id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
258478
# import tensorflow as tf import oneflow as flow import oneflow.typing as tp from typing import Tuple import math import shutil import numpy as np import time from core.function import train from core.function import validate from core.loss import JointsMSELoss from core.make_dataset import CocoDataset from core.hrnet import HRNet from core.make_ground_truth import GroundTruth from core.metric import PCK # from test import test_during_training from configuration.base_config import Config from utils.tools import get_config_params #config func_config = flow.FunctionConfig() func_config.default_data_type(flow.float) cfg = get_config_params(Config.TRAINING_CONFIG_NAME) import os os.environ["CUDA_VISIBLE_DEVICES"] = "0" #指定第五张卡可见 #flow.config.gpu_device_num(5) # loss and optimizer loss = JointsMSELoss() # loss_metric = tf.metrics.Mean() pck = PCK() # accuracy_metric = tf.metrics.Mean() @flow.global_function(type="train",function_config=func_config) def train_step(images: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 256, 256, 3), dtype=flow.float32), target: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 64, 64, 17), dtype=flow.float32), target_weight: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 17, 1), dtype=flow.float32), ) -> Tuple[tp.Numpy, tp.Numpy, tp.Numpy]: outputs = HRNet(images, training=True) # if isinstance(outputs, list): # losses = loss.call(outputs[0], target, target_weight) # for output in outputs[1:]: # losses += loss.call(output, target, target_weight) # else: # output = outputs # losses = loss.call(output, target, target_weight) # measure accuracy and record loss losses = loss.call(outputs, target, target_weight) # Set learning rate as 0.001 lr_scheduler = flow.optimizer.PiecewiseConstantScheduler([], [0.001]) # Set Adam optimizer flow.optimizer.Adam(lr_scheduler, do_bias_correction=False).minimize(losses) return losses, outputs, target @flow.global_function(function_config=func_config) def val_step(images: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 256, 256, 3), dtype=flow.float32), target: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 64, 64, 17), dtype=flow.float32), target_weight: tp.Numpy.Placeholder((cfg.BATCH_SIZE, 17, 1), dtype=flow.float32), ) -> Tuple[tp.Numpy, tp.Numpy, tp.Numpy]: outputs = HRNet(images, training=False) losses = loss.call(outputs, target, target_weight) return losses, outputs, target class AverageMeter(object): """Computes and stores the average and current value""" def __init__(self): self.reset() def reset(self): self.val = 0 self.avg = 0 self.sum = 0 self.count = 0 def update(self, val, n=1): self.val = val self.sum += val * n self.count += n self.avg = self.sum / self.count if self.count != 0 else 0 def train(epoch,dataset_train,dataset_length_train,loss, pck): losses = AverageMeter() acc = AverageMeter() print("****************** train *****************") for i, batch_data in enumerate(dataset_train): # measure data loading time gt = GroundTruth(cfg, batch_data) images, target, target_weight = gt.get_ground_truth() images = np.ascontiguousarray(images) target = np.ascontiguousarray(target) target_weight = np.ascontiguousarray(target_weight) # compute output loss, outputs, target = train_step(images, target, target_weight) # measure accuracy and record loss losses.update(loss.item(), images.shape[0]) _, avg_acc, cnt, pred = pck.call(network_output=outputs, target=target) acc.update(avg_acc, cnt) # measure elapsed time if (i + 1) % cfg.PRINT_FREQ == 0: print("{}th epoch, {}/{}th batch, Loss {loss.avg:.10f}, Accuracy {acc.avg:.5f}. ".format(epoch + 1, i + 1,dataset_length_train, loss=losses, acc=acc)) # if i > 100: # print(i,'break') # break def validate(epoch,dataset_valid,loss,pck,best_perf): # batch_time = AverageMeter() losses = AverageMeter() acc = AverageMeter() # end = time.time() for i, batch_data in enumerate(dataset_valid): # compute output gt = GroundTruth(cfg, batch_data) images, target, target_weight = gt.get_ground_truth() images = np.ascontiguousarray(images) target = np.ascontiguousarray(target) target_weight = np.ascontiguousarray(target_weight) # compute output loss, outputs, target = val_step(images, target, target_weight) # measure accuracy and record loss losses.update(loss.item(), images.shape[0]) _, avg_acc, cnt, pred = pck.call(network_output=outputs, target=target) acc.update(avg_acc, cnt) # if (i + 1) % cfg.PRINT_FREQ == 0: # print("{}th epoch, Loss {loss.avg:.10f}, Accuracy {acc.avg:.5f}. ".format(epoch + 1, loss=losses, acc=acc)) print("****************** evalute *****************") print("{}th epoch, Loss {loss.avg:.10f}, Accuracy {acc.avg:.5f}. ".format(epoch + 1, loss=losses, acc=acc)) print("The best acc: {}. ".format(best_perf)) return losses.avg,acc.avg def main(): # Dataset print('start load data') coco_train = CocoDataset(config_params=cfg, dataset_type="train") dataset_train, dataset_length_train = coco_train.generate_dataset() coco_valid = CocoDataset(config_params=cfg, dataset_type="valid") dataset_valid, _ = coco_valid.generate_dataset() print('finish load data') check_point = flow.train.CheckPoint() if cfg.LOAD_WEIGHTS_BEFORE_TRAINING: assert os.path.isdir(cfg.save_weights_dir) print('start load model') check_point.load(cfg.save_weights_dir) print('finished load model') best_perf = 0. pre_epoch = -1 begin_epoch = cfg.LOAD_WEIGHTS_FROM_EPOCH print("****************** start training *****************") for epoch in range(begin_epoch, cfg.EPOCHS): start = time.time() train(epoch,dataset_train,dataset_length_train,loss, pck) print("Time for epoch {} is {} sec.".format(epoch+ 1, time.time() - start)) # evaluate on validation set loss_val, acc_val = validate(epoch,dataset_valid,loss, pck,best_perf) if epoch + 1 > 1 and acc_val > best_perf: best_perf = acc_val if pre_epoch != -1: # delete the previous best checkpoint print("delete the previous best {}th epoch model".format(pre_epoch)) shutil.rmtree(os.path.join(cfg.save_weights_dir, "{}th_epoch".format(pre_epoch))) # save parameters print("start save the best model") check_point.save( os.path.join(cfg.save_weights_dir, "{}th_epoch".format(epoch + 1)) ) pre_epoch = epoch + 1 print("finished save the best epoch model") print("*************** Train {} done *****************") if __name__ == '__main__': main()
StarcoderdataPython
6614857
<gh_stars>1-10 import os import itertools import json import requests import numpy as np from sendgrid import SendGridAPIClient from sendgrid.helpers.mail import Mail KEY = os.environ.get('KEY') SENDGRID_API_KEY = os.environ.get('SENDGRID_API_KEY') SENDER = os.environ.get('SENDER') def driving_time_and_distance(ori, dest): """get the dict of distance between two places Args: ori (str): Place A dest (str): Place B Returns: dict: return a dict of distance description """ url = f"https://maps.googleapis.com/maps/api/distancematrix/json?key={KEY}&origins={ori}&destinations={dest}&mode=driving&language=en-EN&sensor=false" result= json.loads(requests.get(url).text) return {"distance_value": result["rows"][0]["elements"][0]["distance"]["value"], "distance_text": result["rows"][0]["elements"][0]["distance"]["text"], "duration_text": result["rows"][0]["elements"][0]["duration"]["text"], "duration_value": result["rows"][0]["elements"][0]["duration"]["value"]} def distance_matrix_gcp(destinations): """get the pairwise distance matrix with gcp Args: df (pd.Dataframe): a dataframe with a column "address" Returns: dict: return a dict of distance description """ indice = range(len(destinations)) dis_max = np.zeros(shape=(len(destinations),len(destinations))) for pair in itertools.combinations(indice, 2): dis = driving_time_and_distance(destinations[pair[0]]["address"], destinations[pair[1]]["address"])['distance_value'] dis_max[pair[0]][pair[1]] = dis dis_max[pair[1]][pair[0]] = dis return {"distance_matrix": dis_max.tolist()} def send_email (dest_mail, subject, text): """Send email to carriers Args: dest_mail (str): target email subject (str): email subject text (str): email content Returns: """ message = Mail( from_email=SENDER, to_emails=dest_mail, subject=subject, html_content=text) try: sg = SendGridAPIClient(f"{SENDGRID_API_KEY}") response = sg.send(message) print(response.status_code) print(response.body) print(response.headers) except Exception as e: print(e.message)
StarcoderdataPython
6656331
""" File: DaqDevDiscovery02.py Library Call Demonstrated: mcculw.ul.get_net_device_descriptor() mcculw.ul.create_daq_device() mcculw.ul.release_daq_device() Purpose: Discovers a Network DAQ device and assigns board number to the detected device. Demonstration: Displays the detected DAQ device and flashes the LED of the selected device. Other Library Calls: mcculw.ul.ignore_instacal() mcculw.ul.flash_led() """ from __future__ import absolute_import, division, print_function from builtins import * # @UnusedWildImport import tkinter as tk from mcculw import ul from mcculw.ul import ULError try: from ui_examples_util import (UIExample, show_ul_error, validate_positive_int_entry) except ImportError: from .ui_examples_util import (UIExample, show_ul_error, validate_positive_int_entry) class DaqDevDiscovery02(UIExample): def __init__(self, master): super(DaqDevDiscovery02, self).__init__(master) ul.ignore_instacal() self.board_num = 0 self.device_created = False self.create_widgets() def discover_device(self): host = self.host_entry.get() port = self.get_port() timeout_ms = 5000 try: # Release any previously created device if self.device_created: ul.release_daq_device(self.board_num) self.device_created = False descriptor = ul.get_net_device_descriptor(host, port, timeout_ms) if descriptor is not None: # Create the DAQ device from the descriptor ul.create_daq_device(self.board_num, descriptor) self.device_created = True self.status_label["text"] = "DAQ Device Discovered" self.flash_led_button["state"] = "normal" self.device_name_label["text"] = descriptor.product_name self.device_id_label["text"] = descriptor.unique_id else: self.status_label["text"] = "No Device Discovered" self.flash_led_button["state"] = "disabled" self.device_name_label["text"] = "" self.device_id_label["text"] = "" except ULError as e: self.status_label["text"] = "No Device Discovered" self.flash_led_button["state"] = "disabled" self.device_name_label["text"] = "" self.device_id_label["text"] = "" show_ul_error(e) def flash_led(self): try: # Flash the device LED ul.flash_led(self.board_num) except ULError as e: show_ul_error(e) def get_port(self): try: return int(self.port_entry.get()) except ValueError: return 0 def create_widgets(self): '''Create the tkinter UI''' main_frame = tk.Frame(self) main_frame.pack(fill=tk.X, anchor=tk.NW) positive_int_vcmd = self.register(validate_positive_int_entry) settings_grid_frame = tk.Frame(main_frame) settings_grid_frame.pack(anchor=tk.NW) curr_row = 0 host_label = tk.Label(settings_grid_frame) host_label["text"] = "Hostname or IP Address:" host_label.grid(row=curr_row, column=0, sticky=tk.W, padx=3, pady=3) self.host_entry = tk.Entry(settings_grid_frame) self.host_entry.grid( row=curr_row, column=1, sticky=tk.W, padx=3, pady=3) curr_row += 1 port_label = tk.Label(settings_grid_frame) port_label["text"] = "Port:" port_label.grid(row=curr_row, column=0, sticky=tk.W, padx=3, pady=3) self.port_entry = tk.Entry( settings_grid_frame, validate="key", validatecommand=(positive_int_vcmd, "%P")) self.port_entry.grid( row=curr_row, column=1, sticky=tk.W, padx=3, pady=3) self.port_entry.insert(0, "54211") discover_button = tk.Button(main_frame) discover_button["text"] = "Discover DAQ Device" discover_button["command"] = self.discover_device discover_button.pack(padx=3, pady=3) self.status_label = tk.Label(main_frame) self.status_label["text"] = "Status" self.status_label.pack(anchor=tk.NW, padx=3, pady=3) results_group = tk.LabelFrame(self, text="Discovered Device") results_group.pack(fill=tk.X, anchor=tk.NW, padx=3, pady=3) device_info_frame = tk.Frame(results_group) device_info_frame.pack(anchor=tk.NW) curr_row = 0 device_name_left_label = tk.Label(device_info_frame) device_name_left_label["text"] = "Device Identifier:" device_name_left_label.grid( row=curr_row, column=0, sticky=tk.W, padx=3, pady=3) self.device_name_label = tk.Label(device_info_frame) self.device_name_label.grid( row=curr_row, column=1, sticky=tk.W, padx=3, pady=3) curr_row += 1 device_id_left_label = tk.Label(device_info_frame) device_id_left_label["text"] = "Device Identifier:" device_id_left_label.grid(row=curr_row, sticky=tk.W, padx=3, pady=3) self.device_id_label = tk.Label(device_info_frame) self.device_id_label.grid( row=curr_row, column=1, sticky=tk.W, padx=3, pady=3) self.flash_led_button = tk.Button(results_group) self.flash_led_button["text"] = "Flash LED" self.flash_led_button["command"] = self.flash_led self.flash_led_button["state"] = "disabled" self.flash_led_button.pack(padx=3, pady=3) button_frame = tk.Frame(self) button_frame.pack(fill=tk.X, side=tk.RIGHT, anchor=tk.SE) quit_button = tk.Button(button_frame) quit_button["text"] = "Quit" quit_button["command"] = self.master.destroy quit_button.grid(row=0, column=1, padx=3, pady=3) # Start the example if this module is being run if __name__ == "__main__": # Start the example DaqDevDiscovery02(master=tk.Tk()).mainloop()
StarcoderdataPython
3566609
<reponame>threefoldtech/jumpscale_core9<gh_stars>0 from jumpscale import j import base64 from .SerializerBase import SerializerBase class SerializerBase64(SerializerBase): def __init__(self): SerializerBase.__init__(self) def dumps(self, s): if j.data.types.string.check(s): b = s.encode() else: b = s return base64.b64encode(b).decode() def loads(self, b): if j.data.types.string.check(b): b = b.encode() return base64.b64decode(b).decode()
StarcoderdataPython
1686706
<gh_stars>1-10 import os __author__ = "<NAME>" __version__ = 1.0 def xmlMarkup(games, team_ab, team_name, team_record): '''Markup the RSS feed using the data obtained. :param games: list of games that the team played this season :type games: list of GameData :param team_ab: the team's abbreviated name :type team_ab: string :param team_name: the team's name :type team_name: string''' file_name = team_ab + "_feed.xml" '''Used code from http://stackoverflow.com/questions/7935972/ writing-to-a-new-directory-in-python-without-changing-directory''' script_dir = os.path.dirname(os.path.abspath(__file__)) dest_dir = os.path.join(script_dir, "feeds", team_ab) try: os.makedirs(dest_dir) except OSError: pass path = os.path.join(dest_dir, file_name) with open(path, 'w') as xml: xml.write('<?xml version="1.0" encoding="UTF-8" ?>\n') xml.write("<rss version='2.0'>\n") xml.write("<channel>\n") xml.write("<title>%s - %s</title>\n" % (team_name, team_record)) xml.write("<description>Latest %s scores</description>\n" % team_name) xml.write("<link>http://espn.go.com/nhl/team/schedule/_/name/%s</link>\n" % team_ab) for game in games: xml.write("<item>\n") xml.write("<title>%s</title>\n" % game.headline) xml.write("<link>%s</link>\n" % game.link) xml.write("</item>\n") xml.write("</channel>\n</rss>") xml.close()
StarcoderdataPython
4841614
import math, inspect, os, sys, time import pymel.core as pm import maya.cmds as cmds from zMayaTools.menus import Menu from zMayaTools import maya_logging, maya_helpers log = maya_logging.get_log() # Notes: # # - This doesn't handle inbetween targets. There's no good way to export those to # use them with game engines, so I don't use them. # - The source and destination blend shapes should have one target each. Multi-target # blend shapes aren't supported. # - If you request a retargetted blend shape, one will always be created. We don't # check to see if the source blend shape actually has any effect on the target, so if # you retarget an elbow corrective on the body to the shoes, it'll just create an empty # target. That's harmless, and checking if the mesh has actually changed would be # slower. # # A "set" button to set the selection to the source or destination blend shape # would be nice, as well as a "swap" button, but Maya's GUI system is so awful # to use I just don't want to figure out how to make a clean UI for it. def duplicate_mesh_from_plug(shape_attr, name): """ Given a deformed mesh, create a new mesh that's a clean copy of its base mesh. Return the transform. """ # Create a new mesh, and copy the base mesh of src_node. transform_node = pm.createNode('transform', n=name) # Copy the mesh. mesh_node = pm.createNode('mesh', n=name + 'OrigShape', p=transform_node) shape_attr.connect(mesh_node.attr('inMesh')) # Access vertex data on the copy, to force the data to copy. Otherwise it won't be copied, since # we're disconnecting it before the display will refresh. transform_node.vtx[0] shape_attr.disconnect(mesh_node.attr('inMesh')) return transform_node def duplicate_base_mesh(node): """ Given a deformed mesh, create a new mesh that's a clean copy of its base mesh. Return the transform. """ # Create a new mesh, and copy the base mesh of src_node. transform_node = duplicate_mesh_from_plug(node.getShapes()[-1].attr('worldMesh[0]'), name=node.nodeName() + 'Copy') # Copy the world space transform. pm.xform(transform_node, ws=True, matrix=pm.xform(node, q=True, ws=True, matrix=True)) return transform_node #def attach_deformer(mesh, deformer_node): # """ # Given a shape and a deformer node, attach the deformer to the shape. # # Maya does this when you create a mesh with pm.deformer, but not if # Given a transform node with a shape, # """ # group_parts = pm.createNode('groupParts') # group_parts.attr('inputComponents').set(1, 'vtx[*]', type='componentList') # group_parts.attr('ihi').set(False) # mesh.attr('worldMesh[0]').connect(group_parts.attr('inputGeometry')) # # group_id = pm.createNode('groupId') # group_id.attr('groupId').connect(group_parts.attr('groupId')) # group_id.attr('ihi').set(False) # # group_parts.attr('outputGeometry').connect(deformer_node.attr('input[0]').attr('inputGeometry')) # group_id.attr('groupId').connect(deformer_node.attr('input[0]').attr('groupId')) # # src_mesh_output = pm.createNode('mesh', n=mesh.getTransform().nodeName() + 'CopyShape', p=mesh.getTransform()) # deformer_node.attr('outputGeometry[0]').connect(src_mesh_output.attr('inMesh')) # mesh.attr('intermediateObject').set(1) def prep_for_retargetting(blend_shape, restores): """ Prepare blend_shape for being used as the source for retargetting. - We need to be able to set blend shape weights, so disconnect anything connected to all weights. - Make sure all weights and groups are visible, and all groups have a weight of 1, so # they don't prevent us from enabling weights. - Set all blend shape weights to 0, so we can enable them one at a time. Changes will be added to restores, so they'll be reverted by maya_helpers.restores() when we're done. """ # Make sure the blendShape itself is turned on. restores.append(maya_helpers.SetAndRestoreAttr(blend_shape.envelope, 1)) for directory_entry in blend_shape.targetDirectory: restores.append(maya_helpers.SetAndRestoreAttr(directory_entry.directoryVisibility, 1)) # Setting directoryParentVisibility will ensure that the directory isn't hidden from its # parent being hidden, or from a blendShape group on the shapeEditorManager being hidden. restores.append(maya_helpers.SetAndRestoreAttr(directory_entry.directoryParentVisibility, 1)) restores.append(maya_helpers.SetAndRestoreAttr(directory_entry.directoryWeight, 1)) for target_visibility in blend_shape.targetVisibility: print target_visibility restores.append(maya_helpers.SetAndRestoreAttr(target_visibility, 1)) # XXX: untested for inbetween_info_group in blend_shape.inbetweenInfoGroup: for inbetween_info in inbetween_info_group.inbetweenInfo: restores.append(maya_helpers.SetAndRestoreAttr(inbetween_info.inbetweenVisibility, 1)) for weight in blend_shape.weight: # This will also disconnect anything connected to the weight. restores.append(maya_helpers.SetAndRestoreAttr(weight, 0)) def redst_blend_shapes(src_node, dst_node, src_blend_shape_node, dst_blend_shape_node, blend_shape_indices, connect_weights, use_cvwrap): try: pm.waitCursor(state=True) # Remember the selection, so we can restore it. old_selection = pm.ls(sl=True) # Delete any nodes created while doing this when we're done. with maya_helpers.temporary_namespace(): with maya_helpers.restores() as restores: prep_for_retargetting(src_blend_shape_node, restores) src_to_dst_weights = redst_blend_shapes_inner(src_node, dst_node, src_blend_shape_node, dst_blend_shape_node, blend_shape_indices, use_cvwrap=use_cvwrap) # Copy or connect weights. Do this after we finish the above, since we need to let maya_helpers.restores() # restore the original weights before we copy them, or they'll all be set to 0. for src_weight, dst_weight in src_to_dst_weights.items(): if connect_weights: # Connect the source blend shape's weight to the target. src_weight.connect(dst_weight) else: # Copy the source weight. dst_weight.set(src_weight.get()) return src_to_dst_weights finally: pm.waitCursor(state=False) pm.select(old_selection) def add_blend_shape_index_to_directory(directory_entry, idx): """ Add idx to a blendShape.targetDirectory child list if it's not already present, and remove it from all other directories. """ # Add idx to directory_entry. child_indices = directory_entry.childIndices.get() or [] if idx not in child_indices: child_indices.append(idx) directory_entry.childIndices.set(child_indices, type='Int32Array') # Remove idx from all others. for other_directory_entry in directory_entry.array(): if other_directory_entry == directory_entry: continue child_indices = other_directory_entry.childIndices.get() or [] if idx in child_indices: child_indices.remove(idx) other_directory_entry.childIndices.set(child_indices, type='Int32Array') if idx >= 0: # For blend shape targets, set parentDirectory to match. directory_entry.node().parentDirectory[idx].set(directory_entry.index()) def find_blend_shape_directory_by_blend_shape_idx(blend_shape, idx): """ Find the target directory of the given blend shape index. If it's not found, return the root directory. """ for directory in blend_shape.targetDirectory: # childIndices will be None if there are no entries. if idx in (directory.childIndices.get() or []): return directory # If we can't find it, return the root directory. return blend_shape.targetDirectory[0] def find_directory_entry_by_name(blend_shape, name): """ Find and return the targetDirectory with the given name, or None if it doesn't exist. """ for directory_entry in blend_shape.targetDirectory: if directory_entry.directoryName.get() == name: return directory_entry return None def recursively_create_hierarchy(src_directory_entry, dst_blend_shape): """ Create a matching blend shape directory hierarchy for dst_directory_entry in dst_blend_shape. Return the corresponding targetDirectory in the destination blendShape node. """ # If this is the root, stop. if src_directory_entry.index() == 0: return dst_blend_shape.targetDirectory[0] # Recursively create the parent. dst_directory_parent is the target directory of the parent. parent_index = src_directory_entry.parentIndex.get() parent_directory = src_directory_entry.array()[parent_index] dst_directory_parent = recursively_create_hierarchy(parent_directory, dst_blend_shape) # If a directory with the same name already exists in dst_blend_shape, use it. dst_directory_entry = find_directory_entry_by_name(dst_blend_shape, src_directory_entry.directoryName.get()) if dst_directory_entry is not None: return dst_directory_entry # Create the directory, copying attributes from the source. new_shape_directory_index = max(dst_blend_shape.targetDirectory.get(mi=True)) + 1 dst_directory_entry = dst_blend_shape.targetDirectory[new_shape_directory_index] dst_directory_entry.directoryName.set(src_directory_entry.directoryName.get()) dst_directory_entry.directoryVisibility.set(dst_directory_parent.directoryVisibility.get()) dst_directory_entry.directoryParentVisibility.set(dst_directory_parent.directoryParentVisibility.get()) dst_directory_entry.directoryWeight.set(dst_directory_parent.directoryWeight.get()) dst_directory_entry.parentIndex.set(dst_directory_parent.index()) # Add the new directory to the childIndices list of the parent. Groups are stored as # the inverse of their index. (Do this even if we're not newly creating the directory to # make sure it's present, but use the existing directory index.) add_blend_shape_index_to_directory(dst_directory_parent, -dst_directory_entry.index()) return dst_directory_entry def create_matching_blend_shape_directory(src_blend_shape, src_blend_shape_index, dst_blend_shape, dst_blend_shape_index): """ Create a blend shape directory hierarchy in dst_blend_shape for dst_blend_shape_index, matching the grouping of src_blend_shape_index in src_blend_shape, and add dst_blend_shape_index to it. """ # Find the target directory for the source blend shape. src_directory = find_blend_shape_directory_by_blend_shape_idx(src_blend_shape, src_blend_shape_index) # Create the directory hierarchy, and move the blend shape into it. dst_directory_entry = recursively_create_hierarchy(src_directory, dst_blend_shape) add_blend_shape_index_to_directory(dst_directory_entry, dst_blend_shape_index) def redst_blend_shapes_inner(src_node, dst_node, src_blend_shape_node, dst_blend_shape_node, blend_shape_indices, use_cvwrap=True): # Duplicate the destination mesh. dst_node_copy = duplicate_base_mesh(dst_node) # Wrap dst_node_copy to src_node, so the destination mesh follows blend shapes on the source mesh. wrap_deformer(src_node, dst_node_copy, auto_weight_threshold=True, falloff_mode=0, use_cvwrap_if_available=use_cvwrap) # Find all blend shape names. We require that blend shapes have a name, and always give # blend shapes the same name as their source. dst_blend_shape_name_to_index = {} for idx in dst_blend_shape_node.weightIndexList(): src_weight = dst_blend_shape_node.attr('w').elementByLogicalIndex(idx) target_name = pm.aliasAttr(src_weight, q=True) if target_name is None: log.warning('Warning: destination blend shape has an unused blend shape %i' % idx) continue dst_blend_shape_name_to_index[target_name] = idx def get_unused_blend_shape_index(preferred_idx): # Return an index that isn't in use in dst_blend_shape_name_to_index. index_list = sorted(dst_blend_shape_name_to_index.values()) if preferred_idx not in index_list: return preferred_idx for idx in xrange(0, len(index_list)+1): if idx not in index_list: return idx raise RuntimeError('Not reachable') # Do the actual retargetting. src_to_dst_weights = {} for idx in blend_shape_indices: # Make sure that we aren't connected backwards, or this would create a cycle. src_weight = src_blend_shape_node.attr('weight').elementByLogicalIndex(idx) # Each index is a weight attribute on the source blend shape deformer. Get the name of the blend shape. target_name = pm.aliasAttr(src_weight, q=True) if target_name is None: log.warning('Error: blend shape index %i has no name' % idx) continue # Find the blend shape in the target with this name. If it already exists, we'll just update # it. Otherwise, we'll pick a new index and create a new one. new_idx = dst_blend_shape_name_to_index.get(target_name) if new_idx is None: # There's no existing blend shape by this name. Find an unused one, and record that we've # used it. # # If it's available, use the same blend shape index, so the new blendShape deformer is compatible # with the old one in reference edits. new_idx = get_unused_blend_shape_index(preferred_idx=idx) dst_blend_shape_name_to_index[target_name] = new_idx dst_weight = dst_blend_shape_node.attr('weight').elementByLogicalIndex(new_idx) if dst_weight.isConnectedTo(src_weight): log.warning('Warning: the destination target %s is a source for the source %s. Are the blend shapes selected backwards?' % ( dst_weight, src_weight)) continue # Enable the blend shape target on the source object. This will deform dst_node_copy through # the wrap deformer. weight = src_blend_shape_node.attr('w').elementByLogicalIndex(idx) weight.set(1) # Duplicate dst_node_copy in its deformed state. new_blend_shape_target = pm.duplicate(dst_node_copy, n='DeformedTarget')[0] # Disconnect the source weight from the destination weight before updating the blend shape # weight, or it'll print an unexplained "Problems occurred with dependency graph setup". # (Come on, guys, "there were problems" isn't an error message.) if src_weight.isConnectedTo(dst_weight): src_weight.disconnect(dst_weight) # Set the blend shape. pm.blendShape(dst_blend_shape_node, e=True, t=(dst_node, new_idx, new_blend_shape_target, 1.0)) # Rename the blend shape target to match the source. Don't do this if we have no # alias, since that causes a crash. if target_name: old_alias = pm.aliasAttr(dst_weight, q=True) if old_alias: pm.aliasAttr(dst_blend_shape_node.attr(old_alias), rm=True) pm.aliasAttr(target_name, dst_weight) # Disable the target. weight.set(0) # Create a matching blend shape directory, and add the new blend shape to it. create_matching_blend_shape_directory(src_blend_shape_node, idx, dst_blend_shape_node, new_idx) # We don't need the copied target. Once we delete this, the blend shape will be baked into # the deformer. pm.delete(new_blend_shape_target) src_to_dst_weights[src_weight] = dst_weight return src_to_dst_weights def _create_wrap(control_object, target, threshold=0, max_distance=0, influence_type=2, # 1 for point, 2 for face exclusive=False, auto_weight_threshold=False, falloff_mode=0): # 0 for volume, 1 for surface old_selection = pm.ls(sl=True) pm.select(target) pm.select(control_object, add=True) cmd = 'doWrapArgList "7" { "1", "%(threshold)s", "%(max_distance)s", "%(influence_type)s", "%(exclusive)s", "%(auto_weight_threshold)s", ' \ '"%(render_influences)s", "%(falloff_mode)s" };' % { 'threshold': threshold, 'max_distance': max_distance, 'influence_type': influence_type, 'exclusive': 1 if exclusive else 0, 'auto_weight_threshold': 1 if auto_weight_threshold else 0, 'render_influences': 1, # Never set this to 0. 'falloff_mode': falloff_mode, } deformer_node = pm.mel.eval(cmd)[0] # Restore the old selection. pm.select(old_selection) return pm.PyNode(deformer_node) def _create_cvwrap(control_object, target): """ Create a wrap deformer with cvwrap, if available. If the cvwrap plugin isn't available, return None. """ if not maya_helpers.load_plugin('cvwrap.mll', required=False): return None old_selection = pm.ls(sl=True) pm.select(target) pm.select(control_object, add=True) deformer_node = cmds.cvWrap() # Restore the old selection. pm.select(old_selection) return pm.PyNode(deformer_node) def wrap_deformer(control_mesh, target, use_cvwrap_if_available=False, threshold=0, max_distance=0, influence_type=2, # 1 for point, 2 for face exclusive=False, auto_weight_threshold=False, falloff_mode=0): # 0 for volume, 1 for surface # If any nodes are meshes, move up to the transform. selection = target.getParent() if target.nodeType() == 'mesh' else target control_transform = control_mesh.getParent() if control_mesh.nodeType() == 'mesh' else control_mesh deformer_node = None if use_cvwrap_if_available: deformer_node = _create_cvwrap(control_transform, selection) if deformer_node is None: log.warning('The cvwrap plugin isn\'t available.') if deformer_node is None: deformer_node = _create_wrap(control_transform, selection, threshold, max_distance, influence_type, exclusive, auto_weight_threshold, falloff_mode) return deformer_node def copy_attr(src_attr, dst_attr): """ Copying attributes is tricky. If we just attr.set(attr2.get()), it'll be very slow since PyMel is very inefficient at large data sets. Using cmds instead introduces new problems: we can't set large data sets all at once with it, so we'd have to break it apart. Instead, use MPlug.getSetAttrCmds to get the commands that would be used to set up the node in an .MA file, and run them on our copy. """ # Get the command list to set the values on the attribute. command_list = [] src_attr.__apimplug__().getSetAttrCmds(command_list) # The command list operates on the selected node, so select the destination node. old_selection = pm.ls(sl=True) pm.select(dst_attr.node()) # Run the commands. for cmd in command_list: pm.mel.eval(cmd) pm.select(old_selection) #class WrappedBlendShapes(object): # """ # Work with wrapped blend shapes. A wrapped blend shape is one that receives retargetted # blend shapes from a source. # """ # @classmethod # def get_blend_shape_wrap_target(cls, follower_blend_shape): # """ # Return a list of all blendShape nodes that receive retargets from blend_shape. # """ # assert isinstance(follower_blend_shape, pm.nodetypes.BlendShape), 'Expected a blendShape, got: %s' % follower_blend_shape.type() # if not pm.attributeQuery('wrappingBlendShape', node=follower_blend_shape.nodeName(), exists=True): # return None # # dst_attr = follower_blend_shape.attr('wrappingBlendShape') # # # There can only be zero or one incoming connections. # connections = dst_attr.connections(s=True, d=False) # assert len(connections) <= 1 # if not connections: # return None # return connections[0] # # @classmethod # def find_following_blend_shapes(cls, blend_shape): # """ # Return a list of all blendShape nodes that receive retargets from blend_shape. # """ # cls._assert_is_blend_shape(blend_shape) # # # Find all blend shapes that are retargetted from this one. # connections = blend_shape.attr('message').listConnections(type='blendShape', p=True, s=False, d=True) # connections = [c.node() for c in connections if c.attrName() == 'wrappingBlendShape'] # return connections # # @classmethod # def add_wrap(cls, follower_blend_shape, blend_shape_node_to_follow): # cls._assert_is_blend_shape(follower_blend_shape) # cls._assert_is_blend_shape(blend_shape_node_to_follow) # # # An array of message attributes would be more useful, but there's no way to create that with addAttr. # if not pm.attributeQuery('wrappingBlendShape', node=follower_blend_shape.nodeName(), exists=True): # pm.addAttr(follower_blend_shape, ln='wrappingBlendShape', at='message') # # src_attr = blend_shape_node_to_follow.attr('message') # dst_attr = follower_blend_shape.attr('wrappingBlendShape') # if not src_attr.isConnectedTo(dst_attr): # src_attr.connect(dst_attr) # # @classmethod # def remove_wrap(cls, follower_blend_shape): # cls._assert_is_blend_shape(follower_blend_shape) # # # Just delete the wrappingBlendShape attribute. # if not pm.attributeQuery('wrappingBlendShape', node=follower_blend_shape.nodeName(), exists=True): # return # # pm.deleteAttr(follower_blend_shape.attr('wrappingBlendShape')) # # @classmethod # def find_dst_blend_shape_node(cls, src_blend_shape_node, dst_mesh): # """ # Given a source blend shape and a target mesh, find the blend shape on the target # mesh which receives retargetting from the source blend shape. # # The SourceBlendShape attribute is used to track this. It's very inconvenient to # select multiple blend shape nodes and specific attributes on them, so this allows # only having to select the meshes. # """ # cls._assert_is_blend_shape(src_blend_shape_node) # # connections = cls.find_following_blend_shapes(src_blend_shape_node) # # # One of the blend shapes should be in the history of dst_mesh. # # XXX: look at futures of the base mesh # dst_mesh_history = dst_mesh.listHistory() # for conn in connections: # if conn.node() in dst_mesh_history: # return conn.node() # return None # # @classmethod # def _assert_is_blend_shape(cls, node): # assert isinstance(node, pm.nodetypes.BlendShape), 'Expected a blendShape, got: %s' % node.type() class UI(maya_helpers.OptionsBox): title = 'Retarget Blend Shapes' def get_src_blend_shape_name(self): return pm.optionMenuGrp('sourceBlendShapeList', q=True, v=True) def get_dst_blend_shape_name(self): return pm.optionMenuGrp('dstBlendShapeList', q=True, v=True) def option_box_load(self): """ Load saved settings from optionVars to the UI. """ connect_weights_to_source = self.optvars['zBlendShapeRetargettingConnectWeightsToSource'] == 1 pm.checkBoxGrp('connectWeightsToSource', edit=True, value1=connect_weights_to_source) use_cvwrap = self.optvars['zBlendShapeRetargettingUseCvwrap'] == 1 pm.checkBoxGrp('useCvWrap', edit=True, value1=use_cvwrap) # optionMenuGrp will throw RuntimeError if the value doesn't exist, eg. the saved blendShape # node doesn't exist in the scene. # def set_option_from_blend_shape_list(blend_shape_list, option_var): # menu_items = pm.optionMenuGrp(blend_shape_list, q=True, itemListLong=True) # all_menu_items = [pm.menuItem(item, q=True, label=True) for item in menu_items] # src_blend_shape = pm.optionVar(q=option_var) # if src_blend_shape in all_menu_items: # pm.optionMenuGrp(blend_shape_list, e=True, v=src_blend_shape) # set_option_from_blend_shape_list('sourceBlendShapeList', 'zBlendShapeRetargettingSourceBlendShape') # set_option_from_blend_shape_list('dstBlendShapeList', 'zBlendShapeRetargettingTargetBlendShape') def option_box_save(self): self.optvars['zBlendShapeRetargettingConnectWeightsToSource'] = pm.checkBoxGrp('connectWeightsToSource', q=True, value1=False) self.optvars['zBlendShapeRetargettingUseCvwrap'] = pm.checkBoxGrp('useCvWrap', q=True, value1=False) def option_box_apply(self): # Get the selected blendShapes. src_blend_shape = pm.optionMenuGrp('sourceBlendShapeList', q=True, v=True) dst_blend_shape = pm.optionMenuGrp('dstBlendShapeList', q=True, v=True) src_blend_shape = pm.ls(src_blend_shape)[0] dst_blend_shape = pm.ls(dst_blend_shape)[0] if not src_blend_shape: pm.warning('No source blend shape is selected') return if not dst_blend_shape: pm.warning('No target blend shape is selected') return if src_blend_shape == dst_blend_shape: pm.warning('The source and destination blend shapes are the same') return # These were selected from the UI, so unless the scene changed while the dialog was # open these should always be blendShape nodes. assert isinstance(src_blend_shape, pm.nodetypes.BlendShape), 'Node %s isn\'t a blend shape' % src_blend_shape.nodeName() assert isinstance(dst_blend_shape, pm.nodetypes.BlendShape), 'Node %s isn\'t a blend shape' % dst_blend_shape.nodeName() # Get the selected blend shape targets to retarget. blend_shape_targets = self.get_selected_src_blend_shape_targets() blend_shape_indices = [target.index() for target in blend_shape_targets] if not blend_shape_indices: pm.warning('No blend shape targets are selected') return src_blend_shape_targets = pm.ls(pm.blendShape(src_blend_shape, q=True, g=True)) dst_blend_shape_targets = pm.ls(pm.blendShape(dst_blend_shape, q=True, g=True)) # Make sure that both blend shapes have just one target. assert len(src_blend_shape_targets) == 1, 'Blend shape %s must have one target, has %i: %s' % ( src_blend_shape.nodeName(), len(src_blend_shape_targets), ', '.join(src_blend_shape_targets)) assert len(dst_blend_shape_targets) == 1, 'Blend shape %s must have one target, has %i: %s' % ( dst_blend_shape.nodeName(), len(dst_blend_shape_targets), ', '.join(dst_blend_shape_targets)) # Find the transforms for the source and destination node. src_node = src_blend_shape_targets[0].getTransform() dst_node = dst_blend_shape_targets[0].getTransform() # Check the selected nodes. assert isinstance(src_node, pm.nodetypes.Transform), 'The source node %s isn\'t a transform' % src_node.nodeName() assert isinstance(dst_node, pm.nodetypes.Transform), 'The destination node %s isn\'t a transform' % dst_node.nodeName() assert src_node.getShape() is not None, 'The source node %s isn\'t a mesh' % dst_node.nodeName() assert dst_node.getShape() is not None, 'The destination node %s isn\'t a mesh' % dst_node.nodeName() # # Find all blendShapes that are following this one. # following_blend_shapes = WrappedBlendShapes.find_following_blend_shapes(src_blend_shape) # # # Find a blend shape node on dst_node that's in following_blend_shapes. We can either # # look in the history of the output mesh, or in the future of the base mesh, and both can # # have wrong matches. # for node in dst_node.getShapes()[-1].listFuture(): # if node in following_blend_shapes: # dst_blend_shape = node # break # else: # raise RuntimeError('Couldn\'t find a blend shape node on %s which is following %s' % (dst_node.name(), src_blend_shape.name())) connect_weights = pm.checkBoxGrp('connectWeightsToSource', q=True, value1=False) use_cvwrap = pm.checkBoxGrp('useCvWrap', q=True, value1=False) redst_blend_shapes(src_node, dst_node, src_blend_shape, dst_blend_shape, blend_shape_indices, connect_weights=connect_weights, use_cvwrap=use_cvwrap) def options_box_setup(self): self.optvars.add('zBlendShapeRetargettingConnectWeightsToSource', 'int', 0) self.optvars.add('zBlendShapeRetargettingUseCvwrap', 'int', 1) parent = pm.columnLayout(adjustableColumn=True) def add_blend_shape_selector(name, label, refresh_on_change): pm.optionMenuGrp(name, label=label) # Create a list of blendShapes. bnArray = pm.ls(type='blendShape') for entry in bnArray: pm.menuItem(label=entry) if not bnArray: pm.menuItem(label='No Blend Shape Selected') # When the source selection is changed, update the source blend shape list. def changed(value): self.refresh_src_blend_shape_list() if refresh_on_change: pm.optionMenuGrp(name, edit=True, changeCommand=changed) add_blend_shape_selector('sourceBlendShapeList', 'Source blendShape', True) add_blend_shape_selector('dstBlendShapeList', 'Target blendShape', False) pm.separator() pm.textScrollList('blendShapeTargetList', numberOfRows=10, allowMultiSelection=True) # showIndexedItem=4 ) pm.separator() pm.checkBoxGrp('connectWeightsToSource', numberOfCheckBoxes=1, value1=False, label='Connect weights to source') pm.checkBoxGrp('useCvWrap', numberOfCheckBoxes=1, value1=False, label='Use cvwrap instead of wrap') self.refresh_src_blend_shape_list() def refresh_src_blend_shape_list(self): pm.textScrollList('blendShapeTargetList', edit=True, removeAll=True) src_blend_shape = self.get_src_blend_shape_name() if src_blend_shape is None: return if src_blend_shape == 'No Blend Shape Selected': return # The blend shape array is sparse, so keep a mapping from list indices to blend # shape weight indices. Note that for some reason, these are 1-based. self.src_blend_shape_map = {} # Add the blend shape targets in the source blend shape to the list. src_blend_shape = pm.ls(src_blend_shape)[0] weight_idx_list = src_blend_shape.weightIndexList() src_weights = src_blend_shape.attr('weight') for weight_idx in weight_idx_list: weight = src_weights.elementByLogicalIndex(weight_idx) target_name = pm.aliasAttr(weight, q=True) pm.textScrollList('blendShapeTargetList', edit=True, append=target_name) idx = pm.textScrollList('blendShapeTargetList', q=True, numberOfItems=True) self.src_blend_shape_map[idx] = weight def get_selected_src_blend_shape_targets(self): selection = pm.textScrollList('blendShapeTargetList', q=True, selectIndexedItem=True) return [self.src_blend_shape_map[idx] for idx in selection]
