id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
8180100
<filename>examples/example_1_bike_without_classes.py<gh_stars>0 def update_sale_price(bike, sale_price): if bike['sold'] is True: raise Exception("Action not allowed. Bike has already been sold") bike['sale_price'] = sale_price def create_bike(description, cost, sale_price, condition): return { 'description': description, 'cost': cost, 'sale_price': sale_price, 'condition': condition, 'sold': False, } def sell(bike, sold_for=None): if sold_for: update_sale_price(bike, sold_for) bike['sold'] = True profit = bike['sale_price'] - bike['cost'] return profit bike1 = create_bike('Univega Alpina, orange', cost=100, sale_price=500, condition=0.5) # bike1 = { # 'cost': 100, # 'condition': 0.5, # 'description': 'Univega Alpina, orange', # 'sale_price': 500, # 'sold': False, # } update_sale_price(bike1, 350) # bike1['sale_price'] = 350.00 print(sell(bike1)) # bike1['sold'] = True
StarcoderdataPython
5174168
import i18n import nmap import os import yaml class HelperNmap: def __init__(self,args): self.args = args self.net = "" self.template = "" def process(self): if self.__validateParams(): print i18n.t("help.running_scan") nm = nmap.PortScanner() nm.scan(hosts=str(self.net), arguments=str(self.arguments)) for host in nm.all_hosts(): print('----------------------------------------------------') print('Host : %s (%s)' % (host, nm[host].hostname())) print('State : %s' % nm[host].state()) for proto in nm[host].all_protocols(): print('----------') print('Protocol : %s' % proto) lport = nm[host][proto].keys() lport.sort() for port in lport: if nm[host][proto][port]['state'] == 'open': print ('port : %s\tstate : %s %s %s ' % (port, nm[host][proto][port]['state'], nm[host][proto][port]['product'], nm[host][proto][port]['version'])) if 'script' in nm[host][proto][port].keys(): for k,v in nm[host][proto][port]['script'].items(): print k+" => "+v else: pass else: pass def __validateParams(self): argsdic = {} if self.args.find('net:') != -1 or self.args.find('template:') != -1: if len(self.args.split(":")) == 3: argsdic.update({ self.args.split(":")[0]:self.args.split(":")[1].split(" ")[0], self.args.split(":")[1].split(" ")[1]:self.args.split(":")[2].split(" ")[0] }) elif len(self.args.split(":")) == 2: argsdic.update({ self.args.split(":")[0]:self.args.split(":")[1].split(" ")[0] }) else: pass else: print i18n.t("help.help_run_error") return self.__setParams(**argsdic) #private function to set params def __setParams(self,**kwargs): if kwargs is not None: if kwargs.has_key("net") and kwargs.has_key("template"): net = kwargs["net"] arguments = kwargs["template"] self.net = net stream = open(os.getcwd()+"/templates/"+arguments+".yaml","r") item = yaml.load(stream) values =item[arguments]["arguments"] self.arguments = values return True else: return False else: return False
StarcoderdataPython
277995
import sqlalchemy engine = sqlalchemy.create_engine('sqlite:///:memory:', echo=True) Base = sqlalchemy.declarative_base() class Specialization(Base): __tablename__ = "specialization" id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) name = sqlalchemy.Column(sqlalchemy.String) class Psychotherapist(Base): __tablename__ = "psychotherapists" id = sqlalchemy.Column(sqlalchemy.Integer, primary_key=True) first_name = sqlalchemy.Column(sqlalchemy.String) last_name = sqlalchemy.Column(sqlalchemy.String) address = sqlalchemy.Column(sqlalchemy.String, nullable=True) postal_code = sqlalchemy.Column(sqlalchemy.String, nullable=True) town = sqlalchemy.Column(sqlalchemy.String, nullable=True) fee_in_eur = sqlalchemy.Column(sqlalchemy.Integer, nullable=True) specialization = sqlalchemy.Column(sqlalchemy.Integer, sqlalchemy.ForeignKey('specialization.id'), nullable=True)
StarcoderdataPython
3255254
<gh_stars>0 from flask import Flask from flask import request app = Flask(__name__) @app.route('/user', methods=['GET']) def signin_form(): return 'user: csh' def registe(): print('user registe') app.run()
StarcoderdataPython
4817085
<filename>izi_grpc/servicer.py from types import FunctionType from functools import wraps from izi_grpc import current_app def wrap_handler(handler): h = handler for m in current_app.middlewares: h = m(current_app, h, handler) @wraps(handler) def wrapped(self, request, context): return h(self, request, context) return wrapped class ServicerMeta(type): def __new__(cls, name, bases, kws): _kws = {} for k, v in kws.items(): if isinstance(v, FunctionType): v = wrap_handler(v) _kws[k] = v return super().__new__(cls, name, bases, _kws)
StarcoderdataPython
305772
<reponame>LaudateCorpus1/streetlearn # Copyright 2018 Google LLC. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """The StreetLearn RL environment. Episodes take place either in a mini-map created by performing a breadth-first traversal of the StreetView graph starting from a starting location, or in the entire fully-connected graph. Observations: { view_image: numpy array of dimension [3, height, width] containing the street imagery. graph_image: numpy array of dimension [3, graph_height, graph_width] containing the map graph image. view_image_hwc: numpy array of dimension [height, width, 3] containing the street imagery. graph_image_hwc: numpy array of dimension [graph_height, graph_width, 3] containing the map graph images. metadata: learning_deepmind.datasets.street_learn.Pano proto without compressed_image. target_metadata: learning_deepmind.datasets.street_learn.Pano proto without compressed_image. } """ from __future__ import absolute_import from __future__ import division from __future__ import print_function from absl import logging import inflection import numpy as np import six import time from streetlearn.engine.python import color from streetlearn.engine.python import streetlearn_engine from streetlearn.python.environment import default_config from streetlearn.python.environment import observations _MIN_ZOOM = 1 _MAX_ZOOM = 32 def _action(*entries): return np.array(entries, dtype=np.float) ACTIONS = { 'move_forward': _action(1, 0.0, 0.0, 0.0), 'horizontal_rotation': _action(0, 1.0, 0.0, 0.0), 'vertical_rotation': _action(0, 0.0, 1.0, 0.0), 'map_zoom': _action(0, 0.0, 0.0, 1.0), } NUM_ACTIONS = 4 ACTION_SETS = { "streetlearn_default": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * rotation_speed), "streetlearn_fast_rotate": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * (-rotation_speed * 3), ACTIONS["horizontal_rotation"] * rotation_speed, ACTIONS["horizontal_rotation"] * rotation_speed * 3), "streetlearn_tilt": lambda rotation_speed: ( ACTIONS["move_forward"], ACTIONS["horizontal_rotation"] * (-rotation_speed), ACTIONS["horizontal_rotation"] * rotation_speed, ACTIONS["vertical_rotation"] * rotation_speed, ACTIONS["vertical_rotation"] * (-rotation_speed)), } def get_action_set(action_spec, rotation_speed): """Returns the set of StreetLearn actions for the given action_spec.""" # If action_spec is a string, it should be the name of a standard action set. if isinstance(action_spec, six.string_types): if action_spec not in ACTION_SETS: raise ValueError("Unrecognized action specification %s." % action_spec) else: return np.array(ACTION_SETS[action_spec](rotation_speed), dtype=np.float) raise ValueError("Action specification %s not a string." % action_spec) def _log_dictionary(dictionary): for k, v in dictionary.items(): v = dictionary[k] if isinstance(v, (int, float, bool, list, str)): logging.info(k + ': ' + str(v)) class StreetLearn(object): """The Streetlearn environment.""" def __init__(self, dataset_path, config, game, engine=None): """Construct the StreetLearn environment. Args: dataset_path: filesystem path where the dataset resides. config: dictionary containing various config settings. Will be extended with defaults from default_config.DEFAULT_CONFIG. game: an instance of Game. engine: an instance of the StreetLearn engine (used when cloning an environment). """ assert game, "Did not provide game." logging.info('dataset_path:') logging.info(dataset_path) logging.info('config:') _log_dictionary(config) logging.info('game:') logging.info(game) self._config = default_config.ApplyDefaults(config) self._seed = self._config["seed"] self._start_pano_id = self._config["start_pano"] self._zoom = self._config["graph_zoom"] self._black_on_white = self._config["graph_black_on_white"] self._frame_cap = self._config["frame_cap"] self._field_of_view = self._config["field_of_view"] self._neighbor_resolution = self._config["neighbor_resolution"] self._sample_graph_depth = self._config["sample_graph_depth"] self._min_graph_depth = self._config["min_graph_depth"] self._max_graph_depth = self._config["max_graph_depth"] self._full_graph = self._config["full_graph"] self._color_for_observer = color.Color(*self._config["color_for_observer"]) self._action_spec = self._config["action_spec"] self._rotation_speed = self._config["rotation_speed"] self._auto_reset = self._config["auto_reset"] self._action_set = get_action_set(self._action_spec, self._rotation_speed) logging.info('Action set:') logging.info(self._action_set) self._bbox_lat_min = self._config["bbox_lat_min"] self._bbox_lat_max = self._config["bbox_lat_max"] self._bbox_lng_min = self._config["bbox_lng_min"] self._bbox_lng_max = self._config["bbox_lng_max"] self._game = game self._current_pano_id = None self._episode_id = -1 self._frame_count = 0 self._prev_reset = time.time() if engine: logging.info("Cloning an existing StreetLearnEngine.") self._engine = engine.Clone( width=self._config["width"], height=self._config["height"], graph_width=self._config["graph_width"], graph_height=self._config["graph_height"], status_height=self._config["status_height"], field_of_view=self._field_of_view, min_graph_depth=self._min_graph_depth, max_graph_depth=self._max_graph_depth) else: logging.info("Creating an new StreetLearnEngine.") self._engine = streetlearn_engine.StreetLearnEngine.Create( dataset_path, width=self._config["width"], height=self._config["height"], graph_width=self._config["graph_width"], graph_height=self._config["graph_height"], status_height=self._config["status_height"], field_of_view=self._field_of_view, min_graph_depth=self._min_graph_depth, max_graph_depth=self._max_graph_depth, max_cache_size=self._config["max_cache_size"]) assert self._engine, "Could not initialise engine from %r." % dataset_path self._observations = [] for name in self._config["observations"]: try: self._observations.append(observations.Observation.create(name, self)) except ValueError as e: logging.warning(str(e)) self._reward = 0 self._prev_reward = 0 self._prev_action = self._action_set[0] self._done = False self._info = {} @property def config(self): return self._config @property def seed(self): return self._seed @property def game(self): return self._game @property def field_of_view(self): return self._field_of_view @property def current_pano_id(self): return self._current_pano_id @property def frame_cap(self): return self._frame_cap @frame_cap.setter def frame_cap(self, value): self._frame_cap = value @property def frame_count(self): return self._frame_count @property def graph(self): return self._graph @property def engine(self): return self._engine @property def neighbor_resolution(self): return self._neighbor_resolution @property def bbox_lat_min(self): return self._bbox_lat_min @property def bbox_lat_max(self): return self._bbox_lat_max @property def bbox_lng_min(self): return self._bbox_lng_min @property def bbox_lng_max(self): return self._bbox_lng_max @property def cache_size(self): return self._engine.GetNodeCacheSize() def observation_spec(self): """Returns the observation spec, dependent on the observation format.""" return {observation.name: observation.observation_spec for observation in self._observations} def action_set(self): """Returns the set of actions, mapping integer actions to 1D arrays.""" return self._action_set def action_spec(self): """Returns the action spec.""" return ACTIONS def reset(self): """Start a new episode.""" reset_time = time.time() logging.info('reset: seed %d, previous episode (%d frames) lasted %f sec', self._seed, self._frame_count, reset_time - self._prev_reset) self._prev_reset = reset_time self._prev_reward = 0 self._prev_action = self._action_set[0] self._frame_count = 0 self._episode_id += 1 if self._sample_graph_depth: max_depth = np.random.randint(self._min_graph_depth, self._max_graph_depth + 1) self._engine.SetGraphDepth(self._min_graph_depth, max_depth) self._engine.InitEpisode(self._episode_id, self._seed) # Build a new graph if we don't have one yet. if not self._current_pano_id: if self._full_graph: self._current_pano_id = self._engine.BuildEntireGraph() elif self._start_pano_id: self._current_pano_id = self._engine.BuildGraphWithRoot( self._start_pano_id) else: self._current_pano_id = self._engine.BuildRandomGraph() logging.info('seed %d: built new graph with root %s', self._seed, self._current_pano_id) # else respawn in current graph. elif not self._start_pano_id: self._current_pano_id = np.random.choice( list(self._engine.GetGraph().keys())) self._engine.SetPosition(self._current_pano_id) logging.info('seed %d: reusing existing graph and respawning at %s', self._seed, self._current_pano_id) self._graph = self._engine.GetGraph() highlighted_panos = self._game.on_reset(self) self._engine.InitGraphRenderer(self._color_for_observer, highlighted_panos, self._black_on_white) self._engine.SetZoom(_MAX_ZOOM) def goto(self, pano_id, yaw): """Go to a specific pano and yaw in the environment. Args: pano_id: a string containing the ID of a pano. yaw: a float with relative yaw w.r.t. north. Returns: observation: tuple with observations. """ current_pano_id = self._engine.SetPosition(pano_id) assert pano_id == current_pano_id yaw = (yaw + 180) % 360 - 180 self._engine.RotateObserver(yaw, 0.0) assert yaw == self._engine.GetYaw() return self.observation() def step(self, action): """Takes a step in the environment. Args: action: a 1d array containing a combination of actions. Returns: observation: tuple with observations for the last time step. reward: scalar reward at the last time step. done: boolean indicating the end of an episode. info: dictionary with additional debug information. """ self._frame_count += 1 if type(action) != np.ndarray: action = np.array(action, dtype=np.float) self._prev_action = action assert action.size == NUM_ACTIONS, "Wrong number of actions." move_forward = np.dot(action, ACTIONS['move_forward']) horizontal_rotation = np.dot(action, ACTIONS['horizontal_rotation']) vertical_rotation = np.dot(action, ACTIONS['vertical_rotation']) map_zoom = np.dot(action, ACTIONS['map_zoom']) if move_forward: self._current_pano_id = self._engine.MoveToNextPano() if map_zoom > 0: self._zoom = min(self._zoom * 2, _MAX_ZOOM) elif map_zoom < 0: self._zoom = max(self._zoom / 2, _MIN_ZOOM) if horizontal_rotation or vertical_rotation: self._engine.RotateObserver(horizontal_rotation, vertical_rotation) self._engine.SetZoom(self._zoom) self._game.on_step(self) # Update the reward and done flag. Because we do not know the code logic # inside each game, it is safer to obtain these immediately after step(), # and store them for subsequent calls to reward(), done() and info(). self._prev_reward = self._reward self._reward = self._game.get_reward(self) self._done = (self._frame_count > self._frame_cap) or self._game.done() self._info = self._game.get_info(self) if self._auto_reset and self._done: self.reset() # Return return self.observation(), self.reward(), self.done(), self.info() def observation(self): """Returns the observations for the last time step.""" return {item.name: item.observation for item in self._observations} def reward(self): """Returns the reward for the last time step.""" return self._reward def done(self): """Return a flag indicating the end of the current episode.""" return self._done def info(self): """Return a dictionary with environment information at the current step.""" return self._info def prev_reward(self): """Returns the reward for the previous time step.""" return self._prev_reward def prev_action(self): """Returns the action for the previous time step.""" return self._prev_action def get_metadata(self, pano_id): """Return the metadata corresponding to the selected pano. Args: pano_id: a string containing the ID of a pano. Returns: metadata: a protocol buffer with the pano metadata. """ if hasattr(self, '_graph') and pano_id in self.graph: return self._engine.GetMetadata(pano_id) else: return None def render(self): """Empty function, for compatibility with OpenAI Gym.""" pass
StarcoderdataPython
6445698
import pelib print(sum(filter(lambda x: (x%2 == 0), pelib.fib(1,2,4000000))))
StarcoderdataPython
12816185
<gh_stars>1-10 #!/usr/bin/env python # -*- coding: utf-8 -*- """Create template graphs png of single graphs. Usage: stampagraficisingle.py [<template>]... [options] Options: -a DIR Print the entire DIR directory. -h --help Show this screen. -l LIST Create graphs from a list. -r Remove old graphs. """ import csv, re, pdb, ast, time, os from docopt import docopt import datetime import matplotlib.pyplot as plot import numpy as np import matplotlib.dates as mdates import tarfile init = datetime.date(2001, 1, 1) def singlegraph(inputtemplate): coord = csv.reader(open(inputtemplate, "r")) directory = inputtemplate.rsplit("/", 1)[0] filename = inputtemplate.split("/")[-1] filename = filename.replace(".csv", "") value = 0 x = [] y = [] for c in coord: date = init + datetime.timedelta(days=int(c[0])) x.append(date) y.append(c[1]) fig = plot.figure() ax = fig.add_subplot(111) years = mdates.YearLocator() months = mdates.MonthLocator() yearsFmt = mdates.DateFormatter('%Y') monthsFmt = mdates.DateFormatter('%m') ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) #ax.xaxis.set_minor_formatter(monthsFmt) #second_axes = plot.twinx() #second_axes.set_yticks([int(y[-1])]) ax.grid(which='minor', alpha=0.2) ax.grid(which='major', alpha=0.5) plot.xlabel('Time') plot.ylabel(filename + " Occurrences") plot.plot(x, y) if not os.path.exists("png"): os.makedirs("png") print("Creating " + inputtemplate + ".png...") plot.savefig("png/" + filename + ".png") plot.close() def categorygraph(inputtemplate, category): coord = csv.reader(open(inputtemplate, "r")) directory = inputtemplate.rsplit("/", 1)[0] filename = inputtemplate.split("/")[-1] filename = filename.replace(".csv", "") value = 0 x = [] y = [] for c in coord: date = init + datetime.timedelta(days=int(c[0])) x.append(date) y.append(c[1]) fig = plot.figure() ax = fig.add_subplot(111) years = mdates.YearLocator() months = mdates.MonthLocator() yearsFmt = mdates.DateFormatter('%Y') monthsFmt = mdates.DateFormatter('%m') ax.xaxis.set_major_locator(years) ax.xaxis.set_major_formatter(yearsFmt) ax.xaxis.set_minor_locator(months) #ax.xaxis.set_minor_formatter(monthsFmt) #second_axes = plot.twinx() #second_axes.set_yticks([int(y[-1])]) ax.grid(which='minor', alpha=0.2) ax.grid(which='major', alpha=0.5) plot.xlabel('Time') plot.ylabel(filename + " Occurrences") plot.plot(x, y) if not os.path.exists("png"): os.makedirs("png") if not os.path.exists("png/" + category): os.makedirs("png/" + category) print("Creating " + inputtemplate + ".png...") plot.savefig("png/" + category + "/" + filename + ".png") plot.close() if __name__ == "__main__": arguments = docopt(__doc__) i = [] if arguments['-r']: print("Removing old .png...") if os.path.exists("png"): for f in os.listdir("png/"): if f.endswith(".png"): os.remove("png/" + f) if arguments['-l']: r = open(arguments['-l']) l = r.read().splitlines() for line in l: i.append(line) if arguments['-a']: for f in os.listdir(arguments['-a']): if f.endswith(".csv"): i.append(f) else: graphs = arguments['<template>'] for g in graphs: i.append(g) for graph in i: singlegraph(graph)
StarcoderdataPython
9742022
#!/bin/python3 # Complete the matrixRotation function below. def matrixRotation(matrix, r): height = len(matrix) width = len(matrix[0]) for i in range(min(height // 2, width // 2)): state = [] # top-left to top-right for j in range(i, width - i): state.append(matrix[i][j]) # top-right to bottom-right for j in range(i + 1, height - 1 - i): # in Python, a[len(a) - 1 - i] = a[-1 - i] state.append(matrix[j][-1 - i]) # bottom-right to bottom-left for j in range(width - 1 - i, i - 1, -1): state.append(matrix[-1 - i][j]) # left-bottom to left-top for j in range(height - 2 - i, i, -1): state.append(matrix[j][i]) # rotate by R # no. of nodes no = 2 * (height - 2 * i) + 2 * (width - (2 * i + 2)) k = r % no state = state[k:] + state[:k] # populate A with rotated matrix same as above flag = 0 for j in range(i, width - i): matrix[i][j] = state[flag] flag += 1 for j in range(i + 1, height - 1 - i): matrix[j][-1 - i] = state[flag] flag += 1 for j in range(width - 1 - i, i - 1, -1): matrix[-1 - i][j] = state[flag] flag += 1 for j in range(height - 2 - i, i, -1): matrix[j][i] = state[flag] flag += 1 for row in matrix: print(*row, end=' ') print('') if __name__ == '__main__': mnr = input().rstrip().split() m = int(mnr[0]) n = int(mnr[1]) r = int(mnr[2]) matrix = [] for _ in range(m): matrix.append(list(map(int, input().rstrip().split()))) matrixRotation(matrix, r)
StarcoderdataPython
11234768
# -*- coding: utf-8 -*- """ Created on Tue Jul 13 00:48:39 2021 @author: yoonseok 1. Python Komoran 사용자 사전 추가 https://lovit.github.io/nlp/2018/04/06/komoran/ """ import pandas as pd import numpy as np import re import random import os from ckonlpy.tag import Twitter, Postprocessor from konlpy.tag import Komoran from tqdm import tqdm from sklearn.feature_extraction.text import TfidfVectorizer, CountVectorizer from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import accuracy_score, recall_score, f1_score, confusion_matrix, precision_score from sklearn.decomposition import LatentDirichletAllocation from sklearn.preprocessing import MinMaxScaler from sklearn.pipeline import Pipeline from gensim.models.doc2vec import Doc2Vec, TaggedDocument def tokenizeDocuments(documentColumn, model, stopWords, desc = None): container = [] for string in tqdm(documentColumn, desc=desc): string = re.sub('[-=+,#/\?:^$.@*\"“”※~&%ⅰⅱⅲ○●ㆍ°’『!』」\\‘|\(\)\[\]\<\>`\'…》]', '', string) # 특수문자 제거 # string = re.sub('\w*[0-9]\w*', '', string) # 숫자 제거 string = re.sub('\w*[a-zA-Z]\w*', '', string) # 알파벳 제거 string = string.strip() # 문서 앞뒤 공백 제거 string = ' '.join(string.split()) # Replace Multiple whitespace into one tokenList = model(string) # 형태소분석기로 문서 형태소 추출 for i in tokenList: # 추출된 형태소 중 불용어 제거 if i in stopwords: tokenList.remove(i) container.append(tokenList) return container def vectorizeCorpus(corpusArray, model): """ Parameters ---------- corpusArray : TYPE DESCRIPTION. model : TYPE DESCRIPTION. Returns ------- container : TYPE DESCRIPTION. """ container = [] for i in corpusArray: vec = model.infer_vector(i) container.append(vec) return container def transformDF2Corpus(df): df["document"] = df.document.apply(lambda x: x.split()) container = [] for i in df["docID"]: li = [] li.append(i) container.append(li) df["docID"] = container doc_df = df[['docID','document']].values.tolist() train_corpus = [TaggedDocument(words=document2, tags=docID) for docID, document2 in doc_df] return train_corpus def returnScore(y_test, y_predict, average): """ Parameters ---------- y_test : TYPE DESCRIPTION. y_predict : TYPE DESCRIPTION. average : TYPE DESCRIPTION. Returns ------- total_score : TYPE DESCRIPTION. """ accuracy = accuracy_score(y_test, y_predict) precision = precision_score(y_test, y_predict, average = average) recall = recall_score(y_test, y_predict, average = average) f1 = f1_score(y_test, y_predict, average = average) print("Accuracy:{:.4f}".format(accuracy)) print("Precision: {:.4f}".format(precision)) print("Recall: {:.4f}".format(recall)) print("F1: {:.4f}".format(f1)) print("Confusion Matrix") print(confusion_matrix(y_test, y_predict)) total_score = [accuracy, precision, recall, f1] return total_score def vectorizeDoc2Vec(df, model="doc2Vec"): corpusTrain = transformDF2Corpus(df) vecList = [] for i in corpusTrain: vec = model.infer_vector(i.words) vecList.append(vec) return np.array(vecList) # Set working directory os.chdir(r"C:\analytics") # Tune NLP Tool tokenizer_tuned = Komoran(userdic='Ngramdictionary.txt') tokenizer = Komoran() dictionary = pd.read_csv("dataset6.dictionary.csv", names=["noun"]) # nounList = dictionary.noun.to_list() # twitter.add_dictionary(nounList, 'Noun') stopWord = pd.read_csv("dataset7.stopwords.csv", names=["stopword"]) stopwords = stopWord.stopword.to_list() # postprocessor = Postprocessor(tokenizer.nouns, stopwords = stopwords) # postprocessor_tuned = Postprocessor(tokenizer_tuned.nouns, stopwords = stopwords) # import preprocessed dataset df = pd.read_excel("dataset3.preprocessed(2017-2019).xlsx", sheet_name="data") # preprocessing df["token"] = tokenizeDocuments(df["documents"], tokenizer.nouns, stopwords, desc="사용자 사전 미반영") df["token_tuned"] = tokenizeDocuments(df["documents"], tokenizer_tuned.nouns, stopwords, desc="사용자 사전 반영") # drop blank cells # drop_index = df[df['document'] == ''].index # df = df.drop(drop_index) # # sample and export training data # dfLabel = df['document'].sample(n=1000, random_state=1) # dfLabel.to_excel("dataset4.trainingData.xlsx") # # Word Embedding - Counter # countVec = CountVectorizer() # countVecMatrix = countVec.fit_transform(df["document"]) # # Word Embedding - TF-IDF # tfidfVec = TfidfVectorizer() # tfidfVecMatrix = tfidfVec.fit_transform(df["document"]) # # Word Embedding - LDA # ldaVec = LatentDirichletAllocation(n_components=10, random_state=1) # ldaVecMatrix = ldaVec.fit_transform(countVecMatrix) # # Word Embedding - Doc2Vec # doc2Vec = Doc2Vec() # dfDoc2Vec = df # train_corpus = transformDF2Corpus(dfDoc2Vec) # doc2Vec.build_vocab(train_corpus) # doc2Vec.train(train_corpus, total_examples=doc2Vec.corpus_count, epochs=doc2Vec.epochs) # doc2VecMatrix = vectorizeDoc2Vec(df) # # Set Pipeline - NB # NB = MultinomialNB() # Pipeline_NB_TfIdf = Pipeline([ # ('vect', tfidfVec), # ('clf', NB) # ]) # Pipeline_NB_LDA = Pipeline([ # ('vect', ldaVec), # ('clf', NB) # ]) # Pipeline_NB_Doc2Vec = Pipeline([ # ('vect', doc2Vec), # ('clf', NB) # ])
StarcoderdataPython
6692755
# Copyright 2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ '''Dihedral''' import math class Dihedral: '''Dihedral''' def __init__(self, controller): self.CONSTANT_Pi = 3.1415926535897932 self.module_name = "dihedral" self.h_atom_a = [] self.h_atom_b = [] self.h_atom_c = [] self.h_atom_d = [] self.h_ipn = [] self.h_pn = [] self.h_pk = [] self.h_gamc = [] self.h_gams = [] self.dihedral_numbers = 0 if controller.amber_parm is not None: file_path = controller.amber_parm self.read_information_from_amberfile(file_path) self.is_initialized = 1 else: self.read_in_file(controller) def read_in_file(self, controller): """read_in_file""" print("START INITIALIZING DIHEDRAL:") name = self.module_name + "_in_file" if name in controller.Command_Set: path = controller.Command_Set[name] file = open(path, 'r') context = file.readlines() self.dihedral_numbers = int(context[0].strip()) print(" dihedral_numbers is ", self.dihedral_numbers) for i in range(self.dihedral_numbers): val = list(map(float, context[i + 1].strip().split())) self.h_atom_a.append(int(val[0])) self.h_atom_b.append(int(val[1])) self.h_atom_c.append(int(val[2])) self.h_atom_d.append(int(val[3])) self.h_ipn.append(val[4]) self.h_pn.append(val[4]) self.h_pk.append(val[5]) self.h_gamc.append(math.cos(val[6]) * val[5]) self.h_gams.append(math.sin(val[6]) * val[5]) self.is_initialized = 1 file.close() print("END INITIALIZING DIHEDRAL") def read_information_from_amberfile(self, file_path): '''read amber file''' file = open(file_path, 'r') context = file.readlines() file.close() for idx, val in enumerate(context): if idx < len(context) - 1: if "%FLAG POINTERS" in val + context[idx + 1] and "%FORMAT(10I8)" in val + context[idx + 1]: start_idx = idx + 2 count = 0 value = list(map(int, context[start_idx].strip().split())) self.dihedral_with_hydrogen = value[6] self.dihedral_numbers = value[7] self.dihedral_numbers += self.dihedral_with_hydrogen information = [] information.extend(value) while count < 15: start_idx += 1 value = list(map(int, context[start_idx].strip().split())) information.extend(value) count += len(value) self.dihedral_type_numbers = information[17] print("dihedral type numbers ", self.dihedral_type_numbers) break self.phase_type = [0] * self.dihedral_type_numbers self.pk_type = [0] * self.dihedral_type_numbers self.pn_type = [0] * self.dihedral_type_numbers for idx, val in enumerate(context): if "%FLAG DIHEDRAL_FORCE_CONSTANT" in val: count = 0 start_idx = idx information = [] while count < self.dihedral_type_numbers: start_idx += 1 if "%FORMAT" in context[start_idx]: continue else: value = list(map(float, context[start_idx].strip().split())) information.extend(value) count += len(value) self.pk_type = information[:self.dihedral_type_numbers] break for idx, val in enumerate(context): if "%FLAG DIHEDRAL_PHASE" in val: count = 0 start_idx = idx information = [] while count < self.dihedral_type_numbers: start_idx += 1 if "%FORMAT" in context[start_idx]: continue else: value = list(map(float, context[start_idx].strip().split())) information.extend(value) count += len(value) self.phase_type = information[:self.dihedral_type_numbers] break for idx, val in enumerate(context): if "%FLAG DIHEDRAL_PERIODICITY" in val: count = 0 start_idx = idx information = [] while count < self.dihedral_type_numbers: start_idx += 1 if "%FORMAT" in context[start_idx]: continue else: value = list(map(float, context[start_idx].strip().split())) information.extend(value) count += len(value) self.pn_type = information[:self.dihedral_type_numbers] break self.processor(context) def processor(self, context): '''processor''' self.h_atom_a = [0] * self.dihedral_numbers self.h_atom_b = [0] * self.dihedral_numbers self.h_atom_c = [0] * self.dihedral_numbers self.h_atom_d = [0] * self.dihedral_numbers self.h_pk = [] self.h_gamc = [] self.h_gams = [] self.h_pn = [] self.h_ipn = [] for idx, val in enumerate(context): if "%FLAG DIHEDRALS_INC_HYDROGEN" in val: count = 0 start_idx = idx information = [] while count < 5 * self.dihedral_with_hydrogen: start_idx += 1 if "%FORMAT" in context[start_idx]: continue else: value = list(map(int, context[start_idx].strip().split())) information.extend(value) count += len(value) for i in range(self.dihedral_with_hydrogen): self.h_atom_a[i] = information[i * 5 + 0] / 3 self.h_atom_b[i] = information[i * 5 + 1] / 3 self.h_atom_c[i] = information[i * 5 + 2] / 3 self.h_atom_d[i] = abs(information[i * 5 + 3] / 3) tmpi = information[i * 5 + 4] - 1 self.h_pk.append(self.pk_type[tmpi]) tmpf = self.phase_type[tmpi] if abs(tmpf - self.CONSTANT_Pi) <= 0.001: tmpf = self.CONSTANT_Pi tmpf2 = math.cos(tmpf) if abs(tmpf2) < 1e-6: tmpf2 = 0 self.h_gamc.append(tmpf2 * self.h_pk[i]) tmpf2 = math.sin(tmpf) if abs(tmpf2) < 1e-6: tmpf2 = 0 self.h_gams.append(tmpf2 * self.h_pk[i]) self.h_pn.append(abs(self.pn_type[tmpi])) self.h_ipn.append(int(self.h_pn[i] + 0.001)) break for idx, val in enumerate(context): if "%FLAG DIHEDRALS_WITHOUT_HYDROGEN" in val: count = 0 start_idx = idx information = [] while count < 5 * (self.dihedral_numbers - self.dihedral_with_hydrogen): start_idx += 1 if "%FORMAT" in context[start_idx]: continue else: value = list(map(int, context[start_idx].strip().split())) information.extend(value) count += len(value) for i in range(self.dihedral_with_hydrogen, self.dihedral_numbers): self.h_atom_a[i] = information[(i - self.dihedral_with_hydrogen) * 5 + 0] / 3 self.h_atom_b[i] = information[(i - self.dihedral_with_hydrogen) * 5 + 1] / 3 self.h_atom_c[i] = information[(i - self.dihedral_with_hydrogen) * 5 + 2] / 3 self.h_atom_d[i] = abs(information[(i - self.dihedral_with_hydrogen) * 5 + 3] / 3) tmpi = information[(i - self.dihedral_with_hydrogen) * 5 + 4] - 1 self.h_pk.append(self.pk_type[tmpi]) tmpf = self.phase_type[tmpi] if abs(tmpf - self.CONSTANT_Pi) <= 0.001: tmpf = self.CONSTANT_Pi tmpf2 = math.cos(tmpf) if abs(tmpf2) < 1e-6: tmpf2 = 0 self.h_gamc.append(tmpf2 * self.h_pk[i]) tmpf2 = math.sin(tmpf) if abs(tmpf2) < 1e-6: tmpf2 = 0 self.h_gams.append(tmpf2 * self.h_pk[i]) self.h_pn.append(abs(self.pn_type[tmpi])) self.h_ipn.append(int(self.h_pn[i] + 0.001)) break for i in range(self.dihedral_numbers): if self.h_atom_c[i] < 0: self.h_atom_c[i] *= -1
StarcoderdataPython
6538977
<filename>datastruct/testsuite/test_nested.py from datastruct import DataStruct, exceptions class ExampleSingle(DataStruct): a: int class ExampleNested(DataStruct): b: int n1: ExampleSingle class ExampleNestedNested(DataStruct): c: int n2: ExampleNested def test_nested(): arg = dict(b=1, n1=dict(a=2)) o = ExampleNested(arg) assert o.b == 1 assert o.n1.a == 2 arg = dict(b=1, n1=dict(z=3)) errs = ( exceptions.UnexpectedKeyError("z", ExampleSingle, path=("n1",)), exceptions.MissingValueError("a", ExampleSingle, path=("n1",)), ) o = ExampleNested(arg) assert o.get_errors() == errs def test_nested_nested(): arg = dict(c=3, n2=dict(b=2, n1=dict(a=1))) o = ExampleNestedNested(arg) assert o.c == 3 assert o.n2.b == 2 assert o.n2.n1.a == 1 arg = dict(c=3, n2=dict(b=2, n1=dict(z=3))) errs = ( exceptions.UnexpectedKeyError( "z", ExampleSingle, path=( "n2", "n1", ), ), exceptions.MissingValueError( "a", ExampleSingle, path=( "n2", "n1", ), ), ) o = ExampleNestedNested(arg) assert o.get_errors() == errs def test_round_trip(): arg = dict(b=1, n1=dict(a=2)) o = ExampleNested(arg) assert o.to_dict() == arg arg = dict(c=3, n2=dict(b=2, n1=dict(a=1))) o = ExampleNestedNested(arg) assert o.to_dict() == arg
StarcoderdataPython
4869865
<reponame>IDilettant/training-mini-projects from transliterate import translit from num2words import num2words def preparing_speech(): numbers_from_speech = [78, 15, 3, 40, 8] print(translit('''Ladies and gentlemen, I'm 78 years old and I finally got 15 minutes of fame once in a lifetime and I guess that this is mine. People have also told me to make these next few minutes escruciatingly embarrassing and to take vengeance of my enemies. Neither will happen. More than 3 years ago I moved to Novo-Novsk, but worked on new Magnetic Storage for last 40. When I was 8...''', 'ru')) print() for number in numbers_from_speech: print(number, translit(num2words(number, lang='en'), 'ru')) if __name__ == '__main__': preparing_speech()
StarcoderdataPython
9737062
from django.contrib import admin from intro.models import * # Register your models here. admin.site.register(IntroReg)
StarcoderdataPython
1830659
#!python # ################################################################### # # Disclaimer and Notice of Copyright # ================================== # # Copyright (c) 2015, Los Alamos National Security, LLC # All rights reserved. # # Copyright 2015. Los Alamos National Security, LLC. # This software was produced under U.S. Government contract # DE-AC52-06NA25396 for Los Alamos National Laboratory (LANL), # which is operated by Los Alamos National Security, LLC for # the U.S. Department of Energy. The U.S. Government has rights # to use, reproduce, and distribute this software. NEITHER # THE GOVERNMENT NOR LOS ALAMOS NATIONAL SECURITY, LLC MAKES # ANY WARRANTY, EXPRESS OR IMPLIED, OR ASSUMES ANY LIABILITY # FOR THE USE OF THIS SOFTWARE. If software is modified to # produce derivative works, such modified software should be # clearly marked, so as not to confuse it with the version # available from LANL. # # Additionally, redistribution and use in source and binary # forms, with or without modification, are permitted provided # that the following conditions are met: # - Redistributions of source code must retain the # above copyright notice, this list of conditions # and the following disclaimer. # - Redistributions in binary form must reproduce the # above copyright notice, this list of conditions # and the following disclaimer in the documentation # and/or other materials provided with the distribution. # - Neither the name of Los Alamos National Security, LLC, # Los Alamos National Laboratory, LANL, the U.S. Government, # nor the names of its contributors may be used to endorse # or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY LOS ALAMOS NATIONAL SECURITY, LLC # AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, # INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF # MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL LOS ALAMOS NATIONAL SECURITY, LLC OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, # PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, # OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR # TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT # OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY # OF SUCH DAMAGE. # # ################################################################### """ plug-in that supports using the LDMS tool """ import os import subprocess import datetime import logging class LDMS(): def __init__(self, my_te): my_name = self.__class__.__name__ self.logger = logging.getLogger('pav.' + my_name) self.logger.info('initialize %s to run: ' % my_name) self.pid = str(os.getpid()) self.lh = my_name params = my_te.get_values() self.name = my_te.get_name() self.install_dir = str(params['ldms']['install_dir']) self.start_cmd = str(params['ldms']['start_cmd']) self.output_dir_root = str(params['ldms']['output_dir_root']) self.freq = params['ldms']['freq'] self.metric_list = str(params['ldms']['metric_list']) self.output_dir = self.create_output_dir() self.build_start_cmd() def create_output_dir(self): # This dir must be created before LDMS can start and should # be unique so that each new test run does not stomp on # existing data from a prior one. sub_dir = self.name + "-" + datetime.datetime.now().strftime('%m-%d-%YT%H:%M:%S:%f') if "HOME" in self.output_dir_root: root = os.environ['HOME'] else: root = self.output_dir_root output_dir = root + "/ldmsData/" + sub_dir self.logger.info(self.lh + " Make metrics directory: " + output_dir) try: os.umask(0o002) os.makedirs(output_dir, 0o755) except OSError: print " Error creating metrics directory : \n\t" + output_dir self.logger.info(self.lh + " Error creating metrics directory : \n\t" + output_dir) output_dir = '' pass print "Created ldms metrics dir: " + output_dir os.environ['LDMS_OUTPUT_DIR'] = output_dir return output_dir def build_start_cmd(self): full_cmd = self.install_dir + "/" + self.start_cmd full_cmd += " -f " + str(self.freq) full_cmd += " -m " + self.metric_list full_cmd += " -s " + self.output_dir os.environ['LDMS_START_CMD'] = full_cmd # define some static methods for LDMS job control @staticmethod def start(): # start and don't wait. Report success or fail in the log(s). outfile = os.environ['LDMS_OUTPUT_DIR'] + "/ldms.out" print " starting LDMS with: \n " + os.environ['LDMS_START_CMD'] text_file = open(outfile, "w") try: subprocess.Popen(os.environ['LDMS_START_CMD'], stdout=text_file, stdin=open(os.devnull), shell=True) except subprocess.CalledProcessError as e: ret = e.returncode if ret in (1, 2): print("the command failed") elif ret in (3, 4, 5): print("the command failed very much") pass @staticmethod def status(jid): pass @staticmethod def stop(jid): pass if __name__ == "__main__": print LDMS.__doc__
StarcoderdataPython
3349642
import json import time import sys import logging #TODO Change this to cryptography.io from ecdsa import VerifyingKey, BadSignatureError, NIST256p import hashlib import traceback import requests import jwkest from jwkest.jwk import load_jwks_from_url, load_jwks from jwkest.jws import JWS jws = JWS() logger = logging.getLogger() logger.setLevel(logging.DEBUG) AWS_REGION = "us-east-2" USER_POOL_ID = "us-east-2_fiNazAdBU" def verify_meta_data_text(raw_line): # The data from the serial port comes in as raw bytes, but they are ascii encoded parts = raw_line.split(b',TXT-SHA:') logger.debug("Parts after split on TXT-SHA:") logger.debug(parts) try: meta_data_bytes = parts[0] sha_and_signature = parts[1].split(b',SIG:') text_sha = sha_and_signature[0] sha_signature = sha_and_signature[1] logger.debug("Bytes to Verify: {}".format(meta_data_bytes)) logger.debug("Claimed SHA-256: {}".format(text_sha)) logger.debug("Claimed Signature: {}".format(sha_signature)) m = hashlib.sha256() m.update(meta_data_bytes) caclulated_sha = m.hexdigest().upper() sha_hex = m.digest() logger.debug("Calculated SHA_256: {}".format(caclulated_sha)) if caclulated_sha != text_sha.decode('ascii'): logger.debug("SHA 256 Digests in text file doesn't match the calculated value.") return False public_key_bytes = bytearray.fromhex(meta_data_bytes.split(b'PUB:')[1][:128].decode('ascii')) signature_hex = bytearray.fromhex(sha_signature[:128].decode('ascii')) try: vk = VerifyingKey.from_string(bytes(public_key_bytes), curve=NIST256p) except: logger.debug(traceback.format_exc()) return False try: vk.verify_digest(signature_hex, sha_hex) logger.debug("good signature") return True except BadSignatureError: logger.debug("BAD SIGNATURE") return False except IndexError: logger.debug(traceback.format_exc()) return False def decode_jwt(token): """ Validate and decode the web token from the Amazon Cognito. Stores the public key needed to decrypt the token. Returns """ url="https://cognito-idp.{}.amazonaws.com/{}/.well-known/jwks.json".format(AWS_REGION,USER_POOL_ID) try: r = requests.get(url) logger.debug(r.status_code) key_set = load_jwks(r.text) except: logger.debug(traceback.format_exc()) return False try: token_dict = jws.verify_compact(token, keys=key_set) logger.info(token_dict) if token_dict['exp'] < time.time(): logger.debug("Token Expired") return False if token_dict['email_verified']: return {"user_id":token_dict['sub'], "user_email":token_dict['email']} else: logger.debug("E-mail not verfied.") return False except: logger.debug(traceback.format_exc()) return False def get_timestamp(seconds): try: return time.strftime("%Y-%m-%dT%H:%M:%S", time.gmtime(seconds)) except ValueError: return "Not Available" def lambdaResponse(statusCode, body, headers={}, isBase64Encoded=False): """ A utility to wrap the lambda function call returns with the right status code, body, and switches. """ # Make sure the body is a json object if not isinstance(body, str): body = json.dumps(body) # Make sure the content type is json header = headers header["Content-Type"] = "application/json" header['Access-Control-Allow-Headers'] = 'Content-Type' header['Access-Control-Allow-Origin'] = '*' header['Access-Control-Allow-Methods'] = 'OPTIONS,POST,GET' response = { "isBase64Encoded": isBase64Encoded, "statusCode": statusCode, "headers": header, "body": body } # These print statement create entries in cloudwatch print("Response") for k, v in response.items(): print("{}: {}".format(k, repr(v)[:100])) return response
