id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
1764900
# Code def rot13(x): alpha = "ABCDEFGHIJKLMNOPQRST" return alpha[0]
StarcoderdataPython
3468879
<gh_stars>0 import pytest import m26 def assert_almost_equal(x, y, threshold=0.0001): assert(abs(x - y) < threshold) def test_constructor_miles(): d = m26.Distance() assert(d.value == 0) assert(d.uom == 'm') d = m26.Distance(26.2) assert(d.value == 26.2) assert(d.uom == 'm') assert(d.is_miles()) assert(d.is_kilometers() == False) assert(d.is_yards() == False) assert_almost_equal(d.as_miles(), 26.2) assert_almost_equal(d.as_kilometers(), 42.1648128) assert_almost_equal(d.as_yards(), 46112.0) def test_constructor_kilometers(): d = m26.Distance(50.0, 'k') assert(d.value == 50.0) assert(d.uom == 'k') d = m26.Distance(10, ' K ') assert(d.value == 10.0) assert(d.uom == 'k') assert(d.is_miles() == False) assert(d.is_kilometers()) assert(d.is_yards() == False) assert_almost_equal(d.as_miles(), 6.2137119223733395) assert_almost_equal(d.as_kilometers(), 10.000000) assert_almost_equal(d.as_yards(), 10936.132983377078) def test_constructor_yards(): d = m26.Distance(3600.0, 'y') assert(d.value == 3600.0) assert(d.uom == 'y') d = m26.Distance(1800.0, ' Y ') assert(d.value == 1800.0) assert(d.uom == 'y') assert(d.is_miles() == False) assert(d.is_kilometers() == False) assert(d.is_yards()) assert_almost_equal(d.as_miles(), 1.0227272727272727) assert_almost_equal(d.as_kilometers(), 1.64592) assert_almost_equal(d.as_yards(), 1800.000000) def test_add_to_miles(): d1 = m26.Distance(26.2, 'm') d2 = m26.Distance(4.8, 'm') d3 = m26.Distance(5.0, 'k') d4 = m26.Distance(1800, 'y') d1.add(d2) assert_almost_equal(d1.value, 31.0) assert(d1.uom == 'm') d1.add(d3) assert_almost_equal(d1.value, 34.10685596118667) d1.add(d4) assert_almost_equal(d1.value, 35.12958323391394) assert(d1.uom == 'm') def test_add_to_kilometers(): d1 = m26.Distance(10.0, 'k') d2 = m26.Distance(3.1, 'm') d1.add(d2) assert(d1.uom == 'k') assert_almost_equal(d1.value, 14.9889664) def test_add_to_yards(): d1 = m26.Distance(1800, 'y') d2 = m26.Distance(1.0, 'm') d1.add(d2) assert(d1.uom == 'y') assert_almost_equal(d1.value, 3560.0) def test_subtract_from_miles(): d1 = m26.Distance(26.2, 'm') d2 = m26.Distance(4.8, 'm') d3 = m26.Distance(5.0, 'k') d4 = m26.Distance(1800, 'y') d1.subtract(d2) assert_almost_equal(d1.value, 21.4) assert(d1.uom == 'm') d1.subtract(d3) assert_almost_equal(d1.value, 18.293144038813328) d1.subtract(d4) assert_almost_equal(d1.value, 17.270416766086054) assert(d1.uom == 'm') def test_subtract_from_kilometers(): d1 = m26.Distance(10.0, 'k') d2 = m26.Distance(3.1, 'm') d1.subtract(d2) assert(d1.uom == 'k') assert_almost_equal(d1.value, 5.011033599999999) def test_subtract_from_yards(): d1 = m26.Distance(3600, 'y') d2 = m26.Distance(1.0, 'm') d1.subtract(d2) assert(d1.uom == 'y') assert_almost_equal(d1.value, 1840.0)
StarcoderdataPython
8008332
# -*- coding:utf-8 -*- """ @author: 古时月 @file: Fight.py @time: 2021/5/8 13:37 """ import win32com.client import traceback import pyautogui from functions import * pyautogui.FAILSAFE = True class fight: def __init__(self): self._name = "" self._hwnd = 0 self.hwnd2 = 0 self.hwnds= [] self.configs = load_json("configs.json") self.loc = 0 self.count = 10000 self._num = 0 self.person = 1 def pos_flag(self, choice, hwnd, nimg): jietu(hwnd, nimg) if self.configs[choice + "_path"] != "0": corr, pos = te_compare(self.configs[choice + "_path"], nimg=nimg) if corr >= 0.6: return pos else: return None else: return None def counts(self, choice): jietu(self._hwnd, "./nimg/nimg.bmp") count = te_compares(self.configs[choice + "_path"], "./nimg/nimg.bmp") return count def sleep_time(self, times): time.sleep(CheatTime(times)) def sleep_time2(self): time.sleep(CheatTime(self.configs[self._name + "_wait_time"] - 6.5)) def sleep_time3(self): time.sleep(CheatTime(self.configs[self._name + "_wait_time"])) def click_point(self, position, hwnd, factor=6): myclick(position, hwnd, factors=factor) def end2(self, hwnd): # tf = location(hwnd) fac = bigOrSmall() lt = [int(k * v) for k, v in zip(self.configs["END_TOP_LEFT"], fac)] rb = [int(k * v) for k, v in zip(self.configs["END_BOTTOM_RIGHT"], fac)] position = [random.randint(lt[0], rb[0]), random.randint(lt[1], rb[1])] myclick(position, hwnd) def focus(self): fious(self.configs, self.loc, self._hwnd) def yl_focus(self): yuling_fious(self.configs, self.loc, self._hwnd) def cT_focus(self): climbTower_fious(self.configs, self.loc, self._hwnd) def DriverRun(self): try: while True: choices = [self._name + "_teamwait", self._name + "_isstart", self._name + "_end", self._name + "_end2", self._name + "_tcg", self._name + "_defate"] for choice in choices: position = self.pos_flag(choice, self._hwnd, nimg="./nimg/nimg.bmp") if choice == choices[0]: person = self.counts(choice) # logging.info(person) if person > self.person: flag1 = False else: flag1 = True self.sleep_time(0.8) elif choice == choices[1] and position != None and flag1: st = 0 logging.info("match success,start challenge!") self.click_point(position, self._hwnd) if self.loc != 0: self.sleep_time(6) self.focus() self.sleep_time2() else: self.sleep_time3() elif choice == choices[2] and position != None: # yuhun.click_point(position, factor=50) self.end2(self._hwnd) self.sleep_time(0.6) elif choice == choices[3] and position != None: if flag1: self._num += 1 logging.info("challenge success!") logging.info(f"{time.strftime('%H:%M:%S')} ~~~ end1 {self._num} ~~~") flag1 = False self.click_point(position, self._hwnd, factor=30) self.sleep_time(1) # yuhun.click_point(position,factor=70) elif choice == choices[4] and position!= None: st += 1 if st >= 5 and flag1: self._num += 1 logging.info("challenge success!") logging.info(f"{time.strftime('%H:%M:%S')} ~~~ end2 {self._num} ~~~") flag = False self.click_point(position, self._hwnd, factor=20) self.sleep_time(1) elif st >=6: self.click_point(position, self._hwnd, factor=20) self.sleep_time(1) elif choice == choices[5] and position != None and flag: logging.warning("challenge defeat!") self.click_point(position, self._hwnd, factor=80) flag = False else: time.sleep(0.9) if self._num >= self.count & self.count != 0: break except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def passengerRun(self): try: while True: choices = [self._name + "_teamwait", self._name + "_isstart", self._name + "_end", self._name + "_end2", self._name+ "_tcg", self._name + "_defate"] for choice in choices: position = self.pos_flag(choice, self.hwnd2, nimg="./nimg/nimg2.bmp") if choice == choices[0]: self.sleep_time(1.1) st = 0 elif choice == choices[1] and position != None: st = 0 # logging.info("match success,start challenge!") self.sleep_time(6) if self.loc != 0: self.sleep_time(6) self.focus() self.sleep_time2() else: self.sleep_time3() elif choice == choices[2] and position != None: # yuhun.click_point(position, factor=50) self.end2(self.hwnd2) self.sleep_time(0.5) elif choice == choices[3] and position != None: self._num += 1 # logging.info("challenge success!") # logging.info(f"~~~~~~~~~~~~~~~ {self._num} ~~~~~~~~~~~~~~~") self.click_point(position, self._hwnd, factor=30) self.sleep_time(0.5) # yuhun.click_point(position,factor=70) elif choice == choices[4] and position != None: st += 1 if st >= 4: self._num += 1 logging.info("challenge success!") logging.info(f"~~~~~~~~~~~~~~~ end2 {self._num} ~~~~~~~~~~~~~~~") flag = False self.click_point(position, self._hwnd, factor=20) self.sleep_time(1) elif choice == choices[5] and position != None: # logging.warning("challenge defeat!") self.click_point(position, self._hwnd, factor=80) else: time.sleep(1) if self._num >= self.count & self.count != 0: break except pyautogui.FailSafeException: input("单次运行时间过长,请重启软件") pass except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def DoubleRun(self): # TODO:while True循环写在try之前,捕获puautogui异常,或者win32gui异常。 try: st =0 flag1 = False choices = [self._name + "_teamwait", self._name + "_isstart", self._name + "_end", self._name + "_end2", # self._name + "_tcg" # self._name + "_defate" ] choices1 = [self._name + "_teamwait", self._name + "_isstart"] choices2 = [self._name + "_end", self._name + "_end2", self._name + "_tcg"] while True: for choice in choices: position = self.pos_flag(choice, self._hwnd, nimg="./nimg/nimg.bmp") if choice == choices[0]: person = self.counts(choice) # logging.info(person) if person > self.person: flag1 = False else: flag1 = True self.sleep_time(0.8) elif choice == choices[1] and position != None and flag1: st = 0 self._num +=1 logging.info("match success,start challenge!") self.click_point(position, self._hwnd) if self.loc != 0: self.sleep_time(7) self.focus() self.sleep_time2() else: self.sleep_time3() elif choice == choices[2] and position != None: # yuhun.click_point(position, factor=50) self.end2(self._hwnd) time.sleep(0.7) self.end2(self.hwnd2) time.sleep(1) elif choice == choices[3] and position != None: if flag1: logging.info("challenge success!") logging.info(f"{time.strftime('%H:%M:%S')} ~~~ end1 {self._num} ~~~") flag1 = False self.click_point(position, self.hwnd2, factor=30) time.sleep(0.7) self.click_point(position, self._hwnd, factor=30) time.sleep(0.7) self.click_point(position, self.hwnd2, factor=30) time.sleep(0.2) self.click_point(position, self.hwnd2, factor=30) # self.sleep_time(1) # yuhun.click_point(position,factor=70) # elif choice == choices[4] and position!= None: # st += 1 # if st >= 4 and flag1: # logging.info("challenge success!") # logging.info(f"{time.strftime('%H:%M:%S')} ~~~ end2 {self._num} ~~~") # self.click_point(position, hwnd=self.hwnd2, factor=20) # time.sleep(0.7) # self.click_point(position, self._hwnd, factor=20) # self.sleep_time(1) # elif st >= 5: # self.click_point(position, hwnd=self.hwnd2, factor=20) # time.sleep(0.7) # self.click_point(position, self._hwnd, factor=20) # self.sleep_time(1) # elif choice == choices[5] and position != None and flag: # logging.warning("challenge defeat!") # self.click_point(position, hwnd=self.hwnd2, factor=80) # time.sleep(0.7) # self.click_point(position, self._hwnd, factor=80) # flag = False else: time.sleep(0.9) if self._num >= self.count & self.count != 0: break except pyautogui.FailSafeException: print(f"{time.strftime('%Y %b %d %H:%M:%S')} pyautogui error!") except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def singleRun(self): try: while True: choices = [self._name + "_isstart", self._name + "_end", self._name + "_end2", self._name + "_defate"] for choice in choices: position = self.pos_flag(choice, self._hwnd, "./nimg/nimg.bmp") if choice == choices[0] and position != None: logging.info("match success,start challenge!") self.click_point(position, self._hwnd) if self.loc != 0: self.sleep_time(6) self.focus() self.sleep_time2() else: self.sleep_time3() flag = True elif choice == choices[1] and position != None: # yuhun.click_point(position, factor=50) self.end2(self._hwnd) self.sleep_time(0.8) elif choice == choices[2] and position != None: if flag: self._num += 1 logging.info("challenge success!") logging.info(f"~~~~~~~~~~~~~~~ {self._num} ~~~~~~~~~~~~~~~") flag = False self.click_point(position, self._hwnd, factor=70) self.sleep_time(0.5) # yuhun.click_point(position,factor=70) elif choice == choices[3] and position != None: logging.warning("challenge defeat!") self.click_point(position, self._hwnd, factor=30) flag = False else: self.sleep_time(1) if self._num >= self.count & self.count != 0: break except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def YulingRun(self): try: while True: choices = ["yuling_isstart", "yuling_end", "yuling_end2", "yuling_defate"] for choice in choices: position = self.pos_flag(choice, self._hwnd, "./nimg/nimg.bmp") if choice == choices[0] and position != None: logging.info(f"match success,start challenge!") self.click_point(position,self._hwnd) if self.loc != 0: self.sleep_time(5.8) self.yl_focus() self.sleep_time2() else: self.sleep_time3() elif choice == choices[1] and position != None: self._num += 1 logging.info("challenge success!") logging.info(f"~~~~~~~~~~~~~~~ {self._num} ~~~~~~~~~~~~~~~") self.click_point(position, self._hwnd, factor=50) self.sleep_time(2) elif choice == choices[2] and position != None: pass elif choice == choices[3] and position != None: logging.warning("challenge defeat!") self.click_point(position, self._hwnd,factor=50) else: self.sleep_time(2) if self._num >= self.count & self.count != 0: break except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def climbTowerRun(self): choices = [self._name + "_isstart", self._name + "_end"] try: while True: for choice in choices: position = self.pos_flag(choice, self._hwnd, "./nimg/nimg.bmp") if choice == choices[0] and position != None: # self._num += 1 startTime = time.time() logging.info("match success,start challenge!") self.click_point(position, self._hwnd) self.sleep_time3() flag = True elif choice == choices[1] and position != None: if flag: self._num += 1 endTime = time.time() logging.info(f"本次耗时{round(endTime-startTime,2)}") logging.info("challenge success!") logging.info(f"~~~~~~~~~~~~~~~ {self._num} ~~~~~~~~~~~~~~~") flag = False self.end2(self._hwnd) self.sleep_time(2) else: self.sleep_time(1) if self._num >= self.count & self.count != 0: break except Exception: # print(Exception) print(traceback.format_exc()) input(f"{time.strftime('%Y %b %d %H:%M:%S')} Driver 请将此错误信息发给开发者(yl2)") def setClimbTower(self,hwnd='', loc=0, count=100000): self._name = "climbTower" if hwnd == "": hwnd = find_window_by_title("阴阳师-网易游戏") self._hwnd = hwnd self.loc = loc self.count = count win32gui.SetForegroundWindow(self._hwnd) win32gui.MoveWindow(self._hwnd, 384, 189, 1152, 679, True) def setSingle(self, hwnd='', loc=0, count=10000): self._name = "Syuhun" if hwnd == "": hwnd = find_window_by_title("阴阳师-网易游戏") self._hwnd = hwnd self.loc = loc self.count = count win32gui.SetForegroundWindow(self._hwnd) win32gui.MoveWindow(self._hwnd, 384, 189, 1152, 679, True) def setDriver(self, hwnd="", loc=0, count=10000): self._name = "Tyuhun" if hwnd == "": hwnd = find_window_by_title("阴阳师-网易游戏") self._hwnd = hwnd self.loc = loc self.count = count shell = win32com.client.Dispatch("WScript.Shell") shell.SendKeys('%') win32gui.SetForegroundWindow(self._hwnd) # 激活窗口 win32gui.MoveWindow(self._hwnd, 10, 30, 864, 510, True) def setPassenger(self, hwnd="", loc=0, count=10000): self._name = "Tyuhun" if hwnd == "": hwnd = find_window_by_title("阴阳师-网易游戏") self.hwnd2 = hwnd self.loc = loc self.count = count shell = win32com.client.Dispatch("WScript.Shell") shell.SendKeys('%') win32gui.SetForegroundWindow(self.hwnd2) # 激活窗口 win32gui.MoveWindow(self.hwnd2, 900, 30, 864, 510, True) def setDoublt(self, loc=0, count=10000): self._name = "Tyuhun" self.person = 1 self.loc = loc self.count = count hwnds = find_windows_by_title("阴阳师-网易游戏") x1 = self.pos_flag(self._name + "_isstart", hwnds[0],"./nimg/nimg.bmp") x2 = self.pos_flag(self._name + "_isstart", hwnds[-1], "./nimg/nimg2.bmp") if x1 != None and x2 != None: self.setDoublt() self.sleep_time(3) elif x1 == None and x2 == None: print('请勿遮挡游戏窗口') self.setDoublt() self.sleep_time(3) elif x1 != None: self._hwnd = hwnds[0] self.hwnd2 = hwnds[1] else: self._hwnd = hwnds[1] self.hwnd2 = hwnds[0] win32gui.SetForegroundWindow(self._hwnd) # 激活窗口 win32gui.MoveWindow(self._hwnd, 10, 30, 864, 510, True) def setDoublt2(self, loc=0, count=10000): self._name = "Tyuhun" self.person = 1 self.loc = loc self.count = count hwnds = find_windows_by_title("阴阳师-网易游戏") x1 = self.pos_flag(self._name + "_isstart", hwnds[0],"./nimg/nimg.bmp") x2 = self.pos_flag(self._name + "_isstart", hwnds[-1], "./nimg/nimg2.bmp") if x1 != None and x2 != None: self.setDoublt2(loc, count) self.sleep_time(3) elif x1 == None and x2 == None: print('请勿遮挡游戏窗口') self.setDoublt2(loc, count) self.sleep_time(3) elif x1 != None: self._hwnd = hwnds[0] self.hwnd2 = hwnds[1] else: self._hwnd = hwnds[1] self.hwnd2 = hwnds[0] win32gui.SetForegroundWindow(self._hwnd) # 激活窗口 win32gui.MoveWindow(self._hwnd, 10, 30, 922, 543, True) shell = win32com.client.Dispatch("WScript.Shell") shell.SendKeys('%') win32gui.SetForegroundWindow(self._hwnd) # 激活窗口 win32gui.MoveWindow(self.hwnd2, 940, 30, 922, 543, True) def setYuling(self, hwnd='', loc=0, count=10000): self._name = "yuling" if hwnd == "": hwnd = find_window_by_title("阴阳师-网易游戏") self._hwnd = hwnd self.loc = loc self.count = count shell = win32com.client.Dispatch("WScript.Shell") shell.SendKeys('%') win32gui.SetForegroundWindow(self._hwnd) win32gui.MoveWindow(self._hwnd, 384, 189, 1152, 679, True)
StarcoderdataPython
5076201
<reponame>SimonBoothroyd/nagl import abc import dgl import torch.nn from pydantic import BaseModel from typing_extensions import Literal class PostprocessLayer(torch.nn.Module, abc.ABC): """A layer to apply to the final readout of a neural network.""" @classmethod @abc.abstractmethod def from_config(cls, config): """Create an instance of a post-process layer from its configuration.""" @abc.abstractmethod def forward(self, graph: dgl.DGLGraph, x: torch.Tensor) -> torch.Tensor: """Returns the post-processed input vector.""" class ComputePartialCharges(PostprocessLayer): """A layer which will map an NN readout containing a set of atomic electronegativity and hardness parameters to a set of partial charges [1]. References: [1] Gilson, <NAME>., <NAME>, and <NAME>. "Fast assignment of accurate partial atomic charges: an electronegativity equalization method that accounts for alternate resonance forms." Journal of chemical information and computer sciences 43.6 (2003): 1982-1997. """ class Config(BaseModel): """Configuration options for a ``ComputePartialCharges`` layer.""" type: Literal["ComputePartialCharges"] = "ComputePartialCharges" @classmethod def from_config(cls, config: "ComputePartialCharges.Config"): """Create an instance of a post-process layer from its configuration.""" return cls() @classmethod def atomic_parameters_to_charges( cls, electronegativity: torch.Tensor, hardness: torch.Tensor, total_charge: float, ) -> torch.Tensor: """Converts a set of atomic electronegativity and hardness parameters to a set of partial atomic charges subject to a total charge constraint. Args: electronegativity: The electronegativity of atoms in a given molecule. hardness: The hardness of atoms in a given molecule. total_charge: The total charge on the molecule. Returns: The atomic partial charges. """ inverse_hardness = 1.0 / hardness charges = ( -inverse_hardness * electronegativity + inverse_hardness * torch.div( torch.dot(inverse_hardness, electronegativity) + total_charge, torch.sum(inverse_hardness), ) ).reshape(-1, 1) return charges def forward(self, graph: dgl.DGLGraph, x: torch.Tensor) -> torch.Tensor: charges = [] counter = 0 for mol_graph in dgl.unbatch(graph): total_charge = mol_graph.ndata["formal_charge"].sum() charges.append( self.atomic_parameters_to_charges( x[counter : counter + len(mol_graph), 0], x[counter : counter + len(mol_graph), 1], total_charge, ) ) counter += len(mol_graph) return torch.vstack(charges)
StarcoderdataPython
8064055
<gh_stars>10-100 #!/usr/bin/env python # coding: utf-8 import os import pandas as pd import numpy as np from tqdm import tqdm from sklearn.metrics import roc_auc_score from sklearn.model_selection import StratifiedKFold import lightgbm as lgb class ModelExtractionCallback(object): """ original author : momijiame ref : https://blog.amedama.jp/entry/lightgbm-cv-model description : Class for callback to extract trained models from lightgbm.cv(). note: This class depends on private class '_CVBooster', so there are some future risks. """ def __init__(self): self._model = None def __call__(self, env): # _CVBooster の参照を保持する self._model = env.model def _assert_called_cb(self): if self._model is None: # コールバックが呼ばれていないときは例外にする raise RuntimeError('callback has not called yet') @property def boosters_proxy(self): self._assert_called_cb() # Booster へのプロキシオブジェクトを返す return self._model @property def raw_boosters(self): self._assert_called_cb() # Booster のリストを返す return self._model.boosters @property def best_iteration(self): self._assert_called_cb() # Early stop したときの boosting round を返す return self._model.best_iteration def arrange_dataset(df, cnum): _dset = df.filter(regex=f'var_{cnum}$') _dset.columns = list(range(_dset.shape[1])) _dset = _dset.assign(var_num = cnum) return _dset def main(): model_output_dir = f'../processed/lgb_output/' if not os.path.isdir(model_output_dir): os.makedirs(model_output_dir) dataset_dir = '../processed/dataset/' X_train = pd.read_pickle(os.path.join(dataset_dir, 'X_train.pickle')) y_train = pd.read_pickle(os.path.join(dataset_dir, 'y_train.pickle')) X_test = pd.read_pickle(os.path.join(dataset_dir, 'X_test.pickle')) params = { 'bagging_freq': 5, 'bagging_fraction': 0.95, 'boost_from_average':'false', 'boost': 'gbdt', 'feature_fraction': 1.0, 'learning_rate': 0.005, 'max_depth': -1, 'metric':'binary_logloss', 'min_data_in_leaf': 30, 'min_sum_hessian_in_leaf': 10.0, 'num_leaves': 64, 'num_threads': 32, 'tree_learner': 'serial', 'objective': 'binary', 'verbosity': 1} dset_list = [] for cnum in range(200): _dset = arrange_dataset(X_train, cnum) dset_list.append(_dset) concat_X_train = pd.concat(dset_list, axis=0) concat_X_train['var_num'] = concat_X_train['var_num'].astype('category') train_dset = lgb.Dataset( concat_X_train, pd.concat([y_train for c in range(200)], axis=0), free_raw_data=False ) for fold_set_number in range(10): print('### start iter {} in 10 ###'.format(fold_set_number+1)) skf = StratifiedKFold(n_splits=5, shuffle=True, random_state=2019+fold_set_number) folds = [ [ np.concatenate([_trn+i * X_train.shape[0] for i in range(200)]), np.concatenate([_val+i * X_train.shape[0] for i in range(200)]) ] for _trn, _val in skf.split(X_train, y_train)] extraction_cb = ModelExtractionCallback() callbacks = [extraction_cb,] print('start training. ') cv_result = lgb.cv(params, train_set=train_dset, num_boost_round=100000, early_stopping_rounds=100, verbose_eval=100, folds=folds, callbacks=callbacks) bsts = extraction_cb.raw_boosters best_iteration = extraction_cb.best_iteration print('training end. ') print('start predicting. ') oof_pred_array = np.ones((X_train.shape[0], 200)) test_pred_array = np.ones((X_test.shape[0], 5, 200)) for cnum in tqdm(range(200)): for i, bst in enumerate(bsts): cv_valid_index = bst.valid_sets[0].used_indices cv_valid_index = cv_valid_index[:int(cv_valid_index.shape[0]/200)] # oofの予測 cv_valid_data = arrange_dataset(X_train, cnum).iloc[cv_valid_index].values oof_pred_array[cv_valid_index, cnum] = bst.predict(cv_valid_data, num_iteration=best_iteration) # testの予測 test_pred_array[:, i, cnum] = bst.predict(arrange_dataset(X_test, cnum).values, num_iteration=best_iteration) print('prediction end. ') print('start postprocess. ') thr = 0.500 oof_pred_odds_prod = np.ones((X_train.shape[0])) test_pred_odds_prod = np.ones((X_test.shape[0], 5)) for cnum in tqdm(range(200)): tmp_auc = roc_auc_score(y_train, oof_pred_array[:, cnum]) if tmp_auc >= thr: oof_pred_odds_prod *= oof_pred_array[:, cnum] / (1 - oof_pred_array[:, cnum]) test_pred_odds_prod *= test_pred_array[:,:, cnum] / (1 - test_pred_array[:,:, cnum]) print('postprocess end. auc : {0:.6f}'.format(roc_auc_score(y_train, oof_pred_odds_prod))) print('save iteration results') pd.DataFrame(oof_pred_odds_prod, index=X_train.index, columns=['pred'])\ .to_pickle(os.path.join(model_output_dir, f'oof_preds_{fold_set_number}.pkl.gz'), compression='gzip') for fold_num in range(5): model_management_num = fold_num + fold_set_number*5 pd.DataFrame(test_pred_odds_prod[:, fold_num], index=X_test.index, columns=['pred'])\ .to_pickle(os.path.join(model_output_dir, f'test_preds_{model_management_num}.pkl.gz'), compression='gzip') if __name__ == '__main__': main()
StarcoderdataPython
47455
<gh_stars>0 # Generated by Django 2.2.13 on 2020-09-27 03:14 from django.conf import settings from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ migrations.swappable_dependency(settings.AUTH_USER_MODEL), ('shows', '0005_auto_20200923_0900'), ] operations = [ migrations.CreateModel( name='Comment', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('created', models.DateTimeField(auto_now_add=True, help_text='Date time on which the object was created.', verbose_name='created at')), ('modified', models.DateTimeField(auto_now=True, help_text='Date time on which the object was last modified.', verbose_name='modified at')), ('active', models.BooleanField(default=True, verbose_name='Activo')), ('comment', models.CharField(blank=True, max_length=210, null=True, verbose_name='comment')), ('subject', models.CharField(blank=True, max_length=50, null=True, verbose_name='subject')), ('rate', models.SmallIntegerField(default=1, verbose_name='rate')), ('ip', models.CharField(blank=True, max_length=20, null=True, verbose_name='ip')), ('status', models.CharField(choices=[('New', 'New'), ('True', 'True'), ('False', 'False')], default='New', max_length=10, verbose_name='status')), ('show', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='shows.Show')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'abstract': False, }, ), ]
StarcoderdataPython
125693
<filename>PyScraper/module1.py import glob import imageio import matplotlib.pyplot as plt from matplotlib.image import imread import numpy as np import os import PIL from tensorflow.keras import layers import time from IPython import display from PIL import Image, ImageOps import glob import numpy as np IMG_DIR = './data/eyes/' image_list = [] image_gray_list = [] save_images = True # Grab all of our images imcount = 0; for filename in glob.glob(IMG_DIR + "*.jpg"): if imcount == 16: break imcount+=1 im=Image.open(filename) print(f"Loading {filename}") resize_image = im.resize((64, 64)) #ImageOps.invert(resize_image) gray_image = resize_image.convert("RGB") image_list.append(gray_image) image_gray_list.append(np.array(gray_image)) print("Loaded " + str(len(image_list)) + " images") np_image_list = np.asarray(image_gray_list) result = Image.new("RGB", (256, 256)) i = 0 for y in range(0, 4): for x in range(0, 4): img = (np_image_list[i]) result.paste(Image.fromarray(img), (y * 64, x * 64)) i += 1 result.save("___test.png")
StarcoderdataPython
11340847
import numpy as np import astropy.io.fits as pyfits import astropy.wcs as pywcs import os from six import string_types from xcs_soxs.utils import mylog, parse_value, get_rot_mat, \ downsample from xcs_soxs.instrument_registry import instrument_registry from tqdm import tqdm def wcs_from_event_file(f): h = f["EVENTS"].header w = pywcs.WCS(naxis=2) w.wcs.crval = [h["TCRVL2"], h["TCRVL3"]] w.wcs.crpix = [h["TCRPX2"], h["TCRPX3"]] w.wcs.cdelt = [h["TCDLT2"], h["TCDLT3"]] w.wcs.ctype = [h["TCTYP2"], h["TCTYP3"]] w.wcs.cunit = [h["TCUNI2"], h["TCUNI3"]] return w def write_event_file(events, parameters, filename, overwrite=False): from astropy.time import Time, TimeDelta mylog.info("Writing events to file %s." % filename) t_begin = Time.now() dt = TimeDelta(parameters["exposure_time"], format='sec') t_end = t_begin + dt col_x = pyfits.Column(name='X', format='D', unit='pixel', array=events["xpix"]) col_y = pyfits.Column(name='Y', format='D', unit='pixel', array=events["ypix"]) col_e = pyfits.Column(name='ENERGY', format='E', unit='eV', array=events["energy"]*1000.) col_dx = pyfits.Column(name='DETX', format='D', unit='pixel', array=events["detx"]) col_dy = pyfits.Column(name='DETY', format='D', unit='pixel', array=events["dety"]) col_id = pyfits.Column(name='CCD_ID', format='D', unit='pixel', array=events["ccd_id"]) chantype = parameters["channel_type"] if chantype == "PHA": cunit = "adu" elif chantype == "PI": cunit = "Chan" col_ch = pyfits.Column(name=chantype.upper(), format='1J', unit=cunit, array=events[chantype]) col_t = pyfits.Column(name="TIME", format='1D', unit='s', array=events['time']) cols = [col_e, col_x, col_y, col_ch, col_t, col_dx, col_dy, col_id] coldefs = pyfits.ColDefs(cols) tbhdu = pyfits.BinTableHDU.from_columns(coldefs) tbhdu.name = "EVENTS" tbhdu.header["MTYPE1"] = "sky" tbhdu.header["MFORM1"] = "x,y" tbhdu.header["MTYPE2"] = "EQPOS" tbhdu.header["MFORM2"] = "RA,DEC" tbhdu.header["TCTYP2"] = "RA---TAN" tbhdu.header["TCTYP3"] = "DEC--TAN" tbhdu.header["TCRVL2"] = parameters["sky_center"][0] tbhdu.header["TCRVL3"] = parameters["sky_center"][1] tbhdu.header["TCDLT2"] = -parameters["plate_scale"] tbhdu.header["TCDLT3"] = parameters["plate_scale"] tbhdu.header["TCRPX2"] = parameters["pix_center"][0] tbhdu.header["TCRPX3"] = parameters["pix_center"][1] tbhdu.header["TCUNI2"] = "deg" tbhdu.header["TCUNI3"] = "deg" tbhdu.header["TLMIN2"] = 0.5 tbhdu.header["TLMIN3"] = 0.5 tbhdu.header["TLMAX2"] = 2.0*parameters["num_pixels"]+0.5 tbhdu.header["TLMAX3"] = 2.0*parameters["num_pixels"]+0.5 tbhdu.header["TLMIN4"] = parameters["chan_lim"][0] tbhdu.header["TLMAX4"] = parameters["chan_lim"][1] tbhdu.header["TLMIN6"] = -0.5*parameters["num_pixels"] tbhdu.header["TLMAX6"] = 0.5*parameters["num_pixels"] tbhdu.header["TLMIN7"] = -0.5*parameters["num_pixels"] tbhdu.header["TLMAX7"] = 0.5*parameters["num_pixels"] tbhdu.header["EXPOSURE"] = parameters["exposure_time"] tbhdu.header["TSTART"] = 0.0 tbhdu.header["TSTOP"] = parameters["exposure_time"] tbhdu.header["HDUVERS"] = "1.1.0" tbhdu.header["RADECSYS"] = "FK5" tbhdu.header["EQUINOX"] = 2000.0 tbhdu.header["HDUCLASS"] = "OGIP" tbhdu.header["HDUCLAS1"] = "EVENTS" tbhdu.header["HDUCLAS2"] = "ACCEPTED" tbhdu.header["DATE"] = t_begin.tt.isot tbhdu.header["DATE-OBS"] = t_begin.tt.isot tbhdu.header["DATE-END"] = t_end.tt.isot tbhdu.header["RESPFILE"] = os.path.split(parameters["rmf"])[-1] tbhdu.header["PHA_BINS"] = parameters["nchan"] tbhdu.header["ANCRFILE"] = os.path.split(parameters["arf"])[-1] tbhdu.header["CHANTYPE"] = parameters["channel_type"] tbhdu.header["MISSION"] = parameters["mission"] tbhdu.header["TELESCOP"] = parameters["telescope"] tbhdu.header["INSTRUME"] = parameters["instrument"] tbhdu.header["RA_PNT"] = parameters["sky_center"][0] tbhdu.header["DEC_PNT"] = parameters["sky_center"][1] tbhdu.header["ROLL_PNT"] = parameters["roll_angle"] tbhdu.header["AIMPT_X"] = parameters["aimpt_coords"][0] tbhdu.header["AIMPT_Y"] = parameters["aimpt_coords"][1] if parameters["dither_params"]["dither_on"]: tbhdu.header["DITHXAMP"] = parameters["dither_params"]["x_amp"] tbhdu.header["DITHYAMP"] = parameters["dither_params"]["y_amp"] tbhdu.header["DITHXPER"] = parameters["dither_params"]["x_period"] tbhdu.header["DITHYPER"] = parameters["dither_params"]["y_period"] start = pyfits.Column(name='START', format='1D', unit='s', array=np.array([0.0])) stop = pyfits.Column(name='STOP', format='1D', unit='s', array=np.array([parameters["exposure_time"]])) tbhdu_gti = pyfits.BinTableHDU.from_columns([start,stop]) tbhdu_gti.name = "STDGTI" tbhdu_gti.header["TSTART"] = 0.0 tbhdu_gti.header["TSTOP"] = parameters["exposure_time"] tbhdu_gti.header["HDUCLASS"] = "OGIP" tbhdu_gti.header["HDUCLAS1"] = "GTI" tbhdu_gti.header["HDUCLAS2"] = "STANDARD" tbhdu_gti.header["RADECSYS"] = "FK5" tbhdu_gti.header["EQUINOX"] = 2000.0 tbhdu_gti.header["DATE"] = t_begin.tt.isot tbhdu_gti.header["DATE-OBS"] = t_begin.tt.isot tbhdu_gti.header["DATE-END"] = t_end.tt.isot hdulist = [pyfits.PrimaryHDU(), tbhdu, tbhdu_gti] pyfits.HDUList(hdulist).writeto(filename, overwrite=overwrite) def parse_region_args(rtype, args, dx, dy): if rtype == "Box": xctr, yctr, xw, yw = args new_args = [xctr + dx, yctr + dy, xw, yw] elif rtype == "Circle": xctr, yctr, radius = args new_args = [xctr + dx, yctr + dx, radius] elif rtype == "Polygon": new_args = [[x + dx for x in args[0]], [y + dy for y in args[1]]] else: raise NotImplementedError return new_args def make_exposure_map(event_file, expmap_file, energy, weights=None, asol_file=None, normalize=True, overwrite=False, reblock=1, nhistx=16, nhisty=16, order=1): """ Make an exposure map for a SOXS event file, and optionally write an aspect solution file. The exposure map will be created by binning an aspect histogram over the range of the aspect solution. Parameters ---------- event_file : string The path to the event file to use for making the exposure map. expmap_file : string The path to write the exposure map file to. energy : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, or NumPy array The energy in keV to use when computing the exposure map, or a set of energies to be used with the *weights* parameter. If providing a set, it must be in keV. weights : array-like, optional The weights to use with a set of energies given in the *energy* parameter. Used to create a more accurate exposure map weighted by a range of energies. Default: None asol_file : string, optional The path to write the aspect solution file to, if desired. Default: None normalize : boolean, optional If True, the exposure map will be divided by the exposure time so that the map's units are cm**2. Default: True overwrite : boolean, optional Whether or not to overwrite an existing file. Default: False reblock : integer, optional Supply an integer power of 2 here to make an exposure map with a different binning. Default: 1 nhistx : integer, optional The number of bins in the aspect histogram in the DETX direction. Default: 16 nhisty : integer, optional The number of bins in the aspect histogram in the DETY direction. Default: 16 order : integer, optional The interpolation order to use when making the exposure map. Default: 1 """ import pyregion._region_filter as rfilter from scipy.ndimage.interpolation import rotate, shift from xcs_soxs.instrument import AuxiliaryResponseFile, perform_dither if isinstance(energy, np.ndarray) and weights is None: raise RuntimeError("Must supply a single value for the energy if " "you do not supply weights!") if not isinstance(energy, np.ndarray): energy = parse_value(energy, "keV") f_evt = pyfits.open(event_file) hdu = f_evt["EVENTS"] arf = AuxiliaryResponseFile(hdu.header["ANCRFILE"]) exp_time = hdu.header["EXPOSURE"] nx = int(hdu.header["TLMAX2"]-0.5)//2 ny = int(hdu.header["TLMAX3"]-0.5)//2 ra0 = hdu.header["TCRVL2"] dec0 = hdu.header["TCRVL3"] xdel = hdu.header["TCDLT2"] ydel = hdu.header["TCDLT3"] x0 = hdu.header["TCRPX2"] y0 = hdu.header["TCRPX3"] xdet0 = 0.5*(2*nx+1) ydet0 = 0.5*(2*ny+1) xaim = hdu.header.get("AIMPT_X", 0.0) yaim = hdu.header.get("AIMPT_Y", 0.0) roll = hdu.header["ROLL_PNT"] instr = instrument_registry[hdu.header["INSTRUME"].lower()] dither_params = {} if "DITHXAMP" in hdu.header: dither_params["x_amp"] = hdu.header["DITHXAMP"] dither_params["y_amp"] = hdu.header["DITHYAMP"] dither_params["x_period"] = hdu.header["DITHXPER"] dither_params["y_period"] = hdu.header["DITHYPER"] dither_params["plate_scale"] = ydel*3600.0 dither_params["dither_on"] = True else: dither_params["dither_on"] = False f_evt.close() # Create time array for aspect solution dt = 1.0 # Seconds t = np.arange(0.0, exp_time+dt, dt) # Construct WCS w = pywcs.WCS(naxis=2) w.wcs.crval = [ra0, dec0] w.wcs.crpix = [x0, y0] w.wcs.cdelt = [xdel, ydel] w.wcs.ctype = ["RA---TAN","DEC--TAN"] w.wcs.cunit = ["deg"]*2 # Create aspect solution if we had dithering. # otherwise just set the offsets to zero if dither_params["dither_on"]: x_off, y_off = perform_dither(t, dither_params) # Make the aspect histogram x_amp = dither_params["x_amp"]/dither_params["plate_scale"] y_amp = dither_params["y_amp"]/dither_params["plate_scale"] x_edges = np.linspace(-x_amp, x_amp, nhistx+1, endpoint=True) y_edges = np.linspace(-y_amp, y_amp, nhisty+1, endpoint=True) asphist = np.histogram2d(x_off, y_off, (x_edges, y_edges))[0] asphist *= dt x_mid = 0.5*(x_edges[1:]+x_edges[:-1])/reblock y_mid = 0.5*(y_edges[1:]+y_edges[:-1])/reblock # Determine the effective area eff_area = arf.interpolate_area(energy).value if weights is not None: eff_area = np.average(eff_area, weights=weights) if instr["chips"] is None: rtypes = ["Box"] args = [[0.0, 0.0, instr["num_pixels"], instr["num_pixels"]]] else: rtypes = [] args = [] for i, chip in enumerate(instr["chips"]): rtypes.append(chip[0]) args.append(np.array(chip[1:])) tmpmap = np.zeros((2*nx, 2*ny)) for rtype, arg in zip(rtypes, args): rfunc = getattr(rfilter, rtype) new_args = parse_region_args(rtype, arg, xdet0-xaim-1.0, ydet0-yaim-1.0) r = rfunc(*new_args) tmpmap += r.mask(tmpmap).astype("float64") tmpmap = downsample(tmpmap, reblock) if dither_params["dither_on"]: expmap = np.zeros(tmpmap.shape) niter = nhistx*nhisty pbar = tqdm(leave=True, total=niter, desc="Creating exposure map ") for i in range(nhistx): for j in range(nhisty): expmap += shift(tmpmap, (x_mid[i], y_mid[j]), order=order)*asphist[i, j] pbar.update(nhisty) pbar.close() else: expmap = tmpmap*exp_time expmap *= eff_area if normalize: expmap /= exp_time if roll != 0.0: rotate(expmap, roll, output=expmap, reshape=False) expmap[expmap < 0.0] = 0.0 map_header = {"EXPOSURE": exp_time, "MTYPE1": "EQPOS", "MFORM1": "RA,DEC", "CTYPE1": "RA---TAN", "CTYPE2": "DEC--TAN", "CRVAL1": ra0, "CRVAL2": dec0, "CUNIT1": "deg", "CUNIT2": "deg", "CDELT1": xdel*reblock, "CDELT2": ydel*reblock, "CRPIX1": 0.5*(2.0*nx//reblock+1), "CRPIX2": 0.5*(2.0*ny//reblock+1)} map_hdu = pyfits.ImageHDU(expmap, header=pyfits.Header(map_header)) map_hdu.name = "EXPMAP" map_hdu.writeto(expmap_file, overwrite=overwrite) if asol_file is not None: if dither_params["dither_on"]: det = np.array([x_off, y_off]) pix = np.dot(get_rot_mat(roll).T, det) ra, dec = w.wcs_pix2world(pix[0,:]+x0, pix[1,:]+y0, 1) col_t = pyfits.Column(name='time', format='D', unit='s', array=t) col_ra = pyfits.Column(name='ra', format='D', unit='deg', array=ra) col_dec = pyfits.Column(name='dec', format='D', unit='deg', array=dec) coldefs = pyfits.ColDefs([col_t, col_ra, col_dec]) tbhdu = pyfits.BinTableHDU.from_columns(coldefs) tbhdu.name = "ASPSOL" tbhdu.header["EXPOSURE"] = exp_time hdulist = [pyfits.PrimaryHDU(), tbhdu] pyfits.HDUList(hdulist).writeto(asol_file, overwrite=overwrite) else: mylog.warning("Refusing to write an aspect solution file because " "there was no dithering.") def _write_spectrum(bins, spec, exp_time, spectype, parameters, specfile, overwrite=False): col1 = pyfits.Column(name='CHANNEL', format='1J', array=bins) col2 = pyfits.Column(name=spectype.upper(), format='1D', array=bins.astype("float64")) col3 = pyfits.Column(name='COUNTS', format='1J', array=spec.astype("int32")) col4 = pyfits.Column(name='COUNT_RATE', format='1D', array=spec/exp_time) coldefs = pyfits.ColDefs([col1, col2, col3, col4]) tbhdu = pyfits.BinTableHDU.from_columns(coldefs) tbhdu.name = "SPECTRUM" tbhdu.header["DETCHANS"] = spec.size tbhdu.header["TOTCTS"] = spec.sum() tbhdu.header["EXPOSURE"] = exp_time tbhdu.header["LIVETIME"] = exp_time tbhdu.header["CONTENT"] = spectype tbhdu.header["HDUCLASS"] = "OGIP" tbhdu.header["HDUCLAS1"] = "SPECTRUM" tbhdu.header["HDUCLAS2"] = "TOTAL" tbhdu.header["HDUCLAS3"] = "TYPE:I" tbhdu.header["HDUCLAS4"] = "COUNT" tbhdu.header["HDUVERS"] = "1.1.0" tbhdu.header["HDUVERS1"] = "1.1.0" tbhdu.header["CHANTYPE"] = spectype tbhdu.header["BACKFILE"] = "none" tbhdu.header["CORRFILE"] = "none" tbhdu.header["POISSERR"] = True for key in ["RESPFILE", "ANCRFILE", "MISSION", "TELESCOP", "INSTRUME"]: tbhdu.header[key] = parameters[key] tbhdu.header["AREASCAL"] = 1.0 tbhdu.header["CORRSCAL"] = 0.0 tbhdu.header["BACKSCAL"] = 1.0 hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), tbhdu]) hdulist.writeto(specfile, overwrite=overwrite) def write_spectrum(evtfile, specfile, overwrite=False): r""" Bin event energies into a spectrum and write it to a FITS binary table. Does not do any grouping of channels, and will automatically determine PI or PHA. Parameters ---------- evtfile : string The name of the event file to read the events from. specfile : string The name of the spectrum file to be written. overwrite : boolean, optional Whether or not to overwrite an existing file with the same name. Default: False """ from xcs_soxs.instrument import RedistributionMatrixFile parameters = {} if isinstance(evtfile, string_types): f = pyfits.open(evtfile) spectype = f["EVENTS"].header["CHANTYPE"] rmf = f["EVENTS"].header["RESPFILE"] p = f["EVENTS"].data[spectype] exp_time = f["EVENTS"].header["EXPOSURE"] for key in ["RESPFILE", "ANCRFILE", "MISSION", "TELESCOP", "INSTRUME"]: parameters[key] = f["EVENTS"].header[key] f.close() else: rmf = evtfile["rmf"] spectype = evtfile["channel_type"] p = evtfile[spectype] parameters["RESPFILE"] = os.path.split(rmf)[-1] parameters["ANCRFILE"] = os.path.split(evtfile["arf"])[-1] parameters["TELESCOP"] = evtfile["telescope"] parameters["INSTRUME"] = evtfile["instrument"] parameters["MISSION"] = evtfile["mission"] exp_time = evtfile["exposure_time"] rmf = RedistributionMatrixFile(rmf) minlength = rmf.n_ch if rmf.cmin == 1: minlength += 1 spec = np.bincount(p, minlength=minlength) if rmf.cmin == 1: spec = spec[1:] bins = (np.arange(rmf.n_ch)+rmf.cmin).astype("int32") _write_spectrum(bins, spec, exp_time, spectype, parameters, specfile, overwrite=overwrite) def write_radial_profile(evt_file, out_file, ctr, rmin, rmax, nbins, ctr_type="celestial", emin=None, emax=None, expmap_file=None, overwrite=False): r""" Bin up events into a radial profile and write them to a FITS table. Parameters ---------- evt_file : string Input event file. out_file : string The output file to write the profile to. ctr : array-like The central coordinate of the profile. Can either be in celestial coordinates (the default) or "physical" pixel coordinates. If the former, the ``ctr_type`` keyword argument must be explicity set to "physical". rmin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The minimum radius of the profile, in arcseconds. rmax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity` The maximum radius of the profile, in arcseconds. nbins : integer The number of bins in the profile. ctr_type : string, optional The type of center coordinate. Either "celestial" for (RA, Dec) coordinates (the default), or "physical" for pixel coordinates. emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The minimum energy of the events to be binned in keV. Default is the lowest energy available. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The maximum energy of the events to be binned in keV. Default is the highest energy available. overwrite : boolean, optional Whether or not to overwrite an existing file with the same name. Default: False expmap_file : string, optional Supply an exposure map file to determine fluxes. Default: None """ import astropy.wcs as pywcs rmin = parse_value(rmin, "arcsec") rmax = parse_value(rmax, "arcsec") f = pyfits.open(evt_file) hdu = f["EVENTS"] orig_dx = hdu.header["TCDLT3"] e = hdu.data["ENERGY"] if emin is None: emin = e.min() else: emin = parse_value(emin, "keV") emin *= 1000. if emax is None: emax = e.max() else: emax = parse_value(emax, "keV") emax *= 1000. idxs = np.logical_and(e > emin, e < emax) x = hdu.data["X"][idxs] y = hdu.data["Y"][idxs] exp_time = hdu.header["EXPOSURE"] w = wcs_from_event_file(f) dtheta = np.abs(w.wcs.cdelt[1])*3600.0 f.close() if ctr_type == "celestial": ctr = w.all_world2pix(ctr[0], ctr[1], 1) r = np.sqrt((x-ctr[0])**2+(y-ctr[1])**2) rr = np.linspace(rmin/dtheta, rmax/dtheta, nbins+1) C = np.histogram(r, bins=rr)[0] rbin = rr*dtheta rmid = 0.5*(rbin[1:]+rbin[:-1]) A = np.pi*(rbin[1:]**2-rbin[:-1]**2) Cerr = np.sqrt(C) R = C/exp_time Rerr = Cerr/exp_time S = R/A Serr = Rerr/A col1 = pyfits.Column(name='RLO', format='D', unit='arcsec', array=rbin[:-1]) col2 = pyfits.Column(name='RHI', format='D', unit='arcsec', array=rbin[1:]) col3 = pyfits.Column(name='RMID', format='D', unit='arcsec', array=rmid) col4 = pyfits.Column(name='AREA', format='D', unit='arcsec**2', array=A) col5 = pyfits.Column(name='NET_COUNTS', format='D', unit='count', array=C) col6 = pyfits.Column(name='NET_ERR', format='D', unit='count', array=Cerr) col7 = pyfits.Column(name='NET_RATE', format='D', unit='count/s', array=R) col8 = pyfits.Column(name='ERR_RATE', format='D', unit='count/s', array=Rerr) col9 = pyfits.Column(name='SUR_BRI', format='D', unit='count/s/arcsec**2', array=S) col10 = pyfits.Column(name='SUR_BRI_ERR', format='1D', unit='count/s/arcsec**2', array=Serr) coldefs = [col1, col2, col3, col4, col5, col6, col7, col8, col9, col10] if expmap_file is not None: f = pyfits.open(expmap_file) ehdu = f["EXPMAP"] wexp = pywcs.WCS(header=ehdu.header) cel = w.all_pix2world(ctr[0], ctr[1], 1) ectr = wexp.all_world2pix(cel[0], cel[1], 1) exp = ehdu.data[:,:] nx, ny = exp.shape reblock = ehdu.header["CDELT2"]/orig_dx x, y = np.mgrid[1:nx+1,1:ny+1] r = np.sqrt((x-ectr[0])**2 + (y-ectr[1])**2) f.close() E = np.histogram(r, bins=rr/reblock, weights=exp)[0] / np.histogram(r, bins=rr/reblock)[0] with np.errstate(invalid='ignore', divide='ignore'): F = R/E Ferr = Rerr/E SF = F/A SFerr = Ferr/A col11 = pyfits.Column(name='MEAN_SRC_EXP', format='D', unit='cm**2', array=E) col12 = pyfits.Column(name='NET_FLUX', format='D', unit='count/s/cm**2', array=F) col13 = pyfits.Column(name='NET_FLUX_ERR', format='D', unit='count/s/cm**2', array=Ferr) col14 = pyfits.Column(name='SUR_FLUX', format='D', unit='count/s/cm**2/arcsec**2', array=SF) col15 = pyfits.Column(name='SUR_FLUX_ERR', format='D', unit='count/s/cm**2/arcsec**2', array=SFerr) coldefs += [col11, col12, col13, col14, col15] tbhdu = pyfits.BinTableHDU.from_columns(pyfits.ColDefs(coldefs)) tbhdu.name = "PROFILE" hdulist = pyfits.HDUList([pyfits.PrimaryHDU(), tbhdu]) hdulist.writeto(out_file, overwrite=overwrite) coord_types = {"sky": ("X", "Y", 2, 3), "det": ("DETX", "DETY", 6, 7)} def write_image(evt_file, out_file, coord_type='sky', emin=None, emax=None, overwrite=False, expmap_file=None, reblock=1): r""" Generate a image by binning X-ray counts and write it to a FITS file. Parameters ---------- evt_file : string The name of the input event file to read. out_file : string The name of the image file to write. coord_type : string, optional The type of coordinate to bin into an image. Can be "sky" or "det". Default: "sky" emin : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The minimum energy of the photons to put in the image, in keV. emax : float, (value, unit) tuple, or :class:`~astropy.units.Quantity`, optional The maximum energy of the photons to put in the image, in keV. overwrite : boolean, optional Whether or not to overwrite an existing file with the same name. Default: False expmap_file : string, optional Supply an exposure map file to divide this image by to get a flux map. Default: None reblock : integer, optional Change this value to reblock the image to larger pixel sizes (reblock >= 1). Only supported for sky coordinates. Default: 1 """ if coord_type == "det" and reblock > 1: raise RuntimeError("Reblocking images is not supported " "for detector coordinates!") f = pyfits.open(evt_file) e = f["EVENTS"].data["ENERGY"] if emin is None: emin = e.min() else: emin = parse_value(emin, "keV") emin *= 1000. if emax is None: emax = e.max() else: emax = parse_value(emax, "keV") emax *= 1000. idxs = np.logical_and(e > emin, e < emax) xcoord, ycoord, xcol, ycol = coord_types[coord_type] x = f["EVENTS"].data[xcoord][idxs] y = f["EVENTS"].data[ycoord][idxs] exp_time = f["EVENTS"].header["EXPOSURE"] xmin = f["EVENTS"].header["TLMIN%d" % xcol] ymin = f["EVENTS"].header["TLMIN%d" % ycol] xmax = f["EVENTS"].header["TLMAX%d" % xcol] ymax = f["EVENTS"].header["TLMAX%d" % ycol] if coord_type == 'sky': xctr = f["EVENTS"].header["TCRVL%d" % xcol] yctr = f["EVENTS"].header["TCRVL%d" % ycol] xdel = f["EVENTS"].header["TCDLT%d" % xcol]*reblock ydel = f["EVENTS"].header["TCDLT%d" % ycol]*reblock f.close() nx = int(xmax-xmin)//reblock ny = int(ymax-ymin)//reblock xbins = np.linspace(xmin, xmax, nx+1, endpoint=True) ybins = np.linspace(ymin, ymax, ny+1, endpoint=True) H, xedges, yedges = np.histogram2d(x, y, bins=[xbins, ybins]) if expmap_file is not None: if coord_type == "det": raise RuntimeError("Cannot divide by an exposure map for images " "binned in detector coordinates!") f = pyfits.open(expmap_file) if f["EXPMAP"].shape != (nx, ny): raise RuntimeError("Exposure map and image do not have the same shape!!") with np.errstate(invalid='ignore', divide='ignore'): H /= f["EXPMAP"].data.T H[np.isinf(H)] = 0.0 H = np.nan_to_num(H) H[H < 0.0] = 0.0 f.close() hdu = pyfits.PrimaryHDU(H.T) if coord_type == 'sky': hdu.header["MTYPE1"] = "EQPOS" hdu.header["MFORM1"] = "RA,DEC" hdu.header["CTYPE1"] = "RA---TAN" hdu.header["CTYPE2"] = "DEC--TAN" hdu.header["CRVAL1"] = xctr hdu.header["CRVAL2"] = yctr hdu.header["CUNIT1"] = "deg" hdu.header["CUNIT2"] = "deg" hdu.header["CDELT1"] = xdel hdu.header["CDELT2"] = ydel hdu.header["CRPIX1"] = 0.5*(nx+1) hdu.header["CRPIX2"] = 0.5*(ny+1) else: hdu.header["CUNIT1"] = "pixel" hdu.header["CUNIT2"] = "pixel" hdu.header["EXPOSURE"] = exp_time hdu.writeto(out_file, overwrite=overwrite) def plot_spectrum(specfile, plot_energy=True, lw=2, xmin=None, xmax=None, ymin=None, ymax=None, xscale=None, yscale=None, label=None, fontsize=18, fig=None, ax=None, plot_counts=False, **kwargs): """ Make a quick Matplotlib plot of a convolved spectrum from a file. A Matplotlib figure and axis is returned. Parameters ---------- specfile : string The file to be opened for plotting. figsize : tuple of integers, optional The size of the figure on both sides in inches. Default: (10,10) plot_energy : boolean, optional Whether to plot in energy or channel space. Default is to plot in energy, unless the RMF for the spectrum cannot be found. lw : float, optional The width of the lines in the plots. Default: 2.0 px. xmin : float, optional The left-most energy (in keV) or channel to plot. Default is the minimum value in the spectrum. xmax : float, optional The right-most energy (in keV) or channel to plot. Default is the maximum value in the spectrum. ymin : float, optional The lower extent of the y-axis. By default it is set automatically. ymax : float, optional The upper extent of the y-axis. By default it is set automatically. xscale : string, optional The scaling of the x-axis of the plot. Default: "log" yscale : string, optional The scaling of the y-axis of the plot. Default: "log" label : string, optional The label of the spectrum. Default: None fontsize : int Font size for labels and axes. Default: 18 fig : :class:`~matplotlib.figure.Figure`, optional A Figure instance to plot in. Default: None, one will be created if not provided. ax : :class:`~matplotlib.axes.Axes`, optional An Axes instance to plot in. Default: None, one will be created if not provided. plot_counts : boolean, optional If set to True, the counts instead of the count rate will be plotted. Default: False Returns ------- A tuple of the :class:`~matplotlib.figure.Figure` and the :class:`~matplotlib.axes.Axes` objects. """ import matplotlib.pyplot as plt from xcs_soxs.instrument import RedistributionMatrixFile f = pyfits.open(specfile) hdu = f["SPECTRUM"] chantype = hdu.header["CHANTYPE"] rmf = hdu.header.get("RESPFILE", None) xerr = None if plot_energy: if rmf is not None: rmf = RedistributionMatrixFile(rmf) x = 0.5*(rmf.ebounds_data["E_MIN"]+rmf.ebounds_data["E_MAX"]) xerr = 0.5*(rmf.ebounds_data["E_MAX"]-rmf.ebounds_data["E_MIN"]) xlabel = "Energy (keV)" else: raise RuntimeError("Cannot find the RMF associated with this " "spectrum, so I cannot plot in energy!") else: x = hdu.data[chantype] xlabel = "Channel (%s)" % chantype if plot_counts: y = hdu.data["COUNTS"].astype("float64") yerr = np.sqrt(y) else: if "COUNT_RATE" in hdu.columns.names: y = hdu.data["COUNT_RATE"] else: y = hdu.data["COUNTS"]/hdu.header["EXPOSURE"] yerr = np.sqrt(hdu.data["COUNTS"])/hdu.header["EXPOSURE"] if plot_energy: yunit = "keV" y /= 2.0*xerr yerr /= 2.0*xerr else: yunit = "bin" f.close() if fig is None: fig = plt.figure(figsize=(10, 10)) if xscale is None: if ax is None: xscale = "log" else: xscale = ax.get_xscale() if yscale is None: if ax is None: yscale = "log" else: yscale = ax.get_yscale() if ax is None: ax = fig.add_subplot(111) ax.errorbar(x, y, yerr=yerr, xerr=xerr, lw=lw, label=label, **kwargs) ax.set_xscale(xscale) ax.set_yscale(yscale) ax.set_xlim(xmin, xmax) ax.set_ylim(ymin, ymax) ax.set_xlabel(xlabel, fontsize=fontsize) if plot_counts: ylabel = "Counts (counts/%s)" else: ylabel = "Count Rate (counts/s/%s)" ax.set_ylabel(ylabel % yunit, fontsize=fontsize) ax.tick_params(axis='both', labelsize=fontsize) return fig, ax
StarcoderdataPython
1637637
<gh_stars>0 import os import numpy as np import tensorflow as tf os.environ["CUDA_VISIBLE_DEVICES"] = '' # Load TFLite model and allocate tensors. interpreter = tf.lite.Interpreter(model_path="saved_models/CNN1d_CTC_PinYin_Sample_lessDropout/MagicData/(gpu_n=1)(feature_name=mel)(label_type=pinyin)/best_val_loss(epoch=70)(loss=7.7)(val_loss=10.5)converted_predict_model.tflite") interpreter.allocate_tensors()
StarcoderdataPython
6703672
class ContextualHelp(object): """ Contains the details for how Revit should allow invocation of contextual help for an item added by an application. ContextualHelp(helpType: ContextualHelpType,helpPath: str) """ def Launch(self): """ Launch(self: ContextualHelp) Launches and displays the help topic specified by the contents of this ContextualHelp object. """ pass @staticmethod def __new__(self, helpType, helpPath): """ __new__(cls: type,helpType: ContextualHelpType,helpPath: str) """ pass HelpPath = property(lambda self: object(), lambda self, v: None, lambda self: None) """The context id,help URL,or help file path. Get: HelpPath(self: ContextualHelp) -> str Set: HelpPath(self: ContextualHelp)=value """ HelpTopicUrl = property( lambda self: object(), lambda self, v: None, lambda self: None ) """The help topic URL. Get: HelpTopicUrl(self: ContextualHelp) -> str Set: HelpTopicUrl(self: ContextualHelp)=value """ HelpType = property(lambda self: object(), lambda self, v: None, lambda self: None) """The contextual help type. Get: HelpType(self: ContextualHelp) -> ContextualHelpType Set: HelpType(self: ContextualHelp)=value """
StarcoderdataPython
6450066
from setuptools import setup, find_packages from os.path import join, dirname import pyrecsys with open('requirements.txt') as f: reqs = f.read().splitlines() setup( name='pyrecsys', version=pyrecsys.__version__, packages=['pyrecsys', 'pyrecsys._polara.lib'], author = "<NAME>", author_email = "<EMAIL>", description = "Collaborative filtering recommender system", license = "MIT", url = "https://github.com/vlarine/pyrecsys", long_description=open(join(dirname(__file__), 'README.md')).read(), install_requires=reqs, )
StarcoderdataPython
6618288
<reponame>Sudani-Coder/python ## project: 9 # text analyzer vowels = ("a", "e", "i", "o", "u") def count_char(text, char): count = 0 for each in text: if each == char: count += 1 return count def count_vowels(text): count = 0 for each in text: if each in vowels: count += 1 return count def perc_char(text): for char in "abcdefghijklmnopqrstuvwxyz": perc = 100 * count_char(text, char) / len(text) print("{0} - {1}%".format(char, round(perc, 2))) filename = input("Please Enter The File Name -->") thechar = input("Please Enter The char -->").lower() with open(filename, "rt") as myfile: text = myfile.read() print("the char {} repeted {} number of times".format(thechar ,count_char(text, thechar))) print("the number of vowels letters is {}".format(count_vowels(text))) perc_char(text)
StarcoderdataPython
3378971
from scrapy.spider import BaseSpider from scrapy.selector import HtmlXPathSelector from scrapy.http import Request, HtmlResponse from scrapy.utils.url import urljoin_rfc from product_spiders.items import Product, ProductLoaderWithNameStrip as ProductLoader class Phones4uSpider(BaseSpider): name = 'phones4u.co.uk' allowed_domains = ['phones4u.co.uk'] start_urls = ['http://www.phones4u.co.uk/shop/shop_payg_main.asp?intcid=PAYG%20Phones'] def parse(self, response): hxs = HtmlXPathSelector(response) categories = hxs.select('//*[@id="secBody"]/table/tbody/tr/td/a/@href').extract() for category in categories: url = urljoin_rfc(response.url, category.strip(), response.encoding) yield Request(url, callback=self.parse_pages) def parse_pages(self, response): hxs = HtmlXPathSelector(response) products = hxs.select('//*[@id="manphones"]/table/tbody/tr[not(@class="netempty")]/td[not(@class="manempty")]') for product in products: BASE_URL = 'http://www.phones4u.co.uk/' loader = ProductLoader(item=Product(), selector=product) loader.add_xpath('name', 'a/text()') relative_url = product.select('a/@href').extract()[0] url = urljoin_rfc(BASE_URL, relative_url, response.encoding) loader.add_value('url', url) loader.add_xpath('price', 'text()') yield loader.load_item()
StarcoderdataPython
5127894
# -*- coding: utf-8 -*- """ server.common.validators ~~~~~~~~~~~~~~~~~~~~~~~~ """ def validate_phone_number(phone_number: str): """Validates Phone Number Strings""" if not phone_number.isdecimal() or len(phone_number) != 10: raise ValidationError("Value is not a 10-digit phone number!")
