id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
11219613
<reponame>IINamelessII/YesOrNo from django.db import models from django.db.models.signals import post_save from django.contrib.auth.models import User from django.contrib.postgres.fields import JSONField from polls.models import Poll class Profile(models.Model): user = models.OneToOneField(User, on_delete=models.CASCADE) voted = JSONField(default=dict) rated = JSONField(default=dict) def __str__(self): return self.user.username def voteYes(self, poll_id): poll = Poll.objects.get(pk=poll_id) if poll_id in self.voted['+']: self.voted['+'].remove(poll_id) poll.unvoteYes() else: if poll_id in self.voted['-']: self.voted['-'].remove(poll_id) poll.unvoteNo() self.voted['+'].append(poll_id) poll.voteYes() self.save() def voteNo(self, poll_id): poll = Poll.objects.get(pk=poll_id) if poll_id in self.voted['-']: self.voted['-'].remove(poll_id) poll.unvoteNo() else: if poll_id in self.voted['+']: self.voted['+'].remove(poll_id) poll.unvoteYes() self.voted['-'].append(poll_id) poll.voteNo() self.save() def rateLike(self, poll_id): poll = Poll.objects.get(pk=poll_id) if poll_id in self.rated['+']: self.rated['+'].remove(poll_id) poll.unrateLike() else: if poll_id in self.rated['-']: self.rated['-'].remove(poll_id) poll.unrateDislike() self.rated['+'].append(poll_id) poll.rateLike() self.save() def rateDislike(self, poll_id): poll = Poll.objects.get(pk=poll_id) if poll_id in self.rated['-']: self.rated['-'].remove(poll_id) poll.unrateDislike() else: if poll_id in self.rated['+']: self.rated['+'].remove(poll_id) poll.unrateLike() self.rated['-'].append(poll_id) poll.rateDislike() self.save() def create_user_profile(sender, instance, created, **kwargs): if created: Profile.objects.create(user=instance, voted={'+' : [], '-': []}, rated={'+' : [], '-': []}) post_save.connect(create_user_profile, sender=User)
StarcoderdataPython
77051
#!/usr/bin/env python # coding=utf-8 import numpy as np def information_entropy(x, p): ret = [0] * (len(x)+1) for i in range(len(x)): ret[i] = -p[i] * np.log2(p[i]) result = np.sum(ret[i]) return result
StarcoderdataPython
5052629
from __future__ import absolute_import, division, print_function from libtbx.test_utils.pytest import discover tst_list = discover() # To write tests for xia2: # 1. Test file should be named test_*.py # 2. Test methods should be named test_*() # 3. Nothing else needed. Rest happens by magic. # To run xia2 tests: # run 'pytest' inside xia2 directory # For more information see: # https://github.com/dials/dials/wiki/pytest
StarcoderdataPython
6613294
<reponame>sixP-NaraKa/pyvod-chat """ pyvod-chat - a simple tool to download a past Twitch.tv broadcasts (VOD) chat comments! Available on GitHub (+ documentation): https://github.com/sixP-NaraKa/pyvod-chat """ import os from collections import namedtuple import requests import dotenv from .vodchat import VODChat from .exceptions import TwitchApiException # check for a .env file and get the "twitch-client-id" which we need to identify the application for use with the API # this is NOT the same as the Client-Secret, which we do not need here # if there is no such Client-ID or it is empty, we use a default Client-ID dotenv.load_dotenv() _client_id = os.getenv("twitch-client-id") _client_id = _client_id if _client_id else "r52h1i1phlvyxs0sdi3ooam1b3w62g" # needed request headers _headers = {"client-id": _client_id, "accept": "application/vnd.twitchtv.v5+json"} # additional API url vod_url = "https://api.twitch.tv/v5/videos/{vod_id}" class VOD: """ Represents a Twitch.tv VOD (video-on-demand). The main entry point, responsible for getting the VODChat via `get_videochat()` as well as some basic information about the VOD itself and the channel the VOD belongs to (see below). Additional Class Attributes ----- The following are class attributes which contain basic information about the VOD and its associated channel. - `vod_title`: the title of the VOD - `vod_length`: the length of the VOD in hours - `vod_date`: the date when the broadcast has been streamed - `vod_views`: the total amount of VOD views - `channel`: the name of the channel associated with the VOD - `channel_id`: the channel ID - `channel_views`: total channel views - `channel_followers`: total channel followers - `channel_broadcaster_type`: whether the channel is partnered or a affiliate :param vod_id: the VOD ID to fetch the information for """ def __init__(self, vod_id): self.vod_id = str(vod_id) self._basic_data = self._get_basic_data() self.vod_title = self._basic_data.title self.vod_length = self._basic_data.vod_length self.vod_date = self._basic_data.created_at self.vod_game = self._basic_data.game self.vod_views = self._basic_data.views self.channel = self._basic_data.channel_name self.channel_id = self._basic_data.channel_id self.channel_views = self._basic_data.channel_views self.channel_followers = self._basic_data.channel_followers self.channel_broadcaster_type = self._basic_data.channel_type def __repr__(self): return "<VOD vod_title={0.vod_title!r} vod_length={0.vod_length!r} vod_date={0.vod_date!r} " \ "vod_game={0.vod_game!r} vod_views={0.vod_views!r} " \ "channel={0.channel!r} channel_id={0.channel_id!r} channel_views={0.channel_views!r} " \ "channel_followers={0.channel_followers!r} channel_broadcaster_type={0.channel_broadcaster_type!r}>"\ .format(self) def _get_basic_data(self) -> namedtuple: """ Gets some basic information in regards to the VOD and the channel associated with the VOD. :return: the basic data as a `namedtuple` """ response = requests.get(url=vod_url.format(vod_id=self.vod_id), headers=_headers) response_body = response.json() if response.status_code != 200: msg_from_twitch = response_body["message"] raise TwitchApiException( "Twitch API responded with '{1}' (status code {0}). Expected 200 (OK)." .format(response.status_code, msg_from_twitch) ) BasicData = namedtuple("BasicData", "title views created_at game vod_length " "channel_name channel_id channel_date " "channel_views channel_followers channel_type" ) data = BasicData( response_body["title"], # VOD title response_body["views"], # VOD views response_body["created_at"], # VOD stream date response_body["game"], # what game has been streamed response_body["length"], # VOD length in seconds (seconds / 3600 = hours) response_body["channel"]["display_name"], # channel name (streamer name) response_body["channel"]["_id"], # channel ID response_body["channel"]["created_at"], # channel creation date response_body["channel"]["views"], # total channel views response_body["channel"]["followers"], # total channel followers response_body["channel"]["broadcaster_type"] # broadcaster type (i.e. partner or affiliate, etc.) ) data = data._replace(vod_length=round(float(data.vod_length) / 3600, 2)) return data def get_vodchat(self) -> VODChat: """ Gets the VODChat associated with the `vod_id`. :return: the VODChat """ vod_chat = VODChat(vod_id=self.vod_id, _basic_vod_data=self._basic_data, _headers=_headers) return vod_chat
StarcoderdataPython
1927457
from torch import nn from ..functions import CameraBackProjection import torch class Camera_back_projection_layer(nn.Module): def __init__(self, res=128): super(Camera_back_projection_layer, self).__init__() assert res == 128 self.res = 128 def forward(self, depth_t, fl=418.3, cam_dist=2.2, shift=True): n = depth_t.size(0) if type(fl) == float: fl_v = fl fl = torch.FloatTensor(n, 1).cuda() fl.fill_(fl_v) if type(cam_dist) == float: cmd_v = cam_dist cam_dist = torch.FloatTensor(n, 1).cuda() cam_dist.fill_(cmd_v) df = CameraBackProjection.apply(depth_t, fl, cam_dist, self.res) return self.shift_tdf(df) if shift else df @staticmethod def shift_tdf(input_tdf, res=128): out_tdf = 1 - res * (input_tdf) return out_tdf class camera_backprojection(nn.Module): def __init__(self, vox_res=128): super(camera_backprojection, self).__init__() self.vox_res = vox_res self.backprojection_layer = CameraBackProjection() def forward(self, depth, fl, camdist): return self.backprojection_layer(depth, fl, camdist, self.voxel_res)
StarcoderdataPython
5050339
<reponame>vghost2008/wml<filename>object_detection2/modeling/backbone/darknet.py #coding=utf-8 import tensorflow as tf from .backbone import Backbone from .build import BACKBONE_REGISTRY from wnets.darknets import CSPDarkNet import collections import wmodule import object_detection2.od_toolkit as odt slim = tf.contrib.slim class DarkNet(Backbone): def __init__(self,cfg,*args,**kwargs): if cfg.MODEL.PREPROCESS != "ton1p1": print("--------------------WARNING--------------------") print(f"Preprocess for mobilenet should be ton1p1 not {cfg.MODEL.PREPROCESS}.") print("------------------END WARNING------------------") super().__init__(cfg,*args,**kwargs) self.normalizer_fn, self.norm_params = odt.get_norm(self.cfg.MODEL.DARKNETS.NORM, self.is_training) self.activation_fn = odt.get_activation_fn(self.cfg.MODEL.DARKNETS.ACTIVATION_FN) self.out_channels = cfg.MODEL.DARKNETS.OUT_CHANNELS self.scope_name = "50" def forward(self, x): res = collections.OrderedDict() if self.cfg.MODEL.DARKNETS.DEPTH == 53: print("DarkNet-53") darknet = CSPDarkNet(normalizer_fn=self.normalizer_fn, normalizer_params=self.norm_params, activation_fn=self.activation_fn) _,end_points = darknet.forward(x['image'],scope=f"CSPDarkNet-53") else: print(f"Error Depth {self.cfg.MODEL.DARKNETS.DEPTH}") return None self.end_points = end_points res.update(end_points) level = int(list(end_points.keys())[-1][1:]) + 1 x = list(self.end_points.values())[-1] for i in range(self.cfg.MODEL.DARKNETS.ADD_CONV): res[f"C{level+i}"] = slim.conv2d(x, self.out_channels, [3, 3], stride=2, activation_fn=self.activation_fn, normalizer_fn=self.normalizer_fn, normalizer_params=self.norm_params, scope=f"conv{i}") return res @BACKBONE_REGISTRY.register() def build_darknet_backbone(cfg, *args,**kwargs): """ Create a ResNet instance from config. Returns: ResNet: a :class:`ResNet` instance. """ # need registration of new blocks/stems? return DarkNet(cfg,*args,**kwargs)
StarcoderdataPython
1870786
<filename>greentest/test__subprocess.py # mostly tests from test_subprocess.py that used to have problems import sys import os import errno import greentest import gevent from gevent import subprocess import time if subprocess.mswindows: SETBINARY = 'import msvcrt; msvcrt.setmode(sys.stdout.fileno(), os.O_BINARY);' else: SETBINARY = '' class Test(greentest.TestCase): def test_exit(self): popen = subprocess.Popen([sys.executable, '-c', 'import sys; sys.exit(10)']) self.assertEqual(popen.wait(), 10) def test_wait(self): popen = subprocess.Popen([sys.executable, '-c', 'import sys; sys.exit(11)']) gevent.wait([popen]) self.assertEqual(popen.poll(), 11) def test_child_exception(self): try: subprocess.Popen(['*']).wait() except OSError as ex: assert ex.errno == 2, ex else: raise AssertionError('Expected OSError: [Errno 2] No such file or directory') def test_leak(self): num_before = greentest.get_number_open_files() p = subprocess.Popen([sys.executable, "-c", "print()"], stdout=subprocess.PIPE) p.wait() del p num_after = greentest.get_number_open_files() self.assertEqual(num_before, num_after) def test_communicate(self): p = subprocess.Popen([sys.executable, "-c", 'import sys,os;' 'sys.stderr.write("pineapple");' 'sys.stdout.write(sys.stdin.read())'], stdin=subprocess.PIPE, stdout=subprocess.PIPE, stderr=subprocess.PIPE) (stdout, stderr) = p.communicate("banana") self.assertEqual(stdout, "banana") if sys.executable.endswith('-dbg'): assert stderr.startswith('pineapple') else: self.assertEqual(stderr, "pineapple") def test_universal1(self): p = subprocess.Popen([sys.executable, "-c", 'import sys,os;' + SETBINARY + 'sys.stdout.write("line1\\n");' 'sys.stdout.flush();' 'sys.stdout.write("line2\\r");' 'sys.stdout.flush();' 'sys.stdout.write("line3\\r\\n");' 'sys.stdout.flush();' 'sys.stdout.write("line4\\r");' 'sys.stdout.flush();' 'sys.stdout.write("\\nline5");' 'sys.stdout.flush();' 'sys.stdout.write("\\nline6");'], stdout=subprocess.PIPE, universal_newlines=1) try: stdout = p.stdout.read() if hasattr(file, 'newlines'): # Interpreter with universal newline support self.assertEqual(stdout, "line1\nline2\nline3\nline4\nline5\nline6") else: # Interpreter without universal newline support self.assertEqual(stdout, "line1\nline2\rline3\r\nline4\r\nline5\nline6") finally: p.stdout.close() def test_universal2(self): p = subprocess.Popen([sys.executable, "-c", 'import sys,os;' + SETBINARY + 'sys.stdout.write("line1\\n");' 'sys.stdout.flush();' 'sys.stdout.write("line2\\r");' 'sys.stdout.flush();' 'sys.stdout.write("line3\\r\\n");' 'sys.stdout.flush();' 'sys.stdout.write("line4\\r\\nline5");' 'sys.stdout.flush();' 'sys.stdout.write("\\nline6");'], stdout=subprocess.PIPE, universal_newlines=1) try: stdout = p.stdout.read() if hasattr(file, 'newlines'): # Interpreter with universal newline support self.assertEqual(stdout, "line1\nline2\nline3\nline4\nline5\nline6") else: # Interpreter without universal newline support self.assertEqual(stdout, "line1\nline2\rline3\r\nline4\r\nline5\nline6") finally: p.stdout.close() if sys.platform != 'win32': def test_nonblock_removed(self): # see issue #134 r, w = os.pipe() p = subprocess.Popen(['grep', 'text'], stdin=subprocess.FileObject(r)) try: os.close(w) time.sleep(0.1) self.assertEqual(p.poll(), None) finally: if p.poll() is None: p.kill() def test_issue148(self): for i in range(7): try: subprocess.Popen('this_name_must_not_exist') except OSError as ex: if ex.errno != errno.ENOENT: raise else: raise AssertionError('must fail with ENOENT') def test_check_output_keyword_error(self): try: subprocess.check_output([sys.executable, '-c', 'import sys; sys.exit(44)']) except subprocess.CalledProcessError as e: self.assertEqual(e.returncode, 44) else: raise AssertionError('must fail with CalledProcessError') if __name__ == '__main__': greentest.main()
StarcoderdataPython
297320
<reponame>woakes070048/IT_Services # -*- coding: utf-8 -*- # Copyright (c) 2018, Oneiric Group Pty Ltd and contributors # For license information, please see license.txt from __future__ import unicode_literals import frappe from frappe.model.document import Document import json class ITContract(Document): pass @frappe.whitelist() def check_general_contract(customer): if len(frappe.db.sql("""Select name from `tabIT Contract` where contract_type='General' and customer=%s""",(customer))): return 1 def hide_completed_or_canceled_contracts(user): if user == "Administrator": return "" else: return """(`tabIT Contract`.workflow_state not in ('Completed'))""" @frappe.whitelist() def check_duplicate_name(amended_from): count=0 while amended_from: if len(frappe.db.sql("""Select name from `tabIT Contract` where amended_from=%s""",(amended_from))): if frappe.db.sql("""Select name from `tabIT Contract` where amended_from=%s""",(amended_from))[0][0]!=None: amended_from=frappe.db.sql("""Select name from `tabIT Contract` where amended_from=%s""",(amended_from))[0][0] count+=1 else: amended_from=0 else: amended_from=0 return count @frappe.whitelist() def get_item_price(name): if len(frappe.db.sql("""Select price_list_rate from `tabItem Price` where item_code=%s""",(name)))>0: return frappe.db.sql("""Select price_list_rate from `tabItem Price` where item_code=%s""",(name))[0][0] @frappe.whitelist() def make_billable_to_non_billable_items(non_billable_items,contract): data = json.loads(non_billable_items.decode("utf-8")) if (non_billable_items.decode('utf-8')) else {} print(data) for ii in frappe.db.sql("""Select name from `tabIT Ticket` where contract=%s""",(contract)): for i in data: print(i) frappe.db.sql("""Update `tabIT Ticket Detail` set billable_check=0 where item_code=%s and parent=%s""",(i,ii[0])) @frappe.whitelist() def get_item_description(name): if len(frappe.db.sql("""Select description from `tabItem` where name=%s""",(name)))>0: return frappe.db.sql("""Select description from `tabItem` where name=%s""",(name))[0][0]
StarcoderdataPython
12844025
# Copyright 2020-2021 Huawei Technologies Co., Ltd # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """operator dsl function: pooling""" import akg import akg.utils as utils from akg.utils.format_transform import get_shape from akg.ops.nn.ascend import MaxPool, Avgpool def _pooling_compute(x, window, stride, mode=0, pad_mode=5, pad=(0, 0, 0, 0)): """compute for pooling""" # convert mode&pad_mode to str if mode == 0: mode = "MAX" elif mode == 1: mode = "AVG" else: raise RuntimeError("Invalid mode parameters, mode must set 0 or 1.") if pad_mode == 5: pad_mode = "VALID" elif pad_mode == 6: pad_mode = "SAME" else: raise RuntimeError("Invalid pad_mode parameters, pad_mode must set 5 or 6.") # check pad if pad not in ((0, 0, 0, 0), [0, 0, 0, 0]): raise RuntimeError("Not support pad now!") in_size_h = x.shape[2].value in_size_w = x.shape[3].value window = list(window) if window[0] >= in_size_h and window[1] >= in_size_w: window[0] = in_size_h window[1] = in_size_w pad_mode = "VALID" stride = [1, 1] if mode == "MAX": res = MaxPool(x, window, stride, pad_mode) else: # AVG res = Avgpool(x, window, stride, pad_mode) return res @utils.check_input_type(akg.tvm.tensor.Tensor, (list, tuple), (list, tuple), (int, type(None)), (int, type(None)), (list, tuple, type(None)), (bool, type(None)), (int, type(None))) def pooling(x, window, stride, mode=0, pad_mode=5, pad=(0, 0, 0, 0), global_pooling=False, ceil_mode=0): """ Pooling operation, including MaxPool and AvgPool. Args: x (tvm.tensor.Tensor): Input tensor, only support float16 dtype, and NC1HWC0 format. window (Union[list, tuple]): Pooling window, only support pooling in H or W. stride (Union[list, tuple]): Pooling stride, only support pooling in H or W. mode (int): Mode of pooling, support MaxPool and AvgPool. 0 for MaxPool, 1 for AvgPool. pad_mode (int): Mode of padding, 5 for VALID, 6 for SAME. pad (Union[list, tuple]): Implicit padding size to up/down/left/right. global_pooling (bool): Global pooling flag, invalid now, should be False. ceil_mode (int): Round_mode params, invalid now, should be 0. Returns: A tvm.tensor.Tensor with same dtype as input. """ utils.check_shape(get_shape(x)) utils.ops_dtype_check(x.dtype, utils.DtypeForDavinci.FLOAT16) if len(window) != 2: raise RuntimeError("Invalid shape params, window shape must be 2 dims, " "including window_h and window_w.") if len(stride) != 2: raise RuntimeError("Invalid shape params, stride shape must be 2 dims, " "including stride_h and stride_w.") if global_pooling or ceil_mode != 0: raise RuntimeError("Not support global_pooling and ceil_mode for now.") return _pooling_compute(x, window, stride, mode, pad_mode, pad)
StarcoderdataPython
6670346
import numpy as np def calculate_crop_number(image, crop_height, crop_width, oc): ''' Calculate how many sub images a nuclei image can be cropped Args: image: original image crop_height: the expected height of output sub images crop_width: the expected width of output sub images Output: output: number of cropped images height_number: How many segments can be divided in the height dimension width_number: How many segments can be divided in the width dimension ''' height = image.shape[0] width = image.shape[1] height_number = height // crop_height + 1 height_number = oc * (height_number - 1) + 1 width_number = width // crop_width + 1 width_number = oc * (width_number - 1) + 1 output = height_number * width_number return output, height_number, width_number def test_and_complement(image, crop_height, crop_width): ''' Check the dimension of the clipped image. If it is inconsistent with the expected dimension, zero filling is performed Args: image: input sub image crop_height: the expected height of output sub images crop_width: the expected width of output sub images Output: image: the image with expected height and width ''' if image.shape[0] != crop_height or image.shape[1] != crop_width: complement = np.zeros([crop_height, crop_width, image.shape[2]]).astype(np.float32) complement[0:image.shape[0], 0:image.shape[1], :] = image return complement else: return image def crop_image(image, crop_height = 256, crop_width = 256, oc = 2): ''' Cropping function of original image Args: image: original nuclei image crop_height: the expected height of output sub images crop_width: the expected width of output sub images Output: output: a numpy array which stacks the cropped images. ''' total_output_number, height_number, width_number = calculate_crop_number(image, crop_height, crop_width, oc) output = np.zeros([total_output_number, crop_height, crop_width, image.shape[2]]).astype(np.float32) count = 0 for i in range(height_number): for j in range(width_number): unit_crop_image = image[int(crop_height/oc*i):int(crop_height/oc*i)+crop_height, int(crop_width/oc*j):int(crop_width/oc*j)+crop_width,:] unit_crop_image = test_and_complement(unit_crop_image, crop_height, crop_width) output[count] = unit_crop_image count += 1 return output def recover_image(cropped_image, height, width, crop_height = 256, crop_width = 256, oc = 2): ''' Recovering the sub images to original size Args: cropped_image: the cropped image height: the height of original image width: the width of original image Output: output: the recovered image with original size ''' in_height_number = height // crop_height + 1 height_number = oc * (in_height_number - 1) + 1 in_width_number = width // crop_width + 1 width_number = oc * (in_width_number - 1) + 1 output_image = np.zeros([in_height_number*crop_height, in_width_number*crop_width, cropped_image.shape[3]]).astype(np.float32) assert crop_height * (oc - 1) % (2 * oc) == 0 and crop_width * (oc - 1) % (2 * oc) == 0,\ 'The input crop image size and overlap coefficient cannot meet the exact division' h_sec_pos = int(crop_height * (oc - 1) / (2 * oc)) w_sec_pos = int(crop_width * (oc - 1) / (2 * oc)) h_thi_pos = int(crop_height * (oc + 1) / (2 * oc)) w_thi_pos = int(crop_width * (oc + 1) / (2 * oc)) h_half_pos = int(crop_height/oc) w_half_pos = int(crop_width/oc) for i in range(height_number): if i == 0: for j in range(width_number): if height_number == 1: if j == 0: if width_number == 1: output_image[0:crop_height,0:crop_width,:]=\ cropped_image[i*width_number+j][0:crop_height,0:crop_width,:] else: output_image[0:crop_height,0:w_thi_pos,:]=\ cropped_image[i*width_number+j][0:crop_height,0:w_thi_pos,:] elif j == (width_number -1): output_image[0:crop_height,j*w_half_pos+w_sec_pos:,:] =\ cropped_image[i*width_number+j][0:crop_height,w_sec_pos:crop_width,:] else: output_image[0:crop_height,w_thi_pos+(j-1)*w_half_pos:w_thi_pos+j*w_half_pos,:] =\ cropped_image[i*width_number+j][0:crop_height,w_sec_pos:w_thi_pos,:] else: if j == 0: if width_number == 1: output_image[0:h_thi_pos,0:crop_width,:]=\ cropped_image[i*width_number+j][0:h_thi_pos,0:crop_width,:] else: output_image[0:h_thi_pos,0:w_thi_pos,:]=\ cropped_image[i*width_number+j][0:h_thi_pos,0:w_thi_pos,:] elif j == (width_number -1): output_image[0:h_thi_pos,j*w_half_pos+w_sec_pos:,:] =\ cropped_image[i*width_number+j][0:h_thi_pos,w_sec_pos:crop_width,:] else: output_image[0:h_thi_pos,w_thi_pos+(j-1)*w_half_pos:w_thi_pos+j*w_half_pos,:] =\ cropped_image[i*width_number+j][0:h_thi_pos,w_sec_pos:w_thi_pos,:] elif i == (height_number - 1): for j in range(width_number): if j == 0: if width_number == 1: output_image[i*h_half_pos+h_sec_pos:,0:crop_width,:]=\ cropped_image[i*width_number+j][h_sec_pos:crop_height,0:crop_width,:] else: output_image[i*h_half_pos+h_sec_pos:,0:w_thi_pos,:]=\ cropped_image[i*width_number+j][h_sec_pos:crop_height,0:w_thi_pos,:] elif j == (width_number - 1): output_image[i*h_half_pos+h_sec_pos:,j*w_half_pos+w_sec_pos:,:] =\ cropped_image[i*width_number+j][h_sec_pos:crop_height,w_sec_pos:crop_width,:] else: output_image[i*h_half_pos+h_sec_pos:,w_thi_pos+(j-1)*w_half_pos:w_thi_pos+j*w_half_pos,:] =\ cropped_image[i*width_number+j][h_sec_pos:crop_height,w_sec_pos:w_thi_pos,:] else: for j in range(width_number): if j == 0: if width_number == 1: output_image[h_thi_pos+(i-1)*h_half_pos:h_thi_pos+i*h_half_pos, 0:crop_width,:]=cropped_image[i*width_number+j][h_sec_pos:h_thi_pos,0:crop_width,:] else: output_image[h_thi_pos+(i-1)*h_half_pos:h_thi_pos+i*h_half_pos, 0:w_thi_pos,:]=cropped_image[i*width_number+j][h_sec_pos:h_thi_pos,0:w_thi_pos,:] elif j == (width_number - 1): output_image[h_thi_pos+(i-1)*h_half_pos:h_thi_pos+i*h_half_pos,j*w_half_pos+w_sec_pos:,:] =\ cropped_image[i*width_number+j][h_sec_pos:h_thi_pos,w_sec_pos:crop_width,:] else: output_image[h_thi_pos+(i-1)*h_half_pos:h_thi_pos+i*h_half_pos, w_thi_pos+(j-1)*w_half_pos:w_thi_pos+j*w_half_pos,:] = \ cropped_image[i*width_number+j][h_sec_pos:h_thi_pos,w_sec_pos:w_thi_pos,:] output_image = output_image[0:height,0:width,:] return output_image
StarcoderdataPython
192296
<reponame>assuzzanne/my-sqreen # -*- coding: utf-8 -*- # Copyright (c) 2016, 2017, 2018, 2019 Sqreen. All rights reserved. # Please refer to our terms for more information: # # https://www.sqreen.io/terms.html # """ Blank request for callbacks needing a request when no one is present """ from .base import BaseRequest, BaseResponse class BlankRequest(BaseRequest): @property def raw_headers(self): return {} @property def raw_client_ip(self): return None @property def client_user_agent(self): return None @property def cookies_params(self): return {} @property def form_params(self): return {} @property def hostname(self): return None @property def method(self): return None @property def path(self): return None @property def query_params(self): return {} @property def query_params_values(self): return [] @property def referer(self): return None @property def remote_port(self): return None @property def remote_addr(self): return None @property def scheme(self): return None @property def server_port(self): return None @property def view_params(self): return {} @property def json_params(self): return {} class BlankResponse(BaseResponse): @property def status_code(self): return None @property def content_type(self): return None @property def content_length(self): return None
StarcoderdataPython
6546563
<filename>python/src/scraping/get_pixiv.py import os, time, json, sys, re, datetime import numpy as np import i2v from pixivpy3 import PixivAPI, AppPixivAPI from PIL import Image from dateutil.relativedelta import relativedelta illust_re = re.compile("([0-9]+[^/]+$)") illust2vec = i2v.make_i2v_with_chainer( "illust2vec_tag_ver200.caffemodel", "tag_list.json") root_dir = "../pixiv" #ログイン api = PixivAPI() aapi = AppPixivAPI() api.login(os.environ["PIXIV_USER"], os.environ["PIXIV_PASSWORD"]) checked_user_ids = [] #取得済みのJSONはキャッシュ def get_json(json_name, init_func): if os.path.isfile(json_name) == False: res = init_func() if "status" in res and res["status"] == "failure": sys.exit(res) time.sleep(1) with open(json_name, mode="w") as f: json.dump(res, f) with open(json_name) as f: return json.load(f) #イラストタグのチェック def contains_tags(tags): for tag in tags: if tag in ["艦これ","艦隊これくしょん"]: return True return False def download_from_user(user_id, score=10000, ymdr="", per_page=1000): if user_id in checked_user_ids: return checked_user_ids.append(user_id) #ユーザー情報とイラスト一覧を取得 user_dir = "%s/illusts/%d"%(root_dir,user_id) os.makedirs(user_dir, exist_ok=True) works = get_json("%s/%d.json"%(user_dir,user_id), lambda: api.users_works(user_id, per_page=per_page)) checked_path = "%s/%d-checked.json"%(user_dir,user_id) checked = get_json(checked_path, lambda: []) #イラスト一覧からイラストを取得 if "pagination" in works: total = works["pagination"]["total"] total = np.min([per_page, total]) for j in range(0, total): print("\r%s %d/%d %d "%(ymdr,j+1,total,user_id), end="") sys.stdout.flush() #チェック済みか確認 illust = works["response"][j] large_url = illust["image_urls"]["large"] small_url = illust["image_urls"]["px_480mw"] large_name = illust_re.search(large_url) small_name = illust_re.search(small_url) if large_name == None or small_name == None: continue large_name = large_name.group(1) small_name = small_name.group(1) if large_name in checked: continue #フォーマットや評価をチェック #if illust["is_manga"]: #continue if illust["type"] != "illustration": continue if illust["stats"]["score"] < score: continue if illust["age_limit"] != "all-age": continue #if illust["sanity_level"] != "white": #continue if illust["width"]*0.8 > illust["height"]: continue if illust["width"] < illust["height"]*0.6: continue #if contains_tags(illust["tags"]) == False: #continue #縮小サイズをダウンロード aapi.download(small_url, "%s/"%user_dir) start = time.time() #縮小サイズからタグ予測をチェック small_path = "%s/%s"%(user_dir,small_name) img = Image.open(small_path) tags = illust2vec.estimate_specific_tags([img], ["1girl","2girls","monochrome","comic"])[0] os.remove(small_path) if (tags["1girl"] >= 0.8 or tags["2girls"] >= 0.8) and tags["monochrome"] < 0.8: #待機して原寸サイズをダウンロード time.sleep(np.max([0, 0.5 - float(time.time() - start)])) aapi.download(large_url, "%s/"%user_dir) start = time.time() #チェック済みにする checked.append(large_name) with open(checked_path, mode="w") as f: json.dump(checked, f) #待機 time.sleep(np.max([0, 0.5 - float(time.time() - start)])) os.system("find %s -type f | grep -e jpg -e png | wc -l"%root_dir) def download_from_ranking(): mode = "monthly" per_page = 10 start = datetime.date(year=2019, month=5, day=1) end = datetime.date(year=2017, month=1, day=1) delta = relativedelta(days=1) while start >= end: #ランキングを取得 ymd = str(start) ranking_dir = "%s/ranking"%root_dir os.makedirs(ranking_dir, exist_ok=True) ranking = get_json("%s/%s-%s-%d.json"%(ranking_dir,mode,ymd,per_page), lambda: api.ranking_all(mode=mode, date=ymd, per_page=per_page)) if "response" in ranking: ranking = ranking["response"][0]["works"] #ユーザーからイラスト取得 for i, ranker in enumerate(ranking): download_from_user(ranker["work"]["user"]["id"], ymdr="%s %d/%d"%(ymd,i+1,len(ranking))) #日付を遡る start = start - delta def download_from_follow(): with open("%s/follow/cute"%root_dir) as f: follows = re.findall("id=([0-9]+)", f.read()) follows = [int(x) for x in follows] follows = list(set(follows)) for i, user_id in enumerate(follows): download_from_user(user_id, ymdr="%d/%d"%(i+1,len(follows))) #実行 #download_from_ranking() #download_from_follow() 36924420 23098486 28992125 4094653
StarcoderdataPython
11326288
#!/usr/bin/env python # -*- coding: utf-8 -*- # FSRobo-R Package BSDL # --------- # Copyright (C) 2019 FUJISOFT. All rights reserved. # # Redistribution and use in source and binary forms, with or without modification, # are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation and/or # other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its contributors # may be used to endorse or promote products derived from this software without # specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND # ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED # WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. # IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, # INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES # (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; # LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND # ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # --------- import copy import math class Palletizing: class Pattern: ZIGZAG = 1 SNAKE = 2 """ 座標情報を保持するクラス """ def __init__(self, pos1, pos2, pos3, size_x, size_y, z=0, size_z=1, pattern=Pattern.ZIGZAG): # インスタンス変数定義 self._max_size_x = size_x self._max_size_y = size_y self._max_size_z = size_z self._next_x = 0 self._next_y = 0 self._next_z = 0 self._top_next_x = 0 self._top_next_y = 0 self._top_next_z = self._max_size_z - 1 relative_x = self._get_relative_position(pos1, pos2) relative_y = self._get_relative_position(pos1, pos3) if size_x > 1: interval_x = map(lambda x: x / (size_x - 1), relative_x) else: interval_x = 0.0 if size_y > 1: interval_y = map(lambda x: x / (size_y - 1), relative_y) else: interval_y = 0.0 print("interval x:{} y:{}".format(interval_x, interval_y)) if pattern == self.Pattern.ZIGZAG: self._palletizing_pos = self._create_zigzag_list(pos1, interval_x, interval_y, size_x, size_y) else: self._palletizing_pos = self._create_snake_list(pos1, interval_x, interval_y, size_x, size_y) if size_z > 1: pos4 = self._get_z_position(pos1, pos2, pos3, relative_x, relative_y, z) relative_z = self._get_relative_position(pos1, pos4) interval_x = map(lambda x: x / (size_z - 1), relative_z) self._palletizing_pos_3d = self._create_3d_palletizing_list(interval_x, size_z) elif size_z == 1: self._palletizing_pos_3d = self._create_3d_palletizing_list(0, size_z) else: raise Exception("引数:size_zに渡された値が不正です。\n1以上の値を指定してください") def get_pos(self, index_x, index_y): return self._palletizing_pos[index_y][index_x] def get_pos_3d(self, index_x, index_y, index_z): return self._palletizing_pos_3d[index_z][index_y][index_x] def get_next_pos(self): position = self._palletizing_pos_3d[self._next_z][self._next_y][self._next_x] # 次のインデックスに進める self._next_x += 1 if self._max_size_x <= self._next_x: self._next_x = 0 self._next_y += 1 if self._max_size_y <= self._next_y: self._next_y = 0 self._next_z += 1 if self._max_size_z <= self._next_z: # 最初のインデックスに戻る self._next_z = 0 return position def get_next_pos_top(self): position = self._palletizing_pos_3d[self._top_next_z][self._top_next_y][self._top_next_x] # 次のインデックスに進める self._top_next_x += 1 if self._max_size_x <= self._top_next_x: self._top_next_x = 0 self._top_next_y += 1 if self._max_size_y <= self._top_next_y: self._top_next_y = 0 self._top_next_z -= 1 if -1 >= self._top_next_z: # 最初のインデックスに戻る self._top_next_z = self._max_size_z - 1 return position def _get_z_position(self, pos1, pos2, pos3, relative1, relative2, height): position_y = copy.deepcopy(pos1) position_y.x = position_y.x + relative1[0] position_y.y = position_y.y + relative1[1] position_y.z = position_y.z + relative1[2] pos4 = copy.deepcopy(position_y) pos4.x = pos4.x + relative2[0] pos4.y = pos4.y + relative2[1] pos4.z = pos4.z + relative2[2] pos_list = [pos2, pos3, pos4] bottom_pos = pos1 high_pos = pos1 for pos in pos_list: if bottom_pos.z > pos.z: bottom_pos = pos elif high_pos.z < pos.z: high_pos = pos relative3 = self._get_relative_position(bottom_pos, high_pos) base_z = (relative3[0] ** 2 + relative3[1] ** 2) ** 0.5 if base_z != 0: lean_z = math.atan(relative3[2] / base_z) else: lean_z = math.atan(0) base_x = (relative1[0] ** 2 + relative1[1] ** 2) ** 0.5 if base_x != 0: lean_x = math.atan(relative1[2] / base_x) else: lean_x = math.atan(0) base_y = (relative2[0] ** 2 + relative2[1] ** 2) ** 0.5 if base_y != 0: lean_y = math.atan(relative2[2] / base_y) else: lean_y = math.atan(0) offset_z = height * math.cos(lean_z) offset_x = offset_z * math.tan(lean_x) offset_y = offset_z * math.tan(lean_y) print("lean x:{} y:{} z:{}".format(math.degrees(lean_x), math.degrees(lean_y), math.degrees(lean_z))) print("offset x:{} y:{} z:{}".format(offset_x, offset_y, offset_z)) result = copy.deepcopy(pos1) result.x = result.x + offset_x result.y = result.y + offset_y result.z = result.z + offset_z print("postion5 x:{} y:{} z:{} rz:{} ry:{} rx:{}".format(result.x, result.y, result.z, result.rz, result.ry, result.rx)) return result def _get_relative_position(self, pos1, pos2): relative_x = pos2.x - pos1.x relative_y = pos2.y - pos1.y relative_z = pos2.z - pos1.z result = [relative_x, relative_y, relative_z] print("relative:{}".format(result)) return result def _create_zigzag_list(self, pos1, interval_x, interval_y, size_x, size_y): result = [] for index_y in range(size_y): position_y = copy.deepcopy(pos1) print("position x:{}, y:{}".format(position_y.x, position_y.y)) if not index_y == 0: offset_y = map(lambda x: x * index_y, interval_y) print("offset_y:{}".format(offset_y)) position_y.x = position_y.x + offset_y[0] position_y.y = position_y.y + offset_y[1] position_y.z = position_y.z + offset_y[2] result_x = [] for index_x in range(size_x): position_x = copy.deepcopy(position_y) if not index_x == 0: offset_x = map(lambda x: x * index_x, interval_x) print("offset_x:{}".format(offset_x)) position_x.x = position_x.x + offset_x[0] position_x.y = position_x.y + offset_x[1] position_x.z = position_x.z + offset_x[2] result_x.append(position_x) result.append(result_x) return result def _create_snake_list(self, pos1, interval_x, interval_y, size_x, size_y): result = [] for index_y in range(size_y): position_y = copy.deepcopy(pos1) print("position x:{}, y:{}".format(position_y.x, position_y.y)) if not index_y == 0: offset_y = map(lambda x: x * index_y, interval_y) print("offset_y:{}".format(offset_y)) position_y.x = position_y.x + offset_y[0] position_y.y = position_y.y + offset_y[1] position_y.z = position_y.z + offset_y[2] result_x = [] range_x = range(size_x) if index_y % 2 == 1: range_x = list(reversed(range_x)) for index_x in range_x: position_x = copy.deepcopy(position_y) if not index_x == 0: offset_x = map(lambda x: x * index_x, interval_x) print("offset_x:{}".format(offset_x)) position_x.x = position_x.x + offset_x[0] position_x.y = position_x.y + offset_x[1] position_x.z = position_x.z + offset_x[2] result_x.append(position_x) result.append(result_x) return result def _create_3d_palletizing_list(self, interval_z, size_z): result = [] for index_z in range(size_z): palletizing_list = copy.deepcopy(self._palletizing_pos) if not index_z == 0: offset = map(lambda x: x * index_z, interval_z) for palletizing_list_x in palletizing_list: for position in palletizing_list_x: print("offset_x:{}".format(offset)) position.x = position.x + offset[0] position.y = position.y + offset[1] position.z = position.z + offset[2] result.append(palletizing_list) return result
StarcoderdataPython
69809
np = int(input('Say a number: ')) som = 0 for i in range(1,np): if np%i == 0: print (i), som += i if som == np: print('It is a perfect number!') else: print ('It is not a perfect number')
StarcoderdataPython
5063456
import tkinter as tk from tkinter import filedialog import base64 import sys import pyperclip root = tk.Tk() root.withdraw() root.clipboard_clear() file_path = filedialog.askopenfilename() extension = "" if file_path.endswith('.jpg'): extension = "jpg" elif file_path.endswith('.png'): extension = "png" else: print("Incompatible image type, exiting!") sys.exit() with open(file_path, "rb") as image_file: encoded_string = base64.b64encode(image_file.read()) pyperclip.copy(f"<img src='data:image/{extension};base64,{encoded_string.decode('utf-8')}'>") print("Base64 encoded image tag has been copied to the clipboard.") answer = input("Do you want to delete the image? Y/N: ".rstrip()) if answer == 'y' or 'Y': os.remove(file_path)
StarcoderdataPython
9639701
<reponame>bitshares/nbs-pricefeed from . import FeedSource # pylint: disable=no-member class Manual(FeedSource): def _fetch(self): return self.feed
StarcoderdataPython
1999041
from brownie import web3 from decimal import Decimal from enum import Enum from hexbytes import HexBytes from typing import Any class RiskParameter(Enum): K = 0 LMBDA = 1 DELTA = 2 CAP_PAYOFF = 3 CAP_NOTIONAL = 4 CAP_LEVERAGE = 5 CIRCUIT_BREAKER_WINDOW = 6 CIRCUIT_BREAKER_MINT_TARGET = 7 MAINTENANCE_MARGIN_FRACTION = 8 MAINTENANCE_MARGIN_BURN_RATE = 9 LIQUIDATION_FEE_RATE = 10 TRADING_FEE_RATE = 11 MIN_COLLATERAL = 12 PRICE_DRIFT_UPPER_LIMIT = 13 AVERAGE_BLOCK_TIME = 14 def calculate_position_info(notional: Decimal, leverage: Decimal, trading_fee_rate: Decimal) -> (Decimal, Decimal, Decimal, Decimal): """ Returns position attributes in decimal format (int / 1e18) """ collateral = notional / leverage trade_fee = notional * trading_fee_rate debt = notional - collateral return collateral, notional, debt, trade_fee def get_position_key(owner: str, id: int) -> HexBytes: """ Returns the position key to retrieve an individual position from positions mapping """ return web3.solidityKeccak(['address', 'uint256'], [owner, id]) def mid_from_feed(data: Any) -> float: """ Returns mid price from oracle feed data """ (_, _, _, price_micro, price_macro, _, _, _) = data ask = max(price_micro, price_macro) bid = min(price_micro, price_macro) mid = (ask + bid) / 2 return mid def entry_from_mid_ratio(mid_ratio: int, mid: int) -> int: """ Returns entry price from mid ratio and mid price NOTE: mid_ratio is uint48 format and mid price is int FixedPoint format """ # NOTE: mid_ratio "ONE" is 1e14 given uint48 entry_price = int((Decimal(mid_ratio) / Decimal(1e14)) * mid) return entry_price def calculate_mid_ratio(entry_price: int, mid_price: int) -> int: """ Returns mid ratio from entry price and mid price NOTE: mid_ratio is uint48 format and mid, entry prices are int FixedPoint format """ # NOTE: mid_ratio "ONE" is 1e14 given uint48 mid_ratio = int(Decimal(entry_price) * Decimal(1e14) / Decimal(mid_price)) return mid_ratio
StarcoderdataPython
6547389
<reponame>akoul1/mvlearn import pytest from mvlearn.cluster.base_cluster import BaseCluster def test_base_cluster(): base_cluster = BaseCluster() base_cluster.fit(Xs=None) base_cluster.predict(Xs=None) base_cluster.fit_predict(Xs=None)
StarcoderdataPython
3462524
from typing import List class Solution: def partition(self, s: str) -> List[List[str]]: self.ans = [] ds = [] self.solve(0, s, ds) return self.ans def solve(self, idx, s, ds): if idx == len(s): self.ans.append(ds[:]) return for i in range(idx, len(s)): if s[idx:i + 1] == s[idx:i + 1][::-1]: ds.append(s[idx:i + 1]) self.solve(i + 1, s, ds) ds.pop() return solution = Solution() print(solution.partition("aab")) print(solution.partition("abcdeff"))
StarcoderdataPython
3420314
<filename>Labs/Scheduling/Miniversion.py import csv import numpy as np from cvxopt import matrix, glpk,solvers reader = csv.reader(open("NursesPreferences.csv",'r'), delimiter = "\t") total = [] level = [] for row in reader: ## array = [] for i in range(71): if i == 0: level.append(float(row[i])) else: total.append(float(row[i])) ## total.append(array) preferences = np.array(total) level = np.array(level) reader1 = csv.reader(open("SchedulingData.csv","r"), delimiter=",") data = [] for row in reader1: array = [] for row1 in row: a = float(row1) array.append(a) data.append(array) reader = csv.reader(open("NursesPreferences.csv","r"), delimiter="\t") shifts = [] count = 0 for row in reader: if count < 4: count += 1 for i in range(1,9): shifts.append(float(row[i])) preferences = np.array([shifts]) constraint1 = [] for i in range(4): one = [] for j in range(32): if j < 8 * (i+1) and j >=8 * i: one.append(1.0) else: one.append(0.0) constraint1.append(one) constraint1 = np.array(constraint1) ## print row b = np.array([[1.,1.,1.,1.]]) print "c", preferences.shape print "A", constraint1.shape print "b", b.shape constraint2 = [] for i in range(32): array = [] for j in range(32): if i == j: array.append(1.) else: array.append(0.) constraint2.append(array) for i in range(32): array = [] for j in range(32): if i == j: array.append(-1.) else: array.append(0.) constraint2.append(array) G = np.array(constraint2) h = [] for i in range(32): h.append(1.) for i in range(32): h.append(0.) h = np.array(h) print "h", h.shape print "G", G.shape h = matrix(h) G = matrix(G) c = matrix(preferences.T) A = matrix(constraint1) b = matrix(b.T) sol = glpk.ilp(c,G,h,A,b,I=set([0,1])) solution = [] for i in range(4): array = [] for j in range(8): array.append( sol[1][(i)*8+j]) solution.append(array) for row in solution: print row print sol[1]
StarcoderdataPython
1910306
from typing import Tuple, TYPE_CHECKING from sqlalchemy import delete, insert, join, select, update from sqlalchemy.engine import RowProxy from smorest_sfs.plugins.queries.query import SAQuery from smorest_sfs.plugins.queries.statement import SAStatement from tests.plugins.queries.models import Item, User if TYPE_CHECKING: from sqlalchemy.orm import Query TUPLEQ = Tuple[User, Item] class UserQuery(SAQuery["Query[User]", User, User]): def __init__(self) -> None: self._query = self._session.query(User) class UserItemQuery(SAQuery["Query[TUPLEQ]", TUPLEQ, User]): def __init__(self) -> None: self._query = self._session.query(User, Item).join(Item, User.id == Item.uid) class UserStatement(SAStatement[select, str]): def __init__(self) -> None: self._sa_sql = select([User.name, User.nickname]) class UserJoinStatement(SAStatement[select, RowProxy]): def __init__(self) -> None: self._sa_sql = select( [User.name, User.nickname, Item.name.label("Itemname")] ).select_from(join(User.__table__, Item.__table__, Item.uid == User.id)) class UserDeleteStatement(SAStatement[delete, None]): def __init__(self) -> None: self._sa_sql = delete(User.__table__) class UserInsertStatement(SAStatement[insert, None]): def __init__(self) -> None: self._sa_sql = insert(User.__table__).values((100, "test1", "test2")) class UserUpdateStatement(SAStatement[update, None]): def __init__(self) -> None: self._sa_sql = update(User.__table__).where(User.id == 1).values(name="updated")
StarcoderdataPython
3237590
<filename>job_title_processing/tools/occupation_nomenclature.py # -*- coding: utf-8 -*- """ Process external data on nomenclature to reuse it in the classifier. """ from job_title_processing.tools import load_root_path import pandas as pd import os import re def get_nomenclature(langage='FR'): if langage=='FR': return get_nomenclature_ROME_FR() else: return None def get_nomenclature_ROME_FR(): """Get occupation ROME code description, store it in csv file.""" ROOT_DIR = load_root_path() fr_path = os.path.join(ROOT_DIR, "ressources_txt","FR", "nomenclature") label_file = os.path.join(fr_path,"ROME_nomenclature.csv") if os.path.exists(label_file): df = pd.read_csv(label_file, encoding="utf-8-sig", sep=";") return df file = os.path.join(fr_path,"ROME_ArboPrincipale.xlsx") if os.path.exists(file): xl = pd.ExcelFile(file) df = pd.read_excel(file, sheet_name=xl.sheet_names[1]) cols = df.columns # Get ROME code and labels only mask_2 = df[cols[2]] != ' ' mask_ogr = df['Code OGR'] == ' ' df = df.loc[mask_2 & mask_ogr].copy() # Get relevant columns df["ROME_code"] = df[cols[0]] + df[cols[1]] + df[cols[2]] df.rename(columns={cols[3]: 'ROME_text'}, inplace=True) # To csv df.to_csv( label_file, encoding="utf-8-sig", sep=";", index=False, columns=['ROME_code', 'ROME_text'] ) return df[['ROME_code', 'ROME_text']] else: print( '''*** \n''' '''Please download the 'Arborescence principale' file available on''' ''' https://www.pole-emploi.org/opendata/repertoire-operationnel-''' '''des-meti.html?type=article \n''' '''Put the file 'ROME_ArboPrincipale.xlsx' in \n''' '''job_title_processing\\job_title_processing\\ressources_txt''' '''\\FR\\nomenclature \n''' '''***''' ) return None def get_labels_ROME_FR(): """ Read job titles and matching occupation code from Pole Emploi data. Store results in a csv file. """ ROOT_DIR = load_root_path() fr_path = os.path.join(ROOT_DIR, "ressources_txt","FR", "nomenclature") label_file = os.path.join(fr_path,"ROME_label.csv") if os.path.exists(label_file): df = pd.read_csv(label_file, encoding="utf-8-sig", sep=";") return df file = os.path.join(fr_path,"ROME_ArboPrincipale.xlsx") if os.path.exists(file): xl = pd.ExcelFile(file) df = pd.read_excel(file, sheet_name=xl.sheet_names[1]) cols = df.columns # Get ROME code and labels only mask = df['Code OGR'] != ' ' df = df.loc[mask].copy() # Get relevant columns df["ROME"] = df[cols[0]] + df[cols[1]] + df[cols[2]] df.rename(columns={cols[3]: 'titre'}, inplace=True) # To csv df.to_csv( label_file, encoding="utf-8-sig", sep=";", index=False, columns=['ROME', 'titre'] ) return df[['ROME', 'titre']] else: print( '''*** \n''' '''Please download the 'Arborescence principale' file available on''' ''' https://www.pole-emploi.org/opendata/repertoire-operationnel-''' '''des-meti.html?type=article \n''' '''Put the file 'ROME_ArboPrincipale.xlsx' in \n''' '''job_title_processing\\job_title_processing\\ressources_txt''' '''\\FR\\nomenclature \n''' '''***''' ) return None
StarcoderdataPython
12841335
<gh_stars>0 #!/usr/bin/env python # -*- coding: utf-8 -*- # # Copyright (c) 2017~2999 - cologler <<EMAIL>> # ---------- # # ---------- from abc import abstractmethod import inspect from .common import LifeTime, IServiceProvider, IDescriptor, ICallSiteMaker from .param_type_resolver import ParameterTypeResolver from .errors import ParameterTypeResolveError from .callsites import ( InstanceCallSite, ServiceProviderCallSite, CallableCallSite, ListedCallSite ) class Descriptor(IDescriptor): def __init__(self, service_type: type, lifetime: LifeTime): if not isinstance(service_type, type): raise TypeError('service_type must be a type') if not isinstance(lifetime, LifeTime): raise TypeError('lifetime must be a LifeTime') self._service_type = service_type self._lifetime = lifetime @property def service_type(self): return self._service_type @property def lifetime(self): return self._lifetime class CallableDescriptor(Descriptor): def __init__(self, service_type: type, func: callable, lifetime: LifeTime, **options): super().__init__(service_type, lifetime) if service_type is ParameterTypeResolver: raise RuntimeError(f'service_type cannot be {ParameterTypeResolver}.') if not callable(func): raise TypeError self._func = func self._options = options def make_callsite(self, service_provider, depend_chain): param_callsites = {} signature = inspect.signature(self._func) params = signature.parameters.values() params = [p for p in params if p.kind is p.POSITIONAL_OR_KEYWORD] if params: type_resolver: ParameterTypeResolver = service_provider.get(ParameterTypeResolver) for param in params: callsite = None if param.default is param.empty: try: param_type = type_resolver.resolve(param, False) except ParameterTypeResolveError as err: if isinstance(self._func, type): msg = f'error on creating type {self._func}: {err}' else: msg = f'error on invoke facrory {self._func}: {err}' raise ParameterTypeResolveError(msg) callsite = service_provider.get_callsite(param_type, depend_chain) else: param_type = type_resolver.resolve(param, True) if param_type is not None: callsite = service_provider.get_callsite(param_type, depend_chain, required=False) if callsite is None: callsite = InstanceCallSite(None, param.default) param_callsites[param.name] = callsite return CallableCallSite(self, self._func, param_callsites, self._options) @staticmethod def try_create(service_type: type, func: callable, lifetime: LifeTime, **options): try: inspect.signature(func) except ValueError: return None else: return CallableDescriptor(service_type, func, lifetime, **options) class InstanceDescriptor(Descriptor): def __init__(self, service_type: type, instance): super().__init__(service_type, LifeTime.singleton) if not isinstance(instance, service_type): raise TypeError('obj is not a {}'.format(service_type)) self._instance = instance def make_callsite(self, service_provider, depend_chain): return InstanceCallSite(self, self._instance) class ServiceProviderDescriptor(Descriptor): def __init__(self): super().__init__(IServiceProvider, LifeTime.scoped) def make_callsite(self, service_provider, depend_chain): return ServiceProviderCallSite(self) class MapDescriptor(Descriptor): def __init__(self, service_type: type, target_service_type: type): super().__init__(service_type, LifeTime.transient) if not isinstance(target_service_type, type): raise TypeError('target_service_type must be a type') self._target = target_service_type def make_callsite(self, service_provider, depend_chain): return service_provider.get_callsite(self._target, depend_chain) class ListedDescriptor(ICallSiteMaker): def __init__(self, descriptors): self._descriptors = tuple(descriptors) def __hash__(self): return hash(self._descriptors) def __eq__(self, other): return self._descriptors == other def make_callsite(self, service_provider, depend_chain): callsites = [] for descriptor in self._descriptors: callsites.append(service_provider.get_callsite(descriptor, depend_chain)) return ListedCallSite(callsites)
StarcoderdataPython
8057421
# Copyright (c) 2020. # Thingiverse plugin is released under the terms of the LGPLv3 or higher. from unittest.mock import patch import pytest from surrogate import surrogate from ....ThingiBrowser.api.JsonObject import UserData API_CALL_TIMEOUT = 10000 class TestMyMiniFactoryApiClient: @pytest.fixture @surrogate("cura.CuraApplication.CuraApplication") @surrogate("UM.Signal.Signal") def api_client(self, application): with patch("cura.CuraApplication.CuraApplication", application): from ....ThingiBrowser.drivers.myminifactory.MyMiniFactoryApiClient import MyMiniFactoryApiClient return MyMiniFactoryApiClient() def test_getThingsFromCollectionQuery(self, api_client): query = api_client.getThingsFromCollectionQuery("my-collection") assert query == "collections/my-collection" def test_getThingsBySearchQuery(self, api_client): query = api_client.getThingsBySearchQuery("cube") assert query == "search?q=cube" def test_getThingsLikedByUserQuery(self, api_client): api_client._onGetUserData(UserData({"username": "herpaderp"})) query = api_client.getThingsLikedByUserQuery() assert query == "users/herpaderp/objects_liked" def test_getThingsByUserQuery(self, api_client): api_client._onGetUserData(UserData({"username": "herpaderp"})) query = api_client.getThingsByUserQuery() assert query == "users/herpaderp/objects" def test_getThingsMadeByUserQuery(self, api_client): api_client._onGetUserData(UserData({"username": "herpaderp"})) query = api_client.getThingsMadeByUserQuery() assert query == "users/herpaderp/objects" def test_getThingsMadeByUserQuery_not_authenticated(self, api_client): query = api_client.getThingsMadeByUserQuery() assert query == "users/None/objects" def test_getPopularThingsQuery(self, api_client): query = api_client.getPopularThingsQuery() assert query == "search?sort=popularity" def test_getFeaturedThingsQuery(self, api_client): query = api_client.getFeaturedThingsQuery() assert query == "search?featured=1" def test_getNewestThingsQuery(self, api_client): query = api_client.getNewestThingsQuery() assert query == "search?sort=date"
StarcoderdataPython
9615116
<reponame>MartinThoma/stellar-model<gh_stars>1-10 import unittest from stellar_model.model.horizon.account_data import AccountData from tests.model.horizon import load_horizon_file class TestAccountData(unittest.TestCase): def test_valid(self): raw_data = load_horizon_file("account_data.json") parsed_data = AccountData.parse_obj(raw_data) self.assertEqual(parsed_data.value, "MQ==") self.assertEqual(parsed_data.sponsor, None) if __name__ == "__main__": unittest.main()
StarcoderdataPython
9752041
<gh_stars>0 def split(items_in_list, chunk_size): """ Partition an input list into smaller lists. :param items_in_list: The list of items to be split. :param chunk_size: The number of items in each returned list. :return: List """ for i in range(0, len(items_in_list), chunk_size): yield items_in_list[i:i + chunk_size] # .
