id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
9795579
import os import unittest2 as unittest from collections import defaultdict from tincmmgr.tincmm import PythonFileHandler, SQLFileHandler from mpp.models import MPPTestCase, SQLTestCase class PythonFileHandlerTests(unittest.TestCase): def test_parser(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) # Check that docstring is not empy self.assertTrue(test_file_handle.docstring_tuples) # sample_tests.py has many classes and methods: # (wd) means with docstring ; (nd) means no docstring ; (ntm) means not test method ; (ntc) means not test class # SampleMPPTests (wd): test_1 (nd), test_2 (wd), test_3 (wd) # SampleSQLTests (wd): test_explicit_1 (nd), test_explicit_2 (wd) # SampleTestsNoDocstring (nd): test_no_1 (nd), test_no_2 (nd), test_no_3 (ntm) # stray_def: Stray definition that is not test method and that is not part of any test class. # StrayClass (ntc): test_stray_1 (ntm), test_stray_2 (ntm) # SampleTestsAfterStray (wd): test_last_1 (wd), test_last_2 (wd) # So there should be 5 method docstrings and 3 classes docstring = 8 valid docstrings # And then there 4 test methods without docstring and 1 test class without docstring = 5 valid test method/class with no docstring self.assertEqual(len(test_file_handle.docstring_tuples), 13) docstring_present_count = 0 docstring_absent_count = 0 for my_tuple in test_file_handle.docstring_tuples: if my_tuple.original_docstring: docstring_present_count += 1 else: docstring_absent_count += 1 self.assertEquals(docstring_present_count, 8) self.assertEquals(docstring_absent_count, 5) def test_get_metadata_dictionary(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) # Check that docstring is not empy self.assertTrue(test_file_handle.docstring_tuples) # Let's check each docstring metadata # All dictionaries will always have __changed__ key # SampleMPPTests only has @tags class1 my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = None) self.assertEqual(len(my_dict), 2) self.assertEqual(my_dict['tags'], "class1") # SampleMPPTests' test_1 should be empty. my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_1') self.assertEqual(len(my_dict), 1) # SampleMPPTests' test_2 should only have @tags test2. my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_2') self.assertEqual(len(my_dict), 2) self.assertEqual(my_dict['tags'], "test2") # SampleMPPTests' test_3 should only have @product_version prod1: my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_3') self.assertEqual(len(my_dict), 2) self.assertEqual(my_dict['product_version'], "prod1:") # SampleSQLTests has @tags sql smoke, and @author sql_author my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) self.assertEqual(len(my_dict), 3) self.assertEqual(my_dict['tags'], "sql smoke") self.assertEqual(my_dict['author'], "sql_author") # SampleSQLTests' test_explicit_1 has nothing my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = 'test_explicit_1') self.assertEqual(len(my_dict), 1) # SampleSQLTests' test_explicit_2 has @tags explicit my_dict = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = 'test_explicit_2') self.assertEqual(len(my_dict), 2) self.assertEqual(my_dict['tags'], "explicit") def test_generate_new_docstring(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = 'test_explicit_2') metadata_dictionary['__changed__'] = True original_docstring = '' for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleSQLTests' and my_tuple.method_name == 'test_explicit_2': original_docstring = my_tuple.original_docstring offset = my_tuple.offset break new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertEquals(new_docstring.strip('\n'), original_docstring) # Original tags is explicit. Change it to blah metadata_dictionary['tags'] = "blah" new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertTrue("@tags blah" in new_docstring) self.assertTrue("@tags test_explicit_2" not in new_docstring) # Add something to metadata_dictionary that wasn't there before metadata_dictionary['author'] = 'mel' new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertTrue("@author mel" in new_docstring) def test_generate_new_docstring_complicated(self): # Work with more complicated docstring: SampleSQLTests test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) metadata_dictionary['__changed__'] = True original_docstring = '' for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleSQLTests' and my_tuple.method_name == None: original_docstring = my_tuple.original_docstring offset = my_tuple.offset break new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertEquals(new_docstring.strip('\n'), original_docstring) # Original author is sql_author. Change it to blah metadata_dictionary['author'] = "blah" new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertTrue("@author blah" in new_docstring) self.assertTrue("@author sql_author" not in new_docstring) # Verify that the comment is still there self.assertTrue("Comment here" in new_docstring) self.assertTrue("Some space above" in new_docstring) # Add something to metadata_dictionary that wasn't there before metadata_dictionary['bugs'] = 'mpp-1' new_docstring = test_file_handle.generate_new_docstring(original_docstring, metadata_dictionary, offset) self.assertTrue("@bugs mpp-1" in new_docstring) def test_update_docstring_class(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) metadata_dictionary['__changed__'] = True # Original author is sql_author. Change it to bal_author metadata_dictionary['author'] = "bal_author" # Add something to metadata_dictionary that wasn't there before metadata_dictionary['bugs'] = 'mpp-1' test_file_handle.update_docstring(class_name = 'SampleSQLTests', method_name = None, metadata_dictionary = metadata_dictionary) # Go through the docstring_tuples and find our tuple tuple_found = None for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleSQLTests' and my_tuple.method_name == None: tuple_found = my_tuple break self.assertTrue(tuple_found is not None) self.assertTrue("@author bal_author" in tuple_found.new_docstring) self.assertTrue("@author sql_author" not in tuple_found.new_docstring) # Verify that the comment is still there self.assertTrue("Comment here" in tuple_found.new_docstring) self.assertTrue("Some space above" in tuple_found.new_docstring) # Verify that new metadata got added with 4 spaces self.assertTrue(" @bugs mpp-1" in tuple_found.new_docstring) def test_update_docstring_method(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = "test_explicit_2") metadata_dictionary['__changed__'] = True # Add something to metadata_dictionary that wasn't there before metadata_dictionary['bugs'] = 'mpp-2' test_file_handle.update_docstring(class_name = 'SampleSQLTests', method_name = 'test_explicit_2', metadata_dictionary = metadata_dictionary) # Go through the docstring_tuples and find our tuple tuple_found = None for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleSQLTests' and my_tuple.method_name == 'test_explicit_2': tuple_found = my_tuple break self.assertTrue(tuple_found is not None) # Verify that new metadata got added with 8 spaces for method self.assertTrue(" @bugs mpp-2" in tuple_found.new_docstring) def test_update_docstring_no_original_class(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = None) metadata_dictionary['__changed__'] = True # Add something to metadata_dictionary that wasn't there before metadata_dictionary['bugs'] = 'mpp-3' metadata_dictionary['tags'] = 'smoke' test_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = None, metadata_dictionary = metadata_dictionary) # Go through the docstring_tuples and find our tuple tuple_found = None for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleTestsNoDocstring' and my_tuple.method_name == None: tuple_found = my_tuple break self.assertTrue(tuple_found is not None) # Verify that new metadata got added with 4 spaces for class self.assertTrue(" @bugs mpp-3" in tuple_found.new_docstring) self.assertTrue(" @tags smoke" in tuple_found.new_docstring) self.assertTrue(tuple_found.original_docstring is None) def test_update_docstring_no_original_method(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary = test_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1') metadata_dictionary['__changed__'] = True # Add something to metadata_dictionary that wasn't there before metadata_dictionary['bugs'] = 'mpp-4' metadata_dictionary['tags'] = 'smokey' test_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1', metadata_dictionary = metadata_dictionary) # Go through the docstring_tuples and find our tuple tuple_found = None for my_tuple in test_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleTestsNoDocstring' and my_tuple.method_name == 'test_no_1': tuple_found = my_tuple break self.assertTrue(tuple_found is not None) # Verify that new metadata got added with 4 spaces for class self.assertTrue(" @bugs mpp-4" in tuple_found.new_docstring) self.assertTrue(" @tags smokey" in tuple_found.new_docstring) self.assertTrue(tuple_found.original_docstring is None) def test_update_file_existing_docstring(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary_class = test_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) metadata_dictionary_class['__changed__'] = True # Original author is sql_author. Change it to bal_author metadata_dictionary_class['author'] = "bal_author" # Add something to metadata_dictionary that wasn't there before metadata_dictionary_class['bugs'] = 'mpp-1' # Modify method one as well metadata_dictionary_method = test_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_3') metadata_dictionary_method['__changed__'] = True # Original product_version is prod1:. Delete it. metadata_dictionary_method.pop('product_version') # Add something to metadata_dictionary that wasn't there before metadata_dictionary_method['tags'] = 'smoke' new_file = os.path.join(os.path.dirname(__file__), 'sample_tests_new.py') test_file_handle.update_docstring(class_name = 'SampleSQLTests', method_name = None, metadata_dictionary = metadata_dictionary_class) test_file_handle.update_docstring(class_name = 'SampleMPPTests', method_name = 'test_3', metadata_dictionary = metadata_dictionary_method) test_file_handle.update_file(new_file) # Verify that new file exists self.assertTrue(os.path.exists(new_file)) # Now, get the docstring from new file new_file_handle = PythonFileHandler(new_file) new_class_tuple = None new_method_tuple = None for my_tuple in new_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleSQLTests' and my_tuple.method_name == None: new_class_tuple = my_tuple if my_tuple.class_name == 'SampleMPPTests' and my_tuple.method_name == 'test_3': new_method_tuple = my_tuple self.assertTrue(new_class_tuple is not None) self.assertTrue(new_method_tuple is not None) # Verify original docstring of new_file self.assertTrue(" Comment here" in new_class_tuple.original_docstring) self.assertTrue(" @author bal_author" in new_class_tuple.original_docstring) self.assertTrue(" @bugs mpp-1" in new_class_tuple.original_docstring) self.assertTrue(" @tags smoke" in new_method_tuple.original_docstring) self.assertTrue("@product_version" not in new_method_tuple.original_docstring) # Verify that update_file in-place works new_class_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) new_method_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_3') new_class_dict['__changed__'] = True new_method_dict['__changed__'] = True new_class_dict.pop('author') new_class_dict.pop('tags') new_class_dict.pop('bugs') new_method_dict.pop('tags') new_file_handle.update_docstring(class_name = 'SampleSQLTests', method_name = None, metadata_dictionary = new_class_dict) new_file_handle.update_docstring(class_name = 'SampleMPPTests', method_name = 'test_3', metadata_dictionary = new_method_dict) new_file_handle.update_file() new_file_handle = PythonFileHandler(new_file) new_class_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleSQLTests', method_name = None) new_method_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleMPPTests', method_name = 'test_3') # Should have no keys (except for __changed__) self.assertEqual(len(new_class_dict), 1) self.assertEqual(len(new_method_dict), 1) os.remove(new_file) @unittest.skip("Failing for now...") def test_update_file_no_docstring(self): test_file_handle = PythonFileHandler(os.path.join(os.path.dirname(__file__), 'sample_tests.py')) metadata_dictionary_class = test_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = None) metadata_dictionary_class['__changed__'] = True # Add something to metadata_dictionary that wasn't there before metadata_dictionary_class['bugs'] = 'mpp-1' # Modify method one as well metadata_dictionary_method = test_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1') metadata_dictionary_method['__changed__'] = True # Add something to metadata_dictionary that wasn't there before metadata_dictionary_method['tags'] = 'smoke' new_file = os.path.join(os.path.dirname(__file__), 'sample_tests_new.py') test_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = None, metadata_dictionary = metadata_dictionary_class) test_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1', metadata_dictionary = metadata_dictionary_method) test_file_handle.update_file(new_file) # Verify that new file exists self.assertTrue(os.path.exists(new_file)) # Now, get the docstring from new file new_file_handle = PythonFileHandler(new_file) new_class_tuple = None new_method_tuple = None for my_tuple in new_file_handle.docstring_tuples: if my_tuple.class_name == 'SampleTestsNoDocstring' and my_tuple.method_name == None: new_class_tuple = my_tuple if my_tuple.class_name == 'SampleTestsNoDocstring' and my_tuple.method_name == 'test_no_1': new_method_tuple = my_tuple self.assertTrue(new_class_tuple is not None) self.assertTrue(new_method_tuple is not None) # Verify original docstring of new_file self.assertTrue(new_class_tuple.original_docstring is not None) self.assertTrue(new_method_tuple.original_docstring is not None) self.assertTrue(" @bugs mpp-1" in new_class_tuple.original_docstring) self.assertTrue(" @tags smoke" in new_method_tuple.original_docstring) # Verify that update_file in-place works new_class_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = None) new_method_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1') new_class_dict['__changed__'] = True new_method_dict['__changed__'] = True new_class_dict.pop('bugs') new_method_dict.pop('tags') new_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = None, metadata_dictionary = new_class_dict) new_file_handle.update_docstring(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1', metadata_dictionary = new_method_dict) new_file_handle.update_file() new_file_handle = PythonFileHandler(new_file) new_class_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = None) new_method_dict = new_file_handle.get_metadata_dictionary(class_name = 'SampleTestsNoDocstring', method_name = 'test_no_1') # Should have no keys (except for __changed__) self.assertEqual(len(new_class_dict), 1) self.assertEqual(len(new_method_dict), 1) os.remove(new_file) class SQLFileHandlerTests(unittest.TestCase): def test_parser(self): test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query01.sql')) # Check that docstring is not empty self.assertTrue(test_file_handle.original_docstring) # Verify that the original docstring is correct self.assertTrue("-- @tags tag1 tag2 tag3 bug-3" in test_file_handle.original_docstring) self.assertTrue("-- comment" in test_file_handle.original_docstring) self.assertTrue("--@bugs MPP-1" in test_file_handle.original_docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query02.sql')) # Check that docstring is not empty self.assertTrue(test_file_handle.original_docstring) # Verify that the original docstring is correct self.assertTrue("-- @product_version gpdb:" in test_file_handle.original_docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query_nodocstring.sql')) # Check that docstring is empty self.assertTrue(test_file_handle.original_docstring is "") def test_get_metadata_dictionary(self): # All dictionaries will always have __changed__ key # query01 has tags and bugs test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query01.sql')) self.assertTrue(test_file_handle.original_docstring) my_dict = test_file_handle.get_metadata_dictionary() self.assertEqual(len(my_dict), 3) self.assertEqual(my_dict['tags'], "tag1 tag2 tag3 bug-3") self.assertEqual(my_dict['bugs'], "MPP-1") # query02 has product_version test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query02.sql')) self.assertTrue(test_file_handle.original_docstring) my_dict = test_file_handle.get_metadata_dictionary() self.assertEqual(len(my_dict), 2) self.assertEqual(my_dict['product_version'], "gpdb:") # query_nodocstring has nothing test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query_nodocstring.sql')) self.assertTrue(test_file_handle.original_docstring == "") my_dict = test_file_handle.get_metadata_dictionary() self.assertEqual(len(my_dict), 1) def test_update_docstring_existing(self): # Query01 (scenario that has some docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query01.sql')) self.assertTrue(test_file_handle.original_docstring) my_dict = test_file_handle.get_metadata_dictionary() my_dict['__changed__'] = True # Change original tags to smoke my_dict['tags'] = 'smoke' # Remove bugs my_dict.pop('bugs') # Add author my_dict['author'] = 'blah' test_file_handle.update_docstring(my_dict) # Verify that new_docstring exists self.assertTrue(test_file_handle.new_docstring) # Verify that tags is updated self.assertTrue("@tags smoke" in test_file_handle.new_docstring) # Verify that bugs is removed self.assertTrue('@bugs' not in test_file_handle.new_docstring) # Verify that author is added self.assertTrue('@author blah' in test_file_handle.new_docstring) # Verify that the comment is still there self.assertTrue('-- comment' in test_file_handle.new_docstring) def test_update_docstring_new(self): # Query01 (scenario that has some docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query_nodocstring.sql')) self.assertTrue(test_file_handle.original_docstring == "") my_dict = test_file_handle.get_metadata_dictionary() my_dict['__changed__'] = True # Add tags my_dict['tags'] = 'smoke' # Add author my_dict['author'] = 'blah' test_file_handle.update_docstring(my_dict) # Verify that new_docstring exists self.assertTrue(test_file_handle.new_docstring) # Verify that tags is added self.assertTrue("@tags smoke" in test_file_handle.new_docstring) # Verify that author is added self.assertTrue('@author blah' in test_file_handle.new_docstring) def test_update_file_existing_docstring(self): # Query01 (scenario that has some docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query01.sql')) self.assertTrue(test_file_handle.original_docstring) my_dict = test_file_handle.get_metadata_dictionary() my_dict['__changed__'] = True # Change original tags to smoke my_dict['tags'] = 'smoke' # Remove bugs my_dict.pop('bugs') # Add author my_dict['author'] = 'blah' new_file = os.path.join(os.path.dirname(__file__), 'sql', 'query01_new.sql') test_file_handle.update_docstring(my_dict) test_file_handle.update_file(new_file) # Verify that new file exists self.assertTrue(os.path.exists(new_file)) # Now, get the metadata dictionary from new file new_file_handle = SQLFileHandler(new_file) self.assertTrue(new_file_handle.original_docstring) new_dict = new_file_handle.get_metadata_dictionary() # Verify the updated metadata in new_dict's original_docstring # Verify that tags is updated self.assertTrue("@tags smoke" in new_file_handle.original_docstring) # Verify that bugs is removed self.assertTrue('@bugs' not in new_file_handle.original_docstring) # Verify that author is added self.assertTrue('@author blah' in new_file_handle.original_docstring) # Verify that the comment is still there self.assertTrue('-- comment' in new_file_handle.original_docstring) # Verify that all metadata can be removed and update_file in-place works new_dict['__changed__'] = True new_dict.pop('tags') new_dict.pop('author') new_file_handle.update_docstring(new_dict) new_file_handle.update_file() # Get the file content new_file_content = None with open(new_file, "r") as new_file_object: new_file_content = new_file_object.read().replace('\n', '') self.assertTrue(new_file_content is not None) self.assertTrue('tags' not in new_file_content) self.assertTrue('author' not in new_file_content) self.assertTrue('-- comment' in new_file_content) os.remove(new_file) def test_update_file_no_docstring(self): # Query01 (scenario that has some docstring) test_file_handle = SQLFileHandler(os.path.join(os.path.dirname(__file__), 'sql', 'query_nodocstring.sql')) self.assertTrue(test_file_handle.original_docstring == "") my_dict = test_file_handle.get_metadata_dictionary() my_dict['__changed__'] = True # Add tags my_dict['tags'] = 'smoke' # Add author my_dict['author'] = 'blah' new_file = os.path.join(os.path.dirname(__file__), 'sql', 'query_nodocstring_new.sql') test_file_handle.update_docstring(my_dict) test_file_handle.update_file(new_file) # Verify that new file exists self.assertTrue(os.path.exists(new_file)) # Now, get the metadata dictionary from new file new_file_handle = SQLFileHandler(new_file) self.assertTrue(new_file_handle.original_docstring) new_dict = new_file_handle.get_metadata_dictionary() # Verify the new metadata in new_dict's original_docstring # Verify that tags is added self.assertTrue("@tags smoke" in new_file_handle.original_docstring) # Verify that author is added self.assertTrue('@author blah' in new_file_handle.original_docstring) # Verify that all metadata can be removed and update_file in-place works new_dict['__changed__'] = True new_dict.pop('tags') new_dict.pop('author') new_file_handle.update_docstring(new_dict) new_file_handle.update_file() # Get the file content new_file_content = None with open(new_file, "r") as new_file_object: new_file_content = new_file_object.read().replace('\n', '') self.assertTrue(new_file_content is not None) self.assertTrue('tags' not in new_file_content) self.assertTrue('author' not in new_file_content) self.assertTrue('--' not in new_file_content) os.remove(new_file)
StarcoderdataPython
6588684
<filename>run.py #@<NAME> import json import yaml import os import sys with open("config.json","r") as jFile: jData=jFile.read() jData=json.loads(jData) with open("docker-compose.yml","r") as cFile: yData=(yaml.safe_load(cFile)) domain=jData["DOMAIN"] subdomain=jData["SUBDOMAIN"] hostport=str(jData["CHISEL_PORT"]) port=jData["RDP_PORT"] passwd=jData["PASSWD"] local=jData["LOCAL_CHISEL"] name=jData["CONTAINER_NAME"] nodejsPort=jData["NODEJS_PORT"] appRepoLink=jData["APP_REPO_LINK"] appFile=jData["APP_FILE"] appDir=jData["APP_DIR_NAME"] if local not in ["yes","no"]: print("Error in config file: LOCAL must be either yes or no") sys.exit(-1) if (type(port)) != int: print("Error in config file: PORT must be an integer") sys.exit(-1) os.system("docker run -d --name "+name+" --hostname terminalserver --shm-size 1g -p "+str(port)+":3389 -p 2244:22 -p "+str(nodejsPort)+":3000 danielguerra/ubuntu-xrdp") cmd="docker exec -ti "+name+" /bin/bash -c \"echo -e \\\""+passwd+"\n"+passwd+"\n\n\n\\\" | (passwd ubuntu)\"" os.system("docker exec uxrdp-node /bin/bash -c \" cd ~ && git clone "+appRepoLink+" "+appDir+"\"") os.system("docker exec -ti "+name+" /bin/bash -c \"cd ~/"+appDir+"/ && npm install && pm2 start "+appFile+"\"") os.system(cmd) if(local=="yes"): os.system("docker exec "+name+" /bin/bash -c \"chisel client http://"+subdomain+"."+domain+":"+hostport+" R:"+str(port)+":localhost:3389 R:"+str(nodejsPort)+":localhost:"+str(nodejsPort)+"\"")
StarcoderdataPython
3217755
import pandas as pd import numpy as np import tensorflow as tf import os import matplotlib.pyplot as plt import seaborn as sns import PIL from typing import List # EfficientNet from tensorflow.keras.applications import EfficientNetB7, ResNet50 from tensorflow.keras.applications.efficientnet import preprocess_input # Data Augmentation from tensorflow.keras.preprocessing.image import ImageDataGenerator # Model Layers from tensorflow.keras import Model, Input from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Conv2D, MaxPool2D , Flatten, Dropout, BatchNormalization # Compiling and Callbacks from tensorflow.keras.optimizers import SGD,Adam from tensorflow.keras.losses import BinaryCrossentropy from tensorflow.keras.callbacks import ReduceLROnPlateau, ModelCheckpoint, EarlyStopping #----------------------------------------------------------------------------------------------------- # Competition Directory comp_dir="/kaggle/input/ranzcr-clip-catheter-line-classification/" # Get Training Data Labels df_train=pd.read_csv(comp_dir+"train.csv").sample(frac=1).reset_index(drop=True) # Get Training/Testing Data Paths test_files = os.listdir(comp_dir+"test") df_test = pd.DataFrame({"StudyInstanceUID": test_files}) image_size = 512 batch_size = 16 num_epochs = 12 learn_rate = 1e-03 df_train.StudyInstanceUID += ".jpg" #----------------------------------------------------------------------------------------------------- label_cols=df_train.columns.tolist() label_cols.remove("StudyInstanceUID") label_cols.remove("PatientID") datagen=ImageDataGenerator(rescale=1./255.) test_datagen=ImageDataGenerator(rescale=1./255.) train_generator=datagen.flow_from_dataframe( dataframe=df_train[:21000], directory=comp_dir+"train", x_col="StudyInstanceUID", y_col=label_cols, batch_size=batch_size, seed=42, shuffle=True, color_mode="rgb", class_mode="raw", target_size=(image_size,image_size), interpolation="bilinear") valid_generator=test_datagen.flow_from_dataframe( dataframe=df_train[21000:], directory=comp_dir+"train", x_col="StudyInstanceUID", y_col=label_cols, batch_size=batch_size, seed=42, shuffle=True, color_mode="rgb", class_mode="raw", target_size=(image_size,image_size), interpolation="bilinear") test_generator=test_datagen.flow_from_dataframe( dataframe=df_test, directory=comp_dir+"test", x_col="StudyInstanceUID", batch_size=1, seed=42, shuffle=False, color_mode="rgb", class_mode=None, target_size=(image_size,image_size), interpolation="bilinear") #----------------------------------------------------------------------------------------------------- base_model = ResNet50(include_top=False, weights=None, input_shape=(image_size, image_size, 3)) base_model.load_weights("../input/keras-pretrained-models/resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5", by_name=True) base_model.trainable = False #----------------------------------------------------------------------------------------------------- inp = Input(shape = (image_size,image_size,3)) x = base_model(inp) x = Flatten()(x) output1 = Dense(1, activation = 'sigmoid')(x) output2 = Dense(1, activation = 'sigmoid')(x) output3 = Dense(1, activation = 'sigmoid')(x) output4 = Dense(1, activation = 'sigmoid')(x) output5 = Dense(1, activation = 'sigmoid')(x) output6 = Dense(1, activation = 'sigmoid')(x) output7 = Dense(1, activation = 'sigmoid')(x) output8 = Dense(1, activation = 'sigmoid')(x) output9 = Dense(1, activation = 'sigmoid')(x) output10 = Dense(1, activation = 'sigmoid')(x) output11 = Dense(1, activation = 'sigmoid')(x) model = Model(inp,[output1,output2,output3,output4,output5,output6,output7,output8,output9,output10,output11]) sgd = SGD(lr=learn_rate, momentum=.9, nesterov=False) model.compile(optimizer=sgd, loss = ["binary_crossentropy" for i in range(11)], metrics = ["accuracy"]) def generator_wrapper(generator): for batch_x,batch_y in generator: yield (batch_x,[batch_y[:,i] for i in range(11)]) STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size STEP_SIZE_TEST = test_generator.n//test_generator.batch_size history = model.fit_generator(generator=generator_wrapper(train_generator), steps_per_epoch=STEP_SIZE_TRAIN, validation_data=generator_wrapper(valid_generator), validation_steps=STEP_SIZE_VALID, epochs=num_epochs,verbose=2) test_generator.reset() pred = model.predict_generator(test_generator, steps=STEP_SIZE_TEST, verbose=1) # Create Submission df df_submission = pd.DataFrame(np.squeeze(pred)).transpose() df_submission.rename(columns=dict(zip([str(i) for i in range(12)], label_cols))) df_submission["StudyInstanceUID"] = test_files df_submission.to_csv("submission.csv", index=False) epochs = range(1,num_epochs) plt.plot(history.history['loss'], label='Training Set') plt.plot(history.history['val_loss'], label='Validation Data)') plt.title('Training and Validation loss') plt.ylabel('MAE') plt.xlabel('Num Epochs') plt.legend(loc="upper left") plt.show() plt.savefig("loss.png")
StarcoderdataPython
1684917
# coding:utf-8 from ihome import create_app, db # 数据库管理命令 from flask_script import Manager from flask_migrate import Migrate, MigrateCommand app = create_app('develop') manager = Manager(app) Migrate(app, db) manager.add_command('db', MigrateCommand) if __name__ == '__main__': app.run(host='127.0.0.1', port=8000, debug=True)
StarcoderdataPython
6684676
import os import sys import random import math import re import time import numpy as np import cv2 import matplotlib import matplotlib.pyplot as plt # Root directory of the project ROOT_DIR = os.path.abspath("../../") print(ROOT_DIR) # Import Mask RCNN sys.path.append(ROOT_DIR) # To find local version of the library from mrcnn.config import Config from mrcnn import utils import mrcnn.model as modellib from mrcnn import visualize from mrcnn.model import log # Directory to save logs and trained model MODEL_DIR = os.path.join(ROOT_DIR, "logs") # Local path to trained weights file COCO_MODEL_PATH = os.path.join(ROOT_DIR, "mask_rcnn_coco.h5") # Download COCO trained weights from Releases if needed if not os.path.exists(COCO_MODEL_PATH): utils.download_trained_weights(COCO_MODEL_PATH) class ShapesConfig(Config): """Configuration for training on the toy shapes dataset. Derives from the base Config class and overrides values specific to the toy shapes dataset. """ # Give the configuration a recognizable name NAME = "shapes" # Train on 1 GPU and 8 images per GPU. We can put multiple images on each # GPU because the images are small. Batch size is 8 (GPUs * images/GPU). GPU_COUNT = 1 IMAGES_PER_GPU = 8 # Number of classes (including background) NUM_CLASSES = 1 + 1 # background + 3 shapes # Use small images for faster training. Set the limits of the small side # the large side, and that determines the image shape. IMAGE_MIN_DIM = 448 IMAGE_MAX_DIM = 448 IMAGE_SHAPE = [448, 448, 3] # Use smaller anchors because our image and objects are small RPN_ANCHOR_SCALES = (8, 16, 32, 64, 128) # anchor side in pixels # Reduce training ROIs per image because the images are small and have # few objects. Aim to allow ROI sampling to pick 33% positive ROIs. TRAIN_ROIS_PER_IMAGE = 32 # Use a small epoch since the data is simple STEPS_PER_EPOCH = 100 # use small validation steps since the epoch is small VALIDATION_STEPS = 5 config = ShapesConfig() config.display() def get_ax(rows=1, cols=1, size=8): """Return a Matplotlib Axes array to be used in all visualizations in the notebook. Provide a central point to control graph sizes. Change the default size attribute to control the size of rendered images """ _, ax = plt.subplots(rows, cols, figsize=(size * cols, size * rows)) return ax from PIL import Image class SpaceNetDataset(utils.Dataset): """Generates the shapes synthetic dataset. The dataset consists of simple shapes (triangles, squares, circles) placed randomly on a blank surface. The images are generated on the fly. No file access required. """ def get_obj_index(self, image): n = np.max(image) return n def load_shapes(self, img_list, img_floder, mask_floder): """Generate the requested number of synthetic images. #count: number of images to generate. image_id_list : list of images to generate. height, width: the size of the generated images. """ # Add classes self.add_class("shapes", 1, "shapes") # self.add_class("shapes", 2, "others") # self.add_class("shapes", 3, "triangle") # Add images # Generate random specifications of images (i.e. color and # list of shapes sizes and locations). This is more compact than # actual images. Images are generated on the fly in load_image(). # imglist = os.listdir(img_floder) for i in imglist: # 获取图片宽和高 # filestr = imglist[i] image_id = i.split("_")[-1][3:-4] # print(imglist[i],"-->",cv_img.shape[1],"--->",cv_img.shape[0]) # print("id-->", i, " imglist[", i, "]-->", imglist[i],"filestr-->",filestr) # filestr = filestr.split("_")[1] mask_path = mask_floder + "/" + "mask_" + i img_path = img_floder + "/" + i # yaml_path = dataset_root_path + "labelme_json/" + filestr + "_json/info.yaml" # print(i) cv_img = cv2.imread(img_path) self.add_image("shapes", image_id=image_id, path=img_path, width=cv_img.shape[1], height=cv_img.shape[0], mask_path=mask_path) def draw_mask(self, num_obj, mask, image, image_id): # print("draw_mask-->",image_id) # print("self.image_info",self.image_info) info = self.image_info[image_id] for index in range(num_obj): for i in range(info['width']): for j in range(info['height']): at_pixel = image.getpixel((i, j)) if at_pixel == index + 1: mask[j, i, index] = 1 return mask # def load_image(self, image_id): # """Generate an image from the specs of the given image ID. # Typically this function loads the image from a file, but # in this case it generates the image on the fly from the # specs in image_info. # """ # # info = self.image_info[image_id] # # bg_color = np.array(info['bg_color']).reshape([1, 1, 3]) # # image = np.ones([info['height'], info['width'], 3], dtype=np.uint8) # # image = image * bg_color.astype(np.uint8) # # for shape, color, dims in info['shapes']: # # image = self.draw_shape(image, shape, dims, color) # img_dir = "/home/ly/data/dl_data/spacenet/AOI_5_Khartoum_Train/RGB-PanSharpen" # img_name = "RGB-PanSharpen_AOI_5_Khartoum_img{}.tif".format(image_id) # img_path = os.path.join(img_dir, img_name) # if not os.path.isfile(img_path): # pass # else: # image = cv2.imread(img_path) # return image def image_reference(self, image_id): """Return the shapes data of the image.""" info = self.image_info[image_id] if info["source"] == "shapes": return info["shapes"] else: super(self.__class__).image_reference(self, image_id) def load_mask(self, image_id): """Generate instance masks for shapes of the given image ID. """ global iter_num # print("image_id",image_id) info = self.image_info[image_id] count = 1 # number of object img = Image.open(info['mask_path']) num_obj = self.get_obj_index(img) # print("num_obj:",num_obj) mask = np.zeros([info['height'], info['width'], 1], dtype=np.uint8) mask = self.draw_mask(num_obj, mask, img, image_id) # print(mask.shape) occlusion = np.logical_not(mask[:, :, -1]).astype(np.uint8) for i in range(count - 1, -1, -1): mask[:, :, i] = mask[:, :, i] * occlusion occlusion = np.logical_and(occlusion, np.logical_not(mask[:, :, i])) # labels = [] # labels = self.from_yaml_get_class(image_id) # labels_form = [] # for i in range(len(labels)): # if labels[i].find("tongue") != -1: # # print "box" # labels_form.append("tongue") # class_ids = np.array([self.class_names.index(s) for s in labels_form]) class_ids = np.array([1]) return mask, class_ids.astype(np.int32) img_dir = "/home/ly/data/dl_data/spacenet/AOI_5_Khartoum_Train/RGB-PanSharpen" mask_dir = "/home/ly/data/dl_data/spacenet/AOI_5_Khartoum_Train/mask" img_id_list = [ ] imglist = os.listdir(img_dir) for i in imglist: img_id = i.split('_')[-1][3:-4] img_id_list.append(img_id) dataset_train = SpaceNetDataset() dataset_train.load_shapes(imglist[:-50],img_dir, mask_dir) dataset_train.prepare() #Validation dataset dataset_val = SpaceNetDataset() dataset_val.load_shapes(imglist[-50:], img_dir, mask_dir) dataset_val.prepare() model = modellib.MaskRCNN(mode="training", config=config, model_dir=MODEL_DIR) # Which weights to start with? init_with = "coco" # imagenet, coco, or last import tensorflow as tf config = tf.ConfigProto() config.gpu_options.per_process_gpu_memory_fraction = 0.5 # maximun alloc gpu50% of MEM config.gpu_options.allow_growth = True #allocate dynamically sess = tf.Session(config = config) if init_with == "imagenet": model.load_weights(model.get_imagenet_weights(), by_name=True) elif init_with == "coco": # Load weights trained on MS COCO, but skip layers that # are different due to the different number of classes # See README for instructions to download the COCO weights model.load_weights(COCO_MODEL_PATH, by_name=True, exclude=["mrcnn_class_logits", "mrcnn_bbox_fc", "mrcnn_bbox", "mrcnn_mask"]) elif init_with == "last": # Load the last model you trained and continue training model.load_weights(model.find_last()[1], by_name=True) # Train the head branches # Passing layers="heads" freezes all layers except the head # layers. You can also pass a regular expression to select # which layers to train by name pattern. model.train(dataset_train, dataset_val, learning_rate=0.01, epochs=1, layers='heads') # Fine tune all layers # Passing layers="all" trains all layers. You can also # pass a regular expression to select which layers to # train by name pattern. model.train(dataset_train, dataset_val, learning_rate=0.01 / 10, epochs=5, layers="all")
