id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
6626358
<filename>raiden_contracts/constants.py from enum import Enum, IntEnum from eth_utils import to_canonical_address # Contract names CONTRACT_ENDPOINT_REGISTRY = 'EndpointRegistry' CONTRACT_HUMAN_STANDARD_TOKEN = 'HumanStandardToken' CONTRACT_TOKEN_NETWORK_REGISTRY = 'TokenNetworkRegistry' CONTRACT_TOKEN_NETWORK = 'TokenNetwork' CONTRACT_SECRET_REGISTRY = 'SecretRegistry' CONTRACT_CUSTOM_TOKEN = 'CustomToken' CONTRACT_CUSTOM_TOKEN_NO_DECIMALS = 'CustomTokenNoDecimals' CONTRACT_MONITORING_SERVICE = 'MonitoringService' CONTRACT_RAIDEN_SERVICE_BUNDLE = 'RaidenServiceBundle' # Deployed contract information # Deployed to Ropsten revival on 2018-09-03 from # raiden-contracts@fc1c79329a165c738fc55c3505cf801cc79872e4 ROPSTEN_TOKEN_NETWORK_REGISTRY_ADDRESS = '0xf2a175A52Bd3c815eD7500c765bA19652AB89B30' ROPSTEN_ENDPOINT_REGISTRY_ADDRESS = '0xEEADDC1667B6EBc7784721B123a6F669B69Eb9bD' ROPSTEN_SECRET_REGISTRY_ADDRESS = '0x16a25511A92C5ebfc6C30ad98F754e4c820c6822' # Deployed to Ropsten revival on 2018-09-21 from # raiden-contracts@bfb24fed3ebda2799e4d11ad1bb5a6de116bd12d ROPSTEN_LIMITS_TOKEN_NETWORK_REGISTRY_ADDRESS = '0x6cC27CBF184B4177CD3c5D1a39a875aD07345eEb' ROPSTEN_LIMITS_ENDPOINT_REGISTRY_ADDRESS = '0xcF47EDF0D951c862ED9825F47075c15BEAf5Db1B' ROPSTEN_LIMITS_SECRET_REGISTRY_ADDRESS = '0x8167a262Fa3Be92F05420675c3b409c64Be3d348' # Network configurations START_QUERY_BLOCK_KEY = 'DefaultStartBlock' class ChainId(Enum): MAINNET = 1 ROPSTEN = 3 RINKEBY = 4 KOVAN = 42 SMOKETEST = 627 MAINNET = 'mainnet' ROPSTEN = 'ropsten' RINKEBY = 'rinkeby' KOVAN = 'kovan' SMOKETEST = 'smoketest' ID_TO_NETWORKNAME = { ChainId.MAINNET: MAINNET, ChainId.ROPSTEN: ROPSTEN, ChainId.RINKEBY: RINKEBY, ChainId.KOVAN: KOVAN, ChainId.SMOKETEST: SMOKETEST, } NETWORKNAME_TO_ID = { name: id for id, name in ID_TO_NETWORKNAME.items() } class NetworkType(Enum): MAIN = 1 TEST = 2 ID_TO_NETWORK_CONFIG = { ChainId.ROPSTEN: { NetworkType.TEST: { 'network_type': NetworkType.TEST, 'contract_addresses': { CONTRACT_ENDPOINT_REGISTRY: to_canonical_address( ROPSTEN_ENDPOINT_REGISTRY_ADDRESS, ), CONTRACT_SECRET_REGISTRY: to_canonical_address(ROPSTEN_SECRET_REGISTRY_ADDRESS), CONTRACT_TOKEN_NETWORK_REGISTRY: to_canonical_address( ROPSTEN_TOKEN_NETWORK_REGISTRY_ADDRESS, ), }, # 924 blocks before token network registry deployment START_QUERY_BLOCK_KEY: 3604000, }, NetworkType.MAIN: { 'network_type': NetworkType.MAIN, 'contract_addresses': { CONTRACT_ENDPOINT_REGISTRY: to_canonical_address( ROPSTEN_LIMITS_ENDPOINT_REGISTRY_ADDRESS, ), CONTRACT_SECRET_REGISTRY: to_canonical_address( ROPSTEN_LIMITS_SECRET_REGISTRY_ADDRESS, ), CONTRACT_TOKEN_NETWORK_REGISTRY: to_canonical_address( ROPSTEN_LIMITS_TOKEN_NETWORK_REGISTRY_ADDRESS, ), }, # 153 blocks before token network registry deployment START_QUERY_BLOCK_KEY: 4084000, }, }, } # TokenNetworkRegistry EVENT_TOKEN_NETWORK_CREATED = 'TokenNetworkCreated' class ChannelEvent(str, Enum): OPENED = 'ChannelOpened' DEPOSIT = 'ChannelNewDeposit' WITHDRAW = 'ChannelWithdraw' BALANCE_PROOF_UPDATED = 'NonClosingBalanceProofUpdated' CLOSED = 'ChannelClosed' SETTLED = 'ChannelSettled' UNLOCKED = 'ChannelUnlocked' # SecretRegistry EVENT_SECRET_REVEALED = 'SecretRevealed' # EndpointRegistry EVENT_ADDRESS_REGISTERED = 'AddressRegistered' # Timeouts TEST_SETTLE_TIMEOUT_MIN = 5 TEST_SETTLE_TIMEOUT_MAX = 100000 DEPLOY_SETTLE_TIMEOUT_MIN = 500 # ~ 2 hours DEPLOY_SETTLE_TIMEOUT_MAX = 555428 # ~ 3 months class MessageTypeId(IntEnum): BALANCE_PROOF = 1 BALANCE_PROOF_UPDATE = 2 WITHDRAW = 3 COOPERATIVE_SETTLE = 4 class ChannelState(IntEnum): NONEXISTENT = 0 OPENED = 1 CLOSED = 2 SETTLED = 3 REMOVED = 4 # Temporary deposit limits for the Red Eyes release in WEI MAX_ETH_CHANNEL_PARTICIPANT = int(0.075 * 10**18) MAX_ETH_TOKEN_NETWORK = int(250 * 10**18) class ChannelInfoIndex(IntEnum): SETTLE_BLOCK = 0 STATE = 1 class ParticipantInfoIndex(IntEnum): DEPOSIT = 0 WITHDRAWN = 1 IS_CLOSER = 2 BALANCE_HASH = 3 NONCE = 4 LOCKSROOT = 5 LOCKED_AMOUNT = 6
StarcoderdataPython
12833579
<reponame>iasbs-isg/PMoE """All the models that are used in the experiments: Mixture of Experts (MoE)(Alternative) with/out shared weights Predictive U-Net (PU-Net) Predictive Mixture of Experts (PMoE) """ from pathlib import Path import sys try: sys.path.append(str(Path("../").resolve())) except: raise RuntimeError("Can't append root directory of the project the path") import torch import torch.nn as nn import torch.nn.functional as F import torch.distributions as D from .punet import PredictiveUnet from .blocks.basics import make_mlp from .blocks.backbone import get_backbone, get_unet from utils.nn import freeze def get_model(cfg): model_type = cfg.type assert model_type is not None, "Network type can not be None" if model_type in ["moe", "moe_alt"]: return MixtureOfExperts(cfg) elif model_type in ["moe_shared"]: return MixtureOfExpertsShared(cfg) elif model_type in ["punet", "punet_inter"]: return PUNetExpert(cfg) elif model_type in ["pmoe", "pmoe+pretrained"]: assert ( cfg.pmoe.moe_dir != "" ), "MoE pretrained weights directory should be specified" if model_type == "pmoe+pretrained": assert ( cfg.pmoe.punet_dir != "" ), "PU-Net pretrained weights directory should be specified" return PMoE(cfg) else: raise ValueError( f"{model_type} is UNKNOWN, model type should be one of 'moe', 'punet', " f"'punet_inter', 'pmoe', 'pmoe+pretrained', 'moe_alt'" ) class BaseExpert(nn.Module): """Expert model""" def __init__(self, params): super().__init__() self.speed_encoder = make_mlp(**params.speed_encoder) self.command_encoder = make_mlp(**params.command_encoder) backbone_cfg = ( {**params.backbone.rgb, "n_frames": params.backbone.n_frames} if params.backbone.type == "rgb" else {**params.backbone.segmentation, "n_frames": params.backbone.n_frames} ) self.backbone = ( get_backbone(**backbone_cfg) if params.backbone.type == "rgb" else get_unet(**backbone_cfg) ) self.speed_pred = make_mlp(**params.speed_prediction) self.action_features = make_mlp(**params.action_head) # separate co-efficients to easily unfroze them later action_layer_out_features = params.action_head.dims[-1] self.alpha = nn.Linear(action_layer_out_features, 1) self.action_pred = nn.Linear(action_layer_out_features, 4) def forward( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): """Forward pass of expert model. Args: images: (torch.Tensor) with dimensions: B, T, C, H, W speed: (torch.Tensor) with dimensions: B, 1 command: (torch.Tensor) with dimensions: B, 4 Returns: alphas: (torch.Tensor) predicted coefficients actions: (torch.Tensor) predicted actions [steer, pedal] pred_speed: (torch.Tensor) predicted speed """ speed = self.speed_encoder(speed) command = self.command_encoder(command) images = images.view( images.shape[0], -1, images.shape[-2], images.shape[-1] ) # cat along time dimension img = self.backbone(images) # concat features along the last dim to produce tensor (B, 3 * 512) features = torch.cat([img, speed, command], dim=-1) pred_speed = self.speed_pred(features) action_features = self.action_features(features) mean, std = self.action_pred(action_features).split(2, dim=-1) std = F.elu(std) + 1 alpha = torch.relu(self.alpha(action_features)) return alpha, mean, std, pred_speed class BaseExpertAlt(BaseExpert): """Alternative expert model which alpha uses input of the network""" def __init__(self, params): super().__init__(params) self.alpha = nn.Sequential( *[nn.Linear(1536, 512), nn.ReLU(inplace=True), nn.Linear(512, 1)] ) def forward( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): speed = self.speed_encoder(speed) command = self.command_encoder(command) images = images.view( images.shape[0], -1, images.shape[-2], images.shape[-1] ) # cat along time dimension img = self.backbone(images) # concat features along the last dim to produce tensor (B, 3 * 512) features = torch.cat([img, speed, command], dim=-1) pred_speed = self.speed_pred(features) action_features = self.action_features(features) mean, std = self.action_pred(action_features).split(2, dim=-1) std = F.elu(std) + 1 alpha = self.alpha(features) return alpha, mean, std, pred_speed class MixtureOfExperts(nn.Module): def __init__(self, params): super().__init__() # number of experts self.k = params.n_experts # experts does not share weights base = BaseExpert if params.type == "moe" else BaseExpertAlt self.moe = nn.ModuleList([base(params) for _ in range(self.k)]) def forward(self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): out = [moe(images, speed, command) for moe in self.moe] alphas, mean, std, speeds = [], [], [], [] for expert in out: alphas.append(expert[0]) mean.append(expert[1]) std.append(expert[2]) speeds.append(expert[3]) # alpha: (Batch, #Experts) alphas = torch.cat(alphas, dim=1) alphas = F.softmax(alphas, dim=1) mean = torch.stack(mean, dim=1) std = torch.stack(std, dim=1) mixtures = D.Categorical(alphas) components = D.Independent(D.Normal(mean, std), 1) actions = D.MixtureSameFamily(mixtures, components) # speed: (Batch, Expert_idx, Pred_Speed) return actions, torch.stack(speeds, dim=1) def sample( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor ) -> torch.Tensor: out = [moe(images, speed, command) for moe in self.moe] alphas, mean, std = [], [], [] for expert in out: alphas.append(expert[0]) mean.append(expert[1]) std.append(expert[2]) alphas = torch.cat(alphas, dim=1) alphas = F.softmax(alphas, dim=1) mean = torch.stack(mean, dim=1) std = torch.stack(std, dim=1) mixtures = D.Categorical(alphas) components = D.Independent(D.Normal(mean, std), 1) actions = D.MixtureSameFamily(mixtures, components) return actions.sample() class MixtureOfExpertsShared(nn.Module): """Mixture of Expert (MoE) model with share backbone""" def __init__(self, params): super().__init__() self.speed_encoder = make_mlp(**params.speed_encoder) self.command_encoder = make_mlp(**params.command_encoder) backbone_cfg = ( {**params.backbone.rgb, "n_frames": params.backbone.n_frames} if params.backbone.type == "rgb" else {**params.backbone.segmentation, "n_frames": params.backbone.n_frames} ) self.backbone = ( get_backbone(**backbone_cfg) if params.backbone.type == "rgb" else get_unet(**backbone_cfg) ) self.speed_pred = make_mlp(**params.speed_prediction) self.action_features = make_mlp(**params.action_head) # separate co-efficients to easily unfroze them later action_layer_out_features = params.action_head.dims[-1] self.n_experts = params.n_experts self.alpha = nn.Linear(action_layer_out_features, params.n_experts) self.action_pred = nn.Linear(action_layer_out_features, 4 * params.n_experts) def forward(self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): """Forward pass of expert model. Args: images: (torch.Tensor) with dimensions: B, T, C, H, W speed: (torch.Tensor) with dimensions: B, 1 command: (torch.Tensor) with dimensions: B, 4 Returns: actions: (torch.Tensor) predicted actions [steer, pedal] pred_speed: (torch.Tensor) predicted speed """ speed = self.speed_encoder(speed) command = self.command_encoder(command) images = images.view( images.shape[0], -1, images.shape[-2], images.shape[-1] ) # cat along time dimension img = self.backbone(images) # concat features along the last dim to produce tensor (B, 3 * 512) features = torch.cat([img, speed, command], dim=-1) pred_speed = self.speed_pred(features) action_features = self.action_features(features) # calculate mean and std mean, std = ( self.action_pred(action_features) .view(speed.shape[0], self.n_experts, -1) .split(2, dim=-1) ) std = F.elu(std) + 1 alpha = F.softmax(self.alpha(action_features), dim=1) # mixture coefficients mixture = D.Categorical(alpha) components = D.Independent(D.Normal(mean, std), 1) actions = D.MixtureSameFamily(mixture, components) return actions, pred_speed def sample( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor ) -> torch.Tensor: speed = self.speed_encoder(speed) command = self.command_encoder(command) images = images.view( images.shape[0], -1, images.shape[-2], images.shape[-1] ) # cat along time dimension img = self.backbone(images) # concat features along the last dim to produce tensor (B, 3 * 512) features = torch.cat([img, speed, command], dim=-1) action_features = self.action_features(features) # calculate mean and std mean, std = ( self.action_pred(action_features) .view(speed.shape[0], self.n_experts, -1) .split(2, dim=-1) ) std = F.elu(std) + 1 alpha = F.softmax(self.alpha(action_features), dim=1) # mixture coefficients mixture = D.Categorical(alpha) components = D.Independent(D.Normal(mean, std), 1) actions = D.MixtureSameFamily(mixture, components) return actions.sample() class PUNetExpert(nn.Module): """PU-Net as action prediction""" def __init__(self, params): super().__init__() self.return_inter = True if params.type == "punet_inter" else False params.punet.inter_repr = self.return_inter self.speed_encoder = make_mlp(**params.speed_encoder) self.command_encoder = make_mlp(**params.command_encoder) self.punet = PredictiveUnet(**params.punet) punet_weights = torch.load(params.punet_path, map_location=params.device) self.punet.load_state_dict(punet_weights["model"]) self.punet = freeze(self.punet) # use backbone if PU-Net does not return a vector as the result self.backbone = ( None if self.return_inter else get_backbone( **{ **params.backbone.rgb, "n_frames": params.punet.future_frames, "n_channels": params.punet.num_classes, } ) ) self.speed_pred = make_mlp(**params.speed_prediction) # return actions, use tanh to squash output in range [-1, 1] # params.action_head.act = 'tanh' self.action_pred = nn.Sequential( *[ make_mlp(**params.action_head), nn.Linear(params.action_head.dims[-1], 2), ], ) def forward(self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): speed = self.speed_encoder(speed) command = self.command_encoder(command) if not self.return_inter: images = self.punet(images) images = images.view( images.shape[0], -1, images.shape[-2], images.shape[-1] ) # cat time x channel together img = self.backbone(images) else: img = self.punet(images) # concat features along the last dim to produce tensor (B, 3 * 512) features = torch.cat([img, speed, command], dim=-1) return torch.tanh(self.action_pred(features)), self.speed_pred(features) def sample( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor ) -> torch.Tensor: action, _ = self.forward(images, speed, command) return action class PMoE(nn.Module): """Predictive mixture of experts (PMoE) implementation""" def __init__(self, params): super().__init__() assert params.pmoe.moe_dir is not None, "MoE weights should be provided" # initialize MoE model moe_model_dir = params.pmoe.moe_dir self.moe = MixtureOfExperts(params) # you may want to use SWA model, therefore strict should be False self.moe.load_state_dict(torch.load(moe_model_dir), strict=False) self.moe = freeze(self.moe, params.exclude_freeze, params.verbose) # initialize PU-Net model punet_model_dir = params.pmoe.punet_dir self.punet = PUNetExpert(params) if punet_model_dir: self.punet.load_state_dict(torch.load(punet_model_dir), strict=False) self.punet = freeze(self.punet, params.exclude_freeze, params.verbose) self.lat_weights = nn.Linear(2, 1) self.long_weights = nn.Linear(2, 1) def forward( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor): punet_actions, _ = self.punet(images.clone(), speed.clone(), command.clone()) dists, _ = self.moe(images, speed, command) moe_actions = dists.sample() lat_actions = self.lat_weights(torch.cat([moe_actions[:, 0: 1], punet_actions[:, 0: 1]], dim=-1)) long_actions = self.long_weights(torch.cat([moe_actions[:, 1:], punet_actions[:, 1:]], dim=-1)) # -1 is just a dummy variable as speed prediction for the sake of interface consistency return torch.tanh(torch.cat([lat_actions, long_actions], dim=-1)), -1 def sample( self, images: torch.Tensor, speed: torch.Tensor, command: torch.Tensor ) -> torch.Tensor: """For the interface to be consistent with other networks""" actions, _ = self.forward(images, speed, command) return actions if __name__ == "__main__": pass
StarcoderdataPython
364221
<filename>setup.py from distutils.core import setup setup( name = 'loggable-decorator', packages = ['loggable'], version = '1.1.1', description = 'Add a logger attribute to class decorated', author = '<NAME>', author_email = '<EMAIL>', url = 'https://github.com/ateliedocodigo/python-loggable-decorator', download_url = 'https://github.com/ateliedocodigo/python-loggable-decorator/tarball/1.1.1', keywords = ['logging'], classifiers = [], )
StarcoderdataPython
5170066
# -*- coding: utf-8 -*- import gzip import re import sqlite3 import sys from defusedxml import ElementTree class IngestLogfile: """log ingestion class""" def __init__(self, conn): """ :param conn: sqlite connection object """ self.conn = conn self.jid_pattern = re.compile("^(?:([^\"&'/:<>@]{1,1023})@)?([^/@]{1,1023})(?:/(.{1,1023}))?$") self.message_pattern = re.compile(r'<message.*?</message>', re.DOTALL) def read(self, infile: list = None): """ ingest method to split up the ingest file list, if necessary decompression and decoding are applied :param infile: list containing log filenames to be ingested """ magic_number = b"\x1f\x8b\x08" # iterate over all infile elements for element in infile: try: # open file in binary mode with open(element, "rb") as infile: content = infile.read() # in case of a missing file set content to an empty string except FileNotFoundError as err: content = "" print(err, file=sys.stderr) # if magic number is present decompress and decode file if content.startswith(magic_number): content = gzip.decompress(content).decode("utf-8") # in any other case read file normally else: content = content.decode("utf-8") # None catch if content is not None: log = re.findall(self.message_pattern, content) if log is not None: self.db_import(log) def db_import(self, message_log: list): """ import xml stanzas into database :param message_log: list of xml messages """ for message in message_log: message_parsed = ElementTree.fromstring(message) # parse 'from' tag spam_from = message_parsed.get('from') match = self.jid_pattern.match(spam_from) (node, domain, resource) = match.groups() # stamp all_delay_tags = message_parsed.findall('.//{urn:xmpp:delay}delay') spam_time = None for tag in all_delay_tags: if "@" in tag.get("from"): continue spam_time = tag.get('stamp') # body spam_body = message_parsed.find('{jabber:client}body') if spam_body is not None: spam_body = spam_body.text # format sql try: self.conn.execute('''INSERT INTO spam VALUES(:user, :domain, :spam_time, :spam_body);''', {"user": node, "domain": domain, "spam_time": spam_time, "spam_body": spam_body}) except sqlite3.IntegrityError: pass finally: self.conn.commit()
StarcoderdataPython
6640544
import sqlite3 from sqlite3 import Error def create_connetion(db_file): connection = None try: connection = sqlite3.connect(db_file) return connection except Error as e: print(e) if __name__=='__main__': create_connetion("db/forum.db")
StarcoderdataPython
6536751
<filename>gpuPTXModel.py<gh_stars>1-10 def main(): """Main function.""" import argparse import sys import torch import numpy as np import os from os import listdir from src import readFiles as rf from src import functionsPyTorch as pytor from src import globalStuff as gls from src.globalStuff import printing, output_dir_train, isa_file, inst_types_file, state_spaces_file, initPytorch, arrangeDataset, possible_outputs, closeOutputLogFile use_test = False gls.init() parser = argparse.ArgumentParser() parser.add_argument('benchs_data_path', type=str) parser.add_argument('gpu_name', type=str) parser.add_argument('--test_data_path', type=str, default='') parser.add_argument('--benchs_file', type=str, default = 'all') parser.add_argument('--benchs_test_file', type=str, default = 'all') parser.add_argument('--tdp', type=int, default=250) parser.add_argument('--device', type=str, default='gpu') parser.add_argument('--device_id', type=int, default=0) parser.add_argument('--test_number', type=int, default=-1) parser.add_argument('--num_epochs', type=int, default=20) parser.add_argument('--fast', action='store_const', const=True, default=False) parser.add_argument('--v', action='store_const', const=True, default=False) parser.add_argument('--no_pow_dvfs', action='store_const', const=True, default=False) parser.add_argument('--no_time_dvfs', action='store_const', const=True, default=False) parser.add_argument('--no_energy_dvfs', action='store_const', const=True, default=False) parser.add_argument('--never_stop', action='store_const', const=True, default=False) parser.add_argument('--no_output', action='store_const', const=True, default=False) parser.add_argument('--pc', action='store_const', const=True, default=False) parser.add_argument('--encoder_file', type=str, default='') parser.add_argument('--time_dvfs_file', type=str, default='') parser.add_argument('--pow_dvfs_file', type=str, default='') parser.add_argument('--energy_dvfs_file', type=str, default='') args = vars(parser.parse_args()) print(args) benchs_data_path = args['benchs_data_path'] gpu_name = args['gpu_name'] test_data_path = args['test_data_path'] benchs_file = args['benchs_file'] benchs_test_file = args['benchs_test_file'] tdp = args['tdp'] device_arg = args['device'] device_id = args['device_id'] num_epochs = args['num_epochs'] fast = args['fast'] verbose = args['v'] never_stop = args['never_stop'] no_output = args['no_output'] test_number = args['test_number'] performance_counters = args['pc'] encoder_config_file = args['encoder_file'] timedvfs_config_file = args['time_dvfs_file'] powdvfs_config_file = args['pow_dvfs_file'] energydvfs_config_file = args['energy_dvfs_file'] outputs_to_model = {'time_dvfs': args['no_time_dvfs'], 'pow_dvfs': args['no_pow_dvfs'], 'energy_dvfs': args['no_energy_dvfs']} ISA = rf.readISA(isa_file) gls.ISA_size = len(ISA) state_spaces = rf.readISA(state_spaces_file) gls.state_spaces_size = len(state_spaces) inst_types = rf.readISA(inst_types_file) gls.inst_types_size = len(inst_types) orig_dir = os.path.dirname(os.path.abspath(__file__)) test_output_dir = gls.createTestOutputFolder(output_dir_train, orig_dir, test_number, device_id) device = initPytorch(device_arg, device_id) printing(device, no_output) np.random.seed(40) # printing('Model type: %s' %model_name, no_output) printing('Data from GPU: %s' %gpu_name, no_output) dataset_ubench, clocks = rf.readDataSet(benchs_data_path, gpu_name, tdp, performance_counters) ubenchmarks = dataset_ubench['names'] num_ubenchmarks = len(ubenchmarks) printing('Number of microbenchmarks: %d' %(num_ubenchmarks), no_output) printing('Benchs file: %s' %benchs_file, no_output) #if testing set is provided if test_data_path != '': use_test = True dataset_test, _ = rf.readDataSet(test_data_path, gpu_name, tdp, performance_counters) test_benchmarks = dataset_test['names'] num_test_benchmarks = len(test_benchmarks) printing('Number of testing benchmarks: %d' %(num_test_benchmarks), no_output) printing('Test Benchs file: %s' %benchs_test_file, no_output) vocab_size = gls.ISA_size*(gls.state_spaces_size+1)*(gls.inst_types_size+1)*(gls.max_operands+1)*(gls.buffer_max_size+1)*(gls.dependencies_types+1) + 3 if verbose == True: print('Vocab size: %d' %vocab_size) index_limit_training = int(gls.percentage_training * num_ubenchmarks) random_ordering = np.arange(num_ubenchmarks) np.random.shuffle(random_ordering) index_train = random_ordering[0:index_limit_training] index_train.sort() index_val = random_ordering[index_limit_training:] index_val.sort() data_train = arrangeDataset(dataset_ubench, index_train, performance_counters) data_val = arrangeDataset(dataset_ubench, index_val, performance_counters) if encoder_config_file != '': config = rf.readISA('model_configs/encoder/%s.txt' %(encoder_config_file)) encoder_params = {'embed_size': int(config[0]), 'learning_rate': float(config[1]), 'dropout_prob': float(config[2]), 'optimizer_name': config[3], 'num_layers': int(config[4]), 'hidden_size': int(config[5]), 'batch_size': int(config[6])} else: encoder_params = {'embed_size': embed_size, 'learning_rate': learning_rate_encoder, 'dropout_prob': dropout_prob_encoder, 'optimizer_name': optimizer_encoder, 'num_layers': num_layers_encoder, 'hidden_size': hidden_size_encoder, 'batch_size': batch_size} encoder_params['vocab_size'] = vocab_size # PREPARE THE PARAMETERS BEFORE MODEL TRAINING nn_params = {} config_files = [timedvfs_config_file, powdvfs_config_file, energydvfs_config_file] for model_name, model_config_file in zip(possible_outputs, config_files): if outputs_to_model[model_name] == False: if model_config_file != '': config = rf.readISA('model_configs/%s/%s.txt' %(model_name, model_config_file)) nn_params[model_name] = {'learning_rate': float(config[0]), 'dropout_prob': float(config[1]), 'optimizer_name': config[2], 'num_layers': int(config[3])} hidden_sizes_list = [] for hidden_size_aux in config[4:]: hidden_sizes_list.append(int(hidden_size_aux)) nn_params[model_name]['hidden_sizes'] = np.asarray(hidden_sizes_list) if len(nn_params[model_name]['hidden_sizes']) != nn_params[model_name]['num_layers']: print('ERROR: Hidden sizes dont match with number of hidden layers in file: \'model_configs/encoder/%s' %(encoder_config_file)) sys.exit() else: nn_params[model_name] = {'learning_rate': learning_rate, 'dropout_prob': dropout_prob, 'optimizer_name': optimizer, 'num_layers': 2, 'hidden_sizes': [hidden_size, hidden_size_2]} model_params = {'model_name': model_name, 'max_epochs': num_epochs, 'encoder_params': encoder_params, 'nn_params': nn_params, 'outputs': outputs_to_model, 'never_stop': never_stop, 'no_output': no_output} # TRAIN THE MODELS if use_test == True: data_test = arrangeDataset(dataset_test, np.arange(len(dataset_test['names'])), performance_counters) trainingTime, trainedModels, results_train, results_val, results_test = pytor.trainPytorchModel(device, clocks, verbose, fast, performance_counters, model_params, test_output_dir, data_train, data_val, data_test) else: trainingTime, trainedModels, results_train, results_val, _ = pytor.trainPytorchModel(device, clocks, verbose, fast, performance_counters, model_params, test_output_dir, data_train, data_val) if verbose == True: print(test_output_dir) if fast == 0: predicted_values = {} measured_values = {} errors_values = {} #save the predictions to an output .csv file for model_type in trainedModels['output_types']: predicted_values[model_type] = {'Training': results_train['last_epoch_predictions'][model_type], 'Validation': results_val['last_epoch_predictions'][model_type]} measured_values[model_type] = {'Training': data_train[model_type], 'Validation': data_val[model_type]} errors_values[model_type] = {'Training': results_train['abs_error_per_epoch'][-1][model_type], 'Validation': results_val['abs_error_per_epoch'][-1][model_type]} np.savetxt('%s/last_epoch_prediction_train_%s_%s_%s.csv' %(test_output_dir, model_type, model_name, benchs_file[:-4]), predicted_values[model_type]['Training'], delimiter=",") np.savetxt('%s/last_epoch_prediction_val_%s_%s_%s.csv' %(test_output_dir, model_type, model_name, benchs_file[:-4]), predicted_values[model_type]['Validation'], delimiter=",") #if using the testing benchmarks to validate model if use_test == True: for model_type in trainedModels['output_types']: predicted_values[model_type]['Testing'] = results_test['last_epoch_predictions'][model_type] measured_values[model_type]['Testing'] = data_test[model_type] errors_values[model_type]['Testing'] = results_test['abs_error_per_epoch'][-1][model_type] np.savetxt('%s/last_epoch_prediction_test_%s_%s_%s.csv' %(test_output_dir, model_type, model_name, benchs_file[:-4]), predicted_values[model_type]['Testing'], delimiter=",") #save model to an output file torch.save(trainedModels['encoder'].state_dict(), '%s/%s_%s' %(test_output_dir, 'encoder', benchs_file)) for model in trainedModels['output_types']: torch.save(trainedModels[model].state_dict(), '%s/%s_%s' %(test_output_dir, model, benchs_file)) # #print last epoch results LEF = open('%s/last_epoch.txt' %(test_output_dir), 'w') LEF.write("num_epochs,%d\n" %len(results_train['abs_error_per_epoch'])) if use_test == True: datasets_names = ['Training', 'Validation', 'Testing'] else: datasets_names = ['Training', 'Validation'] for model_type in trainedModels['output_types']: for dataset in datasets_names: LEF.write('%s,%s,%.4f\n' %(dataset, model_type, errors_values[model_type][dataset])) LEF.close() closeOutputLogFile() if __name__ == "__main__": main()
StarcoderdataPython
4818567
<gh_stars>1-10 import unittest from instasteem.parser import InstagramPostParser from instasteem.sync import Sync TEST_POST = "https://www.instagram.com/p/BsfudqQgGlw/" class IntegrationTest(unittest.TestCase): def test_image_parsing(self): p = InstagramPostParser(TEST_POST) images = p.extract_images() self.assertEqual(len(images), 2) def test_metadata_parsing(self): p = InstagramPostParser(TEST_POST) metadata = p.extract_metadata() self.assertEqual(len(metadata), 4) self.assertEqual("Hamburg, Germany", metadata[0]) self.assertEqual( "lorem Ipsum is simply dummy text of the printing and typesettin" "g industry. Lorem Ipsum has been the industry&#x27;s standard " "dummy text ever since the 1500s, when an unknown printer took " "a galley of type and scrambled it to make a type specimen book. " "It has survived not only five centuries, but also the leap into" " electronic typesetting, remaining essentially unchanged." " It was popularised in the 1960s with the release of Letraset " "sheets containing Lorem Ipsum passages, and more recently with" " desktop publishing software like Aldus PageMaker including " "versions of Lorem Ipsum.", metadata[1] ) self.assertEqual( "instasteem on Instagram: “lorem Ipsum is simply " "dummy text of the printing and typesetting industry." " Lorem Ipsum has been the industry's standard dummy " "text ever…”", metadata[2], ) self.assertEqual("2019-01-11T13:20:03", metadata[3]) class ParserTest(unittest.TestCase): def test_invalid_url(self): with self.assertRaises(ValueError) as context: InstagramPostParser("http://invaliddomain.org") def test_injection(self): p = InstagramPostParser(TEST_POST) self.assertNotEqual(None, p.content) class SyncTest(unittest.TestCase): def test_client_keys(self): s = Sync(keys=["foo"]) self.assertEqual(s.client.keys, ["foo",]) def test_post(self): s = Sync() op = s.post("foo", "title", "body", ["tag1", "tag2"], safe_mode=True) self.assertEqual(op.op_id, "comment") self.assertEqual(op.op_data["parent_author"], None) self.assertEqual(op.op_data["parent_permlink"], "tag1") self.assertEqual(op.op_data["author"], "foo") self.assertEqual(op.op_data["permlink"], "title") self.assertEqual(op.op_data["title"], "title") if __name__ == '__main__': unittest.main()