StarcoderdataPython
8182583
from abc import ABCMeta, abstractmethod class StrategyBase(metaclass=ABCMeta): def __init__(self, n, m, k): self.loads = [0] * n self.n = n self.m = m self.k = k self.choices_left = k @abstractmethod def decide(self, bin): # TODO: might add a choices_left as an input pass @abstractmethod def note(self, bin): pass @abstractmethod def reset(self): pass def decide_(self, bin): decision = self.decide(bin) if not decision: self.choices_left -= 1 return decision def note_(self, bin): self.loads[bin] += 1 self.choices_left = self.k self.note(bin) def reset_(self): self.loads = [0] * self.n self.reset()
StarcoderdataPython
12830990
<gh_stars>1-10 """exact-astro setup.py.""" import io import pathlib import re from setuptools import setup __version__ = re.search( r'__version__\s*=\s*[\'"]([^\'"]*)[\'"]', # It excludes inline comment too io.open('exact/__init__.py', encoding='utf_8_sig').read(), ).group(1) install_requires = ['numpy', 'scipy'] packages = ['exact'] description = 'Exact solutions to astrophysical problems.' long_description = (pathlib.Path(__file__).parent / 'README.md').read_text() setup( name='exact', version=__version__, author='<NAME>', author_email='<EMAIL>', url='https://github.com/dmentipl/exact-astro', description=description, long_description=long_description, long_description_content_type='text/markdown', packages=packages, license='MIT', install_requires=install_requires, classifiers=[ "Development Status :: 2 - Pre-Alpha", "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Operating System :: OS Independent", "Topic :: Scientific/Engineering :: Astronomy", ], )
StarcoderdataPython
11213443
# _*_ coding: utf-8 _*_ """ Created by Alimazing on 2018/6/17. """ from sqlalchemy import Column, Integer, String, SmallInteger from app.models.base import Base __author__ = 'Alimazing' class Image(Base): id = Column(Integer, primary_key=True, autoincrement=True) _url = Column('url', String(255)) _from = Column('from', SmallInteger, default=1) # 1表示存在本地, 2表示存在网络上 def keys(self): self.hide('id', '_url','_from').append('url') return self.fields @property def url(self): return self.get_url(self._url) @staticmethod def get_img_by_id(id): return Image.query.filter_by(id=id).first_or_404()
StarcoderdataPython
365164
"""Custom User Manager.""" from django.contrib.auth.models import BaseUserManager from django.utils.translation import ugettext_lazy as _ class UserManager(BaseUserManager): """ Custom user manager model where email is the unique identifier for authentication instead of username. """ use_in_migrations = True def create_user(self, email, password, **extra_fields): """Create and save user with given email and password.""" fields_names = ["email", ] values = [email, ] field_value_map = dict(zip(fields_names, values)) for field, value in field_value_map.items(): if not value: raise ValueError(_(f"The {field} must be set!")) email = self.normalize_email(email) user = self.model(email=email, **extra_fields) user.set_password(password) user.save() return user def create_superuser(self, email, password, **extra_fields): """ Creaete and save superuser with email, password and correct defaults. """ extra_fields.setdefault("is_active", True) extra_fields.setdefault("is_staff", True) extra_fields.setdefault("is_superuser", True) return self.create_user(email, password, **extra_fields)
StarcoderdataPython
6549634
"""Decodes a binary string to a json representation of the intervals after the merge overlapping intervals turing machine have processed them. Reads json from the command line and outputs the initial tape.""" import json import sys from vim_turing_machine.constants import BITS_PER_NUMBER from vim_turing_machine.constants import BLANK_CHARACTER def decode_intervals(intervals, num_bits=BITS_PER_NUMBER): result = [] clean_intervals = intervals.replace(BLANK_CHARACTER, '').replace(' ', '') index = 0 while index < len(clean_intervals): begin = clean_intervals[index:index + num_bits] begin = int(begin, 2) index += num_bits end = clean_intervals[index:index + num_bits] end = int(end, 2) index += num_bits result.append([begin, end]) return result if __name__ == '__main__': print(json.dumps(decode_intervals(sys.argv[1], int(sys.argv[2]))))
StarcoderdataPython
1698969
from __future__ import unicode_literals from decimal import Decimal from django.db import models class Movie(models.Model): title = models.CharField( verbose_name='Movie Title', max_length=255 ) genre = models.CharField( verbose_name='Genre', max_length=255 ) rating = models.DecimalField( verbose_name='Rating out of 10', default=Decimal(0), max_digits=5, decimal_places=2 ) description = models.TextField( verbose_name='Description', max_length=1000 ) casting = models.CharField( verbose_name='Castings for the Movie', max_length=1000 ) class Meta: db_table = 'movie' app_label = 'movies' verbose_name = 'Movie' verbose_name_plural = 'Movies'
StarcoderdataPython
1949772
<filename>parrot/settings.py<gh_stars>0 import environ from pathlib import Path env = environ.Env() BASE_DIR = Path(__file__).parent.parent environ.Env.read_env(str(BASE_DIR / '.env')) SECRET_KEY = env('PARROT_SECRET_KEY') DEBUG = env.bool('DEBUG', False) ALLOWED_HOSTS = env.list('PARROT_ALLOWED_HOSTS', default=['127.0.0.1']) INSTALLED_APPS = [ 'simpleui', 'django_extensions', 'django.contrib.admin', 'django.contrib.auth', 'django.contrib.contenttypes', 'django.contrib.sessions', 'django.contrib.messages', 'django.contrib.staticfiles', 'django.contrib.postgres', 'http_stubs', ] MIDDLEWARE = [ 'django.middleware.security.SecurityMiddleware', 'django.contrib.sessions.middleware.SessionMiddleware', 'django.middleware.common.CommonMiddleware', 'django.middleware.csrf.CsrfViewMiddleware', 'django.contrib.auth.middleware.AuthenticationMiddleware', 'django.contrib.messages.middleware.MessageMiddleware', 'django.middleware.clickjacking.XFrameOptionsMiddleware', ] if DEBUG: INSTALLED_APPS.append('debug_toolbar') MIDDLEWARE.append('debug_toolbar.middleware.DebugToolbarMiddleware') ROOT_URLCONF = 'parrot.urls' TEMPLATES = [ { 'BACKEND': 'django.template.backends.django.DjangoTemplates', 'DIRS': [BASE_DIR / Path('templates')], 'APP_DIRS': True, 'OPTIONS': { 'context_processors': [ 'django.template.context_processors.debug', 'django.template.context_processors.request', 'django.contrib.auth.context_processors.auth', 'django.contrib.messages.context_processors.messages', ], }, }, ] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.postgresql', 'NAME': env.str('PARROT_DB_NAME', 'parrot'), 'USER': env.str('PARROT_DB_USER', 'parrot'), 'PASSWORD': env.str('PARROT_DB_PASSWORD', '<PASSWORD>'), 'HOST': env.str('PARROT_DB_HOST', 'parrot-database'), }, } AUTH_PASSWORD_VALIDATORS = [ { 'NAME': 'django.contrib.auth.password_validation.' 'UserAttributeSimilarityValidator', }, { 'NAME': 'django.contrib.auth.password_validation.' 'MinimumLengthValidator', }, { 'NAME': 'django.contrib.auth.password_validation.' 'CommonPasswordValidator', }, { 'NAME': 'django.contrib.auth.password_validation.' 'NumericPasswordValidator', }, ] LANGUAGE_CODE = 'en-us' TIME_ZONE = 'Europe/Moscow' USE_I18N = False USE_L10N = False USE_TZ = True STATICFILES_DIRS = [ BASE_DIR / Path('static'), ] STATIC_URL = '/static/' STATIC_ROOT = BASE_DIR / Path('static_build') # Admin UI settings SIMPLEUI_HOME_INFO = False SIMPLEUI_STATIC_OFFLINE = True SIMPLEUI_DEFAULT_THEME = 'layui.css' SIMPLEUI_ANALYSIS = False SIMPLEUI_LOGO = STATIC_URL + 'parrot_icon.png' SIMPLEUI_ICON = { 'HTTP Stubs': 'fas fa-feather-alt', 'Stubs': 'fas fa-feather-alt', 'Logs': 'fas fa-layer-group', } INTERNAL_IPS = env.list('PARROT_INTERNAL_HOSTS', default=['127.0.0.1'])
StarcoderdataPython
8050833
<reponame>ahme0307/Ynet from __future__ import print_function import os import numpy as np import pdb import cv2 from fnmatch import fnmatch from skimage.io import imsave, imread import pickle import pylab import imageio import matplotlib.pyplot as plt #Prepare training and test set def create_train_data(param): filenames_img = [] filenames_mask = [] if os.path.exists('imgs_trainPath.npy')==True and os.path.exists('imgs_mask_trainPath.npy')==True : print('Training set already exists and loaded from file') return data_path=param.data_path Gpaths=[x for x in next(os.walk(data_path))][1] Gpaths=[os.path.join(data_path,x) for x in Gpaths] images = os.listdir(data_path) total =sum(len(os.listdir(os.path.join(y,'GT'))) for y in (Gpaths)) i = 0 print('-'*30) print('Creating trainig images...') print('-'*30) img_mask=[] #pdb.set_trace() for video_number in range(len(images)): for imagename in os.listdir(os.path.join(Gpaths[video_number],images[video_number])): if os.path.exists(os.path.join(Gpaths[video_number],images[video_number], imagename)): mask_nameRoot,ext =os.path.splitext(imagename) else: print("Wrong Format!") pdb.set_trace() if os.path.exists(os.path.join(Gpaths[video_number],'GT', '%s%s%s' %(mask_nameRoot,'_mask',ext))): temp=os.path.join(Gpaths[video_number],'GT', '%s%s%s' %(mask_nameRoot,'_mask',ext)) elif os.path.exists(os.path.join(Gpaths[video_number],'GT', '%s%s' %(mask_nameRoot,ext))): temp=os.path.join(Gpaths[video_number],'GT', '%s%s' %(mask_nameRoot,ext)) elif os.path.exists(os.path.join(Gpaths[video_number],'GT', '%s%s%s' %('p',mask_nameRoot,ext))): temp=os.path.join(Gpaths[video_number],'GT', '%s%s%s' %('p',mask_nameRoot,ext)) elif os.path.exists(os.path.join(Gpaths[video_number],'GT', '%s%s%s' %(mask_nameRoot,'_GT',ext))): temp = os.path.join(Gpaths[video_number],'GT', '%s%s%s' %(mask_nameRoot,'_GT',ext)) else: print("Ground Truth Image not found") pdb.set_trace() try: filenames_img.append(os.path.join(Gpaths[video_number],images[video_number], imagename)) filenames_mask.append(temp) except ValueError: pdb.set_trace() if i % 1000 == 0: print('Done: {0}/{1} images'.format(i, total)) i += 1 if i == total: print('Loading done.') np.save('imgs_trainPath.npy', filenames_img) np.save('imgs_mask_trainPath.npy', filenames_mask) print('Saving to .npy files done.') print('Loading done.') return def load_train_data(): imgs_train = np.load('imgs_trainPath.npy') imgs_mask_train = np.load('imgs_mask_trainPath.npy') return imgs_train, imgs_mask_train def create_test_data(param): filenames_img = [] filenames_mask = [] if os.path.exists('imgs_test.npy')==True and os.path.exists('imgs_id_test.npy')==True : print('Test set already exists and loaded from file') return data_path_test=param.data_path_test Gpaths=[x for x in next(os.walk(data_path_test))][1] Gpaths=[os.path.join(data_path_test,x) for x in Gpaths] # pdb.set_trace() images = os.listdir(data_path_test) total =sum(len(os.listdir(os.path.join(y,'GT'))) for y in (Gpaths)) i = 0 print('-'*30) print('Creating test images...') print('-'*30) for video_number in range(len(images)): for imagename in os.listdir(os.path.join(Gpaths[video_number],images[video_number])): if os.path.exists(os.path.join(Gpaths[video_number],images[video_number], imagename)): mask_name,ext =os.path.splitext(imagename) #pdb.set_trace() mask_name ='%s%s' %(mask_name,'.tif') if not os.path.exists(os.path.join(Gpaths[video_number],'GT', mask_name)): print("Mask not Found") try: filenames_img.append(os.path.join(Gpaths[video_number],images[video_number], imagename)) filenames_mask.append(os.path.join(Gpaths[video_number],'GT', mask_name)) except ValueError: pdb.set_trace() if i % 1000 == 0: print('Done: {0}/{1} images'.format(i, total)) i += 1 if i == total: print('Loading done.') np.save('imgs_test.npy', filenames_img) np.save('imgs_id_test.npy', filenames_mask) print('Saving to .npy files done.') print('Loading done.') return def load_test_data(): imgs_test = np.load('imgs_test.npy') #imgs_test = np.memmap('imgs_test.npy', mode='r') imgs_id = np.load('imgs_id_test.npy') #imgs_id = np.memmap('imgs_id_test.npy', mode='r') return imgs_test, imgs_id def plot_imagesT(images, cls_true, cls_pred=None, smooth=True, filename='test.png'): #pdb.set_trace() assert len(images) == len(cls_true) fig, axes = plt.subplots(4, 4,figsize=(60, 60)) if cls_pred is None: hspace = 0.6 else: hspace = 0.9 fig.subplots_adjust(hspace=hspace, wspace=0.3) # Interpolation type. if smooth: interpolation = 'spline16' else: interpolation = 'nearest' count1 =0 count2 =0 for i, ax in enumerate(axes.flat): if i < len(images)*2: # Plot image. if i % 2 ==0: ax.imshow(np.uint8(images[count1]),interpolation=interpolation) count1+= 1 else: ax.imshow(np.uint8(cls_true[count2]),interpolation=interpolation,cmap=plt.get_cmap('gray')) count2+= 1 ax.set_xticks([]) ax.set_yticks([]) # plt.rcParams["figure.figsize"] = (60,60) plt.savefig(filename,dpi=100) plt.show()
StarcoderdataPython
5098613
<reponame>stonebig/opt_einsum<gh_stars>0 """ Support for random optimizers, including the random-greedy path. """ import functools import heapq import math import numbers import random import time from collections import deque from . import helpers, paths __all__ = ["RandomGreedy", "random_greedy", "random_greedy_128"] class RandomOptimizer(paths.PathOptimizer): """Base class for running any random path finder that benefits from repeated calling, possibly in a parallel fashion. Custom random optimizers should subclass this, and the ``setup`` method should be implemented with the following signature:: def setup(self, inputs, output, size_dict): # custom preparation here ... return trial_fn, trial_args Where ``trial_fn`` itself should have the signature:: def trial_fn(r, *trial_args): # custom computation of path here return ssa_path, cost, size Where ``r`` is the run number and could for example be used to seed a random number generator. See ``RandomGreedy`` for an example. Parameters ---------- max_repeats : int, optional The maximum number of repeat trials to have. max_time : float, optional The maximum amount of time to run the algorithm for. minimize : {'flops', 'size'}, optional Whether to favour paths that minimize the total estimated flop-count or the size of the largest intermediate created. parallel : {bool, int, or executor-pool like}, optional Whether to parallelize the random trials, by default ``False``. If ``True``, use a ``concurrent.futures.ProcessPoolExecutor`` with the same number of processes as cores. If an integer is specified, use that many processes instead. Finally, you can supply a custom executor-pool which should have an API matching that of the python 3 standard library module ``concurrent.futures``. Namely, a ``submit`` method that returns ``Future`` objects, themselves with ``result`` and ``cancel`` methods. pre_dispatch : int, optional If running in parallel, how many jobs to pre-dispatch so as to avoid submitting all jobs at once. Should also be more than twice the number of workers to avoid under-subscription. Default: 128. Attributes ---------- path : list[tuple[int]] The best path found so far. costs : list[int] The list of each trial's costs found so far. sizes : list[int] The list of each trial's largest intermediate size so far. See Also -------- RandomGreedy """ def __init__(self, max_repeats=32, max_time=None, minimize='flops', parallel=False, pre_dispatch=128): if minimize not in ('flops', 'size'): raise ValueError("`minimize` should be one of {'flops', 'size'}.") self.max_repeats = max_repeats self.max_time = max_time self.minimize = minimize self.better = paths.get_better_fn(minimize) self.parallel = parallel self.pre_dispatch = pre_dispatch self.costs = [] self.sizes = [] self.best = {'flops': float('inf'), 'size': float('inf')} self._repeats_start = 0 @property def path(self): """The best path found so far. """ return paths.ssa_to_linear(self.best['ssa_path']) @property def parallel(self): return self._parallel @parallel.setter def parallel(self, parallel): # shutdown any previous executor if we are managing it if getattr(self, '_managing_executor', False): self._executor.shutdown() self._parallel = parallel self._managing_executor = False if parallel is False: self._executor = None return if parallel is True: from concurrent.futures import ProcessPoolExecutor self._executor = ProcessPoolExecutor() self._managing_executor = True return if isinstance(parallel, numbers.Number): from concurrent.futures import ProcessPoolExecutor self._executor = ProcessPoolExecutor(parallel) self._managing_executor = True return # assume a pool-executor has been supplied self._executor = parallel def _gen_results_parallel(self, repeats, trial_fn, args): """Lazily generate results from an executor without submitting all jobs at once. """ self._futures = deque() # the idea here is to submit at least ``pre_dispatch`` jobs *before* we # yield any results, then do both in tandem, before draining the queue for r in repeats: if len(self._futures) < self.pre_dispatch: self._futures.append(self._executor.submit(trial_fn, r, *args)) continue yield self._futures.popleft().result() while self._futures: yield self._futures.popleft().result() def _cancel_futures(self): if self._executor is not None: for f in self._futures: f.cancel() def setup(self, inputs, output, size_dict): raise NotImplementedError def __call__(self, inputs, output, size_dict, memory_limit): # start a timer? if self.max_time is not None: t0 = time.time() trial_fn, trial_args = self.setup(inputs, output, size_dict) r_start = self._repeats_start + len(self.costs) r_stop = r_start + self.max_repeats repeats = range(r_start, r_stop) # create the trials lazily if self._executor is not None: trials = self._gen_results_parallel(repeats, trial_fn, trial_args) else: trials = (trial_fn(r, *trial_args) for r in repeats) # assess the trials for ssa_path, cost, size in trials: # keep track of all costs and sizes self.costs.append(cost) self.sizes.append(size) # check if we have found a new best found_new_best = self.better(cost, size, self.best['flops'], self.best['size']) if found_new_best: self.best['flops'] = cost self.best['size'] = size self.best['ssa_path'] = ssa_path # check if we have run out of time if (self.max_time is not None) and (time.time() > t0 + self.max_time): break self._cancel_futures() return self.path def __del__(self): # if we created the parallel pool-executor, shut it down if getattr(self, '_managing_executor', False): self._executor.shutdown() def thermal_chooser(queue, remaining, nbranch=8, temperature=1, rel_temperature=True): """A contraction 'chooser' that weights possible contractions using a Boltzmann distribution. Explicitly, given costs ``c_i`` (with ``c_0`` the smallest), the relative weights, ``w_i``, are computed as: w_i = exp( -(c_i - c_0) / temperature) Additionally, if ``rel_temperature`` is set, scale ``temperature`` by ``abs(c_0)`` to account for likely fluctuating cost magnitudes during the course of a contraction. Parameters ---------- queue : list The heapified list of candidate contractions. remaining : dict[str, int] Mapping of remaining inputs' indices to the ssa id. temperature : float, optional When choosing a possible contraction, its relative probability will be proportional to ``exp(-cost / temperature)``. Thus the larger ``temperature`` is, the further random paths will stray from the normal 'greedy' path. Conversely, if set to zero, only paths with exactly the same cost as the best at each step will be explored. rel_temperature : bool, optional Whether to normalize the ``temperature`` at each step to the scale of the best cost. This is generally beneficial as the magnitude of costs can vary significantly throughout a contraction. nbranch : int, optional How many potential paths to calculate probability for and choose from at each step. Returns ------- cost, k1, k2, k12 """ n = 0 choices = [] while queue and n < nbranch: cost, k1, k2, k12 = heapq.heappop(queue) if k1 not in remaining or k2 not in remaining: continue # candidate is obsolete choices.append((cost, k1, k2, k12)) n += 1 if n == 0: return None if n == 1: return choices[0] costs = [choice[0][0] for choice in choices] cmin = costs[0] # adjust by the overall scale to account for fluctuating absolute costs if rel_temperature: temperature *= max(1, abs(cmin)) # compute relative probability for each potential contraction if temperature == 0.0: energies = [1 if c == cmin else 0 for c in costs] else: # shift by cmin for numerical reasons energies = [math.exp(-(c - cmin) / temperature) for c in costs] # randomly choose a contraction based on energies chosen, = random.choices(range(n), weights=energies) cost, k1, k2, k12 = choices.pop(chosen) # put the other choise back in the heap for other in choices: heapq.heappush(queue, other) return cost, k1, k2, k12 def ssa_path_compute_cost(ssa_path, inputs, output, size_dict): """Compute the flops and max size of an ssa path. """ inputs = list(map(frozenset, inputs)) output = frozenset(output) remaining = set(range(len(inputs))) total_cost = 0 max_size = 0 for i, j in ssa_path: k12, flops12 = paths.calc_k12_flops(inputs, output, remaining, i, j, size_dict) remaining.discard(i) remaining.discard(j) remaining.add(len(inputs)) inputs.append(k12) total_cost += flops12 max_size = max(max_size, helpers.compute_size_by_dict(k12, size_dict)) return total_cost, max_size def _trial_greedy_ssa_path_and_cost(r, inputs, output, size_dict, choose_fn, cost_fn): """A single, repeatable, greedy trial run. Returns ``ssa_path`` and cost. """ if r == 0: # always start with the standard greedy approach choose_fn = None else: random.seed(r) ssa_path = paths.ssa_greedy_optimize(inputs, output, size_dict, choose_fn, cost_fn) cost, size = ssa_path_compute_cost(ssa_path, inputs, output, size_dict) return ssa_path, cost, size class RandomGreedy(RandomOptimizer): """ Parameters ---------- cost_fn : callable, optional A function that returns a heuristic 'cost' of a potential contraction with which to sort candidates. Should have signature ``cost_fn(size12, size1, size2, k12, k1, k2)``. temperature : float, optional When choosing a possible contraction, its relative probability will be proportional to ``exp(-cost / temperature)``. Thus the larger ``temperature`` is, the further random paths will stray from the normal 'greedy' path. Conversely, if set to zero, only paths with exactly the same cost as the best at each step will be explored. rel_temperature : bool, optional Whether to normalize the ``temperature`` at each step to the scale of the best cost. This is generally beneficial as the magnitude of costs can vary significantly throughout a contraction. If False, the algorithm will end up branching when the absolute cost is low, but stick to the 'greedy' path when the cost is high - this can also be beneficial. nbranch : int, optional How many potential paths to calculate probability for and choose from at each step. kwargs Supplied to RandomOptimizer. See Also -------- RandomOptimizer """ def __init__(self, cost_fn='memory-removed-jitter', temperature=1.0, rel_temperature=True, nbranch=8, **kwargs): self.cost_fn = cost_fn self.temperature = temperature self.rel_temperature = rel_temperature self.nbranch = nbranch super().__init__(**kwargs) @property def choose_fn(self): """The function that chooses which contraction to take - make this a property so that ``temperature`` and ``nbranch`` etc. can be updated between runs. """ if self.nbranch == 1: return None return functools.partial(thermal_chooser, temperature=self.temperature, nbranch=self.nbranch, rel_temperature=self.rel_temperature) def setup(self, inputs, output, size_dict): fn = _trial_greedy_ssa_path_and_cost args = (inputs, output, size_dict, self.choose_fn, self.cost_fn) return fn, args def random_greedy(inputs, output, idx_dict, memory_limit=None, **optimizer_kwargs): """ """ optimizer = RandomGreedy(**optimizer_kwargs) return optimizer(inputs, output, idx_dict, memory_limit) random_greedy_128 = functools.partial(random_greedy, max_repeats=128)
StarcoderdataPython
361398
# Enter your code here. Read input from STDIN. Print output to STDOUT n_input = input() int_input = input().split() print(all([int(i) > 0 for i in int_input]) and any([j == j[::-1] for j in int_input]))
StarcoderdataPython
9771732
<filename>Main/Articles/urls.py from django.urls import path from .views import ( PostListView, PostDetailView, PostCreateView, PostUpdateView, PostDeleteView ) urlpatterns = [ path("",PostListView.as_view(), name="art_list"), path("art_add/",PostCreateView.as_view(), name="art_add"), path("art_desc/<int:pk>/",PostDetailView.as_view(), name="art_detail"), path("art_desc/<int:pk>/update/",PostUpdateView.as_view(), name="art_update"), path("art_desc/<int:pk>/delete/",PostDeleteView.as_view(), name="art_delete"), ]
StarcoderdataPython
87253
<filename>sutils/applications/cancel/cancel.py<gh_stars>0 import sys from . import core def run(options): if options['all']: run_all(force=options['force']) elif options['last'] is not None: run_last(options['last'], force=options['force']) elif options['first'] is not None: run_first(options['first'], force=options['force']) else: sys.exit(0) # end of program def run_all(force=False): core.cancel_all(force=force) def run_last(N, force=False): core.cancel_last(N, force=force) def run_first(N, force=False): core.cancel_first(N, force=force)
StarcoderdataPython
142959
<reponame>Bpowers4/turicreate<gh_stars>1-10 # -*- coding: utf-8 -*- # Copyright © 2019 Apple Inc. All rights reserved. # # Use of this source code is governed by a BSD-3-clause license that can # be found in the LICENSE.txt file or at https://opensource.org/licenses/BSD-3-Clause from __future__ import print_function as _ from __future__ import division as _ from __future__ import absolute_import as _ import os as _os import turicreate as _tc import turicreate.toolkits.libtctensorflow from turicreate.toolkits._main import ToolkitError as _ToolkitError import numpy as _np import tempfile import coremltools as _coremltools from copy import copy as _copy from array import array as _array import sys as _sys from . import util as test_util import unittest import pytest def _build_bitmap_data(): """ Build an SFrame from 10 saved drawings. """ from os.path import join as _join, realpath as _realpath from os.path import splitext as _splitext, basename as _basename from os.path import dirname as _dirname drawings_dir = _join(_dirname(_realpath(__file__)), "drawings") sf = _tc.image_analysis.load_images(drawings_dir, with_path=True) sf = sf.rename({"image": "drawing", "path": "label"}) sf["label"] = sf["label"].apply( lambda filepath: _splitext(_basename(filepath))[0][:-1] # Extract the class name from the filename, "check1.png" -> "check" # [:-1] is to get "check" out of "check1" ) return sf def _build_stroke_data(): """ Build an SFrame by generating 10 random stroke-based drawings. Each stroke is generated by doing a random walk on a canvas. """ num_rows_in_sframe = 10 drawings, labels = [], [] random = _np.random.RandomState(100) def _generate_random_point(point=None): if point is not None: dx = random.choice([-1, 0, 1]) dy = random.choice([-1, 0, 1]) next_x, next_y = point["x"] + dx, point["y"] + dy else: next_x, next_y = random.randint(1000), random.randint(1000) return {"x": next_x, "y": next_y} for label in range(num_rows_in_sframe): num_strokes = random.randint(10) drawing = [] for stroke_id in range(num_strokes): drawing.append([]) num_points = random.randint(500) last_point = None for point_id in range(num_points): last_point = _generate_random_point(last_point) drawing[-1].append(last_point) drawings.append(drawing) labels.append(label) return _tc.SFrame({"drawing": drawings, "label": labels}) class DrawingClassifierTest(unittest.TestCase): @classmethod def setUpClass(self, warm_start=None): self.feature = "drawing" self.target = "label" self.check_cross_sf = _build_bitmap_data() self.stroke_sf = _build_stroke_data() self.warm_start = warm_start self.max_iterations = 10 self.check_cross_model = _tc.drawing_classifier.create( self.check_cross_sf, self.target, feature=self.feature, max_iterations=self.max_iterations, warm_start=warm_start, ) self.stroke_model = _tc.drawing_classifier.create( self.stroke_sf, self.target, feature=self.feature, max_iterations=1, warm_start=warm_start, ) self.trains = [self.check_cross_sf, self.stroke_sf] self.models = [self.check_cross_model, self.stroke_model] def test_create_with_missing_value_bitmap(self): sf = self.check_cross_sf.append( _tc.SFrame( { self.feature: _tc.SArray([None], dtype=_tc.Image), self.target: ["check"], } ) ) try: _tc.drawing_classifier.create(sf, self.target) except _ToolkitError as e: self.assertTrue("dropna" in str(e)) def test_create_with_missing_value_in_label(self): sf = self.check_cross_sf sf = sf.remove_column(self.target) sf = sf.add_column(_tc.SArray([None] * len(sf), dtype=str), self.target) try: _tc.drawing_classifier.create(sf, self.target) except _ToolkitError as e: self.assertTrue("dropna" in str(e)) def test_create_with_missing_feature(self): for sf in self.trains: with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf, self.target, feature="wrong_feature") def test_create_with_missing_target(self): for sf in self.trains: with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf, "wrong_target") def test_create_with_empty_dataset(self): for sf in self.trains: with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf[:0], self.target, feature=self.feature) def test_create_with_missing_coordinates_in_stroke_input(self): drawing = [[{"x": 1.0, "y": 1.0}], [{"x": 0.0}, {"y": 0.0}]] sf = _tc.SFrame({self.feature: [drawing], self.target: ["missing_coordinates"]}) with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf, self.target) def test_create_with_wrongly_typed_coordinates_in_stroke_input(self): drawing = [[{"x": 1.0, "y": 0}], [{"x": "string_x?!", "y": 0.1}]] sf = _tc.SFrame({self.feature: [drawing], self.target: ["string_x_coordinate"]}) with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf, self.target) def test_create_with_None_coordinates_in_stroke_input(self): drawing = [[{"x": 1.0, "y": None}], [{"x": 1.1, "y": 0.1}]] sf = _tc.SFrame({self.feature: [drawing], self.target: ["none_y_coordinate"]}) with self.assertRaises(_ToolkitError): _tc.drawing_classifier.create(sf, self.target, feature=self.feature) def test_create_with_validation_set_None(self): for data in self.trains: _tc.drawing_classifier.create( data, self.target, feature=self.feature, validation_set=None, max_iterations=1, ) def test_create_with_verbose_False(self): for data in self.trains: args = [data, self.target] kwargs = { "feature": self.feature, "max_iterations": 1, } test_util.assert_longer_verbose_logs( _tc.drawing_classifier.create, args, kwargs ) def test_create_with_no_validation_set(self): for data in self.trains: _tc.drawing_classifier.create( data, self.target, feature=self.feature, max_iterations=1 ) def test_create_with_empty_drawing_in_stroke_input(self): drawing = [] sf = _tc.SFrame({self.feature: [drawing], self.target: ["empty_drawing"]}) # Should not error out, it should silently ignore the empty drawing _tc.drawing_classifier.create( sf, self.target, feature=self.feature, max_iterations=1 ) def test_create_with_empty_stroke_in_stroke_input(self): drawing = [[{"x": 1.0, "y": 0.0}], [], [{"x": 1.1, "y": 0.1}]] sf = _tc.SFrame({self.feature: [drawing], self.target: ["empty_drawing"]}) # Should not error out, it should silently ignore the empty stroke _tc.drawing_classifier.create( sf, self.target, feature=self.feature, max_iterations=1 ) def test_create_with_fixed_random_seed(self): for data in self.trains: model_1 = _tc.drawing_classifier.create( data, self.target, feature=self.feature, validation_set=None, max_iterations=3, random_seed=86, ) model_2 = _tc.drawing_classifier.create( data, self.target, feature=self.feature, validation_set=None, max_iterations=3, random_seed=86, ) pred_1 = model_1.predict(data) pred_2 = model_2.predict(data) for i in range(len(pred_1)): self.assertEqual(pred_1[i], pred_2[i]) def test_predict_with_sframe(self): for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] for output_type in ["class", "probability_vector"]: preds = model.predict(sf, output_type=output_type) if output_type == "class": assert preds.dtype == sf[self.target].dtype else: assert preds.dtype == _array assert len(preds) == len(sf) def test_predict_with_sarray(self): for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] for output_type in ["class", "probability_vector"]: preds = model.predict(sf[self.feature], output_type=output_type) if output_type == "class": assert preds.dtype == sf[self.target].dtype else: assert preds.dtype == _array assert len(preds) == len(sf) def test_predict_topk(self): k = 2 for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] for output_type in ["rank", "probability"]: preds = model.predict_topk(sf, k=k, output_type=output_type) assert "id" in preds.column_names() assert "class" in preds.column_names() if output_type == "rank": assert preds["rank"].dtype == int assert sorted(preds["rank"].unique()) == [0, 1] else: assert output_type == "probability" assert preds["probability"].dtype == float assert len(preds) == k * len(sf) def test_predict_output_type_probability_with_sframe(self): for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] if len(sf[self.target].unique()) > 2: with self.assertRaises(_ToolkitError): model.predict(sf, output_type="probability") else: preds = model.predict(sf, output_type="probability") assert preds.dtype == float def test_predict_output_type_probability_with_sarray(self): for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] if len(sf[self.target].unique()) > 2: with self.assertRaises(_ToolkitError): model.predict(sf[self.feature], output_type="probability") else: preds = model.predict(sf[self.feature], output_type="probability") assert preds.dtype == float def test_evaluate_without_ground_truth(self): for index in range(len(self.trains)): model = self.models[index] sf = self.trains[index] sf_without_ground_truth = sf.select_columns([self.feature]) with self.assertRaises(_ToolkitError): model.evaluate(sf_without_ground_truth) def test_evaluate_with_ground_truth(self): all_metrics = [ "accuracy", "auc", "precision", "recall", "f1_score", "log_loss", "confusion_matrix", "roc_curve", ] for index in range(len(self.models)): model = self.models[index] sf = self.trains[index] individual_run_results = dict() for metric in all_metrics: evaluation = model.evaluate(sf, metric=metric) assert metric in evaluation individual_run_results[metric] = evaluation[metric] evaluation = model.evaluate(sf, metric="auto") for metric in all_metrics: if metric in ["confusion_matrix", "roc_curve"]: test_util.SFrameComparer()._assert_sframe_equal( individual_run_results[metric], evaluation[metric] ) else: assert metric in evaluation assert individual_run_results[metric] == evaluation[metric] def test_evaluate_with_unsupported_metric(self): for index in range(len(self.trains)): model = self.models[index] sf = self.trains[index] with self.assertRaises(_ToolkitError): model.evaluate(sf, metric="unsupported") def test_save_and_load(self): for index in range(len(self.models)): old_model, data = self.models[index], self.trains[index] with test_util.TempDirectory() as filename: old_model.save(filename) new_model = _tc.load_model(filename) old_preds = old_model.predict(data) new_preds = new_model.predict(data) assert ( new_preds.dtype == old_preds.dtype and (new_preds == old_preds).all() ) def test_export_coreml(self): import coremltools import platform max_iters_ans = [str(self.max_iterations), "1"] warm_start_ans = "" if self.warm_start is None else self.warm_start for i, model in enumerate(self.models): filename = tempfile.NamedTemporaryFile(suffix=".mlmodel").name model.export_coreml(filename) # Load the model back from the CoreML model file coreml_model = coremltools.models.MLModel(filename) self.assertDictEqual( { "com.github.apple.turicreate.version": _tc.__version__, "com.github.apple.os.platform": platform.platform(), "target": self.target, "feature": self.feature, "type": "drawing_classifier", "warm_start": warm_start_ans, "max_iterations": max_iters_ans[i], "version": "2", }, dict(coreml_model.user_defined_metadata), ) expected_result = ( "Drawing classifier created by Turi Create (version %s)" % (_tc.__version__) ) self.assertEquals(expected_result, coreml_model.short_description) @unittest.skipIf(_sys.platform != "darwin", "Core ML only supported on Mac") def test_export_coreml_with_predict(self): for test_number in range(len(self.models)): feature = self.feature model = self.models[test_number] sf = self.trains[test_number] if self.warm_start: prefix = "pretrained" + str(test_number) else: prefix = "scratch" + str(test_number) filename = tempfile.NamedTemporaryFile( prefix=prefix, suffix=".mlmodel" ).name model.export_coreml(filename) mlmodel = _coremltools.models.MLModel(filename) tc_preds = model.predict(sf) if test_number == 1: # stroke input sf[feature] = _tc.drawing_classifier.util.draw_strokes(sf[self.feature]) for row_number in range(len(sf)): core_ml_preds = mlmodel.predict( {"drawing": sf[feature][row_number]._to_pil_image()} ) assert core_ml_preds[self.target] == tc_preds[row_number] if test_number == 1: sf = sf.remove_column(feature) def test_draw_strokes_sframe(self): sf = self.stroke_sf sf["rendered"] = _tc.drawing_classifier.util.draw_strokes(sf[self.feature]) for index in range(len(sf["rendered"])): rendered = sf["rendered"][index] assert ( type(rendered) == _tc.Image and rendered.channels == 1 and rendered.width == 28 and rendered.height == 28 ) def test_draw_strokes_single_input(self): sf = self.stroke_sf single_bitmap = _tc.drawing_classifier.util.draw_strokes(sf[self.feature][0]) assert ( type(single_bitmap) == _tc.Image and single_bitmap.channels == 1 and single_bitmap.width == 28 and single_bitmap.height == 28 ) def test_repr(self): for model in self.models: self.assertEqual(type(str(model)), str) self.assertEqual(type(model.__repr__()), str) def test_summary(self): for model in self.models: model.summary() def test_summary_str(self): for model in self.models: self.assertTrue(isinstance(model.summary("str"), str)) def test_summary_dict(self): for model in self.models: self.assertTrue(isinstance(model.summary("dict"), dict)) def test_summary_invalid_input(self): for model in self.models: with self.assertRaises(_ToolkitError): model.summary(model.summary("invalid")) with self.assertRaises(_ToolkitError): model.summary(model.summary(0)) with self.assertRaises(_ToolkitError): model.summary(model.summary({})) class DrawingClassifierFromScratchTest(DrawingClassifierTest): @classmethod def setUpClass(self): super(DrawingClassifierFromScratchTest, self).setUpClass(warm_start=None) class DrawingClassifierUsingQuickdraw245(DrawingClassifierTest): @classmethod def setUpClass(self): super(DrawingClassifierUsingQuickdraw245, self).setUpClass( warm_start="quickdraw_245_v0" )
StarcoderdataPython
5086605
<reponame>ska-sa/scape """Unit test suite for scape.""" import unittest # pylint: disable-msg=W0403 import test_stats import test_gaincal import test_scan import test_scape import test_xdmfits def suite(): loader = unittest.TestLoader() testsuite = unittest.TestSuite() testsuite.addTests(loader.loadTestsFromModule(test_stats)) testsuite.addTests(loader.loadTestsFromModule(test_gaincal)) testsuite.addTests(loader.loadTestsFromModule(test_scan)) testsuite.addTests(loader.loadTestsFromModule(test_scape)) testsuite.addTests(loader.loadTestsFromModule(test_xdmfits)) return testsuite if __name__ == '__main__': unittest.main(defaultTest='suite')
StarcoderdataPython
38929
