id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
11374124
"""Test for nx_itertools.recipes.first_true""" from nx_itertools.recipes import first_true def test_normal(): """Test first_true.""" # first_true with success data = iter([0, 0, 'A', 0]) res = first_true(data) assert res == 'A' assert list(data) == [0] # first_true with no success data = iter([0, 0, 0, 0]) res = first_true(data) assert res is False assert list(data) == [] # first_true with empty data = () res = first_true(data) assert res is False # first_true with predicate and success data = iter('ABCDE') res = first_true(data, pred=lambda x: x == 'D') assert res == 'D' assert list(data) == ['E'] # first_true with predicate and no success data = iter('ABCDE') res = first_true(data, pred=lambda x: x == 'X') assert res is False assert list(data) == [] # first_true with no success and default data = iter([0, 0, 0, 0]) res = first_true(data, default='X') assert res == 'X' assert list(data) == [] # first_true with empty and default data = () res = first_true(data, default='X') assert res == 'X' # first_true with predicate, no success, and default data = iter('ABCDE') res = first_true(data, default='Q', pred=lambda x: x == 'X') assert res == 'Q' assert list(data) == [] # first_true with empty, predicate, no success, and default data = () res = first_true(data, default='Q', pred=lambda x: x == 'X') assert res == 'Q'
StarcoderdataPython
12813577
#!/usr/bin/env python3 """Tests for PartOfSpeechTagger class""" import copy import unittest from gruut.pos import PartOfSpeechTagger class PartOfSpeechTaggerTestCase(unittest.TestCase): """Test cases for PartOfSpeechTagger class""" def test_encode_decode(self): """Test encode/decode functions for pycrfsuite features""" s = "ði ıntəˈnæʃənəl fəˈnɛtık əsoʊsiˈeıʃn" self.assertEqual( PartOfSpeechTagger.decode_string(PartOfSpeechTagger.encode_string(s)), s ) def test_features(self): """Test sentence features""" sentence = "1 test .".split() word_features = { "1": { "bias": 1.0, "word": "1", "len(word)": 1, "word.ispunctuation": False, "word.isdigit()": True, "word[:2]": "1", "word[-2:]": "1", }, "test": { "bias": 1.0, "word": "test", "len(word)": 4, "word.ispunctuation": False, "word[-2:]": "st", "word[:2]": "te", "word.isdigit()": False, }, ".": { "bias": 1.0, "word": ".", "len(word)": 1, "word.ispunctuation": True, "word.isdigit()": False, "word[-2:]": ".", "word[:2]": ".", }, } def add_prefix(d, prefix): return {f"{prefix}{k}": v for k, v in d.items()} # Add context context_features = copy.deepcopy(word_features) context_features["1"].update(add_prefix(word_features["test"], "+1:")) context_features["test"].update(add_prefix(word_features["1"], "-1:")) context_features["test"].update(add_prefix(word_features["."], "+1:")) context_features["."].update(add_prefix(word_features["test"], "-1:")) # Add BOS/EOS context_features["1"]["BOS"] = True context_features["."]["EOS"] = True expected_features = [ context_features["1"], context_features["test"], context_features["."], ] actual_features = PartOfSpeechTagger.sent2features( sentence, words_forward=1, words_backward=1, chars_front=2, chars_back=2, encode=False, ) self.assertEqual(expected_features, actual_features) # ----------------------------------------------------------------------------- if __name__ == "__main__": unittest.main()
StarcoderdataPython
1934993
<reponame>ckurze/mongodb-iot-reference import base64 import os import yaml import json from collections import defaultdict from pymongo import MongoClient import helper import db_operations as operations def process(event, context): ''' Entrypoint for Cloud Function 'iotcore_to_mongodb'. Read messages IoT Hub and insert them into MongoDB. ''' MONGO_URI = os.environ["MONGO_URI"] if MONGO_URI == None: raise ValueError('No MongoDB Cluster provided. Will exit.') mongo_client = MongoClient(MONGO_URI) db = mongo_client.citibike #read messages from event and group them by action message_str = base64.b64decode(event['data']).decode('utf-8') message = json.loads(message_str) grouped_messages = defaultdict(list) action = message.pop('action', 'none') grouped_messages[action].append(message) #messages with action == fullRefresh are split into status and station messages split_full_refresh_messages(grouped_messages) #do "bulk" inserts for both types of messages (we used the same code as for Azure #where bulk reading messages is possible. In this implementation each message is read seperately #so no actual bulk inserts should happen) refresh_stations(db, grouped_messages.get('refreshStation', [])) refresh_status(db, grouped_messages.get('refreshStatus', [])) return def split_full_refresh_messages(grouped_messages): ''' Split messages with an action 'fullRefresh' into 'refreshStatus' and 'refreshStation' messages. ''' full_refresh_msgs = grouped_messages.get('fullRefresh', []) for msg in full_refresh_msgs: grouped_messages['refreshStatus'].append(msg.pop('status')) grouped_messages['refreshStation'].append(msg) def refresh_stations(db, messages): ''' Insert 'station_information' updates into MongoDB. ''' if len(messages) == 0: return stations_collection = db.stations operations.ensure_indexes( db=db, stations_collection=stations_collection) #pre process station information -> convert geo information to valid geo json object stations = helper.preprocess_stations(messages) #send bulk updates to database operations.update_station_information( stations=stations, collection=stations_collection, batch_size=100) def refresh_status(db, messages): ''' Insert 'status' updates into MongoDB. ''' if len(messages) == 0: return status_collection = db.status metadata_collection = db.metadata operations.ensure_indexes( db=db, status_collection=status_collection, metadata_collection=metadata_collection) #find stations that should be updated based on last update stations_last_updated = operations.get_station_last_updated( collection=metadata_collection, feed='refreshStatus') stations = helper.get_station_status_to_update( messages, stations_last_updated) #update remaining stations operations.update_station_status(stations=stations, collection=status_collection, metadata_collection=metadata_collection, feed='STATUS_URL', batch_size=100) def load_env(path): with open(path) as yaml_file: values = yaml.load(yaml_file, Loader=yaml.FullLoader) for key in values: os.environ[key] = str(values[key])
StarcoderdataPython
3428899
<filename>cogs/levels.py import io import random import time from datetime import datetime import discord from discord.ext import commands from easy_pil import Canvas, Editor, Font, load_image_async from tabulate import tabulate from helpers.bot import Bonbons class Levels(commands.Cog): """ A cog for levels. """ def __init__(self, bot: Bonbons) -> None: self.bot = bot self.db = self.bot.mongo["levels"] self.levels: dict[int, int] = {} self.make_levels() self.set_attributes() @property def emoji(self) -> str: return "⬆️" def make_levels(self) -> None: for number in range(500): self.levels[number] = 125 * number def set_attributes(self) -> None: self.bot.generate_rank_card = self.generate_rank_card self.bot.generate_leaderboard = self.generate_leaderboard async def generate_rank_card( self, ctx: commands.Context, member: discord.Member, data, background=None ) -> None: next_level_xp = self.levels[int(data["level"]) + 1] percentage = (data["xp"] / next_level_xp) * 100 user_data = { "name": str(member), "xp": int(data["xp"]), "next_level_xp": next_level_xp, "level": int(data["level"]), "percentage": int(percentage), } if background: background = Editor(await load_image_async(str(background))).resize( (800, 280) ) else: background = Editor(Canvas((800, 280), color="#23272A")) profile_image = await load_image_async(str(member.display_avatar.url)) profile = Editor(profile_image).resize((150, 150)).circle_image() poppins = Font.poppins(size=40) poppins_small = Font.poppins(size=30) card_right_shape = [(600, 0), (750, 300), (900, 300), (900, 0)] background.polygon(card_right_shape, "#2C2F33") background.paste(profile, (30, 30)) background.rectangle((30, 200), width=650, height=40, fill="#494b4f", radius=20) background.bar( (30, 200), max_width=650, height=40, percentage=user_data["percentage"], fill="#3db374", radius=20, ) background.text((200, 40), user_data["name"], font=poppins, color="white") background.rectangle((200, 100), width=350, height=2, fill="#17F3F6") background.text( (200, 130), f"Level: {user_data['level']} " + f" XP: {user_data['xp']: ,} / {user_data['next_level_xp']: ,}", font=poppins_small, color="white", ) with io.BytesIO() as buffer: background.save(buffer, "PNG") buffer.seek(0) embed = discord.Embed(color=discord.Color.blurple()) embed.set_image(url="attachment://rank_card.png") return await ctx.send( file=discord.File(buffer, "rank_card.png"), embed=embed ) async def generate_leaderboard(self, ctx: commands.Context) -> None: before = time.perf_counter() background = Editor(Canvas((1400, 1280), color="#23272A")) db = self.db[str(ctx.guild.id)] paste_size = 0 text_size = 40 for x in await db.find().sort("level", -1).to_list(10): user = self.bot.get_user(x["_id"]) or await self.bot.fetch_user(x["_id"]) if user.avatar is None: img = Editor(await load_image_async(str(user.display_avatar))).resize( (128, 128) ) else: img = await load_image_async( str(user.display_avatar.with_size(128).with_format("png")) ) background.text( (175, text_size), f'{str(user)} • Level{x["level"]: ,}', color="white", font=Font.poppins(size=50), ) background.paste(img, (0, paste_size)) paste_size += 128 text_size += 130 with io.BytesIO() as buffer: background.save(buffer, "PNG") buffer.seek(0) done = time.perf_counter() - before embed = discord.Embed( title=f"{ctx.guild.name} Level Leaderboard", description="This is based off of your level and not XP.", color=discord.Color.blurple(), timestamp=datetime.utcnow(), ) embed.set_image(url="attachment://leaderboard.png") embed.set_footer(text=f"Took{done: .2f}s") return await ctx.send( file=discord.File(buffer, "leaderboard.png"), embed=embed ) @commands.command(name="rank", aliases=("level",)) @commands.cooldown(1, 20, commands.BucketType.user) async def rank(self, ctx: commands.Context, member: discord.Member = None): """Tells you your current level embedded inside an image.""" member = member or ctx.author db = self.db[str(ctx.guild.id)] data = await db.find_one({"_id": member.id}) if data is not None: return await self.generate_rank_card(ctx, member, data) await ctx.reply( "You have no XP somehow. Send some more messages into the chat and try again.." ) @commands.command(name="setlevel") @commands.cooldown(1, 20, commands.BucketType.user) async def setlevel(self, ctx: commands.Context, member: discord.Member, level: int): db = self.db[str(ctx.guild.id)] data = await db.find_one({"_id": member.id}) if data is not None: await self.db.update_one({"_id": data["_id"]}, {"$set": {"level": level}}) return await ctx.reply(f"{member}'s level has been set to {level}.") @commands.command(name="leaderboard", aliases=("lb",)) @commands.cooldown(1, 20, commands.BucketType.user) async def leaderboard(self, ctx: commands.Context, args: str = None): """Shows the level leaderboard for the current server.""" if args: if args == "--text" or args == "--all": data = {"level": [], "xp": [], "id": []} db = self.db[str(ctx.guild.id)] async for doc in db.find().sort("level", -1): data["level"].append(doc["level"]) data["xp"].append(doc["xp"]) data["id"].append(doc["_id"]) content = tabulate( {"ID": data["id"], "Level": data["level"], "XP": data["xp"]}, ["ID", "Level", "XP"], tablefmt="pretty", ) file = discord.File( io.BytesIO(content.encode("utf-8")), filename="text.txt" ) return await ctx.send(file=file) else: pass await self.generate_leaderboard(ctx) @commands.Cog.listener("on_message") async def handle_message(self, message: discord.Message): if message.author.bot: return if not isinstance(message.channel, discord.TextChannel): return db = self.db[str(message.guild.id)] data = await db.find_one({"_id": message.author.id}) xp = random.randint(10, 200) if data is not None: next_level = data["level"] + 1 next_level_xp = self.levels[next_level] if int(data["xp"]) >= int(next_level_xp): await db.update_one({"_id": message.author.id}, {"$inc": {"level": 1}}) await db.update_one( {"_id": message.author.id}, {"$set": {"xp": xp / 2}} ) return await db.update_one({"_id": message.author.id}, {"$inc": {"xp": xp}}) return if data is None: await db.insert_one({"_id": message.author.id, "xp": xp, "level": 1}) return async def setup(bot): print("Loaded: Levels") await bot.add_cog(Levels(bot))
StarcoderdataPython
6650898
from .dirutils import *
StarcoderdataPython
1869035
import os from mask_rcnn.utils import extract_bboxes from visual_tools.visualize import display_instances from .gui_viewer import GuiViewer class GuiCocoViewer(GuiViewer): def __init__(self, figurename, dataset): super(GuiCocoViewer, self).__init__(figurename) self.dataset = dataset self.num_images = self.dataset.num_images self.create_slider() self.create_textbox() self.display() def display(self): should_update = super(GuiCocoViewer, self).display() if should_update: image = self.dataset.load_image(self.image_id) masks, class_ids = self.dataset.load_mask(self.image_id) # Compute Bounding box bbox = extract_bboxes(masks) display_instances(image, bbox, masks, class_ids, self.dataset.class_names, ax=self.ax) title = "ID: {}\nImage file name: {}\nThe number of objects: {}".format( self.image_id, os.path.basename(self.dataset.source_image_link(self.image_id)), len(class_ids) ) self.fig.suptitle(title, fontsize=20) self.fig.canvas.draw_idle()
StarcoderdataPython
11250090
import sys from cmake_checker.components.file_finder import provide_files_for_verification from cmake_checker.components.parse_arguments import parse_arguments from cmake_checker.components.verifier import Verifier from cmake_checker.components.reporter import Reporter def compute_exit_code(violations: list, warn_only: bool) -> int: if warn_only is True: return 0 if any(len(v) for f, v in violations): return -1 return 0 def main(): arguments = parse_arguments() verify = Verifier() files = provide_files_for_verification(arguments.PATH, arguments.whitelist) files_with_info = verify.check_path(files) reporter = Reporter.create(arguments.reporter, files_with_info) arguments.output_file.write(reporter.generate_report()) sys.exit(compute_exit_code(files_with_info, arguments.warn_only)) main()
StarcoderdataPython
6686193
import datetime bills = [ { u'_all_ids': [u'EXB00000001'], u'_current_session': True, u'_current_term': True, u'_id': u'EXB00000001', u'_term': u'T1', u'_type': u'bill', u'action_dates': { u'first': datetime.datetime(2011, 1, 7, 0, 0), u'last': datetime.datetime(2011, 4, 15, 0, 0), u'passed_lower': datetime.datetime(2011, 4, 15, 0, 0), u'passed_upper': None, u'signed': None }, u'actions': [ {u'action': u'Fake Passed', u'actor': u'lower', u'date': datetime.datetime(2011, 8, 24, 0, 0), u'related_entities': [], u'type': [u'bill:passed']}, {u'action': u'Fake introduced', u'actor': u'lower', u'date': datetime.datetime(2012, 1, 23, 0, 0), u'related_entities': []} ], u'type': [u'bill:introduced'], u'alternate_titles': [], u'bill_id': u'AB 1', u'chamber': u'lower', u'companions': [], u'country': u'us', u'level': u'state', u'session': u'S1', u'sponsors': [ {u'leg_id': u'EXL000001', u'name': u'FakeLegislator1', u'type': u'primary'}], u'state': u'ex', u'title': u'A fake act.', u'type': [u'bill'], u'subjects': [u'Labor and Employment'] }, { u'_all_ids': [u'LOB00000001'], u'_current_session': True, u'_current_term': True, u'_id': u'LOB00000001', u'_term': u'T1', u'_type': u'bill', u'action_dates': { u'first': datetime.datetime(2011, 1, 7, 0, 0), u'last': datetime.datetime(2011, 4, 15, 0, 0), u'passed_lower': datetime.datetime(2011, 4, 15, 0, 0), u'passed_upper': None, u'signed': None }, u'actions': [ {u'action': u'LOL Passed', u'actor': u'lower', u'date': datetime.datetime(2011, 8, 24, 0, 0), u'related_entities': [], u'type': [u'bill:passed']}, {u'action': u'LOL introduced', u'actor': u'lower', u'date': datetime.datetime(2012, 1, 23, 0, 0), u'related_entities': []}], u'type': [u'bill:introduced'], u'alternate_titles': [], u'bill_id': u'HB 1', u'chamber': u'lower', u'companions': [], u'country': u'us', u'level': u'state', u'session': u'S1', u'sponsors': [ {u'leg_id': u'LOL000001', u'name': u'<NAME>', u'type': u'primary'}], u'state': u'ex', u'title': u'A fake act.', u'type': [u'bill'] } ]
StarcoderdataPython
6408164
from .convert import UCCA2tree, to_UCCA from .trees import InternalParseNode, LeafParseNode from .trees import InternalTreebankNode, LeafTreebankNode from .trees import get_position __all__ = ( "UCCA2tree", "to_UCCA", "InternalParseNode", "LeafParseNode", "InternalTreebankNode", "LeafTreebankNode", "get_position", )
StarcoderdataPython
3544728
''' Simple text based Sudoku solver. ''' __author__ = '<NAME>' import copy def uniqueInsert(l, v): ''' Add v to list if it is not already there, else raise ValueError ''' if v is not None: if v in l: raise ValueError('list already contains value %s' % v) assert 0 < v < 10, 'Only 1-9 allowed, got %s' % v l.append(v) class Sudoku: def submat(self, i, j): ''' Return i, j 3x3 submatrix of self. ''' mat = self.mat out = [] for srow_i in range(3): row = [] for scol_i in range(3): v = mat[i * 3 + srow_i][j * 3 + scol_i] row.append(v) out.append(row) return out def copy(self): return Sudoku(copy.deepcopy(self.mat)) def add(self, v, i, j): ''' Fill in an entry in self.mat ''' self.mat[i][j] = v uniqueInsert(self.rows[i], v) uniqueInsert(self.cols[j], v) sub_i = i // 3 * 3 + j // 3 uniqueInsert(self.subs[sub_i], v) def __init__(self, mat): ''' Create a new Sudoku instance. mat -- 9x9 array of digits 1-9 or None if no value is known for that spot ''' self.mat = mat # keep track of all values used in each row, column and sub-matrix. rows = [[] for i in range(9)] cols = [[] for i in range(9)] subs = [[] for i in range(9)] for row_i in range(9): for col_i in range(9): v = self.mat[row_i][col_i] uniqueInsert(rows[row_i], v) uniqueInsert(cols[col_i], v) for srow_i in range(3): for scol_i in range(3): sub = self.submat(srow_i, scol_i) for i in range(3): for j in range(3): v = sub[i][j] sub_i = srow_i * 3 + scol_i uniqueInsert(subs[sub_i], v) self.rows = rows self.cols = cols self.subs = subs def __repr__(self): out = '' for i in range(9): if i % 3 == 0: out += '+-------+-------+-------+\n' for j in range(9): if j % 3 == 0: out += '| ' v = self.mat[i][j] if v is not None: out += '%1d ' % v else: out += ' ' out += '|\n' out += '+-------+-------+-------+\n' return out def solve(self): ''' Solve for the unknown positions of the puzzle ''' min_poss = 9 # Minimum possible number of choices for a cell done = True for i in range(9): for j in range(9): sub_i = i // 3 * 3 + j // 3 # sub-matrix index v = self.mat[i][j] if v: pass else: # not all values filled out so we are not done yet done = False all = set(range(1, 10)) # determine all possible values for this cell possible = (all.difference(self.rows[i]) .difference(self.cols[j]) .difference(self.subs[sub_i])) # see if we have run into a brick wall if len(possible) == 0: raise ValueError('Sudoku not solvable') elif len(possible) < min_poss: # keep track of cell with smallest number of choices min_poss = len(possible) best = possible min_i = i min_j = j if done: out = self else: # Try these possibilities and recurse for b in best: print(min_i, min_j, b) trial = self.copy() trial.add(b, min_i, min_j) print(trial) try: soln = trial.solve() break except ValueError: soln = None if soln is None: print(self) raise ValueError('Sudoku not solvable') out = soln return out N = None easy = [ [7, N, N, 1, 5, N, N, N, 8], [N, N, 4, N, N, 2, N, N, N], [N, N, N, N, N, 4, 5, 6, N], [6, N, N, N, N, N, N, 2, 9], [5, N, 2, N, N, N, 8, N, 4], [3, 4, N, N, N, N, N, N, 1], [N, 3, 8, 6, N, N, N, N, N], [N, N, N, 2, N, N, 9, N, N], [1, N, N, N, 8, N, N, N, 3] ] hard = [ [N, 4, N, N, N, 7, 9, N, N], [N, N, 8, 5, 3, 9, N, N, N], [N, 6, N, N, N, N, 2, N, 3], [N, N, N, N, N, 2, 5, N, N], [N, 8, 6, N, N, N, 1, 4, N], [N, N, 9, 8, N, N, N, N, N], [6, N, 3, N, N, N, N, 9, N], [N, N, N, 9, 8, 6, 3, N, N], [N, N, 1, 4, N, N, N, 6, N] ] evil = [ [4, 2, N, N, N, N, N, 1, N], [N, N, N, 5, 4, N, N, 3, N], [N, N, 6, N, N, 7, N, N, N], [N, N, N, N, N, N, 2, 7, 9], [N, 1, N, N, N, N, N, 6, N], [3, 4, 2, N, N, N, N, N, N], [N, N, N, 9, N, N, 3, N, N], [N, 6, N, N, 3, 8, N, N, N], [N, 8, N, N, N, N, N, 5, 7] ] blank = [ [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N], [N, N, N, N, N, N, N, N, N] ] import time easy = Sudoku(easy) hard = Sudoku(hard) evil = Sudoku(evil) print() print('easy') print(easy) time.sleep(2) easy.solve() print() print('hard') print(hard) time.sleep(2) hard.solve() print() print('evil') print(evil) print() time.sleep(2) evil.solve()
StarcoderdataPython
261670
<reponame>HitmanBobina47/family-task-queue<gh_stars>0 from flask import Flask import tempfile, os from family_task_queue import db def create_app(): app = Flask(__name__) db_path = os.path.join(tempfile.gettempdir(), "test.db") app.config["SQLALCHEMY_DATABASE_URI"] = f"sqlite:///{db_path}" app.config["SQLALCHEMY_TRACK_MODIFICATIONS"] = False app.config["TESTING"] = True db.init_app(app) db.db.drop_all(app=app) db.db.create_all(app=app) return app def create_user_and_family(**kwargs): kwargs2 = { "first_name": "Fatso", "last_name": "McGatso", "family": "Mongowski" } db.user.create_family(kwargs2["family"]) kwargs2.update(kwargs) db.user.create_user( "fatsomcgatso", "password", "<EMAIL>", **kwargs2 )
StarcoderdataPython
1666539
# -*- coding: utf-8 -*- """These are search-related elements for the django ORM, which have been moved to a separate model because the FTS implementation with requires a *hybrid* implementation that is different than the other models. The functionality was moved here to make it easier to support test routines for our FTS implementation. There is no FTS support in django but it can be made to work with a model that shadows a postgres materialized view built to contain search terms in a specially constructed document. .. moduleauthor:: <NAME>, glenl.glx at gmail.com """ import re import string from django.db import connection from django.db import models from mutopia.models import Piece MV_NAME = 'mutopia_search_view' MV_INDEX_NAME = 'mutopia_search_index' MV_DROP = 'DROP MATERIALIZED VIEW IF EXISTS {0}' MV_CREATE = """ CREATE MATERIALIZED VIEW {0} (id, piece_id, document) AS SELECT p.piece_id, p.piece_id, (to_tsvector('pg_catalog.simple', concat_ws(' ', unaccent(p.title), unaccent(c.description), unaccent(p.opus), p.style_id, unaccent(p.raw_instrument), unaccent(p.lyricist), unaccent(p.source), unaccent(m.name), p.date_composed, unaccent(p.moreinfo), v.version) )) AS document FROM "mutopia_piece" as p JOIN "mutopia_lpversion" AS v ON v.id = p.version_id JOIN "mutopia_composer" AS c ON c.composer = p.composer_id JOIN "mutopia_contributor" AS m ON m.id = p.maintainer_id """ MV_INDEX_DROP = 'DROP INDEX IF EXISTS {0}' MV_INDEX_CREATE = 'CREATE INDEX {0} ON {1} USING GIN(document)' MV_REFRESH = 'REFRESH MATERIALIZED VIEW {0}' # FTS is not supported directly in Django so we are going to execute a # manual query. This is a format string that is designed to be filled # in by a keyword sanitized to form the query. _PG_FTSQ = ' '.join([ "SELECT piece_id FROM", MV_NAME, "WHERE document @@ to_tsquery('pg_catalog.simple', unaccent(%s))"]) class SearchTerm(models.Model): """A model to shadow a Postgres materialized view containing a document containing search terms associated with the given :class:`mutopia.models.Piece`. The shadowed table should be refreshed after any updates. """ #:The target piece for this search document. piece_id = models.ForeignKey(Piece) #:The search document for FTS document = models.TextField() class Meta: db_table = MV_NAME managed = False @classmethod def rebuild_view(cls): """Drop and re-create the materialized view and its index.""" cursor = connection.cursor() cursor.execute(MV_DROP.format(MV_NAME)) cursor.execute(MV_CREATE.format(MV_NAME)) cursor.execute(MV_INDEX_DROP.format(MV_INDEX_NAME)) cursor.execute(MV_INDEX_CREATE.format(MV_INDEX_NAME, MV_NAME)) @classmethod def refresh_view(cls): """Refresh the associated view. After updates and inserts, the materialized view needs to be refreshed. We could do this with a trigger but for now it is simple enough to do it from this class method after processing submissions. """ cursor = connection.cursor() cursor.execute(MV_REFRESH.format(MV_NAME)) @classmethod def _sanitize(cls, term): """Sanitize input to the search routine. :param str term: Input string to clean. :return: A sanitized string, ready for FTS. """ # Replace all puncuation with spaces. allowed_punctuation = set(['&', '|', '"', "'", '!']) all_punctuation = set(string.punctuation) punctuation = ''.join(all_punctuation - allowed_punctuation) term = re.sub(r'[{}]+'.format(re.escape(punctuation)), ' ', term) # Substitute all double quotes to single quotes. term = term.replace('"', "'") term = re.sub(r"'+", "'", term) # if no special characters, and search terms together. if not re.search('[&|!]', term): term = re.sub(r'\s+', ' & ', term) return term @classmethod def search(cls, keywords): """Given keyword string, search using FTS. Because FTS is not a supported feature of django, it is faked here by using a manual query that returns :class:`mutopia.models.Piece` keys. :param str keywords: Input from the user :return: Zero or more Pieces. :rtype: A Piece query set. """ terms = cls._sanitize(keywords) cursor = connection.cursor() results = [] try: cursor.execute(_PG_FTSQ, [terms,]) results = [row[0] for row in cursor.fetchall()] finally: cursor.close() # The results from manual queries do not return true QuerySets # so these are translated for the caller with a filter. return Piece.objects.filter(pk__in=results).order_by('-piece_id')
StarcoderdataPython
3439010
cpu = { 'cpu_times': { 'user': 0.0, 'system': 0.0, 'idle': 0.0, 'interrupt': 0.0, 'dpc': 0.0, }, 'cpu_percent': { '0' : 0.0, '1' : 0.0, '2' : 0.0, '4' : 0.0 }, 'cpu_times_percent': { }, 'cpu_count': { }, 'cpu_stats': { }, 'cpu_freq': { }, 'cpu_load': { } }
StarcoderdataPython
1778529
# -*- coding: utf-8 -*- # @Time : 26.04.21 11:56 # @Author : sing_sd import matplotlib.pyplot as plt import numpy as np import pandas as pd import pickle from pathlib import Path import src.common_functions as cf import src.clustering.COStransforms as ct import src.clustering.cluster_association as ca plt.rcParams.update({'font.size': 12}) def main(): data = pd.DataFrame(get_ais_data_interpol_1min()) data.columns = ["x", "y", "cog", "sog", "cluster", "mmsi"] with open("../resources/graph_nodes_refined.pkl", 'rb') as f: nodes_new = pickle.load(f) print("Graph nodes import succeeded") with open("../resources/graph_edges_refined.pkl", 'rb') as f: edges_new = pickle.load(f) print("Graph edges import succeeded") plot_refined_graph_association(data, nodes_new, edges_new) def get_ais_data_interpol_1min(): nr_of_actual_vessels = -1 path = Path('/home/sing_sd/Desktop/anomaly_detection/PythonCode/Trajectory_Prediction/') filename = path / 'all_sampled_tracks_interpol_1minute.csv' with open(filename, 'rb') as f: data = pd.read_csv(f) data["cluster"] = 0 data["mmsi"] = 0 data = np.array(data) filename = path / 'data_len_sampled_tracks_interpol_1minute.pkl' with open(filename, 'rb') as f: data_all_tracks = pickle.load(f) overall_data = np.ones_like(data) nr_track = 1000000 index = 0 data_index = 0 dim = 4 for track_nr in range(len(data_all_tracks)): nr_data = data_all_tracks[track_nr] if 20 < data_all_tracks[track_nr] < 500: nr_track += 1 overall_data[index: index + nr_data, 0:dim] = data[data_index: data_index + nr_data, 0:dim] overall_data[index: index + nr_data, dim + 1] = nr_track index += nr_data data_index += nr_data # get rostock-gedsar data # above code does not get rostock-gedsar data filename = path / 'rostock_gedsar_interpol_1min.csv' with open(filename, 'rb') as f: data = np.array(pd.read_csv(f)) overall_data[index: index + len(data), 0:dim] = data[:, 0:dim] overall_data[index: index + len(data), dim + 1] = nr_track + 1 index += len(data) overall_data = np.delete(overall_data, range(index, len(overall_data)), axis=0) return overall_data def plot_refined_graph_association(data, nodes_new, edges_new): fig, axs = plt.subplots(1, 1) fig.set_size_inches([7, 5]) plt.pause(0.0001) colour_array = ["r", "g", "b", "y", "c", "m", "#9475FC", "k"] # an extra k for mmsi in data.mmsi.unique(): # [vessel_nr:vessel_nr+1]: # idx_all = data['mmsi'] == mmsi decoded_mmsi = data[data['mmsi'] == mmsi] decoded_mmsi = decoded_mmsi.reset_index(drop=True) # assignment = ca.assign_to_graph(decoded_mmsi[["x", "y"]])# assignment = ca.get_assignment(decoded_mmsi[["x", "y"]]) for cluster in np.unique(assignment): idx = assignment == cluster axs.scatter(np.array(decoded_mmsi.iloc[idx, 0]), np.array(decoded_mmsi.iloc[idx, 1]), c=colour_array[cluster], marker=".", s=0.5) # s=0.05 plt.pause(0.00001) data.iloc[idx_all, data.columns.get_loc("cluster")] = assignment # data.to_csv("./resources/ais_data_1min_graph.csv", index=False) for ee, e in enumerate(edges_new): axs.plot([nodes_new[e[0], 0], nodes_new[e[1], 0]], [nodes_new[e[0], 1], nodes_new[e[1], 1]], linestyle="-", color="black", linewidth=4) axs.scatter([nodes_new[e[0], 0], nodes_new[e[1], 0]], [nodes_new[e[0], 1], nodes_new[e[1], 1]], marker=".", color="black", s=10) plt.pause(0.0001) axs.set_xlabel('Longitude [deg]') axs.set_ylabel('Latitude [deg]') plt.pause(0.001) plt.savefig("./results/graph_association_dataset2.png") plt.savefig("./results/graph_association_dataset2.pdf") plt.show() if __name__ == "__main__": main()
StarcoderdataPython
8031471
<filename>src/file_note/main.py<gh_stars>1-10 # -*- coding: utf-8 -*- import os import sys import logging from argparse import ArgumentParser from file_note.note import FileNote, filter_notes_by_keyword, formatted_print logging.basicConfig(format="%(levelname)s - %(message)s", level=logging.INFO) def main(): parser = ArgumentParser('file_note') parser.add_argument('--add', '-a', type=str, nargs='+', help='Add file note.') parser.add_argument('--add_relation', '-ar', type=str, nargs='+', help='Add file note.') parser.add_argument('--print_file', '-pf', action='store_true', help='Print the file table.') parser.add_argument('--print_relation', '-pr', type=str, help='Print the relationships of a given file.') parser.add_argument('--dir', '-d', type=str, help='Print the notes of files in the given dir.') parser.add_argument('--keyword', '-k', type=str, help='Print the notes of files with the given keyword.') parser.add_argument('--recursive', '-r', action='store_true', help='Print the notes of files in the given directory recursively.') parser.add_argument('--replace', '-rp', action='store_true', help='If replace the existing note.') args = parser.parse_args() fn = FileNote() if args.add: add = args.add assert len(add) == 2, 'The length of add must be 2.' fp, rmk = add if not os.path.exists(fp): raise FileNotFoundError(fp) else: fp = os.path.abspath(fp) fn.add_note(fp, rmk, args.replace) if args.add_relation: add_rel = args.add_relation if len(add_rel) == 3: fn.add_relation(*add_rel, '', replace=args.replace) elif len(add_rel) == 4: fn.add_relation(*add_rel, replace=args.replace) else: logging.error('The length of add_relation must be 3 or 4.') sys.exit() if args.print_file: if args.keyword: fn.file_table = filter_notes_by_keyword(fn.file_table, args.keyword) loc = os.path.abspath(args.dir) if args.dir else '' if not args.recursive: for k, v in fn.file_table.items(): if loc: d = os.path.split(k)[0] if d == loc: formatted_print(k, v) else: formatted_print(k, v) else: fn.print_notes_recursively(args.dir) if args.print_relation: rel = args.print_relation fn.print_relationships(rel) if __name__ == '__main__': main()
StarcoderdataPython
6558187
import sys import mock from hurricane.server.debugging import setup_debugging, setup_debugpy, setup_pycharm from hurricane.server.exceptions import IncompatibleOptions from hurricane.testing import HurricanServerTest class HurricanDebuggerServerTest(HurricanServerTest): alive_route = "/alive" @HurricanServerTest.cycle_server(args=["--debugger"]) def test_debugger(self): res = self.probe_client.get(self.alive_route) out, err = self.driver.get_output(read_all=True) self.assertEqual(res.status, 200) self.assertIn("Listening for debug clients at port 5678", out) def test_incompatible_debugger_and_autoreload(self): with self.assertRaises(IncompatibleOptions): setup_debugging({"autoreload": True, "debugger": True, "pycharm_host": True}) def test_debugger_success_and_import_error(self): options = {"debugger": True, "debugger_port": 8071} with mock.patch("debugpy.listen") as dbgpy: dbgpy.side_effect = None setup_debugpy(options) sys.modules["debugpy"] = None options = {"debugger": True} setup_debugpy(options) def test_pycharm_success_and_import_error(self): options = {"pycharm_host": "test", "pycharm_port": 8071} with mock.patch("pydevd_pycharm.settrace") as pdvd: pdvd.side_effect = None setup_pycharm(options) sys.modules["pydevd_pycharm"] = None options = {"pycharm_host": "test"} setup_pycharm(options)
StarcoderdataPython
3387788
class Constants(object): VERSIONS = { 'champion_mastery': 'v4', 'league': 'v4', 'match': 'v4', 'spectator': 'v4', 'summoner': 'v4', 'third_party_code': 'v4' } RESPONSE_CODES = { '400': 'Bad request', '401': 'Unauthorized', '403': 'Forbidden', '404': 'Not found', '405': 'Method not allowed', '415': 'Unsupported media type', '422': 'Player exists, but hasn\'t played since match history collection began', '429': 'Rate limit exceeded', '500': 'Internal server error', '502': 'Bad gateway', '503': 'Service unavailable', '504': 'Gateway timeout' } SEASONS = [ 'Preseason 3', 'Season 3', 'Preseason 2014', 'Season 2014', 'Preseason 2015', 'Season 2015', 'Preseason 2016', 'Season 2016', 'Preseason 2017', 'Season 2017', 'Preseason 2018', 'Season 2018' ] # Populate the queue, queueId, and gameQueueConfigId fields; not including deprecated queues MATCHMAKING_QUEUES = { '0': { 'Map': 'Custom Games', 'Description': None, }, '72': { 'Map': 'Howling Abyss', 'Description': '1v1 Snowdown Showdown games', }, '73': { 'Map': 'Howling Abyss', 'Description': '2v2 Snowdown Showdown games', }, '75': { 'Map': 'Summoner\'s Rift', 'Description': '6v6 Hexakill games', }, '76': { 'Map': 'Summoner\'s Rift', 'Description': 'Ultra Rapid Fire games', }, '78': { 'Map': 'Howling Abyss', 'Description': 'One For All: Mirror Mode games', }, '83': { 'Map': 'Summoner\'s Rift', 'Description': 'Co-op vs AI Ultra Rapid Fire games', }, '98': { 'Map': 'Twisted Treeline', 'Description': '6v6 Hexakill games', }, '100': { 'Map': 'Butcher\'s Bridge', 'Description': '5v5 ARAM games', }, '310': { 'Map': 'Summoner\'s Rift', 'Description': 'Nemesis games', }, '313': { 'Map': 'Summoner\'s Rift', 'Description': 'Black Market Brawlers games', }, } # DEPRECATED_QUEUES = { # } ENDPOINTS = { # Regional Endpoints 'br': 'br1.api.riotgames.com', 'eune': 'eun1.api.riotgames.com', 'euw': 'euw1.api.riotgames.com', 'jp': 'jp1.api.riotgames.com', 'kr': 'kr.api.riotgames.com', 'lan': 'la1.api.riotgames.com', 'las': 'la2.api.riotgames.com', 'na': 'na.api.riotgames.com', 'na-old': 'na1.api.riotgames.com', 'oce': 'oc1.api.riotgames.com', 'tr': 'tr1.api.riotgames.com', 'ru': 'ru.api.riotgames.com', 'pbe': 'pbe1.api.riotgames.com', # Regional Proxies 'americas': 'americas.api.riotgames.com', 'europe': 'europe.api.riotgames.com', 'asia': 'asia.api.riotgames.com' } # URLS; Convention: all urls start in '/' but do not end in one URLS_BASE = { # Main base for all URLs 'base': 'https://{endpoint}{url}', # Primary midpoints for all sub-apis 'champion_mastery': '/lol/champion-mastery/{version}', 'league': '/lol/league/{version}', 'match': '/lol/match/{version}', 'spectator': '/lol/spectator/{version}', 'summoner': '/lol/summoner/{version}', 'third_party_code': '/lol/platform/{version}' } URLS_CHAMPION_MASTERY = { # Get all champion mastery entities sorted by number of champion points descending. 'all masteries': URLS_BASE['champion_mastery'] + \ '/champion-masteries/by-summoner/{summoner_id}', # Get a champion mastery by player ID and champion ID. 'champion mastery': URLS_BASE['champion_mastery'] + \ '/champion-masteries/by-summoner/{summoner_id}/by-champion/{champion_id}', # Get a player's total champion mastery score, which is the sum of individual champion mastery levels. 'total mastery': URLS_BASE['champion_mastery'] + \ '/scores/by-summoner/{summoner_id}' } URLS_LEAGUE = { # Get the challenger league for given queue. 'challenger league': URLS_BASE['league'] + \ '/challengerleagues/by-queue/{queue}', #Get the master league for given queue. 'master league': URLS_BASE['league'] + \ '/masterleagues/by-queue/{queue}', #Get the grandmaster league for a given queue 'grandmaster league': URLS_BASE['league'] + \ '/grandmasterleagues/by-queue/{queue}', # Get league with given ID, including inactive entries. 'league': URLS_BASE['league'] + \ '/leagues/{league_id}', # Get league positions in all queues for a given summoner ID. 'league positions': URLS_BASE['league'] + \ '/positions/by-summoner/{summoner_id}' } URLS_MATCH = { # Get match IDs by tournament code. 'matches by tournmanet': URLS_BASE['match'] +\ '/matches/by-tournament-code/{tournament_code}/ids', #Get match by match ID. 'match': URLS_BASE['match'] + \ '/matches/{match_id}', #Get match by match ID and tournament code. 'match by tournament': URLS_BASE['match'] + \ '/matches/{match_id}/by-tournament-code/{tournament_code}', # Get matchlist for games played on given account ID and platform ID and filtered using given filter parameters, if any. 'matchlist': URLS_BASE['match'] + \ '/matchlists/by-account/{account_id}', # Get match timeline by match ID. 'timeline': URLS_BASE['match'] + \ '/timelines/by-match/{match_id}' } URLS_SPECTATOR = { # Get current game information for the given summoner ID. 'active match': URLS_BASE['spectator'] + \ '/active-games/by-summoner/{summoner_id}', # Get list of featured games. 'featured games': URLS_BASE['spectator'] + \ '/featured-games' } URLS_SUMMONER = { # Get a summoner by account ID. 'summoner by account id': URLS_BASE['summoner'] + \ '/summoners/by-account/{account_id}', # Get a summoner by summoner name. 'summoner by name': URLS_BASE['summoner'] + \ '/summoners/by-name/{summoner_name}', # Get a summoner by summoner ID. 'summoner by summoner id': URLS_BASE['summoner'] + \ '/summoners/{summoner_id}', # get a summoner by PUUID. 'summoner by puuid': URLS_BASE['summoner'] + \ '/summoners/by-puuid/{puuid}' } URLS_THIRD_PARTY_CODE = { # Get third party code for a given summoner ID. (?) 'third party code': URLS_BASE['third_party_code'] + \ '/third-party-code/by-summoner/{summoner_id}' }
StarcoderdataPython
8092335
#!/usr/bin/env python3 from pyroute2 import IPRoute IP = IPRoute() def get_peer_addr(ifname): """Return the peer address of given peer interface. None if address not exist or not a peer-to-peer interface. """ for addr in IP.get_addr(label=ifname): attrs = dict(addr.get('attrs', [])) if 'IFA_ADDRESS' in attrs: return attrs['IFA_ADDRESS'] if __name__ == '__main__': print(get_peer_addr('tun-rpi'))
StarcoderdataPython
3325219
from .configs.config import Config from .lib.authentication import Authentication from .menu.menu_generator import MenuGenerator # import typer from typing import Optional # app = typer.Typer() class Application(): def __init__(self): self.configuration = Config(environment="Prod") #TODO: Make this dynamic # print(f"running in {self.configuration.get_environment()}") self.secrets = Authentication() # print(f"Credentials are: {self.secrets.get_auth_vars()}") # menu = MenuGenerator() # menu.paint_menu()
StarcoderdataPython
3590469
import twitter from models import feed_user_coll from datetime import datetime, timedelta from pathlib import Path import test_credentials as c import sys import json import pickle import pytz from collections import defaultdict if __name__ == "__main__": api = twitter.Api( c.CONSUMER_KEY, c.CONSUMER_SECRET, c.ACCESS_TOKEN_KEY, c.ACCESS_TOKEN_SECRET ) screen_name = sys.argv[1] pkl_name = './output/'+screen_name+'_24hr.pkl' cutoff = datetime.now() - timedelta(days=1) Path('./output').mkdir(parents=True, exist_ok=True) if (len(sys.argv) < 3): with open(pkl_name,'rb') as file: print('===INFO: Loading data from',pkl_name) friends_data = pickle.load(file) else: today = datetime.now(pytz.utc) yesterday = today - timedelta(days=1) friends = api.GetFriends(screen_name=screen_name) friends_data = feed_user_coll.feed_user_coll(friends) friends_data.populate_all(api, today, yesterday) with open(pkl_name,'wb') as file: print('===INFO: Saving friends list as', pkl_name) pickle.dump(friends_data, file, pickle.HIGHEST_PROTOCOL) csv_name = './output/'+screen_name+'_24hr.csv' with open (csv_name,'w+') as file: print('===INFO: saving data to',csv_name) file.write('screen_name,tweets,proportion\n') for k,v in friends_data.followed_users.items(): file.write(v.user.screen_name) file.write(',') file.write(str(len(v.tweets))) file.write(',') file.write(str(len(v.tweets)/friends_data.statuses)) file.write('\n') print('total tweets:',friends_data.statuses)
StarcoderdataPython
1692708
<reponame>xtommy-1/community-detection # louvain示意图生成 import numpy as np import networkx as nx import matplotlib.pyplot as plt edge0 = [ (0, 2), (0, 3), (0, 4), (0, 5), (1, 2), (1, 4), (1, 7), (2, 4), (2, 5), (2, 6), (3, 7), (4, 10), (5, 7), (5, 11), (6, 7), (6, 11), (8, 9), (8, 10), (8, 11), (8, 14), (8, 15), (9, 12), (9, 14), (10, 11), (10, 12), (10, 13), (10, 14), (11, 13) ] def graph0(nodes): g = nx.Graph() g.add_nodes_from(nodes) g.add_edges_from(edge0, weight=1) return g def graph1(): g = nx.Graph() g.add_edge(0, 1, weight=4) g.add_edge(0, 2, weight=1) g.add_edge(0, 3, weight=1) g.add_edge(1, 2, weight=1) g.add_edge(2, 3, weight=3) return g def graph2(): g = nx.Graph() g.add_nodes_from([0, 1, 2, 3]) g.add_edge(0, 2, weight=3) return g def pass0(): g = graph0(range(16)) pos = nx.circular_layout(g) nx.draw(g, pos, with_labels=True, edge_color='b', node_color=range(len(g.nodes())), node_size=500, cmap=plt.cm.cool) plt.show() def pass1_phase1(): g = graph0([0, 1, 2, 4, 5, 3, 6, 7, 11, 13, 8, 9, 10, 12, 14, 15]) pos = nx.circular_layout(g) color = [0, 0, 0, 0, 0, 1, 1, 1, 2, 2, 3, 3, 3, 3, 3, 3] nx.draw(g, pos, with_labels=True, edge_color='b', node_color=color, node_size=500, cmap=plt.cm.cool) plt.show() def pass1_phase2(): g = graph1() edge_labels = dict([((u, v,), d['weight']) for u, v, d in g.edges(data=True)]) pos = nx.circular_layout(g) nx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels, font_size=20) nx.draw(g, pos, with_labels=True, edge_color='b', node_color=range(len(g.nodes())), node_size=550, cmap=plt.cm.cool) plt.show() def pass2(): g = graph2() edge_labels = dict([((u, v,), d['weight']) for u, v, d in g.edges(data=True)]) pos = nx.circular_layout(g) nx.draw_networkx_edge_labels(g, pos, edge_labels=edge_labels, font_size=20) nx.draw(g, pos, with_labels=True, edge_color='b', node_color=range(len(g.nodes())), node_size=1000, cmap=plt.cm.cool) plt.show() if __name__ == '__main__': pass2()
StarcoderdataPython
8062181
<reponame>maxwnewcomer/OpenCVFacialRecognition from imutils.video import VideoStream from imutils.video import FPS from tensorflow import keras from datetime import datetime import numpy as np import argparse import imutils import pickle import time import cv2 import os def recognize_video(detectorPath, embedding_model, recognizerPath, label, confidenceLim, projectPath): print("[INFO] loading face detector...") protoPath = os.path.sep.join([detectorPath, "deploy.prototxt"]) modelPath = os.path.sep.join([detectorPath, "res10_300x300_ssd_iter_140000.caffemodel"]) detector = cv2.dnn.readNetFromCaffe(protoPath, modelPath) print("[INFO] loading face recognizer...") embedder = cv2.dnn.readNetFromTorch(embedding_model) recognizer = keras.models.load_model(recognizerPath) le = pickle.loads(open(label, "rb").read()) print("[INFO] starting video stream...") vs = VideoStream(src=0).start() time.sleep(1) fps = FPS().start() total_saved = 0 mostrecentupload = datetime.now() while True: frame = vs.read() frame = imutils.resize(frame, width=600) (h, w) = frame.shape[:2] imageBlob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), swapRB=False, crop=False) detector.setInput(imageBlob) detections = detector.forward() for i in range(0, detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > confidenceLim: box = detections[0, 0, i, 3:7] * np.array([w, h, w, h]) (startX, startY, endX, endY) = box.astype("int") face = frame[startY:endY, startX:endX] (fH, fW) = face.shape[:2] if fW < 20 or fH < 20: continue faceBlob = cv2.dnn.blobFromImage(face, 1.0 / 255, (96, 96), (0, 0, 0), swapRB=True, crop=False) embedder.setInput(faceBlob) vec = embedder.forward() preds = recognizer.predict(vec)[0] j = np.argmax(preds) proba = preds[j] name = le.classes_[j] text = "{}: {:.2f}%".format(name, proba * 100) y = startY - 10 if startY - 10 > 10 else startY + 10 # if (proba > confidenceLim + .25) or (proba <= 1 and proba >= .90): # try: # if((datetime.now() - mostrecentupload).total_seconds() > 15): # cv2.imwrite('{}/dataset/{}/{}.jpg'.format(projectPath, name, datetime.now().strftime("%d%m%Y::%H:%M:%S")), frame) # print("[INFO] Saving image to data from video stream...") # mostrecentupload = datetime.now() # total_saved += 1 # except: # print("[ERROR] coudn't save image...") cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2) cv2.putText(frame, text, (startX, y), cv2.FONT_HERSHEY_SIMPLEX, 0.45, (0, 0, 255), 2) fps.update() cv2.imshow("Frame", frame) key = cv2.waitKey(1) & 0xFF if key == ord("q"): break fps.stop() print("[INFO] elasped time: {:.2f}secs".format(fps.elapsed())) print("[INFO] approx. FPS: {:.2f}".format(fps.fps())) print("[INFO] total saved pictures: {}".format(total_saved)) print("[DONE] stream terminated") # do a bit of cleanup cv2.destroyAllWindows() vs.stop()
StarcoderdataPython
3294602
<reponame>adrian2x/asgi-caches<filename>tests/examples/resources.py from caches import Cache cache = Cache("locmem://default", ttl=2 * 60) special_cache = Cache("locmem://special", ttl=60)
StarcoderdataPython
3304095
# Copyright 2019 Atalaya Tech, Inc. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import subprocess import urllib3 from bentoml.exceptions import BentoMLException, MissingDependencyException def ensure_node_available_or_raise(): try: subprocess.check_output(['node', '--version']) except subprocess.CalledProcessError as error: raise BentoMLException( 'Error executing node command: {}'.format(error.output.decode()) ) except FileNotFoundError: raise MissingDependencyException( 'Node is required for Yatai web UI. Please visit ' 'www.nodejs.org for instructions' ) def parse_grpc_url(url): ''' >>> parse_grpc_url("grpcs://yatai.com:43/query") ('grpcs', 'yatai.com:43/query') >>> parse_grpc_url("yatai.com:43/query") (None, 'yatai.com:43/query') ''' parts = urllib3.util.parse_url(url) return parts.scheme, url.replace(f"{parts.scheme}://", "", 1)
StarcoderdataPython
9648337
<filename>.github/check_import.py import os from pathlib import Path def test_imports(path): is_correct = True print("Testing file:", path) with open(path) as f: lines = f.readlines() for i, l in enumerate(lines): if "#check_import" in l or "# check_import" in l: l_ = l.strip() try: exec(l_) except Exception as e: # DisplayNameError print("IMPORT ERROR ({}) ON LINE {}: {}".format(e.__class__.__name__, i, l_)) print(e) is_correct = False return is_correct def main(): project_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), os.pardir) is_correct = True for path in Path(project_path).rglob('*.py'): if not "ste_env" in str(path) and not "check_import.py" in str(path): if not test_imports(path): is_correct = False exit(not is_correct) if __name__ == '__main__': main()
StarcoderdataPython
1751317