StarcoderdataPython
223151
<gh_stars>0 import hikari import lightbulb moderation_plugin = lightbulb.Plugin('Moderation') moderation_plugin.add_checks( lightbulb.has_guild_permissions(hikari.Permissions.MANAGE_GUILD) )
StarcoderdataPython
325705
import matplotlib.pyplot as plt import numpy as np def plot_ica_points(feat_actors, ica_mixing_array, idx): data = np.concatenate([feat_actors['01'][idx] for actor in feat_actors],axis=1) scatter = np.dot(data.T, ica_mixing_array[idx]) plt.scatter(scatter[:,0], scatter[:,1])
StarcoderdataPython
4916687
<gh_stars>0 # Test functions for Submission.py import os import sys import unittest # Add the parent directory to the lib path lib_path = os.path.abspath(os.path.join(__file__, '..')) sys.path.append(lib_path) class TestRunner(unittest.TestCase): ''' Just a dummy test ''' def testSubmission1(self): result = True self.assertTrue(result)
StarcoderdataPython
3201322
<reponame>tlagore/ros2relay<filename>ros2relay/metrics/metrics.py import threading class MessageMetrics: def __init__(self): """ """ self.byte_sum = 0 self.message_count = 0 self.message_handle_time = 0 def increment_message_count(self, message_size, time_taken): self.message_count += 1 self.byte_sum += message_size self.message_handle_time += time_taken def get_and_reset_metrics(self): m_count = self.message_count b_sum = self.byte_sum t_taken = self.message_handle_time self.message_count = 0 self.byte_sum = 0 self.message_handle_time = 0 return (m_count, b_sum, t_taken) class MessageMetricsHandler: def __init__(self, num_handlers, count_drops=False): """ """ self.dropped_messages = 0 self.dropped_per_period = 0 self.dropped_lock = threading.Lock() self.observed_messages = 0 self.observed_lock = threading.Lock() self.metric_handlers = [] self.count_drops = count_drops for i in range(num_handlers): self.metric_handlers.append(MessageMetrics()) def handle_message(self, handler, message_size, time_taken): if handler > len(self.metric_handlers) - 1 or handler < 0: raise ValueError(f"Handler must be between 0 and {len(self.metric_handlers) - 1}") self.metric_handlers[handler].increment_message_count(message_size, time_taken) def publish_metrics(self): """ """ # list of tuples (message_count, byte_sum, time_taken) for each worker vals = [m.get_and_reset_metrics() for m in self.metric_handlers] # summed tuple, [sum(message_count), sum(byte_sum), sum(time_taken)] sums = [sum(x) for x in zip(*vals)] handle_time = 0 if sums[0] == 0 else sums[2]/sums[0] if self.count_drops: message = f"m/s observed: {self.observed_messages}. m/s:{sums[0]}. d:{self.dropped_messages} d/s:{self.dropped_per_period} KB/s:{(sums[1] / 1024):.2f}. t/s:{handle_time:.2f}" print(message.ljust(len(message)+20), end='') print("\r", end='') with self.dropped_lock: self.dropped_per_period = 0 else: message = f"m/s observed: {self.observed_messages}. m/s sent:{sums[0]}. KB/s:{(sums[1] / 1024):.2f}. t/m/s:{handle_time:.2f}" print(message.ljust(len(message)+20), end='') print("\r", end='') # only lock once per publish period to ensure we reset observed with self.observed_lock: self.observed_messages = 0 def increment_dropped(self): # shouldn't be calling this if we haven't enabled drop counters if self.count_drops: with self.dropped_lock: self.dropped_messages += 1 self.dropped_per_period += 1 def increment_observed(self): # to not put a lock in hot path, observed messages is not thread safe on increment self.observed_messages += 1
StarcoderdataPython
1972718
"""外星人入侵游戏""" # 要玩游戏《外星人入侵》,只需运行这个py文件即可 import pygame from settings import Settings from ship import Ship import game_functions as gf from pygame.sprite import Group from alien import Alien from game_stats import GameStats from button import Button from scoreboard import ScoreBoard def run_game(): # 初始化pygame、设置和屏幕对象 pygame.init() ai_settings = Settings() # ai_settings继承Settings类的属性和方法 screen = pygame.display.set_mode((ai_settings.screen_width, ai_settings.screen_height)) pygame.display.set_caption("Alien Invasion") # 创建Play按钮(游戏需要玩家点击“Play”才能开始) play_button = Button(ai_settings, screen, "Play") # 创建一个用于存储游戏统计信息的实例,并创建记分牌 stats = GameStats(ai_settings) sb = ScoreBoard(ai_settings, screen, stats) # 创建一艘飞船(实例) ship = Ship(ai_settings, screen) # 创建一个用于存储子弹的编组 bullets = Group() # 创建一个外星人编组 aliens = Group() # 创建外星人群 gf.create_fleet(ai_settings, screen, ship, aliens) # 设置背景色 bg_color = (230, 230, 230) # 创建一个外星人 alien = Alien(ai_settings, screen) # 开始游戏的主循环 while True: gf.check_events(ai_settings, screen, stats, sb, play_button, ship, aliens, bullets) # 主循环检查玩家的输入 if stats.game_active: ship.update() # 更新飞船的位置(每次循环都可以调用飞船的响应按键和鼠标操作的方法,即左右移动) gf.update_bullets(ai_settings, screen, stats, sb, ship, aliens, bullets) # 子弹的位置和删除已消失的子弹 + 外星人的位置和删除与子弹重叠的外星人 gf.update_aliens(ai_settings, screen, stats, sb, ship, aliens, bullets) # 先绘制飞船和子弹,再绘制外星人,让外星人在屏幕上位于最前面 gf.update_screen(ai_settings, screen, stats, sb, ship, aliens, bullets, play_button) # 更新后的位置绘制新屏幕 run_game()
StarcoderdataPython
5015407
<reponame>PacktPublishing/Applied-Computational-Thinking-with-Python with open("ch8_survey.txt") as file: for line in file: line = line.strip() divide = line.split(" - ") name = divide[0] color = divide[1] print(name + " voted for " + color)
StarcoderdataPython
286376
#!/usr/bin/python import sys sys.path.append('/usr/share/inkscape/extensions') import inkex from simplestyle import * import simpletransform import lc import re class VDistanceEffect(inkex.Effect): def __init__(self): inkex.Effect.__init__(self) self.OptionParser.add_option('--distance', action = 'store', type = 'float', dest = 'distance', default = '10', help = 'distance') self.OptionParser.add_option('--moving', action = 'store', type = 'string', dest = 'moving', default = 't', help = 'moving') self.OptionParser.add_option('--top', action = 'store', type = 'string', dest = 'top', default = 't', help = 'top') self.OptionParser.add_option('--bottom', action = 'store', type = 'string', dest = 'bottom', default = 't', help = 'bottom') self.OptionParser.add_option('--unit', action = 'store', type = 'string', dest = 'unit', default = 'mm', help = 'unit') def effect(self): distance=self.unittouu(str(self.options.distance)+self.options.unit) if len(self.options.ids)!=2: print >>sys.stderr,"you must select exactly two objects" return id1=self.options.ids[0] id2=self.options.ids[1] b1=simpletransform.computeBBox([self.selected[id1],]) b2=simpletransform.computeBBox([self.selected[id2],]) if b1[2]>b2[2]: b1,b2=(b2,b1) id1,id2=(id2,id1) # id1,b1 is for the top element # id2,b2 is for the bottom element if self.options.top=='t': top=b1[2] else: top=b1[3] if self.options.bottom=='t': bottom=b2[2] else: bottom=b2[3] if self.options.moving=='t': moving=self.selected[id1] delta=(bottom-top)-distance else: moving=self.selected[id2] delta=-(bottom-top)+distance #print >>sys.stderr,distance,top,bottom,delta #print >>sys.stderr,self.selected,b1,b2,delta,distance # translate #print >>sys.stderr,self.selected[id2].attrib['transform'] m=re.search('translate.*\([0-9-.]+,([0-9-.]+).*\)',moving.attrib.get('transform','')) #print >>sys.stderr,"match is:",m if m!=None: delta=delta+float(m.group(1)) #print >>sys.stderr,"delta is:",delta moving.attrib['transform']='translate(0,'+str(delta)+')' effect = VDistanceEffect() effect.affect()
StarcoderdataPython
1671461
def start(animation,frame): o=frame.make_random()[0] animation.pass_obj=o def move_right(animation,frame): frame.move(animation.pass_obj,10,0) def move_left(animation,frame): frame.move(animation.pass_obj,-10,0) def end(animation,frame): frame.delete(animation.pass_obj) animation=( start, move_right, move_left, move_left, move_right, end )
StarcoderdataPython
1880220
# -*- coding: utf-8 -*- """ ------------------------------------------------------------------------------ WLAN Experiment Commands ------------------------------------------------------------------------------ Authors: <NAME> (chunter [at] mangocomm.com) <NAME> (murphpo [at] mangocomm.com) <NAME> (welsh [at] mangocomm.com) License: Copyright 2014, Mango Communications. All rights reserved. Distributed under the WARP license (http://warpproject.org/license) ------------------------------------------------------------------------------ MODIFICATION HISTORY: Ver Who Date Changes ----- ---- -------- ----------------------------------------------------- 1.00a ejw 1/23/14 Initial release ------------------------------------------------------------------------------ This module provides class definitions for all WLAN Exp commands. Functions (see below for more information): WlanExpCmdLogGetEvents() WlanExpCmdResetLog() WlanExpCmdGetLogCurrIdx() WlanExpCmdGetLogOldestIdx() WlanExpCmdAddStatsToLog() WlanExpCmdStreamLogEntries() WlanExpCmdNodeTime() WlanExpCmdNodeChannel() Integer constants: None Many other constants may be defined; please do not use these values when defining other sub-classes of WnCmd and WnBufferCmd. """ import warpnet.wn_cmds as wn_cmds import warpnet.wn_message as wn_message import warpnet.wn_transport_eth_udp as wn_transport __all__ = ['WlanExpCmdLogGetEvents', 'WlanExpCmdResetLog', 'WlanExpCmdGetLogCurrIdx', 'WlanExpCmdGetLogOldestIdx', 'WlanExpCmdAddStatsToLog', 'WlanExpCmdStreamLogEntries', 'WlanExpCmdNodeTime', 'WlanExpCmdNodeChannel'] # WLAN Exp Command IDs (Extension of WARPNet Command IDs) # NOTE: The C counterparts are found in wlan_exp_node.h CMD_ASSN_GET_STATUS = 10 CMD_ASSN_SET_TABLE = 11 CMD_ASSN_RESET_STATS = 12 CMD_DISASSOCIATE = 20 CMD_TX_POWER = 30 CMD_TX_RATE = 31 CMD_CHANNEL = 32 CMD_TIME = 33 CMD_LTG_CONFIG_CBF = 40 CMD_LTG_START = 41 CMD_LTG_STOP = 42 CMD_LTG_REMOVE = 43 CMD_LOG_RESET = 50 CMD_LOG_CONFIG = 51 CMD_LOG_GET_CURR_IDX = 52 CMD_LOG_GET_OLDEST_IDX = 53 CMD_LOG_GET_EVENTS = 54 CMD_LOG_ADD_EVENT = 55 CMD_LOG_ENABLE_EVENT = 56 CMD_LOG_STREAM_ENTRIES = 57 CMD_STATS_ADD_TO_LOG = 60 CMD_STATS_GET_STATS = 61 CMD_CONFIG_DEMO = 90 # Be careful that new commands added to WlanExpNode do not collide with child commands #----------------------------------------------------------------------------- # Class Definitions for WLAN Exp Commands #----------------------------------------------------------------------------- class WlanExpCmdLogGetEvents(wn_message.WnBufferCmd): """Command to get the WLAN Exp log events of the node""" def __init__(self, size, start_byte=0): command = (wn_cmds.GRPID_NODE << 24) | CMD_LOG_GET_EVENTS super(WlanExpCmdLogGetEvents, self).__init__( command=command, buffer_id=0, flags=0, start_byte=start_byte, size=size) def process_resp(self, resp): return resp # End Class class WlanExpCmdResetLog(wn_message.WnCmd): """Command to reset the Event log""" def __init__(self): super(WlanExpCmdResetLog, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_LOG_RESET def process_resp(self, resp): pass # End Class class WlanExpCmdGetLogCurrIdx(wn_message.WnCmd): """Command to reset the Event log""" def __init__(self): super(WlanExpCmdGetLogCurrIdx, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_LOG_GET_CURR_IDX def process_resp(self, resp): args = resp.get_args() if len(args) != 1: print("Invalid response.") print(resp) return args[0] # End Class class WlanExpCmdGetLogOldestIdx(wn_message.WnCmd): """Command to reset the Event log""" def __init__(self): super(WlanExpCmdGetLogOldestIdx, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_LOG_GET_OLDEST_IDX def process_resp(self, resp): args = resp.get_args() if len(args) != 1: print("Invalid response.") print(resp) return args[0] # End Class class WlanExpCmdAddStatsToLog(wn_message.WnCmd): """Command to add the current statistics to the Event log""" def __init__(self): super(WlanExpCmdAddStatsToLog, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_STATS_ADD_TO_LOG def process_resp(self, resp): args = resp.get_args() if len(args) != 1: print("Invalid response.") print(resp) return args[0] # End Class class WlanExpCmdStreamLogEntries(wn_message.WnCmd): """Command to configure the node log streaming.""" def __init__(self, enable, host_id, ip_address, port): super(WlanExpCmdStreamLogEntries, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_LOG_STREAM_ENTRIES if (type(ip_address) is str): addr = wn_transport.ip2int(ip_address) elif (type(ip_address) is int): addr = ip_address else: raise TypeError("IP Address must be either a str or int") arg = (2**16 * int(host_id)) + (int(port) & 0xFFFF) self.add_args(enable) self.add_args(addr) self.add_args(arg) def process_resp(self, resp): pass # End Class class WlanExpCmdNodeTime(wn_message.WnCmd): """Command to get / set the time on the node. NOTE: Python time functions operate on floating point numbers in seconds, while the WnNode operates on microseconds. In order to be more flexible, this class can be initialized with either type of input. However, it will only return an integer number of microseconds. Attributes: time -- Time as either an integer number of microseconds or a floating point number in seconds. """ time_factor = 6 def __init__(self, time): super(WlanExpCmdNodeTime, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_TIME if (type(time) is float): time_to_send = int(round(time, self.time_factor) * (10**self.time_factor)) elif (type(time) is int): time_to_send = time else: raise TypeError("Time must be either a float or int") self.add_args((time_to_send & 0xFFFFFFFF)) self.add_args(((time_to_send >> 32) & 0xFFFFFFFF)) def process_resp(self, resp): args = resp.get_args() if len(args) != 2: print("Invalid response.") print(resp) return ( (2**32 * args[1]) + args[0] ) # End Class class WlanExpCmdNodeChannel(wn_message.WnCmd): """Command to get / set the channel of the node. Attributes: channel -- 802.11 Channel for the node. Should be a value between 0 and 11. Checking is done on the node and the current channel will always be returned by the node. A value of 0xFFFF will only return the channel. """ def __init__(self, channel): super(WlanExpCmdNodeChannel, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_CHANNEL self.add_args((channel & 0xFFFF)) def process_resp(self, resp): args = resp.get_args() if len(args) != 1: print("Invalid response.") print(resp) return args[0] # End Class class WlanExpCmdConfigDemo(wn_message.WnCmd): """Command to configure the demo on the node. Attributes: flags - Flags to pass to the demo. Defined Flags: DEMO_CONFIG_FLAGS_EN = 1 wait_time - Inter-packet sleep time (usec) """ def __init__(self, flags, sleep_time): super(WlanExpCmdConfigDemo, self).__init__() self.command = (wn_cmds.GRPID_NODE << 24) | CMD_CONFIG_DEMO self.add_args(flags) self.add_args(sleep_time) def process_resp(self, resp): pass # End Class
StarcoderdataPython
1763394
"""This module contains all actions and interactions for the Home Page.""" from selenium.webdriver.common.by import By class HomePage: # * Locators @classmethod def contact_us_a(cls): return (By.ID, 'contact-link') def __init__(self, driver): self.driver = driver # * Actions def click_contact_us_link(self): contact_us_link = self.driver.find_element(*self.contact_us_a()) contact_us_link.click()
StarcoderdataPython
1871740
<reponame>RafaelAmauri/Projeto-e-Analise-de-Algoritmos<gh_stars>0 class Celula: def __init__(self, value): self.value = value self.visited = False self.up = None self.down = None self.left = None self.right = None def __repr__(self): return self.value def set_up(self, cell): self.up = cell def set_down(self, cell): self.down = cell def set_left(self, cell): self.left = cell def set_right(self, cell): self.right = cell def get_value(self): return self.value
StarcoderdataPython
336768
<reponame>Coalin/Daily-LeetCode-Exercise<gh_stars>1-10 class Solution(object): def robot(self, command, obstacles, x, y): """ :type command: str :type obstacles: List[List[int]] :type x: int :type y: int :rtype: bool """ # zb = [0, 0] # ind = 0 # while True: # if command[ind] == 'U': # zb = [zb[0], zb[1]+1] # elif command[ind] == 'R': # zb = [zb[0]+1, zb[1]] # # print(zb) # if zb == [x, y]: # return True # if zb in obstacles: # return False # if zb[0] > x or zb[1] > y: # return False # if ind < len(command)-1: # ind += 1 # elif ind == len(command)-1: # ind = 0 # return False xi = 0 yi = 0 zb = [0, 0] for c in command: if c == 'R': xi += 1 if c == 'U': yi += 1 epoch = min(x//xi, y//yi) x_ = x-epoch*xi y_ = y-epoch*yi zb = [0, 0] is_reach = False for i in command: if zb == [x_, y_]: is_reach = True if i == 'R': zb = [zb[0]+1, zb[1]] if i == 'U': zb = [zb[0], zb[1]+1] obstacles_ = [] for item in obstacles: if item[0]<=x and item[1]<=y: obstacles_.append(item) for ob in obstacles_: cur_epo = min(ob[0]//xi, ob[1]//yi) cur_x = ob[0]-cur_epo*xi cur_y = ob[1]-cur_epo*yi cur_zb = [0, 0] for cm in command: print(cur_zb) if cur_zb == [cur_x, cur_y]: return False if cm == 'R': cur_zb = [cur_zb[0]+1, cur_zb[1]] if cm == 'U': cur_zb = [cur_zb[0], cur_zb[1]+1] return is_reach
StarcoderdataPython
8021590
<filename>Python/41.first-missing-positive.py from typing import List class Solution: def firstMissingPositive(self, nums: List[int]) -> int: """ Given an unsorted integer array, find the smallest missing positive integer. >>> Solution().firstMissingPositive([1, 2, 0]) 3 >>> Solution().firstMissingPositive([3, 4, -1, 1]) 2 >>> Solution().firstMissingPositive([7, 8, 9, 11, 12]) 1 :param nums: a list of unsorted integer array :return: the smallest missing positive integer """ if not nums: return 1 return self.leet_code_soln(nums) def leet_code_soln(self, nums: List[int]) -> int: """ T: O(n) Idea: for any k positive nums (allow dup), the first missing positive num must be in [1:k+1] in R. e.g. k balls into k + 1 bins, there must be a bin that's empty Steps: 1. Since there are 0 and -ive, we partition the list as we do in quick sort and get k 2. Now nums[:,k] are +ive. Then the first missing number must be in [1:k+1] in R. We use nums[i] to indicate whether the number i + 1 exists. e.g. nums[0] should be 1 If nums[i] exists, set it to -ive to indicate that. 3. Then scan the elements between nums[-:k] to find the first positive element. nums[i] +ive => i+1 does not exist https://leetcode.com/problems/first-missing-positive/discuss/17073 :param nums: a list of unsorted integer array :return: the smallest missing positive integer """ n = len(nums) # Step 1: partition the array k = -1 for i in range(n): if nums[i] > 0: k += 1 nums[k], nums[i] = nums[i], nums[k] k += 1 first_missing_idx = k # Step 2: if the number exists and is in place, then set it to minus for i in range(k): temp = abs(nums[i]) if temp <= k: if nums[temp - 1] > 0: nums[temp - 1] *= -1 # Step 3: scan the list and find the one that's not in place and positive for i in range(k): if nums[i] > 0: first_missing_idx = i break return first_missing_idx + 1 def brute_force(self, nums: List[int]) -> int: """ T: O(nlogn) The brute force solution: Sort the nums list and loop through the list :param nums: a list of unsorted integer array :return: the smallest missing positive integer """ nums.sort() # O(nlogn) res = 1 for num in nums: if 0 < num == res: res += 1 return res if __name__ == '__main__': print(Solution().firstMissingPositive([1, 2, 0]))
StarcoderdataPython
139870
# Implementation of the Gaborfilter # https://en.wikipedia.org/wiki/Gabor_filter import numpy as np from cv2 import COLOR_BGR2GRAY, CV_8UC3, cvtColor, filter2D, imread, imshow, waitKey def gabor_filter_kernel( ksize: int, sigma: int, theta: int, lambd: int, gamma: int, psi: int ) -> np.ndarray: """ :param ksize: The kernelsize of the convolutional filter (ksize x ksize) :param sigma: standard deviation of the gaussian bell curve :param theta: The orientation of the normal to the parallel stripes of Gabor function. :param lambd: Wavelength of the sinusoidal component. :param gamma: The spatial aspect ratio and specifies the ellipticity of the support of Gabor function. :param psi: The phase offset of the sinusoidal function. >>> gabor_filter_kernel(3, 8, 0, 10, 0, 0).tolist() [[0.8027212023735046, 1.0, 0.8027212023735046], [0.8027212023735046, 1.0, \ 0.8027212023735046], [0.8027212023735046, 1.0, 0.8027212023735046]] """ # prepare kernel # the kernel size have to be odd if (ksize % 2) == 0: ksize = ksize + 1 gabor = np.zeros((ksize, ksize), dtype=np.float32) # each value for y in range(ksize): for x in range(ksize): # distance from center px = x - ksize // 2 py = y - ksize // 2 # degree to radiant _theta = theta / 180 * np.pi cos_theta = np.cos(_theta) sin_theta = np.sin(_theta) # get kernel x _x = cos_theta * px + sin_theta * py # get kernel y _y = -sin_theta * px + cos_theta * py # fill kernel gabor[y, x] = np.exp( -(_x ** 2 + gamma ** 2 * _y ** 2) / (2 * sigma ** 2) ) * np.cos(2 * np.pi * _x / lambd + psi) return gabor if __name__ == "__main__": import doctest doctest.testmod() # read original image img = imread("../image_data/lena.jpg") # turn image in gray scale value gray = cvtColor(img, COLOR_BGR2GRAY) # Apply multiple Kernel to detect edges out = np.zeros(gray.shape[:2]) for theta in [0, 30, 60, 90, 120, 150]: """ ksize = 10 sigma = 8 lambd = 10 gamma = 0 psi = 0 """ kernel_10 = gabor_filter_kernel(10, 8, theta, 10, 0, 0) out += filter2D(gray, CV_8UC3, kernel_10) out = out / out.max() * 255 out = out.astype(np.uint8) imshow("Original", gray) imshow("Gabor filter with 20x20 mask and 6 directions", out) waitKey(0)
StarcoderdataPython
1624540
<reponame>babbysross/ITER-Inspection-Tool<filename>GPIO-PWM.py #A program that will hopefully control a motor via a Raspberry Pi Zero W from tkinter import Frame, Scale, HORIZONTAL, Tk import RPi.GPIO as GPIO from time import sleep GPIO.setmode(GPIO.BCM) GPIO.setup(18, GPIO.OUT) GPIO.setwarnings(False) pwm = GPIO.PWM(18,100) pwm.start(5) class App: #main application def _init_(self, master): master = Tk() w = Scale(frame, from_=0, to=180, orient=HORIZONTAL, command=self.update) w.pack() def update(self, angle): duty = float(angle) / 10.0 + 2.5 pwm.ChangeDutyCycle(duty) root = Tk() root.wm_title('Doosan Motor Control') app = App(root) root.geometry("200x50+0+0") root.mainloop()
StarcoderdataPython
1799106
<reponame>AxelGoetz/website-fingerprinting<gh_stars>10-100 UNMONITORED_LABEL = -1 MONITORED_LABEL = 1 # Sets the percentage of unmonitored and monitored data you will train on TRAIN_PERCENTAGE_UNMONITORED = 0.10 TRAIN_PERCENTAGE_MONITORED = 0.90 K_FOLDS = 3 DATA_DIR = ''
StarcoderdataPython
42854
from .client import Spread, Client from ._version import __version__, __version_info__ __all__ = ["Spread", "Client", "__version__", "__version_info__"]
StarcoderdataPython
3261026
<gh_stars>0 """ Main entry point for the application. """ # Standard Library Packages import logging import sys # Installed Packages import darkdetect import qdarkstyle from PyQt5 import QtWidgets, QtGui # BEAMS Modules from app.gui import mainwindow from app.gui.dialogs.dialog_misc import NotificationDialog from app.model import services from app.resources import resources from app.util import qt_constants, report class BEAMS(QtWidgets.QApplication): """ Main program class. Initializing will not instantiate any GUI elements until run() is called. """ def __init__(self): super(BEAMS, self).__init__(sys.argv) report.init_reporting() self.__system_service = services.SystemService() self.__file_service = services.FileService() self.__system_service.load_configuration_file() pix = QtGui.QPixmap(resources.SPLASH_IMAGE) self.splash = QtWidgets.QSplashScreen(pix.scaledToHeight(200, qt_constants.SmoothTransformation)) self.splash.show() self.processEvents() if self.__system_service.get_theme_preference() == self.__system_service.Themes.LIGHT: self.setStyleSheet(qdarkstyle.load_stylesheet(palette=qdarkstyle.LightPalette)) elif self.__system_service.get_theme_preference() == self.__system_service.Themes.DARK: self.setStyleSheet(qdarkstyle.load_stylesheet(palette=qdarkstyle.DarkPalette)) else: if darkdetect.isDark(): self.setStyleSheet(qdarkstyle.load_stylesheet(palette=qdarkstyle.DarkPalette)) else: self.setStyleSheet(qdarkstyle.load_stylesheet(palette=qdarkstyle.LightPalette)) db = QtGui.QFontDatabase() db.addApplicationFont(resources.LATO_BLACK_FONT) db.addApplicationFont(resources.LATO_BLACK_ITALIC_FONT) db.addApplicationFont(resources.LATO_BOLD_FONT) db.addApplicationFont(resources.LATO_BOLD_ITALIC_FONT) db.addApplicationFont(resources.LATO_ITALIC_FONT) db.addApplicationFont(resources.LATO_LIGHT_FONT) db.addApplicationFont(resources.LATO_LIGHT_ITALIC_FONT) db.addApplicationFont(resources.LATO_REGULAR_FONT) db.addApplicationFont(resources.LATO_THIN_FONT) db.addApplicationFont(resources.LATO_THIN_ITALIC_FONT) self.main_program_window = None def run(self): """ Creates the main window and starts the application. """ self.main_program_window = mainwindow.MainWindow() self.main_program_window.show() self.splash.finish(self.main_program_window) self._check_version() sys.exit(self.exec_()) def _check_version(self): notify = self.__system_service.get_notify_user_of_update() current_version = self.__system_service.get_current_version() _, latest_version = self.__system_service.get_latest_version() report.log_info(f"Running beams@{current_version}") if notify and latest_version != "unknown": NotificationDialog.launch(f"New version available! Currently {current_version} is installed, {latest_version} is available.", "Do not show again (until next release).", lambda user_checked: self.__system_service.set_notify_user_of_update(not user_checked)) def exec_(self) -> int: try: i = super(BEAMS, self).exec_() return i except Exception as e: report.report_exception(e) finally: report.close() self.__system_service.write_configuration_file()
StarcoderdataPython
26474
#!/usr/bin/env python3 import re import sys from glob import glob from subprocess import run def main(args): assert len(args) >= 1 from_image = args.pop(0) optional = [x for x in map(str.strip, args) if x] optional_used = set() with open("Dockerfile", "w") as fout: print(f"from {from_image}", file=fout) for fname in sorted(glob("*.Dockerfile")): if fname.startswith("optional."): if any(x in fname for x in optional): optional_used.add( re.search( r"^optional\.(\d*\.)?(\S+?)\.Dockerfile$", fname ).groups()[1] ) else: continue with open(fname) as fin: print(fin.read().strip(), file=fout) our_tag = "orestisfl/env" if optional_used: our_tag += "-" + "-".join(sorted(optional_used)) our_tag += ":" + from_image.split(":", 1)[1] with open("image", "w") as f: print(our_tag, file=f) return run(["docker", "build", "-t", our_tag, "."], check=True) if __name__ == "__main__": print(main(sys.argv[1:]), file=sys.stderr)
StarcoderdataPython
5136216
from time import sleep from datetime import datetime import sys import busio import digitalio import board import adafruit_mcp3xxx.mcp3008 as MCP from adafruit_mcp3xxx.analog_in import AnalogIn def voltage_to_direction(voltage: float) -> str: """ Converts an anolog voltage to a direction Arguments: - voltage: Voltage float value form the MCP3008. values are between 0 and 3.3V Returns: - Direction coresponding to an input voltage """ if voltage < 0.20625 or voltage > 3.09375: return "N" elif 0.20625 <= voltage < 0.61875: return "NE" elif 0.61875 <= voltage < 1.03125: return "E" elif 1.03125 <= voltage < 1.44375: return "SE" elif 1.44375 <= voltage < 1.85625: return "S" elif 1.85625 <= voltage < 2.26875: return "SW" elif 2.26875 <= voltage < 2.68125: return "W" else: return "NW" def voltage_to_degrees(voltage: float) -> int: """ Converts an anolog voltage to rotational degrees Arguments: None Returns: - Degrees coresponding to an input voltage """ return int(voltage*360/3.3) def voltage() -> float: """ Gets the analog voltage from pin 0 on the MCP3008 Arguments: None Returns: - The analog voltage """ try: # create the spi bus spi = busio.SPI(clock=board.SCK, MISO=board.MISO, MOSI=board.MOSI) # create the cs (chip select) cs = digitalio.DigitalInOut(board.D5) # create the mcp object mcp = MCP.MCP3008(spi, cs) # create an analog input channel on pin 0 chan = AnalogIn(mcp, MCP.P0) return chan except: sys.exit(1) def main(): """ Driver function """ degree_sign= u'\N{DEGREE SIGN}' chan = voltage() while True: print('Raw ADC Value: ', chan.value) print('ADC Voltage: ' + str(chan.voltage) + 'V') print('Direction: ' + voltage_to_direction(chan.voltage)) print('Direction: ' + str(voltage_to_degrees(chan.voltage)) + degree_sign) print() sleep(2) if __name__ == '__main__': main()
StarcoderdataPython
4851535
<reponame>melancholy/dd-trace-py import mock from ddtrace.internal.hostname import get_hostname @mock.patch("socket.gethostname") def test_get_hostname(socket_gethostname): # Test that `get_hostname()` just returns `socket.gethostname` socket_gethostname.return_value = "test-hostname" assert get_hostname() == "test-hostname" # Change the value returned by `socket.gethostname` to test the cache socket_gethostname.return_value = "new-hostname" assert get_hostname() == "test-hostname"
StarcoderdataPython
9682288
