id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
3338560
from .main import get_y_pred_true from .logging import save_train_val_figures
StarcoderdataPython
6654374
<filename>tracking/combined/webcam.py from __future__ import absolute_import, division, print_function import os import sys import glob import argparse import numpy as np import PIL.Image as pil import matplotlib as mpl import matplotlib.cm as cm import cv2 from torchvision import transforms, datasets import networks from utils import download_model_if_doesnt_exist from timeit import time import math import torch import requests from imutils.video import FPS, WebcamVideoStream from data import BaseTransform from ssd import build_ssd # Config webcam_index = 1 # 0 for built-in webcam, 1 for external webcam (generally) max_face_size = 220 # based on the actual_face_size of people very close to the camera min_x = 300 max_x = 750 # basically the webcam frame width DEPTH_MODEL_NAME = 'mono_1024x320' print_fps = True # print FPS to stdout show_webcam = True show_depth_map = True show_map = True # show a map of the people in window while running map_width = 400 map_height = 400 min_distance = 0.05 max_distance = 0.13 COLORS = [(255, 0, 0), (0, 255, 0), (0, 0, 255)] FONT = cv2.FONT_HERSHEY_SIMPLEX THRESHOLD = 0.25 def get_bounding_boxes(frame): x = torch.from_numpy(transform(frame)[0]).permute(2, 0, 1) x = torch.autograd.Variable(x.unsqueeze(0)) y = net(x) # forward pass return y.data def get_depth_map(frame): input_image = transforms.ToTensor()(frame).unsqueeze(0) # PREDICTION input_image = input_image.to(device) features = encoder(input_image) outputs = depth_decoder(features) disp = outputs[("disp", 0)] disp_resized = torch.nn.functional.interpolate( disp, (frame.shape[0], frame.shape[1]), mode="bilinear", align_corners=False) return disp_resized.squeeze().cpu().numpy() # Initialize SSD net = build_ssd('test', 300, 21) net.load_state_dict(torch.load('data/weights/ssd_300_VOC0712.pth')) transform = BaseTransform(net.size, (104/256.0, 117/256.0, 123/256.0)) # Initialize Monodepth2 if torch.cuda.is_available(): device = torch.device("cuda") print("GPU BOiii") else: device = torch.device("cpu") download_model_if_doesnt_exist(DEPTH_MODEL_NAME) model_path = os.path.join("models", DEPTH_MODEL_NAME) print("-> Loading model from ", model_path) encoder_path = os.path.join(model_path, "encoder.pth") depth_decoder_path = os.path.join(model_path, "depth.pth") # LOADING PRETRAINED MODEL print(" Loading pretrained encoder") encoder = networks.ResnetEncoder(18, False) loaded_dict_enc = torch.load(encoder_path, map_location=device) # extract the height and width of image that this model was trained with feed_height = loaded_dict_enc['height'] feed_width = loaded_dict_enc['width'] filtered_dict_enc = {k: v for k, v in loaded_dict_enc.items() if k in encoder.state_dict()} encoder.load_state_dict(filtered_dict_enc) encoder.to(device) encoder.eval() print(" Loading pretrained decoder") depth_decoder = networks.DepthDecoder( num_ch_enc=encoder.num_ch_enc, scales=range(4)) loaded_dict = torch.load(depth_decoder_path, map_location=device) depth_decoder.load_state_dict(loaded_dict) depth_decoder.to(device) depth_decoder.eval() video_capture = cv2.VideoCapture(webcam_index) fps = 0.0 with torch.no_grad(): while True: ret, frame = video_capture.read() # frame shape 640*480*3 if frame.shape[0] == 0: break t1 = time.time() input_image = cv2.resize(frame, (feed_width, feed_height)) bboxes = get_bounding_boxes(input_image) depth_map = get_depth_map(input_image) bg = np.zeros((map_height, map_width, 3)) # scale each detection back up to the image height, width = input_image.shape[:2] scale = torch.Tensor([width, height, width, height]) # 15 is the index of the person class in the VOC label map person_class_idx = 15 data = {} j = 0 while bboxes[0, person_class_idx, j, 0] >= THRESHOLD: pt = (bboxes[0, person_class_idx, j, 1:] * scale).cpu().numpy() # distance = depth_map[int(min(depth_map.shape[1], pt[1] + 0.5 * pt[3]))][int(min(depth_map.shape[0], pt[0] + 0.5 * pt[2]))] # closest faces should be lowest values distance = depth_map[int(pt[1])][int(pt[0])] # closest faces should be lowest values # y_distance = int(pt[1]) + int(pt[2]) # if distance < max_distance: # if distance > min_distance: scaled_distance = (max(min(distance, max_distance), min_distance) - min_distance) / (max_distance - min_distance) cv2.rectangle(input_image, (int(pt[0]), int(pt[1])), (int(pt[2]), int(pt[3])), (255, 128, 0), 1) cv2.putText(input_image, str(distance), (int(pt[0]), int(pt[1])), FONT, 0.5, (255, 255, 255), 1, cv2.LINE_AA) x = (max(min(pt[0], max_x), min_x) - min_x) / (max_x - min_x) # scale to 0-1 y = 1.0 - scaled_distance # scale to 0-1 data[j] = [x, y, int(pt[2]), int(pt[3])] cv2.circle(bg, (int(map_width * x), int((map_height - map_height * y))), 4, (255, 255, 255), -1) j += 1 try: requests.put("http://localhost:3000/people", data=data) except requests.exceptions.RequestException as e: print('Failed to send people data to the webserver') if show_map: cv2.imshow('map', bg) if show_depth_map: depth_map_scaled = cv2.resize(depth_map, (640, 480)) cv2.imshow('depth', depth_map_scaled) if show_webcam: # ann_frame = annotate_image(frame, bboxes) input_image = cv2.resize(input_image, (640, 480)) / 255. cv2.imshow('annotated_webcam', input_image) if print_fps: fps = (fps + (1. / (time.time() - t1))) / 2 print("fps = %f"%(fps)) if cv2.waitKey(1) & 0xFF == ord('q'): break video_capture.release() cv2.destroyAllWindows()
StarcoderdataPython
349732
<gh_stars>0 import pyttsx from gtts import gTTS import vlc import time import wave import contextlib class Mic: def __init__(self): self.engine = pyttsx.init() def say(self, text_to_say): self.engine(text_to_say) self.engine.runAndWait() def stop(self): self.engine.stop() def check_runtime(self, fname): with contextlib.closing(wave.open(fname,'r')) as f: frames = f.getnframes() rate = f.getframerate() duration = frames / float(rate) return duration def google_say(self, text_to_say, fname="1.mp3"): tts = gTTS(text=text_to_say, lang="en") tts.save(fname) runtime = self.check_runtime(fname) self.player = vlc.MediaPlayer(fname) self.player.play() time.sleep(runtime) self.player.stop() os.remove(fname)
StarcoderdataPython
5173397
n1 = float(input('Digite sua primeira nota: ')) n2 = float(input('Digite sua segunda nota: ')) m = (n1+n2)/2 if(m<3): print('Você foi reprovado') elif(m>3 or m<7): print('Você vai para final') else: print('Você passou. Parabéns!!!')
StarcoderdataPython
12835211
<reponame>atigerboy/PythonCookBook<gh_stars>0 ''' weakref weakref.WeakValueDictionary ''' import logging a = logging.getLogger('foo') b = logging.getLogger('bar') print( a is b ) c = logging.getLogger('foo') print( a is c ) #True.same name logger is same instance # The class in question class Spam: def __init__(self, name): self.name = name # Caching support import weakref _spam_cache = weakref.WeakValueDictionary() def get_spam(name): if name not in _spam_cache: s = Spam(name) _spam_cache[name] = s else: s = _spam_cache[name] return s a = get_spam('foo') b = get_spam('bar') print( a is b ) c = get_spam('foo') print( a is c ) # use new class Spam: _spam_cache = weakref.WeakValueDictionary() def __new__(cls, name): if name in cls._spam_cache: return cls._spam_cache[name] else: self = super().__new__(cls) cls._spam_cache[name] = self return self def __init__(self, name): print('Initializing Spam') self.name = name s = Spam('Dave') t = Spam('Dave') print( s is t )
StarcoderdataPython
6643230
<reponame>kraupn3r/intranet from django.contrib import admin from django.urls import path, include from rest_framework_jwt.views import refresh_jwt_token, obtain_jwt_token from .views import * urlpatterns = [ path('', BoardCategoryListAPIView.as_view()), path('postlist/', PostListAPIView.as_view()), path('post/<int:pk>/', PostDetailAPIView.as_view()), path('comment/', CommentAPIView.as_view()), ]
StarcoderdataPython
3516255
<gh_stars>1-10 from .dataset import XrayDataset from .model import XrayModel
StarcoderdataPython
1956685
import sys from transformers import AutoTokenizer, AutoModelForSeq2SeqLM from tqdm.auto import tqdm from sacrebleu.metrics import BLEU from anlp_project.datasets.europarl import EuroParlRaw if len(sys.argv) != 2: print(f"Usage: {sys.argv[0]} CHECKPOINT_PATH") sys.exit(1) checkpoint_name = sys.argv[1] if "en-de" in checkpoint_name: prompt = "translate from English to German: " source_idx = 1 elif "de-en" not in checkpoint_name: prompt = "translate from German to English: " source_idx = 0 else: print("Checkpoint name doesn't have en-de or de-en. Can't figure out direction") sys.exit(1) # Initialize the tokenizer tokenizer = AutoTokenizer.from_pretrained("/scratch/en-de/") # Initialize the model model = AutoModelForSeq2SeqLM.from_pretrained("/scratch/en-de/") bleu = BLEU(lowercase=True) ds = EuroParlRaw() N = len(ds) batch_size = 100 score = 0 refs = [[]] hyps = [] for i in tqdm(range(N // batch_size)): batch = [] for x in range(i * batch_size, (i + 1) * batch_size): batch.append(f"{prompt}: {ds[x][source_idx]}") refs[0].append(ds[x][1 - source_idx]) tokenized_text = tokenizer( batch, padding="max_length", truncation=True, return_tensors="pt" ) # Perform translation and decode the output translation = model.generate(**tokenized_text) translated_text = tokenizer.batch_decode(translation, skip_special_tokens=True) hyps += translated_text for i in range(len(hyps)): print(hyps[i], refs[0][i], sep="\n") print("---------------------------") print(bleu.corpus_score(hyps, refs))
StarcoderdataPython
3241106
#!/usr/bin/env python """Client actions dealing with memory.""" from __future__ import absolute_import from __future__ import division from __future__ import unicode_literals import collections import io import os import re import shutil from future.builtins import str import psutil from typing import Iterable from typing import List import yara from grr_response_client import actions from grr_response_client import client_utils from grr_response_client import streaming from grr_response_client.client_actions import tempfiles from grr_response_core.lib import rdfvalue from grr_response_core.lib.rdfvalues import client as rdf_client from grr_response_core.lib.rdfvalues import memory as rdf_memory from grr_response_core.lib.rdfvalues import paths as rdf_paths def ProcessIterator(pids, process_regex_string, ignore_grr_process, error_list): """Yields all (psutil-) processes that match certain criteria. Args: pids: A list of pids. If given, only the processes with those pids are returned. process_regex_string: If given, only processes whose name matches the regex are returned. ignore_grr_process: If True, the grr process itself will not be returned. error_list: All errors while handling processes are appended to this list. Type is repeated ProcessMemoryError. Yields: psutils.Process objects matching all criteria. """ pids = set(pids) if ignore_grr_process: grr_pid = psutil.Process().pid else: grr_pid = -1 if process_regex_string: process_regex = re.compile(process_regex_string) else: process_regex = None if pids: process_iterator = [] for pid in pids: try: process_iterator.append(psutil.Process(pid=pid)) except Exception as e: # pylint: disable=broad-except error_list.Append( rdf_memory.ProcessMemoryError( process=rdf_client.Process(pid=pid), error=str(e))) else: process_iterator = psutil.process_iter() for p in process_iterator: if process_regex and not process_regex.search(p.name()): continue if p.pid == grr_pid: continue yield p class YaraProcessScan(actions.ActionPlugin): """Scans the memory of a number of processes using Yara.""" in_rdfvalue = rdf_memory.YaraProcessScanRequest out_rdfvalues = [rdf_memory.YaraProcessScanResponse] def _ScanRegion(self, rules, chunks, deadline): for chunk in chunks: if not chunk.data: break self.Progress() time_left = (deadline - rdfvalue.RDFDatetime.Now()).ToInt( rdfvalue.SECONDS) for m in rules.match(data=chunk.data, timeout=time_left): # Note that for regexps in general it might be possible to # specify characters at the end of the string that are not # part of the returned match. In that case, this algorithm # might miss results in unlikely scenarios. We doubt that the # Yara library even allows such constructs but it's good to be # aware that this can happen. for offset, _, s in m.strings: if offset + len(s) > chunk.overlap: # We haven't seen this match before. rdf_match = rdf_memory.YaraMatch.FromLibYaraMatch(m) for string_match in rdf_match.string_matches: string_match.offset += chunk.offset yield rdf_match break def _GetMatches(self, psutil_process, scan_request): if scan_request.per_process_timeout: deadline = rdfvalue.RDFDatetime.Now() + scan_request.per_process_timeout else: deadline = rdfvalue.RDFDatetime.Now() + rdfvalue.Duration.From( 1, rdfvalue.WEEKS) rules = scan_request.yara_signature.GetRules() process = client_utils.OpenProcessForMemoryAccess(pid=psutil_process.pid) with process: streamer = streaming.Streamer( chunk_size=scan_request.chunk_size, overlap_size=scan_request.overlap_size) matches = [] try: for region in client_utils.MemoryRegions(process, scan_request): chunks = streamer.StreamMemory( process, offset=region.start, amount=region.size) for m in self._ScanRegion(rules, chunks, deadline): matches.append(m) if 0 < scan_request.max_results_per_process <= len(matches): return matches except yara.Error as e: # Yara internal error 30 is too many hits (obviously...). We # need to report this as a hit, not an error. if "internal error: 30" in str(e): return matches raise return matches # We don't want individual response messages to get too big so we send # multiple responses for 100 processes each. _RESULTS_PER_RESPONSE = 100 def _ScanProcess(self, process, scan_request, scan_response): rdf_process = rdf_client.Process.FromPsutilProcess(process) start_time = rdfvalue.RDFDatetime.Now() try: matches = self._GetMatches(process, scan_request) scan_time = rdfvalue.RDFDatetime.Now() - start_time scan_time_us = scan_time.ToInt(rdfvalue.MICROSECONDS) except yara.TimeoutError: scan_response.errors.Append( rdf_memory.ProcessMemoryError( process=rdf_process, error="Scanning timed out (%s)." % (rdfvalue.RDFDatetime.Now() - start_time))) return except Exception as e: # pylint: disable=broad-except scan_response.errors.Append( rdf_memory.ProcessMemoryError(process=rdf_process, error=str(e))) return if matches: scan_response.matches.Append( rdf_memory.YaraProcessScanMatch( process=rdf_process, match=matches, scan_time_us=scan_time_us)) else: scan_response.misses.Append( rdf_memory.YaraProcessScanMiss( process=rdf_process, scan_time_us=scan_time_us)) def _SaveSignatureShard(self, scan_request): """Writes a YaraSignatureShard received from the server to disk. Args: scan_request: The YaraProcessScanRequest sent by the server. Returns: The full Yara signature, if all shards have been received. Otherwise, None is returned. """ def GetShardName(shard_index, num_shards): return "shard_%02d_of_%02d" % (shard_index, num_shards) signature_dir = os.path.join(tempfiles.GetDefaultGRRTempDirectory(), "Sig_%s" % self.session_id.Basename()) # Create the temporary directory and set permissions, if it does not exist. tempfiles.EnsureTempDirIsSane(signature_dir) shard_path = os.path.join( signature_dir, GetShardName(scan_request.signature_shard.index, scan_request.num_signature_shards)) with io.open(shard_path, "wb") as f: f.write(scan_request.signature_shard.payload) dir_contents = set(os.listdir(signature_dir)) all_shards = [ GetShardName(i, scan_request.num_signature_shards) for i in range(scan_request.num_signature_shards) ] if dir_contents.issuperset(all_shards): # All shards have been received; delete the temporary directory and # return the full signature. full_signature = io.BytesIO() for shard in all_shards: with io.open(os.path.join(signature_dir, shard), "rb") as f: full_signature.write(f.read()) shutil.rmtree(signature_dir, ignore_errors=True) return full_signature.getvalue().decode("utf-8") else: return None def Run(self, args): if args.yara_signature or not args.signature_shard.payload: raise ValueError( "A Yara signature shard is required, and not the full signature.") if args.num_signature_shards == 1: # Skip saving to disk if there is just one shard. yara_signature = args.signature_shard.payload.decode("utf-8") else: yara_signature = self._SaveSignatureShard(args) if yara_signature is None: # We haven't received the whole signature yet. return scan_request = args.Copy() scan_request.yara_signature = yara_signature scan_response = rdf_memory.YaraProcessScanResponse() processes = ProcessIterator(scan_request.pids, scan_request.process_regex, scan_request.ignore_grr_process, scan_response.errors) for process in processes: self.Progress() num_results = ( len(scan_response.errors) + len(scan_response.matches) + len(scan_response.misses)) if num_results >= self._RESULTS_PER_RESPONSE: self.SendReply(scan_response) scan_response = rdf_memory.YaraProcessScanResponse() self._ScanProcess(process, scan_request, scan_response) self.SendReply(scan_response) def _PrioritizeRegions( regions, prioritize_offsets ): """Returns reordered `regions` to prioritize regions containing offsets. Args: regions: Iterable of ProcessMemoryRegions. prioritize_offsets: List of integers containing prioritized offsets. Pass pre-sorted regions and offsets to improve this functions performance from O(n * log n) to O(n) respectively. Returns: An iterable of first all ProcessMemoryRegions that contain a prioritized offset, followed by all regions that do not contain a prioritized offset. All prioritized regions and all unprioritized regions are sorted by their starting address. """ # Sort regions and offsets to be mononotically increasing and insert sentinel. all_regions = collections.deque(sorted(regions, key=lambda r: r.start)) all_regions.append(None) region = all_regions.popleft() all_offsets = collections.deque(sorted(prioritize_offsets)) all_offsets.append(None) offset = all_offsets.popleft() prio_regions = [] nonprio_regions = [] # This loop runs in O(max(|regions|, |offsets|)) with use of invariants: # - offset is increasing monotonically. # - region[n+1] end >= region[n+1] start >= region[n] start # Because memory regions could theoretically overlap, no relationship exists # between the end of region[n+1] and region[n]. while region is not None and offset is not None: if offset < region.start: # Offset is before the first region, thus cannot be contained in any # region. This could happen when some memory regions are unreadable. offset = all_offsets.popleft() elif offset >= region.start + region.size: # Offset comes after the first region. The first region can not contain # any following offsets, because offsets increase monotonically. nonprio_regions.append(region) region = all_regions.popleft() else: # The first region contains the offset. Mark it as prioritized and # proceed with the next offset. All following offsets that are contained # in the current region are skipped with the first if-branch. prio_regions.append(region) region = all_regions.popleft() offset = all_offsets.popleft() all_regions.appendleft(region) # Put back the current region or sentinel. all_regions.pop() # Remove sentinel. # When there are fewer offsets than regions, remaining regions can be present # in `all_regions`. return prio_regions + nonprio_regions + list(all_regions) def _ApplySizeLimit(regions, size_limit): """Truncates regions so that the total size stays in size_limit.""" total_size = 0 regions_in_limit = [] for region in regions: total_size += region.size if total_size > size_limit: break regions_in_limit.append(region) return regions_in_limit class YaraProcessDump(actions.ActionPlugin): """Dumps a process to disk and returns pathspecs for GRR to pick up.""" in_rdfvalue = rdf_memory.YaraProcessDumpArgs out_rdfvalues = [rdf_memory.YaraProcessDumpResponse] def _SaveMemDumpToFile(self, fd, chunks): bytes_written = 0 for chunk in chunks: if not chunk.data: return 0 fd.write(chunk.data) bytes_written += len(chunk.data) return bytes_written def _SaveMemDumpToFilePath(self, filename, chunks): with open(filename, "wb") as fd: bytes_written = self._SaveMemDumpToFile(fd, chunks) # When getting read errors, we just delete the file and move on. if not bytes_written: try: os.remove(filename) except OSError: pass return bytes_written def _SaveRegionToDirectory(self, psutil_process, process, region, tmp_dir, streamer): end = region.start + region.size # _ReplaceDumpPathspecsWithMultiGetFilePathspec in DumpProcessMemory # flow asserts that MemoryRegions can be uniquely identified by their # file's basename. filename = "%s_%d_%x_%x.tmp" % (psutil_process.name(), psutil_process.pid, region.start, end) filepath = os.path.join(tmp_dir.path, filename) chunks = streamer.StreamMemory( process, offset=region.start, amount=region.size) bytes_written = self._SaveMemDumpToFilePath(filepath, chunks) if not bytes_written: return None # TODO: Remove workaround after client_utils are fixed. canonical_path = client_utils.LocalPathToCanonicalPath(filepath) if not canonical_path.startswith("/"): canonical_path = "/" + canonical_path return rdf_paths.PathSpec( path=canonical_path, pathtype=rdf_paths.PathSpec.PathType.TMPFILE) def DumpProcess(self, psutil_process, args): response = rdf_memory.YaraProcessDumpInformation() response.process = rdf_client.Process.FromPsutilProcess(psutil_process) streamer = streaming.Streamer(chunk_size=args.chunk_size) with client_utils.OpenProcessForMemoryAccess(psutil_process.pid) as process: regions = list(client_utils.MemoryRegions(process, args)) if args.prioritize_offsets: regions = _PrioritizeRegions(regions, args.prioritize_offsets) if args.size_limit: total_regions = len(regions) regions = _ApplySizeLimit(regions, args.size_limit) if len(regions) < total_regions: response.error = ("Byte limit exceeded. Writing {} of {} " "regions.").format(len(regions), total_regions) regions = sorted(regions, key=lambda r: r.start) with tempfiles.TemporaryDirectory(cleanup=False) as tmp_dir: for region in regions: self.Progress() pathspec = self._SaveRegionToDirectory(psutil_process, process, region, tmp_dir, streamer) if pathspec is not None: region.file = pathspec response.memory_regions.Append(region) return response def Run(self, args): if args.prioritize_offsets and len(args.pids) != 1: raise ValueError( "Supplied prioritize_offsets {} for PIDs {} in YaraProcessDump. " "Required exactly one PID.".format(args.prioritize_offsets, args.pids)) result = rdf_memory.YaraProcessDumpResponse() for p in ProcessIterator(args.pids, args.process_regex, args.ignore_grr_process, result.errors): self.Progress() start = rdfvalue.RDFDatetime.Now() try: response = self.DumpProcess(p, args) now = rdfvalue.RDFDatetime.Now() response.dump_time_us = (now - start).ToInt(rdfvalue.MICROSECONDS) result.dumped_processes.Append(response) if response.error: # Limit exceeded, we bail out early. break except Exception as e: # pylint: disable=broad-except result.errors.Append( rdf_memory.ProcessMemoryError( process=rdf_client.Process.FromPsutilProcess(p), error=str(e))) continue self.SendReply(result)
StarcoderdataPython
5161343
<gh_stars>1-10 # The following license applies to Flask # Some of the code on this file have been based off of Flask's documentation. # Copyright 2010 Pallets # Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: # Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. # Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. # Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS” AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # The following license applies to Flask-SocketIO # The MIT License (MIT) # Copyright (c) 2014 <NAME> # Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: # The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. # Other code in file written by <NAME> # Copyright (c) 2021 <NAME> import os import click import time import random import json from flask import Flask, flash, g, redirect, render_template, request, url_for from flask_socketio import SocketIO, emit, join_room, leave_room, disconnect, close_room from collections import deque # ------------------------------------------------------------------------------------------ # Flask app, SocketIO app = Flask(__name__, instance_relative_config=True) app.config.from_mapping( SECRET_KEY ='dev' ) def init_app(app): app.cli.add_command(init_db_command) def init_db(): Base.metadata.create_all(engine) @click.command('init-db') def init_db_command(): init_db() click.echo('Successfully initialized the database.') init_app(app) socketIO = SocketIO(app) # ------------------------------------------------------------------------------------------ # random games SocketIO game_rooms_dictionary = dict() game_rooms = list() for i in range(50): game_rooms.append(list()) connectedPlayersList = deque() # handler for the room request from player in random games page @socketIO.on('request_room') def request_game_room(): app.logger.info("Player " + str(request.sid) + " requested room") if request.sid not in connectedPlayersList: connectedPlayersList.append(request.sid) for i in range(len(game_rooms)): if 2 > len(game_rooms[i]): app.logger.info("# of players currently in room " + str(i + 1) + " is (before adding): " + str(len(game_rooms[i]))) game_rooms[i].append(request.sid) join_room(i) app.logger.info("Player " + str(request.sid) + " joined room number: " + str(i + 1)) game_rooms_dictionary[request.sid] = i app.logger.info("# of players currently in room " + str(i + 1) + " is (after adding): " + str(len(game_rooms[i]))) break # notify the two players in the room of their colour (blue [1] or grey [0]) def notifyCurrentSessionPlayerColour(): isPlayerBlue = None i = game_rooms_dictionary[request.sid] for sid in game_rooms[i]: try: isPlayerBlue = game_rooms[i].index(sid) app.logger.info("player " + str(sid) + " colour is: " + str(isPlayerBlue)) except: pass if isPlayerBlue == 0 or isPlayerBlue == 1: socketIO.emit('player_colour_assignment', {'isPlayerBlue': isPlayerBlue}, room=sid) # alert the users in random games page if they have been placed in a room yet or not @socketIO.on('check_entered_room') def check_entered_game_room(): app.logger.info("Player " + str(request.sid) + " is requesting check_entered_room") try: if len(game_rooms[game_rooms_dictionary[request.sid]]) == 2: socketIO.emit('check_entered_room_response', {'response': True, 'game_room_number': (game_rooms_dictionary[request.sid] + 1)}, room=game_rooms_dictionary[request.sid]) i = game_rooms_dictionary[request.sid] app.logger.info("player " + str(game_rooms[i][0]) + " and " + str(game_rooms[i][1]) + " in room") notifyCurrentSessionPlayerColour() else: socketIO.emit('check_entered_room_response', {'response': False}, room=game_rooms_dictionary[request.sid]) i = game_rooms_dictionary[request.sid] app.logger.info("player " + str(game_rooms[i][0]) + " and " + str(game_rooms[i][1]) + " not in room") except: app.logger.error("could not find current game room number") socketIO.emit('check_entered_room_response', {'response': False}, room=game_rooms_dictionary[request.sid]) # handler for user disconnection, triggered when one of the players closes their page (may not work for some browsers) @socketIO.on('disconnect_from_room') def disconnect_from_game_room(): try: if request.sid in connectedPlayersList: socketIO.emit('game_session_valid_response', {'session_valid': False}, room=game_rooms_dictionary[request.sid]) i = game_rooms_dictionary[request.sid] # sleep to allow socketIO emit to reach client before disconnecting client time.sleep(2) app.logger.info("clearing room " + str(i + 1)) for sid in game_rooms[i]: del game_rooms_dictionary[sid] disconnect(sid) connectedPlayersList.remove(sid) close_room(i) game_rooms[i].clear() app.logger.info("# of players currently in room " + str(i + 1) + " is (after removing): " + str(len(game_rooms[i]))) except: app.logger.error("error disconnecting user from game room, perhaps user has already been disconnected") # emits stone placements of the players to their room @socketIO.on('stone_placement') def stone_placement(json): socketIO.emit('placement_response', json, room=game_rooms_dictionary[request.sid]) # ------------------------------------------------------------------------------------------ # private game rooms SocketIO sid_private_game_rooms_dictionary = dict() private_game_rooms_dictionary = dict() private_room_connected_players = set() unique_name_list = ['dolphin', 'donguri', 'turtle', 'omok', 'orange', 'monkey', 'cactus', 'game'] # generates a unique room code for private game rooms def get_unique_room_code(): random_code = unique_name_list[random.randint(0, 7)] random_code += str(random.randint(0, 100000)) if random_code not in sid_private_game_rooms_dictionary.keys(): return random_code else: return get_unique_room_code() # handler for user disconnection, triggered when one of the players closes their page (may not work for some browsers) @socketIO.on('disconnect_from_private_room') def disconnect_from_private_game_room(): try: if request.sid in private_room_connected_players: socketIO.emit('game_session_valid_response_private_room', {'session_valid': False}, room=sid_private_game_rooms_dictionary[request.sid]) private_room_name = sid_private_game_rooms_dictionary[request.sid] # sleep to allow socketIO emit to reach client before disconnecting client time.sleep(2) app.logger.info("clearing room " + private_room_name) for sid in private_game_rooms_dictionary[private_room_name]: del sid_private_game_rooms_dictionary[sid] disconnect(sid) private_room_connected_players.remove(sid) close_room(private_room_name) del private_game_rooms_dictionary[private_room_name] app.logger.info("cleared room " + private_room_name) except: app.logger.error("error disconnecting user from game room, perhaps user has already been disconnected") # handler for the unique room code request from player in create room page @socketIO.on('request_private_room_code') def private_room_code(): app.logger.info("Player " + str(request.sid) + " requested room code") room_code = get_unique_room_code() socketIO.emit('private_room_code', {'room_code': room_code}, room=request.sid) sid_private_game_rooms_dictionary[request.sid] = room_code private_game_rooms_dictionary[room_code] = [request.sid] private_room_connected_players.add(request.sid) join_room(room_code) # notify the two players in the room of their colour (blue [1] or grey [0]) def notifyPrivateRoomPlayerColour(): isPlayerBlue = None private_room_name = sid_private_game_rooms_dictionary[request.sid] for sid in private_game_rooms_dictionary[private_room_name]: try: isPlayerBlue = private_game_rooms_dictionary[private_room_name].index(sid) app.logger.info("player " + str(sid) + " colour is: " + str(isPlayerBlue)) except: pass if isPlayerBlue == 0 or isPlayerBlue == 1: socketIO.emit('player_colour_assignment', {'isPlayerBlue': isPlayerBlue}, room=sid) # handler for the join by room code request from player in join game page @socketIO.on('join_by_private_room_code') def private_room_code(json): try: app.logger.info("Player " + str(request.sid) + " requesting to join " + json['room_code']) if json['room_code'] in private_game_rooms_dictionary.keys(): if len(private_game_rooms_dictionary[json['room_code']]) == 1: socketIO.emit('join_by_private_room_code_response', {'join_status': 1}, room=request.sid) sid_private_game_rooms_dictionary[request.sid] = json['room_code'] private_game_rooms_dictionary[json['room_code']].append(request.sid) private_room_connected_players.add(request.sid) join_room(json['room_code']) socketIO.emit('start_game_private_room', room=json['room_code']) notifyPrivateRoomPlayerColour() elif (len(private_game_rooms_dictionary[json['room_code']])) < 1: socketIO.emit('join_by_private_room_code_response', {'join_status': 0}, room=request.sid) else: socketIO.emit('join_by_private_room_code_response', {'join_status': -1}, room=request.sid) else: socketIO.emit('join_by_private_room_code_response', {'join_status': 0}, room=request.sid) except: app.logger.error("error joining user by private game code") # emits stone placements of the players to their room @socketIO.on('stone_placement_private_room') def stone_placement(json): socketIO.emit('placement_response_private_room', json, room=sid_private_game_rooms_dictionary[request.sid]) # ------------------------------------------------------------------------------------------ # shared SocketIO # handler for user disconnection, triggered by SocketIO @socketIO.on('disconnect') def disconnect_handler(): socketIO.emit('game_session_valid_response_private_room', {'session_valid': 0}, room=sid_private_game_rooms_dictionary[request.sid]) socketIO.emit('game_session_valid_response_private_room', {'session_valid': 0}, room=sid_private_game_rooms_dictionary[request.sid]) try: disconnect_from_game_room() disconnect_from_private_game_room() except: app.logger.error("error disconnecting user from game room, perhaps user has already been disconnected") # ------------------------------------------------------------------------------------------ # http requests # main welcome page @app.route('/', methods=('GET', 'POST')) def main_home(): if request.method == 'POST': if 'play_button' in request.form: if request.form['play_button'] == 'start_game': return redirect(url_for('modes')) if 'license_info_button' in request.form: if request.form['license_info_button'] == 'show_license_info': return redirect(url_for('license_info')) return render_template('index.html') # game modes select page @app.route('/game_modes', methods=('GET', 'POST')) def modes(): if request.method == 'POST': if 'game_mode_button' in request.form: if request.form['game_mode_button'] == 'random_game': return redirect(url_for('random_game')) elif request.form['game_mode_button'] == 'create_room': return redirect(url_for('create_game_room')) elif request.form['game_mode_button'] == 'join_room': return redirect(url_for('join_game_room')) return render_template('modes.html') # join game page @app.route('/license_info', methods=['GET']) def license_info(): return render_template('license_page.html') # random game page @app.route('/random_game', methods=('GET', 'POST')) def random_game(): if request.method == 'POST': if 'corner_button' in request.form: if request.form['corner_button'] == 'exit_queue': return redirect(url_for('main_home')) return render_template('random_game.html') # create game page @app.route('/create_game', methods=['GET']) def create_game_room(): return render_template('create_room.html') # join game page @app.route('/join_game', methods=['GET']) def join_game_room(): return render_template('join_room.html') # ------------------------------------------------------------------------------------------ # run app if __name__ == '__main__': socketIO.run(app)
StarcoderdataPython
11217346
<reponame>flucto-gmbh/msb_attitude<filename>src/issue_complementary.py import numpy as np from os import path import sys # add ahrs directory to PYTHONPATH SCRIPT_DIR = path.dirname(path.abspath(__file__)) sys.path.append(path.dirname(SCRIPT_DIR)) try: from ahrs.ahrs.filters import Complementary except ImportError as e: print(f'failed to import Complementary filter from ahrs: {e}') sys.exit(-1) try: from ahrs.ahrs.common import Quaternion except ImportError as e: print(f'failed to import Quaternion from ahrs: {e}') sys.exit(-1) def main(): gyr = np.array([1, 1, 1]) acc = np.array([0, 0, -1]) mag = np.array([2, 22, 2]) q0 = Quaternion( np.array([1,1,1,1]) ) complementary = Complementary( gyr=np.array([[1, 1, 1]]), acc=np.array([[0, 0, -1]]), mag=np.array([[2,20,2]]), q0=q0 ) q_attitude = complementary.update( q = q0, gyr=gyr, acc=acc, mag=mag, ) print(f'attitude: {q_attitude}') if __name__ == '__main__': main()
StarcoderdataPython
3269232
from .adt import ADT from .adt import memo as ADTmemo from .prelude import * from . import atl_types as T from .frontend import AST from fractions import Fraction from math import gcd as _gcd def _lcm(x,y): return (x*y)//_gcd(x,y) # notes on symbols to use # Note that BOOL is a type and Bool a formula constructor function #from pysmt.shortcuts import ( # Symbol, BOOL, INT, REAL, # Bool, Int, Real, # TRUE, FALSE, And, Or, Not, # GT, GE, LE, LT, Equals, NotEquals, # Plus, Minus, Times, Div #) import pysmt from pysmt import shortcuts as SMT def _get_smt_solver(): factory = pysmt.factory.Factory(pysmt.shortcuts.get_env()) slvs = factory.all_solvers() if len(slvs) == 0: raise OSError("Could not find any SMT solvers") return pysmt.shortcuts.Solver(name=next(iter(slvs))) # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Description of Bounds-Checking Problem BD = ADT(""" module BD { sys = VarIntro ( sym name, sys cont, srcinfo srcinfo ) | RelIntro ( sym name, int n_args, sys cont, srcinfo srcinfo ) | Guard ( pred pred, sys cont, srcinfo srcinfo ) | Both ( sys lhs, sys rhs ) | Check ( pred pred, sys cont, srcinfo srcinfo ) | NullSys () pred = GTZ ( affine expr ) | GEZ ( affine expr ) | EQZ ( affine expr ) | Rel ( sym name, sym* args ) | Conj ( pred lhs, pred rhs ) | Disj ( pred lhs, pred rhs ) affine = ( fraction offset, term* terms ) term = ( fraction coeff, sym var ) } """, { 'sym': lambda x: type(x) is Sym, 'fraction': lambda x: type(x) is Fraction, 'srcinfo': lambda x: type(x) is SrcInfo, }) ADTmemo(BD,['NullSys']) BD.null = BD.NullSys() # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Operator Overloading to help construct affine expressions def _alift_(obj): if type(obj) is BD.affine: return obj elif type(obj) is BD.term: return BD.affine( Fraction(0), [obj] ) elif type(obj) is Sym: return BD.affine( Fraction(0), [ BD.term(Fraction(1),obj) ] ) elif type(obj) is int: return BD.affine( Fraction(obj), [] ) elif type(obj) is Fraction: return BD.affine( obj, [] ) else: assert False, f"unsupported affine lifting for type {type(obj)}" @extclass(BD.affine) def __add__(lhs,rhs): rhs = _alift_(rhs) off = lhs.offset + rhs.offset terms = lhs.terms.copy() terms.extend(rhs.terms) return BD.affine( off, terms ) @extclass(BD.affine) def __radd__(rhs,lhs): return _alift_(lhs) + rhs @extclass(BD.affine) def __neg__(arg): off = -arg.offset terms = [ BD.term( -t.coeff, t.var ) for t in arg.terms ] return BD.affine( off, terms ) @extclass(BD.affine) def __sub__(lhs,rhs): return lhs + (-_alift_(rhs)) @extclass(BD.affine) def __rsub__(rhs,lhs): return _alift_(lhs) + (-rhs) @extclass(BD.affine) def __mul__(lhs,rhs): assert type(rhs) is Fraction, "expected fraction to scale by" off = lhs.offset * rhs terms = [ BD.term( t.coeff * rhs, t.var ) for t in lhs.terms ] return BD.affine( off, terms ) @extclass(BD.affine) def __rmul__(rhs,lhs): return rhs * lhs @extclass(BD.affine) def __gt__(lhs,rhs): return BD.GTZ( lhs - rhs ) @extclass(BD.affine) def __ge__(lhs,rhs): return BD.GEZ( lhs - rhs ) @extclass(BD.affine) def __lt__(lhs,rhs): return BD.GTZ( rhs - lhs ) @extclass(BD.affine) def __le__(lhs,rhs): return BD.GEZ( rhs - lhs ) @extclass(BD.affine) def eq(lhs,rhs): return BD.EQZ( lhs - rhs ) del __add__, __radd__, __neg__, __sub__, __rsub__, __mul__, __rmul__ del __gt__, __lt__, __ge__, __le__, eq # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Extraction of Bounds-Checking Problem class BoundsExtraction: def __init__(self, f): self._ctxt = Context() # pack context with relation sizes for rd in f.relations: self._ctxt.set(rd.name, rd.sizes) # construct the system corresponding to the expression body sys = self.extract(f.body) # and then wrap that in variable declarations for sizes/relations for rd in reversed(f.relations): sys = BD.RelIntro( rd.name, len(rd.sizes), sys, rd.srcinfo ) for sz in reversed(f.sizes): sys = BD.VarIntro( sz.name, sys, sz.srcinfo ) self._sys = sys def system(self): return self._sys def _get_rel_sizes(self,rname): szs = self._ctxt.get(rname) assert szs is not None, "Expected all relation lookups to succeed" return szs def extract(self, e): eclass = type(e) # do not perform bounds-checks on code that was already checked. if hasattr(e, 'func_call_sub'): return BD.null elif eclass is AST.Var or eclass is AST.Const: return BD.null elif eclass is AST.BinOp: lhs = self.extract(e.lhs) rhs = self.extract(e.rhs) if lhs is BD.null: return rhs elif rhs is BD.null: return lhs else: return BD.Both(lhs,rhs) elif eclass is AST.Tuple: sys = BD.null for a in e.args: s = self.extract(a) if sys is BD.null: sys = s elif s is not BD.null: sys = BD.Both( s, sys ) return sys elif eclass is AST.Proj: return self.extract(e.arg) elif eclass is AST.TensorLit: sys = BD.null for a in e.args: s = self.extract(a) if sys is BD.null: sys = s elif s is not BD.null: sys = BD.Both( s, sys ) return sys elif eclass is AST.Gen or eclass is AST.Sum: # a sanity check; maybe not necessary, but if true # this greatly simplifies naming issues, so let's assert for now assert self._ctxt.get(e.name) is None, "Expected unique name symbols" # build guard predicate (let x be e.name) lo_bd = (_alift_(e.name) >= 0) hi_bd = (_alift_(e.name) < e.range) guard = BD.Conj( lo_bd, hi_bd ) # assemble system body = self.extract(e.body) if body is BD.null: return body else: body = BD.Guard( guard, body, e.srcinfo ) return BD.VarIntro( e.name, body, e.srcinfo ) elif eclass is AST.Access: # handle multiple accesses and w.r.t the tensor type... sys = self.extract(e.base) typ = e.base.type for i_ast in e.idx: i = self.index(i_ast) rng = typ.range typ = typ.type lo_chk = (i >= 0) hi_chk = (i < rng) sys = BD.Check( BD.Conj(lo_chk, hi_chk), sys, e.srcinfo ) return sys elif eclass is AST.BuiltIn: # the built-in itself has no effect sys = BD.null for a in e.args: s = self.extract(a) if sys is BD.null: sys = s elif s is not BD.null: sys = BD.Both( s, sys ) return sys elif eclass is AST.Indicate: # relational predicates may require introducing # additional bounds checks on their arguments guard, checks = self.pred(e.pred) body = self.extract(e.body) if body is not BD.null: body = BD.Guard( guard, body, e.srcinfo ) # now wrap with any checks regardless of whether body is null for name,eq,chk,srcinfo in checks: body = BD.VarIntro( name, BD.Guard( eq, BD.Check(chk,body,srcinfo), srcinfo ), srcinfo ) return body elif eclass is AST.Let: sys = self.extract(e.ret) for s in e.stmts: rhs = self.extract(s.rhs) if sys is BD.null: sys = rhs elif rhs is not BD.null: sys = BD.Both( rhs, sys ) return sys else: assert False, "unexpected case" def index(self, e): eclass = type(e) if eclass is AST.IdxConst: return _alift_(e.val) elif eclass is AST.IdxVar or eclass is AST.IdxSize: return _alift_(e.name) elif eclass is AST.IdxAdd: return self.index(e.lhs) + self.index(e.rhs) elif eclass is AST.IdxSub: return self.index(e.lhs) - self.index(e.rhs) elif eclass is AST.IdxScale: return e.coeff * self.index(e.idx) else: assert False, "unexpected case" # returns a second "checks" list of type # [(var_name, var_eq, var_bd_chk, err_msg, srcinfo)] def pred(self, p): pclass = type(p) if pclass is AST.Cmp: lhs = self.index(p.lhs) rhs = self.index(p.rhs) if p.op == "<": return lhs < rhs, [] elif p.op == ">": return lhs > rhs, [] elif p.op == "<=": return lhs <= rhs, [] elif p.op == ">=": return lhs >= rhs, [] elif p.op == "==": return lhs.eq(rhs), [] else: assert False, f"Unrecognized Op {p.op}" elif pclass is AST.Relation: sizes = self._get_rel_sizes(p.name) args, checks = [], [] for k,(i_arg,N) in enumerate(zip(p.args,sizes)): i = self.index(i_arg) v = Sym(f"{p.name}{k}") def_eq = i.eq(v) bd_chk = BD.Conj( i >= 0, i < N ) args.append(v) checks.append( (v,def_eq,bd_chk,i_arg.srcinfo) ) return BD.Rel(p.name, args), checks elif pclass is AST.Conj or pclass is AST.Disj: lhs, lchk = self.pred(p.lhs) rhs, rchk = self.pred(p.rhs) lchk.extend(rchk) ctr = BD.Conj if pclass is AST.Conj else BD.Disj return ctr(lhs,rhs), lchk else: assert False, "Impossible Case" # --------------------------------------------------------------------------- # # --------------------------------------------------------------------------- # # Execution of Bounds-Checking Problem class BoundsCheck: def __init__(self,sys): assert isinstance(sys, BD.sys), "Expected a bounds-system..." self._slv = _get_smt_solver() self._slv.reset_assertions() self._ctxt = Context() self._errors = [] self._slv.push() self.check(sys) self._slv.pop() self.report_errors() def report_errors(self): if len(self._errors) == 0: return errs = [] errs.append("Failed Bounds Checks:") for srcinfo,msg in self._errors: errs.append(f"{srcinfo}: {msg}") raise TypeError("\n".join(errs)) def _err(self, node, msg): self._errors.append((node.srcinfo, msg)) def _get_solution(self, pred): smt_syms = [ smt_sym for nm,smt_sym in self._ctxt.items() if smt_sym.get_type() == SMT.INT ] self._slv.push() self._slv.add_assertion(pred) val_map = self._slv.get_py_values(smt_syms) self._slv.pop() mapping = [] for nm,smt_sym in self._ctxt.items(): if smt_sym.get_type() == SMT.INT: mapping.append(f" {nm} = {val_map[smt_sym]}") return "\n".join(mapping) def check(self, sys): styp = type(sys) if styp is BD.VarIntro: smtsym = SMT.Symbol(repr(sys.name), SMT.INT) self._ctxt.set(sys.name, smtsym) self.check(sys.cont) elif styp is BD.RelIntro: Rtyp = SMT.FunctionType(SMT.BOOL, [ SMT.INT for i in range(0,sys.n_args) ]) smtsym = SMT.Symbol(repr(sys.name), Rtyp) self._ctxt.set(sys.name, smtsym) self.check(sys.cont) elif styp is BD.Guard: pred = self.formula(sys.pred) self._slv.add_assertion(pred) self.check(sys.cont) elif styp is BD.Both: # make sure we can backtrack from the first branch self._slv.push() self._ctxt.push() self.check(sys.lhs) self._ctxt.pop() self._slv.pop() # now the second branch we can just proceed self.check(sys.rhs) elif styp is BD.Check: pred = SMT.Not( self.formula(sys.pred) ) failure = self._slv.is_sat(pred) if failure: mapping = self._get_solution(pred) self._err(sys, f"Out of Bounds Access:\n{mapping}") # continue regardless self.check(sys.cont) elif styp is BD.NullSys: pass def formula(self, p): ptyp = type(p) if ptyp is BD.GTZ or ptyp is BD.GEZ or ptyp is BD.EQZ: aform = self.affine(p.expr) if ptyp is BD.GTZ: return SMT.GT( aform, SMT.Int(0) ) elif ptyp is BD.GEZ: return SMT.GE( aform, SMT.Int(0) ) elif ptyp is BD.EQZ: return SMT.Equals( aform, SMT.Int(0) ) else: assert False elif ptyp is BD.Rel: rsym = self._ctxt.get(p.name) assert rsym is not None, f"expected relation name '{p.name}'" args = [] for a in p.args: sym = self._ctxt.get(a) assert sym is not None, f"expected variable name '{a}'" args.append(sym) return SMT.Function(rsym,args) elif ptyp is BD.Conj or ptyp is BD.Disj: lhs = self.formula(p.lhs) rhs = self.formula(p.rhs) smtop = SMT.And if ptyp is BD.Conj else SMT.Or return smtop(lhs, rhs) def affine(self, a): """ return some positive rescaling of the affine expression s.t. the rescaled expression has integer coefficients safe, since positive rescaling preserves all of a >= 0, a > 0, and a == 0 """ # find the lcm of the offset denominator # and all coefficient denominators mult = a.offset.denominator for t in a.terms: mult = _lcm(mult, t.coeff.denominator) # now, we can produce an integral affine equation, # by rescaling through with `mult` a = a * Fraction(mult) # Finally, convert this to an SMT formula assert a.offset.denominator == 1 f = SMT.Int(a.offset.numerator) for t in a.terms: assert t.coeff.denominator == 1 sym = self._ctxt.get(t.var) assert sym is not None, f"expected variable name '{t.var}'" term = SMT.Times( SMT.Int(t.coeff.numerator), sym ) f = SMT.Plus( f, term ) return f