StarcoderdataPython
3239045
<gh_stars>0 # Copyright (c) 2020, <NAME> # All rights reserved. # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # 1. Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS # BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, # OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED # OF THE POSSIBILITY OF SUCH DAMAGE. """Metaclass for entities using mixins.""" from queue import Queue from pony.orm import Optional, Required, Set from pony.orm.core import EntityMeta class HasMixins(EntityMeta): """Metaclass to override entity metaclass.""" def __init__(entity, name, bases, cls_dict): classes = Queue() for cls in entity.__bases__: classes.put(cls) # Flat explore of all base classes while not classes.empty(): cls = classes.get() # Add the current child class to the mixin method = getattr(cls, "extend_entity", None) if method: method(entity) children = getattr(cls, "children", None) if children is not None: children.append(entity) # Explore the parent class for parent in cls.__bases__: classes.put(parent) entity.__class__ = EntityMeta EntityMeta.__init__(entity, name, bases, cls_dict)
StarcoderdataPython
8190630
<reponame>ready-robotics/robotiq<gh_stars>0 # Copyright 2018 by READY Robotics Corporation. # All rights reserved. No person may copy, distribute, publicly display, create derivative works from or otherwise # use or modify this software without first obtaining a license from the READY Robotics Corporation. import ready_logging import rospy from copy import copy from plc_interface.base_action_server import BaseActionServer from robotiq_c_model_control.base_c_model import BaseCModel from robotiq_c_model_control.msg import ( CModel_robot_input, CModel_robot_output, GripperAction, GripperGoal, GripperResult ) from robotiq_c_model_control.srv import ( GetRobotiqGripState, GetRobotiqGripStateResponse ) from threading import ( Condition, Lock, Thread ) fault_text = {'/0x05': 'Action delayed, activation (reactivation) must be completed prior to renewed action.', '/0x07': 'The activation bit must be set prior to action.', '/0x08': 'Maximum operating temperature exceeded, wait for cool-down.', '/0x0A': 'Under minimum operating voltage.', '/0x0B': 'Automatic release in progress.', '/0x0C': 'Internal processor fault.', '/0x0D': 'Activation fault, verify that no interference or other error occurred.', '/0x0E': 'Overcurrent triggered.', '/0x0F': 'Automatic release completed.', } class RobotiqCommandTimeout(object): """Track command timeouts.""" def __init__(self, seconds): """Create a command timer. Args: :param seconds: timeout duration in seconds :type seconds: float """ super(RobotiqCommandTimeout, self).__init__() self.start_time = rospy.get_rostime() self.duration = rospy.Duration(seconds) def start(self): """Start the timer.""" self.start_time = rospy.get_rostime() def expired(self): """Check if the timer has expired. Returns: True if timeout is expired """ return rospy.get_rostime() - self.start_time > self.duration @ready_logging.logged class RobotiqGripperROSInterface: """ ROS Interface for interacting with a Robotiq Gripper """ has_goal_ = False interrupted_ = False resetting_ = False has_goal_lock = Lock() interrupt_lock = Lock() resetting_lock = Lock() @staticmethod def grip_status_to_str(status): """Convert Gripper response status into a string. Args: :param status: the status registers from the gripper. :type status: CModel_robot_input Return: str """ return 'gACT:{}, gGTO:{}, gSTA:{}, gOBJ:{}, ' \ 'gFLT:{}, gPR:{}, gPO:{}, gCU:{}'.format( status.gACT, status.gGTO, status.gSTA, status.gOBJ, status.gFLT, status.gPR, status.gPO, status.gCU ) @property def has_goal(self): with self.has_goal_lock: return self.has_goal_ @has_goal.setter def has_goal(self, on_goal): with self.has_goal_lock: self.has_goal_ = on_goal @property def interrupted(self): with self.interrupt_lock: return self.interrupted_ @interrupted.setter def interrupted(self, interrupt): with self.interrupt_lock: self.interrupted_ = interrupt @property def resetting(self): with self.resetting_lock: return self.resetting_ @resetting.setter def resetting(self, in_reset): with self.resetting_lock: self.resetting_ = in_reset def __init__(self, name, comms): self.cmodel = BaseCModel(comms) self.name = name self.max_closed = 255 self.max_open = 3 self.goal_thread = None self.last_goal_wait = False self.reset_thread = None self.gripper_as_ = BaseActionServer('/robotiq_gripper_action', GripperAction, self.goal_cb, auto_start=False) self.reg_status = self.cmodel.get_status() self.reg_status_lock = Lock() self.reg_status_cv = Condition(self.reg_status_lock) self.grip_state = GetRobotiqGripStateResponse.UNKNOWN self.grip_state_lock_ = Lock() self.grip_state_srv_ = rospy.Service('/robotiq/get_grip_state', GetRobotiqGripState, self.handle_grip_state_service) self.command_pub = rospy.Publisher('/robotiq_input_command', CModel_robot_output, queue_size=1) self.reg_status_pub = rospy.Publisher('/robotiq_state', CModel_robot_input, queue_size=1) def start(self): self.gripper_as_.start() def shutdown(self): if self.has_goal: self.interrupted = True # Wake anyone waiting on updated status with self.reg_status_cv: self.reg_status_cv.notify_all() if self.goal_thread: try: self.goal_thread.join(3.0) except RuntimeError: pass self.gripper_as_.cleanup() with self.grip_state_lock_: self.grip_state_srv_.shutdown() self.command_pub.unregister() self.reg_status_pub.unregister() def refresh_status(self): """ Query the gripper status and update topics/state accordingly. """ status = self.cmodel.get_status() if status is not None: self.reg_status_pub.publish(status) with self.reg_status_cv: self.reg_status = status self.reg_status_cv.notify_all() if status.gFLT != 0 and not self.resetting: self.__log.info('RESETTING Robotiq {}'.format(self.name)) self.reset_gripper() return status def wait_for_next_status(self, seconds=0.25): with self.reg_status_cv: self.reg_status_cv.wait(seconds) return copy(self.reg_status) def goal_cb(self, goal_handle): """ This cb handles all gripper requests from chiron, whether it be from a node or the robot_interface of the robot control panel. We first complete checks to verify if we can execute the request. We adjust the position depending on the calibration and then execute. If wait is true, we wait until the actual gripper position is within 3 values of the requested position before returning success. We return failure only if the communication fails, the command is interrupted, or rospy is shutdown. Args: :param goal_handle: A Robotiq Gripper Action goal handle. The goal is of type GripperGoal and has the following fields: direction: This field has three options: CUSTOM - use value from the position field, OPEN, or CLOSE position: The position of the gripper (0: open, 255: closed) force: The stall torque of the gripper while moving (0: no re-grasping , 255: max force) auto_release: Activate auto release on robot emergency stop auto_release_direction: The direction of auto release, either OPEN or CLOSE wait: Wait for current request to finish before executing a new request :type goal_handle: ServerGoalHandle """ if self.has_goal and self.last_goal_wait: goal_handle.set_rejected(text='Not Accepting Multiple Goals at Once') return elif self.resetting: goal_handle.set_rejected(text='Gripper is Currently Resetting') return elif self.has_goal and not self.last_goal_wait: # Preempting previous goal self.interrupted = True if self.goal_thread: self.goal_thread.join() self.has_goal = True goal_handle.set_accepted() position = self.map_position_to_calibration(goal_handle.get_goal()) status = self.wait_for_next_status() if abs(status.gPO - position) < 3: result = self.generate_grip_result(status=status, result_code=GripperResult.SUCCESS) self.finish_goal(goal_handle, result, 'Already at goal') else: thread_name = '{} goal executor'.format(self.name) self.goal_thread = Thread(target=self.on_goal, name=thread_name, args=(goal_handle,)) self.goal_thread.start() def on_goal(self, gh): goal = gh.get_goal() goal.position = self.map_position_to_calibration(goal) result = self.send_gripper_command(goal) if not result: self.__log.err('Could not send position command.') self.finish_failed_goal(gh, 'Communication Timed Out With Gripper') return self.interrupted = False if goal.wait: self.last_goal_wait = True # Check goal direction status = self.wait_for_next_status() if goal.position < status.gPO: # Gripper moving toward the open position is_in_motion = lambda status: status.gOBJ == 0 else: # Gripper moving toward the closed position is_in_motion = lambda status: status.gOBJ == 0 or status.gOBJ == 2 # Wait for motion timer = RobotiqCommandTimeout(seconds=3.0) timer.start() while not rospy.is_shutdown() and not self.interrupted: status = self.wait_for_next_status() if is_in_motion(status) or abs(status.gPO - goal.position) < 3: break if timer.expired(): self.__log.err('Timeout on motion start w/ status: "{}"'.format(self.grip_status_to_str(status))) self.finish_failed_goal(gh, 'Timeout waiting for motion to start') return if rospy.is_shutdown(): self.finish_failed_goal(gh, 'ROS shutdown') return # Wait until we reach the desired position timer = RobotiqCommandTimeout(seconds=3.0) timer.start() while not rospy.is_shutdown() and not self.interrupted: status = self.wait_for_next_status() if status.gOBJ != 0 or abs(status.gPO - goal.position) < 3: break if timer.expired(): self.__log.err('Timeout on position goal w/ status: "{}"'.format(self.grip_status_to_str(status))) self.finish_failed_goal(gh, 'Timeout waiting to reach desired position') return status = self.wait_for_next_status() if self.interrupted or rospy.is_shutdown(): self.abort_goal(gh, self.get_fault_text(int(status.gFLT))) else: result = self.generate_grip_result(status=status, result_code=GripperResult.SUCCESS) self.finish_goal(gh, result, 'Succeeded') else: result = GripperResult() result.result_code = result.SUCCESS self.finish_goal(gh, result) def map_position_to_calibration(self, goal): """ This function maps the gripper request to an actionable position. If direction is set to OPEN or CLOSE, the position is set to the calibrated max_open or max_closed positions. If direction is set to CUSTOM, the requested positional value is checked to ensure it is within the calibration bounds. Args: :param goal: The requested position and direction to move the gripper. :type goal: GripperGoal Returns: :rparam pos: The calibrated position to move the gripper. Values can range from 0 to 255 :rtype pos: int """ if goal.direction == goal.OPEN: pos = self.max_open elif goal.direction == goal.CLOSE: pos = self.max_closed elif goal.position > self.max_closed: pos = self.max_closed elif goal.position < self.max_open: pos = self.max_open else: pos = int(goal.position) return pos def generate_grip_result(self, result_code=GripperResult.SUCCESS, status=None): """Create a GripperResult with the next status update. Args: :param result_code: the Gripper goal result code. :type result_code: GripperResult code Return: GripperResult based on the next received status. """ if status is None: status = self.wait_for_next_status() result = GripperResult() result.position = status.gPO result.object_detection = status.gOBJ if status.gGTO != 0: grabbed_obj = (status.gOBJ == 1 or status.gOBJ == 2) result.has_object = result.HAS_OBJ_YES if grabbed_obj else result.HAS_OBJ_NO else: result.has_object = result.HAS_OBJ_UKNOWN result.result_code = result_code return result def set_goal_done(self): """Set flags indicating that there is no pending goal.""" self.has_goal = False self.last_goal_wait = False def finish_failed_goal(self, goal_handle, text=""): """Finish a goal that failed to complete. Args: :param goal_handle: handle to notify the ActionServer :type goal_handle: ServerGoalHandle :param text: optional text status to be passed back to the ActionServer :type text: str """ result = self.generate_grip_result(GripperResult.FAILURE) self.finish_goal(goal_handle, result, text) def finish_goal(self, goal_handle, result, text=""): """Finish a goal being handled with a given result. Args: :param goal_handle: handle to notify the ActionServer :type goal_handle: ServerGoalHandle :param result: the result of the gripper action :type result: GripperResult :param text: optional text status to be passed back to the ActionServer. :type text: str """ goal_handle.set_succeeded(result, text) self.set_goal_done() def abort_goal(self, goal_handle, text=""): """Abort a goal being handled with a given result. Args: :param goal_handle: handle to notify the ActionServer :type goal_handle: ServerGoalHandle :param text: optional text status to be passed back to the ActionServer. :type text: str """ result = self.generate_grip_result(GripperResult.FAILURE) goal_handle.set_aborted(result, text) self.set_goal_done() def reset_gripper(self): # If the gripper is currently running a goal we must stop it self.resetting = True self.reset_thread = Thread(target=self.reset, name='Robotiq Gripper Reset Thread') self.reset_thread.start() def do_calibration_move(self, direction=GripperGoal.OPEN, wait_seconds=1.25): """Do a calibration command. Send a calibration command to the gripper and wait for the next status after completion. Args: :param direction: gripper open/close :type direction GripperGoal direction :param wait_seconds: time in seconds before getting a status update. :type wait_seconds: float Returns: True if command sent correctly. """ goal = GripperGoal() goal.force = 255 goal.direction = direction goal.auto_release = goal.DISABLED sent = self.send_gripper_command(goal) if sent: rospy.sleep(wait_seconds) status = self.wait_for_next_status() if direction == GripperGoal.OPEN: self.max_open = status.gPO elif direction == GripperGoal.CLOSE: self.max_closed = status.gPO return sent def reset(self): # Reset the gripper during startup or after a fault. A specific order of states must be sent to the gripper. # We recalibrate after reset to be thorough. # If we are currently executing a goal, terminate it if self.has_goal: self.interrupted = True if self.goal_thread: self.goal_thread.join() # Lock out the action server self.has_goal = True # First check if we were previously initialized status = self.wait_for_next_status() if status.gACT == 1: # Deactive Gripper goal = CModel_robot_output() goal.rACT = 0 self.send_gripper_command(goal, parse=False) # Wait for the gripper to deactivate timer = RobotiqCommandTimeout(seconds=3.0) timer.start() while not rospy.is_shutdown() and not self.interrupted: status = self.wait_for_next_status() if status.gSTA == 0: break if timer.expired(): self.__log.err('Timeout on deactivate w/ status: "{}"'.format(self.grip_status_to_str(status))) rospy.signal_shutdown('Failed to Deactivate Gripper -- timeout') break if rospy.is_shutdown(): self.resetting = False self.has_goal = False return # Active Gripper goal = CModel_robot_output() goal.rACT = 1 self.send_gripper_command(goal, parse=False) # Wait for gripper to activate timer = RobotiqCommandTimeout(seconds=3.0) timer.start() while not rospy.is_shutdown() and not self.interrupted: status = self.wait_for_next_status() if status.gSTA == 3: break if timer.expired(): self.__log.err('Timeout on activate w/ status: "{}"'.format(self.grip_status_to_str(status))) rospy.signal_shutdown('Failed to Activate Gripper -- timeout') break if rospy.is_shutdown(): self.resetting = False self.has_goal = False return rospy.sleep(1.0) if not self.do_calibration_move(GripperGoal.CLOSE, wait_seconds=1.25): self.has_goal = False self.resetting = False self.__log.err('Could not send calibration close command.') rospy.signal_shutdown('Failed Close Calibration') return if not self.do_calibration_move(GripperGoal.OPEN, wait_seconds=1.25): self.has_goal = False self.resetting = False self.__log.err('Could not send calibration open command.') rospy.signal_shutdown('Failed Open Calibration') return self.has_goal = False self.resetting = False def parse_cmd(self, goal): cmd = CModel_robot_output() # Auto Release if goal.auto_release == goal.ENABLED: cmd.rATR = 1 cmd.rADR = 1 if goal.auto_release_direction == goal.OPEN else 0 else: cmd.rATR = 0 # Set active and go to cmd.rACT = 1 cmd.rGTO = 1 # Position cmd.rPR = self.map_position_to_calibration(goal) # Speed - Always set to max for now cmd.rSP = 255 # Force if goal.force > 255: cmd.rFR = 255 elif goal.force < 0: cmd.rFR = 0 else: cmd.rFR = int(goal.force) return cmd def send_gripper_command(self, goal, parse=True): try: if parse: goal = self.parse_cmd(goal) self.command_pub.publish(goal) return self.cmodel.send_command(goal) except Exception as exc: self.__log.err('Error While Sending Command [{}] - Shutting Down'.format(exc)) rospy.signal_shutdown('Error While Sending Command - Shutting Down') return False def handle_grip_state_service(self, request): with self.grip_state_lock_: resp = GetRobotiqGripStateResponse() if self.resetting: resp.state = resp.UNKNOWN else: registers = self.wait_for_next_status() moved = registers.gGTO != 0 if moved and registers.gOBJ == 1: # Fingers stopped due to contact while opening resp.state = GetRobotiqGripStateResponse.OPEN elif moved and registers.gOBJ == 2: # Fingers stopped due to contact while closing resp.state = GetRobotiqGripStateResponse.CLOSED elif moved and registers.gOBJ == 3: # Fingers moved to the requested position without detecting an # object. Use the gripper position to determine the current # grip state. position = int(registers.gPO) position_median = abs(self.max_closed - self.max_open) / 2 if position < position_median: resp.state = GetRobotiqGripStateResponse.OPEN else: resp.state = GetRobotiqGripStateResponse.CLOSED else: # Gripper is either moving or performing a reset. Use the last # known state. resp.state = self.grip_state self.grip_state = resp.state return resp @staticmethod def get_fault_text(fault_code): if fault_code in fault_text: return fault_text[fault_code] else: return 'Unknown Error Code.'
StarcoderdataPython
11345567
"""与url字符串相关的工具代码.""" import json from typing import Optional, Callable from urllib.parse import urlparse import requests as rq from requests.auth import HTTPBasicAuth, HTTPDigestAuth from requests_oauthlib import OAuth1 def is_url(url: str) -> bool: """判断url是否是url. Args: url (str): 待判断的url字符串 Returns: bool: 是否是url """ try: result = urlparse(url) return all([result.scheme]) except ValueError: return False def is_http_url(url: str) -> bool: """判断url是否是http请求的url. Args: url (str): 待判断的url字符串 Returns: bool: 是否是url """ try: result = urlparse(url) return all([result.scheme, result.netloc]) and result.scheme in ("http", "https") except ValueError: return False def is_file_url(url: str) -> bool: """判断url是否是文件协议相关的url. Args: url (str): 待判断的url字符串 Returns: bool: 是否是url """ try: result = urlparse(url) return all([result.scheme]) and result.scheme == "file" except ValueError: return False def query_http(url: str, method: str, *, auth: Optional[str] = None, auth_type: Optional[str] = None, payload: Optional[str] = None, payload_type: Optional[str] = None, stream: bool = False, verify: bool = False, cert: Optional[str] = None, cb: Optional[Callable[[str], None]] = None) -> None: """http请求并打印结果. Args: url (str): 要访问的http资源的地址 method (str): 访问资源的方法 auth (Optional[str], optional): 用户身份验证字符串. Defaults to None. auth_type (Optional[str], optional): 用户身份的验证类型. Defaults to None. payload (Optional[str], optional): 请求负载. Defaults to None. payload_type (Optional[str], optional): 请求的负载类型. Defaults to None. stream (bool, optional): 返回是否为流数据. Defaults to False. verify (bool, optional): https请求是否验证. Defaults to False. cert (Optional[str], optional): https请求的客户端认证文件. Defaults to None. cb (Optional[Callable[[str],None]], optional): 获取到数据后的处理回调. Defaults to None. """ with rq.Session() as s: if verify: s.verify = verify if auth_type and auth: if auth_type == "basic": user, pwd = auth.split(",") s.auth = HTTPBasicAuth(user, pwd) if auth_type == "digest": user, pwd = auth.split(",") s.auth = HTTPDigestAuth(user, pwd) elif auth_type == "jwt": s.headers = rq.structures.CaseInsensitiveDict({"Authorization": "Bearer " + auth}) elif auth_type == "oauth1": app_key, app_secret, oauth_token, oauth_token_secret = auth.split(",") s.auth = OAuth1(app_key, app_secret, oauth_token, oauth_token_secret) else: raise AttributeError(f"auth_type 参数 {auth_type} 目前不支持") if cert: cert_list = cert.split(",") cert_list_len = len(cert_list) if cert_list_len == 1: s.cert = cert_list[0] elif cert_list_len == 2: s.cert = (cert_list[0], cert_list[1]) else: raise AttributeError(f"cert 参数 {cert} 不合法") if payload is None: if stream is True: with s.request(method.upper(), url, stream=True) as res: for line in res.iter_lines(decode_unicode=True): if line: if cb: cb(line) else: res = s.request(method.upper(), url) if cb: cb(res.text) else: if payload_type == "stream": if stream is True: with open(payload, "rb") as f: with s.request(method.upper(), url, data=f, stream=True) as res: for line in res.iter_lines(decode_unicode=True): if line: if cb: cb(line) else: with open(payload, "rb") as f: res = s.request(method.upper(), url, data=f) if cb: cb(res.text) else: with open(payload, "r", encoding='utf-8') as fu: payload_dict = json.load(fu) if stream is True: if payload_type == "json": with s.request(method.upper(), url, json=payload_dict, stream=True) as res: for line in res.iter_lines(decode_unicode=True): if line: if cb: cb(line) elif payload_type == "form": with s.request(method.upper(), url, data=payload_dict, stream=True) as res: for line in res.iter_lines(decode_unicode=True): if line: if cb: cb(line) elif payload_type == "url": with s.request(method.upper(), url, params=payload_dict, stream=True) as res: for line in res.iter_lines(decode_unicode=True): if line: if cb: cb(line) else: raise AttributeError(f"不支持的负载类型{payload_type}") else: if payload_type == "json": res = s.request(method.upper(), url, json=payload_dict) if cb: cb(res.text) elif payload_type == "form": res = s.request(method.upper(), url, data=payload_dict) if cb: cb(res.text) elif payload_type == "url": res = s.request(method.upper(), url, params=payload_dict) if cb: cb(res.text) else: raise AttributeError(f"不支持的负载类型{payload_type}") def parse_file_url(url: str) -> str: """从file url中提取文件系统中的路径. Args: url (str): file url Returns: str: file url中提取出的路径 """ path_str = urlparse(url).path if ":" in path_str: path = path_str[1:] else: path = path_str return path def parse_http_url(url: str) -> str: """从file url中提取文件系统中的路径. Args: url (str): file url Returns: str: file url中提取出的路径 """ path = urlparse(url).path return path def get_source_from_url(url: str) -> str: """从指定url中回去源数据. 注意只能获取静态http资源. Args: url (str): url地址 Raises: AttributeError: url未成功返回 AttributeError: 未支持的类型 Returns: str: 内容文本 """ if is_http_url(url): rs = rq.get(url) if rs.status_code != 200: raise AttributeError(f"url {url} 未成功返回") else: return rs.text elif is_file_url(url): path = parse_file_url(url) with open(path, "r", encoding='utf-8') as f: content = f.read() return content else: raise AttributeError(f"url {url} 未支持的类型")
StarcoderdataPython
6599086
<filename>teddix-common/teddix/TeddixInventory.py #!/usr/bin/env python # import os import re import sys import glob import time import psutil import locale import platform import dmidecode import subprocess import xml.dom.minidom as minidom import xml.etree.ElementTree as xml # Syslog handler import TeddixLogger # Config parser import TeddixConfigFile import TeddixParser class TeddixBaseline: def __init__(self,syslog,cfg): self.syslog = syslog self.cfg = cfg system = platform.system() self.syslog.info("Generating Baseline") if system == 'Linux': import TeddixLinux self.osbase = TeddixLinux.TeddixLinux(syslog) elif system == 'SunOS': import TeddixSunOS self.osbase = TeddixSunOS.TeddixSunOS(syslog) elif system == 'HP-UX': print "TODO OS" self.osbase = TeddixHPUX.TeddixHPUX(syslog) elif system == 'AIX': print "TODO OS" self.osbase = TeddixAix.TeddixAix(syslog) elif system == 'NT': print "TODO OS" self.osbase = TeddixWindows.TeddixWindows(syslog) else: raise RuntimeError def _getdmi(self): from pprint import pprint DMI = { } # get BIOS Data #tmp = dmidecode.bios() #pprint(tmp) for v in dmidecode.bios().values(): if type(v) == dict and v['dmi_type'] == 0: DMI['bios',0,'BIOS Revision'] = str((v['data']['BIOS Revision'])) DMI['bios',0,'ROM Size'] = str((v['data']['ROM Size'])) try: DMI['bios',0,'Release Date'] = str((v['data']['Relase Date'])) except (KeyError): DMI['bios',0,'Release Date'] = str((v['data']['Release Date'])) DMI['bios',0,'Runtime Size'] = str((v['data']['Runtime Size'])) DMI['bios',0,'Vendor'] = str((v['data']['Vendor'])) DMI['bios',0,'Version'] = str((v['data']['Version'])) # get System Data #tmp = dmidecode.system() #pprint(tmp) for v in dmidecode.system().values(): if type(v) == dict and v['dmi_type'] == 1: DMI['system',0,'Family'] = str((v['data']['Family'])) DMI['system',0,'Manufacturer'] = str((v['data']['Manufacturer'])) DMI['system',0,'Product Name'] = str((v['data']['Product Name'])) DMI['system',0,'SKU Number'] = str((v['data']['SKU Number'])) DMI['system',0,'Serial Number'] = str((v['data']['Serial Number'])) DMI['system',0,'UUID'] = str((v['data']['UUID'])) DMI['system',0,'Version'] = str((v['data']['Version'])) DMI['system',0,'Wake-Up Type'] = str((v['data']['Wake-Up Type'])) # get BaseBoard Data #tmp = dmidecode.baseboard() #pprint(tmp) for v in dmidecode.baseboard().values(): if type(v) == dict and v['dmi_type'] == 2: DMI['baseboard',0,'Manufacturer'] = str((v['data']['Manufacturer'])) DMI['baseboard',0,'Product Name'] = str((v['data']['Product Name'])) DMI['baseboard',0,'Serial Number'] = str((v['data']['Serial Number'])) DMI['baseboard',0,'Version'] = str((v['data']['Version'])) # get chassis Data #tmp = dmidecode.chassis() #pprint(tmp) for v in dmidecode.chassis().values(): if type(v) == dict and v['dmi_type'] == 3: DMI['chassis',0,'Asset Tag'] = str((v['data']['Asset Tag'])) DMI['chassis',0,'Boot-Up State'] = str((v['data']['Boot-Up State'])) DMI['chassis',0,'Lock'] = str((v['data']['Lock'])) DMI['chassis',0,'Manufacturer'] = str((v['data']['Manufacturer'])) DMI['chassis',0,'Power Supply State'] = str((v['data']['Power Supply State'])) DMI['chassis',0,'Security Status'] = str((v['data']['Security Status'])) DMI['chassis',0,'Serial Number'] = str((v['data']['Serial Number'])) DMI['chassis',0,'Thermal State'] = str((v['data']['Thermal State'])) DMI['chassis',0,'Type'] = str((v['data']['Type'])) DMI['chassis',0,'Version'] = str((v['data']['Version'])) # get Processor Data #tmp = dmidecode.processor() #pprint(tmp) i = 0 for v in dmidecode.processor().values(): if type(v) == dict and v['dmi_type'] == 4: DMI['processor',i,'Asset Tag'] = str((v['data']['Asset Tag'])) DMI['processor',i,'Characteristics'] = str((v['data']['Characteristics'])) DMI['processor',i,'Core Count'] = str((v['data']['Core Count'])) DMI['processor',i,'Core Enabled'] = str((v['data']['Core Enabled'])) DMI['processor',i,'Current Speed'] =str((v['data']['Current Speed'])) DMI['processor',i,'External Clock'] = str((v['data']['External Clock'])) DMI['processor',i,'Family'] = str((v['data']['Family'])) DMI['processor',i,'L1 Cache Handle'] = str((v['data']['L1 Cache Handle'])) DMI['processor',i,'L2 Cache Handle'] = str((v['data']['L2 Cache Handle'])) DMI['processor',i,'L3 Cache Handle'] = str((v['data']['L3 Cache Handle'])) DMI['processor',i,'Manufacturer'] = str((v['data']['Manufacturer']['Vendor'])) DMI['processor',i,'Max Speed'] = str((v['data']['Max Speed'])) DMI['processor',i,'Part Number'] = str((v['data']['Part Number'])) DMI['processor',i,'Serial Number'] = str((v['data']['Serial Number'])) DMI['processor',i,'Socket Designation'] = str((v['data']['Socket Designation'])) DMI['processor',i,'Status'] = str((v['data']['Status'])) DMI['processor',i,'Thread Count'] = str((v['data']['Thread Count'])) DMI['processor',i,'Type'] = str((v['data']['Type'])) DMI['processor',i,'Upgrade'] = str((v['data']['Upgrade'])) DMI['processor',i,'Version'] = str((v['data']['Version'])) DMI['processor',i,'Voltage'] = str((v['data']['Voltage'])) i += 1 # get Memory Data #tmp = dmidecode.memory() #pprint(tmp) i = 0 for v in dmidecode.memory().values(): if type(v) == dict and v['dmi_type'] == 17 : if str((v['data']['Size'])) != 'None': DMI['memory',i,'Data Width'] = str((v['data']['Data Width'])) DMI['memory',i,'Error Information Handle'] = str((v['data']['Error Information Handle'])) DMI['memory',i,'Form Factor'] = str((v['data']['Form Factor'])) DMI['memory',i,'Bank Locator'] = str((v['data']['Bank Locator'])) DMI['memory',i,'Locator'] = str((v['data']['Locator'])) DMI['memory',i,'Manufacturer'] = str((v['data']['Manufacturer'])) DMI['memory',i,'Part Number'] = str((v['data']['Part Number'])) DMI['memory',i,'Serial Number'] = str((v['data']['Serial Number'])) DMI['memory',i,'Size'] = str((v['data']['Size'])) DMI['memory',i,'Speed'] = str((v['data']['Speed'])) DMI['memory',i,'Type'] = str((v['data']['Type'])) i += 1 # get cache Data #tmp = dmidecode.cache() #pprint(tmp) # get connector Data #tmp = dmidecode.connector() #pprint(tmp) # get slot Data #tmp = dmidecode.slot() #pprint(tmp) return DMI # TODO: THIS SUCKS! def __getdmi_count(self,dmi,a,b): try: count = 0 while dmi[a,count,b]: count += 1 except (KeyError): pass return count def create_xml (self): dmi = self._getdmi() server = xml.Element('server') generated = xml.Element('generated') generated.attrib['program'] = sys.argv[0] generated.attrib['version'] = '2.0' generated.attrib['scantime'] = time.asctime() server.append(generated) host = xml.Element('host') host.attrib['name'] = self.cfg.global_hostname server.append(host) hardware = xml.Element('hardware') server.append(hardware) bios = xml.Element('bios') count = self.__getdmi_count(dmi,'bios','Vendor') i = 0 while i < count: bios.attrib['revision'] = dmi['bios',0,'BIOS Revision'] bios.attrib['vendor'] = dmi['bios',0,'Vendor'] bios.attrib['version'] = dmi['bios',0,'Version'] bios.attrib['releasedate'] = dmi['bios',0,'Release Date'] i += 1 hardware.append(bios) sysboard = xml.Element('baseboard') count = self.__getdmi_count(dmi,'baseboard','Manufacturer') i = 0 while i < count: sysboard.attrib['manufacturer'] = dmi['baseboard',0,'Manufacturer'] sysboard.attrib['productname'] = dmi['baseboard',0,'Product Name'] sysboard.attrib['serialnumber'] = dmi['baseboard',0,'Serial Number'] sysboard.attrib['version'] = dmi['baseboard',0,'Version'] i += 1 hardware.append(sysboard) system = xml.Element('system') count = self.__getdmi_count(dmi,'system','Manufacturer') i = 0 while i < count: system.attrib['manufacturer'] = dmi['system',0,'Manufacturer'] system.attrib['productname'] = dmi['system',0,'Product Name'] system.attrib['family'] = dmi['system',0,'Family'] system.attrib['serialnumber'] = dmi['system',0,'Serial Number'] system.attrib['version'] = dmi['system',0,'Version'] i += 1 hardware.append(system) chassis = xml.Element('chassis') count = self.__getdmi_count(dmi,'chassis','Manufacturer') i = 0 while i < count: chassis.attrib['manufacturer'] = dmi['chassis',0,'Manufacturer'] chassis.attrib['serialnumber'] = dmi['chassis',0,'Serial Number'] chassis.attrib['thermalstate'] = dmi['chassis',0,'Thermal State'] chassis.attrib['type'] = dmi['chassis',0,'Type'] chassis.attrib['version'] = dmi['chassis',0,'Version'] i += 1 hardware.append(chassis) processors = xml.Element('processors') processors.attrib['count'] = str(self.__getdmi_count(dmi,'processor','Current Speed')) hardware.append(processors) # for every CPU do: count = self.__getdmi_count(dmi,'processor','Current Speed') i = 0 while i < count: processor = xml.Element('processor') processor.attrib['procid'] = str(i) processor.attrib['family'] = dmi['processor',i,'Family'] processor.attrib['proctype'] = dmi['processor',i,'Type'] processor.attrib['socket'] = dmi['processor',i,'Socket Designation'] processor.attrib['speed'] = dmi['processor',i,'Max Speed'] processor.attrib['version'] = dmi['processor',i,'Version'] processor.attrib['cores'] = dmi['processor',i,'Core Count'] processor.attrib['threads'] = dmi['processor',i,'Thread Count'] processor.attrib['extclock'] = dmi['processor',i,'External Clock'] processor.attrib['partnumber'] = dmi['processor',i,'Part Number'] processor.attrib['serialnumber'] = dmi['processor',i,'Serial Number'] if dmi['processor',i,'Thread Count'] > dmi['processor',i,'Core Count']: processor.attrib['htsystem'] = 'Yes' else: processor.attrib['htsystem'] = 'No' processors.append(processor) i += 1 memory = xml.Element('memory') memory.attrib['count'] = str(self.__getdmi_count(dmi,'memory','Size')) hardware.append(memory) # for every memorybank do: count = self.__getdmi_count(dmi,'memory','Size') i = 0 while i < count: memorymodule = xml.Element('memorymodule') memorymodule.attrib['location'] = dmi['memory',i,'Locator'] memorymodule.attrib['bank'] = dmi['memory',i,'Bank Locator'] memorymodule.attrib['memorysize'] = dmi['memory',i,'Size'] memorymodule.attrib['formfactor'] = dmi['memory',i,'Form Factor'] memorymodule.attrib['manufacturer'] = dmi['memory',i,'Manufacturer'] memorymodule.attrib['memorytype'] = dmi['memory',i,'Type'] memorymodule.attrib['partnumber'] = dmi['memory',i,'Part Number'] memorymodule.attrib['serialnumber'] = dmi['memory',i,'Serial Number'] memorymodule.attrib['width'] = dmi['memory',i,'Data Width'] memorymodule.attrib['speed'] = dmi['memory',i,'Speed'] memory.append(memorymodule) i += 1 # get blockdevices blockdevs = self.osbase.getblock() blockdevices = xml.Element('blockdevices') blockdevices.attrib['count'] = str(len(blockdevs)) hardware.append(blockdevices) #[name,devtype,vendor,model,nr_sectors,sect_size,rotational,readonly,removable,major,minor] i = 0 for i in range(len(blockdevs)): block = xml.Element('blockdevice') block.attrib['name'] = blockdevs[i][0] block.attrib['type'] = blockdevs[i][1] block.attrib['vendor'] = blockdevs[i][2] block.attrib['model'] = blockdevs[i][3] block.attrib['sectors'] = blockdevs[i][4] block.attrib['sectorsize'] = blockdevs[i][5] block.attrib['rotational'] = blockdevs[i][6] block.attrib['readonly'] = blockdevs[i][7] block.attrib['removable'] = blockdevs[i][8] block.attrib['major'] = blockdevs[i][9] block.attrib['minor'] = blockdevs[i][10] blockdevices.append(block) # get PCIdevices pcidevs = self.osbase.getpci() pcidevices = xml.Element('pcidevices') pcidevices.attrib['count'] = str(len(pcidevs)) hardware.append(pcidevices) # [path,devtype,vendor,model,revision] i = 0 for i in range(len(pcidevs)): pci = xml.Element('pcidevice') pci.attrib['path'] = pcidevs[i][0] pci.attrib['type'] = pcidevs[i][1] pci.attrib['vendor'] = pcidevs[i][2] pci.attrib['model'] = pcidevs[i][3] pci.attrib['revision'] = pcidevs[i][4] pcidevices.append(pci) # TODO: get info from HP tools operatingsystem = xml.Element('system') operatingsystem.attrib['name'] = self.osbase.system operatingsystem.attrib['arch'] = self.osbase.machine operatingsystem.attrib['serialnumber'] = self.osbase.serial operatingsystem.attrib['manufacturer'] = self.osbase.manufacturer operatingsystem.attrib['detail'] = self.osbase.detail operatingsystem.attrib['kernel'] = self.osbase.kernel server.append(operatingsystem) software = xml.Element('software') operatingsystem.append(software) pkgs = self.osbase.getpkgs() # for every pkg do: # [name][ver][pkgsize][instsize][section][status][info][homepage][signed][files][arch] for i in range(len(pkgs)): package = xml.Element('package') package.attrib['name'] = pkgs[i][0] package.attrib['version'] = pkgs[i][1] package.attrib['pkgsize'] = pkgs[i][2] package.attrib['installedsize'] = pkgs[i][3] package.attrib['section'] = pkgs[i][4] package.attrib['status'] = pkgs[i][5] package.attrib['description'] = pkgs[i][6] package.attrib['homepage'] = pkgs[i][7] package.attrib['signed'] = pkgs[i][8] package.attrib['files'] = pkgs[i][9] package.attrib['arch'] = pkgs[i][10] software.append(package) filesystems = xml.Element('filesystems') operatingsystem.append(filesystems) updates = self.osbase.getupdates() up2date = xml.Element('updates') operatingsystem.append(up2date) # for every update do: secupdate = 0 bugfixupdate = 0 totalupdate = 0 for i in range(len(updates)): package = xml.Element('package') package.attrib['type'] = updates[i][0] package.attrib['name'] = updates[i][1] package.attrib['available'] = updates[i][2] package.attrib['info'] = 'N/A' if updates[i][0] == "security": secupdate += 1 if updates[i][0] == "bugfix": bugfixupdate += 1 totalupdate += 1 up2date.append(package) up2date.attrib['total'] = str(totalupdate) up2date.attrib['security'] = str(secupdate) up2date.attrib['bugfix'] = str(bugfixupdate) partitions = self.osbase.getpartitions() # for every partition do: # disks[i] = [fsdev,fsmount,fstype,fsopts,fstotal,fsused,fsfree,fspercent] for i in range(len(partitions)): filesystem = xml.Element('filesystem') filesystem.attrib['fsdevice'] = partitions[i][0] filesystem.attrib['fsname'] = partitions[i][1] filesystem.attrib['fstype'] = partitions[i][2] filesystem.attrib['fsopts'] = partitions[i][3] filesystem.attrib['fstotal'] = partitions[i][4] filesystem.attrib['fsused'] = partitions[i][5] filesystem.attrib['fsfree'] = partitions[i][6] filesystem.attrib['fspercent'] = partitions[i][7] filesystems.append(filesystem) swap = xml.Element('swap') operatingsystem.append(swap) swaps = self.osbase.getswap() # for every swap do: # swaps[i] = [dev,type,total,used,free] for i in range(len(swaps)): swaparea = xml.Element('swaparea') swaparea.attrib['device'] = swaps[i][0] swaparea.attrib['swaptype'] = swaps[i][1] swaparea.attrib['swapsize'] = swaps[i][2] swaparea.attrib['swapused'] = swaps[i][3] swaparea.attrib['swapfree'] = swaps[i][4] swap.append(swaparea) network = xml.Element('network') operatingsystem.append(network) nics = self.osbase.getnics() # for every NIC do: #(a) = nics.keys() #print a[0][0] adapters = xml.Element('nics') network.append(adapters) #[name,description,nictype,status,rx_packets,tx_packets,rx_bytes,tx_bytes,driver,drvver,firmware,kernmodule,macaddr] for i in range(len(nics)): adapter = xml.Element('nic') adapter.attrib['name'] = nics[i][0] adapter.attrib['description'] = nics[i][1] adapter.attrib['nictype'] = nics[i][2] adapter.attrib['status'] = nics[i][3] adapter.attrib['RXpackets'] = nics[i][4] adapter.attrib['TXpackets'] = nics[i][5] adapter.attrib['RXbytes'] = nics[i][6] adapter.attrib['TXbytes'] = nics[i][7] adapter.attrib['driver'] = nics[i][8] adapter.attrib['drvver'] = nics[i][9] adapter.attrib['firmware'] = nics[i][10] adapter.attrib['kernmodule'] = nics[i][11] adapter.attrib['macaddress'] = nics[i][12] adapters.append(adapter) ips = self.osbase.getip(nics[i][0]) for j in range(len(ips)): ip = xml.Element('ipv4') ip.attrib['address'] = ips[j][0] ip.attrib['mask'] = ips[j][1] ip.attrib['broadcast'] = ips[j][2] adapter.append(ip) ips6 = self.osbase.getip6(nics[i][0]) for k in range(len(ips6)): ip6 = xml.Element('ipv6') ip6.attrib['address'] = ips6[k][0] ip6.attrib['mask'] = ips6[k][1] ip6.attrib['broadcast'] = ips6[k][2] adapter.append(ip6) dnsservers = xml.Element('dnsservers') network.append(dnsservers) # for every dnsserver do: dns = self.osbase.getdns() for i in range(len(dns)): dnsentry = xml.Element(dns[i][0]) dnsentry.attrib['address'] = dns[i][1] dnsservers.append(dnsentry) routing = xml.Element('routing') network.append(routing) ip4routes = xml.Element('ipv4') routing.append(ip4routes) routes4 = self.osbase.getroutes() # for every iproute do: for i in range(len(routes4)): route = xml.Element('route') route.attrib['destination'] = routes4[i][0] route.attrib['gateway'] = routes4[i][1] route.attrib['mask'] = routes4[i][2] route.attrib['flags'] = routes4[i][3] route.attrib['metric'] = routes4[i][4] route.attrib['interface'] = routes4[i][5] ip4routes.append(route) ip6routes = xml.Element('ipv6') routing.append(ip6routes) routes6 = self.osbase.getroutes6() # for every iproute do: for i in range(len(routes6)): route6 = xml.Element('route') route6.attrib['destination'] = routes6[i][0] route6.attrib['mask'] = routes6[i][1] route6.attrib['gateway'] = routes6[i][2] route6.attrib['flags'] = routes6[i][3] route6.attrib['metric'] = routes6[i][4] route6.attrib['interface'] = routes6[i][5] ip6routes.append(route6) groups = xml.Element('groups') operatingsystem.append(groups) pwgroups = self.osbase.getgroups() # for every group do: for i in range(len(pwgroups)): group = xml.Element('group') group.attrib['name'] = pwgroups[i][0] group.attrib['gid'] = pwgroups[i][1] groups.append(group) # for every group member do: for usr in pwgroups[i][2].split(','): if usr: member = xml.Element('member') member.attrib['name'] = usr group.append(member) xmlusers = xml.Element('users') operatingsystem.append(xmlusers) # for every user do: users = self.osbase.getusers() # [login,uid,gid,comment,home,shell,locked,hashtype,groups] for i in range(len(users)): user = xml.Element('user') user.attrib['login'] = users[i][0] user.attrib['uid'] = users[i][1] user.attrib['gid'] = users[i][2] user.attrib['comment'] = users[i][3] user.attrib['home'] = users[i][4] user.attrib['shell'] = users[i][5] user.attrib['locked'] = users[i][6] user.attrib['hashtype'] = users[i][7] user.attrib['groups'] = users[i][8] xmlusers.append(user) regional = xml.Element('regional') loc = locale.getdefaultlocale() regional.attrib['timezone'] = time.tzname[0] regional.attrib['charset'] = loc[0]+'.'+loc[1] operatingsystem.append(regional) processes = xml.Element('processes') operatingsystem.append(processes) # for every process do: procs = self.osbase.getprocs() # [ppid,powner,psystime,pusertime,pcpu,pmem,ppriority,pstatus,pname,pcmd] for i in range(len(procs)): process = xml.Element('process') process.attrib['pid'] = procs[i][0] process.attrib['owner'] = procs[i][1] process.attrib['cpusystime'] = procs[i][2] process.attrib['cpuusertime'] = procs[i][3] process.attrib['pcpu'] = procs[i][4] process.attrib['pmemory'] = procs[i][5] process.attrib['priority'] = procs[i][6] process.attrib['status'] = procs[i][7] process.attrib['name'] = procs[i][8] process.attrib['command'] = procs[i][9] processes.append(process) services = xml.Element('services') operatingsystem.append(services) svcs = self.osbase.getsvcs() # for every service do: # [name,boot,status] for i in range(len(svcs)): service = xml.Element('service') service.attrib['name'] = svcs[i][0] service.attrib['autostart'] = svcs[i][1] service.attrib['running'] = svcs[i][2] services.append(service) # make xml pretty ;) raw_xml = xml.tostring(server, 'utf-8') #reparsed_xml = minidom.parseString(raw_xml) #pretty_xml = reparsed_xml.toprettyxml(indent=" ") return raw_xml #f = open("/tmp/test.xml", 'w') #f.write(pretty_xml) #f.close() class TeddixCfg2Html: def __init__(self,syslog,cfg): self.syslog = syslog self.cfg = cfg self.agent_cfg2html_file = self.cfg.global_workdir + '/agent' + "/" + self.cfg.global_hostname + ".txt" def run(self): parser = TeddixParser.TeddixStringParser() if parser.checkexec(self.cfg.agent_cfg2html): if parser.getretval(self.cfg.agent_cfg2html + ' -o ' + self.cfg.global_workdir + '/agent' ) == 0: self.syslog.info("%s succeeded " % self.cfg.agent_cfg2html ) else: self.syslog.warn("%s failed " % self.cfg.agent_cfg2html) else: self.syslog.warn("%s failed " % self.cfg.agent_cfg2html) def create_html(self): f = open(self.agent_cfg2html_file, 'r') html = f.read() f.close() return html class TeddixDmesg: def __init__(self,syslog,cfg): self.syslog = syslog self.cfg = cfg def run(self): dmesg = '' parser = TeddixParser.TeddixStringParser() if parser.checkexec('dmesg'): lines = parser.readstdout('dmesg') for i in range(len(lines)): dmesg += lines[i] + "\n" i += 1 return dmesg class TeddixBootlog: def __init__(self,syslog,cfg): self.syslog = syslog self.cfg = cfg def get(self): bootlog = '' t_bootdmesg1 = "test -f /var/log/dmesg" t_bootdmesg2 = "test -f /var/log/dmesg.boot" t_bootdmesg3 = "test -f /var/log/boot.dmesg" t_bootdmesg4 = "test -f /var/log/boot.log" t_bootdmesg5 = "test -d /etc/svc/volatile" if subprocess.call(t_bootdmesg1,shell=True) == 0: self.syslog.debug("Found /var/log/dmesg" ) f = open('/var/log/dmesg', 'r') bootlog = f.read() f.close() elif subprocess.call(t_bootdmesg2,shell=True) == 0: self.syslog.debug("Found /var/log/dmesg.boot" ) f = open('/var/log/dmesg.boot', 'r') bootlog = f.read() f.close() elif subprocess.call(t_bootdmesg3,shell=True) == 0: self.syslog.debug("Found /var/log/boot.dmesg" ) f = open('/var/log/boot.dmesg', 'r') bootlog = f.read() f.close() elif subprocess.call(t_bootdmesg4,shell=True) == 0: self.syslog.debug("Found /var/log/boot.log" ) f = open('/var/log/boot.log', 'r') bootlog = f.read() f.close() elif subprocess.call(t_bootdmesg5,shell=True) == 0: self.syslog.debug("Found /etc/svc/volatile" ) for log in glob.glob('/etc/svc/volatile/*.log'): f = open(log, 'r') bootlog += "%s:" % log bootlog += f.read() f.close() return bootlog if __name__ == "__main__": cfg = TeddixConfigFile.TeddixConfigFile() # Open syslog syslog = TeddixLogger.TeddixLogger ("TeddixInventory") syslog.open_console() # Switch to working directory try: os.chdir(cfg.global_workdir + '/agent') except Exception, e: syslog.error("Unable to change workdir to %s " % cfg.global_workdir + '/agent') syslog.exception('__init__(): %s' % e ) exit(20) if not os.access(cfg.global_workdir + '/agent', os.R_OK): syslog.error("workdir %s needs to be readable" % cfg.global_workdir + '/agent') if not os.access(cfg.global_workdir + '/agent', os.W_OK): syslog.error("workdir %s needs to be writable" % cfg.global_workdir + '/agent') if not os.access(cfg.global_workdir + '/agent', os.X_OK): syslog.error("workdir %s needs to be executable" % cfg.global_workdir + '/agent') baseline = TeddixBaseline(syslog,cfg) raw_xml = baseline.create_xml() # make xml pretty ;) reparsed_xml = minidom.parseString(raw_xml) pretty_xml = reparsed_xml.toprettyxml(indent=" ") print pretty_xml #cfg2html = TeddixCfg2Html(syslog,cfg) #cfg2html.run() #dmesg = TeddixDmesg(syslog,cfg) #print dmesg.run()
StarcoderdataPython
6553511
import re class OBJ_Loader( object ): def parse_statement( self, statement ): """Processes the passed in statement. This will call the appropriate member function for the statement dynamically. Member functions must be in the form: _parse_%s( self, statement ) where %s is the statement type. Eg. _parse_vt( self, statement ) will parse texture coordinates. If an appropriate member function is not found nothing will be done and a statement will be printed. This method does not permit statements beginning with invalid function characters to be passed through. This includes comments (#). Comments and empty lines should not be passed to this function. 'call' statements should also be handled outside this function. Can throw NotImplementedError for unimplemented features, AssertError for programmatical errors and other exceptions for malformed or unexpected data. """ # get the statement type values = statement.split() type = values[ 0 ] if len(values) > 1: values = values[ 1: ] else: # no values, so empty our arg list values = [] # check if we have a function that handles this type of value # all parse functions are named _parse_$ where $ is # the statement type func = getattr( self, '_parse_%s' % type, None ) if func != None: func( statement ) else: raise NotImplementedError( 'Command "%s" is unknown' % type ) def process_filename_list( self, values ): # filenames are normally split by whitespace # but the specification also allows for files with spaces in them # so we need to see if a value doesn't end with an extension # if not, concatenate it with the next value return re.split( r'\W+\.\W+', values )
StarcoderdataPython
3347770
<gh_stars>1-10 import numpy as np from chainer import Chain, report, links as L, functions as F, as_variable, cuda from chainer.iterators import SerialIterator from chainer.optimizers import Adam from chainer.training import Trainer, StandardUpdater, extensions from chainerltr import Ranker from chainerltr.dataset import zeropad_concat from chainerltr.evaluation import ndcg from test.test_dataset import get_dataset class Loss(Chain): def __init__(self, ranker, loss_fn): super().__init__(ranker=ranker) self.loss_fn = loss_fn def __call__(self, xs, ys, nr_docs): prediction = self.ranker(xs) loss = self.loss_fn(prediction, ys, nr_docs) report({"loss": loss}) xp = cuda.get_array_module(prediction) ranking = as_variable(xp.fliplr(xp.argsort(prediction.data, axis=1))) ndcg_score = ndcg(ranking, as_variable(ys), as_variable(nr_docs)) report({"ndcg": F.mean(ndcg_score)}) return loss def run_linear_network(loss_fn, alpha=0.3, batch_size=2): # Get data np.random.seed(42) dataset = get_dataset() iterator = SerialIterator(dataset, batch_size, repeat=True, shuffle=True) # Set up network and loss predictor = L.Linear(None, 1) ranker = Ranker(predictor) loss = Loss(ranker, loss_fn) # Optimizer optimizer = Adam(alpha=alpha) optimizer.setup(loss) updater = StandardUpdater(iterator, optimizer, converter=zeropad_concat) trainer = Trainer(updater, (100, 'epoch')) log_report = extensions.LogReport(log_name=None) trainer.extend(log_report) np.random.seed(42) trainer.run() last_ndcg = log_report.log[-1]['ndcg'] return last_ndcg
StarcoderdataPython
1614093
<filename>blockchain/all_challenges/2021/realworld/rwctf3rd-Re-Montagy/deploy/ethbot/index.py<gh_stars>0 import sys import os from conf.base import alarmsecs, workdir import signal import codecs from src.main import main import hashlib import random import string def getflag(seed, teamtoken): token=teamtoken real_flag=hashlib.md5((seed+'&'+hashlib.sha1(token[::-1].encode()).hexdigest()[:10]).encode()).hexdigest() return 'flag{' + real_flag + '}' def generatepow(difficulty): prefix = ''.join(random.choice(string.ascii_letters + string.digits) for i in range(8)) msg="sha256("+prefix+" + ?).binary.endswith('"+"0"*difficulty+"')" return prefix,msg def pow(prefix,difficulty,answer): hashresult=hashlib.sha256((prefix+answer).encode()).digest() bits=bin(int(hashlib.sha256((prefix+answer).encode()).hexdigest(),16))[2:] if bits.endswith("0"*difficulty): return True else: return False print("[$] Welcome to Re:Montagy.") prefix,msg=generatepow(5) print("[+]",msg) answer=input("[-] ?=") if not pow(prefix,5,answer): print("[+]wrong proof") sys.exit(0) print("[+] passed") class Unbuffered(object): def __init__(self, stream): self.stream = stream def write(self, data): self.stream.write(data) self.stream.flush() def __getattr__(self, attr): return getattr(self.stream, attr) sys.path.append(workdir) sys.stdout = codecs.getwriter("utf-8")(sys.stdout.detach()) sys.stdout = Unbuffered(sys.stdout) signal.alarm(alarmsecs) os.chdir(workdir) main()
StarcoderdataPython
5054711
import logging from django.conf import settings logger = logging.getLogger(__name__) DEFAULT_SETTINGS = { "CANONICAL_HOSTNAME": "", "INDEX_TEXT_RESOURCES": True } class AppSettings(object): def __init__(self, settings_key=None, default_settings={}): self.settings_key = settings_key self.default_settings = default_settings @property def user_settings(self): if not hasattr(self, "_user_settings"): self._user_settings = getattr(settings, self.settings_key, {}) return self._user_settings def __getattr__(self, attr): if attr not in self.default_settings: raise AttributeError(f"Invalid setting {attr} for {self.settings_key}") try: # Check if present in user settings val = self.user_settings[attr] except KeyError: # Fall back to defaults val = self.default_settings[attr] # Cache the result setattr(self, attr, val) return val text_store_settings = AppSettings("TEXT_STORE", DEFAULT_SETTINGS)
StarcoderdataPython
1987333
<reponame>mmatl/jointseg """ File for picking unique, easily-distinguishable colors. Author: <NAME> """ def indexed_color(i): """Return a color based on an index. Identical indices will always return the same color, and the colors should contrast cleanly. Parameters ---------- i : int An index into the color array. Returns ------- :obj:`tuple` of float An rgb color tuple. """ r = [0.95, 0.13, 0.95, 0.53, 0.95, 0.63, 0.75, 0.76, 0.52, 0.0, 0.9, 0.0, 0.98, 0.38, 0.96, 0.7, 0.86, 0.53, 0.55, 0.4, 0.89, 0.17] g = [0.95, 0.13, 0.76, 0.34, 0.52, 0.79, 0.0, 0.7, 0.52, 0.53, 0.56, 0.4, 0.58, 0.31, 0.65, 0.27, 0.83, 0.18, 0.71, 0.27, 0.35, 0.24] b = [0.96, 0.13, 0.0, 0.57, 0.0, 0.95, 0.2, 0.5, 0.51, 0.34, 0.67, 0.65, 0.47, 0.59, 0.0, 0.42, 0.0, 0.09, 0.0, 0.13, 0.13, 0.15] ci = i % len(r) return (r[ci], g[ci], b[ci])
StarcoderdataPython
6456611
""" Copyright 2020 <NAME> by<EMAIL> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ import logging import torch import torch.nn as nn import torch.nn.functional as F from torch.nn.modules.normalization import LayerNorm from third_party import transformer import utils import modules class TransformerDecoder(nn.Module): r""" Top class of TransformerDecoder """ def __init__(self, config): super(TransformerDecoder, self).__init__() self.config = config self.d_model = config["d_model"] self.nhead = config["nhead"] self.num_layers = config["num_layers"] self.encoder_dim = config["encoder_dim"] self.dim_feedforward = config["dim_feedforward"] self.vocab_size = config["vocab_size"] self.dropout_rate = config["dropout_rate"] self.activation = config["activation"] self.emb = nn.Embedding(self.vocab_size, self.d_model) self.emb_scale = self.d_model**0.5 self.pe = modules.PositionalEncoding(self.d_model) self.dropout = nn.Dropout(self.dropout_rate) transformer_decoder_layer = transformer.TransformerDecoderLayer( d_model=self.d_model, nhead=self.nhead, dim_feedforward=self.dim_feedforward, dropout=self.dropout_rate, activation=self.activation) self.transformer_block = transformer.TransformerDecoder( transformer_decoder_layer, self.num_layers) self.output_affine = nn.Linear(self.d_model, self.vocab_size) nn.init.xavier_normal_(self.output_affine.weight) self.emb.weight = self.output_affine.weight # tying weight def forward(self, encoder_outputs, encoder_output_lengths, decoder_inputs, decoder_input_lengths, return_atten=False): r""" Forward function of transformer decoder layer. encoder_outputs is from last encoder layer and will be used as K,V as in multihead attention decoder_inputs now is seems as target id or A.K.A labels which are texts, and will be used as Q. """ B, T_e, D_e = encoder_outputs.shape encoder_outputs = encoder_outputs.permute(1, 0, 2) # [S, B, D_e] _, T_d = decoder_inputs.shape memory_key_padding_mask = utils.get_transformer_padding_byte_masks( B, T_e, encoder_output_lengths).to(encoder_outputs.device) tgt_key_padding_mask = utils.get_transformer_padding_byte_masks( B, T_d, decoder_input_lengths).to(encoder_outputs.device) casual_masks = utils.get_transformer_casual_masks(T_d).to( encoder_outputs.device) outputs = self.emb(decoder_inputs) * self.emb_scale outputs = self.pe(outputs) outputs = self.dropout(outputs) outputs = outputs.permute(1, 0, 2) if return_atten: outputs, decoder_atten_tuple_list = self.transformer_block( outputs, encoder_outputs, memory_mask=None, memory_key_padding_mask=memory_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, tgt_mask=casual_masks, return_atten=True) else: outputs = self.transformer_block( outputs, encoder_outputs, memory_mask=None, memory_key_padding_mask=memory_key_padding_mask, tgt_key_padding_mask=tgt_key_padding_mask, tgt_mask=casual_masks, return_atten=False) outputs = outputs.permute(1, 0, 2) outputs = self.output_affine(outputs) if return_atten: return outputs, decoder_atten_tuple_list return outputs
StarcoderdataPython
5005140
class User(): """docstring for User""" def __init__(self, **params): '''Init user Load user data and return, using id or email/password ''' self.id = 0 self.is_authenticated = True self.is_active = True self.is_anonymous = False def get_id(self): return self.id
StarcoderdataPython
1889605
