id
stringlengths
1
8
text
stringlengths
6
1.05M
dataset_id
stringclasses
1 value
4980848
<filename>SRC/Chapter_13-Advanced-Iteration/01_read_csv.py with open( "/Users/arunab/myWork/myTutorials/myPython/HeadFirstPython/SRC/Chapter_13-Advanced-Iteration/buzzdata.csv" ) as raw_data: print(raw_data.read())
StarcoderdataPython
6422079
# -*- coding: utf-8 -*- from typing import Union from ink.sys.database.connector import BaseConnector class NullConnector(BaseConnector): def connect(self, connect_config: dict): print('== NullConnector : connect ==') def close(self): print('== NullConnector : close ==') def execute(self, statements: Union[str, list] = str): if isinstance(statements, str): statements = [statements] for stmt in statements: print('execute> ' + stmt)
StarcoderdataPython
277557
from django.core.management.base import BaseCommand, CommandError import time from atlas.prodtask.hashtag import hashtag_request_to_tasks class Command(BaseCommand): args = '<request_id, request_id>' help = 'Save hashtags from request to tasks' def handle(self, *args, **options): self.stdout.write('Start hashtag from request to tasks at %s'%time.ctime()) if not args: try: hashtag_request_to_tasks() except Exception as e: raise CommandError('Some problem during hashtag assign: %s'%str(e)) self.stdout.write('Successfully finished request hashtag to tasks: %s'%time.ctime())
StarcoderdataPython
9692746
<reponame>sphuber/aiida-fleur # -*- coding: utf-8 -*- """Tests for the `FleurinputgenCalculation` class.""" from __future__ import absolute_import from __future__ import print_function import os import pytest from aiida import orm from aiida.common import datastructures from aiida.engine import run_get_node from aiida.plugins import CalculationFactory, DataFactory from aiida_fleur.calculation.fleur import FleurCalculation from ..conftest import run_regression_tests def test_fleurinpgen_default_calcinfo(aiida_profile, fixture_sandbox, generate_calc_job, fixture_code, generate_structure): # file_regression """Test a default `FleurinputgenCalculation`.""" entry_point_name = 'fleur.inpgen' parameters = {} inputs = { 'code': fixture_code(entry_point_name), 'structure': generate_structure(), # 'parameters': orm.Dict(dict=parameters), 'metadata': { 'options': { 'resources': { 'num_machines': 1 }, 'max_wallclock_seconds': int(100), 'withmpi': False } } } calc_info = generate_calc_job(fixture_sandbox, entry_point_name, inputs) codes_info = calc_info.codes_info cmdline_params = ['-explicit'] # for inpgen2 ['+all', '-explicit', 'aiida.in'] local_copy_list = [] retrieve_list = ['inp.xml', 'out', 'shell.out', 'out.error', 'struct.xsf', 'aiida.in'] retrieve_temporary_list = [] # Check the attributes of the returned `CalcInfo` assert isinstance(calc_info, datastructures.CalcInfo) #assert sorted(codes_info[0].cmdline_params) == sorted(cmdline_params) assert sorted(calc_info.local_copy_list) == sorted(local_copy_list) assert sorted(calc_info.retrieve_list) == sorted(retrieve_list) # assert sorted(calc_info.retrieve_temporary_list) == sorted(retrieve_temporary_list) assert sorted(calc_info.remote_symlink_list) == sorted([]) with fixture_sandbox.open('aiida.in') as handle: input_written = handle.read() aiida_in_text = """A Fleur input generator calculation with aiida\n&input cartesian=F / 0.000000000 5.130606429 5.130606429 5.130606429 0.000000000 5.130606429 5.130606429 5.130606429 0.000000000 1.0000000000 1.000000000 1.000000000 1.000000000 2\n 14 0.0000000000 0.0000000000 0.0000000000 14 0.2500000000 0.2500000000 0.2500000000\n""" # Checks on the files written to the sandbox folder as raw input assert sorted(fixture_sandbox.get_content_list()) == sorted(['aiida.in']) assert input_written == aiida_in_text # file_regression.check(input_written, encoding='utf-8', extension='.in') def test_fleurinpgen_with_parameters(aiida_profile, fixture_sandbox, generate_calc_job, fixture_code, generate_structure): # file_regression """Test a default `FleurinputgenCalculation`.""" # Todo add (more) tests with full parameter possibilities, i.e econfig, los, .... entry_point_name = 'fleur.inpgen' parameters = { 'atom': { 'element': 'Si', 'rmt': 2.1, 'jri': 981, 'lmax': 12, 'lnonsph': 6 }, #'econfig': '[He] 2s2 2p6 | 3s2 3p2', 'lo': ''}, 'comp': { 'kmax': 5.0, 'gmaxxc': 12.5, 'gmax': 15.0 }, 'kpt': { 'div1': 17, 'div2': 17, 'div3': 17, 'tkb': 0.0005 } } inputs = { 'code': fixture_code(entry_point_name), 'structure': generate_structure(), 'parameters': orm.Dict(dict=parameters), 'metadata': { 'options': { 'resources': { 'num_machines': 1 }, 'max_wallclock_seconds': int(100), 'withmpi': False } } } calc_info = generate_calc_job(fixture_sandbox, entry_point_name, inputs) with fixture_sandbox.open('aiida.in') as handle: input_written = handle.read() aiida_in_text = """A Fleur input generator calculation with aiida\n&input cartesian=F / 0.000000000 5.130606429 5.130606429 5.130606429 0.000000000 5.130606429 5.130606429 5.130606429 0.000000000 1.0000000000 1.000000000 1.000000000 1.000000000 2\n 14 0.0000000000 0.0000000000 0.0000000000 14 0.2500000000 0.2500000000 0.2500000000 &atom element="Si" jri=981 lmax=12 lnonsph=6 rmt=2.1 / &comp gmax=15.0 gmaxxc=12.5 kmax=5.0 / &kpt div1=17 div2=17 div3=17 tkb=0.0005 / """ # Checks on the files written to the sandbox folder as raw input assert sorted(fixture_sandbox.get_content_list()) == sorted(['aiida.in']) assert input_written == aiida_in_text # file_regression.check(input_written, encoding='utf-8', extension='.in') @pytest.mark.skipif(not run_regression_tests, reason='Aiida-testing not their or not wanted.') def test_FleurinpgenJobCalc_full_mock(aiida_profile, mock_code_factory, generate_structure_W): # pylint: disable=redefined-outer-name """ Tests the fleur inputgenerate with a mock executable if the datafiles are their, otherwise runs inpgen itself if a executable was specified """ CALC_ENTRY_POINT = 'fleur.inpgen' parameters = { 'atom': { 'element': 'W', 'rmt': 2.1, 'jri': 981, 'lmax': 12, 'lnonsph': 6, 'econfig': '[Kr] 4d10 4f14 | 5s2 5p6 6s2 5d4', 'lo': '5s 5p' }, 'comp': { 'kmax': 5.0, 'gmaxxc': 12.5, 'gmax': 15.0 }, 'kpt': { 'div1': 3, 'div2': 3, 'div3': 3, 'tkb': 0.0005 } } mock_code = mock_code_factory(label='inpgen', data_dir_abspath=os.path.join(os.path.dirname(os.path.abspath(__file__)), 'data_dir/'), entry_point=CALC_ENTRY_POINT, ignore_files=['_aiidasubmit.sh']) print(mock_code) inputs = { 'structure': generate_structure_W(), 'parameters': orm.Dict(dict=parameters), 'metadata': { 'options': { 'resources': { 'num_machines': 1, 'tot_num_mpiprocs': 1 }, 'max_wallclock_seconds': int(100), 'withmpi': False } } } calc = CalculationFactory(CALC_ENTRY_POINT) # (code=mock_code, **inputs) print(calc) res, node = run_get_node(CalculationFactory(CALC_ENTRY_POINT), code=mock_code, **inputs) print(node) print((res['remote_folder'].list_objects())) print((res['retrieved'].list_objects())) assert bool(node.is_finished_ok)
StarcoderdataPython
6445056
<filename>bareml/machinelearning/utils/misc.py """ Utility functions Author: <NAME> <<EMAIL>> References: """ import operator as op from functools import reduce import math import numpy as np def ncr(n, r): """ Calculates nCr in efficient manner. This function is not my original code, but copied from below url. https://stackoverflow.com/questions/4941753/is-there-a-math-ncr-function-in-python Parameters ---------- n, r: int """ r = min(r, n-r) numer = reduce(op.mul, range(n, n-r, -1), 1) denom = reduce(op.mul, range(1, r+1), 1) return numer / denom def flatten(l): """ flatten a nested list. https://stackoverflow.com/questions/952914/how-to-make-a-flat-list-out-of-list-of-lists Parameters ---------- l: array-like """ return [item for sublist in l for item in sublist] def split_array(a, n): """ Split an array into n chunks. https://stackoverflow.com/questions/2130016/splitting-a-list-into-n-parts-of-approximately-equal-length Parameters ---------- a: array-like n: int number of chunks """ k, m = divmod(len(a), n) return (a[i * k + min(i, m):(i + 1) * k + min(i + 1, m)] for i in range(n)) def supremum_eigen(X): """ Estimates approximate supremum of eigen values of a square matrix by Gershgorin circle theorem. Ref(in JP): https://qiita.com/fujiisoup/items/e7f703fc57e2dfc441ad Parameters ---------- X: np.ndarray (d,d) """ return np.max(np.sum(np.abs(X), axis=0)) def sigmoid(x): return 1 / (1 + np.exp(-x)) def softmax(x): if x.ndim == 1: x = np.array([x]) # Avoid overflow x = x - np.array([x.max(axis=1)]).T exp_x = np.exp(x) sum_exp_x = np.sum(exp_x,axis=1)[np.newaxis].T return exp_x / sum_exp_x
StarcoderdataPython
6404639
<gh_stars>0 from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords from nltk.stem import PorterStemmer from nltk.tokenize import PunktSentenceTokenizer def tokenize_sentence(sentences): sent_tokens = sent_tokenize(sentences) return sent_tokens def tokenize_words(text): word_tokens = word_tokenize(text) return word_tokens def tokenize_words_without_stopwords(text): word_tokens = word_tokenize(text) stop_words_list = set(stopwords.words("English")) filtered_sentence = [w for w in word_tokens if not w in stop_words_list] stop_words = [w for w in word_tokens if w in stop_words_list] return filtered_sentence, stop_words def stem_tokens(text): word_tokens = tokenize_words(text) ps = PorterStemmer() words_tokens_after_stemming = [ps.stem(w) for w in word_tokens] return words_tokens_after_stemming def tag_parts_of_speech(train_text, test_text): punkt_sent_tokenizer = PunktSentenceTokenizer(train_text=train_text) tokenized_words = punkt_sent_tokenizer.tokenize(test_text) return tokenized_words
StarcoderdataPython
1873917
<filename>FEBDAQMULTx2/data_analysis/7_preamp_gain_analysis_and_charge_injection/injection_and_pedestal_peak_adc.py #!/usr/bin/env python ''' This script is the OOP version that finds the peak ADC position for a single channel. The file names follow the convention such as: "ch0.root" for charge injected to channel 0. "ch0_ped.root" for pedestal ADC measurement for channel 0. ''' import argparse import os from typing import OrderedDict import pandas as pd import statistics import uproot class peak_adc: def __init__(self, infpn): ''' Load an input data and fill some properties. ''' # store the path name self.infp = os.path.dirname(infpn) # store the file name self.infn = os.path.basename(infpn) # store the measurement type self.meas_type = None # store the injection channel self.inj_ch = None # open the file and store the tree to a dataframe tr_mppc = uproot.open(infpn)['mppc'] self.df_mppc = tr_mppc.arrays(library='pd') # create an output dataframe self.peak_positions = OrderedDict() # initialize member variables # initialize meas_type self.fill_measurement_type() self.fill_injection_channel() self.fill_peak_positions() def fill_measurement_type(self): ''' Two types: 'pedestal' or 'injection' ''' file_atts = self.infn.rstrip('.root').split('_') if 'ped' in file_atts: self.meas_type = 'pedestal' else: self.meas_type = 'injection' def fill_injection_channel(self): ''' Find the injection channel from the file name. ''' file_atts = self.infn.rstrip('.root').split('_') for att in file_atts: if 'ch' in att: try: self.inj_ch = int(att.lstrip('ch')) except: continue return self.inj_ch = -1 def fill_peak_positions(self): ''' Fill peak positions for all channels. Note that charge injection measurement is conducted with only one FEB. ''' for i in range(32): self.peak_positions[i] = int(self.df_mppc['chg[{}]'.format(i)].value_counts().idxmax()) if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument('-i', '--input_filenames', type=str, nargs='*') parser.add_argument('-sn', '--feb_serial_number', type=int, default='428') args = parser.parse_args() infpns = args.input_filenames # make two containers, for the injection and the pedestal measurement peak_adcs_ped = OrderedDict() peak_adcs_inj = OrderedDict() for infpn in infpns: my_peak_adc = peak_adc(infpn) if my_peak_adc.meas_type == 'injection': peak_adcs_inj[my_peak_adc.inj_ch] = my_peak_adc.peak_positions[my_peak_adc.inj_ch] # store the peak ADC of non-injection channels as the pedestal for ch in range(32): if ch != my_peak_adc.inj_ch: if not ch in peak_adcs_ped.keys(): peak_adcs_ped[ch] = [] peak_adcs_ped[ch].append(my_peak_adc.peak_positions[ch]) # replace the lists by the averages for ch in peak_adcs_ped.keys(): peak_adcs_ped[ch] = statistics.mean(peak_adcs_ped[ch]) # output a csv file with peak adc, ped adc, and calibration factor as columns df_calib = pd.DataFrame() df_calib['peak_adc'] = peak_adcs_inj.values() df_calib['ped_adc'] = peak_adcs_ped.values() # df_calib['calib_factor'] = [21.7096875e-3*100e-12/1.6e-19/(peak_adcs_inj[ch]-peak_adcs_ped[ch]) for ch in peak_adcs_inj.keys()] df_calib['calib_factor'] = [28e-3*100e-12/1.6e-19/(peak_adcs_inj[ch]-peak_adcs_ped[ch]) for ch in peak_adcs_inj.keys()] # save results to file out_dir = 'processed_data' if not os.path.exists(out_dir): os.makedirs(out_dir) df_calib.to_csv(os.path.join(out_dir, 'calib_factors_feb{}.csv'.format(args.feb_serial_number)), index=False)
StarcoderdataPython
6425080
""" Initialise the two_qubit_simulator module. Add import statements from auxiliary modules here. """ # testing soz
StarcoderdataPython
6420074
<reponame>project-origin/account-service<filename>src/origin/services/datahub/service.py import json import requests import marshmallow import marshmallow_dataclass as md from origin.settings import ( PROJECT_URL, DATAHUB_SERVICE_URL, TOKEN_HEADER, DEBUG, WEBHOOK_SECRET, ) from .models import ( GetGgoListRequest, GetGgoListResponse, GetMeasurementRequest, GetMeasurementResponse, GetMeasurementListRequest, GetMeasurementListResponse, GetMeteringPointsResponse, SetKeyRequest, SetKeyResponse, WebhookSubscribeRequest, WebhookSubscribeResponse, GetTechnologiesResponse, ) class DataHubServiceConnectionError(Exception): """ Raised when invoking DataHubService results in a connection error """ pass class DataHubServiceError(Exception): """ Raised when invoking DataHubService results in a status code != 200 """ def __init__(self, message, status_code, response_body): super(DataHubServiceError, self).__init__(message) self.status_code = status_code self.response_body = response_body class DataHubService(object): """ An interface to the Project Origin DataHub Service API. """ def invoke(self, path, response_schema, token=None, request=None, request_schema=None): """ :param str path: :param obj request: :param str token: :param Schema request_schema: :param Schema response_schema: :rtype obj: """ url = '%s%s' % (DATAHUB_SERVICE_URL, path) headers = {} body = None if token: headers = {TOKEN_HEADER: f'Bearer {token}'} if request and request_schema: body = request_schema().dump(request) try: response = requests.post( url=url, json=body, headers=headers, verify=not DEBUG, ) except: raise DataHubServiceConnectionError( 'Failed to POST request to DataHubService') if response.status_code != 200: raise DataHubServiceError( ( f'Invoking webhook resulted in status code {response.status_code}: ' f'{url}\n\n{response.content}' ), status_code=response.status_code, response_body=str(response.content), ) try: response_json = response.json() response_model = response_schema().load(response_json) except json.decoder.JSONDecodeError: raise DataHubServiceError( f'Failed to parse response JSON: {url}\n\n{response.content}', status_code=response.status_code, response_body=str(response.content), ) except marshmallow.ValidationError: raise DataHubServiceError( f'Failed to validate response JSON: {url}\n\n{response.content}', status_code=response.status_code, response_body=str(response.content), ) return response_model def set_key(self, token, gsrn, key): """ :param str token: :param str gsrn: :param str key: :rtype: SetKeyResponse """ return self.invoke( token=token, path='/meteringpoints/set-key', request=SetKeyRequest(gsrn=gsrn, key=key), request_schema=md.class_schema(SetKeyRequest), response_schema=md.class_schema(SetKeyResponse), ) def get_meteringpoints(self, token): """ :param str token: :rtype: GetMeteringPointsResponse """ return self.invoke( token=token, path='/meteringpoints', response_schema=md.class_schema(GetMeteringPointsResponse), ) def get_measurements(self, token, request): """ :param GetMeasurementListRequest request: :param str token: :rtype: GetMeasurementListResponse """ return self.invoke( token=token, path='/measurements', request=request, request_schema=md.class_schema(GetMeasurementListRequest), response_schema=md.class_schema(GetMeasurementListResponse), ) def get_ggo_list(self, token, request): """ :param str token: :param GetGgoListRequest request: :rtype: GetGgoListResponse """ return self.invoke( token=token, path='/ggo', request=request, request_schema=md.class_schema(GetGgoListRequest), response_schema=md.class_schema(GetGgoListResponse), ) def get_consumption(self, token, request): """ :param str token: :param GetMeasurementRequest request: :rtype: GetMeasurementResponse """ return self.invoke( token=token, path='/measurements/consumed', request=request, request_schema=md.class_schema(GetMeasurementRequest), response_schema=md.class_schema(GetMeasurementResponse), ) def webhook_on_meteringpoint_available_subscribe(self, token): """ :param str token: :rtype: WebhookSubscribeResponse """ callback_url = f'{PROJECT_URL}/webhook/on-meteringpoint-available' return self.invoke( token=token, path='/webhook/on-meteringpoint-available/subscribe', request=WebhookSubscribeRequest(url=callback_url, secret=WEBHOOK_SECRET), request_schema=md.class_schema(WebhookSubscribeRequest), response_schema=md.class_schema(WebhookSubscribeResponse), ) def webhook_on_ggo_issued_subscribe(self, token): """ :param str token: :rtype: WebhookSubscribeResponse """ callback_url = f'{PROJECT_URL}/webhook/on-ggo-issued' return self.invoke( token=token, path='/webhook/on-ggo-issued/subscribe', request=WebhookSubscribeRequest(url=callback_url, secret=WEBHOOK_SECRET), request_schema=md.class_schema(WebhookSubscribeRequest), response_schema=md.class_schema(WebhookSubscribeResponse), ) def get_technologies(self): """ :rtype: GetTechnologiesResponse """ return self.invoke( path='/technologies', response_schema=md.class_schema(GetTechnologiesResponse), )
StarcoderdataPython
5129277
# -*- coding: utf-8 -*- # Author: <NAME> <<EMAIL>> # Copyright: Stateoftheart AI PBC 2021. '''Alchemy's library wrapper. Dataset information taken from: https://alchemy.cs.washington.edu/data/ ''' SOURCE_METADATA = { 'name': 'alchemy', 'original_name': 'Alchemy: Open Source AI', 'url': 'https://alchemy.cs.washington.edu/' } DATASETS = { 'Unknown': [ 'Animals', 'Citeseer', 'Cora', 'Epinions', 'IMDB', 'Kinships', 'Nations', 'ProteinInteraction', 'RadishRobotMapping', 'Tutorial', 'UMLS', 'UW-CSE', 'WebKB' ] } def load_dataset(name: str) -> dict: return {'name': name, 'source': 'alchemy'}
StarcoderdataPython
1859347
<gh_stars>1-10 #link https://practice.geeksforgeeks.org/problems/common-elements1132/1# class Solution: def commonElements (self,A, B, C, n1, n2, n3): # your code here a=set(A) b=set(B) c=set(C) lena=len(A) lenb = len(B) lenc = len(C) lis=[] for i in a: if (i in b) and (i in c): lis.append(i) lis.sort() return lis #{ # Driver Code Starts #Initial Template for Python 3 t = int (input ()) for tc in range (t): n1, n2, n3 = list(map(int,input().split())) A = list(map(int,input().split())) B = list(map(int,input().split())) C = list(map(int,input().split())) ob = Solution() res = ob.commonElements (A, B, C, n1, n2, n3) if len (res) == 0: print (-1) else: for i in range (len (res)): print (res[i], end=" ") print () # } Driver Code Ends
StarcoderdataPython
9783058
<reponame>OxfordHED/sunbear<filename>sunbear/math/__init__.py """ This module contains functions to calculate first and second derivatives of a numpy.ndarray. The first derivatives are calculated with a central difference scheme while the second derivatives are calculated using the central difference as well. The input size is (n0+2, n1+2, ..., nd1+2) and the output size is (n0, n1, ..., nd1), unless specified. """
StarcoderdataPython
1620945
<gh_stars>0 from pyglet import image import os, sys base = os.getcwd() + "/Assets/" icon = image.load(base + 'icon.png') mario_img = image.load(base + 'mario.png') luigi_img = image.load(base + 'luigi.png')
StarcoderdataPython
3232943
################################################################################### # # Copyright (c) 2017-2019 MuK IT GmbH. # # This file is part of MuK Security # (see https://mukit.at). # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU Lesser General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see <http://www.gnu.org/licenses/>. # ################################################################################### import os import base64 import logging from odoo import exceptions from odoo.tests import common _path = os.path.dirname(os.path.dirname(__file__)) _logger = logging.getLogger(__name__) class AccessGroupsTestCase(common.TransactionCase): def setUp(self): super(AccessGroupsTestCase, self).setUp() self.user_id = self.ref('base.user_demo') self.group_id = self.ref('base.group_system') self.groups = self.env['muk_security.access_groups'] self.group01 = self.groups.create({ 'name': 'Group 01', 'explicit_users': [(6, 0, [self.user_id])]}) self.group02 = self.groups.create({ 'name': 'Group 02', 'groups': [(6, 0, [self.group_id])]}) self.user = self.env['res.users'].browse(self.user_id) self.group = self.env['res.groups'].browse(self.group_id) def tearDown(self): super(AccessGroupsTestCase, self).tearDown() def test_access_groups_users(self): count = len(self.group02.users) self.group02.write({'explicit_users': [(6, 0, [self.user_id])]}) self.assertTrue(len(self.group02.users) > count) def test_access_groups_groups(self): count = len(self.group01.users) self.group01.write({'groups': [(6, 0, [self.group_id])]}) self.assertTrue(len(self.group01.users) > count) def test_access_groups_groups_group(self): count = len(self.group02.users) self.group.write({'users': [(4, self.user_id)]}) self.assertTrue(len(self.group02.users) > count) def test_access_groups_groups_user(self): count = len(self.group02.users) self.user.write({'groups_id':[(4, self.group_id)]}) self.assertTrue(len(self.group02.users) > count) def test_access_groups_parent(self): count = len(self.group02.users) self.group02.write({'parent_group': self.group01.id}) self.assertTrue(len(self.group02.users) > count) def test_access_groups_parent_multi(self): group01 = self.groups.create({'name': 'MGroup 01'}) group02 = self.groups.create({'name': 'MGroup 02', 'parent_group': group01.id}) group03 = self.groups.create({'name': 'MGroup 03', 'parent_group': group02.id}) init_count = len(group03.users) group02.write({'explicit_users': [(6, 0, [self.user_id])]}) self.assertTrue(len(group03.users) > init_count) updated_count = len(group03.users) group01.write({'groups': [(6, 0, [self.group_id])]}) self.assertTrue(len(group03.users) > updated_count)