<reponame>xswz8015/infra # Copyright 2021 The Chromium Authors. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. import subprocess import argparse import sys import os import re import json import codecs import platform # Used to run commands through powershell on windows and collect the responses # and log files that may be generated by the command run. This is meant for use # in situations where the commands either don't return the results to STDOUT, # instead writing to a log file, or if the commands do return results but do not # write the logs to STDOUT. This can also be used to run regular windows # executables as well, powershell will happily execute them for you. # ALLOWLIST filters the files that can be read to STDOUT ALLOWLIST = [ re.compile(y) for y in [ '^.*\.log$', # Log files ] ] # TODO(anushruth): Update list with all other possibilities. codec_map = { codecs.BOM_UTF16_LE: 'utf-16-le', codecs.BOM_UTF32: 'utf-32', codecs.BOM_UTF8: 'utf-8-sig' } def main(argv): """Runs the given powershell command and writes all the logs to stdout """ # Ensure we are running on windows. Until MS releases powershell for other # platforms if platform.system() != 'Windows': print(json.dumps(gen_result('Not run on Windows'))) return parser = argparse.ArgumentParser( description="""Runs a powershell command, waits for its completion and returns all the output logs to stdout as a json""", epilog="""Meant to be used by the powershell recipe module to run a command that generates multiple logs and stream the logs back to the recipe""") # command is the actual powershell command required to be run parser.add_argument( '--command', required=True, help='powershell command to execute') parser.add_argument( '--logs', required=False, nargs='*', help='log file or dir to watch and return stuff from') parser.add_argument( '--ret_codes', required=False, type=int, default=[0], nargs='*', help='return codes to treat as success') parser.add_argument( 'args', nargs='*', help='optionals args to the powershell command') iput = parser.parse_args(argv[1:]) logs = exec_ps( iput.command, iput.logs, args=iput.args, ret_codes=iput.ret_codes) print(json.dumps(logs)) def ensure_logs(logs): """ Checks if any log dir doesn't exist and creates it""" if not logs: return for log in logs: if not os.path.exists(log) and not is_allowed(log): # If the path doesn't exist and is not a file. Create the dir os.makedirs(log) def exec_ps(command, logs, args, ret_codes): """ Executes a power shell command and waits for it to complete. Returns all the logs on completion as a json to stdout. command: path to script/executable/batchfile, powershell command logs: list of log files and directories. args: optional args to the command ret_codes: optional success return codes Returns dict containing keys 'results' and every '<log-file>' in logs.""" ensure_logs(logs) # powershell command psc = ['powershell', '-Command', command] + args # l contains all the logs + return values l = {} # Attempt to execute the command try: output = subprocess.check_output(psc, stderr=subprocess.STDOUT) try: # Check if the output is a json file jout = json.loads(output) except Exception as j: # It's not known if the script completed successfully l = gen_result( 'No json object returned. Check stdout_stderr for ' + 'results. {}'.format(j), True) # not a json return script l['stdout_stderr'] = output else: # It's a json file l['results'] = jout except subprocess.CalledProcessError as e: # Non zero return by the script/cmd run l = gen_result(e.output, e.returncode in ret_codes) l['results']['Command'] = e.cmd l['results']['ReturnCode'] = e.returncode l['stdout_stderr'] = e.output except Exception as e: # Failed to run the command for some reason l = gen_result(str(e)) l['results']['Command'] = ' '.join(psc) finally: # Read all the logs to stdout if logs: for log in logs: if os.path.isdir(log): for k, v in read_logs([os.path.join(log, x) for x in os.listdir(log) ]).items(): l[k] = v else: op = read_logs(log, l) l[log] = op[log] return l def read_logs(logs): """ Reads all the given files to RAM and returns a dict of contents. logs: list of log files and directories. Returns dict containing keys for each log file and its contents as value. """ l = {} for log in logs: if not os.path.isdir(log) and is_allowed(log): f = open(log, 'r') contents = f.read() l[log] = contents # Some logs may be encoded differently. Check if they have the unicode # BOM at the start and decode them. ADKSetup is known to generate logs # with different encodings during the same run. for k, v in codec_map.items(): if len(contents) >= len(k) and k == contents[:len(k)]: # See codec_map for codec to decode string mapping l[log] = contents.decode(v) break f.close() return l def is_allowed(l): """ Implements ALLOWLIST l: log file to check Returns True if l matches anything in ALLOWLIST, false otherwise. """ for d in ALLOWLIST: if d.match(l) != None: return True return False def gen_result(err, success=False): """ gen_result returns the result dict with given params""" return {'results': {'Success': success, 'ErrorInfo': {'Message': err,}}} if __name__ == '__main__': main(sys.argv)
StarcoderdataPython
1806957
<gh_stars>1000+ import unittest class TestMixins(unittest.TestCase): def testLocal(self): from pulsar.utils.structures import AttributeDictionary from pulsar.utils.log import LocalMixin elem = LocalMixin() el = elem.local self.assertTrue(isinstance(el, AttributeDictionary)) self.assertEqual(id(elem.local), id(el)) self.assertEqual(elem.local.process, None) elem.local.process = True self.assertEqual(elem.local.process, True)
StarcoderdataPython
224727
<filename>secure_transfer/forms.py from django import forms from django.core.exceptions import ValidationError from .models import ProtectedItem class ProtectedWithPasswordForm(forms.Form): token = forms.CharField(widget=forms.HiddenInput) password = forms.CharField(widget=forms.PasswordInput) def clean(self): cleaned_data = super().clean() token = cleaned_data.get("token") password = cleaned_data.get("password") if token and password: self.item = ProtectedItem.objects.get(token=token) if not self.item or not self.item.check_password(password): raise ValidationError("password incorrect") if self.item.is_expired: raise ValidationError("link expired")
StarcoderdataPython
114697
<gh_stars>0 def fibonacci(n): if n == 0: return (0, 1) else: a, b = fibonacci(n // 2) c = a * (b * 2 - a) d = a * a + b * b if n % 2 == 0: return (c, d) else: return (d, c + d) x = 0 y = 0 num = 1 while len(str(x)) < 1000: x, y = fibonacci(num) num += 1 print(len(str(y)),len(str(x)),num)
StarcoderdataPython
8022689
from prometheus_client import make_wsgi_app, Gauge from wsgiref.simple_server import make_server from redis.sentinel import Sentinel import redis,sys,os APP_HOSTNAME = os.getenv('APP_HOSTNAME', '127.0.0.1') APP_PORT = os.getenv('APP_PORT', 9000) REDIS_HOSTNAME = os.getenv('REDIS_HOSTNAME', '127.0.0.1') REDIS_PORT = os.getenv('PORT', 6379) REDIS_PASS = os.getenv('REDIS_PASS', 'none') ENV = os.getenv('ENV', 'local') QLIST = os.getenv('QLIST').split(' ') SENTINEL_HOST = os.getenv('SENTINEL_HOST', 'none') SENTINEL_REDIS_NAME = os.getenv('SENTINEL_REDIS_NAME', 'none') SENTINEL_PORT = os.getenv('SENTINEL_PORT', 26379) SENTINEL_REDIS_PASSWORD = os.getenv('SENTINEL_REDIS_PASSWORD', 'none') if QLIST is None: sys.exit('Please set env: QLIST') g = Gauge('redis_queue_length', 'Length of queues', ['env','queue_name']) def get_metrics(): if SENTINEL_HOST == 'none': r = redis.Redis(host=REDIS_HOSTNAME, port=REDIS_PORT, password=REDIS_PASS) else: hosts = [SENTINEL_HOST] sentinel = Sentinel([(h, SENTINEL_port) for h in hosts], socket_timeout=0.1) r = sentinel.master_for(SENTINEL_REDIS_NAME, password=SENTINEL_REDIS_PASSWORD) try: r.ping() except redis.ConnectionError: print("Cannot make connection to redis") pass for q in QLIST: qlen = r.llen(q) g.labels(ENV,q).set(qlen) metrics_app = make_wsgi_app() def my_app(environ, start_fn): if environ['PATH_INFO'] == '/metrics': get_metrics() return metrics_app(environ, start_fn) httpd = make_server(APP_HOSTNAME, APP_PORT, my_app) httpd.serve_forever()
StarcoderdataPython
11220179
<filename>2021/day15.py from mylib.aoc_frame import Day import mylib.no_graph_lib as nog class PartA(Day): def compute(self, d): # return puzzle result, get parsing data from attributes of d return do(d, 1) class PartB(PartA): def compute(self, d): # return puzzle result, get parsing data from attributes of d return do(d, 5) def do(d, size_factor): levels = d.text.splitlines() size = len(levels) high = size * size_factor - 1 def next_edges(p, _): for neighbor in nog.matrix_neighbors(p, ((0, high), (0, high)), no_diagonals=True): x, y = neighbor level = int(levels[y % size][x % size]) + y // size + x // size while level > 9: level -= 9 yield neighbor, level traversal = nog.TraversalShortestPaths(next_edges) traversal.start_from((0, 0)).go_to((high, high)) return traversal.distance Day.do_day(day=15, year=2021, part_a=PartA, part_b=PartB)
StarcoderdataPython
5009798
import json import pytest from pathlib import Path from core import GeneratorFactory, Config, resize, make_transparent base_dir = Path().cwd() / 'example' background_path = base_dir / 'small_bg.jpg' sub_image_path = base_dir / 'wings.png' logo_first_part_path = base_dir / 'shikimori-glyph.png' logo_second_part_path = base_dir / 'shikimori-logo.png' header_font = base_dir / 'Noto_Serif' / 'NotoSerif-Bold.ttf' text_font = base_dir / 'Noto_Serif' / 'NotoSerif-Regular.ttf' subheader_font = base_dir / 'Noto_Serif_JP' / 'NotoSerifJP-Bold.otf' sub_image = resize(make_transparent(sub_image_path), 0.45) logo_first_part = resize(make_transparent(logo_first_part_path), 0.2) logo_second_part = resize(make_transparent(logo_second_part_path), 0.2) average_anime = [ { "score": 9.15, "name": "Fullmetal Alchemist: Brotherhood", "japanese_synonyms": "[\"\\u92fc\\u306e\\u932c\\u91d1\\u8853\\u5e2b FULLMETAL ALCHEMIST\"]" }, { "score": 9.09, "name": "Gintama°", "japanese_synonyms": "[\"\\u9280\\u9b42\\u00b0\"]" }, { "score": 9.09, "name": "Steins;Gate", "japanese_synonyms": "[\"STEINS;GATE\"]" }, { "score": 9.09, "name": "Shingeki no Kyojin Season 3 Part 2", "japanese_synonyms": "[\"\\u9032\\u6483\\u306e\\u5de8\\u4eba Season3 Part.2\"]" }, { "score": 9.06, "name": "Fruits Basket: The Final", "japanese_synonyms": "[\"\\u30d5\\u30eb\\u30fc\\u30c4\\u30d0\\u30b9\\u30b1\\u30c3\\u30c8 The Final\"]" }, { "score": 9.06, "name": "Hunter x Hunter (2011)", "japanese_synonyms": "[\"HUNTER\\u00d7HUNTER\\uff08\\u30cf\\u30f3\\u30bf\\u30fc\\u00d7\\u30cf\\u30f3\\u30bf\\u30fc\\uff09\"]" }, { "score": 9.06, "name": "Gintama'", "japanese_synonyms": "[\"\\u9280\\u9b42'\"]" }, { "score": 9.05, "name": "Gintama: The Final", "japanese_synonyms": "[\"\\u9280\\u9b42 THE FINAL\"]" }, { "score": 9.04, "name": "<NAME>", "japanese_synonyms": "[\"\\u9280\\u6cb3\\u82f1\\u96c4\\u4f1d\\u8aac\"]" }, { "score": 9.04, "name": "Gintama': Enchousen", "japanese_synonyms": "[\"\\u9280\\u9b42' \\u5ef6\\u9577\\u6226\"]" } ] shortest_anime = [ { "name": "F", "japanese_synonyms": "[\"\\uff26-\\u30a8\\u30d5\"]", "l": 1 }, { "name": "X", "japanese_synonyms": "[\"X\\u2212\\u30a8\\u30c3\\u30af\\u30b9\\u2212\"]", "l": 1 }, { "name": "K", "japanese_synonyms": "[\"K\"]", "l": 1 }, { "name": "◯", "japanese_synonyms": "[\"\\u25ef\"]", "l": 1 }, { "name": "C³", "japanese_synonyms": "[\"\\u30b7\\u30fc\\u30ad\\u30e5\\u30fc\\u30d6\"]", "l": 2 }, { "name": "Yu", "japanese_synonyms": "[\"\\u9b5a\"]", "l": 2 }, { "name": "TO", "japanese_synonyms": "[\"\\u30c8\\u30a5\\u30fc\"]", "l": 2 }, { "name": "Ai", "japanese_synonyms": "[\"\\u611b\"]", "l": 2 }, { "name": "We", "japanese_synonyms": "[\"We\"]", "l": 2 }, { "name": "OZ", "japanese_synonyms": "[\"\\u30aa\\u30ba\"]", "l": 2 } ] longest_anime = [ { "name": "Kochira Katsushikaku Kameari Kouenmae Hashutsujo: Seton Tankentai! Sumidagawa no Chikai - Omoide no Shiroi Kujira wo Sagase!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u30b7\\u30fc\\u30c8\\u30f3\\u63a2\\u691c\\u968a!\\u9685\\u7530\\u5ddd\\u306e\\u8a93\\u3044\\u301c\\u601d\\u3044\\u51fa\\u306e\\u767d\\u3044\\u9be8\\u3092\\u63a2\\u305b!\\u301c\"]", "l": 124 }, { "name": "<NAME>: Ryou-san to Chuuken Lucky Monogatari - Kameari Dai Houimou wo Kawase!!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u4e21\\u3055\\u3093\\u3068\\u5fe0\\u72ac\\u30e9\\u30c3\\u30ad\\u30fc\\u7269\\u8a9e \\u301c\\u4e80\\u6709\\u5927\\u5305\\u56f2\\u7db2\\u3092\\u304b\\u308f\\u305b!!\"]", "l": 120 }, { "name": "<NAME>ouenmae Hashutsujo: Ryoutsu no Asakusa Renewal Daisakusen!! - Aa, Omoide no Hanayashiki", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u4e21\\u6d25\\u306e\\u6d45\\u8349\\u30ea\\u30cb\\u30e5\\u30fc\\u30a2\\u30eb\\u5927\\u4f5c\\u6226!! \\u301c\\u3042\\u3041 \\u601d\\u3044\\u51fa\\u306e\\u82b1\\u3084\\u3057\\u304d\\u301c\"]", "l": 117 }, { "name": "<NAME>: Ryoutsu vs. Nakimushi Idol!? Nihon 1-shuu Dai Sugoroku Game!!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u4e21\\u6d25VS\\u6ce3\\u304d\\u866b\\u30a2\\u30a4\\u30c9\\u30eb!? \\u65e5\\u672c1\\u5468\\u5927\\u3059\\u3054\\u308d\\u304f\\u30b2\\u30fc\\u30e0!!\"]", "l": 111 }, { "name": "<NAME> <NAME>: Mezase! Kameari Superstar!! Ryoutsu-shiki Idol e no Michi!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u76ee\\u6307\\u305b!\\u4e80\\u6709\\u30b9\\u30fc\\u30d1\\u30fc\\u30b9\\u30bf\\u30fc!!\\u4e21\\u6d25\\u5f0f\\u30a2\\u30a4\\u30c9\\u30eb\\u3078\\u306e\\u9053!\"]", "l": 108 }, { "name": "Shin no Nakama ja Nai to Yuusha no Party wo Oidasareta node, Henkyou de Slow Life suru Koto ni Shimashita", "japanese_synonyms": "[\"\\u771f\\u306e\\u4ef2\\u9593\\u3058\\u3083\\u306a\\u3044\\u3068\\u52c7\\u8005\\u306e\\u30d1\\u30fc\\u30c6\\u30a3\\u30fc\\u3092\\u8ffd\\u3044\\u51fa\\u3055\\u308c\\u305f\\u306e\\u3067\\u3001\\u8fba\\u5883\\u3067\\u30b9\\u30ed\\u30fc\\u30e9\\u30a4\\u30d5\\u3059\\u308b\\u3053\\u3068\\u306b\\u3057\\u307e\\u3057\\u305f\"]", "l": 105 }, { "name": "<NAME>: Shijou Saikyou no Maou no Shiso, Tensei shite Shison-tachi no Gakkou e Kayou", "japanese_synonyms": "[\"\\u9b54\\u738b\\u5b66\\u9662\\u306e\\u4e0d\\u9069\\u5408\\u8005 \\uff5e\\u53f2\\u4e0a\\u6700\\u5f37\\u306e\\u9b54\\u738b\\u306e\\u59cb\\u7956\\u3001\\u8ee2\\u751f\\u3057\\u3066\\u5b50\\u5b6b\\u305f\\u3061\\u306e\\u5b66\\u6821\\u3078\\u901a\\u3046\\uff5e\"]", "l": 105 }, { "name": "<NAME>: Ryou-san no Sushi Kui Nee! - <NAME>uro Taiketsu!!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u4e21\\u3055\\u3093\\u306e\\u5bff\\u53f8\\u98df\\u3044\\u306d\\u3048!\\u301c\\u9802\\u4e0a\\u30de\\u30b0\\u30ed\\u5bfe\\u6c7a!!\\u301c\"]", "l": 104 }, { "name": "<NAME>: Washi to Ore!? - Bokura wa Asakusa Shounen Tanteidan!", "japanese_synonyms": "[\"\\u3053\\u3061\\u3089\\u845b\\u98fe\\u533a\\u4e80\\u6709\\u516c\\u5712\\u524d\\u6d3e\\u51fa\\u6240 \\u30ef\\u30b7\\u3068\\u4ffa!?\\u301c\\u307c\\u304f\\u3089\\u306f\\u6d45\\u8349\\u5c11\\u5e74\\u63a2\\u5075\\u56e3!\\u301c\"]", "l": 103 }, { "name": "<NAME> OVA 2: Hamuchanzu no Takara Sagashi Daisaku - Hamuha! Suteki na Umi no Natsuyasumi", "japanese_synonyms": "[\"\\u30cf\\u30e0\\u3061\\u3083\\u3093\\u305a\\u306e\\u5b9d\\u3055\\u304c\\u3057\\u5927\\u4f5c\\u6226\\u301c\\u306f\\u3080\\u306f\\u30fc!\\u3059\\u3066\\u304d\\u306a\\u6d77\\u306e\\u306a\\u3064\\u3084\\u3059\\u307f\\u301c\"]", "l": 99 } ] def get_average_anime(): for i in range(len(average_anime)): item = average_anime[i] japanese = json.loads(item['japanese_synonyms']) yield {'header': item['name'], 'subheader': japanese[0] or None, 'main_text': f'#{i + 1} anime in history'} def get_shortest_anime(): for i in range(len(shortest_anime)): item = shortest_anime[i] japanese = json.loads(item['japanese_synonyms']) yield {'header': item['name'], 'subheader': japanese[0] or None, 'main_text': f'#{i + 1} аниме с самым коротким названием'} def get_longest_anime(): for i in range(len(longest_anime)): item = longest_anime[i] japanese = json.loads(item['japanese_synonyms']) yield {'header': item['name'], 'subheader': japanese[0] or None, 'main_text': f'#{i + 1} аниме с самым длинным названием'} def test_full_case(image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='The best anime ever!', subheader='フルーツバスケット The Final', small_text='based on' ) def test_full_case_ru(image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='Лучшее аниме в истории!', subheader='フルーツバスケット The Final', small_text='по данным' ) @pytest.mark.parametrize('anime', get_average_anime()) def test_using_table(anime, image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header=anime['header'], main_text=anime['main_text'], subheader=anime['subheader'], small_text='по данным' ) @pytest.mark.parametrize('s_anime', get_shortest_anime()) def test_shortest_anime(s_anime, image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header=s_anime['header'], main_text=s_anime['main_text'], subheader=s_anime['subheader'] ) @pytest.mark.parametrize('l_anime', get_longest_anime()) def test_longest_anime(l_anime, image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header=l_anime['header'], main_text=l_anime['main_text'], subheader=l_anime['subheader'] ) def test_without_site(image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='Лучшее аниме в истории!', subheader='フルーツバスケット The Final', small_text='по данным' ) def test_without_small_text(image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='Лучшее аниме в истории!', subheader='フルーツバスケット The Final', ) def test_without_subheader(image_similarity): config = Config( background=background_path, sub_image=sub_image, logo_first_part=logo_first_part, logo_second_part=logo_second_part, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='Лучшее аниме в истории!', small_text='по данным' ) def test_without_logo(image_similarity): config = Config( background=background_path, sub_image=sub_image, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', subheader='フルーツバスケット The Final', main_text='Лучшее аниме в истории!', small_text='по данным' ) def test_without_logo_and_subimage(image_similarity): config = Config( background=background_path, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', subheader='フルーツバスケット The Final', main_text='Лучшее аниме в истории!', ) def test_minimal_setup(image_similarity): config = Config( background=background_path, header_font=header_font, text_font=text_font, small_text_font=text_font, subheader_font=subheader_font, main_font=text_font, site='anime-recommend.ru', ) banner_factory = GeneratorFactory.banner(config) fname = image_similarity['filename'] banner_factory.generate_file( fname, header='Fruits Basket: The Final', main_text='Лучшее аниме в истории!', )
StarcoderdataPython
8185148
<filename>safe_transaction_service/contracts/migrations/0002_auto_20210119_1136.py # Generated by Django 3.1.5 on 2021-01-19 11:36 from django.db import migrations, models import safe_transaction_service.contracts.models class Migration(migrations.Migration): dependencies = [ ("contracts", "0001_initial"), ] operations = [ migrations.AddField( model_name="contract", name="display_name", field=models.CharField(blank=True, default="", max_length=200), ), migrations.AddField( model_name="contract", name="logo", field=models.ImageField( default=None, null=True, upload_to=safe_transaction_service.contracts.models.get_contract_logo_path, ), ), ]
StarcoderdataPython
3232986
<filename>src/day13/day13-1.py<gh_stars>0 f = open('day13.txt', 'r') data = f.readlines() timestamp = int(data[0]) buses = list(data[1].strip().split(',')) while 'x' in buses: buses.remove('x') buses = list(map(int, buses)) print(timestamp) print(buses) reminders = list(map(lambda x: timestamp % x, buses)) print(reminders) next_pass = [] for i in range(len(buses)): next_pass.append(buses[i] - reminders[i]) print(next_pass) print(buses[next_pass.index(min(next_pass))] * min(next_pass))
StarcoderdataPython
1688042
import re regex_pattern = r'(?<=^)M{0,3}(C[MD]|D?C{0,3})(X[CL]|L?X{0,3})(I[VX]|V?I{0,3})(?=$)' # Do not delete 'r'. print(str(bool(re.match(regex_pattern, input()))))
StarcoderdataPython
3434904
<filename>seeds/utils/parsing.py<gh_stars>10-100 # -*- coding: utf-8 -*- """ Collection of functions that perform different types of parsing """ __author__ = "<NAME> <<EMAIL>>" __credits__ = "<NAME>" import re from seeds.SEEDSError import * def parse_int_rangelist(s, sorted=False): """Parse a list of numeric ranges. These lists are a comma-separated list of either single numbers or ranges, specified by number-number. Parameters: s A string containing a comma-separated list of integers and ranges of integers sorted Whether or not to sort the resulting list (default: False) """ range_pattern = "\s*(\-?\d+)\s*\-\s*(\-?\d+)\s*" retval = [] if s: tokens = s.split(",") for t in tokens: match = re.match(range_pattern, t) if match: start = int(match.group(1)) end = int(match.group(2)) for i in range(start, end+1): retval.append(i) else: try: x = int(t) retval.append(x) except ValueError: raise IntRangelistFormatError(s) if sorted: retval.sort() return retval def parse_version_string(s): """Parse a version string and return a 3-element dict with keys 'operator', 'major', and 'minor'. Input strings are of the form: <operator><major_version>.<minor_version> Where <operator> is one of: <, <=, =, >=, or >. Although not recommended, when the operator is omitted, = will be used. """ pattern = '^\s*(?P<operator>[<>=]+)?\s*(?P<major>\d+)\.(?P<minor>\d+)(\.(?P<patch>\d+))?\s*$' match = re.match(pattern, s) if match: retval = {} if match.group('operator') == None: retval['operator'] = '=' else: retval['operator'] = match.group('operator') retval['major'] = int(match.group('major')) retval['minor'] = int(match.group('minor')) if match.group('patch'): retval['patch'] = int(match.group('patch')) else: retval['patch'] = 0 retval['version'] = (int(match.group('major')), int(match.group('minor')), int(retval['patch'])) return retval else: raise VersionStringFormatError("'{s}' is not a valid version string".format(s=s))
StarcoderdataPython
1944767
<filename>neutron/tests/unit/agent/linux/test_tc_lib.py # Copyright 2016 OVH SAS # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. import mock from neutron_lib import constants from neutron_lib.exceptions import qos as qos_exc from neutron_lib.services.qos import constants as qos_consts from pyroute2.netlink import rtnl from neutron.agent.linux import tc_lib from neutron.common import utils from neutron.privileged.agent.linux import tc_lib as priv_tc_lib from neutron.tests import base DEVICE_NAME = "tap_device" KERNEL_HZ_VALUE = 1000 BW_LIMIT = 2000 # [kbps] BURST = 100 # [kbit] LATENCY = 50 # [ms] TC_FILTERS_OUTPUT = ( 'filter protocol all pref 49152 u32 \nfilter protocol all pref ' '49152 u32 fh 800: ht divisor 1 \nfilter protocol all pref 49152 u32 fh ' 'fc00:e968:6179::de52:7100 order 2048 key ht 800 \n match 00000000/00000000 at 0\n ' 'police 0x1e rate %(bw)skbit burst %(burst)skbit mtu 2Kb action \n' 'drop overhead 0b \n ref 1 bind 1' ) % {'bw': BW_LIMIT, 'burst': BURST} class BaseUnitConversionTest(object): def test_convert_to_kilobits_bare_value(self): value = "1000" expected_value = 8 # kbit self.assertEqual( expected_value, tc_lib.convert_to_kilobits(value, self.base_unit) ) def test_convert_to_kilobits_bytes_value(self): value = "1000b" expected_value = 8 # kbit self.assertEqual( expected_value, tc_lib.convert_to_kilobits(value, self.base_unit) ) def test_convert_to_kilobits_bits_value(self): value = "1000bit" expected_value = utils.bits_to_kilobits(1000, self.base_unit) self.assertEqual( expected_value, tc_lib.convert_to_kilobits(value, self.base_unit) ) def test_convert_to_kilobits_megabytes_value(self): value = "1m" expected_value = utils.bits_to_kilobits( self.base_unit ** 2 * 8, self.base_unit) self.assertEqual( expected_value, tc_lib.convert_to_kilobits(value, self.base_unit) ) def test_convert_to_kilobits_megabits_value(self): value = "1mbit" expected_value = utils.bits_to_kilobits( self.base_unit ** 2, self.base_unit) self.assertEqual( expected_value, tc_lib.convert_to_kilobits(value, self.base_unit) ) def test_convert_to_bytes_wrong_unit(self): value = "1Zbit" self.assertRaises( tc_lib.InvalidUnit, tc_lib.convert_to_kilobits, value, self.base_unit ) class TestSIUnitConversions(BaseUnitConversionTest, base.BaseTestCase): base_unit = constants.SI_BASE class TestIECUnitConversions(BaseUnitConversionTest, base.BaseTestCase): base_unit = constants.IEC_BASE class TestHandleFromHexToString(base.BaseTestCase): def test_run(self): test_cases = [(0x1, '0:1'), (0x2a003f, '2a:3f'), (0xf0000, 'f:0'), (0xffffffff, 'ffff:ffff'), (0x12345678, '1234:5678')] for _in, expected in test_cases: self.assertEqual(expected, tc_lib._handle_from_hex_to_string(_in)) class TestTcCommand(base.BaseTestCase): def setUp(self): super(TestTcCommand, self).setUp() self.tc = tc_lib.TcCommand(DEVICE_NAME, KERNEL_HZ_VALUE) self.mock_list_tc_qdiscs = mock.patch.object(tc_lib, 'list_tc_qdiscs').start() self.mock_add_tc_qdisc = mock.patch.object(tc_lib, 'add_tc_qdisc').start() self.mock_delete_tc_qdisc = mock.patch.object( tc_lib, 'delete_tc_qdisc').start() self.mock_list_tc_filters = mock.patch.object( tc_lib, 'list_tc_filters').start() self.mock_add_tc_filter_policy = mock.patch.object( tc_lib, 'add_tc_filter_policy').start() def test_check_kernel_hz_lower_then_zero(self): self.assertRaises( tc_lib.InvalidKernelHzValue, tc_lib.TcCommand, DEVICE_NAME, 0 ) self.assertRaises( tc_lib.InvalidKernelHzValue, tc_lib.TcCommand, DEVICE_NAME, -100 ) def test_get_filters_bw_limits(self): self.mock_list_tc_filters.return_value = [{'rate_kbps': BW_LIMIT, 'burst_kb': BURST}] bw_limit, burst_limit = self.tc.get_filters_bw_limits() self.assertEqual(BW_LIMIT, bw_limit) self.assertEqual(BURST, burst_limit) def test_get_filters_bw_limits_no_filters(self): self.mock_list_tc_filters.return_value = [] bw_limit, burst_limit = self.tc.get_filters_bw_limits() self.assertIsNone(bw_limit) self.assertIsNone(burst_limit) def test_get_filters_bw_limits_no_rate_info(self): self.mock_list_tc_filters.return_value = [{'other_values': 1}] bw_limit, burst_limit = self.tc.get_filters_bw_limits() self.assertIsNone(bw_limit) self.assertIsNone(burst_limit) def test_get_tbf_bw_limits(self): self.mock_list_tc_qdiscs.return_value = [ {'qdisc_type': 'tbf', 'max_kbps': BW_LIMIT, 'burst_kb': BURST}] self.assertEqual((BW_LIMIT, BURST), self.tc.get_tbf_bw_limits()) def test_get_tbf_bw_limits_when_wrong_qdisc(self): self.mock_list_tc_qdiscs.return_value = [{'qdisc_type': 'other_type'}] self.assertEqual((None, None), self.tc.get_tbf_bw_limits()) def test_set_tbf_bw_limit(self): self.tc.set_tbf_bw_limit(BW_LIMIT, BURST, LATENCY) self.mock_add_tc_qdisc.assert_called_once_with( DEVICE_NAME, 'tbf', parent='root', max_kbps=BW_LIMIT, burst_kb=BURST, latency_ms=LATENCY, kernel_hz=self.tc.kernel_hz, namespace=self.tc.namespace) def test_update_filters_bw_limit(self): self.tc.update_filters_bw_limit(BW_LIMIT, BURST) self.mock_add_tc_qdisc.assert_called_once_with( self.tc.name, 'ingress', namespace=self.tc.namespace) self.mock_delete_tc_qdisc.assert_called_once_with( self.tc.name, is_ingress=True, raise_interface_not_found=False, raise_qdisc_not_found=False, namespace=self.tc.namespace) self.mock_add_tc_filter_policy.assert_called_once_with( self.tc.name, tc_lib.INGRESS_QDISC_ID, BW_LIMIT, BURST, tc_lib.MAX_MTU_VALUE, 'drop', priority=49) def test_delete_filters_bw_limit(self): self.tc.delete_filters_bw_limit() self.mock_delete_tc_qdisc.assert_called_once_with( DEVICE_NAME, is_ingress=True, raise_interface_not_found=False, raise_qdisc_not_found=False, namespace=self.tc.namespace) def test_delete_tbf_bw_limit(self): self.tc.delete_tbf_bw_limit() self.mock_delete_tc_qdisc.assert_called_once_with( DEVICE_NAME, parent='root', raise_interface_not_found=False, raise_qdisc_not_found=False, namespace=self.tc.namespace) def test_get_ingress_qdisc_burst_value_burst_not_none(self): self.assertEqual( BURST, self.tc.get_ingress_qdisc_burst_value(BW_LIMIT, BURST) ) def test_get_ingress_qdisc_burst_no_burst_value_given(self): expected_burst = BW_LIMIT * qos_consts.DEFAULT_BURST_RATE self.assertEqual( expected_burst, self.tc.get_ingress_qdisc_burst_value(BW_LIMIT, None) ) def test_get_ingress_qdisc_burst_burst_value_zero(self): expected_burst = BW_LIMIT * qos_consts.DEFAULT_BURST_RATE self.assertEqual( expected_burst, self.tc.get_ingress_qdisc_burst_value(BW_LIMIT, 0) ) class TcTestCase(base.BaseTestCase): def setUp(self): super(TcTestCase, self).setUp() self.mock_add_tc_qdisc = mock.patch.object( priv_tc_lib, 'add_tc_qdisc').start() self.namespace = 'namespace' def test_add_tc_qdisc_htb(self): tc_lib.add_tc_qdisc('device', 'htb', parent='root', handle='1:', namespace=self.namespace) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', handle='1:0', namespace=self.namespace) self.mock_add_tc_qdisc.reset_mock() tc_lib.add_tc_qdisc('device', 'htb', parent='root', handle='2', namespace=self.namespace) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', handle='2:0', namespace=self.namespace) self.mock_add_tc_qdisc.reset_mock() tc_lib.add_tc_qdisc('device', 'htb', parent='root', handle='3:12', namespace=self.namespace) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', handle='3:0', namespace=self.namespace) self.mock_add_tc_qdisc.reset_mock() tc_lib.add_tc_qdisc('device', 'htb', parent='root', handle=4, namespace=self.namespace) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', handle='4:0', namespace=self.namespace) self.mock_add_tc_qdisc.reset_mock() tc_lib.add_tc_qdisc('device', 'htb', parent='root', namespace=self.namespace) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', namespace=self.namespace) self.mock_add_tc_qdisc.reset_mock() tc_lib.add_tc_qdisc('device', 'htb', parent='root', handle=5) self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='htb', handle='5:0', namespace=None) self.mock_add_tc_qdisc.reset_mock() def test_add_tc_qdisc_tbf(self): tc_lib.add_tc_qdisc('device', 'tbf', parent='root', max_kbps=10000, burst_kb=1500, latency_ms=70, kernel_hz=250, namespace=self.namespace) burst = tc_lib._get_tbf_burst_value(10000, 1500, 70) * 1024 / 8 self.mock_add_tc_qdisc.assert_called_once_with( 'device', parent=rtnl.TC_H_ROOT, kind='tbf', rate=10000 * 128, burst=burst, latency=70000, namespace=self.namespace) def test_add_tc_qdisc_tbf_missing_arguments(self): self.assertRaises( qos_exc.TcLibQdiscNeededArguments, tc_lib.add_tc_qdisc, 'device', 'tbf', parent='root') def test_add_tc_qdisc_wrong_qdisc_type(self): self.assertRaises(qos_exc.TcLibQdiscTypeError, tc_lib.add_tc_qdisc, mock.ANY, 'wrong_qdic_type_name') def test_list_tc_qdiscs_htb(self): qdisc = {'index': 2, 'handle': 327680, 'parent': 4294967295, 'attrs': (('TCA_KIND', 'htb'), )} with mock.patch.object(priv_tc_lib, 'list_tc_qdiscs') as \ mock_list_tc_qdiscs: mock_list_tc_qdiscs.return_value = tuple([qdisc]) qdiscs = tc_lib.list_tc_qdiscs('device', namespace=self.namespace) self.assertEqual(1, len(qdiscs)) self.assertEqual('root', qdiscs[0]['parent']) self.assertEqual('5:0', qdiscs[0]['handle']) self.assertEqual('htb', qdiscs[0]['qdisc_type']) @mock.patch('pyroute2.netlink.rtnl.tcmsg.common.tick_in_usec', 15.625) def test_list_tc_qdiscs_tbf(self): tca_tbf_params = {'buffer': 9375000, 'rate': 320000, 'limit': 208000} qdisc = {'index': 2, 'handle': 327681, 'parent': 4294967295, 'attrs': ( ('TCA_KIND', 'tbf'), ('TCA_OPTIONS', {'attrs': ( ('TCA_TBF_PARMS', tca_tbf_params), )})) } with mock.patch.object(priv_tc_lib, 'list_tc_qdiscs') as \ mock_list_tc_qdiscs: mock_list_tc_qdiscs.return_value = tuple([qdisc]) qdiscs = tc_lib.list_tc_qdiscs('device', namespace=self.namespace) self.assertEqual(1, len(qdiscs)) self.assertEqual('root', qdiscs[0]['parent']) self.assertEqual('5:1', qdiscs[0]['handle']) self.assertEqual('tbf', qdiscs[0]['qdisc_type']) self.assertEqual(2500, qdiscs[0]['max_kbps']) self.assertEqual(1500, qdiscs[0]['burst_kb']) self.assertEqual(50, qdiscs[0]['latency_ms']) def test__get_tbf_burst_value_when_burst_bigger_then_minimal(self): result = tc_lib._get_tbf_burst_value(BW_LIMIT, BURST, KERNEL_HZ_VALUE) self.assertEqual(BURST, result) def test__get_tbf_burst_value_when_burst_smaller_then_minimal(self): result = tc_lib._get_tbf_burst_value(BW_LIMIT, 0, KERNEL_HZ_VALUE) self.assertEqual(2, result) class TcPolicyClassTestCase(base.BaseTestCase): def setUp(self): super(TcPolicyClassTestCase, self).setUp() self.mock_add_tc_policy_class = mock.patch.object( priv_tc_lib, 'add_tc_policy_class').start() self.mock_list_tc_policy_classes = mock.patch.object( priv_tc_lib, 'list_tc_policy_classes').start() self.namespace = 'namespace' def test_add_tc_policy_class(self): tc_lib.add_tc_policy_class( 'device', 'root', '1:10', min_kbps=1000, max_kbps=2000, burst_kb=1600, namespace=self.namespace) self.mock_add_tc_policy_class.assert_called_once_with( 'device', rtnl.TC_H_ROOT, '1:10', 'htb', rate=1000 * 128, ceil=2000 * 128, burst=1600 * 128, namespace=self.namespace) @mock.patch('pyroute2.netlink.rtnl.tcmsg.common.tick_in_usec', 15.625) def test_list_tc_policy_classes(self): htb_params = {'buffer': 12500000, 'ceil': 256000, 'rate': 192000} self.mock_list_tc_policy_classes.return_value = tuple([ {'index': 3, 'handle': 65537, 'parent': 4294967295, 'attrs': ( ('TCA_KIND', 'htb'), ('TCA_OPTIONS', { 'attrs': tuple([('TCA_HTB_PARMS', htb_params)])})) }]) _class = tc_lib.list_tc_policy_class('device', namespace=self.namespace)[0] reference = {'device': 'device', 'index': 3, 'namespace': self.namespace, 'parent': 'root', 'classid': '1:1', 'qdisc_type': 'htb', 'min_kbps': 1500, 'max_kbps': 2000, 'burst_kb': 1200} self.assertEqual(reference, _class) class TcFilterTestCase(base.BaseTestCase): def test__mac_to_pyroute2_keys(self): mac = '01:23:45:67:89:ab' offset = 10 keys = tc_lib._mac_to_pyroute2_keys(mac, offset) high = {'value': 0x1234567, 'mask': 0xffffffff, 'offset': 10, 'key': '0x1234567/0xffffffff+10'} low = {'value': 0x89ab0000, 'mask': 0xffff0000, 'offset': 14, 'key': '<KEY>'} self.assertEqual(high, keys[0]) self.assertEqual(low, keys[1]) @mock.patch.object(priv_tc_lib, 'add_tc_filter_match32') def test_add_tc_filter_vxlan(self, mock_add_filter): tc_lib.add_tc_filter_vxlan('device', 'parent', 'classid', '12:34:56:78:90:ab', 52, namespace='ns') keys = ['0x3400/0xffffff00+32', '0x12345678/0xffffffff+42', '0x90ab0000/0xffff0000+46'] mock_add_filter.assert_called_once_with( 'device', 'parent', 1, 'classid', keys, namespace='ns')
StarcoderdataPython
12820335
<filename>scripts/clear_lists.py from database import * ''' С помощью этого скрипта вы можете очистить списки бота. После выполнения этой программы необходимо перезапустить бота, чтобы изменения вступили в силу. ''' if __name__ == '__main__': if database: delete_lists = [ "blacklisted", # чёрный список "whitelisted", # белый список "admin", # список администраторов ] for list_role in delete_lists: Role.delete().where(Role.role == list_role).execute()
StarcoderdataPython
3261523
<reponame>gojek/CureIAM<filename>CureIAM/models/__init__.py """A package for models as data store packaged with this project. """
StarcoderdataPython
5125532
<gh_stars>1-10 import os from setuptools import setup # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() setup( name = 'rakomon', version = '0.1.2', author = '<NAME>', author_email = '<EMAIL>', description = 'Dead simple, configurable monitoring service based on tornado and apscheduler.', license = 'MIT', keywords = 'simple stupid monitoring', url = 'https://github.com/khvn26/rakomon', packages=['rakomon'], install_requires=[ 'APscheduler', 'tornado' ], long_description=read('README.md'), classifiers=[ 'Development Status :: 3 - Alpha', 'Programming Language :: Python :: 3 :: Only', 'Topic :: System :: Monitoring', 'Topic :: Utilities', 'License :: OSI Approved :: MIT License', ], )
StarcoderdataPython
356001
<gh_stars>1-10 from telegram.ext import Updater, CommandHandler, MessageHandler, Filters, CallbackQueryHandler # Extended Telegram API import logging import telegram from telegram.chataction import ChatAction # pure Telegram API (send_message method) #REVIEW from telegram import InlineKeyboardButton, InlineKeyboardMarkup, ChatAction, InlineQueryResultArticle, InputTextMessageContent, ReplyKeyboardMarkup import requests #3rd party module import scrape import time import re # format = "%(asctime)s: %(message)s" # logging.basicConfig(format=format, level=logging.DEBUG, # datefmt="%H:%M:%S") class RespondToCommands(): """ Class to initialize the telegram dispacher and respond to the commands """ def __init__(self, botToken): self.botToken = botToken #update.message.text def unknown(self, update, context): print("Enter: Unknown") context.bot.send_message(chat_id=update.message.chat_id, text="Sorry, I cannot understand that command.") def start(self, update, context): print("Enter: Start") context.bot.send_message(chat_id=update.message.chat_id, text="Hey! \nWelcome to Amazon Price Tracker bot. \nStart with adding your product:\n /add <amazon URL> \n\nSet price alert for your product:\n /alert <price> \n\n Only one product can be tracked per user. ") def preprocessURL(self, productURL): """ Validate and clean the amazon.in URL """ # remove everything after ?ref= , /ref= or a ? and return a valid URL else False print("Enter: preProcessURL") amazonURL = re.match(r'^(https://|http://)(www.)*amazon.in/[a-zA-Z0-9-]*[/]*dp/[A-Z0-9]+[/?]?',productURL) if amazonURL: print(f"amazonURL:{amazonURL.group(0)}") print("preprocessURL: True") return True, amazonURL.group(0) else: print("preprocessURL: False") return False, "" def addProduct(self, update, context): print("Enter: addProduct") """ Add product to tracking for the user """ # TODO Add typing decoration context.bot.send_message(chat_id=update.message.chat_id, text="Adding product to tracking... Please wait") # addArgs arguments passed with /add command. Expected to be amazon url addArgs = ''.join(context.args) print(addArgs) headers = { # "User-Agent": 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/75.0.3770.142 Safari/537.36' } "User-Agent": 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/74.0.3729.169 Safari/537.36' } isValid, validURL = self.preprocessURL(addArgs) if isValid: response = requests.get(validURL, headers=headers, timeout=5) print(response.status_code) print(type(response.status_code)) print("Before: respone.status_code") if response.status_code == 200: # add product to tracking list addProduct = scrape.UpdateTrackingList(validURL, update.message.chat_id) if addProduct.addToTrackingList(): print("Bot: After if addToTrackingList") context.bot.send_message(chat_id=update.message.chat_id, text="Great! Product is successfully added. Now set price alerts:\n\n /alert <price> ") else: context.bot.send_message(chat_id=update.message.chat_id, text="Only one product per user allowed.") else: context.bot.send_message(chat_id=update.message.chat_id, text="Product URL unreachable. Try again later.") else: context.bot.send_message(chat_id=update.message.chat_id, text="Invalid arguments. Not a vaild Amazon.in URL.") def setAlertValue(self, update, context): """ Set price threshold for the user """ print("Enter: setAlertValue") #context.bot.send_chat_action(chat_id=update.message.chat_id, action=telegram.ChatAction.TYPING) updateAlert = scrape.ChangeAlert(update.message.chat_id, ''.join(context.args)) if updateAlert.priceTypeCheck(): if updateAlert.changeAlert(): print("Bot: After if chageAlert") context.bot.send_message(chat_id=update.message.chat_id, text="Price updated to {}".format(''.join(context.args))) else: context.bot.send_message(chat_id=update.message.chat_id, text="You must add a product first.") else: context.bot.send_message(chat_id=update.message.chat_id, text="Invalid price. Ex:\n /alert 8000") def caps(self, update, context): """ Reply with CAPS of args. Just for debugging """ # text_caps = ' '.join(context.args) # print(text_caps) # print(len(text_caps)) # context.bot.send_message(chat_id=update.message.chat_id, text=text_caps) def initializeBot(self): """ Initialize the bot """ # creating updater and dispatcher updater = Updater(token=self.botToken, use_context=True) dispatcher = updater.dispatcher # create "start" command handler start_handler = CommandHandler('start', self.start) dispatcher.add_handler(start_handler) # create "add" command handler addHandler = CommandHandler('add', self.addProduct) dispatcher.add_handler(addHandler) # create "alert" command handler alertHandler = CommandHandler('alert', self.setAlertValue) dispatcher.add_handler(alertHandler) # create "caps" command handler caps_handler = CommandHandler('caps', self.caps) dispatcher.add_handler(caps_handler) # *** unknown handler MUST be added at LAST *** # create "unknown" command handler unknown_handler = MessageHandler(Filters.text, self.unknown) dispatcher.add_handler(unknown_handler) # Start the webhook # Change amazon-price-tracker-bot with your own heroku app name # Uncomment the below code to make it work with heroku. # also use uptimerobot service to keep the container alive # *********************************** # import os # PORT = os.environ.get('PORT') # updater.start_webhook(listen="0.0.0.0", port=int(PORT), url_path=self.botToken) # updater.bot.setWebhook("https://{}.herokuapp.com/{}".format("amazon-price-tracker-bot", self.botToken)) # watch the requests print("Starting: Updater Pool") updater.start_polling() class TelegramNotification(): """ Class to send telegram notification """ def __init__(self, botToken, chatId): print("Enter: TelegramNotification class") self.botToken = botToken self.chatId = chatId def sendNotification(self, productTitle, productPrice): print("Enter: Notification to Telegram") bot = telegram.Bot(token=self.botToken) bot.send_message(chat_id=self.chatId, text="PRICE REDUCED"+" \n"+productTitle.strip()+" \n"+productPrice.strip()+" \n \n")
StarcoderdataPython
8101111