<filename>moredata/enricher/osm/osm_places_connector.py from ..enricher import IEnricherConnector from ...utils import OSM_util import pandas as pd from shapely import wkt import geopandas import pyproj from functools import partial from shapely.geometry import MultiPolygon, Polygon from shapely.ops import transform from shapely.geometry import Point from shapely.geometry.polygon import Polygon from shapely.geometry import shape, mapping from rtree import index as rtreeindex from ...utils.util import geodesic_point_buffer class OSMPlacesConnector(IEnricherConnector): """OSMconnector implements interface IEnricherConnector, so this is a connector that can be used to enrich data. Parameters ---------- dict_keys: List[str] dict_keys is the principal argument to the connector. The connector doesn't know where to get data to make the relationship, so you have to pass the keys or if your data isn't nested, just one key to the connector reach at the the right attribute. key: str class of OSM. eg.: 'amenity', 'leisure'. value: str value of location of OSM. eg.: 'hospital', 'stadium'. place_name: str name of local. eg.: 'Brasil', 'São Paulo'. file: str, optional name of file in CSV of downloaded polygons with must columns: key, value, polygon. radius: numeric, optional radius to around of point to intersect the polygon. Attributes ---------- dict_keys: List[str] key: str value: str place_name: str file: str, optional radius: numeric, optional """ def __init__(self, key, value, dict_keys=[], place_name="Brasil", file=None, radius=None, geometry_intersected=False): self.key = key self.value = value self.place_name = place_name self.file = file self.radius = radius self.dict_keys = dict_keys self.geometry = geometry_intersected if self.file is not None: self._df = pd.read_csv(file) self._df["geometry"] = self._df["geometry"].apply(wkt.loads) def _get_polygons(self): self.array_polygons = [] for index, row in self._df.iterrows(): pol = row["geometry"] self.array_polygons.append(pol) self.idx = rtreeindex.Index() for pos, poly in enumerate(self.array_polygons): self.idx.insert(pos, poly.bounds) def _fence_check_local(self, point): polygon_metadata = [] if self.radius is not None: shp = Polygon(geodesic_point_buffer(point["latitude"], point["longitude"], self.radius)) else: shp = Point(point["longitude"], point["latitude"]) for j in self.idx.intersection(shp.bounds): if self.radius is None: if shp.within(shape(self.array_polygons[j])): polygon_metadata.append(self._df.iloc[j].to_frame().T) else: polygon_metadata.append(self._df.iloc[j].to_frame().T) return polygon_metadata def _traverse_dict(self, dict, keys): for k in keys: try: dict = dict[k] except KeyError as e: return None return dict def _enrich_point(self, point): if "latitude" in point.keys() and "longitude" in point.keys(): polygon_metadata = self._fence_check_local(point) for p in polygon_metadata: p["key"] = self.key p["value"] = self.value if not "local" in point.keys(): point["local"] = [] if not "geometry_intersected" in point.keys() and self.geometry: point['geometry_intersected'] = [] if self.geometry: polygons_intersected = list(p['geometry']) for polygon in polygons_intersected: point['geometry_intersected'].append(str(polygon)) point["local"].append(*p[["name", "key", "value"]].to_dict("records")) def enrich(self, data, **kwargs): """Method overrided of interface. This method do enrichment using OSM data as a enricher. It walk through the keys to reach at the data that will be used to intersect the polygons. It uses a R tree to index polygons and search faster. If the radius attribute is passed the algorithm returns all polygons that intersect the point buffered with this radius else the algorithm returns all polygons that contains the point. Parameters ---------- data: :obj:`Data` """ from fiona.crs import from_epsg import geopandas if self.file is None: osm_util = OSM_util() self._df = osm_util.get_places(self.place_name, self.key, self.value) self._get_polygons() for d in data.parse(**kwargs): if not self.dict_keys: points = d else: points = d[self.dict_keys[0]] for k in range(1, len(self.dict_keys)): try: points = points[self.dict_keys[k]] except KeyError as e: return None if isinstance(points, list): for point in points: self._enrich_point(point) else: self._enrich_point(points) yield d
StarcoderdataPython
6446447
<reponame>AshivDhondea/DFTS_TF2 """ Created on Wed Sep 2 10:36:41 2020. tc_algos.py Tensor Completion Algorithms: 1. Simple Low Rank Tensor Completion aka SiLRTC 2. High accurracy Low Rank Tensor Completion aka HalRTC 3. Based on code developed by <NAME> (Multimedia Lab, Simon Fraser University). SiLRTC-complete.py The code has been modified to run with DFTS re-packetized tensors. Ref: 1. <NAME> and <NAME>, “Tensor completion methods for collaborative intelligence,” IEEE Access, vol. 8, pp. 41162–41174, 2020. """ # Libraries for tensor completion methods. import numpy as np import copy from .tensorly_base import * """ If you able to install tensorly, you can import tensorly directly and comment out the line above. If you are running your experiment on a ComputeCanada cluster, you won't be able to install tensorly. """ # --------------------------------------------------------------------------- # # General functions used by tensor completion methods. def swap(a, b): """ Swap a and b. Parameters ---------- a : TYPE DESCRIPTION. b : TYPE DESCRIPTION. Returns ------- b : TYPE DESCRIPTION. a : TYPE DESCRIPTION. """ return b, a def makeOmegaSet_rowPacket(p, n, sizeOmega): """ Parameters ---------- p : TYPE DESCRIPTION. n : TYPE DESCRIPTION. sizeOmega : TYPE DESCRIPTION. Returns ------- subs : TYPE DESCRIPTION. """ if sizeOmega > np.prod(n): print("OmegaSet size is too high, requested size of Omega is bigger than the tensor itself!") row_omega = int(np.ceil(p * n[0] * n[-1])) idx = np.random.randint(low=1, high=n[0]*n[-1], size=(row_omega, 1)) Omega = np.unique(idx) while len(Omega) < row_omega: Omega = np.reshape(Omega, (len(Omega), 1)) temp = np.random.randint(low=1, high=n[0]*n[-1], size=(row_omega-len(Omega), 1)) idx = np.concatenate((Omega, temp), axis=0) Omega = np.unique(idx) Omega = np.sort(Omega[0:row_omega]) subs = np.unravel_index(Omega, [n[0],n[-1]]) temp = np.ones((1, np.array(subs).shape[-1])) # Create the columns (for each permutation increment by 1 so that all the columns get covered for each row) res = [] for i in range(n[1]): concat = np.concatenate((subs, i*temp), axis=0) res.append(concat) # Swap axis 2 and 3 to be correct swap_res = [] for i in range(len(res)): a = res[i][0] b = res[i][1] c = res[i][2] b, c = swap(b, c) swapped_order = np.stack((a,b,c)) swap_res.append(swapped_order) # Concatenating the list formed above to give a 3 by x matrix subs = swap_res[0] for i in range(len(swap_res)-1): subs = np.concatenate((subs, swap_res[i+1]), axis=1) return subs def ReplaceInd(X, subs, vals): """ Replace in X values given by vals in location given by subs. Parameters ---------- X : TYPE DESCRIPTION. subs : TYPE DESCRIPTION. vals : TYPE DESCRIPTION. Returns ------- X : TYPE DESCRIPTION. """ for j in range(len(vals)): x, y, z = subs[j,0], subs[j,1], subs[j,2] X[x, y, z] = vals[j] return X def shrinkage(X, t): """ Perform shrinkage with threshold t on matrix X. Refer to Bragilevsky, Bajic paper for explanation. Parameters ---------- X : TYPE DESCRIPTION. t : TYPE DESCRIPTION. Returns ------- d : TYPE DESCRIPTION. """ # SVD decomposition with an offset (s needs to be made diagonal) u, s, v = np.linalg.svd(X, full_matrices=False) # matlab uses 'econ' to not produce full matricies s = np.diag(s) for i in range(s.shape[0]): s[i,i]=np.max(s[i,i]-t, 0) # reconstructed matrix d = np.matmul(np.matmul(u, s), v) return d # --------------------------------------------------------------------------- # # Simple Low Rank Tensor Completion method. # Adapted from Lior's code. def fn_silrtc_demo(image,num_iters_K,p): """ Demonstrate operation of SILRTC with random loss. Parameters ---------- image : TYPE DESCRIPTION. K : TYPE DESCRIPTION. p : TYPE DESCRIPTION. Returns ------- X_estimated : TYPE DESCRIPTION. """ n = list(image.shape) subs = np.transpose(np.array(makeOmegaSet_rowPacket(p, n, np.uint32(np.round(p*np.prod(n)))))) subs = np.array(subs, dtype=np.uint32) vals = list(map(lambda x, y, z: image[x][y][z], subs[:,0], subs[:,1], subs[:,2])) X_corrupted = np.zeros(n) X_corrupted = ReplaceInd(X_corrupted, subs, vals) X_estimated = X_corrupted b = np.abs(np.random.randn(3,1))/200 a = np.abs(np.random.randn(3,1)) a = a/np.sum(a) for q in range(num_iters_K): M = np.zeros(image.shape) for i in range(3): svd = shrinkage(unfold(X_estimated,i), a[i]/b[i]) M = M + fold(b[i]*svd, i, image.shape) M = M/np.sum(b) # Update both M & X as they are used in the next cycle M = ReplaceInd(M, subs, vals) X_estimated = M return X_estimated def fn_silrtc_damaged(X_corrupted,num_iters_K,subs,vals): """ Perform SiLRTC on damaged tensors. Parameters ---------- X_corrupted : TYPE DESCRIPTION. num_iters_K : TYPE DESCRIPTION. subs : TYPE DESCRIPTION. vals : TYPE DESCRIPTION. Returns ------- X_estimated : TYPE DESCRIPTION. """ X_estimated = X_corrupted b = np.abs(np.random.randn(3,1))/200 a = np.abs(np.random.randn(3,1)) a = a/np.sum(a) for q in range(num_iters_K): #print(f"SilRTC iteration {q}") M = np.zeros(X_corrupted.shape) for i in range(3): svd = shrinkage(unfold(X_estimated,i), a[i]/b[i]) M = M + fold(b[i]*svd, i, X_corrupted.shape) M = M/np.sum(b) # Update both M & X as they are used in the next cycle M = ReplaceInd(M, subs, vals) X_estimated = M return X_estimated def fn_silrtc_damaged_error(X_corrupted,num_iters_K,subs,vals): """ Perform SiLRTC on damaged tensors. Keep track of error. Parameters ---------- X_corrupted : TYPE DESCRIPTION. num_iters_K : TYPE DESCRIPTION. subs : TYPE DESCRIPTION. vals : TYPE DESCRIPTION. Returns ------- X_estimated : TYPE DESCRIPTION. error_iters: """ X_estimated = copy.deepcopy(X_corrupted) b = np.abs(np.random.randn(3,1))/200 a = np.abs(np.random.randn(3,1)) a = a/np.sum(a) error_iters = np.zeros([num_iters_K],dtype=np.float64) X_estimated_prev = np.zeros_like(X_estimated) row, col, dep = X_corrupted.shape ArrSize_iters = (row,col,dep,num_iters_K) X_estimated_iters = np.zeros(ArrSize_iters) for q in range(num_iters_K): #print(f"SilRTC iteration {q}") M = np.zeros(X_corrupted.shape) for i in range(3): svd = shrinkage(unfold(X_estimated,i), a[i]/b[i]) M = M + fold(b[i]*svd, i, X_corrupted.shape) M = M/np.sum(b) # Update both M & X as they are used in the next cycle X_estimated = ReplaceInd(M, subs, vals) error_iters[q] = np.sqrt(np.sum(np.square(np.subtract(X_estimated,X_estimated_prev)))) X_estimated_prev = X_estimated X_estimated_iters[:,:,:,q] = X_estimated return X_estimated_iters, error_iters # --------------------------------------------------------------------------- # # High accuracy Low Rank Tensor Completion. # Adapted from Lior's code. def fn_halrtc_damaged(X_corrupted,num_iters_K,subs,vals): """ Perform HaLRTC on damaged tensors. Parameters ---------- X_corrupted : TYPE DESCRIPTION. num_iters_K : TYPE DESCRIPTION. subs : TYPE DESCRIPTION. vals : TYPE DESCRIPTION. Returns ------- X_estimated : TYPE DESCRIPTION. """ X_estimated = np.copy(X_corrupted) a = np.abs(np.random.randn(3,1)) a = a/np.sum(a) rho = 1e-6 # Create tensor holders for Mi and Yi done to simplify variable storage row, col, dep = X_corrupted.shape ArrSize = (row, col, dep, X_corrupted.ndim) Mi = np.zeros(ArrSize) Yi = np.zeros(ArrSize) for q in range(num_iters_K): #print(f"HalRTC iteration {q}") # Calculate Mi tensors (Step 1) for i in range(3): temp = unfold(X_estimated,i) + (unfold(np.squeeze(Yi[:,:,:,i]),i)/rho) Mi[:,:,:,i] = fold(shrinkage(temp, a[i]/rho), i, X_corrupted.shape) # Update X (Step 2) X_est = np.sum(Mi-(Yi/rho),axis=3)/3 X_estimated = ReplaceInd(X_est, subs, vals) # Update Yi tensors (Step 3) for i in range(ArrSize[-1]): Yi[:,:,:,i] = np.squeeze(Yi[:,:,:,i])-rho*(np.squeeze(Mi[:,:,:,i])-X_estimated) # Modify rho to help convergence rho = 1.2*rho return X_estimated def fn_halrtc_damaged_error(X_corrupted,num_iters_K,subs,vals): """ Perform HaLRTC on damaged tensors. Parameters ---------- X_corrupted : TYPE DESCRIPTION. num_iters_K : TYPE DESCRIPTION. subs : TYPE DESCRIPTION. vals : TYPE DESCRIPTION. Returns ------- X_estimated : TYPE DESCRIPTION. """ X_estimated = np.copy(X_corrupted) #copy.deepcopy(X_corrupted) a = np.abs(np.random.randn(3,1)) a = a/np.sum(a) rho = 1e-6 # Create tensor holders for Mi and Yi done to simplify variable storage row, col, dep = X_corrupted.shape ArrSize = (row, col, dep, X_corrupted.ndim) Mi = np.zeros(ArrSize) Yi = np.zeros(ArrSize) error_iters = np.zeros([num_iters_K],dtype=np.float64) X_estimated_prev = np.zeros_like(X_estimated) ArrSize_iters = (row,col,dep,num_iters_K) X_estimated_iters = np.zeros(ArrSize_iters) for q in range(num_iters_K): #print(f"HalRTC iteration {q}") # Calculate Mi tensors (Step 1) for i in range(3): temp = unfold(X_estimated,i) + (unfold(np.squeeze(Yi[:,:,:,i]),i)/rho) Mi[:,:,:,i] = fold(shrinkage(temp, a[i]/rho), i, X_corrupted.shape) # Update X (Step 2) X_est = np.sum(Mi-(Yi/rho),axis=3)/3 X_estimated = ReplaceInd(X_est, subs, vals) X_estimated_iters[:,:,:,q] = X_estimated # Update Yi tensors (Step 3) for i in range(ArrSize[-1]): Yi[:,:,:,i] = np.squeeze(Yi[:,:,:,i])-rho*(np.squeeze(Mi[:,:,:,i])-X_estimated) # Modify rho to help convergence rho = 1.2*rho error_iters[q] = np.sqrt(np.sum(np.square(np.subtract(X_estimated,X_estimated_prev)))) X_estimated_prev = X_estimated return X_estimated_iters, error_iters
StarcoderdataPython
5108922
<filename>src/dice_cli/fs/_copy_from_local.py # https://arrow.apache.org/docs/python/generated/pyarrow.fs.HadoopFileSystem.html # connect to HDFS # create_dir(self, path, *, bool recursive=True) # async open_output_stream(self, path[, …])
StarcoderdataPython
6609440
""" This file is part of LiberaForms. # SPDX-FileCopyrightText: 2021 LiberaForms.org # SPDX-License-Identifier: AGPL-3.0-or-later """ import os, re, shutil from datetime import datetime, timezone import unicodecsv as csv from flask import current_app, g from flask_babel import gettext as _ from liberaforms import db from sqlalchemy.dialects.postgresql import JSONB, ARRAY, TIMESTAMP from sqlalchemy.ext.mutable import MutableDict, MutableList from sqlalchemy.orm.attributes import flag_modified from liberaforms.utils.database import CRUD from liberaforms.models.log import FormLog from liberaforms.models.answer import Answer, AnswerAttachment from liberaforms.utils.storage.remote import RemoteStorage from liberaforms.utils.consent_texts import ConsentText from liberaforms.utils import sanitizers from liberaforms.utils import validators from liberaforms.utils import html_parser from liberaforms.utils import utils from pprint import pprint """ Form properties structure: A list of dicts that is built by and rendered by formbuilder. fieldIndex: List of dictionaries. Each dict contains one formbuider field info. [{"label": <displayed_field_name>, "name": <unique_field_identifier>}] """ class Form(db.Model, CRUD): __tablename__ = "forms" _site=None id = db.Column(db.Integer, primary_key=True, index=True) created = db.Column(TIMESTAMP, nullable=False) slug = db.Column(db.String, unique=True, nullable=False) author_id = db.Column(db.Integer, db.ForeignKey('users.id'), nullable=False) structure = db.Column(MutableList.as_mutable(ARRAY(JSONB)), nullable=False) fieldIndex = db.Column(MutableList.as_mutable(ARRAY(JSONB)), nullable=False) editors = db.Column(MutableDict.as_mutable(JSONB), nullable=False) enabled = db.Column(db.Boolean, default=False) expired = db.Column(db.Boolean, default=False) sendConfirmation = db.Column(db.Boolean, default=False) expiryConditions = db.Column(JSONB, nullable=False) sharedAnswers = db.Column(MutableDict.as_mutable(JSONB), nullable=True) shared_notifications = db.Column(MutableList.as_mutable(ARRAY(db.String)), nullable=False) restrictedAccess = db.Column(db.Boolean, default=False) adminPreferences = db.Column(MutableDict.as_mutable(JSONB), nullable=False) introductionText = db.Column(MutableDict.as_mutable(JSONB), nullable=False) afterSubmitText = db.Column(JSONB, nullable=False) expiredText = db.Column(JSONB, nullable=False) thumbnail = db.Column(db.String, nullable=True) published_cnt = db.Column(db.Integer, default=0, nullable=False) consentTexts = db.Column(ARRAY(JSONB), nullable=True) author = db.relationship("User", back_populates="authored_forms") answers = db.relationship("Answer", lazy='dynamic', cascade="all, delete, delete-orphan") log = db.relationship("FormLog", lazy='dynamic', cascade="all, delete, delete-orphan") def __init__(self, author, **kwargs): self.created = datetime.now(timezone.utc) self.author_id = author.id self.editors = {self.author_id: self.new_editor_preferences(author)} self.expiryConditions = {"totalAnswers": 0, "expireDate": False, "fields": {}} self.slug = kwargs["slug"] self.structure = kwargs["structure"] self.fieldIndex = kwargs["fieldIndex"] self.sharedAnswers = { "enabled": False, "key": utils.gen_random_string(), "password": <PASSWORD>, "expireDate": False} self.shared_notifications = [] self.introductionText = kwargs["introductionText"] self.consentTexts = kwargs["consentTexts"] self.afterSubmitText = kwargs["afterSubmitText"] self.expiredText = kwargs["expiredText"] self.sendConfirmation = self.structure_has_email_field(self.structure) self.adminPreferences = {"public": True} def __str__(self): return utils.print_obj_values(self) @property def site(self): if self._site: return self._site from liberaforms.models.site import Site self._site = Site.query.first() return self._site @classmethod def find(cls, **kwargs): return cls.find_all(**kwargs).first() @classmethod def find_all(cls, **kwargs): filters = [] if 'editor_id' in kwargs: filters.append(cls.editors.has_key(str(kwargs['editor_id']))) kwargs.pop('editor_id') if 'key' in kwargs: filters.append(cls.sharedAnswers.contains({'key': kwargs['key']})) kwargs.pop('key') for key, value in kwargs.items(): filters.append(getattr(cls, key) == value) return cls.query.filter(*filters) def get_author(self): return self.author def get_created_date(self): return utils.utc_to_g_timezone(self.created).strftime("%Y-%m-%d") def change_author(self, new_author): if new_author.enabled: if new_author.id == self.author_id: return False try: del self.editors[str(self.author_id)] except: return False self.author_id=new_author.id if not self.is_editor(new_author): self.add_editor(new_author) self.save() return True return False @staticmethod def create_field_index(structure): index=[] # Add these RESERVED fields to the index. # i18n: Column title on table, to sort whether the form entries are marked or not index.append({'label': _("Marked"), 'name': 'marked'}) # i18n: Used for sort items by creation order, almost always as column title index.append({'label': _("Created"), 'name': 'created'}) for element in structure: if 'name' in element: if 'label' not in element: element['label']=_("Label") index.append({'name': element['name'], 'label': element['label']}) return index def update_field_index(self, newIndex): if self.get_total_answers() == 0: self.fieldIndex = newIndex else: deletedFieldsWithData=[] # If the editor has deleted fields we want to remove them # but we don't want to remove fields that already contain data in the DB. for field in self.fieldIndex: if not [i for i in newIndex if i['name'] == field['name']]: # This field was removed by the editor. Can we safely delete it? can_delete=True for answer in self.answers: if field['name'] in answer.data and \ answer.data[field['name']]: # This field contains data can_delete=False break if can_delete: # A pseudo delete. # We drop the field (it's reference) from the index # (the empty field remains as is in each answer in the db) pass else: # We don't delete this field from the index because it contains data field['removed']=True deletedFieldsWithData.append(field) self.fieldIndex = newIndex + deletedFieldsWithData def get_field_index_for_data_display(self, with_deleted_columns=False): result=[] for field in self.fieldIndex: if 'removed' in field and not with_deleted_columns: continue item={'label': field['label'], 'name': field['name']} result.append(item) if self.data_consent["enabled"]: # append dynamic DPL field # i18n: Acronym for 'Data Privacy Law' result.append({"name": "DPL", "label": _("DPL")}) return result def has_removed_fields(self): return any('removed' in field for field in self.fieldIndex) @staticmethod def is_email_field(field): if "type" in field and field["type"] == "text" and \ "subtype" in field and field["subtype"] == "email": return True else: return False @classmethod def structure_has_email_field(cls, structure): for element in structure: if cls.is_email_field(element): return True return False def has_email_field(self): return Form.structure_has_email_field(self.structure) def has_field(self, field_name): for field in self.structure: if "name" in field and field["name"] == field_name: return True return False def has_file_field(self): for field in self.structure: if "type" in field and field["type"] == "file": return True return False def might_send_confirmation_email(self): if self.sendConfirmation and self.has_email_field(): return True else: return False def get_confirmation_email_address(self, answer): for element in self.structure: if Form.is_email_field(element): if element["name"] in answer and answer[element["name"]]: return answer[element["name"]].strip() return False def get_answers(self, oldest_first=False, **kwargs): kwargs['oldest_first'] = oldest_first kwargs['form_id'] = self.id return Answer.find_all(**kwargs) def get_answers_for_display(self, oldest_first=False): answers = self.get_answers(oldest_first=oldest_first) result = [] frmt = "%Y-%m-%d %H:%M:%S" for answer in answers: result.append({ 'id': answer.id, 'created': utils.utc_to_g_timezone(answer.created) .strftime(frmt), 'marked': answer.marked, **answer.data}) return result def get_total_answers(self): return self.answers.count() def get_last_answer_date(self): last_answer = Answer.find(form_id=self.id) if last_answer: frmt = "%Y-%m-%d %H:%M:%S" return utils.utc_to_g_timezone(last_answer.created).strftime(frmt) return "" def is_enabled(self): if not (self.get_author().enabled and self.adminPreferences['public']): return False return self.enabled @classmethod def new_editor_preferences(cls, editor): return {'notification': { 'newAnswer': editor.preferences[ "newAnswerNotification" ], 'expiredForm': True }} def add_editor(self, editor): if not editor.enabled: return False editor_id=str(editor.id) if not editor_id in self.editors: self.editors[editor_id]=Form.new_editor_preferences(editor) self.save() return True return False def remove_editor(self, editor): editor_id=str(editor.id) if editor_id == self.author_id: return None if editor_id in self.editors: del self.editors[editor_id] self.save() return editor_id return None @property def url(self): return f"{self.site.host_url}{self.slug}" @property def embed_url(self): return f"{self.site.host_url}embed/{self.slug}" def get_opengraph(self): default_img_src = self.site.get_logo_uri() image_src = self.thumbnail if self.thumbnail else default_img_src opengraph = { "title": self.slug, "url": self.url, "image": image_src, "description": self.get_short_description(), } return opengraph def set_thumbnail(self): html = self.introductionText['html'] images_src = html_parser.extract_images_src(html) self.thumbnail = images_src[0] if images_src else None def set_short_description(self): text = html_parser.get_opengraph_text(self.introductionText['html']) self.introductionText['short_text'] = text def get_short_description(self): if 'short_text' in self.introductionText: return self.introductionText['short_text'] self.set_short_description() self.save() return self.introductionText['short_text'] @property def data_consent(self): return self.consentTexts[0] def get_consent_for_display(self, id): #print(self.consentTexts) return ConsentText.get_consent_for_display(id, self) def save_consent(self, id, data): return ConsentText.save(id, self, data) def get_data_consent_for_display(self): return self.get_consent_for_display(self.data_consent['id']) def get_default_data_consent_for_display(self): return ConsentText.get_consent_for_display( g.site.DPL_consent_id, self.author) def toggle_data_consent_enabled(self): return ConsentText.toggle_enabled(self.data_consent['id'], self) @staticmethod def new_data_consent(): consent = ConsentText.get_empty_consent( g.site.DPL_consent_id, name="DPL", enabled=g.site.data_consent['enabled']) return consent @staticmethod def default_expired_text(): text=_("Sorry, this form has expired.") return {"markdown": f"## {text}", "html": f"<h2>{text}</h2>"} @property def expired_text_html(self): if self.expiredText['html']: return self.expiredText['html'] else: return Form.default_expired_text()["html"] @property def expired_text_markdown(self): if self.expiredText['markdown']: return self.expiredText['markdown'] else: return Form.default_expired_text()["markdown"] def save_expired_text(self, markdown): markdown=markdown.strip() if markdown: self.expiredText = {'markdown': sanitizers.escape_markdown(markdown), 'html': sanitizers.markdown2HTML(markdown)} else: self.expiredText = {'html':"", 'markdown':""} self.save() @staticmethod def defaultAfterSubmitText(): # i18n: Thanks text displayed when completing form as user text=_("Thank you!!") return {"markdown": f"## {text}", "html": f"<h2>{text}</h2>"} @property def after_submit_text_html(self): if self.afterSubmitText['html']: return self.afterSubmitText['html'] else: return Form.defaultAfterSubmitText()['html'] @property def after_submit_text_markdown(self): if self.afterSubmitText['markdown']: return self.afterSubmitText['markdown'] else: return Form.defaultAfterSubmitText()['markdown'] def save_after_submit_text(self, markdown): markdown=markdown.strip() if markdown: self.afterSubmitText = {'markdown': sanitizers.escape_markdown(markdown), 'html': sanitizers.markdown2HTML(markdown)} else: self.afterSubmitText = {'html':"", 'markdown':""} self.save() def get_available_number_type_fields(self): result={} for element in self.structure: if "type" in element and element["type"] == "number": if element["name"] in self.expiryConditions['fields']: element_name = self.expiryConditions['fields'][element["name"]] result[element["name"]] = element_name else: result[element["name"]]={"type":"number", "condition": None} return result def get_multichoice_fields(self): result=[] for element in self.structure: if "type" in element: if element["type"] == "checkbox-group" or \ element["type"] == "radio-group" or \ element["type"] == "select": result.append(element) return result def get_field_label(self, fieldName): for element in self.structure: if 'name' in element and element['name']==fieldName: return element['label'] return None def save_expiry_date(self, expireDate): self.expiryConditions['expireDate']=expireDate self.expired=self.has_expired() flag_modified(self, "expiryConditions") self.save() def save_expiry_total_answers(self, total_answers): try: total_answers = int(total_answers) except: total_answers = 0 total_answers = 0 if total_answers < 0 else total_answers self.expiryConditions['totalAnswers']=total_answers self.expired = self.has_expired() flag_modified(self, "expiryConditions") self.save() return self.expiryConditions['totalAnswers'] def save_expiry_field_condition(self, field_name, condition): available_fields=self.get_available_number_type_fields() if not field_name in available_fields: return False if not condition: if field_name in self.expiryConditions['fields']: del self.expiryConditions['fields'][field_name] self.expired=self.has_expired() flag_modified(self, "expiryConditions") self.save() return False field_type = available_fields[field_name]['type'] if field_type == "number": try: condition_dict = {"type": field_type, "condition": int(condition)} self.expiryConditions['fields'][field_name] = condition_dict except: condition = False if field_name in self.expiryConditions['fields']: del self.expiryConditions['fields'][field_name] self.expired=self.has_expired() flag_modified(self, "expiryConditions") self.save() return condition return False def update_expiryConditions(self): saved_expiry_fields = [field for field in self.expiryConditions['fields']] available_expiry_fields = [] #available_expiry_fields=[element["name"] for element in self.structure if "name" in element] for element in self.structure: if "name" in element: available_expiry_fields.append(element["name"]) for field in saved_expiry_fields: if not field in available_expiry_fields: del self.expiryConditions['fields'][field] def get_expiry_numberfield_positions_in_field_index(self): field_positions=[] for fieldName, condition in self.expiryConditions['fields'].items(): if condition['type'] == 'number': for position, field in enumerate(self.fieldIndex): if field['name'] == fieldName: field_positions.append(position) break return field_positions def delete(self): self.delete_all_answers() super().delete() def get_attachment_dir(self): return os.path.join(current_app.config['UPLOADS_DIR'], current_app.config['ATTACHMENT_DIR'], str(self.id)) def delete_all_answers(self): self.answers.delete() attachment_dir = self.get_attachment_dir() if os.path.isdir(attachment_dir): shutil.rmtree(attachment_dir, ignore_errors=True) else: current_app.logger.debug(f"Local attachment dir not found: {attachment_dir}") if current_app.config['ENABLE_REMOTE_STORAGE'] == True: RemoteStorage().remove_directory(f"attachments/{self.id}") def is_author(self, user): return True if self.author_id == user.id else False def is_editor(self, user): return True if str(user.id) in self.editors else False def get_editors(self): from liberaforms.models.user import User editors=[] for editor_id in self.editors: user=User.find(id=editor_id) if user: editors.append(user) else: # remove editor_id from self.editors pass return editors def can_expire(self): if self.expiryConditions["totalAnswers"]: return True if self.expiryConditions["expireDate"]: return True if self.expiryConditions["fields"]: return True return False def has_expired(self): if not self.can_expire(): return False if self.expiryConditions["totalAnswers"] and \ self.answers.count() >= self.expiryConditions["totalAnswers"]: return True if self.expiryConditions["expireDate"] and not \ validators.is_future_date(self.expiryConditions["expireDate"]): return True for fieldName, value in self.expiryConditions['fields'].items(): if value['type'] == 'number': total=self.tally_number_field(fieldName) if total >= int(value['condition']): return True return False def tally_number_field(self, fieldName): total=0 for answer in self.get_answers(): try: total = total + int(answer.data[fieldName]) except: continue return total def is_public(self): if not self.is_enabled() or self.expired: return False else: return True def is_shared(self): if self.are_answers_shared(): return True if len(self.editors) > 1: return True return False def are_answers_shared(self): return self.sharedAnswers['enabled'] def get_shared_answers_url(self, part="results"): return f"{self.url}/{part}/{self.sharedAnswers['key']}" """ Used when editing a form. We don't want the Editor to change the option values if an answer.data[key] with a value is already present in the database """ def get_multichoice_options_with_saved_data(self): result = {} if not self.answers: return result multiChoiceFields = {} # {field.name: [option.value, option.value]} for field in self.get_multichoice_fields(): multiChoiceFields[field['name']] = [] for value in field['values']: multiChoiceFields[field['name']].append(value['value']) for answer in self.answers: removeFieldsFromSearch=[] for field in multiChoiceFields: if field in answer.data.keys(): for savedValue in answer.data[field].split(', '): if savedValue in multiChoiceFields[field]: if not field in result: result[field]=[] result[field].append(savedValue) multiChoiceFields[field].remove(savedValue) if multiChoiceFields[field] == []: # all option.values are present in database removeFieldsFromSearch.append(field) for field_to_remove in removeFieldsFromSearch: del(multiChoiceFields[field_to_remove]) if multiChoiceFields == {}: # no more fields to check return result return result def get_answers_for_json(self): result=[] answers = self.get_answers_for_display(oldest_first=True) for saved_answer in answers: answer={} for field in self.get_field_index_for_data_display(): #value=saved_answer[field['name']] if field['name'] in saved_answer else "" if field['name'] in saved_answer: value = saved_answer[field['name']] else: value = "" answer[field['label']]=value result.append(answer) return result def get_chart_data(self): chartable_time_fields=[] total={'answers':0} time_data={'answers':[]} for field in self.get_available_number_type_fields(): label=self.get_field_label(field) total[label]=0 time_data[label]=[] chartable_time_fields.append({'name':field, 'label':label}) multichoice_fields=self.get_multichoice_fields() multi_choice_for_chart=[] for field in multichoice_fields: field_for_chart={ "name":field['name'], "title":field['label'], "axis_1":[], "axis_2":[]} multi_choice_for_chart.append(field_for_chart) for value in field['values']: field_for_chart['axis_1'].append(value['label']) field_for_chart['axis_2'].append(0) #start counting at zero for answer in self.get_answers_for_display(oldest_first=True): total['answers']+=1 time_data['answers'].append({ 'x': answer['created'], 'y': total['answers']}) for field in chartable_time_fields: try: total[field['label']]+=int(answer[field['name']]) time_data[field['label']].append({'x': answer['created'], 'y': total[field['label']] }) except: continue for field in multichoice_fields: if not (field['name'] in answer and answer[field['name']]): continue field_for_chart=[item for item in multi_choice_for_chart if item["name"]==field['name']][0] answer_values=answer[field['name']].split(', ') for idx, field_value in enumerate(field['values']): if field_value['value'] in answer_values: field_for_chart['axis_2'][idx]+=1 return {'multi_choice':multi_choice_for_chart, 'time_chart':time_data} def toggle_enabled(self): if self.expired or self.adminPreferences['public']==False: return False else: self.enabled = False if self.enabled else True self.save() return self.enabled def toggle_admin_form_public(self): public = self.adminPreferences['public'] self.adminPreferences['public'] = False if public else True self.save() return self.adminPreferences['public'] def toggle_shared_answers(self): enabled = self.sharedAnswers['enabled'] self.sharedAnswers['enabled'] = False if enabled else True self.save() return self.sharedAnswers['enabled'] def toggle_restricted_access(self): self.restrictedAccess = False if self.restrictedAccess else True self.save() return self.restrictedAccess def toggle_notification(self, editor_id): editor_id = str(editor_id) if editor_id in self.editors: if self.editors[editor_id]['notification']['newAnswer']: self.editors[editor_id]['notification']['newAnswer']=False else: self.editors[editor_id]['notification']['newAnswer']=True flag_modified(self, 'editors') self.save() return self.editors[editor_id]['notification']['newAnswer'] return False def toggle_expiration_notification(self, editor_id): editor_id = str(editor_id) if editor_id in self.editors: if self.editors[editor_id]['notification']['expiredForm']: self.editors[editor_id]['notification']['expiredForm']=False else: self.editors[editor_id]['notification']['expiredForm']=True flag_modified(self, 'editors') self.save() return self.editors[editor_id]['notification']['expiredForm'] return False def toggle_send_confirmation(self): self.sendConfirmation = False if self.sendConfirmation else True self.save() return self.sendConfirmation def add_log(self, message): log = FormLog( user_id=g.current_user.id, form_id=self.id, message=message) log.save() def write_csv(self, with_deleted_columns=False): fieldnames=[] fieldheaders={} for field in self.get_field_index_for_data_display(with_deleted_columns): fieldnames.append(field['name']) fieldheaders[field['name']]=field['label'] csv_name = os.path.join(os.environ['TMP_DIR'], f"{self.slug}.csv") with open(csv_name, mode='wb') as csv_file: writer = csv.DictWriter(csv_file, fieldnames=fieldnames, extrasaction='ignore') writer.writerow(fieldheaders) answers = self.get_answers_for_display(oldest_first=True) for answer in answers: for field_name in answer.keys(): if field_name.startswith('file-'): # extract attachment url url = re.search(r'https?:[\'"]?([^\'" >]+)', answer[field_name]) if url: answer[field_name] = url.group(0) writer.writerow(answer) return csv_name @staticmethod def default_introduction_text(): # i18n: Example title in template for new form title=_("Form title") # i18n: Example subtitle in template for new form context=_("Context") # i18n: Example content in template for new form. '\n' is used for linebreak. content=_(" * Describe your form.\n * Add relevant content, links, images, etc.") return "## {}\n\n### {}\n\n{}".format(title, context, content)
StarcoderdataPython
9644785
#!/usr/bin/python import json import urllib def showsome(searchfor): query = urllib.urlencode({'q': searchfor}) print query url = 'http://ajax.googleapis.com/ajax/services/search/web?v=1.0&%s' % query search_response = urllib.urlopen(url) search_results = search_response.read() results = json.loads(search_results) data = results['responseData'] print 'Total results: %s' % data['cursor']['estimatedResultCount'] hits = data['results'] print 'Top %d hits:' % len(hits) for h in hits: print ' ', h['url'] print 'For more results, see %s' % data['cursor']['moreResultsUrl'] showsome('ermanno olmi')
StarcoderdataPython
11219858
# Copyright 2016 Red Hat, Inc. # All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. """ debug module is the new name of the human_readably module """ from __future__ import (absolute_import, division, print_function) from ansible.plugins.callback.default \ import CallbackModule as CallbackModule_default __metaclass__ = type class CallbackModule(CallbackModule_default): # pylint: \ # disable=too-few-public-methods,no-init ''' Override for the default callback module. Render std err/out outside of the rest of the result which it prints with indentation. ''' CALLBACK_VERSION = 2.0 CALLBACK_TYPE = 'stdout' CALLBACK_NAME = 'debug' def _dump_results(self, result): '''Return the text to output for a result.''' # Enable JSON identation result['_ansible_verbose_always'] = True save = {} for key in ['stdout', 'stdout_lines', 'stderr', 'stderr_lines', 'msg']: if key in result: save[key] = result.pop(key) output = CallbackModule_default._dump_results(self, result) for key in ['stdout', 'stderr', 'msg']: if key in save and save[key]: output += '\n\n%s:\n\n%s\n' % (key.upper(), save[key]) for key, value in save.items(): result[key] = value return output
StarcoderdataPython
11308814
import sys from pybtex.database.input import bibtex import jinja2 import jinja2.sandbox import re from calendar import month_name _months = { 'jan': 1, 'feb': 2, 'mar': 3, 'apr': 4, 'may': 5, 'jun': 6, 'jul': 7, 'aug': 8, 'sep': 9, 'oct': 10, 'nov': 11, 'dec': 12, } def _author_fmt(author): return u' '.join(author.first_names + author.middle_names + author.last_names) def _andlist(ss, sep=', ', seplast=', and ', septwo=' and '): if len(ss) <= 1: return ''.join(ss) elif len(ss) == 2: return septwo.join(ss) else: return sep.join(ss[0:-1]) + seplast + ss[-1] def _author_list(authors): return _andlist(list(map(_author_fmt, authors))) def _venue_type(entry): venuetype = '' if entry.type == 'inbook': venuetype = 'Chapter in ' elif entry.type == 'techreport': venuetype = 'Technical Report ' elif entry.type == 'phdthesis': venuetype = 'Ph.D. thesis, {}'.format(entry.fields['school']) elif entry.type == 'mastersthesis': venuetype = 'Master\'s thesis, {}'.format(entry.fields['school']) return venuetype def _venue(entry): f = entry.fields venue = '' if entry.type == 'article': venue = f['journal'] try: if f['volume'] and f['number']: venue += ' {0}({1})'.format(f['volume'], f['number']) except KeyError: pass elif entry.type == 'inproceedings': venue = f['booktitle'] try: if f['series']: venue += ' ({})'.format(f['series']) except KeyError: pass elif entry.type == 'inbook': venue = f['title'] elif entry.type == 'techreport': venue = '{0}, {1}'.format(f['number'], f['institution']) elif entry.type == 'phdthesis' or entry.type == 'mastersthesis': venue = '' else: venue = 'Unknown venue (type={})'.format(entry.type) return venue def _title(entry): if entry.type == 'inbook': title = entry.fields['chapter'] else: title = entry.fields['title'] # remove curlies from titles -- useful in TeX, not here #title = title.translate(None, '{}') #title = title.translate(str.maketrans('','','{}')) return title def _main_url(entry): urlfields = ('url', 'ee') for f in urlfields: if f in entry.fields: return entry.fields[f] return None def _extra_urls(entry): """Returns a dict of URL types to URLs, e.g. { 'nytimes': 'http://nytimes.com/story/about/research.html', ... } """ urls = {} for k, v in entry.fields.items(): k = k.lower() if not k.endswith('_url'): continue k = k[:-4] urltype = k.replace('_', ' ') urls[urltype] = v return urls def _month_match (mon): if re.match('^[0-9]+$', mon): return int(mon) return _months[mon.lower()[:3]] def _month_name (monthnum): try: return month_name[int(monthnum)] except: return '' def _sortkey(entry): e = entry.fields year = '{:04d}'.format(int(e['year'])) try: monthnum = _month_match(e['month']) year += '{:02d}'.format(monthnum) except KeyError: year += '00' return year def main(bibfile, template): # Load the template. tenv = jinja2.sandbox.SandboxedEnvironment() tenv.filters['author_fmt'] = _author_fmt tenv.filters['author_list'] = _author_list tenv.filters['title'] = _title tenv.filters['venue_type'] = _venue_type tenv.filters['venue'] = _venue tenv.filters['main_url'] = _main_url tenv.filters['extra_urls'] = _extra_urls tenv.filters['monthname'] = _month_name with open(template) as f: tmpl = tenv.from_string(f.read()) # Parse the BibTeX file. with open(bibfile) as f: db = bibtex.Parser().parse_stream(f) # Include the bibliography key in each entry. for k, v in db.entries.items(): v.fields['key'] = k # Render the template. bib_sorted = sorted(db.entries.values(), key=_sortkey, reverse=True) out = tmpl.render(entries=bib_sorted) print(out) if __name__ == '__main__': main(*sys.argv[1:])
StarcoderdataPython
327989
# -*- coding: utf-8 -*- """ Created on Mon Oct 24 15:55:28 2016 @author: sasha """ import os from .init import QTVer if QTVer == 4: from PyQt4 import QtGui, QtCore from matplotlib.backends.backend_qt4agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt4agg import NavigationToolbar2QT as NavigationToolbar if QTVer == 5: from PyQt5 import QtWidgets as QtGui from PyQt5 import QtCore from matplotlib.backends.backend_qt5agg import FigureCanvasQTAgg as FigureCanvas from matplotlib.backends.backend_qt5agg import NavigationToolbar2QT as NavigationToolbar import matplotlib.pyplot as plt import numpy as np from matplotlib.widgets import SpanSelector from scipy.interpolate import InterpolatedUnivariateSpline from scipy.optimize import least_squares, curve_fit from .xaesa_ft import FT, BFTWindow, BFT, GETPHASE from .xaesa_constants_formulas import windowGauss10 #from tkinter.filedialog import askopenfilename, asksaveasfilename #from tkinter import Tk import gc def exafsfit_lsq(x, k, exafs, amp, pha, parametrs, var_par, nr_shells, kpow): #create mixed array with variables and params XX = np.zeros(len(var_par)) varcnt = 0 parcnt = 0 for i in range(len(var_par)): if(var_par[i]==1): #variable XX[i] = x[varcnt] varcnt = varcnt + 1 else: XX[i] = parametrs[parcnt] parcnt = parcnt + 1 # print("x", x) #print("XX", XX) chi_model = np.zeros(len(k)) for i in range(nr_shells): chi_model = chi_model + (XX[i*7]/(k*XX[i*7+1]**2)) * amp[i] * \ np.exp(-2*XX[i*7+2]*k*k + (2/3)*XX[i*7+4]*k**4 - (4/45)*XX[i*7+6]*k**6) * \ np.sin(2*k*XX[i*7+1] - (4/3)*XX[i*7+3]*k**3 + (4/15)*XX[i*7+5]*k**5 + pha[i]) # chi_model = SO2 * (x[2]/(k*x[3]*x[3])) * amp * exp(-2*x[4]*k*k) * sin(2*k*x[3] + pha) return chi_model*k**kpow - exafs def exafsfit(x, N, R, sigma2): k = x[0] amp = x[1] pha= x[2] SO2 = x[3] # dE0 = X[4] # C4 = X[5] # C5 = X[6] # C6 = X[7] chi_model = SO2 * (N/(k*R*R)) * amp * np.exp(-2*sigma2*k*k) * np.sin(2*k*R + pha) return chi_model*k*k class FitWindow(QtGui.QDialog): def __init__(self): super(FitWindow, self).__init__() self.bft = [] self.k = [] self.kamp = [[]] self.kpha = [[] ] self.amp_orig = [[]] self.pha_orig = [[]] self.fit_result = [] self.initUI() def initUI(self): self.shellnr = 1 self.savedshellnr = 1 self.isfitted = 0 self.fig = plt.figure(3, figsize=(12, 6)) self.ax_bft = plt.subplot2grid((1,2), (0,0)) self.ax_bftft = plt.subplot2grid((1,2), (0,1)) self.canv = FigureCanvas(self.fig) self.tbar = NavigationToolbar(self.canv, self) self.fig.tight_layout() # self.lblNrShells = QtGui.QLabel("Number of shells") # self.edtNrShells = QtGui.QLineEdit("1") self.lblkmin = QtGui.QLabel("K min") self.lblkmax = QtGui.QLabel("K max") self.lbldk = QtGui.QLabel("dK") self.edtkmin = QtGui.QLineEdit("0.5") self.edtkmax = QtGui.QLineEdit("15") self.edtdk = QtGui.QLineEdit("0.05") self.lblMaxiterations = QtGui.QLabel("Max number of iterations") self.edtMaxiterations = QtGui.QLineEdit("1000") self.tabShells = QtGui.QTabWidget() self.tabs = [] self.tabs.append(QtGui.QFrame()) self.tabShells.addTab(self.tabs[0],"Shell 1") self.ltShell = [] self.shellN = [] self.shellR = [] self.shellSigma = [] self.shellC3 = [] self.shellC4 = [] self.shellC5 = [] self.shellC6 = [] # self.shellE0 = [] self.shellAmp = [] self.shellPha = [] lblN = QtGui.QLabel("N") lblR = QtGui.QLabel("R") lblSigma = QtGui.QLabel("Sigma") lblC3 = QtGui.QLabel("C3") lblC4 = QtGui.QLabel("C4") lblC5 = QtGui.QLabel("C5") lblC6 = QtGui.QLabel("C6") # lblE0 = QtGui.QLabel("E0") lblAmp = QtGui.QLabel("Ampl") lblPha = QtGui.QLabel("Phase") self.ltShell.append(QtGui.QGridLayout()) self.shellN.append( [QtGui.QLineEdit("4"), QtGui.QLineEdit("0"), QtGui.QLineEdit("8"), QtGui.QCheckBox()]) self.shellR.append([QtGui.QLineEdit("2"), QtGui.QLineEdit("0"), QtGui.QLineEdit("4"), QtGui.QCheckBox()]) self.shellSigma.append([QtGui.QLineEdit("0.001"), QtGui.QLineEdit("0"), QtGui.QLineEdit("1"), QtGui.QCheckBox()]) self.shellC3.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC4.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC5.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC6.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) # self.shellE0.