacting with the service. (googleapiclient.discovery.Resource) """ DEFAULT_CLASS_NAME = 'ww' def __init__(self, service): self.service = service @classmethod def authenticate(cls, json_path=None): """Authenticates for Cloud Natural Language API and returns a parser. If a service account private key file is not given, it tries to authenticate with default credentials. Args: json_path: A file path to a service account's JSON private keyfile. (str, optional) Returns: Budou parser. (Budou) """ import google_auth_httplib2 from googleapiclient import discovery scope = ['https://www.googleapis.com/auth/cloud-platform'] if json_path: try: from google.oauth2 import service_account credentials = service_account.Credentials.from_service_account_file( json_path) scoped_credentials = credentials.with_scopes(scope) except ImportError: print('''Failed to load google.oauth2.service_account module. If you are running this script in Google App Engine environment, please call `authenticate` method with empty argument to authenticate with default credentials.''') else: import google.auth scoped_credentials, project = google.auth.default(scope) authed_http = google_auth_httplib2.AuthorizedHttp(scoped_credentials) service = discovery.build('language', 'v1beta2', http=authed_http) return cls(service) def parse(self, source, attributes=None, use_cache=True, language=None, max_length=None, use_entity=False, classname=None): """Parses input HTML code into word chunks and organized code. Args: source: Text to be processed. (str) attributes: A key-value mapping for attributes of output elements. (dictionary, optional) **This argument used to accept a string or a list of strings to specify class names of the output chunks, but this designation method is now deprecated. Please use a dictionary to designate attributes.** use_cache: Whether to use caching. (bool, optional) language: A language used to parse text. (str, optional) max_length: Maximum length of span enclosed chunk. (int, optional) use_entity: Whether to use entities Entity Analysis results. Note that it makes additional request to API, which may incur additional cost. (bool, optional) classname: A class name of output elements. (str, optional) **This argument is deprecated. Please use attributes argument instead.** Returns: A dictionary with the list of word chunks and organized HTML code. For example: { 'chunks': [ {'dependency': None, 'label': 'NSUBJ', 'pos': 'NOUN', 'word': '今日も'}, {'dependency': None, 'label': 'ROOT', 'pos': 'VERB', 'word': '食べる'} ], 'html_code': '<span class="ww">今日も</span><span class="ww">食べる</span>' } """ if use_cache: result_value = cache.get(source, language) if result_value: return result_value input_text = self._preprocess(source) if language == 'ko': # Korean has spaces between words, so this simply parses words by space # and wrap them as chunks. chunks = self._get_chunks_per_space(input_text) else: chunks, tokens, language = self._get_chunks_with_api( input_text, language, use_entity) attributes = self._get_attribute_dict(attributes, classname) html_code = self._html_serialize(chunks, attributes, max_length) result_value = { 'chunks': [chunk.serialize() for chunk in chunks], 'html_code': html_code, 'language': language, 'tokens': tokens, } if use_cache: cache.set(source, language, result_value) return result_value def _get_chunks_per_space(self, input_text): """Returns a chunk list by separating words by spaces. Args: input_text: String to parse. (str) Returns: A chunk list. (ChunkList) """ chunks = ChunkList() words = input_text.split() for i, word in enumerate(words): chunks.append(Chunk(word)) if i < len(words) - 1: # Add no space after the last word. chunks.append(Chunk.space()) return chunks def _get_chunks_with_api(self, input_text, language=None, use_entity=False): """Returns a chunk list by using Google Cloud Natural Language API. Args: input_text: String to parse. (str) language: A language code. 'ja' and 'ko' are supported. (str, optional) use_entity: Whether to use entities in Natural Language API response. (bool, optional) Returns: A chunk list. (ChunkList) """ chunks, tokens, language = self._get_source_chunks(input_text, language) if use_entity: entities = self._get_entities(input_text, language) chunks = self._group_chunks_by_entities(chunks, entities) chunks = self._resolve_dependency(chunks) chunks = self._insert_breakline(chunks) return chunks, tokens, language def _get_attribute_dict(self, attributes, classname=None): """Returns a dictionary of HTML element attributes. Args: attributes: If a dictionary, it should be a map of name-value pairs for attributes of output elements. If a string, it should be a class name of output elements. (dict or str) classname: Optional class name. (str, optional) Returns: An attribute dictionary. (dict of (str, str)) """ if attributes and isinstance(attributes, six.string_types): return { 'class': attributes } if not attributes: attributes = {} if not classname: classname = self.DEFAULT_CLASS_NAME attributes.setdefault('class', classname) return attributes def _preprocess(self, source): """Removes unnecessary break lines and white spaces. Args: source: HTML code to be processed. (str) Returns: Preprocessed HTML code. (str) """ doc = html5lib.parseFragment(source) source = ET.tostring(doc, encoding='utf-8', method='text').decode('utf-8') source = source.replace(u'\n', u'').strip() source = re.sub(r'\s\s+', u' ', source) return source def _get_source_chunks(self, input_text, language=None): """Returns a chunk list retrieved from Syntax Analysis results. Args: input_text: Text to annotate. (str) language: Language of the text. 'ja' and 'ko' are supported. (str, optional) Returns: A chunk list. (ChunkList) """ chunks = ChunkList() sentence_length = 0 tokens, language = self._get_annotations(input_text, language) for i, token in enumerate(tokens): word = token['text']['content'] begin_offset = token['text']['beginOffset'] label = token['dependencyEdge']['label'] pos = token['partOfSpeech']['tag'] if begin_offset > sentence_length: chunks.append(Chunk.space()) sentence_length = begin_offset chunk = Chunk(word, pos, label) # Determining default concatenating direction based on syntax dependency. chunk.maybe_add_dependency( i < token['dependencyEdge']['headTokenIndex']) chunks.append(chunk) sentence_length += len(word) return chunks, tokens, language def _group_chunks_by_entities(self, chunks, entities): """Groups chunks by entities retrieved from NL API Entity Analysis. Args: chunks: The list of chunks to be processed. (ChunkList) entities: List of entities. (list of dict) Returns: A chunk list. (ChunkList) """ for entity in entities: chunks_to_concat = chunks.get_overlaps( entity['beginOffset'], len(entity['content'])) if not chunks_to_concat: continue new_chunk_word = u''.join([chunk.word for chunk in chunks_to_concat]) new_chunk = Chunk(new_chunk_word) chunks.swap(chunks_to_concat, new_chunk) return chunks def _html_serialize(self, chunks, attributes, max_length): """Returns concatenated HTML code with SPAN tag. Args: chunks: The list of chunks to be processed. (ChunkList) attributes: If a dictionary, it should be a map of name-value pairs for attributes of output SPAN tags. If a string, it should be a class name of output SPAN tags. If an array, it should be a list of class names of output SPAN tags. (str or dict or list of str) max_length: Maximum length of span enclosed chunk. (int, optional) Returns: The organized HTML code. (str) """ doc = ET.Element('span') for chunk in chunks: if chunk.is_space(): if doc.getchildren(): if doc.getchildren()[-1].tail is None: doc.getchildren()[-1].tail = ' ' else: doc.getchildren()[-1].tail += ' ' else: if doc.text is not None: # We want to preserve space in cases like "Hello 你好" # But the space in " 你好" can be discarded. doc.text += ' ' else: if chunk.has_cjk() and not (max_length and len(chunk.word) > max_length): ele = ET.Element('span') ele.text = chunk.word for k, v in attributes.items(): ele.attrib[k] = v doc.append(ele) else: # add word without span tag for non-CJK text (e.g. English) # by appending it after the last element if doc.getchildren(): if doc.getchildren()[-1].tail is None: doc.getchildren()[-1].tail = chunk.word else: doc.getchildren()[-1].tail += chunk.word else: if doc.text is None: doc.text = chunk.word else: doc.text += chunk.word result = ET.tostring(doc, encoding='utf-8').decode('utf-8') result = html5lib.serialize( html5lib.parseFragment(result), sanitize=True, quote_attr_values="always") return result def _resolve_dependency(self, chunks): """Resolves chunk dependency by concatenating them. Args: chunks: a chink list. (ChunkList) Returns: A chunk list. (ChunkList) """ chunks = self._concatenate_inner(chunks, True) chunks = self._concatenate_inner(chunks, False) return chunks def _concatenate_inner(self, chunks, direction): """Concatenates chunks based on each chunk's dependency. Args: direction: Direction of concatenation process. True for forward. (bool) Returns: A chunk list. (ChunkList) """ tmp_bucket = [] source_chunks = chunks if direction else chunks[::-1] target_chunks = ChunkList() for chunk in source_chunks: if ( # if the chunk has matched dependency, do concatenation. chunk.dependency == direction or # if the chunk is SPACE, concatenate to the previous chunk. (direction == False and chunk.is_space()) ): tmp_bucket.append(chunk) continue tmp_bucket.append(chunk) if not direction: tmp_bucket = tmp_bucket[::-1] new_word = ''.join([tmp_chunk.word for tmp_chunk in tmp_bucket]) chunk.update_word(new_word) target_chunks.append(chunk) tmp_bucket = [] if tmp_bucket: target_chunks += tmp_bucket return target_chunks if direction else target_chunks[::-1] def _insert_breakline(self, chunks): """Inserts a breakline instead of a trailing space if the chunk is in CJK. Args: chunks: a chunk list. (ChunkList) Returns: A chunk list. (ChunkList) """ target_chunks = ChunkList() for chunk in chunks: if chunk.word[-1] == ' ' and chunk.has_cjk(): chunk_to_add = Chunk( chunk.word[:-1], chunk.pos, chunk.label, chunk.dependency) target_chunks.append(chunk_to_add) target_chunks.append(chunk.breakline()) else: target_chunks.append(chunk) return target_chunks def _get_annotations(self, text, language='', encoding='UTF32'): """Returns the list of annotations from the given text.""" body = { 'document': { 'type': 'PLAIN_TEXT', 'content': text, }, 'features': { 'extract_syntax': True, }, 'encodingType': encoding, } if language: body['document']['language'] = language request = self.service.documents().annotateText(body=body) response = request.execute() tokens = response.get('tokens', []) language = response.get('language') return tokens, language def _get_entities(self, text, language='', encoding='UTF32'): """Returns the list of annotations from the given text.""" body = { 'document': { 'type': 'PLAIN_TEXT', 'content': text, }, 'encodingType': encoding, } if language: body['document']['language'] = language request = self.service.documents().analyzeEntities(body=body) response = request.execute() result = [] for entity in response.get('entities', []): mentions = entity.get('mentions', []) if not mentions: continue entity_text = mentions[0]['text'] offset = entity_text['beginOffset'] for word in entity_text['content'].split(): result.append({'content': word, 'beginOffset': offset}) offset += len(word) return result
StarcoderdataPython
1788144
from googletrans import Translator import couchdb import os,json import time # couchdb_address = 'http://openwhisk:[email protected]:5984/' # db = couchdb.Server(couchdb_address) translator = Translator() # def active_storage(avtive_type, user_object,document_id,filename,file_path=None,content_type=None, save_path=None): # if avtive_type == 'PUT': # content = open(file_path, 'rb') # user_object.put_attachment(user_object[document_id], content.read(), filename = filename, content_type = content_type) # content.close() # elif avtive_type == 'GET': # r = user_object.get_attachment(document_id,filename = filename) # with open(save_path,'wb') as f: f.write(r.read()) # def get_fileNameExt(filename): # (shortname, extension) = os.path.splitext(filename) # return shortname, extension def main(): extracted_text = store.fetch(['extracted_text'])['extracted_text'] # translated_text = translator.translate(extracted_text, dest='en').text # can't connect to google... translated_text = extracted_text time.sleep(1) store.put({'translated_text': translated_text}, {}) # evt = json.loads(event) # user_name = evt['user_name'] # document_id = evt['document_id'] # extracted_text_filename = evt['extracted_text_filename'] # user_object = db[user_name] # input_path = os.path.join('..',user_name,document_id) # input_filepath = os.path.join(input_path,extracted_text_filename) # if os.path.exists(input_filepath):os.remove(input_filepath) # else: os.makedirs(input_path) # active_storage('GET', user_object,document_id,extracted_text_filename,save_path = input_filepath) # shortname, extension = get_fileNameExt(extracted_text_filename) # extract_text_path = os.path.join(input_path,'translated_{}.txt'.format(shortname)) # if os.path.exists(extract_text_path):os.remove(extract_text_path) # with open(input_filepath,"r") as f: # text_content = f.read() # result = translator.translate(text_content, dest='en') # with open(extract_text_path,'w', encoding='utf-8') as f: # f.write(result.text) # active_storage('PUT', user_object,document_id,extracted_text_filename,extract_text_path,'application/octet') # main('{"user_name":"user_2","document_id":"object_id_1","extracted_text_filename":"extract_test.txt"}')
StarcoderdataPython
5167045
<filename>j2p.py #!/usr/bin/env python3 __author__ = '<NAME>' from modules.j2ASTwalker import J2Meta from modules import tools, delivery import sys import yaml import os import argparse class ArgParser: def __init__(self, args=False): # arguments should be passed by unit test only parser = argparse.ArgumentParser(description='\ Jinja2 Parser: YAML-builder and lightweight config generator.', epilog='Thank you for using help!') parser.add_argument('filename', help='Filename.') parser.add_argument('file_type', help='Jinja2 or YAML file.', choices=['j2', 'yaml']) subparsers = parser.add_subparsers(help='Select delivery mode, YAML only.', dest='mode') save_parser = subparsers.add_parser('save', help='Save generated configs in a directory specified in settings.') save_parser.add_argument('-p', '--prefix', help='Config filename prefix.', dest='prefix', default=False) if args: # if arguments are passed from unittest self.args = parser.parse_args(args) else: self.args = parser.parse_args() def prefix(self): if self.args.mode == 'save': return self.args.prefix else: return False def mode(self): return self.args.mode def file_type(self): return self.args.file_type def filename(self): return self.args.filename class ScriptEnvironment: def __init__(self, cli_args, settings_file='./settings.yaml'): self.script_realpath = os.path.realpath(__file__) self.script_dirname = os.path.dirname(self.script_realpath) try: # load parameters from settings file settings = tools.load_yaml(os.path.realpath(settings_file)) self.template_path = self.get_dir(settings['template_path']) self.configs_path = self.get_dir(settings['configs']) self.task_path = self.get_dir(settings['task_path']) db_name = self.get_file(self.script_realpath, settings['host_db']) self.json_db = tools.load_yaml(db_name) if not isinstance(self.json_db, dict): sys.exit('ERROR: Wrong db format. Database file should be a dictionary!') # get parameters from CLI self.file_type = cli_args.file_type() if self.file_type == "yaml": self.filename = self.get_file(self.task_path, cli_args.filename()) self.json_data = tools.load_yaml(self.filename) self.mode = cli_args.mode() if self.mode == 'save': self.prefix = cli_args.prefix() else: self.filename = self.get_file(self.template_path, cli_args.filename()) except Exception as _: sys.exit('ERROR: Can not load settings!') def get_dir(self, dir_name): if os.path.isdir(dir_name): return dir_name else: template_dir = os.path.join(self.script_realpath, dir_name) if os.path.isdir(template_dir): return template_dir else: sys.exit('ERROR: Can not find directory %s!' % dir_name) def get_file(self, dir, file_name): if os.path.isfile(file_name): return file_name else: file = os.path.join(dir, file_name) if os.path.isfile(file): return file else: sys.exit('ERROR: Can not find file %s!' % file_name) if __name__ == '__main__': # define script environment cli_args = ArgParser() env = ScriptEnvironment(cli_args) # delivery.run(env) if env.file_type == 'j2': template_meta = J2Meta(env.filename) print( yaml.dump(template_meta.get_variables(), default_flow_style=False) ) if env.file_type == 'yaml': if env.mode == 'save': delivery.save_configs(env)
StarcoderdataPython
11362527
# @file dsc_test.py # Tests for the data model for the EDK II DSC # # Copyright (c) Microsoft Corporation # # SPDX-License-Identifier: BSD-2-Clause-Patent ## import unittest from edk2toollib.uefi.edk2.build_objects.dsc import dsc from edk2toollib.uefi.edk2.build_objects.dsc import library_class from edk2toollib.uefi.edk2.build_objects.dsc import component from edk2toollib.uefi.edk2.build_objects.dsc import definition from edk2toollib.uefi.edk2.build_objects.dsc import dsc_buildoption_section_type from edk2toollib.uefi.edk2.build_objects.dsc import dsc_pcd_section_type from edk2toollib.uefi.edk2.build_objects.dsc import dsc_section_type class TestDscObject(unittest.TestCase): def test_null_creation(self): d = dsc() self.assertNotEqual(d, None) def test_dsc_multple_defines(self): # When we add an object, it should overwrite the previous one d = TestDscObject.create_dsc_object() d.defines.add(definition("PLATFORM_NAME", "TEST2")) for define in d.defines: if define.name == "PLATFORM_NAME": # check to make sure it matches self.assertEqual(define.value, "TEST2") def test_dsc_multple_library_classes(self): d = dsc() # When we add an object, it should overwrite the previous one common_section = dsc_section_type() d.library_classes[common_section].add(library_class("TEST", "BOB.inf")) self.assertEqual(len(d.library_classes[common_section]), 1) # we should override the previous one d.library_classes[common_section].add(library_class("TEST", "BOB2.inf")) self.assertEqual(len(d.library_classes[common_section]), 1) for lib in d.library_classes[common_section]: self.assertEqual(lib.inf, "BOB2.inf") # make sure we overrode it self.assertEqual(len(d.library_classes[common_section]), 1) # make sure we can add a library to a different section and that IA32_section = dsc_section_type(arch="IA32") self.assertEqual(len(d.library_classes[IA32_section]), 0) d.library_classes[IA32_section].add(library_class("NULL", "BOB1.inf")) self.assertEqual(len(d.library_classes[IA32_section]), 1) d.library_classes[IA32_section].add(library_class("NULL", "BOB2.inf")) self.assertEqual(len(d.library_classes[IA32_section]), 2) def test_get_library_classes(self): ''' This serves more as an example of how to walk the DSC to get a library class for a componenet ''' pass def test_put_in_bad_things(self): d = dsc() # make sure we can't add stuff to d.defines with self.assertRaises(ValueError): d.defines.add(library_class("NULL", "TEST.inf")) # make sure we can't add stuff to skus with self.assertRaises(ValueError): d.skus.add(library_class("TEST", "TEST.inf")) # make sure we can't add stuff to skus with self.assertRaises(ValueError): d.default_stores.add(component("TEST", "TEST.inf")) common_section = dsc_section_type() build_opt_section = dsc_buildoption_section_type() pcd_section = dsc_pcd_section_type("FEATUREFLAG") # now to check the build options d.build_options[build_opt_section] = set() with self.assertRaises(ValueError): d.build_options[pcd_section] = set() with self.assertRaises(ValueError): d.build_options[common_section] = set() with self.assertRaises(ValueError): d.build_options[build_opt_section].add(library_class("TEST", "TEST.inf")) # NEXTVER: once the adding logic is implemented, this will be need to redone with self.assertRaises(ValueError): d.build_options[build_opt_section] = set() # now to check the pcds d.pcds[pcd_section] = set() with self.assertRaises(ValueError): d.pcds[build_opt_section] = set() with self.assertRaises(ValueError): d.pcds[pcd_section].add(library_class("TEST", "TEST.inf")) # NEXTVER: once the adding logic is implemented, this will be need to redone with self.assertRaises(ValueError): d.pcds[pcd_section] = set() # now to check the library classes d.library_classes[common_section] = set() with self.assertRaises(ValueError): d.library_classes[build_opt_section] = set() with self.assertRaises(ValueError): d.library_classes[common_section].add(component("TEST.inf")) # NEXTVER: once the adding logic is implemented, this will be need to redone with self.assertRaises(ValueError): d.library_classes[common_section] = set() # now to check the components d.components[common_section] = set() with self.assertRaises(ValueError): d.components[build_opt_section] = set() with self.assertRaises(ValueError): d.components[common_section].add(library_class("TEST", "TEST.inf")) # NEXTVER: once the adding logic is implemented, this will be need to redone with self.assertRaises(ValueError): d.components[common_section] = set() @staticmethod def create_dsc_object(): # Normally we would just read the dsc object d = dsc() # first add the defines d.defines.add(definition("PLATFORM_NAME", "TEST")) d.defines.add(definition("PLATFORM_GUID", "EB216561-961F-47EE-9EF9-CA426EF547C2")) d.defines.add(definition("OUTPUT_DIRECTORY", "Build/TEST")) d.defines.add(definition("SUPPORTED_ARCHITECTURES", "IA32 X64 AARCH64")) # Next add some library classes default_section = dsc_section_type() d.library_classes[default_section].add(library_class("NULL", "BOB.inf")) # Next add a component return d
StarcoderdataPython
