id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
8028315
<gh_stars>10-100 import torch import numpy as np class MedianImageMeter(object): def __init__(self, bit_depth, im_shape, device='cpu'): self.bit_depth = bit_depth self.im_shape = list(im_shape) self.device = device if bit_depth == 8: self.dtype = np.uint8 elif bit_depth == 16: self.dtype = np.uint16 else: raise NotImplementedError( "MedianMeter cannot find the median of non 8/16 bit-depth images.") self.reset() def reset(self): self.freqs = self.make_freqs_array() def add(self, val, mask=1): self.val = torch.LongTensor( val.astype(np.int64).flatten()[np.newaxis,:] ).to(self.device) if type(mask) == int: mask = torch.IntTensor(self.val.size()).fill_(mask).to(self.device) else: mask = torch.IntTensor(mask.astype(np.int32).flatten()[np.newaxis,:]).to(self.device) self.freqs.scatter_add_(0, self.val, mask) self.saved_val = val def value(self): self._avg = np.cumsum( self.freqs.cpu().numpy(), axis=0) self._avg = np.apply_along_axis( lambda a: a.searchsorted(a[-1] / 2.), axis=0, arr=self._avg)\ .reshape(tuple([-1] + self.im_shape)) return np.squeeze(self._avg, 0) def make_freqs_array(self): # freqs has shape N_categories x W x H x N_channels shape = tuple([2**self.bit_depth] + self.im_shape) freqs = torch.IntTensor(shape[0], int(np.prod(shape[1:]))).zero_() return freqs.to(self.device)
StarcoderdataPython
6658403
""" Contains tests for the fields included in selenium_yaml.fields """ from selenium_yaml import fields from selenium_yaml import exceptions import pytest import os class FieldTestMixin: """ Contains common methods for testing field validation successs or failure """ def is_successful_validation(self, field, value, step=None): """ Uses basic assertions to test that the validation was a success Parameters ---------- field : An instance of a field derived from selenium_yaml.fields.Field value : The value that should be passed on to the field """ assert field.validate(value) == value assert isinstance(field.errors, list) assert len(field.errors) == 0 assert field.value == value def is_unsuccessful_validation(self, field, value, step=None): """ Uses basic assertions to test that the validation was a failure Parameters ---------- field : An instance of a field derived from selenium_yaml.fields.Field value : The value that should be passed on to the field """ with pytest.raises(exceptions.ValidationError) as _: field.validate(value) assert isinstance(field.errors, list) assert len(field.errors) > 0 class TestCharField(FieldTestMixin): """ Contains tests for the char field for required, default, max_length. options and type """ def test_char_field_type(self): """ Tests that the char field fails with a non-string value """ field = fields.CharField() self.is_unsuccessful_validation(field, 0) def test_required_char_field_without_default_on_null(self): """ Tests that a required char field fails without a default on a null value """ field = fields.CharField(required=True) self.is_unsuccessful_validation(field, None) def test_required_char_field_with_default_on_null(self): """ Tests that a required char field succeeds with a valid string default on a null value """ field = fields.CharField(required=True, default="Test") self.is_successful_validation(field, field.default) def test_char_field_max_length_exceeded(self): """ Tests that the char field validation fails if the value is longer than the max length """ field = fields.CharField(max_length=3) self.is_unsuccessful_validation(field, "Test") def test_char_field_max_length_valid(self): """ Tests that the char field validation succeeds if the value is not longer than the max length """ field = fields.CharField(max_length=6) self.is_successful_validation(field, "Test") def test_char_field_fails_on_non_option_member(self): """ Tests that the char field validation fails if a non-option is passed in """ options = ["Test", "4"] field = fields.CharField(max_length=6, options=options) self.is_unsuccessful_validation(field, "Fail") def test_char_field_succeeds_onoption_member(self): """ Tests that the char field validation succeeds if a valid option is passed in """ options = ["Test", "4"] field = fields.CharField(max_length=6, options=options) self.is_successful_validation(field, "Test") class TestIntegerField(FieldTestMixin): """ Contains tests for the integer field for required, default and type """ def test_integer_field_type(self): """ Tests that the integer field fails with a non-integer value """ field = fields.IntegerField() self.is_unsuccessful_validation(field, "Test") def test_required_integer_field_without_default_on_null(self): """ Tests that a required integer field fails without a default """ field = fields.IntegerField(required=True) self.is_unsuccessful_validation(field, None) def test_required_integer_field_with_default_on_null(self): """ Tests that a required integer field succeeds with a valid int default on a null value """ field = fields.IntegerField(required=True, default=10) self.is_successful_validation(field, field.default) class TestBooleanField(FieldTestMixin): """ Contains tests for the Boolean field for required, default and type """ def test_boolean_field_type(self): """ Tests that the Boolean field fails with a non-boolean value """ field = fields.BooleanField() self.is_unsuccessful_validation(field, "Test") def test_required_boolean_field_without_default_on_null(self): """ Tests that a required Boolean field fails without a default """ field = fields.BooleanField(required=True) self.is_unsuccessful_validation(field, None) def test_required_boolean_field_with_default_on_null(self): """ Tests that a required boolean field succeeds with a valid bool default on a null value """ field = fields.BooleanField(required=True, default=True) self.is_successful_validation(field, field.default) class TestDictField(FieldTestMixin): """ Contains tests for the dict field for required, default and type """ def test_dict_field_type(self): """ Tests that the dict field fails with a non-dict value """ field = fields.DictField() self.is_unsuccessful_validation(field, "Test") def test_required_dict_field_without_default_on_null(self): """ Tests that a required dict field fails without a default """ field = fields.DictField(required=True) self.is_unsuccessful_validation(field, None) def test_required_dict_field_with_default_on_null(self): """ Tests that a required dict field succeeds with a valid dict default on a null value """ field = fields.DictField(required=True, default={"test": 1}) self.is_successful_validation(field, field.default) class TestFilePathField(FieldTestMixin): """ Contains tests for the FilePathField """ def test_invalid_on_invalid_filepath(self): """ Tests that the validation fails on non-existent fpaths """ value = os.path.join(os.getcwd(), "thispathshouldnotexist.txt") field = fields.FilePathField() self.is_unsuccessful_validation(field, value) def test_validator_on_valid_filepath(self): """ Tests that the validation succeeds on valid fpaths """ value = os.path.join(os.getcwd(), ".gitignore") field = fields.FilePathField() self.is_successful_validation(field, value)
StarcoderdataPython
9708914
import csv from urllib.request import Request, urlopen import dateutil.parser import re from sys import argv from bs4 import BeautifulSoup import scrape_util default_sale, base_url, prefix = scrape_util.get_market(argv) base_url += 'index.cfm' report_path = ['?show=10&mid=7', '?show=10&mid=8'] strip_char = ';,.# \n\t' def get_sale_title(this_report): """Return the title of the livestock sale.""" title_string = this_report.find('tr').find('td').find('span').get_text() try: separator = re.compile('from', flags=re.IGNORECASE) topprice, sale_title = separator.split(title_string) sale_title = sale_title.strip(strip_char) except ValueError: sale_title = title_string return sale_title def get_sale_date(this_report): """Return the date of the livestock sale.""" tr = this_report.find_all('tr') dateheader_string = tr[1].find('td').string dateheader_string = re.sub(r'\s',' ',dateheader_string) date_string, head_string = re.split(r' {2,}', dateheader_string) sale_date = dateutil.parser.parse(date_string) return sale_date def get_sale_head(this_report): """Return the head of the livestock sale.""" tr = this_report.find_all('tr') dateheader_string = tr[1].find('td').string dateheader_string = re.sub(r'\s',' ',dateheader_string) date_string, head_string = re.split(r' {2,}', dateheader_string) match = re.search(r'([0-9]+)', head_string) if match: return match.group(1) def is_empty(this_line): empty = True for x in this_line: if is_not_blank(x.string): empty = False break return empty def is_description(this_line): """Determine whether a given line is a description of the sale.""" non_blank_word = list(idx for idx in range(len(this_line)) if is_not_blank(this_line[idx].string)) is_succinct = len(non_blank_word) < 3 is_not_bolded = True for x in this_line: if x.find('strong'): is_not_bolded = False break return bool(is_succinct and is_not_bolded) def is_heading(this_line): """Determine whether a given line is a section header that describes subsequent lines of a report. """ cattle_clue = '(bulls?|steers?|cows?|heiferettes?|heifers?|calves|pairs?)' has_cattle = re.search(cattle_clue, this_line[0].string, re.IGNORECASE) non_blank_word = list(idx for idx in range(len(this_line)) if is_not_blank(this_line[idx].string)) is_succinct = len(non_blank_word) < 3 is_bolded = False for x in this_line: if x.find('strong'): is_bolded = True break return bool(has_cattle and is_succinct and is_bolded) def is_sale(this_line): """Determine whether a given line describes a sale of cattle.""" has_price = False for x in this_line: if re.search(r'[0-9]+\.[0-9]{2}', x.string): has_price = True break non_blank_word = list(idx for idx in range(len(this_line)) if is_not_blank(this_line[idx].string)) is_not_succinct = len(non_blank_word) > 3 return bool(has_price and is_not_succinct) def get_sale_location(word): """Convert address strings into a list of address components.""" sale_location = ' '.join(word) if ',' in sale_location: sale_location = sale_location.split(',') else: match = re.search(r'(.*?)(' + scrape_util.state + ')', sale_location) if match: sale_location = [match.group(1), match.group(2)] else: sale_location = [sale_location] return sale_location def is_number(string): """Test whether a string is numeric. Ignoring units like 'cwt' and 'hd'.""" string = re.sub(r'\$|[,-/]|#|cwt|he?a?d?', '', string, flags = re.IGNORECASE) try: float(string) return True except ValueError: return False def is_not_blank(string): """Test whether a string is not blank.""" string = re.sub(r'\s','',string) if string == '': return False else: return True def get_sale(word, cattle): """Convert the input into a dictionary, with keys matching the CSV column headers in the scrape_util module. """ number_word = list(idx for idx in range(len(word)) if is_number(word[idx])) sale_location = get_sale_location(word[:1]) sale = { 'consignor_city': sale_location.pop(0).strip(strip_char).title(), 'cattle_cattle': cattle + ' ' + word[2] } if sale_location: sale['consignor_state'] = sale_location.pop().strip(strip_char) head_string = word[number_word[0]].strip(strip_char).replace(',','') try: float(head_string) sale.update({'cattle_head': head_string}) except ValueError: pass if len(number_word) > 2: weight_string = word[number_word[1]].strip(strip_char).replace(',', '') try: float(weight_string) sale.update({'cattle_avg_weight': weight_string}) except ValueError: pass price_string = word[number_word[len(number_word)-1]] match = False if not match: match = re.search(r'([0-9,.]+) ?/?he?a?d?', price_string, re.IGNORECASE) key = 'cattle_price' if not match: match = re.search(r'([0-9,.]+) ?/?c?w?t?', price_string, re.IGNORECASE) key = 'cattle_price_cwt' if match: sale[key] = match.group(1).replace(',','').strip(strip_char) sale = {k:v for k,v in sale.items() if v} return sale def write_sale(line, this_default_sale, writer): """Extract sales from a list of report lines and write them to a CSV file.""" cattle = '' for this_line in line: if is_empty(this_line): pass elif is_description(this_line): pass elif is_heading(this_line): cattle = this_line[0].string elif is_sale(this_line): sale = this_default_sale.copy() word = [] for x in this_line: word.append(x.string) sale.update(get_sale(word, cattle)) writer.writerow(sale) def main(): # Get URLs for all reports for this_report_path in report_path: request = Request( base_url + this_report_path, headers = scrape_util.url_header, ) with urlopen(request) as io: soup = BeautifulSoup(io.read(), 'lxml') # content = soup.find('table', id = 'mainWrapper') # report = content.find('table').find('table').find_all('table') report = [table for table in soup.find_all('tbody') if not table.tbody] # Locate existing CSV files archive = scrape_util.ArchiveFolder(argv, prefix) # Write a CSV file for each report not in the archive for this_report in report: sale_date = get_sale_date(this_report) io_name = archive.new_csv(sale_date) # Skip iteration if this report is already archived if not io_name: continue # Initialize the default sale dictionary this_default_sale = default_sale.copy() sale_title = get_sale_title(this_report) sale_head = get_sale_head(this_report) this_default_sale.update({ 'sale_year': sale_date.year, 'sale_month': sale_date.month, 'sale_day': sale_date.day, 'sale_title': sale_title, 'sale_head': sale_head, }) # Read the report text into a list of lines line1 = [] line2 = [] for tr in this_report.find_all('tr'): td = tr.find_all('td') if len(td) == 11: pass else: for x in range(10): try: if int(td[x]['colspan']) > 1: for y in range(x+1, x+int(td[x]['colspan'])): newtag = soup.new_tag("td") newtag.string = ' ' td.insert(y,newtag) except KeyError: continue newline = [td[idx] for idx in range(5)] newline2 = [td[idx] for idx in range(6, 11)] line1.append(newline) line2.append(newline2) line = line1 + line2 line[0:2] = [] # Open a new CSV file and write each sale with io_name.open('w', encoding='utf-8') as io: writer = csv.DictWriter(io, scrape_util.header, lineterminator='\n') writer.writeheader() write_sale(line, this_default_sale, writer) if __name__ == '__main__': main()
StarcoderdataPython
3420968
# -*- coding: utf-8 -*- import tensorflow as tf def fixed_dropout(xs, keep_prob, noise_shape, seed=None): """ Apply dropout with same mask over all inputs Args: xs: list of tensors keep_prob: noise_shape: seed: Returns: list of dropped inputs """ with tf.name_scope("dropout", values=xs): noise_shape = noise_shape # uniform [keep_prob, 1.0 + keep_prob) random_tensor = keep_prob random_tensor += tf.random_uniform(noise_shape, seed=seed, dtype=xs[0].dtype) # 0. if [keep_prob, 1.0) and 1. if [1.0, 1.0 + keep_prob) binary_tensor = tf.floor(random_tensor) outputs = [] for x in xs: ret = tf.div(x, keep_prob) * binary_tensor ret.set_shape(x.get_shape()) outputs.append(ret) return outputs
StarcoderdataPython
8125329
<filename>leetcode/0024/answer.py<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2021/12/6 12:17 # @Author : weihuchao class ListNode(object): def __init__(self, val=0, next=None): self.val = val self.next = next class Solution(object): def swapPairs(self, head): """ :type head: ListNode :rtype: ListNode """ if not head or not head.next: return head head_next = head.next head.next = self.swapPairs(head_next.next) head_next.next = head return head_next if __name__ == '__main__': # Solution().swapPairs(ListNode(1, ListNode(2, ListNode(3, ListNode(4, ListNode(5)))))) Solution().swapPairs(ListNode(1, ListNode(2, ListNode(3, ListNode(4)))))
StarcoderdataPython
200957
<reponame>Chemscribbler/Netrunner import requests import csv import json root_address = "https://netrunnerdb.com/api/2.0/" # For pulling from next rotation (AKA Mumbad-Gateway) valid_codes = [ "sansan", "honor-and-profit", "order-and-chaos", "data-and-destiny", "mumbad", "flashpoint", "red-sand", "kitara", "reign-and-reverie", "magnum-opus", "ashes", "sc19", ] # Requesting all cards, then filtering on valid codes. Will add each card name, side, and faction to a dictionary # response = requests.get(root_address+"public/cards") # with open("cards.json",'w',newline='') as jsonfile: # json.dump(response.json(),jsonfile) # response = requests.get(root_address+"public/packs") # with open("packs.json",'w',newline='') as jsonfile: # json.dump(response.json(),jsonfile) with open("packs.json") as f: all_packs = json.load(f) filtered_packs = [] for pack in all_packs["data"]: if pack["cycle_code"] in valid_codes: filtered_packs.append(pack["code"]) with open("cards.json") as f: all_cards = json.load(f) legal_cards = {} for card in all_cards["data"]: if card["pack_code"] in filtered_packs: legal_cards[card["title"]] = { "faction": card["faction_code"], "card_type": card["type_code"], } with open("legal_cards.csv", "w", newline="", encoding="utf-8") as f: w = csv.writer(f) for key, value in legal_cards.items(): w.writerow([key, value["faction"], value["card_type"]])
StarcoderdataPython
1824890
<reponame>stefets/mpyg321 import pexpect import sys from threading import Thread from pexpect import exceptions import time mpg_outs = [ { "mpg_code": "@P 0", "action": "music_stop", "description": """For mpg123, it corresponds to any stop For mpg312 it corresponds to user stop only""" }, { "mpg_code": "@P 1", "action": "user_pause", "description": "Music has been paused by the user." }, { "mpg_code": "@P 2", "action": "user_start_or_resume", "description": "Music has been started resumed by the user." }, { "mpg_code": "@P 3", "action": "end_of_song", "description": "Player has reached the end of the song." }, { "mpg_code": "@E *", "action": "error", "description": "Player has encountered an error." }, { "mpg_code": "@silence", "action": None, "description": "Player has been silenced by the user." }, { "mpg_code": r"@V [0-9\.\s%]*", "action": None, "description": "Volume change event.", }, { "mpg_code": r"@S [a-zA-Z0-9\.\s-]*", "action": None, "description": "Stereo info event." }, { "mpg_code": "@I *", "action": None, "description": "Information event." }, { "mpg_code": pexpect.TIMEOUT, "action": None, "description": "Timeout event." }, { "mpg_code": "@mute", "action": "user_mute", "description": "Player has been muted by the user." }, { "mpg_code": "@unmute", "action": "user_unmute", "description": "Player has been unmuted by the user." }, ] mpg_codes = [v["mpg_code"] for v in mpg_outs] mpg_errors = [ { "message": "empty list name", "action": "generic_error" }, { "message": "No track loaded!", "action": "generic_error" }, { "message": "Error opening stream", "action": "file_error" }, { "message": "failed to parse given eq file:", "action": "file_error" }, { "message": "Corrupted file:", "action": "file_error" }, { "message": "Unknown command:", "action": "command_error" }, { "message": "Unfinished command:", "action": "command_error" }, { "message": "Unknown command or no arguments:", "action": "argument_error" }, { "message": "invalid arguments for", "action": "argument_error" }, { "message": "Missing argument to", "action": "argument_error" }, { "message": "failed to set eq:", "action": "eq_error" }, { "message": "Error while seeking", "action": "seek_error" }, ] suitable_versions = ["mpg123", "mpg321"] # # # Errors # # # class MPyg321Error(RuntimeError): """Base class for any errors encountered by the player during runtime""" pass class MPyg321FileError(MPyg321Error): """Errors encountered by the player related to files""" pass class MPyg321CommandError(MPyg321Error): """Errors encountered by the player related to player commands""" pass class MPyg321ArgumentError(MPyg321Error): """Errors encountered by the player related to arguments for commands""" pass class MPyg321EQError(MPyg321Error): """Errors encountered by the player related to the equalizer""" pass class MPyg321SeekError(MPyg321Error): """Errors encountered by the player related to the seek""" pass class MPyg321WrongPlayerPathError(MPyg321Error): """Errors encountered when a wrong player path is provided in the constructor""" pass class MPyg321NoPlayerFoundError(MPyg321Error): """Errors encountered when no suitable player is found""" pass class PlayerStatus: INSTANCIATED = 0 PLAYING = 1 PAUSED = 2 RESUMING = 3 STOPPING = 4 STOPPED = 5 QUITTED = 6 class MPyg321Player: """Main class for mpg321 player management""" player = None player_version = "mpg123" status = None output_processor = None song_path = "" loop = False performance_mode = True def __init__(self, player=None, audiodevice=None, performance_mode=True): """Builds the player and creates the callbacks""" self.set_player(player, audiodevice) self.output_processor = Thread(target=self.process_output) self.output_processor.daemon = True self.performance_mode = performance_mode self.output_processor.start() self.silence_mpyg_output() def set_version_and_get_player(self, player): """Gets the player """ version_process = None valid_player = None if player is not None: try: version_process = pexpect.spawn(str(player) + " --version") valid_player = str(player) except pexpect.exceptions.ExceptionPexpect: raise MPyg321WrongPlayerPathError( """Invalid file path provided""") else: try: version_process = pexpect.spawn("mpg123 ---version") valid_player = "mpg123" except pexpect.exceptions.ExceptionPexpect: try: version_process = pexpect.spawn("mpg321 --version") valid_player = "mpg321" except pexpect.exceptions.ExceptionPexpect: raise MPyg321NoPlayerFoundError( """No suitable player found""") index = version_process.expect(suitable_versions) try: self.player_version = suitable_versions[index] except IndexError: raise MPyg321NoPlayerFoundError("""No suitable player found""") return valid_player def set_player(self, player, audiodevice): """Sets the player""" player = self.set_version_and_get_player(player) args = "--remote" if self.player_version == "mpg123" else "-R test" args += " --audiodevice " + audiodevice if audiodevice else "" self.player = pexpect.spawn(str(player) + " " + args) self.player.delaybeforesend = None self.status = PlayerStatus.INSTANCIATED def process_output(self): """Parses the output""" while True: index = self.player.expect(mpg_codes) action = mpg_outs[index]["action"] if action == "music_stop": self.on_music_stop_int() if action == "user_pause": self.on_user_pause_int() if action == "user_start_or_resume": self.on_user_start_or_resume_int() if action == "end_of_song": self.on_end_of_song_int() if action == "user_mute": self.on_user_mute() if action == "user_unmute": self.on_user_unmute() if action == "error": self.on_error() def play_song(self, path, loop=False): """Plays the song""" self.loop = loop self.set_song(path) self.play() def play(self): """Starts playing the song""" self.player.sendline("LOAD " + self.song_path) self.status = PlayerStatus.PLAYING def pause(self): """Pauses the player""" if self.status == PlayerStatus.PLAYING: self.player.sendline("PAUSE") self.status = PlayerStatus.PAUSED def resume(self): """Resume the player""" if self.status == PlayerStatus.PAUSED: self.player.sendline("PAUSE") self.on_user_resume() def stop(self): """Stops the player""" self.player.sendline("STOP") if self.player_version == "mpg321": self.status = PlayerStatus.STOPPED else: self.status = PlayerStatus.STOPPING def quit(self): """Quits the player""" self.player.sendline("QUIT") self.status = PlayerStatus.QUITTED def jump(self, pos): """Jump to position""" self.player.sendline("JUMP " + str(pos)) def volume(self, percent): """Adjust player's volume""" if self.player_version == "mpg123": self.player.sendline("VOLUME {}".format(percent)) if self.player_version == "mpg321": self.player.sendline("GAIN {}".format(percent)) def mute(self): """Mutes the player""" if self.player_version == "mpg123": self.player.sendline("MUTE") def unmute(self): """Unmutes the player""" if self.player_version == "mpg123": self.player.sendline("UNMUTE") def silence_mpyg_output(self): """Improves performance by silencing the mpg123 process frame output""" if self.player_version == "mpg123" and not self.performance_mode: self.player.sendline("SILENCE") def load_list(self, entry, filepath): """Load an entry in a list Parameters: entry (int): index of the song in the list - first is 0 filepath: URL/Path to the list """ if self.player_version == "mpg123": self.player.sendline("LOADLIST {} {}".format(entry, filepath)) self.status = PlayerStatus.PLAYING def on_error(self): """Process errors encountered by the player""" output = self.player.readline().decode("utf-8") # Check error in list of errors for mpg_error in mpg_errors: if mpg_error["message"] in output: action = mpg_error["action"] if action == "generic_error": raise MPyg321Error(output) if action == "file_error": raise MPyg321FileError(output) if action == "command_error": raise MPyg321CommandError(output) if action == "argument_error": raise MPyg321ArgumentError(output) if action == "eq_error": raise MPyg321EQError if action == "seek_error": raise MPyg321SeekError # Some other error occurred raise MPyg321Error(output) def set_song(self, path): """song_path setter""" self.song_path = path def set_loop(self, loop): """"loop setter""" self.loop = loop # # # Internal Callbacks # # # def on_music_stop_int(self): """Internal callback when user stops the music""" if self.player_version == "mpg123": if self.status == PlayerStatus.STOPPING: self.status = PlayerStatus.STOPPED self.on_user_stop_int() else: # If not stopped by the user, it is the end of the song # the on_any_stop function is called inside on_end_of_song_int self.on_end_of_song_int() else: self.on_user_stop_int() def on_user_stop_int(self): """Internal callback when the user stops the music.""" self.on_any_stop() self.on_user_stop() def on_user_pause_int(self): """Internal callback when user pauses the music""" self.on_any_stop() self.on_user_pause() def on_user_start_or_resume_int(self): """Internal callback when user resumes the music""" self.status = PlayerStatus.PLAYING def on_end_of_song_int(self): """Internal callback when the song ends""" if(self.loop): self.play() else: # The music doesn't stop if it is looped self.on_any_stop() self.on_music_end() # # # Public Callbacks # # # def on_any_stop(self): """Callback when the music stops for any reason""" pass def on_user_pause(self): """Callback when user pauses the music""" pass def on_user_resume(self): """Callback when user resumes the music""" pass def on_user_stop(self): """Callback when user stops music""" pass def on_user_mute(self): """Callback when user mutes player""" pass def on_user_unmute(self): """Callback when user unmutes player""" pass def on_music_end(self): """Callback when music ends""" pass
StarcoderdataPython
9769738
import mayaUtils from selection import Selection #import vertexColorUtils
StarcoderdataPython
11213863
from django.apps import AppConfig class JssConfig(AppConfig): name = 'jss'
StarcoderdataPython
8042308
<filename>Curso_de_Python/Mundo_01/Aula_08/Exercicios/ex016.py # Corrigido # Bloco de importação from math import trunc print('Exercício 016') print() # Bloco de entrada num = float(input('Informe um número real: ')) # Bloco de cálculo inteiro = trunc(num) # Bloco de saída print('A porção inteira de {} é igual a {}.'.format(num, inteiro)) # Bloco de descarte '''num = float(input('Informe um número qualquer: ')) print('O valor digitado foi {} e sua porção inteira é {}.'.format(num, int(num)))'''
StarcoderdataPython
5127778
class Solution: def longestValidParentheses(self, s: str) -> int: left=0 tag=[] ready=[] i=0 for t in s: if t=='(': left+=1 ready.append(i)#坐标 tag.append('1') i+=1 elif t==')': if left>0: left-=1 tag[ready[len(ready)-1]]='2' ready.pop()#配对出栈 else:#无法配对的右括号 ready.append(i) tag.append('1') i+=1 tag=[len(item)*2 for item in ''.join(tag).split('1')] return sorted(tag)[-1] obj=Solution() print(obj.longestValidParentheses(")()())"))
StarcoderdataPython
4861693
<gh_stars>0 from django.conf.urls.defaults import patterns, include, url from django.views.generic.base import TemplateView from django.contrib import admin admin.autodiscover() import settings urlpatterns = patterns('', url(r'^$', TemplateView.as_view(template_name="homepage.html"), name="home"), url(r'^accounts/logout/$', 'django.contrib.auth.views.logout', {'next_page': settings.LOGIN_URL}), url(r'^accounts/', include('registration.urls')), url(r'^qa/', include('qatrack.qa.urls')), # Uncomment the admin/doc line below to enable admin documentation: # url(r'^admin/doc/', include('django.contrib.admindocs.urls')), # Uncomment the next line to enable the admin: url(r'^admin/', include(admin.site.urls)), url(r'^', include('genericdropdown.urls')), )
StarcoderdataPython
3566779
from __future__ import division, print_function, unicode_literals import os from os import listdir import json import sys import random import cv2 import pickle import numpy as np seed = 13 random.seed(seed) np.random.seed(seed) sys.path.insert(0, "..") from utils import Timer from recognition.constants import ( HEIGHT, WIDTH, DATASET_FOLDER, PICKLE_DATASET, DATA_NAME, RANDOM_IDX) class Dataset(): def __init__(self, data_folder, data_name): # load dataset from pickle files self.X = None self.Y = None self._load_data(data_folder, data_name) def get_dataset(self): if not RANDOM_IDX: idx_list = list(range(self.X.shape[0])) random.shuffle(idx_list) with open("random_idx", "w") as f: f.write(json.dumps(idx_list)) else: with open("random_idx", "r") as f: idx_list = json.loads(f.read()) idx_list = np.array(idx_list, dtype='int') m = idx_list.shape[0] X = np.zeros((m, HEIGHT, WIDTH, 1), dtype='float32') Y = np.zeros((m, self.Y.shape[1]), dtype='int') for i in range(m): X[i] = self.X[idx_list[i]] Y[i] = self.Y[idx_list[i]] return X, Y def _load_data(self, data_folder, data_name): with open(data_folder + data_name, "rb") as f: self.X = pickle.load(f) self.Y = pickle.load(f) if __name__ == "__main__": # process raw data all_labels = listdir(DATASET_FOLDER) all_labels.sort() X = np.zeros((0, HEIGHT * WIDTH)) Y = np.zeros((0, len(all_labels)), dtype='int') t = Timer() t.start("Processing...") for i in range(len(all_labels)): all_names = [] all_img = listdir(DATASET_FOLDER + all_labels[i]) all_names = np.append(all_names, ["{}/{}".format(all_labels[i], k) for k in all_img]) m = all_names.shape[0] for j in range(m): img_src = DATASET_FOLDER + all_names[j] # load image as grayscale img = cv2.imread(img_src, cv2.IMREAD_GRAYSCALE) # resize image img = cv2.resize(img, dsize=(WIDTH, HEIGHT), interpolation=cv2.INTER_CUBIC) # flat image img_flat = img.flatten() / 255.0 # normalize from [0, 255] to [0, 1] X = np.vstack((X, img_flat)) Y = np.vstack((Y, np.zeros((1, len(all_labels)), dtype="int"))) Y[-1][i] = 1 X = X.reshape(X.shape[0], HEIGHT, WIDTH, 1).astype('float32') print("Saving...") if not os.path.exists(PICKLE_DATASET): os.makedirs(PICKLE_DATASET) with open("{}/{}".format(PICKLE_DATASET, DATA_NAME), "wb") as f: pickle.dump(X, f, protocol=pickle.HIGHEST_PROTOCOL) pickle.dump(Y, f, protocol=pickle.HIGHEST_PROTOCOL) t.stop()
StarcoderdataPython
5189185
<reponame>celestialteapot/nnc import gym import numpy as np import torch from torch import nn from torchdiffeq import odeint def get_a_conv(in_channel, out_channel): """ Generate a convolutional layer based on the torch.nn.Conv2d class :param in_channel: the number of input channels :param out_channel: the number of output channels :return: """ res = torch.nn.Conv2d( in_channel, out_channel, [1, 3], stride=[1, 1], padding=0, dilation=1, groups=1, bias=True, padding_mode='zeros', ) return res class SIRXEnv(gym.Env): def __init__(self, env_config): """ Gym environment for SIRX, in env config one can find everything required for the dynamics. Please check jupyter notebooks for more :param env_config: """ self.sirx = env_config['sirx'] target_nodes = env_config['target_nodes'] self.n_nodes = self.sirx.adjacency_matrix.shape[1] self.n_drivers = self.sirx.driver_matrix.shape[1] self.target_nodes = [target_nodes, np.arange(self.n_nodes)][target_nodes is None] self.state_size = 4 * self.n_nodes self.action_size = self.n_drivers self.x_init = env_config['x0'] self.state = self.x_init[0].detach().cpu().numpy() self.dt = env_config['dt'] self.total_time = env_config['T'] self.time_steps = torch.linspace(0, self.total_time, int(self.total_time // self.dt), device=self.x_init.device) self.budget = env_config['budget'] self.action_space = gym.spaces.Box(low=-100, high=100, shape=[ self.n_drivers]) # these are logits so any closed space in R would do self.observation_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=[self.state_size]) self.spaces = [self.action_space, self.observation_space] self.reward_range = (-np.inf, 0) self.ode_solve_method = env_config['ode_solve_method'] if "reward_type" in env_config.keys(): self.reward_type = env_config['reward_type'] else: self.reward_type = 'minus_l2' self.reset() def step(self, actions, is_logit=True): # action preprocessing for compatibility with batched versions of dynamics and ODE integrators if not isinstance(actions, torch.Tensor): actions = torch.tensor(actions).to(device=self.x_init.device, dtype=torch.float) if len(actions.shape) == 1: actions = actions.unsqueeze(0) if actions.shape[-1] == self.n_drivers: # go from N to M by taking into account the driver matrix related values (driver message inputs) actions = torch.matmul(self.sirx.driver_matrix.unsqueeze(0), actions.unsqueeze(-1)).squeeze(-1) # provided actions are considered to be logits for the softmax # which does budget assignment and produces final u if is_logit: # softmax to apply budget constraing. Again relevant to the specific SIRX case. u = torch.nn.functional.softmax(actions, dim=-1) \ * self.budget \ * self.sirx.driver_matrix.sum(-1) else: u = actions # time for numerical ode solve integr_time = self.time_steps[self.c_timestep: self.c_timestep + 2] # print(integr_time) deriv = lambda t, x: self.sirx(t, x, u=u) if self.ode_solve_method == 'rk4': next_state = odeint(deriv, self.state, integr_time, method='rk4')[-1] else: # e.g. dopri5, adams next_state = odeint(deriv, self.state, integr_time, method=self.ode_solve_method)[-1] # state update self.state = next_state # determining when done done = self.c_timestep == self.time_steps.shape[0] - 1 # reward calculation # for now old skool type without oop and general coding stuff reward = None if self.reward_type == "minus_l2": reward = self.minus_l2(next_state) elif self.reward_type == "sparse_end": reward = self.sparse_end(next_state) elif self.reward_type == 'sum_to_max': reward = self.sum_to_max(next_state) else: raise ValueError( "Wrong reward type provided! Please choose either \'minus_l2\' or \'sparse_end'\''") self.c_timestep += 1 return self.state.detach().cpu().numpy()[0], reward.detach().cpu().item(), done, {} def minus_l2(self, state): # motivation is that the return of this reward will calculate the integral till t* return -((state[:, self.target_nodes] ** 2) * self.dt).mean() def sparse_end(self, state): if self.c_timestep == 0: self.max_inf = torch.tensor([0.0]).to(device=state.device) mean_inf = state[:, self.target_nodes].mean() self.max_inf = [self.max_inf, mean_inf][mean_inf > self.max_inf] # motivation is that this reward has the min minus inf rate if self.c_timestep == self.time_steps.shape[0] - 1: return -(self.max_inf) ** 2 else: return torch.tensor([0.0]).to(device=state.device) def sum_to_max(self, state): if self.c_timestep == 0: self.max_inf = torch.tensor([0.0]).to(device=state.device) mean_inf = state[:, self.target_nodes].mean() prev_inf = self.max_inf + 0 # how to copy in a lazy way self.max_inf = [self.max_inf, mean_inf][mean_inf > self.max_inf] # motivation is that this reward has the min minus inf rate if prev_inf != self.max_inf: return -(self.max_inf) ** 2 + prev_inf ** 2 else: return torch.tensor([0.0]).to(device=state.device) def reset(self): self.c_timestep = 0 self.state = self.x_init return self.x_init[0].detach().cpu().numpy() def render(self): raise ValueError("Not implemented yet.") def close(self): # raise ValueError("Not implemented yet.") pass def seed(self, seed): pass # raise ValueError("Not implemented yet.") class RLGCNN(torch.nn.Module): 'RL graph conv for RL' def __init__(self, adjacency_matrix, driver_matrix, input_preprocessor, in_channels=1, feat_channels=5, message_passes=4): super().__init__() self.adjacency_matrix = adjacency_matrix self.driver_matrix = driver_matrix self.drivers = torch.where(self.driver_matrix == 1)[0] self.n_nodes = self.adjacency_matrix.shape[0] self.n_drivers = self.driver_matrix.shape[0] self.max_degree = self.adjacency_matrix.sum(-1).max().to(torch.long) self.message_passes = message_passes self.input_preprocessor = input_preprocessor j = self.max_degree self.modlist = torch.nn.ModuleList() in_chans = in_channels while j > 2: if j - 2 > 2: self.modlist.append(get_a_conv(in_chans, feat_channels)) else: self.modlist.append(get_a_conv(in_chans, in_channels)) in_chans = feat_channels j -= 2 self.modlist.append(torch.nn.AvgPool2d( [1, 2], stride=[1, 1], padding=0, ceil_mode=False, count_include_pad=True, divisor_override=None, )) def forward(self, x, t=torch.zeros([1])[0]): z = x # input preparation done # message pass for 4 turns for j in range(self.message_passes): i = 0 z = self.input_preprocessor(z) # go from flat to channels, relevant for SIRX. for m in self.modlist: # do convolutions until N+1 shape is reached, extending feature space z = m(z) if i < len(self.modlist) - 1: # after last convolution average pool over features z = torch.relu(z) i += 1 if j < self.message_passes - 1: # before last message pass, flatten and preserve batch for following message passes. z = z.view(x.shape[0], -1) z = z.mean(1).squeeze(1) # flatten channels and have a shape of: batch x N # go from N to M by taking into account the driver matrix related values (driver message inputs) u = z[:, self.drivers, :].squeeze(-1) # sotmax would be here, but instead we do the logits now return u class Actor(nn.Module): """ Simple critic network based on tianshou implementation """ def __init__(self, model, device='cuda:0'): super().__init__() self.device = device self.model = model def forward(self, s, **kwargs): s = torch.tensor(s, device=self.device, dtype=torch.float) batch = s.shape[0] s = s.view(batch, -1) logits = self.model(s) return logits, None class ActorProb(nn.Module): def __init__(self, model, action_shape, device='cpu'): super().__init__() self.device = device self.model = model self.mu = nn.Linear(np.prod(action_shape), np.prod(action_shape)) self.sigma = nn.Linear(np.prod(action_shape), np.prod(action_shape)) def forward(self, s, **kwargs): if not isinstance(s, torch.Tensor): s = torch.tensor(s, device=self.device, dtype=torch.float) batch = s.shape[0] s = s.view(batch, -1) logits = self.model(s) mu = torch.tanh(self.mu(logits)) sigma = torch.exp(self.sigma(logits)) return (mu, sigma), None class Critic(nn.Module): """ Simple critic network based on tianshou implementation """ def __init__(self, layer_num, state_shape, action_shape=0, device='cpu'): super().__init__() self.device = device self.model = [ nn.Linear(state_shape + action_shape, state_shape), nn.ReLU(inplace=True)] for i in range(layer_num): self.model += [nn.Linear(state_shape, state_shape), nn.ReLU(inplace=True)] self.model += [nn.Linear(state_shape, 1)] self.model = nn.Sequential(*self.model) def forward(self, s, a=None): if not isinstance(s, torch.Tensor): s = torch.tensor(s, device=self.device, dtype=torch.float) if a is not None and not isinstance(a, torch.Tensor): a = torch.tensor(a, device=self.device, dtype=torch.float) batch = s.shape[0] s = s.view(batch, -1) if a is None: logits = self.model(s) else: a = a.view(batch, -1) logits = self.model(torch.cat([s, a], dim=1)) return logits def transform_u(logits, driver_matrix, budget): """ A function that transforms RL logits to valid controls. :param logits: RL action logits :param driver_matrix: driver matrix for control selection :budget: total budget available """ logits = torch.matmul(driver_matrix.unsqueeze(0), logits.unsqueeze(-1)).squeeze(-1) u = torch.nn.functional.softmax(logits, dim=-1) \ * budget \ * driver_matrix.sum(-1) return u
