id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
9673383
<reponame>tugot17/Pytorch-Lightning-Templates- import albumentations as A import pytorch_lightning as pl from albumentations.pytorch import ToTensorV2 from torch.utils.data import DataLoader from .dataset import ImageClassificationDataset class ImageClassificationDatamodule(pl.LightningDataModule): def __init__(self, batch_size, train_transform, val_transform): super().__init__() self.batch_size = batch_size self.train_transform = train_transform self.val_transform = val_transform def setup(self, stage=None): self.train_set = ImageClassificationDataset( file_paths=[ "./images/image_1.jpg", "./images/image_2.jpg", "./images/image_3.jpg", ], labels=[1, 2, 3], transform=self.train_transform, ) self.val_set = ImageClassificationDataset( file_paths=[ "./images/image_1.jpg", "./images/image_2.jpg", "./images/image_3.jpg", ], labels=[1, 2, 3], transform=self.val_transform, ) def train_dataloader(self): return DataLoader( self.train_set, batch_size=self.batch_size, shuffle=True, num_workers=4 ) def val_dataloader(self): return DataLoader( self.val_set, batch_size=self.batch_size, shuffle=False, num_workers=4 ) if __name__ == "__main__": val_transform = A.Compose( [ A.Resize(224, 224), A.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), ToTensorV2(), ] ) train_transform = A.Compose( [ A.Resize(400, 400), A.RandomCrop(224, 224), A.HorizontalFlip(), A.RandomRotate90(), A.ShiftScaleRotate( shift_limit=0.0625, scale_limit=0.50, rotate_limit=45, p=0.75 ), A.Blur(blur_limit=3), A.OpticalDistortion(), A.GridDistortion(), A.HueSaturationValue(), A.Normalize( mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], ), ToTensorV2(), ] ) dm = ImageClassificationDatamodule(16, train_transform, val_transform)
StarcoderdataPython
6491097
<reponame>arsho/Hackerrank_30_Days_of_Code_Solutions ''' Title : Day 2: Operators Domain : Tutorials Author : <NAME> Created : 03 April 2019 ''' #!/bin/python3 import math import os import random import re import sys # Complete the solve function below. def solve(meal_cost, tip_percent, tax_percent): tip = meal_cost * (tip_percent / 100) tax = meal_cost * (tax_percent / 100) return round(meal_cost + tip + tax) if __name__ == '__main__': meal_cost = float(input()) tip_percent = int(input()) tax_percent = int(input()) total_cost = solve(meal_cost, tip_percent, tax_percent) print(total_cost)
StarcoderdataPython
6659803
<filename>number_theory/primality_test/naive.py<gh_stars>0 from math import sqrt from parameterized import parameterized import unittest class Test(unittest.TestCase): @parameterized.expand([ (11, True), (15, False), (1, False), (5, True), (4, False), (49, False) ]) def test(self, target, is_prime_expected): self.assertEqual(is_prime(target), is_prime_expected) def is_prime(target): if target < 2: return False if not target%2 or not target%3: return False for i in range(5, int(sqrt(target)) + 1, 6): if not target%i or not target%(i+2): return False return True
StarcoderdataPython
3550063
import sys, json; with open(sys.argv[1]) as f: data = json.load(f) for x in range(2,len(sys.argv)): data = data[sys.argv[x]] print data
StarcoderdataPython
109964
from django.apps import apps from django.core.management.base import BaseCommand from rayures.events import dispatch class Command(BaseCommand): help = 'Sync stripe events' def handle(self, *args, **options): # TODO: option to select only the one that have only failed or never processed cls = apps.get_model('rayures', 'Event') qs = cls.objects.all() # qs = qs.filter(type__startswith='coupon.') for event in qs.order_by('created_at'): print(event, event.created_at, event.type) dispatch(event)
StarcoderdataPython
82531
<reponame>monk-after-90s/diyblog from django.contrib.auth.decorators import login_required from django.contrib.auth.mixins import LoginRequiredMixin from django.http import HttpResponseRedirect from django.shortcuts import render, get_object_or_404 # Create your views here. from django.urls import reverse from django.views.generic import DetailView, ListView, CreateView from blog.forms import BlogUserModelForm from blog.models import BlogUser, Blog, Comment def index(request): return render(request, 'blog/index.html') class BlogUserDetailView(ListView): model = Blog template_name = 'blog/bloguser_detail.html' def get_queryset(self): return Blog.objects.filter(author_id=int(self.kwargs['pk'])) def get_context_data(self, *, object_list=None, **kwargs): context = super().get_context_data(object_list=object_list, **kwargs) context['bloguser'] = BlogUser.objects.get(pk=int(self.kwargs['pk'])) return context def register_view(request): if request.method == 'GET': form = BlogUserModelForm() else: form = BlogUserModelForm(request.POST) if form.is_valid(): new_blog_user = BlogUser.objects.create_user( **{key: request.POST[key] for key in BlogUserModelForm.Meta.fields}) new_blog_user.save() return HttpResponseRedirect(reverse('bloguser-detail', args=[str(new_blog_user.pk)])) context = { 'form': form } return render(request, 'blog/bloguser_form.html', context=context) class BlogListView(ListView): model = Blog paginate_by = 5 class BlogUserListView(ListView): model = BlogUser template_name = 'blog/blogger_list.html' def get_queryset(self): return BlogUser.objects.filter(blog__id__gt=0) class BlogDetailView(DetailView): model = Blog class CommentDetailView(DetailView): model = Comment # @login_required # def comment_create_view(request, blog_pk: int): # blog = Blog.objects.get(pk=blog_pk) # if request.method == 'GET': # blog = Blog.objects.get(pk=blog_pk) # form = CommentModelForm() # context = { # 'form': form, # 'blog': blog # } # return render(request, 'blog/comment_form.html', context=context) # else: # form = CommentModelForm(request.POST) # if form.is_valid(): # new_comment = Comment.objects.create( # content=form.cleaned_data['content'], # blog=blog, # bloguser=BlogUser.objects.get(pk=(request.user.pk)) # ) # new_comment.save() # return HttpResponseRedirect(reverse('blog', args=(blog_pk,))) class CommentCreateView(LoginRequiredMixin, CreateView): fields = ['content'] model = Comment def get_context_data(self, **kwargs): context = super(CommentCreateView, self).get_context_data(**kwargs) context['blog'] = Blog.objects.get(pk=int(self.kwargs['blog_pk'])) return context def form_valid(self, form): form.instance.bloguser = BlogUser.objects.get(pk=int(self.request.user.pk)) form.instance.blog = get_object_or_404(Blog, pk=int(self.kwargs['blog_pk'])) return super(CommentCreateView, self).form_valid(form) def get_success_url(self): return reverse('blog', args=(str(self.kwargs['blog_pk']),))
StarcoderdataPython
6571999
<filename>python/fitfitparse.py #!/usr/bin/env python3 import fitparse import sys import time import os start = time.time() fitfile = fitparse.FitFile( sys.argv[1] ) records = [] laps = [] for record in fitfile.get_messages( 'record' ): records.append( record ) for lap in fitfile.get_messages( 'lap' ): laps.append( lap ) print( 'record: {} messages'.format( len( records) ) ) print( 'laps: {} messages'.format( len( laps) ) ) end = time.time() print( "| python | {} | {} | {:.3f} seconds | [python-fitparse](https://github.com/dtcooper/python-fitparse) |".format( os.path.basename(sys.argv[0]), sys.argv[1], end-start ) )
StarcoderdataPython
3279543
from sklearn.model_selection import train_test_split; from sklearn.datasets import make_moons from supervised_learning.trees.random_forests import RandomForestClassifier from misc.plot_functions import plot_decision def main(): #We sample 100 points from the make_moons function in order to classify them. X, y = make_moons(n_samples=100, noise=0.25, random_state=42); X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.33, random_state=42) model = RandomForestClassifier() model.fit(X_train, y_train) print("Test score: ", model.score(X_test, y_test)) plot_decision(model, X, y, "Random forest classifier", "X0", "X1") if __name__ == "__main__": main();
StarcoderdataPython
5188548
import logging from typing import Optional import docker # type: ignore[import] from docker.client import DockerClient # type: ignore[import] from docker.models.networks import Network # type: ignore[import] from docker.errors import APIError # type: ignore[import] import psutil # type: ignore[import] from .errors import AlreadyStoppedError, ContainerRuntimeError from .commons import DOCKER_LABEL_KEY, get_docker_label_value from .implementations import ( FHIRImplementation, HAPIFHIRImplementation, MicrosoftFHIRImplemention, ) from .models import Configuration, FHIRFlavor, RunningFHIR LOGGER = logging.getLogger(__name__) def _kill_orphaned_containers(docker_client: DockerClient): containers = docker_client.containers.list( filters={ "label": DOCKER_LABEL_KEY, }, ) for container in containers: parent_pid = int(container.labels[DOCKER_LABEL_KEY]) if not psutil.pid_exists(parent_pid): LOGGER.info( f"Found orphaned container {container.id}, \ created by pid {parent_pid}, killing..." ) container.kill() def _kill_orphaned_networks(docker_client: DockerClient): networks = docker_client.networks.list( filters={ "label": DOCKER_LABEL_KEY, }, ) for network in networks: parent_pid = int(network.attrs["Labels"][DOCKER_LABEL_KEY]) if not psutil.pid_exists(parent_pid): LOGGER.info( f"Found orphaned network {network.id}, \ created by pid {parent_pid}, killing..." ) network.remove() def _create_implementation(flavor: FHIRFlavor) -> FHIRImplementation: if flavor == FHIRFlavor.HAPI: return HAPIFHIRImplementation() elif flavor == FHIRFlavor.MICROSOFT: return MicrosoftFHIRImplemention() else: raise NotImplementedError() class FHIRRunner(object): """A class responsible for running a selected FHIR implementation. Can be used in one of two ways: * Directly, using the ``running_fhir`` property and the ``stop`` method. * As a context manager: ``with FHIRRunner(configuration) as running_fhir:`` :param flavor: Selected FHIR implementation. :type flavor: FHIRFlavor :param host_ip: Host IP used to expose the service externally , defaults to None :type host_ip: str, optional :param kill_orphans: Whether to destroy orphaned Docker objects from previous runs, defaults to True :type kill_orphans: bool, optional :param network_id: A Docker network id to attach to, defaults to None :type network_id: Optional[str], optional :param startup_timeout: Number of seconds to wait for server startup, defaults to 120 :type startup_timeout: float, optional :param docker_client: A Docker client, will be created using ``docker.from_env()`` if not set, defaults to None :type docker_client: Optional[DockerClient], optional :ivar running_fhir: Descriptor of the running FHIR server. :vartype running_fhir: RunningFHIR :raises NotImplementedError: Selected implementation is not supported. :raises StartupTimeoutError: An error caused by exceeding the time limit. :raises ContainerRuntimeError: An error related to container runtime. """ running_fhir: RunningFHIR _implementation: FHIRImplementation _configuration: Configuration _network: Network _stopped: bool = False def __init__( self, flavor: FHIRFlavor, host_ip: Optional[str] = None, kill_orphans: bool = True, network_id: Optional[str] = None, startup_timeout: float = 120, docker_client: Optional[DockerClient] = None, ) -> None: """A constructor of ``RunningFHIR``.""" self._configuration = Configuration( host_ip=host_ip, kill_orphans=kill_orphans, network_id=network_id, startup_timeout=startup_timeout, docker_client=docker_client, ) self._implementation = _create_implementation(flavor) self.running_fhir = self._start() def _start(self) -> RunningFHIR: try: configuration = self._configuration if configuration.docker_client: docker_client = configuration.docker_client else: docker_client = docker.from_env() if configuration.kill_orphans: _kill_orphaned_containers(docker_client) _kill_orphaned_networks(docker_client) new_network_created = configuration.network_id is None if new_network_created: network = docker_client.networks.create( name="pyembeddedfhir", driver="bridge", labels={DOCKER_LABEL_KEY: get_docker_label_value()}, ) else: network = docker_client.networks.get(configuration.network_id) self._network = network try: return self._implementation.start( docker_client, configuration, network, ) except: # noqa: E722 (intentionally using bare except) if new_network_created: network.remove() raise except APIError as e: raise ContainerRuntimeError(e) def _stop(self) -> None: try: if self._stopped: raise AlreadyStoppedError( "Tried stopping FHIR, but it was already stopped." ) self._implementation.stop() self._network.remove() self._stopped = True except APIError as e: raise ContainerRuntimeError(e) def stop(self) -> None: """Stop the FHIR server and perform cleanup. :raises ContainerRuntimeError: An error related to container runtime. :raises AlreadyStoppedError: If the runner was already stopped. """ self._stop() def __enter__(self) -> RunningFHIR: return self.running_fhir def __exit__(self, exc_type, exc_val, exc_tb) -> None: self._stop()
StarcoderdataPython
3464044
<reponame>rsgit95/med_kg_txt_multimodal from rdflib import Graph, URIRef from tqdm import tqdm import pickle # kg 로드 1분걸려요 kg = Graph() kg.parse('mimic_sparqlstar_kg.xml', format='xml', publicID='/') def build_dict(triples, nodes, edges): h, r, t = triples #for (h,r,t) in triples: if h not in nodes: nodes[h]=1 else: nodes[h]+=1 if t not in nodes: nodes[t]=1 else: nodes[t]+=1 if r not in edges: edges[r]=1 else: edges[r]+=1 return nodes, edges # triple 확인 nodes = dict() edges = dict() for triple in tqdm(kg): triples = [x.n3() for x in triple] #print(triples) nodes, edges = build_dict(triples, nodes, edges) #matching = [s for s in tqdm(list(nodes.keys())) if "hadm_id" in list(nodes.keys())] print(len(nodes)) print(len(edges)) f = open('node_dict','w') g = open('edge_dict','w') for node in list(nodes.keys()): f.write('{}\n'.format(node)) for edge in list(edges.keys()): g.write('{}\n'.format(edge))
StarcoderdataPython
214186
import pydsm import pydsm.similarity from scipy.stats import spearmanr from pkg_resources import resource_stream import pickle import os def synonym_test(matrix, synonym_test, sim_func=pydsm.similarity.cos): """ Evaluate DSM using a synonym test. :param matrix: A DSM matrix. :param synonym_test: A dictionary where the key is the word in focus, and the value is a list of possible word choices. The first word in the dict is the correct choice. :param sim_func: The similarity function to use for evaluation. :return: Accuracy of synonym test. """ correct = [] incorrect = [] unknown_focus_words = [] unknown_synonyms = [] for focus_word, candidates in synonym_test.items(): if focus_word not in matrix.word2row: unknown_focus_words.append(focus_word) continue known_words = [w for w in candidates if w in matrix.word2row] unknown_words = [w for w in candidates if w not in matrix.word2row] if candidates[0] in unknown_words: unknown_synonyms.append(focus_word) continue word_sims = sim_func(matrix[focus_word], matrix[known_words], assure_consistency=False).transpose().sort(ascending=False) if word_sims.row2word[0] == candidates[0]: correct.append(focus_word) else: incorrect.append(focus_word) accuracy = len(correct) / len(synonym_test) print("Evaluation report") print("Accuracy: {}".format(accuracy)) print("Number of words: {}".format(len(synonym_test))) print("Correct words: {}".format(correct)) print("Incorrect words: {}".format(incorrect)) print("Unknown words: {}".format(unknown_focus_words)) print("Unknown correct synonym: {}".format(unknown_synonyms)) return accuracy def simlex(matrix, sim_func=pydsm.similarity.cos): """ Evaluate DSM using simlex-999 evaluation test [1]. :param matrix: A DSM matrix. :param sim_func: The similarity function to use for evaluation. :return: Spearman correlation coefficient. [1] SimLex-999: Evaluating Semantic Models with (Genuine) Similarity Estimation. 2014. <NAME>, <NAME> and <NAME>. Preprint pubslished on arXiv. arXiv:1408.3456 """ wordpair_sims = pickle.load(resource_stream(__name__, os.path.join('resources', 'simlex.pickle'))) simlex_vals = [] sim_vals = [] skipped = [] for (w1, w2), value in wordpair_sims.items(): if w1 not in matrix.word2row or w2 not in matrix.word2row: skipped.append((w1, w2)) continue sim_vals.append(sim_func(matrix[w1], matrix[w2])[0,0]) simlex_vals.append(value) spearman = spearmanr(simlex_vals, sim_vals) print("Evaluation report") print("Spearman correlation: {}".format(spearman[0])) print("P-value: {}".format(spearman[1])) print("Skipped the following word pairs: {}".format(skipped )) return spearman[0] def toefl(matrix, sim_func=pydsm.similarity.cos): """ Evaluate DSM using TOEFL synonym test [1]. :param matrix: A DSM matrix. :param sim_func: The similarity function to use for evaluation. :return: Accuracy of TOEFL test. [1] http://aclweb.org/aclwiki/index.php?title=TOEFL_Synonym_Questions_%28State_of_the_art%29 """ synonym_dict = pickle.load(resource_stream(__name__, os.path.join('resources', 'toefl.pickle'))) return synonym_test(matrix, synonym_dict, sim_func=sim_func)
StarcoderdataPython
6470549
import stats_batch as sb import numpy as np import numpy.testing as npt # Test mean_batch returns the mean if prior_mean and prior_sample_size are missing def test_mean_batch_missing_prior_mean_prior_sample_size(): x = list(range(1, 100)) assert sb.mean_batch(x)[0] == np.mean(x) assert sb.mean_batch(x)[1] == len(x) # Test mean_batch returns the correct mean from multiple batches def test_mean_batch_multiple_batches(): n = 10_000 x = np.random.normal(size=n) # First batch batch_1 = x[:100] b1_mean, b1_n = sb.mean_batch(batch_1) # Second batch batch_2 = x[100:n] b2_mean, b2_n = sb.mean_batch(batch_2, b1_mean, b1_n) npt.assert_approx_equal(b2_mean, np.mean(x)) assert b2_n == n
StarcoderdataPython
11314598
from django.contrib.auth.models import User from django.db import models from django.db.models.signals import post_save from django.dispatch import receiver from rest_framework.authtoken.models import Token @receiver(post_save, sender=User) def create_auth_token(sender, instance=None, created=False, **kwargs): if created: Token.objects.create(user=instance) def user_directory_path(instance, filename): return 'user_{0}/{1}'.format(instance.user.id, filename) # use the default User model and this Profile model to represent user info class Profile(models.Model): user = models.OneToOneField(User, related_name='profile', on_delete=models.CASCADE) avatar = models.FileField(upload_to=user_directory_path, blank=True, null=True) def __str__(self): return f"Profile [id:{self.id}, user_id:{self.user.id}, username:{self.user.username}]" class Meta: app_label = "monopoly"
StarcoderdataPython
265318
<filename>model/wordrep.py<gh_stars>1-10 from __future__ import print_function from __future__ import absolute_import import torch import torch.nn as nn import numpy as np class WordRep(nn.Module): def __init__(self, data): super(WordRep, self).__init__() print("build word representation...") self.gpu = data.HP_gpu self.batch_size = data.HP_batch_size self.embedding_dim = data.word_emb_dim self.drop = nn.Dropout(data.HP_dropout) # word embedding self.word_embedding = nn.Embedding(data.word_alphabet.size(), self.embedding_dim) if data.pretrain_word_embedding is not None: self.word_embedding.weight.data.copy_(torch.from_numpy(data.pretrain_word_embedding)) else: self.word_embedding.weight.data.copy_( torch.from_numpy(self.random_embedding(data.word_alphabet.size(), self.embedding_dim))) # label embedding self.label_dim = data.HP_hidden_dim self.label_embedding = nn.Embedding(data.label_alphabet_size, self.label_dim) self.label_embedding.weight.data.copy_(torch.from_numpy( self.random_embedding_label(data.label_alphabet_size, self.label_dim, data.label_embedding_scale))) # whether to use gpu if self.gpu: self.drop = self.drop.cuda() self.word_embedding = self.word_embedding.cuda() self.label_embedding = self.label_embedding.cuda() def random_embedding(self, vocab_size, embedding_dim): pretrain_emb = np.empty([vocab_size, embedding_dim]) scale = np.sqrt(3.0 / embedding_dim) for index in range(vocab_size): pretrain_emb[index, :] = np.random.uniform(-scale, scale, [1, embedding_dim]) return pretrain_emb def random_embedding_label(self, vocab_size, embedding_dim, scale): pretrain_emb = np.empty([vocab_size, embedding_dim]) # scale = np.sqrt(3.0 / embedding_dim) # scale = 0.025 for index in range(vocab_size): pretrain_emb[index, :] = np.random.uniform(-scale, scale, [1, embedding_dim]) return pretrain_emb def forward(self, word_inputs, input_label_seq_tensor): """ input: word_inputs: (batch_size, sent_len) word_seq_lengths: list of batch_size, (batch_size,1) input_label_seq_tensor: (batch_size, number of label) output: Variable(batch_size, sent_len, hidden_dim) """ word_embs = self.word_embedding(word_inputs) # label embedding label_embs = self.label_embedding(input_label_seq_tensor) word_represent = self.drop(word_embs) # label_embs = self.drop(label_embs) return word_represent, label_embs
StarcoderdataPython
11246563
<reponame>cfnyu/distributed_db # -*- coding: utf-8 -*- """ Site This module represents a site """ from enum import IntEnum from sites.data_manager import DataManager from objects.variable import Variable class SiteStatus(IntEnum): """ Represents the possible status of a Site """ UP = 1, DOWN = 2 class Site: """ Represents a single Site """ def __init__(self, site_id, time, logger): self.identifer = site_id # TODO: Fix typo self.status = SiteStatus.UP self.create_time = 0 variables = {} # Load all variables for i in range(1, 21): if i % 2 == 0 or 1 + (i % 10) == site_id: new_variable = Variable(time, i) logger.log("Adding %s at time %s" % (new_variable.identifier, str(time))) variables[new_variable.identifier] = new_variable self.data_manager = DataManager(variables, logger, site_id) def dump(self): """ Dump the results of all commits values to stdout """ return self.data_manager.variables def recover(self, time): """ Recover this site """ self.status = SiteStatus.UP self.create_time = time for variable in self.data_manager.variables.values(): variable.readable = not variable.replicated def fail(self): """ Fail this site """ self.status = SiteStatus.DOWN #clear lock list self.data_manager.locks = {} self.data_manager.entries = {} # clear entries log
StarcoderdataPython
3283034
<reponame>knownmed/opentrons<gh_stars>0 import logging import numpy as np # type: ignore from dataclasses import dataclass from typing import Optional, List from opentrons import config from opentrons.config.robot_configs import get_legacy_gantry_calibration from opentrons.calibration_storage import modify, types, get from opentrons.types import Mount from opentrons.util import linal from .util import DeckTransformState log = logging.getLogger(__name__) @dataclass class RobotCalibration: deck_calibration: types.DeckCalibration def build_temporary_identity_calibration() -> RobotCalibration: """ Get a temporary identity deck cal suitable for use during calibration """ return RobotCalibration( deck_calibration=types.DeckCalibration( attitude=linal.identity_deck_transform().tolist(), source=types.SourceType.default, status=types.CalibrationStatus(), ) ) def validate_attitude_deck_calibration(deck_cal: types.DeckCalibration): """ This function determines whether the deck calibration is valid or not based on the following use-cases: TODO(lc, 8/10/2020): Expand on this method, or create another method to diagnose bad instrument offset data """ curr_cal = np.array(deck_cal.attitude) row, _ = curr_cal.shape rank = np.linalg.matrix_rank(curr_cal) if row != rank: # Check that the matrix is non-singular return DeckTransformState.SINGULARITY elif not deck_cal.last_modified: # Check that the matrix is not an identity return DeckTransformState.IDENTITY else: # Transform as it stands is sufficient. return DeckTransformState.OK def validate_gantry_calibration(gantry_cal: List[List[float]]): """ This function determines whether the gantry calibration is valid or not based on the following use-cases: """ curr_cal = np.array(gantry_cal) row, _ = curr_cal.shape rank = np.linalg.matrix_rank(curr_cal) id_matrix = linal.identity_deck_transform() z = abs(curr_cal[2][-1]) outofrange = z < 16 or z > 34 if row != rank: # Check that the matrix is non-singular return DeckTransformState.SINGULARITY elif np.array_equal(curr_cal, id_matrix): # Check that the matrix is not an identity return DeckTransformState.IDENTITY elif outofrange: # Check that the matrix is not out of range. return DeckTransformState.BAD_CALIBRATION else: # Transform as it stands is sufficient. return DeckTransformState.OK def migrate_affine_xy_to_attitude( gantry_cal: List[List[float]], ) -> types.AttitudeMatrix: masked_transform = np.array( [ [True, True, True, False], [True, True, True, False], [False, False, False, False], [False, False, False, False], ] ) masked_array = np.ma.masked_array(gantry_cal, ~masked_transform) attitude_array = np.zeros((3, 3)) np.put(attitude_array, [0, 1, 2], masked_array[0].compressed()) np.put(attitude_array, [3, 4, 5], masked_array[1].compressed()) np.put(attitude_array, 8, 1) return attitude_array.tolist() def save_attitude_matrix( expected: linal.SolvePoints, actual: linal.SolvePoints, pipette_id: str, tiprack_hash: str, ): attitude = linal.solve_attitude(expected, actual) modify.save_robot_deck_attitude(attitude, pipette_id, tiprack_hash) def load_attitude_matrix() -> types.DeckCalibration: calibration_data = get.get_robot_deck_attitude() gantry_cal = get_legacy_gantry_calibration() if not calibration_data and gantry_cal: if validate_gantry_calibration(gantry_cal) == DeckTransformState.OK: log.debug( "Attitude deck calibration matrix not found. Migrating " "existing affine deck calibration matrix to {}".format( config.get_opentrons_path("robot_calibration_dir") ) ) attitude = migrate_affine_xy_to_attitude(gantry_cal) modify.save_robot_deck_attitude( transform=attitude, pip_id=None, lw_hash=None, source=types.SourceType.legacy, ) calibration_data = get.get_robot_deck_attitude() if calibration_data: return calibration_data else: # load default if deck calibration data do not exist return types.DeckCalibration( attitude=config.robot_configs.DEFAULT_DECK_CALIBRATION_V2, source=types.SourceType.default, status=types.CalibrationStatus(), ) def load_pipette_offset( pip_id: Optional[str], mount: Mount ) -> types.PipetteOffsetByPipetteMount: # load default if pipette offset data do not exist pip_cal_obj = types.PipetteOffsetByPipetteMount( offset=config.robot_configs.DEFAULT_PIPETTE_OFFSET, source=types.SourceType.default, status=types.CalibrationStatus(), ) if pip_id: pip_offset_data = get.get_pipette_offset(pip_id, mount) if pip_offset_data: return pip_offset_data return pip_cal_obj def load() -> RobotCalibration: return RobotCalibration(deck_calibration=load_attitude_matrix())
StarcoderdataPython
8186508
<gh_stars>10-100 from Instrucciones.Excepcion import Excepcion from tkinter.constants import FALSE from Instrucciones.Sql_create.ShowDatabases import ShowDatabases from Instrucciones.TablaSimbolos.Instruccion import * from Instrucciones.Tablas.BaseDeDatos import BaseDeDatos from storageManager.jsonMode import * class CreateDatabase(Instruccion): def __init__(self, base, tipo, existe, owner, mode, strGram, linea, columna): Instruccion.__init__(self,tipo,linea,columna, strGram) self.base=base self.tipo=tipo self.existe = existe self.owner=owner self.mode=mode def ejecutar(self, tabla, arbol): super().ejecutar(tabla,arbol) bandera = False #SE OBTIENE LA LISTA DE BD lb=showDatabases() #SE RECORRE LA BD PARA VERIFICAR QUE NO EXISTA for bd in lb: if bd== self.base: #SI SE ENCUENTRA LA BD SE TERMINA EL RECORRIDO bandera = True break if self.existe=="IF NOT EXISTS" and bandera==True: arbol.consola.append(f"La Base de Datos ya existe: {self.base}.") print(f"LA BASE DE DATOS: {self.base} YA EXISTE.") elif self.existe=="IF NOT EXISTS" and bandera==False: arbol.consola.append(f"Se Creo la base de datos: {self.base} correctamente.") print(f"SE CREO LA BASE DE DATOS: {self.base} CORRECTAMENTE.") createDatabase(str(self.base)) nueva = BaseDeDatos(str(self.base)) arbol.setListaBd(nueva) elif self.existe=="NULL" and bandera==True: error = Excepcion("42P04","Semantico",f"La Base de Datos {self.base} ya Existe.",self.linea,self.columna) print(f"LA BASE DE DATOS: {self.base} YA EXISTE.") arbol.excepciones.append(error) arbol.consola.append(error.toString()) elif self.existe=="NULL" and bandera==False: #AVISOS arbol.consola.append(f"Se Creo la base de datos: {self.base} correctamente.") print(f"SE CREO LA BASE DE DATOS: {self.base} CORRECTAMENTE.") createDatabase(str(self.base)) nueva = BaseDeDatos(str(self.base)) arbol.setListaBd(nueva) def getCodigo(self, tabla, arbol): base = self.base tipo = self.tipo existe = self.existe owner = f"\"{self.owner}\"" if self.owner else None mode = self.mode strGram = self.strGram linea = self.linea columna = self.columna num_params = 8 temp_param_base = arbol.getTemporal() temp_param_tipo = arbol.getTemporal() temp_param_existe = arbol.getTemporal() temp_param_owner = arbol.getTemporal() temp_param_mode = arbol.getTemporal() temp_param_strGram = arbol.getTemporal() temp_param_linea = arbol.getTemporal() temp_param_columna = arbol.getTemporal() temp_tam_func = arbol.getTemporal() temp_index_param_base = arbol.getTemporal() temp_index_param_tipo = arbol.getTemporal() temp_index_param_existe = arbol.getTemporal() temp_index_param_owner = arbol.getTemporal() temp_index_param_mode = arbol.getTemporal() temp_index_param_strGram = arbol.getTemporal() temp_index_param_linea = arbol.getTemporal() temp_index_param_columna = arbol.getTemporal() temp_return = arbol.getTemporal() temp_result = arbol.getTemporal() codigo = f"\t#CREATE DATABASE 3D\n" codigo += f"\t{temp_param_base} = \"{base}\"\n" codigo += f"\t{temp_param_tipo} = {tipo}\n" codigo += f"\t{temp_param_existe} = \"{existe}\"\n" codigo += f"\t{temp_param_owner} = {owner}\n" codigo += f"\t{temp_param_mode} = {mode}\n" codigo += f"\t{temp_param_strGram} = \"{strGram}\"\n" codigo += f"\t{temp_param_linea} = {linea}\n" codigo += f"\t{temp_param_columna} = {columna}\n" codigo += f"\t{temp_tam_func} = pointer + {num_params}\n" codigo += f"\t{temp_index_param_base} = {temp_tam_func} + 1\n" codigo += f"\tstack[{temp_index_param_base}] = {temp_param_base}\n" codigo += f"\t{temp_index_param_tipo} = {temp_tam_func} + 2\n" codigo += f"\tstack[{temp_index_param_tipo}] = {temp_param_tipo}\n" codigo += f"\t{temp_index_param_existe} = {temp_tam_func} + 3\n" codigo += f"\tstack[{temp_index_param_existe}] = {temp_param_existe}\n" codigo += f"\t{temp_index_param_owner} = {temp_tam_func} + 4\n" codigo += f"\tstack[{temp_index_param_owner}] = {temp_param_owner}\n" codigo += f"\t{temp_index_param_mode} = {temp_tam_func} + 5\n" codigo += f"\tstack[{temp_index_param_mode}] = {temp_param_mode}\n" codigo += f"\t{temp_index_param_strGram} = {temp_tam_func} + 6\n" codigo += f"\tstack[{temp_index_param_strGram}] = {temp_param_strGram}\n" codigo += f"\t{temp_index_param_linea} = {temp_tam_func} + 7\n" codigo += f"\tstack[{temp_index_param_linea}] = {temp_param_linea}\n" codigo += f"\t{temp_index_param_columna} = {temp_tam_func} + 8\n" codigo += f"\tstack[{temp_index_param_columna}] = {temp_param_columna}\n" codigo += f"\tpointer = pointer + {num_params}\n" codigo += f"\tinter_createDataBase()\n" #codigo += f"\t{temp_return} = pointer + 0\n" #codigo += f"\t{temp_result} = stack[{temp_return}]\n" codigo += f"\tpointer = pointer - {num_params}\n" #codigo += f"\tprint({temp_result})\n" #arbol.consola.append(codigo) return codigo ''' instruccion = CreateDatabase("hola mundo",None, 1,2) instruccion.ejecutar(None,None) '''
StarcoderdataPython
12827807
""" Save certstream data into Elasticsearch so that it can be queried by Kibana later on. """ from datetime import datetime from elasticsearch_dsl import connections, analyzer from elasticsearch_dsl import Document, Date, Text, Keyword from .base import Storage ANALYZER = analyzer('standard_analyzer', tokenizer='standard_tokenizer', filter=['lowercase']) # pylint: disable=too-few-public-methods class ElasticsearchStorage(Storage): """ An experiment Elasticsearch storage to keep and index the received records. """ class Record(Document): """ An Elasticsearch record as it is. """ timestamp = Date(default_timezone='UTC') # As reported by certstream seen = Date(default_timezone='UTC') # The domain time to live not_before = Date(default_timezone='UTC') not_after = Date(default_timezone='UTC') # The domain and its alternative names domain = Text(analyzer=ANALYZER, fields={'raw': Keyword()}) san = Text(analyzer=ANALYZER, fields={'raw': Keyword()}) # The issuer chain = Text(analyzer=ANALYZER, fields={'raw': Keyword()}) class Index: """ Use daily indices. """ name = 'certstream-*' # pylint: disable=arguments-differ def save(self, **kwargs): """ Magically save the record in Elasticsearch. """ self.timestamp = datetime.now() # Override the index to go to the proper timeslot kwargs['index'] = self.timestamp.strftime('certstream-%Y.%m.%d') return super().save(**kwargs) def __init__(self, hosts, timeout=10): """ Provide the Elasticsearch hostname (Defaults to localhost). """ connections.create_connection(hosts=hosts, timeout=timeout) def save(self, record): """ Save the certstream record in Elasticsearch. """ elasticsearch_record = ElasticsearchStorage.Record(meta={'id': record['cert_index']}) # In miliseconds elasticsearch_record.seen = int(record['seen'] * 1000) elasticsearch_record.not_before = int(record['not_before'] * 1000) elasticsearch_record.not_after = int(record['not_after'] * 1000) # Elasticsearch will parse and index the domain and all its alternative names elasticsearch_record.domain = record['all_domains'][0] elasticsearch_record.san = record['all_domains'][1:] elasticsearch_record.save()
StarcoderdataPython
1648346
<gh_stars>1-10 #!/usr/bin/env python # Script that generates triangle specifications for all # possible combinations of corner signs for the marching # cubes algorithm. # # Assumes that the corner signs are encoded as integers # where bit i indicates whether corner i (as given by the # corner index specification below) is positive or not. # # Outputs two Java arrays code corresponding to: # - The number of triangles for each sign combination. # - The edges of the vertices for these triangles (as # given by the edge index specification below). # # Operates by taking a minimal set of pre-specified # triangles and applying three operations (two rotations # and an inversion) to them until all combinations have # been generated. # # Corner indices: # 6--------------7 # /: /| # / : / | # / : / | # 4--------------5 | # | : | | # | : | | # | 2 - - - - -|- -3 # | / | / # | / | / # |/ |/ # 0--------------1 # # Edge indices: # -------10------- # /: /| # 11 : 9 | # / 6 / 5 # -------8-------- | # | : | | # | : | | # | - - - -2- -|- -| # 7 / 4 / # | 3 | 1 # |/ |/ # -------0-------- import itertools import pprint import ipdb # Which corners indices map to which under the operations X_ROTATION_CORNER_MAP = [1, 5, 3, 7, 0, 4, 2, 6] Y_ROTATION_CORNER_MAP = [4, 5, 0, 1, 6, 7, 2, 3] Z_ROTATION_CORNER_MAP = [2, 0, 3, 1, 6, 4, 7, 5] INVERSION_CORNER_MAP = [1, 0, 3, 2, 5, 4, 7, 6] # Which edges indices map to which under the operations X_ROTATION_EDGE_MAP = [7, 3, 6, 11, 0, 2, 10, 8, 4, 1, 5, 9] Y_ROTATION_EDGE_MAP = [2, 5, 10, 6, 1, 9, 11, 3, 0, 4, 8, 7] Z_ROTATION_EDGE_MAP = [1, 2, 3, 0, 5, 6, 7, 4, 9, 10, 11, 8] INVERSION_EDGE_MAP = [0, 3, 2, 1, 7, 6, 5, 4, 8, 11, 10, 9] MAX_PERMUTATIONS = 8 # Initial triangle specification, given as a dict {a: (b, c), ...} where: # - a is an integer containing the corner flags for the cube. # - b is the number of corresponding triangles # - c is a list of the edge indices of the corresponding triangles INITIAL_SPECIFICATIONS = {0b00000000: (0, []), 0b00000001: (1, [0,3,7]), 0b00000011: (2, [4,1,7,7,1,3]), 0b00100001: (2, [0,3,7,8,9,4]), 0b00001110: (3, [0,4,3,3,4,6,6,4,5]), 0b00001111: (2, [4,5,7,7,5,6]), 0b00011110: (4, [0,4,3,3,4,6,6,4,5,11,8,7]), 0b01101001: (4, [0,3,7,1,5,2,8,9,4,10,11,6]), 0b01001101: (4, [1,5,0,0,5,10,0,10,7,7,10,11]), 0b01001110: (4, [4,5,0,0,5,11,10,11,5,11,3,0]), 0b10000001: (2, [0,3,7,5,9,10]), 0b10000011: (3, [4,1,7,7,1,3,9,10,5]), 0b10010010: (3, [4,1,0,11,8,7,9,10,5]), 0b10011001: (4, [8,0,11,11,0,3,9,10,1,1,10,2]), 0b10001101: (4, [1,9,0,0,9,6,6,9,10,0,6,7])} def apply_maps(corner_flags, edges, corner_map, edge_map): new_corner_flags = 0 for i in range(8): new_corner_flags += ((corner_flags >> corner_map[i]) & 1) << i new_triangles = [edge_map[edge] for edge in edges] return new_corner_flags, new_triangles # Takes lists of corner flags and edge indices and returns two lists # containing the elements they are mapped to under a rotation about the # x axis. def x_rotation(corner_flags, edges): return apply_maps(corner_flags, edges, X_ROTATION_CORNER_MAP, X_ROTATION_EDGE_MAP) def y_rotation(corner_flags, edges): return apply_maps(corner_flags, edges, Y_ROTATION_CORNER_MAP, Y_ROTATION_EDGE_MAP) def z_rotation(corner_flags, edges): return apply_maps(corner_flags, edges, Z_ROTATION_CORNER_MAP, Z_ROTATION_EDGE_MAP) # Takes lists of corner flags and edge indices and returns two lists # containing the elements they are mapped to under the inversion. def inversion(corner_flags, edges): new_corner_flags, new_edges = apply_maps(corner_flags, edges, INVERSION_CORNER_MAP, INVERSION_EDGE_MAP) new_edges = flip_normals(new_edges) return new_corner_flags, new_edges def sign_flip(corner_flags, edges): return corner_flags ^ 0b11111111, flip_normals(edges) def flip_normals(edges): if len(edges) == 0: return edges for i in range(0, len(edges), 3): temp = edges[i] edges[i] = edges[i + 1] edges[i + 1] = temp return edges def print_specifications(specifications): triangle_counts = [] edges = [] for i in range(256): triangle_counts.append(specifications[i][0] if specifications.has_key(i) else 0) edges.append(specifications[i][1] if specifications.has_key(i) else []) print "final static int[] TRIANGLE_COUNTS = %s;" % str(triangle_counts).replace('[','{').replace(']','}') print "final static int[][] TRIANGLE_SPECIFICATIONS = %s;" % str(edges).replace('[','{').replace(']','}') specifications = INITIAL_SPECIFICATIONS.copy() available_operations = [x_rotation, z_rotation, y_rotation, sign_flip] # generate all combinations by brute force for permutation in itertools.combinations_with_replacement(available_operations, MAX_PERMUTATIONS): for corner_flags, (triangle_count, edges) in INITIAL_SPECIFICATIONS.iteritems(): for operation in permutation: corner_flags, edges = operation(corner_flags, edges) specifications[corner_flags] = (triangle_count, edges) print_specifications(specifications)