# Importing the required libraries from surprise import Reader, Dataset from surprise import SVD, accuracy, SVDpp, SlopeOne, BaselineOnly, CoClustering import datetime import requests, zipfile, io from os import path import pandas as pd import tqdm as tqdm from numpy import * from sklearn.model_selection import train_test_split import time import pickle # Loading the mapping data which is to map each movie Id # in the ratings with it's title and genre # the resulted data structure is a dictionary where the # movie id is the key, the genre and titles are values def load_mapping_data(): movie_data = {} chunk_size = 500000 df_dtype = { "movieId": int, "title": str, "genres": str } cols = list(df_dtype.keys()) for df_chunk in tqdm.tqdm(pd.read_csv('ml-latest-small/movies.csv', usecols=cols, dtype=df_dtype, chunksize=chunk_size)): df_chunk.shape[0] combine_data = [list(a) for a in zip(df_chunk["movieId"].tolist(), df_chunk["title"].tolist(), df_chunk["genres"].tolist())] for a in combine_data: movie_data[a[0]] = [a[1], a[2]] del df_chunk return movie_data # Loading the rating data which is around 27M records it takes around 2 minutes # the resulted data structure us a dictionary where the # user id is the key and all their raings are values for example for user 1 : # 1 = { # [movieId,rating,timestamp], # [movieId,rating,timestamp], # [movieId,rating,timestamp], # } def load_data(): rating_data = {} unique_user_id = [] chunk_size = 50000 df_dtype = { "userId": int, "movieId": int, "rating": float, "timestamp": int, } cols = list(df_dtype.keys()) for df_chunk in tqdm.tqdm(pd.read_csv('ml-latest-small/ratings.csv', usecols=cols, dtype=df_dtype, chunksize=chunk_size)): user_id = df_chunk["userId"].tolist() unique_user_id.extend(set(user_id)) movie_id = df_chunk["movieId"].tolist() rating = df_chunk["rating"].tolist() timestamp = df_chunk["timestamp"].tolist() combine_data = [list(a) for a in zip(user_id, movie_id, rating, timestamp)] for a in combine_data: if a[0] in rating_data.keys(): rating_data[a[0]].extend([[a[0], a[1], a[2], a[3]]]) else: rating_data[a[0]] = [[a[0], a[1], a[2], a[3]]] del df_chunk return rating_data, unique_user_id # Split the data into training and testing # this processes isn't being done for the whole dataset instead it's being done # for each user id, for each user we split their ratings 80 training and 20 testing # the resulted training and testing datasets are including the whole original dataset def spilt_data(rating_data, unique_user_id): training_data = [] testing_data = [] t0 = time.time() t1 = time.time() for u in unique_user_id: if len(rating_data[u]) == 1: x_test = rating_data[u] x_train = rating_data[u] else: x_train, x_test = train_test_split(rating_data[u], test_size=0.2) training_data.extend(x_train) testing_data.extend(x_test) total = t1 - t0 print(int(total)) return training_data, testing_data def get_movie_title(movie_id, movie_data): if movie_id in movie_data.keys(): return movie_data[movie_id][0] def get_movie_genre(movie_id, movie_data): if movie_id in movie_data.keys(): return movie_data[movie_id][1] # def get_train_test_data(): # rating_data, unique_user_id = load_data() # training_data, testing_data = spilt_data(rating_data, unique_user_id) # training_dataframe = pd.DataFrame.from_records(training_data) # training_dataframe.columns = ["userId","movieId","rating","timestamp"] # testing_dataframe = pd.DataFrame.from_records(testing_data) # testing_dataframe.columns= ["userId","movieId","rating","timestamp"] # return training_dataframe, testing_dataframe def get_train_test_data(new_sample = False): if new_sample: rating_data, unique_user_id = load_data() training_data, testing_data = spilt_data(rating_data, unique_user_id) training_dataframe = pd.DataFrame.from_records(training_data) training_dataframe.columns = ["userId","movieId","rating","timestamp"] testing_dataframe = pd.DataFrame.from_records(testing_data) testing_dataframe.columns=["userId","movieId","rating","timestamp"] # df_links = pd.read_csv('ml-latest-small/links.csv') file = open('training_dataframe.txt', 'wb') pickle.dump(training_dataframe, file) file.close() file = open('testing_dataframe.txt', 'wb') pickle.dump(testing_dataframe, file) file.close() else: file = open('training_dataframe.txt', 'rb') training_dataframe = pickle.load(file) file.close() file = open('testing_dataframe.txt', 'rb') testing_dataframe = pickle.load(file) file.close() return training_dataframe, testing_dataframe if __name__ == "__main__": # download http://files.grouplens.org/datasets/movielens/ml-latest-small.zip with 1M records File # all files should be placed inside ml-latest folder if not path.exists('ml-latest-small'): print("Downloading Files for first time use: ") download_file = requests.get('http://files.grouplens.org/datasets/movielens/ml-latest-small.zip') zipped_file = zipfile.ZipFile(io.BytesIO(download_file.content)) # having First.csv zipped file. zipped_file.extractall() print("Data Loading and Processing, Estimated Time 2 minutes :") rating_data, unique_user_id = load_data() print("Training and Testing DataSets Construction, Estimated Time 40 seconds :") training_data, testing_data = spilt_data(rating_data, unique_user_id) print("Mapping Data Processing :") movie_data = load_mapping_data() print("Movie name with id = 1 :") print(get_movie_title(1, movie_data)) print("Movie genre with id = 1 :") print(get_movie_genre(1, movie_data))
StarcoderdataPython
105840
<gh_stars>10-100 # # Copyright 2015-2020 <NAME> <<EMAIL>> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # from ..runtimetool import RuntimeTool from .bashtoolmixin import BashToolMixIn from .curltoolmixin import CurlToolMixIn class phpTool(BashToolMixIn, CurlToolMixIn, RuntimeTool): """PHP is a popular general-purpose scripting language that is especially suited to web development. Home: http://php.net/ By default the latest available PHP binary is used for the following OSes: * Debian & Ubuntu - uses Sury (https://deb.sury.org/) builds 5.6 & 7.x. * CentOS, RHEL & Oracle Linux - uses SCL 5.6 & 7.x. * macos uses Homebrew builds 5.6 & 7.x. You can forbid source builds by setting phpBinOnly to non-empty string. However, if phpVer is set then we use php-build which make consume a lot of time and resources due to lack of trusted binary builds. You can control installed extensions by setting space separated environment: * phpExtRequire - required extensions to be installed or fail * phpExtTry - nice to have extensions The same can be done by setting project-specific .toolTune options as array: * extRequire = [] * extTry = [] """ __slots__ = () def getDeps(self): deps = BashToolMixIn.getDeps(self) + CurlToolMixIn.getDeps(self) # TODO: need to disable for binary only installs deps += ['phpbuild'] return deps def _installTool(self, env): ospath = self._ospath environ = self._environ php_ver = env['phpVer'] if not env['phpSourceBuild']: self._installBinaries(env) return php_dir = env['phpDir'] try: self._os.makedirs(php_dir) except: pass self._buildDeps(env) old_tmpdir = environ.get('TMPDIR', '/tmp') environ['TMPDIR'] = ospath.join(php_dir, '..') self._executil.callExternal( [env['phpbuildBin'], env['phpSourceVer'], env['phpDir']]) environ['TMPDIR'] = old_tmpdir def _installBinaries(self, env): detect = self._detect phputil = self._phputil install = self._install ver = env['phpVer'] php_pkg = phputil.basePackage(ver) if detect.isDebian(): repo = env.get('phpSuryRepo', 'https://packages.sury.org/php') gpg = self._callCurl(env, [repo + '/apt.gpg'], binary_output=True) install.aptRepo( 'sury', "deb {0} $codename$ main".format(repo), gpg) install.deb(php_pkg) elif detect.isUbuntu(): install.aptRepo('sury', 'ppa:ondrej/php', None) install.deb(php_pkg) elif detect.isSCLSupported(): if phputil.isIUSVer(ver): install.yumIUS() install.yum(php_pkg + '-cli') else: install.yumSCL() install.yum(php_pkg) elif detect.isMacOS(): install.brew(php_pkg) elif detect.isAlpineLinux(): install.apkCommunity() install.apk(php_pkg) elif detect.isSLES(): self._install.SUSEConnectVerArch('sle-module-web-scripting') install.zypper(php_pkg) else: install.zypper(php_pkg) install.yum('{0}-cli'.format(php_pkg)) install.emerge('dev-lang/php') install.pacman(php_pkg) env['phpJustInstalled'] = True def _updateTool(self, env): pass def uninstallTool(self, env): if env['phpVer'] == self.SYSTEM_VER or env['phpBinOnly']: return super(phpTool, self).uninstallTool(env) php_dir = env['phpDir'] self._pathutil.rmTree(php_dir) self._have_tool = False def envNames(self): return ['phpDir', 'phpBin', 'phpVer', 'phpfpmVer', 'phpBinOnly', 'phpSuryRepo', 'phpExtRequire', 'phpExtTry', 'phpForceBuild', 'phpSourceVer'] def initEnv(self, env): ospath = self._ospath os = self._os detect = self._detect phputil = self._phputil environ = self._environ # --- if 'phpfpmVer' in env: php_ver = env.setdefault('phpVer', env['phpfpmVer']) # --- phpForceBuild = env.setdefault('phpForceBuild', False) phpBinOnly = env.setdefault('phpBinOnly', not phpForceBuild) env['phpSourceBuild'] = False if phpBinOnly and phpForceBuild: self._warn('"phpBinOnly" and "phpForceBuild" do not make sense' ' when set together!') php_required_ext = env.get('phpExtRequire', '') php_try_ext = env.get('phpExtTry', '') environ['phpExtRequire'] = php_required_ext environ['phpExtTry'] = php_try_ext php_required_ext = php_required_ext.split() php_try_ext = php_try_ext.split() # --- php_binaries = phputil.binaryVersions() if php_binaries: php_latest = php_binaries[-1] php_ver = env.setdefault('phpVer', php_latest) foundBinary = True if php_ver.split('.')[0] == '5' and php_ver != '5.6': php_ver = '5.6' self._warn('Forcing PHP 5.6 for PHP 5.x requirement') elif php_ver == '7' and php_latest.split('.')[0] == '7': php_ver = php_latest elif php_ver.split('.') > php_latest.split('.'): foundBinary = False self._warn( 'Binary builds are supported only for: {0}'.format(', '.join(php_binaries))) env['phpVer'] = php_ver else: foundBinary = False php_ver = env.setdefault('phpVer', self.SYSTEM_VER) # --- if php_ver == self.SYSTEM_VER: super(phpTool, self).initEnv(env) elif foundBinary and not phpForceBuild: if detect.isDebian() or detect.isUbuntu(): bin_name = 'php' + php_ver bin_src = ospath.join('/usr/bin', bin_name) self._have_tool = phputil.createBinDir(env, bin_src) elif detect.isSCLSupported(): if phputil.isIUSVer(php_ver): # IUS allows only one version installed as default super(phpTool, self).initEnv(env) else: try: ver = php_ver.replace('.', '') sclname = 'rh-php{0}'.format(ver) env_to_set = self._executil.callExternal( ['scl', 'enable', sclname, 'env'], verbose=False) self._pathutil.updateEnvFromOutput(env_to_set) super(phpTool, self).initEnv(env) if self._have_tool: self._have_tool = env['phpBin'].startswith('/opt') except self._ext.subprocess.CalledProcessError: return except OSError: return elif detect.isArchLinux(): if phputil.isArchLatest(php_ver): bin_name = 'php' else: bin_name = 'php' + php_ver.replace('.', '') bin_src = ospath.join('/usr/bin', bin_name) self._have_tool = phputil.createBinDir(env, bin_src) elif detect.isAlpineLinux(): if phputil.isAlpineSplit(): bin_name = 'php' + php_ver[0] else: bin_name = 'php' bin_src = ospath.join('/usr/bin', bin_name) self._have_tool = phputil.createBinDir(env, bin_src) elif detect.isMacOS(): brew_prefix = env['brewDir'] formula = phputil.basePackage(php_ver) php_dir = ospath.join(brew_prefix, 'opt', formula, 'bin') if ospath.exists(php_dir): self._pathutil.addBinPath(php_dir, True) super(phpTool, self).initEnv(env) elif not phpBinOnly: def_dir = ospath.join( env['phpbuildDir'], 'share', 'php-build', 'definitions') if not ospath.exists(def_dir): return php_ver = env.setdefault('phpSourceVer', php_ver) defs = os.listdir(def_dir) defs = self._ext.fnmatch.filter(defs, php_ver + '*') if not defs: self._errorExit('PHP version "{0}" not found'.format(php_ver)) php_ver = self._versionutil.latest(defs) env['phpSourceVer'] = php_ver env['phpForceBuild'] = True env['phpSourceBuild'] = True php_dir = ospath.join(self._environ['HOME'], '.php', php_ver) php_dir = env.setdefault('phpDir', php_dir) php_bin_dir = ospath.join(php_dir, 'bin') php_bin = ospath.join(php_bin_dir, 'php') if ospath.exists(php_bin): self._have_tool = True self._pathutil.addBinPath(php_bin_dir, True) env.setdefault('phpBin', php_bin) # --- if self._have_tool: if env.get('phpJustInstalled', False): self._phputil.installExtensions(env, [ 'apcu', 'curl', ], True) phputil.installExtensions(env, php_required_ext, False) phputil.installExtensions(env, php_try_ext, True) def loadConfig(self, config): env = config['env'] phputil = self._phputil php_required_ext = self._getTune(config, 'extRequire', []) php_try_ext = self._getTune(config, 'extTry', []) phputil.installExtensions(env, php_required_ext, False) phputil.installExtensions(env, php_try_ext, True) def _buildDeps(self, env): ospath = self._ospath os = self._os environ = self._environ if self._detect.isSLES(): self._errorExit( 'PHP source builds are not supported for SLES yet!') return self._builddep.require(env, [ 'ssl', 'mysqlclient', 'postgresql', ]) # APT # --- self._install.deb([ 'build-essential', 'bison', 'automake', 'autoconf', 'libtool', 're2c', 'libcurl4-openssl-dev', 'libtidy-dev', 'libpng-dev', 'libmcrypt-dev', 'libjpeg-dev', 'libreadline-dev', 'libbz2-dev', 'libc-client-dev', 'libdb-dev', 'libedit-dev', 'libenchant-dev', 'libevent-dev', 'libexpat1-dev', 'libfreetype6-dev', 'libgcrypt11-dev', 'libgd2-dev', 'libglib2.0-dev', 'libgmp3-dev', 'libicu-dev', 'libjpeg-dev', 'libkrb5-dev', 'libldap2-dev', 'libmagic-dev', 'libmhash-dev', 'libonig-dev', 'libpam0g-dev', 'libpcre3-dev', 'libpng-dev', 'libpspell-dev', 'libqdbm-dev', 'librecode-dev', 'libsasl2-dev', 'libsnmp-dev', 'libsqlite3-dev', 'libwrap0-dev', 'libxmltok1-dev', 'libxml2-dev', 'libvpx-dev', 'libxslt1-dev', 'unixodbc-dev', 'zlib1g-dev', ]) # Extra repo before the rest # --- self._install.yumEPEL() self._install.rpm([ 'binutils', 'patch', 'git', 'gcc', 'gcc-c++', 'make', 'autoconf', 'automake', 'libtool', 'bison', 're2c', 'glibc-devel', 'libxml2-devel', 'pkgconfig', 'curl-devel', 'libpng-devel', 'libjpeg-devel', 'libXpm-devel', 'freetype-devel', 'gmp-devel', 'libmcrypt-devel', 'aspell-devel', 'recode-devel', 'libicu-devel', 'oniguruma-devel', 'libtidy-devel', 'libxslt-devel', 'readline-devel', 'zlib-devel', 'pcre-devel', ]) self._install.yum('bzip2-devel') self._install.zypper('libbz2-devel') self._install.emergeDepsOnly(['dev-lang/php']) self._install.pacman([ 'patch', 'git', 'gcc', 'make', 'autoconf', 'automake', 'libtool', 'bison', 're2c', 'glibc', 'libxml2', 'curl', 'libpng', 'libjpeg', 'libxpm', 'freetype2', 'gmp', 'libmcrypt', 'aspell', 'recode', 'icu', 'oniguruma', 'tidy', 'libxslt', 'readline', 'zlib', 'pcre', ]) # --- systemctl = self._pathutil.which('systemctl') if systemctl: self._install.deb(['libsystemd-dev']) self._install.rpm(['systemd-devel']) with_systemd = ' --with-fpm-systemd' else: with_systemd = ' --without-fpm-systemd' multiarch = None dpkgarch = self._pathutil.which('dpkg-architecture') if dpkgarch: multiarch = self._executil.callExternal( [dpkgarch, '-qDEB_HOST_MULTIARCH']).strip() if multiarch: if ospath.exists(ospath.join('/usr/include', multiarch, 'curl')): curl_dir = ospath.join(env['phpDir'], '..', 'curl') try: os.mkdir(curl_dir) os.symlink(ospath.join('/usr/include', multiarch), ospath.join(curl_dir, 'include')) os.symlink(ospath.join('/usr/lib', multiarch), ospath.join(curl_dir, 'lib')) except Exception as e: # print(e) pass else: curl_dir = '/usr/include' with_libdir = ' --with-libdir={0} --with-curl={1}'.format( ospath.join('lib', multiarch), curl_dir, ) else: with_libdir = '' # --- from ..details.resourcealgo import ResourceAlgo cpu_count = ResourceAlgo().cpuLimit({}) environ['PHP_BUILD_EXTRA_MAKE_ARGUMENTS'] = '-j{0}'.format( cpu_count) environ['PHP_BUILD_CONFIGURE_OPTS'] = ' \ --disable-debug \ --with-regex=php \ --enable-calendar \ --enable-sysvsem \ --enable-sysvshm \ --enable-sysvmsg \ --enable-bcmath \ --disable-cgi \ --disable-phpdbg \ --enable-fpm \ --with-bz2 \ --enable-ctype \ --without-db4 \ --without-qdbm \ --without-gdbm \ --with-iconv \ --enable-exif \ --enable-ftp \ --with-gettext \ --enable-mbstring \ --with-onig=/usr \ --with-pcre-regex=/usr \ --enable-shmop \ --enable-sockets \ --enable-wddx \ --with-libxml-dir=/usr \ --with-zlib \ --with-kerberos=/usr \ --with-openssl=/usr \ --enable-soap \ --enable-zip \ --with-mhash=yes \ --with-system-tzdata \ ' + with_systemd + with_libdir def tuneDefaults(self, env): return { 'minMemory': '8M', 'socketType': 'none', 'scalable': False, 'reloadable': False, 'multiCore': False, }
StarcoderdataPython
9704249
<gh_stars>10-100 from enum import Enum class Status(Enum): BETA = "beta" PRODUCTION = "production" DEPRECATED = "deprecated" DISCONTINUED = "discontinued" class Impact(Enum): PROFIT = "profit" CUSTOMERS = "customers" EMPLOYEES = "employees" class SentryIssueCategory(Enum): STALE = "stale" DECAYING = "decaying" SPOILED = "spoiled" FRESH = "fresh" class EnviromentType(Enum): GITLAB = "gitlab" ZOO = "zoo"
StarcoderdataPython
5197209
<filename>explain_of_imply.py<gh_stars>0 from formula import * def get_truth_value(f, explain_imp: list): """ :param f: 待求真值的公式 :param explain_imp: p->q中, (p,q)值为(0,0),(0,1),(1,0),(1,1)时的真值 :return: """ if len(explain_imp) != 4: return def confirm(_exp, assignment: dict): form = get_form(_exp) if form == 'imp': first = confirm(_exp[0], assignment) second = confirm(_exp[2], assignment) if not first and not second: return explain_imp[0] elif not first and second: return explain_imp[1] elif first and not second: return explain_imp[2] else: return explain_imp[3] elif form == 'not': return not confirm(_exp[1], assignment) else: return assignment[_exp] variables = f.get_variables() true_assignments = [] truth_value = True for i in range(2 ** len(variables)): tmp = i value = [] for j in range(len(variables)): value = [tmp % 2] + value tmp >>= 1 assignment = dict(zip(variables, value)) if not confirm(f.exp, assignment): truth_value = False else: true_assignments.append(assignment) return truth_value l1 = Formula.from_str('p->(q->p)') l2 = Formula.from_str('(p->(q->r))->((p->q)->(p->r))') l3 = Formula.from_str('(!p->!q)->(q->p)') for i in range(16): tmp = i explain_imp = [] for j in range(4): explain_imp = [tmp % 2] + explain_imp tmp >>= 1 if get_truth_value(l1, explain_imp) \ and get_truth_value(l2, explain_imp) \ and get_truth_value(l3, explain_imp): print('{{f->f is {}'.format(bool(explain_imp[0]))) print(' f->t is {}'.format(bool(explain_imp[1]))) print(' t->f is {}'.format(bool(explain_imp[2]))) print(' t->t is {}}}'.format(bool(explain_imp[3])))
StarcoderdataPython
1745713
def resolve(): ''' code here ''' from functools import lru_cache import sys sys.setrecursionlimit(10**6) N, M = [int(item) for item in input().split()] As = [int(input()) for _ in range(M)] memo = [False for _ in range(N+1)] for item in As: memo[item] = True res_list = [] prev = 0 for i in range(1,N+1): if memo[i] == True: res_list.append(i-1 - prev) prev = i+1 else: if memo[N] == False and memo[N] == False: res_list.append(N - prev) @lru_cache def cal(num): if 0 <= num <= 1: return 1 elif num == -1: return 0 else: return cal(num-1) + cal(num-2) # print(res_list) res = 1 for item in res_list: res *= cal(item)% (10**9 + 7) print(res % (10**9 + 7)) if __name__ == "__main__": resolve()
StarcoderdataPython
1923776
"""Data Manipulation - Strings""" def handle_permutations(existing_list, permutations_to_populate): """Handle permutations.""" temp_list = [] for perm in permutations_to_populate: for item in existing_list: temp_list.append('{}{}'.format(item, perm)) return [item for item in temp_list] def make_string_permutations(permutation_matrix): """Make string permutations.""" temp_list = [''] for permutation_list in permutation_matrix: temp_list = handle_permutations( existing_list=temp_list, permutations_to_populate=permutation_list) return temp_list def single_value_from_permutable_keys(source_dict, permutable_keys, default_value=''): """Single value from permutable keys.""" example_condition = True err_msg = 'Multiple permutable keys were found. Please use one.\n\n' \ 'Source dictionary: {}\n' \ 'Allowable permutable keys: {}' \ .format(source_dict, permutable_keys) valid_keys_in_source_dict = 0 for key in source_dict: if key in permutable_keys: valid_keys_in_source_dict += 1 if valid_keys_in_source_dict == 0: return '' elif valid_keys_in_source_dict > 1: raise Exception(err_msg) else: return ''.join( source_dict[key] if key in source_dict else '' for key in permutable_keys ) if example_condition else default_value def example_string_permutations_use_case(): """Example.""" example_string_permutations = ( ('char', 'characteristic'), ('Grp', 'Group'), ('', 1, 2), ('Label', '.label') ) example_dict = {} example_arg_name_permutations = \ make_string_permutations(example_string_permutations) example_chargrp_label_arg_names = example_arg_name_permutations example_char_grp_label = single_value_from_permutable_keys( source_dict=example_dict, permutable_keys=example_chargrp_label_arg_names) return example_char_grp_label
StarcoderdataPython
9604897
import pytest from random import randint from datetime import datetime from test.test_data import generate_courier_db, generate_courier from candy_delivery.db.models import Courier, Order @pytest.mark.asyncio async def test_update_courier(api_client, migrated_db_session): courier = generate_courier_db() courier_update = generate_courier() courier_db = Courier( id=courier["courier_id"], courier_type=courier["courier_type"], regions=courier["regions"], working_hours=courier["working_hours"], rating=courier["rating"], earnings=courier["earnings"] ) migrated_db_session.add(courier_db) migrated_db_session.commit() response = await api_client.patch("/couriers/" + str(courier["courier_id"]), json = { "courier_type": courier_update['courier_type'], "regions": courier_update['regions'], "working_hours": courier_update['working_hours'] } ) assert response.status_code == 200 assert response.json() == { "courier_id": courier["courier_id"], "courier_type": courier_update['courier_type'], "regions": courier_update['regions'], "working_hours": courier_update['working_hours'] } @pytest.mark.asyncio async def test_update_courier_not_found(api_client): courier_update = generate_courier() response = await api_client.patch("/couriers/" + str(randint(0, 100)), json = { "courier_type": courier_update['courier_type'], "regions": courier_update['regions'], "working_hours": courier_update['working_hours'] } ) assert response.status_code == 404 @pytest.mark.asyncio async def test_update_courier_cancel_orders(api_client, migrated_db_session): courier_db = Courier( id=6, courier_type="car", regions=[20, 15, 9, 4], working_hours=["09:00-16:00"], ) order_db_1 = Order( id=1, weight=40, region=4, delivery_hours=["09:30-12:30"], assign_time=datetime.utcnow(), courier_id=6 ) order_db_2 = Order( id=2, weight=14, region=20, delivery_hours=["14:30-16:00"], assign_time=datetime.utcnow(), courier_id=6 ) order_db_3 = Order( id=3, weight=16, region=15, delivery_hours=["12:00-15:30"], assign_time=datetime.utcnow(), courier_id=6 ) order_db_4 = Order( id=4, weight=10, region=9, delivery_hours=["08:00-08:30"], assign_time=datetime.utcnow(), courier_id=6 ) migrated_db_session.add(courier_db) migrated_db_session.add(order_db_1) migrated_db_session.add(order_db_2) migrated_db_session.add(order_db_3) migrated_db_session.add(order_db_4) migrated_db_session.commit() response = await api_client.patch("/couriers/6", json = { "courier_type": "bike", "regions": [20, 9] } ) assert response.status_code == 200 assert response.json() == { "courier_id": 6, "courier_type": "bike", "regions": [20, 9], "working_hours": ["09:00-16:00"], } valid_orders_ids = [order.id for order in migrated_db_session.query(Order).filter(Order.courier_id != None)] assert valid_orders_ids == [2]
StarcoderdataPython
5085913
<filename>src/sst/elements/memHierarchy/tests/sdl5-1.py # Automatically generated SST Python input import sst from mhlib import componentlist DEBUG_L1 = 0 DEBUG_L2 = 0 DEBUG_L3 = 0 DEBUG_MEM = 0 DEBUG_CORE0 = 0 DEBUG_CORE1 = 0 DEBUG_CORE2 = 0 DEBUG_CORE3 = 0 DEBUG_NODE0 = 0 DEBUG_NODE1 = 0 # Define the simulation components comp_cpu0 = sst.Component("cpu0", "memHierarchy.trivialCPU") comp_cpu0.addParams({ "memSize" : "0x1000", "num_loadstore" : "1000", "commFreq" : "100", "do_write" : "1" }) iface0 = comp_cpu0.setSubComponent("memory", "memHierarchy.memInterface") comp_c0_l1cache = sst.Component("c0.l1cache", "memHierarchy.Cache") comp_c0_l1cache.addParams({ "access_latency_cycles" : "5", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "4", "cache_line_size" : "64", "debug_level" : "10", "L1" : "1", "debug" : DEBUG_L1 | DEBUG_CORE0 | DEBUG_NODE0, "cache_size" : "4 KB" }) comp_cpu1 = sst.Component("cpu1", "memHierarchy.trivialCPU") comp_cpu1.addParams({ "memSize" : "0x1000", "num_loadstore" : "1000", "commFreq" : "100", "do_write" : "1" }) iface1 = comp_cpu1.setSubComponent("memory", "memHierarchy.memInterface") comp_c1_l1cache = sst.Component("c1.l1cache", "memHierarchy.Cache") comp_c1_l1cache.addParams({ "access_latency_cycles" : "5", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "4", "cache_line_size" : "64", "debug_level" : "10", "L1" : "1", "debug" : DEBUG_L1 | DEBUG_CORE0 | DEBUG_NODE0, "cache_size" : "4 KB" }) comp_n0_bus = sst.Component("n0.bus", "memHierarchy.Bus") comp_n0_bus.addParams({ "bus_frequency" : "2 Ghz" }) comp_n0_l2cache = sst.Component("n0.l2cache", "memHierarchy.Cache") comp_n0_l2cache.addParams({ "access_latency_cycles" : "20", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "8", "cache_line_size" : "64", "debug_level" : "10", "debug" : DEBUG_L2 | DEBUG_NODE0, "cache_size" : "32 KB" }) comp_cpu2 = sst.Component("cpu2", "memHierarchy.trivialCPU") comp_cpu2.addParams({ "memSize" : "0x1000", "num_loadstore" : "1000", "commFreq" : "100", "do_write" : "1" }) iface2 = comp_cpu2.setSubComponent("memory", "memHierarchy.memInterface") comp_c2_l1cache = sst.Component("c2.l1cache", "memHierarchy.Cache") comp_c2_l1cache.addParams({ "access_latency_cycles" : "5", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "4", "cache_line_size" : "64", "debug_level" : "10", "L1" : "1", "debug" : DEBUG_L1 | DEBUG_CORE2 | DEBUG_NODE1, "cache_size" : "4 KB" }) comp_cpu3 = sst.Component("cpu3", "memHierarchy.trivialCPU") comp_cpu3.addParams({ "memSize" : "0x1000", "num_loadstore" : "1000", "commFreq" : "100", "do_write" : "1" }) iface3 = comp_cpu3.setSubComponent("memory", "memHierarchy.memInterface") comp_c3_l1cache = sst.Component("c3.l1cache", "memHierarchy.Cache") comp_c3_l1cache.addParams({ "access_latency_cycles" : "5", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "4", "cache_line_size" : "64", "debug_level" : "10", "L1" : "1", "debug" : DEBUG_L1 | DEBUG_CORE3 | DEBUG_NODE1, "cache_size" : "4 KB" }) comp_n1_bus = sst.Component("n1.bus", "memHierarchy.Bus") comp_n1_bus.addParams({ "bus_frequency" : "2 Ghz" }) comp_n1_l2cache = sst.Component("n1.l2cache", "memHierarchy.Cache") comp_n1_l2cache.addParams({ "access_latency_cycles" : "20", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "8", "cache_line_size" : "64", "debug_level" : "10", "debug" : DEBUG_L2 | DEBUG_NODE1, "cache_size" : "32 KB" }) comp_n2_bus = sst.Component("n2.bus", "memHierarchy.Bus") comp_n2_bus.addParams({ "bus_frequency" : "2 Ghz" }) l3cache = sst.Component("l3cache", "memHierarchy.Cache") l3cache.addParams({ "access_latency_cycles" : "100", "cache_frequency" : "2 Ghz", "replacement_policy" : "lru", "coherence_protocol" : "MSI", "associativity" : "8", "cache_line_size" : "64", "debug_level" : "10", "debug" : DEBUG_L3, "cache_size" : "64 KB" }) memctrl = sst.Component("memory", "memHierarchy.MemController") memctrl.addParams({ "debug" : DEBUG_MEM, "debug_level" : "10", "clock" : "1GHz", }) memory = memctrl.setSubComponent("backend", "memHierarchy.dramsim") memory.addParams({ "mem_size" : "512MiB", "access_time" : "1000 ns", "system_ini" : "system.ini", "device_ini" : "DDR3_micron_32M_8B_x4_sg125.ini", }) # Enable statistics sst.setStatisticLoadLevel(7) sst.setStatisticOutput("sst.statOutputConsole") for a in componentlist: sst.enableAllStatisticsForComponentType(a) # Define the simulation links link_cpu0_l1cache_link = sst.Link("link_cpu0_l1cache_link") link_cpu0_l1cache_link.connect( (iface0, "port", "1000ps"), (comp_c0_l1cache, "high_network_0", "1000ps") ) link_c0_l1cache_l2cache_link = sst.Link("link_c0_l1cache_l2cache_link") link_c0_l1cache_l2cache_link.connect( (comp_c0_l1cache, "low_network_0", "10000ps"), (comp_n0_bus, "high_network_0", "10000ps") ) link_cpu1_l1cache_link = sst.Link("link_cpu1_l1cache_link") link_cpu1_l1cache_link.connect( (iface1, "port", "1000ps"), (comp_c1_l1cache, "high_network_0", "1000ps") ) link_c1_l1cache_l2cache_link = sst.Link("link_c1_l1cache_l2cache_link") link_c1_l1cache_l2cache_link.connect( (comp_c1_l1cache, "low_network_0", "10000ps"), (comp_n0_bus, "high_network_1", "10000ps") ) link_n0_bus_l2cache = sst.Link("link_n0_bus_l2cache") link_n0_bus_l2cache.connect( (comp_n0_bus, "low_network_0", "10000ps"), (comp_n0_l2cache, "high_network_0", "1000ps") ) link_n0_l2cache_l3cache = sst.Link("link_n0_l2cache_l3cache") link_n0_l2cache_l3cache.connect( (comp_n0_l2cache, "low_network_0", "10000ps"), (comp_n2_bus, "high_network_0", "10000ps") ) link_cpu2_l1cache_link = sst.Link("link_cpu2_l1cache_link") link_cpu2_l1cache_link.connect( (iface2, "port", "1000ps"), (comp_c2_l1cache, "high_network_0", "1000ps") ) link_c2_l1cache_l2cache_link = sst.Link("link_c2_l1cache_l2cache_link") link_c2_l1cache_l2cache_link.connect( (comp_c2_l1cache, "low_network_0", "10000ps"), (comp_n1_bus, "high_network_0", "10000ps") ) link_cpu3_l1cache_link = sst.Link("link_cpu3_l1cache_link") link_cpu3_l1cache_link.connect( (iface3, "port", "1000ps"), (comp_c3_l1cache, "high_network_0", "1000ps") ) link_c3_l1cache_l2cache_link = sst.Link("link_c3_l1cache_l2cache_link") link_c3_l1cache_l2cache_link.connect( (comp_c3_l1cache, "low_network_0", "10000ps"), (comp_n1_bus, "high_network_1", "10000ps") ) link_n1_bus_l2cache = sst.Link("link_n1_bus_l2cache") link_n1_bus_l2cache.connect( (comp_n1_bus, "low_network_0", "10000ps"), (comp_n1_l2cache, "high_network_0", "1000ps") ) link_n1_l2cache_l3cache = sst.Link("link_n1_l2cache_l3cache") link_n1_l2cache_l3cache.connect( (comp_n1_l2cache, "low_network_0", "10000ps"), (comp_n2_bus, "high_network_1", "10000ps") ) link_bus_l3cache = sst.Link("link_bus_l3cache") link_bus_l3cache.connect( (comp_n2_bus, "low_network_0", "10000ps"), (l3cache, "high_network_0", "10000ps") ) link_mem_bus_link = sst.Link("link_mem_bus_link") link_mem_bus_link.connect( (l3cache, "low_network_0", "10000ps"), (memctrl, "direct_link", "10000ps") ) # End of generated output.