StarcoderdataPython
3587814
<reponame>friedforfun/DocumentTracking import pytest from unittest.mock import patch, mock_open from DocuTrace.Analysis.DataCollector import DataCollector, ReadingData mock_file_content = '{"visitor_uuid": "745409913574d4c6", "env_doc_id": "130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb", "visitor_country": "MX", "event_readtime": 797, "visitor_useragent":"Mozilla/5.0 (iPhone; CPU iPhone OS 5_1 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) Version/5.1 Mobile/9B179 Safari/7534.48.3"}' json_dict = { "visitor_country": "MX", "visitor_uuid": "745409913574d4c6", "subject_doc_id": "130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb", "event_readtime": 797, "event_type": "read", "visitor_useragent": "Mozilla/5.0 (iPhone; CPU iPhone OS 5_1 like Mac OS X) AppleWebKit/534.46 (KHTML, like Gecko) Version/5.1 Mobile/9B179 Safari/7534.48.3"} def _setup_Views_class_(): m = mock_open(read_data=mock_file_content) with patch('DocuTrace.Analysis.FileRead.open', m) as _file: loc_views = DataCollector(path='path') _file.assert_not_called() return loc_views def test_count(): m = mock_open(read_data=mock_file_content) with patch('DocuTrace.Analysis.FileRead.open', m) as _: loc_views = _setup_Views_class_() assert loc_views.counted == False loc_views.gather_data() assert loc_views.counted == True def test_count_error(): loc_views = DataCollector() with pytest.raises(AttributeError): loc_views.gather_data() def test_count_countries(): views = DataCollector() assert 'MX' not in views.countries.keys() views.count_countries(json_dict) assert views.countries['MX'] == 1 def test_count_continents(): views = DataCollector() assert 'North America' not in views.continents.keys() views.count_continents(json_dict) assert views.continents['North America'] == 1 def test_count_browsers(): views = DataCollector() assert 'Mobile Safari' not in views.browser_families.keys() views.count_browsers(json_dict) assert views.browser_families['Mobile Safari'] == 1 def test_count_user_reads(): views = DataCollector() assert '745409913574d4c6' not in views.reader_profiles.keys() views.collect_reading_data(json_dict) assert views.reader_profiles['745409913574d4c6'].read_time == 797 def test_collect_document_readers(): views = DataCollector() assert '130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb' not in views.document_readers.keys() assert '745409913574d4c6' not in views.visitor_documents.keys() views.collect_document_readers(json_dict) assert views.document_readers['130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb'] == ['745409913574d4c6'] assert views.visitor_documents['745409913574d4c6'] == ['130705172251-3a2a725b2bbd5aa3f2af810acf0aeabb']
StarcoderdataPython
8098629
from setuptools import setup, find_packages setup(name='coconut', version='0.0.1', url='https://github.com/imzeki/coconut', license='MIT', author='<NAME>', author_email='<EMAIL>', description='Coconut is a module for simplifying simple things and chunk them down into even simpler tasks', packages=find_packages(exclude=['tests']), long_description=open('README.md').read(), zip_safe=False)
StarcoderdataPython
4826280
#!/usr/bin/env python3 """exfi.io.read_bed.py: BED importer""" import logging import pandas as pd from exfi.io.bed import BED3_COLS, BED3_DTYPES def read_bed3(filename): """Read a BED file and return the BED3 dataframe.""" logging.info('Reading BED3 from disk') bed3 = pd.read_csv( filepath_or_buffer=filename, header=None, sep='\t', usecols=[0, 1, 2], names=BED3_COLS, engine='c' ).astype(BED3_DTYPES) logging.info('Done') return bed3
StarcoderdataPython
6415221
import logging logger = logging.getLogger(__name__) def parameterized(dec): """ Meta decorator. Decorate a decorator that accepts the decorated function as first argument, and then other arguments with this decorator, to be able to pass it arguments. Source: http://stackoverflow.com/a/26151604 >>> @parameterized ... def multiply(f, n): ... def dec(*args, **kwargs): ... return f(*args, **kwargs) * n ... return dec >>> @multiply(5) ... def add(a, b): ... return a + b >>> add(3, 2) 25 """ def layer(*args, **kwargs): def repl(f): return dec(f, *args, **kwargs) return repl return layer class KeyMap: """ A keymap contains two things: A list of commands, defined using the `@keybind` decorator, and a list of key to command mappings. """ def __init__(self, keys={}): self.commands = {} self.keys = {} for key, commands in keys.items(): self.add_key(key, commands) def add_command(self, name, func): """ Add a command to the command map. If the command already exists, the function will be added to the list """ if name in self.commands.keys(): self.commands[name].append(func) else: self.commands[name] = [func] def add_key(self, key, command): """ Map `key` to `command` command can be one of the following: * A string, the name of the command * A tuple `(command, args...)`. `args` will be passed to the functions * A list of any of the two above, can be mixed If the key is already mapped, the command will be added to its list """ if not isinstance(command, list) and not isinstance(command, set): command = {command} for c in command: if not isinstance(c, tuple): c = (c,) if key in self.keys.keys(): self.keys[key].append(c) else: self.keys[key] = [c] def command(self, func): """ Decorator, used to bind `func` to `command` """ self.add_command(func.__name__, func) return func def keypress(self, func): """ Decorator Calls the decorated function before calling the apropriate commands for the keypress. The value returned by `func` will be sent to the commands as the new `key` """ def dec(widget, size, key): key = func(widget, size, key) return self.press_key(key, widget) return dec def press_key(self, key, widget): """ Calls the commands associated with `key` Will return `None` or the result of the last command that wasnt `None` """ k = key if key in self.keys.keys(): k = None for command in self.keys[key]: assert command[0] in self.commands if len(command) > 1: nk = self.call_command(command[0], widget, *command[1:]) else: nk = self.call_command(command[0], widget) if nk is not None: k = nk return k def call_command(self, command, *args, **kwargs): """ Call command by name and pass it `*args` and `**kwargs` Will return `None` or the result of the last function that wasnt `None` """ key = None logger.debug("Calling %d commands for '%s'", len(self.commands[command]), command) for fn in self.commands[command]: k = fn(*args, **kwargs) if k is not None: key = k return key
StarcoderdataPython
5061289
<reponame>jcapriot/simpeg from .code_utils import * deprecate_module("codeutils", "code_utils", "0.15.0")
StarcoderdataPython
6507594
<reponame>MalikKeio/valkyrie-anatomia-script JP = 0 EN = 1 STATUS = -1 TRANSLATED = 1 INPROGRESS = 2 NOSTORY = 3 CHAPTERS = { 1: ["戦乙女の目覚め", "The Awakening of the Battle Maiden", TRANSLATED], 2: ["魂の律動:剣を振る理由", "Spiritual Concentration: What to Wield the Sword For", INPROGRESS], 3: ["魂の律動:禁じられた歌声", "Spiritual Concentration: Forbidden Voice"], 4: ["運命の女神", "The Goddess of Destiny"], 5: ["魂の律動:見果てぬ夢は海を越えて", "Spiritual Concentration: An Unfulfilled Dream Crosses the Sea"], 6: ["魂の律動:約束", "Spiritual Concentration: Promise"], 7: ["魂の律動:還るべき場所", "Spiritual Concentration: A Place to Come Home to"], # I deliberately remove 先 as it just refers to where the light is guiding (the moon light is guiding Altveer out of the cell) 8: ["魂の律動:光の導く先へ", "Spiritual Concentration: Guiding Light"], 9: ["魂の律動:痛みのワケ", "Spiritual Concentration: <i>Why</i> Pain?"], 10:["魂の律動:命の在処、心の在処", "Spiritual Concentration: The Whereabouts of Life and the Mind"], 11:["魂の律動:無敵の剣", "Spiritual Concentration: The Invincible Sword"], 12:["父と子と", "Father and Son"], 13:["魂の律動:目標を外さなかった男", "Spiritual Concentration: The Man Who Never Missed the Mark"], 14:["魂の律動:鎧が守りしもの", "He That the Armor Shields"], 15:["魂の律動:愛はさだめ", "Love is Karma"], 16:["魂の律動:赦されぬ罪", "Unpardonable Sin"], # 誰が為に is an archaic word meaning "For whom". The literal translation of this title is "For whom is the king's might". 17:["魂の律動:王の力は誰が為に", "Worthy of the King's Might"], # I think that "Karmic Repayment" may be a good translation as well. However, it does not fit well with the story, as Altveer never atone for anything (and no one atoned in that story). Altveer was not a sinner to begin with. # I think that "巡りて" hints at the circulation of karma, especially to the fact that Altveer and Anelian are united by fate. 18:["魂の律動:因果は巡りて", "All Is Fated"], 19:["迷妄の地", "The Land of Illusion"], 20:["魂の律動:狂った歯車", "Spiritual Concentration: Machine Running Amok"], 21:["トラキシア戦記", "Traxian Chronicles"], 22:["轟く雷", "Roaring Thunder"], 23:["シャイロ二世の誕生", "The Birth of Shiloh II"], 24:["オーディンの秘密", "Odin's Secret"] } EINHERJAR = "EINHERJAR" STORIES = "STORIES" SIDE_STORY_CHAPTERS = [ {EINHERJAR: "アーリィ", STORIES: [ ["漆黒の戦乙女", "The Black Battle Maiden", TRANSLATED] ]}, {EINHERJAR: "ルーファス", STORIES: [ ["神の器", "The Vessel of the Gods"] ]}, {EINHERJAR: "バルゴ", STORIES: [ ["戦い続ける意味", ""], ["業を背負いし者", ""] ]}, {EINHERJAR: "那智", STORIES: [ ["神託の少女", ""], ["神様の救い", ""] ]}, {EINHERJAR: "リウ", STORIES: [ ["忘却の竜", ""], ["盗まれた運命", ""] ]}, {EINHERJAR: "ノルン", STORIES: [ ["運命を紡ぐ糸", ""], #https://www.youtube.com/watch?v=I1CkD-IVFkM ["運命の歯車", "The Cogs of Destiny"], ["運命の子", "The Fated Girl"] ]}, {EINHERJAR: "ソー", STORIES: [ ["雷の行方", "The Thunder God's Whereabouts"], # https://youtu.be/KZ6DOIfSs5M?t=56s ["悩める雷神", "A Worried Thunder God"], # https://www.youtube.com/watch?v=4jpM63yKEsk ["雷神の戦", "The Thunder God's Struggle"] # https://www.youtube.com/watch?v=lyPGVveBQBw ]}, {EINHERJAR: "ルチア", STORIES: [ ["母の遺した旋律", ""], ["ルチアの決意", ""] ]}, {EINHERJAR: "ヴァルヴァロア", STORIES: [ ["新大陸を目指せ", ""], ["老兵の教え", ""] ]}, {EINHERJAR: "ランヴァルド", STORIES: [ ["神と人", ""], ["死者の村", ""] ]}, {EINHERJAR: "クラウシュ", STORIES: [ ["魔の海域", ""], ["鎧に宿る霊", ""] ]}, {EINHERJAR: "クロエ", STORIES: [ ["不死者を残滅せよ", ""], ["湖に潜むドラゴンを討伐せよ", ""] ]}, {EINHERJAR: "ダリネ", STORIES: [ ["出既損ないの反魂香", ""], ["再会", ""] ]}, {EINHERJAR: "アネリアン", STORIES: [ ["力の代償", ""], ["偽りの魔法", ""] ]}, {EINHERJAR: "ジャンヌ", STORIES: [ ["この身に纏うは", ""], ["生き様と死に様", "How to Live and How to Die"] ]}, {EINHERJAR: "マクシミリアン", STORIES: [ ["連れ去られた少女を救え", "Save the Abducted Girl"], ["父の背中", ""] ]}, {EINHERJAR: "イングリット", STORIES: [ ["連銀術師の野望を阻止せよ", ""], ["囚われた人魚を救え", "Save the Captured Mermaid"] ]}, {EINHERJAR: "クルト", STORIES: [ ["夢の残骸", "Remnants of Dream"], ["夢のつづき", "The Dream Continues"] ]}, {EINHERJAR: "セナ", STORIES: [ ["闘う理由", ""], ["貴婦人の構え", ""] ]}, {EINHERJAR: "カラドック", STORIES: [ ["伝説の剣を求めて", ""], ["剣の神", "The God of the Sword"] ]}, {EINHERJAR: "カチナ", STORIES: [ ["災いの種", ""], ["神々の置き土産", ""] ]}, {EINHERJAR: "マルヴァイナ", STORIES: [ ["亡国の騎士団", ""], ["迫る危機", ""] ]}, {EINHERJAR: "アルトフェイル", STORIES: [ ["森に消えた兄の行方", ""], ["超古代文明の謎を解き明かせ", ""] ]}, {EINHERJAR: "フリー", STORIES: [ ["試練の道・初級", "Path of Trials: Elementary Level", NOSTORY], ["試練の道・中級", "Path of Trials: Middle Level", NOSTORY], ["試練の道・上級", "Path of Trials: Upper Level", NOSTORY] ]} ] SIDE_STORY_CHAPTERS_LEN = 0 for dic in SIDE_STORY_CHAPTERS: SIDE_STORY_CHAPTERS_LEN += len(dic[STORIES]) OTHER_STORIES = { 1: ["戦乙女再臨! 彼方よりの来訪者", "The Second Advent of the Battle Maiden! A Visitor from Beyond", TRANSLATED], 2: ["魂の律動:偽るモノ、偽らざるモノ", "Spiritual Concentration: Lies and Truths"], 3: ["第1回 ヴァルハラ防衛線", "Valhalla Line of Defence 1", NOSTORY], # There was no story here 4: ["魂の律動:答えなき祈り", "Spiritual Concentration: Unanswered Prayers"], 5: ["第2回 ヴァルハラ防衛線", "Valhalla Line of Defence 2"], # https://www.youtube.com/watch?v=S6Jt_Ac2ey8 6: ["名もなき花", "Flower Without Even a Name"], # https://www.youtube.com/watch?v=XBnudQQcZVE 7: ["深淵の門", "Gate of the Abyss", NOSTORY], 8: ["第3回 ヴァルハラ防衛線", "Valhalla Line of Defence 3"], # https://youtu.be/obwhq6IeGtY?t=5m41s 9: ["女王の教育係", "The Queen's Pedagogue"], # https://youtu.be/CbkbENIuT64?t=3m1s 10: ["神が遺した錬金術", "The Alchemy the Gods Left Behind"], # not found yet 11: ["黒き戦乙女の挑戦状", "The Challenge of the Black Battle Maiden"] # https://www.youtube.com/watch?v=OJwHFrVp27E } CHARACTERS = { "???": "???", "オーディン": "Odin", "レナス": "Lenneth", "ゼフィロス": "Zephyros", "ヴァン神族": "Vanir", "フギン": "Huginn", "ムニン": "Muninn", "ジャンヌ": "Jeanne", # Choose raven over crow because that's how Huginn and Muginn are called in Scandinavian literature. "カラス1": "Raven 1", "カラス2": "Raven 2", # Senna "セナ": "Senna", "カラドック": "Caradoc", "店主": "Shopkeeper", "常連客": "Regular customer", "ガラの悪い客1": "Ill-bred customer 1", "ガラの悪い客2": "Ill-bred customer 2" } CHARACTERS.update({ "アーリィ": "Hrist", "ルーファス": "Rufus", # Another tricky name. バルゴ is the common transcription of "Virgo" (the zodiac # sign). But naming a heavy manly warrior that deals dark damage Virgo would # sound odd, wouldn't it? Or maybe it shows the complexity of his character # *chuckles*. "バルゴ": "Virgo", "那智": "Nachi", # Liu sounds Chinese. It could be Riu, I do not really see any difference. "リウ": "Liu", "ノルン": "Norn", "ソー": "Thor", # Most likely an Italian name "ルチア": "Lucia", # Most likely a gratuitous French name. Choose this spelling to look like the House of Valois. "ヴァルヴァロア": "Valvalois", # Ragnvald is an old norse first name: https://en.wikipedia.org/wiki/Rognvald "ランヴァルド": "Ragnvald", # The Japanese says Kuraushu. However, I was unable to find anything good to write it in Roman characters. So let's go with the German "Klaus" "クラウシュ": "Klaus", # A French name? "クロエ": "Chloé", "ダリネ": "Darine", # I chose the R because Anerian sounds more like as a name (at least as a surname, it does exist) "アネリアン": "Anerian", "イングリット": "Ingrid", "クルト": "Kurt", "マクシミリアン": "Maximilien", # I hesitate between ch and ts. Katsina sounds more exotic. Hopi Spirits are called Kachina or Katsina (two spellings exist) while lots of place in the world are called Katsina. "カチナ": "Katsina", "マルヴァイナ": "Malvina", # Another (gratuitous?) German-like name. I cannot find anything from which it is likely to originate. Altveer is a very rare surname that sounds a like (probably of Dutch origin, see Alteveer, though v is pronounced v, and not f, in Dutch). "アルトフェイル": "Altveer", "フリー": "Free" })
StarcoderdataPython
5065028
from tempfile import NamedTemporaryFile from typing import List from scrapy.linkextractors import LinkExtractor from scrapy.spiders import CrawlSpider, Rule class EcoindexSpider(CrawlSpider): name = "EcoindexSpider" custom_settings = {"LOG_ENABLED": False} rules = (Rule(LinkExtractor(), callback="parse_item", follow=True),) def __init__( self, allowed_domains: List[str], start_urls: List[str], temp_file: NamedTemporaryFile, *a, **kw, ): self.links = set() self.allowed_domains = allowed_domains self.start_urls = start_urls self.temp_file = temp_file super().__init__(*a, **kw) def parse_item(self, response): self.temp_file.write(f"{response.url}\n")
StarcoderdataPython
5030239
<gh_stars>0 # Part of Escala. # Written by <NAME>. from sys import argv as ARGS # Constants that make up a complete SQL script. SQL_SCRIPT = "add_skills.sql" INSERT_NODE = ( "INSERT INTO skillNodes VALUES" " ('{0}', {1}, '{2}', '{3}', {4}, {5}, {6}, {7});\n" ) INSERT_EDGE = "INSERT INTO skillEdges VALUES ('{0}', {1}, {2});\n" HEADER = ( "/*\n" "Part of Escala.\n" "Written by <NAME>.\n" "This script has been automatically generated.\n" "*/\n\n" "CONNECT 'jdbc:derby:../data/tables';\n" ) FOOTER = "\nDISCONNECT;\nExit;\n" class Node: """Hold information about graph nodes.""" def __init__( self, tree, identifier, targets, name, description, cost, logistics_effect, marketing_effect, efficiency_effect): """Initialize the graph node.""" self.tree = tree self.identifier = int(identifier) self.targets = [int(target) for target in targets.split()] self.name = name self.description = description self.cost = float(cost) self.logistics_effect = logistics_effect self.marketing_effect = marketing_effect self.efficiency_effect = efficiency_effect def get_node_insertion_command(self): """Format an SQL insertion command with the appropriate node information.""" return INSERT_NODE.format( self.tree, self.identifier, self.name, self.description, self.cost, self.logistics_effect, self.marketing_effect, self.efficiency_effect ) def get_edge_insertion_commands(self): """Format SQL insertion commands with appropriate node edge information.""" commands = [] if self.targets[0] != -1: for target in self.targets: commands.append( INSERT_EDGE.format(self.tree, self.identifier, target) ) return commands def chunk(items, size): """Return chunks of a specified size of a list.""" for start in range(0, len(items), size): yield items[start:start + size] # Open a destination SQL script and write SQL commands to it. with open(SQL_SCRIPT, "w") as destination: destination.write(HEADER) # Add information from all provided plaintext files to the destination # SQL script. for arg in ARGS[1:]: destination.write("\n") # Open the source, parse it, create Node objects, and write insertion # commands for the destination SQL script. with open(arg, "r") as source: lines = [item for item in source.read().splitlines() if item is not ""] tree_id = lines.pop(0) nodes = [Node(tree_id, *parameters) for parameters in chunk(lines, 8)] for node in nodes: destination.write(node.get_node_insertion_command()) destination.write("\n") for node in nodes: destination.writelines(node.get_edge_insertion_commands()) # Add a footer at the end of the file. destination.write(FOOTER)
StarcoderdataPython
5186539
''' Lucky numbers are subset of integers. Rather than going into much theory, let us see the process of arriving at lucky numbers, Take the set of integers 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19,…… First, delete every second number, we get following reduced set. 1, 3, 5, 7, 9, 11, 13, 15, 17, 19,………… Now, delete every third number, we get 1, 3, 7, 9, 13, 15, 19,….…. Continue this process indefinitely…… Any number that does NOT get deleted due to above process is called “lucky”. ''' def isLucky(n, k = 2): if k > n: return 1 elif n%k == 0: return 0 return isLucky(n - n//k, k+1) def getMax(arr, curr_max = 1, n=5): if(len(arr) == n): prod = 1 for i in arr: prod *= i return prod if(len(arr) < n): return None return max(getMax(arr[1:], curr_max*arr[0], n-1), getMax(arr[1:], curr_max, n)) if __name__ == '__main__': # t=int(input()) # for tcs in range(t): # n=int(input()) # print(isLucky(n)) print(getMax([-1, -2, -3, 1, 2, -1]))
StarcoderdataPython
306709
# log21.Levels.py # CodeWriter21 import logging as _logging __all__ = ['CRITICAL', 'FATAL', 'ERROR', 'WARNING', 'WARN', 'INFO', 'DEBUG', 'NOTSET'] CRITICAL = _logging.CRITICAL FATAL = CRITICAL ERROR = _logging.ERROR WARNING = _logging.WARNING WARN = WARNING INFO = _logging.INFO DEBUG = _logging.DEBUG NOTSET = _logging.NOTSET
StarcoderdataPython
5197685
# coding:utf-8 from LxMaBasic import maBscCfg class KeyframeOp(maBscCfg.MaUtility): def __init__(self, rootStr): self._rootStr = rootStr
StarcoderdataPython
5140097
from mdal import Datasource, MDAL_DataLocation ds = Datasource("data/tuflowfv/withMaxes/trap_steady_05_3D.nc") mesh = ds.load() group = mesh.groups[1] a, b, c = group.volumetric(0) ds2 = Datasource("test_vol.ply") mesh2 = ds2.add_mesh() mesh2.vertices = mesh.vertices mesh2.faces = mesh.faces print(f"Vertex Count :{mesh.vertex_count}") print(f"Face Count : {mesh.face_count}") group2 = mesh2.add_group("test", location=MDAL_DataLocation.DataOnVolumes) group2.add_volumetric(group.data(), a, b) print(f"Level Count: {group2.level_count}") print(f"Location: {group2.location}") print(f"MinMax: {group2.minmax}") print(f"Dataset Count: {group2.dataset_count}") data = group2.data(0) print(f"Data Value Count: {len(data)}") print(f"{data}") print(f"{group2.volumetric(0)}") a, b, c = group2.volumetric(0) print(f"Number of Extrusion values : {len(b)}") mesh2.save() mesh3 = ds2.load() mesh3.info() group3 = mesh3.groups[1] print(f"{group3.location}") d, e, f = group3.volumetric(0) print(f"{group3.volumetric(0)}") print(f"{group3.data(0)}") print("Mesh Equality : {mesh2 == mesh3}")
StarcoderdataPython
5081403
<reponame>fpsantosx/DesenWeb<filename>SomarNumeros.py<gh_stars>0 def soma(n1, n2, n3): return n1+n2+n3 print(soma(5,6,7))
StarcoderdataPython
229775
from nose.plugins.skip import SkipTest from nose.tools import raises, assert_equal, assert_is, assert_list_equal from slivka.server.forms.fields import IntegerField, ValidationError, \ IntegerArrayField class TestValue: def setup(self): self.field = IntegerField("name") def test_int(self): assert_equal(self.field.validate(10), 10) assert_equal(self.field.validate(-8), -8) @raises(ValidationError) def test_float(self): self.field.validate(2.43) def test_int_str(self): assert_equal(self.field.validate('15'), 15) assert_equal(self.field.validate('-3'), -3) @raises(ValidationError) def test_decimal_str(self): self.field.validate('0.65') @raises(ValidationError) def test_invalid_str_conversion(self): self.field.validate('xyz') def test_none_optional(self): self.field.required = False assert_is(self.field.validate(None), None) @raises(ValidationError) def test_none_required(self): self.field.validate(None) def test_empty(self): self.field.required = False assert_is(self.field.validate(''), None) @raises(ValidationError) def test_true(self): self.field.validate(True) @raises(ValidationError) def test_false(self): self.field.validate(False) def test_zero(self): # checks if 0 is not accidentally converted to None or False assert_is(self.field.validate(0), 0) class TestBoundedValue: def setup(self): self.field = IntegerField("name", min=3, max=7) @raises(ValidationError) def test_validate_more_than_max(self): self.field.validate(8) def test_validate_equal_to_max(self): self.field.validate(7) @raises(ValidationError) def test_validate_less_than_min(self): self.field.validate(1) def test_validate_equal_to_min(self): self.field.validate(3) def test_validate_within_bounds(self): self.field.validate(5) # validation with default class TestDefault: def setup(self): raise SkipTest("default value substitution no longer applies") self.field = IntegerField("name", default=49, min=-1) def test_none(self): assert_equal(self.field.validate(None), 49) def test_zero_default(self): # make sure that default = 0 is not treated as undefined field = IntegerField('name', default=0) assert_equal(field.validate(None), 0) def test_empty(self): assert_equal(self.field.validate(''), 49) assert_equal(self.field.validate(()), 49) def test_valid(self): assert_equal(self.field.validate(1), 1) def test_valid_zero(self): # make sure that 0 is not treated as False assert_equal(self.field.validate(0), 0) @raises(ValidationError) def test_invalid(self): self.field.validate(-20) # multiple values validation def test_multiple_valid_values(): field = IntegerArrayField('name') assert_list_equal(field.validate([1, 2, 4, 8]), [1, 2, 4, 8]) assert_list_equal(field.validate(['1', 4, '6']), [1, 4, 6]) @raises(ValidationError) def test_multiple_invalid_value(): field = IntegerArrayField('name') field.validate([4, 5, 'a'])
StarcoderdataPython
3408185
<filename>pythonocc/lib/OCC/RWStepRepr.py # This file was automatically generated by SWIG (http://www.swig.org). # Version 2.0.10 # # Do not make changes to this file unless you know what you are doing--modify # the SWIG interface file instead. from sys import version_info if version_info >= (3,0,0): new_instancemethod = lambda func, inst, cls: _RWStepRepr.SWIG_PyInstanceMethod_New(func) else: from new import instancemethod as new_instancemethod if version_info >= (2,6,0): def swig_import_helper(): from os.path import dirname import imp fp = None try: fp, pathname, description = imp.find_module('_RWStepRepr', [dirname(__file__)]) except ImportError: import _RWStepRepr return _RWStepRepr if fp is not None: try: _mod = imp.load_module('_RWStepRepr', fp, pathname, description) finally: fp.close() return _mod _RWStepRepr = swig_import_helper() del swig_import_helper else: import _RWStepRepr del version_info try: _swig_property = property except NameError: pass # Python < 2.2 doesn't have 'property'. def _swig_setattr_nondynamic(self,class_type,name,value,static=1): if (name == "thisown"): return self.this.own(value) if (name == "this"): if type(value).__name__ == 'SwigPyObject': self.__dict__[name] = value return method = class_type.__swig_setmethods__.get(name,None) if method: return method(self,value) if (not static): self.__dict__[name] = value else: raise AttributeError("You cannot add attributes to %s" % self) def _swig_setattr(self,class_type,name,value): return _swig_setattr_nondynamic(self,class_type,name,value,0) def _swig_getattr(self,class_type,name): if (name == "thisown"): return self.this.own() method = class_type.__swig_getmethods__.get(name,None) if method: return method(self) raise AttributeError(name) def _swig_repr(self): try: strthis = "proxy of " + self.this.__repr__() except: strthis = "" return "<%s.%s; %s >" % (self.__class__.__module__, self.__class__.__name__, strthis,) try: _object = object _newclass = 1 except AttributeError: class _object : pass _newclass = 0 def _swig_setattr_nondynamic_method(set): def set_attr(self,name,value): if (name == "thisown"): return self.this.own(value) if hasattr(self,name) or (name == "this"): set(self,name,value) else: raise AttributeError("You cannot add attributes to %s" % self) return set_attr class SwigPyIterator(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') def __init__(self, *args, **kwargs): raise AttributeError("No constructor defined - class is abstract") __repr__ = _swig_repr __swig_destroy__ = _RWStepRepr.delete_SwigPyIterator def __iter__(self): return self SwigPyIterator.value = new_instancemethod(_RWStepRepr.SwigPyIterator_value,None,SwigPyIterator) SwigPyIterator.incr = new_instancemethod(_RWStepRepr.SwigPyIterator_incr,None,SwigPyIterator) SwigPyIterator.decr = new_instancemethod(_RWStepRepr.SwigPyIterator_decr,None,SwigPyIterator) SwigPyIterator.distance = new_instancemethod(_RWStepRepr.SwigPyIterator_distance,None,SwigPyIterator) SwigPyIterator.equal = new_instancemethod(_RWStepRepr.SwigPyIterator_equal,None,SwigPyIterator) SwigPyIterator.copy = new_instancemethod(_RWStepRepr.SwigPyIterator_copy,None,SwigPyIterator) SwigPyIterator.next = new_instancemethod(_RWStepRepr.SwigPyIterator_next,None,SwigPyIterator) SwigPyIterator.__next__ = new_instancemethod(_RWStepRepr.SwigPyIterator___next__,None,SwigPyIterator) SwigPyIterator.previous = new_instancemethod(_RWStepRepr.SwigPyIterator_previous,None,SwigPyIterator) SwigPyIterator.advance = new_instancemethod(_RWStepRepr.SwigPyIterator_advance,None,SwigPyIterator) SwigPyIterator.__eq__ = new_instancemethod(_RWStepRepr.SwigPyIterator___eq__,None,SwigPyIterator) SwigPyIterator.__ne__ = new_instancemethod(_RWStepRepr.SwigPyIterator___ne__,None,SwigPyIterator) SwigPyIterator.__iadd__ = new_instancemethod(_RWStepRepr.SwigPyIterator___iadd__,None,SwigPyIterator) SwigPyIterator.__isub__ = new_instancemethod(_RWStepRepr.SwigPyIterator___isub__,None,SwigPyIterator) SwigPyIterator.__add__ = new_instancemethod(_RWStepRepr.SwigPyIterator___add__,None,SwigPyIterator) SwigPyIterator.__sub__ = new_instancemethod(_RWStepRepr.SwigPyIterator___sub__,None,SwigPyIterator) SwigPyIterator_swigregister = _RWStepRepr.SwigPyIterator_swigregister SwigPyIterator_swigregister(SwigPyIterator) import OCC.Standard import OCC.Interface import OCC.TCollection import OCC.MMgt import OCC.TColStd import OCC.Message import OCC.StepRepr import OCC.StepBasic def register_handle(handle, base_object): """ Inserts the handle into the base object to prevent memory corruption in certain cases """ try: if base_object.IsKind("Standard_Transient"): base_object.thisHandle = handle base_object.thisown = False except: pass class RWStepRepr_RWAssemblyComponentUsage(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_swiginit(self,_RWStepRepr.new_RWStepRepr_RWAssemblyComponentUsage(*args)) def ReadStep(self, *args): """ * Reads AssemblyComponentUsage :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsage & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes AssemblyComponentUsage :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsage & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsage & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWAssemblyComponentUsage RWStepRepr_RWAssemblyComponentUsage.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_ReadStep,None,RWStepRepr_RWAssemblyComponentUsage) RWStepRepr_RWAssemblyComponentUsage.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_WriteStep,None,RWStepRepr_RWAssemblyComponentUsage) RWStepRepr_RWAssemblyComponentUsage.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_Share,None,RWStepRepr_RWAssemblyComponentUsage) RWStepRepr_RWAssemblyComponentUsage_swigregister = _RWStepRepr.RWStepRepr_RWAssemblyComponentUsage_swigregister RWStepRepr_RWAssemblyComponentUsage_swigregister(RWStepRepr_RWAssemblyComponentUsage) class RWStepRepr_RWAssemblyComponentUsageSubstitute(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_swiginit(self,_RWStepRepr.new_RWStepRepr_RWAssemblyComponentUsageSubstitute(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsageSubstitute & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsageSubstitute & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_AssemblyComponentUsageSubstitute & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWAssemblyComponentUsageSubstitute RWStepRepr_RWAssemblyComponentUsageSubstitute.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_ReadStep,None,RWStepRepr_RWAssemblyComponentUsageSubstitute) RWStepRepr_RWAssemblyComponentUsageSubstitute.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_WriteStep,None,RWStepRepr_RWAssemblyComponentUsageSubstitute) RWStepRepr_RWAssemblyComponentUsageSubstitute.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_Share,None,RWStepRepr_RWAssemblyComponentUsageSubstitute) RWStepRepr_RWAssemblyComponentUsageSubstitute_swigregister = _RWStepRepr.RWStepRepr_RWAssemblyComponentUsageSubstitute_swigregister RWStepRepr_RWAssemblyComponentUsageSubstitute_swigregister(RWStepRepr_RWAssemblyComponentUsageSubstitute) class RWStepRepr_RWCompositeShapeAspect(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWCompositeShapeAspect_swiginit(self,_RWStepRepr.new_RWStepRepr_RWCompositeShapeAspect(*args)) def ReadStep(self, *args): """ * Reads CompositeShapeAspect :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_CompositeShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompositeShapeAspect_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes CompositeShapeAspect :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_CompositeShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompositeShapeAspect_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_CompositeShapeAspect & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompositeShapeAspect_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWCompositeShapeAspect RWStepRepr_RWCompositeShapeAspect.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompositeShapeAspect_ReadStep,None,RWStepRepr_RWCompositeShapeAspect) RWStepRepr_RWCompositeShapeAspect.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompositeShapeAspect_WriteStep,None,RWStepRepr_RWCompositeShapeAspect) RWStepRepr_RWCompositeShapeAspect.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompositeShapeAspect_Share,None,RWStepRepr_RWCompositeShapeAspect) RWStepRepr_RWCompositeShapeAspect_swigregister = _RWStepRepr.RWStepRepr_RWCompositeShapeAspect_swigregister RWStepRepr_RWCompositeShapeAspect_swigregister(RWStepRepr_RWCompositeShapeAspect) class RWStepRepr_RWCompoundRepresentationItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWCompoundRepresentationItem(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_CompoundRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_CompoundRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_CompoundRepresentationItem & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWCompoundRepresentationItem RWStepRepr_RWCompoundRepresentationItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_ReadStep,None,RWStepRepr_RWCompoundRepresentationItem) RWStepRepr_RWCompoundRepresentationItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_WriteStep,None,RWStepRepr_RWCompoundRepresentationItem) RWStepRepr_RWCompoundRepresentationItem.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_Share,None,RWStepRepr_RWCompoundRepresentationItem) RWStepRepr_RWCompoundRepresentationItem_swigregister = _RWStepRepr.RWStepRepr_RWCompoundRepresentationItem_swigregister RWStepRepr_RWCompoundRepresentationItem_swigregister(RWStepRepr_RWCompoundRepresentationItem) class RWStepRepr_RWConfigurationDesign(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWConfigurationDesign_swiginit(self,_RWStepRepr.new_RWStepRepr_RWConfigurationDesign(*args)) def ReadStep(self, *args): """ * Reads ConfigurationDesign :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ConfigurationDesign & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationDesign_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ConfigurationDesign :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ConfigurationDesign & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationDesign_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ConfigurationDesign & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationDesign_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWConfigurationDesign RWStepRepr_RWConfigurationDesign.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationDesign_ReadStep,None,RWStepRepr_RWConfigurationDesign) RWStepRepr_RWConfigurationDesign.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationDesign_WriteStep,None,RWStepRepr_RWConfigurationDesign) RWStepRepr_RWConfigurationDesign.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationDesign_Share,None,RWStepRepr_RWConfigurationDesign) RWStepRepr_RWConfigurationDesign_swigregister = _RWStepRepr.RWStepRepr_RWConfigurationDesign_swigregister RWStepRepr_RWConfigurationDesign_swigregister(RWStepRepr_RWConfigurationDesign) class RWStepRepr_RWConfigurationEffectivity(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWConfigurationEffectivity_swiginit(self,_RWStepRepr.new_RWStepRepr_RWConfigurationEffectivity(*args)) def ReadStep(self, *args): """ * Reads ConfigurationEffectivity :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ConfigurationEffectivity & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationEffectivity_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ConfigurationEffectivity :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ConfigurationEffectivity & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationEffectivity_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ConfigurationEffectivity & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationEffectivity_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWConfigurationEffectivity RWStepRepr_RWConfigurationEffectivity.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationEffectivity_ReadStep,None,RWStepRepr_RWConfigurationEffectivity) RWStepRepr_RWConfigurationEffectivity.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationEffectivity_WriteStep,None,RWStepRepr_RWConfigurationEffectivity) RWStepRepr_RWConfigurationEffectivity.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationEffectivity_Share,None,RWStepRepr_RWConfigurationEffectivity) RWStepRepr_RWConfigurationEffectivity_swigregister = _RWStepRepr.RWStepRepr_RWConfigurationEffectivity_swigregister RWStepRepr_RWConfigurationEffectivity_swigregister(RWStepRepr_RWConfigurationEffectivity) class RWStepRepr_RWConfigurationItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWConfigurationItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWConfigurationItem(*args)) def ReadStep(self, *args): """ * Reads ConfigurationItem :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ConfigurationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationItem_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ConfigurationItem :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ConfigurationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationItem_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ConfigurationItem & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWConfigurationItem_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWConfigurationItem RWStepRepr_RWConfigurationItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationItem_ReadStep,None,RWStepRepr_RWConfigurationItem) RWStepRepr_RWConfigurationItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationItem_WriteStep,None,RWStepRepr_RWConfigurationItem) RWStepRepr_RWConfigurationItem.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWConfigurationItem_Share,None,RWStepRepr_RWConfigurationItem) RWStepRepr_RWConfigurationItem_swigregister = _RWStepRepr.RWStepRepr_RWConfigurationItem_swigregister RWStepRepr_RWConfigurationItem_swigregister(RWStepRepr_RWConfigurationItem) class RWStepRepr_RWDataEnvironment(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWDataEnvironment_swiginit(self,_RWStepRepr.new_RWStepRepr_RWDataEnvironment(*args)) def ReadStep(self, *args): """ * Reads DataEnvironment :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_DataEnvironment & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDataEnvironment_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes DataEnvironment :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_DataEnvironment & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDataEnvironment_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_DataEnvironment & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDataEnvironment_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWDataEnvironment RWStepRepr_RWDataEnvironment.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDataEnvironment_ReadStep,None,RWStepRepr_RWDataEnvironment) RWStepRepr_RWDataEnvironment.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDataEnvironment_WriteStep,None,RWStepRepr_RWDataEnvironment) RWStepRepr_RWDataEnvironment.