StarcoderdataPython
6441800
<filename>Leetcode/medium/reverse-words-in-a-string.py """ # REVERSE WORDS IN A STRING Given an input string s, reverse the order of the words. A word is defined as a sequence of non-space characters. The words in s will be separated by at least one space. Return a string of the words in reverse order concatenated by a single space. Note that s may contain leading or trailing spaces or multiple spaces between two words. The returned string should only have a single space separating the words. Do not include any extra spaces. Example 1: Input: s = "the sky is blue" Output: "blue is sky the" Example 2: Input: s = " hello world " Output: "world hello" Explanation: Your reversed string should not contain leading or trailing spaces. Example 3: Input: s = "a good example" Output: "example good a" Explanation: You need to reduce multiple spaces between two words to a single space in the reversed string. Example 4: Input: s = " Bob Loves Alice " Output: "<NAME> Bob" Example 5: Input: s = "Alice does not even like bob" Output: "bob like even not does Alice" Constraints: 1 <= s.length <= 104 s contains English letters (upper-case and lower-case), digits, and spaces ' '. There is at least one word in s. Follow up: Could you solve it in-place with O(1) extra space? """ class Solution: def reverseWords(self, s: str) -> str: temp = "" res = "" s += " " for x in s: if x != " ": temp += x else: if temp != "": res = temp + " " + res temp = "" return res[:-1]
StarcoderdataPython
1980923
# -*- coding: utf-8 -*- """ Created on Fri Nov 15 09:26:01 2019 Apply the Frank Wolf algorithm and Projected gradient descent to solve optimization problem min|X - Y|_F^2 s.t. \sum max(|X_i|) < k @author: wx100 """ import matplotlib.pyplot as plt import numpy as np import cvxpy as cp import time # The Frank Wollfe algorithm """ Input: original m*n matrix Y of real value and constraint k Output: X """ def Frank_Wolfe(Y, epsilon): nrow = len(Y) ncol = len(Y[0]) X = np.zeros((nrow, ncol)) # X store the final output value. record_X = np.ones((nrow,ncol)) # record_X store the X value in the last loop to judge if X converges. k = 0; # k is the loop index # compute S = min S * |X - Y| s.t. \sum max(|S_i|) < k while np.linalg.norm(X - record_X, 'fro') > 0.01: k = k + 1; temp = X - Y abs_temp = np.abs(temp) # find the column vector in matrix X-Y with biggest norm-1 temp_sum = np.sum(abs_temp,axis = 0) S = np.zeros((nrow,ncol)) S_value = np.amax(temp_sum) S_index = np.where(temp_sum == S_value) for i in range(0,len(S_index)): S[:, S_index[i][0]] = - epsilon / len(S_index) * np.sign(temp[:, S_index[i][0]]) #update X mylambda = 2 / (k+1) record_X = X X = (1 - mylambda) * X + mylambda * S return X def cvx(Y,epsilon): nrow = len(Y) ncol = len(Y[0]) X = cp.Variable((nrow, ncol)) constraints = 0 for i in range(0,ncol): constraints += cp.norm(X[:,i], 'inf') prob = cp.Problem(cp.Minimize(cp.norm(X-Y,"fro")), constraints <= epsilon) prob.solve() return X.value start = 10 end = 250 step = 10 epsilon = 1 loop_time = 100 length = int((end - start -1) / step) + 1 run_time1 = np.zeros(length) # store the computation time of <NAME> algorithm run_time2 = np.empty(length) # store the computation time of convex package matrix_size = np.arange(start,end,step) for loop_index in range(0,loop_time): index = 0 for i in matrix_size: # create the n*n random matrix Y and then compute the corresponded projected matrix X Y = 5 * np.random.rand(i,i) begin_time = time.clock() X1 = Frank_Wolfe(Y,epsilon) run_time1[index] += time.clock() - begin_time # X2 = cvx(Y,epsilon) # run_time2[index] = time.clock() - run_time1[index] - begin_time index = index + 1 ave_run_time1 = run_time1 / loop_time plt.plot(matrix_size, run_time1, label='Frank_Wolfe') #plt.plot(matrix_size, run_time2, label='cvx') #plt.plot(matrix_size, run_time3, label='cvx') plt.xlabel('matrix size n') plt.ylabel('run time/s') plt.title("Run time comparision") plt.legend() plt.show() #epsilon = 1 #Y = 0.1 * np.ones((5,5)) #X = Frank_Wolfe(Y,epsilon)
StarcoderdataPython
9606665
<reponame>DoNnMyTh/pixabay from unittest import TestCase from pixabay import Image, Video import os api_key = os.getenv('PIXABAY_API_KEY') image = Image(api_key) video = Video(api_key) class TestPythonPixabay(TestCase): def test_custom_image_search(self): self.assertIn( "hits", image.search(q="water", page=1, safesearch="true", editors_choice="true")) self.assertEqual( image.search(q="apple", page=1)["hits"][0]["pageURL"], "https://pixabay.com/photos/apples-fruit-red-juicy-ripe-634572/" ) self.assertEqual( image.search(q="apple", page=1, safesearch="false", editors_choice="true")["totalHits"], 155) def test_custom_video_search(self): self.assertEqual( video.search(q="apple", page=1, safesearch="false", editors_choice="true")["hits"][0]["pageURL"], "https://pixabay.com/videos/id-1019/") self.assertEqual( video.search(q="apple", page=1, safesearch="true", editors_choice="true")["totalHits"], 1)
StarcoderdataPython
6654222
<gh_stars>1-10 import asyncio import io import re import urllib.parse from typing import ClassVar, Optional import aiohttp import telethon as tg from .. import command, module, util LOGIN_CODE_REGEX = r"[Ll]ogin code: (\d+)" class NetworkModule(module.Module): name: ClassVar[str] = "Network" @command.desc("Pong") async def cmd_ping(self, ctx: command.Context): before = util.time.msec() await ctx.respond("Calculating response time...") after = util.time.msec() return f"Request response time: {after - before:.0f} ms" async def on_message(self, msg: tg.events.NewMessage.Event) -> None: # Only check Telegram service messages if msg.sender_id != 777000: return # Print login code if present match = re.search(LOGIN_CODE_REGEX, msg.raw_text) if match is not None: self.log.info(f"Received Telegram login code: {match.group(1)}") @command.desc("Upload given file to file.io") @command.usage("[expiry time?]", optional=True) async def cmd_fileio(self, ctx: command.Context) -> str: expires = ctx.input if not ctx.msg.is_reply: return "__Reply to a file to upload it.__" if expires == "help": return "__Expiry format: 1y/12m/52w/365d__" if expires: if expires[-1] not in ["y", "m", "w", "d"]: return "__Unknown unit. Expiry format: 1y/12m/52w/365d__" try: int(expires[:-1]) except ValueError: return "__Invalid number. Expiry format: 1y/12m/52w/365d__" else: expires = "2d" reply_msg = await ctx.msg.get_reply_message() if not reply_msg.file: return "__That message doesn't contain a file.__" data = await util.tg.download_file(ctx, reply_msg) buf = io.BytesIO(data) buf.name = reply_msg.file.name await ctx.respond("Uploading file to [file.io](https://file.io/)...") async with self.bot.http.post( f"https://file.io/?expires={expires}", data={"file": buf} ) as resp: resp_data = await resp.json() if not resp_data["success"]: return f"__Error uploading file — status code {resp.status}__" return str(resp_data["link"]) @command.desc("Update the embed for a link") @command.usage("[link?, or reply]", optional=True) @command.alias("upde", "updl", "updatelink", "ul", "ulink") async def cmd_update_link(self, ctx: command.Context) -> Optional[str]: link = ctx.input if not (link or ctx.msg.is_reply): return "__Provide or reply to a link to update it.__" if not link: reply_msg = await ctx.msg.get_reply_message() for entity, text in reply_msg.get_entities_text(): if isinstance( entity, (tg.tl.types.MessageEntityUrl, tg.tl.types.MessageEntityTextUrl), ): link = text if not link: return "__That message doesn't contain any links." await ctx.respond(f"Updating embed for [link]({link})...") async with self.bot.client.conversation("WebpageBot") as conv: await conv.send_message(link) response = await conv.get_response() await conv.mark_read() if "Link previews was updated successfully" in response.raw_text: # Provide a status update await ctx.respond("Waiting for embed update to propagate...") # Give Telegram some time to propagate the update await asyncio.sleep(1) # Send the new preview await ctx.respond(f"Updated embed for link: {link}", link_preview=True) else: # Failed for some reason, send the error await ctx.respond( f"Error updating embed for [link]({link}): `{response.raw_text}`" ) return None @command.desc("Generate a LMGTFY link (Let Me Google That For You)") @command.usage("[search query]") async def cmd_lmgtfy(self, ctx: command.Context) -> str: query = ctx.input params = urllib.parse.urlencode({"q": query}) return f"https://lmgtfy.com/?{params}"
StarcoderdataPython
1765777
<filename>GenomicData/utils/regression_hops_sampler.py import pandas as pd import utils.hops_sampler as hops_sampler import numpy as np from sklearn.preprocessing import LabelEncoder from torch_geometric.data import Data from .hops_sampler import hops_sampler import torch class regression_hops_sampler(hops_sampler): """ This class in designed for the regression purpose of pathway dataset. The general funciton of `regression_sampler_hop` is almost the same as `hops_sampler`. Instead of considering the pathway structure, here we still sample the data based on the num_hops, but discard the non-protein genomic The `batch_size` here is not allowed to input manually and always set to $1$. Inputs: `pathway`: a pathway object `num_hops`: the number of hops wanted to sample `least_size(optional)`: the option that narrow down some nodes that do not have links Return: `regression_samples`: the loader of sub-graph without the consideration of graph relation `regression_samples.activ_free/cancer`: the training data `regression_samples.activ_free/cancer_target`: the target value """ def __init__(self, pathway, num_hops, least_size=5): self.data = pathway self.num_hops = num_hops self.batch_size = 1 self.least_size = least_size self._setup() self._splits_protein() # From here, extract the remained graph based on batached_node_id-list le = LabelEncoder() le.fit(self.data.remained_protein) self.regression_samples = [] for test_id, batch in zip(self.batch_splits, self.batched_node_list): self.regression_samples.append(self.regeression_sampler(test_id.numpy(), batch, le)) def _splits_protein(self): # Start from here is the test of sub-sampling linkage based on num of hops # First, split the started node into desgined batch_size self.batch_splits = torch.split(torch.tensor(self.save_ids), self.batch_size) # function that find all parent hops self.batched_node_list = [] for batch in self.batch_splits: # the ids i want to keep in further sub-sampling part this_batch_ids = batch.numpy() for num in range(self.num_hops): this_batch_ids = np.hstack([this_batch_ids, self.node_i[np.in1d(self.node_j, this_batch_ids)]]) self.batched_node_list.append(np.intersect1d(self.data.remained_protein_id, np.unique(this_batch_ids))) def regeression_sampler(self, test_id, batch, le): pthway = Data() pthway.test_id = test_id pthway.operate_id = np.setdiff1d(batch, test_id) pthway.pthway_NameList = self.data.pthway_NameList.iloc[pthway.operate_id,:] if (self.data.pthway_NameList.iloc[pthway.test_id,:]['GenomeType'].values != 'protein'): raise IndexError('The test element is not the protein type. \t') if (np.all(pthway.pthway_NameList['GenomeType'].values == 'protein') is False): raise IndexError('Some of Related Genome ar not protein type.\t') # The pathway name list that exclude the target protein pthway.Genome_NameList = pthway.pthway_NameList['GenomeName'].values # Only the name of target protein pthway.Test_NameList = self.data.pthway_NameList.iloc[pthway.test_id,:]['GenomeName'].values # The overall trained dataset activ_id = le.transform(pthway.Genome_NameList) pthway.activ_free = self.data.activ_free[activ_id] pthway.activ_cancer = self.data.activ_cancer[activ_id] # the target value activ_id_test = le.transform(pthway.Test_NameList) pthway.activ_free_target = self.data.activ_free[activ_id_test] pthway.activ_cancer_target = self.data.activ_cancer[activ_id_test] return pthway
StarcoderdataPython
1622266
<reponame>cmput401-fall2018/web-app-ci-cd-with-travis-ci-SethBergen from selenium import webdriver from selenium.webdriver.common.key import keys def test_home(): driver = webdriver.Chrome() driver.get("http://127.0.0.1:8000") elem = driver.find_element_by_id("name") assert elem != None elem = driver.find_element_by_id("about") assert elem != None elem = driver.find_element_by_id("skills") assert elem != None elem = driver.find_element_by_id("education") assert elem != None elem = driver.find_element_by_id("work") assert elem != None elem = driver.find_element_by_id("contact") assert elem != None
StarcoderdataPython
4927557
from __future__ import print_function, unicode_literals from collections import OrderedDict from unittest import TestCase import mock import six from subui.step import StatefulUrlParamsTestStep, TestStep from .utils import patch_class_method_with_original TESTING_MODULE = 'subui.step' class TestTestStep(TestCase): def test__init__(self): """ Test that __init__ overwrites attributes with given parameters """ step = TestStep(hello='world') self.assertTrue(hasattr(step, 'hello')) self.assertEqual(getattr(step, 'hello'), 'world') def test_init(self): """ Test that init stores given parameters as attributes """ step = TestStep() step.init(mock.sentinel.client, mock.sentinel.steps, mock.sentinel.step_index, mock.sentinel.step_key, mock.sentinel.state) self.assertEqual(step.client, mock.sentinel.client) self.assertEqual(step.steps, mock.sentinel.steps) self.assertEqual(step.step_index, mock.sentinel.step_index) self.assertEqual(step.step_key, mock.sentinel.step_key) self.assertEqual(step.state, mock.sentinel.state) def test_steps(self): """ Test prev_steps, next_steps, prev_step and next_step properties """ step = TestStep() step.steps = OrderedDict(( ('one', 1), ('two', 2), ('three', 3), ('four', 4), ('five', 5), )) step.step_index = 2 self.assertEqual( step.prev_steps, OrderedDict(( ('two', 2), ('one', 1), )) ) self.assertEqual( step.prev_step, 2, ) self.assertEqual( step.next_step, 4, ) def test_get_content_type(self): """ Test that get_content_type returns content_type if defined """ step = TestStep() self.assertEqual(step.get_content_type(), '') step.content_type = 'application/json' self.assertEqual(step.get_content_type(), 'application/json') def test_get_override_settings(self): """ Test that get_override_settings returns overriden_settings if defined """ step = TestStep() self.assertDictEqual(step.get_override_settings(), {}) step.overriden_settings = { 'ROOT_URLCONF': 'services.urls' } self.assertEqual(step.get_override_settings(), {'ROOT_URLCONF': 'services.urls'}) def test_get_urlconf(self): """ Test that get_urlconf returns urlconf if defined """ step = TestStep() self.assertIsNone(step.get_urlconf()) step.urlconf = 'services.urls' self.assertEqual(step.get_urlconf(), 'services.urls') def test_get_url_args(self): """ Test that get_url_args returns url args if defined """ step = TestStep() self.assertTupleEqual(step.get_url_args(), tuple()) step.url_args = ('foo',) self.assertTupleEqual(step.get_url_args(), ('foo',)) def test_get_url_kwargs(self): """ Test that get_url_kwargs returns url kwargs if defined """ step = TestStep() self.assertDictEqual(step.get_url_kwargs(), {}) step.url_kwargs = {'foo': 'bar'} self.assertDictEqual(step.get_url_kwargs(), {'foo': 'bar'}) @patch_class_method_with_original(TestStep, 'get_url_kwargs') @patch_class_method_with_original(TestStep, 'get_url_args') @mock.patch(TESTING_MODULE + '.reverse') def test_get_url(self, mock_get_url_args, mock_get_url_kwargs, mock_reverse): mock_reverse.return_value = mock.sentinel.reverse step = TestStep() step.url_name = 'url-name' actual = step.get_url() self.assertEqual(actual, mock.sentinel.reverse) mock_get_url_args.assert_called_once_with(step) mock_get_url_kwargs.assert_called_once_with(step) mock_reverse.assert_called_once_with( 'url-name', args=tuple(), urlconf=None, kwargs={}) def test_get_request_data(self): """ Test that get_request_data returns data if defined """ step = TestStep() actual = step.get_request_data() self.assertEqual(actual, {}) step.data = {'hello': 'world'} actual = step.get_request_data() self.assertEqual(actual, {'hello': 'world'}) actual = step.get_request_data({'foo': 'bar'}) self.assertEqual(actual, {'foo': 'bar'}) def test_get_validators(self): """ Test that get_validators returns validators """ step = TestStep() step.validators = mock.sentinel.validators self.assertEqual(step.get_validators(), mock.sentinel.validators) @patch_class_method_with_original(TestStep, 'post_request_hook') @patch_class_method_with_original(TestStep, 'pre_request_hook') @mock.patch.object(TestStep, 'get_url') def test_request(self, mock_pre_request_hook, mock_post_response_hook, mock_get_url): """ Test that request correctly calls the client """ mock_client = mock.MagicMock() mock_client.methodname.return_value = mock.sentinel.response mock_get_url.return_value = mock.sentinel.url step = TestStep(client=mock_client, data={'hello': 'world'}) step.request_method = 'methodname' actual = step.request() self.assertEqual(actual, mock.sentinel.response) mock_pre_request_hook.assert_called_once_with(step) mock_post_response_hook.assert_called_once_with(step) @mock.patch.object(TestStep, 'get_url') def test_request_with_error(self, mock_get_url): """ Test that request exceptions are handled correctly """ mock_client = mock.MagicMock() mock_client.methodname.side_effect = ValueError mock_get_url.return_value = mock.sentinel.url step = TestStep(client=mock_client, step_key='foo', data={'hello': 'world'}) step.request_method = 'methodname' with self.assertRaises(Exception) as e: step.request() self.assertEqual(e.exception.__class__.__name__, 'ValueError') self.assertEqual( six.text_type(e.exception).splitlines()[0], 'Response for {foo:TestStep} requesting "sentinel.url" failed:' ) @patch_class_method_with_original(TestStep, 'post_test_response') @patch_class_method_with_original(TestStep, 'pre_test_response') @mock.patch('inspect.isclass') def test_test_response(self, mock_pre_test_response, mock_post_test_response, mock_isclass): """ Test that test_response loops over all validators and correctly calls them """ mock_isclass.side_effect = [True, False] validator = mock.MagicMock() class_validator = mock.MagicMock() step = TestStep(validators=[class_validator, validator]) step.test_response() validator.test.assert_called_once_with(step) class_validator.assert_called_once_with(step) class_validator().test.assert_called_once_with(step) mock_pre_test_response.assert_called_once_with(step) mock_post_test_response.assert_called_once_with(step) class TestStatefulUrlParamsTestStep(TestCase): @mock.patch.object(TestStep, 'get_url_args') def test_get_url_args(self, mock_get_url_args): """ Test that get_url_args returns args from the state if present """ mock_get_url_args.return_value = mock.sentinel.super mock_state = mock.MagicMock() mock_state.get.return_value = mock.sentinel.args step = StatefulUrlParamsTestStep(state=mock_state) actual = step.get_url_args() self.assertEqual(actual, mock.sentinel.args) mock_state.get.assert_called_once_with('url_args', mock.sentinel.super) @mock.patch.object(TestStep, 'get_url_kwargs') def test_get_url_kwargs(self, mock_get_url_kwargs): """ Test that get_url_args returns kwargs from the state if present """ mock_get_url_kwargs.return_value = mock.sentinel.super mock_state = mock.MagicMock() mock_state.get.return_value = mock.sentinel.kwargs step = StatefulUrlParamsTestStep(state=mock_state) actual = step.get_url_kwargs() self.assertEqual(actual, mock.sentinel.kwargs) mock_state.get.assert_called_once_with('url_kwargs', mock.sentinel.super) @mock.patch.object(TestStep, 'get_url') def test_get_request_kwargs(self, mock_get_url): """ Test that get_request_kwargs returns correct kwargs """ step = TestStep( data={'foo': 'bar'}, content_type='application/json' ) self.assertDictEqual( step.get_request_kwargs(), { 'path': mock_get_url.return_value, 'data': {'foo': 'bar'}, 'content_type': 'application/json' } )
StarcoderdataPython
3530362
<filename>cooper_pair/pair.py # pylint: disable=C0103, E0401, R0201 """cooper_pair is a small library for programmatic access to the DQM GraphQL API.""" import json import os import tempfile import time try: # pragma: nocover from urllib.parse import parse_qs except ImportError: # pragma: nocover from urlparse import parse_qs import warnings import requests import great_expectations as ge from gql import gql, Client from gql.client import RetryError from gql.transport.requests import RequestsHTTPTransport TIMEOUT = 60 MAX_RETRIES = 10 DQM_GRAPHQL_URL = os.environ.get('DQM_GRAPHQL_URL') def make_gql_client(transport=None, schema=None, retries=MAX_RETRIES, timeout=TIMEOUT): client = None counter = 0 while client is None and counter < retries: start_time = time.time() while ((time.time() - start_time) <= timeout) and client is None: try: client = Client( transport=transport, fetch_schema_from_transport=(schema is None), schema=schema, retries=retries) except (requests.ConnectionError, RetryError): warnings.warn('CooperPair failed to connect to allotrope...') counter += 1 if client is None: raise Exception( 'CooperPair failed to connect to ' 'allotrope {} times.'.format(retries)) return client def generate_slug(name): """Utility function to generate snake-case-slugs. Args: name (str) -- the name to convert to a slug Returns: A string slug. """ # TODO: this functionality should move to the server return name.lower().replace(' ', '-') class CooperPair(object): """Entrypoint to the API.""" _client = None def __init__( self, email=None, password=<PASSWORD>, graphql_endpoint=DQM_GRAPHQL_URL, timeout=TIMEOUT, max_retries=MAX_RETRIES): """Create a new instance of CooperPair. Kwargs: graphql_endpoint (str) -- The GraphQL endpoint to hit (default: the value of the DQM_GRAPHQL_URL environment variable). timeout (int) -- The number of seconds to wait for API responses before timing out (default: 10). max_retries (int) -- The number of times to retry API requests before failing (default: 10). The worst-case time an API call may take is (max_retries x timeout) seconds. Raises: AssertionError, if graphql_endpoint is not set and the DQM_GRAPHQL_URL environment variable is not set. Returns: A new instance of CooperPair """ assert graphql_endpoint, \ 'CooperPair.init: graphql_endpoint was None and ' \ 'DQM_GRAPHQL_URL not set.' if not(email and password): warnings.warn( 'CooperPair must be initialized with email and password ' 'in order to authenticate against the GraphQL api.') self.email = email self.max_retries = max_retries self.password = password self.timeout = timeout self.token = None self.transport = RequestsHTTPTransport( url=graphql_endpoint, use_json=True, timeout=timeout) @property def client(self): if self._client is None: self._client = make_gql_client( transport=self.transport, retries=self.max_retries, timeout=self.timeout) # FIXME(mattgiles): login needs to be thought through self.login() return self._client def login(self, email=None, password=<PASSWORD>): if self.email is None or self.password is None: warnings.warn( 'Instance credentials are not set. You must ' 'set instance credentials (self.email and self.password) ' 'in order to automatically authenticate against ' 'the GraphQL api.') email = email or self.email password = password or <PASSWORD> if email is None or password is None: warnings.warn('Must provide email and password to login.') return False login_result = self.client.execute( gql(""" mutation loginMutation($input: LoginInput!) { login(input: $input) { token } } """), variable_values={ 'input': { 'email': email, 'password': password } }) token = login_result['login']['token'] if token: self.token = token self.transport.headers = dict( self.transport.headers or {}, **{'X-Fullerene-Token': token}) return True else: warnings.warn( "Couldn't log in with email and password provided. " "Please try again") return False def query(self, query, variables=None, unauthenticated=False): """Workhorse to execute queries. Args: query (string) -- A valid GraphQL query. query will apply gql.gql on the string to generate a graphql.language.ast.Document. Kwargs: variables (dict) -- A Python dict containing variables to be passed along with the GraphQL query (default: None, no variables will be passed). Returns: A dict containing the parsed results of the query. """ if not unauthenticated: if not self.token: warnings.warn( 'Client not authenticated. Attempting to authenticate ' 'using stored credentials...') query_gql = gql(query) try: return self.client.execute(query_gql, variable_values=variables) except (requests.exceptions.HTTPError, RetryError): self.transport.headers = dict( self.transport.headers or {}, **{'X-Fullerene-Token': None}) self._client = None return self.client.execute(query_gql, variable_values=variables) def munge_ge_evaluation_results(self, ge_results): ''' Unpack the Great Expectations result object to match the semi-flattened structure used by Allotrope. :param ge_results: a list of result dicts returned by Great Expectations :return: a list of result dicts that can be consumed by Allotrope ''' return [ { 'success': result['success'], 'expectationId': result['expectation_id'], 'expectationType': result['expectation_config']['expectation_type'], 'expectationKwargs': json.dumps(result['expectation_config']['kwargs']), 'raisedException': result['exception_info']['raised_exception'], 'exceptionTraceback': result['exception_info']['exception_traceback'], # 'exceptionMessage': result['exception_info']['exception_message'], #FIXME: Allotrope needs a new DB field to store this in 'summaryObj': ( json.dumps(result['result']) if 'result' in result else json.dumps({}) ) } for result in ge_results] def list_question_templates(self): """ Return all valid question templates :return: Graphql query result containing all question templates """ return self.query("""{ allQuestionTemplates { edges { node { id scId questionType text expectationType answerTemplate answerValidation storyTemplate compatibleSpecTypes } } } }""") def get_evaluation(self, evaluation_id): """ Query an evaluation by id :param evaluation_id: Evaluation id :return: Graphql query result containing Evaluation dict """ return self.query(""" query evaluationQuery($id: ID!) { evaluation(id: $id) { id statusOrdinal checkpointId checkpoint { name } dataset { id label } createdBy { id } organization { id } updatedAt results { edges { node { id success summaryObj expectationType expectationKwargs raisedException exceptionTraceback evaluationId expectationId statusOrdinal } } } } } """, variables={'id': evaluation_id} ) def add_evaluation( self, dataset_id=None, checkpoint_id=None, checkpoint_name=None, delay_evaluation=False, results=None, status_ordinal=None ): """Add a new evaluation. Args: dataset_id (int or str Relay id) -- The id of the dataset on which to run the evaluation. checkpoint_id (int or str Relay id) -- The id of the checkpoint to evaluate. checkpoint_name (str) -- The name of the checkpoint to evaluate delay_evaluation (bool) -- If True, evaluation of dataset will be delayed results (list) -- List of ge evaluation results status_ordinal (int) -- Status ordinal of evaluation Returns: A dict containing the parsed results of the mutation. """ if not checkpoint_id and not checkpoint_name: raise ValueError('must provide checkpoint_id or checkpoint_name') return self.query(""" mutation addEvaluationMutation($evaluation: AddEvaluationInput!) { addEvaluation(input: $evaluation) { evaluation { id datasetId dataset { id label locatorDict } checkpointId checkpoint { id name } createdById createdBy { id } organizationId organization { id } results { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id success summaryObj expectationType expectationKwargs raisedException exceptionTraceback evaluationId statusOrdinal } } } statusOrdinal updatedAt } } } """, variables={ 'evaluation': { 'datasetId': dataset_id, 'checkpointId': checkpoint_id, 'checkpointName': checkpoint_name, 'delayEvaluation': delay_evaluation, 'results': results, 'statusOrdinal': status_ordinal } }) def evaluate_checkpoint_on_pandas_df( self, checkpoint_id, pandas_df, filename=None, project_id=None): """Evaluate a expectation_suite on a pandas.DataFrame. Args: checkpoint_id (int or str Relay id) -- The id of the checkpoint to evaluate. pandas_df (pandas.DataFrame) -- The data frame on which to evaluate the expectation_suite. Kwargs: filename (str) -- The filename to associate with the dataset (default: None, the name attribute of the pandas_df argument will be used). project_id (int or str Relay id) -- The id of the project to associate with the evaluation Returns: A dict representation of the evaluation. """ dataset = self.add_dataset_from_pandas_df( pandas_df, project_id, filename=filename) return self.add_evaluation( dataset['dataset']['id'], checkpoint_id ) def evaluate_checkpoint_on_file( self, checkpoint_id, fd, filename=None, project_id=None): """Evaluate a expectation_suite on a file. Args: checkpoint_id (int or str Relay id) -- The id of the checkpoint to evaluate. fd (file-like) -- A file descriptor or file-like object to evaluate, opened as 'rb'. Kwargs: filename (str) -- The filename to associate with the dataset (default: None, the name attribute of the pandas_df argument will be used). project_id (int or str Relay id) -- The id of the project to associate with the evaluation Returns: A dict representation of the evaluation. """ dataset = self.add_dataset_from_file( fd, project_id, filename=filename) return self.add_evaluation( dataset['dataset']['id'], checkpoint_id ) def evaluate_pandas_df_against_checkpoint( self, pandas_df, dataset_label, checkpoint_id=None, checkpoint_name=None): """ Evaluate a Pandas DataFrame against a checkpoint :param pandas_df: (pandas.DataFrame) The data frame on which to evaluate the checkpoint. :param dataset_label: (str) a human-readable name to associate with the evaluated dataset :param checkpoint_id: (int or str Relay id) the id of the checkpoint to evaluate against :param checkpoint_name: (str) the name of the checkpoint to evaluate against :return: a Great Expectations result object, as returned by .validate method """ if not checkpoint_id and not checkpoint_name: raise ValueError('must provide checkpoint_id or checkpoint_name') if not checkpoint_id: checkpoint_id = self.get_checkpoint_by_name(checkpoint_name)['checkpoint']['id'] expectations_config = self.get_checkpoint_as_expectations_config( checkpoint_id=checkpoint_id, checkpoint_name=checkpoint_name) expectation_ids = expectations_config.pop('expectation_ids', []) ge_results = pandas_df.validate( expectations_config=expectations_config, result_format="SUMMARY", catch_exceptions=True) results = ge_results['results'] for idx, expectation_id in enumerate(expectation_ids): results[idx]['expectation_id'] = expectation_id munged_results = self.munge_ge_evaluation_results(ge_results=results) new_dataset = self.add_dataset(project_id=1, label=dataset_label) new_dataset_id = new_dataset['addDataset']['dataset']['id'] self.add_evaluation( dataset_id=new_dataset_id, checkpoint_id=checkpoint_id, delay_evaluation=True, results=munged_results ) return ge_results def update_evaluation(self, evaluation_id, status_ordinal=None, results=None): """Update an evaluation. Args: evaluation_id (int or str Relay id) -- The id of the evaluation to update status_ordinal (int) -- The status ordinal of the evaluation, if any (default: None) results (list of dicts) -- The results, if any (default: None) Returns: A dict containing the parsed results of the mutation. """ variables = { 'updateEvaluation': { 'id': evaluation_id } } if results is not None: variables['updateEvaluation']['results'] = results if status_ordinal is not None: variables['updateEvaluation']['statusOrdinal'] = status_ordinal return self.query(""" mutation($updateEvaluation: UpdateEvaluationInput!) { updateEvaluation(input: $updateEvaluation) { evaluation { id datasetId checkpointId createdById createdBy { id } dataset { id label locatorDict } organizationId organization { id } checkpoint { id name } results { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id success summaryObj expectationType expectationKwargs raisedException exceptionTraceback evaluationId statusOrdinal } } } statusOrdinal updatedAt } } } """, variables=variables) def delete_evaluation(self, evaluation_id): """Delete an evaluation (soft delete). Args: evaluation_id (int or str Relay id) -- The id of the evaluation to delete Returns: A dict containing the parsed results of the mutation. """ variables = { 'updateEvaluation': { 'id': evaluation_id, 'deleted': True } } return self.query(""" mutation($updateEvaluation: UpdateEvaluationInput!) { updateEvaluation(input: $updateEvaluation) { evaluation { id deleted deletedAt updatedAt } } } """, variables=variables) def get_dataset(self, dataset_id): """Retrieve a dataset by its id. Args: dataset_id (int or str Relay id) -- The id of the dataset to fetch Returns: A dict representation of the dataset. """ return self.query(""" query datasetQuery($id: ID!) { dataset(id: $id) { id label project { id } createdBy { id } locatorDict organization { id } } } """, variables={'id': dataset_id} ) def list_datasets(self): return self.query("""{ allDatasets{ edges { node{ id label locatorDict } } } }""") def add_datasource_spec(self, name, description=None, tags=[]): """Add a new datasource specification object Args: name (str) - the name of the new datasource to be described description (str) - a description of the datasource tags (list) - tags to apply to the datasource specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addDatasourceSpecMutation($datasourceSpec: AddDatasourceSpecInput!) { addDatasourceSpec(input: $datasourceSpec) { datasourceSpec { id name description tags } } } """, variables={ "datasourceSpec": { "name": name, "description": description, "tags": tags } }) def add_other_spec(self, datasource_spec_id, name, description=None, tags=[]): """Add a new 'other' specification object Args: datasource_spec_id (int) - the id of the datasource spec to which this spec applies name (str) - the name of the new entity to be described description (str) - a description of the entity tags (list) - tags to apply to the entity specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addOtherSpecMutation($otherSpec: AddOtherSpecInput!) { addOtherSpec(input: $otherSpec) { otherSpec { id datasourceSpecId name description tags } } } """, variables={ "otherSpec": { "datasourceSpecId": datasource_spec_id, "name": name, "description": description, "tags": tags } }) def add_dataset_spec(self, datasource_spec_id, name, description=None, tags=[]): """Add a new dataset specification object Args: datasource_spec_id (int) - the id of the datasource spec to which this spec applies name (str) - the name of the new dataset to be described description (str) - a description of the dataset tags (list) - tags to apply to the dataset specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addDatasetSpecMutation($datasetSpec: AddDatasetSpecInput!) { addDatasetSpec(input: $datasetSpec) { datasetSpec { id datasourceSpecId name description tags } } } """, variables={ "datasetSpec": { "datasourceSpecId": datasource_spec_id, "name": name, "description": description, "tags": tags } }) def add_table_spec(self, datasource_spec_id, name, description=None, tags=[]): """Add a new table specification object Args: datasource_spec_id (int) - the id of the datasource spec to which this spec applies name (str) - the name of the new table to be described description (str) - a description of the table tags (list) - tags to apply to the table specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addTableSpecMutation($tableSpec: AddTableSpecInput!) { addTableSpec(input: $tableSpec) { tableSpec { id datasourceSpecId name description tags } } } """, variables={ "tableSpec": { "datasourceSpecId": datasource_spec_id, "name": name, "description": description, "tags": tags } }) def add_column_spec(self, table_spec_id, name, description=None, tags=[]): """Add a new column specification object Args: table_spec_id (int) - the id of the TableSpec to which this spec applies name (str) - the name of the new column to be described description (str) - a description of the column tags (list) - tags to apply to the column specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addColumnSpecMutation($columnSpec: AddColumnSpecInput!) { addColumnSpec(input: $columnSpec) { columnSpec { id tableSpecId name description tags } } } """, variables={ "columnSpec": { "tableSpecId": table_spec_id, "name": name, "description": description, "tags": tags } }) def add_cross_table_spec(self, datasource_spec_id, name, description=None, tags=[]): """Add a new cross table specification object Args: datasource_spec_id (int) - the id of the datasource spec to which this spec applies name (str) - the name of the new table pair to be described description (str) - a description of the table pair tags (list) - tags to apply to the cross table specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addCrossTableSpecMutation($crossTableSpec: AddCrossTableSpecInput!) { addCrossTableSpec(input: $crossTableSpec) { crossTableSpec { id datasourceSpecId name description tags } } } """, variables={ "crossTableSpec": { "datasourceSpecId": datasource_spec_id, "name": name, "description": description, "tags": tags } }) def add_cross_column_spec(self, table_spec_id, name, description=None, tags=[]): """Add a new cross column specification object Args: table_spec_id (int) - the id of the table spec to which this spec applies name (str) - the name of the new column pair to be described description (str) - a description of the column pair tags (list) - tags to apply to the cross column specification Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addCrossColumnSpecMutation($crossColumnSpec: AddCrossColumnSpecInput!) { addCrossColumnSpec(input: $crossColumnSpec) { crossColumnSpec { id tableSpecId name description tags } } } """, variables={ "crossColumnSpec": { "tableSpecId": table_spec_id, "name": name, "description": description, "tags": tags } }) def add_question_template( self, text, question_type, answer_template, answer_validation, story_template, compatible_spec_types, sc_id, expectation_type=None, ): """Add a new spec question template object Args: text - (string) - question text question_type - (string) - question type (radio, etc.) expectation_type - (string) - corresponding expectation type, if applicable answer_template - (json) - answer template answer_validation - (json) - answer json validation info story_template - (json) - template of answer summary compatible_spec_types - (list) - spec types question can be applied to sc_id - (string) - UUID Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addQuestionTemplateMutation($questionTemplate: AddQuestionTemplateInput!) { addQuestionTemplate(input: $questionTemplate) { questionTemplate { id text questionType answerTemplate answerValidation storyTemplate compatibleSpecTypes scId expectationType } } } """, variables={ "questionTemplate": { "text": text, "questionType": question_type, "answerTemplate": json.dumps(answer_template), "answerValidation": json.dumps(answer_validation), "storyTemplate": json.dumps(story_template), "compatibleSpecTypes": compatible_spec_types, "scId": sc_id, "expectationType": expectation_type } }) def