StarcoderdataPython
4919110
<reponame>majeformation/JD-micro-services<filename>Chapter10/microservices/thoughts_backend/ThoughtsBackend/load_test_data.py from thoughts_backend.app import create_app from thoughts_backend.models import ThoughtModel if __name__ == '__main__': application = create_app(script=True) application.app_context().push() # Create some test data test_data = [ # username, timestamp, text ('bruce', "1962-05-11 09:53:41Z", "A few seconds more and we'll know whether we have " "succeeded or not!"), ('bruce', "1962-05-11 09:58:23Z", "And now, if you'll excuse me, it's time for the final countdown"), ('bruce', "1962-05-11 10:07:13Z", "In a few seconds we will finally learn what happens when the " "powerful gamma rays are released"), ('stephen', "1963-06-11 19:53:41Z", "Naturally! All who come to me are! Speak..."), ('stephen', "1963-06-11 19:58:23Z", "Tonight I shall visit you! I shall find the answer to your dream! " "Now go"), ] for username, timestamp, text in test_data: thought = ThoughtModel(username=username, text=text, timestamp=timestamp) application.db.session.add(thought) application.db.session.commit()
StarcoderdataPython
9741983
import numpy as np import pandas as pd import indicators import config import util import sys from pathlib import Path def get_algo_dataset(choose_set_num: int): """run_set = ['goldman', 'index', '^BVSP', '^TWII', '^IXIC', 'index_sampled'] Returns df_list, date_range, trend_list, stocks """ # Do not change run_set order. The order is hardcoded into below code run_set = ['goldman', 'index', '^BVSP', '^TWII', '^IXIC', 'index_sampled'] choose_set = run_set[choose_set_num] df_list = [] date_range = [] trend_list = [] stocks = [] ### For GS stocks: 'GGSIX', 'GOIIX', 'GIPIX' if choose_set == run_set[0]: # Must be same order stocks = ['GGSIX', 'GOIIX', 'GIPIX'] folder = ['growth', 'growth_income', 'balanced'] for i, stock in enumerate(stocks): df=pd.read_csv('data/goldman/portfolio/{}/{}.csv'.format(folder[i],stock), usecols=config.column_names, parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2016' end = '31/12/2018' # date_range = df_list[0][(df_list[0]['Date'] >= df_list[1].iloc[0]['Date']) & (df_list[0]['Date'] >= df_list[2].iloc[0]['Date'])]['Date'].tolist() date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) ### For Index stocks: '^BVSP', '^TWII', '^IXIC' elif choose_set == run_set[1]: stocks = ['^BVSP', '^TWII', '^IXIC'] high_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^BVSP'), usecols=config.column_names, parse_dates=['Date']) high_risk_df = high_risk_df[high_risk_df['Close'] > 0].reset_index(drop=True) high_risk_df['returns'] = indicators.day_gain(high_risk_df, 'Close').dropna() med_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^TWII'), usecols=config.column_names, parse_dates=['Date']) med_risk_df = med_risk_df[med_risk_df['Close'] > 0].reset_index(drop=True) med_risk_df['returns'] = indicators.day_gain(med_risk_df, 'Close').dropna() low_risk_df = pd.read_csv('data/indexes/{}.csv'.format('^IXIC'), parse_dates=['Date']) # IXIC dates are reversed low_risk_df = low_risk_df.reindex(index=low_risk_df.index[::-1]) low_risk_df = low_risk_df[low_risk_df['Close'] > 0].reset_index(drop=True) low_risk_df['returns'] = indicators.day_gain(low_risk_df, 'Close').dropna() df_list = [high_risk_df, med_risk_df, low_risk_df] start = '1/1/2014' end = '31/12/2018' # date_range = high_risk_df[(high_risk_df['Date'] >= med_risk_df.iloc[0]['Date']) & (high_risk_df['Date'] >= low_risk_df.iloc[0]['Date'])]['Date'].tolist() date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) elif choose_set == run_set[2] or choose_set == run_set[3] or choose_set == run_set[4]: stocks =[] folder ='' if choose_set == run_set[2]: stocks = ['EQTL3.SA', 'ITSA4.SA', 'PETR3.SA'] folder = '^BVSP' elif choose_set==run_set[3]: stocks = ['1326.TW', '2882.TW', '3008.TW'] folder = '^TWII' elif choose_set==run_set[4]: stocks = ['TSLA', 'IBKC', 'FEYE'] folder = '^IXIC' else: print('An error occured in fetching the data for algo stocks.') for stock in stocks: df=pd.read_csv('data/algo/{}/{}.csv'.format(folder,stock), usecols=config.column_names, parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2014' end = '31/12/2018' date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) elif choose_set == run_set[5]: stocks =['^BVSP', '^TWII', '^IXIC'] for stock in stocks: df=pd.read_csv('data/algo/{}/daily_price.csv'.format(stock), parse_dates=['Date']) df = df[df['Close'] > 0].reset_index(drop=True) df['returns'] = indicators.day_gain(df, 'Close').dropna() df_list.append(df) start = '1/1/2014' end = '31/12/2018' date_range = remove_uncommon_dates(df_list) trend_list = util.get_trend_list(stocks, df_list, start=start, end=end) return df_list, date_range, trend_list, stocks def get_algo_results(choose_set_num: int, asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, cal_avg_nav=False): """Returns the change list and final asset value """ change_list = [] average_asset = 0 if cal_avg_nav: if choose_set_num == 0: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [8.0, 8.0, 4.0], [5.0, 6.0, 5.0], [5.0, 2.0, 3.0], [0.22948733470032123, 0.8909251765940478, -0.20656673058505381], [-1.7417846430478365, -0.4628863373977188, 1.5419043896500977], 0.14266550931364091) # [21.0, 6.0, 5.0], [2.0, 2.0, 6.0], [27.0, 12.0, 3.0], [3.125115822639779, -2.561089882241202, -1.4940972093691949], [1.2063367792987396, 1.4663555035726752, -0.2846560129041551], 0.1614246940280476) elif choose_set_num == 1: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [5.0, 5.0, 6.0], [5.0, 6.0, 6.0], [19.0, 5.0, 8.0], [1.8954915289833882, -1.450482294216655, 1.125418440357023], [-2.3676311336976132, -1.8970317071693157, 0.23699516374694385], 0.046795990258734835) [8.0, 14.0, 11.0], [11.0, 11.0, 2.0], [15.0, 10.0, 2.0], [1.363647435463774, 2.716953337278016, -4.324164482875698], [-1.7062595953617727, 2.5105760118208957, -4.060094673509836], 0.07240419552333409) elif choose_set_num == 2: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [4.0, 2.0, 4.0], [4.0, 8.0, 9.0], [6.0, 4.0, 7.0], [0.6078976284270344, 1.2577097768694967, 2.0213163271738006], [-2.566918900257593, 2.90468608230902, -1.7097040021899894], 0.07797085783765784) [3.0, 3.0, 13.0], [11.0, 5.0, 9.0], [8.0, 4.0, 18.0], [0.06083023158629253, 0.5601483772918827, 1.9569019466459423], [-1.3881334364246258, 2.8163651325079524, 0.9492765355184316], 0.15511606897450375) elif choose_set_num == 3: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [3.0, 9.0, 4.0], [4.0, 14.0, 3.0], [2.0, 2.0, 16.0], [0.30059198706758106, 1.0952845039110184, 1.8392867588452613], [2.771352403174757, -1.3669589385046343, -2.3406274217770866], 0.17345428438145236) elif choose_set_num == 4: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [9.0, 7.0, 9.0], [4.0, 3.0, 7.0], [6.0, 5.0, 15.0], [0.9351583394555885, 1.3754760765507819, 2.348134831028588], [-2.471478593919233, 1.379869639191209, 4.95188889034387], 0.1444277817979811) # [8.0, 11.0, 2.0], [6.0, 8.0, 6.0], [7.0, 8.0, 12.0], [1.1255518400058317, -0.36346414388153225, -1.0247284676654485], [-0.6274220138552453, -1.1083765565671055, 0.00449200835519481], 0.13718457807344167) [2.0, 5.0, 11.0], [4.0, 2.0, 2.0], [7.0, 5.0, 5.0], [0.2774502065258735, 0.16677941009065034, -0.45385907412444926], [-0.2098008442952385, 1.289022800463935, 2.003346238448586], 0.15779763053682244) elif choose_set_num == 5: average_asset, asset_list, portfolio_comp = util.cal_portfolio_changed_nav(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [7.0, 12.0, 3.0], [2.0, 7.0, 2.0], [13.0, 3.0, 8.0], [2.522702769828708, -0.5707216899389504, 0.8348229423350395], [-1.7493395408023145, 1.0817636863501934, 0.8232680695157204], 0.1963583867900387) [4.0, 6.0, 3.0], [2.0, 4.0, 7.0], [14.0, 2.0, 5.0], [1.3929077534652725, 0.18393055682065484, 2.6440755858307075], [-1.601189152927202, 1.3377505947800103, -1.9787536808104849], 0.13726920065461523) else: print('ERROR! Wrong choose_set_num') return average_asset, asset_list, portfolio_comp else: if choose_set_num == 0: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [8.0, 8.0, 4.0], [5.0, 6.0, 5.0], [5.0, 2.0, 3.0], [0.22948733470032123, 0.8909251765940478, -0.20656673058505381], [-1.7417846430478365, -0.4628863373977188, 1.5419043896500977], 0.14266550931364091) # [21.0, 6.0, 5.0], [2.0, 2.0, 6.0], [27.0, 12.0, 3.0], [3.125115822639779, -2.561089882241202, -1.4940972093691949], [1.2063367792987396, 1.4663555035726752, -0.2846560129041551], 0.1614246940280476) elif choose_set_num == 1: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [8.0, 6.0, 12.0], [9.0, 5.0, 9.0], [6.0, 12.0, 6.0], [0.9712034471256101, -1.6709072749507035, -1.0777099909032646], [-3.4145406491989023, -0.18272123074956848, -0.7245604433339186], 0.0816132948369838) # [5.0, 5.0, 6.0], [5.0, 6.0, 6.0], [19.0, 5.0, 8.0], [1.8954915289833882, -1.450482294216655, 1.125418440357023], [-2.3676311336976132, -1.8970317071693157, 0.23699516374694385], 0.046795990258734835) [8.0, 14.0, 11.0], [11.0, 11.0, 2.0], [15.0, 10.0, 2.0], [1.363647435463774, 2.716953337278016, -4.324164482875698], [-1.7062595953617727, 2.5105760118208957, -4.060094673509836], 0.07240419552333409) elif choose_set_num == 2: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [4.0, 2.0, 4.0], [4.0, 8.0, 9.0], [6.0, 4.0, 7.0], [0.6078976284270344, 1.2577097768694967, 2.0213163271738006], [-2.566918900257593, 2.90468608230902, -1.7097040021899894], 0.07797085783765784) [3.0, 3.0, 13.0], [11.0, 5.0, 9.0], [8.0, 4.0, 18.0], [0.06083023158629253, 0.5601483772918827, 1.9569019466459423], [-1.3881334364246258, 2.8163651325079524, 0.9492765355184316], 0.15511606897450375) elif choose_set_num == 3: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, [3.0, 9.0, 4.0], [4.0, 14.0, 3.0], [2.0, 2.0, 16.0], [0.30059198706758106, 1.0952845039110184, 1.8392867588452613], [2.771352403174757, -1.3669589385046343, -2.3406274217770866], 0.17345428438145236) elif choose_set_num == 4: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [9.0, 7.0, 9.0], [4.0, 3.0, 7.0], [6.0, 5.0, 15.0], [0.9351583394555885, 1.3754760765507819, 2.348134831028588], [-2.471478593919233, 1.379869639191209, 4.95188889034387], 0.1444277817979811) # [8.0, 11.0, 2.0], [6.0, 8.0, 6.0], [7.0, 8.0, 12.0], [1.1255518400058317, -0.36346414388153225, -1.0247284676654485], [-0.6274220138552453, -1.1083765565671055, 0.00449200835519481], 0.13718457807344167) [2.0, 5.0, 11.0], [4.0, 2.0, 2.0], [7.0, 5.0, 5.0], [0.2774502065258735, 0.16677941009065034, -0.45385907412444926], [-0.2098008442952385, 1.289022800463935, 2.003346238448586], 0.15779763053682244) elif choose_set_num == 5: change_list, asset_list, portfolio_comp = util.cal_portfolio_comp_fitness(asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list, # [7.0, 12.0, 3.0], [2.0, 7.0, 2.0], [13.0, 3.0, 8.0], [2.522702769828708, -0.5707216899389504, 0.8348229423350395], [-1.7493395408023145, 1.0817636863501934, 0.8232680695157204], 0.1963583867900387) [4.0, 6.0, 3.0], [2.0, 4.0, 7.0], [14.0, 2.0, 5.0], [1.3929077534652725, 0.18393055682065484, 2.6440755858307075], [-1.601189152927202, 1.3377505947800103, -1.9787536808104849], 0.13726920065461523) else: print('ERROR! Wrong choose_set_num') return change_list, asset_list, portfolio_comp def gen_algo_data(run_set: list, choose_set_num: int, save_algo_data=False, save_passive=False, save_sub_folder='', is_rl_data=False, base_rates=[], portfolio_comp=[]): df_list, date_range, trend_list, stocks = util.get_algo_dataset(choose_set_num) # this is an afterthought if base_rates == []: base_rates = [0.2, 0.2, 0.2] if portfolio_comp == []: portfolio_comp = [base_rates[i] + [0.4/3, 0.4/3, 0.4/3][i] for i in range(len(base_rates))] asset_list = [100000, 100000, 100000] change_list = [] # print('Initial portfolio composition: {}'.format(portfolio_comp)) change_list,_,_ = util.get_algo_results(choose_set_num, asset_list, base_rates, portfolio_comp, df_list, date_range, trend_list) print('Reallocated {} times'.format(len([i for i in change_list if i[0]]))) # print([i[1] for i in change_list if i[0]]) nav_daily_dates_list = [] nav_daily_composition_list = [[], [], []] nav_daily_net_list = [] daily_price_list = [] asset_list = [100000, 100000, 100000] nav_daily_adjust_list = [i[0] for i in change_list] j = 0 last_trade_date = date_range[0] for date in date_range: # Generate daily NAV value for visualisation high_risk_date = df_list[0][df_list[0]['Date'] == date] med_risk_date = df_list[1][df_list[1]['Date'] == date] low_risk_date = df_list[2][df_list[2]['Date'] == date] if not (high_risk_date.empty or med_risk_date.empty or low_risk_date.empty): current_nav_list = [] if not change_list[j][0]: for i in range(len(portfolio_comp)): previous_close_price = df_list[i][df_list[i]['Date'] == last_trade_date]['Close'].values[0] current_close_price = df_list[i][df_list[i]['Date'] == date]['Close'].values[0] current_nav_list.append(asset_list[i] * current_close_price / previous_close_price) else: for i in range(len(portfolio_comp)): asset_list[i] = change_list[j][1][i] current_nav_list.append(asset_list[i]) last_trade_date = change_list[j][2] nav_daily_dates_list.append(date) for i in range(len(portfolio_comp)): nav_daily_composition_list[i].append(current_nav_list[i]) daily_price_list.append(sum(current_nav_list)/300000 *100) nav_daily_net_list.append(sum(current_nav_list)) j+=1 # Note that we are using the Laspeyres Price Index for calculation daily_price_df = pd.DataFrame({'Date': nav_daily_dates_list, 'Close': daily_price_list}) daily_df = pd.DataFrame({'Date': nav_daily_dates_list,\ stocks[0]: nav_daily_composition_list[0],\ stocks[1]: nav_daily_composition_list[1],\ stocks[2]: nav_daily_composition_list[2],\ 'Net': nav_daily_net_list,\ 'Adjusted': nav_daily_adjust_list}) # Generate quarterly NAV returns for visualisation quarterly_df = util.cal_fitness_with_quarterly_returns(daily_df, [], price_col='Net') # Generate passive NAV returns for comparison (buy and hold) # assets are all 300000 to be able to compare to algo asset_list = [300000, 300000, 300000] last_date = nav_daily_dates_list[0] passive_nav_daily_composition_list = [[],[],[]] for date in nav_daily_dates_list: for i in range(len(stocks)): previous_close_price = df_list[i][df_list[i]['Date'] == last_date]['Close'].values[0] current_close_price = df_list[i][df_list[i]['Date'] == date]['Close'].values[0] asset_list[i] = asset_list[i] * current_close_price / previous_close_price passive_nav_daily_composition_list[i].append(asset_list[i]) last_date = date passive_daily_df = pd.DataFrame({'Date': nav_daily_dates_list,\ stocks[0]: passive_nav_daily_composition_list[0],\ stocks[1]: passive_nav_daily_composition_list[1],\ stocks[2]: passive_nav_daily_composition_list[2]}) passive_quarterly_df = pd.DataFrame() for i in range(len(stocks)): if i == 0: passive_quarterly_df = util.cal_fitness_with_quarterly_returns(passive_daily_df, [], price_col=stocks[i]) passive_quarterly_df = passive_quarterly_df.rename(columns={"quarterly_return": stocks[i]}) else: passive_quarterly_df[stocks[i]] = util.cal_fitness_with_quarterly_returns(passive_daily_df, [], price_col=stocks[i])['quarterly_return'] # print(passive_quarterly_df) # Print some quarterly difference statistics for symbol in stocks: difference = quarterly_df['quarterly_return'].values - passive_quarterly_df[symbol].values # print('Stock {}: {}'.format(symbol, difference)) print('Stock {} total return difference = {}'.format(symbol,sum(difference))) # cvar = 0 # for symbol in stocks: # composition = daily_df[symbol].iloc[-1]/daily_df['Net'].iloc[-1] # cvar_value = util.cvar_percent(daily_df, len(daily_df)-1, len(daily_df)-1, price_col=symbol) * composition # print(cvar_value) # cvar += abs(cvar_value) # print('Portfolio cvar = {}'.format(cvar)) for symbol in stocks: symbol_cvar = abs(util.cvar_percent(passive_daily_df, len(passive_daily_df)-1, len(passive_daily_df)-1, price_col=symbol)) print('Stock cvar {}: {}'.format(symbol, symbol_cvar)) # print('Stock {} cvar difference = {}'.format(symbol, cvar - symbol_cvar)) path_str = '' if is_rl_data: path_str = 'data/rl/{}'.format(run_set[choose_set_num]) path = Path(path_str) path.mkdir(parents=True, exist_ok=True) else: path_str = 'data/algo/{}'.format(run_set[choose_set_num]) path = Path(path_str) path.mkdir(parents=True, exist_ok=True) path = Path(f'{path_str}/{save_sub_folder}') path.mkdir(parents=True, exist_ok=True) if save_passive: passive_daily_df.to_csv(f'{path_str}/{save_sub_folder}passive_daily_nav.csv') passive_quarterly_df.to_csv(f'{path_str}/{save_sub_folder}passive_quarterly_nav_return.csv') print('Passive data saved for {}'.format(run_set[choose_set_num])) if save_algo_data: daily_df.to_csv(f'{path_str}/{save_sub_folder}daily_nav.csv') quarterly_df.to_csv(f'{path_str}/{save_sub_folder}quarterly_nav_return.csv') daily_price_df.to_csv(f'{path_str}/{save_sub_folder}daily_price.csv') print('Data saved for {}'.format(run_set[choose_set_num])) def remove_uncommon_dates(df_list): date_range = [] # temp_date_range = df_list[0][(df_list[0]['Date'] >= df_list[1].iloc[0]['Date']) & (df_list[0]['Date'] >= df_list[2].iloc[0]['Date'])]['Date'].tolist() for date in df_list[0]['Date']: empty = 0 for df in df_list: temp_df = df[df['Date'] == date] if temp_df.empty: empty +=1 if empty == 0: date_range.append(date) return date_range
StarcoderdataPython
8155247
<gh_stars>1-10 """ # SORT COLORS Given an array nums with n objects colored red, white, or blue, sort them in-place so that objects of the same color are adjacent, with the colors in the order red, white, and blue. Here, we will use the integers 0, 1, and 2 to represent the color red, white, and blue respectively. Follow up: Could you solve this problem without using the library's sort function? Could you come up with a one-pass algorithm using only O(1) constant space? Example 1: Input: nums = [2,0,2,1,1,0] Output: [0,0,1,1,2,2] Example 2: Input: nums = [2,0,1] Output: [0,1,2] Example 3: Input: nums = [0] Output: [0] Example 4: Input: nums = [1] Output: [1] Constraints: n == nums.length 1 <= n <= 300 nums[i] is 0, 1, or 2. """ def sortColors(nums) -> None: """ Do not return anything, modify nums in-place instead. """ dic = {0: 0, 1: 0, 2: 0} for x in nums: if x == 0: dic[0] += 1 elif x == 1: dic[1] += 1 else: dic[2] += 1 nums.clear() nums.extend([0 for _ in range(dic[0])]) nums.extend([1 for _ in range(dic[1])]) nums.extend(2 for _ in range(dic[2]))
StarcoderdataPython
12824328
<gh_stars>1-10 r=6 pi=3.14 volume=(4*pi*6**3)/3 print("Volume of sphere=",volume)
StarcoderdataPython
1737255