StarcoderdataPython
1911946
<filename>examples/autobahn-twisted-flask/app.py import argparse import json import msgpack from flask import Flask, render_template from twisted.internet import reactor from twisted.web.server import Site from twisted.web.resource import Resource from twisted.web.wsgi import WSGIResource from autobahn.websocket import WebSocketServerFactory, WebSocketServerProtocol from autobahn.resource import WebSocketResource import myapp app = Flask(__name__) app.debug = True @app.route("/") def index(): return render_template("index.html") class WebSocketWrapperProtocol(WebSocketServerProtocol): def onConnect(self, req): P = "wswrapper_msgpack" if P in req.protocols: self._is_msgpack_used = True return (P, {}) P = "wswrapper_json" if P in req.protocols: self._is_msgpack_used = False return (P, {}) def onMessage(self, msg, binary): if self._is_msgpack_used: data = msgpack.unpackb(msg) else: data = json.loads(msg) name, payload = data try: getattr(myapp, "on_%s" % name)(self, payload) except AttributeError as e: self.close() def emit(self, name, payload): data = [name, payload] if self._is_msgpack_used: self.sendMessage(msgpack.packb(data), True) else: self.sendMessage(json.dumps(data)) class Root(Resource): wsgi = WSGIResource(reactor, reactor.getThreadPool(), app) def getChild(self, child, req): req.prepath.pop() req.postpath.insert(0, child) return self.wsgi def render(self, req): return self.wsgi.render(req) def main(): parser = argparse.ArgumentParser() parser.add_argument("-p", "--port", metavar="PORT=3000", type=int, default=3000) myapp.setup_argparser(parser) args = parser.parse_args() myapp.setup_app(args) factory = WebSocketServerFactory("ws://localhost:%d" % args.port) factory.protocol = WebSocketWrapperProtocol root = Root() root.putChild("ws", WebSocketResource(factory)) reactor.listenTCP(args.port, Site(root)) reactor.run() if __name__ == "__main__": main()
StarcoderdataPython
3374095
import pytest from cell import Cell def _as_digit(digit: int): return digit def test_init_with_invalid_value(): with pytest.raises(Exception): Cell(10) @pytest.mark.parametrize("repr_fun", [_as_digit, Cell]) def test_exclude_and_solve(repr_fun): cell = Cell() cell.exclude([repr_fun(i) for i in range(1, 8)]) # 1, ..., 7 assert cell.value is None assert cell.is_solved is False cell.exclude(repr_fun(8)) assert cell.value == 9 assert cell.is_solved is True def test_set_unexpected_value(): cell = Cell() cell.exclude(1) with pytest.raises(Exception): cell.value = 1
StarcoderdataPython
1993952
<gh_stars>0 # coding=utf-8 """ Collect HAProxy Stats #### Dependencies * urlparse * urllib2 """ import re import urllib2 import base64 import csv import diamond.collector class HAProxyCollector(diamond.collector.Collector): def get_default_config_help(self): config_help = super(HAProxyCollector, self).get_default_config_help() config_help.update({ 'url': "Url to stats in csv format", 'user': "Username", 'pass': "Password", 'ignore_servers': "Ignore servers, just collect frontend and " + "backend stats", }) return config_help def get_default_config(self): """ Returns the default collector settings """ config = super(HAProxyCollector, self).get_default_config() config.update({ 'path': 'haproxy', 'url': 'http://localhost/haproxy?stats;csv', 'user': 'admin', 'pass': 'password', 'ignore_servers': False, }) return config def get_csv_data(self): """ Request stats from HAProxy Server """ metrics = [] req = urllib2.Request(self.config['url']) try: handle = urllib2.urlopen(req) return handle.readlines() except Exception, e: if not hasattr(e, 'code') or e.code != 401: self.log.error("Error retrieving HAProxy stats. %s", e) return metrics # get the www-authenticate line from the headers # which has the authentication scheme and realm in it authline = e.headers['www-authenticate'] # this regular expression is used to extract scheme and realm authre = (r'''(?:\s*www-authenticate\s*:)?\s*''' + '''(\w*)\s+realm=['"]([^'"]+)['"]''') authobj = re.compile(authre, re.IGNORECASE) matchobj = authobj.match(authline) if not matchobj: # if the authline isn't matched by the regular expression # then something is wrong self.log.error('The authentication header is malformed.') return metrics scheme = matchobj.group(1) # here we've extracted the scheme # and the realm from the header if scheme.lower() != 'basic': self.log.error('Invalid authentication scheme.') return metrics base64string = base64.encodestring( '%s:%s' % (self.config['user'], self.config['pass']))[:-1] authheader = 'Basic %s' % base64string req.add_header("Authorization", authheader) try: handle = urllib2.urlopen(req) metrics = handle.readlines() return metrics except IOError, e: # here we shouldn't fail if the USER/PASS is right self.log.error("Error retrieving HAProxy stats. (Invalid username " + "or password?) %s", e) return metrics def _generate_headings(self, row): headings = {} for index, heading in enumerate(row): headings[index] = self._sanitize(heading) return headings def collect(self): """ Collect HAProxy Stats """ csv_data = self.get_csv_data() data = list(csv.reader(csv_data)) headings = self._generate_headings(data[0]) for row in data: if (self.config['ignore_servers'] and row[1].lower() not in ['frontend', 'backend']): continue part_one = self._sanitize(row[0].lower()) part_two = self._sanitize(row[1].lower()) metric_name = '%s.%s' % (part_one, part_two) for index, metric_string in enumerate(row): try: metric_value = float(metric_string) except ValueError: continue stat_name = '%s.%s' % (metric_name, headings[index]) self.publish(stat_name, metric_value, metric_type='GAUGE') def _sanitize(self, s): """Sanitize the name of a metric to remove unwanted chars """ return re.sub('[^\w-]', '_', s)
StarcoderdataPython
4866838
""" The :mod:`part` package is designed to maintain subsets of sorted spaces. It defines several classes. For atomic values: * :class:`TotallyOrdered` which represents totally ordered type; * :class:`TO` which represents a generic totally ordered type; * :class:`Atomic` which represents any convex subset of a totally ordered space; * :class:`Empty` which represents the empty subset. There is only one instance of this class; * :class:`Interval` which represents a non-empty subset of a totally ordered space. There is a special instance representing the whole space; For set classes: * :class:`IntervalSet` is an abstract class representing all interval sets; * :class:`FrozenIntervalSet` is a frozen version of :class:`IntervalSet`; * :class:`MutableIntervalSet` is a mutable version of :class:`IntervalSet`. For dictionary classes: * :class:`IntervalDict` is an abstract class representing all interval dictionaries; * :class:`FrozenIntervalDict` is a frozen version of :class:`IntervalDict`; * :class:`MutableIntervalDict` is a mutable version of :class:`IntervalDict`. It also defines one constant: * :const:`INFINITY` to hold the infinity value. (-:const:`INFINITY` is also a valid expression); """ from .atomic import Atomic, Empty, Interval, TO, TotallyOrdered from .dicts import IntervalDict, FrozenIntervalDict, MutableIntervalDict from .sets import IntervalSet, FrozenIntervalSet, MutableIntervalSet from .values import INFINITY __all__ = ( "INFINITY", "TO", "TotallyOrdered", "Atomic", "Empty", "Interval", "IntervalSet", "FrozenIntervalSet", "MutableIntervalSet", "IntervalDict", "FrozenIntervalDict", "MutableIntervalDict", )
StarcoderdataPython
8194751
# -*- coding: utf-8 -*- """ test_parse_haadf_stem ~~~~~~~~~~~~~ """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import unittest from lxml import etree from chemdataextractor.doc.text import Sentence from chemdataextractor.parse.mp import mp_phrase class TestParseMp(unittest.TestCase): def test_mp1(self): # Declaration s = Sentence('Colorless solid (81% yield, 74.8 mg, 0.22 mmol); mp 77.2–77.5 °C.') expected = '<mp_phrase><mp><value>77.2–77.5</value><units>°C</units></mp></mp_phrase>' # Testing result = next(mp_phrase.scan(s.tagged_tokens))[0] #Assertion self.assertEqual(expected, etree.tostring(result, encoding='unicode'))
StarcoderdataPython
1643766
from ubiquiti.unifi import API as Unifi_API import json import paho.mqtt.client as mqtt import time class anybody_home(): def __init__(self): self.n_devices = 4 self.dev_1 = '192.168.0.51' self.dev_2 = '192.168.0.52' self.dev_3 = '192.168.0.53' self.dev_4 = '192.168.0.54' self.devices = ['192.168.0.51','192.168.0.52','192.168.0.53','192.168.0.54'] self.last_seen_prev = [(time.time() - 7200)] * self.n_devices def time_seen(self, dev_list): #last_seen = [0] * self.n_devices max_devices = len(dev_list) for i in range(0,max_devices): for j in range(0,self.n_devices): try: if dev_list[i]['ip'] == self.devices[j]: self.last_seen_prev[j] = device_list[i]['last_seen'] except: continue def time_since_seen(self): duration = [0] * self.n_devices for i in range(0, self.n_devices): duration[i] = round((time.time() - self.last_seen_prev[i])/60) if duration[i] > 999: duration[i] = 999 return duration def anybody_home(self, last_seen_curr): somebody_home = 0 if any(t < 20 for t in last_seen_curr): somebody_home = 1 return somebody_home if __name__ == "__main__": anybody_home = anybody_home() topic = "home/inside/sensor/presence" # Broker details: server_address="192.168.0.10" client = mqtt.Client("docker_anybody_home") client.connect(server_address, keepalive=60) while True: api = Unifi_API(username="davideo.ezy", password="<PASSWORD>", baseurl="https://192.168.0.10:8443", verify_ssl=False) api.login() device_list = (api.list_clients(order_by="ip")) api.logout() anybody_home.time_seen(device_list) last_seen_curr = anybody_home.time_since_seen() somebody_home = anybody_home.anybody_home(last_seen_curr) dict_msg = {"somebody_home": somebody_home, "dev_1":last_seen_curr[0], "dev_2":last_seen_curr[1], "dev_3":last_seen_curr[2], "dev_4":last_seen_curr[3]} msg = json.dumps(dict_msg) client.publish(topic,msg) time.sleep(30)
StarcoderdataPython
9625941
import re class EvalNode: """An eval node""" def __init__(self, name): self.name = name; self.cached = -1 def parse(self): if(self.cached == -1): #print("parsing", self.name) self.cached = applyOp(self.l.parse(), self.op, self.r.parse()) return self.cached; class ConstNode: def __init__(self, const): self.const = const; self.name = str(const) def parse(self): return self.const def applyOp(l, op, r): if op == "NOT": return ~r elif op == "AND": return l & r elif op == "OR": return l | r elif op == "LSHIFT": return l << r elif op == "RSHIFT": return l >> r #const else: return r; #empty strings are matched, yes. We want them to be evaluated to 0 re_isConst = re.compile("\d*$") def isConst(str): return re_isConst.match(str); def parseLine(line): args = line.strip().split(" ") args.reverse() args += [''] * (5 - len(args)) (out, arrow, right, op, left) = args; #print(out, " = ", left, op, right ) if(isConst(left)): l = ConstNode( int('0'+left) ) else: l = wires[left] if(isConst(right)): r = ConstNode( int('0'+right) ) else: r = wires[right] #print(wires[out].name, " = " , l.name, r.name ); wires[out].l = l; wires[out].r = r; wires[out].op = op; #build wire list wires = { "":{} } for i in range(ord('a'), ord('z')+1): wires[chr(i)] = EvalNode(chr(i)); for j in range(ord('a'), ord('z')+1): wires[chr(i)+chr(j)] = EvalNode(chr(i)+chr(j)); #add wire tree with open("input/input7.txt") as f: for line in f: parseLine( line ); aay = wires['a'].parse(); print ( aay ); for i in range(ord('a'), ord('z')+1): wires[chr(i)].cached = -1 for j in range(ord('a'), ord('z')+1): wires[chr(i)+chr(j)].cached = -1; wires['b'].cached = aay print ( wires['a'].parse() );
StarcoderdataPython
323458
# Copyright 2022 Pants project contributors (see CONTRIBUTORS.md). # Licensed under the Apache License, Version 2.0 (see LICENSE). from __future__ import annotations import textwrap import pytest from pants.backend.kotlin import target_types from pants.backend.kotlin.dependency_inference import kotlin_parser from pants.backend.kotlin.dependency_inference.kotlin_parser import ( KotlinImport, KotlinSourceDependencyAnalysis, ) from pants.backend.kotlin.target_types import KotlinSourceField, KotlinSourceTarget from pants.build_graph.address import Address from pants.core.util_rules import source_files from pants.core.util_rules.source_files import SourceFiles, SourceFilesRequest from pants.engine.rules import QueryRule from pants.engine.target import SourcesField from pants.jvm import jdk_rules from pants.jvm import util_rules as jvm_util_rules from pants.jvm.resolve import jvm_tool from pants.testutil.rule_runner import PYTHON_BOOTSTRAP_ENV, RuleRunner, logging from pants.util.frozendict import FrozenDict @pytest.fixture def rule_runner() -> RuleRunner: rule_runner = RuleRunner( rules=[ *kotlin_parser.rules(), *jvm_tool.rules(), *source_files.rules(), *jdk_rules.rules(), *target_types.rules(), *jvm_util_rules.rules(), QueryRule(SourceFiles, (SourceFilesRequest,)), QueryRule(KotlinSourceDependencyAnalysis, (SourceFiles,)), ], target_types=[KotlinSourceTarget], ) rule_runner.set_options(args=[], env_inherit=PYTHON_BOOTSTRAP_ENV) return rule_runner def _analyze(rule_runner: RuleRunner, source: str) -> KotlinSourceDependencyAnalysis: rule_runner.write_files( { "BUILD": """kotlin_source(name="source", source="Source.kt")""", "Source.kt": source, } ) target = rule_runner.get_target(address=Address("", target_name="source")) source_files = rule_runner.request( SourceFiles, [ SourceFilesRequest( (target.get(SourcesField),), for_sources_types=(KotlinSourceField,), enable_codegen=True, ) ], ) return rule_runner.request(KotlinSourceDependencyAnalysis, [source_files]) @logging def test_parser_simple(rule_runner: RuleRunner) -> None: analysis = _analyze( rule_runner, textwrap.dedent( """\ package org.pantsbuild.backend.kotlin import java.io.File open class Foo { fun grok() { val x = X() val y = Y() } } class Bar {} fun main(args: Array<String>) { } """ ), ) assert analysis.imports == {KotlinImport(name="java.io.File", alias=None, is_wildcard=False)} assert analysis.named_declarations == { "org.pantsbuild.backend.kotlin.Bar", "org.pantsbuild.backend.kotlin.Foo", "org.pantsbuild.backend.kotlin.main", } assert analysis.consumed_symbols_by_scope == FrozenDict( { "org.pantsbuild.backend.kotlin.Foo": frozenset( { "X", "Y", } ), "org.pantsbuild.backend.kotlin": frozenset( { "Array", "String", } ), } ) assert analysis.scopes == { "org.pantsbuild.backend.kotlin", "org.pantsbuild.backend.kotlin.Foo", "org.pantsbuild.backend.kotlin.Bar", }
StarcoderdataPython
1675890
import codecs import gzip from lxmls.sequences.label_dictionary import * from lxmls.sequences.sequence import * from lxmls.sequences.sequence_list import * from os.path import dirname import numpy as np # This is also needed for theano=True # from nltk.corpus import brown # Directory where the data files are located. data_dir = dirname(__file__) + "/../../data/" # Train and test files for english WSJ part of the Penn Tree Bank en_train = data_dir + "train-02-21.conll" en_dev = data_dir + "dev-22.conll" en_test = data_dir + "test-23.conll" # Train and test files for portuguese Floresta sintatica pt_train = data_dir + "pt_train.txt" pt_dev = "" pt_test = data_dir + "pt_test.txt" def compacify(train_seq, test_seq, dev_seq, theano=False): """ Create a map for indices that is be compact (do not have unused indices) """ # REDO DICTS new_x_dict = LabelDictionary() new_y_dict = LabelDictionary(['noun']) for corpus_seq in [train_seq, test_seq, dev_seq]: for seq in corpus_seq: for index in seq.x: word = corpus_seq.x_dict.get_label_name(index) if word not in new_x_dict: new_x_dict.add(word) for index in seq.y: tag = corpus_seq.y_dict.get_label_name(index) if tag not in new_y_dict: new_y_dict.add(tag) # REDO INDICES # for corpus_seq in [train_seq2, test_seq2, dev_seq2]: for corpus_seq in [train_seq, test_seq, dev_seq]: for seq in corpus_seq: for i in seq.x: if corpus_seq.x_dict.get_label_name(i) not in new_x_dict: pass for i in seq.y: if corpus_seq.y_dict.get_label_name(i) not in new_y_dict: pass seq.x = [new_x_dict[corpus_seq.x_dict.get_label_name(i)] for i in seq.x] seq.y = [new_y_dict[corpus_seq.y_dict.get_label_name(i)] for i in seq.y] # For compatibility with GPUs store as numpy arrays and cats to int # 32 if theano: seq.x = np.array(seq.x, dtype='int32') seq.y = np.array(seq.y, dtype='int32') # Reinstate new dicts corpus_seq.x_dict = new_x_dict corpus_seq.y_dict = new_y_dict # Add reverse indices corpus_seq.word_dict = {v: k for k, v in new_x_dict.items()} corpus_seq.tag_dict = {v: k for k, v in new_y_dict.items()} # SANITY CHECK: # These must be the same # tmap = {v: k for k, v in train_seq.x_dict.items()} # tmap2 = {v: k for k, v in train_seq2.x_dict.items()} # [tmap[i] for i in train_seq[0].x] # [tmap2[i] for i in train_seq2[0].x] return train_seq, test_seq, dev_seq class PostagCorpus(object): def __init__(self): # Word dictionary. self.word_dict = LabelDictionary() # POS tag dictionary. # Initialize noun to be tag zero so that it the default tag. self.tag_dict = LabelDictionary(['noun']) # Initialize sequence list. self.sequence_list = SequenceList(self.word_dict, self.tag_dict) # Read a text file in conll format and return a sequence list # def read_sequence_list_conll(self, train_file, mapping_file=("%s/en-ptb.map" % dirname(__file__)), max_sent_len=100000, max_nr_sent=100000): # Build mapping of postags: mapping = {} if mapping_file is not None: for line in open(mapping_file): coarse, fine = line.strip().split("\t") mapping[coarse.lower()] = fine.lower() instance_list = self.read_conll_instances(train_file, max_sent_len, max_nr_sent, mapping) seq_list = SequenceList(self.word_dict, self.tag_dict) for sent_x, sent_y in instance_list: seq_list.add_sequence(sent_x, sent_y) return seq_list # ---------- # Reads a conll file into a sequence list. # ---------- def read_conll_instances(self, file, max_sent_len, max_nr_sent, mapping): if file.endswith("gz"): zf = gzip.open(file, 'rb') reader = codecs.getreader("utf-8") contents = reader(zf) else: contents = codecs.open(file, "r", "utf-8") nr_sent = 0 instances = [] ex_x = [] ex_y = [] nr_types = len(self.word_dict) nr_pos = len(self.tag_dict) for line in contents: toks = line.split() if len(toks) < 2: # print "sent n %i size %i"%(nr_sent,len(ex_x)) if len(ex_x) < max_sent_len and len(ex_x) > 1: # print "accept" nr_sent += 1 instances.append([ex_x, ex_y]) # else: # if(len(ex_x) <= 1): # print "refusing sentence of len 1" if nr_sent >= max_nr_sent: break ex_x = [] ex_y = [] else: pos = toks[4] word = toks[1] pos = pos.lower() if pos not in mapping: mapping[pos] = "noun" print "unknown tag %s" % pos pos = mapping[pos] if word not in self.word_dict: self.word_dict.add(word) if pos not in self.tag_dict: self.tag_dict.add(pos) ex_x.append(word) ex_y.append(pos) # ex_x.append(self.word_dict[word]) # ex_y.append(self.tag_dict[pos]) return instances # Read a text file in brown format and return a sequence list # # def read_sequence_list_brown(self,mapping_file="readers/en-ptb.map",max_sent_len=100000,max_nr_sent=100000,categories=""): # ##Build mapping of postags: # mapping = {} # if(mapping_file != None): # for line in open(mapping_file): # coarse,fine = line.strip().split("\t") # mapping[coarse.lower()] = fine.lower() # if(categories == ""): # sents = brown.tagged_sents() # else: # sents = brown.tagged_sents(categories=categories) # seq_list = Sequence_List(self.word_dict,self.int_to_word,self.tag_dict,self.int_to_tag) # nr_types = len(self.word_dict) # nr_tag = len(self.tag_dict) # for sent in sents: # if(len(sent) > max_sent_len or len(sent) <= 1): # continue # ns_x = [] # ns_y = [] # for word,tag in sent: # tag = tag.lower() # if(tag not in mapping): # ##Add unk tags to dict # mapping[tag] = "noun" # c_t = mapping[tag] # if(word not in self.word_dict): # self.word_dict[word] = nr_types # c_word = nr_types # self.int_to_word.append(word) # nr_types += 1 # else: # c_word = self.word_dict[word] # if(c_t not in self.tag_dict): # self.tag_dict[c_t] = nr_tag # c_pos_c = nr_tag # self.int_to_tag.append(c_t) # nr_tag += 1 # else: # c_pos_c = self.tag_dict[c_t] # ns_x.append(c_word) # ns_y.append(c_pos_c) # seq_list.add_sequence(ns_x,ns_y) # return seq_list # Dumps a corpus into a file def save_corpus(self, dir): if not os.path.isdir(dir + "/"): os.mkdir(dir + "/") word_fn = codecs.open(dir + "word.dic", "w", "utf-8") for word_id, word in enumerate(self.int_to_word): word_fn.write("%i\t%s\n" % (word_id, word)) word_fn.close() tag_fn = open(dir + "tag.dic", "w") for tag_id, tag in enumerate(self.int_to_tag): tag_fn.write("%i\t%s\n" % (tag_id, tag)) tag_fn.close() word_count_fn = open(dir + "word.count", "w") for word_id, counts in self.word_counts.iteritems(): word_count_fn.write("%i\t%s\n" % (word_id, counts)) word_count_fn.close() self.sequence_list.save(dir + "sequence_list") # Loads a corpus from a file def load_corpus(self, dir): word_fn = codecs.open(dir + "word.dic", "r", "utf-8") for line in word_fn: word_nr, word = line.strip().split("\t") self.int_to_word.append(word) self.word_dict[word] = int(word_nr) word_fn.close() tag_fn = open(dir + "tag.dic", "r") for line in tag_fn: tag_nr, tag = line.strip().split("\t") if tag not in self.tag_dict: self.int_to_tag.append(tag) self.tag_dict[tag] = int(tag_nr) tag_fn.close() word_count_fn = open(dir + "word.count", "r") for line in word_count_fn: word_nr, word_count = line.strip().split("\t") self.word_counts[int(word_nr)] = int(word_count) word_count_fn.close() self.sequence_list.load(dir + "sequence_list")
StarcoderdataPython
1690007
from django.contrib import admin from .models import librarian admin.site.register(librarian)
StarcoderdataPython
8059926
<filename>tests/examples/testcases.py #!/usr/bin/env python3 import argparse import unittest import itertools import json import subprocess import os import sys import shutil import gzip import aug_out_filter as afilter import aug_comparator as comp # This script executes AUGUSTUS test cases based on the examples # folder and compares the current results with reference results # if the option --compare is set. It is expected that both results # are identical for a successful test. # This script must be called from "tests/examples_test"! # Python version 3.6 or higher is required for execution. parser = argparse.ArgumentParser(description='Execute Augustus test cases.') parser.add_argument('--mysql', action='store_true', help='cgp test cases are also executed with a MySQL database.') parser.add_argument('--compare', action='store_true', help='Compare generated results with reference results.') parser.add_argument('--html', action='store_true', help='Save diff results in html file.') parser.add_argument('--clean', action='store_true', help='Remove all files created during the tests. If this option is set, no tests are executed.') args = parser.parse_args() # only import mysql connector if testcases using mysql should be executed # MySQL Connector must be installed in this case if args.mysql: import mysql.connector resultdir = 'results/' refdir = 'expected_results/' htmldir = 'output_html/' tmpdir = 'data/tmp/' exampledir = '../../examples/' bindir = '../../bin/' augustusbin = f'{bindir}augustus' datadir = exampledir + 'chr2L/' default_wd = os.getcwd() def create_initial_resultdir(): clean(False) os.mkdir(resultdir) def clean(withtmpdir=True): print('Removing generated test files...') if os.path.exists(htmldir): shutil.rmtree(htmldir) if os.path.exists(resultdir): shutil.rmtree(resultdir) if withtmpdir and os.path.exists(tmpdir): shutil.rmtree(tmpdir) def check_working_dir(clean): wd = os.getcwd() if not (wd.endswith('tests/examples')): errstr = 'Wrong working directory!' + '\n' errstr += 'This script must be called from "tests/examples"!' sys.exit(errstr) if not clean and not (os.path.exists(augustusbin)): errstr = 'Missing augustus binaries!' + '\n' errstr += f'The augustus binaries must be accessible in this path: "{bindir}"!' sys.exit(errstr) class TestAugustus(unittest.TestCase): dbname = None dbhost = None dbuser = None dbpasswd = None cpuno = 2 opt_compare = False opt_html = False opt_mysql = False @classmethod def read_config(cls): with open('testconfig.json', 'r') as file: config = json.load(file) cls.dbname = config['dbname'] cls.dbhost = config['dbhost'] cls.dbuser = config['dbuser'] cls.dbpasswd = config['dbpasswd'] cls.cpuno = int(config['cpuno']) @classmethod def init_test_data(cls): if not os.path.exists(tmpdir): os.mkdir(tmpdir) inputfile = os.path.join(tmpdir, 'chr2L.sm.fa.gz') testfile = os.path.join(tmpdir, 'chr2L.sm.fa') shutil.copyfile(os.path.join(datadir, 'chr2L.sm.fa.gz'), inputfile) # '../../docs/tutorial2015/data/chr2L.sm.fa.gz', inputfile) with gzip.open(inputfile, 'rb') as f_in: with open(testfile, 'wb') as f_out: shutil.copyfileobj(f_in, f_out) os.remove(inputfile) @classmethod def init_sqlite_db(cls): if not os.path.exists(tmpdir): os.mkdir(tmpdir) cmd_list = [[ f'{bindir}load2sqlitedb', '--species=hg19', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/human.fa' ], [ f'{bindir}load2sqlitedb', '--species=mm9', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/mouse.fa' ], [ f'{bindir}load2sqlitedb', '--species=bosTau4', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/cow.fa' ], [ f'{bindir}load2sqlitedb', '--species=galGal3', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/chicken.fa' ], [ f'{bindir}load2sqlitedb', '--noIdx', '--species=hg19', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/human.hints.gff' ], [ f'{bindir}load2sqlitedb', '--noIdx', '--species=mm9', f'--dbaccess={tmpdir}vertebrates.db', '--clean', f'{exampledir}cgp/mouse.hints.gff' ], [ f'{bindir}load2sqlitedb', '--makeIdx', f'--dbaccess={tmpdir}vertebrates.db', '--clean' ]] print('Creating SQLite database for cgp test cases...') cls.init_db(cmd_list) @classmethod def init_mysql_db(cls): cmd_list = [[ f'{bindir}load2db', '--species=hg19', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/human.fa' ], [ f'{bindir}load2db', '--species=mm9', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/mouse.fa' ], [ f'{bindir}load2db', '--species=bosTau4', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/cow.fa' ], [ f'{bindir}load2db', '--species=galGal3', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/chicken.fa' ], [ f'{bindir}load2db', '--species=hg19', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/human.hints.gff' ], [ f'{bindir}load2db', '--species=mm9', '--dbaccess=' + cls.dbname + ',' + cls.dbhost + ',' + cls.dbuser + ',' + cls.dbpasswd, f'{exampledir}cgp/mouse.hints.gff' ]] print(' -' + 'Inserting data into MySQL database for testing purposes...') cls.init_db(cmd_list) @classmethod def init_db(cls, cmd_list): for cmd in cmd_list: output = TestAugustus().process(cmd) # print(output) @classmethod def cleanup(cls): os.chdir(default_wd) # remove generated SQLite database if os.path.isfile(f'{tmpdir}vertebrates.db'): os.remove(f'{tmpdir}vertebrates.db') # remove copied/unzipped files if os.path.isfile(f'{tmpdir}chr2L.sm.fa'): os.remove(f'{tmpdir}chr2L.sm.fa') @classmethod def cleanup_mysqldb(cls): mysqldb = mysql.connector.connect(host=cls.dbhost, user=cls.dbuser, passwd=cls.dbpasswd, database=cls.dbname) print('\n' + ' -' + 'Clean up MySQL database...') augcursor = mysqldb.cursor() augcursor.execute('DROP TABLE IF EXISTS genomes;') augcursor.execute('DROP TABLE IF EXISTS speciesnames;') augcursor.execute('DROP TABLE IF EXISTS seqnames;') augcursor.execute('DROP TABLE IF EXISTS hints;') augcursor.execute('DROP TABLE IF EXISTS featuretypes;') @classmethod def setUpClass(cls): cls.read_config() # check config missing_arguments = False if (cls.opt_mysql): if TestAugustus.dbname is None: print('The database name is missing!') missing_arguments = True if TestAugustus.dbhost is None: print('The host name is missing!') missing_arguments = True if TestAugustus.dbuser is None: print('The db user name is missing!') missing_arguments = True if TestAugustus.dbpasswd is None: print('The db user passwd is missing!') missing_arguments = True if missing_arguments: assert False, 'Test case using MySQL are not executed.' cls.init_test_data() cls.init_sqlite_db() if (cls.opt_mysql): cls.cleanup_mysqldb() cls.init_mysql_db() @classmethod def tearDownClass(cls): cls.cleanup() if (cls.opt_mysql): cls.cleanup_mysqldb() def assertEqualFolders(self, reffolder, resfolder, html=None, outputfolder=None): if TestAugustus.opt_compare: if html is None: html = self.opt_html if outputfolder is None: diff = comp.compare_folder(reffolder, resfolder, html=html) else: diff = comp.compare_folder(reffolder, resfolder, html=html, outputfolder=outputfolder) self.assertEqual(diff, '', diff) def get_ref_folder(self, folder_name=None, path_to_wd=None): if folder_name is None: folder_name = self._testMethodName if path_to_wd is None: return os.path.join(refdir, folder_name) else: return os.path.join(path_to_wd, refdir, folder_name) def get_res_folder(self, folder_name=None, path_to_wd=None): if folder_name is None: folder_name = self._testMethodName if path_to_wd is None: return os.path.join(resultdir, folder_name) else: return os.path.join(path_to_wd, resultdir, folder_name) def process(self, cmd_list, out=subprocess.PIPE): isFile = isinstance(out, str) output = out if isFile: output = open(out, 'w') p = subprocess.Popen(cmd_list, stdout=output, stderr=subprocess.PIPE, universal_newlines=True) rc = p.wait() error = p.stderr.read() p.stderr.close() self.assertEqual(error, '', error) self.assertEqual(rc, 0, f'Returncode not 0! Error: {error}') if isFile: self.assertTrue(os.path.isfile(out), 'Output file was not created as expected!') else: stdout = p.stdout.read() p.stdout.close() return stdout return '' def test_utr_on(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() testtmpfile = os.path.join(resfolder, 'aug_utr_on_tmp.gff') testfile = os.path.join(resfolder, 'aug_utr_on.gff') os.mkdir(resfolder) self.process([ augustusbin, '--species=human', '--UTR=on', '--softmasking=0', f'{exampledir}example.fa' ], testtmpfile) # filter output file afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_iterative_prediction(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() os.mkdir(resfolder) species_list = ['nasonia', 'zebrafish', 'tomato'] # run augustus several times with different parameter sets for species in species_list: testtmpfile = os.path.join( resfolder, 'aug.' + species + '.1-1M_tmp.gff') self.process([ augustusbin, '--species=' + species, f'{tmpdir}chr2L.sm.fa', '--softmasking=on', '--predictionEnd=1000000' ], testtmpfile) # filter output testfile = os.path.join(resfolder, 'aug.' + species + '.1-1M.gff') afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_iterative_prediction_with_hints(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() os.mkdir(resfolder) if not os.path.isfile('data/tmp/chr2L.sm.fa'): TestAugustus.init_test_data() for i in range(0, 3): testtmpfile = os.path.join( resfolder, f'aug.nasonia.hints.{str(i)}_tmp.gff') self.process([ augustusbin, '--species=nasonia', f'{tmpdir}chr2L.sm.fa', '--softmasking=on', '--predictionStart=' + str(i * 2000000), '--predictionEnd=' + str((i + 1) * 2000000 + 50000), f'--hintsfile={datadir}/hints.gff', '--extrinsicCfgFile=extrinsic.M.RM.E.W.cfg' ], testtmpfile) # filter output testfile = os.path.join( resfolder, f'aug.nasonia.hints.{str(i)}.gff') afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_training_new_species(self): self.training_new_species(False) def test_training_new_species_crf(self): self.training_new_species(True) def training_new_species(self, crf): os.chdir(default_wd) speciesname = 'test_aug_dev_species' # Remove test species folder. # Just in case the deletion fails for whatever reason. if os.path.exists('../../config/species/' + speciesname): shutil.rmtree('../../config/species/' + speciesname) resfolder = self.get_res_folder() reffolder = self.get_ref_folder() testtmpfile = os.path.join(resfolder, 'test_tmp.out') testfile = os.path.join(resfolder, 'test.out') os.mkdir(resfolder) # call script to initialize new species self.process([ 'perl', '../../scripts/new_species.pl', '--species=' + speciesname, '--AUGUSTUS_CONFIG_PATH=../../config' ]) # training self.process([ f'{bindir}etraining', os.path.join(datadir, 'genes.gb.train'), '--species=' + speciesname ]) # test cmd = [ augustusbin, os.path.join(datadir, 'genes.gb.test'), '--species=' + speciesname, '--softmasking=0', '--AUGUSTUS_CONFIG_PATH=../../config' ] if (crf): cmd.append('--CRF=on') cmd.append('--CRF_N=2') cmd.append('--UTR=off') self.process(cmd, testtmpfile) # filter output file afilter.eval(testtmpfile, testfile) os.remove(testtmpfile) # move new species to result folder shutil.move('../../config/species/' + speciesname, resfolder) # compare results self.assertEqualFolders(reffolder, resfolder) def test_ab_initio_prediction(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() testtmpfile = os.path.join(resfolder, 'augustus_tmp.gff') testfile = os.path.join(resfolder, 'augustus.gff') os.mkdir(resfolder) self.process([ augustusbin, f'{exampledir}autoAug/genome.fa', '--softmasking=1', '--species=caenorhabditis' ], testtmpfile) # filter output file afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_format_and_error_out(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() testtmpfile = os.path.join(resfolder, 'augustus_tmp.gff3') testfile = os.path.join(resfolder, 'augustus.gff3') os.mkdir(resfolder) cmd = [ augustusbin, f'{exampledir}autoAug/genome.fa', '--species=caenorhabditis', '--gff3=on', '--softmasking=1', '--outfile=' + testtmpfile, '--errfile=' + resfolder + '/augustus.err' ] self.process(cmd) # filter output file self.assertTrue(os.path.isfile(testtmpfile), 'Output file was not created as expected!') afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_alternatives_from_sampling(self): os.chdir(default_wd) reffolder = self.get_ref_folder() resfolder = self.get_res_folder() testtmpfile = os.path.join(resfolder, 'augustus_tmp.gff') testfile = os.path.join(resfolder, 'augustus.gff') os.mkdir(resfolder) cmd = [ augustusbin, f'{exampledir}autoAug/genome.fa', '--species=caenorhabditis', '--alternatives-from-sampling=on', '--minexonintronprob=0.08', '--minmeanexonintronprob=0.4', '--maxtracks=3' ] self.process(cmd, testtmpfile) # filter output file afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def test_cgp(self): reffolder = self.get_ref_folder(path_to_wd='../../tests/examples') resfolder = self.get_res_folder(path_to_wd='../../tests/examples') testtmpfile = os.path.join(resfolder, 'output_tmp.txt') testfile = os.path.join(resfolder, 'output.txt') os.chdir(os.path.join(default_wd, f'{exampledir}cgp')) os.mkdir(resfolder) cmd = [ augustusbin, '--species=human', '--speciesfilenames=genomes.tbl', '--treefile=tree.nwk', '--alnfile=aln.maf', '--softmasking=0', '--alternatives-from-evidence=0', # removes warning '--/CompPred/outdir=' + resfolder + '/' ] self.process(cmd, testtmpfile) # filter output files for file in os.listdir(resfolder): filename = os.fsdecode(file) if filename.endswith('.gff'): afilter.cgp(os.path.join(resfolder, filename), os.path.join(resfolder, filename.replace('.gff', '.filtered.gff'))) os.remove(os.path.join(resfolder, filename)) afilter.cgp_out(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder, outputfolder=default_wd + '/output_html/') def test_cgp_sqlite(self): self.cgp_with_db_preparation(False, False) def test_cgp_sqlite_hints(self): self.cgp_with_db_preparation(True, False) def test_cgp_mysql(self): self.cgp_with_db_preparation(False, True) def test_cgp_mysql_hints(self): self.cgp_with_db_preparation(True, True) def cgp_with_db_execution(self, resfolder, reffolder, *args): os.mkdir(resfolder) proc_list = [] # create groups according to the configured number of cpus grouped_args = [iter(args)] * TestAugustus.cpuno # parallel execution of the commands of each group for arg_list in itertools.zip_longest(*grouped_args): proc_list = [] for cmd, filename in filter(None, arg_list): with open(filename, 'w') as file: proc_list.append( subprocess.Popen(cmd, stdout=file, stderr=subprocess.PIPE, universal_newlines=True)) for p in proc_list: p.wait() for p in proc_list: error = p.stderr.read() p.stderr.close() self.assertEqual(error, '', error) # filter output prediction files for subdir, dirs, files in os.walk(resfolder): for file in files: filename = os.fsdecode(file) if filename.endswith('.gff'): afilter.cgp( subdir + '/' + filename, subdir + '/' + filename.replace('.gff', '.filtered.gff')) os.remove(subdir + '/' + filename) elif filename.endswith('.out'): afilter.cgp_out( subdir + '/' + filename, subdir + '/' + filename.replace('_tmp', '')) os.remove(subdir + '/' + filename) # compare results self.assertEqualFolders(reffolder, resfolder, outputfolder=default_wd + '/output_html/') def cgp_with_db_preparation(self, hints, mysql): os.chdir(os.path.join(default_wd, f'{exampledir}cgp')) testname = 'test_cgp_with_db' if mysql: testname += '_mysql' if hints: testname += '_hints' resfolder = self.get_res_folder(testname, '../../tests/examples') reffolder = self.get_ref_folder(testname, '../../tests/examples') cmd = [ augustusbin, '--species=human', '--speciesfilenames=genomes.tbl', '--treefile=tree.nwk', '--alnfile=aln.maf', '--softmasking=0', '--alternatives-from-evidence=0', # removes warning '--/CompPred/outdir=' + resfolder + '/pred' ] if mysql: cmd.append('--dbaccess=' + TestAugustus.dbname + ',' + TestAugustus.dbhost + ',' + TestAugustus.dbuser + ',' + TestAugustus.dbpasswd) else: cmd.append( '--dbaccess=../../tests/examples/data/tmp/vertebrates.db') if hints: cmd.append('--dbhints=true') cmd.append('--extrinsicCfgFile=cgp.extrinsic.cfg') args = [[cmd, resfolder + '/aug_tmp.out']] self.cgp_with_db_execution(resfolder, reffolder, *args) def test_cgp_denovo_tutorial(self): os.chdir(default_wd) os.chdir('../../docs/tutorial-cgp/results/mafs') resfolder = self.get_res_folder('test_cgp_with_db') reffolder = self.get_ref_folder('test_cgp_with_db') args = [] # create command list for all alignment files for idx, alin in enumerate(os.listdir(os.curdir), 1): args.append([ [ '../../../' + augustusbin, '--species=human', '--softmasking=1', '--speciesfilenames=../../../../examples_test/data/cgp_genomes.tbl', '--treefile=../../data/tree.nwk', '--alnfile=' + alin.__str__(), '--alternatives-from-evidence=0', # removes warning '--dbaccess=../vertebrates.db', '--/CompPred/outdir=' + resfolder + '/pred' + str(idx) ], resfolder + '/aug-' + str(idx) + '_tmp.out' ]) self.cgp_with_db_execution(resfolder, reffolder, *args) def test_cgp_rna_hint_tutorial(self): os.chdir(default_wd) os.chdir('../../docs/tutorial-cgp/results/mafs') reffolder = self.get_ref_folder(path_to_wd='../../../../tests/examples') resfolder = self.get_res_folder(path_to_wd='../../../../tests/examples') args = [] # create command list for all alignment files for idx, alin in enumerate(os.listdir(os.curdir), 1): args.append([ [ '../../../' + augustusbin, '--species=human', '--softmasking=1', '--speciesfilenames=../../../../tests/examples_test/data/cgp_genomes.tbl', '--treefile=../../data/tree.nwk', '--alnfile=' + alin.__str__(), '--alternatives-from-evidence=0', # removes warning '--dbaccess=../vertebrates.db', '--dbhints=1', '--UTR=1', '--allow_hinted_splicesites=atac', '--extrinsicCfgFile=../extrinsic-rnaseq.cfg', '--/CompPred/outdir=' + resfolder + '/pred' + str(idx) ], resfolder + '/aug-' + str(idx) + '_tmp.out' ]) self.cgp_with_db_execution(resfolder, reffolder, *args) def test_hints_MPE(self): reffolder = self.get_ref_folder() resfolder = self.get_res_folder() testtmpfile = os.path.join(resfolder, 'aug_hints_MPE_tmp.gff') testfile = os.path.join(resfolder, 'aug_hints_MPE.gff') os.chdir(default_wd) os.mkdir(resfolder) self.process([ augustusbin, '--species=human', f'--hintsfile={exampledir}hints.gff', '--extrinsicCfgFile=../../config/extrinsic/extrinsic.MPE.cfg', f'{exampledir}example.fa' ], testtmpfile) # filter output file afilter.pred(testtmpfile, testfile) os.remove(testtmpfile) # compare results self.assertEqualFolders(reffolder, resfolder) def default_test_suite(): suite = unittest.TestSuite() suite.addTest(TestAugustus('test_utr_on')) suite.addTest(TestAugustus('test_hints_MPE')) suite.addTest(TestAugustus('test_iterative_prediction')) suite.addTest(TestAugustus('test_iterative_prediction_with_hints')) suite.addTest(TestAugustus('test_training_new_species')) suite.addTest(TestAugustus('test_training_new_species_crf')) suite.addTest(TestAugustus('test_ab_initio_prediction')) suite.addTest(TestAugustus('test_format_and_error_out')) suite.addTest(TestAugustus('test_alternatives_from_sampling')) suite.addTest(TestAugustus('test_cgp')) suite.addTest(TestAugustus('test_cgp_sqlite')) suite.addTest(TestAugustus('test_cgp_sqlite_hints')) return suite def small_test_suite(): suite = unittest.TestSuite() suite.addTest(TestAugustus('test_utr_on')) suite.addTest(TestAugustus('test_hints_MPE')) suite.addTest(TestAugustus('test_training_new_species')) suite.addTest(TestAugustus('test_ab_initio_prediction')) suite.addTest(TestAugustus('test_format_and_error_out')) # suite.addTest(TestAugustus('test_alternatives_from_sampling')) suite.addTest(TestAugustus('test_cgp')) suite.addTest(TestAugustus('test_cgp_sqlite')) suite.addTest(TestAugustus('test_cgp_sqlite_hints')) return suite def mysql_test_suite(): suite = unittest.TestSuite() suite.addTest(TestAugustus('test_cgp_mysql')) suite.addTest(TestAugustus('test_cgp_mysql_hints')) return suite def print_tc_header(tc_name): print( '----------------------------------------------------------------------' ) print('Executing ' + tc_name) print( '----------------------------------------------------------------------' ) if __name__ == '__main__': check_working_dir(args.clean) default_wd = os.getcwd() # Remove only generated test files and do not execute test # cases if option --clean is set. if args.clean: clean() sys.exit() create_initial_resultdir() TestAugustus.opt_compare = args.compare TestAugustus.opt_html = args.html TestAugustus.opt_mysql = args.mysql runner = unittest.TextTestRunner(verbosity=2) #print_tc_header('default test suite') #result = runner.run(default_test_suite()) print_tc_header('small test suite') result = runner.run(small_test_suite()) mysql_was_successful = True if args.mysql: os.chdir(default_wd) print_tc_header('MySQL test suite') result_mysql = runner.run(mysql_test_suite()) mysql_was_successful = result_mysql.wasSuccessful() if result.wasSuccessful() and mysql_was_successful: sys.exit() else: sys.exit(1)