StarcoderdataPython
9693732
import sys import random n = int(sys.argv[1]) a = int(sys.argv[2]) b = int(sys.argv[3]) print(n) for _ in range(n): print(random.randint(a, b))
StarcoderdataPython
3418686
print("Loading Libraries...") import os import numpy as np import json import tensorflow as tf import nibabel import sys import nibabel as nib import datetime import tkinter from tkinter import filedialog import SimpleITK as sitk from skimage import io from skimage.io import imsave from skimage.segmentation import mark_boundaries from skimage.transform import resize from skimage.exposure import rescale_intensity from keras import backend as K from keras.models import model_from_json print("Loading Libraries Ended.") print('-'*30) root = tkinter.Tk() root.withdraw() desktop = os.path.join(os.path.join(os.environ['USERPROFILE']), 'Desktop') currentDate = datetime.datetime.now().strftime("%m-%d-%y %H-%M") nii_save_path = desktop + "\\PSGizmoLog\\Predict\\" + currentDate + "\\" #save if not os.path.exists(nii_save_path): os.makedirs(nii_save_path) imageRows = int(512/2) imageCols = int(512/2) smooth = 1. global affineValue def Dice_Coef(y_true, y_pred): y_true_f = K.flatten(y_true) y_pred_f = K.flatten(y_pred) intersection = K.sum(y_true_f * y_pred_f) return (2. * intersection + smooth) / (K.sum(y_true_f) + K.sum(y_pred_f) + smooth) def Dice_Coef_Loss(y_true, y_pred): return -Dice_Coef(y_true, y_pred) def Adapt_Data(imgs): imgs_p = np.ndarray((imgs.shape[0], imageRows, imageCols), dtype='float32') for i in range(imgs.shape[0]): imgs_p[i] = resize(imgs[i], (imageCols, imageRows), preserve_range=True) imgs_p = imgs_p[..., np.newaxis] print("File is resized."); print('-'*30) return imgs_p def Load_Prediction_Images(): print("Load .npy to predict:") prediction_data_path = filedialog.askopenfilename() imgst = np.load(prediction_data_path) return imgst def nifti_format(imgst, layerst): print("Exporting...") if not os.path.exists(nii_save_path +"\\Nifti"): os.makedirs(nii_save_path +"\\Nifti") filtered_image = sitk.GetImageFromArray(imgst) writer = sitk.ImageFileWriter() writer.SetFileName(nii_save_path +"\\Nifti\\Liver.nii.gz") writer.Execute(filtered_image) filtered_mask = sitk.GetImageFromArray(layerst) writer = sitk.ImageFileWriter() writer.SetFileName(nii_save_path + "\\Nifti\\Layer.nii.gz") writer.Execute(filtered_mask) print("Exporting is completed.") print('-'*30) ch = input("Do you want to check the results using MRIcron? (y/n): ") if ch == 'y' or ch == 'Y': os.startfile(".\\AdditionalSources\\MRIcron\\mricron.exe") #TODO def png_format(imgToPredict, predictedImage): if not os.path.exists(nii_save_path + "PNG"): os.mkdir(nii_save_path + "PNG") if not os.path.exists(nii_save_path + "PNG\\Numpy"): os.mkdir(nii_save_path + "PNG\\Numpy") np.save(nii_save_path + "PNG\\Numpy" + '\\imgs_mask_test.npy', predictedImage) print('Saving predicted masks to files...') print('-' * 30) print('Saving Our Predictions in the Directory preds') print('-' * 30) for k in range(len(predictedImage)): a=rescale_intensity(imgToPredict[k][:,:,0],out_range=(-1,1)) b=(predictedImage[k][:,:,0]).astype(np.uint8) io.imsave(os.path.join(nii_save_path + "PNG\\", str(k) + '_pred.png'), mark_boundaries(a, b,color=(1,1,0), mode='thick')) print('Saving predictions is completed!') print('-' * 30) def Predict(): #Load Normalization Values print("Load JSON files directory:") json_data_path = filedialog.askdirectory() print("Selected JSON path: " + json_data_path) normalizationFile = open(json_data_path + '\\normalization.json', 'r') normalizationString = normalizationFile.read() normalizationData = json.loads(normalizationString) normalizationFile.close() #Load Model jsonFile = open( json_data_path + '\\model.json', 'r') loadedModelJson = jsonFile.read() model = model_from_json(loadedModelJson) jsonFile.close() #model.summary() imgToPredict = Load_Prediction_Images() imgToPredict = Adapt_Data(imgToPredict) mean = normalizationData["mean"] std = normalizationData["std"] imgToPredict = imgToPredict.astype('float32') imgToPredict -= mean imgToPredict /= std print("Load weights.h5 file: ") model_data_path = filedialog.askopenfilename() print(model_data_path + "is weights.h5 path") print('-'*30) model.load_weights( model_data_path) print("Model is loaded.") print('-'*30) predictedImageAsNumpy = model.predict(imgToPredict, verbose=1) print("Prediction is completed.") print('-'*30) return imgToPredict, predictedImageAsNumpy def Export_Prediction(): imgToPredict, predictedImage = Predict() print("Exporting predictions...") print('-'*30) new_images = [] imgst = np.ndarray((imageRows, imageCols, 0), dtype='float32') layerst = np.ndarray((imageRows, imageCols, 0), dtype='float32') print("Slices are being adapted...") for k in range(len(predictedImage)): a=rescale_intensity(imgToPredict[k][:,:,0],out_range=(-1,1)) b=(predictedImage[k][:,:,0]).astype(np.uint8) imgst = np.dstack((imgst, a)) layerst = np.dstack((layerst, b)) print("Slices are adapted.") print('-'*30) print("1: Mask and Resized CT in nifti format") print("2: Slices in png format") print("3: Transparent png format") print("4: GIF Format") choice = input() if(choice == '1'): nifti_format(imgst,layerst) elif(choice == '2'): png_format(imgToPredict, predictedImage) else: print("Invalid choice") while(choice != '1' or choice != '2'): choice = input() if(choice == '1'): nifti_format(imgst,layerst) elif(choice == '2'): png_format(imgToPredict, predictedImage) print('-'*30) if __name__ == '__main__': Export_Prediction() input("Press ENTER to Exit")
StarcoderdataPython
11282038
class Node: def __init__(self, key, val, prev=None, next=None): self.key = key self.val = val self.prev = prev self.next = next class LRUCache: """ @param: capacity: An integer """ def __init__(self, capacity): self.capacity = capacity self.count = 0 self.dummy = Node(-1, 0) self.tail = self.dummy self.node_map = {} """ @param: key: An integer @return: An integer """ def get(self, key): if key not in self.node_map: return -1 node = self.node_map[key] self.__moveToHead(node) return node.val """ @param: key: An integer @param: value: An integer @return: nothing """ def set(self, key, value): if key not in self.node_map: if self.count == self.capacity: self.__removeTail() else: self.count += 1 node = Node(key, value, prev=self.tail) self.node_map[key] = node self.tail.next = node self.tail = node else: node = self.node_map[key] node.val = value self.__moveToHead(node) def __removeTail(self): if self.tail is self.dummy: return del self.node_map[self.tail.key] self.tail = self.tail.prev self.tail.next = None def __moveToHead(self, node): if node is self.dummy.next: return if node is self.tail: self.tail = node.prev if node.next is not None: node.next.prev = node.prev if node.prev is not None: node.prev.next = node.next node.next = self.dummy.next node.prev = self.dummy if self.dummy.next: self.dummy.next.prev = node self.dummy.next = node
StarcoderdataPython
3550867
<gh_stars>0 import sys import unittest from utils import sysfont class FontTest(unittest.TestCase): __tags__ = [] def test_init(self): sysfont.init() def test_list_fonts(self): sansfonts = [f for f in sysfont.list_fonts() if "sans" in f[0]] self.assertGreaterEqual(len(sansfonts), 1) def test_get_fonts(self): fontnames = ["sans", "arial", "helvetica", "times new roman", "serif"] # At least two fonts must be found. success = 0 for fname in fontnames: count = len(sysfont.get_fonts(fname)) if count >= 1: success += 1 count = len(sysfont.get_fonts(fname, sysfont.STYLE_BOLD)) if count >= 1: success += 1 count = len(sysfont.get_fonts(fname, sysfont.STYLE_ITALIC)) if count >= 1: success += 1 count = len(sysfont.get_fonts(fname, sysfont.STYLE_ITALIC | sysfont.STYLE_BOLD)) if count >= 1: success += 1 self.assertGreaterEqual(success, 4, "did not meet enough font criteria for get_fonts()") def test_get_font(self): fontnames = ["sans", "arial", "helvetica", "times new roman", "serif"] # At least two fonts must be found. success = 0 for fname in fontnames: fontfile = sysfont.get_font(fname) if fontfile is not None: success += 1 self.assertGreaterEqual(success, 2, "could not find the required fonts for get_font()") if __name__ == '__main__': sys.exit(unittest.main())
StarcoderdataPython
3365179
from core.himesis import Himesis import uuid class Hlayer1rule0(Himesis): def __init__(self): """ Creates the himesis graph representing the DSLTrans rule layer1rule0. """ # Flag this instance as compiled now self.is_compiled = True super(Hlayer1rule0, self).__init__(name='Hlayer1rule0', num_nodes=0, edges=[]) # Set the graph attributes self["mm__"] = ['HimesisMM'] self["name"] = """layer1rule0""" self["GUID__"] = uuid.uuid3(uuid.NAMESPACE_DNS,'layer1rule0') # match model. We only support one match model self.add_node() self.vs[0]["mm__"] = """MatchModel""" # apply model node self.add_node() self.vs[1]["mm__"] = """ApplyModel""" # paired with relation between match and apply models self.add_node() self.vs[2]["mm__"] = """paired_with""" # match class ImplementationModule(layer1rule0class0) node self.add_node() self.vs[3]["mm__"] = """ImplementationModule""" self.vs[3]["attr1"] = """+""" # match_contains node for class ImplementationModule(layer1rule0class0) self.add_node() self.vs[4]["mm__"] = """match_contains""" # match class ClientServerInterface(layer1rule0class1) node self.add_node() self.vs[5]["mm__"] = """ClientServerInterface""" self.vs[5]["attr1"] = """+""" # match_contains node for class ClientServerInterface(layer1rule0class1) self.add_node() self.vs[6]["mm__"] = """match_contains""" # apply class ImplementationModule(layer1rule0class2) node self.add_node() self.vs[7]["mm__"] = """ImplementationModule""" self.vs[7]["attr1"] = """1""" # apply_contains node for class ImplementationModule(layer1rule0class2) self.add_node() self.vs[8]["mm__"] = """apply_contains""" # apply class StructDeclaration(layer1rule0class3) node self.add_node() self.vs[9]["mm__"] = """StructDeclaration""" self.vs[9]["attr1"] = """1""" # apply_contains node for class StructDeclaration(layer1rule0class3) self.add_node() self.vs[10]["mm__"] = """apply_contains""" # match association ImplementationModule--contents-->ClientServerInterface node self.add_node() self.vs[11]["attr1"] = """contents""" self.vs[11]["mm__"] = """directLink_S""" # apply association ImplementationModule--contents-->StructDeclaration node self.add_node() self.vs[12]["attr1"] = """contents""" self.vs[12]["mm__"] = """directLink_T""" # backward association ImplementationModule---->ImplementationModule node self.add_node() self.vs[13]["mm__"] = """backward_link""" # backward association ClientServerInterface---->StructDeclaration node self.add_node() self.vs[14]["mm__"] = """backward_link""" # Add the edges self.add_edges([ (0,4), # matchmodel -> match_contains (4,3), # match_contains -> match_class ImplementationModule(layer1rule0class0) (0,6), # matchmodel -> match_contains (6,5), # match_contains -> match_class ClientServerInterface(layer1rule0class1) (1,8), # applymodel -> apply_contains (8,7), # apply_contains -> apply_class ImplementationModule(layer1rule0class2) (1,10), # applymodel -> apply_contains (10,9), # apply_contains -> apply_class StructDeclaration(layer1rule0class3) (3,11), # match_class ImplementationModule(layer1rule0class0) -> association contents (11,5), # association contents -> match_class ClientServerInterface(layer1rule0class1) (7,12), # apply_class ImplementationModule(layer1rule0class2) -> association contents (12,9), # association contents -> apply_class StructDeclaration(layer1rule0class3) (7,13), # apply_class ImplementationModule(layer1rule0class2) -> backward_association (13,3), # backward_association -> apply_class ImplementationModule(layer1rule0class0) (9,14), # apply_class StructDeclaration(layer1rule0class3) -> backward_association (14,5), # backward_association -> apply_class ClientServerInterface(layer1rule0class1) (0,2), # matchmodel -> pairedwith (2,1) # pairedwith -> applyModel ]) # Add the attribute equations self["equations"] = [((7,'__ApplyAttribute'),('constant','ImplementationModule')), ((9,'__ApplyAttribute'),('constant','ClientServerStructIData')), ]
StarcoderdataPython
118962
<filename>pydy/codegen/cython_code.py #!/usr/bin/env python import os import sys import shutil import tempfile import importlib import subprocess from collections import defaultdict from .c_code import CMatrixGenerator from ..utils import wrap_and_indent class CythonMatrixGenerator(object): """This class generates the Cython code for evaluating a sequence of matrices. It can compile the code and return a Python function.""" _pyx_template = \ """\ import numpy as np cimport numpy as np cimport cython cdef extern from "{prefix}_c.h": void evaluate( {header_args} ) @cython.boundscheck(False) @cython.wraparound(False) def eval( {python_args} ): evaluate( {c_args} ) return ( {output} )\ """ _setup_py_template = """\ #!/usr/bin/env python from distutils.core import setup from distutils.extension import Extension from Cython.Build import cythonize import numpy extension = Extension(name="{prefix}", sources=["{prefix}.pyx", "{prefix}_c.c"], include_dirs=[numpy.get_include()]) setup(name="{prefix}", ext_modules=cythonize([extension]))\ """ _module_counter = 0 def __init__(self, arguments, matrices, prefix='pydy_codegen'): """ Parameters ========== arguments : sequences of sequences of SymPy Symbol or Function. Each of the sequences will be converted to input arrays in the Cython function. All of the symbols/functions contained in ``matrices`` need to be in the sequences, but the sequences can also contain extra symbols/functions that are not contained in the matrices. matrices : sequence of SymPy.Matrix A sequence of the matrices that should be evaluated in the function. The expressions should contain only sympy.Symbol or sympy.Function that are functions of me.dynamicsymbols._t. prefix : string, optional The desired prefix for the generated files. """ self.prefix = prefix self.matrices = matrices self.arguments = arguments self.num_matrices = len(matrices) self.num_arguments = len(arguments) self.c_matrix_generator = CMatrixGenerator(arguments, matrices) self._generate_code_blocks() def _generate_code_blocks(self): lines = defaultdict(list) hd = 'double* {}_{},' py = "np.ndarray[np.double_t, ndim=1, mode='c'] {}_{}," c = '<double*> {}_{}.data,' out = 'output_{}.reshape({}, {}),' out_vec = 'output_{},' for i in range(self.num_arguments): lines['header_args'].append(hd.format('input', i)) lines['python_args'].append(py.format('input', i)) lines['c_args'].append(c.format('input', i)) for i, matrix in enumerate(self.matrices): lines['header_args'].append(hd.format('output', i)) lines['python_args'].append(py.format('output', i)) lines['c_args'].append(c.format('output', i)) nr, nc = matrix.shape if nc == 1: lines['output'].append(out_vec.format(i)) else: lines['output'].append(out.format(i, nr, nc)) indents = {'header_args': 18, 'python_args': 9, 'c_args': 13, 'output': 12} self.code_blocks = {k: wrap_and_indent(v, indents[k])[:-1] for k, v in lines.items()} def doprint(self): """Returns the text of the four source files needed to compile Cython wrapper that evaluates the provided SymPy matrices. Returns ======= setup_py : string The text of the setup.py file used to compile the Cython extension. cython_source : string The text of the Cython pyx file which includes the wrapper function ``eval``. c_header : string The text of the C header file that exposes the evaluate function. c_source : string The text of the C source file containing the function that evaluates the matrices. """ c_header, c_source = self.c_matrix_generator.doprint( prefix=self.prefix + '_c') filling = {'prefix': self.prefix} filling.update(self.code_blocks) cython_source = self._pyx_template.format(**filling) setup_py = self._setup_py_template.format(**filling) return setup_py, cython_source, c_header, c_source def write(self, path=None): """Writes the four source files needed to compile the Cython function to the current working directory. Parameters ========== path : string The absolute or relative path to an existing directory to place the files instead of the cwd. """ if path is None: path = os.getcwd() self.c_matrix_generator.write(self.prefix + '_c') setup_py, pyx, c_header, c_source = self.doprint() with open(os.path.join(path, self.prefix + '_setup.py'), 'w') as f: f.write(setup_py) with open(os.path.join(path, self.prefix + '.pyx'), 'w') as f: f.write(pyx) def compile(self, tmp_dir=None): """Returns a function which evaluates the matrices. Parameters ========== tmp_dir : string The path to an existing or non-existing directory where all of the generated files will be stored. """ base_prefix = self.prefix if tmp_dir is None: codedir = tempfile.mkdtemp(".pydy_compile") else: codedir = os.path.abspath(tmp_dir) if not os.path.exists(codedir): os.makedirs(codedir) self.prefix = '{}_{}'.format(base_prefix, CythonMatrixGenerator._module_counter) workingdir = os.getcwd() os.chdir(codedir) try: sys.path.append(codedir) self.write() cmd = [sys.executable, self.prefix + '_setup.py', 'build_ext', '--inplace'] subprocess.call(cmd, stderr=subprocess.STDOUT, stdout=subprocess.PIPE) cython_module = importlib.import_module(self.prefix) except: raise Exception('Failed to compile and import Cython module.') finally: sys.path.remove(codedir) CythonMatrixGenerator._module_counter += 1 os.chdir(workingdir) if tmp_dir is None: shutil.rmtree(codedir) self.prefix = base_prefix return getattr(cython_module, 'eval')
StarcoderdataPython
93197
import os from pyBigstick.nucleus import Nucleus import streamlit as st import numpy as np import plotly.express as px from barChartPlotly import plotly_barcharts_3d from PIL import Image he4_image = Image.open('assets/he4.png') nucl_image = Image.open('assets/nucl_symbol.png') table_image = Image.open('assets/table.jpg') scattering_image = Image.open('assets/scattering.jpeg') deexcitation_image = Image.open('assets/deexcitation.png') lvl_image = Image.open('assets/Energy_levels.png') shells_image = Image.open('assets/shells.png') bs = os.getcwd() +'/src/bigstick.x' header_container = st.container() intro_container = st.container() bs_container = st.container() states_container = st.container() densities_container = st.container() hide_table_row_index = """ <style> tbody th {display:none} .blank {display:none} </style> """ light_nuclei = ['F', 'Ne', 'Na', 'Mg', 'Al', 'Si', 'P', 'S', 'Cl'] with header_container: st.title('pyBigstick') st.markdown("""This streamlit app visualizes the nuclear transitions calculated by [pyBigstick](https://github.com/noctildon/pyBigstick), including the energy levels and the density matrices.""") with intro_container: st.subheader("Basic knowledge about nuclear physics") st.markdown('Physicists usually use a symbol + 2 number to represent a unique nucleus') st.image(nucl_image, width=500) st.markdown('For example, the following is identical to He (Helium) with mass number 4 and atomic number 2, or equivalently 2 protons and 2 neutrons.') st.image(he4_image,width=300) st.markdown('Atomic number can be determined by element symbol uniquely, so sometimes it is skipped and ignored.') st.text('And this is the well-known periodic table') st.image(table_image,width=800) st.markdown('Experimentalists use neutrinos (an extremely small and light particle) to hit the nucleus. This process is called "scattering".') st.image(scattering_image,width=800) st.markdown("""Before scattering the nucleus has lowest possbile energy (ground state). After scattering nucleus gain some energy from the neutrinos, being called "excited nucleus" or "excited state". Then there is a chance that the excited nucleus would drop back to the ground state by emitting gamma ray. """) col1, col2 = st.columns(2) with col1: st.image(deexcitation_image,width=400) with col2: st.image(lvl_image,width=400) st.markdown("""What happen in the scattering is that some of the nucleons get excited to the orbit with high energy. The core algorithm of pyBigstick is to iterate all possible combinations and transitions of the nucleons. And the density matrices describe how nucleons move among the orbits by talking us a probability-like value. """) st.image(shells_image,width=700) with bs_container: st.subheader("Control panel") st.markdown("""Input the info of the interested nucleus, eg. F19, Be10. Not sure which nucleus to pick? check out [this](https://periodictable.com/Isotopes/009.19/index.html). (Not all of the nucleus is possible to calculate).""") col1_1, col1_2 = st.columns(2) with col1_1: s1 = st.selectbox('The nucleus to calculate', light_nuclei, index=0) with col1_2: s2 = st.selectbox('Mass number', range(9,41), index=10) col2_1, col2_2 = st.columns(2) with col2_1: n_states = st.selectbox('Number of states to calculate (more states always need more time)', range(1,7), index=2) with col2_2: maxiter = st.selectbox('Number of iteration (higher iteration is more accurate on results, but takes longer)', np.arange(50,510,10), index=5) s1 = s1.lower() nucl_name = f'{s1}{s2}' st.text(f'Calculate {nucl_name}...') nu = Nucleus(nucl_name, n_states=n_states, maxiter=maxiter) if st.button('Clean the previous result and rerun'): st.write(f'Successfully clean nucleus {nucl_name}. Running {nucl_name} again...') nu.clean() if not nu.check(): nu.script_save() nu.prepare() nu.run(bs=bs) nu.save_results() with states_container: st.subheader('Energy level states') st.markdown("""When the scattering happens to a nucleus, the nucleus could be excited to higher state. In general, initially the nucleus is in ground state (the state with the lowest energy). Then after scattering, it is excited to some higher state with energy higher than ground state. We also label the state with n. Ground state has n=1. First excited state has n=2. Second excited has n=3, and so on.""") fig = px.bar(nu.states, x='state', y='Ex', labels={ 'state': 'State', 'Ex': 'Excitation energy (MeV)' }) st.plotly_chart(fig, use_container_width=True) if st.checkbox('Show all states data'): st.text('States') st.write(nu.states) with densities_container: st.subheader('Density matrices') st.markdown("""The amp (transition amplitdue) in the last column below is (to some degree) proportional to the probability that a nucleon moves from one orbit to another, given the condition that the nucleus jumps from one state to another (say from n=1 to n=2). Jt and Tt are the spin and isospin of the transition, respectively. They are the attributes of a transition. A transition could have multiple values of Jt. Tt can be either 0 or 1. Most of the amp is zero.""") col1, col2, col3, col4 = st.columns(4) with col1: statei = st.selectbox('Initial state', nu.states['state']) with col2: statej = st.selectbox('Final state', nu.states['state']) with col3: Jt = st.selectbox('Jt', np.unique(nu.densities['Jt'])) with col4: Tt = st.selectbox('Tt', [0,1]) filter_densities = nu.densities.loc[(nu.densities['statei']==statei) & (nu.densities['statej']==statej) &\ (nu.densities['Jt']==Jt) & (nu.densities['Tt']==Tt)] st.subheader('Non-zero elements') st.markdown(hide_table_row_index, unsafe_allow_html=True) st.table(filter_densities) st.subheader('3D plot of the density matrices') st.text('The plot only shows non-zero elements.') if not filter_densities.empty: fig = plotly_barcharts_3d(filter_densities['orba'], filter_densities['orbb'], filter_densities['amp'], x_title='orbit a', y_title='orbit b', z_title='amp') fig.update_layout(width=700, height=700, yaxis = dict(scaleanchor = 'x')) st.plotly_chart(fig, use_container_width=True) else: st.text('All elements are zero, so the plot is skipped.') if st.checkbox('Show all raw densities data'): st.text('Density matrices') st.write(nu.densities)
StarcoderdataPython
5007040
# coding: utf-8 from __future__ import annotations from datetime import date, datetime # noqa: F401 import re # noqa: F401 from typing import Any, Dict, List, Optional # noqa: F401 from pydantic import AnyUrl, BaseModel, EmailStr, validator # noqa: F401 from acapy_wrapper.models.attach_decorator import AttachDecorator from acapy_wrapper.models.v20_cred_format import V20CredFormat from acapy_wrapper.models.v20_cred_preview import V20CredPreview class V20CredProposal(BaseModel): """NOTE: This class is auto generated by OpenAPI Generator (https://openapi-generator.tech). Do not edit the class manually. V20CredProposal - a model defined in OpenAPI id: The id of this V20CredProposal [Optional]. type: The type of this V20CredProposal [Optional]. comment: The comment of this V20CredProposal [Optional]. credential_preview: The credential_preview of this V20CredProposal [Optional]. filtersattach: The filtersattach of this V20CredProposal. formats: The formats of this V20CredProposal. """ id: Optional[str] = None type: Optional[str] = None comment: Optional[str] = None credential_preview: Optional[V20CredPreview] = None filtersattach: List[AttachDecorator] formats: List[V20CredFormat] V20CredProposal.update_forward_refs()
StarcoderdataPython
8123371
# -*- coding: iso-8859-1 -*- # Maintainer: joaander from hoomd import * from hoomd import md context.initialize() import unittest import os import math import numpy # tests dihedral.table class dihedral_table_tests (unittest.TestCase): def setUp(self): print snap = data.make_snapshot(N=40, box=data.boxdim(L=100), particle_types = ['A'], bond_types = [], angle_types = [], dihedral_types = ['dihedralA'], improper_types = []) if comm.get_rank() == 0: snap.dihedrals.resize(10); for i in range(10): x = numpy.array([i, 0, 0], dtype=numpy.float32) numpy.random.seed(10) snap.particles.position[4*i+0,:] = x; x += numpy.random.random(3) * 0.1; snap.particles.position[4*i+1,:] = x; x += numpy.random.random(3) * 0.1; snap.particles.position[4*i+2,:] = x; x += numpy.random.random(3) * 0.1; snap.particles.position[4*i+3,:] = x; snap.dihedrals.group[i,:] = [4*i+0, 4*i+1, 4*i+2, 4*i+3]; self.sys = init.read_snapshot(snap) context.current.sorter.set_params(grid=8) # test to see that se can create a dihedral.table def test_create(self): md.dihedral.table(width=100); # test setting the table def test_set_coeff(self): def har(theta, kappa, theta_0): V = 0.5 * kappa * (theta-theta_0)**2; T = -kappa*(theta-theta_0); return (V, T) harmonic = md.dihedral.table(width=1000) harmonic.dihedral_coeff.set('dihedralA', func=har, coeff=dict(kappa=1,theta_0=.1)) all = group.all(); md.integrate.mode_standard(dt=0.005); md.integrate.nve(all); run(100); # test coefficient not set checking def test_set_coeff_fail(self): harmonic = md.dihedral.table(width=123) all = group.all(); md.integrate.mode_standard(dt=0.005); md.integrate.nve(all); self.assertRaises(RuntimeError, run, 100); # compare against harmonic dihedral def test_harmonic_compare(self): harmonic_1 = md.dihedral.table(width=1000) harmonic_1.dihedral_coeff.set('dihedralA', func=lambda theta: (0.5*1*( 1 + math.cos(theta)), 0.5*1*math.sin(theta)),coeff=dict()) harmonic_2 = md.dihedral.harmonic() harmonic_2.dihedral_coeff.set('dihedralA', k=1.0, d=1,n=1) md.integrate.mode_standard(dt=0.005); all = group.all() md.integrate.nve(all) run(1) for i in range(len(self.sys.particles)): f_1 = harmonic_1.forces[i] f_2 = harmonic_2.forces[i] # we have to have a very rough tolerance (~10%) because # of 1) discretization of the potential and 2) different handling of precision issues in both potentials self.assertAlmostEqual(f_1.energy, f_2.energy,3) self.assertAlmostEqual(f_1.force[0], f_2.force[0],1) self.assertAlmostEqual(f_1.force[1], f_2.force[1],1) self.assertAlmostEqual(f_1.force[2], f_2.force[2],1) def tearDown(self): del self.sys context.initialize(); if __name__ == '__main__': unittest.main(argv = ['test.py', '-v'])
StarcoderdataPython
5167587
<reponame>andreyvit/pyjamas def init(): JS(""" // Set up event dispatchers. $wnd.__dispatchEvent = function() { if ($wnd.event.returnValue == null) { $wnd.event.returnValue = true; if (!DOM.previewEvent($wnd.event)) return; } var listener, curElem = this; while (curElem && !(listener = curElem.__listener)) curElem = curElem.parentElement; if (listener) DOM.dispatchEvent($wnd.event, curElem, listener); }; $wnd.__dispatchDblClickEvent = function() { var newEvent = $doc.createEventObject(); this.fireEvent('onclick', newEvent); if (this.__eventBits & 2) $wnd.__dispatchEvent.call(this); }; $doc.body.onclick = $doc.body.onmousedown = $doc.body.onmouseup = $doc.body.onmousemove = $doc.body.onkeydown = $doc.body.onkeypress = $doc.body.onkeyup = $doc.body.onfocus = $doc.body.onblur = $doc.body.ondblclick = $wnd.__dispatchEvent; """) def compare(elem1, elem2): JS(""" if (!elem1 && !elem2) return true; else if (!elem1 || !elem2) return false; return (elem1.uniqueID == elem2.uniqueID); """) def createInputRadio(group): JS(""" return $doc.createElement("<INPUT type='RADIO' name='" + group + "'>"); """) def eventGetCurrentTarget(event): return event.currentEventTarget def eventGetTarget(evt): JS(""" var elem = evt.srcElement; return elem ? elem : null; """) def eventGetToElement(evt): JS(""" return evt.toElement ? evt.toElement : null; """) def eventPreventDefault(evt): JS(""" evt.returnValue = false; """) def eventToString(evt): JS(""" if (evt.toString) return evt.toString(); return "[object Event]"; """) def getBodyOffsetTop(): JS(""" return $doc.body.parentElement.clientTop; """) def getBodyOffsetLeft(): JS(""" return $doc.body.parentElement.clientLeft; """) def getAbsoluteLeft(elem): JS(""" // getBoundingClientRect() throws a JS exception if the elem is not attached // to the document, so we wrap it in a try/catch block var zoomMultiple = $doc.body.parentElement.offsetWidth / $doc.body.offsetWidth; try { return Math.floor((elem.getBoundingClientRect().left / zoomMultiple) + $doc.body.parentElement.scrollLeft ); } catch (e) { return 0; } """) def getAbsoluteTop(elem): JS(""" // getBoundingClientRect() throws a JS exception if the elem is not attached // to the document, so we wrap it in a try/catch block var zoomMultiple = $doc.body.parentElement.offsetWidth / $doc.body.offsetWidth; try { return Math.floor((elem.getBoundingClientRect().top / zoomMultiple) + $doc.body.parentElement.scrollTop ); } catch (e) { return 0; } """) def getChild(elem, index): JS(""" var child = elem.children[index]; return child ? child : null; """) def getChildCount(elem): JS(""" return elem.children.length; """) def getChildIndex(parent, child): JS(""" var count = parent.children.length; for (var i = 0; i < count; ++i) { if (child.uniqueID == parent.children[i].uniqueID) return i; } return -1; """) def getFirstChild(elem): JS(""" var child = elem.firstChild; return child ? child : null; """) def getInnerText(elem): JS(""" var ret = elem.innerText; return (ret == null) ? null : ret; """) def getNextSibling(elem): JS(""" var sib = elem.nextSibling; return sib ? sib : null; """) def getParent(elem): JS(""" var parent = elem.parentElement; return parent ? parent : null; """) def insertChild(parent, child, index): JS(""" if (index == parent.children.length) parent.appendChild(child); else parent.insertBefore(child, parent.children[index]); """) def insertListItem(select, text, value, index): JS(""" var newOption = document.createElement("Option"); if(index==-1) { select.add(newOption); } else { select.add(newOption,index); } newOption.text=text; newOption.value=value; """) def isOrHasChild(parent, child): JS(""" while (child) { if (parent.uniqueID == child.uniqueID) return true; child = child.parentElement; } return false; """) def releaseCapture(elem): JS(""" elem.releaseCapture(); """) def setCapture(elem): JS(""" elem.setCapture(); """) def setInnerText(elem, text): JS(""" if (!text) text = ''; elem.innerText = text; """) def sinkEvents(elem, bits): JS(""" elem.__eventBits = bits; elem.onclick = (bits & 0x00001) ? $wnd.__dispatchEvent : null; elem.ondblclick = (bits & 0x00002) ? $wnd.__dispatchDblClickEvent : null; elem.onmousedown = (bits & 0x00004) ? $wnd.__dispatchEvent : null; elem.onmouseup = (bits & 0x00008) ? $wnd.__dispatchEvent : null; elem.onmouseover = (bits & 0x00010) ? $wnd.__dispatchEvent : null; elem.onmouseout = (bits & 0x00020) ? $wnd.__dispatchEvent : null; elem.onmousemove = (bits & 0x00040) ? $wnd.__dispatchEvent : null; elem.onkeydown = (bits & 0x00080) ? $wnd.__dispatchEvent : null; elem.onkeypress = (bits & 0x00100) ? $wnd.__dispatchEvent : null; elem.onkeyup = (bits & 0x00200) ? $wnd.__dispatchEvent : null; elem.onchange = (bits & 0x00400) ? $wnd.__dispatchEvent : null; elem.onfocus = (bits & 0x00800) ? $wnd.__dispatchEvent : null; elem.onblur = (bits & 0x01000) ? $wnd.__dispatchEvent : null; elem.onlosecapture = (bits & 0x02000) ? $wnd.__dispatchEvent : null; elem.onscroll = (bits & 0x04000) ? $wnd.__dispatchEvent : null; elem.onload = (bits & 0x08000) ? $wnd.__dispatchEvent : null; elem.onerror = (bits & 0x10000) ? $wnd.__dispatchEvent : null; elem.oncontextmenu = (bits & 0x20000) ? $wnd.__dispatchEvent : null; """) def toString(elem): JS(""" return elem.outerHTML; """)
StarcoderdataPython
6495814