import unittest import tempfile import textwrap import six import conan.tools.qbs.qbstoolchain as qbs from conans import tools from conans.errors import ConanException from conans.test.utils.mocks import MockConanfile, MockSettings, MockOptions class RunnerMock(object): class Expectation(object): def __init__(self, return_ok=True, output=None): self.return_ok = return_ok if six.PY2 and output: output = output.decode("utf-8") self.output = output def __init__(self, expectations=None): self.command_called = [] self.expectations = expectations or [RunnerMock.Expectation()] def __call__(self, command, output, win_bash=False, subsystem=None): self.command_called.append(command) self.win_bash = win_bash self.subsystem = subsystem if not self.expectations: return 1 expectation = self.expectations.pop(0) if expectation.output and output and hasattr(output, 'write'): output.write(expectation.output) return 0 if expectation.return_ok else 1 class MockConanfileWithFolders(MockConanfile): install_folder = tempfile.mkdtemp() def __del__(self): tools.rmdir(self.install_folder) def run(self, *args, **kwargs): if self.runner: if 'output' not in kwargs: kwargs['output'] = None self.runner(*args, **kwargs) class QbsGenericTest(unittest.TestCase): def test_convert_bool(self): self.assertEqual(qbs._bool(True), 'true') self.assertEqual(qbs._bool(False), 'false') def test_convert_build_variant(self): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc'})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._build_variant, None) for build_type, build_variant in qbs._build_variant.items(): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc', 'build_type': build_type})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._build_variant, build_variant) def test_convert_architecture(self): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc'})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._architecture, None) for arch, architecture in qbs._architecture.items(): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc', 'arch': arch})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._architecture, architecture) def test_convert_optimization(self): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc'})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._optimization, None) for build_type, optimization in qbs._optimization.items(): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc', 'build_type': build_type})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._optimization, optimization) def test_use_sysroot_from_env(self): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc'})) sysroot = '/path/to/sysroot/foo/bar' with tools.environment_append({'SYSROOT': sysroot}): qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._sysroot, sysroot) def test_detect_fpic_from_options(self): f_pic = { True: 'true', False: 'false', None: None } for option, value in f_pic.items(): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc' }), MockOptions({ 'fPIC': option })) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._position_independent_code, value) def test_convert_cxx_language_version(self): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc'})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._cxx_language_version, None) conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc', 'compiler.cppstd': 17})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._cxx_language_version, 'c++17') for cppstd, cxx_language_version in qbs._cxx_language_version.items(): conanfile = MockConanfileWithFolders(MockSettings({ 'os': 'Linux', 'compiler': 'gcc', 'compiler.cppstd': cppstd})) qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain._cxx_language_version, cxx_language_version) def test_split_env_var_into_list(self): env_var_list = ['-p1', '-p2', '-p3_with_value=13', '-p_with_space1="hello world"', '"-p_with_space2=Hello World"'] expected_list = ['-p1', '-p2', '-p3_with_value=13', '-p_with_space1=hello world', '-p_with_space2=Hello World'] env_var = ' '.join(env_var_list) self.assertEqual(qbs._env_var_to_list(env_var), expected_list) def test_compiler_not_in_settings(self): conanfile = MockConanfile(MockSettings({})) with self.assertRaises(ConanException): qbs._check_for_compiler(conanfile) def test_compiler_in_settings_not_supported(self): conanfile = MockConanfile( MockSettings({'compiler': 'not realy a compiler name'})) with self.assertRaises(ConanException): qbs._check_for_compiler(conanfile) def test_valid_compiler(self): supported_compilers = ['Visual Studio', 'gcc', 'clang'] for compiler in supported_compilers: conanfile = MockConanfile(MockSettings({'compiler': compiler})) qbs._check_for_compiler(conanfile) @staticmethod def _settings_to_test_against(): return [ {'os': 'Windows', 'compiler': 'gcc', 'compiler.version': '6', 'qbs_compiler': 'mingw'}, {'os': 'Windows', 'compiler': 'clang', 'compiler.version': '3.9', 'qbs_compiler': 'clang-cl'}, {'os': 'Windows', 'compiler': 'Visual Studio', 'compiler.version': '15', 'qbs_compiler': 'cl'}, {'os': 'Windows', 'compiler': 'Visual Studio', 'compiler.version': '15', 'compiler.toolset': 'ClangCL', 'qbs_compiler': 'clang-cl'}, {'os': 'Linux', 'compiler': 'gcc', 'compiler.version': '6', 'qbs_compiler': 'gcc'}, {'os': 'Linux', 'compiler': 'clang', 'compiler.version': '3.9', 'qbs_compiler': 'clang'} ] def test_convert_compiler_name_to_qbs_compiler_name(self): for settings in self._settings_to_test_against(): def expected(): return settings['qbs_compiler'] conanfile = MockConanfile(MockSettings(settings)) self.assertEqual(qbs._default_compiler_name(conanfile), expected()) def test_settings_dir_location(self): conanfile = MockConanfileWithFolders(MockSettings({})) self.assertEqual( qbs._settings_dir(conanfile), '%s/conan_qbs_toolchain_settings_dir' % conanfile.install_folder) def test_setup_toolchain_without_any_env_values(self): for settings in self._settings_to_test_against(): conanfile = MockConanfileWithFolders(MockSettings(settings), runner=RunnerMock()) qbs._setup_toolchains(conanfile) self.assertEqual(len(conanfile.runner.command_called), 1) self.assertEqual( conanfile.runner.command_called[0], 'qbs-setup-toolchains --settings-dir "%s" %s %s' % ( qbs._settings_dir(conanfile), settings['qbs_compiler'], qbs._profile_name)) def test_setup_toolchain_with_compiler_from_env(self): compiler = 'compiler_from_env' for settings in self._settings_to_test_against(): conanfile = MockConanfileWithFolders(MockSettings(settings), runner=RunnerMock()) with tools.environment_append({'CC': compiler}): qbs._setup_toolchains(conanfile) self.assertEqual(len(conanfile.runner.command_called), 1) self.assertEqual( conanfile.runner.command_called[0], 'qbs-setup-toolchains --settings-dir "%s" %s %s' % ( qbs._settings_dir(conanfile), compiler, qbs._profile_name)) def test_linker_flags_parser(self): test_data_ld_flags = { '-Wl,flag1': ([], ['flag1']), '-Wl,flag1,flag2': ([], ['flag1', 'flag2']), '-Wl,flag1 -Wl,flag2': ([], ['flag1', 'flag2']), '-dFlag1': (['-dFlag1'], []), '-dFlag1 -dFlag2': (['-dFlag1', '-dFlag2'], []), '-Wl,flag1 -dFlag1': (['-dFlag1'], ['flag1']), '-Wl,flag1,flag2 -dFlag1': (['-dFlag1'], ['flag1', 'flag2']), '-Wl,flag1,flag2 -dFlag1 -Wl,flag3 -dFlag2 -dFlag3 -Wl,flag4,flag5': (['-dFlag1', '-dFlag2', '-dFlag3'], ['flag1', 'flag2', 'flag3', 'flag4', 'flag5']), } for ld_flags, expected in test_data_ld_flags.items(): driver_linker_flags, linker_flags = expected parser = qbs.LinkerFlagsParser(qbs._env_var_to_list(ld_flags)) self.assertEqual(parser.driver_linker_flags, driver_linker_flags) self.assertEqual(parser.linker_flags, linker_flags) @staticmethod def _generate_flags(flag, qbs_key): return {'env': ('-{0}1 -{0}2 -{0}3_with_value=13 ' '-{0}_with_space="hello world"').format(flag), 'qbs_value': ("['-{0}1', '-{0}2', '-{0}3_with_value=13', " "'-{0}_with_space=hello world']").format(flag), 'qbs_key': qbs_key} def test_flags_from_env(self): asm = self._generate_flags('asm', 'assemblerFlags') c = self._generate_flags('c', 'cFlags') cpp = self._generate_flags('cpp', 'cppFlags') cxx = self._generate_flags('cxx', 'cxxFlags') wl = self._generate_flags('Wl,', 'linkerFlags') ld = self._generate_flags('ld', 'driverLinkerFlags') env = { 'ASFLAGS': asm['env'], 'CFLAGS': c['env'], 'CPPFLAGS': cpp['env'], 'CXXFLAGS': cxx['env'], 'LDFLAGS': '%s %s' % (wl['env'], ld['env']) } print(env) with tools.environment_append(env): flags_from_env = qbs._flags_from_env() expected_flags = { 'cpp.'+asm['qbs_key']: asm['qbs_value'], 'cpp.'+c['qbs_key']: c['qbs_value'], 'cpp.'+cpp['qbs_key']: cpp['qbs_value'], 'cpp.'+cxx['qbs_key']: cxx['qbs_value'], 'cpp.'+wl['qbs_key']: wl['qbs_value'].replace('-Wl,', ''), 'cpp.'+ld['qbs_key']: ld['qbs_value'] } self.assertEqual(flags_from_env, expected_flags) @staticmethod def _generate_qbs_config_output(): return textwrap.dedent('''\ profiles.conan.cpp.cCompilerName: "gcc" profiles.conan.cpp.compilerName: "g++" profiles.conan.cpp.cxxCompilerName: "g++" profiles.conan.cpp.driverFlags: \ ["-march=armv7e-m", "-mtune=cortex-m4", "--specs=nosys.specs"] profiles.conan.cpp.platformCommonCompilerFlags: undefined profiles.conan.cpp.platformLinkerFlags: undefined profiles.conan.cpp.toolchainInstallPath: "/usr/bin" profiles.conan.cpp.toolchainPrefix: "arm-none-eabi-" profiles.conan.qbs.targetPlatform: "" profiles.conan.qbs.someBoolProp: "true" profiles.conan.qbs.someIntProp: "13" profiles.conan.qbs.toolchain: ["gcc"] ''') def test_read_qbs_toolchain_from_qbs_config_output(self): expected_config = { 'cpp.cCompilerName': '"gcc"', 'cpp.compilerName': '"g++"', 'cpp.cxxCompilerName': '"g++"', 'cpp.driverFlags': '["-march=armv7e-m", "-mtune=cortex-m4", "--specs=nosys.specs"]', 'cpp.platformCommonCompilerFlags': 'undefined', 'cpp.platformLinkerFlags': 'undefined', 'cpp.toolchainInstallPath': '"/usr/bin"', 'cpp.toolchainPrefix': '"arm-none-eabi-"', 'qbs.targetPlatform': '""', 'qbs.someBoolProp': 'true', 'qbs.someIntProp': '13', 'qbs.toolchain': '["gcc"]' } conanfile = MockConanfileWithFolders( MockSettings({}), runner=RunnerMock( expectations=[RunnerMock.Expectation( output=self._generate_qbs_config_output())])) config = qbs._read_qbs_toolchain_from_config(conanfile) self.assertEqual(len(conanfile.runner.command_called), 1) self.assertEqual(conanfile.runner.command_called[0], 'qbs-config --settings-dir "%s" --list' % ( qbs._settings_dir(conanfile))) self.assertEqual(config, expected_config) @unittest.skipIf(six.PY2, "Order of qbs output is defined only for PY3") def test_toolchain_content(self): expected_content = textwrap.dedent('''\ import qbs Project { Profile { name: "conan_toolchain_profile" /* detected via qbs-setup-toolchains */ cpp.cCompilerName: "gcc" cpp.compilerName: "g++" cpp.cxxCompilerName: "g++" cpp.driverFlags: ["-march=armv7e-m", "-mtune=cortex-m4", "--specs=nosys.specs"] cpp.platformCommonCompilerFlags: undefined cpp.platformLinkerFlags: undefined cpp.toolchainInstallPath: "/usr/bin" cpp.toolchainPrefix: "arm-none-eabi-" qbs.targetPlatform: "" qbs.someBoolProp: true qbs.someIntProp: 13 qbs.toolchain: ["gcc"] /* deduced from environment */ qbs.sysroot: "/foo/bar/path" /* conan settings */ qbs.buildVariant: "release" qbs.architecture: "x86_64" qbs.optimization: "small" cpp.cxxLanguageVersion: "c++17" /* package options */ cpp.positionIndependentCode: true } }''') conanfile = MockConanfileWithFolders( MockSettings({ 'compiler': 'gcc', 'compiler.cppstd': 17, 'os': 'Linux', 'build_type': 'MinSizeRel', 'arch': 'x86_64' }), options=MockOptions({ 'fPIC': True }), runner=RunnerMock( expectations=[ RunnerMock.Expectation(), RunnerMock.Expectation( output=self._generate_qbs_config_output()), ])) with tools.environment_append({'SYSROOT': '/foo/bar/path'}): qbs_toolchain = qbs.QbsToolchain(conanfile) self.assertEqual(qbs_toolchain.content, expected_content)
StarcoderdataPython
5128027
<reponame>jtauber/online-reader from pysblgnt import morphgnt_rows from . import ref def rows_for_verse(verse): book_num, chapter_num, verse_num = verse.tup rows = [] for row in morphgnt_rows(book_num): c = int(row["bcv"][2:4]) v = int(row["bcv"][4:6]) if (c, v) == (chapter_num, verse_num): rows.append(row) return rows def rows_by_verses_for_chapter(chapter): book_num, chapter_num = chapter.tup last_verse = 0 verses = [] rows = None for row in morphgnt_rows(book_num): c = int(row["bcv"][2:4]) v = int(row["bcv"][4:6]) if c == chapter_num: if v != last_verse: if rows: verses.append(rows) rows = (chapter.verse(v), []) last_verse = v rows[1].append(row) verses.append(rows) return verses def rows_by_verses_by_chapters_for_book(book_num): last_chapter = 0 chapters = [] verses = None rows = None for row in morphgnt_rows(book_num): c = int(row["bcv"][2:4]) v = int(row["bcv"][4:6]) if c != last_chapter: if verses: verses[1].append(rows) chapters.append(verses) chapter = ref.Chapter(book_num, c) verses = (chapter, []) rows = None last_chapter = c last_verse = 0 if v != last_verse: if rows: verses[1].append(rows) rows = (chapter.verse(v), []) last_verse = v rows[1].append(row) verses[1].append(rows) chapters.append(verses) return chapters def before(row): word = row["word"] text = row["text"] return text[:text.index(word)] def after(row): word = row["word"] text = row["text"] return text[text.index(word) + len(word):] def pos(row): return row["ccat-pos"].strip("-") def parse(row): if row["ccat-parse"][3] == "-": return row["ccat-parse"][4:].strip("-") elif row["ccat-parse"][3] == "N": return row["ccat-parse"][1:4] elif row["ccat-parse"][3] == "P": return row["ccat-parse"][1:4] + "." + row["ccat-parse"][4:7] elif row["ccat-parse"][3] in "DISO": return row["ccat-parse"][1:4] + "." + row["ccat-parse"][0] + row["ccat-parse"][5] def render_pos(row): return { "RA": "article", "A-": "adjective", "N-": "noun", "C-": "conjunction", "RP": "personal pronoun", "RR": "relative pronoun", "V-": "verb", "P-": "preposition", "D-": "adverb", "RD": "demonstrative", "RI": "interogative/indefinite pronoun", "X-": "particle", "I-": "interjection", }[row["ccat-pos"]] def render_person(row): return { "1": "1st person", "2": "2nd person", "3": "3rd person", }[row["ccat-parse"][0]] def render_tense(row): return { "P": "present", "F": "future", "A": "aorist", "X": "perfect", "Y": "pluperfect", "I": "imperfect", }[row["ccat-parse"][1]] def render_voice(row): return { "A": "active", "M": "middle", "P": "passive", }[row["ccat-parse"][2]] def render_mood(row): return { "I": "indicative", "S": "subjunctive", "D": "imperative", "O": "optative", }[row["ccat-parse"][3]] def render_case(row): return { "N": "nominative", "A": "accusative", "G": "genitive", "D": "dative", "V": "vocative", "-": "", }[row["ccat-parse"][4]] def render_number(row): return { "S": "singular", "P": "plural", "-": "", }[row["ccat-parse"][5]] def render_gender(row): return { "M": "masculine", "F": "feminine", "N": "neuter", "-": "", }[row["ccat-parse"][6]] def render_degree(row): return { "C": "comparative", "S": "superlative", "-": "", }[row["ccat-parse"][7]] def render_parse(row): parse = [] if row["ccat-pos"] == "V-": if row["ccat-parse"][3] == "P": parse.append(render_tense(row)) parse.append(render_voice(row)) parse.append("participle") parse.append(render_case(row)) parse.append(render_number(row)) parse.append(render_gender(row)) elif row["ccat-parse"][3] == "N": parse.append(render_tense(row)) parse.append(render_voice(row)) parse.append("infinitive") else: parse.append(render_tense(row)) parse.append(render_voice(row)) parse.append(render_mood(row)) parse.append(render_person(row)) parse.append(render_number(row)) else: parse.append(render_case(row)) parse.append(render_number(row)) parse.append(render_gender(row)) parse.append(render_degree(row)) return " ".join(parse).strip()
StarcoderdataPython
9786613
x = input() s = input() print(s.replace(x, ''))
StarcoderdataPython
6665025
import base64 import io import mimetypes from datetime import datetime import pytz from PIL import Image from boto.s3.connection import S3Connection from boto.s3.key import Key from django.conf import settings from django.contrib.gis.geos import Point from django.forms.models import model_to_dict from django.shortcuts import get_object_or_404 from django.utils import timezone from rest_framework import status from rest_framework.authentication import SessionAuthentication, BasicAuthentication from rest_framework.parsers import MultiPartParser from rest_framework.permissions import IsAdminUser from rest_framework.response import Response from rest_framework.views import APIView from taiwan.models import Substitute from .models import Source tw_tz = pytz.timezone('Asia/Taipei') class CsrfExemptSessionAuthentication(SessionAuthentication): def enforce_csrf(self, request): return def photo_to_s3(user_uuid, source_uuid, photo_obj): photo_name = photo_obj._name photo_content = photo_obj.read() photo_mime = mimetypes.guess_type(photo_name)[0] if 'image' not in photo_mime: return "" # Upload to S3 photo_type = photo_name.split('.')[-1] conn = S3Connection(settings.AWS_ACCESS_KEY, settings.AWS_SECRET_KEY) bucket = conn.get_bucket('dengue-backend') k = Key(bucket) k.key = 'breeding_source/' + user_uuid + '_' + source_uuid + '.' + photo_type k.set_metadata("Content-Type", photo_mime) k.set_contents_from_string(photo_content) k.set_acl("public-read") # Compress Photo photo_bytesio = io.BytesIO(photo_content) photo_image_obj = Image.open(photo_bytesio) photo_size_x, photo_size_y = photo_image_obj.size photo_image_obj = photo_image_obj.resize( (int(photo_size_x/3*2), int(photo_size_y/3*2)), Image.ANTIALIAS) compress_bytesio = io.BytesIO() photo_image_obj.save(compress_bytesio, format=photo_mime.split('/')[1], optimize=True, quality=95) # photo_image_obj.save('test.jpg', # format=photo_mime.split('/')[1], # optimize=True, # quality=95) compress_bytesio = compress_bytesio.getvalue() return compress_bytesio, k.generate_url(expires_in=0, query_auth=False) class SourceCollection(APIView): parser_classes = (MultiPartParser,) def post(self, request): userprofile = request.user.userprofile photo_obj = request.data.get('photo', '') source_type = request.data.get('source_type', '') lng = request.data.get('lng', 0) lat = request.data.get('lat', 0) address = request.data.get('address', '') modified_address = request.data.get('modified_address', '') description = request.data.get('description', '') if photo_obj == '' or source_type == '' or lng == 0 or lat == 0: return Response({"detail": "請填寫完整孳生源資料"}, status=status.HTTP_406_NOT_ACCEPTABLE) try: source_point = Point(float(lng), float(lat), srid=4326) substitute = Substitute.objects.filter(mpoly__intersects=source_point)[0] except Exception: return Response({"detail": "經緯度錯誤"}, status=status.HTTP_406_NOT_ACCEPTABLE) breeding_source = Source(userprofile=userprofile) photo_content, photo_url = photo_to_s3(userprofile.user_uuid, \ str(breeding_source.source_uuid), \ photo_obj) if photo_url == "": return Response({"detail": "照片上傳錯誤"}, status=status.HTTP_406_NOT_ACCEPTABLE) photo_base64 = base64.b64encode(photo_content) breeding_source.photo_url = photo_url breeding_source.photo_base64 = photo_base64 breeding_source.source_type = source_type breeding_source.lng = lng breeding_source.lat = lat breeding_source.address = address breeding_source.modified_address = modified_address breeding_source.village_name = substitute.v_name breeding_source.description = description breeding_source.save() return Response(status=status.HTTP_201_CREATED) def get(self, request): qualified_status = request.GET.get('qualified_status', '') before_timestamp = request.GET.get('before_timestamp', '') limit = request.GET.get('limit', 10) if qualified_status == '': qualified_status = ['待審核', '已通過', '未通過'] else: qualified_status = qualified_status.split(',') try: before_timestamp = datetime.fromtimestamp(float(before_timestamp)) except Exception: before_timestamp = timezone.now() try: limit = int(limit) except Exception: limit = 10 source_filter = Source.objects.filter( userprofile=request.user.userprofile, qualified_status__in=qualified_status, created_at__lt=before_timestamp).order_by('-updated_at')[:limit] res_data = list() for source in source_filter: source_dict = model_to_dict(source, exclude=\ ['userprofile', 'created_at', 'updated_at', 'location']) source_dict['created_at'] = str(source.created_at.astimezone(tw_tz)) source_dict['timestamp'] = str(source.created_at.astimezone(tw_tz).timestamp()) res_data.append(source_dict) return Response(res_data, status=status.HTTP_200_OK) class SourceTotal(APIView): def get(self, request): qualified_status = request.GET.get('qualified_status', '') if qualified_status == '': qualified_status = ['待審核', '已通過', '未通過'] else: qualified_status = qualified_status.split(',') total = Source.objects.filter( userprofile=request.user.userprofile, qualified_status__in=qualified_status).count() res_data = {'total': total} return Response(res_data, status=status.HTTP_200_OK) class AdminSourceCollection(APIView): if settings.DEBUG == "False": authentication_classes = (SessionAuthentication, BasicAuthentication) else: authentication_classes = (CsrfExemptSessionAuthentication, BasicAuthentication) permission_classes = (IsAdminUser,) def get(self, request): phone = request.GET.get('phone', '') if phone == '': source = Source.objects.filter(qualified_status="待審核").order_by('?')[0] else: try: source = Source.objects.filter( userprofile__phone=phone, qualified_status="待審核" ).order_by('?')[0] except Exception: return Response([], status=status.HTTP_200_OK) source_filter = Source.objects.filter(userprofile=source.userprofile, qualified_status="待審核") res_data = list() for source in source_filter: source_dict = model_to_dict(source, fields=['photo_url']) source_dict['source_uuid'] = str(source.source_uuid) res_data.append(source_dict) return Response(res_data, status=status.HTTP_200_OK) def put(self, request): breeding_source_list = request.data.get('breeding_source_list', list()) for source_dict in breeding_source_list: source = get_object_or_404(Source, source_uuid=source_dict['source_uuid']) source.qualified_status = source_dict['qualified_status'] source.save() return Response(status=status.HTTP_200_OK)
StarcoderdataPython
6656627
<reponame>yakomaxa/micanpymol import subprocess import tempfile import os def mican(mobile, target, option=""): #make temporary dir and do everything there with tempfile.TemporaryDirectory() as dname: # print tmp dir name print("Temporary directory =" + dname) # make sure you have mican in PATH # directly giving 'execute' full path below is good alternative # For example : execute = "/usr/bin/mican" execute = "mican" tmptarget = dname + "/target.pdb" tmpmobile = dname + "/mobile.pdb" tmpout = dname + "/aligned.pdb" # save pdb for mican pymol.cmd.save(tmptarget, target) pymol.cmd.save(tmpmobile, mobile) modeoption = "-" + option option2 = "-o" outfile = tmpout mican = [execute, tmpmobile, tmptarget, option2, outfile] for op in option.split(): if(op == "-o"): print("option -o is reserved") raise CmdException mican.append(op) proc=subprocess.run(mican,stdout = subprocess.PIPE) print(proc.stdout.decode("utf8")) # print result to pymol console pymol.cmd.load(outfile, "aligned") pymol.cmd.split_states("aligned") pymol.cmd.select("mobileback",mobile + " and backbone") pymol.cmd.align("mobileback", "aligned_0001 and backbone") # use cmd pair_fit if you think align is not good # print("Using cmd.align instead of cmd.pair_fit") # pymol.cmd.pair_fit("mobileback", "aligned_0001 and backbone") pymol.cmd.delete("mobileback") pymol.cmd.delete("aligned") pymol.cmd.delete("aligned_0001") pymol.cmd.delete("aligned_0002") # pymol.cmd.quit() pymol.cmd.extend("mican", mican) cmd.auto_arg[0]['mican'] = cmd.auto_arg[0]['align'] cmd.auto_arg[1]['mican'] = cmd.auto_arg[1]['align']
StarcoderdataPython
6508147
#!/usr/bin/python from __future__ import print_function import magic import sys import argparse def detect_dicom(argv=None): parser = argparse.ArgumentParser() parser.add_argument('filenames', nargs='*', help='Filenames to check') args = parser.parse_args(argv) dicom_files = [] for filename in args.filenames: if magic.from_file(filename,mime=True) == 'application/dicom': dicom_files.append(filename) if dicom_files: for dicom_file in dicom_files: print('DICOM file found: {}'.format(dicom_file)) sys.exit(1) sys.exit(0) if __name__ == '__main__': detect_dicom()
StarcoderdataPython
1920603
<gh_stars>0 #!/usr/bin/env python from __future__ import print_function import six from werkzeug.security import check_password_hash, generate_password_hash if __name__ == '__main__': password = six.moves.input("password: ") password_hash = generate_password_hash(password) password = six.moves.input("verify: ") if check_password_hash(password_hash, password): print(password_hash) else: print("Failure!")