StarcoderdataPython
1888559
class Caesar: def caesar(cleartext, key, alphabet, cipher): result = "" cleartext = cleartext.lower() if not cipher: key = len(alphabet) - key for x in cleartext: if x not in alphabet: result += x else: i = alphabet.index(x) j = (i+key) % len(alphabet) result = result+alphabet[j] return result
StarcoderdataPython
1744726
from __future__ import annotations from typing import Any, Iterable, Literal, Sequence import attr import networkx as nx __all__ = ["PoSet", "Pair", "Chain", "CMP"] Pair = tuple[Any, Any] Chain = Sequence[Any] CMP = Literal["<", ">", "||", "="] @attr.frozen class PoSet: """Hasse diagram representation of partially ordered set. """ hasse: nx.DiGraph = attr.ib(factory=nx.DiGraph) def __len__(self) -> int: return len(self.hasse) def __iter__(self) -> Iterable[Any]: yield from self.hasse.nodes def compare(self, left: Any, right: Any) -> CMP: if left == right: return "=" elif nx.has_path(self.hasse, left, right): return "<" elif nx.has_path(self.hasse, right, left): return ">" return "||" def __contains__(self, elem: Any) -> bool: return elem in self.hasse.nodes def add(self, chain: Chain) -> PoSet: hasse = nx.DiGraph(self.hasse) nx.add_path(hasse, chain) return attr.evolve(self, hasse=nx.transitive_reduction(hasse)) @staticmethod def from_chains(*chains: list[Chain]) -> PoSet: hasse = nx.DiGraph() for chain in chains: nx.add_path(hasse, chain) return PoSet(nx.transitive_reduction(hasse))
StarcoderdataPython
29630
import unittest from unittest.mock import patch, Mock from werkzeug.datastructures import FileStorage import io import json from app import app from app.models.base import db from app.models.user import User from app.auth.views import UserPassportphotoView from app.auth import views class AuthUploadPassportPhotoTestCase(unittest.TestCase): def setUp(self): self.app = app.test_client() app.testing = True self.user_data = { "username": "john123", "email": "<EMAIL>", "password": "<PASSWORD>", } with app.app_context(): db.drop_all() db.create_all() # create admin user user = User( username="john123", email="<EMAIL>", password="<PASSWORD>", role=True, ) user.save() @patch.object(views.UserPassportphotoView, "post") def test_upload_passport_photo(self, mock_post): upload = UserPassportphotoView() mock_post.return_value.status_code = 200 res = upload.post( "/api/v1/auth/upload", data=dict(file=(io.BytesIO(b"abcdef"), "test.jpg")), headers={"Content-Type": "multipart/form-data"}, ) self.assertEqual(res.status_code, 200) def test_upload_photo_with_non_allowed_ext(self): res = self.app.post( "/api/v1/auth/login", data=json.dumps(self.user_data), headers={"Content-Type": "application/json"}, ) token = json.loads(res.data.decode())["access_token"] data = {"file": (io.BytesIO(b'my file contents'), 'hello.txt')} result = self.app.post( "/api/v1/auth/upload", buffered=True, headers={ "Authorization": token, "Content-Type" : 'multipart/form-data', }, data=data, ) self.assertEqual(result.status_code, 400) def test_no_photo_upload(self): res = self.app.post( "/api/v1/auth/login", data=json.dumps(self.user_data), headers={"Content-Type": "application/json"}, ) token = json.loads(res.data.decode())["access_token"] result = self.app.post( "/api/v1/auth/upload", buffered=True, headers={ "Authorization": token, "Content-Type" : 'multipart/form-data', }, data={}, ) self.assertEqual(result.status_code, 400)
StarcoderdataPython
1738398
<reponame>naderm/django_rest_omics from proteomics import models from rest_framework import serializers # Serializers define the API representation. class PeptideMethodSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = models.PeptideMethod class MSMethodSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = models.MSMethod class PeptideDataSetSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = models.PeptideDataSet class PeptideSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = models.Peptide class ProteinSerializer(serializers.HyperlinkedModelSerializer): class Meta: model = models.Protein
StarcoderdataPython
1664612
#!/usr/bin/env python 2.x import socketserver, socket import threading from os.path import exists, isfile from time import sleep, strftime, time, localtime import signal from aes import myAES from os import system, fork, kill from sys import argv from random import shuffle, randrange HOST = '' PORT = 10007 aes = myAES('test', 'test') pidfile = '.chatserverP.pid' dummy_proc = '0000' VER = '1.4 Public' class UserManager: def __init__(self): self.users = {} self.members = [] self.lock = threading.Lock() def addUser(self, username, conn, addr): global WELCOME_EMOTI if username in self.users: msg = aes.enc('이미 등록된 사용자입니다.\n'.encode()) conn.send(msg) return None if len(self.users) > 5: msg = aes.enc('사용자수 초과입니다.\n'.encode()) conn.send(msg) return None with self.lock: self.users[username] = (conn, addr) self.members.append(username) try: welcome_msg = '/welcome;%s' %username welcome_msg = aes.enc(welcome_msg.encode()) conn.send(welcome_msg) memberlist = '#'.join(self.members) self.sendMessageToAll('/addmember;%s;[%s]님이 입장했습니다.\n\n' %(memberlist, username)) except Exception as e: writeLog('Error-1: ' + str(e)) pass return username def removeUser(self, username): if username not in self.users: return with self.lock: del self.users[username] if username in self.members: self.members.remove(username) if username+'(X)' in self.members: self.members.remove(username+'(X)') memberlist = '#'.join(self.members) self.sendMessageToAll('/delmember;%s;[%s]님이 퇴장했습니다.\n\n' %(memberlist, username)) def messageHandler(self, username, msg): msg = msg.strip() try: if msg[0] != '/': self.sendMessageToAll('/msgbody;%s;%s' %(username, msg)) return if msg == '/absence': pos = self.members.index(username) self.members[pos] = username + '(X)' memberlist = '#'.join(self.members) self.sendMessageToAll('/updatepresence;%s' %memberlist) return if msg == '/presence': pos = self.members.index(username+'(X)') self.members[pos] = username memberlist = '#'.join(self.members) self.sendMessageToAll('/updatepresence;%s' %memberlist) return if '/emoticon' in msg: self.sendMessageToAll(msg) return if msg == '/quit': msg = aes.enc('/bye'.encode()) self.users[username][0].send(msg) self.removeUser(username) return -1 if msg == '/keypressed': self.sendMessageWithoutMe(username, 0) return if msg == '/emptymsg': self.sendMessageWithoutMe(username, 1) return if '/personalchat' in msg: tmp = msg.split(';') self.sendMessage2Users(username, tmp[1], ';'.join(tmp[2:])) return except Exception as e: writeLog('Error-1-1: '+str(e)) def sendMessageToAll(self, msg): try: msg = aes.enc(msg.encode()) for conn, addr in self.users.values(): conn.send(msg) #print('SENDINGALL') except Exception as e: writeLog('Error-2: ' + str(e)) pass def sendMessageWithoutMe(self, username, mode): try: if mode == 0: msg = '/keypressed;%s' %username else: msg = '/emptymsg;%s' %username msg = aes.enc(msg.encode()) for user, val in self.users.items(): if user == username: continue val[0].send(msg) except Exception as e: writeLog('Error-3: ' + str(e)) pass def sendMessage2Users(self, username, yourname, msg): try: conn1 = self.users[username][0] conn2 = self.users[yourname][0] header = '/personalchat#%s#%s#' %(username, yourname) msg = header + msg msg = aes.enc(msg.encode()) conn1.send(msg) conn2.send(msg) except Exception as e: writeLog('Error-4: '+str(e)) class MyTcpHandler(socketserver.BaseRequestHandler): userman = UserManager() heartbits = [chr(x) for x in range(40, 120)] def handle(self): self.request.setsockopt(socket.SOL_SOCKET, socket.SO_KEEPALIVE, 1) username = '' buf = b'' try: while True: msg = self.request.recv(65565) if not msg: break if len(msg)%16 != 0: #writeLog('INCOMMING MSG LENGTH [%d]' %len(msg)) buf += msg if len(buf)%16 != 0: continue else: msg = buf buf = b'' msg = aes.dec(msg) if msg == None: continue msg = msg.strip() #print(msg) #writeLog('INCOMING MSG [%s]: %s' %(username, msg)) if msg == '/login': username = self.registerUsername() continue if '$%#' in msg: shuffle(self.heartbits) randstr = ''.join(self.heartbits) scope1 = randrange(1, max(2,len(randstr)-1)) scope2 = randrange(1, max(2,scope1)) if scope1 == scope2: scope1 += 1 msg = randstr[:scope2] + '$%#' + randstr[scope2:scope1] msg = aes.enc(msg.encode()) self.request.send(msg) #writeLog('INCOMING HEARTBIT[%s]' %username) continue ret = self.userman.messageHandler(username, msg) #writeLog('CALL Message Handler') if ret == -1: self.request.close() break except Exception as e: log = 'Error-5: [%s] %s' %(username, str(e)) writeLog(log) self.userman.removeUser(username) pass def registerUsername(self): try: flag = True try: with open('notice.txt', 'r') as f: notice = f.read() except: notice = '' while True: if flag: msg = '끼리서버 ver. %s\n\n%s\n[대화명을 입력하세요]\n' %(VER, notice) msg = aes.enc(msg.encode()) self.request.send(msg) flag = False username = self.request.recv(65565) username = aes.dec(username) if username[0] == '/': continue #writeLog('Call Add Username: %s' %username) if self.userman.addUser(username, self.request, self.client_address): return username except Exception as e: writeLog('Error-6: '+str(e)) self.userman.removeUser(username) pass def writeLog(log): tstr = strftime('%Y-%m-%d %H:%M:%S;', localtime()) log = tstr + log + '\n' with open('chat2.log', 'a') as f: f.writelines(log) class ChatingServer(socketserver.ThreadingMixIn, socketserver.TCPServer): pass def runServer(args): if len(args) == 0: print('사용법: ./runchat -s or -x') return if args[0] == '-s': if isfile(pidfile): print('서버가 이미 구동중입니다.') return try: with open(pidfile, 'w') as h: h.write(dummy_proc) except Exception as e: print(str(e)) return pid = fork() if pid == 0: # Child Process try: server = ChatingServer((HOST, PORT), MyTcpHandler) server.serve_forever() except KeyboardInterrupt: server.shutdown() server.server_close() else: print('+++ 채팅 서버를 시작합니다.') with open(pidfile, 'w') as h: h.write('%d' %pid) elif args[0] == '-x': try: with open(pidfile, 'r') as h: pid = h.readline() except Exception as e: print('.chatserver.pid 파일을 읽지 못했습니다.') return try: kill(int(pid), signal.SIGINT) print('--- 채팅 서버를 종료중입니다..') sleep(1) kill(int(pid), signal.SIGINT) except: pass cmd = 'rm -rf %s' %pidfile system(cmd) print('--- 채팅 서버를 종료했습니다.') else: print('사용법: ./runchat -s or -x') if __name__ == '__main__': runServer(argv[1:])
StarcoderdataPython
9668882
from jinja2.utils import soft_unicode ''' USAGE: - debug: msg: "{{ vpc.subnets | get_public_subnets_ids('Type','Public') }}" ''' class FilterModule(object): def filters(self): return { 'get_public_subnets_ids': get_public_subnets_ids, } def get_public_subnets_ids(list, tag_key, tag_value): subnets_ids = [] for item in list: for key, value in item['resource_tags'].iteritems(): if key == tag_key and value == tag_value: subnets_ids.append(item['id']) return subnets_ids
StarcoderdataPython
3224623
<reponame>andraantariksa/code-exercise-answer def convertTabs(code, x): return code.replace("\t", " " * x)
StarcoderdataPython
5026495
<reponame>NunoEdgarGFlowHub/poptorch #!/usr/bin/env python3 # Copyright (c) 2020 Graphcore Ltd. All rights reserved. import torch import poptorch import pytest # Tensors # Creation ops (we don't support many of these) # torch.numel, torch.tensor, torch.sparse_coo_tensor, torch.as_tensor, torch.as_strided, torch.from_numpy, torch.zeros, # torch.zeros_like, torch.ones, torch.ones_like, torch.arange, torch.range, torch.linspace, torch.logspace, torch.eye, # torch.empty, torch.empty_like, torch.empty_strided, torch.full, torch.full_like, torch.quantize_per_tensor, torch.quantize_per_channel, # Indexing, Slicing, Joining, Mutating Ops # torch.cat, torch.chunk, torch.gather, torch.index_select, torch.masked_select, torch.narrow, torch.nonzero, torch.reshape, torch.split, # torch.squeeze, torch.stack, torch.t, torch.take, torch.transpose, torch.unbind, torch.unsqueeze, torch.where, torch._C.Generator, # torch._C.Generator.device, @pytest.mark.parametrize("dtype", (torch.float16, torch.float32, torch.int32)) def test_zeros_and_ones(dtype): class Model(torch.nn.Module): def forward(self, z): x = torch.zeros(3, 5, 1, dtype=dtype) y = torch.ones(3, 5, 1, dtype=dtype) return (x * y) + z, (y + x) + z model = Model() # Run on CPU. tensor_in = torch.tensor([1.0], dtype=dtype) nativeOut = model(tensor_in) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(tensor_in) assert torch.equal(nativeOut[0], poptorch_out[0]) assert torch.equal(nativeOut[1], poptorch_out[1]) def test_cat(): class Model(torch.nn.Module): def forward(self, x): return torch.cat((x, x, x), 0) model = Model() x = torch.randn(2, 3) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_chunk(): class Model(torch.nn.Module): def forward(self, x): return torch.chunk(x, 5) model = Model() x = torch.randn(20, 10) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) for native, pop in zip(nativeOut, poptorch_out): assert torch.equal(native, pop) def test_reshape(): class Model(torch.nn.Module): def forward(self, x): return torch.reshape(x, (1, 1, 2, 2)) model = Model() x = torch.arange(4.) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) @pytest.mark.parametrize("split_size_or_sections", (1, 5, 6, 20, [10, 10], [19, 1])) def test_split(split_size_or_sections): class Model(torch.nn.Module): def forward(self, x): return torch.split(x, split_size_or_sections) model = Model() x = torch.randn(20, 10) # Run on CPU. native_out = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) for native, pop in zip(native_out, poptorch_out): assert native.size() == pop.size() assert torch.equal(native, pop) def test_squeeze(): class Model(torch.nn.Module): def forward(self, x): return torch.squeeze(x) model = Model() x = torch.randn(1, 1, 20, 1, 10, 1) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_t(): class Model(torch.nn.Module): def forward(self, x): return torch.t(x) model = Model() x = torch.randn(20, 10) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_transpose(): class Model(torch.nn.Module): def forward(self, x): return torch.transpose(x, 3, 0) model = Model() x = torch.randn(3, 2, 5, 10) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_unsqueeze(): class Model(torch.nn.Module): def forward(self, x): return torch.unsqueeze(x, 1) model = Model() x = torch.randn(3, 2, 5, 10) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_expand(): class Model(torch.nn.Module): def forward(self, x): return x.expand(3, 4) model = Model() x = torch.randn(3, 1) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_expand_as(): class Model(torch.nn.Module): def forward(self, x, y): return x.expand_as(y) model = Model() x = torch.randn(3, 1) y = torch.randn(3, 4) # Run on CPU. nativeOut = model(x, y) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x, y) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_flatten(): class Model(torch.nn.Module): def forward(self, x): return torch.flatten(x) model = Model() x = torch.randn(3, 1) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) def test_view(): class Model(torch.nn.Module): def forward(self, x): return x.view((15, 2, 5)) model = Model() x = torch.randn(30, 5) # Run on CPU. nativeOut = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert nativeOut.size() == poptorch_out.size() assert torch.equal(nativeOut, poptorch_out) @pytest.mark.parametrize("input_shapes", [(1, ), (2, ), (2, 2), (2, 3, 4)]) def test_size(input_shapes): class Model(torch.nn.Module): def forward(self, x): # Use size as input to another operation to workaround pruning error return x.view(x.size()) model = Model() x = torch.ones(*input_shapes) # Run on CPU. native_out = model(x) assert torch.equal(x, native_out) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) assert native_out.size() == poptorch_out.size() assert torch.equal(native_out, poptorch_out) input_shapes = [(1, 4, 5), (2, ), (2, 2), (2, 3, 4, 1, 3, 4)] dtypes = [torch.float, torch.float16, torch.int32] @pytest.mark.parametrize("input_shapes", input_shapes) @pytest.mark.parametrize("t", dtypes) def test_fill(input_shapes, t): float_test_num = 1.9375 class Model(torch.nn.Module): def forward(self, x): value = 42 if x.dtype == torch.int32 else float_test_num return x.fill_(value), torch.full_like(x, value), torch.full( input_shapes, value, dtype=x.dtype) model = Model() x = torch.ones(*input_shapes, dtype=t) # Run on CPU. if t != torch.float16: native_out = model(x) else: native_out = (torch.full(input_shapes, float_test_num), torch.full(input_shapes, float_test_num), torch.full(input_shapes, float_test_num)) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) for native, pop in zip(native_out, poptorch_out): if t == torch.float16: pop = pop.float() assert native.size() == pop.size() assert torch.equal(native, pop) assert native.dtype == pop.dtype @pytest.mark.parametrize("input_shapes", input_shapes) @pytest.mark.parametrize("value", [0.666, -4.32, float("Inf"), float("-Inf")]) def test_masked_fill(input_shapes, value): torch.manual_seed(42) class Model(torch.nn.Module): def forward(self, x): fill_result = x.masked_fill(x > 0.5, value) where_result = torch.where(x > 0.5, x, torch.tensor(value)) return fill_result, where_result model = Model() x = torch.randn(*input_shapes) # Run on CPU. native_out = model(x) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x) for pop, native in zip(poptorch_out, native_out): assert native.size() == pop.size() assert torch.equal(native, pop) @pytest.mark.parametrize("input_shapes", [(1, ), (2, ), (3, 4), (1, 3, 4)]) @pytest.mark.parametrize("dim", [0, 1, 2]) def test_stack(input_shapes, dim): if dim > len(input_shapes): pytest.skip() torch.manual_seed(42) class Model(torch.nn.Module): def forward(self, x, y, z): return torch.stack([x, y, z], dim=dim) model = Model() a = torch.randn(*input_shapes) b = torch.randn(*input_shapes) c = torch.randn(*input_shapes) # Run on CPU. native_out = model(a, b, c) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(a, b, c) for pop, native in zip(poptorch_out, native_out): assert native.size() == pop.size() assert torch.equal(native, pop) @pytest.mark.parametrize("input_shapes", [(1, ), (2, ), (2, 3), (1, 3, 4)]) @pytest.mark.parametrize("dims", [[1], [3], [2, 1], [2, 3], [1, 1, 1], [3, 2, 4]]) def test_repeat(input_shapes, dims): if len(dims) < len(input_shapes): pytest.skip( "Number of dimensions of repeat dims can not be smaller than number of dimensions of tensor." ) torch.manual_seed(42) class Model(torch.nn.Module): def forward(self, x): return x.repeat(dims) model = Model() a = torch.randn(*input_shapes) # Run on CPU. native_out = model(a) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(a) for pop, native in zip(poptorch_out, native_out): assert native.size() == pop.size() assert torch.equal(native, pop) @pytest.mark.parametrize("input_shapes", [(1, ), (2, ), (2, 3), (1, 3, 4)]) @pytest.mark.parametrize("dtype", [torch.float, torch.int]) def test_copy_(input_shapes, dtype): torch.manual_seed(42) class Model(torch.nn.Module): def forward(self, x, y): return y.copy_(x) model = Model() x = torch.randn(*input_shapes) y = torch.empty_like(x, dtype=dtype) # Run on CPU. native_out = model(x, y) # Run on IPU. poptorch_model = poptorch.inferenceModel(model) poptorch_out = poptorch_model(x, y) for pop, native in zip(poptorch_out, native_out): assert native.size() == pop.size() assert native.dtype == pop.dtype assert torch.equal(native, pop) def test_detach(): torch.manual_seed(42) class Model(torch.nn.Module): def forward(self, x): return x.detach() model = Model() poptorch_model = poptorch.inferenceModel(model) x = torch.tensor([1.0], requires_grad=True) # Run on IPU. poptorch_out = poptorch_model(x) assert not poptorch_out.requires_grad
StarcoderdataPython
8081570
# noqa: D100 from birdy.client import notebook def test_is_notebook(): # noqa: D103 # we expect True or False but no exception notebook.is_notebook()
StarcoderdataPython
1948987
from esahub import scihub, utils, checksum, check, main import unittest import contextlib import logging import re import datetime as DT import pytz import os import sys import subprocess from shapely.wkt import loads as wkt_loads from esahub.tests import config as test_config from esahub import config logger = logging.getLogger('esahub') PY2 = sys.version_info < (3, 0) SMALL_SIZE_QUERY = 'size: ???.* KB' if hasattr(unittest.TestCase, 'subTest'): class TestCase(unittest.TestCase): pass else: class TestCase(unittest.TestCase): @contextlib.contextmanager def subTest(self, msg='', **params): """Mock subTest method so no exception is raised under Python2.""" utils.eprint('subTest:', msg, params) yield return # ----------------------------------------------------------------------------- # TEST SETUP # ----------------------------------------------------------------------------- def setUpModule(): test_config.set_test_config() test_config.prepare() def tearDownModule(): test_config.cleanup() # ----------------------------------------------------------------------------- # SCIHUB # ----------------------------------------------------------------------------- class ScihubTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() # def setUp(self): def test_servers(self): for name in scihub._get_available_servers(): cfg = config.CONFIG['SERVERS'][name] with self.subTest(server_name=name): url = '{}/search?q=*:*'.format(cfg['host']) response = scihub.get_response(url) # # Assert that the HTML response has status code 200 (OK) # self.assertEqual(response.status, 200) def test__generate_next_url(self): # _generate_next_url(url, total=None) pass def test__parse_page(self): # _parse_page(url, first=False) pass def test__get_file_list_from_url(self): # _get_file_list_from_url(url, limit=None) pass def test__callback(self): # _callback(result) pass def test__build_query(self): # _build_query(query={}) pass def test__build_url(self): # _build_url(query, server) pass def test__download(self): # _download(url, destination, quiet=None, queue=None) pass def test__get_file_list_wrapper(self): # _get_file_list_wrapper(url) pass def test__ping_single(self): # _ping_single(servername) pass def test__auto_detect_server_from_query(self): queries = [ # (query, server) ({'mission': 'Sentinel-1'}, config.CONFIG['SATELLITES']['S1A']['source']), ({'mission': 'Sentinel-2'}, config.CONFIG['SATELLITES']['S2A']['source']), ({'mission': 'Sentinel-3'}, config.CONFIG['SATELLITES']['S3A']['source']), ({'satellite': 'S1A'}, config.CONFIG['SATELLITES']['S1A']['source']), ({'satellite': 'S3A'}, config.CONFIG['SATELLITES']['S3A']['source']), ({'satellite': 'S2B'}, config.CONFIG['SATELLITES']['S2B']['source']), ({'identifier': "S1A_IW_OCN__2SDV_20160924T181320_" "20160924T181345_013198_014FDF_6692.zip"}, config.CONFIG['SATELLITES']['S1A']['source']) ] for query, server in queries: with self.subTest(query=query): self.assertEqual( scihub._auto_detect_server_from_query(query), server ) def test__uuid_from_identifier(self): products = scihub.search({}, limit=1) for product in products: with self.subTest(product=product): self.assertEqual( scihub.block(scihub._uuid_from_identifier, product['title']), product['uuid'] ) # def test__download_url_from_identifier(self): # # _download_url_from_identifier(identifier) # pass # def test__checksum_url_from_identifier(self): # # _checksum_url_from_identifier(identifier) # pass # def test__preview_url_from_identifier(self): # # _preview_url_from_identifier(identifier) # pass # def test__download_url_from_uuid(self): # # _download_url_from_uuid(uuid, host=None) # pass # def test__checksum_url_from_uuid(self): # # _checksum_url_from_uuid(uuid, host=None) # pass # def test__preview_url_from_uuid(self): # # _preview_url_from_uuid(uuid, host=None) # pass def test_get_response(self): for name in scihub._get_available_servers(): with self.subTest(server_name=name): response = scihub.get_response( scihub._build_url({'query': '*:*'}, name) ) self.assertEqual(response.status, 200) def test_md5_from_file(self): for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the md5 sum computed from the local file is equal # to the md5 sum obtained from the remote server. # try: remote_md5 = scihub.md5(f) self.assertEqual( checksum.md5(f), remote_md5 ) except Exception as e: self.fail('Remote MD5 could not be obtained: {}'.format(e)) def test_exists_true(self): existing = scihub.search({}, limit=1) for e in existing: with self.subTest(product=e['filename']): self.assertTrue(scihub.exists(e['filename'])) def test_exists_false(self): not_existing = 'this_is_not_on_scihub' self.assertFalse(scihub.exists(not_existing)) # ----------------------------------------------------------------------------- # SCIHUB SEARCH # ----------------------------------------------------------------------------- class ScihubSearchTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() def test_query_entries(self): query = {'mission': 'Sentinel-3'} server = scihub._auto_detect_server_from_query(query, available_only=True)[0] url = scihub._build_url(query, server) html = scihub.resolve(url) # # Assert that the number of entries found on the page matches the # number of entries requested per page. # self.assertEqual(html.count('<entry>'), config.CONFIG['GENERAL']['ENTRIES']) def test_orbit_query(self): for search_str, orbit in [ ('ASC', 'ASCENDING'), ('DESC', 'DESCENDING') ]: query = {'orbit': search_str} result = scihub.search(query, limit=20) for prod in result: self.assertEqual(prod['orbit_direction'], orbit) def test_id_query(self): prod = scihub.search({}, limit=5)[-1] query = {'id': prod['title']} result = scihub.search(query) self.assertEqual(len(result), 1) self.assertEqual(result[0], prod) def test_queries(self): queries = [ # (name, query) ('S3', {'mission': 'Sentinel-3'}), ] for name, q in queries: with self.subTest(name=name): server = scihub._auto_detect_server_from_query( q, available_only=True)[0] url = scihub._build_url(q, server=server) response = scihub.get_response(url) # # Assert that queries for each mission return a # status code 200 (OK) # self.assertEqual(response.status, 200) with self.subTest('count entries'): q = {'mission': 'Sentinel-3'} server = scihub._auto_detect_server_from_query( q, available_only=True)[0] url = scihub._build_url(q, server=server) html = scihub.resolve(url) # # Assert that the number of entries found on the page matches the # number of entries requested per page. # self.assertEqual(html.count('<entry>'), config.CONFIG['GENERAL']['ENTRIES']) def test_temporal_queries(self): with self.subTest('yesterday'): file_list = scihub.search({'mission': 'Sentinel-3', 'time': 'yesterday'}, limit=200) yesterday = DT.datetime.now(pytz.utc)-DT.timedelta(1) today = DT.datetime.now(pytz.utc) start = DT.datetime(yesterday.year, yesterday.month, yesterday.day, tzinfo=pytz.utc) end = DT.datetime(today.year, today.month, today.day, tzinfo=pytz.utc) for f in file_list: # # Assert that the ingestiondate of each entry was yesterday. # self.assertGreaterEqual(f['ingestiondate'], start) self.assertLessEqual(f['ingestiondate'], end) with self.subTest('today'): file_list = scihub.search({'mission': 'Sentinel-3', 'time': 'today'}, limit=200) today = DT.datetime.now(pytz.utc) start = DT.datetime(today.year, today.month, today.day, tzinfo=pytz.utc) for f in file_list: # # Assert that the ingestiondate of each entry is today. # self.assertGreaterEqual(f['ingestiondate'], start) # # NOTE: This test presently fails because apparantly, # SciHub's `intersects` parameter does not work reliably. # def test_spatial_queries(self): loc, ref_coords = next(iter(config.CONFIG['LOCATIONS'].items())) with self.subTest(location=loc): file_list = scihub.search( {'location': [loc], 'time': 'to 2017-09-01T00:00:00Z'}, server='S3', limit=20) for f in file_list: with self.subTest(product=f['filename']): # # Assert that the products indeed intersect the # requested location. # distance = wkt_loads(f['coords']).distance( wkt_loads(ref_coords)) utils.eprint('Distance: {}'.format(distance)) self.assertLessEqual(distance, 0.5) def test_get_file_list(self): q = {'mission': 'Sentinel-3'} limit = 107 file_list = scihub.search(q, limit=limit) # # Assert that only `limit` entries are returned. # self.assertEqual(limit, len(file_list)) for f in file_list: # # Assert that each entry contains the attributes `url`, `uuid` and # `filename`. # self.assertIn('url', f) self.assertIn('uuid', f) self.assertIn('filename', f) # ----------------------------------------------------------------------------- # SCIHUB DOWNLOAD # ----------------------------------------------------------------------------- class ScihubDownloadTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() def setUp(self): test_config.clear_test_data() def tearDown(self): test_config.clear_test_data() def test_download(self): file_list = scihub.search({'query': SMALL_SIZE_QUERY}, limit=1) for f in file_list: with self.subTest(url=f['url']): result = scihub.download(f) # # Assert that the download didn't fail and that # the returned file path exists. # self.assertNotEqual(result, False) self.assertTrue(os.path.isfile(result)) def test_download_many(self): file_list = scihub.search({'query': SMALL_SIZE_QUERY}, limit=2) scihub.download(file_list) # # Assert that all downloads were successful. # local_files = utils.ls(config.CONFIG['GENERAL']['DATA_DIR']) local_files_identifiers = [os.path.splitext(os.path.split(_)[1])[0] for _ in local_files] for f in file_list: self.assertIn(f['filename'], local_files_identifiers) for f in local_files: with self.subTest(file=f): _, healthy, msg = check.check_file(f, mode='file') utils.eprint(msg) self.assertTrue(healthy) def test_redownload(self): test_config.copy_corrupt_data() local_files = utils.ls(config.CONFIG['GENERAL']['DATA_DIR']) scihub.redownload(local_files) new_local_files = utils.ls(config.CONFIG['GENERAL']['DATA_DIR']) self.assertEqual(set(local_files), set(new_local_files)) for f in local_files: with self.subTest(file=f): _, healthy, msg = check.check_file(f, mode='file') utils.eprint(msg) self.assertTrue(healthy) # ----------------------------------------------------------------------------- # CHECK # ----------------------------------------------------------------------------- class CheckTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() def setUp(self): test_config.copy_test_data() def tearDown(self): test_config.clear_test_data() def test_check_file_md5_healthy(self): for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the files check out in `md5` mode. # try: file_path, healthy, message = \ check.check_file(f, mode='md5') self.assertTrue(healthy) except Exception as e: self.fail('File check failed: {}'.format(e)) def test_check_file_zip_healthy(self): for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the files check out in `file` mode. # try: file_path, healthy, message = \ check.check_file(f, mode='file') self.assertTrue(healthy) except Exception as e: self.fail('File check failed: {}'.format(e)) def test_check_file_md5_corrupt(self): test_config.clear_test_data() test_config.copy_corrupt_data() for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the files are detected as corrupt in `md5` mode. # try: file_path, healthy, message = \ check.check_file(f, mode='md5') self.assertFalse(healthy) except Exception as e: self.fail('File check failed: {}'.format(e)) def test_check_file_zip_corrupt(self): test_config.clear_test_data() test_config.copy_corrupt_data() for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the files are detected as corrupt in `file` mode. # try: file_path, healthy, message = \ check.check_file(f, mode='file') self.assertFalse(healthy) except Exception as e: self.fail('File check failed: {}'.format(e)) # ----------------------------------------------------------------------------- # CHECKSUM # ----------------------------------------------------------------------------- class ChecksumTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() def setUp(self): test_config.copy_test_data() def tearDown(self): test_config.clear_test_data() def test_md5(self): for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the md5 checksum returned by checksum.md5() is # equal to the md5 sum returned by bash md5 or md5sum tool. # for exe in ['md5', 'md5sum']: if utils._which(exe) is not None: bash_output = subprocess.check_output([exe, f]) if not PY2: bash_output = bash_output.decode() bash_md5 = re.search('[a-zA-Z0-9]{32}', bash_output).group() break self.assertEqual( checksum.md5(f), bash_md5 ) def test_etag_small_files(self): for f in utils.ls(config.CONFIG['GENERAL']['DATA_DIR']): with self.subTest(file=f): # # Assert that the computed etag is equal to the md5 # checksum for files smaller than the chunksize. # size_mb = max(10, int(os.path.getsize(f) / 1024**2)) self.assertEqual( checksum.md5(f), checksum.etag(f, chunksize=2 * size_mb) ) # def test_etag_large_files(self): # pass # ----------------------------------------------------------------------------- # MAIN # ----------------------------------------------------------------------------- class MainTestCase(TestCase): @classmethod def setUpClass(cls): test_config.set_test_config() cls.check_mode = config.CONFIG['GENERAL']['CHECK_MODE'] config.CONFIG['GENERAL']['CHECK_MODE'] = 'file' @classmethod def tearDownClass(cls): config.CONFIG['GENERAL']['CHECK_MODE'] = cls.check_mode def setUp(self): test_config.copy_test_data() def tearDown(self): test_config.clear_all() def test_ls(self): q = {'time': 'today', 'satellite': 'S3A', 'location': ['Ireland_Mace_Head']} files = scihub.search(q) result = main.ls(q) self.assertEqual(len(result), len(files)) def test_get(self): test_config.clear_test_data() q = {'satellite': 'S3A', 'query': SMALL_SIZE_QUERY} files = scihub.search(q, limit=2) main.get(q, limit=2) for f in files: ext = '.zip' with self.subTest(product=f['filename']): self.assertTrue( os.path.isfile(os.path.join( config.CONFIG['GENERAL']['DATA_DIR'], f['filename']) + ext) ) def test_doctor(self): test_config.copy_corrupt_data() corrupt_files = utils.ls(test_config.TEST_DATA_DIR_CORRUPT, path=False) # healthy_files = utils.ls(test_config.TEST_DATA_DIR_ORIGINAL, # path=False) result = main.doctor() bad_files = [os.path.split(status[0])[1] for status in result if status[1] is False] # # Assert that the number of healthy/corrupt files detected are correct # self.assertEqual(len(bad_files), len(corrupt_files)) for corrupt_file in corrupt_files: # # Assert that each corrupt file has been registered. # self.assertIn(corrupt_file, bad_files) def test_doctor_delete(self): test_config.copy_corrupt_data() corrupt_files = utils.ls(test_config.TEST_DATA_DIR_CORRUPT, path=False) healthy_files = utils.ls(test_config.TEST_DATA_DIR_ORIGINAL, path=False) main.doctor(delete=True) # # Assert that the corrupt files have been deleted. # for f in corrupt_files: self.assertFalse(os.path.isfile(os.path.join( config.CONFIG['GENERAL']['DATA_DIR'], f))) # # Assert that the healthy files have not been deleted. # for f in healthy_files: self.assertTrue(os.path.isfile(os.path.join( config.CONFIG['GENERAL']['DATA_DIR'], f))) def test_doctor_repair(self): test_config.copy_corrupt_data() corrupt_files = utils.ls(test_config.TEST_DATA_DIR_CORRUPT, path=False) # healthy_files = utils.ls(test_config.TEST_DATA_DIR_ORIGINAL, # path=False) main.doctor(repair=True) for f in corrupt_files: repaired_f = os.path.join(config.CONFIG['GENERAL']['DATA_DIR'], f) with self.subTest(file=repaired_f): # # Assert that each corrupt file has been repaired. # _, healthy, msg = check.check_file(repaired_f, mode='file') utils.eprint(msg) self.assertTrue(healthy) # ----------------------------------------------------------------------------- # utils # ----------------------------------------------------------------------------- class UtilsTestCase(TestCase): def test_parse_datetime(self): _dt = DT.datetime dates = [ ('Sep 5, 2016', (_dt(2016, 9, 5, 0, 0, 0), _dt(2016, 9, 6, 0, 0, 0))), ('5 Sep 2016', (_dt(2016, 9, 5, 0, 0, 0), _dt(2016, 9, 6, 0, 0, 0))), ('06/1998', (_dt(1998, 6, 1, 0, 0, 0), _dt(1998, 7, 1, 0, 0, 0))), ('Jan 2018 to Oct 2018', (_dt(2018, 1, 1, 0, 0, 0), _dt(2018, 11, 1, 0, 0, 0))), ('1 Jan 2018 to 30 Sep 2018', (_dt(2018, 1, 1, 0, 0, 0), _dt(2018, 10, 1, 0, 0, 0))), ('12/2017', (_dt(2017, 12, 1, 0, 0, 0), _dt(2018, 1, 1, 0, 0, 0))), ('2017/12', (_dt(2017, 12, 1, 0, 0, 0), _dt(2018, 1, 1, 0, 0, 0))), ('2017/12 to 2018/12', (_dt(2017, 12, 1, 0, 0, 0), _dt(2019, 1, 1, 0, 0, 0))), ('Jan 1, 2017, Jan 1, 2018', (_dt(2017, 1, 1, 0, 0, 0), _dt(2018, 1, 2, 0, 0, 0))), ('to Jan 2018', (None, _dt(2018, 2, 1, 0, 0, 0))), ('2015 -', (_dt(2015, 1, 1, 0, 0, 0), None)), ('to 2017-09-01T00:00:00', (None, _dt(2017, 9, 1, 0, 0, 0))) ] for date_str, date_obj in dates: with self.subTest(date_str=date_str): self.assertEqual( utils.parse_datetime(date_str), date_obj )
StarcoderdataPython
4873691
from random import Random from dataclasses import dataclass, InitVar from typing import List, Dict, Optional, Set, Tuple, Iterable from bson import ObjectId from game.pkchess.character import Character from game.pkchess.exception import ( MapTooFewPointsError, MapDimensionTooSmallError, MapShapeMismatchError, MapTooManyPlayersError, MapPointUnspawnableError, SpawnPointOutOfMapError, NoPlayerSpawnPointError, UnknownResourceTypeError, CoordinateOutOfBoundError, GamePlayerNotFoundError, MoveDestinationOutOfMapError, CenterOutOfMapError, PathNotFoundError, PathSameDestinationError, PathEndOutOfMapError ) from game.pkchess.flags import MapPointStatus, MapPointResource from game.pkchess.objbase import BattleObject from .mixin import ConvertibleMapMixin __all__ = ("MapPoint", "MapCoordinate", "MapTemplate", "Map",) @dataclass class MapCoordinate: """Represents the coordinate of a map point.""" X: int Y: int def apply_offset(self, x_offset: int, y_offset: int) -> 'MapCoordinate': """ Return a new coordinate object which the offsets are applied. Note that ``y_offset`` will be reversed to reflect the correct coordinate on the map. > Map coordinate starts from left-top side. Right to increase X; **DOWN** to increase Y. > However, offset starts from center. Right to increase X; **UP** to increase Y. :param x_offset: offset for X :param y_offset: offset for Y :return: new offset-applied coordinate :raises CoordinateOutOfBoundError: if the new coordinate will be negative value after applying the offsets """ new_obj = MapCoordinate(self.X + x_offset, self.Y - y_offset) if new_obj.X < 0 or new_obj.Y < 0: raise CoordinateOutOfBoundError() return new_obj def distance(self, other: 'MapCoordinate'): return abs(self.X - other.X) + abs(self.Y - other.Y) def __hash__(self): return hash((self.X, self.Y)) def __eq__(self, other): if not isinstance(other, MapCoordinate): return False return self.X == other.X and self.Y == other.Y @dataclass class MapPoint: """Represents a map point.""" status: MapPointStatus coord: MapCoordinate obj: Optional[BattleObject] = None @dataclass class MapTemplate(ConvertibleMapMixin): """ Map template. This could be converted to :class:`MapModel` and store to the database (initialize a game) by calling `to_model()`. Set ``bypass_map_chack`` to ``True`` to bypass the available map point check and the size check. This should be used only in tests. """ MIN_WIDTH = 9 MIN_HEIGHT = 9 MIN_AVAILABLE_POINTS = 81 width: int height: int points: List[List[MapPointStatus]] resources: Dict[MapPointResource, List[MapCoordinate]] bypass_map_chack: InitVar[bool] = False def _check_map_dimension(self): if self.width < MapTemplate.MIN_WIDTH or self.height < MapTemplate.MIN_HEIGHT: raise MapDimensionTooSmallError() def _check_available_points(self): available = sum(sum(1 if p.is_map_point else 0 for p in row) for row in self.points) if available < MapTemplate.MIN_AVAILABLE_POINTS: raise MapTooFewPointsError(MapTemplate.MIN_AVAILABLE_POINTS, available) def _check_player_spawn_point(self): if not any(any(p == MapPointStatus.PLAYER for p in row) for row in self.points): raise NoPlayerSpawnPointError() def _check_resource_points(self): for coords in self.resources.values(): for coord in coords: x = coord.X y = coord.Y # Check out of map if x >= self.width or y >= self.height: raise SpawnPointOutOfMapError() if not self.points[x][y].is_map_point: raise MapPointUnspawnableError() def _check_dimension_point_matrix(self): try: self.points[self.width - 1][self.height - 1] except IndexError: raise MapShapeMismatchError() def __post_init__(self, bypass_map_chack: bool): if bypass_map_chack: return self._check_map_dimension() self._check_available_points() self._check_player_spawn_point() self._check_resource_points() self._check_dimension_point_matrix() def respawn(self): pass # DRAFT: Game - game respawn object def to_map(self, *, players: Dict[ObjectId, Character] = None, player_location: Dict[ObjectId, MapCoordinate] = None) \ -> 'Map': pts = [] for x, pts_arr in enumerate(self.points): arr = [] for y, pt in enumerate(pts_arr): arr.append(MapPoint(pt, MapCoordinate(x, y))) pts.append(arr) return Map(self.width, self.height, pts, self.resources, self, players=players, player_location=player_location) @staticmethod def load_from_file(path: str) -> Optional['MapTemplate']: """ Load the template from a map file. This parsing method checks logic error, but not the format error. If the map template is not found, return ``None``. .. seealso:: See `doc/spec/map.md` for the specification of the map file. :param path: path of the file :return: a parsed `MapTemplate` or `None` """ try: with open(path) as f: lines = f.read().split("\n") except FileNotFoundError: return None # Parse dimension width, height = [int(n) for n in lines.pop(0).split(" ", 2)] # Parse initial map points points: List[List[MapPointStatus]] = [[] for _ in range(width)] for y in range(height): for x, elem in zip(range(width), lines.pop(0)): points[x].append(MapPointStatus.cast(elem)) # parse resource spawning location res_dict: Dict[MapPointResource, List[MapCoordinate]] = {} for line in lines: type_int, *coords = line.split(" ") try: res_type = MapPointResource.cast(type_int) except ValueError: raise UnknownResourceTypeError() coords = [coord.split(",", 2) for coord in coords] res_dict[res_type] = [MapCoordinate(int(x), int(y)) for x, y in coords] return MapTemplate(width, height, points, res_dict) @dataclass class Map: """ Represents the map. If ``players`` has any element in it and ``player_location`` is empty, players will be randomly deployed to the point where the status is :class:`MapPointStatus.PLAYER`. The rest of the deployable points will be replaced with :class:`MapPointStatus.EMPTY`. If both ``player_location`` and ``players`` are given, ``players`` will be ignored. """ RANDOM = Random() width: int height: int points: List[List[MapPoint]] resources: Dict[MapPointResource, List[MapCoordinate]] template: MapTemplate player_location: Dict[ObjectId, MapCoordinate] = None players: InitVar[Optional[Set[ObjectId]]] = None def __post_init__(self, players: Dict[ObjectId, Character]): if not self.player_location: self.player_location = {} else: for coord in self.player_location.values(): self.points[coord.X][coord.Y].status = MapPointStatus.PLAYER if not self.player_location and players: player_coords: Set[MapCoordinate] = {pt.coord for pt in self.points_flattened if pt.status == MapPointStatus.PLAYER} player_actual_count = len(players) player_deployable_count = len(player_coords) if player_actual_count > player_deployable_count: raise MapTooManyPlayersError(player_deployable_count, player_actual_count) # Randomly deploy player to deployable location # --- Cast to list to use `random.shuffle()` because dict and set usually is somehow ordered players = list(players.items()) player_coords: List[MapCoordinate] = list(player_coords) self.RANDOM.shuffle(player_coords) self.RANDOM.shuffle(players) while players: player_oid, player_character = players.pop() coord = player_coords.pop() self.player_location[player_oid] = coord self.points[coord.X][coord.Y].status = MapPointStatus.PLAYER self.points[coord.X][coord.Y].obj = player_character # Fill the rest of the deployable location to be empty spot if self.player_location: occupied_coords: Set[MapCoordinate] = set(self.player_location.values()) empty_player_coords: Set[MapCoordinate] = {pt.coord for pt in self.points_flattened if pt.status == MapPointStatus.PLAYER} empty_player_coords.difference_update(occupied_coords) for coord in empty_player_coords: self.points[coord.X][coord.Y].status = MapPointStatus.EMPTY def player_move(self, player_oid: ObjectId, x_offset: int, y_offset: int, max_move: float) -> bool: """ Move the player using the given coordinate offset. Returns ``False`` if the destination is not an empty spot. Otherwise, move the player and return ``True``. ``max_move`` will be rounded. :param player_oid: OID of the player :param x_offset: offset of X :param y_offset: offset of Y :param max_move: maximum count of the moves allowed :return: if the movement succeed :raises GamePlayerNotFoundError: the player to be moved not found :raises MoveDestinationOutOfMapError: movement destination is out of map :raises PathNotFoundError: path from the player's location to the destination not found """ # Check player existence if player_oid not in self.player_location: raise GamePlayerNotFoundError() # Apply the movement offset try: origin = self.player_location[player_oid] destination = self.player_location[player_oid].apply_offset(x_offset, y_offset) except CoordinateOutOfBoundError: raise MoveDestinationOutOfMapError() # Check if the new coordinate is out of map if destination.X >= self.width or destination.Y >= self.height: raise MoveDestinationOutOfMapError() original_point = self.points[origin.X][origin.Y] new_point = self.points[destination.X][destination.Y] # Check if the new coordinate is not empty if new_point.status != MapPointStatus.EMPTY: return False # Check if the path is connected and the destination is empty if not self.get_shortest_path(origin, destination, round(max_move)): raise PathNotFoundError(origin, destination) # Move the player & update related variables self.player_location[player_oid] = destination new_point.obj = original_point.obj new_point.status = MapPointStatus.PLAYER original_point.obj = None original_point.status = self.template.points[origin.X][origin.Y] if original_point.status == MapPointStatus.PLAYER: original_point.status = MapPointStatus.EMPTY return True def get_shortest_path(self, origin: MapCoordinate, destination: MapCoordinate, max_length: int) \ -> Optional[List[MapCoordinate]]: """ Get the first-found shortest path from ``origin`` to ``destination``. ``max_length`` must be a positive integer. (No runtime check) Returns ``None`` if - the point status of ``destination`` is not ``MapPointStatus.EMPTY``. - the path is not found. - the path length is longer than ``max_length`` but not yet reached the ``destination``. :param origin: origin of the path :param destination: desired destination :param max_length: max length of the path :return: path from `origin` to `destination` if found. `None` on not found :raises PathSameDestinationError: if `origin` and `destination` are the same """ if origin == destination: raise PathSameDestinationError() origin_out_of_map = origin.X >= self.width or origin.Y > self.height destination_out_of_map = destination.X >= self.width or destination.Y > self.height if origin_out_of_map or destination_out_of_map: raise PathEndOutOfMapError(origin, destination, self.width, self.height) # Check if the destination point is not empty if self.points[destination.X][destination.Y].status != MapPointStatus.EMPTY: return None return self._get_shortest_path(origin, destination, max_length, [[origin]]) def _path_constructible(self, path: List[MapCoordinate], new_path_tail: MapCoordinate, destination: MapCoordinate): if new_path_tail.X >= self.width or new_path_tail.Y >= self.height: return False tail = path[-1] original_distance = tail.distance(destination) new_distance = new_path_tail.distance(destination) not_on_path = new_path_tail not in path distance_le = new_distance <= original_distance point_empty = self.points[new_path_tail.X][new_path_tail.Y].status == MapPointStatus.EMPTY return not_on_path and distance_le and point_empty def _get_shortest_path(self, origin: MapCoordinate, destination: MapCoordinate, max_length: int, paths: List[List[MapCoordinate]] = None) -> Optional[List[MapCoordinate]]: """Helper method of ``self.get_shortest_path()``.""" new_paths = [] for path in paths: # Extend every path to left, right, up, down # Terminate if the current path without adding the new point is longer than allowed if len(path) > max_length: return None tail = path[-1] new_pts = [ tail.apply_offset(1, 0), # right tail.apply_offset(-1, 0), # left tail.apply_offset(0, 1), # up tail.apply_offset(0, -1) # down ] for new_pt in new_pts: if self._path_constructible(path, new_pt, destination): if new_pt == destination: return path + [new_pt] new_paths.append(path + [new_pt]) if not new_paths: # Dead-end, returns `None` return None else: # Search deeper return self._get_shortest_path(origin, destination, max_length, new_paths) def get_points(self, center: MapCoordinate, offsets: Iterable[Tuple[int, int]]) -> List[MapPoint]: if center.X >= self.width or center.X < 0 or center.Y >= self.height or center.Y < 0: raise CenterOutOfMapError() pt_coord = [] for offset_x, offset_y in offsets: try: new_coord = center.apply_offset(offset_x, offset_y) except CoordinateOutOfBoundError: continue if new_coord.X >= self.width or new_coord.Y >= self.height: continue pt_coord.append(new_coord) pts = [self.points[coord.X][coord.Y] for coord in pt_coord] return pts @property def points_flattened(self) -> List[MapPoint]: """ Get the 1D array of the points flattened from ``self.points``. :return: flattened array of `self.points` .. seealso:: https://stackoverflow.com/a/29244327/11571888 """ return sum(self.points, [])