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("0"), QtGui.QLineEdit("0"), QtGui.QLineEdit("0.0001"), QtGui.QCheckBox()]) self.shellAmp.append(QtGui.QComboBox()) self.shellPha.append(QtGui.QComboBox()) self.shellAmp[-1].addItem("") self.shellPha[-1].addItem("") self.shellAmp[-1].currentIndexChanged.connect(self.AmpChanged) self.shellPha[-1].currentIndexChanged.connect(self.PhaChanged) self.shellN[len(self.shellN)-1][3].setChecked(True) self.shellR[len(self.shellR)-1][3].setChecked(True) self.shellSigma[len(self.shellSigma)-1][3].setChecked(True) self.ltShell[0].addWidget(lblN, 0, 0) self.ltShell[0].addWidget(lblR, 1, 0) self.ltShell[0].addWidget(lblSigma, 2, 0) self.ltShell[0].addWidget(lblC3, 3, 0) self.ltShell[0].addWidget(lblC4, 4, 0) self.ltShell[0].addWidget(lblC5, 5, 0) self.ltShell[0].addWidget(lblC6, 6, 0) # self.ltShell[0].addWidget(lblE0, 7, 0) self.ltShell[0].addWidget(lblAmp, 7, 0) self.ltShell[0].addWidget(lblPha, 8, 0) for i in range(4): self.ltShell[0].addWidget(self.shellN[0][i], 0, 2*i+1) self.ltShell[0].addWidget(self.shellR[0][i], 1, 2*i+1) self.ltShell[0].addWidget(self.shellSigma[0][i], 2, 2*i+1) self.ltShell[0].addWidget(self.shellC3[0][i], 3, 2*i+1) self.ltShell[0].addWidget(self.shellC4[0][i], 4, 2*i+1) self.ltShell[0].addWidget(self.shellC5[0][i], 5, 2*i+1) self.ltShell[0].addWidget(self.shellC6[0][i], 6, 2*i+1) # self.ltShell[0].addWidget(self.shellE0[0][i], 7, 2*i+1) self.ltShell[0].addWidget(self.shellAmp[0], 7, 1, 1, 7) self.ltShell[0].addWidget(self.shellPha[0], 8, 1, 1, 7) # self.shellAmp[0].addItem("E:/work/development/xaslib/fit/amp0001.dat") # self.shellPha[0].addItem("E:/work/development/xaslib/fit/pha0001.dat") for j in range(7): self.ltShell[0].addWidget(QtGui.QLabel("Min. limit"), j, 2) self.ltShell[0].addWidget(QtGui.QLabel("Max. limit"), j, 4) # self.ltShell[0].addWidget(QtGui.QLabel("Accuracy"), j, 6) self.tabs[0].setLayout(self.ltShell[0]) self.lblFuncEval = QtGui.QLabel("Number of function evaluations done") self.edtFuncEval = QtGui.QLineEdit() self.lblFitMessage = QtGui.QLabel("Termination reason") self.edtFitMessage = QtGui.QLineEdit() self.lblOptimality = QtGui.QLabel("Cost function") self.edtOptimality = QtGui.QLineEdit() lfit = QtGui.QGridLayout() lfit.addWidget(self.lblFitMessage, 0, 0) lfit.addWidget(self.edtFitMessage, 0, 1) lfit.addWidget(self.lblFuncEval, 1, 0) lfit.addWidget(self.edtFuncEval, 1, 1) lfit.addWidget(self.lblOptimality, 2, 0) lfit.addWidget(self.edtOptimality, 2, 1) self.btnFit = QtGui.QPushButton('Fit') self.btnFit.clicked.connect(self.Fit_leastsquares) self.btnSaveFit = QtGui.QPushButton('Save Fit results') self.btnSaveFit.clicked.connect(self.saveFit) self.btnApply = QtGui.QPushButton('Apply') self.btnApply.clicked.connect(self.apply) self.btnCancel = QtGui.QPushButton('Cancel') self.btnCancel.clicked.connect(self.cancel) self.btnAddShell = QtGui.QPushButton('Add shell') self.btnAddShell.clicked.connect(self.addshell) self.btnRemoveShell = QtGui.QPushButton('Remove shell') self.btnRemoveShell.clicked.connect(self.removeshell) self.btnOpenAmp = QtGui.QPushButton('Open amplitude file(s) ...') self.btnOpenAmp.clicked.connect(self.openamp) self.btnOpenPha = QtGui.QPushButton('Open phase file(s) ...') self.btnOpenPha.clicked.connect(self.openpha) self.btnOpenFeff = QtGui.QPushButton('Open feff file(s) ...') self.btnOpenFeff.clicked.connect(self.openfeff) self.btnSaveFitResults = QtGui.QPushButton('Save fit Results ...') # self.btnSaveFitResults.clicked.connect(self.saveFitResults) lb = QtGui.QGridLayout() lb.addWidget(self.btnOpenAmp, 0,0) lb.addWidget(self.btnOpenPha, 0,1) lb.addWidget(self.btnOpenFeff, 1,0) lb.addWidget(self.btnAddShell, 2,0) lb.addWidget(self.btnRemoveShell, 2,1) lfig = QtGui.QGridLayout() lfig.addWidget(self.tbar, 0, 0) lfig.addWidget(self.canv, 1, 0, 2, 1) lfig.addLayout(lfit, 3, 0) lfig.addWidget(self.btnFit, 4, 0) lfig.addWidget(self.btnSaveFit, 5, 0) lfig.addWidget(self.btnApply, 6, 0) lfig.addWidget(self.btnCancel, 7, 0) lfig.addWidget(self.lblkmin, 0,1) lfig.addWidget(self.edtkmin, 0,2) lfig.addWidget(self.lblkmax, 0,3) lfig.addWidget(self.edtkmax, 0,4) lfig.addWidget(self.lbldk, 0,5) lfig.addWidget(self.edtdk, 0,6) lfig.addWidget(self.lblMaxiterations, 1, 1) lfig.addWidget(self.edtMaxiterations, 1, 2, 1, 4) lfig.addWidget(self.tabShells, 2, 1, 2, 6) lfig.addLayout(lb, 4,1, 2, 6) self.setLayout(lfig) def updateUI(self): if self.savedshellnr > 1: for i in range(0,self.savedshellnr-1): self.addshell() self.edtkmin.setText("{:.2f}".format(self.ksettings[0][0])) self.edtkmax.setText("{:.2f}".format(self.ksettings[0][1])) self.edtdk.setText("{:.3f}".format(self.ksettings[0][2])) if self.isfitted == 1: #fill with saved fitting params self.edtOptimality.setText("{:E}".format(self.costfunction)) for i in range(self.shellnr): self.shellN[i][0].setText("{:.4f}".format(self.fit_params[i][0][0])) self.shellN[i][1].setText("{:.4f}".format(self.fit_params[i][0][1])) self.shellN[i][2].setText("{:.4f}".format(self.fit_params[i][0][2])) self.shellN[i][3].setChecked(bool(self.fit_params[i][0][3])) self.shellR[i][0].setText("{:.4f}".format(self.fit_params[i][1][0])) self.shellR[i][1].setText("{:.4f}".format(self.fit_params[i][1][1])) self.shellR[i][2].setText("{:.4f}".format(self.fit_params[i][1][2])) self.shellR[i][3].setChecked(bool(self.fit_params[i][1][3])) self.shellSigma[i][0].setText("{:.4f}".format(self.fit_params[i][2][0])) self.shellSigma[i][1].setText("{:.4f}".format(self.fit_params[i][2][1])) self.shellSigma[i][2].setText("{:.4f}".format(self.fit_params[i][2][2])) self.shellSigma[i][3].setChecked(bool(self.fit_params[i][2][3])) self.shellC3[i][0].setText("{:.4E}".format(self.fit_params[i][3][0])) self.shellC3[i][1].setText("{:.4f}".format(self.fit_params[i][3][1])) self.shellC3[i][2].setText("{:.4f}".format(self.fit_params[i][3][2])) self.shellC3[i][3].setChecked(bool(self.fit_params[i][3][3])) self.shellC4[i][0].setText("{:.4E}".format(self.fit_params[i][4][0])) self.shellC4[i][1].setText("{:.4f}".format(self.fit_params[i][4][1])) self.shellC4[i][2].setText("{:.4f}".format(self.fit_params[i][4][2])) self.shellC4[i][3].setChecked(bool(self.fit_params[i][4][3])) self.shellC5[i][0].setText("{:.4E}".format(self.fit_params[i][5][0])) self.shellC5[i][1].setText("{:.4f}".format(self.fit_params[i][5][1])) self.shellC5[i][2].setText("{:.4f}".format(self.fit_params[i][5][2])) self.shellC5[i][3].setChecked(bool(self.fit_params[i][5][3])) self.shellC6[i][0].setText("{:.4E}".format(self.fit_params[i][6][0])) self.shellC6[i][1].setText("{:.4f}".format(self.fit_params[i][6][1])) self.shellC6[i][2].setText("{:.4f}".format(self.fit_params[i][6][2])) self.shellC6[i][3].setChecked(bool(self.fit_params[i][6][3])) # for i in range(int(len(self.fit_amps)/2)): self.kamp[i] = self.fit_amps[2*i] self.amp_orig[i] = self.fit_amps[2*i+1] self.kpha[i] = self.fit_phases[2*i] self.pha_orig[i] = self.fit_phases[2*i+1] # print(self.fit_amps) pass def Fit_curvefit(self): kstart = float(self.edtkmin.text()) kend = float(self.edtkmax.text()) dk = float(self.edtdk.text()) common_k = np.arange(kstart, kend, dk) guess = [0,0,0] guess[0] = float(self.shellN[0][0].text()) guess[1] = float(self.shellR[0][0].text()) guess[2] = float(self.shellSigma[0][0].text()) varbounds = [] varbounds.append( ( float(self.shellN[0][1].text()), float(self.shellR[0][1].text()), float(self.shellSigma[0][1].text()) ) ) varbounds.append( ( float(self.shellN[0][2].text()), float(self.shellR[0][2].text()), float(self.shellSigma[0][2].text()) ) ) kamp, amp_orig = np.genfromtxt("E:/work/development/xaslib/fit/amp0001.dat", usecols=(1,0), unpack=True) kpha, pha_orig = np.genfromtxt("E:/work/development/xaslib/fit/pha0001.dat", usecols=(1,0), unpack=True) splamp = InterpolatedUnivariateSpline(kamp,amp_orig) splpha = InterpolatedUnivariateSpline(kpha, pha_orig) splbft = InterpolatedUnivariateSpline(self.k, self.bft) amp = splamp(common_k) pha = splpha(common_k) common_bft = splbft(common_k) # lsq_result = least_squares(exafsfit, np.array(X), \ # method = 'lm', ## bounds = varbounds, # args=(self.k, self.bft, amp, pha, 1)) # print(lsq_result.x) x = [] x.append(common_k) x.append(amp) x.append(pha) x.append(1) popt, pcov = curve_fit(exafsfit, x, common_bft , \ #method = 'lm', bounds = varbounds, p0 = guess) self.ax_bft.clear() self.ax_bftft.clear() self.ax_bft.plot(self.k, self.bft) # self.ax_bft.plot(self.k, exafsfit(lsq_result.x, self.k, self.bft, amp, pha, 1)+self.bft) # self.ax_bft.plot(self.k, exafsfit(X, self.k, self.bft, amp, pha, 1)+self.bft) self.ax_bft.plot(common_k, exafsfit(x, popt[0], popt[1], popt[2])) print(popt) print(pcov) self.canv.draw() def Fit_leastsquares(self): for i in range(self.shellnr): if(self.kamp[i]==[]): QtGui.QMessageBox.information(self,"Load Amplitude", "Amplitude in shell {:d} not loaded".format(i+1)) return if(self.kpha[i]==[]): QtGui.QMessageBox.information(self,"Load Phase", "Phase in shell {:d} not loaded".format(i+1)) return kstart = float(self.edtkmin.text()) kend = float(self.edtkmax.text()) dk = float(self.edtdk.text()) self.common_k = np.arange(kstart, kend, dk) maxiterations = int(self.edtMaxiterations.text()) #prepare variable and parameter array splbft = InterpolatedUnivariateSpline(self.k, self.bft) self.common_bft = splbft(self.common_k) varbounds = [[],[]] par = [] var_par = [] X = [] edtVarBoxes = [] amp = [] pha = [] for i in range(self.shellnr): if self.shellN[i][3].isChecked(): X.append(float(self.shellN[i][0].text())) varbounds[0].append(float(self.shellN[i][1].text())) varbounds[1].append(float(self.shellN[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellN[i][0]) else: par.append(float(self.shellN[i][0].text())) var_par.append(0) if self.shellR[i][3].isChecked(): X.append(float(self.shellR[i][0].text())) varbounds[0].append(float(self.shellR[i][1].text())) varbounds[1].append(float(self.shellR[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellR[i][0]) else: par.append(float(self.shellR[i][0].text())) var_par.append(0) if self.shellSigma[i][3].isChecked(): X.append(float(self.shellSigma[i][0].text())) varbounds[0].append(float(self.shellSigma[i][1].text())) varbounds[1].append(float(self.shellSigma[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellSigma[i][0]) else: par.append(float(self.shellSigma[i][0].text())) var_par.append(0) if self.shellC3[i][3].isChecked(): X.append(float(self.shellC3[i][0].text())) varbounds[0].append(float(self.shellC3[i][1].text())) varbounds[1].append(float(self.shellC3[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellC3[i][0]) else: par.append(float(self.shellC3[i][0].text())) var_par.append(0) if self.shellC4[i][3].isChecked(): X.append(float(self.shellC4[i][0].text())) varbounds[0].append(float(self.shellC4[i][1].text())) varbounds[1].append(float(self.shellC4[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellC4[i][0]) else: par.append(float(self.shellC4[i][0].text())) var_par.append(0) if self.shellC5[i][3].isChecked(): X.append(float(self.shellC5[i][0].text())) varbounds[0].append(float(self.shellC5[i][1].text())) varbounds[1].append(float(self.shellC5[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellC5[i][0]) else: par.append(float(self.shellC5[i][0].text())) var_par.append(0) if self.shellC6[i][3].isChecked(): X.append(float(self.shellC6[i][0].text())) varbounds[0].append(float(self.shellC6[i][1].text())) varbounds[1].append(float(self.shellC6[i][2].text())) var_par.append(1) edtVarBoxes.append(self.shellC6[i][0]) else: par.append(float(self.shellC6[i][0].text())) var_par.append(0) splamp = InterpolatedUnivariateSpline(self.kamp[i], self.amp_orig[i]) splpha = InterpolatedUnivariateSpline(self.kpha[i], self.pha_orig[i]) amp.append(splamp(self.common_k)) pha.append(splpha(self.common_k)) varbounds[0] = tuple(varbounds[0]) varbounds[1] = tuple(varbounds[1]) lsq_result = least_squares(exafsfit_lsq, np.array(X), \ # method = 'dogbox', ftol = 1e-12, max_nfev = maxiterations, bounds = varbounds, # tr_solver = 'lsmr', # jac = '3-point', # loss='soft_l1', # f_scale=0.1, verbose = 0, # x_scale = [1,1,0.001], args=(self.common_k, self.common_bft, amp, pha, par, var_par, self.shellnr, 2)) self.edtFuncEval.setText("{:d}".format(lsq_result.nfev)) self.edtOptimality.setText("{:e}".format(lsq_result.cost)) self.edtFitMessage.setText(lsq_result.message) for i in range(len(lsq_result.x)): if i in [0,1,2]: edtVarBoxes[i].setText("{:.5f}".format(lsq_result.x[i])) else: edtVarBoxes[i].setText("{:.2E}".format(lsq_result.x[i])) self.window = windowGauss10(self.common_k, kstart, kend) self.bftw = self.common_bft * self.window self.r, self.fr, self.fi = FT(self.common_k, self.bftw, 0, 4, 0.02) self.efr = np.sqrt(self.fr*self.fr + self.fi*self.fi) self.efi = self.fi * (-1) self.fit_result = exafsfit_lsq(lsq_result.x, self.common_k, self.common_bft, amp, pha, par, var_par, self.shellnr, 2)+self.common_bft fit_result_w = self.fit_result * self.window self.res_r, res_fr, res_fi = FT(self.common_k, fit_result_w, 0, 4, 0.02) self.res_efr = np.sqrt(res_fr*res_fr + res_fi*res_fi) self.res_efi = res_fi * (-1) self.ax_bft.clear() self.ax_bftft.clear() self.ax_bft.plot(self.k, self.bft) self.ax_bft.plot(self.common_k, self.fit_result) self.ax_bftft.clear() line1, line2 = self.ax_bftft.plot( self.r, self.efr, self.r, self.efi) line1.set_color('b') line2.set_color('b') line2.set_linestyle('dotted') line1, line2 = self.ax_bftft.plot( self.res_r, self.res_efr, self.res_r, self.res_efi) line1.set_color('r') line2.set_color('r') line2.set_linestyle('dotted') self.canv.draw() def apply(self): self.fit_params = [] self.fit_amps = [] self.fit_phases = [] self.ksettings = [] for i in range(self.shellnr): self.fit_params.append([ [float(self.shellN[i][0].text()), float(self.shellN[i][1].text()), float(self.shellN[i][2].text()), int(self.shellN[i][3].isChecked())], [float(self.shellR[i][0].text()), float(self.shellR[i][1].text()), float(self.shellR[i][2].text()), int(self.shellR[i][3].isChecked())], [float(self.shellSigma[i][0].text()), float(self.shellSigma[i][1].text()), float(self.shellSigma[i][2].text()), int(self.shellSigma[i][3].isChecked())], [float(self.shellC3[i][0].text()), float(self.shellC3[i][1].text()), float(self.shellC3[i][2].text()), int(self.shellC3[i][3].isChecked())], [float(self.shellC4[i][0].text()), float(self.shellC4[i][1].text()), float(self.shellC4[i][2].text()), int(self.shellC4[i][3].isChecked())], [float(self.shellC5[i][0].text()), float(self.shellC5[i][1].text()), float(self.shellC5[i][2].text()), int(self.shellC5[i][3].isChecked())], [float(self.shellC6[i][0].text()), float(self.shellC6[i][1].text()), float(self.shellC6[i][2].text()), int(self.shellC6[i][3].isChecked())]]) self.fit_amps.append( self.kamp[i]) self.fit_amps.append( self.amp_orig[i]) self.fit_phases.append( self.kpha[i]) self.fit_phases.append( self.pha_orig[i]) self.costfunction = float(self.edtOptimality.text()) self.ksettings.append( [float(self.edtkmin.text()), float(self.edtkmax.text()), float(self.edtdk.text())] ) self.accept() def cancel(self): self.close() def bftft(self): self.window = windowGauss10(self.k, self.k[0], self.k[len(self.k)-1]) self.bftw = self.bft * self.window self.r, self.fr, self.fi = FT(self.k, self.bftw, 0, 4, 0.02) self.efr = np.sqrt(self.fr*self.fr + self.fi*self.fi) self.efi = self.fi * (-1) def plot(self): self.ax_bft.clear() self.ax_bftft.clear() self.ax_bft.plot(self.k, self.bft) line1, line2 = self.ax_bftft.plot( self.r, self.efr, self.r, self.efi) line1.set_color('b') line2.set_color('b') line2.set_linestyle('dotted') if(self.fit_result != []): kstart = float(self.edtkmin.text()) kend = float(self.edtkmax.text()) dk = float(self.edtdk.text()) self.common_k = np.arange(kstart, kend, dk) self.ax_bft.plot(self.common_k, self.fit_result) def openamp(self): dlg = QtGui.QFileDialog() dlg.setFileMode(QtGui.QFileDialog.ExistingFiles) dlg.setAcceptMode(0) # open dialog dlg.setNameFilters(["All files (*.*)", "Amplitude files (*.amp)"]) # dlg.setDirectory(os.getcwd()) if dlg.exec(): self.fnamp = dlg.selectedFiles() else: return self.fnamp.sort() for i in range(len(self.shellAmp)): self.shellAmp[i].addItems(self.fnamp) def openpha(self): dlg = QtGui.QFileDialog() dlg.setFileMode(QtGui.QFileDialog.ExistingFiles) dlg.setAcceptMode(0) # open dialog dlg.setNameFilters(["All files (*.*)", "Amplitude files (*.pha)"]) # dlg.setDirectory(os.getcwd()) if dlg.exec(): self.fnpha = dlg.selectedFiles() else: return self.fnpha.sort() for i in range(len(self.shellPha)): self.shellPha[i].addItems(self.fnpha) def openfeff(self): dlg = QtGui.QFileDialog() dlg.setFileMode(QtGui.QFileDialog.ExistingFiles) dlg.setAcceptMode(0) # open dialog dlg.setNameFilters(["All files (*.*)"]) # dlg.setDirectory(os.getcwd()) if dlg.exec(): self.fnfeff = dlg.selectedFiles() else: return self.fnfeff.sort() #Extract amplitude and phase from feff files and save to disk for i in range(len(self.fnfeff)): state = 0 data = [] f = open(self.fnfeff[i]) for line in f: cols = line.split() if cols[0] == '-----------------------------------------------------------------------': state = 1 continue if cols[0] =='k': state = 2 continue if state == 1: r = float(cols[2]) state = 0 continue if state == 2: data.append(cols) new_data_amp = [] new_data_pha = [] for j in range(len(data)): k = float(data[j][0]) pha = float(data[j][1]) + float(data[j][3]) amp = float(data[j][2]) * np.exp( -2 * r / float(data[j][5])) * float(data[j][4]) new_data_amp.append([k, amp]) new_data_pha.append([k, pha]) np.savetxt(self.fnfeff[i] + '.amp', new_data_amp) np.savetxt(self.fnfeff[i] + '.pha', new_data_pha) for j in range(len(self.shellPha)): self.shellAmp[j].addItem(self.fnfeff[i] + '.amp') for j in range(len(self.shellPha)): self.shellPha[j].addItem(self.fnfeff[i] + '.pha') def addshell(self): self.tabs.append(QtGui.QFrame()) caption = "Shell"+str(self.shellnr+1) self.tabShells.addTab(self.tabs[self.shellnr], caption) lblN = QtGui.QLabel("N") lblR = QtGui.QLabel("R") lblSigma = QtGui.QLabel("Sigma") lblC3 = QtGui.QLabel("C3") lblC4 = QtGui.QLabel("C4") lblC5 = QtGui.QLabel("C5") lblC6 = QtGui.QLabel("C6") # lblE0 = QtGui.QLabel("E0") lblAmp = QtGui.QLabel("Amplitude") lblPha = QtGui.QLabel("Phase") self.ltShell.append(QtGui.QGridLayout()) self.shellN.append( [QtGui.QLineEdit("4"), QtGui.QLineEdit("0"), QtGui.QLineEdit("8"), QtGui.QCheckBox()]) self.shellR.append([QtGui.QLineEdit("2"), QtGui.QLineEdit("0"), QtGui.QLineEdit("4"), QtGui.QCheckBox()]) self.shellSigma.append([QtGui.QLineEdit("0.001"), QtGui.QLineEdit("0"), QtGui.QLineEdit("1"), QtGui.QCheckBox()]) self.shellC3.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC4.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC5.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) self.shellC6.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("-0.1"), QtGui.QLineEdit("0.1"), QtGui.QCheckBox()]) # self.shellE0.append([QtGui.QLineEdit("0"), QtGui.QLineEdit("0"), QtGui.QLineEdit("0"), QtGui.QLineEdit("0.0001"), QtGui.QCheckBox()]) self.shellAmp.append(QtGui.QComboBox()) self.shellPha.append(QtGui.QComboBox()) self.shellAmp[-1].currentIndexChanged.connect(self.AmpChanged) self.shellPha[-1].currentIndexChanged.connect(self.PhaChanged) self.shellN[len(self.shellN)-1][3].setChecked(True) self.shellR[len(self.shellR)-1][3].setChecked(True) self.shellSigma[len(self.shellSigma)-1][3].setChecked(True) AllItemsAmp = [self.shellAmp[0].itemText(i) for i in range(self.shellAmp[0].count())] AllItemsPha = [self.shellPha[0].itemText(i) for i in range(self.shellPha[0].count())] self.shellAmp[len(self.shellAmp)-1].addItems(AllItemsAmp) self.shellPha[len(self.shellPha)-1].addItems(AllItemsPha) self.ltShell[self.shellnr].addWidget(lblN, 0, 0) self.ltShell[self.shellnr].addWidget(lblR, 1, 0) self.ltShell[self.shellnr].addWidget(lblSigma, 2, 0) self.ltShell[self.shellnr].addWidget(lblC3, 3, 0) self.ltShell[self.shellnr].addWidget(lblC4, 4, 0) self.ltShell[self.shellnr].addWidget(lblC5, 5, 0) self.ltShell[self.shellnr].addWidget(lblC6, 6, 0) # self.ltShell[self.shellnr].addWidget(lblE0, 7, 0) self.ltShell[self.shellnr].addWidget(lblAmp, 7, 0) self.ltShell[self.shellnr].addWidget(lblPha, 8, 0) for i in range(4): self.ltShell[self.shellnr].addWidget(self.shellN[self.shellnr][i], 0, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellR[self.shellnr][i], 1, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellSigma[self.shellnr][i], 2, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellC3[self.shellnr][i], 3, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellC4[self.shellnr][i], 4, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellC5[self.shellnr][i], 5, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellC6[self.shellnr][i], 6, 2*i+1) # self.ltShell[self.shellnr].addWidget(self.shellE0[self.shellnr][i], 7, 2*i+1) self.ltShell[self.shellnr].addWidget(self.shellAmp[self.shellnr], 7, 1, 1, 7) self.ltShell[self.shellnr].addWidget(self.shellPha[self.shellnr], 8, 1, 1, 7) for j in range(7): self.ltShell[self.shellnr].addWidget(QtGui.QLabel("Min. limit"), j, 2) self.ltShell[self.shellnr].addWidget(QtGui.QLabel("Max. limit"), j, 4) # self.ltShell[self.shellnr].addWidget(QtGui.QLabel("Accuracy"), j, 6) self.tabs[self.shellnr].setLayout(self.ltShell[self.shellnr]) self.kamp.append([]) self.kpha.append([]) self.amp_orig.append([]) self.pha_orig.append([]) self.shellnr = self.shellnr +1 def removeshell(self): self.tabs.pop() self.tabShells.removeTab(self.shellnr-1) self.ltShell.pop() self.shellN.pop() self.shellR.pop() self.shellSigma.pop() self.shellC3.pop() self.shellC4.pop() self.shellC5.pop() self.shellC6.pop() # self.shellE0.pop() self.shellAmp.pop() self.shellPha.pop() self.kamp.pop() self.kpha.pop() self.amp_orig.pop() self.pha_orig.pop() self.shellnr = self.shellnr -1 gc.collect() def AmpChanged(self): which_shell = -1 sender = self.sender() for i in range(len(self.shellAmp)): if self.shellAmp[i] == sender: which_shell = i if self.shellAmp[which_shell].currentText() == "": return ampk, ampo = np.genfromtxt(self.shellAmp[which_shell].currentText(), usecols=(0,1), unpack=True) self.kamp[which_shell] = ampk self.amp_orig[which_shell] = ampo def PhaChanged(self): which_shell = -1 sender = self.sender() for i in range(len(self.shellPha)): if self.shellPha[i] == sender: which_shell = i if self.shellPha[which_shell].currentText() == "": return phak, phao = np.genfromtxt(self.shellPha[which_shell].currentText(), usecols=(0,1), unpack=True) self.kpha[which_shell] = phak self.pha_orig[which_shell] = phao def saveFit(self): fn = self.savefiledialog_qtgui() if fn == "": return column_captions = "" save_data = [] for i in range(self.shellnr): column_captions = column_captions + "Shell{:d} ".format(i) values = [] values.append(float(self.shellN[i][0].text())) values.append(float(self.shellR[i][0].text())) values.append(float(self.shellSigma[i][0].text())) values.append(float(self.shellC3[i][0].text())) values.append(float(self.shellC4[i][0].text())) values.append(float(self.shellC5[i][0].text())) values.append(float(self.shellC6[i][0].text())) save_data.append(values) np.savetxt(fn + ".fitdata", np.transpose(save_data), header=column_captions) column_captions = "k exafs_fit exafs_exp" save_array = [] save_array.append(self.common_k) save_array.append(self.fit_result) save_array.append(self.common_bft) np.savetxt(fn + ".fitexafs", np.transpose(save_array), header=column_captions) column_captions = "r_fit ft_real_fit ft_im_fit r_exp ft_real_exp ft_im_exp" save_array = [] save_array.append(self.res_r) save_array.append(self.res_efr) save_array.append(self.res_efi) save_array.append(self.r) save_array.append(self.efr) save_array.append(self.efi) np.savetxt(fn + ".fitft", np.transpose(save_array), header=column_captions) def savefiledialog_qtgui(self): dlg = QtGui.QFileDialog() dlg.setFileMode(QtGui.QFileDialog.AnyFile) dlg.setAcceptMode(1) # save dialog dlg.setNameFilters(["All files (*.*)"]) # dlg.setDirectory(self.currentdir) if dlg.exec_(): flist = dlg.selectedFiles() return flist[0] else: return ""
StarcoderdataPython
8064428
""" Networking code. """ import logging import signal import socket import tornado from tornado import gen from tornado.ioloop import IOLoop from tornado.tcpserver import TCPServer from . import utils logger = logging.getLogger("uwhoisd") def handle_signal(sig, frame): """ Stop the main loop on signal. """ IOLoop.instance().add_callback(IOLoop.instance().stop) class WhoisClient(object): """ Whois client. """ def __init__(self, server, port): """ A WHOIS client for Tornado. :param server string: hostname of downstream server. :param port int: port on downstream server to connect to. """ self.server = server self.port = port def __enter__(self): """ Initialize a `with` statement. """ self.sock = socket.create_connection((self.server, self.port)) self.sock.settimeout(10) return self def __exit__(self, type, value, traceback): """ Terminate a `with` statement. """ self.sock.close() def whois(self, query): """ Perform a query against the server. """ to_return = "" try: bytes_whois = b"" self.sock.sendall("{0}\r\n".format(query).encode()) while True: data = self.sock.recv(2048) if data: bytes_whois += data continue break to_return = str(bytes_whois, "utf-8", "ignore") except OSError as e: # Catches all socket.* exceptions return "{0}: {1}\n".format(self.server, e) except Exception: logger.exception("Unknown exception when querying '%s'", query) return to_return class WhoisListener(TCPServer): """ Listener for whois clients. """ def __init__(self, whois): """ Listen to queries from whois clients. """ super(WhoisListener, self).__init__() self.whois = whois @gen.coroutine def handle_stream(self, stream, address): """ Respond to a single request. """ self.stream = stream try: whois_query = yield self.stream.read_until_regex(b"\n") whois_query = whois_query.decode().strip().lower() if not utils.is_well_formed_fqdn(whois_query): whois_entry = "; Bad request: '{0}'\r\n".format(whois_query) else: whois_entry = self.whois(whois_query) yield self.stream.write(whois_entry.encode()) except tornado.iostream.StreamClosedError: logger.warning("Connection closed by %s.", address) except Exception: logger.exception("Unknown exception by '%s'", address) self.stream.close() def start_service(iface, port, whois): """ Start the service. """ signal.signal(signal.SIGINT, handle_signal) signal.signal(signal.SIGTERM, handle_signal) server = WhoisListener(whois) logger.info("Listen on %s:%d", iface, port) server.bind(port, iface) server.start(None) IOLoop.instance().start() IOLoop.instance().close()
StarcoderdataPython
8158720
import os, sys, string, re, commands ###################### # Requirement # parseUniprot.py ###################################### ###################################### #read each line until <name type="ORF" is read #continue to read the same line and replace matching ME49 or VEG or GT #and replace the <name type="ORF" with type='ME49" or "VEG" or "GT" #def replaceGeneNameUniprot(inputFile, outputFile) : # infile = open(inputFile) # raw = infile.readlines() # infile.close() # # outfile = open(outputFile,'w') # # for row in range(0,len(raw)) : # m = re.search(r'<name type="ORF"', string.strip(raw[row])) # if m : # n = re.search(r'>(TGME49_[0-9]*)<', string.strip(raw[row])) # if n : # outfile.write(re.sub(r'ORF', 'TGME49', string.strip(raw[row]))) # outfile.write("\n") # else : # o = re.search(r'>(TGVEG_[0-9]*)<', string.strip(raw[row])) # if o : # outfile.write(re.sub(r'ORF', 'TGVEG', string.strip(raw[row]))) # outfile.write("\n") # else : # p = re.search(r'>(TGGT1_[0-9]*)<', string.strip(raw[row])) # if p : # outfile.write(re.sub(r'ORF', 'TGGT1', string.strip(raw[row]))) # outfile.write("\n") # else : # outfile.write(raw[row]) # else : # z = re.search(r'<dbReference type="EuPathDB"', string.strip(raw[row])) # if z : # outfile.write(re.sub(r'id="ToxoDB:', 'id="', string.strip(raw[row]))) # outfile.write("\n") # else : # outfile.write(raw[row]) # # outfile.close() # programCall = 'mv ' + inputFile + ' ' + inputFile + '.old' # commands.getstatusoutput(programCall) # programCall = 'mv ' + outputFile + ' ' + inputFile # commands.getstatusoutput(programCall) # #inputFile = '%s'%sys.argv[1] #outputFile = os.path.join(inputFile + '.parsed') #replaceGeneNameUniprot(inputFile, outputFile) # #inputFile = '%s'%sys.argv[2] #outputFile = os.path.join(inputFile + '.parsed') #replaceGeneNameUniprot(inputFile, outputFile) #replace def replaceGeneNameUniprot(inputFile, outputFile) : infile = open(inputFile) raw = infile.readlines() infile.close() outfile = open(outputFile,'w') for row in range(0,len(raw)) : z = re.search(r'<dbReference type="EuPathDB"', string.strip(raw[row])) if z : outfile.write(re.sub(r'id="ToxoDB:', 'id="', string.strip(raw[row]))) outfile.write("\n") else : outfile.write(raw[row]) outfile.close() programCall = 'mv ' + inputFile + ' ' + inputFile + '.old' commands.getstatusoutput(programCall) programCall = 'mv ' + outputFile + ' ' + inputFile commands.getstatusoutput(programCall) inputFile = '%s'%sys.argv[1] outputFile = os.path.join(inputFile + '.parsed') replaceGeneNameUniprot(inputFile, outputFile) inputFile = '%s'%sys.argv[2] outputFile = os.path.join(inputFile + '.parsed') replaceGeneNameUniprot(inputFile, outputFile)
StarcoderdataPython
8175512
<filename>python/pysvso/localization/pnp.py import cv2 import numpy as np # used to evaluated pose graph optimization inside PnP Solver class Measurement: def __init__(self, pt3d, frame1, px2d1, frame2, px2d2): self.pt3d = pt3d # self.frame1 = frame1 self.px2d1 = px2d1 self.frame2 = frame2 self.px2d2 = px2d2 def __str__(self): return "<Measurement p(%d)-> [Frame#%d, Frame%d]>" % ( self.pt3d.seq, self.frame1.seq, self.frame2.seq ) # available method: projection | BF def fetchByRoI(cur_frame, mapblock, method="projection"): detections = cur_frame._detections detected_rois = [] if detections is (None, list) else [obj.findParent() for obj in detections] frames = mapblock.get_frames() slidingWindows = set() # kps, kp_feats = cur_frame.kps, cur_frame.kps_feats img_shp = cur_frame.img.shape[0:2] # init feat_map feat_map = np.full(img_shp, -1) for i, kp in enumerate(kps): x, y = kp.pt if int(y) >= img_shp[0] or int(y) < 0 or \ int(x) >= img_shp[1] or int(x) < 0: continue feat_map[int(y), int(x)] = i def _hamming_distance(x, y): from scipy.spatial import distance return distance.hamming(x, y) def _get_neighbors(R, row, col, feat_map, img_shp): H, W = img_shp[0:2] x1, y1 = (col - R, row - R) x2, y2 = (col + R, row + R) if x1 < 0: x1 = 0 if y1 < 0: y1 = 0 if x2 >= W: x2 = W - 1 if y2 >= H: y2 = H - 1 try: indice = feat_map[y1:y2, x1:x2] != -1 except Exception as e: print(e) print("Slicer(y1, y2, x1, x2) : Slicer(%d, %d, %d, %d)" % (y1, y2, x1, x2)) raise e return feat_map[y1:y2, x1:x2][indice] # retrieve mappoints observed points = {} measurements = {} print("Begin to fetch matched points for PnP ...") print("Total fetched ROIs: %d" % len(detected_rois)) # fetch points visible to the last frame camera = cur_frame.pre.camera # backup codes if camera is None: # find a nearest camera to use cf = cur_frame.pre while camera is None: cf = cf.pre if cf is not None: camera = cf.camera else: break for roi in detected_rois: pointCloud = roi.points print("Total fetched points for RoI %s: %d" % (roi, len(pointCloud))) for _, point in pointCloud.items(): # print("viewing point %s using camera from Frame#%d" % (point, cur_frame.pre.seq)) cam_pt = camera.viewWorldPoint(point) projection = camera.view(cam_pt) if projection is None: continue if points.get(point.seq, None) is not None: continue # @todo : TODO get predicted projection with OpticalFlowKPntPredictor row = projection.y # + flow[projection.x, projection.y][1] col = projection.x # + flow[projection.x, projection.y][0] # set searching radius to a large number indice = _get_neighbors(50, int(row), int(col), feat_map, img_shp) if len(indice) == 0: continue # we can see the point points[point.seq] = point # print("Adding %s point" % point) # print("The point has been observed by %d frames" % len(point.frames)) # for frame_key, pixel_pos in point.frames.items(): for frame_key, pixel_pos in point.observations.items(): # frame = frames[frame_key - 1] frame = mapblock.findFrame(frame_key) px_l = frame.pixels.get(pixel_pos, None) if px_l is None: print("Could not find %s projection at Frame#%d pixel location %d" % ( point, frame_key, pixel_pos )) print(frame) raise Exception("Unexpected Value!") feat_l = px_l.feature # KNN Search dist = None min_dist, min_ind = np.inf, None for ind in indice: feat_r = kp_feats[ind] dist = _hamming_distance(feat_l, feat_r) if min_dist > dist: min_dist = dist min_ind = ind pass # indice # add to measurement x, y = kps[min_ind].pt H, W = img_shp[:2] px_r = cur_frame.pixels.get(int(y * W + x), None) if px_r is None: raise Exception("Unexpected Value!") measurements[point.seq] = Measurement(point, frame, px_l, cur_frame, px_r) # print("Adding measurement for %s" % point) # update sliding window slidingWindows.add(frame_key) # associate with frame pass # observations pass # pointCloud pass # detected_rois return points, measurements, list(slidingWindows) # checking whether our results from PoseOptimization close to this, see Tracker._PnP (PoseOptimization) method # defaults to cv2.solvePnPRansac class PnPSolver: MIN_INLIERS = 10 def __init__(self, frame, mapblock): self.frame = frame self._map = mapblock self._impl = cv2.solvePnPRansac self.inliers = None pass # @todo : TODO def solve(self, points, measurements): K = self.frame.camera.K pointCloud = [] observations = [] for _, point in points.items(): pointCloud.append(point.data) measurement = measurements[point.seq] observations.append(measurement.px2d2.data) if len(pointCloud) < 6: print("Not Enough Points for PnP Solver!") return None, None try: _, rot_vec, tvec, inliers = self._impl(np.float32(pointCloud), np.float32(observations), K, None, None, None, False, 100, 4.0, 0.99, None) except Exception as e: print(e) return None, None R, _ = cv2.Rodrigues(rot_vec) t = tvec.reshape((3,1)) if inliers is None or len(inliers) < self.MIN_INLIERS: print("inliners:", inliers) return None, None self.inliers = inliers R = np.linalg.inv(R) t = -R.dot(t) return R, t
StarcoderdataPython
4933492
from flask import Flask, render_template, request, redirect, url_for, g from flask_sqlalchemy import SQLAlchemy import jyserver.Flask as jsf import numpy as np import time import random from python_code.q_learning import QLearning from python_code.robot import _raspi import python_code.constantes as const # Si se está ejecutando en una Raspi, # determinar si es en producción (False - mediante Access Point) # o desarrollo (True - mediante cable ethernet) if _raspi: _dev = False # Creación de la aplicación Flask y establecimiento de la base de datos app = Flask(__name__) app.config['SQLALCHEMY_DATABASE_URI'] = 'sqlite:///./crawler-database.db' app.config['SQLALCHEMY_TRACK_MODIFICATIONS'] = False db = SQLAlchemy(app) db.init_app(app) class QTable(db.Model): ''' Modelo de la base de datos que establece una tabla de SQL donde estarán almacenadas las tablas Q entrenadas. ''' __tablename__ = 'qtable' id = db.Column(db.Integer, primary_key=True) q_table = db.Column(db.PickleType, nullable=False) @staticmethod def get_by_id(id): return User.query.get(id) @jsf.use(app) class App: ''' Clase que modela la aplicación Flask para su utilización con jyserver. Establece los metodos que pueden ser ejecutados a partir de eventos producidos en la interfaz web como si de javascript se tratara. De igual manera, permite la ejecución de las funciones de javascript creadas, accediendo mediante self.js. Aporta métodos a la vista para la ejecución de las funciones del algoritmo Q-Learning, así como las del movimiento del robot. ''' def __init__(self): ''' Constructor de la clase App. Almacena una instancia de la clase QLearning y carga una tabla Q desde la base de datos para almacenarla como tabla inicial. Si la entrada no se encuentra creada o la base de datos está vacía se crea dicha entrada y/o se almacena una tabla Q vacía (con todos sus valores en 0). ''' self.Q = QLearning(self) # Inicialización de las variables utilizadas para la administración de alertas en la vista self.post_params = False self.alertas = [] self.check = 0 # Cargado o inicialización de la base de datos if "qtable" in db.inspect(db.engine).get_table_names(): # Si la tabla existe en la base de datos database = QTable.query.all() if not database == []: # Si existe y tiene elementos, toma el último self.entrada_db = database[-1] q_table = self.entrada_db.q_table self.Q.inicializar_q_table(q_table) else: # Si existe pero se encuentra vacía, crea una entrada nueva self.Q.inicializar_q_table() # print(q_table) self.entrada_db = QTable(q_table=self.Q.q_table) db.session.add(self.entrada_db) db.session.commit() else: # Si la tabla no existe en la base de datos db.create_all() self.Q.inicializar_q_table() self.entrada_db = QTable(q_table=self.Q.q_table) db.session.add(self.entrada_db) db.session.commit() def entrenar(self): ''' Función que inicia el entrenamiento y guarda la tabla Q que ha sido generada tras la ejecución del mismo, en la base de datos. ''' self.Q.semaforo_done.acquire() self.Q.done = False self.Q.semaforo_done.release() q_table = self.Q.entrenar() self.entrada_db.query.update({"q_table" : q_table}) db.session.commit() def avanzar(self): ''' Función que inicia el movimiento del robot utilizando la tabla que se encuentra almacenada en la variable Q. Que puede ser una recientemente entrenada o la cargada inicialmente desde la BD. ''' self.Q.semaforo_done.acquire() self.Q.done = False self.Q.semaforo_done.release() self.Q.avanzar() def detener(self): ''' Detener la ejecución del entrenamiento o del movimiento segun corresponda. ''' self.Q.semaforo_done.acquire() self.Q.done=True self.Q.semaforo_done.release() def reset_table(self): ''' Función que resetea toda la tabla Q a 0 en Q, la actualiza en la interfaz y en la base de datos. ''' self.Q.inicializar_q_table() q_table = self.Q.q_table self.entrada_db.query.update({"q_table" : q_table}) db.session.commit() self.js.update_table(list(q_table.flatten()), list(self.Q.robot.reset())) @app.route('/', methods=['GET']) def index(): ''' Metodo correspondiente a la ruta "/" de la web. Envía algunos parámetros a la vista como la tabla Q inicial, los parámetros de entrenamiento, las alertas y las constantes definidas. ''' App.detener() # Si hubiese quedado en movimiento el Robot, el mismo es detenido # Valores a ser enviados a la vista q_table = App.Q.q_table config = App.Q.get_params() state = App.Q.robot.state # Parámetros enviados a la vista data={ 'titulo': 'Crawler Server', 'q_table': list(q_table.flatten()), 'config': config, 'state': state, 'check': App.check, 'alertas': App.alertas, 'minimos': const.minimos, 'maximos': const.maximos, 'steps': const.steps } # Si se han actualizado los parámetros de entrenamiento, limpia las variables de alerta if App.post_params: App.post_params = False App.check = 0 App.alertas = [] return App.render(render_template('index.html', data=data)) @app.route("/actualizar_parametros", methods=["POST"]) def actualizar_parametros(): ''' Se encarga de la gestión del formulario de actualización de los parámetros de entrenamiento. Actualiza los parámetros de entrenamiento utilizando los valores del formulario o seteando los valores por defecto según se indique. Realiza validaciones de valores máximos y mínimos de estos parámetros y agrega a la lista de alertas los resultados de la actualización. ''' App.post_params = True if 'aplicar' in request.form: # Si se ha clickeado en el botón aplicar # Se reciben los parámetros del modelo desde el formulario learning_rate = float(request.form['learning_rate']) discount_factor = float(request.form['discount_factor']) epsilon = float(request.form['epsilon']) learning_epsilon = float(request.form['learning_epsilon']) min_epsilon = float(request.form['min_epsilon']) max_movements = int(float(request.form['max_movements'])) win_reward = int(float(request.form['win_reward'])) loss_reward = int(float(request.form['loss_reward'])) dead_reward = int(float(request.form['dead_reward'])) loop_reward = int(float(request.form['loop_reward'])) # Checkeo de los valores mínimos y máximos recibidos, crea alertas App.check = 1 i = 0 if not(learning_rate>=const.minimos[i] and learning_rate<=const.maximos[i]): App.alertas.append(f"Learning Rate fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(discount_factor>=const.minimos[i] and discount_factor<=const.maximos[i]): App.alertas.append(f"Discount Factor fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(epsilon>=const.minimos[i] and epsilon<=const.maximos[i]): App.alertas.append(f"Epsilon fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(learning_epsilon>=const.minimos[i] and learning_epsilon<=const.maximos[i]): App.alertas.append(f"Learning Epsilon fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(min_epsilon>=const.minimos[i] and min_epsilon<=const.maximos[i]): App.alertas.append(f"Min Epsilon fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(max_movements>=const.minimos[i] and max_movements<=const.maximos[i]): App.alertas.append(f"Max Movements fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(win_reward>=const.minimos[i] and win_reward<=const.maximos[i]): App.alertas.append(f"Win Reward fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(loss_reward>=const.minimos[i] and loss_reward<=const.maximos[i]): App.alertas.append(f"Loss Reward fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(dead_reward>=const.minimos[i] and dead_reward<=const.maximos[i]): App.alertas.append(f"Dead Reward fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 i+=1 if not(loop_reward>=const.minimos[i] and loop_reward<=const.maximos[i]): App.alertas.append(f"Loop Reward fuera de los limites: ({const.minimos[i]}, {const.maximos[i]})") App.check = -1 if App.check == 1: # Si no hay errores, actualiza los parámetros y envia la anecdota App.Q.set_params( learning_rate, discount_factor, epsilon, learning_epsilon, min_epsilon, max_movements, win_reward, loss_reward, dead_reward, loop_reward ) App.alertas.append("Parámetros actualizados satisfactoriamente") elif 'reset' in request.form: # Si se ha clickeado en el botón resetear App.Q.set_default_params() App.check = 1 App.alertas.append("Parámetros actualizados satisfactoriamente") return redirect(url_for('index')) def pagina_no_encontrada(error): ''' Función que muestra el cartel de error 404 ''' data = { 'titulo': 'Error 404!' } return render_template('404.html', data=data), 404 if __name__=='__main__': ''' Programa principal Registra el manejador de error 404. Levanta el servidor de Flask en la dirección IP correspondiente. ''' app.register_error_handler(404, pagina_no_encontrada) if _raspi: if _dev: print(" * Red local mediante ethernet") app.run(host='0.0.0.0', port=5000) # Para red local mediante ethernet else: print(" * Access point") app.run(host='192.168.4.1', port=5000) # Cuando está como access point else: print(" * Run PC - Debug") app.run(debug=True) # Cuando está ejecutandose en PC
StarcoderdataPython
3478057
<reponame>felix-salfelder/sage """ Schur symmetric functions """ #***************************************************************************** # Copyright (C) 2007 <NAME> <<EMAIL>> # 2012 <NAME> <<EMAIL>> # # Distributed under the terms of the GNU General Public License (GPL) # # This code is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU # General Public License for more details. # # The full text of the GPL is available at: # # http://www.gnu.org/licenses/ #***************************************************************************** import classical import sage.libs.symmetrica.all as symmetrica from sage.rings.all import ZZ, QQ, Integer class SymmetricFunctionAlgebra_schur(classical.SymmetricFunctionAlgebra_classical): def __init__(self, Sym): """ A class for methods related to the Schur symmetric function basis INPUT: - ``self`` -- a Schur symmetric function basis - ``Sym`` -- an instance of the ring of the symmetric functions TESTS:: sage: s = SymmetricFunctions(QQ).s() sage: s == loads(dumps(s)) True sage: TestSuite(s).run(skip=['_test_associativity', '_test_distributivity', '_test_prod']) sage: TestSuite(s).run(elements = [s[1,1]+s[2], s[1]+2*s[1,1]]) """ classical.SymmetricFunctionAlgebra_classical.__init__(self, Sym, "Schur", 's') def _dual_basis_default(self): """ Returns the default value for ``self.dual_basis()`` This method returns the dual basis to the Schur basis with respect to the standard scalar product. Since the Schur basis is self-dual, it returns itself. EXAMPLES:: sage: s = SymmetricFunctions(QQ).s() sage: ds = s.dual_basis() sage: s is ds True sage: zee = lambda x : x.centralizer_size() sage: S = s.dual_basis(zee); S Dual basis to Symmetric Functions over Rational Field in the Schur basis sage: S[2,1].scalar(s[2,1]) 1 TESTS:: sage: s._dual_basis_default() is s.dual_basis() True """ return self def _multiply(self, left, right): # TODO: factor out this code for all bases (as is done for coercions) """ Returns the product of ``left`` and ``right``. INPUT: - ``self`` -- a Schur symmetric function basis - ``left``, ``right`` -- instances of the Schur basis ``self``. OUPUT: - an element of the Schur basis, the product of ``left`` and ``right`` TESTS:: sage: s = SymmetricFunctions(QQ).s() sage: a = s([2,1]) + 1; a s[] + s[2, 1] sage: a^2 # indirect doctest s[] + 2*s[2, 1] + s[2, 2, 1, 1] + s[2, 2, 2] + s[3, 1, 1, 1] + 2*s[3, 2, 1] + s[3, 3] + s[4, 1, 1] + s[4, 2] :: sage: QQx.<x> = QQ[] sage: s = SymmetricFunctions(QQx).s() sage: a = x^2*s([2,1]) + 2*x; a 2*x*s[] + x^2*s[2, 1] sage: a^2 4*x^2*s[] + 4*x^3*s[2, 1] + x^4*s[2, 2, 1, 1] + x^4*s[2, 2, 2] + x^4*s[3, 1, 1, 1] + 2*x^4*s[3, 2, 1] + x^4*s[3, 3] + x^4*s[4, 1, 1] + x^4*s[4, 2] :: :: sage: 0*s([2,1]) 0 """ #Use symmetrica to do the multiplication A = left.parent() R = A.base_ring() if R is ZZ or R is QQ: if left and right: return symmetrica.mult_schur_schur(left, right) else: return A._from_dict({}) z_elt = {} for (left_m, left_c) in left._monomial_coefficients.iteritems(): for (right_m, right_c) in right._monomial_coefficients.iteritems(): c = left_c * right_c d = symmetrica.mult_schur_schur({left_m:Integer(1)}, {right_m:Integer(1)})._monomial_coefficients for m in d: if m in z_elt: z_elt[ m ] = z_elt[m] + c * d[m] else: z_elt[ m ] = c * d[m] return A._from_dict(z_elt) def coproduct_on_basis(self, mu): r""" Returns the coproduct of ``self(mu)``. Here ``self`` is the basis of Schur functions in the ring of symmetric functions. INPUT: - ``self`` -- a Schur symmetric function basis - ``mu`` -- a partition OUTPUT: - an element of the tensor square of the Schur basis EXAMPLES:: sage: Sym = SymmetricFunctions(QQ) sage: s = Sym.schur() sage: s.coproduct_on_basis([2]) s[] # s[2] + s[1] # s[1] + s[2] # s[] """ import sage.libs.lrcalc.lrcalc as lrcalc T = self.tensor_square() return T._from_dict( lrcalc.coprod(mu, all=1) ) class Element(classical.SymmetricFunctionAlgebra_classical.Element): def __pow__(self, n): """ Returns the naive powering of an instance of ``self``. INPUT: - ``self`` -- an element of the Schur symmetric function basis - ``n`` -- a nonnegative integer OUTPUT: - the ``n`-th power of an instance of ``self`` in the Schur basis See ``Monoids.Element.__pow__`` and ``Monoids.Element._pow_naive``. EXAMPLES:: sage: s = SymmetricFunctions(QQ[x]).s() sage: len(s([2,1])^8) # long time (~ 4 s) 1485 sage: len(s([2,1])^9) # long time (~10 s) 2876 Binary exponentiation does not seem to bring any speedup for schur functions. This most likely is because of the explosion of the number of terms. # sage: s = SymmetricFunctions(QQ).s(); y = s([1]) # sage: n = 24 # sage: %timeit y**n # using binary exponentiation # 10 loops, best of 3: 1.22 s per loop # sage: %timeit prod(y for i in range(n)) # 10 loops, best of 3: 1.06 s per loop With polynomial coefficients, this is actually much *slower* (although this should be profiled further; there seems to be an unreasonable number of polynomial multiplication involved, besides the fact that 1 * QQ[x].one() currently involves a polynomial multiplication) # sage: sage: s = SymmetricFunctions(QQ[x]).s() # sage: y = s([2,1]) # sage: %timeit y**7 # 10 loops, best of 3: 18.9 s per loop # sage: %timeit y*y*y*y*y*y*y # 10 loops, best of 3: 1.73 s per loop Todo: do the same for the other non multiplicative bases? """ return self._pow_naive(n) def omega(self): """ Returns the image of ``self`` under the Frobenius / omega automorphism. INPUT: - ``self`` -- an element of the Schur symmetric function basis OUTPUT: - the image of ``self`` under omega as an element of the Schur basis EXAMPLES:: sage: s = SymmetricFunctions(QQ).s() sage: s([2,1]).omega() s[2, 1] sage: s([2,1,1]).omega() s[3, 1] """ conj = lambda part: part.conjugate() return self.map_support(conj) def scalar(self, x, zee=None): """ Returns the standard scalar product between ``self`` and `x`. Note that the Schur functions are self-dual with respect to this scalar product. They are also lower-triangularly related to the monomial symmetric functions with respect to this scalar product. INPUT: - ``self`` -- an element of the Schur symmetric function basis - ``x`` -- an element of the symmetric functions - ``zee`` -- an optional function that specifies the scalar product between two power sum symmetric functions indexed by the same partition. If ``zee`` is not specified. OUTPUT: - the scalar product between ``self`` and ``x`` EXAMPLES:: sage: s = SymmetricFunctions(ZZ).s() sage: a = s([2,1]) sage: b = s([1,1,1]) sage: c = 2*s([1,1,1]) sage: d = a + b sage: a.scalar(a) 1 sage: b.scalar(b) 1 sage: b.scalar(a) 0 sage: b.scalar(c) 2 sage: c.scalar(c) 4 sage: d.scalar(a) 1 sage: d.scalar(b) 1 sage: d.scalar(c) 2 :: sage: m = SymmetricFunctions(ZZ).monomial() sage: p4 = Partitions(4) sage: l = [ [s(p).scalar(m(q)) for q in p4] for p in p4] sage: matrix(l) [ 1 0 0 0 0] [-1 1 0 0 0] [ 0 -1 1 0 0] [ 1 -1 -1 1 0] [-1 2 1 -3 1] """ if zee is None: s = self.parent() R = s.base_ring() one = R(1) f = lambda p1, p2: one x = s(x) return s._apply_multi_module_morphism(self, x, f, orthogonal=True) else: p = self.parent().realization_of().power() return p(self).scalar( x, zee=zee ) def expand(self, n, alphabet='x'): """ Expands the symmetric function as a symmetric polynomial in `n` variables. INPUT: - ``self`` -- an element of the Schur symmetric function basis - ``n`` -- a positive integer - ``alphabet`` -- a variable for the expansion (default: `x`) OUTPUT: a monomial expansion of an instance of ``self`` in `n` variables EXAMPLES:: sage: s = SymmetricFunctions(QQ).s() sage: a = s([2,1]) sage: a.expand(2) x0^2*x1 + x0*x1^2 sage: a.expand(3) x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 sage: a.expand(4) x0^2*x1 + x0*x1^2 + x0^2*x2 + 2*x0*x1*x2 + x1^2*x2 + x0*x2^2 + x1*x2^2 + x0^2*x3 + 2*x0*x1*x3 + x1^2*x3 + 2*x0*x2*x3 + 2*x1*x2*x3 + x2^2*x3 + x0*x3^2 + x1*x3^2 + x2*x3^2 sage: a.expand(2, alphabet='y') y0^2*y1 + y0*y1^2 sage: a.expand(2, alphabet=['a','b']) a^2*b + a*b^2 sage: s([1,1,1,1]).expand(3) 0 sage: (s([]) + 2*s([1])).expand(3) 2*x0 + 2*x1 + 2*x2 + 1 """ condition = lambda part: len(part) > n return self._expand(condition, n, alphabet) # Backward compatibility for unpickling from sage.structure.sage_object import register_unpickle_override register_unpickle_override('sage.combinat.sf.schur', 'SymmetricFunctionAlgebraElement_schur', SymmetricFunctionAlgebra_schur.Element)
StarcoderdataPython
1902051
from osbot_utils.utils.Files import file_create, file_not_exists from osbot_utils.utils.Process import start_process def run(event, context=None): target_host = event.get('target_host' ) ssh_key = event.get('ssh_key' ) ssh_key_name = event.get('ssh_key_name' ) ssh_user = event.get('ssh_user' ) ssh_command = event.get('ssh_command' ) # port_forward = event.get('port_forwards' ) # not implemented: include_stderr = event.get('include_stderr') ssh_key_file = f'/tmp/{ssh_key_name}' if file_not_exists(ssh_key_file): # create local key if it doesn't exist file_create(ssh_key_file, ssh_key) start_process('chmod', ['600', ssh_key_file]) ssh_params = ['-o', 'StrictHostKeyChecking=no'] # todo: add support for updating the local hosts file if ssh_key_file: ssh_params.append('-i') # set key to use ssh_params.append(ssh_key_file) # if port_forward: # todo see if we do actually need this (main use case would be to allow direct HTTP access to an internal server) # local_port = port_forward.get('local_port' ) # need to see if Lambda will allow binding ports like this # remote_ip = port_forward.get('remote_ip' ) # remote_port = port_forward.get('remote_port') ssh_params.append(f'{ssh_user}@{target_host}') # set user and target ip ssh_params.append(ssh_command) # add command to execute result = start_process("ssh", ssh_params) # execute command if include_stderr: # see if we need to include stderr in return value return result.get('stdout') + result.get('stderr') return result.get('stdout')
StarcoderdataPython
8082864