StarcoderdataPython
1647621
#!/usr/bin/env python # Part of sniffMyPackets framework. # Generic pcap tools and utilities that SmP uses import os import magic import datetime import logging logging.getLogger("scapy.runtime").setLevel(logging.ERROR) from scapy.all import rdpcap, conf def packet_count(pcap): conf.verb = 0 try: pkts = rdpcap(pcap) return len(pkts) except Exception as e: return str(e) def check_pcap(pcap): try: bad_magic = 'pcap-ng capture file' m = magic.open(magic.MAGIC_NONE) m.load() f = m.file(pcap) if bad_magic in f: return 'BAD' else: return f except Exception as e: return str(e) def count_sessions(pcap): try: pkts = rdpcap(pcap) return len(pkts.sessions()) except Exception as e: return str(e) def check_size(pcap): try: x = os.path.getsize(pcap) d = "%0.01f MB" % (x / (1024*1024.0)) return str(d) except Exception as e: return str(e) def get_time(pcap): try: p = rdpcap(pcap) c = len(p) start = datetime.datetime.fromtimestamp(p[0].time).strftime('%Y-%m-%d %H:%M:%S.%f') end = datetime.datetime.fromtimestamp(p[c -1].time).strftime('%Y-%m-%d %H:%M:%S.%f') return [start, end] except Exception as e: return str(e)
StarcoderdataPython
4966299
<filename>Pyro/ext/remote.py ############################################################################# # # simple Pyro connection module, originally written by <NAME> # # This is part of "Pyro" - Python Remote Objects # which is (c) <NAME> - <EMAIL> # ############################################################################# import UserDict import exceptions import os import re import signal import socket import sys import time import types import Pyro.errors import Pyro.naming import Pyro.core import Pyro.util from Pyro.protocol import ProtocolError true, false = 1, 0 copy_types = false verbose = false pyro_nameserver = None pyro_daemon = None client_initialized = false server_initialized = false daemon_host = '' daemon_port = 0 daemon_objects = [] daemon_types = [] def tb_info(tb): codename = tb.tb_frame.f_code.co_filename lineno = tb.tb_lineno if not (codename == '<string>' or codename.find(".py") > 0): lineno = lineno - 2 return lineno, codename def canonize(e_type, e_val, e_traceback): "Turn the exception into a textual representation." # find the last traceback: tb = e_traceback lineno, codename = tb_info(tb) lines = [ "%s %s" % (codename, lineno) ] found = None if tb.tb_frame.f_code.co_filename[0] == '<': found = tb while tb.tb_next: tb = tb.tb_next if tb.tb_frame.f_code.co_filename[0] == '<': found = tb lineno, codename = tb_info(tb) lines.append("%s %s" % (codename, lineno)) if found: tb = found lineno, codename = tb_info(tb) if codename == '<string>': lines.insert(0, "%s in command: %s" % (e_type, e_val)) elif codename.find(".py") > 0 and e_type == "SyntaxError": lines.insert(0, "%s in: %s" % (e_type, e_val)) else: lines.insert(0, "%s in line %s of %s: %s" % (e_type, lineno, codename, e_val)) return lines def exception_text(): return sys.exc_value def format_exception(): return canonize(*sys.exc_info()) def register_type(t): """Whenever type T goes in or out, wrap/unwrap the type so that the user is always interacting with the server object, or the server interacts with the object directly.""" if t not in daemon_types: daemon_types.append(t) def unregister_objects(): if pyro_daemon: global daemon_objects for obj in daemon_objects: try: pyro_daemon.disconnect(obj) except: pass daemon_objects = [] sys.exitfunc = unregister_objects def host_ipaddr(interface = None): if sys.platform == "win32": return socket.gethostbyname(socket.gethostname()) cmd = "/sbin/ifconfig" if interface: cmd = '%s %s' % (cmd, interface) fd = os.popen(cmd) this_host = None interfaces = {} name = None for line in fd.readlines(): match = re.match("(\S+)", line) if match: name = match.group(1) match = re.search("inet addr:(\S+)", line) if match: addr = match.group(1) if name: interfaces[name] = addr if interfaces.has_key(interface): this_host = interfaces[interface] else: for name, addr in interfaces.items(): if re.match("ppp", name): this_host = addr break elif re.match("eth", name): this_host = addr fd.close() return this_host or socket.gethostbyname(socket.gethostname()) def find_nameserver(hostname = None, portnum = None): if hostname and hostname.find('://') > 0: URI = Pyro.core.PyroURI(hostname) ns = Pyro.naming.NameServerProxy(URI) else: try: if verbose: print 'Searching for Naming Service on %s:%d...' % \ (hostname or 'BROADCAST', portnum or Pyro.config.PYRO_NS_BC_PORT) locator = Pyro.naming.NameServerLocator() ns = locator.getNS(host = hostname, port = portnum) except (Pyro.core.PyroError, socket.error), x: localhost = socket.gethostbyname('localhost') if verbose: print "Error:", x print """ Naming Service not found with broadcast. Trying local host""", localhost, '...', ns = locator.getNS(host = localhost, port = portnum) if verbose: print 'Naming Service found at', ns.URI return ns class Error(Exception): pass class ObjBase(Pyro.core.ObjBase): """This extension of Pyro.core.ObjBase makes sure that any values that get returned to the caller which are of a significant type, get wrapped first in proxies. Likewise, if a proxy class comes back to us, and it's in regard to an object native to this server, unwrap it.""" def __nonzero__(self): return 1 def Pyro_dyncall(self, method, flags, args): try: base = Pyro.core.ObjBase.Pyro_dyncall result = wrap(base(self, method, flags, unwrap(args))) except: result = Error('\n'.join(format_exception())) return result def _r_ga(self, attr): return wrap(Pyro.core.ObjBase._r_ga(self, attr)) def _r_sa(self, attr, value): Pyro.core.ObjBase._r_sa(self, attr, unwrap(value)) class Nameserver: """This helper class allows the server to use Pyro's naming service for publishing certain objects by name. It integrates better with remote.py, than Pyro.naming.NameServer does.""" def __init__(self, ns, ns_port): self.ns = ns self.ns_port = ns_port def __cmp__(self, other): return self.ns == other.ns and self.ns_port == other.ns_port def __str__(self): if self.ns_port: return "%s:%s" % (self.ns, self.ns_port) return self.ns def resolve(self, name): return get_remote_object(name, self.ns, self.ns_port) def register(self, name, object): return provide_local_object(object, name, self.ns, self.ns_port) def unregister(self, object): for obj in daemon_objects[:]: if obj.delegate is object: pyro_daemon.disconnect(obj) daemon_objects.remove(obj) class DynamicProxy(Pyro.core.DynamicProxyWithAttrs): """This version of the proxy just wraps args before making external calls.""" def __nonzero__(self): return true def _invokePYRO(self, *vargs, **kargs): result = unwrap(apply(Pyro.core.DynamicProxyWithAttrs._invokePYRO, tuple([self] + wrap(list(vargs))), wrap(kargs))) if type(result) is types.InstanceType and \ isinstance(result, Error) or \ isinstance(result, Pyro.errors.PyroError) or \ isinstance(result, ProtocolError): msg = str(result) type_name = msg[: msg.find(' ')] if type_name == 'exceptions.IndexError': try: real_type = eval(type_name) msg = msg.split('\n')[0] result = real_type(msg[msg.find(':') + 2 :]) except: pass raise result else: return result def unwrap(value): t = type(value) if t is types.InstanceType and isinstance(value, DynamicProxy): if pyro_daemon: try: return pyro_daemon.getLocalObject(value.objectID) except KeyError: pass return value elif t is types.ListType: for i in range(len(value)): value[i] = unwrap(value[i]) elif t is types.TupleType: value = list(value) for i in range(len(value)): value[i] = unwrap(value[i]) return tuple(value) elif t is types.DictType: for k, v in value.items(): value[k] = unwrap(v) return value def wrap(value): """Wrap the argument, returning a copy -- since otherwise we might alter a local data structure inadvertantly.""" t = type(value) if t is types.InstanceType: matched = false for dt in daemon_types: if isinstance(value, dt): matched = true if not copy_types and not matched and \ not isinstance(value, DynamicProxy): return provide_local_object(value) elif t is types.ListType: value = value[:] for i in range(len(value)): value[i] = wrap(value[i]) elif t is types.TupleType: value = list(value) for i in range(len(value)): value[i] = wrap(value[i]) return tuple(value) elif t is types.DictType: copy = {} for k, v in value.items(): copy[k] = wrap(v) return copy return value def get_remote_object(name, hostname = None, portnum = None): global client_initialized, pyro_nameserver # initialize Pyro -- Python Remote Objects if not client_initialized: Pyro.core.initClient(verbose) client_initialized = true if pyro_nameserver is None or hostname: pyro_nameserver = find_nameserver(hostname, portnum) if verbose: print 'Binding object %s' % name try: URI = pyro_nameserver.resolve(name) if verbose: print 'URI:', URI return DynamicProxy(URI) except Pyro.core.PyroError, x: raise Error("Couldn't bind object, nameserver says:", x) class Cache(UserDict.UserDict): """simple cache that uses least recently accessed time to trim size""" def __init__(self,data=None,size=100): UserDict.UserDict.__init__(self,data) self.size = size def resize(self): """trim cache to no more than 95% of desired size""" trim = max(0, int(len(self.data)-0.95*self.size)) if trim: # don't want self.items() because we must sort list by access time values = map(None, self.data.values(), self.data.keys()) values.sort() for val,k in values[0:trim]: del self.data[k] def __setitem__(self,key,val): if (not self.data.has_key(key) and len(self.data) >= self.size): self.resize() self.data[key] = (time.time(), val) def __getitem__(self,key): """like normal __getitem__ but updates time of fetched entry""" val = self.data[key][1] self.data[key] = (time.time(),val) return val def get(self,key,default=None): """like normal __getitem__ but updates time of fetched entry""" try: return self[key] except KeyError: return default def values(self): """return values, but eliminate access times first""" vals = list(self.data.values()) for i in range(len(vals)): vals[i] = vals[i][1] return tuple(vals) def items(self): return map(None, self.keys(), self.values()) def copy(self): return self.__class__(self.data, self.size) def update(self, otherdict): for k in otherdict.keys(): self[k] = otherdict[k] provided_objects = Cache(size = 100) def provide_local_object(obj, name = None, hostname = None, portnum = None): global server_initialized, pyro_daemon, pyro_nameserver proxy_class = DynamicProxy if not server_initialized: Pyro.core.initServer(verbose) server_initialized = true if pyro_daemon is None: pyro_daemon = Pyro.core.Daemon(host = daemon_host, port = daemon_port) # If no 'name' was specified, don't even bother with the # nameserver. if name: if pyro_nameserver is None or hostname: pyro_nameserver = find_nameserver(hostname, portnum) pyro_daemon.useNameServer(pyro_nameserver) if verbose: print 'Remoting object', name # tell nameserver to forget any earlier use of this name try: if pyro_nameserver.resolve(name): pyro_nameserver.unregister(name) except Pyro.errors.NamingError: pass if not isinstance(obj, Pyro.core.ObjBase): if provided_objects.has_key(obj): obj = provided_objects[obj] else: slave = ObjBase() slave.delegateTo(obj) provided_objects[obj] = slave obj = slave URI = pyro_daemon.connect(obj, name) daemon_objects.append(obj) proxy = proxy_class(URI) return proxy abort = false def interrupt(*args): global abort abort = true if hasattr(signal,'SIGINT'): signal.signal(signal.SIGINT, interrupt) #if hasattr(signal,'SIGHUP'): signal.signal(signal.SIGHUP, interrupt) #if hasattr(signal,'SIGQUIT'): signal.signal(signal.SIGQUIT, interrupt) def handle_requests(wait_time = None, callback = None): global abort abort = false if pyro_daemon is None: raise Error("There is no daemon with which to handle requests") if wait_time: start = time.time() while not abort: try: pyro_daemon.handleRequests(wait_time) if wait_time: now = time.time() if callback and now - start > wait_time: callback() start = now elif callback: callback() # ignore socket and select errors, they are often transient except socket.error: pass except Exception, msg: if verbose: print "Error:", sys.exc_type, msg abort = true except: abort = true return abort def handle_requests_unsafe(wait_time = None, callback = None): global abort abort = false if pyro_daemon is None: raise Error("There is no daemon with which to handle requests") if wait_time: start = time.time() while 1: pyro_daemon.handleRequests(wait_time) if wait_time: now = time.time() if callback and now - start > wait_time: callback() start = now elif callback: callback() return true def unregister_object(obj): if pyro_daemon: try: pyro_daemon.disconnect(obj) except: pass global daemon_objects if obj in daemon_objects: daemon_objects.remove(obj)
StarcoderdataPython
5063663
#!/usr/bin/env python """ Copyright (c) 2015-2017 <NAME> Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from myhdl import * import os import axis_ep module = 'i2c_init' testbench = 'test_%s' % module srcs = [] srcs.append("../rtl/%s.v" % module) srcs.append("%s.v" % testbench) src = ' '.join(srcs) build_cmd = "iverilog -o %s.vvp %s" % (testbench, src) def bench(): # Parameters # Inputs clk = Signal(bool(0)) rst = Signal(bool(0)) current_test = Signal(intbv(0)[8:]) m_axis_cmd_ready = Signal(bool(0)) m_axis_data_tready = Signal(bool(0)) start = Signal(bool(0)) # Outputs m_axis_cmd_address = Signal(intbv(0)[7:]) m_axis_cmd_start = Signal(bool(0)) m_axis_cmd_read = Signal(bool(0)) m_axis_cmd_write = Signal(bool(0)) m_axis_cmd_write_multiple = Signal(bool(0)) m_axis_cmd_stop = Signal(bool(0)) m_axis_cmd_valid = Signal(bool(0)) m_axis_data_tdata = Signal(intbv(0)[8:]) m_axis_data_tvalid = Signal(bool(0)) m_axis_data_tlast = Signal(bool(1)) busy = Signal(bool(0)) # sources and sinks cmd_sink_pause = Signal(bool(0)) data_sink_pause = Signal(bool(0)) cmd_sink = axis_ep.AXIStreamSink() cmd_sink_logic = cmd_sink.create_logic( clk, rst, tdata=(m_axis_cmd_address, m_axis_cmd_start, m_axis_cmd_read, m_axis_cmd_write, m_axis_cmd_write_multiple, m_axis_cmd_stop), tvalid=m_axis_cmd_valid, tready=m_axis_cmd_ready, pause=cmd_sink_pause, name='cmd_sink' ) data_sink = axis_ep.AXIStreamSink() data_sink_logic = data_sink.create_logic( clk, rst, tdata=m_axis_data_tdata, tvalid=m_axis_data_tvalid, tready=m_axis_data_tready, tlast=m_axis_data_tlast, pause=data_sink_pause, name='data_sink' ) # DUT if os.system(build_cmd): raise Exception("Error running build command") dut = Cosimulation( "vvp -m myhdl %s.vvp -lxt2" % testbench, clk=clk, rst=rst, current_test=current_test, m_axis_cmd_address=m_axis_cmd_address, m_axis_cmd_start=m_axis_cmd_start, m_axis_cmd_read=m_axis_cmd_read, m_axis_cmd_write=m_axis_cmd_write, m_axis_cmd_write_multiple=m_axis_cmd_write_multiple, m_axis_cmd_stop=m_axis_cmd_stop, m_axis_cmd_valid=m_axis_cmd_valid, m_axis_cmd_ready=m_axis_cmd_ready, m_axis_data_tdata=m_axis_data_tdata, m_axis_data_tvalid=m_axis_data_tvalid, m_axis_data_tready=m_axis_data_tready, m_axis_data_tlast=m_axis_data_tlast, busy=busy, start=start ) @always(delay(4)) def clkgen(): clk.next = not clk @instance def check(): yield delay(100) yield clk.posedge rst.next = 1 yield clk.posedge rst.next = 0 yield clk.posedge yield delay(100) yield clk.posedge # testbench stimulus yield clk.posedge print("test 1: run, no delays") current_test.next = 1 start.next = 1 yield clk.posedge start.next = 0 yield clk.posedge yield clk.posedge while busy: yield clk.posedge # addresses and data for checking addr = [0x50, 0x50, 0x51, 0x52, 0x53] data = [0x00, 0x04, 0x11, 0x22, 0x33, 0x44] # check all issued commands for a in addr: first = True for d in data: f1 = cmd_sink.recv() f2 = data_sink.recv() assert f1.data[0][0] == a # address assert f1.data[0][1] == first # start assert f1.data[0][2] == 0 # read assert f1.data[0][3] == 1 # write assert f1.data[0][4] == 0 # write multiple assert f1.data[0][5] == 0 # stop assert f2.data[0] == d first = False # check for stop command f1 = cmd_sink.recv() assert f1.data[0][1] == 0 # start assert f1.data[0][2] == 0 # read assert f1.data[0][3] == 0 # write assert f1.data[0][4] == 0 # write multiple assert f1.data[0][5] == 1 # stop # make sure we got everything assert cmd_sink.empty() assert data_sink.empty() yield delay(100) # testbench stimulus yield clk.posedge print("test 2: run with delays") current_test.next = 2 start.next = 1 yield clk.posedge start.next = 0 yield clk.posedge yield clk.posedge cmd_sink_pause.next = 0 data_sink_pause.next = 1 while busy: yield delay(100) yield clk.posedge cmd_sink_pause.next = 0 data_sink_pause.next = 1 yield clk.posedge cmd_sink_pause.next = 1 data_sink_pause.next = 1 yield delay(100) yield clk.posedge cmd_sink_pause.next = 1 data_sink_pause.next = 0 yield clk.posedge cmd_sink_pause.next = 1 data_sink_pause.next = 1 cmd_sink_pause.next = 0 data_sink_pause.next = 0 # addresses and data for checking addr = [0x50, 0x50, 0x51, 0x52, 0x53] data = [0x00, 0x04, 0x11, 0x22, 0x33, 0x44] # check all issued commands for a in addr: first = True for d in data: f1 = cmd_sink.recv() f2 = data_sink.recv() assert f1.data[0][0] == a # address assert f1.data[0][1] == first # start assert f1.data[0][2] == 0 # read assert f1.data[0][3] == 1 # write assert f1.data[0][4] == 0 # write multiple assert f1.data[0][5] == 0 # stop assert f2.data[0] == d first = False # check for stop command f1 = cmd_sink.recv() assert f1.data[0][1] == 0 # start assert f1.data[0][2] == 0 # read assert f1.data[0][3] == 0 # write assert f1.data[0][4] == 0 # write multiple assert f1.data[0][5] == 1 # stop # make sure we got everything assert cmd_sink.empty() assert data_sink.empty() yield delay(100) raise StopSimulation return instances() def test_bench(): sim = Simulation(bench()) sim.run() if __name__ == '__main__': print("Running test...") test_bench()
StarcoderdataPython
1980222
<reponame>SamuelMarks/tensorboard-plugin-example<filename>greeter_plugin/greeter_plugin.py # Copyright 2017 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import absolute_import from __future__ import division from __future__ import print_function import tensorflow as tf import numpy as np import six from werkzeug import wrappers from tensorboard.backend import http_util from tensorboard.plugins import base_plugin class GreeterPlugin(base_plugin.TBPlugin): """A plugin that serves greetings recorded during model runs.""" # This static property will also be included within routes (URL paths) # offered by this plugin. This property must uniquely identify this plugin # from all other plugins. plugin_name = 'greeter' def __init__(self, context): """Instantiates a GreeterPlugin. Args: context: A base_plugin.TBContext instance. A magic container that TensorBoard uses to make objects available to the plugin. """ # We retrieve the multiplexer from the context and store a reference # to it. self._multiplexer = context.multiplexer @wrappers.Request.application def tags_route(self, request): """A route (HTTP handler) that returns a response with tags. Returns: A response that contains a JSON object. The keys of the object are all the runs. Each run is mapped to a (potentially empty) list of all tags that are relevant to this plugin. """ # This is a dictionary mapping from run to (tag to string content). # To be clear, the values of the dictionary are dictionaries. all_runs = self._multiplexer.PluginRunToTagToContent( GreeterPlugin.plugin_name) # tagToContent is itself a dictionary mapping tag name to string # content. We retrieve the keys of that dictionary to obtain a # list of tags associated with each run. response = { run: list(tagToContent.keys()) for (run, tagToContent) in all_runs.items() } return http_util.Respond(request, response, 'application/json') def get_plugin_apps(self): """Gets all routes offered by the plugin. This method is called by TensorBoard when retrieving all the routes offered by the plugin. Returns: A dictionary mapping URL path to route that handles it. """ # Note that the methods handling routes are decorated with # @wrappers.Request.application. return { '/tags': self.tags_route, '/greetings': self.greetings_route, } def is_active(self): """Determines whether this plugin is active. This plugin is only active if TensorBoard sampled any summaries relevant to the greeter plugin. Returns: Whether this plugin is active. """ all_runs = self._multiplexer.PluginRunToTagToContent( GreeterPlugin.plugin_name) # The plugin is active if any of the runs has a tag relevant # to the plugin. return bool(self._multiplexer and any(six.itervalues(all_runs))) def _process_string_tensor_event(self, event): """Convert a TensorEvent into a JSON-compatible response.""" string_arr = tf.make_ndarray(event.tensor_proto) text = string_arr.astype(np.dtype(str)).tostring() return { 'wall_time': event.wall_time, 'step': event.step, 'text': text, } @wrappers.Request.application def greetings_route(self, request): """A route that returns the greetings associated with a tag. Returns: A JSON list of greetings associated with the run and tag combination. """ run = request.args.get('run') tag = request.args.get('tag') # We fetch all the tensor events that contain greetings. tensor_events = self._multiplexer.Tensors(run, tag) # We convert the tensor data to text. response = [self._process_string_tensor_event(ev) for ev in tensor_events] return http_util.Respond(request, response, 'application/json')
StarcoderdataPython
250300
# coding=utf-8 """ Created on Monday 28 March 00:53:34 2020 @author: nkalyan🤠 '''implementing Python scripts to print student and instructor tables''' """ from typing import Dict, Iterator, Tuple, KeysView from prettytable import PrettyTable from collections import defaultdict from HW08_nikhil_kalyan import file_reader class Student(object): """A student class that holds the details of students""" def __init__(self, cwid: int, name: str, dept: str) -> None: """Initialize/ construct the student class""" self._name: str = name self._cwid: int = cwid self._department: str = dept self.student_courses: Dict[str] = dict() def add_course(self, course: str, grade: str) -> None: self.student_courses[course] = grade def get_course(self) -> KeysView[str]: return self.student_courses.keys() class Instructor(object): """Instructor class that holds the details of instructor, The names of course taught registered courses""" def __init__(self, name: str, cwid: int, department: str) -> None: """Initialize a constructor of instructor data""" self._name: str = name self._cwid: int = cwid self._department: str = department self.instructor_courses: Dict[str] = defaultdict(int) def add_student(self, course: str) -> None: self.instructor_courses[course] += 1 def get_course(self) -> KeysView[str]: return self.instructor_courses.keys() def get_student_count(self, course: str) -> int: return self.instructor_courses[course] class University(object): """This is the main class the reads the whole data and perform the operations that need to create a table""" def __init__(self, directory_name) -> None: """Initialize a constructor to store the values""" self._directory: str = directory_name self._student: Dict[str, Student] = dict() self._instructor: Dict[str, Instructor] = dict() def get_students_details(self) -> None: """Method that gets the student details""" try: student_file: Iterator[Tuple[str]] = file_reader('students.txt', 3, sep='|', header=True) for cwid, name, dept in student_file: self._student[cwid] = Student(cwid, name, dept) except(FileNotFoundError, ValueError) as e: print(e) def get_instructors_details(self) -> None: """Method that gets the instructor details""" try: instructor_file: Iterator[Tuple[str]] = file_reader('instructors.txt', 3, sep='\t', header=True) for cwid, name, dept in instructor_file: self._instructor[cwid] = Instructor(cwid, name, dept) except(FileNotFoundError, ValueError) as e: print(e) def get_grades(self) -> None: """Method the get the grades """ try: grade_file: Iterator[Tuple[str]] = file_reader('grades.txt', 4, sep='\t', header=True) for student_cwid, course, grade, instructor_cwid in grade_file: if student_cwid in self._student.keys(): self._student[student_cwid].student_courses[course] = grade if instructor_cwid in self._instructor.keys(): self._instructor[instructor_cwid].instructor_courses[course] += 1 except(FileNotFoundError, ValueError) as e: print(e) def student_table(self) -> PrettyTable: """returns the pretty table of students with the defined fields""" print_student_table: PrettyTable = PrettyTable() print_student_table.field_names = ["CWID", "Name", "Completed Courses"] for cwid, student in self._student.items(): print_student_table.add_row([cwid, student.name, sorted(list(student.student_courses.keys()))]) return print_student_table def instructors_table(self) -> PrettyTable: """Returns pretty table of instructor with defined fields""" print_instructor_table: PrettyTable = PrettyTable() print_instructor_table.field_names = ["CWID", "Name", "Dept", "Course", "Students"] for cwid, instructor in self._instructor.items(): for course in instructor.instructor_courses: print_instructor_table.add_row([cwid, instructor.name, instructor.department, course, instructor.instructor_courses[course]]) return print_instructor_table def main() -> None: """main function""" directory_name: str = '/Users/nikhilkalyan/PycharmProjects/SSW 810' result = University(directory_name) result.get_students_details() result.get_instructors_details() result.get_grades() print("Student Summary") print(result.student_table()) print("Instructor Summary") print(result.instructors_table()) if __name__ == "__main__": main()
StarcoderdataPython
1879306
<reponame>johnnykoo84/DS-Unit-3-Sprint-2-SQL-and-Databases import os import psycopg2 from dotenv import load_dotenv load_dotenv() # Connect to ElephantSQL-hosted PostgreSQL conn = psycopg2.connect( dbname=os.getenv("dbname"), user=os.getenv("user"), password=os.getenv("password"), host=os.getenv("host") ) # A "cursor", a structure to iterate over db records to perform queries cur = conn.cursor() # An example query cur.execute('SELECT * from test_table;') # Note - nothing happened yet! We need to actually *fetch* from the cursor print(cur.fetchone())
StarcoderdataPython
388023
import enum from collections import OrderedDict from copy import deepcopy import gym import numpy as np from gym.spaces import Box, Dict def update_obs_space(env, delta): spaces = env.observation_space.spaces.copy() for key, shape in delta.items(): spaces[key] = Box(-np.inf, np.inf, (np.prod(shape),), np.float32) return Dict(spaces) class BinSpacing(enum.Enum): """ An Enum class ti generate action bin spacing arrays. """ LINEAR = "linear" EXPONENTIAL = "exponential" # Exponential binning. Expects a symmetric action space centered around zero def get_bin_array(self, lower_bound, upper_bound, n_bins) -> np.ndarray: if self is BinSpacing.LINEAR: return np.linspace(lower_bound, upper_bound, n_bins) else: assert ( lower_bound == -upper_bound and n_bins % 2 == 1 ), "Exponential binning is only supported on symmetric action space with an odd number of bins" half_range = np.array([2 ** (-n) for n in range(n_bins // 2)]) * lower_bound return np.concatenate([half_range, [0], -half_range[::-1]]) class DiscretizeActionWrapper(gym.ActionWrapper): """ A wrapper that maps a continuous gym action space into a discrete action space. """ # default action bins for DiscretizeActionWrapper DEFAULT_BINS = 11 def __init__( self, env=None, n_action_bins=DEFAULT_BINS, bin_spacing=BinSpacing.LINEAR ): """ n_action_bins: can be int or None if None is passed, then DEFAULT_BINS will be used. """ super().__init__(env) assert isinstance(env.action_space, Box) self._disc_to_cont = [] if n_action_bins is None: n_action_bins = self.DEFAULT_BINS for low, high in zip(env.action_space.low, env.action_space.high): self._disc_to_cont.append( bin_spacing.get_bin_array(low, high, n_action_bins) ) temp = [n_action_bins for _ in self._disc_to_cont] self.action_space = gym.spaces.MultiDiscrete(temp) self.action_space.seed(env.action_space.np_random.randint(0, 2 ** 32 - 1)) def action(self, action): assert len(action) == len(self._disc_to_cont) return np.array( [m[a] for a, m in zip(action, self._disc_to_cont)], dtype=np.float32 ) class RewardNameWrapper(gym.Wrapper): """ Sets the default reward name on the environment """ def __init__(self, env): super().__init__(env) unwrapped = self.env.unwrapped if not hasattr(unwrapped, "reward_names"): self.env.unwrapped.reward_names = ["env"] def step(self, action): return self.env.step(action) def reset(self, **kwargs): return self.env.reset(**kwargs) class ClipObservationWrapper(gym.ObservationWrapper): """ Clips observations into a fixed range. """ def __init__(self, env=None, clip=100.0): super().__init__(env) self._clip = clip def observation(self, observation): clipped_observation = OrderedDict() for key in observation: clipped_observation[key] = np.clip( observation[key], -self._clip, self._clip ) return clipped_observation def compute_relative_goals(self, *args, **kwargs): self.env.compute_relative_goals(*args, **kwargs) def compute_goal_reward(self, *args, **kwargs): return self.env.compute_goal_reward(*args, **kwargs) class ClipRewardWrapper(gym.RewardWrapper): """ Clips reward values into a fixed range. """ def __init__(self, env=None, clip=100.0): super().__init__(env) self._clip = clip def reward(self, reward): clipped_reward = np.clip(reward, -self._clip, self._clip) return clipped_reward def compute_relative_goals(self, *args, **kwargs): self.env.compute_relative_goals(*args, **kwargs) def compute_goal_reward(self, *args, **kwargs): return self.env.compute_goal_reward(*args, **kwargs) class ClipActionWrapper(gym.ActionWrapper): """ Clips action values into a normalized space between -1 and 1""" def action(self, action): return np.clip(a=action, a_min=-1.0, a_max=1.0) class IncrementalExpAvg(object): """ A generic exponential moving average filter. """ def __init__(self, alpha, intial_value=None): self._value = 0 self._t = 0 self._alpha = alpha if intial_value is not None: self.update(intial_value) def update(self, observation): self._value = self._value * self._alpha + (1 - self._alpha) * observation self._t += 1 def get(self): if self._value is None: return None else: return self._value / (1 - self._alpha ** self._t) class PreviousActionObservationWrapper(gym.Wrapper): """ Wrapper that annotates observations with a cached previous action. """ def __init__(self, env=None): super().__init__(env) env.observation_space.spaces["previous_action"] = deepcopy(env.action_space) def reset(self, *args, **kwargs): self.previous_action = np.zeros(self.env.action_space.shape) return self.observation(self.env.reset(*args, **kwargs)) def observation(self, observation): observation["previous_action"] = self.previous_action.copy() return observation def step(self, action): self.previous_action = action.copy() ob, rew, done, info = self.env.step(action) return self.observation(ob), rew, done, info def compute_relative_goals(self, *args, **kwargs): self.env.compute_relative_goals(*args, **kwargs) def compute_goal_reward(self, *args, **kwargs): return self.env.compute_goal_reward(*args, **kwargs) class SmoothActionWrapper(gym.Wrapper): """ Applies smoothing to the current action using an Exponential Moving Average filter. """ def __init__(self, env, alpha=0.0): super().__init__(env) self._alpha = alpha delta = OrderedDict([("action_ema", self.env.action_space.shape)]) self.observation_space = update_obs_space(self.env, delta) def reset(self, *args, **kwargs): obs = self.env.reset(*args, **kwargs) sim = self.unwrapped.sim adjusted_alpha = np.power( self._alpha, (sim.model.opt.timestep * sim.nsubsteps) / 0.08 ) self._ema = IncrementalExpAvg(alpha=adjusted_alpha) obs["action_ema"] = np.zeros(self.env.action_space.shape) return obs def step(self, action): self._ema.update(action) action = self._ema.get() obs, rew, done, info = self.env.step(action) obs["action_ema"] = action return obs, rew, done, info class RelativeGoalWrapper(gym.ObservationWrapper): """ Wrapper that computes the 'relative goal' and 'achieved goal' observations for environments. """ def __init__(self, env, obs_prefix=""): # Prefix to map goal observation to state observation. This is a hack to # handle inconsistent naming convention for cube environment observations # e.g. goal_pos goal observation maps to cube_pos state observation. self.obs_prefix = obs_prefix super().__init__(env) self.goal_obs_names = [] delta = OrderedDict() for name, space in self.env.observation_space.spaces.items(): if name.startswith("goal_"): delta[f"achieved_{name}"] = space.shape delta[f"relative_{name}"] = space.shape delta[f"noisy_achieved_{name}"] = space.shape delta[f"noisy_relative_{name}"] = space.shape obs_name = name[len("goal_"):] assert ( f"{self.obs_prefix}{obs_name}" in self.env.observation_space.spaces ), ( f"Found {name} but not {self.obs_prefix}{obs_name} in observation space. " f"RelativeGoalWrapper won't work. Available observation space: " f"{sorted(self.env.observation_space.spaces.keys())}" ) self.goal_obs_names.append(obs_name) self.observation_space = update_obs_space(self.env, delta) def observation(self, observation): """ Calculate 'relative goal' and 'achieved goal' """ current_state = { f"{self.obs_prefix}{n}": observation[f"{self.obs_prefix}{n}"] for n in self.goal_obs_names } noisy_goal_state = { f"{self.obs_prefix}{n}": observation[f"noisy_{self.obs_prefix}{n}"] for n in self.goal_obs_names } relative_goal = self.env.unwrapped.goal_generation.relative_goal( self.env.unwrapped._goal, current_state ) noisy_relative_goal = self.env.unwrapped.goal_generation.relative_goal( self.env.unwrapped._goal, noisy_goal_state ) for name in self.goal_obs_names: obs_name = f"{self.obs_prefix}{name}" observation[f"achieved_goal_{name}"] = observation[obs_name].copy() observation[f"relative_goal_{name}"] = relative_goal[obs_name] observation[f"noisy_achieved_goal_{name}"] = observation[ f"noisy_{obs_name}" ].copy() observation[f"noisy_relative_goal_{name}"] = noisy_relative_goal[obs_name] return observation class UnifiedGoalObservationWrapper(gym.ObservationWrapper): """Concatenates the pieces of every goal type""" def __init__( self, env, goal_keys=["relative_goal", "achieved_goal", "goal"], goal_parts=[], ): super().__init__(env) self.delta = OrderedDict() for goal_key in goal_keys: goal_len = sum( [ self.observation_space.spaces[key].shape[0] for key in self.observation_space.spaces.keys() if key.startswith(goal_key) ] ) self.delta[goal_key] = (goal_len,) if any( [ key.startswith("noisy_" + goal_key + "_") for key in self.observation_space.spaces.keys() ] ): self.delta["noisy_" + goal_key] = (goal_len,) self.goal_parts = goal_parts self.observation_space = update_obs_space(self.env, self.delta) def observation(self, observation): new_obs = OrderedDict() for key, value in observation.items(): new_obs[key] = value # It's a bit hacky to hard code observation key here but we have to do it now # because we need to keep old policy backward compatible by keep observation order # the same. for goal_key in self.delta.keys(): goal_parts = [goal_key + "_" + part for part in self.goal_parts] goal = np.concatenate( [observation[key] for key in goal_parts if key in observation] ) new_obs[goal_key] = goal return new_obs class SummedRewardsWrapper(gym.RewardWrapper): """ Ensures that reward is a scalar. """ def reward(self, reward): return np.sum([reward])
StarcoderdataPython
9731993
<reponame>maxisoft/BravePatcher<filename>tests/test_cli_integration.py<gh_stars>1-10 import os import sys import shlex import subprocess from pathlib import Path from typing import Tuple import pefile import pytest import psutil def _get_command() -> str: return os.environ.get("CLI_COMMAND", "{} -m bravepatcher".format(sys.executable.replace('\\', '/'))) def _call(cmd: str, **kwargs) -> Tuple[str, str, int]: cmd_split = shlex.split(cmd) kwargs.setdefault("text", True) kwargs.setdefault("timeout", 60) p = subprocess.run(cmd_split, stdout=subprocess.PIPE, stderr=subprocess.PIPE, **kwargs) return p.stdout, p.stderr, p.returncode def _call_patcher(cmd: str, **kwargs) -> Tuple[str, str, int]: return _call(f"{_get_command()} {cmd}", **kwargs) class TestCliIntegration: def test_launch_without_args(self): out, err, code = _call(_get_command()) assert code == 0 assert err == "" assert out.startswith("Usage: ") assert "help" in out def test_help(self): out, err, code = _call_patcher("--help") assert code == 0 assert err == "" assert out.startswith("Usage: ") assert "help" in out @pytest.mark.slow_integration_test def test_download_in_cwd(self, tmp_path: Path): out, err, code = _call_patcher("download-brave", cwd=str(tmp_path.resolve())) assert out.startswith("downloading") assert err == "" assert code == 0 path = Path(tmp_path, "BraveBrowserStandaloneSilentSetup.exe") assert path.exists() pe = pefile.PE(str(path)) assert pe.is_exe() @pytest.mark.slow_integration_test def test_download_install_patch_run_restore(self, tmp_path: Path): if os.environ.get("CI") != "true": pytest.skip("skipping CI only tests") _, _, code = _call_patcher("download-brave", cwd=str(tmp_path.resolve())) assert code == 0 path = Path(tmp_path, "BraveBrowserStandaloneSilentSetup.exe") subprocess.check_call(str(path)) out, err, code = _call_patcher("patch --show-debug-result") print(out) print(err, file=sys.stderr) assert "Done patching brave" in out assert r"""'errors': []""" in out assert code == 0 from bravepatcher.utils.brave import get_brave_path with psutil.Popen([str(get_brave_path())] + shlex.split("--headless --bwsi")) as p: # start and wait 30 sec assuming there's no crash try: p.wait(30) except subprocess.TimeoutExpired: pass else: assert p.returncode == 0 finally: if p.is_running(): p.kill() out, err, code = _call_patcher("restore") print(out) print(err, file=sys.stderr) assert code == 0
StarcoderdataPython
6573196
<filename>matrix/determinant_of_nxn_matrix.py """To find determinant of NxN Matrix i have used Row Reduction method you can see wikipedia of this Method https://en.wikipedia.org/wiki/Row_echelon_form""" from __future__ import annotations from copy import deepcopy def determinant_of_nxn_matrix(matrix: list[list[float]]) -> float: """>>> determinant_of_nxn_matrix([[10, 5], [3, 2.5]]) 10.0 >>> determinant_of_nxn_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 10]]) -3.0 >>> determinant_of_nxn_matrix([[1, 2, 3], [4, 5, 6], [7, 8, 4]]) 15.0 >>> determinant_of_nxn_matrix([[1, 2, 3, 7], [4, 5, 6, 6], [7, 8, 1, 5], [1, 2, 3, 4]]) -72.0 >>> determinant_of_nxn_matrix([[1, 2, 3, 7, 13], [4, 5, 6, 6, 90], [7, 8, 1, 5, 76], [1, 2, 3, 4, 12], [9, 6, 3, 7, 4]]) 19848.0 >>> determinant_of_nxn_matrix([[1, 2, 3, 7, 13, 23], [4, 44, 6, 6, 90, 12], [7, 8, 1, 5, 6, 98], [1, 2, 3, 4, 12, 4], [9, 6, 3, 7, 4, 9], [2, 47, 8, 91, 36, 9]]) -20981553.999999993""" size = int(len(matrix)) matrix_copy = deepcopy(matrix) n = 0 m = 1 c1 = 1 c2 = 0 for k in range(1, (2 * (size - 1)) + 1): for i in range(c1, size): for j in range(0, size): if (matrix[c1 - 1][c2]) != 0: matrix_copy[i][j] = matrix[i][j] - ( (matrix[m][n]) * ((matrix[c2][j]) / (matrix[c1 - 1][c2])) ) m = m + 1 matrix = deepcopy(matrix_copy) n = n + 1 m = n + 1 c1 = c1 + 1 c2 = c2 + 1 determinant = float(1) for i in range(0, size): for j in range(0, size): if i == j: determinant = determinant * matrix[i][j] return determinant
StarcoderdataPython
382747
from . import site content = 'Another Bad Module' site._registry.update({ 'foo': 'bar', }) raise Exception('Some random exception.')