<gh_stars>1-10 #!/usr/bin/env python3 #============================================================ # IMSNG Pipeline # => Processing # Data Monitoring => Processing => Transient Search #============================================================ #%% # Library #------------------------------------------------------------ import os import glob import numpy as np import warnings warnings.filterwarnings(action='ignore') import time st = time.time() start_localtime = time.strftime('%Y-%m-%d %H:%M:%S (%Z)', time.localtime()) import sys sys.path.append('/home/paek/imsngpy') # IMSNGpy modules from tableutil import getccdinfo from preprocess import * from misc import * from phot import * from util import * # # Astropy from astropy.io import ascii from astropy.io import fits from astropy.table import Table from astropy import units as u from astropy.coordinates import SkyCoord from ccdproc import ImageFileCollection from astropy.time import Time from astropy.nddata import CCDData # Multiprocess tools from itertools import repeat import multiprocessing #------------------------------------------------------------ # My library # from tableutil import * #============================================================ # USER SETTING #============================================================ # Input #------------------------------------------------------------ """ # [0] Folder to process try: path_raw = sys.argv[1] except: path_raw = input('''# Data folder to process : ''') # [1] Observatory_ccd try: obs = (sys.argv[2]).upper() except: obs = input('''# Observatory(_ccd) to run -------------------- LOAO DOAO SOAO CBNUO KCT_ASI1600MM KCT_STX16803 KHAO RASA36 LSGT --------------------- :''').upper() print('# Observatory : {}'.format(obs.upper())) # [3] The number of cores try: ncore = int(sys.argv[3]) except: ncore = 8 """ # Test setting # path_raw = '/data6/obsdata/LOAO/1994_1026' # path_raw = '/data6/obsdata/LOAO/1994_1003' # path_raw = '/data6/obsdata/LOAO/1969_0119' # path_raw = '/data6/obsdata/LOAO/test' # path_raw = '/data6/obsdata/LOAO/test_fast' path_raw = '/data6/obsdata/LOAO/2021_1227' obs = 'LOAO' fast_mode4mframe = True ncore = 4 #------------------------------------------------------------ # PATH #------------------------------------------------------------ path_factory = '/data3/paek/factory' path_gal = '/data6/IMSNG/IMSNGgalaxies' # path_config = '/home/paek/config' path_config = '/home/paek/imsngpy/config' path_log = '/home/paek/log' path_bkg = '/data6/bkgdata' path_table = '/home/paek/imsngpy/table' path_gppy = '/home/paek/imsngpy' #------------------------------------------------------------ path_mframe = f'{path_factory}/master_frames' path_ref = f'{path_factory}/ref_frames/{obs.upper()}' path_obs = f'{path_factory}/{obs.lower()}' path_default_gphot = f'{path_config}/gphot.{obs.lower()}.config' #------------------------------------------------------------ path_save = f'{path_bkg}/{obs.upper()}' #------------------------------------------------------------ ccddat = f'{path_table}/obs.dat' #------------------------------------------------------------ # Codes path_phot = f'{path_gppy}/imsngpy/gpphot.py' path_find = f'{path_gppy}/imsngpy/gpsearch.py' #------------------------------------------------------------ # Table logtbl = ascii.read(f'{path_log}/{obs.lower()}.log') hdrtbl = ascii.read(f'{path_table}/changehdr.dat') alltbl = ascii.read(f'{path_table}/alltarget.dat') frgtbl = ascii.read(f'{path_table}/fringe.dat') # ccdtbl = ascii.read(f'{path_table}/ccd.dat') ccdtbl = ascii.read(f'{path_table}/ccd.tsv') #------------------------------------------------------------ path_data = f'{path_obs}/{os.path.basename(path_raw)}' print(f"""{'-'*60}\n#\tCOPY DATA\n{'-'*60}""") # Remove former data if os.path.exists(path_data): rmcom = f'rm -rf {path_data}' print(rmcom) os.system(rmcom) # Copy to factory director cpcom = f'cp -r {path_raw} {path_data}' print(cpcom) os.system(cpcom) #%% # Identify CCD ic0 = ImageFileCollection(path_data, keywords='*') ''' print(f"""{'-'*60}\n#\tIDENTIFY CCD\n{'-'*60}""") ic0 = ImageFileCollection(path_data, keywords='*') for key, val, suf, ccd in zip((ccdtbl['key'][ccdtbl['obs']==obs]), (ccdtbl['value'][ccdtbl['obs']==obs]), (ccdtbl['suffix'][ccdtbl['obs']==obs]), (ccdtbl['ccd'][ccdtbl['obs']==obs])): if (key.lower() in ic0.keywords) & (val == ic0.summary[key.lower()][0]): ccdkey = key ccdval = val ccdtype = ccd if suf.mask == True: # No suffix suffix = '' obsccd = f'{obs}' else: suffix = suf obsccd = f'{obs}_{suffix}' print(f'OBSERVAT : {obs}\nCCD KEYWORD : {key}\nCCD HEADER VALUE : {val}\nCCD NAME : {ccdtype}\nSUFFIX : {suffix}\n==> OBS_CCD : {obsccd}') ''' ccdkey, ccdval, ccdtype, obsccd = identify_ccdinfo(ic0, obs, ccdtbl) # CCD INFO indx_ccd = np.where( (ccdtbl['obs']==obs) & (ccdtbl['key']==ccdkey) & (ccdtbl['value']==ccdval) ) print(f"""{'-'*60}\n#\tCCD INFO\n{'-'*60}""") gain = ccdtbl['gain'][indx_ccd][0]*(u.electron/u.adu) rdnoise = ccdtbl['readnoise'][indx_ccd][0]*(u.electron) pixscale = ccdtbl['pixelscale'][indx_ccd][0]*(u.arcsec/u.pixel) fov = ccdtbl['foveff'][indx_ccd][0]*(u.arcmin) print(f"""GAIN : {gain}\nREAD NOISE : {rdnoise}\nPIXEL SCALE : {pixscale}\nEffective FoV : {fov}""") #------------------------------------------------------------ #%% # Header correction #------------------------------------------------------------ comment = f"""{'='*60}\n#\tHEADER CORRECTION\n{'='*60}""" print(comment) for i, inim in enumerate(ic0.summary['file']): image = f'{path_data}/{inim}' # CCD Type ''' if i == 0: for key in set(ccdtbl['key']): if key.lower() in ic0.summary.keys(): ccdtype = ccdtbl[ (ccdtbl['value'] == ic0.summary[key.lower()][i]) & (ccdtbl['obs'] == obs) ]['ccd'].item() else: ccdtype = 'UNKNOWN' fits.setval(image, 'CCDNAME', value=ccdtype) fits.setval(image, 'OBSERVAT', value=obs)''' fits.setval(image, 'PATHPRC', value=path_data, comment='Path where data is processed') fits.setval(image, 'CCDNAME', value=ccdtype) fits.setval(image, 'OBSERVAT', value=obs) fits.setval(image, 'OBSCCD', value=obsccd) # Correction with table for key, val, nval in zip(hdrtbl['key'], hdrtbl['val'], hdrtbl['newval']): if ic0.summary[key.lower()][i] == val: print(f'{inim} - {key} : {val} --> {nval}') fits.setval(image, key, value=nval) # DATE-OBS, JD, MJD if 'T' not in ic0.summary['date-obs'][i]: dateobs = f"{ic0.summary['date-obs']}'T'{ic0.summary['time-obs']}" fits.setval(image, 'date-obs', value=dateobs) del dateobs else: pass t = Time(ic0.summary['date-obs'][i], format='isot') fits.setval(image, 'JD', value=t.jd) fits.setval(image, 'MJD', value=t.mjd) del t # OBJECT name if 'ngc' in ic0.summary['object'][i]: objectname = ic0.summary['object'][i] while len(objectname)<7: head = objectname[0:3] tail = objectname[3:] tail = f'0{tail}' objectname = f'{head}{tail}' fits.setval(image, 'OBJECT', value=objectname.upper()) del objectname del head del tail print() ic1 = ImageFileCollection(path_data, keywords='*') t_med = np.median(ic1.filter(imagetyp='object').summary['jd']) # [JD] #------------------------------------------------------------ #%% # Object Master Table # # Write the status of processing # Pointing the original filename and updated filename # Each dtype is set to 'strtype' variable #------------------------------------------------------------ strtype = 'U300' omtbl = Table() objtypelist = [] for obj in ic1.filter(imagetyp='object').summary['object']: if obj in alltbl['obj']: objtypelist.append('IMSNG') elif 'GRB' in obj: objtypelist.append('GRB') elif ('GECKO' in obj) | ('GCK' in obj): objtypelist.append('GECKO') else: objtypelist.append('NON-IMSNG') omtbl['objtype'] = objtypelist omtbl['raw'] = [inim for inim in ic1.filter(imagetyp='object').files] omtbl['now'] = omtbl['raw'] omtbl['preprocess'] = '' omtbl['defringe'] = '' omtbl['cosmic_ray_removal'] = '' omtbl['astrometry'] = '' omtbl['final'] = [f'{path_data}/{fnamechange(inim)}' for inim in ic1.filter(imagetyp='object').files] for key in omtbl.keys(): omtbl[key] = omtbl[key].astype(strtype) #============================================================ #%% # Pre-processing #------------------------------------------------------------ print(f"""{'='*60}\n#\tPREPARE FOR PRE-PROCESS\n{'='*60}""") mframe = dict() #------------------------------------------------------------ # BIAS #------------------------------------------------------------ print(f"""{'-'*60}\n#\tBIAS\n{'-'*60}""") if 'bias' in ic1.summary['imagetyp']: biaslist = ic1.filter(imagetyp='bias').files print(f"""{len(biaslist)} bias frames --> master bias""") biasdata, biasim = master_bias(biaslist) mframe['bias'] = biasdata del biasdata path_bias = f'{path_mframe}/{obs}/zero' cpcom = f"cp {biasim} {path_bias}" print(cpcom) # os.system(cpcom) else: print('No bias frame. Borrow from previous data.') mftype = 'zero' biasim = get_nearest_bias( mftype=mftype, t_med=t_med, ccdkey=ccdkey, ccdval=ccdval, keyword=f'{path_mframe}/{obs}/{mftype}/????????-{mftype}.fits', keywords=[ccdkey.lower(), 'jd'], fast_mode4mframe=True, ) print(f'Borrow {os.path.basename(biasim)}') mframe['bias'] = CCDData(fits.getdata(biasim), unit="adu", meta=fits.getheader(biasim)) ''' mftype = 'zero' if fast_mode4mframe == True: biaslist = np.array( [os.path.basename(inim) for inim in sorted(glob.glob(f'{path_mframe}/{obs}/{mftype}/????????-{mftype}.fits'))] ) deltarr = np.array( [np.abs(date2jd(inim.split('-')[0]).jd-t_med) for inim in biaslist] ) indx_bias = np.where(deltarr == np.min(deltarr)) biasim = f"{path_mframe}/{obs}/{mftype}/{biaslist[indx_bias].item()}" else: ic_bias = ImageFileCollection( location=f'{path_mframe}/{obs}/{mftype}', keywords=[ ccdkey.lower(), # 'date-obs', # 'imagetyp', 'jd', # 'mjd', ] ) ic_bias_avail = ic_bias.summary[ (ic_bias.summary['jd'].mask == False) & (ic_bias.summary[ccdkey.lower()]==ccdval) ] biaslist = ic_bias_avail['file'] deltarr = np.array(np.abs(ic_bias_avail['jd']-t_med)) indx_bias = np.where(deltarr == np.min(deltarr)) biasim = f"{path_mframe}/{obs}/{mftype}/{biaslist[indx_bias].item()}" del ic_bias_avail # Delete variables del mftype del deltarr del indx_bias del biasim''' #------------------------------------------------------------ #%% # DARK #------------------------------------------------------------ print(f"""{'-'*60}\n#\tDARK\n{'-'*60}""") darkframe = dict() if 'dark' in ic1.summary['imagetyp']: darkexptime = np.array(list(set(ic1.filter(imagetyp='dark').summary['exptime']))) for exptime in darkexptime: darkdata, darkim = master_dark(ic1.filter(imagetyp='dark', exptime=exptime).files, mbias=mframe['bias']) # darkframe[f'{int(exptime)}'] = master_dark(ic1.filter(imagetyp='dark', exptime=exptime).files, mbias=mframe['bias']) darkframe[f'{int(exptime)}'] = darkdata del darkdata path_dark = f'{path_mframe}/{obs}/dark' cpcom = f"cp {darkim} {path_dark}" print(cpcom) # os.system(cpcom) else: print('No dark frame. Borrow from previous data.') mftype = 'dark' darkexptime = [] for exptime in set(ic1.filter(imagetyp='object').summary['exptime']): mftype = 'dark' darkim, nexptime = get_nearest_dark( t_med=t_med, keyword=f'{path_mframe}/{obs}/{mftype}/*-????????-{mftype}.fits', exptime=exptime, ccdkey=ccdkey, ccdval=ccdval, keywords=[ccdkey.lower(), 'jd', 'exptime'], fast_mode4mframe=True, ) print(f'Borrow {os.path.basename(darkim)}') # darkframe[f'{int(nexptime)}'] = CCDData(fits.getdata(darkim), unit="adu", meta=fits.getheader(darkim)) if str(nexptime) not in darkframe.keys(): darkframe[f'{int(nexptime)}'] = CCDData(fits.getdata(darkim), unit="adu", meta=fits.getheader(darkim)) darkexptime.append(int(nexptime)) else: print(f'No available dark frame') pass darkexptime = np.array(darkexptime) mframe['dark'] = darkframe del darkframe #------------------------------------------------------------ #%% # FLAT #------------------------------------------------------------ print(f"""{'-'*60}\n#\tFLAT\n{'-'*60}""") flatframe = dict() # Filter list if 'object' in ic1.summary['imagetyp']: objfilterlist = list(ic1.filter(imagetyp='object').summary['filter']) print(f'OBJECT FILTERS : {list(set(objfilterlist))}') else: objfilterlist = [] if 'flat' in ic1.summary['imagetyp']: flatfilterlist = list(ic1.filter(imagetyp='flat').summary['filter']) print(f'FLAT FILTERS : {list(set(flatfilterlist))}') else: flatfilterlist = [] filterlist = set(objfilterlist+flatfilterlist) print(f'==> ALL FILTERS : {list(set(filterlist))}') if 'flat' in ic1.summary['imagetyp']: # Dark exptime should be corrected! indx_mindark = np.where(darkexptime == np.min(darkexptime)) mdark = mframe['dark'][str(int(darkexptime[indx_mindark].item()))] for filte in filterlist: # print(filte) flatdata, flatim = master_flat(ic1.filter(imagetyp='flat', filter=filte).files, mbias=mframe['bias'], mdark=mdark, filte=filte) # flatframe[filte] = master_flat(ic1.filter(imagetyp='flat', filter=filte).files, mbias=mframe['bias'], mdark=mdark, filte=filte) flatframe[filte] = flatdata path_flat = f'{path_mframe}/{obs}/flat' cpcom = f"cp {flatim} {path_flat}" print(cpcom) # os.system(cpcom) del flatdata del mdark else: print('No Flat frame. Borrow from previous data.') mftype = 'flat' for filte in set(ic1.filter(imagetyp='object').summary['filter']): flatim = get_nearest_flat( t_med, keyword=f'{path_mframe}/{obs}/{mftype}/????????-n{filte}.fits', filte=filte, ccdkey=ccdkey, ccdval=ccdval, keywords=[ccdkey.lower(), 'imagetyp', 'jd', 'filter',], fast_mode4mframe=True, ) print(f'Borrow {os.path.basename(flatim)}') flatframe[filte] = CCDData(fits.getdata(flatim), unit="adu", meta=fits.getheader(flatim)) mframe['flat'] = flatframe del flatframe #------------------------------------------------------------ #%% # OBJECT Correction #------------------------------------------------------------ print(f"""{'-'*60}\n#\tOBJECT CORRECTION ({len(ic1.filter(imagetyp='object').files)})\n{'-'*60}""") # Function for multi-process def obj_process4mp(inim, newim, filte, exptime, darkexptime, rdnoise, mframe,): ''' Routine for multiprocess ''' # Find the closest exposuretime betw dark and object indx_closet = np.where( np.abs(exptime-darkexptime) == np.min(np.abs(exptime-darkexptime)) ) bestdarkexptime = darkexptime[indx_closet].item() print(f"{os.path.basename(inim)} {exptime} sec in {filte}-band <-- (scaled) DARK {int(darkexptime[indx_closet].item())} sec") # Process nccd = obj_process( inim=inim, # gain=ccdinfo['gain'], gain=None, readnoise=rdnoise, mbias=mframe['bias'], mdark=mframe['dark'][str(int(bestdarkexptime))], mflat=mframe['flat'][filte], ) # nccd.write(f'{os.path.dirname(inim)}/fdz{os.path.basename(inim)}', overwrite=True) nccd.write(newim, overwrite=True) # Run with multi-process fdzimlist = add_prefix(ic1.filter(imagetyp='object').files, 'fdz') if __name__ == '__main__': # Fixed the number of cores (=4) with multiprocessing.Pool(processes=4) as pool: results = pool.starmap( obj_process4mp, zip( ic1.filter(imagetyp='object').files, fdzimlist, ic1.filter(imagetyp='object').summary['filter'], ic1.filter(imagetyp='object').summary['exptime'], repeat(darkexptime), repeat(rdnoise), repeat(mframe), ) ) # Image collection for pre-processed image fdzic = ImageFileCollection(f'{path_data}', glob_include='fdzobj*', keywords='*') omtbl['preprocess'] = fdzimlist omtbl['now'] = fdzimlist del fdzimlist for key in omtbl.keys(): omtbl[key] = omtbl[key].astype(strtype) #------------------------------------------------------------ #%% # Defringe #------------------------------------------------------------ print(f"""{'-'*60}\n#\tFRINGE CORRECTION\n{'-'*60}""") # for filte in set(frgtbl[(frgtbl['ccd'] == ccdtype) & (frgtbl['obs'] == obs)]['filter']): for filte in set(fdzic.summary['filter']): frgtbl_ = frgtbl[ (frgtbl['filter']==filte) & (frgtbl['ccd'] == ccdtype) & (frgtbl['obs'] == obs) ] if len(frgtbl_) > 0: if __name__ == '__main__': with multiprocessing.Pool(processes=ncore) as pool: results = pool.starmap( defringe, zip( fdzic.filter(filter=filte).files, repeat(frgtbl_['image'][0]), add_prefix(fdzic.filter(filter=filte).files, 'df'), repeat(frgtbl_['table'][0]), repeat(10) ) ) for i, inim in enumerate(fdzic.filter(filter=filte).files): indx_tmp = np.where(omtbl['now'] == inim) omtbl['now'][indx_tmp] = results[i] omtbl['defringe'][indx_tmp] = results[i] del indx_tmp for key in omtbl.keys(): omtbl[key] = omtbl[key].astype(strtype) else: print(f'{filte} : N/A') #------------------------------------------------------------ #%% # FIX (TMP) #------------------------------------------------------------ #------------------------------------------------------------ # COSMIC-RAY REMOVAL #------------------------------------------------------------ # Seeing measurement w/ simple SE prefix = 'simple' path_conf = f'{path_config}/{prefix}.sex' path_param = f'{path_config}/{prefix}.param' path_nnw = f'{path_config}/{prefix}.nnw' path_conv = f'{path_config}/{prefix}.conv' # Single ''' inim = omtbl['now'][0] seeing, peeing = get_seeing( inim, gain, pixscale, fov, path_conf, path_param, path_conv, path_nnw, seeing_assume=3*u.arcsec, frac=0.68, n_min_src=5 ) ''' if __name__ == '__main__': # Seeing measurement print(f"""{'-'*60}\n#\tSEEING MEASUREMENT\n{'-'*60}""") with multiprocessing.Pool(processes=ncore) as pool: results = pool.starmap( get_seeing, zip( omtbl['now'], repeat(gain), repeat(pixscale), repeat(fov), repeat(path_conf), repeat(path_param), repeat(path_conv), repeat(path_nnw), repeat(3*u.arcsec), repeat(0.68), repeat(5), ) ) print('DONE') # Cosmic-ray removal print(f"""{'-'*60}\n#\tCOSMIC-RAY REMOVAL\n{'-'*60}""") cleantype = 'medmask' if __name__ == '__main__': with multiprocessing.Pool(processes=ncore) as pool: results = pool.starmap( cosmic_ray_removal, zip( omtbl['now'], add_prefix(omtbl['now'], 'cr'), add_suffix(omtbl['final'], 'mask'), repeat(gain), repeat(rdnoise), [r[0] for r in results], repeat(cleantype) ) ) for i, inim in enumerate(omtbl['now']): tmpim = add_prefix(omtbl['now'], 'cr')[i] indx_tmp = np.where(omtbl['now'] == inim) omtbl['now'][indx_tmp] = tmpim omtbl['cosmic_ray_removal'][indx_tmp] = tmpim del tmpim del indx_tmp for key in omtbl.keys(): omtbl[key] = omtbl[key].astype(strtype) #------------------------------------------------------------ #%% # ASTROMETRY #------------------------------------------------------------ print(f"""{'-'*60}\n#\tASTROMETRY\n{'-'*60}""") # Classification IMSNG and non-IMSNG target frac = 0.10 # Pixel scale inverval ratio tralist, tdeclist = [], [] for i, inim in enumerate(omtbl['now']): if fits.getheader(inim)['OBJECT'] in alltbl['obj']: indx_obj = np.where(fits.getheader(inim)['OBJECT']==alltbl['obj']) # tra, tdec = alltbl['ra'][indx_obj].item(), alltbl['dec'][indx_obj].item() tra, tdec = alltbl['ra'][indx_obj][0], alltbl['dec'][indx_obj][0] else: tra, tdec = None, None tralist.append(tra) tdeclist.append(tdec) # Multi-processing if __name__ == '__main__': with multiprocessing.Pool(processes=ncore) as pool: results = pool.starmap( astrometry, zip( omtbl['now'], add_prefix(omtbl['now'], 'a'), repeat(pixscale), repeat(frac), tralist, tdeclist, repeat(fov), repeat(30) ) ) # Check astrometry results print(f"""{'-'*60}\n#\tCHECK ASTROMETRY RESULTS\n{'-'*60}""") c_all = SkyCoord(alltbl['ra'], alltbl['dec'], unit=(u.hourangle, u.deg)) for i, inim in enumerate(add_prefix(omtbl['now'], 'a')): hdr = fits.getheader(inim) if os.path.exists(inim): print(f'[{i}] {os.path.basename(inim)} : Astrometry Success') c = SkyCoord(hdr['CRVAL1'], hdr['CRVAL2'], unit=u.deg) indx_tmp, sep, _ = c.match_to_catalog_sky(c_all) ra_offset, dec_offset = c.spherical_offsets_to(c_all) # Put pointing offset info. fits.setval(inim, keyword='CNTSEP', value=round(sep[0].arcmin, 3), comment='Offset between pointing and galaxy position [arcmin]') fits.setval(inim, keyword='CNTRAOFF', value=round(ra_offset.arcmin[indx_tmp], 3), comment='RA offset between pointing and galaxy position [arcmin]') fits.setval(inim, keyword='CNTDEOFF', value=round(dec_offset.arcmin[indx_tmp], 3), comment='Dec offset between pointing and galaxy position [arcmin]') print('\tCalculate accuracy') astrometry_analysis( inim=omtbl['now'][i], incor=f"{os.path.splitext(omtbl['now'][i])[0]}.corr", # outpng=f'{os.path.splitext(inim)[0]}.astrm.png', # outdat=f'{os.path.splitext(inim)[0]}.astrm.dat' outpng=f"{os.path.splitext(omtbl['final'][i])[0]}.astrm.png", outdat=f"{os.path.splitext(omtbl['final'][i])[0]}.astrm.dat" ) # Update # omtbl['now'][i] = inim else: print(f'{i} {os.path.basename(inim)} : Astrometry Fail') # Suspect of wrong object name if omtbl['objtype'][i] == 'IMSNG': print('\tThis is IMSNG target. Start re-astronomy.') # Retry astrometry astrometry( inim=omtbl['now'][i], outim=add_prefix(omtbl['now'], 'a')[i], pixscale=pixscale, frac=frac, cpulimit=60 ) if os.path.exists(inim): print('\tRe-astrometry SUCCESS!') c = SkyCoord(hdr['CRVAL1'], hdr['CRVAL2'], unit=u.deg) indx_tmp, sep, _ = c.match_to_catalog_sky(c_all) if sep[0] < fov: newobj = alltbl['obj'][indx_tmp] print(f"\tCorrect OBJECT HEADER, {hdr['OBJECT']} --> {newobj} position.") fits.setval(inim, keyword='OBJECT', value=newobj) # Put pointing offset info. fits.setval(inim, keyword='CENTSEP', value=round(sep[0].arcmin, 3), comment='Offset between pointing and galaxy position') ra_offset, dec_offset = c.spherical_offsets_to(c_all) fits.setval(inim, keyword='CNTSEP', value=round(sep[0].arcmin, 3), comment='Offset between pointing and galaxy position [arcmin]') fits.setval(inim, keyword='CNTRAOFF', value=round(ra_offset.arcmin, 3), comment='RA offset between pointing and galaxy position [arcmin]') fits.setval(inim, keyword='CNTDEOFF', value=round(dec_offset.arcmin, 3), comment='Dec offset between pointing and galaxy position [arcmin]') astrometry_analysis( inim=omtbl['now'][i], incor=f"{os.path.splitext(omtbl['now'][i])[0]}.corr", outpng=f"{os.path.splitext(omtbl['final'][i])[0]}.astrm.png", outdat=f"{os.path.splitext(omtbl['final'][i])[0]}.astrm.dat" ) # omtbl['now'][i] = inim pass else: print('\tRe-astrometry Fail...') pass else: print('\tNo other actions') del hdr # for i, inim in enumerate(omtbl['now']): tmpim = add_prefix(omtbl['now'], 'a')[i] if os.path.exists(tmpim): indx_tmp = np.where(omtbl['now'] == inim) omtbl['now'][indx_tmp] = tmpim omtbl['astrometry'][indx_tmp] = tmpim del indx_tmp del tmpim for key in omtbl.keys(): omtbl[key] = omtbl[key].astype(strtype) #------------------------------------------------------------ #%% # File name change #------------------------------------------------------------ print(f"""{'-'*60}\n#\tFILENAME CHANGE to IMSNG FORMAT\n{'-'*60}""") for i, inim in enumerate(omtbl['now']): newim = f"{omtbl['final'][i]}" com = f'cp {inim} {newim}' os.system(com) print(f'[{i}] {os.path.basename(inim)} --> {os.path.basename(newim)}') fits.setval(newim, keyword='IMNAME', value=os.path.basename(newim), comment='Formatted file name by gpPy process') ic_cal = ImageFileCollection(path_data, glob_include='Calib-*.f*', glob_exclude='*mask*') #------------------------------------------------------------ #%% # Photometry #------------------------------------------------------------ print(f"""{'='*60}\n#\tPHOTOMETRY FOR SINGLE IMAGEs\n{'-'*60}""") photcom = f"python {path_phot} '{path_data}/Calib-*0.fits' {ncore}" print(photcom) os.system(photcom) #------------------------------------------------------------ #%% # IMAGE COMBINE #------------------------------------------------------------ print(f"""{'='*60}\n#\tPHOTOMETRY FOR COMBINED IMAGEs\n{'-'*60}""") def group_images(objtbl, tfrac): delt = np.array(objtbl['jd'] - np.min(objtbl['jd']))*(24*60*60) # [days] --> [sec] tsub = delt - (np.cumsum(objtbl['exptime']*tfrac) - objtbl['exptime'][0]) indx = np.where(tsub < 0) indx_inv = np.where(tsub > 0) return indx, indx_inv #------------------------------------------------------------ print(f"""{'-'*60}\n#\tGROUP IMAGES\n{'-'*60}""") tfrac = 1.5 # Time fraction for grouping comimlist = [] for obj in set(ic_cal.summary['object']): for filte in set(ic_cal.filter(object=obj).summary['filter']): print(f"{len(ic_cal.filter(object=obj).summary['filter'])} images for {obj} in {filte}") print('-'*60) ic_obj = ic_cal.filter(object=obj, filter=filte) objtbl = ic_obj.summary indx_com, indx_inv = group_images(objtbl, tfrac) comimlist.append(objtbl[indx_com]) # Numbering n=0 for inim in objtbl['file'][indx_com]: print(f'[{n}] {os.path.basename(inim)}') n+=1 print('-'*60) while len(indx_inv[0]): objtbl = objtbl[indx_inv] indx_com, indx_inv = group_images(objtbl, tfrac) comimlist.append(objtbl[indx_com]) for inim in objtbl['file'][indx_com]: print(f'[{n}] {os.path.basename(inim)}') n+=1 print('-'*60) #------------------------------------------------------------ # %% print(f"""{'-'*60}\n#\tALIGN IMAGES AND COMBINE\n{'-'*60}""") cimlist = [] for i in range(len(comimlist)): # Alignment ## Target image imtbl = comimlist[i] indx_ref = np.where(imtbl['seeing']==np.max(imtbl['seeing'])) # tgtim = imtbl['file'][imtbl['file']==imtbl['file'][indx_ref]][0] tgtim = imtbl['file'][indx_ref][0] ## Source image srcimlist = list(imtbl['file'][imtbl['file']!=tgtim]) # Combine aligned_imlist = [CCDData(fits.getdata(tgtim), unit='adu', header=fits.getheader(tgtim))] for srcim in srcimlist: aligned_imlist.append(align_astroalign(srcim, tgtim, zero=False)) comim = imcombine_ccddata(aligned_imlist, fluxscale=True, zpkey='ZP', nref=0, imlist=None,) # comim = imcombine_ccddata(aligned_imlist, fluxscale=False, zpkey='ZP', nref=0, imlist=None,) cimlist.append(comim) # Seeing measurement for combined image if __name__ == '__main__': print(f"""{'-'*60}\n#\tSEEING MEASUREMENT\n{'-'*60}""") with multiprocessing.Pool(processes=ncore) as pool: results = pool.starmap( get_seeing, zip( cimlist, repeat(gain), repeat(pixscale), repeat(fov), repeat(path_conf), repeat(path_param), repeat(path_conv), repeat(path_nnw), repeat(3*u.arcsec), repeat(0.68), repeat(5), ) ) print('DONE') #------------------------------------------------------------ # %% # Photometry for combined image #------------------------------------------------------------ photcom = f"python {path_phot} '{path_data}/Calib-*com.fits' {ncore}" print(photcom) os.system(photcom) #------------------------------------------------------------ # %% # Subtraction #------------------------------------------------------------ print(f"""{'-'*60}\n#\tSUBTRACTION\n{'-'*60}""") tstbl = Table() tstbl['sci'] = cimlist hcimlist = [] hdimlist = [] for n, tgtim in enumerate(cimlist): subtraction_routine(tgtim, path_ref) outim=f"{os.path.dirname(tgtim)}/hd{os.path.basename(tgtim)}" outconvim=f"{os.path.dirname(tgtim)}/hc{os.path.basename(tgtim)}" if os.path.exists(outim): print(f"[{n}] {os.path.basename(tgtim)} : Subtraction Success") hcimlist.append(outconvim) hdimlist.append(outim) else: print(f"[{n}] {os.path.basename(tgtim)} : Subtraction Fail") tstbl['ref'] = hcimlist tstbl['sub'] = hdimlist tstablename = f"{path_data}/transient_search.ecsv" tstbl.write(tstablename, format='ascii.ecsv') tscom = f"python {path_find} '{tstablename}' {ncore}" print(tscom) os.system(tscom) print(f"{(time.time()-st)/60} min")
StarcoderdataPython
11390836
<reponame>nolim1t/specter-diy<filename>demo_apps/__init__.py __all__ = [ 'helloworld', ]
StarcoderdataPython
4963760
<reponame>Rijksmuseum-Voice-Inference/voice-to-voice-translation<filename>scripts/extract_features_for_merlin.py import os import sys import shutil import glob import time import multiprocessing as mp import numpy as np import wave if len(sys.argv)!=5: print("Usage: ") print("python extract_features_for_merlin.py <path_to_merlin_dir> <path_to_wav_dir> <path_to_feat_dir> <sampling rate>") sys.exit(1) # top merlin directory merlin_dir = sys.argv[1] # input audio directory wav_dir = sys.argv[2] # Output features directory out_dir = sys.argv[3] # initializations fs = int(sys.argv[4]) # tools directory world = os.path.join(merlin_dir, "tools/bin/WORLD") sptk = os.path.join(merlin_dir, "tools/bin/SPTK-3.9") reaper = os.path.join(merlin_dir, "tools/bin/REAPER") sp_dir = os.path.join(out_dir, 'sp' ) mgc_dir = os.path.join(out_dir, 'mgc') ap_dir = os.path.join(out_dir, 'ap' ) bap_dir = os.path.join(out_dir, 'bap') f0_dir = os.path.join(out_dir, 'f0' ) lf0_dir = os.path.join(out_dir, 'lf0') if not os.path.exists(out_dir): os.mkdir(out_dir) if not os.path.exists(sp_dir): os.mkdir(sp_dir) if not os.path.exists(mgc_dir): os.mkdir(mgc_dir) if not os.path.exists(bap_dir): os.mkdir(bap_dir) if not os.path.exists(f0_dir): os.mkdir(f0_dir) if not os.path.exists(lf0_dir): os.mkdir(lf0_dir) if fs == 16000: nFFTHalf = 1024 alpha = 0.58 elif fs == 22050: nFFTHalf = 1024 alpha = 0.65 elif fs == 44100: nFFTHalf = 2048 alpha = 0.76 elif fs == 48000: nFFTHalf = 2048 alpha = 0.77 else: print("As of now, we don't support %d Hz sampling rate." %(fs)) print("Please consider either downsampling to 16000 Hz or upsampling to 48000 Hz") sys.exit(1) #bap order depends on sampling rate. mcsize=59 b_use_reaper=True # If True: Reaper is used for f0 extraction. If False: The vocoder is used for f0 extraction. def get_wav_filelist(wav_dir): wav_files = [] for file in os.listdir(wav_dir): whole_filepath = os.path.join(wav_dir,file) if os.path.isfile(whole_filepath) and str(whole_filepath).endswith(".wav"): # dont add stereo files if wave.open(whole_filepath, 'r').getnchannels() > 1: continue wav_files.append(whole_filepath) elif os.path.isdir(whole_filepath): wav_files += get_wav_filelist(whole_filepath) wav_files.sort() return wav_files def read_binfile(filename, dim=60, dtype=np.float64): ''' Reads binary file into numpy array. ''' fid = open(filename, 'rb') v_data = np.fromfile(fid, dtype=dtype) fid.close() if np.mod(v_data.size, dim) != 0: raise ValueError('Dimension provided not compatible with file size.') m_data = v_data.reshape((-1, dim)).astype('float64') # This is to keep compatibility with numpy default dtype. m_data = np.squeeze(m_data) return m_data def write_binfile(m_data, filename, dtype=np.float64): ''' Writes numpy array into binary file. ''' m_data = np.array(m_data, dtype) fid = open(filename, 'wb') m_data.tofile(fid) fid.close() return def read_reaper_f0_file(est_file, skiprows=7): ''' Reads f0 track into numpy array from EST file generated by REAPER. ''' v_f0 = np.loadtxt(est_file, skiprows=skiprows, usecols=[2]) v_f0[v_f0<0] = 0 return v_f0 def reaper_f0_extract(in_wavfile, f0_file_ref, f0_file_out, frame_shift_ms=5.0): ''' Extracts f0 track using REAPER. To keep consistency with the vocoder, it also fixes for the difference in number of frames between the REAPER f0 track and the acoustic parameters extracted by the vocoder. f0_file_ref: f0 extracted by the vocoder. It is used as a reference to fix the number of frames, as explained. ''' # Run REAPER: print("Running REAPER f0 extraction...") cmd = "%s -a -s -x 400 -m 50 -u %1.4f -i %s -f %s" % (os.path.join(reaper, 'reaper'), frame_shift_ms / 1000.0, in_wavfile, f0_file_out + "_reaper") os.system(cmd) # Protection - number of frames: v_f0_ref = read_binfile(f0_file_ref, dim=1) v_f0 = read_reaper_f0_file(f0_file_out + "_reaper") frm_diff = v_f0.size - v_f0_ref.size if frm_diff<0: v_f0 = np.r_[ v_f0, np.zeros(-frm_diff) + v_f0[-1]] if frm_diff>0: v_f0 = v_f0[:-frm_diff] # Save f0 file: write_binfile(v_f0, f0_file_out) return def process(filename): ''' The function decomposes a wav file into F0, mel-cepstral coefficients, and aperiodicity :param filename: path to wav file :return: .lf0, .mgc and .bap files ''' file_id = os.path.basename(filename).split(".")[0] print('\n' + file_id) ### WORLD ANALYSIS -- extract vocoder parameters ### ### extract sp, ap ### f0_file = os.path.join(f0_dir, file_id + '.f0') f0_world_file = f0_file if b_use_reaper: f0_world_file = f0_file + "_world" world_analysis_cmd = "%s %s %s %s %s" % (os.path.join(world, 'analysis'), \ filename, f0_world_file, \ os.path.join(sp_dir, file_id + '.sp'), \ os.path.join(bap_dir, file_id + '.bapd')) os.system(world_analysis_cmd) ### Extract f0 using reaper ### if b_use_reaper: reaper_f0_extract(filename, f0_world_file, f0_file) ### convert f0 to lf0 ### sptk_x2x_da_cmd = "%s +da %s > %s" % (os.path.join(sptk, 'x2x'), f0_file, \ os.path.join(f0_dir, file_id + '.f0a')) os.system(sptk_x2x_da_cmd) sptk_x2x_af_cmd = "%s +af %s | %s > %s " % (os.path.join(sptk, 'x2x'), \ os.path.join(f0_dir, file_id + '.f0a'), \ os.path.join(sptk, 'sopr') + ' -magic 0.0 -LN -MAGIC -1.0E+10', \ os.path.join(lf0_dir, file_id + '.lf0')) os.system(sptk_x2x_af_cmd) ### convert sp to mgc ### sptk_x2x_df_cmd1 = "%s +df %s | %s | %s >%s" % (os.path.join(sptk, 'x2x'), \ os.path.join(sp_dir, file_id + '.sp'), \ os.path.join(sptk, 'sopr') + ' -R -m 32768.0', \ os.path.join(sptk, 'mcep') + ' -a ' + str(alpha) + ' -m ' + str( mcsize) + ' -l ' + str( nFFTHalf) + ' -e 1.0E-8 -j 0 -f 0.0 -q 3 ', \ os.path.join(mgc_dir, file_id + '.mgc')) os.system(sptk_x2x_df_cmd1) ### convert bapd to bap ### sptk_x2x_df_cmd2 = "%s +df %s > %s " % (os.path.join(sptk, "x2x"), \ os.path.join(bap_dir, file_id + ".bapd"), \ os.path.join(bap_dir, file_id + '.bap')) os.system(sptk_x2x_df_cmd2) def try_process(filename): try: process(filename) except Exception as e: print(e) print("--- Feature extraction started ---") start_time = time.time() # get wav files list wav_files = get_wav_filelist(wav_dir) # do multi-processing pool = mp.Pool(mp.cpu_count()) pool.map(try_process, wav_files) # DEBUG: #for nxf in xrange(len(wav_files)): # process(wav_files[nxf]) # clean temporal files shutil.rmtree(sp_dir, ignore_errors=True) shutil.rmtree(f0_dir, ignore_errors=True) for zippath in glob.iglob(os.path.join(bap_dir, '*.bapd')): os.remove(zippath) print("You should have your features ready in: "+out_dir) (m, s) = divmod(int(time.time() - start_time), 60) print(("--- Feature extraction completion time: %d min. %d sec ---" % (m, s)))
StarcoderdataPython
4980103
from aocd import get_data import re def get_first_last_winning_boards(data): input = [s for s in re.split("\n\n|\n", data)] numbers = [int(n) for n in input[0].split(",")] boards = [re.split("\s+", n.lstrip()) for n in input[1:]] winner_boards = set() bsize = 5 draw = 5 bingo = False number_board = 0 while draw < len(numbers): numbers_set = set(numbers[:draw]) l = 0 for line in boards: s = set([int(n) for n in line]) if s.issubset(numbers_set): number_board = int(l / bsize) if bingo == False: winner_boards.add(number_board) number_first_board = number_board number_first_draw = numbers[draw - 1] numbers_first_set = numbers_set bingo = True if number_board not in winner_boards: number_last_board = number_board number_last_draw = numbers[draw - 1] numbers_last_set = numbers_set winner_boards.add(number_board) if l % bsize == 0: # checking verticals and diagonals for v in range(bsize): col = [int(b[v]) for b in boards[l : l + bsize]] s = set([int(b[v]) for b in boards[l : l + bsize]]) if s.issubset(numbers_set): number_board = int(l / bsize) if bingo == False: winner_boards.add(number_board) number_first_board = number_board number_first_draw = numbers[draw - 1] numbers_first_set = numbers_set bingo = True if number_board not in winner_boards: number_last_board = number_board number_last_draw = numbers[draw - 1] numbers_last_set = numbers_set winner_boards.add(number_board) l += 1 draw += 1 # first board bingoboard_first = set( [ int(n) for li in boards[number_first_board * 5 : number_first_board * 5 + bsize] for n in li ] ) other_first = list( bingoboard_first - bingoboard_first.intersection(numbers_first_set) ) # last board bingoboard_last = set( [ int(n) for li in boards[number_last_board * 5 : number_last_board * 5 + bsize] for n in li ] ) other_last = list(bingoboard_last - bingoboard_last.intersection(numbers_last_set)) return number_first_draw * sum(other_first), number_last_draw * sum(other_last) def part1(data): return get_first_last_winning_boards(data)[0] def part2(data): return get_first_last_winning_boards(data)[1] def test_part1(): assert part1(test_data) == 4512 def test_part2(): assert part2(test_data) == 1924 data = get_data(day=4, year=2021) print(part1(data)) print(part2(data)) test_data = """7,4,9,5,11,17,23,2,0,14,21,24,10,16,13,6,15,25,12,22,18,20,8,19,3,26,1 22 13 17 11 0 8 2 23 4 24 21 9 14 16 7 6 10 3 18 5 1 12 20 15 19 3 15 0 2 22 9 18 13 17 5 19 8 7 25 23 20 11 10 24 4 14 21 16 12 6 14 21 17 24 4 10 16 15 9 19 18 8 23 26 20 22 11 13 6 5 2 0 12 3 7"""
StarcoderdataPython
4893975
<reponame>ilomon10/face-mask-detector from threading import Timer def debounce(wait): """ Decorator that will postpone a functions execution until after wait seconds have elapsed since the last time it was invoked. """ def decorator(fn): def debounced(*args, **kwargs): def call_it(): fn(*args, **kwargs) try: debounced.t.cancel() except(AttributeError): pass debounced.t = Timer(wait, call_it) debounced.t.start() return debounced return decorator
StarcoderdataPython
8055374
<gh_stars>10-100 # -*- coding: utf-8 -*- import filters class LockDetector(): """ LockDetector instances are objects that can determine whether or not a particular tracking channel is locked or not. For more information: Kaplan and Hegarty pages 234-235 note to self: Consider implementing false phase lock detection (p. 235) in the LockDetector.update() function. """ def __init__(self, N, k, lossthreshold, lockthreshold): """ Initialize the lock detector. @type N : int @param N : This is the number of previous samples to average over. @type k : float @param k : This is the scale factor (specifically, the divisor of the inphase prompt inputs) used for comparing the inphase and quadraphase inputs. A typical value is 1.5. @type lossthreshold : int @param lossthreshold : Once the loss-of-lock condition has been determined consecutively by the amount given by lossthreshold, loss-of-lock is declared. @type lockthreshold : int @param lockthreshold : Once the lock condition has been determined consecutively by the amount given by lockthreshold, lock is declared. """ self.k = k self.lossthreshold = lossthreshold self.lockthreshold = lockthreshold self.iFilter = filters.LowPassFilter(0.0247) self.qFilter = filters.LowPassFilter(0.0247) self.reset() def reset(self, iMagnitude=0, qMagnitude=0, lock=0): """ Reset the lock detector. @type iMagnitude : float @param iMagnitude: The initial state of the inphase running average filter will be set to this value (the default is zero). @type qMagnitude : float @param qMagnitude: The initial state of the quadraphase running average filter will be set to this value (the default is zero). @type lock : int @param lock: The initial state of the lock detector is set to this status (the default is 0 for False). """ self.losscount = 0 self.lockcount = 0 self.iFilter.reset(h=iMagnitude) self.qFilter.reset(h=qMagnitude) self.lock = lock def update(self, iP, qP): """ Update the lock detector with the latest prompt correlator outputs, and determine the locking status. @type iP : float @param iP : This is the latest inphase prompt correlator output. @type qP : float @param qP : This is the latest quadraphase prompt correlator output. @rtype : tuple @return : (int, float), (self.lock, iP-qP) This tuple carries locking status (self.lock - either 1 for True or 0 for False) and the current difference between the filtered magnitudes of the (scaled) inphase prompt value and the quadraphase prompt value. The latter can be used as a diagnostic aid when reviewing data. """ iP = self.iFilter.update(iP.__abs__()) / self.k qP = self.qFilter.update(qP.__abs__()) if iP > qP: self.losscount = 0 if self.lockcount > self.lockthreshold: self.lock = 1 # Development Notes: consider implementing false phase lock # detection logic here. else: self.lockcount = self.lockcount + 1 else: self.lockcount = 0 if self.losscount > self.lossthreshold: self.lock = 0 else: self.losscount = self.losscount + 1 return self.lock, iP-qP
StarcoderdataPython
3589835
import distutils.util print(distutils.util.get_platform())
StarcoderdataPython
3401296
from . import get from . import post from . import put
StarcoderdataPython
144456
<filename>core/utils/mod2div.py from core.utils.xor import xor # Performs Modulo-2 division def mod2div(dividend, divisor): # Number of bits to be XORed at a time. pick = len(divisor) # Slicing the dividend to appropriate # length for particular step tmp = dividend[0: pick] while pick < len(dividend): if tmp[0] == '1': # replace the dividend by the result # of XOR and pull 1 bit down tmp = xor(divisor, tmp) + dividend[pick] else: # If leftmost bit is '0' # If the leftmost bit of the dividend (or the # part used in each step) is 0, the step cannot # use the regular divisor; we need to use an # all-0s divisor. tmp = xor('0' * pick, tmp) + dividend[pick] # increment pick to move further pick += 1 # For the last n bits, we have to carry it out # normally as increased value of pick will cause # Index Out of Bounds. if tmp[0] == '1': tmp = xor(divisor, tmp) else: tmp = xor('0' * pick, tmp) remainder = tmp return remainder
StarcoderdataPython
6610780
import pandas as pd import os import subprocess import tempfile from inference_results import InferenceResults from config import Config from dataset import get_synth_dataset from ranked_list import RankedList import re from typing import List, Tuple, Any import javalang from source_code_utils import get_source_code, extract_method FileName = str MethodName = str MethodStartLine = int Range = Tuple[int, int] Score = float def dims_to_str(dims: List[Any]) -> str: if len(dims) == 0: return '' return ''.join(['[]' for _ in dims]) def types_to_str(args: List[Any]) -> str: if args is None: return '' def _to_str(arg): return arg.pattern_type if arg.type is None else arg.type.name return '<' + ','.join([_to_str(arg) for arg in args]) + '>' def formal_to_str(p: javalang.tree.FormalParameter) -> str: s = p.type.name if hasattr(p.type, "arguments"): s += types_to_str(p.type.arguments) s += dims_to_str(p.type.dimensions) return s def meth_dec_to_str(decl: javalang.tree.MethodDeclaration) -> str: return decl.name + '(' + ','.join([formal_to_str(p) for p in decl.parameters]) + ')' def get_method_name(filename: str, method_name: str, method_start_line: int) -> str: source_code = get_source_code(filename) # source_code = remove_str_literals_with_brackets(source_code) method_code = extract_method(source_code, method_name, method_start_line) tokens = javalang.tokenizer.tokenize(method_code) parser = javalang.parser.Parser(tokens) method_decl = parser.parse_member_declaration() return meth_dec_to_str(method_decl) def prepare_semi_data(df: List[Tuple[FileName, MethodName, MethodStartLine]], dir: str) -> pd.DataFrame: data = [] errors = 0 for fn, method_name, pos in df: fn_full = os.path.join(dir, fn) try: semi_method_name = get_method_name(fn_full, method_name, pos) data.append((fn_full, semi_method_name, pos)) except Exception: print(fn_full, method_name, pos) errors += 1 continue return pd.DataFrame(data), errors def semi_recommendation_str_to_list(s: str) -> List[Tuple[Range, Score]]: s = s.replace(' to ', ',') s = re.sub(r"0(\d)(\d)", '\\1\\2', s) s = re.sub(r"0(\d)", '\\1', s) ls = eval(s) ls = sorted(ls, key=lambda v: v[2], reverse=True) return list(map(lambda v: (v[0: 2], v[2]), ls)) def run_semi_algorithm(df: pd.DataFrame, config: Config) -> pd.DataFrame: '''Run SEMI inference using provided execuatable''' with tempfile.NamedTemporaryFile() as tmp, tempfile.NamedTemporaryFile() as semi_out: df.to_csv(tmp.name, header=False, sep=';', index=False) _ = subprocess.run([ 'java', '-jar', config.path_to_semi_jar, tmp.name, semi_out.name ], capture_output=True, text=True) # out = subprocess.run(cmd, shell=True, capture_output=True, text=True) semi_df = pd.read_csv(semi_out.name, sep=';', names=['filename', 'method', 'semi_recommendations']) semi_df.semi_recommendations = semi_df.semi_recommendations.apply(semi_recommendation_str_to_list) semi_df.filename = semi_df.filename.apply(os.path.basename) return semi_df def _calclualte_inference_data_for_semi(data: pd.DataFrame, path_to_java_files: str) -> pd.DataFrame: ''' To read pre calculated data ''' columns = ['filename', 'target_method', 'target_method_start_line'] for c in columns: assert c in data.columns, f"Can't find column: {c}" # data = data.astype({'target_method_start_line': 'int32'}) # TODO: move df, err_count = prepare_semi_data( data.groupby(columns).size().reset_index()[columns].values, path_to_java_files ) print('SEMI data prepare error count:', err_count) return df def _get_semi_inference_from_file_or_calclulate(data: pd.DataFrame, config: Config) -> pd.DataFrame: if config.path_to_semi_inference_csv is not None: print('Load precomputed SEMI inference.') semi_df = pd.read_csv(config.path_to_semi_inference_csv, sep=';') filenames_filter = [os.path.basename(fn) for fn in data.filename.unique()] semi_df = semi_df.merge(pd.DataFrame(filenames_filter, columns=['filename']), on='filename') else: print('Precomputed SEMO inference file is not found. It will be calculated from scratch') df = _calclualte_inference_data_for_semi(data, config.path_to_java_files) semi_df = run_semi_algorithm(df) semi_df.to_csv(config.path_to_semi_inference_csv, sep=';', index=False) return semi_df def _preprocess_data(data: pd.DataFrame, config: Config) -> pd.DataFrame: semi_df = _get_semi_inference_from_file_or_calclulate(data, config) synth_dataset = get_synth_dataset(config.path_to_dataset, config.path_to_java_files) join = semi_df.merge(synth_dataset, 'right', left_on='filename', right_on='filename') join.semi_recommendations.fillna('[]', inplace=True) join.semi_recommendations = join.semi_recommendations.apply(eval) semi_data = join[['semi_recommendations', 'true_inline_range', 'filename']].values return semi_data def inference_semi(data: pd.DataFrame, config: Config) -> InferenceResults: semi_data = _preprocess_data(data, config) predictions = InferenceResults() for recommendations, y, fn in semi_data: recommendations = [rng for rng, score in recommendations if (score >= 0 and (rng[0] <= rng[1]))] if len(recommendations) == 0: predictions.add('*', RankedList(pd.DataFrame([], columns=['score', 'is_true', 'range', 'true_range']))) continue y = eval(y) y = [y[0] + 1, y[1] + 1] rl = RankedList(pd.DataFrame( [(i + 1, x == y, str(x), str(y)) for i, x in enumerate(recommendations)], columns=['score', 'is_true', 'range', 'true_range'] )) predictions.add('*', rl) return predictions