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWDataEnvironment_Share,None,RWStepRepr_RWDataEnvironment) RWStepRepr_RWDataEnvironment_swigregister = _RWStepRepr.RWStepRepr_RWDataEnvironment_swigregister RWStepRepr_RWDataEnvironment_swigregister(RWStepRepr_RWDataEnvironment) class RWStepRepr_RWDefinitionalRepresentation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWDefinitionalRepresentation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_DefinitionalRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_DefinitionalRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_DefinitionalRepresentation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWDefinitionalRepresentation RWStepRepr_RWDefinitionalRepresentation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_ReadStep,None,RWStepRepr_RWDefinitionalRepresentation) RWStepRepr_RWDefinitionalRepresentation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_WriteStep,None,RWStepRepr_RWDefinitionalRepresentation) RWStepRepr_RWDefinitionalRepresentation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_Share,None,RWStepRepr_RWDefinitionalRepresentation) RWStepRepr_RWDefinitionalRepresentation_swigregister = _RWStepRepr.RWStepRepr_RWDefinitionalRepresentation_swigregister RWStepRepr_RWDefinitionalRepresentation_swigregister(RWStepRepr_RWDefinitionalRepresentation) class RWStepRepr_RWDerivedShapeAspect(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWDerivedShapeAspect_swiginit(self,_RWStepRepr.new_RWStepRepr_RWDerivedShapeAspect(*args)) def ReadStep(self, *args): """ * Reads DerivedShapeAspect :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_DerivedShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDerivedShapeAspect_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes DerivedShapeAspect :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_DerivedShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDerivedShapeAspect_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_DerivedShapeAspect & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDerivedShapeAspect_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWDerivedShapeAspect RWStepRepr_RWDerivedShapeAspect.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDerivedShapeAspect_ReadStep,None,RWStepRepr_RWDerivedShapeAspect) RWStepRepr_RWDerivedShapeAspect.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDerivedShapeAspect_WriteStep,None,RWStepRepr_RWDerivedShapeAspect) RWStepRepr_RWDerivedShapeAspect.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWDerivedShapeAspect_Share,None,RWStepRepr_RWDerivedShapeAspect) RWStepRepr_RWDerivedShapeAspect_swigregister = _RWStepRepr.RWStepRepr_RWDerivedShapeAspect_swigregister RWStepRepr_RWDerivedShapeAspect_swigregister(RWStepRepr_RWDerivedShapeAspect) class RWStepRepr_RWDescriptiveRepresentationItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWDescriptiveRepresentationItem(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_DescriptiveRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_DescriptiveRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWDescriptiveRepresentationItem RWStepRepr_RWDescriptiveRepresentationItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_ReadStep,None,RWStepRepr_RWDescriptiveRepresentationItem) RWStepRepr_RWDescriptiveRepresentationItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_WriteStep,None,RWStepRepr_RWDescriptiveRepresentationItem) RWStepRepr_RWDescriptiveRepresentationItem_swigregister = _RWStepRepr.RWStepRepr_RWDescriptiveRepresentationItem_swigregister RWStepRepr_RWDescriptiveRepresentationItem_swigregister(RWStepRepr_RWDescriptiveRepresentationItem) class RWStepRepr_RWExtension(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWExtension_swiginit(self,_RWStepRepr.new_RWStepRepr_RWExtension(*args)) def ReadStep(self, *args): """ * Reads Extension :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_Extension & :rtype: None """ return _RWStepRepr.RWStepRepr_RWExtension_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes Extension :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_Extension & :rtype: None """ return _RWStepRepr.RWStepRepr_RWExtension_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_Extension & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWExtension_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWExtension RWStepRepr_RWExtension.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWExtension_ReadStep,None,RWStepRepr_RWExtension) RWStepRepr_RWExtension.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWExtension_WriteStep,None,RWStepRepr_RWExtension) RWStepRepr_RWExtension.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWExtension_Share,None,RWStepRepr_RWExtension) RWStepRepr_RWExtension_swigregister = _RWStepRepr.RWStepRepr_RWExtension_swigregister RWStepRepr_RWExtension_swigregister(RWStepRepr_RWExtension) class RWStepRepr_RWFunctionallyDefinedTransformation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWFunctionallyDefinedTransformation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_FunctionallyDefinedTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_FunctionallyDefinedTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWFunctionallyDefinedTransformation RWStepRepr_RWFunctionallyDefinedTransformation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_ReadStep,None,RWStepRepr_RWFunctionallyDefinedTransformation) RWStepRepr_RWFunctionallyDefinedTransformation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_WriteStep,None,RWStepRepr_RWFunctionallyDefinedTransformation) RWStepRepr_RWFunctionallyDefinedTransformation_swigregister = _RWStepRepr.RWStepRepr_RWFunctionallyDefinedTransformation_swigregister RWStepRepr_RWFunctionallyDefinedTransformation_swigregister(RWStepRepr_RWFunctionallyDefinedTransformation) class RWStepRepr_RWGlobalUncertaintyAssignedContext(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_swiginit(self,_RWStepRepr.new_RWStepRepr_RWGlobalUncertaintyAssignedContext(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_GlobalUncertaintyAssignedContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_GlobalUncertaintyAssignedContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_GlobalUncertaintyAssignedContext & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWGlobalUncertaintyAssignedContext RWStepRepr_RWGlobalUncertaintyAssignedContext.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_ReadStep,None,RWStepRepr_RWGlobalUncertaintyAssignedContext) RWStepRepr_RWGlobalUncertaintyAssignedContext.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_WriteStep,None,RWStepRepr_RWGlobalUncertaintyAssignedContext) RWStepRepr_RWGlobalUncertaintyAssignedContext.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_Share,None,RWStepRepr_RWGlobalUncertaintyAssignedContext) RWStepRepr_RWGlobalUncertaintyAssignedContext_swigregister = _RWStepRepr.RWStepRepr_RWGlobalUncertaintyAssignedContext_swigregister RWStepRepr_RWGlobalUncertaintyAssignedContext_swigregister(RWStepRepr_RWGlobalUncertaintyAssignedContext) class RWStepRepr_RWGlobalUnitAssignedContext(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_swiginit(self,_RWStepRepr.new_RWStepRepr_RWGlobalUnitAssignedContext(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_GlobalUnitAssignedContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_GlobalUnitAssignedContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_GlobalUnitAssignedContext & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWGlobalUnitAssignedContext RWStepRepr_RWGlobalUnitAssignedContext.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_ReadStep,None,RWStepRepr_RWGlobalUnitAssignedContext) RWStepRepr_RWGlobalUnitAssignedContext.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_WriteStep,None,RWStepRepr_RWGlobalUnitAssignedContext) RWStepRepr_RWGlobalUnitAssignedContext.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_Share,None,RWStepRepr_RWGlobalUnitAssignedContext) RWStepRepr_RWGlobalUnitAssignedContext_swigregister = _RWStepRepr.RWStepRepr_RWGlobalUnitAssignedContext_swigregister RWStepRepr_RWGlobalUnitAssignedContext_swigregister(RWStepRepr_RWGlobalUnitAssignedContext) class RWStepRepr_RWItemDefinedTransformation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWItemDefinedTransformation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWItemDefinedTransformation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ItemDefinedTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWItemDefinedTransformation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ItemDefinedTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWItemDefinedTransformation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_ItemDefinedTransformation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWItemDefinedTransformation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWItemDefinedTransformation RWStepRepr_RWItemDefinedTransformation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWItemDefinedTransformation_ReadStep,None,RWStepRepr_RWItemDefinedTransformation) RWStepRepr_RWItemDefinedTransformation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWItemDefinedTransformation_WriteStep,None,RWStepRepr_RWItemDefinedTransformation) RWStepRepr_RWItemDefinedTransformation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWItemDefinedTransformation_Share,None,RWStepRepr_RWItemDefinedTransformation) RWStepRepr_RWItemDefinedTransformation_swigregister = _RWStepRepr.RWStepRepr_RWItemDefinedTransformation_swigregister RWStepRepr_RWItemDefinedTransformation_swigregister(RWStepRepr_RWItemDefinedTransformation) class RWStepRepr_RWMakeFromUsageOption(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWMakeFromUsageOption_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMakeFromUsageOption(*args)) def ReadStep(self, *args): """ * Reads MakeFromUsageOption :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MakeFromUsageOption & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMakeFromUsageOption_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes MakeFromUsageOption :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MakeFromUsageOption & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMakeFromUsageOption_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_MakeFromUsageOption & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMakeFromUsageOption_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMakeFromUsageOption RWStepRepr_RWMakeFromUsageOption.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMakeFromUsageOption_ReadStep,None,RWStepRepr_RWMakeFromUsageOption) RWStepRepr_RWMakeFromUsageOption.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMakeFromUsageOption_WriteStep,None,RWStepRepr_RWMakeFromUsageOption) RWStepRepr_RWMakeFromUsageOption.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMakeFromUsageOption_Share,None,RWStepRepr_RWMakeFromUsageOption) RWStepRepr_RWMakeFromUsageOption_swigregister = _RWStepRepr.RWStepRepr_RWMakeFromUsageOption_swigregister RWStepRepr_RWMakeFromUsageOption_swigregister(RWStepRepr_RWMakeFromUsageOption) class RWStepRepr_RWMappedItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWMappedItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMappedItem(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MappedItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMappedItem_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MappedItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMappedItem_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_MappedItem & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMappedItem_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMappedItem RWStepRepr_RWMappedItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMappedItem_ReadStep,None,RWStepRepr_RWMappedItem) RWStepRepr_RWMappedItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMappedItem_WriteStep,None,RWStepRepr_RWMappedItem) RWStepRepr_RWMappedItem.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMappedItem_Share,None,RWStepRepr_RWMappedItem) RWStepRepr_RWMappedItem_swigregister = _RWStepRepr.RWStepRepr_RWMappedItem_swigregister RWStepRepr_RWMappedItem_swigregister(RWStepRepr_RWMappedItem) class RWStepRepr_RWMaterialDesignation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWMaterialDesignation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMaterialDesignation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MaterialDesignation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialDesignation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MaterialDesignation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialDesignation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_MaterialDesignation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialDesignation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMaterialDesignation RWStepRepr_RWMaterialDesignation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialDesignation_ReadStep,None,RWStepRepr_RWMaterialDesignation) RWStepRepr_RWMaterialDesignation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialDesignation_WriteStep,None,RWStepRepr_RWMaterialDesignation) RWStepRepr_RWMaterialDesignation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialDesignation_Share,None,RWStepRepr_RWMaterialDesignation) RWStepRepr_RWMaterialDesignation_swigregister = _RWStepRepr.RWStepRepr_RWMaterialDesignation_swigregister RWStepRepr_RWMaterialDesignation_swigregister(RWStepRepr_RWMaterialDesignation) class RWStepRepr_RWMaterialProperty(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWMaterialProperty_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMaterialProperty(*args)) def ReadStep(self, *args): """ * Reads MaterialProperty :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MaterialProperty & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialProperty_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes MaterialProperty :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MaterialProperty & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialProperty_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_MaterialProperty & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialProperty_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMaterialProperty RWStepRepr_RWMaterialProperty.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialProperty_ReadStep,None,RWStepRepr_RWMaterialProperty) RWStepRepr_RWMaterialProperty.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialProperty_WriteStep,None,RWStepRepr_RWMaterialProperty) RWStepRepr_RWMaterialProperty.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialProperty_Share,None,RWStepRepr_RWMaterialProperty) RWStepRepr_RWMaterialProperty_swigregister = _RWStepRepr.RWStepRepr_RWMaterialProperty_swigregister RWStepRepr_RWMaterialProperty_swigregister(RWStepRepr_RWMaterialProperty) class RWStepRepr_RWMaterialPropertyRepresentation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMaterialPropertyRepresentation(*args)) def ReadStep(self, *args): """ * Reads MaterialPropertyRepresentation :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MaterialPropertyRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes MaterialPropertyRepresentation :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MaterialPropertyRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_MaterialPropertyRepresentation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMaterialPropertyRepresentation RWStepRepr_RWMaterialPropertyRepresentation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_ReadStep,None,RWStepRepr_RWMaterialPropertyRepresentation) RWStepRepr_RWMaterialPropertyRepresentation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_WriteStep,None,RWStepRepr_RWMaterialPropertyRepresentation) RWStepRepr_RWMaterialPropertyRepresentation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_Share,None,RWStepRepr_RWMaterialPropertyRepresentation) RWStepRepr_RWMaterialPropertyRepresentation_swigregister = _RWStepRepr.RWStepRepr_RWMaterialPropertyRepresentation_swigregister RWStepRepr_RWMaterialPropertyRepresentation_swigregister(RWStepRepr_RWMaterialPropertyRepresentation) class RWStepRepr_RWMeasureRepresentationItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWMeasureRepresentationItem(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_MeasureRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_MeasureRepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_MeasureRepresentationItem & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWMeasureRepresentationItem RWStepRepr_RWMeasureRepresentationItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_ReadStep,None,RWStepRepr_RWMeasureRepresentationItem) RWStepRepr_RWMeasureRepresentationItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_WriteStep,None,RWStepRepr_RWMeasureRepresentationItem) RWStepRepr_RWMeasureRepresentationItem.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_Share,None,RWStepRepr_RWMeasureRepresentationItem) RWStepRepr_RWMeasureRepresentationItem_swigregister = _RWStepRepr.RWStepRepr_RWMeasureRepresentationItem_swigregister RWStepRepr_RWMeasureRepresentationItem_swigregister(RWStepRepr_RWMeasureRepresentationItem) class RWStepRepr_RWParametricRepresentationContext(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWParametricRepresentationContext_swiginit(self,_RWStepRepr.new_RWStepRepr_RWParametricRepresentationContext(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ParametricRepresentationContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWParametricRepresentationContext_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ParametricRepresentationContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWParametricRepresentationContext_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWParametricRepresentationContext RWStepRepr_RWParametricRepresentationContext.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWParametricRepresentationContext_ReadStep,None,RWStepRepr_RWParametricRepresentationContext) RWStepRepr_RWParametricRepresentationContext.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWParametricRepresentationContext_WriteStep,None,RWStepRepr_RWParametricRepresentationContext) RWStepRepr_RWParametricRepresentationContext_swigregister = _RWStepRepr.RWStepRepr_RWParametricRepresentationContext_swigregister RWStepRepr_RWParametricRepresentationContext_swigregister(RWStepRepr_RWParametricRepresentationContext) class RWStepRepr_RWProductConcept(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWProductConcept_swiginit(self,_RWStepRepr.new_RWStepRepr_RWProductConcept(*args)) def ReadStep(self, *args): """ * Reads ProductConcept :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ProductConcept & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductConcept_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ProductConcept :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ProductConcept & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductConcept_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ProductConcept & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductConcept_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWProductConcept RWStepRepr_RWProductConcept.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductConcept_ReadStep,None,RWStepRepr_RWProductConcept) RWStepRepr_RWProductConcept.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductConcept_WriteStep,None,RWStepRepr_RWProductConcept) RWStepRepr_RWProductConcept.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductConcept_Share,None,RWStepRepr_RWProductConcept) RWStepRepr_RWProductConcept_swigregister = _RWStepRepr.RWStepRepr_RWProductConcept_swigregister RWStepRepr_RWProductConcept_swigregister(RWStepRepr_RWProductConcept) class RWStepRepr_RWProductDefinitionShape(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWProductDefinitionShape_swiginit(self,_RWStepRepr.new_RWStepRepr_RWProductDefinitionShape(*args)) def ReadStep(self, *args): """ * Reads ProductDefinitionShape :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ProductDefinitionShape & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductDefinitionShape_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ProductDefinitionShape :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ProductDefinitionShape & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductDefinitionShape_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ProductDefinitionShape & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWProductDefinitionShape_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWProductDefinitionShape RWStepRepr_RWProductDefinitionShape.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductDefinitionShape_ReadStep,None,RWStepRepr_RWProductDefinitionShape) RWStepRepr_RWProductDefinitionShape.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductDefinitionShape_WriteStep,None,RWStepRepr_RWProductDefinitionShape) RWStepRepr_RWProductDefinitionShape.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWProductDefinitionShape_Share,None,RWStepRepr_RWProductDefinitionShape) RWStepRepr_RWProductDefinitionShape_swigregister = _RWStepRepr.RWStepRepr_RWProductDefinitionShape_swigregister RWStepRepr_RWProductDefinitionShape_swigregister(RWStepRepr_RWProductDefinitionShape) class RWStepRepr_RWPropertyDefinition(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWPropertyDefinition_swiginit(self,_RWStepRepr.new_RWStepRepr_RWPropertyDefinition(*args)) def ReadStep(self, *args): """ * Reads PropertyDefinition :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_PropertyDefinition & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinition_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes PropertyDefinition :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_PropertyDefinition & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinition_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_PropertyDefinition & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinition_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWPropertyDefinition RWStepRepr_RWPropertyDefinition.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinition_ReadStep,None,RWStepRepr_RWPropertyDefinition) RWStepRepr_RWPropertyDefinition.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinition_WriteStep,None,RWStepRepr_RWPropertyDefinition) RWStepRepr_RWPropertyDefinition.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinition_Share,None,RWStepRepr_RWPropertyDefinition) RWStepRepr_RWPropertyDefinition_swigregister = _RWStepRepr.RWStepRepr_RWPropertyDefinition_swigregister RWStepRepr_RWPropertyDefinition_swigregister(RWStepRepr_RWPropertyDefinition) class RWStepRepr_RWPropertyDefinitionRelationship(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_swiginit(self,_RWStepRepr.new_RWStepRepr_RWPropertyDefinitionRelationship(*args)) def ReadStep(self, *args): """ * Reads PropertyDefinitionRelationship :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes PropertyDefinitionRelationship :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRelationship & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWPropertyDefinitionRelationship RWStepRepr_RWPropertyDefinitionRelationship.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_ReadStep,None,RWStepRepr_RWPropertyDefinitionRelationship) RWStepRepr_RWPropertyDefinitionRelationship.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_WriteStep,None,RWStepRepr_RWPropertyDefinitionRelationship) RWStepRepr_RWPropertyDefinitionRelationship.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_Share,None,RWStepRepr_RWPropertyDefinitionRelationship) RWStepRepr_RWPropertyDefinitionRelationship_swigregister = _RWStepRepr.RWStepRepr_RWPropertyDefinitionRelationship_swigregister RWStepRepr_RWPropertyDefinitionRelationship_swigregister(RWStepRepr_RWPropertyDefinitionRelationship) class RWStepRepr_RWPropertyDefinitionRepresentation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWPropertyDefinitionRepresentation(*args)) def ReadStep(self, *args): """ * Reads PropertyDefinitionRepresentation :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes PropertyDefinitionRepresentation :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_PropertyDefinitionRepresentation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWPropertyDefinitionRepresentation RWStepRepr_RWPropertyDefinitionRepresentation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_ReadStep,None,RWStepRepr_RWPropertyDefinitionRepresentation) RWStepRepr_RWPropertyDefinitionRepresentation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_WriteStep,None,RWStepRepr_RWPropertyDefinitionRepresentation) RWStepRepr_RWPropertyDefinitionRepresentation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_Share,None,RWStepRepr_RWPropertyDefinitionRepresentation) RWStepRepr_RWPropertyDefinitionRepresentation_swigregister = _RWStepRepr.RWStepRepr_RWPropertyDefinitionRepresentation_swigregister RWStepRepr_RWPropertyDefinitionRepresentation_swigregister(RWStepRepr_RWPropertyDefinitionRepresentation) class RWStepRepr_RWQuantifiedAssemblyComponentUsage(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_swiginit(self,_RWStepRepr.new_RWStepRepr_RWQuantifiedAssemblyComponentUsage(*args)) def ReadStep(self, *args): """ * Reads QuantifiedAssemblyComponentUsage :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_QuantifiedAssemblyComponentUsage & :rtype: None """ return _RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes QuantifiedAssemblyComponentUsage :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_QuantifiedAssemblyComponentUsage & :rtype: None """ return _RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_QuantifiedAssemblyComponentUsage & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWQuantifiedAssemblyComponentUsage RWStepRepr_RWQuantifiedAssemblyComponentUsage.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_ReadStep,None,RWStepRepr_RWQuantifiedAssemblyComponentUsage) RWStepRepr_RWQuantifiedAssemblyComponentUsage.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_WriteStep,None,RWStepRepr_RWQuantifiedAssemblyComponentUsage) RWStepRepr_RWQuantifiedAssemblyComponentUsage.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_Share,None,RWStepRepr_RWQuantifiedAssemblyComponentUsage) RWStepRepr_RWQuantifiedAssemblyComponentUsage_swigregister = _RWStepRepr.RWStepRepr_RWQuantifiedAssemblyComponentUsage_swigregister RWStepRepr_RWQuantifiedAssemblyComponentUsage_swigregister(RWStepRepr_RWQuantifiedAssemblyComponentUsage) class RWStepRepr_RWReprItemAndLengthMeasureWithUnit(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_swiginit(self,_RWStepRepr.new_RWStepRepr_RWReprItemAndLengthMeasureWithUnit(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ReprItemAndLengthMeasureWithUnit & :rtype: None """ return _RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ReprItemAndLengthMeasureWithUnit & :rtype: None """ return _RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWReprItemAndLengthMeasureWithUnit RWStepRepr_RWReprItemAndLengthMeasureWithUnit.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_ReadStep,None,RWStepRepr_RWReprItemAndLengthMeasureWithUnit) RWStepRepr_RWReprItemAndLengthMeasureWithUnit.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_WriteStep,None,RWStepRepr_RWReprItemAndLengthMeasureWithUnit) RWStepRepr_RWReprItemAndLengthMeasureWithUnit_swigregister = _RWStepRepr.RWStepRepr_RWReprItemAndLengthMeasureWithUnit_swigregister RWStepRepr_RWReprItemAndLengthMeasureWithUnit_swigregister(RWStepRepr_RWReprItemAndLengthMeasureWithUnit) class RWStepRepr_RWRepresentation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_Representation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_Representation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_Representation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentation RWStepRepr_RWRepresentation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentation_ReadStep,None,RWStepRepr_RWRepresentation) RWStepRepr_RWRepresentation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentation_WriteStep,None,RWStepRepr_RWRepresentation) RWStepRepr_RWRepresentation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentation_Share,None,RWStepRepr_RWRepresentation) RWStepRepr_RWRepresentation_swigregister = _RWStepRepr.RWStepRepr_RWRepresentation_swigregister RWStepRepr_RWRepresentation_swigregister(RWStepRepr_RWRepresentation) class RWStepRepr_RWRepresentationContext(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentationContext_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentationContext(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_RepresentationContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationContext_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_RepresentationContext & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationContext_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentationContext RWStepRepr_RWRepresentationContext.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationContext_ReadStep,None,RWStepRepr_RWRepresentationContext) RWStepRepr_RWRepresentationContext.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationContext_WriteStep,None,RWStepRepr_RWRepresentationContext) RWStepRepr_RWRepresentationContext_swigregister = _RWStepRepr.RWStepRepr_RWRepresentationContext_swigregister RWStepRepr_RWRepresentationContext_swigregister(RWStepRepr_RWRepresentationContext) class RWStepRepr_RWRepresentationItem(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentationItem_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentationItem(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_RepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationItem_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_RepresentationItem & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationItem_WriteStep(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentationItem RWStepRepr_RWRepresentationItem.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationItem_ReadStep,None,RWStepRepr_RWRepresentationItem) RWStepRepr_RWRepresentationItem.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationItem_WriteStep,None,RWStepRepr_RWRepresentationItem) RWStepRepr_RWRepresentationItem_swigregister = _RWStepRepr.RWStepRepr_RWRepresentationItem_swigregister RWStepRepr_RWRepresentationItem_swigregister(RWStepRepr_RWRepresentationItem) class RWStepRepr_RWRepresentationMap(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentationMap_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentationMap(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_RepresentationMap & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationMap_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_RepresentationMap & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationMap_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_RepresentationMap & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationMap_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentationMap RWStepRepr_RWRepresentationMap.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationMap_ReadStep,None,RWStepRepr_RWRepresentationMap) RWStepRepr_RWRepresentationMap.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationMap_WriteStep,None,RWStepRepr_RWRepresentationMap) RWStepRepr_RWRepresentationMap.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationMap_Share,None,RWStepRepr_RWRepresentationMap) RWStepRepr_RWRepresentationMap_swigregister = _RWStepRepr.RWStepRepr_RWRepresentationMap_swigregister RWStepRepr_RWRepresentationMap_swigregister(RWStepRepr_RWRepresentationMap) class RWStepRepr_RWRepresentationRelationship(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentationRelationship_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentationRelationship(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_RepresentationRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationship_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_RepresentationRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationship_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_RepresentationRelationship & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationship_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentationRelationship RWStepRepr_RWRepresentationRelationship.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationship_ReadStep,None,RWStepRepr_RWRepresentationRelationship) RWStepRepr_RWRepresentationRelationship.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationship_WriteStep,None,RWStepRepr_RWRepresentationRelationship) RWStepRepr_RWRepresentationRelationship.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationship_Share,None,RWStepRepr_RWRepresentationRelationship) RWStepRepr_RWRepresentationRelationship_swigregister = _RWStepRepr.RWStepRepr_RWRepresentationRelationship_swigregister RWStepRepr_RWRepresentationRelationship_swigregister(RWStepRepr_RWRepresentationRelationship) class RWStepRepr_RWRepresentationRelationshipWithTransformation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWRepresentationRelationshipWithTransformation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_RepresentationRelationshipWithTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_RepresentationRelationshipWithTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_RepresentationRelationshipWithTransformation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWRepresentationRelationshipWithTransformation RWStepRepr_RWRepresentationRelationshipWithTransformation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_ReadStep,None,RWStepRepr_RWRepresentationRelationshipWithTransformation) RWStepRepr_RWRepresentationRelationshipWithTransformation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_WriteStep,None,RWStepRepr_RWRepresentationRelationshipWithTransformation) RWStepRepr_RWRepresentationRelationshipWithTransformation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_Share,None,RWStepRepr_RWRepresentationRelationshipWithTransformation) RWStepRepr_RWRepresentationRelationshipWithTransformation_swigregister = _RWStepRepr.RWStepRepr_RWRepresentationRelationshipWithTransformation_swigregister RWStepRepr_RWRepresentationRelationshipWithTransformation_swigregister(RWStepRepr_RWRepresentationRelationshipWithTransformation) class RWStepRepr_RWShapeAspect(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWShapeAspect_swiginit(self,_RWStepRepr.new_RWStepRepr_RWShapeAspect(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspect_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ShapeAspect & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspect_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_ShapeAspect & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspect_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWShapeAspect RWStepRepr_RWShapeAspect.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspect_ReadStep,None,RWStepRepr_RWShapeAspect) RWStepRepr_RWShapeAspect.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspect_WriteStep,None,RWStepRepr_RWShapeAspect) RWStepRepr_RWShapeAspect.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspect_Share,None,RWStepRepr_RWShapeAspect) RWStepRepr_RWShapeAspect_swigregister = _RWStepRepr.RWStepRepr_RWShapeAspect_swigregister RWStepRepr_RWShapeAspect_swigregister(RWStepRepr_RWShapeAspect) class RWStepRepr_RWShapeAspectDerivingRelationship(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_swiginit(self,_RWStepRepr.new_RWStepRepr_RWShapeAspectDerivingRelationship(*args)) def ReadStep(self, *args): """ * Reads ShapeAspectDerivingRelationship :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ShapeAspectDerivingRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ShapeAspectDerivingRelationship :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ShapeAspectDerivingRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ShapeAspectDerivingRelationship & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWShapeAspectDerivingRelationship RWStepRepr_RWShapeAspectDerivingRelationship.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_ReadStep,None,RWStepRepr_RWShapeAspectDerivingRelationship) RWStepRepr_RWShapeAspectDerivingRelationship.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_WriteStep,None,RWStepRepr_RWShapeAspectDerivingRelationship) RWStepRepr_RWShapeAspectDerivingRelationship.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_Share,None,RWStepRepr_RWShapeAspectDerivingRelationship) RWStepRepr_RWShapeAspectDerivingRelationship_swigregister = _RWStepRepr.RWStepRepr_RWShapeAspectDerivingRelationship_swigregister RWStepRepr_RWShapeAspectDerivingRelationship_swigregister(RWStepRepr_RWShapeAspectDerivingRelationship) class RWStepRepr_RWShapeAspectRelationship(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWShapeAspectRelationship_swiginit(self,_RWStepRepr.new_RWStepRepr_RWShapeAspectRelationship(*args)) def ReadStep(self, *args): """ * Reads ShapeAspectRelationship :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ShapeAspectRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectRelationship_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ShapeAspectRelationship :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ShapeAspectRelationship & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectRelationship_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ShapeAspectRelationship & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectRelationship_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWShapeAspectRelationship RWStepRepr_RWShapeAspectRelationship.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectRelationship_ReadStep,None,RWStepRepr_RWShapeAspectRelationship) RWStepRepr_RWShapeAspectRelationship.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectRelationship_WriteStep,None,RWStepRepr_RWShapeAspectRelationship) RWStepRepr_RWShapeAspectRelationship.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectRelationship_Share,None,RWStepRepr_RWShapeAspectRelationship) RWStepRepr_RWShapeAspectRelationship_swigregister = _RWStepRepr.RWStepRepr_RWShapeAspectRelationship_swigregister RWStepRepr_RWShapeAspectRelationship_swigregister(RWStepRepr_RWShapeAspectRelationship) class RWStepRepr_RWShapeAspectTransition(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWShapeAspectTransition_swiginit(self,_RWStepRepr.new_RWStepRepr_RWShapeAspectTransition(*args)) def ReadStep(self, *args): """ * Reads ShapeAspectTransition :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ShapeAspectTransition & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectTransition_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes ShapeAspectTransition :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ShapeAspectTransition & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectTransition_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_ShapeAspectTransition & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeAspectTransition_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWShapeAspectTransition RWStepRepr_RWShapeAspectTransition.