StarcoderdataPython
6622140
import capture import getmap import cutmap if __name__ == '__main__': # 59.9055,24.7385,60.3133,25.2727 赫尔基辛 # 60.1607,24.9191,60.1739,24.9700 # 60.16446,24.93824,60.16776,24.95096 # 60.1162,24.7522,60.3041,25.2466 name = "Helsinki" tif_file = "google_17m.tif" tfw_file = "google_17m.tfw" # lat1, lon1, lat2, lon2 = 60.1162,24.7522,60.3041,25.2466 key_list = { "landuse": ["residential"] } # # get tif # x = getmap.getpic(lat1, lon1, lat2, lon2, # 17, source='google', style='s', outfile=tif_file) # getmap.my_file_out(x, tfw_file, "keep") # get aoi and poi capture.get_poi_aoi(name, key_list) # cut tif cutmap.cut_aoi(name + "_aoi.csv", name, tfw_file, tif_file)
StarcoderdataPython
3432851
# Copyright (c) 2018 Cloudify Platform Ltd. All rights reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ''' EC2.TransitGateway ~~~~~~~~~~~~~~ AWS EC2 Transit Gateway interface ''' # Third Party imports from botocore.exceptions import ClientError from cloudify.exceptions import NonRecoverableError, OperationRetry # Local imports from cloudify_aws.ec2 import EC2Base from cloudify_aws.common import constants, decorators, utils RESOURCE_TYPE = 'EC2 Transit Gateway' TG = 'TransitGateway' TGS = 'TransitGateways' TG_ID = 'TransitGatewayId' TG_IDS = 'TransitGatewayIds' TG_ATTACHMENT = 'TransitGatewayVpcAttachment' TG_ATTACHMENTS = 'TransitGatewayVpcAttachments' TG_ATTACHMENT_ID = 'TransitGatewayAttachmentId' TG_ATTACHMENT_IDS = 'TransitGatewayAttachmentIds' FAILED = ['failed', 'failing'] AVAILABLE = ['available', 'pendingAcceptance'] PENDING = ['initiatingRequest', 'pending', 'modifying'] UNAVAILABLE = ['deleted', 'deleting', 'rollingBack', 'rejected', 'rejecting'] class EC2TransitGateway(EC2Base): ''' EC2 Transit Gateway ''' def __init__(self, ctx_node, resource_id=None, client=None, logger=None): EC2Base.__init__(self, ctx_node, resource_id, client, logger) self.type_name = RESOURCE_TYPE @property def properties(self): '''Gets the properties of an external resource''' params = {TG_IDS: [self.resource_id]} try: resources = \ self.client.describe_transit_gateways(**params) except ClientError: resources = None return resources if not resources else resources.get( TGS, [None])[0] @property def status(self): '''Gets the status of an external resource''' props = self.properties if not props: return None return props['State'] def create(self, params): ''' Create a new AWS EC2 Transit Gateway. ''' return self.make_client_call('create_transit_gateway', params) def delete(self, params=None): ''' Deletes an existing AWS EC2 Transit Gateway. ''' self.logger.debug('Deleting %s with parameters: %s' % (self.type_name, params)) res = self.client.delete_transit_gateway(**params) self.logger.debug('Response: %s' % res) return res class EC2TransitGatewayAttachment(EC2Base): ''' EC2 Transit Gateway Attachment ''' def __init__(self, ctx_node, resource_id=None, client=None, logger=None): EC2Base.__init__(self, ctx_node, resource_id, client, logger) self.type_name = RESOURCE_TYPE @property def properties(self): '''Gets the properties of an external resource''' params = {TG_ATTACHMENT_IDS: [self.resource_id]} try: resources = \ self.client.describe_transit_gateway_vpc_attachments(**params) except ClientError: pass else: return None if not resources else resources.get( TG_ATTACHMENTS, [None])[0] return None @property def status(self): '''Gets the status of an external resource''' props = self.properties if not props: return None return props['State'] def create(self, params): ''' Create a new AWS EC2 Transit Gateway Attachment. ''' return self.make_client_call( 'create_transit_gateway_vpc_attachment', params) def accept(self, params): ''' Create a new AWS EC2 Transit Gateway Attachment. ''' return self.make_client_call( 'accept_transit_gateway_vpc_attachment', params) def delete(self, params=None): ''' Deletes an existing AWS EC2 Transit Gateway Attachment. ''' return self.make_client_call( 'delete_transit_gateway_vpc_attachment', params) @decorators.aws_resource(EC2TransitGateway, resource_type=RESOURCE_TYPE) def prepare(ctx, iface, resource_config, **_): '''Prepares an AWS EC2 Transit Gateway''' # Save the parameters ctx.instance.runtime_properties['resource_config'] = resource_config @decorators.aws_resource(EC2TransitGateway, RESOURCE_TYPE) @decorators.wait_for_status(status_good=['available'], status_pending=['pending']) @decorators.tag_resources def create(ctx, iface, resource_config, **_): '''Creates an AWS EC2 Transit Gateway''' params = utils.clean_params( dict() if not resource_config else resource_config.copy()) # Actually create the resource create_response = iface.create(params)[TG] ctx.instance.runtime_properties['create_response'] = \ utils.JsonCleanuper(create_response).to_dict() transit_gateway_id = create_response.get(TG_ID, '') iface.update_resource_id(transit_gateway_id) utils.update_resource_id(ctx.instance, transit_gateway_id) @decorators.aws_resource(EC2TransitGateway, RESOURCE_TYPE, ignore_properties=True) @decorators.untag_resources def delete(iface, resource_config, **_): '''Deletes an AWS EC2 Transit Gateway''' params = dict() if not resource_config else resource_config.copy() if TG_ID not in params: params.update({TG_ID: iface.resource_id}) iface.delete(params) @decorators.aws_relationship(EC2TransitGatewayAttachment, RESOURCE_TYPE) def request_vpc_attachment(ctx, iface, transit_gateway_id=None, vpc_id=None, subnet_ids=None, **_): transit_gateway_id = transit_gateway_id or \ ctx.source.instance.runtime_properties.get( constants.EXTERNAL_RESOURCE_ID) vpc_id = vpc_id or ctx.target.instance.runtime_properties.get( constants.EXTERNAL_RESOURCE_ID) subnet_ids = subnet_ids or ctx.target.instance.runtime_properties.get( 'subnets') transit_gateway_attachment_id = \ get_attachment_id_from_runtime_props(ctx) if not transit_gateway_id or not vpc_id: raise NonRecoverableError( 'The "cloudify.relationships.aws.ec2.' 'attach_transit_gateway_to_vpc" relationship operation did not ' 'receive a value for transit_gateway_id ' '({tgi}) or for vpc_id ({vi}).'.format( tgi=transit_gateway_id, vi=vpc_id)) # If we are retrying then we have this ID. # Normally, we could use the @decorators.wait_for_status decorator. # However, because this is a relationship neither the source nor the target # is an attachment type. if transit_gateway_attachment_id: iface = EC2TransitGatewayAttachment( ctx.source.node, transit_gateway_attachment_id, iface.client, ctx.logger) if iface.status in AVAILABLE: return if iface.status in PENDING: raise OperationRetry( 'The {r} creation request ' 'has been received and is processing. State: {s}.'.format( r=TG_ATTACHMENT, s=iface.status)) elif iface.status in UNAVAILABLE + FAILED: raise NonRecoverableError( 'The {r} creation request ' 'results in a fatal error: {s}'.format( r=TG_ATTACHMENT, s=iface.status)) else: request = { TG_ATTACHMENT_ID: transit_gateway_attachment_id } try: iface.accept(request) except (NonRecoverableError, ClientError) as e: raise OperationRetry( 'Waiting for {t} to be in valid state: {s}. ' 'Error={e}'.format(t=transit_gateway_attachment_id, s=iface.status, e=e)) request = { TG_ID: transit_gateway_id, 'VpcId': vpc_id, 'SubnetIds': subnet_ids } response = iface.create(request) ctx.logger.info('Sent the {r} creation request.'.format( r=TG_ATTACHMENT)) ctx.source.instance.runtime_properties[TG_ATTACHMENTS][vpc_id] = \ utils.JsonCleanuper(response).to_dict() @decorators.aws_relationship(EC2TransitGatewayAttachment, RESOURCE_TYPE) def delete_vpc_attachment(ctx, iface, transit_gateway_attachment_id=None, **_): transit_gateway_attachment_id = transit_gateway_attachment_id or \ get_attachment_id_from_runtime_props(ctx) if not transit_gateway_attachment_id: ctx.logger.error('No transit_gateway_attachment_id was provided. ' 'Skipping delete attachment.') return iface = EC2TransitGatewayAttachment( ctx.source.node, transit_gateway_attachment_id, iface.client, ctx.logger) request = { TG_ATTACHMENT_ID: transit_gateway_attachment_id } if iface.status == 'deleting': raise OperationRetry( 'The {r} deletion request has been received and is processing. ' 'State: {s}.'.format(r=TG_ATTACHMENT, s=iface.status)) elif iface.status in UNAVAILABLE: ctx.logger.info('The {r} has been deleted.'.format( r=TG_ATTACHMENT)) return iface.delete(request) raise OperationRetry( 'Sent the {r} deletion request.'.format(r=TG_ATTACHMENT)) def get_attachment_id(props): attachment = props.get(TG_ATTACHMENT, {}) return attachment.get(TG_ATTACHMENT_ID) def get_attachment_id_from_runtime_props(ctx): vpc_id = ctx.target.instance.runtime_properties.get( constants.EXTERNAL_RESOURCE_ID) if TG_ATTACHMENTS in ctx.source.instance.runtime_properties: if vpc_id in ctx.source.instance.runtime_properties[TG_ATTACHMENTS]: return ctx.source.instance.runtime_properties[ TG_ATTACHMENTS][vpc_id][TG_ATTACHMENT][TG_ATTACHMENT_ID] else: ctx.source.instance.runtime_properties[TG_ATTACHMENTS] = {}
StarcoderdataPython
6605313
#!/usr/bin/env python import torch import torchvision import base64 import cupy import cv2 import flask import getopt import gevent import gevent.pywsgi import glob import h5py import io import math import moviepy import moviepy.editor import numpy import os import random import re import scipy import scipy.io import shutil import sys import tempfile import time import zipfile ########################################################## assert(int(str('').join(torch.__version__.split('.')[0:2])) >= 12) # requires at least pytorch version 1.2.0 torch.set_grad_enabled(False) # make sure to not compute gradients for computational performance torch.backends.cudnn.enabled = True # make sure to use cudnn for computational performance ########################################################## objCommon = {} exec(open('./common.py', 'r').read()) exec(open('./models/disparity-estimation.py', 'r').read()) exec(open('./models/disparity-adjustment.py', 'r').read()) exec(open('./models/disparity-refinement.py', 'r').read()) exec(open('./models/pointcloud-inpainting.py', 'r').read()) ########################################################## print('large parts of this benchmark were adapted from <NAME>') print('this implementation first downloads the official evaluation scripts') print('the depth boundary error is currently different from the paper') print('this is due to the official evaluation scripts being outdated') ########################################################## abs_rel = [ numpy.nan ] * 1000 sq_rel = [ numpy.nan ] * 1000 rms = [ numpy.nan ] * 1000 log10 = [ numpy.nan ] * 1000 thr1 = [ numpy.nan ] * 1000 thr2 = [ numpy.nan ] * 1000 thr3 = [ numpy.nan ] * 1000 dde_0 = [ numpy.nan ] * 1000 dde_m = [ numpy.nan ] * 1000 dde_p = [ numpy.nan ] * 1000 dbe_acc = [ numpy.nan ] * 1000 dbe_com = [ numpy.nan ] * 1000 pe_fla = [] pe_ori = [] ########################################################## torch.hub.download_url_to_file('ftp://m1455541:<EMAIL>/evaluation_scripts.zip', './benchmark-ibims-scripts.zip') objZip = zipfile.ZipFile('./benchmark-ibims-scripts.zip', 'r') strScript = objZip.read('evaluation_scripts/evaluate_ibims_error_metrics.py').decode('utf-8') strScript = strScript.replace('# exclude masked invalid and missing measurements', 'idx = gt!=0') strScript = strScript.replace('gt=gt[gt!=0]', 'gt=gt[idx]') strScript = strScript.replace('pred=pred[pred!=0]', 'pred=pred[idx]') exec(strScript) objZip.close() ########################################################## torch.hub.download_url_to_file('ftp://m1455541:<EMAIL>/ibims1_core_mat.zip', './benchmark-ibims-data.zip') objZip = zipfile.ZipFile('./benchmark-ibims-data.zip', 'r') for intMat, strMat in enumerate([ strFile for strFile in objZip.namelist() if strFile.endswith('.mat') ]): print(intMat, strMat) objMat = scipy.io.loadmat(io.BytesIO(objZip.read(strMat)))['data'] tenImage = torch.FloatTensor(numpy.ascontiguousarray(objMat['rgb'][0][0][:, :, ::-1].transpose(2, 0, 1)[None, :, :, :].astype(numpy.float32) * (1.0 / 255.0))).cuda() tenDisparity = disparity_estimation(tenImage) tenDisparity = disparity_refinement(torch.nn.functional.interpolate(input=tenImage, size=(tenDisparity.shape[2] * 4, tenDisparity.shape[3] * 4), mode='bilinear', align_corners=False), tenDisparity) tenDisparity = torch.nn.functional.interpolate(input=tenDisparity, size=(tenImage.shape[2], tenImage.shape[3]), mode='bilinear', align_corners=False) * (max(tenImage.shape[2], tenImage.shape[3]) / 256.0) tenDepth = 1.0 / tenDisparity valid = objMat['mask_transp'][0][0] * objMat['mask_invalid'][0][0] * (objMat['depth'][0][0] != 0.0) pred = tenDepth[0, 0, :, :].cpu().numpy() npyLstsqa = numpy.stack([pred[valid == 1.0].flatten(), numpy.full([int((valid == 1.0).sum().item())], 1.0, numpy.float32)], 1) npyLstsqb = objMat['depth'][0][0][valid == 1.0].flatten() npyScalebias = numpy.linalg.lstsq(npyLstsqa, npyLstsqb, None)[0] pred = (pred * npyScalebias[0]) + npyScalebias[1] abs_rel[intMat], sq_rel[intMat], rms[intMat], log10[intMat], thr1[intMat], thr2[intMat], thr3[intMat] = compute_global_errors((objMat['depth'][0][0] * valid).flatten(), (pred * valid).flatten()) dde_0[intMat], dde_m[intMat], dde_p[intMat] = compute_directed_depth_error((objMat['depth'][0][0] * valid).flatten(), (pred * valid).flatten(), 3.0) dbe_acc[intMat], dbe_com[intMat] = compute_depth_boundary_error(objMat['edges'][0][0], pred) if objMat['mask_wall_paras'][0][0].size > 0: pe_fla_wall, pe_ori_wall = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_wall_paras'][0][0], objMat['mask_wall'][0][0] * valid, objMat['calib'][0][0]) pe_fla.extend(pe_fla_wall.tolist()) pe_ori.extend(pe_ori_wall.tolist()) # end if objMat['mask_table_paras'][0][0].size > 0: pe_fla_table, pe_ori_table = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_table_paras'][0][0], objMat['mask_table'][0][0] * valid, objMat['calib'][0][0]) pe_fla.extend(pe_fla_table.tolist()) pe_ori.extend(pe_ori_table.tolist()) # end if objMat['mask_floor_paras'][0][0].size > 0: pe_fla_floor, pe_ori_floor = compute_planarity_error(objMat['depth'][0][0] * valid, pred * valid, objMat['mask_floor_paras'][0][0], objMat['mask_floor'][0][0] * valid, objMat['calib'][0][0]) pe_fla.extend(pe_fla_floor.tolist()) pe_ori.extend(pe_ori_floor.tolist()) # end # end objZip.close() ########################################################## print('abs_rel = ', numpy.nanmean(abs_rel)) print('sq_rel = ', numpy.nanmean(sq_rel)) print('rms = ', numpy.nanmean(rms)) print('log10 = ', numpy.nanmean(log10)) print('thr1 = ', numpy.nanmean(thr1)) print('thr2 = ', numpy.nanmean(thr2)) print('thr3 = ', numpy.nanmean(thr3)) print('dde_0 = ', numpy.nanmean(dde_0)) print('dde_m = ', numpy.nanmean(dde_m)) print('dde_p = ', numpy.nanmean(dde_p)) print('dbe_acc = ', numpy.nanmean(dbe_acc)) print('dbe_com = ', numpy.nanmean(dbe_com)) print('pe_fla = ', numpy.nanmean(pe_fla)) print('pe_ori = ', numpy.nanmean(pe_ori))
StarcoderdataPython
11322070
import datetime import simplejson as json import peewee import redis import os from app.database import db from app.settings import AppConfig from app.models.FeeModel import FeeModel from app.util.nanote import Nanote from app.util.dateutil import format_js_iso # Redis stores message counts, because postgres count is a slow operation RD_COUNT_KEY = 'mtcount' rd = redis.Redis(host=os.getenv('REDIS_HOST', 'localhost')) class Message(db.Model): block_hash = peewee.CharField(max_length=64, index=True) address = peewee.CharField(max_length=64) message_in_raw = peewee.CharField() created_at = peewee.DateTimeField(default=datetime.datetime.utcnow(), index=True) premium = peewee.BooleanField(default=False) hidden = peewee.BooleanField(default=False, index=True) destination = peewee.CharField(max_length=64) class Meta: db_table = 'messages' @staticmethod def validate_block(block: dict) -> tuple: block_contents = json.loads(block['contents']) """Ensure a block is to the appropriate destination, of the minimum amount, etc""" if block_contents['link_as_account'] != AppConfig.MONKEYTALKS_ACCOUNT: return (False, "Transaction wasnt sent to MonkeyTalks account") elif int(block['amount']) - FeeModel.get_fee() <= 0: return (False, "Transaction amount wasn't enough to cover fee") elif not Nanote().validate_message(block['amount']): return (False, "Message has invalid checksum - can't be decoded") return (True, "Valid") @classmethod def save_block_as_message(cls, block: dict): block_contents = json.loads(block['contents']) return cls.save_as_message(block['amount'], block['hash'], block_contents['account'], block_contents['link_as_account']) @classmethod def save_as_message(cls, amount: str, block_hash: str, account: str, destination: str): premium = False if int(amount) - FeeModel().get_premium_fee() > 0: premium = True message = Message( block_hash=block_hash, destination=destination, message_in_raw=str(int(amount)), created_at=datetime.datetime.utcnow(), premium=premium, address=account ) if message.save() > 0: message.inc_message_count() return message return None def inc_message_count(self) -> int: """Increment message count for a particular account and return the new count""" old_count = rd.hget(self.address, RD_COUNT_KEY) if old_count is None: rd.hset(self.address, RD_COUNT_KEY, '1') return 1 else: old_count = int(old_count.decode('utf-8')) old_count += 1 rd.hset(self.address, RD_COUNT_KEY, str(old_count)) return old_count def get_message_count(self) -> int: """Retrieve message count for a particular account""" count = rd.hget(self.address, RD_COUNT_KEY) if count is None: return 0 return int(count.decode('utf-8')) @staticmethod def format_message(message) -> dict: """Format a message in json to send to the UI""" message_json = { 'id': message.id, 'content': message.message_in_raw, 'date': format_js_iso(message.created_at), 'premium': message.premium, 'address': message.address, 'count': message.get_message_count() } return message_json @staticmethod def format_message_advanced(message) -> dict: """Format a message in json to send to the UI""" message_json = { 'id': message.id, 'content': message.message_in_raw, 'date': format_js_iso(message.created_at), 'premium': message.premium, 'address': message.address, 'count': message.get_message_count(), 'block_hash': message.block_hash } return message_json
StarcoderdataPython
6529685
from argparse import Namespace def namespace(d): assert isinstance(d, dict) return Namespace(**d) class FeedArgsDict: def __init__(self, func, args={}, force_return=None): assert callable(func) args = namespace(args) self.func = func self.args = args self.force_return = force_return def __call__(self, *args_ignore, **kwargs_ignore): func = self.func args = self.args force_return = self.force_return output = func(args) if force_return is not None: return force_return return output
StarcoderdataPython
5114391
import numpy as np import colorsys def get_colors(num_colors): colors=[] for i in np.arange(0., 360., 360. / num_colors): hue = i/360. lightness = (50 + np.random.rand() * 10)/100. saturation = (90 + np.random.rand() * 10)/100. colors.append(colorsys.hls_to_rgb(hue, lightness, saturation)) return colors color_list = [ # some example colors '#F4561D', '#F1911E', '#F1BD1A', # 16 color list '#AD2323', '#2A4BD7', '#1D6914', '#814A19', '#8126C0', '#A0A0A0', '#81C57A', '#9DAFFF', '#29D0D0', '#FF9233', '#FFEE33', '#E9DEBB', '#FFCDF3', '#FFFFFF', '#575757', '#000000' ]
StarcoderdataPython
6683310
import datetime import os from django.test import Client, TestCase from django.db import transaction from django.db.utils import IntegrityError from django.contrib.auth import get_user_model from django.urls import reverse from decimal import Decimal from formsaurus.models import ( Survey, Submission, FileUploadAnswer) User = get_user_model() class FileUploadTestCase(TestCase): def setUp(self): self.user = User.objects.create_user( 'john', '<EMAIL>', 'johnpassword') self.client = Client() def test_required_file_upload(self): survey = Survey.objects.create( name='Test Survey', user=self.user, published=True, ) survey.add_file_upload( 'Photo?', required=True, ) # Get submission response = self.client.get( reverse('formsaurus:survey', args=[survey.id])) self.assertEqual(response.status_code, 302) submission = Submission.objects.get(survey=survey) self.assertIsNotNone(submission) question = survey.first_question self.assertIsNotNone(question) response = self.client.get(reverse('formsaurus:question', args=[ survey.id, question.id, submission.id])) self.assertEqual(response.status_code, 200) # Empty response = self.client.post(reverse('formsaurus:question', args=[ survey.id, question.id, submission.id])) self.assertEqual(response.status_code, 200) answers = submission.answers() self.assertEqual(0, len(answers)) # Send File BASE_DIR = os.path.dirname(os.path.dirname(os.path.abspath(__file__))) with open(os.path.join(BASE_DIR, 'tests/yes_no.py')) as fp: response = self.client.post(reverse('formsaurus:question', args=[ survey.id, question.id, submission.id]), {'file': fp}) self.assertEqual(response.status_code, 302) answers = submission.answers() self.assertEqual(1, len(answers)) answer = answers[0] self.assertTrue(isinstance(answer, FileUploadAnswer)) self.assertIsNotNone(answer.file) self.assertEqual(answer.file, f'files/survey/{survey.id}/{submission.id}/yes_no.py')
StarcoderdataPython
127395
from PIL import ImageDraw, Image import numpy as np import hashlib import random # array_list = [1] background_color = '#F2F1F2' colors = ['#CD00CD', 'Red', 'Orange', "#66FF00", "#2A52BE"] def generate_array(bytes): ## Generate array for i in range(100): # Array 6 * 12 need_array = np.array([bit == '1' for byte in bytes[3:3 + 9] for bit in bin(byte)[2:].zfill(8)]).reshape(6, 12) # Get full array 12 * 12 need_array = np.concatenate((need_array, need_array[::-1]), axis=0) for i in range(12): need_array[0, i] = 0 need_array[11, i] = 0 need_array[i, 0] = 0 need_array[i, 11] = 0 return need_array def generate_pyxies(pyxie_size: int, s: str) -> None: bytes = hashlib.md5(s.encode('utf-8')).digest() need_color = generate_array(bytes) ## Draw image img_size = (pyxie_size, pyxie_size) block_size = pyxie_size // 12 # Size img = Image.new('RGB', img_size, background_color) draw = ImageDraw.Draw(img) for x in range(pyxie_size): for y in range(pyxie_size): need_to_paint = need_color[x // block_size, y // block_size] if need_to_paint: draw.point((x, y), random.choice(colors)) format = 'jpeg' path = f'CryptoPyxie_{s}.{format}' img.save(path, format) if __name__ == "__main__": # argv[1] - size of pictures (pixels) # argv[2] - int - hash generate from sys import argv cryptopyxie_size = int(argv[1]) cryptopyxie_name = argv[2] cycle = generate_pyxies(int(cryptopyxie_size // 12 * 12), cryptopyxie_name)
StarcoderdataPython
8013526
from datetime import datetime import merra_urls import threaded_downloader urls = merra_urls.url_generator( time_interval=(datetime(2020, 3, 30), datetime(2020, 3, 31)), lat_interval=(26, 37), lon_interval=(-107, -93), collections=[ { "collection": "tavg1_2d_slv_Nx", "short_name": "M2T1NXSLV", "fields": ["PS", "T10M", "U50M", "V50M"], } ], ) dl = threaded_downloader.DownloadManager() dl.download_path = "./sample_downloads/" dl.download_urls = list(urls) dl.start_download()
StarcoderdataPython
3566733
import unittest from orderedattrdict import AttrDict from gramex.handlers.basehandler import check_membership def check(auth, **kwargs): return class TestMembership(unittest.TestCase): '''Test check_membership''' def check(self, condition, **kwargs): user = AttrDict(current_user=AttrDict(kwargs)) self.assertEqual(all(self.auth(user)), condition) def test_no_condition(self): self.auth = check_membership([]) # No conditions actually will NOT allow any user through. # If there are no conditions in gramex.yaml, we shouldn't be adding a check! self.check(False) def test_single_key(self): self.auth = check_membership([{'name': 'a'}]) self.check(True, name='a') self.check(True, name=['x', 'a', 'y']) self.check(False, name='b') self.check(False) def test_nested_key(self): self.auth = check_membership([{'name.first': 'a'}]) self.check(True, name={'first': 'a', 'last': 'b'}) self.check(True, name={'first': ['x', 'a', 'y'], 'last': 'b'}) self.check(False) self.check(False, name={}) self.check(False, name={'first': ''}) self.check(False, name={'first': 'b'}) self.check(False, name={'last': 'a'}) def test_multi_key(self): self.auth = check_membership([{'name': 'a', 'gender': 'm'}]) self.check(True, name='a', gender='m') self.check(True, name=['x', 'a', 'y'], gender=['', 'x', 'm', 'f']) self.check(False, name='b', gender='m') self.check(False, name='b', gender=['m', '']) self.check(False, name='a', gender='f') self.check(False, name=['a', ''], gender='f') self.check(False, name='b', gender='f') self.check(False, name=[''], gender=['']) def test_multi_cond(self): self.auth = check_membership([{'name': 'a', 'gender': 'm'}, {'name': 'b', 'gender': 'f'}]) self.check(True, name='a', gender='m') self.check(True, name=['a', 'b'], gender=['m', 'f']) self.check(True, name='b', gender='f') self.check(True, name=['a', 'x'], gender=['m', '']) self.check(True, name=['x', 'b'], gender='f') self.check(False) self.check(False, name='a', gender='f') self.check(False, name='b', gender='m') self.check(False, name='', gender='')
StarcoderdataPython
6501707
# Generated by Django 2.1.7 on 2019-02-23 03:50 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('beers', '0015_auto_20190221_2323'), ] operations = [ migrations.AddField( model_name='beer', name='stem_and_stein_pk', field=models.PositiveIntegerField(blank=True, null=True, unique=True), ), ]
StarcoderdataPython
241452
<filename>draft/wifi/client_udp_video.py<gh_stars>0 #!/usr/bin/env python3 import cv2, socket, base64, numpy as np server_address = ("127.0.0.1", 9999) buff_size = 65536 # max buffer size client_socket = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) # client_socket.setsockopt(socket.SOL_SOCKET, socket.SO_RCVBUF, buff_size) init_msg = b"Init video transmission from server by this message" client_socket.sendto(init_msg, server_address) while True: msg = client_socket.recv(buff_size) # data = base64.b64decode(msg, ' /') data = msg npdata = np.fromstring(data, dtype=np.uint8) frame = cv2.imdecode(npdata, 1) # 1 means return image as is cv2.imshow("RECEIVING VIDEO", frame) key = cv2.waitKey(1) & 0xFF if key == ord('q'): client_socket.close() break
StarcoderdataPython
5131659
import logging import requests from base64 import b64decode from hashlib import sha1 from onelogin.saml2.utils import OneLogin_Saml2_Utils from onelogin.saml2.xml_templates import OneLogin_Saml2_Templates from onelogin.saml2.constants import OneLogin_Saml2_Constants from onelogin.saml2.ssl_adapter import SSLAdapter from .errors import OneLogin_Saml2_ValidationError logger = logging.getLogger(__name__) def parse_saml2_artifact(artifact): # # SAMLBind - See 3.6.4 Artifact Format, for SAMLart format. # decoded = b64decode(artifact) type_code = b'\x00\x04' if decoded[:2] != type_code: raise OneLogin_Saml2_ValidationError( "The received Artifact does not have the correct header.", OneLogin_Saml2_ValidationError.WRONG_ARTIFACT_FORMAT ) index = str(int.from_bytes(decoded[2:4], byteorder="big")) sha1_entity_id = decoded[4:24] message_handle = decoded[24:44] return index, sha1_entity_id, message_handle class Artifact_Resolve_Request: def __init__(self, settings, saml_art): self._settings = settings self.soap_endpoint = self.find_soap_endpoint(saml_art) self.saml_art = saml_art sp_data = self._settings.get_sp_data() uid = OneLogin_Saml2_Utils.generate_unique_id() self._id = uid issue_instant = OneLogin_Saml2_Utils.parse_time_to_SAML(OneLogin_Saml2_Utils.now()) request = OneLogin_Saml2_Templates.ARTIFACT_RESOLVE_REQUEST % \ { 'id': uid, 'issue_instant': issue_instant, 'entity_id': sp_data['entityId'], 'artifact': saml_art } self.__artifact_resolve_request = request def find_soap_endpoint(self, saml_art): idp = self._settings.get_idp_data() index, sha1_entity_id, message_handle = parse_saml2_artifact(saml_art) if sha1_entity_id != sha1(idp['entityId'].encode('utf-8')).digest(): raise OneLogin_Saml2_ValidationError( f"The sha1 hash of the entityId returned in the SAML Artifact ({sha1_entity_id})" f"does not match the sha1 hash of the configured entityId ({idp['entityId']})" ) for ars_node in idp['artifactResolutionService']: if ars_node['binding'] != "urn:oasis:names:tc:SAML:2.0:bindings:SOAP": continue if ars_node['index'] == index: return ars_node return None def get_soap_request(self): request = OneLogin_Saml2_Templates.SOAP_ENVELOPE % \ { 'soap_body': self.__artifact_resolve_request } return OneLogin_Saml2_Utils.add_sign( request, self._settings.get_sp_key(), self._settings.get_sp_cert(), key_passphrase=self._settings.get_sp_key_passphrase(), sign_algorithm=OneLogin_Saml2_Constants.RSA_SHA256, digest_algorithm=OneLogin_Saml2_Constants.SHA256, ) def send(self): security_data = self._settings.get_security_data() headers = {"content-type": "application/soap+xml"} url = self.soap_endpoint['url'] data = self.get_soap_request() logger.debug( "Doing a ArtifactResolve (POST) request to %s with data %s", url, data ) session = requests.session() ssl_adapter = SSLAdapter( security_data['soapClientCert'], security_data['soapClientKey'], security_data.get('soapClientPassphrase', None), ) session.mount(url, ssl_adapter) return session.post( url=url, data=data, headers=headers, ) def get_id(self): """ Returns the ArtifactResolve ID. :return: ArtifactResolve ID :rtype: string """ return self._id
StarcoderdataPython
1955650
<filename>main.py<gh_stars>1-10 # Importing necessary modules import time import pyttsx3 import os import itertools # Setting up a few properties ROOT_DIR = os.getcwd() POEM_DIR = ROOT_DIR + "\\poems" os.chdir(POEM_DIR) FILES_LIST = os.listdir() speaker = pyttsx3.init() speaker.setProperty("rate",150) # An important function def print_speak(msg, newline=True): if not newline: print(msg, end="") else: print(msg) speaker.say(msg) speaker.runAndWait() # Pre Tasks msg = "Hey there!\n" print_speak(msg) msg = "Choose a poem from below:" print_speak(msg) time.sleep(0.4) num = itertools.count() for poem in FILES_LIST: print("Poem " + str(next(num)) + ": " + poem[:-4]) time.sleep(0.1) msg = "Input the poem number: " print_speak(msg, newline=False) POEM_NUM = input() # Main Tasks while True: print("\n") FILE_NAME = FILES_LIST[int(POEM_NUM)] temp = POEM_NUM with open(FILE_NAME, "r") as rfile: content = rfile.read() line_list = content.split("\n") for line in line_list: print(line) speaker.say(line) speaker.runAndWait() print("\n") time.sleep(2) msg = "Input 'n' if you want to hear the next poem" print_speak(msg) msg = "Input 'a' if you want to quit" print_speak(msg) msg = "Input the poem number: " print_speak(msg, newline=False) POEM_NUM = input().lower() if POEM_NUM == "n": POEM_NUM = (int(temp) + 1) % len(FILES_LIST) if POEM_NUM == "a": break # Post Tasks print("\n") time.sleep(2) msg = "Thanks for listening." print_speak(msg) msg = "Created by <NAME> & <NAME>" print_speak(msg) time.sleep(3)
StarcoderdataPython
9774598
#!/usr/bin/env python # -*- coding: utf-8 -*- import xml.etree.ElementTree as ET # Use cElementTree or lxml if too slow import audit as project_audit import data as project_data from collections import defaultdict def get_element(osm_file, tags=('node', 'way', 'relation')): """Yield element if it is the right type of tag Reference: http://stackoverflow.com/questions/3095434/inserting-newlines-in-xml-file-generated-via-xml-etree-elementtree-in-python """ context = ET.iterparse(osm_file, events=('start', 'end')) _, root = next(context) for event, elem in context: if event == 'end' and elem.tag in tags: yield elem root.clear() # Get a sample from the full OSM file by writing one of every 20 elements def get_sample(input_file, output_file): with open(output_file, 'wb') as output: output.write('<?xml version="1.0" encoding="UTF-8"?>\n') output.write('<osm>\n ') # Write every 20th top level element for i, element in enumerate(get_element(input_file)): if i % 20 == 0: output.write(ET.tostring(element, encoding='utf-8')) output.write('</osm>') # Audit the OSM file. # This function returns: # - a dictionary of street names keyed by street type, and # - a dictionary of counts keyed by street type def audit2(osmfile): osm_file = open(osmfile, "r") street_types = defaultdict(set) for event, elem in ET.iterparse(osm_file, events=("start",)): if elem.tag == "node" or elem.tag == "way": for tag in elem.iter("tag"): if project_audit.is_street_name(tag): project_audit.audit_street_type(street_types, tag.attrib['v']) type_count = {} for s in street_types: if s not in type_count: type_count[s] = 0 type_count[s] = len(street_types[s]) return street_types, type_count # Convert the input OSM file to JSON file. # The process will replace abbreviated street types to full name. # For example, 'Taikoo Shing Rd' -> 'Taikoo Shing Road' def convert_map(input_file): project_data.process_map(input_file, True)
StarcoderdataPython
1809080
# Generated by Django 1.9.5 on 2016-04-23 13:43 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ("djangocms_page_meta", "0004_auto_20160409_1852"), ] operations = [ migrations.AddField( model_name="pagemeta", name="fb_pages", field=models.CharField(blank=True, default="", max_length=255, verbose_name="Facebook Pages ID"), ), ]
StarcoderdataPython
1919742
<gh_stars>1-10 import numpy as np from collections import Counter from pathlib import Path from typing import Iterable, List Sample_Input = """3,4,3,1,2 """ def parse_input(input: str) -> tuple: lines = input.strip().split(",") return list(map(int, lines)) def simulate(fish: Iterable[int], days: int) -> int: """Don't brute force it, use math Resources https://numpy.org/doc/stable/reference/routines.linalg.html https://numpy.org/doc/stable/reference/generated/numpy.linalg.matrix_power.html#numpy.linalg.matrix_power """ cache = Counter(fish) init = np.array([cache[i] for i in range(9)]) A = np.array( [ [0, 1, 0, 0, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0, 0, 0], [0, 0, 0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 0, 0, 1, 0, 0, 0], [0, 0, 0, 0, 0, 0, 1, 0, 0], [1, 0, 0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 0, 0, 1], [1, 0, 0, 0, 0, 0, 0, 0, 0], ] ) B = np.linalg.matrix_power(A, days) return B.dot(init).sum() def brute_force_simulate(fish: Iterable[int], days: int) -> int: d = np.array(fish) for _ in range(days): d = brute_force_simulate_one_day(d) return d def brute_force_simulate_one_day(fish: Iterable[int]) -> List[int]: new_fish = fish.size - np.count_nonzero(fish) fish[fish == 0] = 7 fish = np.subtract(fish, 1) fish = np.append(fish, [8] * new_fish) return fish if __name__ == "__main__": fish_input = (Path.cwd() / "2021" / "data" / f"{Path(__file__).stem}_input.txt").read_text() initial_fish = parse_input(fish_input) print("========= NEW ============") days = 18 simulated_fish = simulate(list(initial_fish), days=days) print(f"Starting with {len(initial_fish):,} fish, after {days} days the projection is {simulated_fish:,}") days = 256 simulated_fish = simulate(list(initial_fish), days=days) print(f"Starting with {len(initial_fish):,} fish, after {days} days the projection is {simulated_fish:,}")
StarcoderdataPython
3232313
<filename>functions.py # file with functions used in Main.py import pycountry, sys def date_change(date): '''This function creates a new date in expected output format and detects errors in given "date" parameter. Example: MM/DD/YYYY to YYYY-MM-DD''' if not date: # detect empty 'date' parameter sys.stderr.write('STDERR: Date not found. Script will continue.\n') return 'XXXX-XX-XX' elif len(date) != 10: # detect date format sys.stderr.write('STDERR: Date format invalid. Script will continue.\n') return 'XXXX-XX-XX' else: # change date format new_date = date.split('/') new_date.insert(0, new_date.pop(-1)) # change position of the year to 0 position in list new_date = '-'.join(new_date) # create YYYY-MM-DD format return new_date def get_country_code(name): '''This function searches for aplha_3 country code (DEU, POL, GIN) by using name of subdivision as a parameter, and detects errors. Example: Berlin to DEU''' if not name: # detect empty 'name' parameter. sys.stderr.write('STDERR: Error: subdivision name field is empty.\n') return 'XXX' else: # search for country code for subdiv in list(pycountry.subdivisions): # iterate trough subdivision list if name in subdiv.name: code = subdiv.country_code # code is also alpha_2 code of a country country = pycountry.countries.get(alpha_2 = code) return country.alpha_3 return 'XXX' # if function didn't find nothing, return 'XXX' def impress_check(impress): '''This function checks impressions column format for errors and invalid formats. Example: Unknown to 0''' if not impress: # detect empty impress field sys.stderr.write('STDERR: Error: impressions field is empty.\n') return '0' elif type(impress) == 'str': # detect invalid parameter type sys.stderr.write('STDERR: Error: impressions field format invalid.\n') return '0' else: return impress def calculate_clicks(impress, CTR): '''This function calculate number of clicks from CTR (Click To impression Rate) and number of impressions. Also detects errors. Example: 916, 0.67% to 6''' if not impress or not CTR: # detect empty 'CTR' parameter. sys.stderr.write('STDERR: Error: CTR field is empty. Can\'t calculate clicks.\n') return '0' else: # calculate clicks try: a = float(CTR[:-1]) b = float(impress) clicks = b * (a/100) return round(clicks) except ValueError as error: sys.stderr.write('STDERR: Error calculating clicks, {}\n'.format(error)) return '0'
StarcoderdataPython
5139802
from starlette.middleware.base import BaseHTTPMiddleware from core.logger import logger # 自定义访问日志中间件,基于BaseHTTPMiddleware的中间件实例 class RequestLoggerMiddleware(BaseHTTPMiddleware): # dispatch 必须实现 async def dispatch(self, request, call_next): logger.info(f"{request.method} url:{request.url}\nheaders: {request.headers.get('user-agent')}" f"\nIP:{request.client.host}") response = await call_next(request) return response
StarcoderdataPython
389596
<reponame>tarunvelagala/python-75-hackathon<filename>date-time-1.py # HANDLING DURATION from datetime import * dt = datetime(2018, 12, 20, 13, 2, 10) duration = timedelta(days=15, hours=10, minutes=30) print(dt+duration) print(dt-duration) # to measure the time taken by the program from time import * t1 = perf_counter() i, sum = 0, 0 while(i < 1000000): sum = sum+i i += 1 sleep(3) t2 = perf_counter() print('execution time= %f seconds' % (t2-t1))
StarcoderdataPython
1648989
''' @Author: <NAME> @Date: 2021-01-07 15:04:21 @Description: 这个是训练 mixed model 的时候使用的 @LastEditTime: 2021-02-06 22:40:20 ''' import os import numpy as np import time import torch from torch import nn, optim from TrafficFlowClassification.TrafficLog.setLog import logger from TrafficFlowClassification.utils.setConfig import setup_config # 下面是一些可以使用的模型 from TrafficFlowClassification.models.resnet1d_ae import resnet_AE from TrafficFlowClassification.data.dataLoader import data_loader from TrafficFlowClassification.data.tensordata import get_tensor_data from TrafficFlowClassification.utils.helper import adjust_learning_rate, save_checkpoint from TrafficFlowClassification.utils.evaluate_tools import display_model_performance_metrics # 针对这个训练修改的 train process from TrafficFlowClassification.utils.helper import AverageMeter, accuracy mean_val = np.array([2.86401660e-03, 0.00000000e+00, 3.08146750e-03, 1.17455448e-02, 5.75561597e-03, 6.91365004e-04, 6.64955585e-02, 2.41380099e-02, 9.75861990e-01, 0.00000000e+00, 2.89814456e+02, 6.42617944e+01, 6.89227965e+00, 2.56964887e+02, 1.36799462e+02, 9.32648320e+01, 7.83185943e+01, 1.32048335e+02, 2.09555592e+01, 1.70122810e-02, 6.28544986e+00, 3.27195426e-03, 3.60230735e+01, 9.15340653e+00, 2.17694894e-06, 7.32748605e+01]) std_val = np.array([3.44500263e-02, 0.00000000e+00, 3.09222563e-02, 8.43027570e-02, 4.87519125e-02, 1.48120354e-02, 2.49138903e-01, 1.53477827e-01, 1.53477827e-01, 0.00000000e+00, 8.48196659e+02, 1.94163550e+02, 1.30259798e+02, 7.62370125e+02, 4.16966374e+02, 1.25455838e+02, 2.30658312e+01, 8.78612984e+02, 1.84367543e+02, 1.13978421e-01, 1.19289813e+02, 1.45965914e-01, 8.76535415e+02, 1.78680040e+02, 4.91812227e-04, 4.40298923e+03]) + 0.001 device = torch.device("cuda" if torch.cuda.is_available() else "cpu") mean_val = torch.from_numpy(mean_val).float().to(device) std_val = torch.from_numpy(std_val).float().to(device) def train_process(train_loader, model, alpha, criterion_c, criterion_r, optimizer, epoch, device, print_freq): """训练一个 epoch 的流程 Args: train_loader (dataloader): [description] model ([type]): [description] criterion_c ([type]): 计算分类误差 criterion_l ([type]): 计算重构误差 optimizer ([type]): [description] epoch (int): 当前所在的 epoch device (torch.device): 是否使用 gpu print_freq ([type]): [description] """ c_loss = AverageMeter() r_loss = AverageMeter() losses = AverageMeter() # 在一个 train loader 中的 loss 变化 top1 = AverageMeter() # 记录在一个 train loader 中的 accuracy 变化 model.train() # 切换为训练模型 for i, (pcap, statistic, target) in enumerate(train_loader): pcap = (pcap/255).to(device) # 也要归一化 statistic = statistic.to(device) statistic = (statistic - mean_val)/std_val # 首先需要对 statistic 的数据进行归一化 target = target.to(device) classific_result, fake_statistic = model(pcap, statistic) # 分类结果和重构结果 loss_c = criterion_c(classific_result, target) # 计算 分类的 loss loss_r = criterion_r(statistic, fake_statistic) # 计算 重构 loss loss = alpha * loss_c + loss_r # 将两个误差组合在一起 # 计算准确率, 记录 loss 和 accuracy prec1 = accuracy(classific_result.data, target) c_loss.update(loss_c.item(), pcap.size(0)) r_loss.update(loss_r.item(), pcap.size(0)) losses.update(loss.item(), pcap.size(0)) top1.update(prec1[0].item(), pcap.size(0)) # 反向传播 optimizer.zero_grad() loss.backward() optimizer.step() if (i + 1) % print_freq == 0: logger.info( 'Epoch: [{0}][{1}/{2}], Loss {loss.val:.4f} ({loss.avg:.4f}), Loss_c {loss_c.val:.4f} ({loss_c.avg:.4f}), Loss_r {loss_r.val:.4f} ({loss_r.avg:.4f}), Prec@1 {top1.val:.3f} ({top1.avg:.3f})' .format(epoch, i, len(train_loader), loss=losses, loss_c=c_loss, loss_r=r_loss, top1=top1)) def validate_process(val_loader, model, device, print_freq): top1 = AverageMeter() model.eval() # switch to evaluate mode for i, (pcap, statistic, target) in enumerate(val_loader): pcap = (pcap/255).to(device) # 也要归一化 statistic = statistic.to(device) statistic = (statistic - mean_val)/std_val # 首先需要对 statistic 的数据进行归一化 target = target.to(device) with torch.no_grad(): output, _ = model(pcap, statistic) # compute output # measure accuracy and record loss prec1 = accuracy(output.data, target) top1.update(prec1[0].item(), pcap.size(0)) if (i + 1) % print_freq == 0: logger.info('Test: [{0}/{1}], Prec@1 {top1.val:.3f} ({top1.avg:.3f})'. format(i, len(val_loader), top1=top1)) logger.info(' * Prec@1 {top1.avg:.3f}'.format(top1=top1)) return top1.avg def CENTIME_train_pipeline(alpha): cfg = setup_config() # 获取 config 文件 logger.info(cfg) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") logger.info('是否使用 GPU 进行训练, {}'.format(device)) model_path = os.path.join(cfg.train.model_dir, cfg.train.model_name) # 模型的路径 model = resnet_AE(model_path, pretrained=False, num_classes=12).to(device) # 初始化模型 criterion_c = nn.CrossEntropyLoss() # 分类用的损失函数 criterion_r = nn.L1Loss() # 重构误差的损失函数 optimizer = optim.Adam(model.parameters(), lr=cfg.train.lr) # 定义优化器 logger.info('成功初始化模型.') train_loader = data_loader( pcap_file=cfg.train.train_pcap, label_file=cfg.train.train_label, statistic_file=cfg.train.train_statistic, trimed_file_len=cfg.train.TRIMED_FILE_LEN) # 获得 train dataloader test_loader = data_loader( pcap_file=cfg.train.test_pcap, label_file=cfg.train.test_label, statistic_file=cfg.train.test_statistic, trimed_file_len=cfg.train.TRIMED_FILE_LEN) # 获得 train dataloader logger.info('成功加载数据集.') best_prec1 = 0 for epoch in range(cfg.train.epochs): adjust_learning_rate(optimizer, epoch, cfg.train.lr) # 动态调整学习率 train_process(train_loader, model, alpha, criterion_c, criterion_r, optimizer, epoch, device, 80) # train for one epoch prec1 = validate_process(test_loader, model, device, 20) # evaluate on validation set # remember the best prec@1 and save checkpoint is_best = prec1 > best_prec1 best_prec1 = max(prec1, best_prec1) # 保存最优的模型 save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_prec1': best_prec1, 'optimizer': optimizer.state_dict() }, is_best, model_path) # 下面进入测试模式, 计算每个类别详细的准确率 logger.info('进入测试模式.') model = resnet_AE(model_path, pretrained=True, num_classes=12).to(device) # 加载最好的模型 index2label = {j: i for i, j in cfg.test.label2index.items()} # index->label 对应关系 label_list = [index2label.get(i) for i in range(12)] # 12 个 label 的标签 pcap_data, statistic_data, label_data = get_tensor_data( pcap_file=cfg.train.test_pcap, statistic_file=cfg.train.test_statistic, label_file=cfg.train.test_label, trimed_file_len=cfg.train.TRIMED_FILE_LEN) # 将 numpy 转换为 tensor pcap_data = (pcap_data/255).to(device) # 流量数据 statistic_data = (statistic_data.to(device) - mean_val)/std_val # 对数据做一下归一化 y_pred, _ = model(pcap_data, statistic_data) # 放入模型进行预测 _, pred = y_pred.topk(1, 1, largest=True, sorted=True) Y_data_label = [index2label.get(i.tolist()) for i in label_data] # 转换为具体名称 pred_label = [index2label.get(i.tolist()) for i in pred.view(-1).cpu().detach()] logger.info('Alpha:{}'.format(alpha)) display_model_performance_metrics(true_labels=Y_data_label, predicted_labels=pred_label, classes=label_list) logger.info('Finished! (* ̄︶ ̄)') def alpha_experiment_CENTIME(): alpha_list = [0, 0.001, 0.01, 0.1, 0.5, 1, 5, 10, 100] for alpha in alpha_list: CENTIME_train_pipeline(alpha) time.sleep(10) if __name__ == "__main__": CENTIME_train_pipeline() # 用于测试