StarcoderdataPython
1676628
from __future__ import annotations import multiprocessing import os import random import re from typing import Any from typing import overload from typing import Sequence from typing import TYPE_CHECKING import before_commit.constants as C from before_commit import parse_shebang from before_commit.hook import Hook from before_commit.prefix import Prefix from before_commit.util import cmd_output_b from before_commit.xargs import xargs if TYPE_CHECKING: from typing import NoReturn FIXED_RANDOM_SEED = 1542676187 SHIMS_RE = re.compile(r'[/\\]shims[/\\]') def exe_exists(exe: str) -> bool: found = parse_shebang.find_executable(exe) if found is None: # exe exists return False homedir = os.path.expanduser('~') try: common: str | None = os.path.commonpath((found, homedir)) except ValueError: # on windows, different drives raises ValueError common = None return ( # it is not in a /shims/ directory not SHIMS_RE.search(found) and ( # the homedir is / (docker, service user, etc.) os.path.dirname(homedir) == homedir or # the exe is not contained in the home directory common != homedir ) ) def run_setup_cmd(prefix: Prefix, cmd: tuple[str, ...], **kwargs: Any) -> None: cmd_output_b(*cmd, cwd=prefix.prefix_dir, **kwargs) @overload def environment_dir(d: None, language_version: str) -> None: ... @overload def environment_dir(d: str, language_version: str) -> str: ... def environment_dir(d: str | None, language_version: str) -> str | None: if d is None: return None else: return f'{d}-{language_version}' def assert_version_default(binary: str, version: str) -> None: if version != C.DEFAULT: raise AssertionError( f'for now, pre-commit requires system-installed {binary} -- ' f'you selected `language_version: {version}`', ) def assert_no_additional_deps( lang: str, additional_deps: Sequence[str], ) -> None: if additional_deps: raise AssertionError( f'for now, pre-commit does not support ' f'additional_dependencies for {lang} -- ' f'you selected `additional_dependencies: {additional_deps}`', ) def basic_get_default_version() -> str: return C.DEFAULT def basic_health_check(prefix: Prefix, language_version: str) -> str | None: return None def no_install( prefix: Prefix, version: str, additional_dependencies: Sequence[str], ) -> NoReturn: raise AssertionError('This type is not installable') def target_concurrency(hook: Hook) -> int: if hook.require_serial or 'PRE_COMMIT_NO_CONCURRENCY' in os.environ: return 1 else: # Travis appears to have a bunch of CPUs, but we can't use them all. if 'TRAVIS' in os.environ: return 2 else: try: return multiprocessing.cpu_count() except NotImplementedError: return 1 def _shuffled(seq: Sequence[str]) -> list[str]: """Deterministically shuffle""" fixed_random = random.Random() fixed_random.seed(FIXED_RANDOM_SEED, version=1) seq = list(seq) fixed_random.shuffle(seq) return seq def run_xargs( hook: Hook, cmd: tuple[str, ...], file_args: Sequence[str], **kwargs: Any, ) -> tuple[int, bytes]: # Shuffle the files so that they more evenly fill out the xargs partitions, # but do it deterministically in case a hook cares about ordering. file_args = _shuffled(file_args) kwargs['target_concurrency'] = target_concurrency(hook) return xargs(cmd, file_args, **kwargs)
StarcoderdataPython
1945132
<filename>channels/management/commands/update_managed_channel_memberships.py """Update managed channel memberships""" from django.core.management.base import BaseCommand from channels import tasks from open_discussions.utils import now_in_utc class Command(BaseCommand): """Update managed channel memberships""" help = __doc__ def add_arguments(self, parser): parser.add_argument("channel_names", metavar="CHANNEL_NAME", nargs="+") def handle(self, *args, **options): task = tasks.update_memberships_for_managed_channels.delay( channel_names=options["channel_names"] ) self.stdout.write("Waiting on task...") start = now_in_utc() task.get() total_seconds = (now_in_utc() - start).total_seconds() self.stdout.write( "Updated user channel memberships, took {} seconds".format(total_seconds) )
StarcoderdataPython
6506983
<reponame>chuckbutler/redmine-layer from charms.docker import Docker from charms.docker.compose import Compose from charms.reactive import set_state from charms.reactive import when from charms.reactive import when_not from charmhelpers.core.hookenv import config from charmhelpers.core.hookenv import open_port from charmhelpers.core.hookenv import status_set from charmhelpers.core.templating import render @when('docker.available') def start_redmine(): ''' Starts a Redmine application in standalone configuration''' # Render the formation cfg = config() render('docker-compose.yml', 'files/redmine/docker-compose.yml', cfg) # Initialize the docker compose object, looking @ our work directory compose = Compose('files/redmine') # Launch the service(s) status_set('maintenance', "Fetching / Starting the redmine containers") compose.up() open_port(cfg['port']) status_set("active", "Redmine is running on port {}".format(cfg['port']))
StarcoderdataPython
249132
<reponame>npwebste/UPS_Controller # Universal Power Supply Controller # USAID Middle East Water Security Initiative # # Developed by: <NAME> # Primary Investigator: <NAME> # # Version History (mm_dd_yyyy) # 1.00 03_24_2018_NW # ###################################################### import VFD_Modbus_Wrapper import VFD_Modbus_Registers def ProtectionCheck(): Float_Switch() # From float switch DC_Link_Voltage() # From inverter control card via SPI Inverter_Voltage() # From inverter control card via SPI Grid_Voltage() # Not needed, can measure from VFD input VFD_Freq_In() VFD_Voltage_In() VFD_Freq_Out() VFD_Voltage_Out() return 0
StarcoderdataPython
1624732
import os from collections import OrderedDict import torch import torch.nn as nn import torch.nn.functional as F from torch import optim from torch.utils.data import DataLoader from torch.utils.data.distributed import DistributedSampler from torchvision.datasets import MNIST from torchvision import transforms from test_tube import HyperOptArgumentParser from pytorch_lightning.root_module.root_module import LightningModule from pytorch_lightning import data_loader class LightningValidationStepMixin: """ Add val_dataloader and validation_step methods for the case when val_dataloader returns a single dataloader """ @data_loader def val_dataloader(self): return self._dataloader(train=False) def validation_step(self, data_batch, batch_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) if self.on_gpu: val_acc = val_acc.cuda(loss_val.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_val = loss_val.unsqueeze(0) val_acc = val_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, }) return output if batch_i % 2 == 0: return val_acc if batch_i % 3 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, 'test_dic': {'val_loss_a': loss_val} }) return output class LightningValidationMixin(LightningValidationStepMixin): """ Add val_dataloader, validation_step, and validation_end methods for the case when val_dataloader returns a single dataloader """ def validation_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from validation_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() val_loss_mean = 0 val_acc_mean = 0 for output in outputs: val_loss = output['val_loss'] # reduce manually when using dp if self.trainer.use_dp: val_loss = torch.mean(val_loss) val_loss_mean += val_loss # reduce manually when using dp val_acc = output['val_acc'] if self.trainer.use_dp: val_acc = torch.mean(val_acc) val_acc_mean += val_acc val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} return tqdm_dic class LightningValidationStepMultipleDataloadersMixin: """ Add val_dataloader and validation_step methods for the case when val_dataloader returns multiple dataloaders """ @data_loader def val_dataloader(self): return [self._dataloader(train=False), self._dataloader(train=False)] def validation_step(self, data_batch, batch_i, dataloader_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_val = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) val_acc = torch.tensor(val_acc) if self.on_gpu: val_acc = val_acc.cuda(loss_val.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_val = loss_val.unsqueeze(0) val_acc = val_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, }) return output if batch_i % 2 == 0: return val_acc if batch_i % 3 == 0: output = OrderedDict({ 'val_loss': loss_val, 'val_acc': val_acc, 'test_dic': {'val_loss_a': loss_val} }) return output if batch_i % 5 == 0: output = OrderedDict({ f'val_loss_{dataloader_i}': loss_val, f'val_acc_{dataloader_i}': val_acc, }) return output class LightningValidationMultipleDataloadersMixin(LightningValidationStepMultipleDataloadersMixin): """ Add val_dataloader, validation_step, and validation_end methods for the case when val_dataloader returns multiple dataloaders """ def validation_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from validation_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() val_loss_mean = 0 val_acc_mean = 0 for output in outputs: val_loss = output['val_loss'] # reduce manually when using dp if self.trainer.use_dp: val_loss = torch.mean(val_loss) val_loss_mean += val_loss # reduce manually when using dp val_acc = output['val_acc'] if self.trainer.use_dp: val_acc = torch.mean(val_acc) val_acc_mean += val_acc val_loss_mean /= len(outputs) val_acc_mean /= len(outputs) tqdm_dic = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} return tqdm_dic class LightningTestStepMixin: @data_loader def test_dataloader(self): return self._dataloader(train=False) def test_step(self, data_batch, batch_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_test = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) test_acc = torch.tensor(test_acc) if self.on_gpu: test_acc = test_acc.cuda(loss_test.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_test = loss_test.unsqueeze(0) test_acc = test_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, }) return output if batch_i % 2 == 0: return test_acc if batch_i % 3 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, 'test_dic': {'test_loss_a': loss_test} }) return output class LightningTestMixin(LightningTestStepMixin): def test_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss = output['test_loss'] # reduce manually when using dp if self.trainer.use_dp: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = output['test_acc'] if self.trainer.use_dp: test_acc = torch.mean(test_acc) test_acc_mean += test_acc test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} return tqdm_dic class LightningTestStepMultipleDataloadersMixin: @data_loader def test_dataloader(self): return [self._dataloader(train=False), self._dataloader(train=False)] def test_step(self, data_batch, batch_i, dataloader_i): """ Lightning calls this inside the validation loop :param data_batch: :return: """ x, y = data_batch x = x.view(x.size(0), -1) y_hat = self.forward(x) loss_test = self.loss(y, y_hat) # acc labels_hat = torch.argmax(y_hat, dim=1) test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) test_acc = torch.tensor(test_acc) if self.on_gpu: test_acc = test_acc.cuda(loss_test.device.index) # in DP mode (default) make sure if result is scalar, there's another dim in the beginning if self.trainer.use_dp: loss_test = loss_test.unsqueeze(0) test_acc = test_acc.unsqueeze(0) # alternate possible outputs to test if batch_i % 1 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, }) return output if batch_i % 2 == 0: return test_acc if batch_i % 3 == 0: output = OrderedDict({ 'test_loss': loss_test, 'test_acc': test_acc, 'test_dic': {'test_loss_a': loss_test} }) return output if batch_i % 5 == 0: output = OrderedDict({ f'test_loss_{dataloader_i}': loss_test, f'test_acc_{dataloader_i}': test_acc, }) return output class LightningTestMultipleDataloadersMixin(LightningTestStepMultipleDataloadersMixin): def test_end(self, outputs): """ Called at the end of validation to aggregate outputs :param outputs: list of individual outputs of each validation step :return: """ # if returned a scalar from test_step, outputs is a list of tensor scalars # we return just the average in this case (if we want) # return torch.stack(outputs).mean() test_loss_mean = 0 test_acc_mean = 0 for output in outputs: test_loss = output['test_loss'] # reduce manually when using dp if self.trainer.use_dp: test_loss = torch.mean(test_loss) test_loss_mean += test_loss # reduce manually when using dp test_acc = output['test_acc'] if self.trainer.use_dp: test_acc = torch.mean(test_acc) test_acc_mean += test_acc test_loss_mean /= len(outputs) test_acc_mean /= len(outputs) tqdm_dic = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} return tqdm_dic
StarcoderdataPython
6416182
<filename>Lib/lib-tk/test/test_tkinter/test_misc.py<gh_stars>1000+ import unittest import Tkinter as tkinter from test.test_support import requires, run_unittest from test_ttk.support import AbstractTkTest requires('gui') class MiscTest(AbstractTkTest, unittest.TestCase): def test_after(self): root = self.root cbcount = {'count': 0} def callback(start=0, step=1): cbcount['count'] = start + step # Without function, sleeps for ms. self.assertIsNone(root.after(1)) # Set up with callback with no args. cbcount['count'] = 0 timer1 = root.after(0, callback) self.assertIn(timer1, root.tk.call('after', 'info')) (script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1)) root.update() # Process all pending events. self.assertEqual(cbcount['count'], 1) with self.assertRaises(tkinter.TclError): root.tk.call(script) # Set up with callback with args. cbcount['count'] = 0 timer1 = root.after(0, callback, 42, 11) root.update() # Process all pending events. self.assertEqual(cbcount['count'], 53) # Cancel before called. timer1 = root.after(1000, callback) self.assertIn(timer1, root.tk.call('after', 'info')) (script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1)) root.after_cancel(timer1) # Cancel this event. self.assertEqual(cbcount['count'], 53) with self.assertRaises(tkinter.TclError): root.tk.call(script) def test_after_idle(self): root = self.root cbcount = {'count': 0} def callback(start=0, step=1): cbcount['count'] = start + step # Set up with callback with no args. cbcount['count'] = 0 idle1 = root.after_idle(callback) self.assertIn(idle1, root.tk.call('after', 'info')) (script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1)) root.update_idletasks() # Process all pending events. self.assertEqual(cbcount['count'], 1) with self.assertRaises(tkinter.TclError): root.tk.call(script) # Set up with callback with args. cbcount['count'] = 0 idle1 = root.after_idle(callback, 42, 11) root.update_idletasks() # Process all pending events. self.assertEqual(cbcount['count'], 53) # Cancel before called. idle1 = root.after_idle(callback) self.assertIn(idle1, root.tk.call('after', 'info')) (script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1)) root.after_cancel(idle1) # Cancel this event. self.assertEqual(cbcount['count'], 53) with self.assertRaises(tkinter.TclError): root.tk.call(script) def test_after_cancel(self): root = self.root cbcount = {'count': 0} def callback(): cbcount['count'] += 1 timer1 = root.after(5000, callback) idle1 = root.after_idle(callback) # No value for id raises a ValueError. with self.assertRaises(ValueError): root.after_cancel(None) # Cancel timer event. cbcount['count'] = 0 (script, _) = root.tk.splitlist(root.tk.call('after', 'info', timer1)) root.tk.call(script) self.assertEqual(cbcount['count'], 1) root.after_cancel(timer1) with self.assertRaises(tkinter.TclError): root.tk.call(script) self.assertEqual(cbcount['count'], 1) with self.assertRaises(tkinter.TclError): root.tk.call('after', 'info', timer1) # Cancel same event - nothing happens. root.after_cancel(timer1) # Cancel idle event. cbcount['count'] = 0 (script, _) = root.tk.splitlist(root.tk.call('after', 'info', idle1)) root.tk.call(script) self.assertEqual(cbcount['count'], 1) root.after_cancel(idle1) with self.assertRaises(tkinter.TclError): root.tk.call(script) self.assertEqual(cbcount['count'], 1) with self.assertRaises(tkinter.TclError): root.tk.call('after', 'info', idle1) tests_gui = (MiscTest, ) if __name__ == "__main__": run_unittest(*tests_gui)
StarcoderdataPython
1989029
from feature_extraction import features from classifier_list import classifier import argparse import os parser = argparse.ArgumentParser(description = 'Training model with Traditional Features') # Paths parser.add_argument('-tr','--tr_path',type=str, default = 'data/train/images/', help = 'Path to the train data') parser.add_argument('-la','--la_path',type=str, default = 'data/train/labels/label.csv', help = 'Path to the label data') parser.add_argument('-featr','--featr_type',type=str, default = '#', help = 'Type of feature selection') parser.add_argument('-model_type','--model_type',type=str, default = '#', help = 'Type of training model selection') args = parser.parse_args() train_path = args.tr_path label_path = args.la_path featr = args.featr_type model = args.model_type features_raw = features.features_extracton(train_path,featr) classifier.classifier_model(features_raw,label_path,model) if os.path.exists("Gabor.csv"): os.remove("Gabor.csv") if os.path.exists("GLCM.csv"): os.remove("GLCM.csv") if os.path.exists("Haralick.csv"): os.remove("Haralick.csv")
StarcoderdataPython
1640145
from typing import Union, Optional, Any, Dict import numpy as np from l5kit.geometry import transform_points import torch __all__ = [ 'traj_stat', 'classify_traj', 'comp_val', 'filter_traj' ] def trajectory_stat( history_positions: np.array, target_positions: np.array, centroid: np.array, world_to_image: np.array, ) -> Any: history_pixels = transform_points(history_positions + centroid, world_to_image) history_pixels -= history_pixels[0] history_y_change = history_pixels[np.argmax(np.abs(history_pixels[:, 1])), 1] history_x_change = history_pixels[np.argmax(np.abs(history_pixels[:, 0])), 0] target_pixels = transform_points(target_positions + centroid, world_to_image) target_pixels -= target_pixels[0] target_y_change = target_pixels[np.argmax(np.abs(target_pixels[:, 1])), 1] target_x_change = target_pixels[np.argmax(np.abs(target_pixels[:, 0])), 0] hist_diff = np.linalg.norm(np.diff(history_positions, axis=0), axis=1) history_speed = hist_diff.sum() / history_positions.shape[0] history_acceleration = (hist_diff[-1] - hist_diff[0]) / hist_diff.shape[0] target_diff = np.linalg.norm(np.diff(target_positions, axis=0), axis=1) target_speed = target_diff.sum() / target_positions.shape[0] target_acceleration = (target_diff[-1] - target_diff[0]) / target_diff.shape[0] total_acceleration = (target_diff[-1] - hist_diff[0]) / (target_diff.shape[0] + hist_diff.shape[0]) return ('history_y_change', history_y_change), ('history_x_change', history_x_change), \ ('target_y_change', target_y_change), ('target_x_change', target_x_change), \ ('history_speed', history_speed), ('history_acceleration', history_acceleration), \ ('target_speed', target_speed), ('target_acceleration', target_acceleration), \ ('total_acceleration', total_acceleration) def traj_stat(traj: dict, predicted_targets=None) -> Any: targets = predicted_targets if predicted_targets is not None else traj['target_positions'] return trajectory_stat(traj['history_positions'], targets, traj['centroid'], traj['world_to_image']) def classify_traj( hist_y_change: np.array, tar_y_change: np.array, speed_change: np.array, turn_thresh: Optional[float] = 3., speed_thresh: Optional[float] = 0.5, prefix: Optional[Any] = '', matrix: Optional[bool] = False ) -> Union[tuple, str]: if np.abs(tar_y_change) > turn_thresh: target = 'D' if tar_y_change < 0. else 'U' else: target = 'N' if np.abs(hist_y_change) > turn_thresh: history = 'U' if hist_y_change < 0. else 'D' else: history = 'N' if np.abs(speed_change) > speed_thresh: speed = 'D' if speed_change < 0. else 'U' else: speed = 'N' if matrix: conv = lambda x: 1 if x == 'N' else 0 if x == 'U' else 2 return conv(history), conv(target), conv(speed) return f'{prefix}{history}{target}{speed}' def comp_val(hist_change, tar_change, speed_change, traj_cls: str): if traj_cls[1] == 'N': return abs(hist_change), abs(speed_change) elif traj_cls[0] == 'N': return abs(tar_change), abs(speed_change) return abs(tar_change) + abs(hist_change), abs(speed_change) def filter_traj(traj: dict, static_hist_thresh: Optional[float] = 1.): value = traj['target_availabilities'].sum() if value != traj['target_availabilities'].shape[0]: return 'target', value value = traj['history_availabilities'].sum() if value != traj['history_availabilities'].shape[0]: return 'history', value value = np.linalg.norm(np.diff(traj['history_positions'], axis=0), axis=1).sum() if static_hist_thresh and value < static_hist_thresh: return 'static', value # filter scenes with static history return False
StarcoderdataPython
95615
<reponame>Adrien4193/drone_control<filename>src/drone_control/common/__init__.py from common import Pose, Attitude, Callback, Timer
StarcoderdataPython
4922113
import socket s=socket.socket(socket.AF_INET,socket.SOCK_STREAM) host='127.0.0.1' port=12345 s.bind((host,port)) s.listen() while True: ts,addr=s.accept() ts.send(b'Hello') print(ts.recv(1024)) ts.close()
StarcoderdataPython
3536004
<gh_stars>0 ## A module to read data from a DSS, this specifically implements the Remote ID standard as released on Oct-2020 ## For more information review: https://redocly.github.io/redoc/?url=https://raw.githubusercontent.com/uastech/standards/astm_rid_1.0/remoteid/canonical.yaml ## and this diagram https://github.com/interuss/dss/blob/master/assets/generated/rid_display.png from rid_operations.rid_utils import SubscriptionResponse import logging from datetime import datetime, timedelta import uuid from auth_helper import dss_auth_helper import json import redis from auth_helper.common import get_redis import requests import hashlib import tldextract from os import environ as env from dotenv import load_dotenv, find_dotenv from dataclasses import asdict from datetime import timedelta from .rid_utils import SubscriberToNotify, SubscriptionState, Volume4D, ISACreationRequest, ISACreationResponse, IdentificationServiceArea from typing import Dict, Any, Iterable, List logger = logging.getLogger('django') load_dotenv(find_dotenv()) ENV_FILE = find_dotenv() if ENV_FILE: load_dotenv(ENV_FILE) class RemoteIDOperations(): def __init__(self): self.dss_base_url = env.get('DSS_BASE_URL') self.r = get_redis() def create_dss_isa(self, flight_extents:Volume4D,flights_url :str , expiration_time_seconds: int = 30) -> ISACreationResponse: ''' This method PUTS /dss/subscriptions ''' # subscription_response = {"created": 0, "subscription_id": 0, "notification_index": 0} isa_creation_response = ISACreationResponse(created=0,service_area= None, subscribers=[]) new_isa_id = str(uuid.uuid4()) my_authorization_helper = dss_auth_helper.AuthorityCredentialsGetter() audience = env.get("DSS_SELF_AUDIENCE", 0) error = None try: assert audience except AssertionError as ae: logger.error("Error in getting Authority Access Token DSS_SELF_AUDIENCE is not set in the environment") return isa_creation_response try: auth_token = my_authorization_helper.get_cached_credentials(audience = audience, token_type='rid') except Exception as e: logger.error("Error in getting Authority Access Token %s " % e) return isa_creation_response else: error = auth_token.get("error") try: assert error is None except AssertionError as ae: return isa_creation_response else: # A token from authority was received, dss_isa_create_url = self.dss_base_url + 'v1/dss/identification_service_areas/' + new_isa_id # check if a subscription already exists for this view_port headers = {'content-type': 'application/json', 'Authorization': 'Bearer ' + auth_token['access_token']} p = ISACreationRequest(extents= flight_extents, flights_url= flights_url) p_dict = asdict(p) try: dss_r = requests.put(dss_isa_create_url, json= json.loads(json.dumps(p_dict)), headers=headers) except Exception as re: logger.error("Error in posting to subscription URL %s " % re) return isa_creation_response try: assert dss_r.status_code == 200 isa_creation_response.created = 1 except AssertionError as ae: logger.error("Error in creating ISA in the DSS %s" % dss_r.text) return isa_creation_response else: dss_response = dss_r.json() dss_response_service_area = dss_response['service_area'] service_area = IdentificationServiceArea(flights_url= dss_response_service_area['flights_url'], owner=dss_response_service_area['owner'], time_start=dss_response_service_area['time_start'], time_end=dss_response_service_area['time_end'], version= dss_response_service_area['version'], id = dss_response_service_area['id']) # TODO : Notify subscribers dss_response_subscribers = dss_response['subscribers'] dss_r_subs:List[SubscriberToNotify] = [] for subscriber in dss_response_subscribers: subs = subscriber['subscriptions'] all_s = [] for sub in subs: s = SubscriptionState(subscription_id=sub['subscription_id'],notification_index=sub['notification_index']) all_s.append(s) subscriber_to_notify = SubscriberToNotify(url = subscriber['url'],subscriptions=all_s) dss_r_subs.append(subscriber_to_notify) for subscriber in dss_r_subs: url = '{}/{}'.format(subscriber.url, new_isa_id) try: ext = tldextract.extract(subscriber.url) except Exception as e: uss_audience = 'localhost' else: if ext.domain in ['localhost', 'internal']:# for host.docker.internal type calls uss_audience = 'localhost' else: uss_audience = '.'.join(ext[:3]) # get the subdomain, domain and suffix and create a audience and get credentials uss_auth_token = self.get_auth_token(audience = uss_audience) # Notify subscribers payload = { 'service_area': service_area, 'subscriptions': subscriber.subscriptions, 'extents': json.loads(json.dumps(asdict(flight_extents))) } auth_credentials = my_authorization_helper.get_cached_credentials(audience = uss_audience, token_type='rid') headers = {'content-type': 'application/json', 'Authorization': 'Bearer ' + auth_credentials['access_token']} try: notification_request = requests.post(url, headers=headers, json =json.loads(json.dumps(payload))) except Exception as re: logger.error("Error in sending subscriber notification to %s : %s " % (url, re)) logger.info("Succesfully created a DSS ISA %s" % new_isa_id) # iterate over the service areas to get flights URL to poll isa_key = 'isa-' + service_area.id isa_seconds_timedelta = timedelta(seconds=expiration_time_seconds) self.r.set(isa_key, 1) self.r.expire(name = isa_key, time = isa_seconds_timedelta) isa_creation_response.created =1 isa_creation_response.service_area = service_area isa_creation_response.subscribers = dss_r_subs return asdict(isa_creation_response) def create_dss_subscription(self, vertex_list:list, view:str, request_uuid, subscription_time_delta: int=30): ''' This method PUTS /dss/subscriptions ''' # subscription_response = {"created": 0, "subscription_id": 0, "notification_index": 0} subscription_response = SubscriptionResponse(created=0,dss_subscription_id = None, notification_index=0) my_authorization_helper = dss_auth_helper.AuthorityCredentialsGetter() audience = env.get("DSS_SELF_AUDIENCE", 0) error = None try: assert audience except AssertionError as ae: logger.error("Error in getting Authority Access Token DSS_SELF_AUDIENCE is not set in the environment") return subscription_response try: auth_token = my_authorization_helper.get_cached_credentials(audience = audience, token_type='rid') except Exception as e: logger.error("Error in getting Authority Access Token %s " % e) return subscription_response else: error = auth_token.get("error") try: assert error is None except AssertionError as ae: return subscription_response else: # A token from authority was received, new_subscription_id = str(uuid.uuid4()) dss_subscription_url = self.dss_base_url + 'v1/dss/subscriptions/' + new_subscription_id # check if a subscription already exists for this view_port callback_url = env.get("BLENDER_FQDN","https://www.flightblender.com") + "/dss/identification_service_areas" now = datetime.now() callback_url += '/'+ new_subscription_id subscription_seconds_timedelta = timedelta(seconds=subscription_time_delta) current_time = now.isoformat() + 'Z' fifteen_seconds_from_now = now + subscription_seconds_timedelta fifteen_seconds_from_now_isoformat = fifteen_seconds_from_now.isoformat() +'Z' headers = {'content-type': 'application/json', 'Authorization': 'Bearer ' + auth_token['access_token']} volume_object = {"spatial_volume":{"footprint":{"vertices":vertex_list},"altitude_lo":0.5,"altitude_hi":800},"time_start":current_time,"time_end":fifteen_seconds_from_now_isoformat } payload = {"extents": volume_object, "callbacks":{"identification_service_area_url":callback_url}} try: dss_r = requests.put(dss_subscription_url, json= payload, headers=headers) except Exception as re: logger.error("Error in posting to subscription URL %s " % re) return subscription_response try: assert dss_r.status_code == 200 subscription_response.created = 1 except AssertionError as ae: logger.error("Error in creating subscription in the DSS %s" % dss_r.text) return subscription_response else: dss_response = dss_r.json() service_areas = dss_response['service_areas'] dss_subscription_details = dss_response['subscription'] subscription_id = dss_subscription_details['id'] notification_index = dss_subscription_details['notification_index'] new_subscription_version = dss_subscription_details['version'] subscription_response.notification_index = notification_index subscription_response.dss_subscription_id = subscription_id # logger.info("Succesfully created a DSS subscription ID %s" % subscription_id) # iterate over the service areas to get flights URL to poll flights_url_list = '' for service_area in service_areas: flights_url = service_area['flights_url'] flights_url_list += flights_url +'?view='+ view + ' ' flights_dict = {'request_id': request_uuid, 'subscription_id': subscription_id,'all_flights_url': flights_url_list, 'notification_index': notification_index, 'view': view, 'expire_at': fifteen_seconds_from_now_isoformat, 'version': new_subscription_version} subscription_id_flights = "all_uss_flights:" + new_subscription_id self.r.hmset(subscription_id_flights, flights_dict) # expire keys in fifteen seconds self.r.expire(name = subscription_id_flights, time = subscription_seconds_timedelta) sub_id = 'sub-' + request_uuid self.r.set(sub_id, view) self.r.expire(name = sub_id, time = subscription_seconds_timedelta) view_hash = int(hashlib.sha256(view.encode('utf-8')).hexdigest(), 16) % 10**8 view_sub = 'view_sub-' + str(view_hash) self.r.set(view_sub, 1) self.r.expire(name = view_sub, time =subscription_seconds_timedelta) return subscription_response def delete_dss_subscription(self,subscription_id): ''' This module calls the DSS to delete a subscription''' pass def query_uss_for_rid(self, flights_dict, all_observations, subscription_id:str): authority_credentials = dss_auth_helper.AuthorityCredentialsGetter() all_flights_urls_string = flights_dict['all_flights_url'] logging.debug("Flight url list : %s" % all_flights_urls_string) all_flights_url = all_flights_urls_string.split() for cur_flight_url in all_flights_url: try: ext = tldextract.extract(cur_flight_url) except Exception as e: audience == 'localhost' else: if ext.domain in ['localhost', 'internal']:# for allowing host.docker.internal setup as well audience = 'localhost' else: audience = '.'.join(ext[:3]) # get the subdomain, domain and suffix and create a audience and get credentials auth_credentials = authority_credentials.get_cached_credentials(audience = audience, token_type='rid') headers = {'content-type': 'application/json', 'Authorization': 'Bearer ' + auth_credentials['access_token']} flights_request = requests.get(cur_flight_url, headers=headers) if flights_request.status_code == 200: # https://redocly.github.io/redoc/?url=https://raw.githubusercontent.com/uastech/standards/astm_rid_1.0/remoteid/canonical.yaml#tag/p2p_rid/paths/~1v1~1uss~1flights/get flights_response = flights_request.json() all_flights = flights_response['flights'] for flight in all_flights: flight_id = flight['id'] try: assert flight.get('current_state') is not None except AssertionError as ae: logger.error('There is no current_state provided by SP on the flights url %s' % cur_flight_url) logger.debug(json.dumps(flight)) else: flight_current_state = flight['current_state'] position = flight_current_state['position'] recent_positions = flight['recent_positions'] if 'recent_positions' in flight.keys() else [] flight_metadata = {'id':flight_id,"simulated": flight["simulated"],"aircraft_type":flight["aircraft_type"],'subscription_id':subscription_id, "current_state":flight_current_state,"recent_positions":recent_positions } # logger.info("Writing flight remote-id data..") if {"lat", "lng", "alt"} <= position.keys(): # check if lat / lng / alt existis single_observation = {"icao_address" : flight_id,"traffic_source" :1, "source_type" : 1, "lat_dd" : position['lat'], "lon_dd" : position['lng'], "altitude_mm" : position['alt'],'metadata':json.dumps(flight_metadata)} # write incoming data directly all_observations.add(single_observation) all_observations.trim(1000) else: logger.error("Error in received flights data: %{url}s ".format(**flight)) else: logs_dict = {'url':cur_flight_url, 'status_code':flights_request.status_code} logger.info("Received a non 200 error from {url} : {status_code} ".format(**logs_dict)) logger.info("Detailed Response %s" % flights_request.text)
StarcoderdataPython
1926717
<gh_stars>0 import os import random import string import tempfile import unittest from grail import Grail def gen_random_string(N=10): return ''.join(random.choices(string.ascii_uppercase + string.digits, k=N)) class TestGrail(unittest.TestCase): def test_grail_2(self): # Получаем случайное имя для файла. login = next(tempfile._get_candidate_names()) key = gen_random_string(16) text1 = """I am the very model of a modern Major-General, My animation's comical, unusual, and whimsical, I know the kings of England, and I quote the fights historical, From Marathon to Waterloo, in order categorical.""" text2 = """I am the very model of a cartoon individual, My animation's comical, unusual, and whimsical, I'm quite adept at funny gags, comedic theory I have read, From wicked puns and stupid jokes to anvils that drop on your head.""" g = Grail(tempfile.gettempdir()) g.open(login, key) grail_file = g.get_grail_file() self.assertTrue(os.path.exists(grail_file)) g.update(text1) g.update(text2) self.assertTrue(g.valid()) self.assertEqual(g.get(), text2) g.save() g.open(login, key) self.assertEqual(g.get(), text2) g.destroy() # self.assertFalse(os.path.exists(grail_file))
StarcoderdataPython
8020475
<reponame>bendichter/brainrender """ This tutorial shows how to automatically take screenshots of your rendered region """ import time import brainrender brainrender.SHADER_STYLE = "cartoon" from brainrender.scene import Scene screenshot_params = dict(folder="./screenshots", name="tutorial",) # Create a scene scene = Scene( screenshot_kwargs=screenshot_params ) # use screenshot_params to specify where the screenshots will be saved scene.add_brain_regions(["TH"]) # render scene.render( camera="top", interactive=False ) # if interactive is false the program won't stop when the scene is rendered # which means that the next line will be executed scene.take_screenshot() time.sleep(1) # Take another screenshot from a different angle scene.render(camera="coronal", interactive=False, zoom=0.5) scene.take_screenshot() # screenshots are saved with a timestamp in the name so you won't be overwriting the previous one. # Render interactively. You can then press 's' to take a screenshot scene.render()
StarcoderdataPython
3359767
import os import logging from functools import wraps MOD = "modification" PWD = os.getcwd() modification_logger = logging.getLogger(MOD) modification_logger.addHandler( logging.NullHandler() ) # TODO: think whether it should be nullhandler by default modification_logger.setLevel(logging.DEBUG) formatter = logging.Formatter("%(message)s") def logged(): def wrap(function): @wraps(function) def wrapper(*args, **kwargs): response = function(*args, **kwargs) return response return wrapper return wrap modlog = modification_logger
StarcoderdataPython
5194610
from iocbuilder import Device, AutoSubstitution, Architecture, SetSimulation from iocbuilder.arginfo import * from iocbuilder.modules.asyn import Asyn, AsynPort, AsynIP from iocbuilder.modules.areaDetector import AreaDetector, _NDPluginBase, _ADBase, _ADBaseTemplate, simDetector class _SpecsAnalyser(AutoSubstitution): TemplateFile= "specsAnalyser.template" SubstitutionOverwrites = [_ADBaseTemplate] class SpecsAnalyserDLD(AutoSubstitution): TemplateFile= "specsAnalyserDLD.template" class SpecsAnalyser(_ADBase): """Create a SPECS Analyser detector""" _BaseTemplate = _ADBaseTemplate _SpecificTemplate = _SpecsAnalyser AutoInstantiate = True def __init__(self, DRIVER="DRV.1", BUFFERS=50, MEMORY=-1, **args): self.__super.__init__(**args) self.__dict__.update(locals()) # __init__ arguments ArgInfo = _ADBase.ArgInfo + _BaseTemplate.ArgInfo + makeArgInfo(__init__, DRIVER = Simple('Asyn driver port to connect to for communication to the device', str), BUFFERS = Simple('Maximum number of NDArray buffers to be created for plugin callbacks', int), MEMORY = Simple('Max memory to allocate, should be maxw*maxh*nbuffer for driver and all attached plugins', int)) LibFileList = ['specs'] DbdFileList = ['specsAnalyserSupport'] SysLibFileList = [] MakefileStringList = [] def Initialise(self): print '# specsAnalyserConfig(portName, driverName, maxBuffers, maxMemory )' print 'specsAnalyserConfig( %(PORT)10s, %(DRIVER)12s, %(BUFFERS)10d, %(MEMORY)9d )' % self.__dict__
StarcoderdataPython
5164016
<filename>acestream/ACEStream/Core/BitTornado/BT1/Rerequester.py #Embedded file name: ACEStream\Core\BitTornado\BT1\Rerequester.pyo import sys import socket import random import struct import binascii import urlparse from ACEStream.Core.BitTornado.zurllib import urlopen from urllib import quote from btformats import check_peers from ACEStream.Core.BitTornado.bencode import bdecode from threading import Thread, Lock, currentThread from cStringIO import StringIO from traceback import print_exc, print_stack from ACEStream.Core.Utilities.TSCrypto import sha from ACEStream.Core.Utilities.utilities import test_network_connection from time import time from ACEStream.Core.simpledefs import * from ACEStream.Core.Utilities.logger import log, log_exc import ACEStream.Core.DecentralizedTracking.mainlineDHT as mainlineDHT if mainlineDHT.dht_imported: from ACEStream.Core.DecentralizedTracking.pymdht.core.identifier import Id, IdError try: from os import getpid except ImportError: def getpid(): return 1 try: True except: True = 1 False = 0 DEBUG = False DEBUG_DHT = False DEBUG_LOCK = False DEBUG_CHECK_NETWORK_CONNECTION = False DEBUG_ANNOUNCE = False mapbase64 = '0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz.-' keys = {} basekeydata = str(getpid()) + repr(time()) + 'tracker' def merge_announce(tracker, params): if '?' in tracker: return tracker + '&' + params[1:] else: return tracker + params def add_key(tracker): key = '' for i in sha(basekeydata + tracker).digest()[-6:]: key += mapbase64[ord(i) & 63] keys[tracker] = key def get_key(tracker): try: return '&key=' + keys[tracker] except: add_key(tracker) return '&key=' + keys[tracker] class fakeflag(): def __init__(self, state = False): self.state = state def wait(self): pass def isSet(self): return self.state class Rerequester(): def __init__(self, trackerlist, interval, sched, howmany, minpeers, connect, externalsched, amount_left, up, down, port, ip, myid, infohash, timeout, errorfunc, excfunc, maxpeers, doneflag, upratefunc, downratefunc, unpauseflag = fakeflag(True), config = None, am_video_source = False, is_private = False): self.excfunc = excfunc newtrackerlist = [] for tier in trackerlist: if len(tier) > 1: random.shuffle(tier) newtrackerlist += [tier] self.trackerlist = newtrackerlist self.lastsuccessful = '' self.rejectedmessage = 'rejected by tracker - ' self.port = port self.am_video_source = am_video_source self.network_check_url_list = [] self.network_check_url_list.append(['http://google.com', None]) for t in xrange(len(self.trackerlist)): for tr in xrange(len(self.trackerlist[t])): tracker_url = self.trackerlist[t][tr] if tracker_url != 'http://retracker.local/announce': self.network_check_url_list.append([tracker_url, None]) self.url = '?info_hash=%s&peer_id=%s&port=%s' % (quote(infohash), quote(myid), str(port)) self.ip = ip self.myid = myid self.interval = interval self.last = None self.trackerid = None self.announce_interval = 1800 self.sched = sched self.howmany = howmany self.minpeers = minpeers self.connect = connect self.externalsched = externalsched self.amount_left = amount_left self.up = up self.down = down self.timeout = timeout self.errorfunc = errorfunc self.maxpeers = maxpeers self.doneflag = doneflag self.upratefunc = upratefunc self.downratefunc = downratefunc self.unpauseflag = unpauseflag self.last_failed = True self.never_succeeded = True self.errorcodes = {} self.lock = SuccessLock(infohash) self.network_lock = Lock() self.special = None self.started = False self.stopped = False self.schedid = 'rerequest-' + binascii.hexlify(infohash) + '-' self.infohash = infohash self.log_prefix = 'rerequester::' + binascii.hexlify(self.infohash) + ':' if DEBUG: log(self.log_prefix + '__init__: ip', ip, 'port', self.port, 'myid', myid, 'quoted_id', quote(myid)) if is_private: if DEBUG: log(self.log_prefix + '__init__: private torrent, disable DHT') self.dht = None else: self.dht = mainlineDHT.dht self.config = config self.notifiers = [] def start(self): if not self.started: self.started = True self.sched(self.c, self.interval / 2, self.schedid + 'c') if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'start: shed(c), self.interval', self.interval) if self.amount_left(): event = 0 else: event = 3 if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'start: call d(%d)' % event) self.d(event) self.init_check_network_connection() def c(self): if self.stopped: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'c: stopped, return') return if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'c: self.unpauseflag.isSet()', self.unpauseflag.isSet(), 'self.howmany()', self.howmany(), 'self.minpeers', self.minpeers, 'thread', currentThread().name) if not self.unpauseflag.isSet() and self.howmany() < self.minpeers: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'c: call announce(3, _c)') self.announce(3, self._c) else: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'c: call _c()') self._c() def _c(self): if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + '_c: sched c(), interval', self.interval, 'thread', currentThread().name) self.sched(self.c, self.interval) def d(self, event = 3): if self.stopped: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'd: stopped, return') return if not self.unpauseflag.isSet(): if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'd: unpauseflag is set, call _d() and return') self._d() return if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'd: call announce(%d, _d)' % event, 'thread', currentThread().name) self.announce(event, self._d) def _d(self): if self.never_succeeded: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + '_d: never succeeded, shed d() in 60 seconds') self.sched(self.d, 60) else: self.sched(self.d, self.announce_interval) if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + '_d: shed d(): announce_interval', self.announce_interval, 'thread', currentThread().name) def run_dht(self): if DEBUG: print >> sys.stderr, 'Rerequester::run_dht: call rerequest_dht()' self.rerequest_dht() self.sched(self.run_dht, 60, self.schedid + 'run_dht') def encoder_wants_new_peers(self): if self.am_video_source: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'encoder_wants_new_peers: do nothing for live source') return if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'encoder_wants_new_peers: ---') task = lambda : self.announce() self.sched(task) def init_check_network_connection(self): t = Thread(target=self.check_network_connection, args=[False, 5, True]) t.name = 'RerequestCheckNetwork' + t.name t.daemon = True if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + 'init_check_network_connection: start check_network_connection(): thread', t.name) t.start() def check_network_connection(self, announce = True, interval = 5, populate_url_list = False): if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: announce', announce, 'populate_url_list', populate_url_list, 'interval', interval) if not self.network_lock.acquire(False): if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: locked, return') return False for i in xrange(len(self.network_check_url_list)): url = self.network_check_url_list[i][0] ip = self.network_check_url_list[i][1] if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: test', url, 'ip', ip) success = False if ip is None: ip = test_network_connection(url, getip=True) if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: query ip', ip) if ip is not None: self.network_check_url_list[i][1] = ip success = True else: if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: test by ip', ip) success = test_network_connection(host=ip) if populate_url_list: continue if success: if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: success', url) if announce: announce_lambda = lambda : self.announce() self.sched(announce_lambda) self.network_lock.release() return True if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: failed', url) self.network_lock.release() if populate_url_list: return True if DEBUG_CHECK_NETWORK_CONNECTION: log(self.log_prefix + 'check_network_connection: all failed, possible there is no network, retry in ', interval, 'seconds') if not populate_url_list: task = lambda : self.check_network_connection(announce=True, interval=interval) self.sched(task, interval) return False def announce(self, event = 3, callback = lambda : None, specialurl = None): if ':' in self.ip: compact = 0 else: compact = 1 params = {} if specialurl is not None: s = self.url + '&uploaded=0&downloaded=0&left=1' if self.howmany() >= self.maxpeers: s += '&numwant=0' params['numwant'] = 0 else: params['numwant'] = 200 s += '&numwant=200' s += '&no_peer_id=1' if compact: s += '&compact=1' self.last_failed = True self.special = specialurl params['uploaded'] = 0 params['downloaded'] = 0 params['left'] = 1 self.rerequest(s, callback, params) return s = '%s&uploaded=%s&downloaded=%s&left=%s' % (self.url, str(self.up()), str(self.down()), str(self.amount_left())) params['uploaded'] = int(self.up()) params['downloaded'] = int(self.down()) params['left'] = int(self.amount_left()) if self.last is not None: s += '&last=' + quote(str(self.last)) if self.trackerid is not None: s += '&trackerid=' + quote(str(self.trackerid)) if self.howmany() >= self.maxpeers: s += '&numwant=0' params['numwant'] = 0 else: params['numwant'] = 200 s += '&numwant=200' s += '&no_peer_id=1' if compact: s += '&compact=1' if event != 3: event_name = ['started', 'completed', 'stopped'][event] s += '&event=' + event_name params['event'] = event if event == 2: self.stopped = True if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'announce: event', event, 'callback', callback, 'params', params, 'thread', currentThread().name) self.rerequest(s, callback, params) def snoop(self, peers, callback = lambda : None): params = {'event': 'stopped', 'port': 0, 'uploaded': 0, 'downloaded': 0, 'left': 1, 'numwant': int(peers)} if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + 'snoop: peers', peers, 'callback', callback, 'params', params, 'thread', currentThread().name) self.rerequest(self.url + '&event=stopped&port=0&uploaded=0&downloaded=0&left=1&tracker=1&numwant=' + str(peers), callback, params) def rerequest(self, s, callback, params): proxy_mode = self.config.get('proxy_mode', 0) if proxy_mode == PROXY_MODE_PRIVATE: if DEBUG: log(self.log_prefix + 'PROXY_MODE_PRIVATE, rerequest exited') return if DEBUG_ANNOUNCE: print_stack() if not self.lock.isready(): def retry(self = self, s = s, callback = callback, params = params): self.rerequest(s, callback, params) self.sched(retry, 5) if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + 'rerequest: locked, retry in 5 seconds: s', s, 'callback', callback, 'params', params, 'thread', currentThread().name) return rq = Thread(target=self._rerequest, args=[s, callback, params]) rq.name = 'TrackerRerequestA' + rq.name rq.daemon = True if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + 'rerequest: start new request: s', s, 'thread', rq.name) rq.start() def rerequest_dht(self): rq = Thread(target=self._dht_rerequest) rq.setName('RerequestDHT' + rq.getName()) rq.setDaemon(True) rq.start() def _rerequest(self, s, callback, params): try: self.lock.start() def fail(self = self, callback = callback): self._fail(callback) if self.ip: try: if ':' in self.ip: urlip = '[' + self.ip + ']' field = 'ipv6' else: urlip = self.ip field = 'ip' s += '&' + field + '=' + urlip except: self.errorcodes['troublecode'] = 'unable to resolve: ' + self.ip self.externalsched(fail) self.errorcodes = {} if self.special is None: if not self.dht: if DEBUG_DHT: log(self.log_prefix + '_rerequest: no DHT support loaded') elif self.am_video_source: if DEBUG_DHT: log(self.log_prefix + '_rerequest: disable dht for live source') else: self._dht_rerequest() if DEBUG: log(self.log_prefix + '_rerequest: current tracker list:', self.trackerlist) new_tracker_list = [] for t in range(len(self.trackerlist)): for tr in range(len(self.trackerlist[t])): tracker = self.trackerlist[t][tr] if DEBUG: log(self.log_prefix + '_rerequest: trying tracker', tracker) if DEBUG_LOCK: log(self.log_prefix + '_rerequest: call rerequest_single(): tracker', tracker, 'thread', currentThread().name) ret = self.rerequest_single(tracker, s, params) if DEBUG_LOCK: log(self.log_prefix + '_rerequest: rerequest_single() finished: ret', ret, 'tracker', tracker, 'thread', currentThread().name) if ret and not self.last_failed: new_tracker_list.insert(0, [tracker]) else: new_tracker_list.append([tracker]) if DEBUG: log(self.log_prefix + '_rerequest: new tracker list:', new_tracker_list) self.trackerlist = new_tracker_list[:] if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + '_rerequest: return: thread', currentThread().name) callback() return tracker = self.special self.special = None if self.rerequest_single(tracker, s, callback): callback() return self.externalsched(fail) except: self.exception(callback) finally: self.lock.finish() def _fail(self, callback): if self.upratefunc() < 100 and self.downratefunc() < 100 or not self.amount_left(): for f in ['rejected', 'bad_data', 'troublecode']: if self.errorcodes.has_key(f): r = self.errorcodes[f] break else: r = 'Problem connecting to tracker - unspecified error:' + `(self.errorcodes)` self.errorfunc(r) self.last_failed = True if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + '_fail: give up: thread', currentThread().name) self.lock.give_up() self.externalsched(callback) def rerequest_single(self, t, s, params): l = self.lock.set() if t.startswith('udp'): target = self._rerequest_single_udp args = [t, params, l] else: target = self._rerequest_single args = [t, s + get_key(t), l] rq = Thread(target=target, args=args) rq.name = 'TrackerRerequestB' + rq.name rq.daemon = True if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + 'rerequest_single: start new thread: t', t, 'set_lock', l, 'thread', rq.name) rq.start() if DEBUG_LOCK: log(self.log_prefix + 'rerequest_single: wait for lock: thread', currentThread().name) self.lock.wait() if DEBUG_LOCK or DEBUG_ANNOUNCE: log(self.log_prefix + 'rerequest_single: wait for lock done: success', self.lock.success, 'thread', currentThread().name) if self.lock.success: self.lastsuccessful = t self.last_failed = False self.never_succeeded = False return True if not self.last_failed and self.lastsuccessful == t: self.last_failed = True self.lock.give_up() return True return False def _rerequest_single_udp(self, t, params, l): try: if self.ip: ip = self.ip else: ip = 0 e = params.get('event', '') if e == 'completed': event = 1 elif e == 'started': event = 2 elif e == 'stopped': event = 3 else: event = 0 url = urlparse.urlparse(t) host = url.hostname port = url.port if port is None: port = 80 interval, peers = self.udp_announce(host, port, infohash=self.infohash, peerid=self.myid, timeout=self.timeout, downloaded=params.get('downloaded', 0), left=params.get('left', 0), uploaded=params.get('uploaded', 0), event=0, ip=ip, key=0, num_want=params.get('numwant', 0), clport=self.port) peer_list = [] for nip, port in peers: aip = socket.inet_ntoa(struct.pack('!I', nip)) peer_list.append({'ip': aip, 'port': port}) resp = {'interval': interval, 'peers': peer_list} if self.lock.trip(l, True): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single_udp: trip success, unwait: l', l, 't', t, 'thread', currentThread().name) self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single_udp: trip success, no trip: l', l, 't', t, 'thread', currentThread().name) if DEBUG: log(self.log_prefix + '_rerequest_single_udp: resp', resp) def add(self = self, r = resp): self.postrequest(r, 'tracker=' + t, self.notifiers) self.externalsched(add) except: if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single_udp: exception in udp announce, unwait: l', l, 't', t, 'thread', currentThread().name) self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single_udp: exception in udp announce, no trip: l', l, 't', t, 'thread', currentThread().name) if DEBUG: print_exc() def _rerequest_single(self, t, s, l): try: closer = [None] def timedout(self = self, l = l, closer = closer): if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single:timedout: unwait: l', l, 't', t, 'thread', currentThread().name) self.errorcodes['troublecode'] = 'Problem connecting to tracker - timeout exceeded' self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single:timedout: no trip: l', l, 't', t, 'thread', currentThread().name) try: closer[0]() except: pass self.externalsched(timedout, self.timeout) err = None try: if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + '_rerequest_single: request tracker', merge_announce(t, s), 'thread', currentThread().name) h = urlopen(merge_announce(t, s), silent=True) closer[0] = h.close data = h.read() except (IOError, socket.error) as e: err = 'Problem connecting to tracker - ' + str(e) if DEBUG: log(self.log_prefix + '_rerequest_single: failed to connect to tracker') except: err = 'Problem connecting to tracker' if DEBUG: log(self.log_prefix + '_rerequest_single: failed to connect to tracker') try: h.close() except: pass if err: if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: got error, unwait: l', l, 't', t, 'thread', currentThread().name, 'err', err) self.errorcodes['troublecode'] = err self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: got error, no trip: l', l, 't', t, 'thread', currentThread().name, 'err', err) return if not data: if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: no date, unwait: l', l, 't', t, 'thread', currentThread().name) self.errorcodes['troublecode'] = 'no data from tracker' self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: no data, no trip: l', l, 't', t, 'thread', currentThread().name) return try: r = bdecode(data, sloppy=1) if DEBUG or DEBUG_ANNOUNCE: log(self.log_prefix + '_rerequest_single: respose from tracker: t', t, 'r', r, 'thread', currentThread().name) check_peers(r) except ValueError as e: if DEBUG: log_exc() if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: exception while decoding data, unwait: l', l, 't', t, 'thread', currentThread().name) self.errorcodes['bad_data'] = 'bad data from tracker - ' + str(e) self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: exception while decoding data, no trip: l', l, 't', t, 'thread', currentThread().name) return if r.has_key('failure reason'): if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: got failure reason, unwait: l', l, 't', t, 'thread', currentThread().name) self.errorcodes['rejected'] = self.rejectedmessage + r['failure reason'] self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: got failure reason, no trip: l', l, 't', t, 'thread', currentThread().name) return if self.lock.trip(l, True): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: trip success, unwait: l', l, 't', t, 'thread', currentThread().name) self.lock.unwait(l) elif DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: trip success, no trip: l', l, 't', t, 'thread', currentThread().name) def add(self = self, r = r): self.postrequest(r, 'tracker=' + t, self.notifiers) self.externalsched(add) except: print_exc() if self.lock.trip(l): if DEBUG_LOCK: log(self.log_prefix + '_rerequest_single: got exception, unwait: l', l, 't', t, 'thread', currentThread().name) self.lock.unwait(l) def udp_announce(self, host, port, infohash, peerid, timeout = 15, downloaded = 0, left = 0, uploaded = 0, event = 0, ip = 0, key = 0, num_want = -1, clport = 1111): if DEBUG: log(self.log_prefix + 'udp_announce: host', host, 'port', port, 'infohash', infohash, 'peerid', peerid, 'event', event, 'ip', ip, 'clport', clport, 'num_want', num_want, 'key', key, 'timeout', timeout, 'downloaded', downloaded, 'uploaded', uploaded, 'left', left) action = {'connect': 0, 'announce': 1, 'scrape': 2, 'error': 3} conn_head_size = 16 announce_head_size = 20 error_head_size = 8 peer_size = 6 default_connection = 4497486125440L transaction = random.randint(0, 999999) udp_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) udp_socket.settimeout(timeout) connect_request_pack = struct.pack('>QLL', default_connection, action['connect'], transaction) udp_socket.sendto(connect_request_pack, (host, port)) response = udp_socket.recv(512) resp_action = struct.unpack('>L', response[:4])[0] if resp_action != action['connect']: if resp_action == action['error']: errmsg_len = len(response) - error_head_size errmsg = struct.unpack('>' + str(errmsg_len) + 's', response[8:])[0] raise Exception(errmsg) raise Exception('got unexpect action') default_connection = struct.unpack('>Q', response[8:])[0] transaction = random.randint(0, 999999) announce_request_pack = struct.pack('>QLL20s20sQQQLLLlH', default_connection, action['announce'], transaction, infohash, peerid, downloaded, left, uploaded, event, ip, key, num_want, clport) udp_socket.sendto(announce_request_pack, (host, port)) response = udp_socket.recv(1220) resp_action = struct.unpack('>L', response[:4])[0] if resp_action != action['announce']: if resp_action == action['error']: errmsg_len = len(response) - error_head_size errmsg = struct.unpack('>' + str(errmsg_len) + 's', response[8:])[0] raise Exception(errmsg) raise Exception('got unexpect action') resp_transaction = struct.unpack('>L', response[4:8])[0] if resp_transaction != transaction: raise Exception('got incorrect transaction') interval = struct.unpack('>L', response[8:12])[0] peers_in_response = (len(response) - announce_head_size) / peer_size i = 0 peers = [] while i < peers_in_response: peer_unpack = struct.unpack('>LH', response[i * peer_size + announce_head_size:(i + 1) * peer_size + announce_head_size]) peers.append(peer_unpack) i = i + 1 return (interval, peers) def _dht_rerequest(self): if DEBUG_DHT: log(self.log_prefix + '_dht_rerequest: infohash', self.infohash) try: info_hash_id = Id(self.infohash) except IdError: log(self.log_prefix + '_dht_rerequest: self.info_hash is not a valid identifier') return if 'dialback' in self.config and self.config['dialback']: if DEBUG_DHT: log(self.log_prefix + '_dht_rerequest: get_peers AND announce') self.dht.get_peers(self.infohash, info_hash_id, self._dht_got_peers, self.port) return if DEBUG_DHT: log(self.log_prefix + '_dht_rerequest: JUST get_peers, DO NOT announce') self.dht.get_peers(self.infohash, info_hash_id, self._dht_got_peers) def _dht_got_peers(self, infohash, peers): if DEBUG_DHT: if peers: log(self.log_prefix + 'DHT: Received', len(peers), 'peers', currentThread().getName()) else: log(self.log_prefix + 'DHT: Received no peers', currentThread().getName()) if not peers: return p = [ {'ip': peer[0], 'port': peer[1]} for peer in peers ] if p: r = {'peers': p} def add(self = self, r = r): self.postrequest(r, 'dht') self.externalsched(add) def add_notifier(self, cb): self.notifiers.append(cb) def postrequest(self, r, source, notifiers = []): try: if source is None: source = '' if r.has_key('warning message'): if DEBUG: log(self.log_prefix + 'postrequest: tracker warning:', r['warning message']) self.errorfunc('warning from tracker - ' + r['warning message']) self.announce_interval = r.get('interval', self.announce_interval) self.interval = r.get('min interval', self.interval) if DEBUG: log(self.log_prefix + 'postrequest: %s: announce min is' % source, self.announce_interval, self.interval) self.trackerid = r.get('tracker id', self.trackerid) self.last = r.get('last', self.last) peers = [] p = r.get('peers') if p is not None: if type(p) == type(''): for x in xrange(0, len(p), 6): ip = '.'