<gh_stars>0 from . import device class US8P150(device.Device): def __init__(self, site, data): super(US8P150, self).__init__(site, data) self.port = {} self.parse_stat(data['stat']) self.parse_uplink(data.get('uplink')) self.parse_port_table(data['port_table']) self.general_temperature = data.get('general_temperature') self.parse_sysstat(data.get('sys_stats')) def parse_port_table(self, data): for port in data: self.port[port['port_idx']] = port # { # "_id": "58556a4fb410cf6b940e570a", # "_uptime": 3641077, # "adopted": true, # "bytes": 0, # "cfgversion": "3280a08c720ca056", # "config_network": { # "ip": "192.168.1.226", # "type": "dhcp" # }, # "connect_request_ip": "192.168.1.226", # "connect_request_port": "40880", # "considered_lost_at": 1485632663, # "device_id": "58556a4fb410cf6b940e570a", # "dhcp_server_table": [], # "dot1x_dyvlan_enabled": false, # "dot1x_portctrl_enabled": false, # "downlink_table": [ # { # "full_duplex": true, # "mac": "44:d9:e7:f6:9f:99", # "port_idx": 5, # "speed": 1000 # } # ], # "ethernet_table": [ # { # "mac": "f0:9f:c2:0a:4a:ca", # "name": "eth0", # "num_port": 10 # }, # { # "mac": "f0:9f:c2:0a:4a:cb", # "name": "srv0" # } # ], # "flowctrl_enabled": false, # "fw_caps": 0, # "general_temperature": 63, # "guest-num_sta": 0, # "has_fan": false, # "inform_authkey": "...", # "inform_ip": "192.168.1.3", # "inform_url": "http://192.168.1.3:8080/inform", # "ip": "192.168.1.226", # "jumboframe_enabled": false, # "known_cfgversion": "3280a08c720ca056", # "last_seen": 1485632591, # "locating": false, # "mac": "f0:9f:c2:0a:4a:ca", # "model": "US8P150", # "name": "switch-trappen", # "next_heartbeat_at": 1485632615, # "num_sta": 22, # "overheating": false, # "port_table": [ # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 1", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 1, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 2", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 2, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 3", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 3, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 4", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 4, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 11826, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": true, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 5", # "op_mode": "switch", # "poe_class": "Class 0", # "poe_current": "77.75", # "poe_enable": true, # "poe_good": true, # "poe_mode": "auto", # "poe_power": "4.16", # "poe_voltage": "53.46", # "port_idx": 5, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 1965275, # "rx_bytes": 176744755020, # "rx_bytes-r": 4496, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 1843103, # "rx_packets": 311222635, # "speed": 1000, # "stp_pathcost": 20000, # "stp_state": "forwarding", # "tx_broadcast": 1843267, # "tx_bytes": 539674069439, # "tx_bytes-r": 7329, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 2621212, # "tx_packets": 441936297, # "up": true # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 13448, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": true, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 6", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 6, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 1580314, # "rx_bytes": 178970189461, # "rx_bytes-r": 6930, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 681287, # "rx_packets": 229507948, # "speed": 1000, # "stp_pathcost": 20000, # "stp_state": "forwarding", # "tx_broadcast": 2228229, # "tx_bytes": 230673614216, # "tx_bytes-r": 6518, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 3783026, # "tx_packets": 260146954, # "up": true # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 385, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": true, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 7", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 7, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 12, # "rx_bytes": 6803927, # "rx_bytes-r": 4, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 82298, # "speed": 100, # "stp_pathcost": 200000, # "stp_state": "forwarding", # "tx_broadcast": 3808531, # "tx_bytes": 1054811281, # "tx_bytes-r": 380, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 4464313, # "tx_packets": 8378604, # "up": true # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 4256, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": true, # "is_uplink": true, # "jumbo": false, # "masked": false, # "media": "GE", # "name": "Port 8", # "op_mode": "switch", # "poe_class": "Unknown", # "poe_current": "0.00", # "poe_enable": false, # "poe_good": false, # "poe_mode": "auto", # "poe_power": "0.00", # "poe_voltage": "0.00", # "port_idx": 8, # "port_poe": true, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 146507, # "rx_bytes": 478603665596, # "rx_bytes-r": 3057, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 380556410, # "speed": 1000, # "stp_pathcost": 20000, # "stp_state": "forwarding", # "tx_broadcast": 3662034, # "tx_bytes": 65698353872, # "tx_bytes-r": 1199, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 4464311, # "tx_packets": 231549589, # "up": true # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "SFP", # "name": "SFP 1", # "op_mode": "switch", # "port_idx": 9, # "port_poe": false, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "sfp_found": false, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # }, # { # "aggregated_by": false, # "autoneg": true, # "bytes-r": 0, # "enable": true, # "flowctrl_rx": false, # "flowctrl_tx": false, # "full_duplex": false, # "is_uplink": false, # "jumbo": false, # "masked": false, # "media": "SFP", # "name": "SFP 2", # "op_mode": "switch", # "port_idx": 10, # "port_poe": false, # "portconf_id": "56c87bd0b41038d25762ce8f", # "rx_broadcast": 0, # "rx_bytes": 0, # "rx_bytes-r": 0, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 0, # "sfp_found": false, # "speed": 0, # "stp_pathcost": 0, # "stp_state": "disabled", # "tx_broadcast": 0, # "tx_bytes": 0, # "tx_bytes-r": 0, # "tx_dropped": 0, # "tx_errors": 0, # "tx_multicast": 0, # "tx_packets": 0, # "up": false # } # ], # "rx_bytes": 65698353872, # "serial": "F09FC20A4ACA", # "site_id": "56c87bc1b41038d25762ce86", # "stat": { # "mac": "f0:9f:c2:0a:4a:ca", # "port_5-rx_bytes": 174998957475, # "port_5-rx_packets": 301949064, # "port_5-tx_bytes": 520122521522, # "port_5-tx_packets": 427159453, # "port_6-rx_bytes": 166842488635, # "port_6-rx_packets": 219854631, # "port_6-tx_bytes": 229212375520, # "port_6-tx_packets": 254220128, # "port_7-rx_bytes": 6621976, # "port_7-rx_packets": 80125, # "port_7-tx_bytes": 1025174082, # "port_7-tx_packets": 8145657, # "port_8-rx_bytes": 469223202436, # "port_8-rx_packets": 372402600, # "port_8-tx_bytes": 63409333653, # "port_8-tx_packets": 224828560, # "rx_bytes": 811071270522, # "rx_packets": 894286420, # "tx_bytes": 813769404777, # "tx_packets": 914353798, # "uplink-rx_bytes": 488790756975, # "uplink-rx_packets": 389433418, # "uplink-tx_bytes": 69186801149, # "uplink-tx_packets": 238979784 # }, # "state": 1, # "stp_priority": "32768", # "stp_version": "rstp", # "tx_bytes": 478603665596, # "type": "usw", # "upgradable": true, # "uplink": { # "full_duplex": true, # "ip": "192.168.1.226", # "mac": "f0:9f:c2:0a:4a:ca", # "max_speed": 1000, # "media": "GE", # "name": "eth0", # "netmask": "255.255.255.0", # "num_port": 10, # "port_idx": 8, # "rx_bytes": 478603665596, # "rx_bytes-r": 3057, # "rx_dropped": 0, # "rx_errors": 0, # "rx_multicast": 0, # "rx_packets": 380556410, # "speed": 1000, # "tx_bytes": 65698353872, # "tx_bytes-r": 1199, # "tx_dropped": 0, # "tx_errors": 0, # "tx_packets": 231549589, # "type": "wire", # "up": true # }, # "uplink_depth": 1, # "uptime": 3641077, # "user-num_sta": 22, # "version": "3.3.12.3861", # "x_authkey": "...", # "x_fingerprint": "70:b5:2e:d2:ec:59:6d:18:fb:11:12:d9:cb:8d:8f:74" # }
StarcoderdataPython
18204
#!/usr/bin/env/python3 """Recipe for training a wav2vec-based ctc ASR system with librispeech. The system employs wav2vec as its encoder. Decoding is performed with ctc greedy decoder. To run this recipe, do the following: > python train_with_wav2vec.py hparams/train_with_wav2vec.yaml The neural network is trained on CTC likelihood target and character units are used as basic recognition tokens. Training is performed on the full LibriSpeech dataset (960 h). Authors * <NAME> 2021 * <NAME> 2021 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 * <NAME> 2020 """ import os import sys import torch import logging import speechbrain as sb from speechbrain.utils.distributed import run_on_main from hyperpyyaml import load_hyperpyyaml from pathlib import Path logger = logging.getLogger(__name__) # Define training procedure class ASR(sb.Brain): def compute_forward(self, batch, stage): """Forward computations from the waveform batches to the output probabilities.""" batch = batch.to(self.device) wavs, wav_lens = batch.sig tokens_bos, _ = batch.tokens_bos wavs, wav_lens = wavs.to(self.device), wav_lens.to(self.device) # Add augmentation if specified if stage == sb.Stage.TRAIN: if hasattr(self.modules, "env_corrupt"): wavs_noise = self.modules.env_corrupt(wavs, wav_lens) wavs = torch.cat([wavs, wavs_noise], dim=0) wav_lens = torch.cat([wav_lens, wav_lens]) tokens_bos = torch.cat([tokens_bos, tokens_bos], dim=0) if hasattr(self.hparams, "augmentation"): wavs = self.hparams.augmentation(wavs, wav_lens) # Forward pass feats = self.modules.wav2vec2(wavs) x = self.modules.enc(feats) # Compute outputs p_tokens = None logits = self.modules.ctc_lin(x) p_ctc = self.hparams.log_softmax(logits) if stage != sb.Stage.TRAIN: p_tokens = sb.decoders.ctc_greedy_decode( p_ctc, wav_lens, blank_id=self.hparams.blank_index ) return p_ctc, wav_lens, p_tokens def compute_objectives(self, predictions, batch, stage): """Computes the loss (CTC+NLL) given predictions and targets.""" p_ctc, wav_lens, predicted_tokens = predictions ids = batch.id tokens_eos, tokens_eos_lens = batch.tokens_eos tokens, tokens_lens = batch.tokens if hasattr(self.modules, "env_corrupt") and stage == sb.Stage.TRAIN: tokens_eos = torch.cat([tokens_eos, tokens_eos], dim=0) tokens_eos_lens = torch.cat( [tokens_eos_lens, tokens_eos_lens], dim=0 ) tokens = torch.cat([tokens, tokens], dim=0) tokens_lens = torch.cat([tokens_lens, tokens_lens], dim=0) loss_ctc = self.hparams.ctc_cost(p_ctc, tokens, wav_lens, tokens_lens) loss = loss_ctc if stage != sb.Stage.TRAIN: # Decode token terms to words predicted_words = [ "".join(self.tokenizer.decode_ndim(utt_seq)).split(" ") for utt_seq in predicted_tokens ] target_words = [wrd.split(" ") for wrd in batch.wrd] self.wer_metric.append(ids, predicted_words, target_words) self.cer_metric.append(ids, predicted_words, target_words) return loss def fit_batch(self, batch): """Train the parameters given a single batch in input""" predictions = self.compute_forward(batch, sb.Stage.TRAIN) loss = self.compute_objectives(predictions, batch, sb.Stage.TRAIN) loss.backward() if self.check_gradients(loss): self.wav2vec_optimizer.step() self.model_optimizer.step() self.wav2vec_optimizer.zero_grad() self.model_optimizer.zero_grad() return loss.detach() def evaluate_batch(self, batch, stage): """Computations needed for validation/test batches""" predictions = self.compute_forward(batch, stage=stage) with torch.no_grad(): loss = self.compute_objectives(predictions, batch, stage=stage) return loss.detach() def on_stage_start(self, stage, epoch): """Gets called at the beginning of each epoch""" if stage != sb.Stage.TRAIN: self.cer_metric = self.hparams.cer_computer() self.wer_metric = self.hparams.error_rate_computer() def on_stage_end(self, stage, stage_loss, epoch): """Gets called at the end of an epoch.""" # Compute/store important stats stage_stats = {"loss": stage_loss} if stage == sb.Stage.TRAIN: self.train_stats = stage_stats else: stage_stats["CER"] = self.cer_metric.summarize("error_rate") stage_stats["WER"] = self.wer_metric.summarize("error_rate") # Perform end-of-iteration things, like annealing, logging, etc. if stage == sb.Stage.VALID: old_lr_model, new_lr_model = self.hparams.lr_annealing_model( stage_stats["loss"] ) old_lr_wav2vec, new_lr_wav2vec = self.hparams.lr_annealing_wav2vec( stage_stats["loss"] ) sb.nnet.schedulers.update_learning_rate( self.model_optimizer, new_lr_model ) sb.nnet.schedulers.update_learning_rate( self.wav2vec_optimizer, new_lr_wav2vec ) self.hparams.train_logger.log_stats( stats_meta={ "epoch": epoch, "lr_model": old_lr_model, "lr_wav2vec": old_lr_wav2vec, }, train_stats=self.train_stats, valid_stats=stage_stats, ) self.checkpointer.save_and_keep_only( meta={"WER": stage_stats["WER"]}, min_keys=["WER"], ) elif stage == sb.Stage.TEST: self.hparams.train_logger.log_stats( stats_meta={"Epoch loaded": self.hparams.epoch_counter.current}, test_stats=stage_stats, ) with open(self.hparams.wer_file, "w") as w: self.wer_metric.write_stats(w) def init_optimizers(self): "Initializes the wav2vec2 optimizer and model optimizer" self.wav2vec_optimizer = self.hparams.wav2vec_opt_class( self.modules.wav2vec2.parameters() ) self.model_optimizer = self.hparams.model_opt_class( self.hparams.model.parameters() ) if self.checkpointer is not None: self.checkpointer.add_recoverable( "wav2vec_opt", self.wav2vec_optimizer ) self.checkpointer.add_recoverable("modelopt", self.model_optimizer) def dataio_prepare(hparams): """This function prepares the datasets to be used in the brain class. It also defines the data processing pipeline through user-defined functions.""" data_folder = hparams["data_folder"] train_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["train_csv"], replacements={"data_root": data_folder}, ) if hparams["sorting"] == "ascending": # we sort training data to speed up training and get better results. train_data = train_data.filtered_sorted(sort_key="duration") # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["train_dataloader_opts"]["shuffle"] = False elif hparams["sorting"] == "descending": train_data = train_data.filtered_sorted( sort_key="duration", reverse=True ) # when sorting do not shuffle in dataloader ! otherwise is pointless hparams["train_dataloader_opts"]["shuffle"] = False elif hparams["sorting"] == "random": pass else: raise NotImplementedError( "sorting must be random, ascending or descending" ) valid_data = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=hparams["valid_csv"], replacements={"data_root": data_folder}, ) valid_data = valid_data.filtered_sorted(sort_key="duration") # test is separate test_datasets = {} for csv_file in hparams["test_csv"]: name = Path(csv_file).stem test_datasets[name] = sb.dataio.dataset.DynamicItemDataset.from_csv( csv_path=csv_file, replacements={"data_root": data_folder} ) test_datasets[name] = test_datasets[name].filtered_sorted( sort_key="duration" ) datasets = [train_data, valid_data] + [i for k, i in test_datasets.items()] # 2. Define audio pipeline: @sb.utils.data_pipeline.takes("wav") @sb.utils.data_pipeline.provides("sig") def audio_pipeline(wav): sig = sb.dataio.dataio.read_audio(wav) return sig sb.dataio.dataset.add_dynamic_item(datasets, audio_pipeline) label_encoder = sb.dataio.encoder.CTCTextEncoder() # 3. Define text pipeline: @sb.utils.data_pipeline.takes("wrd") @sb.utils.data_pipeline.provides( "wrd", "char_list", "tokens_list", "tokens_bos", "tokens_eos", "tokens" ) def text_pipeline(wrd): yield wrd char_list = list(wrd) yield char_list tokens_list = label_encoder.encode_sequence(char_list) yield tokens_list tokens_bos = torch.LongTensor([hparams["bos_index"]] + (tokens_list)) yield tokens_bos tokens_eos = torch.LongTensor(tokens_list + [hparams["eos_index"]]) yield tokens_eos tokens = torch.LongTensor(tokens_list) yield tokens sb.dataio.dataset.add_dynamic_item(datasets, text_pipeline) lab_enc_file = os.path.join(hparams["save_folder"], "label_encoder.txt") special_labels = { "bos_label": hparams["bos_index"], "eos_label": hparams["eos_index"], "blank_label": hparams["blank_index"], } label_encoder.load_or_create( path=lab_enc_file, from_didatasets=[train_data], output_key="char_list", special_labels=special_labels, sequence_input=True, ) # 4. Set output: sb.dataio.dataset.set_output_keys( datasets, ["id", "sig", "wrd", "char_list", "tokens_bos", "tokens_eos", "tokens"], ) return train_data, valid_data, test_datasets, label_encoder if __name__ == "__main__": # CLI: hparams_file, run_opts, overrides = sb.parse_arguments(sys.argv[1:]) # If distributed_launch=True then # create ddp_group with the right communication protocol sb.utils.distributed.ddp_init_group(run_opts) with open(hparams_file) as fin: hparams = load_hyperpyyaml(fin, overrides) # Create experiment directory sb.create_experiment_directory( experiment_directory=hparams["output_folder"], hyperparams_to_save=hparams_file, overrides=overrides, ) # Dataset prep (parsing Librispeech) from librispeech_prepare import prepare_librispeech # noqa # multi-gpu (ddp) save data preparation run_on_main( prepare_librispeech, kwargs={ "data_folder": hparams["data_folder"], "tr_splits": hparams["train_splits"], "dev_splits": hparams["dev_splits"], "te_splits": hparams["test_splits"], "save_folder": hparams["output_folder"], "merge_lst": hparams["train_splits"], "merge_name": "train.csv", "skip_prep": hparams["skip_prep"], }, ) # here we create the datasets objects as well as tokenization and encoding train_data, valid_data, test_datasets, label_encoder = dataio_prepare( hparams ) # Trainer initialization asr_brain = ASR( modules=hparams["modules"], hparams=hparams, run_opts=run_opts, checkpointer=hparams["checkpointer"], ) # We dynamicaly add the tokenizer to our brain class. # NB: This tokenizer corresponds to the one used for the LM!! asr_brain.tokenizer = label_encoder # Training asr_brain.fit( asr_brain.hparams.epoch_counter, train_data, valid_data, train_loader_kwargs=hparams["train_dataloader_opts"], valid_loader_kwargs=hparams["valid_dataloader_opts"], ) # Testing for k in test_datasets.keys(): # keys are test_clean, test_other etc asr_brain.hparams.wer_file = os.path.join( hparams["output_folder"], "wer_{}.txt".format(k) ) asr_brain.evaluate( test_datasets[k], test_loader_kwargs=hparams["test_dataloader_opts"] )
StarcoderdataPython
4858560
<filename>for.py ##n=int(input("enter the number:")) ##i=1 ##for i in range(1,n+1): ## if i%2==0: ## print (i) ##sum=0 ##for i in range(1,101): ## if i%2==0: ## sum=sum+i ## ##print(sum) ## ##sum=0 ##for i in range(1,101): ## if i%2==1: ## sum=sum+i ##print(sum) ## ## ##n=int(input("enter the number:")) ##for i in range(1,n+1): ## if i%2==1: ## print(i) ## ##n=int(input("enter any number:")) ##count=0 ##for i in range(2,n): ## if(n%i==0): ## count+=1 ## ##if(count==0): ## print(" prime") ## ##else: ## print(" n prime") n=int(input("enter range:")) a=0 b=1 c=0 for i in range(0,n+1): c=a+b print(c, end=" ") b=a a=c
StarcoderdataPython
3339326
#!/usr/bin/python # -*- coding: utf-8 -*- from flask import Blueprint label_writer_450 = Blueprint( 'label_writer_450', __name__, template_folder='templates', static_folder='static' ) from . import views from . import zpl
StarcoderdataPython
9672837
from .six import ( # noqa: #401 urlparse, urlunparse, Generator, )
StarcoderdataPython
4902078
""" This module implements the Qt interface and is where every other module is put together. Here's a flow diagram with how the API and Player initialization is done inside this module. +-------------------------+ | Prompt with SetupWidget | |-------------------------| | Ask the user for what | | API & Player to use | +------------+------------+ | +----------------+---------------+ | | v v +-------------+------------+ +-------------+------------+ | player.initialize_player | | api.initialize_api | |--------------------------| |--------------------------| | Initialize the Player | | Initialize the API | | using the PlayerData | | using the APIData entry | | entry information | | information | +-------------+------------+ +-------------+------------+ | v +---------------- Does it need GUI interaction? | Yes (APIData.gui_init_fn) | | | | | No v v +------------------------+ +--------------------------+ | Call custom function | | gui.wait_for_connection | | from APIData which | |--------------------------| | handles initialization +---->| Wait for the API connect | | inside the GUI window | +--------------------------+ | (APIData.gui_init_fn) | | +------------------------+ | | v START The API and player modules are mixed using Qt events: * Position changes -> MainWindow.change_video_position(ms) * Status changes -> MainWindow.change_video_status(status) * Song changes -> MainWindow.play_video(artist, title, start) These events are emitted inside the APIs. """ import time import types import logging import importlib from typing import Callable, Optional from contextlib import suppress from qtpy.QtWidgets import QWidget, QHBoxLayout from qtpy.QtGui import QFontDatabase from qtpy.QtCore import Qt, QTimer, QCoreApplication, Slot, QThread from vidify import format_name, find_module from vidify.api import APIS, APIData from vidify.player import initialize_player, PlayerData from vidify.config import Config from vidify.youtube import YouTubeDLWorker, get_direct_url, get_youtube_url from vidify.lyrics import get_lyrics from vidify.gui import Res, Colors from vidify.gui.components import SetupWidget, APIConnecter class MainWindow(QWidget): def __init__(self, config: Config) -> None: """ Main window with the GUI and whatever player is being used. """ super().__init__() self.setWindowTitle('vidify') # Setting the window to stay on top if config.stay_on_top: self.setWindowFlags(Qt.WindowStaysOnTopHint) # Setting the fullscreen and window size if config.fullscreen: self.showFullScreen() else: self.setMinimumSize(800, 800) self.resize(config.width or 800, config.height or 800) # Loading the used fonts (Inter) font_db = QFontDatabase() for font in Res.fonts: font_db.addApplicationFont(font) # Initializing the player and saving the config object in the window. self.layout = QHBoxLayout(self) self.layout.setContentsMargins(0, 0, 0, 0) self.layout.setSpacing(0) self.config = config # Otherwise, the user is prompted for an API. After choosing one, # it will be initialized from outside this function. logging.info("Loading setup screen") self.setup_widget = SetupWidget(config.api, config.player) self.layout.addWidget(self.setup_widget) self.setup_widget.done.connect(self.on_setup_done) # Setting focus on the continue button after the first time. if None not in (config.api, config.player): self.setup_widget.continue_btn.setFocus() def closeEvent(self, event) -> None: """ When the user closes the app, this makes sure that the most important attributes are correctly deleted. """ logging.info("Closing event detected") try: # Stopping the audiosync thread (always initialized) if self.config.audiosync: self.audiosync.abort() self.audiosync.wait() # Stopping the youtube downloader thread (can be uninitialized) with suppress(AttributeError): if self.yt_thread.isRunning(): self.yt_thread.exit() self.yt_thread.wait() # Safely deleting the player and the API objects with suppress(AttributeError): del self.player with suppress(AttributeError): del self.api except Exception as e: logging.info("Error when closing: %s", str(e)) super().closeEvent(event) @Slot(object, object) def on_setup_done(self, api: APIData, player: PlayerData) -> None: """ Method called when the API and Player are selected with APISelection. """ # Completely removing the widget used to obtain the API string self.layout.removeWidget(self.setup_widget) self.setup_widget.setParent(None) self.setup_widget.hide() del self.setup_widget # Saving the API and Player in the config self.config.api = api.id self.config.player = player.id # Starting the asynchronous API initialization self.initialize_api(api) logging.info("Using %s as the API", api.id) # Initializing the player self.player = initialize_player(player, self.config) logging.info("Using %s as the player", player.id) def initialize_api(self, api_data: APIData) -> None: """ Initializes an API with the information from APIData. """ # The API may need interaction with the user to obtain credentials # or similar data. This function will already take care of the # rest of the initialization. if api_data.gui_init_fn is not None: fn = getattr(self, api_data.gui_init_fn) fn() return # Initializing the API with dependency injection. mod = importlib.import_module(api_data.module) cls = getattr(mod, api_data.class_name) self.api = cls() self.wait_for_connection( self.api.connect_api, message=api_data.connect_msg, event_loop_interval=api_data.event_loop_interval) def wait_for_connection(self, conn_fn: Callable[[], None], message: Optional[str] = None, event_loop_interval: int = 1000) -> None: """ Creates an APIConnecter instance and waits for the API to be available, or times out otherwise. """ self.event_loop_interval = event_loop_interval self.api_connecter = APIConnecter( conn_fn, message or "Waiting for connection") self.api_connecter.success.connect(self.on_conn_success) self.api_connecter.fail.connect(self.on_conn_fail) self.layout.addWidget(self.api_connecter) self.api_connecter.start() @Slot() def on_conn_fail(self) -> None: """ If the API failed to connect, the app will be closed. """ print("Timed out waiting for the connection") QCoreApplication.exit(1) @Slot(float) def on_conn_success(self, start_time: float) -> None: """ Once the connection has been established correctly, the API can be started properly. """ logging.info("Succesfully connected to the API") self.layout.removeWidget(self.api_connecter) del self.api_connecter # Initializing the optional audio synchronization extension, now # that there's access to the API's data. Note that this feature # is only available on Linux. if self.config.audiosync: from vidify.audiosync import AudiosyncWorker self.audiosync = AudiosyncWorker(self.api.player_name) if self.config.debug: self.audiosync.debug = True self.audiosync.success.connect(self.on_audiosync_success) self.audiosync.failed.connect(self.on_audiosync_fail) # Initializing the player and starting the first video self.setStyleSheet(f"background-color:{Colors.black};") self.layout.addWidget(self.player) self.play_video(self.api.artist, self.api.title, start_time) # Connecting to the signals generated by the API self.api.new_song_signal.connect(self.play_video) self.api.position_signal.connect(self.change_video_position) self.api.status_signal.connect(self.change_video_status) # Starting the event loop if it was initially passed as # a parameter. if self.event_loop_interval is not None: self.start_event_loop(self.api.event_loop, self.event_loop_interval) def start_event_loop(self, event_loop: Callable[[], None], ms: int) -> None: """ Starts a "manual" event loop with a timer every `ms` milliseconds. This is used with the SwSpotify API and the Web API to check every `ms` seconds if a change has happened, like if the song was paused. """ logging.info("Starting event loop") timer = QTimer(self) # Qt doesn't accept a method as the parameter so it's converted # to a function. if isinstance(event_loop, types.MethodType): timer.timeout.connect(lambda: event_loop()) else: timer.timeout.connect(event_loop) timer.start(ms) @Slot(bool) def change_video_status(self, is_playing: bool) -> None: """ Slot used for API updates of the video status. """ # If there is an audiosync thread running, this will pause the sound # recording and youtube downloading. if self.config.audiosync and self.audiosync.status != 'idle': self.audiosync.is_running = is_playing self.player.pause = not is_playing @Slot(int) def change_video_position(self, ms: int) -> None: """ Slot used for API updates of the video position. """ # Audiosync is aborted if the position of the video changed, since # the audio being recorded won't make sense. if self.config.audiosync and self.audiosync.status != 'idle': self.audiosync.abort() if not self.config.audiosync: self.player.seek(ms) @Slot(str, str, float) def play_video(self, artist: str, title: str, start_time: float) -> None: """ Slot used to play a video. This is called when the API is first initialized from this GUI, and afterwards from the event loop handler whenever a new song is detected. If an error was detected when downloading the video, the default one is shown instead. Both audiosync and youtubedl work in separate threads to avoid blocking the GUI. This method will start both of them. """ # Checking that the artist and title are valid first of all if self.api.artist in (None, '') and self.api.title in (None, ''): logging.info("The provided artist and title are empty.") self.on_youtubedl_fail() if self.config.audiosync: self.on_audiosync_fail() return # This delay is used to know the elapsed time until the video # actually starts playing, used in the audiosync feature. self.timestamp = start_time query = f"ytsearch:{format_name(artist, title)} Official Video" if self.config.audiosync: self.launch_audiosync(query) self.launch_youtubedl(query) def launch_audiosync(self, query: str) -> None: """ Starts the audiosync thread, that will call either self.on_audiosync_success, or self.on_audiosync_fail once it's finished. First trying to stop the previous audiosync thread, as only one audiosync thread can be running at once. Note: QThread.start() is guaranteed to work once QThread.run() has returned. Thus, this will wait until it's done and launch the new one. """ self.audiosync.abort() self.audiosync.wait() self.audiosync.youtube_title = query self.audiosync.start() logging.info("Started a new audiosync job") def launch_youtubedl(self, query: str) -> None: """ Starts a YoutubeDL thread that will call either self.on_youtubedl_success or self.on_youtubedl_fail once it's done. """ logging.info("Starting the youtube-dl thread") self.youtubedl = YouTubeDLWorker( query, self.config.debug, self.config.width, self.config.height) self.yt_thread = QThread() self.youtubedl.moveToThread(self.yt_thread) self.yt_thread.started.connect(self.youtubedl.get_url) self.youtubedl.success.connect(self.on_youtubedl_success) self.youtubedl.fail.connect(self.on_youtubedl_fail) self.youtubedl.finish.connect(self.yt_thread.exit) self.yt_thread.start() @Slot() def on_youtubedl_fail(self) -> None: """ If Youtube-dl for whatever reason failed to load the video, a fallback error video is shown, along with a message to let the user know what happened. """ print("The video wasn't found, either because of an issue with your" " internet connection or because the provided data was invalid." " For more information, enable the debug mode.") # Or playing the default video in the GUI self.player.start_video(Res.default_video, self.api.is_playing) @Slot(dict) def on_youtubedl_success(self, data: dict) -> None: # Obtaining the rest of the data from the API is_playing = self.api.is_playing try: position = self.api.position except NotImplementedError: position = 0 # Otherwise, playing the video inside the GUI. If audiosync is # enabled, the position is ignored. That way, it can stay # synchronized. url = get_direct_url(data) if self.player.DIRECT_URL \ else get_youtube_url(data) self.player.start_video(url, is_playing) if not self.config.audiosync: self.player.seek(position) # Finally, the lyrics are displayed. if self.config.lyrics: print(get_lyrics(self.api.artist, self.api.title)) @Slot() def on_audiosync_fail(self) -> None: """ Currently, when audiosync fails, nothing happens. """ logging.info("Audiosync module failed to return the lag") @Slot(int) def on_audiosync_success(self, lag: int) -> None: """ Slot used after the audiosync function has finished. It sets the returned lag in milliseconds on the player. This assumes that the song wasn't paused until this issue is fixed: https://github.com/vidify/audiosync/issues/12 """ logging.info("Audiosync module returned %d ms", lag) # The current API position according to what's being recorded. playback_delay = round((time.time() - self.timestamp) * 1000) \ - self.player.position lag += playback_delay # The user's custom audiosync delay. This is basically the time taken # until the module started recording (which may depend on the user # hardware and other things). Thus, it will almost always be a # negative value. lag += self.config.audiosync_calibration logging.info("Total delay is %d ms", lag) if lag > 0: self.player.seek(lag, relative=True) elif lag < 0: # If a negative delay is larger than the current player position, # the player position is set to zero after the lag has passed # with a timer. if self.player.position < -lag: self.sync_timer = QTimer(self) self.sync_timer.singleShot(-self.player.position - lag, lambda: self.player.seek(0)) else: self.player.seek(lag, relative=True) def init_spotify_web_api(self) -> None: """ SPOTIFY WEB API CUSTOM FUNCTION Note: the Tekore imports are done inside the functions so that Tekore isn't needed for whoever doesn't plan to use the Spotify Web API. """ from vidify.api.spotify.web import get_token from vidify.gui.api.spotify_web import SpotifyWebPrompt token = get_token(self.config.refresh_token, self.config.client_id, self.config.client_secret) if token is not None: # If the previous token was valid, the API can already start. logging.info("Reusing a previously generated token") self.start_spotify_web_api(token, save_config=False) else: # Otherwise, the credentials are obtained with the GUI. When # a valid auth token is ready, the GUI will initialize the API # automatically exactly like above. The GUI won't ask for a # redirect URI for now. logging.info("Asking the user for credentials") # The SpotifyWebPrompt handles the interaction with the user and # emits a `done` signal when it's done. self._spotify_web_prompt = SpotifyWebPrompt( self.config.client_id, self.config.client_secret, self.config.redirect_uri) self._spotify_web_prompt.done.connect(self.start_spotify_web_api) self.layout.addWidget(self._spotify_web_prompt) def start_spotify_web_api(self, token: 'RefreshingToken', save_config: bool = True) -> None: """ SPOTIFY WEB API CUSTOM FUNCTION Initializes the Web API, also saving them in the config for future usage (if `save_config` is true). """ from vidify.api.spotify.web import SpotifyWebAPI logging.info("Initializing the Spotify Web API") # Initializing the web API self.api = SpotifyWebAPI(token) api_data = find_module(APIS, 'SPOTIFY_WEB') self.wait_for_connection( self.api.connect_api, message=api_data.connect_msg, event_loop_interval=api_data.event_loop_interval) # The obtained credentials are saved for the future if save_config: logging.info("Saving the Spotify Web API credentials") self.config.client_secret = self._spotify_web_prompt.client_secret self.config.client_id = self._spotify_web_prompt.client_id self.config.refresh_token = token.refresh_token # The credentials prompt widget is removed after saving the data. It # may not exist because start_spotify_web_api was called directly, # so errors are taken into account. with suppress(AttributeError): self.layout.removeWidget(self._spotify_web_prompt) self._spotify_web_prompt.hide() del self._spotify_web_prompt
StarcoderdataPython
5071492
# -*- coding: utf-8 -*- """ Auto Self Report v3.1 Created on Fri Feb 26 16:34:04 2021 @author: <NAME>. Copyright (c) 2020-2021 <NAME>.. All rights reserved. """ """ 3.1 更新: 支持“提前唤醒 - 准时填报”功能 """ #********** #使用须知 #1. 使用此脚本需先安装Chrome浏览器,然后下载"chromedriver.exe"并将其添加至系统变量中,具体方法见'https://blog.csdn.net/qq_30583611/article/details/108932842' #2. 当然,尽管Steve在编写程序时已经尽量考虑到用户适配性进而减少了该脚本所依赖的python模块并大量使用try-except来避免可能存在的运行报错,但是想要使该脚本实现其基本功能,你至少需要准备好python 3,并在python.exe中使用"pip install selenium"命令为其安装selenium模块 #3. 设置定时任务的方法见'https://www.baidu.com/link?url=8oBylDtTMNyin0UJff5LVeMdYhi1wyZ5SpWyDmB5VOXkd0c73cpMuzX_SwETvsASEVLUi8beTCzQepLyumjyMa&wd=&eqid=b2c95c6a0004c09d0000000460019850' #4. 使用前请先填写下方的四个变量 #********** #在''中填入学号 ID = '' #在''中填入密码 Password = '' #在''中填入已知不可访问健康之路网站的wifi名称 Banned_Wifi_Name = '' #在''中填入备用wifi名称(此wifi需要曾经连过且不需要额外登陆操作) Spare_Wifi_Name = '' print("Copyright (c) 2020-2021 <NAME>.. All rights reserved.\n") print("正在执行Auto Self Report v3.1...\n") import time #import random import os # 阻止脚本运行 #os._exit(0) try: from selenium import webdriver except: i = '' while i != 'Y' or 'N': print("您的python缺少selenium模块,是否要现在为您安装?") i = input("Y: 请帮我安装selenium\nN: 我要自己安装\n") if i == 'Y': print("正在为您安装selenium模块...\n") try: os.system(f'pip install selenium') time.sleep(10) from selenium import webdriver except: print("出现未知错误,未能成功安装selenium模块,请您在python.exe中使用'ip install selenium'命令手动为其安装selenium模块后重新运行此程序\n") time.sleep(20) exit() elif i == 'N': print("请您在python.exe中使用'ip install selenium'命令手动为其安装selenium模块后重新运行此程序\n") time.sleep(20) exit() #检索未填报项目,并进行填报 def Search_Unreported(): print("正在检索未填报项目...\n") Unreported_Flag = 0 for i in range(1,63): try: temp = driver.find_element_by_xpath('//*[@id="Panel1_DataList1"]/ul/li[' + str(i) + ']') #print(temp.text) temp_str = temp.text str_len = len(temp_str) for j in range(0, str_len): if temp_str[j] == '(': left_index = j elif temp_str[j] == ')': right_index = j state_str = temp_str[left_index+1 : right_index] #print(state_str) if state_str == '未填报,请点击此处补报': Unreported_Flag = 1 print("已定位到未填报项目,正在进行填报...\n") try: driver.find_element_by_xpath('//*[@id="Panel1_DataList1"]/ul/li[' + str(i) + ']').click() except: pass #勾选"我承诺..." //*[@id="p1_ChengNuo-inputEl-icon"] driver.find_element_by_xpath('//*[@id="p1_ChengNuo-inputEl-icon"]').click() """#新版"每日一报"系统无需填写具体体温 #生成体温并填写 tempreture = '%.1f'%(random.uniform(36.0,36.9)) driver.find_element_by_xpath('//*[@id="p1_TiWen-inputEl"]').send_keys(str(tempreture)) """ #勾选"良好(体温不高于37.3)" //*[@id="fineui_0-inputEl-icon"] driver.find_element_by_xpath('//*[@id="fineui_0-inputEl-icon"]').click() #勾选"国内" //*[@id="fineui_5-inputEl-icon"] driver.find_element_by_xpath('//*[@id="fineui_5-inputEl-icon"]').click() #勾选"在上海" //*[@id="fineui_7-inputEl-icon"] driver.find_element_by_xpath('//*[@id="fineui_7-inputEl-icon"]').click() #勾选"住校" //*[@id="fineui_9-inputEl-icon"] time.sleep(0.5) driver.find_element_by_xpath('//*[@id="fineui_9-inputEl-icon"]').click() time.sleep(0.5) #勾选"不是家庭地址" //*[@id="fineui_12-inputEl-icon"] driver.find_element_by_xpath('//*[@id="fineui_12-inputEl-icon"]').click() """ #勾选"不在校" driver.find_element_by_xpath('//*[@id="fineui_5-inputEl-icon"]').click() #勾选"不到校" driver.find_element_by_xpath('//*[@id="fineui_10-inputEl-icon"]').click() #勾选"国内" driver.find_element_by_xpath('//*[@id="fineui_17-inputEl-icon"]').click() time.sleep(0.1) #勾选"不在上海" driver.find_element_by_xpath('//*[@id="fineui_8-inputEl-icon"]').click() """ """#网页会按照以前的记录默认勾选 #勾选"否" driver.find_element_by_xpath('//*[@id="fineui_21-inputEl-icon"]').click() driver.find_element_by_xpath('//*[@id="fineui_27-inputEl-icon"]').click() driver.find_element_by_xpath('//*[@id="fineui_17-inputEl-icon"]').click() driver.find_element_by_xpath('//*[@id="fineui_19-inputEl-icon"]').click() """ #点击提交按钮 //*[@id="p1_ctl01_btnSubmit"] driver.find_element_by_xpath('//*[@id="p1_ctl01_btnSubmit"]').click() time.sleep(0.8) #确认对话框-点击"确定" #driver.find_element_by_xpath('//*[@id="fineui_32"]').click() #//*[@id="fineui_42"] for psb_num in range(0, 1024): temp_xpath = '//*[@id="fineui_' + str(psb_num) + '"]' try: YorN = driver.find_element_by_xpath(temp_xpath) temp_str = YorN.text #print(temp_str) if temp_str == '确定': driver.find_element_by_xpath(temp_xpath).click() #print("点击了1号确定!") break except: pass time.sleep(0.2) #提交成功-"确定" 或 "现在还没到晚报时间"-确定 for psb_num in range(0, 1024): temp_xpath = '//*[@id="fineui_' + str(psb_num) + '"]' try: YorN = driver.find_element_by_xpath(temp_xpath) temp_str = YorN.text #print(temp_str) if temp_str == '确定': driver.find_element_by_xpath(temp_xpath).click() break except: pass #print("点击了2号确定!") time.sleep(0.2) try: #提交成功-"确定"后会回到首页,再次进入"报送历史"进行确认 driver.find_element_by_xpath('//*[@id="lnkReportHistory"]').click() i = 1 #print("已为您填报: " + temp_str[0 : left_index] + " 使用的体温为" + str(tempreture) + "\n") print("已为您填报: " + temp_str[0 : left_index] + "\n") except: """ #"现在还没到晚报时间"-确定后返回上一页 driver.back() print(temp_str[0 : left_index] + ' 由于"现在还没到晚报时间"原因,未能填报\n') """ pass except: pass if Unreported_Flag == 0: print("您没有未填报的记录!\n") #获取当前连接的WIFI名称 - 方法来源: https://cloud.tencent.com/developer/news/311861 def Get_CurrentSSID(): from subprocess import check_output print("正在调用'showssid.cmd'获取当前网络信息...") scanoutput = check_output([r"C:/showSSID.cmd"]) #须将"showSSID.cmd"文件置于同一文件路径下 currentSSID = scanoutput.decode() currentSSID = currentSSID[0:3] print(currentSSID) return currentSSID #获取现在时刻的时间戳 def Get_LocalTime(): return int(time.mktime(time.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), "%Y-%m-%d %H:%M:%S"))) #计算00:00时间戳 def Find_00(): stamp_localTime = int(time.mktime(time.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), "%Y-%m-%d %H:%M:%S"))) stamp_next_zero = stamp_localTime + 86400 temp_array = time.localtime(stamp_next_zero) str_next_zero = time.strftime('%Y-%m-%d', temp_array) + ' 00:00:00' temp_array = time.strptime(str_next_zero, '%Y-%m-%d %H:%M:%S') stamp_next_zero = int(time.mktime(temp_array)) return stamp_next_zero #计算次日00:00时间戳(参考时间) stamp_standard = Find_00() #检查网络连接 Wifi_Change_Flag = 0 #0:程序未修改过WiFi设置;1:修改过了 Change_Success_Flag = 0 try: if Get_CurrentSSID() == Banned_Wifi_Name: print("您目前连接的无线网络为" + Banned_Wifi_Name + ",无法进行每日一报,将为您自动连接到" + Spare_Wifi_Name + "...\n") #自动改连其他网络 os.system('netsh wlan connect name=' + '"' + Spare_Wifi_Name + '"') Wifi_change_flag = 1 time.sleep(10) while Get_CurrentSSID() == Banned_Wifi_Name: os.system('netsh wlan connect name=' + '"' + Spare_Wifi_Name + '"') Wifi_change_flag = 1 time.sleep(10) except: print("由于未知原因,未能成功连接备用网络,预计无法打开健康之路页面!\n请检查设置后重试\n") #每秒核验时间准时启动主进程 print("脚本已做好准备,即将于00:00准时为您填报...\n") while True: stamp_localtime = Get_LocalTime() if stamp_standard <= stamp_localtime: break elif stamp_standard - stamp_localtime > 60: time.sleep(60) else: time.sleep(1) #打开Chrome浏览器 print("正在打开Chrome浏览器...\n") try: driver = webdriver.Chrome() print("已成功打开Chrome浏览器\n") except: print("未能打开Chrome浏览器,请根据本文件前的'使用须知'第一条检查无误后重新运行此程序\n") time.sleep(20) exit() #访问健康之路网页 time.sleep(1) print("正在跳转健康之路网页...\n") driver.get('https://selfreport.shu.edu.cn') #填写账号密码 print("正在填写账号密码...\n") driver.find_element_by_xpath('//*[@id="username"]').send_keys(ID) driver.find_element_by_xpath('//*[@id="password"]').send_keys(Password) time.sleep(0.5) #点击"登陆" driver.find_element_by_xpath('//*[@id="submit"]').click() print("登陆成功!\n") time.sleep(0.5) #进入"报送历史" driver.find_element_by_xpath('//*[@id="lnkReportHistory"]').click() time.sleep(0.5) #检索未填报项目,并进行填报 Search_Unreported() #检查并恢复WiFi设置 if Wifi_Change_Flag == 1: try: os.system('netsh wlan connect name=' + '"' + Banned_Wifi_Name + '"') except: print("由于未知原因未能恢复WiFi设置,请您手动恢复!\n") print("已为您完成每日一报!\n") #通过当前时间戳与唤醒时间戳的差值判断是否执行休眠(不可行,因为无法获取唤醒时间戳) """ #获取系统开机时间 - 方法来源: https://www.cnblogs.com/hushaojun/p/8202850.html def Get_OSStartTime(): import psutil return int(time.mktime(time.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime(psutil.boot_time())), "%Y-%m-%d %H:%M:%S"))) psutil.memoize_when_activated #获取现在时刻的时间 def Get_LocalTime(): return int(time.mktime(time.strptime(time.strftime('%Y-%m-%d %H:%M:%S', time.localtime()), "%Y-%m-%d %H:%M:%S"))) #判断是否是为每日两报而自动唤醒,从而确定是否要执行完程序自动睡眠 try: local_time = Get_LocalTime() OS_StartTime = Get_OSStartTime() if local_time - OS_StartTime <= 300: #如果当前时间与开机时间的差值小于5min,则倒计时30s后"shutdown -h" i = 0 while i <= 30: print(str(30 - i) + '秒后将执行休眠命令"shutdown -h",现在关闭此程序可阻止休眠执行...\n') time.sleep(1) driver.close() #执行休眠命令 os.system(f'shutdown -h') exit() else: driver.close() exit() except: driver.close() exit() """ #完成填报后的等待一段时间,若用户不执行特定操作则执行休眠 time_remained = 600 #预留10分钟 while time_remained >= 0: print("请关闭程序窗口,否则将于" + str(time_remained) + "秒后自动休眠电脑") time.sleep(60) time_remained = time_remained - 60 #执行休眠命令 os.system(f'shutdown -h')
StarcoderdataPython
5018889
<filename>nova/api/openstack/compute/server_external_events.py # Copyright 2014 Red Hat, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); you may # not use this file except in compliance with the License. You may obtain # a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, WITHOUT # WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the # License for the specific language governing permissions and limitations # under the License. from oslo_log import log as logging import webob from nova.api.openstack.compute.schemas import server_external_events from nova.api.openstack import extensions from nova.api.openstack import wsgi from nova.api import validation from nova import compute from nova import exception from nova.i18n import _ from nova.i18n import _LI from nova import objects LOG = logging.getLogger(__name__) ALIAS = 'os-server-external-events' authorize = extensions.os_compute_authorizer(ALIAS) class ServerExternalEventsController(wsgi.Controller): def __init__(self): self.compute_api = compute.API() super(ServerExternalEventsController, self).__init__() @extensions.expected_errors((400, 403, 404)) @wsgi.response(200) @validation.schema(server_external_events.create) def create(self, req, body): """Creates a new instance event.""" context = req.environ['nova.context'] authorize(context, action='create') response_events = [] accepted_events = [] accepted_instances = set() instances = {} result = 200 body_events = body['events'] for _event in body_events: client_event = dict(_event) event = objects.InstanceExternalEvent(context) event.instance_uuid = client_event.pop('server_uuid') event.name = client_event.pop('name') event.status = client_event.pop('status', 'completed') event.tag = client_event.pop('tag', None) instance = instances.get(event.instance_uuid) if not instance: try: instance = objects.Instance.get_by_uuid( context, event.instance_uuid) instances[event.instance_uuid] = instance except exception.InstanceNotFound: LOG.debug('Dropping event %(name)s:%(tag)s for unknown ' 'instance %(instance_uuid)s', {'name': event.name, 'tag': event.tag, 'instance_uuid': event.instance_uuid}) _event['status'] = 'failed' _event['code'] = 404 result = 207 # NOTE: before accepting the event, make sure the instance # for which the event is sent is assigned to a host; otherwise # it will not be possible to dispatch the event if instance: if instance.host: accepted_events.append(event) accepted_instances.add(instance) LOG.info(_LI('Creating event %(name)s:%(tag)s for ' 'instance %(instance_uuid)s'), {'name': event.name, 'tag': event.tag, 'instance_uuid': event.instance_uuid}) # NOTE: as the event is processed asynchronously verify # whether 202 is a more suitable response code than 200 _event['status'] = 'completed' _event['code'] = 200 else: LOG.debug("Unable to find a host for instance " "%(instance)s. Dropping event %(event)s", {'instance': event.instance_uuid, 'event': event.name}) _event['status'] = 'failed' _event['code'] = 422 result = 207 response_events.append(_event) if accepted_events: self.compute_api.external_instance_event( context, accepted_instances, accepted_events) else: msg = _('No instances found for any event') raise webob.exc.HTTPNotFound(explanation=msg) # FIXME(cyeoh): This needs some infrastructure support so that # we have a general way to do this robj = wsgi.ResponseObject({'events': response_events}) robj._code = result return robj class ServerExternalEvents(extensions.V21APIExtensionBase): """Server External Event Triggers.""" name = "ServerExternalEvents" alias = ALIAS version = 1 def get_resources(self): resource = extensions.ResourceExtension(ALIAS, ServerExternalEventsController()) return [resource] def get_controller_extensions(self): return []
StarcoderdataPython
3230714
<reponame>moibenko/enstore #!/usr/bin/env python ############################################################################### # # $Id$ # Plot Small Files Aggregation Statistics # ############################################################################### # system imports import pg import os import sys import time import types # enstore imports import histogram import enstore_plotter_module import enstore_constants WEB_SUB_DIRECTORY = enstore_constants.SFA_STATS_PLOTS_SUBDIR class SFAStatsPlotterModule(enstore_plotter_module.EnstorePlotterModule): def __init__(self,name,isActive=True): enstore_plotter_module.EnstorePlotterModule.__init__(self,name,isActive) def create_histogram(self, name, title, label): h = histogram.Ntuple(name, title) h.set_time_axis(True) h.set_marker_type("impulses") h.set_line_width(10) h.set_time_axis_format("%m-%d") h.set_ylabel(label) h.set_xlabel("month-day") return h def book(self, frame): cron_dict = frame.get_configuration_client().get("crons", {}) self.html_dir = cron_dict.get("html_dir", "") self.plot_dir = os.path.join(self.html_dir, enstore_constants.PLOTS_SUBDIR) if not os.path.exists(self.plot_dir): os.makedirs(self.plot_dir) self.web_dir = os.path.join(self.html_dir, WEB_SUB_DIRECTORY) if not os.path.exists(self.web_dir): os.makedirs(self.web_dir) dbInfo = frame.get_configuration_client().get('database') if dbInfo == None: print "No database info" sys.exit(1) #Open conection to the Enstore DB. try: # proper default values are supplied by edb.FileDB constructor self.db = pg.DB(host = dbInfo.get('dbhost', 'localhost'), dbname= dbInfo.get('dbname', 'enstoredb'), port = dbInfo.get('dbport', 5432), user = dbInfo.get('dbuser_reader', 'enstore_reader')) except: exc_type, exc_value = sys.exc_info()[:2] message = str(exc_type)+' '+str(exc_value)+' IS POSTMASTER RUNNING?' print message print "CAN NOT ESTABLISH DATABASE CONNECTION ... QUIT!" sys.exit(1) self.files_cached_histogram = self.create_histogram(self.name+"_files_cached", "Files Cached", "Number of Files Cached") self.files_purged_histogram = self.create_histogram(self.name+"_files_purged", "Files Purged", "Number of Files Purged") self.files_archived_histogram = self.create_histogram(self.name+"_files_archived", "Files Archived", "Number of Files Archived") def fill(self, frame): # Files cached and purged histograms ################################################# hc = self.files_cached_histogram hp = self.files_purged_histogram files_cached_purged_query = "select cache_status, count(*), sum(size), cache_mod_time::date from file where cache_status in ('PURGED','CACHED') and bfid!=package_id and cache_mod_time>CURRENT_TIMESTAMP - interval '1 mons' group by cache_mod_time::date, cache_status order by cache_mod_time::date;" res = self.db.query(files_cached_purged_query).getresult() cached_data_file = hc.get_data_file() purged_data_file = hp.get_data_file() for row in res: data_file = None if row[0] == 'CACHED': h = hc data_file = cached_data_file elif row[0] == 'PURGED': h = hp data_file = purged_data_file if data_file: data_file.write("%d %f %s\n"%(row[1], row[2]/enstore_constants.MB, row[3])) h.entries += 1 # temporary work around for Ntuple cached_data_file.close() purged_data_file.close() ################################################## # Files archived histogram ################################################# ha = self.files_archived_histogram files_archived_query = "select count(bfid) , sum(size), archive_mod_time::date from file where archive_status='ARCHIVED' and bfid!=package_id and archive_mod_time between CURRENT_TIMESTAMP - interval '1 mons' and CURRENT_TIMESTAMP group by archive_mod_time::date order by archive_mod_time::date;" total_files_archived_query = "select count(*), sum(size) from file where archive_status='ARCHIVED' and bfid!=package_id;" res = self.db.query(files_archived_query).getresult() data_file = ha.get_data_file() for row in res: data_file.write("%d %f %s\n"%(row[0], row[1]/enstore_constants.MB, row[2])) ha.entries += 1 # temporary work around for Ntuple data_file.close() res= self.db.query(total_files_archived_query).getresult() self.total_files_archived, self.total_bytes_archived = res[0] self.db.close() def plot(self): h = self.files_cached_histogram if h.n_entries() > 0: # Files cached plot h.plot("3:1", directory = self.web_dir) # Bytes cached plot h.set_title("Bytes Cached") h.set_name(self.name+ "_bytes_cached") h.set_ylabel("Bytes Cached (MB)") h.plot("3:2", directory = self.web_dir) h = self.files_archived_histogram if h.n_entries() > 0: # Files archived plot h.set_title("%s (Total Files=%s)"%(h.get_title(),self.total_files_archived)) h.plot("3:1", directory = self.web_dir) # Bytes archived plot h.set_title("Bytes Archived (Total Bytes=%.2f GB)"%(self.total_bytes_archived/enstore_constants.GB,)) h.set_name(self.name+ "_bytes_archived") h.set_ylabel("Bytes Archived (MB)") h.plot("3:2", directory = self.web_dir) h = self.files_purged_histogram if h.n_entries() > 0: # Files purged plot h.plot("3:1", directory = self.web_dir) # Bytes archived plot h.set_title("Bytes Purged") h.set_name(self.name+ "_bytes_purged") h.set_ylabel("Bytes Purged (MB)") h.plot("3:2", directory = self.web_dir) class SFATarRatesPlotterModule(enstore_plotter_module.EnstorePlotterModule): def __init__(self, name, isActive=True, date=None, data_file=None, grep_pattern=None, tmp_file=None): """ @param name - plot name @param date - get data for this date if specified @param data_file - file where data is kept/saved @param grep_pattern - pattern to grep in enstore log files @param tmp_file - file to temporary save grep results """ enstore_plotter_module.EnstorePlotterModule.__init__(self,name,isActive) self.name = name self.rate_histograms = {} self.rate_ntuples = {} self.date = date self.data_file = data_file self.data_file_name = os.path.basename(self.data_file) self.pattern = grep_pattern self.tmp_file = tmp_file def book(self, frame): cron_dict = frame.get_configuration_client().get("crons", {}) self.html_dir = cron_dict.get("html_dir", "") self.plot_dir = os.path.join(self.html_dir, enstore_constants.PLOTS_SUBDIR) if not os.path.exists(self.plot_dir): os.makedirs(self.plot_dir) self.web_dir = os.path.join(self.html_dir, WEB_SUB_DIRECTORY) if not os.path.exists(self.web_dir): os.makedirs(self.web_dir) self.csc = frame.get_configuration_client() log_server_info = self.csc.get('log_server') if log_server_info == None: sys.exit("No log server info") self.log_file_path = log_server_info.get('log_file_path') def _get_migrators(self): migrators = self.csc.get_migrators() for migrator in migrators: # get log names migrator_configuration = self.csc.get(migrator, None) if migrator_configuration: self.log_names.append(migrator_configuration['logname']) def fill(self, frame): self.log_names = [] self._get_migrators() # enstore log file name if not self.date: tm = time.localtime() # get the local time lf_name = 'LOG-%04d-%02d-%02d' % (tm.tm_year, tm.tm_mon, tm.tm_mday) else: lf_name = 'LOG-%s' % (self.date) path = os.path.join(self.log_file_path, lf_name) if self.data_file: # try to append data for the previous day yesterday = time.time() - 24*60*60 date = time.strftime("%Y-%m-%d", time.localtime(yesterday)) log_file_name = "-".join(("LOG", date)) log_file_path = os.path.join(self.log_file_path, log_file_name) # check if there already are entires for this date in self.data_file c = "grep %s %s > /dev/null"%(log_file_name, self.data_file) rc = os.system(c) if rc != 0: # not found cmd = "grep -H '%s' %s >> %s"%(self.pattern, log_file_path, self.data_file) os.system(cmd) cmd = "grep -H '%s' %s | sed -e 's/.*LOG-//' | sed -e 's/:/ /' | awk '{print $1,$2,$7,$13,$16}' > %s"% \ (self.pattern, self.data_file, self.tmp_file) else: cmd = None else: # create a temporary file from log file cmd = "grep -H '%s' %s | sed -e 's/.*LOG-//' | sed -e 's/:/ /' | awk '{print $1,$2,$7,$13,$16}' > %s"% \ (self.pattern, path, self.tmp_file) if cmd: os.system(cmd) for log_name in self.log_names: #cmd = "fgrep %s /tmp/tar_rates > /tmp/%s_tar_rates"%(log_name, log_name) cmd = "fgrep %s %s > /tmp/%s_%s"%(log_name, self.tmp_file, log_name, os.path.basename(self.tmp_file)) os.system(cmd) # find min / max cmd = "sort -g -k 5 /tmp/%s_%s | sed -n '1p;$p' | awk '{print $5}'> /tmp/%s_min_max_%s"% \ (log_name, os.path.basename(self.tmp_file), log_name, self.data_file_name,) os.system(cmd) try: mm = open("/tmp/%s_min_max_%s"%(log_name, self.data_file_name), 'r') except OSError, IOError: continue try: min = float(mm.readline()) max = float(mm.readline()) except ValueError: continue nbins = int(max-min) if nbins == 0: max = min + 1 nbins = 1 self.rate_histograms[log_name] = histogram.Histogram1D(log_name+"_%s_rates"%(self.data_file_name,), "%s %s"%(log_name,self.name),nbins, min, max) self.rate_histograms[log_name].set_marker_type("impulses") self.rate_histograms[log_name].set_line_width(10) self.rate_histograms[log_name].set_xlabel("Rates [MB/s]") self.rate_histograms[log_name].set_ylabel("Entries") self.rate_ntuples[log_name] = histogram.Ntuple(log_name+"_%s_rate_vs_date"%(self.data_file_name,), "%s %s"%(log_name,self.name)) self.rate_ntuples[log_name].set_time_axis() self.rate_ntuples[log_name].set_time_axis_format("%y-%m-%d") df= self.rate_ntuples[log_name].get_data_file() self.rate_ntuples[log_name].set_opt_stat() self.rate_ntuples[log_name].set_ylabel("Rates [MB/s]") self.rate_ntuples[log_name].set_xlabel("date") data_file = self.rate_histograms[log_name].get_data_file() in_f = open("/tmp/"+log_name+"_%s_rates"%(self.data_file_name,), 'r') ln = in_f.readline() while ln: a = ln.split(' ') self.rate_histograms[log_name].fill(float(a[4])) df.write("%s %s %f \n"%(a[0], a[1], float(a[4]))) self.rate_ntuples[log_name].entries += 1 ln = in_f.readline() data_file.close() def plot(self): for log_name in self.log_names: try: self.rate_histograms[log_name].plot(directory = self.web_dir) self.rate_ntuples[log_name].get_data_file().flush() self.rate_ntuples[log_name].get_data_file().close() self.rate_ntuples[log_name].plot("1:3",directory = self.web_dir) except: pass
StarcoderdataPython
8168698
<filename>usage3.py<gh_stars>1-10 # imports import seaborn as sns import matplotlib.pyplot as plt import numpy as np from polire import CustomInterpolator import xgboost from sklearn.ensemble import RandomForestRegressor from sklearn.linear_model import LinearRegression from sklearn.neighbors import KNeighborsRegressor from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import Matern # sample data X = [[0, 0], [0, 3], [3, 0], [3, 3]] y = [0, 1.5, 1.5, 3] X = np.array(X) y = np.array(y) for r in [ CustomInterpolator(xgboost.XGBRegressor()), CustomInterpolator(RandomForestRegressor()), CustomInterpolator(LinearRegression(normalize=True)), CustomInterpolator(KNeighborsRegressor(n_neighbors=3, weights="distance")), CustomInterpolator(GaussianProcessRegressor( normalize_y=True, kernel=Matern())) ]: r.fit(X, y) Z = r.predict_grid((0, 3), (0, 3)).reshape(100, 100) sns.heatmap(Z) plt.title(r) plt.show() plt.close()
StarcoderdataPython
3540615
<filename>classifier.py<gh_stars>1-10 def classifier(diseases, symptoms): if len(symptoms) == 0: print("Empty symptoms list. Try again.") return [] if(len(diseases) == 0): print("No matching disease found") return [] max_match_count = 0 min_match_count = 500 for disease in diseases: symp = disease.get_symp() match_count = 0 unmatch_count = 0 for item in symp: for symptom in symptoms: if symptom==item : match_count = match_count+1 else: unmatch_count = unmatch_count+1 if match_count > max_match_count: max_match_count = match_count if match_count < min_match_count: min_match_count = match_count disease_match_bucket = [[]] #print("max match"+str(max_match_count)) #print("Min match"+str(min_match_count)) for x in range(max_match_count-min_match_count+1): disease_match_bucket.append([]) #print((disease_match_bucket)) disease_match_bucket.remove([]) for disease in diseases: symp = disease.get_symp() match_count = 0 unmatch_count = 0 for item in symp: for symptom in symptoms: if symptom==item: match_count = match_count+1 else: unmatch_count = unmatch_count+1 disease_match_bucket[max_match_count-match_count].append(disease) #print(len(disease_match_bucket)) most_pot_diseases = disease_match_bucket[0] maybe_pot_diseases = [] if(len(disease_match_bucket) > 1): maybe_pot_diseases = disease_match_bucket[1] #print(disease_match_bucket) #print(len(disease_match_bucket)) score = [] i = 0 #print(most_pot_diseases) #print(maybe_pot_diseases) for most_pot_disease in most_pot_diseases: pd = most_pot_disease.get_pd() loc = most_pot_disease.get_loc() cli = most_pot_disease.get_cli() score.append(max_match_count*1200 + pd * 0.3 + loc * 0.35 + cli * 0.35) print("score " + str(max_match_count*1200 + pd * 0.3 + loc * 0.35 + cli * 0.35) + " for " + most_pot_disease.get_name()) i = i+1 for maybe_pot_disease in maybe_pot_diseases: pd = maybe_pot_disease.get_pd() loc = maybe_pot_disease.get_loc() cli = maybe_pot_disease.get_cli() score.append((max_match_count - 1) * 1000 + pd * 0.3 + loc * 0.35 + cli * 0.35) print("score " + str( (max_match_count - 1) * 1000 + pd * 0.3 + loc * 0.35 + cli * 0.35) + " for " + maybe_pot_disease.get_name()) i = i + 1 max_score = 0 max_score_i = 0 #print(i) #print(len(score)) i=0 for x in score: if(x > max_score): max_score = score[i] max_score_i = i # print(pot_diseases[i].get_name()+" score "+str(x)) i = i+1 if(max_score_i < len(most_pot_diseases)): #print("The most likely disease is " + most_pot_diseases[max_score_i].get_name()) return most_pot_diseases[max_score_i].get_name() else: #print("The most likely disease is " + maybe_pot_diseases[max_score_i-len(most_pot_diseases)].get_name()) return maybe_pot_diseases[max_score_i-len(most_pot_diseases)].get_name()
StarcoderdataPython
4862381