#!/usr/bin/python import os, os.path, re, copy from ..utils.misc import json_dumps, get_string try: from html import escape except ImportError: from cgi import escape __all__ = ["add_entries"] config = {"__Instructions__":"In filename and main_header, {} is replaced with the log title", "path": os.path.join(os.path.expanduser('~'),'Dropbox','Journal'), "filename":"Journal_{}.md","main_header":"Journal for {}", "short_date":"%Y-%m-%d","long_date":"%x", "date_time":"%c"} space_re = re.compile('\s+') def html_escape(input): return escape(input, True) def add_entries_helper(entries_to_send, entries, key): if not entries: return if not key: return if not key.replace(os.sep,'.') in entries_to_send: entries_to_send[key.replace(os.sep,'.')] = {} subs = find_sub_keys(entries, key) if len(subs) > 0: entries_to_send[key.replace(os.sep,'.')]["subs"] = {} for sk in subs: add_entries_helper(entries_to_send[key.replace(os.sep,'.')]["subs"], entries, sk) if key in entries: entries_to_send[key.replace(os.sep,'.')]["entries"] = entries[key] del entries[key] for e in entries_to_send[key.replace(os.sep,'.')]["entries"]: e["original"] = copy.deepcopy(e) e["title"] = space_re.sub(' ', e["title"]) if "tags" in e: e["tags"] = map(get_string, e["tags"]) for e_key in e.keys(): if e_key == "note" or e_key == "notes": val = re.sub('^ ', '', re.sub('^', ' ', e[e_key], 0, re.M)) while re.search('\n \n', val): val = re.sub('\n \n', '\n\n', val) e[e_key] = val if not entries_to_send[key.replace(os.sep,'.')]: del entries_to_send[key.replace(os.sep,'.')] def find_sub_keys(entries, key): if not entries: return [] if not key: return [] r = [] for k in entries: if k.startswith(key + os.sep): r.append(k) return r def get_diary(entries, key, header = '', use_title = False): diary = "" if key in entries: for e in entries[key]: if use_title: diary = diary + '### ' + e['title'] + "\n\n" diary = diary + e["text"] diary = diary + "\n\n" del entries[key] for k in find_sub_keys(entries, key): for e in entries[k]: if use_title: diary = diary + '### ' + e['title'] + "\n\n" diary = diary + e["text"] diary = diary + "\n\n" del entries[k] if bool(header) and bool(diary): diary = '## ' + header + '\n\n' + diary return diary def add_entries(entries): if not entries: return import os, copy, codecs, jinja2 if not os.path.isdir(config["path"]): os.mkdir(config["path"]) c = copy.deepcopy(entries) entries_to_send = {} date = c[list(c.keys())[0]][0]["date"] diary = get_diary(c, "diary") diary = diary + get_diary(c, "dreams", "Dreams", True) f = os.path.join(config["path"], config["filename"].format(date.strftime(config["short_date"]))) fo = codecs.open(f, 'w', encoding='utf-8') title = config["main_header"].format(date.strftime(config["long_date"])) for key in list(c.keys()): if not key in c: continue if key.count(os.sep) > 0: i = key.index(os.sep) add_entries_helper(entries_to_send, c, key[:i]) else: add_entries_helper(entries_to_send, c, key) templates_path = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'templates') env = jinja2.Environment(loader=jinja2.FileSystemLoader(templates_path)) env.filters['to_json'] = json_dumps env.filters['html_escape'] = html_escape temp = env.get_template("markdown.tpl") out = temp.render(title=title, diary=diary, config=config, entries=entries_to_send) fo.write(out) fo.close()
StarcoderdataPython
1658930
<reponame>andrew0harney/Semantic-encoding-model from ldaUtils import LdaEncoder,LdaEncoding,createLabeledCorpDict import numpy as np from gensim import models import pickle import heapq #<NAME> 28/04/14 #This scripts produces nExemplars for each of the topic models #(Ordered by probability of belonging to a topic) nExemplars = 10 labeledDocuments = # imgaeSourceReg = # #Load documents to be examined docs = createLabeledCorpDict(labeledDocuments,imgaeSourceReg,output=True) fnames = docs.keys() #Get file names modelDir = # #Load LDA model modelName = # lda = models.LdaModel.load(modelDir+modelName+'model') ldaDict = pickle.load(open(modelDir+modelName+'dictionary','r')) ldaEncoder = LdaEncoder(ldaDict,docs,lda) #Probability encoding of each documents encoding = [] #Encode each of the files for fname in fnames: encoding.append(LdaEncoding(fname,ldaEncoder[{'label':fname}])) #Output the topic nExemplars for each topic outf = file(modelDir+modelName+'exemplars','w') for i in range(ntopics): print 'Fininding exempalars for topic '+str(i) [e.setTopicN(i) for e in encoding] #Set the topic number to e compared exemplars = heapq.nlargest(nExemplars,encoding) #Create limited heap outf.write('Topic %d\n%s\n'%(i,'_'*10)) outf.write(str([exemplar.__str__(topicN=i) for exemplar in exemplars])+'\n\n') outf.close()
StarcoderdataPython
8071312
<reponame>Bazinga0426/Crowd-Counting-for-FYP import cv2 import os, time import random import pandas as pd import torch import torch.nn as nn from torch.autograd import Variable import numpy as np try: from termcolor import cprint except ImportError: cprint = None try: from pycrayon import CrayonClient except ImportError: CrayonClient = None def log_print(text, color=None, on_color=None, attrs=None): if cprint is not None: cprint(text, color=color, on_color=on_color, attrs=attrs) else: print(text) class Timer(object): def __init__(self): self.tot_time = 0. self.calls = 0 self.start_time = 0. self.diff = 0. self.average_time = 0. def tic(self): self.start_time = time.time() def toc(self, average=True): self.diff = time.time() - self.start_time self.tot_time += self.diff self.calls += 1 self.average_time = self.tot_time / self.calls if average: return self.average_time else: return self.diff class ImgDataLoader(): def __init__(self, data_path, gt_path, shuffle=False, gt_downsample=False, pre_load=False): self.data_path = data_path self.gt_path = gt_path self.gt_downsample = gt_downsample self.pre_load = pre_load self.data_files = [filename for filename in os.listdir(data_path) \ if os.path.isfile(os.path.join(data_path, filename))] self.data_files.sort() self.shuffle = shuffle if shuffle: random.seed(2020) self.num_samples = len(self.data_files) self.blob_list = {} self.id_list = [i for i in range(0, self.num_samples)] if self.pre_load: idx = 0 for filename in self.data_files: img = cv2.imread(os.path.join(self.data_path, filename), 0) img = img.astype(np.float32, copy=False) ht = img.shape[0] wd = img.shape[1] ht_1 = int((ht / 4) * 4) wd_1 = int((wd / 4) * 4) img = cv2.resize(img, (wd_1, ht_1)) img = img.reshape((1, 1, img.shape[0], img.shape[1])) den = pd.read_csv(os.path.join(self.gt_path, os.path.splitext(filename)[0] + '.csv'), sep=',', header=None).values#.as_matrix() den = den.astype(np.float32, copy=False) if self.gt_downsample: wd_1 = wd_1 // 4 ht_1 = ht_1 // 4 den = cv2.resize(den, (wd_1, ht_1)) den = den * ((wd * ht) / (wd_1 * ht_1)) else: den = cv2.resize(den, (wd_1, ht_1)) den = den * ((wd * ht) / (wd_1 * ht_1)) den = den.reshape((1, 1, den.shape[0], den.shape[1])) blob = {} blob['data'] = img blob['gt_density'] = den blob['filename'] = filename self.blob_list[idx] = blob idx = idx + 1 if idx % 500 == 0: print('Loaded ', idx, '/', self.num_samples, 'files') print(' Loading images completed', idx, 'files') def __iter__(self): if self.shuffle: if self.pre_load: random.shuffle(self.id_list) else: random.shuffle(self.data_files) files = self.data_files id_list = self.id_list for idx in id_list: if self.pre_load: blob = self.blob_list[idx] blob['idx'] = idx else: filename = files[idx] img = cv2.imread(os.path.join(self.data_path, filename), 0) img = img.astype(np.float32, copy=False) ht = img.shape[0] wd = img.shape[1] ht_1 = (ht // 4) * 4 wd_1 = (wd // 4) * 4 img = cv2.resize(img, (wd_1, ht_1)) img = img.reshape((1, 1, img.shape[0], img.shape[1])) den = pd.read_csv(os.path.join(self.gt_path, os.path.splitext(filename)[0] + '.csv'), sep=',', header=None).as_matrix() den = den.astype(np.float32, copy=False) if self.gt_downsample: wd_1 = wd_1 // 4 ht_1 = ht_1 // 4 den = cv2.resize(den, (wd_1, ht_1)) den = den * ((wd * ht) / (wd_1 * ht_1)) else: den = cv2.resize(den, (wd_1, ht_1)) den = den * ((wd * ht) / (wd_1 * ht_1)) den = den.reshape((1, 1, den.shape[0], den.shape[1])) blob = {} blob['data'] = img blob['gt_density'] = den blob['filename'] = filename yield blob def get_num_samples(self): return self.num_samples class MCNN(nn.Module): ''' Multi-column CNN ''' def __init__(self, bn=False): super(MCNN, self).__init__() self.branch1 = nn.Sequential(Conv2d(1, 16, 9, same_padding=True, bn=bn), nn.MaxPool2d(2),Conv2d(16, 32, 7, same_padding=True, bn=bn),nn.MaxPool2d(2), Conv2d(32, 16, 7, same_padding=True, bn=bn), Conv2d(16, 8, 7, same_padding=True, bn=bn)) self.branch2 = nn.Sequential(Conv2d(1, 20, 7, same_padding=True, bn=bn), nn.MaxPool2d(2), Conv2d(20, 40, 5, same_padding=True, bn=bn), nn.MaxPool2d(2), Conv2d(40, 20, 5, same_padding=True, bn=bn), Conv2d(20, 10, 5, same_padding=True, bn=bn)) self.branch3 = nn.Sequential(Conv2d(1, 24, 5, same_padding=True, bn=bn), nn.MaxPool2d(2),Conv2d(24, 48, 3, same_padding=True, bn=bn),nn.MaxPool2d(2), Conv2d(48, 24, 3, same_padding=True, bn=bn), Conv2d(24, 12, 3, same_padding=True, bn=bn)) self.fuse = nn.Sequential(Conv2d(30, 1, 1, same_padding=True, bn=bn)) def forward(self, im_data): x1 = self.branch1(im_data) x2 = self.branch2(im_data) x3 = self.branch3(im_data) x = torch.cat((x1, x2, x3), 1) x = self.fuse(x) return x class Conv2d(nn.Module): def __init__(self, in_channels, out_channels, kernel_size, stride=1, relu=True, same_padding=False, bn=False): super(Conv2d, self).__init__() padding = int((kernel_size - 1) / 2) if same_padding else 0 self.conv = nn.Conv2d(in_channels, out_channels, kernel_size, stride, padding=padding) self.bn = nn.BatchNorm2d(out_channels, eps=0.001, momentum=0, affine=True) if bn else None self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.conv(x) if self.bn is not None: x = self.bn(x) if self.relu is not None: x = self.relu(x) return x class FC(nn.Module): def __init__(self, in_features, out_features, relu=True): super(FC, self).__init__() self.fc = nn.Linear(in_features, out_features) self.relu = nn.ReLU(inplace=True) if relu else None def forward(self, x): x = self.fc(x) if self.relu is not None: x = self.relu(x) return x def save_net(filename, net): import h5py h5f = h5py.File(filename, mode='w') for k, v in net.state_dict().items(): h5f.create_dataset(k, data=v.cpu().numpy()) def load_net(filename, net): import h5py h5f = h5py.File(filename, mode='r') for k, v in net.state_dict().items(): param = torch.from_numpy(np.asarray(h5f[k])) v.copy_(param) def np_to_variable(x, is_cuda=True, is_training=False, dtype=torch.FloatTensor): if is_training: v = Variable(torch.from_numpy(x).type(dtype)) else: v = Variable(torch.from_numpy(x).type(dtype), requires_grad=False, volatile=True) if is_cuda: v = v.cuda() return v def set_trainable(model, requires_grad): for param in model.parameters(): param.requires_grad = requires_grad def weights_normal_init(model, dev=0.01): if isinstance(model, list): for m in model: weights_normal_init(m, dev) else: for m in model.modules(): if isinstance(m, nn.Conv2d): # print torch.sum(m.weight) m.weight.data.normal_(0.0, dev) if m.bias is not None: m.bias.data.fill_(0.0) elif isinstance(m, nn.Linear): m.weight.data.normal_(0.0, dev) class CrowdCounter(nn.Module): def __init__(self): super(CrowdCounter, self).__init__() self.DME = MCNN() self.loss_fn = nn.MSELoss() @property def loss(self): return self.loss_mse def forward(self, im_data, gt_data=None): im_data = np_to_variable(im_data, is_cuda=True, is_training=self.training) img_map = self.DME(im_data) if self.training: # print('gt_data') gt_data = np_to_variable(gt_data, is_cuda=True, is_training=self.training) self.loss_mse = self.build_loss(img_map, gt_data) return img_map def build_loss(self, img_map, gt_data): loss = self.loss_fn(img_map, gt_data) return loss def evaluate_model(trained_model, data_loader): net = CrowdCounter() load_net(trained_model, net) net.cuda() net.eval() mae = 0.0 mse = 0.0 for blob in data_loader: im_data = blob['data'] gt_data = blob['gt_density'] img_map = net(im_data, gt_data) img_map = img_map.data.cpu().numpy() real_count = np.sum(gt_data) pre_count = np.sum(img_map) mae += abs(real_count - pre_count) mse += ((real_count - pre_count) * (real_count - pre_count)) mae = mae / data_loader.get_num_samples() mse = np.sqrt(mse / data_loader.get_num_samples()) return mae, mse
StarcoderdataPython
11352069
friends = ["Gaurav", "Kritika", "Sachin", "Batra", "Taya", "Taya"] print("List friends: " + str(friends)) friends.sort() print("Sorted friends: " + str(friends)) # sort does not work on complex list while reverse does numbers = [1, 2, 3, 4, 5] print("List numbers: " + str(numbers)) friends.extend(numbers) print("Extend numbers to friends: " + str(friends)) friends.reverse() print("Reverse sort friends: " + str(friends)) friends.append("Me") print("Append Me to friends: " + str(friends)) friends.insert(0, "Alok") print("Insert Alok at the beginning of friends: " + str(friends)) friends.remove("Me") print("Remove Me from friends: " + str(friends)) friends.pop() print("Pop last element from friends" + str(friends)) print("Index of Taya: " + str(friends.index("Taya"))) print("Count of Taya: " + str(friends.count("Taya"))) friends2 = friends.copy() print("Copy for friends, friends2: ", str(friends2)) friends.clear() print("Cleared friends list: " + str(friends))
StarcoderdataPython
3520824
<reponame>bozcani/yolov3-tensorflow2 # -*- coding: utf-8 -*- import numpy as np import tensorflow as tf from tensorflow.keras import layers from tensorflow.keras.regularizers import l2 import time from absl import app, flags, logging def create_model(size, yolo_anchors, yolo_anchor_masks, classes, training=False): inputs = tf.keras.Input(shape=(size, size, 3)) outputs = YoloV3(size, yolo_anchors, yolo_anchor_masks, classes)(inputs, training=training) return tf.keras.Model(inputs, outputs, name='yolov3') class DarknetConv(layers.Layer): def __init__(self, filters, size, strides=1, is_batch_norm=True): super(DarknetConv, self).__init__() self.filters = filters self.size = size self.is_batch_norm = is_batch_norm self.strides = strides self.zeropadding = layers.ZeroPadding2D(((1,0),(1,0))) self.conv2d = layers.Conv2D(filters, size, strides, padding = ('same' if strides == 1 else 'valid'), use_bias = not is_batch_norm, kernel_regularizer=l2(0.0005)) self.batchnorm = layers.BatchNormalization(momentum = 0.9, epsilon = 1e-05) self.leakyrelu = layers.LeakyReLU(alpha=0.1) def call(self, x, training=True): if self.strides > 1: x = self.zeropadding(x) x = self.conv2d(x) if self.is_batch_norm : x = self.batchnorm(x) x = self.leakyrelu(x) return x class DarknetResidual(layers.Layer): def __init__(self, filters): super(DarknetResidual, self).__init__() self.filters = filters self.darknetconv1 = DarknetConv(filters, 1) self.darknetconv2 = DarknetConv(filters * 2, 3) self.add = layers.Add() def call(self, x, training=True): shortcut = x x = self.darknetconv1(x, training=training) x = self.darknetconv2(x, training=training) x = self.add([shortcut, x]) return x class DarknetBlock(layers.Layer): def __init__(self, filters, blocks): super(DarknetBlock, self).__init__() self.filters = filters self.blocks = blocks self.darknetconv = DarknetConv(filters, 3, strides=2) self.darknetblocks = [DarknetResidual(filters//2) for _ in range(blocks)] def call(self, x, training=True): x = self.darknetconv(x, training=training) for i in range(self.blocks): x = self.darknetblocks[i](x, training=training) return x class Darknet(tf.keras.Model): def __init__(self, name, **kwargs): super(Darknet, self).__init__(name=name, **kwargs) #self.name = name self.conv1 = DarknetConv(32, 3) self.block1 = DarknetBlock(64, 1) self.block2 = DarknetBlock(128, 2) self.block3 = DarknetBlock(256, 8) self.block4 = DarknetBlock(512, 8) self.block5 = DarknetBlock(1024, 4) def call(self, x, training=True): x = self.conv1(x, training=training) x = self.block1(x, training=training) x = self.block2(x, training=training) x = route_1 = self.block3(x, training=training) x = route_2 = self.block4(x, training=training) x = self.block5(x, training=training) return route_1, route_2, x class YoloConv(layers.Layer): def __init__(self, filters, is_first=True): super(YoloConv, self).__init__() self.is_first = is_first if not self.is_first : self.conv1 = DarknetConv(filters, 1) self.upsampling = layers.UpSampling2D() self.concat = layers.Concatenate() self.conv2 = DarknetConv(filters, 1) self.conv3 = DarknetConv(filters * 2, 3) self.conv4 = DarknetConv(filters, 1) self.conv5 = DarknetConv(filters * 2, 3) self.conv6 = DarknetConv(filters, 1) def call(self, x, training=True): if not self.is_first : x, x_skip = x x = self.conv1(x, training=training) x = self.upsampling(x) x = self.concat([x, x_skip]) x = self.conv2(x, training=training) x = self.conv3(x, training=training) x = self.conv4(x, training=training) x = self.conv5(x, training=training) x = self.conv6(x, training=training) return x class YoloOutput(layers.Layer): def __init__(self, filters, anchors, classes ): super(YoloOutput, self).__init__() self.filters = filters self.anchors = anchors self.classes = classes self.darkconv = DarknetConv(filters*2, 3) self.biasconv = DarknetConv(anchors * (classes + 5), 1, is_batch_norm=False) def call(self, x, training=True): x = self.darkconv(x, training=training) x = self.biasconv(x, training=training) x = tf.reshape(x, (-1, tf.shape(x)[1], tf.shape(x)[2], self.anchors, self.classes+5)) return x class YoloV3(tf.keras.Model): def __init__(self, size, anchors, anchor_masks, classes ): super(YoloV3, self).__init__() self.size = size self.anchors = anchors / size self.anchor_masks = anchor_masks self.classes = classes self.darknet53 = Darknet(name='yolo_darknet') self.yoloconv1 = YoloConv(512) self.output1 = YoloOutput(512, len(self.anchor_masks[0]), classes) self.yoloconv2 = YoloConv(256, is_first=False) self.output2 = YoloOutput(256, len(self.anchor_masks[1]), classes) self.yoloconv3 = YoloConv(128, is_first=False) self.output3 = YoloOutput(128, len(self.anchor_masks[2]), classes) ''' self.yolo_blocks = [] self.yolo_outputs = [] self.yolo_num_layers = [512, 256, 128] for i in range(len(self.yolo_num_layers)): self.yolo_blocks.append(YoloConv(self.yolo_num_layers[i])) self.yolo_outputs.append(YoloOutput(self.yolo_num_layers[i], len(self.anchor_masks[i]), classes) ''' def call(self, x, training=True): route_1, route_2, x = self.darknet53(x, training=training) x = self.yoloconv1(x, training=training) output_0 = self.output1(x, training=training) x = self.yoloconv2((x, route_2), training=training) output_1 = self.output2(x, training=training) x = self.yoloconv3((x, route_1), training=training) output_2 = self.output3(x, training=training) ''' outputs = [] for i in range(len(self.yolo_num_layers)): x = yolo_blocks[i](x, training=training) outputs[i] = ''' boxes_0 = self.yolo_boxes(output_0, self.anchors[self.anchor_masks[0]], self.classes) boxes_1 = self.yolo_boxes(output_1, self.anchors[self.anchor_masks[1]], self.classes) boxes_2 = self.yolo_boxes(output_2, self.anchors[self.anchor_masks[2]], self.classes) if training : print('traing true') return (boxes_0, boxes_1, boxes_2) else: print('traing false') pred_0 = tf.reshape(boxes_0, (tf.shape(boxes_0)[0], len(self.anchor_masks[0]) * tf.shape(boxes_0)[1] * tf.shape(boxes_0)[2], 5 + self.classes)) pred_1 = tf.reshape(boxes_1, (tf.shape(boxes_1)[0], len(self.anchor_masks[1]) * tf.shape(boxes_1)[1] * tf.shape(boxes_1)[2], 5 + self.classes)) pred_2 = tf.reshape(boxes_2, (tf.shape(boxes_2)[0], len(self.anchor_masks[2]) * tf.shape(boxes_2)[1] * tf.shape(boxes_2)[2], 5 + self.classes)) boxes = tf.concat([pred_0, pred_1, pred_2], axis=1) return self.yolo_nms(boxes, self.anchors, self.anchor_masks, self.classes) def yolo_boxes(self, pred, anchors, classes): grid_size = tf.shape(pred)[1] #pred = tf.reshape(pred, (tf.shape(pred)[0], len(anchors) * grid_size * grid_size, 5 + classes)) box_centers, box_wh, confidence, class_probs = tf.split(pred, (2, 2, 1, classes), axis=-1) box_centers = tf.sigmoid(box_centers) confidence = tf.sigmoid(confidence) class_probs = tf.sigmoid(class_probs) pred_box = tf.concat((box_centers, box_wh), axis=-1) grid = tf.meshgrid(tf.range(grid_size), tf.range(grid_size)) grid = tf.expand_dims(tf.stack(grid, axis=-1), axis=2) box_centers = (box_centers + tf.cast(grid, tf.float32)) / tf.cast(grid_size, tf.float32) box_wh = tf.exp(box_wh) * anchors box_x1y1 = box_centers - box_wh /2 box_x2y2 = box_centers + box_wh /2 bbox = tf.concat([box_x1y1, box_x2y2], axis=-1) pred = tf.concat([bbox, confidence, class_probs], axis=-1) print(pred.shape) #logging.info(pred.shape) #pred = tf.reshape(pred, (tf.shape(pred)[0], len(anchors) * grid_size * grid_size, 5 + classes)) return pred def yolo_nms(self, boxes, anchors, masks, classes): bbox, confs, class_probs = tf.split(boxes, [4,1,-1], axis=-1) scores = confs * class_probs ''' logging.info(bbox.shape) bbox = tf.reshape(bbox, [-1, 4]) scores = tf.reshape(scores, [-1, classes]) mask = tf.greater_equal(scores, tf.constant(0.5)) boxes_list, label_list, score_list = [], [], [] for i in range(classes): filter_boxes = tf.boolean_mask(bbox, mask[:,i]) filter_scores = tf.boolean_mask(scores[:,i], mask[:,i]) nms_indices = tf.image.non_max_suppression(boxes=filter_boxes, scores=filter_scores, max_output_size=tf.constant(50), iou_threshold=tf.constant(0.5), name='nms_indices') label_list.append(tf.ones_like(tf.gather(filter_scores, nms_indices), 'int32')*i) boxes_list.append(tf.gather(filter_boxes, nms_indices)) score_list.append(tf.gather(filter_scores, nms_indices)) #print("=> nms time=%.2f ms" %(1000*(time.time()-start))) boxes = tf.concat(boxes_list, axis=0) scores = tf.concat(score_list, axis=0) label = tf.concat(label_list, axis=0) above 864ms 2000ms ''' start = time.time() boxes, scores, classes, valid_detections = tf.image.combined_non_max_suppression( boxes=tf.reshape(bbox, (tf.shape(bbox)[0], -1, 1, 4)), scores=tf.reshape(scores, (tf.shape(scores)[0], -1, tf.shape(scores)[-1])), max_output_size_per_class=10, max_total_size=50, iou_threshold=0.5, score_threshold=0.5 ) logging.info("=> combined_non_max_suppression time=%.2f ms" %(1000*(time.time()-start))) return boxes, scores, classes, valid_detections #return boxes, scores, label
StarcoderdataPython
4972720
"""Terraform module.""" import logging import os import re import subprocess import sys from future.utils import viewitems import hcl from send2trash import send2trash from . import RunwayModule, run_module_command, warn_on_skipped_configs from ..util import change_dir, which LOGGER = logging.getLogger('runway') def gen_backend_tfvars_files(environment, region): """Generate possible Terraform backend tfvars filenames.""" return [ "backend-%s-%s.tfvars" % (environment, region), "backend-%s.tfvars" % environment, "backend-%s.tfvars" % region, "backend.tfvars" ] def get_backend_tfvars_file(path, environment, region): """Determine Terraform backend file.""" backend_filenames = gen_backend_tfvars_files(environment, region) for name in backend_filenames: if os.path.isfile(os.path.join(path, name)): return name return backend_filenames[-1] # file not found; fallback to last item def gen_workspace_tfvars_files(environment, region): """Generate possible Terraform workspace tfvars filenames.""" return [ # Give preference to explicit environment-region files "%s-%s.tfvars" % (environment, region), # Fallback to environment name only "%s.tfvars" % environment ] def get_workspace_tfvars_file(path, environment, region): """Determine Terraform workspace-specific tfvars file name.""" for name in gen_workspace_tfvars_files(environment, region): if os.path.isfile(os.path.join(path, name)): return name return "%s.tfvars" % environment # fallback to generic name def remove_stale_tf_config(path, backend_tfvars_file): """Ensure TF is ready for init. If deploying a TF module to multiple regions (or any scenario requiring multiple backend configs), switching the backend will cause TF to compare the old and new backends. This will frequently cause an access error as the creds/role for the new backend won't always have access to the old one. This method compares the defined & initialized backend configs and trashes the terraform directory if they're out of sync. """ terrform_dir = os.path.join(path, '.terraform') tfstate_filepath = os.path.join(terrform_dir, 'terraform.tfstate') if os.path.isfile(tfstate_filepath): LOGGER.debug('Comparing previous & desired Terraform backend ' 'configs') with open(tfstate_filepath, 'r') as fco: state_config = hcl.load(fco) if state_config.get('backend') and state_config['backend'].get('config'): # noqa backend_tfvars_filepath = os.path.join(path, backend_tfvars_file) with open(backend_tfvars_filepath, 'r') as fco: backend_config = hcl.load(fco) if any(state_config['backend']['config'][key] != value for (key, value) in viewitems(backend_config)): # noqa pylint: disable=line-too-long LOGGER.info("Desired and previously initialized TF " "backend config is out of sync; trashing " "local TF state directory %s", terrform_dir) send2trash(terrform_dir) def run_terraform_init(module_path, backend_file_name, env_name, env_region, env_vars): """Run Terraform init.""" init_cmd = ['terraform', 'init'] if os.path.isfile(os.path.join(module_path, backend_file_name)): # noqa LOGGER.info('Using backend config file %s', backend_file_name) remove_stale_tf_config(module_path, backend_file_name) run_module_command( cmd_list=init_cmd + ['-backend-config=%s' % backend_file_name], # noqa pylint: disable=line-too-long env_vars=env_vars ) else: LOGGER.info( "No backend tfvars file found -- looking for one " "of \"%s\" (proceeding with bare 'terraform " "init')", ', '.join(gen_backend_tfvars_files( env_name, env_region))) run_module_command(cmd_list=init_cmd, env_vars=env_vars) def run_tfenv_install(path, env_vars): """Ensure appropriate Terraform version is installed.""" if which('tfenv') is None: LOGGER.error('"tfenv" not found (and a Terraform version is ' 'specified in .terraform-version). Please install ' 'tfenv.') sys.exit(1) with change_dir(path): subprocess.check_call(['tfenv', 'install'], env=env_vars) class Terraform(RunwayModule): """Terraform Runway Module.""" def run_terraform(self, command='plan'): # noqa pylint: disable=too-many-branches,too-many-statements """Run Terraform.""" response = {'skipped_configs': False} tf_cmd = ['terraform', command] if not which('terraform'): LOGGER.error('"terraform" not found in path or is not executable; ' 'please ensure it is installed correctly.') sys.exit(1) if command == 'destroy': tf_cmd.append('-force') elif command == 'apply': if 'CI' in self.context.env_vars: tf_cmd.append('-auto-approve=true') else: tf_cmd.append('-auto-approve=false') workspace_tfvars_file = get_workspace_tfvars_file(self.path, self.context.env_name, # noqa self.context.env_region) # noqa backend_tfvars_file = get_backend_tfvars_file(self.path, self.context.env_name, self.context.env_region) workspace_tfvar_present = os.path.isfile( os.path.join(self.path, workspace_tfvars_file) ) if workspace_tfvar_present: tf_cmd.append("-var-file=%s" % workspace_tfvars_file) if isinstance(self.options.get('environments', {}).get(self.context.env_name), dict): for (key, val) in self.options['environments'][self.context.env_name].items(): # noqa tf_cmd.extend(['-var', "%s=%s" % (key, val)]) if self.options.get('environments', {}).get(self.context.env_name) or ( workspace_tfvar_present): LOGGER.info("Preparing to run terraform %s on %s...", command, os.path.basename(self.path)) if os.path.isfile(os.path.join(self.path, '.terraform-version')): run_tfenv_install(self.path, self.context.env_vars) with change_dir(self.path): if not os.path.isdir(os.path.join(self.path, '.terraform')): LOGGER.info('.terraform directory missing; running ' '"terraform init"...') run_terraform_init( module_path=self.path, backend_file_name=backend_tfvars_file, env_name=self.context.env_name, env_region=self.context.env_region, env_vars=self.context.env_vars ) LOGGER.debug('Checking current Terraform workspace...') current_tf_workspace = subprocess.check_output( ['terraform', 'workspace', 'show'], env=self.context.env_vars ).strip().decode() if current_tf_workspace != self.context.env_name: LOGGER.info("Terraform workspace current set to %s; " "switching to %s...", current_tf_workspace, self.context.env_name) LOGGER.debug('Checking available Terraform ' 'workspaces...') available_tf_envs = subprocess.check_output( ['terraform', 'workspace', 'list'], env=self.context.env_vars ).decode() if re.compile("^[*\\s]\\s%s$" % self.context.env_name, re.M).search(available_tf_envs): run_module_command( cmd_list=['terraform', 'workspace', 'select', self.context.env_name], env_vars=self.context.env_vars ) else: LOGGER.info("Terraform workspace %s not found; " "creating it...", self.context.env_name) run_module_command( cmd_list=['terraform', 'workspace', 'new', self.context.env_name], env_vars=self.context.env_vars ) LOGGER.info('Running "terraform init" after workspace ' 'creation/switch...') run_terraform_init( module_path=self.path, backend_file_name=backend_tfvars_file, env_name=self.context.env_name, env_region=self.context.env_region, env_vars=self.context.env_vars ) if 'SKIP_TF_GET' not in self.context.env_vars: LOGGER.info('Executing "terraform get" to update remote ' 'modules') run_module_command( cmd_list=['terraform', 'get', '-update=true'], env_vars=self.context.env_vars ) else: LOGGER.info('Skipping "terraform get" due to ' '"SKIP_TF_GET" environment variable...') LOGGER.info("Running Terraform %s on %s (\"%s\")", command, os.path.basename(self.path), " ".join(tf_cmd)) run_module_command(cmd_list=tf_cmd, env_vars=self.context.env_vars) else: response['skipped_configs'] = True LOGGER.info("Skipping Terraform %s of %s", command, os.path.basename(self.path)) LOGGER.info( "(no tfvars file for this environment/region found -- looking " "for one of \"%s\")", ', '.join(gen_workspace_tfvars_files( self.context.env_name, self.context.env_region))) return response def plan(self): """Run tf plan.""" result = self.run_terraform(command='plan') warn_on_skipped_configs(result, self.context.env_name, self.context.env_vars) def deploy(self): """Run tf apply.""" result = self.run_terraform(command='apply') warn_on_skipped_configs(result, self.context.env_name, self.context.env_vars) def destroy(self): """Run tf destroy.""" result = self.run_terraform(command='destroy') warn_on_skipped_configs(result, self.context.env_name, self.context.env_vars)
StarcoderdataPython
278681
<reponame>michael-golden/pulumi-aws # coding=utf-8 # *** WARNING: this file was generated by the Pulumi Terraform Bridge (tfgen) Tool. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Union from .. import utilities, tables class Stack(pulumi.CustomResource): capabilities: pulumi.Output[list] """ A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, or `CAPABILITY_AUTO_EXPAND` """ disable_rollback: pulumi.Output[bool] """ Set to true to disable rollback of the stack if stack creation failed. Conflicts with `on_failure`. """ iam_role_arn: pulumi.Output[str] """ The ARN of an IAM role that AWS CloudFormation assumes to create the stack. If you don't specify a value, AWS CloudFormation uses the role that was previously associated with the stack. If no role is available, AWS CloudFormation uses a temporary session that is generated from your user credentials. """ name: pulumi.Output[str] """ Stack name. """ notification_arns: pulumi.Output[list] """ A list of SNS topic ARNs to publish stack related events. """ on_failure: pulumi.Output[str] """ Action to be taken if stack creation fails. This must be one of: `DO_NOTHING`, `ROLLBACK`, or `DELETE`. Conflicts with `disable_rollback`. """ outputs: pulumi.Output[dict] """ A map of outputs from the stack. """ parameters: pulumi.Output[dict] """ A map of Parameter structures that specify input parameters for the stack. """ policy_body: pulumi.Output[str] """ Structure containing the stack policy body. Conflicts w/ `policy_url`. """ policy_url: pulumi.Output[str] """ Location of a file containing the stack policy. Conflicts w/ `policy_body`. """ tags: pulumi.Output[dict] """ A list of tags to associate with this stack. """ template_body: pulumi.Output[str] """ Structure containing the template body (max size: 51,200 bytes). """ template_url: pulumi.Output[str] """ Location of a file containing the template body (max size: 460,800 bytes). """ timeout_in_minutes: pulumi.Output[float] """ The amount of time that can pass before the stack status becomes `CREATE_FAILED`. """ def __init__(__self__, resource_name, opts=None, capabilities=None, disable_rollback=None, iam_role_arn=None, name=None, notification_arns=None, on_failure=None, parameters=None, policy_body=None, policy_url=None, tags=None, template_body=None, template_url=None, timeout_in_minutes=None, __props__=None, __name__=None, __opts__=None): """ Provides a CloudFormation Stack resource. ## Example Usage ```python import pulumi import pulumi_aws as aws network = aws.cloudformation.Stack("network", parameters={ "VPCCidr": "10.0.0.0/16", }, template_body=\"\"\"{ "Parameters" : { "VPCCidr" : { "Type" : "String", "Default" : "10.0.0.0/16", "Description" : "Enter the CIDR block for the VPC. Default is 10.0.0.0/16." } }, "Resources" : { "myVpc": { "Type" : "AWS::EC2::VPC", "Properties" : { "CidrBlock" : { "Ref" : "VPCCidr" }, "Tags" : [ {"Key": "Name", "Value": "Primary_CF_VPC"} ] } } } } \"\"\") ``` :param str resource_name: The name of the resource. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, or `CAPABILITY_AUTO_EXPAND` :param pulumi.Input[bool] disable_rollback: Set to true to disable rollback of the stack if stack creation failed. Conflicts with `on_failure`. :param pulumi.Input[str] iam_role_arn: The ARN of an IAM role that AWS CloudFormation assumes to create the stack. If you don't specify a value, AWS CloudFormation uses the role that was previously associated with the stack. If no role is available, AWS CloudFormation uses a temporary session that is generated from your user credentials. :param pulumi.Input[str] name: Stack name. :param pulumi.Input[list] notification_arns: A list of SNS topic ARNs to publish stack related events. :param pulumi.Input[str] on_failure: Action to be taken if stack creation fails. This must be one of: `DO_NOTHING`, `ROLLBACK`, or `DELETE`. Conflicts with `disable_rollback`. :param pulumi.Input[dict] parameters: A map of Parameter structures that specify input parameters for the stack. :param pulumi.Input[str] policy_body: Structure containing the stack policy body. Conflicts w/ `policy_url`. :param pulumi.Input[str] policy_url: Location of a file containing the stack policy. Conflicts w/ `policy_body`. :param pulumi.Input[dict] tags: A list of tags to associate with this stack. :param pulumi.Input[str] template_body: Structure containing the template body (max size: 51,200 bytes). :param pulumi.Input[str] template_url: Location of a file containing the template body (max size: 460,800 bytes). :param pulumi.Input[float] timeout_in_minutes: The amount of time that can pass before the stack status becomes `CREATE_FAILED`. """ if __name__ is not None: warnings.warn("explicit use of __name__ is deprecated", DeprecationWarning) resource_name = __name__ if __opts__ is not None: warnings.warn("explicit use of __opts__ is deprecated, use 'opts' instead", DeprecationWarning) opts = __opts__ if opts is None: opts = pulumi.ResourceOptions() if not isinstance(opts, pulumi.ResourceOptions): raise TypeError('Expected resource options to be a ResourceOptions instance') if opts.version is None: opts.version = utilities.get_version() if opts.id is None: if __props__ is not None: raise TypeError('__props__ is only valid when passed in combination with a valid opts.id to get an existing resource') __props__ = dict() __props__['capabilities'] = capabilities __props__['disable_rollback'] = disable_rollback __props__['iam_role_arn'] = iam_role_arn __props__['name'] = name __props__['notification_arns'] = notification_arns __props__['on_failure'] = on_failure __props__['parameters'] = parameters __props__['policy_body'] = policy_body __props__['policy_url'] = policy_url __props__['tags'] = tags __props__['template_body'] = template_body __props__['template_url'] = template_url __props__['timeout_in_minutes'] = timeout_in_minutes __props__['outputs'] = None super(Stack, __self__).__init__( 'aws:cloudformation/stack:Stack', resource_name, __props__, opts) @staticmethod def get(resource_name, id, opts=None, capabilities=None, disable_rollback=None, iam_role_arn=None, name=None, notification_arns=None, on_failure=None, outputs=None, parameters=None, policy_body=None, policy_url=None, tags=None, template_body=None, template_url=None, timeout_in_minutes=None): """ Get an existing Stack resource's state with the given name, id, and optional extra properties used to qualify the lookup. :param str resource_name: The unique name of the resulting resource. :param str id: The unique provider ID of the resource to lookup. :param pulumi.ResourceOptions opts: Options for the resource. :param pulumi.Input[list] capabilities: A list of capabilities. Valid values: `CAPABILITY_IAM`, `CAPABILITY_NAMED_IAM`, or `CAPABILITY_AUTO_EXPAND` :param pulumi.Input[bool] disable_rollback: Set to true to disable rollback of the stack if stack creation failed. Conflicts with `on_failure`. :param pulumi.Input[str] iam_role_arn: The ARN of an IAM role that AWS CloudFormation assumes to create the stack. If you don't specify a value, AWS CloudFormation uses the role that was previously associated with the stack. If no role is available, AWS CloudFormation uses a temporary session that is generated from your user credentials. :param pulumi.Input[str] name: Stack name. :param pulumi.Input[list] notification_arns: A list of SNS topic ARNs to publish stack related events. :param pulumi.Input[str] on_failure: Action to be taken if stack creation fails. This must be one of: `DO_NOTHING`, `ROLLBACK`, or `DELETE`. Conflicts with `disable_rollback`. :param pulumi.Input[dict] outputs: A map of outputs from the stack. :param pulumi.Input[dict] parameters: A map of Parameter structures that specify input parameters for the stack. :param pulumi.Input[str] policy_body: Structure containing the stack policy body. Conflicts w/ `policy_url`. :param pulumi.Input[str] policy_url: Location of a file containing the stack policy. Conflicts w/ `policy_body`. :param pulumi.Input[dict] tags: A list of tags to associate with this stack. :param pulumi.Input[str] template_body: Structure containing the template body (max size: 51,200 bytes). :param pulumi.Input[str] template_url: Location of a file containing the template body (max size: 460,800 bytes). :param pulumi.Input[float] timeout_in_minutes: The amount of time that can pass before the stack status becomes `CREATE_FAILED`. """ opts = pulumi.ResourceOptions.merge(opts, pulumi.ResourceOptions(id=id)) __props__ = dict() __props__["capabilities"] = capabilities __props__["disable_rollback"] = disable_rollback __props__["iam_role_arn"] = iam_role_arn __props__["name"] = name __props__["notification_arns"] = notification_arns __props__["on_failure"] = on_failure __props__["outputs"] = outputs __props__["parameters"] = parameters __props__["policy_body"] = policy_body __props__["policy_url"] = policy_url __props__["tags"] = tags __props__["template_body"] = template_body __props__["template_url"] = template_url __props__["timeout_in_minutes"] = timeout_in_minutes return Stack(resource_name, opts=opts, __props__=__props__) def translate_output_property(self, prop): return tables._CAMEL_TO_SNAKE_CASE_TABLE.get(prop) or prop def translate_input_property(self, prop): return tables._SNAKE_TO_CAMEL_CASE_TABLE.get(prop) or prop
StarcoderdataPython
3245974
# 016 # Ask the user if it is raining and convert their answer to lower # case so it doesn’t matter what case they type it in. If they answer # “yes”, ask if it is windy. If they answer “yes” to this second # question, display the answer “It is too windy for an umbrella”, # otherwise display the message “Take an umbrella”. # If they did not answer yes to the first question, display the answer # “Enjoy your day”. import sys yes_list = ['yes', 'y', '1'] no_list = ['no', 'n'] def input_checker(string): while True: try: answer = input(string) if answer.lower() not in yes_list and answer.lower() \ not in no_list: print('Please enter yes or no!') continue elif answer.lower() in yes_list: return True else: return False except Exception as e: print(e) if __name__ == '__main__': question = 'Is it raining? ' result = input_checker(question) if not result: print('Enjoy your day!') sys.exit() question = 'Is it windy? ' result = input_checker(question) if result: print('It is too windy for an umbrella.') sys.exit() print('Take an umbrella')
StarcoderdataPython
6492942
import random import numba import numpy as np import torch from collections import defaultdict import random import logging logger = logging.getLogger(__name__) # Taken and modified from https://github.com/MorvanZhou/Reinforcement-learning-with-tensorflow/blob/master/contents/5.2_Prioritized_Replay_DQN/RL_brain.py @numba.jit(nopython=True) def _update(tree, tree_index, priority, total_priority): # Change = new priority score - former priority score change = priority - tree[tree_index] tree[tree_index] = priority # then propagate the change through tree # this method is faster than the recursive loop while tree_index != 0: tree_index = (tree_index - 1) // 2 tree[tree_index] += change # assert total_priority > 0 return tree @numba.jit(nopython=True) def _get_leaf_ids(n, tree, priority_segment): idx = np.empty((n,), dtype=np.uint32) for i in range(n): # A value is uniformly sample from each range value = priority_segment * i + random.random() * priority_segment # print("value:", value) # Experience index that correspond to each value is retrieved idx[i] = _get_leaf_index(tree, value) return idx @numba.jit(nopython=True) def _get_leaf_index(tree, v): parent_index = 0 while True: left_child_index = 2 * parent_index + 1 right_child_index = left_child_index + 1 # If we reach bottom, end the search if left_child_index >= len(tree): leaf_index = parent_index break else: # downward search, always search for a higher priority node if v <= tree[left_child_index]: parent_index = left_child_index else: v -= tree[left_child_index] parent_index = right_child_index return leaf_index class SumTree: # Here we initialize the tree with all nodes = 0, and initialize the data with all values = 0 def __init__(self, capacity): self.data_pointer = 0 # Number of leaf nodes (final nodes) that contains experiences self.capacity = capacity self.num_items = 0 # Generate the tree with all nodes values = 0 # To understand this calculation (2 * capacity - 1) look at the schema below # Remember we are in a binary node (each node has max 2 children) so 2x size of leaf (capacity) - 1 (root node) # Parent nodes = capacity - 1 # Leaf nodes = capacity self.tree = np.zeros(2 * capacity - 1) # Contains the experiences (so the size of data is capacity) self.data = np.zeros(capacity, dtype=object) def add(self, priority, data): # Look at what index we want to put the experience tree_index = self.data_pointer + self.capacity - 1 """ tree: 0 / \ 0 0 / \ / \ tree_index 0 0 0 We fill the leaves from left to right """ # Update data frame self.data[self.data_pointer] = data # Update the leaf self.update(tree_index, priority) # Add 1 to data_pointer self.data_pointer += 1 if self.data_pointer >= self.capacity: # If we're above the capacity, we go back to first index (we overwrite) self.data_pointer = 0 else: self.num_items += 1 def update(self, tree_index, priority): self.tree = _update(self.tree, tree_index, priority, self.total_priority) # @numba.jit(nopython=True) def get_leaf(self, v): leaf_index = _get_leaf_index(self.tree, v) data_index = leaf_index - self.capacity + 1 # assert isinstance(self.data[data_index], dict) return leaf_index, self.tree[leaf_index], self.data[data_index] @property def total_priority(self): return self.tree[0] # Returns the root node class PriorityReplayBuffer: """ A lot is going on here, which needs some explaining: 1. We want to use priority replay to draw more often from memories/transitions, which have a higher proportion of information. 2. Memories are weighted according to the temporal difference error. Naively implementing this would be inefficient (e.g. sorting the array by weights for example) -> SumTree helps here 3. Due to the weights introduced, we actually contradict our first reason to introduce a random replay buffer decorrelation of memories. To avoid this, we borrow an idea from importance sampling. 4. When calculating the error between q targets and predicted q values, we assign the memories with a high priority/high temporal difference error a lower weight. The rationale behind this: "Hey you will see this values quite often, so do not overemphasis it too much. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): # Making the tree self.dtype = dtype self.device = device if max_length is None: raise ValueError("PriorityReplayBuffer needs max length!") self.tree = SumTree(max_length) self.absolute_error_upper = 1.0 # clipped abs error # stored as ( state, action, reward, next_state ) in SumTree self.epsilon = 0.01 # Hyperparameter that we use to avoid some experiences to have 0 probability of being taken self.alpha = 0.6 # Hyperparameter that we use to make a tradeoff between taking only exp with high priority and sampling randomly self.beta = 0.4 # importance-sampling, from initial value increasing to 1 self.beta_increment = 0.001 def store(self, **experience): # Find the max priority max_priority = np.max(self.tree.tree[-self.tree.capacity :]) # If the max priority = 0 we can't put priority = 0 since this experience will never have a chance to be selected # So we use a minimum priority if max_priority == 0: max_priority = self.absolute_error_upper self.tree.add(max_priority, experience) # set the max priority for new priority def sample(self, n): priority_segment = self.tree.total_priority / n # priority segment self.beta = np.min([1.0, self.beta + self.beta_increment]) start_idx = len(self.tree.tree) - self.tree.capacity end_idx = start_idx + self.tree.num_items min_prob = np.min(self.tree.tree[start_idx:end_idx]) / self.tree.total_priority # for later calculate ISweight minibatch, b_idx, importance_smapling_weights = self.get_samples(min_prob, n, priority_segment) # for key, value in minibatch.items(): # convert to arrays # value = self.stackify(value) # minibatch[key] = value return b_idx, importance_smapling_weights, minibatch def get_samples(self, min_prob, n, priority_segment): leaf_idx = _get_leaf_ids(n, self.tree.tree, priority_segment) data_idx = leaf_idx - self.tree.capacity + 1 priorities = self.tree.tree[leaf_idx] data_batch = self.tree.data[data_idx] assert not 0 in data_batch, "Wrong data in sample detected" probs = priorities / self.tree.total_priority importance_smapling_weights = np.power(probs / min_prob, -self.beta) # assert isinstance(self.data[data_index], dict) minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} # for x in data_batch: # for key, value in x.items(): # minibatch[key].append(value) return minibatch, leaf_idx, importance_smapling_weights def batch_update(self, tree_idx, abs_errors): """' must be called to update priorities """ abs_errors += self.epsilon # convert to abs and avoid 0 if isinstance(abs_errors, torch.Tensor): abs_errors = abs_errors.cpu().numpy() clipped_errors = np.minimum(abs_errors, self.absolute_error_upper) ps = clipped_errors ** self.alpha for ti, p in zip(tree_idx, ps): self.tree.update(ti, p) def __len__(self): return self.tree.num_items class History: """ Generic replay buffer. Can accommodate arbitrary fields. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): self.memories = None self.max_length = max_length self.data_pointer = 0 self.is_full = False if max_length: self.memories = np.empty((max_length,), dtype=object) else: self.memories = np.empty((128,), dtype=object) # double memory size each time limit is hit self.device = device self.dtype = dtype def store(self, **kwargs): self.memories[self.data_pointer] = kwargs self.is_full = False self.data_pointer += 1 if self.max_length is not None and self.data_pointer >= self.max_length: self.data_pointer = 0 self.is_full = True if self.data_pointer >= self.memories.shape[0] and self.max_length is None: # self.memories.resize(self.memories.shape * 2) # Raises some ValueError self.memories = np.resize(self.memories, self.memories.shape[0] * 2) # @timeit def sample(self, n): idx = random.sample(range(len(self)), k=n) data_batch = self.memories[idx] minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} return idx, None, minibatch def rollout(self, n=None): """ When n is not None, returns only the last n entries """ data_batch = self.memories[: len(self)] if n is None else self.memories[len(self) - n : len(self)] minibatch = {k: [dic[k] for dic in data_batch] for k in data_batch[0]} return minibatch def __len__(self): if self.max_length is None: return self.data_pointer else: if self.is_full: return self.max_length else: return self.data_pointer def clear(self): if self.max_length: self.memories = np.empty((self.max_length,), dtype=object) else: self.memories = np.empty((128,), dtype=object) # double memory size each time limit is hit self.data_pointer = 0 def __add__(self, other): raise DeprecationWarning("Is not used anymore... I hope?") assert list(self.memories.keys()) == list(other.memories.keys()) history = History(self.max_length) history.memories = dict() for key, val in self.memories.items(): history.memories[key] = val + other.memories[key] return history class SequentialHistory(History): """ Generic replay buffer where each entry represents a sequence of events. Can accommodate arbitrary fields. """ def __init__(self, max_length=None, dtype=torch.float, device=torch.device("cpu")): super().__init__(max_length=max_length, dtype=dtype, device=device) self.current_sequence = dict() def current_sequence_length(self): if len(self.current_sequence) == 0: return 0 else: return len(self.current_sequence[list(self.current_sequence.keys())[0]]) def store(self, **kwargs): # Store in temporary sequence buffer if self.current_sequence_length() == 0: # Nothing saved in current sequence for key, val in kwargs.items(): self.current_sequence[key] = [val] self.current_sequence["first"] = [True] else: for key, val in kwargs.items(): self.current_sequence[key].append(val) self.current_sequence["first"].append(False) def flush(self): """ Push current sequence to ("long-term") memory """ assert self.current_sequence_length() > 0 super().store(**self.current_sequence) self.current_sequence = dict()