StarcoderdataPython
1887221
#!/usr/bin/env python # ############################# # # GO stone camera detection # # ############################# # # Licensed under MIT License (MIT) # # Copyright (c) 2018 <NAME> | <EMAIL> # # Permission is hereby granted, free of charge, to any person obtaining # a copy of this software and associated documentation files (the # "Software"), to deal in the Software without restriction, including # without limitation the rights to use, copy, modify, merge, publish, # distribute, sublicense, and/or sell copies of the Software, and to permit # persons to whom the Software is furnished to do so, subject to # the following conditions: # # The above copyright notice and this permission notice shall be # included in all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS # OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL # THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER # DEALINGS IN THE SOFTWARE. import os, sys from multiprocessing import Process, Manager, Value, Array from multiprocessing import Pool, Array, Process from threading import Thread my_file = os.path.abspath(__file__) my_path ='/'.join(my_file.split('/')[0:-1]) sys.path.insert(0,my_path + "/libs" ) sys.path.insert(0,my_path + "/libs/opencv" ) # import the necessary packages from picamera.array import PiRGBArray from picamera import PiCamera import time import cv2 class CameraStoneDetection(): _showImage = True _camera = None _rawCapture = None _stream = None _cascadeBlack = None _cascadeWhite = None _useGrayscale = True; __cameraResolutionX = 640*2 __cameraResolutionY = 480*2 _windowName = "iGoBot camera"; RectsBlack = []; RectsWhite = []; _counter = 0; _process = None _released = False # define settings of brightness and contrast _settings = [[50,50],[50,30],[50,80],[60,30],[60,50],[60,80],[70,50]]; def __init__(self): print("camera init") self.posXFace = -1 self.posYFace = -1 self.InitCamera() #thread = Thread(target=self._update, args=()) #thread.nice = -20 # -20 high prio, 20 low prio #thread.start() #thread.nice = -20 def SetCameraSettings(self, settingsNo): if (settingsNo >= len(self._settings)): return False; self._camera.brightness = self._settings[settingsNo][0]; self._camera.contrast = self._settings[settingsNo][0]; return True; def detect(self, img, cascade): rects = cascade.detectMultiScale(img, scaleFactor=1.1, minNeighbors=3, minSize=(int(self.__cameraResolutionX / 30), int( self.__cameraResolutionY / 30)), flags=cv2.CASCADE_SCALE_IMAGE) if len(rects) == 0: return [] #rects[:,2:] += rects[:,:2] # convert from [[x,y,h,b]] to [[x1,y1,x2,y2]] return rects def draw_rects(self, img, rects, color): for x, y, b, h in rects: cv2.rectangle(img, (x, y), (x+b, y+h), color, 4) def InitCamera(self): print("camera start") cv2.destroyAllWindows() cv2.namedWindow(self._windowName, cv2.WINDOW_NORMAL) cv2.resizeWindow(self._windowName, 400,300) # initialize the camera and grab a reference to the raw camera capture self._camera = PiCamera() self._camera.resolution = (self.__cameraResolutionX, self.__cameraResolutionY) self.SetCameraSettings(settingsNo=0); #self._camera.contrast = 50; #self._camera.brightness = 50; self._camera.framerate = 12 self._rawCapture = PiRGBArray(self._camera, size=(self.__cameraResolutionX, self.__cameraResolutionY)) #self._stream = self._camera.capture_continuous(self._rawCapture, format="bgr", use_video_port=True) # allow the camera to warmup time.sleep(0.2) if (self._useGrayscale): cascade_black_fn = "stoneDetection/black-cascade-grayscale.xml" cascade_white_fn = "stoneDetection/white-cascade-grayscale.xml" else: cascade_black_fn = "stoneDetection/black-cascade.xml" cascade_white_fn = "stoneDetection/white-cascade.xml" self._cascadeBlack = cv2.CascadeClassifier(cascade_black_fn) self._cascadeWhite = cv2.CascadeClassifier(cascade_white_fn) print("camera start done") def Update(self): #global ftimestamp, getFPS # keep looping infinitely until the thread is stopped #print ("<<<" , self._stream); # for f in self._stream: if (True): self._camera.capture(self._rawCapture, format="bgr") #image = rawCapture.array self._counter = self._counter+1; #print (self._counter); if (self._counter > 100): self._counter = 0; # grab the frame from the stream and clear the stream in # preparation for the next frame #image = f.array image = self._rawCapture.array rawImage = image if (self._useGrayscale): image = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY) #self_actualFrame = image self._rawCapture.truncate(0) self.RectsBlack = self.detect(image, self._cascadeBlack) self.RectsWhite = self.detect(image, self._cascadeWhite) if (self._showImage==True): key = cv2.waitKey(1) & 0xFF self.draw_rects(rawImage, self.RectsBlack, (0, 0, 0)) self.draw_rects(rawImage, self.RectsWhite, (255, 255, 255)) cv2.putText(rawImage, str(self._counter), (10,50), cv2.FONT_HERSHEY_SIMPLEX, 1, (255, 255, 255)) cv2.imshow(self._windowName, rawImage) # if the thread indicator variable is set, stop the thread # and resource camera resources #if (self._released == True): #self._stream.close() #self._rawCapture.close() #self._camera.close() #return #time.sleep(0.01) #return; def Release(self): if (self._released == False): self._released = True time.sleep(0.5) print ("shutting down camera") #self._stream.close() self._rawCapture.close() self._camera.close() def __del__(self): self.Release() import atexit def exit_handler(): testCamera.Release() if __name__ == '__main__': from hardware.Light import Light; light = Light(); light.On(); testCamera = CameraStoneDetection(); setting = 0; for c in range(0,1000): testCamera.Update(); setting = setting+1; if (testCamera.SetCameraSettings(setting)==False): setting = 0; testCamera.SetCameraSettings(setting); time.sleep(1) testCamera.Release()
StarcoderdataPython
1600270
import math import torch import torch.nn as nn import torch.utils.model_zoo as model_zoo # from model.sync_batchnorm.batchnorm import SynchronizedBatchNorm2d from ..utils import build_norm_layer ''' class IBN(nn.Module): def __init__(self, planes): super(IBN, self).__init__() half1 = int(planes/2) self.half = half1 half2 = planes - half1 self.IN = nn.InstanceNorm2d(half1, affine=True) self.BN = nn.BatchNorm2d(half2) def forward(self, x): split = torch.split(x, self.half, 1) out1 = self.IN(split[0].contiguous()) out2 = self.BN(split[1].contiguous()) out = torch.cat((out1, out2), 1) return out ''' def conv3x3(in_planes, out_planes, stride=1): "3x3 convolution with padding" return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride, padding=1, bias=False) class BasicBlock(nn.Module): expansion = 1 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_cfg=dict(type='BN'), sw_cfg=None): super(BasicBlock, self).__init__() self.norm1_name, norm1 = build_norm_layer( sw_cfg if sw_cfg is not None else norm_cfg, planes, postfix=1) self.norm2_name, norm2 = build_norm_layer(norm_cfg, planes, postfix=2) self.conv1 = conv3x3(inplanes, planes, stride) self.add_module(self.norm1_name, norm1) self.relu = nn.ReLU(inplace=True) self.conv2 = conv3x3(planes, planes) self.add_module(self.norm2_name, norm2) self.downsample = downsample self.stride = stride @property def norm1(self): return getattr(self, self.norm1_name) @property def norm2(self): return getattr(self, self.norm2_name) def forward(self, x): residual = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class Bottleneck(nn.Module): expansion = 4 def __init__(self, inplanes, planes, stride=1, downsample=None, norm_cfg=dict(type='BN'), sw_cfg=None): super(Bottleneck, self).__init__() self.norm1_name, norm1 = build_norm_layer(norm_cfg, planes, postfix=1) self.norm2_name, norm2 = build_norm_layer( sw_cfg if sw_cfg is not None else norm_cfg, planes, postfix=2) self.norm3_name, norm3 = build_norm_layer( norm_cfg, planes * 4, postfix=3) self.conv1 = nn.Conv2d(inplanes, planes, kernel_size=1, bias=False) self.add_module(self.norm1_name, norm1) self.conv2 = nn.Conv2d(planes, planes, kernel_size=3, stride=stride, padding=1, bias=False) self.add_module(self.norm2_name, norm2) self.conv3 = nn.Conv2d(planes, planes * 4, kernel_size=1, bias=False) self.add_module(self.norm3_name, norm3) self.relu = nn.ReLU(inplace=True) self.downsample = downsample self.stride = stride @property def norm1(self): return getattr(self, self.norm1_name) @property def norm2(self): return getattr(self, self.norm2_name) @property def norm3(self): return getattr(self, self.norm3_name) def forward(self, x): residual = x out = self.conv1(x) out = self.norm1(out) out = self.relu(out) out = self.conv2(out) out = self.norm2(out) out = self.relu(out) out = self.conv3(out) out = self.norm3(out) if self.downsample is not None: residual = self.downsample(x) out += residual out = self.relu(out) return out class ResNet(nn.Module): def __init__( self, block, layers, output_stride, num_classes = 1000, norm_cfg=dict(type='BN', requires_grad=True), sw_cfg=None, stage_with_sw=(True, True, True, False)): self.inplanes = 64 super(ResNet, self).__init__() blocks = [1, 2, 4] if output_stride == 16: strides = [1, 2, 2, 1] dilations = [1, 1, 1, 2] elif output_stride == 8: strides = [1, 2, 1, 1] dilations = [1, 1, 2, 4] else: raise NotImplementedError self.norm_cfg = norm_cfg self.sw_cfg = sw_cfg self.stage_with_sw = stage_with_sw self.norm1_name, norm1 = build_norm_layer( sw_cfg if sw_cfg is not None else norm_cfg, 64, postfix=1) # Modules self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3, bias=False) self.add_module(self.norm1_name, norm1) #self.bn1 = nn.BatchNorm2d(64) self.relu = nn.ReLU(inplace=True) self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1) self.layer1 = self._make_layer(block, 64, layers[0], stride=strides[0], dilation=dilations[0], with_sw=stage_with_sw[0]) self.layer2 = self._make_layer(block, 128, layers[1], stride=strides[1], dilation=dilations[1], with_sw=stage_with_sw[0]) self.layer3 = self._make_layer(block, 256, layers[2], stride=strides[2], dilation=dilations[2], with_sw=stage_with_sw[0]) self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3], with_sw=stage_with_sw[0]) # self.layer4 = self._make_layer(block, 512, layers[3], stride=strides[3], dilation=dilations[3]) self.avgpool = nn.AvgPool2d(7) self._init_weight() self.fc = nn.Linear(512 * block.expansion, num_classes) for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() @property def norm1(self): return getattr(self, self.norm1_name) def _make_layer(self, block, planes, blocks, with_sw, stride=1, dilation=1): downsample = None if stride != 1 or self.inplanes != planes * block.expansion: downsample = nn.Sequential( nn.Conv2d(self.inplanes, planes * block.expansion, kernel_size=1, stride=stride, bias=False), build_norm_layer(self.norm_cfg, planes * block.expansion)[1], ) layers = [] layers.append( block(self.inplanes, planes, stride, downsample, norm_cfg=self.norm_cfg, sw_cfg=None)) self.inplanes = planes * block.expansion for i in range(1, blocks): layers.append( block(self.inplanes, planes, norm_cfg=self.norm_cfg, sw_cfg=self.sw_cfg if (with_sw and i % 2 == 1) else None)) return nn.Sequential(*layers) def forward(self, x): x = self.conv1(x) x = self.norm1(x) x = self.relu(x) x = self.maxpool(x) x = self.layer1(x) low_level_feat = x x = self.layer2(x) x = self.layer3(x) x = self.layer4(x) return x, low_level_feat def _init_weight(self): for m in self.modules(): if isinstance(m, nn.Conv2d): n = m.kernel_size[0] * m.kernel_size[1] * m.out_channels m.weight.data.normal_(0, math.sqrt(2. / n)) elif isinstance(m, nn.BatchNorm2d): m.weight.data.fill_(1) m.bias.data.zero_() def _load_pretrained_model(model, url=None, path=None): if url is not None: pretrain_dict = model_zoo.load_url(url) else: pretrain_dict = torch.load(path) model_dict = {} state_dict = model.state_dict() for k, v in pretrain_dict.items(): # print(k) if k in state_dict: model_dict[k] = v else: print(k) state_dict.update(model_dict) model.load_state_dict(state_dict) def ResNet50(output_stride, ibn_mode='none', pretrained=True, **kwargs): """Constructs a ResNet-50 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ model = ResNet(Bottleneck, [3, 4, 6, 3], output_stride, **kwargs) if pretrained: _load_pretrained_model(model, path='pretrained/resnet50_sw.pth') return model def ResNet101(output_stride, ibn_mode='none', pretrained=True, **kwargs): """Constructs a ResNet-101 model. Args: pretrained (bool): If True, returns a model pre-trained on ImageNet """ assert ibn_mode in ['none', 'a'] model = ResNet(Bottleneck, [3, 4, 23, 3], output_stride, **kwargs) if pretrained: _load_pretrained_model(model, path='pretrained/resnet101_sw.pth') return model if __name__ == "__main__": model = ResNet50(output_stride=16, ibn_mode='a', pretrained=True) input = torch.rand(1, 3, 512, 512) output, low_level_feat = model(input) print(output.size()) print(low_level_feat.size())
StarcoderdataPython
4870900
import os import unittest import pandas as pd from set_up_grasp_models.set_up_models.manipulate_model import remove_spaces, reorder_reactions, rename_columns class TestManipulateModel(unittest.TestCase): def setUp(self): this_dir, this_filename = os.path.split(__file__) self.test_folder = os.path.join(this_dir, 'test_files', 'test_set_up_models', 'manipulate_model') def test_reorder_reactions(self): true_res = pd.read_excel(os.path.join(self.test_folder, 'true_res_HMP2360_r0_t0_mech_order_fixed.xlsx'), sheet_name=None, index_col=0) rxn_list = ['TPH', 'DDC', 'AANAT', 'ASMT', 'DDC_tryptm', 'AANAT_tryptm', 'IN_trp', 'EX_trp', 'EX_fivehtp', 'EX_nactsertn', 'EX_meltn', 'EX_nactryptm', 'EX_srtn'] data_dict = pd.read_excel(os.path.join(self.test_folder, 'HMP2360_r0_t0_mech_order.xlsx'), sheet_name=None, index_col=0) file_out = os.path.join(self.test_folder, 'HMP2360_r0_t0_mech_order_fixed.xlsx') reorder_reactions(data_dict, rxn_list, file_out) res = pd.read_excel(file_out, sheet_name=None, index_col=0) self.assertListEqual(list(true_res.keys()), list(res.keys())) for sheet in true_res.keys(): self.assertTrue(true_res[sheet].equals(res[sheet])) def test_remove_spaces(self): true_res = pd.read_excel(os.path.join(self.test_folder, 'true_res_HMP2360_r0_t0_mech_spaces_fixed.xlsx'), sheet_name=None, index_col=0) data_dict = pd.read_excel(os.path.join(self.test_folder, 'HMP2360_r0_t0_mech_spaces.xlsx'), sheet_name=None, index_col=0) file_out = os.path.join(self.test_folder, 'HMP2360_r0_t0_mech_spaces_fixed.xlsx') remove_spaces(data_dict, file_out) res = pd.read_excel(file_out, sheet_name=None, index_col=0) self.assertListEqual(list(true_res.keys()), list(res.keys())) for sheet in true_res.keys(): print(sheet) self.assertTrue(true_res[sheet].equals(res[sheet])) def test_rename_columns(self): true_res = pd.read_excel(os.path.join(self.test_folder, 'true_res_HMP2360_r0_t0_cols.xlsx'), sheet_name=None, index_col=0) data_dict = pd.read_excel(os.path.join(self.test_folder, 'HMP2360_r0_t0_cols.xlsx'), sheet_name=None, index_col=0) file_out = os.path.join(self.test_folder, 'HMP2360_r0_t0_cols_fixed.xlsx') rename_columns(data_dict, file_out) res = pd.read_excel(file_out, sheet_name=None, index_col=0) self.assertListEqual(list(true_res.keys()), list(res.keys())) for sheet in true_res.keys(): print(sheet) self.assertTrue(true_res[sheet].equals(res[sheet]))
StarcoderdataPython
4872146
for t in range(int(input())): arr = list(map(int, input().split())) n = len(arr) maximum = -999999999999999999 newMax = maximum maxsubsequence = 0 minimum = maximum for i in range(n-1, -1, -1): # print("Array: ",arr[i]) # print("SUm: ",arr[i]+maximum) if arr[i] > 0: maxsubsequence += arr[i] elif arr[i] > minimum: minimum = arr[i] maximum = max(arr[i], arr[i]+maximum) if maximum > newMax: newMax = maximum if maxsubsequence == 0 : maxsubsequence = minimum print(newMax, maxsubsequence)
StarcoderdataPython
9604078
<reponame>android-risc-v/external_webrtc #!/usr/bin/env python import json import sys # Set this to True to generate a default entry with all the flags and defines # common to all the modules that needs to be curated by hand after it's # generated. When set to False it prints the last curated version of the # default, which could be incomplete. GENERATE_FULL_DEFAULT = False PRINT_ORIGINALS = False GENERATE_ALL_FLAGS = False if len(sys.argv) != 2: print('wrong number of arguments') exit() def FormatList(l): return json.dumps(l) def FilterHeaders(l): return [x for x in l if not x.endswith('.h')] def PrintOriginCommentedOut(target): if PRINT_ORIGINALS: print('/* From target:') print(json.dumps(target, sort_keys = True, indent = 4)) print('*/') def MakeRelatives(l): return [x.split('//').pop() for x in l] def FormatName(name): return 'webrtc_' + name.split('/').pop().replace(':', '__')# .replace('/', '_').replace(':', '_') def FilterFlags(flags, to_skip = set([])): if GENERATE_ALL_FLAGS: skip = set([ '-L', '-isystem', '-Xclang', '-B', '--sysroot', '-fcrash-diagnostics-dir', '.', '-fdebug-compilation-dir', '-instcombine-lower-dbg-declare=0', '-Wno-non-c-typedef-for-linkage', '-Werror', '-fcomplete-member-pointers', '-m64', '-march=x86-64' ]).union(to_skip) return [x for x in flags if not any([x.startswith(y) for y in skip])] else: return [x for x in flags if x == '-msse2'] def GenerateDefault(targets): in_default = { 'cflags' : [], 'cflags_c' : [], 'cflags_cc' : [], 'ldflags' : [], 'asmflags' : [], 'defines' : [] } first = True for target in targets: typ = target['type'] if typ == 'static_library': if first: first = False # Add all the flags to the default, we'll remove some later for flag_type in in_default.keys(): in_default[flag_type] = [] for flag in target[flag_type]: in_default[flag_type].append(flag) else: for flag_type in in_default.keys(): flags_to_remove = [] for flag in in_default[flag_type]: if flag not in target[flag_type]: flags_to_remove.append[flag_type] for flag in flags_to_remove: in_default[flag_type].remove(flag) defines = in_default['defines'] in_default.pop('defines') in_default['cflags'].extend(['-D{0}'.format(x) for x in defines]) if GENERATE_FULL_DEFAULT: print('cc_defaults {') print(' name: "webrtc_defaults",') print(' local_include_dirs: ["."],') for typ in in_default.keys(): print(' {0}: ['.format(typ.replace('asmflags', 'asflags') .replace('cflags_cc', 'cppflags') .replace('cflags_c', 'conlyflags'))) for flag in FilterFlags(in_default[typ]): print(' "{0}",'.format(flag.replace('"', '\\"'))) print(' ],') print('}') else: print('cc_defaults {') print(' name: "webrtc_defaults",') print(' local_include_dirs: [') print(' ".",') print(' ],') print(' cflags: [') print(' "-Wno-unused-parameter",') print(' "-Wno-missing-field-initializers",') print(' "-DUSE_UDEV",') print(' "-DUSE_AURA=1",') print(' "-DUSE_GLIB=1",') print(' "-DUSE_NSS_CERTS=1",') print(' "-DUSE_X11=1",') print(' "-D_FILE_OFFSET_BITS=64",') print(' "-D_LARGEFILE_SOURCE",') print(' "-D_LARGEFILE64_SOURCE",') print(' "-D_GNU_SOURCE",') print(' "-DWEBRTC_ENABLE_PROTOBUF=0",') print(' "-DWEBRTC_INCLUDE_INTERNAL_AUDIO_DEVICE",') print(' "-DRTC_ENABLE_VP9",') print(' "-DHAVE_SCTP",') print(' "-DWEBRTC_LIBRARY_IMPL",') print(' "-DWEBRTC_NON_STATIC_TRACE_EVENT_HANDLERS=1",') print(' "-DWEBRTC_POSIX",') print(' "-DWEBRTC_LINUX",') print(' ],') print(' header_libs: [') print(' "libwebrtc_absl_headers",') print(' ],') print(' static_libs: [') print(' "libaom",') print(' "libevent",') print(' "libopus",') print(' "libsrtp2",') print(' "libvpx",') print(' "libyuv",') print(' "libpffft",') print(' "rnnoise_rnn_vad",') print(' "usrsctplib",') print(' ],') print(' shared_libs: [') print(' "libcrypto",') print(' "libssl",') print(' ],') print(' host_supported: true,') print(' device_supported: false,') print(' arch: {') print(' arm: {') print(' enabled: false,') print(' },') print(' },') print(' target: {') print(' darwin: {') print(' enabled: false,') print(' },') print(' },') print('}') in_default['cflags'].extend([ "-Wno-unused-parameter", "-Wno-missing-field-initializers", "-DUSE_UDEV", "-DUSE_AURA=1", "-DUSE_GLIB=1", "-DUSE_NSS_CERTS=1", "-DUSE_X11=1", "-D_FILE_OFFSET_BITS=64", "-D_LARGEFILE_SOURCE", "-D_LARGEFILE64_SOURCE", "-D_GNU_SOURCE", "-DWEBRTC_ENABLE_PROTOBUF=0", "-DWEBRTC_INCLUDE_INTERNAL_AUDIO_DEVICE", "-DRTC_ENABLE_VP9", "-DHAVE_SCTP", "-DWEBRTC_LIBRARY_IMPL", "-DWEBRTC_NON_STATIC_TRACE_EVENT_HANDLERS=1", "-DWEBRTC_POSIX", "-DWEBRTC_LINUX" ]) return in_default def GenerateGroup(target): PrintOriginCommentedOut(target) def GenerateSourceSet(target): PrintOriginCommentedOut(target) if target.has_key('sources'): name = FormatName(target['name']) print('filegroup {') print(' name: "{0}",'.format(name)) print(' srcs: {0},'.format(FormatList(MakeRelatives(FilterHeaders(target['sources']))))) print('}') return name return "" def GenerateStaticLib(target, targets, flags_in_default): PrintOriginCommentedOut(target) name = FormatName(target['name']) print('cc_library_static {') print(' name: "{0}",'.format(name)) print(' defaults: ["webrtc_defaults"],') sources = [] sources.extend(MakeRelatives(FilterHeaders(target['sources']))) for trg in targets: if trg['type'] == 'source_set' and trg['name'] in target['deps']: sources.append(':' + FormatName(trg['name'])) print(' srcs: {0},'.format(FormatList(sources))) print(' host_supported: true,') if target.has_key('asmflags'): asmflags = FilterFlags(target['asmflags'], set(flags_in_default['asmflags'])) if len(asmflags) > 0: print(' asflags: {0},'.format(FormatList(asmflags))) cflags = [] if target.has_key('cflags'): cflags.extend(target['cflags']) cflags = FilterFlags(cflags, set(flags_in_default['cflags'])) if target.has_key('defines'): cflags.extend(['-D' + x for x in target['defines']]) cflags = [x for x in cflags if x not in flags_in_default['cflags']] if len(cflags) > 0: print(' cflags: {0},'.format(FormatList(cflags))) if target.has_key('cflags_c'): cflags_c = FilterFlags(target['cflags_c'], set(flags_in_default['cflags_c'])) if len(cflags_c) > 0: print(' conlyflags: {0},'.format(FormatList(cflags_c))) if target.has_key('cflags_cc'): cflags_cc = FilterFlags(target['cflags_cc'], set(flags_in_default['cflags_cc'])) if len(cflags_cc) > 0: print(' cppflags: {0},'.format(FormatList(cflags_cc))) if target.has_key('ldflags'): ldflags = FilterFlags(target['ldflags'], set(flags_in_default['ldflags'])) if len(ldflags) > 0: print(' ldflags: {0},'.format(FormatList(ldflags))) static_libs = [] for trg in targets: if trg['type'] == 'static_library' and target['deps'].count(trg['name']) > 0: static_libs.append(FormatName(trg['name'])) if len(static_libs) > 0: print(' static_libs: {0},'.format(FormatList(static_libs))) for dep in target['deps']: if FormatName(dep) not in static_libs: #print(' // omitted dep: {0}'.format(dep)) pass print('}') return name json_file = open(sys.argv[1], "r") targets = json.load(json_file) flags_in_default = GenerateDefault(targets) print("\n\n") static_libs = [] file_groups = [] for target in targets: typ = target['type'] if typ == 'static_library': lib_name = GenerateStaticLib(target, targets, flags_in_default) static_libs.append(lib_name) elif typ == 'source_set': group_name = GenerateSourceSet(target) if len(group_name) > 0: file_groups.append(group_name) elif typ == 'group': GenerateGroup(target) else: print('Unknown type: {0}'.format(typ)) print("\n\n") print('cc_library_static {') print(' name: "libwebrtc",') print(' defaults: ["webrtc_defaults"],') print(' export_include_dirs: ["."],') print(' whole_static_libs: {0},'.format(FormatList(static_libs + ['libpffft', 'rnnoise_rnn_vad', 'usrsctplib']))) print(' srcs: {0},').format(FormatList([':{0}'.format(x) for x in file_groups])) print('}')
StarcoderdataPython
3564332
# -*- encoding: utf-8 -*- ''' ------------------------- @File : data_explore.ipynb @Time : 2021/12/28 17:58:18 @Author : <NAME> @Contact : <EMAIL> @Desc : 此脚本用于将原始数据及导出的峰值坐标进行裁剪,输出json格式,用于后续打标训练用 ------------------------- ''' import json import numpy as np import matplotlib.pyplot as plt import random from tqdm import tqdm import os, sys, shutil sys.path.append("..") sys.path.append(os.path.dirname(os.path.realpath(__file__))) os.chdir(sys.path[-1]) def data_split(data:np.ndarray, loc_list:list, save_path:str, split_len=150, plot=False): """根据loc的位置去前后截取raw_data的数据 """ label = { "code": "", "label": 0, "number of peaks": 0, "peaks' labels": [], "borders": [], "description": "", "rt":[], "scan": [], "intensity": [], "mz": [], } for i, loc in tqdm(enumerate(loc_list[1000:1500])): # 截取数据 # 将loc的位置随机前后位移 使得峰值点不在数据切片的中心 loc += random.randint(int(-1 * 1/3 * split_len), int(1/3 * split_len)) data_slice = data[loc - split_len: loc + split_len].tolist() # 改写json内容 json_save_name = save_path + "peak_sample_" + str(i).zfill(4) json_file = json_save_name + ".json" label["code"] = "data slice NO_" + str(i).zfill(4) label["intensity"] = data_slice label["rt"] = [loc - split_len, loc + split_len] label["mz"] = data_slice with open(json_file, mode="w", encoding="utf-8") as jf: json.dump(label, jf) # plot if plot: plt.figure() plt.plot(data_slice) fig_save_path = save_path + "/fig/" if not os.path.exists(fig_save_path): os.makedirs(fig_save_path) plt.savefig(fig_save_path + "peak_sample_" + str(i).zfill(4) + ".jpg") plt.close("all") if __name__ == "__main__": raw_data_file = "./rawData.csv" # 原始数据 raw_peak_loc_file = "./raw_data_loc.txt" # 原始数据的峰值点坐标 save_path = "./peak_data/" split_len = 50 raw_data = np.genfromtxt(raw_data_file, delimiter=",") with open(raw_peak_loc_file, mode='r', encoding='utf-8') as f: lines = f.readlines() loc = [] for line in lines: loc.append(int(line)) try: shutil.rmtree(save_path) except: pass if not os.path.exists(save_path): os.makedirs(save_path) data_split(data=raw_data, loc_list=loc, save_path=save_path, split_len=split_len, plot=True)
StarcoderdataPython
3463166