StarcoderdataPython
8118051
<filename>main.py import os import time import datetime as dt import schedule from threading import Timer from weather import Weather, Unit weather = Weather(unit=Unit.CELSIUS) lookup = weather.lookup(2487365) condition = lookup.condition needToWaterEarly = True needToWaterMore = True triggerConditions = ["tropical storm", "showers", "hail", "sleet", "mixed rain and hail", "scattered showers", "thundershowers"] def updateWeather(): global needToWaterEarly global needToWaterMore global lookup global condition lookup = weather.lookup(2487365) condition = lookup.condition lowerCaseCondition = condition.text.lower() if triggerConditions.count(lowerCaseCondition) > 0 and dt.datetime.today().hour == 7: needToWaterEarly = False else: needToWaterEarly = True if triggerConditions.count(lowerCaseCondition) > 0 and dt.datetime.today().hour == 18: needToWaterMore = False else: needToWaterMore = True def startWatering(stack, relayNum): if needToWaterEarly and dt.datetime.today().hour == 7: os.system("megaio " + str(stack) + " rwrite " + str(relayNum) + " on") print("NOW WATERING THE PLANTS AT 7:00 AM") needToStop = Timer(150.0, stopWatering, [stack, relayNum]) needToStop.start() else: print("SKIPPING EARLY WATER CYCLE: " + condition.text) if needToWaterMore and dt.datetime.today().hour == 18: os.system("megaio " + str(stack) + " rwrite " + str(relayNum) + " on") print("NOW WATERING THE PLANTS AT 6:30 PM") needToStop = Timer(150.0, stopWatering, [stack, relayNum]) needToStop.start() else: print("SKIPPING LATE WATER CYCLE: " + condition.text) def stopWatering(stack, relayNum): os.system("megaio " + str(stack) + " rwrite " + str(relayNum) + " off") print("FINISHED WATERING THE PLANTS") schedule.every().day.at("7:10").do(startWatering, 0, 1) schedule.every().day.at("18:30").do(startWatering, 0, 1) schedule.every().hour.do(updateWeather) while True: schedule.run_pending() time.sleep(1)
StarcoderdataPython
9778132
# TODO(matt): Reformat script. # flake8: noqa """ Big Data Training ================= """ ############################################################################### # train ############################################################################### import argparse import os import sys import time from typing import Tuple import boto3 import dask import dask.dataframe as dd import mlflow import pandas as pd import ray import torch import torch.nn as nn import torch.optim as optim from dask_ml.compose import ColumnTransformer from dask_ml.model_selection import train_test_split from dask_ml.preprocessing import OneHotEncoder from dask_ml.preprocessing import StandardScaler from ray import train from ray.train import Trainer from ray.train import TrainingCallback from ray.train.callbacks import TBXLoggerCallback from ray.util.dask import ray_dask_get from torch.nn.parallel import DistributedDataParallel from torch.utils.tensorboard import SummaryWriter # TODO(amogkam): Upstream this into Ray Train. class MLflowCallback(TrainingCallback): def __init__(self, config): self.config = config def handle_result(self, results, **info): # For each result that's being reported by ``train.report()``, # we get the result from the rank 0 worker (i.e. first worker) and # report it to MLflow. rank_zero_results = results[0] mlflow.log_metrics(rank_zero_results) # TODO: fix type hint for logdir def start_training(self, logdir, **info): mlflow.start_run(run_name=str(logdir.name)) mlflow.log_params(config) # TODO: Update TrainCallback to provide logdir in finish_training. self.logdir = logdir def finish_training(self, error: bool = False, **info): # Save the Trainer checkpoints as artifacts to mlflow. mlflow.log_artifacts(self.logdir) def read_dask_dataframe(path: str) -> "dask.DataFrame": print(f"reading data from {path}") return ray.data.read_parquet(path).random_shuffle().to_dask().reset_index() class DataPreprocessor: def __init__(self): self.column_transformer = None self.scaler = None def preprocess_train_data(self, df: "dask.DataFrame" ) -> Tuple["dask.DataFrame", "dask.DataFrame"]: return self._preprocess(df, False) def preprocess_inference_data( self, df: "dask.DataFrame") -> Tuple["dask.DataFrame", "dask.DataFrame"]: return self._preprocess(df, True)[0] def _preprocess(self, df: "dask.DataFrame", inferencing: bool ) -> Tuple["dask.DataFrame", "dask.DataFrame"]: df = df.loc[:, df.columns != "index"] # remove nulls and/or NaNs scalably with dask print(f"step1: drop nulls from rows") df = df.dropna(subset=["nullable_feature"]) print(f"step2: creating new_col and updatingfeature_1") df["new_col"] = ( df["feature_1"] - 2 * df["feature_2"] + df["feature_3"]) / 3. df["feature_1"] = 2. * df["feature_1"] + 0.1 # TODO: this doesn't work with more than 1 parquet file # df['mean_by_fruit'] = df.groupby('fruit')['feature_1'].transform('mean') print(f"step3: one-hot encoding fruit") df = df.astype({"fruit": "category"}) df = df.categorize() df.persist() if inferencing: assert self.column_transformer is not None df_fruits = self.column_transformer.transform(df) else: assert self.column_transformer is None self.column_transformer = ColumnTransformer( [("one-hot", OneHotEncoder(sparse=False), ["fruit"])]) df_fruits = self.column_transformer.fit_transform(df) df_data = df.loc[:, (df.columns != "label") & (df.columns != "fruit")] df_data = dd.concat([df_data, df_fruits], axis=1) assert df_data.isnull().sum().sum().compute( ) == 0, "There are nulls or Nans in the data!" if inferencing: print(f"step4: standardrize inference dataset") assert self.scaler is not None df_data_inference = self.scaler.transform(df_data) return df_data_inference, None else: print(f"step4: standardrize train dataset") df_labels = df.loc[:, df.columns == "label"] df_data_train, df_data_test, df_label_train, df_label_test = train_test_split( df_data, df_labels) df_data_train.persist() assert self.scaler is None self.scaler = StandardScaler( ) # this just turns col values to z-scores df_data_train = self.scaler.fit_transform(df_data_train) df_data_test = self.scaler.transform(df_data_test) df_train = dd.concat([df_data_train, df_label_train], axis=1) df_test = dd.concat([df_data_test, df_label_test], axis=1) return df_train, df_test def inference(dataset, model_cls: type, batch_size: int, result_path: str, use_gpu: bool): print("inferencing...") num_gpus = 1 if use_gpu else 0 dataset.map_batches(model_cls, compute="actors", batch_size=batch_size, num_gpus=num_gpus). \ write_parquet(result_path) """ TODO: Define neural network code in pytorch P0: 1) can take arguments to change size of net arbitrarily so we can stress test against distributed training on cluster 2) has a network (nn.module?), optimizer, and loss function for binary classification 3) has some semblence of regularization (ie: via dropout) so that this artificially gigantic net doesn't just overfit horrendously 4) works well with pytorch dataset we'll create from Ray data .to_torch_dataset() P1: 1) also tracks AUC for training, testing sets and records to tensorboard to """ class Net(nn.Module): def __init__(self, n_layers, n_features, num_hidden, dropout_every, drop_prob): super().__init__() self.n_layers = n_layers self.dropout_every = dropout_every self.drop_prob = drop_prob self.fc_input = nn.Linear(n_features, num_hidden) self.relu_input = nn.ReLU() for i in range(self.n_layers): layer = nn.Linear(num_hidden, num_hidden) relu = nn.ReLU() dropout = nn.Dropout(p=self.drop_prob) setattr(self, f"fc_{i}", layer) setattr(self, f"relu_{i}", relu) if i % self.dropout_every == 0: # only apply every few layers setattr(self, f"drop_{i}", dropout) self.add_module(f"drop_{i}", dropout) self.add_module(f"fc_{i}", layer) self.add_module(f"relu_{i}", relu) # self.register_parameter(name=f"fc_{i}", param=getattr(self, f"fc_{i}")) # self.register_parameter(name=f"relu_{i}", param=getattr(self, f"relu_{i}")) self.fc_output = nn.Linear(num_hidden, 1) def forward(self, x): x = self.fc_input(x) x = self.relu_input(x) for i in range(self.n_layers): x = getattr(self, f"fc_{i}")(x) x = getattr(self, f"relu_{i}")(x) if i % self.dropout_every == 0: x = getattr(self, f"drop_{i}")(x) x = self.fc_output(x) return x """ TODO: training loop for NN P0 Requirements: 1) should iterate through epochs, inner loop per batch 2) should keep running total of accuracy, loss (training & test) and record those to tensorboard 3) should perform windowing / shuffling per epoch P1: 1) use Ray Tune for tuning / checkpointing """ def train_epoch(dataset, model, device, criterion, optimizer): num_correct = 0 num_total = 0 running_loss = 0.0 for i, (inputs, labels) in enumerate(dataset): inputs = inputs.to(device) labels = labels.to(device) # Zero the parameter gradients optimizer.zero_grad() # Forward + backward + optimize outputs = model(inputs.float()) loss = criterion(outputs, labels.float()) loss.backward() optimizer.step() # how are we doing? predictions = (torch.sigmoid(outputs) > 0.5).int() num_correct += (predictions == labels).sum().item() num_total += len(outputs) # Save loss to plot running_loss += loss.item() if i % 100 == 0: print(f"training batch [{i}] loss: {loss.item()}") return (running_loss, num_correct, num_total) def test_epoch(dataset, model, device, criterion): num_correct = 0 num_total = 0 running_loss = 0.0 with torch.no_grad(): for i, (inputs, labels) in enumerate(dataset): inputs = inputs.to(device) labels = labels.to(device) # Forward + backward + optimize outputs = model(inputs.float()) loss = criterion(outputs, labels.float()) # how are we doing? predictions = (torch.sigmoid(outputs) > 0.5).int() num_correct += (predictions == labels).sum().item() num_total += len(outputs) # Save loss to plot running_loss += loss.item() if i % 100 == 0: print(f"testing batch [{i}] loss: {loss.item()}") return (running_loss, num_correct, num_total) def train_func(config): is_distributed = config.get("is_distributed", False) use_gpu = config["use_gpu"] num_epochs = config["num_epochs"] batch_size = config["batch_size"] num_layers = config["num_layers"] num_hidden = config["num_hidden"] dropout_every = config["dropout_every"] dropout_prob = config["dropout_prob"] num_features = config["num_features"] print("Defining model, loss, and optimizer...") # Setup device. if is_distributed: device = torch.device(f"cuda:{train.local_rank()}" if use_gpu and torch.cuda.is_available() else "cpu") else: device = torch.device("cuda:0" if use_gpu and torch.cuda.is_available() else "cpu") print(f"Device: {device}") # Setup data. if is_distributed: train_dataset_pipeline = train.get_dataset_shard("train_dataset") train_dataset_epoch_iterator = train_dataset_pipeline.iter_epochs() test_dataset = train.get_dataset_shard("test_dataset") else: train_dataset_epoch_iterator = config["train_dataset"].iter_epochs() test_dataset = config["test_dataset"] test_torch_dataset = test_dataset.to_torch( label_column="label", batch_size=batch_size) # Setup Tensorboard and MLflow. if is_distributed: # Setup is done through Callback. pass else: writer = SummaryWriter() mlflow.start_run() mlflow_config = config.copy() mlflow_config.pop("test_dataset") mlflow_config.pop("train_dataset") mlflow.log_params(mlflow_config) net = Net( n_layers=num_layers, n_features=num_features, num_hidden=num_hidden, dropout_every=dropout_every, drop_prob=dropout_prob, ).to(device) print(net.parameters) if is_distributed: net = DistributedDataParallel(net) criterion = nn.BCEWithLogitsLoss() optimizer = optim.Adam(net.parameters(), weight_decay=0.0001) print("Starting training...") for epoch in range(num_epochs): train_dataset = next(train_dataset_epoch_iterator) train_torch_dataset = train_dataset.to_torch( label_column="label", batch_size=batch_size) train_running_loss, train_num_correct, train_num_total = train_epoch( train_torch_dataset, net, device, criterion, optimizer) train_acc = train_num_correct / train_num_total print( f"epoch [{epoch + 1}]: training accuracy: {train_num_correct} / {train_num_total} = {train_acc:.4f}" ) test_running_loss, test_num_correct, test_num_total = test_epoch( test_torch_dataset, net, device, criterion) test_acc = test_num_correct / test_num_total print( f"epoch [{epoch + 1}]: testing accuracy: {test_num_correct} / {test_num_total} = {test_acc:.4f}" ) # Record and log stats. if is_distributed: train.report( train_acc=train_acc, train_loss=train_running_loss, test_acc=test_acc, test_loss=test_running_loss) else: writer.add_scalar("Accuracy/train", train_acc, epoch) writer.add_scalar("Loss/train", train_running_loss, epoch) writer.add_scalar("Accuracy/test", test_acc, epoch) writer.add_scalar("Loss/test", test_running_loss, epoch) writer.flush() mlflow.log_metrics({ "train_acc": train_acc, "train_loss": train_running_loss, "test_acc": test_acc, "test_loss": test_running_loss }) # Checkpoint model. if is_distributed: train.save_checkpoint(model_state_dict=net.module.state_dict()) else: torch.save(net.state_dict(), f"models/model-epoch-{epoch}.torch") # Shutdown Tensorboard and MLflow. if is_distributed: pass else: writer.close() # mlflow.end_run() if is_distributed: if train.world_rank() == 0: return net.module else: return None else: return net if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--dir-path", default=".", type=str, help="Path to read and write data from") parser.add_argument( "--use-s3", action="store_true", default=False, help="Use data from s3 for testing.") parser.add_argument( "--smoke-test", action="store_true", default=False, help="Finish quickly for testing.") parser.add_argument( "--address", required=False, type=str, help="The address to use for Ray. `auto` if running through `ray submit" ) parser.add_argument( "--num-workers", default=1, type=int, help="If > 1, number of Ray workers to use for distributed training") parser.add_argument( "--use-gpu", action="store_true", default=False, help="Use GPU for training.") parser.add_argument( "--mlflow-register-model", action="store_true", help="Whether to use mlflow model registry. If set, a local MLflow " "tracking server is expected to have already been started.") args = parser.parse_args() smoke_test = args.smoke_test address = args.address num_workers = args.num_workers use_gpu = args.use_gpu use_s3 = args.use_s3 dir_path = args.dir_path start_time = time.time() ray.init(address=address) dask.config.set(scheduler=ray_dask_get) ############################################################################### # make_and_upload_dataset ############################################################################### import random import os import shutil import pandas as pd import sklearn.datasets NUM_EXAMPLES = 2_000_000 NUM_FEATURES = 20 PARQUET_FILE_CHUNK_SIZE = 50_000 NUM_FILES = NUM_EXAMPLES // PARQUET_FILE_CHUNK_SIZE def create_data_chunk(n, d, seed, include_label=False): X, y = sklearn.datasets.make_classification( n_samples=n, n_features=d, n_informative=10, n_redundant=2, n_repeated=0, n_classes=2, n_clusters_per_class=3, weights=None, flip_y=0.03, class_sep=0.8, hypercube=True, shift=0.0, scale=1.0, shuffle=False, random_state=seed) # turn into dataframe with column names col_names = ['feature_%0d' % i for i in range(1, d + 1, 1)] df = pd.DataFrame(X) df.columns = col_names # add some bogus categorical data columns options = ['apple', 'banana', 'orange'] df['fruit'] = df.feature_1.map( lambda x: random.choice(options) ) # bogus, but nice to test categoricals # add some nullable columns options = [None, 1, 2] df['nullable_feature'] = df.feature_1.map( lambda x: random.choice(options) ) # bogus, but nice to test categoricals # add label column if include_label: df['label'] = y return df # create data files print("Creating synthetic dataset...") data_path = os.path.join(dir_path, "data") os.makedirs(data_path, exist_ok=True) for i in range(NUM_FILES): path = os.path.join(data_path, f"data_{i:05d}.parquet.snappy") if not os.path.exists(path): tmp_df = create_data_chunk( n=PARQUET_FILE_CHUNK_SIZE, d=NUM_FEATURES, seed=i, include_label=True) tmp_df.to_parquet(path, compression="snappy", index=False) print(f"Wrote {path} to disk...") # todo: at large enough scale we might want to upload the rest after first N files rather than write to disk # to simulate a user with local copy of subset of data print("Creating synthetic inference dataset...") inference_path = os.path.join(dir_path, "inference") os.makedirs(inference_path, exist_ok=True) for i in range(NUM_FILES): path = os.path.join(inference_path, f"data_{i:05d}.parquet.snappy") if not os.path.exists(path): tmp_df = create_data_chunk( n=PARQUET_FILE_CHUNK_SIZE, d=NUM_FEATURES, seed=i, include_label=False) tmp_df.to_parquet(path, compression="snappy", index=False) print(f"Wrote {path} to disk...") # todo: at large enough scale we might want to upload the rest after first N files rather than write to disk # to simulate a user with local copy of subset of data # os.system("aws s3 sync ./data s3://cuj-big-data/data") # os.system("aws s3 sync ./inference s3://cuj-big-data/inference") ############################################################################### # train ############################################################################### # Setup MLflow. # By default, all metrics & artifacts for each run will be saved to disk # in ./mlruns directory. Uncomment the below lines if you want to change # the URI for the tracking uri. # TODO: Use S3 backed tracking server for golden notebook. if args.mlflow_register_model: # MLflow model registry does not work with a local file system backend. # Have to start a mlflow tracking server on localhost mlflow.set_tracking_uri("http://127.0.0.1:5000") # Set the experiment. This will create the experiment if not already # exists. mlflow.set_experiment("cuj-big-data-training") if use_s3: # Check if s3 data is populated. BUCKET_NAME = 'cuj-big-data' FOLDER_NAME = 'data/' s3_resource = boto3.resource('s3') bucket = s3_resource.Bucket(BUCKET_NAME) count = bucket.objects.filter(Prefix=FOLDER_NAME) if len(list(count)) == 0: print("please run `python make_and_upload_dataset.py` first") sys.exit(1) data_path = "s3://cuj-big-data/data/" inference_path = "s3://cuj-big-data/inference/" inference_output_path = "s3://cuj-big-data/output/" else: data_path = os.path.join(dir_path, "data") inference_path = os.path.join(dir_path, "inference") inference_output_path = "/tmp" if len(os.listdir(data_path)) <= 1 or len( os.listdir(inference_path)) <= 1: print("please run `python make_and_upload_dataset.py` first") sys.exit(1) if smoke_test: # Only read a single file. data_path = os.path.join(data_path, "data_00000.parquet.snappy") inference_path = os.path.join(inference_path, "data_00000.parquet.snappy") preprocessor = DataPreprocessor() train_df, test_df = preprocessor.preprocess_train_data( read_dask_dataframe(data_path)) num_columns = len(train_df.columns) num_features = num_columns - 1 # remove label column train_dataset = ray.data.from_dask(train_df) test_dataset = ray.data.from_dask(test_df) NUM_EPOCHS = 5 BATCH_SIZE = 64 NUM_HIDDEN = 50 # 200 NUM_LAYERS = 3 # 15 DROPOUT_EVERY = 5 DROPOUT_PROB = 0.2 # Random global shuffle train_dataset_pipeline = train_dataset.repeat().random_shuffle_each_window( ) datasets = { "train_dataset": train_dataset_pipeline, "test_dataset": test_dataset } if num_workers <= 1: config = { "use_gpu": use_gpu, "num_epochs": NUM_EPOCHS, "batch_size": BATCH_SIZE, "num_hidden": NUM_HIDDEN, "num_layers": NUM_LAYERS, "dropout_every": DROPOUT_EVERY, "dropout_prob": DROPOUT_PROB, "num_features": num_features, } config.update(datasets) model = train_func(config=config) else: config = { "is_distributed": True, "use_gpu": use_gpu, "num_epochs": NUM_EPOCHS, "batch_size": BATCH_SIZE, "num_hidden": NUM_HIDDEN, "num_layers": NUM_LAYERS, "dropout_every": DROPOUT_EVERY, "dropout_prob": DROPOUT_PROB, "num_features": num_features } # Create 2 callbacks: one for Tensorboard Logging and one for MLflow # logging. Pass these into Trainer, and all results that are # reported by ``train.report()`` will be logged to these 2 places. # TODO: TBXLoggerCallback should create nonexistent logdir # and should also create 1 directory per file. tbx_logdir = "./runs" os.makedirs("./runs", exist_ok=True) callbacks = [ TBXLoggerCallback(logdir=tbx_logdir), MLflowCallback(config) ] trainer = Trainer( backend="torch", num_workers=num_workers, use_gpu=use_gpu) trainer.start() results = trainer.run( train_func=train_func, config=config, callbacks=callbacks, dataset=datasets) model = results[0] trainer.shutdown() if args.mlflow_register_model: mlflow.pytorch.log_model( model, artifact_path="models", registered_model_name="torch_model") # Get the latest model from mlflow model registry. client = mlflow.tracking.MlflowClient() registered_model_name = "torch_model" # Get the info for the latest model. # By default, registered models are in stage "None". latest_model_info = client.get_latest_versions( registered_model_name, stages=["None"])[0] latest_version = latest_model_info.version def load_model_func(): model_uri = f"models:/torch_model/{latest_version}" return mlflow.pytorch.load_model(model_uri) else: state_dict = model.state_dict() def load_model_func(): num_layers = config["num_layers"] num_hidden = config["num_hidden"] dropout_every = config["dropout_every"] dropout_prob = config["dropout_prob"] num_features = config["num_features"] model = Net( n_layers=num_layers, n_features=num_features, num_hidden=num_hidden, dropout_every=dropout_every, drop_prob=dropout_prob) model.load_state_dict(state_dict) return model class BatchInferModel: def __init__(self, load_model_func): self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") self.model = load_model_func().to(self.device) def __call__(self, batch) -> "pd.DataFrame": tensor = torch.FloatTensor(batch.to_pandas().values).to( self.device) return pd.DataFrame(self.model(tensor).cpu().detach().numpy()) inference_df = preprocessor.preprocess_inference_data( read_dask_dataframe(inference_path)) inference_dataset = ray.data.from_dask(inference_df) inference(inference_dataset, BatchInferModel(load_model_func), 100, inference_output_path, use_gpu) end_time = time.time() total_time = end_time - start_time print(f"Job finished in {total_time} seconds.")
StarcoderdataPython
4851379
from typing import Callable class Solution: def rotate(self, matrix: list[list[int]]) -> None: """ Do not return anything, modify matrix in-place instead. """ new_matrix = [[0 for _ in row] for row in matrix] n = len(matrix) for i, row in enumerate(matrix): for j, _ in enumerate(row): new_matrix[i][j] = matrix[n-1 - j][i] for i, row in enumerate(new_matrix): for j, cell in enumerate(row): matrix[i][j] = cell tests = [ ( ([[1, 2, 3], [4, 5, 6], [7, 8, 9]],), [[7, 4, 1], [8, 5, 2], [9, 6, 3]], ), ( ([[5, 1, 9, 11], [2, 4, 8, 10], [13, 3, 6, 7], [15, 14, 12, 16]],), [[15, 13, 2, 5], [14, 3, 4, 1], [12, 6, 8, 9], [16, 7, 10, 11]], ), ( ([[1]],), [[1]], ), ( ([[1, 2], [3, 4]],), [[3, 1], [4, 2]], ), ] def validator( rotate: Callable[[list[list[int]]], None], inputs: tuple[list[list[int]]], expected: list[list[int]] ) -> None: matrix, = inputs rotate(matrix) assert matrix == expected, (matrix, expected)
StarcoderdataPython
5034669
from .kanji_svg import KanjiSvg from cached_property import cached_property from requests_html import HTMLSession import backoff BASE_URL = "https://jisho.org/search/{}%20%23kanji" MAX_TRIES = 4 SVG_SELECTOR = ".stroke_order_diagram--outer_container svg" class ContentNotFound(Exception): """ Represents an error when the content is not found at all """ class ContentNotReady(Exception): """ Represents an early load of a page before the content is ready """ class KanjiStrokeScraper: """ Helper class to scrape the Kanji Strokes from Jsiho.org """ def scrape(self, kanji, start, end): """ Scrape the given Kanji """ url = BASE_URL.format(kanji) page = self.html_session.get(url) try: svg = self.extract_svg(page.html, start, end) except ContentNotFound: print('No SVG found for {}'.format(kanji)) except ContentNotReady: print('SVG not found in page') return svg @cached_property def html_session(self): """ Return the Html Session for this Scraper """ return HTMLSession() def extract_svg(self, pageHtml, start, end): """ Extract the SVG from the contents """ svg = self.load_element(pageHtml) lxmlElement = svg.lxml[0] # the lxml element actually has html as the root element rather than the svg, so grab the first child return KanjiSvg(lxmlElement, start=start, end=end) @backoff.on_exception(backoff.expo, ContentNotReady, max_tries=MAX_TRIES) def load_element(self, pageHtml): """ Extract the SVG from the contents """ pageHtml.render() svg = pageHtml.find(SVG_SELECTOR, first=True) if not svg: raise ContentNotFound() if 'display: none' in svg.attrs['style']: raise ContentNotReady() return svg
StarcoderdataPython
5024104
#-*- coding: utf-8 -*- """ CHOCO CLI(Command Line Interface) Handler """ import sys import os import shlex import inspect import imp import psutil import pickle import traceback import time try: import readline except: print >> sys.stderr, 'GNU Readline is not supported by this environment' from datetime import datetime from modules import modules from .utils.number import sizeof_fmt class ChocoCLI(object): def __init__(self, choco): self.choco = choco self.first = True # get cli methods self.commands = dict(inspect.getmembers(self, predicate=inspect.ismethod)) del self.commands['open'] del self.commands['__init__'] def open(self): while True: if self.first: self.first = False print 'Welcome to CHOCO Shell' print ' * Do not press CTRL + C.' print ' If you want to exit choco, just enter "exit".' print ' * When you need help, enter "help" or "?".' print '' command = raw_input('CHOCO ~# ') try: cmd = shlex.split(command) if len(cmd) > 0 and len(cmd[0]) > 0: c = cmd[0].replace('-', '_').replace('?', 'help') if c in self.commands: del cmd[0] self.commands[c](*cmd) else: print 'choco-shell: command not found: {0}'.format(c) except Exception, e: traceback.print_exc() def help(self): print ' COMMAND LIST :' for c in self.commands: print ' {0}'.format(c.replace('_', '-')) def send_all(self, message): room_list = self.choco.cache.hgetall('choco:rooms') for k, v in room_list.iteritems(): d = { 'command': 'ADMINMSG', 'room': pickle.loads(v), 'message': message, } self.choco.queue.put(d) time.sleep(0.05) print 'Success' def app_status(self): p = psutil.Process(os.getpid()) cpu_usage = p.get_cpu_percent(interval=1) memory_info = p.get_memory_info() rss = sizeof_fmt(memory_info.rss) vms = sizeof_fmt(memory_info.vms) thread_count = p.get_num_threads() if os.name != 'nt': fd_count = p.get_num_fds() print "CPU Usage : {0}%".format(cpu_usage) print "Memory : {0} (RSS), {1} (VMS)".format(rss, vms) print "Threads : {0}".format(thread_count) if os.name != 'nt': print "FDs : {0}".format(fd_count) def status(self): now = datetime.now().strftime('%Y/%m/%d %H:%M:%S') recv_count = self.choco.cache.get('choco:count:recv') exec_count = self.choco.cache.get('choco:count:exec') sent_count = self.choco.cache.get('choco:count:sent') room_count = self.choco.cache.hlen('choco:rooms') session_count = self.choco.cache.hlen('choco:sessions') print '[C] {0}'.format(now) print 'RECV : %s' % recv_count print 'EXEC : %s' % exec_count print 'SENT : %s' % sent_count print 'ROOMS : %s' % room_count print 'SESSIONS : %s' % session_count print 'BUSY : %s/%s' % (self.choco.working_count.value, self.choco.config.THREAD_COUNT) def reload(self): print 'RELOADING MODULES ..' self.choco.module.rules = [] self.choco.module.functions = {} for m in modules: imp.reload(m) print 'RELOAD COMPLETE !' def exit(self): self.choco.exit.value = True os._exit(1)
StarcoderdataPython
5146371
'''given a list of integers and a number n, find a pair that sums to the number n''' #Using hash table - O(n) time and O(n) space def get_pair_using_hashmap(lst, num): num_dict = {} for each in lst: if (num -each) in num_dict: return [each,num-each] else: num_dict[each]=None return [] # using sorted list. O(nlogn) time and O(1) space def get_pair_using_sorted_list(lst,num): lst.sort() left = 0 right=len(lst)-1 while left < right: curr_sum = lst[left] + lst[right] if curr_sum < num: left+=1 elif curr_sum > num: right-=1 else: return [lst[left],lst[right]] return [] if __name__ == "__main__": lst = [3,5,-4,8,11,1,-1,6] print(get_pair_using_sorted_list(lst,10))
StarcoderdataPython
6435201
import logging from functools import wraps from data import model from util.http import abort logger = logging.getLogger(__name__) def _raise_unauthorized(repository, scopes): raise StandardError("Unauthorized acces to %s", repository) def _get_reponame_kwargs(*args, **kwargs): return [kwargs["namespace"], kwargs["package_name"]] def disallow_for_image_repository(get_reponame_method=_get_reponame_kwargs): def wrapper(func): @wraps(func) def wrapped(*args, **kwargs): namespace_name, repo_name = get_reponame_method(*args, **kwargs) image_repo = model.repository.get_repository( namespace_name, repo_name, kind_filter="image" ) if image_repo is not None: logger.debug("Tried to invoked a CNR method on an image repository") abort( 405, message="Cannot push an application to an image repository with the same name", ) return func(*args, **kwargs) return wrapped return wrapper def require_repo_permission( permission_class, scopes=None, allow_public=False, raise_method=_raise_unauthorized, get_reponame_method=_get_reponame_kwargs, ): def wrapper(func): @wraps(func) @disallow_for_image_repository(get_reponame_method=get_reponame_method) def wrapped(*args, **kwargs): namespace_name, repo_name = get_reponame_method(*args, **kwargs) logger.debug( "Checking permission %s for repo: %s/%s", permission_class, namespace_name, repo_name, ) permission = permission_class(namespace_name, repo_name) if permission.can() or ( allow_public and model.repository.repository_is_public(namespace_name, repo_name) ): return func(*args, **kwargs) repository = namespace_name + "/" + repo_name raise_method(repository, scopes) return wrapped return wrapper
StarcoderdataPython
8016833
<filename>microutil/array_utils.py<gh_stars>1-10 __all__ = [ "zeros_like", "not_xr", "axis2int", ] import dask.array as da import numpy as np import xarray as xr import zarr def zeros_like(arr): """ Smooth over the differences zeros_likes for different array types Parameters ---------- arr : array-like Returns ------- An zeroed array of the same array type as *arr* """ if isinstance(arr, np.ndarray): return np.zeros_like(arr) elif isinstance(arr, xr.DataArray): return xr.zeros_like(arr) elif isinstance(arr, zarr.Array): return zarr.zeros_like(arr) elif isinstance(arr, da.Array): return da.zeros_like(arr) def not_xr(arr): """ Make sure an array is not an xarray as that can have major implications for indexing """ if isinstance(arr, xr.DataArray): return arr.values return arr def axis2int(arr, axis, fallthrough=None): """ Get the integer index of an axis for xarray or numpy. dims contain *axis*. Parameters ---------- arr : ndarry or xarray axis : int, str The axis to find the index of fallthrough : int or None, default: None The value to return if the inference doesn't work. Returns ------- i : int The index in dims. """ if isinstance(axis, int): return axis else: if isinstance(arr, xr.DataArray) and isinstance(axis, str) and (axis in arr.dims): return arr.dims.index(axis) return fallthrough
StarcoderdataPython
9723778
<filename>submodular_optimization/algorithms/algorithm_driver.py<gh_stars>0 """ This class runs an algorithm with given config """ import logging import numpy as np from copy import deepcopy from timeit import default_timer as timer from algorithms.distorted_greedy import DistortedGreedy from algorithms.cost_scaled_greedy import CostScaledGreedy from algorithms.greedy import Greedy from algorithms.unconstrained_linear import UnconstrainedLinear from algorithms.cost_scaled_lazy_greedy import CostScaledLazyGreedy from algorithms.cost_scaled_partition_matroid_greedy import CostScaledPartitionMatroidGreedy from algorithms.partition_matroid_greedy import PartitionMatroidGreedy from algorithms.cost_scaled_partition_matroid_lazy_greedy import CostScaledPartitionMatroidLazyGreedy from algorithms.stochastic_distorted_greedy import StochasticDistortedGreedy from algorithms.unconstrained_distorted_greedy import UnconstrainedDistortedGreedy from algorithms.scaled_single_threshold_greedy import ScaledSingleThresholdGreedy from algorithms.baseline_topk import BaselineTopk from algorithms.baseline_topk_matroid import BaselineTopkMatroid from ordered_set import OrderedSet class AlgorithmDriver(object): """ Creates experiment driver """ def __init__(self): """ Constructor :param: :return: """ self.logger = logging.getLogger("so_logger") def create_sample(self, config, data, num_sampled_skills, rare_sample_fraction, popular_sample_fraction, rare_threshold, popular_threshold, user_sample_ratio, seed): """ create the sample """ np.random.seed(seed=seed) data.sample_skills_to_be_covered_controlled(num_sampled_skills, rare_sample_fraction, popular_sample_fraction, rare_threshold, popular_threshold, user_sample_ratio) def create_partitions(self, data, num_of_partitions, partition_type, cardinality_constraint): """ create the partition matroids """ if partition_type == "random": data.assign_ground_set_to_random_partitions(num_of_partitions, cardinality_constraint) else: data.assign_ground_set_to_equi_salary_partitions(num_of_partitions, cardinality_constraint) def run(self, config, data, algorithm, sample_epsilon, error_epsilon, scaling_factor, num_sampled_skills, rare_sample_fraction, popular_sample_fraction, rare_threshold, popular_threshold, user_sample_ratio, seed, k): """run :param config: :param data: :param algorithm: :param sample_epsilon: :param lazy_epsilon: :param scaling_factor: :param num_sampled_skills: :param rare_sample_fraction: :param popular_sample_fraction: :param rare_threshold: :param popular_threshold: :param user_sample_ratio: :seed: :k: """ data.scaling_factor = scaling_factor data.E = sorted(list(data.E)) data.E = OrderedSet(data.E) if algorithm == "distorted_greedy": alg = DistortedGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "cost_scaled_greedy": alg = CostScaledGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "greedy": alg = Greedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "unconstrained_linear": alg = UnconstrainedLinear(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E) elif algorithm == "cost_scaled_lazy_greedy": alg = CostScaledLazyGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "unconstrained_distorted_greedy": alg = UnconstrainedDistortedGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E) elif algorithm == "stochastic_distorted_greedy": config['algorithms']['stochastic_distorted_greedy_config']['epsilon'] = sample_epsilon alg = StochasticDistortedGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "scaled_single_threshold_greedy": config['algorithms']['scaled_single_threshold_greedy_config']['epsilon'] = error_epsilon alg = ScaledSingleThresholdGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "baseline_topk": alg = BaselineTopk(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, k) elif algorithm == "cost_scaled_partition_matroid_greedy": alg = CostScaledPartitionMatroidGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, deepcopy(data.partitions)) elif algorithm == "partition_matroid_greedy": alg = PartitionMatroidGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, deepcopy(data.partitions)) elif algorithm == "cost_scaled_partition_matroid_lazy_greedy": alg = CostScaledPartitionMatroidLazyGreedy(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, deepcopy(data.partitions)) elif algorithm == "baseline_topk_matroid": alg = BaselineTopkMatroid(config, data.init_submodular_func_coverage_caching, data.submodular_func_caching, data.cost_func, data.E, deepcopy(data.partitions)) else: self.logger.info("Algorithm is not implemented") # Run algorithm sol = alg.run() submodular_val = data.submodular_func(sol) cost = data.cost_func(sol) val = submodular_val - cost result = {'alg': algorithm, 'sol': sol, 'val': val, 'submodular_val': submodular_val, 'cost': cost, 'runtime': None, 'error_epsilon': error_epsilon, 'sample_epsilon': sample_epsilon, 'user_sample_ratio': user_sample_ratio, 'scaling_factor': scaling_factor, 'num_rare_skills': data.num_rare_skills, 'num_common_skills': data.num_common_skills, 'num_popular_skills': data.num_popular_skills, 'num_sampled_skills': num_sampled_skills, 'seed': seed, 'k': k } return result