StarcoderdataPython
8045814
"""misc build utility functions""" # Copyright (c) PyZMQ Developers # Distributed under the terms of the Modified BSD License. import os import sys import logging from distutils import ccompiler from distutils.sysconfig import customize_compiler from pipes import quote from subprocess import Popen, PIPE pjoin = os.path.join if sys.version_info[0] >= 3: u = lambda x: x else: u = lambda x: x.decode('utf8', 'replace') def customize_mingw(cc): # strip -mno-cygwin from mingw32 (Python Issue #12641) for cmd in [cc.compiler, cc.compiler_cxx, cc.compiler_so, cc.linker_exe, cc.linker_so]: if '-mno-cygwin' in cmd: cmd.remove('-mno-cygwin') # remove problematic msvcr90 if 'msvcr90' in cc.dll_libraries: cc.dll_libraries.remove('msvcr90') def get_compiler(compiler, **compiler_attrs): """get and customize a compiler""" if compiler is None or isinstance(compiler, str): cc = ccompiler.new_compiler(compiler=compiler) # customize_compiler(cc) if cc.compiler_type == 'mingw32': customize_mingw(cc) else: cc = compiler for name, val in compiler_attrs.items(): setattr(cc, name, val) return cc def get_output_error(cmd): """Return the exit status, stdout, stderr of a command""" if not isinstance(cmd, list): cmd = [cmd] logging.debug("Running: %s", ' '.join(map(quote, cmd))) try: result = Popen(cmd, stdout=PIPE, stderr=PIPE) except IOError as e: return -1, u(''), u('Failed to run %r: %r' % (cmd, e)) so, se = result.communicate() # unicode: so = so.decode('utf8', 'replace') se = se.decode('utf8', 'replace') return result.returncode, so, se
StarcoderdataPython
9691496
<gh_stars>1-10 import unittest, doctest import test_ini import test_misc import test_fuzz import test_compat import test_unicode from holland.backup.mysqldump.util import config from holland.backup.mysqldump.util import ini class suite(unittest.TestSuite): def __init__(self): unittest.TestSuite.__init__(self, [ doctest.DocTestSuite(config), doctest.DocTestSuite(ini), test_ini.suite(), test_misc.suite(), test_fuzz.suite(), test_compat.suite(), test_unicode.suite(), ])
StarcoderdataPython
6533840
<gh_stars>1-10 # -*- coding: utf-8 -*- # Define here the models for your scraped items # # See documentation in: # https://doc.scrapy.org/en/latest/topics/items.html import scrapy class OerhoernchenscrapyItem(scrapy.Item): # define the fields for your item here like: # name = scrapy.Field() project_key = scrapy.Field() filename = scrapy.Field() project_url = scrapy.Field() #or key? page_url = scrapy.Field() meta_title = scrapy.Field() og_title = scrapy.Field() meta_keywords = scrapy.Field() meta_description = scrapy.Field() a_rel_license = scrapy.Field() link_rel_license = scrapy.Field() link_rel_copyright = scrapy.Field() manual_License_override = scrapy.Field() # must be converted in DB import content = scrapy.Field()
StarcoderdataPython
6640659
from eth_abi import encode_single, decode_single from eth_utils import function_signature_to_4byte_selector def parse_signature(signature): """ Breaks 'func(address)(uint256)' into ['func', '(address)', '(uint256)'] """ parts = [] stack = [] start = 0 for end, letter in enumerate(signature): if letter == '(': stack.append(letter) if not parts: parts.append(signature[start:end]) start = end if letter == ')': stack.pop() if not stack: # we are only interested in outermost groups parts.append(signature[start:end + 1]) start = end + 1 return parts class Signature: def __init__(self, signature): self.signature = signature self.parts = parse_signature(signature) self.input_types = self.parts[1] self.output_types = self.parts[2] self.function = ''.join(self.parts[:2]) self.fourbyte = function_signature_to_4byte_selector(self.function) def encode_data(self, args=None): return self.fourbyte + encode_single(self.input_types, args) if args else self.fourbyte def decode_data(self, output): return decode_single(self.output_types, output)
StarcoderdataPython
314281
import time import board import busio uart = busio.UART(board.GP0, board.GP1, baudrate=9600) while True: # await incoming message bytes_waiting = uart.in_waiting if bytes_waiting: incoming_msg = uart.readline() print(incoming_msg) # re-transmit uart.write(incoming_msg)
StarcoderdataPython
11212002
<filename>src/python/magnum/test/test_trade.py # # This file is part of Magnum. # # Copyright © 2010, 2011, 2012, 2013, 2014, 2015, 2016, 2017, 2018, 2019 # <NAME> <<EMAIL>> # # Permission is hereby granted, free of charge, to any person obtaining a # copy of this software and associated documentation files (the "Software"), # to deal in the Software without restriction, including without limitation # the rights to use, copy, modify, merge, publish, distribute, sublicense, # and/or sell copies of the Software, and to permit persons to whom the # Software is furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included # in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. # import os import sys import unittest from corrade import pluginmanager from magnum import * from magnum import trade class ImageData(unittest.TestCase): def test(self): # The only way to get an image instance is through a manager importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') importer.open_file(os.path.join(os.path.dirname(__file__), "rgb.png")) image = importer.image2d(0) self.assertFalse(image.is_compressed) self.assertEqual(image.storage.alignment, 1) # libPNG has 4 tho self.assertEqual(image.format, PixelFormat.RGB8_UNORM) self.assertEqual(image.pixel_size, 3) self.assertEqual(image.size, Vector2i(3, 2)) # TODO: ugh, report as bytes, not chars self.assertEqual(ord(image.pixels[1, 2, 2]), 181) self.assertEqual(ord(image.data[9 + 6 + 2]), 181) # libPNG has 12 + def test_compressed(self): # The only way to get an image instance is through a manager importer = trade.ImporterManager().load_and_instantiate('DdsImporter') importer.open_file(os.path.join(os.path.dirname(__file__), "rgba_dxt1.dds")) image = importer.image2d(0) self.assertEqual(len(image.data), 8) self.assertTrue(image.is_compressed) # TODO: compressed properties # No compressed-image-related APIs exposed ATM, so just verifying the # uncompressed ones fail properly with self.assertRaisesRegex(AttributeError, "image is compressed"): image.storage with self.assertRaisesRegex(AttributeError, "image is compressed"): image.format with self.assertRaisesRegex(AttributeError, "image is compressed"): image.pixel_size with self.assertRaisesRegex(AttributeError, "image is compressed"): image.pixels def test_convert_view(self): # The only way to get an image instance is through a manager importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') importer.open_file(os.path.join(os.path.dirname(__file__), "rgb.png")) image = importer.image2d(0) view = ImageView2D(image) mutable_view = MutableImageView2D(image) def test_convert_view_compressed(self): # The only way to get an image instance is through a manager importer = trade.ImporterManager().load_and_instantiate('DdsImporter') importer.open_file(os.path.join(os.path.dirname(__file__), "rgba_dxt1.dds")) image = importer.image2d(0) # No compressed-image-related APIs exposed ATM, so just verifying the # uncompressed ones fail properly with self.assertRaisesRegex(RuntimeError, "image is compressed"): view = ImageView2D(image) with self.assertRaisesRegex(RuntimeError, "image is compressed"): mutable_view = MutableImageView2D(image) class MeshData(unittest.TestCase): def test(self): # The only way to get a mesh instance is through a manager importer = trade.ImporterManager().load_and_instantiate('TinyGltfImporter') importer.open_file(os.path.join(os.path.dirname(__file__), 'mesh.glb')) mesh = importer.mesh3d(0) self.assertEqual(mesh.primitive, MeshPrimitive.TRIANGLES) # TODO: test more, once it's exposed class Importer(unittest.TestCase): def test(self): manager = trade.ImporterManager() self.assertIn('StbImageImporter', manager.alias_list) self.assertEqual(manager.load_state('StbImageImporter'), pluginmanager.LoadState.NOT_LOADED) self.assertTrue(manager.load('StbImageImporter') & pluginmanager.LoadState.LOADED) self.assertEqual(manager.unload('StbImageImporter'), pluginmanager.LoadState.NOT_LOADED) with self.assertRaisesRegex(RuntimeError, "can't load plugin"): manager.load('NonexistentImporter') with self.assertRaisesRegex(RuntimeError, "can't unload plugin"): manager.unload('NonexistentImporter') def test_no_file_opened(self): importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') self.assertFalse(importer.is_opened) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh2d_count with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh3d_count with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh2d_for_name('') with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh3d_for_name('') with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh2d_name(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh3d_name(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh2d(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.mesh3d(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image1d_count with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image2d_count with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image3d_count with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image1d_for_name('') with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image2d_for_name('') with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image3d_for_name('') with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image1d_name(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image2d_name(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image3d_name(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image1d(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image2d(0) with self.assertRaisesRegex(RuntimeError, "no file opened"): importer.image3d(0) def test_index_oob(self): importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') importer.open_file(os.path.join(os.path.dirname(__file__), 'rgb.png')) with self.assertRaises(IndexError): importer.mesh2d_name(0) with self.assertRaises(IndexError): importer.mesh3d_name(0) with self.assertRaises(IndexError): importer.mesh2d(0) with self.assertRaises(IndexError): importer.mesh3d(0) with self.assertRaises(IndexError): importer.image1d_name(0) with self.assertRaises(IndexError): importer.image2d_name(1) with self.assertRaises(IndexError): importer.image3d_name(0) with self.assertRaises(IndexError): importer.image1d(0) with self.assertRaises(IndexError): importer.image2d(1) with self.assertRaises(IndexError): importer.image3d(0) def test_open_failed(self): importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') with self.assertRaisesRegex(RuntimeError, "opening nonexistent.png failed"): importer.open_file('nonexistent.png') with self.assertRaisesRegex(RuntimeError, "opening data failed"): importer.open_data(b'') def test_mesh3d(self): # importer refcounting tested in image2d importer = trade.ImporterManager().load_and_instantiate('TinyGltfImporter') importer.open_file(os.path.join(os.path.dirname(__file__), 'mesh.glb')) self.assertEqual(importer.mesh3d_count, 3) self.assertEqual(importer.mesh3d_name(0), 'Non-indexed mesh') self.assertEqual(importer.mesh3d_for_name('Non-indexed mesh'), 0) mesh = importer.mesh3d(0) self.assertEqual(mesh.primitive, MeshPrimitive.TRIANGLES) def test_image2d(self): manager = trade.ImporterManager() manager_refcount = sys.getrefcount(manager) # Importer references the manager to ensure it doesn't get GC'd before # the plugin instances importer = manager.load_and_instantiate('StbImageImporter') self.assertIs(importer.manager, manager) self.assertEqual(sys.getrefcount(manager), manager_refcount + 1) importer.open_file(os.path.join(os.path.dirname(__file__), 'rgb.png')) self.assertEqual(importer.image2d_count, 1) self.assertEqual(importer.image2d_name(0), '') self.assertEqual(importer.image2d_for_name(''), -1) image = importer.image2d(0) self.assertEqual(image.size, Vector2i(3, 2)) # Deleting the importer should decrease manager refcount again del importer self.assertEqual(sys.getrefcount(manager), manager_refcount) def test_image2d_data(self): importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') with open(os.path.join(os.path.dirname(__file__), "rgb.png"), 'rb') as f: importer.open_data(f.read()) image = importer.image2d(0) self.assertEqual(image.size, Vector2i(3, 2)) def test_image2d_failed(self): importer = trade.ImporterManager().load_and_instantiate('StbImageImporter') importer.open_data(b'bla') with self.assertRaisesRegex(RuntimeError, "import failed"): image = importer.image2d(0)
StarcoderdataPython
1834052
#!/usr/bin/env python # coding: utf-8 # # Author: <NAME> # Email: yanpx (at) mail2.sysu.edu.cn from __future__ import absolute_import, division, print_function import os import sys sys.path.append('flownet2') import torch import torch.nn as nn from torch.utils import data from torchvision.transforms import functional as TF import argparse from tqdm import tqdm from libs.datasets import get_transforms, get_datasets from libs.networks.pseudo_label_generator import FGPLG from libs.utils.pyt_utils import load_model parser = argparse.ArgumentParser() # Dataloading-related settings parser.add_argument('--data', type=str, default='data/datasets/', help='path to datasets folder') parser.add_argument('--checkpoint', default='models/pseudo_label_generator_5.pth', help='path to the pretrained checkpoint') parser.add_argument('--dataset-config', default='config/datasets.yaml', help='dataset config file') parser.add_argument('--pseudo-label-folder', default='data/pseudo-labels', help='location to save generated pseudo-labels') parser.add_argument("--label_interval", default=5, type=int, help="the interval of ground truth labels") parser.add_argument("--frame_between_label_num", default=1, type=int, help="the number of generated pseudo-labels in each interval") parser.add_argument('-j', '--num_workers', default=1, type=int, metavar='N', help='number of data loading workers.') # Model settings parser.add_argument('--size', default=448, type=int, help='image size') parser.add_argument('--os', default=16, type=int, help='output stride.') # FlowNet setting parser.add_argument("--fp16", action="store_true", help="Run model in pseudo-fp16 mode (fp16 storage fp32 math).") parser.add_argument("--rgb_max", type=float, default=1.) args = parser.parse_args() cuda = torch.cuda.is_available() device = torch.device("cuda" if cuda else "cpu") if cuda: torch.backends.cudnn.benchmark = True current_device = torch.cuda.current_device() print("Running on", torch.cuda.get_device_name(current_device)) else: print("Running on CPU") data_transforms = get_transforms( input_size=(args.size, args.size), image_mode=False ) dataset = get_datasets( name_list=["DAVIS2016", "FBMS", "VOS"], split_list=["train", "train", "train"], config_path=args.dataset_config, root=args.data, training=True, # provide labels transforms=data_transforms['test'], read_clip=True, random_reverse_clip=False, label_interval=args.label_interval, frame_between_label_num=args.frame_between_label_num, clip_len=args.frame_between_label_num+2 ) dataloader = data.DataLoader( dataset=dataset, batch_size=1, # only support 1 video clip num_workers=args.num_workers, shuffle=False, drop_last=True ) pseudo_label_generator = FGPLG(args=args, output_stride=args.os) # load pretrained models if os.path.exists(args.checkpoint): print('Loading state dict from: {0}'.format(args.checkpoint)) pseudo_label_generator = load_model(model=pseudo_label_generator, model_file=args.checkpoint, is_restore=True) else: raise ValueError("Cannot find model file at {}".format(args.checkpoint)) pseudo_label_generator.to(device) pseudo_label_folder = os.path.join(args.pseudo_label_folder, "{}_{}".format(args.frame_between_label_num, args.label_interval)) if not os.path.exists(pseudo_label_folder): os.makedirs(pseudo_label_folder) def generate_pseudo_label(): pseudo_label_generator.eval() for data in tqdm(dataloader): images = [] labels = [] for frame in data: images.append(frame['image'].to(device)) labels.append(frame['label'].to(device) if 'label' in frame else None) with torch.no_grad(): for i in range(1, args.frame_between_label_num+1): pseudo_label = pseudo_label_generator.generate_pseudo_label(images[i], images[0], images[-1], labels[0], labels[-1]) labels[i] = torch.sigmoid(pseudo_label).detach() # save pseudo-labels for i, label_ in enumerate(labels): for j, label in enumerate(label_.detach().cpu()): dataset = data[i]['dataset'][j] image_id = data[i]['image_id'][j] pseudo_label_path = os.path.join(pseudo_label_folder, "{}/{}.png".format(dataset, image_id)) height = data[i]['height'].item() width = data[i]['width'].item() result = TF.to_pil_image(label) result = result.resize((height, width)) dirname = os.path.dirname(pseudo_label_path) if not os.path.exists(dirname): os.makedirs(dirname) result.save(pseudo_label_path) if __name__ == "__main__": print("Generating pseudo-labels at {}".format(args.pseudo_label_folder)) print("label interval: {}".format(args.label_interval)) print("frame between label num: {}".format(args.frame_between_label_num)) generate_pseudo_label()
StarcoderdataPython
6614830
import numpy as np import abc from constants import * from vector import Vector from dist import Dist # Definition of a body class Body(): def __init__(self, m=constants.cons_m, pos, v = Vector(), size=, i): self.x, self.y = x, y self.vx, self.vy = vx, vy self.m = m self.pos = pos self.v = v self.a = Vector() def accelleration(self, m, pos, epsilon): x = pos[:, 0, 1] y = pos[:, 1, 2] dx = x.T - x dy = y.T - y r3_inv = (dx**2 + dy**2 + epsilon**2)** (-1.5) ax = constants.G * (dx * r3_inv) @ mass ay = constants.G * (dy * r3_inv) @ mass a = np.hstack((ax, ay)) return a # a = (ax, ay, az) gravitacijski! # Leap-Frog integration: kick + drift + kick def move(self, dt, ax, ay): vx += ax * 0.5 * dt vy += ay * 0.5 * dt x += vx * dt y += vy * dt acc = accelleration(self, m, x, y, G, epsilon) vx += ax * 0.5 * dt vy += ay * 0.5 * dt t += dt EKin, EPot = energy(self, m, G, vx, vy, x, y) # E = E_k + E_pot def energy(self, m, G, v, pos): Ekin = 0.5 * np.sum(np.sum( m * v **2)) x = pos[:, 0, 1] y = pos[:, 1, 2] dx = x.T - x dy = y.T - y r_inv = np.sqrt(dx**2 + dy**2) self.vy = (self.m * vy + other.m * other.vy) / (self.m + other.m) self.m += other.m def pydraw(self, pd, surface): vmag = self.v.mag() #color = x = math.floor(self.pos.x) y = math.flor(self.pos.y) pd.circle(surface, color, (x, y), 1 + math.floor(0.2 * self.m/#particle mass)) def __repr__(self): return "Body: ({0}.x, {0}.y), mass= {0}.m".format(self) class Drawable(object, metaclass=abc.ABCMeta): @abctractmethod def pydraw(self, pd, surface): raise NotImplementedError('Must implement Pydraw function!')
StarcoderdataPython
215568
# This file is part of the pyMOR project (http://www.pymor.org). # Copyright Holders: <NAME>, <NAME>, <NAME> # License: BSD 2-Clause License (http://opensource.org/licenses/BSD-2-Clause) from pymor.algorithms.basisextension import trivial_basis_extension, gram_schmidt_basis_extension, pod_basis_extension from pymor.algorithms.ei import interpolate_operators, ei_greedy, deim from pymor.algorithms.greedy import greedy from pymor.analyticalproblems.advection import InstationaryAdvectionProblem from pymor.analyticalproblems.burgers import BurgersProblem, Burgers2DProblem from pymor.analyticalproblems.elliptic import EllipticProblem from pymor.analyticalproblems.thermalblock import ThermalBlockProblem from pymor.core.cache import clear_caches, enable_caching, disable_caching from pymor.core.defaults import print_defaults, write_defaults_to_file, load_defaults_from_file, set_defaults from pymor.core.logger import set_log_levels, getLogger from pymor.core.pickle import dump, dumps, load, loads from pymor.discretizations.basic import StationaryDiscretization, InstationaryDiscretization from pymor.domaindescriptions.basic import RectDomain, CylindricalDomain, TorusDomain, LineDomain, CircleDomain from pymor.domaindescriptions.boundarytypes import BoundaryType from pymor.domaindiscretizers.default import discretize_domain_default from pymor.discretizers.advection import discretize_nonlinear_instationary_advection_fv from pymor.discretizers.elliptic import discretize_elliptic_cg from pymor.functions.basic import ConstantFunction, GenericFunction, ExpressionFunction, LincombFunction from pymor.grids.boundaryinfos import EmptyBoundaryInfo, BoundaryInfoFromIndicators, AllDirichletBoundaryInfo from pymor.grids.oned import OnedGrid from pymor.grids.rect import RectGrid from pymor.grids.tria import TriaGrid from pymor.la.basic import induced_norm, cat_arrays from pymor.la.gram_schmidt import gram_schmidt from pymor.la.interfaces import VectorSpace from pymor.la.numpyvectorarray import NumpyVectorArray, NumpyVectorSpace from pymor.la.pod import pod from pymor.operators.numpy import NumpyGenericOperator, NumpyMatrixOperator from pymor.operators.constructions import (LincombOperator, Concatenation, ComponentProjection, IdentityOperator, ConstantOperator, VectorArrayOperator, VectorOperator, VectorFunctional, FixedParameterOperator) from pymor.operators.ei import EmpiricalInterpolatedOperator from pymor.parameters.base import Parameter from pymor.parameters.functionals import (ProjectionParameterFunctional, GenericParameterFunctional, ExpressionParameterFunctional) from pymor.parameters.spaces import CubicParameterSpace from pymor.reductors.basic import reduce_generic_rb, reduce_to_subbasis from pymor.reductors.stationary import reduce_stationary_coercive from pymor.tools.floatcmp import float_cmp, float_cmp_all from pymor.tools.random import new_random_state
StarcoderdataPython
6677141
<gh_stars>0 #!/usr/bin/python # socket_client.py import socket import sys import os def socket_send(command): try: sock = socket.socket() sock.connect(('127.0.0.1', 1000)) sock.send(command) result = sock.recv(2048) sock.close() return result except KeyboardInterrupt: return 'canceled by user' if __name__ == '__main__': cmd = os.getcwd() + '#*#*#' + ' '.join(sys.argv[1:]) print(socket_send(cmd))
StarcoderdataPython
4830517
<filename>python_modules/dagster/dagster/grpc/types.py<gh_stars>1-10 from collections import namedtuple from enum import Enum from dagster import check from dagster.core.code_pointer import CodePointer from dagster.core.instance.ref import InstanceRef from dagster.core.origin import PipelineOrigin, PipelinePythonOrigin, RepositoryOrigin from dagster.serdes import whitelist_for_serdes from dagster.utils.error import SerializableErrorInfo @whitelist_for_serdes class ExecutionPlanSnapshotArgs( namedtuple( "_ExecutionPlanSnapshotArgs", "pipeline_origin solid_selection run_config mode step_keys_to_execute pipeline_snapshot_id", ) ): def __new__( cls, pipeline_origin, solid_selection, run_config, mode, step_keys_to_execute, pipeline_snapshot_id, ): return super(ExecutionPlanSnapshotArgs, cls).__new__( cls, pipeline_origin=check.inst_param(pipeline_origin, "pipeline_origin", PipelineOrigin), solid_selection=check.opt_list_param(solid_selection, "solid_selection", of_type=str), run_config=check.dict_param(run_config, "run_config"), mode=check.str_param(mode, "mode"), step_keys_to_execute=check.opt_list_param( step_keys_to_execute, "step_keys_to_execute", of_type=str ), pipeline_snapshot_id=check.str_param(pipeline_snapshot_id, "pipeline_snapshot_id"), ) @whitelist_for_serdes class ExecuteRunArgs(namedtuple("_ExecuteRunArgs", "pipeline_origin pipeline_run_id instance_ref")): def __new__(cls, pipeline_origin, pipeline_run_id, instance_ref): return super(ExecuteRunArgs, cls).__new__( cls, pipeline_origin=check.inst_param(pipeline_origin, "pipeline_origin", PipelineOrigin), pipeline_run_id=check.str_param(pipeline_run_id, "pipeline_run_id"), instance_ref=check.opt_inst_param(instance_ref, "instance_ref", InstanceRef), ) @whitelist_for_serdes class ExecuteStepArgs( namedtuple( "_ExecuteStepArgs", "pipeline_origin pipeline_run_id instance_ref mode step_keys_to_execute run_config retries_dict", ) ): def __new__( cls, pipeline_origin, pipeline_run_id, instance_ref=None, mode=None, step_keys_to_execute=None, run_config=None, retries_dict=None, ): return super(ExecuteStepArgs, cls).__new__( cls, pipeline_origin=check.inst_param( pipeline_origin, "pipeline_origin", PipelinePythonOrigin ), pipeline_run_id=check.str_param(pipeline_run_id, "pipeline_run_id"), instance_ref=check.opt_inst_param(instance_ref, "instance_ref", InstanceRef), mode=check.opt_str_param(mode, "mode"), step_keys_to_execute=check.opt_list_param( step_keys_to_execute, "step_keys_to_execute", of_type=str ), run_config=check.opt_dict_param(run_config, "run_config"), retries_dict=check.opt_dict_param(retries_dict, "retries_dict"), ) @whitelist_for_serdes class LoadableRepositorySymbol( namedtuple("_LoadableRepositorySymbol", "repository_name attribute") ): def __new__(cls, repository_name, attribute): return super(LoadableRepositorySymbol, cls).__new__( cls, repository_name=check.str_param(repository_name, "repository_name"), attribute=check.str_param(attribute, "attribute"), ) @whitelist_for_serdes class ListRepositoriesResponse( namedtuple( "_ListRepositoriesResponse", "repository_symbols executable_path repository_code_pointer_dict", ) ): def __new__( cls, repository_symbols, executable_path=None, repository_code_pointer_dict=None, ): return super(ListRepositoriesResponse, cls).__new__( cls, repository_symbols=check.list_param( repository_symbols, "repository_symbols", of_type=LoadableRepositorySymbol ), # These are currently only used by the GRPC Repository Location, but # we will need to migrate the rest of the repository locations to use this. executable_path=check.opt_str_param(executable_path, "executable_path"), repository_code_pointer_dict=check.opt_dict_param( repository_code_pointer_dict, "repository_code_pointer_dict", key_type=str, value_type=CodePointer, ), ) @whitelist_for_serdes class ListRepositoriesInput( namedtuple("_ListRepositoriesInput", "module_name python_file working_directory attribute") ): def __new__(cls, module_name, python_file, working_directory, attribute): check.invariant(not (module_name and python_file), "Must set only one") check.invariant(module_name or python_file, "Must set at least one") return super(ListRepositoriesInput, cls).__new__( cls, module_name=check.opt_str_param(module_name, "module_name"), python_file=check.opt_str_param(python_file, "python_file"), working_directory=check.opt_str_param(working_directory, "working_directory"), attribute=check.opt_str_param(attribute, "attribute"), ) @whitelist_for_serdes class PartitionArgs( namedtuple("_PartitionArgs", "repository_origin partition_set_name partition_name") ): def __new__(cls, repository_origin, partition_set_name, partition_name): return super(PartitionArgs, cls).__new__( cls, repository_origin=check.inst_param( repository_origin, "repository_origin", RepositoryOrigin ), partition_set_name=check.str_param(partition_set_name, "partition_set_name"), partition_name=check.str_param(partition_name, "partition_name"), ) @whitelist_for_serdes class PartitionNamesArgs(namedtuple("_PartitionNamesArgs", "repository_origin partition_set_name")): def __new__(cls, repository_origin, partition_set_name): return super(PartitionNamesArgs, cls).__new__( cls, repository_origin=check.inst_param( repository_origin, "repository_origin", RepositoryOrigin ), partition_set_name=check.str_param(partition_set_name, "partition_set_name"), ) @whitelist_for_serdes class PartitionSetExecutionParamArgs( namedtuple( "_PartitionSetExecutionParamArgs", "repository_origin partition_set_name partition_names", ) ): def __new__(cls, repository_origin, partition_set_name, partition_names): return super(PartitionSetExecutionParamArgs, cls).__new__( cls, repository_origin=check.inst_param( repository_origin, "repository_origin", RepositoryOrigin ), partition_set_name=check.str_param(partition_set_name, "partition_set_name"), partition_names=check.list_param(partition_names, "partition_names", of_type=str), ) @whitelist_for_serdes class PipelineSubsetSnapshotArgs( namedtuple("_PipelineSubsetSnapshotArgs", "pipeline_origin solid_selection") ): def __new__(cls, pipeline_origin, solid_selection): return super(PipelineSubsetSnapshotArgs, cls).__new__( cls, pipeline_origin=check.inst_param(pipeline_origin, "pipeline_origin", PipelineOrigin), solid_selection=check.list_param(solid_selection, "solid_selection", of_type=str) if solid_selection else None, ) @whitelist_for_serdes class ScheduleExecutionDataMode(Enum): # Just return the schedule data and tags, don't check whether we should excute the schedule or return it PREVIEW = "PREVIEW" # Return schedule data, tags, and whether we should execute the schedule LAUNCH_SCHEDULED_EXECUTION = "LAUNCH_SCHEDULED_EXECUTION" @whitelist_for_serdes class ExternalScheduleExecutionArgs( namedtuple( "_ExternalScheduleExecutionArgs", "repository_origin instance_ref schedule_name schedule_execution_data_mode " "scheduled_execution_timestamp_utc", ) ): def __new__( cls, repository_origin, instance_ref, schedule_name, schedule_execution_data_mode, scheduled_execution_timestamp_utc, ): return super(ExternalScheduleExecutionArgs, cls).__new__( cls, repository_origin=check.inst_param( repository_origin, "repository_origin", RepositoryOrigin ), instance_ref=check.inst_param(instance_ref, "instance_ref", InstanceRef), schedule_name=check.str_param(schedule_name, "schedule_name"), schedule_execution_data_mode=check.inst_param( schedule_execution_data_mode, "schedule_execution_data_mode", ScheduleExecutionDataMode, ), scheduled_execution_timestamp_utc=check.opt_float_param( scheduled_execution_timestamp_utc, "scheduled_execution_timestamp_utc" ), ) @whitelist_for_serdes class ExternalExecutableArgs( namedtuple("_ExternalExecutableArgs", "repository_origin instance_ref name",) ): def __new__(cls, repository_origin, instance_ref, name): return super(ExternalExecutableArgs, cls).__new__( cls, repository_origin=check.inst_param( repository_origin, "repository_origin", RepositoryOrigin ), instance_ref=check.inst_param(instance_ref, "instance_ref", InstanceRef), name=check.str_param(name, "name"), ) @whitelist_for_serdes class ShutdownServerResult(namedtuple("_ShutdownServerResult", "success serializable_error_info")): def __new__(cls, success, serializable_error_info): return super(ShutdownServerResult, cls).__new__( cls, success=check.bool_param(success, "success"), serializable_error_info=check.opt_inst_param( serializable_error_info, "serializable_error_info", SerializableErrorInfo ), ) @whitelist_for_serdes class CancelExecutionRequest(namedtuple("_CancelExecutionRequest", "run_id")): def __new__(cls, run_id): return super(CancelExecutionRequest, cls).__new__( cls, run_id=check.str_param(run_id, "run_id"), ) @whitelist_for_serdes class CancelExecutionResult( namedtuple("_CancelExecutionResult", "success message serializable_error_info") ): def __new__(cls, success, message, serializable_error_info): return super(CancelExecutionResult, cls).__new__( cls, success=check.bool_param(success, "success"), message=check.opt_str_param(message, "message"), serializable_error_info=check.opt_inst_param( serializable_error_info, "serializable_error_info", SerializableErrorInfo ), ) @whitelist_for_serdes class CanCancelExecutionRequest(namedtuple("_CanCancelExecutionRequest", "run_id")): def __new__(cls, run_id): return super(CanCancelExecutionRequest, cls).__new__( cls, run_id=check.str_param(run_id, "run_id"), ) @whitelist_for_serdes class CanCancelExecutionResult(namedtuple("_CancelExecutionResult", "can_cancel")): def __new__(cls, can_cancel): return super(CanCancelExecutionResult, cls).__new__( cls, can_cancel=check.bool_param(can_cancel, "can_cancel"), ) @whitelist_for_serdes class StartRunResult(namedtuple("_StartRunResult", "success message serializable_error_info")): def __new__(cls, success, message, serializable_error_info): return super(StartRunResult, cls).__new__( cls, success=check.bool_param(success, "success"), message=check.opt_str_param(message, "message"), serializable_error_info=check.opt_inst_param( serializable_error_info, "serializable_error_info", SerializableErrorInfo ), ) @whitelist_for_serdes class GetCurrentImageResult( namedtuple("_GetCurrentImageResult", "current_image serializable_error_info") ): def __new__(cls, current_image, serializable_error_info): return super(GetCurrentImageResult, cls).__new__( cls, current_image=check.opt_str_param(current_image, "current_image"), serializable_error_info=check.opt_inst_param( serializable_error_info, "serializable_error_info", SerializableErrorInfo ), )
StarcoderdataPython
3264424
from app import create_app from app.database import db_session APP = create_app() @APP.teardown_appcontext def shutdown_session(exception=None): db_session.remove()
StarcoderdataPython
5142254
<filename>abexp/core/planning.py # MIT License # # Copyright (c) 2021 Playtika Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE # SOFTWARE. import numpy as np from abexp.core.design import SampleSize class Planning: @staticmethod def planning_diff_mean(avg_n_users_per_day, mean_contr, mean_treat, std_contr, alpha=0.05, power=0.8): """ Use the sample size determination with means comparison from the core.design.SampleSize class to estimate the number of days that a test must run to achieve the desired significance and power level. Parameters ---------- avg_n_users_per_day : int The number users per day which can be directed to the variant. mean_contr : float Mean of the control group. mean_treat : float Mean of the treatment group. std_contr : float > 0 Standard deviation of the control group. It assumes that the standard deviation of the control group is equal to the standard deviation of the treatment group. alpha : float in interval (0,1) Significance level, default 0.05. It is the probability of a type I error, that is wrong rejections if the null hypothesis is true. power : float in interval (0,1) Statistical power of the test, default 0.8. It is one minus the probability of a type II error. Power is the probability that the test correctly rejects the null hypothesis if the alternative hypothesis is true. Returns ------- n_days : int Minimum number of days to run the A/B test. """ # If the means are equals the function returns infinity if mean_contr == mean_treat: return np.Inf # If the number of users per day is invalid returns infinity if avg_n_users_per_day <= 0: return np.Inf # Compute required sample size sample_size = SampleSize.ssd_mean(mean_contr, mean_treat, std_contr, alpha, power) return int(np.ceil(sample_size/avg_n_users_per_day)) @staticmethod def planning_diff_prop(avg_n_users_per_day, prop_contr, prop_treat, alpha=0.05, power=0.8): """ Use the sample size determination with proportions comparison from the core.design.SampleSize class to estimate the number of days that a test must run to achieve the desired significance and power level. Parameters ---------- avg_n_users_per_day : int The number users per day which can be directed to the variant. prop_contr : float in interval (0,1) Proportion in the control group. prop_treat : float in interval (0,1) Proportion in the treatment group. alpha : float in interval (0,1) Significance level, default 0.05. It is the probability of a type I error, that is wrong rejections if the Null Hypothesis is true. power : float in interval (0,1) Statistical Power of the test, default 0.8. It is one minus the probability of a type II error. Power is the probability that the test correctly rejects the Null Hypothesis if the Alternative Hypothesis is true. Returns ------- n_days : int Minimum number of days to run the A/B test. """ # If the means are equals the function returns infinity if prop_contr == prop_treat: return np.Inf # If the number of users per day is invalid returns infinity if avg_n_users_per_day <= 0: return np.Inf # Compute required sample size sample_size = SampleSize.ssd_prop(prop_contr, prop_treat, alpha, power) return int(np.ceil(sample_size / avg_n_users_per_day))
StarcoderdataPython
3437531
<reponame>dannyroberts/commcare-hq from __future__ import absolute_import, unicode_literals import json import six import datetime from copy import copy from django.core.serializers.json import ( Serializer as JsonSerializer, DjangoJSONEncoder) from dimagi.utils.parsing import json_format_datetime class JsonLinesSerializer(JsonSerializer): """ Convert a queryset to JSON outputting one object per line """ def start_serialization(self): self._init_options() def end_serialization(self): pass def end_object(self, obj): # self._current has the field data json_kwargs = copy(self.json_kwargs) json_kwargs['cls'] = CommCareJSONEncoder json_dump = json.dumps(self.get_dump_object(obj), **json_kwargs) if six.PY3: json_dump = json_dump.encode('utf-8') self.stream.write(json_dump) self.stream.write(b"\n") self._current = None class CommCareJSONEncoder(DjangoJSONEncoder): """ Custom version of the DjangoJSONEncoder that formats datetime's with all 6 microsecond digits """ def default(self, o): if isinstance(o, datetime.datetime): return json_format_datetime(o) else: return super(CommCareJSONEncoder, self).default(o)
StarcoderdataPython
9615852
#!/usr/bin/env python3 import unittest import numpy as np import torch from pytorch_translate import rnn # noqa from pytorch_translate.beam_decode import SequenceGenerator from pytorch_translate.ensemble_export import BeamSearchAndDecode from pytorch_translate.tasks import pytorch_translate_task as tasks from pytorch_translate.test import utils as test_utils class TestBeamSearchAndDecode(unittest.TestCase): def test_beam_search_and_decode_generate(self): """ A basic test that the output given by BeamSearchAndDecode class is the same as SequenceGenerator """ test_args = test_utils.ModelParamsDict(arch="rnn") test_args.sequence_lstm = True BEAM_SIZE = 1 WORD_REWARD = 1 UNK_REWARD = -1 LENGTH_PENALTY = 0 PLACEHOLDER_SEQ_LENGTH = 5 NBEST = 2 MAX_SEQ_LEN = 7 src_tokens = torch.LongTensor([[0, 0, 0]]) src_lengths = torch.LongTensor([3]) # Build model list samples, src_dict, tgt_dict = test_utils.prepare_inputs(test_args) task = tasks.DictionaryHolderTask(src_dict, tgt_dict) models = task.build_model(test_args) # Placeholder inputs for BeamSearchAndDecode placeholder_src_tokens = torch.LongTensor( np.ones((PLACEHOLDER_SEQ_LENGTH, 1), dtype="int64") ) placeholder_src_lengths = torch.IntTensor( np.array([PLACEHOLDER_SEQ_LENGTH], dtype="int32") ) prev_token = torch.LongTensor([tgt_dict.eos()]) prev_scores = torch.FloatTensor([0.0]) attn_weights = torch.zeros(src_lengths[0].item()) prev_hypos_indices = torch.zeros(BEAM_SIZE, dtype=torch.int64) num_steps = torch.LongTensor([MAX_SEQ_LEN]) # Generate output using SequenceGenerator translator = SequenceGenerator( [models], task.target_dictionary, beam_size=BEAM_SIZE, word_reward=WORD_REWARD, unk_reward=UNK_REWARD, ) encoder_input = {"src_tokens": src_tokens, "src_lengths": src_lengths} top_seq_gen_hypothesis = translator.generate( encoder_input, beam_size=BEAM_SIZE, maxlen=MAX_SEQ_LEN )[0] # Generate output using BeamSearch/BeamDecode placeholder_src_tokens = torch.LongTensor( np.ones((PLACEHOLDER_SEQ_LENGTH, 1), dtype="int64") ) placeholder_src_lengths = torch.IntTensor( np.array([PLACEHOLDER_SEQ_LENGTH], dtype="int32") ) # Generate output using BeamSearchAndDecode class beam_search_and_decode = BeamSearchAndDecode( [models], tgt_dict=tgt_dict, src_tokens=placeholder_src_tokens, src_lengths=placeholder_src_lengths, eos_token_id=tgt_dict.eos(), length_penalty=LENGTH_PENALTY, nbest=NBEST, beam_size=BEAM_SIZE, stop_at_eos=True, word_reward=WORD_REWARD, unk_reward=UNK_REWARD, quantize=True, ) beam_search_and_decode_output = beam_search_and_decode( src_tokens.transpose(0, 1), src_lengths, prev_token, prev_scores, attn_weights, prev_hypos_indices, num_steps[0], ) for hyp_index in range( min(len(beam_search_and_decode_output), len(top_seq_gen_hypothesis)) ): beam_search_and_decode_hypothesis = beam_search_and_decode_output[hyp_index] # Compare two outputs # We always look only from 0 to MAX_SEQ_LEN, because sequence generator # adds an EOS at the end after MAX_SEQ_LEN # Compare two hypotheses np.testing.assert_array_equal( top_seq_gen_hypothesis[hyp_index]["tokens"].tolist()[0:MAX_SEQ_LEN], beam_search_and_decode_hypothesis[0].tolist()[0:MAX_SEQ_LEN], ) # Compare token level scores np.testing.assert_array_almost_equal( top_seq_gen_hypothesis[hyp_index]["positional_scores"].tolist()[ 0:MAX_SEQ_LEN ], beam_search_and_decode_hypothesis[2][0:MAX_SEQ_LEN], decimal=1, ) # Compare attention weights np.testing.assert_array_almost_equal( top_seq_gen_hypothesis[hyp_index]["attention"].numpy()[ :, 0:MAX_SEQ_LEN ], beam_search_and_decode_hypothesis[3].numpy()[:, 0:MAX_SEQ_LEN], decimal=1, ) # Not testing the hypothesis score as sequence generator is adding EOS # at the end, it changes the final score
StarcoderdataPython
8199458
''' --------------------------- Licensing and Distribution --------------------------- Program name: TorsiFlex Version : 2021.3 License : MIT/x11 Copyright (c) 2021, <NAME> (<EMAIL>) and <NAME> (<EMAIL>) Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. --------------------------- *----------------------------------* | Module : common | | Sub-module : partfns | | Last Update: 2020/06/04 (Y/M/D) | | Main Author: <NAME> | *----------------------------------* This module contains some functions related to the calculation of basic partition functions ''' #===============================================# import numpy as np #-----------------------------------------------# import common.physcons as pc from common.fncs import exp128 #===============================================# #===============================================# # Partition functions # #===============================================# def pf_partinbox(mass,T): return (pc.TWOPI*pc.KB*mass*T)**(3./2.)/(pc.H**3) #-----------------------------------------------# def pf_rigidrotor(imoments,T,rotsymnum=1): beta = pc.KB * T rot_const = [(pc.HBAR**2)/Ii/2 for Ii in imoments] # linear case if len(imoments) == 1: qrr = beta / rot_const[0] else : qrr = np.sqrt(pc.PI) * np.sqrt(beta**3 / np.prod(rot_const)) return qrr/rotsymnum #-----------------------------------------------# def pf_harmosc1D(angfreq,T,imag=1E10): if angfreq < 0.0: return imag elif angfreq == 0.0: return 1.0 exp = exp128(-pc.HBAR*angfreq/pc.KB/T) qHO = 1.0/(1.0-exp) return qHO #-----------------------------------------------# def pf_harmosc(angfreqs,T,imag=1E10): qHO = np.prod([pf_harmosc1D(angfreq,T,imag) for angfreq in angfreqs]) return qHO #-----------------------------------------------# def pf_electr(eslist,T): pf, beta = 0.0, 1.0 / pc.KB / T for deg, relE in eslist: pf += deg * exp128(-relE * beta) return pf #===============================================# #===============================================# # Partition functions and derivatives # #===============================================# def pfnder_tr(mass,T): ph_tra = pf_partinbox(mass,T) # at constant volume fdln_trV = -1.5*pc.KB*T sdln_trV = +1.5*(pc.KB*T)**2 # at constant pressure fdln_trP = -2.5*pc.KB*T sdln_trP = +2.5*(pc.KB*T)**2 return ph_tra,fdln_trV,sdln_trV,fdln_trP,sdln_trP #-----------------------------------------------# def pfnder_rot(imoments,T,rotsigma=1): pfn_rot = pf_rigidrotor(imoments,T,rotsigma) fdln_rot = -1.5*pc.KB*T sdln_rot = +1.5*(pc.KB*T)**2 return pfn_rot, fdln_rot, sdln_rot #-----------------------------------------------# def pfnder_vib_i(freq,T): ''' Calculates vibrational partition function (Q) and log(Q) derivatives with regards to beta Zero taken as the energy of level n=0 (i.e. the ZPE) ------ T: float or np.array ''' zpe, qvib, fdln, sdln = 0.0, 1.0, 0.0, 0.0 # for imag freqs if freq > 0.0: zpe = pc.HBAR * freq / 2.0 hw = pc.HBAR * freq bhw = (1.0/pc.KB/T) * hw exp = np.exp(-bhw) # partition functions and derivatives (of logQ) qvib = 1.0/(1.0-exp) fdln = - hw * exp / (1.0-exp) sdln = hw**2 / (1/exp - 1.0) / (1.0-exp) return zpe, qvib, fdln, sdln #-----------------------------------------------# def pfnder_vib(freqs,Tlist): zpe = 0.0 pfn_vib = [1.0 for T in Tlist] fdln_vib = [0.0 for T in Tlist] sdln_vib = [0.0 for T in Tlist] for idx,T in enumerate(Tlist): for freq in freqs: zpe_i, qvib_i, fdln_i, sdln_i = pfnder_vib_i(freq,T) # update zpe if idx == 0: zpe += zpe_i # update partition fncs and derivatives pfn_vib[idx] *= qvib_i fdln_vib[idx] += fdln_i sdln_vib[idx] += sdln_i return zpe, pfn_vib, fdln_vib, sdln_vib #-----------------------------------------------# def pfnder_ele(les,Tlist): pfn_ele = [0.0 for T in Tlist] fd_ele = [0.0 for T in Tlist] sd_ele = [0.0 for T in Tlist] for idx,T in enumerate(Tlist): beta = 1.0/pc.KB/T for mtp,relE in les: pfn_ele[idx] += mtp*exp128(-beta*relE) fd_ele[idx] += (relE )*mtp*exp128(-beta*relE) sd_ele[idx] += (relE**2)*mtp*exp128(-beta*relE) # convert to array pfn_ele = np.array(pfn_ele) fd_ele = np.array(fd_ele) sd_ele = np.array(sd_ele) # we care about derivatives of logQ fdln_ele = fd_ele / pfn_ele sdln_ele = sd_ele / pfn_ele - (fd_ele/pfn_ele)**2 return pfn_ele,fdln_ele,sdln_ele #===============================================# #==========================================================# # Calculation of equilibrium/rate constants # #==========================================================# def Qs2Kc(ltemp,QA,QB,VA,VB,nR=1,nP=1): ''' Qi; partition function per unit volume Kc = [B]/[A] ''' term_V = pc.VOL0**(nP-nR) return [term_V*QB[idx]/QA[idx]*exp128(-(VB-VA)/pc.KB/T) for idx,T in enumerate(ltemp)] #----------------------------------------------------------# def Kc2GFE(ltemp,Kc): return [ -pc.KB * T * np.log(Kc[idx]) for idx,T in enumerate(ltemp)] #----------------------------------------------------------# def Kc2rate(ltemp,Kc): return [(pc.KB*T/pc.H)*Kc[idx] for idx,T in enumerate(ltemp)] #----------------------------------------------------------# def rate2Kc(ltemp,k): return [k[idx]*pc.H/(pc.KB*T) for idx,T in enumerate(ltemp)] #----------------------------------------------------------# def rate2GFE(ltemp,rates,nR=1): term_V = pc.VOL0**(1-nR) GFE = [-pc.KB * T * np.log(term_V*ki*pc.H/pc.KB/T) for T,ki in zip(ltemp,rates)] return GFE #==========================================================#
StarcoderdataPython
116085
<reponame>pathakraul/internetradio-client #!/usr/bin/python # Internet Radio Client using Shoutcast service # to search and play random channels with genre search # Usage ./internetradio.py --genre <GENRE> import os import logging import argparse import requests as rq import xml.etree.ElementTree as et #---------------------------------------------------------------------------------------- # Set your shoutcast devId here #---------------------------------------------------------------------------------------- devId = "" #---------------------------------------------------------------------------------------- logging.basicConfig(format='%(levelname)s %(asctime)s %(message)s', level=logging.INFO) log = logging.getLogger(__name__) #---------------------------------------------------------------------------------------- baseUrl = "http://api.shoutcast.com/" tuneinUrl = "http://yp.shoutcast.com/" base = "sbin/tunein-station.pls" randomSearch = "station/randomstations?k={0}&f=xml&mt=audio/mpeg&limit=1&genre=".format(devId) #---------------------------------------------------------------------------------------- playerCommand = "mplayer -quiet {0}\n" #---------------------------------------------------------------------------------------- def keywordSearch(keyword): log.debug("Making Keyword Search\n") searchurl=baseUrl+randomSearch+keyword log.debug("Searching for {0} on Shoutcast".format(keyword)) res = rq.get(searchurl, proxies=proxies) if res.status_code == 200: srtContent = res.content return str(res.content) else: log.error("Search response failure from server {0}".format(res.status_code)) #---------------------------------------------------------------------------------------- ''' <response> <statusCode>200</statusCode> #tree[0] <statusText>Ok</statusText> #tree[1] <data> #tree[2] <stationlist> #tree[2][0] <tunein base="/sbin/tunein-station.pls" base-m3u="/sbin/tunein-station.m3u" base-xspf="/sbin/tunein-station.xspf"/> #tree[2][0][0] <station name="Bollywood Hits" genre="Hindi" ct="Baamulaiza - Mika <NAME>" mt="audio/mpeg" id="312131" br="96" lc="13" ml="100"/> #tree[2][0][1] </stationlist> </data> </response> ''' def getRandomChannel(data): tree = et.fromstring(data) cid = tree[2][0][1].attrib['id'] cn = tree[2][0][1].attrib['name'] log.info("Playing Channel [{0}], Channel ID [{1}]".format(cn, cid)) return cid #---------------------------------------------------------------------------------------- def playChannel(channelId): channelurl = tuneinUrl+base+"?id="+ str(channelId) channelstream = parseStreamUrl(channelurl) print channelstream command = playerCommand.format(channelstream) print command os.system(command) #---------------------------------------------------------------------------------------- def searchChannelAndPlay(genreKeyword): responsedata = keywordSearch(genreKeyword) channelid = getRandomChannel(responsedata) playChannel(channelid) #---------------------------------------------------------------------------------------- def parseStreamUrl(channelurl): response = rq.get(channelurl, stream=True, proxies=proxies) with open("stream.pls", "wb") as handle: for data in response.iter_content(): handle.write(data) x = [] datafile = file('./stream.pls') for line in datafile: if "File1=" in line: x = str(line) return x[6:-1] #---------------------------------------------------------------------------------------- if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--genre", help="Search random channel of particular genre") args = parser.parse_args() if args.genre: genreKeyword = args.genre else: log.error("Provide any genre to search a random channel") searchChannelAndPlay(genreKeyword) #----------------------------------------------------------------------------------------