9756049
from tensorflow.python.training import py_checkpoint_reader import tensorflow as tf ##reload the model weights from checkpoints since the model structure is changed due to modified code in /official def load_tf2_weights_emb(tf2_checkpoint, embedding_model): reader = tf.train.load_checkpoint(tf2_checkpoint) embedding_model.set_weights([ reader.get_tensor( 'model/bert/embeddings/weight/.ATTRIBUTES/VARIABLE_VALUE') ]) return embedding_model def load_tf1_weights_emb(tf1_checkpoint, embedding_model): reader = py_checkpoint_reader.NewCheckpointReader(tf1_checkpoint) embedding_model.set_weights( [reader.get_tensor('bert/embeddings/word_embeddings')]) return embedding_model def load_tf2_weights_cls(tf2_checkpoint, decoder_model): reader = tf.train.load_checkpoint(tf2_checkpoint) tf2_cls_name_lst = [ 'model/classifier/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/classifier/bias/.ATTRIBUTES/VARIABLE_VALUE' ] decoder_model.layers[-1].set_weights( [reader.get_tensor(n) for n in tf2_cls_name_lst]) def load_tf1_weights_cls(tf1_checkpoint, decoder_model): reader = py_checkpoint_reader.NewCheckpointReader(tf1_checkpoint) tf2_cls_name_dict = {} tf2_cls_name_dict[-1] = [ 'cls/predictions/transform/dense/kernel', 'cls/predictions/transform/dense/bias', 'cls/predictions/transform/LayerNorm/gamma', 'cls/predictions/transform/LayerNorm/beta', 'cls/predictions/output_bias' ] decoder_model.layers[-1].set_weights( [reader.get_tensor(n) for n in tf2_cls_name_dict[-1]]) def load_tf2_weights_core(tf2_checkpoint, core_model, num_layer): reader = tf.train.load_checkpoint(tf2_checkpoint) layer_name_lst = [(i, e.name) for i, e in enumerate(core_model.layers)] tf2_core_name_dict = {} def locate_index(substring, exclude=None): for i, e in layer_name_lst: if exclude: flag = substring in e and exclude not in e else: flag = substring in e if flag: # print(substring, e) return i # tf2_core_name_dict[1] = ['bert/embeddings/word_embeddings'] tf2_core_name_dict[locate_index('position_embedding')] = [ 'model/bert/embeddings/embeddings/.ATTRIBUTES/VARIABLE_VALUE' ] tf2_core_name_dict[locate_index('type_embeddings')] = [ 'model/bert/embeddings/token_type_embeddings/.ATTRIBUTES/VARIABLE_VALUE' ] tf2_core_name_dict[locate_index('embeddings/layer_norm')] = [ 'model/bert/embeddings/LayerNorm/gamma/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/embeddings/LayerNorm/beta/.ATTRIBUTES/VARIABLE_VALUE' ] attn = [ 'model/bert/encoder/layer/{}/attention/self_attention/query/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/self_attention/query/bias/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/self_attention/key/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/self_attention/key/bias/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/self_attention/value/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/self_attention/value/bias/.ATTRIBUTES/VARIABLE_VALUE' ] attn_output = [ 'model/bert/encoder/layer/{}/attention/dense_output/dense/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/dense_output/dense/bias/.ATTRIBUTES/VARIABLE_VALUE' ] attn_output_norm = [ 'model/bert/encoder/layer/{}/attention/dense_output/LayerNorm/gamma/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/attention/dense_output/LayerNorm/beta/.ATTRIBUTES/VARIABLE_VALUE' ] inte = [ 'model/bert/encoder/layer/{}/intermediate/dense/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/intermediate/dense/bias/.ATTRIBUTES/VARIABLE_VALUE' ] output = [ 'model/bert/encoder/layer/{}/bert_output/dense/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/bert_output/dense/bias/.ATTRIBUTES/VARIABLE_VALUE' ] output_norm = [ 'model/bert/encoder/layer/{}/bert_output/LayerNorm/gamma/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/encoder/layer/{}/bert_output/LayerNorm/beta/.ATTRIBUTES/VARIABLE_VALUE' ] tf2_core_name_dict[locate_index('pooler_transform')] = [ 'model/bert/pooler/dense/kernel/.ATTRIBUTES/VARIABLE_VALUE', 'model/bert/pooler/dense/bias/.ATTRIBUTES/VARIABLE_VALUE' ] for l in range(num_layer): tf2_core_name_dict[locate_index( 'self_attention_{}'.format(l))] = [s.format(l) for s in attn] tf2_core_name_dict[locate_index( 'self_attention_output_{}'.format(l))] = [ s.format(l) for s in attn_output ] tf2_core_name_dict[locate_index( 'self_attention_layer_norm_{}'.format(l))] = [ s.format(l) for s in attn_output_norm ] tf2_core_name_dict[locate_index( 'intermediate_{}'.format(l))] = [s.format(l) for s in inte] tf2_core_name_dict[locate_index('output_{}'.format(l), 'attention')] = [ s.format(l) for s in output ] tf2_core_name_dict[locate_index('output_layer_norm_{}'.format(l))] = [ s.format(l) for s in output_norm ] for a in tf2_core_name_dict: weight_shapes = [w.shape for w in core_model.layers[a].weights] core_model.layers[a].set_weights([ reader.get_tensor(n).reshape(s) for (n, s) in zip(tf2_core_name_dict[a], weight_shapes) ]) def load_tf1_weights_core(tf1_checkpoint, core_model, num_layer): reader = py_checkpoint_reader.NewCheckpointReader(tf1_checkpoint) layer_name_lst = [(i, e.name) for i, e in enumerate(core_model.layers)] def locate_index(substring, exclude=None): for i, e in layer_name_lst: if exclude: flag = substring in e and exclude not in e else: flag = substring in e if flag: return i tf2_core_name_dict = {} tf2_core_name_dict[locate_index('position_embedding')] = [ 'bert/embeddings/position_embeddings' ] tf2_core_name_dict[locate_index('type_embeddings')] = [ 'bert/embeddings/token_type_embeddings' ] tf2_core_name_dict[locate_index('embeddings/layer_norm')] = [ 'bert/embeddings/LayerNorm/gamma', 'bert/embeddings/LayerNorm/beta' ] attn = [ 'bert/encoder/layer_{}/attention/self/query/kernel', 'bert/encoder/layer_{}/attention/self/query/bias', 'bert/encoder/layer_{}/attention/self/key/kernel', 'bert/encoder/layer_{}/attention/self/key/bias', 'bert/encoder/layer_{}/attention/self/value/kernel', 'bert/encoder/layer_{}/attention/self/value/bias' ] attn_output = [ 'bert/encoder/layer_{}/attention/output/dense/kernel', 'bert/encoder/layer_{}/attention/output/dense/bias' ] attn_output_norm = [ 'bert/encoder/layer_{}/attention/output/LayerNorm/gamma', 'bert/encoder/layer_{}/attention/output/LayerNorm/beta' ] inte = [ 'bert/encoder/layer_{}/intermediate/dense/kernel', 'bert/encoder/layer_{}/intermediate/dense/bias' ] output = [ 'bert/encoder/layer_{}/output/dense/kernel', 'bert/encoder/layer_{}/output/dense/bias' ] output_norm = [ 'bert/encoder/layer_{}/output/LayerNorm/gamma', 'bert/encoder/layer_{}/output/LayerNorm/beta' ] for l in range(num_layer): tf2_core_name_dict[locate_index( 'self_attention_{}'.format(l))] = [s.format(l) for s in attn] tf2_core_name_dict[locate_index( 'self_attention_output_{}'.format(l))] = [ s.format(l) for s in attn_output ] tf2_core_name_dict[locate_index( 'self_attention_layer_norm_{}'.format(l))] = [ s.format(l) for s in attn_output_norm ] tf2_core_name_dict[locate_index( 'intermediate_{}'.format(l))] = [s.format(l) for s in inte] tf2_core_name_dict[locate_index('output_{}'.format(l), 'attention')] = [ s.format(l) for s in output ] tf2_core_name_dict[locate_index('output_layer_norm_{}'.format(l))] = [ s.format(l) for s in output_norm ] for a in tf2_core_name_dict: weight_shapes = [w.shape for w in core_model.layers[a].weights] core_model.layers[a].set_weights([ reader.get_tensor(n).reshape(s) for (n, s) in zip(tf2_core_name_dict[a], weight_shapes) ])
StarcoderdataPython
5081994
import ipaddress import getpass import json import logging import os import re import requests import sys import time from urllib.request import urlopen from urllib.error import HTTPError from urllib3.exceptions import InsecureRequestWarning def create_dir(directory): """ create directory recursively """ try: os.makedirs(directory) logging.info('successfully created directory {}'.format(directory)) except OSError: logging.error('creating directory {} failed'.format(directory)) def check_path(path, isfile=False, isdir=False): """ returns if path given is a file or directory """ return os.path.isfile(path) if isfile else os.path.isdir(path) def set_values(user_input, default, check=''): """ sets default value if user input is empty value. ensures integer value if necessary """ if check == 'integer' and user_input != '': user_input = check_user_input_if_integer(user_input) return default if not user_input else user_input def validate_url(url): """ validates url and checks if any HTTP Errors """ url_verify = '' try: url_verify = urlopen(url) except HTTPError: logging.error('URL {} - HTTP Error'.format(url)) return url_verify def check_user_input_if_integer(user_input): """ check if user input is integer and not any other data type """ integer_input = '' while not integer_input: try: integer_input = int(user_input) except ValueError: logging.warn('only integer number accepted') user_input = input('enter a number: ') return integer_input def get_ip(node_name='', ip_type=''): """ get the ip address of a node """ ip = '' while True: ip = input('ip address for {} in {} node: '.format(ip_type, node_name)) ip_check = validate_ip(ip) if ip_check: break else: logging.warn('ip address should be in format: x.x.x.x') return ip def validate_ip(ip): """ validates ip address format """ valid_ip = '' try: valid_ip = ipaddress.ip_address(ip) except ValueError: logging.error('ip address \'{}\' is not valid: '.format(ip)) return valid_ip def validate_port(port): """ validate ports to ensure HAProxy ports are not reused """ invalid_ports = [80, 443, 6443, 22623] while True: try: check_for_string = port.isdigit() if not check_for_string: logging.warn('port has to be an integer') else: invalid_ports.index(int(port)) logging.warn('ports {} are not allowed'.format(invalid_ports)) port = input('enter a port: ') except AttributeError: break except ValueError: break return port def validate_network_cidr(network_cidr): """ validate ip address with cidr format. defaults to /24 if only IP is given """ compressed_network_cidr = '' while True: try: compressed_network_cidr = ipaddress.ip_network(network_cidr) break except ValueError: logging.warn('input should be in format x.x.x.x/x') network_cidr = input('enter the network cidr: ') return compressed_network_cidr.compressed def validate_cidr(cidr): """ validates subnet in cidr format. """ check_integer = '' while not check_integer: check_integer = check_user_input_if_integer(cidr) if check_integer and check_integer < 32: pass else: cidr = input('user input has to be an integer and less than 32: ') return cidr def connect_to_idrac(user, passwd, base_api_url): """ establishes connection to idrac """ requests.packages.urllib3.disable_warnings(category=InsecureRequestWarning) response = '' try: response = requests.get(base_api_url, verify=False, auth=(user, passwd), timeout=5) except requests.exceptions.ConnectTimeout: logging.error('failed to establish connection to base api url') except Exception as e: logging.error('unknown exception occurred') logging.error('{}'.format(e)) return response def get_network_devices(user, passwd, base_api_url): """ get list of network devices from iDRAC """ network_devices = '' response = connect_to_idrac(user, passwd, base_api_url) if response and response.json(): network_devices_info = response.json() try: network_devices = network_devices_info[u'Members'] except KeyError: network_devices = '' return network_devices def generate_network_devices_menu(devices): """ generate a list of network devices menu obtained from iDRAC """ menu = {} i = 1 choice = '' devices.sort() for device in devices: menu[i] = device i += 1 while True: options = menu.keys() for entry in options: logging.info('{} -> {}'.format(entry, menu[entry])) choice = input('Select the interface used by DHCP: ') if choice == '1' or choice == '2' or choice == '3' or choice == '4': break else: logging.warn('unknown option selected') selected_network_device = menu[int(choice)] logging.info('selected interface is: {}'.format(menu[int(choice)])) return selected_network_device def get_mac_address(selected_network_device, base_api_url, user, passwd): """ get mac address for a selected network device """ url = '{}/{}'.format(base_api_url, selected_network_device) device_mac_address = '' try: response = requests.get(url, verify=False, auth=(user, passwd), timeout=5) except requests.exceptions.ConnectionTimeout: logging.error('failed to establish connection to get mac address') try: network_device_info = response.json() except ValueError: logging.error('check URL, iDRAC user and password may be invalid') logging.info('{}'.format(url)) try: device_mac_address = network_device_info[u'MACAddress'] except KeyError: logging.error('No MAC Address found for network devices') logging.info('{}'.format(selected_network_device)) return device_mac_address def get_network_device_mac(node_name='', ip_type=''): """ lists available network devices from iDRAC generates a menu of network devices obtains mac address for the network device """ devices = [] network_device_mac_address = '' ip = get_ip(node_name=node_name, ip_type=ip_type) user = input('enter the idrac user for {}: '.format(node_name)) passwd = getpass.getpass('enter idrac password for {}: '.format(node_name)) base_api_url = 'https://{}/redfish/v1/Systems/System.Embedded.1/EthernetInterfaces'.format(ip) network_devices = get_network_devices(user, passwd, base_api_url) if network_devices: for network_device in network_devices: device = list(map(lambda interface: interface.encode('ascii'), network_device.values())) try: devices.append(device[0].decode("utf-8").split('/')[-1]) except IndexError: logging.error('Did not find any network devices') if devices: selected_network_device = generate_network_devices_menu(devices) network_device_mac_address = get_mac_address(selected_network_device, base_api_url, user, passwd) if network_device_mac_address: logging.info('device {} mac address is {}'.format(selected_network_device, network_device_mac_address)) return network_device_mac_address def main(): pass if __name__ == "__main__": main()
StarcoderdataPython
304832
<gh_stars>0 import pytest from zetemple import zetemple @pytest.fixture def item_source(): hosts = [{'name': 'host1', 'prefix': 'PREFIX1:'}, {'name': 'host2', 'prefix': 'PREFIX2:'}] item_keys = ['zetemple.key1', 'zetemple.comma.KEY2', 'invalid.key'] interval = 180 func = 'ave' items = [ {'host': 'host1', 'item_key': 'zetemple.key1', 'pv': 'PREFIX1:key1'}, {'host': 'host1', 'item_key': 'zetemple.comma.KEY2', 'pv': 'PREFIX1:KEY2'}, {'host': 'host2', 'item_key': 'zetemple.key1', 'pv': 'PREFIX2:key1'}, {'host': 'host2', 'item_key': 'zetemple.comma.KEY2', 'pv': 'PREFIX2:KEY2'}, ] for item in items: item['func'] = func item['interval'] = interval source = {'hosts': hosts, 'item_keys': item_keys, 'interval': interval, 'func': func, 'items': items} return source def test_create_items(item_source): hosts = item_source['hosts'] item_keys = item_source['item_keys'] interval = item_source['interval'] func = item_source['func'] items = zetemple.create_items(hosts, item_keys, interval, func) assert items == item_source['items'] @pytest.mark.parametrize('key,pvname', [ ('zetemple.key1', 'key1'), ('zetemple.comma.KEY2', 'KEY2'), ('zetemple.comma.pv.KEY.FIELD', 'KEY.FIELD'), ('zetemple.comma.pv', 'pv'), ('ZETEMPLE.comma.pv', 'pv'), ('key1', None) ]) def test_parse_item_key(key, pvname): _pvname = zetemple.__parse_item_key(key) assert pvname == _pvname
StarcoderdataPython
5024647
<reponame>jrt54/devito<filename>examples/seismic/elastic/operators.py<gh_stars>1-10 from devito import Eq, Operator, TimeFunction, NODE from examples.seismic import PointSource, Receiver def stress_fields(model, save, space_order): """ Create the TimeFunction objects for the stress fields in the elastic formulation. """ if model.grid.dim == 2: x, z = model.space_dimensions stagg_xx = stagg_zz = NODE stagg_xz = (x, z) # Create symbols for forward wavefield, source and receivers txx = TimeFunction(name='txx', grid=model.grid, staggered=stagg_xx, save=save, time_order=1, space_order=space_order) tzz = TimeFunction(name='tzz', grid=model.grid, staggered=stagg_zz, save=save, time_order=1, space_order=space_order) txz = TimeFunction(name='txz', grid=model.grid, staggered=stagg_xz, save=save, time_order=1, space_order=space_order) tyy = txy = tyz = None elif model.grid.dim == 3: x, y, z = model.space_dimensions stagg_xx = stagg_yy = stagg_zz = NODE stagg_xz = (x, z) stagg_yz = (y, z) stagg_xy = (x, y) # Create symbols for forward wavefield, source and receivers txx = TimeFunction(name='txx', grid=model.grid, staggered=stagg_xx, save=save, time_order=1, space_order=space_order) tzz = TimeFunction(name='tzz', grid=model.grid, staggered=stagg_zz, save=save, time_order=1, space_order=space_order) tyy = TimeFunction(name='tyy', grid=model.grid, staggered=stagg_yy, save=save, time_order=1, space_order=space_order) txz = TimeFunction(name='txz', grid=model.grid, staggered=stagg_xz, save=save, time_order=1, space_order=space_order) txy = TimeFunction(name='txy', grid=model.grid, staggered=stagg_xy, save=save, time_order=1, space_order=space_order) tyz = TimeFunction(name='tyz', grid=model.grid, staggered=stagg_yz, save=save, time_order=1, space_order=space_order) return txx, tyy, tzz, txy, txz, tyz def particle_velocity_fields(model, save, space_order): """ Create the particle velocity fields """ if model.grid.dim == 2: x, z = model.space_dimensions stagg_x = x stagg_z = z # Create symbols for forward wavefield, source and receivers vx = TimeFunction(name='vx', grid=model.grid, staggered=stagg_x, time_order=1, space_order=space_order) vz = TimeFunction(name='vz', grid=model.grid, staggered=stagg_z, time_order=1, space_order=space_order) vy = None elif model.grid.dim == 3: x, y, z = model.space_dimensions stagg_x = x stagg_y = y stagg_z = z # Create symbols for forward wavefield, source and receivers vx = TimeFunction(name='vx', grid=model.grid, staggered=stagg_x, time_order=1, space_order=space_order) vy = TimeFunction(name='vy', grid=model.grid, staggered=stagg_y, time_order=1, space_order=space_order) vz = TimeFunction(name='vz', grid=model.grid, staggered=stagg_z, time_order=1, space_order=space_order) return vx, vy, vz def elastic_2d(model, space_order, save, geometry): """ 2D elastic wave equation FD kernel """ vp, vs, rho, damp = model.vp, model.vs, model.rho, model.damp s = model.grid.stepping_dim.spacing cp2 = vp*vp cs2 = vs*vs ro = 1/rho mu = cs2*rho l = rho*(cp2 - 2*cs2) # Create symbols for forward wavefield, source and receivers vx, vy, vz = particle_velocity_fields(model, save, space_order) txx, tyy, tzz, _, txz, _ = stress_fields(model, save, space_order) # Stencils u_vx = Eq(vx.forward, damp * vx - damp * s * ro * (txx.dx + txz.dy)) u_vz = Eq(vz.forward, damp * vz - damp * ro * s * (txz.dx + tzz.dy)) u_txx = Eq(txx.forward, damp * txx - damp * (l + 2 * mu) * s * vx.forward.dx - damp * l * s * vz.forward.dy) u_tzz = Eq(tzz.forward, damp * tzz - damp * (l+2*mu)*s * vz.forward.dy - damp * l * s * vx.forward.dx) u_txz = Eq(txz.forward, damp * txz - damp * mu*s * (vx.forward.dy + vz.forward.dx)) src_rec_expr = src_rec(vx, vy, vz, txx, tyy, tzz, model, geometry) return [u_vx, u_vz, u_txx, u_tzz, u_txz] + src_rec_expr def elastic_3d(model, space_order, save, geometry): """ 3D elastic wave equation FD kernel """ vp, vs, rho, damp = model.vp, model.vs, model.rho, model.damp s = model.grid.stepping_dim.spacing cp2 = vp*vp cs2 = vs*vs ro = 1/rho mu = cs2*rho l = rho*(cp2 - 2*cs2) # Create symbols for forward wavefield, source and receivers vx, vy, vz = particle_velocity_fields(model, save, space_order) txx, tyy, tzz, txy, txz, tyz = stress_fields(model, save, space_order) # Stencils u_vx = Eq(vx.forward, damp * vx - damp * s * ro * (txx.dx + txy.dy + txz.dz)) u_vy = Eq(vy.forward, damp * vy - damp * s * ro * (txy.dx + tyy.dy + tyz.dz)) u_vz = Eq(vz.forward, damp * vz - damp * s * ro * (txz.dx + tyz.dy + tzz.dz)) u_txx = Eq(txx.forward, damp * txx - damp * (l + 2 * mu) * s * vx.forward.dx - damp * l * s * (vy.forward.dy + vz.forward.dz)) u_tyy = Eq(tyy.forward, damp * tyy - damp * (l + 2 * mu) * s * vy.forward.dy - damp * l * s * (vx.forward.dx + vz.forward.dz)) u_tzz = Eq(tzz.forward, damp * tzz - damp * (l+2*mu)*s * vz.forward.dz - damp * l * s * (vx.forward.dx + vy.forward.dy)) u_txz = Eq(txz.forward, damp * txz - damp * mu * s * (vx.forward.dz + vz.forward.dx)) u_txy = Eq(txy.forward, damp * txy - damp * mu * s * (vy.forward.dx + vx.forward.dy)) u_tyz = Eq(tyz.forward, damp * tyz - damp * mu * s * (vy.forward.dz + vz.forward.dy)) src_rec_expr = src_rec(vx, vy, vz, txx, tyy, tzz, model, geometry) return [u_vx, u_vy, u_vz, u_txx, u_tyy, u_tzz, u_txz, u_txy, u_tyz] + src_rec_expr def src_rec(vx, vy, vz, txx, tyy, tzz, model, geometry): """ Source injection and receiver interpolation """ s = model.grid.time_dim.spacing # Source symbol with input wavelet src = PointSource(name='src', grid=model.grid, time_range=geometry.time_axis, npoint=geometry.nsrc) rec1 = Receiver(name='rec1', grid=model.grid, time_range=geometry.time_axis, npoint=geometry.nrec) rec2 = Receiver(name='rec2', grid=model.grid, time_range=geometry.time_axis, npoint=geometry.nrec) # The source injection term src_xx = src.inject(field=txx.forward, expr=src * s) src_zz = src.inject(field=tzz.forward, expr=src * s) src_expr = src_xx + src_zz if model.grid.dim == 3: src_yy = src.inject(field=tyy.forward, expr=src * s) src_expr += src_yy # Create interpolation expression for receivers rec_term1 = rec1.interpolate(expr=tzz) if model.grid.dim == 2: rec_expr = vx.dx + vz.dy else: rec_expr = vx.dx + vy.dy + vz.dz rec_term2 = rec2.interpolate(expr=rec_expr) return src_expr + rec_term1 + rec_term2 def ForwardOperator(model, geometry, space_order=4, save=False, **kwargs): """ Construct method for the forward modelling operator in an elastic media. Parameters ---------- model : Model Object containing the physical parameters. geometry : AcquisitionGeometry Geometry object that contains the source (SparseTimeFunction) and receivers (SparseTimeFunction) and their position. space_order : int, optional Space discretization order. save : int or Buffer Saving flag, True saves all time steps, False saves three buffered indices (last three time steps). Defaults to False. """ wave = kernels[model.grid.dim] pde = wave(model, space_order, geometry.nt if save else None, geometry) # Substitute spacing terms to reduce flops return Operator(pde, subs=model.spacing_map, name='Forward', **kwargs) kernels = {3: elastic_3d, 2: elastic_2d}