StarcoderdataPython
11334415
<reponame>evantzhao/nlp-ner-analysis<gh_stars>0 class Constants: START = "<START(*)>" END = "</END(STOP)>" BPER = 0 BLOC = 1 BORG = 2 BMISC = 3 IPER = 4 ILOC = 5 IORG = 6 IMISC = 7 OTHER = 8 ALL_TAGS = {BPER, BLOC, BORG, BMISC, IPER, ILOC, IORG, IMISC, OTHER} TAG_TO_STRING = { BPER: "B-PER", BLOC: "B-LOC", BORG: "B-ORG", BMISC: "B-MISC", IPER: "I-PER", ILOC: "I-LOC", IORG: "I-ORG", IMISC: "I-MISC", OTHER: "O", }
StarcoderdataPython
23880
import sys from collections.abc import Mapping import firebase_admin from firebase_admin import credentials from firebase_admin import firestore # Use a service account cred = credentials.Certificate('./service-account-key.json') firebase_admin.initialize_app(cred) db = firestore.client() for row in sys.stdin: id = row.strip() sub = db.document(u'db_pilot_test', id).get() if sub.exists: #print (f'it exists, {sub.id}') #print(f'{sub.id}, {sub.to_dict().get("totalEarnings") or 0}') try: sub.to_dict().get("totalEarnings") except AttributeError: print (f'Attribute error, {sub.id}') else: print(f'{sub.id}, {sub.to_dict().get("totalEarnings")}') #else: #print (f'nope it does not, {sub.id}')
StarcoderdataPython
1670832
<reponame>mrcbarbier/diffuseclique from wagutils import * import itertools from statsmodels.nonparametric.smoothers_lowess import lowess import pickle from json import dump,load import scipy.linalg as la def reldist_type2(x, y): xm, ym = np.mean(x), np.mean(y) slope = np.mean((x - xm) * (y - ym) ** 2) / np.mean((x - xm) ** 2 * (y - ym)) return [slope, 1. / slope][int(np.abs(slope) > np.abs(1. / slope))] def reldist_odr(x, y): import scipy.odr as odr def f(B, xx): return B[0] * xx + B[1] linear = odr.Model(f) data = odr.Data(x, y, wd=1, we=1) res = odr.ODR(data, linear, beta0=[.4, .0]) res = res.run() b = res.beta[0] b = np.array([b, 1 / b])[np.argmin(np.abs([b, 1 / b]))] # print reldist_type2(x,y),b return b def reldist(x, y, boot=0, typ='', split=0, strip=1,**kwargs): # x,y=np.array(x),np.array(y) idx = list(np.where((~np.isnan(x))&(~np.isnan(y)))[0]) if boot: idx = list(np.random.choice(idx, replace=True, size=x.size)) x, y = x[idx], y[idx] # if strip: idx = np.argsort(x) z = int(np.floor(len(idx) / 20)) idx = idx[z:-z] x, y = x[idx], y[idx] idx = np.argsort(y) return reldist(x[idx[z:-z]], y[idx[z:-z]], boot=0, strip=0, typ=typ,**kwargs) if split: idx = np.argsort(x) return np.mean([reldist(x[idx], y[idx], boot=0, split=0, typ=typ,**kwargs) for idx in np.array_split(idx, split)]) # if 'odr' in typ: return reldist_odr(x, y) if 'type2' in typ or (typ is None and 'type2' in sys.argv): return reldist_type2(x, y) if 'loglike' in typ: if not 'var' in kwargs: code_debugger() v=kwargs.get('var',1) if v is 1: print 'No var found' if len(v.shape)==2: try: v=v[np.ix_(idx,idx)] except: pass if v.shape[0]==x.shape[0]: # print 'Using covariance matrix' return -np.dot((x-y).ravel(),np.dot(la.inv(v ),(x-y).ravel() ))/x.size return -np.mean((x - y) ** 2 / v[idx]) # # Relative distance as correlation rescaled by max variance - like correlation but penalizes != scalings cov = np.cov(x, y) return cov[0, 1] / np.max([cov[0, 0], cov[1, 1]]) def slopedist(x, y, etai, etaj, boot=0, debug=0, per_species=None, linearize=0,**kwargs): if boot: idx = list(np.random.choice(range(x.size), replace=True, size=x.size)) x, y = x[idx], y[idx] if not per_species is None: i, j, species = per_species idx = [np.where(i == z)[0] for z in species] slopy = [linregress(etaj[i], y[i])[0] if len(i)>2 else np.nan for i in idx] slopx = [linregress(etaj[i], x[i])[0] if len(i)>2 else np.nan for i in idx] # else: idx = np.argsort(etai) idx = np.array_split(idx, 4) slopy = [linregress(etaj[i], y[i])[0] if len(i)>2 else np.nan for i in idx] slopx = [linregress(etaj[i], x[i])[0] if len(i)>2 else np.nan for i in idx] loc = np.array([np.median(etai[i]) for i in idx]) # slopx,slopy,loc=[np.array(z) for z in ( slopx,slopy,loc)] if linearize: good=(~np.isnan(slopx))&(~np.isnan(slopy)) slopx,slopy,loc=slopx[good],slopy[good],loc[good] a = np.argsort(loc) slopx, slopy = slopx[a], slopy[a] sx, ix = linregress(loc, slopx)[:2] sy, iy = linregress(loc, slopy)[:2] slopx, slopy = loc * sx + ix, loc * sy + iy # if 'debug' in sys.argv or debug: plt.close('all') plot(loc, slopy, hold=1) scatter(loc, slopx) code_debugger() kwargs.setdefault('strip',0) if kwargs.get('return_all'): return slopx,slopy,reldist(slopy, slopx, **kwargs) return reldist(slopy, slopx, **kwargs) def rowdist(x,y,i,**kwargs): kwargs.setdefault('strip',0) species=kwargs.get('species',np.unique(i)) meanx=np.array([np.mean(x[i==s]) if (i==s).any() else 0 for s in species]) meany=np.array([np.mean(y[i==s]) if (i==s).any() else 0 for s in species]) return reldist(meanx,meany,**kwargs) def get_species(df): return sorted(set(np.concatenate(df['composition'].values))) def get_path(exp,return_suffix=0): suffix = '' if 'bug' in sys.argv: suffix += '_debug' if 'detrendK' in sys.argv: suffix += '_detK' elif 'detrendblock' in sys.argv: suffix += '_detb' elif 'detrend' in sys.argv: suffix += '_det' if 'cheat' in sys.argv: suffix += '_cheat' if 'bminfer' in sys.argv: suffix += '_bminfer' path = Path('data/' + exp + suffix) path.mkdir() if return_suffix: return path,suffix return path def hyperplane_light(df,species,**kwargs): df=df.copy() from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.optimize import least_squares S = len(species) mat = np.zeros((S, S)) #Returned matrix for sidx,s in enumerate(species): res=None notsidx,others=[list(x) for x in zip(*[(o,oth) for o,oth in enumerate(species) if oth!=s])] xs = df[df[s] != 0][species].values xnomono=df[(df[s]!=0) & (np.max(df[others],axis=1)!=0 ) ] if not xnomono.size: print 'hyperplane skipping',s,'only present in monoculture' mat[sidx,sidx]=-1 continue xsT = xs.T def costfeta(y,weights=None): yy = -np.ones(S) yy[notsidx] = y if weights is None: return (np.dot(yy, xsT) +1) else: return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) res=least_squares(costfeta,-np.zeros(S-1) ) row=list(res.x) row.insert(sidx, -1) mat[sidx]=row mat[sidx,np.sum(np.abs(xsT),axis=1)==0]=np.nan return mat def hyperplane(df,species,etamode=0,distances=0,use_var=0,missing=0,**kwargs): df=df.copy() debug=kwargs.get('debug') from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.optimize import least_squares S = len(species) mat = np.zeros((S, S)) #Returned matrix compmat=np.zeros((S,S)) #To compare between differnet methods errmat=np.zeros((S,S)) #Matrix of stderr on coefficients table=[] sidx=-1 res=None Kmono=kwargs.get("K",None) if Kmono is None: Kmono = np.array( [df[np.logical_and(np.sum(df[species].values > 0, axis=1) == 1, df[s] > 0)][s].mean() for s in species]) Kmono[np.isnan(Kmono)] = 10 ** -10 for s in species: res,res2=None,None sidx+=1 rsquared=0 notsidx = [z for z in range(S) if z != sidx] xs = df[df[s] != 0][species].values xnomono=df[(df[s]!=0) & (np.max(df[[oth for oth in species if oth!=s]],axis=1)!=0 ) ] if not xnomono.size: print 'hyperplane skipping',s,'only present in monoculture' mat[sidx,sidx]=-1 dic={'species':s,'R2':0,'K':10**-10,'Kvar':0 } table.append(dic) continue if etamode==1: print 'basic eta mode' xs = xs / np.atleast_1d(Kmono) xs[:, np.where(np.isnan(Kmono))[0]] = 0 xsT = xs.T weights=np.ones(xs.shape[0]) if 'weights' in kwargs: weights*=[ kwargs['weights'].get(surv,0) for surv in np.sum(xs>0,axis=1)] if distances or debug: # print 'USING DISTANCES',distances,debug dxs = np.concatenate([xs - x for x in xs]).T # [1:]-xs[0] def costf(y,weights=None): yy = -np.ones(S) yy[notsidx] = y return np.dot(yy, dxs)# -Kmono[sidx] try: res = least_squares(costf,- np.ones(S - 1)) if kwargs.get('weights',None) and not np.allclose(weights,1): print 'Weights+distances not implemented yet' res = least_squares(costf, res.x,kwargs={'weights':weights}) except Exception as e: print 'Failed least_squares',e code_debugger() ai = list(res.x) residuals=res.fun ai.insert(sidx, -1) mat[sidx] = ai Ks=-np.dot(ai,xsT) rsquared = 1 - np.sum(residuals ** 2) / np.sum((dxs-np.mean(dxs,axis=1).reshape((S,1)) )**2 ) if (not distances) or debug: def costfeta(y,weights=None): # return np.dot(y,xsT[notsidx])-xsT[sidx]+ifelse(etamode=='given',1,Kmono[sidx]) yy = -np.ones(S) yy[notsidx] = y if weights is None: return (np.dot(yy, xsT) +1) else: return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) def costfnoeta(y,weights=None): # return np.dot(y,xsT[notsidx])-xsT[sidx]+ifelse(etamode=='given',1,Kmono[sidx]) yy = -np.ones(S) yy[notsidx] = y[notsidx] if weights is None: return np.dot(yy, xsT) +y[sidx] else: raise Exception('NOT READY') return (np.dot(yy, np.sum(weights*xsT,axis=1)/np.sum(weights) ) +1) Ks = None if etamode: try: res2=least_squares(costfeta,-np.ones(S-1) ) except: code_debugger() if kwargs.get('weights',None) and not np.allclose(weights,1): # code_debugger() res2 = least_squares(costfeta, res2.x,kwargs={'weights':weights}) comparison=list(res2.x) residuals=costfeta(res2.x) else: x0=-np.ones(S) x0[sidx]=1 res2=least_squares(costfnoeta,x0 ) if kwargs.get('weights',None) and not np.allclose(weights,1): # code_debugger() res2 = least_squares(costfnoeta, res2.x,kwargs={'weights':weights}) Ks=res2.x[sidx] comparison=list(res2.x[notsidx]) residuals = costfnoeta(res2.x) if use_var: xvarT = df[df[s] != 0][[sp + '_var' for sp in species]].values.T xvarT[np.isnan(xvarT)]=0 try: def costd(yy): dd,vv=xsT,np.clip(xvarT,10**-5,None) tmpx=costfeta(yy) tmpv=( np.dot(yy**2, vv[notsidx]) + vv[sidx] ) ** .5 # code_debugger() # tmpv=( np.sum(vv,axis=0) ) ** .5 # tmpv=1 # print tmpv return tmpx/tmpv tmpres = list( least_squares(costd, -np.ones(S - 1)).x) tmpres2 = list( least_squares(costd, comparison).x) comparison=tmpres2 # print costd(np.array(tmpres)),costd(np.array(tmpres2)) except: print 'Failure' code_debugger() # print 'Final',np.sum(costd(np.array(comparison))**2) comparison.insert(sidx, -1) if Ks is None: Ks=-np.dot(comparison,xsT) compmat[sidx]=comparison rsquared = 1 - np.sum(residuals ** 2) / np.sum((xsT-np.mean(xsT,axis=1).reshape((S,1)) )**2 ) if np.isnan(rsquared).any(): code_debugger() # rsquared = 1 - np.sum(residuals ** 2) / np.mean() np.var(xsT)#[sidx]) # if rsquared<0: # code_debugger() if debug: code_debugger() try: def makerr(res): from scipy.linalg import svd tmp, s, VT = svd(res.jac, full_matrices=False) threshold = np.finfo(float).eps * max(res.jac.shape) * s[0] s = s[s > threshold] VT = VT[:s.size] pcov = np.dot(VT.T / s ** 2, VT) return np.clip(np.diag(pcov)*2*res.cost/ np.clip(res.jac.shape[0] - res.jac.shape[1],10**-10,None),None,100) fres=res if fres is None: fres=res2 if fres.jac.shape[1]==S: errmat[sidx]=makerr(fres)**.5 else: errmat[sidx,[si for si in range(S) if si != sidx]]=makerr(fres)**.5 except Exception as e: print 'ERROR hyperplane:',e dic={'species':s,'R2':rsquared,'K':np.mean(Ks),'Kvar':np.var(Ks) } table.append(dic) tab=pd.DataFrame(table) Ks=np.array([tab.set_index('species')['K'].loc[s] for s in species ]) if not distances: mat=compmat np.fill_diagonal(errmat,0) # # DEAL WITH MISSING PAIRS missingpairs=[(i,j) for i in species for j in species if not np.max(np.prod(df[[i,j]].values,axis=1))>0 ] for i,j in missingpairs: mat[species.index(i),species.index(j)]=np.nan mat[species.index(j),species.index(i)]=np.nan if missing=='mean': mat[np.isnan(mat)]=np.mean(nonan(offdiag(mat)) ) else: mat[np.isnan(mat)] = missing if etamode: # tab['Kdiff']=tab['K'] tab['K']=Kmono*tab['K'] # code_debugger() beta=mat alpha = mat / np.multiply.outer(Ks, 1. / Ks) else: alpha=mat beta=mat*np.multiply.outer(Ks,1./Ks) return alpha,beta,tab,errmat/(np.abs(mat)+10**-10) def correlcalc(etafull,beta,gamma=0,return_all=1,pad=0,rank=0,**kwargs): '''Compute plot of prediction versus theory for means and correlations''' def bootstrap(x): if not np.sum(x.shape)>0: return x return np.mean(np.random.choice(x, size=x.size)) beta=beta.copy() S=etafull.shape[0] etamean = np.array([bootstrap(etafull[i]) for i in range(S)]) bm, bv, betatheo = hebbian_getbstats(beta, etamean,**kwargs ) # betaerr=ana[i][j].get('beta_relerr', np.ones(beta.shape))) if isinstance(gamma,basestring): gamma=np.corrcoef(offdiag(beta),offdiag(beta.T))[0,1] # print ' gamma',gamma betatheo = bm + (betatheo - bm) + gamma * (betatheo.T - bm) arange=np.arange(S) mean_i=np.multiply.outer(np.arange(S),np.ones(S)).astype('int') mean_j=mean_i.T # code_debugger() # bet=beta.copy() # bet[bet == 0] = np.nan # bet[np.abs(bet)>3.6]=np.nan betadiff = beta - betatheo diag = np.multiply.outer(np.ones(S), np.eye(S)) def removeself(mat): S = mat.shape[0] ss = range(S) mat2 = [mat[i][np.ix_([s for s in ss if s != i], [s for s in ss if s != i])] for i in range(S)] return np.array(mat2) empirical = removeself(np.einsum('ij,ik->ijk', betadiff, betadiff)) var = np.array([np.nanmean(empirical[i][np.eye(S - 1) != 0]) for i in range(S)]).reshape((-1, 1, 1)) empirical /= var + 10 ** -15 empirical -= removeself(diag) prediction = removeself( - np.multiply.outer(1. / (np.sum(etamean ** 2) - etamean ** 2 + 0.0001), np.multiply.outer(etamean, etamean))) def ms(x): return np.concatenate([np.nanmean(x, axis=(1)), np.nanmean(x, axis=(2))]) corr_i=np.multiply.outer(arange,np.ones((S-1,S-1)) ).astype('int') corr_j=removeself(np.multiply.outer(np.ones(S),np.multiply.outer(arange,np.ones(S)) ).astype('int')) corr_k=removeself(np.multiply.outer(np.ones(S),np.multiply.outer(np.ones(S),arange) ).astype('int')) # prediction,empirical=prediction[removeself(diag)==0],empirical[removeself(diag)==0] # prediction,empirical=ms(prediction),ms(empirical) #Makes things significantly worse if kwargs.get('remove_zeros',1): beta[beta==0]=np.nan results=dict( [('mean_theo', offdiag(betatheo)), ('mean_emp', offdiag(beta)), ('corr_theo', prediction.ravel()), ('corr_emp', empirical.ravel()),('mean_etai',etamean[list( offdiag(mean_i))] ),('mean_etaj',etamean[list( offdiag(mean_j))] ), ('corr_etai', etamean[list(corr_i.ravel())] ) ] ) # code_debugger() for z in ('corr_i', 'corr_j', 'corr_k', 'mean_i', 'mean_j'): val=locals()[z] if 'mean' in z: val=offdiag(val) else: val=val.ravel() results[z]=val if rank: results={i:getranks(results[i]) for i in results} results['bm']=bm results['bv']=bv from scipy.stats import sem, linregress, siegelslopes, theilslopes, ttest_1samp try: summary={v: linregress(results[v+'_theo'][~np.isnan( results[v+'_emp'])], results[v+'_emp'][~np.isnan( results[v+'_emp'])] )[0] for v in ('mean','corr')} except Exception as e: print e summary={} if return_all: results.update(summary) if pad: for k in results: if 'mean_' in k: results[k]=np.concatenate([results[k], np.ones(len(results['corr_theo'])-len(results[k]) ) *np.nan ]) # else: return results return summary def infer_bm(eta,meanfield=1,nmat=1,S=None,maxtrials=100,resolution=ifelse('bug' in sys.argv,3,15),use_noise=0, **kwargs): from numpy.linalg import lstsq, norm as lanorm, inv as lainv from scipy.special import erf import time Salive=eta.shape[0] if S is None: S=Salive tstart=time.time() eta=eta[np.argsort(np.mean(eta,axis=1))] mneta=np.mean(np.median(eta,axis=1)) sdeta=np.std(np.median(eta,axis=1)) phieta=np.mean( eta>0) *Salive*1./S if eta.shape[1] == 1 or Salive<2: covmat = np.eye(3) else: var_mneta = np.array(np.mean([np.random.choice(eta[i], size=maxtrials) for i in range(Salive)], axis=0)) var_sdeta = np.array(np.std([np.random.choice(eta[i], size=maxtrials) for i in range(Salive)], axis=0)) var_phieta = np.array(np.mean([np.random.choice((eta[i] > 0), size=maxtrials) for i in range(Salive)], axis=0) * (Salive - np.random.randint(0, 2, maxtrials)) * 1. / S) covmat = np.cov([var_mneta, var_sdeta, var_phieta]) etavec=np.mean(eta,axis=1) vare=np.mean(np.var(eta,axis=1)/etavec**1.5) # bm_mf = (1. / mneta - 1) / S bm_surv=bm=hebbian_stablebm(etavec) bs_surv=bs= np.sqrt( (1- np.mean(etavec)**2/np.mean(etavec**2)) /S) tab,learntab =None,None gamma=0 if not meanfield: # if 'table' in kwargs and not kwargs['table'] is None: tab = kwargs['table'].copy() else: def make_mats(bm,bs,gamma): etas=[] trial=0 while len(etas)<nmat and trial<maxtrials: trial+=1 mat= -genpool(S,mu=bm,sigma=bs,gamma=gamma)[-1] np.fill_diagonal(mat,1) e=np.dot(lainv(mat),np.ones(S)) a=np.argsort(e) mat=mat[np.ix_(a,a)] if (e<0).any(): e=np.clip(e[a],0,None) e=dosimu(-mat,np.ones(S),np.ones(S),tmax=100,noise=0,x0=e+.001)[-1][-1] e[e<10**-5]=0 # print e if vare>0 and use_noise: noise=np.array([np.random.gamma(1./(vare*ee**1.5),(vare*ee**1.5) ) if ee >0 else 0 for ee in e ]) else: noise=1 etas.append(e*noise ) return etas # learntab=[] print 'CREATING TABLE FOR BM INFERENCE' if 'nogamma' in sys.argv: gammas=[0] gammares=1 else: gammas=[0,0.3,0.6] gammares=9 fineres=3*resolution for ix,x in enumerate(np.linspace(bm_surv*.7,2*bm_surv,resolution)): print '{}/{}'.format(ix+1,resolution) for y in np.linspace(bs_surv*.7,2.4*bs_surv,resolution): for g in gammas: etas=make_mats(x,y,g) mns=[np.mean(e) for e in etas] sds=[np.std(e) for e in etas] phi=[np.mean(e>0) for e in etas] learntab.append({'bm':x,'bs':y,'gamma':g,'mn':np.mean(mns),'sd':np.mean(sds),'phi':np.mean(phi),},) learntab=pd.DataFrame(learntab) # XY=learntab[['bm','bs','gamma']].values from sklearn.kernel_ridge import KernelRidge from sklearn.model_selection import GridSearchCV # ax.plot_wireframe(X, Y, Z, rstride=2, cstride=2,color='k',alpha=.7) clf = GridSearchCV(KernelRidge(kernel='rbf', gamma=0.1), cv=5, param_grid={"alpha": [1e0, 0.1, 1e-2, 1e-3], "gamma": np.logspace(-2, 2, 5)}) XYsmooth=np.array([x for x in itertools.product( np.linspace(XY[0,0],XY[-1,0],fineres), np.linspace(XY[0,1],XY[-1,1],fineres) , np.linspace(gammas[0],gammas[-1],gammares) ) ]) tab = pd.DataFrame({'bm': XYsmooth[:, 0], 'bs': XYsmooth[:, 1], 'gamma': XYsmooth[:, 2]}) for label in ['mn','sd','phi']: Z=learntab[label].values #bandwidth(XY) #kernel='gaussian', bandwidth=.2 clf.fit(XY,Z) Zsmooth = clf.predict(XYsmooth) tab[label]=Zsmooth for tb in (tab,learntab): if tb is None: continue try: dist=[ np.sqrt( np.dot( (mneta-mn,sdeta-sd,phieta-phi),np.dot(lainv(covmat), (mneta-mn,sdeta-sd,phieta-phi) ) ) ) for mn,sd,phi in tb[['mn','sd','phi']].values] except: code_debugger() # dist = np.abs(mneta*phieta-tb['mn'].values) tb['dist']=dist tb['p']=[(1-erf( dd/np.min(dist) ) )/2. for dd in dist] # code_debugger() if 'bug' in sys.argv: for i in ('p','dist','phi','mn'): plt.figure() if not learntab is None: gammas = learntab['gamma'].unique() plt.subplot(121) plt.imshow(learntab[learntab['gamma']==gammas[0]].pivot('bm', 'bs')[i]), plt.colorbar() plt.subplot(122) # bms,bss=[['{:.2f}'.format(l) for l in ll] for ll in (np.sort(tab['bm'].unique()),np.sort(tab['bs'].unique()))] gammas = tab['gamma'].unique() plt.imshow( tab[tab['gamma']==gammas[0]].pivot('bm', 'bs')[i]), plt.colorbar() ax = plt.gca() dx,dy=ax.get_xticks(),ax.get_yticks() def getidx(lst,z): return [lst[int(i)] if i>=0 and i<len(lst) else '' for i in z] ax.set_yticklabels(getidx(bms,dy)),ax.set_xticklabels(getidx(bss,dx)),plt.suptitle(i) plt.show() # code_debugger() bm,bs,gamma=tab[tab['p']>.95 *tab['p'].max()][['bm','bs','gamma']].median() tend=time.time() # bloc = hebbian_convert(eta, bm, bs, forward=0) # bm = bloc['bm_pool'] print 'Time',tend-tstart, 'bm,bs:',bm_surv,bs_surv, '->',bm,bs,'gamma',gamma#,'bs',bs,'<-',bs_surv if np.isnan([bm,bs]).any(): code_debugger() return bm,bs,gamma, tab def make_groundtruth(S=8,species=None,noise=.08,sizes=(1,2,4,8),replicas=1,nplots=None,plots=None,**kwargs): """Create a fake experimental setup to test inference methods.""" from scipy.misc import comb table=[] if species is None: import string ref=string.ascii_lowercase+string.ascii_uppercase+''.join([str(i) for i in range(10)]) species=[ref[i] for i in range(S)] species=np.array(species) rs,Ks,beta=genpool(S,**kwargs) rs=kwargs.pop('rs',rs) Ks=kwargs.pop('Ks',Ks) beta=kwargs.pop('beta',beta) Aij=beta*np.multiply.outer(rs,1./Ks) alpha=beta*np.multiply.outer(Ks,1./Ks) def get_true_eq(compo,N=None): bet=beta - np.eye(S) if isinstance(compo[0],basestring): sidx=[list(species).index(i) for i in compo] else: sidx=compo bet=bet[np.ix_(sidx,sidx)] eqs = find_eqs(bet, uninvadable=1, stable=1, largest=N is None) if not eqs: eqs = find_eqs(bet, uninvadable=0, stable=1, largest=N is None) if not eqs: eqs = find_eqs(bet, uninvadable=0, stable=0, largest=N is None) eq= eqs[0] if not N is None: from scipy.linalg import norm eq= eqs[np.argmin([ norm(N-eq) for eq in eqs ]) ] val=np.zeros(S) val[sidx]=eq return val if plots is None: if sizes is None: sizes = [2 ** x for x in range(int(np.floor(np.log(S * 1.001) / np.log(2)) + 1))] if not S in sizes: sizes += [S] sizes = np.array(sizes) if replicas is None: replicas = [int(np.round(S / s)) for s in sizes] else: replicas = np.atleast_1d(replicas) if replicas.shape[0] < sizes.shape[0]: replicas = replicas * np.ones(sizes.shape) if nplots is None: nplots = np.array([min(10, comb(S, s)) if s > 1 else S for s in sizes]) * replicas plots=[] for size, nrep, npl in zip(sizes,replicas,nplots): nsamp=max(1,npl/nrep) if npl>comb(S,size): samples=list(tuple(x) for x in itertools.combinations(range(int(S)),size)) elif comb(S,size)<5000: allcombs=[tuple(x) for x in itertools.combinations(range(int(S)), size)] samples = [allcombs[i] for i in np.random.choice(range(len(allcombs)),int(nsamp),replace=0 )] else: samples=[tuple(np.random.choice(range(int(S)),size,replace=0)) for i in range(int(nsamp))] try: nrep = max(1,int(min(nrep, npl / len(samples)))) except: print 'ERROR', size,nrep,npl,nsamp,samples code_debugger() # print size, nrep,npl,samples, len(samples)==len(set(samples)) plots+=[species[list(sidx)] for sidx in samples for rep in range(nrep) ] plotn=0 x0=kwargs.pop('x0',np.ones(len(species))) for plot in plots: plotn += 1 sidx=[list(species).index(s) for s in plot] print 'Plot {} Species {}'.format(plotn, species[sidx]) years,results = dosimu(Aij[np.ix_(sidx, sidx)], Ks[sidx], rs[sidx],x0=x0[sidx], noise=noise, evol=1, print_msg=0, **kwargs) #print results[-1]/Ks[sidx] for year, res in zip(years,results): total = np.sum(res) dic = {'plot': plotn, 'total': total, 'total/m2': total, 'year': int(np.round(year)), 'richness': len(plot), 'composition': tuple(species[sidx]),#'equilibrium':get_true_eq(sidx,plotn) } basekeys=sorted(dic.keys()) abund = np.zeros(len(species)) # code_debugger() abund[sidx] = res dic.update({s: a for s, a in zip(species, abund)}) table.append(dic) df=pd.DataFrame(table) df=df[list(basekeys)+list(species)] ground={} ground.update(kwargs) ground.update({'A':Aij-np.diag(rs/Ks),'beta':beta-np.eye(S),'alpha':alpha-np.eye(S),'Ks':Ks, 'rs':rs,'noise':noise, 'equilibrium':{compo:get_true_eq(compo) for compo in set(df['composition'].values) } } ) return df,ground
StarcoderdataPython
4896412
<reponame>jeikabu/lumberyard from __future__ import print_function, absolute_import import itertools from .typeconv import TypeManager, TypeCastingRules from numba import types default_type_manager = TypeManager() def dump_number_rules(): tm = default_type_manager for a, b in itertools.product(types.number_domain, types.number_domain): print(a, '->', b, tm.check_compatible(a, b)) def _init_casting_rules(tm): tcr = TypeCastingRules(tm) tcr.safe_unsafe(types.boolean, types.int8) tcr.safe_unsafe(types.boolean, types.uint8) tcr.promote_unsafe(types.int8, types.int16) tcr.promote_unsafe(types.uint8, types.uint16) tcr.promote_unsafe(types.int16, types.int32) tcr.promote_unsafe(types.uint16, types.uint32) tcr.promote_unsafe(types.int32, types.int64) tcr.promote_unsafe(types.uint32, types.uint64) tcr.safe_unsafe(types.uint8, types.int16) tcr.safe_unsafe(types.uint16, types.int32) tcr.safe_unsafe(types.uint32, types.int64) tcr.safe_unsafe(types.int16, types.float32) tcr.safe_unsafe(types.int32, types.float64) tcr.unsafe_unsafe(types.int32, types.float32) # XXX this is inconsistent with the above; but we want to prefer # float64 over int64 when typing a heterogenous operation, # e.g. `float64 + int64`. Perhaps we need more granularity in the # conversion kinds. tcr.safe_unsafe(types.int64, types.float64) tcr.safe_unsafe(types.uint64, types.float64) tcr.promote_unsafe(types.float32, types.float64) tcr.safe(types.float32, types.complex64) tcr.safe(types.float64, types.complex128) tcr.promote_unsafe(types.complex64, types.complex128) # Allow integers to cast ot void* tcr.unsafe_unsafe(types.uintp, types.voidptr) return tcr default_casting_rules = _init_casting_rules(default_type_manager)
StarcoderdataPython
1970542
<filename>src/13/13073.py """ 13073. Sums 작성자: xCrypt0r 언어: Python 3 사용 메모리: 29,380 KB 소요 시간: 920 ms 해결 날짜: 2020년 9월 19일 """ def main(): for _ in range(int(input())): N = int(input()) print(f'{N * (N + 1) // 2} {N ** 2} {N * (N + 1)}') if __name__ == '__main__': main()
StarcoderdataPython
4871598
<reponame>dmklee/nuro-arm<filename>nuro_arm/robot/pybullet_simulator.py import pybullet_data import pybullet as pb import numpy as np import os import nuro_arm from nuro_arm import transformation_utils, constants class PybulletSimulator: def __init__(self, headless=True, client=None, ): '''Base class for pybullet simulator to handle initialization and attributes about robot joints Parameters ---------- connection_mode : {pb.GUI, pb.DIRECT} Indicates whether pybullet simulator should generate GUI or not Attributes ---------- end_effector_link_index : int index of hand link, this is used to specify which link should be used for IK arm_joint_ids: list of int indices of joints that control the arm gripper_joint_ids: list of int indices of two gripper joints. for simulator, gripper operation is controlled by two joints which should both move in concert to reflect the real xArm gripper_closed : ndarray joint positions of gripper joints that result in closed gripper in the simulator; shape = (2,); dtype=float gripper_opened : ndarray joint positions of gripper joints that result in opened gripper in the simulator; shape = (2,); dtype=float ''' self.arm_joint_ids = [1,2,3,4,5] self.gripper_joint_ids = [6,7] self.dummy_joint_ids = [8] self.finger_joint_ids = [9,10] self.end_effector_link_index = 11 self.arm_joint_limits = np.array(((-2, -1.58, -2, -1.8, -2), ( 2, 1.58, 2, 2.0, 2))) self.gripper_joint_limits = np.array(((0.05,0.05), (1.38, 1.38))) self.dummy_joint_limits = np.array(((0.025,),(0.055,))) self.finger_joint_limits = np.array(((0.0145, 0.029,), (0.0445, 0.089,))) connection_mode = pb.DIRECT if headless else pb.GUI if client is None: self._client = self._initialize_client(connection_mode) else: self._client = client # suction cups are 12 mm tall when not pressed robot_pos = (0, 0, 0.012) robot_rot = (0, 0, 0, 1) self.robot_id = self.initialize_robot(robot_pos, robot_rot) self.n_joints = pb.getNumJoints(self.robot_id, physicsClientId=self._client) self.joint_names = [] self.link_names = [] self.joint_ll = [] self.joint_ul = [] for j_id in range(self.n_joints): j_info = pb.getJointInfo(self.robot_id, j_id, physicsClientId=self._client) self.joint_names.append(j_info[1].decode('ascii')) self.joint_ll.append(j_info[8]) self.joint_ul.append(j_info[9]) self.link_names.append(j_info[12].decode('ascii')) self.joint_ll = np.array(self.joint_ll) self.joint_ul = np.array(self.joint_ul) def _initialize_client(self, connection_mode): '''Creates pybullet simulator and loads world plane. Parameters ---------- connection_mode : {pb.GUI, pb.DIRECT} Indicates whether pybullet simulator should generate GUI or not Returns ------- client : int Identifier used to specify simulator client. This is needed when making calls because there might be multiple clients running ''' client = pb.connect(connection_mode) pb.setPhysicsEngineParameter(numSubSteps=0, numSolverIterations=100, solverResidualThreshold=1e-7, constraintSolverType=pb.CONSTRAINT_SOLVER_LCP_SI, physicsClientId=client) # this path is where we find platform pb.setAdditionalSearchPath(pybullet_data.getDataPath()) self.plane_id = pb.loadURDF('plane.urdf', [0,-0.5,0], physicsClientId=client) pb.changeDynamics(self.plane_id, -1, linearDamping=0.04, angularDamping=0.04, restitution=0, contactStiffness=3000, contactDamping=100, physicsClientId=client) return client def initialize_robot(self, pos, rot=[0,0,0,1]): '''Adds robot to simulator, setting up gripper constraints and initial motor commands Parameters ---------- pos: array_like xyz position, length 3 rot: array_like quaternion, length 4 Returns ------- int id for robot body ''' robot_urdf_path = os.path.join(constants.URDF_DIR, 'xarm.urdf') robot_id = pb.loadURDF(robot_urdf_path, pos, rot, flags=pb.URDF_USE_SELF_COLLISION, physicsClientId=self._client) self.base_pos = pos self.base_rot = rot # # set up constraints for linkage in gripper fingers for i in [0,1]: constraint = pb.createConstraint(robot_id, self.gripper_joint_ids[i], robot_id, self.finger_joint_ids[i], pb.JOINT_POINT2POINT, (0,0,0), (0,0,0.03), (0,0,0), physicsClientId= self._client ) pb.changeConstraint(constraint, maxForce=1000000) # reset joints in hand so that constraints are satisfied hand_joint_ids = self.gripper_joint_ids + self.dummy_joint_ids + self.finger_joint_ids hand_rest_states = [0.05, 0.05, 0.055, 0.0155, 0.031] [pb.resetJointState(robot_id, j_id, jpos, physicsClientId=self._client) for j_id,jpos in zip(hand_joint_ids, hand_rest_states)] # allow finger and linkages to move freely pb.setJointMotorControlArray(robot_id, self.dummy_joint_ids+self.finger_joint_ids, pb.POSITION_CONTROL, forces=[0,0,0], physicsClientId= self._client) # # make arm joints rigid pb.setJointMotorControlArray(robot_id, self.arm_joint_ids, pb.POSITION_CONTROL, 5*[0], positionGains=5*[0.2], physicsClientId= self._client) return robot_id def get_hand_pose(self): '''Get position and orientation of hand (i.e. where grippers would close) This is not the same as the hand link, instead we are interested in the space where the grippers would engage with an object Returns ------- ndarray position vector; shape=(3,); dtype=float ndarray quaternion; shape=(3,); dtype=float ''' link_state = pb.getLinkState(self.robot_id, self.end_effector_link_index, physicsClientId=self._client) pos = link_state[4] rot = link_state[5] return pos, rot def _get_link_pose(self, link_name): '''Returns position and orientation of robot's link Parameters ---------- link_name: str name of link in urdf. it should not include "_link" at end of name Returns ------- pos: ndarray 3D position; shape=(3,); dtype=float rot: ndarray euler angle; shape=(3,); dtype=float ''' assert link_name in self.link_names link_index = self.link_names.index(link_name) link_state = pb.getLinkState(self.robot_id, link_index, physicsClientId=self._client) pos = link_state[4] rot = pb.getEulerFromQuaternion(link_state[5]) return pos, rot def reset_base_pose(self, pos, rot=(0,0,0,1)): '''Resets position and orientation of robot base. Parameters ---------- pos: array_like xyz position, length 3 rot: array_like quaternion, length 4 ''' pb.resetBasePositionAndOrientation(self.robot_id, pos, rot, physicsClientId=self._client) self.base_pos = pos self.base_rot = rot def close(self): pb.disconnect(self._client)
StarcoderdataPython
3341076
import math import torch from torch.utils.data import Dataset, DataLoader class MyDataset(Dataset): def __init__(self, data, window, target_cols): self.data = torch.Tensor(data) self.window = window self.target_cols = target_cols self.shape = self.__getshape__() self.size = self.__getsize__() def __getitem__(self, index): x = self.data[index: index + self.window] y = self.data[index + self.window, self.target_cols] return x, y def __len__(self): return len(self.data) - self.window def __getshape__(self): return (self.__len__(), *self.__getitem__(0)[0].shape) def __getsize__(self): return (self.__len__()) batch_size = 32 input_feature_size = 4 seq_length = 18 target_cols = 1 pin_memory = True num_workers = 1 # data shape: (40000,) data = torch.tensor([math.sin(x) for x in range(0, 10000 * input_feature_size)]) # data shape: (10000, 4) data = data.view(10000, input_feature_size) dataset = MyDataset(data, seq_length, target_cols) total_data_size = len(dataset) train_data_size = int(len(dataset) * 0.7) valid_data_size = int(len(dataset) * 0.2) test_data_size = total_data_size - train_data_size - valid_data_size train_dataset, valid_dataset, test_dataset = torch.utils.data.random_split( dataset, [train_data_size, valid_data_size, test_data_size] ) train_iter = DataLoader( train_dataset, batch_size=batch_size, drop_last=True, # num_workers=num_workers, pin_memory=pin_memory ) valid_iter = DataLoader( valid_dataset, batch_size=batch_size, drop_last=True, # num_workers=num_workers, pin_memory=pin_memory ) test_iter = DataLoader( test_dataset, batch_size=batch_size, drop_last=True, # num_workers=num_workers, pin_memory=pin_memory ) # for idx_batch, batch in enumerate(train_iter): # X, Y = batch # print(idx_batch, X.shape, Y.shape) # print(X, Y) # print("\n\n\n")
StarcoderdataPython
8183755
<reponame>ShuaibinLi/RL_baselines import torch import numpy as np device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class DDPGAgent(object): def __init__(self, algorithm, act_dim, expl_noise=0.1): self.alg = algorithm self.act_dim = act_dim self.expl_noise = expl_noise def sample(self, obs): action_numpy = self.predict(obs) action_noise = np.random.normal(0, self.expl_noise, size=self.act_dim) action = (action_numpy + action_noise).clip(-1, 1) return action def predict(self, obs): obs = torch.FloatTensor(obs.reshape(1, -1)).to(device) action = self.alg.predict(obs) action_numpy = action.cpu().detach().numpy().flatten() return action_numpy def learn(self, obs, action, reward, next_obs, terminal): terminal = np.expand_dims(terminal, -1) reward = np.expand_dims(reward, -1) obs = torch.FloatTensor(obs).to(device) action = torch.FloatTensor(action).to(device) reward = torch.FloatTensor(reward).to(device) next_obs = torch.FloatTensor(next_obs).to(device) terminal = torch.FloatTensor(terminal).to(device) critic_loss, actor_loss = self.alg.learn(obs, action, reward, next_obs, terminal) return critic_loss, actor_loss
StarcoderdataPython
6420027
import random import re from datetime import datetime from info.libs.yuntongxun.sms import CCP from info.models import User from info.utils.response_code import RET from . import passport_blue from info import redis_store, constants, db from flask import request, abort, make_response, current_app, jsonify, session from info.utils.captcha.captcha import captcha @passport_blue.route("/logout") def logout(): session.pop("mobile", None) session.pop("nick_name", None) session.pop("user_id", None) print("123") return jsonify(errno=RET.PARAMERR, errmsg="退出成功") @passport_blue.route("/login", methods=["POST"]) def login(): """登录的ajax接口""" # 第一步老规矩解析post数据 mobile = request.json.get("mobile") password = request.json.get("password") # 判断所有的值是否有空值,如果有空直接return走 if not all([mobile, password]): return jsonify(errno=RET.PARAMERR, errmsg="参数发生错误") # 对手机号进行正则匹配,不符合要求直接返回 if not re.match(r"^1[345678]\d{9}$", mobile): return jsonify(errno=RET.PARAMERR, errmsg="请输入正确的电话号码") # 开始进入数据库拉数据进行匹配 try: user = User.query.filter(User.mobile == mobile).first() except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="数据库链接出错") if not user: # 用户名输入错误 return jsonify(errno=RET.LOGINERR, errmsg="请输入正确的用户名") if not user.check_passoword(password): return jsonify(errno=RET.LOGINERR, errmsg="密码错误") # 已经验证成功用户名和密码了,开始修改最后一次的登录的时候 user.last_login = datetime.now() try: db.session.commit() except Exception as e: db.session.rollback() current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="不知道为啥登录时间出错了") # 登录成功先设置会话的session session["user_id"] = user.id session["moblie"] = user.mobile session["nick_name"] = user.nick_name # session.permanent = True # 设置session的过期时间为自己设置的选项 return jsonify(errno=RET.OK, errmsg="OK") @passport_blue.route("/register", methods=["POST"]) def register(): """实现用户在注册按钮点击之后实现的接口""" # print(request.json) # 先表单数据传送过来的所有的值 mobile = request.json.get("mobile") smscode = request.json.get("smscode") password = request.json.get("password") # 判断所有的值是否有空值,如果有空直接return走 if not all([mobile, smscode, password]): return jsonify(errno=RET.PARAMERR, errmsg="参数发生错误") # 对手机号进行正则匹配,不符合要求直接返回 if not re.match(r"^1[345678]\d{9}$", mobile): return jsonify(errno=RET.PARAMERR, errmsg="请输入正确的电话号码") # 通过手机号码去redis中取出对应的数据进行判断 try: redis_sms_code = redis_store.get("sms_" + mobile) # print("手机验证码为:", redis_sms_code) except Exception as e: current_app.logger.error(e) return jsonify(error=RET.DBERR, errmsg="这个手机号码没有发送验证码") # 很重要的一步,进行手机验证码的校验 if not redis_sms_code: return jsonify(error=RET.DATAERR, errmsg="验证码已经过期了") if redis_sms_code != smscode: return jsonify(error=RET.DATAERR, errmsg="手机验证码是咋了,匹配不正确") # 对密码的位数进行匹配,暂时的要求至少得有6位 if len(password) < 6: return jsonify(errno=RET.PARAMERR, errmsg="密码至少要输入6位以上") # 能走到这步很明显成功满足所有的条件了,下面进行mysql添加用户的功能 user = User() user.mobile = mobile # 用户的手机 user.nick_name = mobile # 用户的昵称,可以使用手机先代替 user.password = password # 用户的密码 user.last_login = datetime.now() # 先初始化登录时间 try: db.session.add(user) db.session.commit() except Exception as e: db.session.rollback() current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="用户名已经被注册") # 终于走到这里了,注册成功将注册写入会话session session["user_id"] = user.id session["moblie"] = mobile session["nick_name"] = user.nick_name # session.permanent = True # 设置session的过期时间为自己设置的选项 return jsonify(errno=RET.OK, errmsg="OK") @passport_blue.route("/sms_code", methods=["POST"]) def send_sms_code(): """ 接口需要获取,手机号,图片验证码的内容,URL中的编号 取出redis的内容与用户的验证码内容进行校验 如果对比不一致,那么返回验证码输入错误 一致的话,生成验证码的内容,发送过去 :return: """ # 做测试的时候使用 # return jsonify(errno=RET.OK, errmsg="发送成功") # 1、将参数提取出来 # params_dict = json.loads(request.data) params_dict = request.json mobile = params_dict.get("mobile") image_code = params_dict.get("imageCode") image_code_id = params_dict.get("image_code_id") # print(mobile) # print(image_code) # print(image_code_id) # 2、进行数据的校验(判断是否有值,是否符合规则) if not all([mobile, image_code_id, image_code]): return jsonify(errno=RET.PARAMERR, errmsg="参数发生错误") # 对手机号进行正则匹配,不符合要求直接返回 if not re.match(r"^1[345678]\d{9}$", mobile): return jsonify(errno=RET.PARAMERR, errmsg="请输入正确的电话号码") # 通过image_code_id 取出数据验证码与填写的验证码进行匹配 try: # print("imageCode_" + image_code_id) redis_image_code = redis_store.get("imageCodeId_" + image_code_id) # print("验证码:", redis_image_code) except Exception as e: current_app.logger.error(e) # return jsonify(errno=RET.PARAMERR, errmsg="请输入正确的电话号码") return jsonify(errno=RET.DBERR, errmsg="数据查询失败") # 说明没有查询到数据 if not redis_image_code: return jsonify(errno=RET.NODATA, errmsg="验证码已经过期") if redis_image_code.upper() != image_code.upper(): return jsonify(errno=RET.DATAERR, errmsg="验证码输入错误") # 生成一个6位数的随机数 authcode = "%06d" % random.randint(0, 999999) # print("手机验证码是:", authcode) current_app.logger.debug("手机的验证码是:" + str(authcode)) # # 下面实现验证码的功能,这里已经测试成功就暂时不给手机发送,直接打印出验证码 # result = CCP().send_template_sms(mobile, [authcode, int(constants.SMS_CODE_REDIS_EXPIRES / 60)], 1) # if result: # current_app.logger.error("手机验证发送出错") # return jsonify(errno=RET.THIRDERR, errmsg="手机验证码发送失败") # 将发送的随机验证填写到redis数据库中,key为sms_手机号,value值为验证码 try: redis_store.set("sms_" + mobile, authcode, constants.SMS_CODE_REDIS_EXPIRES) except Exception as e: current_app.logger.error(e) return jsonify(errno=RET.DBERR, errmsg="手机验证码数据保存失败") # 所有的都OK了,发送验证码 return jsonify(errno=RET.OK, errmsg="发送成功") @passport_blue.route("/image_code") def get_image_code(): """ 生成图片验证并返回 1.从request.agrs中取出值 2.要判断这个参数是否请求正确 3.生成图片验证码 :return: """ # 从request中取出值如果没有值那就是请求出错,抛出403的错误 image_code_id = request.args.get('imageCodeId', None) if not image_code_id: return abort(403) # 通过api接口获取验证的内容和image的文件       name, text, image = captcha.generate_captcha() current_app.logger.debug("验证码是:" + text) # 将验证的内容写入redis的数据库,缓存时间为300秒 # print(type(image_code_id)) # print(text) try: redis_store.set("imageCodeId_" + image_code_id, text, constants.IMAGE_CODE_REDIS_EXPIRES) except Exception as e: current_app.logger.error(e) response = make_response(image) response.headers["Content-Type"] = "image/jpg" return response
StarcoderdataPython
6648502
from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np import os import random import signal import sys import threading import time import unittest import ray.plasma as plasma from ray.plasma.utils import (random_object_id, generate_metadata, create_object_with_id, create_object) from ray import services USE_VALGRIND = False PLASMA_STORE_MEMORY = 1000000000 def assert_get_object_equal(unit_test, client1, client2, object_id, memory_buffer=None, metadata=None): client1_buff = client1.get([object_id])[0] client2_buff = client2.get([object_id])[0] client1_metadata = client1.get_metadata([object_id])[0] client2_metadata = client2.get_metadata([object_id])[0] unit_test.assertEqual(len(client1_buff), len(client2_buff)) unit_test.assertEqual(len(client1_metadata), len(client2_metadata)) # Check that the buffers from the two clients are the same. unit_test.assertTrue(plasma.buffers_equal(client1_buff, client2_buff)) # Check that the metadata buffers from the two clients are the same. unit_test.assertTrue(plasma.buffers_equal(client1_metadata, client2_metadata)) # If a reference buffer was provided, check that it is the same as well. if memory_buffer is not None: unit_test.assertTrue(plasma.buffers_equal(memory_buffer, client1_buff)) # If reference metadata was provided, check that it is the same as well. if metadata is not None: unit_test.assertTrue(plasma.buffers_equal(metadata, client1_metadata)) class TestPlasmaClient(unittest.TestCase): def setUp(self): # Start Plasma store. plasma_store_name, self.p = plasma.start_plasma_store( use_valgrind=USE_VALGRIND) # Connect to Plasma. self.plasma_client = plasma.PlasmaClient(plasma_store_name, None, 64) # For the eviction test self.plasma_client2 = plasma.PlasmaClient(plasma_store_name, None, 0) def tearDown(self): # Check that the Plasma store is still alive. self.assertEqual(self.p.poll(), None) # Kill the plasma store process. if USE_VALGRIND: self.p.send_signal(signal.SIGTERM) self.p.wait() if self.p.returncode != 0: os._exit(-1) else: self.p.kill() def test_create(self): # Create an object id string. object_id = random_object_id() # Create a new buffer and write to it. length = 50 memory_buffer = self.plasma_client.create(object_id, length) for i in range(length): memory_buffer[i] = chr(i % 256) # Seal the object. self.plasma_client.seal(object_id) # Get the object. memory_buffer = self.plasma_client.get([object_id])[0] for i in range(length): self.assertEqual(memory_buffer[i], chr(i % 256)) def test_create_with_metadata(self): for length in range(1000): # Create an object id string. object_id = random_object_id() # Create a random metadata string. metadata = generate_metadata(length) # Create a new buffer and write to it. memory_buffer = self.plasma_client.create(object_id, length, metadata) for i in range(length): memory_buffer[i] = chr(i % 256) # Seal the object. self.plasma_client.seal(object_id) # Get the object. memory_buffer = self.plasma_client.get([object_id])[0] for i in range(length): self.assertEqual(memory_buffer[i], chr(i % 256)) # Get the metadata. metadata_buffer = self.plasma_client.get_metadata([object_id])[0] self.assertEqual(len(metadata), len(metadata_buffer)) for i in range(len(metadata)): self.assertEqual(chr(metadata[i]), metadata_buffer[i]) def test_create_existing(self): # This test is partially used to test the code path in which we create an # object with an ID that already exists length = 100 for _ in range(1000): object_id = random_object_id() self.plasma_client.create(object_id, length, generate_metadata(length)) try: self.plasma_client.create(object_id, length, generate_metadata(length)) except plasma.plasma_object_exists_error as e: pass else: self.assertTrue(False) def test_get(self): num_object_ids = 100 # Test timing out of get with various timeouts. for timeout in [0, 10, 100, 1000]: object_ids = [random_object_id() for _ in range(num_object_ids)] results = self.plasma_client.get(object_ids, timeout_ms=timeout) self.assertEqual(results, num_object_ids * [None]) data_buffers = [] metadata_buffers = [] for i in range(num_object_ids): if i % 2 == 0: data_buffer, metadata_buffer = create_object_with_id( self.plasma_client, object_ids[i], 2000, 2000) data_buffers.append(data_buffer) metadata_buffers.append(metadata_buffer) # Test timing out from some but not all get calls with various timeouts. for timeout in [0, 10, 100, 1000]: data_results = self.plasma_client.get(object_ids, timeout_ms=timeout) # metadata_results = self.plasma_client.get_metadata(object_ids, # timeout_ms=timeout) for i in range(num_object_ids): if i % 2 == 0: self.assertTrue(plasma.buffers_equal(data_buffers[i // 2], data_results[i])) # TODO(rkn): We should compare the metadata as well. But currently # the types are different (e.g., memoryview versus bytearray). # self.assertTrue(plasma.buffers_equal(metadata_buffers[i // 2], # metadata_results[i])) else: self.assertIsNone(results[i]) def test_store_full(self): # The store is started with 1GB, so make sure that create throws an # exception when it is full. def assert_create_raises_plasma_full(unit_test, size): partial_size = np.random.randint(size) try: _, memory_buffer, _ = create_object(unit_test.plasma_client, partial_size, size - partial_size) except plasma.plasma_out_of_memory_error as e: pass else: # For some reason the above didn't throw an exception, so fail. unit_test.assertTrue(False) # Create a list to keep some of the buffers in scope. memory_buffers = [] _, memory_buffer, _ = create_object(self.plasma_client, 5 * 10 ** 8, 0) memory_buffers.append(memory_buffer) # Remaining space is 5 * 10 ** 8. Make sure that we can't create an object # of size 5 * 10 ** 8 + 1, but we can create one of size 2 * 10 ** 8. assert_create_raises_plasma_full(self, 5 * 10 ** 8 + 1) _, memory_buffer, _ = create_object(self.plasma_client, 2 * 10 ** 8, 0) del memory_buffer _, memory_buffer, _ = create_object(self.plasma_client, 2 * 10 ** 8, 0) del memory_buffer assert_create_raises_plasma_full(self, 5 * 10 ** 8 + 1) _, memory_buffer, _ = create_object(self.plasma_client, 2 * 10 ** 8, 0) memory_buffers.append(memory_buffer) # Remaining space is 3 * 10 ** 8. assert_create_raises_plasma_full(self, 3 * 10 ** 8 + 1) _, memory_buffer, _ = create_object(self.plasma_client, 10 ** 8, 0) memory_buffers.append(memory_buffer) # Remaining space is 2 * 10 ** 8. assert_create_raises_plasma_full(self, 2 * 10 ** 8 + 1) def test_contains(self): fake_object_ids = [random_object_id() for _ in range(100)] real_object_ids = [random_object_id() for _ in range(100)] for object_id in real_object_ids: self.assertFalse(self.plasma_client.contains(object_id)) self.plasma_client.create(object_id, 100) self.plasma_client.seal(object_id) self.assertTrue(self.plasma_client.contains(object_id)) for object_id in fake_object_ids: self.assertFalse(self.plasma_client.contains(object_id)) for object_id in real_object_ids: self.assertTrue(self.plasma_client.contains(object_id)) def test_hash(self): # Check the hash of an object that doesn't exist. object_id1 = random_object_id() self.plasma_client.hash(object_id1) length = 1000 # Create a random object, and check that the hash function always returns # the same value. metadata = generate_metadata(length) memory_buffer = self.plasma_client.create(object_id1, length, metadata) for i in range(length): memory_buffer[i] = chr(i % 256) self.plasma_client.seal(object_id1) self.assertEqual(self.plasma_client.hash(object_id1), self.plasma_client.hash(object_id1)) # Create a second object with the same value as the first, and check that # their hashes are equal. object_id2 = random_object_id() memory_buffer = self.plasma_client.create(object_id2, length, metadata) for i in range(length): memory_buffer[i] = chr(i % 256) self.plasma_client.seal(object_id2) self.assertEqual(self.plasma_client.hash(object_id1), self.plasma_client.hash(object_id2)) # Create a third object with a different value from the first two, and # check that its hash is different. object_id3 = random_object_id() metadata = generate_metadata(length) memory_buffer = self.plasma_client.create(object_id3, length, metadata) for i in range(length): memory_buffer[i] = chr((i + 1) % 256) self.plasma_client.seal(object_id3) self.assertNotEqual(self.plasma_client.hash(object_id1), self.plasma_client.hash(object_id3)) # Create a fourth object with the same value as the third, but different # metadata. Check that its hash is different from any of the previous # three. object_id4 = random_object_id() metadata4 = generate_metadata(length) memory_buffer = self.plasma_client.create(object_id4, length, metadata4) for i in range(length): memory_buffer[i] = chr((i + 1) % 256) self.plasma_client.seal(object_id4) self.assertNotEqual(self.plasma_client.hash(object_id1), self.plasma_client.hash(object_id4)) self.assertNotEqual(self.plasma_client.hash(object_id3), self.plasma_client.hash(object_id4)) def test_many_hashes(self): hashes = [] length = 2 ** 10 for i in range(256): object_id = random_object_id() memory_buffer = self.plasma_client.create(object_id, length) for j in range(length): memory_buffer[j] = chr(i) self.plasma_client.seal(object_id) hashes.append(self.plasma_client.hash(object_id)) # Create objects of varying length. Each pair has two bits different. for i in range(length): object_id = random_object_id() memory_buffer = self.plasma_client.create(object_id, length) for j in range(length): memory_buffer[j] = chr(0) memory_buffer[i] = chr(1) self.plasma_client.seal(object_id) hashes.append(self.plasma_client.hash(object_id)) # Create objects of varying length, all with value 0. for i in range(length): object_id = random_object_id() memory_buffer = self.plasma_client.create(object_id, i) for j in range(i): memory_buffer[j] = chr(0) self.plasma_client.seal(object_id) hashes.append(self.plasma_client.hash(object_id)) # Check that all hashes were unique. self.assertEqual(len(set(hashes)), 256 + length + length) # def test_individual_delete(self): # length = 100 # # Create an object id string. # object_id = random_object_id() # # Create a random metadata string. # metadata = generate_metadata(100) # # Create a new buffer and write to it. # memory_buffer = self.plasma_client.create(object_id, length, metadata) # for i in range(length): # memory_buffer[i] = chr(i % 256) # # Seal the object. # self.plasma_client.seal(object_id) # # Check that the object is present. # self.assertTrue(self.plasma_client.contains(object_id)) # # Delete the object. # self.plasma_client.delete(object_id) # # Make sure the object is no longer present. # self.assertFalse(self.plasma_client.contains(object_id)) # # def test_delete(self): # # Create some objects. # object_ids = [random_object_id() for _ in range(100)] # for object_id in object_ids: # length = 100 # # Create a random metadata string. # metadata = generate_metadata(100) # # Create a new buffer and write to it. # memory_buffer = self.plasma_client.create(object_id, length, metadata) # for i in range(length): # memory_buffer[i] = chr(i % 256) # # Seal the object. # self.plasma_client.seal(object_id) # # Check that the object is present. # self.assertTrue(self.plasma_client.contains(object_id)) # # # Delete the objects and make sure they are no longer present. # for object_id in object_ids: # # Delete the object. # self.plasma_client.delete(object_id) # # Make sure the object is no longer present. # self.assertFalse(self.plasma_client.contains(object_id)) def test_illegal_functionality(self): # Create an object id string. object_id = random_object_id() # Create a new buffer and write to it. length = 1000 memory_buffer = self.plasma_client.create(object_id, length) # Make sure we cannot access memory out of bounds. self.assertRaises(Exception, lambda: memory_buffer[length]) # Seal the object. self.plasma_client.seal(object_id) # This test is commented out because it currently fails. # # Make sure the object is ready only now. # def illegal_assignment(): # memory_buffer[0] = chr(0) # self.assertRaises(Exception, illegal_assignment) # Get the object. memory_buffer = self.plasma_client.get([object_id])[0] # Make sure the object is read only. def illegal_assignment(): memory_buffer[0] = chr(0) self.assertRaises(Exception, illegal_assignment) def test_evict(self): client = self.plasma_client2 object_id1 = random_object_id() b1 = client.create(object_id1, 1000) client.seal(object_id1) del b1 self.assertEqual(client.evict(1), 1000) object_id2 = random_object_id() object_id3 = random_object_id() b2 = client.create(object_id2, 999) b3 = client.create(object_id3, 998) client.seal(object_id3) del b3 self.assertEqual(client.evict(1000), 998) object_id4 = random_object_id() b4 = client.create(object_id4, 997) client.seal(object_id4) del b4 client.seal(object_id2) del b2 self.assertEqual(client.evict(1), 997) self.assertEqual(client.evict(1), 999) object_id5 = random_object_id() object_id6 = random_object_id() object_id7 = random_object_id() b5 = client.create(object_id5, 996) b6 = client.create(object_id6, 995) b7 = client.create(object_id7, 994) client.seal(object_id5) client.seal(object_id6) client.seal(object_id7) del b5 del b6 del b7 self.assertEqual(client.evict(2000), 996 + 995 + 994) def test_subscribe(self): # Subscribe to notifications from the Plasma Store. self.plasma_client.subscribe() for i in [1, 10, 100, 1000, 10000, 100000]: object_ids = [random_object_id() for _ in range(i)] metadata_sizes = [np.random.randint(1000) for _ in range(i)] data_sizes = [np.random.randint(1000) for _ in range(i)] for j in range(i): self.plasma_client.create( object_ids[j], size=data_sizes[j], metadata=bytearray(np.random.bytes(metadata_sizes[j]))) self.plasma_client.seal(object_ids[j]) # Check that we received notifications for all of the objects. for j in range(i): notification_info = self.plasma_client.get_next_notification() recv_objid, recv_dsize, recv_msize = notification_info self.assertEqual(object_ids[j], recv_objid) self.assertEqual(data_sizes[j], recv_dsize) self.assertEqual(metadata_sizes[j], recv_msize) def test_subscribe_deletions(self): # Subscribe to notifications from the Plasma Store. We use plasma_client2 # to make sure that all used objects will get evicted properly. self.plasma_client2.subscribe() for i in [1, 10, 100, 1000, 10000, 100000]: object_ids = [random_object_id() for _ in range(i)] # Add 1 to the sizes to make sure we have nonzero object sizes. metadata_sizes = [np.random.randint(1000) + 1 for _ in range(i)] data_sizes = [np.random.randint(1000) + 1 for _ in range(i)] for j in range(i): x = self.plasma_client2.create( object_ids[j], size=data_sizes[j], metadata=bytearray(np.random.bytes(metadata_sizes[j]))) self.plasma_client2.seal(object_ids[j]) del x # Check that we received notifications for creating all of the objects. for j in range(i): notification_info = self.plasma_client2.get_next_notification() recv_objid, recv_dsize, recv_msize = notification_info self.assertEqual(object_ids[j], recv_objid) self.assertEqual(data_sizes[j], recv_dsize) self.assertEqual(metadata_sizes[j], recv_msize) # Check that we receive notifications for deleting all objects, as we # evict them. for j in range(i): self.assertEqual(self.plasma_client2.evict(1), data_sizes[j] + metadata_sizes[j]) notification_info = self.plasma_client2.get_next_notification() recv_objid, recv_dsize, recv_msize = notification_info self.assertEqual(object_ids[j], recv_objid) self.assertEqual(-1, recv_dsize) self.assertEqual(-1, recv_msize) # Test multiple deletion notifications. The first 9 object IDs have size 0, # and the last has a nonzero size. When Plasma evicts 1 byte, it will evict # all objects, so we should receive deletion notifications for each. num_object_ids = 10 object_ids = [random_object_id() for _ in range(num_object_ids)] metadata_sizes = [0] * (num_object_ids - 1) data_sizes = [0] * (num_object_ids - 1) metadata_sizes.append(np.random.randint(1000)) data_sizes.append(np.random.randint(1000)) for i in range(num_object_ids): x = self.plasma_client2.create( object_ids[i], size=data_sizes[i], metadata=bytearray(np.random.bytes(metadata_sizes[i]))) self.plasma_client2.seal(object_ids[i]) del x for i in range(num_object_ids): notification_info = self.plasma_client2.get_next_notification() recv_objid, recv_dsize, recv_msize = notification_info self.assertEqual(object_ids[i], recv_objid) self.assertEqual(data_sizes[i], recv_dsize) self.assertEqual(metadata_sizes[i], recv_msize) self.assertEqual(self.plasma_client2.evict(1), data_sizes[-1] + metadata_sizes[-1]) for i in range(num_object_ids): notification_info = self.plasma_client2.get_next_notification() recv_objid, recv_dsize, recv_msize = notification_info self.assertEqual(object_ids[i], recv_objid) self.assertEqual(-1, recv_dsize) self.assertEqual(-1, recv_msize) class TestPlasmaManager(unittest.TestCase): def setUp(self): # Start two PlasmaStores. store_name1, self.p2 = plasma.start_plasma_store(use_valgrind=USE_VALGRIND) store_name2, self.p3 = plasma.start_plasma_store(use_valgrind=USE_VALGRIND) # Start a Redis server. redis_address = services.address("127.0.0.1", services.start_redis()[0]) # Start two PlasmaManagers. manager_name1, self.p4, self.port1 = plasma.start_plasma_manager( store_name1, redis_address, use_valgrind=USE_VALGRIND) manager_name2, self.p5, self.port2 = plasma.start_plasma_manager( store_name2, redis_address, use_valgrind=USE_VALGRIND) # Connect two PlasmaClients. self.client1 = plasma.PlasmaClient(store_name1, manager_name1) self.client2 = plasma.PlasmaClient(store_name2, manager_name2) # Store the processes that will be explicitly killed during tearDown so # that a test case can remove ones that will be killed during the test. # NOTE: If this specific order is changed, valgrind will fail. self.processes_to_kill = [self.p4, self.p5, self.p2, self.p3] def tearDown(self): # Check that the processes are still alive. for process in self.processes_to_kill: self.assertEqual(process.poll(), None) # Kill the Plasma store and Plasma manager processes. if USE_VALGRIND: # Give processes opportunity to finish work. time.sleep(1) for process in self.processes_to_kill: process.send_signal(signal.SIGTERM) process.wait() if process.returncode != 0: print("aborting due to valgrind error") os._exit(-1) else: for process in self.processes_to_kill: process.kill() # Clean up the Redis server. services.cleanup() def test_fetch(self): for _ in range(10): # Create an object. object_id1, memory_buffer1, metadata1 = create_object(self.client1, 2000, 2000) self.client1.fetch([object_id1]) self.assertEqual(self.client1.contains(object_id1), True) self.assertEqual(self.client2.contains(object_id1), False) # Fetch the object from the other plasma manager. # TODO(rkn): Right now we must wait for the object table to be updated. while not self.client2.contains(object_id1): self.client2.fetch([object_id1]) # Compare the two buffers. assert_get_object_equal(self, self.client1, self.client2, object_id1, memory_buffer=memory_buffer1, metadata=metadata1) # Test that we can call fetch on object IDs that don't exist yet. object_id2 = random_object_id() self.client1.fetch([object_id2]) self.assertEqual(self.client1.contains(object_id2), False) memory_buffer2, metadata2 = create_object_with_id(self.client2, object_id2, 2000, 2000) # # Check that the object has been fetched. # self.assertEqual(self.client1.contains(object_id2), True) # Compare the two buffers. # assert_get_object_equal(self, self.client1, self.client2, object_id2, # memory_buffer=memory_buffer2, metadata=metadata2) # Test calling the same fetch request a bunch of times. object_id3 = random_object_id() self.assertEqual(self.client1.contains(object_id3), False) self.assertEqual(self.client2.contains(object_id3), False) for _ in range(10): self.client1.fetch([object_id3]) self.client2.fetch([object_id3]) memory_buffer3, metadata3 = create_object_with_id(self.client1, object_id3, 2000, 2000) for _ in range(10): self.client1.fetch([object_id3]) self.client2.fetch([object_id3]) # TODO(rkn): Right now we must wait for the object table to be updated. while not self.client2.contains(object_id3): self.client2.fetch([object_id3]) assert_get_object_equal(self, self.client1, self.client2, object_id3, memory_buffer=memory_buffer3, metadata=metadata3) def test_fetch_multiple(self): for _ in range(20): # Create two objects and a third fake one that doesn't exist. object_id1, memory_buffer1, metadata1 = create_object(self.client1, 2000, 2000) missing_object_id = random_object_id() object_id2, memory_buffer2, metadata2 = create_object(self.client1, 2000, 2000) object_ids = [object_id1, missing_object_id, object_id2] # Fetch the objects from the other plasma store. The second object ID # should timeout since it does not exist. # TODO(rkn): Right now we must wait for the object table to be updated. while ((not self.client2.contains(object_id1)) or (not self.client2.contains(object_id2))): self.client2.fetch(object_ids) # Compare the buffers of the objects that do exist. assert_get_object_equal(self, self.client1, self.client2, object_id1, memory_buffer=memory_buffer1, metadata=metadata1) assert_get_object_equal(self, self.client1, self.client2, object_id2, memory_buffer=memory_buffer2, metadata=metadata2) # Fetch in the other direction. The fake object still does not exist. self.client1.fetch(object_ids) assert_get_object_equal(self, self.client2, self.client1, object_id1, memory_buffer=memory_buffer1, metadata=metadata1) assert_get_object_equal(self, self.client2, self.client1, object_id2, memory_buffer=memory_buffer2, metadata=metadata2) # Check that we can call fetch with duplicated object IDs. object_id3 = random_object_id() self.client1.fetch([object_id3, object_id3]) object_id4, memory_buffer4, metadata4 = create_object(self.client1, 2000, 2000) time.sleep(0.1) # TODO(rkn): Right now we must wait for the object table to be updated. while not self.client2.contains(object_id4): self.client2.fetch([object_id3, object_id3, object_id4, object_id4]) assert_get_object_equal(self, self.client2, self.client1, object_id4, memory_buffer=memory_buffer4, metadata=metadata4) def test_wait(self): # Test timeout. obj_id0 = random_object_id() self.client1.wait([obj_id0], timeout=100, num_returns=1) # If we get here, the test worked. # Test wait if local objects available. obj_id1 = random_object_id() self.client1.create(obj_id1, 1000) self.client1.seal(obj_id1) ready, waiting = self.client1.wait([obj_id1], timeout=100, num_returns=1) self.assertEqual(set(ready), set([obj_id1])) self.assertEqual(waiting, []) # Test wait if only one object available and only one object waited for. obj_id2 = random_object_id() self.client1.create(obj_id2, 1000) # Don't seal. ready, waiting = self.client1.wait([obj_id2, obj_id1], timeout=100, num_returns=1) self.assertEqual(set(ready), set([obj_id1])) self.assertEqual(set(waiting), set([obj_id2])) # Test wait if object is sealed later. obj_id3 = random_object_id() def finish(): self.client2.create(obj_id3, 1000) self.client2.seal(obj_id3) t = threading.Timer(0.1, finish) t.start() ready, waiting = self.client1.wait([obj_id3, obj_id2, obj_id1], timeout=1000, num_returns=2) self.assertEqual(set(ready), set([obj_id1, obj_id3])) self.assertEqual(set(waiting), set([obj_id2])) # Test if the appropriate number of objects is shown if some objects are # not ready. ready, waiting = self.client1.wait([obj_id3, obj_id2, obj_id1], 100, 3) self.assertEqual(set(ready), set([obj_id1, obj_id3])) self.assertEqual(set(waiting), set([obj_id2])) # Don't forget to seal obj_id2. self.client1.seal(obj_id2) # Test calling wait a bunch of times. object_ids = [] # TODO(rkn): Increasing n to 100 (or larger) will cause failures. The # problem appears to be that the number of timers added to the manager # event loop slow down the manager so much that some of the asynchronous # Redis commands timeout triggering fatal failure callbacks. n = 40 for i in range(n * (n + 1) // 2): if i % 2 == 0: object_id, _, _ = create_object(self.client1, 200, 200) else: object_id, _, _ = create_object(self.client2, 200, 200) object_ids.append(object_id) # Try waiting for all of the object IDs on the first client. waiting = object_ids retrieved = [] for i in range(1, n + 1): ready, waiting = self.client1.wait(waiting, timeout=1000, num_returns=i) self.assertEqual(len(ready), i) retrieved += ready self.assertEqual(set(retrieved), set(object_ids)) ready, waiting = self.client1.wait(object_ids, timeout=1000, num_returns=len(object_ids)) self.assertEqual(set(ready), set(object_ids)) self.assertEqual(waiting, []) # Try waiting for all of the object IDs on the second client. waiting = object_ids retrieved = [] for i in range(1, n + 1): ready, waiting = self.client2.wait(waiting, timeout=1000, num_returns=i) self.assertEqual(len(ready), i) retrieved += ready self.assertEqual(set(retrieved), set(object_ids)) ready, waiting = self.client2.wait(object_ids, timeout=1000, num_returns=len(object_ids)) self.assertEqual(set(ready), set(object_ids)) self.assertEqual(waiting, []) # Make sure that wait returns when the requested number of object IDs are # available and does not wait for all object IDs to be available. object_ids = [random_object_id() for _ in range(9)] + [20 * b'\x00'] object_ids_perm = object_ids[:] random.shuffle(object_ids_perm) for i in range(10): if i % 2 == 0: create_object_with_id(self.client1, object_ids_perm[i], 2000, 2000) else: create_object_with_id(self.client2, object_ids_perm[i], 2000, 2000) ready, waiting = self.client1.wait(object_ids, num_returns=(i + 1)) self.assertEqual(set(ready), set(object_ids_perm[:(i + 1)])) self.assertEqual(set(waiting), set(object_ids_perm[(i + 1):])) def test_transfer(self): num_attempts = 100 for _ in range(100): # Create an object. object_id1, memory_buffer1, metadata1 = create_object(self.client1, 2000, 2000) # Transfer the buffer to the the other Plasma store. There is a race # condition on the create and transfer of the object, so keep trying # until the object appears on the second Plasma store. for i in range(num_attempts): self.client1.transfer("1192.168.3.11", self.port2, object_id1) buff = self.client2.get([object_id1], timeout_ms=100)[0] if buff is not None: break self.assertNotEqual(buff, None) del buff # Compare the two buffers. assert_get_object_equal(self, self.client1, self.client2, object_id1, memory_buffer=memory_buffer1, metadata=metadata1) # # Transfer the buffer again. # self.client1.transfer("127.0.0.1", self.port2, object_id1) # # Compare the two buffers. # assert_get_object_equal(self, self.client1, self.client2, object_id1, # memory_buffer=memory_buffer1, # metadata=metadata1) # Create an object. object_id2, memory_buffer2, metadata2 = create_object(self.client2, 20000, 20000) # Transfer the buffer to the the other Plasma store. There is a race # condition on the create and transfer of the object, so keep trying # until the object appears on the second Plasma store. for i in range(num_attempts): self.client2.transfer("127.0.0.1", self.port1, object_id2) buff = self.client1.get([object_id2], timeout_ms=100)[0] if buff is not None: break self.assertNotEqual(buff, None) del buff # Compare the two buffers. assert_get_object_equal(self, self.client1, self.client2, object_id2, memory_buffer=memory_buffer2, metadata=metadata2) def test_illegal_functionality(self): # Create an object id string. # object_id = random_object_id() # Create a new buffer. # memory_buffer = self.client1.create(object_id, 20000) # This test is commented out because it currently fails. # # Transferring the buffer before sealing it should fail. # self.assertRaises(Exception, # lambda : self.manager1.transfer(1, object_id)) pass def test_stresstest(self): a = time.time() object_ids = [] for i in range(10000): # TODO(pcm): increase this to 100000. object_id = random_object_id() object_ids.append(object_id) self.client1.create(object_id, 1) self.client1.seal(object_id) for object_id in object_ids: self.client1.transfer("127.0.0.1", self.port2, object_id) b = time.time() - a print("it took", b, "seconds to put and transfer the objects") class TestPlasmaManagerRecovery(unittest.TestCase): def setUp(self): # Start a Plasma store. self.store_name, self.p2 = plasma.start_plasma_store( use_valgrind=USE_VALGRIND) # Start a Redis server. self.redis_address = services.address("127.0.0.1", services.start_redis()[0]) # Start a PlasmaManagers. manager_name, self.p3, self.port1 = plasma.start_plasma_manager( self.store_name, self.redis_address, use_valgrind=USE_VALGRIND) # Connect a PlasmaClient. self.client = plasma.PlasmaClient(self.store_name, manager_name) # Store the processes that will be explicitly killed during tearDown so # that a test case can remove ones that will be killed during the test. # NOTE: The plasma managers must be killed before the plasma store since # plasma store death will bring down the managers. self.processes_to_kill = [self.p3, self.p2] def tearDown(self): # Check that the processes are still alive. for process in self.processes_to_kill: self.assertEqual(process.poll(), None) # Kill the Plasma store and Plasma manager processes. if USE_VALGRIND: # Give processes opportunity to finish work. time.sleep(1) for process in self.processes_to_kill: process.send_signal(signal.SIGTERM) process.wait() if process.returncode != 0: print("aborting due to valgrind error") os._exit(-1) else: for process in self.processes_to_kill: process.kill() # Clean up the Redis server. services.cleanup() def test_delayed_start(self): num_objects = 10 # Create some objects using one client. object_ids = [random_object_id() for _ in range(num_objects)] for i in range(10): create_object_with_id(self.client, object_ids[i], 2000, 2000) # Wait until the objects have been sealed in the store. ready, waiting = self.client.wait(object_ids, num_returns=num_objects) self.assertEqual(set(ready), set(object_ids)) self.assertEqual(waiting, []) # Start a second plasma manager attached to the same store. manager_name, self.p5, self.port2 = plasma.start_plasma_manager( self.store_name, self.redis_address, use_valgrind=USE_VALGRIND) self.processes_to_kill = [self.p5] + self.processes_to_kill # Check that the second manager knows about existing objects. client2 = plasma.PlasmaClient(self.store_name, manager_name) ready, waiting = [], object_ids while True: ready, waiting = client2.wait(object_ids, num_returns=num_objects, timeout=0) if len(ready) == len(object_ids): break self.assertEqual(set(ready), set(object_ids)) self.assertEqual(waiting, []) if __name__ == "__main__": if len(sys.argv) > 1: # Pop the argument so we don't mess with unittest's own argument parser. if sys.argv[-1] == "valgrind": arg = sys.argv.pop() USE_VALGRIND = True print("Using valgrind for tests") unittest.main(verbosity=2)
StarcoderdataPython
3362661
import unittest from solve import Sudoku test_sudoku = [[5, 3, 0, 0, 7, 0, 0, 0, 0], [6, 0, 0, 1, 9, 5, 0, 0, 0], [0, 9, 8, 0, 0, 0, 0, 6, 0], [8, 0, 0, 0, 6, 0, 0, 0, 3], [4, 0, 0, 8, 0, 3, 0, 0, 1], [7, 0, 0, 0, 2, 0, 0, 0, 6], [0, 6, 0, 0, 0, 0, 2, 8, 0], [0, 0, 0, 4, 1, 9, 0, 0, 5], [0, 0, 0, 0, 8, 0, 0, 7, 9]] test_solution = [[5, 3, 4, 6, 7, 8, 9, 1, 2], [6, 7, 2, 1, 9, 5, 3, 4, 8], [1, 9, 8, 3, 4, 2, 5, 6, 7], [8, 5, 9, 7, 6, 1, 4, 2, 3], [4, 2, 6, 8, 5, 3, 7, 9, 1], [7, 1, 3, 9, 2, 4, 8, 5, 6], [9, 6, 1, 5, 3, 7, 2, 8, 4], [2, 8, 7, 4, 1, 9, 6, 3, 5], [3, 4, 5, 2, 8, 6, 1, 7, 9]] class myTests(unittest.TestCase): def test_solution(self): self.assertEqual(Sudoku.solve(test_sudoku), test_solution) def test_poss(self): self.assertEqual(Sudoku.poss(test_sudoku, 2, 0, 4), True) def test_convert_row(self): test_row = '530070000' self.assertEqual(Sudoku.convert_row(test_row), [5,3,0,0,7,0,0,0,0]) unittest.main()
StarcoderdataPython
3499494
import os from flask_socketio import SocketIO from celery.utils.log import get_task_logger from celery.signals import after_setup_task_logger, after_setup_logger from AXIOME3_app.extensions import celery from AXIOME3_app.tasks.utils import ( configure_celery_task_logger, log_status, emit_message, run_command, cleanup_error_message ) # Import from AXIOME3 pipeline # Note PYTHONPATH is added in docker-compose.yml to enable searching in pipeline directory from exceptions.exception import AXIOME3Error as AXIOME3PipelineError from scripts.qiime2_helper.triplot import ( prep_triplot_input, make_triplot, save_plot ) logger = get_task_logger(__name__) @after_setup_task_logger.connect def after_setup_celery_task_logger(logger, **kwargs): """ This function sets the 'celery.task' logger handler and formatter """ configure_celery_task_logger(logger) @celery.task(name="extension.triplot") def triplot_task(_id, URL, task_progress_file, feature_table_artifact_path, taxonomy_artifact_path, metadata_path, environmental_metadata_path, sampling_depth, ordination_collapse_level, wascores_collapse_level, dissmilarity_index, R2_threshold, pval_threshold, wa_threshold, fill_variable, fill_variable_dtype, colour_set, brewer_type, point_size, alpha, stroke, PC_axis_one, PC_axis_two, width, height, x_axis_text_size, y_axis_text_size, legend_title_size, legend_text_size, taxa_text_size, vector_arrow_text_size): logger.info("Triplot task started for 'session, {_id},'".format(_id=_id)) local_socketio = SocketIO(message_queue=URL) channel = 'test' namespace = '/AXIOME3' room = _id output_dir = os.path.join('/output', _id) filename = 'plot' message = 'Generating Triplot...' emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) try: merged_df, vector_arrow_df, wascores_df, proportion_explained, projection_df, sample_summary = prep_triplot_input( sample_metadata_path=metadata_path, env_metadata_path=environmental_metadata_path, feature_table_artifact_path=feature_table_artifact_path, taxonomy_artifact_path=taxonomy_artifact_path, sampling_depth=sampling_depth, ordination_collapse_level=ordination_collapse_level, wascores_collapse_level=wascores_collapse_level, dissmilarity_index=dissmilarity_index, R2_threshold=R2_threshold, pval_threshold=pval_threshold, wa_threshold=wa_threshold, PC_axis_one=PC_axis_one, PC_axis_two=PC_axis_two, output_dir=output_dir ) # Save vector arrow df projection_df_fname = os.path.join(output_dir, "vector_arrow_summary.csv") projection_df.to_csv(projection_df_fname) # Save sample summary sample_summary_fname = os.path.join(output_dir, "sample_summary.csv") with open(sample_summary_fname, 'w') as fh: fh.write(sample_summary) # Replace with AXIOME3_Error in the future? except AXIOME3PipelineError as err: message = "Error: " + str(err) emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return except Exception as err: logger.error(err, exc_info=True) message = "Error: Internal Server Error..." emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return if(fill_variable_dtype == 'numeric'): fill_variable_dtype = 'float64' try: triplot = make_triplot( merged_df=merged_df, vector_arrow_df=vector_arrow_df, wascores_df=wascores_df, proportion_explained=proportion_explained, fill_variable=fill_variable, fill_variable_dtype=fill_variable_dtype, palette=colour_set, brewer_type=brewer_type, PC_axis_one=PC_axis_one, PC_axis_two=PC_axis_two, alpha=alpha, stroke=stroke, point_size=point_size, x_axis_text_size=x_axis_text_size, y_axis_text_size=y_axis_text_size, legend_title_size=legend_title_size, legend_text_size=legend_text_size, taxa_text_size=taxa_text_size, vector_arrow_text_size=vector_arrow_text_size ) except AXIOME3PipelineError as err: message = "Error: " + str(err) emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return except Exception as err: logger.error(err, exc_info=True) message = "Error: Internal Server Error..." emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return try: # Save as pdf and png save_plot(plot=triplot, filename=filename, output_dir=output_dir, file_format='pdf', width=float(width), height=float(height)) save_plot(plot=triplot, filename=filename, output_dir=output_dir, file_format='png', width=float(width), height=float(height)) except AXIOME3PipelineError as err: message = "Error: " + str(err) emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return except Exception as err: logger.error(err, exc_info=True) message = "Error: Internal Server Error..." emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message) return message = "Done!" emit_message( socketio=local_socketio, channel=channel, message=message, namespace=namespace, room=room ) log_status(task_progress_file, message)
StarcoderdataPython
12855931
<reponame>exhuma/metafilter from ConfigParser import SafeConfigParser from cStringIO import StringIO import sqlalchemy from sqlalchemy import create_engine from sqlalchemy import MetaData from sqlalchemy.orm import sessionmaker from os.path import sep from hashlib import md5 from datetime import datetime, timedelta import re import logging import functools NON_LTREE = re.compile(r'[^a-zA-Z0-9/]') LOG = logging.getLogger(__name__) CONFIG = None metadata = MetaData() Session = sessionmaker() def loadconfig(filename): defaults=StringIO("""\ [cli_logging] error_log= """) config = SafeConfigParser() config.readfp(defaults) config.read(filename) dsn = config.get('database', 'dsn', None) if not dsn: raise ValueError('No DSN found in the config file! This is required!') set_dsn(dsn) return config class memoized(object): """Decorator that caches a function's return value each time it is called. If called later with the same arguments, the cached value is returned, and not re-evaluated. """ def __init__(self, func): self.func = func self.cache = {} def __call__(self, *args): obsoletion = datetime.now() - timedelta(seconds=60*5) if args in self.cache and self.cache[args][1] < obsoletion: # value too old. Remove it from the cache LOG.debug("Removing obsolete value for args %r from cache." % (args,)) del(self.cache[args]) try: output = self.cache[args][0] LOG.debug("Cache hit for args %r." % (args,)) return output except KeyError: LOG.debug("Initialising cache for args %r." % (args,)) value = self.func(*args) if isinstance(value, sqlalchemy.orm.query.Query): result = value.all() self.cache[args] = (result, datetime.now()) return result else: self.cache[args] = (value, datetime.now()) return value except TypeError: # uncachable -- for instance, passing a list as an argument. # Better to not cache than to blow up entirely. LOG.warning("Uncachable function call for args %r" % (args,)) return self.func(*args) def __repr__(self): """Return the function's docstring.""" return self.func.__doc__ def __get__(self, obj, objtype): """Support instance methods.""" return functools.partial(self.__call__, obj) def uri_depth(uri): "determines the depth of a uri" if not uri: return 0 if uri.endswith(sep): uri = uri[0:-1] return len(uri.split(sep)) def file_md5(path): """ Return the MD5 hash of the file """ hash = md5() fptr = open(path, "rb") chunk = fptr.read(1024) while chunk: hash.update(chunk) chunk = fptr.read(1024) fptr.close() return hash.hexdigest() def uri_to_ltree(uri): if not uri or uri == "/": return "ROOT" if uri.endswith(sep): uri = uri[0:-1] if uri.startswith(sep): ltree = "ROOT%s%s" % (sep, uri[1:]) else: ltree = uri # the ltree module uses "." as path separator. Replace dots by # underscores and path separators by dots ltree = NON_LTREE.sub("_", ltree) ltree = ltree.replace(sep, ".") return ltree def set_dsn(dsn): engine = create_engine(dsn) metadata.bind = engine Session.bind = engine from metafilter.model.nodes import Node from metafilter.model.queries import Query from metafilter.model.tags import Tag # # Parse the config file # from os.path import join, exists, expanduser from os import getcwd paths = [ join(getcwd(), 'config.ini'), join(expanduser("~"), '.metafilter', 'config.ini'), join('/', 'etc', 'metafilter', 'config.ini'), ] for path in paths: if not exists(path): continue LOG.debug('Reading config from %s' % path) CONFIG = loadconfig(path) if not CONFIG: LOG.error('Unable to open config file (search order: %s)' % (', '.join(paths)))
StarcoderdataPython
1604329
<reponame>csnardi/openstates-core # Generated by Django 3.2.2 on 2021-10-13 19:07 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ("data", "0041_personoffice"), ] operations = [ migrations.DeleteModel( name="PersonContactDetail", ), ]
StarcoderdataPython
8043597
# # OtterTune - upload_batch.py # # Copyright (c) 2017-18, Carnegie Mellon University Database Group # import logging import os import urllib2 import glob import numpy as np from poster.encode import multipart_encode from poster.streaminghttp import register_openers register_openers() # Logging LOG = logging.getLogger(__name__) LOG.addHandler(logging.StreamHandler()) LOG.setLevel(logging.INFO) class ResultUploader(object): SUMMARY_EXT = '.summary' PARAMS_EXT = '.params' METRICS_EXT = '.metrics' SAMPLES_EXT = '.samples' EXPCFG_EXT = '.expconfig' RAW_EXT = '.csv' REQ_EXTS = [SUMMARY_EXT, PARAMS_EXT, METRICS_EXT, SAMPLES_EXT, EXPCFG_EXT] def __init__(self, upload_code, upload_url): self.upload_code_ = upload_code self.upload_url_ = upload_url def upload_batch(self, directories, max_files=5): for d in directories: cluster_name = os.path.basename(d) fnames = glob.glob(os.path.join(d, '*.summary')) if max_files < len(fnames): idxs = np.random.choice(len(fnames), max_files) fnames = [fnames[i] for i in idxs] bases = [fn.split('.summary')[0] for fn in fnames] # Verify required extensions exist for base in bases: complete = True for ext in self.REQ_EXTS: next_file = base + ext if not os.path.exists(next_file): LOG.warn("WARNING: missing file %s, skipping...", next_file) complete = False break if not complete: continue self.upload(base, cluster_name) def upload(self, basepath, cluster_name): exts = list(self.REQ_EXTS) if os.path.exists(basepath + self.RAW_EXT): exts.append(self.RAW_EXT) fhandlers = {ext: open(basepath + ext, 'r') for ext in exts} params = { 'upload_code': self.upload_code_, 'cluster_name': cluster_name, 'summary_data': fhandlers[self.SUMMARY_EXT], 'db_metrics_data': fhandlers[self.METRICS_EXT], 'db_parameters_data': fhandlers[self.PARAMS_EXT], 'sample_data': fhandlers[self.SAMPLES_EXT], 'benchmark_conf_data': fhandlers[self.EXPCFG_EXT], } if self.RAW_EXT in fhandlers: params['raw_data'] = fhandlers[self.RAW_EXT] datagen, headers = multipart_encode(params) request = urllib2.Request(self.upload_url_, datagen, headers) LOG.info(urllib2.urlopen(request).read()) for fh in fhandlers.values(): fh.close() def main(): url = 'http://0.0.0.0:8000/new_result/' upload_code = 'O50GE1HC8S1BHU8L6F8D' uploader = ResultUploader(upload_code, url) dirnames = glob.glob(os.path.join(os.path.expanduser( '~'), 'Dropbox/Apps/ottertune/data/sample_data/exps_*'))[:2] uploader.upload_batch(dirnames, max_files=3) if __name__ == '__main__': main()
StarcoderdataPython
46955
from django.db.models.signals import post_save from django.dispatch import receiver from company.models import Company from company.tasks import deploy_new_company @receiver(post_save, sender=Company) def company_created(sender, instance, created, **kwargs): if created: deploy_new_company.delay(instance.id)
StarcoderdataPython
1999326
<filename>examples/simulations/gyroscope1.py """ Simulation of a gyroscope hanging from a spring. """ # (adapted by <NAME> from <NAME>, 2009) from __future__ import division, print_function from vtkplotter import * # ############################################################ parameters dt = 0.005 # time step ks = 15 # spring stiffness Lrest = 1 # unstretched length of spring Ls = 1 # length of gyroscope shaft M = 1 # mass of gyroscope (massless shaft) R = 0.4 # radius of gyroscope rotor omega = 50 # angular velocity of rotor (rad/s, not shown) gpos = vector(0, 0, 0) # initial position of spring free end # ############################################################ inits top = vector(0, 2, 0) # where top of spring is held precess = vector(0, 0, 0) # initial momentum of center of mass Fgrav = vector(0, -M * 9.81, 0) gaxis = vector(0, 0, 1) # initial orientation of gyroscope gaxis = versor(gaxis) I = 1 / 2 * M * R ** 2 # moment of inertia of gyroscope Lrot = I * omega * gaxis # angular momentum cm = gpos + 0.5 * Ls * gaxis # center of mass of shaft # ############################################################ the scene vp = Plotter(axes=0, interactive=0, bg="w") vp += Text(__doc__) shaft = Cylinder([[0, 0, 0], Ls * gaxis], r=0.03, c="dg") rotor = Cylinder([(Ls - 0.55) * gaxis, (Ls - 0.45) * gaxis], r=R, c="t") bar = Cylinder([Ls*gaxis/2-R*vector(0,1,0), Ls*gaxis/2+R*vector(0,1,0)], r=R/6, c="r") gyro = shaft + rotor + bar # group actors into a single one spring = Spring(top, gpos, r=0.06, thickness=0.01, c="gray") vp += [gyro, spring] # add it to Plotter. vp += Box(top, length=0.2, width=0.02, height=0.2, c="gray") vp += Box(pos=(0, 0.5, 0), length=2.6, width=3, height=2.6, c="gray", alpha=0.2).wireframe(1) # ############################################################ the physics pb = ProgressBar(0, 5, dt, c="b") for t in pb.range(): Fspring = -ks * versor(gpos - top) * (mag(gpos - top) - Lrest) torque = cross(-1 / 2 * Ls * versor(Lrot), Fspring) # torque about center of mass Lrot += torque * dt precess += (Fgrav + Fspring) * dt # momentum of center of mass cm += (precess / M) * dt gpos = cm - 1 / 2 * Ls * versor(Lrot) # set orientation along gaxis and rotate it around its axis by omega*t degrees gyro.orientation(Lrot, rotation=omega * t, rad=True).pos(gpos) spring.stretch(top, gpos) vp.show() pb.print() vp.show(interactive=1)
StarcoderdataPython
3395042
# -*- coding: utf-8 -*- """ ====================================================== Test_mtom_attachment :mod:`tests.test_mtom_attachment` ====================================================== """ import os from os.path import join, basename import tempfile import shutil import email import hashlib from lxml import etree import pytest import requests_mock from zeep import client from zeep import ns from zeep import transport_with_attach as twa TMP_DIR = tempfile.gettempdir() TMP_OUT = join(TMP_DIR, 'mtom_test', 'out') TMP_IN = join(TMP_DIR, 'mtom_test', 'in') MB = 2**20 RESPONSE = b""" <?xml version="1.0"?> <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:exam="http://example.com/"> <soapenv:Header/> <soapenv:Body> <exam:uploadResponse> <message>ok</message> </exam:uploadResponse> </soapenv:Body> </soapenv:Envelope>""".strip() CLIENT = client.Client( 'tests/wsdl_files/mtom_attachment.wsdl', transport=twa.TransportWithAttach()) @pytest.mark.requests def create_service(): """Create service""" return CLIENT.create_service( '{http://test.ellethee.org/}MtomAttachmentBinding', 'http://test.python-zeep.org/x') def create_random_file(filename, size=1024): """Create random file""" with open(filename, 'wb') as fout: fout.write(os.urandom(size)) def get_parts(string): """get parts""" msg = twa.get_multipart() msg.set_payload(string) msg = email.message_from_string(msg.as_string()) parts = [] for part in msg.walk(): if part.get_content_maintype() == 'multipart': continue cid = part.get("Content-ID").strip("<>") if cid: item = { 'cid': cid, 'cte': part.get("Content-Transfer-Encoding"), } if item['cte'] == 'binary': item['payload'] = join(TMP_IN, cid[twa.ID_LEN + 1:]) with open(item['payload'], 'wb') as fobj: fobj.write(part.get_payload()) else: item['payload'] = part.get_payload() parts.append(item) return parts def create_tmp_dirs(): """create_tmp_dirs""" try: os.makedirs(TMP_OUT) except OSError: pass try: os.makedirs(TMP_IN) except OSError: pass def remove_tmp_dirs(): """removes tmp dirs""" shutil.rmtree(TMP_OUT) shutil.rmtree(TMP_IN) def get_file_md5(filename, blocksize=2**20): """get file md5""" md5 = hashlib.md5() with open(filename, "rb") as fin: while True: buf = fin.read(blocksize) if not buf: break md5.update(buf) return md5.hexdigest() def test_multi_upload(): """Test multiUpload""" service = create_service() create_tmp_dirs() files = [1, 2, 3, 10] for idx, size in enumerate(files): filename = join(TMP_OUT, 'test_file_{}'.format(idx)) create_random_file(filename, size * MB) files[idx] = {'fileName': basename(filename), "fileBytes": CLIENT.attach(filename)} with requests_mock.mock() as rmock: rmock.post('http://test.python-zeep.org/x', text=RESPONSE) result = service.multiUpload(files) assert result == "ok" parts = get_parts(rmock.request_history[0].body) xml = etree.fromstring(parts[0]['payload']) items = xml.findall(".//{http://test.ellethee.org/}arrayOfUpload/item") for item in items: filename = item.find("fileName").text assert get_file_md5( join(TMP_IN, filename)) == get_file_md5(join(TMP_OUT, filename)) remove_tmp_dirs() def test_upload(): """Test Upload""" service = create_service() create_tmp_dirs() filename = join(TMP_OUT, 'test_file') create_random_file(filename, 15 * MB) with requests_mock.mock() as rmock: rmock.post('http://test.python-zeep.org/x', text=RESPONSE) result = service.upload(basename(filename), CLIENT.attach(filename)) assert result == "ok" parts = get_parts(rmock.request_history[0].body) xml = etree.fromstring(parts[0]['payload']) items = xml.findall(".//{http://test.ellethee.org/}arrayOfUpload/item") for item in items: filename = item.find("fileName").text assert get_file_md5( join(TMP_IN, filename)) == get_file_md5(join(TMP_OUT, filename)) remove_tmp_dirs()
StarcoderdataPython
11309662
from pyfann import libfann connection_rate = 1 learning_rate = 0.7 num_input = 2 num_hidden = 4 num_output = 1 desired_error = 0.0001 max_iterations = 100000 iterations_between_reports = 1000 ann = libfann.neural_net() ann.create_sparse_array(connection_rate, (num_input, num_hidden, num_output)) ann.set_learning_rate(learning_rate) ann.set_activation_function_output(libfann.SIGMOID_SYMMETRIC_STEPWISE) ann.train_on_file("sample.data", max_iterations, iterations_between_reports, desired_error) ann.save("sample.net")
StarcoderdataPython
343692
from django import forms from django.shortcuts import get_object_or_404 from .models import Event from ..users.models import User class ConfirmAttendanceForm(forms.Form): def confirm_attendance(self): print(self.data) event_id = int(self.data['event_id']) username = self.data['username'] event = get_object_or_404(Event, pk=event_id) user = get_object_or_404(User, username=username) event.attendees.add(user) pass
StarcoderdataPython
6458303
#%% ''' http://epistasislab.github.io/tpot/api/#classification https://machinelearningmastery.com/tpot-for-automated-machine-learning-in-python/ ''' import os, sys import pandas as pd import numpy as np import joblib from sklearn.model_selection import train_test_split import pathlib from tpot import TPOTClassifier from sklearn.model_selection import RepeatedStratifiedKFold from sklearn.metrics import classification_report, confusion_matrix from notify_run import Notify #%%abrir csv #path = "/home/nacho/Documents/coronavirus/COVID-19_Paper/" path = "/lustre/home/idvperez/COVID-19_Paper/" os.chdir(os.path.join(path)) #path = pathlib.Path(__file__).parent.absolute() #os.chdir(path) print(os.getcwd()) #data_percentage = 0.01 data_percentage = 1 #%%Valida si existen las carpetas os.makedirs("tpot/models", exist_ok = True) #%% notify = Notify() channel = notify.register() endpoint = channel.endpoint print(endpoint) # https://notify.run/<channel_code> channel_page = channel.channel_page print(channel_page) # https://notify.run/c/<channel_page_code> #%%iter pred files def pred_label(filename): if filename.find('df_caso0') != -1: label = 'hosp_critica' if filename.find('caso1') != -1: label = 'TIPO_PACIENTE' if filename.find('caso2') != -1 or filename.find('caso3') != -1 or filename.find('df_caso_3_1') != -1 or filename.find('df_caso_3_2') != -1 or filename.find('df_caso_3_3') != -1: label = 'BOOL_DEF' if filename.find('caso5') != -1 or filename.find('df_caso5_1') != -1: label = 'UCI' if filename.find('caso6') != -1 or filename.find('caso7') != -1 or filename.find('df_caso_7_1') != -1 or filename.find('df_caso_7_2') != -1 or filename.find('df_caso_7_3') != -1: label = 'INTUBADO' return label str_path = str(path) print(str_path) i = 1 for subdir, dirs, files in os.walk(str_path+'prediction_data'): notify.send('Empezo el proceso TPOT') for file in files: if file.endswith(".zip"): file_path = subdir + "/" + file file_name = file.split('.', 1)[0] print(file_name) df_data = pd.read_csv(file_path) df_data = df_data.sample(frac=data_percentage) #separar datos label = pred_label(file_name) print(label) X = df_data.loc[:, df_data.columns != label] y = df_data.loc[:, label] print(y.value_counts()) X, y = X.values, y.values X, y = X.astype('float32'), y.astype('float32') X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33,stratify=y, shuffle=True) #---->train #cv = RepeatedStratifiedKFold(n_splits=10, n_repeats=3) tpot = TPOTClassifier(generations=5, population_size=50, scoring='balanced_accuracy', verbosity = 3, n_jobs = -1, cv= 5) tpot.fit(X_train, y_train) predictions = tpot.predict(X_test) report = classification_report(y_test, predictions, output_dict=True) report = pd.DataFrame(report).transpose() #guarda el modelo y su reporte #joblib.dump(tpot, 'tpot/'+file_name+'_tpot_model.pkl', compress = 1) report.to_csv('tpot/models/'+file_name+'_tpot_report.csv', index=True) tpot.export('tpot/models/'+file_name+'_tpot_pipeline.py') notify.send("Termino dataset # " + str(i)) i = 1 + i notify.send('Finalizo el proceso TPOT')
StarcoderdataPython
9765448
<gh_stars>0 #!/usr/bin/python3 import os.path from pathlib import Path import sys import getpass from evdev import InputDevice, list_devices devices = [InputDevice(fn) for fn in list_devices()] if len(devices) == 0: print( f"Could not find a RFID device, make sure it is plugged in.\nIf it is plugged in you may need to be added to the 'input' group (sudo usermod -a -G input {getpass.getuser()})" ) sys.exit(0) while True: try: i = 0 print("Choose the reader from list?") for dev in devices: print(f"{i} : {dev.name}") i += 1 dev_id = int(input("Device Number: ")) devicePath = Path(os.path.dirname(os.path.realpath(__file__))) devicePath = Path.joinpath(devicePath.parent.absolute(), "deviceName.txt") with open(devicePath, "w") as f: f.write(devices[dev_id].name) print(f"'{devicePath}' created") break except Exception as ex: print(f"{ex}\n") print("done") sys.exit(0)
StarcoderdataPython
5037755
<filename>src/environment/wrappers/noop_reset_env.py<gh_stars>10-100 """An environment wrapper to preform null operations on reset.""" import gym class NoopResetEnv(gym.Wrapper): """An environment wrapper to preform null operations on reset.""" def __init__(self, env, noop_max=30): """ Sample initial states by taking random number of no-ops on reset. No-op is assumed to be action 0. """ gym.Wrapper.__init__(self, env) self.noop_max = noop_max self.override_num_noops = None self.noop_action = 0 assert env.unwrapped.get_action_meanings()[0] == 'NOOP' def step(self, ac): return self.env.step(ac) def reset(self): """ Do no-op action for a number of steps in [1, noop_max].""" self.env.reset() if self.override_num_noops is not None: noops = self.override_num_noops else: noops = self.unwrapped.np_random.randint(1, self.noop_max + 1) #pylint: disable=E1101 assert noops > 0 obs = None for _ in range(noops): obs, _, done, _ = self.env.step(self.noop_action) if done: obs = self.env.reset() return obs # explicitly specify the external API of this module __all__ = [NoopResetEnv.__name__]
StarcoderdataPython
1775925