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectTransition_ReadStep,None,RWStepRepr_RWShapeAspectTransition) RWStepRepr_RWShapeAspectTransition.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectTransition_WriteStep,None,RWStepRepr_RWShapeAspectTransition) RWStepRepr_RWShapeAspectTransition.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeAspectTransition_Share,None,RWStepRepr_RWShapeAspectTransition) RWStepRepr_RWShapeAspectTransition_swigregister = _RWStepRepr.RWStepRepr_RWShapeAspectTransition_swigregister RWStepRepr_RWShapeAspectTransition_swigregister(RWStepRepr_RWShapeAspectTransition) class RWStepRepr_RWShapeRepresentationRelationshipWithTransformation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ :rtype: None """ _RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWShapeRepresentationRelationshipWithTransformation(*args)) def ReadStep(self, *args): """ :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_ShapeRepresentationRelationshipWithTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_ReadStep(self, *args) def WriteStep(self, *args): """ :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_ShapeRepresentationRelationshipWithTransformation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_WriteStep(self, *args) def Share(self, *args): """ :param ent: :type ent: Handle_StepRepr_ShapeRepresentationRelationshipWithTransformation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWShapeRepresentationRelationshipWithTransformation RWStepRepr_RWShapeRepresentationRelationshipWithTransformation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_ReadStep,None,RWStepRepr_RWShapeRepresentationRelationshipWithTransformation) RWStepRepr_RWShapeRepresentationRelationshipWithTransformation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_WriteStep,None,RWStepRepr_RWShapeRepresentationRelationshipWithTransformation) RWStepRepr_RWShapeRepresentationRelationshipWithTransformation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_Share,None,RWStepRepr_RWShapeRepresentationRelationshipWithTransformation) RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_swigregister = _RWStepRepr.RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_swigregister RWStepRepr_RWShapeRepresentationRelationshipWithTransformation_swigregister(RWStepRepr_RWShapeRepresentationRelationshipWithTransformation) class RWStepRepr_RWSpecifiedHigherUsageOccurrence(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_swiginit(self,_RWStepRepr.new_RWStepRepr_RWSpecifiedHigherUsageOccurrence(*args)) def ReadStep(self, *args): """ * Reads SpecifiedHigherUsageOccurrence :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_SpecifiedHigherUsageOccurrence & :rtype: None """ return _RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes SpecifiedHigherUsageOccurrence :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_SpecifiedHigherUsageOccurrence & :rtype: None """ return _RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_SpecifiedHigherUsageOccurrence & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWSpecifiedHigherUsageOccurrence RWStepRepr_RWSpecifiedHigherUsageOccurrence.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_ReadStep,None,RWStepRepr_RWSpecifiedHigherUsageOccurrence) RWStepRepr_RWSpecifiedHigherUsageOccurrence.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_WriteStep,None,RWStepRepr_RWSpecifiedHigherUsageOccurrence) RWStepRepr_RWSpecifiedHigherUsageOccurrence.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_Share,None,RWStepRepr_RWSpecifiedHigherUsageOccurrence) RWStepRepr_RWSpecifiedHigherUsageOccurrence_swigregister = _RWStepRepr.RWStepRepr_RWSpecifiedHigherUsageOccurrence_swigregister RWStepRepr_RWSpecifiedHigherUsageOccurrence_swigregister(RWStepRepr_RWSpecifiedHigherUsageOccurrence) class RWStepRepr_RWStructuralResponseProperty(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWStructuralResponseProperty_swiginit(self,_RWStepRepr.new_RWStepRepr_RWStructuralResponseProperty(*args)) def ReadStep(self, *args): """ * Reads StructuralResponseProperty :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_StructuralResponseProperty & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponseProperty_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes StructuralResponseProperty :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_StructuralResponseProperty & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponseProperty_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_StructuralResponseProperty & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponseProperty_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWStructuralResponseProperty RWStepRepr_RWStructuralResponseProperty.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponseProperty_ReadStep,None,RWStepRepr_RWStructuralResponseProperty) RWStepRepr_RWStructuralResponseProperty.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponseProperty_WriteStep,None,RWStepRepr_RWStructuralResponseProperty) RWStepRepr_RWStructuralResponseProperty.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponseProperty_Share,None,RWStepRepr_RWStructuralResponseProperty) RWStepRepr_RWStructuralResponseProperty_swigregister = _RWStepRepr.RWStepRepr_RWStructuralResponseProperty_swigregister RWStepRepr_RWStructuralResponseProperty_swigregister(RWStepRepr_RWStructuralResponseProperty) class RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation(object): thisown = _swig_property(lambda x: x.this.own(), lambda x, v: x.this.own(v), doc='The membership flag') __repr__ = _swig_repr def __init__(self, *args): """ * Empty constructor :rtype: None """ _RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_swiginit(self,_RWStepRepr.new_RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation(*args)) def ReadStep(self, *args): """ * Reads StructuralResponsePropertyDefinitionRepresentation :param data: :type data: Handle_StepData_StepReaderData & :param num: :type num: int :param ach: :type ach: Handle_Interface_Check & :param ent: :type ent: Handle_StepRepr_StructuralResponsePropertyDefinitionRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_ReadStep(self, *args) def WriteStep(self, *args): """ * Writes StructuralResponsePropertyDefinitionRepresentation :param SW: :type SW: StepData_StepWriter & :param ent: :type ent: Handle_StepRepr_StructuralResponsePropertyDefinitionRepresentation & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_WriteStep(self, *args) def Share(self, *args): """ * Fills data for graph (shared items) :param ent: :type ent: Handle_StepRepr_StructuralResponsePropertyDefinitionRepresentation & :param iter: :type iter: Interface_EntityIterator & :rtype: None """ return _RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_Share(self, *args) __swig_destroy__ = _RWStepRepr.delete_RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation.ReadStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_ReadStep,None,RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation) RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation.WriteStep = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_WriteStep,None,RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation) RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation.Share = new_instancemethod(_RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_Share,None,RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation) RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_swigregister = _RWStepRepr.RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_swigregister RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation_swigregister(RWStepRepr_RWStructuralResponsePropertyDefinitionRepresentation)
StarcoderdataPython
11224887
import os import re from typing import Dict, List Index = Dict[str, Dict[int, List[str]]] def index(in_path: str) -> Index: workload_index: Index = {} for test in os.listdir(in_path): workload = get_workload(test) clients = get_client_count(test) technique = get_technique(test) client_index = workload_index.get(workload, {}) technique_index = client_index.get(clients, []) technique_index.append(technique) client_index[clients] = technique_index workload_index[workload] = client_index return workload_index def get_client_count(test_name: str) -> int: result = re.search(r'\D(\d+)$', test_name) return int(result.group(1)) def get_technique(test_name: str) -> str: result = re.search(r'(sa|otel|di|control)', test_name) return result.group(1) def get_workload(test_name: str) -> str: result = re.search(r'(sa|otel|di|control)([\D_]+)\d', test_name) return result.group(2)
StarcoderdataPython
11223526
# Licensed under a 3-clause BSD style license - see LICENSE.rst import pytest import numpy as np import astropy.units as u from .. import data class TestOHFluorescenceSA88: def test_linear_interpolation(self, monkeypatch): monkeypatch.setattr(data, 'scipy', None) model = data.OHFluorescenceSA88('0-0') LN = model(-1 * u.km / u.s) assert np.isclose(LN.value, 1.54e-15) def test_tau(self): model = data.OHFluorescenceSA88('0-0') assert np.isclose(model.tau[0].value, 2.87e5) def test_inversion(self): model = data.OHFluorescenceSA88('0-0') assert np.isclose(model.inversion[0], -0.304) def test_rdot_error(self): model = data.OHFluorescenceSA88('0-0') with pytest.raises(ValueError): model(-61 * u.km / u.s) def test_rh_error(self): model = data.OHFluorescenceSA88('0-0') with pytest.raises(ValueError): model({'rdot': 1 * u.km / u.s, 'rh': 0.4 * u.au})
StarcoderdataPython
302576
"""Packaging logic for betamax.""" import os import re import sys import setuptools packages = setuptools.find_packages( "src", exclude=["tests", "tests.integration"], ) requires = ["requests >= 2.0"] __version__ = "" with open("src/betamax/__init__.py", "r") as fd: reg = re.compile(r"__version__ = [\'']([^\'']*)[\'']") for line in fd: m = reg.match(line) if m: __version__ = m.group(1) break if not __version__: raise RuntimeError("Cannot find version information") if sys.argv[-1] in ["submit", "publish"]: os.system("python setup.py sdist bdist_wheel upload") sys.exit() def data_for(filename): """Read the file data for a filename.""" with open(filename) as fd: content = fd.read() return content setuptools.setup( name="betamax", version=__version__, description="A VCR imitation for python-requests", long_description="\n\n".join([data_for("README.rst"), data_for("HISTORY.rst")]), license="Apache 2.0", author="<NAME>", author_email="<EMAIL>", url="https://github.com/sigmavirus24/betamax", packages=packages, package_dir={"": "src"}, package_data={"": ["LICENSE", "AUTHORS.rst"]}, include_package_data=True, install_requires=requires, entry_points={ "pytest11": ["pytest-betamax = betamax.fixtures.pytest"] }, classifiers=[ "Development Status :: 5 - Production/Stable", "License :: OSI Approved", "Intended Audience :: Developers", "Programming Language :: Python", "Programming Language :: Python :: 2", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: Implementation :: CPython", ] )
StarcoderdataPython
5062795
"""mutes""" from twitter.core import UserData class Mutes: """mutes""" def __init__(self, twitter): self.twitter = twitter def users_ids(self, params): """Hello""" url = "/".join(["mutes", "users", "ids"]) result = self.twitter.get(url, params=params) result.data = result.texts["ids"] result.next_cursor = result.texts["next_cursor"] result.previous_cursor = result.texts["previous_cursor"] result.get_texts_array = None result.get_texts_tuple = None return result def users_list(self, params): """H""" url = "/".join(["mutes", "users", "list"]) result = self.twitter.get(url, params=params) result.data = [UserData(url, text) for text in result.texts["users"]] result.next_cursor = result.texts["next_cursor"] result.previous_cursor = result.texts["previous_cursor"] return result def users_create(self, params): """H""" url = "/".join(["mutes", "users", "create"]) result = self.twitter.post(url, params=params) result.data = [UserData(url, result.texts)] return result def users_destroy(self, params): """H""" url = "/".join(["mutes", "users", "destroy"]) result = self.twitter.post(url, params=params) result.data = [UserData(url, result.texts)] return result
StarcoderdataPython
1826873
import json class Debug_JSON(): def __init__(self, settings, device): self.config = settings self.device = device def get_debug_json(self, base_url): debugjson = { "base_url": base_url, "total channels": self.device.channels.get_station_total(), "tuner status": self.device.tuners.status(), } return json.dumps(debugjson, indent=4)
StarcoderdataPython
6516727
<reponame>dukagjinramosaj1/python_exercises #1 - Import the data #2 - Clean the data #3 - Split the data: Training set and Test set. #4 - Create a Model #5 - Check the Output #6 - Improve
StarcoderdataPython
11204374
#This example shows the effects of some of the different PSD parameters import numpy as np import matplotlib.pyplot as plt dt = np.pi / 100. fs = 1. / dt t = np.arange(0, 8, dt) y = 10. * np.sin(2 * np.pi * 4 * t) + 5. * np.sin(2 * np.pi * 4.25 * t) y = y + np.random.randn(*t.shape) #Plot the raw time series fig = plt.figure() fig.subplots_adjust(hspace=0.45, wspace=0.3) ax = fig.add_subplot(2, 1, 1) ax.plot(t, y) #Plot the PSD with different amounts of zero padding. This uses the entire #time series at once ax2 = fig.add_subplot(2, 3, 4) ax2.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*2, Fs=fs) ax2.psd(y, NFFT=len(t), pad_to=len(t)*4, Fs=fs) plt.title('zero padding') #Plot the PSD with different block sizes, Zero pad to the length of the orignal #data sequence. ax3 = fig.add_subplot(2, 3, 5, sharex=ax2, sharey=ax2) ax3.psd(y, NFFT=len(t), pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//2, pad_to=len(t), Fs=fs) ax3.psd(y, NFFT=len(t)//4, pad_to=len(t), Fs=fs) ax3.set_ylabel('') plt.title('block size') #Plot the PSD with different amounts of overlap between blocks ax4 = fig.add_subplot(2, 3, 6, sharex=ax2, sharey=ax2) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=0, Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.05*len(t)/2.), Fs=fs) ax4.psd(y, NFFT=len(t)//2, pad_to=len(t), noverlap=int(0.2*len(t)/2.), Fs=fs) ax4.set_ylabel('') plt.title('overlap') plt.show()
StarcoderdataPython
6632150
#!/usr/bin/env python3 import pytest import schemathesis def pytest_addoption(parser): parser.addoption( "--local-url", action="store", default="http://127.0.0.1:8053/api/v0" ) parser.addoption( "--compare-url", action="store", default="https://guild.koios.rest/api/v0" ) parser.addoption( "--api-schema-file", action="store", default="../specs/results/koiosapi-guild.yaml", ) @pytest.fixture def local_url(request): return request.config.getoption("--local-url") @pytest.fixture def compare_url(request): return request.config.getoption("--compare-url") @pytest.fixture def api_schema(request): schema = schemathesis.from_path(request.config.getoption("--api-schema-file")) return schema
StarcoderdataPython
5134282
import os from flask import Flask from flask.ext import restful from flask import make_response from json import dumps from hiphack import app def output_json(obj, code, headers=None): resp = make_response(dumps(obj), code) resp.headers.extend(headers or {}) return resp DEFAULT_REPRESENTATIONS = {'application/json': output_json} api = restful.Api(app) api.representations = DEFAULT_REPRESENTATIONS import hiphack.api.resources
StarcoderdataPython
6659736
<reponame>cybertraining-dsc/test<filename>azure_cli.py from cloudmesh.common.Shell import Shell from textwrap import dedent from pprint import pprint class Provider(object): def __init__(self): self.debug = True def login(self): print("\nconnecting to azure...\n") r = Shell.live("az login") r = Shell.execute("az account show", shell = True) data = eval(r) print("\ndata:",data) datalist=[] for key, value in data.items(): temp = [key,value] datalist.append(temp) print("\ntype of data:",type(datalist)) print(datalist) print("\nazure has been connected\n") #create a resource group def resource_group(self): print("\ncreating a resource group...") r = Shell.live("az group create --name test --location eastus") print("\nThe resource group named test has been created") #create a vm def create_vm(self, **kwargs): print("\ncreate a vm...") command = dedent(""" az vm create \ --resource-group {resourcegroup} \ --name {name} \ --image {image} \ --admin-username {username} \ --generate-ssh-keys """.format(**kwargs)) print(command) r = Shell.live(command) print("\nthe vm has been created") def get_ip(self, **kwargs): print("get ip address:") command = dedent(""" az vm list-ip-addresses \ --resource-group {resourcegroup} \ --name {name} """.format(**kwargs)) r = Shell.execute(command, shell = True) print("r:\n",r) data = eval(r) print("\ntype of data:",type(data)) print("\ndata:",data) for entry in data: pprint(entry) #connect to vm def connect_vm(self): print("connecting to vm...") r = Shell.live( "ssh azureuser1@{publicIdAddress}".format(publicIdAddress='172.16.17.32')) #list vm def list(self): print("list all virtual machine:") r = Shell.live("az vm list") def stop(self, **kwargs): print("stopping a virtual machine...") command = dedent(""" az vm stop \ --resource-group {resourcegroup} \ --name {name} """.format(**kwargs)) r = Shell.live(command) print("the vm has been stopped") def restart(self, **kwargs): print("restarting a virtual machine...") command = dedent(""" az vm restart \ --resource-group {resourcegroup} \ --name {name} """.format(**kwargs)) r = Shell.live(command) print("the vm has been restarted") def delete(self, **kwargs): print("deleting a virtual machine...") command = dedent(""" az vm delete \ --resource-group {resourcegroup} \ --name {name} """.format(**kwargs)) r = Shell.live(command) print("the vm has been deleted") true = True p = Provider() p.login() #p.resource_group() ''' p.create_vm(resourcegroup = 'test', name = 'testvm1', image = 'UbuntuLTS', username = 'azureuser1') ''' ''' p.get_ip(resourcegroup = 'test', name = 'testvm1') ''' #p.connect_vm() #p.list() ''' p.stop(resourcegroup = 'test', name = 'testvm1') ''' ''' p.restart(resourcegroup = 'test', name = 'testvm1') ''' ''' p.delete(resourcegroup = 'test', name = 'testvm1') '''
StarcoderdataPython
4976139
<filename>custom/onse/tasks.py import sys from concurrent.futures import ThreadPoolExecutor, as_completed from datetime import date, datetime from time import sleep from typing import Iterable, List, Optional, Tuple, Union from urllib.error import HTTPError import attr from celery.schedules import crontab from celery.task import periodic_task, task from dateutil.relativedelta import relativedelta from requests import RequestException from casexml.apps.case.mock import CaseBlock from casexml.apps.case.models import CommCareCase from dimagi.utils.chunked import chunked from corehq.apps.domain.dbaccessors import domain_exists from corehq.apps.hqcase.utils import submit_case_blocks from corehq.form_processor.interfaces.dbaccessors import CaseAccessors from corehq.form_processor.models import CommCareCaseSQL from corehq.motech.models import ConnectionSettings from corehq.util.soft_assert import soft_assert from custom.onse.const import ( CASE_TYPE, CONNECTION_SETTINGS_NAME, DOMAIN, LAST_IMPORTED_PROPERTY, MAX_RETRY_ATTEMPTS, TASK_RETRY_FACTOR ) from custom.onse.models import iter_mappings # The production DHIS2 server is on the other side of an # interoperability service that changes the URL schema from # "base_url/api/resource" to "service/dhis2core/api/v0/resource". # Its ConnectionSettings instance uses URL "service/dhis2core/api/v0/" # Set ``DROP_API_PREFIX = True`` to drop the "/api" before "/resource", # so that resource URLs end up as "service/dhis2core/api/v0/resource". DROP_API_PREFIX = True MAX_THREAD_WORKERS = 10 _soft_assert = soft_assert('@'.join(('nhooper', 'dimagi.com'))) @attr.s(auto_attribs=True) class CassiusMarcellus: # TODO: Come up with a better name. Please! """ Stores a case, and its updates. Allows us to read current case property values and build a CaseBlock """ case: Union[CommCareCase, CommCareCaseSQL] updates: dict = attr.Factory(dict) @property def case_block(self): return CaseBlock( case_id=self.case.case_id, external_id=self.case.external_id, case_type=CASE_TYPE, case_name=self.case.name, update=self.updates, ) @periodic_task( # Run on the 5th day of every quarter run_every=crontab(day_of_month=5, month_of_year='1,4,7,10', hour=22, minute=30), queue='background_queue', ) def update_facility_cases_from_dhis2_data_elements(): _update_facility_cases_from_dhis2_data_elements.delay() @task(bind=True, max_retries=MAX_RETRY_ATTEMPTS) def _update_facility_cases_from_dhis2_data_elements(self, period, print_notifications): if not domain_exists(DOMAIN): return dhis2_server = get_dhis2_server(print_notifications) server_status = check_server_status(dhis2_server) if server_status['ready']: execute_update_facility_cases_from_dhis2_data_elements(dhis2_server, period, print_notifications) else: exception = server_status['error'] retry_days = 2 ** self.request.retries message = f'Importing {DOMAIN.upper()} cases from {CONNECTION_SETTINGS_NAME} failed: {exception}. ' \ f'Retrying in {retry_days} days' _notify_message(print_notifications, message, dhis2_server, exception) self.retry(countdown=(retry_days * TASK_RETRY_FACTOR)) def check_server_status(dhis2_server: ConnectionSettings): server_status = { 'ready': True, 'error': None } requests = dhis2_server.get_requests() try: requests.send_request("HEAD", dhis2_server.url, raise_for_status=True) except HTTPError as e: if e.response.status_code != 405: # ignore method not allowed server_status['ready'] = False server_status['error'] = e except RequestException as re: server_status['ready'] = False server_status['error'] = re return server_status def execute_update_facility_cases_from_dhis2_data_elements( dhis2_server: ConnectionSettings, period: Optional[str] = None, print_notifications: bool = False, ): """ Update facility_supervision cases with indicators collected in DHIS2 over the last quarter. :param dhis2_server: The ConnectionSettings instance to connect to the remote API. :param period: The period of data to import. e.g. "2020Q1". Defaults to last quarter. :param print_notifications: If True, notifications are printed, otherwise they are emailed. """ try: clays = get_clays() with ThreadPoolExecutor(max_workers=MAX_THREAD_WORKERS) as executor: futures = (executor.submit(set_case_updates, dhis2_server, clay, period) for clay in clays) for futures_chunk in chunked(as_completed(futures), 100): case_blocks_chunk = [f.result() for f in futures_chunk] save_cases(case_blocks_chunk) except Exception as err: handle_error(err, dhis2_server, print_notifications) else: handle_success(dhis2_server, print_notifications) def get_dhis2_server( print_notifications: bool = False ) -> ConnectionSettings: try: return ConnectionSettings.objects.get(domain=DOMAIN, name=CONNECTION_SETTINGS_NAME) except ConnectionSettings.DoesNotExist: message = (f'ConnectionSettings {CONNECTION_SETTINGS_NAME!r} not ' f'found in domain {DOMAIN!r} for importing DHIS2 data ' f'elements.') if print_notifications: print(message, file=sys.stderr) else: _soft_assert(False, message) raise def get_clays() -> Iterable[CassiusMarcellus]: case_accessors = CaseAccessors(DOMAIN) for case_id in case_accessors.get_case_ids_in_domain(type=CASE_TYPE): case = case_accessors.get_case(case_id) if not case.external_id: # This case is not mapped to a facility in DHIS2. continue yield CassiusMarcellus(case) def set_case_updates( dhis2_server: ConnectionSettings, clay: CassiusMarcellus, requested_period: Optional[str], ) -> CassiusMarcellus: """ Fetch data sets of data elements for last quarter from ``dhis2_server`` and update the data elements corresponding case properties in ``case_block`` in place. """ last_imported = clay.case.get_case_property(LAST_IMPORTED_PROPERTY) if last_imported: last_imported = datetime.strptime(last_imported, '%Y-%m-%d').date() # Several of the data elements we want belong to the same data # sets. Only fetch a data set if we don't already have it. data_set_cache = {} for mapping in iter_mappings(): if not mapping.data_set_id: raise ValueError( f'Mapping {mapping} does not include data set ID. ' 'Use **fetch_onse_data_set_ids** command.') for period in get_periods(requested_period, last_imported): data_set_cache.setdefault(period, {}) if mapping.data_set_id not in data_set_cache[period]: data_set_cache[period][mapping.data_set_id] = fetch_data_set( dhis2_server, mapping.data_set_id, # facility case external_id is set to its DHIS2 org # unit. This is the DHIS2 facility whose data we # want to import. org_unit_id=clay.case.external_id, period=period, ) data_values = data_set_cache[period][mapping.data_set_id] if data_values is None: continue # No data for this facility. Try previous quarter found, total = get_data_element_total( mapping.data_element_id, data_values, ) if found: clay.updates[mapping.case_property] = total break # else: look for values in previous quarter clay.updates[LAST_IMPORTED_PROPERTY] = date.today().isoformat() return clay def get_periods( requested_period: Optional[str], last_imported: Optional[date], ) -> Iterable[str]: if requested_period: return [requested_period] if last_imported: return previous_quarters_up_to(last_imported) return previous_quarters_up_to(five_years_ago()) def previous_quarters_up_to(some_date: date) -> Iterable[str]: """ Returns quarters in DHIS2 web API `period format`_ in reverse chronological order. .. _period format: https://docs.dhis2.org/master/en/developer/html/webapi_date_perid_format.html """ current_date = datetime.utcnow().date() while current_date > some_date: yield previous_quarter(current_date) current_date -= relativedelta(months=3) def five_years_ago(): """ Returns the date five years ago today. """ return datetime.utcnow().date() - relativedelta(years=5) def fetch_data_set( dhis2_server: ConnectionSettings, data_set_id: str, org_unit_id: str, period: str, ) -> Optional[List[dict]]: """ Returns a list of `DHIS2 data values`_, or ``None`` if the the given org unit has no data collected for the last quarter. Raises exceptions on connection timeout or non-200 response status. .. _DHIS2 data values: https://docs.dhis2.org/master/en/developer/html/webapi_data_values.html """ max_attempts = 3 backoff_seconds = 3 * 60 requests = dhis2_server.get_requests() endpoint = '/dataValueSets' if DROP_API_PREFIX else '/api/dataValueSets' params = { 'period': period, 'dataSet': data_set_id, 'orgUnit': org_unit_id, } attempt = 0 while True: attempt += 1 try: response = requests.get(endpoint, params, raise_for_status=True) except (RequestException, HTTPError): if attempt < max_attempts: sleep(backoff_seconds * attempt) else: raise else: break return response.json().get('dataValues', None) def previous_quarter(some_date: date) -> str: """ Returns the previous quarter in DHIS2 web API `period format`_. e.g. "2004Q1" .. _period format: https://docs.dhis2.org/master/en/developer/html/webapi_date_perid_format.html """ year = some_date.year quarter = (some_date.month - 1) // 3 if quarter == 0: year -= 1 quarter = 4 return f"{year}Q{quarter}" def get_data_element_total( data_element_id: str, data_values: List[dict], ) -> Tuple[bool, int]: """ A DHIS2 data element may be broken down by category options, and ``data_values`` can contain multiple entries for the same data element. This function returns whether ``data_element_id`` is found in ``data_values``, and its total. The following doctest shows an example value for ``data_values`` as might be returned by DHIS2: >>> data_values = [ ... { ... "dataElement": "f7n9E0hX8qk", ... "period": "2014Q1", ... "orgUnit": "DiszpKrYNg8", ... "categoryOption": "FNnj3jKGS7i", ... "value": "12" ... }, ... { ... "dataElement": "f7n9E0hX8qk", ... "period": "2014Q1", ... "orgUnit": "DiszpKrYNg8", ... "categoryOption": "Jkhdsf8sdf4", ... "value": "16" ... } ... ] >>> get_data_element_total('f7n9E0hX8qk', data_values) (True, 28) """ found = False value = 0 for data_value in data_values: if data_value['dataElement'] == data_element_id: found = True value += int(data_value['value']) return found, value def save_cases(clays: List[CassiusMarcellus]): today = date.today().isoformat() submit_case_blocks( [clay.case_block.as_text() for clay in clays], DOMAIN, xmlns='http://commcarehq.org/dhis2-import', device_id=f"dhis2-import-{DOMAIN}-{today}", ) def handle_error( err: Exception, dhis2_server: ConnectionSettings, print_notifications: bool, ): message = f'Importing {DOMAIN.upper()} cases from {CONNECTION_SETTINGS_NAME} failed: {err}' _notify_message(print_notifications, message, dhis2_server, err) def handle_success( dhis2_server: ConnectionSettings, print_notifications: bool, ): message = f'Successfully imported {DOMAIN.upper()} cases from {CONNECTION_SETTINGS_NAME}' _notify_message(print_notifications, message, dhis2_server) def _notify_message(print_notifications, message, connection_settings, exception=None): if print_notifications: print(message, file=sys.stderr) else: if exception is not None: connection_settings.get_requests().notify_exception(message) raise exception else: # For most things we pass silently. But we can repurpose # `notify_error()` to tell admins that the import went through, # because it only happens once a quarter. connection_settings.get_requests().notify_error(message)
StarcoderdataPython
1951939
#!/usr/bin/env python # -*- coding: utf-8 -*- # Copyright (c) 2020, <NAME> & QuatroPe # License: BSD-3-Clause # Full Text: https://github.com/quatrope/djmpl/blob/master/LICENSE # ============================================================================= # DOCS # ============================================================================= # ============================================================================= # IMPORTS # ============================================================================= import django_matplotlib as djmpl from django.views.generic.base import TemplateView # ============================================================================= # THE VIEWS # ============================================================================= class PlotMixinTestView(djmpl.PlotMixin, TemplateView): plot_data = [1, 2, 3] template_name = "test_djmpl/SinglePlot.html" def plot(self, data, fig, ax): ax.plot(data)
StarcoderdataPython
1849666
<reponame>agilescientific/bruges<gh_stars>1-10 """ :copyright: 2015 Agile Geoscience :license: Apache 2.0 """ from .energy import energy from .discontinuity import discontinuity from .discontinuity import similarity from .dipsteer import dipsteer from .spectrogram import spectrogram from .spectraldecomp import spectraldecomp from .complex import instantaneous_amplitude from .complex import reflection_strength from .complex import envelope from .complex import instantaneous_phase from .complex import instantaneous_frequency from .complex import quadrature from .horizon import *
StarcoderdataPython
9739540
<reponame>YEZHIAN1996/pythonstudy from PIL import Image image = Image.open('')
StarcoderdataPython
1727313
import os import pickle import time from functools import partial from typing import List, Optional, Dict, Tuple, Any, Callable import jax import jax.numpy as jnp import numpy as np import wandb from jax import jit, value_and_grad from jax.experimental.optimizers import adam, sgd from jax.tree_util import tree_leaves from sklearn.preprocessing import StandardScaler from dgm.dynamics.dynamics_model import get_dynamics from dgm.objectives.objective_builder import get_objective_builder from dgm.plotter.plotter import Plotter from dgm.schedules.betas import get_betas, BetaSchedule from dgm.schedules.learning_rate import get_learning_rate from dgm.schedules.weight_decay import get_weight_decay from dgm.simulator.simulator import get_simulator from dgm.smoother.smoother import get_smoother from dgm.utils.helper_functions import unroll_dictionary, replace_str from dgm.utils.representatives import Optimizer Schedule = Callable[[int], float] Range = Optional[Tuple[float, float]] pytree = Any class LearnSystem: def __init__( self, seed: int, data_generation: Dict, smoother: Dict, dynamics: Dict, betas: Dict, optimizer: Dict, priors: Dict, logging: Dict, numerical_correction: float, num_derivative_points_per_trajectory: int ): self.numerical_correction = numerical_correction self.track_just_loss = logging["track_just_loss"] self.core_type = smoother["core"]["type"] self.core_kwargs = smoother["core"]["kwargs"] # Adding kwargs here seems a bit hacky, it works but should you # think of a better solution don't hesitate to implement it self.core_kwargs['weight_key'] = "core" self.mean_head_type = smoother["mean_head"]["type"] self.mean_head_kwargs = smoother["mean_head"]["kwargs"] self.mean_head_kwargs['weight_key'] = "mean_head" self.kernel_core_type = smoother["kernel_core"]["type"] self.kernel_core_kwargs = smoother["kernel_core"]["kwargs"] self.kernel_core_kwargs['weight_key'] = "kernel_core" self.kernel_head_type = smoother['kernel_head']['type'] self.kernel_head_kwargs = smoother["kernel_head"]["kwargs"] self.kernel_head_kwargs['weight_key'] = "kernel_head" self.learning_rate: Schedule = get_learning_rate(optimizer["learning_rate"]["type"], optimizer["learning_rate"]["kwargs"]) self.time_normalizer = StandardScaler() self.state_normalizer = StandardScaler() self.parameters = None self.kernel_type = smoother["kernel"]["type"] self.kernel_kwargs = smoother["kernel"]["kwargs"] self.optimizer_type = optimizer["type"] self.dynamics_model = dynamics["type"] self.dynamics_kwargs = dynamics['kwargs'] self.simulator_type = data_generation["type"] self.times = data_generation["times"] self.test_times = data_generation["test_times"] self.initial_conditions = data_generation["initial_conditions"] self.num_trajectories = len(self.initial_conditions) self.state_dimension = len(self.initial_conditions[0]) simulation_noise = data_generation['noise'] self.simulation_noise = [None] * self.num_trajectories if simulation_noise is None else simulation_noise self.simulator_parameters = data_generation["parameters"] self.current_rng = jax.random.PRNGKey(seed) self.betas: BetaSchedule = get_betas(betas["type"], betas["kwargs"]) self.wd_core = get_weight_decay(priors['wd_core']['type'], priors['wd_core']['kwargs']) self.wd_kernel_core = get_weight_decay(priors['wd_kernel_core']['type'], priors['wd_core']['kwargs']) self.wd_kernel_head = get_weight_decay(priors['wd_kernel_head']['type'], priors['wd_core']['kwargs']) self.wd_mean_head = get_weight_decay(priors['wd_mean_head']['type'], priors['wd_core']['kwargs']) self.wd_obs_noise = get_weight_decay(priors['wd_pure_kernel']['observation_noise']['type'], priors['wd_pure_kernel']['observation_noise']['kwargs']) self.wd_kernel_variance = get_weight_decay(priors['wd_pure_kernel']['kernel_variance']['type'], priors['wd_pure_kernel']['kernel_variance']['kwargs']) self.wd_kernel_lengthscales = get_weight_decay(priors['wd_pure_kernel']['kernel_lengthscale']['type'], priors['wd_pure_kernel']['kernel_lengthscale']['kwargs']) self.wd_dynamics: Schedule = get_weight_decay(priors["wd_dynamics"]['type'], priors["wd_dynamics"]['kwargs']) self.track_wandb = logging["track_wandb"] self.num_derivative_points_per_trajectory = num_derivative_points_per_trajectory self.simulator = get_simulator(simulator=self.simulator_type, **self.simulator_parameters) self._prepare_observed_data() self._normalize_data() self._prepare_data_for_training() self._prepare_smoother() self._prepare_dynamics_model() self._prepare_objective_builder() self._prepare_optimizer() self.plotter = Plotter(simulator=self.simulator, initial_conditions=self.initial_conditions) def _prepare_observed_data(self): self.current_rng, key = jax.random.split(self.current_rng) time_before_data = time.time() self.observations, self.ground_truth_states, self.ground_truth_derivatives = self.simulator.simulate_trajectories( initial_conditions=self.initial_conditions, times=self.times, sigmas=self.simulation_noise, rng=key) print("Time for data preparation", time.time() - time_before_data) def _normalize_data(self): time_before_normalization = time.time() all_times = jnp.concatenate(self.times, axis=0) all_observations = jnp.concatenate(self.observations, axis=0) self.time_normalizer.fit(all_times.reshape(-1, 1)) self.state_normalizer.fit(all_observations) self.normalized_times = [] self.normalized_observations = [] self.normalized_initial_conditions = [] self.normalized_test_times = [] self.normalized_ground_truth_states = [] self.normalized_ground_truth_derivatives = [] derivative_scale = self.time_normalizer.scale_ / self.state_normalizer.scale_ for i in range(self.num_trajectories): current_normalized_times = self.time_normalizer.transform(self.times[i].reshape(-1, 1)) current_normalized_test_times = self.time_normalizer.transform(self.test_times[i].reshape(-1, 1)) current_normalized_states = self.state_normalizer.transform(self.observations[i]) current_normalized_initial_conditions = self.state_normalizer.transform( self.initial_conditions[i].reshape(1, -1)) current_normalized_ground_truth_states = self.state_normalizer.transform(self.ground_truth_states[i]) current_normalized_ground_truth_derivatives = derivative_scale * self.ground_truth_derivatives[i] self.normalized_times.append(jnp.array(current_normalized_times).reshape(-1)) self.normalized_test_times.append(jnp.array(current_normalized_test_times).reshape(-1)) self.normalized_observations.append(jnp.array(current_normalized_states)) self.normalized_initial_conditions.append(jnp.array(current_normalized_initial_conditions.reshape(-1))) self.normalized_ground_truth_states.append(jnp.array(current_normalized_ground_truth_states)) self.normalized_ground_truth_derivatives.append(jnp.array(current_normalized_ground_truth_derivatives)) print("Time for normalization", time.time() - time_before_normalization) def _prepare_data_for_training(self): self.joint_normalized_test_times = jnp.concatenate(self.normalized_test_times) self.joint_normalized_times = jnp.concatenate(self.normalized_times) self.joint_normalized_observations = jnp.concatenate(self.normalized_observations) times_for_derivatives = [] for traj_id in range(self.num_trajectories): min_time, max_time = jnp.min(self.normalized_times[traj_id]), jnp.max(self.normalized_times[traj_id]) times_for_derivatives.append(jnp.linspace(min_time, max_time, self.num_derivative_points_per_trajectory)) self.joint_normalized_times_for_derivatives = jnp.concatenate(times_for_derivatives) initial_conditions_to_pass = [] initial_conditions_for_derivatives = [] initial_conditions_for_test = [] for traj_id in range(self.num_trajectories): initial_conditions_to_pass.append( jnp.repeat(self.normalized_initial_conditions[traj_id].reshape(1, -1), self.normalized_times[traj_id].size, axis=0) ) initial_conditions_for_derivatives.append( jnp.repeat(self.normalized_initial_conditions[traj_id].reshape(1, -1), times_for_derivatives[traj_id].size, axis=0) ) initial_conditions_for_test.append( jnp.repeat(self.normalized_initial_conditions[traj_id].reshape(1, -1), self.test_times[traj_id].size, axis=0) ) self.joint_repeated_normalized_initial_conditions = jnp.concatenate(initial_conditions_to_pass, axis=0) self.joint_repeated_normalized_initial_conditions_derivatives = jnp.concatenate( initial_conditions_for_derivatives, axis=0) self.joint_repeated_normalized_test_initial_conditions = jnp.concatenate(initial_conditions_for_test, axis=0) def _prepare_smoother(self): time_smoother = time.time() ( self.smoother_init, self.smoother_apply, self.smoother_get_means_and_covariances_test, self.get_smoother_regularization, ) = get_smoother(kernel=self.kernel_type, kernel_kwargs=self.kernel_kwargs, core_type=self.core_type, core_kwargs=self.core_kwargs, mean_head_type=self.mean_head_type, mean_head_kwargs=self.mean_head_kwargs, kernel_core_type=self.kernel_core_type, kernel_core_kwargs=self.kernel_core_kwargs, kernel_head_type=self.kernel_head_type, kernel_head_kwargs=self.kernel_head_kwargs, n_dim=self.state_dimension, numerical_correction=self.numerical_correction) print("Time for smoother preparation: ", time.time() - time_smoother) def _prepare_dynamics_model(self): time_dynamics = time.time() ( self.dynamics_model_init, self.dynamics_model_apply, self.dynamics_for_plotting, self.dynamics_sample_trajectories, self.get_dynamics_regularization ) = get_dynamics(dynamics_model=self.dynamics_model, state_normalizer=self.state_normalizer, time_normalizer=self.time_normalizer, state_dimension=self.state_dimension, dynamics_kwargs=self.dynamics_kwargs) print("Time for dynamics preparation: ", time.time() - time_dynamics) def _prepare_objective_builder(self): time_objective_builder = time.time() self.current_rng, *keys = jax.random.split(self.current_rng, 3) dynamics_parameters = self.dynamics_model_init(keys[0]) smoother_parameters = self.smoother_init(keys[1], self.state_dimension) self.parameters = {"smoother": smoother_parameters, "dynamics": dynamics_parameters, } self.num_dynamics_parameters = 0 self.num_smoother_parameters = 0 for leave in tree_leaves(dynamics_parameters): self.num_dynamics_parameters += leave.size for leave in tree_leaves(smoother_parameters): self.num_smoother_parameters += leave.size self.num_parameters = self.num_smoother_parameters + self.num_dynamics_parameters self.objective_builder = get_objective_builder(apply_smoother=self.smoother_apply, apply_dynamics=self.dynamics_model_apply, get_dynamics_regularization=self.get_dynamics_regularization, get_smoother_regularization=self.get_smoother_regularization) print("Time to prepare objective builder", time.time() - time_objective_builder) time_objective_builder = time.time() self.values_and_grad = jit(value_and_grad(self.objective_builder, 0)) print("Time to jit: ", time.time() - time_objective_builder) def _prepare_optimizer(self): if self.optimizer_type == Optimizer.ADAM: self.optimizer = adam elif self.optimizer_type == Optimizer.SGD: self.optimizer = sgd def train(self, number_of_steps): current_time = time.time() initial_time = current_time opt_init, opt_update, get_params = self.optimizer(self.learning_rate) params = opt_init(self.parameters) @jit def do_step(step, params): weights = { "kernel_variance": self.wd_kernel_variance(step), "kernel_lengthscale": self.wd_kernel_lengthscales(step), "obs_noise": self.wd_obs_noise(step), "dynamics": self.wd_dynamics(step), "core": self.wd_core(step), 'kernel_core': self.wd_kernel_core(step), "kernel_head": self.wd_kernel_head(step), "mean_head": self.wd_mean_head(step) } loss, params_grad = self.values_and_grad( get_params(params), self.joint_normalized_times, self.joint_normalized_times_for_derivatives, self.joint_repeated_normalized_initial_conditions, self.joint_repeated_normalized_initial_conditions_derivatives, self.joint_normalized_observations, self.betas(step), weights ) return loss, opt_update(step, params_grad, params) for step in range(number_of_steps): if step < 10: next_time = time.time() print("Time for step {}:".format(step), next_time - current_time) current_time = next_time loss, params = do_step(step, params) if self.track_wandb: if self.track_just_loss: variables_dict = dict() variables_dict["Loss"] = float(loss) else: variables_dict = unroll_dictionary(get_params(params)) variables_dict["Loss"] = float(loss) wandb.log(variables_dict) time_spent_for_training = time.time() - initial_time print("Time spent for training:", time_spent_for_training, "seconds") self.parameters = get_params(params) # Save parameters_for_dgm if self.track_wandb: directory = os.path.join(wandb.run.dir, 'models') if not os.path.exists(directory): os.makedirs(directory) model_path = os.path.join('models', 'final_parameters.pkl') with open(os.path.join(wandb.run.dir, model_path), 'wb') as handle: pickle.dump(get_params(params), handle) wandb.save(os.path.join(wandb.run.dir, model_path), wandb.run.dir) def _compute_nll_per_dimension(self, denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances, test_states, test_derivatives): nll_state = [] nll_derivatives_smoother = [] nll_derivatives_dynamics = [] # Compute average (over dimension) average NLL score # Not over the range of self.num_trajectories but over the range of number of evaluated trajectories for i in range(len(denormalized_state_means)): nll_state.append( self._mean_nll(test_states[i], denormalized_state_means[i], denormalized_state_variances[i])) nll_derivatives_smoother.append(self._mean_nll(test_derivatives[i], denormalized_derivative_means[i], denormalized_derivative_variances[i])) nll_derivatives_dynamics.append(self._mean_nll(test_derivatives[i], denormalized_dynamics_means[i], denormalized_dynamics_variances[i])) return nll_state, nll_derivatives_smoother, nll_derivatives_dynamics @staticmethod def _mean_nll(test, mean_prediction, variance_prediction): mean_diff = (test - mean_prediction) nll_state_current = 0.5 * jnp.mean(mean_diff * mean_diff / variance_prediction) nll_state_current += 0.5 * jnp.mean(jnp.log(variance_prediction)) nll_state_current += 0.5 * jnp.log(2 * jnp.pi) return nll_state_current @staticmethod def _prepare_nll_for_wandb(nll_state, nll_derivatives_smoother, nll_derivatives_dynamics, quantile): nll_state = jnp.array(nll_state) nll_derivatives_smoother = jnp.array(nll_derivatives_smoother) nll_derivatives_dynamics = jnp.array(nll_derivatives_dynamics) nll_state_median = jnp.median(nll_state) nll_derivatives_smoother_median = jnp.median(nll_derivatives_smoother) nll_derivatives_dynamics_median = jnp.median(nll_derivatives_dynamics) nll_state_lower_q = jnp.quantile(nll_state, q=1 - quantile) nll_derivatives_smoother_lower_q = jnp.quantile(nll_derivatives_smoother, q=1 - quantile) nll_derivatives_dynamics_lower_q = jnp.quantile(nll_derivatives_dynamics, q=1 - quantile) nll_state_upper_q = jnp.quantile(nll_state, q=quantile) nll_derivatives_smoother_upper_q = jnp.quantile(nll_derivatives_smoother, q=quantile) nll_derivatives_dynamics_upper_q = jnp.quantile(nll_derivatives_dynamics, q=quantile) variables_dict = dict() variables_dict['nll_state_mean'] = float(jnp.mean(nll_state)) variables_dict['nll_derivatives_smoother_mean'] = float(jnp.mean(nll_derivatives_smoother)) variables_dict['nll_derivatives_dynamics_mean'] = float(jnp.mean(nll_derivatives_dynamics)) variables_dict['nll_state_median'] = float(nll_state_median) variables_dict['nll_derivatives_smoother_median'] = float(nll_derivatives_smoother_median) variables_dict['nll_derivatives_dynamics_median'] = float(nll_derivatives_dynamics_median) variables_dict['nll_state_lower_q'] = float(nll_state_lower_q) variables_dict['nll_derivatives_smoother_lower_q'] = float(nll_derivatives_smoother_lower_q) variables_dict['nll_derivatives_dynamics_lower_q'] = float(nll_derivatives_dynamics_lower_q) variables_dict['nll_state_upper_q'] = float(nll_state_upper_q) variables_dict['nll_derivatives_smoother_upper_q'] = float(nll_derivatives_smoother_upper_q) variables_dict['nll_derivatives_dynamics_upper_q'] = float(nll_derivatives_dynamics_upper_q) return variables_dict def _denormalize(self, state_means, state_variances, derivative_means, derivative_variances, dynamics_means, dynamics_variances): denormalized_state_means = self.state_normalizer.inverse_transform(state_means) denormalized_state_variances = self.state_normalizer.scale_ ** 2 * state_variances derivative_scale = self.state_normalizer.scale_ / self.time_normalizer.scale_ denormalized_derivative_means = derivative_scale * derivative_means denormalized_derivative_variances = derivative_scale ** 2 * derivative_variances denormalized_dynamics_means = derivative_scale * dynamics_means denormalized_dynamics_variances = derivative_scale ** 2 * dynamics_variances return denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, \ denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances @staticmethod def join_trajectories(initial_conditions: List[jnp.array], times: List[jnp.array]) -> Tuple[ pytree, jnp.array, jnp.array]: # initial_conditions are of shape (num_dim, ) # times are of shape (num_times, ) n_trajectories = len(times) joint_times = jnp.concatenate(times) joint_initial_conditions = [] for traj_id in range(n_trajectories): joint_initial_conditions.append( jnp.repeat(initial_conditions[traj_id].reshape(1, -1), times[traj_id].size, axis=0)) joint_initial_conditions = jnp.concatenate(joint_initial_conditions, axis=0) return list(map(len, times)), joint_times, joint_initial_conditions @staticmethod def split_trajectories(trajectory_lengths, *data) -> List[List[jnp.array]]: start_index = 0 n_data = len(data) separated_data = [[] for _ in range(n_data)] for length in trajectory_lengths: for index, datum in enumerate(data): separated_data[index].append(datum[start_index: start_index + length, :]) start_index += length return separated_data def _all_predictions(self, joint_normalized_times, joint_repeated_normalized_initial_conditions, trajectory_lengths): state_means, state_variances, \ derivative_means, derivative_variances = self.smoother_get_means_and_covariances_test( joint_normalized_times, self.joint_normalized_times, joint_repeated_normalized_initial_conditions, self.joint_repeated_normalized_initial_conditions, self.joint_normalized_observations, self.parameters["smoother"], ) dynamics_means, dynamics_variances = self.dynamics_model_apply(self.parameters["dynamics"], state_means) # Denormalize everything denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, \ denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances = self._denormalize( state_means, state_variances, derivative_means, derivative_variances, dynamics_means, dynamics_variances) # Here all data are one big jnp.array now we split it since we would like to perform per trajectory analysis return self.split_trajectories(trajectory_lengths, denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances) def evaluate_models(self, ground_truth: bool = True, initial_conditions: Optional = None, times: Optional = None, quantile=0.8): if ground_truth: initial_conditions = self.initial_conditions times = self.test_times trajectory_lengths, joint_times, joint_repeated_initial_conditions = self.join_trajectories(initial_conditions, times) joint_normalized_times = self.time_normalizer.transform(joint_times.reshape(-1, 1)).reshape(-1) joint_repeated_normalized_initial_conditions = self.state_normalizer.transform( joint_repeated_initial_conditions) denormalized_state_means, denormalized_state_variances, \ denormalized_derivative_means, denormalized_derivative_variances, \ denormalized_dynamics_means, denormalized_dynamics_variances = self._all_predictions( joint_normalized_times, joint_repeated_normalized_initial_conditions, trajectory_lengths) # Prepare (not normalized) ground truth prediction self.current_rng, subkey = jax.random.split(self.current_rng) test_states, test_derivatives = self.simulator.simulate_trajectories( initial_conditions=initial_conditions, times=times, sigmas=[None] * len(times), rng=subkey)[1:] # Compute average (per dimension) average NLL score nll_state, nll_derivatives_smoother, nll_derivatives_dynamics = self._compute_nll_per_dimension( denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances, test_states, test_derivatives) variables_dict = self._prepare_nll_for_wandb(nll_state, nll_derivatives_smoother, nll_derivatives_dynamics, quantile) if self.track_wandb: wandb.log(variables_dict) return variables_dict def plot_learned_vector_field(self, x_range: Range = None, y_range: Range = None): get_dynamics_derivatives = partial(self.dynamics_for_plotting, self.parameters["dynamics"]) num_trajectories = len(self.observations) max_per_trajectory = [jnp.max(self.observations[i], 0) for i in range(num_trajectories)] max_all_trajectories = jnp.max(jnp.vstack(max_per_trajectory), 0) if x_range is None: x_range = (0, max_all_trajectories[0] * 1.1) if y_range is None: y_range = (0, max_all_trajectories[1] * 1.1) x, y = jnp.meshgrid( jnp.linspace(x_range[0], x_range[1], 20), jnp.linspace(y_range[0], y_range[1], 20), ) u_mean_learned, v_mean_learned, norm_mean_learned, volume_covariance_learned, max_covariance_eigenvalue = get_dynamics_derivatives( x, y) u_true, v_true, norm_true = self.simulator.prepare_vector_field_for_plotting(x, y) fig = self.plotter.plot_learned_vector_field( initial_conditions=self.initial_conditions, observations=self.observations, grid=(x, y), true_vector_field=(u_true, v_true, norm_true), learned_vector_field_mean=(u_mean_learned, v_mean_learned, norm_mean_learned), volume_covariance_learned=volume_covariance_learned, max_covariance_eigenvalue=max_covariance_eigenvalue, ) fig.tight_layout() if self.track_wandb: wandb.log({'vector_field_plot': wandb.Image(fig)}) def plot_trajectories_at_times(self, add_all_trajectories: bool = False): print('Before computing the values for plotting') trajectory_lengths, joint_normalized_test_times, joint_repeated_normalized_test_initial_conditions = self.join_trajectories( self.normalized_initial_conditions, self.normalized_test_times) denormalized_state_means, denormalized_state_variances, \ denormalized_derivative_means, denormalized_derivative_variances, \ denormalized_dynamics_means, denormalized_dynamics_variances = self._all_predictions( joint_normalized_test_times, joint_repeated_normalized_test_initial_conditions, trajectory_lengths) print("Plotting") figure_smoother_states, figure_smoother_derivatives, figure_dynamics_derivatives = self.plotter.plot_at_times( self.test_times, denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances, train_times=self.times, observations=self.observations, all_initial_conditions=self.initial_conditions if add_all_trajectories else None ) figure_smoother_states.tight_layout() figure_smoother_derivatives.tight_layout() figure_dynamics_derivatives.tight_layout() state_filename = 'smoother_states_with_all_trajectories' if add_all_trajectories else 'smoother_states' if self.track_wandb: wandb.log({state_filename: wandb.Image(figure_smoother_states), 'smoother_derivatives': wandb.Image(figure_smoother_derivatives), 'dynamics_derivatives': wandb.Image(figure_dynamics_derivatives)}) def save_data_for_plotting(self): trajectory_lengths, joint_normalized_test_times, joint_repeated_normalized_test_initial_conditions = self.join_trajectories( self.normalized_initial_conditions, self.normalized_test_times) denormalized_state_means, denormalized_state_variances, \ denormalized_derivative_means, denormalized_derivative_variances, \ denormalized_dynamics_means, denormalized_dynamics_variances = self._all_predictions( joint_normalized_test_times, joint_repeated_normalized_test_initial_conditions, trajectory_lengths) data = self.plotter.save_data( self.test_times, denormalized_state_means, denormalized_state_variances, denormalized_derivative_means, denormalized_derivative_variances, denormalized_dynamics_means, denormalized_dynamics_variances, train_times=self.times, observations=self.observations, all_initial_conditions=self.initial_conditions ) if self.track_wandb: directory = os.path.join(wandb.run.dir, 'data') if not os.path.exists(directory): os.makedirs(directory) data_path = os.path.join('data', 'test_plot_data.pkl') with open(os.path.join(wandb.run.dir, data_path), 'wb') as handle: pickle.dump(data, handle) wandb.save(os.path.join(wandb.run.dir, data_path), wandb.run.dir) return data def bayesian_path_prediction_from_dynamics(self, rng: np.ndarray, initial_condition: jnp.array, times: jnp.array, num_samples: int, q: float = 0.7, add_all_trajectories: bool = False): normalized_times = self.time_normalizer.transform(times.reshape(-1, 1)).reshape(-1) normalized_initial_conditions = self.state_normalizer.transform(initial_condition.reshape(1, -1)).reshape(-1) median, upper_quantile, lower_quantile = self.dynamics_sample_trajectories(rng, self.parameters['dynamics'], normalized_initial_conditions, normalized_times, num_samples, q) denormalized_mean = self.state_normalizer.inverse_transform(median) denormalized_lower_quantile = self.state_normalizer.inverse_transform(lower_quantile) denormalized_upper_quantile = self.state_normalizer.inverse_transform(upper_quantile) figure = self.plotter.plot_sample_trajectories(initial_condition, times, denormalized_mean, denormalized_lower_quantile, denormalized_upper_quantile, q, all_initial_conditions=self.initial_conditions if add_all_trajectories else None) if self.track_wandb: key = 'Bayesian integration from initial condition: ' + replace_str(str(initial_condition)) wandb.log({key: wandb.Image(figure)}) def predict_trajectory(self, initial_condition, times, add_all_trajectories: bool = False): normalized_initial_condition = self.state_normalizer.transform(initial_condition.reshape(1, -1)) normalized_times = self.time_normalizer.transform(times.reshape(-1, 1)).reshape(-1) repeated_normalized_initial_condition = jnp.repeat(normalized_initial_condition, normalized_times.size, axis=0) denormalized_state_means, denormalized_state_variances, \ denormalized_derivative_means, denormalized_derivative_variances, \ denormalized_dynamics_means, denormalized_dynamics_variances = self._all_predictions( normalized_times, repeated_normalized_initial_condition, [len(times)]) figure_prediction = self.plotter.plot_predicted_trajectory( initial_condition=[initial_condition], test_times=[times], state_means=denormalized_state_means, state_variances=denormalized_state_variances, derivative_means=denormalized_derivative_means, derivative_variances=denormalized_derivative_variances, dynamics_means=denormalized_dynamics_means, dynamics_variances=denormalized_dynamics_variances, all_initial_conditions=self.initial_conditions if add_all_trajectories else None ) if self.track_wandb: key = 'Initial condition: ' + replace_str(str(initial_condition)) wandb.log({key: wandb.Image(figure_prediction)}) def save_predicted_trajectory(self, initial_condition, times): # initial condition is one dimensional jnp.array, times is one dimensional jnp.array normalized_initial_condition = self.state_normalizer.transform(initial_condition.reshape(1, -1)) normalized_times = self.time_normalizer.transform(times.reshape(-1, 1)).reshape(-1) repeated_normalized_initial_condition = jnp.repeat(normalized_initial_condition, normalized_times.size, axis=0) denormalized_state_means, denormalized_state_variances, \ denormalized_derivative_means, denormalized_derivative_variances, \ denormalized_dynamics_means, denormalized_dynamics_variances = self._all_predictions( normalized_times, repeated_normalized_initial_condition, [len(times)]) data = self.plotter.save_plot_predicted_trajectory( initial_condition=[initial_condition], test_times=[times], state_means=denormalized_state_means, state_variances=denormalized_state_variances, derivative_means=denormalized_derivative_means, derivative_variances=denormalized_derivative_variances, dynamics_means=denormalized_dynamics_means, dynamics_variances=denormalized_dynamics_variances, all_initial_conditions=self.initial_conditions ) if self.track_wandb: directory = os.path.join(wandb.run.dir, 'data') if not os.path.exists(directory): os.makedirs(directory) data_path = os.path.join('data', 'predicted_trajectory{}.pkl'.format(replace_str(str(initial_condition)))) with open(os.path.join(wandb.run.dir, data_path), 'wb') as handle: pickle.dump(data, handle) wandb.save(os.path.join(wandb.run.dir, data_path), wandb.run.dir) return data if __name__ == "__main__": pass
StarcoderdataPython
1669801
from django.contrib import admin from ldap_login.models import * class UsersInline(admin.TabularInline): model = user; extra = 1; class userAdmin(admin.ModelAdmin): search_fields = ['username','fullname']; class groupAdmin(admin.ModelAdmin): inlines = [UsersInline]; admin.site.register(group); admin.site.register(Role); admin.site.register(Permission); admin.site.register(user,userAdmin);
StarcoderdataPython
11351465
# Take a list of WARC files, containing video/mp4 content, extract one image from each. import argparse import base64 import hashlib import tempfile import os import sys from warcio.archiveiterator import ArchiveIterator from gluish.utils import shellout if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("f", nargs="*", metavar="FILE", help="files") parser.add_argument("-p", "--prefix", default="stills-") args = parser.parse_args() # Note the seen payload digests. seen = set() for fn in args.f: with open(fn, "rb") as stream: for record in ArchiveIterator(stream): if record.rec_type != "response": continue rh = record.rec_headers hh = record.http_headers if hh.get("Content-Type") not in ("video/mp4",): continue payload_digest = rh.get("WARC-Payload-Digest") if not payload_digest: continue hv = payload_digest.split(":")[1] if hv in seen: continue seen.add(hv) with tempfile.NamedTemporaryFile(delete=False) as tf: data = record.raw_stream.read() tf.write(data) dst = "{}{}.jpg".format(args.prefix, hv) if os.path.exists(dst): continue # Generate a still. output = shellout( """ ffmpeg -hide_banner -loglevel panic -y -ss 1 -i {video} -vframes 1 -f image2 {output} """, video=tf.name, ) os.rename(output, dst) os.remove(tf.name) # remove extracted video
StarcoderdataPython
8152731
<filename>cleanup_config.toml.py #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Lexicographically sort the nicknames in config.toml Dependencies: Python 3.4+ The toml package (python -m pip install toml) Example: Dry run in default location python cleanup_config.toml.py --dry-run Example: Overwrite config.toml in working directory (Windows) python cleanup_config.toml.py --dir=%CD% (Unix-like) python cleanup_config.toml.py --dir=$PWD """ import os import sys import unicodedata from argparse import ArgumentParser, RawTextHelpFormatter from os.path import expanduser, realpath import toml def fullpath(*args): return realpath(os.path.join(*args)) def parsed_args(): doc_lines = __doc__.strip().split('\n') parser = ArgumentParser(description=doc_lines[0], epilog='\n'.join(doc_lines[1:]), formatter_class=RawTextHelpFormatter) parser.add_argument('-d', '--dir', action='store', dest='dir', default=fullpath(expanduser('~'), '.abv'), help='directory containing config.toml (default: $HOME/.abv)') parser.add_argument('--dry-run', dest='dry_run', action='store_const', const=True, default=False, help='prints the resulting config.toml file to stdout rather than overwriting') args = parser.parse_args() return args def unpack_table(lines): table_toml = toml.loads(''.join(lines)) name = list(table_toml)[0] # Format table title title = '[{name}]\n'.format(name=name) # Define a whitespace insertion method based on the longest key longest = max([len(key) for key in table_toml[name]]) def align(str_): return ' '*(longest-len(str_)+1) # Lexicographically sort and whitespace-align table items table = sorted(table_toml[name].items(), key=lambda x: x[0]) line = '"{key}"{ws}= "{val}"' items = '\n'.join([line.format(key=key, ws=align(key), val=val) for key, val in table]) return title + items + '\n\n' def parse_toml(lines): final = [] inside_table = False for line in lines: if line.strip().startswith('#'): if not inside_table: final.append(line) continue elif line.strip().startswith('['): if inside_table: final.append(unpack_table(table_lines)) inside_table = True table_lines = [line] continue elif line.strip().startswith('"') and inside_table: table_lines.append(line) continue elif line.strip() == '': if not inside_table: final.append(line) continue else: inside_table = False final.append(line) if inside_table: final.append(unpack_table(table_lines)) text = ''.join(final) return text.strip() + '\n' def clean_config(filepath): with open(filepath, mode='r', encoding='utf8') as file_: lines = file_.readlines() text = parse_toml(lines) text = unicodedata.normalize('NFC', text) return text def main(): args = parsed_args() filepath = fullpath(args.dir, 'config.toml') text = clean_config(filepath) if args.dry_run: print(text) else: with open(filepath, mode='w', encoding='utf8') as file_: file_.write(text) if __name__ == '__main__': main()
StarcoderdataPython
11319601
<filename>src/constants.py from typing import Final from options import FrameType DEBUG: bool = False FFMPEG_COMMAND: Final = 'ffmpeg -y -f concat -safe 0 -i {path_listfile} -i {path_audio} -c:v libx264 -c:a copy -vf fps={framerate},format=yuv420p -shortest -hide_banner {path_output}' FFMPEG_LOG_FILE: Final = "./ffmpeg.log" FRAMERATE: Final = 25 PATH_LISTFILE: Final = "./out_listfile.txt" PATH_AUDIO_ORIGINAL: Final = "./audio.aac" PATH_OUTPUT: Final = "./out.mp4" # TODO: Fix timings TIMINGS: Final = [ {'type': FrameType.IDLE, 'dur': 50}, {'type': FrameType.GETDOWN, 'dur': 12}, {'type': FrameType.GETDOWN, 'dur': 12}, *[{'type': FrameType.RANDOM, 'dur': 1}] * 216, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, *[{'type': FrameType.RANDOM, 'dur': 1}] * 26, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 2}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 2}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 11}, {'type': FrameType.CHIKAU, 'dur': 11}, {'type': FrameType.CHIKAU, 'dur': 12}, {'type': FrameType.CHIKAU, 'dur': 12}, *[{'type': FrameType.RANDOM, 'dur': 1}] * 216, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, *[{'type': FrameType.RANDOM, 'dur': 1}] * 26, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPSHAKE, 'dur': 4}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 2}, {'type': FrameType.HIPSHAKE, 'dur': 1}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 2}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 2}, {'type': FrameType.HIPTHRUST, 'dur': 4}, {'type': FrameType.HIPTHRUST, 'dur': 3}, {'type': FrameType.HIPTHRUST, 'dur': 11}, {'type': FrameType.CHIKAU, 'dur': 11}, {'type': FrameType.CHIKAU, 'dur': 12}, {'type': FrameType.CHIKAU, 'dur': 12}, *[{'type': FrameType.RANDOM, 'dur': 1}] * 101, {'type': FrameType.IDLE, 'dur': 93}, {'type': FrameType.IDLE, 'dur': 0}, ]
StarcoderdataPython
1984528
<filename>flaskee/core/environment.py """ The Flaskee is an Open Source project for Microservices. Develop By <NAME> | https://nadeengamage.com | <EMAIL> """ DEBUG = True SECRET_KEY = 'super-secret-key' SQLALCHEMY_TRACK_MODIFICATIONS=False SQLALCHEMY_DATABASE_URI = 'mysql+pymysql://root:[email protected]:3306/flaskee' MAIL_DEFAULT_SENDER = '' MAIL_SERVER = '' MAIL_PORT = 25 MAIL_USE_TLS = True MAIL_USERNAME = 'username' MAIL_PASSWORD = 'password'
StarcoderdataPython
6530388
# -*- coding: utf-8 -*- import os from . import CleoTestCase from cleo.terminal import Terminal class TerminalTest(CleoTestCase): def test_dimensions(self): os.environ['COLUMNS'] = '100' os.environ['LINES'] = '50' terminal = Terminal() self.assertEqual(100, terminal.width) self.assertEqual(50, terminal.height)
StarcoderdataPython
9747666
<gh_stars>1-10 import numpy as np import six import tensorflow as tf import tensorflow.keras.initializers as tfki import tensorflow.keras.layers as tfkl from tensorflow.python.keras.utils.generic_utils import serialize_keras_object, deserialize_keras_object from tensorflow.python.ops import variables as tf_variables from dynastes.ops.t2t_common import shape_list from dynastes.weight_normalizers.spectral import SpectralNormalization def serialize(normalizer): return serialize_keras_object(normalizer) def deserialize(config, custom_objects={}): custom_objects = {**custom_objects, **object_scope} return deserialize_keras_object( config, module_objects=globals(), custom_objects=custom_objects, printable_module_name='normalizer') def get(identifier): if identifier is None: return None if isinstance(identifier, dict): return deserialize(identifier) elif isinstance(identifier, six.string_types): identifier = str(identifier) if identifier == 'spectral': return SpectralNormalization() elif identifier == 'spectral_t': return SpectralNormalization(transposed=True) elif identifier == 'wscale': return WscaleNormalizer() elif callable(identifier): return identifier else: raise ValueError('Could not interpret normalizer identifier:', identifier) @tf.keras.utils.register_keras_serializable(package='Dynastes') class WscaleNormalizer(tfkl.Layer): def __init__(self, lrmul=1., gain=np.sqrt(2), next_layer=tfkl.Activation('linear'), trainable=False, **kwargs): if 'trainable' in kwargs: kwargs.pop('trainable') super(WscaleNormalizer, self).__init__(trainable=False, **kwargs) self.next_layer = get(next_layer) self.gain = gain self.lrmul = lrmul def call(self, inputs, training=None): input_shape = shape_list(inputs) if len(input_shape) > 1: fan_in = np.prod(input_shape[:-1]) # [kernel, kernel, fmaps_in, fmaps_out] or [in, out] he_std = self.gain / np.sqrt(fan_in) # He init runtime_coef = he_std * self.lrmul else: runtime_coef = self.lrmul return self.next_layer(inputs * runtime_coef, training=training) def get_config(self): config = { 'lrmul': self.lrmul, 'gain': self.gain, 'next_layer': serialize(self.next_layer) } base_config = super(WscaleNormalizer, self).get_config() return {**base_config, **config} cs = tf.CriticalSection(name='init_mutex') @tf.keras.utils.register_keras_serializable(package='Dynastes') class WeightNormalizer(tfkl.Layer): def __init__(self, weight_initializer, next_layer=tfkl.Activation('linear'), **kwargs): super(WeightNormalizer, self).__init__(**kwargs) self.orig_weight_initializer = tfki.get(weight_initializer) self.next_layer = get(next_layer) self._init_critical_section = cs self.g = None def build(self, input_shape): self.layer_depth = int(input_shape[-1]) self.kernel_norm_axes = list(range(len(input_shape) - 1)) """ self._initialized_g = self.add_weight( name='initialized_g', shape=None, initializer="zeros", dtype=tf.dtypes.bool, synchronization=tf_variables.VariableSynchronization.ON_READ, trainable=False, aggregation=tf_variables.VariableAggregation.ONLY_FIRST_REPLICA, )""" # For now it's a workaround, maybe works, who knows ¯\_(ツ)_/¯ def get_weight_init(input_shape, original_init): def weight_init(target_shape, dtype, input_shape, original_init): var_init = original_init(input_shape, dtype) var_norm = tf.norm(tf.reshape(var_init, [-1, target_shape[-1]]), axis=0) return tf.random.normal(shape=target_shape, mean=tf.reduce_mean(var_norm), stddev=tf.math.reduce_std(var_norm)) return lambda x, dtype: weight_init(x, dtype, input_shape, original_init) self.g = self.add_weight( name="g", shape=(self.layer_depth,), synchronization=tf_variables.VariableSynchronization.AUTO, initializer=get_weight_init(input_shape, self.orig_weight_initializer), trainable=True, ) self.built = True def call(self, inputs, training=None, **kwargs): # TODO: Fix this when TensorFlow developers learn how to code if I haven't switched to PyTorch by that time # For now it's a workaround, maybe works, who knows ¯\_(ツ)_/¯ # def _update_or_return_vars(): # return tf.identity(self.g) # def _init_g(): # V_norm = tf.norm(tf.reshape(inputs, [-1, self.layer_depth]), axis=0) # with tf.control_dependencies([self.g.assign(V_norm), self._initialized_g.assign(True)]): # return tf.identity(self.g) # g = self._init_critical_section.execute(lambda: tf.cond(self._initialized_g, _update_or_return_vars, _init_g)) g = self.g V_norm = tf.norm(tf.reshape(inputs, [-1, self.layer_depth]), axis=0) scaler = tf.reshape(tf.math.divide_no_nan(g, V_norm), list([1] * len(self.kernel_norm_axes)) + [self.layer_depth]) return inputs * scaler def compute_output_shape(self, input_shape): return input_shape def get_config(self): config = { 'weight_initializer': tfki.serialize(self.orig_weight_initializer), 'next_layer': serialize(self.next_layer) } base_config = super(WeightNormalizer, self).get_config() return {**base_config, **config} object_scope = { 'SpectralNormalization': SpectralNormalization, 'WscaleNormalizer': WscaleNormalizer, 'Activation': tfkl.Activation }
StarcoderdataPython
9770595
<gh_stars>1-10 DATACASH = 'SystemPay' VERSION = '0.0.1'
StarcoderdataPython
215915
from app.api.v2.managers.base_api_manager import BaseApiManager from app.objects.c_adversary import Adversary class AdversaryApiManager(BaseApiManager): def __init__(self, data_svc, file_svc): super().__init__(data_svc=data_svc, file_svc=file_svc) async def verify_adversary(self, adversary: Adversary): adversary.verify(log=self.log, abilities=self._data_svc.ram['abilities'], objectives=self._data_svc.ram['objectives']) return adversary
StarcoderdataPython
4952911
<gh_stars>0 # -*- coding: utf-8 -*- """ # @file name : fusion_img.py # @author : JLChen # @date : 2020-03-11 # @brief : portrait数据集做前景 , coco数据集做背景 """ import numpy as np import os import sys BASE_DIR = os.path.dirname(os.path.abspath(__file__)) sys.path.append(os.path.join(BASE_DIR, '..')) import matplotlib.pyplot as plt import pylab as pl import cv2 from tools.coco_tool import CocoImg import random import shutil def get_img_list(root): """ 读取portrait2000的(图片路径,标签路径) :param root: :return: """ file_list = os.listdir(root) file_list = list(filter(lambda x: x.endswith("_matte.png"), file_list)) label_lst = [os.path.join(root, name) for name in file_list] img_lst = [string.replace("_matte.png", ".png") for string in label_lst] data_lst = [(path_img, path_label) for path_img, path_label in zip(img_lst, label_lst)] return data_lst def fusion(fore_path, mask_path, back_path): """ 融合乳片 :param fore_path: portrait2000中的原图图片路径 :param mask_path: portrait2000中的标签图片路径 :param back_path: coco数据集中的图片路径 :return: """ raw_img = cv2.imread(fore_path) mask_img = cv2.imread(mask_path) / 255 back_img = cv2.imread(back_path) fore_img = np.clip(raw_img * mask_img, a_min=0, a_max=255).astype(np.uint8) h, w, c = fore_img.shape back_img = cv2.resize(back_img, (w, h)) result = np.clip(fore_img * mask_img + back_img * (1 - mask_img), a_min=0, a_max=255).astype(np.uint8) return result def gen_img(img_list, coco_genertor, out_dir, img_num=100): """ 生成融合的图片 :param img_list: portrait2000的 (人像图片路径,标签图片路径) 列表 :param coco_genertor: CocoImg实例,用于获取coco数据集图片路径 :param out_dir: 输出的目录 :param img_num: 生成数据集的数据量 :return: """ for i in range(img_num): fore_path, mask_path = random.choice(img_list) # fore_path, mask_path = img_list[0] # 调试用,仅用1张前景生成多张图 _, back_path = random.choice(coco_genertor) fusion_img = fusion(fore_path, mask_path, back_path) if not os.path.exists(out_dir): os.makedirs(out_dir) img_name = "{0:08d}.png".format(i) msk_name = "{0:08d}_matte.png".format(i) img_path = os.path.join(out_dir, img_name) mask_path_dst = os.path.join(out_dir, msk_name) cv2.imwrite(img_path, fusion_img) shutil.copyfile(mask_path, mask_path_dst) print(f"{i}/{img_num}") if __name__ == '__main__': img_num = 17000 # 生成数据集的数据量 out_dir = r"/home/elimen/Data/deepshare/Segmentation/Portrait_dataset/data_aug_{}".format(img_num) portarit_root = r"/home/elimen/Data/deepshare/Segmentation/Portrait_dataset/Portrait-dataset-2000/dataset/training" coco_root = r"/home/elimen/Data/deepshare/Segmentation/coco2017" data_type = "train2017" # train2017::118287 张图片, val2017::5000 super_cats_in = ["outdoor", "indoor"] super_cats_out = ["person"] # step1:创建coco数据集生成器 coco_genertor = CocoImg(coco_root, data_type, super_cats_in, super_cats_out) # step2: 获取portrait imglist img_list = get_img_list(portarit_root) # step3:执行生成 gen_img(img_list, coco_genertor, out_dir, img_num=img_num)
StarcoderdataPython
122657
<reponame>gwangyi/pygritia """Pavement for Pygritia""" import shlex import sys import paver.doctools # pylint: disable=unused-import import paver.virtual # pylint: disable=unused-import from paver.easy import * # pylint: disable=unused-wildcard-import,wildcard-import from paver.options import Bunch from paver.path import path from paver.setuputils import setup if sys.version_info < (3, 7): sys.exit("Pygritia requires Python >= 3.7") options = environment.options # pylint: disable=invalid-name HERE = path(__file__).dirname().abspath() setup_params = dict( # pylint: disable=invalid-name name="pygritia", version="0.2.0", description="Pygritia: Lazy Symbolic Evaluation", long_description=open(HERE / 'README.md').read(), long_description_content_type="text/markdown", url="https://github.com/gwangyi/pygritia", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.7", ], package_data={'pygritia': ['py.typed']}, packages=['pygritia'], ) options( minilib=Bunch( extra_files=['doctools'], versioned_name=False, extra_packages=[], ), sphinx=Bunch( docroot='sphinx', builddir='build', sourcedir='source', apidoc_opts=['-e'], ), ) setup(**setup_params) @task @no_help def env(): """Ready env""" import os def pathify(key, *args): paths = os.environ.get(key, '').split(os.path.pathsep) os.environ[key] = os.path.pathsep.join(list(args) + paths) pathify('MYPYPATH', HERE) pathify('PYTHONPATH', HERE, *sys.path) @task @needs(['env']) def test(): """Run unittest""" try: import pytest # type: ignore except ImportError: raise BuildFailure('install pytest to test') pytestopts = ['--cov=' + setup_params['name'], '--cov-report=html', '--cov-report=term'] dry('pytest {}'.format(' '.join(pytestopts)), pytest.main, pytestopts) @task @needs(['env']) def typecheck(): """Run mypy""" try: import mypy.main except ImportError: raise BuildFailure('install mypy to typecheck') mypyopts = ['--strict', '-p', setup_params['name']] dry('mypy {}'.format(' '.join(mypyopts)), mypy.main.main, None, mypyopts) @task @needs(['env']) def lint(): """Run mypy and pylint""" try: import pylint.lint # type: ignore except ImportError: raise BuildFailure('install pylint to lint') pylintopts = ['pavement.py', 'paverlib', setup_params['name']] dry('pylint {}'.format(' '.join(pylintopts)), pylint.lint.Run, pylintopts) @task @needs(['env']) @consume_args def shell(args): """Run shell""" import os sh(' '.join(shlex.quote(arg) for arg in args) if args else os.environ.get('SHELL', '/bin/bash')) @task @needs(['env']) def nvim(): """Launch neovim with env""" import os os.environ['BULLETTRAIN_VIRTUALENV_PREFIX'] = 'py' sh('nvim "+bot sp +terminal" +NERDTreeToggle') @task @needs(['paverlib.doctools.apidoc', 'paverlib.doctools.html']) def html(): """Override html task to copy result to 'docs' directory""" import shutil try: shutil.rmtree(HERE / 'docs') except FileNotFoundError: pass shutil.copytree( HERE / options.sphinx.docroot / options.sphinx.builddir / 'html', HERE / 'docs') @task @needs('generate_setup', 'minilib', 'setuptools.command.sdist') def sdist(): """Overrides sdist to make sure that our setup.py is generated."""