add_question_definition( self, question_type, text, answer_template, answer_validation, story_template, question_template_id=None, expectation_type=None ): """Add a new spec question definition object Args: text - (string) - question text question_type - (string) - question type (radio, etc.) expectation_type - (string) - corresponding expectation type, if applicable answer_template - (json) - answer template answer_validation - (json) - answer json validation info story_template - (json) - template of answer summary question_template_id - (int) - id of corresponding question template (optional) Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addQuestionDefinitionMutation($questionDefinition: AddQuestionDefinitionInput!) { addQuestionDefinition(input: $questionDefinition) { questionDefinition { id text questionType answerTemplate answerValidation storyTemplate questionTemplateId expectationType } } } """, variables={ "questionDefinition": { "text": text, "questionType": question_type, "answerTemplate": json.dumps(answer_template), "answerValidation": json.dumps(answer_validation), "storyTemplate": json.dumps(story_template), "questionTemplateId": question_template_id, "expectationType": expectation_type } }) def add_spec_question(self, question_definition_id, spec_id, status, flagged=False): """Add a new spec question object Args: question_definition_id (int) - the id of the corresponding question definition spec_id (int) - the id of the corresponding spec flagged (boolean) - boolean flag status (string) - describes status of spec question Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addSpecQuestionMutation($specQuestion: AddSpecQuestionInput!) { addSpecQuestion(input: $specQuestion) { specQuestion { id questionDefinitionId specId flagged status } } } """, variables={ "specQuestion": { "questionDefinitionId": question_definition_id, "specId": spec_id, "flagged": flagged, "status": status } }) def add_spec_question_answer(self, spec_question_id, status, answer, supporting_evidence={}): """Add a new spec question answer object Args: spec_question_id (int) - the id of the corresponding spec question status (string) - describes status of spec question answer supporting_evidence (json) - json object describing evidence in support of hypothesized answer answer (json) - json object describing answer to corresponding spec question Returns: A dict containing the parsed results of the mutation""" return self.query(""" mutation addSpecQuestionAnswerMutation($specQuestionAnswer: AddSpecQuestionAnswerInput!) { addSpecQuestionAnswer(input: $specQuestionAnswer) { specQuestionAnswer { id specQuestionId status supportingEvidence answer } } } """, variables={ "specQuestionAnswer": { "specQuestionId": spec_question_id, "status": status, "supportingEvidence": json.dumps(supporting_evidence), "answer": json.dumps(answer) } }) def add_dataset(self, project_id, filename=None, label=None): """Add a new dataset object. Users should probably not call this function directly. Instead, consider add_dataset_from_file or add_dataset_from_pandas_df. Args: filename (str) -- The filename of the new dataset. project_id (int or str Relay id) -- The id of the project to which the dataset belongs. Returns: A dict containing the parsed results of the mutation. """ return self.query(""" mutation addDatasetMutation($dataset: AddDatasetInput!) { addDataset(input: $dataset) { dataset { id label project { id } createdBy { id } locatorDict organization { id } } } } """, variables={ 'dataset': { 'locatorDict': json.dumps({'filename': filename}) if filename else json.dumps({}), 'projectId': project_id, 'label': label } } ) def add_dataset_simple(self, label, checkpoint_id, locator_dict, project_id=None): """ Add a new Dataset object. Bypasses AddDataset mutation logic used for manually uploaded datasets :param label: (string) human readable identifier :param checkpoint_id: (int or string Relay id) id of checkpoint dataset belongs to :param locator_dict: (dict) dict containing data necessary for retrieving dataset. e.g.: { 's3_bucket': '', 's3_key': '' } :param project_id: (int or string Relay id, optional) id of project dataset belongs to :return: a dict representing the added Dataset """ return self.query(""" mutation addDatasetMutation($dataset: AddDatasetInput!) { addDataset(input: $dataset) { dataset { id label project { id } createdBy { id } locatorDict organization { id } } } } """, variables={ 'dataset': { 'checkpointId': checkpoint_id, 'locatorDict': json.dumps(locator_dict), 'label': label, 'projectId': project_id, 'simple': True } } ) def add_dataset_from_file( self, fd, project_id, filename=None): """Add a new dataset from a file or file-like object. Args: fd (file-like) -- A file descriptor or file-like object to add as a new dataset, opened as 'rb'. project_id (int or str Relay id) -- The id of the project to which the dataset belongs. Kwargs: filename (str) -- The filename to associate with the dataset (default: None, the name attribute of the fd argument will be used). Note that in the case of file-like objects without names (e.g. py2 StringIO.StringIO), this must be set. Returns: A dict representation of the dataset. Raises: AttributeError, if filename is not set and fd does not have a name attribute. """ dataset = self.add_dataset( project_id, filename or fd.name ) presigned_post = dataset['addDataset']['dataset']['s3Url'] self.upload_dataset(presigned_post, fd) return self.get_dataset(dataset['addDataset']['dataset']['id']) def add_dataset_from_pandas_df( self, pandas_df, project_id, filename=None): """Add a new dataset from a pandas.DataFrame. Args: pandas_df (pandas.DataFrame) -- The data frame to add. project_id (int or str Relay id) -- The id of the project to which the dataset belongs. Kwargs: filename (str) -- The filename to associate with the dataset (default: None, the name attribute of the pandas_df argument will be used). Returns: A dict representation of the dataset. Raises: AttributeError, if filename is not set and pandas_df does not have a name attribute. """ with tempfile.TemporaryFile(mode='w+') as fd: pandas_df.to_csv(fd, encoding='UTF_8') fd.seek(0) return self.add_dataset_from_file( fd, project_id, filename=(filename or pandas_df.name) ) def upload_dataset(self, presigned_post, fd): """Utility function to upload a file to S3. Users should probably not call this function directly. Instead, consider add_dataset_from_file or add_dataset_from_pandas_df. Args: presigned_post (str) -- A fully qualified presigned (POST) S3 URL, including query string. fd (filelike) -- A file-like object opened for 'rb'. Returns: A requests.models.Response containing the results of the POST. """ (s3_url, s3_querystring) = presigned_post.split('?') form_data = parse_qs(s3_querystring) return requests.post(s3_url, data=form_data, files={'file': fd}) def delete_dataset(self, dataset_id): """Delete a dataset (soft delete). Args: dataset_id (int or str Relay id) -- The id of the dataset to delete Returns: A dict containing the parsed results of the mutation. """ variables = { 'updateDataset': { 'id': dataset_id, 'deleted': True } } return self.query(""" mutation($updateDataset: UpdateDatasetInput!) { updateDataset(input: $updateDataset) { dataset { id deleted deletedAt updatedAt } } } """, variables=variables) def munge_ge_expectations_config(self, expectations_config): """ Convert a Great Expectations expectations_config into a list of expectations that can be consumed by Checkpoints :param expectations_config: expectations_config dict as returned from Great Expectations :return: a list of parsed expectation dicts """ expectations = expectations_config['expectations'] munged_expectations = [] for expectation in expectations: munged_expectations.append({ 'expectationType': expectation['expectation_type'], 'expectationKwargs': json.dumps(expectation['kwargs']) }) return munged_expectations def munge_ge_expectations_list(self, expectations): """ Convert a Great Expectations expectation list to a list of expectations that can be consumed by Checkpoints :param expectations: a list of expectations as returned from Great Expectations :return: a list of parsed expectation dicts """ munged_expectations = [] for expectation in expectations: munged_expectations.append({ 'expectationType': expectation['expectation_type'], 'expectationKwargs': json.dumps(expectation['kwargs']) }) return munged_expectations def get_expectation_suite(self, expectation_suite_id): """Retrieve an existing expectation_suite. Args: expectation_suite_id (int or str Relay id) -- The id of the expectation_suite to retrieve Returns: A dict containing the parsed expectation_suite. """ return self.query(""" query expectationSuiteQuery($id: ID!) { expectationSuite(id: $id) { id autoinspectionStatus organization { id } expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } } } } """, variables={'id': expectation_suite_id} ) def get_expectation_suite_as_json_string( self, expectation_suite_id, include_inactive=False): """Retrieve a JSON representation of a expectation_suite. Args: expectation_suite_id (int or str Relay id) -- The id of the expectation_suite to retrieve include_inactive (bool) -- If true, evaluations whose isActivated flag is false will be included in the JSON config (default: False) Returns: A JSON representation of the expectation_suite. """ expectation_suite = self.get_expectation_suite(expectation_suite_id)['expectationSuite'] if include_inactive: expectations = [ expectation['node'] for expectation in expectation_suite['expectations']['edges']] else: expectations = [ expectation['node'] for expectation in expectation_suite['expectations']['edges'] if expectation['node']['isActivated']] return json.dumps( {'expectations': [ { 'expectation_type': expectation['expectationType'], 'kwargs': json.loads(expectation['expectationKwargs'])} for expectation in expectations]}, indent=2, separators=(',', ': '), sort_keys=True) def get_expectation_suite_as_expectations_config( self, expectation_suite_id, include_inactive=False): """Retrieve an expectation suite as a great_expectations expectations config. Kwargs: expectation_suite_id (int or str Relay id) -- The id of the expectation suite to retrieve include_inactive (bool) -- If true, expectations whose isActivated flag is false will be included in the JSON config (default: False). Returns: An expectations config dict as returned by great_expectations.dataset.DataSet.get_expectations_config. """ expectation_suite = self.get_expectation_suite(expectation_suite_id)['expectationSuite'] if include_inactive: expectations = [ expectation['node'] for expectation in expectation_suite['expectations']['edges']] else: expectations = [ expectation['node'] for expectation in expectation_suite['expectations']['edges'] if expectation['node']['isActivated']] expectations_config = { 'meta': {'great_expectations.__version__': '0.4.3'}, 'dataset_name': None, 'expectations': [ {'expectation_type': expectation['expectationType'], 'kwargs': json.loads(expectation['expectationKwargs'])} for expectation in expectations ]} return expectations_config def list_expectation_suites(self, complex=False): """Retrieve all existing expectation_suites. Returns: A dict containing the parsed query. """ if not complex: return self.query(""" query listExpectationSuiteQuery{ allExpectationSuites { edges { node { id name } } } } """) else: return self.query(""" query listExpectationSuiteQuery{ allExpectationSuites { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id name autoinspectionStatus organization { id } expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } } } } } } """ ) def add_expectation_suite(self, name, autoinspect=False, dataset_id=None, expectations=None): """Add a new expectation_suite. Users should probably not call this function directly. Instead, consider add_expectation_suite_from_expectations_config. Args: name (str) -- The name of the expectation_suite to create. Kwargs: autoinspect (bool) -- Flag to populate the expectation_suite with single-column expectations generated by autoinspection of a dataset (default: false). dataset_id (int or str Relay id) -- The id of the dataset to autoinspect (default: None). expectations (list) -- A list of expectations to associate with the expectation_suite Raises: AssertionError if autoinspect is true and dataset_id is not present, or if dataset_id is present and autoinspect is false. Returns: A dict containing the parsed results of the mutation. """ # TODO: implement nested object creation for addExpectationSuite if autoinspect: assert dataset_id, 'Must pass a dataset_id when autoinspecting.' else: assert dataset_id is None, 'Do not pass a dataset_id if not ' \ 'autoinspecting.' return self.query(""" mutation addExpectationSuiteMutation($expectationSuite: AddExpectationSuiteInput!) { addExpectationSuite(input: $expectationSuite) { expectationSuite { id name slug autoinspectionStatus createdBy { id } expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id } } } organization { id } } } } """, variables={ 'expectationSuite': { 'name': name, 'slug': generate_slug(name), 'autoinspect': autoinspect, 'datasetId': dataset_id, 'expectations': expectations } }) def add_expectation_suite_from_expectations_config( self, expectations_config, name): """Create a new expectation_suite from a great_expectations expectations config. Args: expectations_config (dict) - An expectations config as returned by great_expectations.dataset.DataSet.get_expectations_config. Note that this is not validated here or on the server side -- failures will occur at evaluation time. name (str) - The name of the expectation_suite to create. Returns: A dict containing the parsed expectation_suite. """ expectations = self.munge_ge_expectations_config(expectations_config) return self.add_expectation_suite(name=name, expectations=expectations) def add_expectation_suite_from_ge_expectations_list( self, expectations_list, name): """Create a new expectation_suite from a great_expectations expectations list. Args: expectations_list (list) - A list of Great Expectations formatted expectations Note that this is not validated here or on the server side -- failures will occur at evaluation time. name (str) - The name of the expectation_suite to create. Returns: A dict containing the parsed expectation_suite. """ expectations = self.munge_ge_expectations_list(expectations_list) return self.add_expectation_suite(name=name, expectations=expectations) def update_expectation_suite( self, expectation_suite_id, autoinspection_status=None, expectations=None): """Update an existing expectation_suite. Args: expectation_suite_id (int or str Relay id) -- The id of the expectation_suite to update. Kwargs: autoinspection_status (str) -- The status of autoinspection, if that is to be updated (default: None, no change). expectations (list) -- A list of dicts representing expectations to be created & added to the expectation_suite (default: None, no change). Note: semantics are append. Returns: A dict representing the parsed results of the mutation. """ assert any([ autoinspection_status is not None, expectations is not None]), \ 'Must update one of autoinspection_status or expectations' variables = { 'expectationSuite': { 'id': expectation_suite_id } } if expectations is not None: variables['expectationSuite']['expectations'] = expectations if autoinspection_status is not None: variables['expectationSuite']['autoinspectionStatus'] = \ autoinspection_status result = self.query(""" mutation updateExpectationSuiteMutation($expectationSuite: UpdateExpectationSuiteInput!) { updateExpectationSuite(input: $expectationSuite) { expectationSuite { id expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } } } } } """, variables=variables ) return result def get_expectation(self, expectation_id): """Retrieve an expectation by its id. Args: expectation_id (int or str Relay id) -- The id of the expectation to fetch Returns: A dict representation of the expectation. """ return self.query(""" query expectationQuery($id: ID!) { expectation(id: $id) { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } """, variables={'id': expectation_id} ) def add_expectation( self, expectation_suite_id, expectation_type, expectation_kwargs, ): """Add a new expectation to an expectation_suite. Args: expectation_suite_id (int or str Relay id) -- The id of the expectation_suite to which to add the new expectation. expectation_type (str) -- A valid great_expectations expectation type. Note: these are not yet validated by client or server code, so failures will occur at evaluation time. expectation_kwargs (JSON dict) -- Valid great_expectations expectation kwargs, as JSON. Note: these are not yet validated by client or server code, so failures will occur at evaluation time. Returns: A dict containing the parsed results of the mutation. Raises: ValueError, if expectation_kwargs are not parseable as JSON """ # TODO: use common code (JSON schema) to validate expectation_type and # expectation_kwargs try: json.loads(expectation_kwargs) except (TypeError, ValueError): raise ValueError( 'Must provide valid JSON expectation_kwargs (got %s)', expectation_kwargs) return self.query(""" mutation addExpectationMutation($expectation: AddExpectationInput!) { addExpectation(input: $expectation) { expectation { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } } """, variables={ 'expectation': { 'expectationSuiteId': expectation_suite_id, 'expectationType': expectation_type, 'expectationKwargs': expectation_kwargs, }}) def update_expectation( self, expectation_id, expectation_type=None, expectation_kwargs=None, is_activated=None): # TODO: use common code (JSON schema) to validate expectation_type and # expectation_kwargs """Update an existing expectation. Args: expectation_id (int or str Relay id) -- The id of the expectation to update. Kwargs: expectation_type (str) -- A valid great_expectations expectation type (default: None, no change). Note: these are not yet validated by client or server code, so failures will occur at evaluation time. expectation_kwargs (str) -- Valid great_expectations expectation kwargs, as JSON (default: None, no change). If present, the existing expectation_kwargs will be overwritten, so updates must include all unchanged keys from the existing kwargs. Note: these are not yet validated by client or server code, so failures will occur at evaluation time.. is_activated (bool) -- Flag indicating whether an expectation should be evaluated (default: None, no change). Returns: A dict containing the parsed results of the mutation. Raises: AssertionError, if none of expectation_type, expectation_kwargs, or is_activated is provided ValueError, if expectation_kwargs are provided but not parseable as JSON """ assert any([ expectation_type is not None, expectation_kwargs is not None, is_activated is not None]), 'Must provide expectation_type, ' \ 'expectation_kwargs, or is_activated flag' if expectation_kwargs: try: json.loads(expectation_kwargs) except (TypeError, ValueError): raise ValueError( 'Must provide valid JSON expectation_kwargs (got %s)', expectation_kwargs) variables = { 'expectation': {'id': expectation_id}} if is_activated is not None: variables['expectation']['isActivated'] = is_activated if expectation_type is not None: variables['expectation']['expectationType'] = expectation_type if expectation_kwargs is not None: variables['expectation']['expectationKwargs'] = expectation_kwargs return self.query(""" mutation updateExpectationMutation($expectation: UpdateExpectationInput!) { updateExpectation(input: $expectation) { expectation { id expectationType expectationKwargs isActivated createdBy { id } organization { id } expectationSuite { id } } } } """, variables=variables ) def get_checkpoint(self, checkpoint_id): """Retrieve an existing checkpoint. Args: checkpoint_id (int or str Relay id) -- The id of the checkpoint to retrieve Returns: A dict containing the parsed checkpoint. """ return self.query(""" query checkpointQuery($id: ID!) { checkpoint(id: $id) { id name slug isActivated createdBy { id firstName lastName email } expectationSuite { expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id expectationType expectationKwargs isActivated createdBy { id } organization { id } } } } } } } """, variables={'id': checkpoint_id} ) def get_checkpoint_by_name(self, checkpoint_name): """Retrieve an existing checkpoint by name. Args: name (str) -- The name of the checkpoint to retrieve Returns: A dict containing the parsed checkpoint. """ return self.query(""" query checkpointQuery($name: String!) { checkpoint(name: $name) { id name slug isActivated createdBy { id firstName lastName email } expectationSuite { expectations { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id expectationType expectationKwargs isActivated createdBy { id } organization { id } } } } } } } """, variables={'name': checkpoint_name} ) def get_checkpoint_as_expectations_config( self, checkpoint_id=None, checkpoint_name=None, include_inactive=False): """Retrieve a checkpoint as a great_expectations expectations config. Kwargs: checkpoint_id (int or str Relay id) -- The id of the checkpoint to retrieve checkpoint_name (str) -- The name of the checkpoint to retrieve include_inactive (bool) -- If true, evaluations whose isActivated flag is false will be included in the JSON config (default: False). Returns: An expectations config dict as returned by great_expectations.dataset.DataSet.get_expectations_config. """ if not checkpoint_id and not checkpoint_name: raise ValueError('must provide checkpoint_id or checkpoint_name') if checkpoint_id: checkpoint = self.get_checkpoint(checkpoint_id) else: checkpoint = self.get_checkpoint_by_name(checkpoint_name) if include_inactive: expectations = [ expectation['node'] for expectation in checkpoint['checkpoint']['expectationSuite']['expectations']['edges']] else: expectations = [ expectation['node'] for expectation in checkpoint['checkpoint']['expectationSuite']['expectations']['edges'] if expectation['node']['isActivated']] expectation_ids = [expectation['id'] for expectation in expectations] expectations_config = { 'meta': {'great_expectations.__version__': '0.4.4'}, 'expectation_ids': expectation_ids, 'dataset_name': None, 'expectations': [ {'expectation_type': expectation['expectationType'], 'kwargs': json.loads(expectation['expectationKwargs'])} for expectation in expectations ]} return expectations_config def list_checkpoints(self): """ Retrieve all existing checkpoints :return: A dict containing all checkpoints. Ex.: { 'allCheckpoints': { 'edges': [ { 'node': { "id": "Q2hlY2twb2ludDox", "name": "Claims by Race and Gender-UploadCheckpoint", "tableName": "Humana", "slug": "claims-by-race-and-gender-upload-checkpoint", "isActivated": true, "createdById": 1, "organizationId": 1, "projectId": 1, "expectationSuiteId": 3, "sensorId": 1 } }, ... ] } } """ return self.query(""" query { allCheckpoints { edges { node { id name tableName slug isActivated createdById organizationId projectId expectationSuiteId sensorId sensor { type } } } } } """) def add_checkpoint( self, name, table_name=None, is_activated=True, slack_webhook=None, expectation_suite_id=None, sensor_id=None): """ Add a checkpoint. :param name: Name of checkpoint :param table_name: Name of associated table :param is_activated: boolean :param slack_webhook: optional slack webhook address to create condigured_notification on checkpoint creation :param expectation_suite_id: The id of corresponding expectation suite :param sensor_id: The id of corresponding sensor :return: A dict with parsed checkpoint (see query for structure) """ return self.query(""" mutation addCheckpointMutation($checkpoint: AddCheckpointInput!) { addCheckpoint(input: $checkpoint) { checkpoint { id name tableName slug isActivated sensor { id } expectationSuite { id } createdBy { id } organization { id } configuredNotifications { pageInfo { hasNextPage hasPreviousPage startCursor endCursor } edges { cursor node { id } } } } } } """, variables={ 'checkpoint': { 'name': name, 'tableName': table_name, 'slug': generate_slug(name), 'isActivated': is_activated, 'expectationSuiteId': expectation_suite_id, 'sensorId': sensor_id, 'slackWebhook': slack_webhook } } ) def setup_checkpoint_from_ge_expectations_config( self, checkpoint_name, expectations_config, slack_webhook=None): """ First creates a new expectation suite, which generates new default checkpoint, sensor, and datasource for manual file upload. After a new expectation suite is created, the new checkpoint is created (and optionally, a new Slack notification) :param checkpoint_name: (str) the name of the checkpoint to be created :param expectations_config: (dict) an expectation config as return by Great Expectations :param slack_webhook: (str) a Slack webhook to route notifications to :return: the dict representation of the checkpoint that was created """ new_expectation_suite = self.add_expectation_suite_from_expectations_config( name=checkpoint_name, expectations_config=expectations_config) new_expectation_suite_id = new_expectation_suite['addExpectationSuite']['expectationSuite']['id'] return self.add_checkpoint( name=checkpoint_name, expectation_suite_id=new_expectation_suite_id, slack_webhook=slack_webhook ) def setup_checkpoint_from_ge_expectations_list( self, checkpoint_name, expectations_list, slack_webhook=None): """ First creates a new expectation suite, which generates new default checkpoint, sensor, and datasource for manual file upload. After a new expectation suite is created, the new checkpoint is created (and optionally, a new Slack notification) :param checkpoint_name: (str) the name of the checkpoint to be created :param expectations_list: (list) an expectations list as return by Great Expectations :param slack_webhook: (str) a Slack webhook to route notifications to :return: the dict representation of the checkpoint that was created """ new_expectation_suite = self.add_expectation_suite_from_ge_expectations_list( name=checkpoint_name, expectations_list=expectations_list) new_expectation_suite_id = new_expectation_suite['addExpectationSuite']['expectationSuite']['id'] return self.add_checkpoint( name=checkpoint_name, expectation_suite_id=new_expectation_suite_id, slack_webhook=slack_webhook ) def list_configured_notifications_on_checkpoint(self, checkpoint_id): """Retrieve all existing configured notifications for a given checkpoint_id. Returns: A dict containing the parsed query. """ return self.query(""" query checkpointQuery($id: ID!) { checkpoint(id: $id) { configuredNotifications { edges { node { id notificationType value notifyOn } } } } } """, variables={'id': checkpoint_id}) def add_sensor(self, name, type, data_source_id=None, excluded_paths=None, sensor_config=None): """ Adds a new sensor. :param name: (str) name to identify sensor :param type: (str) type of sensor :param data_source_id: (int or str relay id) id of associated data source :param excluded_paths: (array of dicts) paths to exclude from evaluation on sensor execution, of form {'path': ..., 'reason': ...} :param sensor_config: (dict) configuration dict with info for specifying which files are evaluated and optionally, an s3 bucket to save file after evaluation, :return: (dict) a dict representation of added sensor """ variables = { 'sensor': { 'name': name, 'type': type } } if data_source_id: variables['sensor']['dataSourceId'] = data_source_id if excluded_paths: variables['sensor']['excludedPaths'] = json.dumps(excluded_paths) if sensor_config: variables['sensor']['sensorConfig'] = json.dumps(sensor_config) return self.query(""" mutation addSensorMutation($sensor: AddSensorInput!) { addSensor(input: $sensor) { sensor { id name type dataSourceId createdBy { id firstName lastName } organization { id name } excludedPaths sensorConfig } } }""", variables=variables ) def update_sensor(self, sensor_id, name=None, data_source_id=None, excluded_paths=None, sensor_config=None): """ Updates an existing sensor. :param sensor_id: (int or str relay id) id of sensor to update :param name: (str) name to identify sensor :param data_source_id: (int or str relay id) id of associated data source :param excluded_paths: (array of dicts) paths to exclude from evaluation on sensor execution, of form {'path': ..., 'reason': ...} :param sensor_config: (dict) configuration dict with info for specifying which files are evaluated and optionally, an s3 bucket to save file after evaluation, :return: (dict) a dict representation of updated sensor """ variables = { 'sensor': { 'id': sensor_id } } if name: variables['sensor']['name'] = name if data_source_id: variables['sensor']['dataSourceId'] = data_source_id if excluded_paths: variables['sensor']['excludedPaths'] = json.dumps(excluded_paths) if sensor_config: variables['sensor']['sensorConfig'] = json.dumps(sensor_config) return self.query(""" mutation updateSensorMutation($sensor: UpdateSensorInput!) { updateSensor(input: $sensor) { sensor { id name dataSourceId createdBy { id firstName lastName } organization { id name } excludedPaths sensorConfig } } }""", variables={ 'sensor': { 'id': sensor_id, 'name': name, 'dataSourceId': data_source_id, 'excludedPaths': excluded_paths, 'sensorConfig': sensor_config } } ) def add_excluded_path_to_sensor(self, sensor_id, new_excluded_path_dict): return self.query(""" mutation updateSensorMutation($sensor: UpdateSensorInput!) { updateSensor(input: $sensor) { sensor { id excludedPaths } } } """, variables={ 'sensor': { 'id': sensor_id, 'newExcludedPathDict': json.dumps(new_excluded_path_dict) } } ) def trigger_sensor(self, sensor_id): return self.query(""" mutation triggerSensorMutation($sensor: TriggerSensorInput!) { triggerSensor(input: $sensor) { evaluationIds } } """, variables={ 'sensor': { 'id': sensor_id, } } ) def add_data_source(self, name, type, is_activated=True, credentials_reference=None): """ Adds a new data source. :param name: (str) name to identify data source :param type: (str) type of data source (i.e. 's3', 'database') :param is_activated: (bool) active status :param credentials_reference: (dict) dict configuration with info on how to connect to data source, e.g. { 's3_staging_bucket': ..., 'aws_access_key_id': ..., 'aws_secret_access_key': ..., 's3_bucket': ..., 'prefix': ... } :return: (dict) a dict representation of the added data source """ variables = { 'dataSource': { 'name': name, 'type': type, 'isActivated': is_activated, } } if credentials_reference: variables['dataSource']['credentialsReference'] = json.dumps(credentials_reference) return self.query(""" mutation addDataSourceMutation($dataSource: AddDataSourceInput!) { addDataSource(input: $dataSource) { dataSource { id name type isActivated createdBy { id firstName lastName } organization { id name } credentialsReference } } }""", variables=variables ) def update_data_source( self, data_source_id, name=None, type=None, is_activated=None, test_status=None, test_error_message=None, credentials_reference=None ): """ Updates an existing data source :param data_source_id: (int or str relay id) id of data source to update :param name: (str) name to identify data source :param type: (str) type of data source (i.e. 's3', 'database') :param is_activated: (bool) active status :param test_status: (str) test status of data source (None, 'success', 'failed') :param test_error_message: (str) optional, error message of failed test :param credentials_reference: (dict) dict configuration with info on how to connect to data source, e.g. { 's3_staging_bucket': ..., 'aws_access_key_id': ..., 'aws_secret_access_key': ..., 's3_bucket': ..., 'prefix': ... } :return: (dict) a dict representation of the added data source """ variables = { 'dataSource': { 'id': data_source_id } } if name: variables['dataSource']['name'] = name if type: variables['dataSource']['type'] = type if is_activated or is_activated is False: variables['dataSource']['isActivated'] = is_activated if credentials_reference: variables['dataSource']['credentialsReference'] = json.dumps(credentials_reference) if test_status: variables['dataSource']['testStatus'] = test_status if test_error_message: variables['dataSource']['testErrorMessage'] = test_error_message return self.query(""" mutation updateDataSourceMutation($dataSource: UpdateDataSourceInput!) { updateDataSource(input: $dataSource) { dataSource { id name type isActivated testStatus testErrorMessage createdBy { id firstName lastName } organization { id name } credentialsReference } } }""", variables=variables ) def get_config_property_by_name(self, name): """Retrieve an existing checkpoint by name. Args: name (str) -- The name of the config property to retrieve Returns: The config property value. """ config_property = self.query(""" query configPropertyQuery($name: String!) { configProperty(name: $name) { value } } """, variables={'name': name})['configProperty'] if config_property: return config_property['value'] else: return None def list_config_properties(self): return self.query("""{ allConfigProperties{ edges { node{ id name value } } } }""") def list_priority_levels(self): return self.query("""{ allPriorityLevels { edges { node { id level ordinal iconClassName colorClassName } } } }""") def add_operation_run( self, operation_name, workflow_run_id, status, message=None ): """Add a new operation_run Args: operation_name (string) -- name of operation workflow_run_id (int or string) -- int id or string relay id of workflow_run status (string) -- status of operation_run Kwargs: message (string) -- details about operation_run Returns: A dict representation of the added operation_run """ variables = { 'operationRun': { 'operationName': operation_name, 'workflowRunId': workflow_run_id, 'status': status } } if message is not None: variables['operationRun']['message'] = message return self.query(""" mutation addOperationRunMutation($operationRun: AddOperationRunInput!) { addOperationRun(input: $operationRun) { operationRun { id operationName workflowRunId startDateTime endDateTime status message createdBy { id firstName lastName email } createdAt updatedAt } } } """, variables=variables ) def get_operation_run(self, operation_run_id): """Retrieve a operation_run given its id Args: operation_run_id (int or str Relay id) -- a operation_run id Returns: A dict representation of the retrieved operation_run """ variables = { 'id': operation_run_id } return self.query(""" query operationRunQuery($id: ID!) { operationRun(id: $id) { id operationName workflowRunId startDateTime endDateTime status message createdBy { id firstName lastName email } deleted deletedAt updatedAt createdAt } } """, variables=variables ) def execute_operation(self, operation_name, workflow_run_id): """Execute an operation Args: operation_name (string) -- name of operation workflow_run_id (int or string Relay id) -- id of associated workflow_run Returns: A dict representation of the added operation_run """ variables = { 'operationRun': { 'operationName': operation_name, 'workflowRunId': workflow_run_id } } return self.query(""" mutation executeOperationMutation($operationRun: ExecuteOperationInput!) { executeOperation(input: $operationRun) { operationRun { id operationName workflowRunId status createdBy { id firstName lastName email } createdAt updatedAt } } } """, variables=variables ) def update_operation_run( self, operation_run_id, start_date_time=None, end_date_time=None, status=None, message=None, deleted=None ): """Update an existing operation_run. Args: operation_run_id (int or str Relay id) -- The id of the operation_run to update. Kwargs: start_date_time (datetime) -- the start datetime of operation execution end_date_time (datetime) -- the end datetime of operation execution status (string) -- the status of operation run message (string) -- details about operation run deleted (boolean) -- soft delete flag Returns: A dict representing the parsed results of the mutation. """ variables = { 'operationRun': { 'id': operation_run_id } } if start_date_time is not None: variables['operationRun']['startDateTime'] = start_date_time.isoformat() if end_date_time is not None: variables['operationRun']['endDateTime'] = end_date_time.isoformat() if status is not None: allowed_statuses = ['init', 'running', 'completed_success', 'completed_failure'] assert status in allowed_statuses, f'Status must be one of: {", ".join(allowed_statuses)}.' variables['operationRun']['status'] = status if message is not None: variables['operationRun']['message'] = message if deleted is not None: variables['operationRun']['deleted'] = deleted result = self.query(""" mutation updateOperationRunMutation($operationRun: UpdateOperationRunInput!) { updateOperationRun(input: $operationRun) { operationRun { id operationName workflowRunId startDateTime endDateTime status message updatedAt deletedAt createdBy { id firstName lastName email } } } } """, variables=variables ) return result def get_workflow_run(self, workflow_run_id): """Retrieve a workflow_run given its id Args: workflow_run_id (int or str Relay id) -- a workflow_run id Returns: A dict representation of the retrieved workflow_run """ variables = { 'id': workflow_run_id } return self.query(""" query workflowRunQuery($id: ID!) { workflowRun(id: $id) { id name createdBy { id firstName lastName email } deleted deletedAt updatedAt createdAt } } """, variables=variables ) def get_workflow_run_status(self, workflow_run_id): """Retrieve status of workflow_run given workflow_run id Args: workflow_run_id (int or str Relay id) -- a workflow_run id Returns: A dict representation of the retrieved workflow_run status """ variables = { 'id': workflow_run_id } return self.query(""" query workflowRunStatusQuery($id: ID!) { workflowRunStatus(id: $id) { workflowRun { id name createdBy { id firstName lastName email } deleted deletedAt updatedAt createdAt } operationRuns { id operationName workflowRunId startDateTime endDateTime createdById status message } assets { id key isDraft data workflowRunId operationRunId createdById } nextOperations blockingAssets } } """, variables=variables ) def get_workflow_runs_by_name(self, workflow_name): """Retrieve workflow_runs with a given workflow name Args: workflow_name (str) -- a workflow name Returns: A list of dict representations of the retrieved workflow_runs """ variables = { 'name': workflow_name } return self.query(""" query workflowRunsByNameQuery($name: String!) { workflowRunsByName(name: $name) { id name createdBy { id firstName lastName email } deleted deletedAt updatedAt createdAt } } """, variables=variables ) def get_next_workflow_run_operations(self, workflow_run_id): """Retrieve the next possible operations for a workflow_run with given id Args: workflow_run_id (int or str) -- id or string Relay id of workflow_run Returns: A list of operation names """ variables = { 'id': workflow_run_id } return self.query(""" query nextWorkflowRunOperationsQuery($id: ID!) { nextWorkflowRunOperations(id: $id) } """, variables=variables ) def get_workflow_run_blocking_assets(self, workflow_run_id): """Retrieve a workflow run's blocking assets. Blocking assets are assets that their absence is the only thing blocking an operation (not all of whose outputs are registered as assets) from running Args: workflow_run_id (int or str) -- id or string Relay id of workflow_run Returns: A list of asset keys """ variables = { 'id': workflow_run_id } return self.query(""" query workflowRunBlockingAssetsQuery($id: ID!) { workflowRunBlockingAssets(id: $id) } """, variables=variables ) def add_workflow_run(self, name): """Add a new workflow_run Args: name (string) -- name of workflow_run Returns: A dict representation of the added workflow_run """ variables = { 'workflowRun': { 'name': name, } } return self.query(""" mutation addWorkflowRunMutation($workflowRun: AddWorkflowRunInput!) { addWorkflowRun(input: $workflowRun) { workflowRun { id name createdBy { id firstName lastName email } createdAt updatedAt } } } """, variables=variables ) def get_asset(self, asset_id): """Retrieve an asset given its id Args: asset_id (int or str Relay id) -- an asset id Returns: A dict representation of the retrieved asset """ variables = { 'id': asset_id } return self.query(""" query assetQuery($id: ID!) { asset(id: $id) { id key data isDraft workflowRunId operationRunId createdBy { id firstName lastName email } deleted deletedAt updatedAt createdAt } } """, variables=variables ) def add_asset(self, key, data, workflow_run_id, is_draft, operation_run_id=None): """Add a new asset Args: workflow_run_id (int or str Relay id) -- a WorkflowRun id key (string) -- key of asset to add data (string) -- serialization of asset's data is_draft (boolean) -- boolean indicating whether asset is a draft Returns: A dict representation of the added asset """ variables = { 'asset': { 'key': key, 'isDraft': is_draft, 'data': data, 'workflowRunId': workflow_run_id, 'operationRunId': operation_run_id } } if operation_run_id is not None: variables['asset']['operationRunId'] = operation_run_id return self.query(""" mutation addAssetMutation($asset: AddAssetInput!) { addAsset(input: $asset) { asset { id key data isDraft createdBy { id firstName lastName email } createdAt updatedAt workflowRunId operationRunId } } } """, variables=variables ) def update_asset( self, asset_id, is_draft=None, data=None, deleted=None ): """Update an existing asset. Args: asset_id (int or str Relay id) -- The id of the asset to update. Kwargs: is_draft (boolean) -- deleted (boolean) -- soft delete flag Returns: A dict representing the parsed results of the mutation. """ variables = { 'asset': { 'id': asset_id } } if is_draft is not None: variables['asset']['isDraft'] = is_draft if data is not None: variables['asset']['data'] = data if deleted is not None: variables['asset']['deleted'] = deleted result = self.query(""" mutation updateAssetMutation($asset: UpdateAssetInput!) { updateAsset(input: $asset) { asset { id key isDraft data workflowRunId operationRunId updatedAt deleted deletedAt createdBy { id firstName lastName email } } } } """, variables=variables ) return result def get_assets(self, workflow_run_id, asset_keys, include_drafts=False): """Retrieve a list of assets given a workflow_run_id and list of asset_keys Args: workflow_run_id (int or str Relay id) -- a WorkflowRun id asset_keys (list of strings) -- a list of asset keys to fetch include_drafts (boolean) -- boolean indicating whether to include drafts in results Returns: A list of asset dicts representing asset objects """ variables = { 'workflowRunId': workflow_run_id, 'assetKeys': asset_keys, 'includeDrafts': include_drafts } return self.query(""" query assetsQuery($workflowRunId: ID!, $assetKeys: [String]!, $includeDrafts: Boolean!) { assets(workflowRunId: $workflowRunId, assetKeys: $assetKeys, includeDrafts: $includeDrafts) { id key isDraft data workflowRunId operationRunId createdBy { id firstName lastName email } deleted deletedAt } } """, variables=variables)