#!/usr/bin/env python # # sim-lbeg.py # for simulating LBEG beam from point A to B in the LANSCE linac # import sys import os # define directory to packages and append to $PATH par_dir = os.path.abspath(os.path.pardir) print par_dir lib_dir = os.path.join(par_dir,"bin") print lib_dir sys.path.append(lib_dir) pkg_dir = os.path.join(par_dir,"pylib") print pkg_dir sys.path.append(pkg_dir) #import additional python packages import numpy as np import matplotlib.pyplot as plt import matplotlib.mlab as mlab import math # import additional simulation packages import hpsim as hps import HPSim as HPSim # use next line to select either GPU 0 or 2 on aothpsim GPU = 0 hps.set_gpu(GPU) import lcsutil as lcs import nputil as npu import sqldb as pydb ################################################################################ # install db's and connect to beamline db_dir = par_dir + '/db' lib_dir = par_dir + '/db/lib' dbs = ['tbtd.db','dtl.db','trst.db','ccl.db'] dbconn1 = hps.DBConnection(db_dir, dbs, lib_dir, 'libsqliteext.so') dbconn1.print_dbs() dbconn1.clear_model_index() print "*** dB connection established ***" ################################################################################ # create beamline bl = hps.BeamLine() beamline = hps.get_element_list() print "*** Beamline created ***" ################################################################################ # create table of beamline elements at lengths pybl = pydb.Db_bl(db_dir, dbs) py_beamline = pybl.get_bl_elem_len() print "*** PySQLite Beamline created ***" ################################################################################ # create H- beam SIM_START = "TBDB02" #defined by input beam location #beam = hps.Beam(mass=939.294, charge=-1.0, current=0.015, num=1024*256) #H- beam beam = hps.Beam(mass=939.294, charge=-1.0, current=0.015, num=1024*256/4) #H- beam beam.set_dc(0.095, 47.0, 0.00327, -0.102, 60.0, 0.002514, 180.0, 0.0, 0.7518) #TBDB02 20140901 beam.set_frequency(201.25) betalambda = hps.betalambda(mass = beam.get_mass(), freq=beam.get_frequency(), w=0.750) phi_offset = -hps.get_beamline_length(SIM_START,'BLZ')/betalambda *360 beam.set_ref_w(0.750) beam.set_ref_phi(phi_offset) beam.translate('phi', phi_offset) beam.save_initial_beam() print "*** H- Beam created ***" ################################################################################ # create spacecharge spch = hps.SpaceCharge(nr = 32, nz = 128, interval = 0.025, adj_bunch = 3) print "spch interval=", spch.get_interval() print "adj_bunch=", spch.get_adj_bunch() # define at what energy simulation stops using adjacent bunches in SC calc spch.set_adj_bunch_cutoff_w(0.8) # remeshing factor determines how ofter the mesh gets recalc vs scaled for SC kick spch.set_remesh_threshold(0.02) #spch.set_remesh_threshold(0.2) print "cutoff w=", spch.get_adj_bunch_cutoff_w() print "*** Space Charge Initialized ***" ################################################################################ # create simulator sim = hps.Simulator(beam) sim.set_space_charge('on') print "*** Simulator Initialized ***" ################################################################################ # STANDARD AND REQUIRED STUFF ABOVE THIS LINE ################################################################################ SIM_STOP = '48DT' ENERGY_CUTOFF = 0.0 mask = gmask = beam.get_good_mask() print "*** Input Beam ***" print SIM_START print "w/user units" beam.print_results() print "*** Starting Simulation ***\n" sim.simulate(SIM_START, SIM_STOP) # determine mask of particles used in analysis and plotting wmask = beam.get_mask_with_limits('w', lolim = ENERGY_CUTOFF) gmask = beam.get_good_mask(wmask) mask = gmask print "*** Output Beam ***" print SIM_STOP print "w/user units" beam.print_results(mask) # create output plot plot = hps.BeamPlot(nrow=4, ncol=3, hsize=16, vsize=12) plot.title(SIM_STOP) plot.iso_phase_space('xxp', beam, mask, 1) plot.iso_phase_space('yyp', beam, mask, 2) plot.iso_phase_space('phiw', beam, mask, 3 ) plot.hist2d_phase_space('xxp', beam, mask, 4) plot.hist2d_phase_space('yyp', beam, mask, 5) plot.hist2d_phase_space('phiw', beam, mask, 6) plot.profile('x', beam, mask, 7, 'g-') plot.profile('y', beam, mask, 8, 'g-') plot.profile('phi', beam, mask, 9, 'g-') plot.profile('xp', beam, mask, 10, 'g-') plot.profile('yp', beam, mask, 11, 'g-') plot.profile('w', beam, mask, 12, 'g-') plot.show() exit()
StarcoderdataPython
9647169
<filename>CSIKit/visualization/plot_szenario.py """ Classes to Plot a szenario belog different measurements """ from cmath import phase from typing import Dict, List, Tuple import os import matplotlib.pyplot as plt from matplotlib.backends.backend_pdf import PdfPages from CSIKit.csi import IWLCSIFrame as CsiEntry from CSIKit.visualization.graph import Graph, TupleGraph, PlotColorMap from CSIKit.visualization.metric import Metric, TupleMetric, MatrixMetric from CSIKit.reader.readers.read_bfee import IWLBeamformReader class PlotableCSI(): """ to plot csiEntrys """ def __init__(self, metric, graph): # If metric and graph does not match : raise if issubclass(metric, TupleMetric) ^ issubclass(graph,TupleGraph): raise Exception( f""" boath should have the same output, but only on is Tuple Metric:{metric.__name__} Graph:{graph.__name__} isTuple: {issubclass(metric, TupleMetric)} ^ {issubclass(graph,TupleGraph)} """) if issubclass(metric, MatrixMetric) ^ issubclass(graph,PlotColorMap): raise Exception( f""" boath should have the same output, but only on is Graph Metric:{metric.__name__} Graph:{graph.__name__} isTuple: {issubclass(metric, MatrixMetric)} ^ {issubclass(graph,PlotColorMap)} """) self._values_per_measurement: Dict[str, List] = {} self._curr_measurement = None self._figure = None self.metric = metric() self.graph = graph(self.metric) def add_measurement(self, measurement_name: str): """ Mark the moment, if the next noticed data are of a different measurement""" self._curr_measurement = [] self._values_per_measurement[measurement_name] = self._curr_measurement def notice(self, entry: CsiEntry): if self._curr_measurement is None: print(self._curr_measurement) raise Exception( "No measurement started yet. call self.add_measurement") self._curr_measurement.append(self.metric.notice(entry)) def _plot(self): self._figure = plt.figure() axes_list = self.graph.plot( self._values_per_measurement) #{self._figure.add_subplot(ax) for ax in axes_list} def show(self): self._plot() self._figure.show() def save(self, folder, prefix=""): self._plot() prefix = f"{prefix}-" if not os.path.exists(folder): os.makedirs(folder) file_name = f"{self.metric.__class__.__name__}_{self.graph.__class__.__name__}" path = f"./{folder}/{prefix}{file_name}.pdf".replace(" ","") with PdfPages(path) as pdf: pdf.savefig(self._figure, bbox_inches='tight') class SzenarioPlotter(): """ Plots different metrics of one szenario with multiple measurements """ def __init__(self, szenario_name: str, plot_impls: List): self.szenario_name = szenario_name self.__measurements: Dict = {} self.__plot_implementations: List[PlotableCSI] = [ PlotableCSI(metric, graph) for metric, graph in plot_impls] plt.rcParams.update( {'font.size': 22, 'font.family': "Liberation Serif"}) def add_plot(self, metric: Metric, graph: Graph): """ Adds PlotableCSI and give him all measurements of this szenario """ plotable = PlotableCSI(metric, graph) for measurement_name in self.__measurements: plotable.add_measurement(measurement_name) entries = self.__measurements[measurement_name] for entry in entries: plotable.notice(entry) self.__plot_implementations.append(plotable) def add_measurement(self, name, data): """ add new measurement and notice all plotables about the new data """ if not isinstance(name, (str, int, float)): raise Exception(f"invalid input for name") if data and not isinstance(data[0], CsiEntry): raise Exception(f"invalid input for data. It is {type(data)}") self.__measurements[name] = data for plot_impl in self.__plot_implementations: plot_impl.add_measurement(name) for entry in data: if not isinstance(entry, CsiEntry): raise Exception( f"unclean CSI Entrys. Should be type CsiEntry, but it is {type(isinstance(entry, CsiEntry))}") for plot_impl in self.__plot_implementations: plot_impl.notice(entry) def add_measurements(self, measurements: dict): """ add measurements by passing a dict of name to entries:list """ for measurement_name in measurements: data = measurements[measurement_name] self.add_measurement(measurement_name, data) @classmethod def _read_file(cls, path, filter_n_rx=True): """ reads .dat file and returns csiEntries @filter_n_rx : default=True if to filter frames n_rx !=3 retruns csiEntries:list """ my_reader = IWLBeamformReader() csi_data = my_reader.read_file(path) # maybe you have to filter your entries if not all rx are used csi_entries = [] if filter_n_rx: csi_entries = [ frame for frame in csi_data.frames if frame.n_rx == 3] else: csi_entries = csi_data.frames return csi_entries def add_measurement_file(self, name, path: str): """ adds measurement by file """ if not isinstance(name, (str, int, float)): raise Exception(f"invalid input for name") if not path and not os.path.exists(path): raise Exception(f"path {path} not exists") entries = self._read_file(path) self.add_measurement(name, entries) def add_measurements_files(self, name_path: dict): """ adds measurements by passing a dict of name to path """ if not name_path or not len(name_path): raise Exception("Nothing to add in dict") for name in name_path: path = name_path[name] self.add_measurement_file(name, path) def show(self, title=""): """ shows the results of the plt of the different metrics """ self._is_szenario_vaild() {plotable.show() for plotable in self.__plot_implementations} def save(self,folder="./images"): """ saves pdf of the plot at this szenarios It maight be happend that if you use this within ipynb of yupiter it show also. """ self._is_szenario_vaild() {plotable.save(folder, prefix=self.szenario_name) for plotable in self.__plot_implementations} def _is_szenario_vaild(self): """ plots into a matplotlib axes """ # if no plots spezified if not len(self.__plot_implementations) > 0: raise Exception("define PlotableCSI before show szenario") # if __measurements empty if not len(self.__measurements) > 0: raise Exception("define meassurments before show szenario") if not isinstance(self.__measurements, dict): raise Exception( f"__measurements should be type dict but it is {type(self.__measurements)}") return True
StarcoderdataPython
388869
#!/usr/bin/env python # -*- coding: utf-8 -*- import os import importlib import time import random import numpy as np from pyhocon import ConfigFactory import torch import torch.nn as nn from tensorboardX import SummaryWriter from data.modelnet import AdaptiveModelNetDataset from utils import pointcloud_utils as put from utils.misc import Netpara, debugPrint, setup_seed, worker_init_fn device_id = 0 os.environ['CUDA_VISIBLE_DEVICES'] = str(device_id) torch.cuda.set_device(device_id) #######---------ModelNet 40------------###### trainset = AdaptiveModelNetDataset( 'modelnet/modelNet40_train_16nn_GM_adaptive_knn_sparse.npy', train=True) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4, worker_init_fn=worker_init_fn) testset = AdaptiveModelNetDataset( 'modelnet/modelNet40_test_16nn_GM_adaptive_knn_sparse.npy', train=False) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=True, num_workers=4, worker_init_fn=worker_init_fn) setup_seed(1024) net_name = 'pointnet_cls' if net_name == 'pointnet_cls': from other_models.pointnet.POINTNET import PointNetCls net = PointNetCls(k=40, feature_transform=False, device_id=device_id) elif net_name == '': from other_models.pointnet2.PointNet2_MsgCls import Pointnet2MSG net = Pointnet2MSG(input_channels=0, num_classes=40, use_xyz=True, device_id=device_id) elif net_name == 'sonet': from other_models.sonet.classifier import Model from other_models.sonet.options import Options from data.modelnet import ModelNet_Shrec_Loader opt = Options().parse() # opt.surface_normal = False trainset = ModelNet_Shrec_Loader(opt.dataroot, 'train', opt) trainloader = torch.utils.data.DataLoader(trainset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.nThreads, worker_init_fn=worker_init_fn) testset = ModelNet_Shrec_Loader(opt.dataroot, 'test', opt) testloader = torch.utils.data.DataLoader(testset, batch_size=opt.batch_size, shuffle=True, num_workers=opt.nThreads, worker_init_fn=worker_init_fn) net = Model(opt) Netpara(net.encoder) Netpara(net.classifier) elif net_name == 'sph3d': from other_models.sph3d.SPH3D_modelnet import SPH3D net_config = importlib.import_module('models.sph3d.modelnet_config') net = SPH3D(input_channels=3, class_nums=40, config=net_config, device_id=device_id) elif net_name == 'ECC': import functools from data.modelnet import ECC_ModelNetDataset import other_models.ecc_model.ecc as ecc from other_models.ecc_model.ECC import ECC import logging ''' CUDA_VISIBLE_DEVICES=0 python main.py \ --dataset modelnet40 --test_nth_epoch 25 --lr 0.1 --lr_steps '[30,60,90]' --epochs 100 --batch_size 64 --batch_parts 4 \ --model_config 'i_1_2, c_24,b,r, c_48,b,r, m_2.5_7.5, c_48,b,r, c_48,b,r, m_7.5_22.5, c_96,b,r, m_1e10_1e10, f_64,b,r,d_0.2,f_40' \ --fnet_llbias 0 --fnet_widths '[16,32]' --pc_augm_scale 1.2 --pc_augm_mirror_prob 0.2 --pc_augm_input_dropout 0.1 \ --nworkers 3 --edgecompaction 1 --edge_mem_limit 1000 --odir results/modelnet40 ''' model_config = 'i_1_2, c_24,b,r, c_48,b,r, m_2.5_7.5, c_48,b,r, c_48,b,r, m_7.5_22.5, c_96,b,r, m_1e10_1e10, f_64,b,r,d_0.2,f_40' net = ECC(model_config, 1, [(3) + (3)] + [16, 32], 1, 1, 1000, device_id=0) def cloud_edge_feats(edgeattrs): """ Defines edge features for `GraphConvInfo` in the case of point clouds. Assembles edge feature tensor given point offsets as edge attributes. """ columns = [] offsets = np.asarray(edgeattrs['offset']) # todo: possible discretization, round to multiples of min(offsets[offsets>0]) ? Or k-means (slow?)? columns.append(offsets) p1 = np.linalg.norm(offsets, axis=1) p2 = np.arctan2(offsets[:, 1], offsets[:, 0]) p3 = np.arccos(offsets[:, 2] / (p1 + 1e-6)) columns.extend( [p1[:, np.newaxis], p2[:, np.newaxis], p3[:, np.newaxis]]) edgefeats = np.concatenate(columns, axis=1).astype(np.float32) edgefeats_clust, indices = ecc.unique_rows(edgefeats) logging.debug('Edge features: %d -> %d unique edges, %d dims', edgefeats.shape[0], edgefeats_clust.shape[0], edgefeats_clust.shape[1]) return torch.from_numpy(edgefeats_clust), torch.from_numpy(indices) edge_feat_func = cloud_edge_feats collate_func = functools.partial( ecc.graph_info_collate_classification, edge_func=functools.partial(edge_feat_func)) trainset = ECC_ModelNetDataset( 'modelnet/modelNet40_train_16nn_GM_adaptive_knn_sparse.npy', pyramid_conf=net.pyramid_conf, train=True) trainloader = torch.utils.data.DataLoader(trainset, collate_fn=collate_func, batch_size=4, shuffle=True, num_workers=4, worker_init_fn=worker_init_fn) testset = ECC_ModelNetDataset( 'modelnet/modelNet40_test_16nn_GM_adaptive_knn_sparse.npy', pyramid_conf=net.pyramid_conf, train=False) testloader = torch.utils.data.DataLoader(testset, collate_fn=collate_func, batch_size=4, shuffle=True, num_workers=4, worker_init_fn=worker_init_fn) elif net_name == 'pointConv': from other_models.pointconv.POINTCONV import PointConvDensityClsSsg as PointConvClsSsg net = PointConvClsSsg(input_channels=3, num_classes=40, device_id=device_id) elif net_name == 'pointCNN': from other_models.pointCNN.pointCNN import Classifier net = Classifier(device_id=device_id) elif net_name == 'pcnn': from other_models.pcnn.pcnn import PCNN from apex import amp conf = ConfigFactory.parse_file( 'other_models/pcnn/confs/var_lesspoints.conf') net = PCNN(conf=conf.get_config('network'), input_channels=3, class_nums=40, device_id=device_id) #trainset.class_nums net, net.optimizer = amp.initialize(net, net.optimizer, opt_level="O1") # O is not number zero # with amp.scale_loss(loss, optimizer) as scaled_loss: # scaled_loss.backward() elif net_name == 'rscnn': from other_models.rscnn.RSCNN import RSCNN_SSN net = RSCNN_SSN(num_classes=40, input_channels=0, relation_prior=1, use_xyz=True) elif net_name == 'dgcnn': from other_models.dgcnn.DGCNN import DGCNN net = DGCNN(output_channels = 40, device_id=device_id) elif net_name == 'kdnet': from other_models.kdnet.kdnet import KDNet from data.modelnet import KDNet_ModelNetDataset depth=10 trainset = KDNet_ModelNetDataset('../modelnet/data/modelNet40_train_16nn_GM_adaptive_knn_sparse.npy', depth=depth, train=True) trainloader = torch.utils.data.DataLoader(trainset, batch_size=32, shuffle=True, num_workers=4,worker_init_fn=worker_init_fn) testset = KDNet_ModelNetDataset('../modelnet/data/modelNet40_test_16nn_GM_adaptive_knn_sparse.npy', depth=depth, train=False) testloader = torch.utils.data.DataLoader(testset, batch_size=32, shuffle=True, num_workers=4,worker_init_fn=worker_init_fn) setup_seed(1024) net = KDNet(input_channels=3, num_classes=40, depth=depth, device_id=device_id) else: raise ValueError("not a implemented point net!") Netpara(net) # writer=SummaryWriter() writer = None load_weight = False train_sperate = False tic = time.time() for epcho in range(1, 101): net.fit(trainloader, epcho, writer) if (epcho % 10 == 0): net.score(testloader) # net.score(testloader) if writer is not None: writer.close() toc = time.time() print("%.3f ms has passed" % ((toc - tic) * 1000)) print("Done!!!")
StarcoderdataPython
9648721
""" Provides helper functions used throughout the InvenTree project """ import io import re import json import os.path from PIL import Image from decimal import Decimal, InvalidOperation from wsgiref.util import FileWrapper from django.http import StreamingHttpResponse from django.core.exceptions import ValidationError, FieldError from django.utils.translation import gettext_lazy as _ from django.contrib.auth.models import Permission import InvenTree.version from common.models import InvenTreeSetting from .settings import MEDIA_URL, STATIC_URL from common.settings import currency_code_default from djmoney.money import Money def getSetting(key, backup_value=None): """ Shortcut for reading a setting value from the database """ return InvenTreeSetting.get_setting(key, backup_value=backup_value) def generateTestKey(test_name): """ Generate a test 'key' for a given test name. This must not have illegal chars as it will be used for dict lookup in a template. Tests must be named such that they will have unique keys. """ key = test_name.strip().lower() key = key.replace(" ", "") # Remove any characters that cannot be used to represent a variable key = re.sub(r'[^a-zA-Z0-9]', '', key) return key def getMediaUrl(filename): """ Return the qualified access path for the given file, under the media directory. """ return os.path.join(MEDIA_URL, str(filename)) def getStaticUrl(filename): """ Return the qualified access path for the given file, under the static media directory. """ return os.path.join(STATIC_URL, str(filename)) def construct_absolute_url(*arg): """ Construct (or attempt to construct) an absolute URL from a relative URL. This is useful when (for example) sending an email to a user with a link to something in the InvenTree web framework. This requires the BASE_URL configuration option to be set! """ base = str(InvenTreeSetting.get_setting('INVENTREE_BASE_URL')) url = '/'.join(arg) if not base: return url # Strip trailing slash from base url if base.endswith('/'): base = base[:-1] if url.startswith('/'): url = url[1:] url = f"{base}/{url}" return url def getBlankImage(): """ Return the qualified path for the 'blank image' placeholder. """ return getStaticUrl("img/blank_image.png") def getBlankThumbnail(): """ Return the qualified path for the 'blank image' thumbnail placeholder. """ return getStaticUrl("img/blank_image.thumbnail.png") def TestIfImage(img): """ Test if an image file is indeed an image """ try: Image.open(img).verify() return True except: return False def TestIfImageURL(url): """ Test if an image URL (or filename) looks like a valid image format. Simply tests the extension against a set of allowed values """ return os.path.splitext(os.path.basename(url))[-1].lower() in [ '.jpg', '.jpeg', '.png', '.bmp', '.tif', '.tiff', '.webp', '.gif', ] def str2bool(text, test=True): """ Test if a string 'looks' like a boolean value. Args: text: Input text test (default = True): Set which boolean value to look for Returns: True if the text looks like the selected boolean value """ if test: return str(text).lower() in ['1', 'y', 'yes', 't', 'true', 'ok', 'on', ] else: return str(text).lower() in ['0', 'n', 'no', 'none', 'f', 'false', 'off', ] def is_bool(text): """ Determine if a string value 'looks' like a boolean. """ if str2bool(text, True): return True elif str2bool(text, False): return True else: return False def isNull(text): """ Test if a string 'looks' like a null value. This is useful for querying the API against a null key. Args: text: Input text Returns: True if the text looks like a null value """ return str(text).strip().lower() in ['top', 'null', 'none', 'empty', 'false', '-1', ''] def normalize(d): """ Normalize a decimal number, and remove exponential formatting. """ if type(d) is not Decimal: d = Decimal(d) d = d.normalize() # Ref: https://docs.python.org/3/library/decimal.html return d.quantize(Decimal(1)) if d == d.to_integral() else d.normalize() def increment(n): """ Attempt to increment an integer (or a string that looks like an integer!) e.g. 001 -> 002 2 -> 3 AB01 -> AB02 QQQ -> QQQ """ value = str(n).strip() # Ignore empty strings if not value: return value pattern = r"(.*?)(\d+)?$" result = re.search(pattern, value) # No match! if result is None: return value groups = result.groups() # If we cannot match the regex, then simply return the provided value if not len(groups) == 2: return value prefix, number = groups # No number extracted? Simply return the prefix (without incrementing!) if not number: return prefix # Record the width of the number width = len(number) try: number = int(number) + 1 number = str(number) except ValueError: pass number = number.zfill(width) return prefix + number def decimal2string(d): """ Format a Decimal number as a string, stripping out any trailing zeroes or decimal points. Essentially make it look like a whole number if it is one. Args: d: A python Decimal object Returns: A string representation of the input number """ if type(d) is Decimal: d = normalize(d) try: # Ensure that the provided string can actually be converted to a float float(d) except ValueError: # Not a number return str(d) s = str(d) # Return entire number if there is no decimal place if '.' not in s: return s return s.rstrip("0").rstrip(".") def decimal2money(d, currency=None): """ Format a Decimal number as Money Args: d: A python Decimal object currency: Currency of the input amount, defaults to default currency in settings Returns: A Money object from the input(s) """ if not currency: currency = currency_code_default() return Money(d, currency) def WrapWithQuotes(text, quote='"'): """ Wrap the supplied text with quotes Args: text: Input text to wrap quote: Quote character to use for wrapping (default = "") Returns: Supplied text wrapped in quote char """ if not text.startswith(quote): text = quote + text if not text.endswith(quote): text = text + quote return text def MakeBarcode(object_name, object_pk, object_data=None, **kwargs): """ Generate a string for a barcode. Adds some global InvenTree parameters. Args: object_type: string describing the object type e.g. 'StockItem' object_id: ID (Primary Key) of the object in the database object_url: url for JSON API detail view of the object data: Python dict object containing extra datawhich will be rendered to string (must only contain stringable values) Returns: json string of the supplied data plus some other data """ if object_data is None: object_data = {} url = kwargs.get('url', False) brief = kwargs.get('brief', True) data = {} if url: request = object_data.get('request', None) item_url = object_data.get('item_url', None) absolute_url = None if request and item_url: absolute_url = request.build_absolute_uri(item_url) # Return URL (No JSON) return absolute_url if item_url: # Return URL (No JSON) return item_url elif brief: data[object_name] = object_pk else: data['tool'] = 'InvenTree' data['version'] = InvenTree.version.inventreeVersion() data['instance'] = InvenTree.version.inventreeInstanceName() # Ensure PK is included object_data['id'] = object_pk data[object_name] = object_data return json.dumps(data, sort_keys=True) def GetExportFormats(): """ Return a list of allowable file formats for exporting data """ return [ 'csv', 'tsv', 'xls', 'xlsx', 'json', 'yaml', ] def DownloadFile(data, filename, content_type='application/text', inline=False): """ Create a dynamic file for the user to download. Args: data: Raw file data (string or bytes) filename: Filename for the file download content_type: Content type for the download inline: Download "inline" or as attachment? (Default = attachment) Return: A StreamingHttpResponse object wrapping the supplied data """ filename = WrapWithQuotes(filename) if type(data) == str: wrapper = FileWrapper(io.StringIO(data)) else: wrapper = FileWrapper(io.BytesIO(data)) response = StreamingHttpResponse(wrapper, content_type=content_type) response['Content-Length'] = len(data) disposition = "inline" if inline else "attachment" response['Content-Disposition'] = f'{disposition}; filename={filename}' return response def extract_serial_numbers(serials, expected_quantity, next_number: int): """ Attempt to extract serial numbers from an input string: Requirements: - Serial numbers can be either strings, or integers - Serial numbers can be split by whitespace / newline / commma chars - Serial numbers can be supplied as an inclusive range using hyphen char e.g. 10-20 - Serial numbers can be defined as ~ for getting the next available serial number - Serial numbers can be supplied as <start>+ for getting all expecteded numbers starting from <start> - Serial numbers can be supplied as <start>+<length> for getting <length> numbers starting from <start> Args: serials: input string with patterns expected_quantity: The number of (unique) serial numbers we expect next_number(int): the next possible serial number """ serials = serials.strip() # fill in the next serial number into the serial while '~' in serials: serials = serials.replace('~', str(next_number), 1) next_number += 1 # Split input string by whitespace or comma (,) characters groups = re.split(r"[\s,]+", serials) numbers = [] errors = [] # Helper function to check for duplicated numbers def add_sn(sn): # Attempt integer conversion first, so numerical strings are never stored try: sn = int(sn) except ValueError: pass if sn in numbers: errors.append(_('Duplicate serial: {sn}').format(sn=sn)) else: numbers.append(sn) try: expected_quantity = int(expected_quantity) except ValueError: raise ValidationError([_("Invalid quantity provided")]) if len(serials) == 0: raise ValidationError([_("Empty serial number string")]) # If the user has supplied the correct number of serials, don't process them for groups # just add them so any duplicates (or future validations) are checked if len(groups) == expected_quantity: for group in groups: add_sn(group) if len(errors) > 0: raise ValidationError(errors) return numbers for group in groups: group = group.strip() # Hyphen indicates a range of numbers if '-' in group: items = group.split('-') if len(items) == 2 and all([i.isnumeric() for i in items]): a = items[0].strip() b = items[1].strip() try: a = int(a) b = int(b) if a < b: for n in range(a, b + 1): add_sn(n) else: errors.append(_("Invalid group range: {g}").format(g=group)) except ValueError: errors.append(_("Invalid group: {g}").format(g=group)) continue else: # More than 2 hyphens or non-numeric group so add without interpolating add_sn(group) # plus signals either # 1: 'start+': expected number of serials, starting at start # 2: 'start+number': number of serials, starting at start elif '+' in group: items = group.split('+') # case 1, 2 if len(items) == 2: start = int(items[0]) # case 2 if bool(items[1]): end = start + int(items[1]) + 1 # case 1 else: end = start + (expected_quantity - len(numbers)) for n in range(start, end): add_sn(n) # no case else: errors.append(_("Invalid group sequence: {g}").format(g=group)) # At this point, we assume that the "group" is just a single serial value elif group: add_sn(group) # No valid input group detected else: raise ValidationError(_(f"Invalid/no group {group}")) if len(errors) > 0: raise ValidationError(errors) if len(numbers) == 0: raise ValidationError([_("No serial numbers found")]) # The number of extracted serial numbers must match the expected quantity if not expected_quantity == len(numbers): raise ValidationError([_("Number of unique serial number ({s}) must match quantity ({q})").format(s=len(numbers), q=expected_quantity)]) return numbers def validateFilterString(value, model=None): """ Validate that a provided filter string looks like a list of comma-separated key=value pairs These should nominally match to a valid database filter based on the model being filtered. e.g. "category=6, IPN=12" e.g. "part__name=widget" The ReportTemplate class uses the filter string to work out which items a given report applies to. For example, an acceptance test report template might only apply to stock items with a given IPN, so the string could be set to: filters = "IPN = ACME0001" Returns a map of key:value pairs """ # Empty results map results = {} value = str(value).strip() if not value or len(value) == 0: return results groups = value.split(',') for group in groups: group = group.strip() pair = group.split('=') if not len(pair) == 2: raise ValidationError( "Invalid group: {g}".format(g=group) ) k, v = pair k = k.strip() v = v.strip() if not k or not v: raise ValidationError( "Invalid group: {g}".format(g=group) ) results[k] = v # If a model is provided, verify that the provided filters can be used against it if model is not None: try: model.objects.filter(**results) except FieldError as e: raise ValidationError( str(e), ) return results def addUserPermission(user, permission): """ Shortcut function for adding a certain permission to a user. """ perm = Permission.objects.get(codename=permission) user.user_permissions.add(perm) def addUserPermissions(user, permissions): """ Shortcut function for adding multiple permissions to a user. """ for permission in permissions: addUserPermission(user, permission) def getMigrationFileNames(app): """ Return a list of all migration filenames for provided app """ local_dir = os.path.dirname(os.path.abspath(__file__)) migration_dir = os.path.join(local_dir, '..', app, 'migrations') files = os.listdir(migration_dir) # Regex pattern for migration files pattern = r"^[\d]+_.*\.py$" migration_files = [] for f in files: if re.match(pattern, f): migration_files.append(f) return migration_files def getOldestMigrationFile(app, exclude_extension=True, ignore_initial=True): """ Return the filename associated with the oldest migration """ oldest_num = -1 oldest_file = None for f in getMigrationFileNames(app): if ignore_initial and f.startswith('0001_initial'): continue num = int(f.split('_')[0]) if oldest_file is None or num < oldest_num: oldest_num = num oldest_file = f if exclude_extension: oldest_file = oldest_file.replace('.py', '') return oldest_file def getNewestMigrationFile(app, exclude_extension=True): """ Return the filename associated with the newest migration """ newest_file = None newest_num = -1 for f in getMigrationFileNames(app): num = int(f.split('_')[0]) if newest_file is None or num > newest_num: newest_num = num newest_file = f if exclude_extension: newest_file = newest_file.replace('.py', '') return newest_file def clean_decimal(number): """ Clean-up decimal value """ # Check if empty if number is None or number == '' or number == 0: return Decimal(0) # Convert to string and remove spaces number = str(number).replace(' ', '') # Guess what type of decimal and thousands separators are used count_comma = number.count(',') count_point = number.count('.') if count_comma == 1: # Comma is used as decimal separator if count_point > 0: # Points are used as thousands separators: remove them number = number.replace('.', '') # Replace decimal separator with point number = number.replace(',', '.') elif count_point == 1: # Point is used as decimal separator if count_comma > 0: # Commas are used as thousands separators: remove them number = number.replace(',', '') # Convert to Decimal type try: clean_number = Decimal(number) except InvalidOperation: # Number cannot be converted to Decimal (eg. a string containing letters) return Decimal(0) return clean_number.quantize(Decimal(1)) if clean_number == clean_number.to_integral() else clean_number.normalize() def get_objectreference(obj, type_ref: str = 'content_type', object_ref: str = 'object_id'): """lookup method for the GenericForeignKey fields Attributes: - obj: object that will be resolved - type_ref: field name for the contenttype field in the model - object_ref: field name for the object id in the model Example implementation in the serializer: ``` target = serializers.SerializerMethodField() def get_target(self, obj): return get_objectreference(obj, 'target_content_type', 'target_object_id') ``` The method name must always be the name of the field prefixed by 'get_' """ model_cls = getattr(obj, type_ref) obj_id = getattr(obj, object_ref) # check if references are set -> return nothing if not if model_cls is None or obj_id is None: return None # resolve referenced data into objects model_cls = model_cls.model_class() item = model_cls.objects.get(id=obj_id) url_fnc = getattr(item, 'get_absolute_url', None) # create output ret = {} if url_fnc: ret['link'] = url_fnc() return { 'name': str(item), 'model': str(model_cls._meta.verbose_name), **ret } def inheritors(cls): """ Return all classes that are subclasses from the supplied cls """ subcls = set() work = [cls] while work: parent = work.pop() for child in parent.__subclasses__(): if child not in subcls: subcls.add(child) work.append(child) return subcls
StarcoderdataPython
5021460
<reponame>JJ/swarm-ga-worker<filename>worker/main.py from ga_worker import * from pso_worker import * import redis import json import os import time import base64 import uuid TOPIC_CONSUME = "population-objects" TOPIC_PRODUCE = "evolved-population-objects" WORKER_ID = str (uuid.uuid4()) r = redis.StrictRedis(host='redis', port=6379, db=0) # {'type': 'subscribe', 'pattern': None, 'channel': b'population-objects', 'data': 1} while True: data = None print("worker LOOP") message = r.blpop(TOPIC_CONSUME) # message is a tuple (queue_name, data) data = message[1] print("message:from::", TOPIC_CONSUME) #print("message:type:", type(data)) if data: #print(data) #data_args = base64.b64decode(data) args = json.loads(data) result = None print(args["algorithm"]) args["worker_id"] = WORKER_ID if args["algorithm"] == "GA": worker = GA_Worker(args) worker.setup() result = worker.run() else: worker = PSO_Worker(args) result = worker.run() #print("result:",result) # Return with a format for writing to MessageHub data = json.dumps(result).encode('utf-8') print("New POPULATION Message") #r.publish(TOPIC_PRODUCE, data) r.lpush(TOPIC_PRODUCE, data) else: #print("no message") time.sleep(1)
StarcoderdataPython
3333036
<reponame>impastasyndrome/DS-ALGO-OFFICIAL<gh_stars>10-100 # time complexity: O(m+n) class Solution: def searchMatrix(self, matrix, target): """ :type matrix: List[List[int]] :type target: int :rtype: bool """ if not matrix or len(matrix) == 0 or not matrix[0]: return False m, n = len(matrix), len(matrix[0]) row, col = 0, n - 1 while row < m and col >= 0: if matrix[row][col] == target: return True elif matrix[row][col] < target: row += 1 else: col -= 1 return False
StarcoderdataPython
4995915
# -*- coding: utf-8 -*- import scrapy from scrapy.http import Request from work.items import ShopItem import re class SierratradingpostSpider(scrapy.Spider): name = 'sierratradingpost' allowed_domains = ['www.sierratradingpost.com'] start_urls = ['https://www.sierratradingpost.com/'] custom_settings = { 'MYSQL_TABLE': 'data_content_1864', # 'ITEM_PIPELINES': { # 'work.pipelines.MysqlPipeline': None # } } def parse(self, response): nav_level_1_list = response.xpath('//div[contains(@class,"nav-item dropdown navigation-dropdown")]')[1:5] for nav_level_1 in nav_level_1_list: cat1 = nav_level_1.xpath('./a/text()').extract_first().strip() nav_level_2_list = nav_level_1.xpath('./div/div[2]/div') for nav_level_2 in nav_level_2_list: cat2 = nav_level_2.xpath('./a/text()').get().strip() nav_level_3_list = nav_level_2.xpath('./div/a')[2:] for nav_level_3 in nav_level_3_list: cat3 = nav_level_3.xpath('./text()').get().strip() nav_level_3_url = nav_level_3.xpath('./@href').get() print(f'{cat1}---{cat2}---{cat3}') meta = {'cat1': cat1, 'cat2': cat2, 'cat3': cat3} yield Request(response.urljoin(nav_level_3_url), callback=self.parse_product_url, meta=meta) def parse_product_url(self, response): product_list = response.xpath('//div[contains(@class,"productThumbnailContainer")]') for product in product_list: url = product.xpath('./div/a/@href').get() yield Request(response.urljoin(url), callback=self.parse_product_info, meta=response.meta) next_page = response.xpath('//link[@rel="next"]/@href').get() yield Request(response.urljoin(next_page), callback=self.parse_product_url, meta=response.meta) def parse_product_info(self, response): item = ShopItem() item['PageUrl'] = response.url item['cat1'] = response.meta['cat1'] item['cat2'] = response.meta['cat2'] item['cat3'] = response.meta['cat3'] item['category'] = '|||'.join((item['cat1'], item['cat2'], item['cat3'])) item['brand'] = response.xpath('//h1[@itemprop="name"]/a/text()').get() item['gender'] = item['cat1'] item['producttype'] = item['cat2'] item['title'] = ''.join(response.xpath('//h1[@itemprop="name"]/text()').getall()) item['price'] = response.xpath('//meta[@name="product:price:amount"]/@content').get() item['short_content'] = '' content = response.xpath('//ul[@class="list m-t-sm links-underline"]').get() item['content'] = re.sub(r'<a.*?</a>', '', content) picture = response.xpath('//input[@id="largeImageSrcTemplate"]/@value').get() pictures = '|||'.join(response.xpath('//div[@data-ajaxaltimage-next-index]/a/@href').getall()) item['pictures'] = pictures or picture item['color'] = response.xpath('//select[@id="selectedProperty1"]/option[2]/text()').get() item['size'] = '|||'.join(response.xpath('//select[@id="selectedProperty2"]/option/text()')[1:].getall()) yield item
StarcoderdataPython
3386394
import pandas as pd import plotly.graph_objects as go def vis_pentagon(dataset, dirplace, d1, d2, d3, d4, d5, target, nclass, ntest): c_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] da1_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] da2_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] da3_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] da4_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] da5_list = [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0] c1 = [[], [], [], [], []] c2_da1, c2_da2, c2_da3, c2_da4, c2_da5 = [], [], [], [], [] c3_da1, c3_da2, c3_da3, c3_da4, c3_da5 = [], [], [], [], [] c4_da1, c4_da2, c4_da3, c4_da4, c4_da5 = [], [], [], [], [] c5_da1, c5_da2, c5_da3, c5_da4, c5_da5 = [], [], [], [], [] c6_da1, c6_da2, c6_da3, c6_da4, c6_da5 = [], [], [], [], [] c7_da1, c7_da2, c7_da3, c7_da4, c7_da5 = [], [], [], [], [] for i in range(ntest): class_idx = int(target[i]) da1_list[class_idx]+=d1[i] da2_list[class_idx]+=d2[i] da3_list[class_idx]+=d3[i] da4_list[class_idx]+=d4[i] da5_list[class_idx]+=d5[i] c_list[class_idx]+=1 for class_idx in range(nclass): da1_list[class_idx]='{:.5f}'.format(da1_list[class_idx]/c_list[class_idx]) da2_list[class_idx]='{:.5f}'.format(da2_list[class_idx]/c_list[class_idx]) da3_list[class_idx]='{:.5f}'.format(da3_list[class_idx]/c_list[class_idx]) da4_list[class_idx]='{:.5f}'.format(da4_list[class_idx]/c_list[class_idx]) da5_list[class_idx]='{:.5f}'.format(da5_list[class_idx]/c_list[class_idx]) #categories = ['Identity','Jitter','Window Warp', 'Magnitude Warp', 'Time Warp'] categories = ['Identity','Jitter', 'Magnitude Warp', 'Window Warp', 'Time Warp'] fig = go.Figure() for class_idx in range(nclass): fig.add_trace(go.Scatterpolar( r=[float(da1_list[class_idx]), float(da2_list[class_idx]), float(da3_list[class_idx]), float(da4_list[class_idx]), float(da5_list[class_idx])], theta=categories, fill='toself', opacity=0.9, line=dict(width=4), name='Class {}'.format(class_idx+1))) fig.update_layout( template=None, polar=dict( radialaxis=dict( tickfont=dict(size=18), showline=False, nticks= 10, showgrid=False, visible=True, range=[0.0, 1.0])), legend_title="Class", font=dict( family="Courier New, monospace", size=20, color="RebeccaPurple"), showlegend=True) fig.write_image(dirplace+"/pentagon_{}.pdf".format(dataset)) if __name__=="__main__": dataset_id = 9 if dataset_id == 1: dataset = 'Crop' ntest = 16800 nclass = 24 if dataset_id == 2: dataset = 'ElectricDevices' ntest = 7711 nclass = 7 if dataset_id == 3: dataset = 'FordA' ntest = 1320 nclass = 2 if dataset_id == 4: dataset = 'FordB' ntest = 810 nclass = 2 if dataset_id == 5: dataset = 'HandOutlines' ntest = 370 nclass = 2 if dataset_id == 6: dataset = 'MelbournePedestrian' ntest = 2439 nclass = 10 if dataset_id == 7: dataset = 'NonInvasiveFetalECGThorax1' ntest = 1965 nclass = 42 if dataset_id == 8: dataset = 'NonInvasiveFetalECGThorax1' ntest = 1965 nclass = 42 if dataset_id == 9: dataset = 'PhalangesOutlinesCorrect' ntest = 858 nclass = 2 if dataset_id == 10: dataset = 'StarLightCurves' ntest = 8236 nclass = 3 if dataset_id == 11: dataset = 'TwoPatterns' ntest = 4000 nclass = 4 if dataset_id == 12: dataset = 'Wafer' ntest = 6164 nclass = 2 dirplace = '../{}/'.format(dataset) df = pd.read_csv(dirplace+'{}.csv'.format(dataset), index_col=0) print(df.mean()) print(df.std()) vis_pentagon(dataset, dirplace, list(df['0']),list(df['1']),list(df['2']),list(df['3']),list(df['4']), list(df['5']), nclass, ntest)
StarcoderdataPython
181547
<reponame>MarcoYLyu/scytale #!/usr/bin/env python3 from . import lattice from . import crypto from . import factor from . import ecurve from .crypto import * from .ecurve import * from .factor import * from .lattice import * from .algorithm import * __all__ = ['crypto', 'ecurve', 'factorization', 'lattice']
StarcoderdataPython
6501064
<reponame>stoimenoff/ultimate-tic-tac-tie<filename>tests/ai_test.py import unittest from unittest.mock import patch, PropertyMock from ultimatetictactoe.game.players.ai import * from ultimatetictactoe.game.boards import Macroboard, GameEndedError, Square class TestBots(unittest.TestCase): MOVES = [(2, 2), (7, 6), (3, 2), (1, 7), (3, 4), (2, 5), (7, 7), (4, 4), (4, 3), (4, 2), (3, 7), (0, 4), (2, 3), (8, 2), (6, 8), (1, 8), (5, 7), (6, 5), (2, 8), (8, 6), (6, 1), (0, 3), (0, 0), (2, 1), (8, 4), (6, 4), (1, 5), (4, 7), (3, 3), (2, 0), (8, 1), (6, 3), (0, 2), (2, 7), (8, 7), (6, 0), (1, 0), (5, 0), (6, 2), (0, 7), (2, 4), (8, 8), (6, 7), (1, 3), (5, 2), (8, 0), (7, 0), (3, 0), (1, 1), (5, 3), (7, 2), (3, 6), (5, 5), (7, 1), (3, 5)] def test_selector(self): self.assertIsInstance(select_bot(1), GentlemanBot) self.assertIsInstance(select_bot(2), RandomBot) self.assertIsInstance(select_bot(3), HeuristicsBot) self.assertIsInstance(select_bot(4), AlphaBetaBot) for i in range(5, 10): with self.assertRaises(ValueError): select_bot(i) for i in range(0, -6, -1): with self.assertRaises(ValueError): select_bot(i) def test_choose_move(self): board = Macroboard() for difficulty in range(1, 5): bot = select_bot(difficulty) move = bot.choose_move(board) self.assertIn(move, board.available_moves) with patch('ultimatetictactoe.game.boards.Macroboard.available_moves', new_callable=PropertyMock) as mock_moves: mock_moves.return_value = [] for difficulty in range(1, 5): bot = select_bot(difficulty) with self.assertRaises(GameEndedError): bot.choose_move(board) def test_score_macroboard(self): board = Macroboard() scores_x = [2, 0, 0, 0, 0, 3, 3, 5, 5, 8, 8, 8, 8, 8, 8, 10, 10, 12, 12, 12, 10, 10, 10, 12, 12, 12, 12, 12, 10, 17, 17, 19, 19, 23, 25, 25, 25, 25, 25, 25, 25, 25, 25, 29, 29, 29, 29, 29, 29, 35, 33, 35, 37, 38, 34] scores_o = [0, 0, 0, 0, 2, 2, 2, 2, 7, 7, 7, 7, 7, 7, 7, 7, 9, 9, 9, 9, 11, 11, 15, 15, 15, 15, 17, 17, 19, 19, 19, 19, 22, 22, 24, 26, 26, 26, 26, 26, 28, 30, 28, 26, 26, 28, 28, 26, 28, 28, 33, 33, 35, 37, 45] for i in range(len(self.MOVES)): score_x = heuristics.score_macroboard(board, Square.X) score_o = heuristics.score_macroboard(board, Square.O) self.assertEqual(score_x, scores_x[i]) self.assertEqual(score_o, scores_o[i]) board.make_move(*self.MOVES[i]) score_x = heuristics.score_macroboard(board, Square.X) score_o = heuristics.score_macroboard(board, Square.O) self.assertEqual(score_x, 10000) self.assertEqual(score_o, 33) board = Macroboard() for i in range(len(self.MOVES)): score = heuristics.score(board) expected = (scores_x[i] - scores_o[i]) * (-1)**i self.assertEqual(score, expected) board.make_move(*self.MOVES[i])
StarcoderdataPython
9702075
<reponame>KaloyankerR/python-fundamentals-repository import math n = int(input()) p = int(input()) courses = math.ceil(n / p) print(courses)
StarcoderdataPython
3265314
<reponame>TNRIS/api.tnris.org<filename>src/data_hub/tnris_org/bulk_actions.py # # BULK ACTIONS # used in admin console list display # def close_registration(modeladmin, request, queryset): queryset.update(registration_open=False) close_registration.short_description = "Close Registration" def open_registration(modeladmin, request, queryset): queryset.update(registration_open=True) open_registration.short_description = "Open Registration" def close_to_public(modeladmin, request, queryset): queryset.update(public=False) close_to_public.short_description = "Close to Public on website" def open_to_public(modeladmin, request, queryset): queryset.update(public=True) open_to_public.short_description = "Open to Public on website"
StarcoderdataPython
6556837
<gh_stars>0 #! /usr/bin/env python # A script to calculate the time integration parameters for generalized alpha time integration # for both, structure and fluid. # # Generalized-alpha time integration for structural dynamics follows "<NAME>. & <NAME>. A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-alpha Method Journal of Applied Mechanics, 1993, 60, 371-375" # # Generalized-alpha time integration for fluid dynamics follows "<NAME>.; <NAME>. & <NAME>. A generalized-alpha method for integrating the filtered Navier--Stokes equations with a stabilized finite element method Computer Methods in Applied Mechanics and Engineering, 2000, 190, 305-319" # # Call: ParamsGenAlpha.py rho_structure rho_fluid # # Input parameters: # rho_structure spectral radius for structural time integration # rho_fluid spectral radius for fluid time integration # # Author: <NAME> (02/2012) # # import input arguments import sys rho_struct = float(sys.argv[1]) rho_fluid = float(sys.argv[2]) # compute time integration parameters for structural gen-alpha alpha_F_struct = rho_struct / (rho_struct + 1.0) alpha_M_struct = (2.0*rho_struct - 1.0)/(rho_struct + 1.0) gamma_struct = 0.5 - alpha_M_struct + alpha_F_struct beta_struct = 0.25 * pow(1 - alpha_M_struct + alpha_F_struct,2) # compute time integration parameters for fluid gen-alpha alpha_F_fluid = 1.0 / (1.0 + rho_fluid) alpha_M_fluid = 0.5 * (3.0 - rho_fluid)/(1.0 + rho_fluid) gamma_fluid = 0.5 + alpha_M_fluid - alpha_F_fluid # print time integration parameters to console print("\nStructure:") print("ALPHA_F\t\t\t\t" + str(alpha_F_struct)) print("ALPHA_M\t\t\t\t" + str(alpha_M_struct)) print("BETA\t\t\t\t" + str(beta_struct)) print("GAMMA\t\t\t\t" + str(gamma_struct)) print("\n") print("Fluid:") print("ALPHA_M\t\t\t\t" + str(alpha_M_fluid)) print("ALPHA_F\t\t\t\t" + str(alpha_F_fluid)) print("GAMMA\t\t\t\t" + str(gamma_fluid)) print("\n")