#!/usr/bin/env python # -*- coding: utf-8 -*- """ Created on Fri Feb 06 17:39:01 2015 @author: tsz """ from __future__ import division import numpy as np class PV(object): """ Implementation of the PV class. """ def __init__(self, environment, method, area=0.0, peak_power=0.0, eta_noct=0.18, radiation_noct=1000.0, t_cell_noct=45.0, t_ambient_noct=20.0, alpha_noct=0, beta=0, gamma=0, tau_alpha=0.9): """ Parameters ---------- environment : environment object Common to all other objects. Includes time and weather instances method : integer - `0` : Calculate PV power based on an area in m^2 equipped with PV panels - `1` : Calculate PV power based on the installed PV peak power in kWp area : float, optional PV unit installation area in m^2 Requires ``method=0`` peak_power : float, optional PV peak power installation in kWp Requires ``method=1`` eta_noct : float, optional Electrical efficiency at NOCT conditions (without unit) NOCT conditions: See manufacturer's data sheets or Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 759 Requires ``method=0`` radiation_noct : float, optional Nominal solar radiation at NOCT conditions (in W/m^2) NOCT conditions: See manufacturer's data sheets or Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 759 t_cell_noct : float, optional Nominal cell temperature at NOCT conditions (in degree Celsius) NOCT conditions: See manufacturer's data sheets or Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 759 t_ambient_noct : float, optional Nominal ambient air temperature at NOCT conditions (in degree Celsius) NOCT conditions: See manufacturer's data sheets or Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 759 alpha_noct : float, optional Temperature coefficient at NOCT conditions (without unit) NOCT conditions: See manufacturer's data sheets or Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 759 beta : float, optional Slope, the angle (in degree) between the plane of the surface in question and the horizontal. 0 <= beta <= 180. If beta > 90, the surface faces downwards. gamma : float, optional Surface azimuth angle. The deviation of the projection on a horizontal plane of the normal to the surface from the local meridian, with zero due south, east negative, and west positive. -180 <= gamma <= 180 tau_alpha : float Optical properties of the PV unit. Product of absorption and transmission coeffients. According to Duffie, Beckman - Solar Engineering of Thermal Processes (4th ed.), page 758, this value is typically close to 0.9 """ self._kind = "pv" self.environment = environment self.method = method self.area = area self.peak_power = peak_power self.eta_noct = eta_noct self.radiation_noct = radiation_noct self.t_cell_noct = t_cell_noct self.t_ambient_noct = t_ambient_noct self.alpha_noct = alpha_noct self.beta = beta self.gamma = gamma self.tau_alpha = tau_alpha self.total_power = np.zeros(environment.timer.timesteps_total) self.total_radiation = np.zeros(environment.timer.timesteps_total) self.current_power = np.zeros(environment.timer.timesteps_horizon) @property def kind(self): return self._kind def getNominalValues(self): """ Return collector's area, efficiency, nominal cell temperature and loss coefficient. """ return (self.eta_noct, self.radiation_noct, self.t_cell_noct, self.t_ambient_noct, self.alpha_noct) def _computePowerArea(self, currentValues=True): """ Compute PV electric output power based on a certain area equipped with PV panels Parameters ---------- currentValues : bool, optional If True, returns values of current horizon (default: True). If False, returns annual values. Returns ------- res_tuple : tuple 2d tuple holding power array in Watt and radiation array in W/m^2 """ # Get radiation on a tilted surface radiation = self.environment.weather.getRadiationTiltedSurface(beta=self.beta, gamma=self.gamma, update=True, currentValues=currentValues) # If no temperature coefficient is given, a simple PV model is applied if self.alpha_noct == 0: power = self.area * self.eta_noct * radiation[0] else: # Get ambient temperature getTemperature = self.environment.weather.getWeatherForecast t_ambient = getTemperature(getTAmbient=True, currentValues=currentValues) # Compute the cell temperature. # Assumption: Wind velocity is 1 m/s (same as NOCT conditions) # The resulting equation is based on equation 23.3.3 (page 758, # <NAME> - Solar Engineering of Thermal Processes, 4th ed) # as well as equation 3 (Skroplaki, Palyvos - 2009 - On the # temperature dependence of photovoltaic module electrical # performance. A review of efficiency-power correlations.) # Introduce a few abbreviations a1 = (self.t_cell_noct - self.t_ambient_noct) * radiation[0] / self.radiation_noct denominator = 1 - a1 * self.alpha_noct * self.eta_noct / self.tau_alpha numerator = 1 - self.alpha_noct * (t_ambient[0] - self.t_cell_noct + a1) eta = self.eta_noct * numerator / denominator # Compute power power = self.area * eta * radiation[0] return (power, radiation[0]) def _computePowerPeakInstallation(self, currentValues=True): """ Compute PV electric output power based on a given PV peak power installation Parameters ---------- currentValues : bool, optional If True, returns values of current horizon (default: True). If False, returns annual values. Returns ------- res_tuple : tuple 2d tuple holding power array in Watt and radiation array in W/m^2 """ # Get radiation on a tilted surface radiation = self.environment.weather.getRadiationTiltedSurface(beta=self.beta, gamma=self.gamma, update=True, currentValues=currentValues) # Get ambient temperature getTemperature = self.environment.weather.getWeatherForecast t_ambient = getTemperature(getTAmbient=True, currentValues=currentValues) # Calculation of PV power output according to: # "A novel model for photovoltaic array performance prediction" # <NAME> et. al., in Applied Energy 84 (2007), pp. 1187-1198 # Constants: q = 1.602 * np.power(10.0, -19.0) n = 1.3 K = 1.38 * np.power(10.0, -23.0) Kelvin = 273.15 # Reference module parameters (monocrystalline module): P_max_mp = 250.0 V_mp = 31.1 I_mp = 8.05 R_s = 0.012 Alpha_module = 1.21 Beta_module = 0.058 Gamma_module = 0.012 # Variables: I_sc = 0.0 # Short circuit current V_oc = 0.0 # Open circuit voltage V_oc_norm = 0.0 # Normalized open circuit voltage FF_o = 0.0 # Fill factor at ideal PV module FF = 0.0 # Fill factor P_module = np.zeros(len(radiation[0])) # PV power output per module # Straight forward calculation of PV power: for i in range(len(radiation[0])): if radiation[0][i] <= 0.0: I_sc = 0.0 else: I_sc = I_mp * np.power((radiation[0][i] / self.radiation_noct), Alpha_module) if (t_ambient[0][i] + Kelvin) == 0.0 or radiation[0][i] <= 0.0: V_oc = 0.0 else: if (1 + Beta_module * np.log(self.radiation_noct / radiation[0][i])) == 0.0: V_oc = 0.0 else: V_oc = (V_mp / (1 + Beta_module * np.log(self.radiation_noct / radiation[0][i]))) * \ np.power(((self.t_ambient_noct + Kelvin) / (t_ambient[0][i] + Kelvin)), Gamma_module) if (t_ambient[0][i] + Kelvin) == 0.0: V_oc_norm = 0.0 else: V_oc_norm = (V_oc / (n * K * (t_ambient[0][i] + Kelvin) / q)) if (1 + V_oc_norm) == 0.0: FF_o = 0.0 else: FF_o = (V_oc_norm - np.log(V_oc_norm + 0.72)) / (1 + V_oc_norm) if V_oc == 0.0 or I_sc == 0.0: FF = 0.0 else: FF = FF_o * (1 - (R_s / (V_oc / I_sc))) P_module[i] = FF * V_oc * I_sc n_modules = int(1000.0*self.peak_power/P_max_mp) power = np.array(P_module)*n_modules return (power, radiation[0]) def getPower(self, currentValues=True, updatePower=True): """ Get the PV generation. Parameters ---------- currentValues : Boolean, optional - True : Return the PV generation array for the current forecasting horizon - False : Return the entire PV generation array for all previous time steps updatePower : Boolean, optional - True: Compute the PV generation forecast for the upcoming horizon - False: Do not compute a new PV generation forecast """ current_timestep = self.environment.timer.current_timestep timesteps = self.environment.timer.timesteps_horizon if self.method in (0, 1): if updatePower: if self.method == 0: (current_power, currentRadiation) = self._computePowerArea(currentValues=currentValues) elif self.method == 1: (current_power, currentRadiation) = self._computePowerPeakInstallation(currentValues=currentValues) if currentValues: self.current_power = current_power self.total_power[current_timestep:(current_timestep + timesteps)] = current_power self.total_radiation[current_timestep:(current_timestep + timesteps)] = currentRadiation return self.current_power else: self.total_power = current_power self.total_radiation = currentRadiation return self.total_power
StarcoderdataPython
3429345
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2012 pyReScene # # Permission is hereby granted, free of charge, to any person # obtaining a copy of this software and associated documentation # files (the "Software"), to deal in the Software without # restriction, including without limitation the rights to use, # copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following # conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES # OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND # NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT # HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, # WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR # OTHER DEALINGS IN THE SOFTWARE. from __future__ import division import optparse import sys import os import glob import re try: import _preamble except ImportError: pass import rescene from rescene.rar import RarReader, BlockType, COMPR_STORING def check_compression(srr_file): for block in RarReader(srr_file): if block.rawtype == BlockType.RarPackedFile: if block.compression_method != COMPR_STORING: return True return False def check_empty(srr_file): for block in RarReader(srr_file): if block.rawtype == BlockType.RarPackedFile: return False return True def check_image(srr_file, noproof): images = (".jpg", ".png", ".bmp", ".gif", "jpeg") for block in RarReader(srr_file): if (block.rawtype == BlockType.SrrStoredFile and os.path.splitext(block.file_name)[1] in images): if noproof and "proof" in block.file_name.lower(): return False return True return False def check_repack(srr_file): tmatch = ("rpk", "repack", "-r.part01.rar", "-r.rar") for block in RarReader(srr_file): if block.rawtype == BlockType.SrrRarFile: matchf = lambda keyword: keyword in block.file_name if any(map(matchf, tmatch)): return True return False def check_nfos(srr_file): for block in RarReader(srr_file): nfo_count = 0 if (block.rawtype == BlockType.SrrStoredFile and block.file_name[-4:].lower() == ".nfo"): nfo_count += 1 return False if nfo_count <= 1 else True def check_duplicates(srr_file): found = [] for block in RarReader(srr_file): if (block.rawtype == BlockType.SrrStoredFile): if found.count(block.file_name): return True found.append(block.file_name) return False def check_for_possible_nonscene(srr_file): for block in RarReader(srr_file): if (block.rawtype == BlockType.SrrRarFile and block.file_name != block.file_name.lower()): return True return False def check_availability_stored_files(srr_file): for block in RarReader(srr_file): if block.rawtype == BlockType.SrrStoredFile: return False return True def check_for_no_ext(srr_file, extension): for block in RarReader(srr_file): if (block.rawtype == BlockType.SrrStoredFile and block.file_name.lower().endswith(extension)): return False return True def check_for_ext(srr_file, extension): for block in RarReader(srr_file): if (block.rawtype == BlockType.SrrStoredFile and block.file_name.lower().endswith(extension)): return True return False rar_sizes = 0 # bytes def check(srr_file): try: result = False if options.verify or options.multiple: info = rescene.info(srr_file) global rar_sizes rar_sizes += sum([info['rar_files'][f].file_size for f in info['rar_files']]) if options.multiple: sets = [] for f in info["rar_files"]: ms = "^(.*?)(.part\d+.rar|(.[rstuv]\d\d|.rar))$" base = re.match(ms, f, re.IGNORECASE).group(1) if not base in sets: sets.append(base) result |= len(info["archived_files"]) > len(sets) # print(sets) # useful to check ordering if options.dirfix: if "dirfix" in srr_file.lower() or "nfofix" in srr_file.lower(): print(srr_file) if options.lowercase: group = srr_file[:-4].rsplit("-")[-1] if group == group.lower(): result |= True if "." in group: # does not have a group name result |= True fn = os.path.split(srr_file)[1] if fn == fn.lower(): result |= True if options.compressed: result |= check_compression(srr_file) if options.empty: result |= check_empty(srr_file) if options.image or options.noproof: result |= check_image(srr_file, options.noproof) if options.repack: result |= check_repack(srr_file) if options.nfos: result |= check_nfos(srr_file) if options.duplicates: result |= check_duplicates(srr_file) if options.peer2peer: result |= check_for_possible_nonscene(srr_file) if options.nofiles: result |= check_availability_stored_files(srr_file) if options.nosfv: result |= check_for_no_ext(srr_file, ".sfv") if options.nonfo: result |= check_for_no_ext(srr_file, ".nfo") if options.txt: result |= check_for_ext(srr_file, ".txt") if result and options.output_dir: print("Moving %s." % srr_file) srr_name = os.path.basename(srr_file) # move the SRR to the given directory os.renames(srr_file, os.path.join(options.output_dir, srr_name)) if result: print(os.path.basename(srr_file)) except (EnvironmentError, Exception) as err: # the storing of a srr_file failed -> corrupt SRR print("Something wrong with reading %s" % srr_file) print(err) def main(options, args): for element in args: if os.path.isdir(element): for srr_file in glob.iglob(element + "/*.srr"): check(srr_file) elif os.path.isfile(element) and element.endswith(".srr"): check(element) else: print("WTF are you supplying me?") if rar_sizes: print("%d bytes" % rar_sizes) print("%.2f KiB" % (rar_sizes / 1024)) print("%.2f MiB" % (rar_sizes / 1024 / 1024)) print("%.2f GiB" % (rar_sizes / 1024 / 1024 / 1024)) print("%.2f TiB" % (rar_sizes / 1024 / 1024 / 1024 / 1024)) if __name__ == '__main__': parser = optparse.OptionParser( usage="Usage: %prog [directories] [srrs] [options]'\n" "This tool will list compressed, empty or SRR files with images.\n" "It optionally moves them to a given output directory.", version="%prog 1.0 (2012-09-20)") # --help, --version parser.add_option("-c", "--compressed", help="list compressed SRRs", action="store_true", dest="compressed", default=False) parser.add_option("-e", "--empty", help="list SRRs with no RAR data", action="store_true", dest="empty", default=False) parser.add_option("-v", "--verify", help="check whole SRR for correctness " "and return full RAR sizes at the end", action="store_true", dest="verify", default=False) parser.add_option("-t", "--nfos", help="two or more NFOs", action="store_true", dest="nfos", default=False) parser.add_option("-u", "--duplicates", help="the same file is stored twice", action="store_true", dest="duplicates", default=False) parser.add_option("-p", "--noproof", help="list SRRs with images that " "do not contain the word proof", action="store_true", dest="noproof", default=False) parser.add_option("-i", "--image", help="list SRRs with stored images", action="store_true", dest="image", default=False) parser.add_option("-f", "--nofiles", help="list SRRs if no files are stored", action="store_true", dest="nofiles", default=False) parser.add_option("-m", "--multiple", help="list SRRs with multiple archived files", action="store_true", dest="multiple", default=False) parser.add_option("-s", "--nosfv", help="list SRRs without SFV", action="store_true", dest="nosfv", default=False) parser.add_option("-n", "--nonfo", help="list SRRs without NFO", action="store_true", dest="nonfo", default=False) parser.add_option("--txt", help="list SRRs with TXT files", action="store_true", dest="txt", default=False) parser.add_option("-r", "--repack", help="list SRRs with -rpk., -r. in RAR name", action="store_true", dest="repack", default=False) parser.add_option("-2", "--p2p", help="not all RARs are lower case", action="store_true", dest="peer2peer", default=False) parser.add_option("-l", help="list lower case/no group names", action="store_true", dest="lowercase", default=False) parser.add_option("-d", "--dirfix", help="dirfixes and nfofixes", action="store_true", dest="dirfix", default=False) parser.add_option("-o", dest="output_dir", metavar="DIRECTORY", help="moves the matched SRR files to the given DIRECTORY") # no arguments given if len(sys.argv) < 2: print(parser.format_help()) else: (options, args) = parser.parse_args() main(options, args) """ >>> list = os.listdir(".") >>> def get_name(name): ... return name[:-4].rsplit("-")[-1] ... >>> get_name("Zebraman.2.Attack.On.Zebra.City.2011.720p.BluRay.x264-Japhson.srr") 'Japhson' >>> for e in list: ... n = get_name(e) ... if n == n.lower(): ... print(e) ... """
StarcoderdataPython
6436451
<filename>stools-core/src/dev/python/scheduler.py __author__ = 'lfischer' # @author <NAME> # # Copyright 2016 University of Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import sys import time import collections from kazoo.client import KazooClient from kazoo.recipe.watchers import DataWatch from kazoo.protocol.states import EventType import logging import json # # This script reads the sendgraph of a storm topology from zookeeper, creates a # schedule based on the sendgraph and write this schedule back into zookeeper. # # At the moment there are two methos supported: # - schedulerOneWorker -> schedules all work to one workder # - schedulerMetis -> use METIS to schedule the work # #zk_connect_string = "127.0.0.1:2000" #zk_connect_string = "claudio01.ifi.uzh.ch:2181" zk_connect_string = "tentacle.ifi.uzh.ch:2181" metrics_zk_path = "/stools/scheduler/metrics" # where we expect the metrics to be written to schedule_zk_path = "/stools/scheduler/schedule" # where we will write the schedules to #workerbeats_zk_path = "/storm/workerbeats/" # where we go to find out how many workers per topo there are metis_binary = "/Users/lfischer/tools/metis-5.1.0/build/Darwin-x86_64/programs/gpmetis" # def create_empty_sendgraph(): # """ This method creates a two dimentional default dictionary that can be used to reconstruct the sendgraph. """ # return collections.defaultdict(collections.defaultdict) def byteArrayToInt(byteArray): """ This method converts the contents of the ZK nodes, which were long values in Java, into int values. """ return int(byteArray.encode('hex'), 16) def scheduleOneWorker(num_workers, jsonSendGraph): """This scheduler assigns all work to only one scheduler.""" all_tasks = set() schedule = "" # get a list of all tasks for node in jsonSendGraph['nodes']: all_tasks.add(int(node['name'])) print("assigning all tasks to one partition.") # we simulate the output of a metis schedule, which one line per vertex, each having one number # which is the partition (worker) it should be assigned to. for task in all_tasks: if len(schedule) > 0: schedule += "\n" schedule += "0" return schedule def createMetisGraphFile(jsonSendgraph): """This method creates the contents that a graph input file needs to have in order to be processable by METIS (http://glaros.dtc.umn.edu/gkhome/projects/gp/products?q=views/metis). A METIS input file consists of one header line and of n lines, where n is the number of vertices in the graph. For our purposes the header line looks as follows: n m 011 1 n and m are the number of vertices and edges in the graph respectively while the latter two elements tell METIS that we will have one weight on each vertex and that the edges are also weighted. All remaining lines are of the form vw v1 w1 ... w1 wN where the ith line contains information about the ith vertex. On each line vw is the weight of the vertex, v1..vN are the vertices adjacent to the ith vertex and w1..wN are the weights for these vertices. more information about this format can be found here: http://glaros.dtc.umn.edu/gkhome/fetch/sw/metis/manual.pdf (page 10 at the very top). """ graph_file = "tmp.graph" # default is a dictionary of a default dictionary with a default weight of 0 edge_weights = collections.defaultdict(lambda: collections.defaultdict(lambda: 0)) # default value is 0 vertex_weights = collections.defaultdict(lambda: 1) # default weight of 1 - zero is not supported by metis max_node_id = 0 # build the connection matrix edge_count = 0 for link in jsonSendgraph['links']: sourceId = int(link['source']) targetId = int(link['target']) value = int(link['value']) if sourceId > max_node_id: max_node_id = sourceId if targetId > max_node_id: max_node_id = targetId if sourceId != targetId: if edge_weights[sourceId][targetId] == 0: # only count the edge if it does not yet exist edge_count += 1 edge_weights[sourceId][targetId] += value # metis requires a reverse link, so we put a value of 1 if it does not yet exist if edge_weights[targetId][sourceId] == 0: edge_weights[targetId][sourceId] = 1 vertex_weights[targetId] += value vertex_weights[sourceId] += value # count outgoing messages as well to vertex weight # count nodes and links vertex_count = max_node_id graph_file_content = "{n} {m} 011 1".format(n=vertex_count, m=edge_count) for from_vertex in range(1, vertex_count + 1): # indexed from 1..num_Vertex vertex_line = "" for to_vertex in edge_weights[from_vertex].keys(): if len(vertex_line) > 0: vertex_line += " " vertex_line += "{v} {w}".format(v=to_vertex, w=edge_weights[from_vertex][to_vertex]) # prepend vertex weight vertex_line = "{vw} ".format(vw=vertex_weights[from_vertex]) + vertex_line graph_file_content = graph_file_content + "\n" + vertex_line with open(graph_file, 'w') as f: f.write(graph_file_content) # print("Metis file content:\n{0}".format(graph_file_content)) return graph_file def schedulerMetis(num_workers, jsonSendgraph): """This scheduler uses METIS to partition the graph and schedule the work.""" import subprocess schedule = "" # Create METIS schedule print("Creating METIS graph file for {0} partitions".format(num_workers)) graph_file = createMetisGraphFile(jsonSendgraph) partition_file = "{gf}.part.{partitions}".format(gf=graph_file, partitions=num_workers) # todo: objtype=cut is not necessary I think print("Calling METIS") try: metis_output = subprocess.check_output([metis_binary, "-objtype=vol", graph_file, str(num_workers)]) #print("metis output:\n{0}".format(metis_output)) # read the partition file with open(partition_file) as f: schedule = "" for line in f.readlines(): if len(line) > 0: schedule += line except subprocess.CalledProcessError as e: print("something went wrong when calling metis:\n" + e.output) # print(schedule) # exit(1) return schedule # here we configure the scheduler currently in use (either schedulerOneWorker or schedulerMetis) scheduler = schedulerMetis # scheduler = scheduleOneWorker def schedule(zk, topology): topology_metrics_path = metrics_zk_path + "/" + topology topology_sendgraph_path = topology_metrics_path + "/sendgraph" topology_config_path = topology_metrics_path + "/config" topology_schedule_path = schedule_zk_path + "/" + topology print("scheduling using data at {0} writing schedule into {1}". format(topology_metrics_path, topology_schedule_path)) jsonStr = "" retry = 0 while len(jsonStr) == 0: retry += 1 if retry >= 24: # try for two minutes raise RuntimeError("Could not find send graph data in Zookeeper") elif retry > 1: print("Could not find send graph data in Zookeeper. Retrying in 10 seconds...") time.sleep(10) # wait for 5 seconds before retrying # extract the sendgraph from zookeeper (jsonStr, node_stat) = zk.get(topology_sendgraph_path) # parse the json graph jsonSendGraph = json.loads(jsonStr) # write json to file for debugging with open("tmp.graph.json", 'w') as f: f.write(jsonStr) # get number of workers for topology (nw_value, nw_stat) = zk.get(topology_config_path + "/topology.workers") num_workers = byteArrayToInt(nw_value) # the output of the schedules need to be the same as the partitioning files of METIS: # one line per vertex, each having one number which is the partition (worker) it should # be assigned to. schedule = scheduler(num_workers, jsonSendGraph) #schedule = "" # turn the scheduler off if len(schedule) > 0: debug = False if debug: print("computed schedule for topo {0}:\n{1}".format(topology, schedule)) else: # write schedule to zk print("writing schedule to zookeeper") zk.ensure_path(topology_schedule_path) zk.set(topology_schedule_path, bytes(bytearray(schedule))) print("schedule written") else: print("No schedule computed") def main_loop(): logging.basicConfig() zk = KazooClient(hosts=zk_connect_string) zk.start() # make sure the root folders for the sendgraph and the schedules exist zk.ensure_path(metrics_zk_path) zk.ensure_path(schedule_zk_path) for topology in zk.get_children(metrics_zk_path): topology_metrics_zk_path = metrics_zk_path + "/" + topology print("registering watcher schedule for " + topology_metrics_zk_path) # register a data watch for each def watchFunc(data, stat, event): #print("watch called") if event is not None and event.type == EventType.CHANGED: print("new sendgraph data for {0} at {1}".format(topology, byteArrayToInt(data))) schedule(zk, topology) return True # returning false will disable the watch # install data watch #DataWatch(zk, topology_metrics_zk_path, func=watchFunc) # if there is some data already, schedule immediately if len(zk.get_children(topology_metrics_zk_path)): print("existing sendgraph data for {0}".format(topology)) schedule(zk, topology) # while 1: # # wait until we get cancelled # time.sleep(0.1) if __name__ == '__main__': try: main_loop() except KeyboardInterrupt: print >> sys.stderr, '\nExiting by user request.\n' sys.exit(0)
StarcoderdataPython
6625489
<reponame>minhtannguyen/transformer-mgk<filename>language-modeling/fast_transformers/__init__.py<gh_stars>1-10 """Provide a library with fast transformer implementations.""" __author__ = "" __copyright__ = "" __license__ = "MIT" __maintainer__ = "" __email__ = "" __url__ = "https://github.com/idiap/fast-transformers" __version__ = "0.4.0"
StarcoderdataPython
1971809
<gh_stars>10-100 from util import Storage class MockProtocol(Storage): pass class MockContact(Storage): pass
StarcoderdataPython
6410499
import os import re from django.db.models import Q from storage.models import RootPath, RelPath, File, ExcludeDir from logger import init_logging logger = init_logging(__name__) class Scan(object): """Abstract functionality for scanning folders. Either FullScan or QuickScan should be instantiated.""" def __init__(self, rp=None): if rp is None: self.root_paths = list(RootPath.objects.all()) else: self.root_paths = list(RootPath.objects.filter(path__icontains=rp)) if len(self.root_paths) == 0: raise Exception("No root paths found from: {0}".format(rp)) def scan(self): """Scan each root path in turn and update the database""" # Iterate over each of the managed root paths for root_path in self.root_paths: # Build the list of regexe's regexes = [] query = Q(root_path=root_path) | Q(root_path=None) for rec in ExcludeDir.objects.filter(query): regexes.append(re.compile(rec.regex)) # Iterate over each of the files in the current root path for root, dirs, files in os.walk(root_path.abspath): # # Get the path to the current directory # rel_path = RelPath.getrelpath(root, root_path=root_path) # # Continue if directory is excluded # skip = False i = 0 while (i < len(regexes)) and not skip: if regexes[i].search(rel_path.abspath): logger.debug(u"Skipping: {0}".format(rel_path.abspath)) skip=True i += 1 if skip: continue # # Get the list of known files so we can remove any # that have been deleted # known_files = list(File.objects.filter(path=rel_path)) # # Iterate over the files in the current directory and ensure # the hash is up to date (QuickScan or FullScan). # Remove each file from the list of known files on the way. # for fname in files: file = self.file(rel_path, fname) if file is None: self.add_file(rel_path, fname) else: known_files.remove(file) if self.needs_rehash(file): self.update_file(file) else: logger.debug(u"No change: {0}".format(file.abspath)) # # What's left in known_files has been deleted # Remove from db # for file in known_files: logger.debug(u"Removing from known_files: {0}".format(file.abspath)) file.mark_deleted() def file(self, rel_path, fname): """Answer the File object if present or None.""" files = File.objects.filter(path=rel_path, name=fname, deleted=None) assert len(files) <= 1, "Found more than one matching file" if len(files) == 0: return None else: return files[0] def add_file(self, rel_path, fname): """Add the supplied fname to the db""" logger.debug(u"Adding: {0}".format(fname)) file = File(path=rel_path, name=fname) file.update_details() return def update_file(self, file): logger.debug(u"Updating: {0}".format(file.abspath)) file.update_details() return class QuickScan(Scan): """QuickScan assumes that a file with the same mtime and size hasn't changed, so doesn't require its hash to be recalculated.""" def needs_rehash(self, file): return file.os_stats_changed() class FullScan(Scan): """FullScan rehashes every file, regardless of whether it has been changed or not""" def needs_rehash(self, file): return True
StarcoderdataPython
12840218
<gh_stars>1-10 import hikari import tanjun from avgamah.core.client import Client pussy_component = tanjun.Component() @pussy_component.with_slash_command @tanjun.with_own_permission_check( hikari.Permissions.SEND_MESSAGES | hikari.Permissions.VIEW_CHANNEL | hikari.Permissions.EMBED_LINKS ) @tanjun.with_nsfw_check @tanjun.as_slash_command("pussy", "Cute pussy cats.") async def pussy(ctx: tanjun.abc.Context): await ctx.shards.reddit_cache.reddit_sender(ctx, "pussy") @tanjun.as_loader def load_components(client: Client): client.add_component(pussy_component.copy())
StarcoderdataPython
1671866
# A part of pdfrw (pdfrw.googlecode.com) # Copyright (C) 2006-2012 <NAME>, Austin, Texas # MIT license -- See LICENSE.txt for details class PdfObject(str): ''' A PdfObject is a textual representation of any PDF file object other than an array, dict or string. It has an indirect attribute which defaults to False. ''' indirect = False
StarcoderdataPython
6633694
<filename>hybridpy/dataset/triploader.py __author__ = 'astyler' import pandas as pd import numpy as np import math import osmapping from scipy.signal import butter, filtfilt def load(fname): trip = pd.read_csv(fname) elapsed = np.cumsum(trip.PeriodMS / 1000.0) elapsed -= elapsed[0] trip['ElapsedSeconds'] = elapsed # smooth speed b, a = butter(2, 0.5) trip['SpeedFilt'] = filtfilt(b, a, trip.Speed) trip.Acceleration = trip['SpeedFilt'].diff() trip.Acceleration[0] = 0 # smooth noisy elevation measurements b, a = butter(4, 0.05) trip['ElevationFilt'] = filtfilt(b, a, trip.Elevation) locations = trip[['Latitude', 'Longitude']].values # add heading headings = [compute_heading(lat1=here[0], lat2=there[0], lon1=here[1], lon2=there[1]) for here, there in zip(locations[0:-1], locations[1:])] headings.append(headings[-1]) trip['HeadingRaw'] = headings filtered_headings = [headings[0]] for heading, speed in zip(headings[1:], trip['SpeedFilt'].values[1:]): if speed < 1: filtered_headings.append(filtered_headings[-1]) else: filtered_headings.append(heading) b, a = butter(2, 0.2) trip['HeadingCosF'] = filtfilt(b,a,np.cos(filtered_headings)) trip['HeadingSinF'] = filtfilt(b,a,np.sin(filtered_headings)) # add gradient planar_distances = [osmapping.haversine(here, there)+1.0 for here, there in zip(locations[0:-1], locations[1:])] trip['GradientRaw'] = trip.Elevation.diff() / ([1.0] + planar_distances) trip.loc[0, 'GradientRaw'] = trip.loc[1, 'GradientRaw'] return trip def compute_heading(lat1, lat2, lon1, lon2): lat1, lat2, lon1, lon2 = map(math.radians, [lat1, lat2, lon1, lon2]) return math.atan2(math.cos(lat1) * math.sin(lat2) - math.sin(lat1) * math.cos(lat2) * math.cos(lon2 - lon1), math.sin(lon2 - lon1) * math.cos(lat2))
StarcoderdataPython
8101675
<gh_stars>1-10 import pandas as pd import numpy as np from matplotlib import pyplot as plt from pmdarima.arima import ndiffs import sys #from statsmodels.graphics.tsaplots import plot_pacf from statsmodels.tsa.stattools import acf, pacf if __name__ == "__main__": data = pd.read_csv(sys.argv[1]) d = sys.argv[2] #print(d) #print(d) #lag_acf = acf(data["value"].diff(d).dropna(), nlags=30) #lag_pacf = pacf(data["value"].dropna(), nlags=25) if d == '0': lag_pacf = pacf(data["value"].dropna(), nlags=25) else: lag_pacf = pacf(data["value"].diff(d).dropna(), nlags=25) #print(lag_pacf) f = open("./ts_analysis/pacf.txt", "w") #f = open("pacf.txt", "w") for i in lag_pacf: f.write(str(i)+'\n') f.close() #plot_pacf(data["value"].diff(d).dropna()) #lt.savefig("../desktop/for_redis/pacf.png") #plt.savefig("pacf.png") # 觀察ACF圖,參數是差分之後的資料 #plot_acf(data["time_imputed"].diff(1)) #plt.show()
StarcoderdataPython
6515482
<filename>motion_detection.py ##################################################################### # Import Libriries ##################################################################### import cv2 import numpy as np import time ##################################################################### print("\n[INFO] Read frames from the webcam / file\n") ##################################################################### input_file = 'videos/test_fire_2.mp4' if isinstance(input_file, str): video_source = input_file input_file_name = input_file[:-4] video = cv2.VideoCapture(video_source) else: video_source = 0 input_file_name = "videos/webcam" video = cv2.VideoCapture(video_source) time.sleep(2) if video.isOpened() == False: print("[INFO] Unable to read the camera feed") ##################################################################### # Background Extraction ##################################################################### # Subtractors knnSubtractor = cv2.createBackgroundSubtractorKNN(100, 400, True) # Motion detection parameters percentage = 0.2 # percent thresholdCount = 1500 movementText = "Movement is Detected" textColor = (255, 255, 255) titleTextPosition = (50, 50) titleTextSize = 1.2 motionTextPosition = (50, 50) frameIdx = 0 ##################################################################### # Write video settings: Save video + detection on the disk ##################################################################### save_output = True fourcc = cv2.VideoWriter_fourcc(*'MP4V') writer = None print("[INFO] Processing...(Press q to stop)") while(1): # Return Value and the current frame ret, frame = video.read() frameIdx += 1 print('[INFO] Frame Number: %d' % (frameIdx)) # Check if a current frame actually exist if not ret: break if writer is None: (frame_height, frame_width) = frame.shape[:2] output_file_name = input_file_name + \ '_motion_detection_{}_{}'.format(frame_height, frame_width)+'.mp4' writer = cv2.VideoWriter( output_file_name, fourcc, 20.0, (frame_width, frame_height)) output_motion_file_name = input_file_name + \ '_motion_{}_{}'.format(frame_height, frame_width)+'.mp4' writer_motion = cv2.VideoWriter( output_motion_file_name, fourcc, 20.0, (frame_width, frame_height),0) ############# pixel_total = frame_height * frame_width thresholdCount = (percentage * pixel_total) / 100 print('[INFO] frame_height={}, frame_width={}'.format( frame_height, frame_width)) print('[INFO] Number of pixels of the frame: {}'.format(pixel_total)) print('[INFO] Number of pixels to trigger Detection ({}%) : {}'.format(percentage, thresholdCount)) print("\n[INFO] Perform Movement Detection: KNN") ##################################################################### tic = time.time() knnMask = knnSubtractor.apply(frame) toc = time.time() knnPixelCount = np.count_nonzero(knnMask) knnPixelPercentage = (knnPixelCount*100.0)/pixel_total print('[INFO] Processing time (Movement Detection): {0:2.2f} ms'.format( (toc-tic)*1000)) print('[INFO] Percentage of Moving Pixel: {0:2.4f} % ({1:d})'.format( knnPixelPercentage, knnPixelCount)) if (knnPixelCount > thresholdCount) and (frameIdx > 1): cv2.putText(frame, movementText, motionTextPosition, cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA) # Display Results ##################################################################### cv2.imshow('Original', frame) cv2.imshow('Movement: KNN', knnMask) cv2.moveWindow('Original', 50, 50) cv2.moveWindow('Movement: KNN', frame_width, 50) # Record Video writer.write(frame) if save_output else 0 writer_motion.write(knnMask) if save_output else 0 # if the `q` key was pressed, break from the loop ##################################################################### key = cv2.waitKey(1) & 0xFF if key == ord("q"): break video.release() cv2.destroyAllWindows()
StarcoderdataPython
4950667
from rest_framework import serializers from .models import Notes from .models import User from rest_framework_simplejwt.tokens import RefreshToken from . import string_to_JSX class NotesInfoSerializer(serializers.ModelSerializer): """This serializer just gives a brief description of a Note""" # A custom serializer field owner_name = serializers.SerializerMethodField(read_only=True) class Meta: model = Notes # all the field we want to be returned fields = ['id','title','owner_name','created_on','last_modified','favourite','global_file'] def get_owner_name(self,obj): """owner_name should contain name of the owner of the Note""" return obj.owner.username class NotesDetailSerializer(serializers.ModelSerializer): """Detail description of the Note""" graph_content = serializers.SerializerMethodField(read_only=True) class Meta: model = Notes fields = '__all__' extra_fields = ['graph_content'] extra_kwargs={ "owner":{"read_only":True} } def get_field_names(self, declared_fields, info): """Overriding get_field_names function to include the extra_fields in the list of fields **implementation taken from https://stackoverflow.com/questions/38245414/django-rest-framework-how-to-include-all-fields-and-a-related-field-in-mo ** """ expanded_fields = super(NotesDetailSerializer, self).get_field_names(declared_fields, info) if getattr(self.Meta, 'extra_fields', None): return expanded_fields + self.Meta.extra_fields else: return expanded_fields def get_graph_content(self,obj): """graph_content is the JSX string of user content""" return string_to_JSX.convert_to_JSX_string(obj.content) class UserSerializer(serializers.ModelSerializer): """Serializer for User""" full_name = serializers.SerializerMethodField(read_only=True) class Meta: model = User fields = ['id','username','first_name','last_name','full_name','image'] extra_kwargs = { 'password':{ 'write_only':True, 'style':{'input_type':'password'} } } def get_full_name(self,obj): """full_name is combination of first and last name""" full_name = f"{obj.first_name} {obj.last_name}" return full_name class UserSerializerWithToken(serializers.ModelSerializer): """Same as UserSerializer but will have one additional field for JWT token """ token = serializers.SerializerMethodField(read_only=True) full_name = serializers.SerializerMethodField(read_only=True) class Meta: model = User fields = ['id','username','first_name','last_name','token','full_name','image'] extra_kwargs = { 'password':{ 'write_only':True, 'style':{'input_type':'password'} } } def get_token(self,obj): token = RefreshToken.for_user(obj) return str(token.access_token) def get_full_name(self,obj): full_name = f"{obj.first_name} {obj.last_name}" return full_name