<gh_stars>0 n = int(input()) # I can go from a to every number in to[a] to = [list() for i in range(n+1)] distance = [0 for i in range(n+1)] for i in range(1, n+1): a = list(map(int, input().split())) for j in range(1, a[0]+1): to[i].append(a[j]) queue = list() queue.append(1) distance[1] = 1 shortest = 999999999 while queue: current = queue.pop(0) if not to[current]: shortest = min(shortest, distance[current]) for nx in to[current]: if not distance[nx]: queue.append(nx) distance[nx] = distance[current]+1 ok = True for i in range(1, n+1): if not distance[i]: ok = False print('Y' if ok else 'N') print(shortest)
StarcoderdataPython
9702401
# -*- coding: utf-8 -*- """ Created on Mon Jun 11 11:32:27 2018 @author: gregz """ import glob import os.path as op import numpy as np import sys from astropy.io import fits from distutils.dir_util import mkpath from input_utils import setup_parser, set_daterange, setup_logging from utils import biweight_location from scipy.interpolate import interp1d def write_fits(hdu, name): try: hdu.writeto(name, overwrite=True) except: hdu.writeto(name, clobber=True) def build_filenames(date, args): ''' Build directory structure and search for unique observations, and return a single file for each observation to examine the header. ''' basedir = op.join(args.rootdir, date, args.instrument, args.instrument + '0000*', 'exp*', args.instrument) filenames = sorted(glob.glob(op.join(basedir, 'm*_%s_LL.fits' % args.triplet))) dirnames = [op.dirname(fn) for fn in filenames] unique_dirnames, ind = np.unique(dirnames, return_index=True) return list(unique_dirnames) def make_avg_spec(wave, spec, binsize=35, knots=None): ''' Make Average spectrum with biweight binning ''' sel = spec > 0.0 wave = wave[sel] * 1. spec = spec[sel] * 1. ind = np.argsort(wave.ravel()) if wave.ndim == 1: N = len(wave) else: N = wave.shape[0] * wave.shape[1] wchunks = np.array_split(wave.ravel()[ind], N / binsize) schunks = np.array_split(spec.ravel()[ind], N / binsize) nwave = np.array([np.mean(chunk) for chunk in wchunks]) nspec = np.array([biweight_location(chunk) for chunk in schunks]) return nwave, nspec def safe_division(num, denom, eps=1e-8, fillval=0.0): good = np.isfinite(denom) * (np.abs(denom) > eps) div = num * 0. if num.ndim == denom.ndim: div[good] = num[good] / denom[good] div[~good] = fillval else: div[:, good] = num[:, good] / denom[good] div[:, ~good] = fillval return div def sky_subtract(wave, spec, ftf): newspec = safe_division(spec, ftf) nwave, nspec = make_avg_spec(np.array(wave, dtype='float64'), np.array(newspec, dtype='float64')) I = interp1d(nwave, nspec, fill_value='extrapolate', bounds_error=False, kind='quadratic') skysub = spec * 0. for i in np.arange(wave.shape[0]): skysub[i] = spec[i] - I(wave[i]) * ftf[i] return skysub def get_image(fn): F = fits.open(fn) imagetype = F[0].header['IMAGETYP'].replace(' ', '') if imagetype == 'sci': S = F['spectrum'].data * 1. W = F['wavelength'].data * 1. # xarray = np.arange(S.shape[1]) chunks = np.array_split(S, 20, axis=1) # xchunks = np.array([np.mean(x) for x in np.array_split(xarray, 20)]) avg = np.array([biweight_location(chunk, axis=(1,)) for chunk in chunks]) # I = interp1d(xchunks, avg.swapaxes(0, 1), kind='quadratic', # bounds_error=False, fill_value='extrapolate') # norm = I(xarray) normavg = biweight_location(avg, axis=(1,)) divnorm = avg / normavg[:, np.newaxis] netnorm = biweight_location(normavg) norm = biweight_location(divnorm, axis=(0,)) * netnorm return S / norm[:, np.newaxis], W, norm, S else: return None, None, None, None def build_residual_frame(dir_list, amp, args, dateb, datee): # Create empty lists for the left edge jump, right edge jump, and structure sci_list = [] org_list = [] norm_list = [] for directory in dir_list: fn = op.join(directory, 'multi_%s_%s.fits' % (args.triplet, amp)) S, W, N, O = get_image(fn) if S is not None: sci_list.append(S) norm_list.append(N) org_list.append(O) if not len(sci_list): args.log.warning('No reduced frames found for date range given') return None args.log.info('Number of sci frames from %s-%s for %s: %i' % (dateb, datee, amp, len(sci_list))) small_array = np.array(norm_list) orig_array = np.array(org_list) del org_list big_array = np.array(sci_list) del sci_list func = biweight_location mastersci = func(big_array, axis=(0,)) # Make sky model from average sky nwave, nspec = make_avg_spec(np.array(W, dtype='float64'), np.array(mastersci, dtype='float64')) I = interp1d(nwave, nspec, fill_value='extrapolate', bounds_error=False, kind='quadratic') ftf = W * 0. for fib in np.arange(W.shape[0]): ftf[fib] = (mastersci[fib] - I(W[fib])) / I(W[fib]) # Get average norm X = biweight_location(small_array, axis=(1,))[:, np.newaxis] norm_of_norms = biweight_location(small_array / X, axis=(0,)) X = biweight_location(small_array / norm_of_norms[np.newaxis, :], axis=(0,)) norm_of_norms = biweight_location(small_array / X, axis=(0,)) master_fiber_to_fiber = ftf + norm_of_norms[:, np.newaxis] master_fiber_to_fiber[master_fiber_to_fiber < 0.2] = 0.0 skysub_list = [] for i, orig in enumerate(orig_array): args.log.info('Making Sky Subtracted frame %i' % (i + 1)) skysub_list.append(sky_subtract(W, orig, master_fiber_to_fiber)) sky_array = np.array(skysub_list) a, b = master_fiber_to_fiber.shape hdu = fits.PrimaryHDU(np.array(master_fiber_to_fiber, dtype='float32')) hdu1 = fits.ImageHDU(np.array(W, dtype='float32')) hdu2 = fits.ImageHDU(np.array(small_array, dtype='float32')) hdu3 = fits.ImageHDU(np.array(sky_array, dtype='float32')) mkpath(op.join(args.folder, dateb)) args.log.info('Writing master_residual_%s_%s.fits' % (args.triplet, amp)) hdu.header['OBJECT'] = '%s-%s' % (dateb, datee) hdu.header['EXTNAME'] = 'fiber_to_fiber' hdu1.header['EXTNAME'] = 'wavelength' hdu2.header['EXTNAME'] = 'normalization' hdu3.header['EXTNAME'] = 'skysub' hdulist = fits.HDUList([hdu, hdu1, hdu2, hdu3]) write_fits(hdulist, op.join(args.folder, dateb, 'master_residual_%s_%s.fits' % (args.triplet, amp))) parser = setup_parser() parser.add_argument("-f", "--folder", help='''Output folder''', type=str, default='residuals') parser.add_argument("-m", "--maxnum", help='''Maximum number of bias frames in masterbias''', type=int, default=100) parser.add_argument("-tr", "--triplet", help='''Triplet of the specid, ifuslot, ifuid''', type=str, default=None) amps = ['LL', 'LU', 'RL', 'RU'] args = parser.parse_args(args=None) args.log = setup_logging(logname='build_master_bias') args = set_daterange(args) if args.triplet is None: args.log.error('Please set the "--triplet" argument.') sys.exit(1) filenames = [] for date in args.daterange: date = '%04d%02d%02d' % (date.year, date.month, date.day) filenames = filenames + build_filenames(date, args) date_begin = args.daterange[0] date_end = args.daterange[-1] date_begin = '%04d%02d%02d' % (date_begin.year, date_begin.month, date_begin.day) date_end = '%04d%02d%02d' % (date_end.year, date_end.month, date_end.day) args.log.info('Length of filenames found for %s-%s: %i' % (date_begin, date_end, len(filenames))) if (len(filenames) % args.maxnum) == 0: nbins = len(filenames) / args.maxnum else: nbins = len(filenames) / args.maxnum + 1 if nbins == 0: args.log.warning('No files found for %s on %s-%s' % (args.triplet, date_begin, date_end)) sys.exit(1) chunks = np.array_split(filenames, nbins) for chunk in chunks: bases = [chunk[0], chunk[-1]] dates = [] for base in bases: base0 = str(base) for i in np.arange(4): base0 = op.dirname(base0) dates.append(op.basename(base0)) for amp in amps: build_residual_frame(chunk, amp, args, dates[0], dates[1])
StarcoderdataPython
6608859
## Automatically adapted for numpy.oldnumeric Jul 23, 2007 by ######################################################################### # # Date: Dec 2004 Authors: <NAME> # # <EMAIL> # # The Scripps Research Institute (TSRI) # Molecular Graphics Lab # La Jolla, CA 92037, USA # # Copyright: <NAME>, and TSRI # ######################################################################### # latest working version of matplotlib is 0.87.7 using numpy 1.0.3 # latest working version of matplotlib is 0.87.6 using Numeric 23.8 # (matplotlib 0.87.7 has a small bug using Numeric 23.8) # there are multiple bugs in matplotlib when using Numeric 24.2 #TODO: # - add and verify controls such as size, labels, legends etc # - maybe encapsulate all these common options into a single node # - alpha values per axis # - use axes rather than subplot # try: import matplotlib except: import warnings import sys if sys.platform == 'linux2': warnings.warn("""to use matplotlib, you need first to install openssl the mgltools 32 bit linux binaries need openssl version 0.9.7 the mgltools 64 bit linux binaries need openssl version 0.9.8 you can have both openssl versions (0.9.7 and 0.9.8) installed on your computer. """, stacklevel=2) import Tkinter import types import weakref import Pmw,math,os, sys from numpy.oldnumeric import array from matplotlib.colors import cnames from matplotlib.lines import Line2D,lineStyles,TICKLEFT, TICKRIGHT, TICKUP, TICKDOWN #from matplotlib.transforms import Value from matplotlib import rcParams #mplversion = int(matplotlib.__version__.split(".")[2]) mplversion = map(int, matplotlib.__version__.split(".")) #print "mplversion:", mplversion """ This module implements Vision nodes exposing matplotlib functionatility. MPLBaseNE: --------- The class provides a base class for all nodes exposing matplotlib functionality its purpose is to to create the attributes described below and implement methods shared by all nodes. Attributes: self.figure = None: # node's figure object # This attribute always points to the matplotlib Figure object which has # a FigureCanvasTkAgg object in its .canvas attribute # self.canvas FigureCanvasTkAgg self.axes = None # This attribute points to the matplotlib Axes instance used by this node self.axes.figure # figure in which the axes is currently drawn Methods: def createFigure(self, master=None, width=None, height=None, dpi=None, facecolor=None, edgecolor=None, frameon=None, packOpts=None, toolbar=True): # This method is used by all nodes if they need to create a Figure object # from the matplotlib library and a FigureCanvasTkAgg object for this # figure. def setFigure(self, figure): # This method place the node's axes object into the right Figure def beforeRemovingFromNetwork(self): # this method is called when a node is deleted from a network. Its job is # to delete FigureCanvasTkAgg and Axes when appropriate. MPLFigure: ----------- The MPLFigure node allows the creation of a plotting area in which one or more Axes can be added, where an Axes is a 2D graphical representation of a data set (i.e. 2D plot). A 'master' can be apecified to embed the figure in other panels. This node provides control over parameter that apply to the MPLFigure such, width, height, dpi, etc. Plotting Node: ------------- Plotting nodes such as Histogram, Plot, Scatter, Pie, etc. take adtasets and render them as 2D plots. They alwas own the axes. If the data to be rendered is the only input to these nodes, they will create a default Figure, add a default Plot2D to this figure, and draw the data in this default 2D plot. """ from mglutil.util.callback import CallBackFunction from NetworkEditor.widgets import TkPortWidget, PortWidget from mglutil.gui.BasicWidgets.Tk.thumbwheel import ThumbWheel from Vision import UserLibBuild from NetworkEditor.items import NetworkNode # make sure Tk is used as a backend if not 'matplotlib.backends' in sys.modules: matplotlib.use('TkAgg') from matplotlib.backends.backend_tkagg import FigureCanvasTkAgg from matplotlib.backends.backend_tkagg import NavigationToolbar2TkAgg from matplotlib.figure import Figure as OriginalFigure from matplotlib.axes import Axes, Subplot #, PolarSubplot, PolarAxes from matplotlib.pylab import * from Vision.colours import get_colours from Vision.posnegFill import posNegFill import numpy from matplotlib.artist import setp ## ## QUESTIONS ## Does this have to be Tk specific or could I use FigureCanvasAgg ## !FigureCanvasAgg is OK ## Should I use FigureManagerBase rather than FigureCanvasAgg ? ## ! FigureCanvas Agg is OK ## how to destroy a figure ? ## ! seems to work ## figure should have a set_dpi method ## ! use figure.dpi.set() for now but might become API later ## how to remove the tool bar ? ## ! John added a note about this ## What option in a Figure can beset without destroying the Figure ## and which ones are constructor only options ? ## ! nothing should require rebuilding a Figure ## Why does add_axes return the axis that already exists if the values for ## building the Axes object are the same ? either this has to change or ## adding an instance of an Axes should be fixed (prefered) ## !John made a note to add an argument to matplotlib ## Pie seems to have a problem when shadow is on ! ## !Find out the problem, because shadows are on even when check button is off ## !for ce aspect ratio to square ## Plot lineStyle, color, linewidth etc should be set by a set node that uses ## introspection on the patch? to find otu what can be set ?? ## !Use ObjectInspector ## why is figimage not an axes method ? ## !use imshow from matplotlib.cbook import iterable try: from matplotlib.dates import DayLocator, HourLocator, \ drange, date2num from pytz import timezone except: pass try: from pytz import common_timezones except: common_timezones=[] #global variables locations={'best' : 0, 'upper right' : 1, 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10,} colors={ 'blue' : 'b', 'green' : 'g', 'red' : 'r', 'cyan' : 'c', 'magenta' :'m', 'yellow' :'y', 'black': 'k', 'white' : 'w', } markers= { 'square' : 's', 'circle' : 'o', 'triangle up' : '^', 'triangle right' : '>', 'triangle down' : 'v', 'triangle left' : '<', 'diamond' : 'd', 'pentagram' : 'p', 'hexagon' : 'h', 'octagon' : '8', } cmaps=['autumn','bone', 'cool','copper','flag','gray','hot','hsv','jet','pink', 'prism', 'spring', 'summer', 'winter'] def get_styles(): styles={} for ls in Line2D._lineStyles.keys(): styles[Line2D._lineStyles[ls][6:]]=ls for ls in Line2D._markers.keys(): styles[Line2D._markers[ls][6:]]=ls #these styles are not recognized if styles.has_key('steps'): del styles['steps'] for s in styles.keys(): if s =="nothing": del styles['nothing'] if s[:4]=='tick': del styles[s] return styles class Figure(OriginalFigure): # sub class Figure to override add_axes def add_axes(self, *args, **kwargs): """hack to circumvent the issue of not adding an axes if the constructor params have already been seen""" if kwargs.has_key('force'): force = kwargs['force'] del kwargs['force'] else: force = False if iterable(args[0]): key = tuple(args[0]), tuple(kwargs.items()) else: key = args[0], tuple(kwargs.items()) if not force and self._seen.has_key(key): ax = self._seen[key] self.sca(ax) return ax if not len(args): return if isinstance(args[0], Axes): a = args[0] # this is too early, if done here bbox is 0->1 #a.set_figure(self) a.figure = self else: rect = args[0] #ispolar = popd(kwargs, 'polar', False) ispolar = kwargs.get('polar', False) if ispolar != False: del kwargs['polar'] if ispolar: a = PolarAxes(self, rect, **kwargs) else: a = Axes(self, rect, **kwargs) self.axes.append(a) self._axstack.push(a) self.sca(a) self._seen[key] = a return a class MPLBaseNE(NetworkNode): """Base class for node wrapping the maptlotlib objects """ def __init__(self, name='MPLBase', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) self.figure = None # matplotlib Figure instance belonging to this node self.axes = None # matplotlib Axes instance # this is true for Figures who create the Tk Toplevel # or plotting nodes that have no figure parent node # it is used to decide when the Toplevel should be destroyed self.ownsMaster = False def setDrawArea(self, kw): ax = self.axes #ax.clear() if kw.has_key('left'): rect = [kw['left'], kw['bottom'], kw['width'], kw['height']] ax.set_position(rect) if kw.has_key('frameon'): ax.set_frame_on(kw['frameon']) if kw.has_key("title"): if type(kw['title'])==types.StringType: ax.set_title(kw['title']) else: print 'Set title as Object' if kw.has_key("xlabel"): ax.set_xlabel(kw['xlabel']) if kw.has_key("ylabel"): ax.set_ylabel(kw['ylabel']) if kw.has_key("xlimit"): if kw['xlimit']!='': ax.set_xlim(eval(kw['xlimit'])) if kw.has_key("ylimit"): if kw['ylimit']!='': ax.set_ylim(eval(kw['ylimit'])) if kw.has_key("xticklabels"): if not kw['xticklabels']: ax.set_xticklabels([]) if kw.has_key("yticklabels"): if not kw['yticklabels']: ax.set_yticklabels([]) if kw.has_key("axison"): if kw['axison']: ax.set_axis_on() else: ax.set_axis_off() if kw.has_key("autoscaleon"): if kw['autoscaleon']: ax.set_autoscale_on(True) else: ax.set_autoscale_on(False) if kw.has_key("adjustable"): ax.set_adjustable(kw['adjustable']) if kw.has_key("aspect"): ax.set_aspect(kw['aspect']) if kw.has_key("anchor"): ax.set_anchor(kw['anchor']) if kw.has_key("axisbelow"): if kw['axisbelow']==1: val=True else: val=False rcParams['axes.axisbelow']=val ax.set_axisbelow(val) #grid properties if kw.has_key("gridOn"): if kw['gridOn']==1: ax._gridOn=True val=True if kw.has_key('gridcolor'): gcolor=kw['gridcolor'] else: gcolor=rcParams['grid.color'] if kw.has_key('gridlinestyle'): glinestyle=kw['gridlinestyle'] else: glinestyle=rcParams['grid.linestyle'] if kw.has_key('gridlinewidth'): glinewidth=kw['gridlinewidth'] else: glinewidth=rcParams['grid.linewidth'] if kw.has_key('whichgrid'): whichgrid=kw['whichgrid'] else: whichgrid='major' ax.grid(val,color=gcolor, linestyle=glinestyle, linewidth=glinewidth,which=whichgrid) else: val=False ax.grid(val) if kw.has_key("facecolor"): ax.set_axis_bgcolor(kw['facecolor']) if kw.has_key("edgecolor"): if hasattr(ax, "axesFrame"): ax.axesFrame.set_edgecolor(kw['edgecolor']) elif hasattr(ax, "axesPatch"): ax.axesPatch.set_edgecolor(kw['edgecolor']) # if kw.has_key('zoomx'): # #Zoom in on the x xaxis numsteps (plus for zoom in, minus for zoom out) # ax.zoomx(kw['zoomx']) # # if kw.has_key('zoomy'): # #Zoom in on the x xaxis numsteps (plus for zoom in, minus for zoom out) # ax.zoomy(kw['zoomy']) if kw.has_key("xtick.color"): for i in ax.xaxis.get_ticklabels(): i.set_color(kw['xtick.color']) if kw.has_key("ytick.color"): for i in ax.yaxis.get_ticklabels(): i.set_color(kw['ytick.color']) if kw.has_key('xtick.labelrotation'): for i in ax.xaxis.get_ticklabels(): i.set_rotation(float(kw['xtick.labelrotation'])) if kw.has_key('ytick.labelrotation'): for i in ax.yaxis.get_ticklabels(): i.set_rotation(float(kw['ytick.labelrotation'])) if kw.has_key("xtick.labelsize"): for i in ax.xaxis.get_ticklabels(): i.set_size(float(kw['xtick.labelsize'])) if kw.has_key("ytick.labelsize"): for i in ax.yaxis.get_ticklabels(): i.set_size(float(kw['ytick.labelsize'])) if kw.has_key("linewidth"): if hasattr(ax, "axesFrame"): ax.axesFrame.set_linewidth(float(kw['linewidth'])) elif hasattr(ax, "axesPatch"): ax.axesPatch.set_linewidth(float(kw['linewidth'])) #marker if kw.has_key("markeredgewidth"): for i in ax.get_xticklines(): i.set_markeredgewidth(kw['markeredgewidth']) for i in ax.get_yticklines(): i.set_markeredgewidth(kw['markeredgewidth']) if kw.has_key("markeredgecolor"): for i in ax.get_xticklines(): i.set_markeredgecolor(kw['markeredgecolor']) for i in ax.get_yticklines(): i.set_markeredgecolor(kw['markeredgecolor']) if kw.has_key("markerfacecolor"): for i in ax.get_xticklines(): i.set_markerfacecolor(kw['markerfacecolor']) for i in ax.get_yticklines(): i.set_markerfacecolor(kw['markerfacecolor']) #figure_patch properties if kw.has_key("figpatch_linewidth"): ax.figure.figurePatch.set_linewidth(kw['figpatch_linewidth']) if kw.has_key("figpatch_facecolor"): ax.figure.figurePatch.set_facecolor(kw['figpatch_facecolor']) if kw.has_key("figpatch_edgecolor"): ax.figure.figurePatch.set_edgecolor(kw['figpatch_edgecolor']) if kw.has_key("figpatch_antialiased"): ax.figure.figurePatch.set_antialiased(kw['figpatch_antialiased']) #Text properties if kw.has_key('text'): for i in kw['text']: if type(i)==types.DictType: tlab=i['textlabel'] posx=i['posx'] posy=i['posy'] horizontalalignment=i['horizontalalignment'] verticalalignment=i['verticalalignment'] rotation=i['rotation'] ax.text(x=posx,y=posy,s=tlab,horizontalalignment=horizontalalignment,verticalalignment=verticalalignment,rotation=rotation,transform = ax.transAxes) if kw.has_key("text.color"): for t in ax.texts: t.set_color(kw['text.color']) if kw.has_key("text.usetex"): rcParams['text.usetex']=kw['text.usetex'] if kw.has_key("text.dvipnghack"): rcParams['text.dvipnghack']=kw['text.dvipnghack'] if kw.has_key("text.fontstyle"): for t in ax.texts: t.set_fontstyle(kw['text.fontstyle']) if kw.has_key("text.fontangle"): for t in ax.texts: t.set_fontangle(kw['text.fontangle']) if kw.has_key("text.fontvariant"): for t in ax.texts: t.set_fontvariant(kw['text.fontvariant']) if kw.has_key("text.fontweight"): for t in ax.texts: t.set_fontweight(kw['text.fontweight']) if kw.has_key("text.fontsize"): for t in ax.texts: t.set_fontsize(kw['text.fontsize']) #Font if kw.has_key("Font.fontfamily"): for t in ax.texts: t.set_family(kw['Font.fontfamily']) if kw.has_key("Font.fontstyle"): for t in ax.texts: t.set_fontstyle(kw['Font.fontstyle']) if kw.has_key("Font.fontangle"): for t in ax.texts: t.set_fontangle(kw['Font.fontangle']) if kw.has_key("Font.fontvariant"): for t in ax.texts: t.set_fontvariant(kw['Font.fontvariant']) if kw.has_key("Font.fontweight"): for t in ax.texts: t.set_fontweight(kw['Font.fontweight']) if kw.has_key("Font.fontsize"): for t in ax.texts: t.set_fontsize(kw['Font.fontsize']) #Legend Properties if mplversion[0]==0 and mplversion[2]<=3 : if kw.has_key('legendlabel'): if ',' in kw['legendlabel']: x=kw['legendlabel'].split(",") else: x=(kw['legendlabel'],) if kw.has_key('legend.isaxes'): isaxes=kw['legend.isaxes'] else: isaxes=rcParams['legend.isaxes'] if kw.has_key('legend.numpoints'): numpoints=kw['legend.numpoints'] else: numpoints=rcParams['legend.numpoints'] if kw.has_key('legend.pad'): borderpad=kw['legend.pad'] else: borderpad=rcParams['legend.pad'] if kw.has_key('legend.markerscale'): markerscale=kw['legend.markerscale'] else: markerscale=rcParams['legend.markerscale'] if kw.has_key('legend.labelsep'): labelspacing=kw['legend.labelsep'] else: labelspacing=rcParams['legend.labelsep'] if kw.has_key('legend.handlelen'): handlelength=kw['legend.handlelen'] else: handlelength=rcParams['legend.handlelen'] if kw.has_key('legend.handletextsep'): handletextpad=kw['legend.handletextsep'] else: handletextpad=rcParams['legend.handletextsep'] if kw.has_key('legend.axespad'): borderaxespad=kw['legend.axespad'] else: borderaxespad=rcParams['legend.axespad'] if kw.has_key('legend.shadow'): shadow=kw['legend.shadow'] else: shadow=rcParams['legend.shadow'] #import pdb;pdb.set_trace() leg=self.axes.legend(tuple(x),loc=kw['legendlocation'], #isaxes=isaxes, numpoints=numpoints, pad=borderpad, labelsep=labelspacing, handlelen=handlelength, handletextsep=handletextpad, axespad=borderaxespad, shadow=shadow, markerscale=markerscale) if kw.has_key('legend.fontsize'): setp(ax.get_legend().get_texts(),fontsize=kw['legend.fontsize']) elif mplversion[0] > 0: if kw.has_key('legendlabel'): if ',' in kw['legendlabel']: x=kw['legendlabel'].split(",") else: x=(kw['legendlabel'],) if kw.has_key('legend.isaxes'): isaxes=kw['legend.isaxes'] else: isaxes=rcParams['legend.isaxes'] if kw.has_key('legend.numpoints'): numpoints=kw['legend.numpoints'] else: numpoints=rcParams['legend.numpoints'] if kw.has_key('legend.borderpad'): borderpad=kw['legend.borderpad'] else: borderpad=rcParams['legend.borderpad'] if kw.has_key('legend.markerscale'): markerscale=kw['legend.markerscale'] else: markerscale=rcParams['legend.markerscale'] if kw.has_key('legend.labelspacing'): labelspacing=kw['legend.labelspacing'] else: labelspacing=rcParams['legend.labelspacing'] if kw.has_key('legend.handlelength'): handlelength=kw['legend.handlelength'] else: handlelength=rcParams['legend.handlelength'] if kw.has_key('legend.handletextpad'): handletextpad=kw['legend.handletextpad'] else: handletextpad=rcParams['legend.handletextpad'] if kw.has_key('legend.borderaxespad'): borderaxespad=kw['legend.borderaxespad'] else: borderaxespad=rcParams['legend.borderaxespad'] if kw.has_key('legend.shadow'): shadow=kw['legend.shadow'] else: shadow=rcParams['legend.shadow'] #import pdb;pdb.set_trace() leg=self.axes.legend(tuple(x),loc=kw['legendlocation'], #isaxes=isaxes, numpoints=numpoints, borderpad=borderpad, labelspacing=labelspacing, handlelength=handlelength, handletextpad=handletextpad, borderaxespad=borderaxespad, shadow=shadow, markerscale=markerscale) if kw.has_key('legend.fontsize'): setp(ax.get_legend().get_texts(),fontsize=kw['legend.fontsize']) #Tick Options if kw.has_key('xtick.major.pad'): for i in ax.xaxis.majorTicks: i.set_pad(kw['xtick.major.pad']) if kw.has_key('xtick.minor.pad'): for i in ax.xaxis.minorTicks: i.set_pad(kw['xtick.minor.pad']) if kw.has_key('ytick.major.pad'): for i in ax.yaxis.majorTicks: i.set_pad(kw['ytick.major.pad']) if kw.has_key('ytick.minor.pad'): for i in ax.yaxis.minorTicks: i.set_pad(kw['ytick.minor.pad']) if kw.has_key('xtick.major.size'): rcParams['xtick.major.size']=kw['xtick.major.size'] if kw.has_key('xtick.minor.size'): rcParams['xtick.minor.size']=kw['xtick.minor.size'] if kw.has_key('xtick.direction'): rcParams['xtick.direction']=kw['xtick.direction'] if kw.has_key('ytick.major.size'): rcParams['ytick.major.size']=kw['ytick.major.size'] if kw.has_key('ytick.minor.size'): rcParams['ytick.minor.size']=kw['ytick.minor.size'] if kw.has_key('ytick.direction'): rcParams['ytick.direction']=kw['ytick.direction'] def beforeRemovingFromNetwork(self): #print 'remove' NetworkNode.beforeRemovingFromNetwork(self) # this happens for drawing nodes with no axes specified if self.axes: self.axes.figure.delaxes(self.axes) # feel a little strange ! self.canvas._tkcanvas.master.destroy() elif self.canvas: self.canvas._tkcanvas.master.destroy() def onlyDataChanged(self, data): """returns true if only he first port (i.e. data) has new data. """ # This can be used to accelerate redraw by only updating the data # rather than redrawing the whole figure # see examples/animation_blit_tk.py ports = self.inputPorts if not ports[0].hasNewValidData(): return False for p in self.inputPorts: if p.hasNewValidData(): return False return True class MPLFigureNE(MPLBaseNE): """This node instanciates a Figure object and its FigureCanvasTkAgg object in its .canvas attribute. It also provide control over parameters such as width, height, dpi, etc. Input: plots - Matplotlib Axes objects figwidth - width in inches figheigh - height in inches dpi - resolution; defaults to rc figure.dpi facecolor - the background color; defaults to rc figure.facecolor edgecolor - the border color; defaults to rc figure.edgecolor master - Defaults to None, creating a topLevel nbRows - number of rows for subgraph2D nbColumns - number of columns for subgraph2D frameon - boolean hold - boolean toolbar - boolean (init option only) packOpts - string representation of packing options Output: canvas: MPLFigure Object Todo: legend text image ? """ def afterAddingToNetwork(self): self.figure = Figure() master = Tkinter.Toplevel() master.title(self.name) self.canvas = FigureCanvasTkAgg(self.figure, master) self.figure.set_canvas(self.canvas) packOptsDict = {'side':'top', 'fill':'both', 'expand':1} self.canvas.get_tk_widget().pack( *(), **packOptsDict ) toolbar = NavigationToolbar2TkAgg(self.canvas, master) def __init__(self, name='Figure2', **kw): kw['name'] = name apply( MPLBaseNE.__init__, (self,), kw ) codeBeforeDisconnect = """def beforeDisconnect(self, c): node1 = c.port1.node node2 = c.port2.node if node2.figure.axes: node2.figure.delaxes(node1.axes) if node1.figure.axes: node1.figure.delaxes(node1.axes) node1.figure.add_axes(node1.axes) """ ip = self.inputPortsDescr ip.append(datatype='MPLAxes', required=False, name='plots', singleConnection=False, beforeDisconnect=codeBeforeDisconnect) ip.append(datatype='float', required=False, name='width') ip.append(datatype='float', required=False, name='height') ip.append(datatype='float', required=False, name='linewidth', defaultValue=1) ip.append(datatype='int', required=False, name='dpi') ip.append(datatype='colorRGB', required=False, name='facecolor') ip.append(datatype='colorRGB', required=False, name='edgecolor') ip.append(datatype='None', required=False, name='master') ip.append(datatype='int', required=False, name='nbRows') ip.append(datatype='int', required=False, name='nbColumns') ip.append(datatype='boolean', required=False, name='frameon', defaultValue=True) ip.append(datatype='boolean', required=False, name='hold', defaultValue=False) ip.append(datatype='boolean', required=False, name='toolbar') ip.append(datatype='None', required=False, name='packOpts') op = self.outputPortsDescr op.append(datatype='MPLFigure', name='figure') self.widgetDescr['width'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':8.125, 'labelCfg':{'text':'width in inches'} } self.widgetDescr['height'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':6.125, 'labelCfg':{'text':'height in inches'} } self.widgetDescr['linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['dpi'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10, 'type':'int', 'wheelPad':2, 'initialValue':80, 'labelCfg':{'text':'DPI'} } self.widgetDescr['nbRows'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'nb. rows'} } self.widgetDescr['nbColumns'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'nb. col'} } self.widgetDescr['frameon'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':1, 'labelCfg':{'text':'frame'} } self.widgetDescr['hold'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':0, 'labelCfg':{'text':'hold'} } self.widgetDescr['toolbar'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':1, 'labelCfg':{'text':'toolbar'} } self.widgetDescr['packOpts'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'packing Opts.:'}, 'initialValue':'{"side":"top", "fill":"both", "expand":1}'} code = """def doit(self, plots, width, height, linewidth, dpi, facecolor, edgecolor, master, nbRows, nbColumns, frameon, hold, toolbar, packOpts): self.figure.clear() if plots is not None: for p in plots: self.figure.add_axes(p) figure = self.figure # configure size if width is not None or height is not None: defaults = matplotlib.rcParams if width is None: width = defaults['figure.figsize'][0] elif height is None: height = defaults['figure.figsize'][1] figure.set_size_inches(width,height) # configure dpi if dpi is not None: figure.set_dpi(dpi) # configure facecolor if facecolor is not None: figure.set_facecolor(facecolor) # configure edgecolor if edgecolor is not None: figure.set_edgecolor(facecolor) # configure frameon if edgecolor is not None: figure.set_edgecolor(facecolor) # not sure linewidth is doing anything here figure.figurePatch.set_linewidth(linewidth) figure.hold(hold) # FIXME for now we store this here but we might want to add this as # regular attributes to Figure which would be used with subplot #figure.nbRows = nbRows #figure.nbColumns = nbColumns self.canvas.draw() self.outputData(figure=self.figure) """ self.setFunction(code) class MPLImageNE(MPLBaseNE): """This node creates a PIL image Input: plots - Matplotlib Axes objects figwidth - width in inches figheigh - height in inches dpi - resolution; defaults to rc figure.dpi facecolor - the background color; defaults to rc figure.facecolor edgecolor - the border color; defaults to rc figure.edgecolor faceAlpha - alpha value of background edgeAlpha - alpha value of edge frameon - boolean hold - boolean toolbar - boolean (init option only) packOpts - string representation of packing options Output: canvas: MPLFigure Object Todo: legend text image ? """ def __init__(self, name='imageFigure', **kw): kw['name'] = name apply( MPLBaseNE.__init__, (self,), kw ) codeBeforeDisconnect = """def beforeDisconnect(self, c): node1 = c.port1.node node2 = c.port2.node if node1.figure.axes: node1.figure.delaxes(node1.axes) node1.figure.add_axes(node1.axes) """ ip = self.inputPortsDescr ip.append(datatype='MPLAxes', required=False, name='plots', singleConnection=False, beforeDisconnect=codeBeforeDisconnect) ip.append(datatype='float', required=False, name='width') ip.append(datatype='float', required=False, name='height') ip.append(datatype='int', required=False, name='dpi') ip.append(datatype='colorsRGB', required=False, name='facecolor') ip.append(datatype='colorsRGB', required=False, name='edgecolor') ip.append(datatype='float', required=False, name='alphaFace', defaultValue=0.5) ip.append(datatype='float', required=False, name='alphaEdge', defaultValue=0.5) ip.append(datatype='boolean', required=False, name='frameon', defaultValue=True) ip.append(datatype='boolean', required=False, name='hold', defaultValue=False) op = self.outputPortsDescr op.append(datatype='image', name='image') self.widgetDescr['width'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':6.4, 'labelCfg':{'text':'width in inches'} } self.widgetDescr['height'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':4.8, 'labelCfg':{'text':'height in inches'} } self.widgetDescr['dpi'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10, 'type':'int', 'wheelPad':2, 'initialValue':80, 'labelCfg':{'text':'DPI'} } self.widgetDescr['alphaFace'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'wheelPad':2, 'initialValue':0.5, 'min':0.0, 'max':1.0, 'labelCfg':{'text':'alpha Face'} } self.widgetDescr['alphaEdge'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'wheelPad':2, 'initialValue':0.5, 'min':0.0, 'max':1.0, 'labelCfg':{'text':'alphaEdge'} } self.widgetDescr['frameon'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':1, 'labelCfg':{'text':'frame'} } self.widgetDescr['hold'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':0, 'labelCfg':{'text':'hold'} } code = """def doit(self, plots, width, height, dpi, facecolor, edgecolor, alphaFace, alphaEdge, frameon, hold): figure = self.figure try: self.canvas.renderer.clear() except AttributeError: pass figure.clear() # Powers of 2 image to be clean if width>height: htc = float(height)/width w = 512 h = int(round(512*htc)) else: wtc = float(width)/height w = int(round(512*wtc)) h = 512 figure.set_size_inches(float(w)/dpi, float(h)/dpi) for p in plots: if hasattr(p,"figure"): p.figure.set_figwidth(float(w) / dpi) p.figure.set_figheight(float(h) / dpi) figure.add_axes(p) p.set_figure(figure) p.axesPatch.set_alpha(alphaFace) # configure dpi if dpi is not None: figure.set_dpi(dpi) # configure facecolor if facecolor is not None: figure.set_facecolor(tuple(facecolor[0])) # configure edgecolor if edgecolor is not None: figure.set_edgecolor(tuple(edgecolor[0])) # configure frameon if frameon is not None: figure.set_frameon(frameon) figure.hold(hold) figure.figurePatch.set_alpha(alphaEdge) self.canvas.draw() # force a draw import Image im = self.canvas.buffer_rgba(0,0) ima = Image.frombuffer("RGBA", (w, h), im) ima = ima.transpose(Image.FLIP_TOP_BOTTOM) self.outputData(image=ima) """ self.setFunction(code) def beforeRemovingFromNetwork(self): #print 'remove' NetworkNode.beforeRemovingFromNetwork(self) # this happens for drawing nodes with no axes specified if self.axes: self.axes.figure.delaxes(self.axes) # feel a little strange ! def afterAddingToNetwork(self): self.figure = Figure() from matplotlib.backends.backend_agg import FigureCanvasAgg self.canvas = FigureCanvasAgg(self.figure) class MPLDrawAreaNE(NetworkNode): """Class for configuring the axes. The following options can be set. left,bottom,width,height ----allows to set the position of the axes. frame on/off --- allows to on or off frame hold on/off --- allows to on or off hold.When hold is True, subsequent plot commands will be added to the current axes. When hold is False, the current axes and figure will be cleared on the next plot command title --- allows to set title of the figure xlabel ---allows to set xlabel of the figure ylabel ---allows to set ylabel of the figure xlimit --- set autoscale off before setting xlimit. y limit --- set autoscale off before setting ylimit. xticklabels on/off --- allows to on or off xticklabels yticklabels on/off --- allows to on or off yticklabels axis on/off --- allows to on or off axis autoscale on/off --- when on sets default axes limits ,when off sets limit from xlimit and ylimit entries. """ def __init__(self, name='Draw Area', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='float', required=False, name='left', defaultValue=.1) ip.append(datatype='float', required=False, name='bottom', defaultValue=.1) ip.append(datatype='float', required=False, name='width', defaultValue=.8) ip.append(datatype='float', required=False, name='height', defaultValue=.8) ip.append(datatype='boolean', required=False, name='frameon', defaultValue=True) ip.append(datatype='boolean', required=False, name='hold', defaultValue=False) ip.append(datatype='string', required=False, name='title', defaultValue='Figure') ip.append(datatype='string', required=False, name='xlabel', defaultValue='X') ip.append(datatype='string', required=False, name='ylabel', defaultValue='Y') ip.append(datatype='string', required=False, name='xlimit', defaultValue='') ip.append(datatype='string', required=False, name='ylimit', defaultValue='') ip.append(datatype='boolean', required=False, name='xticklabels', defaultValue=True) ip.append(datatype='boolean', required=False, name='yticklabels', defaultValue=True) ip.append(datatype='boolean', required=False, name='axison', defaultValue=True) ip.append(datatype='boolean', required=False, name='autoscaleon', defaultValue=True) self.widgetDescr['left'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.1, 'labelCfg':{'text':'left (0. to 1.)'} } self.widgetDescr['bottom'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.1, 'labelCfg':{'text':'bottom (0. to 1.)'} } self.widgetDescr['width'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.8, 'labelCfg':{'text':'width (0. to 1.)'} } self.widgetDescr['height'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.8, 'labelCfg':{'text':'height (0. to 1.0)'} } self.widgetDescr['frameon'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelGridCfg':{'sticky':'w'}, 'initialValue':1, 'labelCfg':{'text':'frame'} } self.widgetDescr['hold'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelGridCfg':{'sticky':'w'}, 'initialValue':0, 'labelCfg':{'text':'hold'} } self.widgetDescr['title'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'title'},'labelGridCfg':{'sticky':'w'}, 'initialValue':'Figure:'} self.widgetDescr['xlabel'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'X label'},'labelGridCfg':{'sticky':'w'}, 'initialValue':'X'} self.widgetDescr['ylabel'] = { 'class':'NEEntry', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Y label'}, 'initialValue':'Y'} self.widgetDescr['xlimit'] = { 'class':'NEEntry', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'X limit'}, 'initialValue':''} self.widgetDescr['ylimit'] = { 'class':'NEEntry', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Y limit'}, 'initialValue':''} self.widgetDescr['xticklabels'] = { 'class':'NECheckButton', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'}, 'initialValue':1, 'labelCfg':{'text':'xticklabels'} } self.widgetDescr['yticklabels'] = { 'class':'NECheckButton', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'},'labelGridCfg':{'sticky':'w'}, 'initialValue':1, 'labelCfg':{'text':'yticklabels'} } self.widgetDescr['axison'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':1, 'labelCfg':{'text':'axis on'} } self.widgetDescr['autoscaleon'] = { 'class':'NECheckButton', 'master':'ParamPanel','labelGridCfg':{'sticky':'w'}, 'initialValue':1, 'labelCfg':{'text':'autoscale on'} } op = self.outputPortsDescr op.append(datatype='MPLDrawArea', name='drawAreaDef') code = """def doit(self, left, bottom, width, height, frameon, hold, title, xlabel, ylabel, xlimit, ylimit, xticklabels, yticklabels, axison, autoscaleon): kw = {'left':left, 'bottom':bottom, 'width':width, 'height':height, 'frameon':frameon, 'hold':hold, 'title':title, 'xlabel':xlabel, 'ylabel':ylabel, 'axison':axison, 'xticklabels': xticklabels,'yticklabels': yticklabels,'xlimit':xlimit,'ylimit':ylimit,'autoscaleon':autoscaleon} self.outputData(drawAreaDef=kw) """ self.setFunction(code) class MPLMergeTextNE(NetworkNode): """Class for writting multiple labels in the axes.Takes input from Text nodes. """ def __init__(self, name='MergeText', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='MPLDrawArea', required=False,name='textlist',singleConnection=False) op = self.outputPortsDescr op.append(datatype='MPLDrawArea', name='drawAreaDef') code = """def doit(self,textlist): kw={'text':textlist} self.outputData(drawAreaDef=kw) """ self.setFunction(code) class MPLPlottingNode(MPLBaseNE): """Base class for plotting nodes""" def afterAddingToNetwork(self): self.figure = Figure() self.axes = self.figure.add_subplot( 111 ) self.axes.node = weakref.ref(self) master = Tkinter.Toplevel() master.title(self.name) self.canvas = FigureCanvasTkAgg(self.figure, master) self.figure.set_canvas(self.canvas) packOptsDict = {'side':'top', 'fill':'both', 'expand':1} self.canvas.get_tk_widget().pack( *(), **packOptsDict ) self.canvas._master.protocol('WM_DELETE_WINDOW',self.canvas._master.iconify) toolbar = NavigationToolbar2TkAgg(self.canvas, master) def setDrawAreaDef(self, drawAreaDef): newdrawAreaDef={} if drawAreaDef: if len(drawAreaDef)==1 and drawAreaDef[0] is not None: #for d in drawAreaDef[0].keys(): # newdrawAreaDef[d]=drawAreaDef[0][d] newdrawAreaDef = drawAreaDef[0] elif len(drawAreaDef)>1: for dAD in drawAreaDef: if type(dAD)== types.DictType: for j in dAD.keys(): newdrawAreaDef[j]=dAD[j] self.setDrawArea(newdrawAreaDef) codeBeforeDisconnect ="""def beforeDisconnect(self,c): node=c.port2.node node.axes.clear() node.canvas.draw() """ ######################################################################## #### #### PLOTTING NODES #### ######################################################################## class FillNE(MPLPlottingNode): """plots filled polygons. x - list of x vertices y - list of y vertices fillcolor - color """ def __init__(self, name='Fill', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='fillcolor', defaultValue='w') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['fillcolor'] = { 'class':'NEComboBox', 'master':'node', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'white', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'fillcolor:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype='None', name='fig') code = """def doit(self, x, y, fillcolor, drawAreaDef): self.axes.clear() ax=self.axes p=ax.fill(x,y,fillcolor) self.setDrawAreaDef(drawAreaDef) self.canvas.draw() self.outputData(axes=self.axes,fig=p) """ self.setFunction(code) class PolarAxesNE(MPLPlottingNode): """ This node plots on PolarAxes Input: y - sequence of values x - None; sequence of values Adjustable parameters: grid --grid on or off(default is on) gridcolor --color of the grid gridlinewidth --linewidth of the grid gridlinestyle --gridlinestyle xtickcolor -- color of xtick ytickcolor -- color of ytick xticksize --size of xtick yticksize --size of ytick """ def __init__(self, name='PolarAxes', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.styles={} for ls in Line2D._lineStyles.keys(): self.styles[Line2D._lineStyles[ls][6:]]=ls for ls in Line2D._markers.keys(): self.styles[Line2D._markers[ls][6:]]=ls #these styles are not recognized #del self.styles['steps'] for s in self.styles.keys(): if s =="nothing": del self.styles['nothing'] if s[:4]=='tick': del self.styles[s] self.colors=colors ip = self.inputPortsDescr #ip.append(datatype='MPLAxes', required=False, name='p', #singleConnection=True)#,beforeDisconnect=codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='lineStyle', defaultValue='solid') ip.append(datatype='None', required=False, name='color', defaultValue='black') ip.append(datatype='boolean', required=False, name='grid', defaultValue=1) ip.append(datatype='str', required=False, name='gridlineStyle', defaultValue='--') ip.append(datatype='str', required=False, name='gridcolor', defaultValue='gray') ip.append(datatype='float', required=False, name='gridlinewidth', defaultValue=1) ip.append(datatype='str', required=False, name='axisbg', defaultValue='white') ip.append(datatype='str', required=False, name='xtickcolor', defaultValue='black') ip.append(datatype='str', required=False, name='ytickcolor', defaultValue='black') ip.append(datatype='float', required=False, name='xticksize', defaultValue=12) ip.append(datatype='float', required=False, name='yticksize', defaultValue=12) ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['grid'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'initialValue':1, 'labelCfg':{'text':'grid'} , 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'},} self.widgetDescr['lineStyle'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.styles.keys(), 'fixedChoices':True, 'initialValue':'solid', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'line style:'}} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.colors.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['gridlineStyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':lineStyles.keys(), 'fixedChoices':True, 'initialValue':'--', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'gridlinestyle:'}} self.widgetDescr['gridcolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'gray', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'gridcolor:'}} self.widgetDescr['gridlinewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'gridlinewidth'}, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}} self.widgetDescr['axisbg'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'white', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'axisbg:'}} self.widgetDescr['xtickcolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'xtickcolor:'}} self.widgetDescr['ytickcolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'ytickcolor:'}} self.widgetDescr['xticksize'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':12, 'labelCfg':{'text':'xticksize'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'} } self.widgetDescr['yticksize'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':12, 'labelCfg':{'text':'yticksize'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'} } op = self.outputPortsDescr op.append(datatype='MPLFigure', name='figure') code = """def doit(self, y, x, lineStyle, color, grid, gridlineStyle, gridcolor, gridlinewidth, axisbg, xtickcolor, ytickcolor, xticksize, yticksize, drawAreaDef): self.figure.clear() self.setDrawAreaDef(drawAreaDef) if grid==1: matplotlib.rc('grid',color=gridcolor,linewidth=gridlinewidth,linestyle=gridlineStyle) matplotlib.rc('xtick',color=xtickcolor,labelsize=xticksize) matplotlib.rc('ytick',color=ytickcolor,labelsize=yticksize) colorChar = self.colors[color] lineStyleChar = self.styles[lineStyle] new_axes=self.figure.add_axes(self.axes.get_position(),polar=True,axisbg=axisbg) self.axes=new_axes self.axes.plot(x, y, colorChar+lineStyleChar) if grid!=1: new_axes.grid(grid) self.canvas.draw() self.outputData(figure=self.figure) """ self.setFunction(code) class StemNE(MPLPlottingNode): """A stem plot plots vertical lines (using linefmt) at each x location from the baseline to y, and places a marker there using markerfmt. A horizontal line at 0 is is plotted using basefmt input: list of x values Return value is (markerline, stemlines, baseline) . """ def __init__(self, name='Stem', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,),kw ) ip = self.inputPortsDescr ip.append(datatype='list',required=True, name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',required=True, name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False,name='stemlinestyle', defaultValue='--') ip.append(datatype='string',required=False,name='stemlinecolor', defaultValue='b') ip.append(datatype='string',required=False,name='markerstyle', defaultValue='o') ip.append(datatype='string',required=False,name='markerfacecolor', defaultValue='b') ip.append(datatype='string',required=False,name='baselinecolor', defaultValue='b') ip.append(datatype='string',required=False,name='baselinestyle', defaultValue='-') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['stemlinestyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['-.','--','-',':'], 'fixedChoices':True, 'initialValue':'--', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'stemlinestyle:'}} self.widgetDescr['stemlinecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'stemlinecolor:'}} self.widgetDescr['markerstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':Line2D._markers.keys(), 'fixedChoices':True, 'initialValue':'o', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'markerstyle:'}} self.widgetDescr['markerfacecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'k', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'markerfacecolor:'}} self.widgetDescr['baselinestyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['-.','--','-',':'], 'fixedChoices':True, 'initialValue':'-', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'baselinestyle:'}} self.widgetDescr['baselinecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'k', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'baselinecolor:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='stem') code = """def doit(self, x, y, stemlinestyle, stemlinecolor, markerstyle, markerfacecolor, baselinecolor, baselinestyle, drawAreaDef): self.axes.clear() linefmt=stemlinecolor+stemlinestyle markerfmt=markerfacecolor+markerstyle basefmt= baselinecolor+baselinestyle markerline, stemlines, baseline = self.axes.stem(x, y, linefmt=linefmt, markerfmt=markerfmt, basefmt=basefmt ) self.setDrawAreaDef(drawAreaDef) self.canvas.draw() self.outputData(stem=self.axes) """ self.setFunction(code) class MultiPlotNE(MPLPlottingNode): """This node allows to plot multiple plots on same axes input: axes instances """ def __init__(self, name='MultiPlot', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,),kw ) ip = self.inputPortsDescr ip.append(datatype='MPLAxes', required=True, name='multiplot', singleConnection=False,beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef', singleConnection=False) op = self.outputPortsDescr op.append(datatype='MPLAxes', name='multiplot') code = """def doit(self, plots, drawAreaDef): self.axes.clear() ax=self.axes if len(plots)>0: ax.set_xlim(plots[0].get_xlim()) ax.set_ylim(plots[0].get_ylim()) for p in plots: if p.patches!=[]: for pt in p.patches: ax.add_patch(pt) elif p.lines!=[]: if p.lines!=[]: for pt in p.lines: ax.add_line(pt) elif p.collections!=[]: if p.collections!=[]: for pt in p.collections: ax.add_collection(pt) else: ax.add_artist(p) ax.autoscale_view() self.setDrawAreaDef(drawAreaDef) self.canvas.draw() self.outputData(multiplot=self.axes) """ self.setFunction(code) class TablePlotNE(MPLPlottingNode): """Adds a table to the current axes and plots bars. input: cellText - list of values rowLabels - list of labels rowColours - list of colors colLabels - list of labels colColours - list of colors location - location where the table to be placed. """ def __init__(self, name='TablePlot', **kw): """ TABLE(cellText=None, cellColours=None, cellLoc='right', colWidths=None, rowLabels=None, rowColours=None, rowLoc='left', colLabels=None, colColours=None, colLoc='center', loc='bottom', bbox=None): Adds a table to the current axes and plots bars. """ kw['name'] = name locs=locations.keys() locs.append("bottom") apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list',required=True, name='values',singleConnection="auto",beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',required=True, name='rowLabels',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',required=True, name='colLabels',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',required=False, name='rowColors') ip.append(datatype='list',required=False, name='colColors') ip.append(datatype='string',required=False, name='location', defaultValue='bottom') ip.append(datatype='MPLDrawArea',required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['location'] = { 'class':'NEComboBox', 'master':'node', 'choices':locs, 'fixedChoices':True, 'initialValue':'bottom', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Location:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') code = """def doit(self, values, rowLabels, colLabels, rowColors, colColors, location, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) #self.axes.set_position([0.2, 0.2, 0.7, 0.6]) data=[] nd=[] for val in values : for v in val: nd.append(float(v)) data.append(nd) nd=[] #rcolours = get_colours(len(colLabels)) rows = len(data) ind = arange(len(colLabels)) + 0.3 # the x locations for the groups cellText = [] width = 0.4 # the width of the bars yoff = array([0.0] * len(colLabels)) # the bottom values for stacked bar chart for row in xrange(rows): self.axes.bar(ind, data[row], width, bottom=yoff, color=rowColors[row]) yoff = yoff + data[row] cellText.append(['%1.1f' % x for x in yoff]) the_table = self.axes.table(cellText=cellText, rowLabels=rowLabels, rowColours=rowColors, colColours=colColors, colLabels=colLabels, loc=location) if location=="bottom": self.axes.set_xticks([]) self.axes.set_xticklabels([]) self.canvas.draw() self.outputData(plot=self.axes) """ self.setFunction(code) class HistogramNE(MPLPlottingNode): """This nodes takes a list of values and builds a histogram using matplotlib http://matplotlib.sourceforge.net/matplotlib.pylab.html#-hist Compute the histogram of x. bins is either an integer number of bins or a sequence giving the bins. x are the data to be binned. The return values is (n, bins, patches) If normed is true, the first element of the return tuple will be the counts normalized to form a probability distribtion, ie, n/(len(x)*dbin) Addition kwargs: hold = [True|False] overrides default hold state Input: values: sequence of values bins=10: number of dequence giving the gins normed=0 normalize Output: plot Matplotlib Axes object """ def __init__(self, name='Histogram', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.colors=cnames ip = self.inputPortsDescr ip.append(datatype='None', name='values',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False, name='bins', defaultValue=10) ip.append(datatype='boolean', required=False, name='normed', defaultValue=False) ip.append(datatype='float', required=False, name='patch_antialiased', defaultValue=1) ip.append(datatype='float', required=False, name='patch_linewidth', defaultValue=1) ip.append(datatype='string', required=False, name='patch_edgecolor', defaultValue='black') ip.append(datatype='string', required=False, name='patch_facecolor', defaultValue='blue') ip.append(datatype='MPLDrawArea',required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['bins'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10, 'type':'int', 'wheelPad':2, 'initialValue':10, 'labelCfg':{'text':'# of bins'} } self.widgetDescr['normed'] = { 'class':'NECheckButton', 'master':'node', 'initialValue':1, 'labelCfg':{'text':'normalize'}, } self.widgetDescr['patch_linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['patch_antialiased'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'antialiased:'}, 'initialValue':1,} self.widgetDescr['patch_edgecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.colors.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'edgecolor:'}} self.widgetDescr['patch_facecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.colors.keys(), 'fixedChoices':True, 'initialValue':'blue', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'facecolor:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') code = """def doit(self, values, bins, normed, patch_antialiased, patch_linewidth, patch_edgecolor, patch_facecolor, drawAreaDef): self.axes.clear() n, bins, patches = self.axes.hist(values, bins=bins, normed=normed) self.setDrawAreaDef(drawAreaDef) if self.axes.patches: for p in self.axes.patches: p.set_linewidth(patch_linewidth) p.set_edgecolor(patch_edgecolor) p.set_facecolor(patch_facecolor) p.set_antialiased(patch_antialiased) self.canvas.draw() self.outputData(plot=self.axes) """ self.setFunction(code) #Plot Nodes class PlotNE(MPLPlottingNode): """This nodes takes two lists of values and plots the the second against the first. Input: y - sequence of values x - None; sequence of values figure - None; MPLFigure object object into which to place the drawing Output: plot Matplotlib Axes object line: - line """ def __init__(self, name='Plot', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.styles=get_styles() self.colors=colors self.joinstyles = Line2D.validJoin self.capstyles = Line2D.validCap ip = self.inputPortsDescr ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', required=False, name='x') ip.append(datatype='string', required=False, name='lineStyle', defaultValue='solid') ip.append(datatype='None', required=False, name='color', defaultValue='black') ip.append(datatype='boolean', required=False, name='line_antialiased', defaultValue=1) ip.append(datatype='float', required=False, name='line_linewidth', defaultValue=1) ip.append(datatype='string', required=False, name='solid_joinstyle', defaultValue='miter') ip.append(datatype='string', required=False, name='solid_capstyle', defaultValue='projecting') ip.append(datatype='string', required=False, name='dash_capstyle', defaultValue='butt') ip.append(datatype='string', required=False, name='dash_joinstyle', defaultValue='miter') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['lineStyle'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.styles.keys(), 'fixedChoices':True, 'initialValue':'solid', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'line style:'}} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.colors.