.join([ str(ord(i)) for i in p[x:x + 4] ]) port = ord(p[x + 4]) << 8 | ord(p[x + 5]) peers.append(((ip, port), 0)) else: for x in p: peers.append(((x['ip'].strip(), x['port']), x.get('peer id', 0))) else: p = r.get('peers6') if type(p) == type(''): for x in xrange(0, len(p), 18): hexip = binascii.b2a_hex(p[x:x + 16]) ip = '' for i in xrange(0, len(hexip), 4): ip += hexip[i:i + 4] if i + 4 != len(hexip): ip += ':' port = ord(p[x + 16]) << 8 | ord(p[x + 17]) peers.append(((ip, port), 0)) else: for x in p: peers.append(((x['ip'].strip(), x['port']), x.get('peer id', 0))) log(self.log_prefix + 'Got IPv6 peer addresses, not yet supported, ignoring.') peers = [] if DEBUG: log(self.log_prefix + 'postrequest: %s: Got peers' % source, peers) ps = len(peers) + self.howmany() if ps < self.maxpeers: if self.doneflag.isSet(): if r.get('num peers', 1000) - r.get('done peers', 0) > ps * 1.2: self.last = None elif r.get('num peers', 1000) > ps * 1.2: self.last = None if peers: random.shuffle(peers) if self.am_video_source: if DEBUG: log(self.log_prefix + 'postrequest: do not start connections for live source') else: self.connect(peers) for notifier in notifiers: notifier(peers) except: log(self.log_prefix + 'postrequest: error in postrequest') log_exc() def exception(self, callback): data = StringIO() print_exc(file=data) def r(s = data.getvalue(), callback = callback): if self.excfunc: self.excfunc(s) else: print s callback() self.externalsched(r) class SuccessLock(): def __init__(self, infohash = None): self.lock = Lock() self.pause = Lock() self.ready = Lock() self.code = 0L self.success = False self.finished = True self.log_prefix = 'rerequester:successlock::' if infohash is not None: self.log_prefix += binascii.hexlify(infohash) + ':' def start(self): if DEBUG_LOCK: log(self.log_prefix + 'start: acquire ready lock: thread', currentThread().name) self.ready.acquire() if DEBUG_LOCK: log(self.log_prefix + 'start: acquire ready lock done: thread', currentThread().name) self.success = False self.finished = False def finish(self): if DEBUG_LOCK: log(self.log_prefix + 'finish: release ready lock: thread', currentThread().name) self.ready.release() def isready(self): locked = self.ready.locked() if DEBUG_LOCK: log(self.log_prefix + 'isready: ready lock status: locked', locked, 'thread', currentThread().name) return not locked def set(self): if DEBUG_LOCK: log(self.log_prefix + 'set: acquire lock: thread', currentThread().name) self.lock.acquire() if DEBUG_LOCK: log(self.log_prefix + 'set: acquire lock done: thread', currentThread().name) if not self.pause.locked(): if DEBUG_LOCK: log(self.log_prefix + 'set: pause is not locked, acquire: thread', currentThread().name) self.pause.acquire() if DEBUG_LOCK: log(self.log_prefix + 'set: pause acquire done: thread', currentThread().name) elif DEBUG_LOCK: log(self.log_prefix + 'set: pause is locked: thread', currentThread().name) self.first = True self.finished = False self.success = False self.code += 1L self.lock.release() if DEBUG_LOCK: log(self.log_prefix + 'set: release lock and return: first', self.first, 'code', self.code, 'thread', currentThread().name) return self.code def trip(self, code, s = False): if DEBUG_LOCK: log(self.log_prefix + 'trip: acquire lock: code', code, 's', s, 'self.code', self.code, 'self.finished', self.finished, 'thread', currentThread().name) self.lock.acquire() if DEBUG_LOCK: log(self.log_prefix + 'trip: acquire lock done: code', code, 's', s, 'self.code', self.code, 'self.finished', self.finished, 'thread', currentThread().name) try: if code == self.code and not self.finished: r = self.first self.first = False if s: self.finished = True self.success = True if DEBUG_LOCK: log(self.log_prefix + 'trip: got match: code', code, 's', s, 'self.code', self.code, 'self.finished', self.finished, 'self.success', self.success, 'r', r, 'thread', currentThread().name) return r if DEBUG_LOCK: log(self.log_prefix + 'trip: no match: code', code, 'self.code', self.code, 'self.finished', self.finished, 'thread', currentThread().name) finally: self.lock.release() def give_up(self): self.lock.acquire() self.success = False self.finished = True if DEBUG_LOCK: log(self.log_prefix + 'give_up: self.success', self.success, 'self.finished', self.finished, 'thread', currentThread().name) self.lock.release() def wait(self): if DEBUG_LOCK: log(self.log_prefix + 'wait: acquire pause: thread', currentThread().name) self.pause.acquire() if DEBUG_LOCK: log(self.log_prefix + 'wait: acquire pause done: thread', currentThread().name) def unwait(self, code): if code == self.code and self.pause.locked(): if DEBUG_LOCK: log(self.log_prefix + 'unwait: release pause: code', code, 'self.code', self.code, 'thread', currentThread().name) self.pause.release() elif DEBUG_LOCK: log(self.log_prefix + 'unwait: do not release pause: code', code, 'self.code', self.code, 'thread', currentThread().name) def isfinished(self): self.lock.acquire() x = self.finished self.lock.release() if DEBUG_LOCK: log(self.log_prefix + 'isfinished: x', x, 'thread', currentThread().name) return x
StarcoderdataPython
1832165
from django import template register = template.Library() from re import compile, UNICODE #RUBY_TEXT_MARKUP_TEMPLATE = u'<ruby><rb>{expression}</rb><rp>(</rp><rt>{reading}</rt><rp>)</rp></ruby>' RUBY_TEXT_MARKUP_TEMPLATE = '<span class="ezRuby" title="{reading}">{expression}</span>' #_LEFT_CARET = u'\&lt;' #_RIGHT_CARET = u'\&gt;' #ruby_prog = compile(u'\&lt;(.*)\|(.*)\&gt;') #unescaped_ruby_prog = compile(u'<(.*)\|(.*)>') #ruby_prog = compile(u'\s(.*)\[(.*)\]', UNICODE) #for some reason, only [\s^] works, and [^\s] doesn't - so [] must prefer the first option it's given over the second ruby_prog = compile('\s?(\S*?)\[(.*?)\]', UNICODE) #for some reason, only [\s^] works, and [^\s] doesn't - so [] must prefer the first option it's given over the second #ruby_prog2 = compile(u'^(.*)\[(.*)\]', UNICODE) #unescaped_ruby_prog = compile(u'[^\s](.*)\[(.*)\]') def furiganaize(text): new_text = '' last_match_end = 0 for match in ruby_prog.finditer(text): expression, reading = match.group(1, 2) start, end = match.start(), match.end() new_substring = RUBY_TEXT_MARKUP_TEMPLATE.format(expression=expression, reading=reading) new_text += text[last_match_end:start] + new_substring last_match_end = end new_text += text[last_match_end:] return new_text #TODO-OLD move below into some other module def strip_ruby_text(text): new_text = '' last_match_end = 0 for match in ruby_prog.finditer(text): expression = match.group(1) start, end = match.start(), match.end() new_substring = expression new_text += text[last_match_end:start] + new_substring last_match_end = end new_text += text[last_match_end:] return new_text def strip_ruby_bottom(text): ''' Returns this field's content, with just the ruby text instead of what's beneath it, and the other text. <TA|ta>beru becomes taberu ''' new_text = '' last_match_end = 0 for match in ruby_prog.finditer(text): reading = match.group(2) start, end = match.start(), match.end() new_substring = reading new_text += text[last_match_end:start] + new_substring last_match_end = end new_text += text[last_match_end:] return new_text @register.tag(name="furiganaize") def do_furiganaize(parser, token): nodelist = parser.parse(('endfuriganaize',)) parser.delete_first_token() return FuriganaizeNode(nodelist) class FuriganaizeNode(template.Node): def __init__(self, nodelist): self.nodelist = nodelist def render(self, context): output = self.nodelist.render(context) #convert everything of the form <kanji|kana> to kanji with CSS ruby text return furiganaize(output)
StarcoderdataPython
5124918
<gh_stars>0 # -*- coding: utf-8 -*- import datetime, logging, os, pprint, random import requests from illiad_app import settings_app log = logging.getLogger(__name__) class CloudCreateUserHandler( object ): """ Creates new user via official illiad cloud api. """ def __init__( self ): self.request_id = random.randint( 1111, 9999 ) # to follow logic if simultaneous hits self.required_elements = [ 'auth_id', 'department', 'email', 'first_name', 'last_name', 'phone', 'status' ] def data_check( self, request ): """ Checks data. Called by views.cloud_create_user() """ ## auth-key check summary_check = 'invalid' if self.auth_key_good( request ) is True: ## data check if self.data_good( request ) is True: summary_check = 'valid' log.debug( '%s - summary_check, `%s`' % (self.request_id, summary_check) ) return summary_check def auth_key_good( self, request ): """ Checks the auth_key and ip. Called by data_check() """ auth_key_check = False if 'auth_key' in request.POST.keys(): if request.POST['auth_key'] == settings_app.API_KEY: log.debug( '%s - auth_key ok' % self.request_id ) source_ip = request.META.get('REMOTE_ADDR', 'unavailable') log.debug( '%s - source_ip, ```%s```' % (self.request_id, source_ip) ) if source_ip in settings_app.LEGIT_IPS: log.debug( '%s - source_ip ok' % self.request_id ) auth_key_check = True log.debug( '%s - auth_key_check, `%s`' % (self.request_id, auth_key_check) ) return auth_key_check def data_good( self, request ): """ Checks for required params. Called by data_check() """ ( data_good_check, user_keys, check_flag ) = ( False, list(request.POST.keys()), 'init' ) for element in self.required_elements: if element not in user_keys: log.debug( '%s - missing element, `%s`; will return False' % (self.request_id, element) ) check_flag = 'failed' break if check_flag == 'init': data_good_check = True log.debug( '%s - data_good_check, `%s`' % (self.request_id, data_good_check) ) return data_good_check def create_user( self, request ): """ Creates new user via official illiad cloud api. Called by views.cloud_create_user() """ usr_dct = dict( request.POST.items() ) params = { ## non-user 'DeliveryMethod': 'Hold for Pickup', 'LoanDeliveryMethod': 'Hold for Pickup', 'NotificationMethod': 'Electronic', 'Site': 'Rockefeller Circ. Desk', 'Web': True, # 'AuthType': 'Default', # don't send, will be set to `Default` ## user 'Username': usr_dct['auth_id'], 'FirstName': usr_dct['first_name'], 'LastName': usr_dct['last_name'], 'EmailAddress': usr_dct['email'], 'Phone': usr_dct['phone'], 'Status': usr_dct['status'], # "type, eg `Undergraduate Student`" 'Department': usr_dct['department'], 'Address': '', 'Address2': '', 'City': '', 'State': '', 'Zip': '', # 'ExternalUserId': '', # don't send # 'PlainTextPassword': '', # don't send } log.debug( '%s - params, ```%s```' % (self.request_id, pprint.pformat(params)) ) url = '%s%s' % ( settings_app.ILLIAD_API_URL, 'Users' ) # root url contains ending-slash log.debug( '%s - url, ```%s```' % (self.request_id, url) ) headers = { 'Accept-Type': 'application/json; charset=utf-8', 'ApiKey': os.environ['ILLIAD_WS__OFFICIAL_ILLIAD_API_KEY'] } try: r = requests.post( url, data=params, headers=headers, timeout=60, verify=True ) response_dct = r.json() response_dct['added_status_code'] = r.status_code log.debug( '%s - response, ```%s```' % (self.request_id, pprint.pformat(response_dct)) ) return response_dct except Exception as e: message = 'exception creating new user, ```%s```' % repr(e) log.error( '%s - ```%s```' % (self.request_id, message) ) return { 'error': message } def prep_output_dct( self, start_time, request, data_dct ): """ Preps output-dct. Called by views.cloud_create_user() """ params = dict( request.POST.items() ) params.pop( 'auth_key', None ) output_dct = { 'request': { 'url': '%s://%s%s' % ( request.scheme, request.META.get('HTTP_HOST', '127.0.0.1'), request.META['PATH_INFO'] ), # HTTP_HOST doesn't exist for client-tests 'params': params, 'timestamp': str( start_time ) }, 'response': self.prep_response_segment( start_time, data_dct, params['auth_id'] ) } log.debug( '%s - output_dct, ```%s```' % (self.request_id, pprint.pformat(output_dct)) ) return output_dct def prep_response_segment( self, start_time, data_dct, submitted_username ): """ Returns response part of context dct. Called by prep_output_dct() """ returned_status_code = data_dct['added_status_code'] if 'UserName' in data_dct and data_dct['UserName'] == submitted_username and returned_status_code == 200: summary_dct = {'status': 'Registered', 'status_code': 200} else: summary_dct = { 'status': 'Failure', 'status_code': returned_status_code } response_dct = { 'elapsed_time': str( datetime.datetime.now() - start_time ), 'raw_data': data_dct, 'status_data': summary_dct } return response_dct ## end class class CloudCreateUserHandler() # import os, requests # params = { # "Username" : "bdoe", # "ExternalUserId": "123456789", # "FirstName":"Bailey", # "LastName":"Doe", # "EmailAddress" : "<EMAIL>" , # "DeliveryMethod" : "Hold for Pickup", # "LoanDeliveryMethod" : "Mail to Address", # "NotificationMethod" : "Electronic", # "Phone" : "123-456-7890", # "Status" : "Graduate", # "PlainTextPassword": "<PASSWORD>", # "AuthType" : "ILLiad", # "Department" : "Music", # "Web" : True, # "Address" : "the address", # "Address2" : "extra address info", # "City" : "the city", # "State" : "RI", # "Zip" : "12345" # } # url = '%s%s' % ( os.environ['ILLIAD_WS__OFFICIAL_ILLIAD_API_URL'], 'Users' ) # root url contains ending-slash # print( 'url, ```%s```' % url ) # headers = { # 'Accept-Type': 'application/json; charset=utf-8', # 'ApiKey': os.environ['ILLIAD_WS__OFFICIAL_ILLIAD_API_KEY'] # } # r = requests.post( url, data=params, headers=headers, timeout=60, verify=True ) # print( r.status_code ) # print( r.content )
StarcoderdataPython
1966913
""" Serializers for users app """ from django.contrib.auth.models import User from rest_framework import serializers from small_small_hr.models import StaffProfile # pylint: disable=too-many-ancestors class UserSerializer(serializers.ModelSerializer): """ UserSerializer class """ class Meta: # pylint: disable=too-few-public-methods """ meta options """ model = User fields = ('username', 'first_name', 'last_name', 'email') class StaffProfileSerializer(serializers.ModelSerializer): """ Serializer class for StaffProfile model """ first_name = serializers.CharField(source='user.first_name') last_name = serializers.CharField(source='user.last_name') id_number = serializers.SerializerMethodField() phone = serializers.SerializerMethodField() sex = serializers.SerializerMethodField() role = serializers.SerializerMethodField() nhif = serializers.SerializerMethodField() nssf = serializers.SerializerMethodField() pin_number = serializers.SerializerMethodField() address = serializers.SerializerMethodField() birthday = serializers.SerializerMethodField() leave_days = serializers.SerializerMethodField() sick_days = serializers.SerializerMethodField() overtime_allowed = serializers.SerializerMethodField() start_date = serializers.SerializerMethodField() end_date = serializers.SerializerMethodField() emergency_contact_name = serializers.SerializerMethodField() emergency_contact_number = serializers.SerializerMethodField() class Meta: # pylint: disable=too-few-public-methods """ class meta options """ model = StaffProfile fields = [ 'id', 'first_name', 'last_name', 'created', 'id_number', 'phone', 'sex', 'modified', 'role', 'nhif', 'emergency_contact_name', 'nssf', 'address', 'birthday', 'overtime_allowed', 'leave_days', 'start_date', 'sick_days', 'pin_number', 'end_date', 'emergency_contact_number', ] def get_id_number(self, obj): # pylint: disable=no-self-use """ Get id_number """ return obj.data.get('id_number') def get_phone(self, obj): # pylint: disable=no-self-use """ Get phone """ return obj.data.get('phone') def get_sex(self, obj): # pylint: disable=no-self-use """ Get sex """ return obj.data.get('sex') def get_role(self, obj): # pylint: disable=no-self-use """ Get role """ return obj.data.get('role') def get_nhif(self, obj): # pylint: disable=no-self-use """ Get nhhf """ return obj.data.get('nhif') def get_nssf(self, obj): # pylint: disable=no-self-use """ Get nssf """ return obj.data.get('nssf') def get_pin_number(self, obj): # pylint: disable=no-self-use """ Get pin_number """ return obj.data.get('pin_number') def get_address(self, obj): # pylint: disable=no-self-use """ Get address """ return obj.data.get('address') def get_birthday(self, obj): # pylint: disable=no-self-use """ Get birthday """ return obj.data.get('birthday') def get_leave_days(self, obj): # pylint: disable=no-self-use """ Get leave_days """ return obj.data.get('leave_days') def get_sick_days(self, obj): # pylint: disable=no-self-use """ Get sick_days """ return obj.data.get('sick_days') def get_overtime_allowed(self, obj): # pylint: disable=no-self-use """ Get overtime_allowed """ return obj.data.get('overtime_allowed') def get_start_date(self, obj): # pylint: disable=no-self-use """ Get start_date """ return obj.data.get('start_date') def get_end_date(self, obj): # pylint: disable=no-self-use """ Get end_date """ return obj.data.get('end_date') def get_emergency_contact_name(self, obj): # pylint: disable=no-self-use """ Get emergency_contact_name """ return obj.data.get('emergency_contact_name') def get_emergency_contact_number(self, obj): # pylint: disable=no-self-use """ Get emergency_contact_number """ return obj.data.get('emergency_contact_number')
StarcoderdataPython
5140217
#!/usr/bin/env python3 # -*- coding: utf-8 -*- from contents.dice.DiceCommandProcessor import DiceCommandProcessor, InvalidFormulaException, CalculatorBase class CallOfCthulhuDice(DiceCommandProcessor): def __init__(self): super().__init__() def percent(self, command): self.comment_separator.separate(command) value = self.comment_separator.expression_formula new_command = f"1d100<={value}" self.comment_separator.expression_formula = new_command self.execute_evaluation_expression() self.execute_replacers() self.execute_calculate() return self.generate_dice_result_string() def versus(self, command): # :vs 能動側(する側) 受動側(される側) # (能動側ー受動側)×5=差分を行い、50+差分=成功値で決定。それを1d100で振って成否の判断を行う。 # 例)DEX対抗の場合 # 能動側の数値:9、受動側の数値:10 # (9-10)×5=-5、50+(-5)=45% ⇒ 1d100<=45 #対抗の成功判定 self.comment_separator.separate(command) command_string = self.comment_separator.expression_formula command_line = command_string.split(" ") removal_blank = [word.strip() for word in command_line if word.strip() != ""] #print("removal_blank: " + str(removal_blank)) if not len(removal_blank) >= 2: raise InvalidFormulaException() calculator = CalculatorBase() active_side = int(calculator.execute_eval(removal_blank[0])) passive_side = int(calculator.execute_eval(removal_blank[1])) name = f"{active_side}vs{passive_side}" value = 50 + ((active_side - passive_side) * 5) new_command = f"1d100<={value}" self.comment_separator.expression_formula = new_command if self.comment_separator.is_comment(): # コメント有り if "対抗" in self.comment_separator.comment: new_comment = f'{name} {self.comment_separator.comment}' else: new_comment = f'{name} 対抗{self.comment_separator.comment}' else: # コメント無し new_comment = f"{name} 対抗ロール" self.comment_separator.set_comment(new_comment) self.execute_evaluation_expression() self.execute_replacers() self.execute_calculate() return self.generate_dice_result_string()
StarcoderdataPython
9784726
from data.data_pipe import de_preprocess, get_train_loader, get_val_data from model import Backbone, Arcface, MobileFaceNet, Am_softmax, l2_norm from verifacation import evaluate import torch from torch import optim import numpy as np from tqdm import tqdm from tensorboardX import SummaryWriter from matplotlib import pyplot as plt plt.switch_backend('agg') from utils import get_time, gen_plot, hflip_batch, separate_bn_paras from PIL import Image from torchvision import transforms as trans import math import bcolz class face_learner(object): def __init__(self, conf, inference=False): print(conf) # conf.use_mobilfacenet = True if conf.use_mobilfacenet: self.model = MobileFaceNet(conf.embedding_size).to(conf.device) print('MobileFaceNet model generated') else: self.model = Backbone(conf.net_depth, conf.drop_ratio, conf.net_mode).to(conf.device) print('{}_{} model generated'.format(conf.net_mode, conf.net_depth)) if not inference: self.milestones = conf.milestones self.loader, self.class_num = get_train_loader(conf) self.writer = SummaryWriter(conf.log_path) self.step = 0 self.head = Arcface(embedding_size=conf.embedding_size, classnum=self.class_num).to(conf.device) print('two model heads generated') paras_only_bn, paras_wo_bn = separate_bn_paras(self.model) if conf.use_mobilfacenet: self.optimizer = optim.SGD([ {'params': paras_wo_bn[:-1], 'weight_decay': 4e-5}, {'params': [paras_wo_bn[-1]] + [self.head.kernel], 'weight_decay': 4e-4}, {'params': paras_only_bn} ], lr = conf.lr, momentum = conf.momentum) else: self.optimizer = optim.SGD([ {'params': paras_wo_bn + [self.head.kernel], 'weight_decay': 5e-4}, {'params': paras_only_bn} ], lr = conf.lr, momentum = conf.momentum) print(self.optimizer) # self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(self.optimizer, patience=40, verbose=True) print('optimizers generated') self.board_loss_every = len(self.loader)//100 self.evaluate_every = len(self.loader)//10 self.save_every = len(self.loader)//5 self.agedb_30, self.cfp_fp, self.lfw, self.agedb_30_issame, self.cfp_fp_issame, self.lfw_issame = get_val_data(self.loader.dataset.root.parent) else: self.threshold = conf.threshold def save_state(self, conf, accuracy, to_save_folder=False, extra=None, model_only=False): if to_save_folder: save_path = conf.save_path else: save_path = conf.model_path torch.save( self.model.state_dict(), save_path / ('model_{}_accuracy:{}_step:{}_{}.pth'.format(get_time(), accuracy, self.step, extra))) if not model_only: torch.save( self.head.state_dict(), save_path / ('head_{}_accuracy:{}_step:{}_{}.pth'.format(get_time(), accuracy, self.step, extra))) torch.save( self.optimizer.state_dict(), save_path / ('optimizer_{}_accuracy:{}_step:{}_{}.pth'.format(get_time(), accuracy, self.step, extra))) def load_state(self, conf, fixed_str, from_save_folder=False, model_only=False): if from_save_folder: save_path = conf.save_path else: save_path = conf.model_path self.model.load_state_dict(torch.load(save_path/'model_{}'.format(fixed_str), map_location='cpu')) if not model_only: self.head.load_state_dict(torch.load(save_path/'head_{}'.format(fixed_str))) self.optimizer.load_state_dict(torch.load(save_path/'optimizer_{}'.format(fixed_str))) def board_val(self, db_name, accuracy, best_threshold, roc_curve_tensor): self.writer.add_scalar('{}_accuracy'.format(db_name), accuracy, self.step) self.writer.add_scalar('{}_best_threshold'.format(db_name), best_threshold, self.step) self.writer.add_image('{}_roc_curve'.format(db_name), roc_curve_tensor, self.step) # self.writer.add_scalar('{}_val:true accept ratio'.format(db_name), val, self.step) # self.writer.add_scalar('{}_val_std'.format(db_name), val_std, self.step) # self.writer.add_scalar('{}_far:False Acceptance Ratio'.format(db_name), far, self.step) def evaluate(self, conf, carray, issame, nrof_folds = 5, tta = False): self.model.eval() idx = 0 embeddings = np.zeros([len(carray), conf.embedding_size]) with torch.no_grad(): while idx + conf.batch_size <= len(carray): batch = torch.tensor(carray[idx:idx + conf.batch_size]) if tta: fliped = hflip_batch(batch) emb_batch = self.model(batch.to(conf.device)) + self.model(fliped.to(conf.device)) embeddings[idx:idx + conf.batch_size] = l2_norm(emb_batch) else: embeddings[idx:idx + conf.batch_size] = self.model(batch.to(conf.device)).cpu() idx += conf.batch_size if idx < len(carray): batch = torch.tensor(carray[idx:]) if tta: fliped = hflip_batch(batch) emb_batch = self.model(batch.to(conf.device)) + self.model(fliped.to(conf.device)) embeddings[idx:] = l2_norm(emb_batch) else: embeddings[idx:] = self.model(batch.to(conf.device)).cpu() tpr, fpr, accuracy, best_thresholds = evaluate(embeddings, issame, nrof_folds) buf = gen_plot(fpr, tpr) roc_curve = Image.open(buf) roc_curve_tensor = trans.ToTensor()(roc_curve) return accuracy.mean(), best_thresholds.mean(), roc_curve_tensor def find_lr(self, conf, init_value=1e-8, final_value=10., beta=0.98, bloding_scale=3., num=None): if not num: num = len(self.loader) mult = (final_value / init_value)**(1 / num) lr = init_value for params in self.optimizer.param_groups: params['lr'] = lr self.model.train() avg_loss = 0. best_loss = 0. batch_num = 0 losses = [] log_lrs = [] for i, (imgs, labels) in tqdm(enumerate(self.loader), total=num): imgs = imgs.to(conf.device) labels = labels.to(conf.device) batch_num += 1 self.optimizer.zero_grad() embeddings = self.model(imgs) thetas = self.head(embeddings, labels) loss = conf.ce_loss(thetas, labels) #Compute the smoothed loss avg_loss = beta * avg_loss + (1 - beta) * loss.item() self.writer.add_scalar('avg_loss', avg_loss, batch_num) smoothed_loss = avg_loss / (1 - beta**batch_num) self.writer.add_scalar('smoothed_loss', smoothed_loss,batch_num) #Stop if the loss is exploding if batch_num > 1 and smoothed_loss > bloding_scale * best_loss: print('exited with best_loss at {}'.format(best_loss)) plt.plot(log_lrs[10:-5], losses[10:-5]) return log_lrs, losses #Record the best loss if smoothed_loss < best_loss or batch_num == 1: best_loss = smoothed_loss #Store the values losses.append(smoothed_loss) log_lrs.append(math.log10(lr)) self.writer.add_scalar('log_lr', math.log10(lr), batch_num) #Do the SGD step #Update the lr for the next step loss.backward() self.optimizer.step() lr *= mult for params in self.optimizer.param_groups: params['lr'] = lr if batch_num > num: plt.plot(log_lrs[10:-5], losses[10:-5]) return log_lrs, losses def train(self, conf, epochs): self.model.train() running_loss = 0. for e in range(epochs): print('epoch {} started'.format(e)) if e == self.milestones[0]: self.schedule_lr() if e == self.milestones[1]: self.schedule_lr() if e == self.milestones[2]: self.schedule_lr() for imgs, labels in tqdm(iter(self.loader)): imgs = imgs.to(conf.device) labels = labels.to(conf.device) self.optimizer.zero_grad() embeddings = self.model(imgs) thetas = self.head(embeddings, labels) loss = conf.ce_loss(thetas, labels) loss.backward() running_loss += loss.item() self.optimizer.step() if self.step % self.board_loss_every == 0 and self.step != 0: loss_board = running_loss / self.board_loss_every self.writer.add_scalar('train_loss', loss_board, self.step) running_loss = 0. if self.step % self.evaluate_every == 0 and self.step != 0: accuracy, best_threshold, roc_curve_tensor = self.evaluate(conf, self.agedb_30, self.agedb_30_issame) self.board_val('agedb_30', accuracy, best_threshold, roc_curve_tensor) accuracy, best_threshold, roc_curve_tensor = self.evaluate(conf, self.lfw, self.lfw_issame) self.board_val('lfw', accuracy, best_threshold, roc_curve_tensor) accuracy, best_threshold, roc_curve_tensor = self.evaluate(conf, self.cfp_fp, self.cfp_fp_issame) self.board_val('cfp_fp', accuracy, best_threshold, roc_curve_tensor) self.model.train() if self.step % self.save_every == 0 and self.step != 0: self.save_state(conf, accuracy) self.step += 1 self.save_state(conf, accuracy, to_save_folder=True, extra='final') def schedule_lr(self): for params in self.optimizer.param_groups: params['lr'] /= 10 print(self.optimizer) def infer(self, conf, faces, target_embs, tta=False): ''' faces : list of PIL Image target_embs : [n, 512] computed embeddings of faces in facebank names : recorded names of faces in facebank tta : test time augmentation (hfilp, that's all) ''' embs = [] for img in faces: if tta: mirror = trans.functional.hflip(img) emb = self.model(conf.test_transform(img).to(conf.device).unsqueeze(0)) emb_mirror = self.model(conf.test_transform(mirror).to(conf.device).unsqueeze(0)) embs.append(l2_norm(emb + emb_mirror)) else: embs.append(self.model(conf.test_transform(img).to(conf.device).unsqueeze(0))) source_embs = torch.cat(embs) diff = source_embs.unsqueeze(-1) - target_embs.transpose(1,0).unsqueeze(0) dist = torch.sum(torch.pow(diff, 2), dim=1) minimum, min_idx = torch.min(dist, dim=1) min_idx[minimum > self.threshold] = -1 # if no match, set idx to -1 return min_idx, minimum
StarcoderdataPython
6498522
<reponame>laundmo/lona-bootstrap-5 from lona_bootstrap_5 import ( ColMd6, Col, Row, TextInput, TextArea, PrimaryButton, SecondaryButton, SuccessButton, WarningButton, DangerButton, InfoButton, LightButton, DarkButton, LinkButton, Progress, Modal, PrimaryAlert, DarkAlert, DarkBadge, GrowPrimarySpinner, GrowDangerSpinner, BorderPrimarySpinner, BorderSuccessSpinner, ) from lona import LonaApp, LonaView from lona.html import H1, H2, HTML from lona_bootstrap_5.nodes import BorderInfoSpinner, PrimaryBadge app = LonaApp(__file__) app.add_static_file('lona/style.css', """ #lona { max-width: 60em; margin: 0 auto; } """) @app.route('/') class MyView(LonaView): def handle_request(self, request): # modal self.modal_trigger = PrimaryButton('Show Modal', _id='show-modal') self.modal = Modal() html = HTML( H1('Bootstrap 5'), # grid system H2('Grid System'), Row( ColMd6('foo'), ColMd6('bar'), ), Row( Col('foo'), Col('bar'), Col('baz'), ), # inputs H2('Inputs'), TextInput(), TextArea(), # Buttons H2('Buttons'), PrimaryButton('PrimaryButton'), SecondaryButton('SecondaryButton'), SuccessButton('SuccessButton'), WarningButton('WarningButton'), DangerButton('DangerButton'), InfoButton('InfoButton'), LightButton('LightButton'), DarkButton('DarkButton'), LinkButton('LinkButton'), # alerts PrimaryAlert('PrimaryAlert'), DarkAlert('DarkAlert'), # badges PrimaryBadge('PrimaryBadge'), DarkBadge('DarkBadge'), GrowPrimarySpinner('Loading...'), GrowDangerSpinner('Warning!'), BorderPrimarySpinner('Test'), BorderSuccessSpinner('Test2'), BorderInfoSpinner(), # Modal H2('Modal'), self.modal_trigger, self.modal, # Progress H2('Progress'), Progress(percentage=35, background='success'), ) while True: self.show(html) input_event = self.await_input_event() # modal if input_event.node is self.modal_trigger: with html.lock: self.modal.set_title('Test Title') self.modal.set_body('Test Body') self.modal.set_buttons( PrimaryButton('PrimaryButton', _id='primary'), SecondaryButton('SecondaryButton', _id='secondary'), ) self.modal.show() elif input_event.node is self.modal.close_button: print('modal close button clicked') self.modal.hide() elif input_event.node in self.modal.buttons: print(input_event.node, 'was clicked') self.modal.hide() app.run(port=8080)
StarcoderdataPython
3371176
""" File name: main.py Author: <NAME>, <NAME> Date last modified: 21 March, 2021 Python Version: 3.8 This script contains the main function that calls Inference.py to solve and show solutions a specific inference query. It parses command line arguments that specify which query to do. """ import sys from Factor import Factor, Sign from Inference import inference def main() -> None: if len(sys.argv) <= 1: print('Usage: python main.py [1 or 2 for 2b part 1 and 2 respectively]') exit(-1) sim_to_run = sys.argv[1] factors = [Factor(['Trav'], [], [0.05, 0.95]), Factor(['Fraud'], ['Trav'], [0.01, 0.99, 0.004, 0.996]), Factor(['OC'], [], [0.7, 0.3]), Factor(['CRP'], ['OC'], [0.1, 0.9, 0.001, 0.999]), Factor(['FP'], ['Trav', 'Fraud'], [0.9, 0.1, 0.9, 0.1, 0.1, 0.9, 0.01, 0.99]), Factor(['IP'], ['OC', 'Fraud'], [0.02, 0.98, 0.01, 0.99, 0.011, 0.989, 0.001, 0.999])] if sim_to_run == '1': inference(factors, ['Fraud'], ['Trav', 'FP', 'IP', 'OC', 'CRP'], []) else: inference(factors, ['Fraud'], ['Trav', 'OC'], [('FP', Sign.POSITIVE), ('IP', Sign.NEGATIVE), ('CRP', Sign.POSITIVE)]) if __name__ == '__main__': main()
StarcoderdataPython
6424404
<reponame>crowdbotics-apps/ideapros-llc-viaggi-32125<gh_stars>0 from django.core.mail import EmailMessage from rest_framework.authtoken.models import Token from ideapros_llc_viaggi_32125.settings import FCM_SERVER_KEY, PLACES_API_KEY from notifications.models import Notification import pyotp import requests from requests.structures import CaseInsensitiveDict url = "https://fcm.googleapis.com/fcm/send" headers = CaseInsensitiveDict() headers["Accept"] = "application/json" headers["Authorization"] = "key={}".format(FCM_SERVER_KEY) headers["Content-Type"] = "application/json" def send_notification(user, title, content, data=None, data_type=None): notif = Notification.objects.create( user=user, title=title, content=content, data=data, data_type=data_type ) notif_id = str(notif) if user.registration_id: if data is None: payload = { 'to': user.registration_id, 'notification': { "title": title, "text": content }, 'data': { "notif_id": notif_id, } } elif data and data_type: data = str(data) data_type = str(data_type) payload = { 'to': user.registration_id, 'notification': { "title": title, "text": content }, 'data': { "type": data_type, "redirect_user_id": data, "notif_id": notif_id, } } resp = requests.post(url, headers=headers, json=payload) def generateOTP(email=None, user=None): if email and user: secret = pyotp.random_base32() totp = pyotp.TOTP(secret) otp = totp.now() user.activation_key = secret user.otp = otp user.save() sliced_otp = str(otp)[:4] email = EmailMessage('OTP Verification', 'Your OTP is {}'.format(sliced_otp), from_email='<EMAIL>', to=[email]) email.send() return user def verifyOTP(otp=None, activation_key=None, user=None): if otp and activation_key and user: totp = pyotp.TOTP(activation_key) sliced_otp = user.otp[:4] if otp == sliced_otp: return totp.verify(user.otp, valid_window=6) return False else: return False def send_otp(user): email = user.email secret = pyotp.random_base32() totp = pyotp.TOTP(secret) otp = totp.now() user.activation_key = secret user.otp = otp user.save() sliced_otp = str(otp)[:4] email_body = """\ <html> <head></head> <body> <p> Hi,<br> Your OTP is %s<br> Regards,<br> <NAME> </p> </body> </html> """ % (sliced_otp) email_msg = EmailMessage("Password Reset - Viaggio", email_body, from_email='<EMAIL>', to=[email]) email_msg.content_subtype = "html" email_msg.send() def auth_token(user): token, created = Token.objects.get_or_create(user=user) return token def get_photo(result): try: reference = result["photos"][0]["photo_reference"] width = result["photos"][0]["width"] except KeyError: photo_response=None else: url = "https://maps.googleapis.com/maps/api/place/photo?maxwidth={}&photo_reference={}&key={}" \ .format(width, reference, PLACES_API_KEY) retrieved_image_header = requests.head(url) try: photo_response = retrieved_image_header.headers['location'] except Exception as e: photo_response = None return photo_response def get_photos(result): photos = result["photos"] photo_response = [] for photo in photos: try: reference = photo["photo_reference"] width = photo["width"] except KeyError: pass else: url = "https://maps.googleapis.com/maps/api/place/photo?maxwidth={}&photo_reference={}&key={}" \ .format(width, reference, PLACES_API_KEY) retrieved_image_header = requests.head(url) try: photo_response.append(retrieved_image_header.headers['location']) except Exception as e: pass return photo_response
StarcoderdataPython
1770364
from scipy import signal from PIL import Image import cv2 import numpy import math import imageio # Locating the image. If the image is not same then change to relative address. usedImage = '../../Images/test.jpg' # Opening the image into an array img = numpy.array(Image.open(usedImage).convert("L")) imageio.imwrite('./Outputs/img.jpeg', img) # Kernel to perform gaussian blur kernel = [[1, 1, 1], [1, 1, 1], [1, 1, 1]] # CONVOLUTION 1 # Performing gaussain blur by performing convolution with gaussian kernel. # I could not code the convolution so I got irritated and used a function for # convolution instead. gaussian = signal.convolve(img, kernel, mode='same') # Print array just to check the output. Can uncomment if you want. # print ('Im: Convolution 1') # print (gaussian) # Saving the array with the blurred image as a JPG image imageio.imwrite('./Outputs/smooth.jpeg', gaussian) # cv2.imshow('smooth.jpeg', gaussian) # This statement does not work btw # Kernel for Sobel X (using horizontal transformation) kernelX = [[-1, 0, 1], [-2, 0, 2], [-1, 0, 1]] # Kernel for Sobel Y (using vertical transformation) kernelY = [[-1, -2, -1], [0, 0, 0], [1, 2, 1]] # Kernel for diagonal Kirsch transformation 1 kernelXY = [[0,1,2], [-1,0,1], [-2,-1,0]] # Kernel for diagonal Kirsch transformation 2 kernelYX = [[-2,-1,0], [-1,0,1], [0,1,2]] # CONVOLUTION 2 # Performing convolution over the smoothed image with all the generated kernels. # Generate output array imX of horizontal convolution imX = signal.convolve(gaussian, kernelX, mode='same') # Generate output array imY of vertical convolution imY = signal.convolve(gaussian, kernelY, mode='same') # Generate output array imX of horizontal convolution imXY = signal.convolve(gaussian, kernelXY, mode='same') # Generate output array imY of vertical convolution imYX = signal.convolve(gaussian, kernelYX, mode='same') # Printing arrays to console just to check # print ('Im X: Convolution 2') # print (imX) # print ('Im Y: Convolution 2') # print (imY) # print ('Im XY: Convolution 2') # print (imXY) # print ('Im YX: Convolution 2') # print (imYX) # Saving the arrays created as JPG images imageio.imwrite('./Outputs/imX.jpeg', imX) imageio.imwrite('./Outputs/imY.jpeg', imY) imageio.imwrite('./Outputs/imXY.jpeg', imXY) imageio.imwrite('./Outputs/imYX.jpeg', imYX) '''cv2.imshow('imX.jpeg', imX) cv2.imshow('imY.jpeg', imY) cv2.imshow('imXY.jpeg', imXY) cv2.imshow('imYX.jpeg', imYX)''' # Combining all the horizontal and vertical gradient approximations # to create the final canny edge detected image imFinal = numpy.sqrt(imX*imX + imY*imY + imXY*imXY + imYX*imYX) # Printing the canny edge detected image array just to check # print ('Im Final: Combining Gradient Approximations') # print (imFinal) # Saving the final canny edge detection image as a JPG image imageio.imwrite('./Outputs/canny.jpeg', imFinal) # cv2.imshow('canny.jpeg', imFinal) print ('Finished Canny edge detection')
StarcoderdataPython
5002024
import sys while sys.stdin.readline() != '': print sys.stdin.readline()
StarcoderdataPython
9706605
<reponame>shoriwe-upb/blackjack<filename>dependencies/game.py from .player import Player from .deck import Deck from .dealerai import DealerAI class Game(object): def __init__(self, number_of_players): self.__number_of_players = number_of_players self.__players = self.__create_players(number_of_players) self.__deck = Deck() @classmethod def check_splitable_hand(cls, hand): return hand[0].raw_value == hand[1].raw_value @classmethod def __create_players(cls, number_of_players): buffer = [] for n in range(number_of_players + 1): buffer.append(Player(n)) return buffer def divide_start_cards(self): self.__deck.shuffle() for n in range(2): for player in self.__players: player[0].add_card(self.__deck.pop()) # Only do this if the user receive his last start card if n: print(player) if self.check_splitable_hand(player[0]) and player.player_id: if player.ask_split_hand(): player.split_hand() for hand in player: card = self.__deck.pop() hand.add_card(card) print(player) elif player.player_id == 0 and player[0].check_blackjack(): return False return True def divide_rest_of_game(self): for player in self.__players[1:]: print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") print("\033[1;34m", player, "\033[0;0m") print("$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$") for hand in player: if hand: print("\033[0;32m", "Your Hand:", hand, "\033[0;0m") print("\033[1;31m", "Dealer Hand:", self.__players[0][0], "\033[0;0m") print("\033[0;32m", "Your hand value:", hand.sum_hand_of_cards(), "\033[0;0m") print("\033[1;31m", "Dealer Points:", self.__players[0][0].sum_hand_of_cards(), "\033[0;0m") while hand.sum_hand_of_cards() < 21: if player.ask_for_card(): card = self.__deck.pop() print("\033[0;32m", "You got", card, "\033[0;0m") hand.add_card(card) else: break print("\033[0;32m", "Your hand value now:", hand.sum_hand_of_cards(), "\033[0;0m") print("Your hand now:", hand) print("=======Hand results=========") points = hand.sum_hand_of_cards() if points == 21: print("\033[1;32m", "Nice!", "\033[0;0m") elif points < 21: print("\033[1;32m", "You got", points, "\033[0;0m") else: print("\033[1;31m", "You fly far away my friend; with", points, "\033[0;0m") print("============================") print() print() print("------Dealer thinking------") print("Dealer starts with:", self.__players[0]) dealer = DealerAI(self.__players) while self.__players[0][0].sum_hand_of_cards() < 21: print(self.__players[0]) if dealer.ask_for_card(): card = self.__deck.pop() print("Dealer receive:", card) self.__players[0][0].add_card(card) dealer.update_risk(card) print("\033[1;31m", "Dealer points now:",self.__players[0][0].sum_hand_of_cards(), "\033[0;0m") else: break def show_winners(self): dealer_points = self.__players[0][0].sum_hand_of_cards() for player in self.__players: if player.player_id: print(player) for hand in player: if hand: hand_points = hand.sum_hand_of_cards() if hand_points > 21: win = False else: if hand_points < dealer_points: if dealer_points > 21: win = True else: win = False elif hand_points > dealer_points: win = False else: if hand.check_blackjack() and not self.__players[0][0].check_blackjack(): win = True else: win = False if win: print("\033[0;32m", "You win with:", hand, "\033[0;0m") else: print("\033[1;31m", player, "\033[0;0m") def start(self): self.__deck.merge_cementery() self.__deck.shuffle() for player in self.__players: player.clean_hands() print("------Dividing cards------") if self.divide_start_cards(): print() print("------Now it's your time------") self.divide_rest_of_game() print() print("------Checking winners------") self.show_winners() else: print("\033[1;31m", "Sorry but the dealer won", "\033[0;0m")
StarcoderdataPython
3255838
<reponame>peterkulik/ois_api_client from typing import List from dataclasses import dataclass @dataclass class OrderNumbers: """Order numbers :param order_number: Order number """ order_number: List[str]
StarcoderdataPython
1851713
import fnmatch import os import h5py import numpy as np from basic_utils import profile from depth_utils import colorized_surfnorm @profile def process_depth_save(params): suffix = '*_' + params.data_type + '.png' data_path = os.path.join(params.dataset_path, 'eval-set/') results_dir = params.dataset_path + params.features_root + params.proceed_step + '/' + \ params.net_model + '_results_' + params.data_type if not os.path.exists(results_dir): os.makedirs(results_dir) data_type = 'colorized_depth' for category in sorted(os.listdir(data_path)): category_path = os.path.join(data_path, category) for instance in sorted(os.listdir(category_path)): instance_path = os.path.join(category_path, instance) num_debug = 0 for file in fnmatch.filter(sorted(os.listdir(instance_path)), suffix): path = os.path.join(instance_path, file) result_filename = results_dir + "/" + file + '.hdf5' with h5py.File(result_filename, 'w') as f: f.create_dataset(data_type, data=np.array(colorized_surfnorm(path), dtype=np.float32)) f.close() # get the first #debug_size (default=10) of sorted samples from each instance num_debug += 1 if num_debug == params.debug_size and params.debug_mode: break
StarcoderdataPython
12820057
from django.contrib import admin from .models import Project, Cv, Technique, Info # Register your models here. admin.site.register(Project) admin.site.register(Cv) admin.site.register(Technique) admin.site.register(Info)
StarcoderdataPython
3568453
"""Tests for avro2py/rendering.py""" import io import sys import json from datetime import datetime from decimal import Decimal from pathlib import Path import importlib.util as imp from typing import Optional import avro from hypothesis import strategies as st, given, assume, note, settings, HealthCheck from avro2py.avro_types import parse_into_types from avro2py.codegen import populate_namespaces from avro2py.utils import to_avro_dict, from_avro_dict import avro2py.rendering as rendering TEST_DIR = Path(__file__).parent EXAMPLE_PATH = TEST_DIR / '..' / 'example' EXAMPLE_SCHEMA = EXAMPLE_PATH / 'schema.avsc' EXAMPLE_AVRO_MODEL_SCHEMA, = (x for x in json.load(open(EXAMPLE_SCHEMA)) if x['name'] == 'ExampleAvroModel') @given(st.data()) @settings(suppress_health_check=[HealthCheck.filter_too_much, HealthCheck.too_slow]) # because of exponent check below def test_example_message_round_trippable(data): """Ensure generated classes can be round-tripped into avro and back.""" # setup parsed_schema = parse_into_types(schema=EXAMPLE_AVRO_MODEL_SCHEMA) namespaces = populate_namespaces([parsed_schema]) # the actual intrinsic thing we care to test module_contents, = ( contents for path, contents in rendering.render_modules(namespaces).items() if path.stem != '__init__' ) # write module contents out to file, then, load file and generate an example object tmp_path = Path('/tmp/example.py') with tmp_path.open('w') as f: f.write(module_contents) spec = imp.spec_from_file_location('example', tmp_path) example = imp.module_from_spec(spec) sys.modules['example'] = example spec.loader.exec_module(example) original_example_avro_model = data.draw(st.from_type(example.ExampleAvroModel)) tmp_path.unlink() # clean up PBT-generated example model def check_decimal(d: Optional[Decimal]): if d is None: return assume(d.is_finite()) assume(len(d.as_tuple().digits) < 21) # if there are more digits than precision, round-tripping will truncate assume(d.as_tuple().exponent == -2) # bug in avro python implementation; exponent _must_ match scale check_decimal(original_example_avro_model.decimal) check_decimal(original_example_avro_model.maybeDecimal) assume( original_example_avro_model.maybeInt is None or -2_147_483_648 <= original_example_avro_model.maybeInt <= 2_147_483_647 ) # 32-bit signed range is underspecified by python "int" type (which also supports longs) assume( -9_223_372_036_854_775_808 <= original_example_avro_model.sampleInner.foo <= 9_223_372_036_854_775_808 ) # 64-bit signed range also underspecified if isinstance(original_example_avro_model.sampleUnion, example.ExampleAvroModel.RecordWithInt): assume(-2_147_483_648 <= original_example_avro_model.sampleUnion.value <= 2_147_483_647) original_example_avro_model = original_example_avro_model._replace( timestamp=datetime(2000, 1, 1, 0, 0, 0, 000000, tzinfo=avro.timezones.utc) ) # set this manually, since it's underspecified by the `datetime.datetime` type annotation # round trip through avro ser/deser avro_parsed_schema = avro.schema.parse(json.dumps(EXAMPLE_AVRO_MODEL_SCHEMA)) example_model_dict = to_avro_dict(original_example_avro_model) note(example_model_dict) buffer = io.BytesIO() encoder = avro.io.BinaryEncoder(buffer) datum_writer = avro.io.DatumWriter(avro_parsed_schema) datum_writer.write(example_model_dict, encoder) buffer.seek(0) decoder = avro.io.BinaryDecoder(buffer) datum_reader = avro.io.DatumReader(writers_schema=avro_parsed_schema, readers_schema=avro_parsed_schema) round_tripped_example_avro_model_dict = datum_reader.read(decoder) note(round_tripped_example_avro_model_dict) round_tripped_example_avro_model = from_avro_dict( round_tripped_example_avro_model_dict, record_type=example.ExampleAvroModel ) assert round_tripped_example_avro_model == original_example_avro_model