StarcoderdataPython
3583188
<reponame>ropable/wastd<gh_stars>1-10 from rest_framework.serializers import ModelSerializer from rest_framework_gis.serializers import GeoFeatureModelSerializer from taxonomy.models import ( Community, Crossreference, HbvFamily, HbvGenus, HbvGroup, HbvName, HbvParent, HbvSpecies, HbvSupra, HbvVernacular, HbvXref, Taxon, Vernacular, ) class HbvNameSerializer(ModelSerializer): class Meta: model = HbvName fields = "__all__" class HbvSupraSerializer(ModelSerializer): class Meta: model = HbvSupra fields = "__all__" class HbvGroupSerializer(ModelSerializer): class Meta: model = HbvGroup fields = "__all__" class HbvFamilySerializer(ModelSerializer): class Meta: model = HbvFamily fields = "__all__" class HbvGenusSerializer(ModelSerializer): class Meta: model = HbvGenus fields = "__all__" class HbvSpeciesSerializer(ModelSerializer): class Meta: model = HbvSpecies fields = "__all__" class HbvVernacularSerializer(ModelSerializer): class Meta: model = HbvVernacular fields = "__all__" class HbvXrefSerializer(ModelSerializer): class Meta: model = HbvXref fields = "__all__" class HbvParentSerializer(ModelSerializer): class Meta: model = HbvParent fields = "__all__" class TaxonSerializer(ModelSerializer): """Serializer for Taxon. Includes a summary of conservation status which is ingested into WACensus. Example: NAME_ID | CONSV_CODE | LIST_CODE | EPBC | WA_IUCN | IUCN_CRITERIA 228 | 3 | Priority | | | 297 | T | WCA_1991 | EN | VU | D1+2 436 | T | WCA_1991 | EN | EN | B1+2c """ class Meta: model = Taxon fields = ( "pk", "name_id", "name", "rank", "parent", "author", "current", "publication_status", "vernacular_name", "vernacular_names", "canonical_name", "taxonomic_name", "paraphyletic_groups" ) class FastTaxonSerializer(ModelSerializer): """Minimal serializer for Taxon to be used in other serializers. """ class Meta: model = Taxon fields = ( "pk", "name_id", "canonical_name", "taxonomic_name", "vernacular_names", ) class VernacularSerializer(ModelSerializer): taxon = FastTaxonSerializer(many=False) class Meta: model = Vernacular fields = ( "ogc_fid", "taxon", "name", "language", "preferred", ) class CrossreferenceSerializer(ModelSerializer): predecessor = FastTaxonSerializer(many=False) successor = FastTaxonSerializer(many=False) class Meta: model = Crossreference fields = ( "xref_id", "predecessor", "successor", "reason", "authorised_by", "authorised_on", "effective_to", "comments", ) class CommunitySerializer(GeoFeatureModelSerializer): class Meta: model = Community geo_field = "eoo" fields = ["code", "name", "description", "eoo"]
StarcoderdataPython
6446655
# MultimediaCase for Raspberry Pi - by Joy-IT # Addon published under MIT-License import sys sys.path.append('/storage/.kodi/addons/virtual.rpi-tools/lib') sys.path.append('/storage/.kodi/addons/script.module.pyserial/lib') import xbmcaddon import xbmcgui import subprocess import time import os import serial addon = xbmcaddon.Addon() addonname = addon.getAddonInfo('name') _localize_ = addon.getLocalizedString monitor = xbmc.Monitor() Cancel = False status_Fan = False status_LearningMode = False os.system("touch /storage/.config/autostart.sh") os.system("rm /storage/.kodi/temp/functions.txt && touch /storage/.kodi/temp/functions.txt") flags = ["python /storage/.kodi/addons/script.module.MultimediaCase/lib/fan.py &\n", "python /storage/.kodi/addons/script.module.MultimediaCase/lib/shutdown-function.py &"] with open("/storage/.config/autostart.sh","r") as log, open("/storage/.kodi/temp/functions.txt","w") as file: for line in log: if not any(flag in line for flag in flags): file.write(line) with open("/storage/.kodi/temp/functions.txt", "a") as log: log.write("python /storage/.kodi/addons/script.module.MultimediaCase/lib/shutdown-function.py &\n") def fanControll(): global status_Fan global Cancel fan = xbmcgui.Dialog().select(_localize_(32001), [_localize_(32002),_localize_(32003),_localize_(32021)]) if fan == -1: Cancel = True if fan == 1: xbmcgui.Dialog().ok(_localize_(32004),_localize_(32005)) if fan == 0: with open("/storage/.kodi/temp/functions.txt", "a") as log: log.write("python /storage/.kodi/addons/script.module.MultimediaCase/lib/fan.py &\n") xbmcgui.Dialog().ok(_localize_(32004),_localize_(32006)) status_Fan = True if fan == 2: xbmcgui.Dialog().ok(_localize_(32022),_localize_(32023)) fanControll() def learningMode(): global status_LearningMode global Cancel if Cancel == False: learning_Mode = xbmcgui.Dialog().select(_localize_(32007), [_localize_(32008),_localize_(32009),_localize_(32021)]) if learning_Mode == -1: Cancel = True if learning_Mode == 1: xbmcgui.Dialog().ok(_localize_(32010),_localize_(32011)) if learning_Mode == 0: ser = serial.Serial(port='/dev/serial0', baudrate = 38400, parity=serial.PARITY_NONE, stopbits=serial.STOPBITS_ONE, bytesize=serial.EIGHTBITS, timeout=1) ser.write(str.encode('\x0D')) ser.write(str.encode('X04')) ser.write(str.encode('\x0D')) xbmcgui.Dialog().textviewer(_localize_(32012),_localize_(32013)) xbmcgui.Dialog().ok(_localize_(32010),_localize_(32014)) status_LearningMode = True if learning_Mode == 2: xbmcgui.Dialog().ok(_localize_(32024),_localize_(32025)) learningMode() while not monitor.abortRequested(): fanControll() learningMode() if Cancel == False: os.system("rm /storage/.config/autostart.sh && touch /storage/.config/autostart.sh") os.system("cp /storage/.kodi/temp/functions.txt /storage/.config/autostart.sh") os.system("rm /storage/.kodi/temp/functions.txt") if status_Fan == False and status_LearningMode == False: xbmcgui.Dialog().ok(addonname, _localize_(32015)) elif status_Fan == True and status_LearningMode == False: xbmcgui.Dialog().ok(addonname, _localize_(32016)) elif status_Fan == False and status_LearningMode == True: xbmcgui.Dialog().ok(addonname, _localize_(32017)) elif status_Fan == True and status_LearningMode == True: xbmcgui.Dialog().ok(addonname, _localize_(32018)) xbmcgui.Dialog().ok(addonname, _localize_(32019)) os.system ("reboot") else: os.system("rm /storage/.kodi/temp/functions.txt") xbmcgui.Dialog().ok(addonname, _localize_(32020)) break
StarcoderdataPython
4999927
from django.core.mail import backends from django.test import TestCase from .test_backends import ErrorRaisingBackend from django_mail_admin.connections import connections class ConnectionTest(TestCase): def test_get_connection(self): # Ensure ConnectionHandler returns the right connection self.assertTrue(isinstance(connections['error'], ErrorRaisingBackend)) self.assertTrue(isinstance(connections['locmem'], backends.locmem.EmailBackend))
StarcoderdataPython
8109507
def recursive_digit_sum(n, k): def repeat_to_length(s, wanted): return s * wanted def sum_digits(n): r = 0 while n: r, n = r + n % 10, n // 10 return r p = repeat_to_length(n, k) while len(str(p)) != 1: p = sum_digits(int(p)) return p print(recursive_digit_sum(148,3)) print(recursive_digit_sum(123,3)) print(recursive_digit_sum(861568688536788, 100000))
StarcoderdataPython
4852265
from discord.ext import commands import discord import random class Tips(commands.Cog): """Commands for providing tips about using the bot.""" def __init__(self, bot, config): self.bot = bot self.config = config[__name__.split(".")[-1]] self.tips = ["Tip of this dick in your ass"] @commands.command() async def tip(self, ctx): """Get a random tip about using the bot.""" index = random.randrange(len(self.tips)) await ctx.send(f"**Tip #{index+1}:** {self.tips[index]}")
StarcoderdataPython
1966538
from typing import List, Union from structlog import get_logger from app.api.client.apis_helper import Apis from app.api.client.base_api_caller import BaseApiCaller from app.core.config import settings logger = get_logger() def search_newly_added_videos( published_after: str, next_page_token: str, content_type: str = "video", order_by: str = "date", ): """ Fetches the newly added videos Args: published_after: next_page_token: content_type: order_by: Returns: """ result = None logger.info(f"Searching for newly published youtube videos.") # Checking if api key is already assigned & is a valid API key if settings.google_api_key: resp = _youtube_search_videos_caller( content_type=content_type, order_by=order_by, published_after=published_after, api_key=settings.google_api_key, next_page_token=next_page_token, ) if resp: return resp # If the API key has become invalid, finding a valid key from the list for api_key in settings.api_keys: resp = _youtube_search_videos_caller( content_type=content_type, order_by=order_by, published_after=published_after, api_key=api_key, next_page_token=next_page_token, ) if resp: settings.google_api_key = api_key result = resp break if not result: logger.error(f"Please add a new valid API key at {settings.keys_file_path}") logger.error(f"Retrying after {settings.sleep_interval} seconds..") return result def _youtube_search_videos_caller( content_type, order_by, published_after, api_key, next_page_token ): """ API builder & caller method for youtube search API """ params = { "type": content_type, "order": order_by, "publishedAfter": published_after, "maxResults": 50, "key": api_key, "q": settings.video_query_string, } if next_page_token: params["pageToken"] = next_page_token youtube_search_uri = Apis.search_api _base_api_caller = BaseApiCaller( base_url=settings.youtube_base_url, path=youtube_search_uri, params=params ) return _base_api_caller.get() def get_video_details(video_ids: Union[str, List[str]]): """ Method to get details for given video(s) """ result = None if isinstance(video_ids, list): video_ids = ",".join(video_ids) # Checking if api key is already assigned & is a valid API key if settings.google_api_key: resp = _video_details_caller(video_ids, settings.google_api_key) if resp: return resp # If the API key has become invalid, finding a valid key from the list for api_key in settings.api_keys: resp = _video_details_caller(video_ids, api_key) if resp: result = resp break if not result: logger.error(f"Please add a new valid API key at {settings.keys_file_path}") logger.error(f"Retrying after {settings.sleep_interval} seconds..") return result def _video_details_caller(video_ids, api_key): """ API builder & caller method for youtube video details API """ params = { "key": api_key, "id": video_ids, "part": "snippet", } youtube_video_details_uri = Apis.video_details _base_api_caller = BaseApiCaller( base_url=settings.youtube_base_url, path=youtube_video_details_uri, params=params, ) return _base_api_caller.get()
StarcoderdataPython
4828915
<filename>opencv_load_image_bonus.py # HOW TO RUN # python3 opencv_load_image_bonus.py --image images/floppy_disk.jpg --output output.jpg # python3 opencv_load_image_bonus.py --image images/floppy_disk.jpg # import the necessary modules import argparse import cv2 # initialize the argument parser and establish the arguments required parser = argparse.ArgumentParser() parser.add_argument('--image', required=True, help='Path to the image') parser.add_argument('--output', default='output.jpg', help='Path to the output image') args = vars(parser.parse_args()) def load_image(filename): """ :param filename: path to the image file :return: a numpy array if the image file exists else None """ image = cv2.imread(filename) # validate if the image was loaded correctly if image is None: return None return image # load the image from where the file is located image = load_image(args['image']) # validate if the image was loaded properly if image is None: print("Do nothing") else: # display the image and waits for any key to be pressed; # remove any created gui window from the screen & memory; # and then save the image directly to your current folder cv2.imshow("Image", image) cv2.waitKey(0) cv2.imwrite(args['output'], image)
StarcoderdataPython
1870536
<filename>Regs/Block_E/RE113.py from ..IReg import IReg class RE113(IReg): def __init__(self): self._header = ['REG', 'COD_PART', 'COD_MOD', 'SER', 'SUB', 'NUM-DOC', 'DT_DOC', 'COD_ITEM', 'VL_AJ_ITEM', 'CHV_DECe'] self._hierarchy = "5"
StarcoderdataPython
3376673
from neural.loss.naive_entropy import NaiveEntropy from neural.loss.mse import MeanSquaredError __all__ = ['NaiveEntropy', 'MeanSquaredError']
StarcoderdataPython
6492746
#!/usr/bin/env python """ Copyright 2017 ThoughtSpot Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ from __future__ import print_function import sys import argparse import csv import os.path import subprocess import time from subprocess import check_output """ Delete records from tables based on a CSV document. Each line of the description file has the following format: table_name, col1, col2, etc. Each line of the data file has the following format: table_name, val1, val2, etc. The delete will be of the format DELETE FROM table_name WHERE col1 = val1 AND col2 = val2, etc. ASSUMPTIONS: * the format of TQL output will not change * this script will be run on the appliance and be able to call TQL to execute delete commands. * fields do not contain the separator value. """ def main(): """ Reads a description file for what to delete and then deletes the appropriate records. """ args = parse_args() if check_args(args): read_descriptions(args) generate_deletes(args) def parse_args(): """ Parse the command line arguments. :return: An args dictionary with command line arguments. """ parser = argparse.ArgumentParser() parser.add_argument( "-f", "--filename", help="path to file with records to delete" ) parser.add_argument( "-t", "--table", help="name of the table to delete records from" ) parser.add_argument("-d", "--database", help="database to delete from") parser.add_argument( "-s", "--schema", default="falcon_default_schema", help="schema to delete from", ) parser.add_argument( "-p", "--separator", default="|", help="separator to use in data" ) args = parser.parse_args() return args # description of the tables in the database. # { table1 : { column_name : type, ... }, table2 : { column_name : type, ...} } descriptions = {} def check_args(args): args_are_good = True if args.filename is None or os.path.isfile(args.filename) is False: eprint("Delete file %s was not found." % args.filename) args_are_good = False if args.table is None: eprint("Table was not specified.") args_are_good = False if args.database is None: eprint("Database was not specified.") args_are_good = False return args_are_good def read_descriptions(args): """ Reads the table descriptions from the database schema and populates the descriptions. WARNING: This depends on the format of tql output not changing. :param args: Command line arguments. """ table_list = check_output( 'echo "show tables %s;" | tql' % args.database, shell=True ).split( "\n" ) for table in table_list: table_details = table.split("|") if len(table_details) >= 2: schema_name = table_details[0].strip() table_name = table_details[1].strip() schema = descriptions.get(schema_name, None) if schema is None: schema = {} table = schema.get(table_name, None) if table is None: table = {} column_list = check_output( 'echo "show table %s.%s.%s;" | tql' % (args.database, schema_name, table_name), shell=True, ).split( "\n" ) for column in column_list: column_details = column.split("|") if len(column_details) >= 2: column_name = column_details[0].strip() column_type = column_details[2].strip() table[column_name] = column_type schema[table_name] = table descriptions[schema_name] = schema # print (descriptions) def generate_deletes(args): """ Creates and executes the delete statements from from the values file. :param args: Command line arguments. """ start = time.time() nbr_deletes = 0 # get the column descriptions. columns = descriptions.get(args.schema, {}).get(args.table, None) if columns is None: eprint("Table %s.%s not found." % (args.schema, args.table)) return tmpfile = "/tmp/deleteme" with open(args.filename, "rb") as valuefile: filereader = csv.DictReader(valuefile, delimiter="|", quotechar='"') with open(tmpfile, "w") as deletefile: for values in filereader: delete_stmt = "DELETE FROM %s.%s.%s WHERE " % ( args.database, args.schema, args.table ) first = True for key in values.keys(): if not first: delete_stmt += " AND " else: first = False # TODO see if I need to un-quote non-numeric. Might need to re-do desc file. if "int" in columns[key] or "double" in columns[key]: delete_stmt += ("%s = %s" % (key, values[key])) else: delete_stmt += ("%s = '%s'" % (key, values[key])) delete_stmt += ";\n" deletefile.write(delete_stmt) nbr_deletes += 1 subprocess.call("cat %s | tql" % tmpfile, shell=True) finish = time.time() print( "Executed %d deletes in %s seconds." % (nbr_deletes, (finish - start)) ) def eprint(*args, **kwargs): """Prints to standard error""" print(*args, file=sys.stderr, **kwargs) if __name__ == "__main__": main()
StarcoderdataPython
320227
""" Submarine.py PURPOSE: Creates the Submarine class that is usable by players. """ from __future__ import annotations from Objects.Vessels.Vessel import TraditionalVessel # Due to circular import, cannot import form Settings.py GREEN = '\033[32m' # Green YELLOW = '\033[33m' # Yellow RED = '\033[31m' # Red class TraditionalSubmarine(TraditionalVessel): """The Submarine vessel class used for Traditional Battleship.""" def __init__(self, nation: str, name: str, pennant: int) -> None: """ Initializes a new Submarine. Parameter(s): - nation: The affiliated nation - name: The name of the vessel - pennant: The id number of the vessel """ super().__init__(nation, name, pennant) self.type = 'Submarine' self.abbrev = 'SM' self.symbol = 'S' self.hp = 4 self.hits_received = 0 self.health_color = f'{GREEN}' self.enemy_hp_color = f'{RED}' def __copy__(self) -> TraditionalSubmarine: ret = TraditionalSubmarine(self.nation, self.name, self.pennant) ret.hp = self.hp ret.hits_received = self.hits_received ret.health_color = self.health_color ret.enemy_hp_color = self.enemy_hp_color ret.sunk = self.sunk ret.bow = self.bow ret.hit = self.hit return ret def update_health_color(self) -> None: if self.hp == 4: return elif self.hp > 1: self.health_color = f'{YELLOW}' self.enemy_hp_color = f'{YELLOW}' else: self.health_color = f'{RED}' self.enemy_hp_color = f'{GREEN}'
StarcoderdataPython
6546774
# Step 3. Publish Scored Data # Sample Python script designed to save scored data into a # target (sink) datastore. from azureml.core import Run, Workspace, Datastore, Dataset from azureml.data.datapath import DataPath import pandas as pd import os import argparse # Get current run current_run = Run.get_context() # Get associated AML workspace ws = current_run.experiment.workspace # Get default datastore ds = ws.get_default_datastore() # Get inferencing dataset scored_dataset = current_run.input_datasets['scored_data'] scored_data_df = scored_dataset.to_pandas_dataframe() ################################# MODIFY ################################# # You can optionally save data to a separate datastore in this step. ########################################################################## # Save dataset to ./outputs dir os.makedirs('./outputs', exist_ok=True) scored_data_df.to_csv(os.path.join('outputs', 'scored_data.csv'), index=False)
StarcoderdataPython
1805334
#!/usr/bin/env python """ Tutorial to demonstrate running parameter estimation on a binary neutron star system taking into account tidal deformabilities. This example estimates the masses using a uniform prior in both component masses and also estimates the tidal deformabilities using a uniform prior in both tidal deformabilities """ import numpy as np import bilby # Specify the output directory and the name of the simulation. outdir = 'outdir' label = 'bns_example' bilby.core.utils.setup_logger(outdir=outdir, label=label) # Set up a random seed for result reproducibility. This is optional! np.random.seed(88170235) # We are going to inject a binary neutron star waveform. We first establish a # dictionary of parameters that includes all of the different waveform # parameters, including masses of the two black holes (mass_1, mass_2), # aligned spins of both black holes (chi_1, chi_2), etc. injection_parameters = dict( mass_1=1.5, mass_2=1.3, chi_1=0.02, chi_2=0.02, luminosity_distance=50., theta_jn=0.4, psi=2.659, phase=1.3, geocent_time=1126259642.413, ra=1.375, dec=-1.2108, lambda_1=400, lambda_2=450) # Set the duration and sampling frequency of the data segment that we're going # to inject the signal into. For the # TaylorF2 waveform, we cut the signal close to the isco frequency duration = 32 sampling_frequency = 2 * 1024 start_time = injection_parameters['geocent_time'] + 2 - duration # Fixed arguments passed into the source model. The analysis starts at 40 Hz. waveform_arguments = dict(waveform_approximant='IMRPhenomPv2_NRTidal', reference_frequency=50., minimum_frequency=40.0) # Create the waveform_generator using a LAL Binary Neutron Star source function waveform_generator = bilby.gw.WaveformGenerator( duration=duration, sampling_frequency=sampling_frequency, frequency_domain_source_model=bilby.gw.source.lal_binary_neutron_star, parameter_conversion=bilby.gw.conversion.convert_to_lal_binary_neutron_star_parameters, waveform_arguments=waveform_arguments) # Set up interferometers. In this case we'll use three interferometers # (LIGO-Hanford (H1), LIGO-Livingston (L1), and Virgo (V1)). # These default to their design sensitivity and start at 40 Hz. interferometers = bilby.gw.detector.InterferometerList(['H1', 'L1', 'V1']) for interferometer in interferometers: interferometer.minimum_frequency = 40 interferometers.set_strain_data_from_power_spectral_densities( sampling_frequency=sampling_frequency, duration=duration, start_time=start_time) interferometers.inject_signal(parameters=injection_parameters, waveform_generator=waveform_generator) # Load the default prior for binary neutron stars. # We're going to sample in chirp_mass, symmetric_mass_ratio, lambda_tilde, and # delta_lambda rather than mass_1, mass_2, lambda_1, and lambda_2. # BNS have aligned spins by default, if you want to allow precessing spins # pass aligned_spin=False to the BNSPriorDict priors = bilby.gw.prior.BNSPriorDict() for key in ['psi', 'geocent_time', 'ra', 'dec', 'chi_1', 'chi_2', 'theta_jn', 'luminosity_distance', 'phase']: priors[key] = injection_parameters[key] priors.pop('mass_ratio') priors.pop('lambda_1') priors.pop('lambda_2') priors['chirp_mass'] = bilby.core.prior.Gaussian( 1.215, 0.1, name='chirp_mass', unit='$M_{\\odot}$') priors['symmetric_mass_ratio'] = bilby.core.prior.Uniform( 0.1, 0.25, name='symmetric_mass_ratio') priors['lambda_tilde'] = bilby.core.prior.Uniform(0, 5000, name='lambda_tilde') priors['delta_lambda'] = bilby.core.prior.Uniform( -5000, 5000, name='delta_lambda') # Initialise the likelihood by passing in the interferometer data (IFOs) # and the waveform generator likelihood = bilby.gw.GravitationalWaveTransient( interferometers=interferometers, waveform_generator=waveform_generator, time_marginalization=False, phase_marginalization=False, distance_marginalization=False, priors=priors) # Run sampler. In this case we're going to use the `nestle` sampler result = bilby.run_sampler( likelihood=likelihood, priors=priors, sampler='nestle', npoints=100, injection_parameters=injection_parameters, outdir=outdir, label=label, conversion_function=bilby.gw.conversion.generate_all_bns_parameters) result.plot_corner()
StarcoderdataPython
6661850
#!/usr/bin/env python #-*- encoding: utf-8 -*- ''' purpose: 实现邮件smtp客户端 author : <EMAIL> date : 2017-06-21 history: ''' import sys import os import smtplib import mimetypes import email from email.utils import COMMASPACE from email.utils import parseaddr, formataddr from email.header import Header from email.Encoders import encode_base64 class MailClient(object): class Scheme(object): def __init__(self, scheme_data): ''' scheme_data格式; ssl://smtp_host/port?user=&password=&aliasName= non_ssl://smtp_host/port?user=&password=&aliasName= ''' self.scheme_data = scheme_data self.parse(self.scheme_data) def parse(self, scheme_data): if scheme_data is not None and scheme_data != "": self.scheme_data = scheme_data segs = self.scheme_data.split(':') # TODO check if segs[0] == "ssl": self.ssl = True else: self.ssl = False other_data = segs[1].lstrip('//') segs = other_data.split('?') s_segs = segs[0].split('/') self.host = s_segs[0] self.port = int(s_segs[1]) s_segs = segs[1].split('&') for seg in s_segs: sub_seg = seg.split('=') k = sub_seg[0] v = "" if len(sub_seg) > 1: v = sub_seg[1] if k == 'user': self.user = v elif k == 'password': self.password = v elif k == 'aliasName': self.alias_name = v else: pass def __init__(self, scheme): self.scheme = MailClient.Scheme(scheme) def __format_addr(self, s): name, addr = parseaddr(s) return formataddr((\ Header(name, 'utf-8').encode(), \ addr.encode('utf-8') if isinstance(addr, unicode) else addr)) def connect(self): if self.scheme.ssl: self.cli = smtplib.SMTP_SSL(self.scheme.host, port = self.scheme.port) self.cli.ehlo() #self.cli.starttls() self.cli.ehlo() else: self.cli = smtplib.SMTP(self.scheme.host, port = self.scheme.port) return True def login(self): try: self.cli.login(self.scheme.user, self.scheme.password) except smtplib.SMTPAuthenticationError, e: return -1 return 0 def logout(self): self.cli.close() def send_mail(self, recipients, msg): ''' recipients 是接收者列表 msg 是由MIMEMultipart执行as_string得到的数据 ''' msg_obj = email.message_from_string(msg) del msg_obj["From"] del msg_obj["To"] #print self.scheme.alias_name msg_obj["From"] = self.__format_addr(u'%s <%s>' %(unicode(self.scheme.alias_name, "utf-8"), self.scheme.user)) msg_obj["To"] = COMMASPACE.join(recipients) ret = -1 reason = "" try: result = self.cli.sendmail(self.scheme.user, recipients, msg_obj.as_string()) if len(result) <= 0: ret = 0 else: ret = -1 except smtplib.SMTPRecipientsRefused, e: ret = -2 for r in e.recipients.keys(): d = e.recipients[r] reason = "%s; %s:%s" %(reason, r, d[1]) except smtplib.SMTPDataError, e: ret = -3 reason = e[1] except smtplib.SMTPServerDisconnected, e: ret = -4 reason = e[0] except smtplib.SMTPSenderRefused, e: ret = -5 reason = e[1] return (ret, reason)
StarcoderdataPython
6487064
<filename>venv/lib/python3.8/site-packages/azureml/_cli/folder/folder_commands.py<gh_stars>0 # --------------------------------------------------------- # Copyright (c) Microsoft Corporation. All rights reserved. # --------------------------------------------------------- import os from azureml._cli.folder.folder_subgroup import FolderSubGroup from azureml._cli.cli_command import command from azureml._cli import argument from azureml.exceptions import UserErrorException @command( subgroup_type=FolderSubGroup, command="attach", short_description="Attach a folder to an AzureML workspace " "and optionally a specific experiment to use by default. " "If experiment name is not specified, it defaults to the folder name.", argument_list=[ argument.EXPERIMENT_NAME, argument.PROJECT_PATH ]) def attach_folder_to_workspace_and_experiment( workspace=None, experiment_name=None, path=None, # We should enforce a logger logger=None): path = os.path.abspath(path) if os.path.exists(path) and not os.path.isdir(path): raise UserErrorException("The provided path [{}] must be a directory".format(path)) elif not os.path.exists(path): logger.info("Creating non-existent path %s", path) os.makedirs(path, exist_ok=True) logger.debug("Workspace to attach is %s", workspace._workspace_id) if experiment_name is None: path = path.rstrip('\\/') experiment_to_attach = os.path.basename(path) logger.debug("No experiment name was provided") else: experiment_to_attach = experiment_name logger.debug("Attaching folder %s to experiment %s", path, experiment_to_attach) project = workspace._initialize_folder(experiment_to_attach, directory=path) return project._serialize_to_dict()
StarcoderdataPython
1720005
from typing import List, Union, Type from enum import Enum __all__ = ("EnumConfig", "Config") class ConfigType(Enum): boolean = "boolean" integer = "number" string = "string" class BaseConfig: def __init__(self, *, name: str, description: str) -> None: self.name = name self.description = description @classmethod def from_dict(cls, conf_dict): return cls(**conf_dict) @property def __dict__(self): return {"name": self.name, "description": self.description} def __repr__(self): return f"<vscode.BaseConfig name={self.name} description={self.description}>" class EnumConfig(BaseConfig): def __repr__(self): return f"<vscode.EnumConfig name={self.name} description={self.description}>" class Config(BaseConfig): def __init__( self, *, name: str, description: str, input_type: Type[Union[str, int, bool]], enums: List[EnumConfig] = [], default=None, ) -> None: if input_type not in (bool, str, int): raise TypeError("input_type must be either the bool, str or int class") types = {bool: ConfigType.boolean, str: ConfigType.string, int: ConfigType.integer} input_type = types[input_type] super().__init__(name=name, description=description) self.type = input_type.name self.default = default self.enums = enums @property def __dict__(self) -> dict: out = super().__dict__ out["type"] = self.type out["default"] = self.default if len(self.enums): out["enum"] = [enum.name for enum in self.enums] out["enumDescriptions"] = [enum.description for enum in self.enums] return out def __repr__(self): return f"<vscode.Config name={self.name} description={self.description} type={self.type} default={self.default} enums={[repr(enum) for enum in self.enums]}>"
StarcoderdataPython
143836
# REQUIRES: bindings_python # XFAIL: true # RUN: %PYTHON% %s | FileCheck %s import mlir import circt from circt.design_entry import Input, Output, module from circt.esi import types from circt.dialects import comb, hw import sys @module class PolynomialCompute: """Module to compute ax^3 + bx^2 + cx + d for design-time coefficients""" # Evaluate polynomial for 'x'. x = Input(types.i32) def __init__(self, coefficients: list[int], **kwargs): """coefficients is in 'd' -> 'a' order.""" self.__coefficients = coefficients # Full result. self.y = Output(types.i32) def construct(self, mod): """Implement this module for input 'x'.""" x = mod.x taps: list[mlir.ir.Value] = list() runningPower: list[mlir.ir.Value] = list() for power, coeff in enumerate(self.__coefficients): coeffVal = hw.ConstantOp(types.i32, mlir.ir.IntegerAttr.get(types.i32, coeff)) if power == 0: newPartialSum = coeffVal.result else: partialSum = taps[-1] if power == 1: currPow = x else: x_power = [x for i in range(power - 1)] currPow = comb.MulOp(types.i32, x_power + [runningPower[-1]]).result newPartialSum = comb.AddOp( types.i32, [ partialSum, comb.MulOp(types.i32, [coeffVal.result, currPow]).result ]).result runningPower.append(currPow) taps.append(newPartialSum) # Final output return {"y": taps[-1]} def build(top): i32 = mlir.ir.Type.parse("i32") c23 = mlir.ir.IntegerAttr.get(i32, 23) x = hw.ConstantOp(i32, c23) poly = PolynomialCompute([62, 42, 6], x=x) hw.OutputOp([poly.y]) mod = mlir.ir.Module.create() with mlir.ir.InsertionPoint(mod.body), circt.support.BackedgeBuilder(): hw.HWModuleOp(name='top', input_ports=[], output_ports=[('y', mlir.ir.Type.parse("i32"))], body_builder=build) mod.operation.print() # CHECK: hw.module @top() -> (%y: i32) { # CHECK: %c23_i32 = hw.constant 23 : i32 # CHECK: [[REG0:%.+]] = "circt.design_entry.PolynomialCompute"(%c23_i32) : (i32) -> i32 # CHECK: hw.output [[REG0]] : i32 print("\n\n=== Verilog ===") # CHECK-LABEL: === Verilog === pm = mlir.passmanager.PassManager.parse( "hw-legalize-names,hw.module(hw-cleanup)") pm.run(mod) circt.export_verilog(mod, sys.stdout) # CHECK: module PolynomialCompute( # CHECK: input [31:0] x, # CHECK: output [31:0] y); # CHECK: assign y = 32'h3E + 32'h2A * x + 32'h6 * x * x;
StarcoderdataPython
1651236
<filename>pyqtgraph_extended/opengl/__init__.py from pyqtgraph.opengl import * from pyqtgraph_extensions.opengl import * if __name__=="__main__": def test_GLViewWidget(): view=GLViewWidget() ai=GLAxisItem() view.addItem(ai) view.show() return view view=test_GLViewWidget()
StarcoderdataPython
3255461
# # Transmission Line Simulator # # Author(s): <NAME> # Created: Aug-28-2017 # # Copied from scipy so I don't have to import the whole scipy library. import numpy as np def gaussian(M, std, sym=True): """Return a Gaussian window. Parameters ---------- M : int Number of points in the output window. If zero or less, an empty array is returned. std : float The standard deviation, sigma. sym : bool, optional When True (default), generates a symmetric window, for use in filter design. When False, generates a periodic window, for use in spectral analysis. Returns ------- w : ndarray The window, with the maximum value normalized to 1 (though the value 1 does not appear if `M` is even and `sym` is True). Notes ----- The Gaussian window is defined as .. math:: w(n) = e^{ -\frac{1}{2}\left(\frac{n}{\sigma}\right)^2 } Examples -------- Plot the window and its frequency response: >>> from scipy import signal >>> from scipy.fftpack import fft, fftshift >>> import matplotlib.pyplot as plt >>> window = signal.gaussian(51, std=7) >>> plt.plot(window) >>> plt.title(r"Gaussian window ($\sigma$=7)") >>> plt.ylabel("Amplitude") >>> plt.xlabel("Sample") >>> plt.figure() >>> A = fft(window, 2048) / (len(window)/2.0) >>> freq = np.linspace(-0.5, 0.5, len(A)) >>> response = 20 * np.log10(np.abs(fftshift(A / abs(A).max()))) >>> plt.plot(freq, response) >>> plt.axis([-0.5, 0.5, -120, 0]) >>> plt.title(r"Frequency response of the Gaussian window ($\sigma$=7)") >>> plt.ylabel("Normalized magnitude [dB]") >>> plt.xlabel("Normalized frequency [cycles per sample]") """ if _len_guards(M): return np.ones(M) M, needs_trunc = _extend(M, sym) n = np.arange(0, M) - (M - 1.0) / 2.0 sig2 = 2 * std * std w = np.exp(-n ** 2 / sig2) return _truncate(w, needs_trunc) def _len_guards(M): """Handle small or incorrect window lengths""" if int(M) != M or M < 0: raise 'Window length M must be a non-negative integer' return M <= 1 def _extend(M, sym): """Extend window by 1 sample if needed for DFT-even symmetry""" if not sym: return M + 1, True else: return M, False def _truncate(w, needed): """Truncate window by 1 sample if needed for DFT-even symmetry""" if needed: return w[:-1] else: return w
StarcoderdataPython
34524
def print_lol(arr): for row in arr: if (isinstance(row, list)): print_lol(row) else: print row
StarcoderdataPython
5172610
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- ''' ***************************************** Author: zhlinh Email: <EMAIL> Version: 0.0.1 Created Time: 2016-02-22 Last_modify: 2016-02-22 ****************************************** ''' ''' Given a collection of intervals, merge all overlapping intervals. For example, Given [1,3],[2,6],[8,10],[15,18], return [1,6],[8,10],[15,18]. ''' # Definition for an interval. class Interval(object): def __init__(self, s=0, e=0): self.start = s self.end = e class Solution(object): def merge(self, intervals): """ :type intervals: List[Interval] :rtype: List[Interval] """ if len(intervals) < 2: return intervals intervals.sort(key = lambda x: x.start) prev = intervals[0] res = [] for i in range(1, len(intervals)): if prev.end >= intervals[i].start: prev.end = max(prev.end, intervals[i].end) else: res.append(prev) prev = intervals[i] res.append(prev) return res
StarcoderdataPython
4861130