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['dash_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'butt', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash_capstyle:'}} self.widgetDescr['dash_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash _joinstyle:'}} self.widgetDescr['solid_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'projecting', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_capstyle:'}} self.widgetDescr['solid_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_joinstyle:'}} self.widgetDescr['line_linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['line_antialiased'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'antialiased:'}, 'initialValue':1,} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') code = """def doit(self, y, x, lineStyle, color, line_antialiased, line_linewidth, solid_joinstyle, solid_capstyle, dash_capstyle, dash_joinstyle, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) colorChar = self.colors[color] lineStyleChar = self.styles[lineStyle] if x is None: l = self.axes.plot(y, colorChar+lineStyleChar) else: l = self.axes.plot(x, y, colorChar+lineStyleChar) #line properties if self.axes.lines: for l in self.axes.lines: l.set_linewidth(line_linewidth) l.set_antialiased(line_antialiased) l.set_solid_joinstyle(solid_joinstyle) l.set_solid_capstyle(solid_capstyle) l.set_dash_capstyle(dash_capstyle) l.set_dash_joinstyle(dash_joinstyle) self.canvas.draw() self.outputData(plot=self.axes) """ self.setFunction(code) class PlotDateNE(MPLPlottingNode): """This nodes takes two lists of values and plots the the second against the first. Input: y - sequence of dates x - sequence of dates optional arguements: lineStyle - line style color - color of the line (lineStyle+colorchar --fmt) tz - timezone xdate - is True, the x-axis will be labeled with dates ydate - is True, the y-axis will be labeled with dates Output: plot Matplotlib Axes object line: - line pytz is required. checks for pytz module and returns if not """ def __init__(self, name='PlotDate', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.styles=get_styles() self.colors=colors self.joinstyles = Line2D.validJoin timezones=common_timezones self.capstyles = Line2D.validCap ip = self.inputPortsDescr ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='lineStyle', defaultValue='solid') ip.append(datatype='None', required=False, name='color', defaultValue='black') ip.append(datatype='string', required=False, name='tz', defaultValue='US/PACIFIC') ip.append(datatype='boolean', required=False, name='xdate', defaultValue=True) ip.append(datatype='boolean', required=False, name='ydate', defaultValue=False) ip.append(datatype='boolean', required=False, name='line_antialiased', defaultValue=1) ip.append(datatype='float', required=False, name='line_linewidth', defaultValue=1) ip.append(datatype='string', required=False, name='solid_joinstyle', defaultValue='miter') ip.append(datatype='string', required=False, name='solid_capstyle', defaultValue='projecting') ip.append(datatype='string', required=False, name='dash_capstyle', defaultValue='butt') ip.append(datatype='string', required=False, name='dash_joinstyle', defaultValue='miter') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) self.widgetDescr['lineStyle'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.styles.keys(), 'fixedChoices':True, 'initialValue':'circle', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'line style:'}} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.colors.keys(), 'fixedChoices':True, 'initialValue':'blue', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['tz'] = { 'class':'NEComboBox', 'master':'node', 'choices':timezones, 'fixedChoices':True, 'initialValue':'US/PACIFIC', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'timezone:'}} self.widgetDescr['xdate'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'xdate:'}, 'initialValue':1,} self.widgetDescr['ydate'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'ydate:'}, 'initialValue':0,} self.widgetDescr['dash_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'butt', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash_capstyle:'}} self.widgetDescr['dash_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash _joinstyle:'}} self.widgetDescr['solid_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'projecting', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_capstyle:'}} self.widgetDescr['solid_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_joinstyle:'}} self.widgetDescr['line_linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['line_antialiased'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'antialiased:'}, 'initialValue':1,} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') code = """def doit(self, y, x, lineStyle, color, tz, xdate, ydate, line_antialiased, line_linewidth, solid_joinstyle, solid_capstyle, dash_capstyle, dash_joinstyle, drawAreaDef): try: from pytz import common_timezones except: print "Could not import pytz " return self.axes.clear() self.setDrawAreaDef(drawAreaDef) colorChar = self.colors[color] lineStyleChar = self.styles[lineStyle] rcParams['timezone'] = tz tz=timezone(tz) fmt= colorChar+lineStyleChar l = self.axes.plot_date(x, y, fmt=colorChar+lineStyleChar, tz=tz, xdate= xdate,ydate= ydate) #line properties if self.axes.lines: for l in self.axes.lines: l.set_linewidth(line_linewidth) l.set_antialiased(line_antialiased) l.set_solid_joinstyle(solid_joinstyle) l.set_solid_capstyle(solid_capstyle) l.set_dash_capstyle(dash_capstyle) l.set_dash_joinstyle(dash_joinstyle) self.canvas.draw() self.outputData(plot=self.axes) """ self.setFunction(code) class PieNE(MPLPlottingNode): """plots a pie diagram for a list of numbers. The size of each wedge will be the fraction x/sumnumbers). Input: fractions - sequence of values labels - None; sequence of labels (has to match length of factions explode - None; float or sequence of values which specifies the fraction of the radius to offset that wedge. if a single float is given the list is generated automatically shadow - True; if True, will draw a shadow beneath the pie. format - None; fromat string used to label the wedges with their numeric value Output: plot - Matplotlib Axes object patches - sequence of matplotlib.patches.Wedge texts - list of the label Text instances autotextsline - list of text instances for the numeric labels (only if format is not None """ def __init__(self, name='Pie', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='fractions',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', required=False, name='labels') ip.append(datatype='None', required=False, name='explode') ip.append(datatype='boolean', required=False, name='shadow') ip.append(datatype='string', required=False, name='format') ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['explode'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10, 'type':'float', 'initialValue':0.05, 'wheelPad':2, 'labelCfg':{'text':'explode'} } self.widgetDescr['shadow'] = { 'class':'NECheckButton', 'master':'node', 'initialValue':1, 'labelCfg':{'text':'shadow'}} self.widgetDescr['format'] = { 'class':'NEEntry', 'master':'node', 'labelCfg':{'text':'format:'}, 'initialValue':'%1.1f%%'} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='patches') op.append(datatype='None', name='texts') op.append(datatype='None', name='autotextsline') code = """def doit(self, fractions, labels, shadow, explode, format, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) if isinstance(explode, float) or isinstance(explode, int): explode = [explode]*len(fractions) res = self.axes.pie(fractions, explode=explode, labels=labels, autopct=format, shadow=shadow) if format is None: patches, texts = res autotextsline = None else: patches, texts, autotextsline = res self.canvas.draw() self.outputData(plot=self.axes, patches=patches, texts=texts, autotextsline=autotextsline) """ self.setFunction(code) #Spy Nodes class SpyNE(MPLPlottingNode): """Plots the sparsity pattern of the matrix Z using plot markers. input: Z - matrix optional arguements: marker - marker markersize -markersize The line handles are returned """ def __init__(self, name='Spy', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None',name = 'Z',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='marker', defaultValue='s') ip.append(datatype='None', required=False, name='markersize', defaultValue=10) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['marker'] = { 'class':'NEComboBox', 'master':'node', 'choices':markers.values(), 'fixedChoices':True, 'initialValue':'s', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'markers:'}} self.widgetDescr['markersize'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10, 'type':'float', 'initialValue':10.0, 'wheelPad':2, 'labelCfg':{'text':'size'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') code = """def doit(self, Z, marker, markersize, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) l=self.axes.spy(Z,marker=marker,markersize=markersize) self.canvas.draw() self.outputData(plot=self.axes) """ self.setFunction(code) class Spy2NE(MPLPlottingNode): """SPY2 plots the sparsity pattern of the matrix Z as an image input: Z - matrix The image instance is returned """ def __init__(self, name='Spy2', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None',name = 'Z',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='image') code = """def doit(self, Z, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) im=self.axes.spy2(Z) self.canvas.draw() self.outputData(plot=self.axes,image=im) """ self.setFunction(code) class VlineNE(MPLPlottingNode): """Plots vertical lines at each x from ymin to ymax. ymin or ymax can be scalars or len(x) numpy arrays. If they are scalars, then the respective values are constant, else the heights of the lines are determined by ymin and ymax x - array ymin or ymax can be scalars or len(x) numpy arrays color+marker - fmt is a plot format string, eg 'g--' Returns a list of lines that were added """ def __init__(self, name='Vline', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list',name = 'x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',name = 'ymin',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list',name = 'ymax',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='color', defaultValue='k') ip.append(datatype='string', required=False, name='linestyle', defaultValue='-') ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'node', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'k', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['linestyle'] = { 'class':'NEComboBox', 'master':'node', 'choices':['solid','dashed','dashdot','dotted'], 'fixedChoices':True, 'initialValue':'solid', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'linestyle:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='lines') code = """def doit(self, x, ymin, ymax, color, linestyle, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) lines=self.axes.vlines(x, ymin, ymax, color=color, linestyle=linestyle ) self.canvas.draw() self.outputData(plot=self.axes,lines=lines) """ self.setFunction(code) #Scatter Nodes from math import fabs class ScatterNE(MPLPlottingNode): """plots a scatter diagram for two lists of numbers. Input: x - sequence of values y - sequence of values s - None; sequence of values for size in area c - None, string or sequence of colors marker - 'circle', marker Output: plot Matplotlib Axes object patches - matplotlib.collections.RegularPolyCollection instance """ def getPointInBin(self, data, sortind, x, eps): #dichotomous search for indices of values in data within x+-eps if len(sortind)>2: if data[sortind[0]]==x: return data, [sortind[0]] elif data[sortind[-1]]==x: return data, [sortind[-1]] elif len(sortind)==2: return data, sortind else: mid = len(sortind)/2 if fabs(data[sortind[mid]]-x)<eps: if fabs(data[sortind[0]]-x)<eps: return data, sortind[:mid] elif fabs(data[sortind[-1]]-x)<eps: return data, sortind[mid:] if data[sortind[mid]]>x: data, sortind = self.getPointInBin(data, sortind[:mid], x, eps) elif data[sortind[mid]]<x: data, sortind = self.getPointInBin(data, sortind[mid:], x, eps) return data, sortind def on_click(self, event): # get the x and y pixel coords if event.inaxes: d1 = self.inputPorts[0].getData() d2 = self.inputPorts[1].getData() mini = min(d1) maxi = max(d1) epsx = (maxi-mini)/200. import numpy d1s = numpy.argsort(d1) x, y = event.xdata, event.ydata dum, v1 = self.getPointInBin(d1, d1s, x, epsx) mini = min(d2) maxi = max(d2) epsy = (maxi-mini)/200. result = [] for v in v1: if fabs(x - d1[v])<epsx and fabs(y - d2[v])<epsy: result.append(v) #print v, x - d1[v], epsx, y - d2[v], epsy if len(result): print 'point:', result, x, d1[result[0]], y, d2[result[0]] self.outputData(pick=result) self.scheduleChildren([self.outputPorts[2]]) return result else: print "NO POINT" return None def afterAddingToNetwork(self): MPLPlottingNode.afterAddingToNetwork(self) self.figure.canvas.mpl_connect('button_press_event', self.on_click) def __init__(self, name='Scatter', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.cutoff = 10.0 self.joinstyles = Line2D.validJoin self.capstyles = Line2D.validCap self.colors = colors self.markers = markers self.widgetDescr['s'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10, 'type':'float', 'initialValue':1.0, 'wheelPad':2, 'labelCfg':{'text':'size'} } self.widgetDescr['c'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.colors.values(), 'fixedChoices':True, 'initialValue':'k', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['marker'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.markers.keys(), 'fixedChoices':True, 'initialValue':'circle', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'markers:'}} self.widgetDescr['dash_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'butt', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash_capstyle:'}} self.widgetDescr['dash_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash _joinstyle:'}} self.widgetDescr['solid_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'projecting', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_capstyle:'}} self.widgetDescr['solid_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_joinstyle:'}} self.widgetDescr['linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['line_antialiased'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'antialiased:'}, 'initialValue':1,} ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False, name='s') ip.append(datatype='None', required=False, name='c', defaultValue='k') ip.append(datatype='string', required=False, name='marker', defaultValue='circle') ip.append(datatype='string', required=False, name='solid_joinstyle', defaultValue='miter') ip.append(datatype='string', required=False, name='solid_capstyle', defaultValue='projecting') ip.append(datatype='string', required=False, name='dash_capstyle', defaultValue='butt') ip.append(datatype='string', required=False, name='dash_joinstyle', defaultValue='miter') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='patches') op.append(datatype='int', name='pick') code = """def doit(self, x, y, s, c, marker, solid_joinstyle, solid_capstyle, dash_capstyle, dash_joinstyle, drawAreaDef): kw={'solid_joinstyle':solid_joinstyle,'solid_capstyle':solid_capstyle,'dash_capstyle':dash_capstyle,'dash_joinstyle':dash_joinstyle} self.axes.clear() self.setDrawAreaDef(drawAreaDef) if self.markers.has_key(marker): marker = self.markers[marker] res = self.axes.scatter( x, y, s, c, marker) #collections properties if self.axes.lines: for c in self.axes.collections: c.set_solid_joinstyle(solid_joinstyle) c.set_solid_capstyle(solid_capstyle) c.set_dash_capstyle(dash_capstyle) c.set_dash_joinstyle(dash_joinstyle) self.canvas.draw() self.outputData(plot=self.axes, patches=res) """ self.setFunction(code) class ScatterClassicNE(MPLPlottingNode): """plots a scatter diagram for two lists of numbers. Input: x - sequence of values y - sequence of values s - None; sequence of values for size in area c - None, string or sequence of colors Output: plot Matplotlib Axes object patches - matplotlib.collections.RegularPolyCollection instance """ def __init__(self, name='ScatterClassic', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) self.joinstyles = Line2D.validJoin self.capstyles = Line2D.validCap self.colors=colors self.markers =markers self.widgetDescr['s'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10, 'type':'float', 'initialValue':1.0, 'wheelPad':2, 'labelCfg':{'text':'size'} } self.widgetDescr['c'] = { 'class':'NEComboBox', 'master':'node', 'choices':self.colors.values(), 'fixedChoices':True, 'initialValue':'k', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'we'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['dash_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'butt', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash_capstyle:'}} self.widgetDescr['dash_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'dash _joinstyle:'}} self.widgetDescr['solid_capstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.capstyles, 'fixedChoices':True, 'initialValue':'projecting', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_capstyle:'}} self.widgetDescr['solid_joinstyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':self.joinstyles, 'fixedChoices':True, 'initialValue':'miter', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'solid_joinstyle:'}} self.widgetDescr['linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':60, 'height':21, 'oneTurn':2, 'type':'int', 'wheelPad':2, 'initialValue':1, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['line_antialiased'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'antialiased:'}, 'initialValue':1,} ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False, name='s') ip.append(datatype='None', required=False, name='c') ip.append(datatype='string', required=False, name='solid_joinstyle', defaultValue='miter') ip.append(datatype='string', required=False, name='solid_capstyle', defaultValue='projecting') ip.append(datatype='string', required=False, name='dash_capstyle', defaultValue='butt') ip.append(datatype='string', required=False, name='dash_joinstyle', defaultValue='miter') ip.append(datatype='MPLDrawArea', required=False,name='drawAreaDef',singleConnection=False) op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='patches') code = """def doit(self, x, y, s, c, solid_joinstyle, solid_capstyle, dash_capstyle, dash_joinstyle, drawAreaDef): kw={'solid_joinstyle':solid_joinstyle,'solid_capstyle':solid_capstyle,'dash_capstyle':dash_capstyle,'dash_joinstyle':dash_joinstyle} self.axes.clear() self.setDrawAreaDef(drawAreaDef) res = self.axes.scatter_classic( x, y, s, c) #collections properties if self.axes.lines: for c in self.axes.collections: c.set_solid_joinstyle(solid_joinstyle) c.set_solid_capstyle(solid_capstyle) c.set_dash_capstyle(dash_capstyle) c.set_dash_joinstyle(dash_joinstyle) self.canvas.draw() self.outputData(plot=self.axes, patches=res) """ self.setFunction(code) class FigImageNE(MPLPlottingNode): """plots an image from a 2d array fo data Input: data - 2D array of data Output: plot Matplotlib Axes object image - image.FigureImage instance """ def __init__(self, name='Figimage', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='data',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False, name='cmap', defaultValue='jet') ip.append(datatype='string',required=False, name='imaspect', defaultValue='equal') ip.append(datatype='string',required=False, name='interpolation', defaultValue='bilinear') ip.append(datatype='string',required=False, name='origin', defaultValue='upper') ip.append(datatype='None', required=False, name='alpha', defaultValue=1.) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) imaspects=['auto', 'equal'] interpolations =['nearest', 'bilinear', 'bicubic', 'spline16', 'spline36', 'hanning', 'hamming', 'hermite', 'kaiser', 'quadric','catrom', 'gaussian', 'bessel', 'mitchell', 'sinc','lanczos', 'blackman'] self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['imaspect'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':imaspects, 'fixedChoices':True, 'initialValue':'equal', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'aspect:'}} self.widgetDescr['interpolation'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':interpolations, 'fixedChoices':True, 'initialValue':'bilinear', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'interpolation:'}} self.widgetDescr['origin'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['upper','lower',], 'fixedChoices':True, 'initialValue':'upper', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'origin:'}} self.widgetDescr['alpha'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1, 'type':'float', 'initialValue':1.0, 'wheelPad':2, 'labelCfg':{'text':'alpha'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='plot') op.append(datatype='None', name='image') code = """def doit(self, data, cmap, imaspect, interpolation, origin, alpha, drawAreaDef): kw={'cmap':cmap,'imaspect':imaspect,'interpolation':interpolation,'origin':origin,'alpha':alpha} self.axes.clear() self.setDrawAreaDef(drawAreaDef) self.setDrawArea(kw) im = self.axes.imshow(data) #image properties cmp=cm.get_cmap(cmap) im.set_cmap(cmp) im.set_interpolation(interpolation) im.set_alpha(alpha) im.origin=origin self.axes.set_aspect(imaspect) self.canvas.draw() self.outputData(plot=self.axes, image=im) """ self.setFunction(code) #PSEUDO COLOR PLOTS class PcolorMeshNE(MPLPlottingNode): """This class is for making a pseudocolor plot. input: arraylistx - array arraylisty - array arraylistz - may be a masked array optional arguements: cmap - cm.jet : a cm Colormap instance from matplotlib.cm. defaults to cm.jet shading - 'flat' : or 'faceted'. If 'faceted', a black grid is drawn around each rectangle; if 'flat', edge colors are same as face colors alpha - blending value PCOLORMESH(Z) - make a pseudocolor plot of matrix Z PCOLORMESH(X, Y, Z) - a pseudo color plot of Z on the matrices X and Y Return value is a matplotlib.collections.PatchCollection object """ def __init__(self, name='PcolorMesh', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', required=False,name='arraylistx') ip.append(datatype='None', required=False,name='arraylisty') ip.append(datatype='None', name='arraylistz',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False, name='cmap', defaultValue='jet') ip.append(datatype='string',required=False, name='shading', defaultValue='faceted') ip.append(datatype='float',required=False, name='alpha', defaultValue=1.) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['shading'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['flat','faceted'], 'fixedChoices':True, 'initialValue':'faceted', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'shading:'}} self.widgetDescr['alpha'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'initialValue':1.0, 'wheelPad':2, 'labelCfg':{'text':'alpha'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype='None', name='patches') code = """def doit(self, x, y, z, cmap, shading, alpha, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) #pseudo color plot of Z Qz=z cmap = cm.get_cmap(cmap) if x==None or y==None: C=self.axes.pcolormesh(Qz,cmap=cmap,shading=shading,alpha=alpha) else: #a pseudo color plot of Z on the matrices X and Y Qx,Qy=array(x),array(y) C=self.axes.pcolormesh(Qx,Qy,Qz,cmap=cmap,shading=shading,alpha=alpha) self.canvas.draw() self.outputData(axes=self.axes,patches=C) """ self.setFunction(code) class PcolorNE(MPLPlottingNode): """This class is for making a pseudocolor plot. input: arraylistx - may be a array arraylisty - may be a array arraylistz - may be a masked array optional arguements: cmap - cm.jet : a cm Colormap instance from matplotlib.cm. defaults to cm.jet shading - 'flat' : or 'faceted'. If 'faceted', a black grid is drawn around each rectangle; if 'flat', edge colors are same as face colors alpha - blending value PCOLOR(Z) - make a pseudocolor plot of matrix Z PCOLOR(X, Y, Z) - a pseudo color plot of Z on the matrices X and Y Return value is a matplotlib.collections.PatchCollection object """ def __init__(self, name='Pcolor', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', required=False,name='arraylistx') ip.append(datatype='None', required=False,name='arraylisty') ip.append(datatype='None', name='arraylistz',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False, name='cmap', defaultValue='jet') ip.append(datatype='string',required=False, name='shading', defaultValue='faceted') ip.append(datatype='float',required=False, name='alpha', defaultValue=1.) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['shading'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['flat','faceted'], 'fixedChoices':True, 'initialValue':'faceted', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'shading:'}} self.widgetDescr['alpha'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'initialValue':1.0, 'wheelPad':2, 'labelCfg':{'text':'alpha'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype='None', name='patches') code = """def doit(self, x, y, z, cmap, shading, alpha, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) #pseudo color plot of Z Qz=z cmap = cm.get_cmap(cmap) if x==None or y==None: C=self.axes.pcolor(Qz,cmap=cmap,shading=shading,alpha=alpha) else: #a pseudo color plot of Z on the matrices X and Y Qx,Qy=array(x),array(y) C=self.axes.pcolor(Qx,Qy,Qz,cmap=cmap,shading=shading,alpha=alpha) self.canvas.draw() self.outputData(axes=self.axes,patches=C) """ self.setFunction(code) class PcolorClassicNE(MPLPlottingNode): """This class is for making a pseudocolor plot. input: arraylistx - array arraylisty - array arraylistz - may be a masked array optional arguements: cmap - cm.jet : a cm Colormap instance from matplotlib.cm. defaults to cm.jet shading - 'flat' : or 'faceted'. If 'faceted', a black grid is drawn around each rectangle; if 'flat', edge colors are same as face colors alpha - blending value PCOLOR_CLASSIC(Z) - make a pseudocolor plot of matrix Z PCOLOR_CLASSIC(X, Y, Z) - a pseudo color plot of Z on the matrices X and Y Return value is a matplotlib.collections.PatchCollection object """ def __init__(self, name='PcolorClassic', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', required=False,name='arraylistx') ip.append(datatype='None', required=False,name='arraylisty') ip.append(datatype='None', name='arraylistz',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False, name='cmap', defaultValue='jet') ip.append(datatype='string',required=False, name='shading', defaultValue='faceted') ip.append(datatype='float',required=False, name='alpha', defaultValue=.75) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['shading'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['flat','faceted'], 'fixedChoices':True, 'initialValue':'faceted', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'shading:'}} self.widgetDescr['alpha'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'initialValue':0.75, 'wheelPad':2, 'labelCfg':{'text':'alpha'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype='None', name='patches') code = """def doit(self, x, y, z, cmap, shading, alpha, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) #pseudo color plot of Z Qz=z cmap = cm.get_cmap(cmap) if x==None or y==None: C=self.axes.pcolor_classic(Qz,cmap=cmap,shading=shading,alpha=alpha) else: #a pseudo color plot of Z on the matrices X and Y Qx,Qy=array(x),array(y) C=self.axes.pcolor_classic(Qx,Qy,Qz,cmap=cmap,shading=shading,alpha=alpha) self.canvas.draw() self.outputData(axes=self.axes,patches=C) """ self.setFunction(code) class ContourNE(MPLPlottingNode): """contour and contourf draw contour lines and filled contours. input: arraylistx :array arraylisty :array arraylistz :array optional arguements: length_colors : no of colors required to color contour cmap :a cm Colormap instance from matplotlib.cm. origin :'upper'|'lower'|'image'|None. linewidth :linewidth hold: contour(Z) make a contour plot of n arrayZ contour(X,Y,Z) X,Y specify the (x,y) coordinates of the surface """ def __init__(self, name='Contour', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', required=False, name='arraylistx') ip.append(datatype='None', required=False,name='arraylisty') ip.append(datatype='None', name='arraylistz',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string', required=False, name='contour', defaultValue='default') ip.append(datatype='int', required=False, name='length_colors') ip.append(datatype='string', required=False, name='cmap', defaultValue='jet') ip.append(datatype='string', required=False, name='colors', defaultValue='black') ip.append(datatype='string', required=False, name='origin', defaultValue='upper') ip.append(datatype='int', required=False, name='linewidth', defaultValue=1) ip.append(datatype='boolean', required=False, name='hold', defaultValue=0) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['contour'] = { 'class':'NEComboBox', 'master':'node', 'choices':['default','filledcontour'], 'fixedChoices':True, 'initialValue':'default', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'contour:'}} self.widgetDescr['length_colors'] = { 'class':'NEEntry', 'master':'node', 'labelCfg':{'text':'no. of colors:'}, 'initialValue':10} self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['colors'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'black', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'colors:'}} self.widgetDescr['linewidth'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':4, 'type':'int', 'initialValue':1, 'wheelPad':2, 'labelCfg':{'text':'linewidth'} } self.widgetDescr['origin'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['upper','lower','image',None], 'fixedChoices':True, 'initialValue':'upper', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'origin:'}} self.widgetDescr['hold'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'hold'}, 'initialValue':0,} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype='None', name='contour') code = """def doit(self, arraylistx, arraylisty, arraylistz, contour, length_colors, cmapval, colors, origin, linewidth, hold, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) axes_list=self.axes.figure.axes if len(axes_list): for i in axes_list: if not isinstance(i,Subplot): self.axes.figure.delaxes(i) import numpy #Z=10.0*(numpy.array(z2) - numpy.array(z1)) Z=arraylistz if length_colors: cmap = cm.get_cmap(cmapval,int(length_colors)) else: cmap=eval("cm.%s" %cmapval) if arraylistx==None or arraylisty==None: #contour plot of an array Z if contour=='default': CS=self.axes.contour(Z,cmap=cmap,linewidths=linewidth,origin=origin,hold=hold) self.axes.clabel(CS,inline=1) else: CS=self.axes.contourf(numpy.array(Z),cmap=cmap,origin=origin) else: #(x,y) coordinates of the surface X=numpy.array(arraylistx) Y=numpy.array(arraylisty) if contour=='default': CS=self.axes.contour(X,Y,Z,cmap=cmap,linewidths=linewidth,origin=origin,hold=hold) self.axes.clabel(CS,inline=1) else: CS=self.axes.contourf(X,Y,numpy.array(Z),cmap=cmap,origin=origin) self.canvas.draw() self.outputData(axes=self.axes,contour=CS) """ self.setFunction(code) class SpecgramNE(MPLPlottingNode): """plots a spectrogram of data in arraylistx. NFFT - Data are split into NFFT length segements Fs - samplingFrequency cmap - colormap nOverlap- the amount of overlap of each segment. Returns im im is a matplotlib.image.AxesImage """ def __init__(self, name='Specgram', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='arraylistx',singleConnection='auto',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='int', name='NFFT', defaultValue=256) ip.append(datatype='int', name='Fs', defaultValue=2) ip.append(datatype='string', required=False, name='cmap') ip.append(datatype='int', name='nOverlap', defaultValue=128) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['NFFT'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'NFFT (powOf 2):'},'width':10, 'type':'int', 'initialValue':256} self.widgetDescr['Fs'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':2, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Fs'} } self.widgetDescr['cmap'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cmaps, 'fixedChoices':True, 'initialValue':'jet', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'cmap:'}} self.widgetDescr['nOverlap'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'nOverlap:'},'width':10, 'type':'int','labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype=None,name='image') code="""def doit(self, x, NFFT, Fs, cmapval, nOverlap, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) cmap=eval("cm.%s" %cmapval) Pxx, freqs, bins, im=self.axes.specgram(x, NFFT=int(NFFT), Fs=Fs,cmap=cmap,noverlap=int(nOverlap)) self.canvas.draw() self.outputData(axes=self.axes,image=im) """ self.setFunction(code) class CSDNE(MPLPlottingNode): """plots a cross spectral density of data in arraylistx,arraylisty. NFFT - Data are split into NFFT length segements Fs - samplingFrequency nOverlap- the amount of overlap of each segment. """ def __init__(self, name='CSD', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype=None, name='arraylistx',singleConnection='auto',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype=None, name='arraylisty',singleConnection='auto',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='int', name='NFFT', defaultValue=256) ip.append(datatype='int', name='Fs', defaultValue=2) ip.append(datatype='int', name='nOverlap', defaultValue=128) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['NFFT'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'NFFT (powOf 2):'},'width':10, 'type':'int', 'initialValue':256} self.widgetDescr['Fs'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':2, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Fs'} } self.widgetDescr['nOverlap'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'nOverlap:'},'width':10, 'type':'int','labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, arraylistx, arraylisty, NFFT, Fs, nOverlap, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) Pxx, freqs=self.axes.csd(arraylistx,arraylisty, NFFT=int(NFFT), Fs=Fs,noverlap=int(nOverlap)) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class PSDNE(MPLPlottingNode): """plots a cross spectral density of data in arraylistx. NFFT - Data are split into NFFT length segements Fs - samplingFrequency nOverlap- the amount of overlap of each segment. """ def __init__(self, name='PSD', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype=None, name='arraylistx',singleConnection='auto',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='int', required=False,name='NFFT', defaultValue=256) ip.append(datatype='int', required=False,name='Fs', defaultValue=2) ip.append(datatype='int', required=False,name='nOverlap', defaultValue=0) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['NFFT'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'NFFT (powOf 2):'},'width':10, 'type':'int', 'initialValue':256} self.widgetDescr['Fs'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':2, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Fs'}} self.widgetDescr['nOverlap'] = { 'class':'NEEntry', 'master':'ParamPanel', 'labelCfg':{'text':'nOverlap:'},'width':10, 'type':'int','labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, x, NFFT, Fs, nOverlap, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) self.axes.psd(x,NFFT=int(NFFT), Fs=Fs,noverlap=int(nOverlap)) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class LogCurveNE(MPLPlottingNode): """This node is to make a loglog plot with log scaling on the x and y axis. input: x - list y - list basex - base of the x logarithm basey - base of the y logarithm """ def __init__(self, name='LogCurve', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='string',required=False, name='logCurve', defaultValue='log') ip.append(datatype='float',required=False, name='basex', defaultValue=10) ip.append(datatype='float',required=False, name='basey', defaultValue=10) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['logCurve'] = { 'class':'NEComboBox', 'master':'node', 'choices':['logbasex','logbasey'], 'fixedChoices':True, 'initialValue':'logbasex', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'logCurve:'}} self.widgetDescr['basex'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':10, 'labelCfg':{'text':'basex'} } self.widgetDescr['basey'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':10, 'labelCfg':{'text':'basey'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, x, y, logCurve, basex, basey, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) if logCurve=="logbasex": log_curve=self.axes.loglog(x,y,basex=basex) else: log_curve=self.axes.loglog( x,y,basey=basey) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class SemilogxNE(MPLPlottingNode): """This node is to make a semilog plot with log scaling on the xaxis. input: x - list basex - base of the x logarithm """ def __init__(self, name='Semilogx', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='float',required=False, name='basex', defaultValue=10) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['basex'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':10, 'labelCfg':{'text':'basex'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, x, y, basex, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) self.axes.semilogx(x,y,basex=basex) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class SemilogyNE(MPLPlottingNode): """This node is to make a semilog plot with log scaling on the y axis. input: y - list basey - base of the y logarithm """ def __init__(self, name='Semilogy', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='float',required=False, name='basey', defaultValue=10) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['basey'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':10, 'labelCfg':{'text':'basey'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, x, y, basey, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) self.axes.semilogy(x,y,basey=basey) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class BoxPlotNE(MPLPlottingNode): """ To plot a box and whisker plot for each column of x. The box extends from the lower to upper quartile values of the data, with a line at the median. The whiskers extend from the box to show the range of the data. Flier points are those past the end of the whiskers. input: x - Numeric array optional arguements: notch - notch = 0 (default) produces a rectangular box plot. notch = 1 will produce a notched box plot sym - (default 'b+') is the default symbol for flier points. Enter an empty string ('') if you dont want to show fliers. vert - vert = 1 (default) makes the boxes vertical. vert = 0 makes horizontal boxes. This seems goofy, but thats how Matlab did it. whis - (default 1.5) defines the length of the whiskers as a function of the inner quartile range. They extend to the most extreme data point within ( whis*(75%-25%) ) data range. positions- (default 1,2,...,n) sets the horizontal positions of the boxes. The ticks and limits are automatically set to match the positions. widths - either a scalar or a vector and sets the width of each box. The default is 0.5, or 0.15*(distance between extreme positions) if that is smaller. Returns a list of the lines added """ def __init__(self, name='BoxPlot', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list', name='x',singleConnection='auto',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='list', required=False, name='positions') ip.append(datatype=None, required=False, name='widths', defaultValue=.15) ip.append(datatype='boolean', required=False, name='notch', defaultValue=0) ip.append(datatype='boolean', required=False, name='vert', defaultValue=0) ip.append(datatype='string', required=False, name='color', defaultValue='b') ip.append(datatype='string', required=False, name='linestyle', defaultValue='-') ip.append(datatype='float', required=False, name='whis', defaultValue=1.5) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['notch'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'notch:'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0,} self.widgetDescr['vert'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'vert:'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0,} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['linestyle'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':get_styles().values(), 'fixedChoices':True, 'initialValue':'-', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'linestyle:'}} self.widgetDescr['whis'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':1.5,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'whis'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype=None, name='lines') code="""def doit(self, x, positions, widths, notch, vert, color, linestyle, whis, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) sym=color+linestyle ll=self.axes.boxplot(x,notch=notch, sym=sym, vert=vert, whis=whis,positions=positions,widths=widths) self.canvas.draw() self.outputData(axes=self.axes,lines=ll) """ self.setFunction(code) class BarNE(MPLPlottingNode): """Plots a horizontal bar plot with rectangles bounded by left, left+width, bottom, bottom+height (left, right, bottom and top edges) bottom, width, height, and left can be either scalars or sequences input: height - the heights (thicknesses) of the bars left - the x coordinates of the left edges of the bars Optional arguments: bottom - can be either scalars or sequences width - can be either scalars or sequences color - specifies the colors of the bars edgecolor - specifies the colors of the bar edges xerr - if not None, will be used to generate errorbars on the bar chart yerr - if not None, will be used to generate errorbars on the bar chart ecolor - specifies the color of any errorbar capsize - determines the length in points of the error bar caps align - 'edge' | 'center' 'edge' aligns the horizontal bars by their bottom edges in bottom, while 'center' interprets these values as the y coordinates of the bar centers. Return value is a list of Rectangle patch instances """ def __init__(self, name='Bar', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='left',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', name='height',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False,name='bottom', defaultValue=0) ip.append(datatype='None', required=False,name='width', defaultValue=.8) ip.append(datatype='None', required=False, name='xerr') ip.append(datatype='None', required=False, name='yerr') ip.append(datatype='string', required=False, name='color', defaultValue='b') ip.append(datatype='string', required=False, name='edgecolor', defaultValue='b') ip.append(datatype='string', required=False, name='ecolor', defaultValue='b') ip.append(datatype='int', required=False, name='capsize', defaultValue=3) ip.append(datatype='list', required=False, name='align', defaultValue='edge') ip.append(datatype='list', required=False, name='orientation', defaultValue='vertical') ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['align'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['edge','center'], 'fixedChoices':True, 'initialValue':'edge', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'align:'}} self.widgetDescr['orientation'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['vertical','horizontal'], 'fixedChoices':True, 'initialValue':'vertical', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'orientation:'}} self.widgetDescr['edgecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'edgecolor:'}} self.widgetDescr['ecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'ecolor:'}} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['capsize'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':3,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'capsize'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype=None, name='patches') code="""def doit(self, left, height, bottom, width, xerr, yerr, color, edgecolor, ecolor, capsize, align, orientation, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) patches=self.axes.bar(left,height,bottom=bottom, width=width, color=color, edgecolor=edgecolor, xerr=xerr, yerr=yerr, ecolor=ecolor, capsize=capsize, align=align,orientation=orientation) self.canvas.draw() self.outputData(axes=self.axes,patches=patches) """ self.setFunction(code) class BarHNE(MPLPlottingNode): """Plots a horizontal bar plot with rectangles bounded by left, left+width, bottom, bottom+height (left, right, bottom and top edges) bottom, width, height, and left can be either scalars or sequences input: bottom - can be either scalars or sequences width - can be either scalars or sequences Optional arguments: height - the heights (thicknesses) of the bars left - the x coordinates of the left edges of the bars color - specifies the colors of the bars edgecolor - specifies the colors of the bar edges xerr - if not None, will be used to generate errorbars on the bar chart yerr - if not None, will be used to generate errorbars on the bar chart ecolor - specifies the color of any errorbar capsize - determines the length in points of the error bar caps align - 'edge' | 'center' 'edge' aligns the horizontal bars by their bottom edges in bottom, while 'center' interprets these values as the y coordinates of the bar centers. Return value is a list of Rectangle patch instances """ def __init__(self, name='BarH', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='bottom',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', name='width',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False, name='height', defaultValue=.8) ip.append(datatype='None', required=False, name='left', defaultValue=0) ip.append(datatype='None', required=False, name='xerr') ip.append(datatype='None', required=False, name='yerr') ip.append(datatype='string', required=False, name='color', defaultValue='b') ip.append(datatype='string', required=False, name='edgecolor', defaultValue='b') ip.append(datatype='string', required=False, name='ecolor', defaultValue='b') ip.append(datatype='int', required=False, name='capsize', defaultValue=3) ip.append(datatype='list', required=False, name='align', defaultValue='edge') ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['align'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['edge','center'], 'fixedChoices':True, 'initialValue':'edge', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'align:'}} self.widgetDescr['edgecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'edgecolor:'}} self.widgetDescr['ecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'ecolor:'}} self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['capsize'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':3,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'capsize'} } op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') op.append(datatype=None, name='patches') code="""def doit(self, bottom, width, height, left, xerr, yerr, color, edgecolor, ecolor, capsize, align, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) patches=self.axes.barh(bottom, width, height=height, left=left, color=color, edgecolor=edgecolor, xerr=xerr, yerr=yerr, ecolor=ecolor, capsize=capsize, align=align) self.canvas.draw() self.outputData(axes=self.axes,patches=patches) """ self.setFunction(code) class QuiverNE(MPLPlottingNode): """Makes a vector plot (U, V) with arrows on a grid (X, Y) If X and Y are not specified, U and V must be 2D arrays. Equally spaced X and Y grids are then generated using the meshgrid command. color -color S -used to scale the vectors.Use S=0 to disable automatic scaling. If S!=0, vectors are scaled to fit within the grid and then are multiplied by S. pivot -'mid','tip' etc units - 'inches','width','x','y' width - a scalar that controls the width of the arrows """ def __init__(self, name='Quiver', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='u',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', name='v',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False,name='x') ip.append(datatype='None', required=False,name='y') ip.append(datatype='None', required=False, name='color') ip.append(datatype='float', required=False, name='S', defaultValue=.2) ip.append(datatype='float', required=False, name='width', defaultValue=1.) ip.append(datatype='string', required=False, name='pivot', defaultValue='tip') ip.append(datatype='string', required=False, name='units', defaultValue='inches') ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['color'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'color:'}} self.widgetDescr['S'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float','precision':3, 'wheelPad':2, 'initialValue':0.20,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'S'} } self.widgetDescr['width'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float','precision':3, 'wheelPad':2, 'initialValue':0.002,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'width'} } self.widgetDescr['pivot'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['tip','mid'], 'fixedChoices':True, 'initialValue':'tip', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'pivot:'}} self.widgetDescr['units'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['inches','width','x','y'], 'fixedChoices':True, 'initialValue':'units', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'units:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, u, v, x, y, color, S, width, pivot, units, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) if x!=None: self.axes.quiver(x,y,u,v,S,pivot=pivot,color=color,width=width,units=units) else: self.axes.quiver(u,v,S,color=color,width=width,units=units) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) class ErrorBarNE(MPLPlottingNode): """Plot x versus y with error deltas in yerr and xerr. Vertical errorbars are plotted if yerr is not None Horizontal errorbars are plotted if xerr is not None. input: x - scalar or sequence of vectors y - scalar or sequence of vectors xerr - scalar or sequence of vectors, plots a single error bar at x, y.,default is None yerr - scalar or sequence of vectors, plots a single error bar at x, y.,default is None optional arguements: controlmarkers - controls errorbar markers(with props: markerfacecolor, markeredgecolor, markersize and markeredgewith) fmt - plot format symbol for y. if fmt is None, just plot the errorbars with no line symbols. This can be useful for creating a bar plot with errorbars ecolor - a matplotlib color arg which gives the color the errorbar lines; if None, use the marker color. capsize - the size of the error bar caps in points barsabove- if True, will plot the errorbars above the plot symbols default is below """ def __init__(self, name='ErrorBar', **kw): kw['name'] = name apply( MPLPlottingNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='x',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', name='y',beforeDisconnect=self.codeBeforeDisconnect) ip.append(datatype='None', required=False, name='xerr') ip.append(datatype='None', required=False, name='yerr') ip.append(datatype='string', required=False, name='format', defaultValue='b-') ip.append(datatype='string', required=False, name='ecolor', defaultValue='b') ip.append(datatype='int', required=False, name='capsize', defaultValue=3) ip.append(datatype='boolean', required=False, name='barsabove', defaultValue=0) ip.append(datatype='boolean', required=False, name='controlmarkers', defaultValue=0) ip.append(datatype='MPLDrawArea', required=False, name='drawAreaDef',singleConnection=False) self.widgetDescr['format'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':get_styles().values(), 'fixedChoices':True, 'initialValue':'-', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'format:'}} self.widgetDescr['ecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':colors.values(), 'fixedChoices':True, 'initialValue':'b', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'ecolor:'}} self.widgetDescr['capsize'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':1, 'type':'float', 'wheelPad':2, 'initialValue':3,'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'capsize'} } self.widgetDescr['barsabove'] = { 'class':'NECheckButton', 'master':'ParamPanel', 'labelCfg':{'text':'barsabove:'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0,} self.widgetDescr['controlmarkers'] = { 'class':'NECheckButton', 'master':'node', 'labelCfg':{'text':'barsabove:'},'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'initialValue':0,} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code="""def doit(self, x, y, xerr, yerr, format, ecolor, capsize, barsabove, controlmarkers, drawAreaDef): self.axes.clear() self.setDrawAreaDef(drawAreaDef) fmt=ecolor+format if controlmarkers == 0: self.axes.errorbar(x,y,xerr=xerr,yerr=yerr,fmt=fmt,ecolor=ecolor,capsize=capsize,barsabove=barsabove) else: def set_markerparams(dAD): if dAD.has_key('marker'): marker = dAD['marker'] else: marker = 'solid' if dAD.has_key('markerfacecolor'): markerfacecolor = dAD['markerfacecolor'] else: markerfacecolor = 'blue' if dAD.has_key('markeredgecolor'): markeredgecolor = dAD['markeredgecolor'] else: markeredgecolor = 'blue' if dAD.has_key('markersize'): markersize = dAD['markersize'] else: markersize = 6 if dAD.has_key('makeredgewidth'): makeredgewidth = dAD['makeredgewidth'] else: makeredgewidth = 0.5 return marker,markerfacecolor,markeredgecolor,markersize,makeredgewidth if drawAreaDef: markerdict={} if len(drawAreaDef) == 1 and type(drawAreaDef[0])==types.DictType: for d in drawAreaDef[0].keys(): if d[:6]=="marker": markerdict[d]=drawAreaDef[0][d] if len(drawAreaDef)>1: for dAD in drawAreaDef: if type(dAD) == types.DictType: for d in dAD.keys(): if d[:6]=="marker": markerdict[d]=dAD[d] if markerdict!={}: marker,markerfacecolor,markeredgecolor,markersize,makeredgewidth=set_markerparams(markerdict) self.axes.errorbar(x, y, xerr=xerr,yerr=yerr, marker=marker, mfc=markerfacecolor, mec=markeredgecolor, ms=markersize, mew=makeredgewidth) self.canvas.draw() self.outputData(axes=self.axes) """ self.setFunction(code) ########################################################################### # # Nodes generating data for demos # ########################################################################### class RandNormDist(NetworkNode): """ Outputs values describing a randomized normal distribution Input: mu - sigma - dpi - number of value points Output: data: list of values mu - sigma - """ def __init__(self, name='RandNormDist', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='float', name='mu') ip.append(datatype='float', name='sigma') ip.append(datatype='int', name='npts') self.widgetDescr['mu'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':100, 'labelCfg':{'text':'mu'} } self.widgetDescr['sigma'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':15, 'labelCfg':{'text':'sigma'} } self.widgetDescr['npts'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':1000, 'type':'int', 'wheelPad':2, 'initialValue':10000, 'labelCfg':{'text':'nb. points'} } op = self.outputPortsDescr op.append(datatype='list', name='data') op.append(datatype='float', name='mu') op.append(datatype='float', name='sigma') code = """def doit(self, mu, sigma, npts): from numpy.oldnumeric.mlab import randn self.outputData( data=mu+sigma*randn(npts), mu=mu, sigma=sigma ) """ self.setFunction(code) class SinFunc(NetworkNode): """ Outputs values describing a sinusoidal function. Input: start - first x value end - last x value step - step size Output: x: list x values y = list of y values """ def __init__(self, name='SinFunc', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='float', name='x0') ip.append(datatype='float', name='x1') ip.append(datatype='float', name='step') self.widgetDescr['x0'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10., 'type':'float', 'wheelPad':2, 'initialValue':0., 'labelCfg':{'text':'x0'} } self.widgetDescr['x1'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':10., 'type':'float', 'wheelPad':2, 'initialValue':3., 'labelCfg':{'text':'x1'} } self.widgetDescr['step'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10., 'type':'float', 'wheelPad':2, 'initialValue':0.01, 'labelCfg':{'text':'nb. points'} } op = self.outputPortsDescr op.append(datatype='list', name='x') op.append(datatype='list', name='y') code = """def doit(self, x0, x1, step): import numpy x = numpy.arange(x0, x1, step) y = numpy.sin(2*numpy.pi*x) self.outputData( x=x, y=y) """ self.setFunction(code) class SinFuncSerie(NetworkNode): """ Outputs a list of y values of a sinusoidal function Input: Output: x: list y values """ def __init__(self, name='SinFuncSerie', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ## ip = self.inputPortsDescr ## ip.append(datatype='float', name='x0') ## ip.append(datatype='float', name='x1') ## ip.append(datatype='float', name='step') ## self.widgetDescr['x0'] = { ## 'class':'NEThumbWheel','master':'node', ## 'width':75, 'height':21, 'oneTurn':10., 'type':'float', ## 'wheelPad':2, 'initialValue':0., ## 'labelCfg':{'text':'x0'} } ## self.widgetDescr['x1'] = { ## 'class':'NEThumbWheel','master':'node', ## 'width':75, 'height':21, 'oneTurn':10., 'type':'float', ## 'wheelPad':2, 'initialValue':3., ## 'labelCfg':{'text':'x1'} } ## ## self.widgetDescr['step'] = { ## 'class':'NEThumbWheel','master':'ParamPanel', ## 'width':75, 'height':21, 'oneTurn':10., 'type':'float', ## 'wheelPad':2, 'initialValue':0.01, ## 'labelCfg':{'text':'nb. points'} } op = self.outputPortsDescr op.append(datatype='list', name='X') code = """def doit(self): import numpy ind = numpy.arange(60) x_tmp=[] for i in range(100): x_tmp.append(numpy.sin((ind+i)*numpy.pi/15.0)) X=numpy.array(x_tmp) self.outputData(X=X) """ self.setFunction(code) class MatPlotLibOptions(NetworkNode): """This node allows to set various rendering Options. Choose a category from, Axes,Font,Figure,Text,Tick,Grid,Legend. if "Grid" choosen,allows you to set following properties gridOn/Off,gridlinewidth,gridlinestyle,gridcolor,whichgrid major/minor. To ignore any property rightclick on property(sets to default value when ignored) """ def __init__(self, name='Set Matplotlib Options', canvas=None, **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(name='matplotlibOptions', datatype='dict') self.widgetDescr['matplotlibOptions'] = { 'class':'NEMatPlotLibOptions', 'lockedOnPort':True} op = self.outputPortsDescr op.append(datatype='dict', name='matplotlibOptions') code = """def doit(self, matplotlibOptions): self.outputData(matplotlibOptions=matplotlibOptions) """ self.setFunction(code) class NEMatPlotLibOptions(PortWidget): configOpts = PortWidget.configOpts.copy() ownConfigOpts = {} ownConfigOpts['initialValue'] = { 'defaultValue':{}, 'type':'dict', } configOpts.update(ownConfigOpts) def __init__(self, port, **kw): # call base class constructor apply( PortWidget.