StarcoderdataPython
4836351
import os # -*- coding: utf-8 -*- # available languages LANGUAGES = { 'fr': 'Français', 'en': 'English' } STRIPE_KEYS = { 'secret_key': os.environ['SECRET_KEY'], 'publishable_key': os.environ['PUBLISHABLE_KEY'], 'endpoint_secret': os.environ['ENDPOINT_SECRET'] } SQLALCHEMY_DATABASE_URI = 'sqlite:///vimebook.db'
StarcoderdataPython
5184766
<filename>clipik.py from PIL import ImageGrab import time # Change the following path according to your folder of choice. fileName = 'E:\myScreenshots\Screenshot_' + time.strftime("%Y%m%d_%H%M%S") + '.JPG' def save_clipboard_image(): ImageGrab.grabclipboard().save(fileName) print('Image saved to %s' % fileName) save_clipboard_image()
StarcoderdataPython
3423137
import numpy as np import os import torch import logging from visualsearch.utils import ProcessingStats class NumpyRepo: def __init__(self, numpy_file): self.use_gpu = torch.cuda.is_available() self.numpy_file = numpy_file self.stats = ProcessingStats() if os.path.isfile(numpy_file): # it is more efficient to append features to a Python list (CPython implementation) # than working with numpy arrays, because the latter resize the # the array every time a new feature vector is appended and copy the whole array again. # More details: https://docs.python.org/2/faq/design.html#how-are-lists-implemented-in-cpython self.np_features_mat = np.load(self.numpy_file) self.features_mat = self.np_features_mat.tolist() else: self.features_mat = [] def commit(self): np.save(self.numpy_file, np.array(self.features_mat, dtype=np.float32)) def add(self, features): self.features_mat.append(features) # self.features_mat = np.append(self.features_mat, np.array([features]), axis=0) feat_idx = len(self.features_mat) - 1 return feat_idx def find_similars(self, features_v, topk): self.stats.start("numpyrepo - find similars") self.stats.start("numpyrepo - conversion to tensor") features_mat = torch.from_numpy(self.np_features_mat) self.stats.end("numpyrepo - conversion to tensor") if self.use_gpu: features_mat = features_mat.cuda() features_v = features_v.cuda() self.stats.start("numpyrepo - matrix multiplication") logging.info(features_mat.dtype) logging.info(features_v.dtype) similarities_v = torch.matmul(features_mat, features_v.T) self.stats.end("numpyrepo - matrix multiplication") self.stats.start("numpyrepo - top k") top_similarities = torch.topk(similarities_v, topk) self.stats.end("numpyrepo - top k") self.stats.end("numpyrepo - find similars") logging.info(str(self.stats)) return top_similarities.indices.cpu(), top_similarities.values.cpu()
StarcoderdataPython
3229467
def main(argv): import importlib # pylint: disable=C0415 import argparse # pylint: disable=C0415 from . import __version__ # pylint: disable=C0415 prog_name = "tesserae" subcommands = { "align": "tesserae.command.align.main", } parser = argparse.ArgumentParser( prog=prog_name, description="Graph-based mosaic read alignment and exploration algorithms.", ) parser.add_argument( "--version", action="version", version=f"%(prog)s version {__version__}" ) verbosity_group = parser.add_mutually_exclusive_group() verbosity_group.add_argument( "-q", "--quiet", help="silence logging except errors", action="store_true" ) verbosity_group.add_argument( "-v", "--verbose", help="increase output verbosity", action="store_true" ) verbosity_group.add_argument( "-vv", "--veryverbose", help="maximal output verbosity", action="store_true" ) parser.add_argument( "subcommand", choices=sorted(subcommands.keys()), help=f"{prog_name} sub-command", ) parser.add_argument("args", nargs=argparse.REMAINDER, help="sub-command arguments") args = parser.parse_args(argv[1:]) from . import log # pylint: disable=C0415 log.configure_logging(args) package_string, method_string = subcommands[args.subcommand].rsplit(".", 1) module = importlib.import_module(package_string) return getattr(module, method_string)(args.args)
StarcoderdataPython
6508213
<gh_stars>1-10 from assets.forms import SimpleSearchForm def common_variables(request): form = SimpleSearchForm() return {'simple_search_form': form}
StarcoderdataPython
4957689
<gh_stars>0 #from api import * from .ev3 import * from .mproc import MprocModel
StarcoderdataPython
6687300
import cv2 import sys import os def append_file_text(filename, text): name, ext = os.path.splitext(filename) return "{name}_{uid}{ext}".format(name=name, uid=text, ext=ext) # Input error catching num_args = len(sys.argv) if num_args != 3: print("Usage: python3 ./resize_image <filename> <width (px)>") exit() img_path = sys.argv[1] width = int(sys.argv[2]) img = cv2.imread(img_path) img_size = img.shape act_height = int(img_size[0]) act_width = int(img_size[1]) width_ratio = width / act_width #height_ratio = height / act_height #ratio = min(width_ratio, height_ratio) ratio = width_ratio resized_width = int(act_width * ratio) resized_height = int(act_height * ratio) new_size = (resized_width, resized_height) resized_img = cv2.resize(img, new_size) save_path = append_file_text(img_path, "resized") print(save_path) cv2.imwrite(save_path, resized_img)
StarcoderdataPython
6468805
<gh_stars>0 #! /opt/stack/bin/python3 # # @copyright@ # Copyright (c) 2006 - 2018 Teradata # All rights reserved. Stacki(r) v5.x stacki.com # https://github.com/Teradata/stacki/blob/master/LICENSE.txt # @copyright@ class ProfileBase: def pre(self, client): pass def main(self, client): pass def post(self, client): pass
StarcoderdataPython
3497107
<reponame>JustinTW/pulumi-eks<filename>python/pulumi_eks/_inputs.py # coding=utf-8 # *** WARNING: this file was generated by pulumi-gen-eks. *** # *** Do not edit by hand unless you're certain you know what you are doing! *** import warnings import pulumi import pulumi.runtime from typing import Any, Mapping, Optional, Sequence, Union, overload from . import _utilities from .vpc_cni import VpcCni import pulumi_aws import pulumi_kubernetes __all__ = [ 'ClusterNodeGroupOptionsArgs', 'CoreDataArgs', 'CreationRoleProviderArgs', 'FargateProfileArgs', 'KubeconfigOptionsArgs', 'RoleMappingArgs', 'StorageClassArgs', 'TaintArgs', 'UserMappingArgs', 'VpcCniOptionsArgs', ] @pulumi.input_type class ClusterNodeGroupOptionsArgs: def __init__(__self__, *, ami_id: Optional[pulumi.Input[str]] = None, auto_scaling_group_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, bootstrap_extra_args: Optional[pulumi.Input[str]] = None, cloud_formation_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, cluster_ingress_rule: Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroupRule']] = None, desired_capacity: Optional[pulumi.Input[int]] = None, encrypt_root_block_device: Optional[pulumi.Input[bool]] = None, extra_node_security_groups: Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]]] = None, gpu: Optional[pulumi.Input[bool]] = None, instance_profile: Optional[pulumi.Input['pulumi_aws.iam.InstanceProfile']] = None, instance_type: Optional[pulumi.Input[str]] = None, key_name: Optional[pulumi.Input[str]] = None, kubelet_extra_args: Optional[pulumi.Input[str]] = None, labels: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, max_size: Optional[pulumi.Input[int]] = None, min_size: Optional[pulumi.Input[int]] = None, node_associate_public_ip_address: Optional[pulumi.Input[bool]] = None, node_public_key: Optional[pulumi.Input[str]] = None, node_root_volume_size: Optional[pulumi.Input[int]] = None, node_security_group: Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroup']] = None, node_subnet_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, node_user_data: Optional[pulumi.Input[str]] = None, node_user_data_override: Optional[pulumi.Input[str]] = None, spot_price: Optional[pulumi.Input[str]] = None, taints: Optional[pulumi.Input[Mapping[str, pulumi.Input['TaintArgs']]]] = None, version: Optional[pulumi.Input[str]] = None): """ Describes the configuration options accepted by a cluster to create its own node groups. :param pulumi.Input[str] ami_id: The AMI ID to use for the worker nodes. Defaults to the latest recommended EKS Optimized Linux AMI from the AWS Systems Manager Parameter Store. Note: `amiId` and `gpu` are mutually exclusive. See for more details: - https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] auto_scaling_group_tags: The tags to apply to the NodeGroup's AutoScalingGroup in the CloudFormation Stack. Per AWS, all stack-level tags, including automatically created tags, and the `cloudFormationTags` option are propagated to resources that AWS CloudFormation supports, including the AutoScalingGroup. See https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-resource-tags.html Note: Given the inheritance of auto-generated CF tags and `cloudFormationTags`, you should either supply the tag in `autoScalingGroupTags` or `cloudFormationTags`, but not both. :param pulumi.Input[str] bootstrap_extra_args: Additional args to pass directly to `/etc/eks/bootstrap.sh`. Fror details on available options, see: https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh. Note that the `--apiserver-endpoint`, `--b64-cluster-ca` and `--kubelet-extra-args` flags are included automatically based on other configuration parameters. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] cloud_formation_tags: The tags to apply to the CloudFormation Stack of the Worker NodeGroup. Note: Given the inheritance of auto-generated CF tags and `cloudFormationTags`, you should either supply the tag in `autoScalingGroupTags` or `cloudFormationTags`, but not both. :param pulumi.Input['pulumi_aws.ec2.SecurityGroupRule'] cluster_ingress_rule: The ingress rule that gives node group access. :param pulumi.Input[int] desired_capacity: The number of worker nodes that should be running in the cluster. Defaults to 2. :param pulumi.Input[bool] encrypt_root_block_device: Encrypt the root block device of the nodes in the node group. :param pulumi.Input[Sequence[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]] extra_node_security_groups: Extra security groups to attach on all nodes in this worker node group. This additional set of security groups captures any user application rules that will be needed for the nodes. :param pulumi.Input[bool] gpu: Use the latest recommended EKS Optimized Linux AMI with GPU support for the worker nodes from the AWS Systems Manager Parameter Store. Defaults to false. Note: `gpu` and `amiId` are mutually exclusive. See for more details: - https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html - https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html :param pulumi.Input['pulumi_aws.iam.InstanceProfile'] instance_profile: The ingress rule that gives node group access. :param pulumi.Input[str] instance_type: The instance type to use for the cluster's nodes. Defaults to "t2.medium". :param pulumi.Input[str] key_name: Name of the key pair to use for SSH access to worker nodes. :param pulumi.Input[str] kubelet_extra_args: Extra args to pass to the Kubelet. Corresponds to the options passed in the `--kubeletExtraArgs` flag to `/etc/eks/bootstrap.sh`. For example, '--port=10251 --address=0.0.0.0'. Note that the `labels` and `taints` properties will be applied to this list (using `--node-labels` and `--register-with-taints` respectively) after to the expicit `kubeletExtraArgs`. :param pulumi.Input[Mapping[str, pulumi.Input[str]]] labels: Custom k8s node labels to be attached to each woker node. Adds the given key/value pairs to the `--node-labels` kubelet argument. :param pulumi.Input[int] max_size: The maximum number of worker nodes running in the cluster. Defaults to 2. :param pulumi.Input[int] min_size: The minimum number of worker nodes running in the cluster. Defaults to 1. :param pulumi.Input[bool] node_associate_public_ip_address: Whether or not to auto-assign public IP addresses on the EKS worker nodes. If this toggle is set to true, the EKS workers will be auto-assigned public IPs. If false, they will not be auto-assigned public IPs. :param pulumi.Input[str] node_public_key: Public key material for SSH access to worker nodes. See allowed formats at: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html If not provided, no SSH access is enabled on VMs. :param pulumi.Input[int] node_root_volume_size: The size in GiB of a cluster node's root volume. Defaults to 20. :param pulumi.Input['pulumi_aws.ec2.SecurityGroup'] node_security_group: The security group for the worker node group to communicate with the cluster. This security group requires specific inbound and outbound rules. See for more details: https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html Note: The `nodeSecurityGroup` option and the cluster option`nodeSecurityGroupTags` are mutually exclusive. :param pulumi.Input[Sequence[pulumi.Input[str]]] node_subnet_ids: The set of subnets to override and use for the worker node group. Setting this option overrides which subnets to use for the worker node group, regardless if the cluster's `subnetIds` is set, or if `publicSubnetIds` and/or `privateSubnetIds` were set. :param pulumi.Input[str] node_user_data: Extra code to run on node startup. This code will run after the AWS EKS bootstrapping code and before the node signals its readiness to the managing CloudFormation stack. This code must be a typical user data script: critically it must begin with an interpreter directive (i.e. a `#!`). :param pulumi.Input[str] node_user_data_override: User specified code to run on node startup. This code is expected to handle the full AWS EKS bootstrapping code and signal node readiness to the managing CloudFormation stack. This code must be a complete and executable user data script in bash (Linux) or powershell (Windows). See for more details: https://docs.aws.amazon.com/eks/latest/userguide/worker.html :param pulumi.Input[str] spot_price: Bidding price for spot instance. If set, only spot instances will be added as worker node. :param pulumi.Input[Mapping[str, pulumi.Input['TaintArgs']]] taints: Custom k8s node taints to be attached to each worker node. Adds the given taints to the `--register-with-taints` kubelet argument :param pulumi.Input[str] version: Desired Kubernetes master / control plane version. If you do not specify a value, the latest available version is used. """ if ami_id is not None: pulumi.set(__self__, "ami_id", ami_id) if auto_scaling_group_tags is not None: pulumi.set(__self__, "auto_scaling_group_tags", auto_scaling_group_tags) if bootstrap_extra_args is not None: pulumi.set(__self__, "bootstrap_extra_args", bootstrap_extra_args) if cloud_formation_tags is not None: pulumi.set(__self__, "cloud_formation_tags", cloud_formation_tags) if cluster_ingress_rule is not None: pulumi.set(__self__, "cluster_ingress_rule", cluster_ingress_rule) if desired_capacity is not None: pulumi.set(__self__, "desired_capacity", desired_capacity) if encrypt_root_block_device is not None: pulumi.set(__self__, "encrypt_root_block_device", encrypt_root_block_device) if extra_node_security_groups is not None: pulumi.set(__self__, "extra_node_security_groups", extra_node_security_groups) if gpu is not None: pulumi.set(__self__, "gpu", gpu) if instance_profile is not None: pulumi.set(__self__, "instance_profile", instance_profile) if instance_type is not None: pulumi.set(__self__, "instance_type", instance_type) if key_name is not None: pulumi.set(__self__, "key_name", key_name) if kubelet_extra_args is not None: pulumi.set(__self__, "kubelet_extra_args", kubelet_extra_args) if labels is not None: pulumi.set(__self__, "labels", labels) if max_size is not None: pulumi.set(__self__, "max_size", max_size) if min_size is not None: pulumi.set(__self__, "min_size", min_size) if node_associate_public_ip_address is not None: pulumi.set(__self__, "node_associate_public_ip_address", node_associate_public_ip_address) if node_public_key is not None: pulumi.set(__self__, "node_public_key", node_public_key) if node_root_volume_size is not None: pulumi.set(__self__, "node_root_volume_size", node_root_volume_size) if node_security_group is not None: pulumi.set(__self__, "node_security_group", node_security_group) if node_subnet_ids is not None: pulumi.set(__self__, "node_subnet_ids", node_subnet_ids) if node_user_data is not None: pulumi.set(__self__, "node_user_data", node_user_data) if node_user_data_override is not None: pulumi.set(__self__, "node_user_data_override", node_user_data_override) if spot_price is not None: pulumi.set(__self__, "spot_price", spot_price) if taints is not None: pulumi.set(__self__, "taints", taints) if version is not None: pulumi.set(__self__, "version", version) @property @pulumi.getter(name="amiId") def ami_id(self) -> Optional[pulumi.Input[str]]: """ The AMI ID to use for the worker nodes. Defaults to the latest recommended EKS Optimized Linux AMI from the AWS Systems Manager Parameter Store. Note: `amiId` and `gpu` are mutually exclusive. See for more details: - https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html. """ return pulumi.get(self, "ami_id") @ami_id.setter def ami_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "ami_id", value) @property @pulumi.getter(name="autoScalingGroupTags") def auto_scaling_group_tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The tags to apply to the NodeGroup's AutoScalingGroup in the CloudFormation Stack. Per AWS, all stack-level tags, including automatically created tags, and the `cloudFormationTags` option are propagated to resources that AWS CloudFormation supports, including the AutoScalingGroup. See https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/aws-properties-resource-tags.html Note: Given the inheritance of auto-generated CF tags and `cloudFormationTags`, you should either supply the tag in `autoScalingGroupTags` or `cloudFormationTags`, but not both. """ return pulumi.get(self, "auto_scaling_group_tags") @auto_scaling_group_tags.setter def auto_scaling_group_tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "auto_scaling_group_tags", value) @property @pulumi.getter(name="bootstrapExtraArgs") def bootstrap_extra_args(self) -> Optional[pulumi.Input[str]]: """ Additional args to pass directly to `/etc/eks/bootstrap.sh`. Fror details on available options, see: https://github.com/awslabs/amazon-eks-ami/blob/master/files/bootstrap.sh. Note that the `--apiserver-endpoint`, `--b64-cluster-ca` and `--kubelet-extra-args` flags are included automatically based on other configuration parameters. """ return pulumi.get(self, "bootstrap_extra_args") @bootstrap_extra_args.setter def bootstrap_extra_args(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "bootstrap_extra_args", value) @property @pulumi.getter(name="cloudFormationTags") def cloud_formation_tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ The tags to apply to the CloudFormation Stack of the Worker NodeGroup. Note: Given the inheritance of auto-generated CF tags and `cloudFormationTags`, you should either supply the tag in `autoScalingGroupTags` or `cloudFormationTags`, but not both. """ return pulumi.get(self, "cloud_formation_tags") @cloud_formation_tags.setter def cloud_formation_tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "cloud_formation_tags", value) @property @pulumi.getter(name="clusterIngressRule") def cluster_ingress_rule(self) -> Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroupRule']]: """ The ingress rule that gives node group access. """ return pulumi.get(self, "cluster_ingress_rule") @cluster_ingress_rule.setter def cluster_ingress_rule(self, value: Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroupRule']]): pulumi.set(self, "cluster_ingress_rule", value) @property @pulumi.getter(name="desiredCapacity") def desired_capacity(self) -> Optional[pulumi.Input[int]]: """ The number of worker nodes that should be running in the cluster. Defaults to 2. """ return pulumi.get(self, "desired_capacity") @desired_capacity.setter def desired_capacity(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "desired_capacity", value) @property @pulumi.getter(name="encryptRootBlockDevice") def encrypt_root_block_device(self) -> Optional[pulumi.Input[bool]]: """ Encrypt the root block device of the nodes in the node group. """ return pulumi.get(self, "encrypt_root_block_device") @encrypt_root_block_device.setter def encrypt_root_block_device(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "encrypt_root_block_device", value) @property @pulumi.getter(name="extraNodeSecurityGroups") def extra_node_security_groups(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]]]: """ Extra security groups to attach on all nodes in this worker node group. This additional set of security groups captures any user application rules that will be needed for the nodes. """ return pulumi.get(self, "extra_node_security_groups") @extra_node_security_groups.setter def extra_node_security_groups(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]]]): pulumi.set(self, "extra_node_security_groups", value) @property @pulumi.getter def gpu(self) -> Optional[pulumi.Input[bool]]: """ Use the latest recommended EKS Optimized Linux AMI with GPU support for the worker nodes from the AWS Systems Manager Parameter Store. Defaults to false. Note: `gpu` and `amiId` are mutually exclusive. See for more details: - https://docs.aws.amazon.com/eks/latest/userguide/eks-optimized-ami.html - https://docs.aws.amazon.com/eks/latest/userguide/retrieve-ami-id.html """ return pulumi.get(self, "gpu") @gpu.setter def gpu(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "gpu", value) @property @pulumi.getter(name="instanceProfile") def instance_profile(self) -> Optional[pulumi.Input['pulumi_aws.iam.InstanceProfile']]: """ The ingress rule that gives node group access. """ return pulumi.get(self, "instance_profile") @instance_profile.setter def instance_profile(self, value: Optional[pulumi.Input['pulumi_aws.iam.InstanceProfile']]): pulumi.set(self, "instance_profile", value) @property @pulumi.getter(name="instanceType") def instance_type(self) -> Optional[pulumi.Input[str]]: """ The instance type to use for the cluster's nodes. Defaults to "t2.medium". """ return pulumi.get(self, "instance_type") @instance_type.setter def instance_type(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "instance_type", value) @property @pulumi.getter(name="keyName") def key_name(self) -> Optional[pulumi.Input[str]]: """ Name of the key pair to use for SSH access to worker nodes. """ return pulumi.get(self, "key_name") @key_name.setter def key_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "key_name", value) @property @pulumi.getter(name="kubeletExtraArgs") def kubelet_extra_args(self) -> Optional[pulumi.Input[str]]: """ Extra args to pass to the Kubelet. Corresponds to the options passed in the `--kubeletExtraArgs` flag to `/etc/eks/bootstrap.sh`. For example, '--port=10251 --address=0.0.0.0'. Note that the `labels` and `taints` properties will be applied to this list (using `--node-labels` and `--register-with-taints` respectively) after to the expicit `kubeletExtraArgs`. """ return pulumi.get(self, "kubelet_extra_args") @kubelet_extra_args.setter def kubelet_extra_args(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kubelet_extra_args", value) @property @pulumi.getter def labels(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: """ Custom k8s node labels to be attached to each woker node. Adds the given key/value pairs to the `--node-labels` kubelet argument. """ return pulumi.get(self, "labels") @labels.setter def labels(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "labels", value) @property @pulumi.getter(name="maxSize") def max_size(self) -> Optional[pulumi.Input[int]]: """ The maximum number of worker nodes running in the cluster. Defaults to 2. """ return pulumi.get(self, "max_size") @max_size.setter def max_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "max_size", value) @property @pulumi.getter(name="minSize") def min_size(self) -> Optional[pulumi.Input[int]]: """ The minimum number of worker nodes running in the cluster. Defaults to 1. """ return pulumi.get(self, "min_size") @min_size.setter def min_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "min_size", value) @property @pulumi.getter(name="nodeAssociatePublicIpAddress") def node_associate_public_ip_address(self) -> Optional[pulumi.Input[bool]]: """ Whether or not to auto-assign public IP addresses on the EKS worker nodes. If this toggle is set to true, the EKS workers will be auto-assigned public IPs. If false, they will not be auto-assigned public IPs. """ return pulumi.get(self, "node_associate_public_ip_address") @node_associate_public_ip_address.setter def node_associate_public_ip_address(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "node_associate_public_ip_address", value) @property @pulumi.getter(name="nodePublicKey") def node_public_key(self) -> Optional[pulumi.Input[str]]: """ Public key material for SSH access to worker nodes. See allowed formats at: https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/ec2-key-pairs.html If not provided, no SSH access is enabled on VMs. """ return pulumi.get(self, "node_public_key") @node_public_key.setter def node_public_key(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "node_public_key", value) @property @pulumi.getter(name="nodeRootVolumeSize") def node_root_volume_size(self) -> Optional[pulumi.Input[int]]: """ The size in GiB of a cluster node's root volume. Defaults to 20. """ return pulumi.get(self, "node_root_volume_size") @node_root_volume_size.setter def node_root_volume_size(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "node_root_volume_size", value) @property @pulumi.getter(name="nodeSecurityGroup") def node_security_group(self) -> Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]: """ The security group for the worker node group to communicate with the cluster. This security group requires specific inbound and outbound rules. See for more details: https://docs.aws.amazon.com/eks/latest/userguide/sec-group-reqs.html Note: The `nodeSecurityGroup` option and the cluster option`nodeSecurityGroupTags` are mutually exclusive. """ return pulumi.get(self, "node_security_group") @node_security_group.setter def node_security_group(self, value: Optional[pulumi.Input['pulumi_aws.ec2.SecurityGroup']]): pulumi.set(self, "node_security_group", value) @property @pulumi.getter(name="nodeSubnetIds") def node_subnet_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The set of subnets to override and use for the worker node group. Setting this option overrides which subnets to use for the worker node group, regardless if the cluster's `subnetIds` is set, or if `publicSubnetIds` and/or `privateSubnetIds` were set. """ return pulumi.get(self, "node_subnet_ids") @node_subnet_ids.setter def node_subnet_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "node_subnet_ids", value) @property @pulumi.getter(name="nodeUserData") def node_user_data(self) -> Optional[pulumi.Input[str]]: """ Extra code to run on node startup. This code will run after the AWS EKS bootstrapping code and before the node signals its readiness to the managing CloudFormation stack. This code must be a typical user data script: critically it must begin with an interpreter directive (i.e. a `#!`). """ return pulumi.get(self, "node_user_data") @node_user_data.setter def node_user_data(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "node_user_data", value) @property @pulumi.getter(name="nodeUserDataOverride") def node_user_data_override(self) -> Optional[pulumi.Input[str]]: """ User specified code to run on node startup. This code is expected to handle the full AWS EKS bootstrapping code and signal node readiness to the managing CloudFormation stack. This code must be a complete and executable user data script in bash (Linux) or powershell (Windows). See for more details: https://docs.aws.amazon.com/eks/latest/userguide/worker.html """ return pulumi.get(self, "node_user_data_override") @node_user_data_override.setter def node_user_data_override(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "node_user_data_override", value) @property @pulumi.getter(name="spotPrice") def spot_price(self) -> Optional[pulumi.Input[str]]: """ Bidding price for spot instance. If set, only spot instances will be added as worker node. """ return pulumi.get(self, "spot_price") @spot_price.setter def spot_price(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "spot_price", value) @property @pulumi.getter def taints(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input['TaintArgs']]]]: """ Custom k8s node taints to be attached to each worker node. Adds the given taints to the `--register-with-taints` kubelet argument """ return pulumi.get(self, "taints") @taints.setter def taints(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input['TaintArgs']]]]): pulumi.set(self, "taints", value) @property @pulumi.getter def version(self) -> Optional[pulumi.Input[str]]: """ Desired Kubernetes master / control plane version. If you do not specify a value, the latest available version is used. """ return pulumi.get(self, "version") @version.setter def version(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "version", value) @pulumi.input_type class CoreDataArgs: def __init__(__self__, *, cluster: pulumi.Input['pulumi_aws.eks.Cluster'], cluster_security_group: pulumi.Input['pulumi_aws.ec2.SecurityGroup'], endpoint: pulumi.Input[str], instance_roles: pulumi.Input[Sequence[pulumi.Input['pulumi_aws.iam.Role']]], node_group_options: pulumi.Input['ClusterNodeGroupOptionsArgs'], provider: pulumi.Input['pulumi_kubernetes.Provider'], subnet_ids: pulumi.Input[Sequence[pulumi.Input[str]]], vpc_id: pulumi.Input[str], aws_provider: Optional[pulumi.Input['pulumi_aws.Provider']] = None, eks_node_access: Optional[pulumi.Input['pulumi_kubernetes.core.v1.ConfigMap']] = None, encryption_config: Optional[pulumi.Input['pulumi_aws.eks.ClusterEncryptionConfigArgs']] = None, fargate_profile: Optional[pulumi.Input['pulumi_aws.eks.FargateProfile']] = None, kubeconfig: Optional[Any] = None, node_security_group_tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, oidc_provider: Optional[pulumi.Input['pulumi_aws.iam.OpenIdConnectProvider']] = None, private_subnet_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, public_subnet_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, storage_classes: Optional[pulumi.Input[Mapping[str, pulumi.Input['pulumi_kubernetes.storage.v1.StorageClass']]]] = None, tags: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]] = None, vpc_cni: Optional[pulumi.Input['VpcCni']] = None): """ Defines the core set of data associated with an EKS cluster, including the network in which it runs. """ pulumi.set(__self__, "cluster", cluster) pulumi.set(__self__, "cluster_security_group", cluster_security_group) pulumi.set(__self__, "endpoint", endpoint) pulumi.set(__self__, "instance_roles", instance_roles) pulumi.set(__self__, "node_group_options", node_group_options) pulumi.set(__self__, "provider", provider) pulumi.set(__self__, "subnet_ids", subnet_ids) pulumi.set(__self__, "vpc_id", vpc_id) if aws_provider is not None: pulumi.set(__self__, "aws_provider", aws_provider) if eks_node_access is not None: pulumi.set(__self__, "eks_node_access", eks_node_access) if encryption_config is not None: pulumi.set(__self__, "encryption_config", encryption_config) if fargate_profile is not None: pulumi.set(__self__, "fargate_profile", fargate_profile) if kubeconfig is not None: pulumi.set(__self__, "kubeconfig", kubeconfig) if node_security_group_tags is not None: pulumi.set(__self__, "node_security_group_tags", node_security_group_tags) if oidc_provider is not None: pulumi.set(__self__, "oidc_provider", oidc_provider) if private_subnet_ids is not None: pulumi.set(__self__, "private_subnet_ids", private_subnet_ids) if public_subnet_ids is not None: pulumi.set(__self__, "public_subnet_ids", public_subnet_ids) if storage_classes is not None: pulumi.set(__self__, "storage_classes", storage_classes) if tags is not None: pulumi.set(__self__, "tags", tags) if vpc_cni is not None: pulumi.set(__self__, "vpc_cni", vpc_cni) @property @pulumi.getter def cluster(self) -> pulumi.Input['pulumi_aws.eks.Cluster']: return pulumi.get(self, "cluster") @cluster.setter def cluster(self, value: pulumi.Input['pulumi_aws.eks.Cluster']): pulumi.set(self, "cluster", value) @property @pulumi.getter(name="clusterSecurityGroup") def cluster_security_group(self) -> pulumi.Input['pulumi_aws.ec2.SecurityGroup']: return pulumi.get(self, "cluster_security_group") @cluster_security_group.setter def cluster_security_group(self, value: pulumi.Input['pulumi_aws.ec2.SecurityGroup']): pulumi.set(self, "cluster_security_group", value) @property @pulumi.getter def endpoint(self) -> pulumi.Input[str]: return pulumi.get(self, "endpoint") @endpoint.setter def endpoint(self, value: pulumi.Input[str]): pulumi.set(self, "endpoint", value) @property @pulumi.getter(name="instanceRoles") def instance_roles(self) -> pulumi.Input[Sequence[pulumi.Input['pulumi_aws.iam.Role']]]: return pulumi.get(self, "instance_roles") @instance_roles.setter def instance_roles(self, value: pulumi.Input[Sequence[pulumi.Input['pulumi_aws.iam.Role']]]): pulumi.set(self, "instance_roles", value) @property @pulumi.getter(name="nodeGroupOptions") def node_group_options(self) -> pulumi.Input['ClusterNodeGroupOptionsArgs']: return pulumi.get(self, "node_group_options") @node_group_options.setter def node_group_options(self, value: pulumi.Input['ClusterNodeGroupOptionsArgs']): pulumi.set(self, "node_group_options", value) @property @pulumi.getter def provider(self) -> pulumi.Input['pulumi_kubernetes.Provider']: return pulumi.get(self, "provider") @provider.setter def provider(self, value: pulumi.Input['pulumi_kubernetes.Provider']): pulumi.set(self, "provider", value) @property @pulumi.getter(name="subnetIds") def subnet_ids(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: return pulumi.get(self, "subnet_ids") @subnet_ids.setter def subnet_ids(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "subnet_ids", value) @property @pulumi.getter(name="vpcId") def vpc_id(self) -> pulumi.Input[str]: return pulumi.get(self, "vpc_id") @vpc_id.setter def vpc_id(self, value: pulumi.Input[str]): pulumi.set(self, "vpc_id", value) @property @pulumi.getter(name="awsProvider") def aws_provider(self) -> Optional[pulumi.Input['pulumi_aws.Provider']]: return pulumi.get(self, "aws_provider") @aws_provider.setter def aws_provider(self, value: Optional[pulumi.Input['pulumi_aws.Provider']]): pulumi.set(self, "aws_provider", value) @property @pulumi.getter(name="eksNodeAccess") def eks_node_access(self) -> Optional[pulumi.Input['pulumi_kubernetes.core.v1.ConfigMap']]: return pulumi.get(self, "eks_node_access") @eks_node_access.setter def eks_node_access(self, value: Optional[pulumi.Input['pulumi_kubernetes.core.v1.ConfigMap']]): pulumi.set(self, "eks_node_access", value) @property @pulumi.getter(name="encryptionConfig") def encryption_config(self) -> Optional[pulumi.Input['pulumi_aws.eks.ClusterEncryptionConfigArgs']]: return pulumi.get(self, "encryption_config") @encryption_config.setter def encryption_config(self, value: Optional[pulumi.Input['pulumi_aws.eks.ClusterEncryptionConfigArgs']]): pulumi.set(self, "encryption_config", value) @property @pulumi.getter(name="fargateProfile") def fargate_profile(self) -> Optional[pulumi.Input['pulumi_aws.eks.FargateProfile']]: return pulumi.get(self, "fargate_profile") @fargate_profile.setter def fargate_profile(self, value: Optional[pulumi.Input['pulumi_aws.eks.FargateProfile']]): pulumi.set(self, "fargate_profile", value) @property @pulumi.getter def kubeconfig(self) -> Optional[Any]: return pulumi.get(self, "kubeconfig") @kubeconfig.setter def kubeconfig(self, value: Optional[Any]): pulumi.set(self, "kubeconfig", value) @property @pulumi.getter(name="nodeSecurityGroupTags") def node_security_group_tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: return pulumi.get(self, "node_security_group_tags") @node_security_group_tags.setter def node_security_group_tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "node_security_group_tags", value) @property @pulumi.getter(name="oidcProvider") def oidc_provider(self) -> Optional[pulumi.Input['pulumi_aws.iam.OpenIdConnectProvider']]: return pulumi.get(self, "oidc_provider") @oidc_provider.setter def oidc_provider(self, value: Optional[pulumi.Input['pulumi_aws.iam.OpenIdConnectProvider']]): pulumi.set(self, "oidc_provider", value) @property @pulumi.getter(name="privateSubnetIds") def private_subnet_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "private_subnet_ids") @private_subnet_ids.setter def private_subnet_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "private_subnet_ids", value) @property @pulumi.getter(name="publicSubnetIds") def public_subnet_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: return pulumi.get(self, "public_subnet_ids") @public_subnet_ids.setter def public_subnet_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "public_subnet_ids", value) @property @pulumi.getter(name="storageClasses") def storage_classes(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input['pulumi_kubernetes.storage.v1.StorageClass']]]]: return pulumi.get(self, "storage_classes") @storage_classes.setter def storage_classes(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input['pulumi_kubernetes.storage.v1.StorageClass']]]]): pulumi.set(self, "storage_classes", value) @property @pulumi.getter def tags(self) -> Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]: return pulumi.get(self, "tags") @tags.setter def tags(self, value: Optional[pulumi.Input[Mapping[str, pulumi.Input[str]]]]): pulumi.set(self, "tags", value) @property @pulumi.getter(name="vpcCni") def vpc_cni(self) -> Optional[pulumi.Input['VpcCni']]: return pulumi.get(self, "vpc_cni") @vpc_cni.setter def vpc_cni(self, value: Optional[pulumi.Input['VpcCni']]): pulumi.set(self, "vpc_cni", value) @pulumi.input_type class CreationRoleProviderArgs: def __init__(__self__, *, provider: pulumi.Input['pulumi_aws.Provider'], role: pulumi.Input['pulumi_aws.iam.Role']): """ Contains the AWS Role and Provider necessary to override the `[system:master]` entity ARN. This is an optional argument used when creating `Cluster`. Read more: https://docs.aws.amazon.com/eks/latest/userguide/add-user-role.html """ pulumi.set(__self__, "provider", provider) pulumi.set(__self__, "role", role) @property @pulumi.getter def provider(self) -> pulumi.Input['pulumi_aws.Provider']: return pulumi.get(self, "provider") @provider.setter def provider(self, value: pulumi.Input['pulumi_aws.Provider']): pulumi.set(self, "provider", value) @property @pulumi.getter def role(self) -> pulumi.Input['pulumi_aws.iam.Role']: return pulumi.get(self, "role") @role.setter def role(self, value: pulumi.Input['pulumi_aws.iam.Role']): pulumi.set(self, "role", value) @pulumi.input_type class FargateProfileArgs: def __init__(__self__, *, pod_execution_role_arn: Optional[pulumi.Input[str]] = None, selectors: Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.eks.FargateProfileSelectorArgs']]]] = None, subnet_ids: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ Defines how Kubernetes pods are executed in Fargate. See aws.eks.FargateProfileArgs for reference. :param pulumi.Input[str] pod_execution_role_arn: Specify a custom role to use for executing pods in Fargate. Defaults to creating a new role with the `arn:aws:iam::aws:policy/AmazonEKSFargatePodExecutionRolePolicy` policy attached. :param pulumi.Input[Sequence[pulumi.Input['pulumi_aws.eks.FargateProfileSelectorArgs']]] selectors: Specify the namespace and label selectors to use for launching pods into Fargate. :param pulumi.Input[Sequence[pulumi.Input[str]]] subnet_ids: Specify the subnets in which to execute Fargate tasks for pods. Defaults to the private subnets associated with the cluster. """ if pod_execution_role_arn is not None: pulumi.set(__self__, "pod_execution_role_arn", pod_execution_role_arn) if selectors is not None: pulumi.set(__self__, "selectors", selectors) if subnet_ids is not None: pulumi.set(__self__, "subnet_ids", subnet_ids) @property @pulumi.getter(name="podExecutionRoleArn") def pod_execution_role_arn(self) -> Optional[pulumi.Input[str]]: """ Specify a custom role to use for executing pods in Fargate. Defaults to creating a new role with the `arn:aws:iam::aws:policy/AmazonEKSFargatePodExecutionRolePolicy` policy attached. """ return pulumi.get(self, "pod_execution_role_arn") @pod_execution_role_arn.setter def pod_execution_role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "pod_execution_role_arn", value) @property @pulumi.getter def selectors(self) -> Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.eks.FargateProfileSelectorArgs']]]]: """ Specify the namespace and label selectors to use for launching pods into Fargate. """ return pulumi.get(self, "selectors") @selectors.setter def selectors(self, value: Optional[pulumi.Input[Sequence[pulumi.Input['pulumi_aws.eks.FargateProfileSelectorArgs']]]]): pulumi.set(self, "selectors", value) @property @pulumi.getter(name="subnetIds") def subnet_ids(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Specify the subnets in which to execute Fargate tasks for pods. Defaults to the private subnets associated with the cluster. """ return pulumi.get(self, "subnet_ids") @subnet_ids.setter def subnet_ids(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "subnet_ids", value) @pulumi.input_type class KubeconfigOptionsArgs: def __init__(__self__, *, profile_name: Optional[pulumi.Input[str]] = None, role_arn: Optional[pulumi.Input[str]] = None): """ Represents the AWS credentials to scope a given kubeconfig when using a non-default credential chain. The options can be used independently, or additively. A scoped kubeconfig is necessary for certain auth scenarios. For example: 1. Assume a role on the default account caller, 2. Use an AWS creds profile instead of the default account caller, 3. Use an AWS creds creds profile instead of the default account caller, and then assume a given role on the profile. This scenario is also possible by only using a profile, iff the profile includes a role to assume in its settings. See for more details: - https://docs.aws.amazon.com/eks/latest/userguide/create-kubeconfig.html - https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-role.html - https://docs.aws.amazon.com/cli/latest/userguide/cli-configure-profiles.html :param pulumi.Input[str] profile_name: AWS credential profile name to always use instead of the default AWS credential provider chain. The profile is passed to kubeconfig as an authentication environment setting. :param pulumi.Input[str] role_arn: Role ARN to assume instead of the default AWS credential provider chain. The role is passed to kubeconfig as an authentication exec argument. """ if profile_name is not None: pulumi.set(__self__, "profile_name", profile_name) if role_arn is not None: pulumi.set(__self__, "role_arn", role_arn) @property @pulumi.getter(name="profileName") def profile_name(self) -> Optional[pulumi.Input[str]]: """ AWS credential profile name to always use instead of the default AWS credential provider chain. The profile is passed to kubeconfig as an authentication environment setting. """ return pulumi.get(self, "profile_name") @profile_name.setter def profile_name(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "profile_name", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> Optional[pulumi.Input[str]]: """ Role ARN to assume instead of the default AWS credential provider chain. The role is passed to kubeconfig as an authentication exec argument. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "role_arn", value) @pulumi.input_type class RoleMappingArgs: def __init__(__self__, *, groups: pulumi.Input[Sequence[pulumi.Input[str]]], role_arn: pulumi.Input[str], username: pulumi.Input[str]): """ Describes a mapping from an AWS IAM role to a Kubernetes user and groups. :param pulumi.Input[Sequence[pulumi.Input[str]]] groups: A list of groups within Kubernetes to which the role is mapped. :param pulumi.Input[str] role_arn: The ARN of the IAM role to add. :param pulumi.Input[str] username: The user name within Kubernetes to map to the IAM role. By default, the user name is the ARN of the IAM role. """ pulumi.set(__self__, "groups", groups) pulumi.set(__self__, "role_arn", role_arn) pulumi.set(__self__, "username", username) @property @pulumi.getter def groups(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ A list of groups within Kubernetes to which the role is mapped. """ return pulumi.get(self, "groups") @groups.setter def groups(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "groups", value) @property @pulumi.getter(name="roleArn") def role_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM role to add. """ return pulumi.get(self, "role_arn") @role_arn.setter def role_arn(self, value: pulumi.Input[str]): pulumi.set(self, "role_arn", value) @property @pulumi.getter def username(self) -> pulumi.Input[str]: """ The user name within Kubernetes to map to the IAM role. By default, the user name is the ARN of the IAM role. """ return pulumi.get(self, "username") @username.setter def username(self, value: pulumi.Input[str]): pulumi.set(self, "username", value) @pulumi.input_type class StorageClassArgs: def __init__(__self__, *, type: pulumi.Input[str], allow_volume_expansion: Optional[pulumi.Input[bool]] = None, default: Optional[pulumi.Input[bool]] = None, encrypted: Optional[pulumi.Input[bool]] = None, iops_per_gb: Optional[pulumi.Input[int]] = None, kms_key_id: Optional[pulumi.Input[str]] = None, metadata: Optional[pulumi.Input['pulumi_kubernetes.meta.v1.ObjectMetaArgs']] = None, mount_options: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None, reclaim_policy: Optional[pulumi.Input[str]] = None, volume_binding_mode: Optional[pulumi.Input[str]] = None, zones: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]] = None): """ StorageClass describes the inputs to a single Kubernetes StorageClass provisioned by AWS. Any number of storage classes can be added to a cluster at creation time. One of these storage classes may be configured the default storage class for the cluster. :param pulumi.Input[str] type: The EBS volume type. :param pulumi.Input[bool] allow_volume_expansion: AllowVolumeExpansion shows whether the storage class allow volume expand. :param pulumi.Input[bool] default: True if this storage class should be a default storage class for the cluster. Note: As of Kubernetes v1.11+ on EKS, a default `gp2` storage class will always be created automatically for the cluster by the EKS service. See https://docs.aws.amazon.com/eks/latest/userguide/storage-classes.html Please note that at most one storage class can be marked as default. If two or more of them are marked as default, a PersistentVolumeClaim without `storageClassName` explicitly specified cannot be created. See: https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/#changing-the-default-storageclass :param pulumi.Input[bool] encrypted: Denotes whether the EBS volume should be encrypted. :param pulumi.Input[int] iops_per_gb: I/O operations per second per GiB for "io1" volumes. The AWS volume plugin multiplies this with the size of a requested volume to compute IOPS of the volume and caps the result at 20,000 IOPS. :param pulumi.Input[str] kms_key_id: The full Amazon Resource Name of the key to use when encrypting the volume. If none is supplied but encrypted is true, a key is generated by AWS. :param pulumi.Input['pulumi_kubernetes.meta.v1.ObjectMetaArgs'] metadata: Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata :param pulumi.Input[Sequence[pulumi.Input[str]]] mount_options: Dynamically provisioned PersistentVolumes of this storage class are created with these mountOptions, e.g. ["ro", "soft"]. Not validated - mount of the PVs will simply fail if one is invalid. :param pulumi.Input[str] reclaim_policy: Dynamically provisioned PersistentVolumes of this storage class are created with this reclaimPolicy. Defaults to Delete. :param pulumi.Input[str] volume_binding_mode: VolumeBindingMode indicates how PersistentVolumeClaims should be provisioned and bound. When unset, VolumeBindingImmediate is used. This field is alpha-level and is only honored by servers that enable the VolumeScheduling feature. :param pulumi.Input[Sequence[pulumi.Input[str]]] zones: The AWS zone or zones for the EBS volume. If zones is not specified, volumes are generally round-robin-ed across all active zones where Kubernetes cluster has a node. zone and zones parameters must not be used at the same time. """ pulumi.set(__self__, "type", type) if allow_volume_expansion is not None: pulumi.set(__self__, "allow_volume_expansion", allow_volume_expansion) if default is not None: pulumi.set(__self__, "default", default) if encrypted is not None: pulumi.set(__self__, "encrypted", encrypted) if iops_per_gb is not None: pulumi.set(__self__, "iops_per_gb", iops_per_gb) if kms_key_id is not None: pulumi.set(__self__, "kms_key_id", kms_key_id) if metadata is not None: pulumi.set(__self__, "metadata", metadata) if mount_options is not None: pulumi.set(__self__, "mount_options", mount_options) if reclaim_policy is not None: pulumi.set(__self__, "reclaim_policy", reclaim_policy) if volume_binding_mode is not None: pulumi.set(__self__, "volume_binding_mode", volume_binding_mode) if zones is not None: pulumi.set(__self__, "zones", zones) @property @pulumi.getter def type(self) -> pulumi.Input[str]: """ The EBS volume type. """ return pulumi.get(self, "type") @type.setter def type(self, value: pulumi.Input[str]): pulumi.set(self, "type", value) @property @pulumi.getter(name="allowVolumeExpansion") def allow_volume_expansion(self) -> Optional[pulumi.Input[bool]]: """ AllowVolumeExpansion shows whether the storage class allow volume expand. """ return pulumi.get(self, "allow_volume_expansion") @allow_volume_expansion.setter def allow_volume_expansion(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "allow_volume_expansion", value) @property @pulumi.getter def default(self) -> Optional[pulumi.Input[bool]]: """ True if this storage class should be a default storage class for the cluster. Note: As of Kubernetes v1.11+ on EKS, a default `gp2` storage class will always be created automatically for the cluster by the EKS service. See https://docs.aws.amazon.com/eks/latest/userguide/storage-classes.html Please note that at most one storage class can be marked as default. If two or more of them are marked as default, a PersistentVolumeClaim without `storageClassName` explicitly specified cannot be created. See: https://kubernetes.io/docs/tasks/administer-cluster/change-default-storage-class/#changing-the-default-storageclass """ return pulumi.get(self, "default") @default.setter def default(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "default", value) @property @pulumi.getter def encrypted(self) -> Optional[pulumi.Input[bool]]: """ Denotes whether the EBS volume should be encrypted. """ return pulumi.get(self, "encrypted") @encrypted.setter def encrypted(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "encrypted", value) @property @pulumi.getter(name="iopsPerGb") def iops_per_gb(self) -> Optional[pulumi.Input[int]]: """ I/O operations per second per GiB for "io1" volumes. The AWS volume plugin multiplies this with the size of a requested volume to compute IOPS of the volume and caps the result at 20,000 IOPS. """ return pulumi.get(self, "iops_per_gb") @iops_per_gb.setter def iops_per_gb(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "iops_per_gb", value) @property @pulumi.getter(name="kmsKeyId") def kms_key_id(self) -> Optional[pulumi.Input[str]]: """ The full Amazon Resource Name of the key to use when encrypting the volume. If none is supplied but encrypted is true, a key is generated by AWS. """ return pulumi.get(self, "kms_key_id") @kms_key_id.setter def kms_key_id(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "kms_key_id", value) @property @pulumi.getter def metadata(self) -> Optional[pulumi.Input['pulumi_kubernetes.meta.v1.ObjectMetaArgs']]: """ Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/api-conventions.md#metadata """ return pulumi.get(self, "metadata") @metadata.setter def metadata(self, value: Optional[pulumi.Input['pulumi_kubernetes.meta.v1.ObjectMetaArgs']]): pulumi.set(self, "metadata", value) @property @pulumi.getter(name="mountOptions") def mount_options(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ Dynamically provisioned PersistentVolumes of this storage class are created with these mountOptions, e.g. ["ro", "soft"]. Not validated - mount of the PVs will simply fail if one is invalid. """ return pulumi.get(self, "mount_options") @mount_options.setter def mount_options(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "mount_options", value) @property @pulumi.getter(name="reclaimPolicy") def reclaim_policy(self) -> Optional[pulumi.Input[str]]: """ Dynamically provisioned PersistentVolumes of this storage class are created with this reclaimPolicy. Defaults to Delete. """ return pulumi.get(self, "reclaim_policy") @reclaim_policy.setter def reclaim_policy(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "reclaim_policy", value) @property @pulumi.getter(name="volumeBindingMode") def volume_binding_mode(self) -> Optional[pulumi.Input[str]]: """ VolumeBindingMode indicates how PersistentVolumeClaims should be provisioned and bound. When unset, VolumeBindingImmediate is used. This field is alpha-level and is only honored by servers that enable the VolumeScheduling feature. """ return pulumi.get(self, "volume_binding_mode") @volume_binding_mode.setter def volume_binding_mode(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "volume_binding_mode", value) @property @pulumi.getter def zones(self) -> Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]: """ The AWS zone or zones for the EBS volume. If zones is not specified, volumes are generally round-robin-ed across all active zones where Kubernetes cluster has a node. zone and zones parameters must not be used at the same time. """ return pulumi.get(self, "zones") @zones.setter def zones(self, value: Optional[pulumi.Input[Sequence[pulumi.Input[str]]]]): pulumi.set(self, "zones", value) @pulumi.input_type class TaintArgs: def __init__(__self__, *, effect: pulumi.Input[str], value: pulumi.Input[str]): """ Represents a Kubernetes `taint` to apply to all Nodes in a NodeGroup. See https://kubernetes.io/docs/concepts/configuration/taint-and-toleration/. :param pulumi.Input[str] effect: The effect of the taint. :param pulumi.Input[str] value: The value of the taint. """ pulumi.set(__self__, "effect", effect) pulumi.set(__self__, "value", value) @property @pulumi.getter def effect(self) -> pulumi.Input[str]: """ The effect of the taint. """ return pulumi.get(self, "effect") @effect.setter def effect(self, value: pulumi.Input[str]): pulumi.set(self, "effect", value) @property @pulumi.getter def value(self) -> pulumi.Input[str]: """ The value of the taint. """ return pulumi.get(self, "value") @value.setter def value(self, value: pulumi.Input[str]): pulumi.set(self, "value", value) @pulumi.input_type class UserMappingArgs: def __init__(__self__, *, groups: pulumi.Input[Sequence[pulumi.Input[str]]], user_arn: pulumi.Input[str], username: pulumi.Input[str]): """ Describes a mapping from an AWS IAM user to a Kubernetes user and groups. :param pulumi.Input[Sequence[pulumi.Input[str]]] groups: A list of groups within Kubernetes to which the user is mapped to. :param pulumi.Input[str] user_arn: The ARN of the IAM user to add. :param pulumi.Input[str] username: The user name within Kubernetes to map to the IAM user. By default, the user name is the ARN of the IAM user. """ pulumi.set(__self__, "groups", groups) pulumi.set(__self__, "user_arn", user_arn) pulumi.set(__self__, "username", username) @property @pulumi.getter def groups(self) -> pulumi.Input[Sequence[pulumi.Input[str]]]: """ A list of groups within Kubernetes to which the user is mapped to. """ return pulumi.get(self, "groups") @groups.setter def groups(self, value: pulumi.Input[Sequence[pulumi.Input[str]]]): pulumi.set(self, "groups", value) @property @pulumi.getter(name="userArn") def user_arn(self) -> pulumi.Input[str]: """ The ARN of the IAM user to add. """ return pulumi.get(self, "user_arn") @user_arn.setter def user_arn(self, value: pulumi.Input[str]): pulumi.set(self, "user_arn", value) @property @pulumi.getter def username(self) -> pulumi.Input[str]: """ The user name within Kubernetes to map to the IAM user. By default, the user name is the ARN of the IAM user. """ return pulumi.get(self, "username") @username.setter def username(self, value: pulumi.Input[str]): pulumi.set(self, "username", value) @pulumi.input_type class VpcCniOptionsArgs: def __init__(__self__, *, cni_configure_rpfilter: Optional[pulumi.Input[bool]] = None, cni_custom_network_cfg: Optional[pulumi.Input[bool]] = None, cni_external_snat: Optional[pulumi.Input[bool]] = None, custom_network_config: Optional[pulumi.Input[bool]] = None, disable_tcp_early_demux: Optional[pulumi.Input[bool]] = None, enable_pod_eni: Optional[pulumi.Input[bool]] = None, enable_prefix_delegation: Optional[pulumi.Input[bool]] = None, eni_config_label_def: Optional[pulumi.Input[str]] = None, eni_mtu: Optional[pulumi.Input[int]] = None, external_snat: Optional[pulumi.Input[bool]] = None, image: Optional[pulumi.Input[str]] = None, init_image: Optional[pulumi.Input[str]] = None, log_file: Optional[pulumi.Input[str]] = None, log_level: Optional[pulumi.Input[str]] = None, node_port_support: Optional[pulumi.Input[bool]] = None, security_context_privileged: Optional[pulumi.Input[bool]] = None, veth_prefix: Optional[pulumi.Input[str]] = None, warm_eni_target: Optional[pulumi.Input[int]] = None, warm_ip_target: Optional[pulumi.Input[int]] = None, warm_prefix_target: Optional[pulumi.Input[int]] = None): """ Describes the configuration options available for the Amazon VPC CNI plugin for Kubernetes. :param pulumi.Input[bool] cni_configure_rpfilter: Specifies whether ipamd should configure rp filter for primary interface. Default is `false`. :param pulumi.Input[bool] cni_custom_network_cfg: Specifies that your pods may use subnets and security groups that are independent of your worker node's VPC configuration. By default, pods share the same subnet and security groups as the worker node's primary interface. Setting this variable to true causes ipamd to use the security groups and VPC subnet in a worker node's ENIConfig for elastic network interface allocation. You must create an ENIConfig custom resource for each subnet that your pods will reside in, and then annotate or label each worker node to use a specific ENIConfig (multiple worker nodes can be annotated or labelled with the same ENIConfig). Worker nodes can only be annotated with a single ENIConfig at a time, and the subnet in the ENIConfig must belong to the same Availability Zone that the worker node resides in. For more information, see CNI Custom Networking in the Amazon EKS User Guide. Default is `false` :param pulumi.Input[bool] cni_external_snat: Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP addresses. If set to true, the SNAT iptables rule and off-VPC IP rule are not applied, and these rules are removed if they have already been applied. Disable SNAT if you need to allow inbound communication to your pods from external VPNs, direct connections, and external VPCs, and your pods do not need to access the Internet directly via an Internet Gateway. However, your nodes must be running in a private subnet and connected to the internet through an AWS NAT Gateway or another external NAT device. Default is `false` :param pulumi.Input[bool] custom_network_config: Specifies that your pods may use subnets and security groups (within the same VPC as your control plane resources) that are independent of your cluster's `resourcesVpcConfig`. Defaults to false. :param pulumi.Input[bool] disable_tcp_early_demux: Allows the kubelet's liveness and readiness probes to connect via TCP when pod ENI is enabled. This will slightly increase local TCP connection latency. :param pulumi.Input[bool] enable_pod_eni: Specifies whether to allow IPAMD to add the `vpc.amazonaws.com/has-trunk-attached` label to the node if the instance has capacity to attach an additional ENI. Default is `false`. If using liveness and readiness probes, you will also need to disable TCP early demux. :param pulumi.Input[bool] enable_prefix_delegation: IPAMD will start allocating (/28) prefixes to the ENIs with ENABLE_PREFIX_DELEGATION set to true. :param pulumi.Input[str] eni_config_label_def: Specifies the ENI_CONFIG_LABEL_DEF environment variable value for worker nodes. This is used to tell Kubernetes to automatically apply the ENIConfig for each Availability Zone Ref: https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html (step 5(c)) Defaults to the official AWS CNI image in ECR. :param pulumi.Input[int] eni_mtu: Used to configure the MTU size for attached ENIs. The valid range is from 576 to 9001. Defaults to 9001. :param pulumi.Input[bool] external_snat: Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP addresses. If set to true, the SNAT iptables rule and off-VPC IP rule are not applied, and these rules are removed if they have already been applied. Defaults to false. :param pulumi.Input[str] image: Specifies the container image to use in the AWS CNI cluster DaemonSet. Defaults to the official AWS CNI image in ECR. :param pulumi.Input[str] init_image: Specifies the init container image to use in the AWS CNI cluster DaemonSet. Defaults to the official AWS CNI init container image in ECR. :param pulumi.Input[str] log_file: Specifies the file path used for logs. Defaults to "stdout" to emit Pod logs for `kubectl logs`. :param pulumi.Input[str] log_level: Specifies the log level used for logs. Defaults to "DEBUG" Valid values: "DEBUG", "INFO", "WARN", "ERROR", or "FATAL". :param pulumi.Input[bool] node_port_support: Specifies whether NodePort services are enabled on a worker node's primary network interface. This requires additional iptables rules and that the kernel's reverse path filter on the primary interface is set to loose. Defaults to true. :param pulumi.Input[bool] security_context_privileged: Pass privilege to containers securityContext. This is required when SELinux is enabled. This value will not be passed to the CNI config by default :param pulumi.Input[str] veth_prefix: Specifies the veth prefix used to generate the host-side veth device name for the CNI. The prefix can be at most 4 characters long. Defaults to "eni". :param pulumi.Input[int] warm_eni_target: Specifies the number of free elastic network interfaces (and all of their available IP addresses) that the ipamD daemon should attempt to keep available for pod assignment on the node. Defaults to 1. :param pulumi.Input[int] warm_ip_target: Specifies the number of free IP addresses that the ipamD daemon should attempt to keep available for pod assignment on the node. :param pulumi.Input[int] warm_prefix_target: WARM_PREFIX_TARGET will allocate one full (/28) prefix even if a single IP is consumed with the existing prefix. Ref: https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/prefix-and-ip-target.md """ if cni_configure_rpfilter is not None: pulumi.set(__self__, "cni_configure_rpfilter", cni_configure_rpfilter) if cni_custom_network_cfg is not None: pulumi.set(__self__, "cni_custom_network_cfg", cni_custom_network_cfg) if cni_external_snat is not None: pulumi.set(__self__, "cni_external_snat", cni_external_snat) if custom_network_config is not None: pulumi.set(__self__, "custom_network_config", custom_network_config) if disable_tcp_early_demux is not None: pulumi.set(__self__, "disable_tcp_early_demux", disable_tcp_early_demux) if enable_pod_eni is not None: pulumi.set(__self__, "enable_pod_eni", enable_pod_eni) if enable_prefix_delegation is not None: pulumi.set(__self__, "enable_prefix_delegation", enable_prefix_delegation) if eni_config_label_def is not None: pulumi.set(__self__, "eni_config_label_def", eni_config_label_def) if eni_mtu is not None: pulumi.set(__self__, "eni_mtu", eni_mtu) if external_snat is not None: pulumi.set(__self__, "external_snat", external_snat) if image is not None: pulumi.set(__self__, "image", image) if init_image is not None: pulumi.set(__self__, "init_image", init_image) if log_file is not None: pulumi.set(__self__, "log_file", log_file) if log_level is not None: pulumi.set(__self__, "log_level", log_level) if node_port_support is not None: pulumi.set(__self__, "node_port_support", node_port_support) if security_context_privileged is not None: pulumi.set(__self__, "security_context_privileged", security_context_privileged) if veth_prefix is not None: pulumi.set(__self__, "veth_prefix", veth_prefix) if warm_eni_target is not None: pulumi.set(__self__, "warm_eni_target", warm_eni_target) if warm_ip_target is not None: pulumi.set(__self__, "warm_ip_target", warm_ip_target) if warm_prefix_target is not None: pulumi.set(__self__, "warm_prefix_target", warm_prefix_target) @property @pulumi.getter(name="cniConfigureRpfilter") def cni_configure_rpfilter(self) -> Optional[pulumi.Input[bool]]: """ Specifies whether ipamd should configure rp filter for primary interface. Default is `false`. """ return pulumi.get(self, "cni_configure_rpfilter") @cni_configure_rpfilter.setter def cni_configure_rpfilter(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "cni_configure_rpfilter", value) @property @pulumi.getter(name="cniCustomNetworkCfg") def cni_custom_network_cfg(self) -> Optional[pulumi.Input[bool]]: """ Specifies that your pods may use subnets and security groups that are independent of your worker node's VPC configuration. By default, pods share the same subnet and security groups as the worker node's primary interface. Setting this variable to true causes ipamd to use the security groups and VPC subnet in a worker node's ENIConfig for elastic network interface allocation. You must create an ENIConfig custom resource for each subnet that your pods will reside in, and then annotate or label each worker node to use a specific ENIConfig (multiple worker nodes can be annotated or labelled with the same ENIConfig). Worker nodes can only be annotated with a single ENIConfig at a time, and the subnet in the ENIConfig must belong to the same Availability Zone that the worker node resides in. For more information, see CNI Custom Networking in the Amazon EKS User Guide. Default is `false` """ return pulumi.get(self, "cni_custom_network_cfg") @cni_custom_network_cfg.setter def cni_custom_network_cfg(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "cni_custom_network_cfg", value) @property @pulumi.getter(name="cniExternalSnat") def cni_external_snat(self) -> Optional[pulumi.Input[bool]]: """ Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP addresses. If set to true, the SNAT iptables rule and off-VPC IP rule are not applied, and these rules are removed if they have already been applied. Disable SNAT if you need to allow inbound communication to your pods from external VPNs, direct connections, and external VPCs, and your pods do not need to access the Internet directly via an Internet Gateway. However, your nodes must be running in a private subnet and connected to the internet through an AWS NAT Gateway or another external NAT device. Default is `false` """ return pulumi.get(self, "cni_external_snat") @cni_external_snat.setter def cni_external_snat(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "cni_external_snat", value) @property @pulumi.getter(name="customNetworkConfig") def custom_network_config(self) -> Optional[pulumi.Input[bool]]: """ Specifies that your pods may use subnets and security groups (within the same VPC as your control plane resources) that are independent of your cluster's `resourcesVpcConfig`. Defaults to false. """ return pulumi.get(self, "custom_network_config") @custom_network_config.setter def custom_network_config(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "custom_network_config", value) @property @pulumi.getter(name="disableTcpEarlyDemux") def disable_tcp_early_demux(self) -> Optional[pulumi.Input[bool]]: """ Allows the kubelet's liveness and readiness probes to connect via TCP when pod ENI is enabled. This will slightly increase local TCP connection latency. """ return pulumi.get(self, "disable_tcp_early_demux") @disable_tcp_early_demux.setter def disable_tcp_early_demux(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "disable_tcp_early_demux", value) @property @pulumi.getter(name="enablePodEni") def enable_pod_eni(self) -> Optional[pulumi.Input[bool]]: """ Specifies whether to allow IPAMD to add the `vpc.amazonaws.com/has-trunk-attached` label to the node if the instance has capacity to attach an additional ENI. Default is `false`. If using liveness and readiness probes, you will also need to disable TCP early demux. """ return pulumi.get(self, "enable_pod_eni") @enable_pod_eni.setter def enable_pod_eni(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_pod_eni", value) @property @pulumi.getter(name="enablePrefixDelegation") def enable_prefix_delegation(self) -> Optional[pulumi.Input[bool]]: """ IPAMD will start allocating (/28) prefixes to the ENIs with ENABLE_PREFIX_DELEGATION set to true. """ return pulumi.get(self, "enable_prefix_delegation") @enable_prefix_delegation.setter def enable_prefix_delegation(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "enable_prefix_delegation", value) @property @pulumi.getter(name="eniConfigLabelDef") def eni_config_label_def(self) -> Optional[pulumi.Input[str]]: """ Specifies the ENI_CONFIG_LABEL_DEF environment variable value for worker nodes. This is used to tell Kubernetes to automatically apply the ENIConfig for each Availability Zone Ref: https://docs.aws.amazon.com/eks/latest/userguide/cni-custom-network.html (step 5(c)) Defaults to the official AWS CNI image in ECR. """ return pulumi.get(self, "eni_config_label_def") @eni_config_label_def.setter def eni_config_label_def(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "eni_config_label_def", value) @property @pulumi.getter(name="eniMtu") def eni_mtu(self) -> Optional[pulumi.Input[int]]: """ Used to configure the MTU size for attached ENIs. The valid range is from 576 to 9001. Defaults to 9001. """ return pulumi.get(self, "eni_mtu") @eni_mtu.setter def eni_mtu(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "eni_mtu", value) @property @pulumi.getter(name="externalSnat") def external_snat(self) -> Optional[pulumi.Input[bool]]: """ Specifies whether an external NAT gateway should be used to provide SNAT of secondary ENI IP addresses. If set to true, the SNAT iptables rule and off-VPC IP rule are not applied, and these rules are removed if they have already been applied. Defaults to false. """ return pulumi.get(self, "external_snat") @external_snat.setter def external_snat(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "external_snat", value) @property @pulumi.getter def image(self) -> Optional[pulumi.Input[str]]: """ Specifies the container image to use in the AWS CNI cluster DaemonSet. Defaults to the official AWS CNI image in ECR. """ return pulumi.get(self, "image") @image.setter def image(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "image", value) @property @pulumi.getter(name="initImage") def init_image(self) -> Optional[pulumi.Input[str]]: """ Specifies the init container image to use in the AWS CNI cluster DaemonSet. Defaults to the official AWS CNI init container image in ECR. """ return pulumi.get(self, "init_image") @init_image.setter def init_image(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "init_image", value) @property @pulumi.getter(name="logFile") def log_file(self) -> Optional[pulumi.Input[str]]: """ Specifies the file path used for logs. Defaults to "stdout" to emit Pod logs for `kubectl logs`. """ return pulumi.get(self, "log_file") @log_file.setter def log_file(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_file", value) @property @pulumi.getter(name="logLevel") def log_level(self) -> Optional[pulumi.Input[str]]: """ Specifies the log level used for logs. Defaults to "DEBUG" Valid values: "DEBUG", "INFO", "WARN", "ERROR", or "FATAL". """ return pulumi.get(self, "log_level") @log_level.setter def log_level(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "log_level", value) @property @pulumi.getter(name="nodePortSupport") def node_port_support(self) -> Optional[pulumi.Input[bool]]: """ Specifies whether NodePort services are enabled on a worker node's primary network interface. This requires additional iptables rules and that the kernel's reverse path filter on the primary interface is set to loose. Defaults to true. """ return pulumi.get(self, "node_port_support") @node_port_support.setter def node_port_support(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "node_port_support", value) @property @pulumi.getter(name="securityContextPrivileged") def security_context_privileged(self) -> Optional[pulumi.Input[bool]]: """ Pass privilege to containers securityContext. This is required when SELinux is enabled. This value will not be passed to the CNI config by default """ return pulumi.get(self, "security_context_privileged") @security_context_privileged.setter def security_context_privileged(self, value: Optional[pulumi.Input[bool]]): pulumi.set(self, "security_context_privileged", value) @property @pulumi.getter(name="vethPrefix") def veth_prefix(self) -> Optional[pulumi.Input[str]]: """ Specifies the veth prefix used to generate the host-side veth device name for the CNI. The prefix can be at most 4 characters long. Defaults to "eni". """ return pulumi.get(self, "veth_prefix") @veth_prefix.setter def veth_prefix(self, value: Optional[pulumi.Input[str]]): pulumi.set(self, "veth_prefix", value) @property @pulumi.getter(name="warmEniTarget") def warm_eni_target(self) -> Optional[pulumi.Input[int]]: """ Specifies the number of free elastic network interfaces (and all of their available IP addresses) that the ipamD daemon should attempt to keep available for pod assignment on the node. Defaults to 1. """ return pulumi.get(self, "warm_eni_target") @warm_eni_target.setter def warm_eni_target(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "warm_eni_target", value) @property @pulumi.getter(name="warmIpTarget") def warm_ip_target(self) -> Optional[pulumi.Input[int]]: """ Specifies the number of free IP addresses that the ipamD daemon should attempt to keep available for pod assignment on the node. """ return pulumi.get(self, "warm_ip_target") @warm_ip_target.setter def warm_ip_target(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "warm_ip_target", value) @property @pulumi.getter(name="warmPrefixTarget") def warm_prefix_target(self) -> Optional[pulumi.Input[int]]: """ WARM_PREFIX_TARGET will allocate one full (/28) prefix even if a single IP is consumed with the existing prefix. Ref: https://github.com/aws/amazon-vpc-cni-k8s/blob/master/docs/prefix-and-ip-target.md """ return pulumi.get(self, "warm_prefix_target") @warm_prefix_target.setter def warm_prefix_target(self, value: Optional[pulumi.Input[int]]): pulumi.set(self, "warm_prefix_target", value)
StarcoderdataPython
5000768
<filename>ltr/admin/multigpu.py<gh_stars>1-10 import os import torch.nn as nn from gpustat import GPUStatCollection def is_multi_gpu(net): return isinstance(net, (MultiGPU, nn.DataParallel)) class MultiGPU(nn.DataParallel): """Wraps a network to allow simple multi-GPU training.""" def __getattr__(self, item): try: return super().__getattr__(item) except: pass return getattr(self.module, item) def query_gpu(): gpu_stat = GPUStatCollection.new_query() gpu_free_idx = 0 if gpu_stat[0].memory_free >= gpu_stat[1].memory_free else 1 print('Query time: {} -- GPU[{}]: {}MB -- '.format(gpu_stat.query_time, gpu_free_idx, gpu_stat[gpu_free_idx].memory_free)) os.environ['CUDA_VISIBLE_DEVICES'] = "{}".format(gpu_free_idx)
StarcoderdataPython
5014946
<gh_stars>1-10 # -*- coding: utf-8 -*- import sys from termcolor import colored from DIR import * def Hello(): print("▒▒▒▒▒▒▒█▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀▀█") print("▒▒▒▒▒▒▒█░▒▒▒▒▒▒▒▓▒▒▓▒▒▒▒▒▒▒░█") print("▒▒▒▒▒▒▒█░▒▒▓▒▒▒▒▒▒▒▒▒▄▄▒▓▒▒░█░▄▄") print("▒▒▄▀▀▄▄█░▒▒▒▒▒▒▓▒▒▒▒█░░▀▄▄▄▄▄▀░░█") print("▒▒█░░░░█░▒▒▒▒▒▒▒▒▒▒▒█░░░░░░░░░░░█") print("▒▒▒▀▀▄▄█░▒▒▒▒▓▒▒▒▓▒█░░░█▒░░░░█▒░░█") print("▒▒▒▒▒▒▒█░▒▓▒▒▒▒▓▒▒▒█░░░░░░░▀░░░░░█") print("▒▒▒▒▒▄▄█░▒▒▒▓▒▒▒▒▒▒▒█░░█▄▄█▄▄█░░█") print("▒▒▒▒█░░░█▄▄▄▄▄▄▄▄▄▄█░█▄▄▄▄▄▄▄▄▄█") print("▒▒▒▒█▄▄█░░█▄▄█░░░░░░█▄▄█░░█▄▄█") pass def derp(): print(" ─────────▄▄───────────────────▄▄──") print(" ──────────▀█───────────────────▀█─") print(" ──────────▄█───────────────────▄█─") print(" ──█████████▀───────────█████████▀─") print(" ───▄██████▄─────────────▄██████▄──") print(" ─▄██▀────▀██▄─────────▄██▀────▀██▄") print(" ─██────────██─────────██────────██") print(" ─██───██───██─────────██───██───██") print(" ─██────────██─────────██────────██") print(" ──██▄────▄██───────────██▄────▄██─") print(" ───▀██████▀─────────────▀██████▀──") print(" ──────────────────────────────────") print(" ──────────────────────────────────") print(" ──────────────────────────────────") print(" ───────────█████████████──────────") print(" ──────────────────────────────────") print(" ──────────────────────────────────") pass def Bunny(): print("........▓▓▓▓.......................................") print("......▓▓......▓....................................") print("......▓▓......▓▓..................▓▓▓▓.............") print("......▓▓......▓▓..............▓▓......▓▓▓▓.........") print("......▓▓....▓▓..............▓......▓▓......▓▓......") print("........▓▓....▓............▓....▓▓....▓▓▓....▓▓....") print("..........▓▓....▓........▓....▓▓..........▓▓...▓...") print("............▓▓..▓▓....▓▓..▓▓................▓▓.....") print("............▓▓......▓▓....▓▓.......................") print("...........▓......................▓................") print(".........▓.........................▓...............") print("........▓......^..........^......▓.................") print("........▓............❤............▓................") print("........▓..........................▓...............") print("..........▓..........ٮ..........▓..................") print("..............▓▓..........▓▓.......................") pass def hacking(): print colored(' ====================================================== ', 'green', attrs=['bold']) print colored(' ██╗ ██╗ █████╗ ██████╗██╗ ██╗██╗███╗ ██╗ ██████╗ ', 'red', attrs=['bold']) print colored(' ██║ ██║██╔══██╗██╔════╝██║ ██╔╝██║████╗ ██║██╔════╝ ', 'red', attrs=['bold']) print colored(' ███████║███████║██║ █████╔╝ ██║██╔██╗ ██║██║ ███╗ ', 'red', attrs=['bold']) print colored(' ██╔══██║██╔══██║██║ ██╔═██╗ ██║██║╚██╗██║██║ ██║ ', 'red', attrs=['bold']) print colored(' ██║ ██║██║ ██║╚██████╗██║ ██╗██║██║ ╚████║╚██████╔╝ ', 'red', attrs=['bold']) print colored(' ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═════╝╚═╝ ╚═╝╚═╝╚═╝ ╚═══╝ ╚═════╝ ', 'red', attrs=['bold']) print colored(' ====================================================== ', 'green', attrs=['bold']) pass def start_menu(): print colored('================================================', 'red', attrs=['bold']) print colored(' ##:::: ##: ##::::::: ####: ##:::: ##: ########:', 'green', attrs=['bold']) print colored('. ##:: ##:: ##:::::::. ##:: ###:: ###: ##.....::', 'green', attrs=['bold']) print colored(':. ## ##::: ##:::::::: ##:: #### ####: ##:::::::', 'green', attrs=['bold']) print colored('::. ###:::: ##:::::::: ##:: ## ### ##: ######:::', 'green', attrs=['bold']) print colored(':: ## ##::: ##:::::::: ##:: ##. #: ##: ##...::::', 'green', attrs=['bold']) print colored(': ##:. ##:: ##:::::::: ##:: ##:.:: ##: ##:::::::', 'green', attrs=['bold']) print colored(' ##:::. ##: ########: ####: ##:::: ##: ########:', 'green', attrs=['bold']) print colored('..:::::..::........::....::..:::::..::........::', 'green', attrs=['bold']) print colored('====================', 'red', attrs=['bold']), colored('X_LIME', 'blue', attrs=['bold']), colored('====================', 'red', attrs=['bold']) print (d_sign + '\033[1;33mSELECT AN OPTION TO BEGIN: \033[1;m') print (a1_sign + x1 + a2_sign + '\033[1;32m Decomplie apk\033[1;m') print (a1_sign + x2 + a2_sign + '\033[1;32m Backdoor-APK\033[1;m') print (a1_sign + x3 + a2_sign + '\033[1;32m Apk-2-Jar\033[1;m') print (a1_sign + x4 + a2_sign + '\033[1;32m Geo-Location\033[1;m') print (a1_sign + x5 + a2_sign + '\033[1;32m Exit\033[1;m') pass def penguin(): print colored(" _nnnn_ ", 'green', attrs=['bold']) print colored(" dGGGGMMb ", 'green', attrs=['bold']) print colored(" @p~qp~~qMb X_LIME! ", 'green', attrs=['bold']) print colored(" M|@||@) M| _;", 'green', attrs=['bold']) print colored(" @,----.JM| -'", 'green', attrs=['bold']) print colored(" JS^\__/ qKL", 'green', attrs=['bold']) print colored(" dZP qKRb", 'green', attrs=['bold']) print colored(" dZP qKKb", 'green', attrs=['bold']) print colored(" fZP SMMb", 'green', attrs=['bold']) print colored(" HZM MMMM", 'green', attrs=['bold']) print colored(" FqM MMMM", 'green', attrs=['bold']) print colored(" __| . |\dS qML", 'green', attrs=['bold']) print colored(" | `. | `' \Zq", 'green', attrs=['bold']) print colored("_) \.___.,| .'", 'green', attrs=['bold']) print colored("\____ )MMMMMM| .'", 'green', attrs=['bold']) print colored(" `-' `--' ", 'green', attrs=['bold']) pass
StarcoderdataPython
1760929
from PyQt5.QtWidgets import QLabel from PyQt5.QtCore import pyqtSignal class ClickableLabel(QLabel): sig_send = pyqtSignal(int) def __init__(self, pos, parent=None): super(ClickableLabel, self).__init__(parent) self.pos = pos def mousePressEvent(self, event): QLabel.mousePressEvent(self, event) self.sig_send.emit(self.pos)
StarcoderdataPython
1922815
# coding=utf-8 # -------------------------------------------------------------------------- # Code generated by Microsoft (R) AutoRest Code Generator. # Changes may cause incorrect behavior and will be lost if the code is # regenerated. # -------------------------------------------------------------------------- from msrest.serialization import Model class MicrosoftgraphidentitySet(Model): """identitySet. :param application: :type application: ~users.models.Microsoftgraphidentity :param device: :type device: ~users.models.Microsoftgraphidentity :param user: :type user: ~users.models.Microsoftgraphidentity """ _attribute_map = { 'application': {'key': 'application', 'type': 'Microsoftgraphidentity'}, 'device': {'key': 'device', 'type': 'Microsoftgraphidentity'}, 'user': {'key': 'user', 'type': 'Microsoftgraphidentity'}, } def __init__(self, application=None, device=None, user=None): super(MicrosoftgraphidentitySet, self).__init__() self.application = application self.device = device self.user = user
StarcoderdataPython
3268601
<filename>scielomanager/export/forms.py # coding: utf-8 from django import forms from django.core.exceptions import ValidationError from journalmanager import models as jm_models class BlidModelChoiceField(forms.ModelChoiceField): def to_python(self, value): try: issue_pk = int(value) except ValueError: raise ValidationError(self.error_messages['invalid_choice']) try: return jm_models.Issue.objects.get(pk=issue_pk) except jm_models.Issue.DoesNotExist: raise ValidationError(self.error_messages['invalid_choice']) class MarkupFilesForm(forms.Form): journal = forms.ModelChoiceField(queryset=jm_models.Journal.objects.none()) issue = BlidModelChoiceField(queryset=jm_models.Issue.objects.none()) def __init__(self, *args, **kwargs): user = kwargs.pop('user', None) super(MarkupFilesForm, self).__init__(*args, **kwargs) if user: self.fields['journal'].queryset = jm_models.Journal.objects.all_by_user(user)
StarcoderdataPython
346847
<reponame>oliverwy/PhysicalTestReportingAuxiliarySystem # Generated by Django 2.2.6 on 2019-10-26 10:44 import computed_property.fields from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='BMITestNormals', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('male', models.FloatField(default='0.0', verbose_name='BMI男范围')), ('female', models.FloatField(default='0.0', verbose_name='BMI女范围')), ], options={ 'verbose_name': '体重指数(BMI)单项评分表', 'verbose_name_plural': '体重指数(BMI)单项评分表', }, ), migrations.CreateModel( name='Class', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('class_name', models.CharField(max_length=100, verbose_name='专业班级')), ], options={ 'verbose_name': '专业班级表', 'verbose_name_plural': '专业班级表', }, ), migrations.CreateModel( name='FiftymeterTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.FloatField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.FloatField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.FloatField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.FloatField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '50米跑单项评分表(单位:秒)', 'verbose_name_plural': '50米跑单项评分表(单位:秒)', }, ), migrations.CreateModel( name='ItemWeight', fields=[ ('id', models.BigAutoField(primary_key=True, serialize=False, verbose_name='序号')), ('BMI', models.FloatField(default=0, verbose_name='体重指数BMI')), ('lungcapacity', models.FloatField(default=0, verbose_name='肺活量')), ('fiftymeter', models.FloatField(default=0, verbose_name='50米跑')), ('sitandreach', models.FloatField(default=0, verbose_name='坐位体前屈')), ('standingbroadjump', models.FloatField(default=0, verbose_name='立定跳远')), ('pull_ups', models.FloatField(default=0, verbose_name='引体向上')), ('Oneminutesitups', models.FloatField(default=0, verbose_name='一分钟仰卧起坐')), ('middle_distancerun', models.FloatField(default=0, verbose_name='中长跑')), ], options={ 'verbose_name': '单项指标与权重', 'verbose_name_plural': '单项指标与权重', }, ), migrations.CreateModel( name='LungCapacityTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.IntegerField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.IntegerField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.IntegerField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.IntegerField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '肺活量单项评分表(单位:毫升)', 'verbose_name_plural': '肺活量单项评分表(单位:毫升)', }, ), migrations.CreateModel( name='MiddleDistanceRunPlusTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项加分值')), ('malefirst', models.CharField(default=0, max_length=10, verbose_name='大一大二指标男')), ('maleSecond', models.CharField(default=0, max_length=10, verbose_name='大三大四指标男')), ('femalefirst', models.CharField(default=0, max_length=10, verbose_name='大一大二指标女')), ('femaleSecond', models.CharField(default=0, max_length=10, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '男生1000米跑、女生800米加分表(单位:分·秒)', 'verbose_name_plural': '男生1000米跑、女生800米加分表(单位:分·秒)', }, ), migrations.CreateModel( name='MiddleDistanceRunTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.FloatField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.FloatField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.FloatField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.FloatField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '男生1000米、女生800米耐力跑单项评分表(单位:分·秒)', 'verbose_name_plural': '男生1000米、女生800米耐力跑单项评分表(单位:分·秒)', }, ), migrations.CreateModel( name='OneMinuteSitupsAndPullUpPlusNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项加分值')), ('malefirst', models.IntegerField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.IntegerField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.IntegerField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.IntegerField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '男生引体向上、女生仰卧起坐加分表(单位:次)', 'verbose_name_plural': '男生引体向上、女生仰卧起坐加分表(单位:次)', }, ), migrations.CreateModel( name='OneMinuteSitupsAndPullUpTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.IntegerField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.IntegerField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.IntegerField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.IntegerField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '男生引体向上、女生一分钟仰卧起坐评分表(单位:次)', 'verbose_name_plural': '男生引体向上、女生一分钟仰卧起坐评分表(单位:次)', }, ), migrations.CreateModel( name='SitandReachTestNoraml', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.FloatField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.FloatField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.FloatField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.FloatField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '坐位体前屈单项评分表(单位:厘米)', 'verbose_name_plural': '坐位体前屈单项评分表(单位:厘米)', }, ), migrations.CreateModel( name='StandingBroadJumpTestNormal', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('classtype', models.CharField(default=0, max_length=10, verbose_name='等级')), ('ItemScore', models.IntegerField(default=0, verbose_name='单项分值')), ('malefirst', models.FloatField(default=0, verbose_name='大一大二指标男')), ('maleSecond', models.FloatField(default=0, verbose_name='大三大四指标男')), ('femalefirst', models.FloatField(default=0, verbose_name='大一大二指标女')), ('femaleSecond', models.FloatField(default=0, verbose_name='大三大四指标女')), ], options={ 'verbose_name': '立定跳远单项评分表(单位:厘米)', 'verbose_name_plural': '立定跳远单项评分表(单位:厘米)', }, ), migrations.CreateModel( name='Students', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('gradeclass', models.CharField(max_length=20, verbose_name='年级')), ('classname', models.CharField(max_length=50, verbose_name='专业班级')), ('address', models.CharField(blank=True, max_length=250, verbose_name='家庭住址')), ('studentid', models.CharField(max_length=18, verbose_name='学号')), ('nationality', models.CharField(blank=True, max_length=50, verbose_name='民族')), ('name', models.CharField(max_length=50, verbose_name='学生姓名')), ('gender', models.CharField(choices=[('男', '男'), ('女', '女')], max_length=10, verbose_name='性别')), ('bithday', computed_property.fields.ComputedCharField(compute_from='computer_bithday', editable=False, max_length=30, null=True, verbose_name='出生日期')), ('idcardno', models.CharField(max_length=20, verbose_name='身份证号')), ('stature', models.FloatField(default=0, verbose_name='身高')), ('weight', models.FloatField(default=0, verbose_name='体重')), ('lungcapacity', models.IntegerField(default=0, verbose_name='肺活量')), ('middle_distancerun', models.FloatField(default=0, verbose_name='中长跑')), ('fiftymeter', models.FloatField(default=0, verbose_name='50米')), ('standingbroadjump', models.FloatField(default=0, verbose_name='立定跳远')), ('pull_ups', models.IntegerField(default=0, verbose_name='引体向上')), ('sitandreach', models.FloatField(default=0, verbose_name='坐位体前屈')), ('Oneminutesitups', models.IntegerField(default=0, verbose_name='一分钟仰卧起坐')), ('score', computed_property.fields.ComputedFloatField(compute_from='caculate_it', editable=False, verbose_name='分数')), ('enrollment', models.CharField(blank=True, max_length=50, null=True, verbose_name='入学时间')), ('remarks', models.TextField(blank=True, verbose_name='备注')), ], options={ 'verbose_name': '体能测试成绩表', 'verbose_name_plural': '体能测试成绩表', }, ), migrations.CreateModel( name='TecherInfo', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('techerName', models.CharField(max_length=20, verbose_name='教师姓名')), ('techerGender', models.CharField(choices=[('男', '男'), ('女', '女')], max_length=10, verbose_name='性别')), ('mobileNo', models.CharField(max_length=20, verbose_name='手机号码')), ('officeNo', models.CharField(blank=True, max_length=20, verbose_name='座机号码')), ('office', models.CharField(blank=True, max_length=50, verbose_name='办公室')), ], options={ 'verbose_name': '教师信息表', 'verbose_name_plural': '教师信息表', }, ), migrations.CreateModel( name='TestDatetime', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('testTime', models.CharField(max_length=100, verbose_name='测试时间')), ], options={ 'verbose_name': '测试时间', 'verbose_name_plural': '测试时间', }, ), migrations.CreateModel( name='TestSite', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('siteName', models.CharField(max_length=100, verbose_name='测试场地')), ], options={ 'verbose_name': '测试场地', 'verbose_name_plural': '测试场地', }, ), migrations.CreateModel( name='TestSchedule', fields=[ ('id', models.AutoField(primary_key=True, serialize=False, verbose_name='序号')), ('testClass', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='app.Class', verbose_name='测试时间')), ('testdatetime', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='app.TestDatetime', verbose_name='测试时间')), ('testsite', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='app.TestSite', verbose_name='测试场地')), ('testtecher', models.ForeignKey(blank=True, null=True, on_delete=django.db.models.deletion.CASCADE, to='app.TecherInfo', verbose_name='测试教师')), ], options={ 'verbose_name': '测试时间场地安排表', 'verbose_name_plural': '测试时间场地安排表', }, ), ]
StarcoderdataPython
6547621
# django from django.conf.urls import url # views from cooggerapp.views import users urlpatterns = [ # url(r'^upload/pp/$', users.Uploadpp.as_view(), name="user_upload_pp"), url(r"^about/@(?P<username>.+)/$", users.UserAboutBaseClass.as_view(), name="userabout"), url(r'^(?P<utopic>.+)/@(?P<username>.+)/$', users.UserTopic.as_view(), name="utopic"), url(r'^@(?P<username>.+)/$', users.UserClassBased.as_view(), name="user"), url(r'^history/@(?P<username>.+)$', users.UserHistory.as_view(), name="history"), url(r'^wallet/@(?P<username>.+)$', users.UserWallet.as_view(), name="wallet"), ]
StarcoderdataPython
3272631
<reponame>sinedie/Flask-Svelte-Websockets-Nginx-Docker<gh_stars>1-10 from flask import Blueprint, jsonify, request from flask_jwt_extended import jwt_required, get_jwt_identity, fresh_jwt_required api = Blueprint('api', __name__, url_prefix="/api") @api.route('/', methods=["GET"]) def healt_check(): return jsonify({'msg': 'Server is healty'}), 200 @api.route('/protected', methods=['GET']) @jwt_required def protected(): current_user = get_jwt_identity() return jsonify({'logged_in_as': current_user}), 200 @api.route('/protected-fresh', methods=['GET']) @fresh_jwt_required def protected_fresh(): username = get_jwt_identity() return jsonify({'fresh_logged_in_as': username}), 200
StarcoderdataPython
8081235
<reponame>agrija9/Software-Development-Project import rospy import numpy as np from std_msgs.msg import String import threading import time import rosgraph import socket from datetime import datetime from flask import Flask, render_template from flask import request, redirect from gevent.pywsgi import WSGIServer from werkzeug import secure_filename import os def callback(data, args): print('Time : ' + args[1] + ', Topic : ' + args[0] + ', Data : ' + data.data) return ('Time : ' + args[1] + ', Topic : ' + args[0] + ', Data : ' + data.data) def listener(strlist): rospy.init_node('listener', anonymous=True) for i in strlist: rospy.Subscriber(i, String, callback, (i, datetime.now().strftime("%d/%m/%Y %H:%M:%S:%f"))) rospy.spin() def check_master(check): while check == False: try: rosgraph.Master('/rostopic').getPid() except socket.error: check = True rospy.signal_shutdown('exit') if __name__ == '__main__': x = threading.Thread(target=check_master, args=(False,)) x.start() lists = rospy.get_published_topics() strlist = [] for i in lists: if i[1] == 'std_msgs/String': strlist.append(i[0]) listener(strlist)
StarcoderdataPython
6661969