StarcoderdataPython
9692786
from copy import deepcopy from typing import List, Tuple, Dict, Union, Optional EncodeDecodeMappings = List[Tuple[int, str, str]] Predictions = List[Dict[str, Union[str, Dict]]] class TextEncoder: def __init__( self, encoding: Dict[str, str], model_special_tokens: Optional[List[str]] = None, ): r""" Examples: ``` TextEncoder( encoding={"\n": "[NEWLINE]", "\t": "[TAB]"}, model_special_tokens=["[NEWLINE]", "[TAB]"], ) ``` Args: encoding: mapping to special tokens model_special_tokens: special tokens that the model was trained on """ self.encoding = encoding if model_special_tokens is None: print( "ATTENTION! DID NOT CHECK THAT MODEL WAS TRAINED WITH SPECIAL TOKENS ACCORDING TO encoding! " "It is recommended to provide an 'model_special_tokens' argument to check." ) else: assert sorted(list(set(encoding.values()))) == sorted( list(set(model_special_tokens)) ), ( f"ERROR! encoding values = {sorted(list(set(encoding.values())))} does not equal " f"model_special_tokens = {sorted(list(set(model_special_tokens)))}" ) def encode( self, text_list: List[str] ) -> Tuple[List[str], List[EncodeDecodeMappings]]: r""" encodes list of text using self.encoding Examples: ``` text_encoded_list, encode_decode_mappings_list = encode(text_list=["an\n example"]) # text_encoded_list = ["an[NEWLINE] example"] # encode_decode_mappings_list = [[(2, "\n", "[NEWLINE]")]] ``` Args: text_list: original text Returns: text_encoded_list: encoded text encode_decode_mappings_list: mappings (char_start, original token, encoded token) """ list_of_single_encodings = [self._encode_single(text) for text in text_list] return [elem[0] for elem in list_of_single_encodings], [ elem[1] for elem in list_of_single_encodings ] def decode( self, text_encoded_list: List[str], encode_decode_mappings_list: List[EncodeDecodeMappings], predictions_encoded_list: List[Predictions], ) -> Tuple[List[str], List[Predictions]]: r""" decodes list of text_encoded and predictions_encoded using encode_decode_mappings Examples: ``` text_list, predictions_list = decode( text_encoded_list=["an[NEWLINE] example"], encode_decode_mappings_list=[[(2, "\n", "[NEWLINE]")]]), predictions_encoded_list=[[{"char_start": "12", "char_end": "19", "token": "example", "tag": "TAG"}]] ) # text_list = ["an\n example"] # predictions_list = [[{"char_start": "4", "char_end": "11", "token": "example", "tag": "TAG"}]] ``` Args: text_encoded_list: encoded text encode_decode_mappings_list: mappings (char_start, original token, encoded token) predictions_encoded_list: encoded predictions Returns: text_list: original / decoded text predictions_list: original / decoded predictions """ list_of_single_decodings = [ self._decode_single( text_encoded, encode_decode_mappings, predictions_encoded ) for text_encoded, encode_decode_mappings, predictions_encoded in zip( text_encoded_list, encode_decode_mappings_list, predictions_encoded_list ) ] return [elem[0] for elem in list_of_single_decodings], [ elem[1] for elem in list_of_single_decodings ] def _encode_single(self, text: str) -> Tuple[str, EncodeDecodeMappings]: r""" encodes single text using self.encoding Args: text: e.g. "an\n example" Returns: text_encoded: e.g. "an[NEWLINE] example" encode_decode_mappings: e.g. [(2, "\n", "[NEWLINE]")] """ text_encoded = deepcopy(text) encode_decode_mappings = list() for k, v in self.encoding.items(): while k in text_encoded: index = text_encoded.find(k) text_encoded = text_encoded.replace(k, v, 1) encode_decode_mappings.append((index, k, v)) encode_decode_mappings.reverse() return text_encoded, encode_decode_mappings @staticmethod def _decode_single( text_encoded: str, encode_decode_mappings: EncodeDecodeMappings, predictions_encoded: Predictions, ) -> Tuple[str, Predictions]: r""" decodes single text_encoded and predictions_encoded using encode_decode_mapping Args: text_encoded: e.g. "an[NEWLINE] example" encode_decode_mappings: e.g. [(2, "\n", "[NEWLINE]")] predictions_encoded: e.g. [{"char_start": "12", "char_end": "19", "token": "example", "tag": "TAG"}] Returns: text: e.g. "an\n example" predictions: e.g. [{"char_start": "4", "char_end": "11", "token": "example", "tag": "TAG"}] """ text = deepcopy(text_encoded) predictions = deepcopy(predictions_encoded) for encode_decode_mapping in encode_decode_mappings: index, k, v = encode_decode_mapping # print(index, k, v) assert ( text[index : index + len(v)] == v ), f"ERROR! text[{index}:{index + len(v)}] = {text[index:index + len(v)]} != {v}" text = text[:index] + k + text[index + len(v) :] for prediction in predictions: assert isinstance(prediction["char_start"], str) and isinstance( prediction["char_end"], str ), f"ERROR! expected str, got type ({prediction['char_start']}, {prediction['char_end']})" if int(prediction["char_start"]) == index and int( prediction["char_end"] ) == index + len(v): prediction["char_end"] = str( int(prediction["char_end"]) - len(v) + len(k) ) prediction["token"] = k elif int(prediction["char_end"]) > index: prediction["char_start"] = str( int(prediction["char_start"]) - len(v) + len(k) ) prediction["char_end"] = str( int(prediction["char_end"]) - len(v) + len(k) ) return text, predictions
StarcoderdataPython
6591795
<reponame>wgjak47/supervisor_numplus from supervisor.options import UnhosedConfigParser from supervisor.datatypes import list_of_strings from supervisor.states import SupervisorStates from supervisor.states import STOPPED_STATES from supervisor.xmlrpc import Faults as SupervisorFaults from supervisor.xmlrpc import RPCError import supervisor.loggers import json API_VERSION = '1.0' class Faults: NOT_IN_WHITELIST = 230 class GraceNamespaceRPCInterface: """ A supervisor rpc interface that facilitates manipulation of supervisor's configuration and state in ways that are not normally accessible at runtime. """ def __init__(self, supervisord, whitelist=[]): self.supervisord = supervisord self._whitelist = list_of_strings(whitelist) def _update(self, func_name): self.update_text = func_name state = self.supervisord.get_state() if state == SupervisorStates.SHUTDOWN: raise RPCError(SupervisorFaults.SHUTDOWN_STATE) if len(self._whitelist): if func_name not in self._whitelist: raise RPCError(Faults.NOT_IN_WHITELIST, func_name) # RPC API methods def getAPIVersion(self): """ Return the version of the RPC API used by supervisor_twiddler @return int version version id """ self._update('getAPIVersion') return API_VERSION def getGroupNames(self): """ Return an array with the names of the process groups. @return array Process group names """ self._update('getGroupNames') return list(self.supervisord.process_groups.keys()) def log(self, message, level=supervisor.loggers.LevelsByName.INFO): """ Write an arbitrary message to the main supervisord log. This is useful for recording information about your twiddling. @param string message Message to write to the log @param string|int level Log level name (INFO) or code (20) @return boolean Always True unless error """ self._update('log') if isinstance(level, str): level = getattr(supervisor.loggers.LevelsByName, level.upper(), None) if supervisor.loggers.LOG_LEVELS_BY_NUM.get(level, None) is None: raise RPCError(SupervisorFaults.INCORRECT_PARAMETERS) self.supervisord.options.logger.log(level, message) return True def addProgramToGroup(self, group_name, program_name, program_options): """ Add a new program to an existing process group. Depending on the numprocs option, this will result in one or more processes being added to the group. @param string group_name Name of an existing process group @param string program_name Name of the new process in the process table @param struct program_options Program options, same as in supervisord.conf @return boolean Always True unless error """ self._update('addProgramToGroup') group = self._getProcessGroup(group_name) # make configparser instance for program options section_name = 'program:%s' % program_name parser = self._makeConfigParser(section_name, program_options) # make process configs from parser instance options = self.supervisord.options try: new_configs = options.processes_from_section(parser, section_name, group_name) except ValueError as e: raise RPCError(SupervisorFaults.INCORRECT_PARAMETERS, e) # check new process names don't already exist in the config for new_config in new_configs: for existing_config in group.config.process_configs: if new_config.name == existing_config.name: raise RPCError(SupervisorFaults.BAD_NAME, new_config.name) # add process configs to group group.config.process_configs.extend(new_configs) for new_config in new_configs: # the process group config already exists and its after_setuid hook # will not be called again to make the auto child logs for this process. new_config.create_autochildlogs() # add process instance group.processes[new_config.name] = new_config.make_process(group) return True def UpdateNumprocs(self, group_name): """ graceful process_group numprocs without restart all process when only numprocs changed. if numprocs increased, the operation will start (new_num - old_num) processes, if numprocs reduced, the operation will stop the last (new_num - old_num) processes @param string group_name Name of an existing process group """ try: self.supervisord.options.process_config(do_usage=False) except ValueError as msg: raise RPCError(Faults.CANT_REREAD, msg) group = self._getProcessGroup(group_name) old_config = self.supervisord.process_groups[group_name].config new_config = [ cfg for cfg in self.supervisord.options.process_group_configs if cfg.name == group_name ][0] if old_config == new_config: return json.dumps({ "msg":"No need to update", "type":"error" }) else: if old_config.name != new_config.name or old_config.priority != new_config.priority: return json.dumps({ "msg":"Not only numprocs has changed: priority is difference", "type":"error" }) new_process_configs = new_config.process_configs old_process_configs = old_config.process_configs if len(old_process_configs) < len(new_process_configs): if self._issubset(old_process_configs, new_process_configs): return self._add_num(group_name, self._difference(new_process_configs, old_process_configs)) else: return json.dumps({ "msg": "Not only numprocs has changed", "type": "error" }) elif len(old_process_configs) > len(new_process_configs): if self._issubset(new_process_configs, old_process_configs): return self._reduce_num(group_name, self._difference(old_process_configs, new_process_configs)) else: return json.dumps({ "msg": "Not only numprocs has changed", "type": "error" }) # If other not only name, priority or numprocs has changed # Return an error else: return json.dumps({ "msg": "Other settings has changed, please use update", "type": "error" }) # Return something for xmlrpc lib return True # ProcessConfig can't use set because __hash__ is not implemented def _difference(self, listA, listB): return [ item for item in listA if not self._has(listB, item) ] def _has(self, the_list, A): for item in the_list: if A.__eq__(item): return True return False def _issubset(self, A, B): for item in A: if not self._has(B, item): return False return A # just return the processes need to remove, let # supervisorctl call supervisor to stop the processes def _reduce_num(self, group_name, process_configs): return json.dumps({ 'processes_name' : ["{0}:{1}".format(group_name,p.name) for p in process_configs], 'type' : 'reduce' }) def _add_num(self, group_name, new_configs): group = self._getProcessGroup(group_name) group.config.process_configs.extend(new_configs) for new_config in new_configs: # the process group config already exists and its after_setuid hook # will not be called again to make the auto child logs for this process. new_config.create_autochildlogs() # add process instance group.processes[new_config.name] = new_config.make_process(group) return json.dumps({ 'processes_name' : [ "{0}:{1}".format(group_name,p.name) for p in new_configs], 'type' : 'add' }) def removeProcessFromGroup(self, group_name, process_name): """ Remove a process from a process group. When a program is added with addProgramToGroup(), one or more processes for that program is added to the group. This method removes individual processes (named by the numprocs and process_name options), not programs. @param string group_name Name of an existing process group @param string process_name Name of the process to remove from group @return boolean Always return True unless error """ group = self._getProcessGroup(group_name) # check process exists and is running process = group.processes.get(process_name) if process is None: raise RPCError(SupervisorFaults.BAD_NAME, process_name) """ Change to stop process here instead of raise an error """ if process.pid or process.state not in STOPPED_STATES: raise RPCError(SupervisorFaults.STILL_RUNNING, process_name) group.transition() # del process config from group, then del process for index, config in enumerate(group.config.process_configs): if config.name == process_name: del group.config.process_configs[index] del group.processes[process_name] return True def _getProcessGroup(self, name): """ Find a process group by its name """ group = self.supervisord.process_groups.get(name) if group is None: raise RPCError(SupervisorFaults.BAD_NAME, 'group: %s' % name) return group def _makeConfigParser(self, section_name, options): """ Populate a new UnhosedConfigParser instance with a section built from an options dict. """ config = UnhosedConfigParser() try: config.add_section(section_name) for k, v in dict(options).items(): config.set(section_name, k, v) except (TypeError, ValueError): raise RPCError(SupervisorFaults.INCORRECT_PARAMETERS) return config def make_grace_rpcinterface(supervisord, **config): return GraceNamespaceRPCInterface(supervisord, **config)
StarcoderdataPython
4945082
<reponame>hcmus-nlp-chatbot/CRSLab from .topic_bert import TopicBERTModel
StarcoderdataPython
136730
<filename>dsutils/__init__.py from dsutils_dev.dsutils.evaluate import get_eda_plots from dsutils_dev.dsutils.convert import DataFrameConverter from dsutils_dev.dsutils.colab_utils import mount_drive #, get_spark_environment __version__ = '0.0.1' #from dsutils_dev.evaluate import get_eda_plots
StarcoderdataPython
1732928
# Initialize a variable with a user-specified value. user = input( 'I am Python. What is your name? : ' ) # Output a string and a variable value. print( 'Welcome' , user ) # Initialize another variable with a user-specified value. lang = input( 'Favorite programming language? : ' ) # Output a string and a variable value. print( lang , 'Is' , 'Fun' , sep = ' * ' , end = '!\n' )
StarcoderdataPython
6676908
""" Server for pyglidein """ import json import logging from tornado.web import HTTPError from rest_tools.server import (RestServer, RestHandler, RestHandlerSetup, from_environment, role_authorization) from . import __version__ as version from .condor import CondorCache from .clients import Clients logger = logging.getLogger('server') class BaseHandler(RestHandler): def initialize(self, condor, clients, **kwargs): super().initialize(**kwargs) self.condor = condor self.clients = clients class StatusHandler(BaseHandler): async def get(self): self.write({ 'condor': self.condor.get_json(), 'clients': self.clients.get_json(), }) class APITokens(BaseHandler): @role_authorization(roles=['admin']) async def post(self): data = json.loads(self.request.body) if (not data) or 'client' not in data: raise HTTPError(400, reason='Missing "client" in body') token = self.auth.create_token(data['client'], type='client', payload={'role': 'client'}) self.write({'client': data['client'], 'token': token}) class APIClient(BaseHandler): @role_authorization(roles=['admin', 'client']) async def put(self, client): if self.auth_data.get('role', None) == 'client' and client != self.auth_data.get('sub', None): raise HTTPError(403, reason='Cannot update a different client than your own') if self.request.body: data = json.loads(self.request.body) self.clients.update(client, data) else: self.clients.update(client, {}) self.write({}) class APIClientQueue(BaseHandler): @role_authorization(roles=['admin', 'client']) async def post(self, client): if self.auth_data.get('role', None) == 'client' and client != self.auth_data.get('sub', None): raise HTTPError(403, reason='Cannot update a different client than your own') if self.request.body: status = json.loads(self.request.body) self.clients.update(client, status) try: self.clients.get(client) except KeyError: raise HTTPError(400, reason='Need to provide client queue status') ret = self.clients.match(client, self.condor) if not ret: self.write({}) else: self.write({ 'queues': ret, 'token': self.condor.get_startd_token() }) def create_server(): # static_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'static') # template_path = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'templates') default_config = { 'HOST': 'localhost', 'PORT': 8080, 'DEBUG': False, # 'COOKIE_SECRET': binascii.hexlify(b'secret').decode('utf-8'), 'AUTH_SECRET': '', 'AUTH_EXPIRATION': -1, # seconds for token lifetime 'CONDOR_COLLECTOR': 'localhost', 'CONDOR_CACHE_TIMEOUT': 60, } config = from_environment(default_config) rest_cfg = { 'debug': config['DEBUG'], 'server_header': f'pyglidein_server {version}', } if config['AUTH_SECRET']: rest_cfg['auth'] = { 'secret': config['AUTH_SECRET'], 'issuer': 'pyglidein', } if config['AUTH_EXPIRATION'] > 0: rest_cfg['auth']['expiration'] = config['AUTH_EXPIRATION'] args = RestHandlerSetup(rest_cfg) condor_args = { 'collector_address': config['CONDOR_COLLECTOR'], 'cache_timeout': config['CONDOR_CACHE_TIMEOUT'], } args['condor'] = CondorCache(**condor_args) args['clients'] = Clients() server = RestServer(debug=config['DEBUG'], # static_path=static_path, template_path=template_path, # cookie_secret=config['COOKIE_SECRET'], ) server.add_route(r'/status', StatusHandler, args) server.add_route(r'/api/tokens', APITokens, args) server.add_route(r'/api/clients/(?P<client>\w+)', APIClient, args) server.add_route(r'/api/clients/(?P<client>\w+)/actions/queue', APIClientQueue, args) server.startup(address=config['HOST'], port=config['PORT']) return server
StarcoderdataPython
6654024
<reponame>pengfei-chen/algorithm_qa """ 问题描述:给定一个二叉树的头结点head,已知其中没有重复值的节点,实现两个函数分别判断这棵二叉树是否是 搜索二叉树和完全二叉树。 """ from binarytree.toolcls import Node class JudgeTool: @classmethod def is_bst_tree(cls, head): if head is None: return True res = [True] cls.is_bst_tree_detail(head, None, '', res) return res[0] @classmethod def is_bst_tree_detail(cls, head, pre, relation, res): if head.left: cls.is_bst_tree_detail(head.left, head, 'left', res) if pre is not None: if relation == 'left': if pre.value < head.value: res[0] = False else: if pre.value > head.value: return False if head.right: cls.is_bst_tree_detail(head.right, head, 'right', res) @classmethod def is_complete_tree(cls, head): if head is None: return True my_queue = list() my_queue.append(head) to_leaf = 0 while len(my_queue) > 0: node = my_queue.pop(0) if node.left is not None and node.right is not None: if to_leaf == 1: return False my_queue.append(node.left) my_queue.append(node.right) if node.left is None and node.right is not None: return False if node.left is not None and node.right is None: if to_leaf == 1: return False to_leaf = 1 my_queue.append(node.left) if not node.left and not node.right: if not to_leaf: to_leaf = 1 return True if __name__ == '__main__': head = Node(4) head.left = Node(2) head.right = Node(6) head.left.left = Node(1) head.left.right = Node(3) head.right.left = Node(5) print(JudgeTool.is_bst_tree(head)) print(JudgeTool.is_complete_tree(head))
StarcoderdataPython
4928075
<gh_stars>0 # MongoDB stores data in JSON-like documents, which makes the database very flexible and scalable. # Python needs a MongoDB driver to access the MongoDB database. # One of the most known MongoDB driver's is "PyMongo". from pymongo import MongoClient import pandas as pd # Establishes a connection with Cluster0 myclient = MongoClient("XXXX") # Lists all the DBs in Cluster0 print(myclient.list_database_names()) # Instantiates a single DB in the Cluster db = myclient['sample_airbnb'] # Fetches a particular Collection from the DB col=db['listingsAndReviews'] #In MongoDB we use the find and findOne methods to find data in a collection. #Just like the SELECT statement is used to find data in a table in a MySQL database. #With first_one() we print the 1st register from the DB #print(col.find_one()) # Using pandas, we print the 1st register as a DataFrame # data = col.find_one() # mydb = pd.DataFrame.from_dict(data,orient='index') # print(mydb) #Fetches all the documents from the Collection as a dictionary data2 = col.find({}) # Ranges the dictionary as a pandas DataFrame mydb2 = pd.DataFrame.from_dict(data2) # Prints the first 5 registers from the DB print(mydb2[:5]) #Finishes the connection with Cluster0 myclient.close()
StarcoderdataPython
5066204
<filename>old/direct/replica_count_for_rse_cx.py import cx_Oracle, sys, uuid from dburl import schema as oracle_schema, user, password, host, port, service conn = cx_Oracle.connect(user, password, "%s:%s/%s" % (host, port, service)) rse_name = sys.argv[1] c = conn.cursor() c.execute("""select id from %(schema)s.rses where rse=:rse_name""" % {"schema":oracle_schema}, rse_name=rse_name) rse_id=c.fetchone()[0] rse_id = uuid.UUID(bytes=bytes(rse_id)).hex.upper() #c.execute("""select * from %(schema)s.rses where id=:rse_id""" % {"schema":oracle_schema}, rse_id=rse_id) #print c.fetchone() #sys.exit(0) print type(rse_id), rse_id #print rse_id.bytes c.execute("""select count(*) from %(schema)s.replicas rep where rep.rse_id=:rse_id """ % {"schema":oracle_schema}, rse_id=rse_id ) print "%s: %d" % (rse_name, c.fetchone()[0])
StarcoderdataPython
1783658
import ast class KeywordTransformer(ast.NodeTransformer): def visit_FunctionDef(self, node): return node def visit_AsyncFunctionDef(self, node): return node def visit_ClassDef(self, node): return node def visit_Return(self, node): if node.value is None: return node return ast.If( test=ast.NameConstant( value=True, lineno=node.lineno, col_offset=node.col_offset ), body=[ ast.Expr( value=ast.Yield( value=node.value, lineno=node.lineno, col_offset=node.col_offset ), lineno=node.lineno, col_offset=node.col_offset ), ast.Return( value=None, lineno=node.lineno, col_offset=node.col_offset ) ], orelse=[], lineno=node.lineno, col_offset=node.col_offset ) def visit_Delete(self, node): return ast.If( test=ast.NameConstant( value=True, lineno=node.lineno, col_offset=node.col_offset ), body=[ ast.If( test=ast.Compare( left=ast.Str( s=target.id, lineno=node.lineno, col_offset=node.col_offset ), ops=[ ast.In( lineno=node.lineno, col_offset=node.col_offset ) ], comparators=[ self.globals_call(node) ], lineno=node.lineno, col_offset=node.col_offset ), body=[ ast.Expr( value=ast.Call( func=ast.Attribute( value=self.globals_call(node), attr='pop', ctx=ast.Load(), lineno=node.lineno, col_offset=node.col_offset ), args=[ # 'x' ast.Str( s=target.id, lineno=node.lineno, col_offset=node.col_offset ) ], keywords=[], lineno=node.lineno, col_offset=node.col_offset ), lineno=node.lineno, col_offset=node.col_offset ) ], orelse=[ # del x ast.Delete( targets=[target], lineno=node.lineno, col_offset=node.col_offset ) ], lineno=node.lineno, col_offset=node.col_offset ) if isinstance(target, ast.Name) else ast.Delete( targets=[target], lineno=node.lineno, col_offset=node.col_offset ) for target in node.targets ], orelse=[], lineno=node.lineno, col_offset=node.col_offset ) def globals_call(self, node): return ast.Call( func=ast.Name( id='globals', ctx=ast.Load(), lineno=node.lineno, col_offset=node.col_offset ), args=[], keywords=[], lineno=node.lineno, col_offset=node.col_offset )
StarcoderdataPython
4902841
#!/usr/bin/env python3 # ----------------------------------------------------------------------------- # # P A G E B O T E X A M P L E S # # www.pagebot.io # Licensed under MIT conditions # # ----------------------------------------------------------------------------- # # E03_BabelStringMetrics.py # # Show some principles of FlatContext usage. from pagebot import getContext from pagebot.document import Document from pagebot.constants import A3, TOP, EXPORT from pagebot.conditions import * from pagebot.elements import * from pagebot.toolbox.units import * from pagebot.toolbox.color import noColor, color from pagebot.toolbox.transformer import path2FileName FILENAME = path2FileName(__file__) def draw(contextName): context = getContext(contextName) exportPath = '%s/%s-%s.pdf' % (EXPORT, FILENAME, contextName) # Landscape A3. H, W = A3 SQ = 150 P = 50 doc = Document(w=W, h=H, context=context) page = doc[1] # Sets the page padding, not equal to test vertical position. page.padding = P, P, 2*P, P style = dict(font='PageBot-Regular', fontSize=pt(100), textFill=color(0))#, w=800) bs = context.newString('ABCD', style)#, w=800) bs.add('EFGH', dict(fontSize=200, textFill=color(0, 1, 0))) tw, th = bs.textSize newText(bs, x=P, y=P, parent=page)#, conditions=Fit()) newLine(x=P, y=P, w=tw, h=0, stroke=0, parent=page)#, conditions=Fit()) ''' #print(bs.topLineXHeight) print(bs.w) #print(bs.topLineXHeight) bs.add('IJKL', dict(fontSize=300)) # Parent of the element is the current page. e = newText(bs, w=SQ, h=SQ, parent=page, conditions=Fit()) print(bs.w) x, y, w, h = e.x, e.y, e.w, e.h newRect(parent=page, w=w, h=h, x=x, y=y, fill=None, stroke=color(0, 0, 1), strokeWidth=0.5) #print(e.bs) #print(e.bs.cs) # FormattedString (DrawBot), <FlatBabelData (Flat) for line in bs.lines: for run in line.runs: print(' * run', run) ''' # Solve conditions of all placed elements on the page page.solve() view = doc.view view.showPadding = True doc.export(exportPath) for contextName in ('DrawBot', 'Flat'): draw(contextName)
StarcoderdataPython
3592763
<filename>angr/angr/procedures/win_user32/wprintf.py from ..libc.sprintf import sprintf as wsprintfA
StarcoderdataPython
5141471
<gh_stars>0 from __future__ import absolute_import, division, print_function from builtins import * # @UnusedWildImport from mcculw import ul from mcculw.ul import ULError from mcculw.enums import BoardInfo, InfoType, ULRange, ErrorCode, ScanOptions class AoInfo: """Provides analog output information for the device with the specified board number. NOTE: This class is primarily used to provide hardware information for the library examples and may change some hardware configuration values. It is recommended that values provided by this class be hard-coded in production code. Parameters ---------- board_num : int The board number associated with the device when created with :func:`.create_daq_device` or configured with Instacal. """ def __init__(self, board_num): self._board_num = board_num @property def board_num(self): return self._board_num @property def num_chans(self): return ul.get_config(InfoType.BOARDINFO, self._board_num, 0, BoardInfo.NUMDACHANS) @property def is_supported(self): return self.num_chans > 0 @property def resolution(self): return ul.get_config(InfoType.BOARDINFO, self._board_num, 0, BoardInfo.DACRES) @property def supports_scan(self): return ScanOptions.CONTINUOUS in self.supported_scan_options @property def supported_scan_options(self): try: scan_options_supported = ScanOptions(ul.get_config( InfoType.BOARDINFO, self._board_num, 0, BoardInfo.DACSCANOPTIONS)) except ULError: scan_options_supported = ScanOptions(0) return scan_options_supported @property def supported_ranges(self): result = [] # Check if the range is ignored by passing a bogus range in try: ul.a_out(self._board_num, 0, -5, 0) range_ignored = True except ULError as e: if (e.errorcode == ErrorCode.NETDEVINUSE or e.errorcode == ErrorCode.NETDEVINUSEBYANOTHERPROC): raise range_ignored = False if range_ignored: # Try and get the range configured in InstaCal try: curr_range = ULRange(ul.get_config(InfoType.BOARDINFO, self._board_num, 0, BoardInfo.DACRANGE)) result.append(curr_range) except ULError as e: if (e.errorcode == ErrorCode.NETDEVINUSE or e.errorcode == ErrorCode.NETDEVINUSEBYANOTHERPROC): raise else: for dac_range in ULRange: try: ul.a_out(self._board_num, 0, dac_range, 0) result.append(dac_range) except ULError as e: if (e.errorcode == ErrorCode.NETDEVINUSE or e.errorcode == ErrorCode.NETDEVINUSEBYANOTHERPROC): raise return result @property def supports_v_out(self): ranges_supported = self.supported_ranges v_out_supported = False if ranges_supported: try: ul.v_out(self._board_num, 0, ranges_supported[0], 0) v_out_supported = True except ULError: v_out_supported = False return v_out_supported
StarcoderdataPython
6611697
<filename>ensemble_clustering.py import sys import copy from munkres import Munkres from sklearn.cluster import KMeans, AgglomerativeClustering, SpectralClustering from increasing_cluster import tran_increase from plot_cluster import generating_KMeans_plot, generating_Spectral_plot, generating_Agglomerative_plot, generating_Ensemble_plot from statistic_cluster import statistic_KMeans, statistic_Spectral, statistic_Agglomerative, statistic_Ensemble def replaced(array, u1, u2, cor): #copy array for isolation #Need to use deepcopy because of the nature of Python for treating replaced = copy.deepcopy(array) #cor is the corresponding list for row, col in cor: #u1[row] and u2[col] is corresponded for idx in range(len(array)): #if the element of array is equal to u2[col] if array[idx] == u2[col]: #the element is corresponding to u1[row] #so isolated list replaced is replaced by u1[row] replaced[idx] = u1[row] return replaced def benefit_to_cost(matrix): cost_matrix = [] for row in matrix: cost_row = [] for col in row: cost_row = cost_row + [(sys.maxsize - col)] cost_matrix = cost_matrix + [cost_row] return cost_matrix def relabel(array1, array2): #this function returns relabeled array2 if len(array1)==len(array2): # set1 is the unique set of array1 set1 = set(array1) # u1 is the unique list of array1 u1 = list(set1) # set2 is the unique set of array2 set2 = set(array2) # set2 is the unique list of array1 u2 = list(set2) #matrix is the Corresponding matrix between u1 and u2 matrix = [[0 for i in range(len(u2))]for j in range(len(u1))] for i in range(len(array1)): #item_1 is the index of array1's element in u1 item_1 = u1.index(array1[i]) #item_2 is the index of array2's element in u2 item_2 = u2.index(array2[i]) #this situation means 1 correspondence between item_1 and item2 is observed #so corresponding location in corresponding matrix is incremented matrix[item_1][item_2] = matrix[item_1][item_2] + 1 cost_matrix = benefit_to_cost(matrix) #Munkers library solve the cost minimization problem #but I would like to solve benefit maximization problem #so convert benefit matrix into cost matrix #create mukres object m = Munkres() #get the most corresponded correspondance indexes = m.compute(cost_matrix) #I use array2 as Integer array so, convert it in case array2 = map(int, array2) #call replaced function to relace array2 according to object indexes replaced_matrix = replaced(array2, u1, u2, indexes) return replaced_matrix def relabel_cluster(clusters): #use first object in list object clusters as criteria criteria = clusters[0] # M is the number of review in each clustering M = len(criteria) # N is the number of clustering N = len(clusters) for idx in range(1,N): #if wrong size of clustering appears, stop the process if len(clusters[idx]) != M: print "Cluster "+str(idx)+" is out of size" return -1 clusters[idx] = relabel(criteria, clusters[idx]) return clusters def transpose(array): #Transpose list return list(map(list, zip(*array))) def voting(clusters): #Transpose Clusters clusters = transpose(clusters) voted = [] for row in clusters: #Unique Set of item in the row u = list(set(row)) #Counter corresponding to object u counter = [0 for i in u] # fill object counter by counting the object u in object row for idx in range(len(u)): counter[idx] = row.count(u[idx]) #find the index of the most appeared object in the row max_idx = counter.index(max(counter)) #choose the most appeared object voted = voted + [u[max_idx]] #return the result of majority vote return voted def generating_ensemble_clusters(X, y, barcode, feature_names): # KMeans Algorithm print 'Generating KMeans cluster...' y_KMeans = KMeans(n_clusters = 2).fit(X) generating_KMeans_plot(2, X, y_KMeans) statistic_KMeans(2, X, y_KMeans, barcode, feature_names) # print y_KMeans.labels_ # SpectralClustering Algorithm print 'Generating Spectral cluster...' y_SC = SpectralClustering(n_clusters = 2).fit(X) generating_Spectral_plot(2, X, y_SC) statistic_Spectral(2, X, y_SC, barcode, feature_names) # print y_SC.labels_ # AgglomerativeClustering Algorithm y_AC = AgglomerativeClustering(n_clusters = 2).fit(X) generating_Agglomerative_plot(2, X, y_AC) statistic_Agglomerative(2, X, y_AC, barcode, feature_names) # print y_AC.labels_ # ensembling phase print 'Appending three different labels into a cluster...' clusters = [] clusters.append(list(y_KMeans.labels_)) clusters.append(list(y_SC.labels_)) clusters.append(list(y_AC.labels_)) # print "==========" # for cluster in clusters: # print cluster # print "==========" print 'Relabelling the cluster...' relabeled_clusters = relabel_cluster(clusters) # for cluster in relabeled_clusters: # print cluster # print "==========" print 'Voting the cluster...' voting_clusters = voting(relabeled_clusters) # print voting_clusters print 'Transforming into increasing one...' final_clusters = tran_increase(voting_clusters) # print final_clusters generating_Ensemble_plot(2, X, final_clusters) statistic_Ensemble(2, X, final_clusters, barcode, feature_names) return final_clusters if __name__ == '__main__': clusters = [[1,2,3,3,2,2,1], [3,2,1,1,1,1,4],[2,3,1,1,1,1,1]] print "Input:" for cluster in clusters: print cluster print "========" #relabeling Phase relabeled_clusters = relabel_cluster(clusters) print "relabeled clusters:" for cluster in clusters: print cluster print "========" #voting Phase print "Output:" print voting(relabeled_clusters) #print replace_by_cor([0,1,2],[[0,2],[1,1],[2,0]])
StarcoderdataPython
5088345
<gh_stars>0 # Copyright (C) 2018 Bloomberg LP # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # <http://www.apache.org/licenses/LICENSE-2.0> # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Execution Controller ==================== An instance of the Execution controller. All this stuff you need to make the execution service work. Contains scheduler, execution instance, an interface to the bots and an operations instance. """ import logging from .scheduler import Scheduler from .bots.instance import BotsInterface from .execution.instance import ExecutionInstance from .operations.instance import OperationsInstance class ExecutionController: def __init__(self, data_store, *, storage=None, action_cache=None, action_browser_url=None, property_keys=None, bot_session_keepalive_timeout=None): self.__logger = logging.getLogger(__name__) scheduler = Scheduler(data_store, action_cache=action_cache, action_browser_url=action_browser_url) self._execution_instance = ExecutionInstance(scheduler, storage, property_keys) self._bots_interface = BotsInterface(scheduler, bot_session_keepalive_timeout=bot_session_keepalive_timeout) self._operations_instance = OperationsInstance(scheduler) def register_instance_with_server(self, instance_name, server): self._execution_instance.register_instance_with_server(instance_name, server) self._bots_interface.register_instance_with_server(instance_name, server) self._operations_instance.register_instance_with_server(instance_name, server) def stream_operation_updates(self, message_queue, operation_name): operation = message_queue.get() while not operation.done: yield operation operation = message_queue.get() yield operation def cancel_operation(self, name): # TODO: Cancel leases raise NotImplementedError("Cancelled operations not supported") @property def execution_instance(self): return self._execution_instance @property def bots_interface(self): return self._bots_interface @property def operations_instance(self): return self._operations_instance
StarcoderdataPython
3330626
<filename>hard/Median Of Two Sorted Arrays/test_solution.py import pytest from median_two_sorted_arrays import Solution as Solution def test_example_1(): ### Example 1: ##Input: nums1 = [1,3] nums2 = [2] ##Output: output = 2.00000 ##Explanation: merged array = [1,2,3] and median is 2. # Act sol = Solution() median1 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 1: {median1} should be {output}** \r\n") assert(median1 == output) def test_example_2(): ### Example 2: ##Input: nums1 = [1,2] nums2 = [3,4] ##Output: 2.50000 output = 2.50000 ##Explanation: merged array = [1,2,3,4] and median is (2 + 3) / 2 = 2.5. # Act sol = Solution() median2 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 2: {median2} should be {output}** \r\n") assert(median2 == output) def test_example_3(): ### Example 3: # #Input: nums1 = [0,0] nums2 = [0,0] #Output: 0.00000 output = 0.00000 # Act sol = Solution() median3 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 3: {median3} should be {output}** \r\n") assert(median3 == output) def test_example_4(): ### Example 4: # #Input: nums1 = [] nums2 = [1] #Output: 1.00000 output = 1.00000 # Act sol = Solution() median4 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 4: {median4} should be {output}** \r\n") assert(median4 == output) def test_example_5(): ### Example 5: # #Input: nums1 = [2] nums2 = [] #Output: 2.00000 output = 2.00000 # Act sol = Solution() median5 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 5: {median5} should be {output}** \r\n") assert(median5 == output) def test_example_6(): # Setup nums1 = [1,3] nums2 = [2,7] output = 2.50000 # Act sol = Solution() median2 = sol.findMedianSortedArrays(nums1, nums2) # Assert print(f"**Testing Solution, Example 2: {median2} should be {output}** \r\n") assert(median2 == output)
StarcoderdataPython
11244083
timeout = 300 capture_output = True accesslog = '/home/dockeruser/gunicorn-access.log' errorlog = '/home/dockeruser/gunicorn-error.log' loglevel = 'debug' bind = "0.0.0.0:9000" secure_scheme_headers = { 'X-FORWARDED-PROTOCOL': 'ssl', 'X-FORWARDED-PROTO': 'https', 'X-FORWARDED-SSL': 'on' } def post_fork(server, worker): server.log.info('Worker spawned (pid: %s)', worker.pid) def pre_fork(server, worker): pass def pre_exec(server): server.log.info('Forked child, re-executing.') def when_ready(server): server.log.info('Server is ready. Spawning workers')
StarcoderdataPython
11371987
<reponame>manninosi/Data_Incubator_LET<filename>Data_Inc_Section1.py import numpy as np import pandas as pd file = "county_lex_2020-04-14.csv.gz" df = pd.read_csv(file, compression='gzip', header=0) countys = df.columns.values[1:] col_names = dict(zip(countys, ["a" + lab for lab in countys] )) df = df.rename(columns = col_names) df_long = pd.wide_to_long(df, stubnames="a", i=['COUNTY_PRE'], j='col') df_long = df_long.reset_index(drop=False) df_long = df_long.rename(columns = {"col" : "COUNTY", "a" : "LEX"}) df_long.to_csv(r'reshaped.csv',index=False)
StarcoderdataPython
44989
<gh_stars>10-100 from .mlm import MLMTopicClassifier from .mnli import NLITopicClassifierWithMappingHead, NLITopicClassifier from .nsp import NSPTopicClassifier from .babeldomains import BabelDomainsClassifier from .wndomains import WNDomainsClassifier __all__ = [ "NLITopicClassifierWithMappingHead", "NLITopicClassifier", "MLMTopicClassifier", "NSPTopicClassifier", "BabelDomainsClassifier", "WNDomainsClassifier", ]
StarcoderdataPython
9697826
if __name__ == '__main__': input = [[int(y) for y in x.strip()] for x in open('input', 'r').readlines()] oxygen = input.copy() co2 = input.copy() for i in range(len(input[0])): if(len(oxygen) > 1): oxygen = [x for x in oxygen if x[i] == int(sum([x[i] for x in oxygen]) >= len(oxygen) / 2)] if(len(co2) > 1): co2 = [x for x in co2 if x[i] == int(sum([x[i] for x in co2 ]) < len(co2) / 2)] if (len(oxygen) == 1 and len(co2) == 1): break print(int(''.join(str(x) for x in oxygen[0]), 2) * int(''.join(str(x) for x in co2[0]), 2))