__init__, (self, port), kw) colors=cnames self.styles=lineStyles self.markers = markers from DejaVu import viewerConst self.main_props=['Axes','Font','Text','Figure','Tick','Grid','Legend']#,'MathText', self.booleanProps =['axisbelow','gridOn','figpatch_antialiased','text.usetex','text.dvipnghack', 'hold','legend.isaxes','legend.shadow','mathtext.mathtext2']#visible if mplversion[0]==0 and mplversion[2]<=3: self.twProps=['linewidth','xtick.labelsize','xtick.labelrotation','ytick.labelsize', 'ytick.labelrotation','gridlinewidth','figpatch_linewidth','markeredgewidth', #'zoomx','zoomy', 'legend.numpoints','legend.pad','legend.markerscale','legend.handlelen', 'legend.axespad','legend.labelsep','legend.handletextsep','xtick.major.size', 'ytick.major.size','xtick.minor.size','ytick.minor.size','xtick.major.pad', 'ytick.major.pad','xtick.minor.pad','ytick.minor.pad','font.size'] elif mplversion[0] > 0: self.twProps=['linewidth','xtick.labelsize','xtick.labelrotation','ytick.labelsize', 'ytick.labelrotation','gridlinewidth','figpatch_linewidth','markeredgewidth', #'zoomx','zoomy', 'legend.numpoints','legend.borderpad','legend.markerscale','legend.handlelength', 'legend.borderaxespad','legend.labelspacing','legend.handletextpad','xtick.major.size', 'ytick.major.size','xtick.minor.size','ytick.minor.size','xtick.major.pad', 'ytick.major.pad','xtick.minor.pad','ytick.minor.pad','font.size'] self.choiceProps ={'facecolor':tuple(colors.keys()), 'edgecolor':tuple(colors.keys()), 'gridcolor':tuple(colors.keys()), 'xtick.color':tuple(colors.keys()), 'ytick.color':tuple(colors.keys()), 'figpatch_facecolor':tuple(colors.keys()), 'figpatch_edgecolor':tuple(colors.keys()), 'marker':tuple(self.markers.values()), 'markeredgecolor':tuple(colors.keys()), 'markerfacecolor':tuple(colors.keys()), 'gridlinestyle':tuple(self.styles.keys()), 'adjustable':('box','datalim'), 'anchor':('C', 'SW', 'S', 'SE', 'E', 'NE', 'N', 'NW', 'W'), 'aspect':('auto', 'equal' ,'normal',), 'text.color':tuple(colors.keys()), 'text.fontstyle':('normal',), 'text.fontvariant':('normal',), 'text.fontweight':('normal',), 'text.fontsize':('medium','small','large'), 'xtick.direction':('in','out'), 'ytick.direction':('in','out'), 'text.fontangle':('normal',), 'font.family':('serif',), 'font.style':('normal',), 'font.variant':('normal',), 'font.weight':('normal',), 'mathtext.rm':('cmr10.ttf',), 'mathtext.it':('cmmi10.ttf',), 'mathtext.tt':('cmtt10.ttf',), 'mathtext.mit':('cmmi10.ttf',), 'mathtext.cal':('cmsy10.ttf',), 'mathtext.nonascii' : ('cmex10.ttf',), 'legend.fontsize':('small','medium','large'), 'titlesize':('large','medium','small'), 'whichgrid':('minor','major') } self.frame = Tkinter.Frame(self.widgetFrame, borderwidth=3, relief = 'ridge') self.propWidgets = {} # will hold handle to widgets created self.optionsDict = {} # widget's value self.labels={} self.delvar=0 self.new_list_to_add=[] self.delete_proplist=[] self.initialvalues={'font.family':'serif','font.style':'normal','font.variant':'normal', 'font.weight':'normal','font.size':12.0,'text.color':'black','text.usetex':False, 'text.dvipnghack':False,'text.fontstyle':'normal','text.fontangle':'normal', 'text.fontvariant':'normal','text.fontweight':'normal','text.fontsize':'medium', 'axisbelow':False,'hold':True,'facecolor':'white','edgecolor':'black','linewidth':1, 'titlesize':'large','gridOn':False,'legend.isaxes':True,'legend.numpoints':4, 'legend.fontsize':"small",'legend.markerscale':0.6, #'legend.pad':0.2,'legend.labelsep':0.005, 'legend.handlelen':0.05, #'legend.handletextsep':0.02, 'legend.axespad':0.02, 'legend.shadow':True,'xtick.major.size':5,'xtick.minor.size':2, 'xtick.major.pad':3,'xtick.minor.pad':3,'xtick.labelsize':10,'xtick.labelrotation':0, 'ytick.labelsize':10,'ytick.labelrotation':0, 'xtick.color':'black','xtick.direction':'in', 'ytick.major.size':5,'ytick.minor.size':2,'ytick.major.pad':3,'ytick.minor.pad':3, 'ytick.color':'black','ytick.direction':'in','gridcolor':'black','gridlinestyle':':', 'gridlinewidth':0.5,'whichgrid':'major','mathtext.mathtext2':False,'mathtext.rm': 'cmr10.ttf', 'mathtext.it':'cmmi10.ttf','mathtext.tt':'cmtt10.ttf','mathtext.mit':'cmmi10.ttf', 'mathtext.cal':'cmsy10.ttf','mathtext.nonascii' : 'cmex10.ttf','figpatch_linewidth':1.0, 'figpatch_facecolor':'darkgray','figpatch_edgecolor':'white','marker':'s','markeredgewidth':0.5, 'markeredgecolor':'black','markerfacecolor':'blue', #'zoomx':0,'zoomy':0, 'adjustable':'box','aspect':'auto','anchor':'C','figpatch_antialiased':False} if mplversion[0]==0 and mplversion[2]<=3: self.initialvalues.update({'legend.pad':0.2, 'legend.labelsep':0.005, 'legend.handlelen':0.05, 'legend.handletextsep':0.02, 'legend.axespad':0.02}) elif mplversion[0]>0: self.initialvalues.update({'legend.borderpad':0.2, 'legend.labelspacing':0.005, 'legend.handlelength':0.05, 'legend.handletextpad':0.02, 'legend.borderaxespad':0.02} ) import Pmw #items = self.booleanProps +self.choiceProps.keys()+self.twProps items=self.main_props w = Pmw.Group(self.frame, tag_text='Choose a Category') val=items[0] cb=CallBackFunction(self.properties_list, (val,)) self.chooser = Pmw.ComboBox( w.interior(), label_text='', labelpos='w', entryfield_entry_width=20, scrolledlist_items=items,selectioncommand=cb) self.chooser.pack(padx=2, pady=2, expand='yes', fill='both') w.pack(fill = 'x', expand = 1, side='top') # configure without rebuilding to avoid enless loop apply( self.configure, (False,), kw) self.frame.pack(expand='yes', fill='both') w1 = Pmw.Group(self.frame, tag_text='choose a Property') self.propWidgetMaster = w1.interior() cb = CallBackFunction( self.mainChoices, (val,)) self.chooser1 = Pmw.ComboBox(w1.interior(), label_text='', labelpos='w',entryfield_entry_width=20, scrolledlist_items=self.new_list_to_add,selectioncommand=cb) self.chooser1.pack(padx=2, pady=2, expand='yes', fill='both') w1.pack(fill = 'x', expand = 1, side='top') self.chooser1.grid(row=len(self.propWidgets), column=1, sticky='w') if self.initialValue is not None: self.set(self.initialValue, run=0) self._setModified(False) # will be set to True by configure method def properties_list(self,prop1,prop2): prop=prop2 if prop=='Text': list_to_add=['text.color','text.usetex','text.dvipnghack','text.fontstyle','text.fontangle','text.fontvariant','text.fontweight','text.fontsize'] elif prop=='Axes': list_to_add=['axisbelow','hold','facecolor','edgecolor','linewidth','titlesize','marker','markeredgewidth','markeredgecolor','markerfacecolor', #'zoomx','zoomy', 'adjustable','anchor','aspect'] elif prop=='Grid': list_to_add=['gridOn','gridlinewidth','gridcolor','gridlinestyle','whichgrid'] elif prop=='Legend': if mplversion[0]==0 and mplversion[2]<=3: list_to_add=['legend.isaxes','legend.numpoints','legend.fontsize','legend.pad','legend.markerscale','legend.labelsep','legend.handlelen','legend.handletextsep','legend.axespad','legend.shadow'] elif mplversion[0] > 0: list_to_add=['legend.isaxes','legend.numpoints','legend.fontsize','legend.borderpad','legend.markerscale','legend.labelspacing','legend.handlelength','legend.handletextpad','legend.borderaxespad','legend.shadow'] elif prop=="Tick": list_to_add=['xtick.major.pad','ytick.major.pad','xtick.minor.pad','ytick.minor.pad','xtick.color','ytick.color','xtick.labelsize','ytick.labelsize','xtick.labelrotation','ytick.labelrotation'] #['xtick.major.size','ytick.major.size','xtick.minor.size','ytick.minor.size','xtick.major.pad','ytick.major.pad','xtick.minor.pad','ytick.minor.pad','xtick.color','ytick.color','xtick.size','ytick.size','xtick.direction','ytick.direction'] elif prop=="Font": list_to_add=['font.family','font.style','font.variant','font.weight','font.size'] elif prop=="MathText": list_to_add=['mathtext.mathtext2','mathtext.rm','mathtext.it','mathtext.tt','mathtext.mit', 'mathtext.cal','mathtext.nonascii' ,] elif prop=="Figure": list_to_add=['figpatch_antialiased','figpatch_linewidth','figpatch_edgecolor','figpatch_facecolor'] self.new_list_to_add=list_to_add self.chooser1.setlist(self.new_list_to_add) def mainChoices(self,prop,val): self.addProp(val) def deleteProp(self): prop=self.property widget= self.propWidgets[prop][0] if prop in self.choiceProps: widget.selectitem(self.initialvalues[prop]) widget.update_idletasks() self.setChoice((prop,), self.initialvalues[prop]) if prop in self.booleanProps: widget.deselect() if prop in self.twProps: widget.setValue(self.initialvalues[prop]) self.setTwValue(prop, self.initialvalues[prop]) self.scheduleNode() widget.pack_forget() widget.place_forget() widget.grid_forget() self.labels[prop].pack_forget() self.labels[prop].place_forget() self.labels[prop].grid_forget() del self.propWidgets[prop] del self.labels[prop] def addProp(self, prop): if self.propWidgets.has_key(prop): return labwidget = Tkinter.Label(self.propWidgetMaster, text=prop) rown=self.propWidgetMaster.size()[1] labwidget.grid(padx=2, pady=2, row=rown, column=0, sticky='w') self.labels[prop]=labwidget #Right Click Menu popup = Tkinter.Menu(labwidget, tearoff=0) #popup.add_command(label="ToolTip") #popup.add_separator() popup.add_command(label="Ignore",command=self.deleteProp) def do_popup(event): # display the popup menu self.property=labwidget['text'] try: popup.tk_popup(event.x_root, event.y_root, 0) finally: popup.grab_release() labwidget.bind("<Button-3>", do_popup) if prop in self.booleanProps: var = Tkinter.IntVar() var.set(self.initialvalues[prop]) cb = CallBackFunction( self.setBoolean, (prop, var)) widget = Tkinter.Checkbutton(self.propWidgetMaster, variable=var, command=cb) if prop not in self.propWidgets: self.propWidgets[prop] = (widget, var.get()) self.setBoolean( (prop, var) ) elif prop in self.choiceProps: items = self.choiceProps[prop] var = None cb = CallBackFunction( self.setChoice, (prop,)) widget = Pmw.ComboBox( self.propWidgetMaster, entryfield_entry_width=10, scrolledlist_items=items, selectioncommand=cb) if prop not in self.propWidgets: self.propWidgets[prop] = (widget, var) self.setChoice( (prop,), self.initialvalues[prop] ) elif prop in self.twProps: cb = CallBackFunction( self.setTwValue,prop) val=self.initialvalues[prop] self.twwidget=widget =ThumbWheel(width=75, height=21,wheelPad=2,master=self.propWidgetMaster,labcfg={'fg':'black', 'side':'left', 'text':prop},min = 0.0,type='float',showlabel =1,continuous =0,oneTurn =10,value=val,callback=cb) if prop not in self.propWidgets: self.propWidgets[prop] = (widget,val) widget.grid(row=rown, column=1, sticky='w') def setTwValue(self,prop,val): self.optionsDict[prop] = val if self.port.node.paramPanel.immediateTk.get(): self.scheduleNode() def setBoolean(self,args): prop, val = args #if type(val)==types.InstanceType: from mglutil.util.misc import isInstance if isInstance(val) is True: self.optionsDict[prop] = val.get() else: self.optionsDict[prop] = val if self.optionsDict[prop]==1: self.propWidgets[prop][0].select() else: self.propWidgets[prop][0].deselect() if self.port.node.paramPanel.immediateTk.get(): self.scheduleNode() def setChoice(self, prop, value): self.optionsDict[prop[0]] = value self.propWidgets[prop[0]][0].selectitem(value) if self.port.node.paramPanel.immediateTk.get(): self.scheduleNode() def set(self, valueDict, run=1): self._setModified(True) for k,v in valueDict.items(): self.addProp(k) if k in self.booleanProps: self.setBoolean( (k, v) ) elif k in self.choiceProps: self.setChoice((k,), v) else: self.setTwValue(k, v) self._newdata = True if run: self.scheduleNode() def get(self): return self.optionsDict def configure(self, rebuild=True, **kw): action, rebuildDescr = apply( PortWidget.configure, (self, 0), kw) # this methods just creates a resize action if width changes if self.widget is not None: if 'width' in kw: action = 'resize' if action=='rebuild' and rebuild: action, rebuildDescr = self.rebuild(rebuildDescr) if action=='resize' and rebuild: self.port.node.autoResize() return action, rebuildDescr class LegendNE(NetworkNode): """This nodes takes two lists of values and plots the the second against the first. Input: labels - sequence of strings loc - 'best' : 0, 'upper right' : 1, (default) 'upper left' : 2, 'lower left' : 3, 'lower right' : 4, 'right' : 5, 'center left' : 6, 'center right' : 7, 'lower center' : 8, 'upper center' : 9, 'center' : 10, If none of these are suitable, loc can be a 2-tuple giving x,y in axes coords, ie, loc = 0, 1 is left top loc = 0.5, 0.5 is center, center lines - sequence of lines Output: legend Matplotlib Axes object """ def __init__(self, name='Legend', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw) codeBeforeDisconnect = """def beforeDisconnect(self, c): node1 = c.port1.node node2 = c.port2.node node1.figure.delaxes(node1.axes) node1.figure.add_axes(node1.axes) """ ip = self.inputPortsDescr ip.append(datatype='list',required=True, name='label') ip.append(datatype='string',required=False, name='location', defaultValue='upper right') self.widgetDescr['label'] = { 'class':'NEEntry', 'master':'node', 'labelCfg':{'text':'Label:'}, 'initialValue':''} self.widgetDescr['location'] = { 'class':'NEComboBox', 'master':'node', 'choices':locations.keys(), 'fixedChoices':True, 'initialValue':'upper right', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'Location:'}} op = self.outputPortsDescr op.append(datatype='MPLDrawArea', name='drawAreaDef') code = """def doit(self, label, location): kw={ 'legendlabel':label,'legendlocation':location} self.outputData(drawAreaDef=kw) """ self.setFunction(code) class ColorBarNE(NetworkNode): """Class for drawing color bar input : plot - axes instance current_image -image instance extend - both,neither,min or max.If not 'neither', make pointed end(s) for out-of-range values. These are set for a given colormap using the colormap set_under and set_over methods. orientation - horizontal or vertical spacing -uniform or proportional.Uniform spacing gives each discrete color the same space;proportional makes the space proportional to the data interval. shrink -fraction by which to shrink the colorbar """ def __init__(self, name='ColorBar', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='MPLAxes', required=True, name='plot') ip.append(datatype='None', required=True, name='current_image') ip.append(datatype='string', required=False, name='extend', defaultValue='neither') ip.append(datatype='float', required=False, name='orientation', defaultValue='vertical') ip.append(datatype='string', required=False, name='spacing', defaultValue='uniform') ip.append(datatype='float', required=False, name='shrink', defaultValue=1.) self.widgetDescr['shrink'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':1.0,'min':0.0,'max':1.0, 'labelCfg':{'text':'shrink'} } self.widgetDescr['extend'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['both','neither','min','max'], 'fixedChoices':True, 'initialValue':'neither', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'extend:'}} self.widgetDescr['orientation'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['vertical','horizontal'], 'fixedChoices':True, 'initialValue':'vertical', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'orientation:'}} self.widgetDescr['spacing'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['uniform',' proportional'], 'fixedChoices':True, 'initialValue':'uniform', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'spacing:'}} op = self.outputPortsDescr op.append(datatype='MPLAxes', name='axes') code = """def doit(self, plot, current_image, extend, orientation, spacing, shrink): axes_list=plot.figure.axes if len(axes_list): pos=plot.figure.axes[0].get_position() for i in axes_list: if not isinstance(i,Subplot): plot.figure.delaxes(i) if current_image!=None: pl=plot.figure.colorbar(current_image,cmap=current_image.cmap,shrink=shrink,extend=extend,orientation=orientation,spacing=spacing,filled=True) if orientation=="vertical": plot.figure.axes[0].set_position([0.125, 0.1, 0.62, 0.8]) if shrink>=1.0: pl.ax.set_position([0.785, 0.1, 0.03, 0.8]) else: pl.ax.set_position([0.785,pl.ax.get_position()[1],0.03,pl.ax.get_position()[-1]]) else: plot.figure.axes[0].set_position([0.125, 0.34, 0.62, 0.56]) if shrink>=1.0: pl.ax.set_position([0.125, 0.18, 0.62, 0.04]) else: pl.ax.set_position([pl.ax.get_position()[0],0.18,pl.ax.get_position()[2],0.04]) plot.figure.canvas.draw() else: plot.figure.canvas.delete(pl) self.outputData(axes=pl) """ self.setFunction(code) class Text(NetworkNode): """Class for writting text in the axes posx: x coordinate posy: y coordinate textlabel: label name rotation: angle to be rotated horizontal alignment: ['center', 'right', 'left'] vertical alignment: ['center', 'right', 'left'] """ def __init__(self, name='Text', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='float', required=False, name='posx', defaultValue=.1) ip.append(datatype='float', required=False, name='posy', defaultValue=.1) ip.append(datatype='string', required=False, name='textlabel', defaultValue='') ip.append(datatype='string', required=False, name='rotation', defaultValue=0) ip.append(datatype='string', required=False, name='horizontalalignment', defaultValue='center') ip.append(datatype='string', required=False, name='verticalalignment', defaultValue='center') self.widgetDescr['posx'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'wheelPad':2, 'initialValue':0.1, 'labelCfg':{'text':'posx'} } self.widgetDescr['posy'] = { 'class':'NEThumbWheel','master':'node', 'width':75, 'height':21, 'oneTurn':1., 'type':'float', 'wheelPad':2, 'initialValue':0.1, 'labelCfg':{'text':'posy'} } self.widgetDescr['textlabel'] = { 'class':'NEEntry', 'master':'node', 'labelCfg':{'text':'text'}, 'initialValue':''} self.widgetDescr['rotation'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':75, 'height':21, 'oneTurn':10, 'type':'float', 'wheelPad':2, 'initialValue':0, 'labelCfg':{'text':'rotation'} } self.widgetDescr['horizontalalignment'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['center', 'right', 'left'], 'fixedChoices':True, 'initialValue':'center', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'horizontalalignment:'}} self.widgetDescr['verticalalignment'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['top', 'bottom', 'center'], 'fixedChoices':True, 'initialValue':'center', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'verticalalignment:'}} op = self.outputPortsDescr op.append(datatype='MPLDrawArea', name='drawAreaDef') code = """def doit(self, posx, posy, textlabel, rotation, horizontalalignment, verticalalignment): kw = {'posx':posx, 'posy':posy, 'textlabel':textlabel, 'horizontalalignment':horizontalalignment, 'verticalalignment':verticalalignment,'rotation':rotation} self.outputData(drawAreaDef=kw) """ self.setFunction(code) class SaveFig(NetworkNode): """Save the current figure. fname - the filename to save the current figure to. The output formats supported depend on the backend being used. and are deduced by the extension to fname. Possibilities are eps, jpeg, pdf, png, ps, svg. fname can also be a file or file-like object - cairo backend only. dpi - is the resolution in dots per inch. If None it will default to the value savefig.dpi in the matplotlibrc file facecolor and edgecolor are the colors of the figure rectangle orientation - either 'landscape' or 'portrait' papertype - is one of 'letter', 'legal', 'executive', 'ledger', 'a0' through 'a10', or 'b0' through 'b10' - only supported for postscript output format - one of 'pdf', 'png', 'ps', 'svg'. It is used to specify the output when fname is a file or file-like object - cairo backend only. """ def __init__(self, name='saveFig', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='MPLFigure', required=False, name='figure') ip.append(datatype=None, required=False, name='fname') ip.append(datatype=None, required=False, name='dpi', defaultValue=80) ip.append(datatype=None, required=False, name='facecolor', defaultValue='w') ip.append(datatype=None, required=False, name='edgecolor', defaultValue='w') ip.append(datatype=None, required=False, name='orientation', defaultValue='portrait') ip.append(datatype=None, required=False, name='papertype') ip.append(datatype=None, required=False, name='format') self.widgetDescr['fname'] = { 'class':'NEEntry', 'master':'node', 'labelCfg':{'text': 'filename:'}, 'initialValue':''} self.widgetDescr['dpi'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'int', 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':80, 'labelCfg':{'text':'dpi'} } self.widgetDescr['facecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'w', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'facecolor:'}} self.widgetDescr['edgecolor'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':cnames.keys(), 'fixedChoices':True, 'initialValue':'w', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'edgecolor:'}} self.widgetDescr['orientation'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['landscape','portrait'], 'fixedChoices':True, 'initialValue':'portrait', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'orientation:'}} self.widgetDescr['papertype'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['letter', 'legal', 'executive', 'ledger','a0','a1','a2','a3','a4','a5','a6','a7','a8','a9','a10','b0','b1','b2','b3','b4','b5','b6','b7','b8','b9','b10',None], 'fixedChoices':True, 'initialValue':'None', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'papertype:'}} self.widgetDescr['format'] = { 'class':'NEComboBox', 'master':'ParamPanel', 'choices':['pdf', 'png', 'ps', 'svg',None], 'fixedChoices':True, 'initialValue':'None', 'entryfield_entry_width':7, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'format:'}} code = """def doit(self, figure, fname, dpi, facecolor, edgecolor, orientation, papertype, format): if figure: figure.savefig(fname,dpi=dpi,facecolor=facecolor,edgecolor=edgecolor,orientation=orientation,papertype=papertype,format=format) """ self.setFunction(code) class MeshGrid(NetworkNode): """This class converts vectors x, y with lengths Nx=len(x) and Ny=len(y) to X, Y and returns them. where X and Y are (Ny, Nx) shaped arrays with the elements of x and y repeated to fill the matrix """ def __init__(self, name='MeshGrid', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='list',required=False, name='x') ip.append(datatype='list',required=False, name='y') op = self.outputPortsDescr op.append(datatype='None', name='X') op.append(datatype='None', name='Y') code = """def doit(self,x,y): X,Y=meshgrid(x, y) self.outputData(X=X,Y=Y) """ self.setFunction(code) class BivariateNormal(NetworkNode): """Bivariate gaussan distribution for equal shape X, Y""" def __init__(self, name='BivariateNormal', **kw): kw['name'] = name apply( NetworkNode.__init__, (self,), kw ) ip = self.inputPortsDescr ip.append(datatype='None', name='arraylist1') ip.append(datatype='None', name='arraylist2') ip.append(datatype='float', required=False, name='sigmax', defaultValue=1.) ip.append(datatype='float', required=False, name='sigmay', defaultValue=1.) ip.append(datatype='float', required=False, name='mux', defaultValue=0.) ip.append(datatype='float', required=False, name='muy', defaultValue=0.) ip.append(datatype='float', required=False, name='sigmaxy', defaultValue=0.) self.widgetDescr['sigmax'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'wheelPad':2, 'initialValue':1.0, 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'labelCfg':{'text':'sigmax'} } self.widgetDescr['sigmay'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':1.0, 'labelCfg':{'text':'sigmay'} } self.widgetDescr['mux'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.0, 'labelCfg':{'text':'mux'} } self.widgetDescr['muy'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.0, 'labelCfg':{'text':'muy'} } self.widgetDescr['sigmaxy'] = { 'class':'NEThumbWheel','master':'ParamPanel', 'width':61, 'height':21, 'oneTurn':2, 'type':'float', 'labelGridCfg':{'sticky':'w'}, 'widgetGridCfg':{'sticky':'w'}, 'wheelPad':2, 'initialValue':0.0, 'labelCfg':{'text':'sigmaxy'} } op = self.outputPortsDescr op.append(datatype=None, name='z') code = """def doit(self, x, y, sigmax, sigmay, mux, muy, sigmaxy): import numpy X=numpy.array(x) Y=numpy.array(y) z=bivariate_normal( X, Y, sigmax=sigmax, sigmay=sigmay, mux=mux, muy=muy, sigmaxy=sigmaxy) self.outputData(z=z) """ self.setFunction(code) ########################################################################### # # Create and populate library # ########################################################################### from Vision.VPE import NodeLibrary matplotliblib = NodeLibrary('MatPlotLib', '#99AFD8') matplotliblib.addNode(MPLFigureNE, 'Figure', 'Input') matplotliblib.addNode(MPLImageNE, 'ImageFigure', 'Input') matplotliblib.addNode(MPLDrawAreaNE, 'Draw Area', 'Input') matplotliblib.addNode(MultiPlotNE, 'MultiPlot', 'Misc') matplotliblib.addNode(MPLMergeTextNE, 'MergeText', 'Input') matplotliblib.addNode(ColorBarNE, 'ColorBar', 'Misc') matplotliblib.addNode(Text, 'Text', 'Input') matplotliblib.addNode(PolarAxesNE, 'PolarAxes', 'Plotting') matplotliblib.addNode(HistogramNE, 'Histogram', 'Plotting') matplotliblib.addNode(PlotNE, 'Plot', 'Plotting') matplotliblib.addNode(PlotDateNE, 'PlotDate', 'Plotting') matplotliblib.addNode(PieNE, 'Pie', 'Plotting') matplotliblib.addNode(SpyNE, 'Spy', 'Plotting') #matplotliblib.addNode(Spy2NE, 'Spy2', 'Plotting') matplotliblib.addNode(VlineNE, 'Vline', 'Plotting') matplotliblib.addNode(ScatterNE, 'Scatter', 'Plotting') #matplotliblib.addNode(ScatterClassicNE, 'ScatterClassic', 'Plotting') matplotliblib.addNode(FigImageNE, 'Figimage', 'Plotting') matplotliblib.addNode(FillNE, 'Fill', 'Plotting') matplotliblib.addNode(ContourNE, 'Contour', 'Plotting') matplotliblib.addNode(PcolorMeshNE,'PcolorMesh', 'Plotting') matplotliblib.addNode(PcolorNE,'Pcolor', 'Plotting') #matplotliblib.addNode(PcolorClassicNE,'PcolorClassic', 'Plotting') matplotliblib.addNode(RandNormDist, 'RandNormDist', 'Demo') matplotliblib.addNode(SinFunc, 'SinFunc', 'Demo') matplotliblib.addNode(SinFuncSerie, 'SinFuncSerie', 'Demo') matplotliblib.addNode(MatPlotLibOptions, 'Set Matplotlib options', 'Input') matplotliblib.addNode(LegendNE, 'Legend', 'Input') matplotliblib.addNode(TablePlotNE, 'TablePlot', 'Plotting') matplotliblib.addNode(SpecgramNE, 'Specgram', 'Plotting') matplotliblib.addNode(CSDNE, 'CSD', 'Plotting') matplotliblib.addNode(PSDNE, 'PSD', 'Plotting') matplotliblib.addNode(LogCurveNE, 'LogCurve', 'Plotting') matplotliblib.addNode(SemilogxNE, 'Semilogx', 'Plotting') matplotliblib.addNode(SemilogyNE, 'Semilogy', 'Plotting') matplotliblib.addNode(BoxPlotNE, 'BoxPlot', 'Plotting') matplotliblib.addNode(ErrorBarNE, 'ErrorBar', 'Plotting') matplotliblib.addNode(BarHNE, 'BarH', 'Plotting') matplotliblib.addNode(BarNE, 'Bar', 'Plotting') matplotliblib.addNode(QuiverNE, 'Quiver', 'Plotting') matplotliblib.addNode(StemNE,'Stem','Plotting') matplotliblib.addNode(BivariateNormal,'BivariateNormal','Demo') matplotliblib.addNode(MeshGrid,'MeshGrid','Demo') matplotliblib.addNode(SaveFig,'SaveFig','Misc') matplotliblib.addWidget(NEMatPlotLibOptions) ########################################################################### # # Library specific data types # ########################################################################### UserLibBuild.addTypes(matplotliblib, 'Vision.matplotlibTypes') try: UserLibBuild.addTypes(matplotliblib, 'Vision.PILTypes') except: pass
StarcoderdataPython
1960017
from load import ROOT as R import numpy as N import gna.constructors as C from gna.bundle import * from gna.expression import NIndex class dummyvar(TransformationBundleLegacy): def __init__(self, *args, **kwargs): super(dummyvar, self).__init__( *args, **kwargs ) def define_variables(self): idx = self.cfg.indices if not isinstance(idx, NIndex): idx = NIndex(fromlist=self.cfg.indices) for name, var in self.cfg.variables.items(): for i, nidx in enumerate(idx.iterate()): self.context.set_variable( name, nidx, var )
StarcoderdataPython
362173
import zipfile from tqdm import tqdm from discopy_data.data.doc import Document from discopy_data.data.relation import Relation def extract_arguments(annos, text): args = {} for a in annos: if a[0][0] == 'T': args[a[0]] = { 'type': a[1].split(" ")[0], 'offset': text.find(a[2]), 'length': len(a[2]), } for a in annos: if a[0][0] == 'A': arg_type, arg_id, arg_stance = a[1].split(' ') args[arg_id]['stance'] = arg_stance arguments = [] for r in annos: if r[0][0] == 'R': rtype, arg1, arg2 = r[1].split(' ') arg1 = args[arg1.split(':')[1]] arg2 = args[arg2.split(':')[1]] arguments.append({ 'Sense': [rtype], 'ID': len(arguments), 'Arg1': arg1, 'Type': 'Argumentation', 'Arg2': arg2 }) return arguments def extract(source_path: str): with zipfile.ZipFile(source_path) as zh_all: brat_file = [f for f in zh_all.filelist if f.filename.endswith('brat-project-final.zip')][0] with zipfile.ZipFile(zh_all.open(brat_file)) as zh_brat: annotation_files = sorted(filter(lambda f: not f.startswith('_') and f.endswith('.txt'), (f.filename for f in zh_brat.filelist))) for doc_i, path in tqdm(enumerate(annotation_files)): content = zh_brat.open(path).read().decode().splitlines(keepends=True) yield { 'meta': { 'title': content[0].strip(), 'corpus': 'argumentative_essays', 'path': path, }, 'text': '\n'.join(p.strip() for p in content[2:]), } def update_annotations(source_path: str, options: dict): zh_all = zipfile.ZipFile(source_path) brat_file = [f for f in zh_all.filelist if f.filename.endswith('brat-project-final.zip')][0] zh_brat = zipfile.ZipFile(zh_all.open(brat_file)) def helper(doc: Document): content = zh_brat.open(doc.meta['path'][:-3] + 'ann').read().decode().splitlines(keepends=True) annos = [tuple(a.strip().split("\t")) for a in content] arguments = extract_arguments(annos, doc.text) words = doc.get_tokens() relations = [ Relation([t for t in words if arg['Arg1']['offset'] <= t.offset_begin <= (arg['Arg1']['offset'] + arg['Arg1']['length'])], [t for t in words if arg['Arg2']['offset'] <= t.offset_begin <= (arg['Arg2']['offset'] + arg['Arg2']['length'])], [], arg['Sense'], 'Argumentation') for arg in arguments ] return doc.with_relations(relations) return helper
StarcoderdataPython
8076974
# -*- coding: utf-8 -*- # Generated by Django 1.11.7 on 2018-04-13 03:57 from __future__ import unicode_literals from django.db import migrations import django_countries.fields class Migration(migrations.Migration): dependencies = [ ('case_studies', '0008_casestudy_lead_content'), ] operations = [ migrations.AddField( model_name='casestudy', name='countries', field=django_countries.fields.CountryField(default='', max_length=746, multiple=True), preserve_default=False, ), ]
StarcoderdataPython
3279198
from cbuild.core import logger, paths, template from cbuild.apk import create as apk_c, sign as apk_s import glob import time import pathlib import subprocess def genpkg(pkg, repo, arch, binpkg): if not pkg.destdir.is_dir(): pkg.log_warn(f"cannot find pkg destdir, skipping...") return binpath = repo / binpkg lockpath = binpath.with_suffix(binpath.suffix + ".lock") repo.mkdir(parents = True, exist_ok = True) while lockpath.is_file(): pkg.log_warn(f"binary package being created, waiting...") time.sleep(1) try: lockpath.touch() metadata = {} args = [] pkgdesc = pkg.pkgdesc metadata["pkgdesc"] = pkgdesc metadata["url"] = pkg.rparent.url metadata["maintainer"] = pkg.rparent.maintainer #metadata["packager"] = pkg.rparent.maintainer metadata["origin"] = pkg.rparent.pkgname metadata["license"] = pkg.license if pkg.rparent.git_revision: metadata["commit"] = pkg.rparent.git_revision + ( "-dirty" if pkg.rparent.git_dirty else "" ) if len(pkg.provides) > 0: pkg.provides.sort() metadata["provides"] = pkg.provides if pkg.provider_priority > 0: metadata["provider_priority"] = pkg.provider_priority mdeps = [] for c in pkg.depends: mdeps.append(c.removeprefix("virtual:")) mdeps.sort() metadata["depends"] = mdeps metadata["install_if"] = list(pkg.install_if) if hasattr(pkg, "aso_provides"): pkg.aso_provides.sort(key = lambda x: x[0]) metadata["shlib_provides"] = pkg.aso_provides if hasattr(pkg, "so_requires"): pkg.so_requires.sort() metadata["shlib_requires"] = pkg.so_requires if hasattr(pkg, "pc_provides"): pkg.pc_provides.sort() metadata["pc_provides"] = pkg.pc_provides if hasattr(pkg, "cmd_provides"): pkg.cmd_provides.sort() metadata["cmd_provides"] = pkg.cmd_provides if hasattr(pkg, "pc_requires"): pkg.pc_requires.sort() metadata["pc_requires"] = pkg.pc_requires if len(pkg.triggers) > 0: # check validity first for t in pkg.triggers: p = pathlib.Path(t) if not p or not p.is_absolute(): pkg.error(f"invalid trigger path: {t}") # finally pass metadata metadata["triggers"] = list(pkg.triggers) metadata["file_modes"] = pkg.file_modes logger.get().out(f"Creating {binpkg} in repository {repo}...") apk_c.create( pkg.pkgname, f"{pkg.pkgver}-r{pkg.pkgrel}", arch, pkg.rparent.source_date_epoch, pkg.destdir, pkg.statedir, binpath, pkg.rparent.signing_key, metadata ) finally: lockpath.unlink() pkg.rparent._stage[repo] = True def invoke(pkg): arch = pkg.rparent.profile().arch binpkg = f"{pkg.pkgname}-{pkg.pkgver}-r{pkg.pkgrel}.apk" repobase = paths.repository() / pkg.rparent.repository if pkg.pkgname.endswith("-dbg"): repo = repobase / "debug" else: repo = repobase repo = repo / ".stage" / arch genpkg(pkg, repo, arch, binpkg) for apkg, adesc, iif, takef in template.autopkgs: binpkg = f"{pkg.pkgname}-{apkg}-{pkg.pkgver}-r{pkg.pkgrel}.apk" # is an explicit package, do not autosplit that if pkg.pkgname.endswith(f"-{apkg}"): continue # explicitly defined, so do not try autosplit foundpkg = False for sp in pkg.rparent.subpkg_list: if sp.pkgname == f"{pkg.pkgname}-{apkg}": foundpkg = True break if foundpkg: continue ddest = pkg.rparent.destdir_base / f"{pkg.pkgname}-{apkg}-{pkg.pkgver}" # destdir does not exist, so skip if not ddest.is_dir(): continue # subpkg repository srepo = repo if apkg == "dbg": srepo = repobase / "debug/.stage" / arch # create a temporary subpkg instance # it's only complete enough to satisfy the generator spkg = template.Subpackage( f"{pkg.pkgname}-{apkg}", pkg.rparent, pkg.pkgdesc ) genpkg(spkg, srepo, arch, binpkg)
StarcoderdataPython
1743990
'''8. Write a Python program to solve (x + y) * (x + y). Test Data : x = 4, y = 3 Expected Output : (4 + 3) ^ 2) = 49''' x, y = 4, 3 ans = (4+3) * (4+3) print(f"(({x} + {y}) ^ 2) = {ans}")
StarcoderdataPython
1808579
<reponame>jerryuhoo/PaddleSpeech # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import logging import os import sys from abc import ABC from abc import abstractmethod from collections import OrderedDict from typing import Any from typing import Dict from typing import List from typing import Union import paddle from .log import logger from .utils import download_and_decompress from .utils import MODEL_HOME class BaseExecutor(ABC): """ An abstract executor of paddlespeech tasks. """ def __init__(self): self._inputs = OrderedDict() self._outputs = OrderedDict() self.pretrained_models = OrderedDict() self.model_alias = OrderedDict() @abstractmethod def _init_from_path(self, *args, **kwargs): """ Init model and other resources from arguments. This method should be called by `__call__()`. """ pass @abstractmethod def preprocess(self, input: Any, *args, **kwargs): """ Input preprocess and return paddle.Tensor stored in self._inputs. Input content can be a text(tts), a file(asr, cls), a stream(not supported yet) or anything needed. Args: input (Any): Input text/file/stream or other content. """ pass @paddle.no_grad() @abstractmethod def infer(self, *args, **kwargs): """ Model inference and put results into self._outputs. This method get input tensors from self._inputs, and write output tensors into self._outputs. """ pass @abstractmethod def postprocess(self, *args, **kwargs) -> Union[str, os.PathLike]: """ Output postprocess and return results. This method get model output from self._outputs and convert it into human-readable results. Returns: Union[str, os.PathLike]: Human-readable results such as texts and audio files. """ pass @abstractmethod def execute(self, argv: List[str]) -> bool: """ Command line entry. This method can only be accessed by a command line such as `paddlespeech asr`. Args: argv (List[str]): Arguments from command line. Returns: int: Result of the command execution. `True` for a success and `False` for a failure. """ pass @abstractmethod def __call__(self, *arg, **kwargs): """ Python API to call an executor. """ pass def get_task_source(self, input_: Union[str, os.PathLike, None] ) -> Dict[str, Union[str, os.PathLike]]: """ Get task input source from command line input. Args: input_ (Union[str, os.PathLike, None]): Input from command line. Returns: Dict[str, Union[str, os.PathLike]]: A dict with ids and inputs. """ if self._is_job_input(input_): ret = self._get_job_contents(input_) else: ret = OrderedDict() if input_ is None: # Take input from stdin for i, line in enumerate(sys.stdin): line = line.strip() if len(line.split(' ')) == 1: ret[str(i + 1)] = line elif len(line.split(' ')) == 2: id_, info = line.split(' ') ret[id_] = info else: # No valid input info from one line. continue else: ret[1] = input_ return ret def process_task_results(self, input_: Union[str, os.PathLike, None], results: Dict[str, os.PathLike], job_dump_result: bool=False): """ Handling task results and redirect stdout if needed. Args: input_ (Union[str, os.PathLike, None]): Input from command line. results (Dict[str, os.PathLike]): Task outputs. job_dump_result (bool, optional): if True, dumps job results into file. Defaults to False. """ if not self._is_job_input(input_) and len( results) == 1: # Only one input sample raw_text = list(results.values())[0] else: raw_text = self._format_task_results(results) print(raw_text, end='') # Stdout if self._is_job_input( input_) and job_dump_result: # Dump to *.job.done try: job_output_file = os.path.abspath(input_) + '.done' sys.stdout = open(job_output_file, 'w') print(raw_text, end='') logger.info(f'Results had been saved to: {job_output_file}') finally: sys.stdout.close() def _is_job_input(self, input_: Union[str, os.PathLike]) -> bool: """ Check if current input file is a job input or not. Args: input_ (Union[str, os.PathLike]): Input file of current task. Returns: bool: return `True` for job input, `False` otherwise. """ return input_ and os.path.isfile(input_) and (input_.endswith('.job') or input_.endswith('.txt')) def _get_job_contents( self, job_input: os.PathLike) -> Dict[str, Union[str, os.PathLike]]: """ Read a job input file and return its contents in a dictionary. Args: job_input (os.PathLike): The job input file. Returns: Dict[str, str]: Contents of job input. """ job_contents = OrderedDict() with open(job_input) as f: for line in f: line = line.strip() if not line: continue k, v = line.split(' ') job_contents[k] = v return job_contents def _format_task_results( self, results: Dict[str, Union[str, os.PathLike]]) -> str: """ Convert task results to raw text. Args: results (Dict[str, str]): A dictionary of task results. Returns: str: A string object contains task results. """ ret = '' for k, v in results.items(): ret += f'{k} {v}\n' return ret def disable_task_loggers(self): """ Disable all loggers in current task. """ loggers = [ logging.getLogger(name) for name in logging.root.manager.loggerDict ] for l in loggers: l.disabled = True def _get_pretrained_path(self, tag: str) -> os.PathLike: """ Download and returns pretrained resources path of current task. """ support_models = list(self.pretrained_models.keys()) assert tag in self.pretrained_models, 'The model "{}" you want to use has not been supported, please choose other models.\nThe support models includes:\n\t\t{}\n'.format( tag, '\n\t\t'.join(support_models)) res_path = os.path.join(MODEL_HOME, tag) decompressed_path = download_and_decompress(self.pretrained_models[tag], res_path) decompressed_path = os.path.abspath(decompressed_path) logger.info( 'Use pretrained model stored in: {}'.format(decompressed_path)) return decompressed_path def show_rtf(self, info: Dict[str, List[float]]): """ Calculate rft of current task and show results. """ num_samples = 0 task_duration = 0.0 wav_duration = 0.0 for start, end, dur in zip(info['start'], info['end'], info['extra']): num_samples += 1 task_duration += end - start wav_duration += dur logger.info('Sample Count: {}'.format(num_samples)) logger.info('Avg RTF: {}'.format(task_duration / wav_duration))
StarcoderdataPython
33236
<reponame>daaawx/bearblog<filename>blogs/migrations/0012_auto_20200601_1247.py # Generated by Django 3.0.6 on 2020-06-01 12:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('blogs', '0011_auto_20200531_0915'), ] operations = [ migrations.RemoveField( model_name='post', name='tags', ), migrations.AddField( model_name='blog', name='hashtags', field=models.TextField(blank=True), ), ]
StarcoderdataPython
6454770
""" Unit tests for the Deis CLI auth commands. Run these tests with "python -m unittest client.tests.test_auth" or with "./manage.py test client.AuthTest". """ from __future__ import unicode_literals from unittest import TestCase import pexpect from .utils import DEIS from .utils import DEIS_SERVER from .utils import purge from .utils import register class AuthTest(TestCase): @classmethod def setUpClass(cls): cls.username, cls.password = register() @classmethod def tearDownClass(cls): purge(cls.username, cls.password) def test_login(self): # log in the interactive way child = pexpect.spawn("{} login {}".format(DEIS, DEIS_SERVER)) child.expect('username: ') child.sendline(self.username) child.expect('password: ') child.sendline(self.password) child.expect("Logged in as {}".format(self.username)) child.expect(pexpect.EOF) def test_logout(self): child = pexpect.spawn("{} logout".format(DEIS)) child.expect('Logged out') # log in the one-liner way child = pexpect.spawn("{} login {} --username={} --password={}".format( DEIS, DEIS_SERVER, self.username, self.password)) child.expect("Logged in as {}".format(self.username)) child.expect(pexpect.EOF)
StarcoderdataPython
6501963
<reponame>eigenfoo/ml-adventure # Copyright 2018 <NAME>, <NAME>, <NAME>, <NAME> # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from adventurelib import (when, start, Room, Item, Bag, say, set_context, get_context) def dungeon01(): room1 = Room("You enter your home.") room1.desc = """ Going abroad for college, you don’t really get to go home a lot. Most of your friends take a two or three hour train ride back home, but it’s a 16 hour flight for you. You’ve spent 18 years of your life in between these four walls, and one day you packed your life into a suitcase and left. That’s how you left home, and that’s how you come back to it: with a suitcase. """ room2 = room1.west = Room(""" The dining table is set for dinner. Your mom is sitting watching the evening news on TV. """) room2.desc = """ You mentally tune out the news. Something about more demonstrations and protests. You get so tired of the politicking that goes on here sometimes. """ room2.dinner = False room3 = room2.west = Room(""" The hallway is dark. You turn on the lights, which throws amber light on what would otherwise be bare white walls. """) room3.desc = """ You’ve always thought that the walls should be decorated. Perhaps photos of dad, you think. He’s always the one taking photos, he always insists on it, but that means that no one takes photos of him. It’d be nice to see a photo of him. """ room6 = room3.north = Room(""" You enter your dad’s study. """) room6.desc = """ The study is dark, but the light from the corridor pierces through the hinges of the door and collides into the bookshelf. It reflects off something, startling you. """ photo = Item('framed photograph') room6.items = Bag({photo}) room7 = room6.north = Room(""" You enter the master bedroom. """) room7.desc = """ It’s dark and cold. The lights are off, and nobody never turns off the air conditioning here. The imperturbable blue light in corner of the ceiling stares back at you, as it continues to blow cold air into the room. """ room4 = room3.south = Room(""" You enter your helper’s room. """) room4.desc = """ It’s by far the smallest of the rooms, and the most full of stuff. Growing up, you never really understood that domestic helpers weren’t common in other parts of the world... In fact, thinking about it now, it’s a bit strange to let someone else into your home and treat them basically as part of the family, but that they’re under your employ. """ room5 = room3.west = Room(""" You enter your room. """) room5.desc = """ It’s your room. You can navigate it even though its pitch black. You still remember how your dad thought that the bookshelf was too deep, leaving you no space to play. So he sheared one and a half inches off the entire face of the bookshelf. """ music_box = Item('music box') room5.items = Bag({music_box}) room8 = room1.north = Room(""" You move into the kitchen. Your dad is cooking. It smells wonderful, as always. """) room8.desc = """ A beef stew with salad: one of your dad’s specials. The smell of lovingly caramelized beef and delightfully cooked vegetables envelops the kitchen as your dad plates up the food. """ dad = Item('Dad') dinner = Item('dinner') room8.items = Bag({dad, dinner}) wait = room8.east = Room(""" You are in a waiting room. """) wait.desc = "You must wait!" exit_dir = 'east' return [room1, room2, room3, room4, room5, room6, room7, room8, wait, exit_dir] def dungeon02(): room1 = Room(""" The boat is shaking quite vigorously. """) room1.desc = """ You hope the dramamine that you took last night will help fight off the motion sickness. Your friend and his mom are also on the boat. The captain is mumbling something incomprehensible in the corner. """ room2 = room1.east = Room(""" This is the right side of the boat. """) room2.desc = """ Clouds are forming in the distance, you hope it doesn’t rain. """ rope = Item('rope') backpack = Item('backpack') room2.items = Bag({rope, backpack}) room3 = room2.south = Room(""" The captain is demonstrating how to catch flounder. """) room3.desc = """ The fishing line takes 5 minutes to reach the bottom of these open waters. """ room4 = room3.south = Room(""" You see the giant anchor holding the boat’s position. """) room4.desc = """ Best not to touch the anchor! """ anchor = Item('anchor') room4.items = Bag({anchor}) room5 = room1.west = Room(""" This is the left side of the boat. """) room5.desc = """ You can barely see the shores of Anchorage. Seagulls fly over the boat. Your friend is staring off into the distance with his fishing rod. Maybe he’s thinking of home? """ room6 = room5.west = Room(""" You start to feel the motion sickness creep up. """) room6.desc = """ You should probably go back. """ room7 = room5.south = Room(""" The boat’s name is Big Thunder. """) room7.desc = """ You wonder who came up with such a stupid sounding name. """ fishing_rod = Item('fishing rod') room7.items = Bag({fishing_rod}) room8 = room7.south = Room(""" The captain has set up station for you and your friend to fish. """) room8.desc = """ He seems to be getting impatient. """ fishing_station = Item('fishing station') room8.items = Bag({fishing_station}) wait = room8.west = Room(""" You are in a waiting room. """) wait.desc = "You must wait!" exit_dir = 'west' return [room1, room2, room3, room4, room5, room6, room7, room8, wait, exit_dir] def dungeon03(): room1 = Room(""" You wake up to the faint smell of morning air. """) room1.desc = """ The ambient snoring of your friend fills the room. It suddenly dawns upon you that you are in an AirBnb in Kyoto. You should probably get ready and prepare for a full day of adventuring. """ phone = Item('phone') friend = Item('friend') room1.items = Bag({phone, friend}) room2 = room1.north = Room(""" The sliding door to the balcony is slightly ajar. """) room2.desc = """ The dawn light streams through the curtains in a surreal manner. The buildings of Kyoto stand proud against the horizon. A chilly breeze continuously enters the room from beyond the balcony. """ room3 = room2.north = Room(""" You open the sliding door and step onto the balcony. """) room3.desc = """ It isn’t such a windy day today, thankfully. You were lucky with this AirBnb, the view is incredible. You can see all the way to the river. Perhaps today would be a good day to go to the Kyoto Animation Store. """ room4 = room3.west = Room(""" You are faced with a giant building. """) room4.desc = """ Well, not every direction can have amazing views. """ room5 = room1.west = Room(""" The bathroom is pretty small. """) room5.desc = """ In fact, the entire room is the shower room. The plumbing is amazing though. The shower is hot and has high water pressure. """ shower = Item('shower') towel = Item('towel') soap = Item('soap') room5.items = Bag({shower, towel, soap}) room6 = room5.south = Room(""" The kitchen area is pretty small. """) room6.desc = """ There’s barely enough space for 1 stove burner and a tiny sink. This is where the two of you store your toothbrushes. """ toothbrush = Item('toothbrush') toothpaste = Item('toothpaste') sink = Item('sink') room5.items = Bag({toothbrush, toothpaste, sink}) room7 = room6.south = Room(""" A dark hallway. """) room7.desc = """ Strangely, this part of the apartment doesn’t have lights. How peculiar. """ room8 = room7.east = Room(""" The entrance to the apartment. """) room8.desc = """ Your shoes are neatly arranged in the corner. """ shoes = Item('pair of shoes') room8.items = Bag({shoes}) wait = room8.south = Room(""" You are in a waiting room. """) wait.desc = "You must wait!" exit_dir = 'south' return [room1, room2, room3, room4, room5, room6, room7, room8, wait, exit_dir] def dungeon04(): room1 = Room(""" You stand in front of <NAME>'s mahogany wall unit. """) room1.desc = """ Books are crammed into the unit's shelves. The Iliad, Atlas Shrugged, and The Brothers Karamazov jump out at you. The middle shelf houses photos of five generations of Muller women. A black and white photo in a pewter frame shows a young woman wearing a large cartwheel hat covered in feathers. """ room2 = room1.east = Room(""" You sit next to Grandma on her couch in the living room. She has been working on Wednesday's crossword for a few hours. She asks if you'd like to help her. """) room2.desc = """ On the center table sits a ceramic vignette of a mother and her two children. The son, an infant, is cradled in her arms. The daughter fawns over the son from her mother's side. """ pen = Item('pen') room2.items = Bag({pen}) room3 = room1.north = Room(""" You step into the foyer """) room3.desc = """ Next to the front door hangs a wicker knot tied in Savannah. Beneath the knot is a basket filled with balls made of China. Each is speckled with a distinct pattern, deep blue and cracked white. """ room4 = room3.west = Room(""" You walk to the window in Grandma's kitchen and look out at the Henry Hudson Parkway. The smell of stale cigarettes hangs in the air. """) room4.desc = """ A tea bag, a spoon, a bowl of sugar, and a ceramic cup are set up on the kitchen counter for tomorrow morning. The cup is stained brown on the inside from years of service. Its sides are dotted with soft pink roses flowering off a green vine. This week’s tea is Twinings Ceylon Orange Pekoe. """ room5 = room3.north = Room(""" You step into a short hallway. A mirror hangs at the far end. """) room5.desc = """ You've looked better. """ room6 = room5.east = Room(""" You proceed down a long hallway """) room6.desc = """ To the right is Grandma's bedroom. The door is closed. You're not allowed to go there. """ room7 = room6.north = Room(""" You go into the bathroom. It's painted dark grey with white accents. """) room7.desc = """ The bathroom's wooden door is cracked and no longer fits in the door frame. The shower curtain is made of clear plastic. Through it you can see a shower cap, a loofah, and Dove body wash. """ room8 = room6.east = Room(""" You creep into Grandma's bedroom. The blinds are drawn. A small painting hangs on the wall next to the door of the bedroom. """) room8.desc = """ The paint near the windows has chipped due to the rain that seeped in during the hurricane. There is a small shelf hung on each side of Grandma's bed, each supporting a small statuette of a child riding a merry-go-round horse. """ small_painting = Item('small painting') room8.items = Bag({small_painting}) wait = room8.east = Room(""" You are in a waiting room. """) wait.desc = "You must wait!" exit_dir = 'east' return [room1, room2, room3, room4, room5, room6, room7, room8, wait, exit_dir]
StarcoderdataPython
6636697
from . import BatsException class InputArgsException(BatsException): pass
StarcoderdataPython
1667854
#!/usr/bin/python3 # Simple MQTT publishing of Modbus TCP sources # # Written and (C) 2018 by <NAME> <<EMAIL>> # Provided under the terms of the MIT license # # Requires: # - pyModbusTCP - https://github.com/sourceperl/pyModbusTCP # - Eclipse Paho for Python - http://www.eclipse.org/paho/clients/python/ # frequency before is 30,now change to 5*60=300 import json import _thread import datetime import threading import argparse import logging import logging.handlers import time import paho.mqtt.client as mqtt import paho.mqtt.subscribe as subscribe import sys import configparser import traceback from pyModbusTCP.client import ModbusClient parser = argparse.ArgumentParser(description='Bridge between Modbus TCP and MQTT') parser.add_argument('--mqtt-host', default='localhost', help='MQTT server address. \ Defaults to "localhost"') parser.add_argument('--mqtt-port', default='8883', type=int, help='MQTT server port. \ Defaults to 8883') parser.add_argument('--mqtt-topic', default='', help='Topic prefix to be used for \ subscribing/publishing. Defaults to "modbus/"') parser.add_argument('--modbus-host', help='Modbus server address') parser.add_argument('--modbus-port', default='502', type=int, help='Modbus server port. \ Defaults to 502') parser.add_argument('--registers', help='Register definition file. Required!') parser.add_argument('--frequency', default='50', help='How often is the source \ checked for the changes, in seconds. Only integers. Defaults to 3') parser.add_argument('--only-changes', default='False', help='When set to True then \ only changed values are published') args = parser.parse_args() # logging.getLogger().addHandler(logging.StreamHandler(sys.stdout)) logger = logging.getLogger(__name__) logger.setLevel(level=logging.INFO) handler = logging.FileHandler("log.txt") handler.setLevel(logging.INFO) formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') handler.setFormatter(formatter) logger.addHandler(handler) # 把logger加到其他地方。 #logger.info("Start print log") topic = args.mqtt_topic # if not topic.endswith("/"): # topic += "/" frequency = int(args.frequency) print("ModBusTcp2Mqtt App Started...Time:%s" % (datetime.datetime.now())) mbClient = None lastValue = {} config = configparser.ConfigParser() config.read(args.registers) config01 = config['0x01'] config02 = config['0x02'] config03 = config['0x03'] config04 = config['0x04'] config05 = config['0x05'] config06 = config['0x06'] config0F = config['0x0F'] config10 = config['0x10'] config2B = config['0x2B'] # Any received value in the upper range (32768-65535) # is interpreted as negative value (in the range -32768 to -1). def reMap(value, maxInput=65535, minInput=64535, maxOutput=-1, minOutput=-1001): # if value >= minInput: # value = maxInput if value > maxInput else value # value = minInput if value < minInput else value # # inputSpan = maxInput - minInput # outputSpan = maxOutput - minOutput # # scaledThrust = float(value - minInput) / float(inputSpan) # # return minOutput + (scaledThrust * outputSpan) # else: return value class Element: def __init__(self, row): self.topic = row[0] self.value = row[1] def publish(self): try: if self.value != lastValue.get(self.topic, 0) or args.only_changes == 'False': lastValue[self.topic] = self.value fulltopic = topic + self.topic ## mqClient.subscribe(fulltopic) mqClient.publish(fulltopic, reMap(self.value), qos=1, retain=False) except Exception as exc: logging.info("Error reading " + self.topic + ": %s", exc) def readMb(): #while True: # open or reconnect TCP to server logger.info("readMb Run...Time:%s" % (datetime.datetime.now())) if not mbClient.is_open(): if not mbClient.open(): logging.error("unable to connect to " + SERVER_HOST + ":" + str(SERVER_PORT)) data = [] for key, value in config01.items(): # 读取时增加对指令key的过滤 if mbClient.is_open() and not str(key).__contains__('command'): row = mbClient.read_coils(int(value)) if not row is None: row.insert(0, key) data.append(row) for key, value in config02.items(): if mbClient.is_open() and not str(key).__contains__('command'): row = mbClient.read_discrete_inputs(int(value)) if not row is None: row.insert(0, key) data.append(row) for key, value in config03.items(): if mbClient.is_open() and not str(key).__contains__('command'): row = mbClient.read_holding_registers(int(value)) if not row is None: row.insert(0, key) data.append(row) for key, value in config04.items(): if mbClient.is_open() and not str(key).__contains__('command'): row = mbClient.read_input_registers(int(value)) if not row is None: row.insert(0, key) data.append(row) for row in data: e = Element(row) e.publish() #time.sleep(int(frequency)) global timer timer = threading.Timer(120, readMb) timer.start() logger.info("readMb Started...Time:%s" % (datetime.datetime.now())) # 指令回执发回mqtt def down_back(result): callback_topic = "command/huailaiwaterworks/one/downback" mqClient.publish(callback_topic, result, qos=1, retain=False) print("publishCallBack-Msg:%s" % result) logger.info("publishCallBack-Msg:%s" % result) # call back msg def msgCallback(): def on_message_print(client, userdata, message): msg = str(message.payload) newstr = msg.strip('b') print("callback msg:%s" % (newstr)) logger.info("callback msg:%s" % (newstr)) if not mbClient.is_open(): if not mbClient.open(): logging.error("unable to connect to " + SERVER_HOST + ":" + str(SERVER_PORT)) mbClient.open() print("reconnected to modbus finished...") # 水厂泵开关 for key, value in config01.items(): if mbClient.is_open(): if newstr == key: row = mbClient.read_coils(int(value)) print("coils-read-back:%s" % (row)) logger.info("coils-read-back:%s" % (row)) result1 = mbClient.write_single_coil(int(value), True) row = mbClient.read_coils(int(value)) print("coils-write-back1:%s ,NOW Status:%s" % (result1, row)) logger.info("coils-write-back1:%s ,NOW Status:%s" % (result1, row)) time.sleep(2) # PLC反应时间 result2 = mbClient.write_single_coil(int(value), False) row = mbClient.read_coils(int(value)) # 执行回执,也publish出去; if result1 is not None: if result1: down_back(newstr + '/0000') if result1 is None or row is None: down_back(newstr + '/9999') print("coils-write-back2:%s,NOW Status:%s" % (result2, row)) print(key + ":coils-operation-over...") logger.info("coils-write-back2:%s,NOW Status:%s" % (result2, row)) logger.info(key + ":coils-operation-over...") # 寄存器加压站 井 for key, value in config03.items(): if mbClient.is_open(): if newstr == key: # 根据topic 构造write value # 加压站 确定首位是不是零位。 # 地址顺序有误, 1号---会开4号;3号---会开1号;4号---3号,所以做调整 if 'station_pump4#start' in newstr: write_value = 2 if 'station_pump4#stop' in newstr: write_value = 4 if 'station_pump2#start' in newstr: write_value = 8 if 'station_pump2#stop' in newstr: write_value = 16 if 'station_pump1#start' in newstr: write_value = 32 if 'station_pump1#stop' in newstr: write_value = 64 if 'station_pump3#start' in newstr: write_value = 128 if 'station_pump3#stop' in newstr: write_value = 256 # 井 保留联动,优化选择到井的条件 if 'command/well' in newstr and 'pump#start' in newstr: write_value = 1 if 'command/well' in newstr and 'pump#stop' in newstr: write_value = 2 if 'command/well' in newstr and 'pump#linkact' in newstr: write_value = 4 row = mbClient.read_holding_registers(int(value)) print("holding-Register-read-back:%s" % (row)) logger.info("holding-Register-read-back:%s" % (row)) result1 = mbClient.write_single_register(int(value), write_value) row = mbClient.read_holding_registers(int(value)) print("holding-Register-write-back1:%s ,addr:%s ,writeValue:%s,NOW value:%s" % ( result1, value, write_value, row)) logger.info("holding-Register-write-back1:%s ,addr:%s ,writeValue:%s,NOW value:%s" % ( result1, value, write_value, row)) time.sleep(2) result2 = mbClient.write_single_register(int(value), 0) row = mbClient.read_holding_registers(int(value)) if result1 is not None: if result1: down_back(newstr + '/0000') if result1 is None or row is None: down_back(newstr + '/9999') print("holding-Register-write-back2:%s,NOW Status:%s" % (result2, row)) print(key + ":holding-Register-operation-over...") logger.info("holding-Register-write-back2:%s,NOW Status:%s" % (result2, row)) logger.info(key + ":holding-Register-operation-over...") subscribe.callback(on_message_print, command_topic, hostname="192.168.127.12") try: mqClient = mqtt.Client() # mqClient.connect("MacBook-Air.local", 1883) 上线时可以还原为这个地址 mqClient.connect("192.168.127.12", 1883) mqClient.tls_set("cacert.pem", "client-cert.pem", "client-key.pem") mqClient.loop_start() # 订阅指令topic 增加topic复杂度,防止误触发 command_topic = "huailaiwater/ESLink/prod/command/" mqClient.subscribe(command_topic) print("SUBCRIBE " + command_topic + " Successfully") mbClient = ModbusClient() # define modbus server host, port SERVER_HOST = args.modbus_host SERVER_PORT = args.modbus_port mbClient.host(SERVER_HOST) mbClient.port(SERVER_PORT) # 启动读modbus与订阅指令线程 # _thread.start_new_thread(readMb, ()) readMb() _thread.start_new_thread(msgCallback, ()) except Exception as e: # traceback.print_exc()+ logging.error("Unhandled error [" + str(e) + traceback.print_exc() + "]") sys.exit(1) while 1: pass