# Generated by Django 3.2.11 on 2022-01-27 12:43 from django.db import migrations from spritstat.models import Location, LocationType def set_name(apps, schema_editor): # Create the name from the address/city/plz/region_name fields locations = Location.objects.all() for loc in locations: if loc.type == LocationType.NAMED: loc.name = f"{loc.address}, {loc.postal_code} {loc.city}" else: loc.name = loc.region_name loc.save() class Migration(migrations.Migration): dependencies = [ ("spritstat", "0007_auto_20220127_1203"), ] operations = [ migrations.RunPython(set_name), ]
StarcoderdataPython
1791046
<filename>ultraopt/optimizer/random_opt.py #!/usr/bin/env python # -*- coding: utf-8 -*- # @Author : <NAME> # @Contact : <EMAIL> import numpy as np from ultraopt.optimizer.base_opt import BaseOptimizer class RandomOptimizer(BaseOptimizer): def _new_result(self, budget, vectors: np.ndarray, losses: np.ndarray): pass def _get_config(self, budget, max_budget): return self.pick_random_initial_config(budget, origin="Random Search") def get_available_max_budget(self): for budget in reversed(sorted(self.budgets)): if self.budget2obvs[budget]["losses"]: return budget return self.budgets[0]
StarcoderdataPython
217394
# Copyright 2018 IBM Corporation # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """:mod:`microprobe.passes.structure` module """ # Futures from __future__ import absolute_import, division # Built-in modules # Third party modules from six.moves import range # Own modules import microprobe.passes from microprobe.code.address import InstructionAddress from microprobe.code.bbl import replicate_bbls from microprobe.utils.logger import get_logger # Local modules # Constants LOG = get_logger(__name__) __all__ = ['SimpleBuildingBlockPass', 'GenericCodeStructurePass'] # Functions # Classes class SimpleBuildingBlockPass(microprobe.passes.Pass): """SimpleBuildingBlockPass Class. This :class:`~.Pass` adds a single building block of a given instruction size to the given building block. The pass fails if the buiding block size differs in ratio more than the threshold provided. """ def __init__(self, bblsize, threshold=0.1): """Create a SimpleBuildingBlockPass object. :param bblsize: Size of the building block to add :type bblsize: :class:`int` :param threshold: Allowed deviation from the size provided (Default value = 0.1) :type threshold: :class:`float` :return: A new SimpleBuildingBlockPass object. :rtype: :class:`SimpleBuildingBlockPass` """ super(SimpleBuildingBlockPass, self).__init__() self._bblsize = bblsize self._description = "Create a basic block with '%d' " \ "instructions" % self._bblsize self._threshold = threshold def __call__(self, building_block, dummy): """ :param building_block: :param dummy: """ building_block.cfg.add_bbl(size=self._bblsize) def check(self, building_block, dummy_target): """ :param building_block: :param dummy_target: """ pass_ok = True pass_ok = pass_ok and (len(building_block.cfg.bbls) == 1) for bbl in building_block.cfg.bbls: LOG.debug("BBL size: %d", bbl.size) LOG.debug("Expected BBL size: %d", self._bblsize) if (abs((bbl.size * 1.0) / self._bblsize) - 1) > self._threshold: LOG.warning( "Percentage deviation: %.2f", abs( (bbl.size * 1.0) / self._bblsize ) - 1 ) pass_ok = False return pass_ok class GenericCodeStructurePass(microprobe.passes.Pass): """ """ def __init__(self, model): """ :param model: """ super(GenericCodeStructurePass, self).__init__() self._model = model def __call__(self, building_block, target): """ :param building_block: :param target: """ descriptors = self._model(building_block.code_size) current_displacement = 0 orig_bbls = building_block.cfg.bbls[:] iteration_register = None first = True for idx, elem in enumerate(descriptors): chunks, displacement, iterations = elem LOG.debug("Descriptor info:") LOG.debug(" Chunks: %d", chunks) LOG.debug(" Displacement: %d", displacement) LOG.debug(" Iterations: %d", iterations) if chunks < 1 or iterations < 1: continue for dummy in range(0, iterations): first_chunk_in_iteration = None last_chunk_in_iteration = None for dummy in range(0, chunks): if first: LOG.debug("First Chunk - No copy") first = False current_chunk = orig_bbls # prev_chunk = None else: LOG.debug("Other Chunk - Replicating") # prev_chunk = current_chunk current_chunk = replicate_bbls( orig_bbls, displacement=current_displacement ) building_block.cfg.add_bbls(current_chunk) if first_chunk_in_iteration is None: first_chunk_in_iteration = current_chunk last_chunk_in_iteration = current_chunk current_displacement = current_displacement + displacement first_chunk_in_iteration = first_chunk_in_iteration[0] last_chunk_in_iteration = last_chunk_in_iteration[-1] if iterations > 1: LOG.debug("Adding loop control instructions") if iteration_register is None: iteration_register = \ target.get_register_for_address_arithmetic( building_block.context) building_block.context.add_reserved_registers( [iteration_register] ) LOG.debug( "Using register '%s' as loop control " "register", iteration_register ) # set the number of iteration to the first newins = target.set_register( iteration_register, 0, building_block.context ) # pylint: disable=E1103 first_chunk_in_iteration.insert_instr( newins, before=first_chunk_in_iteration.instrs[0] ) # pylint: enable=E1103 # set the branch to the last label = "chunk_%d" % (idx) newins = target.add_to_register(iteration_register, 1) newins += target.compare_and_branch( iteration_register, iterations, "<", label, building_block.context ) # pylint: disable=E1103 first_chunk_in_iteration.instrs[0].setlabel(label) last_chunk_in_iteration.insert_instr( newins, after=last_chunk_in_iteration.instrs[-1] ) # pylint: enable=E1103 # link_BBLS prev_bbl = None for bbl in building_block.cfg.bbls: if prev_bbl is not None: LOG.debug("Linking with previous chunk") source = InstructionAddress( base_address="code", displacement=prev_bbl.instrs[-1].address.displacement + prev_bbl.instrs[-1].architecture_type.format.length ) newins = target.branch_unconditional_relative( source, bbl.instrs[0] ) prev_bbl.insert_instr([newins], after=prev_bbl.instrs[-1]) prev_bbl = bbl # exit(0) def check(self, building_block, target): """ :param building_block: :param target: """ raise NotImplementedError
StarcoderdataPython
1671258
# Copyright 2022 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from aws_cdk.assertions import Template from aws_ddk_core.base import BaseStack from aws_ddk_core.resources import KinesisStreamsFactory def test_data_stream(test_stack: BaseStack) -> None: KinesisStreamsFactory.data_stream( scope=test_stack, id="dummy-stream-1", environment_id="dev", stream_name="dummy-stream" ) template = Template.from_stack(test_stack) template.has_resource_properties( "AWS::Kinesis::Stream", props={ "Name": "dummy-stream", }, )
StarcoderdataPython
1999288
# coding: utf-8 import model import model_exceptions import view class Control(object): def __init__(self, file_name=None): ''' parameters ---------- file_name : str name for u json file(without .json extension); if None, the file will receive the dafault name. ''' self._model = model.Model(file_name) self._view = view.View(self, f'Todo {self._model.file_name()}') self._view.show_todos(self._model.file()) def _save_and_show(func, *args, **kwargs): ''' Decorator to save and update the view. parameters ---------- func : function return ------ inner_func : function ''' def inner_func(self, *args, **kwargs): func(self, *args, **kwargs) self._model.save_file() self._view.show_todos(self._model.file()) return inner_func @_save_and_show def inser_task(self, task): ''' Will try insert a new task. parameters ---------- task : str ''' try: self._model.inser_task(task) self._view.current().set('') self._view.show_message(f'\"{task}\" added with success.') except model_exceptions.AlreadyStored: self._view.show_alert(f'{task} already stored.') except ValueError: self._view.show_alert('Must contain some value.') @_save_and_show def updat_task(self, *tasks): ''' Will update the status for each selectioned task. paramaters ---------- tasks : str ''' if tasks: try: for task in tasks: self._model.updat_task(task) self._view.show_message('Update complete.') except model_exceptions.NotStored: self._view.show_alert(f'{task} not stored.') else: self._view.show_alert('Must select some value.') @_save_and_show def delet_task(self, *tasks): ''' Will delete each selectioned task. paramaters ---------- tasks : str ''' if tasks: if self._view.askquestion('Do u really wan\'t delete?'): for task in tasks: try: self._model.delet_task(task) except model_exceptions.NotStored: self._view.show_alert(f'{task} not stored.') else: self._view.show_alert('Must select some value.') def main(self): ''' Initialize the gui. ''' self._view.main()
StarcoderdataPython
1754524
<reponame>DanielSBrown/osf.io """ With email confirmation enabled, the `date_confirmed` is used to filter users for e.g. search results. This requires setting this field for all users registered before confirmation was added. This migration sets each user's `date_confirmed` to his / her `date_registered`. """ from website.app import init_app from website import models app = init_app() def add_date_confirmed(): for user in models.User.find(): if user.date_confirmed is None: user.date_confirmed = user.date_registered user.save() if __name__ == '__main__': add_date_confirmed()
StarcoderdataPython
6619549
<gh_stars>0 # !/usr/bin/env python # -*- coding: utf-8 -*- # -------------------------------------------# # author: <NAME> # # email: <EMAIL> # # -------------------------------------------# from __future__ import absolute_import, unicode_literals import sys from xmnlp.config import path as C_PATH from . import sentiment if sys.version_info[0] == 2: reload(sys) sys.setdefaultencoding('utf8') model = None def loader(): """load model""" global model if model is None: print("(Lazy Load) Loading model...") model = sentiment.Sentiment() model.load(C_PATH.sentiment['model']['sentiment']) def predict(text, stopword=None): """predict sentiment""" loader() return model.predict(text, stopword=stopword) def load(path): """load model from path""" global model model = sentiment.Sentiment() model.load(path)
StarcoderdataPython
1879513
import logging from typing import List logger = logging.getLogger(__name__) class GameInfo: def __init__(self): self.server_id = None self.server_name = None self.match_guid = None self.game_mode = None self.mutator_index = None self.rumble_mutator = None def parse_game_info_actor(self, actor_data: dict, game_event_actor: dict, objects: List[str]): """ Parses game actor :param actor_data: game replication info :param game_event_actor: soccar game event actor :param objects: object list from the decompiled replay :return: self """ # There is no GameServerID if you play alone self.server_id = '' if 'ProjectX.GRI_X:GameServerID' in actor_data: self.server_id = str(actor_data['ProjectX.GRI_X:GameServerID']['q_word']) self.server_name = actor_data['Engine.GameReplicationInfo:ServerName'] # A custom lobby doesn't have a MatchGUID self.match_guid = actor_data.get('ProjectX.GRI_X:MatchGUID', '') self.playlist = actor_data['ProjectX.GRI_X:ReplicatedGamePlaylist'] self.mutator_index = actor_data.get('ProjectX.GRI_X:ReplicatedGameMutatorIndex', 0) if 'TAGame.GameEvent_Soccar_TA:SubRulesArchetype' in game_event_actor: # Only used for rumble stats # TODO can this contain any other mutators? self.rumble_mutator = objects[game_event_actor['TAGame.GameEvent_Soccar_TA:SubRulesArchetype']] logger.info('Created game info from actor') return self
StarcoderdataPython
4939046
<filename>src/lobster.py #!/usr/bin/env python # # lobster.py - lobster # # (c) gdifiore 2018 <<EMAIL>> # import os import sys import json from lobster_json import * from bs4 import BeautifulSoup type = sys.argv[1] file = sys.argv[2] theme = sys.argv[3] if type == "simple": def writeToHTML(title, header, content): html_file = theme + ".html" path = "themes\\" + html_file soup = BeautifulSoup(open(path), "html.parser") for i in soup.find_all('title'): i.string = title for i in soup.find_all(class_='header'): i.string = header for i in soup.find_all(class_='content'): i.string = content #print(soup) finished = theme + "_finished.html" with open(finished, "w") as text_file: text_file.write(str(soup)) lobster_data = readJSON(file) title = getTitle(lobster_data) header = getHeader(lobster_data) content= getContent(lobster_data) writeToHTML(title, header, content) if type == "blog": def writeToHTMLBlog(title, header, content, author, date): html_file = theme + ".html" path = "themes\\" + html_file soup = BeautifulSoup(open(path), "html.parser") for i in soup.find_all('title'): i.string = title for i in soup.find_all(class_='header'): i.string = header for i in soup.find_all(class_='content'): i.string = content for i in soup.find_all(class_='author'): i.string = author for i in soup.find_all(class_='date'): i.string = date #print(soup) finished = theme + "_finished.html" with open(finished, "w") as text_file: text_file.write(str(soup)) lobster_data = readJSON(file) title = getTitle(lobster_data) header = getHeader(lobster_data) content= getContent(lobster_data) author = getAuthor(lobster_data) date = getDate(lobster_data) writeToHTMLBlog(title, header, content, author, date) else: print(sys.argv[1]) print("failure")
StarcoderdataPython
11269970
<reponame>rmrector/service.stinger.notification<filename>python/libs/quickjson.py import collections import json import sys import xbmc movie_properties = ['imdbnumber', 'tag'] nostingertags_filter = {'and': [{'field': 'tag', 'operator':'isnot', 'value':'duringcreditsstinger'}, {'field': 'tag', 'operator':'isnot', 'value':'aftercreditsstinger'}]} def get_movies(sort_method='sorttitle', ascending=True, limit=None, properties=None, listfilter=None): json_request = get_base_json_request('VideoLibrary.GetMovies') json_request['params']['properties'] = properties if properties != None else movie_properties json_request['params']['sort'] = {'method': sort_method, 'order': 'ascending' if ascending else 'descending'} if listfilter: json_request['params']['filter'] = listfilter if limit: json_request['params']['limits'] = {'end': limit} json_result = execute_jsonrpc(json_request) if _check_json_result(json_result, 'movies', json_request): return json_result['result']['movies'] else: return [] def get_movie_details(movie_id, properties=None): json_request = get_base_json_request('VideoLibrary.GetMovieDetails') json_request['params']['movieid'] = movie_id json_request['params']['properties'] = properties if properties != None else movie_properties json_result = json.loads(xbmc.executeJSONRPC(json.dumps(json_request))) if _check_json_result(json_result, 'moviedetails', json_request): return json_result['result']['moviedetails'] def set_movie_details(movie_id, **movie_details): json_request = get_base_json_request('VideoLibrary.SetMovieDetails') json_request['params']['movieid'] = movie_id for param, value in movie_details.items(): json_request['params'][param] = value json_result = execute_jsonrpc(json_request) _check_json_result(json_result, 'OK', json_request) def get_base_json_request(method): return {'jsonrpc': '2.0', 'method': method, 'params': {}, 'id': 1} def execute_jsonrpc(jsonrpc_command): if isinstance(jsonrpc_command, dict): jsonrpc_command = json.dumps(jsonrpc_command) json_result = xbmc.executeJSONRPC(jsonrpc_command) return json.loads(json_result) def _check_json_result(json_result, result_key, json_request): if 'error' in json_result: raise JSONException(json_request, json_result) return 'result' in json_result and result_key in json_result['result'] class JSONException(Exception): def __init__(self, json_request, json_result): self.json_request = json_request self.json_result = json_result message = "There was an error with a JSON-RPC request.\nRequest: " message += json.dumps(json_request, skipkeys=True, ensure_ascii=False, indent=2, cls=LogJSONEncoder) message += "\nResult: " message += json.dumps(json_result, skipkeys=True, ensure_ascii=False, indent=2, cls=LogJSONEncoder) super(JSONException, self).__init__(message) class LogJSONEncoder(json.JSONEncoder): def default(self, obj): if isinstance(obj, collections.Mapping): return dict((key, obj[key]) for key in obj.keys()) if isinstance(obj, collections.Iterable): return list(obj) if hasattr(obj, '__dict__'): return obj.__dict__ return str(obj)
StarcoderdataPython
9750084
<gh_stars>1-10 # # Shoulder # Copyright (C) 2018 Assured Information Security, Inc. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import io import typing from dataclasses import dataclass, field from shoulder.gadget.gadget_properties import GadgetProperties @dataclass class properties(GadgetProperties): """ Properties of the C++ function_definition gadget """ gadget_name: str = "shoulder.cxx.function_definition" """ The name of the C function to generate """ name: str = "function_definition" """ The name of the C function to generate """ args: typing.List[typing.Tuple[str, str]] = \ field(default_factory= lambda: []) """ List of argmuent type/name tuples for the generated function """ return_type: str = "uint64_t" """ Return type for the generated function """ inline: bool = True """ Set True to declare function as inline """ const: bool = False """ Set True to declare function as const """ noexcept: bool = False """ Set True to declare function as noexcept """ indent: int = 0 """ The indentation level to generate at """ def function_definition(decorated): """ A decorator gadget that generates a C++ function declaration. The function decorated by this gadget should generate the function's body. Usage: properties.name = "my_function" properties.return_type = "uint64_t" properties.args = [("uint64_t", "arg1")] @function_definition function(generator, outfile, ...): outfile.write("contents inside function body") Generates: inline uint64_t my_function(uint64_t arg1) { contents inside function body } """ def function_definition_decorator(generator, outfile, *args, **kwargs): properties = generator.gadgets["shoulder.cxx.function_definition"] indent_str = "" for level in range(0, properties.indent): indent_str += "\t" outfile.write(indent_str) if properties.inline == True: outfile.write("inline ") outfile.write(str(properties.return_type) + " ") outfile.write(str(properties.name)) if len(properties.args) == 0: outfile.write("(void)\n") else: outfile.write("(") for idx, arg_pair in enumerate(properties.args): if idx > 0: outfile.write(", ") outfile.write(str(arg_pair[0]) + " ") outfile.write(str(arg_pair[1])) outfile.write(")\n") outfile.write(indent_str + "{") contents = io.StringIO() decorated(generator, contents, *args, **kwargs) lines = contents.getvalue().splitlines() if len(lines) == 1: outfile.write(" ") outfile.write(lines[0]) outfile.write(" ") elif len(lines) > 1: outfile.write("\n") for line in lines: outfile.write(indent_str + "\t" + line + "\n") outfile.write(indent_str) outfile.write("}\n\n") return function_definition_decorator
StarcoderdataPython
4850923
#!/usr/bin/env python class Solution: def divide(self, dividend, divisor): """ :type dividend: int :type divisor: int :rtype: int """ n = 31 quotient = 0 flip = 1 if dividend < 0: dividend = -dividend flip = -flip if divisor < 0: divisor = -divisor flip = -flip while n >= 0: print('n = %d' % n) d = divisor << n if dividend >= d: print('shift %d bits' % n) dividend -= d quotient += 1 << n print('new dividend: %d' % dividend) n -= 1 if dividend < divisor: if flip < 0: quotient = -quotient if quotient < -2147483648 or quotient > 2147483647: quotient = 2147483647 return quotient sol = Solution() dividend, divisor = 10, 3 dividend, divisor = 7, -3 dividend, divisor = 0, -3 dividend, divisor = 1, 1 dividend, divisor = -2147483648, -1 print(sol.divide(dividend, divisor))
StarcoderdataPython
3389278
<filename>avwx_api/views.py<gh_stars>0 """ <NAME> - <EMAIL> avwx_api.views - Routes and views for the Quart application """ # pylint: disable=W0702 # stdlib from dataclasses import asdict # library import avwx from quart import Response, jsonify from quart_openapi.cors import crossdomain # module from avwx_api import app # Static Web Pages @app.route("/") @app.route("/home") async def home() -> Response: """ Returns static home page """ return await app.send_static_file("html/home.html") # API Routing Errors @app.route("/api") async def no_report() -> Response: """ Returns no report msg """ return jsonify({"error": "No report type given"}), 400 @app.route("/api/metar") @app.route("/api/taf") async def no_station() -> Response: """ Returns no station msg """ return jsonify({"error": "No station given"}), 400 @app.route("/api/station/<string:station>") @crossdomain(origin="*") async def station_endpoint(station: str) -> Response: """ Returns raw station info if available """ station = station.upper() try: return jsonify(asdict(avwx.Station.from_icao(station))) except avwx.exceptions.BadStation: return jsonify( { "error": f'Station ident "{station}" not found. Email me if data is missing :)' } )
StarcoderdataPython
11201419
class SchedulerFixed(object): def __init__(self, fixed_lr: float): super().__init__() self.fixed_lr = fixed_lr def get_learning_rate(self, step: int): return self.fixed_lr
StarcoderdataPython
5093503
<gh_stars>0 """ Copyright (c) Contributors to the Open 3D Engine Project. For complete copyright and license terms please see the LICENSE at the root of this distribution. SPDX-License-Identifier: Apache-2.0 OR MIT """ # Test Case Title : Check that network input can be created, received by the authority, and processed # fmt: off class Tests(): enter_game_mode = ("Entered game mode", "Failed to enter game mode") exit_game_mode = ("Exited game mode", "Couldn't exit game mode") find_network_player = ("Found network player", "Couldn't find network player") found_lines = ("Expected log lines were found", "Expected log lines were not found") found_unexpected_lines = ("Unexpected log lines were not found", "Unexpected log lines were found") # fmt: on def Multiplayer_AutoComponent_NetworkInput(): r""" Summary: Runs a test to make sure that network input can be sent from the autonomous player, received by the authority, and processed Level Description: - Dynamic 1. Although the level is empty, when the server and editor connect the server will spawn and replicate the player network prefab. a. The player network prefab has a NetworkTestPlayerComponent.AutoComponent and a script canvas attached which will listen for the CreateInput and ProcessInput events. Print logs occur upon triggering the CreateInput and ProcessInput events along with their values; we are testing to make sure the expected events are values are recieved. - Static 1. This is an empty level. All the logic occurs on the Player.network.spawnable (see the above Dynamic description) Expected Outcome: We should see editor logs stating that network input has been created and processed. However, if the script receives unexpected values for the Process event we will see print logs for bad data as well. :return: """ import azlmbr.legacy.general as general from editor_python_test_tools.utils import Report from editor_python_test_tools.utils import Tracer from editor_python_test_tools.utils import TestHelper as helper from ly_remote_console.remote_console_commands import RemoteConsole as RemoteConsole def find_expected_line(expected_line): found_lines = [printInfo.message.strip() for printInfo in section_tracer.prints] return expected_line in found_lines def find_unexpected_line(expected_line): return not find_expected_line(expected_line) unexpected_lines = [ 'AutoComponent_NetworkInput received bad fwdback!', 'AutoComponent_NetworkInput received bad leftright!', ] expected_lines = [ 'AutoComponent_NetworkInput ProcessInput called!', 'AutoComponent_NetworkInput CreateInput called!', ] expected_lines_server = [ '(Script) - AutoComponent_NetworkInput ProcessInput called!', ] level_name = "AutoComponent_NetworkInput" helper.init_idle() general.set_cvar_integer('editorsv_port', 33452) # 1) Open Level helper.open_level("Multiplayer", level_name) with Tracer() as section_tracer: # 2) Enter game mode helper.multiplayer_enter_game_mode(Tests.enter_game_mode) # 3) Make sure the network player was spawned player_id = general.find_game_entity("Player") Report.critical_result(Tests.find_network_player, player_id.IsValid()) # 4) Check the editor logs for expected and unexpected log output EXPECTEDLINE_WAIT_TIME_SECONDS = 1.0 for expected_line in expected_lines : helper.wait_for_condition(lambda: find_expected_line(expected_line), EXPECTEDLINE_WAIT_TIME_SECONDS) Report.result(Tests.found_lines, find_expected_line(expected_line)) general.idle_wait_frames(1) for unexpected_line in unexpected_lines : Report.result(Tests.found_unexpected_lines, find_unexpected_line(unexpected_line)) # 5) Check the ServerLauncher logs for expected log output # Since the editor has started a server launcher, the RemoteConsole with the default port=4600 will automatically be able to read the server logs server_console = RemoteConsole() server_console.start() for line in expected_lines_server: assert server_console.expect_log_line(line, EXPECTEDLINE_WAIT_TIME_SECONDS), f"Expected line not found: {line}" server_console.stop() # Exit game mode helper.exit_game_mode(Tests.exit_game_mode) if __name__ == "__main__": from editor_python_test_tools.utils import Report Report.start_test(Multiplayer_AutoComponent_NetworkInput)
StarcoderdataPython
1926688
''' Created on 07-May-2017 @author: <NAME> ''' print("Program to check whether a character is vowel or consonant") char=input("Enter a character...") vowel=('a','e','i','o','u') if char.isalpha() and len(char)==1: for i in vowel: if char == i: val=1 else: val=0 if val == 1: print("Vowel") elif val == 0: print("Consonant") else: print("Enter a valid character")
StarcoderdataPython
1808726
# -*- coding: utf-8 -*- # Generated by Django 1.11 on 2018-09-18 06:41 from __future__ import unicode_literals from django.conf import settings from django.db import migrations, models import django.db.models.deletion import geoposition.fields import mptt.fields class Migration(migrations.Migration): initial = True dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ] operations = [ migrations.CreateModel( name='Address', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('street', models.CharField(help_text='Street Name', max_length=255, verbose_name='Street')), ('street_number', models.CharField(help_text='House Number', max_length=55, verbose_name='Street Number')), ('supplement', models.CharField(blank=True, help_text='Additional Information (Appartment Number,...)', max_length=255, null=True, verbose_name='Address Supplements')), ('zipcode', models.CharField(blank=True, help_text='Area Code', max_length=55, null=True, verbose_name='Zip Code')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Created at')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Updated at')), ], options={ 'verbose_name': 'Address', 'verbose_name_plural': 'Addresses', 'ordering': ['street', 'street_number'], }, ), migrations.CreateModel( name='Area', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(help_text='Name of Area in the hierarchy. E.g.: City or Country', max_length=255, verbose_name='Area Name')), ('geobox_upper', geoposition.fields.GeopositionField(blank=True, help_text='Upper-Left Geoposition (latitude and longitude) of the Area', max_length=42, null=True, verbose_name='Upper-Left Geoposition Boundary')), ('geobox_lower', geoposition.fields.GeopositionField(blank=True, help_text='Lower-Right Geoposition (latitude and longitude) of the Area', max_length=42, null=True, verbose_name='Lower-Right Geoposition Boundary')), ('geobox_center', geoposition.fields.GeopositionField(blank=True, help_text='Centered Geoposition (latitude and longitude) of the Area', max_length=42, null=True, verbose_name='Centered Geoposition')), ('verified', models.BooleanField(default=False, help_text='If the specified area is verified to be existent and relevant', verbose_name='Verified Area')), ('created_at', models.DateTimeField(auto_now_add=True, verbose_name='Created at')), ('updated_at', models.DateTimeField(auto_now=True, verbose_name='Updated at')), ('lft', models.PositiveIntegerField(db_index=True, editable=False)), ('rght', models.PositiveIntegerField(db_index=True, editable=False)), ('tree_id', models.PositiveIntegerField(db_index=True, editable=False)), ('level', models.PositiveIntegerField(db_index=True, editable=False)), ('adjacent_areas', mptt.fields.TreeManyToManyField(blank=True, help_text='Areas that are neighbors or subsets of this area.', related_name='_area_adjacent_areas_+', to='utils.Area')), ('parent', mptt.fields.TreeForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, related_name='children', to='utils.Area')), ], options={ 'verbose_name': 'Area', 'verbose_name_plural': 'Areas', 'ordering': ['name'], }, ), migrations.CreateModel( name='Language', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('code', models.CharField(help_text='Standard language code representation. Ex.: en_AU', max_length=10, verbose_name='Language Code')), ('name', models.CharField(help_text='Name of the Language. Ex.: English', max_length=100, verbose_name='Language Name')), ('name_en', models.CharField(help_text='Name of the Language. Ex.: English', max_length=100, null=True, verbose_name='Language Name')), ('name_de', models.CharField(help_text='Name of the Language. Ex.: English', max_length=100, null=True, verbose_name='Language Name')), ('name_pt', models.CharField(help_text='Name of the Language. Ex.: English', max_length=100, null=True, verbose_name='Language Name')), ('name_es', models.CharField(help_text='Name of the Language. Ex.: English', max_length=100, null=True, verbose_name='Language Name')), ('country', models.CharField(blank=True, help_text='Name of the Country. Ex.: Australia', max_length=100, null=True, verbose_name='Country')), ('country_en', models.CharField(blank=True, help_text='Name of the Country. Ex.: Australia', max_length=100, null=True, verbose_name='Country')), ('country_de', models.CharField(blank=True, help_text='Name of the Country. Ex.: Australia', max_length=100, null=True, verbose_name='Country')), ('country_pt', models.CharField(blank=True, help_text='Name of the Country. Ex.: Australia', max_length=100, null=True, verbose_name='Country')), ('country_es', models.CharField(blank=True, help_text='Name of the Country. Ex.: Australia', max_length=100, null=True, verbose_name='Country')), ('supported', models.BooleanField(default=False, help_text='If the language is supported in the App Translation Sytem', verbose_name='Translation supported')), ], options={ 'verbose_name': 'Language', 'verbose_name_plural': 'Language', 'ordering': ['name', 'country'], }, ), migrations.AddField( model_name='address', name='area', field=models.ForeignKey(help_text='Owner of the Item or Service', on_delete=django.db.models.deletion.PROTECT, related_name='addresses', to='utils.Area'), ), migrations.AddField( model_name='address', name='user', field=models.ForeignKey(blank=True, help_text='User creating the Address', null=True, on_delete=django.db.models.deletion.PROTECT, related_name='addresses', to=settings.AUTH_USER_MODEL), ), ]
StarcoderdataPython
6702504
<reponame>atsgen/tf-api-client #!/usr/bin/env python """ python %prog [options] <in_schema.xsd> <out_schema.xsd> Synopsis: Prepare schema document. Replace include and import elements. Examples: python %prog myschema.xsd python %prog myschema.xsd newschema.xsd python %prog -f myschema.xsd newschema.xsd cat infile.xsd | python %prog > outfile.xsd """ from __future__ import print_function # # Imports from future import standard_library standard_library.install_aliases() from builtins import input from builtins import object import sys import os import urllib.request, urllib.error, urllib.parse import ftplib import copy import types from optparse import OptionParser, Values import itertools from lxml import etree # # Globals and constants # # Functions for external use def process_include_files(infile, outfile, inpath=''): options = Values({ 'force': False, }) prep_schema_doc(infile, outfile, inpath, options) # # Classes class Params(object): members = ('base_url', 'already_processed', 'parent_url', ) def __init__(self): self.base_url = None self.already_processed = set() self.parent_url = None def __setattr__(self, name, value): if name not in self.members: raise AttributeError('Class %s has no set-able attribute "%s"' % ( self.__class__.__name__, name, )) self.__dict__[name] = value class SchemaIOError(IOError): pass # # Functions for internal use and testing def clear_includes_and_imports(node): namespace = node.nsmap[node.prefix] child_iter1 = node.iterfind('{%s}include' % (namespace, )) child_iter2 = node.iterfind('{%s}import' % (namespace, )) for child in itertools.chain(child_iter1, child_iter2): repl = etree.Comment(etree.tostring(child)) node.replace(child, repl) def resolve_ref(node, params, options): content = None url = node.get('schemaLocation') if not url: msg = '*** Warning: missing "schemaLocation" attribute in %s\n' % ( params.parent_url, ) sys.stderr.write(msg) return None # Uncomment the next line to help track down missing schemaLocation etc. # print '(resolve_ref) url: %s\n parent-url: %s' % (url, params.parent_url, ) if params.base_url and not ( url.startswith('/') or url.startswith('http:') or url.startswith('ftp:') ): locn = '%s/%s' % (params.base_url, url, ) else: locn = url if locn is not None: schema_name = os.path.split(locn) if schema_name not in params.already_processed: params.already_processed.add(schema_name) print('trace --') print(' base : %s' % (params.base_url, )) print(' parent: %s' % (params.parent_url, )) print(' locn : %s' % (locn, )) if locn.startswith('http:') or locn.startswith('ftp:'): try: urlfile = urllib.request.urlopen(locn) content = urlfile.read() urlfile.close() params.parent_url = locn params.base_url = os.path.split(locn)[0] except urllib.error.HTTPError as exp: msg = "Can't find file %s referenced in %s." % ( locn, params.parent_url, ) raise SchemaIOError(msg) else: if os.path.exists(locn): infile = open(locn) content = infile.read() infile.close() params.parent_url = locn params.base_url = os.path.split(locn)[0] if content is None: msg = "Can't find file %s referenced in %s." % ( locn, params.parent_url, ) raise SchemaIOError(msg) ## if content is None: ## msg = "Can't find file %s referenced in %s." % ( ## locn, params.parent_url, ) ## raise SchemaIOError(msg) return content def collect_inserts(node, params, inserts, options): namespace = node.nsmap[node.prefix] child_iter1 = node.iterfind('{%s}include' % (namespace, )) child_iter2 = node.iterfind('{%s}import' % (namespace, )) for child in itertools.chain(child_iter1, child_iter2): collect_inserts_aux(child, params, inserts, options) def collect_inserts_aux(child, params, inserts, options): save_base_url = params.base_url string_content = resolve_ref(child, params, options) if string_content is not None: root = etree.fromstring(string_content, base_url=params.base_url) for child1 in root: if not isinstance(child1, etree._Comment): namespace = child1.nsmap[child1.prefix] if (child1.tag != '{%s}include' % (namespace, ) and child1.tag != '{%s' % (namespace, )): comment = etree.Comment(etree.tostring(child)) inserts.append(comment) inserts.append(child1) collect_inserts(root, params, inserts, options) params.base_url = save_base_url def make_file(outFileName, options): outFile = None if (not options.force) and os.path.exists(outFileName): reply = eval(input('File %s exists. Overwrite? (y/n): ' % outFileName)) if reply == 'y': outFile = open(outFileName, 'w') else: outFile = open(outFileName, 'w') return outFile def prep_schema_doc(infile, outfile, inpath, options): doc1 = etree.parse(infile) root1 = doc1.getroot() params = Params() params.parent_url = infile params.base_url = os.path.split(inpath)[0] inserts = [] collect_inserts(root1, params, inserts, options) root2 = copy.copy(root1) clear_includes_and_imports(root2) for insert_node in inserts: root2.append(insert_node) doc2 = etree.ElementTree(root2) doc2.write(outfile) return doc2 def prep_schema(inpath, outpath, options): if inpath: infile = open(inpath, 'r') else: infile = sys.stdin if outpath: outfile = make_file(outpath, options) else: outfile = sys.stdout if outfile is None: return prep_schema_doc(infile, outfile, inpath, options) if inpath: infile.close() if outpath: outfile.close() USAGE_TEXT = __doc__ def usage(parser): parser.print_help() sys.exit(1) def main(): parser = OptionParser(USAGE_TEXT) parser.add_option("-f", "--force", action="store_true", dest="force", default=False, help="force overwrite without asking") (options, args) = parser.parse_args() if len(args) == 2: inpath = args[0] outpath = args[1] elif len(args) == 1: inpath = args[0] outpath = None elif len(args) == 0: inpath = None outpath = None else: usage(parser) prep_schema(inpath, outpath, options) if __name__ == "__main__": #import pdb; pdb.set_trace() main()