StarcoderdataPython
8035094
import numpy as np import matplotlib.pyplot as plt import sys import sklearn.linear_model import sklearn.utils.graph import sklearn.decomposition DISTANCE = "D1" SUBTRACT_BIAS = True THRESHOLD_OUT_OF_MAX = 0.5 distance_file = DISTANCE + ".npy" try: D = np.load(distance_file) except IOError: print("Distance file not found (%s). Try running compute_distances.py."%(distance_file)) sys.exit(1) print("Checking if metric is consistent and computing its bias.") nearest_distances = np.diagonal(D[1:,:-1]) second_nearest_distances = np.diagonal(D[2:,:-2]) sum_of_nearest_distances = nearest_distances[1:] + nearest_distances[:-1] plt.subplot(221) plt.scatter(second_nearest_distances, sum_of_nearest_distances, color="b", marker=".", label="data") #fit a line via RANdom SAmple Consensus ransac = sklearn.linear_model.RANSACRegressor() ransac.fit(second_nearest_distances.reshape(-1, 1), sum_of_nearest_distances) distances_extent = np.array([[0], [np.max(second_nearest_distances)]]) ransac_extent_fit = ransac.predict(distances_extent) line_slope = (ransac_extent_fit[1]-ransac_extent_fit[0])/(distances_extent[1] - distances_extent[0]) bias = ransac_extent_fit[0] print("Slope of metric consistensy test is %.2f (should be close to 1)"%(line_slope)) print("Metrix bias estimate is %.2e"%(bias)) plt.plot(distances_extent, ransac_extent_fit, color="k", label="linear fit") plt.plot(distances_extent, distances_extent, color="r", ls="--", label="slope of 1") plt.ticklabel_format(style="sci", scilimits=(0,0)) plt.ylim((0,None)) plt.xlabel("D[i,i+2]") plt.ylabel("D[i,i+1] + D[i+1,i+2]") plt.legend(loc=2) if SUBTRACT_BIAS: print("Substracting bias from all distances.") debiased_D = (D-bias)*(D>bias) else: debiased_D = D threshold = THRESHOLD_OUT_OF_MAX*np.max(D) print("Discarding distances above %.2e and running Isomaps"%(threshold)) isomaps_D = debiased_D*(debiased_D<threshold) geodesic_D = sklearn.utils.graph.graph_shortest_path(isomaps_D) kernel_pca = sklearn.decomposition.KernelPCA(n_components=2, kernel="precomputed") isomaps_coordinates = kernel_pca.fit_transform(-0.5*geodesic_D**2) x = isomaps_coordinates[:,0] y = isomaps_coordinates[:,1] plt.subplot(222) plt.title("Isomaps fit") plt.plot(x, y, color="k") print("Mapping Isomaps coordinates to angle") center_x,center_y,_ = np.linalg.solve([[np.sum(x**2),np.sum(x*y),np.sum(x)], [np.sum(x*y), np.sum(y**2),np.sum(y)], [np.sum(x),np.sum(y),len(x)]], [0.5*np.sum(x*(x**2 + y**2)), 0.5*np.sum(y*(x**2 + y**2)), 0.5*np.sum(x**2 + y**2)]) angles = np.unwrap(np.arctan2(y-center_y, x-center_x)) plt.scatter([center_x], [center_y], marker="x", color="r") plt.ticklabel_format(style="sci", scilimits=(0,0)) plt.subplot(223) plt.title("Resulting angles") plt.plot(np.degrees(angles), color="k") plt.xlabel("frame number") plt.ylabel("angle [deg]") plt.subplot(224) plt.title("Resulting angle increments") plt.plot(np.degrees(angles[1:]-angles[:-1]), color="k") plt.xlabel("frame number") plt.ylabel("angle [deg]") plt.tight_layout() plt.show()
StarcoderdataPython
183761
# -*- coding: utf-8 -*- """ @author: <EMAIL> @site: e-smartdata.org """ import pandas as pd import matplotlib.pyplot as plt import seaborn as sns df = pd.read_csv('./data/ten_d.csv', index_col=0) df.columns = ['Open', 'High', 'Low', 'Close', 'Volume'] clean_price = df[['Open', 'High', 'Low', 'Close']] # %% corr_matrix = clean_price.corr().round(2) # %% corr beteen Series df['Open'].corr(df['Close']) # %% plot correlation matrix plt.matshow(clean_price.corr()) # %% using seaborn sns.heatmap(corr_matrix, xticklabels=corr_matrix.columns.values, yticklabels=corr_matrix.columns.values)
StarcoderdataPython
11220916
""" @author: magician @date: 2019/12/18 @file: palindrome.py """ def is_palindrome(x: int) -> bool: """ is_palindrome :param x: :return: """ return bool(str(x) == str(x)[::-1]) if __name__ == '__main__': assert is_palindrome(121) is True
StarcoderdataPython
9770160
<reponame>WIM-TRD/Avanza<filename>avanza4java/src/main/java/org/avanza4java/Utils/totp/getTotp.py<gh_stars>0 import argparse import mintotp import sys description = """Script to generate TOTP secret for provided TOTP key """ def createTotpKey(totpKey): return mintotp.totp(totpKey) def main(argv): parser = argparse.ArgumentParser(description=description, formatter_class=argparse.RawTextHelpFormatter) parser.add_argument("--totpkey", "-t", dest="totpKey", type=str, required=True) args = parser.parse_args() print(createTotpKey(args.totpKey)) if __name__ == "__main__": main(sys.argv)
StarcoderdataPython
5053085
from django.db import models # from django.dispatch import receiver from django.contrib.auth.models import AbstractUser # from django.conf import settings # from django.contrib.contenttypes.fields import GenericForeignKey # from django.contrib.contenttypes.models import ContentType # from rest_framework.authtoken.models import Token # This code is triggered whenever a new user has been created and saved to the database # @receiver(post_save, sender=settings.AUTH_USER_MODEL) # def create_auth_token(sender, instance=None, created=False, **kwargs): # if created: # Token.objects.create(user=instance) class User(AbstractUser): ''' User info and profile ''' # profile_picture = models.ImageField(upload_to='profile') # location = models.idk(null=True, blank=True) GENDER_CHOICES = ( ('M', 'Male'), ('F', 'Female'), ('O', 'Other'), ) gender = models.CharField(max_length=10, choices=GENDER_CHOICES, null=True, blank=True) # lister fields helpr = models.BooleanField(default=False) # if this use is listing anything or just a user birthday = models.DateField(null=True, blank=True) def __str__(self): return self.username class Category(models.Model): ''' All possible categories ''' CATEGORY_CHOICES = ( ('photographer', 'photographer'), ('plumber', 'plumber'), ('landscaper', 'landscaper'), ('personal_trainer', 'personal trainer'), ('tutor', 'tutor'), ('carpenter', 'carpenter'), ('electrician', 'electrician'), ('pool_service', 'pool service'), ('gardener', 'gardnerer'), ('babysitting', 'babysitting'), ) category = models.CharField(max_length=50, choices=CATEGORY_CHOICES, null=True, blank=True) def __str__(self): return self.category class Listing(models.Model): ''' Listing a user posts ''' title = models.CharField(max_length=250) user = models.ManyToManyField(User) # profile_picture = models.ImageField(upload_to='profile') # location = models.idk() # images blurb = models.TextField(max_length=500, null=True, blank=True) # phone_number = models.PositiveIntegerField(null=True, blank=True) # email = models.CharField(max_length=150) website = models.CharField(max_length=150, null=True, blank=True) category = models.ManyToManyField(Category) # ratings = models. def __str__(self): return self.title
StarcoderdataPython
9767045
import collections import itertools import logging from pathlib import Path import cmws import numpy as np import pyro import scipy import torch from cmws.examples.csg.models import ( heartangles, hearts, hearts_pyro, ldif_representation, ldif_representation_pyro, neural_boundary, neural_boundary_pyro, no_rectangle, rectangles, shape_program, shape_program_pyro, shape_program_pytorch, ) # Init, saving, etc def init(run_args, device): memory = None if run_args.model_type == "rectangles": # Generative model generative_model = rectangles.GenerativeModel().to(device) # Guide guide = rectangles.Guide().to(device) elif run_args.model_type == "heartangles": # Generative model generative_model = heartangles.GenerativeModel().to(device) # Guide guide = heartangles.Guide().to(device) elif run_args.model_type == "hearts": # Generative model generative_model = hearts.GenerativeModel().to(device) # Guide guide = hearts.Guide().to(device) elif run_args.model_type == "shape_program": # Generative model generative_model = shape_program.GenerativeModel().to(device) # Guide guide = shape_program.Guide().to(device) elif run_args.model_type == "no_rectangle": # Generative model generative_model = no_rectangle.GenerativeModel().to(device) # Guide guide = no_rectangle.Guide().to(device) elif run_args.model_type == "ldif_representation": # Generative model generative_model = ldif_representation.GenerativeModel().to(device) # Guide guide = ldif_representation.Guide().to(device) elif run_args.model_type == "hearts_pyro": # Generative model generative_model = hearts_pyro.GenerativeModel().to(device) # Guide guide = hearts_pyro.Guide().to(device) elif run_args.model_type == "ldif_representation_pyro": # Generative model generative_model = ldif_representation_pyro.GenerativeModel().to(device) # Guide guide = ldif_representation_pyro.Guide().to(device) elif run_args.model_type == "neural_boundary": # Generative model generative_model = neural_boundary.GenerativeModel().to(device) # Guide guide = neural_boundary.Guide().to(device) elif run_args.model_type == "neural_boundary_pyro": # Generative model generative_model = neural_boundary_pyro.GenerativeModel( num_primitives=run_args.num_primitives, has_shape_scale=run_args.model_has_shape_scale ).to(device) # Guide guide = neural_boundary_pyro.Guide( num_primitives=run_args.num_primitives, has_shape_scale=run_args.model_has_shape_scale ).to(device) elif run_args.model_type == "shape_program_pyro": # Generative model generative_model = shape_program_pyro.GenerativeModel( num_primitives=run_args.num_primitives ).to(device) # Guide guide = shape_program_pyro.Guide(num_primitives=run_args.num_primitives).to(device) elif run_args.model_type == "shape_program_pytorch": # Generative model generative_model = shape_program_pytorch.GenerativeModel( num_primitives=run_args.num_primitives ).to(device) # Guide guide = shape_program_pytorch.Guide(num_primitives=run_args.num_primitives).to(device) # Memory if "mws" in run_args.algorithm: memory = cmws.memory.Memory(10000, run_args.memory_size, generative_model).to(device) # Model tuple model = {"generative_model": generative_model, "guide": guide, "memory": memory} # Optimizer if run_args.model_type == "rectangles": parameters = guide.parameters() else: parameters = itertools.chain(generative_model.parameters(), guide.parameters()) if "_pyro" in run_args.model_type: optimizer = pyro.optim.pytorch_optimizers.Adam({"lr": run_args.lr}) else: optimizer = torch.optim.Adam(parameters, lr=run_args.lr) # Stats stats = Stats([], [], [], []) return model, optimizer, stats def save_checkpoint(path, model, optimizer, stats, run_args=None): Path(path).parent.mkdir(parents=True, exist_ok=True) generative_model, guide, memory = model["generative_model"], model["guide"], model["memory"] torch.save( { "generative_model_state_dict": None if run_args.model_type == "rectangles" else generative_model.state_dict(), "guide_state_dict": guide.state_dict(), "memory_state_dict": None if memory is None else memory.state_dict(), "optimizer_state_dict": optimizer.get_state() if "_pyro" in run_args.model_type else optimizer.state_dict(), "stats": stats, "run_args": run_args, }, path, ) logging.info(f"Saved checkpoint to {path}") def load_checkpoint(path, device): checkpoint = torch.load(path, map_location=device) run_args = checkpoint["run_args"] model, optimizer, stats = init(run_args, device) generative_model, guide, memory = model["generative_model"], model["guide"], model["memory"] guide.load_state_dict(checkpoint["guide_state_dict"]) if run_args.model_type != "rectangles": generative_model.load_state_dict(checkpoint["generative_model_state_dict"]) if memory is not None: memory.load_state_dict(checkpoint["memory_state_dict"]) model = {"generative_model": generative_model, "guide": guide, "memory": memory} if "_pyro" in run_args.model_type: optimizer.set_state(checkpoint["optimizer_state_dict"]) else: optimizer.load_state_dict(checkpoint["optimizer_state_dict"]) stats = checkpoint["stats"] return model, optimizer, stats, run_args Stats = collections.namedtuple("Stats", ["losses", "sleep_pretraining_losses", "log_ps", "kls"]) def plot_normal2d(ax, mean, cov, num_points=100, confidence=0.95, **kwargs): # https://stats.stackexchange.com/questions/64680/how-to-determine-quantiles-isolines-of-a-multivariate-normal-distribution # plots a `confidence' probability ellipse const = -2 * np.log(1 - confidence) eigvals, eigvecs = scipy.linalg.eig(np.linalg.inv(cov)) eigvals = np.real(eigvals) a = np.sqrt(const / eigvals[0]) b = np.sqrt(const / eigvals[1]) theta = np.linspace(-np.pi, np.pi, num=num_points) xy = eigvecs @ np.array([np.cos(theta) * a, np.sin(theta) * b]) + np.expand_dims(mean, -1) ax.plot(xy[0, :], xy[1, :], **kwargs) return ax class RectanglePoseDistribution: def __init__(self, device): self.device = device self.lim = torch.tensor(0.8, device=self.device) def sample(self, sample_shape): """ Args sample_shape Returns [*sample_shape, 4] """ minus_lim = -self.lim padding = 0.2 min_x = torch.distributions.Uniform(minus_lim, self.lim - padding).sample(sample_shape) max_x = torch.distributions.Uniform(min_x + padding, self.lim).sample() min_y = torch.distributions.Uniform(minus_lim, self.lim - padding).sample(sample_shape) max_y = torch.distributions.Uniform(min_y + padding, self.lim).sample() return torch.stack([min_x, min_y, max_x, max_y], dim=-1) def log_prob(self, xy_lims): """ Args xy_lims [*shape, 4] Returns [*shape] """ # HACK shape = xy_lims.shape[:-1] return torch.zeros(shape, device=xy_lims.device) # min_x, min_y, max_x, max_y = [xy_lims[..., i] for i in range(4)] # minus_one = -self.one # min_x_log_prob = torch.distributions.Uniform(minus_one, self.one).log_prob(min_x) # max_x_log_prob = torch.distributions.Uniform(min_x, self.one).log_prob(max_x) # min_y_log_prob = torch.distributions.Uniform(minus_one, self.one).log_prob(min_y) # max_y_log_prob = torch.distributions.Uniform(min_y, self.one).log_prob(max_y) # return min_x_log_prob + max_x_log_prob + min_y_log_prob + max_y_log_prob class SquarePoseDistribution: def __init__(self, random_side, device): self.random_side = random_side self.device = device self.lim = torch.tensor(0.8, device=self.device) def sample(self, sample_shape): """ Args sample_shape Returns [*sample_shape, 4] """ minus_lim = -self.lim padding = 1.0 min_x = torch.distributions.Uniform(minus_lim, self.lim - padding).sample(sample_shape) min_y = torch.distributions.Uniform(minus_lim, self.lim - padding).sample(sample_shape) if self.random_side: side = torch.distributions.Uniform( torch.zeros_like(min_x), self.lim - torch.max(min_x, min_y) ).sample() else: side = 0.5 max_x = min_x + side max_y = min_y + side return torch.stack([min_x, min_y, max_x, max_y], dim=-1) def log_prob(self, xy_lims): """ Args xy_lims [*shape, 4] Returns [*shape] """ shape = xy_lims.shape[:-1] return torch.zeros(shape, device=xy_lims.device) def heart_pose_to_str(heart_pose, fixed_scale=False): """ Args heart_pose raw_position [2] raw_scale [] Returns (str) """ if fixed_scale: raw_position = heart_pose position = raw_position.sigmoid() - 0.5 return f"H(x={position[0].item():.1f},y={position[0].item():.1f})" else: raw_position, raw_scale = heart_pose position = raw_position.sigmoid() - 0.5 scale = raw_scale.sigmoid() * 0.8 + 0.1 return f"H(x={position[0].item():.1f},y={position[0].item():.1f},s={scale.item():.1f})" def rectangle_pose_to_str(rectangle_pose): """ Args rectangle_pose [4] Returns (str) """ return ( f"R(bl=({rectangle_lim_to_str(rectangle_pose[0].item())}," f"{rectangle_lim_to_str(rectangle_pose[1].item())})," f"tr=({rectangle_lim_to_str(rectangle_pose[2].item())}," f"{rectangle_lim_to_str(rectangle_pose[3].item())}))" ) def rectangle_lim_to_str(rectangle_lim): """ Args rectangle_lim (float) Returns (str) """ if rectangle_lim > 1: return ">1" elif rectangle_lim < -1: return "<-1" else: return f"{rectangle_lim:.1f}" def get_gaussian_kernel(dx, dy, kernel_size, scale, device): """ Args dx (float) dy (float) kernel_size (int) scale (float) device Returns [kernel_size, kernel_size] """ # Inputs to the kernel function kernel_x_lim = dx * kernel_size / 2 kernel_y_lim = dy * kernel_size / 2 x_range = torch.linspace(-kernel_x_lim, kernel_x_lim, steps=kernel_size, device=device) y_range = torch.linspace(-kernel_y_lim, kernel_y_lim, steps=kernel_size, device=device) # [kernel_size, kernel_size] kernel_x, kernel_y = torch.meshgrid(x_range, y_range) # [kernel_size, kernel_size, 2] kernel_xy = torch.stack([kernel_x, kernel_y], dim=-1) # Kernel function kernel_dist = torch.distributions.Independent( torch.distributions.Normal( torch.zeros((2,), device=device), torch.ones((2,), device=device) * scale ), reinterpreted_batch_ndims=1, ) # Output from the kernel function # [kernel_size, kernel_size] log_kernel = kernel_dist.log_prob(kernel_xy) # normalize log_kernel = log_kernel - torch.logsumexp(log_kernel.view(-1), dim=0) return log_kernel.exp() def smooth_image(image, kernel_size, scale): """ Args image [*shape, num_rows, num_cols] (limits -1, 1) kernel_size (int; must be odd) scale (float) Returns [*shape, num_rows, num_cols] """ if kernel_size % 2 == 0: raise ValueError(f"kernel_size must be odd. got {kernel_size}") # Extract device = image.device num_rows, num_cols = image.shape[-2:] shape = image.shape[:-2] num_samples = int(torch.tensor(shape).prod().long().item()) image_flattened = image.view(num_samples, num_rows, num_rows) # Create gaussian kernel dx, dy = 2 / num_cols, 2 / num_rows kernel = get_gaussian_kernel(dx, dy, kernel_size, scale, device) # Run convolution return torch.nn.functional.conv2d( image_flattened[:, None], kernel[None, None], padding=kernel_size // 2 ).view(*[*shape, num_rows, num_cols])
StarcoderdataPython
3560522