StarcoderdataPython
1971235
<reponame>yuvabedev/AV-Bakery-APP # Copyright (c) 2022, <EMAIL> and contributors # For license information, please see license.txt # import frappe from frappe.model.document import Document class AVBCustomer(Document): pass
StarcoderdataPython
115664
<gh_stars>1-10 from datetime import timedelta, datetime import pendulum from airflow import DAG from airflow.operators.python import PythonOperator from airflow.providers.ssh.operators.ssh import SSHOperator from auxiliary.outils import refresh_tableau_extract default_args = { 'owner': 'airflow', 'depends_on_past': False, 'email': ['<EMAIL>'], 'email_on_failure': True, 'email_on_retry': False, 'start_date': datetime(2019, 3, 6, tzinfo=pendulum.timezone('America/Los_Angeles')), 'retries': 1, 'retry_delay': timedelta(minutes=2), } dag = DAG('update_foundation_data', default_args=default_args, catchup=False, schedule_interval='00 21 * * *') t1_bash = 'cd C:\\Anaconda\\ETL\\foundation && python DSS_D_Data.py' t2_bash = 'cd C:\\Anaconda\\ETL\\foundation && python LU_Physicians.py' t4_bash = 'cd C:\\Anaconda\\ETL\\misc_etl && python CovidWaiverData.py' t1 = SSHOperator(ssh_conn_id='tableau_server', task_id='refresh_dss_d_data', command=t1_bash, dag=dag) t3 = PythonOperator( task_id='refresh_rvu_extract', python_callable=refresh_tableau_extract, op_kwargs={'datasource_id': 'c08148a1-cf27-48df-8c8f-fc29f2c77c12'}, dag=dag ) t4 = SSHOperator(ssh_conn_id='tableau_server', task_id='refresh_covid_waiver', command=t4_bash, dag=dag) t1 >> t3 t4
StarcoderdataPython
6694190
<gh_stars>100-1000 from django.urls import path from chats import views app_name = 'chats' urlpatterns = [ path('chats/', views.index, name='index'), ]
StarcoderdataPython
165934
# -*- coding: utf-8 -*- """Command line interface for Axonius API Client.""" import click from ..context import AliasedGroup from . import ( grp_central_core, grp_discover, grp_meta, grp_nodes, grp_roles, grp_settings, grp_users, ) @click.group(cls=AliasedGroup) def system(): """Group: System control commands.""" system.add_command(grp_meta.meta) system.add_command(grp_nodes.instances) system.add_command(grp_central_core.central_core) system.add_command(grp_roles.roles) system.add_command(grp_settings.settings_lifecycle) system.add_command(grp_settings.settings_gui) system.add_command(grp_settings.settings_core) system.add_command(grp_users.users) system.add_command(grp_discover.discover)
StarcoderdataPython
5187112
<reponame>vikingden8/Algorithms-Patterns #!/usr/bin/python3 #coding=utf-8 def search(): items = (0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610) target = 144 index = interpolationSearch(items, target) if index == -1: print('Element found not found.') else: print('Element at index {}'.format(index)) def interpolationSearch(items, target): lo, hi = 0, len(items) - 1 while lo <= hi and target >= items[lo] and target <= items[hi]: position = lo + int((target - items[lo]) * (hi - lo) / (items[hi] - items[lo])) if items[position] == target: return position if items[position] < target: lo = position + 1 else: hi = position - 1 return -1 if __name__ == '__main__': search()
StarcoderdataPython
4971797
class UserExistsError(Exception): """Пользователь уже есть в базе""" class UserNotExistsError(Exception): """Пользователь не найден""" class UserOrGoodsNotExistsError(Exception): """Товара нет в базе или у пользователя нет товаров""" class TelegramUserExistsError(Exception): """Пользователь уже есть в базе""" class PriceException(Exception): """Что-то не то с ценой. Смотри логи.""" class PasswordException(Exception): """Что-то не то с пользователем. Смотри логи.""" class AddGoodsError(Exception): """Ошибка при добавлении товара""" class GoodsNotExists(Exception): """Видимо url не верный""" class URLExistsError(Exception): pass class TelegramUserNotExistsError(Exception): pass
StarcoderdataPython
4852343
from orbit.estimators.pyro_estimator import PyroEstimatorSVI def test_pyro_estimator_vi(stan_estimator_lgt_model_input): stan_model_name, model_param_names, data_input = stan_estimator_lgt_model_input # create estimator vi_estimator = PyroEstimatorSVI(num_steps=50) # extract posterior samples posteriors, training_metrics = vi_estimator.fit( model_name=stan_model_name, model_param_names=model_param_names, data_input=data_input, ) assert set(model_param_names) == set(posteriors.keys())
StarcoderdataPython
1752791
<gh_stars>100-1000 """ SleekXMPP: The Sleek XMPP Library Copyright (C) 2010 <NAME> This file is part of SleekXMPP. See the file LICENSE for copying permission. """ from sleekxmpp.stanza import Message from sleekxmpp.xmlstream import register_stanza_plugin from sleekxmpp.plugins.xep_0071 import XHTML_IM as HTMLIM register_stanza_plugin(Message, HTMLIM) # To comply with PEP8, method names now use underscores. # Deprecated method names are re-mapped for backwards compatibility. HTMLIM.setBody = HTMLIM.set_body HTMLIM.getBody = HTMLIM.get_body HTMLIM.delBody = HTMLIM.del_body
StarcoderdataPython
11213235
<filename>flashback/__init__.py from .thread import Thread from .post import Post def get(base_url): t = Thread(base_url) t.get() return t
StarcoderdataPython
5080066
<reponame>angeldev7/ico import datetime import pytest from eth_utils import to_wei from web3.contract import Contract @pytest.fixture def presale_freeze_ends_at() -> int: """How long presale funds stay frozen until refund.""" return int(datetime.datetime(2017, 1, 1).timestamp()) @pytest.fixture def presale_milestone_pricing(chain, presale_fund_collector, uncapped_flatprice, presale_freeze_ends_at, team_multisig): """Pricing used in presale tests, allowing us to set special price for presale participants.""" week = 24 * 3600 * 7 start_time = uncapped_flatprice.call().startsAt() end_time = start_time + week*4 uncapped_flatprice.transact({"from": team_multisig}).setEndsAt(end_time) args = [ [ start_time + 0, to_wei("0.10", "ether"), start_time + week*1, to_wei("0.10", "ether"), start_time + week*2, to_wei("0.10", "ether"), start_time + week*3, to_wei("0.10", "ether"), end_time, to_wei("0", "ether"), ], ] tx = { "gas": 4000000, "from": team_multisig } contract, hash = chain.provider.deploy_contract('MilestonePricing', deploy_args=args, deploy_transaction=tx) contract.transact({"from": team_multisig}).setPreicoAddress(presale_fund_collector.address, to_wei("0.05", "ether")) assert contract.call().isSane(uncapped_flatprice.address) return contract @pytest.fixture def presale_fund_collector(chain, presale_freeze_ends_at, team_multisig) -> Contract: """In actual ICO, the price is doubled (for testing purposes).""" args = [ team_multisig, presale_freeze_ends_at, to_wei(1, "ether") ] tx = { "from": team_multisig, } presale_fund_collector, hash = chain.provider.deploy_contract('PresaleFundCollector', deploy_args=args, deploy_transaction=tx) return presale_fund_collector @pytest.fixture def presale_crowdsale(chain, presale_fund_collector, uncapped_flatprice, team_multisig): """ICO associated with the presale where funds will be moved to a presale.""" presale_fund_collector.transact({"from": team_multisig}).setCrowdsale(uncapped_flatprice.address) return uncapped_flatprice @pytest.fixture def presale_crowdsale_miletstoned(chain, presale_fund_collector, uncapped_flatprice, presale_milestone_pricing, team_multisig): """ICO associated with the presale where funds will be moved to a presale. We set a special milestone pricing that allows us to control the pricing for the presale participants. """ uncapped_flatprice.transact({"from": team_multisig}).setPricingStrategy(presale_milestone_pricing.address) presale_fund_collector.transact({"from": team_multisig}).setCrowdsale(uncapped_flatprice.address) presale_milestone_pricing.transact({"from" : team_multisig}).setPreicoAddress(presale_fund_collector.address, to_wei("0.08", "ether")) return uncapped_flatprice
StarcoderdataPython
292051
<filename>tests/integration/test_fetch_partition_should_reset_mutation/test.py import pytest from helpers.client import QueryRuntimeException from helpers.cluster import ClickHouseCluster from helpers.test_tools import TSV cluster = ClickHouseCluster(__file__) node = cluster.add_instance("node", main_configs=["configs/zookeeper_config.xml"], with_zookeeper=True) @pytest.fixture(scope="module") def start_cluster(): try: cluster.start() yield cluster finally: cluster.shutdown() def test_part_should_reset_mutation(start_cluster): node.query( "CREATE TABLE test (i Int64, s String) ENGINE = ReplicatedMergeTree('/clickhouse/tables/test', 'node') ORDER BY i;" ) node.query("INSERT INTO test SELECT 1, 'a'") node.query("optimize table test final") node.query("optimize table test final") expected = TSV('''all_0_0_2\t1\ta''') assert TSV(node.query('SELECT _part, * FROM test')) == expected node.query("ALTER TABLE test UPDATE s='xxx' WHERE 1", settings={"mutations_sync": "2"}) node.query("ALTER TABLE test UPDATE s='xxx' WHERE 1", settings={"mutations_sync": "2"}) node.query("ALTER TABLE test UPDATE s='xxx' WHERE 1", settings={"mutations_sync": "2"}) node.query("ALTER TABLE test UPDATE s='xxx' WHERE 1", settings={"mutations_sync": "2"}) expected = TSV('''all_0_0_2_4\t1\txxx''') assert TSV(node.query('SELECT _part, * FROM test')) == expected node.query( "CREATE TABLE restore (i Int64, s String) ENGINE = ReplicatedMergeTree('/clickhouse/tables/restore', 'node') ORDER BY i;" ) node.query("ALTER TABLE restore FETCH PARTITION tuple() FROM '/clickhouse/tables/test/'") node.query("ALTER TABLE restore ATTACH PART 'all_0_0_2_4'") node.query("INSERT INTO restore select 2, 'a'") print(TSV(node.query('SELECT _part, * FROM restore'))) expected = TSV('''all_0_0_0\t1\txxx\nall_1_1_0\t2\ta''') assert TSV(node.query('SELECT _part, * FROM restore ORDER BY i')) == expected node.query("ALTER TABLE restore UPDATE s='yyy' WHERE 1", settings={"mutations_sync": "2"}) expected = TSV('''all_0_0_0_2\t1\tyyy\nall_1_1_0_2\t2\tyyy''') assert TSV(node.query('SELECT _part, * FROM restore ORDER BY i')) == expected node.query("ALTER TABLE restore DELETE WHERE 1", settings={"mutations_sync": "2"}) assert node.query("SELECT count() FROM restore").strip() == "0"
StarcoderdataPython
5173135
<filename>setup.py<gh_stars>0 from setuptools import setup, find_packages DESCRIPTION = "Djangotoolbox for Django-nonrel" LONG_DESCRIPTION = None try: LONG_DESCRIPTION = open('README.rst').read() except: pass setup(name='djangotoolbox', version='1.6.2', description=DESCRIPTION, long_description=LONG_DESCRIPTION, author='<NAME>', author_email='<EMAIL>', url='https://github.com/django-nonrel/djangotoolbox', packages=find_packages(), license='3-clause BSD', zip_safe=False, classifiers=[ 'Development Status :: 5 - Production/Stable', 'Environment :: Web Environment', 'Framework :: Django', 'Intended Audience :: Developers', 'License :: OSI Approved :: BSD License', 'Operating System :: OS Independent', 'Programming Language :: Python', 'Programming Language :: Python :: 2.5', 'Programming Language :: Python :: 2.6', 'Programming Language :: Python :: 2.7', 'Topic :: Database', 'Topic :: Software Development :: Libraries :: Python Modules', ], )
StarcoderdataPython
1631728
# coding=utf-8 # pip install textract import textract extension = ".pdf" folder_ma = "texts-ma/" folder_ba = "texts-ba/" files_ma = [ "BLEHNER_SVEN_MA_THESIS", "Iila_Marit_MA_Thesis", "Kubre_Liisa_MA_Thesis", "Kümnik_Maret_MA_Thesis", "Laanepere_Lilian_MA_Thesis.pdf1", "Maatee, Sylvia. MA thesis", "Mugra_Siiri_MA_Thesis", "Parker_Helen_MA_Thesis", "Rahusaar_Anne_MA_Thesis", "Sagar_Sandra_MA_Thesis", "Thealane_Kairit_MA_Thesis", "Tihkan_Kristi_MA_Thesis", "Tiido_Terje_MA_Thesis", "Wu_GaoHeng_MA_Thesis" ] files_ba = [ "Eesalu_Mona_BA_Thesis", "Meriste_Liisa_BA_Thesis", "Roomäe_Annotated Transcript of Grammar Day", "Gaibli_Aibike_BA_Thesis", "Nook_Petra_BA_Thesis", "Roomäe_Kärt_BA_Thesis", "Gortalova_Jekaterina_BA_Thesis", "Näär_Kaisa-Liina_BA_Thesis", "Sai_Elizaveta_BA_Thesis", "Joemaa_Evelin_BA_Thesis", "Org_MariaRoberta_BA_Thesis", "Sünd_Siiri_BA_Thesis", "Kahur_Helen_BA", "Parksepp_Lotte_BA_Thesis", "Talviste_Eliseta_BA_Thesis", "Karilaid_Liis_BA_Thesis", "Peedumäe_Ander_BA_Thesis", "Teele_Männik_BA_24May2019", "Konno_Henry_BA_Thesis", "Peterson_Karl_BA_Thesis", "Tsebakov_Fjodor_BA_Thesis", "Mander_Monika_BA_Thesis", "Poopuu_Amanda_BA_Thesis", "Visnapuu_Karmen_BA_Thesis", "Melnik_Darja_BA_Thesis", "Rips_Elisabeth_BA_Thesis", ] def calculate(folder, files): for file in files: path = folder + file + extension text = textract.process(path) split = text.split(" ") unique_words = {} for word in split: word = word.lower() if word not in unique_words: unique_words[word] = 1 else: unique_words[word] += 1 ratio = int((float(len(unique_words)) / float(len(split)) * 100)) / 100.0 print("" + file + ": words: " + str(len(split)) + "; unique: " + str(len(unique_words)) + "; ratio: " + str(ratio)) calculate(folder_ma, files_ma) calculate(folder_ba, files_ba)
StarcoderdataPython
3368578
# Copyright (c) OpenMMLab. All rights reserved. import os.path as osp import random from .builder import DATASETS from .custom import CustomDataset from collections import OrderedDict from mmseg.core import eval_metrics, intersect_and_union, pre_eval_to_metrics import mmcv import numpy as np from mmcv.utils import print_log from prettytable import PrettyTable from mmseg.core import eval_metrics import os from sklearn import metrics from mmseg.utils import get_root_logger @DATASETS.register_module() class HSIGANDataset(CustomDataset): """Pascal VOC dataset. Args: split (str): Split txt file for Pascal VOC. """ CLASSES = ('noncancer', 'cancer') PALETTE = [[0, 0, 0], [255, 255, 255]] def __init__(self, split, gan_img_dir=None, gan_ann_dir=None, gan_split=None, gan_suffix=None, fake_rate=0.2, **kwargs): super(HSIGANDataset, self).__init__( img_suffix='.hdr', seg_map_suffix='.png', split=split, **kwargs) assert osp.exists(self.img_dir) and self.split is not None if gan_img_dir is not None: self.gan_img_dir = gan_img_dir self.gan_ann_dir = gan_ann_dir self.gan_split = gan_split self.gan_suffix = gan_suffix if self.data_root is not None: if not osp.isabs(self.gan_img_dir): self.gan_img_dir = osp.join(self.data_root, self.gan_img_dir) if not (self.ann_dir is None or osp.isabs(self.gan_ann_dir)): self.gan_ann_dir = osp.join(self.data_root, self.gan_ann_dir) if not (self.gan_split is None or osp.isabs(self.gan_split)): self.gan_split = osp.join(self.data_root, self.gan_split) self.gan_infos = self.load_annotations(self.gan_img_dir, self.gan_suffix, self.gan_ann_dir, self.seg_map_suffix, self.gan_split) self.len_ganx = len(self.gan_infos) self.fake_rate = fake_rate/(1 + fake_rate) self.len_gan = int(self.fake_rate * len(self.img_infos)) else: self.len_gan = 0 self.len_real = len(self.img_infos) def __len__(self): return self.len_real + self.len_gan def pre_pipeline(self, results): """Prepare results dict for pipeline.""" results['seg_fields'] = [] results['img_prefix'] = self.img_dir results['seg_prefix'] = self.ann_dir if self.custom_classes: results['label_map'] = self.label_map def pre_gan_pipeline(self, results): """Prepare results dict for pipeline.""" results['seg_fields'] = [] results['img_prefix'] = self.gan_img_dir results['seg_prefix'] = self.gan_ann_dir if self.custom_classes: results['label_map'] = self.label_map def get_ann_info(self, idx): """Get annotation by index.""" return self.img_infos[idx]['ann'] def get_gan_ann_info(self, idx): """Get annotation by index.""" return self.gan_infos[idx]['ann'] def prepare_train_img(self, idx): if idx < self.len_real: img_info = self.img_infos[idx] ann_info = self.get_ann_info(idx) results = dict(img_info=img_info, ann_info=ann_info) self.pre_pipeline(results) else: random_idx = random.randint(0, self.len_ganx-1) img_info = self.gan_infos[random_idx] ann_info = self.get_gan_ann_info(random_idx) # img_info = self.gan_infos[idx - self.len_real] # ann_info = self.get_gan_ann_info(idx - self.len_real) results = dict(img_info=img_info, ann_info=ann_info) self.pre_gan_pipeline(results) return self.pipeline(results) def evaluate(self, results, metric='mIoU', logger=None, gt_seg_maps=None, **kwargs): """Evaluate the dataset. Args: results (list[tuple[torch.Tensor]] | list[str]): per image pre_eval results or predict segmentation map for computing evaluation metric. metric (str | list[str]): Metrics to be evaluated. 'mIoU', 'mDice' and 'mFscore' are supported. logger (logging.Logger | None | str): Logger used for printing related information during evaluation. Default: None. gt_seg_maps (generator[ndarray]): Custom gt seg maps as input, used in ConcatDataset Returns: dict[str, float]: Default metrics. """ if isinstance(metric, str): metric = [metric] allowed_metrics = ['mIoU', 'mDice', 'mFscore'] if not set(metric).issubset(set(allowed_metrics)): raise KeyError('metric {} is not supported'.format(metric)) eval_results = {} # test a list of files if mmcv.is_list_of(results, np.ndarray) or mmcv.is_list_of( results, str): if gt_seg_maps is None: gt_seg_maps = self.get_gt_seg_maps() num_classes = len(self.CLASSES) ret_metrics = eval_metrics( results, gt_seg_maps, num_classes, self.ignore_index, metric, label_map=self.label_map, reduce_zero_label=self.reduce_zero_label) # get kappa con_mat = np.zeros((2, 2)) for result, gt in zip(results, self.get_gt_seg_maps()): con_mat += metrics.confusion_matrix(gt.flatten(), result.flatten(), labels=[1, 0]) # test a list of pre_eval_results else: ret_metrics = pre_eval_to_metrics(results, metric) # get kappa con_mat = np.zeros((2, 2)) pre_eval_results = tuple(zip(*results)) total_area_intersect = sum(pre_eval_results[0]) total_area_label = sum(pre_eval_results[3]) con_mat[0][0] = total_area_intersect[0] con_mat[1][1] = total_area_intersect[1] con_mat[0][1] = total_area_label[1] - total_area_intersect[1] con_mat[1][0] = total_area_label[0] - total_area_intersect[0] # Because dataset.CLASSES is required for per-eval. if self.CLASSES is None: class_names = tuple(range(num_classes)) else: class_names = self.CLASSES # summary table ret_metrics_summary = OrderedDict({ ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2) for ret_metric, ret_metric_value in ret_metrics.items() }) # each class table ret_metrics.pop('aAcc', None) ret_metrics_class = OrderedDict({ ret_metric: np.round(ret_metric_value * 100, 2) for ret_metric, ret_metric_value in ret_metrics.items() }) ret_metrics_class.update({'Class': class_names}) ret_metrics_class.move_to_end('Class', last=False) # for logger class_table_data = PrettyTable() for key, val in ret_metrics_class.items(): class_table_data.add_column(key, val) summary_table_data = PrettyTable() for key, val in ret_metrics_summary.items(): if key == 'aAcc': summary_table_data.add_column(key, [val]) else: summary_table_data.add_column('m' + key, [val]) print_log('per class results:', logger) print_log('\n' + class_table_data.get_string(), logger=logger) print_log('Summary:', logger) print_log('\n' + summary_table_data.get_string(), logger=logger) # each metric dict for key, value in ret_metrics_summary.items(): if key == 'aAcc': eval_results[key] = value / 100.0 else: eval_results['m' + key] = value / 100.0 ret_metrics_class.pop('Class', None) for key, value in ret_metrics_class.items(): eval_results.update({ key + '.' + str(name): value[idx] / 100.0 for idx, name in enumerate(class_names) }) print_log('mIoU:{:.4f}'.format(eval_results['mIoU']), logger=logger) print_log('mDice:{:.4f}'.format(eval_results['mDice']), logger=logger) print_log('mAcc:{:.4f}'.format(eval_results['mAcc']), logger=logger) print_log('aAcc:{:.4f}'.format(eval_results['aAcc']), logger=logger) print_log('kappa:{:.4f}'.format(kappa(con_mat)), logger=logger) print_log('accuracy:{:.4f}'.format(accuracy(con_mat)), logger=logger) # print_log('precision:{:.4f}'.format(precision(con_mat)), logger=logger) # print_log('sensitivity:{:.4f}'.format(sensitivity(con_mat)), logger=logger) # print_log('specificity:{:.4f}'.format(specificity(con_mat)), logger=logger) return eval_results def kappa(matrix): matrix = np.array(matrix) n = np.sum(matrix) sum_po = 0 sum_pe = 0 for i in range(len(matrix[0])): sum_po += matrix[i][i] row = np.sum(matrix[i, :]) col = np.sum(matrix[:, i]) sum_pe += row * col po = sum_po / n pe = sum_pe / (n * n) # print(po, pe) return (po - pe) / (1 - pe) def sensitivity(matrix): return matrix[0][0]/(matrix[0][0]+matrix[1][0]) def specificity(matrix): return matrix[1][1]/(matrix[1][1]+matrix[0][1]) def precision(matrix): return matrix[0][0]/(matrix[0][0]+matrix[0][1]) def accuracy(matrix): return (matrix[0][0]+matrix[1][1])/(matrix[0][0]+matrix[0][1]+matrix[1][0]+matrix[1][1])
StarcoderdataPython
11343336
<reponame>Erick-Paulino/exercicios-de-cursos '''Faça um programa que leia o ano de nascimento de um jovem e informe, de acordo com a sua idade, se ele ainda vai se alistar ao serviço militar, se é a hora exata de se alistar ou se já passou do tempo do alistamento. Seu programa também deverá mostrar o tempo que falta ou que passou do prazo.''' from datetime import date ano = int(input('em qual ano voce nasceu? ')) idade = date.today().year - ano if idade < 18: print(f'você deverá se alistar no ano de {ano + 18}.') elif idade == 18: print('esta é a hora certa para realizar o seu alistamento.') else: print(f'o seu alistamento foi ha {date.today().year - (ano + 18)} ano(s) atrás.')
StarcoderdataPython
4981557
#!/usr/bin/python2.5 # # Copyright 2014 <NAME>. # # Author: <NAME> (<EMAIL>) # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to deal # in the Software without restriction, including without limitation the rights # to use, copy, modify, merge, publish, distribute, sublicense, and/or sell # copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, # OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN # THE SOFTWARE. # # See http://creativecommons.org/licenses/MIT/ for more information. # # ----------------------------------------------------------------------------- # # Lookup table definitions. import numpy import pylab import scipy.signal def pole_pair_to_f_fq(pole_pair): fq = 1 - pole_pair.prod() f = -(2 - fq - (pole_pair.sum())) ** 0.5 return f.real, fq.real def modified_chamberlin(f, fq, x, mode='bp'): lp = 0.0 bp = 0.0 y = numpy.zeros(x.shape) x_ = 0.0 coefficient = 1.0 if mode == 'bp' else 0.0 for i in xrange(len(y)): lp += f * bp bp += -fq * bp -f * lp + (x[i] + x_ * coefficient) x_ = x[i] if mode =='bp': y[i] = fq * bp elif mode == 'lp': y[i] = f * lp elif mode == 'hp': y[i] = x_ - lp * f - bp * fq return y SAMPLE_RATE = 96000 IR_SIZE = 2048 sample_rates = [SAMPLE_RATE / 12] * 13 sample_rates += [SAMPLE_RATE / 3] * 6 sample_rates += [SAMPLE_RATE] * 1 num_bands = len(sample_rates) interval = 2 ** (1 / 3.0) first_frequency = 110 / interval frequencies = first_frequency * (interval ** numpy.arange(0, num_bands)) filters = [] responses = {} reconstruction = {} generate_figures = __name__ == '__main__' for index, (frequency, sr) in enumerate(zip(frequencies, sample_rates)): if not sr in reconstruction: reconstruction[sr] = [0.0, 0.0] responses[sr] = [] frequency = frequency / (sr * 0.5) if index == 0: w = frequency z, p, k = scipy.signal.cheby1(4, 0.5, w, 'lowpass', output='zpk') svf_mode = 'lp' gain = 1.0 elif index == num_bands - 1: w = frequency z, p, k = scipy.signal.cheby1(4, 0.25, w, 'highpass', output='zpk') svf_mode = 'hp' gain = 21 * frequency else: w = [frequency / (interval ** 0.5), frequency * (interval ** 0.5)] z, p, k = scipy.signal.butter(2, w, 'bandpass', output='zpk') svf_mode = 'bp' gain = 0.25 # Filter using direct form out = numpy.eye(IR_SIZE, 1).ravel() b, a = scipy.signal.zpk2tf(z, p, k) out = scipy.signal.lfilter(b, a, out) out = scipy.signal.lfilter(b, a, out) reconstruction[sr][0] += out responses[sr] += [out] # Filter using modified Chamberlin filter out = numpy.eye(IR_SIZE, 1).ravel() * gain coefficients = [0, 0, 0] for i in xrange(2): f, fq = pole_pair_to_f_fq(p[i*2:i*2 + 2]) out = modified_chamberlin(f, fq, out, svf_mode) out = modified_chamberlin(f, fq, out, svf_mode) coefficients += [f, fq] delay = (numpy.arange(len(out)) * out * out).sum() / (out * out).sum() # Completely empirical fixes to the delay to maximize the flatness of the # total impulse response. if index == num_bands - 1: delay += 4 coefficients[0] = SAMPLE_RATE / sr coefficients[1] = numpy.floor(delay) coefficients[2] = gain filters += [('%3.0f_%d' % (frequency * 0.5 * sr, sr), coefficients)] reconstruction[sr][1] += out if generate_figures: pylab.figure(figsize=(20,8)) n = len(responses.keys()) for row, sr in enumerate(sorted(responses.keys())): f = numpy.arange(IR_SIZE / 2 + 1) / float(IR_SIZE) * sr for column, plots in enumerate([reconstruction[sr], responses[sr]]): pylab.subplot(2, n, column * n + row + 1) for r in plots: sy = numpy.log10(numpy.abs(numpy.fft.rfft(r)) + 1e-20) * 20.0 pylab.semilogx(f, sy) pylab.xlim(80, sr / 2) pylab.ylim(-36, 12) pylab.xlabel('Frequency (Hz)') pylab.ylabel('Gain (dB)') if len(plots) == 2: pylab.ylim(-4, 3) #pylab.legend(['Direct form', 'Chamberlin']) pylab.savefig('filter_bank.pdf') # pylab.show() pylab.close()
StarcoderdataPython
54676
<gh_stars>1-10 # -*- coding: utf-8 -*- import optparse import os from mako.template import Template from pyramid.path import AssetResolver from shutil import copyfile def _create_standard_yaml_config_(name='pyramid_oereb_standard.yml', database='postgresql://postgres:password@localhost/pyramid_oereb', print_backend='MapFishPrint', print_url='http://oereb-print:8080/print/oereb'): """ Creates the specified YAML file using a template. This YAML file contains the standard configuration to run a oereb server out of the box. Args: (str): The name of the new file. Default database (str): The database connection string.Default: 'postgresql://postgres:password@localhost/pyramid_oereb' """ # File names logo_oereb_name_de = 'logo_oereb_de.png' logo_oereb_name_fr = 'logo_oereb_fr.png' logo_oereb_name_it = 'logo_oereb_it.png' logo_confederation_name = 'logo_confederation.png' logo_canton_name = 'logo_canton.png' # Create pyramid_oereb.yml from template template = Template( filename=AssetResolver('pyramid_oereb').resolve('standard/pyramid_oereb.yml.mako').abspath(), input_encoding='utf-8', output_encoding='utf-8' ) config = template.render( sqlalchemy_url=database, png_root_dir='', print_backend=print_backend, print_url=print_url ) pyramid_oereb_yml = open(name, 'wb+') pyramid_oereb_yml.write(config) pyramid_oereb_yml.close() # Copy static files logo_oereb_path_de = AssetResolver('pyramid_oereb').resolve( 'standard/{name}'.format(name=logo_oereb_name_de) ).abspath() logo_oereb_path_fr = AssetResolver('pyramid_oereb').resolve( 'standard/{name}'.format(name=logo_oereb_name_fr) ).abspath() logo_oereb_path_it = AssetResolver('pyramid_oereb').resolve( 'standard/{name}'.format(name=logo_oereb_name_it) ).abspath() logo_confederation_path = AssetResolver('pyramid_oereb').resolve( 'standard/{name}'.format(name=logo_confederation_name) ).abspath() logo_sample_path = AssetResolver('pyramid_oereb').resolve( 'standard/{name}'.format(name=logo_canton_name) ).abspath() target_path = os.path.abspath('{path}{sep}{name}'.format( path=os.getcwd(), name=logo_oereb_name_de, sep=os.sep) ) copyfile(logo_oereb_path_de, target_path) target_path = os.path.abspath('{path}{sep}{name}'.format( path=os.getcwd(), name=logo_oereb_name_fr, sep=os.sep) ) copyfile(logo_oereb_path_fr, target_path) target_path = os.path.abspath('{path}{sep}{name}'.format( path=os.getcwd(), name=logo_oereb_name_it, sep=os.sep) ) copyfile(logo_oereb_path_it, target_path) target_path = os.path.abspath('{path}{sep}{name}'.format( path=os.getcwd(), name=logo_confederation_name, sep=os.sep) ) copyfile(logo_confederation_path, target_path) target_path = os.path.abspath('{path}{sep}{name}'.format( path=os.getcwd(), name=logo_canton_name, sep=os.sep) ) copyfile(logo_sample_path, target_path) def create_standard_yaml(): parser = optparse.OptionParser( usage='usage: %prog [options]', description='Create all content for the standard database' ) parser.add_option( '-n', '--name', dest='name', metavar='YAML', type='string', default='pyramid_oereb_standard.yml', help='The name for the new configuration yaml file (default is: pyramid_oereb_standard.yml).' ) parser.add_option( '-d', '--database', dest='database', metavar='DATABASE', type='string', default='postgresql://postgres:password@oereb-db:5432/pyramid_oereb', help='The database connection string (default is: ' 'postgresql://postgres:password@oereb-db:5432/pyramid_oereb).' ) parser.add_option( '-p', '--print_backend', dest='print_backend', metavar='PRINT_BACKEND', type='string', default='MapFishPrint', help='The print backend (for PDF generation) to use (default is: MapFishPrint)' ) parser.add_option( '-u', '--print_url', dest='print_url', metavar='PRINT_URL', type='string', default='http://oereb-print:8080/print/oereb', help='The URL of the print server' ) options, args = parser.parse_args() _create_standard_yaml_config_(name=options.name, database=options.database, print_backend=options.print_backend)
StarcoderdataPython
1694867
<reponame>anandagopal6/azure-functions-python-worker<filename>tests/endtoend/test_eventhub_functions.py<gh_stars>100-1000 # Copyright (c) Microsoft Corporation. All rights reserved. # Licensed under the MIT License. import json import time from datetime import datetime from dateutil import parser, tz from azure_functions_worker import testutils class TestEventHubFunctions(testutils.WebHostTestCase): """Test EventHub Trigger and Output Bindings (cardinality: one). Each testcase consists of 3 part: 1. An eventhub_output HTTP trigger for generating EventHub event 2. An actual eventhub_trigger EventHub trigger for storing event into blob 3. A get_eventhub_triggered HTTP trigger for retrieving event info blob """ @classmethod def get_script_dir(cls): return testutils.E2E_TESTS_FOLDER / 'eventhub_functions' @testutils.retryable_test(3, 5) def test_eventhub_trigger(self): # Generate a unique event body for the EventHub event data = str(round(time.time())) doc = {'id': data} # Invoke eventhub_output HttpTrigger to generate an Eventhub Event. r = self.webhost.request('POST', 'eventhub_output', data=json.dumps(doc)) self.assertEqual(r.status_code, 200) self.assertEqual(r.text, 'OK') # Once the event get generated, allow function host to pool from # EventHub and wait for eventhub_trigger to execute, # converting the event metadata into a blob. time.sleep(5) # Call get_eventhub_triggered to retrieve event metadata from blob. r = self.webhost.request('GET', 'get_eventhub_triggered') self.assertEqual(r.status_code, 200) response = r.json() # Check if the event body matches the initial data self.assertEqual(response, doc) @testutils.retryable_test(3, 5) def test_eventhub_trigger_with_metadata(self): # Generate a unique event body for EventHub event # Record the start_time and end_time for checking event enqueue time start_time = datetime.now(tz=tz.UTC) random_number = str(round(time.time()) % 1000) req_body = { 'body': random_number } # Invoke metadata_output HttpTrigger to generate an EventHub event # from azure-eventhub SDK r = self.webhost.request('POST', 'metadata_output', data=json.dumps(req_body)) self.assertEqual(r.status_code, 200) self.assertIn('OK', r.text) end_time = datetime.now(tz=tz.UTC) # Once the event get generated, allow function host to pool from # EventHub and wait for eventhub_trigger to execute, # converting the event metadata into a blob. time.sleep(5) # Call get_metadata_triggered to retrieve event metadata from blob r = self.webhost.request('GET', 'get_metadata_triggered') self.assertEqual(r.status_code, 200) # Check if the event body matches the unique random_number event = r.json() self.assertEqual(event['body'], random_number) # EventhubEvent property check # Reenable these lines after enqueued_time property is fixed # enqueued_time = parser.isoparse(event['enqueued_time']) # self.assertIsNotNone(enqueued_time) self.assertIsNone(event['partition_key']) # There's only 1 partition self.assertGreaterEqual(event['sequence_number'], 0) self.assertIsNotNone(event['offset']) # Check if the event contains proper metadata fields self.assertIsNotNone(event['metadata']) metadata = event['metadata'] sys_props = metadata['SystemProperties'] enqueued_time = parser.isoparse(metadata['EnqueuedTimeUtc']) self.assertTrue(start_time < enqueued_time < end_time) self.assertIsNone(sys_props['PartitionKey']) self.assertGreaterEqual(sys_props['SequenceNumber'], 0) self.assertIsNotNone(sys_props['Offset'])
StarcoderdataPython
184757
<filename>examples.py/Basics/Color/WaveGradient.py<gh_stars>1000+ """ Wave Gradient by <NAME>. Adapted to python by <NAME> Generate a gradient along a sin() wave. """ import math amplitude = 30 fillGap = 2.5 def setup(): size(200, 200) background(200, 200, 200) noLoop() def draw(): frequency = 0 for i in range(-75, height + 75): # Reset angle to 0, so waves stack properly angle = 0 # Increasing frequency causes more gaps frequency += .006 for j in range(width + 75): py = i + sin(radians(angle)) * amplitude angle += frequency c = color(abs(py - i) * 255 / amplitude, 255 - abs(py - i) * 255 / amplitude, j * (255.0 / (width + 50))) # Hack to fill gaps. Raise value of fillGap if you increase frequency for filler in range(int(math.ceil(fillGap))): set(int(j - filler), int(py) - filler, c) set(int(j), int(py), c) set(int(j + filler), int(py) + filler, c)
StarcoderdataPython
1728870
import re from typing import Any from aim.ql.tokens.types import * class Token(object): types = [ String, Integer, Float, Boolean, None_, List, Comparison, Logical, Identifier, Path, Expression, ] def __init__(self, value: Any, ltype: str): if ltype == 'Number': if '.' in value: cleaned_value, ttype = float(value), Float else: cleaned_value, ttype = int(value), Integer elif ltype == 'String': cleaned_value = str(value).strip().strip('"') ttype = String elif ltype == 'Boolean': cleaned_value = True if str(value) == 'True' else False ttype = Boolean elif ltype == 'None': cleaned_value, ttype = None, None_ elif ltype == 'Identifier': ttype = Identifier cleaned_value = str(value) elif ltype == 'List': cleaned_value, ttype = [], List elif ltype == 'Path': cleaned_value, ttype = [], Path elif ltype == 'Expression': cleaned_value, ttype = [], Expression elif ltype == 'Operator': cleaned_value = re.sub(' +', ' ', value.strip()) if cleaned_value == 'and' \ or cleaned_value == 'or' \ or cleaned_value == 'not': ttype = Logical else: ttype = Comparison else: raise TypeError('undefined `Token` type') self._value = cleaned_value self._ttype = ttype def __repr__(self): return '{}: {}'.format(self.type, self.value) def __str__(self): if self.type == List: return '[{}]'.format(','.join([str(token) for token in self.value])) elif self.type == Path: return '.'.join([str(token) for token in self.value]) else: return str(self.value) @property def value(self) -> Any: return self._value @value.setter def value(self, value: Any): # TODO self._value = value @property def type(self) -> TokenType: return self._ttype @type.setter def type(self, ttype: TokenType): # TODO self._ttype = ttype def get_cleaned_value(self, fields: dict = None, *add_fields): if self.type == List: return [token.get_cleaned_value(fields, *add_fields) for token in self.value] if self.type not in (Identifier, Path): return self.value all_fields = [fields] + list(add_fields) search_field_match = None found = False for fields in all_fields: if self.type == Identifier and self.value in fields.keys(): search_field_match = fields[self.value] found = True break if self.type == Path: fields_search = fields path_found = True for token in self.value: if isinstance(fields_search, dict) \ and token.value in fields_search.keys(): fields_search = fields_search[token.value] search_field_match = fields_search else: path_found = False break if not path_found: search_field_match = None else: found = True break if self.type == Identifier: if found: return search_field_match # Treat as string return self.value else: # Treat as None return search_field_match class TokenList(Token): def __init__(self, ttype: str, tokens: list = []): super(TokenList, self).__init__(tokens, ttype) def append(self, item: Token): self._value.append(item)
StarcoderdataPython
1827440
<filename>domain/processor_md.py from domain.processor import Processor class ProcessorMd(Processor): def __init__(self, file) -> None: super().__init__(file) @property def word_count(self): purged_text = self.data.replace('#', '') return len(purged_text.split()) def unpack(self): return self.file
StarcoderdataPython
3553591