StarcoderdataPython
6664536
<gh_stars>1-10 input_file = open('input.txt', 'r') input_list = input_file.read().split('\n') def most_common(lst): return str(max(set(lst), key=lst.count)) matrix = [[]for _ in range(12)] for row in input_list: for index, column in enumerate(row): matrix[index].append(int(column)) bit_string = "" bit_string_flipped = "" for column in matrix: bit_string += most_common(column) bit_string_flipped = ''.join('1' if x == '0' else '0' for x in bit_string) gamma_rate = int(bit_string,2) epsilon_rate = int(bit_string_flipped,2) power_comsumption = gamma_rate * epsilon_rate print(f'Power consumption: {power_comsumption}')
StarcoderdataPython
8109402
import node def rec(my_ip): while True: message,address = node.receive(my_ip) print(message) print(address) with open("recent_messages.txt", "a") as file: if " ".join(message) != " " or " ".join(message) != "": file.write("\n" + address[0] + " " + " ".join(message)) if __name__ == "__main__": rec("127.0.0.1")
StarcoderdataPython
6591247
# graph definition from datetime import datetime from hiku.graph import Graph, Root, Field GRAPH = Graph([ Root([ Field('now', None, lambda _: [datetime.now().isoformat()]), ]), ]) # test from hiku.engine import Engine from hiku.result import denormalize from hiku.executors.sync import SyncExecutor from hiku.readers.simple import read hiku_engine = Engine(SyncExecutor()) def execute(graph, query_string): query = read(query_string) result = hiku_engine.execute(graph, query) return denormalize(graph, result) from tests.base import patch, Mock _NOW = datetime(2015, 10, 21, 7, 28) @patch('{}.datetime'.format(__name__)) def test(dt): dt.now = Mock(return_value=_NOW) result = execute(GRAPH, '[:now]') assert result == {'now': '2015-10-21T07:28:00'} # console from hiku.console.ui import ConsoleApplication app = ConsoleApplication(GRAPH, hiku_engine, debug=True) if __name__ == '__main__': from wsgiref.simple_server import make_server http_server = make_server('localhost', 5000, app) http_server.serve_forever()
StarcoderdataPython
9659477
<reponame>cadomani/fprime<filename>Autocoders/Python/src/fprime_ac/utils/ConfigManager.py<gh_stars>0 # # =============================================================================== # NAME: ConfigManager.py # # DESCRIPTION: This is a simple configuration class patterned after the # one in the Keck observation sequencer GUI and the Tahoe # CalVal pipeline. The configuration class has changed since # previous ones. This new one uses the ConfigParser module # included with Python 2.4 to extend configuration out to # reading windows like .ini files. If none exist then this # uses hardwired values set in a dictionary called prop to # default initialization. # # AUTHOR: <NAME> # # EMAIL: <EMAIL> # # DATE CREATED : 30 January 2007 # # Copyright 2007, California Institute of Technology. # ALL RIGHTS RESERVED. U.S. Government Sponsorship acknowledged. # =============================================================================== import configparser import os parent = configparser.ConfigParser class ConfigManager(parent): """ This class provides a single entrypoint for all configurable properties, namely the self.Prop dictionary. """ __instance = None __prop = None def __init__(self): """ Constructor. """ configparser.ConfigParser.__init__(self) self.__prop = dict() self._setProps() # Now look for an ac.ini file within # first the current directory and then # the users $HOME directory. If not found # then the default values from setProps are used. config_file_name = "ac.ini" files = list() # Append other paths to look in here. # Look in next one, the home directory of the user. files.append(os.path.join(os.environ["HOME"], config_file_name)) # Look in last directory first, the current directory files.append(os.path.join(os.path.realpath(os.curdir), config_file_name)) self.read(files) def getInstance(): """ Return instance of singleton. """ if ConfigManager.__instance is None: ConfigManager.__instance = ConfigManager() return ConfigManager.__instance # define static method getInstance = staticmethod(getInstance) def _setProps(self): """ Used only by constructor to set all ConfigParser defaults. Establishes a dictionary of sections and then a dictionary of keyword, value association for each section. @params None """ ################################################################ # General parameters here. This is the DEFAULT section. ################################################################ # self.__prop['DEFAULT'] = dict() # # 'DEFAULT' section is baked in for Python 2.6x # the call below will raise ValueError # # This sets the defaults within a section. # self._setSectionDefaults('DEFAULT') ################################################################ # schema parameters here. ################################################################ # When using these, make sure to either prepend the build root env var or the appropriate amount of "../" self.__prop["schema"] = dict() self.__prop["schema"][ "commands" ] = "/Autocoders/Python/schema/default/command_schema.rng" self.__prop["schema"][ "events" ] = "/Autocoders/Python/schema/default/event_schema.rng" self.__prop["schema"][ "telemetry" ] = "/Autocoders/Python/schema/default/channel_schema.rng" self.__prop["schema"][ "component" ] = "/Autocoders/Python/schema/default/component_schema.rng" self.__prop["schema"][ "assembly" ] = "/Autocoders/Python/schema/default/topology_schema.rng" self.__prop["schema"][ "deployment" ] = "/Autocoders/Python/schema/default/topology_schema.rng" self.__prop["schema"][ "internal_interfaces" ] = "/Autocoders/Python/schema/default/internal_interface_schema.rng" self.__prop["schema"][ "interface" ] = "/Autocoders/Python/schema/default/interface_schema.rng" self.__prop["schema"][ "serializable" ] = "/Autocoders/Python/schema/default/serializable_schema.rng" self.__prop["schema"][ "parameters" ] = "/Autocoders/Python/schema/default/parameters_schema.rng" self.__prop["schema"][ "enum" ] = "/Autocoders/Python/schema/default/enum_schema.rng" self.__prop["schema"][ "array" ] = "/Autocoders/Python/schema/default/array_schema.rng" self._setSectionDefaults("schema") ################################################################ # Schematron parameters here. ################################################################ self.__prop["schematron"] = dict() self.__prop["schematron"][ "chan_id" ] = "/Autocoders/Python/schema/default/channel_id_schematron.rng" self.__prop["schematron"][ "param_id" ] = "/Autocoders/Python/schema/default/parameter_id_schematron.rng" self.__prop["schematron"][ "cmd_op" ] = "/Autocoders/Python/schema/default/command_op_schematron.rng" self.__prop["schematron"][ "evr_id" ] = "/Autocoders/Python/schema/default/event_id_schematron.rng" self.__prop["schematron"][ "comp_unique" ] = "/Autocoders/Python/schema/default/comp_uniqueness_schematron.rng" self.__prop["schematron"][ "top_unique" ] = "/Autocoders/Python/schema/default/top_uniqueness_schematron.rng" self.__prop["schematron"][ "active_comp" ] = "/Autocoders/Python/schema/default/active_comp_schematron.rng" self.__prop["schematron"][ "enum_value" ] = "/Autocoders/Python/schema/default/enum_value_schematron.rng" self.__prop["schematron"][ "array_default" ] = "/Autocoders/Python/schema/default/array_schematron.rng" self._setSectionDefaults("schematron") ################################################################ # component parameters here. ################################################################ self.__prop["component"] = dict() # # Default file naming corresponds to XML name and namespace # attributes if this is "True". Otherwise it corresponds to # the input XML file name prefix if this is "False". # self.__prop["component"]["XMLDefaultFileName"] = "False" # # Define default file suffix here... # self.__prop["component"]["ComponentXML"] = "ComponentAi.xml" self.__prop["component"]["ComponentCpp"] = "ComponentAc.cpp" self.__prop["component"]["ComponentH"] = "ComponentAc.hpp" self.__prop["component"]["ImplCpp"] = "ComponentImpl.cpp-template" self.__prop["component"]["ImplH"] = "ComponentImpl.hpp-template" self.__prop["component"]["ComponentTestCpp"] = "ComponentTestAc.cpp" self.__prop["component"]["ComponentTestH"] = "ComponentTestAc.hpp" self.__prop["component"]["GTestCpp"] = "GTestAc.cpp" self.__prop["component"]["GTestH"] = "GTestAc.hpp" self.__prop["component"]["TestImplCpp"] = "TestImpl.cpp" self.__prop["component"]["TestImplH"] = "TestImpl.hpp" # This sets the defaults within a section. self._setSectionDefaults("component") ################################################################ # port or interface parameters here. ################################################################ self.__prop["port"] = dict() # # Default file naming corresponds to XML name and namespace # attributes if this is "True". Otherwise it corresponds to # the input XML file name prefix if this is "False". # self.__prop["port"]["XMLDefaultFileName"] = "False" # # Define default file suffix here... # self.__prop["port"]["PortXML"] = "PortAi.xml" self.__prop["port"]["PortCpp"] = "PortAc.cpp" self.__prop["port"]["PortH"] = "PortAc.hpp" # # This sets the defaults within a section. self._setSectionDefaults("port") ################################################################ # assembly (topology) parameters here. ################################################################ self.__prop["assembly"] = dict() self.__prop["assembly"]["TopologyXML"] = "AppAi.xml" self.__prop["assembly"]["TopologyCpp"] = "AppAc.cpp" self.__prop["assembly"]["TopologyH"] = "AppAc.hpp" self.__prop["assembly"]["TopologyID"] = "AppID.csv" # defaults for start baseId and window size set here self.__prop["assembly"]["baseID"] = 0 self.__prop["assembly"]["window"] = 20 # self._setSectionDefaults("assembly") ################################################################ # deployment (topology) parameters here. ################################################################ self.__prop["deployment"] = dict() self.__prop["deployment"]["TopologyXML"] = "AppAi.xml" self.__prop["deployment"]["TopologyCpp"] = "AppAc.cpp" self.__prop["deployment"]["TopologyH"] = "AppAc.hpp" # defaults for start baseId and window size set here self.__prop["deployment"]["baseID"] = 0 self.__prop["deployment"]["window"] = 20 # self._setSectionDefaults("deployment") ################################################################ # This sets the defaults for generated include options # The main idea is playing with include header files for testing ################################################################ self.__prop["includes"] = dict() self.__prop["includes"]["comp_include_path"] = None self.__prop["includes"]["port_include_path"] = None self.__prop["includes"]["serial_include_path"] = None # self._setSectionDefaults("includes") ################################################################ # Serializable parameters here. ################################################################ self.__prop["serialize"] = dict() # # Default file naming corresponds to XML name and namespace # attributes if this is "True". Otherwise it corresponds to # the input XML file name prefix if this is "False". # self.__prop["serialize"]["XMLDefaultFileName"] = "False" # # Define default file suffix here... # self.__prop["serialize"]["SerializableXML"] = "SerializableAi.xml" self.__prop["serialize"]["SerializableCpp"] = "SerializableAc.cpp" self.__prop["serialize"]["SerializableH"] = "SerializableAc.hpp" self._setSectionDefaults("serialize") # ############################################################### # Special Ports and their attributes # They name's default to the implicit ports ############################################################### self.__prop["special_ports"] = dict() self.__prop["special_ports"]["Cmd"] = dict() self.__prop["special_ports"]["Cmd"]["role"] = "Cmd" self.__prop["special_ports"]["Cmd"]["name"] = "CmdDisp" self.__prop["special_ports"]["Cmd"]["type"] = "Fw::Cmd" self.__prop["special_ports"]["Cmd"]["direction"] = "Input" self.__prop["special_ports"]["Cmd"]["comment"] = None self.__prop["special_ports"]["Cmd"]["port_file"] = "Fw/Cmd/CmdPortAi.xml" self.__prop["special_ports"]["CmdResponse"] = dict() self.__prop["special_ports"]["CmdResponse"]["name"] = "CmdStatus" self.__prop["special_ports"]["CmdResponse"]["type"] = "Fw::CmdResponse" self.__prop["special_ports"]["CmdResponse"]["direction"] = "Output" self.__prop["special_ports"]["CmdResponse"]["comment"] = None self.__prop["special_ports"]["CmdResponse"][ "port_file" ] = "Fw/Cmd/CmdResponsePortAi.xml" self.__prop["special_ports"]["CmdRegistration"] = dict() self.__prop["special_ports"]["CmdRegistration"]["name"] = "CmdReg" self.__prop["special_ports"]["CmdRegistration"]["type"] = "Fw::CmdReg" self.__prop["special_ports"]["CmdRegistration"]["direction"] = "Output" self.__prop["special_ports"]["CmdRegistration"]["comment"] = None self.__prop["special_ports"]["CmdRegistration"][ "port_file" ] = "Fw/Cmd/CmdRegPortAi.xml" self.__prop["special_ports"]["LogEvent"] = dict() self.__prop["special_ports"]["LogEvent"]["name"] = "Log" self.__prop["special_ports"]["LogEvent"]["type"] = "Fw::Log" self.__prop["special_ports"]["LogEvent"]["direction"] = "Output" self.__prop["special_ports"]["LogEvent"]["comment"] = None self.__prop["special_ports"]["LogEvent"]["port_file"] = "Fw/Log/LogPortAi.xml" self.__prop["special_ports"]["LogTextEvent"] = dict() self.__prop["special_ports"]["LogTextEvent"]["name"] = "LogText" self.__prop["special_ports"]["LogTextEvent"]["type"] = "Fw::LogText" self.__prop["special_ports"]["LogTextEvent"]["direction"] = "Output" self.__prop["special_ports"]["LogTextEvent"]["comment"] = None self.__prop["special_ports"]["LogTextEvent"][ "port_file" ] = "Fw/Log/LogTextPortAi.xml" self.__prop["special_ports"]["TimeGet"] = dict() self.__prop["special_ports"]["TimeGet"]["name"] = "Time" self.__prop["special_ports"]["TimeGet"]["type"] = "Fw::Time" self.__prop["special_ports"]["TimeGet"]["direction"] = "Output" self.__prop["special_ports"]["TimeGet"]["comment"] = None self.__prop["special_ports"]["TimeGet"]["port_file"] = "Fw/Time/TimePortAi.xml" self.__prop["special_ports"]["Telemetry"] = dict() self.__prop["special_ports"]["Telemetry"]["name"] = "Tlm" self.__prop["special_ports"]["Telemetry"]["type"] = "Fw::Tlm" self.__prop["special_ports"]["Telemetry"]["direction"] = "Output" self.__prop["special_ports"]["Telemetry"]["comment"] = None self.__prop["special_ports"]["Telemetry"]["port_file"] = "Fw/Tlm/TlmPortAi.xml" self.__prop["special_ports"]["ParamGet"] = dict() self.__prop["special_ports"]["ParamGet"]["name"] = "ParamGet" self.__prop["special_ports"]["ParamGet"]["type"] = "Fw::PrmGet" self.__prop["special_ports"]["ParamGet"]["direction"] = "Output" self.__prop["special_ports"]["ParamGet"]["comment"] = None self.__prop["special_ports"]["ParamGet"][ "port_file" ] = "Fw/Prm/PrmGetPortAi.xml" self.__prop["special_ports"]["ParamSet"] = dict() self.__prop["special_ports"]["ParamSet"]["name"] = "ParamSet" self.__prop["special_ports"]["ParamSet"]["type"] = "Fw::PrmSet" self.__prop["special_ports"]["ParamSet"]["direction"] = "Output" self.__prop["special_ports"]["ParamSet"]["comment"] = None self.__prop["special_ports"]["ParamSet"][ "port_file" ] = "Fw/Prm/PrmSetPortAi.xml" self._setSectionDefaults("special_ports") # Add constants processing self.__prop["constants"] = dict() # where the constants file is relative to BUILD_ROOT # constants will be in the INI file format supported by the ConfigParser library self.__prop["constants"]["constants_file"] = os.environ.get( "FPRIME_AC_CONSTANTS_FILE", os.path.join("config", "AcConstants.ini") ) self._setSectionDefaults("constants") def _setSectionDefaults(self, section): """ For a section set up the default values. """ self.add_section(section) for (key, value) in list(self.__prop[section].items()): self.set(section, key, "%s" % value) if __name__ == "__main__": # # Quick test of configure defaults. # config = ConfigManager().getInstance() print() print("IPC section defaults:") for (key, value) in config.items("ipc"): print("{} = {}".format(key, value)) print() print("Get some of the ipc values:") print("h_pub_suffix = %s" % config.get("ipc", "h_pub_suffix")) print("h_msg_suffix = %s" % config.get("ipc", "h_msg_suffix")) print("c_int_suffix = %s" % config.get("ipc", "c_int_suffix")) print("c_dispatch_suffix = %s" % config.get("ipc", "c_dispatch_suffix")) print("c_cmd_dispatch_suffix = %s" % config.get("ipc", "c_cmd_dispatch_suffix"))
StarcoderdataPython
6557926
#!/usr/bin/python import os import sys import glob import base64 import subprocess import xmlrpclib import time import getopt def main(argv): iDBUser = '' oDBName = '' BacKDir = '' #init variable date_backup = time.strftime('%Y%m%d_%H%M%S') #Logging command = "#Start:OE-->Backup DB at %s" % (date_backup) print command #Check parameter try: opts, args = getopt.getopt(argv,"hu:d:p:",["uDBUser=","dDBName=","pBacKDir"]) except getopt.GetoptError: print "Invalid command db_backup.sh -u <DBUser> -d <DBName> -p <BacKDir>" #subprocess.call([command], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) sys.exit(2) for opt, arg in opts: if opt == '-h': print 'db_backup.py -u <DBUser> -d <DBName> -p <BacKDir>' sys.exit() elif opt in ("-u", "--iDBUser"): iDBUser = arg elif opt in ("-d", "--oDBName"): oDBName = arg elif opt in ("-p", "--pBacKDir"): BacKDir = arg else: print "Invalid command db_backup.sh -u <DBUser> -d <DBName> -p <BacKDir>" #subprocess.call([command], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) sys.exit(2) #Backup Database command = "pg_dump -U %s -f '%s/%s_dbbackup-%s.dmp' %s" % (iDBUser, BacKDir, oDBName, date_backup ,oDBName) print command subprocess.call([command], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) #Write file name to file for next restore database command = "echo '%s/%s_dbbackup-%s.dmp' > %s/oe_db_last_bkup.txt" % (BacKDir, oDBName, date_backup, BacKDir) print command subprocess.call([command], stdout=subprocess.PIPE, stderr=subprocess.PIPE, shell=True) #Logging command = "#End:OE-->Backup DB at %s" % (date_backup) print command if __name__ == "__main__": main(sys.argv[1:])
StarcoderdataPython
11239794
<gh_stars>0 #-*- coding: utf-8 -*- from .geocodeSlc import geocodeSlc
StarcoderdataPython
4809965
<gh_stars>1-10 from . import utils class Dim(object): """Stores a list of configurations used during the experiment. For example, lets say that we want to compare variants of GP with different probability of mutation and also at the same time with different tournament sizes. The first dimension would be the probability of mutation. We will define this dimension with a list of possible configurations, e.g.: Config('mut0.2', pred_mut02), Config('mut0.5', pred_mut05), ... The other dimension would be a list of tuples describing possible tournament sizes, e.g.: Config('k4', pred_k4), Config('k7', pred_k7), ... Dimensions may be combined with each other to generate concrete "real" configurations of the experiment. This is done by means of a Cartesian product between them. This is realized with * operator, and in this case it would lead to the following configurations of a newly created "aggregate" dimension: Config([('mut0.2', pred_mut02), ('k4', pred_k4)]), ....., Config([('mut0.5', pred_mut05), ('k7', pred_k7)]) A simpler example: dim1 = [A1, A2, A3], dim2 = [B1, B2]. By combining those two dimensions (Dim1 * Dim2) we obtain a single dimension defined as: dim3 = [(A1,B1), (A1,B2), ..., (A3,B1), (A3,B2)]. In such a case experiment logs will be filtered by successive applications of predicates. Operator + may be used to add a configuration to already existing dimension. This may be useful for instance for the control random algorithm, which is a single complete configuration (not dependent on any considered parameters). """ def __init__(self, configs): if isinstance(configs, list): self.configs = [] for c in configs: if isinstance(c, ConfigList): self.configs.append(c) elif isinstance(c, tuple): self.configs.append(Config(c[0], c[1])) elif isinstance(c, str): # creating only labels self.configs.append(Config(c, None)) else: raise Exception("Incorrect arguments passed to Dimension: {0}".format(c)) elif isinstance(configs, ConfigList): self.configs = [configs] else: raise Exception("Incorrect arguments passed to Dimension!") def __len__(self): return len(self.configs) def __iter__(self): for c in self.configs: yield c def __getitem__(self, item): if isinstance(item, tuple) or isinstance(item, list): configs = [] for i in item: configs.append(self.configs[i]) return configs else: return self.configs[item] def __delitem__(self, key): del self.configs[key] def __mul__(self, other): assert isinstance(other, Dim) or isinstance(other, ConfigList), "Dimension may be merged only with other Dimension or ConfigList." if isinstance(other, Dim): if len(other) == 0: return self else: return Dim(generate_configs([self, other])) else: return self * Dim(other) def __add__(self, other): if isinstance(other, ConfigList): configs = self.configs[:] configs.append(other) return Dim(configs) elif isinstance(other, Dim): configs = self.configs[:] configs.extend(other.configs[:]) return Dim(configs) else: raise Exception("To the Dimension may be added only a Config or other Dimension.") __rmul__ = __mul__ def __reversed__(self): return Dim(list(reversed(self.configs))) def __str__(self): return str([c.get_caption() for c in self.configs]) def insert(self, index, config): """Inserts config at the particular position on the list of dimension's configs.""" if isinstance(config, Dim): config = config[0] self.configs.insert(index, config) def get_captions_list(self): """Returns a list of captions of all configs in this dimension.""" return [c.get_captions_list() for c in self.configs] def get_captions(self): """Returns a list of captions of all configs in this dimension.""" return [c.get_caption() for c in self.configs] def get_predicates(self): """Returns a list of predicates of all configs in this dimension.""" all_lam = [] for c in self.configs: lam = lambda p: all([f[1](p) for f in c.filters]) all_lam.append(lam) return all_lam def filter_out_outsiders(self, props): """Returns properties in which contained are only elements belonging to one of the configs in this dimension. Note that dimension values (configs) do not have to cover the whole possible space or to be disjoint. This functions allows to remove unnecessary configs and thus may reduce computation time. """ return [p for p in props if any([c.filter(p) for c in self.configs])] def filter_props(self, props): """Returns all properties files satisfied by at least one config.""" assert isinstance(props, list), "filter_props expects a list of property files" return [p for p in props if self.filter(p)] def filter(self, p): """Returns True, if a given property file is covered by at least one config.""" return any(c.filter(p) for c in self.configs) def sort(self): """Sorts this dimension alphabetically on the names of Configs within it.""" self.configs.sort() return self def copy(self): """Creates a copy of this dimension.""" return Dim(self.configs[:]) def dim_true_within(self, name="ALL"): """Returns a new dimension accepting any configuration accepted by this 'parent' dimension.""" return Dim(ConfigOr(name, self.configs)) @classmethod def dim_true(cls, name="ALL"): """Returns a new dimension accepting all configurations.""" return Dim(Config(name, lambda p: True, method=None)) @classmethod def generic_labels(cls, num, prefix="A"): """Creates a Dim object containing num generic names.""" configs = [prefix + str(x) for x in range(num)] return Dim(configs) @classmethod def from_names(cls, names): """Creates a dummy Dim object with config names but no lambdas.""" configs = [Config(name, None) for name in names] return Dim(configs) @classmethod def from_data(cls, props, extr): """Creates a Dim object by collecting all unique values in the data. Extractor (extr) is a function used to get values.""" s = utils.get_unique_values(props, extr) configs = [Config(el, lambda p, extr=extr, el=el: extr(p) == el) for el in s] return Dim(configs) @classmethod def from_dict(cls, props, key, nameFun=None): """Creates a Dim object by collecting all unique values under the specified key in the dictionaries.""" s = utils.get_unique_values(props, lambda p: p[key]) configs = [] for el in s: kwargs = {key: el} name = el if nameFun is None else nameFun(el) configs.append(Config(name, lambda p, key=key, el=el: p[key] == el, **kwargs)) return Dim(configs) @classmethod def from_dict_postprocess(cls, props, key, fun): """Creates a Dim object by collecting all unique values under the specified key in the dictionaries after the retrieved values are processed in a specified way.""" values = utils.get_unique_values(props, lambda p: p[key]) values = {fun(x) for x in values} configs = [] for v in values: kwargs = {key: v} configs.append(Config(v, lambda p, key=key, v=v, fun=fun: fun(p[key]) == v, **kwargs)) return Dim(configs) @classmethod def from_dict_value_match(cls, key, values): """Creates a dimension based on a check if the dictionary contains a given value under the provided key. Dimension spawns all the provided values. :param key: (str) a key used to obtain an actual value from the dictionary. :param values: (list[any]) values, which will be matched to the value obtained from the dict.""" assert isinstance(key, str) assert isinstance(values, list) and len(values) > 0 configs = [] for v in values: kwargs = {key: v} configs.append(Config(v, lambda p, key=key, v=v: p[key] == v, **kwargs)) return Dim(configs) def generate_configs(dims_list): """Returns a list of configurations for a dimension.""" final_filters = [] final_values = [] _generate_filters_helper(dims_list, [], {}, final_filters, final_values) return [ConfigList(flist, **values) for flist, values in zip(final_filters, final_values)] def _generate_filters_helper(cur_dims, cur_filters, cur_values, final_filters, final_values): assert isinstance(cur_filters, list) assert isinstance(cur_values, dict) if len(cur_dims) == 0: final_filters.append(cur_filters) final_values.append(cur_values) else: for config in cur_dims[0]: new_filters = cur_filters[:] new_filters.extend(config.filters) new_values = cur_values.copy() new_values.update(config.stored_values) _generate_filters_helper(cur_dims[1:], new_filters, new_values, final_filters, final_values) class ConfigList(object): """ConfigList is defined as a list of filters. A 'filter' is a tuple containing a name and a predicate. Names of the filters are used during generation of plots/tables, and predicate is used to leave only properties dicts which were generated in a run matching this configuration. If more than one filter is defined, conjunction of all predicates is considered.""" def __init__(self, *filters, **kwargs): self.stored_values = kwargs if len(filters) == 1: if isinstance(filters[0], list): # filters: [(name, lambda)] self.filters = filters[0] else: # filters: (name, lambda) self.filters = [filters[0]] else: # filters: name, lambda self.filters = [tuple(filters)] def __len__(self): return len(self.filters) def __iter__(self): for c in self.filters: yield c def __getitem__(self, item): return self.filters[item] def __delitem__(self, key): del self.filters[key] def __lt__(self, other): n_other = "_".join(x[0] for x in other.filters) n_self = "_".join([x[0] for x in self.filters]) return n_self < n_other def __str__(self): return "ConfigList({0})".format(self.get_caption()) def __call__(self, *args, **kwargs): return self.filter(args[0]) def head(self): """Returns the first filter defined in this config. Convenience function.""" return self.filters[0] def get_caption(self, sep="/"): """Returns a merged name of this Config. This name is generated by merging names of filters which constitute it.""" return sep.join([str(f[0]) for f in self.filters]) def get_captions_list(self): """Returns a list containing names of all filters in this Config.""" return [str(f[0]) for f in self.filters] def contains_filter(self, otherFilt): """Checks, if this Config contains specified filter.""" return any([f == otherFilt for f in self.filters]) def contains_filter_name(self, otherFiltName): """Checks, if this Config contains a filter with the specified name.""" return any([f[0] == otherFiltName for f in self.filters]) def filter_props(self, props): """Returns all properties files satisfied by a conjunction of all filters in this Config.""" assert isinstance(props, list), "filter_props expects a list of property files" return [p for p in props if self.filter(p)] def filter(self, p): """Checks, if properties file p is satisfied by a *conjunction* of all filters in this Config.""" assert isinstance(p, dict), "filter expects property file" for f in self.filters: if not f[1](p): return False return True class Config(ConfigList): """Defines a single configuration of the experiment. Is equivalent to the tuple (name, filter).""" def __init__(self, name, filter, **kwargs): assert not isinstance(filter, list), "Config associates the name and a particular filter. " \ "To use multiple filters, please use ConfigOr or ConfigAnd." assert filter is None or callable(filter), "Filter must be a callable object or None." self.name = name self.filter = filter ConfigList.__init__(self, (name, self), **kwargs) def __getitem__(self, item): return self.name if item == 0 else self def __call__(self, *args, **kwargs): return self.filter(args[0]) def __str__(self): return "Config({0})".format(self.get_caption()) def filter(self, p): return self.filter(p) class ConfigAnd(ConfigList): """A list of configs composed by conjunction. E.g.: accept solutions both with p=1 and p=2 (in this case, impossibility).""" def __init__(self, name, configs, **kwargs): assert isinstance(configs, list), "Configs should be provided as a list." assert len(configs) > 0, "Trying to create ConfigAnd with empty configs list." self.name = name self.configs = configs ConfigList.__init__(self, (name, self), **kwargs) def __call__(self, *args, **kwargs): return self.filter(args[0]) def __str__(self): return "ConfigAnd({0})".format(self.get_caption()) def filter(self, p): """Checks, if properties file p is satisfied by a *disjunction* of all filters in this Config.""" assert isinstance(p, dict), "filter expects property file" for f in self.configs: if not f(p): return False return True class ConfigOr(ConfigList): """A list of configs composed by disjunction. E.g.: accept solutions either with p=1 or p=2.""" def __init__(self, name, configs, **kwargs): assert isinstance(configs, list), "Configs should be provided as a list." assert len(configs) > 0, "Trying to create ConfigOr with empty configs list." self.name = name self.configs = configs ConfigList.__init__(self, (name, self), **kwargs) def __call__(self, *args, **kwargs): return self.filter(args[0]) def __str__(self): return "ConfigOr({0})".format(self.get_caption()) def filter(self, p): """Checks, if properties file p is satisfied by a *disjunction* of all filters in this Config.""" assert isinstance(p, dict), "filter expects property file" for f in self.configs: if f(p): return True return False dim_all = Dim([Config("", lambda p: True)])
StarcoderdataPython
1688637
<gh_stars>0 import sys print('Enter an integer:') num = int(input()) sum = 0 if num < 1: print(0) else : for i in range(1,num+1) : sum = sum + i print(sum) sys.exit()
StarcoderdataPython
3365846
<filename>viscid/plot/vlab.py """Convevience module for making 3d plots with Mayavi Note: You can't set rc parameters for this module! """ from __future__ import print_function, division import os import sys import numpy as np import mayavi from mayavi import mlab from mayavi.modules.axes import Axes from mayavi.sources.builtin_surface import BuiltinSurface from mayavi.sources.vtk_data_source import VTKDataSource from traits.trait_errors import TraitError from tvtk.api import tvtk import viscid from viscid import field def add_source(src, figure=None): """Add a vtk data source to a figure Args: src (VTKDataSource): Description figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` Returns: None """ if not figure: figure = mlab.gcf() if src not in figure.children: engine = figure.parent engine.add_source(src, scene=figure) return src def add_lines(lines, scalars=None, figure=None, name="NoName"): """Add list of lines to a figure Args: lines (list): See :py:func:`lines2source` scalars (ndarray): See :py:func:`lines2source` figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` name (str): name of vtk object Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` """ src = lines2source(lines, scalars=scalars, name=name) add_source(src, figure=figure) return src def add_field(fld, figure=None, center="", name=""): """Add a Viscid Field to a mayavi figure Args: fld (Field): Some Viscid Field figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` center (str): 'cell' or 'node', leave blank to use fld.center name (str): name of vtk object, leave black for fld.name Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` """ src = field2source(fld, center=center, name=name) add_source(src, figure=figure) return src def points2source(vertices, scalars=None, name="NoName"): # if scalars: # scalars = [scalars] verts, scalars, _, other = viscid.vutil.prepare_lines([vertices], scalars) src = mlab.pipeline.scalar_scatter(verts[0], verts[1], verts[2]) if scalars is not None: if scalars.dtype == np.dtype('u1'): sc = tvtk.UnsignedCharArray() sc.from_array(scalars.T) scalars = sc src.mlab_source.dataset.point_data.scalars = scalars src.mlab_source.dataset.modified() src.name = name return src def lines2source(lines, scalars=None, name="NoName"): """Turn a list of lines as ndarrays into vtk data source Args: lines (list): List of 3xN, 4xN, 6xN ndarrays of xyz, xyzs, or xyzrgb data for N points along the line. N need not be the same for all lines. scalars (ndarray, list): Scalars for each point, or each line. See :py:func:`viscid.vutil.prepare_lines` for more details name (str): name of vtk object Returns: :py:class:`mayavi.sources.vtk_data_source.VTKDataSource` See Also: * :py:func:`viscid.vutil.prepare_lines` """ r = viscid.vutil.prepare_lines(lines, scalars, do_connections=True) lines, scalars, connections, other = r src = mlab.pipeline.scalar_scatter(lines[0], lines[1], lines[2]) if scalars is not None: if scalars.dtype == np.dtype('u1'): sc = tvtk.UnsignedCharArray() sc.from_array(scalars.T) scalars = sc src.mlab_source.dataset.point_data.scalars = scalars src.mlab_source.dataset.modified() src.mlab_source.dataset.lines = connections src.name = name return src def field2source(fld, center=None, name=None): """Convert a field to a vtk data source This dispatches to either :meth:`field_to_point_source` or :meth:`field_to_cell_source` depending on the centering of `fld`. Parameters: fld: field to convert center (str): Either "cell", "node", or "" to use the same centering as fld name (str): Add specific name. Leave as "" to use fld.name Returns: mayavi source Raises: NotImplementedError: If center (or fld.center) is not recognized """ if not center: center = fld.center center = center.lower() if center == "node": src = field2point_source(fld, name=name) elif center == "cell": src = field2cell_source(fld, name=name) else: raise NotImplementedError("cell / node only for now") return src def field2point_source(fld, name=None): """Convert a field to a vtk point data source""" grid, arr = _prep_field(fld) dat_target = grid.point_data if fld.iscentered("Cell"): grid.dimensions = tuple(fld.crds.shape_cc) grid.x_coordinates = fld.get_crd_cc(0) # ('x') grid.y_coordinates = fld.get_crd_cc(1) # ('y') grid.z_coordinates = fld.get_crd_cc(2) # ('z') elif fld.iscentered("Node"): grid.dimensions = tuple(fld.crds.shape_nc) grid.x_coordinates = fld.get_crd_nc(0) # ('x') grid.y_coordinates = fld.get_crd_nc(1) # ('y') grid.z_coordinates = fld.get_crd_nc(2) # ('z') else: raise ValueError("cell or node only please") src = _finalize_source(fld, arr, grid, dat_target) if name: src.name = name return src def field2cell_source(fld, name=None): """Convert a field to a vtk cell data source""" grid, arr = _prep_field(fld) dat_target = grid.cell_data if fld.iscentered("Cell"): grid.dimensions = tuple(fld.crds.shape_nc) grid.x_coordinates = fld.get_crd_nc(0) # ('x') grid.y_coordinates = fld.get_crd_nc(1) # ('y') grid.z_coordinates = fld.get_crd_nc(2) # ('z') elif fld.iscentered("Node"): raise NotImplementedError("can't do lossless cell data from nodes yet") else: raise ValueError("cell or node only please") src = _finalize_source(fld, arr, grid, dat_target) if name: src.name = name return src def _prep_field(fld): grid = tvtk.RectilinearGrid() # note, the transpose operations are b/c fld.data is now xyz ordered, # but vtk expects zyx data if isinstance(fld, field.ScalarField): zyx_dat = fld.data.T arr = np.reshape(zyx_dat, (-1,)) # vtk expects zyx data, but fld.data is now xyz elif isinstance(fld, field.VectorField): if fld.layout == field.LAYOUT_INTERLACED: zyx_dat = np.transpose(fld.data, (2, 1, 0, 3)) arr = np.reshape(zyx_dat, (-1, 3)) elif fld.layout == field.LAYOUT_FLAT: zyx_dat = np.transpose(fld.data, (0, 3, 2, 1)) arr = np.reshape(np.rollaxis(zyx_dat, 0, len(fld.shape)), (-1, 3)) else: raise ValueError() else: raise ValueError("Unexpected fld type: {0}".format(type(fld))) # swap endian if needed if str(arr.dtype).startswith(">"): arr = arr.byteswap().newbyteorder() return grid, arr def _finalize_source(fld, arr, grid, dat_target): if isinstance(fld, field.ScalarField): dat_target.scalars = arr dat_target.scalars.name = fld.name elif isinstance(fld, field.VectorField): dat_target.vectors = arr dat_target.vectors.name = fld.name src = VTKDataSource(data=grid) src.name = fld.name return src def _prep_vector_source(v_src, scalars): """Side-effect: v_src will be modified if scalars are given""" if isinstance(v_src, viscid.field.Field): v_src = field2source(v_src, center='node') if scalars is not None: if isinstance(scalars, viscid.field.Field): scalars = field2source(scalars, center='node') v_src._point_scalars_list.append(scalars.name) # pylint: disable=protected-access v_src.data.point_data.scalars = scalars.data.point_data.scalars v_src.point_scalars_name = scalars.name return v_src, scalars def scalar_cut_plane(src, center=None, **kwargs): """Wraps `mayavi.mlab.pipeline.scalar_cut_plane` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: src (Mayavi Source or ScalarField): If src is a ScalarField, then the field is wrapped into a Mayavi Source and added to the figure center (str): centering for the Mayavi source, 'cell' will make the grid visible, while 'node' will interpolate between points **kwargs: Passed to `mayavi.mlab.pipeline.scalar_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.scalar_cut_plane.ScalarCutPlane` """ if isinstance(src, viscid.field.Field): src = field2source(src, center=center) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) scp = mlab.pipeline.scalar_cut_plane(src, **kwargs) apply_cmap(scp, **cmap_kwargs) return scp def vector_cut_plane(v_src, scalars=None, color_mode='vector', **kwargs): """Wraps `mayavi.mlab.pipeline.vector_cut_plane` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: v_src (Mayavi Source, or VectorField): Vector to cut-plane. If a Mayavi Source, then it must be node centered. scalars (Mayavi Source, or ScalarField): Optional scalar data. If a Mayavi Source, then it must be node centered. This will enable scale_mode and color_mode by 'scalar' color_mode (str): Color by 'vector', 'scalar', or 'none' **kwargs: Passed to `mayavi.mlab.pipeline.vector_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.vector_cut_plane.VectorCutPlane` """ v_src, scalars = _prep_vector_source(v_src, scalars) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) vcp = mlab.pipeline.vector_cut_plane(v_src, **kwargs) apply_cmap(vcp, mode='vector', **cmap_kwargs) apply_cmap(vcp, mode='scalar', **cmap_kwargs) vcp.glyph.color_mode = 'color_by_{0}'.format(color_mode.strip().lower()) return vcp def mesh_from_seeds(seeds, scalars=None, **kwargs): """Wraps `mayavi.mlab.mesh` for Viscid seed generators Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Args: seeds (Viscid.SeedGen): Some seed generator with a 2D mesh representation scalars (ndarray, ScalarField): data mapped onto the mesh, i.e., the result of viscid.interp_trilin(seeds, ...) **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.surface.Surface` """ if scalars is not None: vertices, scalars = seeds.wrap_mesh(scalars) else: vertices, = seeds.wrap_mesh() return mesh(vertices[0], vertices[1], vertices[2], scalars=scalars, **kwargs) def mesh(x, y, z, scalars=None, **kwargs): """Wraps `mayavi.mlab.mesh` Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Args: x (TYPE): 2D array of vertices' x-values y (TYPE): 2D array of vertices' y-values z (TYPE): 2D array of vertices' z-values scalars (ndarray, ScalarField): optional scalar data **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.surface.Surface` """ if scalars is not None: if isinstance(scalars, viscid.field.Field): scalars = scalars.data scalars = scalars.reshape(x.shape) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) m = mlab.mesh(x, y, z, scalars=scalars, **kwargs) if scalars is not None: apply_cmap(m, **cmap_kwargs) return m def quiver3d(*args, **kwargs): """Wraps `mayavi.mlab.quiver3d` Args: *args: passed to `mayavi.mlab.quiver3d` **kwargs: Other Arguments are popped, then kwargs is passed to `mayavi.mlab.quiver3d` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: TYPE: Description """ kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) quivers = mlab.quiver3d(*args, **kwargs) apply_cmap(quivers, mode='scalar', **cmap_kwargs) apply_cmap(quivers, mode='vector', **cmap_kwargs) return quivers def points3d(*args, **kwargs): """Wraps `mayavi.mlab.points3d` Args: *args: passed to `mayavi.mlab.points3d` **kwargs: Other Arguments are popped, then kwargs is passed to `mayavi.mlab.points3d` Keyword Arguments: modify_args (bool): if True (default), then check if args is a single 2d sequence of shape 3xN or Nx3. Then split them up appropriately. if False, then args are passed through to mlab.points3d unchanged, nomatter what. cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: TYPE: Description """ modify_args = kwargs.pop('modify_args', True) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) if modify_args and len(args) < 3: a0 = np.asarray(args[0]) if len(a0.shape) > 1 and a0.shape[0] == 3: args = [a0[0, :].reshape(-1), a0[1, :].reshape(-1), a0[2, :].reshape(-1)] + list(args[1:]) elif len(a0.shape) > 1 and a0.shape[1] == 3: args = [a0[:, 0].reshape(-1), a0[:, 1].reshape(-1), a0[:, 2].reshape(-1)] + list(args[1:]) points = mlab.points3d(*args, **kwargs) apply_cmap(points, **cmap_kwargs) return points def streamline(v_src, scalars=None, **kwargs): """Wraps `mayavi.mlab.pipeline.streamline`; mind the caveats Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) Side-effect: If scalars are given, then v_src is modified to point to the scalar data! If v_src and scalars are Mayavi sources, they must be node centered. If you call this multiple times with the same v_src and scalars, you should consider using field2source yourself and passing the Mayavi source objects, unless you're using different scalars with the same vector field, since this function has side-effects on the vector sourc. Args: v_src (Mayavi Source, or VectorField): Vector to streamline. If a Mayavi Source, then it must be node centered. scalars (Mayavi Source, or ScalarField): Optional scalar data. If a Mayavi Source, then it must be node centered. **kwargs: Passed to `mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.streamline.Streamline` """ v_src, scalars = _prep_vector_source(v_src, scalars) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) sl = mlab.pipeline.streamline(v_src, **kwargs) apply_cmap(sl, mode='vector', **cmap_kwargs) apply_cmap(sl, mode='scalar', **cmap_kwargs) return sl def iso_surface(src, backface_culling=True, **kwargs): """Wraps `mayavi.mlab.pipeline.iso_surface`; mind the caveats Note that backfaces are culled by default. Note: This function will automatically switch to the default Matplotlib colormap (or the one from your viscidrc file) If src is a Mayavi source, it must be node centered. If you call this multiple times with the same `viscid.field.Field`, you should consider using field2source yourself and passing the Mayavi source object Args: src (Mayavi Source or ScalarField): If src is a ScalarField, then the field is wrapped into a Mayavi Source and added to the figure. If a Mayavi Source, then it must be node centered. backface_culling (bool): Cull backfaces by default. Useful for translucent surfaces. **kwargs: Passed to `mayavi.mlab.pipeline.scalar_cut_plane` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: `mayavi.modules.iso_surface.IsoSurface` """ if isinstance(src, viscid.field.Field): src = field2source(src, center='node') kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) iso = mlab.pipeline.iso_surface(src, **kwargs) apply_cmap(iso, **cmap_kwargs) iso.actor.property.backface_culling = backface_culling return iso def plot_line(line, scalars=None, **kwargs): """Wrap :py:func:`plot_lines` for a single line""" if scalars is not None: scalars = [scalars] return plot_lines([line], scalars=scalars, **kwargs) def plot_lines(lines, scalars=None, style="tube", figure=None, name="Lines", tube_radius=0.05, tube_sides=6, **kwargs): """Make 3D mayavi plot of lines Scalars can be a bunch of single values, or a bunch of rgb data to set the color of each line / vertex explicitly. This is explained in :py:func:`lines2source`. Example: A common use case of setting the line color from a topology will want to use :py:func:`viscid.topology2color`:: >>> import viscid >>> from viscid.plot import vlab >>> >>> B = viscid.make_dipole() >>> seeds = viscid.Line([-4, 0, 0], [4, 0, 0]) >>> lines, topology = viscid.calc_streamlines(B, seeds, >>> ibound=0.05) >>> scalars = viscid.topology2color(topology) >>> vlab.plot_lines(lines, scalars, tube_radius=0.02) >>> vlab.savefig("dipole.x3d") >>> viscid.meshlab_convert("dipole.x3d", "dae") >>> vlab.show() Parameters: lines (list): See :py:func:`lines2source` scalars (TYPE): See :py:func:`lines2source` style (str): 'tube' or 'none' figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` name (str): Description tube_radius (float): Radius if style == 'tube' tube_sides (int): Angular resolution if style == 'tube' **kwargs: passed to :meth:`mayavi.mlab.pipeline.surface`. This is useful for setting a colormap among other things. Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` Returns: Mayavi surface module Raises: ValueError: if style is neither tube nor strip """ style = style.lower() if not figure: figure = mlab.gcf() src = lines2source(lines, scalars=scalars, name=name) # always use the stripper since actually turns a collection of line # segments into a line... that way capping will cap lines, not line # segments, etc. lines = mlab.pipeline.stripper(src, figure=figure) if style == "tube": lines = mlab.pipeline.tube(lines, figure=figure, tube_radius=tube_radius, tube_sides=tube_sides) elif style == "none" or not style: pass else: raise ValueError("Unknown style for lines: {0}".format(style)) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) surface = mlab.pipeline.surface(lines, **kwargs) apply_cmap(surface, **cmap_kwargs) return surface def plot_ionosphere(fld, radius=1.063, figure=None, bounding_lat=0.0, rotate=None, crd_system="gse", **kwargs): """Plot an ionospheric field Args: fld (Field): Some spherical (phi, theta) / (lot, lat) field radius (float): Defaults to 1Re + 400km == 1.063Re figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` bounding_lat (float): Description rotate (None, sequence, str, datetime64): sequence of length 4 that contains (angle, ux, uy, uz) for the angle and axis of a rotation, or a UT time as string or datetime64 to rotate earth to a specific date/time, or a cotr object in conjunction with crd_system crd_system (str, other): Used if rotate is datetime-like. Can be one of ('gse', 'mhd'), or anything that returns from :py:func:`viscid.as_crd_system`. **kwargs: passed to :py:func:`mayavi.mlab.mesh` Keyword Arguments: cmap (str, None, False): see :py:func:`apply_cmap` alpha (number, sequence): see :py:func:`apply_cmap` clim (sequence): see :py:func:`apply_cmap` symmetric (bool): see :py:func:`apply_cmap` logscale (bool): see :py:func:`apply_cmap` No Longer Raises: ValueError: Description """ if figure is None: figure = mlab.gcf() fld = viscid.as_spherefield(fld, order=('phi', 'theta'), units='deg') phil, thetal = fld.xl phih, thetah = fld.xh nphi, ntheta = fld.shape sphere = viscid.Sphere([0, 0, 0], r=radius, ntheta=ntheta, nphi=nphi, thetalim=(thetal, thetah), philim=(phil, phih), theta_phi=False) verts, arr = sphere.wrap_mesh(fld.data) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) if 'name' not in kwargs: kwargs['name'] = fld.name m = mlab.mesh(verts[0], verts[1], verts[2], scalars=arr, figure=figure, **kwargs) if bounding_lat: rp = 1.5 * radius z = radius * np.cos((np.pi / 180.0) * bounding_lat) clip = mlab.pipeline.data_set_clipper(m.module_manager.parent) clip.widget.widget.place_widget(-rp, rp, -rp, rp, -z, z) clip.update_pipeline() clip.widget.widget.enabled = False insert_filter(clip, m.module_manager) # m.module_manager.parent.parent.filter.auto_orient_normals = True else: pass # m.module_manager.parent.filter.auto_orient_normals = True m.actor.mapper.interpolate_scalars_before_mapping = True apply_cmap(m, **cmap_kwargs) m.actor.actor.rotate_z(180) _apply_rotation(m, 'sm', rotate, crd_system=crd_system) return m def plot_nulls(nulls, Acolor=(0.0, 0.263, 0.345), Bcolor=(0.686, 0.314, 0.0), Ocolor=(0.239, 0.659, 0.557), **kwargs): kwargs.setdefault('scale_mode', 'none') kwargs.setdefault('scale_factor', 0.3) if not isinstance(nulls, dict): empty = np.ones((3, 0)) nulls = dict(O=[empty, nulls], A=[empty, empty], B=[empty, empty]) Opts = nulls['O'][1] if Ocolor is not None and Opts.shape[1]: mlab.points3d(Opts[0], Opts[1], Opts[2], color=Ocolor, name="Onulls", **kwargs) Apts = nulls['A'][1] if Ocolor is not None and Opts.shape[1]: mlab.points3d(Apts[0], Apts[1], Apts[2], color=Acolor, name="Anulls", **kwargs) Bpts = nulls['B'][1] if Bcolor is not None and Bpts.shape[1]: mlab.points3d(Bpts[0], Bpts[1], Bpts[2], color=Bcolor, name="Bnulls", **kwargs) def fancy_axes(figure=None, target=None, nb_labels=5, xl=None, xh=None, tight=False, symmetric=False, padding=0.05, opacity=0.7, face_color=None, line_width=2.0, grid_color=None, labels=True, label_color=None, label_shadow=True, consolidate_labels=True): """Make axes with 3 shaded walls and a grid similar to matplotlib Args: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` target (Mayavi Element): If either xl or xh are not given, then get that limit from a bounding box around `target` nb_labels (int, sequence): number of labels in all, or each (x, y, z) directions xl (float, sequence): lower corner of axes xh (float, sequence): upper corner of axes tight (bool): If False, then let xl and xh expand to make nicer labels. This uses matplotlib to determine new extrema symmetric (bool): If True, then xl + xh = 0 padding (float): add padding as a fraction of the total length opacity (float): opacity of faces face_color (sequence): color (r, g, b) of faces line_width (float): Width of grid lines grid_color (sequence): Color of grid lines labels (bool): Whether or not to put axis labels on label_color (sequence): color of axis labels label_shadow (bool): Add shadows to all labels consolidate_labels (bool): if all nb_labels are the same, then only make one axis for the labels Returns: VTKDataSource: source to which 2 surfaces and 3 axes belong """ if figure is None: figure = mlab.gcf() # setup xl and xh if xl is None or xh is None: _outline = mlab.outline(target, figure=figure) if xl is None: xl = _outline.bounds[0::2] if xh is None: xh = _outline.bounds[1::2] _outline.remove() nb_labels = np.broadcast_to(nb_labels, (3,)) xl = np.array(np.broadcast_to(xl, (3,))) xh = np.array(np.broadcast_to(xh, (3,))) L = xh - xl xl -= padding * L xh += padding * L # now adjust xl and xh to be prettier if symmetric: tight = False if not tight: from matplotlib.ticker import AutoLocator for i in range(len(xl)): # pylint: disable=consider-using-enumerate l = AutoLocator() l.create_dummy_axis() l.set_view_interval(xl[i], xh[i]) locs = l() xl[i] = locs[0] xh[i] = locs[-1] dx = (xh - xl) / (nb_labels - 1) grid = tvtk.ImageData(dimensions=nb_labels, origin=xl, spacing=dx) src = VTKDataSource(data=grid) src.name = "fancy_axes" if face_color is None: face_color = figure.scene.background if grid_color is None: grid_color = figure.scene.foreground if label_color is None: label_color = grid_color face = mlab.pipeline.surface(src, figure=figure, opacity=opacity, color=face_color) face.actor.property.frontface_culling = True if line_width: grid = mlab.pipeline.surface(src, figure=figure, opacity=1.0, color=grid_color, line_width=line_width, representation='wireframe') grid.actor.property.frontface_culling = True if labels: def _make_ax_for_labels(_i, all_axes=False): if all_axes: _ax = Axes(name='axes-labels') else: _ax = Axes(name='{0}-axis-labels'.format('xyz'[_i])) # VTK bug... y_axis and z_axis are flipped... how is VTK still # the de-facto 3d plotting library? if _i == 0: _ax.axes.x_axis_visibility = True _ax.axes.y_axis_visibility = False _ax.axes.z_axis_visibility = False elif _i == 1: _ax.axes.x_axis_visibility = False _ax.axes.y_axis_visibility = False _ax.axes.z_axis_visibility = True # VTK bug elif _i == 2: _ax.axes.x_axis_visibility = False _ax.axes.y_axis_visibility = True # VTK bug _ax.axes.z_axis_visibility = False else: raise ValueError() _ax.property.opacity = 0.0 _ax.axes.number_of_labels = nb_labels[_i] # import IPython; IPython.embed() _ax.title_text_property.color = label_color _ax.title_text_property.shadow = label_shadow _ax.label_text_property.color = label_color _ax.label_text_property.shadow = label_shadow src.add_module(_ax) if consolidate_labels and np.all(nb_labels[:] == nb_labels[0]): _make_ax_for_labels(0, all_axes=True) else: _make_ax_for_labels(0, all_axes=False) _make_ax_for_labels(1, all_axes=False) _make_ax_for_labels(2, all_axes=False) return src axes = mlab.axes xlabel = mlab.xlabel ylabel = mlab.ylabel zlabel = mlab.zlabel title = mlab.title outline = mlab.outline orientation_axes = mlab.orientation_axes view = mlab.view def _extract_cmap_kwargs(kwargs): cmap_kwargs = dict() cmap_kwargs["cmap"] = kwargs.pop("cmap", None) cmap_kwargs["alpha"] = kwargs.pop("alpha", None) cmap_kwargs["clim"] = kwargs.pop("clim", None) cmap_kwargs["symmetric"] = kwargs.pop("symmetric", False) cmap_kwargs["logscale"] = kwargs.pop("logscale", False) return kwargs, cmap_kwargs def colorbar(*args, **kwargs): """Wraps mayavi.mlab.colorbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.colorbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def scalarbar(*args, **kwargs): """Wraps mayavi.mlab.scalarbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.scalarbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def vectorbar(*args, **kwargs): """Wraps mayavi.mlab.vectorbar and adjusts cmap if you so choose""" cmap = kwargs.pop("cmap", False) kwargs, cmap_kwargs = _extract_cmap_kwargs(kwargs) cmap_kwargs.pop("cmap") ret = mlab.vectorbar(*args, **kwargs) apply_cmap(ret, cmap=cmap, **cmap_kwargs) return ret def get_cmap(cmap=None, lut=None, symmetric=False): """Get a Matplotlib colormap as an rgba ndarray Args: cmap (str): name of colormap, or an ndarray of rgb(a) colors lut (int): number of entries desired in the lookup table Returns: ndarray: Nx4 array of N rgba colors """ import matplotlib if symmetric and not cmap: cmap = matplotlib.rcParams.get("viscid.symmetric_cmap", None) try: cm = matplotlib.cm.get_cmap(name=cmap, lut=lut) rgba = (255 * np.asarray(cm(np.linspace(0, 1, cm.N)))).astype('i') except TypeError: rgba = np.asarray(cmap) if np.all(rgba >= 0.0) and np.all(rgba <= 1.0): rgba = (255 * rgba).astype('i') else: rgba = rgba.astype('i') if np.any(rgba < 0) or np.any(rgba > 255): raise ValueError("cmap ndarray must have color values between " "0 and 255 or 0.0 and 1.0") if rgba.shape[1] not in (3, 4) and rgba.shape[0] in (3, 4): rgba = np.array(rgba.T) if rgba.shape[1] == 3: rgba = np.hstack([rgba, 255 * np.ones_like(rgba[:, :1])]) return rgba def apply_cmap(target, cmap=None, lut=None, alpha=None, mode='scalar', clim=None, symmetric=False, logscale=False): """Apply a Matplotlib colormap to a Mayavi object & adjust limits Args: target: Some Mayavi object on mode to apply the colormap cmap (sequence, None, False): name of a Matplotlib colormap, or a sequence of rgb(a) colors, or None to use the default, or False to leave the colormap alone. lut (int): number of entries desired in the lookup table alpha (number, sequence): scalar or array that sets the alpha (opacity) channel in the range [0..255]. This is expanded to both ends of the colormap using linear interpolation, i.e., [0, 255] will be a linear ramp from transparent to opaque over the whole colormap. mode (str): one of 'scalar', 'vector', or 'other' clim (sequence): contains (vmin, vmax) for color scale symmetric (bool): force the limits on the colorbar to be symmetric around 0, and if no `cmap` is given, then also use the default symmetric colormap logscale (bool): Use a logarithmic color scale Raises: AttributeError: Description ValueError: Description """ mode = mode.strip().lower() # get the mayavi lut object try: if mode == "scalar": mvi_lut = target.module_manager.scalar_lut_manager.lut elif mode == "vector": mvi_lut = target.module_manager.vector_lut_manager.lut else: if mode != "other": raise ValueError("mode should be 'scalar', 'vector', or " "'other'; not '{0}'".format(mode)) raise AttributeError() except AttributeError: mvi_lut = target.lut # set the limits on the colorbar if isinstance(clim, (list, tuple)): mvi_lut.range = [clim[0], clim[1]] elif clim == 0: symmetric = True elif clim: symmetric = clim if logscale and symmetric: viscid.logger.warn("logscale and symmetric are mutually exclusive;" "ignoring symmetric.") if logscale: mvi_lut.scale = 'log10' elif symmetric: # float(True) -> 1 val = float(symmetric) * np.max(np.abs(mvi_lut.range)) mvi_lut.range = [-val, val] vmin, vmax = mvi_lut.range is_symmetric = bool(np.isclose(vmax, -1 * vmin, atol=0)) # now set the colormap changed = False if cmap is False: rgba = None if alpha is None else mvi_lut.table.to_array() else: rgba = get_cmap(cmap=cmap, lut=lut, symmetric=is_symmetric) changed = True if alpha is not None: alpha = np.asarray(alpha).reshape(-1) rgba[:, -1] = np.interp(np.linspace(0, 1, len(rgba)), np.linspace(0, 1, len(alpha)), alpha) changed = True if changed: mvi_lut.table = rgba def insert_filter(filtr, module_manager): """Insert a filter above an existing module_manager Args: filter (TYPE): Description module_manager (TYPE): Description """ filtr.parent.children.remove(module_manager) filtr.children.append(module_manager) def _apply_rotation(obj, from_system, rotate=None, crd_system='gse'): if hasattr(rotate, "get_rotation_wxyz"): rotate = rotate.get_rotation_wxyz(from_system, crd_system) else: cotr = viscid.as_cotr(rotate) rotate = cotr.get_rotation_wxyz(from_system, crd_system) if len(rotate) != 4: raise ValueError("Rotate should be [angle, ux, uy, uz], got {0}" "".format(rotate)) obj.actor.actor.rotate_wxyz(*rotate) def plot_blue_marble(r=1.0, figure=None, nphi=128, ntheta=64, map_style=None, lines=False, res=2, rotate=None, crd_system='gse'): """Plot Earth using the Natural Earth dataset maps Args: r (float): radius of earth figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` nphi (int): phi resolution of Earth's mesh ntheta (int): theta resolution of Earth's mesh map_style (str): Nothing for standard map, or 'faded' lines (bool): Whether or not to show equator, tropics, arctic circles, and a couple meridians. res (int): Resolution in thousands of pixels longitude (must be one of 1, 2, 4, 8) rotate (None, sequence, str, datetime64): sequence of length 4 that contains (angle, ux, uy, uz) for the angle and axis of a rotation, or a UT time as string or datetime64 to rotate earth to a specific date/time, or a cotr object in conjunction with crd_system crd_system (str, other): Used if rotate is datetime-like. Can be one of ('gse', 'mhd'), or anything that returns from :py:func:`viscid.as_crd_system`. Returns: (VTKDataSource, mayavi.modules.surface.Surface) """ # make a plane, then deform it into a sphere eps = 1e-4 ps = tvtk.PlaneSource(origin=(r, r * np.pi - eps, r * 0.0), point1=(r, r * np.pi - eps, r * 2 * np.pi), point2=(r, eps, 0.0), x_resolution=nphi, y_resolution=ntheta) ps.update() transform = tvtk.SphericalTransform() tpoly = tvtk.TransformPolyDataFilter(transform=transform, input_connection=ps.output_port) tpoly.update() src = VTKDataSource(data=tpoly.output, name="blue_marble") surf = mlab.pipeline.surface(src) # now load a jpg, and use it to texture the sphere linestr = '_lines' if lines else '' assert map_style in (None, '', 'faded') assert res in (1, 2, 4, 8) map_style = '_{0}'.format(map_style) if map_style else '' img_name = "images/earth{0}{1}_{2}k.jpg".format(map_style, linestr, res) fname = os.path.realpath(os.path.dirname(__file__) + '/' + img_name) img = tvtk.JPEGReader(file_name=fname) texture = tvtk.Texture(input_connection=img.output_port, interpolate=1) surf.actor.enable_texture = True surf.actor.texture = texture surf.actor.property.color = (1.0, 1.0, 1.0) # rotate 180deg b/c i can't rotate the texture to make the prime meridian surf.actor.actor.rotate_z(180) _apply_rotation(surf, 'geo', rotate, crd_system=crd_system) add_source(src, figure=figure) return src, surf plot_natural_earth = plot_blue_marble def plot_earth_3d(figure=None, daycol=(1, 1, 1), nightcol=(0, 0, 0), radius=1.0, res=24, crd_system="gse", night_only=False, **kwargs): """Plot a black and white sphere (Earth) showing sunward direction Parameters: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` daycol (tuple, optional): color of dayside (RGB) nightcol (tuple, optional): color of nightside (RGB) res (optional): rosolution of teh sphere crd_system (str, other): One of ('mhd', 'gse'), or anything that returns from :py:func:`viscid.as_crd_system`. Returns: Tuple (day, night) as vtk sources """ if figure is None: figure = mlab.gcf() crd_system = viscid.as_crd_system(crd_system) if crd_system == "mhd": theta_dusk, theta_dawn = 270, 90 elif crd_system == "gse": theta_dusk, theta_dawn = 90, 270 else: # use GSE convention? theta_dusk, theta_dawn = 90, 270 night = BuiltinSurface(source='sphere', name='night') night.data_source.set(center=(0, 0, 0), radius=radius, start_theta=theta_dusk, end_theta=theta_dawn, theta_resolution=res, phi_resolution=res) mod = mlab.pipeline.surface(night, color=nightcol, figure=figure, **kwargs) mod.actor.property.backface_culling = True if not night_only: day = BuiltinSurface(source='sphere', name='day') day.data_source.set(center=(0, 0, 0), radius=radius, start_theta=theta_dawn, end_theta=theta_dusk, theta_resolution=res, phi_resolution=res) mod = mlab.pipeline.surface(day, color=daycol, figure=figure, **kwargs) mod.actor.property.backface_culling = True else: day = None return day, night def to_mpl(figure=None, ax=None, size=None, antialiased=True, hide=True, fit=None, **kwargs): """Display a mayavi figure inline in an Jupyter Notebook. This function takes a screenshot of a figure and blits it to a matplotlib figure using matplotlib.pyplot.imshow() Args: figure: A mayavi figure, if not specified, uses mlab.gcf() ax: Matplotlib axis of the destination (plt.gca() if None) size (None, tuple): if given, resize the scene in pixels (x, y) antialiased (bool): Antialias mayavi plot hide (bool): if True, try to hide the render window fit (None, bool): Resize mpl window to fit image exactly. If None, then fit if figure does not currently exist. **kwargs: passed to mayavi.mlab.screenshot() """ if figure is None: figure = mlab.gcf() if size is not None: resize(size, figure=figure) pixmap = mlab.screenshot(figure, antialiased=antialiased, **kwargs) # try to hide the window... Qt backend only if hide: hide_window(figure) if ax is None: from matplotlib import pyplot as plt # if there are no figures, and fit is None, then fit if fit is None: fit = not bool(plt.get_fignums) ax = plt.gca() if fit: pltfig = ax.figure dpi = pltfig.get_dpi() pltfig.set_size_inches([s / dpi for s in figure.scene.get_size()], forward=True) pltfig.subplots_adjust(top=1, bottom=0, left=0, right=1, hspace=0, wspace=0) ax.imshow(pixmap) ax.axis('off') def figure(*args, **kwargs): offscreen = kwargs.pop('offscreen', False) hide = kwargs.pop('hide', None) fig = mlab.figure(*args, **kwargs) # if size was set, run resize to account for the height of window # decorations if 'size' in kwargs: resize(kwargs['size'], figure=fig) # hide window by default? if hide or (hide is None and offscreen): hide_window(fig) # send it offscreen? if offscreen: make_fig_offscreen(fig, hide=False) return fig def make_fig_offscreen(figure, hide=True): if hide: hide_window(figure) figure.scene.off_screen_rendering = True return figure def show(stop=False): """Calls :meth:`mayavi.mlab.show(stop=stop)`""" mlab.show(stop=stop) def clf(figure=None): """Clear source data, then clear figure Args: figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` """ if not figure: figure = mlab.gcf() clear_data(figure) mlab.clf(figure) def remove_source(src): """Safely remove a specific vtk source Args: src (vtk_data_source): vtk data source to remove """ src.stop() try: try: src.data.release_data() except TraitError: src.data.release_data_flag = 1 src.cell_scalars_name = '' src.cell_tensors_name = '' src.cell_vectors_name = '' src.point_scalars_name = '' src.point_tensors_name = '' src.point_vectors_name = '' except AttributeError: pass src.start() src.stop() src.remove() def clear_data(figures=None): """Workaround for Mayavi / VTK memory leak This is needed when Mayavi/VTK keeps a reference to source data when you would expect it to be freed like on a call to `mlab.clf()` or when removing sources from the pipeline. Note: This must be called when the pipeline still has the source, so before a call to `mlab.clf()`, etc. 1. Set release_data_flag on all sources' data 2. Remove reference to the data 3. Remove the data source Args: figures (None, mayavi.core.scene.Scene, or 'all'): if None, gets current scene; if Scene object, just that one; if 'all', act on all scenes in the current engine. Can also be a list of Scene objects """ if figures is None: figures = [mlab.gcf()] elif figures == "all": figures = mlab.get_engine().scenes if not isinstance(figures, (list, tuple)): figures = [figures] if all(fig is None for fig in figures): return for fig in figures: # # fig stop / start kills mayavi now, not sure why # fig.stop() for child in list(fig.children): remove_source(child) # fig.start() return def resize(size, figure=None): """Summary Args: size (tuple): width, height in pixels figure (mayavi.core.scene.Scene): specific figure, or None for :py:func:`mayavi.mlab.gcf` Returns: None """ if figure is None: figure = mlab.gcf() try: # scene.set_size doesn't seem to work when rendering on screen, so # go into the backend and do it by hand if mlab.options.offscreen: figure.scene.set_size(size) elif figure.scene.off_screen_rendering: viscid.logger.warn("viscid.plot.vlab.resize doesn't work for " "figures that are off-screened this way. Try " "creating the figure with viscid.plot.vlab." "figure(size=(w, h), offscreen=True)") else: toolkit = mayavi.ETSConfig.toolkit if toolkit == 'qt4': sc = figure.scene window_height = sc.control.parent().size().height() render_height = sc.render_window.size[1] h = window_height - render_height sc.control.parent().resize(size[0], size[1] + h) elif toolkit == 'wx': w, h = size[0], size[1] figure.scene.control.Parent.Parent.SetClientSizeWH(w, h) else: viscid.logger.warn("Unknown mayavi backend {0} (not qt4 or " "wx); not resizing.".format(toolkit)) except Exception as e: # pylint: disable=broad-except viscid.logger.warn("Resize didn't work:: {0}".format(repr(e))) def hide_window(figure, debug=False): """Try to hide the window; only does something on Qt backend""" try: # fig.scene.control.parent().hide() figure.scene.control.parent().showMinimized() except Exception as e: # pylint: disable=broad-except,unused-variable if debug: print("Window hide didn't work::", repr(e)) def savefig(*args, **kwargs): """Wrap mayavi.mlab.savefig with offscreen hack""" fig = mlab.gcf() prev_offscreen_state = fig.scene.off_screen_rendering if sys.platform != "darwin": fig.scene.off_screen_rendering = True mlab.savefig(*args, **kwargs) if fig.scene.off_screen_rendering != prev_offscreen_state: fig.scene.off_screen_rendering = prev_offscreen_state def interact(stack_depth=0, **kwargs): viscid.vutil.interact(stack_depth=stack_depth + 1, mvi_ns=True, **kwargs) plot3d_lines = plot_lines plot_lines3d = plot_lines ## ## EOF ##
StarcoderdataPython
11286640
<reponame>surya501/usdc-system-integration from styx_msgs.msg import TrafficLight import tensorflow as tf import numpy as np import rospy import datetime CONFIDENCE_CUTOFF = 0.5 class TLClassifier(object): def __init__(self, model=None): #TODO load classifier self.GRAPH_FILE = model # load the graph one time self.detection_graph = tf.Graph() with self.detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(self.GRAPH_FILE, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') # `get_tensor_by_name` returns the Tensor with the associated name in the Graph. self.image_tensor = self.detection_graph.get_tensor_by_name('image_tensor:0') # Each box represents a part of the image where a particular object was detected. self.detection_boxes = self.detection_graph.get_tensor_by_name('detection_boxes:0') # Each score represent how level of confidence for each of the objects. # Score is shown on the result image, together with the class label. self.detection_scores = self.detection_graph.get_tensor_by_name('detection_scores:0') # The classification of the object (integer id). self.detection_classes = self.detection_graph.get_tensor_by_name('detection_classes:0') self.sess = tf.Session(graph=self.detection_graph) def filter_boxes(self, min_score, boxes, scores, classes): """Return boxes with a confidence >= `min_score`""" n = len(classes) idxs = [] for i in range(n): if scores[i] >= min_score: idxs.append(i) filtered_boxes = boxes[idxs, ...] filtered_scores = scores[idxs, ...] filtered_classes = classes[idxs, ...] return filtered_boxes, filtered_scores, filtered_classes def get_classification(self, image): """Determines the color of the traffic light in the image Args: image (cv::Mat): image containing the traffic light Returns: int: ID of traffic light color (specified in styx_msgs/TrafficLight) """ #TODO implement light color prediction with self.detection_graph.as_default(): image_np = np.expand_dims(np.asarray(image, dtype=np.uint8), 0) start = datetime.datetime.now() (boxes, scores, classes) = self.sess.run([self.detection_boxes, self.detection_scores, self.detection_classes], feed_dict={self.image_tensor: image_np}) end = datetime.datetime.now() # rospy.logwarn("detection time: {0}".format((end-start).total_seconds())) # Remove unnecessary dimensions boxes = np.squeeze(boxes) scores = np.squeeze(scores) classes = np.squeeze(classes) # Filter boxes with a confidence score less than `confidence_cutoff` boxes, scores, classes = self.filter_boxes(CONFIDENCE_CUTOFF, boxes, scores, classes) if len(classes) > 0: # rospy.logwarn("matches {0} and class: {1}".format(len(classes), classes[0])) if classes[0] == 1: return TrafficLight.GREEN elif classes[0] == 2: return TrafficLight.RED elif classes[0] == 3: return TrafficLight.YELLOW else: return TrafficLight.UNKNOWN else: return TrafficLight.UNKNOWN
StarcoderdataPython
3208471
import geopandas as gpd import oggm from oggm import cfg, tasks from oggm.utils import get_demo_file # Set up the input data for this example cfg.initialize() cfg.PATHS['working_dir'] = oggm.utils.get_temp_dir('oggmcontrib_inv') cfg.PATHS['dem_file'] = get_demo_file('srtm_oetztal.tif') cfg.set_intersects_db(get_demo_file('rgi_intersect_oetztal.shp')) # Glacier directory for Hintereisferner in Austria entity = gpd.read_file(get_demo_file('Hintereisferner_RGI5.shp')).iloc[0] gdir = oggm.GlacierDirectory(entity) # The usual OGGM preprecessing tasks.define_glacier_region(gdir, entity=entity) tasks.glacier_masks(gdir)
StarcoderdataPython
5008213
#!/usr/bin/env python3 from bisect import bisect_left import math class SummaryRanges: def __init__(self): self.I = [[-math.inf, -math.inf], [math.inf, math.inf]] def addNum(self, val): ix = bisect_left(self.I, [val, val]) print(f'val = {val}, ix = {ix}') if self.I[ix-1][1]+1 == val == self.I[ix][0]-1: self.I[ix-1][1] = self.I[ix][1] self.I.pop(ix) elif self.I[ix-1][1]+1 == val: self.I[ix-1][1] = val elif val == self.I[ix][0]-1: self.I[ix][0] = val elif self.I[ix-1][1] < val < self.I[ix][0]: self.I.insert(ix, [val, val]) def getIntervals(self): return self.I[1:-1] l = [1,3,7] l = [1,3,2] l = [1,3,7,5] l = [1,3,7,2,6] l = [6,6,0,4,8,7,6,4,7,5] l = [49,97,53,5,33,65,62,51,100,38,61,45,74,27,64,17,36,17,96,12,79,32,68,90,77,18,39,12,93,9,87,42,60,71,12,45,55,40,78,81,26,70,61] l = [49,97,53,5,33,65,62,51,100,38,61,45,74,27,64,17,36,17,96,12,79,32,68,90,77,18,39,12,93,9,87,42,60,71,12,45,55,40,78,81,26,70,61,56,66,33,7,70,1,11,92,51,90,100,85,80,0,78,63,42,31,93,41,90,8,24,72,28,30,18,69,57,11,10,40,65,62,13,38,70,37,90,15,70,42,69,26,77,70,75,36,56,11,76,49,40,73,30,37,23] sol = SummaryRanges() for i in l: sol.addNum(i) print(sol.getIntervals())
StarcoderdataPython
5013816
import jwt from datetime import datetime, timedelta from hashlib import md5 from flask_login import UserMixin from werkzeug.security import generate_password_hash, check_password_hash from helloworld import app, db from helloworld import login @login.user_loader def load_user(id): return User.query.get(int(id)) subscriptions = db.Table('subscriptions', db.Column('user_id', db.Integer, db.ForeignKey('user.id'), primary_key=True), db.Column('course_id', db.Integer, db.ForeignKey('course.id'), primary_key=True) ) class User(UserMixin, db.Model): id = db.Column(db.Integer, primary_key=True) username = db.Column(db.String(64), index=True, unique=True) email = db.Column(db.String(128), index=True, unique=True) password_hash = db.Column(db.String(128)) last_seen = db.Column(db.DateTime, default=datetime.utcnow()) courses = db.relationship('Course', secondary=subscriptions, backref=db.backref('course_participant', lazy=True), lazy='dynamic') def get_reset_password_token(self, expires_in=600): return jwt.encode( {'reset_password': self.id, 'exp': datetime.now() + timedelta(seconds=expires_in)}, app.config['SECRET_KEY'], algorithm='HS256').decode('utf-8') @staticmethod def verify_reset_password_token(token): try: id = jwt.decode(token, app.config['SECRET_KEY'], algorithms=['HS256'])['reset_password'] except jwt.JWTError as e: app.logger.error('Decoding error: {}'.format(e)) return return User.query.get(id) def avatar(self, size=128): digest = md5(self.email.lower().encode('utf-8')).hexdigest() return 'https://www.gravatar.com/avatar/{}?d=identicon&s={}'.format(digest, size) def set_password(self, password): self.password_hash = generate_password_hash(password) def check_password(self, password): return check_password_hash(self.password_hash, password) def subscribe(self, course): self.courses.append(course) def unsubscribe(self, course): self.courses.remove(course) def __repr__(self): return '<User {}>'.format(self.username) class Course(db.Model): id = db.Column(db.Integer, primary_key=True) title = db.Column(db.String(140)) description = db.Column(db.String(140), index=True) subscribers = db.relationship('User', secondary=subscriptions, backref=db.backref('subscribed_courses', lazy=True), lazy='dynamic') def __repr__(self): return '<Course {}>'.format(self.title)
StarcoderdataPython
251279
<filename>pythonspain/partners/migrations/0007_notice_kind.py # Generated by Django 3.1.7 on 2021-02-28 13:34 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("partners", "0006_auto_20200627_1526"), ] operations = [ migrations.AddField( model_name="notice", name="kind", field=models.CharField( choices=[("late", "Late"), ("annual", "Annual")], default="late", max_length=16, verbose_name="kind", ), ), ]
StarcoderdataPython
3473831
import boto3 client = boto3.client('s3') Buckets = client.list_buckets() for bucket in Buckets: response = client.put_bucket_encryption(Bucket= bucket, ContentMD5='ndah2', ServerSideEncryptionConfiguration={'Rules': [{'ApplyServerSideEncryptionByDefault': {'SSEAlgorithm': 'AES256'}},]})
StarcoderdataPython
3272543
<filename>src/electionguard_cli/e2e/e2e_command.py from io import TextIOWrapper import click from ..cli_steps import ( ElectionBuilderStep, DecryptStep, PrintResultsStep, TallyStep, KeyCeremonyStep, EncryptVotesStep, ) from .e2e_input_retrieval_step import E2eInputRetrievalStep from .submit_votes_step import SubmitVotesStep from .e2e_publish_step import E2ePublishStep @click.command("e2e") @click.option( "--guardian-count", prompt="Number of guardians", help="The number of guardians that will participate in the key ceremony and tally.", type=click.INT, ) @click.option( "--quorum", prompt="Quorum", help="The minimum number of guardians required to show up to the tally.", type=click.INT, ) @click.option( "--manifest", prompt="Manifest file", help="The location of an election manifest.", type=click.File(), ) @click.option( "--ballots", prompt="Ballots file or directory", help="The location of a file or directory that contains plaintext ballots.", type=click.Path(exists=True, dir_okay=True, file_okay=True), ) @click.option( "--spoil-id", prompt="Object-id of ballot to spoil", help="The object-id of a ballot within the ballots file to spoil.", type=click.STRING, default=None, prompt_required=False, ) @click.option( "--output-record", help="A file name for saving an output election record (e.g. './election.zip')." + " If no value provided then an election record will not be generated.", type=click.Path( exists=False, dir_okay=False, file_okay=True, ), default=None, ) @click.option( "--output-keys", help="A directory for saving the private and public guardian keys (e.g. './guardian-keys')." + " If no value provided then no keys will be output.", type=click.Path(exists=False, dir_okay=True, file_okay=False, resolve_path=True), default=None, ) def E2eCommand( guardian_count: int, quorum: int, manifest: TextIOWrapper, ballots: str, spoil_id: str, output_record: str, output_keys: str, ) -> None: """Runs through an end-to-end election.""" # get user inputs election_inputs = E2eInputRetrievalStep().get_inputs( guardian_count, quorum, manifest, ballots, spoil_id, output_record, output_keys ) # perform election joint_key = KeyCeremonyStep().run_key_ceremony(election_inputs.guardians) build_election_results = ElectionBuilderStep().build_election_with_key( election_inputs, joint_key ) encrypt_results = EncryptVotesStep().encrypt( election_inputs.ballots, build_election_results ) data_store = SubmitVotesStep().submit( election_inputs, build_election_results, encrypt_results ) (ciphertext_tally, spoiled_ballots) = TallyStep().get_from_ballot_store( build_election_results, data_store ) decrypt_results = DecryptStep().decrypt( ciphertext_tally, spoiled_ballots, election_inputs.guardians, build_election_results, election_inputs.manifest, ) # print results PrintResultsStep().print_election_results(decrypt_results) # publish election record E2ePublishStep().export( election_inputs, build_election_results, encrypt_results, decrypt_results, data_store, )
StarcoderdataPython
244785
<filename>Terrain.py import pygame.sprite class Terrain(pygame.sprite.Sprite): all = pygame.sprite.Group() def __init__(self, x, y, width, height): super().__init__() self.image = pygame.Surface([width, height]) self.image.fill((0, 0, 0)) self.rect = self.image.get_rect(x=x, y=y) self.all.add(self)
StarcoderdataPython
142804
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Mon Oct 4 17:44:53 2021 @author: mlampert """ import os import copy #FLAP imports and settings import flap import flap_nstx import flap_mdsplus flap_nstx.register('NSTX_GPI') flap_nstx.register('NSTX_THOMSON') flap_mdsplus.register('NSTX_MDSPlus') thisdir = os.path.dirname(os.path.realpath(__file__)) fn = os.path.join(thisdir,"../flap_nstx.cfg") flap.config.read(file_name=fn) #Scientific imports import numpy as np def get_nstx_thomson_gradient(exp_id=None, pressure=False, temperature=False, density=False, r_pos=None, spline_data=False, output_name=None, device_coordinates=True, flux_coordinates=False): #Data is RADIUS x TIME if pressure+density+temperature != 1: raise ValueError('Only one of the inputs should be set (pressure, temperature, density)!') if device_coordinates+flux_coordinates !=1: raise ValueError('Either device_coordinates or flux_coordinates can be set, not both.') # thomson=flap_nstx_thomson_data(exp_id, # pressure=pressure, # temperature=temperature, # density=density, # output_name='THOMSON_FOR_GRADIENT') thomson=flap.get_data('NSTX_THOMSON', exp_id=exp_id, object_name='THOMSON_FOR_GRADIENT', options={'pressure':pressure, 'temperature':temperature, 'density':density, 'force_mdsplus':True}) # thomson_spline=flap_nstx_thomson_data(exp_id, # pressure=pressure, # temperature=temperature, # density=density, # spline_data=True, # output_name=None) thomson_spline=flap.get_data('NSTX_THOMSON', exp_id=exp_id, object_name=None, options={'pressure':pressure, 'temperature':temperature, 'density':density, 'spline_data':True, 'force_mdsplus':True}) if device_coordinates: radial_coordinate=thomson.coordinate('Device R')[0][:,0] spline_radial_coordinate=thomson_spline.coordinate('Device R')[0][:,0] if flux_coordinates: radial_coordinate=thomson.coordinate('Flux r')[0][:,0] spline_radial_coordinate=thomson_spline.coordinate('Flux r')[0][:,0] time_vector=thomson.coordinate('Time')[0][0,:] data=thomson.data error=thomson.error interp_data=thomson_spline.data #Calculation of the numerical gradient and interpolating the values for the given r_pos data_gradient=np.asarray([(data[2:,i]-data[:-2,i])/(2*(radial_coordinate[2:]-radial_coordinate[:-2])) for i in range(len(time_vector))]).T data_gradient_error=np.asarray([(np.abs(error[2:,i])+np.abs(error[:-2,i]))/(2*(radial_coordinate[2:]-radial_coordinate[:-2])) for i in range(len(time_vector))]).T interp_data_gradient=np.asarray([(interp_data[2:,i]-interp_data[:-2,i])/(2*(spline_radial_coordinate[2:]-spline_radial_coordinate[:-2])) for i in range(len(time_vector))]).T #Interpolation for the r_pos if r_pos is not None: r_pos_gradient=np.asarray([np.interp(r_pos, radial_coordinate[1:-1], data_gradient[:,i]) for i in range(len(time_vector))]) r_pos_gradient_spline=np.asarray([np.interp(r_pos, spline_radial_coordinate[1:-1], interp_data_gradient[:,i]) for i in range(len(time_vector))]) ind_r=np.argmin(np.abs(radial_coordinate[1:-1]-r_pos)) if radial_coordinate[ind_r] < r_pos: R1=radial_coordinate[1:-1][ind_r] R2=radial_coordinate[1:-1][ind_r+1] ind_R1=ind_r ind_R2=ind_r+1 else: R1=radial_coordinate[1:-1][ind_r-1] R2=radial_coordinate[1:-1][ind_r] ind_R1=ind_r-1 ind_R2=ind_r #Result of error propagation (basically average biased error between the two neighboring radii) r_pos_gradient_error=np.abs((r_pos-R1)/(R2-R1))*data_gradient_error[ind_R2,:]+\ np.abs((r_pos-R2)/(R2-R1))*data_gradient_error[ind_R1,:] coord = [] coord.append(copy.deepcopy(flap.Coordinate(name='Time', unit='s', mode=flap.CoordinateMode(equidistant=True), start=time_vector[0], step=time_vector[1]-time_vector[0], #shape=time_arr.shape, dimension_list=[0] ))) coord.append(copy.deepcopy(flap.Coordinate(name='Sample', unit='n.a.', mode=flap.CoordinateMode(equidistant=True), start=0, step=1, dimension_list=[0] ))) if device_coordinates: grad_unit='/m' if flux_coordinates: grad_unit='/psi' if pressure: data_unit = flap.Unit(name='Pressure gradient',unit='kPa'+grad_unit) elif temperature: data_unit = flap.Unit(name='Temperature gradient',unit='keV'+grad_unit) elif density: data_unit = flap.Unit(name='Density gradient',unit='m-3'+grad_unit) if not spline_data: d = flap.DataObject(exp_id=exp_id, data_array=r_pos_gradient, error=r_pos_gradient_error, data_unit=data_unit, coordinates=coord, data_title='NSTX Thomson gradient') else: d = flap.DataObject(exp_id=exp_id, data_array=r_pos_gradient_spline, data_unit=data_unit, coordinates=coord, data_title='NSTX Thomson gradient spline') else: coord = [] coord.append(copy.deepcopy(flap.Coordinate(name='Time', unit='s', mode=flap.CoordinateMode(equidistant=True), start=time_vector[0], step=time_vector[1]-time_vector[0], #shape=time_arr.shape, dimension_list=[1] ))) coord.append(copy.deepcopy(flap.Coordinate(name='Sample', unit='n.a.', mode=flap.CoordinateMode(equidistant=True), start=0, step=1, dimension_list=[1] ))) if pressure: data_unit = flap.Unit(name='Pressure gradient',unit='kPa/m') elif temperature: data_unit = flap.Unit(name='Temperature gradient',unit='keV/m') elif density: data_unit = flap.Unit(name='Density gradient',unit='m-3/m') if device_coordinates: radial_coordinate_name='Device R' radial_unit='m' if flux_coordinates: radial_coordinate_name='Flux r' radial_unit='' if not spline_data: coord.append(copy.deepcopy(flap.Coordinate(name=radial_coordinate_name, unit=radial_unit, mode=flap.CoordinateMode(equidistant=False), values=radial_coordinate[1:-1], shape=radial_coordinate[1:-1].shape, dimension_list=[0] ))) d = flap.DataObject(exp_id=exp_id, data_array=data_gradient, error=data_gradient_error, data_unit=data_unit, coordinates=coord, data_title='NSTX Thomson gradient') else: coord.append(copy.deepcopy(flap.Coordinate(name=radial_coordinate_name, unit=radial_unit, mode=flap.CoordinateMode(equidistant=False), values=spline_radial_coordinate[1:-1], shape=spline_radial_coordinate[1:-1].shape, dimension_list=[0] ))) d = flap.DataObject(exp_id=exp_id, data_array=interp_data_gradient, data_unit=data_unit, coordinates=coord, data_title='NSTX Thomson gradient spline') if output_name is not None: flap.add_data_object(d,output_name) return d
StarcoderdataPython
1689698
#!/usr/bin/env python3 # This file is part of the MicroPython project, http://micropython.org/ # The MIT License (MIT) # Copyright (c) 2019 <NAME> import os import subprocess import sys import argparse sys.path.append('../tools') import pyboard # Paths for host executables CPYTHON3 = os.getenv('MICROPY_CPYTHON3', 'python3') MICROPYTHON = os.getenv('MICROPY_MICROPYTHON', '../ports/unix/micropython_coverage') NATMOD_EXAMPLE_DIR = '../examples/natmod/' # Supported tests and their corresponding mpy module TEST_MAPPINGS = { 'btree': 'btree/btree_$(ARCH).mpy', 'framebuf': 'framebuf/framebuf_$(ARCH).mpy', 'uheapq': 'uheapq/uheapq_$(ARCH).mpy', 'urandom': 'urandom/urandom_$(ARCH).mpy', 'ure': 'ure/ure_$(ARCH).mpy', 'uzlib': 'uzlib/uzlib_$(ARCH).mpy', } # Code to allow a target MicroPython to import an .mpy from RAM injected_import_hook_code = """\ import sys, uos, uio class __File(uio.IOBase): def __init__(self): self.off = 0 def ioctl(self, request, arg): return 0 def readinto(self, buf): buf[:] = memoryview(__buf)[self.off:self.off + len(buf)] self.off += len(buf) return len(buf) class __FS: def mount(self, readonly, mkfs): pass def chdir(self, path): pass def stat(self, path): if path == '__injected.mpy': return tuple(0 for _ in range(10)) else: raise OSError(-2) # ENOENT def open(self, path, mode): return __File() uos.mount(__FS(), '/__remote') uos.chdir('/__remote') sys.modules['{}'] = __import__('__injected') """ class TargetSubprocess: def __init__(self, cmd): self.cmd = cmd def close(self): pass def run_script(self, script): try: p = subprocess.run(self.cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, input=script) return p.stdout, None except subprocess.CalledProcessError as er: return b'', er class TargetPyboard: def __init__(self, pyb): self.pyb = pyb self.pyb.enter_raw_repl() def close(self): self.pyb.exit_raw_repl() self.pyb.close() def run_script(self, script): try: self.pyb.enter_raw_repl() output = self.pyb.exec_(script) output = output.replace(b'\r\n', b'\n') return output, None except pyboard.PyboardError as er: return b'', er def run_tests(target_truth, target, args, stats): for test_file in args.files: # Find supported test for k, v in TEST_MAPPINGS.items(): if test_file.find(k) != -1: test_module = k test_mpy = v.replace('$(ARCH)', args.arch) break else: print('---- {} - no matching mpy'.format(test_file)) continue # Read test script with open(test_file, 'rb') as f: test_file_data = f.read() # Create full test with embedded .mpy try: with open(NATMOD_EXAMPLE_DIR + test_mpy, 'rb') as f: test_script = b'__buf=' + bytes(repr(f.read()), 'ascii') + b'\n' except OSError: print('---- {} - mpy file not compiled'.format(test_file)) continue test_script += bytes(injected_import_hook_code.format(test_module), 'ascii') test_script += test_file_data # Run test under MicroPython result_out, error = target.run_script(test_script) # Work out result of test extra = '' if error is None and result_out == b'SKIP\n': result = 'SKIP' elif error is not None: result = 'FAIL' extra = ' - ' + str(error) else: # Check result against truth try: with open(test_file + '.exp', 'rb') as f: result_exp = f.read() error = None except OSError: result_exp, error = target_truth.run_script(test_file_data) if error is not None: result = 'TRUTH FAIL' elif result_out != result_exp: result = 'FAIL' print(result_out) else: result = 'pass' # Accumulate statistics stats['total'] += 1 if result == 'pass': stats['pass'] += 1 elif result == 'SKIP': stats['skip'] += 1 else: stats['fail'] += 1 # Print result print('{:4} {}{}'.format(result, test_file, extra)) def main(): cmd_parser = argparse.ArgumentParser(description='Run dynamic-native-module tests under MicroPython') cmd_parser.add_argument('-p', '--pyboard', action='store_true', help='run tests via pyboard.py') cmd_parser.add_argument('-d', '--device', default='/dev/ttyACM0', help='the device for pyboard.py') cmd_parser.add_argument('-a', '--arch', default='x64', help='native architecture of the target') cmd_parser.add_argument('files', nargs='*', help='input test files') args = cmd_parser.parse_args() target_truth = TargetSubprocess([CPYTHON3]) if args.pyboard: target = TargetPyboard(pyboard.Pyboard(args.device)) else: target = TargetSubprocess([MICROPYTHON]) stats = {'total': 0, 'pass': 0, 'fail':0, 'skip': 0} run_tests(target_truth, target, args, stats) target.close() target_truth.close() print('{} tests performed'.format(stats['total'])) print('{} tests passed'.format(stats['pass'])) if stats['fail']: print('{} tests failed'.format(stats['fail'])) if stats['skip']: print('{} tests skipped'.format(stats['skip'])) if stats['fail']: sys.exit(1) if __name__ == "__main__": main()
StarcoderdataPython
11329185
<reponame>JaredAllen13/insightconnect-plugins # GENERATED BY KOMAND SDK - DO NOT EDIT import insightconnect_plugin_runtime import json class Component: DESCRIPTION = "Receive events based on criteria" class Input: EVENT_ID = "event_id" class Output: ERRORS = "errors" EVENT = "event" MESSAGE = "message" class FindEventInput(insightconnect_plugin_runtime.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "event_id": { "type": "string", "title": "Event ID", "description": "Event ID e.g. 123", "order": 1 } }, "required": [ "event_id" ] } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class FindEventOutput(insightconnect_plugin_runtime.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "errors": { "type": "array", "title": "Errors", "description": "Errors", "items": { "type": "string" }, "order": 3 }, "event": { "$ref": "#/definitions/Event", "title": "Event", "description": "Event", "order": 1 }, "message": { "type": "string", "title": "Message", "description": "Message", "order": 2 } }, "definitions": { "Event": { "type": "object", "title": "Event", "properties": { "Org": { "$ref": "#/definitions/SharingGroup", "title": "Org", "order": 16 }, "Orgc": { "$ref": "#/definitions/SharingGroup", "title": "Orgc", "order": 13 }, "SharingGroup": { "$ref": "#/definitions/SharingGroup", "title": "Sharing Group", "description": "Sharing group", "order": 3 }, "Tag": { "type": "array", "title": "Tag", "items": { "$ref": "#/definitions/Tag" }, "order": 12 }, "analysis": { "type": "string", "title": "Analysis", "order": 11 }, "attribute_count": { "type": "string", "title": "Attribute Count", "order": 9 }, "date": { "type": "string", "title": "Date", "order": 15 }, "disable_correlation": { "type": "boolean", "title": "Disable Correlation", "order": 8 }, "distribution": { "type": "string", "title": "Distribution", "order": 17 }, "id": { "type": "string", "title": "ID", "order": 19 }, "info": { "type": "string", "title": "Info", "description": "Info", "order": 1 }, "locked": { "type": "boolean", "title": "Locked", "order": 4 }, "org_id": { "type": "string", "title": "Org ID", "order": 10 }, "orgc_id": { "type": "string", "title": "Org ID", "description": "Org ID", "order": 2 }, "proposal_email_lock": { "type": "boolean", "title": "Proposal Email Lock", "order": 18 }, "publish_timestamp": { "type": "string", "title": "Publish Timestamp", "order": 21 }, "published": { "type": "boolean", "title": "Published", "order": 14 }, "sharing_group_id": { "type": "string", "title": "Sharing Group ID", "order": 6 }, "threat_level_id": { "type": "string", "title": "Threat Level ID", "order": 20 }, "timestamp": { "type": "string", "title": "Timestamp", "order": 7 }, "uuid": { "type": "string", "title": "UUID", "order": 5 } }, "definitions": { "SharingGroup": { "type": "object", "title": "SharingGroup", "properties": { "id": { "type": "string", "title": "ID", "description": "ID", "order": 1 }, "name": { "type": "string", "title": "Name", "description": "Name", "order": 2 } } }, "Tag": { "type": "object", "title": "Tag", "properties": { "colour": { "type": "string", "title": "Colour", "description": "Colour", "order": 4 }, "exportable": { "type": "boolean", "title": "Exportable", "description": "Exportable", "order": 3 }, "hide_tag": { "type": "boolean", "title": "Hide Tag", "description": "Hide Tag", "order": 5 }, "id": { "type": "string", "title": "ID", "description": "ID", "order": 2 }, "name": { "type": "string", "title": "Name", "description": "Name", "order": 1 } } } } }, "SharingGroup": { "type": "object", "title": "SharingGroup", "properties": { "id": { "type": "string", "title": "ID", "description": "ID", "order": 1 }, "name": { "type": "string", "title": "Name", "description": "Name", "order": 2 } } }, "Tag": { "type": "object", "title": "Tag", "properties": { "colour": { "type": "string", "title": "Colour", "description": "Colour", "order": 4 }, "exportable": { "type": "boolean", "title": "Exportable", "description": "Exportable", "order": 3 }, "hide_tag": { "type": "boolean", "title": "Hide Tag", "description": "Hide Tag", "order": 5 }, "id": { "type": "string", "title": "ID", "description": "ID", "order": 2 }, "name": { "type": "string", "title": "Name", "description": "Name", "order": 1 } } } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
StarcoderdataPython
6442439
<filename>TranskribusDU/crf/Model_SSVM_AD3_Multitype.py # -*- coding: utf-8 -*- """ Train, test, predict steps for a CRF model - CRF model is EdgeFeatureGraphCRF (unary and pairwise potentials) - Train using SSM - Predict using AD3 Copyright Xerox(C) 2016 <NAME> Developed for the EU project READ. The READ project has received funding from the European Union�s Horizon 2020 research and innovation programme under grant agreement No 674943. """ import sys, os import numpy as np try: import cPickle as pickle except ImportError: import pickle from sklearn.utils.class_weight import compute_class_weight from pystruct.models import NodeTypeEdgeFeatureGraphCRF try: #to ease the use without proper Python installation from common.trace import traceln except ImportError: sys.path.append( os.path.dirname(os.path.dirname( os.path.abspath(sys.argv[0]) )) ) from common.trace import traceln from common.chrono import chronoOn, chronoOff from common.TestReport import TestReport, TestReportConfusion from crf.Model_SSVM_AD3 import Model_SSVM_AD3 from common.TestReport import TestReport, TestReportConfusion class Model_SSVM_AD3_Multitype(Model_SSVM_AD3): #default values for the solver C = .1 njobs = 4 inference_cache = 50 tol = .1 save_every = 50 #save every 50 iterations,for warm start max_iter = 1000 def __init__(self, sName, sModelDir): """ a CRF model, that uses SSVM and AD3, with a name and a folder where it will be stored or retrieved from """ Model_SSVM_AD3.__init__(self, sName, sModelDir) # ------------------------------------------- TYPED CRF MEMO ------------------------------------------- # Parameters # ---------- # n_types : number of node types # # l_n_states : list of int, default=None # Number of states per type of variables. # # l_n_features : list of int, default=None # Number of features per type of node. # # a_n_edge_features: an array of shape (n_types, n_types) giving the number of features per pair of types # # NOTE: there should always be at least 1 feature for any pairs of types which has some edge in the graph. # To mimic GraphCRF, pass 1 and make a constant feature of 1.0 for all those edges. # # class_weight : None, or list of array-like (ndim=1) # Class weights. If a list of array-like is passed, the Ith one must have length equal to l_n_states[i] # None means equal class weights (across node types) # # X and Y # ------- # Node features are given as a list of n_types arrays of shape (n_type_nodes, n_type_features): # - n_type_nodes is the number of nodes of that type # - n_type_features is the number of features for this type of node # # Edges are given as a list of n_types x n_types arrays of shape (n_type_edges, 2). # Columns are resp.: node index (in corresponding node type), node index (in corresponding node type) # # Edge features are given as a list of n_types x n_types arrays of shape (n_type_type_edge, n_type_type_edge_features) # - n_type_type_edge is the number of edges of type type_type # - n_type_type_edge_features is the number of features for edge of type type_type # # An instance ``X`` is represented as a tuple ``([node_features, ..], [edges, ..], [edge_features, ..])`` # # Labels ``Y`` are given as one array of shape (n_nodes) # Labels are numbered from 0 so that each label across types is encoded by a unique integer. # # Look at flattenY and unflattentY if you want to pass/obtain list of labels per type, with first label of each type being encoded by 0 # ------------------------------------------------------------------------------------------------------ def get_lX_lY(self, lGraph): """ Compute node and edge features and return one X matrix for each graph as a list return a list of X, a list of Y matrix """ lX, lY = Model_SSVM_AD3.get_lX_lY(self, lGraph) nbEdge = sum( e.shape[0] for (_lNF, lE, _lEF) in lX for e in lE) traceln(" CRF multi-type model: %d edges" % nbEdge) return lX, lY def get_lX(self, lGraph): """ Compute node and edge features and return one X matrix for each graph as a list return a list of X, a list of Y matrix """ lX = Model_SSVM_AD3.get_lX(self, lGraph) nbEdge = sum( e.shape[0] for (_lNF, lE, _lEF) in lX for e in lE) traceln(" CRF multi-type model: %d edges" % nbEdge) return lX # --- UTILITIES ------------------------------------------------------------- def _computeModelCaracteristics(self, lX): """ We discover dynamically the number of features. Pretty convenient for developer. Drawback: if the feature extractor code changes, predicting with a stored model will crash without beforehand catch return a triplet: 0 - nbClass 1 - list of node feature number per type 2 - list of edge feature number per type x type """ lNF, lE, lEF = lX[0] #we assume the lX is properly constructed (and they have all correct shape! even if dim0=0 self.nbType = len(lNF) assert len(lE) == self.nbType*self.nbType, \ "SW Error: Badly constructed X: " \ "expected %d Edge matrices, got %d" % (self.nbType*self.nbType, len(lE)) assert len(lEF) == self.nbType*self.nbType, \ "SW Error: Badly constructed X: " \ "expected %d Edge Feature matrices" \ ", got %d" % (self.nbType*self.nbType, len(lEF)) self.lNodeFeatNb = [NF.shape[1] for NF in lNF] self.lEdgeFeatNb = [ [lEF[i*self.nbType+j].shape[1] for i in range(self.nbType)] for j in range(self.nbType)] return self.nbType, self.lNodeFeatNb, self.lEdgeFeatNb def _getNbFeatureAsText(self): """ return the number of node features and the number of edge features as a textual message """ return " %d types - #features: (nodes) %s (edges) %s"%(self.nbType, self.lNodeFeatNb, self.lEdgeFeatNb) # --- TRAIN / TEST / PREDICT BASELINE MODELS ------------------------------------------------ def _getXY_forType(self, lX, lY, type_index): """ The node features are grouped by type of nodes. Given a type, we need to stack the feature of nodes of that type and extract their labels """ X_flat = np.vstack( node_features[type_index] for (node_features, _, _) in lX ) lY_type = [] for X, Y in zip(lX, lY): node_features = X[0] #list of node feature matrices, per type n_node_before_the_type = sum( node_features[i].shape[0] for i in range(type_index) ) #how many node in previous types? n_node_of_type = node_features[type_index].shape[0] Y_type = Y[n_node_before_the_type:n_node_before_the_type+n_node_of_type] lY_type.append( Y_type ) Y_flat = np.hstack(lY_type) del lY_type return X_flat, Y_flat def _trainBaselines(self, lX, lY): """ Train the baseline models, if any """ if self._lMdlBaseline: for itype in range(self.nbType): X_flat, Y_flat = self._getXY_forType(lX, lY, itype) if False: with open("XY_flat_Type%d.pkl"%(itype), "wb") as fd: pickle.dump((X_flat, Y_flat), fd) for mdlBaseline in self._lMdlBaseline: chronoOn() traceln("\t - training baseline model: %s"%str(mdlBaseline)) mdlBaseline[itype].fit(X_flat, Y_flat) traceln("\t [%.1fs] done\n"%chronoOff()) del X_flat, Y_flat return True def _testBaselines(self, lX, lY, lLabelName=None, lsDocName=None): """ test the baseline models, return a test report list, one per baseline method """ if lsDocName: assert len(lX) == len(lsDocName), "Internal error" lTstRpt = [] if self._lMdlBaseline: for itype in range(self.nbType): X_flat, Y_flat = self._getXY_forType(lX, lY, itype) traceln("\t\t type %d #nodes=%d #features=%d"%(itype, X_flat.shape[0], X_flat.shape[1])) for mdl in self._lMdlBaseline: #code in extenso, to call del on the Y_pred_flat array... chronoOn("_testBaselines_T") Y_pred_flat = mdl[itype].predict(X_flat) traceln("\t\t [%.1fs] done\n"%chronoOff("_testBaselines_T")) lTstRpt.append( TestReport(str(mdl), Y_pred_flat, Y_flat, lLabelName, lsDocName=lsDocName) ) del X_flat, Y_flat, Y_pred_flat return lTstRpt def _testBaselinesEco(self, lX, lY, lLabelName=None, lsDocName=None): """ test the baseline models, WITHOUT MAKING A HUGE X IN MEMORY return a test report list, one per baseline method """ if lsDocName: assert len(lX) == len(lsDocName), "Internal error" lTstRpt = [] for mdl in self._lMdlBaseline: #code in extenso, to call del on the Y_pred_flat array... chronoOn("_testBaselinesEco_T") #using a COnfusionMatrix-based test report object, we can accumulate results oTestReportConfu = TestReportConfusion(str(mdl), list(), lLabelName, lsDocName=lsDocName) for X,Y in zip(lX, lY): for itype in range(self.nbType): X_flat, Y_flat = self._getXY_forType([X], [Y], itype) Y_flat_pred = mdl[itype].predict(X_flat) oTestReportConfu.accumulate( TestReport(str(mdl), Y_flat_pred, Y_flat, lLabelName, lsDocName=lsDocName) ) traceln("\t\t [%.1fs] done\n"%chronoOff("_testBaselinesEco_T")) lTstRpt.append( oTestReportConfu ) return lTstRpt # def predictBaselines(self, X): # """ # predict with the baseline models, # return a list of 1-dim numpy arrays # """ # return [mdl.predict(X) for mdl in self._lMdlBaseline] # --- EDGE BASELINE ------------------------------------------------------------- #no time to write this code def getEdgeModel(self): """ Logisitic regression model for edges """ return None def _getEdgeXEdgeY(self, lX, lY): """ return X,Y for each edge The edge label is in [0, ntype^2-1] """ return None def _trainEdgeBaseline(self, lX, lY): """ Here we train a logistic regression model to predict the pair of labels of each edge. This code assume single type """ return True def _testEdgeBaselines(self, lX, lY, lLabelName=None, lsDocName=None): """ test the edge baseline model, return a test report list (a singleton for now) """ return [] # --- TRAIN / TEST / PREDICT ------------------------------------------------ def _getCRFModel(self, clsWeights=None): crf = NodeTypeEdgeFeatureGraphCRF(self.nbType, # How many node types? self._nbClass, # How many states per type? self.lNodeFeatNb, # How many node features per type? self.lEdgeFeatNb, # How many edge features per type x type? inference_method="ad3", l_class_weight = clsWeights ) return crf def computeClassWeight_balanced(self, lY): """ We compute a normalized balanced set of weights per type UNUSED as of March 2018 (showed worse results on ABP table) """ l_class_weights = [] iTypPrev = 0 Y = np.hstack(lY) for ityp in range(self.nbType): iTypNext = iTypPrev + self._nbClass[ityp] Y_typ = np.extract(np.logical_and(iTypPrev <= Y, Y < iTypNext), Y) Y_typ_unique = np.unique(Y_typ) class_weights = compute_class_weight("balanced", Y_typ_unique, Y_typ) l_class_weights.append( class_weights / np.linalg.norm(class_weights) ) del Y_typ, Y_typ_unique iTypPrev = iTypNext del Y return l_class_weights
StarcoderdataPython
207635
<filename>NATOTranslate.py # <NAME> # NATO Phonetic/Morse Code Translator # 7/29/2020 MORSE_CODE_DICT = { 'A':'.-', 'B':'-...', 'C':'-.-.', 'D':'-..', 'E':'.', 'F':'..-.', 'G':'--.', 'H':'....', 'I':'..', 'J':'.---', 'K':'-.-', 'L':'.-..', 'M':'--', 'N':'-.', 'O':'---', 'P':'.--.', 'Q':'--.-', 'R':'.-.', 'S':'...', 'T':'-', 'U':'..-', 'V':'...-', 'W':'.--', 'X':'-..-', 'Y':'-.--', 'Z':'--..'} NATO_PHONETIC_DICT = { 'A':'Alpha', 'B':'Bravo', 'C':'Charlie', 'D':'Delta', 'E':'Echo', 'F':'Foxtrot', 'G':'Golf', 'H':'Hotel', 'I':'India', 'J':'Juliet', 'K':'Kilo', 'L':'Lima', 'M':'Mike', 'N':'November', 'O':'Oscar', 'P':'Papa', 'Q':'Quebec', 'R':'Romeo', 'S':'Sierra', 'T':'Tango', 'U':'Uniform', 'V':'Victor', 'W':'Whiskey', 'X':'Xray', 'Y':'Yankee', 'Z':'Zulu'} sentence = input("What phrase would you like to convert to NATO Phonetic/Morse Code or decrypt (Only alphabet)? ") sentence = sentence.upper() sentence = sentence.replace(" ", "") nato = "" morse = "" for i in sentence: nato = nato + NATO_PHONETIC_DICT[i] + " " morse = morse + MORSE_CODE_DICT[i] + " " print("Nato Phonetic: " + nato) print("Morse Code: " + morse)
StarcoderdataPython
11355467