<reponame>AbanobEffat/Pick-and-Place-Udacity #!/usr/bin/env python # Copyright (C) 2017 Udacity Inc. # # This file is part of Robotic Arm: Pick and Place project for Udacity # Robotics nano-degree program # # All Rights Reserved. # Author: <NAME> # import modules import rospy import tf from kuka_arm.srv import * from trajectory_msgs.msg import JointTrajectory, JointTrajectoryPoint from geometry_msgs.msg import Pose from mpmath import * from sympy import * import numpy as np from numpy import array from sympy import symbols, cos, sin, pi, sqrt, atan2 #Create symbol table q1, q2, q3, q4, q5, q6, q7 = symbols('q1:8') # theta d1, d2, d3, d4, d5, d6, d7 = symbols('d1:8') # Link Offset a0, a1, a2, a3, a4, a5, a6 = symbols ('a0:7') # distance between z(i)_axis and z(i-1)_axis alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 = symbols('alpha0:7') #Angle between Z(i-) and Z(i) DH_table = {alpha0: 0, a0: 0, d1: 0.75, alpha1: -90.0, a1: 0.35, d2: 0, q2: q2-90.0, alpha2: 0, a2: 1.25, d3: 0, alpha3: -90.0, a3: -0.054, d4: 1.5, alpha4: 90.0, a4: 0, d5: 0, alpha5: -90.0, a5: 0, d6: 0, alpha6: 0, a6: 0, d7: 0.303, q7: 0} ROT_EE = Matrix([[0,0,0],[0,0,0],[0,0,0]]) #Modified DH Transformation matrix Function def TM_Generator(alpha,a,d,q): tm = Matrix([[ cos(q), -sin(q), 0, a], [sin(q) * cos(alpha), cos(q) * cos(alpha), -sin(alpha), -sin(alpha) * d], [sin(q) * sin(alpha), sin(alpha) * cos(q), cos(alpha), cos(alpha) * d], [ 0, 0, 0, 1]]) return tm # Create individual transformation matrices T0_1 = TM_Generator(alpha0, a0, d1, q1).subs(DH_table) T1_2 = TM_Generator(alpha1, a1, d2, q2).subs(DH_table) T2_3 = TM_Generator(alpha2, a2, d3, q3).subs(DH_table) T3_4 = TM_Generator(alpha3, a3, d4, q4).subs(DH_table) T4_5 = TM_Generator(alpha4, a4, d5, q5).subs(DH_table) T5_6 = TM_Generator(alpha5, a5, d6, q6).subs(DH_table) T6_G = TM_Generator(alpha6, a6, d7, q7).subs(DH_table) T0_G = T0_1 * T1_2 * T2_3 * T3_4 * T4_5 * T5_6 * T6_G #Fixing gripper rotation in Y axis by 180 and Z axis by 90 r, p , y = symbols('r p y') x_rot = Matrix([ [ 1, 0, 0], [ 0, cos(r), -sin(r)], [ 0, sin(r), cos(r)]]) # ROLL y_rot = Matrix([ [ cos(p), 0, sin(p)], [ 0, 1, 0], [-sin(p), 0, cos(p)]]) # PITCH z_rot = Matrix([ [cos(y), -sin(y), 0], [sin(y), cos(y), 0], [ 0, 0, 1]]) # YAW Rot_Fixed = z_rot.subs(y, radians(180)) * y_rot.subs(p,radians(-90)) ROT_Error = z_rot * y_rot * x_rot ROT_EE = ROT_Error * Rot_Fixed def handle_calculate_IK(req): rospy.loginfo("Received %s eef-poses from the plan" % len(req.poses)) if len(req.poses) < 1: print ("No valid poses received") return -1 else: global q1, q2, q3, q4, q5, q6, q7 global d1, d2, d3, d4, d5, d6, d7 global a0, a1, a2, a3, a4, a5, a6 global alpha0, alpha1, alpha2, alpha3, alpha4, alpha5, alpha6 global DH_table global ROT_EE global T0_1, T1_2, T2_3, T3_4, T4_5, T5_6, T6_G, T0_G # Initialize service response joint_trajectory_list = [] for x in xrange(0, len(req.poses)): # IK code starts here joint_trajectory_point = JointTrajectoryPoint() # Extract end-effector position and orientation from request # px,py,pz = end-effector position # roll, pitch, yaw = end-effector orientation px = req.poses[x].position.x py = req.poses[x].position.y pz = req.poses[x].position.z (roll, pitch, yaw) = tf.transformations.euler_from_quaternion( [req.poses[x].orientation.x, req.poses[x].orientation.y, req.poses[x].orientation.z, req.poses[x].orientation.w]) ROT_EE = ROT_EE.subs({'r': roll, 'p': pitch, 'y': yaw}) # Extract nx, ny, and nz values EE_Point = Matrix([[px], [py], [pz]]) WC = EE_Point - (0.303) * ROT_EE[:,2] # Getting Wrist center coordinates side_a = 1.501 #constant side_bz = WC[2] - 0.75 side_bxy = sqrt(pow(WC[0], 2) + pow(WC[1], 2) ) - 0.35 side_b = sqrt(pow(side_bz, 2) + pow(side_bxy, 2)) side_c = 1.25 #constant angle_a = acos( ( pow(side_b, 2) + pow(side_c, 2) - pow(side_a, 2)) / (2 * side_b * side_c) ) angle_b = acos( ( pow(side_a, 2) + pow(side_c, 2) - pow(side_b, 2)) / (2 * side_a * side_c) ) angle_c = acos( ( pow(side_a, 2) + pow(side_b, 2) - pow(side_c, 2)) / (2 * side_a * side_b) ) theta1 = atan2(WC[1], WC[0]) theta2 = pi/2 - angle_a - atan2(side_bz, side_bxy) theta3 = pi/2 - (angle_b + 0.036) # 0.036 sag in link4 R0_3 = T0_1[0:3,0:3] * T1_2[0:3,0:3] * T2_3[0:3,0:3] R0_3 = R0_3.evalf(subs={q1: theta1, q2:theta2, q3: theta3}) R3_6 = R0_3.transpose() * ROT_EE theta4 = atan2(R3_6[2,2], -R3_6[0,2]) theta5 = atan2(sqrt(pow(R3_6[0,2], 2) + pow(R3_6[2,2], 2)), R3_6[1,2]) theta6 = atan2(-R3_6[1,1], R3_6[1,0]) joint_trajectory_point.positions = [theta1, theta2, theta3, theta4, theta5, theta6] joint_trajectory_list.append(joint_trajectory_point) rospy.loginfo("length of Joint Trajectory List: %s" % len(joint_trajectory_list)) return CalculateIKResponse(joint_trajectory_list) def IK_server(): # initialize node and declare calculate_ik service rospy.init_node('IK_server') s = rospy.Service('calculate_ik', CalculateIK, handle_calculate_IK) print "Ready to receive an IK request" rospy.spin() if __name__ == "__main__": IK_server()
StarcoderdataPython
11308242
<gh_stars>0 # -*- coding: utf-8 -*- import sqlalchemy as sa import ujson from aiohttp import web, WSMsgType from .db import TLE from .log import logger from .utils import parse_sa_filter, parse_sa_order, check_sa_column, get_sa_column async def query(request): filters = [] if 'filters' not in request.query: raise web.HTTPBadRequest(reason='Query parameter `filters` is required') try: _filters = ujson.loads(request.query.get('filters', '{}')) for k, v in _filters.items(): filters.extend(parse_sa_filter(TLE, k, v)) except ValueError: raise web.HTTPBadRequest(reason='Query parameter `filters` must contains valid JSON') _order = request.query.get('order', '{}') if _order.startswith('{'): try: order = ujson.loads(_order) except ValueError: raise web.HTTPBadRequest(reason='Query parameter `order` must contains valid JSON') else: order = _order order = parse_sa_order(TLE, order) only = [get_sa_column(TLE, key) for key in request.query.get('only', '').split(',') if check_sa_column(TLE, key)] async with request.app['pg'].acquire() as conn: rp = await conn.execute(sa.select(only or [TLE]).where(sa.and_(*filters)).order_by(*order)) return [dict(r) async for r in rp] async def index(request): html = ''' <html> <head> <script src="//ajax.googleapis.com/ajax/libs/jquery/1.9.1/jquery.min.js"></script> <script> var source = new WebSocket('ws://' + window.location.host + '/subscribe'); function eventListener(event) { var message = JSON.parse(event.data); $('.messages').append([ $('<dt>').text(message.channel), $('<dd>').text(event.data), ]); } source.onmessage = eventListener; </script> </head> <body> <dl class="messages"></dl> </body> </html> ''' return web.Response(text=html, content_type='text/html') async def subscribe(request): ws = web.WebSocketResponse() await ws.prepare(request) request.app['channels'].add(ws) logger.debug('Someone joined.') try: while True: msg = await ws.receive_json() if msg.get('command') == 'close': await ws.close() except Exception as exc: logger.exception(exc) finally: request.app['channels'].remove(ws) if ws.closed: request.app['channels'].remove(ws) logger.debug('websocket connection closed') return ws
StarcoderdataPython
6637132
# Licensed to the Apache Software Foundation (ASF) under one # or more contributor license agreements. See the NOTICE file # distributed with this work for additional information # regarding copyright ownership. The ASF licenses this file # to you under the Apache License, Version 2.0 (the # "License"); you may not use this file except in compliance # with the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from __future__ import with_statement import os, sys progname = os.path.split(sys.argv[0])[-1] if sys.version_info < (2, 5, 0): sys.exit( '''Error: %s is supported on Python versions 2.5.0 or greater Please upgrade python installed on this machine.''' % progname) #turning off Deprecation warnings (for now) import warnings warnings.simplefilter('ignore', DeprecationWarning) import platform, gplib, socket, random, popen2 import threading from time import localtime, strftime import pg8000 import pysync ################## log = {} log['verbose'] = True log['module'] = '' log['host'] = socket.gethostname().split('.')[0] log['user'] = os.environ.get('USER') or os.environ.get('LOGNAME') log['file'] = None ################## def log_set_module(module): global log log['module'] = module ################## def log_set_verbose(verbose): global log log['verbose'] = verbose ################## def log_set_file(file): global log log['file'] = file ################## def log_info(msg, tofile=False): global log logs = '%s:%s:%s:%s-[INFO]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['verbose'] and not tofile: print logs else: if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) ################## def log_error(msg, tofile=False): global log logs = '%s:%s:%s:%s-[ERROR]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['verbose'] and not tofile: print logs else: if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) ################## def log_warn(msg, tofile=False): global log logs = '%s:%s:%s:%s-[WARN]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['verbose'] and not tofile: print logs else: if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) ################## def log_fatal(msg, tofile=False): global log logs = '%s:%s:%s:%s-[FATAL]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['verbose'] and not tofile: print logs else: if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) ################## def error(msg): global log logs = '%s:%s:%s:%s-[ERROR]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) print logs print '%s:%s:%s:%s-[ERROR]:- Program aborted.' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user']) sys.exit(1) ################## def fatal(msg): global log logs = '%s:%s:%s:%s-[FATAL]:- %s' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user'], msg) if log['file']: os.system('%s "%s" >> %s' % (ENV.ECHO, logs, log['file'])) print logs print '%s:%s:%s:%s-[FATAL]:- Program aborted.' % (strftime('%Y%m%d:%H:%M:%S', localtime()), log['module'], log['host'], log['user']) sys.exit(2) ############# def findCmdInPath_noerror(cmd): CMDPATH = ('/usr/kerberos/bin', '/usr/sfw/bin', '/opt/sfw/bin', '/usr/local/bin', '/bin', '/usr/bin', '/sbin', '/usr/sbin', '/usr/ucb', '/sw/bin', '/opt/Navisphere/bin') for p in CMDPATH: f = os.path.join(p, cmd) if os.path.exists(f): return f return '' def findCmdInPath(cmd): cmd = findCmdInPath_noerror(cmd) if cmd == '': fatal('Command %s not found' % cmd) return cmd ############# def makeCommand(cmd): GPHOME=os.environ.get('GPHOME') LIB_PATH=os.environ.get(ENV.LIB_TYPE) if not LIB_PATH: LIB_PATH='%s/lib:%s/ext/python/lib:.' % (GPHOME, GPHOME) PATH=os.environ.get('PATH') if not PATH: PATH='%s/bin:%s/ext/python/bin:.' % (GPHOME, GPHOME) PYTHONPATH=os.environ.get('PYTHONPATH') if not PYTHONPATH: PYTHONPATH="%(gphome)s/lib/python" % {'gphome':GPHOME} return ('GPHOME=%s && export GPHOME ' '&& PATH=%s && export PATH ' '&& %s=%s && export %s ' '&& PYTHONPATH=%s && export PYTHONPATH ' '&& %s' % (GPHOME, PATH, ENV.LIB_TYPE, LIB_PATH, ENV.LIB_TYPE, PYTHONPATH, cmd)) ############# def run2(cmd, on_error_warn=False, setpid_callback=None): p = None ok = False out = [] try: p = popen2.Popen3(cmd, capturestderr=True) if setpid_callback: setpid_callback(p.pid) e = p.wait() for line in p.fromchild: out.append(line) ok = not e if not ok and on_error_warn: log_warn('-----------------------------------------------------') log_warn('Command Failed: %s' % cmd) log_warn('Exit status: %d' % os.WEXITSTATUS(e)) if len(out) > 0: log_warn('Standard output:') for l in out: log_warn('\t %s' % l.strip()) else: log_warn('Standard output: None') err = [] for line in p.childerr: err.append(line) if len(err) > 0: log_warn('Standard error:') for l in err: log_warn('\t %s' % l.strip()) else: log_warn('Standard error: None') log_warn('-----------------------------------------------------') finally: if p: if p.fromchild: p.fromchild.close() if p.childerr: p.childerr.close() return (ok, out) def run(cmd): return run2(cmd, False) def run_warn(cmd, setpid_callback=None): return run2(cmd, on_error_warn=True,setpid_callback=setpid_callback) ############# def file_exists(file, host=None): if not host or host == 'localhost': return os.path.isfile(file) else: (ok, out) = run('%s test -f %s && test -r %s' % (gplib.ssh_prefix(host=host), file, file)) return ok ############# def directory_exists(dir, host=None): if not host or host == 'localhost': return os.path.isdir(dir) else: (ok, out) = run('%s test -d %s' % (gplib.ssh_prefix(host=host), dir)) return ok ############# def directory_writable(dir, host=None): f = None file = os.path.join(dir, 'tmp_file_test') if not host or host == 'localhost': try: try: f = open(file, 'w') f.close() except IOError, e: fatal('write file %s error' % file) finally: f.close() os.remove(file) else: gphome = os.environ.get('GPHOME') cmd = makeCommand('''python -c \\"import sys, os; sys.path.extend(['%s', '%s']); import gpmlib; gpmlib.directory_writable('%s')\\"''' % (os.path.join(gphome, 'bin', 'lib'), os.path.join(gphome, 'lib', 'python'), dir)) (ok, out) = run('''%s "%s"''' % (gplib.ssh_prefix(host=host), cmd)) if not ok: fatal('write file %s error' % file) return True ############# class Env: def __init__(self): self.GPHOME = None self.USER = None # mirror type self.MIRROR_NULL_TYPE = 0 self.MIRROR_SINGLE_HOME_GROUP_TYPE = 1 self.MIRROR_SINGLE_HOME_SPREAD_TYPE = 2 self.MIRROR_MULTI_HOME_GROUP_TYPE = 3 self.MIRROR_MULTI_HOME_SPREAD_TYPE = 4 self.DBNAME = 'template1' self.GP_PG_VIEW = '''(SELECT l.dbid, l.isprimary, l.content, l."valid", l.definedprimary FROM gp_pgdatabase() l(dbid smallint, isprimary boolean, content smallint, "valid" boolean, definedprimary boolean))''' self.AWK = findCmdInPath('awk') self.BASENAME = findCmdInPath('basename') self.CAT = findCmdInPath('cat') self.CLEAR = findCmdInPath('clear') self.CKSUM = findCmdInPath('cksum') self.CUT = findCmdInPath('cut') self.DATE = findCmdInPath('date') self.DD = findCmdInPath('dd') self.DIRNAME = findCmdInPath('dirname') self.DF = findCmdInPath('df') self.DU = findCmdInPath('du') self.ECHO = findCmdInPath('echo') self.EXPR = findCmdInPath('expr') self.FIND = findCmdInPath('find') self.GP_MOUNT_AGENT = findCmdInPath_noerror('gp_mount_agent') # GPDB supplied, but only required for SAN. self.GREP = findCmdInPath('grep') self.GZIP = findCmdInPath('gzip') self.EGREP = findCmdInPath('egrep') self.HEAD = findCmdInPath('head') self.HOSTNAME = findCmdInPath('hostname') self.INQ = findCmdInPath_noerror('inq') # SAN-specific not available on every system. self.IPCS = findCmdInPath('ipcs') self.IFCONFIG = findCmdInPath('ifconfig') self.KILL = findCmdInPath('kill') self.LS = findCmdInPath('ls') self.LOCALE = findCmdInPath('locale') self.MV = findCmdInPath('mv') self.MORE = findCmdInPath('more') self.MOUNT = findCmdInPath('mount') self.MKDIR = findCmdInPath('mkdir') self.MKFIFO = findCmdInPath('mkfifo') self.NAVISECCLI = findCmdInPath_noerror('naviseccli') # SAN-specific not available on every system. self.NETSTAT = findCmdInPath('netstat') self.PING = findCmdInPath('ping') self.POWERMT = findCmdInPath_noerror('powermt') # SAN-specific not available on every system. self.PS = findCmdInPath('ps') self.RM = findCmdInPath('rm') self.SCP = findCmdInPath('scp') self.SED = findCmdInPath('sed') self.SLEEP = findCmdInPath('sleep') self.SORT = findCmdInPath('sort') self.SPLIT = findCmdInPath('split') self.SSH = findCmdInPath('ssh') self.STAT = findCmdInPath_noerror('stat') # Only required for SAN. self.TAIL = findCmdInPath('tail') self.TAR = findCmdInPath('tar') self.TEE = findCmdInPath('tee') self.TOUCH = findCmdInPath('touch') self.TR = findCmdInPath('tr') self.WC = findCmdInPath('wc') self.WHICH = findCmdInPath('which') self.WHOAMI = findCmdInPath('whoami') self.ZCAT = findCmdInPath('zcat') plat = platform.uname() self.SYSTEM = plat[0].lower() if self.SYSTEM == 'sunos': self.IFCONFIG_TXT='-a inet' self.PS_TXT='ef' self.LIB_TYPE='LD_LIBRARY_PATH' self.ZCAT='gzcat' self.PG_METHOD='trust' self.HOST_ARCH_TYPE='uname -i' self.NOLINE_ECHO='/usr/bin/echo' self.DEFAULT_LOCALE_SETTING='en_US.UTF-8' self.MAIL='/bin/mailx' self.PING_TIME='1' self.DF=findCmdInPath('df') self.DU_TXT='-s' self.GTAR = findCmdInPath('gtar') elif self.SYSTEM == 'linux': self.IFCONFIG_TXT='' self.PS_TXT='ax' self.LIB_TYPE='LD_LIBRARY_PATH' self.PG_METHOD='ident' self.HOST_ARCH_TYPE='uname -i' self.NOLINE_ECHO='%s -e' % self.ECHO self.DEFAULT_LOCALE_SETTING='en_US.utf8' self.PING_TIME='-c 1' self.DF='%s -P' % findCmdInPath('df') self.DU_TXT='c' self.GTAR = findCmdInPath('tar') elif self.SYSTEM == 'darwin': self.IFCONFIG_TXT='' self.PS_TXT='ax' self.LIB_TYPE='DYLD_LIBRARY_PATH' self.PG_METHOD='ident' self.HOST_ARCH_TYPE='uname -m' self.NOLINE_ECHO= self.ECHO self.DEFAULT_LOCALE_SETTING='en_US.utf-8' self.PING_TIME='-c 1' self.DF='%s -P' % findCmdInPath('df') self.DU_TXT='-c' self.GTAR = findCmdInPath('tar') elif self.SYSTEM == 'freebsd': self.IFCONFIG_TXT='' self.PS_TXT='ax' self.LIB_TYPE='LD_LIBRARY_PATH' self.PG_METHOD='ident' self.HOST_ARCH_TYPE='uname -m' self.NOLINE_ECHO='%s -e' % self.ECHO self.DEFAULT_LOCALE_SETTING='en_US.utf-8' self.PING_TIME='-c 1' self.DF='%s -P' % findCmdInPath('df') self.DU_TXT='-c' self.GTAR = findCmdInPath('tar') else: fatal('platform not supported') def chk_environ(self): self.GPHOME=os.getenv('GPHOME') if not self.GPHOME: fatal('GPHOME not found') self.USER =os.getenv('USER') or os.getenv('LOGNAME') if not self.USER: fatal('USER not found') LIB_PATH=os.getenv(self.LIB_TYPE) if not LIB_PATH: LIB_PATH='.' PATH=os.getenv('PATH') if not PATH: PATH='.' os.environ[self.LIB_TYPE]='%s/lib:%s/ext/python/lib:%s' % (self.GPHOME, self.GPHOME, LIB_PATH) os.environ['PATH']='%s/bin:%s/ext/python/bin:%s' % (self.GPHOME, self.GPHOME, PATH) ENV = Env() ############# def ping_host(host, fail_exit=False): if ENV.SYSTEM == 'darwin': (ok, out) = run('%s %s %s > /dev/null 2>&1' % (ENV.PING, ENV.PING_TIME, host)) else: (ok, out) = run('%s %s %s > /dev/null 2>&1' % (ENV.PING, host, ENV.PING_TIME)) if ok: log_info('%s contact established' % host) else: if fail_exit: fatal('Unable to contact %s' % host) else: log_warn('Unable to contact %s' % host) return ok def chk_postgres_version(host): cmd = makeCommand('%s --gp-version' % os.path.join(os.environ.get('GPHOME'), 'bin/postgres')) (ok, out) = run(cmd) if not ok: log_error('Unable to get Greenplum database version') return False current = out[0].strip() (ok, out) = run('ssh %s "%s"' % (host, cmd)) if not ok: log_error('Unable to get Greenplum database version on remote host %s' % host) return False remote = out[0].strip() if current != remote: log_error('Greenplum database version does not match. %s != %s' % (current, remote)) return False return True ############# def postgres_active(port, host=None): ret = 0 pg_lock_file = '/tmp/.s.PGSQL.%d.lock' % port pg_lock_netstat = 0 pid = 0 # ping host if present if host: ok = ping_host(host) if not ok: return (ok, pid) # netstat to check the port number (ok, out) = run('%s %s -an 2> /dev/null | %s ".s.PGSQL.%d" | %s \'{print $NF}\'| %s -F"." \'{print $NF}\' | %s -u' % (host and gplib.ssh_prefix(host=host) or '', ENV.NETSTAT, ENV.GREP, port, ENV.AWK, ENV.AWK, ENV.SORT)) if not ok: return (ok, pid) for p_chk in out: p = int(p_chk) if p == port: pg_lock_netstat = port pg_lock_tmp = False if file_exists(file=pg_lock_file, host=host): pg_lock_tmp = True if pg_lock_netstat == 0 and pg_lock_tmp == False: ret = 1 pid = 0 log_info('No socket connection or lock file in /tmp found for %s port=%d' % (host and host or '', port)) else: if not pg_lock_tmp and pg_lock_netstat != 0: log_warn('No lock file %s but process running on %s port %d' % (pg_lock_file, host and host or '', port)) ret = 1 if pg_lock_tmp and pg_lock_netstat == 0: if file_exists(file=pg_lock_file, host=host): (ok, out) = run('%s %s %s | %s -1 | %s \'{print $1}\'' % (host and gplib.ssh_prefix(host=host) or '', ENV.CAT, pg_lock_file, ENV.HEAD, ENV.AWK)) if not ok: return (ok, pid) pid = int(out[0]) else: log_warn('Unable to access %s' % pg_lock_file) log_warn('Have lock file %s but no process running on %s port %d' % (pg_lock_file, host and host or '', port)) ret = 1 if pg_lock_tmp and pg_lock_netstat != 0: if file_exists(file=pg_lock_file, host=host): (ok, out) = run('%s %s %s | %s -1 | %s \'{print $1}\'' % (host and gplib.ssh_prefix(host=host) or '', ENV.CAT, pg_lock_file, ENV.HEAD, ENV.AWK)) if not ok: return (ok, pid) pid = int(out[0]) else: log_warn('Unable to access %s' % pg_lock_file) ret = 1 #log_info('Have lock file %s and a process running on %s port %d' % (pg_lock_file, host and host or '', port)) return (not ret, pid) ############# def get_master_port(master_data_dir): master_port = 0 if not os.path.exists(master_data_dir): fatal('No %s directory' % master_data_dir) if os.path.exists(os.path.join(master_data_dir, 'postgresql.conf')): (ok, out) = run('%s \'split($0,a,"#")>0 && split(a[1],b,"=")>1 {print b[1] " " b[2]}\' %s/postgresql.conf | %s \'$1=="port" {print $2}\' | %s -1' % (ENV.AWK, master_data_dir, ENV.AWK, ENV.TAIL)) if not ok or out[0].strip() == '': fatal('Failed to obtain master port number from %s/postgresql.conf' % master_data_dir) master_port = int(out[0]) else: fatal('Do not have access to %s/postgresql.conf' % master_data_dir) return master_port ############# def chk_db_running(db, chk_dispatch_access): master_data_directory = os.getenv('MASTER_DATA_DIRECTORY') if not directory_exists(master_data_directory): fatal('No Master %s directory' % master_data_directory) if not file_exists('%s/postgresql.conf' % master_data_directory): fatal('No %s/postgresql.conf file' % master_data_directory) port = get_master_port(master_data_directory) try: db.execute('''select d.datname as "Name", r.rolname as "Owner", pg_catalog.pg_encoding_to_char(d.encoding) as "Encoding" FROM pg_catalog.pg_database d JOIN pg_catalog.pg_authid r ON d.datdba = r.oid ORDER BY 1''') if chk_dispatch_access: pass except pg8000.errors.InterfaceError, e: return False return True ############# def unique(alist): set = {} map(set.