<filename>contentcuration/contentcuration/views/nodes.py import json import logging from datetime import datetime from django.conf import settings from django.core.cache import cache from django.core.exceptions import ObjectDoesNotExist from django.core.exceptions import PermissionDenied from django.db.models import F from django.db.models import Max from django.db.models import Sum from django.http import HttpResponse from django.http import HttpResponseBadRequest from django.http import HttpResponseNotFound from django.shortcuts import get_object_or_404 from le_utils.constants import content_kinds from rest_framework.authentication import SessionAuthentication from rest_framework.authentication import TokenAuthentication from rest_framework.decorators import api_view from rest_framework.decorators import authentication_classes from rest_framework.decorators import permission_classes from rest_framework.permissions import AllowAny from rest_framework.permissions import IsAuthenticated from rest_framework.renderers import JSONRenderer from rest_framework.response import Response from contentcuration.models import Channel from contentcuration.models import ContentNode from contentcuration.models import License from contentcuration.serializers import ContentNodeEditSerializer from contentcuration.serializers import ReadOnlyContentNodeFullSerializer from contentcuration.serializers import ReadOnlyContentNodeSerializer from contentcuration.serializers import ReadOnlySimplifiedContentNodeSerializer from contentcuration.serializers import TaskSerializer from contentcuration.tasks import create_async_task from contentcuration.tasks import getnodedetails_task @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_node_diff(request, channel_id): try: request.user.can_edit(channel_id) except PermissionDenied: return HttpResponseNotFound("No channel matching: {}".format(channel_id)) original = [] # Currently imported nodes changed = [] # Nodes from original node fields_to_check = ['title', 'description', 'license', 'license_description', 'copyright_holder', 'author', 'extra_fields', 'language', 'role_visibility'] assessment_fields_to_check = ['type', 'question', 'hints', 'answers', 'order', 'raw_data', 'source_url', 'randomize'] current_tree_id = Channel.objects.get(pk=channel_id).main_tree.tree_id nodes = ContentNode.objects.prefetch_related('assessment_items').prefetch_related('files').prefetch_related('tags') copied_nodes = nodes.filter(tree_id=current_tree_id).exclude(original_source_node_id=F('node_id')) channel_ids = copied_nodes.values_list('original_channel_id', flat=True).exclude(original_channel_id=channel_id).distinct() tree_ids = Channel.objects.filter(pk__in=channel_ids).values_list("main_tree__tree_id", flat=True) original_node_ids = copied_nodes.values_list('original_source_node_id', flat=True).distinct() original_nodes = nodes.filter(tree_id__in=tree_ids, node_id__in=original_node_ids) # Use dictionary for faster lookup speed content_id_mapping = {n.content_id: n for n in original_nodes} for copied_node in copied_nodes: node = content_id_mapping.get(copied_node.content_id) if node: # Check lengths, metadata, tags, files, and assessment items node_changed = node.assessment_items.count() != copied_node.assessment_items.count() or \ node.files.count() != copied_node.files.count() or \ node.tags.count() != copied_node.tags.count() or \ any([f for f in fields_to_check if getattr(node, f, None) != getattr(copied_node, f, None)]) or \ node.tags.exclude(tag_name__in=copied_node.tags.values_list('tag_name', flat=True)).exists() or \ node.files.exclude(checksum__in=copied_node.files.values_list('checksum', flat=True)).exists() or \ node.assessment_items.exclude(assessment_id__in=copied_node.assessment_items.values_list('assessment_id', flat=True)).exists() # Check individual assessment items if not node_changed and node.kind_id == content_kinds.EXERCISE: for ai in node.assessment_items.all(): source_ai = copied_node.assessment_items.filter(assessment_id=ai.assessment_id).first() if source_ai: node_changed = node_changed or any([f for f in assessment_fields_to_check if getattr(ai, f, None) != getattr(source_ai, f, None)]) if node_changed: break if node_changed: original.append(copied_node) changed.append(node) return Response({ "original": ReadOnlySimplifiedContentNodeSerializer(original, many=True).data, "changed": ReadOnlySimplifiedContentNodeSerializer(changed, many=True).data, }) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def create_new_node(request): data = request.data license = License.objects.filter(license_name=data.get('license_name')).first() # Use filter/first in case preference hasn't been set license_id = license.pk if license else settings.DEFAULT_LICENSE new_node = ContentNode.objects.create( kind_id=data.get('kind'), title=data.get('title'), author=data.get('author'), aggregator=data.get('aggregator'), provider=data.get('provider'), copyright_holder=data.get('copyright_holder'), license_id=license_id, license_description=data.get('license_description'), parent_id=settings.ORPHANAGE_ROOT_ID, ) return Response(ContentNodeEditSerializer(new_node).data) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_total_size(request, ids): # Get the minimal set of nodes that we need to check permissions on first. nodes = ContentNode.objects.exclude(kind_id=content_kinds.EXERCISE, published=False)\ .filter(id__in=ids.split(",")) try: request.user.can_view_nodes(nodes) except PermissionDenied: return HttpResponseNotFound("No nodes found for {}".format(ids)) nodes = nodes.prefetch_related('files').get_descendants(include_self=True)\ .values('files__checksum', 'files__file_size')\ .distinct() sizes = nodes.aggregate(resource_size=Sum('files__file_size')) return Response({'success': True, 'size': sizes['resource_size'] or 0}) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_nodes_by_ids(request, ids): nodes = ContentNode.objects.filter(pk__in=ids.split(",")) try: request.user.can_view_nodes(nodes) except PermissionDenied: return HttpResponseNotFound("No nodes found for {}".format(ids)) nodes = nodes.prefetch_related('children', 'files', 'assessment_items', 'tags', 'prerequisite', 'license', 'slideshow_slides', 'is_prerequisite_of' )\ .defer('node_id', 'original_source_node_id', 'source_node_id', 'content_id', 'original_channel_id', 'source_channel_id', 'source_id', 'source_domain', 'created', 'modified') serializer = ReadOnlyContentNodeSerializer(nodes, many=True) return Response(serializer.data) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_node_path(request, topic_id, tree_id, node_id): try: topic = ContentNode.objects.prefetch_related('children').get(node_id__startswith=topic_id, tree_id=tree_id) try: request.user.can_view_node(topic) except PermissionDenied: return HttpResponseNotFound("No topic found for {}".format(topic_id)) if topic.kind_id != content_kinds.TOPIC: node = ContentNode.objects.prefetch_related('files', 'assessment_items', 'tags').get(node_id__startswith=topic_id, tree_id=tree_id) nodes = node.get_ancestors(ascending=True) else: node = node_id and ContentNode.objects.prefetch_related('files', 'assessment_items', 'tags').get(node_id__startswith=node_id, tree_id=tree_id) nodes = topic.get_ancestors(include_self=True, ascending=True) return Response({ 'path': ReadOnlyContentNodeSerializer(nodes, many=True).data, 'node': node and ReadOnlyContentNodeFullSerializer(node).data, 'parent_node_id': topic.kind_id != content_kinds.TOPIC and node.parent and node.parent.node_id }) except ObjectDoesNotExist: return HttpResponseNotFound("Invalid URL: the referenced content does not exist in this channel.") @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_nodes_by_ids_simplified(request, ids): nodes = ContentNode.objects.filter(pk__in=ids.split(",")) try: request.user.can_view_nodes(nodes) except PermissionDenied: return HttpResponseNotFound("No nodes found for {}".format(ids)) nodes = nodes.prefetch_related('children') serializer = ReadOnlySimplifiedContentNodeSerializer(nodes, many=True) return Response(serializer.data) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['GET']) def get_nodes_by_ids_complete(request, ids): nodes = ContentNode.objects.filter(pk__in=ids.split(",")) try: request.user.can_view_nodes(nodes) except PermissionDenied: return HttpResponseNotFound("No nodes found for {}".format(ids)) nodes = nodes.prefetch_related('children', 'files', 'assessment_items', 'tags') serializer = ReadOnlyContentNodeFullSerializer(nodes, many=True) return Response(serializer.data) @api_view(['GET']) @permission_classes((AllowAny,)) def get_channel_details(request, channel_id): """ Generates data for channel contents. Used for look-inside previews Keyword arguments: channel_id (str): id of channel to get details from """ # Get nodes and channel node = get_object_or_404(ContentNode, channel_main=channel_id) try: if not node.channel_main.filter(public=True).exists(): request.user.can_view_node(node) except PermissionDenied: return HttpResponseNotFound("No topic found for {}".format(channel_id)) data = get_node_details_cached(node) return HttpResponse(json.dumps(data)) @api_view(['GET']) @permission_classes((AllowAny,)) def get_node_details(request, node_id): node = ContentNode.objects.get(pk=node_id) channel = node.get_channel() if channel and not channel.public: return HttpResponseNotFound("No topic found for {}".format(node_id)) data = get_node_details_cached(node) return HttpResponse(json.dumps(data)) def get_node_details_cached(node): cached_data = cache.get("details_{}".format(node.node_id)) if cached_data: descendants = node.get_descendants().prefetch_related('children', 'files', 'tags') \ .select_related('license', 'language') channel = node.get_channel() # If channel is a sushi chef channel, use date created for faster query # Otherwise, find the last time anything was updated in the channel last_update = channel.main_tree.created if channel and channel.ricecooker_version else \ descendants.filter(changed=True) \ .aggregate(latest_update=Max('modified')) \ .get('latest_update') if last_update: last_cache_update = datetime.strptime(json.loads(cached_data)['last_update'], settings.DATE_TIME_FORMAT) if last_update.replace(tzinfo=None) > last_cache_update: # update the stats async, then return the cached value getnodedetails_task.apply_async((node.pk,)) return json.loads(cached_data) return node.get_details() @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def delete_nodes(request): data = request.data try: nodes = data["nodes"] channel_id = data["channel_id"] try: request.user.can_edit(channel_id) nodes = ContentNode.objects.filter(pk__in=nodes) request.user.can_edit_nodes(nodes) except PermissionDenied: return HttpResponseNotFound("Resources not found to delete") for node in nodes: if node.parent and not node.parent.changed: node.parent.changed = True node.parent.save() node.delete() except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data)) return Response({'success': True}) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def duplicate_nodes(request): logging.debug("Entering the copy_node endpoint") data = request.data try: node_ids = data["node_ids"] target_parent = ContentNode.objects.get(pk=data["target_parent"]) channel = target_parent.get_channel() try: request.user.can_edit(channel and channel.pk) except PermissionDenied: return HttpResponseNotFound("No channel matching: {}".format(channel and channel.pk)) task_info = { 'user': request.user, 'metadata': { 'affects': { 'channels': [channel.pk], 'nodes': node_ids, } } } task_args = { 'user_id': request.user.pk, 'channel_id': channel.pk, 'target_parent': target_parent.pk, 'node_ids': node_ids, } task, task_info = create_async_task('duplicate-nodes', task_info, task_args) return HttpResponse(JSONRenderer().render(TaskSerializer(task_info).data)) except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data)) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def duplicate_node_inline(request): logging.debug("Entering the dupllicate_node_inline endpoint") if request.method != 'POST': return HttpResponseBadRequest("Only POST requests are allowed on this endpoint.") data = request.data try: node_id = data["node_id"] channel_id = data["channel_id"] target_parent = ContentNode.objects.get(pk=data["target_parent"]) channel = target_parent.get_channel() try: request.user.can_edit(channel and channel.pk) except PermissionDenied: return HttpResponseNotFound("No channel matching: {}".format(channel and channel.pk)) task_info = { 'user': request.user, 'metadata': { 'affects': { 'channels': [channel_id], 'nodes': [node_id], } } } task_args = { 'user_id': request.user.pk, 'channel_id': channel_id, 'target_parent': target_parent.pk, 'node_id': node_id, } task, task_info = create_async_task('duplicate-node-inline', task_info, task_args) return Response(TaskSerializer(task_info).data) except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data)) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def move_nodes(request): logging.debug("Entering the move_nodes endpoint") data = request.data try: nodes = data["nodes"] target_parent = ContentNode.objects.get(pk=data["target_parent"]) channel_id = data["channel_id"] min_order = data.get("min_order") or 0 max_order = data.get("max_order") or min_order + len(nodes) channel = target_parent.get_channel() try: request.user.can_edit(channel and channel.pk) request.user.can_edit_nodes(ContentNode.objects.filter(id__in=list(n["id"] for n in nodes))) except PermissionDenied: return HttpResponseNotFound("Resources not found") task_info = { 'user': request.user, 'metadata': { 'affects': { 'channels': [channel_id], 'nodes': nodes, } } } task_args = { 'user_id': request.user.pk, 'channel_id': channel_id, 'node_ids': nodes, 'target_parent': data["target_parent"], 'min_order': min_order, 'max_order': max_order } task, task_info = create_async_task('move-nodes', task_info, task_args) return HttpResponse(JSONRenderer().render(TaskSerializer(task_info).data)) except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data)) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def sync_nodes(request): logging.debug("Entering the sync_nodes endpoint") data = request.data try: nodes = data["nodes"] channel_id = data['channel_id'] try: request.user.can_edit(channel_id) request.user.can_edit_nodes(ContentNode.objects.filter(id__in=list(n["id"] for n in nodes))) except PermissionDenied: return HttpResponseNotFound("Resources not found") task_info = { 'user': request.user, 'metadata': { 'affects': { 'channels': [channel_id], 'nodes': nodes, } } } task_args = { 'user_id': request.user.pk, 'channel_id': channel_id, 'node_ids': nodes, 'sync_attributes': True, 'sync_tags': True, 'sync_files': True, 'sync_assessment_items': True, } task, task_info = create_async_task('sync-nodes', task_info, task_args) return HttpResponse(JSONRenderer().render(TaskSerializer(task_info).data)) except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data)) @authentication_classes((TokenAuthentication, SessionAuthentication)) @permission_classes((IsAuthenticated,)) @api_view(['POST']) def sync_channel_endpoint(request): logging.debug("Entering the sync_nodes endpoint") data = request.data try: channel_id = data['channel_id'] try: request.user.can_edit(channel_id) except PermissionDenied: return HttpResponseNotFound("No channel matching: {}".format(channel_id)) task_info = { 'user': request.user, 'metadata': { 'affects': { 'channels': [channel_id], } } } task_args = { 'user_id': request.user.pk, 'channel_id': channel_id, 'sync_attributes': data.get('attributes'), 'sync_tags': data.get('tags'), 'sync_files': data.get('files'), 'sync_assessment_items': data.get('assessment_items'), 'sync_sort_order': data.get('sort'), } task, task_info = create_async_task('sync-channel', task_info, task_args) return HttpResponse(JSONRenderer().render(TaskSerializer(task_info).data)) except KeyError: raise ObjectDoesNotExist("Missing attribute from data: {}".format(data))
StarcoderdataPython
5069058
<filename>tests/conftest.py<gh_stars>10-100 import os import shutil import uuid from random import randint import pytest from pytest_order.sorter import SESSION from tests.utils import write_test pytest_plugins = ["pytester"] @pytest.fixture def item_names_for(testdir): def _item_names_for(tests_content): items = testdir.getitems(tests_content) hook = items[0].config.hook hook.pytest_collection_modifyitems(session=items[0].session, config=items[0].config, items=items) return [item.name for item in items] return _item_names_for @pytest.fixture def test_path(tmpdir): path = tmpdir.join("{}.py".format(str(uuid.uuid4()))) yield str(path) path.remove() @pytest.fixture def ignore_settings(mocker): settings = mocker.patch("pytest_order.sorter.Settings") settings.return_value.sparse_ordering = False settings.return_value.order_dependencies = False settings.return_value.scope = SESSION settings.return_value.group_scope = SESSION yield settings @pytest.fixture def order_dependencies(ignore_settings): ignore_settings.return_value.order_dependencies = True yield @pytest.fixture def get_nodeid(tmpdir_factory): """Fixture to get the nodeid from tests created using tmpdir_factory. At least under Windows, the nodeid for the same tests differs depending on the pytest version and the environment. We need the real nodeid as it is used in pytest-dependency session-scoped markers in order to create tests passing under different systems. """ fixture_path = str(tmpdir_factory.mktemp("nodeid_path")) testname = os.path.join(fixture_path, "test_nodeid.py") test_contents = """ import pytest @pytest.fixture def nodeid(request): yield request.node.nodeid def test_node(nodeid): print("NODEID=!!!{}!!!".format(nodeid)) """ write_test(testname, test_contents) yield fixture_path shutil.rmtree(fixture_path, ignore_errors=True) def pytest_collection_modifyitems(config, items): for item in items: if item.name.startswith("test_performance"): item.add_marker(pytest.mark.order(randint(-100, 100)))
StarcoderdataPython
4892283
<filename>python/testData/completion/qualifiedAssignment.py def foo(a): woo = [] a.words = {} for x in w<caret>
StarcoderdataPython
6419960
import datetime class Move: def __init__(self): self.roll_id = None self.game_id = None self.roll_number = None self.player_id = None self.is_winning_play = False
StarcoderdataPython
228027
<gh_stars>0 from _collections import deque INPUT = input() data = deque() for parenthesis in INPUT: if parenthesis == "{" or parenthesis == "[" or parenthesis == "(": data.append(parenthesis) if parenthesis == "}" or parenthesis == "]" or parenthesis == ")": if len(data) == 0: data.append("Nope") break if parenthesis == "}": if data.pop() != "{": break elif parenthesis == "]": if data.pop() != "[": break elif parenthesis == ")": if data.pop() != "(": break if len(data) == 0: print("YES") else: print("NO")
StarcoderdataPython
12847708
<gh_stars>1000+ # Dash components, html, and dash tables import dash_core_components as dcc import dash_html_components as html import dash_table # Import Bootstrap components import dash_bootstrap_components as dbc # Import custom data.py import data # Import data from data.py file teams_df = data.teams # Hardcoded list that contain era names and marks era_list = data.era_list era_marks = data.era_marks # Main applicaiton menu appMenu = html.Div( [ dbc.Row( [ dbc.Col( html.H4(style={"text-align": "center"}, children="Select Era:"), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 3}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ), dbc.Col( dcc.Dropdown( style={ "text-align": "center", "font-size": "18px", "width": "210px", }, id="era-dropdown", options=era_list, value=era_list[0]["value"], clearable=False, ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ), dbc.Col( html.H4( style={"text-align": "center", "justify-self": "right"}, children="Select Team:", ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 3}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 1}, ), dbc.Col( dcc.Dropdown( style={ "text-align": "center", "font-size": "18px", "width": "210px", }, id="team-dropdown", clearable=False, ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ), ], form=True, ), dbc.Row( dbc.Col( html.P( style={"font-size": "16px", "opacity": "70%"}, children="""For continuity, some teams historical names where changed to match """ """their modern counterpart. Available teams are updated based on Era selection.""", ) ) ), ], className="menu", ) # Menu slider used, NOT independent, MUST be used with main menu menuSlider = html.Div( [ dbc.Row( dbc.Col( dcc.RangeSlider( id="era-slider", min=1903, max=teams_df["year"].max(), marks=era_marks, tooltip={"always_visible": False, "placement": "bottom"}, ) ) ), dbc.Row( dbc.Col( html.P( style={"font-size": "16px", "opacity": "70%"}, children="Adjust slider to desired range.", ) ) ), ], className="era-slider", ) # Layout for Team Analysis page teamLayout = html.Div( [ dbc.Row(dbc.Col(html.H3(children="Team Accolades"))), # Display Championship titles in datatable dbc.Row( dbc.Col( html.Div(id="team-data"), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": 7, "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ), justify="center", ), ### Graphs of Historical Team statistics ### dbc.Row(dbc.Col(html.H3(children="Team Analysis"))), # Bar Chart of Wins and Losses dbc.Row( dbc.Col( dcc.Graph(id="wl-bar", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, ) ), # Line Chart of Batting Average, BABIP, and Strikeout Rate dbc.Row( dbc.Col( dcc.Graph(id="batting-line", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, ) ), # Bar Char of Errors and Double Plays dbc.Row( dbc.Col( dcc.Graph(id="feild-line", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, ) ), dbc.Row(dbc.Col(html.H4(children="Pitching Performance"))), dbc.Row( [ # Line graph of K/BB ratio with ERA bubbles dbc.Col( dcc.Graph(id="pitch-bubble", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 6, "offset": 0}, ), # Pie Chart, % of Completed Games, Shutouts, and Saves of Total Games played dbc.Col( dcc.Graph(id="pitch-pie", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 6, "offset": 0}, ), ], no_gutters=True, ), ], className="app-page", ) # Player menu used to select players after era and team are set playerMenu = html.Div( [ dbc.Row(dbc.Col(html.H3(children="Player Profile and Statistics"))), dbc.Row( dbc.Col( html.P( style={"font-size": "16px", "opacity": "70%"}, children="Available players are updated based on team selection.", ) ) ), dbc.Row( [ dbc.Row( dbc.Col( html.H4( style={"text-align": "center"}, children="Select Player:" ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ) ), dbc.Row( dbc.Col( dcc.Dropdown( style={ "margin-left": "2%", "text-align": "center", "font-size": "18px", "width": "218px", }, id="player-dropdown", clearable=False, ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ) ), ], no_gutters=True, ), html.Br(), dbc.Row( dbc.Col( dash_table.DataTable( id="playerProfile", style_as_list_view=True, editable=False, style_table={ "overflowY": "scroll", "width": "100%", "minWidth": "100%", }, style_header={"backgroundColor": "#f8f5f0", "fontWeight": "bold"}, style_cell={"textAlign": "center", "padding": "8px"}, ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": 8, "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ), justify="center", ), html.Br(), ], className="app-page", ) # Batting statistics battingLayout = html.Div( [ # Batting datatable dbc.Row( dbc.Col( dash_table.DataTable( id="batterTable", style_as_list_view=True, editable=False, style_table={ "overflowY": "scroll", "width": "100%", "minWidth": "100%", }, style_header={"backgroundColor": "#f8f5f0", "fontWeight": "bold"}, style_cell={"textAlign": "center", "padding": "8px"}, ), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 10, "offset": 0}, lg={"size": 10, "offset": 0}, xl={"size": 10, "offset": 0}, ), justify="center", ), dbc.Row( dbc.Col( html.H3( style={"margin-top": "1%", "margin-bottom": "1%"}, children="Player Analysis", ) ) ), dbc.Row( dbc.Col( html.P( style={"font-size": "16px", "opacity": "70%"}, children="Some statistics where not tracked until the 1950s, graphs may not always reflect certain plots.", ) ) ), dbc.Row( [ # Line/Bar Chart of On-Base Percentage, features; H BB HBP SF dbc.Col( dcc.Graph(id="obp-line", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 6, "offset": 0}, ), # Line/Bar Chart of Slugging Average, features; 2B 3B HR dbc.Col( dcc.Graph(id="slg-line", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 6, "offset": 0}, ), ], no_gutters=True, ), # Line Chart of OPS, Features; OBP SLG dbc.Row( dbc.Col( dcc.Graph(id="ops-line", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, ) ), ], className="app-page", ) # Feilding Statistics fieldingLayout = html.Div( [ dbc.Row(dbc.Col(html.H3(style={"margin-bottom": "1%"}, children="Feilding"))), # Feilding Datatable dbc.Row( dbc.Col( dash_table.DataTable( id="fieldTable", style_as_list_view=True, editable=False, style_table={ "overflowY": "scroll", "width": "100%", "minWidth": "100%", }, style_header={"backgroundColor": "#f8f5f0", "fontWeight": "bold"}, style_cell={"textAlign": "center", "padding": "8px"}, ), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 8, "offset": 0}, lg={"size": 8, "offset": 0}, xl={"size": 8, "offset": 0}, ), justify="center", ), html.Br(), dbc.Row(dbc.Col(html.H3(style={"margin-bottom": "1%"}, children="Pitching"))), dbc.Row( dbc.Col( html.Div(id="pitch-data"), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 10, "offset": 0}, lg={"size": 10, "offset": 0}, xl={"size": 10, "offset": 0}, ), justify="center", ), html.Br(), dbc.Row(dbc.Col(html.H3(children="Player Analysis"))), # Player dropdown menu dbc.Row( [ dbc.Row( dbc.Col( html.H4( style={"text-align": "center"}, children="Select Position:" ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ) ), dbc.Row( dbc.Col( dcc.Dropdown( style={ "margin-left": "5px", "text-align": "center", "font-size": "18px", "width": "100px", }, id="pos-dropdown", clearable=False, ), xs={"size": "auto", "offset": 0}, sm={"size": "auto", "offset": 0}, md={"size": "auto", "offset": 0}, lg={"size": "auto", "offset": 0}, xl={"size": "auto", "offset": 0}, ) ), ], no_gutters=True, ), dbc.Row(dbc.Col(html.H4(children="Pitching Performance"))), # Pitching and Fielding graphs, Pitching graphs are set in a subplot dcc.Graph(id='field-graphs', config={'displayModeBar': False}) dbc.Row( dbc.Col( html.Div(id="pitch-graphs"), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, xl={"size": 12, "offset": 0}, ) ), dbc.Row( dbc.Col( dcc.Graph(id="field-graph", config={"displayModeBar": False}), xs={"size": 12, "offset": 0}, sm={"size": 12, "offset": 0}, md={"size": 12, "offset": 0}, lg={"size": 12, "offset": 0}, xl={"size": 12, "offset": 0}, ) ), ], className="app-page", )
StarcoderdataPython
8113332
<filename>pictures/views.py<gh_stars>0 from django.http import HttpResponse, Http404 import datetime as dt from django.shortcuts import render from .models import Image from .filters import ImageFilter # Create your views here. def home(request): date = dt.date.today() slogan = 'Just keep uploading...' pictures = Image.get_images() return render(request, 'index.html', {"date": date, "slogan": slogan, "pictures": pictures}) def image(request, image_name): try: image = Image.objects.get(name=image_name) except DoesNotExist: raise Http404() return render(request, 'images/image.html', {"image": image}) def search(request): image_list = Image.objects.all() image_filter = ImageFilter(request.GET, queryset=image_list) return render(request, 'search.html', {"filter": image_filter})
StarcoderdataPython
4816184
''' Given a string s consists of upper/lower-case alphabets and empty space characters ' ', return the length of last word in the string. If the last word does not exist, return 0. Note: A word is defined as a character sequence consists of non-space characters only. Example: Input: "<NAME>" Output: 5 ''' class Solution(object): def lengthOfLastWord(self, s): p = s.split() return len(p[-1]) if p else 0 mysolution = Solution() s = "Hello World" print(mysolution.lengthOfLastWord(s))
StarcoderdataPython
4935793
<filename>my_module.py def write_to_file(name, data, encoding): try: text_file = open(name, "w") except IOError as error: print("[!!] Error opening file " + str(error)) return -1 if enconding == 'utf-8': try: text_file.write(data.encode('utf-8')) except IOError as error: print("[!!] Error writing to file " + str(error)) return -1 elif encoding == 'string': try: text_file.write(str(data)) except IOError as error: print("[!!] Error writing to file " + str(error)) return -1 text_file.close()
StarcoderdataPython
11314377
# -*- coding: utf-8 -*- """ Microsoft-Windows-Base-Filtering-Engine-Resource-Flows GUID : 92765247-03a9-4ae3-a575-b42264616e78 """ from construct import Int8sl, Int8ul, Int16ul, Int16sl, Int32sl, Int32ul, Int64sl, Int64ul, Bytes, Double, Float32l, Struct from etl.utils import WString, CString, SystemTime, Guid from etl.dtyp import Sid from etl.parsers.etw.core import Etw, declare, guid @declare(guid=guid("92765247-03a9-4ae3-a575-b42264616e78"), event_id=2002, version=0) class Microsoft_Windows_Base_Filtering_Engine_Resource_Flows_2002_0(Etw): pattern = Struct( "ConnectionUsedId" / Int64ul, "Protocol" / Int8ul, "RemotePort" / Int16ul, "LocalPort" / Int16ul, "StartTime" / Int64ul ) @declare(guid=guid("92765247-03a9-4ae3-a575-b42264616e78"), event_id=2003, version=0) class Microsoft_Windows_Base_Filtering_Engine_Resource_Flows_2003_0(Etw): pattern = Struct( "ConnectionUsedId" / Int64ul, "Protocol" / Int8ul, "RemotePort" / Int16ul, "LocalPort" / Int16ul, "StartTime" / Int64ul, "CloseTime" / Int64ul ) @declare(guid=guid("92765247-03a9-4ae3-a575-b42264616e78"), event_id=2004, version=0) class Microsoft_Windows_Base_Filtering_Engine_Resource_Flows_2004_0(Etw): pattern = Struct( "ConnectionUsedId" / Int64ul, "Protocol" / Int8ul, "RemoteIPAddress" / Int32ul, "LocalIPAddress" / Int32ul, "RemotePort" / Int16ul, "LocalPort" / Int16ul, "StartTime" / Int64ul ) @declare(guid=guid("92765247-03a9-4ae3-a575-b42264616e78"), event_id=2005, version=0) class Microsoft_Windows_Base_Filtering_Engine_Resource_Flows_2005_0(Etw): pattern = Struct( "ConnectionUsedId" / Int64ul, "Protocol" / Int8ul, "RemoteIPAddress" / Int32ul, "LocalIPAddress" / Int32ul, "RemotePort" / Int16ul, "LocalPort" / Int16ul, "StartTime" / Int64ul, "CloseTime" / Int64ul )
StarcoderdataPython
8068278
# Generated by Django 2.0.4 on 2018-04-18 14:22 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): initial = True dependencies = [ ] operations = [ migrations.CreateModel( name='Photo', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ( 'title', models.CharField( max_length=100, verbose_name='title')), ( 'description', models.TextField(blank=True, verbose_name='description')), ( 'image', models.ImageField( upload_to='photos/', verbose_name='image')), ( 'thumbnail', models.ImageField( upload_to='photos/thumb/', verbose_name='thumbnail')), ( 'file_length', models.IntegerField( default=0, verbose_name='file length')), ( 'created_at', models.DateTimeField( auto_now_add=True, verbose_name='created at')), ], options={ 'verbose_name': 'photo', 'verbose_name_plural': 'photos', }, ), migrations.CreateModel( name='PhotoAlbum', fields=[ ( 'id', models.AutoField( auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ( 'title', models.CharField( max_length=100, verbose_name='title')), ( 'description', models.TextField(blank=True, verbose_name='description')), ( 'enabled', models.BooleanField( default=False, verbose_name='enabled')), ( 'title_photo', models.ForeignKey( blank=True, null=True, on_delete=django.db.models.deletion.PROTECT, to='photos.Photo', verbose_name='title photo')), ], options={ 'verbose_name': 'photo album', 'verbose_name_plural': 'photo albums', }, ), migrations.AddField( model_name='photo', name='album', field=models.ForeignKey( on_delete=django.db.models.deletion.PROTECT, related_name='photos', to='photos.PhotoAlbum', verbose_name='album'), ), ]
StarcoderdataPython
1801698
import time from worm import WormBase from mod import MOD worm = WormBase() mod = MOD() mods = [worm] for m in mods: start_time = time.time() m.load_genes() print (" --- %s seconds --- " % (time.time() - start_time)) # mod.load_homologs() for m in mods: start_time = time.time() m.load_go() print (" --- %s seconds --- " % (time.time() - start_time)) for m in mods: start_time = time.time() m.load_diseases() print (" --- %s seconds --- " % (time.time() - start_time)) mod.save_into_file() mod.delete_mapping() mod.put_mapping() mod.index_genes_into_es() mod.index_go_into_es() mod.index_diseases_into_es()
StarcoderdataPython
73178
<filename>batch.py import argparse import os import sys import json from datetime import datetime import covizu from covizu.utils import gisaid_utils from covizu.utils.progress_utils import Callback from covizu.utils.batch_utils import * from covizu.utils.seq_utils import SC2Locator from tempfile import NamedTemporaryFile def parse_args(): parser = argparse.ArgumentParser(description="CoVizu analysis pipeline automation") parser.add_argument('--url', type=str, default=os.environ.get("GISAID_URL", None), help="URL to download provision file, defaults to environment variable.") parser.add_argument('--user', type=str, default=os.environ.get("GISAID_USER", None), help="GISAID username, defaults to environment variable.") parser.add_argument('--password', type=str, default=os.environ.get("GISAID_PSWD", None), help="GISAID password, defaults to environment variable.") parser.add_argument("--infile", type=str, default=None, help="input, path to xz-compressed JSON; if not specified, " "download xz file from GISAID provision feed.") parser.add_argument("--outdir", type=str, default='data/', help="option, path to write output files") parser.add_argument('--minlen', type=int, default=29000, help='option, minimum genome length (nt)') parser.add_argument('--mindate', type=str, default='2019-12-01', help='option, earliest possible sample collection date (ISO format, default ' '2019-12-01') parser.add_argument('--poisson-cutoff', type=float, default=0.001, help='option, filtering outlying genomes whose distance exceeds the upper ' 'quantile of Poisson distribution (molecular clock). Default 0.001 ' 'corresponds to 99.9%% cutoff.') parser.add_argument('--batchsize', type=int, default=2000, help='option, number of records to batch process with minimap2') parser.add_argument('--max-variants', type=int, default=5000, help='option, limit number of variants per lineage (default 5000)') parser.add_argument("--ref", type=str, default=os.path.join(covizu.__path__[0], "data/NC_045512.fa"), help="option, path to FASTA file with reference genome") parser.add_argument('--mmbin', type=str, default='minimap2', help="option, path to minimap2 binary executable") parser.add_argument('-mmt', "--mmthreads", type=int, default=16, help="option, number of threads for minimap2.") parser.add_argument('--misstol', type=int, default=300, help="option, maximum tolerated number of missing bases per " "genome (default 300).") parser.add_argument("--vcf", type=str, default=os.path.join(covizu.__path__[0], "data/ProblematicSites_SARS-CoV2/problematic_sites_sarsCov2.vcf"), help="Path to VCF file of problematic sites in SARS-COV-2 genome. " "Source: https://github.com/W-L/ProblematicSites_SARS-CoV2") parser.add_argument('--ft2bin', default='fasttree2', help='option, path to fasttree2 binary executable') parser.add_argument('--lineages', type=str, default=os.path.join(covizu.__path__[0], "data/pango-designation/lineages.csv"), help="optional, path to CSV file containing Pango lineage designations.") parser.add_argument('--ttbin', default='treetime', help='option, path to treetime binary executable') parser.add_argument('--clock', type=float, default=8e-4, help='option, specify molecular clock rate for ' 'constraining Treetime analysis (default 8e-4).') parser.add_argument('--earliest', action='store_true', help='option, use earliest sample per lineage for time-scaled ' 'tree; otherwise defaults to most recent samples.') parser.add_argument('--datetol', type=float, default=0.1, help='option, exclude tips from time-scaled tree ' 'with high discordance between estimated and ' 'known sample collection dates (year units,' 'default: 0.1)') parser.add_argument('--binpath', type=str, default='rapidnj', help='option, path to RapidNJ binary executable') parser.add_argument('--mincount', type=int, default=5000, help='option, minimum number of variants in lineage ' 'above which MPI processing will be used.') parser.add_argument('--machine_file', type=str, default='mfile', help='option, path to machine file for MPI.') parser.add_argument("-n", "--nboot", type=int, default=100, help="Number of bootstrap samples, default 100.") parser.add_argument("--boot-cutoff", type=float, default=0.5, help="Bootstrap cutoff for consensus tree (default 0.5). " "Only used if --cons is specified.") parser.add_argument("--dry-run", action="store_true", help="Do not upload output files to webserver.") return parser.parse_args() def process_feed(args, callback=None): """ Process feed data """ if callback: callback("Processing GISAID feed data") loader = gisaid_utils.load_gisaid(args.infile, minlen=args.minlen, mindate=args.mindate) batcher = gisaid_utils.batch_fasta(loader, size=args.batchsize) aligned = gisaid_utils.extract_features(batcher, ref_file=args.ref, binpath=args.mmbin, nthread=args.mmthreads, minlen=args.minlen) filtered = gisaid_utils.filter_problematic(aligned, vcf_file=args.vcf, cutoff=args.poisson_cutoff, callback=callback) return gisaid_utils.sort_by_lineage(filtered, callback=callback) if __name__ == "__main__": args = parse_args() cb = Callback() # check that user has loaded openmpi module try: subprocess.check_call(['mpirun', '-np', '2', 'ls'], stdout=subprocess.DEVNULL) except FileNotFoundError: cb.callback("mpirun not loaded - run `module load openmpi/gnu`", level='ERROR') sys.exit() # check that the user has included submodules if (not os.path.exists(os.path.join(covizu.__path__[0], "data/pango-designation/lineages.csv")) or not os.path.exists(os.path.join(covizu.__path__[0], "data/ProblematicSites_SARS-CoV2/problematic_sites_sarsCov2.vcf"))): try: subprocess.check_call("git submodule init; git submodule update", shell=True) except: cb.callback("Error adding the required submodules") sys.exit() # update submodules try: subprocess.check_call("git submodule foreach git pull origin master", shell=True) except: cb.callback("Error updating submodules") sys.exit() # download xz file if not specified by user if args.infile is None: cb.callback("No input specified, downloading data from GISAID feed...") args.infile = gisaid_utils.download_feed(args.url, args.user, args.password) # filter data, align genomes, extract features, sort by lineage by_lineage = process_feed(args, cb.callback) # reconstruct time-scaled tree relating lineages timetree, residuals = build_timetree(by_lineage, args, cb.callback) timestamp = datetime.now().isoformat().split('.')[0] nwk_file = os.path.join(args.outdir, 'timetree.{}.nwk'.format(timestamp)) with open(nwk_file, 'w') as handle: Phylo.write(timetree, file=handle, format='newick') # clustering analysis of lineages result = make_beadplots(by_lineage, args, cb.callback, t0=cb.t0.timestamp()) clust_file = os.path.join(args.outdir, 'clusters.{}.json'.format(timestamp)) with open(clust_file, 'w') as handle: json.dump(result, fp=handle) # get mutation info locator = SC2Locator() mutations = {} for lineage, features in get_mutations(by_lineage).items(): annots = [locator.parse_mutation(f) for f in features] mutations.update({lineage: [a for a in annots if a is not None]}) # write data stats dbstat_file = os.path.join(args.outdir, 'dbstats.{}.json'.format(timestamp)) with open(dbstat_file, 'w') as handle: nseqs = sum([len(rows) for rows in by_lineage.values()]) val = { 'lastupdate': timestamp.split('T')[0], 'noseqs': nseqs, 'lineages': {} } for lineage, samples in by_lineage.items(): ndiffs = [len(x['diffs']) for x in samples] val['lineages'][lineage] = { 'nsamples': len(samples), 'lastcoldate': max(x['covv_collection_date'] for x in samples), 'residual': residuals[lineage], 'max_ndiffs': max(ndiffs), 'mean_ndiffs': sum(ndiffs)/len(ndiffs), 'mutations': mutations[lineage] } json.dump(val, handle) # upload output files to webserver, requires SSH key credentials if not args.dry_run: server_root = 'filogeneti.ca:/var/www/html/covizu/data' subprocess.check_call(['scp', nwk_file, '{}/timetree.nwk'.format(server_root)]) subprocess.check_call(['scp', clust_file, '{}/clusters.json'.format(server_root)]) subprocess.check_call(['scp', dbstat_file, '{}/dbstats.json'.format(server_root)]) # upload files to EpiCoV server server_epicov = 'filogeneti.ca:/var/www/html/epicov/data' subprocess.check_call(['scp', nwk_file, '{}/timetree.nwk'.format(server_epicov)]) subprocess.check_call(['scp', dbstat_file, '{}/dbstats.json'.format(server_epicov)]) # modify clusters JSON epifile = open(clust_file, 'r') epicov_data = gisaid_utils.convert_json(epifile, args.infile) fp = NamedTemporaryFile('w', delete=False) json.dump(epicov_data, fp=fp) # serialize to temp file fp.close() subprocess.check_call(['scp', fp.name, '{}/clusters.json'.format(server_epicov)]) cb.callback("All done!")