<filename>unified/models/vms.py from sqlalchemy import PrimaryKeyConstraint from . import db class Instance(db.Model): """Monthly report of virtual machine instances produced by VRB vms report""" server_id = db.Column(db.String(), nullable=False) server = db.Column(db.String(), nullable=False) core = db.Column(db.SmallInteger, nullable=False) ram = db.Column(db.SmallInteger, nullable=False) storage = db.Column(db.Float) os = db.Column(db.String(), nullable=False) business_unit = db.Column(db.String(), nullable=False) span = db.Column(db.Integer) # Monthly Up Time (%) uptime_percent = db.Column(db.Float) # timestamp of the start of reporting month month = db.Column(db.Integer) __table_args__ = (PrimaryKeyConstraint('server_id', 'month', name='pk_instance'),) def json(self): """Jsonify""" return { "id": self.server_id, "server": self.server, "core": self.core, "ram": self.ram, "storage": self.storage, "os": self.os, "businessUnit": self.business_unit, "span": self.span, "uptimePercent": self.uptime_percent, "month": self.month } @classmethod def list(cls, start_ts=0, end_ts=0): """"Gets vms run between start_ts and end_ts.""" query = cls.query if start_ts > 0: query = query.filter(Instance.month >= start_ts) if end_ts > 0: query = query.filter(Instance.month < end_ts) fields = ('id', 'server', 'core', 'ram', 'storage', 'os', 'businessUnit', 'span', 'uptimePercent') return [dict(zip(fields, q)) for q in query. with_entities(Instance.server_id, Instance.server, Instance.core, Instance.ram, Instance.storage, Instance.os, Instance.business_unit, Instance.span, Instance.uptime_percent)]
StarcoderdataPython
4825001
<filename>tests/integration/test_s3.py import io import os import ssl import boto3 import gzip import json import time import uuid import unittest import datetime import requests from io import BytesIO from pytz import timezone from urllib.parse import parse_qs, quote from botocore.exceptions import ClientError from six.moves.urllib import parse as urlparse from six.moves.urllib.request import Request, urlopen from localstack import config, constants from botocore.client import Config from localstack.utils import testutil from localstack.constants import TEST_AWS_ACCESS_KEY_ID, TEST_AWS_SECRET_ACCESS_KEY, S3_VIRTUAL_HOSTNAME from localstack.utils.aws import aws_stack from localstack.services.s3 import s3_listener, s3_utils from localstack.utils.common import ( short_uid, retry, get_service_protocol, to_bytes, safe_requests, to_str, new_tmp_file, rm_rf, load_file) from localstack.services.awslambda.lambda_utils import LAMBDA_RUNTIME_PYTHON36 TEST_BUCKET_NAME_WITH_POLICY = 'test-bucket-policy-1' TEST_QUEUE_FOR_BUCKET_WITH_NOTIFICATION = 'test_queue_for_bucket_notification_1' TEST_BUCKET_WITH_VERSIONING = 'test-bucket-versioning-1' TEST_BUCKET_NAME_2 = 'test-bucket-2' TEST_KEY_2 = 'test-key-2' TEST_GET_OBJECT_RANGE = 17 THIS_FOLDER = os.path.dirname(os.path.realpath(__file__)) TEST_LAMBDA_PYTHON_ECHO = os.path.join(THIS_FOLDER, 'lambdas', 'lambda_triggered_by_s3.py') TEST_LAMBDA_PYTHON_DOWNLOAD_FROM_S3 = os.path.join(THIS_FOLDER, 'lambdas', 'lambda_triggered_by_sqs_download_s3_file.py') BATCH_DELETE_BODY = """ <Delete xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <Object> <Key>%s</Key> </Object> <Object> <Key>%s</Key> </Object> </Delete> """ class PutRequest(Request): """ Class to handle putting with urllib """ def __init__(self, *args, **kwargs): return Request.__init__(self, *args, **kwargs) def get_method(self, *args, **kwargs): return 'PUT' # def test_host_and_path_addressing(wrapped): # """ Decorator that runs a test method with both - path and host style addressing. """ # # TODO - needs to be fixed below! # def wrapper(self): # try: # # test via path based addressing # TestS3.OVERWRITTEN_CLIENT = aws_stack.connect_to_service('s3', config={'addressing_style': 'virtual'}) # wrapped() # # test via host based addressing # TestS3.OVERWRITTEN_CLIENT = aws_stack.connect_to_service('s3', config={'addressing_style': 'path'}) # wrapped() # finally: # # reset client # TestS3.OVERWRITTEN_CLIENT = None # return class TestS3(unittest.TestCase): OVERWRITTEN_CLIENT = None def setUp(self): self._s3_client = aws_stack.connect_to_service('s3') self.sqs_client = aws_stack.connect_to_service('sqs') @property def s3_client(self): return TestS3.OVERWRITTEN_CLIENT or self._s3_client def test_create_bucket_via_host_name(self): body = """<?xml version="1.0" encoding="UTF-8"?> <CreateBucketConfiguration xmlns="http://s3.amazonaws.com/doc/2006-03-01/"> <LocationConstraint>eu-central-1</LocationConstraint> </CreateBucketConfiguration>""" headers = aws_stack.mock_aws_request_headers('s3') bucket_name = 'test-%s' % short_uid() headers['Host'] = s3_utils.get_bucket_hostname(bucket_name) response = requests.put(config.TEST_S3_URL, data=body, headers=headers, verify=False) self.assertEquals(response.status_code, 200) response = self.s3_client.get_bucket_location(Bucket=bucket_name) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) self.assertIn('LocationConstraint', response) # @test_host_and_path_addressing def test_bucket_policy(self): # create test bucket self.s3_client.create_bucket(Bucket=TEST_BUCKET_NAME_WITH_POLICY) # put bucket policy policy = { 'Version': '2012-10-17', 'Statement': { 'Action': ['s3:GetObject'], 'Effect': 'Allow', 'Resource': 'arn:aws:s3:::bucketName/*', 'Principal': { 'AWS': ['*'] } } } response = self.s3_client.put_bucket_policy( Bucket=TEST_BUCKET_NAME_WITH_POLICY, Policy=json.dumps(policy) ) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 204) # retrieve and check policy config saved_policy = self.s3_client.get_bucket_policy(Bucket=TEST_BUCKET_NAME_WITH_POLICY)['Policy'] self.assertEqual(json.loads(saved_policy), policy) def test_s3_put_object_notification(self): bucket_name = 'notif-%s' % short_uid() key_by_path = 'key-by-hostname' key_by_host = 'key-by-host' queue_url, queue_attributes = self._create_test_queue() self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) self.s3_client.put_bucket_versioning(Bucket=bucket_name, VersioningConfiguration={'Status': 'Enabled'}) # put an object where the bucket_name is in the path obj = self.s3_client.put_object(Bucket=bucket_name, Key=key_by_path, Body='something') # put an object where the bucket_name is in the host headers = aws_stack.mock_aws_request_headers('s3') headers['Host'] = s3_utils.get_bucket_hostname(bucket_name) url = '{}/{}'.format(config.TEST_S3_URL, key_by_host) # verify=False must be set as this test fails on travis because of an SSL error non-existent locally response = requests.put(url, data='something else', headers=headers, verify=False) self.assertTrue(response.ok) self.assertEqual(self._get_test_queue_message_count(queue_url), '2') response = self.sqs_client.receive_message(QueueUrl=queue_url) messages = [json.loads(to_str(m['Body'])) for m in response['Messages']] record = messages[0]['Records'][0] self.assertIsNotNone(record['s3']['object']['versionId']) self.assertEquals(record['s3']['object']['versionId'], obj['VersionId']) # clean up self.s3_client.put_bucket_versioning(Bucket=bucket_name, VersioningConfiguration={'Status': 'Disabled'}) self.sqs_client.delete_queue(QueueUrl=queue_url) self._delete_bucket(bucket_name, [key_by_path, key_by_host]) def test_s3_upload_fileobj_with_large_file_notification(self): bucket_name = 'notif-large-%s' % short_uid() queue_url, queue_attributes = self._create_test_queue() self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) # has to be larger than 64MB to be broken up into a multipart upload file_size = 75000000 large_file = self.generate_large_file(file_size) download_file = new_tmp_file() try: self.s3_client.upload_file(Bucket=bucket_name, Key=large_file.name, Filename=large_file.name) self.assertEqual(self._get_test_queue_message_count(queue_url), '1') # ensure that the first message's eventName is ObjectCreated:CompleteMultipartUpload messages = self.sqs_client.receive_message(QueueUrl=queue_url, AttributeNames=['All']) message = json.loads(messages['Messages'][0]['Body']) self.assertEqual(message['Records'][0]['eventName'], 'ObjectCreated:CompleteMultipartUpload') # download the file, check file size self.s3_client.download_file(Bucket=bucket_name, Key=large_file.name, Filename=download_file) self.assertEqual(os.path.getsize(download_file), file_size) # clean up self.sqs_client.delete_queue(QueueUrl=queue_url) self._delete_bucket(bucket_name, large_file.name) finally: # clean up large files large_file.close() rm_rf(large_file.name) rm_rf(download_file) def test_s3_multipart_upload_with_small_single_part(self): # In a multipart upload "Each part must be at least 5 MB in size, except the last part." # https://docs.aws.amazon.com/AmazonS3/latest/API/mpUploadComplete.html bucket_name = 'notif-large-%s' % short_uid() key_by_path = 'key-by-hostname' queue_url, queue_attributes = self._create_test_queue() self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) # perform upload self._perform_multipart_upload(bucket=bucket_name, key=key_by_path, zip=True) self.assertEqual(self._get_test_queue_message_count(queue_url), '1') # clean up self.sqs_client.delete_queue(QueueUrl=queue_url) self._delete_bucket(bucket_name, [key_by_path]) def test_invalid_range_error(self): bucket_name = 'range-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_object(Bucket=bucket_name, Key='steve', Body=b'is awesome') try: self.s3_client.get_object(Bucket=bucket_name, Key='steve', Range='bytes=1024-4096') except ClientError as e: self.assertEqual(e.response['Error']['Code'], 'InvalidRange') # clean up self._delete_bucket(bucket_name, ['steve']) def test_range_key_not_exists(self): bucket_name = 'range-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.create_bucket(Bucket=bucket_name) with self.assertRaises(ClientError) as ctx: self.s3_client.get_object(Bucket=bucket_name, Key='key', Range='bytes=1024-4096') self.assertIn('NoSuchKey', str(ctx.exception)) # clean up self._delete_bucket(bucket_name) def test_upload_key_with_hash_prefix(self): bucket_name = 'hash-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) key_name = '#key-with-hash-prefix' content = b'test 123' self.s3_client.put_object(Bucket=bucket_name, Key=key_name, Body=content) downloaded_object = self.s3_client.get_object(Bucket=bucket_name, Key=key_name) downloaded_content = to_str(downloaded_object['Body'].read()) self.assertEqual(to_str(downloaded_content), to_str(content)) # clean up self._delete_bucket(bucket_name, [key_name]) with self.assertRaises(Exception): self.s3_client.head_object(Bucket=bucket_name, Key=key_name) def test_s3_multipart_upload_acls(self): bucket_name = 'test-bucket-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name, ACL='public-read') def check_permissions(key, expected_perms): grants = self.s3_client.get_object_acl(Bucket=bucket_name, Key=key)['Grants'] grants = [g for g in grants if 'AllUsers' in g.get('Grantee', {}).get('URI', '')] self.assertEquals(len(grants), 1) permissions = grants[0]['Permission'] permissions = permissions if isinstance(permissions, list) else [permissions] self.assertEquals(len(permissions), expected_perms) # perform uploads (multipart and regular) and check ACLs self.s3_client.put_object(Bucket=bucket_name, Key='acl-key0', Body='something') check_permissions('acl-key0', 1) self._perform_multipart_upload(bucket=bucket_name, key='acl-key1') check_permissions('acl-key1', 1) self._perform_multipart_upload(bucket=bucket_name, key='acl-key2', acl='public-read-write') check_permissions('acl-key2', 2) def test_s3_presigned_url_upload(self): key_by_path = 'key-by-hostname' bucket_name = 'notif-large-%s' % short_uid() queue_url, queue_attributes = self._create_test_queue() self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) self._perform_presigned_url_upload(bucket=bucket_name, key=key_by_path) self.assertEqual(self._get_test_queue_message_count(queue_url), '1') # clean up self.sqs_client.delete_queue(QueueUrl=queue_url) self._delete_bucket(bucket_name, [key_by_path]) def test_s3_get_response_default_content_type(self): # When no content type is provided by a PUT request # 'binary/octet-stream' should be used # src: https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectPUT.html bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body='something') url = client.generate_presigned_url( 'get_object', Params={'Bucket': bucket_name, 'Key': object_key}) # get object and assert headers response = requests.get(url, verify=False) self.assertEqual(response.headers['content-type'], 'binary/octet-stream') # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_put_presigned_url_metadata(self): # Object metadata should be passed as query params via presigned URL # https://github.com/localstack/localstack/issues/544 bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) metadata = { 'foo': 'bar' } # put object object_key = 'key-by-hostname' url = client.generate_presigned_url( 'put_object', Params={'Bucket': bucket_name, 'Key': object_key, 'Metadata': metadata}) # append metadata manually to URL (this is not easily possible with boto3, as "Metadata" cannot # be passed to generate_presigned_url, and generate_presigned_post works differently) # get object and assert metadata is present response = requests.put(url, data='content 123', verify=False) self.assertLess(response.status_code, 400) # response body should be empty, see https://github.com/localstack/localstack/issues/1317 self.assertEqual('', to_str(response.content)) response = client.head_object(Bucket=bucket_name, Key=object_key) self.assertEquals('bar', response.get('Metadata', {}).get('foo')) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_put_metadata_underscores(self): # Object metadata keys should accept keys with underscores # https://github.com/localstack/localstack/issues/1790 bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # put object object_key = 'key-with-metadata' metadata = {'test_meta_1': 'foo', '__meta_2': 'bar'} self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Metadata=metadata, Body='foo') metadata_saved = self.s3_client.head_object(Bucket=bucket_name, Key=object_key)['Metadata'] self.assertEqual(metadata, metadata_saved) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_object_expiry(self): # handle s3 object expiry # https://github.com/localstack/localstack/issues/1685 bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # put object object_key = 'key-with-metadata' metadata = {'test_meta_1': 'foo', '__meta_2': 'bar'} self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Metadata=metadata, Body='foo', Expires=datetime.datetime.now(timezone('GMT')) - datetime.timedelta(hours=1)) # try to fetch an object which is already expired self.assertRaises(Exception, self.s3_client.get_object, Bucket=bucket_name, Key=object_key.lower()) self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Metadata=metadata, Body='foo', Expires=datetime.datetime.now(timezone('GMT')) + datetime.timedelta(hours=1)) # try to fetch has not been expired yet. resp = self.s3_client.get_object(Bucket=bucket_name, Key=object_key) self.assertIn('Expires', resp) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_presigned_url_expired(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object and CORS configuration object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body='something') # get object and assert headers url = client.generate_presigned_url( 'get_object', Params={'Bucket': bucket_name, 'Key': object_key}, ExpiresIn=2 ) # retrieving it before expiry resp = requests.get(url, verify=False) self.assertEqual(resp.status_code, 200) self.assertEqual(to_str(resp.content), 'something') # waiting for the url to expire time.sleep(3) resp = requests.get(url, verify=False) self.assertEqual(resp.status_code, 403) url = client.generate_presigned_url( 'get_object', Params={'Bucket': bucket_name, 'Key': object_key}, ExpiresIn=120 ) resp = requests.get(url, verify=False) self.assertEqual(resp.status_code, 200) self.assertEqual(to_str(resp.content), 'something') # clean up self._delete_bucket(bucket_name, [object_key]) def test_bucket_availability(self): bucket_name = 'test-bucket-lifecycle' returned_empty_lifecycle = s3_listener.get_lifecycle(bucket_name) self.assertRegexpMatches(returned_empty_lifecycle._content, r'The bucket does not exist') response = s3_listener.get_replication(bucket_name) self.assertRegexpMatches(response._content, r'The bucket does not exist') response = s3_listener.get_object_lock(bucket_name) self.assertRegexpMatches(response._content, r'The bucket does not exist') def test_delete_bucket_lifecycle_configuration(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) lfc = { 'Rules': [ { 'Expiration': {'Days': 7}, 'ID': 'wholebucket', 'Filter': {'Prefix': ''}, 'Status': 'Enabled', } ] } client.put_bucket_lifecycle_configuration( Bucket=bucket_name, LifecycleConfiguration=lfc ) result = client.get_bucket_lifecycle_configuration(Bucket=bucket_name) self.assertIn('Rules', result) client.delete_bucket_lifecycle(Bucket=bucket_name) try: client.get_bucket_lifecycle_configuration(Bucket=bucket_name) except ClientError as e: self.assertEqual(e.response['Error']['Code'], 'NoSuchLifecycleConfiguration') # clean up client.delete_bucket(Bucket=bucket_name) def test_delete_lifecycle_configuration_on_bucket_deletion(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) lfc = { 'Rules': [ { 'Expiration': {'Days': 7}, 'ID': 'wholebucket', 'Filter': {'Prefix': ''}, 'Status': 'Enabled', } ] } client.put_bucket_lifecycle_configuration( Bucket=bucket_name, LifecycleConfiguration=lfc ) result = client.get_bucket_lifecycle_configuration(Bucket=bucket_name) self.assertIn('Rules', result) client.delete_bucket(Bucket=bucket_name) client.create_bucket(Bucket=bucket_name) try: client.get_bucket_lifecycle_configuration(Bucket=bucket_name) except ClientError as e: self.assertEqual(e.response['Error']['Code'], 'NoSuchLifecycleConfiguration') # clean up client.delete_bucket(Bucket=bucket_name) def test_range_header_body_length(self): # Test for https://github.com/localstack/localstack/issues/1952 object_key = 'sample.bin' bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) chunk_size = 1024 with io.BytesIO() as data: data.write(os.urandom(chunk_size * 2)) data.seek(0) self.s3_client.upload_fileobj(data, bucket_name, object_key) range_header = 'bytes=0-%s' % (chunk_size - 1) resp = self.s3_client.get_object(Bucket=bucket_name, Key=object_key, Range=range_header) content = resp['Body'].read() self.assertEquals(len(content), chunk_size) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_get_response_content_type_same_as_upload_and_range(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object object_key = 'foo/bar/key-by-hostname' content_type = 'foo/bar; charset=utf-8' client.put_object(Bucket=bucket_name, Key=object_key, Body='something ' * 20, ContentType=content_type) url = client.generate_presigned_url( 'get_object', Params={'Bucket': bucket_name, 'Key': object_key} ) # get object and assert headers response = requests.get(url, verify=False) self.assertEqual(response.headers['content-type'], content_type) # get object using range query and assert headers response = requests.get(url, headers={'Range': 'bytes=0-18'}, verify=False) self.assertEqual(response.headers['content-type'], content_type) self.assertEqual(to_str(response.content), 'something something') # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_get_get_object_headers(self): object_key = 'sample.bin' bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) chunk_size = 1024 with io.BytesIO() as data: data.write(os.urandom(chunk_size * 2)) data.seek(0) self.s3_client.upload_fileobj(data, bucket_name, object_key) range_header = 'bytes=0-%s' % (chunk_size - 1) resp = self.s3_client.get_object(Bucket=bucket_name, Key=object_key, Range=range_header) self.assertEqual(resp.get('AcceptRanges'), 'bytes') self.assertIn('x-amz-request-id', resp['ResponseMetadata']['HTTPHeaders']) self.assertIn('x-amz-id-2', resp['ResponseMetadata']['HTTPHeaders']) self.assertIn('content-language', resp['ResponseMetadata']['HTTPHeaders']) # We used to return `cache-control: no-cache` if the header wasn't set # by the client, but this was a bug because s3 doesn't do that. It simply # omits it. self.assertNotIn('cache-control', resp['ResponseMetadata']['HTTPHeaders']) # Do not send a content-encoding header as discussed in Issue #3608 self.assertNotIn('content-encoding', resp['ResponseMetadata']['HTTPHeaders']) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_head_response_content_length_same_as_upload(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) body = 'something body \n \n\r' # put object object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body=body, ContentType='text/html; charset=utf-8') url = client.generate_presigned_url( 'head_object', Params={'Bucket': bucket_name, 'Key': object_key} ) # get object and assert headers response = requests.head(url, verify=False) self.assertEqual(response.headers['content-length'], str(len(body))) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_put_object_chunked_newlines(self): # Test for https://github.com/localstack/localstack/issues/1571 bucket_name = 'test-bucket-%s' % short_uid() object_key = 'data' self.s3_client.create_bucket(Bucket=bucket_name) body = 'Hello\r\n\r\n\r\n\r\n' headers = """ Authorization: %s Content-Type: audio/mpeg X-Amz-Content-Sha256: STREAMING-AWS4-HMAC-SHA256-PAYLOAD X-Amz-Date: 20190918T051509Z X-Amz-Decoded-Content-Length: %s """ % (aws_stack.mock_aws_request_headers('s3')['Authorization'], len(body)) headers = dict([[field.strip() for field in pair.strip().split(':', 1)] for pair in headers.strip().split('\n')]) data = ('d;chunk-signature=af5e6c0a698b0192e9aa5d9083553d4d241d81f69ec62b184d05c509ad5166af\r\n' + '%s\r\n0;chunk-signature=f2a50a8c0ad4d212b579c2489c6d122db88d8a0d0b987ea1f3e9d081074a5937\r\n') % body # put object url = '%s/%s/%s' % (config.TEST_S3_URL, bucket_name, object_key) req = PutRequest(url, to_bytes(data), headers) urlopen(req, context=ssl.SSLContext()).read() # get object and assert content length downloaded_object = self.s3_client.get_object(Bucket=bucket_name, Key=object_key) download_file_object = to_str(downloaded_object['Body'].read()) self.assertEqual(len(str(download_file_object)), len(body)) self.assertEqual(str(download_file_object), body) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_put_object_on_presigned_url(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) body = 'something body' # get presigned URL object_key = 'test-presigned-key' url = client.generate_presigned_url( 'put_object', Params={'Bucket': bucket_name, 'Key': object_key} ) # put object response = requests.put(url, data=body, verify=False) self.assertEqual(response.status_code, 200) # get object and compare results downloaded_object = client.get_object(Bucket=bucket_name, Key=object_key) download_object = downloaded_object['Body'].read() self.assertEqual(to_str(body), to_str(download_object)) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_post_object_on_presigned_post(self): bucket_name = 'test-presigned-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) body = 'something body' # get presigned URL object_key = 'test-presigned-post-key' presigned_request = client.generate_presigned_post( Bucket=bucket_name, Key=object_key, ExpiresIn=60) # put object files = {'file': body} response = requests.post(presigned_request['url'], data=presigned_request['fields'], files=files, verify=False) self.assertIn(response.status_code, [200, 204]) # get object and compare results downloaded_object = client.get_object(Bucket=bucket_name, Key=object_key) download_object = downloaded_object['Body'].read() self.assertEqual(to_str(body), to_str(download_object)) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_presigned_post_success_action_status_201_response(self): bucket_name = 'test-presigned-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) body = 'something body' # get presigned URL object_key = 'key-${filename}' presigned_request = client.generate_presigned_post( Bucket=bucket_name, Key=object_key, Fields={'success_action_status': 201}, ExpiresIn=60 ) files = {'file': ('my-file', body)} response = requests.post(presigned_request['url'], data=presigned_request['fields'], files=files, verify=False) # test expected_response_content = """ <PostResponse> <Location>{location}</Location> <Bucket>{bucket}</Bucket> <Key>{key}</Key> <ETag>{etag}</ETag> </PostResponse> """.format( location='http://localhost/key-my-file', bucket=bucket_name, key='key-my-file', etag='d41d8cd98f00b204e9800998ecf8427f' ) self.assertEqual(response.status_code, 201) self.assertEqual(response.text, expected_response_content) # clean up self._delete_bucket(bucket_name, ['key-my-file']) def test_s3_presigned_post_expires(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # presign a post with a short expiry time object_key = 'test-presigned-post-key' presigned_request = client.generate_presigned_post( Bucket=bucket_name, Key=object_key, ExpiresIn=2 ) # sleep so it expires time.sleep(3) # attempt to use the presigned request files = {'file': 'file content'} response = requests.post(presigned_request['url'], data=presigned_request['fields'], files=files, verify=False) self.assertEqual(response.status_code, 400) self.assertTrue('ExpiredToken' in response.text) # clean up self._delete_bucket(bucket_name) def test_s3_delete_response_content_length_zero(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) for encoding in None, 'gzip': # put object object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body='something', ContentType='text/html; charset=utf-8') url = client.generate_presigned_url( 'delete_object', Params={'Bucket': bucket_name, 'Key': object_key} ) # get object and assert headers headers = {} if encoding: headers['Accept-Encoding'] = encoding response = requests.delete(url, headers=headers, verify=False) self.assertEqual(response.headers['content-length'], '0', f'Unexpected