StarcoderdataPython
6497181
<filename>src/leetcode_1771_maximize_palindrome_length_from_subsequences.py # @l2g 1771 python3 # [1771] Maximize Palindrome Length From Subsequences # Difficulty: Hard # https://leetcode.com/problems/maximize-palindrome-length-from-subsequences # # You are given two strings, word1 and word2. You want to construct a string in the following manner: # # Choose some non-empty subsequence subsequence1 from word1. # Choose some non-empty subsequence subsequence2 from word2. # Concatenate the subsequences: subsequence1 + subsequence2, to make the string. # # Return the length of the longest palindrome that can be constructed in the described manner. # If no palindromes can be constructed,return 0. # A subsequence of a string s is a string that can be made by deleting some (possibly none) characters from s without changing the order of the remaining characters. # A palindrome is a string that reads the same forward as well as backward. # # Example 1: # # Input: word1 = "cacb", word2 = "cbba" # Output: 5 # Explanation: Choose "ab" from word1 and "cba" from word2 to make "abcba", which is a palindrome. # Example 2: # # Input: word1 = "ab", word2 = "ab" # Output: 3 # Explanation: Choose "ab" from word1 and "a" from word2 to make "aba", which is a palindrome. # Example 3: # # Input: word1 = "aa", word2 = "bb" # Output: 0 # Explanation: You cannot construct a palindrome from the described method, so return 0. # # Constraints: # # 1 <= word1.length, word2.length <= 1000 # word1 and word2 consist of lowercase English letters. # # class Solution: def longestPalindrome(self, word1: str, word2: str) -> int: self.total_word = word1 + word2 @lru_cache(None) def dfs(l, r): if l == r: return 1 if l > r: return 0 if self.total_word[l] == self.total_word[r]: return dfs(l + 1, r - 1) + 2 return max(dfs(l + 1, r), dfs(l, r - 1)) ans = 0 for letter in "abcdefghijklmnopqrstuvwxyz": left = word1.find(letter) right = word2.rfind(letter) if left != -1 and right != -1: ans = max(ans, dfs(left, len(word1) + right)) return ans if __name__ == "__main__": import os import pytest pytest.main([os.path.join("tests", "test_1771.py")])
StarcoderdataPython
3268217
import pytest import json from discopy.biclosed import Ty from lambeq.ccg2discocat.ccg_tree import CCGTree @pytest.fixture def tree(): n, s = Ty('n'), Ty('s') the = CCGTree(text='the', biclosed_type=n << n) do = CCGTree(text='do', biclosed_type=s >> s) do_unary = CCGTree(text='do', rule='U', biclosed_type=n, children=(do,)) return CCGTree(text='the do', rule='FA', biclosed_type=n, children=(the, do_unary)) def test_child_reqs(tree): with pytest.raises(ValueError): CCGTree(rule='U', biclosed_type=tree.biclosed_type, children=tree.children) def test_json(tree): assert CCGTree.from_json(None) is None assert CCGTree.from_json(tree.to_json()) == tree assert CCGTree.from_json(json.dumps(tree.to_json())) == tree
StarcoderdataPython
8033703
<gh_stars>0 from fishtext.api import FishTextJson, FishTextHtml, FishTextAPI
StarcoderdataPython
3242209
<gh_stars>1-10 import agents import argparse from habitat.core.challenge import Challenge import importlib from submit_args import fill_args def main(): parser = argparse.ArgumentParser() parser.add_argument( "--phase", type=str, required=False, choices=["dev", "standard", "challenge", "video"] ) parser.add_argument( "--agent_module", required=False, type=str, default="example", help="agent module name", ) parser.add_argument( "--exp_config", type=str, required=False, help="Config within habitat baselines" ) parser.add_argument( "--checkpoint_path", type=str, required=False, help="Path to checkpoint" ) parser.add_argument( '--num_episodes', type=int, required=False, default=None ,help="Number of episodes to evaluate. Only works in dev mode." ) parser.add_argument( "--no_fill", action='store_true', required=False, help="If Set, skips fill_args" ) parser.add_argument( "--external", action='store_true', required=False, help="If Set, agents are loaded from extern_agents folder" ) parser.add_argument( "--video_dir", type=str, default=None, help="Path where videos will be logged" ) args = parser.parse_args() if not args.no_fill: args = fill_args(args) phase = args.phase challenge = Challenge(phase = phase) if args.phase is None or args.phase == "dev" or args.phase == "video": if args.num_episodes is not None: challenge.num_episodes = args.num_episodes if args.external: walker = importlib.import_module(f'extern_agents.{args.agent_module}') else: walker = importlib.import_module(f'agents.{args.agent_module}') agent = walker.get_agent(args.exp_config, challenge, args.checkpoint_path) if args.video_dir is not None: from agents.video_walker import VideoWalker args.phase = "video" agent = VideoWalker(agent, args.video_dir) challenge.submit(agent) if __name__ == "__main__": main()
StarcoderdataPython
1805488
from django.test import TestCase, Client class AboutURLTest(TestCase): @classmethod def setUpClass(cls): # Создаём экземпляр клиента. Он неавторизован. super().setUpClass() cls.guest_client = Client() def test_urls_exists_at_desired_locations(self): about_response = AboutURLTest.guest_client.get('/about/author/') self.assertEqual(about_response.status_code, 200) tech_response = AboutURLTest.guest_client.get('/about/tech/') self.assertEqual(tech_response.status_code, 200) def test_urls_uses_correct_templates(self): about_response = AboutURLTest.guest_client.get('/about/author/') self.assertTemplateUsed(about_response, 'about/author.html') tech_response = AboutURLTest.guest_client.get('/about/tech/') self.assertTemplateUsed(tech_response, 'about/tech.html')
StarcoderdataPython
127107
<gh_stars>0 # Generated by Django 2.1.5 on 2020-01-03 10:26 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('shop', '0006_orders_amount'), ] operations = [ migrations.AlterField( model_name='product', name='desc', field=models.CharField(max_length=600), ), ]
StarcoderdataPython
11201901
<filename>bananadbg.py<gh_stars>0 # Copyright (c) 2017 Akuli # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to # permit persons to whom the Software is furnished to do so, subject to # the following conditions: # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY # CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, # TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE # SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """Simple debugging tool.""" import argparse import code import collections import importlib.util import inspect import math import pydoc import shlex import shutil import sys import textwrap import traceback try: # Just importing readline is enough to set up handy keyboard # shortcuts. import readline # noqa except ImportError: # Probably Windows. pass __all__ = ['Command', 'DebugConsole', 'debug'] _NOTHING = object() Command = collections.namedtuple('Command', 'func reqargs optargs doc') def _wprint(string): """Wrap and print a string.""" print(textwrap.fill(string), end='\n\n') def _print_list(stringlist): maxlen = max(map(len, stringlist)) columns = shutil.get_terminal_size().columns // (maxlen + 2) if columns < 2: for string in stringlist: print(string) else: rows = math.ceil(len(stringlist) / columns) for y in range(rows): line = ' '.join( string.ljust(maxlen) for string in stringlist[y::rows]) print(line.rstrip(' ')) class _Helper: def __init__(self, console): self._console = console def __repr__(self): return textwrap.fill( "Type help() for help about this debugging console or " "help(something) to use Python's built-in help().") # We can't do something=None to allow help(None). def __call__(self, something=_NOTHING): if something is _NOTHING: _wprint("This is a special Python prompt for debugging large " "projects that consist of several modules.") _wprint("Using this prompt is easy. You can enter any Python " "commands to run them. They will be run in the " "current module, which is a lot like the current " "working directory of a shell or a command prompt.") print("Here is a list of the special commands:") for name, command in sorted(self._console.commands.items()): if command.doc is None: print(name) else: summary = inspect.cleandoc(command.doc).split('\n')[0] # TODO: some way to get more detailed help of the special # commands. print(' %-10s %s' % (name, summary)) else: pydoc.help(something) class DebugConsole(code.InteractiveConsole): """A special console for debugging purposes.""" commands = {} # {name: Command, ...} def __init__(self, *args, verbose=False, **kwargs): """Initialize the console.""" super().__init__(*args, **kwargs) self._helper = _Helper(self) self.verbose = verbose self.modulename = None self.module = None # Tell code.InteractiveConsole to work in self.module. @property def locals(self): return self.module.__dict__ # code.InteractiveConsole.__init__ assigns to this. @locals.setter def locals(self, value): pass def _check_args(self, commandname, args) -> bool: """Check if arguments for a command are valid.""" command = self.commands[commandname] if len(args) < len(command.reqargs): print("Missing arguments for %s." % commandname, file=sys.stderr) elif len(args) > len(command.reqargs) + len(command.optargs): print("Too many arguments for %s." % commandname, file=sys.stderr) else: # everything's fine return True print("Usage:", commandname, end='') for arg in command.reqargs: print(' ' + arg.upper(), end='') for arg in command.optargs: print(' [' + arg.upper() + ']', end='') print() return None def raw_input(self, prompt=''): if prompt != sys.ps1: # It's probably '... ', no need to support special commands. return input(prompt) while True: string = input(prompt) try: commandname, *args = shlex.split(string) ok = self._check_args(commandname, args) except (ValueError, KeyError): # Not a special command. return string if ok: try: self.run_command(commandname, args) except Exception: print("An exception occurred while running %s!" % commandname, file=sys.stderr) traceback.print_exc() def run_command(self, commandname, args): self.commands[commandname].func(self, *args) @classmethod def command(cls, func): if 'commands' not in cls.__dict__: # Someone is subclassing DebugConsole and cls.commands # comes from DebugConsole or some other parent class. The # subclass must have a command mapping that gets commands # from the parent class, but adding a command won't add it # to the parent class. cls.commands = collections.ChainMap({}, cls.commands) reqargs = [] optargs = [] signature = inspect.signature(func) # We need to get rid of the first argument because it's the # DebugConsole instance. params = list(signature.parameters.items())[1:] for name, param in params: if param.kind != inspect.Parameter.POSITIONAL_OR_KEYWORD: raise TypeError("unsupported function signature: " + func.__name__ + str(signature)) if param.default is inspect.Parameter.empty: reqargs.append(name) else: optargs.append(name) cls.commands[func.__name__] = Command( func, reqargs, optargs, func.__doc__) return func # The special help variable. def add_helper(self): self.locals.setdefault('help', self._helper) def remove_helper(self): if self.locals.get('help', object()) is self._helper: del self.locals['help'] def _setup_commands(): # This is a separate function to avoid polluting the namespace. @DebugConsole.command def cd(console, modulename='__main__'): """Change the current module. The new module will be imported, and it can be relative to the old module. If no arguments are given, go to __main__. """ if console.verbose: print("Importing", modulename, "and changing the current", "module to it") # These need to be first because the rest of this must not run # if these fail. modulename = importlib.util.resolve_name(modulename, console.modulename) module = importlib.import_module(modulename) if console.module is not None: # Not running for the first time. console.remove_helper() console.module = module console.modulename = modulename console.add_helper() @DebugConsole.command def ls(console): """Print a list of variables in the current module. This is equivalent to dir(), but this prints the list nicely in multiple columns. """ if console.verbose: print("Listing the variables in", console.modulename) _print_list(sorted(dir(console.module))) @DebugConsole.command def pwd(console): """Print the name of the current module.""" if console.verbose: print("You are currently in", end=" ") result = repr(console.module) if result.startswith('<') and result.endswith('>'): result = result[1:-1] print(result) @DebugConsole.command def src(console, expression): """Evaluate the expression and print the source code of the result.""" obj = eval(expression, console.locals) print(inspect.getsource(obj)) _setup_commands() def debug(module='__main__', *, consoleclass=DebugConsole, **kwargs): print("Starting a debugging session in module", repr(module), "on Python", '.'.join(map(str, sys.version_info[:3]))) print("Type 'help' for more info.") console = DebugConsole(**kwargs) console.run_command('cd', [module]) console.interact('') print("Exiting the debugging session.") console.remove_helper() def _main(): parser = argparse.ArgumentParser() parser.add_argument( 'module', help="the initial current module") parser.add_argument( '-v', '--verbose', action='store_true', help="explain what is done") args = parser.parse_args() debug(**args.__dict__) if __name__ == '__main__': _main()
StarcoderdataPython
5091732
import argparse import cv2 import numpy as np import torch import torchvision.transforms as transforms from PIL import Image from torch.autograd import Variable from torchvision.transforms import ToTensor, ToPILImage from tqdm import tqdm from model import Generator if __name__ == "__main__": parser = argparse.ArgumentParser(description='Test Single Video') parser.add_argument('--upscale_factor', default=4, type=int, help='super resolution upscale factor') parser.add_argument('--video_name', type=str, help='test low resolution video name') parser.add_argument('--model_name', default='netG_epoch_4_100.pth', type=str, help='generator model epoch name') opt = parser.parse_args() UPSCALE_FACTOR = opt.upscale_factor VIDEO_NAME = opt.video_name MODEL_NAME = opt.model_name model = Generator(UPSCALE_FACTOR).eval() #uncomment for AWS #if torch.cuda.is_available(): # model = model.cuda() # for cpu # model.load_state_dict(torch.load('epochs/' + MODEL_NAME, map_location=lambda storage, loc: storage)) model.load_state_dict(torch.load('epochs/' + MODEL_NAME, map_location=torch.device('cpu'))) videoCapture = cv2.VideoCapture(VIDEO_NAME) fps = videoCapture.get(cv2.CAP_PROP_FPS) frame_numbers = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT) sr_video_size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR), int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) * UPSCALE_FACTOR) compared_video_size = (int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR * 2 + 10), int(videoCapture.get(cv2.CAP_PROP_FRAME_HEIGHT)) * UPSCALE_FACTOR + 10 + int( int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR * 2 + 10) / int( 10 * int(int( videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR) // 5 + 1)) * int( int(videoCapture.get(cv2.CAP_PROP_FRAME_WIDTH) * UPSCALE_FACTOR) // 5 - 9))) output_sr_name = 'out_srf_' + str(UPSCALE_FACTOR) + '_' + VIDEO_NAME.split('.')[0] + '.avi' output_compared_name = 'compare_srf_' + str(UPSCALE_FACTOR) + '_' + VIDEO_NAME.split('.')[0] + '.avi' sr_video_writer = cv2.VideoWriter(output_sr_name, cv2.VideoWriter_fourcc('M', 'P', 'E', 'G'), fps, sr_video_size) compared_video_writer = cv2.VideoWriter(output_compared_name, cv2.VideoWriter_fourcc('M', 'P', 'E', 'G'), fps, compared_video_size) # read frame success, frame = videoCapture.read() test_bar = tqdm(range(int(frame_numbers)), desc='[processing video and saving result videos]') for index in test_bar: if success: image = Variable(ToTensor()(frame), volatile=True).unsqueeze(0) if torch.cuda.is_available(): image = image.cuda() out = model(image) out = out.cpu() out_img = out.data[0].numpy() out_img *= 255.0 out_img = (np.uint8(out_img)).transpose((1, 2, 0)) # save sr video sr_video_writer.write(out_img) # make compared video and crop shot of left top\right top\center\left bottom\right bottom out_img = ToPILImage()(out_img) crop_out_imgs = transforms.FiveCrop(size=out_img.width // 5 - 9)(out_img) crop_out_imgs = [np.asarray(transforms.Pad(padding=(10, 5, 0, 0))(img)) for img in crop_out_imgs] out_img = transforms.Pad(padding=(5, 0, 0, 5))(out_img) compared_img = transforms.Resize(size=(sr_video_size[1], sr_video_size[0]), interpolation=Image.BICUBIC)( ToPILImage()(frame)) crop_compared_imgs = transforms.FiveCrop(size=compared_img.width // 5 - 9)(compared_img) crop_compared_imgs = [np.asarray(transforms.Pad(padding=(0, 5, 10, 0))(img)) for img in crop_compared_imgs] compared_img = transforms.Pad(padding=(0, 0, 5, 5))(compared_img) # concatenate all the pictures to one single picture top_image = np.concatenate((np.asarray(compared_img), np.asarray(out_img)), axis=1) bottom_image = np.concatenate(crop_compared_imgs + crop_out_imgs, axis=1) bottom_image = np.asarray(transforms.Resize( size=(int(top_image.shape[1] / bottom_image.shape[1] * bottom_image.shape[0]), top_image.shape[1]))( ToPILImage()(bottom_image))) final_image = np.concatenate((top_image, bottom_image)) # save compared video compared_video_writer.write(final_image) # next frame success, frame = videoCapture.read()
StarcoderdataPython
6423256
# # Copyright 2019 FMR LLC <<EMAIL>> # # SPDX-License-Identifier: MIT # """Test role access to the accounts specified. ## Overview The access_report command will display the number of accounts that the IAM role does not have access to. For example: $ awsrun --account 100200300400 --account 200300400100 access_report Success: 2, Failures: 0 Note: no output is generated until all accounts have been tested, so it may look like the command is hanging when processing a large number of accounts. With the `--verbose` option, a success message is generated for each account as soon as it has been processed: $ awsrun --include Env=DEV access_report --verbose 400100200300: successful 100200300400: successful 200300400100: successful Success: 3, Failures: 2 Unsuccessful attempts: 300200100400 300100400200 ## Reference ### Synopsis $ awsrun [options] access_report [command options] ### Configuration The following is the syntax for the options that can be specified in the user configuration file: Commands: access_report: verbose: BOOLEAN ### Command Options Some options can be overridden on the awsrun CLI via command line flags. In those cases, the CLI flags are specified next to the option name below: `verbose`, `--verbose` : Display a message as each account is tested. By default, no output is generated until all accounts have been processed. """ from awsrun.config import Bool from awsrun.runner import Command class CLICommand(Command): """Test role access to the accounts specified.""" @classmethod def from_cli(cls, parser, argv, cfg): parser.add_argument( "--verbose", "-v", action="store_true", default=cfg("verbose", type=Bool, default=False), help="display accounts while being processed", ) args = parser.parse_args(argv) return cls(**vars(args)) def __init__(self, verbose=False): self.verbose = verbose self.total = 0 self.no_access = [] def execute(self, session, acct): if self.verbose: return f"{acct}: successful\n" return None def collect_results(self, acct, get_result): self.total += 1 try: result = get_result() except Exception: # pylint: disable=broad-except self.no_access.append(acct) return if result: print(result, end="", flush=True) def post_hook(self): unsuccessful = len(self.no_access) successful = self.total - unsuccessful print(f"Success: {successful}, Failures: {unsuccessful}") if unsuccessful: print(f"\nUnsuccessful attempts:") for acct in self.no_access: print(acct)
StarcoderdataPython
1904753
<filename>datasets/MNINST/dnn_3_hidden_layers_with_batch_normalization/dnn_3_hidden_layers_with_batch_normalization.py ######################################## # # Reproduced work of <NAME> Szegedy's paper # Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift (https://arxiv.org/abs/1502.03167) # ######################################## import numpy as np import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data, mnist from tensorflow.contrib.distributions import percentile import tqdm from collections import defaultdict import matplotlib.pyplot as plt import os dtype = tf.float32 class LineGraph(object): def __init__(self): self.lines = defaultdict() self.history = defaultdict(list) def reset_tensors(self): self.lines = defaultdict() def add_scalar(self, tensor, legend): # legend: type is string # use legend as index of line # Note: override existing setting self.lines[legend] = tensor def add_summary(self, session, index, feed_dict): self.history['index'].append(index) for line_name, line_tensor in self.lines.items(): data = session.run(fetches=line_tensor, feed_dict=feed_dict) self.history[line_name].append(data) def get_index(self): return np.array(self.history['index']) def plot(self, plt): # plt: matplotlib.pyplot # iterate lines # draw line with index # show legend for line_name, line in self.lines.items(): x = self.get_index() y = np.array(self.history[line_name]) plt.plot(x, y, label=line_name) plt.legend() class Figures(object): def __init__(self): self.figures = defaultdict(LineGraph) return def reset_tensors(self): for fig_name, fig in self.figures: fig.reset_tensors() def add_scalar(self, tensor, legend, fig_name): # fig: key of class LineGraph() # legend: key of different lines self.figures[fig_name].add_scalar(tensor, legend) def add_summary(self, session, fig_name, index, feed_dict): # iterate figures # iterate lines # evaluate tensor # record the value and index self.figures[fig_name].add_summary(session, index, feed_dict) def show(self, plt): # plt: matplotlib.pyplot for fig_name, f in self.figures.items(): # draw line graph f.plot(plt) # decorate the figure plt.title(fig_name) plt.show() figures = Figures() def add_percentiles_to_graph(x, percentile_list, fig_name): for p in percentile_list: # create percentile tensor p_tensor = percentile(x, p) # add tensors to a figure with name=enable_bn figures.add_scalar(tensor=p_tensor, legend=str(p), fig_name=fig_name) def get_path_saved_model(prefix, suffix): return prefix + suffix + "/tmp-save" def get_path_summary(prefix, suffix): return prefix + suffix + "/" def mkdir_if_not_exits(path): dir_path = os.path.dirname(path) if not os.path.exists(dir_path): os.makedirs(dir_path) def weight_variable(shape, stddev=0.1): init = tf.truncated_normal(shape, stddev=stddev) return tf.Variable(init, dtype=dtype) def summary_percentiles(x, percents): for p in percents: name = "percentile_" + str(p) tf.summary.scalar(name, percentile(x, p)) def batch_norm_wrapper(x, is_training, enable_bn, decay=0.999): epsilon = 1e-8 size = x.get_shape()[-1] run_mean = tf.Variable(tf.zeros([size]), dtype=dtype, trainable=False) run_var = tf.Variable(tf.ones([size]), dtype=dtype, trainable=False) offset = tf.Variable(tf.zeros([size]), dtype=dtype) scale = tf.Variable(tf.ones([size]), dtype=dtype) if enable_bn == True: if is_training == True: batch_mean, batch_var = tf.nn.moments(x, axes=[0]) update_run_mean = tf.assign( run_mean, decay*run_mean + (1-decay)*batch_mean ) update_run_var = tf.assign( run_var, decay*run_var + (1-decay)*batch_var ) with tf.control_dependencies([update_run_mean, update_run_var]): return tf.nn.batch_normalization(x, batch_mean, batch_var, offset=offset, scale=scale, variance_epsilon=epsilon) else: return tf.nn.batch_normalization(x, run_mean, run_var, offset=offset, scale=scale, variance_epsilon=epsilon) else: return x def build_graph(is_training, enable_bn, title): # build graph with 3 hidden layers with 100 sigmoid activations each. # variables are initialized to small Gaussian values shapes={'h1': [mnist.IMAGE_PIXELS, 100], 'h2': [100, 100], 'h3': [100, 100], 'output': [100, mnist.NUM_CLASSES]} activation = tf.nn.sigmoid x = tf.placeholder(dtype, shape=[None, mnist.IMAGE_PIXELS]) y_ = tf.placeholder(dtype, shape=[None, mnist.NUM_CLASSES]) with tf.name_scope("L1"): # 1st hidden layer W1 = weight_variable(shapes['h1']) z1 = tf.matmul(x, W1) bn1 = batch_norm_wrapper(z1, is_training, enable_bn) l1 = activation(bn1) tf.summary.histogram("weights", W1) tf.summary.histogram("activation", l1) with tf.name_scope("L2"): # 2nd hidden layer W2 = weight_variable(shapes['h2']) z2 = tf.matmul(l1, W2) bn2 = batch_norm_wrapper(z2, is_training, enable_bn) l2 = activation(bn2) tf.summary.histogram("weights", W2) tf.summary.histogram("activation", l2) with tf.name_scope("L3"): # 3rd hidden layer W3 = weight_variable(shapes['h3']) z3 = tf.matmul(l2, W3) bn3 = batch_norm_wrapper(z3, is_training, enable_bn) l3 = activation(bn3) tf.summary.histogram("weights", W3) tf.summary.histogram("activation", l3) percentile_list = [15, 50, 85] summary_percentiles(l3, percentile_list) add_percentiles_to_graph(l3, percentile_list, title) with tf.name_scope("output_layer"): # output layer W_out = weight_variable(shapes['output']) y = tf.matmul(l3, W_out) tf.summary.histogram("weights", W_out) with tf.name_scope("loss"): loss = tf.reduce_mean( tf.nn.softmax_cross_entropy_with_logits(labels=y_, logits=y) ) with tf.name_scope("train"): lr = 0.5 train_step = tf.train.GradientDescentOptimizer(lr).minimize(loss) with tf.name_scope("prediction"): prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1)) with tf.name_scope("accuracy"): accuracy = tf.reduce_mean(tf.cast(prediction, dtype)) return (x, y_), train_step, accuracy, y, tf.train.Saver() def main(): # iterate settings: {'with_bn':True, 'without_bn':False} # start training # build graph # start session # init global variables # feed the data set # if print_period # save batch accuracy into history # # train the batch data # save the model # start testing # reset the default graph # build the graph # start session # init global variable # restore model # print accuracy # # plot test accuracy history # {title: enable batch normalization} experiment_settings = {'with_bn': True, 'without_bn': False} FLAGS_ = { 'batch_sz': 60, 'max_epochs': 50000, 'print_period': 100, 'summary_period': 50, 'path_data_set': 'MNIST_data/', 'path_saved_model': './tmp/', 'path_summary': './tmp/log/', } history_acc_ = defaultdict(list) data_set = input_data.read_data_sets(FLAGS_['path_data_set'], one_hot=True) for title, enable_bn in experiment_settings.items(): # start training # build graph (x, y_), train_step, accuracy, _, saver = build_graph( is_training=True, enable_bn=enable_bn, title=title ) path_saved_model = get_path_saved_model( FLAGS_['path_saved_model'], title) mkdir_if_not_exits(path_saved_model) path_summary = get_path_summary( FLAGS_['path_summary'], title) mkdir_if_not_exits(path_summary) with tf.Session() as sess: merged_summary = tf.summary.merge_all() writer = tf.summary.FileWriter(path_summary) writer.add_graph(sess.graph) sess.run(tf.global_variables_initializer()) for i in tqdm.tqdm(xrange(FLAGS_['max_epochs'])): batch = data_set.train.next_batch(FLAGS_['batch_sz']) if i % FLAGS_['summary_period'] == 0 or \ (i+1) == FLAGS_['max_epochs']: s = sess.run(fetches=merged_summary, feed_dict={x: batch[0], y_: batch[1]}) writer.add_summary(s, i) figures.add_summary(session=sess, fig_name=title, index=i, feed_dict={x: batch[0], y_:batch[1]}) if i % FLAGS_['print_period'] == 0 or \ (i+1) == FLAGS_['max_epochs'] : acc = sess.run(fetches=[accuracy], feed_dict={ x: data_set.test.images, y_: data_set.test.labels}) history_acc_[title].append(acc[0]) # start training sess.run(fetches=[train_step], feed_dict={x: batch[0], y_: batch[1]}) print("training accuracy of %s: %g" % (title, history_acc_[title][-1]) ) # save model saver.save(sess, path_saved_model) # start testing tf.reset_default_graph() (x, y_), _, accuracy, y, saver = build_graph(is_training=False, enable_bn=enable_bn, title=title) with tf.Session() as sess: sess.run(tf.global_variables_initializer()) saver.restore(sess, path_saved_model) acc = sess.run(fetches=[accuracy], feed_dict={x: data_set.test.images, y_: data_set.test.labels}) print("testing accuracy of %s: %g" % (title, acc[0])) # reset default graph before new iteration tf.reset_default_graph() # end of iteration # plot test accuracy history for title, _ in experiment_settings.items(): acc = np.array(history_acc_[title]) plt.plot(acc, label=title) plt.legend() plt.show() figures.show(plt) if __name__ == '__main__': main()
StarcoderdataPython
3212799
<reponame>CrepeGoat/cdf-estimation from collections import namedtuple import numpy as np from scipy.interpolate import PPoly import cvxopt cvxopt.solvers.options['show_progress'] = False cvxopt.solvers.options['maxiters'] = 500 # seems to reduce errors (unconfirmed) from likelihood_funcs import * ''' TODO - improve "smoothness" input parameter - change to operate on a [0,1] scale (0 = exact interpolation, 1 = uniform distribution) - characterize slope with b_mid, instead of b_0 - reduces the repetition of calculations -> reduce errors - reduces objective matrix non-sparsity - format tests more professionally - treat repeat samples as discrete samples - i.e., make cdf discontinuous around X_i - i.e., add dirac delta portions to the pdf ''' def expand_vars(bmid_c, X): n = X.shape[-1] n_mid = n // 2 bmid_c = np.asarray(bmid_c) b_mid, c = np.split(bmid_c, (1,), axis=-1) alt_sign = (-1) ** np.arange(n) diffc_diffX = np.diff(c, axis=-1) / np.diff(X, axis=-1) bpart_lower, bpart_upper = np.array_split( -2 * alt_sign[:-1] * diffc_diffX, (n_mid,), axis=-1) b_cumdiff = np.concatenate([ -bpart_lower[..., ::-1].cumsum(-1)[..., ::-1], np.zeros_like(b_mid), np.cumsum(bpart_upper, -1), ], axis=-1) b = alt_sign * (b_cumdiff + alt_sign[n_mid]*b_mid) #a_diffX = diffc_diffX - b[..., :-1] a_diffX = np.diff(b, axis=-1) / 2 return namedtuple("SplineVars", "a_diffX b c")(a_diffX, b, c) def expand_vars_lc(X): n = X.shape[-1] n_mid = n // 2 bmid_c = np.diagflat(np.ones(n+1, dtype=np.int64)) b_mid, c = np.split(bmid_c, (1,), axis=0) diffc_diffX = np.diff(c, axis=0) / np.diff(X)[:, np.newaxis] alt_sign = (-1) ** np.arange(n)[:, np.newaxis] bpart_lower, bpart_upper = np.array_split( -2 * alt_sign[:-1] * diffc_diffX, (n_mid,), axis=0) b_cumdiff = np.concatenate([ -bpart_lower[::-1].cumsum(0)[::-1], np.zeros_like(b_mid), np.cumsum(bpart_upper, 0), ], axis=0) b = alt_sign * (b_cumdiff + alt_sign[n_mid]*b_mid) a_diffX = np.diff(b, axis=0) / 2 return namedtuple("SplineVars", "a_diffX b c")(a_diffX, b, c) def make_obj_scale(X, smoothness_factor=1): n = X.shape[-1] scale_a = smoothness_factor / (X[-1] - X[0]) scale_c = -d2dp2_rlhood(n, np.arange(n)) / (n.bit_length() * n) return namedtuple("ObjectiveScales", "scale_a scale_c")(scale_a, scale_c) def make_P_q(X, scale_a=np.ones(1), scale_e=np.ones(1), autoscale=True): n = X.shape[-1] a_diffX, b, c = expand_vars_lc(X) outer_prod = lambda col: col * col[:,np.newaxis] P_a = np.sum( np.apply_along_axis(outer_prod, -1, a_diffX) * ((scale_a / np.diff(X))[:, np.newaxis, np.newaxis]), axis=0) q_a = np.zeros(None) P_c = np.sum( np.apply_along_axis(outer_prod, -1, c) * (scale_e[:, np.newaxis, np.newaxis]), axis=0) q_c = np.sum( -(scale_e * np.arange(1, 2*n, 2) / n)[:, np.newaxis] * c, axis=0) P = 2*(P_a + P_c) q = q_a + q_c if autoscale: min_val = min( np.min(np.abs(P[P != 0])), np.min(np.abs(q[q != 0])) ) max_val = max( np.max(np.abs(P)), np.max(np.abs(q)) ) scale = 2 ** -( # centers exponent range on zero np.mean((np.frexp(min_val)[1], np.frexp(max_val)[1])) # biases range to account for sums of n values #+ n.bit_length() / 2 ) P = P * scale q = q * scale res = namedtuple("QuadProgramObj", "P q")( np.asmatrix(P), np.asmatrix(q).T ) return res def make_G_h(X): n = X.shape[-1] a_diffX, b, c = expand_vars_lc(X) G_b = -b h_b = np.zeros(b.shape[0]) G_c0 = -c[:1] h_c0 = np.zeros(1) G_cnm1 = c[-1:] h_cnm1 = np.ones(1) return namedtuple("QuadProgramBounds", "G h")( np.asmatrix(np.concatenate((G_b, G_c0, G_cnm1), axis=0)), np.asmatrix(np.concatenate((h_b, h_c0, h_cnm1), axis=0)).T, ) def make_A_b(X): return namedtuple("QuadProgramBounds", "A b")( np.zeros((0, X.shape[-1]+1)), np.zeros(0), ) def bmid_c_init_state(X): n = len(X) n_mid = n // 2 ''' # straight line from first point to last point (when a^2 == 0) b_mid = ((n-1) / n) / (X[-1] - X[0]) c = (.5 / n) + b_mid * (X - X[0]) return np.concatenate(([b_mid], c)) ''' # interpolation through all points (when e^2 == 0) b_mid = (2/n) / (X[n_mid+1] - X[n_mid-1]) c = np.arange(1,2*n,2) / (2*n) return np.concatenate(([b_mid], c)) #''' def clean_optimizer_results(bmid_c_opt, X): n = len(X) bmid_c_opt = np.squeeze(np.array(bmid_c_opt)) d2P_X, dP_X, P_X = expand_vars(bmid_c_opt, X) d2P_X = d2P_X / np.diff(X) # Add leading/trailing endpoint regions. I.e., adds: # 1) knots X0, Xnp1 that smoothly joins curve to the constant-value regions # P(x) = 0 as x -> -inf, # P(x) = 1 as x -> inf # 2) 'dead knots' Xm1, Xnp2 with zero-valued derivatives & P = {0,1}, # from which PPoly can extrapolate for x values outside of the # sampled region d2P_X = np.concatenate(( np.zeros(1), dP_X[:1]**2 / (4*P_X[0]), d2P_X, -dP_X[-1:]**2 / (4*(1-P_X[-1])), np.zeros(1) )) X0 = X[:1] - 2 * P_X[0] / dP_X[0] Xnp1 = X[-1:] + 2 * (1-P_X[-1]) / dP_X[-1] X = np.concatenate(( X0 - (X[0] - X0), # dead knot - included for extrapolation to -inf X0, X, Xnp1, Xnp1 + (Xnp1 - X[-1]), # dead knot - included for extrapolation to inf )) P_X = np.concatenate((np.zeros(2), P_X, np.ones(1))) dP_X = np.concatenate((np.zeros(2), dP_X, np.zeros(1))) return X, P_X, dP_X, d2P_X def cdf_approx(X): #, smoothness_factor=1): """ Generates a ppoly spline to approximate the cdf of a random variable, from a 1-D array of i.i.d. samples thereof. Args: X: a collection of i.i.d. samples from a random variable. args, kwargs: any options to forward to the cvxopt qp solver Returns: scipy.interpolate.PPoly object, estimating the cdf of the random variable. Raises: TODO """ # Pre-format input as ordered numpy array X = np.asarray(X) diff_X = np.diff(X) if not (diff_X > 0).all(): X.sort() diff_X = np.diff(X) assert(diff_X.all()) # avoids case of duplicate X-values n = len(X) scale_axi, scale_ei = make_obj_scale(X)#, smoothness_factor) P, q = make_P_q(X, scale_a=scale_axi, scale_e=scale_ei) G, h = make_G_h(X) #A, b = make_A_b(X) # simply unnecessary bmid_c_init = bmid_c_init_state(X) qp_res = cvxopt.solvers.qp( cvxopt.matrix(P), cvxopt.matrix(q), cvxopt.matrix(G), cvxopt.matrix(h), #cvxopt.matrix(A), #cvxopt.matrix(b), #*args, **kwargs ) X, P_X, dP_X, d2P_X = clean_optimizer_results(np.array(qp_res['x']), X) return PPoly.construct_fast(np.stack((d2P_X, dP_X, P_X)), X, extrapolate=True) if __name__ == "__main__": from cdf_est_CVXOPT_tests import run_all_tests run_all_tests()
StarcoderdataPython
214797
<filename>reviewboard/scmtools/tests/test_repository.py class RepositoryTests(TestCase): """Unit tests for Repository operations.""" fixtures = ["test_scmtools"] def setUp(self): super(RepositoryTests, self).setUp() self.local_repo_path = os.path.join(os.path.dirname(__file__), "..", "testdata", "git_repo") self.repository = Repository.objects.create(name="Git test repo", path=self.local_repo_path, tool=Tool.objects.get(name="Git")) self.scmtool_cls = self.repository.get_scmtool().__class__ self.old_get_file = self.scmtool_cls.get_file self.old_file_exists = self.scmtool_cls.file_exists def tearDown(self): super(RepositoryTests, self).tearDown() cache.clear() self.scmtool_cls.get_file = self.old_get_file self.scmtool_cls.file_exists = self.old_file_exists def test_archive(self): """Testing Repository.archive""" self.repository.archive() self.assertTrue(self.repository.name.startswith("ar:Git test repo:")) self.assertTrue(self.repository.archived) self.assertFalse(self.repository.public) self.assertIsNotNone(self.repository.archived_timestamp) repository = Repository.objects.get(pk=self.repository.pk) self.assertEqual(repository.name, self.repository.name) self.assertEqual(repository.archived, self.repository.archived) self.assertEqual(repository.public, self.repository.public) self.assertEqual(repository.archived_timestamp, self.repository.archived_timestamp) def test_archive_no_save(self): """Testing Repository.archive with save=False""" self.repository.archive(save=False) self.assertTrue(self.repository.name.startswith("ar:Git test repo:")) self.assertTrue(self.repository.archived) self.assertFalse(self.repository.public) self.assertIsNotNone(self.repository.archived_timestamp) repository = Repository.objects.get(pk=self.repository.pk) self.assertNotEqual(repository.name, self.repository.name) self.assertNotEqual(repository.archived, self.repository.archived) self.assertNotEqual(repository.public, self.repository.public) self.assertNotEqual(repository.archived_timestamp, self.repository.archived_timestamp) def test_clean_without_conflict(self): """Testing Repository.clean without name/path conflicts""" with self.assertNumQueries(1): self.repository.clean() def test_clean_with_name_conflict(self): """Testing Repository.clean with name conflict""" repository = Repository(name=self.repository.name, path="path/to/repo.git", tool=self.repository.tool) with self.assertRaises(ValidationError) as ctx: with self.assertNumQueries(1): repository.clean() self.assertEqual(ctx.exception.message_dict, {"name": ["A repository with this name already exists"]}) def test_clean_with_path_conflict(self): """Testing Repository.clean with path conflict""" repository = Repository(name="New test repo", path=self.repository.path, tool=self.repository.tool) with self.assertRaises(ValidationError) as ctx: with self.assertNumQueries(1): repository.clean() self.assertEqual(ctx.exception.message_dict, {"path": ["A repository with this path already exists"]}) def test_clean_with_name_and_path_conflict(self): """Testing Repository.clean with name and path conflict""" repository = Repository(name=self.repository.name, path=self.repository.path, tool=self.repository.tool) with self.assertRaises(ValidationError) as ctx: with self.assertNumQueries(1): repository.clean() self.assertEqual(ctx.exception.message_dict, {"name": ["A repository with this name already exists"], "path": ["A repository with this path already exists"]}) def test_clean_with_path_conflict_with_archived(self): """Testing Repository.clean with archived repositories ignored for path conflict """ self.repository.archive() repository = Repository(name="<NAME> repo", path=self.repository.path, tool=self.repository.tool) with self.assertNumQueries(1): repository.clean() def test_get_file_caching(self): """Testing Repository.get_file caches result""" def get_file(self, path, revision, **kwargs): num_calls["get_file"] += 1 return b"file data" num_calls = {"get_file": 0} path = "readme" revision = "e965047" request = {} self.scmtool_cls.get_file = get_file data1 = self.repository.get_file(path, revision, request=request) data2 = self.repository.get_file(path, revision, request=request) self.assertIsInstance(data1, bytes) self.assertIsInstance(data2, bytes) self.assertEqual(data1, b"file data") self.assertEqual(data1, data2) self.assertEqual(num_calls["get_file"], 1) def test_get_file_signals(self): """Testing Repository.get_file emits signals""" def on_fetching_file(sender, path, revision, request, **kwargs): found_signals.append(("fetching_file", path, revision, request)) def on_fetched_file(sender, path, revision, request, **kwargs): found_signals.append(("fetched_file", path, revision, request)) found_signals = [] fetching_file.connect(on_fetching_file, sender=self.repository) fetched_file.connect(on_fetched_file, sender=self.repository) path = "readme" revision = "e965047" request = {} self.repository.get_file(path, revision, request=request) self.assertEqual(len(found_signals), 2) self.assertEqual(found_signals[0], ("fetching_file", path, revision, request)) self.assertEqual(found_signals[1], ("fetched_file", path, revision, request)) def test_get_file_exists_caching_when_exists(self): """Testing Repository.get_file_exists caches result when exists""" def file_exists(self, path, revision, **kwargs): num_calls["get_file_exists"] += 1 return True num_calls = {"get_file_exists": 0} path = "readme" revision = "e965047" request = {} self.scmtool_cls.file_exists = file_exists exists1 = self.repository.get_file_exists(path, revision, request=request) exists2 = self.repository.get_file_exists(path, revision, request=request) self.assertTrue(exists1) self.assertTrue(exists2) self.assertEqual(num_calls["get_file_exists"], 1) def test_get_file_exists_caching_when_not_exists(self): """Testing Repository.get_file_exists doesn't cache result when the file does not exist """ def file_exists(self, path, revision, **kwargs): num_calls["get_file_exists"] += 1 return False num_calls = {"get_file_exists": 0} path = "readme" revision = "12345" request = {} self.scmtool_cls.file_exists = file_exists exists1 = self.repository.get_file_exists(path, revision, request=request) exists2 = self.repository.get_file_exists(path, revision, request=request) self.assertFalse(exists1) self.assertFalse(exists2) self.assertEqual(num_calls["get_file_exists"], 2) def test_get_file_exists_caching_with_fetched_file(self): """Testing Repository.get_file_exists uses get_file's cached result""" def get_file(self, path, revision, **kwargs): num_calls["get_file"] += 1 return b"file data" def file_exists(self, path, revision, **kwargs): num_calls["get_file_exists"] += 1 return True num_calls = {"get_file_exists": 0, "get_file": 0} path = "readme" revision = "e965047" request = {} self.scmtool_cls.get_file = get_file self.scmtool_cls.file_exists = file_exists self.repository.get_file(path, revision, request=request) exists1 = self.repository.get_file_exists(path, revision, request=request) exists2 = self.repository.get_file_exists(path, revision, request=request) self.assertTrue(exists1) self.assertTrue(exists2) self.assertEqual(num_calls["get_file"], 1) self.assertEqual(num_calls["get_file_exists"], 0) def test_get_file_exists_signals(self): """Testing Repository.get_file_exists emits signals""" def on_checking(sender, path, revision, request, **kwargs): found_signals.append(("checking_file_exists", path, revision, request)) def on_checked(sender, path, revision, request, **kwargs): found_signals.append(("checked_file_exists", path, revision, request)) found_signals = [] checking_file_exists.connect(on_checking, sender=self.repository) checked_file_exists.connect(on_checked, sender=self.repository) path = "readme" revision = "e965047" request = {} self.repository.get_file_exists(path, revision, request=request) self.assertEqual(len(found_signals), 2) self.assertEqual(found_signals[0], ("checking_file_exists", path, revision, request)) self.assertEqual(found_signals[1], ("checked_file_exists", path, revision, request)) def test_repository_name_with_255_characters(self): """Testing Repository.name with 255 characters""" self.repository = Repository.objects.create(name="t" * 255, path=self.local_repo_path, tool=Tool.objects.get(name="Git")) self.assertEqual(len(self.repository.name), 255) def test_is_accessible_by_with_public(self): """Testing Repository.is_accessible_by with public repository""" user = self.create_user() repository = self.create_repository() self.assertTrue(repository.is_accessible_by(user)) self.assertTrue(repository.is_accessible_by(AnonymousUser())) def test_is_accessible_by_with_public_and_hidden(self): """Testing Repository.is_accessible_by with public hidden repository""" user = self.create_user() repository = self.create_repository(visible=False) self.assertTrue(repository.is_accessible_by(user)) self.assertTrue(repository.is_accessible_by(AnonymousUser())) def test_is_accessible_by_with_private_and_not_member(self): """Testing Repository.is_accessible_by with private repository and user not a member """ user = self.create_user() repository = self.create_repository(public=False) self.assertFalse(repository.is_accessible_by(user)) self.assertFalse(repository.is_accessible_by(AnonymousUser())) def test_is_accessible_by_with_private_and_member(self): """Testing Repository.is_accessible_by with private repository and user is a member """ user = self.create_user() repository = self.create_repository(public=False) repository.users.add(user) self.assertTrue(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_and_member_by_group(self): """Testing Repository.is_accessible_by with private repository and user is a member by group """ user = self.create_user() group = self.create_review_group(invite_only=True) group.users.add(user) repository = self.create_repository(public=False) repository.review_groups.add(group) self.assertTrue(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_and_superuser(self): """Testing Repository.is_accessible_by with private repository and user is a superuser """ user = self.create_user(is_superuser=True) repository = self.create_repository(public=False) self.assertTrue(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_hidden_not_member(self): """Testing Repository.is_accessible_by with private hidden repository and user not a member """ user = self.create_user() repository = self.create_repository(public=False, visible=False) self.assertFalse(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_hidden_and_member(self): """Testing Repository.is_accessible_by with private hidden repository and user is a member """ user = self.create_user() repository = self.create_repository(public=False, visible=False) repository.users.add(user) self.assertTrue(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_hidden_and_member_by_group(self): """Testing Repository.is_accessible_by with private hidden repository and user is a member """ user = self.create_user() group = self.create_review_group(invite_only=True) group.users.add(user) repository = self.create_repository(public=False, visible=False) repository.review_groups.add(group) self.assertTrue(repository.is_accessible_by(user)) def test_is_accessible_by_with_private_hidden_and_superuser(self): """Testing Repository.is_accessible_by with private hidden repository and superuser """ user = self.create_user(is_superuser=True) repository = self.create_repository(public=False, visible=False) self.assertTrue(repository.is_accessible_by(user)) @add_fixtures(["test_users", "test_site"]) def test_is_accessible_by_with_local_site_accessible(self): """Testing Repository.is_accessible_by with Local Site accessible by user """ user = self.create_user() repository = self.create_repository(with_local_site=True) repository.local_site.users.add(user) self.assertTrue(repository.is_accessible_by(user)) @add_fixtures(["test_users", "test_site"]) def test_is_accessible_by_with_local_site_not_accessible(self): """Testing Repository.is_accessible_by with Local Site not accessible by user """ user = self.create_user() repository = self.create_repository(with_local_site=True) self.assertFalse(repository.is_accessible_by(user)) self.assertFalse(repository.is_accessible_by(AnonymousUser()))