StarcoderdataPython
11333273
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """classify.py Code to classify primer sets by predicted specificity (c) The James Hutton Institute 2018 Author: <NAME> Contact: <EMAIL> <NAME>, Information and Computing Sciences, James Hutton Institute, Errol Road, Invergowrie, Dundee, DD2 5DA, Scotland, UK The MIT License Copyright (c) 2018 The James Hutton Institute Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. """ import json import os from collections import defaultdict, namedtuple from Bio.Emboss.Primer3 import Primers from diagnostic_primers import load_primers, PrimersEncoder, write_primers from diagnostic_primers.primersearch import parse_output # Convenience struct for collection group data GroupData = namedtuple("GroupData", "names groups groupdata") class PDPDiagnosticPrimersEncoder(json.JSONEncoder): """JSON encoder for PDPDiagnosticPrimers objects""" def default(self, o): # pylint: disable=E0202 if isinstance(o, Primers): encoder = PrimersEncoder() return encoder.default(o) if not isinstance(o, PDPDiagnosticPrimers): return json.JSONEncoder.default(self, o) # Convert PDPDiagnosticPrimers object to serialisable dictionary # and return return o.__dict__ class PDPDiagnosticPrimers: """Collection of diagnostic primers.""" def __init__(self, name): self.name = str(name) self._groups = defaultdict(list) # Groups with diagnostic primers self._primers = dict() def add_diagnostic_primer(self, primer, group): """Add a diagnostic primer set, specifying the group - primer Eprimer3 object describing the primer set - group the group it's specific to """ self._groups[group].append(primer) self._primers[primer.name] = primer def diagnostic_primer(self, group): """Returns list of primers diagnostic for the passed group""" return self._groups[group] @property def groups(self): """List of groups in the diagnostic primer set""" return sorted(list(self._groups.keys())) @property def primers(self): """List of primers in the diagnostic primer set""" return sorted(list(self._primers.keys())) def process_groups(coll): """Return GroupData namedtuple of group information :param coll: PDPCollection Parse passed collection and generate local dictionary with a key for each group in the collection. This will take with values that are a set of names of members of those groups. """ names = set() # set of all genome names groups = defaultdict(set) # group name: set of genome names for genome in coll.data: for group in genome.groups: groups[group].add(genome.name) names.add(genome.name) groupdata = [(members, name) for (name, members) in groups.items()] return GroupData(names, groups, groupdata) def process_crosshyb(coll, limits): """Return primers and cross-hybridisation data :param coll: PDPCollection Parse the collection and follow the linked primersearch JSON file Populate a dictionary of paths to each input genome, keyed by name """ crosshyb = defaultdict(set) # holds cross-hybridisation data genomepaths = {} # dictionary of paths to each genome file, keyed by name for item in coll.data: genomepaths[item.name] = item.seqfile primers = {} for genome in coll.data: # All primers amplify their own source genome. Load the list # of primers and populate the crosshyb dictionaries for primer in load_primers(genome.primers, fmt="json"): crosshyb[primer.name].add(genome.name) primers[primer.name] = primer # Load the data for primersearch cross-hybridisation, and populate # the crosshyb dictionary with open(genome.primersearch, "r") as ifh: psdata = json.load(ifh) # Each key other than "query" and "primers" is the name of # the genome being tested against, and has a PrimerSearch # output file # crosshybnames is a list of target genome names crosshybnames = [_ for _ in psdata.keys() if _ not in ("primers", "query")] for name in crosshybnames: data = parse_output( psdata[name], genomepaths[name] ) # primersearch results for primer in data: for amplimer in primer.amplimers: if limits[0] < len(amplimer) < limits[1]: crosshyb[primer.name].add(name) crosshybdata = [(targets, primer) for (primer, targets) in crosshyb.items()] return (primers, crosshybdata) def classify_primers(coll, min_amplicon, max_amplicon): """Classifies each of the primer sets referred to in the passed collection :param coll: PDPCollection describes the genomes in the run, with links to the predicted primer sets, and their matches to other genomes post-primersearch/mapping :param min_amplicon: The minimum length of an amplicon to consider as a false positive :param max_amplicon: The maximum length of an amplicon to consider as a false positive First, the collection data is parsed, and a dictionary generated, keyed by group, with values being a set of genome names belonging to the group. For each genome in the passed PDPCollection, the path to the PrimerSearch JSON file corresponding to the primers generated from that genome is followed, and the file parsed to obtain the path to the relevant PrimerSearch output. Each PrimerSearch output file is parsed and a dictionary populated: - dictionary keyed by primer ID, with value being a set of the names of genomes where an amplicon is theoretically produced (filtered for amplicon length). Using set logic, each primer's set of potential amplified genomes is compared against the sets of specific groups to determine if there is an exact match. The primers that amplify exactly those genomes which are members of one of the defined classes are returned as a PDPDiagnosticPrimers object that is a collection of Primer3.Primers objects. """ # Get data about groups from the collection groupdata = process_groups(coll) # Create dictionary to hold primer cross-hybridisation targets # - keyed by primer name with value a set of all genome target primers, crosshybdata = process_crosshyb(coll, (min_amplicon, max_amplicon)) # To determine group-specific primer sets, we loop through the group # data, and compare their members to each of the targets. As we find # specific primer sets, we remove them from the pool. results = PDPDiagnosticPrimers(coll.name) for members, group in groupdata.groupdata: for targets, primer in crosshybdata: if members == targets: # Primers are specific results.add_diagnostic_primer(primers[primer], group) return results def write_results(results, outfilename, fmt="json"): """Writes files describing PDPDiagnosticPrimers object data to outdir - results PDPDiagnosticPrimers object - outfilename Path to output file/directory - fmt Result format Several output formats may be written: json ==== JSON representation of the complete PDPDiagnosticPrimers object summary ======= writes primers, and also tab-separated plain text table with the columns: Group (specifically-amplified group) NumPrimers (number of primer sets specifically amplifying that group) Primers (path to file describing specific primers) primers ======= ePrimer3 and JSON format files describing specific primers, one per group """ funcs = { "json": __write_results_json, "summary": __write_results_summary, "primers": __write_results_primers, } funcs[fmt](results, outfilename) def __write_results_json(results, outfilename): """Write PDPDiagnosticPrimers JSON representation - results PDPDiagnosticPrimers object - outfilename path to output file """ with open(outfilename, "w") as ofh: json.dump(results, ofh, cls=PDPDiagnosticPrimersEncoder) def __write_results_primers(results, outdir): """Write JSON/ePrimer3 files describing diagnostic primers - results PDPDiagnosticPrimers object - outdir path to directory for output files """ for group in results.groups: outstem = os.path.join(outdir, "%s_primers" % group) write_primers(results.diagnostic_primer(group), outstem + ".json", "json") write_primers(results.diagnostic_primer(group), outstem + ".ePrimer3", "ep3") # We don't write .bed files using write_primers(), as this reports the primer # sets in the context of the genomes they're defined from. However, for # classify (and extract), we want locations on each genome they amplify from # write_primers(results.diagnostic_primer(group), outstem + ".bed", "bed") def __write_results_summary(results, outfilename): """Write summary table of diagnostic primer results""" # Write the diagnostic primer sets first outdir = os.path.split(outfilename)[0] __write_results_primers(results, outdir) # Write the summary table outstr = ["\t".join(["Group", "NumPrimers", "Primers"])] for group in results.groups: outstr.append( "\t".join( [ group, str(len(results.diagnostic_primer(group))), os.path.join(outdir, "%s_primers.json" % group), ] ) ) with open(outfilename, "w") as ofh: ofh.write("\n".join(outstr) + "\n")
StarcoderdataPython
5059359
# Generated by Django 2.0.7 on 2018-08-19 14:41 from django.db import migrations, models import django.db.models.deletion import django.utils.timezone class Migration(migrations.Migration): dependencies = [ ('notifications', '0001_initial'), ] operations = [ migrations.AlterModelOptions( name='notification', options={'ordering': ['-created_at']}, ), migrations.AddField( model_name='notification', name='comment', field=models.TextField(blank=True, null=True), ), migrations.AddField( model_name='notification', name='created_at', field=models.DateTimeField(auto_now_add=True, default=django.utils.timezone.now), preserve_default=False, ), migrations.AddField( model_name='notification', name='updated_at', field=models.DateTimeField(auto_now=True), ), migrations.AlterField( model_name='notification', name='image', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.PROTECT, to='images.Image'), ), ]
StarcoderdataPython
5182106
<reponame>jperez999/systems-1 # Copyright (c) 2022, NVIDIA CORPORATION. All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions # are met: # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of NVIDIA CORPORATION nor the names of its # contributors may be used to endorse or promote products derived # from this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY # EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR # PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR # CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, # EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR # PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY # OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import json import sys import traceback from typing import List import triton_python_backend_utils as pb_utils from triton_python_backend_utils import ( InferenceRequest, InferenceResponse, Tensor, get_input_tensor_by_name, ) from merlin.systems.dag.op_runner import OperatorRunner from merlin.systems.dag.ops.operator import InferenceDataFrame class TritonPythonModel: def initialize(self, args): self.model_config = json.loads(args["model_config"]) self.runner = OperatorRunner(self.model_config) def execute(self, requests: List[InferenceRequest]) -> List[InferenceResponse]: params = self.model_config["parameters"] op_names = json.loads(params["operator_names"]["string_value"]) first_operator_name = op_names[0] operator_params = json.loads(params[first_operator_name]["string_value"]) input_column_names = list(json.loads(operator_params["input_dict"]).keys()) responses = [] for request in requests: try: # transform the triton tensors to a dict of name:numpy tensor input_tensors = { name: get_input_tensor_by_name(request, name).as_numpy() for name in input_column_names } inf_df = InferenceDataFrame(input_tensors) raw_tensor_tuples = self.runner.execute(inf_df) tensors = { name: (data.get() if hasattr(data, "get") else data) for name, data in raw_tensor_tuples } result = [Tensor(name, data) for name, data in tensors.items()] responses.append(InferenceResponse(result)) except Exception: # pylint: disable=broad-except exc_type, exc_value, exc_traceback = sys.exc_info() tb_string = repr(traceback.extract_tb(exc_traceback)) responses.append( pb_utils.InferenceResponse( tensors=[], error=f"{exc_type}, {exc_value}, {tb_string}" ) ) return responses
StarcoderdataPython
1704066
import json from lambda_assistant.handlers.event_handler import EventHandler from lambda_assistant.errors import LambdaError, InternalServerError from lambda_assistant.response.headers import CORSHeaders from lambda_assistant.types import APIGatewayProxyResult def buildResponse(statusCode, headers: dict, body: dict): return APIGatewayProxyResult( HTTPStatus=statusCode, Headers=headers, Body= body ) def buildBody(operation, response): return { 'operationResource': operation, 'response': json.dumps(response, default=str) }
StarcoderdataPython
6407951
# Generated by Django 2.2.7 on 2019-11-22 00:21 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ('products', '0001_initial'), ] operations = [ migrations.CreateModel( name='Menu', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('name', models.CharField(max_length=100, verbose_name='Nome')), ('description', models.TextField(blank=True, verbose_name='Descrição')), ], ), migrations.CreateModel( name='MenuCategory', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('order', models.PositiveIntegerField(verbose_name='ordem')), ('category', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='products.Category')), ('menu', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='menu.Menu')), ], options={ 'ordering': ('order',), 'unique_together': {('menu', 'category')}, }, ), ]
StarcoderdataPython
226564
import inspect from copy import deepcopy from inspect import Parameter, Signature from typing import ( Any, Callable, Dict, Final, Mapping, Tuple, get_args, get_origin, ) from pydantic.tools import schema_of # FIXME: name and key seem to be the same??! _PACKAGE_NAME: Final = "ofs" # __name__.split(".")[0] _TEMPLATE_META: Final = { "name": "TO_BE_DEFINED", "thumbnail": "https://upload.wikimedia.org/wikipedia/commons/thumb/b/bd/Test.svg/315px-Test.svg.png", "description": "", "key": "simcore/services/comp/TO_BE_DEFINED", "version": "TO_BE_DEFINED", "integration-version": "1.0.0", "type": "computational", "authors": [ { "name": "<NAME>", "email": "<EMAIL>", "affiliation": "IT'IS Foundation", }, ], "contact": "<EMAIL>", "inputs": {}, "outputs": {}, } # TODO: class MetaDict(TypedDict): # name: str # thumbnail: str # description: str MetaDict = Dict[str, Any] def _name_type(parameter_annotation): try: if issubclass(parameter_annotation, float): name = "number" elif issubclass(parameter_annotation, int): name = "integer" elif issubclass(parameter_annotation, str): name = "string" else: name = f"{parameter_annotation}".replace("typing.", "") except TypeError: name = f"{parameter_annotation}".replace("typing.", "") return name def validate_inputs(parameters: Mapping[str, Parameter]) -> Dict[str, Any]: inputs = {} for parameter in parameters.values(): # should only allow keyword argument assert parameter.kind == parameter.KEYWORD_ONLY assert parameter.annotation != Parameter.empty # build each input description = getattr( parameter.annotation, "description", parameter.name.replace("_", " ").capitalize(), ) # FIXME: files are represented differently! content_schema = schema_of( parameter.annotation, title=parameter.name.capitalize(), ) data = { "label": parameter.name, "description": description, "type": "ref_contentSchema", "contentSchema": content_schema, } if parameter.default != Parameter.empty: # TODO: what if partial-field defaults? data["defaultValue"] = parameter.default inputs[parameter.name] = data return inputs def _as_args_tuple(return_annotation: Any) -> Tuple: if return_annotation == Signature.empty: return tuple() origin = get_origin(return_annotation) if origin and origin is tuple: # multiple outputs return_args_types = get_args(return_annotation) else: # single output return_args_types = (return_annotation,) return return_args_types def validate_outputs(return_annotation: Any) -> Dict[str, Any]: # TODO: add extra info on outputs? outputs = {} return_args_types = _as_args_tuple(return_annotation) for index, return_type in enumerate(return_args_types, start=1): name = f"out_{index}" display_name = f"Out{index} {_name_type(return_type)}" data = { "label": display_name, "description": "", "type": "ref_contentSchema", "contentSchema": schema_of( return_type, title=display_name, ), } outputs[name] = data return outputs def create_meta(func: Callable, service_version: str) -> MetaDict: if inspect.isgeneratorfunction(func): raise NotImplementedError(f"Cannot process function iterators as {func}") signature = inspect.signature(func) inputs = validate_inputs(signature.parameters) outputs = validate_outputs(signature.return_annotation) service_name = f"{_PACKAGE_NAME}-{func.__name__}" meta = deepcopy(_TEMPLATE_META) meta["name"] = service_name meta["key"] = f"simcore/services/comp/ofs-{func.__name__}" meta["version"] = service_version meta["inputs"] = inputs meta["outputs"] = outputs return meta
StarcoderdataPython
9780241
<gh_stars>0 from flask import render_template,request,redirect,url_for,abort from . import main from flask_login import login_required,current_user from ..models import User,Pitch,Comment,Upvote,Downvote from .forms import UpdateProfile,PitchForm,CommentForm from .. import db import datetime @main.route('/') def index(): pitches = Pitch.query.all() advertisement = Pitch.query.filter_by(category = 'Advertisement').all() interview = Pitch.query.filter_by(category = 'Interview').all() product = Pitch.query.filter_by(category = 'Product').all() technology = Pitch.query.filter_by(category = 'Technology').all() return render_template('index.html', interview = interview,product = product, pitches = pitches,advertisement= advertisement,technology=technology) @main.route('/create_new', methods = ['POST','GET']) @login_required def new_pitch(): form = PitchForm() if form.validate_on_submit(): title = form.title.data post = form.post.data category = form.category.data new_pitch = Pitch(title = title,post=post,category=category,user=current_user) new_pitch.save_pitch() return redirect(url_for('main.index')) return render_template('new_pitch.html', form = form) @main.route('/comment/<int:pitch_id>', methods = ['POST','GET']) @login_required def comment(pitch_id): form = CommentForm() pitch = Pitch.query.get(pitch_id) comments = Comment.query.filter_by(pitch_id = pitch_id).all() if form.validate_on_submit(): comment = form.comment.data pitch_id = pitch_id new_comment = Comment(comment = comment,pitch_id = pitch_id,user=current_user) new_comment.save_comment() return redirect(url_for('.comment', pitch_id = pitch_id)) return render_template('comment.html', form =form, pitch = pitch,comments=comments) @main.route('/user/<uname>') @login_required def profile(uname): user = User.query.filter_by(username = uname).first() posts = Pitch.query.filter_by(user = current_user).all() if user is None: abort(404) return render_template("profile/profile.html", user = user,posts=posts) @main.route('/user/<uname>/update',methods = ['GET','POST']) @login_required def update_profile(uname): user = User.query.filter_by(username = uname).first() if user is None: abort(404) form = UpdateProfile() if form.validate_on_submit(): user.bio = form.bio.data db.session.add(user) db.session.commit() return redirect(url_for('.profile',uname=user.username)) return render_template('profile/update.html',form =form) @main.route('/like/<int:id>',methods = ['POST','GET']) @login_required def upvote(id): pitches = Upvote.get_upvotes(id) usr_id = f'{current_user.id}:{id}' for pitch in pitches: to_string = f'{pitch}' if usr_id == to_string: return redirect(url_for('main.index',id=id)) else: continue new_vote = Upvote(user = current_user, pitch_id=id) new_vote.save() return redirect(url_for('main.index',id=id)) @main.route('/dislike/<int:id>',methods = ['POST','GET']) @login_required def downvote(id): pitches = Downvote.get_downvotes(id) usr_id = f'{current_user.id}:{id}' for pitch in pitches: to_string = f'{pitch}' if usr_id == to_string: return redirect(url_for('main.index',id=id)) else: continue new_downvote = Downvote(user = current_user, pitch_id=id) new_downvote.save() return redirect(url_for('main.index',id = id)) @main.route('/user/<uname>/update/pic',methods= ['POST']) @login_required def update_pic(uname): user = User.query.filter_by(username = uname).first() if 'photo' in request.files: filename = photos.save(request.files['photo']) path = f'photos/{filename}' user.profile_pic_path = path db.session.commit() return redirect(url_for('main.profile',uname=uname))
StarcoderdataPython
8181099
from pymodbus.interfaces import IModbusFramer import struct # Unit ID, Function Code BYTE_ORDER = '>' FRAME_HEADER = 'BB' # Transaction Id, Protocol ID, Length, Unit ID, Function Code SOCKET_FRAME_HEADER = BYTE_ORDER + 'HHH' + FRAME_HEADER # Function Code TLS_FRAME_HEADER = BYTE_ORDER + 'B' class ModbusFramer(IModbusFramer): """ Base Framer class """ def _validate_unit_id(self, units, single): """ Validates if the received data is valid for the client :param units: list of unit id for which the transaction is valid :param single: Set to true to treat this as a single context :return: """ if single: return True else: if 0 in units or 0xFF in units: # Handle Modbus TCP unit identifier (0x00 0r 0xFF) # in asynchronous requests return True return self._header['uid'] in units def sendPacket(self, message): """ Sends packets on the bus with 3.5char delay between frames :param message: Message to be sent over the bus :return: """ return self.client.send(message) def recvPacket(self, size): """ Receives packet from the bus with specified len :param size: Number of bytes to read :return: """ return self.client.recv(size)
StarcoderdataPython
6655460
import mmcv import torch from copy import deepcopy from mmcv.parallel import collate, scatter from mmcv.runner import load_checkpoint from os import path as osp from mmdet3d.core import Box3DMode, show_result from mmdet3d.core.bbox import get_box_type from mmdet3d.datasets.pipelines import Compose from mmdet3d.models import build_detector def init_detector(config, checkpoint=None, device='cuda:0'): """Initialize a detector from config file. Args: config (str or :obj:`mmcv.Config`): Config file path or the config object. checkpoint (str, optional): Checkpoint path. If left as None, the model will not load any weights. device (str): Device to use. Returns: nn.Module: The constructed detector. """ if isinstance(config, str): config = mmcv.Config.fromfile(config) elif not isinstance(config, mmcv.Config): raise TypeError('config must be a filename or Config object, ' f'but got {type(config)}') config.model.pretrained = None model = build_detector(config.model, test_cfg=config.test_cfg) if checkpoint is not None: checkpoint = load_checkpoint(model, checkpoint) if 'CLASSES' in checkpoint['meta']: model.CLASSES = checkpoint['meta']['CLASSES'] else: model.CLASSES = config.class_names model.cfg = config # save the config in the model for convenience model.to(device) model.eval() return model def inference_detector(model, pcd): """Inference point cloud with the detector. Args: model (nn.Module): The loaded detector. pcd (str): Point cloud files. Returns: tuple: Predicted results and data from pipeline. """ cfg = model.cfg device = next(model.parameters()).device # model device # build the data pipeline test_pipeline = deepcopy(cfg.data.test.pipeline) test_pipeline = Compose(test_pipeline) box_type_3d, box_mode_3d = get_box_type(cfg.data.test.box_type_3d) data = dict( pts_filename=pcd, box_type_3d=box_type_3d, box_mode_3d=box_mode_3d, img_fields=[], bbox3d_fields=[], pts_mask_fields=[], pts_seg_fields=[], bbox_fields=[], mask_fields=[], seg_fields=[]) data = test_pipeline(data) data = collate([data], samples_per_gpu=1) if next(model.parameters()).is_cuda: # scatter to specified GPU data = scatter(data, [device.index])[0] else: # this is a workaround to avoid the bug of MMDataParallel data['img_metas'] = data['img_metas'][0].data data['points'] = data['points'][0].data # forward the model with torch.no_grad(): result = model(return_loss=False, rescale=True, **data) return result, data def show_result_meshlab(data, result, out_dir): """Show result by meshlab. Args: data (dict): Contain data from pipeline. result (dict): Predicted result from model. out_dir (str): Directory to save visualized result. """ points = data['points'][0][0].cpu().numpy() pts_filename = data['img_metas'][0][0]['pts_filename'] file_name = osp.split(pts_filename)[-1].split('.')[0] assert out_dir is not None, 'Expect out_dir, got none.' pred_bboxes = result['boxes_3d'].tensor.numpy() # for now we convert points into depth mode if data['img_metas'][0][0]['box_mode_3d'] != Box3DMode.DEPTH: points = points[..., [1, 0, 2]] points[..., 0] *= -1 pred_bboxes = Box3DMode.convert(pred_bboxes, data['img_metas'][0][0]['box_mode_3d'], Box3DMode.DEPTH) pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2 else: pred_bboxes[..., 2] += pred_bboxes[..., 5] / 2 show_result(points, None, pred_bboxes, out_dir, file_name)
StarcoderdataPython
3341977
<filename>Machine Learning Scientist with Python Track/11. Model Validation in Python/ch4_exercises.py # Exercise_1 #1 # Review the parameters of rfr print(rfr.get_params()) #2 # Review the parameters of rfr print(rfr.get_params()) # Maximum Depth max_depth = [4, 8, 12] # Minimum samples for a split min_samples_split = [2, 5, 10] #3 # Review the parameters of rfr print(rfr.get_params()) # Maximum Depth max_depth = [4, 8, 12] # Minimum samples for a split min_samples_split = [2, 5, 10] # Max features max_features = [4,6,8,10] -------------------------------------------------- # Exercise_2 from sklearn.ensemble import RandomForestRegressor # Fill in rfr using your variables rfr = RandomForestRegressor( n_estimators=100, max_depth=random.choice(max_depth), min_samples_split=random.choice(min_samples_split), max_features=random.choice(max_features)) # Print out the parameters print(rfr.get_params()) -------------------------------------------------- # Exercise_3 from sklearn.ensemble import RandomForestRegressor from sklearn.metrics import make_scorer, mean_squared_error # Finish the dictionary by adding the max_depth parameter param_dist = {"max_depth": [2,4,6,8], "max_features": [2, 4, 6, 8, 10], "min_samples_split": [2, 4, 8, 16]} # Create a random forest regression model rfr = RandomForestRegressor(n_estimators=10, random_state =1111) # Create a scorer to use (use the mean squared error) scorer = make_scorer(mean_squared_error) -------------------------------------------------- # Exercise_4 # Import the method for random search from sklearn.model_selection import RandomizedSearchCV # Build a random search using param_dist, rfr, and scorer random_search =\ RandomizedSearchCV( estimator=rfr, param_distributions=param_dist, n_iter=10, cv=5, scoring=scorer) -------------------------------------------------- # Exercise_5 from sklearn.metrics import precision_score, make_scorer # Create a precision scorer precision = make_scorer(precision_score) # Finalize the random search rs = RandomizedSearchCV( estimator=rfc, param_distributions=param_dist, scoring = precision, cv=5, n_iter=10, random_state=1111) rs.fit(X, y) # print the mean test scores: print('The accuracy for each run was: {}.'.format(rs.cv_results_['mean_test_score'])) # print the best model score: print('The best accuracy for a single model was: {}'.format(rs.best_score_)) --------------------------------------------------
StarcoderdataPython
8038452
<gh_stars>0 class Solution: def deleteNode(self, node): node.val = node.next.val node.next = node.next.next
StarcoderdataPython
11278589
import pathlib def cache(string): with open(pathlib.Path() / "tests" / "test_bot" / ".cache", "a") as cache: cache.write(f"{string}\n")
StarcoderdataPython
9787465
import random print('this is a dice rolling simulator'.upper()) x = 'y' while x == 'y': number = random.randint(1, 6) if number == 1: print("---------") print('| |') print('| 0 |') print('| |') print("---------") elif number == 2: print("---------") print('| |') print('| 00 |') print('| |') print("---------") elif number == 3: print("---------") print('| 0 |') print('| |') print('| 0 0 |') print("---------") elif number == 4: print("---------") print('| 0 0 |') print('| |') print('| 0 0 |') print("---------") elif number == 5: print("---------") print('| 0 0 |') print('| 0 |') print('| 0 0 |') print("---------") elif number == 6: print("---------") print('| 0 0 |') print('| 0 0 |') print('| 0 0 |') print("---------") x = input("press y to roll it again")
StarcoderdataPython
4824885
<reponame>andocoyote/AndoEconAPIs<filename>MaximumRevenue/__init__.py from ..Common import Calculations as calc import json import logging import sympy import azure.functions as func def main(req: func.HttpRequest) -> func.HttpResponse: logging.info('Python HTTP trigger function processed a request.') symbols = '' fx = '' try: req_body = req.get_json() # Example symbols = 'x' symbols = req_body.get('symbols') # Example: fx = '10 - 0.001*x' fx = req_body.get('fx') if symbols and fx: demandFunction = fx # Revenue is quantity x * price p which is given by the demand function (price function) revenueFunction = symbols + ' * (' + demandFunction + ')' # MR is the derivative of the revenue function marginalRevenueFunction = calc.Derivative(symbols, revenueFunction) # Solve the equation set to zero and obtain the result optimumQuantitySet = calc.Solve(symbols, marginalRevenueFunction) optimumQuantity = [float(num) for num in optimumQuantitySet] # Evaluate the demand function using optimum quantity to obtain price per item itemPrice = calc.Evalutate(symbols, demandFunction, {'x': optimumQuantity[0]}) # Evaluate the revenue function using optimum quantity to obtain total revenue totalRevenue = calc.Evalutate(symbols, revenueFunction, {'x': optimumQuantity[0]}) # Format the response body JSON response = json.dumps( {'demandFunction': str(demandFunction), 'revenueFunction': str(revenueFunction), 'marginalRevenueFunction': str(marginalRevenueFunction), 'optimumQuantity': float(optimumQuantity[0]), 'itemPrice': float(itemPrice), 'totalRevenue': float(totalRevenue)}) return func.HttpResponse(response) status_code=200 else: return func.HttpResponse( "This HTTP triggered function executed successfully. Supply symbols and fx.", status_code=200 ) except: return func.HttpResponse('Error: failed to calculate result from symbols {0} and fx {1}' .format(symbols, fx)) status_code=400
StarcoderdataPython
9744397
from __future__ import absolute_import import os from celery import Celery from django.conf import settings os.environ.setdefault('DJANGO_SETTINGS_MODULE', 'example.settings') app = Celery('example', broker=settings.BROKER_URL) app.autodiscover_tasks(lambda: settings.INSTALLED_APPS)
StarcoderdataPython
9635684
from django.urls import path from .views import CreateUser, Me, get_csrf, login_set_cookie, login_view, logout_view app_name = 'user' urlpatterns = [ path('login_set_cookie', login_set_cookie, name='login_set_cookie'), path('get_csrf', get_csrf, name='get_csrf'), path('login', login_view, name='login'), path('logout', logout_view, name='logout'), path('create', CreateUser.as_view(), name='create'), path('me', Me.as_view(), name='check_current_user'), ]
StarcoderdataPython
8023624
<filename>src/django_globals/__init__.py import threading globals = threading.local()
StarcoderdataPython
146001