StarcoderdataPython
6683254
''' Stores all unique rooms in game, every type of room got its own description and features, this is intended to be used as the building block for the dungeon generation function which is not yet implemented > Must-have room attributes: NAME, USERDESC, DESC, NORTH, SOUTH, EAST, WEST, UP, DOWN, GROUND, SHOP, ENEMIES > Optional room attributes: SHOPINTRO (Greetings if room is shop) ''' # Imports package namespace which contain all constants from dicts import * # Returns rooms exits as a dictionary of {DIRECTION: DESTINATION, ...} def get_room_exits(room): exits = {} for dir in DIRECTIONS: if room[dir]: exits[dir] = ROOMS[room[dir]][NAME] else: pass # exits[dir] = str(None) return exits ROOMS = { 'town_square': { NAME: 'Town Square', USERDESC: 'You are in the middle of the square, with streets surrounding you from all directions', DESC: 'There are many people around, they all seem busy', NORTH: 'courtyard', SOUTH: 'butchery', EAST: 'bakery', WEST: 'house_63', UP: None, DOWN: None, GROUND: ['fountain', 'apple', 'bread', 'coin'], SHOP: [], ENEMIES: [], }, 'house_63': { NAME: 'House 63 (Ground)', USERDESC: 'You are inside an old, deserted house. You see a dark staircase leading upward', DESC: 'This house looks like it is going to collapse', NORTH: None, SOUTH: None, EAST: 'town_square', WEST: None, UP: 'house_63_1', DOWN: None, GROUND: ['coin', 'apple'], SHOP: [], ENEMIES: [], }, 'house_63_1': { NAME: 'House 63 (Attic)', USERDESC: 'You are in a dark, gloomy attic, there is a staircase leading downward', DESC: 'Everything is untouched, covered in dust.', NORTH: None, SOUTH: None, EAST: None, WEST: None, UP: None, DOWN: 'house_63', GROUND: ['dagger'], SHOP: [], ENEMIES: ['spider', 'spider'], }, 'bakery': { NAME: 'Bakery', USERDESC: 'You are looking at various kinds of delicious pastry, making your stomach growl', DESC: 'The air smells of warm, tasty bread', NORTH: None, SOUTH: None, WEST: 'town_square', EAST: None, UP: None, DOWN: None, GROUND: [], SHOP: ['flatbread', 'bread', 'cake'], SHOPINTRO: 'The bakery has some freshly baked pastry for sale\n# Have a look:', ENEMIES: [], }, 'butchery': { NAME: 'Butchery', USERDESC: "You are at the Butchery's entrance, You observe an old man as he sharpens his knife", DESC: 'The air smells of meat and blood, it is unclean and stinky', NORTH: 'town_square', SOUTH: None, EAST: None, WEST: None, UP: None, DOWN: None, GROUND: [], SHOP: ['beef', 'sausage'], SHOPINTRO: 'The butcher has some cuts ready to go\n# Have a look:', ENEMIES: [], }, 'courtyard': { NAME: 'Courtyard', USERDESC: 'You come to a courtyard strewn with flowers, protected by small ornate cast-iron fences.', DESC: 'A cardinal sings, sitting atop a distant fence. You faintly make out the smell of bread, and hear voices from the south', NORTH: None, SOUTH: 'town_square', EAST: None, WEST: None, UP: None, DOWN: None, GROUND: [], SHOP: [], ENEMIES: [], } } ''' Stores all unique rooms in game, every type of room got its own description and features, this is intended to be used as the building block for the dungeon generation function which is not yet implemented > Must-have room attributes: NAME, USERDESC, DESC, NORTH, SOUTH, EAST, WEST, UP, DOWN, GROUND, SHOP, ENEMIES > Optional room attributes: SHOPINTRO (Greetings if room is shop) ''' # Imports package namespace which contain all constants from dicts import * # Returns rooms exits as a dictionary of {DIRECTION: DESTINATION, ...} def get_room_exits(room): exits = {} for dir in DIRECTIONS: if room[dir]: exits[dir] = ROOMS[room[dir]][NAME] else: pass # exits[dir] = str(None) return exits ROOMS = { 'town_square': { NAME: 'Town Square', USERDESC: 'You are in the middle of the square, with streets surrounding you from all directions', DESC: 'There is many people around, they all seem busy', NORTH: None, SOUTH: 'butchery', EAST: 'bakery', WEST: 'house_63', UP: None, DOWN: None, GROUND: ['fountain', 'apple', 'bread', 'coin'], SHOP: [], ENEMIES: [], }, 'house_63': { NAME: "House 63's Main Floor", USERDESC: 'You are inside an old, deserted house. You see a dark staircase upwards', DESC: 'This house looks like it is going to collapse', NORTH: None, SOUTH: None, EAST: 'town_square', WEST: None, UP: 'house_63_1', DOWN: None, GROUND: ['coin', 'apple'], SHOP: [], ENEMIES: [], }, 'house_63_1': { NAME: "House 63's Attic", USERDESC: 'You are in a dark, gloomy attic, There is a staircase downwards', DESC: 'Everything is untouched, covered in dust.', NORTH: None, SOUTH: None, EAST: None, WEST: None, UP: None, DOWN: 'house_63', GROUND: ['dagger'], SHOP: [], ENEMIES: ['spider', 'spider'], }, 'bakery': { NAME: 'Bakery', USERDESC: 'You are looking at various kinds of delicious pastry, making your stomach growl', DESC: 'The air smells of warm, tasty bread', NORTH: None, SOUTH: None, WEST: 'town_square', EAST: None, UP: None, DOWN: None, GROUND: [], SHOP: ['flatbread', 'bread', 'cake'], SHOPINTRO: 'The bakery got some freshly baked pastry for sale\n# Have a look:', ENEMIES: [], }, 'butchery': { NAME: 'Butchery', USERDESC: "You are at the Butchery's entrance, You observe an old man as he sharpens his knife", DESC: 'The air smells of meat and blood, It is unclean and stinky', NORTH: 'town_square', SOUTH: None, EAST: None, WEST: None, UP: None, DOWN: None, GROUND: [], SHOP: ['beef', 'sausage'], SHOPINTRO: 'The butcher got some cuts ready to go\n# Have a look:', ENEMIES: [], }, }
StarcoderdataPython
6492812
# Copyright (c) 2012-2015 Netforce Co. Ltd. # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in all # copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, # DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR # OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE # OR OTHER DEALINGS IN THE SOFTWARE. from netforce.model import Model, fields, get_model from netforce.database import get_connection from datetime import * import time class Campaign(Model): _name = "mkt.campaign" _string = "Campaign" _fields = { "name": fields.Char("Campaign Name", required=True, search=True), "date": fields.Date("Date", required=True, search=True), "target_lists": fields.Many2Many("mkt.target.list", "Target Lists"), "email_tmpl_id": fields.Many2One("email.template", "Email Template"), "mailbox_id": fields.Many2One("email.mailbox", "Email Mailbox"), "comments": fields.One2Many("message", "related_id", "Comments"), "state": fields.Selection([["active", "Active"], ["inactive", "Inactive"]], "Status", required=True), "limit_day": fields.Integer("Daily Limit"), "limit_hour": fields.Integer("Hourly Limit"), "num_targets": fields.Integer("Number targets", function="get_stats", function_multi=True), "num_create": fields.Integer("Number emails created", function="get_stats", function_multi=True), "percent_create": fields.Float("% created", function="get_stats", function_multi=True), "num_sent": fields.Integer("Number emails sent", function="get_stats", function_multi=True), "percent_sent": fields.Float("% sent", function="get_stats", function_multi=True), "num_delivered": fields.Integer("Number emails delivered", function="get_stats", function_multi=True), "percent_delivered": fields.Float("% delivered", function="get_stats", function_multi=True), "num_bounced": fields.Integer("Number emails bounced", function="get_stats", function_multi=True), "percent_bounced": fields.Float("% bounced", function="get_stats", function_multi=True), "num_rejected": fields.Integer("Number emails rejected", function="get_stats", function_multi=True), "percent_rejected": fields.Float("% rejected", function="get_stats", function_multi=True), "num_opened": fields.Integer("Number emails opened", function="get_stats", function_multi=True), "percent_opened": fields.Float("% opened", function="get_stats", function_multi=True), "num_clicked": fields.Integer("Number emails clicked", function="get_stats", function_multi=True), "percent_clicked": fields.Float("% clicked", function="get_stats", function_multi=True), "num_create_day": fields.Integer("Emails created within day", function="get_stats", function_multi=True), "num_create_hour": fields.Integer("Emails created within hour", function="get_stats", function_multi=True), "emails": fields.One2Many("email.message", "related_id", "Emails"), "min_target_life": fields.Integer("Minimum Target Life (days)"), } _defaults = { "date": lambda *a: time.strftime("%Y-%m-%d"), "state": "active", } def create_emails_all(self, context={}): for obj in self.search_browse([["state", "=", "active"]]): obj.create_emails() def create_emails(self, ids, context={}): obj = self.browse(ids)[0] if obj.state != "active": raise Exception("Invalid state") if not obj.email_tmpl_id: raise Exception("Missing email template") limit = None if obj.limit_day: limit = obj.limit_day - obj.num_create_day if obj.limit_hour: l = obj.limit_hour - obj.num_create_hour if limit is None or l < limit: limit = l sent_emails = set() for email in obj.emails: if not email.name_id: continue if email.name_id._model != "mkt.target": continue target_id = email.name_id.id res = get_model("mkt.target").search([["id", "=", email.name_id.id]]) # XXX if not res: continue target = get_model("mkt.target").browse(target_id) sent_emails.add(target.email) count = 0 for tl in obj.target_lists: for target in tl.targets: if target.email in sent_emails: continue if obj.min_target_life and target.target_life < obj.min_target_life: continue if limit is not None and count >= limit: break settings = get_model("settings").browse(1) data = { "settings": settings, "obj": target, } obj.email_tmpl_id.create_email( data, name_id="mkt.target,%d" % target.id, related_id="mkt.campaign,%d" % obj.id, mailbox_id=obj.mailbox_id) count += 1 db = get_connection() db.commit() return { "next": { "name": "campaign", "mode": "form", "active_id": obj.id, }, "flash": "%d emails created" % count, } def get_stats(self, ids, context={}): vals = {} for obj_id in ids: vals[obj_id] = { "num_targets": 0, "num_create": 0, "num_sent": 0, "num_delivered": 0, "num_bounced": 0, "num_rejected": 0, "num_opened": 0, "num_clicked": 0, "num_create_day": 0, "num_create_hour": 0, } db = get_connection() res = db.query( "SELECT c.id,COUNT(DISTINCT t.email) FROM mkt_campaign c JOIN m2m_mkt_campaign_mkt_target_list r ON r.mkt_campaign_id=c.id JOIN mkt_target t ON t.list_id=r.mkt_target_list_id WHERE c.id IN %s GROUP BY c.id", tuple(ids)) for r in res: vals[r.id]["num_targets"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_create"] = r.count d = (datetime.now() - timedelta(hours=24)).strftime("%Y-%m-%d %H:%M:%S") res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND date>%s GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids]), d) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_create_day"] = r.count d = (datetime.now() - timedelta(hours=1)).strftime("%Y-%m-%d %H:%M:%S") res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND date>%s GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids]), d) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_create_hour"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND state='sent' GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_sent"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND state='delivered' GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_delivered"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND state='bounced' GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_bounced"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND state='rejected' GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_rejected"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND opened GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_opened"] = r.count res = db.query("SELECT related_id,COUNT(*) FROM email_message WHERE related_id IN %s AND clicked GROUP BY related_id", tuple(["mkt.campaign,%d" % x for x in ids])) for r in res: obj_id = int(r.related_id.split(",")[1]) v = vals[obj_id] v["num_clicked"] = r.count for obj in self.browse(ids): v = vals[obj.id] v["percent_create"] = v["num_create"] * 100.0 / v["num_targets"] if v["num_targets"] else None v["percent_sent"] = v["num_sent"] * 100.0 / v["num_create"] if v["num_create"] else None v["percent_delivered"] = v["num_delivered"] * 100.0 / v["num_create"] if v["num_create"] else None v["percent_bounced"] = v["num_bounced"] * 100.0 / v["num_create"] if v["num_create"] else None v["percent_rejected"] = v["num_rejected"] * 100.0 / v["num_create"] if v["num_create"] else None v["percent_opened"] = v["num_opened"] * 100.0 / v["num_create"] if v["num_create"] else None v["percent_clicked"] = v["num_clicked"] * 100.0 / v["num_create"] if v["num_create"] else None return vals Campaign.register()
StarcoderdataPython
5065380
cores = {'limpo': '\033[m', 'vermelho': '\033[1;31m', 'verde': '\033[1;32m', 'azul': '\033[1;34m'} frase = str(input('Digite uma frase: ')).strip().lower() print(f'Quantas vezes aparece a letra A? {cores["vermelho"]}{frase.count("a")}{cores["limpo"]}') print(f'Onde aparece a letra A pela primeira vez?: {cores["verde"]}{frase.find("a")+1}{cores["limpo"]}') print(f'Onde aparece a letra A pela última vez?: {cores["azul"]}{frase.rfind("a")+1}{cores["limpo"]}')
StarcoderdataPython
6476451
<filename>h3mlcore/models/H3RNNSeqClassifier.py ''' A bidirectional LSTM sequence model used for document classification. It is basically a sequence classification model developed in mxnet. Author: <NAME> Group: Cognitive Security Technologies Institute: Fraunhofer AISEC Mail: <EMAIL> Copyright@2017 ''' import mxnet as mx import numpy as np import os import pickle import logging import yaml import logging.config from h3mlcore.models.H3BaseActor import H3BaseActor from h3mlcore.utils.MxHelper import BasicArgparser from h3mlcore.io.BucketSeqLabelIter import BucketSeqLabelIter class H3RNNSeqClassifier(H3BaseActor): """ """ def __init__(self, num_hidden=256, num_embed=128, input_dim=None, lstm_layer=1, num_classes=2, params_file='', learning_rate=.1, optimizer='sgd', metric='acc', use_gpus=[], use_cpus=[], logging_root_dir='logs/', logging_config='configs/logging.yaml', verbose=False ): # setup logging try: # logging_root_dir = os.sep.join(__file__.split('/')[:-1]) logging_path = logging_root_dir + self.__class__.__name__ + '/' if not os.path.exists(logging_path): os.makedirs(logging_path) logging_config = yaml.safe_load(open(logging_config, 'r')) logging_config['handlers']['info_file_handler']['filename'] = logging_path + 'info.log' logging_config['handlers']['error_file_handler']['filename'] = logging_path + 'error.log' logging.config.dictConfig(logging_config) except IOError: logging.basicConfig(level=logging.INFO) logging.warning( "logging config file: %s does not exist." % logging_config) finally: self.logger = logging.getLogger('default') # setup training parameters self.num_hidden = num_hidden self.num_embed = num_embed self.input_dim = input_dim self.lstm_layer = lstm_layer self.num_classes = num_classes self.params_file = params_file self.learning_rate = learning_rate self.optimizer = optimizer if metric == 'acc': self.metric = mx.metric.Accuracy() elif metric == 'cross-entropy': self.metric = mx.metric.CrossEntropy() elif metric == 'topk': self.metric = mx.metric.TopKAccuracy(top_k=3) self.ctx = [] if use_gpus: self.ctx = [mx.gpu(i) for i in use_gpus] elif use_cpus: self.ctx = [mx.cpu(i) for i in use_cpus] else: self.ctx = mx.cpu(0) self.model = None def _sym_gen(self, seq_len): """Dynamic symbol generator For variable length sequence model, we define a dynamic symbol generator to generate various length unrolled sequence model based on differnet cells.abs Args: seq_len(int): The sequence length to unroll Returns: mx.sym.Symbol: pred-> a symbol for the output of the sequence model """ data = mx.sym.Variable(name='data') label = mx.sym.Variable(name='softmax_label') embeds = mx.symbol.Embedding( data=data, input_dim=self.input_dim, output_dim=self.num_embed, name='embed') lstm_1 = mx.rnn.LSTMCell(prefix='lstm_1_', num_hidden=self.num_hidden) outputs, _ = lstm_1.unroll(seq_len, inputs=embeds, layout='NTC') for i in range(self.lstm_layer - 1): new_lstm = mx.rnn.LSTMCell( prefix='lstm_' + str(i + 2) + '_', num_hidden=self.num_hidden) outputs, _ = new_lstm.unroll(seq_len, inputs=outputs, layout='NTC') pred = mx.sym.FullyConnected( data=outputs[-1], num_hidden=self.num_classes, name='logits') pred = mx.sym.SoftmaxOutput(data=pred, label=label, name='softmax') return pred, ('data',), ('softmax_label',) def initialize(self, data_iter): """Initialize the neural network model This should be called during model constructor. It tries to load NN parameters from a file, if it does exist, otherwise initialize it. It sets up optimizer and optimization parameters as well. Args: data_iter(mx.io.NDArrayIter): initialize the model with data iterator, it should be of type BucketSeqLabelIter. """ if not isinstance(data_iter, BucketSeqLabelIter): err_msg = "Data iterator for this model should be of type BucketSeqLabelIter." raise TypeError(err_msg) self.logger.error(err_msg, exc_info=True) return self.model = mx.module.BucketingModule( sym_gen=self._sym_gen, default_bucket_key=data_iter.default_bucket_key, context=self.ctx) self.model.bind(data_iter.provide_data, data_iter.provide_label) if os.path.isfile(self.params_file): try: self.model.load_params(self.params_file) self.logger.info( "LSTM model parameters loaded from file: %s." % (self.params_file)) except (IOError, ValueError): self.logger.warning( "Parameters file does not exist or not valid! please check the file.") else: self.model.init_params() self.logger.info("LSTM Model initialized.") self.model.init_optimizer(optimizer=self.optimizer, optimizer_params=(('learning_rate', self.learning_rate),)) def step(self, data_batch): """Feed one data batch from data iterator to train model This function is called when we feed one data batch to model to update parameters. it can be used in train_epochs. See also: train_epochs. Args: data_batch (mx.io.DataBatch): a data batch matches the model definition """ self.model.forward(data_batch=data_batch) metric = mx.metric.CrossEntropy() metric.update(data_batch.label, self.model.get_outputs()) self.logger.debug('train step %s: %f' % (metric.get())) self.model.backward() self.model.update() def train_epochs(self, train_data, eval_data=None, num_epochs=10, ): """Train model for many epochs with training data. The model will be trained in epochs and possibly evaluated with validation dataset. The model parameters will be saved on disk. Note that for Bucketing model, only network parameters will be saved in checkpoint, since model symbols need to be created according to buckets which match the training data. Args: train_data (BucketSeqLabelIter): Training data iterator eval_data (BucketSeqLabelIter): Validation data iterator num_epochs (int): Number of epochs to train """ for e in range(num_epochs): train_data.reset() for batch in train_data: self.step(data_batch=batch) if eval_data: eval_data.reset() self.model.score(eval_data, self.metric) self.logger.info("Training epoch %d -- Evaluate %s: %f" % (e + 1, self.metric.name, self.metric.get()[1])) def predict(self, test_data, batch_size=32): """Predict labels on test dataset which is a list of list of encoded tokens (integer). Predict labels on a list of list of integers. As for training, test data sample is a list of integers mapped from token. Args: test_data (list): A list of list of integers Returns: labels (list): a list of integers (labels) """ sample_ids = range(len(test_data)) labels = np.zeros(shape=(len(test_data, )), dtype=int) scores = np.zeros(shape=(len(test_data), self.num_classes)) tt_iter = BucketSeqLabelIter( test_data, sample_ids, batch_size=batch_size) for batch in tt_iter: self.model.forward(batch, is_train=False) out = self.model.get_outputs()[0].asnumpy() for logits, idx in zip(out, batch.label[0].asnumpy()): labels[idx] = np.argmax(logits) scores[idx] = logits return labels, scores def save(self, path, epoch=None): """Save model parameters for BucketingModel This function saves model offline, either a checkpoint or parameters for Bucketing model. Note that normally it can be saved as checkpoint, but for variable length model such as BucketingModel, we can only save parameters and initialize the model with parameter loading, since the unrolled version of models need to be determined by data iterator, which can be any length. Args: path (str): a valid path to save the checkpoint/parameters """ if epoch: path = path + '-' + str(epoch) self.model.save_params(path) self.logger.info('Network parameters saved in %s' % (path)) if __name__ == '__main__': ''' Run from terminal ''' # arg_parser = BasicArgparser( # prog="LSTM Models with varying length inputs.").get_parser() # args = arg_parser.parse_args() # # basic parameters # epochs = args.epochs # batch_size = args.batch_size # lr = args.learning_rate # ctx = [] # if args.gpus: # for gid in args.gpus: # ctx.append(mx.gpu(args.gpus[gid])) # elif args.cpus: # for cid in args.cpus: # ctx.append(mx.cpu(args.cpus[gid])) # else: # # default # ctx = mx.cpu(0) from termcolor import colored # from nltk.tokenize import word_tokenize from sklearn.cross_validation import train_test_split from h3mlcore.utils.DatasetHelper import load_snp17, java_tokenize # load data # datafile = "../datasets/npc_chat_data2.p" # data = pickle.load(open(datafile, 'r')) # all_sents = data['Xtr'] # sents = [word_tokenize(sent) for sent in all_sents] # labels = np.array(data['ytr'], dtype=int) - 1 # label_names = data['label_info'] all_sents, all_labels, _ = load_snp17(csv_file='/Users/hxiao/repos/h3lib/h3db/snp17/train/answer_snippets_coded.csv', save_path='/Users/hxiao/repos/webdemo/datasets/snp17.p', force_overwrite=False) sents, labels, discard_snippets = java_tokenize(all_sents, all_labels) sents_encoded, vocab = mx.rnn.encode_sentences(sents, vocab=None, invalid_key='\n', invalid_label=-1, start_label=0) word_map = dict([(index, word) for word, index in vocab.iteritems()]) print 'Total #encoded_snippets: %d, #issue_snippets: %d, total #tokens: %d' \ % (len(sents_encoded), discard_snippets, len(vocab)) tr_data, tt_data, tr_labels, tt_labels = train_test_split( sents_encoded, labels, train_size=0.8) buckets = [50, 100, 200, 1000] tr_iter = BucketSeqLabelIter( tr_data, tr_labels, buckets=buckets, batch_size=64) tt_iter = BucketSeqLabelIter( tt_data, tt_labels, buckets=buckets, batch_size=64) clf = H3RNNSeqClassifier(input_dim=len(vocab), num_classes=np.unique(labels).size) clf.initialize(tr_iter) clf.train_epochs(tr_iter, tt_iter, num_epochs=50) # test # test_sents = [word_tokenize(sent) for sent in all_sents[100:400]] # test_labels = labels[100:400] # test_sents_encoded, _ = mx.rnn.encode_sentences(test_sents, vocab=vocab) # preds, logits = clf.predict(test_sents_encoded, batch_size=50) # for s, p, lgt, real in zip(all_sents[100:300], preds, logits, test_labels): # if real == p: # print colored(s, color='blue') + \ # colored(' -> ' + label_names[p] + # ' <- ' + label_names[real], color='green') # else: # print colored(s, color='blue') + \ # colored(' -> ' + label_names[p] + # ' <- ' + label_names[real], color='red') # print 'Logits: ', lgt
StarcoderdataPython
1882224
from dreamcoder.program import Primitive, Program from dreamcoder.type import arrow, baseType, tint turtle = baseType("turtle") tstate = baseType("tstate") tangle = baseType("tangle") tlength = baseType("tlength") primitives = ( [ Primitive("logo_UA", tangle, ""), Primitive("logo_UL", tlength, ""), Primitive("logo_ZA", tangle, ""), Primitive("logo_ZL", tlength, ""), Primitive("logo_DIVA", arrow(tangle, tint, tangle), ""), Primitive("logo_MULA", arrow(tangle, tint, tangle), ""), Primitive("logo_DIVL", arrow(tlength, tint, tlength), ""), Primitive("logo_MULL", arrow(tlength, tint, tlength), ""), Primitive("logo_ADDA", arrow(tangle, tangle, tangle), ""), Primitive("logo_SUBA", arrow(tangle, tangle, tangle), ""), # Primitive("logo_ADDL", arrow(tlength,tlength,tlength), ""), # Primitive("logo_SUBL", arrow(tlength,tlength,tlength), ""), # Primitive("logo_PU", arrow(turtle,turtle), ""), # Primitive("logo_PD", arrow(turtle,turtle), ""), Primitive("logo_PT", arrow(arrow(turtle, turtle), arrow(turtle, turtle)), None), Primitive("logo_FWRT", arrow(tlength, tangle, turtle, turtle), ""), Primitive("logo_GETSET", arrow(arrow(turtle, turtle), turtle, turtle), ""), ] + [ Primitive("logo_IFTY", tint, ""), Primitive("logo_epsA", tangle, ""), Primitive("logo_epsL", tlength, ""), Primitive( "logo_forLoop", arrow(tint, arrow(tint, turtle, turtle), turtle, turtle), "ERROR: python has no way of expressing this hence you shouldn't eval on this", ), ] + [Primitive(str(j), tint, j) for j in range(10)] ) if __name__ == "__main__": expr_s = "(lambda (logo_forLoop 3 (lambda (lambda (logo_GET (lambda (logo_FWRT (logo_S2L (logo_I2S 1)) (logo_S2A (logo_I2S 0)) (logo_SET $0 (logo_FWRT (logo_S2L eps) (logo_DIVA (logo_S2A (logo_I2S 2)) (logo_I2S 3)) ($1)))))))) ($0)))" x = Program.parse(expr_s) print(x)
StarcoderdataPython
1974265
# Copyright 2014 Intel Corporation, All Rights Reserved. # Licensed under the Apache License, Version 2.0 (the"License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, # software distributed under the License is distributed on an # "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY # KIND, either express or implied. See the License for the # specific language governing permissions and limitations # under the License. from django.core import validators from django.core.urlresolvers import reverse from django.utils.translation import ugettext_lazy as _ from horizon import exceptions from horizon import forms from horizon import messages from horizon.utils.validators import validate_port_range # from horizon.utils import fields import logging from vsm_dashboard.api import vsm as vsm_api from vsm_dashboard.utils.validators import validate_storage_group_name LOG = logging.getLogger(__name__) class CreateStorageGroupForm(forms.SelfHandlingForm): failure_url = 'horizon:vsm:storage-group-management:index' name = forms.CharField(label=_("Storage Group name"), max_length=255, min_length=1, error_messages={ 'required': _('This field is required.'), 'invalid': _("The string may only contain" " letters ,numbers, dot and underline")}, validators=[validate_storage_group_name]) friendly_name = forms.CharField(label=_("Storage Group Friendly name"), max_length=255, min_length=1, error_messages={ 'required': _('This field is required.'), 'invalid': _("The string may only contain" " letters ,numbers, dot and underline")}, validators=[validate_storage_group_name]) storage_class = forms.CharField(label=_("Storage Class"), max_length=24, min_length=1, error_messages={ 'required': _('This field is required.'), 'invalid': _("The string may only contain" " letters ,numbers, dot and underline")}, validators=[validate_storage_group_name]) def handle(self, request, data): # TODO deliver a cluster id in data data['cluster_id'] = 1 #try: if True: LOG.debug("DEBUG in storage groups, %s" % str(data)) body = { 'storage_group': { 'name': data['name'], 'friendly_name': data['friendly_name'], 'storage_class': data['storage_class'], 'cluster_id': data['cluster_id'] } } LOG.debug("DEBUG in handle body %s" % str(body)) rsp = vsm_api.storage_group_create(request, body=body) LOG.debug("DEBUG in storage groups" + str(rsp)) messages.success(request, _('Successfully created Storage Group: %s') % data['name']) return True #except: # redirect = reverse("horizon:vsm:storage-group-management:index") # exceptions.handle(request, # _('Unable to create Storage Group.'), # redirect=redirect)
StarcoderdataPython
1958827
<gh_stars>1-10 import unittest import tests if __name__ == "__main__": test_suite = unittest.TestLoader().discover(tests.__name__) runner = unittest.TextTestRunner(verbosity=3) runner.run(test_suite)
StarcoderdataPython
97630
<reponame>chocianowice/weatherQuery import sys import mariadb import time def export_to_db(dbconfig, temperature, weatherCode, windSpeed, windDirection): # Connect to MariaDB Platform try: conn = mariadb.connect( user=dbconfig['username'], password=dbconfig['password'], host=dbconfig['host'], port=dbconfig['port'], database=dbconfig['databaseName'] ) except mariadb.Error as e: print(f"Error connecting to MariaDB: {e}") return # Get Cursor cursor = conn.cursor() cDate = time.strftime('%Y-%m-%d %H:%M:%S') sql = "INSERT INTO " + dbconfig['measurementsTableName'] + \ " (SensorID, Date, Value1, Value2, Value3, Value4) VALUES (%s, %s, %s, %s, %s, %s)" var = (str(dbconfig['sensorId']), cDate, temperature, weatherCode, windSpeed, windDirection) try: cursor.execute(sql, var) conn.commit() except mariadb.Error as e: print(f"Error: {e}") conn.close()
StarcoderdataPython
1827488
# -------------- # Code starts here # Create the lists class_1 = ['<NAME>','<NAME>','<NAME>','<NAME>' ] class_2 = ['<NAME>','<NAME>','<NAME>'] # Concatenate both the strings new_class = (class_1 + class_2) print (new_class) # Append the list new_class.append('<NAME>') # Print updated list print(new_class) # Remove the element from the list new_class.remove('<NAME>') # Print the list print(new_class) # Code ends here # -------------- # Code starts here courses={"Math":65,"English":70,"History":80,"French":70,"Science":60} keys=courses.values() print(keys) total=(courses["Math"]+courses["English"]+courses["History"]+courses["French"]+courses["Science"]) print(total) percentage=(total*100)/500 print(percentage) # Code ends here # -------------- # Code starts here mathematics={"<NAME>":78,"<NAME>":95, "<NAME>":65,"<NAME>":50,"<NAME>":70 ,"<NAME>":66,"<NAME>":75} topper=max(mathematics,key=mathematics.get) print(topper) # Code ends here # -------------- # Given string topper = 'andrew ng' # Code starts here first_name=topper.split()[0] #print(first_name) last_name=topper.split()[1] full_name=last_name+" "+first_name print(full_name) certificate_name=full_name.upper() print(certificate_name) # Code ends here
StarcoderdataPython
3570805
# Copyright (c) 2014 mogoweb. All rights reserved. # Use of this source code is governed by a BSD-style license that can be # found in the LICENSE file. { 'variables': { # A hook that can be overridden in other repositories to add additional # compilation targets to 'All' 'android_app_targets%': [], 'chromium_code': 1, }, 'targets': [ { 'target_name': 'All', 'type': 'none', 'dependencies': [ 'libchromeview', ], }, { 'target_name': 'libchromeview', 'type': 'shared_library', 'android_unmangled_name': 1, 'dependencies': [ '../android_webview/android_webview.gyp:android_webview_common', ], 'sources': [ 'native/jni_entry_point.cpp', 'native/draw_gl_functor.cpp', ], 'include_dirs': [ './native', ], 'cflags!': [ '-Werror', ], }, ], }
StarcoderdataPython
367510
<gh_stars>0 # -------------- import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split # Code starts here df = pd.read_csv(path) print(df.head()) print(df.info()) cols = ['INCOME','HOME_VAL','BLUEBOOK','OLDCLAIM','CLM_AMT'] df[cols] = df[cols].replace({'\$': '', ',': ''}, regex=True) X = df.drop(['CLAIM_FLAG'], axis = 1) y = df['CLAIM_FLAG'] count = y.value_counts() X_train,X_test,y_train,y_test = train_test_split(X, y, test_size = 0.3 , random_state = 6) # Code ends here # -------------- # Code starts here cols = ['INCOME','HOME_VAL','BLUEBOOK','OLDCLAIM','CLM_AMT'] X_train[cols] = X_train[cols].astype(float) X_test[cols] = X_test[cols].astype(float) print(X_train.isnull().sum()) print(X_test.isnull().sum()) # Code ends here # -------------- # Code starts here X_train.dropna(subset = ['YOJ','OCCUPATION'], inplace = True) X_test.dropna(subset = ['YOJ','OCCUPATION'], inplace =True ) y_train = y_train[X_train.index] y_test = y_test[X_test.index] cols = ['AGE','CAR_AGE','INCOME', 'HOME_VAL'] for col in cols: X_train[col].fillna((X_train[col].mean()),inplace=True) X_test[col].fillna((X_test[col].mean()),inplace=True) #X_train.isnull().sum() print(X_train.shape) # Code ends here # -------------- from sklearn.preprocessing import LabelEncoder columns = ["PARENT1","MSTATUS","GENDER","EDUCATION","OCCUPATION","CAR_USE","CAR_TYPE","RED_CAR","REVOKED"] # Code starts here for col in columns: le = LabelEncoder() X_train[col] = le.fit_transform(X_train[col].astype(str)) X_test[col] = le.transform(X_test[col].astype(str)) # Code ends here # -------------- from sklearn.metrics import precision_score from sklearn.metrics import accuracy_score from sklearn.linear_model import LogisticRegression # code starts here model = LogisticRegression(random_state = 6) model.fit(X_train,y_train) y_pred = model.predict(X_test) score = accuracy_score(y_test,y_pred) precision = precision_score(y_test,y_pred) print('Accracy score : ',score) print('Precision :',precision) # Code ends here # -------------- from sklearn.preprocessing import StandardScaler from imblearn.over_sampling import SMOTE # code starts here smote = SMOTE(random_state = 9) X_train, y_train = smote.fit_sample(X_train,y_train) scaler = StandardScaler() X_train = scaler.fit_transform(X_train) X_test = scaler.fit_transform(X_test) # Code ends here # -------------- # Code Starts here model = LogisticRegression() model.fit(X_train,y_train) y_pred = model.predict(X_test) score = accuracy_score(y_test, y_pred) print('Accuracy score :', score) # Code ends here
StarcoderdataPython
6648388
# GENERATED BY KOMAND SDK - DO NOT EDIT import komand import json class Component: DESCRIPTION = "Kill or send a signal to the container" class Input: ID = "id" SIGNAL = "signal" class Output: SUCCESS = "success" class ContainerKillInput(komand.Input): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "id": { "type": "string", "title": "ID", "description": "Container ID", "order": 1 }, "signal": { "type": "string", "title": "Signal", "description": "Signal to send E.g. SIGKILL", "default": "SIGKILL", "order": 2 } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema) class ContainerKillOutput(komand.Output): schema = json.loads(""" { "type": "object", "title": "Variables", "properties": { "success": { "type": "boolean", "title": "Success", "description": "True if successful", "order": 1 } } } """) def __init__(self): super(self.__class__, self).__init__(self.schema)
StarcoderdataPython
9681374
import numpy as np import pandas as pd from sklearn.model_selection import train_test_split import time ### DATA PREPROCESSING ### #Importing data data = pd.read_csv (r'NASDAQ.csv') print (data) print (data['LABEL'].unique().tolist()) #To check number of variables i.e. should be only 2 (0 and1) print(data.isnull().sum()) #Deleting non-useful attributes del data['Date'] #Setting targets y = data.LABEL print (y) ### SPLITTING DATA ### #Splitting training & Testing data in 3:1 ratio (only for Naive Bayesian & AdaBoost) X = data.drop('LABEL',axis=1) print (X) X_train, X_test, y_train, y_test = train_test_split( X, y, test_size=0.25, random_state=42) ### CLASSIFYING ### ## 1. Gaussian Naive Bayesian Classifier from sklearn.naive_bayes import GaussianNB from sklearn import metrics #Training start_NB_train = time.time() gnb = GaussianNB() gnb.fit(X_train,y_train) end_NB_train = time.time() print () print ("GAUSSIAN NAIVE BAYESIAN CLASSIFIER:") print ("GNB Processing time : Training = %0.3fs " % (end_NB_train - start_NB_train)) #Testing start_NB_test = time.time() y_pred_NB = gnb.predict(X_test) end_NB_test = time.time() print ("GNB Processing time : Testing = %0.3fs " % (end_NB_test - start_NB_test)) print ("GNB Accuracy percentage = ",round(metrics.accuracy_score(y_test, y_pred_NB)*100,2),"%") print () ## 2. AdaBoost Classifier from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn import metrics #Training start_AB_train = time.time() ada = AdaBoostClassifier(DecisionTreeClassifier(), n_estimators=100, random_state = 0) model = ada.fit(X_train, y_train) end_AB_train = time.time() print ("ADABOOST CLASSIFIER:") print ("AdaBoost Processing time : Training = %0.3fs " % (end_AB_train - start_AB_train)) #Testing start_AB_test = time.time() y_pred_AB = ada.predict(X_test) end_AB_test = time.time() print ("AdaBoost Processing time : Testing = %0.3fs " % (end_AB_test - start_AB_test)) print ("AdaBoost Accuracy percentage = ",round(metrics.accuracy_score(y_test, y_pred_AB)*100,2),"%") print () ### Confusion Matrix from sklearn.metrics import confusion_matrix import matplotlib.pyplot as plt import seaborn as sns con_NB = confusion_matrix(y_test,y_pred_NB) con_AB = confusion_matrix(y_test,y_pred_AB) con_SVM = confusion_matrix(y_test,y_pred_SVM) class_names=[0,1] fig, ax = plt.subplots() tick_marks = np.arange(len(class_names)) plt.xticks(tick_marks, class_names) plt.yticks(tick_marks, class_names) sns.heatmap(pd.DataFrame(con_NB), annot=True, cmap="PuRd" ,fmt='g') ax.xaxis.set_label_position("top") plt.tight_layout() plt.title('Confusion matrix for Naive Bayesian', y=1.1) plt.ylabel('Actual') plt.xlabel('Predicted') plt.show() sns.heatmap(pd.DataFrame(con_AB), annot=True, cmap="Blues" ,fmt='g') ax.xaxis.set_label_position("top") plt.tight_layout() plt.title('Confusion matrix for AdaBoost', y=1.1) plt.ylabel('Actual') plt.xlabel('Predicted') plt.show() sns.heatmap(pd.DataFrame(con_SVM), annot=True, cmap="Blues" ,fmt='g') ax.xaxis.set_label_position("top") plt.tight_layout() plt.title('Confusion matrix for AdaBoost', y=1.1) plt.ylabel('Actual') plt.xlabel('Predicted') plt.show() ### ROC import sklearn.metrics as metrics probs_gnb = gnb.predict_proba(X_test) preds_gnb = probs_gnb[:,1] fpr_gnb, tpr_gnb, threshold_gnb = metrics.roc_curve(y_test, preds_gnb) roc_auc_gnb = metrics.auc(fpr_gnb, tpr_gnb) import matplotlib.pyplot as plt plt.title('Receiver Operating Characteristic') plt.plot(fpr_gnb, tpr_gnb, 'b', label = 'AUC of Naive Bayesian = %0.2f' % roc_auc_gnb) plt.legend(loc = 'lower right') plt.plot([0, 1], [0, 1],'r--') plt.xlim([0, 1]) plt.ylim([0, 1]) plt.ylabel('True Positive Rate') plt.xlabel('False Positive Rate') plt.show()