response Content-Length for encoding {encoding}') # clean up self._delete_bucket(bucket_name, [object_key]) def test_delete_object_tagging(self): bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name, ACL='public-read') object_key = 'test-key-tagging' self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Body='something') # get object and assert response url = '%s/%s/%s' % (config.TEST_S3_URL, bucket_name, object_key) response = requests.get(url, verify=False) self.assertEqual(response.status_code, 200) # delete object tagging self.s3_client.delete_object_tagging(Bucket=bucket_name, Key=object_key) # assert that the object still exists response = requests.get(url, verify=False) self.assertEqual(response.status_code, 200) # clean up self._delete_bucket(bucket_name, [object_key]) def test_delete_non_existing_keys(self): bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) object_key = 'test-key-nonexistent' self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Body='something') response = self.s3_client.delete_objects(Bucket=bucket_name, Delete={'Objects': [{'Key': object_key}, {'Key': 'dummy1'}, {'Key': 'dummy2'}]}) self.assertEqual(len(response['Deleted']), 3) self.assertNotIn('Errors', response) # clean up self._delete_bucket(bucket_name) def test_bucket_exists(self): # Test setup bucket = 'test-bucket-%s' % short_uid() s3_client = aws_stack.connect_to_service('s3') s3_client.create_bucket(Bucket=bucket) s3_client.put_bucket_cors( Bucket=bucket, CORSConfiguration={ 'CORSRules': [{'AllowedMethods': ['GET', 'POST', 'PUT', 'DELETE'], 'AllowedOrigins': ['localhost']}] } ) response = s3_client.get_bucket_cors(Bucket=bucket) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) # Cleanup s3_client.delete_bucket(Bucket=bucket) def test_s3_uppercase_key_names(self): # bucket name should be case-sensitive bucket_name = 'testuppercase-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # key name should be case-sensitive object_key = 'camelCaseKey' self.s3_client.put_object(Bucket=bucket_name, Key=object_key, Body='something') self.s3_client.get_object(Bucket=bucket_name, Key=object_key) res = self.s3_client.get_object(Bucket=bucket_name, Key=object_key) self.assertEqual(res['ResponseMetadata']['HTTPStatusCode'], 200) def test_s3_get_response_headers(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object and CORS configuration object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body='something') client.put_bucket_cors(Bucket=bucket_name, CORSConfiguration={ 'CORSRules': [{ 'AllowedMethods': ['GET', 'PUT', 'POST'], 'AllowedOrigins': ['*'], 'ExposeHeaders': [ 'ETag', 'x-amz-version-id' ] }] }, ) # get object and assert headers url = client.generate_presigned_url( 'get_object', Params={'Bucket': bucket_name, 'Key': object_key} ) response = requests.get(url, verify=False) self.assertEquals(response.headers['Access-Control-Expose-Headers'], 'ETag,x-amz-version-id') # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_get_response_header_overrides(self): # Signed requests may include certain header overrides in the querystring # https://docs.aws.amazon.com/AmazonS3/latest/API/RESTObjectGET.html bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object object_key = 'key-by-hostname' client.put_object(Bucket=bucket_name, Key=object_key, Body='something') # get object and assert headers expiry_date = 'Wed, 21 Oct 2015 07:28:00 GMT' url = client.generate_presigned_url( 'get_object', Params={ 'Bucket': bucket_name, 'Key': object_key, 'ResponseCacheControl': 'max-age=74', 'ResponseContentDisposition': 'attachment; filename="foo.jpg"', 'ResponseContentEncoding': 'identity', 'ResponseContentLanguage': 'de-DE', 'ResponseContentType': 'image/jpeg', 'ResponseExpires': expiry_date} ) response = requests.get(url, verify=False) self.assertEqual(response.headers['cache-control'], 'max-age=74') self.assertEqual(response.headers['content-disposition'], 'attachment; filename="foo.jpg"') self.assertEqual(response.headers['content-encoding'], 'identity') self.assertEqual(response.headers['content-language'], 'de-DE') self.assertEqual(response.headers['content-type'], 'image/jpeg') # Note: looks like depending on the environment/libraries, we can get different date formats... possible_date_formats = ['2015-10-21T07:28:00Z', expiry_date] self.assertIn(response.headers['expires'], possible_date_formats) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_copy_md5(self): bucket_name = 'test-bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket_name) # put object src_key = 'src' client.put_object(Bucket=bucket_name, Key=src_key, Body='something') # copy object dest_key = 'dest' response = client.copy_object( Bucket=bucket_name, CopySource={ 'Bucket': bucket_name, 'Key': src_key }, Key=dest_key ) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) # Create copy object to try to match s3a setting Content-MD5 dest_key2 = 'dest' url = client.generate_presigned_url( 'copy_object', Params={'Bucket': bucket_name, 'CopySource': {'Bucket': bucket_name, 'Key': src_key}, 'Key': dest_key2} ) request_response = requests.put(url, verify=False) self.assertEqual(request_response.status_code, 200) # Cleanup self._delete_bucket(bucket_name, [src_key, dest_key, dest_key2]) def test_s3_invalid_content_md5(self): bucket_name = 'test-bucket-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # put object with invalid content MD5 hashes = { '__invalid__': 'InvalidDigest', '000': 'InvalidDigest', 'not base64 encoded checksum': 'InvalidDigest', # InvalidDigest 'MTIz': 'BadDigest' # "123" base64 encoded } for hash, error in hashes.items(): with self.assertRaises(Exception) as ctx: self.s3_client.put_object(Bucket=bucket_name, Key='test-key', Body='something', ContentMD5=hash) self.assertIn(error, str(ctx.exception)) # Cleanup self.s3_client.delete_bucket(Bucket=bucket_name) def test_s3_upload_download_gzip(self): bucket_name = 'test-bucket-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) data = '1234567890 ' * 100 # Write contents to memory rather than a file. upload_file_object = BytesIO() with gzip.GzipFile(fileobj=upload_file_object, mode='w') as filestream: filestream.write(data.encode('utf-8')) # Upload gzip self.s3_client.put_object(Bucket=bucket_name, Key='test.gz', ContentEncoding='gzip', Body=upload_file_object.getvalue()) # Download gzip downloaded_object = self.s3_client.get_object(Bucket=bucket_name, Key='test.gz') download_file_object = BytesIO(downloaded_object['Body'].read()) with gzip.GzipFile(fileobj=download_file_object, mode='rb') as filestream: downloaded_data = filestream.read().decode('utf-8') self.assertEqual(downloaded_data, data) def test_set_external_hostname(self): bucket_name = 'test-bucket-%s' % short_uid() key = 'test.file' hostname_before = config.HOSTNAME_EXTERNAL config.HOSTNAME_EXTERNAL = 'foobar' try: content = 'test content 123' acl = 'public-read' self.s3_client.create_bucket(Bucket=bucket_name) # upload file response = self._perform_multipart_upload(bucket=bucket_name, key=key, data=content, acl=acl) expected_url = '%s://%s:%s/%s/%s' % (get_service_protocol(), config.HOSTNAME_EXTERNAL, config.PORT_S3, bucket_name, key) self.assertEqual(expected_url, response['Location']) # fix object ACL - currently not directly support for multipart uploads self.s3_client.put_object_acl(Bucket=bucket_name, Key=key, ACL=acl) # download object via API downloaded_object = self.s3_client.get_object(Bucket=bucket_name, Key=key) self.assertEqual(to_str(downloaded_object['Body'].read()), content) # download object directly from download link download_url = response['Location'].replace('%s:' % config.HOSTNAME_EXTERNAL, 'localhost:') response = safe_requests.get(download_url) self.assertEqual(response.status_code, 200) self.assertEqual(to_str(response.content), content) finally: config.HOSTNAME_EXTERNAL = hostname_before def test_s3_static_website_hosting(self): bucket_name = 'test-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_object(Bucket=bucket_name, Key='test/index.html', Body='index') self.s3_client.put_object(Bucket=bucket_name, Key='test/error.html', Body='error') self.s3_client.put_object(Bucket=bucket_name, Key='actual/key.html', Body='key') self.s3_client.put_bucket_website( Bucket=bucket_name, WebsiteConfiguration={'IndexDocument': {'Suffix': 'index.html'}, 'ErrorDocument': {'Key': 'test/error.html'}} ) headers = aws_stack.mock_aws_request_headers('s3') headers['Host'] = s3_utils.get_bucket_website_hostname(bucket_name) # actual key url = 'https://{}.{}:{}/actual/key.html'.format(bucket_name, constants.S3_STATIC_WEBSITE_HOSTNAME, config.EDGE_PORT) response = requests.get(url, headers=headers, verify=False) self.assertEqual(response.status_code, 200) self.assertEqual(response.text, 'key') # index document url = 'https://{}.{}:{}/test'.format(bucket_name, constants.S3_STATIC_WEBSITE_HOSTNAME, config.EDGE_PORT) response = requests.get(url, headers=headers, verify=False) self.assertEqual(response.status_code, 302) self.assertEqual(response.text, 'index') # root path test url = 'https://{}.{}:{}/'.format(bucket_name, constants.S3_STATIC_WEBSITE_HOSTNAME, config.EDGE_PORT) response = requests.get(url, headers=headers, verify=False) self.assertEqual(response.status_code, 404) self.assertEqual(response.text, 'error') # error document url = 'https://{}.{}:{}/something'.format(bucket_name, constants.S3_STATIC_WEBSITE_HOSTNAME, config.EDGE_PORT) response = requests.get(url, headers=headers, verify=False) self.assertEqual(response.status_code, 404) self.assertEqual(response.text, 'error') def test_s3_event_notification_with_sqs(self): key_by_path = 'aws/bucket=2020/test1.txt' bucket_name = 'notif-sqs-%s' % short_uid() queue_url, queue_attributes = self._create_test_queue() self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) self.s3_client.put_bucket_versioning(Bucket=bucket_name, VersioningConfiguration={'Status': 'Enabled'}) body = 'Lorem ipsum dolor sit amet, ... ' * 30 # put an object self.s3_client.put_object(Bucket=bucket_name, Key=key_by_path, Body=body) self.assertEqual(self._get_test_queue_message_count(queue_url), '1') rs = self.sqs_client.receive_message(QueueUrl=queue_url) record = [json.loads(to_str(m['Body'])) for m in rs['Messages']][0]['Records'][0] download_file = new_tmp_file() self.s3_client.download_file(Bucket=bucket_name, Key=key_by_path, Filename=download_file) self.assertEqual(record['s3']['object']['size'], os.path.getsize(download_file)) # clean up self.s3_client.put_bucket_versioning(Bucket=bucket_name, VersioningConfiguration={'Status': 'Disabled'}) self.sqs_client.delete_queue(QueueUrl=queue_url) self._delete_bucket(bucket_name, [key_by_path]) def test_s3_delete_object_with_version_id(self): test_1st_key = 'aws/s3/testkey1.txt' test_2nd_key = 'aws/s3/testkey2.txt' body = 'Lorem ipsum dolor sit amet, ... ' * 30 self.s3_client.create_bucket(Bucket=TEST_BUCKET_WITH_VERSIONING) self.s3_client.put_bucket_versioning(Bucket=TEST_BUCKET_WITH_VERSIONING, VersioningConfiguration={'Status': 'Enabled'}) # put 2 objects rs = self.s3_client.put_object(Bucket=TEST_BUCKET_WITH_VERSIONING, Key=test_1st_key, Body=body) self.s3_client.put_object(Bucket=TEST_BUCKET_WITH_VERSIONING, Key=test_2nd_key, Body=body) version_id = rs['VersionId'] # delete 1st object with version rs = self.s3_client.delete_objects(Bucket=TEST_BUCKET_WITH_VERSIONING, Delete={'Objects': [{'Key': test_1st_key, 'VersionId': version_id}]}) deleted = rs['Deleted'][0] self.assertEqual(deleted['Key'], test_1st_key) self.assertEqual(deleted['VersionId'], version_id) rs = self.s3_client.list_object_versions(Bucket=TEST_BUCKET_WITH_VERSIONING) object_versions = [object['VersionId'] for object in rs['Versions']] self.assertNotIn(version_id, object_versions) # clean up self.s3_client.put_bucket_versioning(Bucket=TEST_BUCKET_WITH_VERSIONING, VersioningConfiguration={'Status': 'Disabled'}) self._delete_bucket(TEST_BUCKET_WITH_VERSIONING, [test_1st_key, test_2nd_key]) def test_etag_on_get_object_call(self): self.s3_client.create_bucket(Bucket=TEST_BUCKET_NAME_2) body = 'Lorem ipsum dolor sit amet, ... ' * 30 rs = self.s3_client.put_object(Bucket=TEST_BUCKET_NAME_2, Key=TEST_KEY_2, Body=body) etag = rs['ETag'] rs = self.s3_client.get_object( Bucket=TEST_BUCKET_NAME_2, Key=TEST_KEY_2 ) self.assertIn('ETag', rs) self.assertEqual(etag, rs['ETag']) self.assertEqual(rs['ContentLength'], len(body)) rs = self.s3_client.get_object( Bucket=TEST_BUCKET_NAME_2, Key=TEST_KEY_2, Range='bytes=0-{}'.format(TEST_GET_OBJECT_RANGE - 1) ) self.assertIn('ETag', rs) self.assertEqual(etag, rs['ETag']) self.assertEqual(rs['ContentLength'], TEST_GET_OBJECT_RANGE) # clean up self._delete_bucket(TEST_BUCKET_NAME_2, [TEST_KEY_2]) def test_get_object_versioning(self): bucket_name = 'bucket-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) rs = self.s3_client.list_object_versions( Bucket=bucket_name, EncodingType='url' ) self.assertEqual(rs['ResponseMetadata']['HTTPStatusCode'], 200) self.assertEqual(rs['Name'], bucket_name) # clean up self._delete_bucket(bucket_name, []) def test_bucket_versioning(self): self.s3_client.create_bucket(Bucket=TEST_BUCKET_WITH_VERSIONING) self.s3_client.put_bucket_versioning(Bucket=TEST_BUCKET_WITH_VERSIONING, VersioningConfiguration={'Status': 'Enabled'}) result = self.s3_client.get_bucket_versioning(Bucket=TEST_BUCKET_WITH_VERSIONING) self.assertEqual(result['Status'], 'Enabled') def test_get_bucket_versioning_order(self): bucket_name = 'version-order-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_bucket_versioning(Bucket=bucket_name, VersioningConfiguration={'Status': 'Enabled'}) self.s3_client.put_object(Bucket=bucket_name, Key='test', Body='body') self.s3_client.put_object(Bucket=bucket_name, Key='test', Body='body') self.s3_client.put_object(Bucket=bucket_name, Key='test2', Body='body') rs = self.s3_client.list_object_versions( Bucket=bucket_name, ) self.assertEqual(rs['ResponseMetadata']['HTTPStatusCode'], 200) self.assertEqual(rs['Name'], bucket_name) self.assertEqual(rs['Versions'][0]['IsLatest'], True) self.assertEqual(rs['Versions'][2]['IsLatest'], True) def test_upload_big_file(self): bucket_name = 'bucket-big-file-%s' % short_uid() key1 = 'test_key1' key2 = 'test_key1' self.s3_client.create_bucket(Bucket=bucket_name) body1 = '\x01' * 10000000 rs = self.s3_client.put_object(Bucket=bucket_name, Key=key1, Body=body1) self.assertEqual(rs['ResponseMetadata']['HTTPStatusCode'], 200) body2 = 'a' * 10000000 rs = self.s3_client.put_object(Bucket=bucket_name, Key=key2, Body=body2) self.assertEqual(rs['ResponseMetadata']['HTTPStatusCode'], 200) rs = self.s3_client.head_object(Bucket=bucket_name, Key=key1) self.assertEqual(rs['ContentLength'], len(body1)) rs = self.s3_client.head_object(Bucket=bucket_name, Key=key2) self.assertEqual(rs['ContentLength'], len(body2)) # clean up self._delete_bucket(bucket_name, [key1, key2]) def test_s3_put_more_than_1000_items(self): self.s3_client.create_bucket(Bucket=TEST_BUCKET_NAME_2) for i in range(0, 1010, 1): body = 'test-' + str(i) key = 'test-key-' + str(i) self.s3_client.put_object(Bucket=TEST_BUCKET_NAME_2, Key=key, Body=body) # trying to get the last item of 1010 items added. resp = self.s3_client.get_object(Bucket=TEST_BUCKET_NAME_2, Key='test-key-1009') self.assertEqual(to_str(resp['Body'].read()), 'test-1009') # trying to get the first item of 1010 items added. resp = self.s3_client.get_object(Bucket=TEST_BUCKET_NAME_2, Key='test-key-0') self.assertEqual(to_str(resp['Body'].read()), 'test-0') resp = self.s3_client.list_objects(Bucket=TEST_BUCKET_NAME_2, MaxKeys=1010) self.assertEqual(len(resp['Contents']), 1010) resp = self.s3_client.list_objects(Bucket=TEST_BUCKET_NAME_2) self.assertEqual(len(resp['Contents']), 1000) next_marker = resp['NextMarker'] # Second list resp = self.s3_client.list_objects(Bucket=TEST_BUCKET_NAME_2, Marker=next_marker) self.assertEqual(len(resp['Contents']), 10) def test_s3_list_objects_empty_marker(self): bucket_name = 'test' + short_uid() self.s3_client.create_bucket(Bucket=bucket_name) resp = self.s3_client.list_objects(Bucket=bucket_name, Marker='') self.assertEqual(resp['Marker'], '') def test_s3_multipart_upload_file(self): def upload(size_in_mb, bucket): file_name = '{}.tmp'.format(short_uid()) path = '{}'.format(file_name) with open(path, 'wb') as f: f.seek(int(size_in_mb * 1e6)) f.write(b'\0') f.flush() self.s3_client.upload_file( path, bucket, f'{file_name}', ExtraArgs={'StorageClass': 'DEEP_ARCHIVE'} ) os.remove(path) bucket_name = 'bucket-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) upload(1, bucket_name) upload(9, bucket_name) upload(15, bucket_name) s3_resource = aws_stack.connect_to_resource('s3') objects = s3_resource.Bucket(bucket_name).objects.all() keys = [] for obj in objects: keys.append(obj.key) self.assertEqual(obj.storage_class, 'DEEP_ARCHIVE') self._delete_bucket(bucket_name, keys) def test_cors_with_single_origin_error(self): client = self._get_test_client() BUCKET_CORS_CONFIG = { 'CORSRules': [{ 'AllowedOrigins': ['https://localhost:4200'], 'AllowedMethods': ['GET', 'PUT'], 'MaxAgeSeconds': 3000, 'AllowedHeaders': ['*'], }] } client.create_bucket(Bucket='my-s3-bucket') client.put_bucket_cors(Bucket='my-s3-bucket', CORSConfiguration=BUCKET_CORS_CONFIG) # create signed url url = client.generate_presigned_url( ClientMethod='put_object', Params={ 'Bucket': 'my-s3-bucket', 'Key': '424f6bae-c48f-42d8-9e25-52046aecc64d/document.pdf', 'ContentType': 'application/pdf', 'ACL': 'bucket-owner-full-control' }, ExpiresIn=3600 ) result = requests.put(url, data='something', verify=False, headers={'Origin': 'https://localhost:4200', 'Content-Type': 'application/pdf'}) self.assertEqual(result.status_code, 200) BUCKET_CORS_CONFIG = { 'CORSRules': [{ 'AllowedOrigins': ['https://localhost:4200', 'https://localhost:4201'], 'AllowedMethods': ['GET', 'PUT'], 'MaxAgeSeconds': 3000, 'AllowedHeaders': ['*'], }] } client.put_bucket_cors(Bucket='my-s3-bucket', CORSConfiguration=BUCKET_CORS_CONFIG) # create signed url url = client.generate_presigned_url( ClientMethod='put_object', Params={ 'Bucket': 'my-s3-bucket', 'Key': '424f6bae-c48f-42d8-9e25-52046aecc64d/document.pdf', 'ContentType': 'application/pdf', 'ACL': 'bucket-owner-full-control' }, ExpiresIn=3600 ) result = requests.put(url, data='something', verify=False, headers={'Origin': 'https://localhost:4200', 'Content-Type': 'application/pdf'}) self.assertEqual(result.status_code, 200) result = requests.put(url, data='something', verify=False, headers={'Origin': 'https://localhost:4201', 'Content-Type': 'application/pdf'}) self.assertEqual(result.status_code, 200) def test_s3_put_object_notification_with_lambda(self): bucket_name = 'bucket-%s' % short_uid() function_name = 'func-%s' % short_uid() table_name = 'table-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) testutil.create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_ECHO, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36 ) aws_stack.create_dynamodb_table( table_name=table_name, partition_key='uuid' ) self.s3_client.put_bucket_notification_configuration( Bucket=bucket_name, NotificationConfiguration={ 'LambdaFunctionConfigurations': [ { 'LambdaFunctionArn': aws_stack.lambda_function_arn(function_name), 'Events': ['s3:ObjectCreated:*'] } ] } ) # put an object obj = self.s3_client.put_object(Bucket=bucket_name, Key=table_name, Body='something..') etag = obj['ETag'] time.sleep(2) table = aws_stack.connect_to_resource('dynamodb').Table(table_name) def check_table(): rs = table.scan() self.assertEqual(len(rs['Items']), 1) return rs rs = retry(check_table, retries=4, sleep=3) record = rs['Items'][0] self.assertEqual(record['data']['s3']['bucket']['name'], bucket_name) self.assertEqual(record['data']['s3']['object']['eTag'], etag) # clean up self._delete_bucket(bucket_name, [table_name]) lambda_client = aws_stack.connect_to_service('lambda') lambda_client.delete_function(FunctionName=function_name) dynamodb_client = aws_stack.connect_to_service('dynamodb') dynamodb_client.delete_table(TableName=table_name) def test_s3_put_object_notification_with_sns_topic(self): bucket_name = 'bucket-%s' % short_uid() topic_name = 'topic-%s' % short_uid() queue_name = 'queue-%s' % short_uid() key_name = 'bucket-key-%s' % short_uid() sns_client = aws_stack.connect_to_service('sns') self.s3_client.create_bucket(Bucket=bucket_name) queue_url = self.sqs_client.create_queue(QueueName=queue_name)['QueueUrl'] topic_arn = sns_client.create_topic(Name=topic_name)['TopicArn'] sns_client.subscribe(TopicArn=topic_arn, Protocol='sqs', Endpoint=aws_stack.sqs_queue_arn(queue_name)) self.s3_client.put_bucket_notification_configuration( Bucket=bucket_name, NotificationConfiguration={ 'TopicConfigurations': [ { 'TopicArn': topic_arn, 'Events': ['s3:ObjectCreated:*'] } ] } ) # Put an object # This will trigger an event to sns topic, sqs queue will get a message since it's a subscriber of topic self.s3_client.put_object(Bucket=bucket_name, Key=key_name, Body='body content...') time.sleep(2) def get_message(q_url): resp = self.sqs_client.receive_message(QueueUrl=q_url) m = resp['Messages'][0] self.sqs_client.delete_message( QueueUrl=q_url, ReceiptHandle=m['ReceiptHandle'] ) return json.loads(m['Body']) message = retry(get_message, retries=3, sleep=2, q_url=queue_url) # We got a notification message in sqs queue (from s3 source) self.assertEqual(message['Type'], 'Notification') self.assertEqual(message['TopicArn'], topic_arn) self.assertEqual(message['Subject'], 'Amazon S3 Notification') r = json.loads(message['Message'])['Records'][0] self.assertEqual(r['eventSource'], 'aws:s3') self.assertEqual(r['s3']['bucket']['name'], bucket_name) self.assertEqual(r['s3']['object']['key'], key_name) # clean up self._delete_bucket(bucket_name, [key_name]) self.sqs_client.delete_queue(QueueUrl=queue_url) sns_client.delete_topic(TopicArn=topic_arn) def test_s3_get_deep_archive_object(self): bucket_name = 'bucket-%s' % short_uid() object_key = 'key-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # put DEEP_ARCHIVE object self.s3_client.put_object( Bucket=bucket_name, Key=object_key, Body='body data', StorageClass='DEEP_ARCHIVE' ) with self.assertRaises(ClientError) as ctx: self.s3_client.get_object( Bucket=bucket_name, Key=object_key ) self.assertIn('InvalidObjectState', str(ctx.exception)) # clean up self._delete_bucket(bucket_name, [object_key]) def test_s3_get_deep_archive_object_restore(self): bucket_name = 'bucket-%s' % short_uid() object_key = 'key-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) # put DEEP_ARCHIVE object self.s3_client.put_object( Bucket=bucket_name, Key=object_key, Body='body data', StorageClass='DEEP_ARCHIVE' ) with self.assertRaises(ClientError) as ctx: self.s3_client.get_object( Bucket=bucket_name, Key=object_key ) self.assertIn('InvalidObjectState', str(ctx.exception)) # put DEEP_ARCHIVE object self.s3_client.restore_object( Bucket=bucket_name, Key=object_key, RestoreRequest={ 'Days': 30, 'GlacierJobParameters': { 'Tier': 'Bulk' }, 'Tier': 'Bulk', }, ) response = self.s3_client.get_object( Bucket=bucket_name, Key=object_key ) self.assertIn('etag', response.get('ResponseMetadata').get('HTTPHeaders')) # clean up self._delete_bucket(bucket_name, [object_key]) def test_encoding_notification_messages(self): key = 'a@b' bucket_name = 'notif-enc-%s' % short_uid() queue_url = self.sqs_client.create_queue(QueueName='testQueue')['QueueUrl'] queue_attributes = self.sqs_client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=['QueueArn']) self._create_test_notification_bucket(queue_attributes, bucket_name=bucket_name) # put an object where the bucket_name is in the path self.s3_client.put_object(Bucket=bucket_name, Key=key, Body='something') response = self.sqs_client.receive_message(QueueUrl=queue_url) self.assertEqual(json.loads(response['Messages'][0]['Body'])['Records'][0]['s3']['object']['key'], 'a%40b') # clean up self.s3_client.delete_objects(Bucket=bucket_name, Delete={'Objects': [{'Key': key}]}) def test_s3_batch_delete_objects_using_requests(self): bucket_name = 'bucket-%s' % short_uid() object_key_1 = 'key-%s' % short_uid() object_key_2 = 'key-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_object(Bucket=bucket_name, Key=object_key_1, Body='This body document') self.s3_client.put_object(Bucket=bucket_name, Key=object_key_2, Body='This body document') base_url = '{}://{}:{}'.format(get_service_protocol(), config.LOCALSTACK_HOSTNAME, config.PORT_S3) url = '{}/{}?delete='.format(base_url, bucket_name) r = requests.post(url=url, data=BATCH_DELETE_BODY % (object_key_1, object_key_2)) self.assertEqual(r.status_code, 200) s3_resource = aws_stack.connect_to_resource('s3') bucket = s3_resource.Bucket(bucket_name) total_keys = sum(1 for _ in bucket.objects.all()) self.assertEqual(total_keys, 0) # clean up self._delete_bucket(bucket_name, []) def test_presigned_url_signature_authentication(self): client = boto3.client('s3', endpoint_url=config.get_edge_url(), config=Config(signature_version='s3'), aws_access_key_id=TEST_AWS_ACCESS_KEY_ID, aws_secret_access_key=TEST_AWS_SECRET_ACCESS_KEY) client_v4 = boto3.client('s3', endpoint_url=config.get_edge_url(), config=Config(signature_version='s3v4'), aws_access_key_id=TEST_AWS_ACCESS_KEY_ID, aws_secret_access_key=TEST_AWS_SECRET_ACCESS_KEY) OBJECT_KEY = 'temp 1.txt' OBJECT_DATA = 'this should be found in when you download {}.'