StarcoderdataPython
93359
<reponame>anushkrishnav/QiskitBot import discord from discord.ext import commands import asyncio import subprocess import logging import re logger = logging.getLogger(__name__) class DocInfo(commands.Cog): def __init__(self, bot): self.bot = bot @commands.command(name = 'docs') async def docs(self, ctx, *, arg): if re.match('^`[A-Za-z]{1,20}`$', arg): out = subprocess.run( f'echo "from qiskit import *\nhelp({arg[1:-1]})" | python3', shell = True, text = True, capture_output = True) if out.returncode == 0: embed = discord.Embed(title = f'Info on {arg}', description = f'```py{out.stdout}```') await ctx.send(embed = embed) else: embed = discord.Embed(title = 'Error', description = 'Try again with a correct class or function name and with a limit of 20 characters.') await ctx.send(embed = embed) def setup(bot): bot.add_cog(DocInfo(bot))
StarcoderdataPython
11223579
import cv2 import numpy as np import alglib.processing as processing lower1 = np.array([0, 30, 0]) upper1 = np.array([180, 190, 256]) lower2 = np.array([26, 0, 0]) upper2 = np.array([40, 45, 256]) lower3 = np.array([25, 0, 0]) upper3 = np.array([160, 256, 256]) lower4 = np.array([160, 125, 0]) upper4 = np.array([180, 256, 256]) def filtered_frame(frame): hsv_filer1 = processing.hsv_mask(frame, lower1, upper1) hsv_filer2 = processing.hsv_mask(frame, lower2, upper2) hsv_filer3 = processing.hsv_mask(frame, lower3, upper3) hsv_filer4 = processing.hsv_mask(frame, lower4, upper4) blocking = cv2.bitwise_or(hsv_filer3, hsv_filer4) cv2.bitwise_not(hsv_filer2, hsv_filer2) blocking_filter = cv2.bitwise_and(hsv_filer2, blocking) cv2.bitwise_not(blocking_filter, blocking_filter) hsv_filter_final = cv2.bitwise_and(hsv_filer1, blocking_filter) return cv2.bitwise_and(frame, frame, mask=hsv_filter_final), hsv_filter_final
StarcoderdataPython
6595401
<filename>src/year2018/day09b.py """2018 - Day 9 Part 2: <NAME>. Amused by the speed of your answer, the Elves are curious: What would the new winning Elf's score be if the number of the last marble were 100 times larger? """ from src.year2018.day09a import Game from src.year2018.day09a import parse_task def solve(task: str) -> int: """Get the winner score if the last marble is 100 times larger.""" players_number, marbles = parse_task(task) game = Game(players_number, marbles * 100) while not game.finished: game.make_turn() return game.winner.score
StarcoderdataPython
6655813
import matplotlib.pyplot as plt #funzione per il plotting dei grafici riguardati la storia dell'addestramento di un modello. def visualize(history): # "Accuratezza" plt.plot(history.history['accuracy']) plt.plot(history.history['val_accuracy']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show() # "Perdita" plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train', 'validation'], loc='upper left') plt.show()
StarcoderdataPython
392520
'''Communicate with local or remote peercoin-daemon via JSON-RPC''' from operator import itemgetter from .common import Provider from pypeerassets.exceptions import InsufficientFunds from btcpy.structs.transaction import MutableTxIn, Sequence, ScriptSig from decimal import Decimal, getcontext getcontext().prec = 6 try: from peercoin_rpc import Client except: raise EnvironmentError("peercoin_rpc library is required for this to work,\ use pip to install it.") class RpcNode(Client, Provider): '''JSON-RPC connection to local Peercoin node''' def select_inputs(self, address: str, amount: int) -> dict: '''finds apropriate utxo's to include in rawtx, while being careful to never spend old transactions with a lot of coin age. Argument is intiger, returns list of apropriate UTXO's''' utxos = [] utxo_sum = Decimal(-0.01) # starts from negative due to minimal fee for tx in sorted(self.listunspent(address=address), key=itemgetter('confirmations')): if tx["address"] not in (self.pa_parameters.P2TH_addr, self.pa_parameters.test_P2TH_addr): utxos.append( MutableTxIn(txid=tx['txid'], txout=tx['vout'], sequence=Sequence.max(), script_sig=ScriptSig.empty()) ) utxo_sum += Decimal(tx["amount"]) if utxo_sum >= amount: return {'utxos': utxos, 'total': utxo_sum} if utxo_sum < amount: raise InsufficientFunds("Insufficient funds.") raise Exception("undefined behavior :.(") @property def is_testnet(self) -> bool: '''check if node is configured to use testnet or mainnet''' if self.getinfo()["testnet"] is True: return True else: return False @property def network(self) -> str: '''return which network is the node operating on.''' if self.is_testnet: return "tsprk" else: return "sprk" def listunspent( self, address: str="", minconf: int=1, maxconf: int=999999, ) -> list: '''list UTXOs modified version to allow filtering by address. ''' if address: return self.req("listunspent", [minconf, maxconf, [address]]) return self.req("listunspent", [minconf, maxconf])
StarcoderdataPython
106525
<reponame>code-review-doctor/orchestra from rest_framework import permissions from orchestra.models import Worker from orchestra.models import Todo from orchestra.models import TodoQA class IsAssociatedWithTodosProject(permissions.BasePermission): """ Ensures that a user's worker is accoiated with the todo's project. """ def has_object_permission(self, request, view, obj): worker = Worker.objects.get(user=request.user) if isinstance(obj, Todo): project = obj.project elif isinstance(obj, TodoQA): project = obj.todo.project else: project = None return ( project and (worker.is_project_admin() or worker.assignments.filter(task__project=project).exists())) class IsAssociatedWithProject(permissions.BasePermission): """ Ensures that a user's worker is associated with the request's `project`. """ def has_permission(self, request, view): """ We pass project_id as a payload in cases when the request is either POST, PUT or PATCH. It can be passed via query param not only in a GET request, but also in the requests listed above (when applying a filter). """ worker = Worker.objects.get(user=request.user) if worker.is_project_admin(): return True todo_id = request.data.get('todo') if todo_id is None: todo_id = view.kwargs.get('pk') project_id = request.data.get( 'project') or request.data.get('project__id') if project_id is None: project_id = request.query_params.get( 'project') or request.query_params.get('project__id') if project_id is None and todo_id is not None: project_id = Todo.objects.get(id=todo_id).project.id return worker.assignments.filter(task__project__id=project_id).exists() class IsAssociatedWithTask(permissions.BasePermission): """ Ensures that a user's worker is associated with the request's `task`. """ def has_permission(self, request, view): worker = Worker.objects.get(user=request.user) if worker.is_project_admin(): return True if request.method == 'GET': task_id = request.query_params.get('task') return worker.assignments.filter(task=task_id).exists() return False
StarcoderdataPython
1658236
<filename>src/estimate_biomass.py import argparse from pathlib import Path import cv2 import numpy as np import pandas as pd import torch import keypoints_detector.config as cfg from keypoints_detector.model import keypoint_detector from keypoints_detector.predict import predict, show_prediction from scale_detector.scale_detector import read_scale def parse_args(): parser = argparse.ArgumentParser() parser.add_argument("-i", "--input_dir", type=Path, default="./images/", help="Input images directory.") parser.add_argument("-o", "--output_dir", type=Path, default="../results/", help="Outputs directory.") return parser.parse_args() def filter_cnts(cnts): cnts_filtered = [] bboxes_fit = [] bboxes = [] for cnt in cnts: if cv2.contourArea(cnt) < 1000: continue rect_tilted = cv2.minAreaRect(cnt) if 0.5 < rect_tilted[1][0] / rect_tilted[1][1] < 2: continue rect = cv2.boundingRect(cnt) bboxes.append(rect) cnts_filtered.append(cnt) bboxes_fit.append(rect_tilted) return cnts_filtered, bboxes_fit, bboxes def simple_segmenter(img): gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) ret, thresh = cv2.threshold(gray, 150, 255, cv2.THRESH_BINARY) cnts, hier = cv2.findContours(thresh, cv2.RETR_TREE, cv2.CHAIN_APPROX_NONE) cnts, bboxes_fit, bboxes = filter_cnts(cnts) return cnts, bboxes_fit, bboxes, thresh def calc_dist(pt1, pt2): return np.sqrt(np.sum(np.square(pt1 - pt2))) def fit_curve(bbox, points, keypoints_num): bbox_w = bbox[0] - bbox[2] bbox_l = bbox[1] - bbox[3] pts_ind = [0, 1] if bbox_w <= bbox_l else [1, 0] x = points[: keypoints_num - 2][:, pts_ind[0]] y = points[: keypoints_num - 2][:, pts_ind[1]] model = np.poly1d(np.polyfit(x, y, 5)) range_pts = [x[0], x[-1]] lin_sp = np.arange(min(range_pts), max(range_pts), 10) res = [lin_sp, model(lin_sp)] pts = np.round(np.hstack((np.resize(res[pts_ind[0]], (res[pts_ind[0]].shape[0], 1)), np.resize(res[pts_ind[1]], (res[pts_ind[1]].shape[0], 1))))) pts_num = pts.shape[0] # TODO: create different error handling function if pts_num == 0: pts = np.reshape(bbox, ((bbox.size // 2), 2)) return pts list_ind = [0, pts_num - 1] distances = [calc_dist(pts[0], points[0]), calc_dist(pts[0], points[keypoints_num - 3])] position = list_ind[distances.index(min(distances))] insertion_ind = [keypoints_num - 3, 0] if position == 0 else [0, keypoints_num - 3] inserted = np.append(pts, points[insertion_ind[0]]) inserted = np.insert(inserted, 0, points[insertion_ind[1]]) pts = np.reshape(inserted, ((inserted.size // 2), 2)) return pts def calc_dimensions(length_pts, width_pts, scale_ratio): points = width_pts.astype(np.uint64) right, left = points width = calc_dist(left, right) * scale_ratio len_parts = [calc_dist(length_pts[i], length_pts[i + 1]) for i in range(len(length_pts) - 1)] length = np.sum(np.asarray(len_parts)) * scale_ratio return length, width def calculate_mass(predicted, scale, img_path): keypoints_num = 7 scale_ratio = scale["um"] / scale["pix"] density = 1.04 results = [] lengths_points = [] for i, (bbox, points) in enumerate(zip(predicted["bboxes"], predicted["keypoints"])): length_pts = fit_curve(bbox, points, keypoints_num) lengths_points.append(length_pts) length, width = calc_dimensions(length_pts, points[-2:], scale_ratio) class_name = cfg.INSTANCE_CATEGORY_NAMES[predicted["labels"][i]] if length and width != np.nan: R = length / width # If the mass of the species Echiniscus is estimated, use different equation if class_name == 'echiniscus': mass = (1 / 12) * length * np.pi * (length / R) ** 2 * density * 10 ** -6 # [ug] else: mass = length * np.pi * (length / (2 * R)) ** 2 * density * 10 ** -6 # [ug] info = {"img_path": img_path, "id": i, "class": class_name, "length": length, "width": width, "biomass": mass} # print(info) results.append(info) return pd.DataFrame(results), lengths_points def main(args): args.output_dir.mkdir(exist_ok=True, parents=True) images_extensions = ("png", "tif", "jpg", "jpeg") images_paths = [] for ext in images_extensions: ext_paths = list(args.input_dir.glob(f"*.{ext}")) images_paths.extend(ext_paths) print(f"IMG PATHS: {images_paths}") # images = [Path("./images/krio5_OM_1.5_5.jpg")] model = keypoint_detector() model.load_state_dict(torch.load("keypoints_detector/checkpoints/keypoints_detector.pth")) for img_path in images_paths: try: img = cv2.imread(str(img_path), 1) cnts, bboxes_fit, bboxes, thresh = simple_segmenter(img) image_scale, img = read_scale(img, bboxes, device="cpu") predicted = predict(model, img, device=cfg.DEVICE) results_df, lengths_points = calculate_mass(predicted, image_scale, img_path) img = predicted["image"] if not results_df.empty: mass_total = results_df["biomass"].sum() mass_mean = results_df["biomass"].mean() mass_std = results_df["biomass"].std() print(f"image path: {img_path}\n" f"Image scale: {image_scale}\n" f"Image total mass: {mass_total} ug") print("-" * 50) info_dict = {"scale": (f"Scale: {image_scale['um']} um", (50, 50)), "number": (f"Animal number: {predicted['bboxes'].shape[0]}", (50, 100)), "mass": (f"Total biomass: {round(mass_total, 5)} ug", (50, 150)), "mean": (f"Animal mass mean: {round(mass_mean, 5)} ug", (50, 200)), "std": (f"Animal mass std: {round(mass_std, 5)} ug", (50, 250))} for text, position in info_dict.values(): img = cv2.putText(img, text, position, cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 0, 0), 2, cv2.LINE_AA) for pts in lengths_points: img = cv2.polylines(img, [pts.astype(np.int32)], False, (255, 0, 0), 1) else: print("-" * 50) print(f"Mass calculation results empty for file: {str(img_path)}") print("-" * 50) results_df.to_csv(args.output_dir / f"{img_path.stem}_results.csv") cv2.imwrite(str(args.output_dir / f"{img_path.stem}_results.jpg"), img) cv2.imshow('predicted', cv2.resize(img, (0, 0), fx=0.6, fy=0.6)) cv2.waitKey(2500) except Exception as e: print(e) if __name__ == '__main__': main(parse_args()) # img = cv2.imread("./images/krio5_OM_1.5_5.jpg") # show_prediction(img)
StarcoderdataPython
5036212
<filename>mobius/management/commands/create_admin_user.py from django.core.management.base import BaseCommand, CommandError class Command(BaseCommand): def handle(self, *args, **options): from django.contrib.auth import get_user_model user, created = get_user_model().objects.get_or_create(username="admin", is_superuser=1, is_staff=1) if created: user.set_password("<PASSWORD>") user.save()
StarcoderdataPython
1914711
<reponame>cescalara/icecube_tools import numpy as np from pytest import approx from icecube_tools.utils.vMF import get_kappa, get_theta_p from icecube_tools.detector.angular_resolution import AngularResolution def test_kappa_conversion(): theta_1sigma = 1.0 kappa = get_kappa(theta_1sigma, 0.68) theta_p = get_theta_p(kappa, 0.68) assert theta_1sigma == approx(theta_p) def test_angular_resolution(): # Load ang_res = AngularResolution.from_dataset( "20181018", ret_ang_err_p=0.9, offset=0.4, ) # Sample ra = 0.0 # rad dec = np.pi / 4 # rad Etrue = 1e5 # GeV ang_res.sample(Etrue, (ra, dec)) # Return angular error assert ang_res.ret_ang_err == ang_res.get_ret_ang_err(Etrue)
StarcoderdataPython
5074531
<reponame>fmi-basel/dl-utils<filename>tests/test_runner.py<gh_stars>0 from dlutils.prediction.runner import runner import pytest import numpy as np def test_runner(n_vals=100): '''test runner with functions ''' def generator_fn(val): return val % 2, val def processor_fn(key, val): return key, val * 2 container = {0: [], 1: []} def output_fn(key, val): container[key].append(val) runner(generator_fn, processor_fn, output_fn, range(n_vals)) for key, vals in container.items(): assert len(vals) == n_vals / 2 if key == 0: np.testing.assert_array_equal(vals, np.arange(n_vals)[::2] * 2) elif key == 1: np.testing.assert_array_equal(vals, np.arange(n_vals)[1::2] * 2) else: assert False def test_runner_from_generator(k_runs=5, n_vals=10): '''test runner with generators ''' def generator_fn(val): for k in range(k_runs): yield val % 2, val def processor_fn(key, val): for k in range(k_runs): yield key, val * 2 container = {0: [], 1: []} def output_fn(key, val): container[key].append(val) runner(generator_fn, processor_fn, output_fn, range(n_vals)) for key, vals in container.items(): assert len(vals) == n_vals / 2 * k_runs**2 if key == 0: np.testing.assert_array_equal( np.unique(vals), np.arange(n_vals)[::2] * 2) elif key == 1: np.testing.assert_array_equal( np.unique(vals), np.arange(n_vals)[1::2] * 2) else: assert False @pytest.mark.parametrize("prep_fails, processor_fails, post_fails", [[True, False, False], [False, True, False], [False, False, True], [False, False, False]]) def test_exception_handling(prep_fails, processor_fails, post_fails): '''test error handling ''' n_vals = 100 class CustomException(Exception): pass def fail(val): raise CustomException('') def do_nothing(val): return val args = [ fail if prep_fails else do_nothing, fail if processor_fails else do_nothing, fail if post_fails else do_nothing, ] if prep_fails or processor_fails or post_fails: with pytest.raises(CustomException): runner(*args, range(n_vals)) else: runner(*args, range(n_vals)) if __name__ == '__main__': import logging logging.basicConfig(level=logging.DEBUG) test_exception_handling(False, False, True)
StarcoderdataPython
5075694
#!/usr/bin/env python #coding: utf8 # some random homework, for neu.edu, TELE5330 import subprocess # because the requirement is too clever to use `sys` ARGV = subprocess.sys.argv def nslookup(n): stdout, _ = subprocess.Popen( 'nslookup "%s" | grep name' % n, stdout=subprocess.PIPE, stdin=subprocess.PIPE, shell=True ).communicate() try: return stdout[stdout.index('name =')+6:-2].strip() except ValueError: return None if len(ARGV)!=4: exit('Missing parameters: <IP> <IP> <hostname>') # parse the first ARGV # why would anyone use `nslookup` and not `dig` or `socket.gethostbyname()`? print 'IP address = %s' % ARGV[1] # No Regexp? Really? ip = nslookup(ARGV[1]) print 'Hostname %s' % ('= %s' % ip if ip else 'not found') # parse the second ARGV print 'IP address = %s' % ARGV[2] ret = subprocess.os.system('ping -c1 -t2 "%s" 2>&1 >/dev/null' % ARGV[2]) print 'Status = %s' % (['Up', 'Down'][bool(ret)]) # parse the third ARGV stdout, _ = subprocess.Popen( 'nmap -n -oG - "%s" | grep "Ports:"' % ARGV[3], stdout=subprocess.PIPE, stdin=subprocess.PIPE, shell=True ).communicate() print 'open TCP connections = %s' % stdout.count('/open/tcp//') try: f_count = stdout[stdout.index(' filtered (')+11:].strip()[:-1] except ValueError: f_count = 0 print 'filtered TCP connections = %s' % f_count
StarcoderdataPython
3341937
import datetime from typing import Optional from aioftx.types import Side from aioftx.http import HTTPMethod, PaginatedResponse, Request, Response from pydantic import BaseModel, Field from ..quotes.schemas import Quote from ..shared.schemas import Option, OptionStatus, OptionType class QuoteRequest(BaseModel): id: int option: Option side: Side size: float time: datetime.datetime request_expiry: datetime.datetime status: OptionStatus limit_price: Optional[float] class MyQuoteRequest(BaseModel): id: int option: Option side: Side size: float time: datetime.datetime request_expiry: datetime.datetime status: OptionStatus limit_price: Optional[bool] quotes: list[Quote] hide_limit_price: bool """ Methods """ class GetQuoteRequestsRequest(Request): path = "/options/requests" class GetQuoteRequestsResponse(PaginatedResponse[QuoteRequest]): pass class GetMyQuoteRequestsRequest(Request): path = "/options/my_requests" class GetMyQuoteRequestsResponse(PaginatedResponse[MyQuoteRequest]): pass class CreateQuoteRequestRequest(Request): http_method = HTTPMethod.POST path = "/options/requests" underlying: str type: OptionType strike: float expiry: int side: Side size: float limit_price: Optional[float] hide_limit_price: bool = True request_expiry: Optional[int] = None # unix timestamp counterparty_id: Optional[ int ] = None # when specified, makes the request private to the specified counterparty class CreateQuoteRequestResponse(Response[QuoteRequest]): pass class DeleteQuoteRequestRequest(Request): http_method = HTTPMethod.DELETE path = "/options/requests/{request_id}" request_id: int = Field(..., path=True) class DeleteQuoteRequestResponse(Response[QuoteRequest]): pass
StarcoderdataPython
1738101
from django.contrib.auth import get_user_model from home.models import Student, Teacher from django.http import HttpRequest from django.utils.translation import ugettext_lazy as _ from allauth.account import app_settings as allauth_settings from allauth.account.forms import ResetPasswordForm from allauth.utils import email_address_exists, generate_unique_username from allauth.account.adapter import get_adapter from allauth.account.utils import setup_user_email from rest_framework import serializers from rest_auth.serializers import PasswordResetSerializer User = get_user_model() class SignupSerializer(serializers.ModelSerializer): class Meta: model = User fields = ("id", "name", "email", "password") extra_kwargs = { "password": {"write_only": True, "style": {"input_type": "password"}}, "email": { "required": True, "allow_blank": False, }, } def _get_request(self): request = self.context.get("request") if ( request and not isinstance(request, HttpRequest) and hasattr(request, "_request") ): request = request._request return request def validate_email(self, email): email = get_adapter().clean_email(email) if allauth_settings.UNIQUE_EMAIL: if email and email_address_exists(email): raise serializers.ValidationError( _("A user is already registered with this e-mail address.") ) return email def create(self, validated_data): user = User( email=validated_data.get("email"), name=validated_data.get("name"), username=generate_unique_username( [validated_data.get("name"), validated_data.get("email"), "user"] ), ) user.set_password(validated_data.get("password")) user.save() request = self._get_request() setup_user_email(request, user, []) return user def save(self, request=None): """rest_auth passes request so we must override to accept it""" return super().save() class UserSerializer(serializers.ModelSerializer): class Meta: model = User fields = ["id", "email", "name"] class PasswordSerializer(PasswordResetSerializer): """Custom serializer for rest_auth to solve reset password error""" password_reset_form_class = ResetPasswordForm class TeacherSerializer(serializers.ModelSerializer): class Meta: model = Teacher fields = "__all__" class StudentSerializer(serializers.ModelSerializer): class Meta: model = Student fields = "__all__"
StarcoderdataPython
102930
# -*- coding: utf-8 -*- from __future__ import unicode_literals from __future__ import absolute_import from rest_framework_bulk.routes import BulkRouter from rest_framework_nested.routers import NestedSimpleRouter __all__ = ('BulkRouter', 'BulkNestedRouter') # Map of HTTP verbs to rest_framework_bulk operations. BULK_OPERATIONS_MAP = { 'put': 'bulk_update', 'patch': 'partial_bulk_update', 'delete': 'bulk_destroy', } class BulkNestedRouter(NestedSimpleRouter): """ Bulk-enabled nested router. """ def __init__(self, *args, **kwargs): super(BulkNestedRouter, self).__init__(*args, **kwargs) self.routes[0].mapping.update(BULK_OPERATIONS_MAP)
StarcoderdataPython
1871733
<gh_stars>1-10 # flake8: noqa from .version import __version__ default_app_config = 'entity_history.apps.EntityHistoryConfig'
StarcoderdataPython
11200600
# Generated by the gRPC Python protocol compiler plugin. DO NOT EDIT! import grpc from .import attestation_pb2 as attestation__pb2 from .import beacon_block_pb2 as beacon__block__pb2 from google.protobuf import empty_pb2 as google_dot_protobuf_dot_empty__pb2 from .import validator_pb2 as validator__pb2 class BeaconNodeValidatorStub(object): """Beacon node validator API The beacon node validator API enables a validator to connect and perform its obligations on the Ethereum 2.0 phase 0 beacon chain. """ def __init__(self, channel): """Constructor. Args: channel: A grpc.Channel. """ self.GetDuties = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/GetDuties', request_serializer=validator__pb2.DutiesRequest.SerializeToString, response_deserializer=validator__pb2.DutiesResponse.FromString, ) self.StreamDuties = channel.stream_stream( '/ethereum.eth.v1alpha1.BeaconNodeValidator/StreamDuties', request_serializer=validator__pb2.DutiesRequest.SerializeToString, response_deserializer=validator__pb2.DutiesResponse.FromString, ) self.DomainData = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/DomainData', request_serializer=validator__pb2.DomainRequest.SerializeToString, response_deserializer=validator__pb2.DomainResponse.FromString, ) self.WaitForChainStart = channel.unary_stream( '/ethereum.eth.v1alpha1.BeaconNodeValidator/WaitForChainStart', request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, response_deserializer=validator__pb2.ChainStartResponse.FromString, ) self.WaitForSynced = channel.unary_stream( '/ethereum.eth.v1alpha1.BeaconNodeValidator/WaitForSynced', request_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, response_deserializer=validator__pb2.SyncedResponse.FromString, ) self.WaitForActivation = channel.unary_stream( '/ethereum.eth.v1alpha1.BeaconNodeValidator/WaitForActivation', request_serializer=validator__pb2.ValidatorActivationRequest.SerializeToString, response_deserializer=validator__pb2.ValidatorActivationResponse.FromString, ) self.ValidatorIndex = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/ValidatorIndex', request_serializer=validator__pb2.ValidatorIndexRequest.SerializeToString, response_deserializer=validator__pb2.ValidatorIndexResponse.FromString, ) self.ValidatorStatus = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/ValidatorStatus', request_serializer=validator__pb2.ValidatorStatusRequest.SerializeToString, response_deserializer=validator__pb2.ValidatorStatusResponse.FromString, ) self.GetBlock = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/GetBlock', request_serializer=validator__pb2.BlockRequest.SerializeToString, response_deserializer=beacon__block__pb2.BeaconBlock.FromString, ) self.ProposeBlock = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/ProposeBlock', request_serializer=beacon__block__pb2.SignedBeaconBlock.SerializeToString, response_deserializer=validator__pb2.ProposeResponse.FromString, ) self.GetAttestationData = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/GetAttestationData', request_serializer=validator__pb2.AttestationDataRequest.SerializeToString, response_deserializer=attestation__pb2.AttestationData.FromString, ) self.ProposeAttestation = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/ProposeAttestation', request_serializer=attestation__pb2.Attestation.SerializeToString, response_deserializer=validator__pb2.AttestResponse.FromString, ) self.SubmitAggregateSelectionProof = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/SubmitAggregateSelectionProof', request_serializer=validator__pb2.AggregateSelectionRequest.SerializeToString, response_deserializer=validator__pb2.AggregateSelectionResponse.FromString, ) self.SubmitSignedAggregateSelectionProof = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/SubmitSignedAggregateSelectionProof', request_serializer=validator__pb2.SignedAggregateSubmitRequest.SerializeToString, response_deserializer=validator__pb2.SignedAggregateSubmitResponse.FromString, ) self.ProposeExit = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/ProposeExit', request_serializer=beacon__block__pb2.SignedVoluntaryExit.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) self.SubscribeCommitteeSubnets = channel.unary_unary( '/ethereum.eth.v1alpha1.BeaconNodeValidator/SubscribeCommitteeSubnets', request_serializer=validator__pb2.CommitteeSubnetsSubscribeRequest.SerializeToString, response_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, ) class BeaconNodeValidatorServicer(object): """Beacon node validator API The beacon node validator API enables a validator to connect and perform its obligations on the Ethereum 2.0 phase 0 beacon chain. """ def GetDuties(self, request, context): """Retrieves validator duties for the requested validators. The duties consist of: Proposer - the validator that creates a beacon chain block. Attester — a validator that is part of a committee that needs to sign off on a beacon chain block while simultaneously creating a cross link to a recent shard block on a particular shard chain. The server returns a list of duties which are the actions should be performed by validators for a given epoch. Validator duties should be polled every epoch, but due to chain reorg of >MIN_SEED_LOOKAHEAD could occur, the validator duties could chain. For complete safety, it is recommended to poll at every slot to ensure validator is fully aware of any sudden chain reorg. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def StreamDuties(self, request_iterator, context): """Stream validator duties for the requested validators. The duties consist of: Proposer - the validator that creates a beacon chain block. Attester — a validator that is part of a committee that needs to sign off on a beacon chain """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def DomainData(self, request, context): """DomainData fetches the current BLS signature domain version information from the running beacon node's state. This information is used when validators sign blocks and attestations appropriately based on their duty. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def WaitForChainStart(self, request, context): """WaitForChainStart queries the logs of the Validator Deposit Contract on the Ethereum proof-of-work chain to verify the beacon chain has started its runtime and validators are ready to begin their responsibilities. If the chain has not yet started, this endpoint starts a server-side stream which updates the client when the beacon chain is ready. This RPC is deprecated. Please use WaitForSynced. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def WaitForSynced(self, request, context): """WaitForSynced checks if the beacon node is synced and ready to communicate with the validator. If the node is not synced yet, this endpoint starts a server-side stream which updates the validator client when the beacon chain is ready. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def WaitForActivation(self, request, context): """WaitForActivation checks if a validator public key exists in the active validator registry of the current beacon state. If the validator is NOT yet active, it starts a server-side stream which updates the client whenever the validator becomes active in the beacon node's state. The input to this endpoint is a list of validator public keys, and the corresponding stream will respond until at least a single corresponding validator to those keys is activated. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ValidatorIndex(self, request, context): """ValidatorIndex retrieves a validator's index location in the beacon state's validator registry looking up whether the validator exists based on its public key. This method returns NOT_FOUND if no index is found for the public key specified in the request. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ValidatorStatus(self, request, context): """ValidatorStatus returns a validator's status based on the current epoch. The request can specify either a validator's public key or validator index. The status response can be one of the following: DEPOSITED - validator's deposit has been recognized by Ethereum 1, not yet recognized by Ethereum 2. PENDING - validator is in Ethereum 2's activation queue. ACTIVE - validator is active. EXITING - validator has initiated an an exit request, or has dropped below the ejection balance and is being kicked out. EXITED - validator is no longer validating. SLASHING - validator has been kicked out due to meeting a slashing condition. UNKNOWN_STATUS - validator does not have a known status in the network. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetBlock(self, request, context): """Retrieves the latest valid beacon block to be proposed on the beacon chain. The server returns a new beacon block, without proposer signature, that can be proposed on the beacon chain. The block should be filled with all the necessary data for proposer to sign. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ProposeBlock(self, request, context): """Sends the newly signed beacon block to beacon node. The validator sends the newly signed beacon block to the beacon node so the beacon block can be included in the beacon chain. The beacon node is expected to validate and process the beacon block into its state. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def GetAttestationData(self, request, context): """Retrieves the latest valid attestation data to be attested on the beacon chain. The server returns the latest valid data which represents the correct vote for the head of the beacon chain, """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ProposeAttestation(self, request, context): """Sends the newly signed attestation to beacon node. The validator sends the newly signed attestation to the beacon node for the attestation to be included in the beacon chain. The beacon node is expected to validate and publish attestation on appropriate committee subnet. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SubmitAggregateSelectionProof(self, request, context): """Submit selection proof to the beacon node to aggregate all matching wire attestations with the same data root. the beacon node responses with an aggregate and proof object back to validator to sign over. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SubmitSignedAggregateSelectionProof(self, request, context): """Submit a signed aggregate and proof object, the beacon node will broadcast the signed aggregated attestation and proof object. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def ProposeExit(self, request, context): """Propose to leave the list of active validators. The beacon node is expected to validate the request and make it available for inclusion in the next proposed block. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def SubscribeCommitteeSubnets(self, request, context): """Subscribe to particular committee ID subnets given validator's duty. The beacon node is expected to subscribe to the committee ID subnet given by the request. With this, beacon node serving attesters can find persistent peers on the subnet to publish attestation, and beacon node serving aggregator can join the subnet. """ context.set_code(grpc.StatusCode.UNIMPLEMENTED) context.set_details('Method not implemented!') raise NotImplementedError('Method not implemented!') def add_BeaconNodeValidatorServicer_to_server(servicer, server): rpc_method_handlers = { 'GetDuties': grpc.unary_unary_rpc_method_handler( servicer.GetDuties, request_deserializer=validator__pb2.DutiesRequest.FromString, response_serializer=validator__pb2.DutiesResponse.SerializeToString, ), 'StreamDuties': grpc.stream_stream_rpc_method_handler( servicer.StreamDuties, request_deserializer=validator__pb2.DutiesRequest.FromString, response_serializer=validator__pb2.DutiesResponse.SerializeToString, ), 'DomainData': grpc.unary_unary_rpc_method_handler( servicer.DomainData, request_deserializer=validator__pb2.DomainRequest.FromString, response_serializer=validator__pb2.DomainResponse.SerializeToString, ), 'WaitForChainStart': grpc.unary_stream_rpc_method_handler( servicer.WaitForChainStart, request_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, response_serializer=validator__pb2.ChainStartResponse.SerializeToString, ), 'WaitForSynced': grpc.unary_stream_rpc_method_handler( servicer.WaitForSynced, request_deserializer=google_dot_protobuf_dot_empty__pb2.Empty.FromString, response_serializer=validator__pb2.SyncedResponse.SerializeToString, ), 'WaitForActivation': grpc.unary_stream_rpc_method_handler( servicer.WaitForActivation, request_deserializer=validator__pb2.ValidatorActivationRequest.FromString, response_serializer=validator__pb2.ValidatorActivationResponse.SerializeToString, ), 'ValidatorIndex': grpc.unary_unary_rpc_method_handler( servicer.ValidatorIndex, request_deserializer=validator__pb2.ValidatorIndexRequest.FromString, response_serializer=validator__pb2.ValidatorIndexResponse.SerializeToString, ), 'ValidatorStatus': grpc.unary_unary_rpc_method_handler( servicer.ValidatorStatus, request_deserializer=validator__pb2.ValidatorStatusRequest.FromString, response_serializer=validator__pb2.ValidatorStatusResponse.SerializeToString, ), 'GetBlock': grpc.unary_unary_rpc_method_handler( servicer.GetBlock, request_deserializer=validator__pb2.BlockRequest.FromString, response_serializer=beacon__block__pb2.BeaconBlock.SerializeToString, ), 'ProposeBlock': grpc.unary_unary_rpc_method_handler( servicer.ProposeBlock, request_deserializer=beacon__block__pb2.SignedBeaconBlock.FromString, response_serializer=validator__pb2.ProposeResponse.SerializeToString, ), 'GetAttestationData': grpc.unary_unary_rpc_method_handler( servicer.GetAttestationData, request_deserializer=validator__pb2.AttestationDataRequest.FromString, response_serializer=attestation__pb2.AttestationData.SerializeToString, ), 'ProposeAttestation': grpc.unary_unary_rpc_method_handler( servicer.ProposeAttestation, request_deserializer=attestation__pb2.Attestation.FromString, response_serializer=validator__pb2.AttestResponse.SerializeToString, ), 'SubmitAggregateSelectionProof': grpc.unary_unary_rpc_method_handler( servicer.SubmitAggregateSelectionProof, request_deserializer=validator__pb2.AggregateSelectionRequest.FromString, response_serializer=validator__pb2.AggregateSelectionResponse.SerializeToString, ), 'SubmitSignedAggregateSelectionProof': grpc.unary_unary_rpc_method_handler( servicer.SubmitSignedAggregateSelectionProof, request_deserializer=validator__pb2.SignedAggregateSubmitRequest.FromString, response_serializer=validator__pb2.SignedAggregateSubmitResponse.SerializeToString, ), 'ProposeExit': grpc.unary_unary_rpc_method_handler( servicer.ProposeExit, request_deserializer=beacon__block__pb2.SignedVoluntaryExit.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), 'SubscribeCommitteeSubnets': grpc.unary_unary_rpc_method_handler( servicer.SubscribeCommitteeSubnets, request_deserializer=validator__pb2.CommitteeSubnetsSubscribeRequest.FromString, response_serializer=google_dot_protobuf_dot_empty__pb2.Empty.SerializeToString, ), } generic_handler = grpc.method_handlers_generic_handler( 'ethereum.eth.v1alpha1.BeaconNodeValidator', rpc_method_handlers) server.add_generic_rpc_handlers((generic_handler,))
StarcoderdataPython