StarcoderdataPython
1972368
<filename>binding/python/test_leopard.py # # Copyright 2018-2022 Picovoice Inc. # # You may not use this file except in compliance with the license. A copy of the license is located in the "LICENSE" # file accompanying this source. # # Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on # an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the # specific language governing permissions and limitations under the License. # import os import struct import sys import unittest import wave from leopard import Leopard from util import * class LeopardTestCase(unittest.TestCase): _AUDIO_PATH = os.path.join(os.path.dirname(__file__), '../../resources/audio_samples/test.wav') _TRANSCRIPT = "MR QUILTER IS THE APOSTLE OF THE MIDDLE CLASSES AND WE ARE GLAD TO WELCOME HIS GOSPEL" _o = None @classmethod def setUpClass(cls): cls._o = Leopard( access_key=sys.argv[1], library_path=default_library_path('../..'), model_path=default_model_path('../..') ) @classmethod def tearDownClass(cls): cls._o.delete() def test_process(self): with wave.open(self._AUDIO_PATH, 'rb') as f: buffer = f.readframes(f.getnframes()) pcm = struct.unpack('%dh' % (len(buffer) / struct.calcsize('h')), buffer) self.assertEqual(self._o.process(pcm), self._TRANSCRIPT) def test_process_file(self): self.assertEqual(self._o.process_file(self._AUDIO_PATH), self._TRANSCRIPT) def test_version(self): self.assertIsInstance(self._o.version, str) self.assertGreater(len(self._o.version), 0) if __name__ == '__main__': unittest.main(argv=sys.argv[:1])
StarcoderdataPython
1999270
<gh_stars>0 """Test mixing sources of arguments/settings.""" from os.path import join import pytest from click.testing import CliRunner from sphinxcontrib.versioning.cli import cli from sphinxcontrib.versioning.git import IS_WINDOWS @pytest.fixture(autouse=True) def setup(monkeypatch, local_empty): """Set cli.NO_EXECUTE to True before every test in this module and sets CWD to an empty git repo. :param monkeypatch: pytest fixture. :param local_empty: conftest fixture. """ monkeypatch.setattr('sphinxcontrib.versioning.cli.NO_EXECUTE', True) monkeypatch.chdir(local_empty) @pytest.mark.parametrize('push', [False, True]) @pytest.mark.parametrize('source_cli', [False, True]) @pytest.mark.parametrize('source_conf', [False, True]) def test_overflow(local_empty, push, source_cli, source_conf): """Test -- overflow to sphinx-build. :param local_empty: conftest fixture. :param bool push: Run push sub command instead of build. :param bool source_cli: Set value from command line arguments. :param bool source_conf: Set value from conf.py file. """ if push: args = ['push', 'docs', 'gh-pages', '.'] else: args = ['build', 'docs', join('docs', '_build', 'html')] # Setup source(s). if source_cli: args += ['--', '-D', 'setting=value'] if source_conf: local_empty.ensure('docs', 'contents.rst') local_empty.ensure('docs', 'conf.py').write('scv_overflow = ("-D", "key=value")') # Run. result = CliRunner().invoke(cli, args) config = result.exception.args[0] # Verify. if source_cli: assert config.overflow == ('-D', 'setting=value') elif source_conf: assert config.overflow == ('-D', 'key=value') else: assert config.overflow == tuple() @pytest.mark.parametrize('push', [False, True]) def test_args(push): """Test positional arguments. :param bool push: Run push sub command instead of build. """ # Single rel_source. if push: result = CliRunner().invoke(cli, ['push', 'docs', 'gh-pages', '.']) rel_source, dest_branch, rel_dest = result.exception.args[1:] assert dest_branch == 'gh-pages' assert rel_dest == '.' else: result = CliRunner().invoke(cli, ['build', 'docs', join('docs', '_build', 'html')]) rel_source, destination = result.exception.args[1:] assert destination == join('docs', '_build', 'html') assert rel_source == ('docs',) # Multiple rel_source. if push: result = CliRunner().invoke(cli, ['push', 'docs', 'docs2', 'documentation', 'dox', 'feature', 'html']) rel_source, dest_branch, rel_dest = result.exception.args[1:] assert dest_branch == 'feature' assert rel_dest == 'html' else: result = CliRunner().invoke(cli, ['build', 'docs', 'docs2', 'documentation', 'dox', 'html']) rel_source, destination = result.exception.args[1:] assert destination == 'html' assert rel_source == ('docs', 'docs2', 'documentation', 'dox') @pytest.mark.parametrize('push', [False, True]) def test_global_options(monkeypatch, tmpdir, caplog, local_empty, push): """Test options that apply to all sub commands. :param monkeypatch: pytest fixture. :param tmpdir: pytest fixture. :param caplog: pytest extension fixture. :param local_empty: conftest fixture. :param bool push: Run push sub command instead of build. """ if push: args = ['push', 'docs', 'gh-pages', '.'] else: args = ['build', 'docs', join('docs', '_build', 'html')] # Defaults. result = CliRunner().invoke(cli, args) config = result.exception.args[0] assert config.chdir == str(local_empty) if IS_WINDOWS: assert config.git_root.lower() == str(local_empty).lower() else: assert config.git_root == str(local_empty) assert config.local_conf is None assert config.no_colors is False assert config.no_local_conf is False assert config.verbose == 0 # Defined. empty = tmpdir.ensure_dir('empty') repo = tmpdir.ensure_dir('repo') pytest.run(repo, ['git', 'init']) local_empty.ensure('conf.py') args = ['-L', '-l', 'conf.py', '-c', str(empty), '-g', str(repo), '-N', '-v', '-v'] + args result = CliRunner().invoke(cli, args) config = result.exception.args[0] assert config.chdir == str(empty) if IS_WINDOWS: assert config.git_root.lower() == str(repo).lower() else: assert config.git_root == str(repo) assert config.local_conf is None # Overridden by -L. assert config.no_colors is True assert config.no_local_conf is True assert config.verbose == 2 # Set in conf.py. They'll be ignored. monkeypatch.chdir(local_empty) local_empty.ensure('docs', 'contents.rst') local_empty.ensure('docs', 'conf.py').write( 'scv_chdir = ".."\n' 'scv_git_root = ".."\n' 'scv_no_colors = False\n' 'scv_verbose = 1\n' ) args = args[7:] # Remove -L -l -c and -g. result = CliRunner().invoke(cli, args) records = [(r.levelname, r.message) for r in caplog.records] config = result.exception.args[0] assert config.chdir == str(local_empty) if IS_WINDOWS: assert config.git_root.lower() == str(local_empty).lower() else: assert config.git_root == str(local_empty) assert config.local_conf == join('docs', 'conf.py') assert config.no_colors is True assert config.no_local_conf is False assert config.verbose == 2 assert ('DEBUG', 'chdir already set in config, skipping.') in records assert ('DEBUG', 'git_root already set in config, skipping.') in records assert ('DEBUG', 'no_colors already set in config, skipping.') in records assert ('DEBUG', 'verbose already set in config, skipping.') in records @pytest.mark.parametrize('mode', ['bad filename', 'rel_source', 'override']) @pytest.mark.parametrize('no_local_conf', [False, True]) @pytest.mark.parametrize('push', [False, True]) def test_global_options_local_conf(caplog, local_empty, mode, no_local_conf, push): """Test detection of local conf.py file. :param caplog: pytest extension fixture. :param local_empty: conftest fixture. :param str mode: Scenario to test for. :param no_local_conf: Toggle -L. :param bool push: Run push sub command instead of build. """ args = ['-L'] if no_local_conf else [] if push: args += ['push', 'docs', 'gh-pages', '.'] else: args += ['build', 'docs', join('docs', '_build', 'html')] # Run. if mode == 'bad filename': local_empty.ensure('docs', 'config.py') args = ['-l', join('docs', 'config.py')] + args elif mode == 'rel_source': local_empty.ensure('docs', 'conf.py') else: local_empty.ensure('other', 'conf.py') args = ['-l', join('other', 'conf.py')] + args result = CliRunner().invoke(cli, args) config = result.exception.args[0] records = [(r.levelname, r.message) for r in caplog.records] # Verify. if no_local_conf: assert config.local_conf is None assert config.no_local_conf is True return if mode == 'bad filename': assert config == 1 # SystemExit. assert records[-2] == ('ERROR', 'Path "{}" must end with conf.py.'.format(join('docs', 'config.py'))) elif mode == 'rel_source': assert config.local_conf == join('docs', 'conf.py') assert config.no_local_conf is False else: assert config.local_conf == join('other', 'conf.py') assert config.no_local_conf is False @pytest.mark.parametrize('push', [False, True]) @pytest.mark.parametrize('source_cli', [False, True]) @pytest.mark.parametrize('source_conf', [False, True]) def test_sub_command_options(local_empty, push, source_cli, source_conf): """Test non-global options that apply to all sub commands. :param local_empty: conftest fixture. :param bool push: Run push sub command instead of build. :param bool source_cli: Set value from command line arguments. :param bool source_conf: Set value from conf.py file. """ if push: args = ['push', 'docs', 'gh-pages', '.'] else: args = ['build', 'docs', join('docs', '_build', 'html')] # Setup source(s). if source_cli: args += ['-itT', '-p', 'branches', '-r', 'feature', '-s', 'semver', '-w', 'master', '-W', '[0-9]'] args += ['-aAb', '-B', 'x'] if push: args += ['-e' 'README.md', '-P', 'rem'] if source_conf: local_empty.ensure('docs', 'contents.rst') local_empty.ensure('docs', 'conf.py').write( 'import re\n\n' 'scv_banner_greatest_tag = True\n' 'scv_banner_main_ref = "y"\n' 'scv_banner_recent_tag = True\n' 'scv_greatest_tag = True\n' 'scv_invert = True\n' 'scv_priority = "tags"\n' 'scv_push_remote = "origin2"\n' 'scv_recent_tag = True\n' 'scv_root_ref = "other"\n' 'scv_show_banner = True\n' 'scv_sort = ("alpha",)\n' 'scv_whitelist_branches = ("other",)\n' 'scv_whitelist_tags = re.compile("^[0-9]$")\n' 'scv_grm_exclude = ("README.rst",)\n' ) # Run. result = CliRunner().invoke(cli, args) config = result.exception.args[0] # Verify. if source_cli: assert config.banner_greatest_tag is True assert config.banner_main_ref == 'x' assert config.banner_recent_tag is True assert config.greatest_tag is True assert config.invert is True assert config.priority == 'branches' assert config.recent_tag is True assert config.root_ref == 'feature' assert config.show_banner is True assert config.sort == ('semver',) assert config.whitelist_branches == ('master',) assert config.whitelist_tags == ('[0-9]',) if push: assert config.grm_exclude == ('README.md',) assert config.push_remote == 'rem' elif source_conf: assert config.banner_greatest_tag is True assert config.banner_main_ref == 'y' assert config.banner_recent_tag is True assert config.greatest_tag is True assert config.invert is True assert config.priority == 'tags' assert config.recent_tag is True assert config.root_ref == 'other' assert config.show_banner is True assert config.sort == ('alpha',) assert config.whitelist_branches == ('other',) assert config.whitelist_tags.pattern == '^[0-9]$' if push: assert config.grm_exclude == ('README.rst',) assert config.push_remote == 'origin2' else: assert config.banner_greatest_tag is False assert config.banner_main_ref == 'master' assert config.banner_recent_tag is False assert config.greatest_tag is False assert config.invert is False assert config.priority is None assert config.recent_tag is False assert config.root_ref == 'master' assert config.show_banner is False assert config.sort == tuple() assert config.whitelist_branches == tuple() assert config.whitelist_tags == tuple() if push: assert config.grm_exclude == tuple() assert config.push_remote == 'origin' @pytest.mark.parametrize('push', [False, True]) def test_sub_command_options_other(push): """Test additional option values for all sub commands. :param bool push: Run push sub command instead of build. """ if push: args = ['push', 'docs', 'gh-pages', '.'] else: args = ['build', 'docs', join('docs', '_build', 'html')] # Defined. args += ['-p', 'tags', '-s', 'semver', '-s', 'time'] if push: args += ['-e' 'one', '-e', 'two', '-e', 'three', '-e', 'four'] result = CliRunner().invoke(cli, args) config = result.exception.args[0] assert config.priority == 'tags' assert config.sort == ('semver', 'time') if push: assert config.grm_exclude == ('one', 'two', 'three', 'four')
StarcoderdataPython
1859699
<filename>python3/42.trapping-rain-water.201502705.ac.py # # @lc app=leetcode id=42 lang=python3 # # [42] Trapping Rain Water # # https://leetcode.com/problems/trapping-rain-water/description/ # # algorithms # Hard (47.69%) # Likes: 6376 # Dislikes: 111 # Total Accepted: 476.5K # Total Submissions: 998.8K # Testcase Example: '[0,1,0,2,1,0,1,3,2,1,2,1]' # # Given n non-negative integers representing an elevation map where the width # of each bar is 1, compute how much water it is able to trap after raining. # # # The above elevation map is represented by array [0,1,0,2,1,0,1,3,2,1,2,1]. In # this case, 6 units of rain water (blue section) are being trapped. Thanks # Marcos for contributing this image! # # Example: # # # Input: [0,1,0,2,1,0,1,3,2,1,2,1] # Output: 6 # # # @lc code=start class Solution: def trap(self, height): """ :type height: List[int] :rtype: int """ l: int = 0 r: int = len(height) - 1 l_max: int = 0 r_max: int = len(height) - 1 water: int = 0 while l < r: if height[l] < height[r]: if height[l_max] <= height[l]: l_max = l else: water += height[l_max] - height[l] l += 1 else: if height[r_max] <= height[r]: r_max = r else: water += height[r_max] - height[r] r -= 1 return water # @lc code=end
StarcoderdataPython
6498211
# This is taken from: # https://colab.research.google.com/drive/16jcaJoc6bCFAQ96jDe2HwtXj7BMD_-m5 # i.e. # Detectron2 Tutorial.ipynb from detectron2.utils.visualizer import ColorMode from detectron2.utils.visualizer import Visualizer from detectron2.engine import DefaultPredictor from detectron2.config import get_cfg from detectron2.engine import DefaultTrainer from detectron2 import model_zoo from detectron2.data import DatasetCatalog, MetadataCatalog, Metadata import random import time import cv2 # download, decompress the data # !wget https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip # !unzip balloon_dataset.zip > /dev/null # if your dataset is in COCO format, this cell can be replaced by the following three lines: # from detectron2.data.datasets import register_coco_instances # register_coco_instances("my_dataset_train", {}, "json_annotation_train.json", "path/to/image/dir") # register_coco_instances("my_dataset_val", {}, "json_annotation_val.json", "path/to/image/dir") import os import numpy as np import json from detectron2.structures import BoxMode def get_balloon_dicts(img_dir: str) -> list[dict]: json_file = os.path.join(img_dir, "via_region_data.json") with open(json_file) as f: imgs_anns = json.load(f) dataset_dicts = [] for idx, v in enumerate(imgs_anns.values()): record = {} filename = os.path.join(img_dir, v["filename"]) height, width = cv2.imread(filename).shape[:2] record["file_name"] = filename record["image_id"] = idx record["height"] = height record["width"] = width annos = v["regions"] objs = [] for _, anno in annos.items(): assert not anno["region_attributes"] anno = anno["shape_attributes"] px = anno["all_points_x"] py = anno["all_points_y"] poly = [(x + 0.5, y + 0.5) for x, y in zip(px, py)] poly = [p for x in poly for p in x] obj = { "bbox": [np.min(px), np.min(py), np.max(px), np.max(py)], "bbox_mode": BoxMode.XYXY_ABS, "segmentation": [poly], "category_id": 0, } objs.append(obj) record["annotations"] = objs dataset_dicts.append(record) return dataset_dicts def register_dataset() -> Metadata: if not os.path.isdir("balloon/"): print("download and decompress the data first:") print( "https://github.com/matterport/Mask_RCNN/releases/download/v2.1/balloon_dataset.zip" ) exit() # registering the dataset in detectron: print("registering dataset...") for d in ["train", "val"]: DatasetCatalog.register( "balloon_" + d, lambda d=d: get_balloon_dicts("balloon/" + d) ) MetadataCatalog.get("balloon_" + d).set(thing_classes=["balloon"]) return MetadataCatalog.get("balloon_train") # training: def train(): print("preparing training...") cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) ) cfg.DATASETS.TRAIN = ("balloon_train",) cfg.DATASETS.TEST = () cfg.DATALOADER.NUM_WORKERS = 2 cfg.MODEL.WEIGHTS = model_zoo.get_checkpoint_url( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) # Let training initialize from model zoo cfg.SOLVER.IMS_PER_BATCH = 2 cfg.SOLVER.BASE_LR = 0.00025 # pick a good LR # 300 iterations seems good enough for this toy dataset; # you may need to train longer for a practical dataset cfg.SOLVER.MAX_ITER = 300 # faster, and good enough for this toy dataset (default: 512) cfg.MODEL.ROI_HEADS.BATCH_SIZE_PER_IMAGE = 128 cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # only has one class (ballon) os.makedirs(cfg.OUTPUT_DIR, exist_ok=True) trainer = DefaultTrainer(cfg) trainer.resume_or_load(resume=False) print("this is a good moment to launch Tensorboard..., namely:") print(f"tensorboard --logdir {cfg.OUTPUT_DIR}") print("starting in 5 s ...") time.sleep(5) trainer.train() # testing: def cv2_imshow(image): cv2.imshow("result", image) res = cv2.waitKey(0) if res & 0xFF == ord("q"): exit() def testing(): print("testing...") cfg = get_cfg() cfg.merge_from_file( model_zoo.get_config_file( "COCO-InstanceSegmentation/mask_rcnn_R_50_FPN_3x.yaml" ) ) balloon_metadata = MetadataCatalog.get("balloon_train") cfg.MODEL.WEIGHTS = os.path.join(cfg.OUTPUT_DIR, "model_final.pth") cfg.MODEL.ROI_HEADS.NUM_CLASSES = 1 # now needed again... # set the testing threshold for this model cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.7 cfg.DATASETS.TEST = ("balloon_val",) predictor = DefaultPredictor(cfg) dataset_dicts = get_balloon_dicts("balloon/val") for d in random.sample(dataset_dicts, 3): im = cv2.imread(d["file_name"]) outputs = predictor(im) v = Visualizer( im[:, :, ::-1], metadata=balloon_metadata, scale=0.8, instance_mode=ColorMode.IMAGE_BW, # remove the colors of unsegmented pixels ) v = v.draw_instance_predictions(outputs["instances"].to("cpu")) try: cv2_imshow(v.get_image()[:, :, ::-1]) except: # noqa print(d["file_name"]) print(outputs["instances"].to("cpu")) def main(): register_dataset() train() testing() if __name__ == "__main__": main()
StarcoderdataPython
391729
"""A layered graph, backed by redis. Licensed under the 3-clause BSD License: Copyright (c) 2013, <NAME> (<EMAIL>) All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: * Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. * Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. * Neither the name of the author nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NEERAJ KUMAR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """ import os, sys, time import redis from nkpylib.redisutils import * import nkpylib.utils as utils import numpy as np from line_profiler import LineProfiler profile = LineProfiler() GENERIC_NODE_KEY_FMT = 'nodes:%(layername)s:%(id)s' def spark(vals, f=sys.stdout): """Custom spark that wraps to 201 and scales by 1000""" return utils.spark(vals, wrap=201, scale=1000.0, f=f) class RedisLayeredGraph(object): """A layered graph backed by redis. Connections should only be within the same level or adjoining level. However, you can have multiple "layers" at the same "level". """ def __init__(self, db=None, reset=0, symmetric=1, prefix='', callbacks=[], **kw): """Initializes ourself. You can either pass in a redis connection in 'db', or give kw params. They should include 'host', 'port', 'db', and 'password'. Optionally, they can include 'charset' and 'socket_timeout' If you set reset=1, then it will reset the database. You can also add a prefix, which will be used whenever we need to save files. """ self.db = db if db else redis.Redis(**kw) self.symmetric = symmetric if prefix: self.prefix = prefix else: # try to read it from the database self.prefix = self.db.get('prefix') self.edgematrices = {} self.layerkeys = {} self.dirty = {} self.callbacks = callbacks[:] if reset: print 'RESETTING DATABASE!!! Press control-c to cancel, within 5 seconds!' time.sleep(5) self.db.flushdb() self.db.set('prefix', self.prefix) @memoize def layerkey(self, layername): """Returns the key for a given layer name""" return 'layers:%s' % (layername) def getLayer(self, layername): """Returns a dict of the given layer""" ret = self.db.hgetall(self.layerkey(layername)) ret = specializeDict(ret) return ret def layers(self): """Returns a list of (layername, level) pairs, in sorted order""" layers = [(name, int(level)) for name, level in self.db.hgetall('layers').items()] return sorted(layers, key=lambda pair: pair[1]) @memoize def nodekeyfmt(self, layername): """Returns the node key format for the given layer""" return self.db.hget(self.layerkey(layername), 'nodekeyfmt') def nodekey(self, nodeprimary, layername): """Returns the node key given the primary id for the node and the layer. If this does not exist, then returns None""" id = self.db.hget('layers:%s:nodes' % (layername), nodeprimary) if not id: return None return self.nodekeyfmt(layername) % dict(layername=layername, id=id) def nodekeyFromID(self, nodeid, layername): """Returns the node key given the node id and the layer""" return self.nodekeyfmt(layername) % dict(layername=layername, id=nodeid) @memoize def splitNodekey(self, nodekey): """Splits a node key into (layername, node id)""" _, layername, nodeid = nodekey.split(':') return (layername, nodeid) def nodes(self, layername): """Returns a list of nodekeys for a given layer""" ids = sorted(map(int, self.db.hvals('layers:%s:nodes' % (layername)))) ret = [self.nodekeyFromID(id, layername) for id in ids] return ret def addcallback(self, callback, predfunc=None): """Adds the given node callback and optionally a predicate function. The callback takes (nodekey, nodedict, layer, action), where: nodekey - The key to the node nodedict - The dict of elements in the node layer - The layer the node is in action - The action that was performed on this node. One of: create - Created for the first time update - Update a node that already existed init - Called on first init of the current process The predicate takes the same args and if False, the callback is not called. With no predicate, the callback is always executed. """ self.callbacks.append((callback, predfunc)) def runcallbacks(self, nodekey, nodedict, layer, action): """Runs all applicable callbacks for the given args. This does the appropriate checking with the predicate functions. """ for callback, predfunc in self.callbacks: if not predfunc(nodekey, nodedict, layer, action): continue callback(nodekey, nodedict, layer, action) def addLayer(self, name, level, nodekeyfmt=GENERIC_NODE_KEY_FMT): """Creates a new layer with given name and level. Optionally specify a fmt that generates nodekeys given a dict containing (id, layername). Returns the layer name. """ # check if we already added this level oldl = self.db.hget('layers', name) if oldl is not None: # we did, so check the level if int(oldl) != level: raise ValueError('Layer "%s" already exists at level %s, not %d!' % (name, oldl, level)) # level matches, so just return the name of the layer #print 'Layer "%s" already existed' % (name) return name key = self.layerkey(name) p = self.db.pipeline() l = dict(name=name, level=level, key=key, nodekeyfmt=nodekeyfmt) p.hmset(key, l) p.hset('layers', name, level) p.execute() #print 'Added layer "%s" at level %s: %s' % (name, level, l) return name def addNode(self, layername, primary=None, checkexisting=1, pipeline=None, added=None, addindicator=None, **nodekw): """Adds a node to the given layer. You can optionally pass in a "primary key", which can be used to lookup the node id in O(1) time. Else, this becomes the node id. If checkexisting is true (default), then it first checks to see if a node with that primary exists. If so, it sets the given nodekw on that existing node, and doesn't create a new id, etc. If added is given, then checkexisting also tries to lookup the 'primary' value in the given dict, which should return a key. If the key was not found, then the primary->key mapping is added to it. The actual data to add should be given as key-value pairs in nodekw. Note that the values should be serializable to fit in a redis hash. Also, the data is ALWAYS set, even if 'checkexisting' was true. If pipeline is given, then all db modifications are done within the given pipeline. Else, creates a new pipeline for the duration of this function, and then executes it at the end. If addindicator is true, then it's assumed to be an array with at least 1 element. This element is set to 1 if we actually added the node, else 0. Returns the node keyname.""" # see if this key exists key = None if checkexisting and primary: try: primary = str(primary) except Exception: pass if isinstance(added, dict) and primary in added: # first check the given 'added' dict, if it exists key = added[primary] else: # now check the database key = self.nodekey(primary, layername=layername) if not key or not self.db.exists(key): #log(' Key %s did not exist!' % (key,)) key = None p = pipeline if pipeline else self.db.pipeline() if addindicator: addindicator[0] = 0 # if we don't have a key yet, generate one action = 'update' if not key: action = 'create' lkey = self.layerkey(layername) keyfmt = self.nodekeyfmt(layername) id = self.db.incr('counters:layernodes:%s' % (layername)) key = keyfmt % dict(id=id, layername=layername) # some bookkeeping p.hincrby(lkey, 'nnodes', 1) if not primary: primary = id try: primary = str(primary) except Exception: pass #log('Actually adding node %s with primary %s to layer %s' % (key, primary, layername)) p.hset('layers:%(layername)s:nodes' % (locals()), primary, id) # add to the 'added' cache of added keys if isinstance(added, dict): added[primary] = key # mark layerkeys dirty for this layer self.dirty['layerkeys-%s' % (layername)] = 1 # mark all edges connected to this layer as dirty for l1, _ in self.layers(): for l2, _ in self.layers(): self.dirty['edgematrix-%s-%s' % (l1, l2)] = 1 # set the indicator if addindicator: addindicator[0] = 1 # also delete all flows and edgematrices self.deletePickles() # set the main kw for this node p.hmset(key, nodekw) if not pipeline: p.execute() # run callbacks self.runcallbacks(key, nodekw, layername, action) return key def addScores(self, scorename, layername, hashkey=None, **kw): """Adds a zset for the given layername. If you give a hashkey, then it initializes this using the given key extracted from all nodes. Otherwise, it uses the kwargs to initialize it. """ if hashkey: nodes = self.nodes(layername) vals = pipefunc(self.db, nodes, 'hget', hashkey) for n, v in zip(nodes, vals): nodeid = n.rsplit(':', 1)[-1] kw[nodeid] = v if not kw: return key = 'scores:%s:%s' % (layername, scorename) p = self.db.pipeline() p.zadd(key, **kw) p.sadd('layers:%s:scores' % (layername), key) p.execute() def addEdges(self, edges, pipeline=None): """Adds edges, each of which is (nodekey1, nodekey2, weight). This does various normalization and then adds relevant entries. Returns a list of (edgekey, edgefield) entries. Note that if self.symmetric is true, then adds the symmetric entries as well, but will still return only as many return pairs as inputs. Also, we will filter out any edges that connect a node to itself. """ p = pipeline if pipeline else self.db.pipeline() ret = [] for nk1, nk2, w in edges: if not nk1 or not nk2: continue (l1, l2), (n1, n2) = zip(*[self.splitNodekey(nk) for nk in [nk1, nk2]]) if nk1 == nk2: continue ekey1, efield1 = ('%s:edges:%s' % (nk1, l2), str(n2)) ret.append((ekey1, efield1)) p.zadd(ekey1, **{efield1:w}) p.hincrby('layeredges:%s' % (l1), l2, 1) # mark this edgematrix as dirty self.dirty['edgematrix-%s-%s' % (l1, l2)] = 1 if self.symmetric: ekey2, efield2 = ('%s:edges:%s' % (nk2, l1), str(n1)) p.zadd(ekey2, **{efield2:w}) p.hincrby('layeredges:%s' % (l2), l1, 1) # mark this edgematrix as dirty self.dirty['edgematrix-%s-%s' % (l2, l1)] = 1 #print ' ', nk1, nk2, n1, n2, l1, l2, ekey1, efield1, ekey2, efield2, w self.deletePickles() if not pipeline: p.execute() return ret def deletePickles(self): """Deletes all our pickles""" from shutil import rmtree rmtree(os.path.join(self.prefix, 'edgematrices'), ignore_errors=1) rmtree(os.path.join(self.prefix, 'flows'), ignore_errors=1) def deleteEdges(self, layer1, layer2, dosym=1): """Deletes edges from layer1 to layer2. If self.symmetric and dosym, then also deletes edges the other way.""" p = self.db.pipeline() l1keys = self.nodes(layer1) for k in l1keys: p.delete('%s:edges:%s' % (k, layer2)) self.dirty['edgematrix-%s-%s' % (layer1, layer2)] = 1 p.hdel('layeredges:%s' % (layer1), layer2) p.execute() if self.symmetric and dosym: self.deleteEdges(layer2, layer1, dosym=0) # so that we don't keep iterating forever def getEdges(self, nodekeys, valid=None, sort=1): """Gets edges from the given nodekeys, optionally limited to some layers. Returns a dict mapping layer names to lists of results. Each result list has the same length as 'nodekeys', and consists of edge lists, which are (nodeid, weight) pairs. If 'valid' is a string, then only returns edges that connect to that layer. If 'valid' is a list, then only returns edges that connect to one of those layers. if 'sort' is true (default), then each list is sorted by highest weight first. All input nodekeys must be in the same layer.""" if not nodekeys: return [] # basic init and quick checks layername, _ = self.splitNodekey(nodekeys[0]) elayers = self.db.hkeys('layeredges:%s' % (layername)) if valid: if isinstance(valid, basestring): # single valid layer elayers = [l for l in elayers if l==valid] else: # list of layers elayers = [l for l in elayers if l in valid] if not elayers: return {} ret = {} for l in elayers: edges = pipefunc(self.db, ['%s:edges:%s' % (nk, l) for nk in nodekeys], 'zrevrangebyscore', withscores=1, min=0.00001, max='inf') assert len(edges) == len(nodekeys) ret[l] = [[(int(k), float(v)) for k, v in e] for e in edges] if sort: for lst in ret[l]: lst.sort(key=lambda pair: pair[1], reverse=1) return ret def summedEdges(self, keys, dstlayer): """Returns a summed list of edges out from the given key inputs. Essentially one stage of a flow computation, but done without matrices. The inputs are either a list of keys (assumed weight=1), a list of (key,score) pairs, or a dict of key->weights. The edges to the given `dstlayer` are retrieved, summed, and then multiplied by these scores. The output is a dict of key->scores. """ from collections import defaultdict if not keys: return {} if isinstance(keys, dict): # already a dict inputs = keys else: if isinstance(keys[0], basestring): # only keys inputs = dict.fromkeys(keys, 1.0) else: # (key,score) pairs inputs = dict(keys) ikeys = sorted(inputs) edges = self.getEdges(ikeys, dstlayer, sort=0)[dstlayer] ret = defaultdict(float) for ikey, curedges in zip(ikeys, edges): inscore = inputs[ikey] #print ' %s : score %f, %d edges' % (ikey, inscore, len(curedges)) for nodeid, s in curedges: ret[self.nodekeyFromID(nodeid, dstlayer)] += inscore * s return dict(ret) def recursiveFlow(self, keys, layers): """Repeated calls to summedEdges() with initial keys, going through many `layers`. The outputs of one call are then fed to the next. Returns a dict of key->scores at the last layer.""" if not keys: return {} ret = keys for dstlayer in layers: ret = self.summedEdges(ret, dstlayer) return ret def updateLayerKeys(self, layername): """Updates the cached layer keys for the given layer""" l = layername dkey = 'layerkeys-%s' % (l) if l not in self.layerkeys: self.dirty[dkey] = 1 if self.dirty.get(dkey, 0): #nnodes = self.db.hlen('layers:%s:nodes' % (l)) + 1 try: nnodes = max(map(int, self.db.hvals('layers:%s:nodes' % (l)))) + 1 except Exception: nnodes = 0 self.layerkeys[l] = [self.nodekeyFromID(id, l) for id in range(nnodes)] #log(' Precached %d layerkeys for layer %s' % (len(self.layerkeys[l]), l)) if dkey in self.dirty: del self.dirty[dkey] #@timed def getEdgeMatrix(self, srclayer, dstlayer, srckeys=None, dstkeys=None, usesparse=1): """Computes a matrix of weights that transforms from srclayer to dstlayer. i.e., you have a vector V_s of values from srclayer, and this function returns M_ds. Then you can do V_d = np.dot(M_ds, V_s). Returns (M_ds, list of srclayer keys, list of dstlayer keys). You can optionally pass in lists of srckeys and dstkeys. If so, then only fills in values that exist in these lists. If src and dst layers are the same, then initializes the matrix with identity. Otherwise, initializes the matrix with 0s. If usesparse is true (default), then uses sparse matrices. Notes: - we initialize data using lil_matrix, because it's fastest to modify - we convert to csr_matrix at the end, because that's fastest to multiply """ import scipy as sp import scipy.sparse as sparse from scipy.sparse import lil_matrix as sparsemat times = [time.time()] # init keys and matrix if not srckeys: srckeys = self.nodes(srclayer) if not dstkeys: dstkeys = self.nodes(dstlayer) dstrows = dict((int(self.splitNodekey(dk)[1]), i) for i, dk in enumerate(dstkeys)) times.append(time.time()) ns, nd = len(srckeys), len(dstkeys) assert ns > 0 and nd > 0 if srclayer == dstlayer: if usesparse: M = sparsemat((nd,nd)) M.setdiag(np.ones(nd)) else: M = np.eye(nd) else: if usesparse: M = sparsemat((nd,ns)) else: M = np.zeros((nd, ns)) times.append(time.time()) # fill in the matrix, only if we have something to fill if self.db.hexists('layeredges:%s' % (srclayer), dstlayer): edges = self.getEdges(srckeys, valid=dstlayer, sort=0)[dstlayer] for col, row in enumerate(edges): for nodeid, w in row: if nodeid not in dstrows: continue row = dstrows[nodeid] M[row, col] = w times.append(time.time()) nz = len(M.nonzero()[0]) nels = M.shape[0]*M.shape[1] if nz == 0: M = None else: if ns == nd: # check if it's identity if usesparse: eye = sparsemat((nd,nd)) eye.setdiag(np.ones(nd)) else: eye = np.eye(nd) eye -= M iseye = (len(eye.nonzero()[0]) == 0) if iseye: M = None else: iseye = 0 log(' Matrix from %s (%d) to %s (%d) had %d/%d nonzeros (%0.5f%%) (iseye=%s)' % (srclayer, len(srckeys), dstlayer, len(dstkeys), nz, nels, nz*100.0/float(nels), iseye)) log(' Matrix took: %s' % (getTimeDiffs(times))) if sparse.issparse(M): M = M.tocsr() return (M, srckeys, dstkeys) def cachedEdgeMatrix(self, l1, l2): """Updates the cached edge matrix between the given layers (if needed). Assumes associated layerkeys are already up-to-date. Returns the matrix.""" import cPickle as pickle #FIXME if things are symmetric, then only compute one half of the symmetries, and generate the others on-the-fly dkey = 'edgematrix-%s-%s' % (l1, l2) picklename = os.path.join(self.prefix, 'edgematrices', dkey+'.pickle') try: os.makedirs(os.path.dirname(picklename)) except OSError: pass if (l1, l2) not in self.edgematrices: self.dirty[dkey] = 1 if self.dirty.get(dkey, 0): #FIXME the pickles are always assumed to be up-to-date right now! try: M = pickle.load(open(picklename)) #log(' Loaded %s of size %s' % (picklename, M.shape if M is not None else 0)) except Exception, e: M, _, _ = self.getEdgeMatrix(l1, l2, self.layerkeys[l1], self.layerkeys[l2]) try: os.makedirs(os.path.dirname(picklename)) except Exception: pass #pickle.dump(M, open(picklename, 'wb'), -1) #log(' Due to exception "%s", saved matrix of shape %s, with pickle size %d to "%s"' % (e, M.shape if M is not None else 0, os.stat(picklename).st_size, picklename)) self.edgematrices[(l1, l2)] = M #FIXME experiment to not use all this memory #log(' Precached edgematrix %s x %s from layer %s to %s' % (M.shape[0], M.shape[1], l1, l2)) if dkey in self.dirty: del self.dirty[dkey] else: M = self.edgematrices[(l1, l2)] if 0 and l1 != l2 and M is not None: #debugging log('Got M of type %s' % (type(M),)) import array scores = array.array('f', []) import numpy.random as random for i in range(M.shape[1]): scores.append(random.random()) log('Got %d scores: %s' % (len(scores), scores[:5])) try: t1 = time.time() v = M.dot(scores) t2 = time.time() except Exception: log('in exc') t1 = time.time() v = np.dot(M, scores) t2 = time.time() M = M.todense() t3 = time.time() v1 = np.dot(M, scores) t4 = time.time() log('Got %d in v, in %0.4f secs, compared to %0.4fs for dense: %s, %s, %s' % (len(v), t2-t1, t4-t3, v[:5], v1[:5], v==v1)) sys.exit() return M def nodeweights(self, layername, lkeys=None): """Returns the nodeweights for the given layer. If lkeys is given, then the weights are returned in that order. Otherwise, returns weights for all nodes in this layer, as returned by nodes()""" if not lkeys: lkeys = self.nodes(layername) weights = np.ones(len(lkeys)) key = 'layers:%s:weights' % (layername) if not self.db.exists(key): return weights ids = [self.splitNodekey(k)[1] for k in lkeys] for i, w in enumerate(self.db.hmget(key, ids)): if w is None: continue weights[i] = float(w) #log('For layer %s, got %s' % (layername, zip(lkeys, ids, weights))) #log('For layer %s, with %d lkeys, got %d weights: %s' % (layername, len(lkeys), len(weights), weights)) return weights def updateCache(self): """Updates our cache""" # update our list of layerkeys as needed for l, _ in self.layers(): self.updateLayerKeys(l) def createFlow(self, *args, **kw): """Creates a flow object. If args and/or kw are given, then calls flow.add() with those params. Note that for now, we precache layerkeys and edge matrices here.""" #log('In create flow, got dirty: %s' % (self.dirty,)) self.updateCache() f = RGLFlow(self) if args or kw: f.add(*args, **kw) return f def updateIfDirty(self, dkey, func, *args, **kw): """Runs the given func if the dirty bit is set for the given key""" if dkey in self.dirty: func(*args, **kw) del self.dirty[dkey] else: log('Got precached dkey %s' % (dkey)) class RGLFlow(object): """A flow object for a given RedisLayeredGraph (RGL)""" def __init__(self, g, id=None, tempflow=0, debugfmt='str'): """Initialize this flow object from the given graph. If an id is given, then tries to load the values from disk. If tempflow is true (default false), then save() and load() become no-ops. The debugfmt determines how to print out ourself: 'spark': using spark lines 'str': using get() """ self.g = g self.db = g.db self.scores = {} self.tempflow = tempflow self.debugfmt = debugfmt if id: # load from disk self.id = id try: self.load() except Exception: # could not load, so just reset self.reset() else: # create new id and reset self.newid() self.reset() def reset(self, *layernames): """Resets the score arrays. Optionally, you can give a list of layernames to reset. Otherwise, it resets all layers.""" # update the cached list of layerkeys as needed for lname, level in self.g.layers(): if layernames and lname not in layernames: continue nnodes = len(self.g.layerkeys[lname]) a = self.scores[lname] = np.zeros(nnodes) #print 'Reset scores for layer %s (level %d) with %d nodes' % (lname, level, len(a)) self.save() def binop(self, other, binfunc): """Base function for binary operators. Does all the necessary checks, and then calls the binfunc(v1, v2) to get the output. 