__setitem__, alist, []) return set.keys() ############# def chk_multi_home(hostlist, full=True): hosts = full and hostlist or hostlist[0:2] hostnames=[] for host in hosts: (ok, out) = run('%s %s' % (gplib.ssh_prefix(host=host), ENV.HOSTNAME)) if not ok: error('failed to run hostname on remote host') hostnames.append(out[0].strip()) hostnames_uniq = unique(hostnames) return len(hostnames_uniq) != len(hostnames) ############# def get_qe_details(db, order_by = "dbid"): db.execute(''' select a.hostname, fse.fselocation as datadir, a.port, b.valid, b.definedprimary, a.dbid, a.content from gp_segment_configuration a, gp_pgdatabase b, pg_filespace_entry fse where a.dbid=b.dbid and fsedbid=a.dbid and fsefsoid = (select oid from pg_filespace where fsname='pg_system') and a.content <> -1 order by a.%s''' % order_by) rows = [ r for r in db.iterate_dict() ] return rows ############# def chk_mirrors_configured(db): db.execute('select count(dbid)/count(distinct(content)) from gp_segment_configuration where content<>-1') r = db.read_tuple() return r[0] == 2 ############# def get_mirror_type(db, multi_home): if not chk_mirrors_configured(db): mir_type = 'No Mirror' mir_type_num = ENV.MIRROR_NULL_TYPE else: db.execute("select count(distinct hostname)/(select count(distinct hostname) from gp_segment_configuration where preferred_role='p' and content<>-1) from gp_segment_configuration where content<>-1") r = db.read_tuple() sep_count = r[0] if sep_count == 2: sep_text = '[Separate array]' else: sep_text = '[Shared array]' # get number of primary hosts db.execute("select count(distinct(hostname)) from gp_segment_configuration where content<>-1") r = db.read_tuple() num_seg_hosts = r[0] # get the primary and mirror hostnames for the first segment instance host db.execute("select hostname, content, preferred_role='p' as definedprimary from gp_segment_configuration where content>-1 and content<(select max(port)-min(port)+1 from gp_segment_configuration where content<>-1 and preferred_role='p') order by content,dbid") first_pri_mir_array = [ x for x in db.iterate_dict() ] first_pri_array = filter(lambda (x): x['definedprimary'] == True, first_pri_mir_array) first_mir_array = filter(lambda (x): x['definedprimary'] == False, first_pri_mir_array) seg_per_host = len(first_pri_mir_array) / 2 if not multi_home: hosts = [ x['hostname'] for x in first_pri_mir_array ] if len(unique(hosts)) == 2 or num_seg_hosts == 1: mir_type = 'Group [Single-home] %s' % sep_text mir_type_num = ENV.MIRROR_SINGLE_HOME_GROUP_TYPE else: mir_type = 'Spread [Single-home] %s' % sep_text mir_type_num = ENV.MIRROR_SINGLE_HOME_SPREAD_TYPE else: mir_array = [] for i in range(seg_per_host): pri_host = first_pri_array[i]['hostname'] db.execute("select hostname from gp_segment_configuration where preferred_role = 'm' and content = %d" % (i)) r = db.read_tuple() mir_host = r[0] (ok, out) = run('%s "hostname"' % (gplib.ssh_prefix(host=mir_host))) if not ok: error('hostname on %s failed' % mir_host) mir_array.append(out[0]) uniq_cnt = len(unique(mir_array)) if uniq_cnt == 1: mir_type = 'Group [Multi-home] %s' % sep_text mir_type_num = ENV.MIRROR_MULTI_HOME_GROUP_TYPE else: mir_type = 'Spread [Mutli-home] %s' % sep_text mir_type_num = ENV.MIRROR_MULTI_HOME_SPREAD_TYPE return (mir_type_num, mir_type) ############# def get_ipaddr(host): (ok, out) = run('%s "%s %s | %s \\"inet\\"| %s -v \\"127.0.0\\"| %s -v \\"inet6\\""' % (gplib.ssh_prefix(host=host), ENV.IFCONFIG, ENV.IFCONFIG_TXT, ENV.GREP, ENV.GREP, ENV.GREP)) if not ok: return None addr = [] for l in out: x = l.strip().split() ip = x[1].split(':') addr.append(len(ip) == 2 and ip[1] or ip[0]) return addr ############# def get_ipaddr_to_stdout(host): addr = get_ipaddr(host) if addr: for a in addr: sys.stdout.write(a) sys.stdout.write(' ') sys.stdout.write('\n') else: sys.exit(1) ############# def edit_file(host, file, search_txt, sub_txt, append=False): if host != 'localhost': gphome = os.environ.get('GPHOME') cmd = makeCommand('''python -c \\"import sys; sys.path.extend(['%s', '%s']); import gpmlib; gpmlib.edit_file('localhost', '%s', '%s', '%s', %s)\\"''' % (os.path.join(gphome, 'bin', 'lib'), os.path.join(gphome, 'lib', 'python'), file, search_txt, sub_txt, str(append))) (ok, out) = run2('''%s "%s"''' % (gplib.ssh_prefix(host=host), cmd), True) return ok else: f = None tmpf = None tmpfile = '%s.tmp' % file try: try: f = open(file, 'r') tmpf = open(tmpfile, 'w') for line in f: if line.find(search_txt) != -1: tmpf.write(sub_txt) if append: tmpf.write(' # ') tmpf.write(line) else: tmpf.write('\n') else: tmpf.write(line) except IOError, e: log_error(str(e)) return False finally: if f: f.close() if tmpf: tmpf.close() try: os.rename(tmpfile, file) except OSError, e: log_error('rename file from %s to %s failed' % (tmpfile, file)) return False return True class _SyncProgress: markLock = threading.Lock() def __init__(self, logfunc, dst_cfg): self.logfunc = logfunc self.dst_host = dst_cfg["hostname"] self.dst_dir = dst_cfg["datadir"] self.dbid = dst_cfg["dbid"] if dst_cfg.has_key("dbid") else None self.content = dst_cfg["content"] if dst_cfg.has_key("content") else None self._tag = "%s:dbid=%s" % (self.dst_host, self.dbid) if self.dbid != None else "%s:%s" % (self.dst_host, self.dst_dir) def mark_sync_progress(self, message): with _SyncProgress.markLock: self.logfunc("%s %s" % (self._tag, message)) ############# def sync_segment_datadir(src_host, src_dir, dst_cfg, logfile, force_stop=True, setpid_callback=None, err_is_fatal=True, verbose=False, progressBytes=None, progressTime=None): if setpid_callback: log_warn('Use of sync_segment_datadir setpid_callback keyword is deprecated') if directory_exists(dst_cfg['datadir'], dst_cfg['hostname']): log_info('Data Directory %s exists' % dst_cfg['datadir']) else: # make mirror data directory log_info('Make directory %s' % dst_cfg['datadir']) (ok, out) = run('%s "%s %s && chmod 700 %s"' % (gplib.ssh_prefix(host=dst_cfg['hostname']), ENV.MKDIR, dst_cfg['datadir'], dst_cfg['datadir'])) if not ok: fatal('mkdir directory %s host %s failed' % (dst_cfg['datadir'], dst_cfg['hostname'])) # Call PysyncProxy to initiate the sync operation with progress feedback pysyncOptions = ["--delete", "-x", "db_dumps", "-x", "pg_log"] sync = pysync.PysyncProxy(src_host, src_dir, dst_cfg['hostname'], dst_cfg['datadir'], pysyncOptions, verbose=verbose, progressBytes=progressBytes, progressTime=progressTime, recordProgressCallback=_SyncProgress(log_info, dst_cfg).mark_sync_progress) code = sync.run() ok = (code == 0) if not ok: log_warn('-----------------------------------------------------') log_warn('Command Failed: %s' % sync.cmd) log_warn('Return code: %d' % code) log_warn('Exit status: %d' % os.WEXITSTATUS(sync.returncode)) if sync.stdout: log_warn('Standard output:') for l in sync.stdout: log_warn('\t %s' % l.strip()) else: log_warn('Standard output: None') if sync.stderr: log_warn('Standard error:') for l in sync.stderr: log_warn('\t %s' % l.strip()) else: log_warn('Standard error: None') log_warn('-----------------------------------------------------') if err_is_fatal: fatal('failed to synchronize data from primary segment %s:%s to mirror segment %s:%s' % (src_host, src_dir, dst_cfg['hostname'], dst_cfg['datadir'])) else: log_error('failed to synchronize data from primary segment %s:%s to mirror segment %s:%s' % (src_host, src_dir, dst_cfg['hostname'], dst_cfg['datadir'])) return False # delete postmaster.pid in case active segment is still running postmaster_pid = os.path.join(dst_cfg['datadir'], 'postmaster.pid') (ok, out) = run('%s "if [ -f %s ] ; then rm -rf %s; fi"' % (gplib.ssh_prefix(host=dst_cfg['hostname']), postmaster_pid, postmaster_pid)) # delete postmaster.opts in case active segment is still running postmaster_opts = os.path.join(dst_cfg['datadir'], 'postmaster.opts') (ok, out) = run('%s "if [ -f %s ] ; then rm -rf %s; fi"' % (gplib.ssh_prefix(host=dst_cfg['hostname']), postmaster_opts, postmaster_opts)) # change port number in postgresql.conf sub_txt = 'port=%d' % dst_cfg['port'] ok = edit_file(dst_cfg['hostname'], os.path.join(dst_cfg['datadir'], 'postgresql.conf'), 'port=', sub_txt, True) if not ok: fatal('failed to edit postgresql.conf') # start mirror segment in admin mode log_info('create pg_log directory') cmd = makeCommand('mkdir %s/pg_log' % dst_cfg['datadir']) (ok, out) = run_warn('%s "%s"' % (gplib.ssh_prefix(host=dst_cfg['hostname']),cmd)) log_info('sync segment datadir=%s port=%d on host %s succeeded' % (dst_cfg['datadir'], dst_cfg['port'], dst_cfg['hostname'])) return True log_info('start segment datadir=%s port=%d on %s' % (dst_cfg['datadir'], dst_cfg['port'], dst_cfg['hostname'])) cmd = makeCommand('env PGOPTIONS=\\"-c gp_session_role=utility\\" %s -w -D %s -l %s/pg_log/startup.log -o \\"-i -p %d \\" start 2>&1' % (os.path.join(ENV.GPHOME, 'bin/pg_ctl'), dst_cfg['datadir'], dst_cfg['datadir'], dst_cfg['port'])) (ok, out) = run_warn('%s "%s"' % (gplib.ssh_prefix(host=dst_cfg['hostname']), cmd)) if not ok: fatal('failed to start mirror segment %s:%s in admin mode' % (dst_cfg['hostname'], dst_cfg['datadir'])) if force_stop: # stop mirror segment log_info('stop segment datadir=%s port=%d on %s' % (dst_cfg['datadir'], dst_cfg['port'], dst_cfg['hostname'])) cmd = makeCommand('env PGOPTIONS=\\"-c gp_session_role=utility\\" %s -w stop -D %s -m smart -l %s.log' % (os.path.join(ENV.GPHOME, 'bin/pg_ctl'), dst_cfg['datadir'], dst_cfg['datadir'])) (ok, out) = run_warn('%s "%s" >> %s 2>&1' % (gplib.ssh_prefix(host=dst_cfg['hostname']), cmd, logfile)) if not ok: fatal('failed to stop mirror segment %s:%s' % (dst_cfg['hostname'], dst_cfg['datadir'])) log_info('sync segment datadir=%s port=%d on host %s succeeded' % (dst_cfg['datadir'], dst_cfg['port'], dst_cfg['hostname'])) return True ############# def append_pg_hba(host, datadir, new_addr): pg_hba = os.path.join(datadir, 'pg_hba.conf') for addr in new_addr: (ok, out) = run_warn('%s "echo host all all %s/32 trust >> %s"' % (gplib.ssh_prefix(host=host), addr, pg_hba)) if not ok: fatal('update %s:%s failed' % (host, pg_hba)) return True ############# def get_gp_prefix(datadir): base = os.path.basename(datadir) idx = base.rfind('-1') if idx == -1: return None return base[0:idx] ################## def chk_on_passive_standby(master_port): gpsync_count = 0 (ok, pid) = postgres_active(master_port) postmaster_opts = os.path.join(os.environ.get('MASTER_DATA_DIRECTORY'), 'postmaster.opts') if os.path.isfile(postmaster_opts): (okok, out) = run('%s -c gpsync %s' % (ENV.GREP, postmaster_opts)) gpsync_count = int(out[0]) if ok and gpsync_count != 0: log_fatal('Cannot run this script on a passive standby instance') log_fatal('where there is a conflict with the current value of') log_fatal('the MASTER_DATA_DIRECTORY environment variable setting.') return True if gpsync_count != 0: log_fatal('Cannont run this script on the standby instance') log_fatal('Status indicates that standby instance process not running') log_fatal('Check standby process status via gpstate -f on Master instance') return True return False def get_copy_filter(host, port): # pg8000 connects to master in utility mode db = None databases = None filters = [] try: db = pg8000.Connection(host=host, user=ENV.USER, database='template1', port=port, options='-c gp_session_role=utility') # get list of user databases # select oid, datname from pg_database where oid >= 16384; db.execute('select oid, datname from pg_database where oid >= 16384') # db.execute('select oid, datname from pg_database') databases = [ r for r in db.iterate_tuple() ] except Exception, e: print str(e) return None finally: if db: db.close() db = None # foreach database for d in databases: try: oid = d[0] datname = d[1] db = pg8000.Connection(host=host, user=ENV.USER, database=datname, port=port, options='-c gp_session_role=utility') # get user table filter (user table, TOAST table, sequences) # select oid from pg_class where old >= 16384 and relkind='r'; db.execute("select oid from pg_class where oid >= 16384 and relkind='r'") table_filter = [ r[0] for r in db.iterate_tuple() ] # get user TOAST table filter # select oid from pg_class where old >= 16384 and relkind='t'; db.execute("select oid from pg_class where oid >= 16384 and relkind='t'") toast_filter = [ r[0] for r in db.iterate_tuple() ] # get sequences filter # select oid from pg_class where old >= 16384 and relkind='S'; db.execute("select oid from pg_class where oid >= 16384 and relkind='S'") sequence_filter = [ r[0] for r in db.iterate_tuple() ] # get index filter # select oid from pg_class where old >= 16384 and relkind='i'; db.execute("select oid from pg_class where oid >= 16384 and relkind='i'") index_filter = [ r[0] for r in db.iterate_tuple() ] filters.append((oid, table_filter, toast_filter, sequence_filter, index_filter)) except Exception, e: print str(e) continue finally: if db: db.close() db = None return filters
StarcoderdataPython
11229353
# Moved to test/python/test_torch_ad
StarcoderdataPython
206262
import sys sys.stdin = open('input.txt') raw_input() result = [] while True: line = raw_input().strip() if line == '___________': break binStr = line.replace(' ', '0').replace( 'o', '1').strip('|').replace('.', '') # print binStr n = int(binStr, base=2) result.append(chr(n)) print ''.join(result)
StarcoderdataPython
8041314
# coding=utf-8 import datetime import time from inter.CheckRandCodeAnsyn import checkRandCodeAnsyn from inter.GetPassengerDTOs import getPassengerDTOs from inter.GetRandCode import getRandCode from inter.QueryOrderWaitTime import queryOrderWaitTime class confirmSingleForQueue: def __init__(self, session, ifShowPassCodeTime, is_node_code, token, set_type, ticket_peoples, ticketInfoForPassengerForm, oldPassengerStr, passengerTicketStrList): self.session = session self.ifShowPassCodeTime = ifShowPassCodeTime self.is_node_code = is_node_code self.token = token self.set_type = set_type self.ticket_peoples = ticket_peoples self.ticketInfoForPassengerForm = ticketInfoForPassengerForm self.passengerTicketStrList = passengerTicketStrList self.oldPassengerStr = oldPassengerStr def data_par(self): """ 模拟提交订单是确认按钮,参数获取方法还是get_ticketInfoForPassengerForm 中获取 :return: """ if not self.passengerTicketStrList and not self.oldPassengerStr: s = getPassengerDTOs(session=self.session, ticket_peoples=self.ticket_peoples, set_type=self.set_type) getPassengerDTOsResult = s.getPassengerTicketStrListAndOldPassengerStr() if getPassengerDTOsResult.get("status", False): self.passengerTicketStrList = getPassengerDTOsResult.get("passengerTicketStrList", "") self.oldPassengerStr = getPassengerDTOsResult.get("oldPassengerStr", "") data = { "passengerTicketStr": self.passengerTicketStrList.rstrip("_{0}".format(self.set_type)), "oldPassengerStr": "".join(self.oldPassengerStr), "purpose_codes": self.ticketInfoForPassengerForm["purpose_codes"], "key_check_isChange": self.ticketInfoForPassengerForm["key_check_isChange"], "leftTicketStr": self.ticketInfoForPassengerForm["leftTicketStr"], "train_location": self.ticketInfoForPassengerForm["train_location"], "seatDetailType": "", # 开始需要选择座位,但是目前12306不支持自动选择作为,那这个参数为默认 "roomType": "00", # 好像是根据一个id来判断选中的,两种 第一种是00,第二种是10,但是我在12306的页面没找到该id,目前写死是00,不知道会出什么错 "dwAll": "N", "whatsSelect": 1, "_json_at": "", "randCode": "", "choose_seats": "", "REPEAT_SUBMIT_TOKEN": self.token, } return data def sendConfirmSingleForQueue(self): """ # 模拟查询当前的列车排队人数的方法 # 返回信息组成的提示字符串 :return: """ data = self.data_par() checkQueueOrderUrl = self.session.urls["checkQueueOrderUrl"] try: if self.is_node_code: print(u"正在使用自动识别验证码功能") for i in range(3): randCode = getRandCode(is_auto_code=True, auto_code_type=2) checkcode = checkRandCodeAnsyn(self.session, randCode, self.token) if checkcode == 'TRUE': print(u"验证码通过,正在提交订单") data['randCode'] = randCode break else: print (u"验证码有误, {0}次尝试重试".format(i + 1)) print(u"验证码超过限定次数3次,放弃此次订票机会!") else: print(u"不需要验证码") time.sleep(self.ifShowPassCodeTime) checkQueueOrderResult = self.session.httpClint.send(checkQueueOrderUrl, data) if "status" in checkQueueOrderResult and checkQueueOrderResult["status"]: c_data = checkQueueOrderResult["data"] if "data" in checkQueueOrderResult else {} if 'submitStatus' in c_data and c_data['submitStatus'] is True: # print(u"提交订单成功!") qow = queryOrderWaitTime(self.session) qow.sendQueryOrderWaitTime() else: if 'errMsg' in c_data and c_data['errMsg']: print(u"提交订单失败,{0}".format(c_data['errMsg'])) else: print(c_data) print(u'订票失败!很抱歉,请重试提交预订功能!') elif "messages" in checkQueueOrderResult and checkQueueOrderResult["messages"]: print(u"提交订单失败,错误信息: " + checkQueueOrderResult["messages"]) else: print(u"提交订单中,请耐心等待:" + checkQueueOrderResult["message"]) except ValueError: print(u"接口 {} 无响应".format(checkQueueOrderUrl))
StarcoderdataPython
3418688
<reponame>J-E-J-S/aaRS-Pipeline # # pubkey.py : Internal functions for public key operations # # Part of the Python Cryptography Toolkit # # Written by <NAME>, <NAME>, and others # # =================================================================== # The contents of this file are dedicated to the public domain. To # the extent that dedication to the public domain is not available, # everyone is granted a worldwide, perpetual, royalty-free, # non-exclusive license to exercise all rights associated with the # contents of this file for any purpose whatsoever. # No rights are reserved. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS # BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN # ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN # CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. # =================================================================== # __revision__ = "$Id$" import types, warnings from Crypto.Util.number import * # Basic public key class class pubkey: def __init__(self): pass def __getstate__(self): """To keep key objects platform-independent, the key data is converted to standard Python long integers before being written out. It will then be reconverted as necessary on restoration.""" d=self.__dict__ for key in self.keydata: if d.has_key(key): d[key]=long(d[key]) return d def __setstate__(self, d): """On unpickling a key object, the key data is converted to the big number representation being used, whether that is Python long integers, MPZ objects, or whatever.""" for key in self.keydata: if d.has_key(key): self.__dict__[key]=bignum(d[key]) def encrypt(self, plaintext, K): """encrypt(plaintext:string|long, K:string|long) : tuple Encrypt the string or integer plaintext. K is a random parameter required by some algorithms. """ wasString=0 if isinstance(plaintext, types.StringType): plaintext=bytes_to_long(plaintext) ; wasString=1 if isinstance(K, types.StringType): K=bytes_to_long(K) ciphertext=self._encrypt(plaintext, K) if wasString: return tuple(map(long_to_bytes, ciphertext)) else: return ciphertext def decrypt(self, ciphertext): """decrypt(ciphertext:tuple|string|long): string Decrypt 'ciphertext' using this key. """ wasString=0 if not isinstance(ciphertext, types.TupleType): ciphertext=(ciphertext,) if isinstance(ciphertext[0], types.StringType): ciphertext=tuple(map(bytes_to_long, ciphertext)) ; wasString=1 plaintext=self._decrypt(ciphertext) if wasString: return long_to_bytes(plaintext) else: return plaintext def sign(self, M, K): """sign(M : string|long, K:string|long) : tuple Return a tuple containing the signature for the message M. K is a random parameter required by some algorithms. """ if (not self.has_private()): raise TypeError('Private key not available in this object') if isinstance(M, types.StringType): M=bytes_to_long(M) if isinstance(K, types.StringType): K=bytes_to_long(K) return self._sign(M, K) def verify (self, M, signature): """verify(M:string|long, signature:tuple) : bool Verify that the signature is valid for the message M; returns true if the signature checks out. """ if isinstance(M, types.StringType): M=bytes_to_long(M) return self._verify(M, signature) # alias to compensate for the old validate() name def validate (self, M, signature): warnings.warn("validate() method name is obsolete; use verify()", DeprecationWarning) def blind(self, M, B): """blind(M : string|long, B : string|long) : string|long Blind message M using blinding factor B. """ wasString=0 if isinstance(M, types.StringType): M=bytes_to_long(M) ; wasString=1 if isinstance(B, types.StringType): B=bytes_to_long(B) blindedmessage=self._blind(M, B) if wasString: return long_to_bytes(blindedmessage) else: return blindedmessage def unblind(self, M, B): """unblind(M : string|long, B : string|long) : string|long Unblind message M using blinding factor B. """ wasString=0 if isinstance(M, types.StringType): M=bytes_to_long(M) ; wasString=1 if isinstance(B, types.StringType): B=bytes_to_long(B) unblindedmessage=self._unblind(M, B) if wasString: return long_to_bytes(unblindedmessage) else: return unblindedmessage # The following methods will usually be left alone, except for # signature-only algorithms. They both return Boolean values # recording whether this key's algorithm can sign and encrypt. def can_sign (self): """can_sign() : bool Return a Boolean value recording whether this algorithm can generate signatures. (This does not imply that this particular key object has the private information required to to generate a signature.) """ return 1 def can_encrypt (self): """can_encrypt() : bool Return a Boolean value recording whether this algorithm can encrypt data. (This does not imply that this particular key object has the private information required to to decrypt a message.) """ return 1 def can_blind (self): """can_blind() : bool Return a Boolean value recording whether this algorithm can blind data. (This does not imply that this particular key object has the private information required to to blind a message.) """ return 0 # The following methods will certainly be overridden by # subclasses. def size (self): """size() : int Return the maximum number of bits that can be handled by this key. """ return 0 def has_private (self): """has_private() : bool Return a Boolean denoting whether the object contains private components. """ return 0 def publickey (self): """publickey(): object Return a new key object containing only the public information. """ return self def __eq__ (self, other): """__eq__(other): 0, 1 Compare us to other for equality. """ return self.__getstate__() == other.__getstate__() def __ne__ (self, other): """__ne__(other): 0, 1 Compare us to other for inequality. """ return not self.__eq__(other)