StarcoderdataPython
5129800
<reponame>Kiraeraser/My_Blog from django import forms class ContactForm(forms.Form): full_name=forms.CharField() email=forms.EmailField() content= forms.CharField(widget= forms.Textarea) #custom form validation def clean_email(self, *args, **kwargs): email=self.cleaned_data.get('email') if email.endswith('edu'): raise forms.ValidationError("this is not a valid email. Use anothor one") print(email) return email
StarcoderdataPython
5006678
#! /usr/bin/env python3 # -*- coding: utf-8 -*- import sys import frida import time def on_message(message, data): if message['type'] == 'error': print('[!] ' + message['stack']) elif message['type'] == 'send': print('[i] ' + message['payload']) else: print(message) def main(target_process, addr, size): session = frida.attach(target_process) script = session.create_script(""" var buf = Memory.readByteArray(ptr('0x%x'), %d); console.log(hexdump(buf, { offset: 0, length: %d, header: true, ansi: false })); """ % (addr, size, size)) script.on('message', on_message) script.load() time.sleep(2) session.detach() if __name__ == '__main__': if len(sys.argv) < 4: print('Usage: {} <process name or PID> <addr> <size>'.format(__file__)) sys.exit(1) if sys.argv[1].isdigit(): target_process = int(sys.argv[1]) else: target_process = sys.argv[1] addr, size = int(sys.argv[2], 16), int(sys.argv[3]) main(target_process, addr, size)
StarcoderdataPython
3290633
<reponame>ProkopHapala/ProbeParticleModel #!/usr/bin/python3 -u import os import numpy as np import sys import pyProbeParticle as PPU import pyProbeParticle.GridUtils as GU import pyProbeParticle.core as PPC import pyProbeParticle.HighLevel as PPH # =============== arguments definition from optparse import OptionParser parser = OptionParser() parser.add_option( "-k", action="store" , type="float", help="tip stiffenss [N/m]" ) parser.add_option( "--krange", action="store" , type="float", help="tip stiffenss range (min,max,n) [N/m]", nargs=3) parser.add_option( "-q", action="store" , type="float", help="tip charge [e]" ) parser.add_option( "--qrange", action="store" , type="float", help="tip charge range (min,max,n) [e]", nargs=3) parser.add_option( "-b", "--boltzmann" , action="store_true", default=False, help="calculate forces with boltzmann particle" ) parser.add_option( "--bI" ,action="store_true", default=False, help="calculate current between boltzmann particle and tip" ) parser.add_option( "--tip_base", action="store_true", default=False, help="interpolates F_z field in the position of the tip_base" ) parser.add_option( "--pos", action="store_true", default=False, help="save probe particle positions" ) parser.add_option( "--vib", action="store" , type="int", default=-1, help="map PP vibration eigenmodes; 0-just eigenvals; 1-3 eigenvecs" ) parser.add_option( "--disp", action="store_true", default=False, help="save probe particle displacements") parser.add_option( "--tipspline", action="store" , type="string", help="file where spline is stored", default=None ) parser.add_option( "--npy" , action="store_true" , help="load and save fields in npy instead of xsf", default=False) parser.add_option( "--stm" , action="store_true" , help="load and save data for the PPSTM code" , default=False) (options, args) = parser.parse_args() opt_dict = vars(options) data_format ="npy" if options.npy else "xsf" # =============== Setup PPU.loadParams( 'params.ini' ) print(opt_dict) # Ks Bds = False # Boolean double stiffness - possible double stifnness in params.ini if opt_dict['krange'] is not None: Ks = np.linspace( opt_dict['krange'][0], opt_dict['krange'][1], int( opt_dict['krange'][2] ) ) elif opt_dict['k'] is not None: Ks = [ opt_dict['k'] ] else: Ks = [ PPU.params['stiffness'][0] ] ; Bds = True # Boolean double stiffness - possible double stifnness in params.ini # Qs charged_system=False if opt_dict['qrange'] is not None: Qs = np.linspace( opt_dict['qrange'][0], opt_dict['qrange'][1], int( opt_dict['qrange'][2] ) ) elif opt_dict['q'] is not None: Qs = [ opt_dict['q'] ] else: Qs = [ PPU.params['charge'] ] for iq,Q in enumerate(Qs): if ( abs(Q) > 1e-7): charged_system=True if options.tipspline is not None : try: S = np.genfromtxt(options.tipspline ) print(" loading tip spline from "+options.tipspline) xs = S[:,0].copy(); print("xs: ", xs) ydys = S[:,1:].copy(); print("ydys: ", ydys) PPC.setTipSpline( xs, ydys ) #Ks = [0.0] except: print("cannot load tip spline from "+options.tipspline) sys.exit() tip_base=options.tip_base if not tip_base: tip_base = True if ((PPU.params["tip_base"][0] != 'None') and (PPU.params["tip_base"][0] != None)) else False print("Ks =", Ks) print("Qs =", Qs) print("tip_base =", tip_base) print(" ============= RUN ") if ( charged_system == True): print(" load Electrostatic Force-field ") FFel, lvec, nDim = GU.load_vec_field( "FFel" ,data_format=data_format) if (options.boltzmann or options.bI) : print(" load Boltzmann Force-field ") FFboltz, lvec, nDim = GU.load_vec_field( "FFboltz", data_format=data_format) print(" load Lenard-Jones Force-field ") FFLJ, lvec, nDim = GU.load_vec_field( "FFLJ" , data_format=data_format) PPU.lvec2params( lvec ) PPC.setFF( FFLJ ) xTips,yTips,zTips,lvecScan = PPU.prepareScanGrids( ) for iq,Q in enumerate( Qs ): if ( charged_system == True): FF = FFLJ + FFel * Q else: FF = FFLJ if options.boltzmann : FF += FFboltz PPC.setFF_Fpointer( FF ) for ik,K in enumerate( Ks ): dirname = "Q%1.2fK%1.2f" %(Q,K) print(" relaxed_scan for ", dirname) if not os.path.exists( dirname ): os.makedirs( dirname ) if Bds: PPC.setTip( kSpring = np.array((PPU.params['stiffness'][0],PPU.params['stiffness'][1],0.0))/-PPU.eVA_Nm ) else: PPC.setTip( kSpring = np.array((K,K,0.0))/-PPU.eVA_Nm ) Fs,rPPs,rTips = PPH.relaxedScan3D( xTips, yTips, zTips ) GU.save_scal_field( dirname+'/OutFz', Fs[:,:,:,2], lvecScan, data_format=data_format ) if opt_dict['vib'] >= 0: which = opt_dict['vib'] print(" === computing eigenvectors of dynamical matix which=%i ddisp=%f" %(which,PPU.params['ddisp'])) evals,evecs = PPC.stiffnessMatrix( rTips.reshape((-1,3)), rPPs.reshape((-1,3)), which=which, ddisp=PPU.params['ddisp'] ) GU.save_vec_field( dirname+'/eigvalKs', evals .reshape( rTips.shape ), lvecScan, data_format=data_format ) if which > 0: GU.save_vec_field( dirname+'/eigvecK1', evecs[0].reshape( rTips.shape ), lvecScan, data_format=data_format ) if which > 1: GU.save_vec_field( dirname+'/eigvecK2', evecs[1].reshape( rTips.shape ), lvecScan, data_format=data_format ) if which > 2: GU.save_vec_field( dirname+'/eigvecK3', evecs[2].reshape( rTips.shape ), lvecScan, data_format=data_format ) #print "SHAPE", PPpos.shape, xTips.shape, yTips.shape, zTips.shape if opt_dict['disp']: GU.save_vec_field( dirname+'/PPdisp', rPPs-rTips+PPU.params['r0Probe'][0], lvecScan, data_format=data_format ) if ( opt_dict['pos'] or opt_dict['stm']): GU.save_vec_field( dirname+'/PPpos', rPPs, lvecScan, data_format=data_format ) # Please do not change this procedure, especialy the lvecScan - it is important for the STM calculations! if options.bI: print("Calculating current from tip to the Boltzmann particle:") I_in, lvec, nDim = GU.load_scal_field('I_boltzmann', data_format=data_format) I_out = GU.interpolate_cartesian( I_in, rPPs, cell=lvec[1:,:], result=None ) del I_in; GU.save_scal_field( dirname+'/OutI_boltzmann', I_out, lvecScan, data_format=data_format) if tip_base: print("Interpolating FFel_tip_z in position of the tip_base. Beware, this is higher than the PP.") Ftip_in, lvec, nDim = GU.load_scal_field('FFel_tip', data_format=data_format) Ftip_out = GU.interpolate_cartesian( Ftip_in, rTips, cell=lvec[1:,:], result=None ) del Ftip_in; GU.save_scal_field( './OutFzTip_base', Ftip_out, lvecScan, data_format=data_format) tip_base = False # the rest is done in plot_results.py; For df, go to plot_results.py print(" ***** ALL DONE ***** ") #plt.show()
StarcoderdataPython
9647961
from bs4 import BeautifulSoup import requests import pandas as pd import numpy as np from sklearn.linear_model import LinearRegression import matplotlib.pyplot as plt import os import secrets import logging def visualize(handle): logger = logging.Logger(__name__) try: url = 'https://codeforces.com/contests/with/' url += handle html_page = requests.get(url) soup = BeautifulSoup(html_page.content, 'html5lib') logger.info("Successfully parsed soup") table = soup.find('table', attrs = {'class' : 'user-contests-table'}) ratings_tr = table.findAll('tr') ratings_tr = ratings_tr[1:] ratings_list = [] for this_row in ratings_tr: ratings_list.append(int(this_row.findAll('td')[5].text)) ratings_list.reverse() ratings_df = pd.DataFrame(ratings_list, columns = ['RATINGS']) ratings_df.head() idx_df = pd.DataFrame(np.arange(1, len(ratings_list) + 1, dtype='int64'), columns = ['CONTEST']) idx_df.head() df = pd.concat([idx_df, ratings_df], axis = 1) df.columns = ['CONTEST', 'RATINGS'] df.head() model = LinearRegression() model.fit(idx_df, ratings_df) # Visualization plt.plot(idx_df, ratings_df) plt.title('Username : {}'.format(handle)) plt.xlabel('Contest ID') plt.ylabel('Ratings') dummy_dataset = pd.DataFrame(np.arange(0, ratings_df.shape[0])) plt.plot(dummy_dataset, model.predict(dummy_dataset)) output_filename = secrets.token_hex(16) + '.png' path = os.path.abspath('.') + '/app/static/generated/' os.makedirs(path, exist_ok = True) plt.savefig(path + output_filename) plt.close() return output_filename except Exception as e: msg = 'Couldn\'t generate graph' logger.warning(msg) raise Exception(e) if __name__ == '__main__': visualize('razdeep')
StarcoderdataPython
4821999
import cyxxc.inputs #import cyxxc.game import cyxxc.common
StarcoderdataPython
388402
import csv input_path="D:/IDENUM/data-to-import/passau/enriched_filtered_data_plus.csv" output_path="D:/IDENUM/data-to-import/passau/output.csv" chars_to_remove='"\'\n' target_props=["user_name", "text_translated_en", "latitude", "longitude", "date"] input_data=open(input_path, encoding="utf8") reader=csv.DictReader(input_data) csv_columns = reader.fieldnames with open(output_path, 'w', encoding="utf8", newline='') as output_data: writer = csv.DictWriter(output_data, fieldnames=csv_columns, quoting=csv.QUOTE_ALL) #, quotechar='"', delimiter=',', escapechar='\\') writer.writeheader() for line in reader: try: for prop in line: # if prop == "text" and line["id"] == "11": # print("check") if prop in target_props: line[prop] = ''.join(c for c in str(line[prop]) if c not in chars_to_remove) #line[prop] = line[prop].replace("\n", " ") #line[prop] = line[prop].replace("\\", "") #line[prop] = line[prop].replace('"', '\'') #line[prop] = line[prop].replace("\\", "") # line[prop] = line[prop].replace("'", "\\'") else: line[prop]="" writer.writerow(line) except Exception as err: print("Error: ", err) input_data.close()
StarcoderdataPython
222605
#!/usr/bin/env python import numpy as np, pandas as pd, argparse, os, sys print(sys.version) from pygor.models.genmodel import GenModel ##################### ## Parse arguments ## ##################### parser = argparse.ArgumentParser() parser.add_argument("indir") parser.add_argument("outdir") parser.add_argument("id") args = parser.parse_args() marginals_path = os.path.join(os.getcwd(), args.indir, "final_marginals.txt") parms_path = os.path.join(os.getcwd(), args.indir, "final_parms.txt") print marginals_path print parms_path ################## ## Define model ## ################## g = GenModel(parms_path, marginals_path) def iterate_event(nickname, attr): """Iterate over the realizations in an event for a specific attribute.""" R = g.get_event(nickname, True).realizations return np.array([getattr(r, attr) for r in R]) def event_order(nickname): """Get the sort order for realizations in an event.""" return np.argsort(iterate_event(nickname, "index")) def event_names(nickname): """Get the sorted names of realizations in an event.""" return iterate_event(nickname, "name")[event_order(nickname)] def event_marginals(nickname): """Get the marginal probabilities of realizations in an event.""" return g.marginals[0][nickname] def make_distr_df(dct): """Make a distribution dataframe from an input dictionary.""" dct.update({"id":args.id}) return pd.DataFrame(dct) ######################## ## Get V distribution ## ######################## distributions = {} v_names = event_names("v_choice") v_marginals = event_marginals("v_choice") distributions["V"] = make_distr_df({"v":v_names, "p":v_marginals}) ################################ ## Get VJ and J distributions ## ################################ j_names = event_names("j_choice") vj_conditionals = event_marginals("j_choice") # J marginals *given* V choice # Get marginal J probabilities vj_marginals = vj_conditionals.T * v_marginals.astype(float) j_marginals = np.sum(vj_marginals, 1) distributions["J"] = make_distr_df({"j":j_names, "p":j_marginals}) # Get joint V/J probabilities distributions["VJ"] = make_distr_df({"v": np.tile(v_names, len(j_names)), "j": np.repeat(j_names, len(v_names)), "p": vj_marginals.T.flatten() }) ################################# ## Get VDJ and D distributions ## ################################# d_names = event_names("d_gene") vdj_conditionals = event_marginals("d_gene") # Get marginal D probabilities vdj_marginals = vdj_conditionals.T * vj_marginals d_marginals = np.einsum("ijk -> i", vdj_marginals) distributions["D"] = make_distr_df({"d":d_names, "p":d_marginals}) # Get joint V/D/J probabilities distributions["VDJ"] = make_distr_df({ "v": np.tile(v_names, len(d_names)*len(j_names)), "d": np.repeat(d_names, len(v_names)*len(j_names)), "j": np.tile(np.repeat(j_names, len(v_names)), len(d_names)), "p": vdj_marginals.flatten() }) ################################# ## Write distributions to file ## ################################# for k in distributions.keys(): outpath = os.path.join(args.outdir, "{}.tsv".format(k)) distributions[k].to_csv(outpath, index=False, sep="\t")
StarcoderdataPython
6528290
<filename>offline_messages/admin.py # from django.contrib import admin # # from offline_messages.models import OfflineMessage # # class OfflineMessageAdmin(admin.ModelAdmin): # list_display = [f.name for f in OfflineMessage._meta.fields] # admin.site.register(OfflineMessage, OfflineMessageAdmin)
StarcoderdataPython
11297347
<filename>src/phys_frames/type_analyzer.py #Copyright 2021 Purdue University, University of Virginia. #Copyright 2018 Purdue University, University of Nebraska--Lincoln. #Copyright (c) 2016, University of Nebraska NIMBUS LAB <NAME> <EMAIL> #All rights reserved. from type_annotator import TypeAnnotator from type_checker import TypeChecker from symbol_helper import SymbolHelper from type_helper import TypeHelper from frame_type import FrameT import cppcheckdata import testLinter as lint from file_processor import FileProcessor import fnmatch import os import networkx as nx from collections import OrderedDict, defaultdict class TypeAnalyzer: def __init__(self): self.current_file_under_analysis = '' self.source_file = '' self.function_graph = nx.DiGraph() self.all_function_graphs = [] self.all_sorted_analysis_dicts = [] self.configurations = [] line2type = lambda:defaultdict(defaultdict) self.file2type = defaultdict(line2type) self.should_sort_by_function_graph = True self.should_add_manual_type_annotations = False self.launch_static_transforms = [] self.launch_files = [] self.sh = SymbolHelper() self.th = TypeHelper() self.should_restart_error_printing = True def run_file_processor(self, target=''): fproc = FileProcessor(target) fproc.process_target() def run_linter_collect_all(self, target=''): for launch_file in self.find_files(target, '*.launch'): file_name = os.path.relpath(launch_file, target) print "Found launch: %s" % (file_name) self.launch_files.append(file_name) self.run_linter_collect(launch_file) def run_linter_collect(self, launch_file): transform_list, error_list = lint.process_file(launch_file) lint.print_errors(error_list) self.th.clear_frame_orientation() tya = TypeAnnotator(self.th, self.sh) transform_list = [t for t in transform_list if not t.skipped] for transform in transform_list: frame = tya.find_type_annotation_for_linter_transform(transform) transform.frame = frame self.launch_static_transforms.append(transform_list) def run_collect_all(self, target=''): # PROCESS C/CPP FILES for dump_file in self.find_files(target, '*.dump'): print "Found dump: %s" % (os.path.relpath(dump_file, target)) source_file = dump_file.replace('.dump','') self.run_collect(dump_file, source_file) # DEBUG self.print_debug_output() # PROCESS LAUNCH FILES self.run_linter_collect_all(target) # FIND FILE GROUPS #self.run_file_processor(target) def run_collect(self, dump_file, source_file=''): ''' input: a cppcheck 'dump' file containing an Abstract Syntax Tree (AST), symbol table, and token list input: a cpp source file returns: None side-effect: updates cppcheck data structure with information about this analysis ''' self.current_file_under_analysis = dump_file self.source_file = source_file self.th.clear_var_id_dict() self.th.clear_frame_orientation() # PARSE FILE data = cppcheckdata.parsedump(dump_file) #TODO check for multiple? Now, ONLY TEST THE FIRST CONFIGURATION for c in data.configurations[:1]: c = self.init_cppcheck_config_data_structures(c) self.sh.fill_func_name_dict(c.functions) self.function_graph = nx.DiGraph() # GET DICT OF ALL GLOBALLY SCOPED FUNCTIONS analysis_dict = self.find_functions(c) # FIND ORDER FOR FUNCTION GRAPH EXPLORATION sorted_analysis_dict = analysis_dict; if self.should_sort_by_function_graph: self.build_function_graph(analysis_dict) sorted_analysis_dict = self.make_sorted_analysis_dict_from_function_graph(analysis_dict) self.all_sorted_analysis_dicts.append(sorted_analysis_dict) self.collect_types_outside_functions(c.tokenlist) for function_dict in sorted_analysis_dict.values(): self.collect_param_types(function_dict) # RUN TYPE ANNOTATOR ON ALL TOKEN PARSE TREES FOR EACH FUNCTION for function_dict in sorted_analysis_dict.values(): self.collect_types(function_dict) self.sh.clear_func_name_dict() self.configurations.append(c) def find_files(self, directory, pattern): if os.path.isfile(directory): yield directory # THIS IS A DIRECTORY for root, dirs, files in os.walk(directory): root = os.path.abspath(root) for basename in files: if fnmatch.fnmatch(basename, pattern): filename = os.path.join(root, basename) yield filename def collect_types_outside_functions(self, tokenlist): tya = TypeAnnotator(self.th, self.sh) for t in tokenlist: if self.should_add_manual_type_annotations and (t.variable or t.str in ['.', '[', '(']): #TODO or t.varId if os.path.basename(t.file) in self.file2type: line2type = self.file2type[os.path.basename(t.file)] if t.linenr in line2type: (var_token, var_name) = (t, t.str) if t.str in ['.', '[', '(']: (var_token, var_name) = self.sh.find_compound_variable_token_and_name_for_sym_token(t) if var_name in line2type[t.linenr]: frame = eval(line2type[t.linenr][var_name]) frame = map(lambda frame_elem: FrameT(*frame_elem), frame) self.th.set_frame_type_for_variable_token(var_token, var_name, frame) if t.scope.type in ['Global', 'Namespace', 'Class']: if (not t.astParent) and (t.astOperand1 or t.astOperand2): t.isRoot = True tya.add_type_annotations_outside_functions(t) def collect_param_types(self, function_dict): tya = TypeAnnotator(self.th, self.sh) for root_token in function_dict['root_tokens']: tya.add_param_type_annotations(root_token) def collect_types(self, function_dict): tya = TypeAnnotator(self.th, self.sh) for root_token in function_dict['root_tokens']: tya.apply_and_propagate_values(root_token) tya.add_type_annotations(root_token) def find_type_errors(self, target='', errors_file=''): tyc = TypeChecker(self.th, self.sh, target) errors_file = 'errors.txt' print '\n' + '= '*20 print 'INCONSISTENCIES:' print '= '*20 + '\n' # C/CPP FILES for i in range(len(self.configurations)): tyc.check_types_for_file(self.configurations[i], self.all_sorted_analysis_dicts[i]) # LAUNCH FILES for i in range(len(self.launch_static_transforms)): if not self.launch_static_transforms[i]: continue error_list = lint.validate_transforms(self.launch_static_transforms[i]) if error_list: print '- '*40 print "FILE: %s\n" % (self.launch_files[i]) lint.print_errors(error_list) lint.print_linter_errors(error_list, self.launch_files[i], errors_file, self.should_restart_error_printing) self.should_restart_error_printing = False tyc.check_types_for_launch_file(self.launch_static_transforms[i], self.launch_files[i]) # GLOBAL tyc.check_types() # FILE_GROUPS fproc = FileProcessor(target) fproc.process_target() file_groups_list = fproc.get_file_groups_list() for group_id, file_group in file_groups_list: tyc.check_types_for_file_group(group_id, file_group) tyc.print_all_errors() tyc.print_frame_errors(errors_file, self.should_restart_error_printing) print '= '*20 + '\n' def load_type_annotations(self, annotation_file): # LOAD VARIABLE FRAME TYPE DATA with open(annotation_file) as f: for item in (line.rstrip('\n') for line in f): file_name, line_nr, var_name, frame = item.split(':') file_name, line_nr, var_name, frame = file_name.strip(), line_nr.strip(), var_name.strip(), frame.strip() self.file2type[file_name][line_nr][var_name] = frame if self.file2type: self.should_add_manual_type_annotations = True def init_cppcheck_config_data_structures(self, cppcheck_configuration): ''' AUGMENT CPPCHECK DATA STRUCTURE WITH ADDITIONAL FEATURES TO SUPPORT THIS ANALYSIS ''' c = cppcheck_configuration for t in c.tokenlist: t.frames = [] t.vals = [] t.isRoot = False for f in c.functions: f.return_type = None f.return_frames = [] f.return_arg_var_nr = 0 f.arg_frames = [] for arg_num in f.argument.keys(): f.arg_frames.append([]) f.isAnnotated = False for v in c.variables: v.frames = {} v.is_frame_set = False v.vals = {} v.isParam = False v.isTransform = True if self.sh.is_ros_transform_type(v) else False v.isUsed = False v.checkFrame = True #v.xyz = {} return c def find_functions(self, a_cppcheck_configuration): ''' LINEAR SCAN THROUGH TOKENS TO FIND 'function' TOKENS THAT HAVE GLOBAL SCOPE. COLLECT AND RETURN DICT CONTAINING FUNCTION START AND END TOKEN POINTERS output: dict containing function start and end tokens ''' function_dicts = {} # FIND FUNCTIONS IN 'SCOPES' REGION OF DUMP FILE, START AND END TOKENs for s in a_cppcheck_configuration.scopes: if s.type=='Function': # SCAN ALL FUNCTIONS UNLESS LIST OF FUNCTIONS SPECIFIED function_dicts[s.Id] = {'name': s.className, 'linenr': s.classStart.linenr, 'tokenStart': s.classStart, 'tokenEnd': s.classEnd, 'scopeObject': s, 'symbol_table': {}, 'function_graph_edges': [], 'function': s.function} # CONSTRUCT LIST OF ROOT TOKENS function_dicts[s.Id]['root_tokens'] = self.find_root_tokens(s.classStart, s.classEnd) #print "Found %d functions..." % len(function_dicts) return function_dicts def find_root_tokens(self, tokenStart, tokenEnd): ''' FOR A FUNCTION DEFINED AS ALL TOKENS FROM tokenStart TO tokenEnd, FIND THE ROOTS. input: tokenStart, a CPPCheckData Token, first token in a function input: tokenEnd, a CPPCheckData Token, last token in a function output: a list of root_tokens, in flow order ''' root_tokens_set = set() current_token = tokenStart while(current_token != tokenEnd): #TODO: reverse token set exploration to top-down instead of bottom-up # HAS A PARENT if current_token.astParent: a_parent = current_token.astParent has_parent = True while has_parent: # HAS NO PARENT, THEREFORE IS ROOT if not a_parent.astParent: root_tokens_set.add(a_parent) a_parent.isRoot = True has_parent = False else: a_parent = a_parent.astParent current_token = current_token.next root_tokens = list(root_tokens_set) # SORT NUMERICALLY BY LINE NUMBER root_tokens = sorted(root_tokens, key=lambda x : int(x.linenr)) return root_tokens def build_function_graph(self, analysis_dict): ''' BUILDS DIRECTED FUNCTION GRAPH. input: a dictionary of functions from this dump file output: none side effect: creates a graph linked to this object ''' # BUILD CALL GRAPH self.function_graph = nx.DiGraph() G = self.function_graph for k, function_dict in analysis_dict.iteritems(): if function_dict['function']: node = function_dict['function'].Id G.add_node(node) all_attr = nx.get_node_attributes(G, 'function_id') all_attr[node] = k nx.set_node_attributes(G, 'function_id', all_attr) self.add_edges_to_function_graph(function_dict, G, node) self.function_graph = G def add_edges_to_function_graph(self, function_dict, G, current_node): current_token = function_dict['tokenStart'] end_token = function_dict['tokenEnd'] # TERMINATION GUARENTEED IF DUMP FILE IS WELL FORMED while current_token is not end_token: # ON FIRST LOOP, SKIP SELF-REFERENCE current_token = current_token.next if current_token.function: if not G.has_edge(current_node, current_token.function.Id): G.add_edge(current_node, current_token.function.Id) function_dict['function_graph_edges'].append(current_token.function) def make_sorted_analysis_dict_from_function_graph(self, analysis_dict): ''' BUILDS A TOPO SORTED FUNCTION GRAPH. THIS ALLOWS THE ANALYSIS TO START ON FUNCTION LEAFS, SO WE CAN HOPEFULLY DISCOVER TYPES OF THE RETURN VALUE. THE FUNCTION GRAPH MAY HAVE CYCLES (recursion, for example), THEREFORE WE REMOVE THESE EDGES FROM THE GRAPH AND ANALYZE THEM LAST (<-- not sure this is best) input: a dictionary of functions from this dump file output: OrderedDict of functions postcondition: returned dict must be the same length as the input dict, and contain all the same elements ''' return_dict = OrderedDict() G = self.function_graph # TRY FINDING A DAG. IF NOT, REMOVE EDGES AND TRY AGAIN. super_break = 0 while nx.number_of_nodes(G) > 0 and super_break < 1000: super_break +=1 if not nx.is_directed_acyclic_graph(G): try: # SEARCH FOR CYCLE AND REMOVE EDGES edges = nx.find_cycle(G) G.remove_edges_from(edges) print 'Function graph has cycle %s' % edges, except: print 'Function graph is not a DAG and does not have a cycle!' # GIVE UP AND RETURN UNSORTED return analysis_dict else: # WE HAVE A DIGRAPH, CAN PROCEED ( and topo sort ) break if nx.number_of_nodes(G) == 0: # RETURN UNCHANGED return analysis_dict # WE HAVE A DIRECTED GRAPH WITH NODES, CAN SORT AND ADD NODES TO ORDERED LIST function_graph_topo_sort = nx.topological_sort(G) function_graph_topo_sort_reversed = function_graph_topo_sort[::-1] # CREATE RETURN DICT FROM TOPO SORT for node in function_graph_topo_sort_reversed: function_id_attr_dict = nx.get_node_attributes(G, 'function_id') if node in function_id_attr_dict: # ADD FUNCTION TO NEW DICTIONARY - THIS IS THE EXPLORE ORDER return_dict[function_id_attr_dict[node]] = analysis_dict[function_id_attr_dict[node]] # ADD ANY REMAINING FUNCTIONS NOT IN THE TOPO SORT TO THE ORDERED DICT for k in analysis_dict.keys(): if k not in return_dict: return_dict[k] = analysis_dict[k] assert (len(return_dict) == len(analysis_dict)) return return_dict def debug_print_function_graph(self, analysis_dict): if not analysis_dict: return for function_dict in analysis_dict.values(): print "%s :" % function_dict['name'] for edge in function_dict['function_graph_edges']: print ' --> %s' % edge.name ############### # DEBUG ############### def print_debug_output(self): #self.print_variable_frames_keys() #self.print_transform_variable_frames() pass def print_variable_frames_keys(self): for c in self.configurations: for v in c.variables: if v.nameToken and v.frames: print "%s: %s\n" % (v.nameToken.str, v.frames.keys()) def print_transform_variable_frames(self): for c in self.configurations: for v in c.variables: if v.isTransform: print "%s: %s\n" % (v.Id, v.frames,)
StarcoderdataPython
11339431
# This program filter raw tweet medadata into a cleaner format # to reduce storage space required and processing time. import couchdb from textblob import TextBlob import re # connect to local server couchserver = couchdb.Server("http://admin:[email protected]:5984/") # delete database if exist dbname = "clean_data_kaustub" if dbname in couchserver: del couchserver[dbname] clean = couchserver.create(dbname) # connect to raw tweet databse crawler = couchserver['tweettest'] # filter tweets to a cleaner format def remove_non_letters(text): # regex patterns hashtag = r'#\S+' email = r'[\w\d\._-]+@\w+(\.\w+){1,3}' website = r'http\S+|www\.\w+(\.\w+){1,3}' retweet = r'RT\s@\S+' mention = r'@[\w\d]+' punctual = r'[_\+-\.,!@\?#$%^&*();\\/|<>"\':]+' weird = r'�+' newline = r'\n' spaces = r'\s{2,}' digits = r'\d+' combined_patterns = r'|'.join((hashtag, email, website, retweet, mention, punctual, weird, newline, digits)) stripped = re.sub(combined_patterns, ' ', text) # remove extra whitespaces stripped = re.sub(spaces, ' ', stripped) stripped = stripped.strip() return stripped def remove_emojis(text): emoji_pattern = re.compile( u"(\ud83d[\ude00-\ude4f])|" # emoticonsa u"(\ud83c[\udf00-\uffff])|" # symbols & pictographs (1 of 2) u"(\ud83d[\u0000-\uddff])|" # symbols & pictographs (2 of 2) u"(\ud83d[\ude80-\udeff])|" # transport & map symbols u"(\ud83c[\udde0-\uddff])|" # flags (iOS) "\+", flags=re.UNICODE) # return ''.join(c for c in str if c not in emoji.UNICODE_EMOJI) return emoji_pattern.sub (r' ', text) def filter_tweet(text): text = remove_emojis(text) text = remove_non_letters(text) if not text or len(text) == 0: return else: return text for i in crawler: try: tweet = crawler[i]["doc"] print("hello", tweet) if ('en' in tweet['lang']): # if tweet in English id = tweet["id"] day = tweet["created_at"][:3] time = tweet["created_at"][11:13] location = tweet['user']['location'] hashtags = tweet['entities']['hashtags'] lang = tweet['lang'] place = tweet['place'] favorite_count = tweet['favorite_count'] source = tweet['source'][37:44] rt = tweet["retweet_count"] coordinates = tweet["coordinates"]["coordinates"] text = filter_tweet(tweet['text']) length = len(text) bbox = tweet["place"]["bounding_box"]['coordinates'] polarity = TextBlob(text).sentiment.polarity subjectivity = TextBlob(text).sentiment.subjectivity doc = { 'id': id, 'day': day, 'hour': time, 'user_location': location, 'hashtags': hashtags, 'lang': lang, 'place':place, 'favorite_count':favorite_count, 'source': source, 'rt': rt, 'text': text, 'length': length, 'bounding_box': bbox, 'polarity': polarity, 'subjectivity': subjectivity, 'coordinates': coordinates } # save document to two database for backup clean.save(doc) except Exception as e: print("Hi there") pass
StarcoderdataPython
4856500
<reponame>stephenwashington/advent-of-code-2021<gh_stars>1-10 import itertools def process_input(filename): values = [] with open(filename) as f: for line in f: input = [] output = [] l = line.strip().split("|") for digit in l[0].strip().split(" "): if len(digit) == 0: continue input.append(sorted(digit.strip())) for output_digit in l[1].split(" "): if len(output_digit) == 0: continue output.append(sorted(output_digit.strip())) values.append({"input": input, "output": output}) return values def part1(): values = process_input("day8-input.txt") count = 0 for value in values: for output_digit in value["output"]: if len(output_digit) in [2, 4, 3, 7]: count += 1 print(count) def check_mapping(inputs, mapping): five_segment = ["".join(x) for x in inputs if len(x) == 5] six_segment = ["".join(x) for x in inputs if len(x) == 6] scrambled_one = "".join([x for x in inputs if len(x) == 2][0]) scrambled_four = "".join([x for x in inputs if len(x) == 4][0]) scrambled_seven = "".join([x for x in inputs if len(x) == 3][0]) solution = { "zero": "", "one": "", "two": "", "three": "", "four": "", "five": "", "six": "", "seven": "", "eight": "abcdefg", "nine": "" } # then use 1, 4, 7 to double-check mapping one = mapping["top_right"] + mapping["bottom_right"] one = "".join(sorted(one)) if sorted(one) != sorted(scrambled_one): return None solution["one"] = one four = mapping["top_left"] + mapping["top_right"] + mapping["middle"] + mapping["bottom_right"] four = "".join(sorted(four)) if sorted(four) != sorted(scrambled_four): return None solution["four"] = four seven = mapping["top_middle"] + mapping["top_right"] + mapping["bottom_right"] seven = "".join(sorted(seven)) if sorted(seven) != sorted(scrambled_seven): return None solution["seven"] = seven # for each from each segment list, we want to confirm that it matches one of hte possible numbers: # 0: all except middle zero = mapping["top_middle"] + mapping["top_left"] + mapping["top_right"] + mapping["bottom_left"] + mapping["bottom_right"] + mapping["bottom_middle"] zero = "".join(sorted(zero)) if zero not in six_segment: return None else: six_segment.remove(zero) solution["zero"] = zero # 6: all except top_right six = mapping["top_middle"] + mapping["top_left"] + mapping["middle"] + mapping["bottom_left"] + mapping["bottom_right"] + mapping["bottom_middle"] six = "".join(sorted(six)) if six not in six_segment: return None else: six_segment.remove(six) solution["six"] = six # 9: all except bottom left nine = mapping["top_middle"] + mapping["top_left"] + mapping["top_right"] + mapping["middle"] + mapping["bottom_right"] + mapping["bottom_middle"] nine = "".join(sorted(nine)) if nine not in six_segment: return None else: six_segment.remove(nine) solution["nine"] = nine # 2: all except top left, bottom right two = mapping["top_middle"] + mapping["top_right"] + mapping["middle"] + mapping["bottom_left"] + mapping["bottom_middle"] two = "".join(sorted(two)) if two not in five_segment: return None else: five_segment.remove(two) solution["two"] = two # 3: all except top left, bottom left three = mapping["top_middle"] + mapping["top_right"] + mapping["middle"] + mapping["bottom_right"] + mapping["bottom_middle"] three = "".join(sorted(three)) if three not in five_segment: return None else: five_segment.remove(three) solution["three"] = three # 5: all except top right, bottom left five = mapping["top_middle"] + mapping["top_left"] + mapping["middle"] + mapping["bottom_right"] + mapping["bottom_middle"] five = "".join(sorted(five)) if five not in five_segment: return None else: five_segment.remove(five) solution["five"] = five return solution def part2(): values = process_input("day8-input.txt") str_to_int_mappings = { "zero": "0", "one": "1", "two": "2", "three": "3", "four": "4", "five": "5", "six": "6", "seven": "7", "eight": "8", "nine": "9" } position_mapping = { "top_middle": "", "top_left": "", "top_right": "", "middle": "", "bottom_left": "", "bottom_right": "", "bottom_middle": "" } sum = 0 for value in values: descrambled_solution = None # set up the dict for easier mapping for mapping in itertools.permutations("abcdefg"): position_mapping["top_middle"] = mapping[0] position_mapping["top_left"] = mapping[1] position_mapping["top_right"] = mapping[2] position_mapping["middle"] = mapping[3] position_mapping["bottom_left"] = mapping[4] position_mapping["bottom_right"] = mapping[5] position_mapping["bottom_middle"] = mapping[6] # check the mapping, break away if it works solution = check_mapping(value["input"], position_mapping) if solution is not None: descrambled_solution = solution break # for the four outputs, use the determined wiring to figure out the represented number unscrambled_outputs = [] for output in value["output"]: joined_output = "".join(sorted(output)) for number, wiring in descrambled_solution.items(): if joined_output == wiring: unscrambled_outputs.append(number) actual_output_value_string = "" for value in unscrambled_outputs: actual_output_value_string += str_to_int_mappings[value] sum += int(actual_output_value_string) print(sum) if __name__ == '__main__': part1() part2()
StarcoderdataPython
1805010
<reponame>tristen-tooming/netvisor-api-client<gh_stars>0 from marshmallow import ValidationError from .base import Request, ListRequest from ..exc import InvalidData from ..responses.purchase_invoices import ( PurchaseInvoiceListResponse, GetPurchaseInvoiceResponse ) class GetPurchaseInvoiceRequest(Request): method = 'GET' uri = 'GetPurchaseInvoice.nv' response_cls = GetPurchaseInvoiceResponse def _raise_exception(self): raise InvalidData( 'Data form incorrect:. ' 'Purchase invoice not found with Netvisor identifier: {0}'.format( self.params['NetvisorKey'] ) ) def parse_response(self, response): try: result = super(GetPurchaseInvoiceRequest, self).parse_response(response=response) if not result: self._raise_exception() return result except ValidationError: self._raise_exception() class PurchaseInvoiceListRequest(ListRequest): method = 'GET' uri = 'PurchaseInvoiceList.nv' response_cls = PurchaseInvoiceListResponse
StarcoderdataPython
3595589
<reponame>LesterYHZ/Automated-Bridge-Inspection-Robot-Project import serial def Initialization(): ser = serial.Serial("/dev/ttyUSB0",9600) def Send_Signal(signal): # signal: [Int] ser.write(bytes(signal))
StarcoderdataPython
11314211
<filename>tests/test_url_util.py<gh_stars>10-100 """ Copyright 2020-present Nike, Inc. Licensed under the Apache License, Version 2.0 (the "License"); You may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and* limitations under the License.* """ import unittest from cerberus.url_util import ensure_single_trailing_slash, ensure_no_trailing_slash class TestEnsureTrailingSlash(unittest.TestCase): """unit tests for url_util.ensure_trailing_slash""" @staticmethod def test_no_trailing_slash(): url_with_trailing_slash = ensure_single_trailing_slash("nike.com") assert url_with_trailing_slash.endswith(".com/") @staticmethod def test_single_trailing_slash(): url_with_trailing_slash = ensure_single_trailing_slash("nike.com/") assert url_with_trailing_slash.endswith(".com/") @staticmethod def test_multiple_trailing_slash(): url_with_trailing_slash = ensure_single_trailing_slash("nike.com//") assert url_with_trailing_slash.endswith(".com/") class TestEnsureNoTrailingSlash(unittest.TestCase): """unit tests for url_util.ensure_no_trailing_slash""" @staticmethod def test_no_trailing_slash(): url_without_trailing_slash = ensure_no_trailing_slash("nike.com") assert url_without_trailing_slash.endswith(".com") @staticmethod def test_one_trailing_slash(): url_without_trailing_slash = ensure_no_trailing_slash("nike.com/") assert url_without_trailing_slash.endswith(".com") @staticmethod def test_multiple_trailing_slash(): url_without_trailing_slash = ensure_no_trailing_slash("nike.com//") assert url_without_trailing_slash.endswith(".com")
StarcoderdataPython
3233194
"""Process LN2_PATCH_FLATTEN outputs for cake plots.""" import numpy as np import nibabel as nb FILE1 = "/home/faruk/Documents/temp_flooding_brains/data/ding_flat/ding_flat_test.nii.gz" FILE2 = "/home/faruk/Documents/temp_flooding_brains/data/ding_flat/ding_flat_L2.nii.gz" OUTFILE = "/home/faruk/Documents/temp_flooding_brains/data/ding_flat/ding_flat_test_prep.nii.gz" NR_CAKE_LAYERS = 5 # ----------------------------------------------------------------------------- nii1 = nb.load(FILE1) dims = nii1.shape data = nii1.get_fdata() # Quantize norm norm = nb.load(FILE2).get_fdata() norm /= norm.max() norm *= NR_CAKE_LAYERS norm = np.ceil(norm) # Make space on z axis for cake layers using an extra dimension new = np.zeros((dims[0], dims[1], NR_CAKE_LAYERS, dims[2])) # Elevate norm bins center to outwards nr_layers = dims[2] for i, j in enumerate(range(NR_CAKE_LAYERS, 0, -1)): temp = np.zeros(dims) temp[norm == j] = data[norm == j] new[:, :, i, :] = temp # Flatten the extra dimension onto 3rd new = new.reshape((dims[0], dims[1], NR_CAKE_LAYERS * dims[2])) img = nb.Nifti1Image(new, affine=nii1.affine, header=nii1.header) nb.save(img, OUTFILE) print("Finished.")