.format(OBJECT_KEY) BUCKET = 'test' EXPIRES = 4 def make_v2_url_invalid(url): parsed = urlparse.urlparse(url) query_params = parse_qs(parsed.query) url = '{}/{}/{}?AWSAccessKeyId={}&Signature={}&Expires={}'.format( config.get_edge_url(), BUCKET, OBJECT_KEY, 'test', query_params['Signature'][0], query_params['Expires'][0] ) return url def make_v4_url_invalid(url): parsed = urlparse.urlparse(url) query_params = parse_qs(parsed.query) url = ('{}/{}/{}?X-Amz-Algorithm=AWS4-HMAC-SHA256&' + 'X-Amz-Credential={}&X-Amz-Date={}&' + 'X-Amz-Expires={}&X-Amz-SignedHeaders=host&' + 'X-Amz-Signature={}').format( config.get_edge_url(), BUCKET, OBJECT_KEY, quote(query_params['X-Amz-Credential'][0]).replace('/', '%2F'), query_params['X-Amz-Date'][0], query_params['X-Amz-Expires'][0], query_params['X-Amz-Signature'][0] ) return url client.create_bucket(Bucket=BUCKET) client.put_object(Key=OBJECT_KEY, Bucket=BUCKET, Body='123') # GET requests presign_get_url = client.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_get_url_v4 = client_v4.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.get(presign_get_url) self.assertEqual(response.status_code, 200) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 200) presign_get_url = client.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ResponseContentType': 'text/plain', 'ResponseContentDisposition': 'attachment; filename=test.txt'}, ExpiresIn=EXPIRES ) presign_get_url_v4 = client_v4.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ResponseContentType': 'text/plain'}, ExpiresIn=EXPIRES ) # Valid request response = requests.get(presign_get_url) self.assertEqual(response.status_code, 200) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 200) # Invalid request url = make_v2_url_invalid(presign_get_url) response = requests.get(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_get_url_v4) response = requests.get(url, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) # PUT Requests presign_put_url = client.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_put_url_v4 = client_v4.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.put(presign_put_url, data=OBJECT_DATA) self.assertEqual(response.status_code, 200) response = requests.put(presign_put_url_v4, data=OBJECT_DATA) self.assertEqual(response.status_code, 200) presign_put_url = client.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ContentType': 'text/plain'}, ExpiresIn=EXPIRES ) presign_put_url_v4 = client_v4.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ContentType': 'text/plain'}, ExpiresIn=EXPIRES ) # Valid request response = requests.put(presign_put_url, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 200) response = requests.put(presign_put_url_v4, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 200) # Invalid request url = make_v2_url_invalid(presign_put_url) response = requests.put(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_put_url_v4) response = requests.put(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) # DELETE Requests presign_delete_url = client.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_delete_url_v4 = client_v4.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 204) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 204) presign_delete_url = client.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'VersionId': '1'}, ExpiresIn=EXPIRES ) presign_delete_url_v4 = client_v4.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'VersionId': '1'}, ExpiresIn=EXPIRES ) # Valid request response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 204) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 204) # Invalid request url = make_v2_url_invalid(presign_delete_url) response = requests.delete(url) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_delete_url_v4) response = requests.delete(url) self.assertEqual(response.status_code, 403) # Expired requests time.sleep(4) # GET response = requests.get(presign_get_url) self.assertEqual(response.status_code, 403) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 403) # PUT response = requests.put(presign_put_url, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 403) response = requests.put(presign_put_url_v4, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 403) # DELETE response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 403) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 403) # Multipart uploading response = self._perform_multipart_upload_with_presign(BUCKET, OBJECT_KEY, client) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) response = self._perform_multipart_upload_with_presign(BUCKET, OBJECT_KEY, client_v4) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) client.delete_object(Bucket=BUCKET, Key=OBJECT_KEY) client.delete_bucket(Bucket=BUCKET) def test_presigned_url_signature_authentication_virtual_host_addressing(self): virtual_endpoint = '{}://{}:{}'.format( config.get_protocol(), S3_VIRTUAL_HOSTNAME, config.EDGE_PORT) client = boto3.client('s3', endpoint_url=virtual_endpoint, config=Config(s3={'addressing_style': 'virtual'}), aws_access_key_id=TEST_AWS_ACCESS_KEY_ID, aws_secret_access_key=TEST_AWS_SECRET_ACCESS_KEY) client_v4 = boto3.client('s3', endpoint_url=virtual_endpoint, config=Config(signature_version='s3v4', s3={'addressing_style': 'virtual'}), aws_access_key_id=TEST_AWS_ACCESS_KEY_ID, aws_secret_access_key=TEST_AWS_SECRET_ACCESS_KEY) OBJECT_KEY = 'temp.txt' OBJECT_DATA = 'this should be found in when you download {}.'.format(OBJECT_KEY) BUCKET = 'test' EXPIRES = 4 def make_v2_url_invalid(url): parsed = urlparse.urlparse(url) query_params = parse_qs(parsed.query) url = '{}://{}.{}:{}/{}?AWSAccessKeyId={}&Signature={}&Expires={}'.format( config.get_protocol(), BUCKET, S3_VIRTUAL_HOSTNAME, config.EDGE_PORT, OBJECT_KEY, 'test', query_params['Signature'][0], query_params['Expires'][0] ) return url def make_v4_url_invalid(url): parsed = urlparse.urlparse(url) query_params = parse_qs(parsed.query) url = ('{}://{}.{}:{}/{}?X-Amz-Algorithm=AWS4-HMAC-SHA256&' + 'X-Amz-Credential={}&X-Amz-Date={}&' + 'X-Amz-Expires={}&X-Amz-SignedHeaders=host&' + 'X-Amz-Signature={}').format( config.get_protocol(), BUCKET, S3_VIRTUAL_HOSTNAME, config.EDGE_PORT, OBJECT_KEY, quote(query_params['X-Amz-Credential'][0]).replace('/', '%2F'), query_params['X-Amz-Date'][0], query_params['X-Amz-Expires'][0], query_params['X-Amz-Signature'][0] ) return url self.s3_client.create_bucket(Bucket=BUCKET) self.s3_client.put_object( Key=OBJECT_KEY, Bucket=BUCKET, Body='123' ) # GET requests presign_get_url = client.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_get_url_v4 = client_v4.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.get(presign_get_url) self.assertEqual(response.status_code, 200) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 200) presign_get_url = client.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ResponseContentType': 'text/plain'}, ExpiresIn=EXPIRES ) presign_get_url_v4 = client_v4.generate_presigned_url( 'get_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ResponseContentType': 'text/plain'}, ExpiresIn=EXPIRES ) # Valid request response = requests.get(presign_get_url) self.assertEqual(response.status_code, 200) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 200) # Invalid request url = make_v2_url_invalid(presign_get_url) response = requests.get(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_get_url_v4) response = requests.get(url, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) # PUT Requests presign_put_url = client.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_put_url_v4 = client_v4.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.put(presign_put_url, data=OBJECT_DATA) self.assertEqual(response.status_code, 200) response = requests.put(presign_put_url_v4, data=OBJECT_DATA) self.assertEqual(response.status_code, 200) presign_put_url = client.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ContentType': 'text/plain'}, ExpiresIn=EXPIRES ) presign_put_url_v4 = client_v4.generate_presigned_url( 'put_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'ContentType': 'text/plain'}, ExpiresIn=EXPIRES ) # Valid request response = requests.put(presign_put_url, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 200) response = requests.put(presign_put_url_v4, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 200) # Invalid request url = make_v2_url_invalid(presign_put_url) response = requests.put(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_put_url_v4) response = requests.put(url, data=OBJECT_DATA, headers={'Content-Type': 'my-fake-content/type'}) self.assertEqual(response.status_code, 403) # DELETE Requests presign_delete_url = client.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) presign_delete_url_v4 = client_v4.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY}, ExpiresIn=EXPIRES ) # Valid request response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 204) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 204) presign_delete_url = client.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'VersionId': '1'}, ExpiresIn=EXPIRES ) presign_delete_url_v4 = client_v4.generate_presigned_url( 'delete_object', Params={'Bucket': BUCKET, 'Key': OBJECT_KEY, 'VersionId': '1'}, ExpiresIn=EXPIRES ) # Valid request response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 204) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 204) # Invalid request url = make_v2_url_invalid(presign_delete_url) response = requests.delete(url) self.assertEqual(response.status_code, 403) url = make_v4_url_invalid(presign_delete_url_v4) response = requests.delete(url) self.assertEqual(response.status_code, 403) # Expired requests time.sleep(4) # GET response = requests.get(presign_get_url) self.assertEqual(response.status_code, 403) response = requests.get(presign_get_url_v4) self.assertEqual(response.status_code, 403) # PUT response = requests.put(presign_put_url, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 403) response = requests.put(presign_put_url_v4, data=OBJECT_DATA, headers={'Content-Type': 'text/plain'}) self.assertEqual(response.status_code, 403) # DELETE response = requests.delete(presign_delete_url) self.assertEqual(response.status_code, 403) response = requests.delete(presign_delete_url_v4) self.assertEqual(response.status_code, 403) # Multipart uploading response = self._perform_multipart_upload_with_presign(BUCKET, OBJECT_KEY, client) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) response = self._perform_multipart_upload_with_presign(BUCKET, OBJECT_KEY, client_v4) self.assertEqual(response['ResponseMetadata']['HTTPStatusCode'], 200) client.delete_object(Bucket=BUCKET, Key=OBJECT_KEY) client.delete_bucket(Bucket=BUCKET) def test_precondition_failed_error(self): bucket = 'bucket-%s' % short_uid() client = self._get_test_client() client.create_bucket(Bucket=bucket) client.put_object(Bucket=bucket, Key='foo', Body=b'{"foo": "bar"}') # this line makes localstack crash: try: client.get_object(Bucket=bucket, Key='foo', IfMatch='"not good etag"') except ClientError as e: self.assertEqual(e.response['Error']['Code'], 'PreconditionFailed') self.assertEqual(e.response['Error']['Message'], 'At least one of the pre-conditions you ' 'specified did not hold') client.delete_object(Bucket=bucket, Key='foo') client.delete_bucket(Bucket=bucket) def test_cors_configurtaions(self): client = self._get_test_client() bucket = 'test-cors' object_key = 'index.html' url = '{}/{}/{}'.format(config.get_edge_url(), bucket, object_key) BUCKET_CORS_CONFIG = { 'CORSRules': [{ 'AllowedOrigins': [config.get_edge_url()], 'AllowedMethods': ['GET', 'PUT'], 'MaxAgeSeconds': 3000, 'AllowedHeaders': ['x-amz-tagging'], }] } client.create_bucket(Bucket=bucket) client.put_bucket_cors(Bucket=bucket, CORSConfiguration=BUCKET_CORS_CONFIG) client.put_object(Bucket=bucket, Key=object_key, Body='<h1>Index</html>') response = requests.get(url, headers={'Origin': config.get_edge_url(), 'Content-Type': 'text/html'}) self.assertEqual(response.status_code, 200) self.assertIn('Access-Control-Allow-Origin'.lower(), response.headers) self.assertEqual(response.headers['Access-Control-Allow-Origin'], config.get_edge_url()) self.assertIn('Access-Control-Allow-Methods'.lower(), response.headers) self.assertIn('GET', response.headers['Access-Control-Allow-Methods']) self.assertIn('Access-Control-Allow-Headers', response.headers) self.assertEqual(response.headers['Access-Control-Allow-Headers'], 'x-amz-tagging') self.assertIn('Access-Control-Max-Age'.lower(), response.headers) self.assertEqual(response.headers['Access-Control-Max-Age'], '3000') self.assertIn('Access-Control-Allow-Credentials'.lower(), response.headers) self.assertEqual(response.headers['Access-Control-Allow-Credentials'].lower(), 'true') BUCKET_CORS_CONFIG = { 'CORSRules': [{ 'AllowedOrigins': ['https://anydomain.com'], 'AllowedMethods': ['GET', 'PUT'], 'MaxAgeSeconds': 3000, 'AllowedHeaders': ['x-amz-tagging'], }] } client.put_bucket_cors(Bucket=bucket, CORSConfiguration=BUCKET_CORS_CONFIG) response = requests.get(url, headers={'Origin': config.get_edge_url(), 'Content-Type': 'text/html'}) self.assertEqual(response.status_code, 200) self.assertNotIn('Access-Control-Allow-Origin'.lower(), response.headers) self.assertNotIn('Access-Control-Allow-Methods'.lower(), response.headers) self.assertNotIn('Access-Control-Allow-Headers', response.headers) self.assertNotIn('Access-Control-MaxAge', response.headers) # cleaning client.delete_object(Bucket=bucket, Key=object_key) client.delete_bucket(Bucket=bucket) def test_s3_download_object_with_lambda(self): bucket_name = 'bucket-%s' % short_uid() function_name = 'func-%s' % short_uid() key = 'key-%s' % short_uid() self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_object(Bucket=bucket_name, Key=key, Body='something..') testutil.create_lambda_function( handler_file=TEST_LAMBDA_PYTHON_DOWNLOAD_FROM_S3, func_name=function_name, runtime=LAMBDA_RUNTIME_PYTHON36, envvars=dict({ 'BUCKET_NAME': bucket_name, 'OBJECT_NAME': key, 'LOCAL_FILE_NAME': '/tmp/' + key, }) ) lambda_client = aws_stack.connect_to_service('lambda') lambda_client.invoke(FunctionName=function_name, InvocationType='Event') retry(testutil.check_expected_lambda_log_events_length, retries=10, sleep=3, function_name=function_name, expected_length=1) # clean up self._delete_bucket(bucket_name, [key]) lambda_client.delete_function(FunctionName=function_name) def test_putobject_with_multiple_keys(self): client = self._get_test_client() bucket = 'bucket-%s' % short_uid() key_by_path = 'aws/key1/key2/key3' client.create_bucket(Bucket=bucket) client.put_object( Body=b'test', Bucket=bucket, Key=key_by_path ) # Cleanup self._delete_bucket(bucket, key_by_path) def test_terraform_request_sequence(self): reqs = load_file(os.path.join(os.path.dirname(__file__), 'files', 's3.requests.txt')) reqs = reqs.split('---') for req in reqs: header, _, body = req.strip().partition('\n\n') req, _, headers = header.strip().partition('\n') headers = {h.split(':')[0]: h.partition(':')[2].strip() for h in headers.split('\n')} method, path, _ = req.split(' ') url = '%s%s' % (config.get_edge_url(), path) result = getattr(requests, method.lower())(url, data=body, headers=headers) self.assertLess(result.status_code, 400) # --------------- # HELPER METHODS # --------------- @staticmethod def generate_large_file(size): # https://stackoverflow.com/questions/8816059/create-file-of-particular-size-in-python filename = 'large_file_%s' % uuid.uuid4() f = open(filename, 'wb') f.seek(size - 1) f.write(b'\0') f.close() return open(filename, 'r') def _create_test_queue(self): queue_url = self.sqs_client.create_queue(QueueName=TEST_QUEUE_FOR_BUCKET_WITH_NOTIFICATION)['QueueUrl'] queue_attributes = self.sqs_client.get_queue_attributes(QueueUrl=queue_url, AttributeNames=['QueueArn']) return queue_url, queue_attributes def _create_test_notification_bucket(self, queue_attributes, bucket_name): self.s3_client.create_bucket(Bucket=bucket_name) self.s3_client.put_bucket_notification_configuration( Bucket=bucket_name, NotificationConfiguration={ 'QueueConfigurations': [ { 'QueueArn': queue_attributes['Attributes']['QueueArn'], 'Events': ['s3:ObjectCreated:*'] } ] } ) def _get_test_queue_message_count(self, queue_url): queue_attributes = self.sqs_client.get_queue_attributes( QueueUrl=queue_url, AttributeNames=['ApproximateNumberOfMessages'] ) return queue_attributes['Attributes']['ApproximateNumberOfMessages'] def _delete_bucket(self, bucket_name, keys=[]): keys = keys if isinstance(keys, list) else [keys] objects = [{'Key': k} for k in keys] if objects: self.s3_client.delete_objects(Bucket=bucket_name, Delete={'Objects': objects}) self.s3_client.delete_bucket(Bucket=bucket_name) def _perform_multipart_upload(self, bucket, key, data=None, zip=False, acl=None): kwargs = {'ACL': acl} if acl else {} multipart_upload_dict = self.s3_client.create_multipart_upload(Bucket=bucket, Key=key, **kwargs) upload_id = multipart_upload_dict['UploadId'] # Write contents to memory rather than a file. data = data or (5 * short_uid()) data = to_bytes(data) upload_file_object = BytesIO(data) if zip: upload_file_object = BytesIO() with gzip.GzipFile(fileobj=upload_file_object, mode='w') as filestream: filestream.write(data) response = self.s3_client.upload_part(Bucket=bucket, Key=key, Body=upload_file_object, PartNumber=1, UploadId=upload_id) multipart_upload_parts = [{'ETag': response['ETag'], 'PartNumber': 1}] return self.s3_client.complete_multipart_upload( Bucket=bucket, Key=key, MultipartUpload={'Parts': multipart_upload_parts}, UploadId=upload_id ) def _perform_multipart_upload_with_presign(self, bucket, key, s3_client=None, data=None, zip=False, acl=None): if not s3_client: s3_client = self.s3_client kwargs = {'ACL': acl} if acl else {} multipart_upload_dict = self.s3_client.create_multipart_upload(Bucket=bucket, Key=key, **kwargs) upload_id = multipart_upload_dict['UploadId'] # Write contents to memory rather than a file. data = data or (5 * short_uid()) data = to_bytes(data) upload_file_object = BytesIO(data) if zip: upload_file_object = BytesIO() with gzip.GzipFile(fileobj=upload_file_object, mode='w') as filestream: filestream.write(data) signed_url = s3_client.generate_presigned_url(ClientMethod='upload_part', Params={'Bucket': bucket, 'Key': key, 'UploadId': upload_id, 'PartNumber': 1}) response = requests.put(signed_url, data=upload_file_object) multipart_upload_parts = [{'ETag': response.headers['ETag'], 'PartNumber': 1}] return s3_client.complete_multipart_upload( Bucket=bucket, Key=key, MultipartUpload={'Parts': multipart_upload_parts}, UploadId=upload_id ) def _perform_presigned_url_upload(self, bucket, key): client = self._get_test_client() url = client.generate_presigned_url( 'put_object', Params={'Bucket': bucket, 'Key': key} ) url = url + '&X-Amz-Credential=x&X-Amz-Signature=y' requests.put(url, data='something', verify=False) def _get_test_client(self): return boto3.client( 's3', endpoint_url=config.get_edge_url(), aws_access_key_id=TEST_AWS_ACCESS_KEY_ID, aws_secret_access_key=TEST_AWS_SECRET_ACCESS_KEY )
StarcoderdataPython
1827759
<reponame>AlexanderBerx/NoiceUi from setuptools import setup setup( name='NoiceUi', version='0.1.0', packages=['noiceui', 'bin'], url='', license='BSD 3', author='<NAME>', author_email='<EMAIL>', description='noiceui, ui for Solidangles Arnold Noice tool', requires=['qt.py'] )
StarcoderdataPython
277575
import config import gc import json import utime import neopixel from machine import Pin, I2C from ina219 import INA219 from steppers import Stepper, Axis from logging import ERROR from letters import characters from microWebSrv import MicroWebSrv # lock lock1 = False # ina initialization i2c = I2C(-1, Pin(config.device['ina_scl']), Pin(config.device['ina_sda'])) ina = INA219(config.device['shunt_ohms'], i2c, log_level=ERROR) ina.configure() # leds np = neopixel.NeoPixel(machine.Pin(27), 25) # steppers initialization m1 = Stepper(0, Pin(config.device['m1_dir']), Pin(config.device['m1_step']), Pin(config.device['m1_enable']), config.device['pwm_freq']) m0 = Stepper(1, Pin(config.device['m2_dir']), Pin(config.device['m2_step']), Pin(config.device['m2_enable']), config.device['pwm_freq']) # axis initialization aperture = Axis(m0, ina, config.device['max_ma_aperture'], config.device['margin']) focus = Axis(m1, ina, config.device['max_ma_focus'], config.device['margin']) def write_2leds(letter, color): rgb = color char_matrix = characters.get(letter) led_counter = 0 for row in char_matrix: for led in row: if(led): np[led_counter] = rgb else: np[led_counter] = (0, 0, 0) led_counter += 1 np.write() # axis calibration write_2leds(".", (3, 0, 0)) current = ina.current() write_2leds(".", (0, 0, 5)) aperture.calibration() utime.sleep_ms(1000) write_2leds(".", (0, 3, 0)) focus.calibration() write_2leds(" ", (0, 0, 0)) # webserver functions def _httpHandlerMemory(httpClient, httpResponse, routeArgs): print("In Memory HTTP variable route :") query = str(routeArgs['query']) if 'gc' in query or 'collect' in query: gc.collect() content = """\ {} """.format(gc.mem_free()) httpResponse.WriteResponseOk(headers=None, contentType="text/html", contentCharset="UTF-8", content=content) def _httpHandlerGetStatus(httpClient, httpResponse, routeArgs): global focus, aperture mtype = routeArgs['mtype'] if 'focus' in mtype: max_steps = focus.max_steps calibrated = focus.calibrated actual_position = focus.actual_position elif 'aperture' in mtype: max_steps = aperture.max_steps calibrated = aperture.calibrated actual_position = aperture.actual_position data = { 'mtype': mtype, 'max_steps': max_steps, 'calibrated': calibrated, 'position': actual_position } httpResponse.WriteResponseOk(headers=None, contentType="text/html", contentCharset="UTF-8", content=json.dumps(data)) gc.collect() def _httpHandlerSetCalibration(httpClient, httpResponse, routeArgs): global focus, aperture mtype = routeArgs['mtype'] if 'focus' in mtype: max_steps = focus.calibration() position = focus.actual_position calibrated = focus.calibrated elif 'aperture' in mtype: max_steps = aperture.calibration() position = aperture.actual_position calibrated = aperture.calibrated data = { 'mtype': mtype, 'max_steps': max_steps, 'calibrated': calibrated, 'position': position } httpResponse.WriteResponseOk(headers=None, contentType="text/html", contentCharset="UTF-8", content=json.dumps(data)) gc.collect() def _httpHandlerSetMove(httpClient, httpResponse, routeArgs): global focus, aperture, lock1 mtype = routeArgs['mtype'] steps = int(routeArgs['steps']) clockwise = -1 if int(routeArgs['clockwise']) == 0 else 1 status = 0 position = 0 if 'focus' in mtype: write_2leds(".", (0, 3, 0)) status = focus.move(clockwise * steps, 1) position = focus.actual_position elif 'aperture' in mtype: write_2leds(".", (0, 0, 5)) status = aperture.move(clockwise * steps, 1) position = aperture.actual_position write_2leds(" ", (0, 0, 0)) data = { 'mtype': mtype, 'steps': steps, 'status': status, 'clockwise': clockwise, 'position': position } httpResponse.WriteResponseOk(headers=None, contentType="text/html", contentCharset="UTF-8", content=json.dumps(data)) gc.collect() routeHandlers = [ ("/memory/<query>", "GET", _httpHandlerMemory), ("/status/<mtype>", "GET", _httpHandlerGetStatus), ("/calibration/<mtype>", "GET", _httpHandlerSetCalibration), ("/move/<mtype>/<steps>/<clockwise>", "GET", _httpHandlerSetMove) ] mws = MicroWebSrv(routeHandlers=routeHandlers, webPath="www/") mws.Start(threaded=True) gc.collect()
StarcoderdataPython
6403980
<gh_stars>0 from random import * from words import wordlist DEBUG = False class HangMan(object): def __init__(self, difficulty="easy", words = wordlist, game_id = 0): self.number = game_id self.word = words[randint(0,len(words) - 1)] self.difficulty = difficulty self.welcome_message = "[+] Welcome To HangMan. \n[+] Game Is Set To " + str(self.difficulty).upper() + " Difficulty. \n" self.word_state = [ "_" for i in range(len(self.word)) ] self.turn = None #self.player_score = {} self.character_guesses = [] self.players = [] #self.connections = [] self.limit_lookup = { "easy" : 3, "medium" : 2, "hard" : 1 } self.limit = self.limit_lookup[self.difficulty] * len(self.word) def welcome(self): return self.welcome_message def add_player(self, player): self.players.append(player) #self.connections.append(connection) #self.player_score[player] = 0 def character_guess(self, character): if len(character) > 1: if character == self.word: self.word_state = [ c for c in self.word ] return len(self.word) else: return -1 if character not in self.character_guesses: self.character_guesses.append(character) indices = [i for i,word_character in enumerate(self.word) if word_character == character ] for index in indices: self.word_state[index] = character if "".join(self.word_state).count("_") == 0: return len(self.word) return self.word.count(character) return 0 def update_player_state(self, player, occurences): player.score += occurences def is_over(self, occurences): if occurences == len(self.word): return True if len(self.character_guesses) == self.limit: return True if "".join(self.word_state).count("_") == 0: occurences = len(self.word) self.player_score[player] += occurences return True return False def get_players_states(self): player_states = "" for player in self.players: player_states += player.name + " " + str(player.score) #i = self.players.index(name) if str(self.turn) == player.name: player_states += " * " player_states+="\n" return player_states def remove_player(self, player): self.players.remove(player) def update_turn(self): if self.turn == None: self.turn = self.players[0] return self.turn i = self.players.index(self.turn) self.turn = self.players[(i+1)%len(self.players)] return self.turn def get_state(self): return " ".join(self.word_state) + "\n\n" + self.get_players_states() +"\n[!] Guessed Characters: " + ",".join(self.character_guesses) + "\n" if __name__ == "__main__": game = HangMan() game.add_player("TomRiddler") game_over = False while not game_over: current_turn = game.update_turn() print game.get_state() c = raw_input("Enter Guess: ") game_over = game.update_player_state(current_turn, c) print "[!] Game Over."