# -*- coding: utf-8 -*- # # Copyright 2018-2020 Data61, CSIRO # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ GraphSAGE tests """ from tensorflow import keras from tensorflow.keras import initializers, regularizers import numpy as np import pytest from stellargraph.mapper import GraphSAGENodeGenerator from stellargraph.layer.graphsage import ( GraphSAGE, MeanAggregator, MaxPoolingAggregator, MeanPoolingAggregator, AttentionalAggregator, ) from ..test_utils.graphs import example_graph from .. import test_utils pytestmark = test_utils.ignore_stellargraph_experimental_mark # Mean aggregator tests def test_mean_agg_constructor(): agg = MeanAggregator(2) assert agg.output_dim == 2 assert not agg.has_bias # Check config config = agg.get_config() assert config["output_dim"] == 2 assert config["bias"] is False assert config["act"] == "relu" def test_mean_agg_constructor_1(): agg = MeanAggregator(output_dim=4, bias=True, act=lambda x: x + 1) assert agg.output_dim == 4 assert agg.has_bias assert agg.act(2) == 3 def test_mean_agg_apply(): agg = MeanAggregator(5, bias=True, act=lambda x: x, kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) assert agg.weight_dims == [3, 2] model = keras.Model(inputs=[inp1, inp2], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) actual = model.predict([x1, x2]) expected = np.array([[[2, 2, 2, 5, 5]]]) assert expected == pytest.approx(actual) def test_mean_agg_apply_groups(): agg = MeanAggregator(11, bias=True, act=lambda x: x, kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 2, 2)) inp3 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2, inp3]) assert agg.weight_dims == [5, 3, 3] model = keras.Model(inputs=[inp1, inp2, inp3], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) x3 = np.array([[[[5, 5], [4, 4]]]]) actual = model.predict([x1, x2, x3]) print(actual) expected = np.array([[[2] * 5 + [5] * 3 + [9] * 3]]) assert expected == pytest.approx(actual) def test_mean_agg_zero_neighbours(): agg = MeanAggregator(4, bias=False, act=lambda x: x, kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 0, 2)) out = agg([inp1, inp2]) model = keras.Model(inputs=[inp1, inp2], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.zeros((1, 1, 0, 2)) actual = model.predict([x1, x2]) expected = np.array([[[2, 2, 2, 2]]]) assert expected == pytest.approx(actual) # MaxPooling aggregator tests def test_maxpool_agg_constructor(): agg = MaxPoolingAggregator(2, bias=False) assert agg.output_dim == 2 assert agg.hidden_dim == 2 assert not agg.has_bias assert agg.act.__name__ == "relu" assert agg.hidden_act.__name__ == "relu" # Check config config = agg.get_config() assert config["output_dim"] == 2 assert config["bias"] == False assert config["act"] == "relu" def test_maxpool_agg_constructor_1(): agg = MaxPoolingAggregator(output_dim=4, bias=True, act=lambda x: x + 1) assert agg.output_dim == 4 assert agg.hidden_dim == 4 assert agg.has_bias assert agg.act(2) == 3 def test_maxpool_agg_apply_hidden_bias(): # Specifying bias_initializer="ones" initialises all bias terms to ones; # using bias=False turns of outer bias but retains hidden bias. agg = MaxPoolingAggregator( 2, bias=False, act="linear", kernel_initializer="ones", bias_initializer="ones" ) assert agg.get_config()["kernel_initializer"]["class_name"] == "Ones" assert agg.get_config()["bias_initializer"]["class_name"] == "Ones" # Self features inp1 = keras.Input(shape=(1, 2)) # Neighbour features inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) # Check sizes assert agg.weight_dims == [1, 1] # Numerical test values x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) # Agg output: # neigh_agg = max(relu(x2 · ones(2x2)) + ones(2)), axis=1) = max([[5,5],[7,7]]) = [[7,7]] # from_self = K.dot(x1, ones) = [[2]] # from_neigh = K.dot(neigh_agg, ones) = [[14]] model = keras.Model(inputs=[inp1, inp2], outputs=out) actual = model.predict([x1, x2]) expected = np.array([[[2, 14]]]) assert expected == pytest.approx(actual) def test_maxpool_agg_apply_no_bias(): # By default, bias_initializers="zeros", so all bias terms are initialised to zeros. agg = MaxPoolingAggregator(2, act="linear", kernel_initializer="ones") assert agg.get_config()["kernel_initializer"]["class_name"] == "Ones" assert agg.get_config()["bias_initializer"]["class_name"] == "Zeros" # Self features inp1 = keras.Input(shape=(1, 2)) # Neighbour features inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) # Check sizes assert agg.weight_dims == [1, 1] # Numerical test values x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) # Agg output: # neigh_agg = max(relu(x2 · ones(2x2)) + zeros(2)), axis=1) = max([[4,4],[6,6]]) = [[6,6]] # from_self = K.dot(x1, ones) = [[2]] # from_neigh = K.dot(neigh_agg, ones) = [[12]] model = keras.Model(inputs=[inp1, inp2], outputs=out) actual = model.predict([x1, x2]) expected = np.array([[[2, 12]]]) assert expected == pytest.approx(actual) def test_maxpool_agg_zero_neighbours(): agg = MaxPoolingAggregator(4, bias=False, act="linear", kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 0, 2)) out = agg([inp1, inp2]) model = keras.Model(inputs=[inp1, inp2], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.zeros((1, 1, 0, 2)) actual = model.predict([x1, x2]) expected = np.array([[[2, 2, 2, 2]]]) assert expected == pytest.approx(actual) # MeanPooling aggregator tests def test_meanpool_agg_constructor(): agg = MeanPoolingAggregator(2, bias=False) assert agg.output_dim == 2 assert agg.hidden_dim == 2 assert not agg.has_bias assert agg.act.__name__ == "relu" assert agg.hidden_act.__name__ == "relu" # Check config config = agg.get_config() assert config["output_dim"] == 2 assert config["bias"] is False assert config["act"] == "relu" def test_meanpool_agg_constructor_1(): agg = MeanPoolingAggregator(output_dim=4, bias=True, act=lambda x: x + 1) assert agg.output_dim == 4 assert agg.hidden_dim == 4 assert agg.has_bias assert agg.act(2) == 3 def test_meanpool_agg_apply_hidden_bias(): # Specifying bias_initializer="ones" initialises all bias terms to ones; # using bias=False turns of outer bias but retains hidden bias. agg = MeanPoolingAggregator( 2, bias=False, act="linear", kernel_initializer="ones", bias_initializer="ones" ) assert agg.get_config()["kernel_initializer"]["class_name"] == "Ones" assert agg.get_config()["bias_initializer"]["class_name"] == "Ones" # Self features inp1 = keras.Input(shape=(1, 2)) # Neighbour features inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) # Check sizes assert agg.weight_dims == [1, 1] # Numerical test values x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) # Agg output: # neigh_agg = mean(relu(x2 · ones(2x2) + ones(2)), axis=1) # = mean([[5,5],[7,7]]) = [[6,6]] # from_self = K.dot(x1, ones) = [[2]] # from_neigh = K.dot(neigh_agg, ones(2x1)) = [[12]] model = keras.Model(inputs=[inp1, inp2], outputs=out) actual = model.predict([x1, x2]) expected = np.array([[[2, 12]]]) assert expected == pytest.approx(actual) def test_meanpool_agg_apply_no_bias(): # By default, bias_initializers="zeros", so all bias terms are initialised to zeros. agg = MeanPoolingAggregator(2, act="linear", kernel_initializer="ones") assert agg.get_config()["kernel_initializer"]["class_name"] == "Ones" assert agg.get_config()["bias_initializer"]["class_name"] == "Zeros" # Self features inp1 = keras.Input(shape=(1, 2)) # Neighbour features inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) # Check sizes assert agg.weight_dims == [1, 1] # Numerical test values x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) # Agg output: # neigh_agg = mean(relu(x2 · ones(2x2) + zeros(2)), axis=1) # = mean([[4,4],[6,6]]) = [[5,5]] # from_self = K.dot(x1, ones) = [[2]] # from_neigh = K.dot(neigh_agg, ones) = [[10]] model = keras.Model(inputs=[inp1, inp2], outputs=out) actual = model.predict([x1, x2]) expected = np.array([[[2, 10]]]) assert expected == pytest.approx(actual) def test_meanpool_agg_zero_neighbours(): agg = MeanPoolingAggregator(4, bias=False, act="linear", kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 0, 2)) out = agg([inp1, inp2]) # Now we have an input shape with a 0, the attention model switches to # a MLP and the first group will have non-zero output size. assert agg.weight_dims == [4, 0] model = keras.Model(inputs=[inp1, inp2], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.zeros((1, 1, 0, 2)) actual = model.predict([x1, x2]) expected = np.array([[[2, 2, 2, 2]]]) assert expected == pytest.approx(actual) # Attentional aggregator tests def test_attn_agg_constructor(): agg = AttentionalAggregator(2, bias=False) assert agg.output_dim == 2 assert not agg.has_bias assert agg.act.__name__ == "relu" # assert agg.attn_act.__name__ == "relu" # Check config config = agg.get_config() assert config["output_dim"] == 2 assert config["bias"] is False assert config["act"] == "relu" def test_attn_agg_constructor_1(): agg = AttentionalAggregator(output_dim=4, bias=True, act=lambda x: x + 1) assert agg.output_dim == 4 assert agg.has_bias assert agg.act(2) == 3 def test_attn_agg_apply(): agg = AttentionalAggregator(2, bias=False, act="linear", kernel_initializer="ones") agg.attn_act = keras.activations.get("linear") # Self features inp1 = keras.Input(shape=(1, 2)) # Neighbour features inp2 = keras.Input(shape=(1, 2, 2)) out = agg([inp1, inp2]) # The AttentionalAggregator implmentation is a hack at the moment, it doesn't # assign any dimensions in the output to head-node features. assert agg.weight_dims == [0, 2] # Numerical test values x1 = np.array([[[1, 1]]]) x2 = np.array([[[[2, 2], [3, 3]]]]) # Agg output: # hs = relu(x1 · ones(2x2)) = [2,2] # hn = relu(x2 · ones(2x2)) = [[2,2], [4,4], [6,6]] # attn_u = ones(2) · hs + ones(2) · hn = [8, 12, 16] # attn = softmax(attn_u) = [3.3e-4, 1.8e-4, 9.81e-1] # hout = attn · hn = [5.96, 5.96] model = keras.Model(inputs=[inp1, inp2], outputs=out) actual = model.predict([x1, x2]) expected = np.array([[[5.963, 5.963]]]) assert expected == pytest.approx(actual, rel=1e-4) def test_attn_agg_zero_neighbours(): agg = AttentionalAggregator(4, bias=False, act="linear", kernel_initializer="ones") inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(1, 0, 2)) out = agg([inp1, inp2]) model = keras.Model(inputs=[inp1, inp2], outputs=out) x1 = np.array([[[1, 1]]]) x2 = np.zeros((1, 1, 0, 2)) actual = model.predict([x1, x2]) expected = np.array([[[2, 2, 2, 2]]]) assert expected == pytest.approx(actual) def test_graphsage_constructor(): gs = GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, normalize="l2", multiplicity=1 ) assert gs.dims == [2, 4] assert gs.n_samples == [2] assert gs.max_hops == 1 assert gs.bias assert len(gs._aggs) == 1 # Check incorrect normalization flag with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, normalize=lambda x: x, multiplicity=1, ) with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, normalize="unknown", multiplicity=1, ) # Check requirement for generator or n_samples with pytest.raises(KeyError): GraphSAGE(layer_sizes=[4]) # Construction from generator G = example_graph(feature_size=3) gen = GraphSAGENodeGenerator(G, batch_size=2, num_samples=[2, 2]) gs = GraphSAGE(layer_sizes=[4, 8], generator=gen, bias=True) # The GraphSAGE should no longer accept a Sequence t_gen = gen.flow([1, 2]) with pytest.raises(TypeError): gs = GraphSAGE(layer_sizes=[4, 8], generator=t_gen, bias=True) assert gs.dims == [3, 4, 8] assert gs.n_samples == [2, 2] assert gs.max_hops == 2 assert gs.bias assert len(gs._aggs) == 2 def test_graphsage_constructor_passing_aggregator(): gs = GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, aggregator=MeanAggregator, ) assert gs.dims == [2, 4] assert gs.n_samples == [2] assert gs.max_hops == 1 assert gs.bias assert len(gs._aggs) == 1 with pytest.raises(TypeError): GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, aggregator=1 ) def test_graphsage_constructor_1(): gs = GraphSAGE( layer_sizes=[4, 6, 8], n_samples=[2, 4, 6], input_dim=2, multiplicity=1, bias=True, dropout=0.5, ) assert gs.dims == [2, 4, 6, 8] assert gs.n_samples == [2, 4, 6] assert gs.max_hops == 3 assert gs.bias assert len(gs._aggs) == 3 def test_graphsage_apply(): gs = GraphSAGE( layer_sizes=[4], n_samples=[2], bias=False, input_dim=2, multiplicity=1, normalize=None, kernel_initializer="ones", ) inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(2, 2)) out = gs([inp1, inp2]) model = keras.Model(inputs=[inp1, inp2], outputs=out) def test_graphsage_apply_1(): gs = GraphSAGE( layer_sizes=[2, 2, 2], n_samples=[2, 2, 2], bias=False, input_dim=2, multiplicity=1, normalize=None, kernel_initializer="ones", ) inp = [keras.Input(shape=(i, 2)) for i in [1, 2, 4, 8]] out = gs(inp) model = keras.Model(inputs=inp, outputs=out) x = [ np.array([[[1, 1]]]), np.array([[[2, 2], [2, 2]]]), np.array([[[3, 3], [3, 3], [3, 3], [3, 3]]]), np.array([[[4, 4], [4, 4], [4, 4], [4, 4], [5, 5], [5, 5], [5, 5], [5, 5]]]), ] expected = np.array([[16, 25]]) actual = model.predict(x) assert expected == pytest.approx(actual) # Use the node model: xinp, xout = gs.build() model2 = keras.Model(inputs=xinp, outputs=xout) assert pytest.approx(expected) == model2.predict(x) def test_graphsage_serialize(): gs = GraphSAGE( layer_sizes=[4], n_samples=[2], bias=False, input_dim=2, multiplicity=1, normalize=None, ) inp1 = keras.Input(shape=(1, 2)) inp2 = keras.Input(shape=(2, 2)) out = gs([inp1, inp2]) model = keras.Model(inputs=[inp1, inp2], outputs=out) # Save model model_json = model.to_json() # Set all weights to one model_weights = [np.ones_like(w) for w in model.get_weights()] # Load model from json & set all weights model2 = keras.models.model_from_json( model_json, custom_objects={"MeanAggregator": MeanAggregator} ) model2.set_weights(model_weights) # Test loaded model x1 = np.array([[[1, 1]]]) x2 = np.array([[[2, 2], [3, 3]]]) expected = np.array([[2, 2, 5, 5]]) actual = model2.predict([x1, x2]) assert expected == pytest.approx(actual) def test_graphsage_zero_neighbours(): gs = GraphSAGE( layer_sizes=[2, 2], n_samples=[0, 0], bias=False, input_dim=2, multiplicity=1, normalize="none", kernel_initializer="ones", ) inp = [keras.Input(shape=(i, 2)) for i in [1, 0, 0]] out = gs(inp) model = keras.Model(inputs=inp, outputs=out) x = [np.array([[[1.5, 1]]]), np.zeros((1, 0, 2)), np.zeros((1, 0, 2))] actual = model.predict(x) expected = np.array([[5, 5]]) assert actual == pytest.approx(expected) def test_graphsage_passing_activations(): gs = GraphSAGE(layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1) assert gs.activations == ["linear"] gs = GraphSAGE(layer_sizes=[4, 4], n_samples=[2, 2], input_dim=2, multiplicity=1) assert gs.activations == ["relu", "linear"] gs = GraphSAGE( layer_sizes=[4, 4, 4], n_samples=[2, 2, 2], input_dim=2, multiplicity=1 ) assert gs.activations == ["relu", "relu", "linear"] with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4, 4, 4], n_samples=[2, 2, 2], input_dim=2, multiplicity=1, activations=["relu"], ) with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4, 4, 4], n_samples=[2, 2, 2], input_dim=2, multiplicity=1, activations=["relu"] * 2, ) with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4, 4, 4], n_samples=[2, 2, 2], input_dim=2, multiplicity=1, activations=["fred", "wilma", "barney"], ) gs = GraphSAGE( layer_sizes=[4, 4, 4], n_samples=[2, 2, 2], input_dim=2, multiplicity=1, activations=["linear"] * 3, ) assert gs.activations == ["linear"] * 3 def test_graphsage_passing_regularisers(): with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, kernel_initializer="fred", ) GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, kernel_initializer="ones", ) GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, kernel_initializer=initializers.ones(), ) GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, kernel_regularizer=regularizers.l2(0.01), ) with pytest.raises(ValueError): GraphSAGE( layer_sizes=[4], n_samples=[2], input_dim=2, multiplicity=1, kernel_regularizer="wilma", )
StarcoderdataPython
9724877
<reponame>Crashillo/CatAtom2Osm import os from qgis.core import QgsFeature, QgsField, QgsFields from qgis.PyQt.QtCore import QVariant from catatom2osm.geo.geometry import Geometry from catatom2osm.geo.layer.base import BaseLayer from catatom2osm.geo.types import WKBPoint class DebugWriter: """A QgsVectorFileWriter for debugging purposess.""" def __init__( self, filename, layer, driver_name="ESRI Shapefile", geom_type=WKBPoint ): """ Construct. Args: filename (str): File name of this layer layer (QgsVectorLayer): A layer to test. driver_name (str): Defaults to ESRI Shapefile. """ fpath = os.path.join( os.path.dirname(layer.dataProvider().dataSourceUri()), filename ) fields = QgsFields() fields.append(QgsField("note", QVariant.String, len=100)) writer = BaseLayer.get_writer(fpath, layer.crs(), fields, geom_type) self.fields = fields self.writer = writer def add_point(self, point, note=None): """Add a point to the layer with the attribute note.""" feat = QgsFeature(QgsFields(self.fields)) geom = Geometry.fromPointXY(point) feat.setGeometry(geom) if note: feat.setAttribute("note", note[:254]) return self.addFeature(feat) def addFeature(self, *args, **kwargs): self.writer.addFeature(*args, **kwargs)
StarcoderdataPython
1632613
import json import os import threading from os.path import exists, join from typing import List, Optional, Callable, Dict from entity import Item, from_dict from tool4log import logger from tool4time import now_str def load_data(filename): with open(filename, "r", encoding="utf8") as f: return json.load(f) class MemoryDataBase: DATABASE_FOLDER = "data/database" DATA_FILE = join(DATABASE_FOLDER, "data.json") def __init__(self): self.lock = threading.Lock() self.__init_folder() self.filename = MemoryDataBase.DATA_FILE self.data: List = [] if exists(self.filename): self.data = load_data(self.filename) logger.info(f"{MemoryDataBase.__name__}: Load Data From File") if self.data: self.current_id = max(map(lambda i: i['id'], self.data)) else: # 默认从1开始, 避免0值产生问题 self.current_id = 1 def __init_folder(self): if not exists(self.DATABASE_FOLDER): os.mkdir(self.DATABASE_FOLDER) def __next_id(self): with self.lock: self.current_id = self.current_id + 1 return self.current_id def select(self, iid: int) -> Optional[dict]: for item in self.data: if item['id'] == iid: return item return None def select_by(self, where: Callable[[dict], bool] = lambda _: True, select: Callable[[dict], tuple] = lambda x: from_dict(x)) -> list: return list(map(select, filter(where, self.data))) def select_one(self, where: Callable[[dict], bool] = lambda _: True, select: Callable[[dict], tuple] = lambda x: from_dict(x)): return self.select_by(where, select)[0] def update_by(self, where: Callable[[dict], bool], update: Callable[[dict], None]) -> int: ans = len(list(map(update, filter(where, self.data)))) self.save2file() return ans def select_group_by(self, ans: Dict[str, List], f: Callable[[dict], str]) -> Dict[str, List]: for item in self.data: key = f(item) if key in ans: ans[key].append(from_dict(item)) return ans def insert(self, item: Item) -> int: item.id = self.__next_id() item.create_time = now_str() with self.lock: self.data.append(item.to_dict()) logger.info(f"{MemoryDataBase.__name__}: Insert Item: {item}") self.save2file() return item.id def __get_idx(self, item: Item) -> Optional[int]: for idx, dic in enumerate(self.data): if dic['id'] == item.id: return idx return None def remove(self, item: Item): with self.lock: idx = self.__get_idx(item) # 判断None和直接判断大部分时候都是一致的, 但当idx等于0时会产生错误 if idx is not None: self.data.pop(idx) self.save2file() def save2file(self): json_data = json.dumps(self.data) with open(self.filename, "w", encoding="utf8") as f: f.write(json_data) logger.info(f"{MemoryDataBase.__name__}: Success Save Date to File")
StarcoderdataPython
5092649
<filename>csv2json.py import csv, json, sys csvFilePath = sys.argv[1] jsonFilePath = sys.argv[2] data = {} with open(csvFilePath) as csvFile: csvReader = csv.DictReader(csvFile) for rows in csvReader: id_ = rows['id'] data[id_] = rows with open(jsonFilePath, 'w') as jsonFile: jsonFile.write(json.dumps(data, indent=4))
StarcoderdataPython
3485642
""" Test query of case recorder file. """ import glob import os.path import unittest from math import isnan from openmdao.main.api import Assembly, Component, VariableTree, set_as_top from openmdao.main.datatypes.api import Array, Float, VarTree from openmdao.lib.casehandlers.api import CaseDataset, \ JSONCaseRecorder, BSONCaseRecorder from openmdao.lib.drivers.api import FixedPointIterator, SLSQPdriver from openmdao.lib.optproblems import sellar from openmdao.util.testutil import assert_rel_error class States(VariableTree): y = Array([0.0, 0.0]) class Globals(VariableTree): z1 = Float(0.0) z2 = Float(0.0) class Half(Component): z2a = Float(0.0, iotype='in') z2b = Float(0.0, iotype='out') def execute(self): self.z2b = 0.5*self.z2a class SellarMDF(Assembly): """ Optimization of the Sellar problem using MDF Disciplines coupled with FixedPointIterator. """ def configure(self): """ Creates a new Assembly with this problem Optimal Design at (1.9776, 0, 0) Optimal Objective = 3.18339""" # Sub assembly sub = self.add('sub', Assembly()) # Inner Loop - Full Multidisciplinary Solve via fixed point iteration sub.add('driver', FixedPointIterator()) sub.add('dis1', sellar.Discipline1()) sub.add('dis2', sellar.Discipline2()) sub.driver.workflow.add(['dis1', 'dis2']) # Make all connections sub.connect('dis1.y1', 'dis2.y1') sub.connect('dis1.z1', 'dis2.z1') # Iteration loop sub.driver.add_parameter('dis1.y2') sub.driver.add_constraint('dis2.y2 = dis1.y2') # Solver settings sub.driver.max_iteration = 100 sub.driver.tolerance = .00001 sub.driver.print_convergence = False # Subassy boundaries sub.add('globals', VarTree(Globals(), iotype='in')) sub.add('states', VarTree(States(), iotype='out')) sub.connect('globals.z1', 'dis1.z1') # Note, dis1.z2 is connected by input-input conn sub.connect('globals.z2', 'dis1.z2') sub.connect('globals.z2', 'dis2.z2') sub.create_passthrough('dis1.x1') sub.connect('dis1.y1', 'states.y[0]') sub.connect('dis2.y2', 'states.y[1]') # Global Optimization self.add('driver', SLSQPdriver()) self.driver.gradient_options.force_fd = True #self.driver.iprint = 3 # Extra comp self.add('half', Half()) self.connect('half.z2b', 'sub.globals.z2') self.driver.workflow.add(['half', 'sub']) # Add Parameters to optimizer self.driver.add_parameter('sub.globals.z1', low=-10.0, high=10.0) self.driver.add_parameter('half.z2a', low=0.0, high=10.0) self.driver.add_parameter('sub.x1', low=0.0, high=10.0) # Optimization parameters self.driver.add_objective('(sub.x1)**2 + sub.globals.z2 + sub.states.y[0] + math.exp(-sub.states.y[1])') self.driver.add_constraint('3.16 < sub.states.y[0]') self.driver.add_constraint('sub.states.y[1] < 24.0') self.sub.globals.z1 = 5.0 self.half.z2a = 2.0 self.sub.x1 = 1.0 def create_files(): """ Create/update test data files. """ prob = set_as_top(SellarMDF()) prob.name = "top" prob.recorders = [JSONCaseRecorder('sellar_json.new'), BSONCaseRecorder('sellar_bson.new')] prob.run() class TestCase(unittest.TestCase): def setUp(self): # create_files() # Uncomment to create 'sellar.new' path = os.path.join(os.path.dirname(__file__), 'sellar.json') self.cds = CaseDataset(path, 'json') def tearDown(self): self.cds = None for path in glob.glob('cases.*'): try: os.remove(path) except WindowsError: # Still in use (recorder or dataset hasn't been deleted yet). pass def test_query(self): # Full dataset. vnames = self.cds.data.var_names().fetch() expected = [ '_driver_id', '_id', '_parent_id', '_pseudo_0', '_pseudo_1', '_pseudo_2', 'driver.workflow.itername', 'error_message', 'error_status', 'half.derivative_exec_count', 'half.exec_count', 'half.itername', 'half.z2a', 'half.z2b', 'sub._pseudo_0', 'sub.derivative_exec_count', 'sub.dis1.derivative_exec_count', 'sub.dis1.exec_count', 'sub.dis1.itername', 'sub.dis1.y1', 'sub.dis1.y2', 'sub.dis2.derivative_exec_count', 'sub.dis2.exec_count', 'sub.dis2.itername', 'sub.dis2.y2', 'sub.driver.workflow.itername', 'sub.exec_count', 'sub.globals.z1', 'sub.itername', 'sub.states', 'sub.states.y[0]', 'sub.states.y[1]', 'sub.x1', 'timestamp'] self.assertEqual(vnames, expected) cases = self.cds.data.fetch() self.assertEqual(len(cases), 142) self.assertEqual(len(cases[0]), len(expected)) # Specific variables. names = ['half.z2a', 'sub.dis1.y1', 'sub.dis2.y2', 'sub.x1'] vnames = self.cds.data.vars(names).var_names().fetch() self.assertEqual(vnames, names) cases = self.cds.data.vars(names).fetch() self.assertEqual(len(cases), 142) self.assertEqual(len(cases[0]), len(names)) iteration_case_142 = { "half.z2a": 3.2649235987085278e-15, "sub.dis1.y1": 3.1600041592009194, "sub.dis2.y2": 3.755280110989017, "sub.x1": 2.8984826597319301e-15 } for name, val in zip(names, cases[-1]): self.assertAlmostEqual(val, iteration_case_142[name]) # Local to driver. # For some reason the top-level driver isn't the last recorded. cases = self.cds.data.local().vars(names).fetch() self.assertEqual(len(cases), 142) last = cases[-1] self.assertEqual(len(last), len(names)) for name in ('half.z2a', 'sub.x1'): self.assertTrue(isnan(last[name])) for name in ('sub.dis1.y1', 'sub.dis2.y2'): assert_rel_error(self, last[name], iteration_case_142[name], 0.001) # Transposed. vars = self.cds.data.local().vars(names).by_variable().fetch() self.assertEqual(len(vars), len(names)) for name in ('half.z2a', 'sub.x1'): self.assertEqual(len(vars[name]), 142) self.assertTrue(isnan(vars[name][-1])) for name in ('sub.dis1.y1', 'sub.dis2.y2'): self.assertEqual(len(vars[name]), 142) assert_rel_error(self, vars[name][-1], iteration_case_142[name], 0.001) def test_parent(self): # Full dataset names by specifying a top-level case. parent = 'e52a477a-588e-11e4-8355-080027a1f086' # iteration_case_6 vnames = self.cds.data.parent_case(parent).var_names().fetch() expected = [ '_driver_id', '_id', '_parent_id', '_pseudo_0', '_pseudo_1', '_pseudo_2', 'driver.workflow.itername', 'error_message', 'error_status', 'half.derivative_exec_count', 'half.exec_count', 'half.itername', 'half.z2a', 'half.z2b', 'sub._pseudo_0', 'sub.derivative_exec_count', 'sub.dis1.derivative_exec_count', 'sub.dis1.exec_count', 'sub.dis1.itername', 'sub.dis1.y1', 'sub.dis1.y2', 'sub.dis2.derivative_exec_count', 'sub.dis2.exec_count', 'sub.dis2.itername', 'sub.dis2.y2', 'sub.driver.workflow.itername', 'sub.exec_count', 'sub.globals.z1', 'sub.itername', 'sub.states', 'sub.states.y[0]', 'sub.states.y[1]', 'sub.x1', 'timestamp'] self.assertEqual(vnames, expected) cases = self.cds.data.parent_case(parent).fetch() self.assertEqual(len(cases), 6) self.assertEqual(len(cases[0]), len(expected)) iteration_case_1 = { "sub._pseudo_0": 10.176871642217915, "sub.dis1.derivative_exec_count": 0, "sub.dis1.exec_count": 1, "sub.dis1.itername": "1-sub.1-dis1", "sub.dis1.y1": 26.8, "sub.dis1.y2": 1.0, "sub.dis2.derivative_exec_count": 0, "sub.dis2.exec_count": 1, "sub.dis2.itername": "1-sub.1-dis2", "sub.dis2.y2": 11.176871642217915, "sub.driver.workflow.itername": "1-sub.1" } self.verify(vnames, cases[0], iteration_case_1) iteration_case_6 = { # Data from parent. "_pseudo_0": 26.803946487677322, "_pseudo_1": -21.643929454616536, "_pseudo_2": -13.019645649693533, "driver.workflow.itername": "1", "half.derivative_exec_count": 0, "half.exec_count": 1, "half.itername": "1-half", "half.z2a": 2.0, "half.z2b": 1.0, "sub.derivative_exec_count": 0, "sub.exec_count": 1, "sub.globals.z1": 5.0, "sub.itername": "1-sub", "sub.states": { "y": [ 24.803929454616537, 10.980354350306467 ] }, "sub.states.y[0]": 24.803929454616537, "sub.states.y[1]": 10.980354350306467, "sub.x1": 1.0, # Last data from sub. "sub._pseudo_0": 1.6233891457773097e-06, "sub.dis1.derivative_exec_count": 0, "sub.dis1.exec_count": 5, "sub.dis1.itername": "1-sub.5-dis1", "sub.dis1.y1": 24.803929454616537, "sub.dis1.y2": 10.980352726917321, "sub.dis2.derivative_exec_count": 0, "sub.dis2.exec_count": 5, "sub.dis2.itername": "1-sub.5-dis2", "sub.dis2.y2": 10.980354350306467, "sub.driver.workflow.itername": "1-sub.5" } self.verify(vnames, cases[-1], iteration_case_6) def verify(self, names, case, expected): for name, value in expected.items(): i = names.index(name) if isinstance(value, float): assert_rel_error(self, case[i], value, 0.001) else: self.assertEqual(case[i], value) def test_driver(self): # Dataset of a driver. vnames = self.cds.data.driver('sub.driver').var_names().fetch() expected = [ '_driver_id', '_id', '_parent_id', 'error_message', 'error_status', 'sub._pseudo_0', 'sub.dis1.derivative_exec_count', 'sub.dis1.exec_count', 'sub.dis1.itername', 'sub.dis1.y1', 'sub.dis1.y2', 'sub.dis2.derivative_exec_count', 'sub.dis2.exec_count', 'sub.dis2.itername', 'sub.dis2.y2', 'sub.driver.workflow.itername', 'timestamp'] self.assertEqual(vnames, expected) cases = self.cds.data.driver('sub.driver').fetch() self.assertEqual(len(cases), 126) self.assertEqual(len(cases[0]), len(expected)) def test_bson(self): # Simple check of _BSONReader. names = ['half.z2a', 'sub.dis1.y1', 'sub.dis2.y2', 'sub.x1'] path = os.path.join(os.path.dirname(__file__), 'sellar.json') json_cases = CaseDataset(path, 'json').data.vars(names).fetch() path = os.path.join(os.path.dirname(__file__), 'sellar.bson') bson_cases = CaseDataset(path, 'bson').data.vars(*names).fetch() for json_case, bson_case in zip(json_cases, bson_cases): for json_val, bson_val in zip(json_case, bson_case): if isnan(json_val): self.assertTrue(isnan(bson_val)) else: self.assertEqual(bson_val, json_val) def test_json(self): # Simple check of _JSONReader. path = os.path.join(os.path.dirname(__file__), 'jsonrecorder.json') cases = CaseDataset(path, 'json').data.fetch() self.assertEqual(len(cases), 10) path = os.path.join(os.path.dirname(__file__), 'truncated.json') cases = CaseDataset(path, 'json').data.fetch() self.assertEqual(len(cases), 7) def test_restore(self): # Restore from case, run, verify outputs match expected. top = set_as_top(SellarMDF()) top.name = 'top' top.recorders = [JSONCaseRecorder()] top.run() assert_rel_error(self, top.sub.globals.z1, 1.977639, .0001) assert_rel_error(self, top.half.z2a, 0., .0001) assert_rel_error(self, top.sub.x1, 0., .0001) assert_rel_error(self, top.sub.states.y[0], 3.160004, .0001) assert_rel_error(self, top.sub.states.y[1], 3.755280, .0001) assert_rel_error(self, top.driver.eval_objective(), 3.18339413394, .0001) cds = CaseDataset('cases.json', 'json') cases = cds.data.fetch() n_orig = len(cases) # Typically 142 top = set_as_top(SellarMDF()) cds.restore(top, cases[-1]['_id']) top.recorders = [JSONCaseRecorder('cases.restored')] top.run() assert_rel_error(self, top.sub.globals.z1, 1.977639, .0001) assert_rel_error(self, top.half.z2a, 0., .0001) assert_rel_error(self, top.sub.x1, 0., .0001) assert_rel_error(self, top.sub.states.y[0], 3.160000, .0001) assert_rel_error(self, top.sub.states.y[1], 3.755278, .0001) assert_rel_error(self, top.driver.eval_objective(), 3.18339397762, .0001) cases = CaseDataset('cases.restored', 'json').data.fetch() # Exact case counts are unreliable, just assure restore was quicker. self.assertTrue(len(cases) < n_orig/4) # Typically 15 def test_write(self): # Read in a dataset and write out a selected portion of it. path = os.path.join(os.path.dirname(__file__), 'jsonrecorder.json') cases = CaseDataset(path, 'json').data.fetch() self.assertEqual(len(cases), 10) self.assertEqual(len(cases[0]), 19) names = ('comp1.x', 'comp1.y', 'comp1.z', 'comp2.z') CaseDataset(path, 'json').data.vars(names).write('cases.reduced') reduced = CaseDataset('cases.reduced', 'json').data.fetch() self.assertEqual(len(reduced), 10) self.assertEqual(len(reduced[0]), 10) if __name__ == '__main__': unittest.main()
StarcoderdataPython
6623623
<reponame>hvnobug/stock # -*-coding=utf-8-*- __author__ = 'Rocky' ''' http://30daydo.com Contact: <EMAIL> ''' ''' 记录每天的盈亏情况 完成度100% ''' import pandas as pd import os import tushare as ts import datetime def getCodeFromExcel(filename): #从excel表中获取代码, 并且补充前面几位000 #获取股票数目 df=pd.read_excel(filename) code_list = df['证券代码'].values quantity_list=df['股票余额'].values code=[] quantity=[] for i in range(len(code_list)): code.append(str(code_list[i]).zfill(6)) #后面学会了map函数,可以直接搞定 quantity.append(quantity_list[i]) return code,quantity def calc(code): settlement = df[df['code']==code]['settlement'].values percentage = df[df['code']==code]['changepercent'].values trade = df[df['code']==code]['trade'].values #print(percentage) #settlement=df[df['code'==code]]['settlement'].values #percentage=df[df['code'==code].index]['changepercent'].values #返回四舍五入的结果 return settlement,percentage,trade def today_win_lost(filename_path): filename=os.path.join(filename_path,'ownstock.xls') code,quantity=getCodeFromExcel(filename) result=[] percentage_list=[] trade_list=[] for i in range(len(code)): settlement,percentage,trade=calc(code[i]) print("settlement", settlement) print("percent", percentage) print("trade", trade) profit=round(settlement[0]*percentage[0]*quantity[i]*0.01,1) result.append(profit) percentage_list.append(percentage[0]) trade_list.append(trade[0]) return result,code,percentage_list,trade_list def join_dataframe(filename,today): current_profile=today+'当天贡献' result,code,percentage_list,trade_list=today_win_lost() s1=pd.DataFrame({current_profile:result}) #s2=pd.DataFrame({'当天涨幅':percentage_list}) #s3=pd.DataFrame({'当天价钱':trade_list}) #print(s) df=pd.read_excel(filename) #del df['交易市场'] #del df['股东帐户'] #del df['盈亏比(%)'] #del df['在途数量'] #del df['当天贡献'] #del df[''] #del df[''] df['证券代码']=code #print(code) df['市价']=trade_list df['当天涨幅']=percentage_list #可以这样直接替换某一列的值 #df=df.join(s2,how='right') df=df.join(s1,how='right') #df=df.join(s3,how='right') return df def main(today): path=os.path.join(os.path.dirname(__file__),'data') filename=os.path.join(path,'each_day_profile.xls') org_filename=os.path.join(path,'2016-09-30_all_.xls') #df_filename=os.path.join(path,'each_day_profile.xls') #df=pd.read_excel(org_filename) df=ts.get_today_all() new_df=join_dataframe(filename,today) save_name=os.path.join(path,"each_day_profile.xls") #这样会不会把原来的覆盖掉? new_df.to_excel(save_name) if __name__ == "__main__": today=datetime.datetime.now().strftime("%Y-%m-%d") if not ts.is_holiday(today): main(today)
StarcoderdataPython
328882
######################################################################### # # # Grupo Developers # # # # GNU General Public License v3 # # # ######################################################################### from models.message import Message from models.chat import Chat from models.user import User class MessagesController: def __init__(self): self.chats = [] self.messages = [] self.users = [] def add(self, telegram_message): message = extract_message_object(telegram_message) chat = extract_chat_object(telegram_message) user = extract_user_object(telegram_message) if chat not in self.chats: self.chats.append(chat) if user not in self.users: self.users.append(user) self.messages.append(message) for chat in self.chats: if chat.chat_id == message.chat_id: chat.messages.append(message) def autoclear(self): self.chats = [] self.messages = [] self.users = [] def extract_message_object(telegram_message): return Message( message_id=telegram_message.message_id, text=telegram_message.text, date=telegram_message.date, chat_id=telegram_message.chat.id, author_id=telegram_message['from'].id, reply_message_id=telegram_message.reply_to_message if hasattr( telegram_message, 'reply_to_message') else "" ) def extract_chat_object(telegram_message): return Chat( chat_id=telegram_message.chat.id, chat_type=telegram_message.chat.type, title=telegram_message.chat.title if hasattr( telegram_message.chat, 'title') else "" ) def extract_user_object(telegram_message): return User( telegram_id=telegram_message['from'].id, first_name=telegram_message['from'].first_name, last_name=telegram_message['from'].last_name or '', username=telegram_message['from'].username or '', is_bot=telegram_message['from'].is_bot )
StarcoderdataPython
3353183
import math import pickle import torch from torch.utils import data from tensorfn import load_arg_config from tqdm import tqdm import lmdb from torch_imputer import best_alignment from config import CTCASR from dataset import ASRDataset, collate_data from model import Transformer from evaluate import ctc_decode def get_symbol(state, targets_list): if state % 2 == 0: symbol = 0 else: symbol = targets_list[state // 2] return symbol return state if __name__ == "__main__": device = "cuda" conf = load_arg_config(CTCASR) with open("trainval_indices.pkl", "rb") as f: split_indices = pickle.load(f) train_set = ASRDataset(conf.dataset.path, indices=split_indices["train"]) model = Transformer( conf.dataset.n_vocab, conf.model.delta, conf.dataset.n_mels, conf.model.feature_channel, conf.model.dim, conf.model.dim_ff, conf.model.n_layer, conf.model.n_head, conf.model.dropout, ).to(device) ckpt = torch.load(conf.ckpt, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt["model"]) model.eval() train_loader = conf.training.dataloader.make(train_set, collate_fn=collate_data) pbar = tqdm(train_loader) show_sample = 0 db_i = 0 with torch.no_grad() as no_grad, lmdb.open( conf.dataset.alignment, map_size=1024 ** 4, readahead=False ) as env: for mels, tokens, mel_lengths, token_lengths, texts, files in pbar: mels = mels.to(device) tokens = tokens.to(device).to("cpu") mel_len_reduce = torch.ceil( mel_lengths.to(torch.float32) / conf.model.reduction ).to(torch.int64) align_in = tokens.new_ones( mels.shape[0], math.ceil(mels.shape[1] / conf.model.reduction) ).to(device) log_p = torch.log_softmax(model(mels, align_in), 2) # log_p = log_p.to("cpu") tokens = tokens.to("cpu") best_align = best_alignment( log_p.transpose(0, 1), tokens, mel_len_reduce, token_lengths, zero_infinity=True, ) align_probs = [] for l_p, best_a, toks in zip(log_p.to("cpu"), best_align, tokens.tolist()): align_p = [] for p, a in zip(l_p, best_a): align_p.append(p[get_symbol(a, toks)].item()) align_probs.append(align_p) for model_align, mel_l, b_align, b_p, file, toks in zip( log_p, mel_len_reduce, best_align, align_probs, files, tokens.tolist() ): model_p, model_align = model_align.max(1) model_p = model_p[:mel_l].sum().item() model_align = model_align[:mel_l].tolist() b_p = sum(b_p) with env.begin(write=True) as txn: txn.put( str(db_i).encode("utf-8"), pickle.dumps((b_align, b_p, model_align, model_p, file)), ) db_i += 1 if show_sample < 8: model_align = train_set.decode(ctc_decode(model_align)) b_align = train_set.decode( ctc_decode([get_symbol(a, toks) for a in b_align]) ) print( f"model: {model_align} ({model_p:.3f})\nbest: {b_align} ({b_p:.3f})" ) show_sample += 1 with env.begin(write=True) as txn: txn.put(b"length", str(db_i).encode("utf-8")) txn.put(b"meta", pickle.dumps({"conf": conf}))
StarcoderdataPython
153330