StarcoderdataPython
3262140
# Presently unused from flask.ext.script import Manager from flask.ext.migrate import Migrate, MigrateCommand import os from service.model import * from service.server import app, db app.config.from_object( os.environ.get( 'SETTINGS' ) ) migrate = Migrate( app, db ) manager = Manager( app ) manager.add_command( 'db', MigrateCommand ) if __name__ == '__main__': manager.run()
StarcoderdataPython
1994550
<gh_stars>0 # Copyright The OpenTelemetry Authors # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import io import os import unittest from opentelemetry.semconv.model.semantic_convention import SemanticConventionSet from opentelemetry.semconv.templating.markdown.options import MarkdownOptions from opentelemetry.semconv.templating.markdown import MarkdownRenderer class TestCorrectMarkdown(unittest.TestCase): def testRef(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/ref/general.yaml")) semconv.parse(self.load_file("markdown/ref/rpc.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) md = self.load_file("markdown/ref/input/input_rpc.md") with open(md, "r") as markdown: content = markdown.read() renderer = MarkdownRenderer(self.load_file("markdown/ref/input"), semconv) output = io.StringIO() renderer._render_single_file(content, md, output) with open(self.load_file("markdown/ref/expected.md"), "r") as markdown: expected = markdown.read() assert output.getvalue() == expected def testInclude(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/include/faas.yaml")) semconv.parse(self.load_file("markdown/include/http.yaml")) semconv.parse(self.load_file("markdown/include/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) md = self.load_file("markdown/include/input/input_faas.md") with open(md, "r") as markdown: content = markdown.read() renderer = MarkdownRenderer(self.load_file("markdown/include/input"), semconv) output = io.StringIO() renderer._render_single_file(content, md, output) with open(self.load_file("markdown/include/expected.md"), "r") as markdown: expected = markdown.read() assert output.getvalue() == expected def testDeprecated(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/deprecated/http.yaml")) semconv.parse(self.load_file("markdown/deprecated/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open(self.load_file("markdown/deprecated/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/deprecated/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/deprecated/", "markdown/deprecated/input.md", content, expected, ) def testStability(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/stability/stability.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 1) with open(self.load_file("markdown/stability/input.md"), "r") as markdown: content = markdown.read() # Labels with open( self.load_file("markdown/stability/labels_expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/stability/", "markdown/stability/input.md", content, expected, ) # Badges with open( self.load_file("markdown/stability/badges_expected.md"), "r" ) as markdown: expected = markdown.read() options = MarkdownOptions(enable_stable=True, use_badge=True) self.check_render( semconv, "markdown/stability/", "markdown/stability/input.md", content, expected, options, ) def testSingle(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/single/http.yaml")) semconv.parse(self.load_file("markdown/single/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open(self.load_file("markdown/single/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/single/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/single/", "markdown/single/input.md", content, expected, ) def testEmpty(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/empty/http.yaml")) semconv.parse(self.load_file("markdown/empty/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open(self.load_file("markdown/empty/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/empty/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/empty/", "markdown/empty/input.md", content, expected ) def testExampleArray(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/example_array/http.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 1) with open(self.load_file("markdown/example_array/input.md"), "r") as markdown: content = markdown.read() with open( self.load_file("markdown/example_array/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/example_array/", "markdown/example_array/input.md", content, expected, ) def testMultiple(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/multiple/http.yaml")) semconv.parse(self.load_file("markdown/multiple/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open(self.load_file("markdown/multiple/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/multiple/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/multiple/", "markdown/multiple/input.md", content, expected, ) def testEnumInt(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/enum_int/rpc.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 1) with open(self.load_file("markdown/enum_int/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/enum_int/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/enum_int/", "markdown/enum_int/input.md", content, expected, ) def testExtendConstraint(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/extend_constraint/database.yaml")) semconv.parse(self.load_file("markdown/extend_constraint/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open( self.load_file("markdown/extend_constraint/input.md"), "r" ) as markdown: content = markdown.read() with open( self.load_file("markdown/extend_constraint/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/extend_constraint/", "markdown/extend_constraint/input.md", content, expected, ) def test_error_missing_end(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/missing_end_tag/http.yaml")) semconv.parse(self.load_file("markdown/missing_end_tag/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open(self.load_file("markdown/missing_end_tag/input.md"), "r") as markdown: content = markdown.read() with self.assertRaises(Exception) as ex: renderer = MarkdownRenderer( self.load_file("markdown/missing_end_tag/"), semconv ) renderer._render_single_file( content, "markdown/missing_end_tag/input.md", io.StringIO() ) self.assertEqual("Missing ending <!-- endsemconv --> tag", ex.exception.args[0]) def test_error_wrong_id(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/wrong_semconv_id/http.yaml")) semconv.parse(self.load_file("markdown/wrong_semconv_id/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 5) with open( self.load_file("markdown/wrong_semconv_id/input.md"), "r" ) as markdown: content = markdown.read() with self.assertRaises(Exception) as ex: renderer = MarkdownRenderer( self.load_file("markdown/wrong_semconv_id/"), semconv ) renderer._render_single_file( content, "markdown/wrong_semconv_id/input.md", io.StringIO() ) self.assertEqual("Semantic Convention ID db not found", ex.exception.args[0]) def test_empty_table(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/empty_table/http.yaml")) semconv.parse(self.load_file("markdown/empty_table/faas.yaml")) semconv.parse(self.load_file("markdown/empty_table/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open(self.load_file("markdown/empty_table/input.md"), "r") as markdown: content = markdown.read() with open(self.load_file("markdown/empty_table/expected.md"), "r") as markdown: expected = markdown.read() self.check_render( semconv, "markdown/empty_table/", "markdown/empty_table/input.md", content, expected, ) def test_parameter_full(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_full/http.yaml")) semconv.parse(self.load_file("markdown/parameter_full/faas.yaml")) semconv.parse(self.load_file("markdown/parameter_full/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open(self.load_file("markdown/parameter_full/input.md"), "r") as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_full/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/parameter_full/", "markdown/parameter_full/input.md", content, expected, ) def test_parameter_tag(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_tag/database.yaml")) semconv.parse(self.load_file("markdown/parameter_tag/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 6) with open(self.load_file("markdown/parameter_tag/input.md"), "r") as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_tag/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/parameter_tag/", "markdown/parameter_tag/input.md", content, expected, ) def test_parameter_tag_empty(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_tag_empty/database.yaml")) semconv.parse(self.load_file("markdown/parameter_tag_empty/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 6) with open( self.load_file("markdown/parameter_tag_empty/input.md"), "r" ) as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_tag_empty/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/parameter_tag_empty/", "markdown/parameter_tag_empty/input.md", content, expected, ) def test_parameter_tag_no_attr(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_tag_no_attr/database.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 1) with open( self.load_file("markdown/parameter_tag_no_attr/input.md"), "r" ) as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_tag_no_attr/expected.md"), "r" ) as markdown: expected = markdown.read() with self.assertRaises(Exception) as ex: self.check_render( semconv, "markdown/parameter_tag_no_attr/", "markdown/parameter_tag_no_attr/input.md", content, expected, ) self.assertEqual( "No attributes retained for 'db' filtering by 'wrong'", ex.exception.args[0] ) def test_parameter_remove_constraint(self): semconv = SemanticConventionSet(debug=False) semconv.parse( self.load_file("markdown/parameter_remove_constraint/database.yaml") ) semconv.parse( self.load_file("markdown/parameter_remove_constraint/general.yaml") ) semconv.finish() self.assertEqual(len(semconv.models), 6) with open( self.load_file("markdown/parameter_remove_constraint/input.md"), "r" ) as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_remove_constraint/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/parameter_remove_constraint/", "markdown/parameter_remove_constraint/input.md", content, expected, ) def test_parameter_empty(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_empty/http.yaml")) semconv.parse(self.load_file("markdown/parameter_empty/faas.yaml")) semconv.parse(self.load_file("markdown/parameter_empty/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open(self.load_file("markdown/parameter_empty/input.md"), "r") as markdown: content = markdown.read() with open( self.load_file("markdown/parameter_empty/expected.md"), "r" ) as markdown: expected = markdown.read() self.check_render( semconv, "markdown/parameter_empty/", "markdown/parameter_empty/input.md", content, expected, ) def test_wrong_parameter(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_wrong/http.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong/faas.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open(self.load_file("markdown/parameter_wrong/input.md"), "r") as markdown: content = markdown.read() expected = "" with self.assertRaises(ValueError) as ex: self.check_render( semconv, "markdown/parameter_wrong/", "markdown/parameter_wrong/input.md", content, expected, ) self.fail() e = ex.exception msg = e.args[0] self.assertIn("Unexpected parameter", msg) self.assertIn("`invalid`", msg) def test_wrong_syntax(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_wrong_syntax/http.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong_syntax/faas.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong_syntax/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open( self.load_file("markdown/parameter_wrong_syntax/input.md"), "r" ) as markdown: content = markdown.read() expected = "" with self.assertRaises(ValueError) as ex: self.check_render( semconv, "markdown/parameter_wrong_syntax/", "markdown/parameter_wrong_syntax/input.md", content, expected, ) self.fail() e = ex.exception msg = e.args[0] self.assertIn("Wrong syntax", msg) def test_wrong_duplicate(self): semconv = SemanticConventionSet(debug=False) semconv.parse(self.load_file("markdown/parameter_wrong_duplicate/http.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong_duplicate/faas.yaml")) semconv.parse(self.load_file("markdown/parameter_wrong_duplicate/general.yaml")) semconv.finish() self.assertEqual(len(semconv.models), 7) with open( self.load_file("markdown/parameter_wrong_duplicate/input.md"), "r" ) as markdown: content = markdown.read() expected = "" with self.assertRaises(ValueError) as ex: self.check_render( semconv, "markdown/parameter_wrong_duplicate/", "markdown/parameter_wrong_duplicate/input.md", content, expected, ) self.fail() e = ex.exception msg = e.args[0] self.assertIn("Parameter", msg) self.assertIn("already defined", msg) def test_units(self): semconv = SemanticConventionSet(debug=True) semconv.parse(self.load_file("yaml/metrics/units.yaml")) semconv.finish() assert len(semconv.models) == 1 content = self.read_file("markdown/metrics/units_input.md") expected = self.read_file("markdown/metrics/units_output.md") self.check_render( semconv, "markdown/metrics/", "markdown/metrics/units_input.md", content, expected, ) def check_render( self, semconv, folder, file_name, content: str, expected: str, options=MarkdownOptions(), ): renderer = MarkdownRenderer(self.load_file(folder), semconv, options) output = io.StringIO() renderer._render_single_file(content, self.load_file(file_name), output) result = output.getvalue() assert result == expected _TEST_DIR = os.path.dirname(__file__) def read_file(self, filename): with open(self.load_file(filename), "r") as test_file: return test_file.read() def load_file(self, filename): return os.path.join(self._TEST_DIR, "..", "..", "data", filename)
StarcoderdataPython
3302575
<gh_stars>10-100 from collections import OrderedDict from django.utils.encoding import force_text from django.utils.http import urlencode from rest_framework import exceptions from rest_framework import serializers from rest_framework.metadata import SimpleMetadata from rest_framework.request import clone_request from rest_framework.reverse import reverse from rest_framework.utils.field_mapping import ClassLookupDict from waldur_core.core.utils import sort_dict class ActionSerializer(object): def __init__(self, func, name, request, view, resource): self.func = func self.name = name self.request = request self.resource = resource self.view = view def serialize(self): reason = self.get_reason() return { 'title': self.get_title(), 'method': self.get_method(), 'destructive': self.is_destructive(), 'url': self.get_url(), 'reason': reason, 'enabled': not reason } def is_destructive(self): if self.name == 'destroy': return True return getattr(self.func, 'destructive', False) def get_title(self): try: return getattr(self.func, 'title') except AttributeError: return self.name.replace('_', ' ').title() def get_reason(self): try: self.view.initial(self.request) except exceptions.APIException as e: return force_text(e) def get_method(self): if self.name == 'destroy': return 'DELETE' elif self.name == 'update': return 'PUT' return getattr(self.func, 'method', 'POST') def get_url(self): base_url = self.request.build_absolute_uri() method = self.get_method() if method in ('DELETE', 'PUT'): return base_url return base_url + self.name + '/' def merge_dictionaries(a, b): new = a.copy() new.update(b) return new class ActionsMetadata(SimpleMetadata): """ Difference from SimpleMetadata class: 1) Skip read-only fields, because options are used only for provisioning new resource. 2) Don't expose choices for fields with queryset in order to reduce size of response. 3) Attach actions metadata """ label_lookup = ClassLookupDict( mapping=merge_dictionaries({ serializers.JSONField: 'text' }, SimpleMetadata.label_lookup.mapping) ) def determine_metadata(self, request, view): self.request = request metadata = OrderedDict() if view.lookup_field in view.kwargs: metadata['actions'] = self.get_actions(request, view) else: metadata['actions'] = self.determine_actions(request, view) return metadata def get_actions(self, request, view): """ Return metadata for resource-specific actions, such as start, stop, unlink """ metadata = OrderedDict() actions = self.get_resource_actions(view) resource = view.get_object() for action_name, action in actions.items(): if action_name == 'update': view.request = clone_request(request, 'PUT') else: view.action = action_name data = ActionSerializer(action, action_name, request, view, resource) metadata[action_name] = data.serialize() if not metadata[action_name]['enabled']: continue fields = self.get_action_fields(view, action_name, resource) if not fields: metadata[action_name]['type'] = 'button' else: metadata[action_name]['type'] = 'form' metadata[action_name]['fields'] = fields view.action = None view.request = request return metadata @classmethod def get_resource_actions(cls, view): actions = {} disabled_actions = getattr(view.__class__, 'disabled_actions', []) for key in dir(view.__class__): callback = getattr(view.__class__, key) if getattr(callback, 'deprecated', False): continue if 'post' not in getattr(callback, 'bind_to_methods', []): continue if key in disabled_actions: continue actions[key] = callback if 'DELETE' in view.allowed_methods and 'destroy' not in disabled_actions: actions['destroy'] = view.destroy if 'PUT' in view.allowed_methods and 'update' not in disabled_actions: actions['update'] = view.update return sort_dict(actions) def get_action_fields(self, view, action_name, resource): """ Get fields exposed by action's serializer """ serializer = view.get_serializer(resource) fields = OrderedDict() if not isinstance(serializer, view.serializer_class) or action_name == 'update': fields = self.get_fields(serializer.fields) return fields def get_serializer_info(self, serializer): """ Given an instance of a serializer, return a dictionary of metadata about its fields. """ if hasattr(serializer, 'child'): # If this is a `ListSerializer` then we want to examine the # underlying child serializer instance instead. serializer = serializer.child return self.get_fields(serializer.fields) def get_fields(self, serializer_fields): """ Get fields metadata skipping empty fields """ fields = OrderedDict() for field_name, field in serializer_fields.items(): # Skip tags field in action because it is needed only for resource creation # See also: WAL-1223 if field_name == 'tags': continue info = self.get_field_info(field, field_name) if info: fields[field_name] = info return fields def get_field_info(self, field, field_name): """ Given an instance of a serializer field, return a dictionary of metadata about it. """ field_info = OrderedDict() field_info['type'] = self.label_lookup[field] field_info['required'] = getattr(field, 'required', False) attrs = [ 'label', 'help_text', 'default_value', 'placeholder', 'required', 'min_length', 'max_length', 'min_value', 'max_value', 'many' ] if getattr(field, 'read_only', False): return None for attr in attrs: value = getattr(field, attr, None) if value is not None and value != '': field_info[attr] = force_text(value, strings_only=True) if 'label' not in field_info: field_info['label'] = field_name.replace('_', ' ').title() if hasattr(field, 'view_name'): list_view = field.view_name.replace('-detail', '-list') base_url = reverse(list_view, request=self.request) field_info['type'] = 'select' field_info['url'] = base_url if hasattr(field, 'query_params'): field_info['url'] += '?%s' % urlencode(field.query_params) field_info['value_field'] = getattr(field, 'value_field', 'url') field_info['display_name_field'] = getattr(field, 'display_name_field', 'display_name') if hasattr(field, 'choices') and not hasattr(field, 'queryset'): field_info['choices'] = [ { 'value': choice_value, 'display_name': force_text(choice_name, strings_only=True) } for choice_value, choice_name in field.choices.items() ] return field_info
StarcoderdataPython
5149835
<filename>src/data/make_dataset.py import pickle import re from os import listdir from os.path import isfile, join import pandas as pd from utils.constants import RAW_DATA_PATH, PROCESSED_DATA_PATH def make_dataset(): raw_data_file_name = [file_name for file_name in listdir(RAW_DATA_PATH) if isfile(join(RAW_DATA_PATH, file_name))] raw_data_file_name = [file_name for file_name in raw_data_file_name if re.search(r'.csv', file_name, re.M)] raw_data_files = [pd.read_csv(RAW_DATA_PATH + file_name) for file_name in raw_data_file_name] final_data_file = pd.concat(raw_data_files, axis=0, ignore_index=True) final_data_file.to_csv(PROCESSED_DATA_PATH + 'final_data.csv') with open(PROCESSED_DATA_PATH + 'final_data.pickle', 'wb') as file: pickle.dump(final_data_file, file) print("Complete")
StarcoderdataPython
5193379
<reponame>hopelife/mstb cd C:\dev\projects\mstb conda activate ml32 python -m unittest tests.test_mongodb_handler
StarcoderdataPython
218033
import logging import logging.handlers import os import subprocess import time LENGTH = 2 DELAY = 0.05 logger = logging.getLogger(__name__) class State(object): """Abstract. Contains the state of a set of LEDs.""" def __init__(self, strand, start, end): self.strand = strand self.start = start # inclusive self.end = end # exclusive self.setup() def setup(self): raise NotImplementedError() def tick(self): raise NotImplementedError() class Fade(State): """Fades a range of LEDs on and off.""" def setup(self): self.value = 0 self.step = 1 self.high = 15 self.low = 0 def tick(self): self.value += self.step if self.value > self.high: self.value = self.high - self.step self.step *= -1 elif self.value < self.low: self.value = self.low - self.step self.step *= -1 for i in range(self.start, self.end): self.strand[i] = (self.value, 0, 0) class Display(object): """Contains the state of the entire LED display.""" def __init__(self, strand, delay): self.strand = strand self.states = [] self.delay = delay self._button_handles = {} self._button_values = {} self._on_press = {} self._on_release = {} # repert every 5 minutes = 300s/report = 6000 ticks @ 0.05s/tick self.loop_limit = 300 / delay self.loop_cnt = 0 self.loop_total = 0 self.loop_max = 0 def register_state(self, state_cls, length=0, index=-1): if index != -1: if index > len(self.states): raise ValueError("Invalid index: {} exceeds {}".format( index, len(self.states))) self.states = self.states[0:index] start = 0 if self.states: start = self.states[-1].end if start >= len(self.strand): raise ValueError("Invalid start: {} >= {}".format( start, len(self.strand))) if length == 0: length = len(self.strand) - start self.states.append(state_cls(self.strand, start, start + length)) def loop(self): while True: start = time.time() self.read() self.tick() self.strand.show() self.sleep(time.time() - start) def read(self): for btn, value in self._button_values.items(): button = self._button_handles[btn] if not value and button.value: logger.info("button %s pressed", btn) self._button_values[btn] = True if btn in self._on_press: self._on_press[btn]() elif value and not button.value: logger.info("button %s released", btn) self._button_values[btn] = False if btn in self._on_release: self._on_release[btn]() def sleep(self, secs=0): self.loop_total += secs self.loop_cnt += 1 if secs > self.loop_max: self.loop_max = secs if self.loop_cnt == self.loop_limit: logger.info("Time states: avg={:0.4f}s, max={:0.4f}s".format( self.loop_total / self.loop_limit, self.loop_max )) self.loop_cnt = 0 self.loop_max = 0 self.loop_total = 0 if self.delay > secs: time.sleep(self.delay - secs) def tick(self): for state in self.states: state.tick() def register_onpress(self, pin, action): btn = str(pin) logger.info("Registered onpress for %s", btn) self._button_handles[btn] = pin self._button_values[btn] = False self._on_press[btn] = action def register_onrelease(self, pin, action): btn = str(pin) logger.info("Registered onrelease for %s", btn) self._button_handles[btn] = pin self._button_values[btn] = False self._on_release[btn] = action def clear(self): for i in range(len(self.strand)): self.strand[i] = (0, 0, 0) self.strand.show() def setup_logger(): logger.setLevel(logging.DEBUG) log_format = logging.Formatter( '%(asctime)s %(levelname)7s %(name)s - %(message)s', datefmt='%Y-%m-%d %H:%M:%S') log_stream = logging.StreamHandler() log_stream.setFormatter(log_format) logging.getLogger().addHandler(log_stream) log_file = logging.handlers.TimedRotatingFileHandler( '/home/pi/logs/bookshelf-lights.log', when='d', backupCount=30) log_file.setFormatter(log_format) logging.getLogger().addHandler(log_file) def main(): import board import gpiozero import neopixel setup_logger() logger.info("Starting up... Strand length = %s, delay = %0.3f", LENGTH, DELAY) display = Display(neopixel.NeoPixel(board.D18, LENGTH), DELAY) def button_pressed(button_num): logger.info("button %s pressed", button_num) def shutdown(): display.clear() subprocess.call('halt', shell=False) display.register_state(Fade, length=1) display.register_onpress( gpiozero.Button(4), shutdown) display.register_onpress( gpiozero.Button(17), lambda: button_pressed(2)) try: display.loop() except BaseException as e: display.clear() logger.error("Error: %s", e.__class__.__name__, exc_info=True) if __name__ == '__main__': main()
StarcoderdataPython
9613515
val = () valpar = 0 valparcum = () print(type(val)) for c in range(0,4): val += (int(input('Digite um número: ')),) valpar = val[c] if valpar % 2 == 0: valparcum += valpar, print(f'\nVocê digitou os valores {val}') print(f'O valor 9 apareceu {val.count(9)} vezes.') if 3 in val: print(f'Posição do primeiro 3 digitado: {val.index(3)+1}') else: print('Nenhum 3 foi digitado.') if valparcum == (): print('Nenhum número par foi digitado.') else: print(f'Os números pares foram: {valparcum}')
StarcoderdataPython
1800379
from utils import * from tqdm import tqdm def pqDist_one(C, N_books, g_x, q_x): l1, l2 = C.shape L_word = int(l2/N_books) D_C = T.zeros((l1, N_books), dtype=T.float32) q_x_split = T.split(q_x, L_word, 0) g_x_split = np.split(g_x.cpu().data.numpy(), N_books, 1) C_split = T.split(C, L_word, 1) D_C_split = T.split(D_C, 1, 1) for j in range(N_books): for k in range(l1): D_C_split[j][k] =T.norm(q_x_split[j]-C_split[j][k], 2) #D_C_split[j][k] = T.norm(q_x_split[j]-C_split[j][k], 2).detach() #for PyTorch version over 1.9 if j == 0: dist = D_C_split[j][g_x_split[j]] else: dist = T.add(dist, D_C_split[j][g_x_split[j]]) Dpq = T.squeeze(dist) return Dpq def Indexing(C, N_books, X): l1, l2 = C.shape L_word = int(l2/N_books) x = T.split(X, L_word, 1) y = T.split(C, L_word, 1) for i in range(N_books): diff = squared_distances(x[i], y[i]) arg = T.argmin(diff, dim=1) min_idx = T.reshape(arg, [-1, 1]) if i == 0: quant_idx = min_idx else: quant_idx = T.cat((quant_idx, min_idx), dim=1) return quant_idx def Evaluate_mAP(C, N_books, gallery_codes, query_codes, gallery_labels, query_labels, device, TOP_K=None): num_query = query_labels.shape[0] mean_AP = 0.0 with tqdm(total=num_query, desc="Evaluate mAP", bar_format='{desc:<15}{percentage:3.0f}%|{bar:10}{r_bar}') as pbar: for i in range(num_query): # Retrieve images from database retrieval = (query_labels[i, :] @ gallery_labels.t() > 0).float() # Arrange position according to hamming distance retrieval = retrieval[T.argsort(pqDist_one(C, N_books, gallery_codes, query_codes[i]))][:TOP_K] # Retrieval count retrieval_cnt = retrieval.sum().int().item() # Can not retrieve images if retrieval_cnt == 0: continue # Generate score for every position score = T.linspace(1, retrieval_cnt, retrieval_cnt).to(device) # Acquire index index = (T.nonzero(retrieval == 1, as_tuple=False).squeeze() + 1.0).float().to(device) mean_AP += (score / index).mean() pbar.update(1) mean_AP = mean_AP / num_query return mean_AP def DoRetrieval(device, args, net, C): print("Do Retrieval!") trainset = torchvision.datasets.CIFAR10(root=args.data_dir, train=True, download=args.if_download, transform=transforms.ToTensor()) Gallery_loader = T.utils.data.DataLoader(trainset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) testset = torchvision.datasets.CIFAR10(root=args.data_dir, train=False, download=args.if_download, transform=transforms.ToTensor()) Query_loader = T.utils.data.DataLoader(testset, batch_size=args.batch_size, shuffle=False, num_workers=args.num_workers) net.eval() with T.no_grad(): with tqdm(total=len(Gallery_loader), desc="Build Gallery", bar_format='{desc:<15}{percentage:3.0f}%|{bar:10}{r_bar}') as pbar: for i, data in enumerate(Gallery_loader, 0): gallery_x_batch, gallery_y_batch = data[0].to(device), data[1].to(device) outputs = net(gallery_x_batch) gallery_c_batch = Indexing(C, args.N_books, outputs[0]) gallery_y_batch = T.eye(args.num_cls)[gallery_y_batch] if i == 0: gallery_c = gallery_c_batch gallery_y = gallery_y_batch else: gallery_c = T.cat([gallery_c, gallery_c_batch], 0) gallery_y = T.cat([gallery_y, gallery_y_batch], 0) pbar.update(1) with tqdm(total=len(Query_loader), desc="Compute Query", bar_format='{desc:<15}{percentage:3.0f}%|{bar:10}{r_bar}') as pbar: for i, data in enumerate(Query_loader, 0): query_x_batch, query_y_batch = data[0].to(device), data[1].to(device) outputs = net(query_x_batch) query_y_batch = T.eye(args.num_cls)[query_y_batch] if i == 0: query_c = outputs[0] query_y = query_y_batch else: query_c = T.cat([query_c, outputs[0]], 0) query_y = T.cat([query_y, query_y_batch], 0) pbar.update(1) mAP = Evaluate_mAP(C, args.N_books, gallery_c.type(T.int), query_c, gallery_y, query_y, device, args.Top_N) return mAP
StarcoderdataPython
113369
<filename>utils/config.py import sys sys.dont_write_bytecode = True TOKEN = "<KEY>" PREFIX = "tb!" STATUS = "Station Bot Beta | v1.1" OWNERS = [607190287894446081] # list of user ids (ints) prefixes = "tb!"
StarcoderdataPython
299026
#!/usr/local/bin/python3 class Potencia: # Calcula uma potencia especifica def __init__(self, expoente): # construtor padrão # (self) está relacionada a própria instancia - param obrigatorio self.expoente = expoente def __call__(self, base): return base ** self.expoente if __name__ == '__main__': quadrado = Potencia(2) cubo = Potencia(3) if callable(quadrado) and callable(cubo): print(f'3Q => {quadrado(3)}') print(f'5C => {cubo(5)}') print(Potencia(4)(2)) # 2 é a base 3 4 é a potencia
StarcoderdataPython
1718622
# -*- coding: utf8 -*- """ 导出后的文件处理示例 如果你采用集群的方式部署,那么你可能希望在节点导出完成之后上传到文件服务上,然后给页面返回一个URL 提供用户下载。这里作为单机部署的示例,仅移动文件夹到static目录然后输出一个URL来。 如果你采用集群方式,把文件处理后输出下载的URL就行了。至于原理,那就是导出完成后Python调用一下 配置的脚本命令,把文件夹作为参数传递进来而已。 """ import sys import os import uuid import zipfile def main(): if len(sys.argv) < 1: print(__file__ + "【错误】参数个数太少", file = sys.stderr) exit(1) if False == os.path.isdir(sys.argv[1]): print(__file__ + "【错误】文件夹不存在 (" + sys.argv[1] + ")", file = sys.stderr) exit(1) scriptPath = os.path.split(os.path.realpath(__file__))[0] targetPath = scriptPath + os.sep + os.sep.join(["pltplconf", "static"]) fileName = uuid.uuid1().hex + ".zip" targetFile = targetPath + os.sep + fileName with zipfile.ZipFile(targetFile, "w", compression=zipfile.ZIP_DEFLATED, compresslevel=9, strict_timestamps=False) as zipObject: for file in os.listdir(sys.argv[1]): zipObject.write(sys.argv[1] + os.sep + file, file) # 输出文件下载路径。因为这个是单机示例,所以直接输出web目录为根目录的路径即可 print("/static/" + fileName) if __name__ == '__main__': main()
StarcoderdataPython
3243743
<reponame>redzhepdx/IWC-Net<gh_stars>1-10 from capsule_layers import * import tensorflow as tf import numpy as np import cv2 def cap_U_encoder(input, K): x = tf.reshape(input, shape=[-1, 224, 224, 3]) conv1 = tf.layers.conv2d(x, 16, 5, 1, padding="same", kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) print("Conv1_Shape : ", conv1.get_shape()) conv1_expanded = tf.expand_dims(conv1, axis=3) #print("Conv1_Expanded Shape : ", conv1_expanded.get_shape()) conv_caps_1 = SegConvolution(conv1_expanded, 5, 2, 16, strides=2, routings=1) print("Conv Caps 1 Shape : ", conv_caps_1.get_shape()) conv_caps_2 = SegConvolution(conv_caps_1, 5, 4, 16, strides=1, routings=3) print("Conv Caps 2 Shape : ", conv_caps_2.get_shape()) conv_caps_3 = SegConvolution(conv_caps_2, 5, 4, 32, strides=2, routings=3) print("Conv Caps 3 Shape : ", conv_caps_3.get_shape()) conv_caps_4 = SegConvolution(conv_caps_3, 5, 8, 32, strides=1, routings=3) print("Conv Caps 4 Shape : ", conv_caps_4.get_shape()) conv_caps_5 = SegConvolution(conv_caps_4, 5, 8, 64, strides=2, routings=3) print("Conv Caps 5 Shape : ", conv_caps_5.get_shape()) conv_caps_6 = SegConvolution(conv_caps_5, 5, 8, 64, strides=1, routings=3) print("Conv Caps 6 Shape : ", conv_caps_6.get_shape()) conv_caps_7 = SegConvolution(conv_caps_6, 5, 8, 128, strides=2, routings=3) print("Conv Caps 7 Shape : ", conv_caps_7.get_shape()) conv_caps_8 = SegConvolution(conv_caps_7, 5, 16, 64, strides=1, routings=3) print("Conv Caps 8 Shape : ", conv_caps_8.get_shape()) deconv_caps_1 = SegConvolution(conv_caps_8, 4, 16, 64, strides=2, routings=3, op='deconv') print("Deconv 1 Shape : ", deconv_caps_1.get_shape()) concat_1 = tf.concat([deconv_caps_1, conv_caps_6], axis=3) conv_caps_9 = SegConvolution(concat_1, 5, 8, 32, strides=1, routings=3) print("Conv Caps 9 Shape : ", conv_caps_9.get_shape()) deconv_caps_2 = SegConvolution(conv_caps_9, 4, 8, 32, strides=2, routings=3, op='deconv') print("Deconv 2 Shape : ", deconv_caps_2.get_shape()) concat_2 = tf.concat([deconv_caps_2, conv_caps_4], axis=3) conv_caps_10 = SegConvolution(concat_2, 5, 4, 16, strides=1, routings=3) print("Conv Caps 10 Shape : ", conv_caps_10.get_shape()) deconv_caps_3 = SegConvolution(conv_caps_10, 4, 4, 16, strides=2, routings=3, op='deconv') print("Deconv 2 Shape : ", deconv_caps_2.get_shape()) concat_3 = tf.concat([deconv_caps_3, conv_caps_2], axis=3) conv_caps_11 = SegConvolution(concat_3, 5, 2, 16, strides=1, routings=3) print("Conv Caps 11 Shape : ", conv_caps_11.get_shape()) deconv_caps_4 = SegConvolution(conv_caps_11, 4, 2, 16, strides=2, routings=3, op='deconv') print("Deconv 4 Shape : ", deconv_caps_4.get_shape()) concat_4 = tf.concat([deconv_caps_4, conv1_expanded], axis=3) conv_caps_12 = SegConvolution(concat_4, 1, 1, K, strides=1, routings=3) print("Conv Caps 12 Shape : ", conv_caps_12.get_shape()) squeeze = tf.squeeze(conv_caps_12, axis=3) #print("Squeeze Shape : ", squeeze.get_shape()) softmax = softmax_1 = tf.nn.softmax(squeeze) print("Encode Output Shape : " , softmax.get_shape()) return softmax def cap_U_decoder(input): dec_conv1 = tf.layers.conv2d(input, 16, 5, 1, padding="same", kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) print("Conv1_Shape : ", dec_conv1.get_shape()) dec_conv1_expanded = tf.expand_dims(dec_conv1, axis=3) #print("Conv1_Expanded Shape : ", conv1_expanded.get_shape()) dec_conv_caps_1 = SegConvolution(dec_conv1_expanded, 5, 2, 16, strides=2, routings=1) print("Conv Caps 1 Shape : ", dec_conv_caps_1.get_shape()) dec_conv_caps_2 = SegConvolution(dec_conv_caps_1, 5, 4, 16, strides=1, routings=3) print("Conv Caps 2 Shape : ", dec_conv_caps_2.get_shape()) dec_conv_caps_3 = SegConvolution(dec_conv_caps_2, 5, 4, 32, strides=2, routings=3) print("Conv Caps 3 Shape : ", dec_conv_caps_3.get_shape()) dec_conv_caps_4 = SegConvolution(dec_conv_caps_3, 5, 8, 32, strides=1, routings=3) print("Conv Caps 4 Shape : ", dec_conv_caps_4.get_shape()) dec_conv_caps_5 = SegConvolution(dec_conv_caps_4, 5, 8, 64, strides=2, routings=3) print("Conv Caps 5 Shape : ", dec_conv_caps_5.get_shape()) dec_conv_caps_6 = SegConvolution(dec_conv_caps_5, 5, 8, 64, strides=1, routings=3) print("Conv Caps 6 Shape : ", dec_conv_caps_6.get_shape()) dec_conv_caps_7 = SegConvolution(dec_conv_caps_6, 5, 8, 128, strides=2, routings=3) print("Conv Caps 7 Shape : ", dec_conv_caps_7.get_shape()) dec_conv_caps_8 = SegConvolution(dec_conv_caps_7, 5, 16, 64, strides=1, routings=3) print("Conv Caps 8 Shape : ", dec_conv_caps_8.get_shape()) dec_deconv_caps_1 = SegConvolution(dec_conv_caps_8, 4, 16, 64, strides=2, routings=3, op='deconv') print("Deconv 1 Shape : ", dec_deconv_caps_1.get_shape()) dec_concat_1 = tf.concat([dec_deconv_caps_1, dec_conv_caps_6], axis=3) dec_conv_caps_9 = SegConvolution(dec_concat_1, 5, 8, 32, strides=1, routings=3) print("Conv Caps 9 Shape : ", dec_conv_caps_9.get_shape()) dec_deconv_caps_2 = SegConvolution(dec_conv_caps_9, 4, 8, 32, strides=2, routings=3, op='deconv') print("Deconv 2 Shape : ", dec_deconv_caps_2.get_shape()) dec_concat_2 = tf.concat([dec_deconv_caps_2, dec_conv_caps_4], axis=3) dec_conv_caps_10 = SegConvolution(dec_concat_2, 5, 4, 16, strides=1, routings=3) print("Conv Caps 10 Shape : ", dec_conv_caps_10.get_shape()) dec_deconv_caps_3 = SegConvolution(dec_conv_caps_10, 4, 4, 16, strides=2, routings=3, op='deconv') print("Deconv 3 Shape : ", dec_deconv_caps_3.get_shape()) dec_concat_3 = tf.concat([dec_deconv_caps_3, dec_conv_caps_2], axis=3) dec_conv_caps_11 = SegConvolution(dec_concat_3, 5, 2, 16, strides=1, routings=3) print("Conv Caps 11 Shape : ", dec_conv_caps_11.get_shape()) dec_deconv_caps_4 = SegConvolution(dec_conv_caps_11, 4, 2, 16, strides=2, routings=3, op='deconv') print("Deconv 3 Shape : ", dec_deconv_caps_4.get_shape()) dec_concat_4 = tf.concat([dec_deconv_caps_4, dec_conv1_expanded], axis=3) dec_conv_caps_12 = SegConvolution(dec_concat_4, 1, 1, 16, strides=1, routings=3) print("Conv Caps 12 Shape : ", dec_conv_caps_12.get_shape()) dec_squeeze = tf.squeeze(dec_conv_caps_12, axis=3) #Reconstruction rec_conv_1 = tf.layers.conv2d(dec_squeeze, 64, 1, 1, padding="same", kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) rec_conv_2 = tf.layers.conv2d(rec_conv_1, 128, 1, 1, padding="same", kernel_initializer=tf.truncated_normal_initializer(stddev=0.01)) output = tf.layers.conv2d(rec_conv_2, 3, kernel_size = 1, padding="same") print("Decoder Output Shape : " , output.get_shape()) return output if __name__ == "__main__": batch_size = 1 K = 4 width = 224 height = 224 img = cv2.imread("gdz.png") img = cv2.resize(img, (width, height)) img = np.array([img]) input = np.random.uniform(size=(1, width, height, 3)) y = np.random.uniform(size=(1, width, height, 3)) image = tf.placeholder(tf.float32, [None, width, height, 3]) segment = tf.placeholder(tf.float32, [None, width, height, 3]) encoder = cap_U_encoder(image, K) decoder = cap_U_decoder(encoder)
StarcoderdataPython
76336
import os import yaml class Config(object): """Script configuration file parser. Attributes ---------- dataset: str Name of the dataset to train on (i.e., 'omniglot'). num_epochs: int Number of training epochs. num_episodes: int Number of episodes per epoch. num_ways_train: int Number of random classes per episode for training. num_support_train: int Number of samples per class to use as support for training. num_query_train: int Number of samples per class to use as query for training. num_ways_val: int Number of random classes per episode for validation. num_support_val: int Number of samples per class to use as support for validation. num_query_val: int Number of samples per class to use as query for validation. seed: int Random seed. """ def __init__(self, config_yaml: str) -> None: if not os.path.exists(config_yaml): raise ValueError( f"The config file at {config_yaml} is missing.") config = yaml.load(open(config_yaml, "r")) self.dataset = config["dataset"] self.num_epochs = config.get("num_epochs", 100) self.num_episodes = config.get("num_episodes", 100) self.num_ways_train = config.get("num_ways_train", 60) self.num_support_train = config.get("num_support_train", 5) self.num_query_train = config.get("num_query_train", 5) self.num_ways_val = config.get("num_ways_val", 5) self.num_support_val = config.get("num_support_val", 5) self.num_query_val = config.get("num_query_val", 15) self.seed = config.get("seed", 0)
StarcoderdataPython
1813248
import random import argparse from collections import Counter parser = argparse.ArgumentParser() parser.add_argument('--train_size', help='Size for the training set', type=int, default=100000) parser.add_argument('--dev_size', help='Size for the dev set', type=int, default=1000) parser.add_argument('--test_size', help='Size for the test set', type=int, default=10000) parser.add_argument('--gen_size', help='Size for the generalization set', type=int, default=10000) parser.add_argument('--sentences', help='File of sentences to process', type=str, default=None) parser.add_argument('--output_prefix', help='Prefix for output file names', type=str, default=None) args = parser.parse_args() fi = open(args.sentences, "r") fo_train = open(args.output_prefix + ".train", "w") fo_dev = open(args.output_prefix + ".dev", "w") fo_test = open(args.output_prefix + ".test", "w") fo_gen = open(args.output_prefix + ".gen", "w") # Words to delete from the sentences being processed delList = ["N1", "N2", "N3", "N4", "N5", "N6", "N7", "N8", "AUX1", "AUX2", "AUX3", "AUX4", "AUX5", "AUX6", "AUX7", "AUX8", "VI1", "VI2", "VI3", "VT1", "VT2", "VT3", "VT4", "VT5", "VI", "VT"] delDict = {} for item in delList: delDict[item] = 1 # Convert a declarative sentence to a counterfactual question with the main auxiliary at the end of the sentence def questionify(sent): sent[-2] = "?" if "AUX4" in sent: ind = sent.index("AUX4") else: ind = sent.index("AUX5") newSent = sent[:ind + 1] + sent[ind + 2:-2] + [sent[ind + 1]] + sent[-2:] return newSent def process(sent): if sent[-1] == "quest": quest = 1 else: quest = 0 newSent = [] for word in sent: if word not in delDict: newSent.append(word) return " ".join(newSent[:-1]) count_orc = 0 count_src = 0 aux_list = ["have", "has", "haven't", "hasn't"] aux_dict = {} for aux in aux_list: aux_dict[aux] = 1 def get_auxes(words): aux_set = [] for word in words: if word in aux_dict: aux_set.append(word) return aux_set def get_nouns(words): noun_set = [] for i, word in enumerate(words): if word.startswith("N"): noun_set.append(words[i+1]) return noun_set # Sentences we've already used (to avoid repeats) used_dict = {} count_train = 0 count_dev = 0 count_test = 0 count_gen = 0 count_iid = 0 count_ood = 0 iid_examples = [] ood_examples = [] filter_counts = Counter() for line in fi: if count_iid >= args.train_size + args.dev_size + args.test_size and count_ood >= args.gen_size: break sent = line.strip() if sent in used_dict: continue used_dict[sent] = 1 words = sent.split() nouns = get_nouns(words) #if len(nouns) > len(set(nouns)): # filter_counts[len(nouns)] += 1 # continue if words[3] == "that" or words[3] == "who": rel_on_subj = 1 else: rel_on_subj = 0 quest = random.getrandbits(1) if quest: words.append("quest") else: words.append("decl") if quest: result = process(words) + " quest" + "\t" + process(questionify(words)) + "\n" else: result = process(words) + " decl" + "\t" + process(words) + "\n" if (not rel_on_subj or not quest) and count_iid < args.train_size + args.dev_size + args.test_size: iid_examples.append(result) count_iid += 1 elif rel_on_subj and quest and count_ood < args.gen_size: words_auxes = get_auxes(words) if words_auxes == ["have", "haven't"] or words_auxes == ["haven't", "have"] or words_auxes == ["has", "hasn't"] or words_auxes == ["hasn't", "has"]: if words[5] in aux_dict: if count_src <= 6666: ood_examples.append(result) count_ood += 1 count_src += 1 else: if count_orc <= 3333: ood_examples.append(result) count_ood += 1 count_orc += 1 random.shuffle(iid_examples) random.shuffle(ood_examples) train_set = iid_examples[:args.train_size] dev_set = iid_examples[args.train_size:args.train_size+args.dev_size] test_set = iid_examples[args.train_size+args.dev_size:args.train_size+args.dev_size+args.test_size] gen_set = ood_examples[:args.gen_size] for elt in train_set: fo_train.write(elt) for elt in dev_set: fo_dev.write(elt) for elt in test_set: fo_test.write(elt) for elt in gen_set: fo_gen.write(elt) print(count_orc, count_src)