'other' can be either another flow, or a scalar.""" ret = RGLFlow(g=self.g, debugfmt=self.debugfmt, tempflow=1) assert sorted(self.scores) == sorted(ret.scores) if isinstance(other, RGLFlow): # combine two flows assert self.g == other.g assert sorted(self.scores) == sorted(other.scores) for layer in self.scores: s1, s2, out = self.scores[layer], other.scores[layer], ret.scores[layer] assert len(s1) == len(s2) == len(out) ret.scores[layer] = binfunc(s1, s2) elif isinstance(other, (float, long, int)): # apply the given scalar to this flow for layer in self.scores: s, out = self.scores[layer], ret.scores[layer] assert len(s) == len(out) ret.scores[layer] = binfunc(s, other) else: raise NotImplementedError('cannot handle type %s for RGLFlow.binop()' % (type(other))) return ret def __add__(self, other): """Adds 'other' rgl flow to this one and returns new RGLFlow""" return self.binop(other, binfunc=lambda v1, v2: v1+v2) def __radd__(self, other): """Addition with flipped order""" return self.__add__(other) def __iadd__(self, other): """Runs the normal __add__, and then resets our variables""" temp = self+other self.scores = temp.scores self.save() return self def __sub__(self, other): """Subtracts 'other' flow from this one and returns the result. Note that values are clamped to remain positive.""" def binfunc(v1, v2): c = v1-v2 c[c < 0] = 0.0 return c return self.binop(other, binfunc=binfunc) def __mul__(self, other): """Multiplies two flows, or this flow and a scalar""" return self.binop(other, binfunc=lambda v1, v2: v1*v2) def __rmul__(self, other): """Multiplication with flipped order""" return self.__mul__(other) def __eq__(self, other): """Returns true if our layers are the same and the values are (almost) the same.""" if sorted(self.scores) != sorted(other.scores): return False for l in self.scores: s1 = self.scores[l] s2 = other.scores[l] if not np.allclose(s1, s2): return False return True def newid(self): """Changes our id""" import uuid self.id = uuid.uuid1().hex def save(self): """Saves ourself to disk""" import cPickle as pickle #from scipy.sparse import lil_matrix as sparsemat from scipy.sparse import csr_matrix as sparsemat #M = M.tocsr() if self.tempflow: return fname = os.path.join(self.g.prefix, 'flows', self.id+'.pickle') try: os.makedirs(os.path.dirname(fname)) except OSError: pass if 0: todump = {} for k in self.scores: todump[k] = sparsemat(self.scores[k]) else: todump = self.scores pickle.dump(todump, open(fname, 'wb'), -1) #log('Saving flow with id %s' % (self.id)) def load(self): """Loads ourself from disk. Our id must be set""" import cPickle as pickle fname = os.path.join(self.g.prefix, 'flows', self.id+'.pickle') self.scores = pickle.load(open(fname)) # check if the lengths of these scores match RLG's list of layerkeys for l in self.g.layerkeys: alen, blen = len(self.g.layerkeys[l]), len(self.scores.get(l,[])) if alen != blen: log('### checking l "%s": exists %s, lens %d vs %d' % (l, l in self.scores, alen, blen)) for l in self.scores: if l not in self.g.layerkeys: log('### layer "%s" from flow %s does not exist in layerkeys' % (l, self.id)) pass#TODO HERE #data = pickle.load(open(fname)) #self.scores = dict((k, v.todense()) for k, v in data.iteritems()) #log('Loading flow with id %s' % (self.id)) def __str__(self): """Returns our values as a string""" from StringIO import StringIO s = StringIO() print >>s, 'Flow %s, tempflow %s, debugfmt %s' % (self.id, self.tempflow, self.debugfmt) for lname, level in self.g.layers(): sc = self.get(lname) if self.debugfmt == 'spark' or sc: print >>s, '%s (%d nodes, %d nz):' % (lname, len(self.scores[lname]), len(sc)) s.flush() if self.debugfmt == 'spark': spark(self.scores[lname], f=s) elif self.debugfmt == 'str': if sc: print >>s, sc return s.getvalue() def incr(self, op='add', **scores): """Increments scores, given as a mapping of nodekey=increment. Increment type depends on 'op': 'add': add to existing [default] 'mul': multiply to existing """ for nk, incr in scores.iteritems(): lname, nodeid = self.g.splitNodekey(nk) a = self.scores[lname] if int(nodeid) >= len(a): continue if op == 'add': try: a[int(nodeid)] += incr except Exception: log('Got nk %s, incr %s, lname %s, nodeid %s, a len %d, lkeys %d: %s' % (nk, incr, lname, nodeid, len(a), len(self.g.layerkeys[lname]), self.g.layerkeys[lname][-5:])) raise elif op == 'mul': a[int(nodeid)] *= incr else: raise NotImplementedError() @timed #@profile def add(self, dir, destlevel, layerfuncs=None, debug=0, **flows): """Adds the given flows. The scores are calculated going in the given dir (+1 or -1). Computation proceeds until the given destination level. Each flow should be given as nodekey=score. You can optionally pass in a dict of layerfuncs. These are applied at the given layer as: self.scores[layer] = layerfuncs[layer](self.scores[layer]) Returns self. """ import numpy as np import operator as op #if not flows: return mylog = lambda s: log(s, funcindent=-1) if debug > 0: mylog('Adding %d flows in dir %d to destination level %d' % (len(flows), dir, destlevel)) # basic init g = self.g db = self.db layers = dict((layer, g.getLayer(layer)) for layer, level in g.layers()) layerOrder = sorted(layers, key=lambda l: layers[l]['level'], reverse=(dir<0)) if debug > 0: mylog('Layers: %s' % (layers,)) mylog('Layer order: %s' % (layerOrder,)) # add all todo flows if flows: self.incr(**flows) # start accumulating flows for l in layerOrder: curlevel = layers[l]['level'] if dir > 0 and curlevel > destlevel: break if dir < 0 and curlevel < destlevel: break if debug > 0: mylog('Adding flows to layer %s (level %d)' % (l, curlevel)) lkeys = g.layerkeys[l] # these are guaranteed to line up with our scores array. # quick check for non-zero elements nz = len(self.scores[l].nonzero()[0]) if nz == 0: continue if 0: #FIXME temporarily disabled # get the self-edge matrix if debug > 1: mylog(' Running local flows') #M, lkeys2, _ = g.getEdgeMatrix(l, l, lkeys, lkeys) M = g.cachedEdgeMatrix(l, l) #assert lkeys == _ == lkeys2 #print M, M.shape, len(lkeys), lkeys[:5] #FIXME see if we run into any issues due to M being None for identity if M is not None: # multiply scores by this matrix try: v = M.dot(self.scores[l]) except Exception, e: v = np.dot(M, self.scores[l]) mylog(' ***** Hit exception %s: %s vs %s' % (e, M.shape, len(self.scores[l]))) mylog('%d Layerkeys: %s, %s' % (len(g.layerkeys[l]), g.layerkeys[l][:3], g.layerkeys[l][-3:])) sys.exit() #assert len(v) == len(lkeys) == M.shape[0] == M.shape[1] == len(self.scores[l]) assert len(v) == len(self.scores[l]) self.scores[l] = v #print len(v), v, v.max(), v.argmax(), v.sum() # at this point, multiply by our weights self.scores[l] *= g.nodeweights(l, lkeys) # now apply the layerfunc, if we have one if layerfuncs and l in layerfuncs and layerfuncs[l]: self.scores[l] = layerfuncs[l](self.scores[l]) # another quick check for nonzeros nz = len(self.scores[l].nonzero()[0]) if nz == 0: continue # now run flows from this layer to all others in dir if debug > 1: mylog(' Running neighboring flows') for l2 in db.hkeys('layeredges:%s' % (l)): if l2 == l: continue l2level = layers[l2]['level'] if dir > 0 and (l2level > destlevel or l2level < curlevel): continue if dir < 0 and (l2level < destlevel or l2level > curlevel): continue l2keys = g.layerkeys[l2] if debug > 2: mylog(' Neighboring flow from %s (%d) to %s (%d), dir %s, destlevel %s' % (l, curlevel, l2, l2level, dir, destlevel)) # get the edge matrix #M, _, _ = g.getEdgeMatrix(l, l2, lkeys, l2keys) M = g.cachedEdgeMatrix(l, l2) #TODO most time spent here if M is not None: #print M, M.shape, len(l2keys), l2keys[:5] # multiply scores by this matrix to get dst scores try: v = M.dot(self.scores[l]) except Exception, e: v = np.dot(M, self.scores[l]) log(' **** In exception: %s' % (e,)) raise assert len(v) == len(self.scores[l2]) # add these scores to existing scores at that level self.scores[l2] += v # at this point, multiply by the weights in the 2nd layer #self.scores[l2] *= g.nodeweights(l2, l2keys) #FIXME I think this will cause a double-weighting self.save() return self def get(self, layername, thresh=0.0, withscores=1, tokeys=0): """Returns (nodeid, score) pairs from the given layer, where score > thresh. Results are sorted from high score to low. If withscores is true (default) the returns scores as well. If tokeys is true, then maps ids to keys. """ a = self.scores[layername] #ret = [(i, score) for i, score in enumerate(a) if score > thresh] #ret.sort(key=lambda pair: pair[1], reverse=1) # only process rest if we have any values above the threshold if not np.any(a > thresh): return [] inds = np.argsort(a)[::-1] scores = a[inds] scores = scores[scores > thresh] if tokeys: inds = [self.g.nodekeyFromID(id, layername) for id in inds] if withscores: ret = zip(inds, scores) else: ret = inds[:len(scores)] return ret def outliers(self, layers=None): """Returns the "outliers" amongst the given layers (or all if None).""" if not layers: layers = self.scores.keys() ret = [] for l in layers: scores = [(self.g.nodekeyFromID(id, l), score) for id, score in self.get(l)] if not scores: continue nk, s = scores[0] oscore = 1.0 if len(scores) == 1 else 1.0-(scores[1][1]/s) if oscore == 0: continue #print l, scores, nk, s, oscore ret.append((nk, oscore, s)) ret.sort(key=lambda r: (r[1], r[2]), reverse=1) return ret @classmethod def combine(cls, tocomb, op='add', **kw): """Combines a list of (factor, flow) flows into one: ret = op(factor*flow for factor, flow in tocomb) Where 'op' is one of: 'add': adds flows 'mul': multiplies flows If you given any other keywords, they are used in the initialization. Returns None on error. """ if not tocomb: return None first = tocomb[0][1] defkw = dict(tempflow=1, debugfmt=first.debugfmt) defkw.update(kw) f = RGLFlow(first.g, **defkw) for layer, a in f.scores.iteritems(): if op == 'mul': # re-initialize the layer to be ones if we're multiplying a += 1.0 for fac, flow in tocomb: if op == 'add': a += fac*flow.scores[layer] elif op == 'mul': a *= fac*flow.scores[layer] # clamp back to positive a[a < 0] = 0.0 f.save() return f
StarcoderdataPython
6465256
<reponame>coinForRich/coin-for-rich # This module contains common number helpers from decimal import Decimal from typing import Union def round_decimal( number: Union[float, int, Decimal, str], n_decimals: int=2 ) -> Union[Decimal, None]: ''' Rounds a `number` to `n_decimals` decimals If number is None, returns None :params: `number`: float, int or Decimal type or str representing float `n_decimals`: number of decimals ''' if number is None: return None return round(Decimal(number), n_decimals)
StarcoderdataPython
92835
# -*- coding:utf-8 -*- """Sample training code """ import numpy as np import pandas as pd import argparse import torch as th import torch.nn as nn from sch_qm import SchNetModel # from mgcn import MGCNModel # from mpnn import MPNNModel from torch.utils.data import DataLoader from Alchemy_dataset_qm import TencentAlchemyDataset, batcher # def dataset_split(file): # delaney = pd.read_csv("delaney.csv") # test_set = delaney.sample(frac=0.1, random_state=0) # train_set = delaney.drop(test_set.index) # test_set.to_csv("delaney_test.csv", index=False) # train_set.to_csv("delaney_train.csv", index=False) def train(model="sch_qm", epochs=80, device=th.device("cpu"), train_file='', test_file='', save=''): print("start") # train_dir = "./" # train_file = dataset+"_train.csv" alchemy_dataset = TencentAlchemyDataset() alchemy_dataset.mode = "Train" alchemy_dataset.transform = None alchemy_dataset.file_path = train_file alchemy_dataset._load() test_dataset = TencentAlchemyDataset() # test_dir = train_dir # test_file = dataset+"_valid.csv" test_dataset.mode = "Train" test_dataset.transform = None test_dataset.file_path = test_file test_dataset._load() alchemy_loader = DataLoader( dataset=alchemy_dataset, batch_size=500, collate_fn=batcher(), shuffle=False, num_workers=0, ) test_loader = DataLoader( dataset=test_dataset, batch_size=500, collate_fn=batcher(), shuffle=False, num_workers=0, ) if model == "sch_qm": model = SchNetModel(norm=False, output_dim=1) print(model) # if model.name in ["MGCN", "SchNet"]: # model.set_mean_std(alchemy_dataset.mean, alchemy_dataset.std, device) model.to(device) # print("test_dataset.mean= %s" % (alchemy_dataset.mean)) # print("test_dataset.std= %s" % (alchemy_dataset.std)) loss_fn = nn.MSELoss() MAE_fn = nn.L1Loss() optimizer = th.optim.Adam(model.parameters(), lr=0.001) # scheduler = th.optim.lr_scheduler.StepLR(optimizer, 30, gamma=0.9, eta_min=0.0001, last_epoch=-1) scheduler = th.optim.lr_scheduler.ReduceLROnPlateau( optimizer, mode='min', factor=0.9, patience=10, threshold=0.00001, threshold_mode='rel', cooldown=0, min_lr=0.0001, eps=1e-08, verbose=False) def print_res(label, res, op): size = len(res) for i in range(size): line = "%s,%s\n" % (label[i][0], res[i][0]) op.writelines(line) log = open(save+'/train_log.txt', 'w') for epoch in range(epochs): w_loss, w_mae = 0, 0 model.train() for idx, batch in enumerate(alchemy_loader): batch.graph.to(device) batch.label = batch.label.to(device) batch.graph0 = batch.graph0.to(device) batch.graph1 = batch.graph1.to(device) batch.graph2 = batch.graph2.to(device) batch.graph3 = batch.graph3.to(device) batch.graph4 = batch.graph4.to(device) batch.graph5 = batch.graph5.to(device) batch.graph6 = batch.graph6.to(device) batch.graph7 = batch.graph7.to(device) batch.feature = batch.feature.to(device) res = model(batch.graph, batch.graph0, batch.graph1, batch.graph2, batch.graph3, batch.graph4, batch.graph5, batch.graph6, batch.graph7, batch.feature) loss = loss_fn(res, batch.label) mae = MAE_fn(res, batch.label) optimizer.zero_grad() mae.backward() optimizer.step() w_mae += mae.detach().item() w_loss += loss.detach().item() scheduler.step(w_mae) w_mae /= idx + 1 w_loss /= idx + 1 print("Epoch {:2d}, loss: {:.7f}, mae: {:.7f}".format( epoch, w_loss, w_mae)) log.write("Epoch {:2d}, loss: {:.7f}, mae: {:.7f} \n".format( epoch, w_loss, w_mae)) model.eval() with th.no_grad(): if epoch % 20 == 0: res_op = open(save+'/Train_res_'+str(epoch)+'.csv', 'w') for jdx, batch in enumerate(alchemy_loader): batch.graph.to(device) batch.label = batch.label.to(device) batch.graph0 = batch.graph0.to(device) batch.graph1 = batch.graph1.to(device) batch.graph2 = batch.graph2.to(device) batch.graph3 = batch.graph3.to(device) batch.graph4 = batch.graph4.to(device) batch.graph5 = batch.graph5.to(device) batch.graph6 = batch.graph6.to(device) batch.graph7 = batch.graph7.to(device) batch.feature = batch.feature.to(device) res = model(batch.graph, batch.graph0, batch.graph1, batch.graph2, batch.graph3, batch.graph4, batch.graph5, batch.graph6, batch.graph7, batch.feature) l = batch.label.cpu().detach().numpy() r = res.cpu().detach().numpy() print_res(l, r, res_op) res_op.close() # res_pd = pd.DataFrame(res_op) # res_pd.to_csv(save+'/Train_res_'+str(epoch)+'.csv') # Validation section val_loss, val_mae = 0, 0 for jdx, batch in enumerate(test_loader): batch.graph.to(device) batch.label = batch.label.to(device) batch.graph0 = batch.graph0.to(device) batch.graph1 = batch.graph1.to(device) batch.graph2 = batch.graph2.to(device) batch.graph3 = batch.graph3.to(device) batch.graph4 = batch.graph4.to(device) batch.graph5 = batch.graph5.to(device) batch.graph6 = batch.graph6.to(device) batch.graph7 = batch.graph7.to(device) batch.feature = batch.feature.to(device) res = model(batch.graph, batch.graph0, batch.graph1, batch.graph2, batch.graph3, batch.graph4, batch.graph5, batch.graph6, batch.graph7, batch.feature) loss = loss_fn(res, batch.label) mae = MAE_fn(res, batch.label) # optimizer.zero_grad() # mae.backward() # optimizer.step() val_mae += mae.detach().item() val_loss += loss.detach().item() val_mae /= jdx + 1 val_loss /= jdx + 1 print( "Epoch {:2d}, val_loss: {:.7f}, val_mae: {:.7f}".format( epoch, val_loss, val_mae )) log.write("Epoch {:2d}, loss: {:.7f}, mae: {:.7f}\n".format( epoch, w_loss, w_mae)) if epoch % 20 == 0: # op_file = open('save/'+str(epoch)+'re') res_op = open(save+'/Test_res_'+str(epoch)+'.csv', 'w') th.save(model.state_dict(), save+'/model_'+str(epoch)) for jdx, batch in enumerate(test_loader): batch.graph.to(device) batch.label = batch.label.to(device) batch.graph0 = batch.graph0.to(device) batch.graph1 = batch.graph1.to(device) batch.graph2 = batch.graph2.to(device) batch.graph3 = batch.graph3.to(device) batch.graph4 = batch.graph4.to(device) batch.graph5 = batch.graph5.to(device) batch.graph6 = batch.graph6.to(device) batch.graph7 = batch.graph7.to(device) batch.feature = batch.feature.to(device) res = model(batch.graph, batch.graph0, batch.graph1, batch.graph2, batch.graph3, batch.graph4, batch.graph5, batch.graph6, batch.graph7, batch.feature) l = batch.label.cpu().detach().numpy() r = res.cpu().detach().numpy() print_res(l, r, res_op) res_op.close() # res_op.append([batch.label.cpu().detach().numpy(), res.cpu().detach().numpy()]) # res_pd = pd.DataFrame(res_op) # res_pd.to_csv(save+'/Test_res_'+str(epoch)+'.csv') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("-M", "--model", help="model name (sch_qm)", default="sch_qm") parser.add_argument("--epochs", help="number of epochs", default=10000) parser.add_argument("--train_file", help="dataset to train", default="") parser.add_argument("--test_file", help="dataset to test", default="") parser.add_argument( "--save", help="directory to save the model", default="") device = th.device('cuda:0' if th.cuda.is_available() else 'cpu') args = parser.parse_args() assert args.model in ["sch_qm"] # dataset_split("delaney.csv") train(args.model, int(args.epochs), device, args.train_file, args.test_file, args.save)
StarcoderdataPython
11336408
<reponame>LucasCarioca/split<gh_stars>10-100 import os from typing import Dict, List, Optional DEFINED_ACTION_OUTPUTS_NUMBER = 100 def set_action_output(name: str, value: str): print(f'::set-output name={name}::{value}') def print_action_error(msg: str): print(f'::error file={__name__}::{msg}') def get_action_input( name: str, required: bool = False, default: Optional[str] = None ) -> str: v = os.environ.get(f'INPUT_{name.upper()}', '') if v == '' and default: v = default if required and v == '': print_action_error(f'input required and not supplied: {name}') exit(1) return v def split(msg: str, sep: str = ' ', maxsplit: int = -1) -> List[str]: results = msg.split(sep=sep, maxsplit=maxsplit) if len(results) > DEFINED_ACTION_OUTPUTS_NUMBER: results = msg.split( sep=sep, maxsplit=DEFINED_ACTION_OUTPUTS_NUMBER - 1 ) return results def to_outputs(results: List[str]) -> Dict[str, str]: outputs = { 'length': str(len(results)), } for i, result in enumerate(results): outputs[f'_{i}'] = result return outputs def main(): msg = get_action_input('msg', required=True) separator = get_action_input('separator', required=False, default=' ') maxsplit = int(get_action_input('maxsplit', required=False, default='-1')) results = split(msg, separator, maxsplit) outputs = to_outputs(results) for k, v in outputs.items(): set_action_output(k, v) if __name__ == '__main__': main()
StarcoderdataPython
6640737
<filename>aop/extensions/searchandreplace.py<gh_stars>1-10 import os from distutils.util import strtobool from aop.aop import extends search_and_replace = bool(strtobool(os.getenv("USE_SEARCH_AND_REPLACE"))) if search_and_replace: print("Using feature: Search and replace") @extends('feature_states') def search_and_replace_feature(features): features['search-and-replace'] = True @extends('feature_scripts') def external_search_js(scripts): scripts.append('/static/search_and_replace/index.js') @extends('feature_modal_htmls') def external_search_modal_html(htmls): htmls.append('/search_and_replace/modal.html') @extends('feature_dropdown_file_htmls') def external_search_dropdown_file_html(htmls): htmls.append('/search_and_replace/navbar.html')
StarcoderdataPython
3429803
''' Created on 26 juil. 2017 @author: worm ''' from django.urls.base import reverse from snapshotServer.tests.views.Test_Views import TestViews class Test_TestListView(TestViews): def test_test_exists(self): """ Simple test to show that we get all test cases from session """ response = self.client.get(reverse('testlistView', args=[1])) self.assertEqual(len(response.context['object_list']), 2) self.assertEqual(list(response.context['object_list'])[0].testCase.name, "test1") def test_session_id_added(self): """ Check that sessionId is available in context """ response = self.client.get(reverse('testlistView', args=[1])) self.assertEqual(len(response.context['sessionId']), 1) def test_no_test(self): """ Test no error raised when no test exist in session """ response = self.client.get(reverse('testlistView', args=[9])) self.assertEqual(len(response.context['object_list']), 0)
StarcoderdataPython
3469448
from django.http import HttpResponseRedirect, HttpResponse, JsonResponse from django.views.generic import DetailView from django.views import View from django.db.models import Q from django.conf import settings from django.template.loader import render_to_string from django.shortcuts import get_object_or_404, render from django.contrib.auth.decorators import login_required from django.utils.html import escape import sys from post.models import Post from post.forms import CommentForm from comment.models import Comment from author.models import Author from node.models import Node, build_comment from urllib.parse import urlparse import simplejson as json import requests import re import base64 import uuid from CommonMark import commonmark APP_URL = settings.APP_URL @login_required def EditView(request, pk): post = get_object_or_404(Post, id=pk) if post.contentType.startswith("image"): base64image = post.content post.content = "<img alt=\"{}\" class=\"img-responsive\" src=\"{}\"/>".format(post.title,base64image) authorContext = Author.objects.get(id=request.user) if authorContext != post.author: return HttpResponseRedirect('/post/{}/'.format(pk)) return render(request, 'edit.html', {'post':post}) @login_required def EditPostView(request, pk): # Only process the author's post if it is a POST request if (request.method != 'POST'): return HttpResponseRedirect('/post/{}/edit/'.format(pk)) if (request.POST['post_content'] == '' and 'image' not in request.FILES.keys()): return HttpResponseRedirect('/post/{}/edit/'.format(pk)) try: # Get the logged in user and the associated author object. # userContext = User.objects.get(username=request.user.username) # post_body = request.POST['post_content'] authorContext = Author.objects.get(id=request.user) post = get_object_or_404(Post, id=pk) if authorContext != post.author: return HttpResponseRedirect('/post/{}/'.format(pk)) content = request.POST['post_content'] content = escape(content) # Should always be escaping HTML tags if post.contentType.startswith("image"): # Create and save a new post. # encode image into base64 here and make nice image url too if ('image' in request.FILES.keys()): imgname = re.sub('[^._0-9a-zA-Z]+','',request.FILES['image'].name) base64Image = base64.b64encode(request.FILES['image'].read()) post.content='data:' + str(post.contentType) + ',' + str(base64Image.decode('utf-8')) post.contentType=request.FILES['image'].content_type + ";base64" post.image_url = '{0}_{1}_{2}'.format(request.user, str(uuid.uuid4())[:8], imgname) post.privacyLevel=request.POST['privacy_level'] post = setVisibility(request, post) post.save() elif request.POST['post_content'] != '': #content = request.POST['post_content'] #content = escape(content) post.content=content post.privacyLevel=request.POST['privacy_level'] post.contentType=request.POST['contentType'] post = setVisibility(request, post) post.save() else: return HttpResponseRedirect('/post/{}/edit/'.format(pk)) if request.POST['privacy_level'] == '5': return HttpResponseRedirect('/post/{}/'.format(pk)) except: return HttpResponse(sys.exc_info[0]) return HttpResponseRedirect('/post/{}/'.format(pk)) def setVisibility(request, post): if post.privacyLevel == '0': post.visibility = 'PUBLIC' elif post.privacyLevel == '1': post.visibility = 'FRIENDS' elif post.privacyLevel == '2': post.visibility = 'FOAF' elif post.privacyLevel == '3': post.visibility = 'PRIVATE' elif post.privacyLevel == '4': post.visibility = 'PRIVATE' elif post.privacyLevel == '5': post.visibility = 'UNLISTED' post.unlisted = True if 'serverOnly' in request.POST: post.serverOnly = True else: post.serverOnly = False return post @login_required def AjaxComments(request, pk): author_post = get_object_or_404(Post, id=pk) comments = Comment.objects.filter(Q(post=author_post.id)).order_by('-publishDate') parsed_post_url = urlparse(author_post.origin) parsed_app_url = urlparse(APP_URL) if parsed_post_url.netloc != parsed_app_url.netloc: comment_ids = comments.values_list('UID',flat = True) comment_ids = [str(x) for x in comment_ids] host = "http://"+parsed_post_url.netloc + "/" n = Node.objects.get(url=host) r = requests.get(author_post.origin + "comments" +"/", auth = requests.auth.HTTPBasicAuth(n.username,n.password)) if r.status_code == requests.codes.ok: post_objects = json.loads(r.text) for o in post_objects['comments']: if o['id'] not in comment_ids: build_comment(o, author_post) # get the new comments comments = Comment.objects.filter(Q(post=author_post.id)).order_by('-publishDate') context = dict() html = dict() context['comment_list'] = comments html['comments'] = render_to_string('ajaxcomments.html', context, request=request) return JsonResponse(html) # Create your views here. class PostView(DetailView): model = Post template_name = 'view.html' def get_context_data(self, **kwargs): context = super(DetailView, self).get_context_data(**kwargs) context['comment_list'] = self.get_comment_list() context['form'] = CommentForm() context['content'] = self.get_content() return context def get_comment_list(self): author_post = self.get_object() comments = Comment.objects.filter(Q(post=author_post.id)).order_by('-publishDate') parsed_post_url = urlparse(author_post.origin) parsed_app_url = urlparse(APP_URL) if parsed_post_url.netloc != parsed_app_url.netloc: comment_ids = comments.values_list('UID',flat = True) comment_ids = [str(x) for x in comment_ids] host = author_post.author.host try: n = Node.objects.get(url=host) except: pass r = requests.get(author_post.origin + "comments" +"/", auth = requests.auth.HTTPBasicAuth(n.username,n.password)) if r.status_code == requests.codes.ok: post_objects = json.loads(r.text) for o in post_objects['comments']: if o['id'] not in comment_ids: build_comment(o, author_post) # get the new comments comments = Comment.objects.filter(Q(post=author_post.id)).order_by('-publishDate') return comments elif r.status_code == requests.codes.forbidden: # can't retrieve posts, just return servers post return comments else: # can't retrieve posts, just return servers post return comments return comments def dispatch(self, request, *args, **kwargs): author = Author.objects.get(id=request.user) if author.canViewPost(self.get_object()): return super(DetailView, self).dispatch(request, *args, **kwargs) else: return HttpResponseRedirect("/author/") def get_content(self): if self.object.contentType.startswith("image"): base64image = self.object.content return "<img alt=\"{}\" class=\"img-responsive\" src=\"{}\"/>".format(self.object.title,base64image) elif self.object.contentType == 'text/markdown': return commonmark(self.object.content) return self.object.content class AddComment(View): def post(self, request, pk): form = CommentForm(request.POST) if form.is_valid(): comment_author = Author.objects.get(id=request.user) comment_post = Post.objects.get(id=pk) comment = Comment( content=form.cleaned_data['content'], author=comment_author, post=comment_post, ) comment.setApiID() parsed_comment_url = urlparse(comment_post.origin) parsed_app_url = urlparse(APP_URL) if parsed_comment_url.netloc == parsed_app_url.netloc: # post is on server, proceed as normal comment.save() return HttpResponseRedirect("/post/" + pk) else: # we gotta send a request and see if it's successful body = dict() body['query'] = "addComment" body['post'] = comment_post.origin obj_author = dict() obj_author['id'] = str(comment_author.UID) obj_author['host'] = comment_author.host obj_author['displayName'] = comment_author.displayName obj_author['url'] = comment_author.url obj_author['github'] = comment_author.github obj_comment = dict() obj_comment['author'] = obj_author obj_comment['comment'] = form.cleaned_data['content'] obj_comment['contentType'] = 'text/markdown' obj_comment['published'] = comment.publishDate.isoformat() # commented out for T5 atm #obj_comment['guid'] = str(comment.UID) obj_comment['id'] = str(comment.UID) body['comment'] = obj_comment msg = json.dumps(body) host = comment_post.author.host try: n = Node.objects.get(url=host) except: pass r = requests.post( comment_post.origin + "comments" +"/", data=msg, auth = requests.auth.HTTPBasicAuth(n.username,n.password), headers={ "content-type": "application/json" }) if r.status_code == requests.codes.ok: return HttpResponseRedirect("/post/" + pk) elif r.status_code == requests.codes.forbidden: Comment.objects.filter(UID=comment.UID).delete() return HttpResponseForbidden() else: Comment.objects.filter(UID=comment.UID).delete() # return HttpResponse(str(r.status_code) + ':' + r.content.decode("utf-8")) return HttpResponseRedirect("/post/" + pk) return HttpResponseRedirect("/post/" + pk)
StarcoderdataPython
196178
import re from collections import defaultdict from django.db import migrations def add_users_to_groups_based_on_users_permissions(apps, schema_editor): """Add every user to group with "user_permissions" if exists, else create new one. For each user, if the group with the exact scope of permissions exists, add the user to it, else create a new group with this scope of permissions and add the user to it. """ User = apps.get_model("account", "User") Group = apps.get_model("auth", "Group") groups = Group.objects.all().prefetch_related("permissions") counter = get_counter_value(Group) mapping = create_permissions_mapping(User) for perms, users in mapping.items(): group = get_group_with_given_permissions(perms, groups) if group: group.user_set.add(*users) continue group = create_group_with_given_permissions(perms, counter, Group) group.user_set.add(*users) counter += 1 def get_counter_value(Group): """Get the number of next potential group.""" pattern = r"^Group (\d+)$" group = Group.objects.filter(name__iregex=pattern).order_by("name").last() if not group: return 1 return int(re.match(pattern, group.name).group(1)) + 1 def create_permissions_mapping(User): """Create mapping permissions to users and potential new group name.""" mapping = defaultdict(set) users = User.objects.filter(user_permissions__isnull=False).distinct().iterator() for user in users: permissions = user.user_permissions.all().order_by("pk") perm_pks = tuple([perm.pk for perm in permissions]) mapping[perm_pks].add(user.pk) user.user_permissions.clear() return mapping def get_group_with_given_permissions(permissions, groups): """Get group with given set of permissions.""" for group in groups: group_perm_pks = {perm.pk for perm in group.permissions.all()} if group_perm_pks == set(permissions): return group def create_group_with_given_permissions(perm_pks, counter, Group): """Create new group with given set of permissions.""" group_name = f"Group {counter:03d}" group = Group.objects.create(name=group_name) group.permissions.add(*perm_pks) return group class Migration(migrations.Migration): dependencies = [ ("account", "0040_auto_20200415_0443"), ] operations = [ migrations.RunPython( add_users_to_groups_based_on_users_permissions, migrations.RunPython.noop ), ]
StarcoderdataPython
4929469
<reponame>CrankySupertoon01/Toontown-2<filename>toontown/estate/GardenGameGlobals.py acceptErrorDialog = 0 doneEvent = 'game Done' colorRed = (1, 0, 0, 1) colorBlue = (0, 0, 1, 1) colorGreen = (0, 1, 0, 1) colorGhostRed = (1, 0, 0, 0.5) colorGhostGreen = (0, 1, 0, 0.5) colorWhite = (1, 1, 1, 1) colorBlack = (0.5, 0.5, 0.5, 1.0) colorShadow = (0, 0, 0, 0.5) running = 0 maxX = 0.46999999999999997 minX = -0.46999999999999997 maxZ = 0.75000000000000002 minZ = -0.00000000000000001 newBallX = 0.0 newBallZ = 0.69999999999999998 rangeX = (maxX - minX) rangeZ = (maxZ - minZ) size = 0.085000000000000006 sizeZ = (size * 0.80000000000000004) gX = int((rangeX / size)) gZ = int((rangeZ / sizeZ)) maxX = (minX + (gX * size)) maxZ = (minZ + (gZ * sizeZ)) controlOffsetX = 0.0 controlOffsetZ = 0.0 queExtent = 3 gridDimX = gX gridDimZ = gZ gridBrick = False newBallTime = 1.0 newBallCountUp = 0.0 cogX = 0 cogZ = 0 controlSprite = None
StarcoderdataPython
3389784
import os import sys import atexit def daemon(pid_file=None): if os.path.exists("/Users/admin/devops/socket_uvloop/{0}".format(pid_file)): raise RuntimeError("Already running") pid = os.fork() if pid: sys.exit(0) os.chdir('/') # 子进程默认继承父进程的umask(文件权限掩码),重设为0(完全控制),以免影响程序读写文件 os.umask(0) # 让子进程成为新的会话组长和进程组长 os.setsid() _pid = os.fork() if _pid: # 退出子进程 sys.exit(0) # 此时,孙子进程已经是守护进程了,接下来重定向标准输入、输出、错误的描述符(是重定向而不是关闭, 这样可以避免程序在 print 的时候出错) # 刷新缓冲区先,小心使得万年船 sys.stdout.flush() sys.stderr.flush() # dup2函数原子化地关闭和复制文件描述符,重定向到/dev/nul,即丢弃所有输入输出 with open('/dev/null') as read_null, open('/dev/null', 'w') as write_null: os.dup2(read_null.fileno(), sys.stdin.fileno()) os.dup2(write_null.fileno(), sys.stdout.fileno()) os.dup2(write_null.fileno(), sys.stderr.fileno()) # 写入pid文件 if pid_file: try: with open("/Users/admin/devops/socket_uvloop/{0}".format(pid_file), 'w+') as f: f.write(str(os.getpid())) # 注册退出函数,进程异常退出时移除pid文件 atexit.register(os.remove, "/Users/admin/devops/socket_uvloop/{0}".format(pid_file)) except Exception as e: print(e) while 1: print("sub process is alive") daemon("pid_file.txt")
StarcoderdataPython
3527837
from discord.ext import commands import discord from discord_slash import SlashContext from discord_slash.cog_ext import cog_slash as slash from discord_slash.utils.manage_commands import create_option from utils import command_option_type from helpers import programmes_helper from services import offers_service import constants class OffergraphCommand(commands.Cog): def __init__(self, bot): self.bot = bot @slash(name='offergraph', description='Show a graph of ranking numbers and the dates when they received offers', options=[ create_option( name='programme_id', description='Study programme', option_type=command_option_type.STRING, required=True, choices=programmes_helper.get_programme_choices() ), create_option( name='year', description='Year of application', option_type=command_option_type.INTEGER, required=False, choices=programmes_helper.get_year_choices() ), create_option( name='step', description='Show only step graph', option_type=command_option_type.BOOLEAN, required=False ) ]) async def offergraph(self, ctx: SlashContext, programme_id: str, year: int = None, step: bool = False): if year is None: year = constants.current_year # Show "Bot is thinking" message await ctx.defer() async with (await self.bot.get_db_conn()).acquire() as connection: offers = offers_service.OffersService(connection) await offers.generate_graph(programmes_helper.programmes[programme_id], step, year) image = discord.File(offers_service.filename) await ctx.send(file=image) def setup(bot): bot.add_cog(OffergraphCommand(bot))
StarcoderdataPython
2868
<reponame>Andy-Wilkinson/ChemMLToolk import tensorflow as tf class VariableScheduler(tf.keras.callbacks.Callback): """Schedules an arbitary variable during training. Arguments: variable: The variable to modify the value of. schedule: A function that takes an epoch index (integer, indexed from 0) and current variable value as input and returns a new value to assign to the variable as output. verbose: int. 0: quiet, 1: update messages. """ def __init__(self, variable, schedule, verbose=0): super(VariableScheduler, self).__init__() self.variable = variable self.schedule = schedule self.verbose = verbose def on_epoch_begin(self, epoch, logs=None): value = self.variable.read_value() value = self.schedule(epoch, value) self.variable.assign(value) if self.verbose > 0: print(f'\nEpoch {epoch + 1}: VariableScheduler assigning ' f'variable {self.variable.name} to {value}.')