1779636
from api.mon.backends.abstract import AbstractMonitoringBackend from api.mon.backends.abstract.server import AbstractMonitoringServer # noinspection PyAbstractClass class DummyMonitoring(AbstractMonitoringBackend): pass class DummyMonitoringServer(AbstractMonitoringServer): """ Dummy model for representing a monitoring server in a DC. """ Meta = AbstractMonitoringServer.Meta def get_monitoring(dc, **kwargs): return DummyMonitoring(dc, **kwargs) # noinspection PyUnusedLocal def del_monitoring(dc): return True MonitoringBackendClass = DummyMonitoring MonitoringServerClass = DummyMonitoringServer
StarcoderdataPython
1779983
<gh_stars>0 import json import kiteconnect.exceptions as ex import logging from six.moves.urllib.parse import urljoin import requests from os import path from kiteconnect import KiteConnect, KiteTicker log = logging.getLogger(__name__) class KiteExt(KiteConnect): def login_with_credentials(self, userid, password, pin): self.headers = { 'x-kite-version': '3', 'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/89.0.4389.128 Safari/537.36' } self.user_id = userid self.password = password self.twofa = pin self.reqsession = requests.Session() r = self.reqsession.post(self.root + self._routes['api.login'], data={ 'user_id': self.user_id, 'password': <PASSWORD> }) r = self.reqsession.post(self.root + self._routes['api.twofa'], data={ 'request_id': r.json()['data']['request_id'], 'twofa_value': self.twofa, 'user_id': r.json()['data']['user_id'] }) self.enctoken = r.cookies.get('enctoken') self.public_token = r.cookies.get('public_token') self.user_id = r.cookies.get('user_id') self.headers['Authorization'] = 'enctoken {}'.format(self.enctoken) def __init__(self, api_key='kitefront', userid=None, *args, **kw): KiteConnect.__init__(self, api_key=api_key, *args, **kw) if userid is not None: self.user_id = userid self._routes.update({ 'api.login': '/api/login', 'api.twofa': '/api/twofa', 'api.misdata': '/margins/equity' }) def set_headers(self, enctoken, userid=None): self.public_token = enctoken self.enctoken = enctoken if userid is not None: self.user_id = userid if self.user_id is None: raise Exception( f'userid cannot be none, either login with credentials first or set userid here') self.headers = { 'x-kite-version': '3', 'Authorization': 'enctoken {}'.format(self.enctoken) } def kws(self, api_key='kitefront'): return KiteTicker(api_key=api_key, access_token=self.public_token+'&user_id='+self.user_id, root='wss://ws.zerodha.com') def ticker(self, api_key='kitefront', enctoken=None, userid=None): if enctoken is not None: self.enctoken = enctoken if userid is not None: self.user_id = userid if self.user_id is None: raise Exception( f'userid cannot be none, either login with credentials first or set userid here') return KiteTicker(api_key=api_key, access_token=self.enctoken+'&user_id='+self.user_id, root='wss://ws.zerodha.com') # NOTE NEW def _request(self, route, method, url_args=None, params=None, is_json=False): '''Make an HTTP request.''' # Form a restful URL if url_args: uri = self._routes[route].format(**url_args) else: uri = self._routes[route] url = urljoin(self.root, uri) headers = self.headers # Custom headers # headers = { # 'X-Kite-Version': '3', # For version 3 # 'User-Agent': self._user_agent() # } # if self.api_key and self.access_token: # # set authorization header # auth_header = self.api_key + ':' + self.access_token # headers['Authorization'] = 'token {}'.format(auth_header) if self.debug: log.debug('Request: {method} {url} {params} {headers}'.format( method=method, url=url, params=params, headers=headers)) try: r = self.reqsession.request(method, url, json=params if ( method in ['POST', 'PUT'] and is_json) else None, data=params if ( method in ['POST', 'PUT'] and not is_json) else None, params=params if method in [ 'GET', 'DELETE'] else None, headers=headers, verify=not self.disable_ssl, allow_redirects=True, timeout=self.timeout, proxies=self.proxies) # Any requests lib related exceptions are raised here - http://docs.python-requests.org/en/master/_modules/requests/exceptions/ except Exception as e: raise e if self.debug: log.debug('Response: {code} {content}'.format( code=r.status_code, content=r.content)) # Validate the content type. if 'json' in r.headers['content-type']: try: data = json.loads(r.content.decode('utf8')) except ValueError: raise ex.DataException('Could not parse the JSON response received from the server: {content}'.format( content=r.content)) # api error if data.get('error_type'): # Call session hook if its registered and TokenException is raised if self.session_expiry_hook and r.status_code == 403 and data['error_type'] == 'TokenException': self.session_expiry_hook() # native Kite errors exp = getattr(ex, data['error_type'], ex.GeneralException) raise exp(data['message'], code=r.status_code) return data['data'] elif 'csv' in r.headers['content-type']: return r.content else: raise ex.DataException('Unknown Content-Type ({content_type}) with response: ({content})'.format( content_type=r.headers['content-type'], content=r.content))
StarcoderdataPython
6575104
""" ======================================================== 06. Remove epochs based on peak-to-peak (PTP) amplitudes ======================================================== Epochs containing peak-to-peak above the thresholds defined in the 'reject' parameter are removed from the data. This step will drop epochs containing non-biological artifacts but also epochs containing biological artifacts not sufficiently corrected by the ICA or the SSP processing. """ import itertools import logging from typing import Optional import mne from mne.utils import BunchConst from mne.parallel import parallel_func from mne_bids import BIDSPath import config from config import gen_log_kwargs, on_error, failsafe_run logger = logging.getLogger('mne-bids-pipeline') @failsafe_run(on_error=on_error, script_path=__file__) def drop_ptp(*, cfg, subject, session=None): bids_path = BIDSPath(subject=subject, session=session, task=cfg.task, acquisition=cfg.acq, run=None, recording=cfg.rec, space=cfg.space, suffix='epo', extension='.fif', datatype=cfg.datatype, root=cfg.deriv_root, check=False) infile_processing = cfg.spatial_filter fname_in = bids_path.copy().update(processing=infile_processing) fname_out = bids_path.copy().update(processing='clean') msg = f'Input: {fname_in}, Output: {fname_out}' logger.info(**gen_log_kwargs(message=msg, subject=subject, session=session)) # Get rejection parameters and drop bad epochs epochs = mne.read_epochs(fname_in, preload=True) reject = config.get_reject(epochs=epochs) if cfg.ica_reject is not None: for ch_type, threshold in cfg.ica_reject.items(): if (ch_type in reject and threshold < reject[ch_type]): # This can only ever happen in case of # reject = 'autoreject_global' msg = (f'Adjusting PTP rejection threshold proposed by ' f'autoreject, as it is greater than ica_reject: ' f'{ch_type}: {reject[ch_type]} -> {threshold}') logger.info(**gen_log_kwargs(message=msg, subject=subject, session=session)) reject[ch_type] = threshold msg = f'Using PTP rejection thresholds: {reject}' logger.info(**gen_log_kwargs(message=msg, subject=subject, session=session)) n_epochs_before_reject = len(epochs) epochs.reject_tmin = cfg.reject_tmin epochs.reject_tmax = cfg.reject_tmax epochs.drop_bad(reject=reject) n_epochs_after_reject = len(epochs) if 0 < n_epochs_after_reject < 0.5 * n_epochs_before_reject: msg = ('More than 50% of all epochs rejected. Please check the ' 'rejection thresholds.') logger.warning(**gen_log_kwargs(message=msg, subject=subject, session=session)) elif n_epochs_after_reject == 0: raise RuntimeError('No epochs remaining after peak-to-peak-based ' 'rejection. Cannot continue.') msg = 'Saving cleaned, baseline-corrected epochs …' epochs.apply_baseline(cfg.baseline) epochs.save(fname_out, overwrite=True) def get_config( subject: Optional[str] = None, session: Optional[str] = None ) -> BunchConst: cfg = BunchConst( task=config.get_task(), datatype=config.get_datatype(), acq=config.acq, rec=config.rec, space=config.space, baseline=config.baseline, reject_tmin=config.reject_tmin, reject_tmax=config.reject_tmax, spatial_filter=config.spatial_filter, ica_reject=config.get_ica_reject(), deriv_root=config.get_deriv_root(), decim=config.decim ) return cfg def main(): """Run epochs.""" parallel, run_func, _ = parallel_func(drop_ptp, n_jobs=config.get_n_jobs()) logs = parallel( run_func(cfg=get_config(), subject=subject, session=session) for subject, session in itertools.product(config.get_subjects(), config.get_sessions()) ) config.save_logs(logs) if __name__ == '__main__': main()
StarcoderdataPython
8116754
<filename>katana-nfv_mon/katana/utils/threadingUtis/threadingUtils.py import threading import logging from katana.utils.mongoUtils import mongoUtils from katana.utils.nfvoUtils import osmUtils # Create the logger logger = logging.getLogger(__name__) stream_handler = logging.StreamHandler() formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") stream_formatter = logging.Formatter("%(asctime)s %(name)s %(levelname)s %(message)s") stream_handler.setFormatter(stream_formatter) logger.setLevel(logging.DEBUG) logger.addHandler(stream_handler) class MonThread(threading.Thread): """ Class that implements a per Network Service thread for monitoring purposes """ def __init__(self, ns, ns_status, ns_name): super().__init__() self.ns = ns self.ns_status = ns_status self.ns_name = ns_name # Create the stop parameter self._stop = threading.Event() def run(self): """ The function that will run to check the NS status """ while not self.stopped(): target_nfvo = mongoUtils.find("nfvo", {"id": self.ns["nfvo-id"]}) if target_nfvo["type"] == "OSM": target_nfvo_obj = osmUtils.Osm( target_nfvo["id"], target_nfvo["nfvoip"], target_nfvo["nfvousername"], target_nfvo["nfvopassword"], ) else: logger.error("Not supported NFVO type") return insr = target_nfvo_obj.getNsr(self.ns["nfvo_inst_ns"]) if not insr: self.ns_status.labels(self.ns["slice_id"], self.ns_name).set(2) elif insr["operational-status"] == "terminating": self.ns_status.labels(self.ns["slice_id"], self.ns_name).set(4) elif insr["operational-status"] != "running": self.ns_status.labels(self.ns["slice_id"], self.ns_name).set(3) self._stop.wait(timeout=10) def stopped(self): """ Checks if the thread has stopped """ return self._stop.is_set() def stop(self): """ Stops the thread """ self._stop.set()
StarcoderdataPython
11364775
<gh_stars>0 from django.contrib.auth.models import AbstractUser from django.db import models class User(AbstractUser): def get_short_name(self): return self.username class Article(models.Model): STATUS = (("Draft", "Default"), ("Publish", "Publish")) users = models.ForeignKey(User, null=True, on_delete=models.CASCADE, related_name="Article", related_query_name="Art") title = models.CharField(max_length=250) Label = models.CharField(max_length=200, blank=True) body = models.TextField(blank=True) updated_on = models.DateTimeField(auto_now=True) created_on = models.DateTimeField(auto_now_add=True) status = models.CharField(max_length=20, choices=STATUS) class Meta: ordering = ['-created_on'] def __str__(self): return self.title class Comment(models.Model): COMMENT_CHOICES = (("Publish", "Publish"), ("Spam", "Spam")) articles = models.ForeignKey(Article, null=True, on_delete=models.CASCADE, related_name='Comment', related_query_name='Commas') commenter_name = models.CharField(max_length=20) comment_body = models.CharField(max_length=1000) comment_time = models.DateTimeField(auto_now=True) comment_choice = models.CharField(max_length=200, choices=COMMENT_CHOICES)
StarcoderdataPython
3434051
""" Carros: Escreva uma função que armazene informações sobre um carro em um dicionário. A função sempre deve receber o nome de um fabricante e um modelo. Um número de arbitrário de argumentos nomeados deverá ser aceito. Chame a função com as informações necessárias e dois outros pares nme-valor, por exemplo, uma cor ou um opcional. Sua função deve ser apropriada para uma chama como esta: car = make_car('subaru', 'outback', color='blue', tow_package = True) Mostre o dicionário devolvido para garantir que todas informa ções foram armazenadas corretamente. """ def make_car(car, model, **car_info): """Exibe informações sobre um carro.""" car_information = {} car_information['car'] = name_car car_information['model'] = modelo for key, value in car_info.items(): car_information[key] = value return car_information car_list = ['Argo', 'Onix', 'Nivus'] print('Escolha entre as opções listadas abaixo:') for car in car_list: print('\t -' + car) name_car = input('Digite o nome do carro:\n') if name_car not in car_list: print('Escolha apenas os que estão na lista:') elif name_car == 'Argo' or name_car == 'argo': modelo = 'Fiat' ano = 2021 elif name_car == 'Onix' or name_car == 'onix': modelo = 'Chevrolet' ano = 2021 else: modelo = 'VolksWagen' ano = 2020 car_profile = make_car('name_car', 'modelo', year = ano) print(car_profile)
StarcoderdataPython
9707887
#-*-coding:utf-8-*- from scrapy import cmdline from scrapy.crawler import CrawlerProcess from scrapy.utils.project import get_project_settings from FangSpider.spiders import NewFangSpider # cmdline.execute("scrapy crawl LjSpider -o LjSpider.csv".split()) # cmdline.execute("scrapy crawl LjSpider -o LjSpider.xml".split()) # cmdline.execute("scrapy crawl LjSpider -o LjSpider.pickle".split()) # cmdline.execute("scrapy crawl LjSpider -o LjSpider.marshal".split()) # cmdline.execute("scrapy crawl LjSpider -o LjSpider.json".split()) # cmdline.execute("scrapy crawl LjSpider -o ftp://user:[email protected]/path/to/LjSpider.csv".split()) settings = get_project_settings() process = CrawlerProcess(settings=settings) process.crawl(NewFangSpider.NewfangspiderSpider) process.start()
StarcoderdataPython
252764
<reponame>tkaneko0204/python-rackclient<gh_stars>0 # Copyright (c) 2014 ITOCHU Techno-Solutions Corporation. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import base64 from rackclient import exceptions from rackclient.v1 import base class Process(base.Resource): def __repr__(self): return "<Process: %s>" % self.name class ProcessManager(base.Manager): resource_class = Process def list(self, gid): """ Get a list of all processes in the specified group. :param gid: ID of the group. :rtype: list of Process. """ return self._list("/groups/%s/processes" % gid, "processes") def get(self, gid, pid): """ Get a server. :param gid: ID of the group. :param pid: ID of the process to get. :rtype: Process. """ return self._get("/groups/%s/processes/%s" % (gid, pid), "process") def create(self, gid, ppid=None, **kwargs): """ Create a process. If you give a ppid(Parent process ID), all other parameters will be inherited to its child process, but you can override them. Parameters in kwargs: :param name: Name of the new process :param nova_flavor_id: ID of a flavor :param glance_image_id: ID of a glance image :param keypair_id: ID of a keypair :param list securitygroup_ids: List of IDs of securitygroups :param userdata: file type object or string of script :param dict args: Dict of key-value pairs to be stored as metadata """ securitygroup_ids = kwargs.get('securitygroup_ids') if securitygroup_ids is not None and not isinstance( securitygroup_ids, list): raise exceptions.CommandError("securitygroup_ids must be a list") userdata = kwargs.get('userdata') if userdata: if hasattr(userdata, 'read'): userdata = userdata.read() userdata_b64 = base64.b64encode(userdata) args = kwargs.get('args') if args is not None and not isinstance(args, dict): raise exceptions.CommandError("args must be a dict") body = { "process": { "ppid": ppid, "name": kwargs.get('name'), "nova_flavor_id": kwargs.get('nova_flavor_id'), "glance_image_id": kwargs.get('glance_image_id'), "keypair_id": kwargs.get('keypair_id'), "securitygroup_ids": securitygroup_ids, "userdata": userdata_b64 if userdata else userdata, "args": args } } return self._create("/groups/%s/processes" % gid, body, "process") def update(self, gid, pid, app_status): """ Update status of process. :param gid: ID of the group. :param pid: ID of the process. :param app_status: Application layer status of the process. """ body = { "process": { "app_status": app_status } } return self._update("/groups/%s/processes/%s" % (gid, pid), body, "process") def delete(self, gid, pid): """ Delete a process. :param gid: ID of the group. :param pid: ID of the process to delete. """ self._delete("/groups/%s/processes/%s" % (gid, pid))
StarcoderdataPython
3263322
from elasticsearch_dsl import DocType, Search, Date, Integer, Keyword, Text, Ip from elasticsearch_dsl import connections, InnerDoc, Nested, Object class IoTDetailsDoc(DocType): ''' Document storage for IoT IP cache ''' id = Text(analyzer='snowball', fields={'raw': Keyword()}) time = Keyword() ip = Ip() filetype = Text() tag_name = Text() public_tag_name = Text() tag_description = Text() tag_class = Text() tag_group_name = Text() class Index: name = 'sfn-iot-details' @classmethod def get_indexable(cls): return cls.get_model().get_objects() @classmethod def from_obj(cls, obj): return cls( id=obj.id, time=obj.time, ip=obj.ip, filetype=obj.filetype, tag_name=obj.tag_name, public_tag_name=obj.public_tag_name, tag_description=obj.family_description, tag_class=obj.tag_class, tag_group_name=obj.tag_group_name ) def save(self, **kwargs): return super(IoTDetailsDoc, self).save(**kwargs) class SFNIOT(InnerDoc): event_type = Text() domain_name = Text(analyzer='snowball', fields={'raw': Keyword()}) device_name = Text(analyzer='snowball', fields={'raw': Keyword()}) host = Text(analyzer='snowball', fields={'raw': Keyword()}) threat_id = Text(analyzer='snowball') threat_name = Text(analyzer='snowball') tag_name = Text(fields={'raw': Keyword()}) tag_class = Text(fields={'raw': Keyword()}) tag_group = Text(fields={'raw': Keyword()}) tag_description = Text(analyzer='snowball') public_tag_name = Text(analyzer='snowball') confidence_level = Integer() sample_date = Date() file_type = Text(fields={'raw': Keyword()}) updated_at = Date() processed = Integer() src_ip = Ip() dst_ip = Ip() class IoTEventDoc(DocType): ''' Each event is it's own entity in the DB. This is the structure of that entitiy ''' IoT = Object(SFNIOT) class Index: name = 'iot-*' @classmethod def get_indexable(cls): return cls.get_model().get_objects() @classmethod def from_obj(cls, obj): return cls( id=obj.id, domain_name=obj.domain_name, device_name=obj.device_name, host=obj.host, threat_id=obj.threat_id, event_tag=obj.event_tag, created_at=obj.created_at, updated_at=obj.updated_at, processed=obj.processed, src_ip=obj.src_ip, dst_ip=obj.dst_ip ) def save(self, **kwargs): return super(IoTEventDoc, self).save(**kwargs)
StarcoderdataPython
6504812
<filename>fabtools/require/mercurial.py<gh_stars>0 """ Mercurial ========= This module provides high-level tools for managing `Mercurial`_ repositories. .. _Mercurial: http://mercurial.selenic.com/ """ from __future__ import with_statement from fabric.api import run from fabtools import mercurial from fabtools.files import is_dir from fabtools.system import UnsupportedFamily def command(): """ Require the ``hg`` command-line tool. Example:: from fabric.api import run from fabtools import require require.mercurial.command() run('hg --help') """ from fabtools.require.deb import package as require_deb_package from fabtools.require.rpm import package as require_rpm_package from fabtools.require.portage import package as require_portage_package from fabtools.system import distrib_family res = run('hg --version', quiet=True) if res.failed: family = distrib_family() if family == 'debian': require_deb_package('mercurial') elif family == 'gentoo': require_portage_package('mercurial') elif family == 'redhat': require_rpm_package('mercurial') else: raise UnsupportedFamily(supported=['debian', 'redhat', 'gentoo']) def working_copy(remote_url, path=None, branch="default", update=True, use_sudo=False, user=None): """ Require a working copy of the repository from the ``remote_url``. The ``path`` is optional, and defaults to the last segment of the remote repository URL. If the ``path`` does not exist, this will clone the remote repository and check out the specified branch. If the ``path`` exists and ``update`` is ``True``, it will pull changes from the remote repository, check out the specified branch, then update the working copy. If the ``path`` exists and ``update`` is ``False``, it will only check out the specified branch, without pulling remote changesets. :param remote_url: URL of the remote repository :type remote_url: str :param path: Absolute or relative path of the working copy on the filesystem. If this directory doesn't exist yet, a new working copy is created through ``hg clone``. If the directory does exist *and* ``update == True``, a ``hg pull && hg up`` is issued. If ``path is None`` the ``hg clone`` is issued in the current working directory and the directory name of the working copy is created by ``hg``. :type path: str :param branch: Branch or tag to check out. If the given value is a tag name, update must be ``False`` or consecutive calls will fail. :type branch: str :param update: Whether or not to pull and update remote changesets. :type update: bool :param use_sudo: If ``True`` execute ``hg`` with :func:`fabric.operations.sudo`, else with :func:`fabric.operations.run`. :type use_sudo: bool :param user: If ``use_sudo is True``, run :func:`fabric.operations.sudo` with the given user. If ``use_sudo is False`` this parameter has no effect. :type user: str """ command() if path is None: path = remote_url.split('/')[-1] if is_dir(path, use_sudo=use_sudo): mercurial.pull(path, use_sudo=use_sudo, user=user) if update: mercurial.update(path=path, branch=branch, use_sudo=use_sudo, user=user) elif not is_dir(path, use_sudo=use_sudo): mercurial.clone(remote_url, path=path, use_sudo=use_sudo, user=user) mercurial.update(path=path, branch=branch, use_sudo=use_sudo, user=user) else: raise ValueError("Invalid combination of parameters.")
StarcoderdataPython
1991617
#!/usr/bin/env python # -*- coding:utf-8 -*- """================================================================= @Project : Algorithm_YuweiYin/LeetCode-All-Solution/Python3 @File : LC-0003-Longest-Substring-Without-Repeating-Characters.py @Author : [YuweiYin](https://github.com/YuweiYin) @Date : 2022-01-06 ==================================================================""" # import functools import sys import time # from typing import List """ LeetCode - 0003 - (Medium) - Longest Substring Without Repeating Characters https://leetcode.com/problems/longest-substring-without-repeating-characters/ Description & Requirement: Given a string s, find the length of the longest substring without repeating characters. Example 1: Input: s = "abcabcbb" Output: 3 Explanation: The answer is "abc", with the length of 3. Example 2: Input: s = "bbbbb" Output: 1 Explanation: The answer is "b", with the length of 1. Example 3: Input: s = "pwwkew" Output: 3 Explanation: The answer is "wke", with the length of 3. Notice that the answer must be a substring, "pwke" is a subsequence and not a substring. Constraints: 0 <= s.length <= 5 * 10^4 s consists of English letters, digits, symbols and spaces. """ class Solution: def lengthOfLongestSubstring(self, s: str) -> int: # exception case if not isinstance(s, str) or len(s) <= 0: return 0 # border case if len(s) == 1: return 1 if len(s) == 2: return 1 if s[0] == s[1] else 2 # main method: Slide window & Two pointers return self._lengthOfLongestSubstring(s) def _lengthOfLongestSubstring(self, s: str) -> int: len_s = len(s) # now, 3 <= len_s longest_length = 1 # default: the first char only, so 1 current_length = 1 # longest_length cannot be longer than the number of distinct chars in s, so the upper bound can be determined max_length = 0 set_stat = set({}) for ch in s: if ch not in set_stat: set_stat.add(ch) max_length += 1 if max_length == len_s: # all chars are distinct in s return max_length # use a dict to guarantee there's no repeated char in current substring dict_subs = dict({}) # key: char; value: the index of this char in the whole string # if a char is in the current substring, then its value of dict_subs is >= 0; else, the value is -1 left_subs = 0 # the left index of current slide window dict_subs[s[left_subs]] = left_subs right_subs = 1 # the right index of current slide window while right_subs < len_s: if s[right_subs] in dict_subs: if dict_subs[s[right_subs]] >= 0: # this char has existed in the current substring, slide window now # now, s[repeated_index] == s[right_subs], so s[left_subs: repeated_index + 1] should be disregarded # continue from s[repeated_index + 1: right_subs] # find the repeated char by the value (index) of dict_subs, re-start from its right one repeated_index = dict_subs[s[right_subs]] if left_subs == repeated_index: # the leftmost char in substring is the one that is repeated dict_subs[s[right_subs]] = right_subs left_subs += 1 right_subs += 1 continue # keep the size of window and slide it by 1 step (keep current_length the same, too) while left_subs < repeated_index: # remove all char in s[left_subs: repeated_index] # assert s[left_subs] in dict_subs dict_subs[s[left_subs]] = -1 # remove from dict_subs current_length -= 1 # (shrink) decrease current_length left_subs += 1 # now, left_subs == repeated_index left_subs += 1 # continue from s[repeated_index + 1: right_subs] dict_subs[s[left_subs]] = left_subs dict_subs[s[right_subs]] = right_subs # use right_subs to replace repeated_index right_subs += 1 else: # this char is not in the current substring, put it in current_length += 1 longest_length = max(longest_length, current_length) if longest_length == max_length: return max_length dict_subs[s[right_subs]] = right_subs # put it in the dict to avoid repetition right_subs += 1 # keep moving else: # new char, just put it in and expand the window current_length += 1 longest_length = max(longest_length, current_length) if longest_length == max_length: return max_length dict_subs[s[right_subs]] = right_subs # put it in the dict to avoid repetition right_subs += 1 # keep moving return longest_length def main(): # Example 1: Output: 3 # s = "abcabcbb" # Example 2: Output: 1 # s = "bbbbb" # Example 3: Output: 3 # s = "pwwkew" # Example 4: Output: 3 # s = "abcbacbb" # Example 5: Output: 6 s = "wobgrovw" # init instance solution = Solution() # run & time start = time.process_time() ans = solution.lengthOfLongestSubstring(s) end = time.process_time() # show answer print('\nAnswer:') print(ans) # show time consumption print('Running Time: %.5f ms' % ((end - start) * 1000)) if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
12846192
LEAGUES = [ 'Scottish Premiership', 'Italy Serie A', 'French Ligue 1', 'Spanish Segunda Division', 'Australian A-League', 'Italy Serie B', 'Dutch Eredivisie', 'Mexican Primera Division Torneo Clausura', 'Russian Premier Liga', 'Spanish Primera Division', 'English League One', 'UEFA Europa League', 'Mexican Primera Division Torneo Apertura', 'German Bundesliga', 'South African ABSA Premier League', 'Austrian T-Mobile Bundesliga', 'Barclays Premier League', 'English League Two', 'Greek Super League', 'German 2. Bundesliga', 'United Soccer League', 'Chinese Super League', 'UEFA Champions League', 'Portuguese Liga', 'English League Championship', 'Belgian Jupiler League', 'Norwegian Tippeligaen', 'Turkish Turkcell Super Lig', 'Danish SAS-Ligaen', 'Japanese J League', 'Swedish Allsvenskan', 'Swiss Raiffeisen Super League', 'Brasileiro Série A', 'Major League Soccer', 'Argentina Primera Division', 'French Ligue 2' ] TEAMS = { 'Manchester City': 94.25, 'Bayern Munich': 93.96, 'Liverpool': 92.92, 'Barcelona': 91.22, 'Paris Saint-Germain': 87.79, 'Chelsea': 85.96, 'Real Madrid': 85.23, 'Tottenham Hotspur': 85.23, 'Juventus': 84.07, 'Borussia Dortmund': 83.63, 'Atlet<NAME>': 83.11, '<NAME>': 82.44, 'Ajax': 82.17, 'RB Leipzig': 81.72, 'Internazionale': 81.52, 'Napoli': 80.98, 'Manchester United': 79.79, 'Arsenal': 79.22, 'Everton': 78.53, 'FC Salzburg': 78.51, 'Atalanta': 78.14, 'FC Porto': 78.03, 'Valencia': 77.81, 'Benfica': 76.86, 'TSG Hoffenheim': 76.23, 'Leicester City': 75.82, 'Olympiacos': 75.73, 'AC Milan': 75.49, 'Sevilla FC': 74.86, 'Lyon': 74.57, 'Wolverhampton': 73.87, 'AS Roma': 73.69, 'Getafe': 73.57, 'Real Sociedad': 73.55, 'Athletic Bilbao': 73.38, 'Eibar': 73.31, 'Eintracht Frankfurt': 72.83, 'FC Krasnodar': 71.74, 'Real Betis': 71.51, 'Young Boys': 71.5, 'Villarreal': 71.3, 'Palmeiras': 71.27, '<NAME>': 71.24, 'Zenit St Petersburg': 71.18, 'Lazio': 71.13, 'Crystal Palace': 71.09, 'VfL Wolfsburg': 70.72, 'Espanyol': 70.42, 'Leganes': 70.32, 'PSV': 70.14, '<NAME>': 70.1, 'PAOK Salonika': 70.07, 'Newcastle': 69.88, 'West Ham United': 69.71, 'AFC Bournemouth': 69.62, 'Lille': 69.47, 'CSKA Moscow': 69.44, 'Galatasaray': 69.39, 'Fulham': 69.3, 'Sporting CP': 68.75, 'Southampton': 68.7, 'Flamengo': 68.34, '<NAME>': 68.14, '<NAME>': 68.02, 'Watford': 67.92, '<NAME>': 67.77, 'Burnley': 67.76, 'Torino': 67.76, 'Mainz': 67.75, 'Genk': 67.46, 'FC Copenhagen': 67.37, 'Fiorentina': 67.14, 'Marseille': 66.56, 'Sampdoria': 66.48, '<NAME>': 66.08, 'Alavés': 65.93, 'Club Brugge': 65.76, 'River Plate': 65.61, 'Boca Juniors': 65.43, 'Basel': 65.38, 'Lokomotiv Moscow': 65.26, 'Levante': 64.99, 'Dynamo Kyiv': 64.82, 'Bologna': 64.78, '<NAME>': 64.76, 'Besiktas': 64.76, '<NAME>': 64.72, 'Santos': 64.41, 'Real Valladolid': 64.29, 'St Etienne': 64.25, 'AS Monaco': 64.14, 'Osasuna': 64.11, '<NAME>': 64.04, 'Montpellier': 63.95, 'Granada': 63.78, 'Mallorca': 63.77, 'Genoa': 63.48, 'Celtic': 63.39, 'Ludogorets': 63.34, 'Brighton and Hove Albion': 62.79, 'Norwich City': 62.76, 'Leeds United': 62.74, 'Nantes': 62.67, 'Guangzhou Evergrande': 62.64, 'Red Star Belgrade': 62.4, 'Grêmio': 62.21, 'Atlético Paranaense': 61.84, 'Sheffield United': 61.76, 'Club América': 61.7, 'FC Cologne': 61.4, 'Sassuolo': 61.3, '<NAME>': 61.22, 'SC Freiburg': 60.9, 'Nice': 60.42, 'Angers': 60.15, '<NAME>': 59.94, 'Los Angeles FC': 59.87, 'Stade Rennes': 59.76, 'Trabzonspor': 59.59, 'FC Augsburg': 59.56, 'Feyenoord': 59.49, 'Spal': 59.18, 'Monterrey': 58.88, 'Beijing Guoan': 58.81, 'Tigres UANL': 58.78, 'Cagliari': 58.67, '1. FC Union Berlin': 58.66, 'Strasbourg': 58.39, 'Huddersfield Town': 58.38, 'Rangers': 58.36, 'FC Astana': 58.29, 'Braga': 58.28, 'Nimes': 58.22, '<NAME>': 58.2, '<NAME>': 58.2, 'SC Paderborn': 58.12, 'Internacional': 57.99, 'Udinese': 57.93, 'Jablonec': 57.83, 'Empoli': 57.74, 'Shanghai SIPG': 57.73, 'FC Midtjylland': 57.18, '<NAME>': 57.05, 'São Paulo': 56.84, 'Bordeaux': 56.83, 'Corinthians': 56.28, 'Reims': 56.26, '<NAME>': 56.08, '<NAME>': 55.95, 'Toulouse': 55.55, 'Stoke City': 55.52, 'Brentford': 55.4, 'Kawasaki Frontale': 55.29, 'West Bromwich Albion': 55.12, 'Amiens': 54.82, 'AEK Athens': 54.46, 'Fenerbahce': 54.28, 'Racing Club': 54.18, 'Cardiff City': 54.00, 'Malmo FF': 53.82, 'FC Arsenal Tula': 53.55, 'Metz': 53.48, 'Frosinone': 53.36, 'Swansea City': 53.3, 'Brondby': 53.26, 'Vitesse': 53.01, 'Parma': 53.00, 'Molde': 52.92, 'Brest': 52.77, 'Dijon FCO': 52.75, '<NAME>': 52.58, 'Bahía': 52.53, 'VfB Stuttgart': 52.47, 'Middlesbrough': 52.45, 'León': 52.45, 'Anderlecht': 52.41, 'CA Independiente': 52.38, 'Girona FC': 52.34, 'Standard Liege': 51.98, 'Bristol City': 51.95, 'Kashima Antlers': 51.94, 'Derby County': 51.83, 'Pachuca': 51.59, 'AZ': 51.32, 'Guimaraes': 51.04, 'Guingamp': 50.72, 'KAA Gent': 50.44, '<NAME>': 50.03, 'FK Qarabag': 49.91, '<NAME>': 49.76, 'Gazovik Orenburg': 49.68, '<NAME>': 49.46, 'New York City FC': 49.34, '<NAME>': 49.3, '<NAME>': 49.27, '<NAME>': 49.26, 'Apollon Limassol': 49.22, 'Cruzeiro': 49.03, 'Rostov': 48.88, 'AIK': 48.83, '<NAME>': 48.74, 'Nottingham Forest': 48.59, 'Fluminense': 48.22, 'Rapid Vienna': 48.13, 'Defensa y Justicia': 48.07, 'Atlanta United FC': 48.06, 'ADO Den Haag': 47.8, '<NAME>': 47.69, 'B<NAME>ov': 47.66, 'Blackburn': 47.63, 'Sheffield Wednesday': 47.59, 'Ceará': 47.18, 'Arizona United': 46.91, 'Hull City': 46.74, 'FC Utrecht': 46.5, 'Rio Ave': 46.41, 'Hammarby': 46.39, 'Jiangsu Suning FC': 46.38, 'Millwall': 46.37, 'FK Austria Vienna': 46.36, 'Desportivo Aves': 46.34, 'Birmingham': 46.25, 'Toluca': 46.21, 'Konyaspor': 46.04, 'Botafogo': 46.01, 'Portimonense': 45.95, 'Djurgardens IF': 45.8, 'FC Nordsjaelland': 45.73, 'Tijuana': 45.61, 'BK Hacken': 45.6, 'Hannover 96': 45.41, 'AEK Larnaca': 45.4, 'FC Luzern': 45.22, 'IFK Norrkoping': 45.14, 'FC Ufa': 45.09, 'Queens Park Rangers': 44.99, 'St. Truidense': 44.82, 'Boavista': 44.8, 'Lanus': 44.75, 'Pumas Unam': 44.64, '<NAME>': 44.62, 'Moreirense': 44.44, '<NAME>': 44.4, 'SK St<NAME>': 44.36, '<NAME>': 44.21, '<NAME>': 44.21, 'Sivasspor': 44.2, 'Guadalajara': 43.99, 'Hamburg SV': 43.91, 'Goztepe': 43.83, 'Preston North End': 43.78, 'Mouscron-Peruwelz': 43.73, 'Málaga': 43.71, 'KV Kortrijk': 43.71, 'Philadelphia Union': 43.65, 'Sporting Kansas City': 43.52, 'San Lorenzo': 43.5, 'Santa Clara': 43.46, '<NAME>': 43.34, '<NAME>': 43.32, 'Troyes': 43.27, 'Wigan': 43.27, 'Tigre': 43.21, 'Alanyaspor': 43.08, 'Wolfsberger AC': 42.98, 'Sunderland': 42.97, 'Banfield': 42.9, 'Videoton FC': 42.86, 'FC Groningen': 42.82, 'Union Santa Fe': 42.76, 'T<NAME>': 42.61, '<NAME>': 42.61, 'FC Lugano': 42.58, 'Chapecoense AF': 42.54, 'Rosenborg': 42.42, 'Antwerp': 42.37, 'Cashpoint SC <NAME>': 42.26, '<NAME>': 42.21, 'Seattle Sounders FC': 42.2, '<NAME>': 42.17, 'Sporting de Charleroi': 42.09, 'New York Red Bulls': 42.07, 'Goiás': 42.06, 'Atromitos': 41.89, '<NAME>': 41.86, 'Vorskla': 41.83, "Newell's Old Boys": 41.61, 'Necaxa': 41.59, '<NAME>': 41.39, 'Deportivo La Coruña': 41.33, 'Erzurumspor': 41.29, 'Odense BK': 41.26, 'FC Tokyo': 41.03, 'AGF Aarhus': 41.01, 'Caen': 40.93, 'Fortaleza': 40.83, 'Belenenses': 40.7, 'Chaves': 40.45, 'SV Zulte Waregem': 40.42, 'St Gallen': 40.4, 'Los Angeles Galaxy': 40.4, 'Colon Santa Fe': 40.26, 'FC Sion': 40.1, 'Esbjerg': 40.03, 'Mamelodi Sundowns': 39.98, 'Tondela': 39.98, 'Real Salt Lake': 39.97, 'Huracán': 39.85, 'Chicago