StarcoderdataPython
6530569
<filename>algorithm/wordifier.py """ Module provides Wordifier with main functionality: wordify number a given phone number all possible wordification of given phone number convert wordified number to phone number """ from algorithm.dictionary import Dictionary from utils.utils import find_number_to_character_mapping, string_to_number, \ remove_non_alpha_numeric class Wordifier: """ Main methods includes: - number_to_words - all_wordifications - words_to_number """ def __init__(self): self.dictionary = Dictionary() def _is_valid_query(self, number_query): number_query = number_query[2:] if "0" in number_query or "1" in number_query: raise ValueError return True def all_wordifications(self, number): """ Returns All wordification """ query = remove_non_alpha_numeric(number) assert self._is_valid_query(query) result = [] for i in range(2, len(query)): query_to_combinations = query[i:] all_combinations = self.find_all_combinations(query_to_combinations) words = self.check_words_against_dictionary(all_combinations) for word in words: ans = query[:i] + word + query[i+len(word):] result.append(ans) return result @staticmethod def words_to_number(query_string): """ converts wordified phone number into numeric phone number """ return string_to_number(query_string) def number_to_words(self, number): """ Return word with biggest match """ query = remove_non_alpha_numeric(number) result = "" last_word = "" assert self._is_valid_query(query) for i in range(2, len(query)): query_to_combinations = query[i:] all_combinations = self.find_all_combinations(query_to_combinations) words = self.check_words_against_dictionary(all_combinations) for word in words: ans = query[:i] + word + query[i+len(word):] if len(word) >= len(last_word): result = ans last_word = word return result def add_words_to_dictionary(self, filename): """ Add words from file in the dictionary """ self.dictionary.add_to_dictionary_from_txt(filename) def add_single_word_to_dictionary(self, word): """ Add single word in the dictionary """ self.dictionary.add_single_word(word) def check_words_against_dictionary(self, all_combinations): """ Return all the combinations which are present in a Number """ found_words = [] for combination in all_combinations: query = combination.lower() is_present = self.dictionary.search_multi_words(query) if is_present: found_words.append(combination) return found_words @staticmethod def find_all_combinations(query_number): """ From the query number, find all the combinations of words possible """ all_combinations = [] ans = find_number_to_character_mapping(query_number[0]) curr_ans = [] for iterator in range(1, len(query_number)): num = query_number[iterator] chars = find_number_to_character_mapping(num) for each_ans in ans: for char in chars: curr_ans.append(each_ans + str(char)) all_combinations.append(each_ans + str(char)) ans = curr_ans curr_ans = [] return all_combinations
StarcoderdataPython
5100744
<filename>donkey_gym_wrapper/env.py<gh_stars>0 # Copyright (c) 2018 <NAME> # MIT License ''' Hijacked donkey_gym wrapper with VAE. - Use Z vector as observation space. - Store raw images in VAE buffer. Problem that DDPG already well implemented in stable-baselines and VAE integration will require full reimplementation of DDPG codebase. Instead we hijack VAE into gym environment. ''' import os import numpy as np import gym from gym import spaces from donkey_gym.envs.donkey_env import DonkeyEnv from donkey_gym.envs.donkey_sim import DonkeyUnitySimContoller from donkey_gym.envs.donkey_proc import DonkeyUnityProcess class DonkeyVAEEnv(DonkeyEnv): def __init__(self, level=0, time_step=0.05, frame_skip=2, z_size=512): self.z_size = z_size print("starting DonkeyGym env") # start Unity simulation subprocess self.proc = DonkeyUnityProcess() try: exe_path = os.environ['DONKEY_SIM_PATH'] except: print("Missing DONKEY_SIM_PATH environment var. Using defaults") #you must start the executable on your own exe_path = "self_start" try: port = int(os.environ['DONKEY_SIM_PORT']) except: print("Missing DONKEY_SIM_PORT environment var. Using defaults") port = 9091 try: headless = os.environ['DONKEY_SIM_HEADLESS']=='1' except: print("Missing DONKEY_SIM_HEADLESS environment var. Using defaults") headless = False self.proc.start(exe_path, headless=headless, port=port) # start simulation com self.viewer = DonkeyUnitySimContoller(level=level, time_step=time_step, port=port) # steering # TODO(r7vme): Add throttle self.action_space = spaces.Box(low=np.array([-1.0]), high=np.array([1.0]), dtype=np.float32) # z latent vector self.observation_space = spaces.Box(low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(1, self.z_size), dtype=np.float32) # simulation related variables. self.seed() # Frame Skipping self.frame_skip = frame_skip # wait until loaded self.viewer.wait_until_loaded() def step(self, action): for i in range(self.frame_skip): self.viewer.take_action(action) observation, reward, done, info = self._observe() return observation, reward, done, info def reset(self): self.viewer.reset() observation, reward, done, info = self._observe() return observation def _observe(self): observation, reward, done, info = self.viewer.observe() # Solves chicken-egg problem as gym calls reset before we call set_vae. if not hasattr(self, "vae"): return np.zeros(self.z_size), reward, done, info # Store image in VAE buffer. self.vae.buffer_append(observation) return self.vae.encode(observation), reward, done, info def set_vae(self, vae): self.vae = vae
StarcoderdataPython
8034706
from struct import unpack class CalFile: """ class for parsing a single .cal file ==== functions ==== __init__(filename) a .cal file to open must be specified as string [filename]. parseHeader() initialize global variables. should be executed before other functions are called. printInfo() print basic info, such as number of compartments, time steps, etc. getSequence(s,x,y,z) returns value of symbol [s] in compartment at [x][y][z]. getByID(s,cid) returns value of symbol [s] in [cid]th compartment. getSeqAverage(s,average=True) returns total value of symbol [s] throughout the model. setting [average] to true divides each value by the number of compartments. ==== variables ==== f file handler symbolNames string list of all symbol names in simulation symbolUnits string list of all symbol units, stored in same order as symbolNames symbolOut string list of symbols recorded in file timeStart start time of simulation timeEnd end time of simulation timeDelta time step used in simulation timeRecord time interval of records timeN number of recorded timepoints cStatus contains: number of compartments, number of membranes, compartment length X, Y, Z c hashes c[(x,y,z)] => compartment ID. used in getSequence() offsetResults binary offset of simulation results in .cal file verbose when False, supresses trivial notifications except errors """ f = None symbolNames = [] symbolUnits = [] symbolOut = [] timeStart = 0.0 timeEnd = 0.0 timeDelta = 0.0 timeRecord = 0.0 timeN = 0 cStatus = [] c = {} offsetResults = None verbose = False def __init__(self,filename=None,verbose=False): """ initialize. 'filename' must be specified """ try: self.f = open(filename,"rb") except OSError as e: print("could not open \"{}\"".format(filename)) raise except: raise if(isinstance(verbose,bool)): self.verbose = verbose if(self.verbose): print("opening file: {}".format(filename)) self.parseHeader() def parseHeader(self): """ extract basic information from self.f. this function is time-consuming, and is therefore separated. """ # length constants derived from Sim_prog.cpp LEN_HEADER = 160 LEN_TAB = 16 LEN_STRING = 512 # irrelevant bytes self.f.seek(LEN_HEADER,0) # *Information**** self.f.seek(LEN_TAB,1) size = int.from_bytes(self.f.read(4),byteorder="little") self.f.seek(size,1) # *VsimFile******* self.f.seek(LEN_TAB,1) self.f.seek(4+LEN_STRING,1) # *Symbol List**** self.f.seek(LEN_TAB,1) n = int.from_bytes(self.f.read(4),byteorder="little") for i in range(n): size = int.from_bytes(self.f.read(4),byteorder="little") self.symbolNames.append(self.f.read(size).decode()) size = int.from_bytes(self.f.read(4),byteorder="little") self.symbolUnits.append(self.f.read(size).decode()) self.f.seek(4*5 + 8*7, 1) # other symbol attributes # *CalcCondition** self.f.seek(LEN_TAB,1) (self.timeStart,self.timeEnd,self.timeDelta,self.timeRecord) = unpack("<dddd",self.f.read(32)) # start, end, calculation interval, output interval self.timeN = int( ((self.timeEnd - self.timeStart) / self.timeRecord) +1 ) # *OutputSymbols** self.f.seek(LEN_TAB,1) n = int.from_bytes(self.f.read(4), byteorder="little") for i in range(n): size = int.from_bytes(self.f.read(4), byteorder="little") self.symbolOut.append( self.f.read(size).decode() ) # *Stimulation**** self.f.seek(LEN_TAB,1) n = int.from_bytes(self.f.read(4), byteorder="little") for i in range(n): # TODO: should ba able to handle cases with stimulation pass # *CompartmentSt.* self.f.seek(LEN_TAB,1) self.cStatus = unpack("<iiddd",self.f.read(8+24)) # compartments, membranes, compartment length X, Y, Z for i in range(self.cStatus[0]): self.c[ unpack("<iiiBii",self.f.read(21))[0:3] ] = i # self.c[x,y,z] = i # *SymbolValues*** # initial values. # TODO: should ba able to handle cases with N_TRANS, N_EXTRA, N_INTRA, etc. self.f.seek(LEN_TAB,1) self.f.seek(8 * self.cStatus[0] * len(self.symbolNames), 1) # *results******** self.f.seek(LEN_TAB,1) self.offsetResults = self.f.tell() # file size validation self.f.seek(0,2) estimate = 8*self.cStatus[0]*len(self.symbolOut)*self.timeN + 4*self.timeN recordSize = self.f.tell() - self.offsetResults if( estimate > recordSize ): x = recordSize / (8*self.cStatus[0]*len(self.symbolOut) + 4) if(self.verbose): print("actual file size is smaller than expected, found only {} timepoints (= {:.3f} s)".format(x, (x-1)*self.timeRecord)) self.timeN = int(x) def printInfo(self): print( "======== model summary ========") print( "compartments: {}\nmembranes: {}".format(self.cStatus[0],self.cStatus[1]) ) print( "compartment size:\n {}\n *{}\n *{} m".format(self.cStatus[2],self.cStatus[3],self.cStatus[4]) ) print( "expected time {}~{} s, output interval {} s".format(self.timeStart,self.timeEnd,self.timeRecord) ) print( "recorded time {}~{} s (= {} timepoints)".format(self.timeStart,self.timeRecord*(self.timeN-1),self.timeN) ) print( "recorded symbols:" ) for i in range(len(self.symbolOut)): print( "\t[{}]\t{}".format(i,self.symbolOut[i]) ) def getSequence(self,s,x,y,z): """ timecourse of symbol [s] in compartment at [x][y][z]. [s] must be a string. [x][y][z] must be integers. returns timecourse as a list of floats. upon error, raises error and aborts. """ # argument validation try: assert s in self.symbolOut, "error in getSequence(): could not find symbol \"{}\"".format(s) assert (x,y,z) in self.c, "error in getSequence(): no compartment at ({},{},{})".format(x,y,z) except AssertionError as e: raise result = [] cid = self.c[(x,y,z)] index = self.symbolOut.index(s) for i in range(self.timeN): self.f.seek( self.offsetResults + i * (len(self.symbolOut)*self.cStatus[0]*8+4) ) self.f.seek( 4,1 ) self.f.seek( index*self.cStatus[0]*8, 1 ) self.f.seek( cid*8, 1 ) result.append( unpack("<d", self.f.read(8))[0] ) return result def getByID(self,s,cid): """ timecourse of symbol [s] in compartment at [x][y][z]. [s] must be a string. [cid] must be integer. returns timecourse as a list of floats. upon error, raises error and aborts. """ # argument validation try: assert s in self.symbolOut, "error in getSequence(): could not find symbol \"{}\"".format(s) assert (0<=cid and cid<self.cStatus[0]), "error in getSequence(): no such compartment: {}.".format(cid) except AssertionError as e: raise result = [] index = self.symbolOut.index(s) for i in range(self.timeN): self.f.seek( self.offsetResults + i * (len(self.symbolOut)*self.cStatus[0]*8+4) ) self.f.seek( 4,1 ) self.f.seek( index*self.cStatus[0]*8, 1 ) self.f.seek( cid*8, 1 ) result.append( unpack("<d", self.f.read(8))[0] ) return result def getSeqAverage(self,s,average=True): """ returns amount of symbol [s] as array. [s] must be a string. when [average] is True, each value is averaged per compartment. beware of rownding errors. """ x = [] for i in range(self.cStatus[0]): x.append( self.getByID(s,i) ) if(average): result = [sum(unit)/self.cStatus[0] for unit in list(zip(*x))] else: result = [sum(unit) for unit in list(zip(*x))] return result
StarcoderdataPython
9794356
<gh_stars>0 import asyncio from django.db.models import Count from usaspending_api.awards.v2.filters.matview_filters import matview_search_filter from usaspending_api.common.helpers.orm_helpers import generate_raw_quoted_query from usaspending_api.common.data_connectors.async_sql_query import async_run_select def fetch_all_category_counts(filters, category_to_model_dict): loop = asyncio.new_event_loop() results = {} for k, v in category_to_model_dict.items(): queryset = matview_search_filter(filters, v).annotate(count=Count("*")).values("count") sql = generate_raw_quoted_query(queryset) # Django refuses to provide a viable option to exclude "GROUP BY ..." so it is stripped before running the SQL remove_groupby_string_index = sql.find("GROUP BY") results[k] = asyncio.ensure_future(async_run_select(sql[:remove_groupby_string_index]), loop=loop) all_statements = asyncio.gather(*[value for value in results.values()]) loop.run_until_complete(all_statements) loop.close() return {k: v.result()[0]["count"] for k, v in results.items()}
StarcoderdataPython
6471081
<gh_stars>0 #!/usr/local/bin/python3 # NOTE: The model itself is quite meaningless. The purpose is # to check some features. Consider it like an unit-test from simulation.aivika.modeler import * model = MainModel() data_type = TransactType(model, 'Transact') input_stream = uniform_random_stream(data_type, 3, 7) input_queue = create_queue(model, data_type, 10, name = 'queue', descr = 'The input queue') input_queue_source = input_queue.add_result_source() enqueue_stream_or_remove_item(input_queue, input_stream) server = uniform_random_server(data_type, 1, 2, name = 'server', descr = 'The server') server_source = server.add_result_source() arrival_timer = create_arrival_timer(model, name = 'arrivalTimer', descr = 'The arrival timer') arrival_timer_source = arrival_timer.add_result_source() output_stream0 = dequeue_stream(input_queue) output_stream1 = server_stream(server, output_stream0) output_stream = arrival_timer_stream(arrival_timer, output_stream1) terminate_stream(output_stream) specs = Specs(0, 100, 0.1) views = [ExperimentSpecsView(title = 'Testing Experiment Title', descr = 'Some long description follows...'), InfoView(title = 'Testing InfoView Title', descr = 'Testing InfoView Description', series = [arrival_timer_source, input_queue_source, server_source]), DeviationChartView(title = 'Testing DeviationChartView Title', descr = 'Testing DeviationChartView Description', width = 800, height = 500, left_y_series = [arrival_timer_source.processing_time], right_y_series = [server_source.processing_time], plot_title = 'Testing Plot Title'), TimeSeriesView(title = 'Testing TimeSeriesView Title', descr = 'Testing TimeSeriesView Description', width = 800, height = 500, left_y_series = [arrival_timer_source.processing_time.min_value, arrival_timer_source.processing_time.max_value], right_y_series = [arrival_timer_source.processing_time.mean_value], plot_title = 'Testing Plot Title', run_plot_title = '$PLOT_TITLE / Run $RUN_INDEX of $RUN_COUNT'), XYChartView(title = 'Testing XYChartView Title', descr = 'Testing XYChartView Description', width = 800, height = 500, x_series = arrival_timer_source.processing_time.mean_value, left_y_series = [arrival_timer_source.processing_time.min_value, arrival_timer_source.processing_time.max_value], right_y_series = [arrival_timer_source.processing_time.mean_value], plot_title = 'Testing Plot Title', run_plot_title = '$PLOT_TITLE / Run $RUN_INDEX of $RUN_COUNT'), FinalXYChartView(title = 'Testing FinalXYChartView Title', descr = 'Testing FinalXYChartView Description', width = 800, height = 500, x_series = arrival_timer_source.processing_time.mean_value, left_y_series = [arrival_timer_source.processing_time.min_value, arrival_timer_source.processing_time.max_value], right_y_series = [arrival_timer_source.processing_time.mean_value], plot_title = 'Testing Plot Title'), HistogramView(title = 'Testing HistogramView Title', descr = 'Testing HistogramView Description', width = 800, height = 500, series = [arrival_timer_source.processing_time.mean_value], plot_title = 'Testing Plot Title', run_plot_title = '$PLOT_TITLE / Run $RUN_INDEX of $RUN_COUNT'), FinalHistogramView(title = 'Testing FinalHistogramView Title', descr = 'Testing FinalHistogramView Description', width = 800, height = 500, series = [arrival_timer_source.processing_time.mean_value], plot_title = 'Testing Plot Title')] renderer = ExperimentRendererUsingDiagrams(views) experiment = Experiment(renderer, run_count = 3) model.run(specs, experiment)
StarcoderdataPython
30743
<filename>ConsecutiveCharacters.py ''' Given a string s, the power of the string is the maximum length of a non-empty substring that contains only one unique character. Return the power of the string. Example 1: Input: s = "leetcode" Output: 2 Explanation: The substring "ee" is of length 2 with the character 'e' only. Example 2: Input: s = "abbcccddddeeeeedcba" Output: 5 Explanation: The substring "eeeee" is of length 5 with the character 'e' only. ''' class Solution: def maxPower(self, s: str) -> int: current = 1 max_freq = 0 for i in range(1, len(s)): if s[i] == s[i - 1]: current += 1 else: max_freq = max(current, max_freq) current = 1 return max(max_freq, current)
StarcoderdataPython
105031
<filename>moonleap/resource/prop.py import typing as T from dataclasses import dataclass @dataclass(frozen=True) class Prop: get_value: T.Callable set_value: T.Optional[T.Callable] = None
StarcoderdataPython
8039340
from __future__ import division import json from datetime import datetime import gspread from oauth2client.client import SignedJwtAssertionCredentials from feemodel.apiclient import client from feemodeldata.util import retry from feemodeldata.plotting import logger # This is deprecated - mining pools are no longer identified. def get_pools_table(): pe = client.get_poolsobj() poolitems = sorted(pe.pools.items(), key=lambda p: p[1].hashrate, reverse=True) totalhashrate = pe.calc_totalhashrate() table = [[ name, pool.hashrate*1e-12, pool.hashrate/totalhashrate, pool.maxblocksize, pool.minfeerate, pool.mfrstats['abovekn'], pool.mfrstats['belowkn'], pool.mfrstats['mean'], pool.mfrstats['std'], pool.mfrstats['bias']] for name, pool in poolitems] timestamp = (datetime.utcfromtimestamp(pe.timestamp). strftime("%Y/%m/%d %H:%M")) misc_stats = [totalhashrate*1e-12, 1 / pe.blockrate, timestamp] return table, misc_stats @retry(wait=1, maxtimes=3, logger=logger) def update_tables(credentials, table, misc_stats): gc = gspread.authorize(credentials) spreadsheet = gc.open("Mining Pools") pools_wks = spreadsheet.worksheet("Pools") numrows = len(table) numcols = len(table[0]) pools_wks.resize(rows=numrows+1) endcell = pools_wks.get_addr_int(numrows+1, numcols) cell_list = pools_wks.range('A2:' + endcell) table_list = sum(table, []) for cell, cellvalue in zip(cell_list, table_list): cell.value = cellvalue pools_wks.update_cells(cell_list) misc_wks = spreadsheet.worksheet("Misc") cell_list = misc_wks.range("A2:C2") for cell, cellvalue in zip(cell_list, misc_stats): cell.value = cellvalue misc_wks.update_cells(cell_list) def main(credentialsfile): table, misc_stats = get_pools_table() with open(credentialsfile, "r") as f: json_key = json.load(f) scope = ['https://spreadsheets.google.com/feeds'] credentials = SignedJwtAssertionCredentials( json_key['client_email'], json_key['private_key'], scope) update_tables(credentials, table, misc_stats)
StarcoderdataPython
3478590
# Copyright (c) <NAME>. All rights reserved. from .builder import OPTIMIZERS, build_optimizer from .lamb import Lamb __all__ = ['OPTIMIZERS', 'build_optimizer', 'Lamb']
StarcoderdataPython
9743988
import requests import json import clipboard import time def main(): temp = None try: import tkinter temp = 1 except: temp = 0 if temp == 0: print("No Valid Tkinter installation found. Either tkinter is not installed or tkinter is not supported on this platform.") if temp == 1: try: from tkinter import Tk from tkinter.filedialog import askopenfilename Tk().withdraw() filename = askopenfilename() myfiles = {'file': open(filename ,'rb')} url = "https://file.io" postrequest = requests.post(url, files = myfiles) jsonloadedresponse = json.loads(postrequest.text) downloadlink = jsonloadedresponse["link"] print(downloadlink) clipboard.copy(downloadlink) time.sleep(1) except: print("Error") if __name__ == "__main__": main()
StarcoderdataPython
3495872
from django.conf.urls import url from .views import search_users, new_connection, accept_connection urlpatterns = [ url(r'^search/$', search_users, name="connections_user_search"), url(r'^invite/$', new_connection , name="connections_new_connection"), url(r'^accept/$', accept_connection, name="connections_accept_connection"), ]
StarcoderdataPython
3455262
<gh_stars>10-100 """Custom middlewares for the project.""" from __future__ import absolute_import import re from django.conf import settings from django.core.mail import mail_managers from django.http import HttpResponseRedirect from django.utils.encoding import force_text class AjaxRedirectMiddleware(object): """ Middleware that sets a made up status code when a redirect has happened. This is necessary for AJAX calls with jQuery. It seems to set the status code to 200 when in reality it was a 301 or 302. If you want to override this behaviour for some of your ajax calls, you can add `ajax_redirect_passthrough` as a hidden field or as a GET parameter. """ def process_response(self, request, response): if request.is_ajax(): if request.GET.get('ajax_redirect_passthrough', request.POST.get( 'ajax_redirect_passthrough')): return response if type(response) == HttpResponseRedirect: response.status_code = 278 return response class ErrorMiddleware(object): """Alter HttpRequest objects on Error.""" def process_exception(self, request, exception): """ Add user details. """ if request.user and hasattr(request.user, 'email'): request.META['USER'] = request.user.email class SSLRedirect: """ Redirects all non-SSL requests to the SSL versions. You can add exceptions via the setting ``NO_SSL_URLS``. This allows you to forward your whole website to the SSL version except for a few URLs that you need to serve via non-SSL for whatever reason. """ def process_request(self, request): no_ssl_urls = getattr(settings, 'NO_SSL_URLS', []) urls = tuple([re.compile(url) for url in no_ssl_urls]) secure = False for url in urls: if not url.match(request.path): secure = True break if not secure == self._is_secure(request): return self._redirect(request, secure) def _is_secure(self, request): if request.is_secure(): return True # Handle the Webfaction case until this gets resolved in the # request.is_secure() if 'HTTP_X_FORWARDED_SSL' in request.META: return request.META['HTTP_X_FORWARDED_SSL'] == 'on' return False def _redirect(self, request, secure): protocol = secure and "https" or "http" if secure: host = getattr(settings, 'SSL_HOST', request.get_host()) else: host = getattr(settings, 'HTTP_HOST', request.get_host()) newurl = "%s://%s%s" % (protocol, host, request.get_full_path()) if settings.DEBUG and request.method == 'POST': raise Exception( "Django can't perform a SSL redirect while maintaining POST" " data. Please structure your views so that redirects only" " occur during GETs.") return HttpResponseRedirect(newurl) class CustomBrokenLinkEmailsMiddleware(object): """Custom version that adds the user to the error email.""" def process_response(self, request, response): """ Send broken link emails for relevant 404 NOT FOUND responses. """ if response.status_code == 404 and not settings.DEBUG: domain = request.get_host() path = request.get_full_path() referer = force_text( request.META.get('HTTP_REFERER', ''), errors='replace') if not self.is_ignorable_request(request, path, domain, referer): ua = request.META.get('HTTP_USER_AGENT', '<none>') ip = request.META.get('REMOTE_ADDR', '<none>') user = None if request.user and hasattr(request.user, 'email'): user = request.user.email content = ( "Referrer: %s\n" "Requested URL: %s\n" "User agent: %s\n" "IP address: %s\n" "User: %s\n" ) % (referer, path, ua, ip, user) if self.is_internal_request(domain, referer): internal = 'INTERNAL ' else: internal = '' mail_managers( "Broken %slink on %s" % ( internal, domain ), content, fail_silently=True) return response def is_internal_request(self, domain, referer): """ Returns True if referring URL is the same domain as current request. """ # Different subdomains are treated as different domains. return bool(re.match("^https?://%s/" % re.escape(domain), referer)) def is_ignorable_request(self, request, uri, domain, referer): """ Returns True if the given request *shouldn't* notify the site managers. """ # '?' in referer is identified as search engine source if (not referer or (not self.is_internal_request( domain, referer) and '?' in referer)): return True return any( pattern.search(uri) for pattern in settings.IGNORABLE_404_URLS)
StarcoderdataPython
4893615
<reponame>affjljoo3581/Expanda from expanda.shuffling import shuffle from unittest import mock from io import BytesIO class _modified_open_wrapper(object): def __init__(self): self.file_table = {} def __call__(self, path, mode): # Return already created fake file. if path in self.file_table: return self.file_table[path] # Modify `close` method to prevent actually close the buffer. def modified_close(): self.file_table[path].seek(0) # Create fake file using 'BytesIO' which is similary to file. self.file_table[path] = BytesIO() self.file_table[path].close = modified_close return self.file_table[path] @mock.patch('os.remove') @mock.patch('builtins.open') def test_shuffling_integrity(mock_open, mock_remove): mock_open.side_effect = _modified_open_wrapper() # Create target file. original = list(range(100)) with open('input', 'wb') as fp: fp.write(b'\n'.join([str(i).encode() for i in original])) # Shuffle the file and write to `output`. shuffle('input', 'output', 'tmp') # Read shuffled file. with open('output', 'rb') as fp: shuffled = [int(i.decode()) for i in fp.readlines()] assert sorted(shuffled) == original
StarcoderdataPython
3220029
<filename>setup.py # -*- coding: utf-8 -*- import os from setuptools import setup VERSION = '1.3.1' setup( name='conllu', packages=["conllu"], version=VERSION, description='CoNLL-U Parser parses a CoNLL-U formatted string into a nested python dictionary', long_description=open(os.path.join(os.path.dirname(__file__), 'README.md')).read(), long_description_content_type="text/markdown", author=u'<NAME>', author_email='<EMAIL>', url='https://github.com/EmilStenstrom/conllu/', install_requires=[], keywords=['conllu', 'conll', 'conll-u', 'parser', 'nlp'], classifiers=[ "Programming Language :: Python", "Programming Language :: Python :: 2.7", "Programming Language :: Python :: 3", "Programming Language :: Python :: 3.4", "Programming Language :: Python :: 3.5", "Programming Language :: Python :: 3.6", "Programming Language :: Python :: 3.7", "Operating System :: OS Independent", ], )
StarcoderdataPython
8003255
<reponame>changwoo-ivy/ivy-fabric from unittest import TestCase # noinspection PyUnresolvedReferences from types import ModuleType, FunctionType from shell_command import ShellCommand import re import utils class TestShellCommand(TestCase): def setUp(self): self.cmd = ShellCommand( database='wordpress', user='user', passwd='<PASSWORD>', mysql_options='--protocol=tcp', mysqldump_options='--single-transaction' ) @staticmethod def replace_spaces(string): return re.sub(r'\s+', ' ', string) def test_redirect(self): self.assertEqual(self.cmd.redirect_null, self.cmd.redirect()) self.assertEqual('1 ' + self.cmd.redirect_null, self.cmd.redirect(1)) def test_cmd_mysql(self): self.assertEqual( 'mysql --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--protocol=tcp --column-type-info wordpress 2 > /dev/null', self.replace_spaces(self.cmd.cmd_mysql('--column-type-info')) ) def test_cmd_mysqldump(self): self.assertEqual( 'mysqldump --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--single-transaction --skip-opt wordpress 2 > /dev/null', self.replace_spaces(self.cmd.cmd_mysqldump('--skip-opt')) ) def test_cmd_snapshot_database(self): self.assertEqual( 'mysqldump --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--single-transaction wordpress 2 > /dev/null | gzip > snapshot.sql.gz', self.replace_spaces(self.cmd.cmd_snapshot_database('snapshot.sql.gz', None)) ) def test_cmd_snapshot_directory(self): self.assertEqual( 'tar czpf snapshot.tar.gz public_html', self.replace_spaces(self.cmd.cmd_snapshot_directory('snapshot.tar.gz', 'public_html')) ) def test_cmd_replace_local_db(self): self.assertEqual( 'gunzip -c snapshot.sql.gz | ' 'mysql --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--protocol=tcp wordpress 2 > /dev/null', self.replace_spaces( self.cmd.cmd_replace_local_db( snapshot_file='snapshot.sql.gz', mysql_options='', pipe='' ) ) ) self.assertEqual( 'gunzip -c snapshot.sql.gz | sed | pipe-test | ' 'mysql --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--protocol=tcp wordpress 2 > /dev/null', self.replace_spaces( self.cmd.cmd_replace_local_db( snapshot_file='snapshot.sql.gz', mysql_options='', pipe=['sed', 'pipe-test'] ) ) ) self.assertEqual( 'gunzip -c snapshot.sql.gz | sed | ' 'mysql --host=localhost --port=3306 --user=user --password=<PASSWORD> ' '--protocol=tcp wordpress 2 > /dev/null', self.replace_spaces( self.cmd.cmd_replace_local_db( snapshot_file='snapshot.sql.gz', mysql_options='', pipe='sed' ) ) ) class TestUtils(TestCase): def test_load_script_module(self): test_script = utils.load_script_module('test_script') self.assertIsInstance(test_script, ModuleType) test_func = getattr(test_script, 'test_func') self.assertIsInstance(test_func, FunctionType) self.assertEqual('Hello, World!', test_func())
StarcoderdataPython
6425777
# -*- coding: utf-8 -*- from __future__ import absolute_import, division, print_function, unicode_literals __author__ = '<NAME> (<EMAIL>)' __license__ = 'MIT' __version__ = '1.19.1'
StarcoderdataPython
6646096
# -*- coding: utf-8 -*- # Copyright 2021, SERTIT-ICube - France, https://sertit.unistra.fr/ # This file is part of sertit-utils project # https://github.com/sertit/sertit-utils # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ Script testing string functions """ import argparse import logging from datetime import date, datetime import pytest from sertit import strings def test_conversion(): # Str to bool true_str = (True, "yes", "true", "t", "y", "1") false_str = (False, "no", "false", "f", "n", "0") for true, false in zip(true_str, false_str): assert strings.str_to_bool(true) assert not strings.str_to_bool(false) # Str to logging verbosity debug_str = ("debug", "d", 10) info_str = ("info", "i", 20) warn_str = ("warning", "w", "warn", 30) err_str = ("error", "e", "err", 40) for debug, info, warn, err in zip(debug_str, info_str, warn_str, err_str): assert strings.str_to_verbosity(debug) == logging.DEBUG assert strings.str_to_verbosity(info) == logging.INFO assert strings.str_to_verbosity(warn) == logging.WARNING assert strings.str_to_verbosity(err) == logging.ERROR with pytest.raises(argparse.ArgumentTypeError): strings.str_to_verbosity("oopsie") # Str to list of dates list_of_str_dates = "20200909105055, 2019-08-06;19560702121212\t2020-08-09" list_of_datetimes = [ datetime(2020, 9, 9, 10, 50, 55), datetime(2019, 8, 6), datetime(1956, 7, 2, 12, 12, 12), datetime(2020, 8, 9), ] list_of_dates = [ datetime(2020, 9, 9, 10, 50, 55), date(2019, 8, 6), datetime(1956, 7, 2, 12, 12, 12), date(2020, 8, 9), ] assert list_of_datetimes == strings.str_to_list_of_dates( list_of_str_dates, date_format="%Y%m%d%H%M%S", additional_separator="\t" ) assert strings.str_to_list_of_dates(list_of_dates) == list_of_datetimes assert strings.str_to_list_of_dates(list_of_datetimes) == list_of_datetimes # Str to list list_str_up = ["A", "B"] list_str_low = ["a", "b"] assert strings.str_to_list(list_str_up) == list_str_up assert strings.str_to_list(list_str_low, case="upper") == list_str_up assert strings.str_to_list(list_str_up, case="lower") == list_str_low def test_str(): """Test string function""" tstr = "ThisIsATest" assert strings.snake_to_camel_case(strings.camel_to_snake_case(tstr)) == tstr assert strings.to_cmd_string(tstr) == f'"{tstr}"'
StarcoderdataPython
1880679
from anytree import Node, PostOrderIter DIRECTION = ["inc_", "exc_"] FILTERS = ["name", "content", "type", "text_longer", "ancestor", "parent"] LBL_WARNING = """Warning: This feature is assuming that you have a DATABASE which is doing the heavylifting. If you do not have that, please use the normal version. """ class SearchableMixin(object): def select(self, node_name): node = self.find_node(node_name) if not node: return return type(self).from_tree(node, title=node_name) def get_query(self, query_str:str) -> dict: return self._build_query(query_str) def _build_query(self, query_str: str) -> dict: # init, fix query_str = query_str.replace(" ", " ").replace("\n", " ").rstrip().lstrip() if not query_str.startswith("inc_") and not query_str.startswith("exc_"): query_str = "inc_content:" + query_str if "inc_ancestor:" not in query_str: query_str += " inc_ancestor:" + str(self.tree.name) # break into lines for i in DIRECTION: query_str = query_str.replace(i, "_BREAK_" + i) values = [ i.rstrip().lstrip() for i in query_str.split("_BREAK_") if i.rstrip().lstrip() != "" ] # build query query_dict = {} for line in values: u_ind = line.find("_") # underline index c_ind = line.find(":") # comma index key = line[u_ind + 1 : c_ind] if key not in FILTERS: continue if key not in query_dict: query_dict[key] = {} query_dict[key][line[:u_ind]] = [ i.rstrip().lstrip().lower() for i in line[c_ind + 1 :].rstrip().lstrip().split(",") if i != "" ] # fix query for key, val in query_dict.items(): if "inc" not in val: query_dict[key]["inc"] = [] if "exc" not in val: query_dict[key]["exc"] = [] return query_dict def search( self, query_str: str, title: str = None, select_from: str = None, filter_type: str = None, silent: bool = True, adv_form: bool = False, ): if 'inc_' in query_str or 'exc_' in query_str: raise Exception('Exception: For advanced queries use advanced_search.') if filter_type and isinstance(filter_type, str): query_str += ' inc_type:' + filter_type if select_from and isinstance(select_from, str): query_str += ' inc_ancestor:' + select_from if adv_form: print(query_str) return self.advanced_search(query_str, title=title, silent=silent) def advanced_search( self, query_str: str, node_type: Node = None, title: str = None, lbl: bool = False, silent: bool = True, with_children: bool = False, ) -> Node: """Deals with the independent steps of searching - filter-content - filter-others - filter-ancestors - merge For performance we can have this feature enabled: late_body_loading - which considers a potential missing body if loading from db. This is for cases of large-text bodies that can block the memory. For this, we do the filtering in the engine of the DATABASE that we are using. Write WARNING when using this feature. Otherwise, we load KnowledgeGraph with Body. Parameters: full_tree: keep the full tree of ancestors title: name for the search top groupby_type: group results by type keep in mind document:section differentiation late_body_loading: takes care of late-loading of body for performance improvement. silent_lbl_warning: silent the warning of DATABASE required. """ query_dict = self._build_query(query_str) if node_type == None: node_type = type(self.tree) nodes = [] # content filtering if lbl: if not silent: print(LBL_WARNING) # content_filtered_nodes nodes.append(self.apply_lbl_filters(query_dict, late_body_loading=True)) # nodes based on other filters for node in PostOrderIter(self.tree): node.advanced_scoring( query_dict, late_body_loading=lbl, strict=True ) nodes.append(set([i for i in PostOrderIter(self.tree) if i.score])) # ancestor filtering if "ancestor" in query_dict: nodes.append( self.filter_subgraph( inc_list=query_dict["ancestor"]["inc"], exc_list=query_dict["ancestor"]["exc"], ) ) # merging # get count of nodes found # quickhack for skipping overlapping nodes def get_tuple_node(node): return (node.name, node.parent.name if node.parent else None) def get_tuple_list(nodes): return [ set([get_tuple_node(i) for i in j]) for j in nodes ] incl_tuple = set.intersection(*get_tuple_list(nodes)) incl_nodes = [i for i in nodes[-1] if get_tuple_node(i) in incl_tuple] if not silent: print("Total Selected: ", len(nodes[-1])) print("Total Filtered: ", len(nodes[0])) print("--------------") print("Total Found: ", len(incl_nodes)) print() # post processing ancestor_node = self.merge_nodes_into_tree( node_list=incl_nodes, node_type=node_type, with_children=with_children, ) if not title: title = ancestor_node.name return type(self).from_tree(ancestor_node, title=title)
StarcoderdataPython
9674423
from utils import * from GCNmodel import *
StarcoderdataPython
6438994
<reponame>I4-Projektseminar-HHU-2016/seminar-project-marionline03 # -*- coding: utf-8 -*- import logging # for DB usage import sqlite3 logging.basicConfig(filename='log.txt',level=logging.DEBUG) #Voc def make_tabel_voc(): try: con = sqlite3.connect('game.db') con.execute('''CREATE TABLE IF NOT EXISTS voc ( id INTEGER PRIMARY KEY, question CHAR(100) NOT NULL, answer CHAR(100) NOT NULL, times_answered_correctly INT, question_language CHAR(100), answer_language CHAR(100) ) ''') # due_on FLOAT # due BOOL con.commit() con.close() except Exception as msg: logging.debug('make_tabel_voc: ERROR: ', msg) print(msg) #make_tabel_voc() def write_tabel_voc(data): question, answer, times_answered_correctly, question_language, answer_language = data try: con = sqlite3.connect('game.db') con.execute('INSERT INTO voc (question, answer, times_answered_correctly, question_language, answer_language) VALUES (?,?,?,?,?);',(question, answer, times_answered_correctly, question_language, answer_language)) con.commit() except Exception as msg: logging.debug('write_tabel_voc: Error', msg) finally: if con: con.close() #write_tabel_voc(('Hello','Hallo',0, 'german')) #write_tabel_voc(('Guten Abend','Good evening',0,'german')) #write_tabel_voc(('Wo ist ...?','Where is ...?',0,'german')) #write_tabel_voc(('Ich bin ...','I am ...',0, 'german')) #write_tabel_voc(('Ich habe Hunger.','I am hungry.',0, 'german')) #write_tabel_voc(('Help!','Hilfe!',0, 'german')) #write_tabel_voc(('Bye!','Tschüss!',0, 'german')) def alter_tabel_voc(data_name,data_content): try: con = sqlite3.connect('game.db') command="UPDATE voc SET {}={};".format(data_name, data_content) # image_path CHAR(200) con.execute(command) con.commit() con.close() except Exception as msg: print('alter_tabel_voc: ERROR: ', msg) logging.debug('alter_tabel_voc: ERROR:', msg) finally: if con: con.close() #alter_tabel_voc('times_answered_correctly', 3) def alter_tabel_voc_where(data_name, data_content, where, what): try: con = sqlite3.connect('game.db') command="UPDATE voc SET {}='{}' WHERE {}={};".format(data_name, data_content, where, what) # image_path CHAR(200) con.execute(command) con.commit() con.close() except Exception as msg: print('alter_tabel_voc: ERROR: ', msg) logging.debug('alter_tabel_voc: ERROR:', msg) finally: if con: con.close() #alter_tabel_voc_where('times_answered_correctly', 5, 'id', 2) def read_everything_from_tabel_voc(): try: con = sqlite3.connect('game.db') command ="SELECT * FROM voc" c = con.cursor() c.execute(command) data = c.fetchall() #logging.debug("read_everything_from_tabel_voc: {}".format(data)) return data except Exception as msg: logging.debug('read_everything_from_tabel_voc: ERROR:', msg) finally: if con: con.close() #data = read_everything_from_tabel_voc() #print(data) def read_value_from_tabel_voc(value, where, what): try: con = sqlite3.connect('game.db') command ="SELECT {} FROM voc WHERE {}={}".format(value, where, what) c = con.cursor() c.execute(command) data = c.fetchall() #logging.debug("read_value_from_tabel_voc: {}".format(data)) #print(data) return data except Exception as msg: logging.debug('read_value_from_tabel_voc: ERROR:', msg) finally: if con: con.close()
StarcoderdataPython
1620197
<reponame>velocist/TS4CheatsInfo<filename>Scripts/simulation/rabbit_hole/career_rabbit_hole.py # uncompyle6 version 3.7.4 # Python bytecode 3.7 (3394) # Decompiled from: Python 3.7.9 (tags/v3.7.9:13c94747c7, Aug 17 2020, 18:58:18) [MSC v.1900 64 bit (AMD64)] # Embedded file name: T:\InGame\Gameplay\Scripts\Server\rabbit_hole\career_rabbit_hole.py # Compiled at: 2020-08-21 07:36:12 # Size of source mod 2**32: 4199 bytes import services from event_testing.resolver import SingleSimResolver from rabbit_hole.rabbit_hole import RabbitHole, RabbitHolePhase, RabbitHoleTimingPolicy from sims4.tuning.instances import lock_instance_tunables class CareerRabbitHole(RabbitHole): def __init__(self, *args, career_uid=None, **kwargs): (super().__init__)(*args, **kwargs) self._career_uid = career_uid @classmethod def get_affordance(cls, sim_info, career_uid): career = services.sim_info_manager().get(sim_info.sim_id).career_tracker.get_career_by_uid(career_uid) if career is None: return resolver = SingleSimResolver(sim_info) for tested_affordance_tuning in career.tested_affordances: if tested_affordance_tuning.tests.run_tests(resolver): return tested_affordance_tuning.affordance if sim_info.is_at_home: return career.career_affordance def select_affordance(self): if self._selected_affordance is not None: return self._selected_affordance sim_info = services.sim_info_manager().get(self.sim_id) self._selected_affordance = self.get_affordance(sim_info, self._career_uid) return self._selected_affordance def is_valid_to_restore(self, sim_info): career_tracker = sim_info.career_tracker if career_tracker is None: return False career = career_tracker.get_career_by_uid(self._career_uid) if career is None: return False return super().is_valid_to_restore(sim_info) @classmethod def get_travel_affordance(cls, sim_info, career_uid): career = sim_info.career_tracker.get_career_by_uid(career_uid) return career.go_home_to_work_affordance def select_travel_affordance(self): sim_info = services.sim_info_manager().get(self.sim_id) return self.get_travel_affordance(sim_info, self._career_uid) def on_activate(self): super().on_activate() career = services.sim_info_manager().get(self.sim_id).career_tracker.get_career_by_uid(self._career_uid) career.attend_work() def on_remove(self, canceled=False): super().on_remove(canceled=canceled) if canceled: sim_info = services.sim_info_manager().get(self.sim_id) if sim_info is not None: if sim_info.career_tracker is not None: career = sim_info.career_tracker.get_career_by_uid(self._career_uid) if career is None: return elif self.is_active(): career.leave_work(left_early=True) else: career.on_inactive_rabbit_hole_canceled() def save(self, rabbit_hole_data): super().save(rabbit_hole_data) rabbit_hole_data.career_uid = self._career_uid def load(self, rabbit_hole_data): super().load(rabbit_hole_data) self._career_uid = rabbit_hole_data.career_uid lock_instance_tunables(CareerRabbitHole, away_action=None, time_tracking_policy=(RabbitHoleTimingPolicy.NO_TIME_LIMIT), affordance=None, tested_affordances=None, go_home_and_attend=None)