StarcoderdataPython
12825950
# (C) Datadog, Inc. 2021-present # All rights reserved # Licensed under a 3-clause BSD style license (see LICENSE) import json import os import mock import pytest from datadog_checks.citrix_hypervisor import CitrixHypervisorCheck from . import common @pytest.mark.usefixtures('mock_responses') def test_collect_metadata(datadog_agent, instance): check = CitrixHypervisorCheck('citrix_hypervisor', {}, [instance]) check.check_id = 'test:123' version_metadata = { 'version.scheme': 'semver', 'version.major': '8', 'version.minor': '2', 'version.patch': '0', 'version.raw': '8.2.0', } with open(os.path.join(common.HERE, 'fixtures', 'standalone', 'version.json'), 'rb') as f: content = json.load(f) xenserver = common.mocked_xenserver('master') xenserver.session.get_this_host.return_value = {'Status': 'Success', 'Value': 'hostref'} xenserver.host.get_software_version.return_value = content with mock.patch('six.moves.xmlrpc_client.Server', return_value=xenserver): check.check(None) datadog_agent.assert_metadata('test:123', version_metadata) datadog_agent.assert_metadata_count(len(version_metadata))
StarcoderdataPython
1753989
def disassemble_script(inp, ip_reg): r_names = ['A', 'B', 'C', 'D', 'E', 'F'] r_names[ip_reg] = 'IP' for n, line in enumerate(inp): op, *params = line.split() a, b, c = map(int, params) print(f'{n:>2}: ', end='') if op == 'addr': print(f'{op} {r_names[a]} + {r_names[b]} -> {r_names[c]}') elif op == 'addi': print(f'{op} {r_names[a]} + {b} -> {r_names[c]}') elif op == 'mulr': print(f'{op} {r_names[a]} * {r_names[b]} -> {r_names[c]}') elif op == 'muli': print(f'{op} {r_names[a]} * {b} -> {r_names[c]}') elif op == 'banr': print(f'{op} {r_names[a]} & {r_names[b]} -> {r_names[c]}') elif op == 'bani': print(f'{op} {r_names[a]} & {b} -> {r_names[c]}') elif op == 'borr': print(f'{op} {r_names[a]} | {r_names[b]} -> {r_names[c]}') elif op == 'bori': print(f'{op} {r_names[a]} | {b} -> {r_names[c]}') elif op == 'setr': print(f'{op} {r_names[a]} -> {r_names[c]}') elif op == 'seti': print(f'{op} {a} -> {r_names[c]}') elif op == 'gtir': print(f'{op} {a} > {r_names[b]} -> {r_names[c]}') elif op == 'gtri': print(f'{op} {r_names[a]} > {b} -> {r_names[c]}') elif op == 'gtrr': print(f'{op} {r_names[a]} > {r_names[b]} -> {r_names[c]}') elif op == 'eqir': print(f'{op} {a} == {r_names[b]} -> {r_names[c]}') elif op == 'eqri': print(f'{op} {r_names[a]} == {b} -> {r_names[c]}') elif op == 'eqrr': print(f'{op} {r_names[a]} == {r_names[b]} -> {r_names[c]}') DEBUG = False def bug(s: str, **kwds): if DEBUG: print(s, *kwds) def run_script(inp, ip_reg, pass1=True): registers = [0, 0, 0, 0, 0, 0] r_names = ['A', 'B', 'C', 'D', 'E', 'F'] r_names[ip_reg] = 'IP' last_unique = 1e600 history = set() while 0 <= registers[ip_reg] <= len(inp): if registers[ip_reg] == 17: bug(f'L16: [{" ".join([f"{n}:{r:<3}" for r, n in zip(registers, r_names)]):^30}]') registers[1] //= 256 registers[2] = 1 registers[3] = registers[1] registers[ip_reg] = 8 bug(f'L26: [{" ".join([f"{n}:{r:<3}" for r, n in zip(registers, r_names)]):^30}]') if registers[ip_reg] == 27: bug(f'L26: [{" ".join([f"{n}:{r:<3}" for r, n in zip(registers, r_names)]):^30}]') if registers[ip_reg] == 28: bug(f'L27: [{" ".join([f"{n}:{r:<3}" for r, n in zip(registers, r_names)]):^30}]') f_reg = registers[5] if pass1: return f_reg else: if f_reg in history: return last_unique history.add(f_reg) last_unique = f_reg line = inp[registers[ip_reg]] bug(f'[{" ".join([f"{n}:{r:<3}" for r, n in zip(registers, r_names)]):^30}] : ', end='') op, *params = line.split() a, b, c = map(int, params) if op == 'addr': registers[c] = registers[a] + registers[b] bug(f'{op} {r_names[a]} + {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'addi': registers[c] = registers[a] + b bug(f'{op} {r_names[a]} + {b} -> {r_names[c]} [{registers[c]}]') elif op == 'mulr': registers[c] = registers[a] * registers[b] bug(f'{op} {r_names[a]} * {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'muli': registers[c] = registers[a] * b bug(f'{op} {r_names[a]} * {b} -> {r_names[c]} [{registers[c]}]') elif op == 'banr': registers[c] = registers[a] & registers[b] bug(f'{op} {r_names[a]} & {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'bani': registers[c] = registers[a] & b bug(f'{op} {r_names[a]} & {b} -> {r_names[c]} [{registers[c]}]') elif op == 'borr': registers[c] = registers[a] | registers[b] bug(f'{op} {r_names[a]} | {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'bori': registers[c] = registers[a] | b bug(f'{op} {r_names[a]} | {b} -> {r_names[c]} [{registers[c]}]') elif op == 'setr': registers[c] = registers[a] bug(f'{op} {r_names[a]} -> {r_names[c]} [{registers[c]}]') elif op == 'seti': registers[c] = a bug(f'{op} {a} -> {r_names[c]} [{registers[c]}]') elif op == 'gtir': registers[c] = 1 if a > registers[b] else 0 bug(f'{op} {a} > {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'gtri': registers[c] = 1 if registers[a] > b else 0 bug(f'{op} {r_names[a]} > {b} -> {r_names[c]} [{registers[c]}]') elif op == 'gtrr': registers[c] = 1 if registers[a] > registers[b] else 0 bug(f'{op} {r_names[a]} > {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'eqir': registers[c] = 1 if a == registers[b] else 0 bug(f'{op} {a} == {r_names[b]} -> {r_names[c]} [{registers[c]}]') elif op == 'eqri': registers[c] = 1 if registers[a] == b else 0 bug(f'{op} {r_names[a]} == {b} -> {r_names[c]} [{registers[c]}]') elif op == 'eqrr': registers[c] = 1 if registers[a] == registers[b] else 0 bug(f'{op} {r_names[a]} == {r_names[b]} -> {r_names[c]} [{registers[c]}]') registers[ip_reg] += 1 return registers def chronal_conversion(inp, ip_reg, pass1=True): result = run_script(inp, ip_reg, pass1) return result if __name__ == '__main__': with open('input.txt') as code_file: code_lines = code_file.read().splitlines(keepends=False) ip_reg = -1 if code_lines[0].startswith('#ip '): ip_reg = int(code_lines[0][4:]) disassemble_script(code_lines[1:], ip_reg) print(f'Day 21, pass 1: {chronal_conversion(code_lines[1:], ip_reg)}') print(f'Day 21, pass 2: {chronal_conversion(code_lines[1:], ip_reg, False)}') # Day 21, pass 1: 12446070 # Day 21, pass 2: 13928239
StarcoderdataPython
3362475
# THIS IS NOT INTENDED TO RUN AS IS, THE IMPORTS WILL FAIL. # PLEASE READ THE COMMENTS import argparse import slurm as om # Note: The slurm repo has to be added as a submodule within that path # that you will be working in. Thus you'll use something like: # ` import slurm as om` were slurm is this package's name. # Below is an example package layout: # # # # # # # # # # # # # # # # # # # # # MyPackage: # __init__.py # \foo: # __init__.py # example.py (this file) # # \slurm (This module as a submodule) # # \bar: # __init__.py # bar.py # # # # # # # # # # # # # # # # # # # # # # # Ensuring that the path is known: # export PYTHONPATH=<Path to MyPackage> # # You can now run the example as: # python ../foo/example.py .... # # Also don't forget your __init__.py's! def main(): # Use argparse to make a parser containing your batch arguments parser = argparse.ArgumentParser(description="This is a cool example") parser.add_argument( 'name', type=str, help='Your name') parser.add_argument( 'food', type=str, help = 'Your favorite food') # Pass the parser to slurm so it can add its own optional parameters # such as cpu, memory... # Call `python example.py -h` to see these arguments args = om.slurm.args(parser).parse_args() # Now lets define any job-inpendent arguments (to be applied to all jobs) # Interpreter to read the virtual job shell interpreter = '#!/bin/sh' # Modules to import. Note: modules are not automatically passed # into each subprocess from the current environment. modules = [] # For example (not used here) modules.append('openmind/singularity/librefactor-1g397644e') # Any variables to export in the form: ("NAME", "VALUE") exports = [] exports.append(("NAME", args.name)) exports.append(("FOOD", args.food)) # Any command postfix-flags to be used in all batches flags = [] # Finally the actual execution command. # Note this could be a really complicated function call, say to # a singularity container, matlab, python, or even better, a python # environment inside a singularity container (hypothetically defined in # bar.py) func = "echo $NAME really loves $FOOD" # These are the job dependent arguments. # They must be a list-of-lists where each inner list are the arguments # for `func` batches = [["For the {0:d}th time...".format(i)] for i in range(10)] # Constructs the batch object batch = om.slurm.Batch(interpreter, modules, exports, func, batches, flags, args) # Submit the jobarray batch.run() # Watch the status of the jobs until completion batch.monitor() if __name__ == '__main__': main()
StarcoderdataPython
1632098
<reponame>sun1638650145/CRNN from .utils import decode_predictions from .utils import get_dataset_summary from .utils import get_image_format from .utils import visualize_train_data from .preprocessing import character_decoder from .preprocessing import character_encoder from .preprocessing import create_tf_dataset from .preprocessing import train_validation_split
StarcoderdataPython
9786281
<filename>pypcode_emu/ntypes.py<gh_stars>10-100 import operator from typing import Type import nativetypes as nt from bidict import bidict uint1 = nt.nint_type("uint1", 1, False) int1 = nt.nint_type("int1", 1, True) size2uintN = bidict({0: uint1, 1: nt.uint8, 2: nt.uint16, 4: nt.uint32, 8: nt.uint64}) size2intN = bidict({1: int1, 2: nt.int16, 4: nt.int32, 8: nt.int64}) def uintN(nbytes: int) -> Type[nt.nint]: return size2uintN[nbytes] def intN(nbytes: int) -> Type[nt.nint]: return size2intN[nbytes] def as_u(self: nt.nint): if self.v < 0: return nt.nint((1 << self.b) + self.v, self.b, False) return nt.nint(self.v, self.b, False) nt.nint.as_u = property(as_u) def as_s(self: nt.nint): if self.s: return self return nt.nint(self.v, self.b, True) nt.nint.as_s = property(as_s) def sext(self: nt.nint, nbits: int): return nt.nint(self.as_s.v, nbits, True) nt.nint.sext = sext def zext(self: nt.nint, nbits: int): return nt.nint(self.as_u.v, nbits, False) nt.nint.zext = zext def asr(self: nt.nint, nbits: int): return nt.nint((self.as_s >> nbits).v, self.b, True) nt.nint.asr = asr nt.nint.CMP_MAP = { ">": "gt", "<": "lt", "==": "eq", "!=": "ne", ">=": "ge", "<=": "le", } def cmp(self: nt.nint, cmp: str, other: nt.nint) -> nt.uint8: signed = cmp.startswith("s") if signed: a, b = self.as_s, other.as_s else: a, b = self.as_u, other.as_u cmp = cmp.lstrip("s") py_op_name = f"__{nt.nint.CMP_MAP[cmp]}__" op_func = getattr(operator, py_op_name) return nt.uint8(1 if op_func(a, b) else 0) nt.nint.cmp = cmp def strict_eq(self: nt.nint, other: nt.nint) -> bool: return self.v == other.v and self.b == other.b and self.s == other.s nt.nint.strict_eq = strict_eq def comp_time_eq(self: nt.nint, other: nt.nint) -> bool: return self.strict_eq(other) nt.nint.comp_time_eq = comp_time_eq def nint_hash(self: nt.nint) -> int: return hash((self.v, self.b, self.s)) nt.nint.__hash__ = nint_hash exported_attrs_names = list( filter(lambda n: not n.startswith("__") and not n.endswith("__"), dir(nt)) ) exported_attrs = [getattr(nt, n) for n in exported_attrs_names] exported_attrs = [*exported_attrs, uint1, int1] exported_attrs_names = [*exported_attrs_names, "uint1", "int1"] for n, a in zip(exported_attrs_names, exported_attrs): globals()[n] = a nint = nt.nint uint8, int8 = nt.uint8, nt.int8 uint16, int16 = nt.uint16, nt.uint16 uint32, int32 = nt.uint32, nt.int32 uint64, int64 = nt.uint64, nt.int64 __all__ = tuple(exported_attrs_names)
StarcoderdataPython
6478337
#!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (C) 2011 <NAME> <EMAIL> # import logging import ctypes from haystack.reverse import config from haystack.reverse import structure """ the Python classes to represent the guesswork record and field typing of allocations. """ log = logging.getLogger('field') # Field related functions and classes class FieldType(object): """ Represents the type of a field. """ types = set() def __init__(self, _id, _name, _signature): self.__id = _id self.__name = _name self.__sig = _signature @property def id(self): return self.__id @property def name(self): return self.__name @property def signature(self): return self.__sig def __cmp__(self, other): try: return cmp(self.id, other.id) except AttributeError as e: return -1 def __hash__(self): return hash(self.id) def __str__(self): return '<FieldType %s>' % self.name def __repr__(self): return '<t:%s>' % self.name class FieldTypeStruct(FieldType): """ Fields that are know independent structure. In case we reverse a Big record that has members of known record types. """ def __init__(self, _typename): assert isinstance(_typename, str) super(FieldTypeStruct, self).__init__(0x1, _typename, 'K') def __str__(self): return self.name class FieldTypeArray(FieldType): """ An array type """ def __init__(self, item_type, item_size, nb_items): super(FieldTypeArray, self).__init__(0x60, '%s*%d' % (item_type.name, nb_items), 'a') self.nb_items = nb_items self.item_type = item_type self.item_size = item_size self.size = item_size*nb_items class RecordTypePointer(FieldType): def __init__(self, _type): #if typ == STRING: # return STRING_POINTER super(RecordTypePointer, self).__init__(_type.id + 0xa, 'ctypes.POINTER(%s)' % _type.name, 'P') # setup all the know types that are interesting to us UNKNOWN = FieldType(0x0, 'ctypes.c_ubyte', 'u') STRUCT = FieldType(0x1, 'Structure', 'K') ZEROES = FieldType(0x2, 'ctypes.c_ubyte', 'z') STRING = FieldType(0x4, 'ctypes.c_char', 'T') STRING16 = FieldType(0x14, 'ctypes.c_char', 'T') STRINGNULL = FieldType(0x6, 'ctypes.c_char', 'T') STRING_POINTER = FieldType(0x4 + 0xa, 'ctypes.c_char_p', 's') INTEGER = FieldType(0x18, 'ctypes.c_uint', 'I') SMALLINT = FieldType(0x8, 'ctypes.c_uint', 'i') SIGNED_SMALLINT = FieldType(0x28, 'ctypes.c_int', 'i') ARRAY = FieldType(0x40, 'Array', 'a') BYTEARRAY = FieldType(0x50, 'ctypes.c_ubyte', 'a') # ARRAY_CHAR_P = FieldType(0x9, 'array_char_p', 'ctypes.c_char_p', 'Sp') POINTER = FieldType(0xa, 'ctypes.c_void_p', 'P') PADDING = FieldType(0xff, 'ctypes.c_ubyte', 'X') class Field(object): """ Class that represent a Field instance, a FieldType instance. """ def __init__(self, name, offset, _type, size, is_padding): self.__name = name self.__offset = offset assert isinstance(_type, FieldType) self.__field_type = _type self.__size = size self.__padding = is_padding self.__comment = '#' @property def name(self): return self.__name @name.setter def name(self, _name): if _name is None: self.__name = '%s_%s' % (self.field_type.name, self.offset) else: self.__name = _name @property def offset(self): return self.__offset @property def field_type(self): return self.__field_type @property def size(self): return self.__size @property def padding(self): return self.__padding @property def comment(self): return self.__comment @comment.setter def comment(self, txt): self.__comment = '# %s' % txt def is_string(self): # null terminated return self.field_type in [STRING, STRING16, STRINGNULL, STRING_POINTER] def is_pointer(self): # we could be a pointer or a pointer string return issubclass(self.__class__, PointerField) def is_zeroes(self): return self.field_type == ZEROES def is_array(self): # will be overloaded return self.field_type == ARRAY or self.field_type == BYTEARRAY def is_integer(self): return self.field_type == INTEGER or self.field_type == SMALLINT or self.field_type == SIGNED_SMALLINT def is_record(self): return self.field_type == STRUCT def is_gap(self): return self.field_type == UNKNOWN def get_typename(self): if self.is_string() or self.is_zeroes(): return '%s*%d' % (self.field_type.name, len(self)) elif self.is_array(): # TODO should be in type return '%s*%d' % (self.field_type.name, len(self) / self.nb_items) elif self.field_type == UNKNOWN: return '%s*%d' % (self.field_type.name, len(self)) return self.field_type.name def __hash__(self): return hash((self.offset, self.size, self.field_type)) def __cmp__(self, other): # XXX : Perf... cmp sux try: if self.offset < other.offset: return -1 elif self.offset > other.offset: return 1 elif (self.offset, self.size, self.field_type) == (other.offset, other.size, other.field_type): return 0 # last chance, expensive cmp return cmp((self.offset, self.size, self.field_type), (other.offset, other.size, other.field_type)) except AttributeError as e: # if not isinstance(other, Field): return -1 def __len__(self): return int(self.size) # some long come and goes def __repr__(self): return str(self) def __str__(self): return '<Field offset:%d size:%s t:%s>' % (self.offset, self.size, self.field_type) def get_signature(self): return self.field_type, self.size def to_string(self, value): if value is None: value = 0 if self.is_pointer(): comment = '# @ 0x%0.8x %s' % (value, self.comment) elif self.is_integer(): comment = '# 0x%x %s' % (value, self.comment) elif self.is_zeroes(): comment = '''# %s zeroes: '\\x00'*%d''' % (self.comment, len(self)) elif self.is_string(): comment = '# %s %s: %s' % (self.comment, self.field_type.name, value) elif self.is_record(): comment = '#' else: # unknown comment = '# %s else bytes:%s' % (self.comment, repr(value)) # prep the string fstr = "( '%s' , %s ), %s\n" % (self.name, self.get_typename(), comment) return fstr class PointerField(Field): """ represent a pointer field """ def __init__(self, name, offset, size): super(PointerField, self).__init__(name, offset, POINTER, size, False) self.__pointee = None self.__pointer_to_ext_lib = False\ # ?? self._child_addr = 0 self._child_desc = None self._child_type = None @property def pointee(self): return self.__pointee @pointee.setter def pointee(self, pointee_field): self.__pointee = pointee_field def is_pointer_to_string(self): # if hasattr(self, '_ptr_to_ext_lib'): # return False return self.pointee.is_string() def is_pointer_to_ext_lib(self): return self.__pointer_to_ext_lib def set_pointer_to_ext_lib(self): self.__pointer_to_ext_lib = True def set_pointee_addr(self, addr): self._child_addr = addr def set_pointee_desc(self, desc): self._child_desc = desc def set_pointee_ctype(self, _type): self._child_type = _type class ArrayField(Field): """ Represents an array field. """ # , basicTypename, basicTypeSize ): # use first element to get that info def __init__(self, name, offset, item_type, item_size, nb_item): size = item_size * nb_item super(ArrayField, self).__init__(name, offset, FieldTypeArray(item_type, item_size, nb_item), size, False) def get_typename(self): return self.field_type.name def is_array(self): return True def _get_value(self, _record, maxLen=120): return None def to_string(self, _record, prefix=''): item_type = self.field_type.item_type # log.debug('P:%s I:%s Z:%s typ:%s' % (item_type.is_pointer(), item_type.is_integer(), item_type.is_zeroes(), item_type.name)) log.debug("array type: %s", item_type.name) # comment = '# %s array' % self.comment fstr = "%s( '%s' , %s ), %s\n" % (prefix, self.name, self.get_typename(), comment) return fstr class ZeroField(ArrayField): """ Represents an array field of zeroes. """ def __init__(self, name, offset, nb_item): super(ZeroField, self).__init__(name, offset, ZEROES, 1, nb_item) def is_zeroes(self): return True class RecordField(Field, structure.AnonymousRecord): """ make a record field """ def __init__(self, parent, offset, field_name, field_type, fields): size = sum([len(f) for f in fields]) _address = parent.address + offset structure.AnonymousRecord.__init__(self, parent._memory_handler, _address, size, prefix=None) Field.__init__(self, field_name, offset, FieldTypeStruct(field_type), size, False) structure.AnonymousRecord.set_name(self, field_name) #structure.AnonymousRecord.add_fields(self, fields) _record_type = structure.RecordType(field_type, size,fields) self.set_record_type(_record_type) return def get_typename(self): return '%s' % self.field_type @property def address(self): raise NotImplementedError('You cannot call address on a subrecord') # def to_string(self, *args): # # print self.fields # fieldsString = '[ \n%s ]' % (''.join([field.to_string(self, '\t') for field in self.get_fields()])) # info = 'rlevel:%d SIG:%s size:%d' % (self.get_reverse_level(), self.get_signature(), len(self)) # ctypes_def = ''' #class %s(ctypes.Structure): # %s # _fields_ = %s # #''' % (self.name, info, fieldsString) # return ctypes_def
StarcoderdataPython
3550051
<reponame>emilybache/ApprovalTools<filename>approve_all.py #!/usr/bin/env python3 import os import re import shutil import argparse def approve_all(directory, verbose=True): regex = re.compile(r"(.*)\.received(\..*)") for root, dirs, files in os.walk(directory): for filename in files: matches = re.findall(regex, filename) if matches: test_name = matches[0][0] file_extension_including_dot = matches[0][1] new_filename = test_name + ".approved" + file_extension_including_dot received_file = str(os.path.join(root, filename)) approved_file = str(os.path.join(root, new_filename)) shutil.copyfile(received_file, approved_file) if verbose: print(f"approving {test_name}") if __name__ == "__main__": import sys parser = argparse.ArgumentParser() parser.add_argument("directory", help="the directory to approve files in") parser.add_argument("-q", "--quiet", action="store_true", help="suppress all output messages") args = parser.parse_args() directory = args.directory or os.getcwd() verbose = not args.quiet if not os.path.exists(directory): print(f"directory not found {directory}") sys.exit(-1) if verbose: print(f"approving all received files in folder {directory}") approve_all(directory, verbose)
StarcoderdataPython
1906222
# -*- coding: utf-8 -*- # Generated by Django 1.11.4 on 2017-09-26 12:19 from __future__ import unicode_literals from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('blog', '0005_category'), ] operations = [ migrations.AddField( model_name='post', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='blog.category'), ), migrations.AddField( model_name='post2', name='category', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.CASCADE, to='blog.category'), ), ]
StarcoderdataPython
9663157
<reponame>nigeljyng/textacy # -*- coding: utf-8 -*- """ Load, process, iterate, transform, and save text content paired with metadata — a document. """ from __future__ import absolute_import, division, print_function, unicode_literals from collections import Counter import os import warnings from cytoolz import itertoolz import spacy.about from spacy import attrs from spacy.language import Language as SpacyLang from spacy.tokens.doc import Doc as SpacyDoc from spacy.tokens.span import Span as SpacySpan from spacy.tokens.token import Token as SpacyToken import textacy from textacy.compat import unicode_ from textacy.constants import NUMERIC_NE_TYPES from textacy import data, fileio, spacy_utils, text_utils from textacy import network class Doc(object): """ A text document parsed by spaCy and, optionally, paired with key metadata. Transform ``Doc`` into an easily-customized list of terms, a bag-of-words or (more general) bag-of-terms, or a semantic network; save and load parsed content and metadata to and from disk; index, slice, and iterate through tokens and sentences; and more. Initialize from a text and (optional) metadata:: >>> content = ''' ... The apparent symmetry between the quark and lepton families of ... the Standard Model (SM) are, at the very least, suggestive of ... a more fundamental relationship between them. In some Beyond the ... Standard Model theories, such interactions are mediated by ... leptoquarks (LQs): hypothetical color-triplet bosons with both ... lepton and baryon number and fractional electric charge.''' >>> metadata = { ... 'title': 'A Search for 2nd-generation Leptoquarks at √s = 7 TeV', ... 'author': '<NAME>', ... 'pub_date': '2012-08-01'} >>> doc = textacy.Doc(content, metadata=metadata) >>> print(doc) Doc(71 tokens; "The apparent symmetry between the quark and lep...") Transform into other, common formats:: >>> doc.to_bag_of_words(lemmatize=False, as_strings=False) {205123: 1, 21382: 1, 17929: 1, 175499: 2, 396: 1, 29774: 1, 27472: 1, 4498: 1, 1814: 1, 1176: 1, 49050: 1, 287836: 1, 1510365: 1, 6239: 2, 3553: 1, 5607: 1, 4776: 1, 49580: 1, 6701: 1, 12078: 2, 63216: 1, 6738: 1, 83061: 1, 5243: 1, 1599: 1} >>> doc.to_bag_of_terms(ngrams=2, named_entities=True, ... lemmatize=True, as_strings=True) {'apparent symmetry': 1, 'baryon number': 1, 'electric charge': 1, 'fractional electric': 1, 'fundamental relationship': 1, 'hypothetical color': 1, 'lepton family': 1, 'model theory': 1, 'standard model': 2, 'triplet boson': 1} Doc as sequence of tokens, emulating spaCy's "sequence API":: >>> doc[49] # spacy.Token leptoquarks >>> doc[:3] # spacy.Span The apparent symmetry Save to and load from disk:: >>> doc.save('~/Desktop', name='leptoquarks') >>> doc = textacy.Doc.load('~/Desktop', name='leptoquarks') >>> print(doc) Doc(71 tokens; "The apparent symmetry between the quark and lep...") Args: content (str or ``spacy.Doc``): Document content as (unicode) text or an already-parsed ``spacy.Doc``. If str, content is processed by models loaded with a ``spacy.Language`` and assigned to :attr:`spacy_doc`. metadata (dict): Dictionary of relevant information about content. This can be helpful when identifying and filtering documents, as well as when engineering features for model inputs. lang (str or ``spacy.Language``): Language of document content. If this is known, pass in its standard 2-letter language code or, if *not* known, leave as None (default) and let textacy handle everything. A language code is then used to load a ``spacy.Language`` object, unless an already-instantiated such object is passed in here. **Note:** Currently, spaCy only works with English ('en') and German ('de') languages! The ``spacy.Language`` object parses ``content`` (if str) and sets the :attr:`spacy_vocab` and :attr:`spacy_stringstore` attributes. Attributes: lang (str): 2-letter code for language of ``Doc``. metadata (dict): Dictionary of relevant information about content. spacy_doc (``spacy.Doc``): https://spacy.io/docs#doc spacy_vocab (``spacy.Vocab``): https://spacy.io/docs#vocab spacy_stringstore (``spacy.StringStore``): https://spacy.io/docs#stringstore """ def __init__(self, content, metadata=None, lang=None): self.metadata = metadata or {} # Doc instantiated from text, so must be parsed with a spacy.Language if isinstance(content, unicode_): if isinstance(lang, SpacyLang): self.lang = lang.lang spacy_lang = lang elif isinstance(lang, unicode_): self.lang = lang spacy_lang = data.load_spacy(self.lang) elif lang is None: self.lang = text_utils.detect_language(content) spacy_lang = data.load_spacy(self.lang) else: msg = '`lang` must be {}, not "{}"'.format( {unicode_, SpacyLang}, type(lang)) raise ValueError(msg) self.spacy_vocab = spacy_lang.vocab self.spacy_stringstore = self.spacy_vocab.strings self.spacy_doc = spacy_lang(content) # Doc instantiated from an already-parsed spacy.Doc elif isinstance(content, SpacyDoc): self.spacy_vocab = content.vocab self.spacy_stringstore = self.spacy_vocab.strings self.spacy_doc = content self.lang = self.spacy_vocab.lang # these checks are probably unnecessary, but in case a user # has done something very strange, we should complain... if isinstance(lang, SpacyLang): if self.spacy_vocab is not lang.vocab: msg = '`spacy.Vocab` used to parse `content` must be the same as the one associated with `lang`' raise ValueError(msg) elif isinstance(lang, unicode_): if lang != self.lang: raise ValueError('lang of spacy models used to parse `content` must be the same as `lang`') elif lang is not None: msg = '`lang` must be {}, not "{}"'.format( {unicode_, SpacyLang}, type(lang)) raise ValueError(msg) # oops, user has made some sort of mistake else: msg = '`Doc` must be initialized with {}, not "{}"'.format( {unicode_, SpacyDoc}, type(content)) raise ValueError(msg) def __repr__(self): snippet = self.text[:50].replace('\n', ' ') if len(snippet) == 50: snippet = snippet[:47] + '...' return 'Doc({} tokens; "{}")'.format(len(self.spacy_doc), snippet) def __len__(self): return self.n_tokens def __getitem__(self, index): return self.spacy_doc[index] def __iter__(self): for tok in self.spacy_doc: yield tok ########## # FILEIO # def save(self, path, name=None): """ Save ``Doc`` content and metadata to disk. Args: path (str): Directory on disk where content + metadata will be saved. name (str): Prepend default filenames 'spacy_doc.bin' and 'metadata.json' with a name to identify/uniquify this particular document. .. warning:: If the ``spacy.Vocab`` object used to save this document is not the same as the one used to load it, there will be problems! Consequently, this functionality is only useful as short-term but not long-term storage. """ if name: meta_fname = os.path.join(path, '_'.join([name, 'metadata.json'])) doc_fname = os.path.join(path, '_'.join([name, 'spacy_doc.bin'])) else: meta_fname = os.path.join(path, 'metadata.json') doc_fname = os.path.join(path, 'spacy_doc.bin') package_info = {'textacy_lang': self.lang, 'spacy_version': spacy.about.__version__} fileio.write_json( dict(package_info, **self.metadata), meta_fname) fileio.write_spacy_docs(self.spacy_doc, doc_fname) @classmethod def load(cls, path, name=None): """ Load content and metadata from disk, and initialize a ``Doc``. Args: path (str): Directory on disk where content and metadata are saved. name (str): Identifying/uniquifying name prepended to the default filenames 'spacy_doc.bin' and 'metadata.json', used when doc was saved to disk via :meth:`Doc.save()`. Returns: :class:`textacy.Doc <Doc>` .. warning:: If the ``spacy.Vocab`` object used to save this document is not the same as the one used to load it, there will be problems! Consequently, this functionality is only useful as short-term but not long-term storage. """ if name: meta_fname = os.path.join(path, '_'.join([name, 'metadata.json'])) docs_fname = os.path.join(path, '_'.join([name, 'spacy_doc.bin'])) else: meta_fname = os.path.join(path, 'metadata.json') docs_fname = os.path.join(path, 'spacy_doc.bin') metadata = list(fileio.read_json(meta_fname))[0] lang = metadata.pop('textacy_lang') spacy_version = metadata.pop('spacy_version') if spacy_version != spacy.about.__version__: msg = """ the spaCy version used to save this Doc to disk is not the same as the version currently installed ('{}' vs. '{}'); if the data underlying the associated `spacy.Vocab` has changed, this loaded Doc may not be valid! """.format(spacy_version, spacy.about.__version__) warnings.warn(msg, UserWarning) spacy_vocab = data.load_spacy(lang).vocab return cls(list(fileio.read_spacy_docs(spacy_vocab, docs_fname))[0], lang=lang, metadata=metadata) #################### # BASIC COMPONENTS # @property def tokens(self): """ Yield the document's tokens, as tokenized by spaCy. Equivalent to iterating directly: ``for token in Doc: <do stuff>`` """ for tok in self.spacy_doc: yield tok @property def sents(self): """Yield the document's sentences, as segmented by spaCy.""" for sent in self.spacy_doc.sents: yield sent @property def n_tokens(self): """The number of tokens in the document — including punctuation.""" return len(self.spacy_doc) @property def n_sents(self): """The number of sentences in the document.""" return sum(1 for _ in self.spacy_doc.sents) def merge(self, spans): """ Merge spans *in-place* within ``Doc`` so that each takes up a single token. Note: All cached counts on this doc are cleared after a merge. Args: spans (Iterable[``spacy.Span``]): for example, the results from :func:`extract.named_entities() <textacy.extract.named_entities>` or :func:`extract.pos_regex_matches() <textacy.extract.pos_regex_matches>` """ spacy_utils.merge_spans(spans) # reset counts, since merging spans invalidates existing counts self._counts.clear() self._counted_ngrams = set() _counted_ngrams = set() _counts = Counter() def count(self, term): """ Get the number of occurrences (i.e. count) of ``term`` in ``Doc``. Args: term (str or int or ``spacy.Token`` or ``spacy.Span``): The term to be counted can be given as a string, a unique integer id, a spacy token, or a spacy span. Counts for the same term given in different forms are the same! Returns: int: Count of ``term`` in ``Doc``. .. tip:: Counts are cached. The first time a single word's count is looked up, *all* words' counts are saved, resulting in a slower runtime the first time but orders of magnitude faster runtime for subsequent calls for this or any other word. Similarly, if a bigram's count is looked up, all bigrams' counts are stored — etc. If spans are merged using :meth:`Doc.merge()`, all cached counts are deleted, since merging spans will invalidate many counts. Better to merge first, count second! """ # figure out what object we're dealing with here; convert as necessary if isinstance(term, unicode_): term_text = term term_id = self.spacy_stringstore[term_text] term_len = term_text.count(' ') + 1 elif isinstance(term, int): term_id = term term_text = self.spacy_stringstore[term_id] term_len = term_text.count(' ') + 1 elif isinstance(term, SpacyToken): term_text = term.orth_ term_id = self.spacy_stringstore[term_text] term_len = 1 elif isinstance(term, SpacySpan): term_text = term.orth_ term_id = self.spacy_stringstore[term_text] term_len = len(term) # we haven't counted terms of this length; let's do that now if term_len not in self._counted_ngrams: if term_len == 1: self._counts += Counter( word.orth for word in textacy.extract.words(self, filter_stops=False, filter_punct=False, filter_nums=False)) else: self._counts += Counter( self.spacy_stringstore[ngram.orth_] for ngram in textacy.extract.ngrams(self, term_len, filter_stops=False, filter_punct=False, filter_nums=False)) self._counted_ngrams.add(term_len) return self._counts[term_id] ############### # DOC AS TEXT # @property def text(self): """Return the document's raw text.""" return self.spacy_doc.text_with_ws @property def tokenized_text(self): """Return text as an ordered, nested list of tokens per sentence.""" return [[token.text for token in sent] for sent in self.spacy_doc.sents] @property def pos_tagged_text(self): """Return text as an ordered, nested list of (token, POS) pairs per sentence.""" return [[(token.text, token.pos_) for token in sent] for sent in self.spacy_doc.sents] ################# # TRANSFORM DOC # def to_terms_list(self, ngrams=(1, 2, 3), named_entities=True, normalize='lemma', lemmatize=None, lowercase=None, as_strings=False, **kwargs): """ Transform ``Doc`` into a sequence of ngrams and/or named entities, which aren't necessarily in order of appearance, where each term appears in the list with the same frequency that it appears in ``Doc``. Args: ngrams (int or Set[int]): n of which n-grams to include; ``(1, 2, 3)`` (default) includes unigrams (words), bigrams, and trigrams; `2` if only bigrams are wanted; falsy (e.g. False) to not include any named_entities (bool): if True (default), include named entities in the terms list; note: if ngrams are also included, named entities are added *first*, and any ngrams that exactly overlap with an entity are skipped to prevent double-counting lemmatize (bool): *deprecated* if True (default), lemmatize all terms lowercase (bool): *deprecated* if True and `lemmatize` is False, words are lower-cased normalize (str or callable): if 'lemma', lemmatize terms; if 'lower', lowercase terms; if false-y, use the form of terms as they appear in doc; if a callable, must accept a ``spacy.Token`` or ``spacy.Span`` and return a str, e.g. :func:`textacy.spacy_utils.normalized_str()` as_strings (bool): if True, terms are returned as strings; if False (default), terms are returned as their unique integer ids kwargs: - filter_stops (bool) - filter_punct (bool) - filter_nums (bool) - include_pos (str or Set[str]) - exclude_pos (str or Set[str]) - min_freq (int) - include_types (str or Set[str]) - exclude_types (str or Set[str] - drop_determiners (bool) see :func:`extract.words <textacy.extract.words>`, :func:`extract.ngrams <textacy.extract.ngrams>`, and :func:`extract.named_entities <textacy.extract.named_entities>` for more information on these parameters Yields: int or str: the next term in the terms list, either as a unique integer id or as a string Raises: ValueError: if neither ``named_entities`` nor ``ngrams`` are included .. note:: Despite the name, this is a generator function; to get an actual list of terms, call ``list(doc.to_terms_list())``. """ if lemmatize is not None or lowercase is not None: normalize = ('lemma' if lemmatize is True else 'lower' if lowercase is True else False) msg = '`lemmatize` and `lowercase` params are deprecated; use `normalize` instead' with warnings.catch_warnings(): warnings.simplefilter('once', DeprecationWarning) warnings.warn(msg, DeprecationWarning) if not named_entities and not ngrams: raise ValueError('either `named_entities` or `ngrams` must be included') if isinstance(ngrams, int): ngrams = (ngrams,) if named_entities is True: ne_kwargs = { 'include_types': kwargs.get('include_types'), 'exclude_types': kwargs.get('exclude_types'), 'drop_determiners': kwargs.get('drop_determiners', True), 