StarcoderdataPython
4932836
<filename>fibertree/codec/matrix-vector-knkn.py from swoop import * ## Test program: Tiled K-Stationary vector-matrix multiplication # # Z_n = A_k * B_kn # Tiled: # Z_n1n0 = A_k1k0 * B_k1n1k0n0 # #for k1, (a_k0, b_n1) in a_k1 & b_k1: # for n1, (z_n0, b_n0) in z_n1 << b_n1: # for k0, (a, b_n0) in a_k0 & b_k0: # for n0, (z, b) in z_n0 << b_n0: # z += a * b a = SwoopTensor(name="A", rank_ids=["K1", "K0"]) b = SwoopTensor(name="B", rank_ids=["K1", "N1", "K0", "N0"]) z = SwoopTensor(name="Z", rank_ids=["N1", "N0"]) a_k1 = a.getStartHandle() b_k1 = b.getStartHandle() z_n1 = z.getStartHandle() z_root = z.getRootHandle() # a_k1 & b_k1 a_k1_handles = Scan(a_k1) b_k1_handles = Scan(b_k1) a_k1_coords = HandlesToCoords(a_k1, a_k1_handles) b_k1_coords = HandlesToCoords(b_k1, b_k1_handles) (ab_k1_coords, ab_a_k1_handles, ab_b_k1_handles) = Intersect(a_k1_coords, a_k1_handles, b_k1_coords, b_k1_handles, instance_name="K1") ab_a_k1_payloads = HandlesToPayloads(a_k1, ab_a_k1_handles) ab_b_k1_payloads = HandlesToPayloads(b_k1, ab_b_k1_handles) a_k0s = PayloadsToFiberHandles(a_k1, ab_a_k1_payloads) b_n1s = PayloadsToFiberHandles(b_k1, ab_b_k1_payloads) # z_n1 << b_n1 b_n1_handless = Scan(b_n1s) b_n1_coordss = HandlesToCoords(b_n1s, b_n1_handless) b_n1_payloadss = HandlesToPayloads(b_n1s, b_n1_handless) # Repeat z_n1 iteration for each b_n1 z_n1s = Amplify(z_n1, b_n1s) (z_n1_handless, z_n1_new_fiber_handles) = InsertionScan(z_n1s, b_n1_coordss) z_n1_payloadss = HandlesToPayloads(z_n1s, z_n1_handless) b_k0ss = PayloadsToFiberHandles(b_n1s, b_n1_payloadss) z_n0ss = PayloadsToFiberHandles(z_n1s, z_n1_payloadss) # a_k0 & b_k0 b_k0_handlesss = Scan(b_k0ss) # Repeat a_k0 iteration for each b_k0 a_k0ss = Amplify(a_k0s, b_k0ss, instance_name="K0") a_k0_handlesss = Scan(a_k0ss) a_k0_coordsss = HandlesToCoords(a_k0ss, a_k0_handlesss) b_k0_coordsss = HandlesToCoords(b_k0ss, b_k0_handlesss) (ab_k0_coordsss, ab_a_k0_handlesss, ab_b_k0_handlesss) = Intersect(a_k0_coordsss, a_k0_handlesss, b_k0_coordsss, b_k0_handlesss, instance_name="K0") ab_a_k0_payloadsss = HandlesToPayloads(a_k0ss, ab_a_k0_handlesss) ab_b_k0_payloadsss = HandlesToPayloads(b_k0ss, ab_b_k0_handlesss) a_valuesss = PayloadsToValues(a_k0ss, ab_a_k0_payloadsss) b_n0sss = PayloadsToFiberHandles(b_k0ss, ab_b_k0_payloadsss) # z_n0 << b_n0 b_n0_handlessss = Scan(b_n0sss) b_n0_coordssss = HandlesToCoords(b_n0sss, b_n0_handlessss) b_n0_payloadssss = HandlesToPayloads(b_n0sss, b_n0_handlessss) # Repeat z_n0 iteration for each b_n0 z_n0sss = Amplify(z_n0ss, b_n0sss, instance_name="N0") (z_n0_handlessss, z_n0_new_fiber_handlesss) = InsertionScan(z_n0sss, b_n0_coordssss) z_n0_payloadssss = HandlesToPayloads(z_n0sss, z_n0_handlessss) a_valuessss = Amplify(a_valuesss, b_n0_handlessss) b_valuessss = PayloadsToValues(b_n0sss, b_n0_payloadssss) z_valuessss = PayloadsToValues(z_n0sss, z_n0_payloadssss) # z_ref += a_val * b_val # NOTE: MUL and ADD broken out for efficiency body_func = lambda a_val, b_val, z_val: z_val + a_val * b_val resultssss = Compute(body_func, a_valuessss, b_valuessss, z_valuessss) # Reduce into the same value until end of rank z_n0_update_ackssss = UpdatePayloads(z_n0sss, z_n0_handlessss, resultssss) # Update N0 occupancy. (Should we be reducing here?) z_n1s = Amplify(z_n1, b_n1s) z_n1ss = Amplify(z_n1s, b_k0ss) z_n1_handlesss = Amplify(z_n1_handless, b_n0sss) z_n1_update_ackss = UpdatePayloads(z_n1ss, z_n1_handlesss, z_n0_new_fiber_handlesss) # Update root occupancy z_root_handles = Amplify(Stream0(0), z_n1_new_fiber_handles) z_root_update_acks = UpdatePayloads(z_root, z_root_handles, z_n1_new_fiber_handles) N1 = 2 N0 = 3 K1 = 2 K0 = 3 my_a_root = BasicIntermediateRankImplementation(1, 1) my_a_k1 = BasicIntermediateRankImplementation(K1, K0) my_a_k0 = [BasicFiberImplementation([1, 2, 3]), BasicFiberImplementation([2, 4, 6])] my_b_root = BasicIntermediateRankImplementation(1, 1) my_b_k1 = BasicIntermediateRankImplementation(K1, N1) my_b_n1 = [BasicIntermediateRankImplementation(N1, K0), BasicIntermediateRankImplementation(N1, K0, 1)] my_b_k0 = [BasicIntermediateRankImplementation(K0, N0), BasicIntermediateRankImplementation(K0, N0, 1), BasicIntermediateRankImplementation(K0, N0, 2), BasicIntermediateRankImplementation(K0, N0, 3)] my_b_n0 = [BasicFiberImplementation([4, 5, 6]), BasicFiberImplementation([5, 6, 7]), BasicFiberImplementation([6, 7, 8]), BasicFiberImplementation([12, 15, 18]), BasicFiberImplementation([15, 18, 21]), BasicFiberImplementation([18, 21, 24]), BasicFiberImplementation([8, 10, 12]), BasicFiberImplementation([10, 12, 14]), BasicFiberImplementation([12, 14, 16]), BasicFiberImplementation([16, 20, 24]), BasicFiberImplementation([20, 24, 28]), BasicFiberImplementation([24, 28, 32])] my_z_root = BasicIntermediateRankImplementation(1, 1) my_z_n1 = BasicIntermediateRankImplementation(N1, N0) my_z_n0 = [] for n1 in range(N1): my_z_n0.append(BasicFiberImplementation([0] * N0)) a.setImplementations("root", [my_a_root]) a.setImplementations("K1", [my_a_k1]) a.setImplementations("K0", my_a_k0) b.setImplementations("root", [my_b_root]) b.setImplementations("K1", [my_b_k1]) b.setImplementations("N1", my_b_n1) b.setImplementations("K0", my_b_k0) b.setImplementations("N0", my_b_n0) z.setImplementations("root", [my_z_root]) z.setImplementations("N1", [my_z_n1]) z.setImplementations("N0", my_z_n0) evaluate(z_n0_update_ackssss, 4) evaluate(z_n1_update_ackss, 2) evaluate(z_root_update_acks, 1) expected_vals = [[160, 190, 220], [352, 418, 484]] print(f"Final K-Stationary result:") for n1 in range(N1): print(my_z_n0[n1].vals) for n1 in range(N1): assert(my_z_n0[n1].vals == expected_vals[n1]) print("==========================")
StarcoderdataPython
3486410
<reponame>bhv/covid-19-growth<filename>lib/us.py import pandas as pd from operator import itemgetter import etl from pprint import pprint as pp # Dataframes # `df_us` A Dictionary of case, death, and recovery dataframes for the US # `df_us_states` A Dictionary of state-level case, death, and recovery dataframes for the US # `df_us_population` 2019 US census population data by state, sub-region, and region # Functions # `us_data(df)` Filter input dataframe on US rows. # `us_data_state(df)` Filter input US dataframe state-level records. # `population_for_state(state_name)` # All US data. Applied to cases, deaths, and recoveries in the dictionary `df_us` def us_data(df): df = df.rename(columns={'province_state': 'state'}) # For consistency with census data df.state = df.state.apply(lambda state: (state, 'District of Columbia') [state == 'Washington, D.C.']) df.state, df['state_abbrev'] = itemgetter(0, 1)(df.state.str.split(', ').str) return df # Sate-level US data. Applied to cases, deaths, and recoveries in the dictionary `df_us_states` def us_data_state(df): df = df[df['state'].isin(df_us_population['state'])] return df[['day', 'state', 'cases']] # Unused at present def population_for_state(state_name): return df_us_population[df_us_population.state == state_name].iloc[0].population_2019 # US population df_us_population = pd.read_csv('csv/us_population.csv') # Dict of all US data df_us = { 'cases': us_data(etl.for_country(etl.df_cases, 'US')), 'deaths': us_data(etl.for_country(etl.df_deaths, 'US')), 'recovered': us_data(etl.for_country(etl.df_recovered, 'US')) } # Dict of US state-level data df_us_states = { 'cases': us_data_state(df_us['cases']), 'deaths': us_data_state(df_us['deaths']), 'recovered': us_data_state(df_us['recovered']), }
StarcoderdataPython
32905
import unittest from app.models import Source class testSource(unittest.TestCase): """ SourcesTest class to test the behavior of the Sources class """ def setUp(self): """ Method that runs before each other test runs """ self.new_source = Source('abc-news','ABC news','Your trusted source for breaking news',"https://abcnews.go.com","general","en","us") def test_instance(self): self.assertTrue(isinstance(self.new_source,Source)) if __name__ == "__main__": unittest.main()
StarcoderdataPython
6435727
<filename>ndic/tests/test_search.py # -*- coding: utf-8 -*- from __future__ import unicode_literals, absolute_import from unittest import TestCase import mock import requests from ndic.search import search from ndic.exceptions import NdicConnectionError class NdicTestCase(TestCase): def test_search_korean_word(self): test_search_korean_word = "사과" test_corresponding_english_word = "(과일) apple" self.assertEqual( search(test_search_korean_word), test_corresponding_english_word, ) def test_search_english_word(self): test_search_english_word = "apple" test_corresponding_korean_word = "사과" self.assertEqual( search(test_search_english_word), test_corresponding_korean_word, ) def test_search_nonexistent_korean_word(self): test_nonexistent_korean_word = "아갸야라" self.assertFalse( search(test_nonexistent_korean_word), ) def test_search_nonexistent_english_word(self): test_nonexistent_english_word = "asfasdfasdf" self.assertFalse( search(test_nonexistent_english_word), ) def test_search_korean_word_multiple_meaning(self): test_search_korean_word = "말" test_corresponding_english_word_1 = "(언어) word, language, speech, " \ "(literary) tongue" test_corresponding_english_word_2 = "(동물) horse" test_corresponding_english_word_3 = "(마지막) end (of), close (of)" self.assertEqual( search(test_search_korean_word, 1), test_corresponding_english_word_1, ) self.assertEqual( search(test_search_korean_word, 2), test_corresponding_english_word_2, ) self.assertEqual( search(test_search_korean_word, 3), test_corresponding_english_word_3, ) def test_search_english_word_multiple_meaning(self): test_search_english_word = "get" test_corresponding_korean_word_1 = "받다" test_corresponding_korean_word_2 = "얻다, 입수하다; 가지다(obtain)" test_corresponding_korean_word_3 = "(동물의) 새끼; 새끼를 낳음" self.assertEqual( search(test_search_english_word, 1), test_corresponding_korean_word_1, ) self.assertEqual( search(test_search_english_word, 2), test_corresponding_korean_word_2, ) self.assertEqual( search(test_search_english_word, 3), test_corresponding_korean_word_3, ) def test_search_xth_exceed(self): test_nonexistent_english_word = "말" self.assertFalse( search(test_nonexistent_english_word, 10), ) def test_search_negative_or_zero_xth(self): test_nonexistent_english_word = "말" self.assertFalse( search(test_nonexistent_english_word, -1), ) self.assertFalse( search(test_nonexistent_english_word, 0), ) @mock.patch.object(requests, 'get', side_effect=requests.ConnectionError) def test_search_without_internet_network(self, mock_requests): test_search_korean_word = "사과" self.assertRaises( NdicConnectionError, search, test_search_korean_word, )
StarcoderdataPython
6578991
<filename>kws/augmentations/wave_augmentations/__init__.py from kws.augmentations.wave_augmentations.wave_augmentations import WaveAugs __all__ = [ 'WaveAugs' ]
StarcoderdataPython
1904056
from direct.directnotify import DirectNotifyGlobal from direct.showbase.PythonUtil import invertDictLossless from toontown.coghq import StageRoomSpecs from toontown.toonbase import ToontownGlobals from direct.showbase.PythonUtil import normalDistrib, lerp import random def printAllCashbotInfo(): print('roomId: roomName') for roomId, roomName in list(StageRoomSpecs.CashbotStageRoomId2RoomName.items()): print('%s: %s' % (roomId, roomName)) print('\nroomId: numBattles') for roomId, numBattles in list(StageRoomSpecs.roomId2numBattles.items()): print('%s: %s' % (roomId, numBattles)) print('\nstageId floor roomIds') printStageRoomIds() print('\nstageId floor numRooms') printNumRooms() print('\nstageId floor numForcedBattles') printNumBattles() def iterateLawbotStages(func): from toontown.toonbase import ToontownGlobals for layoutId in range(len(stageLayouts)): for floorNum in range(getNumFloors(layoutId)): func(StageLayout(0, floorNum, layoutId)) def printStageInfo(): def func(sl): print(sl) iterateLawbotStages(func) def printRoomUsage(): usage = {} def func(sl): for roomId in sl.getRoomIds(): usage.setdefault(roomId, 0) usage[roomId] += 1 iterateLawbotStages(func) roomIds = list(usage.keys()) sorted(roomIds) for roomId in roomIds: print('%s: %s' % (roomId, usage[roomId])) def printRoomInfo(): roomIds = list(StageRoomSpecs.roomId2numCogs.keys()) sorted(roomIds) for roomId in roomIds: print('room %s: %s cogs, %s cogLevels, %s merit cogLevels' % (roomId, StageRoomSpecs.roomId2numCogs[roomId], StageRoomSpecs.roomId2numCogLevels[roomId], StageRoomSpecs.roomId2numMeritCogLevels[roomId])) def printStageRoomIds(): def func(ml): print(ml.getStageId(), ml.getFloorNum(), ml.getRoomIds()) iterateCashbotStages(func) def printStageRoomNames(): def func(ml): print(ml.getStageId(), ml.getFloorNum(), ml.getRoomNames()) iterateCashbotStages(func) def printNumRooms(): def func(ml): print(ml.getStageId(), ml.getFloorNum(), ml.getNumRooms()) iterateCashbotStages(func) def printNumBattles(): def func(ml): print(ml.getStageId(), ml.getFloorNum(), ml.getNumBattles()) iterateCashbotStages(func) DefaultLayout1 = ({0: (0, 1, 2, 3, 1, 2, 4), 1: (0, 1, 2, 3, 1, 2, 4), 2: (0, 1, 2, 3, 1, 2, 4), 3: (0, 1, 2, 3, 1, 2, 4), 4: (0, 1, 2, 3, 1, 2, 4), 5: (0, 1, 2, 3, 1, 2, 4), 6: (0, 1, 2, 3, 1, 2, 4), 7: (0, 1, 2, 3, 1, 2, 4), 8: (0, 1, 2, 3, 1, 2, 4), 9: (0, 1, 2, 3, 1, 2, 4), 10: (0, 1, 2, 3, 1, 2, 4), 11: (0, 1, 2, 3, 1, 2, 4), 12: (0, 1, 2, 3, 1, 2, 4), 13: (0, 1, 2, 3, 1, 2, 4), 14: (0, 1, 2, 3, 1, 2, 4), 15: (0, 1, 2, 3, 1, 2, 4), 16: (0, 1, 2, 3, 1, 2, 4), 17: (0, 1, 2, 3, 1, 2, 4), 18: (0, 1, 2, 3, 1, 2, 4), 19: (0, 1, 2, 3, 1, 2, 4)},) DefaultLayout = [(0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1), (0, 5, 2, 3, 5, 2, 1)] testLayout = [(0, 3, 8, 105, 1), (0, 7, 8, 105, 2)] LawOfficeLayout2_0 = [(0, 7, 8, 105, 1), (0, 10, 104, 103, 1), (0, 105, 101, 12, 2)] LawOfficeLayout2_1 = [(0, 10, 11, 104, 1), (0, 100, 105, 8, 1), (0, 103, 3, 104, 2)] LawOfficeLayout2_2 = [(0, 8, 105, 102, 1), (0, 100, 104, 10, 1), (0, 101, 105, 3, 2)] LawOfficeLayout3_0 = [(0, 8, 101, 104, 1), (0, 7, 105, 103, 1), (0, 100, 8, 104, 1), (0, 105, 10, 12, 2)] LawOfficeLayout3_1 = [(0, 100, 8, 105, 1), (0, 103, 10, 104, 1), (0, 8, 7, 105, 1), (0, 104, 12, 101, 2)] LawOfficeLayout3_2 = [(0, 103, 104, 100, 1), (0, 102, 8, 105, 1), (0, 10, 104, 3, 1), (0, 105, 10, 11, 2)] LawOfficeLayout4_0 = [(0, 3, 7, 105, 1), (0, 103, 104, 8, 1), (0, 102, 105, 11, 1), (0, 8, 104, 100, 1), (0, 10, 105, 12, 2)] LawOfficeLayout4_1 = [(0, 7, 105, 102, 1), (0, 103, 12, 104, 1), (0, 101, 104, 8, 1), (0, 10, 3, 105, 1), (0, 8, 104, 102, 2)] LawOfficeLayout4_2 = [(0, 11, 105, 102, 1), (0, 3, 104, 8, 1), (0, 100, 10, 104, 1), (0, 8, 12, 105, 1), (0, 104, 102, 11, 2)] LawOfficeLayout5_0 = [(0, 104, 10, 7, 1), (0, 105, 103, 3, 1), (0, 104, 11, 12, 1), (0, 101, 8, 105, 1), (0, 10, 104, 12, 1), (0, 105, 100, 7, 2)] LawOfficeLayout5_1 = [(0, 11, 8, 104, 1), (0, 102, 10, 105, 1), (0, 104, 7, 101, 1), (0, 105, 10, 12, 1), (0, 8, 11, 105, 1), (0, 104, 12, 3, 2)] LawOfficeLayout5_2 = [(0, 105, 103, 8, 1), (0, 10, 3, 104, 1), (0, 105, 103, 101, 1), (0, 12, 8, 104, 1), (0, 7, 11, 104, 1), (0, 105, 12, 10, 2)] stageLayouts = [LawOfficeLayout2_0, LawOfficeLayout2_1, LawOfficeLayout2_2, LawOfficeLayout3_0, LawOfficeLayout3_1, LawOfficeLayout3_2, LawOfficeLayout4_0, LawOfficeLayout4_1, LawOfficeLayout4_2, LawOfficeLayout5_0, LawOfficeLayout5_1, LawOfficeLayout5_2] stageLayouts1 = [testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout, testLayout] def getNumFloors(layoutIndex): return len(stageLayouts[layoutIndex]) class StageLayout: notify = DirectNotifyGlobal.directNotify.newCategory('StageLayout') def __init__(self, stageId, floorNum, stageLayout = 0): self.stageId = stageId self.floorNum = floorNum self.roomIds = [] self.hallways = [] self.layoutId = stageLayout self.roomIds = stageLayouts[stageLayout][floorNum] self.numRooms = 1 + len(self.roomIds) self.numHallways = self.numRooms - 1 hallwayRng = self.getRng() connectorRoomNames = StageRoomSpecs.CashbotStageConnectorRooms for i in range(self.numHallways): self.hallways.append(hallwayRng.choice(connectorRoomNames)) def getNumRooms(self): return len(self.roomIds) def getRoomId(self, n): return self.roomIds[n] def getRoomIds(self): return self.roomIds[:] def getRoomNames(self): names = [] for roomId in self.roomIds: names.append(StageRoomSpecs.CashbotStageRoomId2RoomName[roomId]) return names def getNumHallways(self): return len(self.hallways) def getHallwayModel(self, n): return self.hallways[n] def getNumBattles(self): numBattles = 0 for roomId in self.getRoomIds(): numBattles += StageRoomSpecs.roomId2numBattles[roomId] return numBattles def getNumCogs(self): numCogs = 0 for roomId in self.getRoomIds(): numCogs += StageRoomSpecs.roomId2numCogs[roomId] return numCogs def getNumCogLevels(self): numLevels = 0 for roomId in self.getRoomIds(): numLevels += StageRoomSpecs.roomId2numCogLevels[roomId] return numLevels def getNumMeritCogLevels(self): numLevels = 0 for roomId in self.getRoomIds(): numLevels += StageRoomSpecs.roomId2numMeritCogLevels[roomId] return numLevels def getStageId(self): return self.stageId def getFloorNum(self): return self.floorNum def getRng(self): return random.Random(self.stageId * self.floorNum) def __str__(self): return 'StageLayout: id=%s, layout=%s, floor=%s, meritCogLevels=%s, numRooms=%s, numBattles=%s, numCogs=%s' % (self.stageId, self.layoutId, self.floorNum, self.getNumMeritCogLevels(), self.getNumRooms(), self.getNumBattles(), self.getNumCogs()) def __repr__(self): return str(self)
StarcoderdataPython
5025061
# Copyright 2013-2022 Lawrence Livermore National Security, LLC and other # Spack Project Developers. See the top-level COPYRIGHT file for details. # # SPDX-License-Identifier: (Apache-2.0 OR MIT) from spack import * class RGitcreds(RPackage): """Query 'git' Credentials from 'R'. Query, set, delete credentials from the 'git' credential store. Manage 'GitHub' tokens and other 'git' credentials. This package is to be used by other packages that need to authenticate to 'GitHub' and/or other 'git' repositories.""" cran = "gitcreds" version('0.1.1', sha256='b14aaf4e910a9d2d6c65c93e645f0b0159c00898e669f917f83c03dfedb1dfea') depends_on('git', type='run')
StarcoderdataPython
1640504
# Generated by Django 2.1.8 on 2019-05-15 12:04 from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('core', '0004_recipe'), ] operations = [ migrations.RenameField( model_name='recipe', old_name='Ingredient', new_name='ingredients', ), migrations.RenameField( model_name='recipe', old_name='Tag', new_name='tags', ), ]
StarcoderdataPython
85931
<reponame>tmenegaz/django<gh_stars>0 #!/home/tmenegaz/Documentos/cimatec/2016.2/escolaTecnica/mundoSenai/django/aula/aulaDjango/py3.5/bin/python3.5 from django.core import management if __name__ == "__main__": management.execute_from_command_line()
StarcoderdataPython
1753988
<filename>core-python/Core_Python/regexpkg/Regex_Example1.py ''' Fill in the code to check if the text passed contains the vowels a, e and i, with exactly one occurrence of any other character in between. ''' import re def check_aei (text): result = re.search(r"a.e.i", text) return result != None print(check_aei("academia")) # True print(check_aei("aerial")) # False print(check_aei("paramedic")) # True
StarcoderdataPython
4904835
<gh_stars>0 import numbers import numpy as np import pickle class euclidean_tVec( object ): # def __init__( self ): # self.Type = "Euclidean_Tangent" # self.nDim = 3 # self.tVector = [ 0, 0, 0 ] def __init__( self, nDim ): self.Type = "Euclidean_Tangent" self.nDim = nDim self.tVector = np.zeros( nDim ) def GetTangentVector(self): return self.tVector def SetTangentVector(self, tVec): if not len( tVec ) == self.nDim: print( "Error : Dimensions does not match" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nDim ): result += self.tVector[ i ] * tVec1.tVector[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = euclidean_tVec( self.nDim ) for i in range( self.nDim ): tVector_t.tVector[ i ] = self.tVector[ i ] * t return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] class euclidean( object ): # def __init__( self ): # self.Type = "Euclidean" # self.nDim = 3 # self.pt = [ 0.0, 0.0, 0.0 ] def __init__( self, nDim ): self.Type = "Euclidean" self.nDim = nDim self.pt = np.zeros( nDim ) def SetPoint( self, pt ): if not len( pt ) == self.nDim: print( "Error : Dimensions does not match" ) return self.pt = pt def GetPoint( self ): return self.pt def InnerProduct( self, ptA ): result = 0 for i in range( self.nDim ): result += self.pt[ i ] * ptA.pt[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ExponentialMap( self, tVec ): exp_pt = euclidean( self.nDim ) newPt_mat = np.zeros( self.nDim ) for i in range( self.nDim ): newPt_mat[ i ] = self.pt[ i ] + tVec.tVector[ i ] exp_pt.SetPoint( newPt_mat.tolist() ) return exp_pt def LogMap( self, ptA ): tVec = euclidean_tVec( self.nDim ) tVec_list = [] for i in range( self.nDim ): tVec_i = ptA.pt[ i ] - self.pt[ i ] tVec_list.append( tVec_i ) tVec.SetTangentVector( tVec_list ) return tVec def RiemannianDistanceToA( self, ptA ): tVec_toA = self.LogMap( ptA ) distSq = tVec_toA.norm() dist = np.sqrt( distSq ) return dist def ProjectTangent( self, pt, tVec ): vProjected = tVec return vProjected def ParallelTranslate( self, v, w ): return w def ParallelTranslateToA( self, ptA, w ): return w def ParallelTranslateAtoB( self, ptA, ptB, w ): return w def AdjointGradientJacobi( self, v, j, dj ): # Function Output jOutput = j jOutputDash = dj jOutputDash_list = [] for i in range( self.nDim ): jOutputDash_i = j.tVector[i] + dj.tVector[i] jOutputDash_list.append( jOutputDash_i ) jOutputDash.SetTangentVector( jOutputDash_list ) return jOutput, jOutputDash def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] class sphere_tVec( object ): # def __init__( self ): # self.Type = "Sphere_Tangent" # self.nDim = 3 # self.tVector = [ 0, 0, 0 ] def __init__( self, nDim ): self.Type = "Sphere_Tangent" self.nDim = nDim self.tVector = np.zeros( nDim ) def GetTangentVector(self): return self.tVector def SetTangentVector(self, tVec): if not len( tVec ) == self.nDim: print( "Error : Dimensions does not match" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nDim ): result += self.tVector[ i ] * tVec1.tVector[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = sphere_tVec( self.nDim ) for i in range( self.nDim ): tVector_t.tVector[ i ] = self.tVector[ i ] * t return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] class sphere( object ): # def __init__( self ): # self.Type = "Sphere" # self.nDim = 3 # self.pt = [ 1.0, 0.0, 0.0 ] # Base point in S^2 def __init__( self, nDim ): self.Type = "Sphere" self.nDim = nDim pt_base = np.zeros( nDim ) pt_base[ 0 ] = 1 self.pt = pt_base def SetPoint( self, pt ): if not len( pt ) == self.nDim: print( "Error : Dimensions does not match" ) return if not np.linalg.norm( pt ) == 1: # print( "Warning : The point is not on a sphere") self.pt = pt return self.pt = pt def GetPoint( self ): return self.pt def InnerProduct( self, ptA ): result = 0 for i in range( self.nDim ): result += self.pt[ i ] * ptA.pt[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): inner_prod_pt_tVec = 0 for i in range( self.nDim ): inner_prod_pt_tVec += pt.pt[i] * tVec.tVector[i] vProjected = sphere_tVec( self.nDim ) for i in range( self.nDim ): vProjected.tVector[i] = tVec.tVector[i] - inner_prod_pt_tVec * pt.pt[i] return vProjected def ParallelTranslate( self, v, w ): vNorm = v.norm() if( vNorm < 1.0e-12 ): return w innerProd = v.InnerProduct( w ) scaleFactor = innerProd / ( vNorm * vNorm ) # Component of w orthogonal to v orth = sphere_tVec( self.nDim ) for i in range( self.nDim ): orth.tVector[ i ] = w.tVector[ i ] - v.tVector[ i ] * scaleFactor # Compute parallel translated v vParallel = sphere_tVec( self.nDim ) for i in range( self.nDim ): vParallel.tVector[ i ] = self.pt[ i ]* ( -np.sin( vNorm ) * vNorm ) + v.tVector[ i ] * np.cos( vNorm ) # Parallel Translated w wParallelTranslated = sphere_tVec( self.nDim ) for i in range( self.nDim ): wParallelTranslated.tVector[ i ] = vParallel.tVector[ i ] * scaleFactor + orth.tVector[ i ] return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) vNorm = v.norm() if( vNorm < 1.0e-12 ): return w innerProd = v.InnerProduct( w ) scaleFactor = innerProd / ( vNorm * vNorm ) # Component of w orthogonal to v orth = sphere_tVec( self.nDim ) for i in range( self.nDim ): orth.tVector[ i ] = w.tVector[ i ] - v.tVector[ i ] * scaleFactor # Compute parallel translated v vParallel = sphere_tVec( self.nDim ) for i in range( self.nDim ): vParallel.tVector[ i ] = self.pt[ i ]* ( -np.sin( vNorm ) * vNorm ) + v.tVector[ i ] * np.cos( vNorm ) # Parallel Translated w wParallelTranslated = sphere_tVec( self.nDim ) for i in range( self.nDim ): wParallelTranslated.tVector[ i ] = vParallel.tVector[ i ] * scaleFactor + orth.tVector[ i ] return wParallelTranslated def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() if vNorm < 1.0e-12: for i in range( self.nDim ): dj.tVector[ i ] = j.tVector[ i ] + dj.tVector[ i ] # Function Output jOutput = j jOutputDash = dj else: innerProdVJ = v.InnerProduct( j ) innerProdVJPrime = v.InnerProduct( dj ) scaleFactorJ = innerProdVJ / ( vNorm * vNorm ) scaleFactorJPrime = innerProdVJPrime / ( vNorm * vNorm ) jTang = sphere_tVec( self.nDim ) djTang = sphere_tVec( self.nDim ) jOrth = sphere_tVec( self.nDim ) djOrth = sphere_tVec( self.nDim ) for i in range( self.nDim ): jTang.tVector[ i ] = v.tVector[ i ] * scaleFactorJ djTang.tVector[ i ] = v.tVector[ i ] * scaleFactorJPrime jOrth.tVector[ i ] = j.tVector[ i ] - jTang.tVector[ i ] djOrth.tVector[ i ] = dj.tVector[ i ] - djTang.tVector[ i ] j.tVector[ i ] = jTang.tVector[ i ] + ( np.cos( vNorm ) * jOrth.tVector[ i ] ) - ( ( vNorm * np.sin( vNorm ) ) * djOrth.tVector[ i ] ) j = e_base.ParallelTranslate( v, j ) for i in range( self.nDim ): dj.tVector[ i ] = jTang.tVector[ i ] + djTang.tVector[ i ] + ( np.sin(vNorm) / vNorm ) * jOrth.tVector[ i ] + np.cos( vNorm ) * djOrth.tVector[ i ] dj = e_base.ParallelTranslate( v, dj ) # Function Output jOutput = j jOutputDash = dj return jOutput, jOutputDash def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def ExponentialMap( self, tVec ): theta = np.linalg.norm( tVec.tVector ) if theta < 1e-12: exp_pt = sphere( self.nDim ) exp_pt.pt = self.pt return exp_pt if theta > np.pi * 2: theta = np.mod( theta, np.pi * 2 ) exp_pt = sphere( self.nDim ) lhs = np.multiply( np.cos( theta ), self.pt ) rhs = np.multiply( np.sin( theta ) / theta, tVec.tVector ) exp_pt.pt = lhs + rhs exp_pt.pt = np.divide( exp_pt.pt, exp_pt.norm() ) return exp_pt def LogMap( self, another_pt ): cosTheta = self.InnerProduct( another_pt ) tVec = sphere_tVec( self.nDim ) for i in range( self.nDim ): tVec.tVector[ i ] = another_pt.pt[ i ] - cosTheta * self.pt[ i ] length = tVec.norm() if length < 1e-12 or cosTheta >= 1.0 or cosTheta <= -1.0: tVec = sphere_tVec( self.nDim ) return tVec for i in range( self.nDim ): tVec.tVector[ i ] = tVec.tVector[ i ] * np.arccos( cosTheta ) / length return tVec def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] class pos_real_tVec( object ): def __init__( self, nDim ): self.Type = "PositiveReal_Tangent" self.nDim = nDim self.tVector = np.zeros( nDim ).tolist() def GetTangentVector(self): return self.tVector def SetTangentVector(self, tVec): if type( tVec ) == list: if not len( tVec ) == self.nDim: print( "Error : Dimensions does not match" ) return else: self.tVector = tVec else: if not self.nDim == 1: print( "Error : Dimensions does not match" ) return else: self.tVector[ 0 ] = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nDim ): result += self.tVector[ i ] * tVec1.tVector[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = pos_real_tVec( self.nDim ) for i in range( self.nDim ): tVector_t.tVector[ i ] = self.tVector[ i ] * t return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] class pos_real( object ): def __init__( self, nDim ): self.Type = "PositiveReal" self.nDim = nDim self.pt = np.ones( nDim ).tolist() def SetPoint( self, pt ): if type( pt ) == list: if not len( pt ) == self.nDim: print( "Error : Dimensions does not match" ) return else: self.pt = pt else: if not self.nDim == 1: print( "Error : Dimensions does not match" ) return else: self.pt[ 0 ] = pt def GetPoint( self ): return self.pt def InnerProduct( self, ptA ): result = 0 for i in range( self.nDim ): result += self.pt[ i ] * ptA.pt[ i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ExponentialMap( self, tVec ): exp_pt = pos_real( self.nDim ) # print( "Tangent Vector" ) # print( tVec.tVector ) exp_pt.SetPoint( np.multiply( self.pt, np.exp( tVec.tVector ) ).tolist() ) return exp_pt def LogMap( self, another_pt ): tVec = pos_real_tVec( self.nDim ) tVec.SetTangentVector( np.log( np.divide( another_pt.pt, self.pt ) ).tolist() ) return tVec def ProjectTangent( self, pt, tVec ): vProjected = tVec return vProjected def ParallelTranslate( self, v, w ): return w def ParallelTranslateToA( self, ptA, w ): return w def ParallelTranslateAtoB( self, a, b, w ): return w def AdjointGradientJacobi( self, v, j, dj, ): jOutput = j jOutputDash = dj for i in range( self.nDim ): jOutputDash.tVector[ i ] = j.tVector[ i ] + dj.tVector[ i ] return jOutput, jOutputDash def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] class cmrep_tVec( object ): def __init__( self, nDim ): self.Type = "CMRep_Tangent" self.nDim = nDim self.tVector = [] for i in range( self.nDim ): self.tVector.append( [ euclidean_tVec( 3 ), pos_real_tVec( 1 ) ] ) self.meanRadius = 1 def SetPositionTangentVector( self, idx, pos_tVec ): self.tVector[ idx ][ 0 ].SetTangentVector( pos_tVec ) def SetRadiusTangentVector( self, idx, rad_tVec ): self.tVector[ idx ][ 1 ].SetTangentVector( rad_tVec ) def SetMeanRadius( self, meanRadius ): self.meanRadius = meanRadius def GetTangentVector(self): return self.tVector def SetTangentVector( self, tVec ): if not len( tVec ) == self.nDim: print( "Error : Dimension Mismatch" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nDim ): result += self.tVector[ i ][ 0 ].InnerProduct( tVec1.tVector[ i ][ 0 ] ) result += self.meanRadius * tVec1.meanRadius * self.tVector[ i ][ 1 ].InnerProduct( tVec1.tVector[ i ][ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] self.meanRadius = infoList[ 3 ] class cmrep( object ): def __init__( self, nDim ): self.Type = "CMRep" self.nDim = nDim self.pt = [] self.pos = [] self.rad = [] for i in range( nDim ): self.pt.append( [ euclidean( 3 ), pos_real( 1 ) ] ) self.pos.append( self.pt[ i ][ 0 ] ) self.rad.append( self.pt[ i ][ 1 ] ) self.meanRadius = 1 def SetPoint( self, pt ): if not len( pt ) == self.nDim: print( "Error : Dimensions does not match" ) return self.pt = pt self.pos = [] self.rad = [] for i in range( self.nDim ): self.pos.append( self.pt[ i ][ 0 ] ) self.rad.append( self.pt[ i ][ 1 ] ) def UpdateMeanRadius( self ): meanRad = 0 for i in range( self.nDim ): meanRad += ( float( self.rad[ i ].pt[0] ) / float( self.nDim ) ) self.meanRadius = meanRad return def AppendAtom( self, pt = [ euclidean( 3 ), pos_real( 1 ) ] ): self.nDim = self.nDim + 1 self.pt.append( pt ) self.pos.append( self.pt[ self.nDim - 1 ][ 0 ] ) self.rad.append( self.pt[ self.nDim - 1 ][ 1 ] ) self.meanRadius = ( self.meanRadius * ( self.nDim - 1 ) + pt[ 1 ].pt[ 0 ] ) / self.nDim def SetPosition( self, idx, position=[0.0,0.0,0.0] ): self.pos[ idx ].SetPoint( position ) self.pt[ idx ][ 0 ].SetPoint( position ) def SetRadius( self, idx, rad=1.0 ): self.rad[ idx ].SetPoint( rad ) self.pt[ idx ][ 1 ].SetPoint( rad ) def ExponentialMap( self, tVec ): if not tVec.Type == "CMRep_Tangent": print( "Tangent Vector Type Mismatched" ) return exp_pt = cmrep( self.nDim ) for i in range( self.nDim ): exp_pt.pt[ i ][ 0 ] = self.pt[ i ][ 0 ].ExponentialMap( tVec.tVector[ i ][ 0 ] ) exp_pt.pt[ i ][ 1 ] = self.pt[ i ][ 1 ].ExponentialMap( tVec.tVector[ i ][ 1 ] ) return exp_pt def LogMap( self, another_pt ): if not another_pt.Type == "CMRep": print( "Error: Component Type Mismatched" ) return tVec = cmrep_tVec( self.nDim ) for i in range( self.nDim ): tVec.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].LogMap( another_pt.pt[ i ][ 0 ] ) tVec.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].LogMap( another_pt.pt[ i ][ 1 ] ) return tVec def GetPoistion( self ): return self.pos def GetRadius( self ): return self.rad def InnerProduct( self, ptA ): result = 0 for i in range( self.nDim ): result += self.pt[ i ][ 0 ].InnerProduct( ptA.pt[ i ][ 0 ] ) result += self.meanRadius * ptA.meanRadius * self.pt[ i ][ 1 ].InnerProduct( ptA.pt[ i ][ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): vProjected = cmrep_tVec( self.nDim ) for i in range( self.nDim ): vProjected.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].ProjectTangent( pt.pt[ i ][ 0 ], tVec.tVector[ i ][ 0 ] ) vProjected.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].ProjectTangent( pt.pt[ i ][ 1 ], tVec.tVector[ i ][ 1 ] ) return vProjected def ParallelTranslate( self, v, w ): wPrallelTranslated = cmrep_tVec( self.nDim ) for i in range( self.nDim ): wPrallelTranslated.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].ParallelTranslate( v.tVector[ i ][ 0 ], w.tVector[ i ][ 0 ] ) wPrallelTranslated.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].ParallelTranslate( v.tVector[ i ][ 1 ], w.tVector[ i ][ 1 ] ) return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) return ParallelTranslate( v, w ) def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() jOutput = cmrep_tVec( self.nDim ) jOutputDash = cmrep_tVec( self.nDim ) for i in range( self.nDim ): jOutput.tVector[ i ][ 0 ], jOutputDash.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].AdjointGradientJacobi( v.tVector[ i ][ 0 ], j.tVector[ i ][ 0 ], dj.tVector[ i ][ 0 ] ) jOutput.tVector[ i ][ 1 ], jOutputDash.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].AdjointGradientJacobi( v.tVector[ i ][ 1 ], j.tVector[ i ][ 1 ], dj.tVector[ i ][ 1 ] ) return jOutput, jOutputDash def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] self.meanRadius = infoList[ 3 ] class cmrep_abstract( object ): def __init__( self, nDim ): self.Type = "CMRep_Abstract" self.nDim = nDim # pt : center, scale, abstract position, radius self.pt = [ euclidean(3), pos_real(1), sphere( 3 * ( nDim - 1 ) ), pos_real( nDim ) ] self.center = self.pt[ 0 ] self.scale = self.pt[ 1 ] self.pos = self.pt[ 2 ] self.rad = self.pt[ 3 ] self.meanRadius = 1 self.meanRadius_Arr = np.array( nDim ) self.meanScale = 1 def SetPoint( self, pt ): if not ( len( pt ) == 4 and pt[ 0 ].nDim == 3 and pt[ 1 ].nDim == 1 and pt[ 2 ].nDim == 3 * ( self.nDim - 1 ) and pt[ 3 ].nDim == self.nDim ): print( "cmrep_abstract.SetPoint") print( "Error : Dimensions does not match" ) return self.pt = pt self.center = pt[ 0 ] self.scale = pt[ 1 ] self.pos = pt[ 2 ] self.rad = pt[ 3 ] self.UpdateMeanRadius() def UpdateMeanRadius( self ): meanRad = 0 for i in range( self.nDim ): meanRad += ( float( self.rad.pt[i] ) / float( self.nDim ) ) self.meanRadius = meanRad return def SetMeanScale( self, s ): self.meanScale = s return def SetDataSetMeanRadiusArr( self, DataSetRadiusArr ): self.meanRadius_Arr = DataSetRadiusArr def ExponentialMap( self, tVec ): if not tVec.Type == "CMRep_Abstract_Tangent": print( "Tangent Vector Type Mismatched" ) return exp_pt = cmrep_abstract( self.nDim ) exp_pt_arr = [] for i in range( 4 ): exp_pt_arr.append( self.pt[ i ].ExponentialMap( tVec.tVector[ i ] ) ) exp_pt.SetPoint( exp_pt_arr ) return exp_pt def LogMap( self, another_pt ): if not another_pt.Type == "CMRep_Abstract": print( "Error: Component Type Mismatched" ) return tVec = cmrep_abstract_tVec( self.nDim ) for i in range( 4 ): tVec.tVector[ i ] = self.pt[ i ].LogMap( another_pt.pt[ i ] ) return tVec def GetScale( self ): return self.scale def GetCenter( self ): return self.center def GetPoistion( self ): return self.pos def GetRadius( self ): return self.rad def InnerProduct( self, ptA ): result = 0 # Center result += self.pt[ 0 ].InnerProduct( ptA.pt[ 0 ] ) # Scale result += self.meanScale * ptA.meanScale * self.pt[ 1 ].InnerProduct( ptA.pt[ 1 ] ) # Abstract Position result += self.meanScale * ptA.meanScale * self.pt[ 2 ].InnerProduct( ptA.pt[ 2 ] ) # Radius result += self.meanRadius * ptA.meanRadius * self.pt[ 3 ].InnerProduct( ptA.pt[ 3 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): vProjected = cmrep_abstract_tVec( self.nDim ) for i in range( 4 ): vProjected_tVector[ i ] = self.pt[ i ].ProjectTangent( pt.pt[ i ], tVec.tVector[ i ] ) return vProjected def ParallelTranslate( self, v, w ): wPrallelTranslated = cmrep_tVec( self.nDim ) for i in range( 4 ): wParallelTranslated.tVector[ i ] = self.pt[ i ].ParallelTranslate( v.tVector[ i ], w.tVector[ i ] ) return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) return ParallelTranslate( v, w ) def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() jOutput = cmrep_abstract_tVec( self.nDim ) jOutputDash = cmrep_abstract_tVec( self.nDim ) for i in range( 4 ): jOutput.tVector[ i ], jOutputDash.tVector[ i ] = self.pt[ i ].AdjointGradientJacobi( v.tVector[ i ], j.tVector[ i ], dj.tVector[ i ] ) return jOutput, jOutputDash def GetEuclideanLocations( self ): H_sub = HelmertSubmatrix( self.nDim ) H_sub_T = H_sub.T # Relative Positions on a 3(n-1)-1 sphere pos_abstr_sphere_matrix = np.array( self.pt[ 2 ].pt ).reshape( -1, 3 ) # Relative Positions on Euclidean pos_abstr_euclidean_matrix = np.dot( H_sub_T, pos_abstr_sphere_matrix ) # Multiply Scale # print( self.scale.pt[ 0 ] ) pos_scale_eucldiean_matrix = np.multiply( pos_abstr_euclidean_matrix, self.scale.pt[ 0 ] ) # Add Center of Mass pos_world_coord_euclidean_matrix = np.zeros( [ self.nDim, 3 ] ) for i in range( self.nDim ): pos_world_coord_euclidean_matrix[ i, : ] = np.add( pos_scale_eucldiean_matrix[ i, : ], self.center.pt ) return pos_world_coord_euclidean_matrix def GetAbstractEuclideanLocations( self ): H_sub = HelmertSubmatrix( self.nDim ) H_sub_T = H_sub.T # Relative Positions on a 3(n-1)-1 sphere pos_abstr_sphere_matrix = np.array( self.pt[ 2 ].pt ).reshape( -1, 3 ) # Relative Positions on Euclidean pos_abstr_euclidean_matrix = np.dot( H_sub_T, pos_abstr_sphere_matrix ) # # Multiply Scale # # print( self.scale.pt[ 0 ] ) # pos_scale_eucldiean_matrix = np.multiply( pos_abstr_euclidean_matrix, self.scale.pt[ 0 ] ) # # Add Center of Mass # pos_world_coord_euclidean_matrix = np.zeros( [ self.nDim, 3 ] ) # for i in range( self.nDim ): # pos_world_coord_euclidean_matrix[ i, : ] = np.add( pos_scale_eucldiean_matrix[ i, : ], self.center.pt ) return pos_abstr_euclidean_matrix def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] self.center = self.pt[ 0 ] self.scale = self.pt[ 1 ] self.pos = self.pt[ 2 ] self.rad = self.pt[ 3 ] self.meanRadius = infoList[ 3 ] class cmrep_abstract_tVec( object ): def __init__( self, nDim ): self.Type = "CMRep_Abstract_Tangent" self.nDim = nDim # tVector : center, scale, abstract position, radius self.tVector = [ euclidean_tVec( 3 ), pos_real_tVec( 1 ), sphere_tVec( 3 * ( nDim - 1 ) ), pos_real_tVec( nDim ) ] self.meanRadius = 1 self.meanScale = 1 # def SetPositionTangentVector( self, idx, pos_tVec ): # self.tVector[ idx ][ 0 ].SetTangentVector( pos_tVec ) # def SetRadiusTangentVector( self, idx, rad_tVec ): # self.tVector[ idx ][ 1 ].SetTangentVector( rad_tVec ) def SetTangentVectorFromArray( self, tVecArr ): if not len( tVecArr ) == ( 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim ): print( "Error : Dimension Mismatch" ) return # Center self.tVector[ 0 ].tVector[ 0 ] = tVecArr[ 0 ] self.tVector[ 0 ].tVector[ 1 ] = tVecArr[ 1 ] self.tVector[ 0 ].tVector[ 2 ] = tVecArr[ 2 ] # Scale self.tVector[ 1 ].tVector[ 0 ] = tVecArr[ 3 ] # PreShape for k in range( self.tVector[ 2 ].nDim ): self.tVector[ 2 ].tVector[ k ] = tVecArr[ k + 4 ] # Radius for k in range( self.tVector[ 3 ].nDim ): self.tVector[ 3 ].tVector[ k ] = tVecArr[ k + 4 + self.tVector[ 2 ].nDim ] def SetMeanRadius( self, meanRadius ): self.meanRadius = meanRadius def SetMeanScale( self, meanScale ): self.meanScale = meanScale return def GetTangentVector(self): return self.tVector def SetTangentVector( self, tVec ): if not ( len( tVec ) == 4 and tVec[ 0 ].nDim == 3 and tVec[ 1 ].nDim == 1 and tVec[ 2 ].nDim == ( 3 * ( self.nDim - 1 ) ) and tVec[ 3 ].nDim == self.nDim ): print( "Error : Dimension Mismatch" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 # Center result += self.tVector[ 0 ].InnerProduct( tVec1.tVector[ 0 ] ) # Scale result += self.meanScale * tVec1.meanScale * self.tVector[ 1 ].InnerProduct( tVec1.tVector[ 1 ] ) # Abstract Position result += self.meanScale * tVec1.meanScale * self.tVector[ 2 ].InnerProduct( tVec1.tVector[ 2 ] ) # Radius result += self.meanRadius * tVec1.meanRadius * self.tVector[ 3 ].InnerProduct( tVec1.tVector[ 3 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = cmrep_abstract_tVec( self.nDim ) for i in range( 4 ): tVector_t.tVector[ i ] = self.tVector[ i ].ScalarMultiply( t ) return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] self.meanRadius = infoList[ 3 ] # CM-Rep Abstract Manifold with Boundary Normals class cmrep_abstract_normal( object ): def __init__( self, nDim ): self.Type = "CMRep_Abstract_Normal" self.nDim = nDim # pt : center, scale, abstract position, radius, boundary normals self.bndrNormal1 = [] self.bndrNormal2 = [] for i in range( nDim ): self.bndrNormal1.append( sphere( 3 ) ) self.bndrNormal2.append( sphere( 3 ) ) self.pt = [ euclidean(3), pos_real(1), sphere( 3 * ( nDim - 1 ) ), pos_real( nDim ), self.bndrNormal1, self.bndrNormal2 ] self.center = self.pt[ 0 ] self.scale = self.pt[ 1 ] self.pos = self.pt[ 2 ] self.rad = self.pt[ 3 ] self.meanRadius = 1 self.meanRadius_Arr = np.array( nDim ) self.meanScale = 1 def SetPoint( self, pt ): if not ( len( pt ) == 6 and pt[ 0 ].nDim == 3 and pt[ 1 ].nDim == 1 and pt[ 2 ].nDim == 3 * ( self.nDim - 1 ) and pt[ 3 ].nDim == self.nDim and len( pt[ 4 ] ) == self.nDim and len( pt[ 5 ] ) == self.nDim ): print( "cmrep_abstract_normal.SetPoint") print( "Error : Dimensions does not match" ) return self.pt = pt self.center = pt[ 0 ] self.scale = pt[ 1 ] self.pos = pt[ 2 ] self.rad = pt[ 3 ] self.bndrNormal1 = pt[ 4 ] self.bndrNormal2 = pt[ 5 ] self.UpdateMeanRadius() def UpdateMeanRadius( self ): meanRad = 0 for i in range( self.nDim ): meanRad += ( float( self.rad.pt[i] ) / float( self.nDim ) ) self.meanRadius = meanRad return def SetMeanScale( self, s ): self.meanScale = s return def SetDataSetMeanRadiusArr( self, DataSetRadiusArr ): self.meanRadius_Arr = DataSetRadiusArr def ExponentialMap( self, tVec ): if not tVec.Type == "CMRep_Abstract_Normal_Tangent": print( "Tangent Vector Type Mismatched" ) return exp_pt = cmrep_abstract_normal( self.nDim ) exp_pt_arr = [] for i in range( 4 ): exp_pt_arr.append( self.pt[ i ].ExponentialMap( tVec.tVector[ i ] ) ) exp_pt_bndr1 = [] exp_pt_bndr2 = [] for i in range( self.nDim ): exp_pt_bndr1.append( self.pt[ 4 ][ i ].ExponentialMap( tVec.tVector[ 4 ][ i ] ) ) exp_pt_bndr2.append( self.pt[ 5 ][ i ].ExponentialMap( tVec.tVector[ 5 ][ i ] ) ) exp_pt_arr.append( exp_pt_bndr1 ) exp_pt_arr.append( exp_pt_bndr2 ) exp_pt.SetPoint( exp_pt_arr ) return exp_pt def LogMap( self, another_pt ): if not another_pt.Type == "CMRep_Abstract_Normal": print( "Error: Component Type Mismatched" ) return tVec = cmrep_abstract_normal_tVec( self.nDim ) for i in range( 4 ): tVec.tVector[ i ] = self.pt[ i ].LogMap( another_pt.pt[ i ] ) for i in range( self.nDim ): tVec.tVector[ 4 ][ i ] = self.pt[ 4 ][ i ].LogMap( another_pt.pt[ 4 ][ i ] ) tVec.tVector[ 5 ][ i ] = self.pt[ 5 ][ i ].LogMap( another_pt.pt[ 5 ][ i ] ) return tVec def GetScale( self ): return self.scale def GetCenter( self ): return self.center def GetPoistion( self ): return self.pos def GetRadius( self ): return self.rad def InnerProduct( self, ptA ): result = 0 # Center result += self.pt[ 0 ].InnerProduct( ptA.pt[ 0 ] ) # Scale result += self.meanScale * ptA.meanScale * self.pt[ 1 ].InnerProduct( ptA.pt[ 1 ] ) # Abstract Position result += self.meanScale * ptA.meanScale * self.pt[ 2 ].InnerProduct( ptA.pt[ 2 ] ) # Radius result += self.meanRadius * ptA.meanRadius * self.pt[ 3 ].InnerProduct( ptA.pt[ 3 ] ) for i in range( nDim ): # bndr normal 1 result += self.meanRadius * ptA.meanRadius * self.pt[ 4 ][ i ].InnerProduct( ptA.pt[ 4 ][ i ] ) # bndr normal 2 result += self.meanRadius * ptA.meanRadius * self.pt[ 5 ][ i ].InnerProduct( ptA.pt[ 5 ][ i ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): vProjected = cmrep_abstract_normal_tVec( self.nDim ) for i in range( 4 ): vProjected_tVector[ i ] = self.pt[ i ].ProjectTangent( pt.pt[ i ], tVec.tVector[ i ] ) for i in range( self.nDim ): vProjected_tVector[ 4 ][ i ] = self.pt[ 4 ][ i ].ProjectTangent( pt.pt[ 4 ][ i ], tVec.tVector[ 4 ][ i ] ) vProjected_tVector[ 5 ][ i ] = self.pt[ 5 ][ i ].ProjectTangent( pt.pt[ 5 ][ i ], tVec.tVector[ 5 ][ i ] ) return vProjected def ParallelTranslate( self, v, w ): wPrallelTranslated = cmrep_abstract_normal_tVec( self.nDim ) for i in range( 4 ): wParallelTranslated.tVector[ i ] = self.pt[ i ].ParallelTranslate( v.tVector[ i ], w.tVector[ i ] ) for i in range( self.nDim ): wParallelTranslated.tVector[ 4 ][ i ] = self.pt[ 4 ][ i ].ParallelTranslate( v.tVector[ 4 ][ i ], w.tVector[ 4 ][ i ] ) wParallelTranslated.tVector[ 5 ][ i ] = self.pt[ 5 ][ i ].ParallelTranslate( v.tVector[ 5 ][ i ], w.tVector[ 5 ][ i ] ) return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) return ParallelTranslate( v, w ) def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() jOutput = cmrep_abstract_normal_tVec( self.nDim ) jOutputDash = cmrep_abstract_normal_tVec( self.nDim ) for i in range( 4 ): jOutput.tVector[ i ], jOutputDash.tVector[ i ] = self.pt[ i ].AdjointGradientJacobi( v.tVector[ i ], j.tVector[ i ], dj.tVector[ i ] ) for i in range( self.nDim ): jOutput.tVector[ 4 ][ i ], jOutputDash.tVector[ 4 ][ i ] = self.pt[ 4 ][ i ].AdjointGradientJacobi( v.tVector[ 4 ][ i ], j.tVector[ 4 ][ i ], dj.tVector[ 4 ][ i ] ) jOutput.tVector[ 5 ][ i ], jOutputDash.tVector[ 5 ][ i ] = self.pt[ 5 ][ i ].AdjointGradientJacobi( v.tVector[ 5 ][ i ], j.tVector[ 5 ][ i ], dj.tVector[ 5 ][ i ] ) return jOutput, jOutputDash def GetEuclideanLocations( self ): H_sub = HelmertSubmatrix( self.nDim ) H_sub_T = H_sub.T # Relative Positions on a 3(n-1)-1 sphere pos_abstr_sphere_matrix = np.array( self.pt[ 2 ].pt ).reshape( -1, 3 ) # Relative Positions on Euclidean pos_abstr_euclidean_matrix = np.dot( H_sub_T, pos_abstr_sphere_matrix ) # Multiply Scale # print( self.scale.pt[ 0 ] ) pos_scale_eucldiean_matrix = np.multiply( pos_abstr_euclidean_matrix, self.scale.pt[ 0 ] ) # Add Center of Mass pos_world_coord_euclidean_matrix = np.zeros( [ self.nDim, 3 ] ) for i in range( self.nDim ): pos_world_coord_euclidean_matrix[ i, : ] = np.add( pos_scale_eucldiean_matrix[ i, : ], self.center.pt ) return pos_world_coord_euclidean_matrix def GetAbstractEuclideanLocations( self ): H_sub = HelmertSubmatrix( self.nDim ) H_sub_T = H_sub.T # Relative Positions on a 3(n-1)-1 sphere pos_abstr_sphere_matrix = np.array( self.pt[ 2 ].pt ).reshape( -1, 3 ) # Relative Positions on Euclidean pos_abstr_euclidean_matrix = np.dot( H_sub_T, pos_abstr_sphere_matrix ) # # Multiply Scale # # print( self.scale.pt[ 0 ] ) # pos_scale_eucldiean_matrix = np.multiply( pos_abstr_euclidean_matrix, self.scale.pt[ 0 ] ) # # Add Center of Mass # pos_world_coord_euclidean_matrix = np.zeros( [ self.nDim, 3 ] ) # for i in