StarcoderdataPython
6436093
import gym from gym import error, spaces, utils from gym.utils import seeding import numpy as np import copy from gym.envs.classic_control import rendering from scipy.special import expit class DPGCEEnv(gym.Env): metadata = {'render.modes': ['human', 'rgb_array']} def __init__(self): self.current_state = 0 self._seed() self.viewer = None def _seed(self, seed=None): self.np_random, seed = seeding.np_random(seed) return [seed] def _step(self, action): if self.current_state == 0: reward = 0 done = False threshold = expit(-action) random_number = self.np_random.uniform(low=0.0, high=1.0, size=(1,)) if random_number < threshold: next_state = 1 else: next_state = 2 else: next_state = 0 done = True if self.current_state == 1: reward = 2.0*expit(-action) else: reward = expit(action) self.current_state = next_state return self.current_state, reward, done, {} def _reset(self): self.current_state = 0 return self.current_state def _render(self, mode='human', close=False): return None
StarcoderdataPython
6581462
#<NAME> and <NAME> print('hello World')
StarcoderdataPython
3355019
import networkx as nx import numpy as np from ...Fragment.FragmentChain import FragmentChain from ..AssemblyMixError import AssemblyMixError class ConstructsMixin: """Mixin for AssemblyMix""" def compute_random_circular_fragments_sets( self, staling_cutoff=100, fragments_sets_filters=() ): """Return an iterator over all the lists of fragments [f1, f2, f3...fn] that can assemble into a circular construct. This means that fragment f1 will clip with f2 (in this order), f2 with f3... and fn with f1. Parameters ---------- fragments_sets_filters A list of test functions of the form (set->True/False) where "set" is a list of fragments from the mix (which assemble into a circular construct). Only circular fragments sets passing all these tests will be returned randomize If set to False, the circular fragments sets will be returned one by one until the last one, in an order implemented by networkx.simple_cycles. True, the circular sets returned will be drawn randomly (a circular set will only be returned once). This is very practical to obtain a sample out of a combinatorial assembly mix. However this feature is a bit experimental, and the iteration will certainly stale before all cycles have been found, because the randomizer can't find any new cycle. randomization_staling_cutoff If randomize is True, the randomizer will throw an error if the latest C cycles it has drawn had already been seen before, where C is the randomization staling cutoff. """ def generator(): """Return random cycles from the connections graph. The randomness is introduced by permuting the nodes names, running `networkx.circular_paths` once, permuting the nodes names again, etc. """ graph = self.filtered_connections_graph seen_hashes = set() graph_nodes = list(graph.nodes()) node_to_index = {node: i for i, node in enumerate(graph_nodes)} while True: permutation = np.arange(len(graph_nodes)) np.random.shuffle(permutation) antipermutation = np.argsort(permutation) new_graph = nx.DiGraph( [ ( permutation[node_to_index[node1]], permutation[node_to_index[node2]], ) for node1, node2 in graph.edges() ] ) counter = 0 for cycle in nx.simple_cycles(new_graph): cycle = [antipermutation[i] for i in cycle] fragments = [ self.fragments_dict[graph_nodes[i]] for i in cycle ] cycle = FragmentChain( fragments, is_cycle=True ).standardized() cycle_hash = hash(cycle) if cycle_hash in seen_hashes: counter += 1 if counter > staling_cutoff: raise ValueError( "Randomization staled. Only randomize when" " the search space is huge." ) continue seen_hashes.add(cycle_hash) if all( fl(cycle.fragments) for fl in fragments_sets_filters ): yield cycle.fragments break else: break return generator() def compute_circular_fragments_sets(self, fragments_sets_filters=()): """Return an iterator over all the lists of fragments [f1, f2, f3...fn] that can assemble into a circular construct. This means that fragment f1 will clip with f2 (in this order), f2 with f3... and fn with f1. Parameters ---------- fragments_sets_filters A list of test functions of the form (set->True/False) where "set" is a list of fragments from the mix (which assemble into a circular construct). Only circular fragments sets passing all these tests will be returned """ def generator(): """Iterate over all circular paths in the connexion graph using Networkx's `simple_paths`.""" seen_hashes = set() for cycle in nx.simple_cycles(self.filtered_connections_graph): cycle = [self.fragments_dict[i] for i in cycle] cycle = FragmentChain(cycle, is_cycle=True).standardized() cycle_hash = hash(cycle) if cycle_hash in seen_hashes: continue seen_hashes.add(cycle_hash) if all(fl(cycle.fragments) for fl in fragments_sets_filters): yield cycle.fragments return generator() def compute_circular_assemblies( self, fragments_sets_filters=(), seqrecord_filters=(), annotate_parts_homologies=False, randomize=False, randomization_staling_cutoff=100, ): """Return a generator listing the circular assemblies in the graph. Parameters ---------- fragments_sets_filters A list of test functions of the form (set->True/False) where "set" is a list of fragments from the mix (which assemble into a circular construct). Only circular fragments sets passing all these tests will be returned seqrecord_filters A list of test functions of the form (record->True/False) where "record" is the biopython record of a circular assembly found. Only records passing all these tests will be returned annotate_parts_homologies If True, the junctions between assembled fragments will be annotated in the final record with a feature of type 'homology' and label equal to the homology (if <8bp), else simply 'homology'. randomize If set to False, the circular fragments sets will be returned one by one until the last one, in an order implemented by networkx.simple_cycles. True, the circular sets returned will be drawn randomly (a circular set will only be returned once). This is very practical to obtain a sample out of a combinatorial assembly mix. However this feature is a bit experimental, and the iteration will certainly stale before all cycles have been found, because the randomizer can't find any new cycle. randomization_staling_cutoff If randomize is True, the randomizer will throw an error if the latest C cycles it has drawn had already been seen before, where C is the randomization staling cutoff. """ def assemblies_generator(): if randomize: fragments = self.compute_random_circular_fragments_sets( fragments_sets_filters=fragments_sets_filters, staling_cutoff=randomization_staling_cutoff, ) else: fragments = self.compute_circular_fragments_sets( fragments_sets_filters=fragments_sets_filters ) for fragments in fragments: construct = self.assemble( fragments, circularize=True, annotate_homologies=annotate_parts_homologies, ) if all(fl(construct) for fl in seqrecord_filters): construct.fragments = fragments yield construct return assemblies_generator() def compute_linear_assemblies( self, fragments_sets_filters=(), min_parts=2, seqrecord_filters=(), annotate_parts_homologies=False, ): """Return a generator listing the possible linear assemblies. Parameters ---------- fragments_sets_filters A list of test functions of the form (set->True/False) where "set" is a list of fragments from the mix (which assemble into a circular construct). Only circular fragments sets passing all these tests will be returned min_parts Assemblies with less than this number of parts will be ignored. seqrecord_filters A list of test functions of the form (record->True/False) where "record" is the biopython record of a circular assembly found. Only records passing all these tests will be returned annotate_parts_homologies If True, the junctions between assembled fragments will be annotated in the final record with a feature of type 'homology' and label equal to the homology (if <8bp), else simply 'homology'. randomize If set to False, the circular fragments sets will be returned one by one until the last one, in an order implemented by networkx.simple_cycles. True, the circular sets returned will be drawn randomly (a circular set will only be returned once). This is very practical to obtain a sample out of a combinatorial assembly mix. However this feature is a bit experimental, and the iteration will certainly stale before all cycles have been found, because the randomizer can't find any new cycle. randomization_staling_cutoff If randomize is True, the randomizer will throw an error if the latest C cycles it has drawn had already been seen before, where C is the randomization staling cutoff. Notes ------ This is a bit undertested as there have been little use cases. """ seen_hashes = set() g = self.filtered_connections_graph for source, targets in nx.shortest_path(g).items(): for target, path in targets.items(): if len(path) < min_parts: continue fragments = [self.fragments_dict[f] for f in path] if not all([fl(fragments) for fl in fragments_sets_filters]): continue chain = FragmentChain(fragments).standardized() chain_hash = hash(chain) if chain_hash in seen_hashes: continue seen_hashes.add(chain_hash) fragments_assembly = self.assemble( fragments, annotate_homologies=annotate_parts_homologies ) if all([fl(fragments_assembly) for fl in seqrecord_filters]): yield (fragments_assembly)
StarcoderdataPython
11212386
import subprocess import os from spotdl.encode import EncoderBase from spotdl.encode.exceptions import EncoderNotFoundError from spotdl.encode.exceptions import FFmpegNotFoundError import logging logger = logging.getLogger(__name__) # Key: from format # Subkey: to format RULES = { "m4a": { "mp3": "-codec:v copy -codec:a libmp3lame", "opus": "-codec:a libopus", "m4a": "-acodec copy", "flac": "-codec:a flac", "ogg": "-codec:a libvorbis -q:a 5", }, "opus": { "mp3": "-codec:a libmp3lame", "m4a": "-cutoff 20000 -codec:a aac", "flac": "-codec:a flac", "ogg": "-codec:a libvorbis -q:a 5", "opus": "-acodec copy", }, } class EncoderFFmpeg(EncoderBase): """ A class for encoding media files using FFmpeg. Parameters ---------- encoder_path: `str` Path to FFmpeg. must_exist: `bool` Error out immediately if the encoder isn't found in ``encoder_path``. Examples -------- + Re-encode an OPUS stream from STDIN to an MP3: >>> import os >>> input_path = "audio.opus" >>> target_path = "audio.mp3" >>> input_path_size = os.path.getsize(input_path) >>> >>> from spotdl.encode.encoders import EncoderFFmpeg >>> ffmpeg = EncoderFFmpeg() >>> process = ffmpeg.re_encode_from_stdin( ... input_encoding="opus", ... target_path=target_path ... ) >>> >>> chunk_size = 4096 >>> total_chunks = (input_path_size // chunk_size) + 1 >>> >>> with open(input_path, "rb") as fin: ... for chunk_number in range(1, total_chunks+1): ... chunk = fin.read(chunk_size) ... process.stdin.write(chunk) ... print("chunks encoded: {}/{}".format( ... chunk_number, ... total_chunks, ... )) >>> >>> process.stdin.close() >>> process.wait() """ def __init__(self, encoder_path="ffmpeg", must_exist=True): _loglevel = "-hide_banner -nostats -v warning" _additional_arguments = ["-b:a", "192k", "-vn"] try: super().__init__(encoder_path, must_exist, _loglevel, _additional_arguments) except EncoderNotFoundError as e: raise FFmpegNotFoundError(e.args[0]) self._rules = RULES def set_trim_silence(self): self.set_argument("-af silenceremove=start_periods=1") def get_encoding(self, path): return super().get_encoding(path) def _generate_encoding_arguments(self, input_encoding, target_encoding): initial_arguments = self._rules.get(input_encoding) if initial_arguments is None: raise TypeError( 'The input format ("{}") is not supported.'.format( input_encoding, )) arguments = initial_arguments.get(target_encoding) if arguments is None: raise TypeError( 'The output format ("{}") is not supported.'.format( target_encoding, )) return arguments def set_debuglog(self): self._loglevel = "-loglevel debug" def _generate_encode_command(self, input_path, target_path, input_encoding=None, target_encoding=None): if input_encoding is None: input_encoding = self.get_encoding(input_path) if target_encoding is None: target_encoding = self.get_encoding(target_path) arguments = self._generate_encoding_arguments( input_encoding, target_encoding ) command = [self.encoder_path] \ + ["-y", "-nostdin"] \ + self._loglevel.split() \ + ["-i", input_path] \ + arguments.split() \ + self._additional_arguments \ + ["-f", self.target_format_from_encoding(target_encoding)] \ + [target_path] return command def re_encode(self, input_path, target_path, target_encoding=None, delete_original=False): encode_command = self._generate_encode_command( input_path, target_path, target_encoding=target_encoding ) logger.debug("Calling FFmpeg with:\n{command}".format( command=encode_command, )) process = subprocess.Popen(encode_command) process.wait() encode_successful = process.returncode == 0 if encode_successful and delete_original: os.remove(input_path) return process def re_encode_from_stdin(self, input_encoding, target_path, target_encoding=None): encode_command = self._generate_encode_command( "-", target_path, input_encoding=input_encoding, target_encoding=target_encoding, ) logger.debug("Calling FFmpeg with:\n{command}".format( command=encode_command, )) process = subprocess.Popen(encode_command, stdin=subprocess.PIPE) return process
StarcoderdataPython
8193385
<reponame>eduardo98m/GiaDog """ Authors: <NAME>, <NAME> Project: Graduation Thesis: GIAdog This file contains a demo to control the robot using the bezier gait. """ import os, sys sys.path.append(os.path.dirname(os.path.realpath(f'{__file__}/..'))) import numpy as np import pathlib sys.path.append(os.path.dirname(os.path.realpath(f'{__file__}/..'))) import os, sys import argparse from src.kinematics import FTG_handler, solve_leg_IK,transformation_matrices from src.joystick import XboxController from src.__env__ import LEG_SPAN, SIM_SECONDS_PER_STEP, STATE_FEATURES, \ PRIVILEGED_STATE_FEATURES, CONTROLLER_LATENCY_STEPS, \ GRAVITY_VECTOR,UPDATE_METHODS, ACTION_SPACE_SIZE,\ ADD_GAIT_DIRECTIONALITY from src.GymEnvs import TerrainScene, QuadrupedRobot from time import sleep, time import numpy as np from src.GymEnvs import pyBulletPainter as pbp from pybullet_utils import bullet_client import pybullet quadruped_urdf = str(pathlib.Path(__file__).parent.parent.resolve()) +\ '/mini_ros/urdf/spot.urdf' if __name__ == "__main__": parser = argparse.ArgumentParser( description='Test terrain curriculum.', formatter_class=argparse.ArgumentDefaultsHelpFormatter ) parser.add_argument( '-u', '--spot-urdf', type=str, default=str(pathlib.Path(__file__).parent.parent.resolve()) +\ '/mini_ros/urdf/spot.urdf', help='Path to the URDF file of the quadruped robot.', metavar='PATH' ) args = parser.parse_args() # Controller joy = XboxController() # Camera settings cam_dist = 2 cam_yaw = 0 cam_pitch = -30 camera_speed = 1.5 # FTG settings foot_trajectory_generator = FTG_handler("base") client = bullet_client.BulletClient(pybullet.GUI) robot = QuadrupedRobot( quadruped_urdf, client, UPDATE_METHODS, STATE_FEATURES, PRIVILEGED_STATE_FEATURES ) terrain_file = 'terrains/steps.txt' scene = TerrainScene( client, GRAVITY_VECTOR, SIM_SECONDS_PER_STEP, CONTROLLER_LATENCY_STEPS ) client.resetSimulation() scene.episode_restart() scene.load_terrain_from_file(terrain_file) scene.place_terrain_from_file() robot.add_to_scene(scene, first_execution = True) robot.reset(np.array([0,0])) # We create the menu paremeters in pybullet phase_leg_1 = client.addUserDebugParameter( 'Leg 1', *(0, 2*np.pi, 0) ) phase_leg_2 = client.addUserDebugParameter( 'Leg 2', *(0, 2*np.pi, np.pi) ) phase_leg_3 = client.addUserDebugParameter( 'Leg 3', *(0, 2*np.pi, np.pi) ) phase_leg_4 = client.addUserDebugParameter( 'Leg 4', *(0, 2*np.pi, 0) ) base_frequency = client.addUserDebugParameter( 'Base frequency', *(0, 32., 2.5)) psi = client.addUserDebugParameter( 'psi', *(-0.001, 0.001, 0.00015) ) delta = client.addUserDebugParameter( "delta", *(-0.10, 0.1, 0.005) ) reset_id = client.addUserDebugParameter('Reset', 1, 0, 0) reset_count = 0 z_frac = client.addUserDebugParameter( "z_frac", *(0, 1, 0.125)) #foot_trajectory_generator.dt = 1/240 t_o = time() while True: t_i = time() scene.global_step( prev_step_function_callbacks = robot.get_previous_step_callback_functions(), all_steps_function_callbacks = robot.get_all_steps_callback_functions() ) robot.elapsed_time = scene.elapsed_time # Step the simulation state = robot.state() # Read the parameters sigma = np.array([client.readUserDebugParameter(phase_leg_1), client.readUserDebugParameter(phase_leg_2), client.readUserDebugParameter(phase_leg_3), client.readUserDebugParameter(phase_leg_4) ]) #foot_trajectory_generator.delta_base = client.readUserDebugParameter(delta) #foot_trajectory_generator.psi_base = client.readUserDebugParameter(psi) robot.foot_trajectory_generator.FTG.f0 = client.readUserDebugParameter(base_frequency) z_frac_val = client.readUserDebugParameter(z_frac) if reset_count != client.readUserDebugParameter(reset_id): reset_count = client.readUserDebugParameter(reset_id) # Reset robot position client.resetBasePositionAndOrientation( robot.robot_id, (0,0,0.5), (0,0,0,1) ) alpha, movement_intensity = joy.get_left_joystick() l1 = joy.LeftBumper r1 = joy.RightBumper cam_dir, intensity_cam = joy.get_right_joystick() cam_pitch = cam_pitch - intensity_cam*camera_speed*np.sin(cam_dir) cam_yaw = cam_yaw - intensity_cam*camera_speed*np.cos(cam_dir) yaw = robot.orientation[2] dir_angle = np.mod((alpha - np.pi/2), 2*np.pi) robot.turn_dir = [(l1 - r1)] robot.dir_angle = dir_angle timestep = robot.elapsed_time - t_o if movement_intensity == 0: robot.foot_trajectory_generator.gait_directionality = False else: robot.foot_trajectory_generator.gait_directionality = True robot.apply_action(np.zeros(ACTION_SPACE_SIZE)) client.resetDebugVisualizerCamera(cam_dist, cam_yaw, cam_pitch, [robot.position[0], robot.position[1], 0.2]) t_f = time() sleep_time = SIM_SECONDS_PER_STEP * CONTROLLER_LATENCY_STEPS - (t_f - t_i) if sleep_time > 0: sleep(sleep_time)
StarcoderdataPython
1701443
<reponame>globophobe/crypto-tick-data import pandas as pd from ..constants import VOLUME def is_sample(data_frame, first_index, last_index): first_row = data_frame.loc[first_index] last_row = data_frame.loc[last_index] # For speed, short-circuit if first_row.timestamp == last_row.timestamp: if first_row.nanoseconds == last_row.nanoseconds: if first_row.tickRule == last_row.tickRule: if "symbol" in data_frame.columns: if first_row.symbol == last_row.symbol: return False else: return False return True def aggregate_trades(data_frame): df = data_frame.reset_index() idx = 0 samples = [] total_rows = len(df) - 1 # Were there two or more trades? if len(df) > 1: for row in df.itertuples(): index = row.Index last_index = index - 1 if index > 0: is_last_iteration = index == total_rows # Is this the last iteration? if is_last_iteration: # If equal, one sample if not is_sample(df, idx, index): # Aggregate from idx to end of data frame sample = df.loc[idx:] samples.append(agg_trades(sample)) # Otherwise, two samples. else: # Aggregate from idx to last_index sample = df.loc[idx:last_index] samples.append(agg_trades(sample)) # Append last row. sample = df.loc[index:] assert len(sample) == 1 samples.append(agg_trades(sample)) # Is the last row equal to the current row? elif is_sample(df, last_index, index): # Aggregate from idx to last_index sample = df.loc[idx:last_index] aggregated_sample = agg_trades(sample) samples.append(aggregated_sample) idx = index # Only one trade in data_frame elif len(df) == 1: aggregated_sample = agg_trades(df) samples.append(aggregated_sample) return pd.DataFrame(samples) def agg_trades(data_frame): last_row = data_frame.iloc[-1] timestamp = last_row.timestamp last_price = last_row.price ticks = len(data_frame) # Is there more than 1 trade to aggregate? if ticks > 1: volume = data_frame.volume.sum() notional = data_frame.notional.sum() else: volume = last_row.volume notional = last_row.notional data = { "timestamp": timestamp, "nanoseconds": last_row.nanoseconds, "price": last_price, "volume": volume, "notional": notional, "ticks": ticks, "tickRule": last_row.tickRule, } if "symbol" in data_frame.columns: data.update({"symbol": last_row.symbol}) return data def aggregate_filter(data_frame, attr=VOLUME, value=1000): samples = [] total_rows = len(data_frame) if len(data_frame): next_index = 0 for row in data_frame.itertuples(): index = row.Index if getattr(row, attr) >= value: if index == 0: sample = data_frame.loc[:index] else: sample = data_frame.loc[next_index:index] samples.append(agg_filter(sample, is_min_val=True)) next_index = index + 1 if next_index < total_rows: sample = data_frame.loc[next_index:] samples.append(agg_filter(sample)) return samples def agg_filter(df, is_min_val=False): data = {} if is_min_val: last_row = df.iloc[-1] data.update( { "timestamp": last_row.timestamp, "price": last_row.price, "volume": last_row.volume, "notional": last_row.notional, "tickRule": last_row.tickRule, "ticks": last_row.ticks, } ) if not is_min_val or len(df) > 1: buy_df = df[df.tickRule == 1] data.update( { "high": df.price.max(), "low": df.price.min(), "totalBuyVolume": buy_df.volume.sum(), "totalVolume": df.volume.sum(), "totalBuyNotional": buy_df.notional.sum(), "totalNotional": df.notional.sum(), "totalBuyTicks": buy_df.ticks.sum(), "totalTicks": df.ticks.sum(), } ) return data
StarcoderdataPython
3286345
#!/usr/bin/env python import numpy as np import matplotlib.pyplot as plt import mpl_toolkits.mplot3d.axes3d as p3 import matplotlib.animation as animation from math import pi from ...spot_micro_stick_figure import SpotMicroStickFigure from ...utilities import spot_micro_kinematics as smk d2r = pi/180 r2d = 180/pi def update_lines(num, coord_data, lines): line_to_leg__and_link_dict = {4:(0,0), 5:(0,1), 6:(0,2), 7:(1,0), 8:(1,1), 9:(1,2), 10:(2,0), 11:(2,1), 12:(2,2), 13:(3,0), 14:(3,1), 15:(3,2)} for line, i in zip(lines, range(len(lines))): if i < 4: # First four lines are the square body if i == 3: ind = -1 else: ind = i x_vals = [coord_data[num][ind][0][0], coord_data[num][ind+1][0][0]] y_vals = [coord_data[num][ind][0][1], coord_data[num][ind+1][0][1]] z_vals = [coord_data[num][ind][0][2], coord_data[num][ind+1][0][2]] # NOTE: there is no .set_data() for 3 dim data... line.set_data(x_vals,z_vals) line.set_3d_properties(y_vals) # Next 12 lines are legs # Leg 1, link 1, link 2, link 3 # Leg 2, link 1, link 2, link 3... else: leg_num = line_to_leg__and_link_dict[i][0] link_num = line_to_leg__and_link_dict[i][1] x_vals = [coord_data[num][leg_num][link_num][0], coord_data[num][leg_num][link_num+1][0]] y_vals = [coord_data[num][leg_num][link_num][1], coord_data[num][leg_num][link_num+1][1]] z_vals = [coord_data[num][leg_num][link_num][2], coord_data[num][leg_num][link_num+1][2]] line.set_data(x_vals,z_vals) line.set_3d_properties(y_vals) return lines # Attaching 3D axis to the figure fig = plt.figure() ax = p3.Axes3D(fig) ax.set_xlabel('X') ax.set_ylabel('Z') ax.set_zlabel('Y') ax.set_xlim3d([-0.2, 0.2]) ax.set_zlim3d([0, 0.4]) ax.set_ylim3d([-0.2,0.2]) # Set azimtuth and elevation of plot # ax.view_init(elev=135,azim=0) # Instantiate spot micro stick figure obeject sm = SpotMicroStickFigure(x=0,y=0.14,z=0, theta=00*d2r) # Define absolute position for the legs l = sm.body_length w = sm.body_width l1 = sm.hip_length l2 = sm.upper_leg_length l3 = sm.lower_leg_length desired_p4_points = np.array([ [-l/2, 0, w/2 + l1], [ l/2 , 0, w/2 + l1], [ l/2 , 0, -w/2 - l1], [-l/2 , 0, -w/2 - l1] ]) sm.set_absolute_foot_coordinates(desired_p4_points) # Set a pitch angle sm.set_body_angles(theta=00*d2r) # Get leg coordinates coords = sm.get_leg_coordinates() # Initialize empty list top hold line objects lines = [] # Construct the body of 4 lines from the first point of each leg (the four corners of the body) for i in range(4): # For last leg, connect back to first leg point if i == 3: ind = -1 else: ind = i # Due to mplot3d rotation and view limitations, swap y and z to make the stick figure # appear oriented better x_vals = [coords[ind][0][0], coords[ind+1][0][0]] y_vals = [coords[ind][0][1], coords[ind+1][0][1]] z_vals = [coords[ind][0][2], coords[ind+1][0][2]] lines.append(ax.plot(x_vals,z_vals,y_vals,color='k')[0]) # Plot color order for leg links: (hip, upper leg, lower leg) plt_colors = ['r','c','b'] for leg in coords: for i in range(3): # Due to mplot3d rotation and view limitations, swap y and z to make the stick figure # appear oriented better x_vals = [leg[i][0], leg[i+1][0]] y_vals = [leg[i][1], leg[i+1][1]] z_vals = [leg[i][2], leg[i+1][2]] lines.append(ax.plot(x_vals,z_vals,y_vals,color=plt_colors[i])[0]) # Create data of robot pitching up and down num_angles = 25 pitch_angles = np.linspace(-30*d2r,30*d2r,num_angles) coord_data = [] for theta in pitch_angles: # Set a pitch angle sm.set_body_angles(theta=theta) x = sm.get_leg_angles() # Get leg coordinates and append to data list coord_data.append(sm.get_leg_coordinates()) coord_data = coord_data + coord_data[::-1] # Creating the Animation object line_ani = animation.FuncAnimation(fig, update_lines, num_angles*2, fargs=(coord_data, lines), interval=75, blit=False) plt.show()
StarcoderdataPython
9637766
import pytest import seval def test_unsafe(): with pytest.raises(ValueError): seval.safe_eval('pow(2,3)')
StarcoderdataPython
390320
<reponame>wyaadarsh/LeetCode-Solutions class Solution: def maxProfit(self, k, prices): """ :type k: int :type prices: List[int] :rtype: int """ n = len(prices) if n == 0: return 0 if k >= n // 2: return sum(max(0, prices[i + 1] - prices[i]) for i in range(n - 1)) dp = [[0] * n for _ in range(k + 1)] for i in range(1, k + 1): mx = -prices[0] for j in range(1, n): dp[i][j] = max(dp[i][j - 1], prices[j] + mx) mx = max(mx, dp[i - 1][j - 1] - prices[j]) return dp[-1][-1]
StarcoderdataPython
9605241
import numpy as np import librosa import os import soundfile as sf import matplotlib.pyplot as plt """ This file takes care of the computation of the inputs and to the saving of the results in training/testing task """ def getStats(feature): """ :param feature: np array in 3 dimensions :return: the mean and the std of this array through the axis 1 and 2 """ return np.array([np.mean(feature, axis=(1, 2)), np.std(feature, axis=(1, 2))]) def getAllInputs(filename): """ :param filename: a .wav file :return: the inputs (not normalized) for the neural network """ audio, sr_ = sf.read(filename) # (4800000, 2) left = audio[::2, 0] right = audio[::2, 1] # waveform - (2, 120000) waveform = audio.T[:, ::4] # spectrogram - (2, 1025, 469) spectrogram = np.abs(np.array([librosa.core.stft(left), librosa.core.stft(right)])) # rms - (2, 1, 469) rms = np.array([librosa.feature.rms(left), # Root Mean Square librosa.feature.rms(right)]) # zcr - (2, 1, 469) zcr = np.array([librosa.feature.zero_crossing_rate(left), # Zero Crossing Rate librosa.feature.zero_crossing_rate(right)]) # sc - (2, 1, 469) sc = np.array([librosa.feature.spectral_centroid(left), # Spectral Centroid librosa.feature.spectral_centroid(right)]) # sr - (2, 1, 469) sr = np.array([librosa.feature.spectral_rolloff(left), # Spectral Roll-of librosa.feature.spectral_rolloff(right)]) # sfm - (2, 1, 469) sfm = np.array([librosa.feature.spectral_flatness(left), # Spectral Flatness Mesure librosa.feature.spectral_flatness(right)]) # mel_spectrogram - (2, 100, 469) n_mels = 100 mel_spectrogram = np.array([librosa.feature.melspectrogram(y=left, sr=sr_, n_mels=n_mels), # (2, 100, 469) librosa.feature.melspectrogram(y=right, sr=sr_, n_mels=n_mels)]) logmel_spectrogram = librosa.core.amplitude_to_db(mel_spectrogram) # getStats - (10,) stats = np.concatenate([getStats(rms), getStats(zcr), getStats(sc), getStats(sr), getStats(sfm)]) #### Reshape for the neural network ##### # Waveform waveform = np.reshape(waveform, (2, 120000)) # spectrogram spectrogram = np.reshape(spectrogram, (2, 1025, 469)) # Not used # Features features = np.concatenate( [ np.reshape(rms, (2, 469)), np.reshape(zcr, (2, 469)), np.reshape(sc, (2, 469)), np.reshape(sr, (2, 469)), np.reshape(sfm, (2, 469)) ], axis=0 ) features = np.reshape(features, (10, 469)) # Features mstd fmstd = np.reshape(stats.T, (2, 10)) # (right+left, 2 * nb_features) ##### Create datas ##### data = ( waveform, # (2, 120000) logmel_spectrogram, # (2, 1025, 469), for mel : (2, 100, 469) features, # (10, 469) fmstd # (2, 10) ) # data = (waveform, spectrogram, rms, zcr, mel_spectrogram, stats) return data #### Function to set up the environment def setEnviromnent(): """ Creates the folders for the Generated Dataset """ if not os.path.isdir('./GeneratedDataset'): os.mkdir('./GeneratedDataset') if not os.path.isdir('./GeneratedDataset/train'): os.mkdir('./GeneratedDataset/train') if not os.path.isdir('./GeneratedDataset/test'): os.mkdir('./GeneratedDataset/test') def setLightEnviromnent(): """ Creates the folders for the Generated Dataset with a snall number of Data (for test on CPU) """ if not os.path.isdir('./GeneratedLightDataset'): os.mkdir('./GeneratedLightDataset') if not os.path.isdir('./GeneratedLightDataset/train'): os.mkdir('./GeneratedLightDataset/train') if not os.path.isdir('./GeneratedLightDataset/test'): os.mkdir('./GeneratedLightDataset/test') def createInputParametersFile(template, fileName, dn_parameters): """ :param template: The template of the dictionnary input_parameters :param fileName: The path where we want to save it :param dn_parameters: the parameters of the neural network Creates the file "fileName" with the dictionnary input_parameters filled knowing the architecture of the Neural Network (known with dn_parameters) """ waveform, spectrogram, features, fmstd = getAllInputs('./Dataset/train/audio/0.wav') template['spectrum']['nb_channels'], template['spectrum']['h'], template['spectrum']['w'] = spectrogram.shape template['audio']['nb_channels'], template['audio']['len'] = waveform.shape template['features']['nb_channels'], template['features']['len'] = features.shape template['fmstd']['len'] = fmstd.shape[0] * fmstd.shape[1] template['final']['len'] = dn_parameters['spectrum']['size_fc'] + dn_parameters['audio']['size_fc'] + \ dn_parameters['features']['size_fc'] + dn_parameters['fmstd']['layers_size'][-1] np.save(fileName, template) def saveFigures(folder, name, summaryDict): """ :param folder: the folder where we want to save it :param name: the name of the figures :param summaryDict: the data of the training we want to plot Save the plot of the evolution of the training loss and the testing loss through the epochs Save the plot of the evolution of the training accuracy and the testing loss accuracy the epochs """ loss_train = summaryDict['loss_train'] loss_test = summaryDict['loss_test'] acc_train = summaryDict['acc_train'] acc_test = summaryDict['acc_test'] nb_epochs = summaryDict['nb_epochs'] best_epoch = summaryDict['best_model']['epoch'] best_loss_train = summaryDict['best_model']['loss_train'] best_acc_train = summaryDict['best_model']['acc_train'] best_loss_test = summaryDict['best_model']['loss_test'] best_acc_test = summaryDict['best_model']['acc_test'] min_loss = min(min(loss_train), min(loss_test)) max_loss = max(max(loss_train), max(loss_test)) min_acc = min(min(acc_train), min(acc_test)) max_acc = max(max(acc_train), max(acc_test)) x = np.arange(1, nb_epochs + 1) # Save of the loss plt.figure() plt.plot(x, loss_train, 'steelblue', label='Training Loss') plt.plot(x, loss_test, 'darkorange', label='Testing Loss') plt.title('Variation of the Loss through the epochs\n' + name) plt.xlabel('Epoch') plt.ylabel('Loss value') plt.plot([1, nb_epochs], [best_loss_train, best_loss_train], 'steelblue', linestyle='--', label='Model training loss : {0}'.format(round(best_loss_train, 4))) plt.plot([1, nb_epochs], [best_loss_test, best_loss_test], color='darkorange', linestyle='--', label='Model testing loss : {0}'.format(round(best_loss_test, 4))) plt.plot([best_epoch, best_epoch], [min_loss, max_loss], color='dimgray', linestyle='--', label='Best Epoch : {0}'.format(best_epoch)) plt.legend() plt.grid() plt.savefig(os.path.join(folder, 'LossFigure_' + name + '.png')) # Save the accuracy plt.figure() plt.plot(x, acc_train, 'steelblue', label='Training Accuracy') plt.plot(x, acc_test, 'darkorange', label='Testing Accuracy') plt.title('Variation of the Accuracy through the epochs\n' + name) plt.xlabel('Epoch') plt.ylabel('Accuracy value (%)') plt.plot([1, nb_epochs], [best_acc_train, best_acc_train], color='steelblue', linestyle='--', label='Model train accuracy : {0}'.format(round(best_acc_train, 2))) plt.plot([1, nb_epochs], [best_acc_test, best_acc_test], color='darkorange', linestyle='--', label='Model test accuracy : {0}'.format(round(best_acc_test, 2))) plt.plot([best_epoch, best_epoch], [min_acc, max_acc], color='dimgray', linestyle='--', label='Best Epoch : {0}'.format(best_epoch)) plt.legend() plt.grid() plt.savefig(os.path.join(folder, 'AccuracyFigure_' + name + '.png')) def saveText(folder, name, summaryDict): """ :param folder: the folder where we want to save it :param name: the name of the figures :param summaryDict: the data of the training we want to plot Save a text file which summarize the saved model """ loss_train = summaryDict['best_model']['loss_train'] loss_test = summaryDict['best_model']['loss_test'] acc_train = summaryDict['best_model']['acc_train'] acc_test = summaryDict['best_model']['acc_test'] nb_epochs = summaryDict['nb_epochs'] best_epoch = summaryDict['best_model']['epoch'] input_used = summaryDict['inputs_used'] iu_txt = '' flag = False if input_used[0] == '1': iu_txt += 'waveform' flag = True if input_used[1] == '1': if flag: iu_txt += ', spectrogram' else: iu_txt += 'spectrogram' flag = True if input_used[2] == '1': if flag: iu_txt += ', features' else: iu_txt += 'features' flag = True if input_used[3] == '1': if flag: iu_txt += ', fmstd' else: iu_txt += 'fmstd' flag = True text = 'Summary of {5} :\n\n' \ 'Training Loss : {0}\n' \ 'Testing Loss : {1}\n' \ 'Training Accuracy : {2}\n' \ 'Testing Accuracy : {3}\n' \ 'Train Epochs : {4}\n' \ 'Best Epoch : {8}\n\n' \ 'Inputs Used : {7}\t ({6})'\ .format( loss_train, loss_test, acc_train, acc_test, nb_epochs, name, iu_txt, input_used, best_epoch ) with open(os.path.join(folder, 'Summary_' + name + '.txt'), 'a') as f: f.write(text)
StarcoderdataPython
8102330
<filename>Trakttv.bundle/Contents/Libraries/Shared/oem_framework/models/show.py from oem_framework.core.helpers import get_attribute from oem_framework.models.core import BaseMedia, ModelRegistry import logging log = logging.getLogger(__name__) class Show(BaseMedia): __slots__ = ['names', 'mappings', 'seasons'] __attributes__ = ['names', 'mappings', 'seasons'] def __init__(self, collection, identifiers, names, mappings=None, seasons=None, **kwargs): super(Show, self).__init__(collection, 'show', identifiers, **kwargs) self.names = self._parse_names(collection, identifiers, names) or {} self.mappings = mappings or [] self.seasons = seasons or {} def to_dict(self, key=None, flatten=True): result = super(Show, self).to_dict(key=key, flatten=flatten) if not flatten: return result # Flatten "names" attribute self._flatten_names(self.collection, result) return result @classmethod def from_dict(cls, collection, data, **kwargs): touched = set() # Construct movie show = cls( collection, identifiers=get_attribute(touched, data, 'identifiers'), names=set(get_attribute(touched, data, 'names', [])), supplemental=get_attribute(touched, data, 'supplemental', {}), **get_attribute(touched, data, 'parameters', {}) ) # Construct seasons if 'seasons' in data: show.seasons = dict([ (k, ModelRegistry['Season'].from_dict(collection, v, key=k, parent=show)) for k, v in get_attribute(touched, data, 'seasons').items() ]) # Ensure all attributes were touched omitted = [ k for k in (set(data.keys()) - touched) if not k.startswith('_') ] if omitted: log.warn('Show.from_dict() omitted %d attribute(s): %s', len(omitted), ', '.join(omitted)) return show def __repr__(self): if self.identifiers and self.names: service = list(self.identifiers.keys())[0] return '<Show %s: %r, names: %r>' % ( service, self.identifiers[service], self.names ) if self.identifiers: service = list(self.identifiers.keys())[0] return '<Show %s: %r>' % ( service, self.identifiers[service] ) if self.names: return '<Show names: %r>' % ( self.names ) return '<Show>'
StarcoderdataPython
11302594
<reponame>JohnyEngine/CNC import iso_read as iso import sys # just use the iso reader class Parser(iso.Parser): def __init__(self, writer): iso.Parser.__init__(self, writer)
StarcoderdataPython
255629
import pytest from src.config import env class TestTesting: """ make sure ENV variable is testing """ def test_testing_environment(self): assert env.IS_TESTING == True
StarcoderdataPython
11263388
class SBDResult(object): def __init__(self, original_data: list) -> None: self.original_data = original_data self.scores = [] self.normal_behavior = [] self.normalized_data = [] def set_computed_values(self, scores: list, normal_behavior: list, normalized_data: list) -> None: self.scores = scores self.normal_behavior = normal_behavior self.normalized_data = normalized_data
StarcoderdataPython
9782546
<gh_stars>0 """Utility functions for mupub. """ __docformat__ = 'reStructuredText' import os import argparse import sys from clint.textui.validators import ValidationError import stat import mupub def _find_files(folder, outlist): for entry in os.listdir(path=folder): # ignore hidden and backup files if entry.startswith('.') or entry.endswith('~'): continue path = os.path.join(folder, entry) stflags = os.stat(path).st_mode if stat.S_ISREG(stflags): outlist.append(path) elif stat.S_ISDIR(stflags): # recurse to get files under this folder outlist = _find_files(path, outlist) return outlist def find_files(folder): """Return a list of all files in a folder :param str folder: The top-most folder. :returns: list of files under folder :rtype: [str] """ return _find_files(folder, []) def resolve_lysfile(infile): if os.path.exists(infile): return infile base,infile = mupub.resolve_input(infile) return os.path.join(base+'-lys', infile) def resolve_input(infile=None): """Determine the file naming components for mutopia. :param str infile: A candidate input file. :returns: base (usually containing folder name) and infile, as strings. :rtype: Tuple A convenience routine to determine the base name for a mutopia piece. The mechanism assumes the user's current working directory is appropriate to the build being acted on. The algorithm then works on the naming convention: - If infile==None, determine base and infile from the current working directory. This will allow for the possibility of the actual files to be in an ``-lys`` subfolder. - If infile is given, return the basename of the current working folder and infile as a tuple. """ base = os.path.basename(os.getcwd()) if not infile: if os.path.exists(base+'.ly'): infile = base+'.ly' elif os.path.exists(base+'-lys'): candidate = os.path.join(base+'-lys', base+'.ly') if os.path.exists(candidate): infile = candidate return base,infile _BOOLEANS = {'y': True, 'yes': True, 'true': True, '1': True, 'n': False, 'no': False, 'false': False, '0': False } class BooleanValidator(object): """A mechanism to validate valid boolean input. """ _message = 'Enter a valid boolean.' def __init__(self, message=None): if message is not None: self._message = message def __call__(self, value): try: return _BOOLEANS[value.strip().lower()] except KeyError: raise ValidationError(self._message)
StarcoderdataPython
9636906