<reponame>Asifadam93/FiltreMusical<gh_stars>0 #!/usr/bin/env python import dspplot data = [ 0.015625, 0.046875, 0.078125, 0.109375, 0.140625, 0.171875, 0.203125, 0.234375, 0.265625, 0.296875, 0.328125, 0.359375, 0.390625, 0.421875, 0.453125, 0.484375, 0.515625, 0.546875, 0.578125, 0.609375, 0.640625, 0.671875, 0.703125, 0.734375, 0.765625, 0.796875, 0.828125, 0.859375, 0.890625, 0.921875, 0.953125, 0.984375, 0.984375, 0.953125, 0.921875, 0.890625, 0.859375, 0.828125, 0.796875, 0.765625, 0.734375, 0.703125, 0.671875, 0.640625, 0.609375, 0.578125, 0.546875, 0.515625, 0.484375, 0.453125, 0.421875, 0.390625, 0.359375, 0.328125, 0.296875, 0.265625, 0.234375, 0.203125, 0.171875, 0.140625, 0.109375, 0.078125, 0.046875, 0.015625, ] dspplot.plot(data, freqresp=True, dots=True, padwidth=1024, log_freq=False, horizontal=False, normalized_freq=True, title='Triangular window', file='../svg/window_triangular.svg')
StarcoderdataPython
26768
<filename>data-pipeline/src/data_pipeline/datasets/exac/exac_regional_missense_constraint.py import hail as hl def prepare_exac_regional_missense_constraint(path): ds = hl.import_table( path, missing="", types={ "transcript": hl.tstr, "gene": hl.tstr, "chr": hl.tstr, "amino_acids": hl.tstr, "genomic_start": hl.tint, "genomic_end": hl.tint, "obs_mis": hl.tfloat, "exp_mis": hl.tfloat, "obs_exp": hl.tfloat, "chisq_diff_null": hl.tfloat, "region_name": hl.tstr, }, ) ds = ds.annotate(obs_mis=hl.int(ds.obs_mis)) ds = ds.annotate(start=hl.min(ds.genomic_start, ds.genomic_end), stop=hl.max(ds.genomic_start, ds.genomic_end)) ds = ds.drop("amino_acids", "chr", "gene", "genomic_start", "genomic_end", "region_name") ds = ds.transmute(transcript_id=ds.transcript.split("\\.")[0]) ds = ds.group_by("transcript_id").aggregate(regions=hl.agg.collect(ds.row_value)) ds = ds.annotate(regions=hl.sorted(ds.regions, lambda region: region.start)) ds = ds.select(exac_regional_missense_constraint_regions=ds.regions) return ds
StarcoderdataPython
1679355
# This file is part of ranger, the console file manager. # License: GNU GPL version 3, see the file "AUTHORS" for details. import locale import os.path import random import re from os import stat as os_stat, lstat as os_lstat from collections import deque from time import time from ranger.container.fsobject import BAD_INFO, FileSystemObject from ranger.core.loader import Loadable from ranger.ext.mount_path import mount_path from ranger.container.file import File from ranger.ext.accumulator import Accumulator from ranger.ext.lazy_property import lazy_property from ranger.ext.human_readable import human_readable from ranger.container.settings import LocalSettings from ranger.ext.vcs import Vcs def sort_by_basename(path): """returns path.relative_path (for sorting)""" return path.relative_path def sort_by_basename_icase(path): """returns case-insensitive path.relative_path (for sorting)""" return path.relative_path_lower def sort_by_directory(path): """returns 0 if path is a directory, otherwise 1 (for sorting)""" return 1 - path.is_directory def sort_naturally(path): return path.basename_natural def sort_naturally_icase(path): return path.basename_natural_lower def sort_unicode_wrapper_string(old_sort_func): def sort_unicode(path): return locale.strxfrm(old_sort_func(path)) return sort_unicode def sort_unicode_wrapper_list(old_sort_func): def sort_unicode(path): return [locale.strxfrm(str(c)) for c in old_sort_func(path)] return sort_unicode def accept_file(file, filters): """ Returns True if file shall be shown, otherwise False. Parameters: file - an instance of FileSystemObject filters - an array of lambdas, each expects a file and returns True if file shall be shown, otherwise False. """ for filter in filters: if filter and not filter(file): return False return True def walklevel(some_dir, level): some_dir = some_dir.rstrip(os.path.sep) followlinks = True if level > 0 else False assert os.path.isdir(some_dir) num_sep = some_dir.count(os.path.sep) for root, dirs, files in os.walk(some_dir, followlinks=followlinks): yield root, dirs, files num_sep_this = root.count(os.path.sep) if level != -1 and num_sep + level <= num_sep_this: del dirs[:] def mtimelevel(path, level): mtime = os.stat(path).st_mtime for dirpath, dirnames, filenames in walklevel(path, level): dirlist = [os.path.join("/", dirpath, d) for d in dirnames if level == -1 or dirpath.count(os.path.sep) - path.count(os.path.sep) <= level] mtime = max(mtime, max([-1] + [os.stat(d).st_mtime for d in dirlist])) return mtime class Directory(FileSystemObject, Accumulator, Loadable): is_directory = True enterable = False load_generator = None cycle_list = None loading = False progressbar_supported = True flat = 0 filenames = None files = None files_all = None filter = None temporary_filter = None inode_type_filter = None marked_items = None scroll_begin = 0 mount_path = '/' disk_usage = 0 last_update_time = -1 load_content_mtime = -1 order_outdated = False content_outdated = False content_loaded = False vcs = None has_vcschild = False _cumulative_size_calculated = False sort_dict = { 'basename': sort_by_basename, 'natural': sort_naturally, 'size': lambda path: -(path.size or 1), 'mtime': lambda path: -(path.stat and path.stat.st_mtime or 1), 'ctime': lambda path: -(path.stat and path.stat.st_ctime or 1), 'atime': lambda path: -(path.stat and path.stat.st_atime or 1), 'random': lambda path: random.random(), 'type': lambda path: path.mimetype or '', 'extension': lambda path: path.extension or '', } def __init__(self, path, **kw): assert not os.path.isfile(path), "No directory given!" Loadable.__init__(self, None, None) Accumulator.__init__(self) FileSystemObject.__init__(self, path, **kw) self.marked_items = list() for opt in ('sort_directories_first', 'sort', 'sort_reverse', 'sort_case_insensitive'): self.settings.signal_bind('setopt.' + opt, self.request_resort, weak=True, autosort=False) for opt in ('hidden_filter', 'show_hidden'): self.settings.signal_bind('setopt.' + opt, self.refilter, weak=True, autosort=False) self.settings = LocalSettings(path, self.settings) if self.settings.vcs_aware: self.vcs = Vcs(self) self.use() def request_resort(self): self.order_outdated = True def request_reload(self): self.content_outdated = True def get_list(self): return self.files def mark_item(self, item, val): item._mark(val) if val: if item in self.files and item not in self.marked_items: self.marked_items.append(item) else: while True: try: self.marked_items.remove(item) except ValueError: break def toggle_mark(self, item): self.mark_item(item, not item.marked) def toggle_all_marks(self): for item in self.files: self.toggle_mark(item) def mark_all(self, val): for item in self.files: self.mark_item(item, val) if not val: del self.marked_items[:] self._clear_marked_items() # XXX: Is it really necessary to have the marked items in a list? # Can't we just recalculate them with [f for f in self.files if f.marked]? def _gc_marked_items(self): for item in list(self.marked_items): if item.path not in self.filenames: self.marked_items.remove(item) def _clear_marked_items(self): for item in self.marked_items: item._mark(False) del self.marked_items[:] def get_selection(self): """READ ONLY""" self._gc_marked_items() if not self.files: return [] if self.marked_items: return [item for item in self.files if item.marked] elif self.pointed_obj: return [self.pointed_obj] else: return [] def refilter(self): if self.files_all is None: return # propably not loaded yet self.last_update_time = time() filters = [] if not self.settings.show_hidden and self.settings.hidden_filter: hidden_filter = re.compile(self.settings.hidden_filter) hidden_filter_search = hidden_filter.search filters.append(lambda file: not hidden_filter_search(file.basename)) if self.filter: filter_search = self.filter.search filters.append(lambda file: filter_search(file.basename)) if self.inode_type_filter: filters.append(self.inode_type_filter) if self.temporary_filter: temporary_filter_search = self.temporary_filter.search filters.append(lambda file: temporary_filter_search(file.basename)) self.files = [f for f in self.files_all if accept_file(f, filters)] # A fix for corner cases when the user invokes show_hidden on a # directory that contains only hidden directories and hidden files. if self.files and not self.pointed_obj: self.pointed_obj = self.files[0] elif not self.files: self.content_loaded = False self.pointed_obj = None self.move_to_obj(self.pointed_obj) # XXX: Check for possible race conditions def load_bit_by_bit(self): """An iterator that loads a part on every next() call Returns a generator which load a part of the directory in each iteration. """ self.loading = True self.percent = 0 self.load_if_outdated() basename_is_rel_to = self.path if self.flat else None try: if self.runnable: yield mypath = self.path self.mount_path = mount_path(mypath) if self.flat: filelist = [] for dirpath, dirnames, filenames in walklevel(mypath, self.flat): dirlist = [os.path.join("/", dirpath, d) for d in dirnames if self.flat == -1 or dirpath.count(os.path.sep) - mypath.count(os.path.sep) <= self.flat] filelist += dirlist filelist += [os.path.join("/", dirpath, f) for f in filenames] filenames = filelist self.load_content_mtime = mtimelevel(mypath, self.flat) else: filelist = os.listdir(mypath) filenames = [mypath + (mypath == '/' and fname or '/' + fname) for fname in filelist] self.load_content_mtime = os.stat(mypath).st_mtime if self._cumulative_size_calculated: # If self.content_loaded is true, this is not the first # time loading. So I can't really be sure if the # size has changed and I'll add a "?". if self.content_loaded: if self.fm.settings.autoupdate_cumulative_size: self.look_up_cumulative_size() else: self.infostring = ' %s' % human_readable( self.size, separator='? ') else: self.infostring = ' %s' % human_readable(self.size) else: self.size = len(filelist) self.infostring = ' %d' % self.size if self.is_link: self.infostring = '->' + self.infostring yield marked_paths = [obj.path for obj in self.marked_items] files = [] disk_usage = 0 has_vcschild = False for name in filenames: try: file_lstat = os_lstat(name) if file_lstat.st_mode & 0o170000 == 0o120000: file_stat = os_stat(name) else: file_stat = file_lstat stats = (file_stat, file_lstat) is_a_dir = file_stat.st_mode & 0o170000 == 0o040000 except Exception: stats = None is_a_dir = False if is_a_dir: try: item = self.fm.get_directory(name) item.load_if_outdated() except Exception: item = Directory(name, preload=stats, path_is_abs=True, basename_is_rel_to=basename_is_rel_to) item.load() else: if self.flat: item.relative_path = os.path.relpath(item.path, self.path) else: item.relative_path = item.basename item.relative_path_lower = item.relative_path.lower() if item.vcs and item.vcs.track: if item.vcs.is_root_pointer: has_vcschild = True else: item.vcsstatus = item.vcs.rootvcs.status_subpath( os.path.join(self.realpath, item.basename), is_directory=True) else: item = File(name, preload=stats, path_is_abs=True, basename_is_rel_to=basename_is_rel_to) item.load() disk_usage += item.size if self.vcs and self.vcs.track: item.vcsstatus = self.vcs.rootvcs.status_subpath( os.path.join(self.realpath, item.basename)) files.append(item) self.percent = 100 * len(files) // len(filenames) yield self.has_vcschild = has_vcschild self.disk_usage = disk_usage self.filenames = filenames self.files_all = files self._clear_marked_items() for item in self.files_all: if item.path in marked_paths: item._mark(True) self.marked_items.append(item) else: item._mark(False) self.sort() if files: if self.pointed_obj is not None: self.sync_index() else: self.move(to=0) else: self.filenames = None self.files_all = None self.files = None self.cycle_list = None self.content_loaded = True self.last_update_time = time() self.correct_pointer() finally: self.loading = False self.fm.signal_emit("finished_loading_dir", directory=self) if self.vcs: self.fm.ui.vcsthread.process(self) def unload(self): self.loading = False self.load_generator = None def load_content(self, schedule=None): """Loads the contents of the directory. Use this sparingly since it takes rather long. """ self.content_outdated = False if not self.loading: if not self.loaded: self.load() if not self.accessible: self.content_loaded = True return if schedule is None: schedule = True # was: self.size > 30 if self.load_generator is None: self.load_generator = self.load_bit_by_bit() if schedule and self.fm: self.fm.loader.add(self) else: for _ in self.load_generator: pass self.load_generator = None elif not schedule or not self.fm: for _ in self.load_generator: pass self.load_generator = None def sort(self): """Sort the contained files""" if self.files_all is None: return try: sort_func = self.sort_dict[self.settings.sort] except Exception: sort_func = sort_by_basename if self.settings.sort_case_insensitive and \ sort_func == sort_by_basename: sort_func = sort_by_basename_icase if self.settings.sort_case_insensitive and \ sort_func == sort_naturally: sort_func = sort_naturally_icase # XXX Does not work with usermade sorting functions :S if self.settings.sort_unicode: if sort_func in (sort_naturally, sort_naturally_icase): sort_func = sort_unicode_wrapper_list(sort_func) elif sort_func in (sort_by_basename, sort_by_basename_icase): sort_func = sort_unicode_wrapper_string(sort_func) self.files_all.sort(key=sort_func) if self.settings.sort_reverse: self.files_all.reverse() if self.settings.sort_directories_first: self.files_all.sort(key=sort_by_directory) self.refilter() def _get_cumulative_size(self): if self.size == 0: return 0 cum = 0 realpath = os.path.realpath for dirpath, dirnames, filenames in os.walk(self.path, onerror=lambda _: None): for file in filenames: try: if dirpath == self.path: stat = os_stat(realpath(dirpath + "/" + file)) else: stat = os_stat(dirpath + "/" + file) cum += stat.st_size except Exception: pass return cum def look_up_cumulative_size(self): self._cumulative_size_calculated = True self.size = self._get_cumulative_size() self.infostring = ('-> ' if self.is_link else ' ') + \ human_readable(self.size) @lazy_property def size(self): try: if self.fm.settings.automatically_count_files: size = len(os.listdir(self.path)) else: size = None except OSError: self.infostring = BAD_INFO self.accessible = False self.runnable = False return 0 else: if size is None: self.infostring = '' else: self.infostring = ' %d' % size self.accessible = True self.runnable = True return size @lazy_property def infostring(self): self.size # trigger the lazy property initializer if self.is_link: return '->' + self.infostring return self.infostring @lazy_property def runnable(self): self.size # trigger the lazy property initializer return self.runnable def sort_if_outdated(self): """Sort the containing files if they are outdated""" if self.order_outdated: self.order_outdated = False self.sort() return True return False def move_to_obj(self, arg): try: arg = arg.path except Exception: pass self.load_content_once(schedule=False) if self.empty(): return Accumulator.move_to_obj(self, arg, attr='path') def search_fnc(self, fnc, offset=1, forward=True): if not hasattr(fnc, '__call__'): return False length = len(self) if forward: generator = ((self.pointer + (x + offset)) % length for x in range(length - 1)) else: generator = ((self.pointer - (x + offset)) % length for x in range(length - 1)) for i in generator: _file = self.files[i] if fnc(_file): self.pointer = i self.pointed_obj = _file self.correct_pointer() return True return False def set_cycle_list(self, lst): self.cycle_list = deque(lst) def cycle(self, forward=True): if self.cycle_list: if forward is True: self.cycle_list.rotate(-1) elif forward is False: self.cycle_list.rotate(1) self.move_to_obj(self.cycle_list[0]) def correct_pointer(self): """Make sure the pointer is in the valid range""" Accumulator.correct_pointer(self) try: if self == self.fm.thisdir: self.fm.thisfile = self.pointed_obj except Exception: pass def load_content_once(self, *a, **k): """Load the contents of the directory if not done yet""" if not self.content_loaded: self.load_content(*a, **k) return True return False def load_content_if_outdated(self, *a, **k): """Load the contents of the directory if outdated""" if self.load_content_once(*a, **k): return True if self.files_all is None or self.content_outdated: self.load_content(*a, **k) return True try: if self.flat: real_mtime = mtimelevel(self.path, self.flat) else: real_mtime = os.stat(self.path).st_mtime except OSError: real_mtime = None return False if self.stat: cached_mtime = self.load_content_mtime else: cached_mtime = 0 if real_mtime != cached_mtime: self.load_content(*a, **k) return True return False def get_description(self): return "Loading " + str(self) def use(self): """mark the filesystem-object as used at the current time""" self.last_used = time() def is_older_than(self, seconds): """returns whether this object wasn't use()d in the last n seconds""" if seconds < 0: return True return self.last_used + seconds < time() def go(self, history=True): """enter the directory if the filemanager is running""" if self.fm: return self.fm.enter_dir(self.path, history=history) return False def empty(self): """Is the directory empty?""" return self.files is None or len(self.files) == 0 def _set_linemode_of_children(self, mode): for f in self.files: f._set_linemode(mode) def __nonzero__(self): """Always True""" return True __bool__ = __nonzero__ def __len__(self): """The number of containing files""" assert self.accessible assert self.content_loaded assert self.files is not None return len(self.files) def __eq__(self, other): """Check for equality of the directories paths""" return isinstance(other, Directory) and self.path == other.path def __neq__(self, other): """Check for inequality of the directories paths""" return not self.__eq__(other) def __hash__(self): return hash(self.path)
StarcoderdataPython
3475212
<reponame>AaronFriel/pulumi-azuread # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from . import outputs __all__ = [ 'GetUsersResult', 'AwaitableGetUsersResult', 'get_users', 'get_users_output', ] @pulumi.output_type class GetUsersResult: """ A collection of values returned by getUsers. """ def __init__(__self__, id=None, ignore_missing=None, mail_nicknames=None, object_ids=None, return_all=None, user_principal_names=None, users=None): if id and not isinstance(id, str): raise TypeError("Expected argument 'id' to be a str") pulumi.set(__self__, "id", id) if ignore_missing and not isinstance(ignore_missing, bool): raise TypeError("Expected argument 'ignore_missing' to be a bool") pulumi.set(__self__, "ignore_missing", ignore_missing) if mail_nicknames and not isinstance(mail_nicknames, list): raise TypeError("Expected argument 'mail_nicknames' to be a list") pulumi.set(__self__, "mail_nicknames", mail_nicknames) if object_ids and not isinstance(object_ids, list): raise TypeError("Expected argument 'object_ids' to be a list") pulumi.set(__self__, "object_ids", object_ids) if return_all and not isinstance(return_all, bool): raise TypeError("Expected argument 'return_all' to be a bool") pulumi.set(__self__, "return_all", return_all) if user_principal_names and not isinstance(user_principal_names, list): raise TypeError("Expected argument 'user_principal_names' to be a list") pulumi.set(__self__, "user_principal_names", user_principal_names) if users and not isinstance(users, list): raise TypeError("Expected argument 'users' to be a list") pulumi.set(__self__, "users", users) @property @pulumi.getter def id(self) -> str: """ The provider-assigned unique ID for this managed resource. """ return pulumi.get(self, "id") @property @pulumi.getter(name="ignoreMissing") def ignore_missing(self) -> Optional[bool]: return pulumi.get(self, "ignore_missing") @property @pulumi.getter(name="mailNicknames") def mail_nicknames(self) -> Sequence[str]: """ The email aliases of the users. """ return pulumi.get(self, "mail_nicknames") @property @pulumi.getter(name="objectIds") def object_ids(self) -> Sequence[str]: """ The object IDs of the users. """ return pulumi.get(self, "object_ids") @property @pulumi.getter(name="returnAll") def return_all(self) -> Optional[bool]: return pulumi.get(self, "return_all") @property @pulumi.getter(name="userPrincipalNames") def user_principal_names(self) -> Sequence[str]: """ The user principal names (UPNs) of the users. """ return pulumi.get(self, "user_principal_names") @property @pulumi.getter def users(self) -> Sequence['outputs.GetUsersUserResult']: """ A list of users. Each `user` object provides the attributes documented below. """ return pulumi.get(self, "users") class AwaitableGetUsersResult(GetUsersResult): # pylint: disable=using-constant-test def __await__(self): if False: yield self return GetUsersResult( id=self.id, ignore_missing=self.ignore_missing, mail_nicknames=self.mail_nicknames, object_ids=self.object_ids, return_all=self.return_all, user_principal_names=self.user_principal_names, users=self.users) def get_users(ignore_missing: Optional[bool] = None, mail_nicknames: Optional[Sequence[str]] = None, object_ids: Optional[Sequence[str]] = None, return_all: Optional[bool] = None, user_principal_names: Optional[Sequence[str]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> AwaitableGetUsersResult: """ Gets basic information for multiple Azure Active Directory users. ## API Permissions The following API permissions are required in order to use this data source. When authenticated with a service principal, this data source requires one of the following application roles: `User.Read.All` or `Directory.Read.All` When authenticated with a user principal, this data source does not require any additional roles. ## Example Usage ```python import pulumi import pulumi_azuread as azuread users = azuread.get_users(user_principal_names=[ "<EMAIL>", "<EMAIL>", ]) ``` :param bool ignore_missing: Ignore missing users and return users that were found. The data source will still fail if no users are found. Defaults to false. :param Sequence[str] mail_nicknames: The email aliases of the users. :param Sequence[str] object_ids: The object IDs of the users. :param bool return_all: When `true`, the data source will return all users. Cannot be used with `ignore_missing`. Defaults to false. :param Sequence[str] user_principal_names: The user principal names (UPNs) of the users. """ __args__ = dict() __args__['ignoreMissing'] = ignore_missing __args__['mailNicknames'] = mail_nicknames __args__['objectIds'] = object_ids __args__['returnAll'] = return_all __args__['userPrincipalNames'] = user_principal_names if opts is None: opts = pulumi.InvokeOptions() if opts.version is None: opts.version = _utilities.get_version() __ret__ = pulumi.runtime.invoke('azuread:index/getUsers:getUsers', __args__, opts=opts, typ=GetUsersResult).value return AwaitableGetUsersResult( id=__ret__.id, ignore_missing=__ret__.ignore_missing, mail_nicknames=__ret__.mail_nicknames, object_ids=__ret__.object_ids, return_all=__ret__.return_all, user_principal_names=__ret__.user_principal_names, users=__ret__.users) @_utilities.lift_output_func(get_users) def get_users_output(ignore_missing: Optional[pulumi.Input[Optional[bool]]] = None, mail_nicknames: Optional[pulumi.Input[Optional[Sequence[str]]]] = None, object_ids: Optional[pulumi.Input[Optional[Sequence[str]]]] = None, return_all: Optional[pulumi.Input[Optional[bool]]] = None, user_principal_names: Optional[pulumi.Input[Optional[Sequence[str]]]] = None, opts: Optional[pulumi.InvokeOptions] = None) -> pulumi.Output[GetUsersResult]: """ Gets basic information for multiple Azure Active Directory users. ## API Permissions The following API permissions are required in order to use this data source. When authenticated with a service principal, this data source requires one of the following application roles: `User.Read.All` or `Directory.Read.All` When authenticated with a user principal, this data source does not require any additional roles. ## Example Usage ```python import pulumi import pulumi_azuread as azuread users = azuread.get_users(user_principal_names=[ "<EMAIL>", "<EMAIL>", ]) ``` :param bool ignore_missing: Ignore missing users and return users that were found. The data source will still fail if no users are found. Defaults to false. :param Sequence[str] mail_nicknames: The email aliases of the users. :param Sequence[str] object_ids: The object IDs of the users. :param bool return_all: When `true`, the data source will return all users. Cannot be used with `ignore_missing`. Defaults to false. :param Sequence[str] user_principal_names: The user principal names (UPNs) of the users. """ ...
StarcoderdataPython
390256
<filename>python/cinn/optim.py<gh_stars>1-10 from .core_api.optim import simplify from .core_api.optim import ir_copy
StarcoderdataPython
8001002
<reponame>shkarupa-alex/nlpclean import gc import os import resource import unittest from ..html import html_to_article, fragment_to_text class TestHtmlToArticle(unittest.TestCase): def test_comment(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_article', 'comment_no_space.html'), 'rt') as f: without_space = html_to_article(f.read(), 'ru') with open(os.path.join(os.path.dirname(__file__), 'html_to_article', 'comment_space.html'), 'rt') as f: with_space = html_to_article(f.read(), 'ru') with open(os.path.join(os.path.dirname(__file__), 'html_to_article', 'comment_ground.html'), 'rt') as f: comment_ground = f.read() self.assertEqual(with_space, without_space) self.assertEqual(without_space, comment_ground) # def test_memory(self): # with open(os.path.join(os.path.dirname(__file__), 'html_to_article', 'page_source.html'), 'rt') as f: # source = f.read() # # result = html_to_article(source, 'ru') # memory_start = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss # for _ in range(100): # result = html_to_article(source, 'ru') # memory_end = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss # # self.assertGreater(len(result), 0) # self.assertGreater(memory_start * 1.01, memory_end) class TestFragmentToText(unittest.TestCase): def test_break(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'break_source.html'), 'rt') as f: without_space = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'break_ground.txt'), 'rt') as f: comment_ground = f.read() self.assertEqual(without_space, comment_ground) def test_comment(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'comment_no_space.html'), 'rt') as f: without_space = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'comment_space.html'), 'rt') as f: with_space = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'comment_ground.txt'), 'rt') as f: comment_ground = f.read() self.assertEqual(with_space, without_space) self.assertEqual(without_space, comment_ground) def test_article_1(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article1_no_space.html'), 'rt') as f: without_space = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article1_space.html'), 'rt') as f: with_space = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article1_ground.txt'), 'rt') as f: comment_ground = f.read() self.assertEqual(with_space, without_space) self.assertEqual(without_space, comment_ground) def test_article_2(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article2_source.html'), 'rt') as f: source = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article2_ground.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_article_3(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article3_source.html'), 'rt') as f: source = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article3_ground.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_article_4(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article4_source.html'), 'rt') as f: source = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article4_ground.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_empty(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'empty_source.html'), 'rt') as f: source = fragment_to_text(f.read()) with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'empty_ground.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_memory(self): with open(os.path.join(os.path.dirname(__file__), 'fragment_to_text', 'article1_space.html'), 'rt') as f: source = f.read() result = fragment_to_text(source) memory_start = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss for _ in range(100): result = fragment_to_text(source) gc.collect() memory_end = resource.getrusage(resource.RUSAGE_SELF).ru_maxrss self.assertGreater(len(result), 0) self.assertGreater(memory_start * 1.05, memory_end) class TestHtmlToText(unittest.TestCase): def test_drive2(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'drive2.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'drive2.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_gazeta(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'gazeta.html'), 'rb') as f: source = f.read().decode('cp1251') source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'gazeta.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_habr(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'habr.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'habr.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_kinopoisk(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kinopoisk.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kinopoisk.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_kommersant(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kommersant.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kommersant.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_kp(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kp.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'kp.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_lenta(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'lenta.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'lenta.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_livejournal1(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal1.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal1.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_livejournal2(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal2.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal2.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_livejournal3(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal3.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'livejournal3.txt'), 'rt') as f: ground = f.read() # with open(os.path.join(os.path.dirname(__file__), 'html_to_text', '_debug_0.txt'), 'wt') as f: # f.write(source) self.assertEqual(ground, source) def test_mk(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'mk.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'mk.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_rbc(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'rbc.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'rbc.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_ria(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'ria.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'ria.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_sport(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'sport.html'), 'rb') as f: source = f.read().decode('cp1251') source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'sport.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_vc(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'vc.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'vc.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_woman(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'woman.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'woman.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source) def test_zen(self): with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'zen.html'), 'rt') as f: source = f.read() source = fragment_to_text(html_to_article(source, 'ru')) with open(os.path.join(os.path.dirname(__file__), 'html_to_text', 'zen.txt'), 'rt') as f: ground = f.read() self.assertEqual(ground, source)
StarcoderdataPython
1846918
import time from threading import Thread from queue import Queue class RateLimiter: def __init__(self, limit, delay=0.01): num = int(limit * delay) if num < 1: raise ValueError("limit * delay < 1") self._limit_num = limit self._delay = delay self._num_per_delay = num self._queue = Queue(limit) self._thread = Thread(target=self._start) self._thread.daemon = True self._thread.start() def _start(self): total = int(self._limit_num * self._delay) while True: diff = total - self._queue.qsize() while diff > 0: self._queue.put(None) diff -= 1 time.sleep(self._delay) def get_token(self): self._queue.get() self._queue.task_done() if __name__ == "__main__": num = 100 r = RateLimiter(10, 0.1) while num: r.get_token() print(num) num -= 1
StarcoderdataPython
375596
<reponame>mumupy/mmdeeplearning<filename>src/mtensorflow/tf_rbm.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/10/26 12:45 # @Author : ganliang # @File : tf_rbm.py # @Desc : 受限玻尔兹曼机(RBM)是一个两层神经网络,第一层被称为可见层,第二层被称为隐藏层,因为网络只有两层,所以又被称为浅层神经网络。 # RBM 可以用于降维、特征提取和协同过滤,RBM 的训练可以分成三部分:正向传播、反向传播和比较。下面看看 RBM 的表达式。
StarcoderdataPython
9606432
from math import ceil, sqrt plaintext = input().strip() length = len(plaintext) rows = int(sqrt(length)) cols = int(ceil(sqrt(length))) if cols * rows < length: rows += 1 encrypted = '' for c in range(cols): for r in range(rows): if c + cols * r < length: encrypted += plaintext[c + cols * r] encrypted += ' ' print(encrypted)
StarcoderdataPython
1609324
<reponame>test-wiz-sec/pulumi-azure-nextgen # coding=utf-8 # *** WARNING: this file was generated by the Pulumi SDK Generator. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union from ... import _utilities, _tables __all__ = [ 'LocationThresholdRuleConditionArgs', 'ManagementEventAggregationConditionArgs', 'ManagementEventRuleConditionArgs', 'RetentionPolicyArgs', 'RuleEmailActionArgs', 'RuleManagementEventClaimsDataSourceArgs', 'RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs', 'RuleWebhookActionArgs', 'ThresholdRuleConditionArgs', ] @pulumi.input_type class LocationThresholdRuleConditionArgs: def __init__(__self__, *, failed_location_count: pulumi.Input[int], odata_type: pulumi.Input[str], data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None, window_size: Optional[pulumi.Input[str]] = None): """ A rule condition based on a certain number of locations failing. :param pulumi.Input[int] failed_location_count: the number of locations that must fail to activate the alert. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ pulumi.set(__self__, "failed_location_count", failed_location_count) pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.LocationThresholdRuleCondition') if data_source is not None: pulumi.set(__self__, "data_source", data_source) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter(name="failedLocationCount") def failed_location_count(self) -> pulumi.Input[int]: """ the number of locations that must fail to activate the alert. """ return pulumi.get(self, "failed_location_count") @failed_location_count.setter def failed_location_count(self, value: pulumi.Input[int]): pulumi.set(self, "failed_location_count", value) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value) @pulumi.input_type class ManagementEventAggregationConditionArgs: def __init__(__self__, *, operator: Optional[pulumi.Input[str]] = None, threshold: Optional[pulumi.Input[float]] = None, window_size: Optional[pulumi.Input[str]] = None): """ How the data that is collected should be combined over time. :param pulumi.Input[str] operator: the condition operator. :param pulumi.Input[float] threshold: The threshold value that activates the alert. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ if operator is not None: pulumi.set(__self__, "operator", operator) if threshold is not None: pulumi.set(__self__, "threshold", threshold) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter def operator(self) -> Optional[pulumi.Input[str]]: """ the condition operator. """ return pulumi.get(self, "operator") @operator.setter def operator(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operator", value) @property @pulumi.getter def threshold(self) -> Optional[pulumi.Input[float]]: """ The threshold value that activates the alert. """ return pulumi.get(self, "threshold") @threshold.setter def threshold(self, value: Optional[pulumi.Input[float]]): pulumi.set(self, "threshold", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value) @pulumi.input_type class ManagementEventRuleConditionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], aggregation: Optional[pulumi.Input['ManagementEventAggregationConditionArgs']] = None, data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None): """ A management event rule condition. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). :param pulumi.Input['ManagementEventAggregationConditionArgs'] aggregation: How the data that is collected should be combined over time and when the alert is activated. Note that for management event alerts aggregation is optional – if it is not provided then any event will cause the alert to activate. :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.ManagementEventRuleCondition') if aggregation is not None: pulumi.set(__self__, "aggregation", aggregation) if data_source is not None: pulumi.set(__self__, "data_source", data_source) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def aggregation(self) -> Optional[pulumi.Input['ManagementEventAggregationConditionArgs']]: """ How the data that is collected should be combined over time and when the alert is activated. Note that for management event alerts aggregation is optional – if it is not provided then any event will cause the alert to activate. """ return pulumi.get(self, "aggregation") @aggregation.setter def aggregation(self, value: Optional[pulumi.Input['ManagementEventAggregationConditionArgs']]): pulumi.set(self, "aggregation", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @pulumi.input_type class RetentionPolicyArgs: def __init__(__self__, *, days: pulumi.Input[int], enabled: pulumi.Input[bool]): """ Specifies the retention policy for the log. :param pulumi.Input[int] days: the number of days for the retention in days. A value of 0 will retain the events indefinitely. :param pulumi.Input[bool] enabled: a value indicating whether the retention policy is enabled. """ pulumi.set(__self__, "days", days) pulumi.set(__self__, "enabled", enabled) @property @pulumi.getter def days(self) -> pulumi.Input[int]: """ the number of days for the retention in days. A value of 0 will retain the events indefinitely. """ return pulumi.get(self, "days") @days.setter def days(self, value: pulumi.Input[int]): pulumi.set(self, "days", value) @property @pulumi.getter def enabled(self) -> pulumi.Input[bool]: """ a value indicating whether the retention policy is enabled. """ return pulumi.get(self, "enabled") @enabled.setter def enabled(self, value: pulumi.Input[bool]): pulumi.set(self, "enabled", value) @pulumi.input_type class RuleEmailActionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], custom_emails: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, send_to_service_owners: Optional[pulumi.Input[bool]] = None): """ Specifies the action to send email when the rule condition is evaluated. The discriminator is always RuleEmailAction in this case. :param pulumi.Input[str] odata_type: specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. :param pulumi.Input[Sequence[pulumi.Input[str]]] custom_emails: the list of administrator's custom email addresses to notify of the activation of the alert. :param pulumi.Input[bool] send_to_service_owners: Whether the administrators (service and co-administrators) of the service should be notified when the alert is activated. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleEmailAction') if custom_emails is not None: pulumi.set(__self__, "custom_emails", custom_emails) if send_to_service_owners is not None: pulumi.set(__self__, "send_to_service_owners", send_to_service_owners) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="customEmails") def custom_emails(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ the list of administrator's custom email addresses to notify of the activation of the alert. """ return pulumi.get(self, "custom_emails") @custom_emails.setter def custom_emails(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "custom_emails", value) @property @pulumi.getter(name="sendToServiceOwners") def send_to_service_owners(self) -> Optional[pulumi.Input[bool]]: """ Whether the administrators (service and co-administrators) of the service should be notified when the alert is activated. """ return pulumi.get(self, "send_to_service_owners") @send_to_service_owners.setter def send_to_service_owners(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "send_to_service_owners", value) @pulumi.input_type class RuleManagementEventClaimsDataSourceArgs: def __init__(__self__, *, email_address: Optional[pulumi.Input[str]] = None): """ The claims for a rule management event data source. :param pulumi.Input[str] email_address: the email address. """ if email_address is not None: pulumi.set(__self__, "email_address", email_address) @property @pulumi.getter(name="emailAddress") def email_address(self) -> Optional[pulumi.Input[str]]: """ the email address. """ return pulumi.get(self, "email_address") @email_address.setter def email_address(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "email_address", value) @pulumi.input_type class RuleManagementEventDataSourceArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], claims: Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']] = None, event_name: Optional[pulumi.Input[str]] = None, event_source: Optional[pulumi.Input[str]] = None, level: Optional[pulumi.Input[str]] = None, operation_name: Optional[pulumi.Input[str]] = None, resource_group_name: Optional[pulumi.Input[str]] = None, resource_provider_name: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None, status: Optional[pulumi.Input[str]] = None, sub_status: Optional[pulumi.Input[str]] = None): """ A rule management event data source. The discriminator fields is always RuleManagementEventDataSource in this case. :param pulumi.Input[str] odata_type: specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource :param pulumi.Input['RuleManagementEventClaimsDataSourceArgs'] claims: the claims. :param pulumi.Input[str] event_name: the event name. :param pulumi.Input[str] event_source: the event source. :param pulumi.Input[str] level: the level. :param pulumi.Input[str] operation_name: The name of the operation that should be checked for. If no name is provided, any operation will match. :param pulumi.Input[str] resource_group_name: the resource group name. :param pulumi.Input[str] resource_provider_name: the resource provider name. :param pulumi.Input[str] resource_uri: the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. :param pulumi.Input[str] status: The status of the operation that should be checked for. If no status is provided, any status will match. :param pulumi.Input[str] sub_status: the substatus. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleManagementEventDataSource') if claims is not None: pulumi.set(__self__, "claims", claims) if event_name is not None: pulumi.set(__self__, "event_name", event_name) if event_source is not None: pulumi.set(__self__, "event_source", event_source) if level is not None: pulumi.set(__self__, "level", level) if operation_name is not None: pulumi.set(__self__, "operation_name", operation_name) if resource_group_name is not None: pulumi.set(__self__, "resource_group_name", resource_group_name) if resource_provider_name is not None: pulumi.set(__self__, "resource_provider_name", resource_provider_name) if resource_uri is not None: pulumi.set(__self__, "resource_uri", resource_uri) if status is not None: pulumi.set(__self__, "status", status) if sub_status is not None: pulumi.set(__self__, "sub_status", sub_status) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def claims(self) -> Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']]: """ the claims. """ return pulumi.get(self, "claims") @claims.setter def claims(self, value: Optional[pulumi.Input['RuleManagementEventClaimsDataSourceArgs']]): pulumi.set(self, "claims", value) @property @pulumi.getter(name="eventName") def event_name(self) -> Optional[pulumi.Input[str]]: """ the event name. """ return pulumi.get(self, "event_name") @event_name.setter def event_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "event_name", value) @property @pulumi.getter(name="eventSource") def event_source(self) -> Optional[pulumi.Input[str]]: """ the event source. """ return pulumi.get(self, "event_source") @event_source.setter def event_source(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "event_source", value) @property @pulumi.getter def level(self) -> Optional[pulumi.Input[str]]: """ the level. """ return pulumi.get(self, "level") @level.setter def level(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "level", value) @property @pulumi.getter(name="operationName") def operation_name(self) -> Optional[pulumi.Input[str]]: """ The name of the operation that should be checked for. If no name is provided, any operation will match. """ return pulumi.get(self, "operation_name") @operation_name.setter def operation_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "operation_name", value) @property @pulumi.getter(name="resourceGroupName") def resource_group_name(self) -> Optional[pulumi.Input[str]]: """ the resource group name. """ return pulumi.get(self, "resource_group_name") @resource_group_name.setter def resource_group_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_group_name", value) @property @pulumi.getter(name="resourceProviderName") def resource_provider_name(self) -> Optional[pulumi.Input[str]]: """ the resource provider name. """ return pulumi.get(self, "resource_provider_name") @resource_provider_name.setter def resource_provider_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_provider_name", value) @property @pulumi.getter(name="resourceUri") def resource_uri(self) -> Optional[pulumi.Input[str]]: """ the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "resource_uri") @resource_uri.setter def resource_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_uri", value) @property @pulumi.getter def status(self) -> Optional[pulumi.Input[str]]: """ The status of the operation that should be checked for. If no status is provided, any status will match. """ return pulumi.get(self, "status") @status.setter def status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "status", value) @property @pulumi.getter(name="subStatus") def sub_status(self) -> Optional[pulumi.Input[str]]: """ the substatus. """ return pulumi.get(self, "sub_status") @sub_status.setter def sub_status(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "sub_status", value) @pulumi.input_type class RuleMetricDataSourceArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], metric_name: Optional[pulumi.Input[str]] = None, resource_uri: Optional[pulumi.Input[str]] = None): """ A rule metric data source. The discriminator value is always RuleMetricDataSource in this case. :param pulumi.Input[str] odata_type: specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource :param pulumi.Input[str] metric_name: the name of the metric that defines what the rule monitors. :param pulumi.Input[str] resource_uri: the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleMetricDataSource') if metric_name is not None: pulumi.set(__self__, "metric_name", metric_name) if resource_uri is not None: pulumi.set(__self__, "resource_uri", resource_uri) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of data source. There are two types of rule data sources: RuleMetricDataSource and RuleManagementEventDataSource """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter(name="metricName") def metric_name(self) -> Optional[pulumi.Input[str]]: """ the name of the metric that defines what the rule monitors. """ return pulumi.get(self, "metric_name") @metric_name.setter def metric_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "metric_name", value) @property @pulumi.getter(name="resourceUri") def resource_uri(self) -> Optional[pulumi.Input[str]]: """ the resource identifier of the resource the rule monitors. **NOTE**: this property cannot be updated for an existing rule. """ return pulumi.get(self, "resource_uri") @resource_uri.setter def resource_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "resource_uri", value) @pulumi.input_type class RuleWebhookActionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], properties: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, service_uri: Optional[pulumi.Input[str]] = None): """ Specifies the action to post to service when the rule condition is evaluated. The discriminator is always RuleWebhookAction in this case. :param pulumi.Input[str] odata_type: specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] properties: the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. :param pulumi.Input[str] service_uri: the service uri to Post the notification when the alert activates or resolves. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.RuleWebhookAction') if properties is not None: pulumi.set(__self__, "properties", properties) if service_uri is not None: pulumi.set(__self__, "service_uri", service_uri) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of the action. There are two types of actions: RuleEmailAction and RuleWebhookAction. """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def properties(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ the dictionary of custom properties to include with the post operation. These data are appended to the webhook payload. """ return pulumi.get(self, "properties") @properties.setter def properties(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "properties", value) @property @pulumi.getter(name="serviceUri") def service_uri(self) -> Optional[pulumi.Input[str]]: """ the service uri to Post the notification when the alert activates or resolves. """ return pulumi.get(self, "service_uri") @service_uri.setter def service_uri(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "service_uri", value) @pulumi.input_type class ThresholdRuleConditionArgs: def __init__(__self__, *, odata_type: pulumi.Input[str], operator: pulumi.Input[str], threshold: pulumi.Input[float], data_source: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]] = None, time_aggregation: Optional[pulumi.Input[str]] = None, window_size: Optional[pulumi.Input[str]] = None): """ A rule condition based on a metric crossing a threshold. :param pulumi.Input[str] odata_type: specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). :param pulumi.Input[str] operator: the operator used to compare the data and the threshold. :param pulumi.Input[float] threshold: the threshold value that activates the alert. :param pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']] data_source: the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. :param pulumi.Input[str] time_aggregation: the time aggregation operator. How the data that are collected should be combined over time. The default value is the PrimaryAggregationType of the Metric. :param pulumi.Input[str] window_size: the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ pulumi.set(__self__, "odata_type", 'Microsoft.Azure.Management.Insights.Models.ThresholdRuleCondition') pulumi.set(__self__, "operator", operator) pulumi.set(__self__, "threshold", threshold) if data_source is not None: pulumi.set(__self__, "data_source", data_source) if time_aggregation is not None: pulumi.set(__self__, "time_aggregation", time_aggregation) if window_size is not None: pulumi.set(__self__, "window_size", window_size) @property @pulumi.getter(name="odataType") def odata_type(self) -> pulumi.Input[str]: """ specifies the type of condition. This can be one of three types: ManagementEventRuleCondition (occurrences of management events), LocationThresholdRuleCondition (based on the number of failures of a web test), and ThresholdRuleCondition (based on the threshold of a metric). """ return pulumi.get(self, "odata_type") @odata_type.setter def odata_type(self, value: pulumi.Input[str]): pulumi.set(self, "odata_type", value) @property @pulumi.getter def operator(self) -> pulumi.Input[str]: """ the operator used to compare the data and the threshold. """ return pulumi.get(self, "operator") @operator.setter def operator(self, value: pulumi.Input[str]): pulumi.set(self, "operator", value) @property @pulumi.getter def threshold(self) -> pulumi.Input[float]: """ the threshold value that activates the alert. """ return pulumi.get(self, "threshold") @threshold.setter def threshold(self, value: pulumi.Input[float]): pulumi.set(self, "threshold", value) @property @pulumi.getter(name="dataSource") def data_source(self) -> Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]: """ the resource from which the rule collects its data. For this type dataSource will always be of type RuleMetricDataSource. """ return pulumi.get(self, "data_source") @data_source.setter def data_source(self, value: Optional[pulumi.Input[Union['RuleManagementEventDataSourceArgs', 'RuleMetricDataSourceArgs']]]): pulumi.set(self, "data_source", value) @property @pulumi.getter(name="timeAggregation") def time_aggregation(self) -> Optional[pulumi.Input[str]]: """ the time aggregation operator. How the data that are collected should be combined over time. The default value is the PrimaryAggregationType of the Metric. """ return pulumi.get(self, "time_aggregation") @time_aggregation.setter def time_aggregation(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "time_aggregation", value) @property @pulumi.getter(name="windowSize") def window_size(self) -> Optional[pulumi.Input[str]]: """ the period of time (in ISO 8601 duration format) that is used to monitor alert activity based on the threshold. If specified then it must be between 5 minutes and 1 day. """ return pulumi.get(self, "window_size") @window_size.setter def window_size(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "window_size", value)