StarcoderdataPython
28337
from unihan_db.tables import ( UnhnLocation, UnhnLocationkXHC1983, UnhnReading, kCantonese, kCCCII, kCheungBauer, kCheungBauerIndex, kCihaiT, kDaeJaweon, kDefinition, kFenn, kFennIndex, kGSR, kHanYu, kHanyuPinlu, kHanyuPinyin, kHDZRadBreak, kIICore, kIICoreSource, kUnihanCore2020, kIRG_GSource, kIRG_HSource, kIRG_JSource, kIRG_KPSource, kIRG_KSource, kIRG_MSource, kIRG_TSource, kIRG_USource, kIRG_VSource, kIRG_SSource, kIRG_UKSource, kIRGDaeJaweon, kIRGHanyuDaZidian, kIRGKangXi, kMandarin, kRSAdobe_Japan1_6, kRSJapanese, kRSKangXi, kRSKanWa, kRSKorean, kRSUnicode, kSBGY, kTotalStrokes, kXHC1983, kTGHZ2013, kSimplifiedVariant, kTraditionalVariant, kSpoofingVariant, kZVariant, kSemanticVariant, kSpecializedSemanticVariant, UnhnVariantSource, SemanticVariantSource ) def import_char(c, char): # NOQA: C901 if 'kDefinition' in char: for d in char['kDefinition']: c.kDefinition.append(kDefinition(definition=d)) if 'kCantonese' in char: for d in char['kCantonese']: c.kCantonese.append(kCantonese(definition=d)) if 'kCCCII' in char: for d in char['kCCCII']: c.kCCCII.append(kCCCII(hex=d)) if 'kMandarin' in char: d = char['kMandarin'] c.kMandarin.append(kMandarin(hans=d['zh-Hans'], hant=d['zh-Hant'])) if 'kTotalStrokes' in char: d = char['kTotalStrokes'] c.kTotalStrokes.append(kTotalStrokes(hans=d['zh-Hans'], hant=d['zh-Hant'])) if 'kHanyuPinyin' in char: for d in char['kHanyuPinyin']: k = kHanyuPinyin() for loc in d['locations']: k.locations.append( UnhnLocation( volume=loc['volume'], page=loc['page'], character=loc['character'], virtual=loc['virtual'], ) ) for reading in d['readings']: k.readings.append(UnhnReading(reading=reading)) c.kHanyuPinyin.append(k) if 'kHanYu' in char: k = kHanYu() for d in char['kHanYu']: k.locations.append( UnhnLocation( volume=d['volume'], page=d['page'], character=d['character'], virtual=d['virtual'], ) ) c.kHanYu.append(k) if 'kIRGHanyuDaZidian' in char: for d in char['kIRGHanyuDaZidian']: k = kIRGHanyuDaZidian() k.locations.append( UnhnLocation( volume=d['volume'], page=d['page'], character=d['character'], virtual=d['virtual'], ) ) c.kIRGHanyuDaZidian.append(k) if 'kXHC1983' in char: for d in char['kXHC1983']: k = kXHC1983() for loc in d['locations']: k.locations.append( UnhnLocationkXHC1983( page=loc['page'], character=loc['character'], entry=loc['entry'], substituted=loc['substituted'], ) ) k.readings.append(UnhnReading(reading=d['reading'])) c.kXHC1983.append(k) if 'kTGHZ2013' in char: for d in char['kTGHZ2013']: k = kTGHZ2013() for loc in d['locations']: k.locations.append( UnhnLocation( page=loc['page'], character=loc['character'], ) ) k.readings.append(UnhnReading(reading=d['reading'])) c.kTGHZ2013.append(k) if 'kCheungBauer' in char: for d in char['kCheungBauer']: k = kCheungBauer( radical=d['radical'], strokes=d['strokes'], cangjie=d['cangjie'] ) for reading in d['readings']: k.readings.append(UnhnReading(reading=reading)) c.kCheungBauer.append(k) if 'kRSAdobe_Japan1_6' in char: for d in char['kRSAdobe_Japan1_6']: c.kRSAdobe_Japan1_6.append( kRSAdobe_Japan1_6( type=d['type'], cid=d['cid'], radical=d['radical'], strokes=d['strokes'], strokes_residue=d['strokes-residue'], ) ) if 'kCihaiT' in char: for d in char['kCihaiT']: c.kCihaiT.append( kCihaiT(page=d['page'], row=d['row'], character=d['character']) ) if 'kIICore' in char: for d in char['kIICore']: k = kIICore(priority=d['priority']) for s in d['sources']: k.sources.append(kIICoreSource(source=s)) c.kIICore.append(k) if 'kUnihanCore2020' in char: for s in char['kUnihanCore2020']: c.kUnihanCore2020.append(kUnihanCore2020(source=s)) if 'kDaeJaweon' in char: k = kDaeJaweon() d = char['kDaeJaweon'] k.locations.append( UnhnLocation(page=d['page'], character=d['character'], virtual=d['virtual']) ) c.kDaeJaweon.append(k) if 'kIRGKangXi' in char: k = kIRGKangXi() for d in char['kIRGKangXi']: k.locations.append( UnhnLocation( page=d['page'], character=d['character'], virtual=d['virtual'] ) ) c.kIRGKangXi.append(k) if 'kIRGDaeJaweon' in char: k = kIRGDaeJaweon() for d in char['kIRGDaeJaweon']: k.locations.append( UnhnLocation( page=d['page'], character=d['character'], virtual=d['virtual'] ) ) c.kIRGDaeJaweon.append(k) if 'kFenn' in char: for d in char['kFenn']: c.kFenn.append(kFenn(phonetic=d['phonetic'], frequency=d['frequency'])) if 'kHanyuPinlu' in char: for d in char['kHanyuPinlu']: c.kHanyuPinlu.append( kHanyuPinlu(phonetic=d['phonetic'], frequency=d['frequency']) ) if 'kHDZRadBreak' in char: d = char['kHDZRadBreak'] k = kHDZRadBreak(radical=d['radical'], ucn=d['ucn']) k.locations.append( UnhnLocation( volume=d['location']['volume'], page=d['location']['page'], character=d['location']['character'], virtual=d['location']['virtual'], ) ) c.kHDZRadBreak.append(k) if 'kSBGY' in char: for d in char['kSBGY']: k = kSBGY() k.locations.append(UnhnLocation(page=d['page'], character=d['character'])) c.kSBGY.append(k) rs_fields = ( # radical-stroke fields, since they're the same structure ('kRSUnicode', kRSUnicode, c.kRSUnicode), ('kRSJapanese', kRSJapanese, c.kRSJapanese), ('kRSKangXi', kRSKangXi, c.kRSKangXi), ('kRSKanWa', kRSKanWa, c.kRSKanWa), ('kRSKorean', kRSKorean, c.kRSKorean), ) for f, model, column in rs_fields: if f in char: for d in char[f]: k = model( radical=d['radical'], strokes=d['strokes'], simplified=d['simplified'], ) column.append(k) irg_fields = ( # IRG, since they're the same structure ('kIRG_GSource', kIRG_GSource, c.kIRG_GSource), ('kIRG_HSource', kIRG_HSource, c.kIRG_HSource), ('kIRG_JSource', kIRG_JSource, c.kIRG_JSource), ('kIRG_KPSource', kIRG_KPSource, c.kIRG_KPSource), ('kIRG_KSource', kIRG_KSource, c.kIRG_KSource), ('kIRG_MSource', kIRG_MSource, c.kIRG_MSource), ('kIRG_TSource', kIRG_TSource, c.kIRG_TSource), ('kIRG_USource', kIRG_USource, c.kIRG_USource), ('kIRG_VSource', kIRG_VSource, c.kIRG_VSource), ('kIRG_SSource', kIRG_SSource, c.kIRG_SSource), ('kIRG_UKSource', kIRG_UKSource, c.kIRG_UKSource), ) for f, model, column in irg_fields: if f in char: d = char[f] k = model(source=d['source'], location=d['location']) column.append(k) if 'kGSR' in char: for d in char['kGSR']: k = kGSR(set=d['set'], letter=d['letter'], apostrophe=d['apostrophe']) c.kGSR.append(k) if 'kCheungBauerIndex' in char: d = char['kCheungBauerIndex'] k = kCheungBauerIndex() k.locations.append( UnhnLocation( page=d['location']['page'], character=d['location']['character'] ) ) c.kCheungBauerIndex.append(k) if 'kFennIndex' in char: d = char['kFennIndex'] k = kFennIndex() k.locations.append( UnhnLocation( page=d['location']['page'], character=d['location']['character'] ) ) c.kFennIndex.append(k) simple_variant_fields = ( ('kSimplifiedVariant', kSimplifiedVariant, c.kSimplifiedVariant), ('kTraditionalVariant', kTraditionalVariant, c.kTraditionalVariant), ('kSpoofingVariant', kSpoofingVariant, c.kSpoofingVariant), ) for f, model, column in simple_variant_fields: if f in char: for d in char[f]: column.append(model(ucn=d)) sourced_variant_fields = ( ('kZVariant', kZVariant, c.kZVariant, UnhnVariantSource), ('kSemanticVariant', kSemanticVariant, c.kSemanticVariant, SemanticVariantSource), ('kSpecializedSemanticVariant', kSpecializedSemanticVariant, c.kSpecializedSemanticVariant, SemanticVariantSource), ) for f, model, column, source_model in sourced_variant_fields: if f in char: for d in char[f]: m = model(ucn=d['ucn']) for s in d.get('sources', []): m.sources.append(source_model(**s)) column.append(m)
StarcoderdataPython
5120152
<reponame>ronan-keane/hav-sim """ @author: <EMAIL> problem with optplot rmse not making sense; verified fixed 11/29, pushed to master. bug was for multiple guesses being used, when order = 1, if latter guesses are worse, the simulation used in future calibration would be the worse simulations, which messed up the results for calibrate_tnc2 function (main function used at that time) """ #%% def test(opt,lists): sim = copy.deepcopy(meas) sim = helper.obj_helper(opt[0],OVM,OVMadj,OVMadjsys,meas,sim,platooninfo,lists,makeleadfolinfo,platoonobjfn_obj,(True,6)) for count, i in enumerate(lists): obj = helper.SEobj_pervehicle(meas,sim,platooninfo,i) print('optimization result is '+str(opt[0][count][-2])+', our result is '+str(obj[0])) test(out[0],lists[0]) #%% reproduce problem platoonlist = lists[0][:5] outtest = calibrate_tnc2(plist,bounds,meas,platooninfo,platoonlist,makeleadfolinfo,platoonobjfn_objder,None,OVM,OVMadjsys,OVMadj,True,6,cutoff=0,cutoff2=4.5,order=1,budget = 3) test(outtest,platoonlist) #%%test fix from havsim.calibration.calibration import calibrate_tnc2 platoonlist = lists[0][:5] outtest2 = calibrate_tnc2(plist,bounds,meas,platooninfo,platoonlist,makeleadfolinfo,platoonobjfn_objder,None,OVM,OVMadjsys,OVMadj,True,6,cutoff=0,cutoff2=4.5,order=1,budget = 3) test(outtest2,platoonlist)
StarcoderdataPython
9661613
from django.conf.urls.defaults import * urlpatterns = patterns('', (r'^login$', 'views.login'), (r'^logout$', 'views.logout'), (r'^addbmark(?:\/)*$', 'views.addBmark'), (r'^nb/', include('nextbus.urls') ), (r'^catch/(?P<bmark>[\w|-]+)(?:\/)*$', 'views.catch'), (r'^delete/bmark/(?P<bmark>[\w|-]+)(?:\/)*(?P<confirm>[\w|-]*)$', 'views.deleteBmark'), (r'^clear-cache$', 'views.clearCache'), (r'^(?:.*)', 'views.home'), )
StarcoderdataPython
1864976
import re _symbol_delimiter_regex = re.compile(r'[./\-_]') def split_nasdaq(symbol): sym = re.replace(_symbol_delimiter_regex, '', symbol) return sym[:4], sym[4:] def split_nyse(symbol): return re.split(_symbol_delimiter_regex, symbol, maxsplit=1)
StarcoderdataPython
6425416
<reponame>glotaran/pyglotaran_extras from __future__ import annotations import subprocess import sys from pathlib import Path from textwrap import dedent from typing import TYPE_CHECKING from tests.conftest import wrapped_get_script_dir from pyglotaran_extras.io.setup_case_study import get_script_dir from pyglotaran_extras.io.setup_case_study import setup_case_study if TYPE_CHECKING: from _pytest.monkeypatch import MonkeyPatch def test_get_script_dir(): """Called directly""" expected = Path(__file__).parent assert get_script_dir() == expected def test_get_script_dir_in_closure(): """Called inside other function imported from different file""" expected = Path(__file__).parent assert wrapped_get_script_dir() == expected def test_get_script_dir_tmp_path(tmp_path: Path): """File in temp folder""" tmp_file = tmp_path / "foo.py" content = dedent( """ from pyglotaran_extras.io.setup_case_study import get_script_dir print(get_script_dir()) """ ) tmp_file.write_text(content) printed_result = subprocess.run( " ".join([sys.executable, tmp_file.resolve().as_posix()]), capture_output=True, shell=True ) result = printed_result.stdout.decode().rstrip("\n\r") assert printed_result.returncode == 0 assert Path(result) == tmp_path.resolve() def test_setup_case_study(monkeypatch: MonkeyPatch, tmp_path: Path): """Default settings""" mock_home = tmp_path / "home" monkeypatch.setattr(Path, "home", lambda: mock_home) results_folder, script_folder = setup_case_study() assert mock_home.exists() assert results_folder.exists() assert results_folder == mock_home / "pyglotaran_results/io" assert script_folder == Path(__file__).parent def test_setup_case_study_custom(tmp_path: Path): """Custom settings""" results_folder_root = tmp_path / "foo" results_folder, script_folder = setup_case_study( output_folder_name="foo", results_folder_root=tmp_path ) assert results_folder_root.exists() assert results_folder.exists() assert results_folder == results_folder_root / "io" assert script_folder == Path(__file__).parent
StarcoderdataPython
8158218
<filename>the_sward_to_offer/32.2.py # -*- coding:utf-8 -*- """ 从上到下按层打印二叉树,同一层结点从左至右输出。每一层输出一行。 input0: {8,6,10,5,7,9,11} output0: [[8],[6,10],[5,7,9,11]] """ # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: # 返回二维列表[[1,2],[4,5]] def Print(self, pRoot): # write code here if pRoot is None: return [] print_list = [] cur_layer = [pRoot] while len(cur_layer)>0: cur_out = [] cur_layer_len = len(cur_layer) for _ in range(cur_layer_len): n = cur_layer.pop(0) cur_out.append(n.val) if n.left: cur_layer.append(n.left) if n.right: cur_layer.append(n.right) print_list.append(cur_out) return print_list
StarcoderdataPython
6533030
<filename>package/spack-findutils/package.py ############################################################################## # Copyright (c) 2013-2018, Lawrence Livermore National Security, LLC. # Produced at the Lawrence Livermore National Laboratory. # # This file is part of Spack. # Created by <NAME>, <EMAIL>, All rights reserved. # LLNL-CODE-647188 # # For details, see https://github.com/spack/spack # Please also see the NOTICE and LICENSE files for our notice and the LGPL. # # This program is free software; you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License (as # published by the Free Software Foundation) version 2.1, February 1999. # # This program is distributed in the hope that it will be useful, but # WITHOUT ANY WARRANTY; without even the IMPLIED WARRANTY OF # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the terms and # conditions of the GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public # License along with this program; if not, write to the Free Software # Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA ############################################################################## from spack import * class Findutils(AutotoolsPackage): """The GNU Find Utilities are the basic directory searching utilities of the GNU operating system.""" homepage = "https://www.gnu.org/software/findutils/" url = "http://ftpmirror.gnu.org/findutils/findutils-4.6.0.tar.gz" version('4.6.0', '9936aa8009438ce185bea2694a997fc1') version('4.4.2', '351cc4adb07d54877fa15f75fb77d39f') version('4.4.1', '5883f569dc021eee765f330bb7a3782d') version('4.4.0', '49e769ac4382fae6f104f99d54d0a112') version('4.2.33', 'b7e35aa175778c84942b1fee4144988b') version('4.2.32', 'aaa6beeb41a6f04963dff58f24a55b96') version('4.2.31', 'a0e31a0f18a49709bf5a449867c8049a') version('4.2.30', 'c35ff6502e0b3514c99089cb5d333c25') version('4.2.29', '24e76434ca74ba3c2c6ad621eb64e1ff') version('4.2.28', 'f5fb3349354ee3d94fceb81dab5c71fd') version('4.2.27', 'f1e0ddf09f28f8102ff3b90f3b5bc920') version('4.2.26', '9ac4e62937b1fdc4eb643d1d4bf117d3') version('4.2.25', 'e92fef6714ffa9972f28a1a423066921') version('4.2.23', 'ecaff8b060e8d69c10eb2391a8032e26') version('4.2.20', '7c8e12165b221dd67a19c00d780437a4') version('4.2.18', '8aac2498435f3f1882678fb9ebda5c34') version('4.2.15', 'a881b15aa7170aea045bf35cc92d48e7') version('4.1.20', 'e90ce7222daadeb8616b8db461e17cbc') version('4.1', '3ea8fe58ef5386da75f6c707713aa059')
StarcoderdataPython
8052366
from typing import List, Any from talipp.indicators.Indicator import Indicator from talipp.indicators.EMA import EMA from talipp.indicators.AccuDist import AccuDist from talipp.ohlcv import OHLCV class ChaikinOsc(Indicator): """ Chaikin Oscillator Output: a list of floats """ def __init__(self, period_fast: int, period_slow: int, input_values: List[OHLCV] = None): super().__init__() self.period_fast = period_fast self.period_slow = period_slow self.accu_dist = AccuDist() self.add_sub_indicator(self.accu_dist) self.ema_fast = EMA(period_fast) self.add_managed_sequence(self.ema_fast) self.ema_slow = EMA(period_slow) self.add_managed_sequence(self.ema_slow) self.initialize(input_values) def _calculate_new_value(self) -> Any: if not self.accu_dist.has_output_value(): return None self.ema_fast.add_input_value(self.accu_dist[-1]) self.ema_slow.add_input_value(self.accu_dist[-1]) if not self.ema_fast.has_output_value() or not self.ema_slow.has_output_value(): return None return self.ema_fast[-1] - self.ema_slow[-1]
StarcoderdataPython
4967794
<filename>docs/conf.py # -*- coding: utf-8 -*- # Licensed under a 3-clause BSD style license - see LICENSE.rst # # Astropy documentation build configuration file. # # This file is execfile()d with the current directory set to its containing dir. # # Note that not all possible configuration values are present in this file. # # All configuration values have a default. Some values are defined in # the global Astropy configuration which is loaded here before anything else. # See astropy.sphinx.conf for which values are set there. # If extensions (or modules to document with autodoc) are in another directory, # add these directories to sys.path here. If the directory is relative to the # documentation root, use os.path.abspath to make it absolute, like shown here. # sys.path.insert(0, os.path.abspath('..')) # IMPORTANT: the above commented section was generated by sphinx-quickstart, but # is *NOT* appropriate for astropy or Astropy affiliated packages. It is left # commented out with this explanation to make it clear why this should not be # done. If the sys.path entry above is added, when the astropy.sphinx.conf # import occurs, it will import the *source* version of astropy instead of the # version installed (if invoked as "make html" or directly with sphinx), or the # version in the build directory (if "python setup.py build_sphinx" is used). # Thus, any C-extensions that are needed to build the documentation will *not* # be accessible, and the documentation will not build correctly. import datetime import os import sys # Load all of the global Astropy configuration from sphinx_astropy.conf.v1 import * # Add some stuff to the intersphinx mapping intersphinx_mapping['sunpy'] = ('https://docs.sunpy.org/en/stable/', None) intersphinx_mapping['yt'] = ('https://yt-project.org/doc/', None) intersphinx_mapping['fiasco'] = ('https://fiasco.readthedocs.io/en/latest/', None) intersphinx_mapping['dask'] = ('https://docs.dask.org/en/latest', None) # Get configuration information from setup.cfg from configparser import ConfigParser conf = ConfigParser() conf.read([os.path.join(os.path.dirname(__file__), '..', 'setup.cfg')]) setup_cfg = dict(conf.items('metadata')) # -- General configuration ---------------------------------------------------- # By default, highlight as Python 3. highlight_language = 'python3' # If your documentation needs a minimal Sphinx version, state it here. #needs_sphinx = '1.2' # To perform a Sphinx version check that needs to be more specific than # major.minor, call `check_sphinx_version("x.y.z")` here. # check_sphinx_version("1.2.1") # List of patterns, relative to source directory, that match files and # directories to ignore when looking for source files. exclude_patterns.append('_templates') # This is added to the end of RST files - a good place to put substitutions to # be used globally. rst_epilog += """ """ # -- Project information ------------------------------------------------------ # This does not *have* to match the package name, but typically does project = setup_cfg['name'] author = setup_cfg['author'] copyright = '{0}, {1}'.format( datetime.datetime.now().year, setup_cfg['author']) # The version info for the project you're documenting, acts as replacement for # |version| and |release|, also used in various other places throughout the # built documents. __import__(setup_cfg['name']) package = sys.modules[setup_cfg['name']] # The short X.Y version. version = package.__version__.split('-', 1)[0] # The full version, including alpha/beta/rc tags. release = package.__version__ # -- Options for HTML output --------------------------------------------------- try: html_theme = "sphinx_rtd_theme" import sphinx_rtd_theme html_theme_path = [sphinx_rtd_theme.get_html_theme_path()] except ImportError: html_theme = 'default' # Custom sidebar templates, maps document names to template names. #html_sidebars = {} # The name of an image file (relative to this directory) to place at the top # of the sidebar. #html_logo = '' # The name of an image file (within the static path) to use as favicon of the # docs. This file should be a Windows icon file (.ico) being 16x16 or 32x32 # pixels large. html_favicon = '' # If not '', a 'Last updated on:' timestamp is inserted at every page bottom, # using the given strftime format. #html_last_updated_fmt = '' # The name for this set of Sphinx documents. If None, it defaults to # "<project> v<release> documentation". html_title = '{0} v{1}'.format(project, release) # Output file base name for HTML help builder. htmlhelp_basename = project + 'doc' # -- Options for LaTeX output ------------------------------------------------- # Grouping the document tree into LaTeX files. List of tuples # (source start file, target name, title, author, documentclass [howto/manual]). latex_documents = [('index', project + '.tex', project + u' Documentation', author, 'manual')] # -- Options for manual page output ------------------------------------------- # One entry per manual page. List of tuples # (source start file, name, description, authors, manual section). man_pages = [('index', project.lower(), project + u' Documentation', [author], 1)] # Render inheritance diagrams in SVG graphviz_output_format = "svg" graphviz_dot_args = [ '-Nfontsize=10', '-Nfontname=Helvetica Neue, Helvetica, Arial, sans-serif', '-Efontsize=10', '-Efontname=Helvetica Neue, Helvetica, Arial, sans-serif', '-Gfontsize=10', '-Gfontname=Helvetica Neue, Helvetica, Arial, sans-serif' ] """ Write the latest changelog into the documentation. """ target_file = os.path.abspath("./whatsnew/latest_changelog.txt") try: from sunpy.util.towncrier import generate_changelog_for_docs if is_development: generate_changelog_for_docs("../", target_file) except Exception as e: print(f"Failed to add changelog to docs with error {e}.") # Make sure the file exists or else sphinx will complain. open(target_file, 'a').close()
StarcoderdataPython
9612894
<gh_stars>0 """Module containing the user entity""" from django.db import models from django.contrib.auth.models import (AbstractBaseUser, BaseUserManager) from shared.base_model import BaseModel class User(AbstractBaseUser, BaseModel): """Model for a user in the system""" class Meta: """Class to add more information on user model""" ordering = ('username', ) username = models.CharField(max_length=150, unique=True) email = models.EmailField(max_length=150, unique=True) password = models.CharField(max_length=100) first_name = models.CharField(max_length=100, null=True, blank=True) last_name = models.CharField(max_length=100, null=True, blank=True) image_url = models.URLField( default='https://res.cloudinary.com/health-id/image/upload/' 'v1554552278/Profile_Picture_Placeholder.png' ) is_admin = models.BooleanField(default=False) last_login = models.DateTimeField(auto_now=True) USERNAME_FIELD = "email" REQUIRED_FIELDS = [] def __str__(self): return self.email
StarcoderdataPython
4873494
import numpy as np, random MIN = "[MIN" MAX = "[MAX" MED = "[MED" SUM_MOD = "[SM" END = "]" OPERATORS = [MIN, MAX, MED, SUM_MOD] VALUES = range(10) VALUE_P = 0.75 MAX_ARGS = 3 MAX_DEPTH = 4 def generate_tree(depth): if depth < MAX_DEPTH: r = random.random() else: r = 1 if r > VALUE_P: value = random.choice(VALUES) return value else: num_values = random.randint(2, MAX_ARGS) values = [] for _ in range(num_values): values.append(generate_tree(depth + 1)) op = random.choice(OPERATORS) t = (op, values[0]) for value in values[1:]: t = (t, value) t = (t, END) return t def to_string(t, parens=False): if isinstance(t, str): return t elif isinstance(t, int): return str(t) else: if parens: return '( ' + to_string(t[0], parens) + ' ' + to_string(t[1], parens) + ' )' else: return to_string(t[0], parens) + ' ' + to_string(t[1], parens)# + ' ' op2token = dict(zip(list(np.arange(10).astype(str)) + OPERATORS + [END], range(2, 15+2))) def to_tokens(t): string = to_string(t) tokens = list(map(lambda x: op2token[x], string.split(' '))) return tokens def to_value(t): if not isinstance(t, tuple): return t l = to_value(t[0]) r = to_value(t[1]) if l in OPERATORS: # Create an unsaturated function. return (l, [r]) elif r == END: # l must be an unsaturated function. if l[0] == MIN: return min(l[1]) elif l[0] == MAX: return max(l[1]) # elif l[0] == FIRST: # return l[1][0] # elif l[0] == LAST: # return l[1][-1] elif l[0] == MED: return int(np.median(l[1])) elif l[0] == SUM_MOD: return (np.sum(l[1]) % 10) elif isinstance(l, tuple): # We've hit an unsaturated function and an argument. return (l[0], l[1] + [r])
StarcoderdataPython
6318
<filename>fastmvsnet/train1.py #!/usr/bin/env python import argparse import os.path as osp import logging import time import sys sys.path.insert(0, osp.dirname(__file__) + '/..') import torch import torch.nn as nn from fastmvsnet.config import load_cfg_from_file from fastmvsnet.utils.io import mkdir from fastmvsnet.utils.logger import setup_logger from fastmvsnet.utils.torch_utils import set_random_seed from fastmvsnet.model1 import build_pointmvsnet as build_model from fastmvsnet.solver import build_optimizer, build_scheduler from fastmvsnet.utils.checkpoint import Checkpointer from fastmvsnet.dataset1 import build_data_loader from fastmvsnet.utils.tensorboard_logger import TensorboardLogger from fastmvsnet.utils.metric_logger import MetricLogger from fastmvsnet.utils.file_logger import file_logger def parse_args(): parser = argparse.ArgumentParser(description="PyTorch Fast-MVSNet Training") parser.add_argument( "--cfg", dest="config_file", default="", metavar="FILE", help="path to config file", type=str, ) parser.add_argument( "opts", help="Modify config options using the command-line", default=None, nargs=argparse.REMAINDER, ) args = parser.parse_args() return args def train_model(model, loss_fn, metric_fn, image_scales, inter_scales, isFlow, data_loader, optimizer, curr_epoch, tensorboard_logger, log_period=1, output_dir="", ): logger = logging.getLogger("fastmvsnet.train") meters = MetricLogger(delimiter=" ") model.train() end = time.time() total_iteration = data_loader.__len__() path_list = [] for iteration, data_batch in enumerate(data_loader): data_time = time.time() - end curr_ref_img_path = data_batch["ref_img_path"] path_list.extend(curr_ref_img_path) data_batch = {k: v.cuda(non_blocking=True) for k, v in data_batch.items() if isinstance(v, torch.Tensor)} preds = model(data_batch, image_scales, inter_scales, isFlow) optimizer.zero_grad() loss_dict = loss_fn(preds, data_batch, isFlow) metric_dict = metric_fn(preds, data_batch, isFlow) losses = sum(loss_dict.values()) #print("LOSS DICT", loss_dict['coarse_loss']) #print("LOSSES", loss_dict.values()) meters.update(loss=losses, **loss_dict, **metric_dict) losses.backward() # print(poop) optimizer.step() batch_time = time.time() - end end = time.time() meters.update(time=batch_time, data=data_time) if iteration % log_period == 0: logger.info( meters.delimiter.join( [ "EPOCH: {epoch:2d}", "iter: {iter:4d}", "{meters}", "lr: {lr:.2e}", "max mem: {memory:.0f}", ] ).format( epoch=curr_epoch, iter=iteration, meters=str(meters), lr=optimizer.param_groups[0]["lr"], memory=torch.cuda.max_memory_allocated() / (1024.0 ** 2), ) ) tensorboard_logger.add_scalars(loss_dict, curr_epoch * total_iteration + iteration, prefix="train") tensorboard_logger.add_scalars(metric_dict, curr_epoch * total_iteration + iteration, prefix="train") if iteration % (100 * log_period) == 0: file_logger(data_batch, preds, curr_epoch * total_iteration + iteration, output_dir, prefix="train") return meters def validate_model(model, loss_fn, metric_fn, image_scales, inter_scales, isFlow, data_loader, curr_epoch, tensorboard_logger, log_period=1, output_dir="", ): logger = logging.getLogger("fastmvsnet.validate") meters = MetricLogger(delimiter=" ") model.train() end = time.time() total_iteration = data_loader.__len__() with torch.no_grad(): for iteration, data_batch in enumerate(data_loader): data_time = time.time() - end curr_ref_img_path = data_batch["ref_img_path"] data_batch = {k: v.cuda(non_blocking=True) for k, v in data_batch.items() if isinstance(v, torch.Tensor)} preds = model(data_batch, image_scales, inter_scales, isFlow) loss_dict = loss_fn(preds, data_batch, isFlow) metric_dict = metric_fn(preds, data_batch, isFlow) losses = sum(loss_dict.values()) meters.update(loss=losses, **loss_dict, **metric_dict) batch_time = time.time() - end end = time.time() meters.update(time=batch_time, data=data_time) if iteration % log_period == 0: logger.info( meters.delimiter.join( [ "EPOCH: {epoch:2d}", "iter: {iter:4d}", "{meters}", ] ).format( epoch=curr_epoch, iter=iteration, meters=str(meters), ) ) tensorboard_logger.add_scalars(meters.meters, curr_epoch * total_iteration + iteration, prefix="valid") if iteration % (100 * log_period) == 0: file_logger(data_batch, preds, curr_epoch * total_iteration + iteration, output_dir, prefix="valid") return meters def train(cfg, output_dir=""): logger = logging.getLogger("fastmvsnet.trainer") # build model set_random_seed(cfg.RNG_SEED) model, loss_fn, metric_fn = build_model(cfg) logger.info("Build model:\n{}".format(str(model))) model = nn.DataParallel(model).cuda() # build optimizer optimizer = build_optimizer(cfg, model) # build lr scheduler scheduler = build_scheduler(cfg, optimizer) # build checkpointer checkpointer = Checkpointer(model, optimizer=optimizer, scheduler=scheduler, save_dir=output_dir, logger=logger) checkpoint_data = checkpointer.load(cfg.MODEL.WEIGHT, resume=cfg.AUTO_RESUME) ckpt_period = cfg.TRAIN.CHECKPOINT_PERIOD # build data loader train_data_loader = build_data_loader(cfg, mode="train") val_period = cfg.TRAIN.VAL_PERIOD val_data_loader = build_data_loader(cfg, mode="val") if val_period > 0 else None # build tensorboard logger (optionally by comment) tensorboard_logger = TensorboardLogger(output_dir) # train max_epoch = cfg.SCHEDULER.MAX_EPOCH start_epoch = checkpoint_data.get("epoch", 0) best_metric_name = "best_{}".format(cfg.TRAIN.VAL_METRIC) best_metric = checkpoint_data.get(best_metric_name, None) logger.info("Start training from epoch {}".format(start_epoch)) for epoch in range(start_epoch, max_epoch): cur_epoch = epoch + 1 scheduler.step() start_time = time.time() train_meters = train_model(model, loss_fn, metric_fn, image_scales=cfg.MODEL.TRAIN.IMG_SCALES, inter_scales=cfg.MODEL.TRAIN.INTER_SCALES, isFlow=(cur_epoch > cfg.SCHEDULER.INIT_EPOCH), data_loader=train_data_loader, optimizer=optimizer, curr_epoch=epoch, tensorboard_logger=tensorboard_logger, log_period=cfg.TRAIN.LOG_PERIOD, output_dir=output_dir, ) epoch_time = time.time() - start_time logger.info("Epoch[{}]-Train {} total_time: {:.2f}s".format( cur_epoch, train_meters.summary_str, epoch_time)) # checkpoint if cur_epoch % ckpt_period == 0 or cur_epoch == max_epoch: checkpoint_data["epoch"] = cur_epoch checkpoint_data[best_metric_name] = best_metric checkpointer.save("model_{:03d}".format(cur_epoch), **checkpoint_data) # validate if val_period < 1: continue if cur_epoch % val_period == 0 or cur_epoch == max_epoch: val_meters = validate_model(model, loss_fn, metric_fn, image_scales=cfg.MODEL.VAL.IMG_SCALES, inter_scales=cfg.MODEL.VAL.INTER_SCALES, isFlow=(cur_epoch > cfg.SCHEDULER.INIT_EPOCH), data_loader=val_data_loader, curr_epoch=epoch, tensorboard_logger=tensorboard_logger, log_period=cfg.TEST.LOG_PERIOD, output_dir=output_dir, ) logger.info("Epoch[{}]-Val {}".format(cur_epoch, val_meters.summary_str)) # best validation cur_metric = val_meters.meters[cfg.TRAIN.VAL_METRIC].global_avg if best_metric is None or cur_metric > best_metric: best_metric = cur_metric checkpoint_data["epoch"] = cur_epoch checkpoint_data[best_metric_name] = best_metric checkpointer.save("model_best", **checkpoint_data) logger.info("Best val-{} = {}".format(cfg.TRAIN.VAL_METRIC, best_metric)) return model def main(): args = parse_args() num_gpus = torch.cuda.device_count() cfg = load_cfg_from_file(args.config_file) cfg.merge_from_list(args.opts) cfg.freeze() output_dir = cfg.OUTPUT_DIR if output_dir: config_path = osp.splitext(args.config_file)[0] config_path = config_path.replace("configs", "outputs1") output_dir = output_dir.replace('@', config_path) mkdir(output_dir) logger = setup_logger("fastmvsnet", output_dir, prefix="train") logger.info("Using {} GPUs".format(num_gpus)) logger.info(args) logger.info("Loaded configuration file {}".format(args.config_file)) logger.info("Running with config:\n{}".format(cfg)) train(cfg, output_dir) if __name__ == "__main__": main()
StarcoderdataPython
9655500
# -*- coding: utf-8 -*- """ convnet-est-loss """ import numpy as np from os import sys, path import argparse caffe_dir = '/home/aaskov/caffe/' def damage_range(x): if float(x) < 0.0: raise argparse.ArgumentTypeError("%r is not positive" % x) return float(x) def run(): parser = argparse.ArgumentParser( description='Neural network damage experiment. ', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument('--proto', required=True, type=str, help='Network prototxt.') parser.add_argument('--model', required=True, type=str, help='Network caffemodel.') parser.add_argument('--meanfile', required=True, type=str, help='Data mean file.') parser.add_argument('--data', required=True, type=str, help='Data.') parser.add_argument('--layer', required=True, type=str, help='Layer to apply damage to.') parser.add_argument('--prefix', required=True, type=str, help='Uniqe model name.') parser.add_argument('--damage', default=1.0, type=damage_range, help='Applied damage range.') parser.add_argument('--step-num', default=10, type=int, help='Number of steps in damage interval.') parser.add_argument('--iterations', default=100, type=int, help='Number of iterations to run.') parser.add_argument('--repeat', default=0, type=int, help='Number of repeated experiments to run.') args = parser.parse_args() # Object file obj = 'experiment_damage_' + str(args.layer) + '_' + str(args.damage) obj += '_step_' + str(args.step_num) + '_iter_' + str(args.iterations) obj += '_prefix_' + str(args.prefix) loss_list = list() for std in np.linspace(0.0, args.damage, args.step_num): _loss = list() for t in range(args.repeat + 1): # Fetch a network structure and apply damage net = Network(args.proto, args.model, args.meanfile, args.data) net.__add_damage__(args.layer, std) # Forward to get loss top_1, top_5, acc, loss = net.forward(maxrun=args.iterations) _loss.append(loss) loss_list.append(_loss) # Store result if path.exists(obj+'.pkl'): read_loss = load_obj(obj) combined = np.concatenate((read_loss, np.array(loss_list)), 1) save_obj(combined, obj) else: save_obj(np.array(loss_list), obj) if __name__ == '__main__' and __package__ is None: # Append parrent directory to sys path sys.path.append(path.dirname(path.dirname(path.abspath(__file__)))) from network import Network from input_output import save_obj, load_obj # Setup Caffe sys.path.insert(0, caffe_dir + 'python') import caffe caffe.set_mode_cpu() # Run experiment run()
StarcoderdataPython
4891951