StarcoderdataPython
233544
import itertools import threading import time import sys import os from os import name, system DEFAULT_FPS = 3 class Animator: """Base animator classes""" def __init__(self): self.fps = DEFAULT_FPS # the default frames per second self.done = False try: self.columns, self.lines = os.get_terminal_size() except Exception as e: self.columns = 80 self.lines = 30 @property def wait_between_frames(self): return 1/self.fps def clear(self): # for windows if name == 'nt': _ = system('cls') # for mac and linux(here, os.name is 'posix') else: _ = system('clear') def carriage_return(self): sys.stdout.write('\r') def write(self, *args): sys.stdout.write(*args) def flush(self): sys.stdout.flush() def sleep(self, secs): time.sleep(secs) def clear_line(self): self.carriage_return() self.write(' '*(self.columns-3)) self.flush() self.carriage_return() def clear_line_decorator(self, func): """Decorator for animation functions DOES NOT WORK YET! """ def wrapper(): self.clear_line() func() self.clear_line() return wrapper def animate(self, strings_to_draw, animate_fn=None): if animate_fn is None: animate_fn = self.animate_fn animate_fn(strings_to_draw=strings_to_draw) def animate_fn(self, strings_to_draw: list): """Animates the string objects in the strings to draw list. Args: strings_to_draw: List of strings that should be drawin in order Returns: nothing, but prints """ for string in strings_to_draw: self.carriage_return() self.write(string) self.flush() self.sleep(self.wait_between_frames) self.write('\n') def loop_animate(self, duration, strings_to_draw, animate_fn=None): if animate_fn is None: animate_fn = self.loop_animate_fn t = threading.Thread(target=animate_fn, kwargs={'strings_to_draw': strings_to_draw}) t.start() # sleep while the animation is drawing self.sleep(duration) self.done = True def loop_animate_fn(self, strings_to_draw: list): """Looping animation the string objects in the strings to draw list. Args: strings_to_draw: List of strings that should be drawin in order Returns: nothing, but prints """ # reset done just in case this function has already been called. self.done = False for c in itertools.cycle(strings_to_draw): if self.done: break self.carriage_return() self.write(c) self.flush() self.sleep(self.wait_between_frames) self.carriage_return() self.write('\n')
StarcoderdataPython
6533051
from __future__ import unicode_literals from numpy.random import choice from collections import Counter import pandas as pd import numpy as np from django.apps import apps import string def sample_no_replacement(full_set, previous_set=None): # print "starting sample_no_replacement" # if previous_set: # print "prev set" # print previous_set # print full_set if set(previous_set) == set(full_set): #the user has seen each of the conditions of this vairbales at least once cond_counts = Counter(previous_set) #return a list of tuples of most common e.g. #[('a', 5), ('r', 2), ('b', 2)] cond_common_order = cond_counts.most_common() # print "cond_common_order" # print cond_common_order if cond_common_order[0][1] == cond_common_order[-1][1]: #all conds are evenly assigned, choose randomly cond = cond_common_order[choice(len(cond_common_order))] #print cond cond = cond[0] else: #choose the one with least assignment #(where same value is ordered arbitrarily) cond = cond_common_order[-1][0] else: #subject hasn't seen all versions yet cond_choices = set(full_set) - set(previous_set) # print "cond_choices" # print cond_choices cond = choice(list(cond_choices)) return cond def create_design_matrix(input_df, formula, add_intercept = True): ''' :param input_df: :param formula: for eaxmple "y ~ x0 + x1 + x2 + x0 * x1 + x1 * x2" :param add_intercept: whether to add dummy columns of 1. :return: the design matrix as a dataframe, each row corresponds to a data point, and each column is a regressor in regression ''' D_df = pd.DataFrame() input_df = input_df.astype(np.float64) formula = str(formula) # parse formula formula = formula.strip() all_vars_str = formula.split('~')[1].strip() dependent_var = formula.split('~')[0].strip() vars_list = all_vars_str.split('+') vars_list = list(map(string.strip, vars_list)) ''''#sanity check to ensure each var used in for var in vars_list: if var not in input_df.columns: raise Exception('variable {} not in the input dataframe'.format((var)))''' # build design matrix for var in vars_list: if '*' in var: interacting_vars = var.split('*') interacting_vars = list(map(string.strip,interacting_vars)) D_df[var] = input_df[interacting_vars[0]] for i in range(1, len(interacting_vars)): D_df[var] *= input_df[interacting_vars[i]] else: D_df[var] = input_df[var] # add dummy column for bias if add_intercept: D_df.insert(0, 'Intercept', 1.) return D_df def values_to_df(mooclet, policyparams, latest_update=None): """ where variables is a list of variable names note: as implemented this will left join on users which can result in NAs """ Value = apps.get_model('engine', 'Value') variables = list(policyparams.parameters["contextual_variables"]) outcome = policyparams.parameters["outcome_variable"] action_space = policyparams.parameters["action_space"] variables.append(outcome) if not latest_update: values = Value.objects.filter(variable__name__in=variables, mooclet=mooclet) #mooclet=mooclet else: values = Value.objects.filter(variable__name__in=variables, timestamp__gte=latest_update, mooclet=mooclet)#.order_by('learner') #mooclet=mooclet #TODO ONLY CARE ABOUT DATE ON OUTCOME #outcomes = Value.objects.filter(variable__name=outcome, mooclet=mooclet, policy=policyparams.policy).order_by('learner') #print("OUTCOMES") #print(len(outcomes)) #values = values | outcomes print("values") print(len(values)) variables.append('user_id') #variables.append(outcome) variables.remove('version') variables.extend(action_space.keys()) print("variables") print(variables) vals_to_df = pd.DataFrame({},columns=variables) curr_user = None curr_user_values = {} #TODO: if the variable is "version" get the mapping to actions for value in values: #skip any values with no learners if not value.learner: continue if curr_user is None: curr_user = value.learner.id curr_user_values = {'user_id': curr_user} if value.learner.id != curr_user: #append to df try: vals_to_df = vals_to_df.append(curr_user_values, ignore_index=True) except ValueError: print("duplicate data") print(curr_user_values) pass curr_user = value.learner.id curr_user_values = {'user_id': curr_user} #transform mooclet version shown into dummified action #todo silo off version as its own thing??? so that we always get most recent? if value.variable.name == 'version': action_config = policyparams.parameters['action_space'] #this is the numerical representation from the config #IN THIS STEP ALSO GET AN OUTCOME RELATED TO THIS VERSION for action in action_config: action = action.encode('utf-8') # print("current_version_json: ") # print(value.version.version_json) curr_action_config = value.version.version_json[action] curr_user_values[action] = curr_action_config #UNLESS IT IS AN OUTCOME IN WHICH CASE HANDLE AS ABOVE AND DISCARD else: curr_user_values[value.variable.name] = value.value #print(curr_user_values) else: try: vals_to_df = vals_to_df.append(curr_user_values, ignore_index=True) except ValueError: print("duplicate data") print(curr_user_values) pass # print("values df: ") # print(vals_to_df) if not vals_to_df.empty: output_df = vals_to_df.dropna() else: output_df = vals_to_df # if vals_to_df : # output_df = pd.concat(vals_to_df) # output_df = output_df.dropna() # #print output_df.head() # else: # output_df = pd.DataFrame() print(output_df) return output_df
StarcoderdataPython
3437439
import asyncio import traceback import time import re from pyrogram import filters from bot import alemiBot from util.permission import is_allowed, is_superuser, allow, disallow, serialize, list_allowed, ALLOWED from util.user import get_username from util.message import edit_or_reply, get_text, is_me from util.text import split_for_window from util.command import filterCommand from util.time import parse_timedelta from plugins.help import HelpCategory import logging logger = logging.getLogger(__name__) HELP = HelpCategory("MANAGEMENT") HELP.add_help("delme", "immediately delete message", "add `-delme` at the end of a message to have it deleted after a time. " + "If no time is given, message will be immediately deleted", args="[<time>]") @alemiBot.on_message(filters.me & filters.regex(pattern= r"(?:.*|)(?:-delme)(?: |)(?P<time>[0-9]+|)$" ), group=5) async def deleteme(client, message): logger.info("Deleting sent message") t = message.matches[0]["time"] if t != "": await asyncio.sleep(float(t)) await message.delete() async def get_user(arg, client): if arg.isnumeric(): return await client.get_users(int(arg)) else: return await client.get_users(arg) HELP.add_help(["purge", "wipe", "clear"], "batch delete messages", "delete messages last <n> messages (excluding this) sent by <targets> (can be a list of `@user`). If <n> is not given, will default to 1. " + "If no target is given, messages from author of replied msg or self msgs will be deleted. You can give flag `-all` to delete from everyone. " + "Search is limited to last 100 messages by default, add the `-full` flag to make an unbound (and maybe long, be careful!) search." "A keyword (regex) can be specified (`-k`) so that only messages matching given pattern will be deleted. " + "An offset can be specified with `-o`, to start deleting after a specific number of messages. " + "A time frame can be given: you can limit deletion to messages before (`-before`) a certain time " + "(all messages from now up to <time> ago), or after (`-after`) a certain interval (all messages older than <time>). " + "Time can be given as a packed string like this : `8y3d4h15m3s` (years, days, hours, minutes, seconds), " + "any individual token can be given in any position and all are optional, it can just be `30s` or `5m`. If " + "you want to include spaces, wrap the 'time' string in `\"`. If you need to purge messages from an user without an @username, " + "you can give its user id with the `-id` flag. If you need to provide more than 1 id, wrap them in `\"` and separate with a space.", args="[-k <keyword>] [-o <n>] [-before <time>] [-after <time>] [-all] [-id <ids>] [<targets>] [<number>] [-full]", public=False) @alemiBot.on_message(is_superuser & filterCommand(["purge", "wipe", "clear"], list(alemiBot.prefixes), options={ "keyword" : ["-k", "-keyword"], "offset" : ["-o", "-offset"], "ids" : ["-id"], "before" : ["-before"], "after" : ["-after"], "limit" : ["-lim"] }, flags=["-all", "-full"])) async def purge(client, message): args = message.command target = [] opts = {} number = 1 delete_all = "-all" in args["flags"] keyword = re.compile(args["keyword"]) if "keyword" in args else None offset = int(args["offset"]) if "offset" in args else 0 time_limit = time.time() - parse_timedelta(args["before"]).total_seconds() if \ "before" in args else None hard_limit = "-full" not in args["flags"] if "after" in args: opts["offset_date"] = int(time.time() - parse_timedelta(args["after"]).total_seconds()) try: if "cmd" in args: for a in args["cmd"]: if a.startswith("@"): if a == "@me": target.append(message.from_user.id) else: target.append((await get_user(a, client)).id) elif a.isnumeric(): number = int(a) if "ids" in args: for single_id in args["ids"].split(): target.append(int(single_id)) if not target: if message.reply_to_message: target.append(message.reply_to_message.from_user.id) else: target.append(message.from_user.id) logger.info(f"Purging last {number} message from {target}") n = 0 total = 0 async for msg in client.iter_history(message.chat.id, **opts): total += 1 if hard_limit and total > max(100, number): break if msg.message_id == message.message_id: # ignore message that triggered this continue if ((delete_all or msg.from_user.id in target) and (not keyword or keyword.search(get_text(msg)))): # wait WTF why no raw here if offset > 0: # do an offset like this because offset -=1 # we want to offset messages from target user, not all messages continue await msg.delete() n += 1 if n >= number: break if time_limit is not None and msg.date < time_limit: break await edit_or_reply(message, "` → ` Done") except Exception as e: traceback.print_exc() await edit_or_reply(message, "`[!] → ` " + str(e)) await client.set_offline() HELP.add_help(["merge"], "join multiple messages into one", "join multiple messages sent by you into one. Reply to the first one to merge, bot will join " + "every consecutive message you sent. You can stop the bot from deleting merged messages with " + "`-nodel` flag. You can specify a separator with `-s`, it will default to `\n`. You can specify max " + "number of messages to merge with `-max`.", args="[-s <sep>] [-max <n>] [-nodel]", public=False) @alemiBot.on_message(is_superuser & filterCommand(["merge"], list(alemiBot.prefixes), options={ "separator" : ["-s"], "max" : ["-max"] }, flags=["-nodel"])) async def merge_cmd(client, message): if not message.reply_to_message: return await edit_or_reply(message, "`[!] → ` No start message given") m_id = message.reply_to_message.message_id sep = message.command["separator"] if "separator" in message.command else "\n" del_msg = "-nodel" not in message.command["flags"] max_to_merge = message.command["max"] if "max" in message.command else -1 try: logger.info(f"Merging messages") out = "" count = 0 async for msg in client.iter_history(message.chat.id, offset_id=m_id, reverse=True): if msg.message_id == message.message_id or not is_me(msg) or msg.media \ or (max_to_merge > 0 and count >= max_to_merge): break out += msg.text.markdown + sep count += 1 if del_msg and msg.message_id != m_id: # don't delete the one we want to merge into await msg.delete() await message.reply_to_message.edit(out) await edit_or_reply(message, f"` → ` Merged {count} messages") except Exception as e: traceback.print_exc() await edit_or_reply(message, "`[!] → ` " + str(e)) await client.set_offline() HELP.add_help(["allow", "disallow", "revoke"], "allow/disallow to use bot", "this command will work differently if invoked with `allow` or with `disallow`. Target user " + "will be given/revoked access to public bot commands. ~~Use `@here` or `@everyone` to allow " + "all users in this chat.", args="<target>") @alemiBot.on_message(is_superuser & filterCommand(["allow", "disallow", "revoke"], list(alemiBot.prefixes))) async def manage_allowed_cmd(client, message): try: users_to_manage = [] if message.reply_to_message is not None: peer = message.reply_to_message.from_user if peer is None: return users_to_manage.append(peer) elif "cmd" in message.command: if message.command["cmd"][0] in ["@here", "@everyone"]: async for u in client.iter_chat_members(message.chat.id): if u.user.is_bot: continue users_to_manage.append(u.user) else: user = None try: user = await client.get_users(message.command["cmd"][0]) except ValueError: return await edit_or_reply(message, "`[!] → ` No user matched") if user is None: return await edit_or_reply(message, "`[!] → ` No user matched") users_to_manage.append(user) else: return await edit_or_reply(message, "`[!] → ` Provide an ID or reply to a msg") logger.info("Changing permissions") out = "" action_allow = message.command["base"] == "allow" for u in users_to_manage: u_name = get_username(u) if action_allow: if allow(u.id, val=u_name): out += f"` → ` Allowed **{u_name}**\n" else: if disallow(u.id, val=u_name): out += f"` → ` Disallowed **{u_name}**\n" if out != "": await edit_or_reply(message, out) else: await edit_or_reply(message, "` → ` No changes") except Exception as e: traceback.print_exc() await edit_or_reply(message, f"`[!] → ` __{str(e)}__") HELP.add_help(["trusted", "plist", "permlist"], "list allowed users", "note that users without a username may give issues. Use `-s` to get " + "the users individually if a batch request fails with 'InvalidPeerId'.", args="[-s]") # broken af lmaooo TODO @alemiBot.on_message(is_superuser & filterCommand(["trusted", "plist", "permlist"], list(alemiBot.prefixes), flags=["-s"])) async def trusted_list(client, message): try: user_ids = list_allowed() text = "`[` " issues = "" users = [] logger.info("Listing allowed users") if "-s" in message.command["flags"]: for uid in list_allowed(): try: users.append(await client.get_users(uid)) except: issues += f"~~[{uid}]~~ " else: users = await client.get_users([ int(u) for u in user_ids ]) # this thing gives a PeerIdInvalid exc??? for u in users: text += f"{get_username(u)}, " text += "`]`" await edit_or_reply(message, f"` → Allowed Users : `\n{text}\n{issues}") except Exception as e: traceback.print_exc() await edit_or_reply(message, f"`[!] → ` __{str(e)}__")
StarcoderdataPython
12820734