'min_freq': kwargs.get('min_freq', 1)} # if numeric ngrams are to be filtered, we should filter numeric entities if ngrams and kwargs.get('filter_nums') is True: if ne_kwargs['exclude_types']: if isinstance(ne_kwargs['exclude_types'], (set, frozenset, list, tuple)): ne_kwargs['exclude_types'] = set(ne_kwargs['exclude_types']) ne_kwargs['exclude_types'].add(NUMERIC_NE_TYPES) else: ne_kwargs['exclude_types'] = NUMERIC_NE_TYPES if ngrams: ngram_kwargs = { 'filter_stops': kwargs.get('filter_stops', True), 'filter_punct': kwargs.get('filter_punct', True), 'filter_nums': kwargs.get('filter_nums', False), 'include_pos': kwargs.get('include_pos'), 'exclude_pos': kwargs.get('exclude_pos'), 'min_freq': kwargs.get('min_freq', 1)} # if numeric entities are to be filtered, we should filter numeric ngrams if named_entities and kwargs.get('exclude_types') and NUMERIC_NE_TYPES in kwargs['exclude_types']: ngram_kwargs['filter_nums'] = True terms = [] # special case: ensure that named entities aren't double-counted when # adding words or ngrams that were already added as named entities if named_entities is True and ngrams: ents = tuple(textacy.extract.named_entities(self, **ne_kwargs)) ent_idxs = {(ent.start, ent.end) for ent in ents} terms.append(ents) for n in ngrams: if n == 1: terms.append( (word for word in textacy.extract.words(self, **ngram_kwargs) if (word.idx, word.idx + 1) not in ent_idxs)) else: terms.append( (ngram for ngram in textacy.extract.ngrams(self, n, **ngram_kwargs) if (ngram.start, ngram.end) not in ent_idxs)) # otherwise, no need to check for overlaps else: if named_entities is True: terms.append(textacy.extract.named_entities(self, **ne_kwargs)) else: for n in ngrams: if n == 1: terms.append(textacy.extract.words(self, **ngram_kwargs)) else: terms.append(textacy.extract.ngrams(self, n, **ngram_kwargs)) terms = itertoolz.concat(terms) # convert token and span objects into integer ids if as_strings is False: if normalize == 'lemma': for term in terms: try: yield term.lemma except AttributeError: yield self.spacy_stringstore[term.lemma_] elif normalize == 'lower': for term in terms: try: yield term.lower except AttributeError: yield self.spacy_stringstore[term.orth_.lower()] elif not normalize: for term in terms: try: yield term.orth except AttributeError: yield self.spacy_stringstore[term.orth_] else: for term in terms: yield self.spacy_stringstore[normalize(term)] # convert token and span objects into strings else: if normalize == 'lemma': for term in terms: yield term.lemma_ elif normalize == 'lower': for term in terms: try: yield term.lower_ except AttributeError: yield term.orth_.lower() elif not normalize: for term in terms: yield term.orth_ else: for term in terms: yield normalize(term) def to_bag_of_words(self, normalize='lemma', lemmatize=None, lowercase=None, weighting='count', as_strings=False): """ Transform ``Doc`` into a bag-of-words: the set of unique words in ``Doc`` mapped to their absolute, relative, or binary frequency of occurrence. Args: normalize (str): if 'lemma', lemmatize words before counting; if 'lower', lowercase words before counting; otherwise, words are counted using the form with which they they appear in doc lemmatize (bool): if True, words are lemmatized before counting; for example, 'happy', 'happier', and 'happiest' would be grouped together as 'happy', with a count of 3 (*DEPRECATED*) lowercase (bool): *deprecated* if True and ``lemmatize`` is False, words are lower-cased before counting; for example, 'happy' and 'Happy' would be grouped together as 'happy', with a count of 2 weighting ({'count', 'freq', 'binary'}): Type of weight to assign to words. If 'count' (default), weights are the absolute number of occurrences (count) of word in doc. If 'binary', all counts are set equal to 1. If 'freq', word counts are normalized by the total token count, giving their relative frequency of occurrence. Note: The resulting set of frequencies won't (necessarily) sum to 1.0, since punctuation and stop words are filtered out after counts are normalized. as_strings (bool): if True, words are returned as strings; if False (default), words are returned as their unique integer ids Returns: dict: mapping of a unique word id or string (depending on the value of ``as_strings``) to its absolute, relative, or binary frequency of occurrence (depending on the value of ``weighting``). """ if lemmatize is not None or lowercase is not None: normalize = ('lemma' if lemmatize is True else 'lower' if lowercase is True else False) msg = '`lemmatize` and `lowercase` params are deprecated; use `normalize` instead' with warnings.catch_warnings(): warnings.simplefilter('once', DeprecationWarning) warnings.warn(msg, DeprecationWarning) if weighting not in {'count', 'freq', 'binary'}: raise ValueError('weighting "{}" is invalid'.format(weighting)) count_by = (attrs.LEMMA if normalize == 'lemma' else attrs.LOWER if normalize == 'lower' else attrs.ORTH) word_to_weight = self.spacy_doc.count_by(count_by) if weighting == 'freq': n_tokens = self.n_tokens word_to_weight = {id_: weight / n_tokens for id_, weight in word_to_weight.items()} elif weighting == 'binary': word_to_weight = {word: 1 for word in word_to_weight.keys()} bow = {} if as_strings is False: for id_, count in word_to_weight.items(): lexeme = self.spacy_vocab[id_] if lexeme.is_stop or lexeme.is_punct or lexeme.is_space: continue bow[id_] = count else: for id_, count in word_to_weight.items(): lexeme = self.spacy_vocab[id_] if lexeme.is_stop or lexeme.is_punct or lexeme.is_space: continue bow[self.spacy_stringstore[id_]] = count return bow def to_bag_of_terms(self, ngrams=(1, 2, 3), named_entities=True, normalize='lemma', lemmatize=None, lowercase=None, weighting='count', as_strings=False, **kwargs): """ Transform ``Doc`` into a bag-of-terms: the set of unique terms in ``Doc`` mapped to their frequency of occurrence, where "terms" includes ngrams and/or named entities. Args: ngrams (int or Set[int]): n of which n-grams to include; ``(1, 2, 3)`` (default) includes unigrams (words), bigrams, and trigrams; `2` if only bigrams are wanted; falsy (e.g. False) to not include any named_entities (bool): if True (default), include named entities; note: if ngrams are also included, any ngrams that exactly overlap with an entity are skipped to prevent double-counting lemmatize (bool): *deprecated* if True, words are lemmatized before counting; for example, 'happy', 'happier', and 'happiest' would be grouped together as 'happy', with a count of 3 lowercase (bool): *deprecated* if True and ``lemmatize`` is False, words are lower- cased before counting; for example, 'happy' and 'Happy' would be grouped together as 'happy', with a count of 2 normalize (str or callable): if 'lemma', lemmatize terms; if 'lower', lowercase terms; if false-y, use the form of terms as they appear in doc; if a callable, must accept a ``spacy.Token`` or ``spacy.Span`` and return a str, e.g. :func:`textacy.spacy_utils.normalized_str()` weighting ({'count', 'freq', 'binary'}): Type of weight to assign to terms. If 'count' (default), weights are the absolute number of occurrences (count) of term in doc. If 'binary', all counts are set equal to 1. If 'freq', term counts are normalized by the total token count, giving their relative frequency of occurrence. as_strings (bool): if True, words are returned as strings; if False (default), words are returned as their unique integer ids kwargs: - filter_stops (bool) - filter_punct (bool) - filter_nums (bool) - include_pos (str or Set[str]) - exclude_pos (str or Set[str]) - min_freq (int) - include_types (str or Set[str]) - exclude_types (str or Set[str] - drop_determiners (bool) See :func:`extract.words() <textacy.extract.words>`, :func:`extract.ngrams() <textacy.extract.ngrams>`, and :func:`extract.named_entities() <textacy.extract.named_entities>` for more information on these parameters. Returns: dict: mapping of a unique term id or string (depending on the value of ``as_strings``) to its absolute, relative, or binary frequency of occurrence (depending on the value of ``weighting``). See Also: :meth:`Doc.to_terms_list() <Doc.to_terms_list>` """ if lemmatize is not None or lowercase is not None: normalize = ('lemma' if lemmatize is True else 'lower' if lowercase is True else False) msg = '`lemmatize` and `lowercase` params are deprecated; use `normalize` instead' with warnings.catch_warnings(): warnings.simplefilter('once', DeprecationWarning) warnings.warn(msg, DeprecationWarning) if weighting not in {'count', 'freq', 'binary'}: raise ValueError('weighting "{}" is invalid'.format(weighting)) terms_list = self.to_terms_list( ngrams=ngrams, named_entities=named_entities, normalize=normalize, as_strings=as_strings, **kwargs) bot = itertoolz.frequencies(terms_list) if weighting == 'freq': n_tokens = self.n_tokens bot = {term: weight / n_tokens for term, weight in bot.items()} elif weighting == 'binary': bot = {term: 1 for term in bot.keys()} return bot def to_semantic_network(self, nodes='words', normalize='lemma', edge_weighting='default', window_width=10): """ Transform ``Doc`` into a semantic network, where nodes are either 'words' or 'sents' and edges between nodes may be weighted in different ways. Args: nodes ({'words', 'sents'}): type of doc component to use as nodes in the semantic network normalize (str or callable): if 'lemma', lemmatize terms; if 'lower', lowercase terms; if false-y, use the form of terms as they appear in doc; if a callable, must accept a ``spacy.Token`` or ``spacy.Span`` (if ``nodes`` = 'words' or 'sents', respectively) and return a str, e.g. :func:`textacy.spacy_utils.normalized_str()` edge_weighting (str): type of weighting to apply to edges between nodes; if ``nodes == 'words'``, options are {'cooc_freq', 'binary'}, if ``nodes == 'sents'``, options are {'cosine', 'jaccard'}; if 'default', 'cooc_freq' or 'cosine' will be automatically used window_width (int): size of sliding window over terms that determines which are said to co-occur; only applicable if 'words' Returns: :class:`networkx.Graph <networkx.Graph>`: where nodes represent either terms or sentences in doc; edges, the relationships between them Raises: ValueError: if ``nodes`` is neither 'words' nor 'sents' See Also: :func:`terms_to_semantic_network() <textacy.network.terms_to_semantic_network>` :func:`sents_to_semantic_network() <textacy.network.sents_to_semantic_network>` """ if nodes == 'words': if edge_weighting == 'default': edge_weighting = 'cooc_freq' return network.terms_to_semantic_network( list(textacy.extract.words(self)), normalize=normalize, window_width=window_width, edge_weighting=edge_weighting) elif nodes == 'sents': if edge_weighting == 'default': edge_weighting = 'cosine' return network.sents_to_semantic_network( list(self.sents), normalize=normalize, edge_weighting=edge_weighting) else: msg = 'nodes "{}" not valid; must be in {}'.format( nodes, {'words', 'sents'}) raise ValueError(msg)
StarcoderdataPython
8080093
import os import pandas as pd RANK_DIR = "rank" FILE_IN = "rank_unordered.tsv" FILE_OUT = "rank_ordered.csv" file_path_in = os.path.join(RANK_DIR, FILE_IN) df = pd.read_csv(file_path_in, sep="\t", names=["rank"]).rename_axis("node").sort_values(by='rank', ascending=False) file_path_out = os.path.join(RANK_DIR, FILE_OUT) df.to_csv(file_path_out)
StarcoderdataPython
251404
<reponame>Maxsior/BotCom from commands.base import Command from messengers import Messenger from entities import Message from storage import Storage import entities.keyboards as keyboards class LangCommand(Command): def execute(self): sender = self.msg.sender messenger = Messenger.get_instance(sender.messenger) if len(self.msg.cmd.args) == 0: messenger.send( sender.id, Message('MESSAGE.WRONG_ARGS').localize(sender.lang), keyboards.ConnectKeyboard(sender) ) return sender.lang = self.msg.cmd.args[0] Storage().update(sender.key, {'lang': sender.lang}) messenger.send( sender.id, Message('MESSAGE.LANG_CHANGED').localize(sender.lang), keyboards.ConnectKeyboard(sender) )
StarcoderdataPython
3315724
<reponame>1067511899/tornado-learn ''' Divisors of 42 are : 1, 2, 3, 6, 7, 14, 21, 42. These divisors squared are: 1, 4, 9, 36, 49, 196, 441, 1764. The sum of the squared divisors is 2500 which is 50 * 50, a square! Given two integers m, n (1 <= m <= n) we want to find all integers between m and n whose sum of squared divisors is itself a square. 42 is such a number. The result will be an array of arrays or of tuples (in C an array of Pair) or a string, each subarray having two elements, first the number whose squared divisors is a square and then the sum of the squared divisors. #Examples: list_squared(1, 250) --> [[1, 1], [42, 2500], [246, 84100]] list_squared(42, 250) --> [[42, 2500], [246, 84100]] The form of the examples may change according to the language, see Example Tests: for more details. ''' import time def list_squared(m, n): result = [] for x in range(m, n + 1): sumx = 0 sqrtx = int(x ** 0.5) + 1 for i in range(1, sqrtx): if x % i == 0: tmp = x // i if tmp != i: sumx = sumx + i ** 2 + (tmp) ** 2 else: sumx += tmp ** 2 if int(sumx ** 0.5) ** 2 == sumx: result.append([x, sumx]) return result if __name__ == '__main__': beg = time.time() print(list_squared(1, 251110)) print(time.time() - beg)
StarcoderdataPython
71386
<gh_stars>1-10 from spark.tests import TestCase from nose.tools import eq_ from users.models import User, CompletedChallenge from challenges.models import Challenge from challenges.utils import award_hidden_badges class AwardHiddenBadges(TestCase): fixtures = ['boost.json', 'challenges.json', 'completed_challenges.json'] def setUp(self): self.profile = User.objects.create(username='test_user').profile def get_hidden_badges(self): return CompletedChallenge.objects.filter(profile=self.profile, date_badge_earned=None) def test_new_level_awards_hidden_badges(self): eq_(1, self.profile.level) self.profile.complete_challenges(Challenge.objects.filter(pk__in=['2_1', '2_2'])) eq_(2, len(self.get_hidden_badges())) # Fake gaining a new level self.profile.level = 2 award_hidden_badges(self.profile) eq_(0, len(self.get_hidden_badges())) def test_awarding_badges_sets_new_badge_flag(self): challenge = Challenge.objects.get(pk='2_1') self.profile.complete_challenges([challenge]) eq_(False, self.get_hidden_badges()[0].new_badge) self.profile.level = 2 award_hidden_badges(self.profile) eq_(True, CompletedChallenge.objects.get(profile=self.profile, challenge=challenge).new_badge)
StarcoderdataPython
4825421
from bzt.utils import SoapUIScriptConverter from tests.unit import BZTestCase, RESOURCES_DIR, ROOT_LOGGER class TestSoapUIConverter(BZTestCase): def test_minimal(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/project.xml") self.assertIn("execution", config) self.assertEqual(4, len(config["execution"])) execution = config["execution"][1] self.assertEqual("TestSuite 1-index", execution.get("scenario")) self.assertEqual(60, execution.get("hold-for")) self.assertEqual(10, execution.get("concurrency")) self.assertIn("scenarios", config) self.assertIn("TestSuite 1-index", config["scenarios"]) scenario = config["scenarios"]["TestSuite 1-index"] self.assertIn("requests", scenario) self.assertEqual(3, len(scenario["requests"])) self.assertIn("variables", scenario) self.assertEqual("foo", scenario["variables"].get("something")) self.assertEqual("2", scenario["variables"].get("something_else")) self.assertEqual("json", scenario["variables"].get("route_part")) first_req = scenario["requests"][0] self.assertEqual("http://blazedemo.com/reserve.php", first_req["url"]) self.assertEqual("test index", first_req["label"]) self.assertIn("headers", first_req) self.assertEqual(first_req["headers"].get("X-Custom-Header"), "Value") self.assertIn("assert", first_req) self.assertEqual(2, len(first_req["assert"])) self.assertEqual("BlazeDemo", first_req["assert"][0]["contains"][0]) self.assertFalse(first_req["assert"][0]["not"]) self.assertFalse(first_req["assert"][0]["regexp"]) self.assertEqual("BlazeDemou", first_req["assert"][1]["contains"][0]) self.assertTrue(first_req["assert"][1]["not"]) self.assertTrue(first_req["assert"][1]["regexp"]) second_req = scenario["requests"][1] self.assertEqual("http://example.com/body", second_req["url"]) self.assertEqual("posty", second_req["label"]) self.assertEqual("POST", second_req["method"]) self.assertIn("headers", second_req) self.assertEqual(second_req["headers"].get("X-Header"), "X-Value") self.assertEqual(second_req["headers"].get("X-Header-2"), "X-Value-2") self.assertIn("body", second_req) self.assertIn("answer", second_req["body"]) self.assertEqual('42', second_req["body"]["answer"]) self.assertIn("extract-xpath", second_req) self.assertIn("something_else", second_req["extract-xpath"]) self.assertEqual("//head", second_req["extract-xpath"]["something_else"]["xpath"]) third_req = scenario["requests"][2] self.assertEqual("http://localhost:9999/api/${route_part}", third_req["url"]) self.assertEqual("/api/json", third_req["label"]) self.assertIn("extract-jsonpath", third_req) self.assertIn("something", third_req["extract-jsonpath"]) self.assertEqual("$.baz", third_req["extract-jsonpath"]["something"]["jsonpath"]) def test_find_test_case(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/project.xml") scenarios = config["scenarios"] self.assertEqual(len(scenarios), 4) target_scenario = scenarios["TestSuite 1-index"] found_name, found_scenario = obj.find_soapui_test_case("index", scenarios) self.assertEqual(target_scenario, found_scenario) def test_find_test_case_empty(self): obj = SoapUIScriptConverter(ROOT_LOGGER) self.sniff_log(obj.log) config = obj.convert_script(RESOURCES_DIR + "soapui/project.xml") scenarios = config["scenarios"] self.assertEqual(len(scenarios), 4) target_scenario = scenarios["BlazeDemo LoadTest"] found_name, found_scenario = obj.find_soapui_test_case(None, scenarios) self.assertEqual(target_scenario, found_scenario) def test_skip_if_no_requests(self): obj = SoapUIScriptConverter(ROOT_LOGGER) self.sniff_log(obj.log) obj.convert_script(RESOURCES_DIR + "soapui/project.xml") self.assertIn("No requests extracted for scenario TestSuite 1-EmptyTestCase, skipping it", self.log_recorder.warn_buff.getvalue()) def test_rest_service_name_as_base_address(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/youtube-sample.xml") scenarios = config["scenarios"] scenario = scenarios["TestSuite-TestCase"] self.assertEqual(len(scenario["requests"]), 5) for request in scenario["requests"]: self.assertTrue(request["url"].startswith("http://gdata.youtube.com/")) def test_project_suite_case_level_properties(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/flickr-sample.xml") scenarios = config["scenarios"] scenario = scenarios["TestSuite-TestCase"] self.assertEqual(len(scenario["variables"]), 2) self.assertIn("#Project#ApiKey", scenario["variables"]) self.assertIn("#TestCase#temp", scenario["variables"]) def test_rest_parameters(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/flickr-sample.xml") scenarios = config["scenarios"] scenario = scenarios["TestSuite-TestCase"] self.assertEqual(len(scenario["requests"]), 4) first = scenario["requests"][0] self.assertIn("body", first) self.assertEqual(len(first["body"]), 4) self.assertTrue(all(key in first["body"] for key in ["format", "method", "nojsoncallback", "api_key"])) def test_soap_conversion(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/globalweather.xml") self.assertEqual(len(config["scenarios"]), 4) merged = config["scenarios"]["GWSOAPMerged-Test"] split1 = config["scenarios"]["GWSOAPSplit-GetCities"] split2 = config["scenarios"]["GWSOAPSplit-GetWeather"] self.assertEqual(len(merged["requests"]), 2) self.assertEqual(merged["requests"][0]["url"], "http://www.webservicex.com/globalweather.asmx") self.assertEqual(merged["requests"][0]["method"], "POST") self.assertEqual(merged["requests"][0]["headers"]["Content-Type"], "text/xml; charset=utf-8") self.assertIn("body", merged["requests"][0]) self.assertEqual(merged["requests"][1]["url"], "http://www.webservicex.com/globalweather.asmx") self.assertEqual(len(split1["requests"]), 1) self.assertEqual(split1["requests"][0]["url"], "http://www.webservicex.com/globalweather.asmx") self.assertEqual(len(split2["requests"]), 1) self.assertEqual(split2["requests"][0]["url"], "http://www.webservicex.com/globalweather.asmx") def test_rest_templated_params_interpolation(self): obj = SoapUIScriptConverter(ROOT_LOGGER) config = obj.convert_script(RESOURCES_DIR + "soapui/gmaps-sample.xml") self.assertEqual(len(config["scenarios"]), 10) scenario = config["scenarios"]["Directions API TestSuite-Simple Tests"] for request in scenario["requests"]: self.assertNotIn("{format}", request["url"]) self.assertEqual(scenario["requests"][0]["url"], "http://maps.googleapis.com/maps/api/directions/json") self.assertEqual(scenario["requests"][1]["url"], "http://maps.googleapis.com/maps/api/directions/json") self.assertEqual(scenario["requests"][2]["url"], "http://maps.googleapis.com/maps/api/directions/xml")
StarcoderdataPython
6594948
<gh_stars>0 from array import * ################################################################## # 1. Create an array and traverse. myarray = array('i', [1,2,3,4,5,6]) # i means int print(myarray) myarray1 = array('d', [1.3,2.4,3.2,4.1,5.5]) # d means double print(myarray1) ################################################################## # 2. Insert Elements in an array. myarray.insert(6, 7) #6 is the index and 7 is the value print(myarray) myarray.insert(0, 0) #6 is the index and 7 is the value print(myarray) ################################################################## # 3 Traversal Operations def traverse(array): for i in array: print(i) traverse(myarray) ################################################################## print("--------------------------------") # 4 Accessing an element in an array def accesselement(arr, index): if index>= len(arr): print("No such element present") print(arr[index]) accesselement(myarray, 4) ################################################################## print("--------------------------------") # 5 Searching for an element def search(arr , value): for i in arr: if i == value: print("Element present at :", arr.index(value)) search(myarray, 4) ################################################################## print("--------------------------------") #Delete an element myarray.remove(7) #pass value print(myarray) print("--------------------------------")
StarcoderdataPython
9720669
<gh_stars>0 """Axis conftest.""" from typing import Optional from unittest.mock import patch from axis.rtsp import ( SIGNAL_DATA, SIGNAL_FAILED, SIGNAL_PLAYING, STATE_PLAYING, STATE_STOPPED, ) import pytest from tests.components.light.conftest import mock_light_profiles # noqa: F401 @pytest.fixture(autouse=True) def mock_axis_rtspclient(): """No real RTSP communication allowed.""" with patch("axis.streammanager.RTSPClient") as rtsp_client_mock: rtsp_client_mock.return_value.session.state = STATE_STOPPED async def start_stream(): """Set state to playing when calling RTSPClient.start.""" rtsp_client_mock.return_value.session.state = STATE_PLAYING rtsp_client_mock.return_value.start = start_stream def stop_stream(): """Set state to stopped when calling RTSPClient.stop.""" rtsp_client_mock.return_value.session.state = STATE_STOPPED rtsp_client_mock.return_value.stop = stop_stream def make_rtsp_call(data: Optional[dict] = None, state: str = ""): """Generate a RTSP call.""" axis_streammanager_session_callback = rtsp_client_mock.call_args[0][4] if data: rtsp_client_mock.return_value.rtp.data = data axis_streammanager_session_callback(signal=SIGNAL_DATA) elif state: axis_streammanager_session_callback(signal=state) else: raise NotImplementedError yield make_rtsp_call @pytest.fixture(autouse=True) def mock_rtsp_event(mock_axis_rtspclient): """Fixture to allow mocking received RTSP events.""" def send_event( topic: str, data_type: str, data_value: str, operation: str = "Initialized", source_name: str = "", source_idx: str = "", ) -> None: source = "" if source_name != "" and source_idx != "": source = f'<tt:SimpleItem Name="{source_name}" Value="{source_idx}"/>' event = f"""<?xml version="1.0" encoding="UTF-8"?> <tt:MetadataStream xmlns:tt="http://www.onvif.org/ver10/schema"> <tt:Event> <wsnt:NotificationMessage xmlns:tns1="http://www.onvif.org/ver10/topics" xmlns:tnsaxis="http://www.axis.com/2009/event/topics" xmlns:wsnt="http://docs.oasis-open.org/wsn/b-2" xmlns:wsa5="http://www.w3.org/2005/08/addressing"> <wsnt:Topic Dialect="http://docs.oasis-open.org/wsn/t-1/TopicExpression/Simple"> {topic} </wsnt:Topic> <wsnt:ProducerReference> <wsa5:Address> uri://bf32a3b9-e5e7-4d57-a48d-1b5be9ae7b16/ProducerReference </wsa5:Address> </wsnt:ProducerReference> <wsnt:Message> <tt:Message UtcTime="2020-11-03T20:21:48.346022Z" PropertyOperation="{operation}"> <tt:Source>{source}</tt:Source> <tt:Key></tt:Key> <tt:Data> <tt:SimpleItem Name="{data_type}" Value="{data_value}"/> </tt:Data> </tt:Message> </wsnt:Message> </wsnt:NotificationMessage> </tt:Event> </tt:MetadataStream> """ mock_axis_rtspclient(data=event.encode("utf-8")) yield send_event @pytest.fixture(autouse=True) def mock_rtsp_signal_state(mock_axis_rtspclient): """Fixture to allow mocking RTSP state signalling.""" def send_signal(connected: bool) -> None: """Signal state change of RTSP connection.""" signal = SIGNAL_PLAYING if connected else SIGNAL_FAILED mock_axis_rtspclient(state=signal) yield send_signal
StarcoderdataPython
63444
import collections import typing from . import tags from .iterators import chunked_iterable from .models import Project def list_cluster_arns_in_account(ecs_client): """ Generates the ARN of every ECS cluster in an account. """ paginator = ecs_client.get_paginator("list_clusters") for page in paginator.paginate(): yield from page["clusterArns"] def list_service_arns_in_cluster(ecs_client, *, cluster): """ Generates the ARN of every ECS service in a cluster. """ paginator = ecs_client.get_paginator("list_services") for page in paginator.paginate(cluster=cluster): yield from page["serviceArns"] def describe_services(session): """ Describe all the ECS services in an account. """ ecs_client = session.client("ecs") result = [] for cluster in list_cluster_arns_in_account(ecs_client): service_arns = list_service_arns_in_cluster(ecs_client, cluster=cluster) # We can specify up to 10 services in a single DescribeServices API call. for service_set in chunked_iterable(service_arns, size=10): resp = ecs_client.describe_services( cluster=cluster, services=service_set, include=["TAGS"] ) result.extend(resp["services"]) return result class NoMatchingServiceError(Exception): pass class MultipleMatchingServicesError(Exception): pass def find_matching_service( service_descriptions, *, service_id, environment_id ): """ Given a service (e.g. bag-unpacker) and an environment (e.g. prod), return the unique matching service. """ try: return tags.find_unique_resource_matching_tags( service_descriptions, expected_tags={ "deployment:service": service_id, "deployment:env": environment_id, } ) except tags.NoMatchingResourceError: raise NoMatchingServiceError( f"No matching service found for {service_id}/{environment_id}!" ) except tags.MultipleMatchingResourcesError: raise MultipleMatchingServicesError( f"Multiple matching services found for {service_id}/{environment_id}!" ) def find_service_arns_for_release( *, project: Project, release, service_descriptions, environment_id ): """ Build a dictionary (image ID) -> list(service ARNs) for all the images in a particular release. """ result = {image_id: [] for image_id in release["images"]} for image_id in release["images"]: try: services = project.image_repositories[image_id].services except KeyError: continue for service_id in services: try: matching_service = find_matching_service( service_descriptions, service_id=service_id, environment_id=environment_id ) except NoMatchingServiceError: continue result[image_id].append(matching_service["serviceArn"]) return result def deploy_service(session, *, cluster_arn, service_arn, deployment_label): """ Triggers a deployment of a given service. """ ecs_client = session.client("ecs") resp = ecs_client.update_service( cluster=cluster_arn, service=service_arn, forceNewDeployment=True ) ecs_client.tag_resource( resourceArn=service_arn, tags=tags.to_aws_tags({"deployment:label": deployment_label}) ) return { "cluster_arn": resp["service"]["clusterArn"], "service_arn": resp["service"]["serviceArn"], "deployment_id": resp["service"]["deployments"][0]["id"] } def list_tasks_in_service(session, *, cluster_arn, service_name): """ Given the name of a service, return a list of tasks running within the service. """ ecs_client = session.client("ecs") task_arns = [] paginator = ecs_client.get_paginator("list_tasks") for page in paginator.paginate( cluster=cluster_arn, serviceName=service_name ): task_arns.extend(page["taskArns"]) # If task_arns is empty we can't ask to describe them. # TODO: This method can handle up to 100 task ARNs. It seems unlikely # we'd ever have more than that, hence not handling it properly. if task_arns: resp = ecs_client.describe_tasks( cluster=cluster_arn, tasks=task_arns, include=["TAGS"] ) return resp["tasks"] else: return [] def find_ecs_services_for_release( *, project: Project, service_descriptions: typing.List[typing.Dict], release: str, environment_id: str ): """ Returns a map (image ID) -> Dict(service ID -> ECS service description) """ matched_services = collections.defaultdict(dict) for image_id, _ in release['images'].items(): # Attempt to match deployment image id to config and override service_ids try: matched_image = project.image_repositories[image_id] except KeyError: continue for service_id in matched_image.services: try: service_description = find_matching_service( service_descriptions=service_descriptions, service_id=service_id, environment_id=environment_id ) matched_services[image_id] = { service_id: service_description } except NoMatchingServiceError: pass return matched_services
StarcoderdataPython
1631838
#!/usr/bin/env python # encoding:utf-8 from handler.public import (BasePage, BaseApi, Auth) from fastweb import coroutine import sys import datetime reload(sys) sys.setdefaultencoding('utf-8') # 平台首页 class LogHandler(BasePage): @coroutine @Auth.authUser def get(self): self.end('log/index.html', username=self.get_secure_cookie("user_name")) class LogListHandler(BaseApi): @coroutine @Auth.authUser def get(self): user_id = self.get_secure_cookie("userId") sql = ''' SELECT id, log_title, `type`, log_desc, create_time FROM login_log WHERE user_id = %s LIMIT 20; ''' yield self.mysql_passhub_db.query(sql, user_id) result = self.mysql_passhub_db.fetchall() list = [] for r in result: json = {} json['id'] = r['id'] json['log_title'] = r['log_title'] json['type'] = r['type'] json['log_desc'] = r['log_desc'] json['create_time'] = datetime.datetime.strftime(r['create_time'], '%Y-%m-%d %H:%M:%S') list.append(json) self.end(code='SUC', log=True, **{'result': list})
StarcoderdataPython
3211739
<filename>linkedlist/addTwoNumbersTwo.py #!/usr/bin/python # -*- coding: utf-8 -*- # Author: <NAME> # You are given two non-empty linked lists representing two non-negative integers. The most significant digit comes first and each of their nodes contain a single digit. Add the two numbers and return it as a linked list. # Example: # Input: (7 -> 2 -> 4 -> 3) + (5 -> 6 -> 4) # Output: 7 -> 8 -> 0 -> 7 # **************** # Final Solution * # Using Stack * # **************** # Definition for singly-linked list. # class ListNode(object): # def __init__(self, x): # self.val = x # self.next = None class Solution(object): def addTwoNumbers(self, n1, n2): l1 = self.list_to_stack(n1) l2 = self.list_to_stack(n2) stack = self.add_helper(l1,l2) return self.stack_to_list(stack) def list_to_stack(self, node): stack = [] while node: stack.append(node.val) node = node.next return stack def add_helper(self, s1, s2): res = [] carry = 0 while s1 or s2 or carry: num1 = s1.pop() if s1 else 0 num2 = s2.pop() if s2 else 0 total = num1 + num2 + carry res.append(total % 10) carry = total/10 return res def stack_to_list(self, stack): head = ListNode(0) cur = head while stack: cur.next = ListNode(stack.pop()) cur = cur.next return head.next # ***************************************** # The following code is an fail attempt * # Passed 893/1539 Test Cases * # Failed Cases such as 1 + 99(Getting 01) * # ***************************************** class Solution(object): def addTwoNumbers(self, n1, n2): #Pad The Two List len1, len2 = self.get_length(n1), self.get_length(n2) if len1 > len2: #Insert Dummy Node to head for _ in range(len1-len2): temp = ListNode(0) temp.next = n2 n2 = temp else: for _ in range(len2-len1): temp = ListNode(0) temp.next = n1 n1 = temp has_carry_head = False #Edge: Largest Carry res = cur = ListNode(0) guard1, guard2 = n1, n2 carry = 0 while n1 or n2 or carry: if n1.next and n2.next: carry = (n1.next.val + n2.next.val) / 10 result = carry + n1.val + n2.val temp = ListNode(result % 10) front_carry = result / 10 cur.next = temp cur = cur.next n1 = n1.next n2 = n2.next if guard1.val + guard2.val + front_carry > 10: res.val = 1 has_carry_head = True print has_carry_head return res if has_carry_head else res.next def display(self,node): cur = node arr = [] while cur: arr.append(cur.val) cur = cur.next print arr def get_length(self, node): cur = node count = 0 while cur: count += 1 cur = cur.next return count #失败心经 # 讲道理,现在还是懵的。。首先insert方程和pad方程 # 若是单独写一个方程,然后带入,不知道为什么不能pass by reference # 所以后来很机械化的没有写进方程 # 这个代码大部分的Test Case都能过,有一些小的,是在不知道怎么调了 # 因为弄得特别的乱,大概思路就是Pad两个List,然后加减,CC189的套路 # 这道题后来看了答案,可以用Stack来写。
StarcoderdataPython
268067
from beem.account import Account from beem.amount import Amount from beem import Steem from beem.instance import set_shared_steem_instance from beem.nodelist import NodeList from beem.utils import formatTimeString import re import json import os from time import sleep import dataset import json from steembi.parse_hist_op import ParseAccountHist from steembi.storage import TrxDB, MemberDB, ConfigurationDB, AccountsDB if __name__ == "__main__": config_file = 'config.json' if not os.path.isfile(config_file): raise Exception("config.json is missing!") else: with open(config_file) as json_data_file: config_data = json.load(json_data_file) databaseConnector = config_data["databaseConnector"] databaseConnector2 = config_data["databaseConnector2"] mgnt_shares = config_data["mgnt_shares"] hive_blockchain = config_data["hive_blockchain"] db2 = dataset.connect(databaseConnector2) # Create keyStorage trxStorage = TrxDB(db2) memberStorage = MemberDB(db2) confStorage = ConfigurationDB(db2) accStorage = AccountsDB(db2) accounts = accStorage.get() other_accounts = accStorage.get_transfer() sp_share_ratio = confStorage.get()["sp_share_ratio"] nodes = NodeList() try: nodes.update_nodes() except: print("could not update nodes") stm = Steem(node=nodes.get_nodes(hive=hive_blockchain)) # Update current node list from @fullnodeupdate print("check member database") # memberStorage.wipe(True) member_accounts = memberStorage.get_all_accounts() data = trxStorage.get_all_data() missing_accounts = [] member_data = {} aborted = False for m in member_accounts: member_data[m] = memberStorage.get(m) # Check wrong account names: if False: cnt = 0 for m in member_accounts: if aborted: continue cnt += 1 if cnt % 100 == 0: print("%d/%d scanned" % ()) try: acc = Account(m, steem_instance=stm) except KeyboardInterrupt: aborted = True except: print("%s is not a valid account" % m) missing_accounts.append(m) shares = 0 bonus_shares = 0 balance_rshares = 0 for m in member_data: shares += member_data[m]["shares"] bonus_shares += member_data[m]["bonus_shares"] balance_rshares += member_data[m]["balance_rshares"] print("units: %d" % shares) print("bonus units: %d" % bonus_shares) print("total units: %d" % (shares + bonus_shares)) print("----------") print("balance_rshares: %d" % balance_rshares) print("balance_rshares: %.3f $" % stm.rshares_to_sbd(balance_rshares)) if len(missing_accounts) > 0: print("%d not existing accounts: " % len(missing_accounts)) print(missing_accounts)
StarcoderdataPython
12863991
import pytest from Door import Door def test_find_password(): door_id = "abc" door = Door(door_id) assert(door.find_password() == "<PASSWORD>") def test_find_password2(): door_id = "abc" door = Door(door_id) assert(door.find_password2() == "<PASSWORD>")
StarcoderdataPython
3254957
<gh_stars>1-10 # tests/test_py from ttlockwrapper import TTLock,TTlockAPIError, constants import requests_mock import requests import re import pytest FAKE_CLIENT_ID='34144ff6749ea9ced96cbd2470db12f2' FAKE_ACCESS_TOKEN='<KEY>' TOKEN_ERROR_CODES = [10003] INVALID_CURRENT_TIMESTAMP_ERROR = 80000 LOCK_STATE_RESPONSE = '{"state": 1}' LOCK_ELECTRIC_QUANTITY_RESPONSE = '{"electricQuantity": 68}' INVALID_TOKEN_RESPONSE = '{"errcode": 10003,"errmsg": "invalid token","description": ""}' MOCK_JSON_PATH = './tests/data/' def response_lock_records_list_callback(request, context): pageNo = re.compile('pageNo=\\d').search(request.url).group()[7:] with open(MOCK_JSON_PATH+'lock_records_response_page_{}.json'.format(pageNo), 'r') as json_file: mock_response = json_file.read() return mock_response def response_gateway_list_callback(request, context): pageNo = re.compile('pageNo=\\d').search(request.url).group()[7:] with open(MOCK_JSON_PATH+'gateway_response_page_{}.json'.format(pageNo), 'r') as json_file: mock_response = json_file.read() return mock_response def test_ttlock_get_gateways_list_paginated(): """Tests API call to get a gateways from a account""" with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.GATEWAY_LIST_RESOURCE), text=response_gateway_list_callback) response_generator = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).get_gateway_generator(pageSize=1) gateways = [gateway for gateway in response_generator] assert len(gateways)==2 def test_ttlock_get_gateways_stop_iteration(mocker): """Tests API call to get a gateways from a account""" with requests_mock.Mocker() as m: mocker.patch.object(TTLock, '__verify_page__') TTLock.__verify_page__.return_value = False m.register_uri('GET', re.compile(constants.GATEWAY_LIST_RESOURCE), text=response_gateway_list_callback) response_generator = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).get_gateway_generator(pageSize=1) with pytest.raises(StopIteration): next(response_generator) def test_ttlock_get_locks_gateway_list(): with open(MOCK_JSON_PATH+'gateway_lock_list_response.json', 'r') as json_file: mock_response = json_file.read() with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.LOCKS_PER_GATEWAY_RESOURCE), text=mock_response) response_generator = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).get_locks_per_gateway_generator(gatewayId=35155) lock_list = [lock for lock in response_generator] assert isinstance(lock_list, list) assert lock_list[0].get('lockId' )==3879122 assert lock_list[1].get('lockId' )==1928723 def test_ttlock_get_lock_records_list_paginated(): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.LOCK_RECORDS_RESOURCE), text=response_lock_records_list_callback) response_generator = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).get_lock_records_generator(lockId=1928723,pageSize=20) record_list = [record for record in response_generator] assert len(record_list)==80 def test_ttlock_get_lock_state(): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.LOCK_STATE_RESOURCE), text=LOCK_STATE_RESPONSE) state = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock_state(lockId=1928723) assert state == 1 def test_ttlock_get_lock_electric_quantity(): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.LOCK_ELECTRIC_QUANTITY_RESOURCE), text=LOCK_ELECTRIC_QUANTITY_RESPONSE) electric_quantity = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock_electric_quantity(lockId=1928723) assert electric_quantity == 68 def test_ttlock_no_mock_request(): with pytest.raises(TTlockAPIError) as ttLock_error: response = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock_state() assert response.status_code in constants.GOOD_HTTP_CODES assert not ttLock_error.error_code == INVALID_CURRENT_TIMESTAMP_ERROR with pytest.raises(TTlockAPIError) as ttLock_error: response = TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock_electric_quantity() assert response.status_code in constants.GOOD_HTTP_CODES assert not ttLock_error.error_code == INVALID_CURRENT_TIMESTAMP_ERROR def test_ttlock_no_mock_invalid_date_current(): with pytest.raises(TTlockAPIError) as ttLock_error: _url_request = constants.GATEWAY_LIST_URL.format( constants.API_URI, constants.GATEWAY_LIST_RESOURCE, FAKE_CLIENT_ID, FAKE_ACCESS_TOKEN, 1, 20, TTLock().__get_current_millis__()-10000, ) TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock_electric_quantity() assert ttLock_error.error_code==INVALID_CURRENT_TIMESTAMP_ERROR def test_lock(): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.LOCK_RESOURCE), text='{"errcode": 0,"errmsg": "none error message or means yes","description": "表示成功或是"}') assert TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).lock(lockId=1928723) def test_unlock(): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.UNLOCK_RESOURCE), text='{"errcode": 0,"errmsg": "none error message or means yes","description": "表示成功或是"}') assert TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).unlock(lockId=1928723) def test__send_request__(): with pytest.raises(requests.exceptions.HTTPError): with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.UNLOCK_RESOURCE), text='Not Found', status_code=403) assert TTLock(clientId=FAKE_CLIENT_ID,accessToken=FAKE_ACCESS_TOKEN).unlock(lockId=1928723) with requests_mock.Mocker() as m: m.register_uri('GET', re.compile(constants.UNLOCK_RESOURCE), text='{"errcode": 0,"errmsg": "none error message or means yes","description": "表示成功或是"}') assert TTLock(clientId=FAKE_CLIENT_ID ,accessToken=FAKE_ACCESS_TOKEN).unlock(lockId=1928723)
StarcoderdataPython