StarcoderdataPython
12838347
<reponame>kanson1996/IIMS #!/usr/bin/python3 # -*- coding: utf-8 -*- """ Created by Kanson on 2020/1/12 16:03. """ import random import datetime def tid_maker(): a = int (datetime.datetime.now ().timestamp ()) b = int (''.join ([str (random.randint (0, 9)) for i in range (3)])) a = str (a) b = str (b) c = a + b return c
StarcoderdataPython
64565
from brownie import reverts from fixtures import setup_wallet, owners_2 from eth_abi import encode_abi from web3 import Web3 from fixtures import ACCOUNTS from eth_account.messages import encode_defunct def calculate_transaction_hash(nonce: int, to: str, value: int, data: str='00'): encoded: bytes = nonce.to_bytes(32, 'big') + bytes.fromhex(to).rjust(32,b'\0') + value.to_bytes(32, 'big') + bytes.fromhex(data) # '0x66aB6D9362d4F35596279692F0251Db635165871' return Web3.keccak(encoded) def get_sigdata(nonce: int, to: str, value: int, data: str='00', accounts=[]): message_to_be_signed = encode_defunct(calculate_transaction_hash(nonce, to, value, data)) sigdata = [[0,0,0]] * 10 for i, account in enumerate(accounts): signature = account.sign_message(message_to_be_signed) sigdata[i] = [signature['v'], signature['r'], signature['s']] return sigdata def test_execute(setup_wallet): nonce: int = 0 to: str = '77aB6D9362d4F35596279692F0251Db635165871' value: int = 1 sigdata = get_sigdata(nonce, to, value, accounts=[ACCOUNTS[0], ACCOUNTS[1]]) assert setup_wallet.execute(to, value, '', sigdata, {'value': value}) assert setup_wallet.nonce() == 1 def test_execute_non_owner(setup_wallet): nonce: int = 0 to: str = '77aB6D9362d4F35596279692F0251Db635165871' value: int = 1 sigdata = get_sigdata(nonce, to, value, accounts=[ACCOUNTS[2]]) with reverts(): setup_wallet.execute(to, value, '', sigdata, {'value': value}) def test_execute_threshold_not_reached(setup_wallet): nonce: int = 0 to: str = '77aB6D9362d4F35596279692F0251Db635165871' value: int = 1 sigdata = get_sigdata(nonce, to, value, accounts=[ACCOUNTS[0]]) with reverts(): setup_wallet.execute(to, value, '', sigdata, {'value': value})
StarcoderdataPython
8022562
import yaml from beanstalkio.connection import Connection from beanstalkio.errors import CommandError class Client: def __init__(self, host, port): self.connection = Connection(host, port) def _send_command(self, command): self.connection.write(command) def _read_server_response(self): line = self.connection.read_line() return line.split() def _get_response_with_status(self): response = self._read_server_response() return response[0] def _get_response_with_result(self): response = self._read_server_response() status = response.pop(0) if response: result = response.pop(0) return result, status return None, status def _get_response_with_body(self): body = status = None response = self._read_server_response() status = response.pop(0) if response: length = int(response.pop(0)) body = self.connection.read_bytes(length + 2) return body, status def _get_response_with_yaml_body(self): body, status = self._get_response_with_body() if body: parsed = yaml.load(body, Loader=yaml.SafeLoader) return parsed, status return None, status def _get_response_complex(self): status = result = body = None response = self._read_server_response() status = response.pop(0) if response: result = response.pop(0) if response: length = int(response.pop(0)) body = self.connection.read_bytes(length + 2)[:-2] return body, result, status def stats(self): self._send_command("stats\r\n") body, status = self._get_response_with_yaml_body() if not body: raise CommandError(status) return body def stats_tube(self, tube: str): self._send_command(f"stats-tube {tube}\r\n") body, status = self._get_response_with_yaml_body() if not body: raise CommandError(status) return body def put(self, body: str, priority=2 ** 31, delay=0, ttr=120): command = f"put {priority} {delay} {ttr} {len(body)}\r\n{body}\r\n" self._send_command(command) result, status = self._get_response_with_result() if not result: raise CommandError(status) return result def reserve(self): self._send_command("reserve\r\n") body, result, status = self._get_response_complex() if not body: raise CommandError(status) return body, result def release(self, job_id, priority=2 ** 31, delay=0): command = f"release {job_id} {priority} {delay}\r\n" self._send_command(command) status = self._get_response_with_status() if status != "RELEASED": raise CommandError(status) def delete(self, job_id): self._send_command(f"delete {job_id}\r\n") status = self._get_response_with_status() if status != "DELETED": raise CommandError(status) def use(self, tube): self._send_command(f"use {tube}\r\n") result, status = self._get_response_with_result() if not result: raise CommandError(status) return result def watch(self, tube): self._send_command(f"watch {tube}\r\n") result, status = self._get_response_with_result() if not result: raise CommandError(status) return result def watching(self): self._send_command(f"list-tubes-watched\r\n") body, status = self._get_response_with_yaml_body() if not body: raise CommandError(status) return body def ignore(self, tube): self._send_command(f"ignore {tube}\r\n") result, status = self._get_response_with_result() if not result: raise CommandError(status) return result def disconnect(self): self.connection.close()
StarcoderdataPython
6570729
""" Tools for testing this library the name begins with an underscore so that the functions aren't run as tests """ import time import contextlib import joblib import numpy as np import nose.tools from nose.plugins.attrib import attr eq_ = nose.tools.eq_ # for compatibility # TODO rename to assert_equal and all other functions similarly equal = nose.tools.eq_ raises = nose.tools.raises @contextlib.contextmanager def assert_time(min_time, max_time): """Raise an exception if the time to process the block is within the expected range of (min_time, max_time), measured in ms. Example: with assert_time(1, 10): do_something_for_5ms() """ start_time = time.time() yield end_time = time.time() actual_time = end_time - start_time assert min_time <= actual_time <= max_time, dict(min=min_time, max=max_time, actual=actual_time) def hash_equal(thing1, thing2, msg=None): equal(joblib.hash(thing1, coerce_mmap=True), joblib.hash(thing2, coerce_mmap=True), msg) hash_eq = hash_equal # for compatibility numpy_equal = np.testing.assert_array_equal numpy_almost_equal = np.testing.assert_array_almost_equal def numpy_allclose(a, b, msg=None, **kwargs): """ can be better than numpy_almost_equal because you have more fine-grained control over absolute and relative tolerance """ assert np.allclose(a, b, **kwargs), dict( a=a, b=b, msg=msg, ) def assertion_error_complement(fn): """ returns a function raises an assertion error if the inner funtion does not NOTE: resulting functions are not serializable TODO reimplement with class to make them serializable """ def inner(*args, **kwargs): try: fn(*args, **kwargs) except AssertionError: pass else: raise AssertionError(dict( fn=fn, args=args, kwargs=kwargs, )) return inner not_equal = assertion_error_complement(equal) numpy_not_almost_equal = assertion_error_complement(numpy_almost_equal) numpy_not_equal = assertion_error_complement(numpy_equal) numpy_not_allclose = assertion_error_complement(numpy_allclose) # decorator to mark slow tests # --- # this allows you to run only non-slow tests with "nosetests -a '!slow'" slow = attr("slow")
StarcoderdataPython
389398
"""AppleByte database support.""" from cryptoassets.core import models from cryptoassets.core.coin.registry import CoinModelDescription from cryptoassets.core.coin.validate import HashAddresValidator coin_description = CoinModelDescription( coin_name="aby", wallet_model_name="cryptoassets.core.coin.applebyte.models.AppleByteWallet", address_model_name="cryptoassets.core.coin.applebyte.models.AppleByteAddress", account_model_name="cryptoassets.core.coin.applebyte.models.AppleByteAccount", transaction_model_name="cryptoassets.core.coin.applebyte.models.AppleByteTransaction", network_transaction_model_name="cryptoassets.core.coin.applebyte.models.AppleByteNetworkTransaction", address_validator=HashAddresValidator()) class AppleByteAccount(models.GenericAccount): coin_description = coin_description class AppleByteAddress(models.GenericAddress): coin_description = coin_description class AppleByteTransaction(models.GenericConfirmationTransaction): coin_description = coin_description class AppleByteWallet(models.GenericWallet): coin_description = coin_description class AppleByteNetworkTransaction(models.GenericConfirmationNetworkTransaction): coin_description = coin_description
StarcoderdataPython
11293040
<filename>lms/views/reports.py from pyramid.view import view_config from lms.models import ApplicationInstance, LtiLaunches @view_config( route_name="reports", renderer="lms:templates/reports/application_report.html.jinja2", permission="view", ) def list_application_instances(request): launches = request.db.execute( "SELECT context_id, count(context_id), \ lms_url, requesters_email, consumer_key FROM lti_launches LEFT JOIN \ application_instances on \ lti_launches.lti_key=application_instances.consumer_key GROUP BY \ context_id, consumer_key, requesters_email, lms_url ORDER BY \ count(CONTEXT_ID) DESC;" ).fetchall() return { "apps": request.db.query(ApplicationInstance).all(), "launches": launches, "num_launches": request.db.query(LtiLaunches).count(), "logout_url": request.route_url("logout"), }
StarcoderdataPython
1986504
<gh_stars>0 __author__ = 'Andy' import time from whirlybird.server.position_contoller import PositionController if __name__ == "__main__": position_controller = PositionController() position_controller.run() time.sleep(10) position_controller.kill()
StarcoderdataPython
5101387
<gh_stars>100-1000 #!/usr/bin/env python """ Kernels. Authors: - <NAME>, 2012 (<EMAIL>) - <NAME>, 2016 (<EMAIL>) Copyright 2016, Mindboggle team (http://mindboggle.info), Apache v2.0 License """ def rbf_kernel(x1, x2, sigma): """ Compute normalized and unnormalized graph Laplacians. Parameters ---------- x1 : Nx1 numpy array x2 : Nx1 numpy array sigma : float Returns ------- rbf : float Examples -------- >>> import numpy as np >>> from mindboggle.guts.kernels import rbf_kernel >>> x1 = np.array([0.1,0.2,0.4,0]) >>> x2 = np.array([0.1,0.3,0.5,0]) >>> sigma = 0.5 >>> rbf = rbf_kernel(x1, x2, sigma) >>> print('{0:0.5f}'.format(rbf)) 0.96079 """ import numpy as np return np.exp(-np.linalg.norm(x1 - x2) ** 2 / (2 * sigma ** 2)) # def cotangent_kernel(Nodes, Meshes): # """ # This function constructs weighted edges of a graph. # # Parameters # ---------- # Nodes : numpy array # Meshes : numpy array # # Returns # ------- # W : N x N matrix # weight matrix # # Examples # -------- # >>> import numpy as np # >>> from mindboggle.guts.kernels import cotangent_kernel # >>> Nodes = np.array([0,1,2,3,4]) # >>> Meshes = np.array([[1,2,3],[0,1,2],[0,1,3],[0,1,4],[0,2,3],[0,3,4]]) # >>> cotangent_kernel(Nodes, Meshes) # ValueError: 'axisa' out of bounds # # """ # import numpy as np # from scipy.sparse import lil_matrix # # num_nodes = Nodes.shape[0] # W = lil_matrix((num_nodes, num_nodes)) # #print('Constructing sparse affinity matrix...') # for c in Meshes: # # Obtain vertices which comprise face # v0, v1, v2 = Nodes[c[0]], Nodes[c[1]], Nodes[c[2]] # # # Obtain cotangents of angles # cot0 = np.dot(v1-v0, v2-v0) / np.linalg.norm(np.cross(v1-v0, v2-v0)) # cot1 = np.dot(v2-v1, v0-v1) / np.linalg.norm(np.cross(v2-v1, v0-v1)) # cot2 = np.dot(v0-v2, v1-v2) / np.linalg.norm(np.cross(v0-v2, v1-v2)) # # # Update weight matrix accordingly # W[c[1], c[2]] += cot0 # W[c[2], c[1]] += cot0 # W[c[0], c[2]] += cot1 # W[c[2], c[0]] += cot1 # W[c[0], c[1]] += cot2 # W[c[1], c[0]] += cot2 # # return W def inverse_distance(x1, x2, epsilon): """ This function constructs weighted edges of a graph, where the weight is the inverse of the distance between two nodes. Parameters ---------- x1 : Nx1 numpy array x2 : Nx1 numpy array epsilon : float Returns ------- d : float Examples -------- >>> import numpy as np >>> from mindboggle.guts.kernels import inverse_distance >>> x1 = np.array([0.1,0.2,0.4,0]) >>> x2 = np.array([0.1,0.3,0.5,0]) >>> epsilon = 0.05 >>> d = inverse_distance(x1, x2, epsilon) >>> print('{0:0.5f}'.format(d)) 5.22408 """ import numpy as np return 1.0/(np.linalg.norm(x1 - x2) + epsilon) # ============================================================================ # Doctests # ============================================================================ if __name__ == "__main__": import doctest doctest.testmod(verbose=True) # py.test --doctest-modules
StarcoderdataPython
11323764
r"""Perform continuous measure record. The gRPC API is built from the C API. NI-DCPower documentation is installed with the driver at: C:\Program Files (x86)\IVI Foundation\IVI\Drivers\niDCPower\Documentation\NIDCPowerCref.chm Getting Started: To run this example, install "NI-DCPower Driver" on the server machine: https://www.ni.com/en-in/support/downloads/drivers/download.ni-dcpower.html For instructions on how to use protoc to generate gRPC client interfaces, see our "Creating a gRPC Client" wiki page: https://github.com/ni/grpc-device/wiki/Creating-a-gRPC-Client Refer to the NI DCPOWER gRPC Wiki for the latest C Function Reference: https://github.com/ni/grpc-device/wiki/NI-DCPOWER-C-Function-Reference Running from command line: Server machine's IP address, port number, and resource name can be passed as separate command line arguments. > python measure-record.py <server_address> <port_number> <resource_name> If they are not passed in as command line arguments, then by default the server address will be "localhost:31763", with "SimulatedDCPower" as the resource name. """ import math import sys import time import grpc import matplotlib.pyplot as plt import nidcpower_pb2 as nidcpower_types import nidcpower_pb2_grpc as grpc_nidcpower import numpy as np SERVER_ADDRESS = "localhost" SERVER_PORT = "31763" SESSION_NAME = "NI-DCPower-Session" # Resource name, channel name and options for a simulated 4147 client. Change them according to # NI-DCPower model. RESOURCE = "SimulatedDCPower" OPTIONS = "Simulate=1,DriverSetup=Model:4147;BoardType:PXIe" CHANNELS = "0" # Parameters RECORD_LENGTH = 10 BUFFER_MULTIPLIER = 10 VOLTAGE_LEVEL = 5.0 # Read in cmd args if len(sys.argv) >= 2: SERVER_ADDRESS = sys.argv[1] if len(sys.argv) >= 3: SERVER_PORT = sys.argv[2] if len(sys.argv) >= 4: RESOURCE = sys.argv[3] OPTIONS = "" def check_for_error(vi, status): """Raise an exception if the status indicates an error.""" if status != 0: error_message_response = client.ErrorMessage( nidcpower_types.ErrorMessageRequest(vi=vi, error_code=status) ) raise Exception(error_message_response.error_message) # Create the communication channel for the remote host and create connections to the NI-DCPower and # session services. channel = grpc.insecure_channel(f"{SERVER_ADDRESS}:{SERVER_PORT}") client = grpc_nidcpower.NiDCPowerStub(channel) try: # Initialize the session. initialize_with_channels_response = client.InitializeWithChannels( nidcpower_types.InitializeWithChannelsRequest( session_name=SESSION_NAME, resource_name=RESOURCE, channels=CHANNELS, reset=False, option_string=OPTIONS, ) ) vi = initialize_with_channels_response.vi check_for_error(vi, initialize_with_channels_response.status) # Specify when the measure unit should acquire measurements. configure_measure_when = client.SetAttributeViInt32( nidcpower_types.SetAttributeViInt32Request( vi=vi, attribute_id=nidcpower_types.NiDCPowerAttribute.NIDCPOWER_ATTRIBUTE_MEASURE_WHEN, attribute_value=nidcpower_types.NiDCPowerInt32AttributeValues.NIDCPOWER_INT32_MEASURE_WHEN_VAL_AUTOMATICALLY_AFTER_SOURCE_COMPLETE, ) ) check_for_error(vi, configure_measure_when.status) # set the voltage level. configure_voltage_level = client.ConfigureVoltageLevel( nidcpower_types.ConfigureVoltageLevelRequest(vi=vi, level=VOLTAGE_LEVEL) ) check_for_error(vi, configure_voltage_level.status) # Sspecify how many measurements compose a measure record. configure_measure_record_length = client.SetAttributeViInt32( nidcpower_types.SetAttributeViInt32Request( vi=vi, attribute_id=nidcpower_types.NiDCPowerAttribute.NIDCPOWER_ATTRIBUTE_MEASURE_RECORD_LENGTH, attribute_value=RECORD_LENGTH, ) ) check_for_error(vi, configure_measure_record_length.status) # Specify whether to take continuous measurements. Set it to False for continuous measurement. configure_measure_record_length_is_finite = client.SetAttributeViBoolean( nidcpower_types.SetAttributeViBooleanRequest( vi=vi, attribute_id=nidcpower_types.NiDCPowerAttribute.NIDCPOWER_ATTRIBUTE_MEASURE_RECORD_LENGTH_IS_FINITE, attribute_value=False, ) ) check_for_error(vi, configure_measure_record_length_is_finite.status) # commit the session. commit_response = client.Commit( nidcpower_types.CommitRequest( vi=vi, ) ) check_for_error(vi, commit_response.status) # get measure_record_delta_time. get_measure_record_delta_time = client.GetAttributeViReal64( nidcpower_types.GetAttributeViReal64Request( vi=vi, attribute_id=nidcpower_types.NiDCPowerAttribute.NIDCPOWER_ATTRIBUTE_MEASURE_RECORD_DELTA_TIME, ) ) check_for_error(vi, get_measure_record_delta_time.status) # initiate the session. initiate_response = client.Initiate( nidcpower_types.InitiateRequest( vi=vi, ) ) check_for_error(vi, initiate_response.status) # Setup a plot to draw the captured waveform. fig = plt.figure("Waveform Graph") fig.show() fig.canvas.draw() # Handle closing of plot window. closed = False def _on_close(event): global closed closed = True fig.canvas.mpl_connect("close_event", _on_close) print("\nReading values in loop. CTRL+C or Close window to stop.\n") # Create a buffer for fetching the values. y_axis = [0.0] * (RECORD_LENGTH * BUFFER_MULTIPLIER) x_start = 0 try: while not closed: # Clear the plot and setup the axis. plt.clf() plt.axis() plt.xlabel("Samples") plt.ylabel("Amplitude") fetch_multiple_response = client.FetchMultiple( nidcpower_types.FetchMultipleRequest(vi=vi, timeout=10, count=RECORD_LENGTH) ) check_for_error(vi, fetch_multiple_response.status) # Append the fetched values in the buffer. y_axis.extend(fetch_multiple_response.voltage_measurements) y_axis = y_axis[RECORD_LENGTH:] # Updating the precision of the fetched values. y_axis_new = [] for value in y_axis: if value < VOLTAGE_LEVEL: y_axis_new.append(math.floor(value * 100) / 100) else: y_axis_new.append(math.ceil(value * 100) / 100) # Plotting y_axis = y_axis_new x_axis = np.arange( start=x_start, stop=x_start + RECORD_LENGTH * BUFFER_MULTIPLIER, step=1 ) x_start = x_start + RECORD_LENGTH plt.plot(x_axis, y_axis) plt.pause(0.001) time.sleep(0.1) except KeyboardInterrupt: pass print(f"Effective measurement rate : {1 / get_measure_record_delta_time.attribute_value}") except grpc.RpcError as rpc_error: error_message = rpc_error.details() if rpc_error.code() == grpc.StatusCode.UNAVAILABLE: error_message = f"Failed to connect to server on {SERVER_ADDRESS}:{SERVER_PORT}" elif rpc_error.code() == grpc.StatusCode.UNIMPLEMENTED: error_message = ( "The operation is not implemented or is not supported/enabled in this service" ) print(f"{error_message}") finally: if "vi" in vars() and vi.id != 0: # close the session. check_for_error(vi, (client.Close(nidcpower_types.CloseRequest(vi=vi))).status)
StarcoderdataPython
4803294
#!/usr/bin/env python u""" nsidc_subset_altimetry.py Written by <NAME> (07/2018) Program to acquire and plot subsetted NSIDC data using the Valkyrie prototype CALLING SEQUENCE: to use a bounding box: python nsidc_subset_altimetry.py --bbox=-29.25,69.4,-29.15,69.50 ILVIS2 to use start and end time: python nsidc_subset_altimetry.py -T 2009-04-28T12:23:51,2009-04-28T12:24:00 ILATM1B to use a polygon: python nsidc_subset_altimetry.py --longitude=-48,-47.9,-48,-48 \ --latitude=69,69,69.1,69 ILATM1B to create a plot (note polygon is same as bounding box above) python nsidc_subset_altimetry.py --longitude=-29.25,-29.15,-29.15,-29.25,-29.25 \ --latitude=69.4,69.4,69.50,69.50,69.4 --plot ILATM1B INPUTS: ILATM2: Airborne Topographic Mapper Icessn Elevation, Slope, and Roughness ILATM1B: Airborne Topographic Mapper QFIT Elevation ILVIS1B: Land, Vegetation and Ice Sensor Geolocated Return Energy Waveforms ILVIS2: Geolocated Land, Vegetation and Ice Sensor Surface Elevation Product COMMAND LINE OPTIONS: --help: list the command line options -D X, --directory=X: Data directory -B X, --bbox=X: Bounding box (lonmin,latmin,lonmax,latmax) --longitude=X: Polygon longitudinal coordinates (comma-separated) --latitude=X: Polygon latitudinal coordinates (comma-separated) -T X, --time=X: Time range (comma-separated start and end) -M X, --mode=X: Permissions mode of data -V, --verbose: Verbose output of transferred file -P, --plot: Check output with a scatter plot UPDATE HISTORY: Updated 06/2018: using python3 compatible octal, input and urllib Written 06/2017 """ from __future__ import print_function import future.standard_library import os import sys import time import h5py import shutil import getopt import inspect import posixpath import dateutil.parser import matplotlib.pyplot as plt import matplotlib.ticker as ticker with future.standard_library.hooks(): import urllib.request #-- PURPOSE: program to acquire (and plot) subsetted NSIDC data def nsidc_subset_altimetry(PRODUCT, filepath, BOUNDS=None, LATITUDE=None, LONGITUDE=None, TIME=None, VERBOSE=False, PLOT=False, MODE=0o775): #-- create output directory if non-existent os.makedirs(filepath) if not os.access(filepath, os.F_OK) else None #-- if using latitude and longitude points if LATITUDE and LONGITUDE: ll = ','.join(['{0:f},{1:f}'.format(ln,lt) for ln,lt in zip(LONGITUDE,LATITUDE)]) poly_flag = '?polygon={0}'.format(ll) else: poly_flag = '' #-- if using bounding box if BOUNDS: #-- min_lon,min_lat,max_lon,max_lat bbox_flag = '?bbox={0:f},{1:f},{2:f},{3:f}'.format(*BOUNDS) else: bbox_flag = '' #-- if using time start and end if TIME: #-- verify that start and end times are in ISO format start_time = dateutil.parser.parse(TIME[0]).isoformat() end_time = dateutil.parser.parse(TIME[1]).isoformat() time_flag = '?time_range={0},{1}'.format(start_time, end_time) else: time_flag = '' #-- full url for subset dataset HOST = 'http://staging.valkyrie-vm.apps.nsidc.org' remote_file = '{0}{1}{2}{3}'.format(PRODUCT,poly_flag,bbox_flag,time_flag) #-- local file today = time.strftime('%Y-%m-%dT%H-%M-%S',time.localtime()) local_file = os.path.join(filepath,'{0}_{1}.H5'.format(PRODUCT,today)) #-- Printing files transferred if VERBOSE args = (posixpath.join(HOST,remote_file),local_file) print('{0} -->\n\t{1}\n'.format(*args)) if VERBOSE else None #-- Create and submit request. There are a wide range of exceptions #-- that can be thrown here, including HTTPError and URLError. request = urllib.request.Request(posixpath.join(HOST,remote_file)) response = urllib.request.urlopen(request) #-- copy contents to local file using chunked transfer encoding #-- transfer should work properly with ascii and binary data formats CHUNK = 16 * 1024 with open(local_file, 'wb') as f: shutil.copyfileobj(response, f, CHUNK) #-- check output with a scatter plot if PLOT: #-- extract X, Y and Z variables from file keys = {} keys['ILATM1B'] = ['Latitude','Longitude','Elevation'] keys['ILVIS2'] = ['LATITUDE_LOW','LONGITUDE_LOW','ELEVATION_LOW'] dinput = {} with h5py.File(local_file,'r') as fileID: #-- map X, Y and Z to values from input dataset for k,v in zip(['Y','X','Z'],keys[PRODUCT]): dinput[k] = fileID[v][:] #-- create scatter plot fig, ax1 = plt.subplots(num=1, figsize=(8,6)) sc = ax1.scatter(dinput['X'], dinput['Y'], c=dinput['Z'], s=1, cmap=plt.cm.Spectral_r) #-- Add colorbar for elevation and adjust size #-- add extension triangles to upper and lower bounds #-- pad = distance from main plot axis #-- shrink = percent size of colorbar #-- aspect = lengthXwidth aspect of colorbar cbar = plt.colorbar(sc, ax=ax1, extend='both', extendfrac=0.0375, pad=0.025, drawedges=False, shrink=0.92, aspect=22.5) #-- rasterized colorbar to remove lines cbar.solids.set_rasterized(True) #-- Add labels to the colorbar cbar.ax.set_ylabel('Height Above Reference Ellipsoid', labelpad=10, fontsize=12) cbar.ax.set_xlabel('m', fontsize=12) cbar.ax.xaxis.set_label_coords(0.5, 1.045) #-- ticks lines all the way across cbar.ax.tick_params(which='both', width=1, direction='in', length=13, labelsize=12) #-- set x and y labels, adjust tick labels and adjust tick label size ax1.set_ylabel(u'Latitude [\u00B0]', fontsize=12) ax1.set_xlabel(u'Longitude [\u00B0]', fontsize=12) ax1.xaxis.set_major_formatter(ticker.FormatStrFormatter('%g')) ax1.yaxis.set_major_formatter(ticker.FormatStrFormatter('%g')) for tick in ax1.xaxis.get_major_ticks(): tick.label.set_fontsize(12) for tick in ax1.yaxis.get_major_ticks(): tick.label.set_fontsize(12) #-- show the plot plt.show() #-- PURPOSE: help module to describe the optional input command-line parameters def usage(): print('\nHelp: {0}'.format(os.path.basename(sys.argv[0]))) print(' -D X, --directory=X\tData directory') print(' -B X, --bbox=X\t\tBounding box (lonmin,latmin,lonmax,latmax)') print(' --longitude=X\t\tPolygon longitudinal coordinates (comma-separated)') print(' --latitude=X\t\tPolygon latitudinal coordinates (comma-separated)') print(' -T X, --time=X\t\tTime range (comma-separated start and end)') print(' -M X, --mode=X\t\tPermissions mode of data') print(' -V, --verbose\t\tVerbose output of transferred file') print(' -P, --plot\t\tCheck output with a scatter plot\n') #-- program that calls nsidcAltimGet with arguments listed def main(): #-- Read the system arguments listed after the program long_options = ['help','bbox=','longitude=','latitude=','time=', 'directory=','mode=','verbose','plot'] optlist,arglist = getopt.getopt(sys.argv[1:],'hB:T:D:M:VP',long_options) #-- command line parameters filename = inspect.getframeinfo(inspect.currentframe()).filename filepath = os.path.dirname(os.path.abspath(filename)) BOUNDS = None lat = None lon = None TIME = None VERBOSE = False PLOT = False #-- permissions mode of the output files (number in octal) MODE = 0o775 for opt, arg in optlist: if opt in ('-h','--help'): usage() sys.exit() elif opt in ('-D','--directory'): filepath = os.path.expanduser(arg) elif opt in ('-B','--bbox'): BOUNDS = [float(i) for i in arg.split(',')] elif opt in ('--longitude'): lon = [float(i) for i in arg.split(',')] elif opt in ('--latitude'): lat = [float(i) for i in arg.split(',')] elif opt in ('-T','--time'): TIME = arg.split(',') elif opt in ('-V','--verbose'): VERBOSE = True elif opt in ('-M','--mode'): MODE = int(arg, 8) elif opt in ('-P','--plot'): PLOT = True #-- IceBridge Products for the NSIDC subsetter P = {} P['ILATM2'] = 'Icebridge Airborne Topographic Mapper Icessn Product' P['ILATM1B'] = 'Icebridge Airborne Topographic Mapper QFIT Elevation' P['ILVIS1B'] = 'Icebridge LVIS Geolocated Return Energy Waveforms' P['ILVIS2'] = 'Icebridge Land, Vegetation and Ice Sensor Elevation Product' #-- enter dataset to transfer (ATM, LVIS, etc) as system argument if not arglist: for key,val in P.iteritems(): print('{0}: {1}'.format(key, val)) raise Exception('No System Arguments Listed') #-- check that each data product entered was correctly typed keys = ','.join(sorted([key for key in P.keys()])) for p in arglist: if p not in P.keys(): raise IOError('Incorrect Data Product Entered ({0})'.format(keys)) #-- run the program for each argument for p in arglist: nsidc_subset_altimetry(p, filepath, BOUNDS=BOUNDS, LATITUDE=lat, LONGITUDE=lon, TIME=TIME, VERBOSE=VERBOSE, MODE=MODE, PLOT=PLOT) #-- run main program if __name__ == '__main__': main()
StarcoderdataPython
9737345
#!/usr/bin/env python # # This script is being used to find the deeply hidden bug in the move generator! # # It attempts to generate a position where ccore's perftdiv (at depth 1) is different # to that given by critter. # # usage: find_buggy_pos.py [number|filename] # If filename is specified then FENs are read from the file, else they are generated # using ccore's randompos function. # import sys, os, subprocess, re, string if sys.platform != "win32": import signal progname = "" critterPath = "/Users/andy/Documents/ChessEngines/critter16a/critter-16a" ccorePath = "build/ccore -q findbuggypos" def sigHandler(signum, frame): """ Handle signals """ sys.stderr.write("{0}: Terminated with signal {1}\n".format(progname, signum)) sys.exit(2) def randomPos(ccore): ccore.stdin.write("randompos\n") fen = ccore.stdout.readline().strip() #print "got fen", fen return fen def ccoreNodeCount(ccore, fen): #print "writing fen {0}".format(fen) ccore.stdin.write("setboard {0}\n".format(fen)) ccore.stdin.write("perftdiv 1\n") nodes = ccore.stdout.readline().strip() #print "got nodes", nodes return int(nodes) def critterNodeCount(critter, fen): #print "writing fen {0}".format(fen) critter.stdin.write("setboard {0}\n".format(fen)) critter.stdin.write("divide 1\n") nodes = 0 while not nodes: line = critter.stdout.readline() #print line match = re.match(r'^(\d+) nodes in.*$', line) if match: nodes = match.group(1) return int(nodes) def main(argv = None): """ Program entry point """ global progname filename = "" count = 1000 if sys.platform != "win32": for sig in (signal.SIGINT, signal.SIGHUP, signal.SIGTERM): signal.signal(sig, sigHandler) if argv is None: argv = sys.argv progname = os.path.basename(argv[0]) if len(argv) == 2: if os.path.isfile(argv[1]): filename = argv[1] else: count = int(argv[1]) try: # Keep the ccore and criter sub-processes permanently open, to save time and resources # continually starting them. ccore = subprocess.Popen(ccorePath, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, shell=True) critter = subprocess.Popen(critterPath, stdin = subprocess.PIPE, stdout = subprocess.PIPE, stderr = subprocess.STDOUT, shell=True) if filename: print "Reading positions from", filename i = 0 fenfile = open(filename) for fen in fenfile: fen = fen.strip() i += 1 expected = critterNodeCount(critter, fen) actual = ccoreNodeCount(ccore, fen) if expected != actual: print i+1, "MISMATCH:", fen, "(", actual, "!=", expected, ")" return 1 else: print i+1, "match", fen else: print "Using", count, "random positions" for i in range(0, count): fen = randomPos(ccore) if fen: expected = critterNodeCount(critter, fen) actual = ccoreNodeCount(ccore, fen) if expected != actual: print i+1, "MISMATCH:", fen, "(", actual, "!=", expected, ")" return 1 else: print i+1, "match", fen except IOError, msg: print "{0}: exception {1}\n".format(progname, msg) return 2 return 0 if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
3327636
#!/bin/python # path to python # where is your writable directory? Jobs will be managed in a .queue directory here. SCRATCH="FULL_PATH_TO_YOUR_SCRATCH_SPACE" # username USER="YOUR_USERNAME_HERE" # how big is one batch of jobs? ex 10 means there must be 10 free slots to run another batch. JOB_ARRAY_MAX=20 # max total jobs to run in parallel with this tool (ideally multiple of JOB_ARRAY_MAX) QUEUE_MAX=140 ## ## ## Customize everything before this line ## ## import os, sys, shutil import glob import pickle import time import re from subprocess import check_output import argparse basedir = os.path.dirname(os.path.realpath(__file__)) def joinpath(*args): build = args[0] for iarg in range(1,len(args)): build = os.path.join(build,args[iarg]); return build; def existingProjects(): projects = []; confdir = joinpath(SCRATCH, ".queue"); if os.path.isdir(confdir): for folder in os.walk(confdir).next()[1]: projectdir = joinpath(confdir,folder); projects.append(projectdir); return projects else: return False def quitWithMsg(msg): print("\n"); print(msg); sys.exit(1); def runningJobs(): '''Returns list of job ids (just the 12345 number part) for all running jobs of the specified user''' list_running = check_output(["qstat -au "+USER+" | tail -n +6 | cut -d'.' -f1 | cut -d'[' -f1"], shell=True); list_running = list_running.split('\n'); list_running = [int(e) for e in list_running if len(e) != 0]; return list_running; def splitArrayJob(jobfile,jobtext,begin,end): begin = int(begin); end = int(end); rxBegin = re.compile(r'''XBEGINX'''); rxEnd = re.compile(r'''XENDX'''); rxMultiplier = re.compile(r'''XMULTIPLIERX'''); rxSet = re.compile(r'''XSETX'''); rxOffset = re.compile(r'''XOFFSETX'''); SETS = (end - begin + 1) / JOB_ARRAY_MAX; REMAINDER = (end - begin + 1) % JOB_ARRAY_MAX; firstJobMade=False; projectdir=joinpath(SCRATCH,".queue"); jobs_to_add = []; projdirname = "array_"+jobfile; if not os.path.exists(joinpath(SCRATCH,".queue",projdirname)): os.makedirs(joinpath(SCRATCH,".queue",projdirname)); for set in range(SETS): this_filename = str(set*JOB_ARRAY_MAX+begin)+"."+str(set*JOB_ARRAY_MAX+begin+JOB_ARRAY_MAX-1)+".sh"; jobs_to_add.append(this_filename); open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(set),rxEnd.sub(str(JOB_ARRAY_MAX),rxBegin.sub(str(1),jobtext)))))); ## for each set, multiplier=set, begin=begin, end=begin+JOB_ARRAY_MAX-1 firstJobMade=True; if (REMAINDER != 0): this_filename = str(SETS*JOB_ARRAY_MAX+begin)+"."+str(end)+".sh"; jobs_to_add.append(this_filename); if (firstJobMade == True): open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(SETS),rxEnd.sub(str(REMAINDER),rxBegin.sub(str(1),jobtext)))))); ## at remainder, assume first job started: multiplier=SETS, begin=1, end=end else: open(joinpath(projectdir,"array_"+jobfile,this_filename),'w').write(rxOffset.sub(str(begin-1),rxSet.sub(str(JOB_ARRAY_MAX),rxMultiplier.sub(str(SETS),rxEnd.sub(str(end-begin+1),rxBegin.sub(str(1),jobtext)))))); ## at remainder, assume NOT first job started: multiplier= pickle.dump(jobs_to_add, open(joinpath(SCRATCH,".queue",projdirname,".held"),"wb")); submitted = []; pickle.dump(submitted, open(joinpath(SCRATCH,".queue",projdirname,".submitted"),"wb")); #write empty array so file exists def checkOnJobsForProjects(): """Submits jobs for folders found in the .queue hidden folder. Returns False if there were jobs found to submit or running, True otherwise.""" projects = existingProjects(); if (projects == False): quitWithMsg("No projects found\n"); running_jobs = runningJobs(); available_slots = 0; #how many jobs we can submit at the end of evaluation zeroJobsLeft = True; for project in projects: submitted_jobs = pickle.load(open(joinpath(project,".submitted"),"rb")); held_jobs = pickle.load(open(joinpath(project,".held"),"rb")); for job in submitted_jobs: if (job not in running_jobs): submitted_jobs.remove(job); if (len(held_jobs) == 0 and len(submitted_jobs) == 0): shutil.rmtree(project) #remove finished project continue; else: zeroJobsLeft = False; available = QUEUE_MAX - (len(running_jobs)*JOB_ARRAY_MAX); if (available >= 0): available_slots += (available/JOB_ARRAY_MAX); while ((available_slots > 0) and (len(held_jobs) > 0)): job = held_jobs.pop(); jobID = submitJobGetID(joinpath(project,job)); submitted_jobs.append(jobID); available_slots -= 1; pickle.dump(submitted_jobs, open(joinpath(project,".submitted"),"wb")); pickle.dump(held_jobs, open(joinpath(project,".held"),"wb")); return zeroJobsLeft; def submitJobGetID(jobFileFullPath): '''Submits a job file given the full path and returns the integer job id part of 12345.job.mgr[] etc.''' ID = check_output(["qsub "+jobFileFullPath], shell=True); ID = int(ID.split('\n')[0].split('.')[0].split('[')[0]); return ID; def daemonIsRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); if os.path.exists(daemonfile) and os.path.isfile(daemonfile): return True; else: return False; def markDaemonIsRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); open(daemonfile, 'a').close(); def markDaemonNotRunning(): daemonfile = joinpath(SCRATCH,'.queue','.daemon'); if os.path.exists(daemonfile) and os.path.isfile(daemonfile): os.remove(daemonfile); def getArrayRangeAndTemplateFile(filename): '''takes a filename of a qsub submit file. returns the numbers used in this type of line: #PBS -t 1-100 and returns the new file contents replaced with template symbols: #PBS -t XBEGINX-XENDX and a new line beneath that: PBS_ARRAYID=$[${PBS_ARRAYID}+XMULTIPLIERX*XSETX+XOFFSETX]''' filetext = None; with open(filename, 'r') as filehandle: filetext = filehandle.read(); regex = re.compile(r'''PBS -t[\s]*(\d+)[\s]*-[\s]*(\d+)'''); match = regex.search(filetext); filetext = regex.sub(r'''PBS -t XBEGINX-XENDX PBS_ARRAYID=$[${PBS_ARRAYID}+XMULTIPLIERX*XSETX+XOFFSETX]''',filetext); return (match.group(1), match.group(2), filetext); def submitSelf(): check_output(["qsub -j oe -o /dev/null -l mem=2gb,nodes=1:ppn=1,walltime=03:55:00 "+joinpath(SCRATCH,'.queue','queue.py')], shell=True); def help(): '''Returns args object.''' print(" Usage: ./queue.py [qsub file or resume]") print("") print(" qsub file: A qsub array job.") print(" resume: Resubmits self in job manager mode if necessary.") print(" <no arguments>: Assumes run in automated job manager mode") print(" and will kill itself and resubmit itself every 4 hours.") print("") print(" Warning: this script possibly produces many files.") print(" take care to remove job directories no longer") print(" needed by the end of the qsub file.") print("") print(" The working folder is "+joinpath(SCRATCH,".queue")+" which") print(" contains a semaphore .daemon file, and a project directory") print(" for each submitted qsub array file using this tool.") print(" Each project directory contains prepared qsub files for") print(" each smaller array segment, as well as two hidden files") print(" .held and .submitted. .held is a list of qsub files yet") print(" to be submitted. .submitted contains job ids for jobs") print(" that are running.") print("") print(" Workflow: submit a qsub array job. queue.py is automatically") print(" submitted as a 4 hour job which every minute checks if job") print(" status has changed. If so then submits a new chunk of jobs") print(" if there is room. A .daemon file is created at the beginning") print(" of the job manager 4 hour run, and removed at the end.") print(" This .daemon file helps prevent multiple job managers running.") print(" However, if you kill the job manager, simpley ./queue.py resume") print(" and the job manager will be forced into a running state after") print(" submission. The project directories in") print(" "+joinpath(SCRATCH,".queue")+" are each removed after") print(" all jobs in them are completed."); print("") def main(): if (len(sys.argv) > 1): # Users wants to submit a new job if (sys.argv[1] in ["-h","--h","--help","-?","--?"]): help() sys.exit(0); if (sys.argv[1] == "resume"): markDaemonIsRunning(); shutil.copy("queue.py", joinpath(SCRATCH,'.queue','queue.py')); submitSelf(); sys.exit(0); rangeBegin, rangeEnd, fileTemplated = getArrayRangeAndTemplateFile(sys.argv[1]); splitArrayJob(sys.argv[1], fileTemplated, rangeBegin, rangeEnd); shutil.copy("queue.py", joinpath(SCRATCH,'.queue','queue.py')); checkOnJobsForProjects(); if not daemonIsRunning(): markDaemonIsRunning(); submitSelf(); else: # Not user-mode, but automated startup to maintain jobs if not daemonIsRunning(): sys.stderr.write("Something is wrong, because we're running a new instance but the daemon flag is gone. Shutting down.\n"); sys.exit(0); justUnder4Hours = 3600*4 - 60*10; #10 minutes under timeStart = time.time(); while ((time.time() - timeStart) < justUnder4Hours): done = checkOnJobsForProjects(); if (done == True): markDaemonNotRunning(); sys.exit(0); else: time.sleep(60); # wait one minute submitSelf(); sys.exit(0); if __name__ == "__main__": main();
StarcoderdataPython
191070
<reponame>schallerdavid/perses from perses.bias.bias_engine import *
StarcoderdataPython
11212771
import logging from scout.models.hgnc_map import HgncGene LOG = logging.getLogger(__name__) def build_phenotype(phenotype_info): phenotype_obj = {} phenotype_obj["mim_number"] = phenotype_info["mim_number"] phenotype_obj["description"] = phenotype_info["description"] phenotype_obj["inheritance_models"] = list(phenotype_info.get("inheritance", set())) phenotype_obj["status"] = phenotype_info["status"] return phenotype_obj def build_hgnc_gene(gene_info, build="37"): """Build a hgnc_gene object Args: gene_info(dict): Gene information Returns: gene_obj(dict) { '_id': ObjectId(), # This is the hgnc id, required: 'hgnc_id': int, # The primary symbol, required 'hgnc_symbol': str, 'ensembl_id': str, # required 'build': str, # '37' or '38', defaults to '37', required 'chromosome': str, # required 'start': int, # required 'end': int, # required 'description': str, # Gene description 'aliases': list(), # Gene symbol aliases, includes hgnc_symbol, str 'entrez_id': int, 'omim_id': int, 'pli_score': float, 'primary_transcripts': list(), # List of refseq transcripts (str) 'ucsc_id': str, 'uniprot_ids': list(), # List of str 'vega_id': str, 'transcripts': list(), # List of hgnc_transcript # Inheritance information 'inheritance_models': list(), # List of model names 'incomplete_penetrance': bool, # Acquired from HPO # Phenotype information 'phenotypes': list(), # List of dictionaries with phenotype information } """ try: hgnc_id = int(gene_info["hgnc_id"]) except KeyError as err: raise KeyError("Gene has to have a hgnc_id") except ValueError as err: raise ValueError("hgnc_id has to be integer") try: hgnc_symbol = gene_info["hgnc_symbol"] except KeyError as err: raise KeyError("Gene has to have a hgnc_symbol") try: ensembl_id = gene_info["ensembl_gene_id"] except KeyError as err: raise KeyError("Gene has to have a ensembl_id") try: chromosome = gene_info["chromosome"] except KeyError as err: raise KeyError("Gene has to have a chromosome") try: start = int(gene_info["start"]) except KeyError as err: raise KeyError("Gene has to have a start position") except TypeError as err: raise TypeError("Gene start has to be a integer") try: end = int(gene_info["end"]) except KeyError as err: raise KeyError("Gene has to have a end position") except TypeError as err: raise TypeError("Gene end has to be a integer") gene_obj = HgncGene( hgnc_id=hgnc_id, hgnc_symbol=hgnc_symbol, ensembl_id=ensembl_id, chrom=chromosome, start=start, end=end, build=build, ) if gene_info.get("description"): gene_obj["description"] = gene_info["description"] # LOG.debug("Adding info %s", gene_info['description']) if gene_info.get("previous_symbols"): gene_obj["aliases"] = gene_info["previous_symbols"] if gene_info.get("entrez_id"): gene_obj["entrez_id"] = int(gene_info["entrez_id"]) if gene_info.get("omim_id"): gene_obj["omim_id"] = int(gene_info["omim_id"]) if gene_info.get("pli_score"): gene_obj["pli_score"] = float(gene_info["pli_score"]) if gene_info.get("ref_seq"): gene_obj["primary_transcripts"] = gene_info["ref_seq"] if gene_info.get("ucsc_id"): gene_obj["ucsc_id"] = gene_info["ucsc_id"] if gene_info.get("uniprot_ids"): gene_obj["uniprot_ids"] = gene_info["uniprot_ids"] if gene_info.get("vega_id"): gene_obj["vega_id"] = gene_info["vega_id"] if gene_info.get("incomplete_penetrance"): gene_obj["incomplete_penetrance"] = True if gene_info.get("inheritance_models"): gene_obj["inheritance_models"] = gene_info["inheritance_models"] phenotype_objs = [] for phenotype_info in gene_info.get("phenotypes", []): phenotype_objs.append(build_phenotype(phenotype_info)) if phenotype_objs: gene_obj["phenotypes"] = phenotype_objs for key in list(gene_obj): if gene_obj[key] is None: gene_obj.pop(key) return gene_obj
StarcoderdataPython
1855421