<reponame>RamonvdW/dof # -*- coding: utf-8 -*- # Copyright (c) 2019-2021 <NAME>. # All rights reserved. # Licensed under BSD-3-Clause-Clear. See LICENSE file for details. from django.views.generic import ListView from django.contrib.auth.mixins import UserPassesTestMixin from django.db.models import Q, Value from django.db.models.functions import Concat from django.http import HttpResponseRedirect from django.urls import reverse from .models import LogboekRegel from urllib.parse import quote_plus TEMPLATE_LOGBOEK_REST = 'logboek/rest.dtl' TEMPLATE_LOGBOEK_UITROL = 'logboek/uitrol.dtl' TEMPLATE_LOGBOEK_ACCOUNTS = 'logboek/accounts.dtl' RESULTS_PER_PAGE = 50 class LogboekBasisView(UserPassesTestMixin, ListView): """ Deze view toont het logboek """ # class variables shared by all instances template_name = "" # must override base_url = "" # must override paginate_by = RESULTS_PER_PAGE # enable Paginator built into ListView def test_func(self): """ called by the UserPassesTestMixin to verify the user has permissions to use this view """ return self.request.user.is_authenticated and self.request.user.is_staff def handle_no_permission(self): """ gebruiker heeft geen toegang --> redirect naar het plein """ return HttpResponseRedirect(reverse('Plein:plein')) def _make_link_urls(self, context): # voorbereidingen voor een regel met volgende/vorige links # en rechtstreekse links naar een 10 pagina's links = list() num_pages = context['paginator'].num_pages page_nr = context['page_obj'].number # previous if page_nr > 1: tup = ('vorige', self.base_url + '?page=%s' % (page_nr - 1)) links.append(tup) else: tup = ('vorige_disable', '') links.append(tup) # block van 10 pagina's; huidige pagina in het midden range_start = page_nr - 5 range_end = range_start + 9 if range_start < 1: range_end += (1 - range_start) # 1-0=1, 1--1=2, 1--2=3, etc. range_start = 1 if range_end > num_pages: range_end = num_pages for pgnr in range(range_start, range_end+1): tup = ('%s' % pgnr, self.base_url + '?page=%s' % pgnr) links.append(tup) # for # next if page_nr < num_pages: tup = ('volgende', self.base_url + '?page=%s' % (page_nr + 1)) links.append(tup) else: tup = ('volgende_disable', '') links.append(tup) return links def get_queryset(self): # haal de queryset met focus op en filter deze op een eventuele zoekterm qset = self.get_focused_queryset() zoekterm = self.request.GET.get('zoekterm', '') if zoekterm: qset = (qset .annotate(hele_naam=Concat('actie_door_account__first_name', Value(' '), 'actie_door_account__last_name')) .filter(Q(gebruikte_functie__icontains=zoekterm) | Q(actie_door_account__hele_naam__icontains=zoekterm) | Q(activiteit__icontains=zoekterm))) return qset def get_focused_queryset(self): # must be implemented by sub-class raise NotImplementedError() # pragma: no cover def get_context_data(self, **kwargs): """ called by the template system to get the context data for the template """ context = super().get_context_data(**kwargs) context['filter'] = self.filter if context['is_paginated']: context['page_links'] = self._make_link_urls(context) context['active'] = str(context['page_obj'].number) # extra informatie vaststellen, maar alleen voor de actieve pagina for obj in context['object_list']: obj.door = obj.bepaal_door() # for context['url_rest'] = reverse('Logboek:rest') context['url_uitrol'] = reverse('Logboek:uitrol') context['url_accounts'] = reverse('Logboek:accounts') context['filter_url'] = self.base_url # extra knop tonen om zoekterm te wissen zoekterm = self.request.GET.get('zoekterm', '') if zoekterm: context['zoekterm'] = zoekterm context['unfiltered_url'] = reverse('Logboek:%s' % self.filter) zoekterm = "?zoekterm=%s" % quote_plus(zoekterm) context['url_rest'] += zoekterm context['url_uitrol'] += zoekterm context['url_accounts'] += zoekterm return context class LogboekRestView(LogboekBasisView): """ Deze view toont de het hele logboek """ template_name = TEMPLATE_LOGBOEK_REST filter = 'rest' def __init__(self, **kwargs): super().__init__(**kwargs) self.base_url = reverse('Logboek:alles') def get_focused_queryset(self): """ retourneer de data voor de template view """ return (LogboekRegel .objects .select_related('actie_door_account') .exclude(Q(gebruikte_functie='maak_beheerder') | # Accounts Q(gebruikte_functie='Wachtwoord') | # Accounts Q(gebruikte_functie='Inloggen') | Q(gebruikte_functie='Inlog geblokkeerd') | Q(gebruikte_functie='OTP controle') | Q(gebruikte_functie='Bevestig e-mail') | Q(gebruikte_functie='Uitrol')) # Uitrol .order_by('-toegevoegd_op')) class LogboekAccountsView(LogboekBasisView): """ Deze view toont de logboek regels die met Accounts te maken hebben: aanmaken, inloggen, OTP, etc. """ template_name = TEMPLATE_LOGBOEK_ACCOUNTS filter = 'accounts' def __init__(self, **kwargs): super().__init__(**kwargs) self.base_url = reverse('Logboek:accounts') def get_focused_queryset(self): """ retourneer de data voor de template view """ return (LogboekRegel .objects .select_related('actie_door_account') .filter(Q(gebruikte_functie='maak_beheerder') | Q(gebruikte_functie='Inloggen') | Q(gebruikte_functie='Inlog geblokkeerd') | Q(gebruikte_functie='OTP controle') | Q(gebruikte_functie='Bevestig e-mail') | Q(gebruikte_functie='Wachtwoord')) .order_by('-toegevoegd_op')) class LogboekUitrolView(LogboekBasisView): """ Deze view toont de logboek regels die met de uitrol van software te maken hebben """ template_name = TEMPLATE_LOGBOEK_UITROL filter = 'uitrol' def __init__(self, **kwargs): super().__init__(**kwargs) self.base_url = reverse('Logboek:uitrol') def get_focused_queryset(self): """ retourneer de data voor de template view """ return (LogboekRegel .objects .select_related('actie_door_account') .filter(gebruikte_functie='Uitrol') .order_by('-toegevoegd_op')) # end of file
StarcoderdataPython
3508673
import ConfigParser import re from elfstatsd.log_record import LogRecord from elfstatsd import settings import pytest from elfstatsd.storage.storage import MetadataStorage, RecordsStorage, ResponseCodesStorage, PatternsMatchesStorage from elfstatsd.storage.called_method_storage import CalledMethodStorage #storage key, which is the highest-level key used for differentiating data related to the different access log files SK = 'apache_log' @pytest.fixture(scope='function') def response_codes_storage_setup(monkeypatch): """Monkeypatch settings setup for testing ResponseCodesStorage class.""" monkeypatch.setattr(settings, 'RESPONSE_CODES', [200, 404, 500]) return monkeypatch @pytest.fixture(scope='function') def called_method_storage_setup(monkeypatch): """Monkeypatch settings setup for testing ResponseCodesStorage class.""" monkeypatch.setattr(settings, 'RESPONSE_CODES', [200, 404, 500]) monkeypatch.setattr(settings, 'LATENCY_PERCENTILES', [50, 90, 99]) monkeypatch.setattr(settings, 'VALID_REQUESTS', [ re.compile(r'^/data/(?P<group>[\w.]+)/(?P<method>[\w.]+)[/?%&]?'), ]) return monkeypatch @pytest.fixture(scope='function') def patterns_storage_setup(monkeypatch): """Monkeypatch settings setup for testing PatternsStorage class.""" monkeypatch.setattr(settings, 'PATTERNS_TO_EXTRACT', [ {'name': 'uid', 'patterns': [ re.compile(r'/male_user/(?P<pattern>[\w.]+)'), re.compile(r'/female_user/(?P<pattern>[\w.]+)'), ] } ]) return monkeypatch class TestMetadataStorage(): def test_storage_metadata_get_unset(self): storage = MetadataStorage() with pytest.raises(KeyError) as exc_info: storage.get(SK, 'record_key') assert exc_info.value.message.find('record_key') > -1 def test_storage_metadata_set_empty(self): storage = MetadataStorage() storage.set(SK, 'record_key', 'value') assert storage.get(SK, 'record_key') == 'value' def test_storage_metadata_set_twice(self): storage = MetadataStorage() storage.set(SK, 'record_key', 'value1') storage.set(SK, 'record_key', 'value2') assert storage.get(SK, 'record_key') == 'value2' def test_storage_metadata_reset(self): storage = MetadataStorage() storage.set(SK, 'record_key1', 'value1') storage.set(SK, 'record_key2', 'value2') storage.reset(SK) assert len(storage._storage[SK].keys()) == 0 def test_storage_metadata_dump(self): storage = MetadataStorage() dump = ConfigParser.RawConfigParser() storage.set(SK, 'record_key1', 'value1') storage.set(SK, 'record_key2', 'value2') storage.dump(SK, dump) assert len(dump.sections()) == 1 assert dump.has_section(storage.name) assert len(dump.options(storage.name)) == 2 assert dump.has_option(storage.name, 'record_key1') assert dump.has_option(storage.name, 'record_key2') def test_storage_metadata_update_time(self): time1 = '2013-10-09 12:00:00' time2 = '2013-10-09 12:00:01' storage = MetadataStorage() storage.update_time(SK, time1) storage.update_time(SK, time2) assert storage.get(SK, 'first_record') == time1 assert storage.get(SK, 'last_record') == time2 class TestRecordsStorage(): def test_storage_records_reset(self): storage = RecordsStorage() assert len(storage._storage[SK].keys()) == 0 storage.reset(SK) assert len(storage._storage[SK].keys()) == len(storage.record_statuses) def test_storage_records_inc_counter(self): storage = RecordsStorage() storage.inc_counter(SK, 'record_key') storage.inc_counter(SK, 'record_key') storage.inc_counter(SK, 'record_key') storage.inc_counter(SK, 'record_key2') assert storage.get(SK, 'record_key') == 3 assert storage.get(SK, 'record_key2') == 1 def test_storage_records_dump(self): storage = RecordsStorage() dump = ConfigParser.RawConfigParser() storage.set(SK, 'parsed', 50) storage.set(SK, 'skipped', 50) storage.dump(SK, dump) assert len(dump.sections()) == 1 assert dump.has_section(storage.name) assert len(dump.options(storage.name)) == 2 assert dump.has_option(storage.name, 'parsed') assert dump.has_option(storage.name, 'skipped') @pytest.mark.usefixtures('response_codes_storage_setup') class TestResponseCodesStorage(): def test_storage_response_codes_reset(self, monkeypatch): response_codes_storage_setup(monkeypatch) storage = ResponseCodesStorage() assert len(storage._storage[SK].keys()) == 0 storage.reset(SK) assert len(storage._storage[SK].keys()) == len(storage.permanent_codes) def test_storage_response_codes_dump(self, monkeypatch): response_codes_storage_setup(monkeypatch) storage = ResponseCodesStorage() dump = ConfigParser.RawConfigParser() section = 'response_codes' storage.reset(SK) storage.set(SK, '200', 10) storage.inc_counter(SK, '200') storage.inc_counter(SK, '200') storage.inc_counter(SK, '502') storage.dump(SK, dump) assert len(dump.sections()) == 1 assert dump.has_section(section) assert len(dump.options(section)) == 4 assert dump.has_option(section, 'rc200') assert dump.has_option(section, 'rc404') assert dump.has_option(section, 'rc502') assert dump.get(section, 'rc200') == 12 assert dump.get(section, 'rc502') == 1 @pytest.mark.usefixtures('patterns_storage_setup') class TestPatternsMatchesStorage(): def test_storage_patterns_set(self): storage = PatternsMatchesStorage() storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'yyy') storage.set(SK, 'pattern', 'yyy') assert len(storage.get(SK, 'pattern').keys()) == 2 assert storage.get(SK, 'pattern')['xxx'] == 3 assert storage.get(SK, 'pattern')['yyy'] == 2 def test_storage_patterns_dump(self, monkeypatch): patterns_storage_setup(monkeypatch) storage = PatternsMatchesStorage() dump = ConfigParser.RawConfigParser() storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'yyy') storage.set(SK, 'pattern', 'yyy') storage.dump(SK, dump) assert len(dump.sections()) == 1 assert dump.has_section(storage.name) assert dump.get(storage.name, 'pattern.total') == 5 assert dump.get(storage.name, 'pattern.distinct') == 2 #Make sure all patterns from the settings are saved assert dump.get(storage.name, 'uid.total') == 'U' assert dump.get(storage.name, 'uid.distinct') == 'U' def test_storage_patterns_reset(self): storage = PatternsMatchesStorage() storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'xxx') storage.set(SK, 'pattern', 'yyy') storage.set(SK, 'pattern', 'yyy') assert len(storage.get(SK, 'pattern').keys()) == 2 storage.reset(SK) assert len(storage.get(SK, 'pattern').keys()) == 0 @pytest.mark.usefixtures('called_method_storage_setup') class TestCalledMethodStorage(): def test_storage_called_method_set(self, monkeypatch): called_method_storage_setup(monkeypatch) storage = CalledMethodStorage() record = LogRecord() record.response_code = 404 record.latency = 100 storage.set(SK, 'some_call', record) record.response_code = 200 record.latency = 200 storage.set(SK, 'some_call', record) method = storage.get(SK, 'some_call') assert len(method.calls) == 2 assert method.min == 100 assert method.max == 200 assert method.response_codes.get(SK, 404) == 1 assert method.response_codes.get(SK, 200) == 1 def test_storage_called_method_reset(self, monkeypatch): called_method_storage_setup(monkeypatch) storage = CalledMethodStorage() record = LogRecord() record.response_code = 404 record.latency = 100 storage.set(SK, 'some_call', record) record.response_code = 200 record.latency = 200 storage.set(SK, 'some_call', record) storage.reset(SK) assert len(storage._storage[SK]) == 1 assert 'some_call' in storage._storage[SK] assert len(storage._storage[SK]['some_call'].response_codes._storage[SK].values()) == 3 storage.reset('some_SK') assert 'some_SK' in storage._storage def test_storage_called_method_dump(self, monkeypatch): called_method_storage_setup(monkeypatch) storage = CalledMethodStorage() storage.reset(SK) record = LogRecord() record.raw_request = '/data/some/call/' record.response_code = 401 record.latency = 100 storage.set(SK, 'some_call', record) record.response_code = 201 record.latency = 200 storage.set(SK, 'some_call', record) method = storage.get(SK, 'some_call') method.name = 'some_stuff' dump = ConfigParser.RawConfigParser() storage.dump(SK, dump) section = 'method_some_stuff' assert len(dump.sections()) == 1 assert dump.has_section(section) assert dump.get(section, 'calls') == 2 assert dump.get(section, 'shortest') == 100 assert dump.get(section, 'average') == 150 assert dump.get(section, 'longest') == 200 assert dump.has_option(section, 'p50') assert dump.has_option(section, 'p90') assert dump.has_option(section, 'p99') assert dump.has_option(section, 'rc200') assert dump.has_option(section, 'rc404') assert dump.has_option(section, 'rc500')
StarcoderdataPython
4907557
#!/usr/bin/env python3 # 1st-party from datetime import timedelta import logging import os import sys # 2nd-party import move_new_projects_to_unsafe_set import partition_packages_by_abandoned import partition_packages_by_popularity import partition_packages_by_time import plot_vulnerability import vulnerability_counter safe_packages_length = None def get_points(partition_function, variable, simple_log_filename): global safe_packages_length # For easier reading of log, print a new line for every new curve. logging.info('') safe_packages, unsafe_packages = partition_function(variable) move_new_projects_to_unsafe_set.move(safe_packages, unsafe_packages) # We are memorizing the absolute number of safe projects in order to include # it in the plot. safe_packages_length = len(safe_packages) return vulnerability_counter.traverse_event_log(simple_log_filename, safe_packages, unsafe_packages) # vulnerability by when a project claimed itself when it last # added/updated/removed a package def plot_claim_by_abandonment(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS): plot_vulnerability.plot(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, 'TLS / GPG') # 2/1 years, 6/3/1 months year_in_days = 365 month_in_days = 30 time_deltas = (timedelta(days=year_in_days*2), timedelta(days=year_in_days*1), timedelta(days=month_in_days*6), timedelta(days=month_in_days*3), timedelta(days=month_in_days*1),) labels = ('legacy (> 2yr)', 'legacy (> 1yr)', 'legacy (> 6mo)', 'legacy (> 3mo)', 'legacy (> 1mo)') for i, time_delta in enumerate(time_deltas): points = get_points(partition_packages_by_abandoned.partition, time_delta, simple_log_filename) color = LEGACY_SECURITY_COLORS[i] label = labels[i] plot_vulnerability.plot(points, color, label) plot_vulnerability.plot(MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, 'maximum security') plot_vulnerability.save(NUMBER_OF_USERS, '/var/experiments-output/diplomat-claim-by-abandonment.pdf') # vulnerability by when a project claimed itself when it last # added/updated/removed a package def plot_claim_over_time(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS): plot_vulnerability.plot(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, 'TLS / GPG') # 1 month, 6 month, 1 year, 2 years time_deltas = (timedelta(days=90), timedelta(days=180), timedelta(days=365), timedelta(days=730)) labels = ('legacy (last 3mo)', 'legacy (last 6mo)', 'legacy (last 1yr)', 'legacy (last 2yr)') for i, time_delta in enumerate(time_deltas): points = get_points(partition_packages_by_time.partition, time_delta, simple_log_filename) color = LEGACY_SECURITY_COLORS[i] label = labels[i] plot_vulnerability.plot(points, color, label) plot_vulnerability.plot(MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, 'maximum security') plot_vulnerability.save(NUMBER_OF_USERS, '/var/experiments-output/diplomat-claim-over-time.pdf') # vulnerability by popularity def plot_claim_by_popularity(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS): plot_vulnerability.plot(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, 'TLS / GPG') # top 0.1%, 1%, 10% packages by popularity secure_fractions = [p/100 for p in (0.1, 1, 10)] labels = ('legacy (top 0.1%)', 'legacy (top 1%)', 'legacy (top 10%)') for i, secure_fraction in enumerate(secure_fractions): points = get_points(partition_packages_by_popularity.partition, secure_fraction, simple_log_filename) color = LEGACY_SECURITY_COLORS[i] label = labels[i] plot_vulnerability.plot(points, color, label) plot_vulnerability.plot(MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, 'maximum security') plot_vulnerability.save(NUMBER_OF_USERS, '/var/experiments-output/diplomat-claim-by-popularity.pdf') # Claim the top X% of projects. # Additionally, claim projects over Y days. # Plot the results. def plot_claimed_by_mixed_strategy(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS): plot_vulnerability.plot(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, 'TLS / GPG') # Get top 1% safe projects, and 99% unsafe projects. secure_fraction = 1/100 popular_safe_packages, unpopular_unsafe_packages = \ partition_packages_by_popularity.partition(secure_fraction) move_new_projects_to_unsafe_set.move(popular_safe_packages, unpopular_unsafe_packages) # Get projects abandoned some years before compromise. years = 2 year_in_days = 365 time_delta = timedelta(days=year_in_days*years) abandoned_safe_packages, updated_unsafe_packages = \ partition_packages_by_abandoned.partition(time_delta) move_new_projects_to_unsafe_set.move(abandoned_safe_packages, updated_unsafe_packages) # Plot popularity. points = vulnerability_counter.traverse_event_log(simple_log_filename, popular_safe_packages, unpopular_unsafe_packages) color = LEGACY_SECURITY_COLORS[0] label = 'legacy (top 1%)' plot_vulnerability.plot(points, color, label) # TODO: Double-check correctness. safe_packages = popular_safe_packages|abandoned_safe_packages unsafe_packages = \ (unpopular_unsafe_packages|updated_unsafe_packages)-safe_packages assert len(safe_packages&unsafe_packages) == 0, \ 'New safe and unsafe sets must be disjoint!' assert (safe_packages|unsafe_packages) == \ (popular_safe_packages|unpopular_unsafe_packages| \ abandoned_safe_packages|updated_unsafe_packages), \ 'New sets must be the same as old sets!' # Plot popularity + abandoned. points = vulnerability_counter.traverse_event_log(simple_log_filename, safe_packages, unsafe_packages) color = LEGACY_SECURITY_COLORS[1] label = 'legacy (top 1%, > 2yr)' plot_vulnerability.plot(points, color, label) # 1 month, 6 month, 1 year time_deltas = (timedelta(days=90), timedelta(days=180), timedelta(days=365)) labels = ('legacy (top 1%, > 2yr, last 3mo)', 'legacy (top 1%, > 2yr, last 6mo)', 'legacy (top 1%, > 2yr, last 1yr)') for i, time_delta in enumerate(time_deltas): new_safe_packages, old_unsafe_packages = \ partition_packages_by_time.partition(time_delta) move_new_projects_to_unsafe_set.move(new_safe_packages, old_unsafe_packages) # TODO: Double-check correctness. safe_packages |= new_safe_packages unsafe_packages |= old_unsafe_packages unsafe_packages -= safe_packages assert len(safe_packages&unsafe_packages) == 0, \ 'New safe and unsafe sets must be disjoint!' assert (safe_packages|unsafe_packages) == \ (popular_safe_packages|unpopular_unsafe_packages| \ new_safe_packages|old_unsafe_packages), \ 'New sets must be the same as old sets!' # Plot popularity + abandoned + claimed over time. points = vulnerability_counter.traverse_event_log(simple_log_filename, safe_packages, unsafe_packages) color = LEGACY_SECURITY_COLORS[i+2] label = labels[i] plot_vulnerability.plot(points, color, label) plot_vulnerability.plot(MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, 'maximum security') plot_vulnerability.save(NUMBER_OF_USERS, '/var/experiments-output/diplomat-claim-by-mixed.pdf') if __name__ == '__main__': # rw for owner and group but not others os.umask(0o07) # write log to file logging.basicConfig(filename='/var/experiments-output/'\ 'measure_vulnerability.log', level=logging.DEBUG, filemode='w', format='[%(asctime)s UTC] [%(name)s] [%(levelname)s] '\ '[%(funcName)s:%(lineno)s@%(filename)s] '\ '%(message)s') try: # Data source 1: This is where we see users querying project simple indices # and/or the packages themselves. assert len(sys.argv) == 2 simple_log_filename = sys.argv[1] assert os.path.isfile(simple_log_filename) # Just some colours for plots. PRE_DIPLOMAT_COLOR = 'b-o' MAX_SECURITY_COLOR = 'r->' LEGACY_SECURITY_COLORS = ('m-p', 'g-^', 'c-v', 'k-s', 'y-D') # 0% safe projects == 100% unsafe projects PRE_DIPLOMAT_POINTS = \ get_points(partition_packages_by_popularity.partition, 0, simple_log_filename) # The total number of users is given by the end of the PyPI line. NUMBER_OF_USERS = PRE_DIPLOMAT_POINTS[-1] # 100% safe projects == 0% unsafe projects MAX_SECURITY_POINTS = \ get_points(partition_packages_by_popularity.partition, 1, simple_log_filename) # 1. What does claiming abandoned projects look like? plot_claim_by_abandonment(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS) # 2. What does claiming top X% projects look like? plot_claim_by_popularity(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS) # 3. What does claiming projects over Y days look like? plot_claim_over_time(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS) # 4. What does (1)+(2)+(3) look like? plot_claimed_by_mixed_strategy(PRE_DIPLOMAT_POINTS, PRE_DIPLOMAT_COLOR, simple_log_filename, LEGACY_SECURITY_COLORS, MAX_SECURITY_POINTS, MAX_SECURITY_COLOR, NUMBER_OF_USERS) except: logging.exception('BLARG!') raise else: logging.info('Done.')
StarcoderdataPython
157968
import codecs import logging import json from concurrent.futures import ThreadPoolExecutor, as_completed from pathlib import Path from . import exceptions, config from .storages import StorageMapper, EnvFile, partition_path logger = logging.getLogger(__name__) __escape_decoder = codecs.getdecoder('unicode_escape') def parse_dotenv(data): for line in data.splitlines(): line = line.strip() if line and not line.startswith('#') and '=' in line: k, _, v = line.partition('=') # Remove any leading and trailing spaces in key, value k, v = k.strip(), v.strip().encode('unicode-escape').decode('ascii') if v and v[0] == v[-1] in ['"', "'"]: v = __escape_decoder(v[1:-1])[0] yield k, v def phusion_dump(environment, path): path = Path(path) path.mkdir(parents=True, exist_ok=True) for k, v in environment.items(): with open(path.joinpath(k), 'w') as f: f.write(v + '\n') def raise_out_of_sync(local_file, remote_file): raise exceptions.LocalCopyOutdated( 'Upload failed, remote file probably changed since last download and md5 hashes in cache conflict.\n' 'If you want to upload anyway, use the -f flag. \n' 'Offending file:\n\n %s -> %s ', local_file, remote_file ) class S3Conf: def __init__(self, settings=None): self.settings = settings or config.Settings() self._storages = None @property def storages(self): if not self._storages: self._storages = StorageMapper(self.settings) return self._storages def verify_cache(self): cache_dir = Path(self.settings.cache_dir) cache_dir.mkdir(parents=True, exist_ok=True) default_config_file = config.ConfigFileResolver(self.settings.default_config_file, section='DEFAULT') default_config_file.save() gitignore_file_path = cache_dir.joinpath('.gitignore') open(gitignore_file_path, 'w').write('*\n') def check_remote_changes(self): local_hashes = json.load(open(self.settings.hash_file)) if Path(self.settings.hash_file).exists() else {} for local_path, remote_path in self.settings.file_mappings.items(): remote_hashes = self.storages.list(remote_path) for _, local_file, remote_file in self.storages.expand_path(local_path, remote_path): local_hash = local_hashes.get(str(local_file)) remote_hash = remote_hashes.get(str(remote_file)) if local_hash: if local_hash != remote_hash: raise_out_of_sync(local_file, remote_file) else: logger.warning('New mapped file detected: %s', local_file) def push(self, force=False): if not force: self.check_remote_changes() hashes = {} with ThreadPoolExecutor() as executor: futures = [] for local_path, remote_path in self.settings.file_mappings.items(): futures.append(executor.submit(self.storages.copy, local_path, remote_path)) for future in as_completed(futures): copy_hashes = future.result() hashes.update({str(local_file): local_hash for local_hash, local_file, _ in copy_hashes}) self.verify_cache() json.dump(hashes, open(self.settings.hash_file, 'w'), indent=4) return hashes def pull(self): hashes = {} with ThreadPoolExecutor() as executor: futures = [] for local_path, remote_path in self.settings.file_mappings.items(): futures.append(executor.submit(self.storages.copy, remote_path, local_path)) for future in as_completed(futures): copy_hashes = future.result() hashes.update({str(local_file): remote_hash for remote_hash, _, local_file in copy_hashes}) self.verify_cache() json.dump(hashes, open(self.settings.hash_file, 'w'), indent=4) return hashes def get_envfile(self, mode='r'): logger.info('Loading configs from %s', self.settings.environment_file_path) remote_storage = self.storages.storage(self.settings.environment_file_path) _, _, path = partition_path(self.settings.environment_file_path) return EnvFile.from_file(remote_storage.open(path, mode=mode)) def edit_envfile(self): with self.get_envfile(mode='r+') as envfile: envfile.edit() def create_envfile(self): logger.info('Trying to create envifile %s', self.settings.environment_file_path) remote_storage = self.storages.storage(self.settings.environment_file_path) remote_storage.create_bucket() _, _, path = partition_path(self.settings.environment_file_path) envfile_exist = bool(list(remote_storage.list(path))) if envfile_exist: logger.warning('%s already exist', self.settings.environment_file_path) else: with self.get_envfile(mode='w') as _: pass
StarcoderdataPython
6655114
<reponame>Fogapod/pink import functools from typing import Any from discord.ext import commands from .context import Context def is_owner() -> commands.check: async def predicate(ctx: Context) -> bool: if ctx.author.id not in ctx.bot.owner_ids: raise commands.NotOwner("Must be a bot owner to use this") return True return commands.check(predicate) def owner_bypass(check: commands.check): # type: ignore @functools.wraps(check) def inner(*args: Any, **kwargs: Any) -> bool: owner_pred = is_owner().predicate original_pred = check(*args, **kwargs).predicate async def predicate(ctx: Context) -> bool: try: return await owner_pred(ctx) except commands.NotOwner: return await original_pred(ctx) return commands.check(predicate) return inner
StarcoderdataPython
8049773
import torch import torch.backends.cudnn as cudnn import os from torchvision import transforms import torchvision.models as models from dataset import CustomDataset from helper import load_checkpoint, save_checkpoint from torch import nn from lstms import * from modelcnn import * import json import torch.nn.functional as F from torch.nn.utils.rnn import pack_padded_sequence from nltk.translate.bleu_score import corpus_bleu # device device = torch.device("cuda" if torch.cuda.is_available() else "cpu") # Model parameters encoder_dim = 512 # dimension of CNN decoder_dim = 512 # dimension of LSTMs emb_dim = 512 # dimension of embeddings attention_dim = 512 # dimension of attention dict_size = None dropout = 0.5 best_bleu_score = 0. decoder_lr = 4e-4 # learning rate for decoder alpha_c = 1. # regularization parameter for 'doubly stochastic attention' stepsize = 1 gamma = 0.99 cudnn.benchmark = True # set to true only if inputs to model are fixed size; otherwise lot of computational overhead def main(): start_epoch = 0 numepoch = 20 # Load word map into memory word_map_path = "./preprocess_out" dataset = "flickr8k" word_map = None with open(os.path.join("./preprocess_out", 'DICTIONARY_WORDS_' + dataset + '.json'), 'r') as file: word_map = json.load(file) dict_size = len(word_map) # TODO: load train and validation data _ XIE # https://pytorch.org/docs/master/torchvision/models.html normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]) train_loader = torch.utils.data.DataLoader(CustomDataset("./preprocess_out", "flickr8k", 'TRAIN', transform=transforms.Compose([normalize])), batch_size=48, shuffle=True, num_workers=1, pin_memory=True) val_loader = torch.utils.data.DataLoader(CustomDataset("./preprocess_out", "flickr8k", 'VAL', transform=transforms.Compose([normalize])), batch_size=48, shuffle=True, num_workers=1, pin_memory=True) # TODO: Change Load checkpoint Name # check_point_name = "best_checkpoint_flickr8k.pth.tar" # encoder, decoder, decoder_opt, last_epoch, best_bleu_score = load_checkpoint(check_point_name) # start_epoch = last_epoch + 1 # move to device if possibble encoder = CNN().to(device) decoder = LSTMs(encoder_dim=encoder_dim, attention_dim=attention_dim, embed_dim=emb_dim, decoder_dim=decoder_dim, dic_size=dict_size, dropout=dropout).to(device) decoder_opt = torch.optim.Adam( params=decoder.parameters(), lr=decoder_lr) scheduler = torch.optim.lr_scheduler.StepLR( decoder_opt, step_size=stepsize, gamma=gamma) criterion = nn.CrossEntropyLoss().to(device) for epoch in range(start_epoch, numepoch): ###################################### # TODO: check convergence # begin train ###################################### print("=========== Epoch: ", epoch, "=============") # encoder.train() decoder.train() scheduler.step() # Batches Train for i, (img, caption, cap_len) in enumerate(train_loader): print("Iteration: ", i) # use GPU if possible img = img.to(device) caption = caption.to(device) cap_len = cap_len.to(device) decoder_opt.zero_grad() # forward encoded = encoder(img) # print("img", img.shape) # print("encoded", encoded.shape) preds, sorted_caps, decoded_len, alphas, _ = decoder(encoded, caption, cap_len) # ignore the begin word trues = sorted_caps[:, 1:] # pack and pad preds, _ = pack_padded_sequence(preds, decoded_len, batch_first=True) trues, _ = pack_padded_sequence(trues, decoded_len, batch_first=True) # calculate loss loss = criterion(preds, trues) loss += alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean() loss.backward() print("Training Loss: ", loss) # update weight decoder_opt.step() # TODO: print performance ###################################### # end trian # validate and return score val_loss_all = 0 references = [] hypotheses = [] ####################################### # TODO: check if with torch.no_grad(): necessary decoder.eval() with torch.no_grad(): for i, (img, caption, cap_len, all_captions) in enumerate(val_loader): # use GPU if possible img = img.to(device) caption = caption.to(device) cap_len = cap_len.to(device) # forward encoded = encoder(img) preds, sorted_caps, decoded_len, alphas, sorted_index = decoder( encoded, caption, cap_len) # ignore the begin word trues = sorted_caps[:, 1:] preds2 = preds.clone() # pack and pad preds, _ = pack_padded_sequence(preds, decoded_len, batch_first=True) trues, _ = pack_padded_sequence(trues, decoded_len, batch_first=True) # calculate loss loss = criterion(preds, trues) loss += alpha_c * (1. - alphas.sum(dim=1) ** 2).mean() val_loss_all += loss # TODO: print performance all_captions = all_captions[sorted_index] for j in range(all_captions.shape[0]): img_caps = all_captions[j].tolist() img_captions = list( map(lambda c: [w for w in c if w not in {word_map['<start>'], word_map['<pad>']}], img_caps)) # remove <start> and pads references.append(img_captions) _, predmax = torch.max(preds2, dim=2) predmax = predmax.tolist() temp_preds = list() for j, p in enumerate(predmax): temp_preds.append( predmax[j][:decoded_len[j]]) # remove pads predmax = temp_preds hypotheses.extend(predmax) assert len(references) == len(hypotheses) print("Validation Loss All: ", val_loss_all) bleu4 = corpus_bleu(references, hypotheses) print("bleu4 score: ", bleu4) ####################################### # check if there is improvement # Save Checkpoint save_checkpoint(encoder, decoder, decoder_opt, dataset, epoch, 0, True) if __name__== "__main__": main()
StarcoderdataPython
4805310
import os import sys import numpy as np import itertools import structure from structure.global_constants import T_D,dt,ETA,MU from structure.cell import Tissue, BasicSpringForceNoGrowth import structure.initialisation as init def print_progress(step,N_steps): sys.stdout.write("\r %.2f %%"%(step*100./N_steps)) sys.stdout.flush() def run(simulation,N_step,skip): """run a given simulation for N_step iterations returns list of tissue objects at intervals given by skip""" return [tissue.copy() for tissue in itertools.islice(simulation,0,N_step,skip)] def run_generator(simulation,N_step,skip): """generator for running a given simulation for N_step iterations returns generator for of tissue objects at intervals given by skip""" return itertools.islice(simulation,0,N_step,skip) def run_return_events(simulation,N_step): return [tissue.copy() for tissue in itertools.islice(simulation,N_step) if tissue is not None] def run_return_final_tissue(simulation,N_step): return next(itertools.islice(simulation,N_step,None)) def run_til_fix(simulation,N_step,skip,include_fixed=True): return [tissue.copy() for tissue in generate_til_fix(simulation,N_step,skip,include_fixed=include_fixed)] def fixed(tissue): try: return (1 not in tissue.properties['type'] or 0 not in tissue.properties['type']) except KeyError: return np.all(tissue.properties['ancestor']==tissue.properties['ancestor'][0]) def generate_til_fix(simulation,N_step,skip,include_fixed=True): for tissue in itertools.islice(simulation,0,N_step,skip): if not fixed(tissue): yield tissue else: if include_fixed: yield tissue break #-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- #------------------------------------------ SIMULATION ROUTINES ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------ def simulation_no_division(tissue,dt,N_steps,rand): """run tissue simulation with no death or division""" yield tissue step = 1. while True: N= len(tissue) mesh = tissue.mesh step += 1 mesh.move_all(tissue.dr(dt)) tissue.update(dt) yield tissue def simulation(tissue,dt,N_steps,stepsize,rand,eta=ETA,progress_on=False): yield tissue step = 1. while True: N= len(tissue) properties = tissue.properties mesh = tissue.mesh mesh.move_all(tissue.dr(dt,eta)) if rand.rand() < (1./T_D)*N*dt: mother = rand.randint(N) tissue.add_daughter_cells(mother,rand) tissue.remove(mother,True) tissue.remove(rand.randint(N)) #kill random cell tissue.update(dt) if progress_on: print_progress(step,N_steps) step += 1 yield tissue def simulation_ancestor_tracking(tissue,dt,N_steps,stepsize,rand,eta=ETA,progress_on=False): """simulation loop for neutral process tracking ancestor ids""" tissue.properties['ancestor']=np.arange(len(tissue)) return simulation(tissue,dt,N_steps,stepsize,rand,eta=eta,progress_on=progress_on) def simulation_mutant_tracking(tissue,dt,N_steps,stepsize,rand,eta=ETA,progress_on=False,mutant_number=1,mutant_type=1): """simulation loop for neutral process tracking mutant ids""" tissue.properties['type'] = np.full(len(tissue),1-mutant_type,dtype=int) tissue.properties['type'][rand.choice(len(tissue),size=mutant_number,replace=False)]=mutant_type return simulation(tissue,dt,N_steps,stepsize,rand,eta=eta,progress_on=progress_on) def initialise_tissue(N,dt,timend,timestep,rand,mu=MU,save_areas=False,save_cell_histories=False): """initialise tissue and run simulation until timend returning final state""" tissue = init.init_tissue_torus(N,N,0.01,BasicSpringForceNoGrowth(mu),rand,save_areas=save_areas,save_cell_histories=save_cell_histories) if timend !=0: tissue = run_return_final_tissue(simulation(tissue,dt,timend/dt,timestep/dt,rand),timend/dt) tissue.reset(reset_age=True) return tissue def run_simulation(simulation,N,timestep,timend,rand,init_time=None,mu=MU,eta=ETA,dt=dt,til_fix=True,generator=False,save_areas=False, tissue=None,save_cell_histories=False,progress_on=False,**kwargs): """initialise tissue with NxN cells and run given simulation with given game and constants. starts with single cooperator ends at time=timend OR if til_fix=True when population all cooperators (type=1) or defectors (2) returns history: list of tissue objects at time intervals given by timestep """ if tissue is None: tissue = initialise_tissue(N,dt,init_time,timestep,rand,mu=mu,save_areas=save_areas,save_cell_histories=save_cell_histories) if til_fix: include_fix = not (til_fix=='exclude_final') if generator: history = generate_til_fix(simulation(tissue,dt,timend/dt,timestep/dt,rand,eta=eta,progress_on=progress_on,**kwargs),timend/dt,timestep/dt,include_fix) else: history = run_til_fix(simulation(tissue,dt,timend/dt,timestep/dt,rand,eta=eta,progress_on=progress_on,**kwargs),timend/dt,timestep/dt) else: history = run(simulation(tissue,dt,timend/dt,timestep/dt,rand,eta=eta,progress_on=progress_on,**kwargs),timend/dt,timestep/dt) return history
StarcoderdataPython
1819424
from datetime import datetime from typing import List, Optional, Union import pandas as pd from pydantic import StrictStr from pydantic.typing import Literal from feast.data_source import DataSource from feast.feature_view import FeatureView from feast.infra.offline_stores.offline_store import OfflineStore, RetrievalJob from feast.registry import Registry from feast.repo_config import FeastConfigBaseModel, RepoConfig class RedshiftOfflineStoreConfig(FeastConfigBaseModel): """ Offline store config for AWS Redshift """ type: Literal["redshift"] = "redshift" """ Offline store type selector""" cluster_id: StrictStr """ Redshift cluster identifier """ region: StrictStr """ Redshift cluster's AWS region """ user: StrictStr """ Redshift user name """ database: StrictStr """ Redshift database name """ s3_path: StrictStr """ S3 path for importing & exporting data to Redshift """ class RedshiftOfflineStore(OfflineStore): @staticmethod def pull_latest_from_table_or_query( config: RepoConfig, data_source: DataSource, join_key_columns: List[str], feature_name_columns: List[str], event_timestamp_column: str, created_timestamp_column: Optional[str], start_date: datetime, end_date: datetime, ) -> RetrievalJob: pass @staticmethod def get_historical_features( config: RepoConfig, feature_views: List[FeatureView], feature_refs: List[str], entity_df: Union[pd.DataFrame, str], registry: Registry, project: str, full_feature_names: bool = False, ) -> RetrievalJob: pass
StarcoderdataPython
6516165
import pytest from stix2.datastore import CompositeDataSource, make_id from stix2.datastore.filters import Filter from stix2.datastore.memory import MemorySink, MemorySource def test_add_remove_composite_datasource(): cds = CompositeDataSource() ds1 = MemorySource() ds2 = MemorySource() ds3 = MemorySink() with pytest.raises(TypeError) as excinfo: cds.add_data_sources([ds1, ds2, ds1, ds3]) assert str(excinfo.value) == ("DataSource (to be added) is not of type " "stix2.DataSource. DataSource type is '<class 'stix2.datastore.memory.MemorySink'>'") cds.add_data_sources([ds1, ds2, ds1]) assert len(cds.get_all_data_sources()) == 2 cds.remove_data_sources([ds1.id, ds2.id]) assert len(cds.get_all_data_sources()) == 0 def test_composite_datasource_operations(stix_objs1, stix_objs2): BUNDLE1 = dict(id="bundle--%s" % make_id(), objects=stix_objs1, spec_version="2.0", type="bundle") cds1 = CompositeDataSource() ds1_1 = MemorySource(stix_data=BUNDLE1) ds1_2 = MemorySource(stix_data=stix_objs2) cds2 = CompositeDataSource() ds2_1 = MemorySource(stix_data=BUNDLE1) ds2_2 = MemorySource(stix_data=stix_objs2) cds1.add_data_sources([ds1_1, ds1_2]) cds2.add_data_sources([ds2_1, ds2_2]) indicators = cds1.all_versions("indicator--00000000-0000-4000-8000-000000000001") # In STIX_OBJS2 changed the 'modified' property to a later time... assert len(indicators) == 2 cds1.add_data_sources([cds2]) indicator = cds1.get("indicator--00000000-0000-4000-8000-000000000001") assert indicator["id"] == "indicator--00000000-0000-4000-8000-000000000001" assert indicator["modified"] == "2017-01-31T13:49:53.935Z" assert indicator["type"] == "indicator" query1 = [ Filter("type", "=", "indicator") ] query2 = [ Filter("valid_from", "=", "2017-01-27T13:49:53.935382Z") ] cds1.filters.add(query2) results = cds1.query(query1) # STIX_OBJS2 has indicator with later time, one with different id, one with # original time in STIX_OBJS1 assert len(results) == 3 indicator = cds1.get("indicator--00000000-0000-4000-8000-000000000001") assert indicator["id"] == "indicator--00000000-0000-4000-8000-000000000001" assert indicator["modified"] == "2017-01-31T13:49:53.935Z" assert indicator["type"] == "indicator" # There is only one indicator with different ID. Since we use the same data # when deduplicated, only two indicators (one with different modified). results = cds1.all_versions("indicator--00000000-0000-4000-8000-000000000001") assert len(results) == 2 # Since we have filters already associated with our CompositeSource providing # nothing returns the same as cds1.query(query1) (the associated query is query2) results = cds1.query([]) assert len(results) == 3
StarcoderdataPython
56331
# Generated by Django 3.0.6 on 2020-05-22 08:33 from django.conf import settings from django.db import migrations, models import django.db.models.deletion import usuarios.managers class Migration(migrations.Migration): initial = True dependencies = [ ('auth', '0011_update_proxy_permissions'), ('cuestionarios', '0001_initial'), ] operations = [ migrations.CreateModel( name='User', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('password', models.CharField(max_length=128, verbose_name='password')), ('last_login', models.DateTimeField(blank=True, null=True, verbose_name='last login')), ('is_superuser', models.BooleanField(default=False, help_text='Designates that this user has all permissions without explicitly assigning them.', verbose_name='superuser status')), ('email', models.EmailField(blank=True, max_length=254, verbose_name='email address')), ('email_colegio', models.EmailField(blank=True, max_length=254, verbose_name='email address colegio')), ('username', models.CharField(blank=True, max_length=255, unique=True)), ('nombre', models.CharField(blank=True, max_length=30, verbose_name='nombre')), ('apellidos', models.CharField(blank=True, max_length=60, verbose_name='apellidos')), ('date_joined', models.DateTimeField(auto_now_add=True, verbose_name='date joined')), ('alias', models.CharField(blank=True, max_length=30)), ('DNI', models.CharField(blank=True, max_length=10)), ('colegio', models.CharField(max_length=100, null=True)), ('is_staff', models.BooleanField(default=False)), ('validado', models.BooleanField(default=False)), ('is_active', models.BooleanField(default=True)), ('groups', models.ManyToManyField(blank=True, help_text='The groups this user belongs to. A user will get all permissions granted to each of their groups.', related_name='user_set', related_query_name='user', to='auth.Group', verbose_name='groups')), ], options={ 'abstract': False, }, managers=[ ('objects', usuarios.managers.UserManager()), ], ), migrations.CreateModel( name='User_test', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('test', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to='cuestionarios.Test')), ('user', models.ForeignKey(on_delete=django.db.models.deletion.CASCADE, to=settings.AUTH_USER_MODEL)), ], options={ 'unique_together': {('user', 'test')}, }, ), migrations.AddField( model_name='user', name='test', field=models.ManyToManyField(related_name='tests', through='usuarios.User_test', to='cuestionarios.Test'), ), migrations.AddField( model_name='user', name='user_permissions', field=models.ManyToManyField(blank=True, help_text='Specific permissions for this user.', related_name='user_set', related_query_name='user', to='auth.Permission', verbose_name='user permissions'), ), ]
StarcoderdataPython
12829662
import os, requests from selenium_test_case import SeleniumTestCase, slow, online, wd, host import tests from tests.pages import profile_page from nose.tools import assert_equals, raises class TestProfile(SeleniumTestCase): def setUp(self): self.page = profile_page.ProfilePage(self.wd, self.host) def test_title(self): self.page.get() print self.page.name assert_equals(self.page.name, "<NAME>") def test_login_controls(self): self.page.get() self.page.login("<EMAIL>") print [a.text for a in self.page.controls()] assert_equals(1, "<NAME>")
StarcoderdataPython