StarcoderdataPython
8020344
<filename>retro/const.py<gh_stars>0 # -*- coding: utf-8 -*- # pylint: disable=wrong-import-position, range-builtin-not-iterating """ Physical constants and constant-for-us values """ from __future__ import absolute_import, division, print_function __all__ = [ 'omkeys_to_sd_indices', 'get_sd_idx', 'get_string_dom_pair', # Constants 'PI', 'TWO_PI', 'PI_BY_TWO', 'SPEED_OF_LIGHT_M_PER_NS', # Pre-calculated values 'COS_CKV', 'THETA_CKV', 'SIN_CKV', 'TRACK_M_PER_GEV', 'TRACK_PHOTONS_PER_M', 'CASCADE_PHOTONS_PER_GEV', 'IC_DOM_JITTER_NS', 'DC_DOM_JITTER_NS', 'POL_TABLE_DCOSTHETA', 'POL_TABLE_DRPWR', 'POL_TABLE_DT', 'POL_TABLE_RPWR', 'POL_TABLE_RMAX', 'POL_TABLE_NTBINS', 'POL_TABLE_NRBINS', 'POL_TABLE_NTHETABINS', 'IC_DOM_QUANT_EFF', 'DC_DOM_QUANT_EFF', # Particle naming conventions 'ABS_FLAV_STR', 'ABS_FLAV_TEX', 'BAR_NOBAR_STR', 'BAR_NOBAR_TEX', 'INT_TYPE_STR', 'INT_TYPE_TEX', 'PDG_STR', 'PDG_TEX', 'PDG_INTER_STR', 'PDG_INTER_TEX', 'STR_TO_PDG_INTER', # "Enum"-like things 'STR_ALL', 'STR_IC', 'STR_DC', 'AGG_STR_NONE', 'AGG_STR_ALL', 'AGG_STR_SUBDET', 'DOM_ALL', 'NUM_STRINGS', 'NUM_DOMS_PER_STRING', 'NUM_DOMS_TOT', 'IC_STRS', 'DC_STRS', 'DC_IC_STRS', 'DC_ALL_STRS', 'DC_SUBDUST_DOMS', 'IC_SUBDUST_DOMS', 'DC_SUBDUST_STRS_DOMS', 'DC_IC_SUBDUST_STRS_DOMS', 'DC_ALL_SUBDUST_STRS_DOMS', 'ALL_STRS', 'ALL_DOMS', 'ALL_STRS_DOMS', 'ALL_STRS_DOMS_SET', 'DC_ALL_STRS_DOMS', 'EMPTY_HITS', 'EMPTY_SOURCES', 'SRC_OMNI', 'SRC_CKV_BETA1', 'PARAM_NAMES', 'PEGLEG_PARAM_NAMES', 'SCALING_PARAM_NAMES', ] __author__ = '<NAME>, <NAME>' __license__ = '''Copyright 2017 <NAME> and <NAME> Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License.''' from itertools import product from os.path import abspath, dirname import sys import numpy as np if __name__ == '__main__' and __package__ is None: RETRO_DIR = dirname(dirname(dirname(abspath(__file__)))) if RETRO_DIR not in sys.path: sys.path.append(RETRO_DIR) from retro import FTYPE from retro import retro_types def omkeys_to_sd_indices(omkeys): """Get a single integer index from OMKeys. Parameters ---------- omkeys : array of dtype OMKEY_T The dtype `OMKEY_T` must contain "string" and "dom" and can optionally include "pmt". Returns ------- sd_idx : array of np.uint32 """ if 'pmt' in omkeys.dtype.names: raise NotImplementedError("OMKey field 'pmt' not implemented") return get_sd_idx(string=omkeys['string'], dom=omkeys['dom']) def get_sd_idx(string, dom, pmt=0): """Get a single integer index from an IceCube string number (from 1 to 86) and DOM number (from 1 to 60). Parameters ---------- string : int in [1, 60] String number dom : int in [1, 60] DOM number pmt : int PMT number in the DOM; if == 0, then this is ignored. Returns ------- sd_idx : int """ if pmt > 0: raise NotImplementedError('PMT != 0 is not implemented') return (dom - 1) * NUM_STRINGS + (string - 1) def get_string_dom_pair(sd_idx): """Get an IceCube string number (1 to 86) and a DOM number (1 to 60) from the single-integer index (sd_idx). Parameters ---------- sd_idx : int in [0, 5159] Returns ------- string : int in [1, 86] dom : int in [1, 60] """ dom_idx, string_idx = divmod(sd_idx, NUM_STRINGS) string = string_idx + 1 dom = dom_idx + 1 return string, dom # -- Physical / mathematical constants -- # PI = FTYPE(np.pi) """pi""" TWO_PI = FTYPE(2*np.pi) """2 * pi""" PI_BY_TWO = FTYPE(np.pi / 2) """pi / 2""" SPEED_OF_LIGHT_M_PER_NS = FTYPE(299792458 / 1e9) """Speed of light in units of m/ns""" # -- Pre-calculated values -- # COS_CKV = 0.764540803152 """Cosine of the Cherenkov angle for beta ~1 and IceCube phase index as used""" THETA_CKV = np.arccos(0.764540803152) """Cosine of the Cherenkov angle for beta ~1 and IceCube phase index as used""" SIN_CKV = np.sin(THETA_CKV) """Cosine of the Cherenkov angle for beta ~1 and IceCube phase index as used""" TRACK_M_PER_GEV = FTYPE(15 / 3.3) """Track length per energy, in units of m/GeV""" TRACK_PHOTONS_PER_M = FTYPE(2451.4544553) """Track photons per length, in units of 1/m (see ``nphotons.py``)""" CASCADE_PHOTONS_PER_GEV = FTYPE(12805.3383311) """Cascade photons per energy, in units of 1/GeV (see ``nphotons.py``)""" # TODO: Is jitter same (or close enough to the same) for all DOMs? Is it # different for DeepCore vs. non-DeepCore DOMs? Didn't see as much in # section 3.3. of arXiv:1612.05093v2 so assuming same for now. # See arXiv:1612.05093v2, section 3.3 IC_DOM_JITTER_NS = 1.7 """Timing jitter (stddev) for string 0-79 DOMs, in units of ns""" # See arXiv:1612.05093v2, section 3.3 DC_DOM_JITTER_NS = 1.7 """Timing jitter (stddev) for DeepCore (strings 80-86) DOMs, in units of ns""" # TODO: figure these out from the tables rather than defining as constants POL_TABLE_RMAX = 400 # m POL_TABLE_DT = 10 # ns POL_TABLE_RPWR = 2 POL_TABLE_DRPWR = 0.1 POL_TABLE_DCOSTHETA = -0.05 POL_TABLE_NTBINS = 300 POL_TABLE_NRBINS = 200 POL_TABLE_NTHETABINS = 40 #IC_DOM_QUANT_EFF = 0.25 IC_DOM_QUANT_EFF = 1. """scalar in [0, 1] : (Very rough approximation!) IceCube (i.e. non-DeepCore) DOM quantum efficiency. Multiplies the tabulated detection probabilities to yield the actual probabilitiy that a photon is detected.""" #DC_DOM_QUANT_EFF = 0.35 DC_DOM_QUANT_EFF = 1. """scalar in [0, 1] : (Very rough approximation!) DeepCore DOM quantum efficiency. Multiplies the tabulated detection probabilities to yield the actual probabilitiy that a photon is detected.""" # -- Particle / interaction type naming conventions -- # ABS_FLAV_STR = {12: 'nue', 13: 'numu', 14: 'nutau'} ABS_FLAV_TEX = {12: r'\nu_e', 13: r'\nu_\mu', 14: r'\nu_\tau'} BAR_NOBAR_STR = {-1: 'bar', 1: ''} BAR_NOBAR_TEX = {-1: r'\bar', 1: ''} INT_TYPE_STR = {1: 'cc', 2: 'nc'} INT_TYPE_TEX = {1: r'\, {\rm CC}', 2: r'\, {\rm NC}'} PDG_STR = {} PDG_TEX = {} for _bnb, _abs_code in product(BAR_NOBAR_STR.keys(), ABS_FLAV_STR.keys()): PDG_STR[_abs_code*_bnb] = ABS_FLAV_STR[_abs_code] + BAR_NOBAR_STR[_bnb] PDG_TEX[_abs_code*_bnb] = BAR_NOBAR_TEX[_bnb] + ABS_FLAV_TEX[_abs_code] PDG_INTER_STR = {} PDG_INTER_TEX = {} for _pdg, _it in product(PDG_STR.keys(), INT_TYPE_STR.keys()): PDG_INTER_STR[(_pdg, _it)] = '%s_%s' % (PDG_STR[_pdg], INT_TYPE_STR[_it]) PDG_INTER_TEX[(_pdg, _it)] = '%s %s' % (PDG_TEX[_pdg], INT_TYPE_TEX[_it]) STR_TO_PDG_INTER = {v: k for k, v in PDG_INTER_STR.items()} # -- "enums" -- # STR_ALL, STR_IC, STR_DC = -1, -2, -3 AGG_STR_NONE, AGG_STR_ALL, AGG_STR_SUBDET = 0, 1, 2 DOM_ALL = -1 # -- geom constants --- # NUM_STRINGS = 86 NUM_DOMS_PER_STRING = 60 NUM_DOMS_TOT = NUM_STRINGS * NUM_DOMS_PER_STRING IC_STRS = np.array(range(1, 78+1), dtype=np.uint8) DC_STRS = np.array(range(79, 86+1), dtype=np.uint8) DC_IC_STRS = np.array([26, 27, 35, 36, 37, 45, 46], dtype=np.uint8) DC_ALL_STRS = np.concatenate([DC_STRS, DC_IC_STRS], axis=0) DC_SUBDUST_DOMS = np.array(range(11, 60+1), dtype=np.uint8) IC_SUBDUST_DOMS = np.array(range(25, 60+1), dtype=np.uint8) DC_SUBDUST_STRS_DOMS = np.array( [get_sd_idx(s, d) for s, d in product(DC_STRS, DC_SUBDUST_DOMS)] ) DC_IC_SUBDUST_STRS_DOMS = np.array( [get_sd_idx(s, d) for s, d in product(DC_IC_STRS, IC_SUBDUST_DOMS)] ) DC_ALL_SUBDUST_STRS_DOMS = np.concatenate( (DC_SUBDUST_STRS_DOMS, DC_IC_SUBDUST_STRS_DOMS) ) ALL_STRS = list(range(1, 86+1)) ALL_DOMS = list(range(1, 60+1)) ALL_STRS_DOMS = np.array([get_sd_idx(s, d) for s, d in product(ALL_STRS, ALL_DOMS)]) ALL_STRS_DOMS_SET = set(ALL_STRS_DOMS) DC_ALL_STRS_DOMS = np.array([get_sd_idx(s, d) for s, d in product(DC_STRS, ALL_DOMS)]) EMPTY_HITS = np.empty(shape=0, dtype=retro_types.HIT_T) EMPTY_SOURCES = np.empty(shape=0, dtype=retro_types.SRC_T) SRC_OMNI = np.uint32(0) """Source kind designator for a point emitting omnidirectional light""" SRC_CKV_BETA1 = np.uint32(1) """Source kind designator for a point emitting Cherenkov light with beta ~ 1""" PARAM_NAMES = [ 'time', 'x', 'y', 'z', 'track_azimuth', 'track_zenith', 'cascade_azimuth', 'cascade_zenith', 'track_energy', 'cascade_energy', 'cascade_d_zenith', 'cascade_d_azimuth' ] """All possible hypothesis param names""" PEGLEG_PARAM_NAMES = ['track_energy'] """Hypothesis param names handled by pegleg, if it's used""" SCALING_PARAM_NAMES = ['cascade_energy'] """Hypothesis param names handled by scaling, if it's used"""
StarcoderdataPython
11315213
<gh_stars>1-10 #!/usr/bin/env /Users/kcoufal/miniconda3/bin/python3.7 # -*- coding: utf8 -*- from flask import Flask import datetime as dt import platform server = Flask(__name__) @server.route("/") def message(): return "<html><body><h1>Hi, welcome to the website</h1></body></html>" @server.route("/date") def date(): return dt.datetime.now().strftime('%s') if __name__ == "__main__": server.run(host='0.0.0.0')
StarcoderdataPython
1665968
def fibonacci_generator(n): result = [] index = 0 while index <= n: if(index == 0 or index == 1): result.append(index) yield index else: result.append(result[index-1] + result[index-2]) yield result[index] index = index+1 fib_gen = fibonacci_generator(8) print(next(fib_gen)) print(next(fib_gen)) print(next(fib_gen)) print(next(fib_gen)) print(next(fib_gen)) print() for seq in fibonacci_generator(8): print(seq) print()
StarcoderdataPython
3463279
#!/usr/bin/env python3 """ Module with function to adds two arrays element-wise """ def add_arrays(arr1, arr2): """ Function to adds two arrays element-wise Returns the a new array with the result """ if len(arr1) == len(arr2): return [arr1[i] + arr2[i] for i in range(len(arr1))] return None
StarcoderdataPython
3442863
<filename>UI/youtubePlayer.py from PyQt5 import QtCore, QtWebEngineWidgets, QtWebChannel, QtNetwork from Assets import firebaseConfig HTML = ''' <!DOCTYPE html> <html> <head> <meta name="viewport" content="initial-scale=1.0, user-scalable=no"/> <style type="text/css"> html { height: 100%; zo width: 100%; } body { height: 100%; margin: 0; padding: 0 width: 100%; } #video { height: 100%; margin: 0; padding: 0 width: 100%; } </style> <script type="text/javascript" src="qrc:///qtwebchannel/qwebchannel.js"></script> <script type="text/javascript"> function reload(link) { document.getElementById('video').src = 'https://www.youtube.com/embed/' + link; } </script> </head> <body> <iframe frameborder="0" width="560" height="315" id="video" style="width:100%; height:100%;" src="https://www.youtube.com/embed/LINK"> </iframe> </body> </html> ''' class YoutubePlayer(QtWebEngineWidgets.QWebEngineView): def __init__(self, parent=None, link=''): super(YoutubePlayer, self).__init__(parent) channel = QtWebChannel.QWebChannel(self) self.page().setWebChannel(channel) channel.registerObject("YoutubePlayer", self) html = HTML.replace("LINK", link) self.setHtml(html) self._manager = QtNetwork.QNetworkAccessManager(self) def runScript(self, script, callback=None): if callback is None: self.page().runJavaScript(script) else: self.page().runJavaScript(script, callback) def reloadVideo(self, link): html = HTML.replace("LINK", link) self.setHtml(html)
StarcoderdataPython
3515176
<filename>opt_example.py # -*- coding: utf-8 -*- """ Created on Sat Feb 19 20:13:29 2022 @author: mahom """ import torch from load_obj import load_obj def opt_example(model,likelihood): #DATA = load_obj("C:/Users/mahom/Desktop/GPt24_Full__std_y_allLocations.pkl"); DATA = load_obj("C:/Users/mahom/Desktop/GPK_NMF_std_y_allLocations.pkl"); M = DATA['MODELS_ALL'] ct = M[3] AL = DATA['Alphas_ALL'] n_tasks = len(ct) for task in range(0,n_tasks): print(ct[task].kernel_) for task in range(0,n_tasks): with torch.no_grad(): model['task{}'.format(task+1)].covar_module.kernels[0].outputscale = ct[task].kernel_.k1.k1.k1.constant_value model['task{}'.format(task+1)].covar_module.kernels[0].base_kernel.lengthscale = ct[task].kernel_.k1.k1.k2.length_scale model['task{}'.format(task+1)].covar_module.kernels[1].bias = ct[task].kernel_.k1.k2.constant_value model['task{}'.format(task+1)].likelihood.noise_covar.noise = ct[task].kernel_.k2.noise_level + torch.tensor([1e-6]) likelihood['task{}'.format(task+1)].noise_covar.noise = ct[task].kernel_.k2.noise_level+ torch.tensor([1e-6]) model['task{}'.format(task+1)].mean_module.constant = torch.nn.Parameter(torch.tensor([0.0], requires_grad=True)) # n_tasks = 24 # outputScales = torch.zeros(n_tasks,requires_grad=True) # LScales = torch.zeros(n_tasks,1,1,requires_grad=True) # bias = torch.zeros(n_tasks,requires_grad=True) # noises = torch.zeros(n_tasks,requires_grad=True) # for task in range(0,24): # with torch.no_grad(): # noises[task] = ct[task].kernel_.k2.noise_level # bias[task] = ct[task].kernel_.k1.k2.constant_value # LScales[task] = ct[task].kernel_.k1.k1.k2.length_scale # outputScales[task] = ct[task].kernel_.k1.k1.k1.constant_value # model.likelihood.task_noises = noises # 0.5 # model.covar_module.kernels[0].base_kernel.lengthscale = LScales # probar 15 #3 # model.covar_module.kernels[1].bias = bias # model.covar_module.kernels[0].outputscale = outputScales
StarcoderdataPython
8110416
<filename>src/uvm/reg/sequences/uvm_mem_walk_seq.py #// #// ------------------------------------------------------------- #// Copyright 2004-2008 Synopsys, Inc. #// Copyright 2010 Mentor Graphics Corporation #// Copyright 2019-2020 <NAME> (tpoikela) #// All Rights Reserved Worldwide #// #// Licensed under the Apache License, Version 2.0 (the #// "License"); you may not use this file except in #// compliance with the License. You may obtain a copy of #// the License at #// #// http://www.apache.org/licenses/LICENSE-2.0 #// #// Unless required by applicable law or agreed to in #// writing, software distributed under the License is #// distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR #// CONDITIONS OF ANY KIND, either express or implied. See #// the License for the specific language governing #// permissions and limitations under the License. #// ------------------------------------------------------------- #// import cocotb from cocotb.triggers import Timer from ..uvm_reg_sequence import UVMRegSequence from ..uvm_reg_model import (UVM_FRONTDOOR, UVM_IS_OK, UVM_NO_HIER, UVM_STATUS_NAMES) from ...macros import (uvm_info, uvm_error, uvm_object_utils) from ...base.uvm_resource_db import UVMResourceDb from ...base.sv import sv from ...base.uvm_object_globals import UVM_LOW from ...base.uvm_globals import uvm_empty_delay #//------------------------------------------------------------------------------ #// Title: Memory Walking-Ones Test Sequences #// #// This section defines sequences for applying a "walking-ones" #// algorithm on one or more memories. #//------------------------------------------------------------------------------ #//------------------------------------------------------------------------------ #// Class: UVMMemSingleWalkSeq #// #// Runs the walking-ones algorithm on the memory given by the <mem> property, #// which must be assigned prior to starting this sequence. #// #// If bit-type resource named #// "NO_REG_TESTS", "NO_MEM_TESTS", or "NO_MEM_WALK_TEST" #// in the "REG::" namespace #// matches the full name of the memory, #// the memory is not tested. #// #//| uvm_resource_db#(bit)::set({"REG::",regmodel.blk.mem0.get_full_name()}, #//| "NO_MEM_TESTS", 1, this); #// #// The walking ones algorithm is performed for each map in which the memory #// is defined. #// #//| for (k = 0 thru memsize-1) #//| write addr=k data=~k #//| if (k > 0) { #//| read addr=k-1, expect data=~(k-1) #//| write addr=k-1 data=k-1 #//| if (k == last addr) #//| read addr=k, expect data=~k #// #//------------------------------------------------------------------------------ class UVMMemSingleWalkSeq(UVMRegSequence): # (uvm_sequence #(uvm_reg_item)) # // Function: new # // # // Creates a new instance of the class with the given name. # def __init__(self, name="UVMMemWalkSeq"): super().__init__(name) # // Variable: mem # // # // The memory to test; must be assigned prior to starting sequence. self.mem = None # endfunction # // Task: body # // # // Performs the walking-ones algorithm on each map of the memory # // specified in <mem>. async def body(self): maps = [] # uvm_reg_map [$] n_bits = 0 mem = self.mem if mem is None: uvm_error("UVMMemWalkSeq", "No memory specified to run sequence on") return # Memories with some attributes are not to be tested if (UVMResourceDb.get_by_name("REG::" + mem.get_full_name(), "NO_REG_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + mem.get_full_name(), "NO_MEM_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + mem.get_full_name(), "NO_MEM_WALK_TEST", 0) is not None): return n_bits = mem.get_n_bits() # Memories may be accessible from multiple physical interfaces (maps) mem.get_maps(maps) # Walk the memory via each map for j in range(len(maps)): status = 0 val = 0 exp = 0 # v = 0 # Only deal with RW memories if mem.get_access(maps[j]) != "RW": continue uvm_info("UVMMemWalkSeq", sv.sformatf("Walking memory %s (n_bits: %d) in map \"%s\"...", mem.get_full_name(), n_bits, maps[j].get_full_name()), UVM_LOW) # The walking process is, for address k: # - Write ~k # - Read k-1 and expect ~(k-1) if k > 0 # - Write k-1 at k-1 # - Read k and expect ~k if k == last address for k in range(mem.get_size()): status = [] await mem.write(status, k, ~k, UVM_FRONTDOOR, maps[j], self) status = status[0] if status != UVM_IS_OK: uvm_error("UVMMemWalkSeq", sv.sformatf( "Status was %s when writing \"%s[%0d]\" through map \"%s\".", status.name(), mem.get_full_name(), k, maps[j].get_full_name())) if k > 0: status = [] val = [] await mem.read(status, k-1, val, UVM_FRONTDOOR, maps[j], self) status = status[0] if status != UVM_IS_OK: uvm_error("UVMMemWalkSeq", sv.sformatf( "Status was %s when reading \"%s[%0d]\" through map \"%s\".", UVM_STATUS_NAMES[status], mem.get_full_name(), k, maps[j].get_full_name())) else: exp = ~(k-1) & ((1 << n_bits)-1) val = val[0] if val != exp: uvm_error("UVMMemWalkSeq", sv.sformatf("\"%s[%0d-1]\" read back as 'h%h instead of 'h%h.", mem.get_full_name(), k, val, exp)) status = [] await mem.write(status, k-1, k-1, UVM_FRONTDOOR, maps[j], self) status = status[0] if status != UVM_IS_OK: uvm_error("UVMMemWalkSeq", sv.sformatf( "Status was %s when writing \"%s[%0d-1]\" through map \"%s\".", UVM_STATUS_NAMES[status], mem.get_full_name(), k, maps[j].get_full_name())) if k == mem.get_size() - 1: status = [] val = [] await mem.read(status, k, val, UVM_FRONTDOOR, maps[j], self) status = status[0] if status != UVM_IS_OK: uvm_error("UVMMemWalkSeq", sv.sformatf( "Status was %s when reading \"%s[%0d]\" through map \"%s\".", UVM_STATUS_NAMES[status], mem.get_full_name(), k, maps[j].get_full_name())) else: exp = ~(k) & ((1<<n_bits)-1) val = val[0] if val != exp: uvm_error("UVMMemWalkSeq", sv.sformatf("\"%s[%0d]\" read back as 'h%h instead of 'h%h.", mem.get_full_name(), k, val, exp)) uvm_object_utils(UVMMemSingleWalkSeq) #//------------------------------------------------------------------------------ #// Class: UVMMemWalkSeq #// #// Verifies the all memories in a block #// by executing the <UVMMemSingleWalkSeq> sequence on #// every memory within it. #// #// If bit-type resource named #// "NO_REG_TESTS", "NO_MEM_TESTS", or "NO_MEM_WALK_TEST" #// in the "REG::" namespace #// matches the full name of the block, #// the block is not tested. #// #//| uvm_resource_db#(bit)::set({"REG::",regmodel.blk.get_full_name(),".*"}, #//| "NO_MEM_TESTS", 1, this); #// #//------------------------------------------------------------------------------ class UVMMemWalkSeq(UVMRegSequence): # (uvm_sequence #(uvm_reg_item)) def __init__(self, name="UVMMemWalkSeq"): super().__init__(name) # // Variable: model # // # // The block to be tested. Declared in the base class. # // # //| uvm_reg_block model; self.model = None # // Variable: mem_seq # // # // The sequence used to test one memory # // self.mem_seq = None # # // Task: body # // # // Executes the mem walk sequence, one block at a time. # // Do not call directly. Use seq.start() instead. # // async def body(self): if self.model is None: uvm_error("UVMMemWalkSeq", "No register model specified to run sequence on") return uvm_info("STARTING_SEQ","\n\nStarting " + self.get_name() + " sequence...\n",UVM_LOW) self.mem_seq = UVMMemSingleWalkSeq.type_id.create("single_mem_walk_seq") await self.reset_blk(self.model) self.model.reset() await self.do_block(self.model) # // Task: do_block # // # // Test all of the memories in a given ~block~ # // async def do_block(self, blk): mems = [] # uvm_mem[$] if (UVMResourceDb.get_by_name("REG::" + blk.get_full_name(), "NO_REG_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + blk.get_full_name(), "NO_MEM_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + blk.get_full_name(), "NO_MEM_ACCESS_TEST", 0) is not None): return # Iterate over all memories, checking accesses blk.get_memories(mems, UVM_NO_HIER) for i in range(len(mems)): # Memories with some attributes are not to be tested if (UVMResourceDb.get_by_name("REG::" + mems[i].get_full_name(), "NO_REG_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + mems[i].get_full_name(), "NO_MEM_TESTS", 0) is not None or UVMResourceDb.get_by_name("REG::" + mems[i].get_full_name(), "NO_MEM_WALK_TEST", 0) is not None): continue self.mem_seq.mem = mems[i] await self.mem_seq.start(None, self) blks = [] # uvm_reg_block [$] blk.get_blocks(blks) for i in range(len(blks)): await self.do_block(blks[i]) # // Task: reset_blk # // # // Reset the DUT that corresponds to the specified block abstraction class. # // # // Currently empty. # // Will rollback the environment's phase to the ~reset~ # // phase once the new phasing is available. # // # // In the meantime, the DUT should be reset before executing this # // test sequence or this method should be implemented # // in an extension to reset the DUT. # // async def reset_blk(self, blk): await uvm_empty_delay() uvm_object_utils(UVMMemWalkSeq)
StarcoderdataPython
6636047
#!/usr/bin/env python import os import sys sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__)))) from metrilyx.dataserver import cli from metrilyx.dataserver.server import ServerManager def parseCliOptions(): parser = cli.DataserverOptionParser() parser.add_option("-l", "--log-level", dest="logLevel", default="INFO", help="Log level. (default: INFO)") parser.add_option("--log-format", dest="logFormat", default=cli.DEFAULT_LOG_FORMAT, help="Log output format. (default: '"+cli.DEFAULT_LOG_FORMAT+"')") parser.add_option("--log-dir", dest="logDir", default=None, help="Log directory.") parser.add_option("--hostname", dest="hostname", default="localhost", help="Resolvable hostname of the server. (default: localhost)") parser.add_option("-p", "--port", dest="port", type="int", default=9000, help="Port to listen on. (default: 9000)") parser.add_option("-e", "--external-port", dest="extPort", type="int", default=None, help="External port if running behind a proxy such as nginx. This would be the port of the proxy, usually port 80.") parser.add_option("--check-interval", dest="checkInterval", default=15.0, type="float", help="Interval to check for process stats. (default: 15.0 secs)") parser.add_option("--max-memory", dest="maxAllowedMemory", type="float", default=1500.0, help="Maximum allowed memory (MB) before server is gracefully respawned. (default: 1500.0 MB)") return parser.parse_args() if __name__ == "__main__": (opts, args) = parseCliOptions() smgr = ServerManager(opts) smgr.start()
StarcoderdataPython
1883448
from time import sleep def contagem(a, b, c): if c < 0: c *= -1 if c == 0: c = 1 print(f'Contagem de {a} até {b} de {c} em {c}') if a < b: cont = a while cont <= b: print(f'{cont} ', end='') cont += c sleep(0.3) print('Fim') else: cont = a while cont >= b: print(f'{cont} ', end='') cont -= c sleep(0.3) print('Fim') contagem(1,10,1) contagem(10,0,2) a = int(input('Inicio: ')) b = int(input('Fim: ')) c = int(input('Passo: ')) contagem(a,b,c)
StarcoderdataPython
152666
<filename>tests/test_pykblib_exceptions.py from unittest import TestCase from pykblib.exceptions import KBLibException class KeybaseExceptionTest(TestCase): def test_exception(self): with self.assertRaises(KBLibException) as raised: raise KBLibException("test message") self.assertEqual(raised.exception.message, "test message")
StarcoderdataPython
4975150
# Generated by Django 2.2.13 on 2020-07-20 06:42 from django.db import migrations, models import django.db.models.deletion class Migration(migrations.Migration): dependencies = [ ('pipeline', '0033_road'), ] operations = [ migrations.RemoveField( model_name='community', name='municipality_id', ), migrations.AddField( model_name='community', name='municipality', field=models.ForeignKey(null=True, on_delete=django.db.models.deletion.SET_NULL, to='pipeline.Municipality'), ), ]
StarcoderdataPython
3493723
<reponame>scarcella/torchchem<gh_stars>10-100 #!/usr/bin/env python3 # -*- coding: utf-8 -*- """ Created on Sun Mar 22 06:50:13 2020 @author: zqwu """ import torch import torch.nn as nn import torchchem import numpy as np import os from sklearn.metrics import roc_auc_score # Settings tox21_path = './data/tox21/tox21.csv' tasks = ['NR-AR', 'NR-AR-LBD', 'NR-AhR', 'NR-Aromatase', 'NR-ER', 'NR-ER-LBD', 'NR-PPAR-gamma', 'SR-ARE', 'SR-ATAD5', 'SR-HSE', 'SR-MMP', 'SR-p53'] lr = 0.001 batch_size = 128 weight_decay = 0.001 n_epochs = 1000 gpu = False # Load dataset dataset = torchchem.data.load_csv_dataset(tox21_path, tasks) # Split dataset inds = np.arange(len(dataset)) np.random.seed(123) np.random.shuffle(inds) train_inds = inds[:int(0.8*len(dataset))] valid_inds = inds[int(0.8*len(dataset)):] train_dataset = dataset.index_select(list(train_inds)) valid_dataset = dataset.index_select(list(valid_inds)) # Initialize model net = torchchem.models.GraphConvolutionNet( n_node_features=dataset.num_node_features, n_tasks=len(tasks), post_op=nn.Sigmoid()) model = torchchem.models.GraphConvolutionModel( net, criterion=torchchem.models.WeightedBCEWithLogits(), lr=lr, weight_decay=weight_decay, gpu=gpu) def evaluate(dataset, model): outputs = model.predict(dataset) ys = [] ws = [] for data in dataset: ys.append(data.y.cpu().data.numpy()) ws.append(data.w.cpu().data.numpy()) ys = np.stack(ys, 0) ws = np.stack(ws, 0) scores = [] for i in range(len(tasks)): y_pred = outputs[:, i] y = ys[:, i] w = ws[:, i] scores.append(roc_auc_score(y[np.where(w > 0)], y_pred[np.where(w > 0)])) return scores # Training and evaluation for i in range(n_epochs): model.train_epoch(train_dataset, batch_size=batch_size, shuffle=False) print(np.mean(evaluate(train_dataset, model))) print(np.mean(evaluate(valid_dataset, model)))
StarcoderdataPython
11201446
<filename>src/tuning/custom_trial.py import random from typing import Dict import numpy as np import nni import torch from ..data_loader.load import DataLoader, CryptoDataset from ..models.custom.custom import train_model # set seed seed = 80085 random.seed(seed) np.random.seed(seed) torch.manual_seed(seed) def prepare_custom(params: Dict) -> float: """ Helper function for AutoML, helps to tune our hyper-parameters. Args: :param params: The hyper-parameters to test. """ data = DataLoader() dataset = data.load_data(CryptoDataset("BITCOIN", "BTC-USD.csv")) val_min, _ = train_model( dataset, "2017-01-01", "2021-01-01", params, params["features"] ) return val_min val = prepare_custom(nni.get_next_parameter()) nni.report_final_result(val)
StarcoderdataPython
11363637
""" .. module: historical.common.proxy :platform: Unix :copyright: (c) 2018 by Netflix Inc., see AUTHORS for more :license: Apache, see LICENSE for more details. .. author:: <NAME> <<EMAIL>> """ import logging import json import math import os import sys import boto3 from retrying import retry from raven_python_lambda import RavenLambdaWrapper from historical.common.dynamodb import DESER, remove_global_dynamo_specific_fields from historical.common.exceptions import MissingProxyConfigurationException from historical.common.sqs import produce_events from historical.constants import CURRENT_REGION, EVENT_TOO_BIG_FLAG, PROXY_REGIONS, REGION_ATTR, SIMPLE_DURABLE_PROXY from historical.mapping import DURABLE_MAPPING, HISTORICAL_TECHNOLOGY LOG = logging.getLogger('historical') @retry(stop_max_attempt_number=4, wait_exponential_multiplier=1000, wait_exponential_max=1000) def _publish_sns_message(client, blob, topic_arn): client.publish(TopicArn=topic_arn, Message=blob) def shrink_blob(record, deletion): """ Makes a shrunken blob to be sent to SNS/SQS (due to the 256KB size limitations of SNS/SQS messages). This will essentially remove the "configuration" field such that the size of the SNS/SQS message remains under 256KB. :param record: :return: """ item = { "eventName": record["eventName"], EVENT_TOO_BIG_FLAG: (not deletion) } # To handle TTLs (if they happen) if record.get("userIdentity"): item["userIdentity"] = record["userIdentity"] # Remove the 'configuration' and 'requestParameters' fields from new and old images if applicable: if not deletion: # Only remove it from non-deletions: if record['dynamodb'].get('NewImage'): record['dynamodb']['NewImage'].pop('configuration', None) record['dynamodb']['NewImage'].pop('requestParameters', None) if record['dynamodb'].get('OldImage'): record['dynamodb']['OldImage'].pop('configuration', None) record['dynamodb']['OldImage'].pop('requestParameters', None) item['dynamodb'] = record['dynamodb'] return item @RavenLambdaWrapper() def handler(event, context): # pylint: disable=W0613 """Historical S3 DynamoDB Stream Forwarder (the 'Proxy'). Passes events from the Historical DynamoDB stream and passes it to SNS or SQS for additional events to trigger. You can optionally use SNS or SQS. It is preferable to use SNS -> SQS, but in some cases, such as the Current stream to the Differ, this will make use of SQS to directly feed into the differ for performance purposes. """ queue_url = os.environ.get('PROXY_QUEUE_URL') topic_arn = os.environ.get('PROXY_TOPIC_ARN') if not queue_url and not topic_arn: raise MissingProxyConfigurationException('[X] Must set the `PROXY_QUEUE_URL` or the `PROXY_TOPIC_ARN` vars.') items_to_ship = [] # Must ALWAYS shrink for SQS because of 256KB limit of sending batched messages force_shrink = True if queue_url else False # Is this a "Simple Durable Proxy" -- that is -- are we stripping out all of the DynamoDB data from # the Differ? record_maker = make_proper_simple_record if SIMPLE_DURABLE_PROXY else make_proper_dynamodb_record for record in event['Records']: # We should NOT be processing this if the item in question does not # reside in the PROXY_REGIONS correct_region = True for img in ['NewImage', 'OldImage']: if record['dynamodb'].get(img): if record['dynamodb'][img][REGION_ATTR]['S'] not in PROXY_REGIONS: LOG.debug(f"[/] Not processing record -- record event took place in:" f" {record['dynamodb'][img][REGION_ATTR]['S']}") correct_region = False break if not correct_region: continue # Global DynamoDB tables will update a record with the global table specific fields. This creates 2 events # whenever there is an update. The second update, which is a MODIFY event is not relevant and noise. This # needs to be skipped over to prevent duplicated events. This is a "gotcha" in Global DynamoDB tables. if detect_global_table_updates(record): continue items_to_ship.append(record_maker(record, force_shrink=force_shrink)) if items_to_ship: # SQS: if queue_url: produce_events(items_to_ship, queue_url, batch_size=int(os.environ.get('PROXY_BATCH_SIZE', 10))) # SNS: else: client = boto3.client("sns", region_name=CURRENT_REGION) for i in items_to_ship: _publish_sns_message(client, i, topic_arn) def detect_global_table_updates(record): """This will detect DDB Global Table updates that are not relevant to application data updates. These need to be skipped over as they are pure noise. :param record: :return: """ # This only affects MODIFY events. if record['eventName'] == 'MODIFY': # Need to compare the old and new images to check for GT specific changes only (just pop off the GT fields) old_image = remove_global_dynamo_specific_fields(record['dynamodb']['OldImage']) new_image = remove_global_dynamo_specific_fields(record['dynamodb']['NewImage']) if json.dumps(old_image, sort_keys=True) == json.dumps(new_image, sort_keys=True): return True return False def make_proper_dynamodb_record(record, force_shrink=False): """Prepares and ships an individual DynamoDB record over to SNS/SQS for future processing. :param record: :param force_shrink: :return: """ # Get the initial blob and determine if it is too big for SNS/SQS: blob = json.dumps(record) size = math.ceil(sys.getsizeof(blob) / 1024) # If it is too big, then we need to send over a smaller blob to inform the recipient that it needs to go out and # fetch the item from the Historical table! if size >= 200 or force_shrink: deletion = False # ^^ However -- deletions need to be handled differently, because the Differ won't be able to find a # deleted record. For deletions, we will only shrink the 'OldImage', but preserve the 'NewImage' since that is # "already" shrunken. if record['dynamodb'].get('NewImage'): # Config will be empty if there was a deletion: if not (record['dynamodb']['NewImage'].get('configuration', {}) or {}).get('M'): deletion = True blob = json.dumps(shrink_blob(record, deletion)) return blob def _get_durable_pynamo_obj(record_data, durable_model): image = remove_global_dynamo_specific_fields(record_data) data = {} for item, value in image.items(): # This could end up as loss of precision data[item] = DESER.deserialize(value) return durable_model(**data) def make_proper_simple_record(record, force_shrink=False): """Prepares and ships an individual simplified durable table record over to SNS/SQS for future processing. :param record: :param force_shrink: :return: """ # Convert to a simple object item = { 'arn': record['dynamodb']['Keys']['arn']['S'], 'event_time': record['dynamodb']['NewImage']['eventTime']['S'], 'tech': HISTORICAL_TECHNOLOGY } # We need to de-serialize the raw DynamoDB object into the proper PynamoDB obj: prepped_new_record = _get_durable_pynamo_obj(record['dynamodb']['NewImage'], DURABLE_MAPPING.get(HISTORICAL_TECHNOLOGY)) item['item'] = dict(prepped_new_record) # Get the initial blob and determine if it is too big for SNS/SQS: blob = json.dumps(item) size = math.ceil(sys.getsizeof(blob) / 1024) # If it is too big, then we need to send over a smaller blob to inform the recipient that it needs to go out and # fetch the item from the Historical table! if size >= 200 or force_shrink: del item['item'] item[EVENT_TOO_BIG_FLAG] = True blob = json.dumps(item) return blob.replace('<empty>', '')
StarcoderdataPython
4838748
<gh_stars>1-10 """ This module contrains all the flags for the motion representation learning repository """ from __future__ import division import os from os.path import join as pjoin import tensorflow as tf # Modify this function to set your home directory for this repo def home_out(path): return pjoin(os.environ['HOME'], 'tmp', 'MoCap', path) flags = tf.app.flags FLAGS = flags.FLAGS """ Fine-tuning Parameters """ # Flags about the sequence processing flags.DEFINE_integer('chunk_length', 1, 'Length of the chunks, for the data processing.') # Flags about training flags.DEFINE_float('learning_rate', 0.0001, 'learning rate for training .') flags.DEFINE_float('pretraining_learning_rate', 0.001 , 'learning rate for training .') flags.DEFINE_float('variance_of_noise', 0.05, 'Coefficient for the gaussian noise ' 'added to every point in input during the training') flags.DEFINE_boolean('pretrain', False,' Whether we pretrain the model in a layerwise way') flags.DEFINE_boolean('restore', False,' Whether we restore the model from the checkpoint') flags.DEFINE_boolean('evaluate', False, ' Whether we are evaluating the system') flags.DEFINE_float('dropout', 0.9, 'Probability to keep the neuron on') flags.DEFINE_integer('batch_size', 128, 'Size of the mini batch') flags.DEFINE_integer('training_epochs', 50, "Number of training epochs for pretraining layers") flags.DEFINE_integer('pretraining_epochs', 5, "Number of training epochs for pretraining layers") flags.DEFINE_float('weight_decay', 0.5, ' Whether we apply weight decay') flags.DEFINE_boolean('early_stopping', True, ' Whether we do early stopping') flags.DEFINE_float('delta_for_early_stopping', 0.5, 'How much worst the results must get in order' ' for training to be terminated.' ' 0.05 mean 5% worst than best we had.') # Network Architecture Specific Flags flags.DEFINE_integer('frame_size', 24, 'Dimensionality of the input for a single frame') flags.DEFINE_integer("num_hidden_layers", 1, "Number of hidden layers") flags.DEFINE_integer("middle_layer", 1, "Number of hidden layers") flags.DEFINE_integer('layer1_width', 20, 'Number of units in each hidden layer ') flags.DEFINE_integer('layer2_width', 248, 'Number of units in each hidden layer ') flags.DEFINE_integer('layer3_width', 312, 'Number of units in each hidden layer ') # Constants flags.DEFINE_integer('seed', 123456, 'Random seed') flags.DEFINE_string('summary_dir', home_out('summaries_exp'), 'Directory to put the summary data') flags.DEFINE_string('chkpt_dir', home_out('chkpts_exp'), 'Directory to put the model checkpoints') flags.DEFINE_string('results_file', home_out('results.txt'), 'File to put the experimental results')
StarcoderdataPython
202892
<reponame>fpoulain/django-tapeforms from django import forms from tapeforms.fieldsets import TapeformFieldset, TapeformFieldsetsMixin from tapeforms.mixins import TapeformMixin class LargeForm(TapeformMixin, forms.Form): first_name = forms.CharField(label='First name') last_name = forms.CharField(label='Last name', help_text='Some hints') confirm = forms.BooleanField(label='Please confirm') some_text = forms.CharField(label='First name') some_other = forms.CharField(label='Last name', required=False) choose_options = forms.MultipleChoiceField(label='Please choose', choices=( ('foo', 'foo'), ('bar', 'bar'), ('baz', 'bar') ), widget=forms.RadioSelect) special_text = forms.IntegerField(label='A number') birthdate = forms.DateField(widget=forms.SelectDateWidget()) class ManualFieldsetsForm(LargeForm): def basic(self): return TapeformFieldset( self, fields=('first_name', 'last_name'), primary=True) def other_stuff(self): return TapeformFieldset(self, exclude=('first_name', 'last_name')) class PropertyFieldsetsForm(TapeformFieldsetsMixin, LargeForm): fieldsets = ({ 'extra': { 'title': 'Basic', }, 'fields': ('first_name', 'last_name'), }, { 'extra': { 'title': 'Other stuff', 'css_class': 'classy', }, 'exclude': ('first_name', 'last_name'), })
StarcoderdataPython
6576281
<filename>main.py #opencv --> comp vision import os num = os.getcwd() os.chdir(num+ "/photo") num = os.getcwd() list = os.listdir(num) for i in range(len(list)): print(list[i])
StarcoderdataPython
1814514
""" @author: <NAME> @date: 2020/02/18 (yyyy/mm/dd) 9. Program a recursive function to calculate the following sum: S = 1 + 2 + 3 + 4 + (...) + n-1 + n. Analyze the efficiency and complexity of the provided solution. """ # Testing import unittest from U1.src.e9 import summation class TestSummationMethods(unittest.TestCase): """ Test methods in <EMAIL>/algo/U1/src/e9.py """ # Test summation def test_summation01(self): """ Test summation """ provided = summation(10) expected = sum(range(10+1)) self.assertEqual(provided, expected) def test_summation02(self): """ Test summation """ provided = summation(100) expected = sum(range(100+1)) self.assertEqual(provided, expected) def test_summation03(self): """ Test summation """ provided = summation(300) expected = sum(range(300+1)) self.assertEqual(provided, expected) if __name__ == '__main__': unittest.main()
StarcoderdataPython
8164881
<reponame>human-analysis/3dfacefill # 3dmm.py import torch import torch.nn as nn import torch.nn.functional as F import os import numpy as np # __all__ = ['Encoder', 'ShapeDecoder', 'AlbedoDecoder', 'AutoEncoder'] class ConvUnit(nn.Module): def __init__(self, in_c, out_c, n_groupf=4, kernel_size=3, stride=1, padding=1, bias=True, norm=True): super(ConvUnit, self).__init__() self.norm = norm self.conv2d = nn.utils.spectral_norm(nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) # self.conv2d = nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) if self.norm: self.norm_layer = nn.GroupNorm(out_c//n_groupf, out_c) self.elu = nn.ELU() def forward(self, x): temp = self.conv2d(x) if self.norm: temp = self.norm_layer(temp) return self.elu(temp) class ConvNoActUnit(nn.Module): def __init__(self, in_c, out_c, n_groupf=4, kernel_size=3, stride=1, padding=1, bias=True): super(ConvNoActUnit, self).__init__() self.conv2d = nn.utils.spectral_norm(nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) # self.conv2d = nn.Conv2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) self.norm = nn.GroupNorm(out_c//n_groupf, out_c) def forward(self, x): return self.norm(self.conv2d(x)) class DeconvUnit(nn.Module): """docstring for DeconvUnit""" def __init__(self, in_c, out_c, n_groupf=4, kernel_size=4, stride=2, padding=1, bias=True, upsample=True): super(DeconvUnit, self).__init__() if upsample: if type(kernel_size) is tuple: factor = (kernel_size[0]/stride, kernel_size[1]/stride) else: factor = kernel_size / stride deconv2d = [nn.Upsample(scale_factor=factor), nn.utils.spectral_norm(nn.Conv2d(in_c, out_c, kernel_size=3, stride=1, padding=1, bias=bias))] self.deconv2d = nn.Sequential(*deconv2d) else: self.deconv2d = nn.utils.spectral_norm(nn.ConvTranspose2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias)) # self.deconv2d = nn.ConvTranspose2d(in_c, out_c, kernel_size=kernel_size, stride=stride, padding=padding, bias=bias) self.norm = nn.GroupNorm(out_c//n_groupf, out_c) self.elu = nn.ELU() def forward(self, x): return self.elu(self.norm(self.deconv2d(x))) class Encoder(nn.Module): """docstring for Encoder""" def __init__(self, args): super(Encoder, self).__init__() self.args = args self.nc = args.nchannels # 3 self.ngf = args.ngf # 32 self.ngfc = args.ngfc # 512 self.mdim = args.mdim # 6 self.ildim = args.ildim # 27 self.n_group = args.n_groupnorm # nc_out/4 self.use_conf = args.use_conf self.k0_1 = ConvUnit(self.nc, self.ngf*1, self.n_group, kernel_size=7, stride=2, padding=3, bias=False) # 112 self.k0_2 = ConvUnit(self.ngf*1, self.ngf*2, self.n_group, bias=False) self.k1_0 = ConvUnit(self.ngf*2, self.ngf*2, self.n_group, stride=2, bias=False) # 56 self.k1_1 = ConvUnit(self.ngf*2, self.ngf*3, self.n_group, bias=False) self.k1_2 = ConvUnit(self.ngf*3, self.ngf*4, self.n_group, bias=False) self.k2_0 = ConvUnit(self.ngf*4, self.ngf*4, self.n_group, stride=2, bias=False) # 28 self.k2_1 = ConvUnit(self.ngf*4, self.ngf*6, self.n_group, bias=False) self.k2_2 = ConvUnit(self.ngf*6, self.ngf*8, self.n_group, bias=False) self.k3_0 = ConvUnit(self.ngf*8, self.ngf*8, self.n_group, stride=2, bias=False) # 14 self.k3_1 = ConvUnit(self.ngf*8, self.ngf*8, self.n_group, bias=False) self.k3_2 = ConvUnit(self.ngf*8, self.ngf*8, self.n_group, bias=False) self.k4_0 = ConvUnit(self.ngf*8, self.ngf*16, self.n_group, stride=2, bias=False) # 7 self.k4_1 = ConvUnit(self.ngf*16, self.ngf*16, self.n_group, bias=False) # M self.k5_m = ConvUnit(self.ngf*16, self.ngf*5, self.n_group) self.k6_m = nn.Linear(self.ngf*5, self.mdim) self.act_m = nn.Tanh() # IL self.k5_il = ConvUnit(self.ngf*16, self.ngf*5, self.n_group) self.k6_il = nn.Linear(self.ngf*5, self.ildim) # Shape self.k5_shape = ConvUnit(self.ngf*16, self.ngfc, self.n_group) self.k6_shape = ConvUnit(self.ngfc, self.ngfc, self.n_group) self.k7_shape = nn.Linear(self.ngfc, 199+29) # Albedo self.k5_tex = ConvUnit(self.ngf*16, int(self.ngfc), self.n_group) # Confidence # if self.use_conf: self.k5_conf = ConvUnit(self.ngf*16, int(self.ngfc), self.n_group) def forward(self, input): temp = self.k0_1(input) temp = self.k0_2(temp) temp = self.k1_0(temp) temp = self.k1_1(temp) temp = self.k1_2(temp) temp = self.k2_0(temp) temp = self.k2_1(temp) temp = self.k2_2(temp) temp = self.k3_0(temp) temp = self.k3_1(temp) temp = self.k3_2(temp) temp = self.k4_0(temp) temp = self.k4_1(temp) # M m_temp = self.k5_m(temp) _shape = m_temp.shape[-1] m_temp = nn.functional.avg_pool2d(m_temp, kernel_size=_shape, stride=1) m_temp = m_temp.view(-1, self.ngf*5) m_temp = self.k6_m(m_temp) m_out = self.act_m(m_temp[:,1:]) scale_out = 0.5*(self.act_m(m_temp[:,0])+1)*2e-3 # IL il_temp = self.k5_il(temp) il_temp = nn.functional.avg_pool2d(il_temp, kernel_size=_shape, stride=1) il_temp = il_temp.view(-1, self.ngf*5) il_out = self.k6_il(il_temp) # Shape shape_temp = self.k5_shape(temp) shape_temp = self.k6_shape(shape_temp) shape_temp = nn.functional.avg_pool2d(shape_temp, kernel_size=_shape, stride=1) shape_temp = shape_temp.view(-1, int(self.ngfc)) shape_out = self.k7_shape(shape_temp) # Albedo tex_temp = self.k5_tex(temp) # change back to self.k5_tex tex_temp = nn.functional.avg_pool2d(tex_temp, kernel_size=_shape, stride=1) tex_out = tex_temp.view(-1, int(self.ngfc)) # Confidence if self.use_conf: conf_temp = self.k5_conf(temp) conf_temp = nn.functional.avg_pool2d(conf_temp, kernel_size=_shape, stride=1) conf_out = conf_temp.view(-1, int(self.ngfc)) return shape_out, tex_out, conf_out, scale_out, m_out, il_out return shape_out, tex_out, scale_out, m_out, il_out # Texture Decoder class AlbedoDecoder(nn.Module): """docstring for TextureDecoder""" def __init__(self, args): super(AlbedoDecoder, self).__init__() self.args = args self.texture_size = args.texture_size self.s_h = int(self.texture_size[0]) self.s_w = int(self.texture_size[1]) self.s32_h = int(self.s_h/32) self.s32_w = int(self.s_w/32) self.ngfc = args.ngfc self.ngf = args.ngf self.nc = args.nchannels self.n_groupf = args.n_groupnorm self.h6_1 = DeconvUnit(self.ngfc, self.ngfc, self.n_groupf, kernel_size=(3,4), stride=1, padding=0) self.h6_0 = ConvUnit(self.ngfc, self.ngfc//2, norm=False) self.h5_2 = DeconvUnit(self.ngfc//2, self.ngfc//2, self.n_groupf, stride=2) self.h5_1 = ConvUnit(self.ngfc//2, self.ngfc//4) self.h5_0 = ConvUnit(self.ngfc//4, self.ngfc//4) self.h4_2 = DeconvUnit(self.ngfc//4, self.ngf*5, self.n_groupf, stride=2) self.h4_1 = ConvUnit(self.ngf*5, self.ngf*3, self.n_groupf) self.h4_0 = ConvUnit(self.ngf*3, self.ngf*4, self.n_groupf) self.h3_2 = DeconvUnit(self.ngf*4, self.ngf*4, self.n_groupf, stride=2) self.h3_1 = ConvUnit(self.ngf*4, self.ngf*2, self.n_groupf) self.h3_0 = ConvUnit(self.ngf*2, self.ngf*3, self.n_groupf) self.h2_2 = DeconvUnit(self.ngf*3, self.ngf*3, self.n_groupf, stride=2) self.h2_1 = ConvUnit(self.ngf*3, self.ngf*2, self.n_groupf) self.h2_0 = ConvUnit(self.ngf*2, self.ngf*2, self.n_groupf) self.h1_2 = DeconvUnit(self.ngf*2, self.ngf*2, self.n_groupf, stride=2) self.h1_1 = ConvUnit(self.ngf*2, self.ngf, self.n_groupf) self.h1_0 = ConvUnit(self.ngf, self.ngf, self.n_groupf) self.h0_2 = DeconvUnit(self.ngf, self.ngf, self.n_groupf, stride=2) self.h0_1 = ConvUnit(self.ngf, self.ngf//2, self.n_groupf) self.h0_0 = ConvUnit(self.ngf//2, self.ngf//2, self.n_groupf) self.final = nn.Conv2d(self.ngf//2, self.nc, kernel_size=1, stride=1, padding=0) self.final_act = nn.Tanh() def forward(self, input): temp = input.view(-1, self.ngfc, 1, 1) temp = self.h6_1(temp) temp = self.h6_0(temp) temp = self.h5_2(temp) temp = self.h5_1(temp) temp = self.h5_0(temp) temp = self.h4_2(temp) temp = self.h4_1(temp) temp = self.h4_0(temp) temp = self.h3_2(temp) temp = self.h3_1(temp) temp = self.h3_0(temp) temp = self.h2_2(temp) temp = self.h2_1(temp) temp = self.h2_0(temp) temp = self.h1_2(temp) temp = self.h1_1(temp) temp = self.h1_0(temp) temp = self.h0_2(temp) temp = self.h0_1(temp) temp = self.h0_0(temp) out = self.final_act(self.final(temp)) return out class ShapeDecoder(nn.Module): def __init__(self, args): super(ShapeDecoder, self).__init__() # Symmetry Decoder class ConfidenceDecoder(nn.Module): """docstring for TextureDecoder""" def __init__(self, args): super(ConfidenceDecoder, self).__init__() self.args = args self.texture_size = args.texture_size self.s_h = int(self.texture_size[0]) self.s_w = int(self.texture_size[1]) self.s32_h = int(self.s_h/32) self.s32_w = int(self.s_w/32) self.ngfc = args.ngfc self.ngf = args.ngf self.nc = args.nchannels self.n_groupf = args.n_groupnorm self.h6 = DeconvUnit(self.ngfc, self.ngfc//2, self.n_groupf, kernel_size=(3,4), stride=1, padding=0) self.h5 = DeconvUnit(self.ngfc//2, self.ngfc//4, self.n_groupf, stride=2) self.h4 = DeconvUnit(self.ngfc//4, self.ngf*5, self.n_groupf, stride=2) self.h3 = DeconvUnit(self.ngf*5, self.ngf*4, self.n_groupf, stride=2) self.h2 = DeconvUnit(self.ngf*4, self.ngf*3, self.n_groupf, stride=2) self.h1 = DeconvUnit(self.ngf*3, self.ngf*2, self.n_groupf, stride=2) self.h0 = DeconvUnit(self.ngf*2, self.ngf, self.n_groupf, stride=2) self.final = nn.Conv2d(self.ngf, 1, kernel_size=1, stride=1, padding=0) self.final_act = nn.Softplus() def forward(self, input): temp = input.view(-1, self.ngfc, 1, 1) temp = self.h6(temp) temp = self.h5(temp) temp = self.h4(temp) temp = self.h3(temp) temp = self.h2(temp) temp = self.h1(temp) temp = self.h0(temp) out = self.final(temp) out = torch.clamp(out, min=-10) return out # Autoencoder model class AutoEncoder(nn.Module): """docstring for AutoEncoder""" def __init__(self, args, in_channels=3, out_channels=1): super(AutoEncoder, self).__init__() self.args = args self.in_c = in_channels # 3 self.out_c = out_channels self.ngf = args.ngf # 32 self.n_groupf = args.n_groupnorm # nc_out/4 self.z = args.enc_z self.s_h = int(args.resolution_high/32) self.s_w = int(args.resolution_wide/32) self.he0_0 = ConvUnit(self.in_c, self.ngf*1, self.n_groupf, kernel_size=7, stride=2, padding=3, bias=False) # 112 self.he0_1 = ConvUnit(self.ngf*1, self.ngf*1, self.n_groupf, bias=False) self.he1_0 = ConvUnit(self.ngf*1, self.ngf*2, self.n_groupf, stride=2, bias=False) # 56 self.he1_1 = ConvUnit(self.ngf*2, self.ngf*2, self.n_groupf, bias=False) self.he2_0 = ConvUnit(self.ngf*2, self.ngf*4, self.n_groupf, stride=2, bias=False) # 28 self.he2_1 = ConvUnit(self.ngf*4, self.ngf*4, self.n_groupf, bias=False) self.he3_0 = ConvUnit(self.ngf*4, self.ngf*8, self.n_groupf, stride=2, bias=False) # 14 self.he3_1 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, bias=False) self.he4_0 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, stride=2, bias=False) # 7 self.he4_1 = ConvUnit(self.ngf*8, self.ngf*16, self.n_groupf, bias=False) self.he5_lin = nn.Linear(self.ngf*16, self.z) # Nxz self.hd5_lin = nn.Linear(self.z, self.ngf*8*self.s_h*self.s_w) # Nx256x7x7 self.hd5_0 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, norm=False) self.hd4_1 = DeconvUnit(self.ngf*8, self.ngf*8, self.n_groupf, stride=2) # 14 self.hd4_0 = ConvUnit(self.ngf*8, self.ngf*4, self.n_groupf) self.hd3_1 = DeconvUnit(self.ngf*4, self.ngf*4, self.n_groupf, stride=2) # 28 self.hd3_0 = ConvUnit(self.ngf*4, self.ngf*4, self.n_groupf) self.hd2_1 = DeconvUnit(self.ngf*4, self.ngf*2, self.n_groupf, stride=2) # 56 self.hd2_0 = ConvUnit(self.ngf*2, self.ngf*2, self.n_groupf) self.hd1_1 = DeconvUnit(self.ngf*2, self.ngf*1, self.n_groupf, stride=2) # 112 self.hd1_0 = ConvUnit(self.ngf*1, self.ngf*1, self.n_groupf) self.hd0_1 = DeconvUnit(self.ngf*1, self.ngf//2, self.n_groupf, stride=2) # 224 self.hd0_0 = ConvUnit(self.ngf//2, self.ngf//2, self.n_groupf) self.hd_final = nn.Conv2d(self.ngf//2, self.out_c, kernel_size=3, stride=1, padding=1) self.hd_act = nn.Sigmoid() def forward(self, x): x = self.encoder(x) x = self.decoder(x) return x def encoder(self, x): x = self.he0_1(self.he0_0(x)) x = self.he1_1(self.he1_0(x)) x = self.he2_1(self.he2_0(x)) x = self.he3_1(self.he3_0(x)) x = self.he4_1(self.he4_0(x)) _shape = x.shape[-1] x = F.avg_pool2d(x, kernel_size=_shape, stride=1) x = x.view(-1, self.ngf*16) x = F.elu(self.he5_lin(x)) return x def decoder(self, x): batch_size = x.shape[0] x = F.elu(self.hd5_lin(x)) x = x.reshape(batch_size, -1, self.s_h, self.s_w) x = self.hd5_0(x) x = self.hd4_0(self.hd4_1(x)) x = self.hd3_0(self.hd3_1(x)) x = self.hd2_0(self.hd2_1(x)) x = self.hd1_0(self.hd1_1(x)) x = self.hd0_0(self.hd0_1(x)) x = self.hd_act(self.hd_final(x)) return x class FCN8_VGG(nn.Module): """docstring for AutoEncoder""" def __init__(self, args, in_channels=3, out_channels=1): super(FCN8_VGG, self).__init__() self.args = args self.in_c = in_channels # 3 self.out_c = out_channels self.ngf = args.ngf # 32 self.n_groupf = args.n_groupnorm # nc_out/4 self.z = args.enc_z self.s_h = int(args.resolution_high/32) self.s_w = int(args.resolution_wide/32) self.e1_1 = ConvUnit(self.in_c, self.ngf*2, self.n_groupf, bias=False) self.e1_2 = ConvUnit(self.ngf*2, self.ngf*2, self.n_groupf, bias=False) # 224 self.e1_pool = nn.MaxPool2d(2, 2) # 112 self.e2_1 = ConvUnit(self.ngf*2, self.ngf*4, self.n_groupf, bias=False) self.e2_2 = ConvUnit(self.ngf*4, self.ngf*4, self.n_groupf, bias=False) # 112 self.e2_pool = nn.MaxPool2d(2, 2) # 56 self.e3_1 = ConvUnit(self.ngf*4, self.ngf*8, self.n_groupf, bias=False) self.e3_2 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, bias=False) self.e3_3 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, bias=False) # 56 self.e3_pool = nn.MaxPool2d(2, 2) # 28 self.d3 = nn.Conv2d(self.ngf*8, self.out_c, kernel_size=1, stride=1) # 28 self.e4_1 = ConvUnit(self.ngf*8, self.ngf*16, self.n_groupf, bias=False) self.e4_2 = ConvUnit(self.ngf*16, self.ngf*16, self.n_groupf, bias=False) self.e4_3 = ConvUnit(self.ngf*16, self.ngf*16, self.n_groupf, bias=False) # 28 self.e4_pool = nn.MaxPool2d(2, 2) # 14 # 7 self.d4_1 = ConvUnit(self.ngf*16, self.ngf*32, self.n_groupf, bias=False) self.d4_2 = ConvUnit(self.ngf*32, self.ngf*32, self.n_groupf, bias=False) self.d4 = nn.Conv2d(self.ngf*32, self.out_c, kernel_size=1, stride=1) # 14 self.d4_up = DeconvUnit(self.out_c, self.out_c, n_groupf=2, kernel_size=2, stride=2, padding=0) # 28 self.final_upsample = nn.Upsample(size=224, mode='bilinear') self.final_act = nn.Softmax2d() def forward(self, x): x = self.e1_1(x) x = self.e1_2(x) x = self.e1_pool(x) x = self.e2_1(x) x = self.e2_2(x) x = self.e2_pool(x) x = self.e3_1(x) x = self.e3_2(x) x = self.e3_3(x) x = self.e3_pool(x) d3 = self.d3(x) x = self.e4_1(x) x = self.e4_2(x) x = self.e4_3(x) x = self.e4_pool(x) x = self.d4_1(x) x = self.d4_2(x) x = self.d4(x) d4 = self.d4_up(x) out = d3 + d4 out = self.final_upsample(out) out = self.final_act(out) return out class FCN4_VGG(nn.Module): """docstring for AutoEncoder""" def __init__(self, args, in_channels=3, out_channels=1): super(FCN4_VGG, self).__init__() self.args = args self.in_c = in_channels # 3 self.out_c = out_channels self.ngf = args.ngf # 32 self.n_groupf = args.n_groupnorm # nc_out/4 self.z = args.enc_z self.s_h = int(args.resolution_high/32) self.s_w = int(args.resolution_wide/32) self.e1_1 = ConvUnit(self.in_c, self.ngf*2, self.n_groupf, bias=False) self.e1_2 = ConvUnit(self.ngf*2, self.ngf*2, self.n_groupf, bias=False) # 224 self.e1_pool = nn.MaxPool2d(2, 2) # 112 self.e2_1 = ConvUnit(self.ngf*2, self.ngf*4, self.n_groupf, bias=False) self.e2_2 = ConvUnit(self.ngf*4, self.ngf*4, self.n_groupf, bias=False) # 112 self.e2_pool = nn.MaxPool2d(2, 2) # 56 self.d2 = nn.Conv2d(self.ngf*4, self.out_c, kernel_size=1, stride=1) # 56 self.e3_1 = ConvUnit(self.ngf*4, self.ngf*8, self.n_groupf, bias=False) self.e3_2 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, bias=False) self.e3_3 = ConvUnit(self.ngf*8, self.ngf*8, self.n_groupf, bias=False) # 56 self.e3_pool = nn.MaxPool2d(2, 2) # 28 self.d3 = nn.Conv2d(self.ngf*8, self.out_c, kernel_size=1, stride=1) # 28 self.d3_up = DeconvUnit(self.out_c, self.out_c, n_groupf=2, kernel_size=2, stride=2, padding=0) # 56 self.e4_1 = ConvUnit(self.ngf*8, self.ngf*16, self.n_groupf, bias=False) self.e4_2 = ConvUnit(self.ngf*16, self.ngf*16, self.n_groupf, bias=False) self.e4_3 = ConvUnit(self.ngf*16, self.ngf*16, self.n_groupf, bias=False) # 28 self.e4_pool = nn.MaxPool2d(2, 2) # 14 # 7 self.d4_1 = ConvUnit(self.ngf*16, self.ngf*32, self.n_groupf, bias=False) self.d4_2 = ConvUnit(self.ngf*32, self.ngf*32, self.n_groupf, bias=False) self.d4 = nn.Conv2d(self.ngf*32, self.out_c, kernel_size=1, stride=1) # 14 self.d4_up = DeconvUnit(self.out_c, self.out_c, n_groupf=2, kernel_size=2, stride=2, padding=0) # 28 self.final_upsample = nn.Upsample(size=224, mode='bilinear') self.final_act = nn.Softmax2d() def forward(self, x): x = self.e1_1(x) x = self.e1_2(x) x = self.e1_pool(x) x = self.e2_1(x) x = self.e2_2(x) x = self.e2_pool(x) d2 = self.d2(x) x = self.e3_1(x) x = self.e3_2(x) x = self.e3_3(x) x = self.e3_pool(x) d3 = self.d3(x) x = self.e4_1(x) x = self.e4_2(x) x = self.e4_3(x) x = self.e4_pool(x) x = self.d4_1(x) x = self.d4_2(x) x = self.d4(x) d4 = self.d4_up(x) out1 = d3+d4 out1 = self.d3_up(out1) out2 = out1 + d2 out = self.final_upsample(out2) out = self.final_act(out) return out