range( self.nDim ): # pos_world_coord_euclidean_matrix[ i, : ] = np.add( pos_scale_eucldiean_matrix[ i, : ], self.center.pt ) return pos_abstr_euclidean_matrix def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] self.center = self.pt[ 0 ] self.scale = self.pt[ 1 ] self.pos = self.pt[ 2 ] self.rad = self.pt[ 3 ] self.bndrNormal1 = self.pt[ 4 ] self.bndrNormal2 = self.pt[ 5 ] self.meanRadius = infoList[ 3 ] class cmrep_abstract_normal_tVec( object ): def __init__( self, nDim ): self.Type = "CMRep_Abstract_Normal_Tangent" self.nDim = nDim # tVector : center, scale, abstract position, radius, bndr normals self.tVecNormal1 = [] self.tVecNormal2 = [] for i in range( nDim ): self.tVecNormal1.append( sphere_tVec( 3 ) ) self.tVecNormal2.append( sphere_tVec( 3 ) ) self.tVector = [ euclidean_tVec( 3 ), pos_real_tVec( 1 ), sphere_tVec( 3 * ( nDim - 1 ) ), pos_real_tVec( nDim ), self.tVecNormal1, self.tVecNormal2 ] self.meanRadius = 1 self.meanScale = 1 # def SetPositionTangentVector( self, idx, pos_tVec ): # self.tVector[ idx ][ 0 ].SetTangentVector( pos_tVec ) # def SetRadiusTangentVector( self, idx, rad_tVec ): # self.tVector[ idx ][ 1 ].SetTangentVector( rad_tVec ) def SetTangentVectorFromArray( self, tVecArr ): if not len( tVecArr ) == ( 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim + 6 * len( self.tVecNormal1 ) ): print( "Error : Dimension Mismatch" ) return # Center self.tVector[ 0 ].tVector[ 0 ] = tVecArr[ 0 ] self.tVector[ 0 ].tVector[ 1 ] = tVecArr[ 1 ] self.tVector[ 0 ].tVector[ 2 ] = tVecArr[ 2 ] # Scale self.tVector[ 1 ].tVector[ 0 ] = tVecArr[ 3 ] # PreShape for k in range( self.tVector[ 2 ].nDim ): self.tVector[ 2 ].tVector[ k ] = tVecArr[ k + 4 ] # Radius for k in range( self.tVector[ 3 ].nDim ): self.tVector[ 3 ].tVector[ k ] = tVecArr[ k + 4 + self.tVector[ 2 ].nDim ] # Boundary Normals for i in range( self.nDim ): self.tVector[ 4 ][ i ].tVector[ 0 ] = tVecArr[ i * 3 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim ] self.tVector[ 4 ][ i ].tVector[ 1 ] = tVecArr[ i * 3 + 1 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim ] self.tVector[ 4 ][ i ].tVector[ 2 ] = tVecArr[ i * 3 + 2 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim ] for i in range( self.nDim ): self.tVector[ 5 ][ i ].tVector[ 0 ] = tVecArr[ i * 3 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim + 3 * len( self.tVector[ 4 ] ) ] self.tVector[ 5 ][ i ].tVector[ 1 ] = tVecArr[ i * 3 + 1 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim + 3 * len( self.tVector[ 4 ] ) ] self.tVector[ 5 ][ i ].tVector[ 2 ] = tVecArr[ i * 3 + 2 + 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim + 3 * len( self.tVector[ 4 ] ) ] def GetTangentVectorArray( self ): tVecArr = [] # Center tVecArr.append( self.tVector[ 0 ].tVector[ 0 ] ) tVecArr.append( self.tVector[ 0 ].tVector[ 1 ] ) tVecArr.append( self.tVector[ 0 ].tVector[ 2 ] ) # Scale tVecArr.append( self.tVector[ 1 ].tVector[ 0 ] ) # PreShape for k in range( self.tVector[ 2 ].nDim ): tVecArr.append( self.tVector[ 2 ].tVector[ k ] ) # Radius for k in range( self.tVector[ 3 ].nDim ): tVecArr.append( self.tVector[ 3 ].tVector[ k ] ) # Boundary Normals for i in range( self.nDim ): tVecArr.append( self.tVector[ 4 ][ i ].tVector[ 0 ] ) tVecArr.append( self.tVector[ 4 ][ i ].tVector[ 1 ] ) tVecArr.append( self.tVector[ 4 ][ i ].tVector[ 2 ] ) for i in range( self.nDim ): tVecArr.append( self.tVector[ 5 ][ i ].tVector[ 0 ] ) tVecArr.append( self.tVector[ 5 ][ i ].tVector[ 1 ] ) tVecArr.append( self.tVector[ 5 ][ i ].tVector[ 2 ] ) return tVecArr def SetMeanRadius( self, meanRadius ): self.meanRadius = meanRadius def SetMeanScale( self, meanScale ): self.meanScale = meanScale return def GetTangentVector(self): return self.tVector def SetTangentVector( self, tVec ): if not ( len( tVec ) == 6 and tVec[ 0 ].nDim == 3 and tVec[ 1 ].nDim == 1 and tVec[ 2 ].nDim == ( 3 * ( self.nDim - 1 ) ) and tVec[ 3 ].nDim == self.nDim and len( tVec[ 4 ] ) == self.nDim and len( tVec[ 5 ] ) == self.nDim ): print( "cmrep_abstract_normal_tVec:SetTangentVector" ) print( self.nDim ) print( len( tVec[ 4 ] ) ) print( len( tVec[ 5 ] ) ) print( "Error : Dimension Mismatch" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 # Center result += self.tVector[ 0 ].InnerProduct( tVec1.tVector[ 0 ] ) # Scale result += self.meanScale * tVec1.meanScale * self.tVector[ 1 ].InnerProduct( tVec1.tVector[ 1 ] ) # Abstract Position result += self.meanScale * tVec1.meanScale * self.tVector[ 2 ].InnerProduct( tVec1.tVector[ 2 ] ) # Radius result += self.meanRadius * tVec1.meanRadius * self.tVector[ 3 ].InnerProduct( tVec1.tVector[ 3 ] ) for i in range( self.nDim ): # bndr normal 1 result += self.meanRadius * tVec1.meanRadius * self.tVector[ 4 ][ i ].InnerProduct( tVec1.tVector[ 4 ][ i ] ) # bndr normal 2 result += self.meanRadius * tVec1.meanRadius * self.tVector[ 5 ][ i ].InnerProduct( tVec1.tVector[ 5 ][ i ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = cmrep_abstract_normal_tVec( self.nDim ) for i in range( 4 ): tVector_t.tVector[ i ] = self.tVector[ i ].ScalarMultiply( t ) for i in range( self.nDim ): tVector_t.tVector[ 4 ][ i ] = self.tVector[ 4 ][ i ].ScalarMultiply( t ) tVector_t.tVector[ 5 ][ i ] = self.tVector[ 5 ][ i ].ScalarMultiply( t ) return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] self.meanRadius = infoList[ 3 ] ############################################################### ##### Miscelleneous ##### ############################################################### def HelmertSubmatrix( nAtoms ): # Create a Helmert submatrix - similarity-invariant H = np.zeros( [ nAtoms - 1, nAtoms ] ) for k in range( nAtoms - 1 ): h_k = -np.divide( 1.0, np.sqrt( ( k + 1 ) * ( k + 2 ) ) ) neg_kh_k = np.multiply( h_k, -( k + 1 ) ) for h in range( k + 1 ): H[ k, h ] = h_k H[ k, k + 1 ] = neg_kh_k return H def HelmertMatrix( nAtoms ): # Create a Helmert matrix - similiarity-invariant : First row - Center of Gravity (mass) (uniform mass of points) H_full = np.zeors( [ nAtoms, nAtoms ] ) for h in range( nAtoms ): H_full[ 0, h ] = np.divide( 1, np.sqrt( nAtoms ) ) for k in range( 1, nAtoms, 1 ): h_k = -np.divide( 1.0, np.sqrt( ( k ) * ( k + 1 ) ) ) neg_kh_k = np.multiply( h_k, -k ) for h in range( k ): H_full[ k, h ] = h_k H_full[ k, k ] = neg_kh_k return H_full ########################################################################## ## CM-Rep with Boundary Normals ## ########################################################################## class cmrep_bndr_normals_tVec( object ): def __init__( self, nDim ): self.Type = "CMRep_BNDRNormals_Tangent" self.nDim = nDim self.tVector = [] for i in range( self.nDim ): self.tVector.append( [ euclidean_tVec( 3 ), pos_real_tVec( 1 ) ] ) self.meanRadius = 1 def SetPositionTangentVector( self, idx, pos_tVec ): self.tVector[ idx ][ 0 ].SetTangentVector( pos_tVec ) def SetRadiusTangentVector( self, idx, rad_tVec ): self.tVector[ idx ][ 1 ].SetTangentVector( rad_tVec ) def SetMeanRadius( self, meanRadius ): self.meanRadius = meanRadius def GetTangentVector(self): return self.tVector def SetTangentVector( self, tVec ): if not len( tVec ) == self.nDim: print( "Error : Dimension Mismatch" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nDim ): result += self.tVector[ i ][ 0 ].InnerProduct( tVec1.tVector[ i ][ 0 ] ) result += self.meanRadius * tVec1.meanRadius * self.tVector[ i ][ 1 ].InnerProduct( tVec1.tVector[ i ][ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.tVector, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.tVector = infoList[ 2 ] self.meanRadius = infoList[ 3 ] class cmrep_bndr_normals( object ): def __init__( self, nDim ): self.Type = "CMRep_BNDRNormals" self.nDim = nDim self.pt = [] self.pos = [] self.rad = [] self.spoke1 = [] self.spoke2 = [] self.edge = [] for i in range( nDim ): self.pt.append( [ euclidean( 3 ), pos_real( 1 ), sphere( 3 ), sphere( 3 ) ] ) self.pos.append( self.pt[ i ][ 0 ] ) self.rad.append( self.pt[ i ][ 1 ] ) self.spoke1.append( self.pt[ i ][ 2 ] ) self.spoke2.append( self.pt[ i ][ 3 ] ) self.edge.append( 0 ) self.meanRadius = 1 def SetPoint( self, pt ): if not len( pt ) == self.nDim: print( "Error : Dimensions does not match" ) return self.pt = pt self.pos = [] self.rad = [] for i in range( self.nDim ): self.pos.append( self.pt[ i ][ 0 ] ) self.rad.append( self.pt[ i ][ 1 ] ) def UpdateMeanRadius( self ): meanRad = 0 for i in range( self.nDim ): meanRad += ( float( self.rad[ i ].pt[0] ) / float( self.nDim ) ) self.meanRadius = meanRad return def AppendAtom( self, pt = [ euclidean( 3 ), pos_real( 1 ) ] ): self.nDim = self.nDim + 1 self.pt.append( pt ) self.pos.append( self.pt[ self.nDim - 1 ][ 0 ] ) self.rad.append( self.pt[ self.nDim - 1 ][ 1 ] ) self.meanRadius = ( self.meanRadius * ( self.nDim - 1 ) + pt[ 1 ].pt[ 0 ] ) / self.nDim def SetPosition( self, idx, position=[0.0,0.0,0.0] ): self.pos[ idx ].SetPoint( position ) self.pt[ idx ][ 0 ].SetPoint( position ) def SetRadius( self, idx, rad=1.0 ): self.rad[ idx ].SetPoint( rad ) self.pt[ idx ][ 1 ].SetPoint( rad ) def SetSpoke1( self, idx, spoke=[ 0, 0, 1 ] ): self.spoke1[ idx ].SetPoint( spoke ) self.pt[ idx ][ 2 ].SetPoint( spoke ) def SetSpoke2( self, idx, spoke=[ 0, 0, 1 ] ): self.spoke2[ idx ].SetPoint( spoke ) self.pt[ idx ][ 3 ].SetPoint( spoke ) def ExponentialMap( self, tVec ): if not tVec.Type == "CMRep_BNDRNormals_Tangent": print( "Tangent Vector Type Mismatched" ) return exp_pt = cmrep( self.nDim ) for i in range( self.nDim ): exp_pt.pt[ i ][ 0 ] = self.pt[ i ][ 0 ].ExponentialMap( tVec.tVector[ i ][ 0 ] ) exp_pt.pt[ i ][ 1 ] = self.pt[ i ][ 1 ].ExponentialMap( tVec.tVector[ i ][ 1 ] ) return exp_pt def LogMap( self, another_pt ): if not another_pt.Type == "CMRep_BNDRNormals": print( "Error: Component Type Mismatched" ) return tVec = cmrep_tVec( self.nDim ) for i in range( self.nDim ): tVec.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].LogMap( another_pt.pt[ i ][ 0 ] ) tVec.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].LogMap( another_pt.pt[ i ][ 1 ] ) return tVec def GetPoistion( self ): return self.pos def GetRadius( self ): return self.rad def InnerProduct( self, ptA ): result = 0 for i in range( self.nDim ): result += self.pt[ i ][ 0 ].InnerProduct( ptA.pt[ i ][ 0 ] ) result += self.meanRadius * ptA.meanRadius * self.pt[ i ][ 1 ].InnerProduct( ptA.pt[ i ][ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): vProjected = cmrep_tVec( self.nDim ) for i in range( self.nDim ): vProjected.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].ProjectTangent( pt.pt[ i ][ 0 ], tVec.tVector[ i ][ 0 ] ) vProjected.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].ProjectTangent( pt.pt[ i ][ 1 ], tVec.tVector[ i ][ 1 ] ) return vProjected def ParallelTranslate( self, v, w ): wPrallelTranslated = cmrep_tVec( self.nDim ) for i in range( self.nDim ): wPrallelTranslated.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].ParallelTranslate( v.tVector[ i ][ 0 ], w.tVector[ i ][ 0 ] ) wPrallelTranslated.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].ParallelTranslate( v.tVector[ i ][ 1 ], w.tVector[ i ][ 1 ] ) return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) return ParallelTranslate( v, w ) def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() jOutput = cmrep_tVec( self.nDim ) jOutputDash = cmrep_tVec( self.nDim ) for i in range( self.nDim ): jOutput.tVector[ i ][ 0 ], jOutputDash.tVector[ i ][ 0 ] = self.pt[ i ][ 0 ].AdjointGradientJacobi( v.tVector[ i ][ 0 ], j.tVector[ i ][ 0 ], dj.tVector[ i ][ 0 ] ) jOutput.tVector[ i ][ 1 ], jOutputDash.tVector[ i ][ 1 ] = self.pt[ i ][ 1 ].AdjointGradientJacobi( v.tVector[ i ][ 1 ], j.tVector[ i ][ 1 ], dj.tVector[ i ][ 1 ] ) return jOutput, jOutputDash def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.pt, self.meanRadius ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.pt = infoList[ 2 ] self.meanRadius = infoList[ 3 ] self.pos = self.pt[ 0 ] self.rad = self.pt[ 1 ] self.spoke1 = self.pt[ 2 ] self.spoke2 = self.pt[ 3 ] ########################################################################## ## Kendall 2D Shape Space ## ########################################################################## class kendall2D_tVec( object ): # def __init__( self ): # self.Type = "Sphere_Tangent" # self.nDim = 3 # self.tVector = [ 0, 0, 0 ] def __init__( self, nPt ): self.Type = "Kendall2D_Tangent" self.nPt = nPt self.nDim = nPt - 2 self.tVector = np.zeros( [ 2, nPt ] ) def GetTangentVector(self): return self.tVector def SetTangentVector(self, tVec): if not tVec.shape[ 1 ] == self.nPt: print( "Error : # of points does not match" ) return if not tVec.shape[ 0 ] == 2: print( "Error : Tangent vector should be 2D" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 for i in range( self.nPt ): for j in range( 2 ): result += self.tVector[ j, i ] * tVec1.tVector[ j, i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = kendall2D_tVec( self.nPt ) for i in range( self.nPt ): for j in range( 2 ): tVector_t.tVector[ j, i ] = self.tVector[ j, i ] * t return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.nPt, self.tVector, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.nPt = infoList[ 2 ] self.tVector = infoList[ 3 ] class kendall2D( object ): def __init__( self, nPt ): self.Type = "Kendall2D" self.nPt = nPt self.nDim = nPt - 2 pt_base = np.zeros( [ 2, nPt ] ) pt_base[ 0, 0 ] = 1 pt_base[ 0, 1 ] = 0 self.pt = pt_base def SetPoint( self, pt ): if not pt.shape[ 1 ] == self.nPt: print( "Error : # of Points does not match" ) return if not pt.shape[ 0 ] == 2: print( "Error : Point should be 2D" ) return if not np.linalg.norm( pt ) == 1: # print( "Warning : The point is not on a sphere") self.pt = np.asmatrix( pt ) return self.pt = np.asmatrix( pt ) def GetPoint( self ): return self.pt def InnerProduct( self, ptA ): result = 0 for i in range( self.nPt ): for j in range( 2 ): result += self.pt[ j, i ] * ptA.pt[ j, i ] return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ExponentialMap( self, tVec ): theta = tVec.norm() if theta < 1e-12: exp_pt = kendall2D( self.nPt ) exp_pt.pt = self.pt return exp_pt if theta > np.pi * 2: theta = np.mod( theta, np.pi * 2 ) exp_pt = kendall2D( self.nPt ) lhs = np.multiply( np.cos( theta ), self.pt ) rhs = np.multiply( np.sin( theta ) / theta, tVec.tVector ) exp_pt.pt = lhs + rhs exp_pt.pt = np.divide( exp_pt.pt, exp_pt.norm() ) return exp_pt def LogMap( self, another_pt ): m = np.matmul( self.pt, another_pt.pt.T ) U, s, V = np.linalg.svd( m ) rotation = np.matmul( U, V.T ) qRot_pt = np.matmul( rotation, another_pt.pt ) qRot = kendall2D( self.nPt ) qRot.SetPoint( qRot_pt ) cosTheta = self.InnerProduct( qRot ) tVec = kendall2D_tVec( self.nPt ) tVec_mat = np.subtract( qRot.pt, np.multiply( cosTheta, self.pt ) ) tVec.SetTangentVector( tVec_mat ) length = tVec.norm() if length < 1e-12 or cosTheta >= 1.0 or cosTheta <= -1.0: tVec = kendall2D_tVec( self.nPt ) return tVec tVec = tVec.ScalarMultiply( np.arccos( cosTheta ) / length ) return tVec def ParallelTranslate( self, v, w ): vNorm = v.norm() pNorm = self.norm() if( vNorm < 1.0e-12 or pNorm < 1.0e-12 ): # print( "tVector too small" ) return w skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) unitJV_mat = np.matmul( skew, unitV.tVector ) unitJV = kendall2D_tVec( self.nPt ) unitJV.SetTangentVector( unitJV_mat ) unitP = self.ScalarMultiply( 1.0 / pNorm ) unitJP_mat = np.matmul( skew, unitP.pt ) unitJP = kendall2D( self.nPt ) unitJP.SetPoint( unitJP_mat ) # If v and w are horizontal, the real inner product will work wDotUnitV = unitV.InnerProduct( w ) wDotUnitJV = unitJV.InnerProduct( w ) # Component of w orthogonal to v and jv parallel_mat = np.add( np.multiply( wDotUnitV, unitV.tVector ), np.multiply( wDotUnitJV, unitJV_mat ) ) orth_mat = np.subtract( w.tVector, parallel_mat ) # Compute Parallel Translated V parallelUnitV_mat = np.add( np.multiply( self.pt, -np.sin( vNorm ) / pNorm ), np.multiply( np.cos( vNorm ), unitV.tVector ) ) # Compute Parallel Translated jV parallelUnitJV_mat = np.subtract( np.multiply( np.cos( vNorm ), unitJV_mat ), np.multiply( np.sin( vNorm ), unitJP_mat ) ) # Add parallel translated v to orth, and get parallel translated w parallelW_paraV = np.add( np.multiply( wDotUnitV, parallelUnitV_mat ), np.multiply( wDotUnitJV, parallelUnitJV_mat ) ) parallelW_mat = np.add( parallelW_paraV, orth_mat ) wParallelTranslated = kendall2D_tVec( self.nPt ) wParallelTranslated.SetTangentVector( parallelW_mat ) return wParallelTranslated def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def ParallelTranslateToA( self, a, w ): v = self.LogMap( a ) return self.ParallelTranslate( v, w ) def ScalarMultiply( self, t ): p_t = kendall2D( self.nPt ) for i in range( self.nPt ): for j in range( 2 ): p_t.pt[ j, i ] = self.pt[ j, i ] * t return p_t def GradientJacobi( self, v, J, dJ ): vNorm = v.norm() if( vNorm < 1.0e-12 ): for i in range( self.nPt ): for k in range( 2 ): J.tVector[ k ][ i ] = J.tVector[ k ][ i ] + dJ.tVector[ k ][ i ] return J VdotJ = v.InnerProduct( J ) VdotJPrime = v.InnerProduct( dJ ) scaleFactorJ = VdotJ / ( vNorm * vNorm ) scaleFactorJPrime = VdotJPrime / ( vNorm * vNorm ) jTang_mat = np.multiply( v.tVector, scaleFactorJ ) jTang = kendall2D_tVec( self.nPt ) jTang.SetTangentVector( jTang_mat ) dJTang_mat = np.multiply( v.tVector, scaleFactorJPrime ) dJTang = kendall2D_tVec( self.nPt ) dJTang.SetTangentVector( dJTang_mat ) jOrth_mat = np.subtract( J.tVector, jTang_mat ) jOrth = kendall2D_tVec( self.nPt ) jOrth.SetTangentVector( jOrth_mat ) dJOrth_mat = np.subtract( dJ.tVector, dJTang_mat ) dJOrth = kendall2D_tVec( self.nPt ) dJOrth.SetTangentVector( dJOrth_mat ) skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) w_mat = np.matmul( skew, unitV.tVector ) w = kendall2D_tVec( self.nPt ) w.SetTangentVector( w_mat ) # Curvature 4 component jOrth4 = w.ScalarMultiply( w.InnerProduct( jOrth ) ) dJOrth4 = w.ScalarMultiply( w.InnerProduct( dJOrth ) ) # Curvature 1 Component jOrth1 = kendall2D_tVec( self.nPt ) jOrth1.SetTangentVector( np.subtract( jOrth.tVector, jOrth4.tVector ) ) dJOrth1 = kendall2D_tVec( self.nPt ) dJOrth1.SetTangentVector( np.subtract( dJOrth.tVector, dJOrth4.tVector ) ) # Orthogonal Parts jOrth.SetTangentVector( np.add( np.multiply( cos( vNorm ), jOrth1.tVector ), np.multiply( cos( 2.0 * vNorm ), jOrth4.tVector ) ) ) dJOrth.SetTangentVector( np.add( np.multiply( np.sin( vNorm ) / vNorm, dJOrth1.tVector ), np.multiply( 0.5 * np.sin( 2.0 * vNorm ) / vNorm, dJOrth4.tVector ) ) ) J_dJ_mat = jTang.tVector + dJTang.tVector + jOrth.tVector + dJOrth.tVector J_dJ = kendall2D_tVec( self.nPt ) J_dJ.SetTangentVector( J_DJ ) J = self.ParallelTranslate( v, J_dJ ) dJOrth_mat = jOrth1.ScalarMultiply( -vNorm * np.sin( vNorm ) ).tVector + jOrth4.ScalarMultiply( -2.0 * vNorm * sin( 2.0 * vNorm ) ).tVector dJOrth.SetTangentVector( dJOrth_mat ) ddJOrth_mat = dJOrth1.ScalarMultiply( cos( vNorm ) ).tVector + djOrth4.ScalarMultiply( cos( 2.0 * vNorm ) ).tVector ddJOrth = kendall2D_tVec( self.nPt ) ddJOrth.SetTangentVector( ddJOrth_mat ) dJ_ddJ_mat = djTang.tVector + dJOrth.tVector + ddJOrth.tVector dJ_ddJ = kendall2D_tVec( self.nPt ) dJ = self.ParallelTranslate( v, dJ_ddJ ) return J, dJ def AdjointGradientJacobi( self, v, Jac, dJac ): vNorm = v.norm() if( vNorm < 1.0e-12 ): for i in range( self.nPt ): for j in range( 2 ): Jac.tVector[ j ][ i ] = Jac.tVector[ j ][ i ] + dJac.tVector[ j ][ i ] Jac_Updated = Jac dJac_Updated = dJac return Jac_Updated, dJac_Updated VdotJac = v.InnerProduct( Jac ) VdotJacPrime = v.InnerProduct( dJac ) scaleFactorJac = VdotJac / ( vNorm * vNorm ) scaleFactorJacPrime = VdotJacPrime / ( vNorm * vNorm ) jTang_mat = np.multiply( v.tVector, scaleFactorJac ) jTang = kendall2D_tVec( self.nPt ) jTang.SetTangentVector( jTang_mat ) dJacTang_mat = np.multiply( v.tVector, scaleFactorJacPrime ) dJacTang = kendall2D_tVec( self.nPt ) dJacTang.SetTangentVector( dJacTang_mat ) jOrth_mat = np.subtract( Jac.tVector, jTang_mat ) jOrth = kendall2D_tVec( self.nPt ) jOrth.SetTangentVector( jOrth_mat ) dJacOrth_mat = np.subtract( dJac.tVector, dJacTang_mat ) dJacOrth = kendall2D_tVec( self.nPt ) dJacOrth.SetTangentVector( dJacOrth_mat ) skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 unitV = v.ScalarMultiply( 1.0 / vNorm ) w_mat = np.matmul( skew, unitV.tVector ) w = kendall2D_tVec( self.nPt ) w.SetTangentVector( w_mat ) # Curvature 4 component jOrth4 = w.ScalarMultiply( w.InnerProduct( jOrth ) ) dJacOrth4 = w.ScalarMultiply( w.InnerProduct( dJacOrth ) ) # Curvature 1 Component jOrth1 = kendall2D_tVec( self.nPt ) jOrth1.SetTangentVector( np.subtract( jOrth.tVector, jOrth4.tVector ) ) dJacOrth1 = kendall2D_tVec( self.nPt ) dJacOrth1.SetTangentVector( np.subtract( dJacOrth.tVector, dJacOrth4.tVector ) ) # Orthogonal Parts jOrth.SetTangentVector( np.add( np.multiply( np.cos( vNorm ), jOrth1.tVector ), np.multiply( np.cos( 2.0 * vNorm ), jOrth4.tVector ) ) ) dJacOrth.SetTangentVector( np.add( np.multiply( -vNorm * np.sin( vNorm ), dJacOrth1.tVector ), np.multiply( -2.0 * vNorm * np.sin( 2.0 * vNorm ), dJacOrth4.tVector ) ) ) Jac_dJac_mat = jTang.tVector + jOrth.tVector + dJacOrth.tVector Jac_dJac = kendall2D_tVec( self.nPt ) Jac_dJac.SetTangentVector( Jac_dJac_mat ) Jac_Updated = self.ParallelTranslate( v, Jac_dJac ) dJacOrth_mat = jOrth1.ScalarMultiply( np.sin( vNorm ) / vNorm ).tVector + jOrth4.ScalarMultiply( 0.5 * np.sin( 2.0 * vNorm ) / vNorm ).tVector dJacOrth.SetTangentVector( dJacOrth_mat ) ddJacOrth_mat = dJacOrth1.ScalarMultiply( np.cos( vNorm ) ).tVector + dJacOrth4.ScalarMultiply( np.cos( 2.0 * vNorm ) ).tVector ddJacOrth = kendall2D_tVec( self.nPt ) ddJacOrth.SetTangentVector( ddJacOrth_mat ) dJac_ddJac_mat = jTang.tVector + dJacTang.tVector + dJacOrth.tVector + ddJacOrth.tVector dJac_ddJac = kendall2D_tVec( self.nPt ) dJac_Updated = self.ParallelTranslate( v, dJac_ddJac ) return Jac_Updated, dJac_Updated def CurvatureTensor( self, x, y, z ): skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 jX_mat = np.matmul( skew, x.tVector ) jY_mat = np.matmul( skew, y.tVector ) jZ_mat = np.matmul( skew, z.tVector ) jX = kendall2D_tVec( self.nPt ) jX.SetTangentVector( jX_mat ) jY = kendall2D_tVec( self.nPt ) jY.SetTangentVector( jY_mat ) jZ = kendall2D_tVec( self.nPt ) jZ.SetTangentVector( jZ_mat ) zxy_mat = np.multiply( self.InnerProduct( z, jX ), jY ) xyz_mat = np.multiply( self.InnerProduct( x, jY ), jZ ) yzx_mat = np.multiply( self.InnerProduct( y, jZ ), jX ) kCurv_mat = zxy_mat + yzx_mat - ( np.multiply( 2.0, xyz ) ) zDotX = self.InnerProduct( z, x ) zDotY = self.InnerProduct( z, y ) sphereCurv_mat = np.multiply( zDotX, y.tVector ) - np.multiply( zDotY, x.tVector ) curv_mat = kCurv_mat + sphereCurv_mat curv = kendall2D_tVec( self.nPt ) curv.SetTangentVector( curv_mat ) return curv def SectionalCurvature( self, x, y ): curv = self.CurvatureTensor( x, y, x ) sec = self.InnerProduct( curv, y ) xx = self.normSquared( x ) yy = self.normSquared( y ) xy = self.InnerProduct( x, y ) secCurv = sec / (( xx * yy ) - ( xy ** 2 ) ) return secCurv def ProjectTangent( self, p, v ): meanV = np.average( v.tVector, axis=1 ) print( meanV.shape ) hV = v for i in range( self.nPt ): for j in range( 2 ): hv.tVector[ j, i ] = v.tVector[ j, i ] - meanV[ j ] skew = np.zeros( [ 2, 2 ] ) skew[ 0, 1 ] = -1 skew[ 1, 0 ] = 1 vert_mat = np.matmul( skew, p.pt ) vert = kendall2D_tVec( self.nPt ) vert.SetTangentVector( vert_mat ) new_hV_mat = hV.tVector - np.multiply( p.InnerProduct( hV, vert ), vert.tVector ) hV.SetTangentVector( new_hV_mat ) return hV def Write( self, filePath ): infoList = [ self.Type, self.nDim, self.nPt, self.pt, False ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nDim = infoList[ 1 ] self.nPt = infoList[ 2 ] self.pt = infoList[ 3 ] ########################################################################## ## Scale Kendall 2D Shape Space ## ########################################################################## class scale_kendall2D( object ): def __init__( self, nPt ): self.Type = "Scale_Kendall2D" self.nPt = nPt self.nDim = nPt - 2 # pt : center, scale, abstract position, radius self.pt = [ euclidean(1), kendall2D( nPt ) ] self.scale = self.pt[ 0 ] self.kShape = self.pt[ 1 ] self.meanScale = 0 def SetPoint( self, pt ): if not ( len( pt ) == 2 and pt[ 0 ].nDim == 1 and pt[ 1 ].nPt == self.nPt ): print( "Scale_Kendall2D.SetPoint") print( "Error : Dimensions does not match" ) return self.pt = pt self.scale = pt[ 0 ] self.kShape = pt[ 1 ] def SetMeanScale( self, s ): self.meanScale = s return def ExponentialMap( self, tVec ): if not tVec.Type == "Scale_Kendall2D_Tangent": print( "Tangent Vector Type Mismatched" ) return exp_pt = scale_kendall2D( self.nPt ) exp_pt_arr = [] for i in range( 2 ): exp_pt_arr.append( self.pt[ i ].ExponentialMap( tVec.tVector[ i ] ) ) exp_pt.SetPoint( exp_pt_arr ) return exp_pt def LogMap( self, another_pt ): if not another_pt.Type == "Scale_Kendall2D": print( "Error: Component Type Mismatched" ) return tVec = scale_kendall2D_tVec( self.nPt ) for i in range( 2 ): tVec.tVector[ i ] = self.pt[ i ].LogMap( another_pt.pt[ i ] ) return tVec def GetScale( self ): return self.scale def GetShape( self ): return self.kShape def InnerProduct( self, ptA ): result = 0 # Scale result += self.pt[ 0 ].InnerProduct( ptA.pt[ 0 ] ) # Abstract Position result += self.pt[ 1 ].InnerProduct( ptA.pt[ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ProjectTangent( self, pt, tVec ): vProjected = scale_kendall2D_tVec( self.nPt ) for i in range( 2 ): vProjected_tVector[ i ] = self.pt[ i ].ProjectTangent( pt.pt[ i ], tVec.tVector[ i ] ) return vProjected def ParallelTranslate( self, v, w ): wParallelTranslated = scale_kendall2D_tVec( self.nDim ) for i in range( 2 ): wParallelTranslated.tVector[ i ] = self.pt[ i ].ParallelTranslate( v.tVector[ i ], w.tVector[ i ] ) return wParallelTranslated def ParallelTranslateToA( self, ptA, w ): v = self.LogMap( ptA ) return ParallelTranslate( v, w ) def ParallelTranslateAtoB( self, a, b, w ): v = a.LogMap( b ) return a.ParallelTranslate( v, w ) def AdjointGradientJacobi( self, v, j, dj ): e_base = self vNorm = v.norm() jOutput = scale_kendall2D_tVec( self.nPt ) jOutputDash = scale_kendall2D_tVec( self.nPt ) for i in range( 2 ): jOutput.tVector[ i ], jOutputDash.tVector[ i ] = self.pt[ i ].AdjointGradientJacobi( v.tVector[ i ], j.tVector[ i ], dj.tVector[ i ] ) return jOutput, jOutputDash def GetEuclideanLocations( self ): # Multiply Scale pos_scale_eucldiean_matrix = np.multiply( self.kShape.pt, self.scale.pt[ 0 ] ) # Add Center of Mass pos_world_coord_euclidean_matrix = np.zeros( [ self.nPt, 2 ] ) for i in range( self.nPt ): pos_world_coord_euclidean_matrix[ i, : ] = pos_scale_eucldiean_matrix[ :, i ].flatten() return pos_world_coord_euclidean_matrix def Write( self, filePath ): infoList = [ self.Type, self.nPt, self.nDim, self.pt, self.meanScale ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nPt = infoList[ 1 ] self.nDim = infoList[ 2 ] self.pt = infoList[ 3 ] self.scale = self.pt[ 0 ] self.kShape = self.pt[ 1 ] self.meanScale = infoList[ 4 ] class scale_kendall2D_tVec( object ): def __init__( self, nPt ): self.Type = "Scale_Kendall2D_Tangent" self.nPt = nPt self.nDim = nPt - 2 # tVector : scale, 2D Kendall Shape self.tVector = [ euclidean_tVec( 1 ), kendall2D_tVec( nPt ) ] self.meanScale = 1 # def SetTangentVectorFromArray( self, tVecArr ): # if not len( tVecArr ) == ( 4 + self.tVector[ 2 ].nDim + self.tVector[ 3 ].nDim ): # print( "Error : Dimension Mismatch" ) # return # # Center # self.tVector[ 0 ].tVector[ 0 ] = tVecArr[ 0 ] # self.tVector[ 0 ].tVector[ 1 ] = tVecArr[ 1 ] # self.tVector[ 0 ].tVector[ 2 ] = tVecArr[ 2 ] # # Scale # self.tVector[ 1 ].tVector[ 0 ] = tVecArr[ 3 ] # # PreShape # for k in range( self.tVector[ 2 ].nDim ): # self.tVector[ 2 ].tVector[ k ] = tVecArr[ k + 4 ] # # Radius # for k in range( self.tVector[ 3 ].nDim ): # self.tVector[ 3 ].tVector[ k ] = tVecArr[ k + 4 + self.tVector[ 2 ].nDim ] def SetMeanScale( self, meanScale ): self.meanScale = meanScale return def GetTangentVector(self): return self.tVector def SetTangentVector( self, tVec ): if not ( len( tVec ) == 2 and tVec[ 0 ].nDim == 1 and tVec[ 1 ].nPt == self.nPt ): print( "Error : Dimension Mismatch" ) return self.tVector = tVec def InnerProduct( self, tVec1 ): result = 0 # Scale result += self.tVector[ 0 ].InnerProduct( tVec1.tVector[ 0 ] ) # Kendall Shapes result += self.meanScale * self.meanScale * self.tVector[ 1 ].InnerProduct( tVec1.tVector[ 1 ] ) return result def normSquared( self ): return self.InnerProduct( self ) def norm( self ): return np.sqrt( self.normSquared() ) def ScalarMultiply( self, t ): tVector_t = scale_kendall2D_tVec( self.nPt ) for i in range( 2 ): tVector_t.tVector[ i ] = self.tVector[ i ].ScalarMultiply( t ) return tVector_t def Write( self, filePath ): infoList = [ self.Type, self.nPt, self.nDim, self.tVector, self.meanScale ] with open( filePath, 'wb' ) as fp: pickle.dump( infoList, fp ) def Read( self, filePath ): with open( filePath, 'rb' ) as fp: infoList = pickle.load( fp ) self.Type = infoList[ 0 ] self.nPt = infoList[ 1 ] self.nDim = infoList[ 2 ] self.tVector = infoList[ 3 ] self.meanScale = infoList[ 4 ]
StarcoderdataPython
6660749
#!/usr/bin/env python # _*_coding:utf-8 _*_ #@Time    :2019/4/17 0017 下午 5:11 #@Author  :喜欢二福的沧月君(<EMAIL>) #@FileName: train.py #@Software: PyCharm import numpy as np import pandas as pd titanic_survival= pd.read_csv("titanic_train.csv") #print(titanic_survival.head) """ age中有缺失值 求平均值 age=titanic_survival["Age"] #print(age.loc[0:10]) age_is_null=pd.isnull(age) #print(age_is_null) age_null_true=age[age_is_null] # print(age_null_true) age_null_count=len(age_null_true) # print(age_null_count) good_ages=titanic_survival["Age"][age_is_null == False] # print(good_ages) correct_mean_age=sum(good_ages)/len(good_ages) # print(correct_mean_age) """ """ 求每个船舱的平均存活人数 passenger_survival =titanic_survival.pivot_table(index="Pclass",values="Survived",aggfunc=np.mean)#默认是求均值 # print(passenger_survival) port_stats =titanic_survival.pivot_table(index="Embarked",values=["Fare","Survived"],aggfunc=np.sum) # print(port_stats) new_titanic_survival = titanic_survival.dropna(axis=0,subset=["Age","Sex"]) print(new_titanic_survival) """ """ """
StarcoderdataPython
1606768
<reponame>idris-rampurawala/form-fueled from app.pagination import DefaultCursorPagination from django.conf import settings from django.db.models import Prefetch from rest_framework.exceptions import NotFound from rest_framework.permissions import IsAuthenticated from rest_framework.response import Response from rest_framework.status import HTTP_200_OK, HTTP_201_CREATED from rest_framework.views import APIView from rest_framework_simplejwt.authentication import JWTAuthentication from .models import QResponse, Questionnaire, QuestionnaireRespondent from .serializers import (QuestionnaireCreateSerializer, QuestionnaireDetailSerializer, QuestionnaireResponseSerializer, QuestionnaireResponsesSerializer) class QuestionnaireApi(APIView): http_method_names = ['post', 'get'] authentication_classes = (JWTAuthentication,) permission_classes = (IsAuthenticated,) def get_queryset(self, user_id): return Questionnaire.objects.filter(user_id=user_id).prefetch_related('question_set') def get(self, request): """ API to fetch a questionnaire with questions """ queryset = self.get_queryset(request.user.id) paginator = DefaultCursorPagination() paginator_response = paginator.paginate_queryset(queryset, request) serializer = QuestionnaireDetailSerializer(paginator_response, many=True) return paginator.get_paginated_response(serializer.data) def post(self, request, format=None): """ Creates a Questionnaire """ serializer = QuestionnaireCreateSerializer(data=request.data, context={'user': request.user}) serializer.is_valid(raise_exception=True) data = serializer.save() links = { 'share': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}', 'responses': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}/responses', 'edit': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}/edit' } data['links'] = links return Response({'detail': data}, status=HTTP_201_CREATED) class QuestionnaireDetailApi(APIView): http_method_names = ['patch', 'get', 'delete'] authentication_classes = (JWTAuthentication,) permission_classes = (IsAuthenticated,) def get_object(self, user_id, pk): try: questionnaire_obj = Questionnaire.objects.prefetch_related('question_set').get(pk=pk, user_id=user_id) return questionnaire_obj except Questionnaire.DoesNotExist: raise NotFound def get(self, request, qid): """ API to fetch a questionnaire with questions """ questionnaire_obj = self.get_object(request.user.id, qid) serializer = QuestionnaireDetailSerializer(questionnaire_obj) return Response({'detail': serializer.data}, status=HTTP_200_OK) def patch(self, request, qid): """ API to update a questionnaire """ questionnaire_obj = self.get_object(request.user.id, qid) serializer = QuestionnaireCreateSerializer( questionnaire_obj, data=request.data, context={ 'user': request.user }, partial=True) serializer.is_valid(raise_exception=True) data = serializer.save() links = { 'share': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}', 'responses': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}/responses', 'edit': f'{settings.UI_BASE_URL}/questionnaire/{data.get("id")}/edit' } data['links'] = links return Response({'detail': data}, status=HTTP_200_OK) def delete(self, request, qid): """ Deletes a questionnaire and related data """ questionnaire_obj = self.get_object(request.user.id, qid) questionnaire_obj.delete() return Response({'detail': 'Success deleted the resource.'}, status=HTTP_200_OK) class QuestionnaireSharedApi(APIView): http_method_names = ['get', 'post'] def get_object(self, pk): try: questionnaire_obj = Questionnaire.objects.prefetch_related('question_set').get(pk=pk) return questionnaire_obj except Questionnaire.DoesNotExist: raise NotFound def get(self, request, qid): """ API to fetch a questionnaire with questions (without authentication) """ questionnaire_obj = self.get_object(qid) serializer = QuestionnaireDetailSerializer(questionnaire_obj) return Response({'detail': serializer.data}, status=HTTP_200_OK) def post(self, request, qid): """ API to save a questionnaire responses (without authentication) """ questionnaire_obj = self.get_object(qid) serializer = QuestionnaireResponseSerializer( data=request.data, context={ 'questionnaire_obj': questionnaire_obj}) serializer.is_valid(raise_exception=True) serializer.save() return Response({'detail': 'Response saved successfully'}, status=HTTP_200_OK) class QuestionnaireResponsesApi(APIView): http_method_names = ['get'] authentication_classes = (JWTAuthentication,) permission_classes = (IsAuthenticated,) def get_object(self, user_id, qid): try: questionnaire_obj = Questionnaire.objects.prefetch_related( Prefetch('responses', queryset=QuestionnaireRespondent.objects.prefetch_related( Prefetch( 'respondent', queryset=QResponse.objects.select_related('question').all()) ))).get(pk=qid, user_id=user_id) return questionnaire_obj except Questionnaire.DoesNotExist: raise NotFound def get(self, request, qid): """ API to fetch a questionnaire with questions """ questionnaire_obj = self.get_object(request.user.id, qid) serializer = QuestionnaireResponsesSerializer(questionnaire_obj, many=False) return Response({'detail': serializer.data}, status=HTTP_200_OK) class QuestionnaireResponsesListApi(APIView): http_method_names = ['get'] authentication_classes = (JWTAuthentication,) permission_classes = (IsAuthenticated,) def get_queryset(self, user_id): return Questionnaire.objects.prefetch_related( Prefetch('responses', queryset=QuestionnaireRespondent.objects.prefetch_related( Prefetch( 'respondent', queryset=QResponse.objects.select_related('question').all()) ))).filter(user_id=user_id) def get(self, request): """ API to fetch all questionnaires alongwith their responses """ queryset = self.get_queryset(request.user.id) paginator = DefaultCursorPagination() paginator_response = paginator.paginate_queryset(queryset, request) serializer = QuestionnaireResponsesSerializer(paginator_response, many=True) return paginator.get_paginated_response(serializer.data)
StarcoderdataPython
3550053
from tensorflow.keras import backend as K from tensorflow.keras.callbacks import ModelCheckpoint import unet import candle def initialize_parameters(): unet_common = unet.UNET( unet.file_path, 'unet_params.txt', 'keras', prog='unet_example', desc='UNET example' ) # Initialize parameters gParameters = candle.finalize_parameters(unet_common) return gParameters def run(gParameters): # load data x_train, y_train = unet.load_data() # example has 420 x 580 model = unet.build_model(420, 580, gParameters['activation'], gParameters['kernel_initializer']) model.summary() model.compile(optimizer=gParameters['optimizer'], loss='binary_crossentropy', metrics=['accuracy']) model_chkpoint = ModelCheckpoint('unet.hdf5', monitor='loss', verbose=1, save_best_only=True) history = model.fit(x_train, y_train, batch_size=gParameters['batch_size'], epochs=gParameters['epochs'], verbose=1, validation_split=0.3, shuffle=True, callbacks=[model_chkpoint] ) return history def main(): gParameters = initialize_parameters() run(gParameters) if __name__ == '__main__': main() try: K.clear_session() except AttributeError: pass
StarcoderdataPython
4916895
<reponame>jean3108/TwoPlayer-Game from abc import ABC, abstractmethod from twoPlayerAiGame.aiAlgorithms import minmaxDecision, negamaxDecision, randomDecision, humanDecision class StateGame(ABC): """ Class wich represent a state of a two-player game """ @abstractmethod def __init__(self, maxPlayer): """ Create a state of the game. :return: The state with the choosen information :rtype: stateGame """ self.maxPlayer = 1 if maxPlayer==True else -1 pass @abstractmethod def calculateScore(self): """ Calculate the score of the current state if it's a terminal state or estimate the score :return: The score of the current state :rtype: number """ pass @abstractmethod def getChoices(self): """ Get the different choice for the player for the current state. :return: Every choices that the player can make. :rtype: list[object] """ pass @abstractmethod def doChoice(self, inNewState = False): """ Apply the choice to the current state (inplace or not) :param inNewState: To choose if the choice is apply inplace (on the current state) or not (on a copy of the current state) :type inNewState: boolean :return: Nothing if it's inplace then the new state. :rtype: stateGame or None """ pass @abstractmethod def undoChoice(self, inNewState = False): """ Undo the given choice for the current state (inplace or not) :param inNewState: To choose if the choice is apply inplace (on the current state) or not (on a copy of the current state) :type inNewState: boolean :return: Nothing if it's inplace then the new state. :rtype: stateGame or None """ pass @abstractmethod def toKey(self): """ Get the unique ID of the state. This ID is useful to use memoization in different algorithms :return: the ID of the current state :rtype: string """ pass @abstractmethod def printBeforeGame(self): """ Print information before the beginning of the game """ pass @abstractmethod def printInfoPlayer(self): """ Print information before the turn of the current player """ pass @abstractmethod def printResultAction(self, choice): """ Print information after the turn of the current player :param choice: The choice wich was just played :type choice: typeof(self.getChoices()[0]) """ pass @abstractmethod def printAfterGame(self): """ Print information after the end of the game """ pass def play(self, player1, player2, verbose=True): """ Play the game :param player1: String to choose the algorithm for the choice of the player1 (can be human) :param player2: String to choose the algorithm for the choice of the player2 (can be human) :param verbose: Indicate if information are printed or not :type player1: String :type player2: String :type verbose: boolean :return: the number of the winner then 0 :rtype: int """ #################################### # Selection of algorithm & Setting # #################################### if(player1=='human'): function1 = humanDecision elif(player1=='minmax'): function1 = minmaxDecision elif(player1=='negamax'): function1 = negamaxDecision elif(player1=='random'): function1 = randomDecision if(player2=='human'): function2 = humanDecision elif(player2=='minmax'): function2 = minmaxDecision elif(player2=='negamax'): function2 = negamaxDecision elif(player2=='random'): function2 = randomDecision ######################### # Beginning of the game # ######################### over = False if(verbose==True): self.printBeforeGame() currentScore = self.calculateScore() while(currentScore==False): if(verbose==True): self.printInfoPlayer() if(self.maxPlayer==1): choice = function1(self)[1] else: choice = function2(self)[1] self.doChoice(choice) currentScore = self.calculateScore() if(verbose==True): self.printResultAction(choice) if(verbose==True): self.printAfterGame() return currentScore
StarcoderdataPython
8067386
from flask import Blueprint ac = Blueprint('ac', __name__) @ac.route('/login') def login(): return 'login' @ac.route('/logout') def logout(): return 'logout'
StarcoderdataPython
8162889
<reponame>imapi/Permission-Resolver<filename>permission_resolver/permission_resolver.py #!/usr/bin/python3 # -*- coding: utf-8 -*- from io import TextIOWrapper from pathlib import PureWindowsPath, PurePosixPath from typing import List, Union import argparse class TreeItem: def __init__(self, name: str, readable: bool = False, writable: bool = False) -> None: """ Tree structure with folder name and children sub-folders :param name: folder name :param readable: set to True if folder is readable :param writable: set to True if folder is writable (it will also set readable flag) """ self._name = name self._writable = writable self._readable = readable self._children = {} @property def name(self) -> str: return self._name @property def writable(self) -> bool: return self._writable @property def readable(self) -> bool: return self._writable or self._readable @readable.setter def readable(self, value: bool) -> None: self._readable = value @writable.setter def writable(self, value: bool) -> None: self._writable = value @property def children(self) -> List['TreeItem']: """ Children for the TreeItem :return: List of TreeItem children """ return list(self._children.values()) def add_child(self, child: 'TreeItem') -> 'TreeItem': """ Add child to the children list, updated existing child if exists :param child: TreeItem child :return: TreeItem child added/updated in the list of children """ key = child.name if key in self._children: self._children[key].update(child) else: self._children[key] = child return self._children[key] def remove_child(self, child: 'TreeItem') -> Union['TreeItem', None]: """ Remove particular child from the list of children :param child: child to remove :return: TreeItem removed child or None if child is not in list of children """ return self._children.pop(child.name, None) def __repr__(self, depth: int = 1) -> str: """ String representation of the tree :param depth: depth level :return: textual representation of the tree """ result = [self.name] depth += 1 for child in self.children: result.extend(["\n", " " * depth, child.__repr__(depth)]) return "".join(result) def update(self, other: 'TreeItem') -> None: """ Update current node with other node with the same name, from folder permissions those with wider access would be used, children list would be merged via add_child to the current node. :param other: TreeItem other node to merge with """ if self.name != other.name: return self.readable = self.readable or other.readable self.writable = self.writable or other.writable for child in other.children: self.add_child(child) def build_writable_folders_tree(readable_folders: List[str], writable_folders: List[str], system: str = 'posix') -> TreeItem: """ Function builds tree with writable folders leafs (accessible from the root via at least readable ones), posix and windows like paths supported :param readable_folders: List of readable absolute paths :param writable_folders: List of writable absolute paths :param system: 'posix' or 'windows' - depending on absolute paths system :return: TreeItem with writable folders leafs (nodes could be readable or readable/writable) """ system_flavour = {'posix': PurePosixPath, 'windows': PureWindowsPath} if system not in system_flavour: raise ValueError(f'System \'{system}\' is not supported, should be one of: {", ".join(system_flavour.keys())}') def populate_tree(folders: List[str], readable=False, writable=False) -> None: for folder in folders: path = system_flavour[system](folder) parents = list(reversed(path.parents)) tree = root.add_child(TreeItem(parents[0].as_posix(), readable=True)) for parent in parents[1:]: tree = tree.add_child(TreeItem(parent.name)) tree.add_child(TreeItem(path.name, readable, writable)) def keep_only_writable(tree: 'TreeItem') -> None: for child in tree.children: keep_only_writable(child) if not child.readable or (not child.children and not child.writable): tree.remove_child(child) root = TreeItem("") populate_tree(readable_folders, readable=True) populate_tree(writable_folders, writable=True) keep_only_writable(root) return root def _read_files(files: List[TextIOWrapper]) -> List[str]: content = [] for file in files: with file: content += [l.strip() for l in file.readlines()] return content def parse_arguments() -> argparse.Namespace: parser = argparse.ArgumentParser(description='Lists accessible for write folders.') parser.add_argument('-r', '--readable', required=True, nargs='*', type=argparse.FileType('r'), help='Files with newline separated readable folders list') parser.add_argument('-w', '--writable', required=True, nargs='*', type=argparse.FileType('r'), help='Files with newline separated writable folders list') parser.add_argument('-s', '--system', choices=['posix', 'windows'], nargs=1, type=str, default='posix', help='Type of system paths (windows or posix)') return parser.parse_args() def main() -> None: args = parse_arguments() print(build_writable_folders_tree(_read_files(args.readable), _read_files(args.writable), args.system)) if __name__ == '__main__': main()
StarcoderdataPython
380088
#!/usr/bin/env python # Force Python 2 to use float division even for ints from __future__ import division from __future__ import print_function import importlib import stacktrain.config.general as conf import stacktrain.core.cond_sleep as cs kc = importlib.import_module("stacktrain.%s.keycodes" % conf.provider) # ----------------------------------------------------------------------------- # Virtual VM keyboard using keycodes # ----------------------------------------------------------------------------- def keyboard_send_escape(vm_name): kc.keyboard_push_scancode(vm_name, kc.esc2scancode()) def keyboard_send_enter(vm_name): kc.keyboard_push_scancode(vm_name, kc.enter2scancode()) def keyboard_send_backspace(vm_name): kc.keyboard_push_scancode(vm_name, kc.backspace2scancode()) def keyboard_send_f6(vm_name): kc.keyboard_push_scancode(vm_name, kc.f6_2scancode()) # Turn strings into keycodes and send them to target VM def keyboard_send_string(vm_name, string): # This loop is inefficient enough that we don't overrun the keyboard input # buffer when pushing scancodes to the VM. for letter in string: scancode = kc.char2scancode(letter) kc.keyboard_push_scancode(vm_name, scancode) # Sleep occasionally to keep us from overruning the keyboard input # buffer keyboard_send_string.cnt += 1 if keyboard_send_string.cnt % 50 == 0: cs.conditional_sleep(1) keyboard_send_string.cnt = 0
StarcoderdataPython