<reponame>danielfranca/find_duplicate_content from pipeline_lib.pipeline import build_structure from pipeline_lib.pipeline import get_duplicated_content from pipeline_lib.pipeline import generate_content_hash from pipeline_lib.pipeline import run_next_action from pipeline_lib.utils import save_state import unittest from unittest import mock import hashlib import json class DuplicateFinderTestCase(unittest.TestCase): def test_build_structure_missing_parameter(self): initial_state = { "last_error": None } expected_state = { "last_error": "Missing required parameter: root_path" } self.assertEqual(build_structure(initial_state, []), expected_state) def test_build_structure(self): initial_state = { "next_action": 0, "last_error": None, "root_path": ".", "save_file_path": None } expected_state = { "next_action": 0, "hash_structure": { "92af19e633fe03482882098e4ba7619afe09c547": ["filename2"], "f3390fe2e5546dac3d1968970df1a222a3a39c00": ["filename1", "filename1equal"], "fee3dd4822f64d1a12c9b6b945fc1c07ecf4981c": ["singlefile"] }, "root_path": ".", "save_file_path": None, "last_error": None } class MockFileReader(): once = True def __init__(self, filename): self.filename = filename def __enter__(self): return self def __exit__(self, exc_type, exc_val, exc_tb): pass def read(self, size): if self.once: self.once = False if self.filename == 'filename1' or self.filename == 'filename1equal': return b"FOOBAR" elif self.filename == 'filename2': return b"FILENAME2" elif self.filename == 'singlefile': return b"SINGLEFILE" return None def mock_open(filename, mode='r'): return MockFileReader(filename) self.maxDiff = None with mock.patch('pipeline_lib.pipeline.open', mock_open), mock.patch('os.path.isfile', return_value=True), \ mock.patch('glob.iglob', return_value=['filename1', 'filename2', 'singlefile', 'filename1equal']): self.assertEqual(build_structure(initial_state, []), expected_state) def test_get_duplicated_content(self): hash_structure = { "da39a3ee5e6b4b0d3255bfef95601890afd80709": ["file1", "file2"], "970093678b182127f60bb51b8af2c94d539eca3a": ["file3"], "7c4a8d09ca3762af61e59520943dc26494f8941b": ["file4", "file5", "file6"], "9a79be611e0267e1d943da0737c6c51be67865a0": ["file7"] } initial_state = { "next_action": 0, "duplicated_content": [], "last_error": None, "save_file_path": "", "hash_structure": hash_structure } expected_state = { "next_action": 0, "hash_structure": hash_structure, "duplicated_content": [["file1", "file2"], ["file4", "file5", "file6"]], "last_error": None, "save_file_path": "" } self.maxDiff = None self.assertEqual(get_duplicated_content(initial_state, []), expected_state) def test_get_duplicated_content_empty_hash(self): # Empty hash structure initial_state = { "next_action": 0, "duplicated_content": [], "last_error": None, "save_file_path": "", "hash_structure": {} } expected_state = { "next_action": 0, "hash_structure": {}, "duplicated_content": [], "last_error": None, "save_file_path": "" } self.assertEqual(get_duplicated_content(initial_state, []), expected_state) def test_generate_hash_small_file(self): class MockFileReader(): content = b"ILM" once = True def read(self, size): if self.once: self.once = False return self.content else: return None f = MockFileReader() hash = generate_content_hash(f) self.assertEqual(len(hash), 40) sha1 = hashlib.sha1() sha1.update(b"ILM") self.assertEqual(hash, sha1.hexdigest()) def test_generate_hash_huge_file(self): FILE_SIZE = 524288 class MockFileReader(): idx = 0 def read(self, size): if self.idx >= FILE_SIZE: return None else: self.idx += 1 return b"A" f = MockFileReader() hash = generate_content_hash(f) self.assertEqual(len(hash), 40) sha1 = hashlib.sha1() sha1.update(b"A" * FILE_SIZE) self.assertEqual(hash, sha1.hexdigest()) def test_run_no_action(self): initial_state = { "next_action": 0 } expected_state = { "next_action": 0 } self.assertEqual(run_next_action(initial_state, []), expected_state) def test_run_next_action(self): initial_state = { "next_action": 0 } expected_state = { "next_action": 1 } called = False def action(state, actions): nonlocal called called = True return state actions = [action] self.assertEqual(run_next_action(initial_state, actions), expected_state) self.assertTrue(called) def test_run_no_more_actions(self): initial_state = { "next_action": 1 } expected_state = { "next_action": 0 } actions = [] self.assertEqual(run_next_action(initial_state, actions), expected_state) def test_save_and_restore_new_state(self): hash_structure = { "da39a3ee5e6b4b0d3255bfef95601890afd80709": ["file1", "file2"], "970093678b182127f60bb51b8af2c94d539eca3a": ["file3"], "7c4a8d09ca3762af61e59520943dc26494f8941b": ["file4", "file5", "file6"], "9a79be611e0267e1d943da0737c6c51be67865a0": ["file7"] } state = { "next_action": 0, "root_path": "~/dir", "save_file_path": "da39a3ee5e6b4b0d3255bfef95601890afd80709/970093678b182127f60bb51b8af2c94d539eca3a", "hash_structure": hash_structure, "duplicated_content": [["file1", "file2"], ["file4", "file5", "file6"]], "last_error": None, "param1": "val1" } saved_data = None self.maxDiff = None def mock_json_dump(obj, fp, indent=4): nonlocal saved_data saved_data = json.dumps(obj, indent=indent, sort_keys=True) with mock.patch('json.dump', new=mock_json_dump): with mock.patch('pipeline_lib.utils.restore_state', return_value={}): self.assertFalse(save_state(state)) state["save_file_path"] = "./saved_state.json" self.assertTrue(save_state(state)) self.assertEqual(saved_data, json.dumps({ state["root_path"]: { "state": { "next_action": state["next_action"], "hash_structure": state["hash_structure"], "duplicated_content": state["duplicated_content"], "save_file_path": state["save_file_path"], "last_error": None, "root_path": "~/dir" } } }, indent=4, sort_keys=True)) def test_save_and_restore_extra_state(self): hash_structure = { "da39a3ee5e6b4b0d3255bfef95601890afd80709": ["file1", "file2"], "970093678b182127f60bb51b8af2c94d539eca3a": ["file3"], "7c4a8d09ca3762af61e59520943dc26494f8941b": ["file4", "file5", "file6"], "9a79be611e0267e1d943da0737c6c51be67865a0": ["file7"] } state = { "next_action": 0, "root_path": "~/dir", "save_file_path": "", "hash_structure": hash_structure, "duplicated_content": [["file1", "file2"], ["file4", "file5", "file6"]], "last_error": None, "param1": "val1" } saved_data = None self.maxDiff = None def mock_json_dump(obj, fp, indent=4): nonlocal saved_data saved_data = json.dumps(obj, indent=indent, sort_keys=True) restored_state = { "/old_dir": { "state": { "next_action": 1, "root_path": "/old_dir", "save_file_path": "./", "hash_structure": hash_structure, "last_error": "Something is broken" } } } with mock.patch('json.dump', new=mock_json_dump): with mock.patch('pipeline_lib.utils.restore_state', return_value=restored_state): self.assertFalse(save_state(state)) state["save_file_path"] = "./saved_state.json" self.assertTrue(save_state(state)) restored_state.update({ state["root_path"]: { "state": { "next_action": state["next_action"], "hash_structure": state["hash_structure"], "duplicated_content": state["duplicated_content"], "last_error": None, "save_file_path": state["save_file_path"], "root_path": "~/dir" } } }) self.assertEqual(saved_data, json.dumps(restored_state, indent=4, sort_keys=True)) if __name__ == "__main__": unittest.main()
StarcoderdataPython
27620
<filename>Neural Network/NNToyFx/python/activations.py<gh_stars>0 from simulation import * def relu(ctx: SimulationContext, x: Connection): relu1 = ctx.max(x, ctx.variable(0)) return relu1
StarcoderdataPython
4833554
# coding=utf-8 # python imports from __future__ import unicode_literals, print_function from ardy.core.triggers.driver import Trigger from ardy.utils.log import logger class Driver(Trigger): _DEPLOY_KEYS_WHITELIST = ["Id", "LambdaFunctionArn", "Events", "Filter"] _LAMBDA_ARN_KEY = "LambdaFunctionArn" get_awsservice_method = "get_s3_resource" trigget_type = "s3" def put(self, *args, **kwargs): triggers_conf = self.get_triggers() for trigger_conf in triggers_conf: logger.info("START to deploy S3 triggers for bucket {}".format(trigger_conf['bucket_name'])) bucket_notification = self.client.BucketNotification(trigger_conf['bucket_name']) StatementId = "{}-{}".format(self.lambda_conf["FunctionName"], trigger_conf['bucket_name']) if not self.lambda_exist_policy(self.lambda_conf["FunctionName"], StatementId): self.awslambda.add_permission( Action='lambda:InvokeFunction', FunctionName=self.lambda_function_arn, Principal='s3.amazonaws.com', StatementId=StatementId ) conf = self.get_deploy_conf(trigger_conf) conf.update({self._LAMBDA_ARN_KEY: self.lambda_function_arn}) bucket_notification.put( NotificationConfiguration={'LambdaFunctionConfigurations': [conf, ]} )
StarcoderdataPython
5044702
import json from typing import Optional import pulumi_aws as aws import pulumi_random as random from infra.config import LOCAL_GRAPL import pulumi class JWTSecret(pulumi.ComponentResource): """ Represents the frontend's JWT secret stored in Secretsmanager. """ def __init__(self, opts: Optional[pulumi.ResourceOptions] = None) -> None: super().__init__("grapl:JWTSecret", "jwt-secret", None, opts) self.secret = aws.secretsmanager.Secret( "edge-jwt-secret", # TODO: Ultimately we don't want to care about this... it's # just what the local services expect at the moment. As we # move more things over to Pulumi, we'll be able to inject # this automatically into, e.g., Lambda function environments. name="JWT_SECRET_ID" if LOCAL_GRAPL else None, description="The JWT secret that Grapl uses to authenticate its API", opts=pulumi.ResourceOptions(parent=self), ) self.random_uuid = random.RandomUuid( "jwt-secret-uuid", opts=pulumi.ResourceOptions( parent=self, additional_secret_outputs=["result"] ), ) # TODO: What do we do about rotation? self.version = aws.secretsmanager.SecretVersion( "secret", secret_id=self.secret.id, secret_string=self.random_uuid.result, opts=pulumi.ResourceOptions(parent=self), ) self.register_outputs({}) def grant_read_permissions_to(self, role: aws.iam.Role) -> None: """ Grants permission to the given `Role` to read this secret. The name of the resource is formed from the Pulumi name of the `Role`. """ aws.iam.RolePolicy( f"{role._name}-reads-secret", role=role.name, policy=self.secret.arn.apply( lambda secret_arn: json.dumps( { "Version": "2012-10-17", "Statement": [ { "Effect": "Allow", "Action": [ "secretsmanager:GetSecretValue", "secretsmanager:DescribeSecret", ], "Resource": secret_arn, }, ], } ) ), opts=pulumi.ResourceOptions(parent=self), )
StarcoderdataPython
9737859
import re from markdown.inlinepatterns import Pattern from markdown.preprocessors import Preprocessor from markdown.extensions import Extension from markdown.util import etree, AtomicString class HintedWikiLinkExtension(Extension): def extendMarkdown(self, md, md_globals): md.inlinePatterns.add("hintedwikilink", HintedWikiLinkPattern(), '>html') class HintedWikiLinkPattern(Pattern): Pattern = r'(?<!\\){(?P<main>[^{}|=]+)(\|(?P<hints>([^{}|=])*))?}' def __init__(self, pattern=Pattern): super().__init__(pattern) def getCompiledRegExp(self): return super().getCompiledRegExp() def handleMatch(self, m): ret = etree.Element('a') ret.text = m['main'] ret.set('href', AtomicString(f'/bestmatch/{m["main"]}/{m["hints"] or ""}')) return ret class SizeEnabledImageExtension(Extension): def extendMarkdown(self, md, md_globals): md.inlinePatterns.add("sizeenbaleimage", SizeEnabledImagePattern(), '<image_link') class SizeEnabledImagePattern(Pattern): Pattern = \ r'!\[(?P<alt>[^\]]*)\]\((?P<src>\S+)(\s\"(?P<title>[^\"]*)\")?(\s=(?P<width>[0-9]+)x(?P<height>[0-9]+)?)?\)' def __init__(self, pattern=Pattern): super().__init__(pattern) def getCompiledRegExp(self): return super().getCompiledRegExp() def handleMatch(self, m): ret = etree.Element('img') ret.set('src', AtomicString(m['src'])) ret.set('alt', AtomicString(m['alt'])) if m['title']: ret.set('title', AtomicString(m['title'])) if m['width']: ret.set('width', m['width']) if m['height']: ret.set('height', m['height']) return ret class AutoTitleExtension(Extension): def extendMarkdown(self, md, md_globals): md.preprocessors.add("autotitle", AutoTitleProcessor(md), ">meta") class AutoTitleProcessor(Preprocessor): def run(self, lines): pre_title_len = 0 for l in lines: if l.startswith('# '): title = l[len('# '):] break else: pre_title_len += 1 else: return lines ''' if not pre_title_len: return ['titles: ' + title, ''] + lines return ['titles: ' + title] + lines[:pre_title_len] + lines[pre_title_len:] ''' self.markdown.Meta.setdefault('titles', []).append(title) return lines
StarcoderdataPython
1990299
import numpy as np import matplotlib.pyplot as plt np.random.seed(42) X = 2*np.random.rand(100, 1) y = 4+3*X+np.random.randn(100, 1) X_b = np.c_[np.ones((100, 1)), X] X_new = np.array(([0], [2])) X_new_b = np.c_[np.ones((2, 1)), X_new] t0, t1 = 5, 50 # learning schedule hyperparameter def learning_schedule(t): return t0 / (t + t1) theta_path_sgd = [] def plot_sgd(theta, theta_path=None): m = len(X_b) n_epochs = 50 plt.plot(X, y, "b.") plt.axis([0, 2, 0, 15]) plt.xlabel("$x_1$", fontsize=18) plt.ylabel("$y$", rotation=0, fontsize=18) for epoch in range(n_epochs): for i in range(m): if epoch == 0 and i < 20: y_predict = X_new_b.dot(theta) style = "b-" if i > 0 else "r--" plt.plot(X_new, y_predict, style) random_index = np.random.randint(m) xi = X_b[random_index:random_index+1] yi = y[random_index:random_index+1] gradients = 2 * xi.T.dot(xi.dot(theta) - yi) eta = learning_schedule(epoch * m + i) theta = theta - eta * gradients theta_path_sgd.append(theta) np.random.seed(42) theta = np.random.randn(2, 1) # random initialization plot_sgd(theta, theta_path=theta_path_sgd) plt.show()
StarcoderdataPython
6490083
# # Create different sounds with a buzzer # # Credit for star wars song: https://gist.github.com/mandyRae/459ae289cdfcf6d98a6b import time import numpy as np import RPi.GPIO as GPIO sound_pin = 12 GPIO.setmode(GPIO.BCM) GPIO.setwarnings(False) GPIO.setup(sound_pin, GPIO.OUT) GPIO.output(sound_pin, 0) tone1 = GPIO.PWM(sound_pin, 100) tone1.start(50) c = [32, 65, 131, 262, 523] db= [34, 69, 139, 277, 554] d = [36, 73, 147, 294, 587] eb= [37, 78, 156, 311, 622] e = [41, 82, 165, 330, 659] f = [43, 87, 175, 349, 698] gb= [46, 92, 185, 370, 740] g = [49, 98, 196, 392, 784] ab= [52, 104, 208, 415, 831] a = [55, 110, 220, 440, 880] bb= [58, 117, 223, 466, 932] b = [61, 123, 246, 492, 984] cmajor = [c, d, e, f, g, a, b] aminor = [a, b, c, d, e, f, g] o=2 starwars_notes = [c[1+o], g[1+o], f[1+o], e[1+o], d[1+o], c[2+o], g[1+o], f[1+o], e[1+o], d[1+o], c[2+o], g[1+o], f[1+o], e[1+o], f[1+o], d[1+o]] starwars_beats = [4,4,1,1,1,4,4,1,1,1,4,4,1,1,1,4] def playScale(scale, pause): ''' scale: scale name to be played pause: pause between each notes played This function plays the given scale in every available octave I used this to test what was audible on the buzzer ''' for i in range(0, 5): for note in scale: tone1.ChangeFrequency(note[i]) time.sleep(pause) tone1.stop() def playSong(songnotes, songbeats, tempo): ''' songnotes: list of the melodies notes songbeats: list of melodies beat times tempo: speed of song, this is not traditional tempo in bpm like on a metronome, but more like a multiplier for whatever the notes are so a tempo value of 2 make it play twice as fast. Adjust this by ear. This function plays the melody, simply by iterating through the list. ''' tone1.ChangeDutyCycle(50) for i in range(0, len(songnotes)): tone1.ChangeFrequency(songnotes[i]) time.sleep(songbeats[i]*tempo) tone1.ChangeDutyCycle(0) def play_tune(duration, freq): tone1.ChangeDutyCycle(50) tone1.ChangeFrequency(freq) time.sleep(float(duration) / 1000) tone1.ChangeDutyCycle(0) def play_change(duration, low_freq, high_freq, start_pause=0, stop_pause=0, inverse=False): """ duration in ms """ tone1.ChangeDutyCycle(50) num_steps = 20 step_freq = (high_freq - low_freq) / num_steps step_duration = duration / (num_steps * 1000) start_pause = step_duration if start_pause == 0.0 else start_pause stop_pause = step_duration if stop_pause == 0.0 else stop_pause for i in range(num_steps): f = low_freq + i * step_freq if not inverse else high_freq - i * step_freq tone1.ChangeFrequency(f) if(i == 0): time.sleep(start_pause) elif(i == num_steps-1): time.sleep(stop_pause) else: time.sleep(step_duration) tone1.ChangeDutyCycle(0) def main(): #for i in range(1, 10000, 100): # buzzPwm(20, i) pause = 0.05 # play_change(300, 3000, 14000, inverse=False) # play_change(300, 3000, 14000, inverse=False) # play_change(300, 3000, 14000, inverse=False) # time.sleep(1) # play_change(300, 3000, 14000, inverse=True) # play_change(300, 3000, 14000, inverse=True) # play_change(300, 3000, 14000, inverse=True) # time.sleep(1) # play_change(300, 3000, 14000, inverse=True) # play_change(300, 3000, 14000, inverse=False) # play_change(300, 3000, 14000, inverse=True) # play_change(300, 3000, 14000, inverse=False) # time.sleep(1) #play_change(100, 4000, 15000, inverse=True, stop_pause=0.0) #play_change(100, 4000, 15000, stop_pause=0.0) #time.sleep(0.1) play_tune(100, 14000) time.sleep(pause) play_tune(100, 14000) time.sleep(pause) play_tune(100, 8000) time.sleep(pause) #play_tune(100, 14000) play_change(300, 3000, 14000, inverse=True) time.sleep(2) play_tune(100, 8000) time.sleep(pause) play_tune(100, 8000) time.sleep(pause) play_tune(100, 14000) time.sleep(pause) #play_tune(100, 14000) play_change(300, 3000, 14000, inverse=False) time.sleep(2) # time.sleep(pause) # buzzPwm(500, 400) # time.sleep(pause) # buzzPwm(500, 800) # time.sleep(pause) # buzzPwm(500, 400) #playSong(starwars_notes, starwars_beats, 0.2) if __name__ == '__main__': main()
StarcoderdataPython
5061696
#!/usr/bin/env python3 # -*- coding: UTF-8 -*- # Copyright (C) 2021. Huawei Technologies Co., Ltd. All rights reserved. # This program is free software; you can redistribute it and/or modify # it under the terms of the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # Apache License, Version 2.0 for more details. import os import io import logging import re import sys import traceback from pyang.context import Context from pyang.repository import FileRepository import pyang ERR_TYPE_GRAMMA = "Gramma" ERR_TYPE_LOST = "Lost" ERR_INFO = { # yang file it self has grammatical errors, use pyang check get detailed error information ERR_TYPE_GRAMMA: "***parse***: [yang file {0} has grammatical errors] Error 1", # yang module declared in white list, but correspond yang file not exists ERR_TYPE_LOST: "***check***: [yang file {0} doesn't exists] Erro 1", } ERR_REPORT_STAT = { ERR_TYPE_GRAMMA: [], ERR_TYPE_LOST: [] } start_error = r"#########yang_Error_start##########" end_error = r"#######yang_Error_end##########" def init_ctx(path='./yang'): repos = FileRepository(path) ctx = Context(repos) return ctx def parse_yang_module(yang_file_path, ctx): r = re.compile(r"^(.*?)(\@(\d{4}-\d{2}-\d{2}))?\.(yang|yin)$") r1 = re.compile(r"^(.*?)\.(yang|yin)$") try: if sys.version_info[0] == 2: fd = io.open(yang_file_path, "r", encoding="UTF-8") else: fd = open(yang_file_path, "r", encoding="UTF-8") text = fd.read() m1 = r1.search(yang_file_path) if m1 is None: return ctx m = r.search(yang_file_path) ctx.yin_module_map = {} if m is not None: (name, _dummy, rev, format) = m.groups() name = os.path.basename(name) ctx.add_module(yang_file_path, text, format, name, rev) else: ctx.add_module(yang_file_path, text) except Exception: yang_error_write("can not open the file %s" % yang_file_path) finally: if fd is not None: fd.close() logging.info('parse yang module %s success!', yang_file_path) return ctx def parse_yang_modules(yang_directory, ctx): if os.path.isfile(yang_directory): parse_yang_module(yang_directory, ctx) else: for yang_file in sorted(os.listdir(yang_directory)): yang_file_path = os.path.join(yang_directory, yang_file) if os.path.isdir(yang_file_path): parse_yang_modules(yang_file_path, ctx) parse_yang_module(yang_file_path, ctx) ctx.validate() return ctx def get_moudle_name_from_annotations(annotations): for annotation_obj in annotations: pos = annotation_obj.str.find('module') if pos != -1: module_name = annotation_obj.str[pos + len('module'):].strip(' ').strip('\n') return module_name def yang_module_has_error(ctx,module_name=None): for p,t,a in ctx.errors: if module_name is None: if is_error(t): return True else: if (is_error(t) and check_error_if_need(p, module_name)): return True return False def check_error_if_need(pos, module_name): yang_error_name = '' try: yang_error_name = pos.top.arg except: pass if yang_error_name == module_name: return True return False def is_error(error_type): error_level = pyang.error.err_level(error_type) if pyang.error.is_error(error_level): return True else: return False def print_yang_errors(ctx, module_name=None): for p, t, a in ctx.errors: error_str = None error_level = pyang.error.err_level(t) if pyang.error.is_error(error_level): error_level_str = "Error" else: error_level_str = "Warning" if module_name is not None: if is_error(t) and check_error_if_need(p, module_name): error_str = ''.join([p.label(), " ", error_level_str,': ',pyang.error.err_to_str(t, a)]) else: error_str = ''.join([p.label(), " ", error_level_str,': ',pyang.error.err_to_str(t, a)]) if error_str is not None: print(error_str) yang_error_write(error_str) return def yang_error_write(error_string): exc_info = sys.exc_info() exc_value = exc_info[1] if exc_value and traceback.format_exc().strip() != 'None': logging.error(traceback.format_exc()) logging.error("%s",error_string) def log_serious_errors(err_type, **kwargs): if err_type not in ERR_INFO: logging.info("receive unsupported error type") return if kwargs["file_name"] in ERR_REPORT_STAT[err_type]: return ERR_REPORT_STAT[err_type].append(kwargs["file_name"]) logging.error(ERR_INFO[err_type].format(kwargs["file_name"])) if __name__ == '__main__': pass
StarcoderdataPython
1718077
<reponame>SkygearIO/py-skygear<gh_stars>1-10 # -*- coding: utf-8 -*- # # -- General configuration ----------------------------------------------------- import sphinx_rtd_theme import os import sys from pkg_resources import find_distributions from email import message_from_string directory = os.path.join(os.path.dirname(os.path.realpath(__file__)), "..", "..") sys.path.append(directory) from skygear import __version__ as version, __title__ as name sys.path.insert(0, '../') source_suffix = '.rst' master_doc = 'index' html_use_index = True project = name copyright = u'Copyright 2017 Oursky Ltd' extensions = ['sphinx.ext.autodoc', 'sphinxcontrib.napoleon'] exclude_patterns =['_build', 'test'] autodoc_member_order = 'bysource' autoclass_content = 'both' napoleon_google_docstring = True autodoc_inherit_docstrings = False # -- Options for HTML output --------------------------------------------------- html_theme = 'sphinx_rtd_theme' html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] # -- HTML theme options for `dotted` style ------------------------------------- html_theme_options = { }
StarcoderdataPython
8042855
from setuptools import setup, find_packages setup( name='django-jalali', version='4.0.0', packages=find_packages(), include_package_data=True, zip_safe=False, description=("Jalali Date support for Django model and admin interface"), url='http://github.com/slashmili/django-jalali', download_url='http://github.com/slashmili/django-jalali/tarball/master', author='<NAME>', author_email='<EMAIL>', keywords="django jalali", license='Python Software Foundation License', platforms='any', install_requires=["jdatetime>=2.0", "django>=2.0"], long_description=open('README.rst', encoding="utf-8").read(), classifiers=[ "Development Status :: 5 - Production/Stable", "Intended Audience :: Developers", "License :: OSI Approved :: BSD License", "Operating System :: OS Independent", "Programming Language :: Python", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: Implementation :: CPython", ], )
StarcoderdataPython
11229671
import ast import json import os import random from django.core import serializers from django.core.cache import cache from blog.models import Post from commons.emoji import EMOJI from constants import KEYS, CAPS from survey import survey def add_emoji(**args): return [{ "thinking_emoji": ''.join(EMOJI["thinking"]) }] def no_op(**args): return {} # def do_small_talk(**args): # user_profile = get_profile(args[KEYS.FB_ID], args[KEYS.PAGE_ACCESS_TOKEN]) # print("user_profile: ", user_profile) # restaurant_info = requests.post(os.environ.get('API_URL') + '/restaurant/get_details', json={ # "page_id": args['page_id'] # }) # return [{ # "first_name": user_profile.username, # "happy_emoji": random.choice(EMOJI["happy"]), # }] def get_button_payload(item): items_as_dict = json.loads(serializers.serialize('json', [item])) item_as_dict = items_as_dict[0].get('fields') item_as_dict.update({'item_id': item.id }) return "CART_UPDATE_ITEM/{}".format(item_as_dict) def attach_emoji(**args): return [{ "emoji": EMOJI["thinking"][0] }] def add_value_count(**args): cache_key = '{}_{}'.format(args.get(KEYS.FB_ID), CAPS.CART_UPDATE_ITEM) items = [ast.literal_eval(item) for item in ast.literal_eval(cache.get(cache_key))] return [{ "item": items[-1].get('item_name'), "item_count": str(len(items)), "item_price": '{0:.2f}'.format(sum([float(item.get('item_price')) for item in items])), "reaction": ''.join([random.choice(EMOJI["happy"]), random.choice(EMOJI["success"]), random.choice(EMOJI["heart"])]) }] # def interact_with_username(**args): # print("IAMHERENOW") # # user_profile = get_profile(args['fb_id'], args['page_access_token']) # print("user_profile: ", user_profile) # # return [{ # "first_name": user_profile.username, # "reaction": ''.join([random.choice(EMOJI["happy"]), random.choice(EMOJI["heart"])]) # }] def add_sadness(**args): return [{ 'reactions': ''.join(EMOJI["sad"]), 'order_id': args['order_id'] }] def add_joy(**args): return [{ 'reactions': '{}{}'.format(''.join(EMOJI["success"]), ''.join(EMOJI['heart'])), 'order_id': args['order_id'] }] def add_happy(**args): return [{ 'reactions': '{}{}'.format(''.join(EMOJI["success"]), ''.join(EMOJI['happy'])), 'order_id': args['order_id'] }] def attach_survey_text(**args): survey_instance = args[KEYS.SURVEY_INSTANCE] if survey_instance is not None: return [{ "habit": survey_instance.get("post") }] else: return [{}] def create_collection(data, post_id): collection = [] for doc in data: for key, val in doc.items(): collection.append({ "title": key, "payload": str(post_id) + "_" + str(val), "content_type": "text" }) return collection def attach_survey_qr(**args): survey_instance = args[KEYS.SURVEY_INSTANCE] if survey_instance is not None: next_post_id = survey_instance.get("post_id") data = [{"Yes": "1"}, {"No": "0"}] collection = create_collection(data, next_post_id) return collection else: return {} def attach_text(**args): pass node_function_map = { 'POST_SURVEY': { "txt": attach_text, "qr": no_op, "at": no_op }, 'SURVEY': { "txt": attach_survey_text, "qr": attach_survey_qr, "at": no_op }, 'GETTING_STARTED': { "txt": no_op, "qr": no_op, "at": no_op }, "NO_OP": { "txt": no_op, "qr": no_op, "at": no_op } } def function_data_map(node_name): """ Returns a chat-node if found in chat-graph layout. :param node_name: <str> :return: <ChatNode> """ pass if node_name not in node_function_map: return { "txt": no_op, "qr": no_op, "at": no_op } return node_function_map[node_name]
StarcoderdataPython
8177181
import os from setuptools import setup, find_packages from setuptools.extension import Extension from Cython.Build import cythonize import Cython.Compiler.Options Cython.Compiler.Options.annotate = True extensions = cythonize([ Extension( "skroute.heuristics.brute._base_brute_force._base_brute_force", sources=["skroute/heuristics/brute/_base_brute_force/_base_brute_force.pyx"]), Extension( "skroute.metaheuristics.genetics._base_genetics._utils_genetic", sources=["skroute/metaheuristics/genetics/_base_genetics/_utils_genetic.pyx"]), Extension( "skroute._utils._utils", sources=["skroute/_utils/_utils.pyx"]), Extension( "skroute.metaheuristics.genetics._base_genetics._base_genetic", sources=["skroute/metaheuristics/genetics/_base_genetics/_base_genetic.pyx"]), Extension( "skroute.metaheuristics.simulated_annealing._base_simulated_annealing._base_simulated_annealing", sources=["skroute/metaheuristics/simulated_annealing/_base_simulated_annealing/_base_simulated_annealing.pyx"]), Extension( "skroute.metaheuristics.simulated_annealing._base_simulated_annealing._utils_sa", sources=["skroute/metaheuristics/simulated_annealing/_base_simulated_annealing/_utils_sa.pyx"]), ]) HERE = os.path.abspath(os.path.dirname(__file__)) with open(os.path.join(HERE, "README.md")) as fid: README = fid.read() with open(os.path.join(HERE, "requirements.txt")) as f: REQUIREMENTS = f.read().splitlines() setup( name="scikit-route", version="1.0.0a2", description="Compute Routes easy and fast", long_description=README, long_description_content_type="text/markdown", url="https://github.com/arubiales/scikit-route", author="<NAME>", author_email="<EMAIL>", license="MIT", classifiers=[ "License :: OSI Approved :: MIT License", "Programming Language :: Python", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Programming Language :: Python :: 3.8", "Programming Language :: Python :: 3.9" ], packages=find_packages(), setup_requires=[ 'setuptools>=18.0', "cython" ], install_requires=REQUIREMENTS, ext_modules = extensions, include_package_data=True, package_data={"": ["datasets/_data/_latitude_longitude/*.tsp", "datasets/*.txt", "datasets/_data/_money_cost/*.pkl"]}, )
StarcoderdataPython
9664108
from es_connection import es_connect import pandas as pd import iso8601 import datetime as dt from hashlib import sha1 from es_request_total_json import json_query from es_request_protocol_json import json_protocol_query from es_request_external_json import json_external_query from es_request_2tags_3aggs_json import json_internal_to_internal from es_request_2tags_3aggs_json import json_internal_to_external from es_aggregate_structure_json import agg_firewall_external_dest #private API --> three Level --> split server_name to domain name def domain_name(str): str = str.split(".") if len(str) >=2: str = str[-2] + "." + str[-1] return str #private API --> three Level --> flatten nest aggs response from elastic def elasticAggsToDataframe(elasticResult,aggStructure,record={},fulllist=[]): """ https://stackoverflow.com/questions/29280480/pandas-dataframe-from-a-nested-dictionary-elasticsearch-result recursively flatten elastic result into dataframe takes elastic response as input along with aggregate structure aggStructure defines what to expect from response """ for agg in aggStructure: buckets = elasticResult[agg['key']]['buckets'] for bucket in buckets: record = record.copy() record[agg['key']] = bucket['key'] if 'aggs' in agg: elasticAggsToDataframe(bucket,agg['aggs'],record,fulllist) else: for var in agg['variables']: record[var['dfName']] = bucket[var['elasticName']] fulllist.append(record) df = pd.DataFrame(fulllist) return df # private API --> one Level --> convert es response to dataframe, only one level agg def get_pandas_dataframe(aggsList): """ take aggregate response and convert to pandas dataframe timeseries dataframe with timeseries index, protocol used and total traffic for the protocol """ df = pd.DataFrame(aggsList) df.columns = ['Total', 'unix_time', 'iso_time'] df["iso_time"] = df.iso_time.apply(iso8601.parse_date) df["Date"] = df["iso_time"].dt.date df["Time"] = df["iso_time"].dt.time df.index = df["Time"] df = df[['Date','Total'] ] return df # public API --> one Level --> connect to es, get one level agg and save to csv def es_traffic_pandas_csv(ind, start, end): """ figure out which JSON file to use Connect to elasticsearch search elastic using JSON File and body tease out the aggs and to be converted to dataframe save to csv file """ if ind == "*": q = json_query(ind, start , end) elif ind == "external": q = json_external_query(ind, start, end) else: q = json_protocol_query(ind, start , end) es = es_connect() es_response = es.search(index="*", body=q) agg_list = es_response['aggregations']['total_traffic']['buckets'] df = get_pandas_dataframe(agg_list) return df #public API -->three Level --> def es_nested_agg_pandas(start, end, fn_for_json_query, traffic_type): """connect to elastic import aggregate structure and json structure for stackoverflow function the return dataframe fron that function is cleaned up SHA1 hash of destination ip is used as index """ es = es_connect() aggStructure = agg_firewall_external_dest() q = fn_for_json_query(start, end) es_response = es.search(index="*", body=q) agg_list = es_response['aggregations'] df = elasticAggsToDataframe(agg_list, aggStructure) if traffic_type == "iSrc_eDst": df['URL'] = [domain_name(val) for val in df['server_name'] ] elif traffic_type == "iSrc_iDst": df['URL'] = [val.lower().replace(".kphc.org","") for val in df['server_name']] df['sha1'] = [sha1(str(val).encode('utf-8')).hexdigest() for val in df['dest_ip']] df.index = df['sha1'] df = df[['dest_ip', 'dest_port', 'URL']] df.drop_duplicates(keep = 'first', inplace=True) return df #testing only def test_main(): start = "now-1d" end = "now" ind = "brp_dhcp" q = json_external_query(ind, start, end) es = es_connect() es_response = es.search(index="*", body=q) agg_list = es_response['aggregations']['total_traffic']['buckets'] df = get_pandas_dataframe(agg_list) df = es_traffic_pandas_csv("*", start, end) import pprint pprint.pprint(es_response) def main(): start = "now-2d" end = "now" df1 = es_nested_agg_pandas(start, end, json_internal_to_external, "iSrc_eDst") # df2 = es_nested_agg_pandas(start, end, json_internal_to_internal, "iSrc_iDst") print(df1) # print(df1) if __name__ == "__main__": main() # test_main()
StarcoderdataPython
8067380
import os from defcon import Font def combineGlyphs(path1, path2, destPath): """ Combines the glyphs of two UFOs and saves result to a new ufo. This only combines glyphs, so the first UFO path should be the one that you want all the metadata from. """ ufo1 = Font(path1) ufo2 = Font(path2) added_glyphs = [] for glyph in ufo2: if glyph.name not in ufo1: print "Inserting %s" % glyph.name ufo1.insertGlyph(glyph) added_glyphs.append(glyph.name) ufo1.save(destPath) path1 = "Path to UFO" path2 = "Path to UFO" destPath = "Path to final UFO" combineGlyphs(path1, path2, destPath)
StarcoderdataPython
11352740
<reponame>JHP4911/Quantum-Computing-UK from qiskit import QuantumRegister, ClassicalRegister from qiskit import QuantumCircuit, execute,IBMQ from qiskit.tools.monitor import job_monitor from qiskit.circuit.library import QFT import numpy as np pi = np.pi IBMQ.enable_account(‘ENTER API KEY HERE’) provider = IBMQ.get_provider(hub='ibm-q') backend = provider.get_backend('ibmq_qasm_simulator') q = QuantumRegister(5,'q') c = ClassicalRegister(5,'c') circuit = QuantumCircuit(q,c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=False, name='qft') circuit.measure(q,c) circuit.draw(output='mpl', filename='qft1.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT Output") print("-------------") print(counts) input() q = QuantumRegister(5,'q') c = ClassicalRegister(5,'c') circuit = QuantumCircuit(q,c) circuit.x(q[4]) circuit.x(q[2]) circuit.x(q[0]) circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=False, insert_barriers=True, name='qft') circuit += QFT(num_qubits=5, approximation_degree=0, do_swaps=True, inverse=True, insert_barriers=True, name='qft') circuit.measure(q,c) circuit.draw(output='mpl',filename='qft2.png') print(circuit) job = execute(circuit, backend, shots=1000) job_monitor(job) counts = job.result().get_counts() print("\n QFT with inverse QFT Output") print("------------------------------") print(counts) input()
StarcoderdataPython
254893
import numpy as np def filter_directionality(prq, list_veh_obj, nr_best_veh, routing_engine, selected_veh): """This function filters the nr_best_veh from list_veh_obj according to the difference in directionality between request origin and destination and planned vehicle route. Vehicles with final position equal to current position are treated like driving perpendicular to the request direction. :param prq: plan request in question :param list_veh_obj: list of simulation vehicle objects in question :param nr_best_veh: number of vehicles that should be returned :param routing_engine: required to get coordinates from network positions :param selected_veh: set of vehicles that were already selected by another heuristic :return: list of simulation vehicle objects """ if nr_best_veh >= len(list_veh_obj): return list_veh_obj prq_o_coord = np.array(routing_engine.return_position_coordinates(prq.o_pos)) prq_d_coord = np.array(routing_engine.return_position_coordinates(prq.d_pos)) tmp_diff = prq_d_coord - prq_o_coord prq_norm_vec = tmp_diff / np.sqrt(np.dot(tmp_diff, tmp_diff)) tmp_list_veh_val = [] for veh_obj in list_veh_obj: # vehicle already selected by other heuristic if veh_obj in selected_veh: continue if veh_obj.assigned_route: veh_coord = np.array(routing_engine.return_position_coordinates(veh_obj.pos)) last_position = veh_obj.assigned_route[-1].destination_pos veh_final_coord = np.array(routing_engine.return_position_coordinates(last_position)) if not np.array_equal(veh_coord, veh_final_coord): tmp_diff = veh_final_coord - veh_coord veh_norm_vec = tmp_diff / np.sqrt(np.dot(tmp_diff, tmp_diff)) else: veh_norm_vec = np.array([0, 0]) else: veh_norm_vec = np.array([0, 0]) val = np.dot(prq_norm_vec, veh_norm_vec) tmp_list_veh_val.append((val, veh_obj.vid, veh_obj)) # sort and return tmp_list_veh_val.sort(reverse=True) return_list = [x[2] for x in tmp_list_veh_val[:nr_best_veh]] return return_list def filter_least_number_tasks(list_veh_obj, nr_best_veh, selected_veh): """This function filters the vehicles according to the number of assigned tasks. :param list_veh_obj: list of simulation vehicle objects in question (sorted by distance from destination) :param nr_best_veh: number of vehicles that should be returned :param selected_veh: set of vehicles that were already selected by another heuristic :return: list of simulation vehicle objects """ if len(list_veh_obj) <= nr_best_veh: return list_veh_obj return_list = [] remaining_dict = {} for veh_obj in list_veh_obj: if veh_obj in selected_veh: continue if not veh_obj.assigned_route: return_list.append(veh_obj) else: nr_vrl = len(veh_obj.assigned_route) try: remaining_dict[nr_vrl].append(veh_obj) except KeyError: remaining_dict[nr_vrl] = [veh_obj] if len(return_list) == nr_best_veh: break if len(return_list) < nr_best_veh: break_outer_loop = False for nr_vrl in sorted(remaining_dict.keys()): for veh_obj in remaining_dict[nr_vrl]: return_list.append(veh_obj) if len(return_list) == nr_best_veh: break_outer_loop = True break if break_outer_loop: break return return_list
StarcoderdataPython
6669856
import utils.processing as proc import numpy as np import utils.template_match_target as tmt from keras.models import load_model import pandas as pd import h5py ######################## def get_metrics(data, craters, dim, model, beta=1): """Function that prints pertinent metrics at the end of each epoch. Parameters ---------- data : hdf5 Input images. craters : hdf5 Pandas arrays of human-counted crater data. dim : int Dimension of input images (assumes square). model : keras model object Keras model beta : int, optional Beta value when calculating F-beta score. Defaults to 1. """ X, Y = data[0], data[1] # Get csvs of human-counted craters csvs = [] minrad, maxrad, cutrad, n_csvs = 3, 50, 0.8, len(X) diam = 'Diameter (pix)' for i in range(n_csvs): csv = craters[proc.get_id(i,4)] # remove small/large/half craters csv = csv[(csv[diam] < 2 * maxrad) & (csv[diam] > 2 * minrad)] csv = csv[(csv['x'] + cutrad * csv[diam] / 2 <= dim)] csv = csv[(csv['y'] + cutrad * csv[diam] / 2 <= dim)] csv = csv[(csv['x'] - cutrad * csv[diam] / 2 > 0)] csv = csv[(csv['y'] - cutrad * csv[diam] / 2 > 0)] if len(csv) < 3: # Exclude csvs with few craters csvs.append([-1]) else: csv_coords = np.asarray((csv['x'], csv['y'], csv[diam] / 2)).T csvs.append(csv_coords) # Calculate custom metrics print("") print("*********Custom Loss*********") recall, precision, fscore = [], [], [] frac_new, frac_new2, maxrad = [], [], [] err_lo, err_la, err_r = [], [], [] frac_duplicates = [] preds=[] for i in range(0, n_csvs, 5): d= X[i:i + 5].copy() pred = model.predict(d) for j in range(len(pred)): preds.append(pred[j]) print("predict over") for i in range(n_csvs): if len(csvs[i]) < 3: continue (N_match, N_csv, N_detect, maxr, elo, ela, er, frac_dupes) = tmt.template_match_t2c(preds[i], csvs[i], rmv_oor_csvs=0) if N_match > 0: p = float(N_match) / float(N_match + (N_detect - N_match)) r = float(N_match) / float(N_csv) f = (1 + beta ** 2) * (r * p) / (p * beta ** 2 + r) diff = float(N_detect - N_match) fn = diff / (float(N_detect)) fn2 = diff / (float(N_csv) + diff) recall.append(r) precision.append(p) fscore.append(f) frac_new.append(fn) frac_new2.append(fn2) maxrad.append(maxr) err_lo.append(elo) err_la.append(ela) err_r.append(er) frac_duplicates.append(frac_dupes) else: print("skipping iteration %d,N_csv=%d,N_detect=%d,N_match=%d" % (i, N_csv, N_detect, N_match)) xe=model.evaluate(X, Y) print(xe) #print("binary XE score loss= %f,acc=%f" % xe[0]) if len(recall) > 3: print("mean and std of N_match/N_csv (recall) = %f, %f" % (np.mean(recall), np.std(recall))) print("""mean and std of N_match/(N_match + (N_detect-N_match)). (precision) = %f, %f""" % (np.mean(precision), np.std(precision))) print("mean and std of F_%d score = %f, %f" % (beta, np.mean(fscore), np.std(fscore))) print("""mean and std of (N_detect - N_match)/N_detect (fraction of craters that are new) = %f, %f""" % (np.mean(frac_new), np.std(frac_new))) print("""mean and std of (N_detect - N_match)/N_csv (fraction of "craters that are new, 2) = %f, %f""" % (np.mean(frac_new2), np.std(frac_new2))) print("median and IQR fractional longitude diff = %f, 25:%f, 75:%f" % (np.median(err_lo), np.percentile(err_lo, 25), np.percentile(err_lo, 75))) print("median and IQR fractional latitude diff = %f, 25:%f, 75:%f" % (np.median(err_la), np.percentile(err_la, 25), np.percentile(err_la, 75))) print("median and IQR fractional radius diff = %f, 25:%f, 75:%f" % (np.median(err_r), np.percentile(err_r, 25), np.percentile(err_r, 75))) print("mean and std of frac_duplicates: %f, %f" % (np.mean(frac_duplicates), np.std(frac_duplicates))) print("""mean and std of maximum detected pixel radius in an image = %f, %f""" % (np.mean(maxrad), np.std(maxrad))) print("""absolute maximum detected pixel radius over all images = %f""" % np.max(maxrad)) print("") if __name__ == '__main__': n_dev=3000 n_test =3000 dir = 'catalogues/' dev = h5py.File('%sdev_images.hdf5' % dir, 'r') test = h5py.File('%stest_images.hdf5' % dir, 'r') Data = { 'dev': [dev['input_images'][:n_dev].astype('float32'), dev['target_masks'][:n_dev].astype('float32')], 'test': [test['input_images'][:n_test].astype('float32'), test['target_masks'][:n_test].astype('float32')] } proc.preprocess(Data) Craters = { 'dev': pd.HDFStore('%sdev_craters.hdf5' % dir, 'r'), 'test': pd.HDFStore('%stest_craters.hdf5' % dir, 'r') } model = load_model('models/model_deepResUnet_30000_1.h5') get_metrics(Data['dev'], Craters['dev'], 256,model)
StarcoderdataPython
9621487
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Wed Feb 10 11:05:53 2021 @author: alef """ # String unicode u = u'<NAME>' print(u, type(u)) # Convertendo para str s = u.encode('latin1') print(s, '=>', type(s)) t = s.decode('latin1') print(t, ' => ', type(t))
StarcoderdataPython