<reponame>javiergayala/jenkins-job-wrecker<filename>jenkins_job_wrecker/modules/scm.py # encoding=utf8 import jenkins_job_wrecker.modules.base class Scm(jenkins_job_wrecker.modules.base.Base): component = 'scm' def gen_yml(self, yml_parent, data): scm = [] scm_class = None if 'class' in data.attrib: if data.attrib['class'] == 'hudson.scm.NullSCM': return None if data.attrib['class'] == 'org.jenkinsci.plugins.multiplescms.MultiSCM': for scm in data[0]: self.gen_yml(yml_parent, scm) return scm_class = data.attrib['class'].split('.')[-1].lower() scm_tag = data.tag.split('.')[-1].lower() if scm_tag in self.registry.registry[self.component]: self.registry.dispatch(self.component, scm_tag, data, scm) yml_parent.append(['scm', scm]) return if scm_class is not None and scm_class in self.registry.registry[self.component]: self.registry.dispatch(self.component, scm_class, data, scm) yml_parent.append(['scm', scm]) return raise NotImplementedError('%s scm not supported' % data.attrib['class']) def gitscm(top, parent): git = {} for child in top: if child.tag == 'configVersion': continue # we don't care elif child.tag == 'userRemoteConfigs': if len(list(child)) != 1: # expected "hudson.plugins.git.UserRemoteConfig" tag raise NotImplementedError("%s not supported with %i " "children" % (child.tag, len(list(child)))) for setting in child[0]: if setting.tag == 'credentialsId': git['credentials-id'] = setting.text else: git[setting.tag] = setting.text elif child.tag == 'gitTool': git['git-tool'] = child.text elif child.tag == 'excludedUsers': if child.text: users = child.text.split() git['excluded-users'] = users elif child.tag == 'buildChooser': if child.attrib['class'] == \ 'hudson.plugins.git.util.DefaultBuildChooser': continue else: # see JJB's jenkins_jobs/modules/scm.py # for other build choosers raise NotImplementedError("%s build " "chooser" % child.attrib['class']) elif child.tag == 'disableSubmodules': # 'false' is the default and needs no explict YAML. if child.text == 'true': raise NotImplementedError("TODO: %s" % child.tag) elif child.tag == 'recursiveSubmodules': # 'false' is the default and needs no explict YAML. if child.text == 'true': raise NotImplementedError("TODO: %s" % child.tag) elif child.tag == 'authorOrCommitter': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['use-author'] = True elif child.tag == 'useShallowClone': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['shallow-clone'] = True elif child.tag == 'ignoreNotifyCommit': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['ignore-notify'] = True elif child.tag == 'wipeOutWorkspace': git['wipe-workspace'] = (child.text == 'true') elif child.tag == 'skipTag': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['skip-tag'] = True elif child.tag == 'pruneBranches': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['prune'] = True elif child.tag == 'remotePoll': # 'false' is the default and needs no explict YAML. if child.text == 'true': git['fastpoll'] = True elif child.tag == 'relativeTargetDir': # If it's empty, no explicit 'basedir' YAML needed. if child.text: git['basedir'] = child.text elif child.tag == 'reference': # If it's empty, we're good if child.text or len(list(child)) > 0: raise NotImplementedError(child.tag) elif child.tag == 'gitConfigName': # If it's empty, we're good if child.text or len(list(child)) > 0: raise NotImplementedError(child.tag) elif child.tag == 'gitConfigEmail': # If it's empty, we're good if child.text or len(list(child)) > 0: raise NotImplementedError(child.tag) elif child.tag == 'scmName': # If it's empty, we're good if child.text or len(list(child)) > 0: raise NotImplementedError(child.tag) elif child.tag == 'branches': if child[0][0].tag != 'name': raise NotImplementedError("%s XML not supported" % child[0][0].tag) branches = [] for item in child: for branch in item: branches.append(branch.text) git['branches'] = branches elif child.tag == 'doGenerateSubmoduleConfigurations': if len(list(child)) != 0: raise NotImplementedError("%s not supported with %i children" % (child.tag, len(list(child)))) # JJB doesn't handle this element anyway. Just continue on. continue elif child.tag == 'submoduleCfg': if len(list(child)) > 0: raise NotImplementedError("%s not supported with %i children" % (child.tag, len(list(child)))) elif child.tag == 'browser': # XXX: blunt hammer: just use the "auto" browser for everything. git['browser'] = 'auto' elif child.tag == 'extensions': for extension in child: # hudson.plugins.git.extensions.impl.RelativeTargetDirectory if extension.tag == 'hudson.plugins.git.extensions.impl.RelativeTargetDirectory': if len(list(extension)) != 1: # expected <relativeTargetDir> raise NotImplementedError("%s not supported with %i children" % (extension.tag, len(list(extension)))) if extension[0].tag != 'relativeTargetDir': raise NotImplementedError("%s XML not supported" % extension[0].tag) git['basedir'] = extension[0].text elif extension.tag == 'hudson.plugins.git.extensions.impl.CheckoutOption': if len(list(extension)) != 1: # expected <timeout> raise NotImplementedError("%s not supported with %i children" % (extension.tag, len(list(extension)))) if extension[0].tag != 'timeout': raise NotImplementedError("%s XML not supported" % child[0][0].tag) git['timeout'] = extension[0].text elif extension.tag == 'hudson.plugins.git.extensions.impl.WipeWorkspace': if len(list(extension)) != 0: raise NotImplementedError("%s not supported with %i children" % (extension.tag, len(list(extension)))) git['wipe-workspace'] = True elif extension.tag == 'hudson.plugins.git.extensions.impl.LocalBranch': git['local-branch'] = extension[0].text elif extension.tag == 'hudson.plugins.git.extensions.impl.PerBuildTag': pass elif extension.tag == 'hudson.plugins.git.extensions.impl.CleanBeforeCheckout': clean_dict = {'before': True} if 'clean' in git: # after has already been added git['clean'].update(clean_dict) else: # Need to create dict for git['clean'] git['clean'] = clean_dict elif extension.tag == 'hudson.plugins.git.extensions.impl.CleanCheckout': clean_dict = {'after': True} if 'clean' in git: # before has already been added git['clean'].update(clean_dict) else: # Need to create dict for git['clean'] git['clean'] = clean_dict elif extension.tag == 'hudson.plugins.git.extensions.impl.PathRestriction': paths = {'includedRegions': 'included-regions', 'excludedRegions': 'excluded-regions'} for jxml, jjb in list(paths.items()): if extension.find(jxml) is not None: regions = extension.find(jxml).text if regions is not None: git[jjb] = regions.splitlines() else: raise NotImplementedError("%s not supported" % extension.tag) else: raise NotImplementedError("cannot handle XML %s" % child.tag) parent.append({'git': git}) def mercurialscm(top, parent): hg = {} for child in top: if child.tag == 'source': hg['url'] = child.text elif child.tag == 'credentialsId': hg['credentials-id'] = child.text elif child.tag == 'revisionType': hg['revision-type'] = child.text.lower() elif child.tag == 'revision': hg['revision'] = child.text elif child.tag == 'modules': pass elif child.tag == 'clean': hg['clean'] = (child.text == 'true') elif child.tag == 'subdir': hg['subdir'] = child.text elif child.tag == 'disableChangeLog': hg['disable-changelog'] = (child.text == 'true') elif child.tag == 'browser' and 'class' in child.attrib: browser_class = child.attrib['class'] if browser_class == 'hudson.plugins.mercurial.browser.BitBucket': hg['browser'] = 'bitbucketweb' elif browser_class == 'hudson.plugins.mercurial.browser.FishEye': hg['browser'] = 'fisheye' elif browser_class == 'hudson.plugins.mercurial.browser.GoogleCode': hg['browser'] = 'googlecode' elif browser_class == 'hudson.plugins.mercurial.browser.HgWeb': hg['browser'] = 'hgweb' elif browser_class == 'hudson.plugins.mercurial.browser.Kallithea': # Not supported by JJB raise NotImplementedError("%s is not yet supported by jenkins-job-builder." % browser_class) elif browser_class == 'hudson.plugins.mercurial.browser.KilnHG': hg['browser'] = 'kilnhg' elif browser_class == 'hudson.plugins.mercurial.browser.RhodeCode': hg['browser'] = 'rhodecode' elif browser_class == 'hudson.plugins.mercurial.browser.RhodeCodeLegacy': hg['browser'] = 'rhodecode-pre-1.2' if child.find('url') is not None: hg['browser-url'] = child.find('url').text parent.append({'hg': hg}) def subversionscm(top, parent): # Parameters: # url (str) - URL of the svn repository # basedir (str) - location relative to the workspace root to checkout to (default '.') # credentials-id (str) - optional argument to specify the ID of credentials to use # repo-depth (str) - Repository depth. Can be one of 'infinity', 'empty', # 'files', 'immediates' or 'unknown'. (default 'infinity') # ignore-externals (bool) - Ignore Externals. (default false) # workspaceupdater (str) - optional argument to specify # workspaceupdater - # optional argument to specify how to update the workspace (default wipeworkspace) # supported values: # wipeworkspace - deletes the workspace before checking out # revertupdate - do an svn revert then an svn update # emulateclean - delete unversioned/ignored files then update # update - do an svn update as much as possible # excluded-users (list(str)) - list of users to ignore revisions from when polling for changes (if polling is enabl # included-regions (list(str)) - list of file/folders to include (optional) # excluded-regions (list(str)) - list of file/folders to exclude (optional) # excluded-commit-messages (list(str)) - list of commit messages to exclude (optional) # exclusion-revprop-name (str) - revision svn-property to ignore (optional) # ignore-property-changes-on-directories (bool) - ignore svn-property only changes of directories (default false) # filter-changelog (bool) - If set Jenkins will apply the same inclusion and exclusion patterns for displaying chan # repos (list) - list of repositories to checkout (optional) # viewvc-url (str) - # URL of the svn web interface (optional) # Repo: # url (str) - URL for the repository # basedir (str) - Location relative to the workspace root to checkout to (default '.') # credentials-id - optional ID of credentials to use # repo-depth - Repository depth. Can be one of 'infinity', 'empty', 'files', 'immediates' or 'unknown'. (de # ignore-externals - Ignore Externals. (default false) svn = {} for child in top: if child.tag == 'remote': svn['url'] = child.text if child.text else '' elif child.tag == 'local': svn['basedir'] = child.text if child.text else '' elif child.tag == 'credentialsId': svn['credentials-id'] = child.text if child.text else '' elif child.tag == 'depthOption': svn['repo-depth'] = child.text if child.text else '' elif child.tag == 'ignoreExternalsOption': svn['ignore-externals'] = (child.text == 'true') elif child.tag == 'workspaceUpdater': # see # https://github.com/openstack-infra/jenkins-job-builder/blob/master/jenkins_jobs/modules/scm.py#L835 if child.attrib['class'] == 'hudson.scm.subversion.CheckoutUpdater': svn['workspaceupdater'] = 'wipeworkspace' elif child.attrib['class'] == 'hudson.scm.subversion.UpdateWithRevertUpdater': svn['workspaceupdater'] = 'revertupdate' elif child.attrib['class'] == 'hudson.scm.subversion.UpdateWithCleanUpdater': svn['workspaceupdater'] = 'emulateclean' elif child.attrib['class'] == 'hudson.scm.subversion.UpdateUpdater': svn['workspaceupdater'] = 'update' elif child.tag == 'includedRegions': svn['included-regions'] = child.text if child.text else '' elif child.tag == 'excludedRegions': svn['excluded-regions'] = child.text if child.text else '' elif child.tag == 'excludedUsers': svn['excluded-users'] = child.text if child.text else '' elif child.tag == 'excludedCommitMessages': svn['excluded-commit-messages'] = child.text if child.text else '' elif child.tag == 'excludedRevprop': svn['exclusion-revprop-name'] = child.text if child.text else '' elif child.tag == 'ignoreDirPropChanges': svn['ignore-property-changes-on-directories'] = \ (child.text == 'true') elif child.tag == 'filterChangelog': svn['filter-changelog'] = (child.text == 'true') elif child.tag == 'locations': if len(list(child)) > 0: repos = [] for c in child.getchildren(): repo = {} for r in c: if r.tag == 'remote': repo['url'] = r.text if r.text else '' elif r.tag == 'local': repo['basedir'] = r.text if r.text else '' elif r.tag == 'credentialsId': repo['credentials-id'] = r.text if r.text else '' elif r.tag == 'depthOption': repo['repo-depth'] = r.text if r.text else '' elif r.tag == 'ignoreExternalsOption': repo['ignore-externals'] = (r.text == 'true') repos.append(repo) svn['repos'] = repos else: raise NotImplementedError("%s not supported tag in svn scm" % child.tag) parent.append({'svn': svn})
StarcoderdataPython
245281
<filename>src/fbsrankings/infrastructure/sqlite/write/record.py<gh_stars>0 import sqlite3 from typing import List from typing import Optional from typing import Tuple from typing import Union from uuid import UUID from pypika import Parameter from pypika import Query from pypika.queries import QueryBuilder from fbsrankings.common import EventBus from fbsrankings.domain import SeasonID from fbsrankings.domain import TeamID from fbsrankings.domain import TeamRecord from fbsrankings.domain import TeamRecordID from fbsrankings.domain import TeamRecordRepository as BaseRepository from fbsrankings.domain import TeamRecordValue from fbsrankings.event import TeamRecordCalculatedEvent from fbsrankings.infrastructure.sqlite.storage import TeamRecordTable from fbsrankings.infrastructure.sqlite.storage import TeamRecordValueTable SqliteParam = Union[None, int, float, str, bytes] class TeamRecordRepository(BaseRepository): def __init__( self, connection: sqlite3.Connection, cursor: sqlite3.Cursor, bus: EventBus, ) -> None: super().__init__(bus) self._connection = connection self._cursor = cursor self._record_table = TeamRecordTable().table self._value_table = TeamRecordValueTable().table bus.register_handler(TeamRecordCalculatedEvent, self._handle_record_calculated) def get(self, id_: TeamRecordID) -> Optional[TeamRecord]: cursor = self._connection.cursor() cursor.execute( self._query().where(self._record_table.UUID == Parameter("?")).get_sql(), [str(id_.value)], ) row = cursor.fetchone() cursor.close() return self._to_record(row) if row is not None else None def find(self, season_id: SeasonID, week: Optional[int]) -> Optional[TeamRecord]: query = self._query().where(self._record_table.SeasonID == Parameter("?")) params: List[SqliteParam] = [str(season_id.value)] if week is not None: query = query.where(self._record_table.Week == Parameter("?")) params.append(week) else: query = query.where(self._record_table.Week.isnull()) cursor = self._connection.cursor() cursor.execute( query.get_sql(), params, ) row = cursor.fetchone() cursor.close() return self._to_record(row) if row is not None else None def _query(self) -> QueryBuilder: return Query.from_(self._record_table).select( self._record_table.UUID, self._record_table.SeasonID, self._record_table.Week, ) def _to_record(self, row: Tuple[str, str, Optional[int]]) -> TeamRecord: cursor = self._connection.cursor() cursor.execute( Query.from_(self._value_table) .select( self._value_table.TeamRecordID, self._value_table.TeamID, self._value_table.Wins, self._value_table.Losses, ) .where(self._value_table.TeamRecordID == Parameter("?")) .get_sql(), [row[0]], ) rows = cursor.fetchall() cursor.close() values = [self._to_value(row) for row in rows if row is not None] return TeamRecord( self._bus, TeamRecordID(UUID(row[0])), SeasonID(UUID(row[1])), row[2], values, ) @staticmethod def _to_value(row: Tuple[str, str, int, int]) -> TeamRecordValue: return TeamRecordValue(TeamID(UUID(row[1])), row[2], row[3]) def _handle_record_calculated(self, event: TeamRecordCalculatedEvent) -> None: query = ( Query.from_(self._record_table) .select(self._record_table.UUID) .where(self._record_table.SeasonID == Parameter("?")) ) params: List[SqliteParam] = [str(event.season_id)] if event.week is not None: query = query.where(self._record_table.Week == Parameter("?")) params.append(event.week) else: query = query.where(self._record_table.Week.isnull()) self._cursor.execute( query.get_sql(), params, ) row = self._cursor.fetchone() if row is not None: self._cursor.execute( Query.from_(self._value_table) .delete() .where(self._value_table.TeamRecordID == Parameter("?")) .get_sql(), [row[0]], ) self._cursor.execute( Query.from_(self._record_table) .delete() .where(self._record_table.UUID == Parameter("?")) .get_sql(), [row[0]], ) self._cursor.execute( Query.into(self._record_table) .columns( self._record_table.UUID, self._record_table.SeasonID, self._record_table.Week, ) .insert(Parameter("?"), Parameter("?"), Parameter("?")) .get_sql(), [str(event.id_), str(event.season_id), event.week], ) insert_sql = ( Query.into(self._value_table) .columns( self._value_table.TeamRecordID, self._value_table.TeamID, self._value_table.Wins, self._value_table.Losses, ) .insert(Parameter("?"), Parameter("?"), Parameter("?"), Parameter("?")) .get_sql() ) for value in event.values: self._cursor.execute( insert_sql, [str(event.id_), str(value.team_id), value.wins, value.losses], )
StarcoderdataPython
9666115
def resolve(): ''' code here ''' X = int(input()) X = X//100 if X < 6: res = 8 elif X < 8: res = 7 elif X < 10: res = 6 elif X < 12: res = 5 elif X < 14: res = 4 elif X < 16: res = 3 elif X < 18: res = 2 else: res = 1 print(res) if __name__ == "__main__": resolve()
StarcoderdataPython
3577475
<filename>python/led_fun.py # Simple test for NeoPixels on Raspberry Pi import time import board import neopixel # Choose an open pin connected to the Data In of the NeoPixel strip, i.e. board.D18 # NeoPixels must be connected to D10, D12, D18 or D21 to work. pixel_pin = board.D18 # The number of NeoPixels num_pixels = 316 # The order of the pixel colors - RGB or GRB. Some NeoPixels have red and green reversed! # For RGBW NeoPixels, simply change the ORDER to RGBW or GRBW. ORDER = neopixel.RGB pixels = neopixel.NeoPixel( pixel_pin, num_pixels, brightness=0.2, auto_write=False #, pixel_order=ORDER ) steps = 16 # r = range of pixels to iterate over # c = color to set the pixels def sequence(r, c): for i in r: #pixels[i] = c # set the next *steps* pixels too for j in range(steps): if(i+j < num_pixels and i+j >= 0): pixels[i+j] = c pixels.write() #time.sleep(.1) #sequence(range(0, num_pixels, steps), (255, 0, 0)) #sequence(range(num_pixels, -1, -steps), (0, 255, 0)) #sequence(range(0, num_pixels, steps), (0, 0, 255)) #sequence(range(num_pixels, -1, -steps), (255, 255, 255)) #sequence(range(0, num_pixels, steps), (0, 0, 0)) while True: sequence(range(60, num_pixels, steps), (255, 0, 0)) sequence(range(num_pixels, 60, -steps), (0, 255, 0)) sequence(range(60, num_pixels, steps), (0, 0, 255)) sequence(range(num_pixels, 60, -steps), (255, 255, 255)) sequence(range(60, num_pixels, steps), (0, 0, 0)) sequence(range(num_pixels, 60, -steps), (200, 10, 20))
StarcoderdataPython
8015409
# -*- coding: utf-8 -*- ############################################################################## # # Copyright © 2013 OnlineGroups.net and Contributors. # All Rights Reserved. # # This software is subject to the provisions of the Zope Public License, # Version 2.1 (ZPL). A copy of the ZPL should accompany this distribution. # THIS SOFTWARE IS PROVIDED "AS IS" AND ANY AND ALL EXPRESS OR IMPLIED # WARRANTIES ARE DISCLAIMED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF TITLE, MERCHANTABILITY, AGAINST INFRINGEMENT, AND FITNESS # FOR A PARTICULAR PURPOSE. # ############################################################################## from datetime import datetime from operator import and_ from pytz import UTC import sqlalchemy as sa from zope.sqlalchemy import mark_changed from gs.database import getTable, getSession class RequestQuery(object): def __init__(self): self.requestTable = getTable('user_group_member_request') def add_request(self, requestId, userId, message, siteId, groupId): now = datetime.now(UTC) i = self.requestTable.insert() d = {"request_id": requestId, "user_id": userId, "message": message, "site_id": siteId, "group_id": groupId, "request_date": now} session = getSession() session.execute(i, params=d) mark_changed(session) def decline_request(self, userId, groupId, adminId): self.update_request(userId, groupId, adminId, False) def accept_request(self, userId, groupId, adminId): self.update_request(userId, groupId, adminId, True) def update_request(self, userId, groupId, adminId, response): u = self.requestTable.update(and_(and_( self.requestTable.c.user_id == userId, self.requestTable.c.group_id == groupId), self.requestTable.c.response_date == None)) now = datetime.now(UTC) session = getSession() session.execute(u, params={'responding_user_id': adminId, 'response_date': now, 'accepted': response}) mark_changed(session) def current_requests(self, groupId, siteId): s = self.requestTable.select( order_by=sa.desc(self.requestTable.c.request_date)) s.append_whereclause(self.requestTable.c.group_id == groupId) s.append_whereclause(self.requestTable.c.site_id == siteId) s.append_whereclause(self.requestTable.c.response_date == None) session = getSession() r = session.execute(s) retval = [] seen = set() if r.rowcount >= 1: for x in r: if x['user_id'] not in seen: seen.add(x['user_id']) rd = {'request_id': x['request_id'], 'user_id': x['user_id'], 'request_date': x['request_date'], 'message': x['message']} retval.append(rd) return retval def count_current_requests(self, groupId, siteId): cols = [sa.func.count(self.requestTable.c.request_id)] s = sa.select(cols) s.append_whereclause(self.requestTable.c.group_id == groupId) s.append_whereclause(self.requestTable.c.site_id == siteId) s.append_whereclause(self.requestTable.c.response_date == None) session = getSession() r = session.execute(s) retval = r.scalar() if retval is None: retval = 0 assert retval >= 0 return retval
StarcoderdataPython
1685592
""" Python 3.9 стартовая программа на Python по изучению обучения с подкреплением - Reinforcement Learning Название файла 00. start.py Version: 0.1 Author: <NAME> Date: 2021-12-19 воспользуемся одной из тестовых игр OpenAI, в частности, со средой «MountainCar-v0» """ import gym # библиотека OpenAI с простыми играми env = gym.make("MountainCar-v0") # обращаемся к виртуальной среде (инициализировать среду) env.reset() # В случае с этим тренажерным залом наблюдения возвращаются из сбросов и шагов. print(env.action_space.n) # Для различных сред мы можем запросить у них, сколько действий / ходов возможно? # В этом случае мы можем передать «3» действия. Это означает, что когда мы шагаем по среде, мы можем передавать 0, # 1 или 2 в качестве нашего «действия» для каждого шага. Каждый раз, когда мы это делаем, среда будет возвращать нам # новое состояние, награду, независимо от того, завершена / завершена среда, а затем любую дополнительную информацию, # которая может быть у некоторых env. # 0 означает толчок влево, 1 - оставаться на месте, а 2 - толкать вправо. print(env.reset()) # Вы получите что-то вроде того [-0.4826636 0. ], что является начальным состоянием наблюдения. done = False while not done: action = 2 # always go right! 0 означает толчок влево, 1 - оставаться на месте, а 2 - толкать вправо. env.step(action) env.render() # Как видите, несмотря на то, что эту машину постоянно просят ехать направо, мы видим, что у нее просто нет сил, # чтобы это сделать. Вместо этого нам нужно на самом деле набрать обороты, чтобы достичь этого флага. Для этого нам # нужно двигаться взад и вперед, чтобы набрать обороты. Мы могли бы запрограммировать функцию, которая будет # выполнять эту задачу за нас, или мы можем использовать Q-обучение для ее решения!