StarcoderdataPython
1652732
<reponame>stephenneuendorffer/hls_tuner<filename>HLS_tuner/hlstuner/search/modeltuner.py # Tuner for Regression Models # # Author: <NAME> (<EMAIL>) ####################################################################################################################### # TODO: Reimplement the ModelTuner class using an SQLite in-memory database # Number of iterations to spend on searching the optimum ITERATIONS = 1000 ####################################################################################################################### import copy import logging from opentuner.driverbase import DriverBase from opentuner.resultsdb.models import Configuration, Result log = logging.getLogger(__name__) ####################################################################################################################### class QueryResult(object): """This class replaces the Query object returned by results_query() in the absence of a database.""" def __init__(self, result): """Constructor Parameters ---------- result : Result Result to be put in the query object. """ self._result = result self._done = False def __iter__(self): """Returns the iterator""" return self def next(self): """Returns the next Result. Returns ------- Result Next result """ if self._done: raise StopIteration self._done = True return self._result def count(self): """Returns the number of results in the object Returns ------- Integer Number of results """ return 1 def one(self): """Returns the first result in the object Returns ------- Result First result """ return self._result class ModelDriver(DriverBase): """Driver with necessary callbacks for ModelTuner class""" def __init__(self, objective, manipulator): """Create a new driver object.""" self._results = {} self.objective = objective self.manipulator = manipulator self.best_result = None # Some techniques need these attributes. self.generation = None self.tuning_run = None def add_plugin(self, plugin): """Callback to install a plugin into the search driver. Parameters ---------- plugin Unused """ pass def has_results(self, cfg): """Callback to check whether results for the given configuration are ready. Parameters ---------- cfg : Configuration Returns ------- Boolean True iff results are ready """ return cfg.hash in self._results def get_configuration(self, cfg): """Callback for creating Configuration objects Parameters ---------- cfg : dict Configuration Returns ------- Configuration Configuration Notes ----- It is guaranteed that no other Configuration object with the same configuration values exists inside the model tuner, but outside the tuner duplicates may exist. """ self.manipulator.normalize(cfg) cfg_hash = self.manipulator.hash_config(cfg) if cfg_hash in self._results: return self._results[cfg_hash].configuration return Configuration(hash = cfg_hash, data=cfg) def add_result(self, result): """Remember a result such that search techniques can look it up. Parameters ---------- result : Result Result """ self._results[result.configuration.hash] = result def results_query(self, config): """Look up the result obtained for a given configuration. Parameters ---------- config : Configuration Configuration Returns ------- Result Result """ return QueryResult(self._results[config.hash]) def register_result_callback(self, desired_result, callback): """Register a callback function to handle the result of evaluating a configuration. Parameters ---------- desired_result : DesiredResult Unused callback : function taking Result Callback function """ self._result_callback = callback def invoke_result_callback(self, result): """Invoke the callback function to provide the result to the search technique. Parameters ---------- result : Result Result """ self._result_callback(result) def set_best_result(self, result): """Set the best result. Some search techniques rely on this attribute. Parameters ---------- result : Result Result """ self.best_result = result class ModelTuner(object): """This class minimizes machine-learning models using OpenTuner search techniques. Parameters ---------- models : list of Model Machine-learning models over which the objective function must be minimized technique : SearchTechnique Search technique(s) that should be used to locate the minimum objective : SearchObjective Objective function manipulator : ConfigurationManipulator Configuration manipulator describing design parameters data_set : list of Result Evaluated configurations. They are used to avoid suggesting already evaluated configurations. """ def __init__(self, models, technique, objective, manipulator, data_set): """Create a new tuner object. """ # Copy the objective because we need to use our own driver. self._objective = copy.copy(objective) self._driver = ModelDriver(self._objective, manipulator) self._models = models self._technique = technique self._technique.set_driver(self._driver) self._objective.set_driver(self._driver) self._data_set = data_set def tune(self): """Optimize the objective function. Returns ------- dict Best configuration found that has not been evaluated yet """ old_results = {result.configuration.hash: result for result in self._data_set} best_result = None best_new_result = None for _ in range(ITERATIONS): desired_result = self._technique.desired_result() if desired_result == None: break cfg = desired_result.configuration if self._driver.has_results(cfg): continue result = Result() result.configuration = cfg old_result = old_results.get(cfg.hash) if old_result: # Avoid making predictions for evaluated points and getting inaccurate results due to noise. for model in self._models: setattr(result, model.metric, getattr(old_result, model.metric)) setattr(result, model.metric + "_std_dev", 0.0) else: for model in self._models: mean, std_dev = model.predict(cfg.data) setattr(result, model.metric, mean) setattr(result, model.metric + "_std_dev", std_dev) self._driver.add_result(result) self._driver.invoke_result_callback(result) # Even though we don't return the best result if we have already evaluated it, we still need it because some # search algorithms rely on it. if best_result == None or self._objective.lt(result, best_result): best_result = result self._driver.set_best_result(best_result) if not old_result and (best_new_result == None or self._objective.lt(result, best_new_result)): best_new_result = result # Return the configuration associated with the best result. We do not return a Configuration object because there # may already be another Configuration object with the same parameters in the database. Returning a new object # with the same parameters may mess up code that expects the configuration to be unique. return best_new_result.configuration.data if best_new_result is not None else None
StarcoderdataPython
3536333
""" Create a zip with all recording folders required for evaluation - instead of having to store all recordings""" import argparse import os from glob import glob from os.path import join from shutil import copytree import numpy as np import pandas as pd from PIL import Image from config import STATIONS from helpers import extract_sample_frames_from_video, zipit, build_file_path_for_countings parser = argparse.ArgumentParser(description='Estimate luminosity of videos and add to evaluation file') parser.add_argument('--station', type=str, required=True, choices=STATIONS, help='one of our two stations') parser.add_argument('--board', type=str, required=True, choices=['nano', 'tx2', 'xavier'], help='type of board') args = parser.parse_args() if __name__ == '__main__': file = build_file_path_for_countings(args.station, args.board) df = pd.read_csv(file) eval_dirs = ["/".join(p.split("/")[:-1]) for p in df["movie_file"].unique()] zipit(eval_dirs, "eval_dirs.zip")
StarcoderdataPython
1724339
#!/usr/bin/python import MySQLdb import re import os BASE_DIR = os.path.dirname(os.path.abspath(__file__)) execfile(os.path.join(BASE_DIR, 'settings.py')) db = MySQLdb.connect(host=SETTINGS_SQL_HOST, user=SETTINGS_SQL_USER, passwd=<PASSWORD>, db=SETTINGS_SQL_DB) cur = db.cursor() cur.execute("SELECT post_id, meta_value FROM wp_postmeta where meta_key='_wp_attachment_metadata' ORDER BY post_id DESC") images = [] ## ## First, we collect all media data that we will need to insert the bucket info rows for ## for row in cur.fetchall(): rexp = 's:4:"file";s:(?:\d+):"((?:.+?)\.(?:jpg|jpeg|png|gif))";' if re.search(rexp, row[1]): p = re.search(rexp, row[1]) file = str(p.groups()[0]) images.append([row[0], file]) ## ## Then, let's insert the bucket info data to wp_postmeta ## ## !!! CAUTION: THIS IS GOING TO MODIFY YOUR DB !!! ## for i in images: post_id = i[0] key = 'wp-content/uploads/' + i[1] cur.execute("DELETE FROM wp_postmeta WHERE post_id=" + str(post_id) + " AND meta_key='amazonS3_info';") cur.execute("INSERT INTO wp_postmeta (post_id, meta_key, meta_value) VALUES (" + str(post_id) + ", 'amazonS3_info', 'a:2:{s:6:\"bucket\";s:" + str(len(SETTINGS_S3_BUCKET)) + ":\"" + SETTINGS_S3_BUCKET + "\";s:3:\"key\";s:" + str(len(key)) + ":\"" + key + "\";}')") print 'done: ' + str(post_id) + ' -> ' + i[1] cur.close() db.close()
StarcoderdataPython
9654287
# # This file is part of the ErlotinibGefitinib repository # (https://github.com/DavAug/ErlotinibGefitinib/) which is released under the # BSD 3-clause license. See accompanying LICENSE.md for copyright notice and # full license details. # import numpy as np import plotly.colors import plotly.graph_objects as go def plot_optimised_parameters(parameters, scores, xlabels=None, ids=None): """ Returns a `plotly.graph_objects.Figure` containing a box plot of the optimised parameter values and objective function scores for each individual and optimisation run. Arguments: parameters -- Array-like object with parameters for each individual and each optimisation run. Shape: (n_individuals, n_runs, n_parameters) scores -- Array-like object with objective function scores for each individual and each optimisation run. Shape: (n_individuals, n_runs) ids -- IDs of individuals. If `None` IDs are set to index. """ parameters = np.asarray(parameters) scores = np.asarray(scores) if parameters.shape[0] != scores.shape[0]: raise ValueError( 'Parameters and score do not have the same number of individuals.' 'Shape parmeters <' + str(parameters.shape) + '>; shape scores <' + str(scores.shape) + '>.') if parameters.shape[1] != scores.shape[1]: raise ValueError( 'Parameters and score do not have the same number of runs.' 'Shape parmeters <' + str(parameters.shape) + '>; shape scores <' + str(scores.shape) + '>.') if xlabels is None: # Enumerate parameters and call score 'score' xlabels = [str(param_id) for param_id in range(parameters.shape[2])] xlabels += ['score'] n_params = parameters.shape[2] + 1 if len(xlabels) != parameters.shape[2]+1: raise ValueError( 'Number of x labels does not match number of parameters plus ' 'score.') if ids is None: # Enumerate individuals ids = np.arange(parameters.shape[0]) if len(ids) != parameters.shape[0]: raise ValueError( 'Number of provided ids do not match number of individuals in ' '`parameters` and `scores`.') # Define colorscheme colors = plotly.colors.qualitative.Plotly[:n_params] # Create figure fig = go.Figure() # Box plot of optimised model parameters n_ids = len(ids) for index in range(n_ids): # Get optimised parameters for individual params = parameters[index, ...] # Get scores score = scores[index, :] # Create box plot of for parameters for param_id in range(n_params-1): fig.add_trace( go.Box( y=params[:, param_id], name=xlabels[param_id], boxpoints='all', jitter=0.2, pointpos=-1.5, visible=True if index == 0 else False, marker=dict( symbol='circle', opacity=0.7, line=dict(color='black', width=1)), marker_color=colors[param_id], line_color=colors[param_id])) # Create box plot of for score fig.add_trace( go.Box( y=score, name=xlabels[-1], boxpoints='all', jitter=0.2, pointpos=-1.5, visible=True if index == 0 else False, marker=dict( symbol='circle', opacity=0.7, line=dict(color='black', width=1)), marker_color=colors[-1], line_color=colors[-1])) # Set figure size fig.update_layout( autosize=True, template="plotly_white", yaxis_title="Estimates") # Add switch between individuals fig.update_layout( updatemenus=[ dict( type="buttons", direction="right", buttons=list([dict( args=[{ "visible": [False] * (n_params * idx) + [True] * n_params + [False] * (n_params * (n_ids - idx - 1))}], label="ID: %s" % str(ids[idx]), method="restyle") for idx in range(n_ids)]), pad={"r": 0, "t": -10}, showactive=True, x=0.0, xanchor="left", y=1.1, yanchor="top" ) ] ) # Position legend fig.update_layout(legend=dict( yanchor="bottom", y=0.01, xanchor="left", x=1.05)) return fig
StarcoderdataPython
93978
try: # Python 3 from http.client import HTTPResponse, IncompleteRead except (ImportError): # Python 2 from httplib import HTTPResponse, IncompleteRead from ..console_write import console_write class DebuggableHTTPResponse(HTTPResponse): """ A custom HTTPResponse that formats debugging info for Sublime Text """ _debug_protocol = 'HTTP' def __init__(self, sock, debuglevel=0, method=None, **kwargs): # We have to use a positive debuglevel to get it passed to here, # however we don't want to use it because by default debugging prints # to the stdout and we can't capture it, so we use a special -1 value if debuglevel == 5: debuglevel = -1 HTTPResponse.__init__(self, sock, debuglevel=debuglevel, method=method) def begin(self): return_value = HTTPResponse.begin(self) if self.debuglevel == -1: console_write(u'Urllib %s Debug Read' % self._debug_protocol, True) # Python 2 if hasattr(self.msg, 'headers'): headers = self.msg.headers # Python 3 else: headers = [] for header in self.msg: headers.append("%s: %s" % (header, self.msg[header])) versions = { 9: 'HTTP/0.9', 10: 'HTTP/1.0', 11: 'HTTP/1.1' } status_line = versions[self.version] + ' ' + str(self.status) + ' ' + self.reason headers.insert(0, status_line) for line in headers: console_write(u" %s" % line.rstrip()) return return_value def is_keep_alive(self): # Python 2 if hasattr(self.msg, 'headers'): connection = self.msg.getheader('connection') # Python 3 else: connection = self.msg['connection'] if connection and connection.lower() == 'keep-alive': return True return False def read(self, *args): try: return HTTPResponse.read(self, *args) except (IncompleteRead) as e: return e.partial
StarcoderdataPython
6615955
<reponame>rjmolina13/CanIJailbreak2-Website # Minimum Version List MinVersionMap = { "iPhone 2G": "1.0", "iPhone 3G": "2.0", "iPhone 3GS": "3.0", "iPhone 4": "4.0", "iPhone 4S": "5.0", "iPhone 5": "6.0", "iPhone 5C": "7.0", "iPhone 5S": "7.0", "iPhone 6": "8.0", "iPhone 6 Plus": "8.0", "iPhone 6S": "9.0", "iPhone 6S Plus": "9.0", "iPhone 7": "10.0", "iPhone 7 Plus": "10.0", "iPhone 8": "11.0", "iPhone 8 Plus": "11.0", "iPhone X": "11.1", "iPhone XS": "12.0", "iPhone XS Max": "12.0", "iPhone XR": "12.0", "iPhone 11": "13.0", "iPhone 11 Pro": "13.0", "iPhone 11 Pro Max": "13.0", "iPhone SE 1": "9.3", "iPhone SE 2": "13.4.1", "iPhone 12": "14.1", "iPhone 12 Mini": "14.1", "iPhone 12 Pro": "14.1", "iPhone 12 Pro Max": "14.1", "iPad 1": "3.2", "iPad 2": "4.3", "iPad 3": "5.1", "iPad 4": "6.0", "iPad 5": "10.2.1", "iPad 6": "11.3", "iPad 7": "13.1", "iPad 8": "14", "iPad Air 1": "7.0.3", "iPad Air 2": "8.1", "iPad Air 3": "12.2", "iPad Air 4": "14.0", "iPad Mini 1": "6.0.1", "iPad Mini 2": "7.0.3", "iPad Mini 3": "8.1", "iPad Mini 4": "9.0", "iPad Mini 5": "12.2", "iPad Pro 12.9 1": "9.1", "iPad Pro 9.7": "9.3", "iPad Pro 12.9 2": "10.3.2", "iPad Pro 10.5": "10.3.2", "iPad Pro 11 1": "12.1", "iPad Pro 12.9 3": "12.1", "iPad Pro 11 2": "13.4", "iPad Pro 12.9 4": "13.4", "iPad Pro 11 3": "14.4", "iPad Pro 12.9 5": "14.4", "iPod Touch 1": "1.1", "iPod Touch 2": "2.1.1", "iPod Touch 3": "3.1.1", "iPod Touch 4": "4.1", "iPod Touch 5": "6.0", "iPod Touch 6": "8.4", "iPod Touch 7": "12.3.1" } # Maximum Version List GMaxiOS = "14.5" MaxVersionMap = { "iPhone 2G": "3.1.3", "iPhone 3G": "4.2.1", "iPhone 3GS": "6.1.6", "iPhone 4": "7.1.2", "iPhone 4S": "9.3.6", "iPhone 5": "10.3.4", "iPhone 5C": "10.3.3", "iPhone 5S": "12.5.1", "iPhone 6": "12.5.1", "iPhone 6 Plus": "12.5.1", "iPhone 6S": GMaxiOS, "iPhone 6S Plus": GMaxiOS, "iPhone 7": GMaxiOS, "iPhone 7 Plus": GMaxiOS, "iPhone 8": GMaxiOS, "iPhone 8 Plus": GMaxiOS, "iPhone X": GMaxiOS, "iPhone XS": GMaxiOS, "iPhone XS Max": GMaxiOS, "iPhone XR": GMaxiOS, "iPhone 11": GMaxiOS, "iPhone 11 Pro": GMaxiOS, "iPhone 11 Pro Max": GMaxiOS, "iPhone SE 1": GMaxiOS, "iPhone SE 2": GMaxiOS, "iPhone 12": GMaxiOS, "iPhone 12 Mini": GMaxiOS, "iPhone 12 Pro": GMaxiOS, "iPhone 12 Pro Max": GMaxiOS, "iPad 1": "5.1.1", "iPad 2": "9.3.6", "iPad 3": "9.3.6", "iPad 4": "10.3.4", "iPad 5": GMaxiOS, "iPad 6": GMaxiOS, "iPad 7": GMaxiOS, "iPad 8": GMaxiOS, "iPad Air 1": "12.5.1", "iPad Air 2": GMaxiOS, "iPad Air 3": GMaxiOS, "iPad Air 4": GMaxiOS, "iPad Mini 1": "9.3.6", "iPad Mini 2": "12.5.1", "iPad Mini 3": "12.5.1", "iPad Mini 4": GMaxiOS, "iPad Mini 5": GMaxiOS, "iPad Pro 12.9 1": GMaxiOS, "iPad Pro 9.7": GMaxiOS, "iPad Pro 12.9 2": GMaxiOS, "iPad Pro 10.5": GMaxiOS, "iPad Pro 11 1": GMaxiOS, "iPad Pro 12.9 3": GMaxiOS, "iPad Pro 11 2": GMaxiOS, "iPad Pro 12.9 4": GMaxiOS, "iPad Pro 11 3": GMaxiOS, "iPad Pro 12.9 5": GMaxiOS, "iPod Touch 1": "3.1.3", "iPod Touch 2": "4.2.1", "iPod Touch 3": "5.1.1", "iPod Touch 4": "6.1.6", "iPod Touch 5": "9.3.5", "iPod Touch 6": "12.5.1", "iPod Touch 7": GMaxiOS } # Mappings of Processor Generations (with some exceptions such as iP8 & X) DeviceMapPGNamed = { '2G': ['iPhone 2G'], '3G': ['iPhone 3G', 'iPod Touch 1', 'iPod Touch 2'], '3GS': ['iPhone 3GS', 'iPod Touch 3'], '4': ['iPhone 4', 'iPad 1', 'iPod Touch 4'], '4S': ['iPhone 4S', 'iPad 2', 'iPad 3', 'iPad Mini 1', 'iPod Touch 5'], '5': ['iPhone 5', 'iPhone 5C', 'iPad 4'], '5S': ['iPhone 5S', 'iPad Air 1', 'iPad Mini 2', 'iPad Mini 3'], '6': ['iPhone 6', 'iPhone 6 Plus', 'iPad Air 2', 'iPad Mini 4', 'iPod Touch 6'], '6S': ['iPhone 6S', 'iPhone 6S Plus', 'iPhone SE 1', 'iPad 5', 'iPad Pro 12.9 1', 'iPad Pro 9.7'], '7': ['iPhone 7', 'iPhone 7 Plus', 'iPad 6', 'iPad 7', 'iPad Pro 12.9 2', 'iPad Pro 10.5', 'iPod Touch 7'], '8': ['iPhone 8', 'iPhone 8 Plus'], 'X': ['iPhone X'], 'XS': ['iPhone XR', 'iPhone XS', 'iPhone XS Max', 'iPad 8', 'iPad Air 3', 'iPad Pro 11 1', 'iPad Pro 12.9 3', 'iPad Pro 11 2', 'iPad Pro 12.9 4', 'iPad Mini 5'], '11': ['iPhone 11', 'iPhone 11 Pro', 'iPhone 11 Pro Max', 'iPhone SE 2'], '12': ['iPhone 12 Mini', 'iPhone 12', 'iPhone 12 Pro', 'iPhone 12 Pro Max', 'iPad Air 4'], 'M1': ['iPad Pro 11 3', 'iPad Pro 12.9 5'] } # List DeviceProcessors in chronological order DeviceMapPG = ["2G", "3G", "3GS", "4", "4S", "5", "5S", "6", "6S", "7", "8", "X", "XS", "11", "12", "M1"]
StarcoderdataPython
1907731
import numpy as np import random import json import h5py from patch_library import PatchLibrary from glob import glob import matplotlib.pyplot as plt from skimage import io, color, img_as_float from skimage.exposure import adjust_gamma from skimage.segmentation import mark_boundaries from sklearn.feature_extraction.image import extract_patches_2d from sklearn.metrics import classification_report from keras.models import Sequential, Graph, model_from_json from keras.layers.convolutional import Convolution2D, MaxPooling2D from keras.layers.core import Dense, Dropout, Activation, Flatten, Merge, Reshape, MaxoutDense from keras.layers.normalization import BatchNormalization from keras.regularizers import l1l2 from keras.optimizers import SGD from keras.constraints import maxnorm from keras.callbacks import EarlyStopping, ModelCheckpoint from keras.utils import np_utils class SegmentationModel(object): def __init__(self, n_epoch=10, n_chan=4, batch_size=128, loaded_model=False, architecture='single', w_reg=0.01, n_filters=[64,128,128,128], k_dims = [7,5,5,3], activation = 'relu'): ''' A class for compiling/loading, fitting and saving various models, viewing segmented images and analyzing results INPUT (1) int 'n_epoch': number of eopchs to train on. defaults to 10 (2) int 'n_chan': number of channels being assessed. defaults to 4 (3) int 'batch_size': number of images to train on for each batch. defaults to 128 (4) bool 'loaded_model': True if loading a pre-existing model. defaults to False (5) str 'architecture': type of model to use, options = single, dual, or two_path. defaults to single (only currently optimized version) (6) float 'w_reg': value for l1 and l2 regularization. defaults to 0.01 (7) list 'n_filters': number of filters for each convolutional layer (4 total) (8) list 'k_dims': dimension of kernel at each layer (will be a k_dim[n] x k_dim[n] square). Four total. (9) string 'activation': activation to use at each convolutional layer. defaults to relu. ''' self.n_epoch = n_epoch self.n_chan = n_chan self.batch_size = batch_size self.architecture = architecture self.loaded_model = loaded_model self.w_reg = w_reg self.n_filters = n_filters self.k_dims = k_dims self.activation = activation if not self.loaded_model: if self.architecture == 'two_path': self.model_comp = self.comp_two_path() elif self.architecture == 'dual': self.model_comp = self.comp_double() else: self.model_comp = self.compile_model() else: model = str(raw_input('Which model should I load? ')) self.model_comp = self.load_model_weights(model) def compile_model(self): ''' compiles standard single model with 4 convolitional/max-pooling layers. ''' print 'Compiling single model...' single = Sequential() single.add(Convolution2D(self.n_filters[0], self.k_dims[0], self.k_dims[0], border_mode='valid', W_regularizer=l1l2(l1=self.w_reg, l2=self.w_reg), input_shape=(self.n_chan,33,33))) single.add(Activation(self.activation)) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(self.n_filters[1], self.k_dims[1], self.k_dims[1], activation=self.activation, border_mode='valid', W_regularizer=l1l2(l1=self.w_reg, l2=self.w_reg))) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(self.n_filters[2], self.k_dims[2], self.k_dims[2], activation=self.activation, border_mode='valid', W_regularizer=l1l2(l1=self.w_reg, l2=self.w_reg))) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(self.n_filters[3], self.k_dims[3], self.k_dims[3], activation=self.activation, border_mode='valid', W_regularizer=l1l2(l1=self.w_reg, l2=self.w_reg))) single.add(Dropout(0.25)) single.add(Flatten()) single.add(Dense(5)) single.add(Activation('softmax')) sgd = SGD(lr=0.001, decay=0.01, momentum=0.9) single.compile(loss='categorical_crossentropy', optimizer='sgd') print 'Done.' return single def comp_two_path(self): ''' compiles two-path model, takes in a 4x33x33 patch and assesses global and local paths, then merges the results. ''' print 'Compiling two-path model...' model = Graph() model.add_input(name='input', input_shape=(self.n_chan, 33, 33)) # local pathway, first convolution/pooling model.add_node(Convolution2D(64, 7, 7, border_mode='valid', activation='relu', W_regularizer=l1l2(l1=0.01, l2=0.01)), name='local_c1', input= 'input') model.add_node(MaxPooling2D(pool_size=(4,4), strides=(1,1), border_mode='valid'), name='local_p1', input='local_c1') # local pathway, second convolution/pooling model.add_node(Dropout(0.5), name='drop_lp1', input='local_p1') model.add_node(Convolution2D(64, 3, 3, border_mode='valid', activation='relu', W_regularizer=l1l2(l1=0.01, l2=0.01)), name='local_c2', input='drop_lp1') model.add_node(MaxPooling2D(pool_size=(2,2), strides=(1,1), border_mode='valid'), name='local_p2', input='local_c2') # global pathway model.add_node(Convolution2D(160, 13, 13, border_mode='valid', activation='relu', W_regularizer=l1l2(l1=0.01, l2=0.01)), name='global', input='input') # merge local and global pathways model.add_node(Dropout(0.5), name='drop_lp2', input='local_p2') model.add_node(Dropout(0.5), name='drop_g', input='global') model.add_node(Convolution2D(5, 21, 21, border_mode='valid', activation='relu', W_regularizer=l1l2(l1=0.01, l2=0.01)), name='merge', inputs=['drop_lp2', 'drop_g'], merge_mode='concat', concat_axis=1) # Flatten output of 5x1x1 to 1x5, perform softmax model.add_node(Flatten(), name='flatten', input='merge') model.add_node(Dense(5, activation='softmax'), name='dense_output', input='flatten') model.add_output(name='output', input='dense_output') sgd = SGD(lr=0.005, decay=0.1, momentum=0.9) model.compile('sgd', loss={'output':'categorical_crossentropy'}) print 'Done.' return model def comp_double(self): ''' double model. Simialar to two-pathway, except takes in a 4x33x33 patch and it's center 4x5x5 patch. merges paths at flatten layer. ''' print 'Compiling double model...' single = Sequential() single.add(Convolution2D(64, 7, 7, border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01), input_shape=(4,33,33))) single.add(Activation('relu')) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(nb_filter=128, nb_row=5, nb_col=5, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01))) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(nb_filter=256, nb_row=5, nb_col=5, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01))) single.add(BatchNormalization(mode=0, axis=1)) single.add(MaxPooling2D(pool_size=(2,2), strides=(1,1))) single.add(Dropout(0.5)) single.add(Convolution2D(nb_filter=128, nb_row=3, nb_col=3, activation='relu', border_mode='valid', W_regularizer=l1l2(l1=0.01, l2=0.01))) single.add(Dropout(0.25)) single.add(Flatten()) # add small patch to train on five = Sequential() five.add(Reshape((100,1), input_shape = (4,5,5))) five.add(Flatten()) five.add(MaxoutDense(128, nb_feature=5)) five.add(Dropout(0.5)) model = Sequential() # merge both paths model.add(Merge([five, single], mode='concat', concat_axis=1)) model.add(Dense(5)) model.add(Activation('softmax')) sgd = SGD(lr=0.001, decay=0.01, momentum=0.9) model.compile(loss='categorical_crossentropy', optimizer='sgd') print 'Done.' return model def load_model_weights(self, model_name): ''' INPUT (1) string 'model_name': filepath to model and weights, not including extension OUTPUT: Model with loaded weights. can fit on model using loaded_model=True in fit_model method ''' print 'Loading model {}'.format(model_name) model = '{}.json'.format(model_name) weights = '{}.hdf5'.format(model_name) with open(model) as f: m = f.next() model_comp = model_from_json(json.loads(m)) model_comp.load_weights(weights) print 'Done.' return model_comp def fit_model(self, X_train, y_train, X5_train = None, save=True): ''' INPUT (1) numpy array 'X_train': list of patches to train on in form (n_sample, n_channel, h, w) (2) numpy vector 'y_train': list of labels corresponding to X_train patches in form (n_sample,) (3) numpy array 'X5_train': center 5x5 patch in corresponding X_train patch. if None, uses single-path architecture OUTPUT (1) Fits specified model ''' Y_train = np_utils.to_categorical(y_train, 5) shuffle = zip(X_train, Y_train) np.random.shuffle(shuffle) X_train = np.array([shuffle[i][0] for i in xrange(len(shuffle))]) Y_train = np.array([shuffle[i][1] for i in xrange(len(shuffle))]) es = EarlyStopping(monitor='val_loss', patience=2, verbose=1, mode='auto') # Save model after each epoch to check/bm_epoch#-val_loss checkpointer = ModelCheckpoint(filepath="./check/bm_{epoch:02d}-{val_loss:.2f}.hdf5", verbose=1) if self.architecture == 'dual': self.model_comp.fit([X5_train, X_train], Y_train, batch_size=self.batch_size, nb_epoch=self.n_epoch, validation_split=0.1, show_accuracy=True, verbose=1, callbacks=[checkpointer]) elif self.architecture == 'two_path': data = {'input': X_train, 'output': Y_train} self.model_comp.fit(data, batch_size=self.batch_size, nb_epoch=self.n_epoch, validation_split=0.1, show_accuracy=True, verbose=1, callbacks=[checkpointer]) else: self.model_comp.fit(X_train, Y_train, batch_size=self.batch_size, nb_epoch=self.n_epoch, validation_split=0.1, show_accuracy=True, verbose=1, callbacks=[checkpointer]) def save_model(self, model_name): ''' INPUT string 'model_name': name to save model and weigths under, including filepath but not extension Saves current model as json and weigts as h5df file ''' model = '{}.json'.format(model_name) weights = '{}.hdf5'.format(model_name) json_string = self.model_comp.to_json() self.model_comp.save_weights(weights) with open(model, 'w') as f: json.dump(json_string, f) def class_report(self, X_test, y_test): ''' returns skilearns test report (precision, recall, f1-score) INPUT (1) list 'X_test': test data of 4x33x33 patches (2) list 'y_test': labels for X_test OUTPUT (1) confusion matrix of precision, recall and f1 score ''' y_pred = self.model_load.predict_class(X_test) print classification_report(y_pred, y_test) def predict_image(self, test_img, show=False): ''' predicts classes of input image INPUT (1) str 'test_image': filepath to image to predict on (2) bool 'show': True to show the results of prediction, False to return prediction OUTPUT (1) if show == False: array of predicted pixel classes for the center 208 x 208 pixels (2) if show == True: displays segmentation results ''' imgs = io.imread(test_img).astype('float').reshape(5,240,240) plist = [] # create patches from an entire slice for img in imgs[:-1]: if np.max(img) != 0: img /= np.max(img) p = extract_patches_2d(img, (33,33)) plist.append(p) patches = np.array(zip(np.array(plist[0]), np.array(plist[1]), np.array(plist[2]), np.array(plist[3]))) # predict classes of each pixel based on model full_pred = self.model_comp.predict_classes(patches) fp1 = full_pred.reshape(208,208) if show: io.imshow(fp1) plt.show else: return fp1 def show_segmented_image(self, test_img, modality='t1c', show = False): ''' Creates an image of original brain with segmentation overlay INPUT (1) str 'test_img': filepath to test image for segmentation, including file extension (2) str 'modality': imaging modelity to use as background. defaults to t1c. options: (flair, t1, t1c, t2) (3) bool 'show': If true, shows output image. defaults to False. OUTPUT (1) if show is True, shows image of segmentation results (2) if show is false, returns segmented image. ''' modes = {'flair':0, 't1':1, 't1c':2, 't2':3} segmentation = self.predict_image(test_img, show=False) img_mask = np.pad(segmentation, (16,16), mode='edge') ones = np.argwhere(img_mask == 1) twos = np.argwhere(img_mask == 2) threes = np.argwhere(img_mask == 3) fours = np.argwhere(img_mask == 4) test_im = io.imread(test_img) test_back = test_im.reshape(5,240,240)[-2] # overlay = mark_boundaries(test_back, img_mask) gray_img = img_as_float(test_back) # adjust gamma of image image = adjust_gamma(color.gray2rgb(gray_img), 0.65) sliced_image = image.copy() red_multiplier = [1, 0.2, 0.2] yellow_multiplier = [1,1,0.25] green_multiplier = [0.35,0.75,0.25] blue_multiplier = [0,0.25,0.9] # change colors of segmented classes for i in xrange(len(ones)): sliced_image[ones[i][0]][ones[i][1]] = red_multiplier for i in xrange(len(twos)): sliced_image[twos[i][0]][twos[i][1]] = green_multiplier for i in xrange(len(threes)): sliced_image[threes[i][0]][threes[i][1]] = blue_multiplier for i in xrange(len(fours)): sliced_image[fours[i][0]][fours[i][1]] = yellow_multiplier if show: io.imshow(sliced_image) plt.show() else: return sliced_image def get_dice_coef(self, test_img, label): ''' Calculate dice coefficient for total slice, tumor-associated slice, advancing tumor and core tumor INPUT (1) str 'test_img': filepath to slice to predict on (2) str 'label': filepath to ground truth label for test_img OUTPUT: Summary of dice scores for the following classes: - all classes - all classes excluding background (ground truth and segmentation) - all classes excluding background (only ground truth-based) - advancing tumor - core tumor (1,3 and 4) ''' segmentation = self.predict_image(test_img) seg_full = np.pad(segmentation, (16,16), mode='edge') gt = io.imread(label).astype(int) # dice coef of total image total = (len(np.argwhere(seg_full == gt)) * 2.) / (2 * 240 * 240) def unique_rows(a): ''' helper function to get unique rows from 2D numpy array ''' a = np.ascontiguousarray(a) unique_a = np.unique(a.view([('', a.dtype)]*a.shape[1])) return unique_a.view(a.dtype).reshape((unique_a.shape[0], a.shape[1])) # dice coef of entire non-background image gt_tumor = np.argwhere(gt != 0) seg_tumor = np.argwhere(seg_full != 0) combo = np.append(pred_core, core, axis = 0) core_edema = unique_rows(combo) # intersection of locations defined as tumor_assoc in gt and segmentation gt_c, seg_c = [], [] # predicted class of each for i in core_edema: gt_c.append(gt[i[0]][i[1]]) seg_c.append(seg_full[i[0]][i[1]]) tumor_assoc = len(np.argwhere(np.array(gt_c) == np.array(seg_c))) / float(len(core)) tumor_assoc_gt = len(np.argwhere(np.array(gt_c) == np.array(seg_c))) / float(len(gt_tumor)) # dice coef advancing tumor adv_gt = np.argwhere(gt == 4) gt_a, seg_a = [], [] # classification of for i in adv_gt: gt_a.append(gt[i[0]][i[1]]) seg_a.append(fp[i[0]][i[1]]) gta = np.array(gt_a) sega = np.array(seg_a) adv = float(len(np.argwhere(gta == sega))) / len(adv_gt) # dice coef core tumor noadv_gt = np.argwhere(gt == 3) necrosis_gt = np.argwhere(gt == 1) live_tumor_gt = np.append(adv_gt, noadv_gt, axis = 0) core_gt = np.append(live_tumor_gt, necrosis_gt, axis = 0) gt_core, seg_core = [],[] for i in core_gt: gt_core.append(gt[i[0]][i[1]]) seg_core.append(seg_full[i[0]][i[1]]) gtcore, segcore = np.array(gt_core), np.array(seg_core) core = len(np.argwhere(gtcore == segcore)) / float(len(core_gt)) print ' ' print 'Region_______________________| Dice Coefficient' print 'Total Slice__________________| {0:.2f}'.format(total) print 'No Background gt_____________| {0:.2f}'.format(tumor_assoc_gt) print 'No Background both___________| {0:.2f}'.format(tumor_assoc) print 'Advancing Tumor______________| {0:.2f}'.format(adv) print 'Core Tumor___________________| {0:.2f}'.format(core) if __name__ == '__main__': train_data = glob('train_data/**') patches = PatchLibrary((33,33), train_data, 50000) X,y = patches.make_training_patches() model = SegmentationModel() model.fit_model(X, y) model.save_model('models/example') # tests = glob('test_data/2_*') # test_sort = sorted(tests, key= lambda x: int(x[12:-4])) # model = BasicModel(loaded_model=True) # segmented_images = [] # for slice in test_sort[15:145]: # segmented_images.append(model.show_segmented_image(slice))
StarcoderdataPython
1841054
from checkov.common.models.enums import CheckResult, CheckCategories from checkov.arm.base_resource_check import BaseResourceCheck # https://docs.microsoft.com/en-us/azure/templates/microsoft.keyvault/vaults/secrets class SecretExpirationDate(BaseResourceCheck): def __init__(self): name = "Ensure that the expiration date is set on all secrets" id = "CKV_AZURE_41" supported_resources = ['Microsoft.KeyVault/vaults/secrets'] categories = [CheckCategories.GENERAL_SECURITY] super().__init__(name=name, id=id, categories=categories, supported_resources=supported_resources) def scan_resource_conf(self, conf): if "properties" in conf: if "attributes" in conf["properties"]: if "exp" in conf["properties"]["attributes"]: if conf["properties"]["attributes"]["exp"]: return CheckResult.PASSED return CheckResult.FAILED check = SecretExpirationDate()
StarcoderdataPython
3500995
<reponame>KhadijaMahanga/bluetail<filename>bluetail/migrations/0005_externalperson.py<gh_stars>1-10 # Generated by Django 2.2.13 on 2020-07-20 16:47 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('bluetail', '0004_ocdsrecordjson'), ] operations = [ migrations.CreateModel( name='ExternalPerson', fields=[ ('id', models.AutoField(auto_created=True, primary_key=True, serialize=False, verbose_name='ID')), ('scheme', models.CharField(max_length=1024)), ('name', models.CharField(max_length=1024)), ('identifier', models.CharField(max_length=1024)), ('date_of_birth', models.DateField(null=True)), ('flag', models.ForeignKey(on_delete=None, to='bluetail.Flag')), ], ), migrations.AddConstraint( model_name='externalperson', constraint=models.UniqueConstraint(fields=('name', 'scheme', 'identifier', 'flag'), name='unique_person_flag'), ), ]
StarcoderdataPython
385630
<filename>src/skmultiflow/demos/_test_sam_knn_prequential.py import numpy as np from skmultiflow.classification.lazy.sam_knn import SAMKNN from skmultiflow.data.file_stream import FileStream from skmultiflow.evaluation.evaluate_prequential import EvaluatePrequential from skmultiflow.core.pipeline import Pipeline def demo(output_file=None, instances=50000): """ _test_sam_knn_prequential This demo shows how to produce a prequential evaluation. The first thing needed is a stream. For this case we use a file stream which gets its samples from the movingSquares.csv file, inside the datasets folder. Then we need to setup a classifier, which in this case is an instance of scikit-multiflow's SAMKNN. Then, optionally we create a pipeline structure, initialized on that classifier. The evaluation is then run. Parameters ---------- output_file: string The name of the csv output file instances: int The evaluation's max number of instances """ # Setup the File Stream stream = FileStream("../datasets/movingSquares.csv", -1, 1) # stream = WaveformGenerator() stream.prepare_for_use() # Setup the classifier # classifier = SGDClassifier() # classifier = KNNAdwin(k=8, max_window_size=2000,leaf_size=40, categorical_list=None) # classifier = OzaBaggingAdwin(h=KNN(k=8, max_window_size=2000, leaf_size=30, categorical_list=None)) classifier = SAMKNN(n_neighbors=5, knnWeights='distance', maxSize=1000, STMSizeAdaption='maxACCApprox', useLTM=False) # classifier = SGDRegressor() # classifier = PerceptronMask() # Setup the pipeline # pipe = Pipeline([('Classifier', classifier)]) # Setup the evaluator evaluator = EvaluatePrequential(pretrain_size=0, max_samples=instances, batch_size=1, n_wait=100, max_time=1000, output_file=output_file, show_plot=True, metrics=['performance']) # Evaluate evaluator.evaluate(stream=stream, model=classifier) if __name__ == '__main__': demo()
StarcoderdataPython
9705026
""" The contents of this file are subject to the Mozilla Public License Version 1.1 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.mozilla.org/MPL/ Software distributed under the License is distributed on an "AS IS" basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the License for the specific language governing rights and limitations under the License. The Original Code is available at http://downloads.xmlschemata.org/python/xvif/ The Initial Developer of the Original Code is <NAME>. Portions created by <NAME> are Copyright (C) 2002. All Rights Reserved. Contributor(s): """ def transform(self, node): from Ft.Xml.Xslt import Processor, StylesheetReader, DomWriter from Ft.Xml import InputSource processor = Processor.Processor() xreader = StylesheetReader.StylesheetReader() style=xreader.fromDocument(self.applyElt.dom, baseUri="dummy") processor.appendStylesheetInstance(style) factory = InputSource.DefaultFactory isrc=factory.fromString("dummy", "dummy") resWriter = DomWriter.DomWriter() processor.execute(node, isrc, ignorePis=1, writer=resWriter) dom = resWriter.getResult() #print dom.firstChild.nodeValue return dom.firstChild
StarcoderdataPython
99633
# Desenvolva um programa que pergunte a distancia de uma viagem em Km. #Calcule o preço da passagem, cobrando R$0,50 por Km para viagens de até 200Km e R$0,45 # para viagens mais longas. #minha resposta #dist = float(input('Qual a distancia da sua viagem? ')) #print('Voce está prestes a começar uma viagem de {:.1f}Km'.format(dist)) #if dist <= 200: # print('E o preço da sua passagem será de R${:.2f}'.format(dist * 0.50)) #else: # print('E o preço da sua passagem será de R${:.2f}'.format(dist * 0.45)) #resposta1 do Gustavo #distancia = float(input('Qual a distancia da sua viagem? ')) #print('Voce está prestes a começar uma viagem de {:.1f}Km'.format(distancia)) #if distancia <= 200: # preco = distancia * 0.50 #else: # preco = distancia * 0.45 #print('E o preço da sua passagem será de R${:.2f}'.format(preco)) #resposta2 do gustavo distancia = float(input('Qual a distancia da sua viagem? ')) print('Voce está prestes a começar uma viagem de {:.1f}Km'.format(distancia)) preco = distancia * 0.50 if distancia <= 200 else distancia * 0.45 #if in line ou operador ternario print('E o preço da sua passagem será de R${:.2f}'.format(preco))
StarcoderdataPython
3300154
<reponame>JiwanChung/tapm from torch import nn import torch.nn.functional as F from exp import ex from .temporal_corr import TemporalCorrGlobal from .no_gt import NoGtSos # from .ss_loss import calc_l2_loss class AblationJointSS(TemporalCorrGlobal): def forward(self, batch, **kwargs): return self._forward(batch, **kwargs) class AblationNoSS(TemporalCorrGlobal): def forward(self, batch, **kwargs): hypo, logit, target, reg_loss, stats, batch = self._forward(batch, **kwargs) reg_loss = None return hypo, logit, target, reg_loss, stats, batch class AblationSplitGen(TemporalCorrGlobal): def forward(self, batch, **kwargs): if self.training: self.fix_gpt(kwargs.get('epoch', 0)) hypo, logit, target, reg_loss, stats, batch = self._forward(batch, **kwargs) reg_loss = None return hypo, logit, target, reg_loss, stats, batch class AblationNoPred(TemporalCorrGlobal): def get_reg_loss(self, h, c, group_mask): rank_loss, rank_stats = self.get_rank_loss(h, c, group_mask) return rank_loss, rank_stats class AblationNoMatch(TemporalCorrGlobal): def get_reg_loss(self, h, c, group_mask): roll_loss, roll_stats = self.get_roll_losses(h, c, group_mask) return roll_loss, roll_stats class AblationS(NoGtSos): def mean_pool_text(self, o): # BGLC return o.mean(dim=2) # use the [sos] token only class AblationLossL2(NoGtSos): @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) def calc_l2_loss(self, x1, x2, group_mask=None, margin=None, pool='mean', skip_idx=0): loss = F.mse_loss(x1, x2, reduction=pool) acc = 0 return loss, acc def run_rank_loss(self, x1, x2, group_mask, skip_idx=0): x1 = x1.view(-1, x1.shape[-1]) x2 = x2.view(-1, x2.shape[-1]) group_mask = group_mask.view(-1) loss1, acc1 = self.calc_l2_loss(x1, x2, group_mask, margin=self.margin, pool='mean', skip_idx=skip_idx) loss2, acc2 = self.calc_l2_loss(x2, x1, group_mask, margin=self.margin, pool='mean', skip_idx=-skip_idx) return loss1, acc1, loss2, acc2 class AblationLossCycle(NoGtSos): @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) dim = self.gpt_dim self.cycle_linears = nn.ModuleDict({ 'vis_to_txt': nn.Linear(dim, dim), 'txt_to_vis': nn.Linear(dim, dim), }) def calc_cycle_loss(self, x1, x2, group_mask=None, pool='mean', skip_idx=0): l1 = F.mse_loss(self.cycle_linears['vis_to_txt'](x2), x1.detach(), reduction=pool) l2 = F.mse_loss(self.cycle_linears['txt_to_vis'](x1), x2.detach(), reduction=pool) return l1, l2 def get_rank_loss(self, h, c, group_mask, skip_idx=0): x1 = F.normalize(h) x2 = F.normalize(c) l1, l2 = self.run_rank_loss(x1, x2, group_mask, skip_idx) loss = l1 + l2 # stats = {'rank_accuracy': acc} stats = {'loss_ttov': l1.item(), 'loss_vtot': l2.item()} return loss, stats def run_rank_loss(self, x1, x2, group_mask, skip_idx=0): x1 = x1.view(-1, x1.shape[-1]) x2 = x2.view(-1, x2.shape[-1]) group_mask = group_mask.view(-1) l1, l2 = self.calc_cycle_loss(x1, x2, group_mask, pool='mean', skip_idx=skip_idx) return l1, l2 def get_reg_loss(self, h, c, group_mask): loss, stats = self.get_rank_loss(h, c, group_mask) return loss, stats class AblationIterSS(TemporalCorrGlobal): @classmethod def get_args(cls): return { **super().get_args(), 'iter_ss': 1 } @ex.capture def __init__(self, transformer, tokenizer, dropout_before, fix_gpt_epoch, iter_ss): super().__init__(transformer, tokenizer, dropout_before, fix_gpt_epoch) self.iter_ss = iter_ss self.current_epoch = -1 def fix_gpt(self, epoch): if epoch != self.current_epoch: if (epoch + 1) % self.iter_ss == 0: # revert ss if not self.net.transformer.weight_freezed: self._fix_gpt() self.net.transformer.weight_freezed = True else: self._fix_gpt(False) self.net.transformer.weight_freezed = False self.reset_optimizer = True self.current_epoch = epoch
StarcoderdataPython
5182068
<gh_stars>1-10 """ clic.region.metadata: Tag metadata.* regions ******************************************** Add metadata.* tags to regions. metadata.title / metadata.author regions ---------------------------------------- If there are 2 lines at the start, with an empty line after, we treat this as a title / author combination:: >>> run_tagger(''' ... Fly Fishing ... <NAME> ... ... INTRODUCTION. ... ... Fly Fishing: Memories of Angling Days, also published as Fly Fishing by ... '''.strip(), tagger_metadata) [('metadata.title', 0, 11, None, 'Fly Fishing'), ('metadata.author', 12, 23, None, '<NAME>')] Anything that doesn't match this gets ignored:: >>> run_tagger(''' ... Fly Fishing ... <NAME> ... INTRODUCTION. ... ... Fly Fishing: Memories of Angling Days, also published as Fly Fishing by ... '''.strip(), tagger_metadata) [] """ import re TITLE_AUTHOR_REGEX = re.compile(r"^(.+)\n(.+)\n\n") def tagger_metadata(book): """ Add metadata.* tags to regions """ m = re.match(TITLE_AUTHOR_REGEX, book["content"]) if not m: # Can't find title/author, nothing to do return if len(book.get("metadata.title", [])) == 0: # Title (should) be first line book["metadata.title"] = [m.span(1)] if len(book.get("metadata.author", [])) == 0: # Author (should) be second line book["metadata.author"] = [m.span(2)]
StarcoderdataPython
105371
<reponame>OnionIoT/tau-lidar-camera ## Command format COMMAND_SIZE_TOTAL = 14 ## Cammand size total COMMAND_SIZE_HEADER = 4 ## Cammand header size COMMAND_SIZE_CHECKSUM = 4 ## Cammand checksum size COMMAND_SIZE_OVERHEAD = 8 ## COMMAND_SIZE_HEADER + COMMAND_SIZE_CHECKSUM COMMAND_START_MARK = 0xF5 ## Command start marking COMMAND_INDEX_COMMAND = 1 ## Cammand index COMMAND_INDEX_DATA = 2 ## Cammand payload data ## setup commands COMMAND_SET_INTEGRATION_TIME_3D = 0x00 ## Command to set the integration time for 3D operation COMMAND_SET_INTEGRATION_TIME_GRAYSCALE = 0x01 ## Command to set the integration time for grayscale COMMAND_SET_ROI = 0x02 ## Command to set the region of interest COMMAND_SET_BINNING = 0x03 ## Command to set the binning COMMAND_SET_MODE = 0x04 ## Command to set the mode COMMAND_SET_MODULATION_FREQUENCY = 0x05 ## Command to set the modulation frequency COMMAND_SET_DLL_STEP = 0x06 ## Command to set the DLL step COMMAND_SET_FILTER = 0x07 ## Command to set the filter parameters COMMAND_SET_OFFSET = 0x08 ## Command to set the offset COMMAND_SET_MINIMAL_AMPLITUDE = 0x09 ## Command to set th minimal amplitude COMMAND_SET_DCS_FILTER = 0x0A ## Command to set the DCS filter COMMAND_SET_GAUSSIAN_FILTER = 0x0B ## Command to set the Gaussian filter COMMAND_SET_FRAME_RATE = 0x0C ## Command to set/limit the frame rate COMMAND_SET_HDR = 0x0D COMMAND_SET_MODULATION_CHANNEL = 0x0E ## Command to set the modulation channel COMMAND_SET_FILTER_SINGLE_SPOT = 0x0F ## Command to set the temporal filter for the single spot ## acquisition commands COMMAND_GET_DISTANCE = 0x20 ## Command to request distance data COMMAND_GET_AMPLITUDE = 0x21 ## Command to request amplitude data COMMAND_GET_DISTANCE_AMPLITUDE = 0x22 ## Command to request distance and amplitude data COMMAND_GET_DCS_DISTANCE_AMPLITUDE = 0x23 ## Command to request distance, amplitude and DCS data at once COMMAND_GET_GRAYSCALE = 0x24 ## Command to request grayscale data COMMAND_GET_DCS = 0x25 ## Command to request DCS data COMMAND_SET_AUTO_ACQUISITION = 0x26 ## Command to enable/disable the auto acquisition COMMAND_GET_INTEGRATION_TIME_3D = 0x27 ## Command to read the integration time. Important when using automatic mode COMMAND_STOP_STREAM = 0x28 ## Command to stop the stream COMMAND_GET_DISTANCE_GRAYSCALE = 0x29 ## Command to request distance and grayscale COMMAND_GET_IDENTIFICATION = 0x47 ## Command to identification COMMAND_GET_CHIP_INFORMATION = 0x48 ## Command to read the chip information COMMAND_GET_FIRMWARE_RELEASE = 0x49 ## Command to read the firmware release COMMAND_GET_PRODUCTION_INFO = 0x50 ## Command to get the production info ## MODULATION COMMAND_SET_MODULATION_FREQUENCY = 0x05 VALUE_10MHZ = 0 ## Value for 10MHz for command "COMMAND_SET_MODULATION_FREQUENCY" VALUE_20MHZ = 1 ## Value for 20MHz for command "COMMAND_SET_MODULATION_FREQUENCY" ## 635 op mode MODE_BEAM_A = 0 ## Normal operation with illumination beam A MODE_BEAM_B_MANUAL = 1 ## Normal operation with illumination beam B (all settings by user, same as) MODE_BEAM_B_RESULT = 2 ## Beam B with calibrated ROI, only one distance as result MODE_BEAM_B_RESULT_DATA = 3 ## Beam B with calibrated ROI, one distance and the pixels as result MODE_BEAM_AB_RESULT = 4 ## Beam A and B operating with calibrated ROI and only one distance as result MODE_BEAM_AB_AUTO_RESULT = 5 ## Beam A and B with automatic selection MODE_BEAM_AB_INTERLEAVED_DATA = 6 ## Beam A and B interleaved output ## Stream mode SINGLE = 0 ## Single frame mode AUTO_REPEAT = 1 ## Auto repeat frame using same parameters STREAM = 3 ## Stream mode ## HDR HDR_OFF = 0 ## HDR off HDR_SPATIAL = 1 ## Spatial HDR HDR_TEMPORAL = 2 ## Temporal HDR ## IntegrationTime INDEX_INDEX_3D = 2 ## Index of the integration time 3d index INDEX_INTEGRATION_TIME_3D = 3 ## Index of the integration time 3d ## AMPLITUDE INDEX_INDEX_AMPLITUDE = 2 ## Index of the index INDEX_AMPLITUDE = 3 ## Index of the minimal amplitude ## ROI INDEX_ROI_X_MIN = 2 ## Index of ROI X MIN INDEX_ROI_Y_MIN = 4 ## Index of ROI Y MIN INDEX_ROI_X_MAX = 6 ## Index of ROI X MAX INDEX_ROI_Y_MAX = 8 ## Index of ROI Y MAX ## Data format DATA_START_MARK = 0xFA ## Data start marking DATA_INDEX_LENGTH = 2 ## Data length DATA_INDEX_TYPE = 1 ## Data type ## firmware returned data type DATA_ACK = 0x00 ## Acknowledge from sensor to host DATA_NACK = 0x01 ## Not acknowledge from sensor to host DATA_IDENTIFICATION = 0x02 ## Identification to identify the device DATA_DISTANCE = 0x03 ## Distance information DATA_AMPLITUDE = 0x04 ## Amplitude information DATA_DISTANCE_AMPLITUDE = 0x05 ## Distance and amplitude information DATA_GRAYSCALE = 0x06 ## Grayscale information DATA_DCS = 0x07 ## DCS data DATA_DCS_DISTANCE_AMPLITUDE = 0x08 ## DCS, distance and amplitude all together DATA_INTEGRATION_TIME = 0x09 ## Integration time, answer to COMMAND_GET_INTEGRATION_TIME_3D DATA_DISTANCE_GRAYSCALE = 0x0A ## Distance and grayscale data DATA_LENS_CALIBRATION_DATA = 0xF7 ## Lens calibration data DATA_TRACE = 0xF8 ## Trace data DATA_PRODUCTION_INFO = 0xF9 ## Production info DATA_CALIBRATION_DATA = 0xFA ## Calibration data DATA_REGISTER = 0xFB ## Register data DATA_TEMPERATURE = 0xFC ## Temperature data DATA_CHIP_INFORMATION = 0xFD ## Chip information data DATA_FIRMWARE_RELEASE = 0xFE ## Firmware release DATA_ERROR = 0xFF ## Error number ## CHIP MASK_CHIP_TYPE_DEVICE = 0x00FFFF00 ## Chip information mask SHIFT_CHIP_TYPE_DEVICE = 8 ## Chip information shift CHIP_INFORMATION_DATA_SIZE = 4 ## Chip information data size ## IDENTITY DATA_IDENTIFICATION = 0x02 DATA_FIRMWARE_RELEASE = 0xFE IDENTIFICATION_DATA_SIZE = 4 ## Chip information data size INDEX_WAFER_ID = 6 INDEX_CHIP_ID = 4 ## Firmware release FIRMWARE_RELEASE_DATA_SIZE = 4 ## Chip information data size MASK_VERSION = 0x000000FF SHIFT_VERSION = 0 ## TOF 635 image TOF_635_IMAGE_HEADER_SIZE = 80 ## 635 IMAGE HEADER SIZE
StarcoderdataPython
294623
<gh_stars>0 import logging from captcha.fields import ReCaptchaField from django import forms from django.contrib.auth import get_user_model from .models import Profile logger = logging.getLogger(__name__) class UserForm(forms.ModelForm): captcha = ReCaptchaField(attrs={'_no_label': True, '_no_errors': True}) def clean_email(self): email = self.cleaned_data.get('email') if email: email = email.lower() return email class Meta: model = get_user_model() fields = ['email'] def save(self, commit=True, profile_kwargs={}): """Sends out email with pw reset link if user is created.""" user = super().save(commit=commit) if commit: Profile.objects.create(user=user, **profile_kwargs) logger.info(f'Created profile for {user}') user.send_activation_mail() return user class UpdateEmailForm(forms.ModelForm): password = forms.CharField(label='Bestätigen Sie Ihr Passwort', widget=forms.PasswordInput) def clean_password(self): password = self.cleaned_data['password'] if not self.instance.check_password(password): raise forms.ValidationError('Invalid password') return password class Meta: model = get_user_model() fields = ['email'] class ProfileForm(forms.ModelForm): class Meta: model = Profile fields = ['title', 'first_name', 'last_name', 'organization', 'street', 'postcode', 'city', 'country'] _field_class = { 'title': 'three wide' } # Layout used by django-semanticui layout = [ ("Three Fields", ("Field", "title"), ("Field", "first_name"), ("Field", "last_name")), ("Field", "organization"), ("Field", "street"), ("Two Fields", ("Field", "postcode"), ("Field", "city")), ]
StarcoderdataPython
5078680
<filename>processing/shots_Distribution_Career.py<gh_stars>10-100 import requests import urllib import csv import os import sys from time import time from py_data_getter import data_getter from py_db import db db = db('nba_shots') def initiate(): print "-------------------------" print "shots_Distribution_Career.py" start_time = time() process() end_time = time() elapsed_time = float(end_time - start_time) print "time elapsed (in seconds): " + str(elapsed_time) print "time elapsed (in minutes): " + str(elapsed_time/60.0) print "shots_Distribution_Career.py" print "-------------------------" def process(): for _type in ('Player', 'Team', 'League'): print '\t' + _type if _type == 'Player': _join = 'JOIN players USING (player_id)\n\t' _career = 'CONCAT(GREATEST(1996, from_year),to_year)' else: _join = '' _career = "'1'" query = """SELECT * FROM( SELECT %s_id, %s AS career, season_type, shot_zone_basic, shot_zone_area, all_games AS games, SUM(attempts) AS attempts, SUM(attempts)/all_atts AS zone_pct, SUM(points)/SUM(attempts)/2 AS efg FROM shots_%s_Breakdown %sJOIN( SELECT %s_id, season_type, SUM(games) AS all_games, SUM(attempts) AS all_atts FROM shots_%s_Breakdown WHERE shot_zone_basic = 'all' AND shot_zone_area = 'all' GROUP BY %s_id, season_type ) allatts USING (%s_id, season_type) GROUP BY %s_id, shot_zone_basic, shot_zone_area, season_type ) a ORDER BY %s_id ASC, shot_zone_basic ASC, shot_zone_area ASC, season_type DESC """ q = query % (_type, _career, _type, _join, _type, _type, _type, _type, _type, _type) # raw_input(q) res = db.query(q) entries = [] _id = '%s_id' % (_type.lower()) for row in res: type_id, career, season_type, shot_zone_basic, shot_zone_area, games, attempts, zone_pct, efg = row entry = {_id:type_id, "season_id":career, "season_type":season_type, "shot_zone_basic":shot_zone_basic, "shot_zone_area":shot_zone_area, "games":games, "attempts":attempts, "zone_pct":zone_pct, "efg":efg} entries.append(entry) table = "shots_%s_Distribution_Career" % (_type) if entries != []: for i in range(0, len(entries), 1000): db.insertRowDict(entries[i: i + 1000], table, insertMany=True, replace=True, rid=0,debug=1) db.conn.commit() if __name__ == "__main__": initiate()
StarcoderdataPython
11267233
<reponame>rcbops/tempest-zigzag<filename>tests/test_tempest_test_list.py from tempest_zigzag.tempest_test_list import TempestTestList from tempest_zigzag.tempest_testcase_list import TempestTestcaseList class TestTempestTestList(object): def test_find_by_classname(self, file_test_list): tl = TempestTestList(file_test_list) for test in tl.find_tests_by_classname(tl[0].classname): assert type(test) is TempestTestcaseList assert tl[0].classname == test.classname
StarcoderdataPython
6493698
from utils.enums import ScrollEnum from utils.context_csv import CSVCustom from scrapper.base import BaseReviewScrapper from logs import default_logger class AppleReviewScrapper(BaseReviewScrapper): RE_ASSERT_URL = '^https://apps.apple.com' CARD_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]' NAME_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]/div/span[1]' DATE_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]/div/time' STAR_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]/figure' TITLE_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]/h3' DESCRIPTIONS_XPATH = r'/html/body/div[4]/div/main/div/div/div/section/div[2]/div[{}]/div[2]/blockquote/div' def run(self, n: int, output_file: str): """ Execute the scrapper and save all data in a csv file :param n: how many data to be extracted :type: int :param output_file: csv file path where data will be saved :type: str """ with self.driver as web: web.get(self.url) with CSVCustom(output_file, ['name', 'date', 'title', 'star', 'description']) as csv: n_length = len(str(n)) not_found = 0 for i in range(1, n + 1): default_logger.debug(f'getting: {str(i).rjust(n_length, "0")}') # find card element if web.wait_find_element_by_xpath(self.CARD_XPATH.format(i)): # resetting not_found counter not_found = 0 # getting all web elements name = web.find_element_by_xpath(self.NAME_XPATH.format(i)).text date = web.find_element_by_xpath(self.DATE_XPATH.format(i)).text star = web.find_element_by_xpath(self.STAR_XPATH.format(i)).get_attribute('aria-label') title = web.find_element_by_xpath(self.TITLE_XPATH.format(i)).text descriptions_element = web.find_element_by_xpath(self.DESCRIPTIONS_XPATH.format(i)) description = '\n'.join([description.text for description in descriptions_element.find_elements_by_tag_name('p')]) # data to dict data = self.to_dict(name=name, date=date, star=star, title=title, description=description) # saving to csv file csv.write_row(data) else: default_logger.warning(f'not found the element: {not_found}') # scroll the page up to unsure that the page will load more data web.scroll_page('/html', ScrollEnum.UP) # increment 1 not_found += 1 # if not found 4 sequence elements, stop if not_found == 5: break # scroll down the page to load more data web.scroll_page('/html', ScrollEnum.DOWN) else: default_logger.debug(f'ended with {i} elements') return default_logger.error(f'ended with no more element found')
StarcoderdataPython