<reponame>lresende/text-extensions-for-pandas # # Copyright (c) 2020 IBM Corp. # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ################################################################################ # conll.py # # I/O functions related to CONLL entity format and its many derivatives. from typing import * import numpy as np import pandas as pd import regex from text_extensions_for_pandas.array import ( TokenSpan, CharSpanArray, TokenSpanArray, ) # Special token that CoNLL-2003 format uses to delineate the documents in # the collection. _CONLL_DOC_SEPARATOR = "-DOCSTART-" # _PUNCT_REGEX = regex.compile(f"[{string.punctuation}]+") _PUNCT_OR_RIGHT_PAREN_REGEX = regex.compile( # Punctuation, right paren, or apostrophe followed by 1-2 lowercase letters # But not single or double quote, which could either begin or end a quotation '[!#%)*+,-./:;=>?@\\]^_`|}~]|\'[a-zA-Z]{1,2}') # Tokens that behave like left parentheses for whitespace purposes, # including dollar signs ("$100", not "$ 100") _LEFT_PAREN_REGEX = regex.compile(r"[(<\[{$]+") # _PUNCT_MATCH_FN = np.vectorize(lambda s: _PUNCT_REGEX.fullmatch(s) is not None) _SPACE_BEFORE_MATCH_FN = np.vectorize(lambda s: _PUNCT_OR_RIGHT_PAREN_REGEX.fullmatch(s) is not None) _SPACE_AFTER_MATCH_FN = np.vectorize(lambda s: _LEFT_PAREN_REGEX.fullmatch(s) is not None) def _make_empty_meta_values(column_names: List[str], iob_columns: List[bool]) \ -> Dict[str, List[str]]: ret = {} for i in range(len(column_names)): name = column_names[i] if not iob_columns[i]: ret[name] = [] else: ret[f"{name}_iob"] = [] ret[f"{name}_type"] = [] return ret class _SentenceData: """ Data structure that encapsulates one sentence's worth of data from a parsed CoNLL-2003 file. Not intended for use outside this file. """ def __init__(self, column_names: List[str], iob_columns: List[bool]): self._column_names = column_names self._iob_columns = iob_columns # Surface form of token self._tokens = [] # Type: List[str] # Metadata columns by name self._token_metadata = _make_empty_meta_values(column_names, iob_columns) @property def num_tokens(self) -> int: return len(self._tokens) @property def tokens(self) -> List[str]: return self._tokens @property def token_metadata(self) -> Dict[str, List[str]]: return self._token_metadata def add_line(self, line_num: int, line_elems: List[str]): """ :param line_num: Location in file, for error reporting :param line_elems: Fields of a line, pre-split """ if len(line_elems) != 1 + len(self._column_names) : raise ValueError(f"Unexpected number of elements {len(line_elems)} " f"at line {line_num}; expected " f"{1 + len(self._column_names)} elements.") token = line_elems[0] raw_tags = line_elems[1:] self._tokens.append(token) for i in range(len(raw_tags)): raw_tag = raw_tags[i] name = self._column_names[i] if not self._iob_columns[i]: # non-IOB data self._token_metadata[name].append(raw_tag) else: # IOB-format data; split into two values if raw_tag.startswith("I-") or raw_tag.startswith("B-"): # Tokens that are entities are tagged with tags like # "I-PER" or "B-MISC". tag, entity = raw_tag.split("-") elif raw_tag == "O": tag = raw_tag entity = None elif raw_tag == "-X-": # Special metadata value for -DOCSTART- tags in the CoNLL corpus. tag = "O" entity = None else: raise ValueError(f"Tag '{raw_tag}' of IOB-format field {i} at line " f"{line_num} does not start with 'I-', 'O', " f"or 'B-'.\n" f"Fields of line are: {line_elems}") self._token_metadata[f"{name}_iob"].append(tag) self._token_metadata[f"{name}_type"].append(entity) def _parse_conll_file(input_file: str, column_names: List[str], iob_columns: List[bool]) \ -> List[List[_SentenceData]]: """ Parse the CoNLL-2003 file format for training/test data to Python objects. The format is especially tricky, so everything here is straight non-vectorized Python code. If you want performance, write the contents of your CoNLL files back out into a file format that supports performance. :param input_file: Location of the file to read :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned data structure will contain *two* columns, holding IOB tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :returns: A list of lists of _SentenceData objects. The top list has one entry per document. The next level lists have one entry per sentence. """ with open(input_file, "r") as f: lines = f.readlines() # Build up a list of document metadata as Python objects docs = [] # Type: List[List[Dict[str, List[str]]]] current_sentence = _SentenceData(column_names, iob_columns) # Information about the current document sentences = [] # Type: SentenceData for i in range(len(lines)): line = lines[i].strip() if 0 == len(line): # Blank line is the sentence separator if current_sentence.num_tokens > 0: sentences.append(current_sentence) current_sentence = _SentenceData(column_names, iob_columns) else: # Not at the end of a sentence line_elems = line.split(" ") current_sentence.add_line(i, line_elems) if line_elems[0] == _CONLL_DOC_SEPARATOR and i > 0: # End of document. Wrap up this document and start a new one. # # Note that the special "start of document" token is considered part # of the document. If you do not follow this convention, the # result sets from CoNLL 2003 won't line up. # Note also that `current_sentence` is not in `sentences` and will be # added to the next document. docs.append(sentences) sentences = [] # Close out the last sentence and document, if needed if current_sentence.num_tokens > 0: sentences.append(current_sentence) if len(sentences) > 0: docs.append(sentences) return docs def _parse_conll_output_file(doc_dfs: List[pd.DataFrame], input_file: str ) -> List[Dict[str, List[str]]]: """ Parse the CoNLL-2003 file format for output data to Python objects. This format is similar to the format that `_parse_conll_file` produces, but without the token and document boundary information. :param doc_dfs: List of `pd.DataFrame`s of token information from the corresponding training data file, one `DataFrame` per document. Used for determining document boundaries, which are not encoded in CoNLL-2003 output file format. :param input_file: Location of the file to read :returns: A list of dicts. The top list has one entry per document. The next level contains lists under the following keys: * `iob`: List of IOB2 tags as strings. This function does **NOT** correct for the silly way that CoNLL-format uses "B" tags. See `_fix_iob_tags()` for that correction. * `entity`: List of entity tags where `iob` contains I's or B's. `None` everywhere else. """ with open(input_file, "r") as f: lines = f.readlines() # Build up a list of document metadata as Python objects docs = [] # Type: List[Dict[str, List[str]]] # Position in the corpus doc_num = 0 num_tokens_in_doc = len(doc_dfs[doc_num].index) token_num = 0 # Information about the current document's tokens iobs = [] # Type: List[str] entities = [] # Type: List[str] for i in range(len(lines)): line = lines[i].strip() if 0 == len(line): # Blank line is the sentence separator. continue if " " in line: raise ValueError(f"Line {i} contains unexpected space character.\n" f"Line was: '{line}'") raw_tag = line if raw_tag.startswith("I") or raw_tag.startswith("B"): # Tokens that are entities are tagged with tags like # "I-PER" or "B-MISC". tag, entity = raw_tag.split("-") elif raw_tag == "O": tag = raw_tag entity = None else: raise ValueError(f"Unexpected tag {raw_tag} at line {i}.\n" f"Line was: '{line}'") iobs.append(tag) entities.append(entity) token_num += 1 if token_num == num_tokens_in_doc: # End of current document, advance to next docs.append({ "iob": iobs, "entity": entities }) iobs = [] entities = [] doc_num += 1 token_num = 0 if doc_num < len(doc_dfs): num_tokens_in_doc = len(doc_dfs[doc_num].index) if doc_num < len(doc_dfs): print(f"WARNING: Corpus has {len(doc_dfs)} documents, but " f"only found outputs for {doc_num} of them.") # raise ValueError(f"Corpus has {len(doc_dfs)} documents, but " # f"only found outputs for {doc_num} of them.") return docs def _iob_to_iob2(df: pd.DataFrame, column_names: List[str], iob_columns: List[bool]) -> pd.DataFrame: """ In CoNLL-2003 format, entities are stored in IOB format, where the first token of an entity is only tagged "B" when there are two entities of the same type back-to-back. This format makes downstream processing difficult. If a given position has an `I` tag, that position may or may not be the first token of an entity. Code will need to inspect both the I/O/B tags *and* the entity type of multiple other tokens *and* the boundaries between sentences to disambiguate between those two cases. This function converts these IOB tags to the easier-to-consume IOB2 format; see https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) for details. Basically, every entity in IOB2 format begins with a `B` tag. The `I` tag is only used for the second, third, etc. tokens of an entity. :param df: A `pd.DataFrame` with one row per token of the document. In addition to the metadata columns corresponding to `column_names`, this dataframe must also contain sentence information in a column called `sentence`. :param column_names: Names for the metadata columns in the original data file that were used to generate the names of the columns of `df`. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. :returns: A version of `df` with corrected IOB2 tags in the `ent_iob` column. The original dataframe is not modified. """ ret = df.copy() sentence_begins = df["sentence"].values.begin_token for i in range(len(column_names)): if iob_columns[i]: name = column_names[i] iobs = df[f"{name}_iob"].values.copy() # Modified in place entities = df[f"{name}_type"].values # Special-case the first one if iobs[0] == "I": iobs[0] = "B" for i in range(1, len(iobs)): tag = iobs[i] prev_tag = iobs[i - 1] if tag == "I": if ( prev_tag == "O" # Previous token not an entity or (prev_tag in ("I", "B") and entities[i] != entities[i - 1] ) # Previous token a different type of entity or (sentence_begins[i] != sentence_begins[i - 1] ) # Start of new sentence ): iobs[i] = "B" ret[f"{name}_iob"] = iobs return ret def _doc_to_df(doc: List[_SentenceData], column_names: List[str], iob_columns: List[bool], space_before_punct: bool) -> pd.DataFrame: """ Convert the "Python objects" representation of a document from a CoNLL-2003 file into a `pd.DataFrame` of token metadata. :param doc: List of Python objects that represents the document. :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned dataframe will contain *two* columns, holding IOB2 tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :param space_before_punct: If `True`, add whitespace before punctuation characters (and after left parentheses) when reconstructing the text of the document. :return: DataFrame with four columns: * `char_span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `token_span`: Span of each token, with token offsets. Backed by the contents of the `char_span` column. * `ent_iob`: IOB2-format tags of tokens, exactly as they appeared in the original file, with no corrections applied. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ # Character offsets of tokens in the reconstructed document begins_list = [] # Type: List[np.ndarray] ends_list = [] # Type: List[np.ndarray] # Reconstructed text of each sentence sentences_list = [] # Type: List[np.ndarray] # Token offsets of sentences containing each token in the document. sentence_begins_list = [] # Type: List[np.ndarray] sentence_ends_list = [] # Type: List[np.ndarray] # Token metadata column values. Key is column name, value is metadata for # each token. meta_lists = _make_empty_meta_values(column_names, iob_columns) char_position = 0 token_position = 0 for sentence_num in range(len(doc)): sentence = doc[sentence_num] tokens = sentence.tokens # Don't put spaces before punctuation in the reconstituted string. no_space_before_mask = ( np.zeros(len(tokens), dtype=np.bool) if space_before_punct else _SPACE_BEFORE_MATCH_FN(tokens)) no_space_after_mask = ( np.zeros(len(tokens), dtype=np.bool) if space_before_punct else _SPACE_AFTER_MATCH_FN(tokens)) no_space_before_mask[0] = True # No space before first token no_space_after_mask[-1] = True # No space after last token shifted_no_space_after_mask = np.roll(no_space_after_mask, 1) prefixes = np.where( np.logical_or(no_space_before_mask, shifted_no_space_after_mask), "", " ") string_parts = np.ravel((prefixes, tokens), order="F") sentence_text = "".join(string_parts) sentences_list.append(sentence_text) lengths = np.array([len(t) for t in tokens]) prefix_lengths = np.array([len(p) for p in prefixes]) # Begin and end offsets, accounting for which tokens have spaces # before them. e = np.cumsum(lengths + prefix_lengths) b = e - lengths begins_list.append(b + char_position) ends_list.append(e + char_position) sentence_begin_token = token_position sentence_end_token = token_position + len(e) sentence_begins = np.repeat(sentence_begin_token, len(e)) sentence_ends = np.repeat(sentence_end_token, len(e)) sentence_begins_list.append(sentence_begins) sentence_ends_list.append(sentence_ends) for k in sentence.token_metadata.keys(): meta_lists[k].extend(sentence.token_metadata[k]) char_position += e[-1] + 1 # "+ 1" to account for newline token_position += len(e) begins = np.concatenate(begins_list) ends = np.concatenate(ends_list) doc_text = "\n".join(sentences_list) char_spans = CharSpanArray(doc_text, begins, ends) token_begins = np.arange(len(begins)) token_spans = TokenSpanArray(char_spans, token_begins, token_begins + 1) sentence_spans = TokenSpanArray(char_spans, np.concatenate(sentence_begins_list), np.concatenate(sentence_ends_list)) ret = pd.DataFrame( {"char_span": char_spans, "token_span": token_spans }) for k, v in meta_lists.items(): ret[k] = v ret["sentence"] = sentence_spans return ret def _output_doc_to_df(tokens: pd.DataFrame, outputs: Dict[str, List[str]], column_name: str, copy_tokens: bool) -> pd.DataFrame: """ Convert the "Python objects" representation of a document from a CoNLL-2003 file into a `pd.DataFrame` of token metadata. :param tokens: `pd.DataFrame` containing metadata about the tokens of this document, as returned by `conll_2003_to_dataframe` :param outputs: Dictionary containing outputs for this document, with fields "iob" and "entity". :param column_name: Name for the metadata value that the IOB-tagged data in `input_file` encodes. If this name is present in `doc_dfs`, its value will be replaced with the data from `input_file`; otherwise a new column will be added to each dataframe. :param copy_tokens: `True` if token information should be deep-copied. :return: DataFrame with four columns: * `char_span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `token_span`: Span of each token, with token offsets. Backed by the contents of the `char_span` column. * `ent_iob`: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ if copy_tokens: return pd.DataFrame( {"char_span": tokens["char_span"].copy(), "token_span": tokens["token_span"].copy(), f"{column_name}_iob": np.array(outputs["iob"]), f"{column_name}_type": np.array(outputs["entity"]), "sentence": tokens["sentence"].copy()}) else: return pd.DataFrame( {"char_span": tokens["char_span"], "token_span": tokens["token_span"], f"{column_name}_iob": np.array(outputs["iob"]), f"{column_name}_type": np.array(outputs["entity"]), "sentence": tokens["sentence"]}) ##################################################### # External API functions below this line def iob_to_spans( token_features: pd.DataFrame, iob_col_name: str = "ent_iob", char_span_col_name: str = "char_span", entity_type_col_name: str = "ent_type", ): """ Convert token tags in Inside–Outside–Beginning (IOB2) format to a series of `TokenSpan`s of entities. See https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) for more information on IOB2 format. :param token_features: DataFrame of token features in the format returned by `make_tokens_and_features`. :param iob_col_name: Name of a column in `token_features` that contains the IOB2 tags as strings, "I", "O", or "B". :param char_span_col_name: Name of a column in `token_features` that contains the tokens as a `CharSpanArray`. :param entity_type_col_name: Optional name of a column in `token_features` that contains entity type information; or `None` if no such column exists. :return: A `pd.DataFrame` with the following columns: * `token_span`: Span (with token offsets) of each entity * `<value of entity_type_col_name>`: (optional) Entity type """ # Start out with 1-token prefixes of all entities. begin_mask = token_features[iob_col_name] == "B" first_tokens = token_features[begin_mask].index if entity_type_col_name is None: entity_types = np.zeros(len(first_tokens)) else: entity_types = token_features[begin_mask][entity_type_col_name] # Add an extra "O" tag to the end of the IOB column to simplify the logic # for handling the case where the document ends with an entity. iob_series = ( token_features[iob_col_name].append(pd.Series(["O"])).reset_index(drop=True) ) entity_prefixes = pd.DataFrame( { "ent_type": entity_types, "begin": first_tokens, # Inclusive "end": first_tokens + 1, # Exclusive "next_tag": iob_series.iloc[first_tokens + 1].values, } ) df_list = [] # Type: pd.DataFrame if len(entity_prefixes.index) == 0: # Code below needs at least one element in the list for schema df_list = [entity_prefixes] # Iteratively expand the prefixes while len(entity_prefixes.index) > 0: complete_mask = entity_prefixes["next_tag"].isin(["O", "B"]) complete_entities = entity_prefixes[complete_mask] incomplete_entities = entity_prefixes[~complete_mask].copy() incomplete_entities["end"] = incomplete_entities["end"] + 1 incomplete_entities["next_tag"] = iob_series.iloc[ incomplete_entities["end"] ].values df_list.append(complete_entities) entity_prefixes = incomplete_entities all_entities = pd.concat(df_list) # Sort spans by location, not length. all_entities.sort_values("begin", inplace=True) # Convert [begin, end) pairs to spans entity_spans_array = TokenSpanArray( token_features[char_span_col_name].values, all_entities["begin"].values, all_entities["end"].values, ) if entity_type_col_name is None: return pd.DataFrame({"token_span": entity_spans_array}) else: return pd.DataFrame( { "token_span": entity_spans_array, entity_type_col_name: all_entities["ent_type"].values, } ) def spans_to_iob( token_spans: Union[TokenSpanArray, List[TokenSpan], pd.Series], span_ent_types: Union[str, Iterable, np.ndarray, pd.Series] = None ) -> pd.DataFrame: """ Convert a series of `TokenSpan`s of entities to token tags in Inside–Outside–Beginning (IOB2) format. See https://en.wikipedia.org/wiki/Inside%E2%80%93outside%E2%80%93beginning_(tagging) for more information on IOB2 format. :param token_spans: An object that can be converted to a `TokenSpanArray` via `TokenSpanArray.make_array()`. Should contain `TokenSpan`s aligned with the target tokenization. Usually you create this array by calling `TokenSpanArray.align_to_tokens()`. :param span_ent_types: List of entity type strings corresponding to each of the elements of `token_spans`, or `None` to indicate null entity tags. :return: A `pd.DataFrame` with two columns: * "ent_iob": IOB2 tags as strings "ent_iob" * "ent_type": Entity type strings (or NaN values if `ent_types` is `None`) """ # Normalize inputs token_spans = TokenSpanArray.make_array(token_spans) if span_ent_types is None: span_ent_types = [None] * len(token_spans) elif isinstance(span_ent_types, str): span_ent_types = [span_ent_types] * len(token_spans) elif isinstance(span_ent_types, pd.Series): span_ent_types = span_ent_types.values # Define the IOB categorical type with "O" == 0, "B"==1, "I"==2 iob2_dtype = pd.CategoricalDtype(["O", "B", "I"], ordered=False) # Handle an empty token span array if len(token_spans) == 0: return pd.DataFrame({ "ent_iob": pd.Series(dtype=iob2_dtype), "ent_type": pd.Series(dtype="string") }) # Initialize an IOB series with all 'O' entities iob_data = np.zeros_like(token_spans.tokens.begin, dtype=np.int64) iob_tags = pd.Categorical.from_codes(codes=iob_data, dtype=iob2_dtype) # Assign the begin tags iob_tags[token_spans.begin_token] = "B" # Fill in the remaining inside tags i_lengths = token_spans.end_token - (token_spans.begin_token + 1) i_mask = i_lengths > 0 i_begins = token_spans.begin_token[i_mask] + 1 i_ends = token_spans.end_token[i_mask] for begin, end in zip(i_begins, i_ends): iob_tags[begin:end] = "I" # Use a similar process to generate entity type tags ent_types = np.full(len(token_spans.tokens), None, dtype=object) for ent_type, begin, end in zip(span_ent_types, token_spans.begin_token, token_spans.end_token): ent_types[begin:end] = ent_type return pd.DataFrame({ "ent_iob": iob_tags, "ent_type": pd.Series(ent_types, dtype="string") }) def conll_2003_to_dataframes(input_file: str, column_names: List[str], iob_columns: List[bool], space_before_punct: bool = False)\ -> List[pd.DataFrame]: """ Parse a file in CoNLL-2003 training/test format into a DataFrame. CoNLL-2003 training/test format looks like this: ``` -DOCSTART- -X- -X- O CRICKET NNP I-NP O - : O O LEICESTERSHIRE NNP I-NP I-ORG TAKE NNP I-NP O OVER IN I-PP O AT NNP I-NP O ``` Note the presence of the surface forms of tokens at the beginning of the lines. :param input_file: Location of input file to read. :param space_before_punct: If `True`, add whitespace before punctuation characters when reconstructing the text of the document. :param column_names: Names for the metadata columns that come after the token text. These names will be used to generate the names of the dataframe that this function returns. :param iob_columns: Mask indicating which of the metadata columns after the token text should be treated as being in IOB format. If a column is in IOB format, the returned dataframe will contain *two* columns, holding **IOB2** tags and entity type tags, respectively. For example, an input column "ent" will turn into output columns "ent_iob" and "ent_type". :returns: A list containing, for each document in the input file, a separate `pd.DataFrame` of four columns: * `char_span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `token_span`: Span of each token, with token offsets. Backed by the contents of the `char_span` column. * `ent_iob`: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * `ent_type`: Entity type names for tokens tagged "I" or "B" in the `ent_iob` column; `None` everywhere else. """ parsed_docs = _parse_conll_file(input_file, column_names, iob_columns) doc_dfs = [_doc_to_df(d, column_names, iob_columns, space_before_punct) for d in parsed_docs] return [_iob_to_iob2(d, column_names, iob_columns) for d in doc_dfs] def conll_2003_output_to_dataframes(doc_dfs: List[pd.DataFrame], input_file: str, column_name: str = "ent", copy_tokens: bool = False) -> List[pd.DataFrame]: """ Parse a file in CoNLL-2003 output format into a DataFrame. CoNLL-2003 output format looks like this: ``` O O I-LOC O O I-PER I-PER ``` Note the lack of any information about the tokens themselves. Note also the lack of any information about document boundaries. :param doc_dfs: List of `pd.DataFrame`s of token information, as returned by `conll_2003_to_dataframes`. This is needed because CoNLL-2003 output format does not include any information about document boundaries. :param input_file: Location of input file to read. :param column_name: Name for the metadata value that the IOB-tagged data in `input_file` encodes. If this name is present in `doc_dfs`, its value will be replaced with the data from `input_file`; otherwise a new column will be added to each dataframe. :param copy_tokens: If True, deep-copy token series from the elements of `doc_dfs` instead of using pointers. :return: A list containing, for each document in the input file, a separate `pd.DataFrame` of four columns: * `char_span`: Span of each token, with character offsets. Backed by the concatenation of the tokens in the document into a single string with one sentence per line. * `token_span`: Span of each token, with token offsets. Backed by the contents of the `char_span` column. * `<column_name>_iob`: IOB2-format tags of tokens, corrected so that every entity begins with a "B" tag. * `<column_name>_type`: Entity type names for tokens tagged "I" or "B" in the `<column_name>_iob` column; `None` everywhere else. """ docs_list = _parse_conll_output_file(doc_dfs, input_file) return [ _iob_to_iob2(_output_doc_to_df(tokens, outputs, column_name, copy_tokens), [column_name], [True]) for tokens, outputs in zip(doc_dfs, docs_list) ] def make_iob_tag_categories(entity_types: List[str]) \ -> Tuple[pd.CategoricalDtype, List[str], Dict[str, int]]: """ Enumerate all the possible token categories for combinations of IOB tags and entity types (for example, I + "PER" ==> "I-PER"). Generate a consistent mapping from these strings to integers. :param entity_types: Allowable entity type strings for the corpus :returns: A triple of: * Pandas CategoricalDtype * mapping from integer to string label, as a list. This mapping is guaranteed to be consistent with the mapping in the Pandas CategoricalDtype in the first return value. * mapping string label to integer, as a dict; the inverse of the second return value. """ int_to_label = ["O"] + [f"{x}-{y}" for x in ["B", "I"] for y in entity_types] label_to_int = {int_to_label[i]: i for i in range(len(int_to_label))} token_class_dtype = pd.CategoricalDtype(categories=int_to_label) return token_class_dtype, int_to_label, label_to_int def add_token_classes(token_features: pd.DataFrame, token_class_dtype: pd.CategoricalDtype = None, iob_col_name: str = "ent_iob", entity_type_col_name: str = "ent_type") -> pd.DataFrame: """ Add additional columns to a dataframe of IOB-tagged tokens containing composite string and integer category labels for the tokens. :param token_features: Dataframe of tokens with IOB tags and entity type strings :param token_class_dtype: Optional Pandas categorical dtype indicating how to map composite tags like `I-PER` to integer values. You can use :func:`make_iob_tag_categories` to generate this dtype. If this parameter is not provided, this function will use an arbitrary mapping using the values that appear in this dataframe. :param iob_col_name: Optional name of a column in `token_features` that contains the IOB2 tags as strings, "I", "O", or "B". :param entity_type_col_name: Optional name of a column in `token_features` that contains entity type information; or `None` if no such column exists. :returns: A copy of `token_features` with two additional columns, `token_class` (string class label) and `token_class_id` (integer label). If `token_features` contains columns with either of these names, those columns will be overwritten in the returned copy of `token_features`. """ if token_class_dtype is None: empty_mask = (token_features[entity_type_col_name].isna() | (token_features[entity_type_col_name] == "")) token_class_type, _, label_to_int = make_iob_tag_categories( list(token_features[~empty_mask][entity_type_col_name].unique()) ) else: label_to_int = {token_class_dtype.categories[i]: i for i in range(len(token_class_dtype.categories))} elems = [] # Type: str for index, row in token_features[[iob_col_name, entity_type_col_name]].iterrows(): if row[iob_col_name] == "O": elems.append("O") else: elems.append(f"{row[iob_col_name]}-{row[entity_type_col_name]}") ret = token_features.copy() ret["token_class"] = pd.Categorical(elems, dtype=token_class_dtype) ret["token_class_id"] = [label_to_int[l] for l in elems] return ret def decode_class_labels(class_labels: Iterable[str]): """ Decode the composite labels that :func:`add_token_classes` creates. :param class_labels: Iterable of string class labels like "I-LOC" :returns: A tuple of (IOB2 tags, entity type strings) corresponding to the class labels. """ iobs = ["O" if t == "O" else t[:1] for t in class_labels] types = [None if t == "O" else t.split("-")[1] for t in class_labels] return iobs, types
StarcoderdataPython
5111237
import os import sys import time from vector import Vector2D import math import random import pygame import cProfile as profile # GLOBALS LEVEL = 0 RESDIR = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'res') ######### def load_sound(name): """Borrowed from http://www.pygame.org/docs/tut/chimp/ChimpLineByLine.html""" class NoneSound: def play(self): pass if not pygame.mixer: return NoneSound() fullpath = os.path.join(RESDIR, name) try: sound = pygame.mixer.Sound(fullpath) except pygame.error, message: print('Cannot load sound: %s' % name) raise SystemExit, message return sound def load_image(name, scale=1, colorkey=None): """Borrowed from http://www.pygame.org/docs/tut/chimp/ChimpLineByLine.html""" fullpath = os.path.join(RESDIR, name) try: image = pygame.image.load(fullpath) except pygame.error, message: print('Cannot load image: %s' % name) raise SystemExit, message image = image.convert_alpha() if colorkey is not None: if colorkey is -1: colorkey = image.get_at((0,0)) image.set_colorkey(colorkey, RLEACCEL) image = pygame.transform.scale(image, (int(image.get_width() * scale), int(image.get_height() * scale))) return image def load_sliced_sprites(w, h, master_image): ''' Specs : Master can be any height. Sprites frames width must be the same width Master width must be len(frames)*frame.width Assuming you ressources directory is named "." ''' images = [] #scalew = int(master_image.get_width() * scale) #scaleh = int(master_image.get_height() * scale) #master_image = pygame.transform.scale(master_image, (scalew, scaleh)) master_width, master_height = master_image.get_size() for j in xrange(int(master_height/h)): images.append([]) for i in xrange(int(master_width/w)): images[j].append(master_image.subsurface((i*w,j*h,w,h))) return images class Player(object): def __init__(self, pos=Vector2D(320, 240)): self.pos = pos side_length = 4 self.rect = pygame.rect.Rect(0, 0, 2 * side_length, 2 * side_length) self.diag = math.sqrt(side_length ** 2 + (side_length / 2) ** 2) self.points = [pos, pos, pos] self.exhaust = [pos, pos, pos, pos, pos, pos, pos] self.aspeed = math.pi / 45.0 self.angle = 0 self.maxspeed = 2.0 self.speed = Vector2D(0, -0.05) self.velocity = Vector2D.zeros() self.color = pygame.Color('white') self.ret_color = pygame.Color(24, 24, 24) self.health = 100 self.lives = 3 self.alive = True self.score = 0 self.update(0.0) def get_health(self): return self.health / 10 * 10 # display health in multiples of 10 def get_lives(self): return self.lives def get_score(self): return self.score def get_direction(self): return Vector2D(0, -1).rotate(self.angle) def update(self, ms): if not self.alive: return keys = pygame.key.get_pressed() # increase current_speed, and therefore velocity # only rotate player's velocity when accelerating #if keys[pygame.K_UP] and self.velocity.Y > -self.maxspeed: # self.current_speed -= self.lspeed # self.velocity.Y = self.current_speed # self.velocity = self.velocity.rotate(self.angle) self.accelerating = False if keys[pygame.K_UP]: new = self.velocity + self.speed.rotate(self.angle) if not new.length() > self.maxspeed: self.accelerating = True self.velocity = new # turn the player with right/left keys if keys[pygame.K_LEFT]: self.angle -= self.aspeed elif keys[pygame.K_RIGHT]: self.angle += self.aspeed # update the player's position self.pos += self.velocity self.rect.center = self.pos # update the lines that form our ship, they are always rotated with # respect to the player's angle self.points[0] = Vector2D(0, -self.diag).rotate(self.angle) + self.pos self.points[1] = Vector2D(self.diag, 2 * self.diag).rotate(self.angle) + self.pos self.points[2] = Vector2D(-self.diag, 2 * self.diag).rotate(self.angle) + self.pos self.exhaust[0] = self.points[1] self.exhaust[1] = Vector2D(self.diag, 3 * self.diag).rotate(self.angle) + self.pos self.exhaust[2] = Vector2D(self.diag / 2, 2.5 * self.diag).rotate(self.angle) + self.pos self.exhaust[3] = Vector2D(0, 4 * self.diag).rotate(self.angle) + self.pos self.exhaust[4] = Vector2D(-self.diag / 2, 2.5 * self.diag).rotate(self.angle) + self.pos self.exhaust[5] = Vector2D(-self.diag, 3 * self.diag).rotate(self.angle) + self.pos self.exhaust[6] = self.points[2] def render(self, surface, ms): if self.alive: pygame.draw.lines(surface, self.color, True, self.points) if self.accelerating: pygame.draw.lines(surface, self.color, True, self.exhaust) class Alien(object): def __init__(self, radius, viewport): self.radius = radius self.color = pygame.Color('red') self.velocity = Vector2D( random.randint(-2, 2), random.randint(-2, 2) ) self.pos = Vector2D( random.randint(viewport.left, viewport.right), random.randint(viewport.top, viewport.bottom) ) self.sq_offsets = [ Vector2D(1.5 * radius, .5 * radius), Vector2D(1.5 * radius, -.5 * radius), Vector2D(-1.5 * radius, -.5 * radius), Vector2D(-1.5 * radius, .5 * radius) ] self.small_offsets = [Vector2D(-1.5 * radius, 0), Vector2D(1.5 * radius, 0)] self.points = [self.pos for i in self.sq_offsets] self.small_circles = [self.pos for i in self.small_offsets] def update(self, ms): self.pos += self.velocity for i, point in enumerate(self.sq_offsets): self.points[i] = point + self.pos for i, point in enumerate(self.small_offsets): self.small_circles[i] = point + self.pos def render(self, surface, ms): pygame.draw.lines(surface, self.color, True, self.points) for c in self.small_circles: pygame.draw.circle(surface, self.color, (int(c.X), int(c.Y)), self.radius / 2, 1) pygame.draw.circle(surface, self.color, (int(self.pos.X), int(self.pos.Y)), self.radius, 1) class Asteroid(object): def __init__(self, pos, size): self.pos = pos self.size = size self.radius = random.randint(size - (size / 10), size + (size / 10)) xspeed = (random.random() * 2 - 1) / random.randint(1, 4) yspeed = (random.random() * 2 - 1) / random.randint(1, 4) self.velocity = Vector2D(xspeed, yspeed) num_sides = random.randint(8, 16) maxd = self.radius / 2 a = 2 * math.pi / num_sides v = Vector2D(self.radius, 0.0) self.points = list() self.offsets = list() for i in range(num_sides): xy = random.randint(0, 1) d = random.randint(-maxd, maxd) if xy: offset = v + Vector2D(d, 0) self.offsets.append(offset) self.points.append(offset + self.pos) else: offset = v + Vector2D(0, d) self.offsets.append(offset) self.points.append(offset + self.pos) v = v.rotate(a) self.rect = pygame.rect.Rect(0, 0, int(self.radius * 1.9), int(self.radius * 1.9)) self.rect.center = (self.pos.X, self.pos.Y) self.update(0.0) self.color = pygame.Color('white') self.alive = True def update(self, ms): self.pos += self.velocity self.rect.center = (self.pos.X, self.pos.Y) # just update each point comprising the asteroid for i, offset in enumerate(self.offsets): self.points[i] = offset + self.pos def render(self, surface, ms): #pygame.draw.circle(surface, self.color, (int(self.pos.X), int(self.pos.Y)), self.radius, 1) pygame.draw.lines(surface, self.color, True, self.points) class AsteroidField(object): def __init__(self, level, viewport, forbidden_rect): self.viewport = viewport # Asteroid radius-related variables self.min_radius = (viewport.width + viewport.height) / 200 self.max_radius = (viewport.width + viewport.height) / 40 self.radius_range = self.max_radius - self.min_radius self.small = self.min_radius self.med = self.small + self.radius_range / 2 self.big = self.max_radius self.big_offsets = [ Vector2D(self.med, self.med), #Vector2D(self.med, -self.med), #Vector2D(-self.med, self.med), Vector2D(-self.med, -self.med) ] self.med_offsets = [Vector2D(self.med, 0), Vector2D(-self.med, 0)] count = level + 4 self.asteroids = [ Asteroid( Vector2D( random.randint(0, viewport.width), random.randint(0, viewport.height) ), self.big ) for i in range(count) ] # move each asteroid if it initially collides with the player for i, a in enumerate(self.asteroids): if a.rect.colliderect(forbidden_rect): a.pos.X += forbidden_rect.centerx + a.radius a.pos.Y += forbidden_rect.centery + a.radius a.update(0.0) # must call update to properly update its pos def kill(self, a): if a.size == self.big: children = [ Asteroid(Vector2D(a.pos.X, a.pos.Y) + off, self.med) for off in self.big_offsets ] self.asteroids.extend(children) elif a.size == self.med: children = [ Asteroid(Vector2D(a.pos.X, a.pos.Y) + off, self.small) for off in self.med_offsets ] self.asteroids.extend(children) # remove/delete the destroyed asteroid self.asteroids.remove(a) del(a) def update(self, ms): for a in self.asteroids: if a.pos.X < self.viewport.left: a.pos.X = self.viewport.right elif a.pos.X > self.viewport.right: a.pos.X = self.viewport.left if a.pos.Y < self.viewport.top: a.pos.Y = self.viewport.bottom elif a.pos.Y > self.viewport.bottom: a.pos.Y = self.viewport.top a.update(ms) def render(self, surface, ms): for a in self.asteroids: a.render(surface, ms) class Camera(object): def __init__(self, size, rect, lock): self.rect = pygame.Rect((0,0),size) self.bounds = rect self.lock = lock def update(self, ms): keys = pygame.key.get_pressed() if keys[pygame.K_EQUALS]: self.rect.inflate_ip(2, 2) elif keys[pygame.K_MINUS]: self.rect.inflate_ip(-2, -2) self.rect.center = self.lock() self.rect.clamp_ip(self.bounds) class HUD(object): """heads up display shows Health, Score and Level""" def __init__(self, size, fontsize, lifefunc, healthfunc, levelfunc, scorefunc): self.width, self.height = size self.font = pygame.font.Font(None, fontsize) self.color = pygame.Color('white') self.bgcolor = pygame.Color('black') self.lifefunc = lifefunc self.healthfunc = healthfunc self.levelfunc = levelfunc self.scorefunc = scorefunc self.num_items = 4 self.surfaces = [None for i in range(self.num_items)] def update(self, ms): #for i, func in enumerate(self.funcs): self.surfaces[0] = self.font.render("Lives: " + str(int(self.lifefunc())), 1, self.color) self.surfaces[1] = self.font.render("Health: " + str(int(self.healthfunc())), 1, self.color) self.surfaces[2] = self.font.render("Level: " + str(int(self.levelfunc())), 1, self.color) self.surfaces[3] = self.font.render("Score: " + str(int(self.scorefunc())), 1, self.color) def render(self, surface, ms): for i, s in enumerate(self.surfaces): surface.blit(s, (i * (self.width / (self.num_items)) + 10, 10)) class Bullet(object): def __init__(self, center, direction): self.radius = 1 self.color = pygame.Color('white') self.pos = center self.rect = pygame.rect.Rect(0, 0, 2*self.radius, 2*self.radius) self.rect.center = (center.X, center.Y) self.velocity = direction.normal() * 5 self.alive = True self._age = 0 self._lifetime = 2000 def update(self, ms): if self.alive: self._age += ms # kill itself if it reaches its max lifetime if self._age > self._lifetime: self.alive = False self.pos += self.velocity self.rect.center = (self.pos.X, self.pos.Y) def render(self, surface, ms): if self.alive: pygame.draw.circle(surface, self.color, (int(self.pos.X), int(self.pos.Y)), self.radius) class Explosion(object): def __init__(self, image, center): self._images = image self.image = self._images[0][0] self.rect = self.image.get_rect() self.rect.center = center self.alive = True self._frameset = 0 self._frame = 0 self._delay = 99 self._frame_timer = 0 # determines whether sprite should look forward when not moving def update(self, ms): if self.alive: self._frame_timer += ms if self._frame_timer > self._delay: self._frame += 1 if self._frame >= len(self._images[self._frameset]): self._frame = 0 self.alive = False self.image = self._images[self._frameset][self._frame] self._frame_timer = 0 def render(self, surface, ms): if self.alive: surface.blit(self.image, self.rect) def get_level(): """Hack to return the current level.""" return LEVEL def main(): global LEVEL pygame.init() pygame.font.init() size = (640, 480) s = 5 screen = pygame.display.set_mode(size) viewport = pygame.rect.Rect((0,0),size) clock = pygame.time.Clock() player0 = Player(Vector2D(300, 200)) alien = None LEVEL = 1 afield = AsteroidField(LEVEL, viewport, player0.rect) explosion_sound = 'explosion.wav' explode_sound = load_sound(explosion_sound) explosion_image = 'explosion-sprite.png' small_explode_image = load_image(explosion_image, scale=1) small_explode_sprite = load_sliced_sprites(20, 20, small_explode_image) med_explode_image = load_image(explosion_image, scale=2) med_explode_sprite = load_sliced_sprites(40, 40, med_explode_image) big_explode_image = load_image(explosion_image, scale=3) big_explode_sprite = load_sliced_sprites(60, 60, big_explode_image) # temp "pool" for updating/rendering particles explosions = list() bullets = list() hud_items = [player0.get_lives, player0.get_health, get_level, player0.get_score] #for player in players: # healths.append(player.get_health) hud = HUD(size, 32, *hud_items) game_over_font = pygame.font.Font(None, 72) game_over_msg = game_over_font.render("GAME OVER", 1, pygame.Color('white')) offX = (viewport.width - game_over_msg.get_width()) / 2 offY = (viewport.height - game_over_msg.get_height()) / 2 #camera = Camera(size, tilemap0.rect, player0.get_pos) black = pygame.Color('black') screen.fill(black) pygame.display.update() game_over = False running = True while running: events = pygame.event.get() for e in events: if e.type == pygame.QUIT: running = False if e.type == pygame.KEYDOWN: if e.key == pygame.K_ESCAPE: running = False if e.key == pygame.K_SPACE and player0.alive: bullets.append(Bullet(player0.pos, player0.get_direction())) #if random.randint(0, 100) > 95: # alien = Alien(20, viewport) for b in bullets: # kill bullets that have left the viewport #if not viewport.colliderect(b.rect): # b.alive = False #else: if b.pos.X < 0: b.pos.X = size[0] elif b.pos.X > size[0]: b.pos.X = 0 elif b.pos.Y < 0: b.pos.Y = size[1] elif b.pos.Y > size[1]: b.pos.Y = 0 # brute force collision checking for each bullet -> each asteroid for a in afield.asteroids: if a.rect.colliderect(b.rect): b.alive = False player0.score += 1 afield.kill(a) if a.radius < afield.small: explosions.append(Explosion(small_explode_sprite, a.rect.center)) elif a.radius < afield.med: explosions.append(Explosion(med_explode_sprite, a.rect.center)) else: explosions.append(Explosion(big_explode_sprite, a.rect.center)) if len(afield.asteroids) == 0: LEVEL += 1 afield = AsteroidField(LEVEL, viewport, player0.rect) for a in afield.asteroids: if player0.alive and a.rect.colliderect(player0.rect): player0.health -= 1 # remove player life if player0.health <= 0: explode_sound.play() player0.lives -= 1 if player0.lives <= 0: explosions.append( Explosion( big_explode_sprite, player0.rect.center ) ) # game over player0.alive = False game_over = True else: player0.health = 100 # wrap player position when offscreen if player0.pos.X < 0: player0.pos.X = size[0] elif player0.pos.X > size[0]: player0.pos.X = 0 elif player0.pos.Y < 0: player0.pos.Y = size[1] elif player0.pos.Y > size[1]: player0.pos.Y = 0 player0.update(clock.get_time()) afield.update(clock.get_time()) if alien is not None: alien.update(clock.get_time()) for bull in bullets: if not bull.alive: bullets.remove(bull) del(bull) else: bull.update(clock.get_time()) for pop in explosions: if not pop.alive: explosions.remove(pop) del(pop) else: pop.update(clock.get_time()) hud.update(clock.get_time()) screen.fill(black) if game_over: screen.blit(game_over_msg, (offX, offY)) player0.render(screen, clock.get_time()) for b in bullets: b.render(screen, clock.get_time()) for p in explosions: p.render(screen, clock.get_time()) afield.render(screen, clock.get_time()) if alien is not None: alien.render(screen, clock.get_time()) hud.render(screen, clock.get_time()) pygame.display.flip() clock.tick(60) pygame.time.delay(10) # game over pygame.quit() if __name__ == "__main__": main()