StarcoderdataPython
1905515
import pandas as pd from db_pool.mysqlhelper import MySqLHelper from matplotlib import pyplot as plt db = MySqLHelper() mertics1_sql = "SELECT pharmacy_order.store_id, SUM(orderdetail.final_total) AS 'October 2021 Sales' FROM orderdetail INNER JOIN pharmacy_order ON pharmacy_order.order_id=orderdetail.order_id INNER JOIN pharmacy ON pharmacy_order.store_id=pharmacy.store_id WHERE orderdetail.order_time >= 1633046400 & orderdetail.order_time <= 1635724799 GROUP BY pharmacy_order.store_id;" mertics1_sql_result = list(db.selectall(sql=mertics1_sql)) for i in range(len(mertics1_sql_result)): mertics1_sql_result[i] = list(mertics1_sql_result[i]) mertics1_sql_result[i][1] = round(mertics1_sql_result[i][1], 2) df = pd.DataFrame(mertics1_sql_result, columns =['store_number', 'Sales']) plt.figure(figsize=(6, 6)) explode = (0, 0, 0, 0, 0) plt.title("Sales of Pharmacies in October 2021 Grouped by Store Number") colors = ("SkyBlue", "SlateGrey", "SteelBlue", "Silver", "cornflowerblue") labels = 'Store 1', 'Store 2', 'Store 3', 'Store 4', 'Store 5' plt.pie(x=df.Sales, labels=labels,explode=explode, colors=colors, autopct="%.0f%%", counterclock=False, shadow=False) plt.show() mertics2_sql = "SELECT order_medicine.medicine_sku, SUM(order_medicine.amount) AS total_sale_quantity FROM order_medicine INNER JOIN medicine ON medicine.medicine_sku=order_medicine.medicine_sku GROUP BY medicine.medicine_sku ORDER BY total_sale_quantity DESC;" mertics2_sql_result = db.selectall(sql=mertics2_sql) print(mertics2_sql_result)
StarcoderdataPython
5026474
from setuptools import setup, find_packages from os import path here = path.abspath(path.dirname(__file__)) with open(path.join(here, 'README.md'), encoding='utf-8') as f: long_description = f.read() setup( name='darktree', version='0.1.0', description='Yosys JSON Netlist Hierarchical Viewer', long_description=long_description, long_description_content_type='text/markdown', url='https://github.com/nturley/darktree', author='<NAME>', author_email='<EMAIL>', classifiers=[ 'Development Status :: 3 - Alpha', 'Intended Audience :: Digital Hardware Engineers', 'License :: OSI Approved :: MIT License', 'Programming Language :: Python :: 3', 'Programming Language :: Python :: 3.4', 'Programming Language :: Python :: 3.5', 'Programming Language :: Python :: 3.6', 'Programming Language :: Python :: 3.7', ], keywords='netlist yosys hierarchy', packages=find_packages(exclude=['doc', 'test']), python_requires='>=3.0', install_requires=['QDarkStyle', 'PySide2'], package_data={ 'darktree': ['main.ui'], }, entry_points={ 'console_scripts': [ 'darktree=darktree:main.main', ], }, )
StarcoderdataPython
1755413
for _ in range(int(input())): m,s = map(int,input().split()) print(m//s)
StarcoderdataPython
4823609
import click import pygments import pygments.formatters from suricata_prettifier.beautify import beautify_file from suricata_prettifier.lexer import SuricataLexer @click.command(context_settings=dict( ignore_unknown_options=True, )) @click.option('-f', '--formatter', default='terminal') @click.argument('input', type=click.File('r'), default='-') @click.argument('output', type=click.File('w'), default='-') @click.argument('formatter_options', nargs=-1, type=click.UNPROCESSED) def prettify(input, output, formatter, formatter_options=()): lexer = SuricataLexer() default_options = dict( full=True, style='vim', prestyles='white-space: pre-wrap;', ) options = { **default_options, **dict(option.split('=', 1) for option in formatter_options), } formatter = pygments.formatters.get_formatter_by_name(formatter, **dict(options)) source = beautify_file(input) pygments.highlight(source, lexer, formatter, output) if __name__ == '__main__': prettify()
StarcoderdataPython
6534607
from __future__ import print_function import statemachine as fsm class TrafficLight(fsm.Machine): initial_state = 'red' count = 0 @fsm.after_transition('red', 'green') def chime(self): print('GO GO GO') self.count += 1 @fsm.after_transition('*', 'red') def apply_brakes(self): self.stopped = True @fsm.event def cycle(self): yield 'red', 'green' yield 'green', 'yellow' yield 'yellow', 'red'
StarcoderdataPython
6410952
from abc import ABC, abstractmethod from typing import List, Union import torch from torch.optim.optimizer import Optimizer from parseridge.corpus.corpus import Corpus from parseridge.corpus.training_data import ConLLDataset from parseridge.parser.modules.data_parallel import Module from parseridge.parser.training.callbacks.base_callback import Callback from parseridge.parser.training.callbacks.handler import CallbackHandler from parseridge.parser.training.callbacks.model_training_callback import ( ModelTrainingCallback, ) from parseridge.parser.training.hyperparameters import Hyperparameters from parseridge.utils.logger import LoggerMixin class Trainer(LoggerMixin, ABC): def __init__( self, model: Module, optimizer: Optimizer, callbacks: List[Callback] = None ): self.model = model self.optimizer = optimizer self.callback_handler = CallbackHandler( callbacks=callbacks or [], model=self.model, optimizer=self.optimizer ) self.callback_handler.register_callback(ModelTrainingCallback()) self.last_epoch = 0 def register_callbacks(self, callbacks: List[Callback]) -> None: for callback in callbacks: self.callback_handler.register_callback(callback) @abstractmethod def fit( self, epochs: int, training_data: Union[Corpus, ConLLDataset], hyper_parameters: Hyperparameters = None, **kwargs, ) -> None: pass def fit_one_cycle( self, training_data: Union[Corpus, ConLLDataset], hyper_parameters: Hyperparameters = None, **kwargs, ) -> None: return self.fit( epochs=1, training_data=training_data, hyper_parameters=hyper_parameters, **kwargs, ) def learn(self, loss: torch.Tensor) -> None: self.callback_handler.on_loss_begin(loss=loss) # Compute the gradients self.callback_handler.on_backward_begin() loss.backward() self.callback_handler.on_backward_end() # Update the weights self.optimizer.step() self.callback_handler.on_step_end() # Clear all previous gradients self.optimizer.zero_grad()
StarcoderdataPython
6554109
<reponame>codecakes/algorithms_monk #!/bin/python """ Your local library needs your help! Given the expected and actual return dates for a library book, create a program that calculates the fine (if any). The fee structure is as follows: If the book is returned on or before the expected return date, no fine will be charged (i.e.: . If the book is returned after the expected return day but still within the same calendar month and year as the expected return date, . If the book is returned after the expected return month but still within the same calendar year as the expected return date, the . If the book is returned after the calendar year in which it was expected, there is a fixed fine of . Input Format The first line contains space-separated integers denoting the respective , , and on which the book was actually returned. The second line contains space-separated integers denoting the respective , , and on which the book was expected to be returned (due date). Constraints Output Format Print a single integer denoting the library fine for the book received as input. Sample Input 9 6 2015 6 6 2015 Sample Output 45 """ def isLeap(yy): if yy%4 != 0: return 365 if yy%100 != 0: return 366 if yy%400 != 0: return 365 return 366 def month_days(m, y): return 28 if (m==2 and not isLeap(y)) \ else (29 if (m ==2 and isLeap(y)) \ else (31 if (m%2 == 1 and m<8) \ else (31 if m%2 == 0 and 12>=m>7 \ else (30 if m%2 == 1 and 12>=m>7 \ else 30)))) def fine_due(d1,m1,y1,d2,m2,y2): # d1,m1,y1 - actual # d2,m2,y2 - due # tot_days = m_count = 0 if y1<y2: return 0 if y1>y2: # m1_days = month_days(m1, y1) # m2_days = month_days(m2, y2) - d2 - 1 # yr_days = 365 if not isLeap(y2) else 366 # m_count += 1 if m2_days%month_days(m2, y2) == 0 else 0 #for m in xrange(m2+1, 13): # tot_days += month_days(m, y2) # m_count += 1 # tot_days += m2_days # # for m in xrange(1, m1): # tot_days += month_days(m, y1) # m_count += 1 # tot_days += d1 # print tot_days #return 10000 if tot_days > yr_days else 500 * m_count return 10000 if m1<m2: return 0 if m1>m2: return 500 * (m1-m2) if d1<d2: return 0 if d1>d2: return 15 * (d1-d2) return 0 d1,m1,y1 = raw_input().strip().split(' ') d1,m1,y1 = [int(d1),int(m1),int(y1)] d2,m2,y2 = raw_input().strip().split(' ') d2,m2,y2 = [int(d2),int(m2),int(y2)] print fine_due(d1,m1,y1,d2,m2,y2)
StarcoderdataPython
394720
<filename>practicas/voice_call/t2.py import pyaudio p = pyaudio.PyAudio() for i in range(p.get_device_count()):#list all available audio devices dev = p.get_device_info_by_index(i) print((i,dev['name'],dev['maxInputChannels']))
StarcoderdataPython
1864844
<filename>LIVE/labs/tmp.py alist = [ "351", "222", "143" ] def f0(x): return x[0] def f1(x): return x[1] def f2(x): return x[2] sort_by_index = [f0, f1, f2] sorted_st = sorted(alist, key=sort_by_index[2]) print( sorted_st ) # print( student_tuples.sort(reverse=False))
StarcoderdataPython
1822949
<reponame>theshiv303/kegbot-server """Checks a central server for updates.""" from builtins import str from django.core.cache import cache from django.utils import timezone from pykeg.core import models from pykeg.core import util from pykeg.core.tasks import core_checkin_task from pykeg.core.util import SuppressTaskErrors import datetime import logging import os import requests FIELD_REG_ID = "reg_id" FIELD_PRODUCT = "product" FIELD_VERSION = "version" FIELD_INTERVAL_MILLIS = "interval_millis" FIELD_UPDATE_AVAILABLE = "update_available" FIELD_UPDATE_REQUIRED = "update_required" FIELD_UPDATE_TITLE = "update_title" FIELD_UPDATE_URL = "update_url" FIELD_NEWS = "news" PRODUCT = "kegbot-server" CHECKIN_URL = os.getenv("CHECKIN_URL", None) or "https://kegbotcheckin.appspot.com/checkin" CHECKIN_INTERVAL = datetime.timedelta(hours=12) KEY_LAST_CHECKIN_TIME = "checkin:last_checkin_time" KEY_LAST_CHECKIN_RESPONSE = "checkin:last_checkin_response" LOGGER = logging.getLogger("checkin") logging.getLogger("requests").setLevel(logging.WARNING) class CheckinError(Exception): """Base exception.""" def get_last_checkin(): """Returns tuple of (time, data), or (None, None) if not available.""" return cache.get(KEY_LAST_CHECKIN_TIME), cache.get(KEY_LAST_CHECKIN_RESPONSE) def set_last_checkin(when, response_data=None): """Sets last checkin date and time.""" cache.set(KEY_LAST_CHECKIN_TIME, when, timeout=None) cache.set(KEY_LAST_CHECKIN_RESPONSE, response_data, timeout=None) def schedule_checkin(force=False): """Schedules a checkin if needed and allowed. Args force: if True, ignore last checkin time. Returns True if a checkin was scheduled. """ kbsite = models.KegbotSite.get() if not kbsite.check_for_updates: LOGGER.debug("schedule_checkin: not scheduling: checkin disabled") return False last_checkin_time, last_checkin_data = get_last_checkin() now = timezone.now() if not last_checkin_time or (now - last_checkin_time) > CHECKIN_INTERVAL or force: with SuppressTaskErrors(LOGGER): LOGGER.info("schedule_checkin: scheduling checkin") core_checkin_task.delay() return True return False def checkin(url=CHECKIN_URL, product=PRODUCT, timeout=None, quiet=False): """Issue a single checkin to the checkin server. No-op if kbsite.check_for_updates is False. Returns A checkin response dictionary, or None if checkin is disabled. Raises ValueError: On malformed reponse. requests.RequestException: On error talking to server. """ kbsite = models.KegbotSite.get() if not kbsite.check_for_updates: LOGGER.debug("Upgrade check is disabled") return site = models.KegbotSite.get() reg_id = site.registration_id headers = { "User-Agent": util.get_user_agent(), } payload = { FIELD_PRODUCT: product, FIELD_REG_ID: reg_id, FIELD_VERSION: util.get_version(), } try: LOGGER.debug("Checking in, url=%s reg_id=%s" % (url, reg_id)) result = requests.post(url, data=payload, headers=headers, timeout=timeout).json() new_reg_id = result.get(FIELD_REG_ID) if new_reg_id != reg_id: LOGGER.debug("Updating reg_id=%s" % new_reg_id) site.registration_id = new_reg_id site.save() LOGGER.debug("Checkin result: %s" % str(result)) if not quiet: LOGGER.info("Checkin complete, reg_id=%s" % (reg_id,)) set_last_checkin(timezone.now(), result) return result except (ValueError, requests.RequestException) as e: if not quiet: LOGGER.warning("Checkin error: %s" % str(e)) raise CheckinError(e)
StarcoderdataPython
8068956
width = 2448 height = 2048 i = 0 for image in images: xml_file = open(str(i)+".xml","w+") xml_file.write("<annotation><filename>"+str(i)+".png</filename>\ <size><width>"+str(width)+"</width><height>"+str(height)+"</height>\ <depth>3</depth></size>\ <object><pose>Frontal</pose>\ <truncated>0</truncated>\ <difficult>0</difficult></object></annotation>") xml_file.close()
StarcoderdataPython
9790156
# Copyright 2013-2021 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) # ---------------------------------------------------------------------------- from spack import * class RCa(RPackage): """Simple, Multiple and Joint Correspondence Analysis Computation and visualization of simple, multiple and joint correspondence analysis.""" homepage = "http://www.carme-n.org/?sec=ca" url = "https://cloud.r-project.org/src/contrib/ca_0.71.1.tar.gz" list_url = "https://cloud.r-project.org/src/contrib/Archive/ca" version('0.71.1', sha256='040c2fc94c356075f116cc7cd880530b3c9e02206c0035182c03a525ee99b424') depends_on('[email protected]:', type=('build', 'run'))
StarcoderdataPython
5195969
<gh_stars>0 from json import load from os import path, getcwd from feature.feature_defintions.Histogram import Histogram from feature.feature_defintions.AlexNet import AlexNet from feature.feature_defintions.VGGNet import VGGNet from feature.feature_defintions.ResNet50 import ResNet50 from feature.feature_defintions.Colourization import Colourization from feature.feature_defintions.VAE import VAE from feature.feature_defintions.MyModel import MyModel from feature.feature_tests.test_functions import * # TODO: # Logging # Timing script # Output multiple CSV files for 1 run (i.e. models trained to different # epochs) # Constants HISTOGRAM_BINS = 256 # Parse feature config JSON file. Config structure: # # { # "input_path_base": "path/to/input/data/", # "input_name": "data_directory_name/", # "output_path_base": "path/to/output/", # "output_name": "name_of_index.csv", # "feature_path": "path/to/model/", (leave blank for histogram features) # "feature_name": "name_of_feature" # } def feature_json_read(): config_path = path.join(getcwd(), 'feature_params.json') assert(path.isfile(config_path)), "{} does not exist".format(config_path) print("Feature config file path: ", config_path) with open(config_path) as f: config_file = load(f) input_path = config_file['input_path_base'] input_name = config_file['input_name'] output_path = config_file['output_path_base'] output_name = config_file['output_name'] feature_path = config_file['feature_path'] feature_name = config_file['feature_name'] layer = config_file['layer'] config_dict = dict() config_dict['input'] = input_path + input_name config_dict['output'] = output_path + output_name config_dict['feature_name'] = feature_name config_dict['feature_path'] = feature_path config_dict['layer'] = layer return config_dict # Instantiate object for requested feature def feature_object_create(config): feature_name = config['feature_name'] print(feature_name + " selected") if 'histogram' in feature_name: _feature = Histogram(HISTOGRAM_BINS, config) elif 'alex' in feature_name: _feature = AlexNet(config) elif 'vgg' in feature_name: _feature = VGGNet(config) elif 'resnet50' in feature_name: _feature = ResNet50(config) elif 'colourization' in feature_name: _feature = Colourization(config) elif 'vae' in feature_name: _feature = VAE(config) else: _feature = MyModel(config) sys.exit() return _feature # Feature index creation code entry point called from top level main function def feature_driver_run(): # Read input JSON config = feature_json_read() test_config_dict(config) # Instantiate feature object feature_object = feature_object_create(config) # test_histogram_object(feature_object) # Apply get_feature() to each image feature_object.index_create(feature=feature_object)
StarcoderdataPython
4959380
<reponame>heltonricardo/estudo-python n = input('Digite algo: ') print('O tipo da entrada é {}'.format(type(n))) print('É alfanumérico? ', n.isalnum()) print('É alfabético? ', n.isalpha()) print('É decimal? ', n.isdecimal()) print('É dígito? ', n.isdigit()) print('É identificador? ', n.isidentifier()) print('É minúsculo? ', n.islower()) print('É numérico? ', n.isnumeric()) print('É printável? ', n.isprintable()) print('É espaço? ', n.isspace()) print('É título? ', n.istitle()) print('É maiúsculo? ', n.isupper())
StarcoderdataPython
8042824
<reponame>553269487/ConvLSTM-on-TIANCHI-CIKM-2017 from torch import nn import torch.nn.functional as F import torch class activation(): def __init__(self, act_type, negative_slope=0.2, inplace=True): super().__init__() self._act_type = act_type self.negative_slope = negative_slope self.inplace = inplace def __call__(self, input): if self._act_type == 'leaky': return F.leaky_relu(input, negative_slope=self.negative_slope, inplace=self.inplace) elif self._act_type == 'relu': return F.relu(input, inplace=self.inplace) elif self._act_type == 'sigmoid': return torch.sigmoid(input) else: raise NotImplementedError class ED(nn.Module): def __init__(self, encoder, decoder): super().__init__() self.encoder = encoder self.decoder = decoder def forward(self, input): state = self.encoder(input) #encode-->hidden state output = self.decoder(state)#hidden state--》decode return output
StarcoderdataPython
4997129
<gh_stars>0 #Hangman Trivia!! #make variables for #[questions] #right_answer #wrong_answers #bad_pictures #good_pictures #name # # #register all graphics and pictures #ask user to input name #welcome the user to <NAME> #do the following 5 times #ask user question #show answers #take answers #if right #add 1 good_picture to the drawing #else #add 1 bad_picture to the drawing #if loses more the wins #print you lose #else wins more then loses #print you win #congratulate if user wins #dont congratulate if user loses import pygame import turtle pygame.mixer.pre_init(44100, 16, 2, 4096) #frequency, size, channels, buffersize pygame.init() #turn all of pygame on. # pictures turtle.bgcolor("green") screen = turtle.Screen() screen.setup(1500, 1000) turtle.register_shape("car.gif") turtle.register_shape("cow.gif") turtle.register_shape("electric car.gif") turtle.register_shape("factory.gif") turtle.register_shape("cow-farting.gif") turtle.register_shape("fire.gif") turtle.register_shape("flowers.gif") turtle.register_shape("6 trash images.gif") turtle.register_shape("recycling factory.gif") turtle.register_shape("6 sea.gif") car = turtle.clone () car.shape("car.gif") car.penup() car.hideturtle() car.goto(-600, -200) elec_car = turtle.clone() elec_car.shape("electric car.gif") elec_car.penup() elec_car.hideturtle() elec_car.goto(-600, -200) car_s=pygame.mixer.Sound("Car Engine Sound Effect.wav") cow = turtle.clone() cow.shape("cow.gif") cow.penup() cow.hideturtle() cow.goto(-300, -200) cow_s=pygame.mixer.Sound("Moo! Sound Effect [COW].wav") farting_cow = turtle.clone() farting_cow.shape("cow-farting.gif") farting_cow.penup() farting_cow.hideturtle() farting_cow.goto(-300, -200) f_cow_s=pygame.mixer.Sound("Fart sound effect.wav") factory = turtle.clone() factory.shape("factory.gif") factory.penup() factory.hideturtle() factory.goto(0, -200) factory_s=pygame.mixer.Sound("factory.wav") refactory = turtle.clone() refactory.shape("recycling factory.gif") refactory.penup() refactory.hideturtle() refactory.goto(0, -200) fire = turtle.clone() fire.shape("fire.gif") fire.penup() fire.hideturtle() fire.goto(500, -200) fire_s=pygame.mixer.Sound("FIRE SOUND EFFECT IN HIGH QUALITY.wav") flowers = turtle.clone() flowers.shape("flowers.gif") flowers.penup() flowers.hideturtle() flowers.goto(400, -200) flowers_s=pygame.mixer.Sound("Bird Sound Effect.wav") sea = turtle.clone() sea.shape("6 sea.gif") sea.penup() sea.hideturtle() sea.goto(0, -400) sea_s=pygame.mixer.Sound("OCEAN SOUND EFFECT [HD].wav") trash = turtle.clone() trash.shape("6 trash images.gif") trash.penup() trash.hideturtle() trash.goto(0, -400) null = turtle.clone() null.penup() null.hideturtle() null.goto(1000,1000) c_answer_s=pygame.mixer.Sound("Correct-answer.wav") w_answer_s=pygame.mixer.Sound("Wrong-answer-sound-effect.wav") # sounds def car_s_f(): pygame.mixer.Sound.play(car_s) def cow_s_f(): pygame.mixer.Sound.play(cow_s) def f_cow_s_f(): pygame.mixer.Sound.play(f_cow_s) def factory_s_f(): pygame.mixer.Sound.play(factory_s) def flowers_s_f(): pygame.mixer.Sound.play(flowers_s) def fire_s_f(): pygame.mixer.Sound.play(fire_s) def sea_s_f(): pygame.mixer.Sound.play(sea_s) # what the question has class Question: def __init__(self, prompt, answer, turtle_shape, bad_turtle, sound, b_sound): self.prompt = prompt self.answer = answer self.turtle_shape = turtle_shape self.bad_turtle = bad_turtle self.sound=sound self.b_sound=b_sound def p_g_sound(self): pygame.mixer.Sound.play(self.sound) def p_b_sound(self): pygame.mixer.Sound.play(self.b_sound) #questions,options of answers, \n = linebreaker question_prompts = [ "\nwhich country has the most pollution?\n(a) China\n(b) Brazil\n(c) United States\n(d) Indonesia\n", "\nHow many years of oil is left in the world?\n(a) 101 years\n(b) 53 years\n(c) 20 years\n(d) 69 years\n", "\nHow much oil is left in the world?\n(a) 6.003 trillion barrels\n(b) 3.775 trillion barrels\n(c) 0.804 trillion barrels\n(d) 1.688 trillion barrels\n", "\nWho is the biggest oil producer in the world?\n(a) Saudi Arabia\n(b) USA\n(c) Russia\n(d) China\n", "\nHow many years of gas are left in the world?\n(a)200 years\n(b) 86 years\n(c) 115 years\n(d)98 years\n", "\nwhat is the easiest plastic code to recycle?\n(a) 3\n(b) 6\n(c) 7\n(d) 1\n", "\nWhat is cutting of trees called?\n(a) hewing\n(b) cutzing\n(c) CTs\n(d) falling\n", "\nWhat is the largest oil company in Canada?\n(a)Encana Corporation\(b)Suncor Energy\n(c)Husky Energy\n(d)Enbridge\n", "\nWhat is the largest oil company in Canada?\n(a)water\n(b)sand\n(c)dust\n(d)stones\n", "\nWhat is the top cause of air pollution?\n(a)Emission from Vehicles\n(b)Poisonous Gas\n(c)Combustion of Fossil Fuels\n(d)Pollution From AC\n", #right answers ] questions = [ Question(question_prompts[0], "a", refactory, factory, factory_s , factory_s), Question(question_prompts[1], "b", elec_car, car, car_s, car_s), Question(question_prompts[2], "d", cow, farting_cow, cow_s,f_cow_s), Question(question_prompts[3], "a", flowers, fire, flowers_s, fire_s), Question(question_prompts[4], "c", sea, trash,sea_s, sea_s), Question(question_prompts[5], "d", null, null, c_answer_s, w_answer_s), Question(question_prompts[6], "a", null, null, c_answer_s, w_answer_s), Question(question_prompts[7], "b", null, null, c_answer_s, w_answer_s), Question(question_prompts[8], "c", null, null, c_answer_s, w_answer_s), Question(question_prompts[9], "b", null, null, c_answer_s, w_answer_s), ] #loop, if the answer is right or wrong and print the line def run_quiz(questions): print("\n") for question in questions: answer = input(question.prompt) if answer == question.answer: print("the answer is correct!") question.turtle_shape.showturtle() pygame.mixer.music.stop() question.p_g_sound() else: print("the answer is incorrect..") print("the right answer is " + question.answer) question.bad_turtle.showturtle() pygame.mixer.music.stop() question.p_b_sound() run_quiz(questions)
StarcoderdataPython
3200371
from selia.views.create_views.manager_base import CreateManagerBase class CreatePhysicalDeviceManager(CreateManagerBase): manager_name = 'selia:create_physical_device' def view_from_request(self): if 'device' not in self.request.GET: return 'selia:create_physical_device_select_device' return 'selia:create_physical_device_create_form'
StarcoderdataPython
3558290
<reponame>kdr-s/clipboard-img-to-Y<filename>clipboard-img-to-Y.py from PIL import ImageGrab, ImageChops, Image from time import sleep from ctypes import windll import numpy as np last_im = Image.new("RGB", (512, 512), (128, 128, 128)) Ctrl = 0x11 def isPressed(key): return(bool(windll.user32.GetAsyncKeyState(key)&0x8000)) while True: im = ImageGrab.grabclipboard() if isinstance(im, Image.Image): im = im.convert('RGB') # 2つの画像の同一かどうか if ImageChops.difference(im, last_im).getbbox() != None: last_im = im if isPressed(Ctrl): # lumi_im = im.convert("L") array = np.asarray(im, dtype='float') array = (array/255)**2.2 # array = array[:][:][0]*0.2126; array = array[:][:][1]*0.7152; array = array[:][:][2]*0.0722; array = np.sum(array*np.array([[[0.2126,0.7152,0.0722]]]), axis=2) array = (array**(1/2.2))*255 array = np.round(array).astype('uint8') lumi_im = Image.fromarray(array) lumi_im.show() sleep(1)
StarcoderdataPython
8150249
from pygears.core.hier_node import HierVisitorBase class HDLGearHierVisitor(HierVisitorBase): def RTLGear(self, node): gear = node.gear if hasattr(self, gear.definition.__name__): return getattr(self, gear.definition.__name__)(node) def flow_visitor(cls): def svgen_action(top, conf): v = cls() v.conf = conf v.visit(top) return top return svgen_action def is_gear_instance(node, definition): return node.gear.definition is definition
StarcoderdataPython