<reponame>alex4acre/ab-python<filename>main.py #!/usr/bin/env python3 # MIT License # # Copyright (c) 2021 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import sys import os import time import json import pylogix from pylogix import PLC import datalayer from datalayer.variant import Variant from app.ab_provider_node import ABnode bPLCPresent = False testJson = """{"tag": [ {"name":"SinCounter","type":"REAL"}, {"name":"Line1_OEE","type":"REAL"}, {"name":"mySINReflection_x10","type":"REAL"}, {"name":"myLINT","type":"LINT"}, {"name":"MyString","type":"STRING"}, {"name":"MyControllerBOOL","type":"BOOL"}, {"name":"MyControllerBOOL1","type":"BOOL"}, {"name":"MyControllerBOOL2","type":"REAL"}, {"name":"MyControllerBOOL3","type":"REAL"}, {"name":"MyControllerBOOL4","type":"REAL"}, {"name":"MyControllerBOOL5","type":"REAL"}, {"name":"MyControllerBOOL6","type":"REAL"} ] }""" # {"name":"MyControllerReal","type":"REAL"} #{"name":"MyControllerBOOL","type":"BOOL"} def main(): sys.settrace with datalayer.system.System("") as datalayer_system: datalayer_system.start(False) # This is the connection string for TCP in the format: tcp://USER:PASSWORD@IP_ADDRESS:PORT # Please check and change according your environment: # - USER: Enter your user name here - default is boschrexroth # - PASSWORD: Enter your password here - default is <PASSWORD> # - IP_ADDRESS: 127.0.0.1 If you develop in WSL and you want to connect to a ctrlX CORE virtual with port forwarding # 10.0.2.2 If you develop in a VM (Virtual Box, QEMU,...) and you want to connect to a ctrlX virtual with port forwarding # 192.168.1.1 If you are using a ctrlX CORE or ctrlX CORE virtual with TAP adpater #connectionProvider = "tcp://boschrexroth:[email protected]:2070" connectionProvider = "tcp://boschrexroth:[email protected]:2070" if 'SNAP' in os.environ: connectionProvider = "ipc://" if bPLCPresent: print("PLC is present") #Load the json from file else: print("PLC is not present") jsonData = json.loads(testJson) #the list that contains all of the read data my_list = [] print("Connecting", connectionProvider) with datalayer_system.factory().create_provider(connectionProvider) as provider: result = provider.start() if result is not datalayer.variant.Result.OK: print("ERROR Starting Data Layer Provider failed with:", result) return myVariantList = [] myTaglist = [] #parse the tag list tagList = jsonData['tag'] for idx, tag in enumerate(tagList): print(idx) print(tag['name']) if bPLCPresent: with PLC("192.168.1.9") as comm: ret = comm.Read(tag['name']) my_list.append(ret.Value) else: data = "testData" if tag['type'] == "BOOL": data = True elif tag['type'] == "SINT": data = -1 elif tag['type'] == "INT": data = -100 elif tag['type'] == "DINT": data = -1000 elif tag['type'] == "LINT": data = -10000 elif tag['type'] == "USINT": data = 1 elif tag['type'] == "UINT": data = 10 elif tag['type'] == "UDINT": data = 100 elif tag['type'] == "LWORD": data = 1000 elif tag['type'] == "REAL": data = 1.2345 elif tag['type'] == "LREAL": data = 123456789.0123 elif tag['type'] == "DWORD": data = 1000 elif tag['type'] == "STRING": data = "test data" print("appended data: " + str(data) + ", Type :" + str(type(data))) my_list.append(data) #segmentation faults occur if there are not distinct nodes myTaglist.append(ABnode(provider, tag['name'], my_list, idx, tag['type'])) myTaglist[idx].register_node() #print("Start provider") #provider.start() print("Running endless loop...") counter = 0 while provider.is_connected() and counter < 6: time.sleep(1.0) # Seconds counter = counter + 1 print("ERROR Data Layer Provider is disconnected") print("Stopping Data Layer Provider: ", end=" ") result = provider.stop() print(result) for idx, tag in enumerate(tagList): print("Unregister provider Node", tag['name'], end=" ") result = provider.unregister_node("AB/" + tag['name']) print(result) datalayer_system.stop(True) def provide_string(provider: datalayer.provider, name: str, abTagValues : list, listIndex : int, datatype : str): # Create and register simple string provider node print("Creating string provider node") variantString = Variant() variantString.set_string("Enter SQL script here. Use ';' as the last character to suppress result") provider_node_str = ABnode(provider, name, variantString, abTagValues, listIndex, datatype) provider_node_str.register_node() return provider_node_str if __name__ == '__main__': main()
StarcoderdataPython
106723
import os import json from pathlib import Path import pem from Crypto.PublicKey import RSA from jupyterhub.handlers import BaseHandler from illumidesk.authenticators.utils import LTIUtils from illumidesk.lti13.auth import get_jwk from tornado import web from urllib.parse import urlencode from urllib.parse import quote class LTI13ConfigHandler(BaseHandler): """ Handles JSON configuration file for LTI 1.3 """ async def get(self) -> None: """ Gets the JSON config which is used by LTI platforms to install the external tool. - The extensions key contains settings for specific vendors, such as canvas, moodle, edx, among others. - The tool uses public settings by default. Users that wish to install the tool with private settings should either copy/paste the json or toggle the application to private after it is installed with the platform. - Usernames are obtained by first attempting to get and normalize values sent when tools are installed with public settings. If private, the username is set using the anonumized user data when requests are sent with private installation settings. """ lti_utils = LTIUtils() self.set_header('Content-Type', 'application/json') # get the origin protocol protocol = lti_utils.get_client_protocol(self) self.log.debug('Origin protocol is: %s' % protocol) # build the full target link url value required for the jwks endpoint target_link_url = f'{protocol}://{self.request.host}/' self.log.debug('Target link url is: %s' % target_link_url) keys = { 'title': 'IllumiDesk', 'scopes': [ 'https://purl.imsglobal.org/spec/lti-ags/scope/lineitem', 'https://purl.imsglobal.org/spec/lti-ags/scope/lineitem.readonly', 'https://purl.imsglobal.org/spec/lti-ags/scope/result.readonly', 'https://purl.imsglobal.org/spec/lti-ags/scope/score', 'https://purl.imsglobal.org/spec/lti-nrps/scope/contextmembership.readonly', 'https://canvas.instructure.com/lti/public_jwk/scope/update', 'https://canvas.instructure.com/lti/data_services/scope/create', 'https://canvas.instructure.com/lti/data_services/scope/show', 'https://canvas.instructure.com/lti/data_services/scope/update', 'https://canvas.instructure.com/lti/data_services/scope/list', 'https://canvas.instructure.com/lti/data_services/scope/destroy', 'https://canvas.instructure.com/lti/data_services/scope/list_event_types', 'https://canvas.instructure.com/lti/feature_flags/scope/show', 'https://canvas.instructure.com/lti/account_lookup/scope/show', ], 'extensions': [ { 'platform': 'canvas.instructure.com', 'settings': { 'platform': 'canvas.instructure.com', 'placements': [ { 'placement': 'course_navigation', 'message_type': 'LtiResourceLinkRequest', 'windowTarget': '_blank', 'target_link_uri': target_link_url, 'custom_fields': { 'email': '$Person.email.primary', 'lms_user_id': '$User.id', }, # noqa: E231 }, { 'placement': 'assignment_selection', 'message_type': 'LtiResourceLinkRequest', 'target_link_uri': target_link_url, }, ], }, 'privacy_level': 'public', } ], 'description': 'IllumiDesk Learning Tools Interoperability (LTI) v1.3 tool.', 'custom_fields': { 'email': '$Person.email.primary', 'lms_user_id': '$User.id', }, # noqa: E231 'public_jwk_url': f'{target_link_url}hub/lti13/jwks', 'target_link_uri': target_link_url, 'oidc_initiation_url': f'{target_link_url}hub/oauth_login', } self.write(json.dumps(keys)) class LTI13JWKSHandler(BaseHandler): """ Handler to serve our JWKS """ def get(self) -> None: """ - This method requires that the LTI13_PRIVATE_KEY environment variable is set with the full path to the RSA private key in PEM format. """ if not os.environ.get('LTI13_PRIVATE_KEY'): raise EnvironmentError('LTI13_PRIVATE_KEY environment variable not set') key_path = os.environ.get('LTI13_PRIVATE_KEY') # check the pem permission if not os.access(key_path, os.R_OK): self.log.error(f'The pem file {key_path} cannot be load') raise PermissionError() private_key = pem.parse_file(key_path) public_key = RSA.import_key(private_key[0].as_text()).publickey().exportKey() self.log.debug('public_key is %s' % public_key) jwk = get_jwk(public_key) self.log.debug('the jwks is %s' % jwk) keys_obj = {'keys': []} keys_obj['keys'].append(jwk) # we do not need to use json.dumps because tornado is converting our dict automatically and adding the content-type as json # https://www.tornadoweb.org/en/stable/web.html#tornado.web.RequestHandler.write self.write(keys_obj) class FileSelectHandler(BaseHandler): @web.authenticated async def get(self): """Return a sorted list of notebooks recursively found in shared path""" user = self.current_user auth_state = await user.get_auth_state() self.log.debug('Current user for file select handler is %s' % user.name) # decoded = self.authenticator.decoded self.course_id = auth_state['course_id'] self.grader_name = f'grader-{self.course_id}' self.grader_root = Path( '/home', self.grader_name, ) self.course_root = self.grader_root / self.course_id self.course_shared_folder = Path('/shared', self.course_id) a = '' link_item_files = [] notebooks = list(self.course_shared_folder.glob('**/*.ipynb')) notebooks.sort() for f in notebooks: fpath = str(f.relative_to(self.course_shared_folder)) self.log.debug('Getting files fpath %s' % fpath) if fpath.startswith('.') or f.name.startswith('.'): self.log.debug('Ignoring file %s' % fpath) continue # generate the assignment link that uses gitpuller user_redirect_path = quote('/user-redirect/git-pull', safe='') assignment_link_path = f'?next={user_redirect_path}' urlpath_workspace = f'tree/{self.course_id}/{fpath}' self.log.debug(f'urlpath_workspace:{urlpath_workspace}') query_params_for_git = [ ('repo', f'/home/jovyan/shared/{self.course_id}'), ('branch', 'master'), ('urlpath', urlpath_workspace), ] encoded_query_params_without_safe_chars = quote(urlencode(query_params_for_git), safe='') url = f'https://{self.request.host}/{assignment_link_path}?{encoded_query_params_without_safe_chars}' self.log.debug('URL to fetch files is %s' % url) link_item_files.append( { 'path': fpath, 'content_items': json.dumps( { "@context": "http://purl.imsglobal.org/ctx/lti/v1/ContentItem", "@graph": [ { "@type": "LtiLinkItem", "@id": url, "url": url, "title": f.name, "text": f.name, "mediaType": "application/vnd.ims.lti.v1.ltilink", "placementAdvice": {"presentationDocumentTarget": "frame"}, } ], } ), } ) self.log.debug('Rendering file-select.html template') html = self.render_template( 'file_select.html', files=link_item_files, action_url=auth_state['launch_return_url'], ) self.finish(html)
StarcoderdataPython
93287
<reponame>Xeratec/crazyflie-stepStabilizer #!/usr/bin/env python3 # -*- coding: utf-8 -*- # # vicon_wrapper.py # <NAME> <<EMAIL>> # <NAME> <<EMAIL>> # # Copyright (C) 2021 ETH Zurich # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # import sys import logging import time import math import numpy as np from datetime import datetime from threading import Thread import cflib.crtp from cflib.crazyflie.log import LogConfig from cflib.crazyflie import Crazyflie from cflib.crazyflie.syncCrazyflie import SyncCrazyflie logger = logging.getLogger(__name__) try: sys.path.append("../extern/pyvicon/") from pyvicon.pyvicon import PyVicon, StreamMode, Direction, Result except Exception: logger.exception("No PyVicon available!") pass class ViconWrapper(Thread): def __init__(self, ip, period, subjects, time0, filename, exposeVicon = 'None', sendDataToCF=None): Thread.__init__(self) self.name = "ViconWrapper" self.ip = ip self.period = period self.vicon = [] self.subjects = subjects self.exposeVicon = None if exposeVicon == 'None' else exposeVicon self.send_data = sendDataToCF self.data_log = np.array([]) self.data_logging_en = False self.text = " " self.position = dict([]) self.quaternions = dict([]) self.t0 = time0 self.is_running = False self.filename = filename def run(self): self.connect() self.loop() def connect(self): self.vicon = PyVicon() logger.info("SDK version : {}".format(self.vicon.__version__)) logger.info("{}".format(self.vicon.connect(self.ip))) logger.info("Vicon connection status : {}".format(self.vicon.is_connected())) self.vicon.set_stream_mode(StreamMode.ServerPush) self.vicon.enable_segment_data() self.vicon.enable_marker_data() self.vicon.enable_unlabeled_marker_data() self.vicon.enable_device_data() self.vicon.set_axis_mapping(Direction.Forward, Direction.Left, Direction.Up) def loop(self): self.is_running = True while self.is_running: while self.vicon.get_frame() != Result.Success: time.sleep(self.period) subj_count = self.vicon.get_subject_count() for i in range(0, subj_count): name = self.vicon.get_subject_name(i) if name in self.subjects: timestamp = round(1000 * (datetime.now() - self.t0).total_seconds(), 3) pos = self.vicon.get_segment_global_translation(name, name) quat = self.vicon.get_segment_global_quaternion(name, name) if quat is not None: pos = pos / 1000.0 self.position[name] = pos self.quaternions[name] = quat if self.data_logging_en: self.log(timestamp, name + "_" + "posx", pos[0]) self.log(timestamp, name + "_" + "posy", pos[1]) self.log(timestamp, name + "_" + "posz", pos[2]) self.log(timestamp, name + "_" + "qw", quat[0]) self.log(timestamp, name + "_" + "qx", quat[1]) self.log(timestamp, name + "_" + "qy", quat[2]) self.log(timestamp, name + "_" + "qz", quat[3]) if (self.exposeVicon is not None and self.send_data): if name == self.exposeVicon: self.send_data(pos, 0) time.sleep(self.period / 1000.0) def log(self, timestamp, id_var, value): data_row = np.array([timestamp, id_var, value]).reshape(1, -1) if self.data_log.shape[0] == 0: self.data_log = data_row else: self.data_log = np.append(self.data_log, data_row, axis=0) def save_log(self): if self.filename != "": np.savetxt(self.filename + "_vicon.csv", self.data_log, fmt='%s', delimiter=',') logger.info("Log saved to {}".format(self.filename + "_vicon.csv")) self.is_running = False def save_log_noExit(self): if self.filename != "": np.savetxt(self.filename + "_vicon.csv", self.data_log, fmt='%s', delimiter=',') logger.info("Log saved to {}".format(self.filename + "_vicon.csv")) def logging_enabled(self, val): if val == 0: self.data_logging_en = False else: self.data_logging_en = True
StarcoderdataPython
3594622
<reponame>bluesky0960/AlgorithmTest<filename>AlgorithmTest/BOJ_STEP_PYTHON/Step2/BOJ14681.py #https://www.acmicpc.net/problem/14681 x = int(input()) y = int(input()) if(x>0 and y>0) : print(1) elif(x>0 and y<0): print(4) elif(x<0 and y<0): print(3) else: print(2)
StarcoderdataPython
8077701
# coding: utf-8 from apiclient.discovery import build from apiclient.http import MediaIoBaseDownload from httplib2 import Http from oauth2client import file, client, tools import io,os from re import match store = file.Storage('token.json') creds = store.get() service = build(serviceName='drive', version='v3', http=creds.authorize(Http())) project_id = service.files().list( q="name contains '<NAME>' " ).execute().get('files')[0].get('id') project_id = '0B0M5IL0AEOXidHZmTjZzMHlLLWc' project_root_items = service.files().list( q=f"'{project_id}' in parents").execute() # Get species data table print("Getting species data table") species_table = list(filter( lambda x: 'tabela_especies' in x.get('name'), project_root_items.get('files') ))[0] file_content = service.files().export_media( fileId=species_table.get('id'), mimeType='text/csv').execute() fname = 'speciesdata.csv' with open (fname, 'wb') as f: f.write(file_content) print(f"Done! Created file {fname} with species data.\n") # Get species and families articles print("Getting species and families articles ids") articlesFolderId = list(filter( lambda x: x.get('name')=='Perfil', project_root_items.get('files')))[0].get('id') def getFamiliesFoldersIds(): results = service.files().list( q=f"'{articlesFolderId}' in parents and mimeType contains 'vnd.google-apps.folder'", fields='files(id,name)').execute().get('files') return { r['name']: r['id'] for r in results if match('^[a-zA-Z]*ae$',r['name'])} def getFamilyDocuments( family, families_folders_ids ): family_folder_id = families_folders_ids.get(family) results = service.files().list( q=f"'{family_folder_id}' in parents and mimeType contains 'document'", fields='files(id,name)').execute().get('files') return results families_folders_ids = getFamiliesFoldersIds() ids_to_download = [ f.get('id') for f in getFamilyDocuments( 'leptodactylidae', families_folders_ids ) ] family_folders_ids = getFamiliesFoldersIds() data = { family: [doc for doc in getFamilyDocuments(family, family_folders_ids)] for family, family_id in family_folders_ids.items()} print("Done\n") # Update species pages print("Getting articles contents and updating species pages...") basepath = '../especies/' if not os.path.exists(basepath): os.makedirs(basepath) for family in data: for doc in [ doc for doc in data[family] if doc['name']!='familia' ]: docid = doc['id'] species = doc['name'] print(f"Requesting article for species {species} ({family})") request = service.files().export_media(fileId=docid, mimeType='text/plain') fname = basepath+f'{species}.md' with open(fname, 'wb') as f: f.write(request.execute()) print(f"Wrote file {fname}") print("Done") print("Updating families pages") basepath = '../familias/' if not os.path.exists(basepath): os.makedirs(basepath) for family in data: for doc in [doc for doc in data[family] if doc['name']=='familia']: docid=doc['id'] print(f"Requesting article for family {family}") request = service.files().export_media(fileId=docid, mimeType='text/plain') fname = basepath+f'{family}.md' with open(fname, 'wb') as f: f.write(request.execute()) print(f"wrote file {fname}") print("Done")
StarcoderdataPython
204931
# -*- coding: utf-8 -*- """ Pipe Catalogue Data - Single Steel Pipe by LOGSTOR Created on Mon Nov 2 20:14:25 2020 @author: <NAME>, PhD References: [1] LOGSTOR, Product Catalogue Version 2018.12. https://www.logstor.com/media/6115/product-catalogue-uk-201812.pdf """ def LayerDiameters(DN,IS): # DN: Nominal pipe diameter # IS: Insulation series DN_l=[20,25,32,40,50,65,80,100,125] if DN not in DN_l: raise TypeError("Nominal Pipe Diameter can be:", DN_l) d1_l=[21.7,28.5,37.2,43.1,54.5,70.3,82.5,107.1,132.5] d2_l=[26.9,33.7,42.4,48.3,60.3,76.1,88.9,114.3,139.7] if IS==1: d3_l=[84,84,104,104,119,134,154,193.6,218.2] d4_l=[90,90,110,110,125,140,160,200,225] elif IS==2: d3_l=[104,104,119,119,134,154,174,218.2,242.8] d4_l=[110,110,125,125,140,160,180,225,250] elif IS==3: d3_l=[119,119,134,134,154,174,193.6,242.8,272.2] d4_l=[125,125,140,140,160,180,200,250,280] else: raise TypeError("Insulation Series (IS) can be one of (poor) 1, 2, or 3 (good)") ind=DN_l.index(DN) return d1_l[ind]*0.001,d2_l[ind]*0.001,d3_l[ind]*0.001,d4_l[ind]*0.001
StarcoderdataPython
1831965
from trainerhost.trainerhostSlack import TrainerHost if __name__ == "__main__": trainer_host = TrainerHost()
StarcoderdataPython
3309316
class RingBuffer: def __init__(self, capacity): self.capacity = capacity self.list = [] self.to_be_popped = 0 # Keeps track of the oldest index def append(self, item): if len(self.list) < self.capacity: self.list.append(item) else: self.list.pop(self.to_be_popped) self.list.insert(self.to_be_popped, item) if self.to_be_popped == self.capacity - 1: self.to_be_popped = 0 else: self.to_be_popped += 1 def get(self): return self.list
StarcoderdataPython
8135211
<filename>mne/tests/test_event.py import os import os.path as op from numpy.testing import assert_array_almost_equal import mne fname = op.join(op.dirname(__file__), '..', 'fiff', 'tests', 'data', 'test-eve.fif') def test_io_cov(): """Test IO for noise covariance matrices """ events = mne.read_events(fname) mne.write_events('events.fif', events) events2 = mne.read_events(fname) assert_array_almost_equal(events, events2)
StarcoderdataPython
293683
## ========================================================= ## nsl/go/utils.py ## --------------------------------------------------------- import sys import os from nsl.go.__about__ import __version__ from nsl.go import gotypes ## ========================================================= ## Version ## --------------------------------------------------------- def get_version(): """Return package version as defined in `setup.py` (ex: 1.2.3).""" return __version__ def get_version_long(): """Return long package version (ex: 1.2.3 (Python 3.4.5)).""" return '{} (Python {})'.format(get_version(), sys.version[:5]) ## ========================================================= ## COLS ## --------------------------------------------------------- COLS = 'ABCDEFGHJKLMNOPQRST' ## ========================================================= ## STONE_TO_CHAR ## --------------------------------------------------------- STONE_TO_CHAR = { None: '.', gotypes.Player.black: 'x', gotypes.Player.white: 'o', } ## ========================================================= ## clear_screen() ## --------------------------------------------------------- def clear_screen(): """Clear the screen. """ # Use `cls' on Windows; # and `clear' on Unix systems. os.system('cls' if os.name == 'nt' else 'clear') ## ========================================================= ## print_move() ## --------------------------------------------------------- def print_move(player, move, prefix=' '): if move.is_pass: move_str = 'passes' elif move.is_resign: move_str = 'resigns' else: move_str = '%s%d' % (COLS[move.point.col - 1], move.point.row) print('%s%s %s' % (prefix, player, move_str)) ## ========================================================= ## print_board() ## --------------------------------------------------------- def print_board(board, prefix=' '): for row in range(board.num_rows, 0, -1): bump = " " if row <= 9 else "" line = [] for col in range(1, board.num_cols + 1): stone = board.get(gotypes.Point(row=row, col=col)) line.append(' ' + STONE_TO_CHAR[stone]) print('%s%s%d %s' % (prefix, bump, row, ''.join(line))) print('') print(prefix + ' ' + ' '.join(COLS[:board.num_cols])) ## ========================================================= ## point_from_coords() ## --------------------------------------------------------- def point_from_coords(coords): # Exit when asked for if coords == 'e' or coords == 'exit' or \ coords == 'q' or coords == 'quit': print('') exit() # Converting the column letter to the corresponding column index col = COLS.index(coords[0].upper()) + 1 # Getting the row index row = int(coords[1:]) # Returning the corresponding Point return gotypes.Point(row=row, col=col) ## ========================================================= ## ========================================================= ## fin.
StarcoderdataPython
4817963
<gh_stars>1-10 # # Licensed to the Apache Software Foundation (ASF) under one or more # contributor license agreements. See the NOTICE file distributed with # this work for additional information regarding copyright ownership. # The ASF licenses this file to You under the Apache License, Version 2.0 # (the "License"); you may not use this file except in compliance with # the License. You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # PIPELINE_ROOT = './build' DATA_ROOT = '/tmp' GCP_AI_PLATFORM_SERVING_ARGS = { 'model_name': 'my_pipeline', 'project_id': '', 'regions': [""], } GCP_AI_PLATFORM_TRAINING_ARGS = { 'project': '', 'region': "", 'masterConfig': { 'imageUri': 'gcr.io/' + 'project' + '/pipeline-name' }, } SYNTHETIC_DATASET = { 'local-bootstrap': f'{DATA_ROOT}/simple-data-5-step/tfx-data/data/', 'local-raw': f'{DATA_ROOT}/simple-data-5-step/tfx-data/data/' }
StarcoderdataPython
6703959
<reponame>bopopescu/webrtc-streaming-node #!/usr/bin/env python # Copyright (c) 2014 The WebRTC project authors. All Rights Reserved. # # Use of this source code is governed by a BSD-style license # that can be found in the LICENSE file in the root of the source # tree. An additional intellectual property rights grant can be found # in the file PATENTS. All contributing project authors may # be found in the AUTHORS file in the root of the source tree. """ Runs tests on Android devices. This script exists to avoid WebRTC being broken by changes in the Chrome Android test execution toolchain. It also conveniently sets the CHECKOUT_SOURCE_ROOT environment variable. """ import os import sys SCRIPT_DIR = os.path.dirname(__file__) SRC_DIR = os.path.abspath(os.path.join(SCRIPT_DIR, os.pardir, os.pardir, os.pardir)) CHROMIUM_BUILD_ANDROID_DIR = os.path.join(SRC_DIR, 'build', 'android') sys.path.insert(0, CHROMIUM_BUILD_ANDROID_DIR) import test_runner # pylint: disable=W0406 from pylib.gtest import gtest_test_instance def main(): # Set our own paths to the .isolate files. # pylint: disable=protected-access gtest_test_instance._DEFAULT_ISOLATE_FILE_PATHS.update({ 'audio_decoder_unittests': 'webrtc/modules/audio_decoder_unittests.isolate', 'common_audio_unittests': 'webrtc/common_audio/common_audio_unittests.isolate', 'common_video_unittests': 'webrtc/common_video/common_video_unittests.isolate', 'modules_tests': 'webrtc/modules/modules_tests.isolate', 'modules_unittests': 'webrtc/modules/modules_unittests.isolate', 'rtc_unittests': 'webrtc/rtc_unittests.isolate', 'system_wrappers_unittests': 'webrtc/system_wrappers/system_wrappers_unittests.isolate', 'test_support_unittests': 'webrtc/test/test_support_unittests.isolate', 'tools_unittests': 'webrtc/tools/tools_unittests.isolate', 'video_capture_tests': 'webrtc/modules/video_capture/video_capture_tests.isolate', 'video_engine_tests': 'webrtc/video_engine_tests.isolate', 'video_engine_core_unittests': 'webrtc/video_engine/video_engine_core_unittests.isolate', 'voice_engine_unittests': 'webrtc/voice_engine/voice_engine_unittests.isolate', 'webrtc_perf_tests': 'webrtc/webrtc_perf_tests.isolate', }) # Override environment variable to make it possible for the scripts to find # the root directory (our symlinking of the Chromium build toolchain would # otherwise make them fail to do so). os.environ['CHECKOUT_SOURCE_ROOT'] = SRC_DIR return test_runner.main() if __name__ == '__main__': sys.exit(main())
StarcoderdataPython
11291448
<gh_stars>0 import logging from natcap.invest.ui import inputs, model from natcap.invest import pollination, MODEL_METADATA LOGGER = logging.getLogger(__name__) class Pollination(model.InVESTModel): def __init__(self): model.InVESTModel.__init__( self, label=MODEL_METADATA['pollination'].model_title, target=pollination.execute, validator=pollination.validate, localdoc=MODEL_METADATA['pollination'].userguide) self.landcover_raster_path = inputs.File( args_key='landcover_raster_path', helptext=( "This is the landcover map that's used to map " "biophyiscal properties about habitat and floral " "resources of landcover types to a spatial layout."), label='Land Cover Map (Raster)', validator=self.validator) self.add_input(self.landcover_raster_path) self.landcover_biophysical_table_path = inputs.File( args_key='landcover_biophysical_table_path', helptext=( "A CSV table mapping landcover codes in the landcover " "raster to indexes of nesting availability for each " "nesting substrate referenced in guilds table as well " "as indexes of abundance of floral resources on that " "landcover type per season in the bee activity columns " "of the guild table.<br/>All indexes are in the range " "[0.0, 1.0].<br/>Columns in the table must be at " "least<br/>* 'lucode': representing all the unique " "landcover codes in the raster st " "`args['landcover_path']`<br/>* For every nesting " "matching _NESTING_SUITABILITY_PATTERN in the guild " "stable, a column matching the pattern in " "`_LANDCOVER_NESTING_INDEX_HEADER`.<br/>* For every " "season matching _FORAGING_ACTIVITY_PATTERN in the " "guilds table, a column matching the pattern in " "`_LANDCOVER_FLORAL_RESOURCES_INDEX_HEADER`."), label='Land Cover Biophysical Table (CSV)', validator=self.validator) self.add_input(self.landcover_biophysical_table_path) self.guild_table_path = inputs.File( args_key='guild_table_path', helptext=( "A table indicating the bee species to analyze in " "this model run. Table headers must include:<br/>* " "'species': a bee species whose column string names " "will be referred to in other tables and the model " "will output analyses per species.<br/> * any number " "of columns matching _NESTING_SUITABILITY_PATTERN with " "values in the range [0.0, 1.0] indicating the " "suitability of the given species to nest in a " "particular substrate.<br/>* any number of " "_FORAGING_ACTIVITY_PATTERN columns with values in the " "range [0.0, 1.0] indicating the relative level of " "foraging activity for that species during a " "particular season.<br/>* 'alpha': the sigma average " "flight distance of that bee species in meters.<br/>* " "'relative_abundance': a weight indicating the " "relative abundance of the particular species with " "respect to the sum of all relative abundance weights " "in the table."), label='Guild Table (CSV)', validator=self.validator) self.add_input(self.guild_table_path) self.farm_vector_path = inputs.File( args_key='farm_vector_path', helptext=( "This is a layer of polygons representing farm sites " "to be analyzed. The shapefile must have at least the " "following fields:<br/><br/>* season (string): season " "in which the farm needs pollination.<br/>* half_sat " "(float): a real in the range [0.0, 1.0] representing " "the proportion of wild pollinators to achieve a 50% " "yield of that crop.<br/>* p_wild_dep (float): a " "number in the range [0.0, 1.0] representing the " "proportion of yield dependent on pollinators.<br/>* " "p_managed (float): proportion of pollinators that " "come from non-native/managed hives.<br/>* f_[season] " "(float): any number of fields that match this pattern " "such that `season` also matches the season headers in " "the biophysical and guild table. Any areas that " "overlap the landcover map will replace seasonal " "floral resources with this value. Ranges from " "0..1.<br/>* n_[substrate] (float): any number of " "fields that match this pattern such that `substrate` " "also matches the nesting substrate headers in the " "biophysical and guild table. Any areas that overlap " "the landcover map will replace nesting substrate " "suitability with this value. Ranges from 0..1."), label='Farm Vector (Vector) (optional)', validator=self.validator) self.add_input(self.farm_vector_path) def assemble_args(self): args = { self.workspace.args_key: self.workspace.value(), self.suffix.args_key: self.suffix.value(), self.landcover_raster_path.args_key: self.landcover_raster_path.value(), self.landcover_biophysical_table_path.args_key: self.landcover_biophysical_table_path.value(), self.guild_table_path.args_key: self.guild_table_path.value(), self.farm_vector_path.args_key: self.farm_vector_path.value(), } return args
StarcoderdataPython
60060
from django.contrib import admin from .models import Profile # Register your models here. class ProfileAdmin(admin.ModelAdmin): class Meta: fields = '__all__' admin.site.register(Profile, ProfileAdmin)
StarcoderdataPython
11313708
# No unittest
StarcoderdataPython
11262189
<gh_stars>0 from django.conf.urls import url from . import views urlpatterns = [ url(r'^apps/$', views.apps_list,name="apps_list"), url(r'^apps/model/$', views.apps_model,name="apps_model"), url(r'^apps/run/$', views.ansible_run,name="ansible_run"), url(r'^apps/log/$', views.ansible_log,name="ansible_log"), url(r'^apps/log/(?P<model>[a-z]+)/(?P<id>[0-9]+)/$', views.ansible_log_view,name="ansible_log"), url(r'^apps/playbook/add/$', views.apps_add,name="ansible_add"), url(r'^apps/playbook/file/(?P<pid>[0-9]+)/$', views.apps_playbook_file,name="apps_playbook_file"), url(r'^apps/playbook/run/(?P<pid>[0-9]+)/$', views.apps_playbook_run,name="app_playbook_run"), url(r'^apps/playbook/modf/(?P<pid>[0-9]+)/$', views.apps_playbook_modf,name="app_playbook_modf"), #url(r'test',views.test,name='test'), ]
StarcoderdataPython
4862021
import soundfile as sf import sounddevice as sd from scipy.io.wavfile import write def record_voice(): """This function records your voice and saves the output as .wav file.""" fs = 44100 # Sample rate seconds = 3 # Duration of recording # sd.default.device = "Built-in Audio" # Speakers full name here print("Say something:") myrecording = sd.rec(int(seconds * fs), samplerate=fs, channels=2) sd.wait() # Wait until recording is finished write("speech_emotion_recognition/recordings/myvoice.wav", fs, myrecording) print("Voice recording saved.")
StarcoderdataPython
3406046
from __future__ import unicode_literals from django.apps import AppConfig class CeleryExampleConfig(AppConfig): name = 'celery_example'
StarcoderdataPython
5076646
<filename>cap_5/exercicios/5.1.py<gh_stars>1-10 # Testes Condicionais: Escreva uma série de testes condicionais. Exiba uma frase que descreva o teste e o resultado prevsito para cada um. Seu código deverá # ser semelhante a: Crie pelo menos 10 testes. Tenha no mínimo 5 testes avaliados como True e outros cinco avaliados como False. # Observe atentamente seus resultados e cerifique-se de que compreende por que cada linha é avaliada # como True ou False: print('Questão do exemplo:') # Exibe uma mensagem informando se tratar de uma questão do exemplo. car = 'subaru' # Cria a variável subaru print("Is car == 'subaru'? I predict True.") # Exibe uma mensagem perguntando se subaru é o nome da variável. print(car == 'subaru') # Se sim, Python exibe a mensagem True print("\nIs car == 'audi'? I predict False.") print(car == 'audi') # Como nesse caso a vairável car é diferente de subaru, Python dispara False print('\nPrimeira resposta:') favorite = 'Ice Cream' print("My favorite == 'Ice Cream'? I predict True.") print(favorite == 'Ice Cream') print("\nMy favorite == 'waffles'? I predict False.") print(favorite == 'waffles') print('\nSegunda resposta:') disciplina = 'programação' print("Is disciplina == 'programação'? I predict True!") print(disciplina == 'programação') print("\nIs disciplina == 'hardware'? I predict False!") print(disciplina == 'hardware') print('\nTerceira resposta:') livro = 'Stalker' print("Is livro == 'Stalker'? I predict True!") print(livro == 'Stalker') print("\nIs livro == 'Salem'? I predict False!") print(livro == 'Salem') print('\nQuarta resposta:') favorit_autor = '<NAME>' print("Is favorit_autor == '<NAME>'? I predict True!") print(favorit_autor == '<NAME>') print("\nIs favorit_autor == '<NAME>'? I predict False!") print(favorit_autor == '<NAME>') print('\nQuinta resposta:') favorit_movie = 'Interestelar' print("Is favorit_movie == 'Interestelar'? I predict True!") print(favorit_movie == 'Interestelar') print("\nIs favorit_movie == 'Interestelar'? I predict False!") print(favorit_movie == 'Interestelar')
StarcoderdataPython
11341002
"""Longer tests for simplifier module """ # pylint: disable=relative-import import unittest import os from sspam import simplifier from templates import SimplifierTest class TestSimplifierLong(SimplifierTest): """ Longer tests for simplifier module. """ def test_long_basics(self): 'Long basic test' input_str = """a = 3 + x + 0 b = 4 + x - x + x c = - 7 + a + b""" ref_str = """a = (3 + x) b = (4 + x) c = (2 * x)""" self.generic_test(input_str, ref_str) def test_samples(self): 'Test all samples' samples_dir = os.path.join(os.path.dirname(os.path.realpath(__file__)), "samples") for samplefilename in os.listdir(samples_dir): fname = os.path.join(samples_dir, samplefilename) samplefile = open(fname, 'r') refstring = samplefile.readline()[2:-1] output_string = simplifier.simplify(fname).split('\n')[-1] self.assertTrue(refstring == output_string, "Processing file %s: %s is not equal to %s" % (samplefilename, refstring, output_string)) if __name__ == '__main__': unittest.main()
StarcoderdataPython