StarcoderdataPython
9767268
from typing import List, Tuple import clue import clue.rules from clue import turn_log class ClueRepl: """ This will grab input from the user and then update the log and scoresheet. > dave knif plum di olivia=no input: "dave knif plum di olivia=no" tokens: {player: "dave"}, {card: knife}, {card: plum}, {card: dining}, {card:..} """ def __init__(self, scoresheet): self.scoresheet = scoresheet # this is NOT the module scoresheet.py for player in scoresheet.players_names: assert player not in scoresheet.game.all_cards assert "=" not in player @staticmethod def prompt_players_list() -> List[str]: """ data = Scoresheet(["Dave", "Olivia", "Xeniya"]) """ players_list = [] line = input("Enter the # of players > ") print( "Enter the player names in the order they should appear on the scoresheet" ) number_of_players = int(line) for player in range(number_of_players): name = input(f"Name Player {player + 1} > ").strip() players_list.append(name) return players_list @staticmethod def select_player(player_list: List[str]) -> str: """ Prints a list like: 0) Player A 1) Player B 2) Player C select which player you are> 1 :param player_list: :return: str """ for i, player in enumerate(player_list): print(f"{i+1}) Player {player}") while True: try: line = int(input("select which player you are> ")) return player_list[line - 1] except ValueError: print(f"It MUST be a number.") def analyze(self, turn_history): print("Analysis Results:") # need to do more passes until run_all() returns empty list while True: results = clue.rules.run_all(self.scoresheet, turn_history) for result in results: print(result) self.scoresheet.set_fact(result) if len(results) < 1: break else: print("....") print("") def do_input(self): current_entry = turn_log.LogEntry() turn_history = [] while True: print(f"Current Turn({len(turn_history) + 1}): {current_entry}") line = input("> ") try: if line.strip().lower() == "quit": return elif line.strip().lower() == "sheet": self.scoresheet.print_scoresheet() elif line.strip().lower().startswith("set "): # can change to 'owner' cards, player, state = ClueRepl.parse_set_line( self.scoresheet.game, line ) for card in cards: self.scoresheet.set_ownership(player, card, state) # print(f"scoresheet.data[card][player] = state") if state == clue.BLANK: print(f"setting {player} and {card} to 'unknown' ") else: verb = { clue.HAS_CARD: "has", clue.DOESNT_HAVE_CARD: "doesn't have", }.get(state) print(f"marking: {player} {verb} {card}") elif line.strip().lower() == "next": # check if anything is missing before allowing the player to go to the next turn if current_entry.is_valid(self.scoresheet.player_count()): turn_history.append(current_entry) current_entry = turn_log.LogEntry() self.analyze(turn_history) # runs "next" & "analyze" else: print(f"Current turn is not finished: {current_entry}") elif line.strip().lower() == "clear": # clears out wrong current_entry # command that resets the current entry: current_entry = turn_log.LogEntry() elif line.strip().lower() == "history": # prints out the turn history for i, x in enumerate(turn_history): print(i + 1, x) elif line.strip().lower() == "analyze": self.analyze(turn_history) else: asker, cards, answers = self.parse_line(line) should_update = True # don't let them put the same player as both "asker" and in the responses on the same line ONLY. # and have a 'reset' command that resets the current entry from: # Current Turn(2): B asks (Plum, Wrench, Gazebo), answers:{'a': False, 'b': True} # print(f"asker={asker} answers={answers}") asker_has_responded = [i for i in answers if asker in i] if asker_has_responded: print(f"Warning: Did you put the asker in responses?") should_update = False # confirm when I'm about overwrite existing info of a turn b4 removing a previous player if asker and current_entry.asker and asker != current_entry.asker: print(f"Warning: Did you forget to type 'next'?") yn = input( f"Enter 'y' to change the asker from {current_entry.asker} to {asker}. y/n>" ) should_update = bool(yn.strip().lower() == "y") # if yn.strip().lower() == "y": # should_update = True # else: # should_update = False if should_update: ClueRepl.update_entry( self.scoresheet.game, current_entry, asker, cards, answers ) if current_entry.asker in current_entry.responses: print( f"WARNING: {current_entry.asker} is both the 'asker' and one of the responses" ) else: print(f"ignoring this input: {line}") except Exception as ex: # pylint: disable=broad-except print(ex) @staticmethod def parse_set_line(game, line): """ :param game: :param line: is a line like "set plum dave=yes" | yes,no, or ? for blank ... or even 'set plum dave=' for blank :return: ([clue.PLUM]: List, "dave": str, clue.HAS_CARD: int) """ line = line.strip().lower() tokens = line.split() cards = [] if len(tokens) < 3 or "=" not in tokens[-1]: raise Exception(f"Invalid 'set <card> player=' line: {line}") if tokens[0] != "set": raise Exception() for card in tokens[1:-1]: # it must be clue cards # this will return ["Dining", "Drawing"] if input "d": matches = ClueRepl.resolve_card(game, card) if len(matches) != 1: # we don't know which card they meant raise Exception( f"bad input: unable to match '{card}' to a single card. Matches={matches}" ) cards.append(matches[0]) player, response = tokens[-1].split("=", maxsplit=1) if response == "": state = clue.BLANK elif ClueRepl.response_bool(response): state = clue.HAS_CARD else: state = clue.DOESNT_HAVE_CARD return ( cards, player, state, ) # -> ([clue.PLUM]: List, "dave": str, clue.HAS_CARD: int) @staticmethod def update_entry( game: clue.Game, current_entry, asker: str, cards: List[str], answers: List[Tuple[str, bool]], ): """ Updates `current_entry` using information parsed from parse_line() :param game: :param current_entry: the entry object to modify :param asker: the "asker" returned by parse_line(); should be None if there was no asker in the line :param cards: list of cards returned by parse_line() :param answers: list of tuples of (player:str, response:bool)) """ if asker: current_entry.asker = asker suspect = None weapon = None room = None for card in cards: if card in game.suspects: if suspect: raise Exception( f"Two suspects in one line are not accepted: {suspect}, {card}" ) else: suspect = card elif card in game.rooms: if room: raise Exception( f"Two rooms in one line are not accepted: {room}, {card}" ) else: room = card elif card in game.weapons: if weapon: raise Exception( f"Two weapons in one line are not accepted: {weapon}, {card}" ) else: weapon = card if suspect: current_entry.suspect = suspect if weapon: current_entry.weapon = weapon if room: current_entry.room = room for a in answers: # answers - list of tuples player, response = a # a - tuple of two things current_entry.responses[player] = response @staticmethod # validate answers:'y','n','nope','none','nothing','i_have_one' ... def response_bool(s: str) -> bool: truthy = ["y", "yes", "yep", "have", "has", "t", "true", "do", "does"] falsy = [ "n", "no", "not", "nope", "none", "f", "false", "don't", "dont", "nothing", ] if s.lower() in truthy: return True elif s.lower() in falsy: return False else: raise Exception(f"invalid entry: {s}") def parse_line(self, line): """ This parses an input str from a user on a 'guess' turn into tokens. Maybe rename to smt like parse_guess_line :param line: asker card card card responder1=yes responder2=no :return: tokens """ tokens = line.strip().split() asker = None cards = [] answers = [] for token in tokens: # when you parse a str you parse it into pieces - tokens if token.upper() in self.scoresheet.players_names: # it must be the asker asker = token.upper() elif "=" in token: player, response = token.split( "=", maxsplit=1 ) # maxsplit is number of times to use split() # make sure its a valid player! split on '=' also if bob=yes => error if player.upper() not in self.scoresheet.players_names: raise Exception(f"bad input: invalid player {player}") answers.append((player.upper(), ClueRepl.response_bool(response))) else: # it must be a clue card matches = ClueRepl.resolve_card( self.scoresheet.game, token ) # this will return ["Dining", "Drawing"] if input "d" if len(matches) != 1: # we don't know which card they meant raise Exception( f"bad input: unable to match {token} to a single card. Matches={matches}" ) cards.append(matches[0]) return asker, cards, answers @staticmethod def resolve_card(game: clue.Game, prefix: str) -> List[str]: """ # prefix="gr" -> ["GREEN"] # prefix="D" -> ["DINING", "DRAWING"] # prefix="z" -> [] :return: list of EVERY card that matches prefix """ results = [] prefix = prefix.upper() for card in game.all_cards: if card.upper().startswith(prefix): results.append(card) return results
StarcoderdataPython
11274422
<filename>CHRLINE/e2ee.py """ Author: YinMo Version: 0.0.1-beta Description: died """ import hashlib, json, os import axolotl_curve25519 as Curve25519 from cryptography.hazmat.primitives.ciphers.aead import AESGCM from Crypto.Cipher import AES class E2EE(): def generateSharedSecret(self, private_key, public_key): return Curve25519.calculateAgreement(bytes(private_key), bytes(public_key)) def _xor(self, buf): buf_length = int(len(buf) / 2) buf2 = bytearray(buf_length) for i in range(buf_length): buf2[i] = buf[i] ^ buf[buf_length + i] return bytes(buf2) def getSHA256Sum(self, *args): instance = hashlib.sha256() for arg in args: if isinstance(arg, str): arg = arg.encode() instance.update(arg) return instance.digest() def _encryptAESECB(self, aes_key, plain_data): aes = AES.new(aes_key, AES.MODE_ECB) return aes.encrypt(plain_data) def decryptKeyChain(self, publicKey, privateKey, encryptedKeyChain): shared_secret = self.generateSharedSecret(privateKey, publicKey) aes_key = self.getSHA256Sum(shared_secret, 'Key') aes_iv = self._xor(self.getSHA256Sum(shared_secret, 'IV')) aes = AES.new(aes_key, AES.MODE_CBC, aes_iv) keychain_data = aes.decrypt(encryptedKeyChain) key = keychain_data.hex() key = bin2bytes(key) key = self.TCompactProtocol(key, passProtocol=True).res public_key = bytes(key[0][4]) private_key = bytes(key[0][5]) return [private_key, public_key] def encryptDeviceSecret (self, publicKey, privateKey, encryptedKeyChain): shared_secret = self.generateSharedSecret(privateKey, publicKey) aes_key = self.getSHA256Sum(shared_secret, 'Key') encryptedKeyChain = self._xor(self.getSHA256Sum(encryptedKeyChain)) keychain_data = self._encryptAESECB(aes_key, encryptedKeyChain) return keychain_data def generateAAD(self, a, b, c, d, e=2, f=0): aad = b'' aad += a.encode() aad += b.encode() aad += bytes(self.getIntBytes(c)) aad += bytes(self.getIntBytes(d)) aad += bytes(self.getIntBytes(e)) #e2ee version aad += bytes(self.getIntBytes(f)) # content type return aad def encryptE2EETextMessage(self, senderKeyId, receiverKeyId, keyData, specVersion, text, to ,_from): #selfKey = self.getE2EEKeys(self.mid) salt = os.urandom(16) gcmKey = self.getSHA256Sum(keyData, salt, b'Key') gcmIV = self.getSHA256Sum(keyData, salt, b'IV') aad = self.generateAAD(to, _from, senderKeyId, receiverKeyId, specVersion, 0) sign = os.urandom(16) data = json.dumps({ 'text': text }).encode() encData = self.encryptE2EEMessageV2(data, gcmKey, sign, aad) self.log(f'senderKeyId: {senderKeyId} ({self.getIntBytes(senderKeyId)})', True) self.log(f'receiverKeyId: {receiverKeyId} ({self.getIntBytes(receiverKeyId)})', True) return [salt, encData, sign, bytes(self.getIntBytes(senderKeyId)), bytes(self.getIntBytes(receiverKeyId))] def decryptE2EETextMessage(self, messageObj): chunks = messageObj[20] salt = chunks[0] message = chunks[1] sign = chunks[2] senderKeyId = __byte2int(chunks[3]) receiverKeyId = __byte2int(chunks[4]) _key = self.negotiateE2EEPublicKey(messageObj[0]) # todo: to or _from aesKey = self.generateSharedSecret(self.getPrivateKey(self.mid), _key[2][4]) gcmKey = self.getSHA256Sum(aesKey, salt, b'Key') s = hashlib.sha256() s.update(aesKey) s.update(salt) s.update(b'IV') iv = s.digest() aad = self.generateAAD(message[0], message[1], senderKeyId, receiverKeyId) aesgcm = AESGCM(gcmKey) decrypted = aesgcm.decrypt(sign, message, aad) self.log(f'decrypted: {decrypted}', True) return json.loads(decrypted)['text'] # todo: contentType def decryptE2EETextMessageV2(self, to , _from, chunks, privK, pubK): for i in range(len(chunks)): if isinstance(chunks[i], str): chunks[i] = chunks[i].encode() salt = chunks[0] message = chunks[1] sign = chunks[2] senderKeyId = byte2int(chunks[3]) receiverKeyId = byte2int(chunks[4]) self.log(f'senderKeyId: {senderKeyId}', True) self.log(f'receiverKeyId: {receiverKeyId}', True) aesKey = self.generateSharedSecret(privK, pubK) gcmKey = self.getSHA256Sum(aesKey, salt, b'Key') iv = self.getSHA256Sum(aesKey, salt, b'IV') aad = self.generateAAD(to, _from, senderKeyId, receiverKeyId) aesgcm = AESGCM(gcmKey) decrypted = aesgcm.decrypt(sign, message, aad) self.log(f'decrypted: {decrypted}', True) return json.loads(decrypted)['text'] def encryptE2EEMessageV2(self, data, gcmKey, nonce, aad): aesgcm = AESGCM(gcmKey) return aesgcm.encrypt(nonce, data, aad) def byte2int(t): e = 0 i = 0 s = len(t) for i in range(s): e = 256 * e + t[i] return e def bin2bytes(k): e = [] for i in range(int(len(k) / 2)): _i = int(k[i * 2:i * 2 + 2], 16) e.append(_i) return bytearray(e)
StarcoderdataPython
69610
<reponame>lifning/picotool """The map section of a PICO-8 cart. The map region consists of 4096 bytes. The .p8 representation is 32 lines of 256 hexadecimal digits (128 bytes). The map is 128 tiles wide by 64 tiles high. Each tile is one of the 256 tiles from the spritesheet. Map memory describes the top 32 rows (128 * 32 = 4096). If the developer draws tiles in the bottom 32 rows, this is stored in the bottom of the gfx memory region. """ __all__ = ['Map'] from .. import util class Map(util.BaseSection): """The map region of a PICO-8 cart.""" HEX_LINE_LENGTH_BYTES = 128 def __init__(self, *args, **kwargs): """The initializer. The Map initializer takes an optional gfx keyword argument whose value is a reference to the Gfx instance where lower map data is stored. """ self._gfx = None if 'gfx' in kwargs: self._gfx = kwargs['gfx'] del kwargs['gfx'] super().__init__(*args, **kwargs) @classmethod def empty(cls, version=4, gfx=None): """Creates an empty instance. Args: version: The PICO-8 file version. gfx: The Gfx object where lower map data is written. Returns: A Map instance. """ return cls(data=bytearray(b'\x00' * 4096), version=version, gfx=gfx) @classmethod def from_lines(cls, *args, **kwargs): gfx = None if 'gfx' in kwargs: gfx = kwargs['gfx'] del kwargs['gfx'] result = super().from_lines(*args, **kwargs) result._gfx = gfx return result @classmethod def from_bytes(cls, *args, **kwargs): gfx = None if 'gfx' in kwargs: gfx = kwargs['gfx'] del kwargs['gfx'] result = super().from_bytes(*args, **kwargs) result._gfx = gfx return result def get_cell(self, x, y): """Gets the tile ID for a map cell. Args: x: The map cell x (column) coordinate. (0-127) y: The map cell y (row) coordinate. Map must have a Gfx if y > 31. (0-63) Returns: The tile ID for the cell. """ assert 0 <= x <= 127 assert (0 <= y <= 31) or ((0 <= y <= 63) and self._gfx is not None) if y <= 31: return self._data[y * 128 + x] return self._gfx._data[4096 + (y - 32) * 128 + x] def set_cell(self, x, y, val): """Sets the tile ID for a map cell. Args: x: The map cell x (column) coordinate. (0-127) y: The map cell y (row) coordinate. (0-63) If y > 31, Map must have a Gfx, and this method updates the shared data region in the Gfx. val: The new tile ID for the cell. (0-255) """ assert 0 <= x <= 127 assert (0 <= y <= 31) or ((0 <= y <= 63) and self._gfx is not None) assert 0 <= val <= 255 if y <= 31: self._data[y * 128 + x] = val else: self._gfx._data[4096 + (y - 32) * 128 + x] = val def get_rect_tiles(self, x, y, width=1, height=1): """Gets a rectangle of map tiles. The map is a grid of 128x32 tiles, or 128x64 if using the gfx/map shared memory for map data. This method returns a rectangle of tile IDs on the map, as a list of bytearrays. If the requested rectangle size goes off the edge of the map, the off-edge tiles are returned as 0. The bottom edge is always assumed to be beyond the 64th row in the gfx/map shared memory region. Args: x: The map cell x (column) coordinate. (0-127) y: The map cell y (row) coordinate. (0-63) If y + height > 31, Map must have a Gfx. width: The width of the rectangle, as a number of tiles. height: The height of the rectangle, as a number of tiles. Returns: The rectangle of tile IDs, as a list of bytearrays. """ assert 0 <= x <= 127 assert 1 <= width assert 1 <= height assert ((0 <= y + height <= 32) or ((0 <= y + height <= 64) and self._gfx is not None)) result = [] for tile_y in range(y, y + height): row = bytearray() for tile_x in range(x, x + width): if (tile_y > 63) or (tile_x > 127): row.append(0) else: row.append(self.get_cell(tile_x, tile_y)) result.append(row) return result def set_rect_tiles(self, rect, x, y): """Writes a rectangle of tiles to the map. If writing the given rectangle at the given coordinates causes the rectangle to extend off the edge of the map, the remainer is discarded. Args: rect: A rectangle of tile IDs, as an iterable of iterables of IDs. x: The map tile x coordinate (column) of the upper left corner to start writing. y: The map tile y coordinate (row) of the upper left corner to start writing. """ for tile_y, row in enumerate(rect): for tile_x, val in enumerate(row): if ((tile_y + y) > 127) or ((tile_x + x) > 127): continue self.set_cell(tile_x + x, tile_y + y, val) def get_rect_pixels(self, x, y, width=1, height=1): """Gets a rectangel of map tiles as pixels. This is similar to get_rect_tiles() except the tiles are extracted from Gfx data and returned as a rectangle of pixels. Just like PICO-8, tile ID 0 is rendered as empty (all 0's), not the actual tile at ID 0. Args: x: The map cell x (column) coordinate. (0-127) y: The map cell y (row) coordinate. (0-63) If y + height > 31, Map must have a Gfx. width: The width of the rectangle, as a number of tiles. height: The height of the rectangle, as a number of tiles. Returns: The rectangle of pixels, as a list of bytearrays of pixel colors. """ assert self._gfx is not None assert 0 <= x <= 127 assert 1 <= width assert 1 <= height assert 0 <= y + height <= 64 tile_rect = self.get_rect_tiles(x, y, width, height) result = [] for tile_row in tile_rect: pixel_row = [bytearray(), bytearray(), bytearray(), bytearray(), bytearray(), bytearray(), bytearray(), bytearray()] for id in tile_row: if id == 0: sprite = [bytearray(b'\x00' * 8)] * 8 else: sprite = self._gfx.get_sprite(id) for i in range(0, 8): pixel_row[i].extend(sprite[i]) for i in range(0, 8): result.append(pixel_row[i]) return result
StarcoderdataPython
12823985
import unittest from click.testing import CliRunner import yoda class PortScanTest(unittest.TestCase): """ Test for the following commands: | Module: dev | command: portscan """ def __init__(self, methodName="runTest"): super(PortScanTest, self).__init__() self.runner = CliRunner() def runTest(self): result = self.runner.invoke( yoda.cli, ["dev", "portscan"], input="manparvesh.com" ) self.assertIsNone(result.exception)
StarcoderdataPython
6596216
<reponame>chiragkhandhar/ODAS from django import forms from django.contrib.auth.models import User from django.contrib.auth.forms import UserCreationForm, UserChangeForm from .models import UserProfile from doctor_login.models import docDetails class RegistrationForm(UserCreationForm): email=forms.EmailField(required=True) class Meta: model = User fields = ( 'username', 'first_name', 'last_name', 'email', '<PASSWORD>', '<PASSWORD>' ) def save(self, commit=True): user = super(RegistrationForm, self).save(commit=False) user.first_name = self.cleaned_data['first_name'] user.last_name = self.cleaned_data['last_name'] user.email = self.cleaned_data['email'] user.phone=self.cleaned_data['phone'] if commit: user.save() return user class EditProfileForm(UserChangeForm): class Meta: model = User fields =( 'email', 'first_name', 'last_name', 'password' ) SLOT_LIST=(('slot1','Slot 1'),('slot2','Slot 2'),('slot3','Slot 3'),('slot4','Slot 4'),('slot5','Slot 5'),('slot6','Slot 6'),('slot7','Slot 7')) class scheduleForm(forms.Form): selected_slot= forms.ChoiceField(choices=SLOT_LIST)
StarcoderdataPython
3522371
<gh_stars>0 #!/usr/bin/env python import sys import os class Menu(object): '''Create and maintain a simple menu for PopQ''' program_name = 'PopQ' def __init__(self): self.choices = {'1': self.add_questions, '2': self.start_questionnaire, 'x': self.exit_program} def add_choices(self): '''Add more question files to PopQ''' pass def start_questionnaire(self): '''Start a questionnaire session''' pass def exit_program(self): '''Terminate PopQ''' pass def get_choice(self): '''Get and validate some menu input''' self.print_menu() ans = '' while ans.lower() not in self.choices: ans = input('> ') return ans def print_menu(self): '''Print PopQ menu''' os.system("clear") print('\n'.join([self.program_name,'-'*len(self.program_name)]) + \ ''' 1) Choose categories 2) Start questionnaire X) Quit ''') def start_menu_loop(self): '''Create and maintain the menu input/output''' pass
StarcoderdataPython
6697833
from functools import reduce import pandas as pd import warnings warnings.simplefilter(action='ignore', category=FutureWarning) def mergeAllTime(dfs:list[pd.DataFrame]): ''' Layer 1 - not useful? combines multiple mutlicolumned dataframes. to support disparate frequencies, outter join fills in missing values with previous value. So this isn't really important anymore becauase I realized it'll not be needed anywhere I think, maybe for the live updates models and stream but that's for later. ''' if dfs is pd.DataFrame: return dfs if len(dfs) == 0: return None if len(dfs) == 1: return dfs[0] for df in dfs: df.index = pd.to_datetime(df.index) return reduce( lambda left, right: pd.merge( left, right, how='outer', left_index=True, right_index=True) # can't use this for merge because we don't want to fill the targetColumn .fillna(method='ffill'), #.fillna(method='bfill'), # don't bfill here, in many cases its fine to bfill, but not in all. # maybe we will bfill in model. always bfill After ffill. dfs) def merge(dfs:list[pd.DataFrame], targetColumn:'str|tuple[str]'): ''' Layer 1 combines multiple mutlicolumned dataframes. to support disparate frequencies, outter join fills in missing values with previous value. filters down to the target column observations. ''' if len(dfs) == 0: return None if len(dfs) == 1: return dfs[0] for ix, item in enumerate(dfs): if targetColumn in item.columns: dfs.insert(0, dfs.pop(ix)) break # if we get through this loop without hitting the if # we could possibly use that as a trigger to use the # other merge function, also if targetColumn is None # why would we make a dataset without target though? for df in dfs: df.index = pd.to_datetime(df.index) return reduce( lambda left, right: pd.merge_asof(left, right, left_index=True, right_index=True), dfs) def appendInsert(df:pd.DataFrame, incremental:pd.DataFrame): ''' Layer 2 after datasets merged one cannot merely append a dataframe. we must insert the incremental at the correct location. this function is more of a helper function after we gather, to be used by models, it doesn't talk to disk directly. incremental is should be a multicolumn, one row DataFrame. ''' df.index = pd.to_datetime(df.index) incremental.index = pd.to_datetime(incremental.index) if incremental.index.values[0] in df.index.values: df.loc[incremental.index, [x for x in incremental.columns]] = incremental else: df = df.append(incremental).sort_index() return df.fillna(method='ffill')
StarcoderdataPython
9643871
<reponame>seongcheoljeon/HoudiniRunRender<gh_stars>0 #!/usr/bin/env python # encoding=utf-8 # created date: 2020.09.16 # author: <NAME> # email: <EMAIL> import os import sys import inspect import traceback class Default(object): def __init__(self): pass # path parameters join @staticmethod def set_path_sep(*args): return os.pathsep.join(args) @staticmethod def chk_uid(): if os.getuid() == 0: return True return False @staticmethod def get_common_brg(): return os.getenv("DEF_FXHOME_COMMON_BRIDGE_DIR") @staticmethod def get_opt_dir(): return os.getenv("DEF_OPT_DIR") @staticmethod def get_hou_brg(): return os.getenv("DEF_HOU_BRG") @staticmethod def get_default_hou_ver(): return [os.getenv("DEF_HOUDINI_VERSION")] @staticmethod def get_default_uname(): default_uname = os.getenv("DEF_FXUSER") if default_uname is None: Default.error_message("FXUSER variable is not set.", _exit=True) return default_uname @staticmethod def exists_dir(_dir): if not os.path.isdir(_dir): _file, _line, _func = inspect.getframeinfo(inspect.currentframe())[:3] Default.error_message( "{0} is not a directory.".format(_dir), _exit=True, _file=_file, _line=_line, _func=_func) if not os.path.exists(_dir): _file, _line, _func = inspect.getframeinfo(inspect.currentframe())[:3] Default.error_message( "{0} is a nonexistent directory.".format(_dir), _exit=True, _file=_file, _line=_line, _func=_func) return True @staticmethod def get_fxhome(): fxhome = os.getenv("DEF_FXHOME") Default.exists_dir(fxhome) return fxhome @staticmethod def get_fxhome_user_brg(): return os.getenv("DEF_FXHOME_USER_BRIDGE_DIR") @staticmethod def merge_path(*args): ss = "" if args[0][0] != os.sep: ss = os.sep for arg in args: ss = os.path.join(ss, arg) if ss[0] != os.sep: return ss return os.path.normpath(ss) @staticmethod def get_file_info(): _file, _line, _func = inspect.getframeinfo(inspect.currentframe())[:3] d = dict() d.setdefault("file", _file) d.setdefault("line", _line) d.setdefault("func", _func) return d @staticmethod def confirm_message(msg): print() print("-" * 88) print("[CONFIRM]: {0}".format(msg)) print("-" * 88) @staticmethod def warning_message(msg, _file="", _func="", _line=""): print() print("*" * 100) print("[WARNING]: {0}".format(msg)) print("File: {0}".format(_file)) print("Function: {0}".format(_func)) print("Line: {0}".format(_line)) print("*" * 100) print() @staticmethod def error_message(msg, _exit=False, _file="", _func="", _line=""): sys.stderr.write("\n") sys.stderr.write("*" * 88) sys.stderr.write("\n") sys.stderr.write("[ERROR]: {0}".format(msg)) sys.stderr.write("\n") sys.stderr.write("File: {0}".format(_file)) sys.stderr.write("\n") sys.stderr.write("Function: {0}".format(_func)) sys.stderr.write("\n") sys.stderr.write("Line: {0}".format(_line)) sys.stderr.write("\n") sys.stderr.write("*" * 88) sys.stderr.write("\n") traceback.print_exc() if _exit: sys.exit(1) if __name__ == "__main__": dft = Default() print("fxhome:", dft.get_fxhome()) print("user default:", dft.get_default_uname()) print("houdini version default:", dft.get_default_hou_ver()) print("fxhome user bridge:", dft.get_fxhome_user_brg())
StarcoderdataPython
4863718
__version__ = """1.7.0"""
StarcoderdataPython
5177997
import pickle import torch from torch import nn import numpy as np from scipy import linalg from tqdm import tqdm from calc_inception import load_patched_inception_v3 import pdb import os import csv from glob import glob import math from torch.nn import functional as F from matplotlib import pyplot as plt @torch.no_grad() def extract_features(batch_generator, inception, args): n_batches = args.n_sample // args.batch_size features = [] for _ in tqdm(range(n_batches)): img = batch_generator.generate_fid() feat = inception(img)[0].view(img.shape[0], -1) features.append(feat.to("cpu")) features = torch.cat(features, 0) return features.numpy() def calc_fid(sample_mean, sample_cov, real_mean, real_cov, eps=1e-6): cov_sqrt, _ = linalg.sqrtm(sample_cov @ real_cov, disp=False) if not np.isfinite(cov_sqrt).all(): print('product of cov matrices is singular') offset = np.eye(sample_cov.shape[0]) * eps cov_sqrt = linalg.sqrtm((sample_cov + offset) @ (real_cov + offset)) if np.iscomplexobj(cov_sqrt): if not np.allclose(np.diagonal(cov_sqrt).imag, 0, atol=1e-3): m = np.max(np.abs(cov_sqrt.imag)) raise ValueError(f'Imaginary component {m}') cov_sqrt = cov_sqrt.real mean_diff = sample_mean - real_mean mean_norm = mean_diff @ mean_diff trace = np.trace(sample_cov) + np.trace(real_cov) - 2 * np.trace(cov_sqrt) fid = mean_norm + trace return fid if __name__ == '__main__': from utils_metrics import load_args args = load_args() # assertations assert 'ckpt_dir' in args.__dict__ assert 'inception' in args.__dict__ assert 'device' in args.__dict__ assert 'n_sample' in args.__dict__ assert 'batch_size' in args.__dict__ import sys if 'cookgan' in args.ckpt_dir: sys.path.append('../cookgan/') from generate_batch import BatchGenerator device = args.device print(f'load real image statistics from {args.inception}') with open(args.inception, 'rb') as f: embeds = pickle.load(f) real_mean = embeds['mean'] real_cov = embeds['cov'] filename = os.path.join(args.ckpt_dir, f'fid_{args.n_sample}.csv') # load values that are already computed computed = [] if os.path.exists(filename): with open(filename, 'r') as f: reader = csv.reader(f, delimiter=',') for row in reader: computed += [row[0]] # prepare to write f = open(filename, mode='a') writer = csv.writer(f, delimiter=',') # load inception model inception = load_patched_inception_v3() inception = inception.eval().to(device) ckpt_paths = glob(os.path.join(args.ckpt_dir, '*.ckpt')) + glob(os.path.join(args.ckpt_dir, '*.pt'))+glob(os.path.join(args.ckpt_dir, '*.pth')) ckpt_paths = sorted(ckpt_paths) print('records:', ckpt_paths) print('computed:', computed) for ckpt_path in ckpt_paths: print() print(f'working on {ckpt_path}') iteration = os.path.basename(ckpt_path).split('.')[0] if iteration in computed: print('already computed') continue args.ckpt_path = ckpt_path batch_generator = BatchGenerator(args) features = extract_features(batch_generator, inception, args) print(f'extracted {features.shape[0]} features') sample_mean = np.mean(features, 0) sample_cov = np.cov(features, rowvar=False) fid = calc_fid(sample_mean, sample_cov, real_mean, real_cov) print(f'{iteration}, fid={fid}') writer.writerow([iteration, fid]) f.close() fids = [] with open(filename, 'r') as f: reader = csv.reader(f, delimiter=',') for row in reader: fid = float(row[1]) fids += [fid] fig = plt.figure(figsize=(6,6)) plt.plot(fids) plt.savefig(os.path.join(args.ckpt_dir, f'fid_{args.n_sample}.png'))
StarcoderdataPython
1807399
<filename>torchbenchmark/util/model.py import json import os import pandas as pd import typing from collections.abc import Iterable import torch from contextlib import contextmanager import warnings import inspect import os @contextmanager def no_grad(val): """Some meta-learning models (e.g. maml) may need to train a target(another) model in inference runs """ old_state = torch.is_grad_enabled() try: torch.set_grad_enabled(not val) yield finally: torch.set_grad_enabled(old_state) class BenchmarkModel(): """ A base class for adding models to torch benchmark. See [Adding Models](#../models/ADDING_MODELS.md) """ def __init__(self, *args, **kwargs): pass def train(self): raise NotImplementedError() def eval(self): raise NotImplementedError() def set_eval(self): self._set_mode(False) def set_train(self): self._set_mode(True) def eval_in_nograd(self): return True def _set_mode(self, train): (model, _) = self.get_module() model.train(train) def check_opt_vs_noopt_jit(self): if not self.jit: return model_name = inspect.getfile(self.__class__).split(os.sep)[-2] print(f"model_name={model_name} , {inspect.getfile(self.__class__)}") model_blacklist = [ 'demucs', # set up issue 'yolov3', # set up issue 'BERT_pytorch', # set up issue 'moco', # set up issue 'Super_SloMo', # results don't match, might be due to the way TE CUDA handles rand? 'attention_is_all_you_need_pytorch', # results don't match, might be due to the way TE CUDA handles rand? ] if model_name in model_blacklist: warnings.warn(UserWarning(f"{model_name}.get_module() doesn't support `check_results` yet!")) return # if a model doesn't support `get_module` # we should let it throw and then # override `check_results` for that model try: model, inputs = self.get_module() except NotImplementedError: warnings.warn(UserWarning(f"{model_name}.get_module() doesn't support `check_results` yet!")) return def bench_allclose(a, b): if isinstance(a, torch.Tensor): assert(isinstance(b, torch.Tensor)) assert(a.allclose(b)) elif isinstance(a, tuple) or isinstance (b, list): assert(type(a) == type(b)) assert(len(a) == len(b)) for i in range(len(a)): bench_allclose(a[i], b[i]) else: raise RuntimeError("Encountered an supported type.\n" + "Please add the type or override `bench_allclose`") try: opt = model(*inputs) except Exception as e: print(e) warnings.warn(UserWarning(f"{model_name}.eval() doesn't support `check_results` yet!")) return # disable optimizations and force a recompilation # to a baseline version fwd = model._c._get_method("forward") fwd._debug_flush_compilation_cache() torch._C._set_graph_executor_optimize(False) base = model(*inputs) torch._C._set_graph_executor_optimize(True) bench_allclose(base, opt)
StarcoderdataPython
1886497
<reponame>shaun95/google-research<filename>symbolic_functionals/syfes/xc/mgga_test.py # coding=utf-8 # Copyright 2022 The Google Research Authors. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """Tests for xc.mgga.""" import tempfile from absl import flags from absl.testing import absltest from absl.testing import parameterized import jax import numpy as np from pyscf.dft import libxc import pyscf.gto from pyscf.lib import parameters from symbolic_functionals.syfes.xc import mgga jax.config.update('jax_enable_x64', True) class XCMGGATest(parameterized.TestCase): def setUp(self): super().setUp() parameters.TMPDIR = tempfile.mkdtemp(dir=flags.FLAGS.test_tmpdir) mol = pyscf.gto.M( atom="""O 0. 0. 0. H 0. -0.757 0.587 H 0. 0.757 0.587 """, basis='def2svpd', verbose=1) ks = pyscf.dft.RKS(mol) ks.xc = 'pbe,pbe' ks.kernel() ao = ks._numint.eval_ao(ks.mol, coords=ks.grids.coords, deriv=2) self.weights = ks.grids.weights self.rho_and_derivs = ks._numint.eval_rho2( ks.mol, ao, mo_coeff=ks.mo_coeff, mo_occ=ks.mo_occ, xctype='MGGA') self.rho, gradx, grady, gradz, self.lapl, self.tau = self.rho_and_derivs self.sigma = gradx**2 + grady**2 + gradz**2 # construct a spin polarized density to test spin polarized case zeta = 0.2 self.rho_and_derivs_a = 0.5 * (1 + zeta) * self.rho_and_derivs self.rho_and_derivs_b = 0.5 * (1 - zeta) * self.rho_and_derivs self.rhoa, self.rhob = self.rho_and_derivs_a[0], self.rho_and_derivs_b[0] self.sigma_aa = (0.5 * (1 + zeta))**2 * self.sigma self.sigma_ab = ((0.5 * (1 + zeta)) * (0.5 * (1 - zeta))) * self.sigma self.sigma_bb = (0.5 * (1 - zeta))**2 * self.sigma self.tau_a, self.tau_b = self.rho_and_derivs_a[5], self.rho_and_derivs_b[5] # NOTE(htm): The parameters used in mgga.e_xc_wb97mv_* functions are checked # againast libxc, but the resulting e_xc shows small deviations from libxc # results (on the order of 1e-3). The reason for the deviation is uncertain. # The difference on the integrated E_xc energy is very small (< 1e-5 Hartree). # In the following tests the tolerance for assert_allclose has taken this # deviation into account. @parameterized.parameters( ('hyb_mgga_xc_wb97m_v', mgga.e_xc_wb97mv_unpolarized), ('mgga_xc_b97m_v', mgga.e_xc_b97mv_unpolarized) ) def test_mgga_xc_unpolarized_against_libxc(self, xc_name, xc_fun): eps_xc_ref, rhograds_ref, _, _ = libxc.eval_xc( xc_name, self.rho, spin=0, relativity=0, deriv=1) vrho_ref, vsigma_ref, _, vtau_ref = rhograds_ref e_xc_ref = eps_xc_ref * self.rho e_xc = xc_fun(self.rho, self.sigma, self.tau) e_xc, grads = jax.vmap(jax.value_and_grad(xc_fun, argnums=(0, 1, 2)))( self.rho, self.sigma, self.tau) vrho, vsigma, vtau = grads np.testing.assert_allclose( np.sum(e_xc * self.weights), np.sum(e_xc_ref * self.weights), atol=1e-5) np.testing.assert_allclose(e_xc, e_xc_ref, rtol=1e-2, atol=1.e-12) np.testing.assert_allclose(vrho, vrho_ref, atol=2e-4) # TODO(leyley,htm): Fix vsigma with libxc 5. del vsigma, vsigma_ref # np.testing.assert_allclose(vsigma, vsigma_ref, atol=1e-2) np.testing.assert_allclose(vtau, vtau_ref, atol=1e-5) @parameterized.parameters( ('hyb_mgga_xc_wb97m_v', mgga.e_xc_wb97mv_polarized), ('mgga_xc_b97m_v', mgga.e_xc_b97mv_polarized) ) def test_wb97xv_polarized_against_libxc(self, xc_name, xc_fun): eps_xc_ref, rhograds_ref, _, _ = libxc.eval_xc( xc_name, (self.rho_and_derivs_a, self.rho_and_derivs_b), spin=1, relativity=0, deriv=1) e_xc_ref = eps_xc_ref * self.rho vrho_ref, vsigma_ref, _, vtau_ref = rhograds_ref e_xc, grads = jax.vmap(jax.value_and_grad( xc_fun, argnums=(0, 1, 2, 3, 4, 5, 6)))( self.rhoa, self.rhob, self.sigma_aa, self.sigma_ab, self.sigma_bb, self.tau_a, self.tau_b) vrhoa, vrhob, vsigma_aa, vsigma_ab, vsigma_bb, vtau_a, vtau_b = grads np.testing.assert_allclose( np.sum(e_xc * self.weights), np.sum(e_xc_ref * self.weights), atol=1e-5) np.testing.assert_allclose(e_xc, e_xc_ref, rtol=1e-2, atol=1.e-12) np.testing.assert_allclose(vrhoa, vrho_ref[:, 0], atol=2e-4) np.testing.assert_allclose(vrhob, vrho_ref[:, 1], atol=2e-4) # TODO(leyley,htm): Fix vsigma with libxc 5. del vsigma_aa, vsigma_bb # np.testing.assert_allclose(vsigma_aa, vsigma_ref[:, 0], atol=1e-2) np.testing.assert_allclose(vsigma_ab, vsigma_ref[:, 1], atol=1e-2) # np.testing.assert_allclose(vsigma_bb, vsigma_ref[:, 2], atol=1e-2) np.testing.assert_allclose(vtau_a, vtau_ref[:, 0], atol=1e-5) np.testing.assert_allclose(vtau_b, vtau_ref[:, 1], atol=1e-5) if __name__ == '__main__': absltest.main()
StarcoderdataPython
1681289
<gh_stars>0 """ some utilities for dealing with midi This uses python package python-midi """ import traceback import math import json import midi import os, glob, sys, string from midi.events import * import copy def is_ascii(s): return all(ord(c) < 128 for c in s) import base64 def put(dic, key, val): if key in dic: dic[key].append(val) else: dic[key] = [val] class PVEvent: def clone(self): return copy.copy(self) class ProgChangeEvent(PVEvent): def __init__(self, t0, ch, instrument): self.t0 = t0 self.channel = ch self.instrument = instrument def rescaleTime(self, sf): self.t0 *= sf def getT0(self): return self.t0 def setT0(self, t0): self.t0 = t0 def toDict(self): d = {"type": "programChange", "channel": self.channel, "instrument": self.instrument, "t0": self.t0} return d def toList(self): return ["programChange", self.t0, self.channel, self.instrument] class TempoEvent(PVEvent): def __init__(self, t0, bpm, mpqn): self.t0 = t0 self.bpm = bpm self.mpqn = mpqn def getT0(self): return self.t0 def rescaleTime(self, sf): self.t0 *= sf def setT0(self, t0): self.t0 = t0 def toDict(self): return {"type": "tempo", "t0": self.t0, "bpm": self.bpm, "mpqn": self.mpqn} def toList(self): return ["tempo", self.t0, self.bpm, self.mpqn] class Note(PVEvent): def __init__(self, channel, pitch, t0, velocity, dur=None): self.channel = channel self.pitch = pitch self.t0 = t0 self.velocity = velocity self.dur = dur self.parts = [[t0,velocity]] if dur: self.finish(t0+dur) def rescaleTime(self, sf): t0 = self.getT0() self.t0 = sf*t0 self.dur *= sf for part in self.parts: part[0] = sf*t0 def setT0(self, t0): self.t0 = t0 self.parts[0][0] = t0 def setVelocity(self, v): self.velocity = v self.parts[0][1] = v def getT0(self): return self.parts[0][0] def extend(self, t, velocity): self.parts.append([t,velocity]) def finish(self, t): self.parts.append([t,0]) def toDict(self): t0 = self.parts[0][0] v = self.parts[0][1] dur = self.parts[-1][0] - t0 d = {"type": "note", "channel": self.channel, "t0": t0, "pitch": self.pitch, "dur": dur, "v": v} if len(self.parts) != 2: print "Note with other than less than 2 parts" d['parts'] = self.parts return d def toList(self): t0 = self.parts[0][0] v = self.parts[0][1] dur = self.parts[-1][0] - t0 lst = ["note", t0, self.channel, self.pitch, v, dur] if len(self.parts) != 2: print "Note with %d parts" % len(self.parts) lst.append(self.parts) return lst class TrackObj: def __init__(self, trackOrPath=None, trackName=None): self.tMax = None self.trackName = trackName self.events = {} self.instrument = None self.channels = set() self.instruments = set() if trackOrPath == None: return if type(trackOrPath) in [type("str"), type(u"str")]: self.loadJSON(trackOrPath) else: self.observeTrack(trackOrPath) def merge(self, tobj): """ Copy all notes from other track to play in parallel. """ self.addEvents(tobj.allEvents()) self.instruments = self.instruments.union(tobj.instruments) self.channels = self.channels.union(tobj.channels) def append(self, tobj): tMax = self.getMaxTime() notes = tobj.allNotes() for note in notes: nnote = Note(note.channel, note.pitch, note.t0+tMax, note.velocity, note.dur) self.addNote(nnote) self.tMax = tMax + tobj.getMaxTime() def getNumNotes(self): return len(self.allNotes()) def getMinTime(self): if not self.events: return 0 return min(self.events.keys()) def getDur(self): return self.getMaxTime() def setMaxTime(self, tMax): self.tMax = tMax def getMaxTime(self): if self.tMax != None: return self.tMax if not self.events: return 0 times = self.events.keys() times.sort() t1 = times[-1] tMax = t1 t = tMax #print "t1:",t1 for evt in self.events[t1]: if isinstance(evt, Note): #print evt, evt.dur if evt.dur: t = t1 + evt.dur tMax = max(tMax, t) self.tMax = tMax return t def scalePower(self, s0, s1=None): t0 = self.getMinTime() t1 = self.getMaxTime() dur = t1-t0 print "t0:", t0, " t1:", t1, " dur:", dur if s1 == None: s1 = s0 for note in self.allNotes(): t = note.t0 f = (t - t0)/float(dur) s = s0 + f*(s1-s0) v = int(note.velocity * s) print "%5d %6.4f %3d -> %3d" % (t, s, note.velocity, v) note.setVelocity(v) def scalePowerBySin(self): t0 = self.getMinTime() t1 = self.getMaxTime() dur = t1-t0 print "t0:", t0, " t1:", t1, " dur:", dur for note in self.allNotes(): t = note.t0 f = (t - t0)/float(dur) s = math.sin(f*math.pi) v = int(note.velocity * s) print "%5d %6.4f %3d -> %3d" % (t, s, note.velocity, v) note.setVelocity(v) def getRescaleTimeMap(self, s0=1, s1=2, maxTime=None): if maxTime == None: maxTime = self.getMaxTime() maxTime = int(maxTime) j = 0 tmap = {} for i in range(maxTime+1): s = s0 + (s1-s0)*i/(maxTime-1.0) j += 1/s #print "%5d %7.2f %7.2f" % (i, s, j) tmap[i] = int(math.floor(j)) return tmap def rescaleByTimeMap(self, tmap=None): if tmap == None: tmap = self.getRescaleTimeMap() tobj = TrackObj() keys = self.events.keys() keys.sort() for t in keys: nt = tmap[t] for note in self.events[t]: nnote = Note(note.channel, note.pitch, nt, note.velocity, note.dur) tobj.addNote(nnote) return tobj def rescaleTime(self, sf): tMax = self.getMaxTime() self.setMaxTime(sf*tMax) events = self.allEvents() self.events = {} for evt in events: evt.rescaleTime(sf) self.addEvent(evt) def allNotes(self): notes = [] for ev in self.events.values(): for e in ev: if isinstance(e, Note): notes.append(e) return notes def allEvents(self): events = [] for ev in self.events.values(): for e in ev: events.append(e) return events def addEvents(self, evts): for ev in evts: self.addEvent(note) def addNote(self, note): self.addEvent(note) def addEvent(self, evt): t0 = evt.getT0() if t0 in self.events: self.events[t0].append(evt) else: self.events[t0] = [evt] def addTempoEvent(self, tempoEvent): self.addEvent(tempoEvent) def addProgramChangeEvent(self, event): self.addEvent(event) def observeTrack(self, track): tn = 0 openNotes = {} for evt in track: tick = evt.tick tn += tick #print "tn: %s tick: %s evt: %s" % (tn, tick, evt) if isinstance(evt, NoteEvent): ch = evt.channel #if ch != 0: # print "ch:", ch pitch = evt.pitch v = evt.velocity #print tn, evt.name, evt.pitch, evt.velocity if isinstance(evt, NoteOnEvent): self.channels.add(ch) if pitch in openNotes: if openNotes[pitch].parts[-1] == [tn,v]: print "*** ignoring redundant NoteOn ****" else: openNotes[pitch].extend(tn,v) if v != 0: print "*** extending note", openNotes[pitch].parts else: if v == 0: print "**** Warning ignoring note with velocity 0 ****" continue openNotes[pitch] = Note(ch, pitch, tn, v) if v == 0: note = openNotes[pitch] if note.dur == None: note.dur = tn - note.t0 #print "added note.dur", note.dur self.addNote(note) del openNotes[pitch] elif isinstance(evt, NoteOffEvent): if v != 64: print "NoteOff with v != 64" if pitch in openNotes: note = openNotes[pitch] note.finish(tn) self.addEvent(note) del openNotes[pitch] else: print "NoteOff for unstarted note" else: print "Unexpected note type", evt.name elif isinstance(evt, TrackNameEvent): print "TrackName", evt.text if is_ascii(evt.text): self.trackName = evt.text else: print "**** Non ascii name", evt.text elif isinstance(evt, PitchWheelEvent): #print "PitchWheel", evt.pitch pass elif isinstance(evt, ProgramChangeEvent): ch = evt.channel instrument = evt.value self.channels.add(ch) self.instruments.add(instrument) print "ProgramChange", ch, instrument self.addProgramChangeEvent(ProgChangeEvent(tn, ch, evt.value)) #if self.instrument != None and self.instrument != evt.value: # print "**** Changing instrument within track" self.instrument = evt.value elif isinstance(evt, TimeSignatureEvent): n = evt.numerator d = evt.denominator met = evt.metronome s30 = evt.thirtyseconds print "TimeSignature %s/%s met: %s s30: %s" % \ (n,d, met, s30) elif isinstance(evt, SetTempoEvent): bpm = evt.bpm mpqn = evt.mpqn print "TempoEvent bpm: %s mpqn: %s" % (bpm, mpqn) self.addTempoEvent(TempoEvent(tn, bpm, mpqn)) elif isinstance(evt, EndOfTrackEvent): print "End of track" elif isinstance(evt, ControlChangeEvent): print "ControlChange" pass else: print "Unrecognized event type:", evt.name # # Now must close any open notes for pitch in openNotes: note = openNotes[pitch] note.finish(tn) self.addNote(note) def toDict(self): seq = [] keys = self.events.keys() keys.sort() for t in keys: eventsAtT = [] evts = self.events[t] for evt in evts: eventsAtT.append(evt.toDict()) seq.append([t, eventsAtT]) obj = {'type': 'TrackObj', 'seq': seq} obj['numNotes'] = self.getNumNotes() obj['instruments'] = list(self.instruments) obj['channels'] = list(self.channels) if self.instrument != None: obj['instrument'] = self.instrument if self.trackName: obj['trackName'] = self.trackName if self.tMax != None: obj['tMax'] = self.tMax return obj def saveAsJSON(self, path): print "Saving TrackObj to", path json.dump(self.toDict(), file(path, "w"),indent=4, sort_keys=True) def loadJSON(self, path): print "Loading TrackObj from", path obj = json.load(file(path)) if 'tMax' in obj: self.tMax = obj['tMax'] evList = obj['seq'] for ev in evList: t, noteList = ev notes = [] for n in noteList: #note = Note(n[2], n[1], n[3], n[4]) note = Note(n[1], n[3], n[2], n[4], n[5]) notes.append(note) self.events[t] = notes def dump(self): print "%d complete notes" % len(self.notes) i = 0 for note in self.notes: print note if i >= 10: break class MidiObj: def __init__(self, path=None, resolution=1000): self.tracks = [] self.instruments = set() self.channels = set() self.resolution = resolution # this is ticksPerBeat self.bpm = 100 self.format = 1 self.loop = False if path: self.load(path) def setResolution(self, r): self.resolution = r def setBPM(self, bpm): self.bpm = bpm def rescaleTime(self, sf): for track in self.tracks: track.rescaleTime(sf) def getTicksPerSec(self): # resolution is ticksPerBeat return self.resolution*self.bpm/60.0 def ticksFromTime(self, t): return t*self.getTicksPerSec() def timeFromTicks(self, ticks): return ticks/self.getTicksPerSec() def dumpInfo(self): print "Num tracks", len(self.tracks) i = 0 print "Num Name Notes Dur Instruments Channels" for track in self.tracks: i += 1 print "%3d %-18s %4d %7d %-18s %-18s" % \ (i, track.trackName, track.getNumNotes(), track.getDur(), list(track.instruments), list(track.channels)) def load(self, midiPath): pattern = midi.read_midifile(midiPath) self.resolution = pattern.resolution self.format = pattern.format print "pattern.resolution:", pattern.resolution print "pattern.format:", pattern.format i = 0; print type(pattern) ntracks = len(pattern) print "ntracks:", ntracks for track in pattern: i += 1 trackName = "Track%d" % i #if ntracks > 1: # jpath = path.replace(".mid", "%d.json" % i) print trackName self.addTrack(TrackObj(track, trackName)) def addTrack(self, trackObj): self.instruments = self.instruments.union(trackObj.instruments) self.channels = self.channels.union(trackObj.channels) self.tracks.append(trackObj) def toDict(self): return {'type': 'MidiObj', 'instruments': list(self.instruments), 'channels': list(self.channels), 'format': self.format, 'resolution': self.resolution, 'loop': self.loop, 'tracks': map(TrackObj.toDict, self.tracks)} def saveAsJSON(self, jpath): print "Save MidiObj to", jpath json.dump(self.toDict(), file(jpath, "w"), indent=4) def saveAsMidi(self, mpath, loop=False): print "Save MidiObj to", mpath pattern = midi.Pattern(resolution=self.resolution) for track in self.tracks: mtrack = midi.Track() mevents = {} #put(mevents, 0, midi.ProgramChangeEvent(channel=0, tick=0, value=0)) for ev in track.allEvents(): if isinstance(ev, ProgChangeEvent): t = ev.t0 me = midi.ProgramChangeEvent(channel=ev.channel, tick=0, value=ev.instrument) put(mevents, t, me) elif isinstance(ev, Note): t = ev.t0 dur = ev.dur me = midi.NoteOnEvent(channel=ev.channel, tick=0, velocity=ev.velocity, pitch=ev.pitch) put(mevents, t, me) me = midi.NoteOffEvent(channel=ev.channel, tick=0, pitch=ev.pitch) put(mevents, t+dur, me) else: continue tvals = mevents.keys() tvals.sort() prevT = 0 for t in tvals: dt = t - prevT prevT = t mevs = mevents[t] i = 0 for mev in mevs: i += 1 mev.tick = 0 if i == 1: mev.tick = int(dt) mtrack.append(mev) if loop: mtrack.append(midi.TrackLoopEvent(tick=0)) mtrack.append(midi.EndOfTrackEvent(tick=0)) pattern.append(mtrack) #print pattern midi.write_midifile(mpath, pattern) def convertToJSON(path, jpath=None): if not jpath: jpath = path.replace(".mid", ".json") midiObj = MidiObj(path) midiObj.dumpInfo() midiObj.saveAsJSON(jpath) """ Convert one of the base64 coded data urls found in euphomy tracks directory to proper .mid file. """ def convert(b64path, mpath): str = file(b64path).read() i = str.find(",") data = str[i+1:] mid = base64.b64decode(data) file(mpath,"wb").write(mid) def processAll(force=False): #fnames = os.listdir(".") fnames = glob.glob("*") + glob.glob("*/*") ids = {} for fname in fnames: fname = fname.replace("\\", "/") name, ext = os.path.splitext(fname) ext = ext.lower() if ext not in [".mb64", ".mid"]: continue ids[name] = fname if ext == ".mb64" and os.path.exists(name+".mid"): print "Skipping conversion to .mid" continue print name if os.path.exists(name+".json") and not force: print "Skipping %s because .json exists" % name continue process(fname, force) names = ids.keys() names.sort() json.dump(names, file("compositions.json", "w"), indent=4) def process(path=None, force=False): if path == None: return processAll(force) print "="*64 print "path:", path if path.endswith(".mb64"): mpath = path.replace(".mb64", ".mid") convert(path, mpath) path = mpath jpath = path.replace(".mid", ".json") if force or not os.path.exists(jpath): convertToJSON(path) #pattern = midi.read_midifile(path) #print pattern def playMelody(name): try: playMelody_(name) except: traceback.print_exc() def playMelody_(name): import websocket #ws = websocket.create_connection("ws://echo.websocket.org/") ws = websocket.create_connection("ws://localhost:8100/") msg = {'msgType': 'midi.play', 'name': name} jstr = json.dumps(msg) ws.send(jstr) result = ws.recv() print "result" def run(): process("cello2.mid", force=True) return process("EarthAndSky.mid") process("DistantDrums.mid") process("BluesRhythm1.mid") return process("shimauta1.mid") process("minute_waltz.mid") process("jukebox.mid") process("beethovenSym5m1.mb64") process("chopin69.mb64") process("wtc0.mb64") process("passac.mid") if __name__ == '__main__': run()
StarcoderdataPython
6461503
from pymongo import MongoClient from bson.objectid import ObjectId import datetime import os MONGODB_URI = os.environ.get('MONGODB_URI', 'mongodb://localhost/fmtrends') MONGODB_URI = 'mongodb://heroku_gxwl3h33:<EMAIL>:55852/heroku_gxwl3h33' print 'MONGODB_URI:',MONGODB_URI mongo_client = MongoClient(MONGODB_URI) db = mongo_client.get_default_database() def play_near(play, plays): minutes = 150 for p in plays: d = (p['played_at'] - play['played_at']).total_seconds() if 0 < d and d < (minutes * 60) and p['_id'] is not play['_id']: # delete p q = { '_id': p['_id'] } # print '\n\n' # print db.plays.remove(q) print play print d print p # print '\n\n' def main(): tracks = db.tracks.find({ 'count': { '$gt': 1 } }) for track in tracks[:]: plays = db.plays.find({ 'track_id': track['_id'] }) # print track plays = list(plays) for play in plays: d = play['played_at'] - plays[0]['played_at'] play_near(play, plays) if __name__ == '__main__': main()
StarcoderdataPython
9624360
<filename>hlwtadmin/migrations/0016_auto_20200225_1006.py # Generated by Django 3.0 on 2020-02-25 09:06 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('hlwtadmin', '0015_auto_20200224_1447'), ] operations = [ migrations.AlterField( model_name='historicalorganisation', name='active', field=models.BooleanField(blank=True, null=True), ), migrations.AlterField( model_name='historicalorganisation', name='verified', field=models.BooleanField(blank=True, default=False, null=True), ), migrations.AlterField( model_name='organisation', name='active', field=models.BooleanField(blank=True, null=True), ), migrations.AlterField( model_name='organisation', name='verified', field=models.BooleanField(blank=True, default=False, null=True), ), ]
StarcoderdataPython