StarcoderdataPython
5132458
<filename>medical_prescription/user/views/logoutview.py # Django from django.shortcuts import redirect from django.contrib import auth from django.views.generic import View class LogoutView(View): ''' Logout of User. ''' # Exit user and render 'home' page. def get(self, request): auth.logout(request) return redirect('/')
StarcoderdataPython
8171069
import RPi.GPIO as GPIO from time import sleep SLEEPTIME = 1 PIN = 18 GPIO.setmode(GPIO.BOARD) GPIO.setup(PIN, GPIO.IN, pull_up_down = GPIO.PUD_UP) def event_callback(): print("Magnetic field is detected") GPIO.add_event_detect(GPIO_PIN, GPIO.FALLING, callback = event_callback, bouncetime = 200) try: while True: sleep(SLEEPTIME) except KeyboardInterrupt: print("\nprogram stopped") GPIO.cleanup()
StarcoderdataPython
147665
# -*- coding: utf-8 -*- """ Created on Fri Dec 18 22:59:59 2020 @author: CS Check the read-me file for a in-depth summary of the problem """ import numpy as np import sys sys.path.append('..') import TrussAnalysis as ta class environment: """ The enviroment will act as a container for the data in the problem. The boundary node coordinates and element fixities are defined as static values. """ def __init__(self, forces = np.array([1000., 1000., 0.]),trussMat = 10): self.forces = forces """ Here the nodes and connectivityies between each node are defined for the problem. The connectivity assumes a """ self.xNodeCoords = np.array([0.,1.,0.,1.,0.,1.,1.]) self.yNodeCoords = np.array([0.,0.,1.,1.,2.,2.,3.]) self.Connectivity = [[1,2],[1,4],[2,4],[1,3], [3,4],[3,6],[3,5],[4,6], [5,6], [5,7], [6,7]] self.nodeIds = np.arange(len(self.Connectivity)) + 1 self.trussMat = trussMat def ftest(individual, environment): """ Tests and individual and returns the result of that test. This function essentially is a wrapper that converts data from our individual and environment into a form usable by the truss anaylsis functions. Note several values are returned as a result. This will be processed later to define the value of fitness. Parameters ---------- individual : Naturalize Indivdual The input indivdual. environment : Naturalize Environment The input environment. """ Areas = individual.genotype[0] """ Make the truss defined in the problem definition. This is fixed. We could condense this by returning a list and passing that list in with a *List to the function, however, we'll write it out explicitly for this example to be clear' """ Forces = environment.forces xNodeCoords = environment.xNodeCoords yNodeCoords = environment.yNodeCoords Connectivity = environment.Connectivity trussMat = environment.trussMat nodeIds = environment.nodeIds result = ta.runTrussAnalysis(Areas, Forces, nodeIds, xNodeCoords, yNodeCoords, Connectivity, trussMat) disp, volume, Forces = result return disp, volume, Forces def fitness_basic(individual, environment): """ Determines how good each solution is, this is what that is minimized In this case, minimize the displacement in the x direction. Parameters ---------- individual : Naturalize Indivdual The input indivdual. environment : Naturalize Environment The input environment. Returns ------- disp : float The output displacement of the analysis. """ disp, volumes, _ = individual.result dx = disp[0] disp = np.abs(dx) return disp def fitness_normalized(individual, environment): """ Determines how good each solution is, this is what that is minimized. In this function, the displacement multiplied by volume is minimized. This will make solutions with a lower volume more attractive. Parameters ---------- individual : Naturalize Indivdual The input indivdual. environment : Naturalize Environment The input environment. Returns ------- normDisp : float The output displacement of the analysis. """ disp, volumes, _ = individual.result dx = disp[0] normDisp = np.abs(dx * np.sum(volumes)) return normDisp def fitness_Volume(individual, environment): """ The fitness function, this value is what is actually minimized. In this case, the volume is minimized, assuming displacement is below some limit. This will make solutions with a lower volume more attractive. Parameters ---------- individual : Naturalize Indivdual The input indivdual. environment : Naturalize Environment The input environment. Returns ------- volume : float The output volume of the truss. """ disp, volumes, _ = individual.result dx = disp[0] """ The limit could be placed within the environment function. """ lim = 0.01 if dx < lim: volume = np.sum(volumes) # normDisp = np.abs(dx * np.sum(volumes)) else: volume = 100*np.sum(volumes) return volume def plotIndividual(data): """ Makes a matplotlib plot of the truss. """ areas = data xNodeCoords = np.array([0.,1.,0.,1.,0.,1.,1.]) yNodeCoords = np.array([0.,0.,1.,1.,2.,2.,3.]) Connectivity = [[1,2],[1,4],[2,4],[1,3], [3,4], [3,6], [3,5], [4,6], [5,6], [5,7], [6,7]] nodeIds = np.arange(len(Connectivity)) + 1 fig, ax = ta.plotTruss(areas, nodeIds, xNodeCoords, yNodeCoords, Connectivity) maxArea = max(areas) style_blue(fig, ax, areas, maxArea) return fig, ax def style_blue(fig, ax, areas, maxArea): """ Used to make the animated plots """ fig.set_figwidth(8) fig.set_figheight(6) for text in ax.texts: text.set_fontsize(10) ax.texts = [] for ii, line in enumerate(ax.lines): line.set_linewidth(5*areas[ii]/maxArea) line.set_color("steelblue") ax.set_facecolor("skyblue") ax.collections[0].set_color('cornsilk') ax.collections[0].set_zorder(10) ax.collections[0].set_linewidth(2) # fig.savefig("mygraph.png") # ax.axis('off') ax.set_xlim([-1.5, 2.5]) ax.spines['top'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['left'].set_visible(False) ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # ax.annotate("", xy=(0.9, 3), xytext=(0.5, 3), arrowprops=dict(arrowstyle="->", color = 'red') ) return fig, ax
StarcoderdataPython
9662998
#Credential Generated from your Twilio Account account_sid= 'Your Twilio Sid' auth_token='<PASSWORD>' my_cell='Number whom you want to sms' my_twilio='Your Twilio number'
StarcoderdataPython
1918223
""" Low-Level Logging A module to allow a ton of data (e.g. all SSL unencrypted and encrypted IO) to be logged but not actually slow the server down unless the thing is being traced or the whole server is logging super verbose. Use like: import ll import faststat ml = ll.LLogger() .... ml.la("format string {0} {1}", var0, var1) # always log ml.ld("format string 2 {0}", var0) # log most often ml.ld("format string 3 {0}", var0) # log most often ml.ld2("format string 4 {0}", var0) # log less often ml.ld3("format string 5 {0}", var0) # log only at very high verbosity ml.ld4("format string 5 {0}", var0) # log only at highest verbosity (including greenlet switch) For best efficiency, use !r in format string, rather than calling str() or repr() on arguments. <EMAIL> for details. """ import inspect from collections import defaultdict from datetime import datetime import os import sys the_file = sys.stdout log_msgs = defaultdict(int) LOG_LEVELS = {'NEVER': -1, 'NONE': 0, 'DEBUG': 1, 'DEBUG2': 2, 'DEBUG3': 3, 'DEBUG4': 4 } _log_level = LOG_LEVELS['NONE'] def print_log_summary(): """Prints out the hash map of format strings and counts of usage.""" return ["%s: %d\n".format(k, v) for k, v in log_msgs.items()] def get_log_level(): """Set global low level log level""" return _log_level def set_log_level(level): """Set global low lovel log level""" global _log_level if level is None: level = 0 level = max(level, LOG_LEVELS['NEVER']) level = min(level, LOG_LEVELS['DEBUG4']) _log_level = level def use_the_file(name="lll.txt"): """Use a file instead of stdout Relative to cwd unless starts with /""" global the_file if name[0] == "/": path = name else: path = os.getcwd() + "/./" + name the_file = open(path, "a") def use_std_out(): """Use stdout instead of a file - just for tests""" global the_file the_file = sys.stdout def log_failure(bad_str): """Stats on failed logs""" try: import context context.get_context().stats["log.failure"].add(1) context.get_context().stats["log.failure." + bad_str].add(1) if context.get_context().log_failure_print: if context.get_context().stats["log.failure"].n < 10: print "log failure - " + bad_str except: pass class LLogger(object): """Instantiate this to get the logger object; it grabs module data""" def __init__(self, tag="", trace_mod=False): mod = inspect.getmodule(inspect.stack()[1][0]) if mod: self.caller_mod = mod.__file__.split(".")[-2].upper() else: self.caller_mod = "UNKNOWN" self.trace_mod = trace_mod self.la = self.log_always self.ld = self.log_debug self.ld2 = self.log_debug2 self.ld3 = self.log_debug3 self.ld4 = self.log_debug4 self.tag = tag def log_always(self, *args, **kw): """Log unless never""" global log_msgs log_msgs[self.caller_mod + "--" + args[0]] += 1 if self.trace_mod or _log_level >= 0: import gevent # for getcurrent try: msg = apply(args[0].format, tuple(args[1:])) if "CAL-PRINT" in msg: print >> the_file, msg else: print >> the_file, "%s %s (%s):%s" % (datetime.now().strftime("%d/%H:%M:%S.%f"), self.caller_mod, id(gevent.getcurrent()), self.tag), msg except: log_failure(args[0]) def log_debug(self, *args, **kw): """Log only with -d""" log_msgs[self.caller_mod + "--" + args[0]] += 1 if self.trace_mod or _log_level >= 1: import gevent # for getcurrent try: msg = apply(args[0].format, tuple(args[1:])) print >> the_file, "%s %s D (%s):%s" % (datetime.now().strftime("%d/%H:%M:%S.%f"), self.caller_mod, id(gevent.getcurrent()), self.tag), msg except: log_failure(args[0]) def log_debug2(self, *args, **kw): """Log only with -dd""" log_msgs[self.caller_mod + "--" + args[0]] += 1 if self.trace_mod or _log_level >= 2: import gevent # for getcurrent try: msg = apply(args[0].format, tuple(args[1:])) print >> the_file, "%s %s D2 (%s):%s" % (datetime.now().strftime("%d/%H:%M:%S.%f"), self.caller_mod, id(gevent.getcurrent()), self.tag), msg except: log_failure(args[0]) def log_debug3(self, *args, **kw): """Log only with -ddd""" log_msgs[self.caller_mod + "--" + args[0]] += 1 if self.trace_mod or _log_level >= 3: import gevent # for getcurrent try: msg = apply(args[0].format, tuple(args[1:])) print >> the_file, "%s %s D3 (%s):%s" % (datetime.now().strftime("%d/%H:%M:%S.%f"), self.caller_mod, id(gevent.getcurrent()), self.tag), msg except: log_failure(args[0]) def log_debug4(self, *args, **kw): """Log only with -dddd""" global log_msgs log_msgs[self.caller_mod + "--" + args[0]] += 1 if self.trace_mod or _log_level >= 4: import gevent # for getcurrent try: msg = apply(args[0].format, tuple(args[1:])) print >> the_file, "%s %s D4 (%s):%s" % (datetime.now().strftime("%d/%H:%M:%S.%f"), self.caller_mod, id(gevent.getcurrent()), self.tag), msg except: log_failure(args[0])
StarcoderdataPython
3545382
<reponame>Jitsusama/lets-do-dns """Introduce time delays during program execution.""" import time def sleep(delay): """Pause program execution until delay (in seconds) has expired.""" time.sleep(delay)
StarcoderdataPython
3442891
# GW2 API wrapper class import os import json from . import session from functions import return_config """ GW2 API wrapper class. Configurations for endpoints are maintained in the src/configs/config.json file for ease of updating in the event an endpoint changes. """ class GW2Wrapper(object): def __init__(self): self.configs = return_config() # Internal URL builder function def _url_builder(self, endpoint): return "{0}/{1}/{2}".format( self.configs['gw2_api_config']['api_base_path'], self.configs['gw2_api_config']['api_version'], endpoint ) # Internal general request function def _api_request(self, url): response = session.get(url) return response.json() def worlds(self): return self._api_request(self._url_builder(self.configs['gw2_endpoints']['worlds'])) def wvw_matches(self): pass
StarcoderdataPython
3461181
<reponame>Zyjacya-In-love/Pedestrian-Detection-on-YOLOv3<gh_stars>10-100 import os import cv2 import numpy as np from PIL import Image from timeit import default_timer as timer from keras_yolov3_detect import YOLO_detector ''' 对于 Caltech 测试数据集 ./image,使用 keras_yolov3_detect.py 预测出每张图片的 bounding boxes 信息, 对于每张图片的每个目标,其预测边界框由 4 个 int 表达,分别是 [left, top, width, height] PS:一行 存储一张图片中的 所有 边界框坐标,Test:10000 行 ''' def solve(detector): original_image_path = './code/data-USA/images/' save_path = "./code/data-USA/res/YOLOv3/" second_name = 'sec.npy' if not os.path.exists(save_path): os.makedirs(save_path) take_seconds = [] cnt = 0 for root, sub_dir, files in os.walk(original_image_path): now_save_path = save_path + '/'.join(root.split('/')[4:]) if not os.path.exists(now_save_path): os.makedirs(now_save_path) for file in files: image_path = os.path.join(root, file) img = Image.open(image_path) start = timer() predict_bb, predict_scores = detector.detect_image(img) end = timer() take_seconds.append(end - start) predict_txt_file = open(now_save_path + '/' + '%s.txt' % (file.split('.')[0]), 'w') # 写预测txt # print("predict_bb : ", predict_bb) for i, bbox in enumerate(predict_bb): x1, y1, x2, y2 = bbox bbox = (x1, y1, x2-x1, y2-y1, predict_scores[i]) # print(",".join([str(a) for a in bbox])) predict_txt_file.write(",".join([str(a) for a in bbox]) + '\n') cnt += 1 take_seconds = np.array(take_seconds) # np.save(save_path + second_name, take_seconds) avg_sec = np.mean(take_seconds) print("avg_sec : ", avg_sec) if __name__ == '__main__': detector = YOLO_detector(score=0) solve(detector)
StarcoderdataPython
30939
<filename>compiler.py from sphere_engine import CompilersClientV4 from sphere_engine.exceptions import SphereEngineException import time # define access parameters accessToken = '77501c36922866a03b1822b4508a50c6' endpoint = 'dd57039c.compilers.sphere-engine.com' # initialization client = CompilersClientV4(accessToken, endpoint) # API usage # source = 'function f() {return "hello"; } print(f());' # Javascript # compiler = 112 # Javascript source = 'print("hello world please work!!!!!")' # Python compiler = 116 # Python input = '2017' # Set default value for response response = None # Sends the submission and checks for errors in sending the submission try: response = client.submissions.create(source, compiler, input) # response['id'] stores the ID of the created submission except SphereEngineException as e: if e.code == 401: print('Invalid access token') elif e.code == 402: print('Unable to create submission') elif e.code == 400: print('Error code: ' + str(e.error_code) + ', details available in the message: ' + str(e)) # Set default value for response data responseData = None print("Code submitted is: ") print(source) print("Submission ID is: " + str(response.get('id'))) print() # Try getting submission ID and check if there are errors try: client.submissions.get(response.get('id')) except SphereEngineException as e: if e.code == 401: print('Invalid access token') elif e.code == 403: print('Access to the submission is forbidden') elif e.code == 404: print('Submission does not exist') # Uses submission ID, and checks every x seconds to see if query has been 'accepted' (finished processing) while client.submissions.get(response.get('id')).get('result').get('status').get('name') != 'accepted' : responseData = client.submissions.get(response.get('id')) print(responseData) # for test purposes print("Status is: " + responseData.get('result').get('status').get('name')) time.sleep(5) print("Status is: " + client.submissions.get(response.get('id')).get('result').get('status').get('name')) print() rawresponse = None # Get the output of the query try: rawresponse = client.submissions.getStream(response.get('id'), 'output') except SphereEngineException as e: if e.code == 401: print('Invalid access token') elif e.code == 403: print('Access to the submission is forbidden') elif e.code == 404: print('Non existing resource, error code: ' + str(e.error_code) + ', details available in the message: ' + str(e)) elif e.code == 400: print('Error code: ' + str(e.error_code) + ', details available in the message: ' + str(e)) print("Output returned is: ") print(rawresponse)
StarcoderdataPython
1721289
"""User Model.""" from masoniteorm.models import Model from masoniteorm.scopes import SoftDeletesMixin class User(Model, SoftDeletesMixin): """User Model.""" __timezone__ = "Asia/Hong_Kong" __fillable__ = ["name", "email", "password"] __auth__ = "email"
StarcoderdataPython
11202425
<gh_stars>0 import unittest import pygame from agagla import game_state_manager from agagla.game_state_manager import GameState from agagla import __main__ as main import time class GSMTestCase(unittest.TestCase): def setUp(self): main.init() pygame.init() self.gsm = game_state_manager.GameStateManager() def test_state_changes(self): # tests that state changes when conditions for change are met self.assertEqual(self.gsm.get_state(), GameState.menu) self.gsm.start_game() self.gsm._force_tick() self.assertEqual(self.gsm.get_state(), GameState.running) self.gsm.lives = 0 self.gsm._force_tick() self.assertEqual(self.gsm.get_state(), GameState.game_over) def test_kill_player(self): # tests that player dies and lives go down self.gsm.start_game() self.gsm._force_tick() old_lives = self.gsm.lives self.gsm.get_player_ship().set_health(0) self.gsm._force_tick() self.assertEqual(old_lives - 1, self.gsm.lives) def test_score_increase(self): # tests that score goes up when an enemy dies self.gsm.start_game() self.gsm._force_tick() old_score = self.gsm.game_score self.gsm.get_enemies()[0].set_health(0) self.gsm._force_tick() self.assertGreater(self.gsm.game_score, old_score) def test_tick_timing(self): # tests that ticking is locked to the tick rate successful_ticks = 0 start_time = time.time() while successful_ticks < 10: if self.gsm._tick(): successful_ticks += 1 self.assertEqual((time.time() - start_time) // (1 / self.gsm.tick_rate), successful_ticks) def tearDown(self): self.gsm = None game_state_manager.GameStateManager._instance = None pygame.quit() if __name__ == '__main__': unittest.main()
StarcoderdataPython
5037215
<gh_stars>0 import discord, numpy, textwrap, requests, wand from io import BytesIO from discord.ext import commands from discord.ext.commands.cooldowns import BucketType from wand.image import Image as WandImage from PIL import Image, ImageFilter, ImageDraw, ImageOps, ImageFont, ImageSequence class image(commands.Cog, command_attrs={'cooldown': commands.Cooldown(1, 10, commands.BucketType.user)}): """Image manipulation commands""" def __init__(self, bot): self.bot = bot self.invis = 0x2F3136 # Pillow Image Manipulation @staticmethod def do_mc(txt): image = Image.open(requests.get('https://i.imgur.com/JtNJFZy.png', stream=True).raw).convert("RGBA") draw = ImageDraw.Draw(image) font_path = "cogs/assets/minecraft.ttf" font = ImageFont.truetype(font_path, 17) draw.text((60, 30), txt, (255, 255, 255), font=font) buffer = BytesIO() image.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_ascii(image): image = Image.open(image) sc = 0.1 gcf = 2 bgcolor = (13, 2, 8) re_list = list( r" .'`^\,:;Il!i><~+_-?][}{1)(|\/tfjrxn" r"uvczXYUJCLQ0OZmwqpdbkhao*#MW&8%B@$" ) chars = numpy.asarray(re_list) font = ImageFont.load_default() letter_width = font.getsize("x")[0] letter_height = font.getsize("x")[1] wcf = letter_height / letter_width img = image.convert("RGB") width_by_letter = round(img.size[0] * sc * wcf) height_by_letter = round(img.size[1] * sc) s = (width_by_letter, height_by_letter) img = img.resize(s) img = numpy.sum(numpy.asarray(img), axis=2) img -= img.min() img = (1.0 - img / img.max()) ** gcf * (chars.size - 1) lines = ("\n".join( ("".join(r) for r in chars[img.astype(int)]))).split("\n") new_img_width = letter_width * width_by_letter new_img_height = letter_height * height_by_letter new_img = Image.new("RGBA", (new_img_width, new_img_height), bgcolor) draw = ImageDraw.Draw(new_img) y = 0 line_idx = 0 for line in lines: line_idx += 1 draw.text((0, y), line, (0, 255, 65), font=font) y += letter_height buffer = BytesIO() new_img.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_quantize(img): with Image.open(img) as image: siz = 300 newsize = (siz,siz) w, h = image.size if w > h: the_key = w / siz image = image.resize((siz,int(h / the_key))).convert("RGBA") elif h > w: the_key = h / siz image = image.resize((int(w / the_key),siz)).convert("RGBA") else: image = image.resize(newsize).convert("RGBA") images1 = [] for i in range(60): try: im = image.copy() im = im.quantize(colors=i + 1, method=2) images1.append(im) except: break images2 = list(reversed(images1)) images = images1 + images2 buffer = BytesIO() images[0].save(buffer, format='gif', save_all=True, append_images=images[1:], duration=1, loop=0) buffer.seek(0) return buffer @staticmethod def do_wash(img): with Image.open(img) as img: images = [] for i in range(30): im = img.copy() im = im.rotate(12 * i) images.append(im) gif = BytesIO() images[0].save(gif, format='gif', save_all=True, append_images=images, duration=1, loop=0) gif.seek(0) gif = Image.open(gif) wash = Image.open("cogs/assets/wash.png") frames = [] for frame in ImageSequence.Iterator(gif): frame = frame.copy() frame.paste(wash) #, mask=wash frames.append(frame) buffer = BytesIO() frames[0].save(buffer, format='gif', save_all=True, append_images=images, duration=1, loop=0) buffer.seek(0) return buffer @staticmethod def do_sketch(img): ele = numpy.pi/2.2 azi = numpy.pi/4. dep = 10. with Image.open(img).convert('L') as img: a = numpy.asarray(img).astype('float') grad = numpy.gradient(a) grad_x, grad_y = grad gd = numpy.cos(ele) dx = gd*numpy.cos(azi) dy = gd*numpy.sin(azi) dz = numpy.sin(ele) grad_x = grad_x*dep/100. grad_y = grad_y*dep/100. leng = numpy.sqrt(grad_x**2 + grad_y**2 + 1.) uni_x = grad_x/leng uni_y = grad_y/leng uni_z = 1./leng a2 = 255*(dx*uni_x + dy*uni_y + dz*uni_z) a2 = a2.clip(0,255) img2 = Image.fromarray(a2.astype('uint8')) buffer = BytesIO() img2.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_merge(img1, img2): img1 = Image.open(img1).convert("RGBA").resize((512, 512)) img2 = Image.open(img2).convert("RGBA").resize((512, 512)) img = Image.blend(img1, img2, 0.5) buffer = BytesIO() img.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_invert(img): with Image.open(img).convert("RGB") as img: img = ImageOps.invert(img) buffer = BytesIO() img.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_emboss(img): with Image.open(img) as img: img = img.filter(ImageFilter.EMBOSS) buffer = BytesIO() img.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_solarize(img): with Image.open(img).convert("RGB") as img: img = ImageOps.solarize(img, threshold=64) buffer = BytesIO() img.save(buffer, format="PNG") buffer.seek(0) return buffer @staticmethod def do_pixel(img): with Image.open(img) as img: img = img.resize((36, 36), resample=Image.BILINEAR) img = img.resize(img.size, Image.NEAREST) buffer = BytesIO() img.save(buffer, format="PNG") buffer.seek(0) return buffer # Wand Image Manipulation @staticmethod def do_swirl(img): with WandImage(blob=img) as img: img.swirl(degree=-90) buffer = BytesIO() img.save(buffer) buffer.seek(0) return buffer @staticmethod def do_polaroid(img): with WandImage(blob=img) as img: img.polaroid() buffer = BytesIO() img.save(buffer) buffer.seek(0) return buffer @staticmethod def do_floor(img): with WandImage(blob=img) as img: img.virtual_pixel = "tile" img.resize(300, 300) x, y = img.width, img.height arguments = (0, 0, 77, 153, x, 0, 179, 153, 0, y, 51, 255, x, y, 204, 255) img.distort("perspective", arguments) buffer = BytesIO() img.save(buffer) buffer.seek(0) return buffer @staticmethod def do_cube(img): with WandImage(blob=img) as image: def s(x): return int(x / 3) image.resize(s(1000), s(860)) image.format = "png" image.alpha_channel = 'opaque' image1 = image image2 = WandImage(image1) out = WandImage(width=s(3000 - 450), height=s(860 - 100) * 3) out.format = "png" image1.shear(background=wand.color.Color("none"), x=-30) image1.rotate(-30) out.composite(image1, left=s(500 - 250), top=s(0 - 230) + s(118)) image1.close() image2.shear(background=wand.color.Color("rgba(0,0,0,0)"), x=30) image2.rotate(-30) image3 = WandImage(image2) out.composite(image2, left=s(1000 - 250) - s(72), top=s(860 - 230)) image2.close() image3.flip() out.composite(image3, left=s(0 - 250) + s(68), top=s(860 - 230)) image3.close() out.crop(left=80, top=40, right=665, bottom=710) buffer = BytesIO() out.save(buffer) buffer.seek(0) return buffer @staticmethod def do_spread(img): with WandImage(blob=img) as img: img.resize(256, 256) img.alpha_channel = False output = WandImage(width=img.width, height=img.height) output.format = "GIF" output.sequence[0] = img output.sequence.extend(img for _ in range(0, 2)) for radius in range(0, 13): with img.clone() as frame: frame.spread(radius=radius ** 2) output.sequence.append(frame) output.sequence.extend(reversed(output.sequence)) img.close() output.optimize_layers() output.optimize_transparency() buffer = BytesIO() output.save(buffer) buffer.seek(0) return buffer # Commands @commands.command() async def emboss(self, ctx, *, member: discord.Member = None): '''Embosses the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_emboss, img) file=discord.File(buffer, filename="embossed.png") e=discord.Embed(color=self.invis) e.set_author(name="<NAME>", icon_url=member.avatar_url) e.set_image(url="attachment://embossed.png") await ctx.remove(file=file, embed=e) @commands.command() async def invert(self, ctx, *, member: discord.Member = None): '''Invert the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_invert, img) file=discord.File(buffer, filename="invert.png") e=discord.Embed(color=self.invis) e.set_author(name="Inverted Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://invert.png") await ctx.remove(file=file, embed=e) @commands.command() async def solarize(self, ctx, member: discord.Member = None): '''Solarizes the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_solarize, img) file=discord.File(buffer, filename="solarize.png") e=discord.Embed(color=self.invis) e.set_author(name="Solarized Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://solarize.png") await ctx.remove(file=file, embed=e) @commands.command() async def pixel(self, ctx, *, member: discord.Member = None): '''Pixelizes the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_pixel, img) file=discord.File(buffer, filename="pixel.png") e=discord.Embed(color=self.invis) e.set_author(name="Pixelated Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://pixel.png") await ctx.remove(file=file, embed=e) @commands.command() async def swirl(self, ctx, *, member: discord.Member = None): '''Swirls the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_swirl, img) file=discord.File(buffer, filename="swirl.png") e=discord.Embed(color=self.invis) e.set_author(name="Swirled Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://swirl.png") await ctx.remove(file=file, embed=e) @commands.command() async def polaroid(self, ctx, *, member: discord.Member = None): '''Polaroid the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_polaroid, img) file=discord.File(buffer, filename="polaroid.png") e=discord.Embed(color=self.invis) e.set_author(name="Polaroid Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://polaroid.png") await ctx.remove(file=file, embed=e) @commands.command() async def floor(self, ctx, *, member: discord.Member = None): '''Floor the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_floor, img) file=discord.File(buffer, filename="floor.png") e=discord.Embed(color=self.invis) e.set_author(name="Floored Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://floor.png") await ctx.remove(file=file, embed=e) @commands.command() async def cube(self, ctx, *, member: discord.Member = None): '''Cube the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_cube, img) file=discord.File(buffer, filename="cube.png") e=discord.Embed(color=self.invis) e.set_author(name="Cubed Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://cube.png") await ctx.remove(file=file, embed=e) @commands.command() async def spread(self, ctx, *, member: discord.Member = None): '''Spreads the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_spread, img) file=discord.File(buffer, filename="spread.gif") e=discord.Embed(color=self.invis) e.set_author(name="<NAME>", icon_url=member.avatar_url) e.set_image(url="attachment://spread.gif") await ctx.remove(file=file, embed=e) @commands.command() async def sketch(self, ctx, *, member: discord.Member = None): '''Sketches the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_sketch, img) file=discord.File(buffer, filename="sketch.png") e=discord.Embed(color=self.invis) e.set_author(name="Sketched Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://sketch.png") await ctx.remove(file=file, embed=e) @commands.command() async def merge(self, ctx, m1: discord.Member, m2: discord.Member = None): '''Merge two avatars together''' if not m2: m2 = ctx.author url1 = m1.avatar_url_as(size=512, format="png") url2 = m2.avatar_url_as(size=512, format="png") async with ctx.typing(): img1 = BytesIO(await url1.read()) img1.seek(0) img2 = BytesIO(await url2.read()) img2.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_merge, img1, img2) file=discord.File(buffer, filename="merge.png") e=discord.Embed(color=self.invis) e.set_author(name="<NAME>", icon_url=m1.avatar_url) e.set_image(url="attachment://merge.png") await ctx.remove(file=file, embed=e) @commands.command() async def color(self, ctx, *, member: discord.Member = None): '''Colors the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_quantize, img) file=discord.File(buffer, filename="quantize.gif") e=discord.Embed(color=self.invis) e.set_author(name="Colored Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://quantize.gif") await ctx.remove(file=file, embed=e) @commands.command() async def wash(self, ctx, *, member: discord.Member = None): '''Wash the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_wash, img) file=discord.File(buffer, filename="wash.gif") e=discord.Embed(color=self.invis) e.set_author(name="<NAME>", icon_url=member.avatar_url) e.set_image(url="attachment://wash.gif") await ctx.remove(file=file, embed=e) @commands.command() async def ascii(self, ctx, *, member: discord.Member = None): '''Ascii the avatar''' if not member: member = ctx.author url = member.avatar_url_as(size=512, format="png") async with ctx.typing(): img = BytesIO(await url.read()) img.seek(0) buffer = await self.bot.loop.run_in_executor(None, self.do_ascii, img) file=discord.File(buffer, filename="ascii.png") e=discord.Embed(color=self.invis) e.set_author(name="Ascii Avatar", icon_url=member.avatar_url) e.set_image(url="attachment://ascii.png") await ctx.remove(file=file, embed=e) @commands.command() async def achievement(self, ctx, *, text: str): '''Make a minecraft achievement''' async with ctx.typing(): if len(text) > 20: text = text[:17] + "..." buffer = await self.bot.loop.run_in_executor(None, self.do_mc, text) file=discord.File(buffer, filename="achievement.png") e=discord.Embed(color=self.invis) e.set_author(name="Achievement", icon_url=ctx.author.avatar_url) e.set_image(url="attachment://achievement.png") await ctx.remove(file=file, embed=e) def setup(bot): bot.add_cog(image(bot))
StarcoderdataPython
1888253
<reponame>nliolios24/textrank #!/usr/bin/env python """ An example using Graph as a weighted network. """ __author__ = """<NAME> (<EMAIL>)""" try: import matplotlib.pyplot as plt except: raise import networkx as nx G=nx.Graph() G.add_edge('a','b',weight=0.6) G.add_edge('a','c',weight=0.2) G.add_edge('c','d',weight=0.1) G.add_edge('c','e',weight=0.7) G.add_edge('c','f',weight=0.9) G.add_edge('a','d',weight=0.3) elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5] esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5] pos=nx.spring_layout(G) # positions for all nodes # nodes nx.draw_networkx_nodes(G,pos,node_size=700) # edges nx.draw_networkx_edges(G,pos,edgelist=elarge, width=6) nx.draw_networkx_edges(G,pos,edgelist=esmall, width=6,alpha=0.5,edge_color='b',style='dashed') # labels nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif') plt.axis('off') plt.savefig("weighted_graph.png") # save as png plt.show() # display
StarcoderdataPython
4847411
<reponame>romchegue/Python<gh_stars>0 print('Ni' * 8)
StarcoderdataPython
9729297
def mul(number, *bys): # TODO: block isn't used, debug this! if type(number) == list and number[0] == "ARRAY": block = number result = number for num in bys: result *= num return result
StarcoderdataPython