<gh_stars>0 #!/usr/bin/env python3 import sys,re import getopt from glob import glob import os import shutil import time import tempfile import subprocess import json import pprint import pickle from datasketch import MinHash, LeanMinHash import itertools start = time.time() ''' schema of dictionary db: <hash:List[filename_funcname,..]> ''' MINHASHDB = {} def debug(*args, **kwargs): if VERBOSE: print(*args,file=sys.stderr, **kwargs) def elog(*args, **kwargs): print(*args,file=sys.stderr, **kwargs) def usage(): elog("usage:\n%s <-i/-s> [options] <path to binary or .ll files> .."%sys.argv[0] ) # print("action can include extract, tokenize, minhash, ssdeep, ssdeep_ll, simhash, simhash_ft compare, compare_ll, confusion_matrix") elog(''' arguments: -s : search mode, lookup similar functions -i : index mode, indexes binaries/ll files into db pickle -f path_to_pickle : path to pickle file of bcd -p permutations : number of permutations for minhash -t threshold : threshold for matching in minhash and simhash (e.g 0.5 for minhash, 10 for simhash) -v : verbose debugging messages ''') def tokenize(instruction): ''' takes an llvm IR instruction and returns a list of string tokens ''' tokens = instruction.split() result_tokens = [] intsizes = ['i4', 'i8', 'i16', 'i32', 'i64', 'u4', 'u8', 'u16', 'u32', 'u64'] # when a token starts with a shoterner, truncate it to the shortener. shorteners = ['%stack_var', '%dec_label', '%global', '@global'] for i in range(len(tokens)): # run replacement rules t = tokens[i] replaced = False for s in shorteners: if t.startswith(s): debug(f'replacing {t} with {s}') result_tokens.append(s) replaced = True break if replaced: continue elif t[:3] in intsizes: debug(f'dropping {t}') continue elif t.startswith('%') and not ("(" in t): # generic variable reference newt = '%r' debug(f'replacing {t} with {newt}') result_tokens.append(newt) elif t == '!insn.addr': # stop processing break else: newt = t for it in intsizes: newt = newt.replace(it, '') # newt = t.replace() result_tokens.append(newt) # can use lookahead to determine nature of token if result_tokens != []: #result_tokens.append(";") debug(result_tokens) return result_tokens # signify end of instruction return None def extract_functions_retdecLL(filepath): ''' extract functions from retdec LLVM IR return a dictionary of funcname:funccode? ''' # function regex for llvm ir from retdec func_re = r'define .* (@.*){\n' pattern = re.compile(func_re) with open(filepath) as f: data = f.read() debug(f"[extract_functions_retdecLL] done reading {filepath} into mem..") res = {} r = pattern.search(data) prev = None count = 0 skipCount = 0 # the goal is to dump out the entire block, by reading from end of last label match to start of current match while r: # print the match # print(r.group()) # read until end of function (marked by '}') funcEnd = data[r.start():].find('}') # debug(f"start: {r.start()} funcEnd:{funcEnd}") funcCode = data[r.start():r.start() + funcEnd] + '}' fheader = funcCode.split('{')[0] fname = fheader.split('(')[0].split(' ')[-1] if res.get(fname) != None: elog(f"duplicate function f{fname}") res[fname] = funcCode r = pattern.search(data, r.start() + 1) count += 1 if skipCount > 0: debug(f"skipped {skipCount} functions") return res def lift(binaryPath): # if this program from retdec is not in your path, use full path # install from https://github.com/avast/retdec retdecDecompilerPath = "retdec-decompiler" # make temp directory and copy file over tmpd = tempfile.mkdtemp(prefix="tmp-"+os.path.basename(binaryPath)+'_', dir='./tmp') newbin = shutil.copy(binaryPath, tmpd) # decompile if VERBOSE: os.system(f"{retdecDecompilerPath} {newbin}") else: os.system(f"{retdecDecompilerPath} {newbin} >/dev/null") # remove copied bin os.remove(newbin) llFile = f"{newbin}.ll" if not os.path.exists(llFile): elog("error - lifted LL file not found") exit(2) # import code # code.interact(local=locals()) # exit(1) return llFile def getTuple1(t): '''' return 1st (0 indexed) element of a tuple ''' return t[1] def lookupPath(path, db=MINHASHDB): ''' decompile a binary (or all binaries in a directory), calculate hashes for each function and then look it up in the database ''' if os.path.isdir(path): dirpath = path for i in os.walk(dirpath): files = i[2] for file in files: filepath = os.path.join(dirpath, file) # print(path) lookupPath(filepath) # lift binary using retdec if path.endswith('.ll'): llpath = path else: llpath = lift(path) functions = extract_functions_retdecLL(llpath) # os.remove(llpath) lstart = time.time() # schema: funcname:[(filefunc, match_score)] matches = {} # get the minhash values of each for fname in functions: functokens = tokenize(functions[fname]) # using LeanMinHash because the pipeline does, to be consistent m = MinHash(num_perm=MINHASH_PERMS) for t in functokens: m.update(t.encode('utf8')) # m.update(t) lm = LeanMinHash(m) hashvals = lm.hashvalues # print(f'{fname}:{hashvals}') # for each function, find all similar functions in the db (each function would be O(64) for 64 hash lookups) # funcname: hash match hashcounts = {} for h in hashvals: if db.get(h) == None: # no match continue for filefunc in db.get(h): if hashcounts.get(filefunc) == None: hashcounts[filefunc] = 0 hashcounts[filefunc] += 1 for filefunc in hashcounts: score = hashcounts[filefunc] / MINHASH_PERMS if score >= THRESHOLD: if matches.get(fname) == None: matches[fname] = [] matches[fname].append((filefunc, score)) # pprint.pprint(matches, indent=2) # rank results based on score for function_key in matches: matches[function_key].sort(key=getTuple1, reverse=True) elog("lookupPath took", (time.time() - lstart)) return matches def indexPath(path, db=MINHASHDB): ''' decompile a binary (or all binaries in a directory), calculate hashes for each function and then store it in the database ''' global MINHASHDB if os.path.isdir(path): dirpath = path for i in os.walk(dirpath): files = i[2] for file in files: filepath = os.path.join(dirpath, file) # print(path) indexPath(filepath) # lift binary using retdec if path.endswith('.ll'): llpath = path else: llpath = lift(path) functions = extract_functions_retdecLL(llpath) # os.remove(llpath) lstart = time.time() # schema: funcname:[(filefunc, match_score)] matches = {} # get the minhash values of each for fname in functions: functokens = tokenize(functions[fname]) # using LeanMinHash because the pipeline does, to be consistent m = MinHash(num_perm=MINHASH_PERMS) for t in functokens: m.update(t.encode('utf8')) # m.update(t) lm = LeanMinHash(m) hashvals = lm.hashvalues # print(f'{fname}:{hashvals}') # for each function, find all similar functions in the db (each function would be O(64) for 64 hash lookups) # funcname: hash match hashcounts = {} filename_funcname = os.path.basename(path) + ":" + fname for h in hashvals: if db.get(h) == None: db[h] = set() # if filename_funcname not in db[h] elif type(db.get(h)) == list: # convert entry to set if its a list (old version) db[h] = set(db[h]) db[h].add(filename_funcname) print("indexPath took", (time.time() - lstart)) MINHASH_PERMS = 64 THRESHOLD = 0.5 VERBOSE = False PICKLEFILE = 'db_dict.pkl' # OUTPUT_DBPATHS = {'extract':'ll_extract.db', 'tokenize':'tokens.db', 'hash':'hashes.db'} MINHASH_PERMS = 64 MODE = 'lookup' # main if __name__ == '__main__': funcNames = None opts, args = getopt.gnu_getopt(sys.argv[1:], 'hvisd:a:t:p:f:') for tup in opts: o,a = tup[0], tup[1] if o == '-h': usage() exit(0) elif o == '-i': MODE = 'index' elif o == '-s': MODE = 'lookup' elif o == '-f': PICKLEFILE = a elif o == '-p': MINHASH_PERMS = int(a) # elif o == '-a': # ALGO = a elif o == '-v': VERBOSE = True elif o == '-t': THRESHOLD = float(a) if len(args) < 1: print('missing path to file.') usage() exit(1) allfilefuncs = set() if not os.path.exists(PICKLEFILE): MINHASHDB = {} else: with open(PICKLEFILE,'rb') as f: MINHASHDB = pickle.load(f) elog(f"finished loading db dictionary, elapsed {time.time() - start}") elog(f"hashes in db: {len(MINHASHDB)}") for targetpath in args: if MODE == 'lookup': if not os.path.exists(PICKLEFILE): elog("no db pickle file specified, can't do lookup") exit(1) matches = lookupPath(targetpath, MINHASHDB) print(json.dumps(matches, indent=2)) elif MODE == 'index': indexPath(targetpath, MINHASHDB) elog(f"hashes in db after indexing: {len(MINHASHDB)}") with open(PICKLEFILE,'wb') as f: pickle.dump(MINHASHDB, f) elog(f"updated db at {PICKLEFILE}") elog("elapsed:", time.time() - start) #import code #code.interact(local=locals())
StarcoderdataPython
6637201
# line_reader.py import os # Function: Will read and return the first line from a file. # The filename and path to this pile will be passed in as # an argument to the function, and the function will open # that file, read in the first line, and return it. def read_from_file(filename): if not os.path.exists(filename): raise Exception("Error: File Not Found.") infile = open(filename, "r") line = infile.readline() return line
StarcoderdataPython
11269936
from .help import dp from .start import dp from .rules import dp from .settings import dp from .death_note_list import dp from .top_users import dp from .shop import dp from .write import dp from .write_down import dp __all__ = ["dp"]
StarcoderdataPython
309506
<gh_stars>1-10 from django.apps import AppConfig class UnclassedConfig(AppConfig): name = 'Unclassed'
StarcoderdataPython
6599101
<filename>sco_py/expr.py import numdifftools as nd import numpy as np from scipy.linalg import eigvalsh DEFAULT_TOL = 1e-4 """ Utility classes to represent expresions. Each expression defines an eval, grad, hess, and convexify method. Variables and values are assumed to be 2D numpy arrays. """ N_DIGS = 6 # 10 class Expr(object): """ by default, expressions are defined by black box functions """ def __init__(self, f, grad=None, hess=None, **kwargs): self.f = f self._grad = grad self._hess = hess self._eval_cache = {} self._grad_cache = {} self._convexify_cache = {} def _get_key(self, x): return tuple(x.round(N_DIGS).flatten()) def eval(self, x): key = self._get_key(x) if key in self._eval_cache: return self._eval_cache[key] val = self.f(x) self._eval_cache[key] = val.copy() return val def _get_flat_f(self, x): """ Utility function which reshapes and flattens for compatibility with numdifftools' Jacobian and Hessian function. """ if len(x.shape) == 2: rows, cols = x.shape assert cols == 1 def flat_f(x): return self.f(x.reshape((rows, cols))).flatten() return flat_f elif len(x.shape) == 1: return self.f else: raise Exception("Input shape not supported") def _num_grad(self, x): """ Returns a numerically computed gradient. Flattening is necessary for compatibility with numdifftools' Jacobian function. """ grad_fn = nd.Jacobian(self._get_flat_f(x)) return grad_fn(x) def _debug_grad(self, g1, g2, atol=DEFAULT_TOL): for i, g_row in enumerate(g1): for j, g in enumerate(g_row): if not np.allclose(g, g2[i, j], atol=atol): print("{}, {}".format(i, j)) print(g, g2[i, j]) def grad(self, x, num_check=False, atol=DEFAULT_TOL): """ Returns the gradient. Can numerically check the gradient. """ key = self._get_key(x) if key in self._grad_cache: return self._grad_cache[key].copy() assert not num_check or self._grad is not None if self._grad is None: return self._num_grad(x) gradient = self._grad(x) if num_check: num_grad = self._num_grad(x) if not np.allclose(num_grad, gradient, atol=atol): self._debug_grad(gradient, num_grad, atol=atol) raise Exception( "Numerical and analytical gradients aren't close. \ \nnum_grad: {0}\nana_grad: {1}\n".format( num_grad, gradient ) ) self._grad_cache[key] = gradient.copy() return gradient def _num_hess(self, x): """ Returns a numerically computed hessian. Flattening is necessary for compatibility with numdifftools' Hessian function. """ hess_fn = nd.Hessian(self._get_flat_f(x)) return hess_fn(x.flatten()) def hess(self, x, num_check=False, atol=DEFAULT_TOL): """ Returns the hessian. Can numerically check the hessian. """ assert not num_check or self._hess is not None if self._hess is None: return self._num_hess(x) hessian = self._hess(x) if num_check: num_hess = self._num_hess(x) if not np.allclose(num_hess, hessian, atol=atol): raise Exception( "Numerical and analytical hessians aren't close. \ \nnum_hess: {0}\nana_hess: {1}\n".format( num_hess, hessian ) ) return hessian def convexify(self, x, degree=1): """ Returns an Expression object that represents the convex approximation of self at x where degree 1 is an affine approximation and degree 2 is a quadratic approximation. If the hessian has negative eigenvalues, the hessian is adjusted so that it is positive semi-definite. """ res = None if degree == 1: A = self.grad(x) b = -A.dot(x) + self.eval(x) res = AffExpr(A, b) elif degree == 2: hess = self.hess(x) eig_vals = eigvalsh(hess) min_eig_val = min(eig_vals) if min_eig_val < 0: hess = hess - np.eye(hess.shape[0]) * min_eig_val grad = self.grad(x) Q = hess A = grad - np.transpose(x).dot(hess) b = 0.5 * np.transpose(x).dot(hess).dot(x) - grad.dot(x) + self.eval(x) res = QuadExpr(Q, A, b) else: raise NotImplementedError return res class AffExpr(Expr): """ Affine Expression """ def __init__(self, A, b): """ expr is Ax + b """ assert b.shape[0] == A.shape[0] self.A = A self.b = b self.x_shape = (A.shape[1], 1) def eval(self, x): return self.A.dot(x) + self.b def grad(self, x): return self.A.T def hess(self, x): return np.zeros((self.x_shape[0], self.x_shape[0])) class QuadExpr(Expr): """ Quadratic Expression """ def __init__(self, Q, A, b): """ expr is 0.5*x'Qx + Ax + b """ assert A.shape[0] == 1, "Can only define scalar quadrative expressions" # ensure the correct shapes for all the arguments assert Q.shape[0] == Q.shape[1] assert Q.shape[0] == A.shape[1] assert b.shape[0] == 1 self.Q = Q self.A = A self.b = b self.x_shape = (A.shape[1], 1) def eval(self, x): return 0.5 * x.T.dot(self.Q.dot(x)) + self.A.dot(x) + self.b def grad(self, x): assert x.shape == self.x_shape return 0.5 * (self.Q.dot(x) + self.Q.T.dot(x)) + self.A.T def hess(self, x): return self.Q.copy() class AbsExpr(Expr): """ Absolute value expression """ def __init__(self, expr): self.expr = expr def eval(self, x): return np.absolute(self.expr.eval(x)) def grad(self, x): """ Since the absolute value expression is not smooth, a subgradient is returned instead of the gradient. """ raise NotImplementedError def hess(self, x): raise NotImplementedError class HingeExpr(Expr): """ Hinge expression """ def __init__(self, expr): self.expr = expr def eval(self, x): v = self.expr.eval(x) zeros = np.zeros(v.shape) return np.maximum(v, zeros) def grad(self, x): """ Since the hinge expression is not smooth, a subgradient is returned instead of the gradient. """ raise NotImplementedError def hess(self, x): raise NotImplementedError class CompExpr(Expr): """ Comparison Expression """ def __init__(self, expr, val): """ expr: Expr object, the expression that is being compared to val val: numpy array, the value that the expression is being compared to """ self.expr = expr self.val = val.copy() self._convexify_cache = {} def eval(self, x, tol=DEFAULT_TOL): """ Returns True if the comparison holds true within some tolerace and 0 otherwise. """ raise NotImplementedError def grad(self, x): raise Exception( "The gradient is not well defined for comparison \ expressions" ) def hess(self, x): raise Exception( "The hessian is not well defined for comparison \ expressions" ) def convexify(self, x, degree=1): raise NotImplementedError class EqExpr(CompExpr): """ Equality Expression """ def eval(self, x, tol=DEFAULT_TOL, negated=False): """ Tests whether the expression at x is equal to self.val with tolerance tol. """ assert tol >= 0.0 if negated: return not np.allclose(self.expr.eval(x), self.val, atol=tol) return np.allclose(self.expr.eval(x), self.val, atol=tol) def convexify(self, x, degree=1): """ Returns an AbsExpr that is the l1 penalty expression, a measure of constraint violation. The constraint h(x) = 0 becomes |h(x)| """ assert degree == 1 key = self._get_key(x) if key in self._convexify_cache: return self._convexify_cache[key] aff_expr = self.expr.convexify(x, degree=1) aff_expr.b = aff_expr.b - self.val res = AbsExpr(aff_expr) self._convexify_cache[key] = res return res class LEqExpr(CompExpr): """ Less than or equal to expression """ def eval(self, x, tol=DEFAULT_TOL, negated=False): """ Tests whether the expression at x is less than or equal to self.val with tolerance tol. """ assert tol >= 0.0 expr_val = self.expr.eval(x) if negated: ## need the tolerance to go the other way if its negated return not np.all(expr_val <= self.val - tol * np.ones(expr_val.shape)) else: return np.all(expr_val <= self.val + tol * np.ones(expr_val.shape)) def convexify(self, x, degree=1): """ Returns a HingeExpr that is the hinge penalty expression, a measure of constraint violation. The constraint g(x) <= 0 becomes |g(x)|+ where |g(x)|+ = max(g(x), 0) """ assert degree == 1 key = self._get_key(x) if key in self._convexify_cache: return self._convexify_cache[key] aff_expr = self.expr.convexify(x, degree=1) aff_expr.b = aff_expr.b - self.val res = HingeExpr(aff_expr) self._convexify_cache[key] = res return res class LExpr(CompExpr): """ Less than expression """ def eval(self, x, tol=DEFAULT_TOL, negated=False): """ Tests whether the expression at x is less than or equal to self.val with tolerance tol. """ assert tol >= 0.0 expr_val = self.expr.eval(x) if negated: ## need the tolerance to go the other way if its negated return not np.all(expr_val < self.val - tol * np.ones(expr_val.shape)) else: return np.all(expr_val < self.val + tol * np.ones(expr_val.shape)) def convexify(self, x, degree=1): """ Returns a HingeExpr that is the hinge penalty expression, a measure of constraint violation. The constraint g(x) <= 0 becomes |g(x)|+ where |g(x)|+ = max(g(x), 0) """ assert degree == 1 key = self._get_key(x) if key in self._convexify_cache: return self._convexify_cache[key] aff_expr = self.expr.convexify(x, degree=1) aff_expr.b = aff_expr.b - self.val res = HingeExpr(aff_expr) self._convexify_cache[key] = res return res class BoundExpr(object): """ Bound expression Bound expression is composed of an Expr and a Variable. Please note that the variable ordering matters """ def __init__(self, expr, var): self.expr = expr self.var = var def eval(self): """ Returns the current value of the bound expression """ return self.expr.eval(self.var.get_value()) def convexify(self, degree=1): """ Returns a convexified BoundExpr at the variable's current value. """ assert self.var.get_value() is not None cvx_expr = self.expr.convexify(self.var.get_value(), degree) return BoundExpr(cvx_expr, self.var) class TFExpr(Expr): """ TODO wrapper around exprs defined by a tensorflow graph. Leverages automated differentition. """ def __init__(self, f, grad=None, hess=None, sess=None): self.sess = sess return super(TFExpr, self).__init__(f, grad, hess)
StarcoderdataPython
11294480
<reponame>syeomvols/SISSO<gh_stars>0 # Created by <NAME> and <NAME>, 2022.2 # Variable Selection for SISSO (SISSO-SV). Please refer to [<NAME>, <NAME>, et al., xxx] for more details. # Usage: prepare the normal SISSO.in and train.dat in working directory, and then run the VarSelect.py with # proper input parameters below. # Running the code: python3 VarSelect.py (use python3 and newer versions) ###################################################### User Input ################################################ # The values below are good for usual computing power. Remember to change the 'runSISSO' for your machine. # ---------------------------------------------------------------------------------------------------------------- n_init = 10 # initial size of the subset of input features (the S in the paper) n_RS = 4 # number of newly selected input features by random search (the Sa in the paper) n_max =23 # maximal size of the subset (the S in the paper) nstep_max =100 # maximal iterations nstep_converge = 20 # converged and stop if the model error unchanged after certain number of steps. restart = 0 # 0: start from scratch, 1: continue the unfinished job runSISSO = 'mpirun -np 64 SISSO.3.1 > SISSO.log' # set your mpi command to run SISSO (v3.1) !!! ################################################################################################################## import os import copy import time import random import math def SISSO_out_reader(SISSO_out_folder, dimension, all_features, maths_operators): # From SISSO.out, read the errors and involved primary features in all the models SISSO_out_file = open('%s/SISSO.out' % SISSO_out_folder, 'r').readlines() for i in range(len(SISSO_out_file)): SISSO_out_file[i] = SISSO_out_file[i].strip() feature_list = [] descriptor_dict = {} descriptor_dim = 0 for i in range(len(SISSO_out_file)): if SISSO_out_file[i].startswith('@@@descriptor'): descriptor_dim += 1 descriptor_list = [] for d in range(descriptor_dim): descriptor = SISSO_out_file[i + d + 1] for st in range(len(descriptor)): if descriptor[st] == ':': descriptor = descriptor[st + 1:] break for feature in descriptor_2_features(descriptor, all_features, maths_operators): feature_list.append(feature) feature_list = list(set(feature_list)) descriptor_list.append(descriptor) descriptor_dict.update({descriptor_dim: feature_list}) total_RMSE_dict = {} RMSE_dim = 0 for i in range(len(SISSO_out_file)): if SISSO_out_file[i].startswith('RMSE and MaxAE:'): RMSE_dim += 1 RMSE_str = SISSO_out_file[i].replace('RMSE and MaxAE:', '').strip() RMSE = '' for j in list(RMSE_str): if j != ' ': RMSE += j else: break total_RMSE_dict.update({RMSE_dim: float(RMSE)}) return feature_list, total_RMSE_dict[dimension] def descriptor_2_features(descriptor, all_features,maths_operators): # Identify the primary features in a descriptor formula import copy brace = [] brace_position = [] for i in range(len(descriptor)): if descriptor[i] == '(': brace.append(0) brace_position.append(i) if descriptor[i] == ")": brace.append(1) brace_position.append(i) features = [] while brace: for i in range(len(brace)): if (brace[i] == 0) and (brace[i + 1] == 1): features.append(descriptor[brace_position[i] + 1:brace_position[i + 1]]) # if features[-1].startswith('('): # del features[-1] del brace[i:i + 2] del brace_position[i:i + 2] break features_new = [] for feature in features: features_new.append(feature) for Feature in features: maths_operator_position = [] maths_operator_length = [] for i in range(len(Feature)): for operator in maths_operators: op_len = len(operator) if Feature[i:i + op_len] == operator: maths_operator_position.append(i) maths_operator_length.append(op_len) break Feature_cp = copy.copy(Feature) count = 0 count_max = len(copy.copy(maths_operator_position)) while count < count_max: for j in range(len(maths_operator_position)): features_new.append(Feature_cp[:maths_operator_position[j]]) features_new.append(Feature_cp[maths_operator_position[j] + maths_operator_length[j]:]) maths_operator_length_0 = maths_operator_length[:1][0] + maths_operator_position[:1][0] Feature_cp = Feature_cp[maths_operator_length_0:] del maths_operator_length[:1] del maths_operator_position[:1] for j in range(len(maths_operator_position)): maths_operator_position[j] = maths_operator_position[j] - maths_operator_length_0 count += 1 features_out = [] for i in features_new: if (i not in features_out) & (i in all_features): features_out.append(i) return features_out def initial_SISSO_in_2_output_parameter(initial_file_dir, all_features_list, output_parameter): # Read information from SISSO.in parameter_startwith_dict = {1: "dimclass=", 2: "opset=", 3: 'desc_dim='} SISSO_in_file = open('%s/SISSO.in' % initial_file_dir, 'r').readlines() for i in range(len(SISSO_in_file)): SISSO_in_file[i] = SISSO_in_file[i].strip() output_para_in_file = '' for i in range(len(SISSO_in_file)): if SISSO_in_file[i].startswith(parameter_startwith_dict[output_parameter]): output_para_in_file = SISSO_in_file[i] output_para_in_file = output_para_in_file.replace(parameter_startwith_dict[output_parameter], '') if output_parameter == 1: # dimclass dimclass = output_para_in_file dimclass = dimclass.replace('(', "") for alp in range(len(dimclass)): if dimclass[alp] == '!': dimclass = dimclass[:alp].strip() break if dimclass == ')': return [[]] else: dimclass_list = [] operator = '' for i in dimclass: if i == '!': break if (i != ':' and i != ")"): operator += i else: dimclass_list.append(int(operator)) operator = '' if (dimclass_list[-1] > len(all_features_list)): exit('Error: dimclass out of range!\n' 'Check the parameter \'dimclass\' and \'nsf\' in SISSO.in') if len(dimclass_list) % 2 != 0: exit('Error: wrong \'dimclass\' setting! \n' 'Check the parameter \'dimclass\' in SISSO.in') feature_class = [] list_new = [] for i in range(len(dimclass_list)): if i % 2 == 1: if i != len(dimclass_list) - 1: list_new += all_features_list[dimclass_list[i]:dimclass_list[i + 1] - 1] else: list_new += all_features_list[dimclass_list[i]:] continue feature_class.append(all_features_list[dimclass_list[i] - 1:dimclass_list[i + 1]]) # if list_new != []: # feature_class.append(list_new) return feature_class elif output_parameter == 2: # opset # print(output_para_in_file) operators = output_para_in_file operators = operators.replace('\'', '').replace('(', '') # print(operators) operators_list = [] operator = '' for i in operators: if i == '!': break if (i != ':' and i != ")"): operator += i else: operators_list.append(operator) operator = '' return operators_list elif output_parameter == 3: desc_dim = output_para_in_file desc_dim = desc_dim.replace('desc_dim=', '') desc_dim = desc_dim[:3] desc_dim = desc_dim.strip() return int(desc_dim) def initial_train_dat_2_output_parameter(train_dat_folder, output_parameter): # Read data from train.dat train_dat_lines = open('%s/train.dat' % train_dat_folder).readlines() for line in range(len(train_dat_lines)): train_dat_lines[line] = train_dat_lines[line].replace(',',' ').replace('\t',' ') train_dat_lines[line] = train_dat_lines[line].strip() if not train_dat_lines[line]: train_dat_lines.remove('') for line in range(len(train_dat_lines)): train_dat_lines[line] = train_dat_lines[line].split() features_name_list = train_dat_lines[0][2:] materials_name = train_dat_lines[0][0] property_name = train_dat_lines[0][1] train_dat = {} for line in range(len(train_dat_lines)): if line == 0: for num in range(len(train_dat_lines[line])): train_dat.update({train_dat_lines[line][num]: []}) else: for num in range(len(train_dat_lines[line])): list_temp = train_dat[train_dat_lines[0][num]] list_temp.append(train_dat_lines[line][num]) train_dat.update({train_dat_lines[0][num]: list_temp}) if output_parameter == 1: return materials_name elif output_parameter == 2: return property_name elif output_parameter == 3: return list(features_name_list) elif output_parameter == 4: return train_dat def build_SISSO_in(initial_SISSO_in_folder, new_SISSO_in_folder, new_features_class, features_list): # Update SISSO.in for new iteration import os # new_features_class = [ ["f1","f2","f3"], ["f4","f5"],["f6"] ] number_feature = len(features_list) if new_features_class == []: dim_class = 'dim_class=()\n' else: n_group = [] for i in range(len(new_features_class)): n_group.append(len(new_features_class[i])) dim_class_list = [1] dim_class = 'dimclass=(1:' for i in range(len(n_group)): if i == 0: dim_class_list.append(dim_class_list[0] + n_group[i] - 1) dim_class += (str(dim_class_list[-1]) + ')') else: dim_class_list.append(dim_class_list[-1] + 1) dim_class += ('(' + str(dim_class_list[-1]) + ':') dim_class_list.append(n_group[i] - 1 + dim_class_list[-1]) dim_class += (str(dim_class_list[-1]) + ')') dim_class += '\n' nsf = 'nsf=%s\n' % number_feature SISSO_in = open('%s/SISSO.in' % initial_SISSO_in_folder, 'r').readlines() for i in range(len(SISSO_in)): # SISSO_in[i] = SISSO_in[i].lstrip() if SISSO_in[i].startswith('dimclass'): SISSO_in[i] = dim_class if SISSO_in[i].startswith('nsf'): SISSO_in[i] = nsf if os.path.exists(new_SISSO_in_folder): open('%s/SISSO.in' % new_SISSO_in_folder, 'w').writelines(SISSO_in) else: os.mkdir(new_SISSO_in_folder) open('%s/SISSO.in' % new_SISSO_in_folder, 'w').writelines(SISSO_in) def features_classification(features_list, all_features_class): # Group the primary features for creating new train.dat according to their dimensions/units features_class = [] for i in all_features_class: list_new = list(set(i).intersection(features_list)) features_class.append(list_new) features_class_new = [] for i in features_class: if i: features_class_new.append(i) return features_class_new def build_train_dat(new_train_dat_folder, new_features_class, initial_train_dat, compounds_column_name, property_column_name, features_list): # Creat train.dat for new iterations. import copy dimensionless_features = copy.copy(features_list) if new_features_class: for i in new_features_class: for j in i: dimensionless_features.remove(j) new_train_dat_lines = [] sample_num = len(initial_train_dat[property_column_name]) for tmp_0 in range(sample_num): if tmp_0 == 0: tmp_line = '' for tmp in (compounds_column_name, property_column_name): tmp_line += '%s ' % tmp for tmp_1 in new_features_class + [dimensionless_features]: for tmp_2 in tmp_1: if tmp_1: tmp_line += '%s ' % tmp_2 new_train_dat_lines.append(tmp_line + '\n') tmp_line = '' for tmp in (initial_train_dat[compounds_column_name][tmp_0], initial_train_dat[property_column_name][tmp_0]): tmp_line += '%s ' % tmp for tmp_1 in new_features_class + [dimensionless_features]: for tmp_2 in tmp_1: if tmp_2: tmp_line += '%s ' % initial_train_dat[tmp_2][tmp_0] new_train_dat_lines.append(tmp_line + '\n') open('%s/train.dat' % new_train_dat_folder, 'w').writelines(new_train_dat_lines) def check_done(task_folder): # Check if the SISSO job was done successfully. import os, time file_list = [] for root, folders, files in os.walk(task_folder): for j in files: file_list.append(j) if 'SISSO.out' in file_list: SISSO_out_read = open('%s/SISSO.out' % task_folder, 'r').readlines() if len(SISSO_out_read) != 0: if SISSO_out_read[-4].startswith('Total time (second):'): os.system('rm -rf %s/feature_space' % task_folder) return 1 else: return 0 else: return 0 else: return 0 def random_features_list(all_features, selected_features, alpha_dict, n_init): # Update of the primary features for new train.dat unselected_features_list = list(set(all_features) - set(selected_features)) rand_list = [] if 1 in alpha_dict.values(): for i in unselected_features_list: rand_list.append([i, random.random() * (alpha_dict[i])]) if 1 not in alpha_dict.values(): for i in unselected_features_list: rand_list.append([i, random.random()]) # bubble sort for i in range(len(rand_list)): for j in range(len(rand_list) - i - 1): if rand_list[j][1] < rand_list[j + 1][1]: rand_list[j], rand_list[j + 1] = rand_list[j + 1], rand_list[j] feature_new = [] for i in rand_list[: n_init - len(selected_features)]: feature_new.append(i[0]) return selected_features + feature_new def update_alpha_list(alpha_dict, selected_features, features_list, alpha): # Update the penalty factor # features_list_dropped = list(set(features_list) - set(selected_features)) for i in features_list: alpha_old = alpha_dict[i] alpha_dict.update({i: alpha_old * alpha}) return alpha_dict def read_feature_list_from_train_data(task_folder): train_dat = open('%s/train.dat' % task_folder, 'r').readlines() columns = train_dat[0].split() return columns[2:], len(columns[2:]) def check_last_step(): os.system('ls -F | grep \'/$\' > .temp_file') time.sleep(5) dir_list = open('./.temp_file', 'r').readlines() for i in range(len(dir_list)): dir_list[i] = dir_list[i].strip()[:-1] max_num = -1 for i in dir_list: if i.isnumeric(): if max_num < int(i): max_num = int(i) IF_continue_step_done = 0 if max_num != -1: file_list = os.listdir('./%s' % str(max_num)) if 'SISSO.out' in file_list: SISSO_out_read = open('%s/SISSO.out' % str(max_num), 'r').readlines() if len(SISSO_out_read) != 0: if SISSO_out_read[-4].startswith('Total time (second):'): IF_continue_step_done = 1 os.system('rm -f .temp_file') return max_num, IF_continue_step_done # ----------------------------- time_start = time.time() initial_file_folder = './' compounds_column_name = initial_train_dat_2_output_parameter(initial_file_folder, 1) property_column_name = initial_train_dat_2_output_parameter(initial_file_folder, 2) all_features = initial_train_dat_2_output_parameter(initial_file_folder, 3) train_dat = initial_train_dat_2_output_parameter(initial_file_folder, 4) initial_maths_operators = initial_SISSO_in_2_output_parameter(initial_file_folder, all_features, 2) all_features_class = initial_SISSO_in_2_output_parameter(initial_file_folder, all_features, 1) desc_dim = initial_SISSO_in_2_output_parameter(initial_file_folder, all_features, 3) selected_features = [] selected_features_list = [] features_list = [] # train_features=[] features_list_list = [] RMSE_list = [] min_RMSE_list = [] VS_results = open('./VS_results', 'a') VS_results.write( "iterations \t'percentage_of_visited_variables'\t'RMSE_of_this_step'\t'Lowest_RMSE_of_all_steps'\t[variables in the lowest-RMSE-model]\t[variables deselected by SISSO in this step]\t\n") VS_results.close() alpha_dict = {} for i in all_features: alpha_dict.update({i: 1}) min_RMSE_step = 0 visited_set = set() alpha = 0 continue_step, IF_continue_step_done = check_last_step() if continue_step >= 0: # os.system('cp VS_results VS_results_old') if IF_continue_step_done == 0: os.system('rm -rf %s' % str(continue_step)) for i in range(nstep_max): if restart : if i < continue_step + IF_continue_step_done: features_list, n_init = read_feature_list_from_train_data('./%s' % str(i)) selected_features, RMSE = SISSO_out_reader('./%s' % str(i), desc_dim, all_features, initial_maths_operators) alpha_dict = update_alpha_list(alpha_dict, selected_features, features_list, alpha) # train_features = initial_train_dat_2_output_parameter('./%s' % str(i), 3) features_list_list.append(features_list) RMSE_list.append(RMSE) selected_features_list.append(selected_features) visited_set.update(features_list) completed_percent = float(len(visited_set)) / float(len(all_features)) if RMSE < RMSE_list[min_RMSE_step]: min_RMSE_step = i elif RMSE == RMSE_list[min_RMSE_step] and len(selected_features) <= len(selected_features_list[min_RMSE_step]): min_RMSE_step = i else: selected_features, RMSE = SISSO_out_reader('./%s' % str(min_RMSE_step), desc_dim, all_features, initial_maths_operators) min_RMSE_list.append(RMSE_list[min_RMSE_step]) continue VS_results = open('./VS_results', 'a') VS_log = open("./VS_log", 'a') new_folder = './%s' % str(i) try: os.mkdir(new_folder) except: print('folder %s/ already exist!\n' % str(i)) VS_log.write('==========' * 10) VS_log.write('\niteration\t%s\n' % str(i)) alpha_dict = update_alpha_list(alpha_dict, selected_features, features_list, alpha) features_list = random_features_list(all_features, selected_features, alpha_dict, n_init) new_features_class = features_classification(features_list, all_features_class) build_SISSO_in(initial_file_folder, new_folder, new_features_class, features_list) build_train_dat(new_folder, new_features_class, train_dat, compounds_column_name, property_column_name,features_list) os.chdir(new_folder) os.system('%s' % runSISSO) os.chdir('../') time.sleep(5) while True: check_num = check_done(new_folder) time.sleep(5) if check_num == 1: break selected_features, RMSE = SISSO_out_reader('./%s' % str(i), desc_dim, all_features, initial_maths_operators) features_list_list.append(features_list) RMSE_list.append(RMSE) selected_features_list.append(selected_features) features_list = initial_train_dat_2_output_parameter('./%s' % str(i), 3) visited_set.update(features_list) completed_percent = float(len(visited_set)) / float(len(all_features)) # if len(visited_set) == len(all_features): # alpha = 1 # for f in all_features: # alpha_dict.update({f: 1}) if RMSE < RMSE_list[min_RMSE_step]: min_RMSE_step = i elif RMSE == RMSE_list[min_RMSE_step] and len(selected_features) <= len(selected_features_list[min_RMSE_step]): min_RMSE_step = i else: selected_features, RMSE = SISSO_out_reader('./%s' % str(min_RMSE_step), desc_dim, all_features, initial_maths_operators) VS_results.write('interation %s\t%s\t%.06f\t%s\t%s\t%s\t\n' % ( str(i), format(completed_percent, '.1%'), RMSE_list[-1], RMSE_list[min_RMSE_step], selected_features, list(set(features_list).difference(set(selected_features))))) n_init = len(selected_features) + n_RS if n_init > n_max: VS_results.write('Warning: The subset size hits maximum, the n_RS for the next step is reduced to %s\n' % str( n_RS -(n_init - n_max))) n_init = n_max VS_log.write('Variables in the lowest-RMSE-model is %s, at iteration %s, with the RMSE %06f\n' % ( str(len(selected_features)), str(min_RMSE_step), RMSE_list[min_RMSE_step])) VS_log.write('Size of the next subset is %s \n' % str( n_init)) VS_log.write("Unvisited variables (1) : \n%s\n\n" % alpha_dict) VS_log.close() min_RMSE_list.append(RMSE_list[min_RMSE_step]) if len(RMSE_list) >= nstep_converge: if len(list(set(min_RMSE_list[-nstep_converge:]))) == 1: VS_results.write('Stop! \n') VS_results.close() break time_end = time.time() VS_results = open('./VS_results', 'a') VS_results.write('%s\t%s\n' % ('Total time (second):', str(round(time_end - time_start, 2)))) VS_results.close()
StarcoderdataPython
11390561
import logging import os import sqlite3 from time import sleep def _log_msg(msg, project_id=None): """Return the log message with project_id.""" if project_id is not None: return f"Project {project_id} - {msg}" return msg def get_db(db_file): db = sqlite3.connect(str(db_file), detect_types=sqlite3.PARSE_DECLTYPES) db.row_factory = sqlite3.Row return db def release_all_locks(db_file): db = get_db(db_file) db.execute('DELETE FROM locks;') db.close() class SQLiteLock(): def __init__(self, db_file, lock_name="global", blocking=False, timeout=30, polling_rate=0.4, project_id=None): self.db_file = db_file self.lock_name = lock_name self.lock_acquired = False self.timeout = timeout self.polling_rate = polling_rate self.project_id = project_id # acquire self.acquire( blocking=blocking, timeout=timeout, polling_rate=polling_rate) def acquire(self, blocking=False, timeout=30, polling_rate=0.4): if self.lock_acquired: return if not os.path.isfile(self.db_file): self.init_db() cur_timeout = 0 while True and not self.lock_acquired: db = get_db(self.db_file) try: db.isolation_level = 'EXCLUSIVE' db.execute('BEGIN EXCLUSIVE') lock_entry = db.execute('SELECT * FROM locks WHERE name = ?', (self.lock_name, )).fetchone() if lock_entry is None: db.execute('INSERT INTO locks (name) VALUES (?)', (self.lock_name, )) self.lock_acquired = True logging.debug( _log_msg(f"Acquired lock {self.lock_name}", self.project_id)) db.commit() except sqlite3.OperationalError as e: logging.error( _log_msg(f"Encountering operational error {e}", self.project_id)) db.close() if self.lock_acquired or not blocking: break cur_timeout += polling_rate sleep(polling_rate) def init_db(self): db = get_db(self.db_file) db.executescript('DROP TABLE IF EXISTS locks; ' 'CREATE TABLE locks (name TEXT NOT NULL);') db.close() def locked(self): return self.lock_acquired def __enter__(self): return self def __exit__(self, *_, **__): self.release() def release(self): if not self.locked(): return while True: db = get_db(self.db_file) try: db.execute('DELETE FROM locks WHERE name = ?', (self.lock_name, )) db.commit() db.close() break except sqlite3.OperationalError: pass db.close() sleep(0.4) logging.debug( _log_msg(f"Released lock {self.lock_name}", self.project_id)) self.lock_acquired = False
StarcoderdataPython
178036
import numpy as np from skimage import feature from sklearn import preprocessing class LBP: def __init__(self, p, r): self.p = p self.r = r def getVecLength(self): return 2**self.p def getFeature(self, imgMat): feat = feature.local_binary_pattern( imgMat, self.p, self.r, method='uniform') re, _ = np.histogram(feat, bins=range( 256), normed=True) return re def getFeatVecs(self, imgList, load=0): if load == 1: feats = np.load(r"featVectLbp.npy") types = np.load(r"typesLbp.npy") return (feats, types) feats = None # i=0 types = np.float32([]).reshape((0, 1)) for mat, type in imgList: # print("[lbp]:"+str(i)) # i+=1 if mat is None: continue feat = self.getFeature(mat) if feats is None: feats = feat.reshape((1, -1)) else: # print(feat.shape) # print(feats.shape) feats = np.append(feats, feat.reshape((1, -1)), axis=0) types = np.append(types, np.array(type).reshape((1, 1))) np.save(r"featVectLbp.npy", feats) np.save(r"typesLbp.npy", types) return (feats, types) class HOG: def getVecLength(self): return 1764 def getFeature(self, imgMat): feat = feature.hog(imgMat, orientations=9, pixels_per_cell=( 16, 16), cells_per_block=(2, 2), block_norm='L2-Hys') feat = feat.reshape((1, -1)) feat = preprocessing.normalize(feat) return feat def getFeatVecs(self, imgList, load=0): if load == 1: feats = np.load(r"featVectHog.npy") types = np.load(r"typesHog.npy") return (feats, types) feats = None # i=0 types = np.float32([]).reshape((0, 1)) for mat, type in imgList: # print("[hog]:"+str(i)) # i+=1 # print(mat.shape) feat = self.getFeature(mat) if feats is None: feats = feat.copy() else: feats = np.append(feats, feat, axis=0) types = np.append(types, np.float32([type]).reshape((1, 1))) np.save(r"featVectHog.npy", feats) np.save(r"typesHog.npy", types) return (feats, types) def extractfeature(data, tags): print("[feature] start") matList = [] for i in range(len(data)): matList.append((data[i], tags[i])) hog = HOG() lbp = LBP(8, 1) print("[feature]hog") featHog, types = hog.getFeatVecs(matList, load=0) print("[feature] lbp") featLbp, _ = lbp.getFeatVecs(matList, load=0) feats = np.append(featHog, featLbp, axis=1) # feats=featHog print("[feature] end") return (feats, types)
StarcoderdataPython
3536612
<filename>pie.py import data import matplotlib.pyplot as plt def pie_chart(): df, emails, timestamp = data.get_data() # queries to filter responses by social media, labels are self-explanatory tiktok = df[df["Social Media"] == "Tiktok"] instagram = df[df["Social Media"] == "Instagram"] youtube = df[df["Social Media"] == "Youtube"] reddit = df[df["Social Media"] == "Reddit"] twitter = df[df["Social Media"] == "Twitter"] facebook = df[df["Social Media"] == "Facebook"] snapchat = df[df["Social Media"] == "Snapchat"] whatsapp = df[df["Social Media"] == "WhatsApp"] # put all the filtered data into a list social_medias = [ tiktok, instagram, youtube, reddit, twitter, facebook, snapchat, whatsapp, ] # create labels for each social media labels = [ "Tiktok", "Instagram", "Youtube", "Reddit", "Twitter", "Facebook", "Snapchat", "WhatsApp", ] for i in social_medias: i.reindex() # reindex all of the filtered data # get number of each social media's users data1 = [len(i.index) for i in social_medias] fig, ax = plt.subplots() ax.pie(data1, labels=labels, autopct="%1.1f%%", pctdistance=0.9, normalize=True) ax.axis("equal") fig.savefig("Piechart\piechart.jpg")
StarcoderdataPython
161121
from typing import Dict, List import logging from pydoc import locate from attrdict import AttrDict from flask_sqlalchemy import Model from api.models import * # noqa logger = logging.getLogger(__name__) class Endpoint(object): def __init__( self, name: str, model: str, version: str = None, path: str = "/", mappings: Dict[str, str] = None, url_params: List[str] = None, exclude: List[str] = None, options: List[str] = None, normalize: bool = False, updated_column: str = "updated_at", enabled: bool = True, ignore_unknown: bool = True, **kwargs, ): self.name = name self.version = version self.path = path self.mappings = AttrDict(mappings or {}) self.model_name = model self._model = None self.updated_column = updated_column self.url_params = url_params self._exclude = exclude or [] self.normalize = normalize self.options = options or [] self.enabled = enabled self.ignore_unknown = ignore_unknown def __repr__(self): return self.path def __iter__(self): attrs = [x for x in dir(self) if not x.startswith("_")] for a in attrs: yield a, getattr(self, a) @property def model(self) -> Model: if self._model is None: self._model = self.locate_model(self.model_name) return self._model @property def exclude(self): return self._exclude @property def known_columns(self): return self._exclude + self.mapped_names @property def alias_map(self) -> Dict[str, str]: return self.mappings.get("aliases", {}) @property def mapped_names(self) -> List[str]: return list(self.alias_map.keys()) @property def mapped_aliases(self) -> List[str]: return list(self.alias_map.values()) def locate_model(self, model_name: str) -> Model: model: Model = None try: # try to import dotted model name. ex: api.models.MyModel model = locate(model_name) logger.debug(f"Found model: {model_name}") except ModuleNotFoundError: logger.debug( f"Failed to import module '{model_name}' from project directory" ) try: # try to import model from global namespace model = globals()[model_name] logger.debug(f"Model '{model_name}' found in global namespace") except ModuleNotFoundError: raise ModuleNotFoundError( f"Name '{model_name}' not found in project or global namespace" ) except Exception as e: raise Exception(f"Unable to locate module {model_name} -- {e}") return model @staticmethod def load_from_config( app_config: object, load_disabled: bool = False ) -> Dict[str, "Endpoint"]: endpoints: dict = {} try: endpoints = app_config.endpoints # type: ignore except AttributeError: raise AttributeError("Config object has no attribute 'endpoints'") loaded: Dict[str, Endpoint] = {} for ep in endpoints.items(): try: new = Endpoint(name=ep[0], **ep[1]) if new.enabled or load_disabled: loaded[ep[0]] = new # print(f"Created endpoint ({ep[0]})") # else: # print(f"Skipping endpoint ({ep[0]})") except Exception as e: logger.error(f"Failed to create endpoint ({ep[0]}) -> {e}") return loaded @staticmethod def from_dict(name: str, data: dict): return Endpoint(name, **data) if __name__ == "__main__": from config import get_active_config conf = get_active_config() endpoints = conf.endpoints # [x for x in endpoints.items()] Endpoint.load_from_config(conf) # e = Endpoint("test", **{"model": "test"}) e = Endpoint(name="test", **endpoints["frac_schedules"]) e.exclude
StarcoderdataPython
3427900
# Licensed under MIT License - see LICENSE """ An N-dimensional lattice class with an identify_cluster method. """ import numpy as np __all__ = ["latticeND"] class latticeND(): """ An N-dimensional lattice class. """ def __init__(self, data, level): """ Args: data (`numpy.ndarray` of scalar): Data to make dendrogram tree. level (scalar): level of this lattice. """ self._shape = data.shape self._dim = len(self._shape) self._len = np.prod(self._shape) self._lattice = data > level self._label = None @property def shape(self): """`numpy.ndarray` of int: Shape of the lattice.""" return self._shape @property def dim(self): """int: Dimension of the lattice.""" return self._dim @property def len(self): """int: Total number of elements in the lattice.""" return self._len @property def lattice(self): """`numpy.ndarray` of int: Area ocupied by the lattice.""" return self._lattice @property def label(self): """`numpy.ndarray` of int: Label of clusters.""" return self._label def identify_cluster(self): """ Identify clusters in the lattice. A cluster is a group of connected (neighboring) pixels. Returns: `numpy.ndarray` of int: Label of clusters. """ # for simplicity, use flattened labels label_flat = -1 * np.ones(self._len, dtype=int) lattice_flat = self._lattice.flatten() # define proper labels, which change over time max_label = self._len / 2 + 1 proper_label = np.arange(max_label) new_label = 0 for i in range(self._len): if not lattice_flat[i]: continue len_j = self._len neighbors = -1 * np.ones(2*self._dim, dtype=int) # find neighbors in each dimension for j in range(self._dim): # length of the j-th dimension len_j = len_j // self._shape[j] idx = i // len_j # index in block off = i % len_j # offset in block # 2 neighbors if idx > 0: neighbors[2*j] = label_flat[i-len_j] if idx < self._shape[j]-1: neighbors[2*j+1] = label_flat[i+len_j] # set label to the first identified cluster if np.max(neighbors) < 0: label_flat[i] = new_label new_label += 1 else: nonzero = np.unique(proper_label[neighbors[neighbors>-1]]) label_flat[i] = np.min(nonzero) # set connecting clusters to the same lable same_label = np.min(nonzero) if nonzero.shape[0] > 1: for non in nonzero: replace = np.where(proper_label==non)[0] proper_label[replace] = (same_label * np.ones(replace.shape[0], dtype=int)) # update labels (only those with lable > -1) label_flat[lattice_flat] = proper_label[label_flat[lattice_flat]] self._label = label_flat.reshape(self._shape) return self._label
StarcoderdataPython
5195185
<gh_stars>1-10 import settings import schedules.messages as messages #TODO: Multiprocessing, Real Scheduling if __name__ == "__main__": messages.process_scheduled_messages()
StarcoderdataPython
6498509
from RedditPy import RedditPy re = RedditPy("<username>", "<password>") re.subscribe("test") # optional: Type="user", unsub=True
StarcoderdataPython
5000072
<reponame>YAPP-18th/ML-Team-Backend from app.database.base_class import Base from app.models.users import User
StarcoderdataPython
1808874
<filename>src/pycairo/examples/cairo_snippets/c_to_python.py #!/usr/bin/env python """ translate C <snippet>.cairo to Python <snippet>.py ; -> '' cairo_ -> cr. '(cr, ' -> ( but not snippet_normalize (cr, width, height) (cr) -> () /* -> #/* CAIRO_ -> cairo. """ import sys if len(sys.argv) != 2 or not sys.argv[1].endswith('.cairo'): raise SystemExit('usage: c_to_python.py <file>.cairo') filename_in = sys.argv[1] filename_out = filename_in.replace('.cairo', '.py') file_in = file(filename_in) file_out = file(filename_out, 'w') for line in file_in: line = line.replace(';', '') # should be ';' and whitespace to EOL only -> \n if not line.startswith('snippet_'): line = line.replace('cairo_', 'cr.') line = line.replace('(cr, ', '(') line = line.replace('(cr)', '()') line = line.replace('/*', '#/*') line = line.replace(' ', '') line = line.replace('CAIRO_', 'cairo.') file_out.write (line)
StarcoderdataPython
6614755
import pytest from remove_popular import solution def test_solution_simple(): actual = solution([1], 0) expected = [] assert actual == expected def test_solution(): actual = solution([1, 1, 1, 1, 2, 2, 2, 3, 4, 4, 5, 6, 6, 4, 2, 4], 3) expected = [3, 5, 6, 6] assert actual == expected
StarcoderdataPython
3457375
<reponame>OceanAtlas/QC_Library<filename>setup.py # -*- mode: python; coding: utf-8 -* # Copyright (c) <NAME> # Licensed under the 2-clause BSD License from __future__ import absolute_import, division, print_function from setuptools import setup, Extension import os import io with io.open('README.md', 'r', encoding='utf-8') as readme_file: readme = readme_file.read() setup_args = { 'name': 'QC_Library', 'author': '<NAME>/<NAME>', 'url': 'https://github.com/OceanAtlas/QC_Library', 'license': 'BSD', 'description': 'A Library of routines to despike TS data', 'long_description': readme, 'long_description_content_type': 'text/markdown', 'package_dir': {'QC_Library': 'QC_Library'}, 'packages': ['QC_Library'], 'version': '0.0.1', 'include_package_data': True, # 'setup_requires': ['numpy', 'scipy'], 'install_requires': ['numpy', 'scipy'], 'classifiers': ['Development Status :: 2 - Pre-Alpha', 'Intended Audience :: Science/Research', 'License :: OSI Approved :: BSD License', 'Programming Language :: Python :: 3.6', 'Topic :: Scientific/Engineering'], 'keywords': 'oceanography seawater carbon, time series, quality control' } if __name__ == '__main__': setup(**setup_args)
StarcoderdataPython