Fire': 39.84, 'Atlas': 39.75, 'Morelia': 39.72, 'FC Dallas': 39.56, '<NAME>': 39.55, 'Querétaro': 39.45, 'San Jose Earthquakes': 39.43, 'FC Zurich': 39.42, 'Estudiantes': 39.42, '<NAME>': 39.31, 'Hebei China Fortune FC': 39.31, 'Reading': 39.26, 'Shanghai Greenland': 39.21, 'Avaí': 38.95, 'Rosario Central': 38.9, 'Kasimpasa': 38.86, 'Lorient': 38.86, 'Toronto FC': 38.86, 'Guangzhou RF': 38.74, 'Lens': 38.63, 'Sydney FC': 38.56, 'Valerenga': 38.53, 'Heracles': 38.4, 'Maritimo': 38.33, 'Heerenveen': 38.33, '<NAME>': 38.24, 'Minnesota United FC': 38.22, '<NAME>': 38.2, '1. FC Nürnberg': 38.04, '<NAME>': 38.03, 'Puebla': 37.85, 'Panathinaikos': 37.79, 'Ankaragucu': 37.73, 'PEC Zwolle': 37.54, '<NAME>': 37.53, 'New England Revolution': 37.44, 'Bursaspor': 37.3, 'Aldosivi': 37.3, 'Barnsley': 37.3, '<NAME>': 37.21, 'Thun': 37.2, '<NAME>': 37.00, '<NAME>': 36.99, 'AaB': 36.96, 'Cadiz': 36.86, 'SV Mattersburg': 36.85, 'Mont<NAME>': 36.82, 'Patronato': 36.77, '<NAME>': 36.75, 'FC Ingolstadt 04': 36.73, '<NAME>': 36.72, 'Kilmarnock': 36.62, '<NAME>': 36.61, '<NAME>': 36.48, '<NAME>': 36.42, 'FC <NAME>': 36.38, '<NAME>': 36.34, 'Aberdeen': 36.33, 'Kayserispor': 36.16, 'C.D. Nacional': 36.16, 'Almeria': 36.02, 'VVV Venlo': 35.95, 'Waasland-Beveren': 35.86, '<NAME>': 35.84, 'FC T<NAME>': 35.73, 'Sporting Gijón': 35.67, '<NAME>': 35.55, 'Gimnasia La Plata': 35.53, '<NAME>': 35.52, 'Bodo/Glimt': 35.39, '<NAME>': 35.27, 'DC United': 35.25, 'Consadole Sapporo': 35.14, 'Antalyaspor': 34.92, '<NAME>': 34.82, 'Houston Dynamo': 34.79, '<NAME>': 34.67, '<NAME>': 34.59, 'Melbourne City': 34.57, 'F91 Dudelange': 34.49, 'Emmen': 34.46, '1. FC Heidenheim 1846': 34.41, 'Hartberg': 34.3, 'Paris FC': 34.23, 'Albacete': 34.09, 'IFK Goteborg': 34.07, 'FC Wacker Innsbruck': 34.04, 'Orlando City SC': 33.94, 'OFI Crete': 33.93, 'Haugesund': 33.88, 'Asteras Tripolis': 33.84, 'Newcastle Jets': 33.78, 'Bidvest Wits': 33.7, '<NAME>': 33.64, 'Urawa Red Diamonds': 33.57, 'Neuchate<NAME>': 33.54, 'Las Palmas': 33.52, 'Feirense': 33.38, 'Hibernian': 33.28, 'SD Huesca': 33.26, '<NAME>': 33.25, 'Eupen': 33.19, 'SK Brann': 33.18, '<NAME>': 33.13, 'Excelsior': 33.07, 'Sonderjyske': 32.99, 'KV Oostende': 32.85, '<NAME>': 32.81, 'Kristiansund BK': 32.72, 'Lamia': 32.57, 'VfL Bochum': 32.34, '<NAME>': 32.21, 'Larissa': 32.08, 'SV Sandhausen': 31.97, '<NAME>': 31.67, 'Palermo': 31.44, '<NAME>': 31.44, '<NAME>': 31.43, 'Tenerife': 31.38, 'CSA': 31.38, 'SV Darmstadt 98': 31.35, 'Melbourne Victory': 31.32, 'Nashville SC': 31.29, '<NAME>': 31, 'KSC Lokeren': 31, '<NAME>': 30.95, 'Extremadura UD': 30.94, 'Elche': 30.89, 'Odd BK': 30.89, 'Real Oviedo': 30.87, 'Gamba Osaka': 30.76, 'Reno 1868 FC': 30.57, '1. FC Magdeburg': 30.45, 'Lobos de la BUAP': 30.3, 'St. Pölten': 30.28, 'New York Red Bulls II': 30.21, 'Hobro IK': 30.13, '<NAME>': 30.06, 'Benevento': 29.83, 'Veracruz': 29.73, 'Shenzhen FC': 29.66, 'Vendsyssel': 29.55, 'Östersunds FK': 29.53, 'FC Juárez': 29.48, 'Chateauroux': 29.36, 'Adelaide United': 29.25, 'De Graafschap': 29.25, 'Black Aces': 29.18, 'Lugo': 29.18, 'Cittadella': 29.16, 'FC St. Pauli': 29.04, 'Vejle': 29.03, 'Numancia': 28.98, 'T<NAME>': 28.68, 'AS Nancy Lorraine': 28.55, 'FC Xanthi': 28.54, '<NAME>': 28.47, '<NAME>': 28.47, 'Orléans': 28.4, 'Panetolikos': 28.33, '<NAME>': 28.2, 'Colorado Rapids': 28.18, 'Orebro SK': 28.18, '<NAME>': 27.98, 'Auxerre': 27.98, '<NAME>': 27.94, 'Portsmouth': 27.65, 'Hearts': 27.65, 'Western Sydney FC': 27.57, 'SpVgg <NAME>': 27.42, 'Sarpsborg': 27.21, 'Panionios': 27.09, 'Crotone': 27.07, 'Bolton': 27.05, 'Valenciennes': 27.03, 'Pittsburgh Riverhounds': 27.02, '<NAME>': 26.96, 'Perugia': 26.91, '<NAME>': 26.87, 'Spezia': 26.33, '<NAME>': 26.27, '<NAME>': 26.25, 'Giannina': 26.12, '<NAME>': 26.02, '<NAME>': 25.86, '<NAME>': 25.61, 'Motherwell': 25.53, 'GIF Sundsvall': 25.32, '<NAME>': 24.83, '<NAME>': 24.82, 'Cosenza': 24.61, 'FC Cincinnati': 24.46, 'Grenoble': 24.43, 'North Carolina FC': 24.33, '<NAME>': 24.27, 'AD Alcorcon': 24.26, 'MSV Duisburg': 24.25, '<NAME>': 24.13, 'Real Monarchs SLC': 24.09, 'Vancouver Whitecaps': 23.95, 'Scunthorpe': 23.88, 'Peterborough United': 23.86, 'IK Sirius': 23.78, 'Fresno FC': 23.66, 'Niort': 23.62, 'Rotherham United': 23.58, 'Cordoba': 23.39, 'IF Elfsborg': 23.35, 'Stabaek': 23.05, 'Louisville City FC': 22.79, 'Livingston': 22.74, 'Foggia': 22.69, 'Sochaux': 22.69, 'Viking FK': 22.65, 'Cremonese': 22.61, 'S<NAME>': 22.51, 'Mjondalen': 22.5, 'St Johnstone': 22.45, 'Lillestrom': 22.3, '<NAME>': 22.2, 'San Antonio FC': 22.16, 'Fleetwood Town': 21.97, 'Ottawa Fury FC': 21.68, 'AC Ajaccio': 21.65, 'Coventry City': 21.61, 'SuperSport United': 21.58, '<NAME>': 21.54, 'Bradford City': 21.53, 'Oxford United': 21.38, 'Beziers AS': 21.15, 'Lincoln City': 20.97, 'Highlands Park FC': 20.97, 'Polokwane City FC': 20.91, 'Helsingborgs IF': 20.78, 'NAC': 20.75, 'Bloem Celtic': 20.58, 'Ranheim': 20.56, '<NAME>': 20.46, 'Brescia': 20.45, 'Stromsgodset': 20.41, 'Maritzburg Utd': 20.38, 'Orange County SC': 20.31, 'US Pescara': 20.15, 'Sacramento Republic FC': 20.03, 'New Mexico United': 19.99, 'Golden Arrows': 19.68, 'Gimnástic Tarragona': 19.51, 'Bristol Rovers': 19.43, 'AmaZulu': 19.28, 'Gillingham': 19.2, 'Shrewsbury Town': 18.97, 'F.B.C Unione Venezia': 18.89, 'Livorno': 18.84, 'Salernitana': 18.81, 'Portland Timbers 2': 18.71, 'Kalmar FF': 18.71, 'Charleston Battery': 18.69, 'Lecce': 18.66, 'Verona': 18.53, 'Tromso': 18.14, 'Austin Bold FC': 17.99, 'Chippa United': 17.97, 'Brisbane Roar': 17.89, 'Padova': 17.85, 'Oklahoma City Energy FC': 17.6, 'Mansfield Town': 17.08, 'Blackpool': 17.06, 'Ascoli': 17.06, 'Free State Stars': 17.00, 'Southend United': 16.98, 'Levadiakos': 16.8, 'Exeter City': 16.76, 'Saint Louis FC': 16.71, 'Red Star FC 93': 16.37, 'Hamilton Academical': 16.25, 'Baroka FC': 16.09, 'GFC Ajaccio': 15.91, '<NAME>': 15.69, 'Falkenbergs FF': 15.6, 'Tranmere Rovers': 15.57, 'Carpi': 15.5, 'Vasby United': 15.27, 'Matsumoto Yamaga FC': 14.98, 'Central Coast Mariners': 14.88, 'Bury': 14.87, 'Charlotte Independence': 14.84, 'Wycombe Wanderers': 14.69, 'LA Galaxy II': 14.67, 'Oldham Athletic': 14.62, 'Swindon Town': 14.56, 'Black Leopards': 14.41, 'Plym<NAME>yle': 14.2, 'AFC Wimbledon': 14.07, 'El Paso Locomotive FC': 13.7, 'Las Vegas Lights FC': 13.18, 'Bethlehem Steel FC': 13.11, 'A<NAME>': 13.08, 'Forest Green Rovers': 12.88, 'Rochdale': 12.68, 'Dundee': 12.52, 'Rio Grande Valley FC Toros': 12.48, 'Northampton Town': 12.36, 'Loudoun United FC': 11.49, '<NAME>': 11.05, 'Colchester United': 10.65, 'Carlisle United': 10.37, 'Stevenage': 10.24, 'Cheltenham Town': 10.22, 'Memphis 901 FC': 10.15, 'Walsall': 9.95, 'Swope Park Rangers': 9.9, '<NAME>': 9.63, 'Birmingham Legion FC': 9.29, 'Morecambe': 8.8, 'Newport County': 8.19, 'Grimsby Town': 7.39, 'Crawley Town': 7.18, 'Port Vale': 6.94, 'Tulsa Roughnecks': 6.63, 'Colorado Springs Switchbacks FC': 6.45, 'Cambridge United': 6.41, 'Macclesfield': 6.28, 'Atlanta United 2': 4.73, 'Notts County': 4.52, 'Yeovil Town': 4.35, 'Tacoma Defiance': 4.14 }
StarcoderdataPython
3411660
import cv2 from dbr import DynamsoftBarcodeReader dbr = DynamsoftBarcodeReader() import time import os import sys sys.path.append('../') import config results = None # The callback function for receiving barcode results def onBarcodeResult(data): global results results = data def get_time(): localtime = time.localtime() capturetime = time.strftime("%Y%m%d%H%M%S", localtime) return capturetime def read_barcode(): global results video_width = 640 video_height = 480 vc = cv2.VideoCapture(0) vc.set(3, video_width) #set width vc.set(4, video_height) #set height if vc.isOpened(): dbr.initLicense('LICENSE-KEY') rval, frame = vc.read() else: return windowName = "Barcode Reader" max_buffer = 2 max_results = 10 barcodeTypes = config.barcodeTypes image_format = 1 # 0: gray; 1: rgb888 dbr.startVideoMode(max_buffer, max_results, video_width, video_height, image_format, barcodeTypes, onBarcodeResult) while True: if results != None: thickness = 2 color = (0,255,0) for result in results: print("barcode format: " + result[0]) print("barcode value: " + result[1]) x1 = result[2] y1 = result[3] x2 = result[4] y2 = result[5] x3 = result[6] y3 = result[7] x4 = result[8] y4 = result[9] cv2.line(frame, (x1, y1), (x2, y2), color, thickness) cv2.line(frame, (x2, y2), (x3, y3), color, thickness) cv2.line(frame, (x3, y3), (x4, y4), color, thickness) cv2.line(frame, (x4, y4), (x1, y1), color, thickness) results = None cv2.imshow(windowName, frame) rval, frame = vc.read() # start = time.time() try: ret = dbr.appendVideoFrame(frame) except: pass # cost = (time.time() - start) * 1000 # print('time cost: ' + str(cost) + ' ms') # 'ESC' for quit key = cv2.waitKey(1) if key == 27: break dbr.stopVideoMode() cv2.destroyWindow(windowName) if __name__ == "__main__": print("OpenCV version: " + cv2.__version__) read_barcode()
StarcoderdataPython
200202
"""This module contains the general information for VnicIPv4StaticRoute ManagedObject.""" from ...ucsmo import ManagedObject from ...ucscoremeta import MoPropertyMeta, MoMeta from ...ucsmeta import VersionMeta class VnicIPv4StaticRouteConsts: pass class VnicIPv4StaticRoute(ManagedObject): """This is VnicIPv4StaticRoute class.""" consts = VnicIPv4StaticRouteConsts() naming_props = set([u'addr']) mo_meta = MoMeta("VnicIPv4StaticRoute", "vnicIPv4StaticRoute", "ipv4-route-[addr]", VersionMeta.Version101e, "InputOutput", 0x1ff, [], ["admin", "ls-compute", "ls-config", "ls-network", "ls-server"], [u'adaptorHostIscsiIf', u'adaptorVlan', u'vnicIPv4If'], [], ["Get"]) prop_meta = { "addr": MoPropertyMeta("addr", "addr", "string", VersionMeta.Version101e, MoPropertyMeta.NAMING, 0x2, 0, 256, r"""((([0-9]){1,3}\.){3}[0-9]{1,3})""", [], []), "child_action": MoPropertyMeta("child_action", "childAction", "string", VersionMeta.Version101e, MoPropertyMeta.INTERNAL, 0x4, None, None, r"""((deleteAll|ignore|deleteNonPresent),){0,2}(deleteAll|ignore|deleteNonPresent){0,1}""", [], []), "def_gw": MoPropertyMeta("def_gw", "defGw", "string", VersionMeta.Version101e, MoPropertyMeta.READ_ONLY, None, 0, 256, r"""((([0-9]){1,3}\.){3}[0-9]{1,3})""", [], []), "dn": MoPropertyMeta("dn", "dn", "string", VersionMeta.Version101e, MoPropertyMeta.READ_ONLY, 0x8, 0, 256, None, [], []), "gw_addr": MoPropertyMeta("gw_addr", "gwAddr", "string", VersionMeta.Version101e, MoPropertyMeta.READ_WRITE, 0x10, 0, 256, r"""((([0-9]){1,3}\.){3}[0-9]{1,3})""", [], []), "gw_subnet": MoPropertyMeta("gw_subnet", "gwSubnet", "string", VersionMeta.Version101e, MoPropertyMeta.READ_WRITE, 0x20, 0, 256, r"""((([0-9]){1,3}\.){3}[0-9]{1,3})""", [], []), "rn": MoPropertyMeta("rn", "rn", "string", VersionMeta.Version101e, MoPropertyMeta.READ_ONLY, 0x40, 0, 256, None, [], []), "sacl": MoPropertyMeta("sacl", "sacl", "string", VersionMeta.Version302c, MoPropertyMeta.READ_ONLY, None, None, None, r"""((none|del|mod|addchild|cascade),){0,4}(none|del|mod|addchild|cascade){0,1}""", [], []), "status": MoPropertyMeta("status", "status", "string", VersionMeta.Version101e, MoPropertyMeta.READ_WRITE, 0x80, None, None, r"""((removed|created|modified|deleted),){0,3}(removed|created|modified|deleted){0,1}""", [], []), "subnet": MoPropertyMeta("subnet", "subnet", "string", VersionMeta.Version101e, MoPropertyMeta.CREATE_ONLY, 0x100, 0, 256, r"""((([0-9]){1,3}\.){3}[0-9]{1,3})""", [], []), } prop_map = { "addr": "addr", "childAction": "child_action", "defGw": "def_gw", "dn": "dn", "gwAddr": "gw_addr", "gwSubnet": "gw_subnet", "rn": "rn", "sacl": "sacl", "status": "status", "subnet": "subnet", } def __init__(self, parent_mo_or_dn, addr, **kwargs): self._dirty_mask = 0 self.addr = addr self.child_action = None self.def_gw = None self.gw_addr = None self.gw_subnet = None self.sacl = None self.status = None self.subnet = None ManagedObject.__init__(self, "VnicIPv4StaticRoute", parent_mo_or_dn, **kwargs)
StarcoderdataPython
9719769
<reponame>datahounds/fantasy-premier-league<gh_stars>1-10 import pandas as pd import sasoptpy as so import os from argparse import ArgumentParser, ArgumentDefaultsHelpFormatter from subprocess import Popen, DEVNULL from datasets import FplApiData class SelectionModel: def __init__(self, team_id, gw, forecasts_file): '''Downloads data from fpl api and combines with input from fplreview.com''' # API data api_data = FplApiData(team_id=team_id, gw=gw-1) # players self.players = api_data.players # position IDs, names and squad limits self.positions = api_data.positions # team IDs and names self.teams = api_data.teams # current squad self.current_squad = api_data.current_squad # in the bank self.bank = api_data.bank # upcoming gameweek self.gw = gw # Review data self.forecasts = api_data.make_opt_df(forecasts_file) def solve_optimal_squad(self, budget=100): players = self.forecasts.index positions = self.positions.index teams = self.teams.index model_name = f'gw{self.gw}_{budget}budget' model = so.Model(model_name) # Variables squad = model.add_variables(players,name='squad', vartype=so.binary) lineup = model.add_variables(players, name='lineup', vartype=so.binary) captain = model.add_variables(players, name='captain', vartype=so.binary) vicecap = model.add_variables(players, name='vicecap', vartype=so.binary) # Constraints # 15 players in squad squad_count = so.expr_sum(squad[p] for p in players) model.add_constraint(squad_count == 15, name='squad_count') # 11 players in starting lineup model.add_constraint(so.expr_sum(lineup[p] for p in players) == 11, name='lineup_count') # 1 captain model.add_constraint(so.expr_sum(captain[p] for p in players) == 1, name='captain_count') # 1 vice-captain model.add_constraint(so.expr_sum(vicecap[p] for p in players) == 1, name='vicecap_count') # players in starting lineup must also be in squad model.add_constraints((lineup[p] <= squad[p] for p in players), name='lineup_squad_rel') # captain must come from within squad model.add_constraints((captain[p] <= lineup[p] for p in players), name='captain_lineup_rel') # vice-captain must come from within squad model.add_constraints((vicecap[p] <= lineup[p] for p in players), name='vicecap_lineup_rel') # captain and vice-captain can't be same person model.add_constraints((captain[p] + vicecap[p] <= 1 for p in players), name='cap_vc_rel') # count of each player per position in starting lineup lineup_type_count = { t: so.expr_sum(lineup[p] for p in players if self.forecasts.loc[p, 'position_id'] == t) for t in positions} # count of all players in lineup must be at least 'squad_min_play' # and no more than 'squad_max_play' for each position type model.add_constraints( (lineup_type_count[t] == [self.positions.loc[t, 'squad_min_play'], self.positions.loc[t, 'squad_max_play']] for t in positions), name='valid_formation') # count of each player per position in squad squad_type_count = { t: so.expr_sum(squad[p] for p in players if self.forecasts.loc[p, 'position_id'] == t) for t in positions} # count of all players in squad must be equal to 'squad_select' # for each position type model.add_constraints( (squad_type_count[t] == self.positions.loc[t, 'squad_select'] for t in positions), name='valid_squad') # total value of squad cannot exceed budget price = so.expr_sum( self.forecasts.loc[p, 'bv'] * squad[p] for p in players) model.add_constraint(price <= budget, name='budget_limit') # no more than 3 players per team model.add_constraints( ( so.expr_sum(squad[p] for p in players if self.forecasts.loc[p, 'team_id'] == t) <= 3 for t in teams), name='team_limit' ) # sum of starting 11 players, plus double captain score # and upweight vice-captain total_points = so.expr_sum(self.forecasts.loc[p, f'{self.gw}_pts'] * (lineup[p] + captain[p] + 0.1 * vicecap[p]) for p in players) # Objective model.set_objective(-total_points, sense='N', name='total_xp') model.export_mps(f'{model_name}.mps') command = f'cbc {model_name}.mps solve solu {model_name}.txt' Popen(command, shell=False, stdout=DEVNULL).wait() for v in model.get_variables(): v.set_value(0) with open(f'{model_name}.txt', 'r') as f: for line in f: if 'objective value' in line: continue words = line.split() var = model.get_variable(words[1]) var.set_value(float(words[2])) picks = [] for p in players: if squad[p].get_value() > .5: lp = self.forecasts.loc[p] is_captain = 1 if captain[p].get_value() > .5 else 0 is_lineup = 1 if lineup[p].get_value() > .5 else 0 is_vice = 1 if vicecap[p].get_value() > .5 else 0 position = self.positions.loc[lp['position_id'], 'position_name'] team = self.teams.loc[lp['team_id'], 'team_name'] picks.append([lp['web_name'], lp['position_id'], position, team, lp['bv'], round(lp[f'{self.gw}_pts'], 2), is_lineup, is_captain, is_vice]) picks_df = pd.DataFrame( picks, columns=['Name', 'Pos_id', 'Pos', 'Team', 'Price', 'xP', 'lineup', 'captain', 'vicecaptain'] ).sort_values(by=['lineup', 'Pos_id', 'xP'], ascending=[False, True, True]) total_xp = so.expr_sum((lineup[p] + captain[p]) * self.forecasts.loc[p, f'{self.gw}_pts'] for p in players).get_value() print(f'Total expected value for budget {budget:.1f}: {total_xp:.2f}') os.remove(f'{model_name}.mps') os.remove(f'{model_name}.txt') return picks_df def solve_multi_week(self, ft, horizon, decay_base=1.0): # ToDo: absorb optimal squad method into this one # compare your own team outcomes with the optimal squad # useful for deciding when to wildcard # ToDo: add parameter for helping to decide on when to use bench boost ''' Solves multi-objective FPL problem with transfers Parameters ---------- ft: integer Number of available free transfers (currently) horizon: integer Number of weeks to consider in optimization decay_base: float Base for the decay function, default of 1 means no decay ''' # Data players = self.forecasts.index positions = self.positions.index teams = self.teams.index current_squad = self.current_squad['player_id'].tolist() itb = self.bank gameweeks = list(range(self.gw, self.gw+horizon)) all_gw = [self.gw-1] + gameweeks # Model model_name = f'w{self.gw}_h{horizon}_d{decay_base}' model = so.Model(model_name) # Variables squad = model.add_variables( players, all_gw, name='squad', vartype=so.binary) lineup = model.add_variables( players, gameweeks, name='lineup', vartype=so.binary) captain = model.add_variables( players, gameweeks, name='captain', vartype=so.binary) vicecap = model.add_variables( players, gameweeks, name='vicecap', vartype=so.binary) transfer_in = model.add_variables( players, gameweeks, name='transfer_in', vartype=so.binary) transfer_out = model.add_variables( players, gameweeks, name='transfer_out', vartype=so.binary) in_the_bank = model.add_variables( all_gw, name='itb', vartype=so.continuous, lb=0) free_transfers = model.add_variables( all_gw, name='ft', vartype=so.integer, lb=1, ub=2) penalized_transfers = model.add_variables( gameweeks, name='pt', vartype=so.integer, lb=0) # artificial binary variable to handle transfer logic aux = model.add_variables( gameweeks, name='aux', vartype=so.binary) # Dictionaries # sell prices of all players sell_price = self.forecasts['sv'].to_dict() # buy prices of all players buy_price = self.forecasts['bv'].to_dict() # total bank earned from selling players across gameweeks sold_amount = {w: so.expr_sum(sell_price[p] * transfer_out[p,w] for p in players) for w in gameweeks} # total bank spent on buying players across gameweeks bought_amount = {w: so.expr_sum(buy_price[p] * transfer_in[p,w] for p in players) for w in gameweeks} # player weekly forecast points points_player_week = {(p,w): self.forecasts.loc[p, f'{w}_pts'] for p in players for w in gameweeks} # number of transfers made each week number_of_transfers = {w: so.expr_sum(transfer_out[p,w] for p in players) for w in gameweeks} # assume one transfer was made last week ?? why ?? number_of_transfers[self.gw-1] = 1 transfer_diff = {w: number_of_transfers[w] - free_transfers[w] for w in gameweeks} # Initial conditions # set squad = 1 for all players currently in squad at previous GW deadline model.add_constraints( (squad[p, self.gw-1] == 1 for p in current_squad), name='initial_squad_players') # set squad = 0 for all other players model.add_constraints( (squad[p, self.gw-1] == 0 for p in players if p not in current_squad), name='initial_squad_others') # add current bank value model.add_constraint(in_the_bank[self.gw-1] == itb, name='initial_itb') # add current free transfers model.add_constraint(free_transfers[self.gw-1] == ft, name='initial_ft') # Constraints (per week) # 15 players in squad squad_count = { w: so.expr_sum(squad[p, w] for p in players) for w in gameweeks} model.add_constraints( (squad_count[w] == 15 for w in gameweeks), name='squad_count') # 11 players in starting lineup model.add_constraints( (so.expr_sum(lineup[p,w] for p in players) == 11 for w in gameweeks), name='lineup_count') # 1 captain model.add_constraints( (so.expr_sum(captain[p,w] for p in players) == 1 for w in gameweeks), name='captain_count') # 1 vice-captain model.add_constraints( (so.expr_sum(vicecap[p,w] for p in players) == 1 for w in gameweeks), name='vicecap_count') # players in starting lineup must also be in squad model.add_constraints( (lineup[p,w] <= squad[p,w] for p in players for w in gameweeks), name='lineup_squad_rel') # captain must come from within squad model.add_constraints( (captain[p,w] <= lineup[p,w] for p in players for w in gameweeks), name='captain_lineup_rel') # vice-captain must come from within squad model.add_constraints( (vicecap[p,w] <= lineup[p,w] for p in players for w in gameweeks), name='vicecap_lineup_rel') # captain and vice-captain can't be same person model.add_constraints( (captain[p,w] + vicecap[p,w] <= 1 for p in players for w in gameweeks), name='cap_vc_rel') # count of each player per position in starting lineup lineup_type_count = { (t,w): so.expr_sum(lineup[p,w] for p in players if self.forecasts.loc[p, 'position_id'] == t) for t in positions for w in gameweeks} # count of all players in lineup must be at least 'squad_min_play' # and no more than 'squad_max_play' for each position type model.add_constraints( ( lineup_type_count[t,w] == [ self.positions.loc[t, 'squad_min_play'], self.positions.loc[t, 'squad_max_play']] for t in positions for w in gameweeks), name='valid_formation') # count of each player per position in squad squad_type_count = { (t,w): so.expr_sum(squad[p,w] for p in players if self.forecasts.loc[p, 'position_id'] == t) for t in positions for w in gameweeks} # count of all players in squad must be equal to 'squad_select' # for each position type model.add_constraints( ( squad_type_count[t,w] == self.positions.loc[t, 'squad_select'] for t in positions for w in gameweeks), name='valid_squad') # no more than 3 players per team model.add_constraints( ( so.expr_sum(squad[p,w] for p in players if self.forecasts.loc[p, 'team_id'] == t) <= 3 for t in teams for w in gameweeks), name='team_limit') # Transfer constraints # squad is equal to squad from previous week, minus transfers out, plus in model.add_constraints( ( squad[p,w] == squad[p,w-1] + transfer_in[p,w] - transfer_out[p,w] for p in players for w in gameweeks), name='squad_transfer_rel') # handles running bank balance (assumes no changes in player values) model.add_constraints( ( in_the_bank[w] == in_the_bank[w-1] + sold_amount[w] - bought_amount[w] for w in gameweeks), name='cont_budget') # Free transfer constraints # 1 free transfer per week model.add_constraints( (free_transfers[w] == aux[w] + 1 for w in gameweeks), name='aux_ft_rel') # no more than 2 free transfers per week model.add_constraints( ( free_transfers[w-1] - number_of_transfers[w-1] <= 2 * aux[w] for w in gameweeks), name='force_aux_1') # cannot make more than 14 penalized transfers in a week model.add_constraints( ( free_transfers[w-1] - number_of_transfers[w-1] >= aux[w] + (-14)*(1-aux[w]) for w in gameweeks), name='force_aux_2') # not sure what this does ?? model.add_constraints( (penalized_transfers[w] >= transfer_diff[w] for w in gameweeks), name='pen_transfer_rel') # Objectives # sum of starting 11 players, plus double captain score # and upweight vice-captain gw_xp = { w: so.expr_sum(points_player_week[p,w] * (lineup[p,w] + captain[p,w] + 0.1*vicecap[p,w]) for p in players) for w in gameweeks} # subtract transfer costs gw_total = {w: gw_xp[w] - 4 * penalized_transfers[w] for w in gameweeks} total_xp = so.expr_sum( gw_total[w] * pow(decay_base, w-self.gw) for w in gameweeks) model.set_objective(-total_xp, sense='N', name='total_xp') # Solve model.export_mps(f'{model_name}.mps') command = f'cbc {model_name}.mps solve solu {model_name}.txt' process = Popen(command, stdout=DEVNULL, shell=False) # DEVNULL: nologs process.wait() # Parsing with open(f'{model_name}.txt', 'r') as f: for line in f: if 'objective value' in line: continue words = line.split() var = model.get_variable(words[1]) var.set_value(float(words[2])) # DataFrame generation picks = [] for w in gameweeks: for p in players: if squad[p,w].get_value() + transfer_out[p,w].get_value() > .5: lp = self.forecasts.loc[p] is_captain = 1 if captain[p,w].get_value() > .5 else 0 is_lineup = 1 if lineup[p,w].get_value() > .5 else 0 is_vice = 1 if vicecap[p,w].get_value() > .5 else 0 is_transfer_in = 1 if transfer_in[p,w].get_value() > .5 else 0 is_transfer_out = 1 if transfer_out[p,w].get_value() > .5 else 0 position = self.positions.loc[lp['position_id'], 'position_name'] team = self.teams.loc[lp['team_id'], 'team_name'] picks.append([ w, lp['web_name'], lp['position_id'], position, team, buy_price[p], sell_price[p], round(points_player_week[p,w],2), is_lineup, is_captain, is_vice, is_transfer_in, is_transfer_out ]) picks_df = pd.DataFrame( picks, columns=['GW', 'Name', 'Pos_id', 'Pos', 'Team', 'BV', 'SV', 'xP', 'lineup', 'captain', 'vicecaptain', 'transfer_in', 'transfer_out'] ).sort_values( by=['GW', 'lineup', 'Pos_id', 'xP'], ascending=[True, False, True, True]) total_xp = so.expr_sum( (lineup[p,w] + captain[p,w]) * points_player_week[p,w] for p in players for w in gameweeks ).get_value() print('SUMMARY OF ACTIONS', '-----------', sep='\n') for w in gameweeks: print(f'GW {w}:') print(f'ITB {in_the_bank[w].get_value()}:', f'FT={free_transfers[w].get_value()}', f'PT={penalized_transfers[w].get_value()}') for p in players: if transfer_in[p,w].get_value() > .5: print(f' Buy {p} - {self.forecasts["web_name"][p]}') if transfer_out[p,w].get_value() > .5: print(f' Sell {p} - {self.forecasts["web_name"][p]}') print(f'\nTotal expected value: {total_xp:.2f} ({total_xp/horizon:.2f} / week)') os.remove(f'{model_name}.mps') os.remove(f'{model_name}.txt') return picks_df if __name__ == '__main__': parser = ArgumentParser( description='Optimises squad selection for given time horizon', formatter_class=ArgumentDefaultsHelpFormatter) parser.add_argument('-t', type=str, default=269471, help='unique ID of FPL manager', dest='team_id') parser.add_argument('-w', type=int, required=True, help='upcoming gameweek number', dest='gameweek') parser.add_argument('-f', type=str, required=True, help='path to FPLreview forecasts file', dest='forecasts') parser.add_argument('-ft', type=int, default=1, help='number of free transfers for upcoming week', dest='free_transfers') parser.add_argument('-hz', type=int, default=5, help='number of weeks to look forward', dest='horizon') parser.add_argument('-ud', type=float, default=1.0, help='future uncertainty decay parameter', dest='uncertainty') args = parser.parse_args() # make sure using correct separators for path names forecasts = args.forecasts.replace('/', os.sep) model = SelectionModel(team_id=args.team_id, gw=args.gameweek, forecasts_file=forecasts) print('OPTIMIZING ACTION PLAN') picks = model.solve_multi_week( ft=args.free_transfers, horizon=args.horizon, decay_base=args.uncertainty) print('\nSQUAD PICKS:') print(picks) print('\n\nFINDING OPTIMAL SQUAD FOR UPCOMING WEEK') optimal_squad = model.solve_optimal_squad() print('\nOPTIMAL SQUAD:') print(optimal_squad)
StarcoderdataPython
6666473
import flask from contextvars_extras.context_management import bind_to_sandbox_context class Flask(flask.Flask): """Flask app with contextvars extensions. This is a subclass of :class:`flask.Flask`, that adds some integration :mod:`contextvars` module. Currently, it adds only 1 feature: it puts each HTTP request to its own context. That means that inside a view function, you can freely change any context variables, and your changes stay private to the current HTTP request. Once HTTP request is handled, all context variables are automatically restored. Example:: >>> import pytz >>> from contextvars import ContextVar >>> from contextvars_extras.integrations.flask import Flask >>> timezone_var = ContextVar("timezone_var", default="UTC") >>> flask_app = Flask(__name__) >>> @flask_app.route("/test_url") ... def test_view_function(): ... timezone_var.set("Antarctica/Troll") ... return timezone_var.get() >>> client = flask_app.test_client() >>> response = client.get("/test_url") >>> response.data b'Antarctica/Troll' # timezone_var var was change by test_view_function() above, but that # change isn't seen here, because each HTTP context is put to its own sandbox context. >>> timezone_var.get() 'UTC' """ @bind_to_sandbox_context def __call__(self, environ, start_response): """Call Flask as WSGI application. This is the entry point to Flask application. It just calls ``Flask.wsgi_app``, where all the interesting stuff happens. Also, it puts each WSGI request into its own context (by calling :func:`contextvars.copy_context`), so each HTTP request can modify context vars without affecting other HTTP requests. """ return super().__call__(environ, start_response)
StarcoderdataPython
169163
<reponame>caioaraujo/bakery_payments_api_v2 # Generated by Django 2.1.5 on 2019-02-02 14:36 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('payment', '0001_initial'), ] operations = [ migrations.AlterField( model_name='payment', name='value', field=models.DecimalField(decimal_places=2, max_digits=15), ), ]
StarcoderdataPython
4939223
import os, sys from argparse import ArgumentParser from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics.pairwise import cosine_similarity from tqdm import tqdm from util.util_funcs import load_jsonl, replace_entities, extract_sents, store_jsonl from util.logger import get_logger DIR_PATH = os.path.abspath(os.getcwd()) FEVEROUS_PATH = DIR_PATH + "/FEVEROUS/src" sys.path.insert(0, FEVEROUS_PATH) from database.feverous_db import FeverousDB from utils.wiki_page import WikiPage logger = get_logger() # TODO: The table parts are currently not used def extract_table_text(table): cell_ids = table.get_ids() table_rows = [] for i, cell_id in enumerate(cell_ids): if "table_caption" in cell_id: continue cell_id_list = cell_id.split("_") row = int(cell_id_list[-2]) if len(table_rows) < row + 1: table_rows.append(replace_entities(table.get_cell_content(cell_id))) else: table_rows[row] += " " + replace_entities(table.get_cell_content(cell_id)) return table_rows def extract_tables(doc_json): page = WikiPage(doc_json["title"], doc_json) tables = page.get_tables() tables_content = [] for table in tables: table_rows = extract_table_text(table) tables_content.append(table_rows) return tables_content def expand_table_id(db, table_id): split_id = table_id.split("_") doc_json = db.get_doc_json(split_id[0]) page = WikiPage(doc_json["title"], doc_json) tables = page.get_tables() result = [] for i, table in enumerate(tables): cell_ids = table.get_ids() for cell_id in cell_ids: if not "_cell_" in cell_id: continue splitted_cell_id = cell_id.split("_") row = int(splitted_cell_id[-2]) if "table_{}_{}".format(i, row) in table_id: result.append("{}_{}".format(doc_json["title"], cell_id)) return result def get_top_sents(db, doc_ids, claim, use_tables, n_gram_min, n_gram_max, nr_of_sents): sent_ids = [] table_ids = [] all_sents = [] all_table_rows = [] for doc_id in doc_ids: doc_json = db.get_doc_json(doc_id) sents = extract_sents(doc_json) for i in range(len(sents)): sent_ids.append("{}_sentence_{}".format(doc_json["title"], i)) all_sents += sents if use_tables: tables_content = extract_tables(doc_json) for i, table_content in enumerate(tables_content): for j in range(len(table_content)): table_ids.append("{}_table_{}_{}".format(doc_json["title"], i, j)) all_table_rows += table_content sent_vectorizer = TfidfVectorizer( analyzer="word", stop_words="english", ngram_range=(n_gram_min, n_gram_max) ) sent_wm = sent_vectorizer.fit_transform(all_sents + all_table_rows) claim_tfidf = sent_vectorizer.transform([claim]) cosine_similarities = cosine_similarity(claim_tfidf, sent_wm).flatten() top_sents_indices = cosine_similarities.argsort()[: -nr_of_sents - 1 : -1] top_sents = [ sent for i, sent in enumerate(sent_ids + table_ids) if i in top_sents_indices ] for sent in top_sents: if "_table_" in sent: top_sents += expand_table_id(db, sent) top_sents = [sent for sent in top_sents if "_table_" not in sent] top_sents = list(set(top_sents)) return top_sents def get_top_sents_for_claims( db_path, top_docs_file, nr_of_sents, use_tables, n_gram_min, n_gram_max ): db = FeverousDB(db_path) logger.info("Loading previously retrieved docs for claims...") top_k_docs = load_jsonl(top_docs_file) logger.info("Finished loading top docs") result = [] for obj in tqdm(top_k_docs): top_sents = get_top_sents( db, obj["docs"], obj["claim"], use_tables, n_gram_min, n_gram_max, nr_of_sents, ) obj["top_sents"] = top_sents result.append(obj) return result def get_top_sents_for_claim( db_path: str, top_k_docs: list, claim: str, nr_of_sents: int, n_gram_min=1, n_gram_max=3, ): """ Retrieves the top sentences for a claim from the previously retrieved documents Parameters ---------- db_path : str The path to the database file top_k_docs : list The previously retrieved top docs for the claim nr_of_sents : int The number of sentences to retrieve n_gram_min : int The smallest n-gram to use in the retrieval (default is 1 e.g. unigram) n_gram_max : int The largest n-gram to use in the retrieval (default is 3 e.g. trigram) """ db = FeverousDB(db_path) use_tables = False top_sents = get_top_sents( db, top_k_docs, claim, use_tables, n_gram_min, n_gram_max, nr_of_sents ) return top_sents def main(): parser = ArgumentParser( description="Retrieves the most similar sentences from the given documents" ) parser.add_argument( "--db_path", default=None, type=str, help="Path to the FEVEROUS database" ) parser.add_argument( "--top_docs_file", default=None, type=str, help="Path to the file for the top docs predictions", ) parser.add_argument( "--out_file", default=None, type=str, help="Path to the output jsonl file, where the top k sentences should be stored", ) parser.add_argument( "--nr_of_sents", default=5, type=int, help="The number of sentences to retrieve from each document", ) parser.add_argument( "--use_tables", default=False, action="store_true", help="Tells the script if it should use table content when matching", ) parser.add_argument( "--n_gram_min", default=1, type=int, help="The lower bound of the ngrams, e.g. 1 for unigrams and 2 for bigrams", ) parser.add_argument( "--n_gram_max", default=1, type=int, help="The upper bound of the ngrams, e.g. 1 for unigrams and 2 for bigrams", ) args = parser.parse_args() if not args.db_path: raise RuntimeError("Invalid database path") if ".db" not in args.db_path: raise RuntimeError("The database path should include the name of the .db file") if not args.top_docs_file: raise RuntimeError("Invalid top docs path") if ".jsonl" not in args.top_docs_file: raise RuntimeError( "The top docs path should include the name of the .jsonl file" ) if not args.out_file: raise RuntimeError("Invalid output file path") if ".jsonl" not in args.out_file: raise RuntimeError( "The output file path should include the name of the .jsonl file" ) logger.info( "Retrieving top {} sentences for each claim from the retrieved docs...".format( args.nr_of_sents ) ) top_sents = get_top_sents_for_claims( args.db_path, args.top_docs_file, args.nr_of_sents, args.use_tables, args.n_gram_min, args.n_gram_max, ) logger.info("Finished retrieving top sentences") logger.info("Storing top sentences...") store_jsonl(top_sents, args.out_file) logger.info("Top sents for each claim stored in {}".format(args.out_file)) if __name__ == "__main__": main()
StarcoderdataPython