StarcoderdataPython
12804102
<reponame>levilucio/SyVOLT<gh_stars>1-10 """ __MapDistributable_MDL.py_____________________________________________________ Automatically generated AToM3 Model File (Do not modify directly) Author: levi Modified: Fri Aug 23 15:40:27 2013 ______________________________________________________________________________ """ from stickylink import * from widthXfillXdecoration import * from MatchModel import * from ApplyModel import * from ECU import * from VirtualDevice import * from Distributable import * from ComponentPrototype import * from SwCompToEcuMapping_component import * from paired_with import * from match_contains import * from directLink_S import * from directLink_T import * from apply_contains import * from graph_ECU import * from graph_match_contains import * from graph_Distributable import * from graph_SwCompToEcuMapping_component import * from graph_directLink_T import * from graph_directLink_S import * from graph_MatchModel import * from graph_apply_contains import * from graph_paired_with import * from graph_ApplyModel import * from graph_VirtualDevice import * from graph_ComponentPrototype import * from ATOM3Enum import * from ATOM3String import * from ATOM3BottomType import * from ATOM3Constraint import * from ATOM3Attribute import * from ATOM3Float import * from ATOM3List import * from ATOM3Link import * from ATOM3Connection import * from ATOM3Boolean import * from ATOM3Appearance import * from ATOM3Text import * from ATOM3Action import * from ATOM3Integer import * from ATOM3Port import * from ATOM3MSEnum import * def MapDistributable_MDL(self, rootNode, GM2AUTOSAR_MMRootNode=None): # --- Generating attributes code for ASG GM2AUTOSAR_MM --- if( GM2AUTOSAR_MMRootNode ): # author GM2AUTOSAR_MMRootNode.author.setValue('Annonymous') # description GM2AUTOSAR_MMRootNode.description.setValue('\n') GM2AUTOSAR_MMRootNode.description.setHeight(15) # name GM2AUTOSAR_MMRootNode.name.setValue('MapDistributable') # --- ASG attributes over --- self.obj41=MatchModel(self) self.obj41.isGraphObjectVisual = True if(hasattr(self.obj41, '_setHierarchicalLink')): self.obj41._setHierarchicalLink(False) self.obj41.graphClass_= graph_MatchModel if self.genGraphics: new_obj = graph_MatchModel(20.0,300.0,self.obj41) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("MatchModel", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj41.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj41) self.globalAndLocalPostcondition(self.obj41, rootNode) self.obj41.postAction( rootNode.CREATE ) self.obj42=ApplyModel(self) self.obj42.isGraphObjectVisual = True if(hasattr(self.obj42, '_setHierarchicalLink')): self.obj42._setHierarchicalLink(False) self.obj42.graphClass_= graph_ApplyModel if self.genGraphics: new_obj = graph_ApplyModel(20.0,580.0,self.obj42) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("ApplyModel", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj42.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj42) self.globalAndLocalPostcondition(self.obj42, rootNode) self.obj42.postAction( rootNode.CREATE ) self.obj43=ECU(self) self.obj43.isGraphObjectVisual = True if(hasattr(self.obj43, '_setHierarchicalLink')): self.obj43._setHierarchicalLink(False) # classtype self.obj43.classtype.setValue('ECU') # cardinality self.obj43.cardinality.setValue('1') # name self.obj43.name.setValue('ecu1') self.obj43.graphClass_= graph_ECU if self.genGraphics: new_obj = graph_ECU(240.0,400.0,self.obj43) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("ECU", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj43.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj43) self.globalAndLocalPostcondition(self.obj43, rootNode) self.obj43.postAction( rootNode.CREATE ) self.obj44=VirtualDevice(self) self.obj44.isGraphObjectVisual = True if(hasattr(self.obj44, '_setHierarchicalLink')): self.obj44._setHierarchicalLink(False) # classtype self.obj44.classtype.setValue('VirtualDevice') # cardinality self.obj44.cardinality.setValue('1') # name self.obj44.name.setValue('vd1') self.obj44.graphClass_= graph_VirtualDevice if self.genGraphics: new_obj = graph_VirtualDevice(440.0,400.0,self.obj44) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("VirtualDevice", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj44.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj44) self.globalAndLocalPostcondition(self.obj44, rootNode) self.obj44.postAction( rootNode.CREATE ) self.obj45=Distributable(self) self.obj45.isGraphObjectVisual = True if(hasattr(self.obj45, '_setHierarchicalLink')): self.obj45._setHierarchicalLink(False) # classtype self.obj45.classtype.setValue('Distributable') # cardinality self.obj45.cardinality.setValue('+') # name self.obj45.name.setValue('dist1') self.obj45.graphClass_= graph_Distributable if self.genGraphics: new_obj = graph_Distributable(660.0,400.0,self.obj45) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("Distributable", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj45.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj45) self.globalAndLocalPostcondition(self.obj45, rootNode) self.obj45.postAction( rootNode.CREATE ) self.obj46=ComponentPrototype(self) self.obj46.isGraphObjectVisual = True if(hasattr(self.obj46, '_setHierarchicalLink')): self.obj46._setHierarchicalLink(False) # classtype self.obj46.classtype.setValue('ComponentPrototype') # cardinality self.obj46.cardinality.setValue('1') # name self.obj46.name.setValue('comp1') self.obj46.graphClass_= graph_ComponentPrototype if self.genGraphics: new_obj = graph_ComponentPrototype(620.0,660.0,self.obj46) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("ComponentPrototype", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj46.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj46) self.globalAndLocalPostcondition(self.obj46, rootNode) self.obj46.postAction( rootNode.CREATE ) self.obj47=SwCompToEcuMapping_component(self) self.obj47.isGraphObjectVisual = True if(hasattr(self.obj47, '_setHierarchicalLink')): self.obj47._setHierarchicalLink(False) # classtype self.obj47.classtype.setValue('SwCompToEcuMapping_component') # cardinality self.obj47.cardinality.setValue('1') # name self.obj47.name.setValue('sctemc1') self.obj47.graphClass_= graph_SwCompToEcuMapping_component if self.genGraphics: new_obj = graph_SwCompToEcuMapping_component(320.0,660.0,self.obj47) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("SwCompToEcuMapping_component", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints new_obj.layConstraints['scale'] = [1.0, 1.0] else: new_obj = None self.obj47.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj47) self.globalAndLocalPostcondition(self.obj47, rootNode) self.obj47.postAction( rootNode.CREATE ) self.obj48=paired_with(self) self.obj48.isGraphObjectVisual = True if(hasattr(self.obj48, '_setHierarchicalLink')): self.obj48._setHierarchicalLink(False) self.obj48.graphClass_= graph_paired_with if self.genGraphics: new_obj = graph_paired_with(157.0,484.5,self.obj48) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("paired_with", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj48.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj48) self.globalAndLocalPostcondition(self.obj48, rootNode) self.obj48.postAction( rootNode.CREATE ) self.obj49=match_contains(self) self.obj49.isGraphObjectVisual = True if(hasattr(self.obj49, '_setHierarchicalLink')): self.obj49._setHierarchicalLink(False) self.obj49.graphClass_= graph_match_contains if self.genGraphics: new_obj = graph_match_contains(267.5,393.5,self.obj49) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("match_contains", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj49.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj49) self.globalAndLocalPostcondition(self.obj49, rootNode) self.obj49.postAction( rootNode.CREATE ) self.obj50=match_contains(self) self.obj50.isGraphObjectVisual = True if(hasattr(self.obj50, '_setHierarchicalLink')): self.obj50._setHierarchicalLink(False) self.obj50.graphClass_= graph_match_contains if self.genGraphics: new_obj = graph_match_contains(367.5,393.5,self.obj50) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("match_contains", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj50.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj50) self.globalAndLocalPostcondition(self.obj50, rootNode) self.obj50.postAction( rootNode.CREATE ) self.obj51=match_contains(self) self.obj51.isGraphObjectVisual = True if(hasattr(self.obj51, '_setHierarchicalLink')): self.obj51._setHierarchicalLink(False) self.obj51.graphClass_= graph_match_contains if self.genGraphics: new_obj = graph_match_contains(477.5,393.5,self.obj51) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("match_contains", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj51.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj51) self.globalAndLocalPostcondition(self.obj51, rootNode) self.obj51.postAction( rootNode.CREATE ) self.obj52=directLink_S(self) self.obj52.isGraphObjectVisual = True if(hasattr(self.obj52, '_setHierarchicalLink')): self.obj52._setHierarchicalLink(False) # associationType self.obj52.associationType.setValue('virtualDevice') self.obj52.graphClass_= graph_directLink_S if self.genGraphics: new_obj = graph_directLink_S(482.0,444.0,self.obj52) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("directLink_S", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj52.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj52) self.globalAndLocalPostcondition(self.obj52, rootNode) self.obj52.postAction( rootNode.CREATE ) self.obj53=directLink_S(self) self.obj53.isGraphObjectVisual = True if(hasattr(self.obj53, '_setHierarchicalLink')): self.obj53._setHierarchicalLink(False) # associationType self.obj53.associationType.setValue('distributable') self.obj53.graphClass_= graph_directLink_S if self.genGraphics: new_obj = graph_directLink_S(692.0,444.0,self.obj53) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("directLink_S", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj53.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj53) self.globalAndLocalPostcondition(self.obj53, rootNode) self.obj53.postAction( rootNode.CREATE ) self.obj54=directLink_T(self) self.obj54.isGraphObjectVisual = True if(hasattr(self.obj54, '_setHierarchicalLink')): self.obj54._setHierarchicalLink(False) # associationType self.obj54.associationType.setValue('componentPrototype') self.obj54.graphClass_= graph_directLink_T if self.genGraphics: new_obj = graph_directLink_T(613.0,702.0,self.obj54) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("directLink_T", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj54.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj54) self.globalAndLocalPostcondition(self.obj54, rootNode) self.obj54.postAction( rootNode.CREATE ) self.obj55=apply_contains(self) self.obj55.isGraphObjectVisual = True if(hasattr(self.obj55, '_setHierarchicalLink')): self.obj55._setHierarchicalLink(False) self.obj55.graphClass_= graph_apply_contains if self.genGraphics: new_obj = graph_apply_contains(312.0,664.0,self.obj55) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("apply_contains", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj55.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj55) self.globalAndLocalPostcondition(self.obj55, rootNode) self.obj55.postAction( rootNode.CREATE ) self.obj56=apply_contains(self) self.obj56.isGraphObjectVisual = True if(hasattr(self.obj56, '_setHierarchicalLink')): self.obj56._setHierarchicalLink(False) self.obj56.graphClass_= graph_apply_contains if self.genGraphics: new_obj = graph_apply_contains(462.0,664.0,self.obj56) new_obj.DrawObject(self.UMLmodel) self.UMLmodel.addtag_withtag("apply_contains", new_obj.tag) new_obj.layConstraints = dict() # Graphical Layout Constraints else: new_obj = None self.obj56.graphObject_ = new_obj # Add node to the root: rootNode rootNode.addNode(self.obj56) self.globalAndLocalPostcondition(self.obj56, rootNode) self.obj56.postAction( rootNode.CREATE ) # Connections for obj41 (graphObject_: Obj0) of type MatchModel self.drawConnections( (self.obj41,self.obj48,[153.0, 343.0, 157.0, 484.5],"true", 2), (self.obj41,self.obj49,[153.0, 343.0, 267.5, 393.5],"true", 2), (self.obj41,self.obj50,[153.0, 343.0, 367.5, 393.5],"true", 2), (self.obj41,self.obj51,[153.0, 343.0, 477.5, 393.5],"true", 2) ) # Connections for obj42 (graphObject_: Obj1) of type ApplyModel self.drawConnections( (self.obj42,self.obj55,[161.0, 626.0, 312.0, 664.0],"true", 2), (self.obj42,self.obj56,[161.0, 626.0, 462.0, 664.0],"true", 2) ) # Connections for obj43 (graphObject_: Obj2) named ecu1 self.drawConnections( (self.obj43,self.obj52,[382.0, 444.0, 482.0, 444.0],"true", 2) ) # Connections for obj44 (graphObject_: Obj3) named vd1 self.drawConnections( (self.obj44,self.obj53,[582.0, 444.0, 692.0, 444.0],"true", 2) ) # Connections for obj45 (graphObject_: Obj4) named dist1 self.drawConnections( ) # Connections for obj46 (graphObject_: Obj5) named comp1 self.drawConnections( ) # Connections for obj47 (graphObject_: Obj6) named sctemc1 self.drawConnections( (self.obj47,self.obj54,[463.0, 702.0, 613.0, 702.0],"true", 2) ) # Connections for obj48 (graphObject_: Obj7) of type paired_with self.drawConnections( (self.obj48,self.obj42,[157.0, 484.5, 161.0, 626.0],"true", 2) ) # Connections for obj49 (graphObject_: Obj8) of type match_contains self.drawConnections( (self.obj49,self.obj43,[267.5, 393.5, 382.0, 444.0],"true", 2) ) # Connections for obj50 (graphObject_: Obj9) of type match_contains self.drawConnections( (self.obj50,self.obj44,[367.5, 393.5, 582.0, 444.0],"true", 2) ) # Connections for obj51 (graphObject_: Obj10) of type match_contains self.drawConnections( (self.obj51,self.obj45,[477.5, 393.5, 802.0, 444.0],"true", 2) ) # Connections for obj52 (graphObject_: Obj11) of type directLink_S self.drawConnections( (self.obj52,self.obj44,[482.0, 444.0, 582.0, 444.0],"true", 2) ) # Connections for obj53 (graphObject_: Obj12) of type directLink_S self.drawConnections( (self.obj53,self.obj45,[692.0, 444.0, 802.0, 444.0],"true", 2) ) # Connections for obj54 (graphObject_: Obj13) of type directLink_T self.drawConnections( (self.obj54,self.obj46,[613.0, 702.0, 763.0, 702.0],"true", 2) ) # Connections for obj55 (graphObject_: Obj14) of type apply_contains self.drawConnections( (self.obj55,self.obj47,[312.0, 664.0, 463.0, 702.0],"true", 2) ) # Connections for obj56 (graphObject_: Obj15) of type apply_contains self.drawConnections( (self.obj56,self.obj46,[462.0, 664.0, 763.0, 702.0],"true", 2) ) newfunction = MapDistributable_MDL loadedMMName = 'GM2AUTOSAR_MM_META' atom3version = '0.3'
StarcoderdataPython
8018166
# Author: <NAME> <<EMAIL>> """Command-line parsing library This module is a argparse-inspired command-line parsing library that: - customized man like help - all parameters must be with -x or --xx format - handles compression of short parameters. eg: -abcd -e The following is a simple usage example that sums integers from the command-line and writes the result to a file: parser = manparse.ParameterParser( description = "sum the integers at the command line") parser.add_parameter('-i', '--integers', type=int, nargs='+', section='Required' help="list of integers to be summed") parser.add_parameter('-l', '--log', type=manparse.FileType('w'), default=log.txt, section='Optional' help="the file where the sum should be written") result = parser.parse_args() """ __all__ = [ 'ParameterParser' 'Namespace' 'FileType' 'DirType' 'SUPPRESS' 'ParameterError' ] import __builtin__ as _ori import copy as _copy import os as _os import re as _re import sys as _sys SUPPRESS = '==SUPPRESS==' def _check_type(ptype, value): try: ptype(value) return True except (ValueError, IOError): return False def _check_choices(choices, value): return True if choices is None or value in choices else False def _parse_list(parameter, slist): if _ori.type(parameter.nargs) is int and parameter.nargs > len(slist): msg = "needs %s values" % (parameter.nargs) raise ParameterError(parameter, msg) list_values = [] for value in slist: # Check if value is a valid value and not a parameter if _check_type(int, value) or not value.startswith('-'): if _check_type(parameter.type, value): value = parameter.type(value) if _check_choices(parameter.choices, value): list_values.append(value) else: msg = "'%s' not in choices %s" % (value, parameter.choices) raise ParameterError(parameter, msg) else: msg = "'%s' is not %s" % (value, parameter.type) raise ParameterError(parameter, msg) else: msg = "'%s' is not a valid value" % (value) raise ParameterError(parameter, msg) return list_values class ParameterError(Exception): """An error from creating or using an argument """ def __init__(self, parameter, message): if parameter is None: self.parameter_name = None else: self.parameter_name = parameter.name self.message = message def __str__(self): if self.parameter_name is None: format = '%(message)s' else: format = 'parameter %(parameter_name)s: %(message)s' return format % dict(message=self.message, parameter_name=self.parameter_name) class FileType(object): """Factory for creating file object types Instances of FileType are typically passed as type= arguments to the ParameterParser add_parameter() method. Keyword Arguments: - mode -- A string indicating how the file is to be opened. Accepts the same values as the builtin open() function. - bufsize -- The file's desired buffer size. Accepts the same values as the builtin open() function. """ def __init__(self, mode='r', bufsize=None): self._mode = mode self._bufsize = bufsize def __call__(self, string): # the special argument "-" means sys.std{in,out} if string == '-': if 'r' in self._mode: return _sys.stdin elif 'w' in self._mode: return _sys.stdout else: msg = ('argument "-" with mode %r' % self._mode) raise ValueError(msg) try: if self._mode not in ['r', 'w']: msg = "'%s' is not a valid mode for FileType. Valid modes: 'r', 'w'" % (self._mode) raise ParameterError(None, msg) if self._bufsize: return open(string, self._mode, self._bufsize) else: return open(string, self._mode) except IOError: err = _sys.exc_info()[1] message = "cannot open '%s': %s" raise ParameterError(None, message % (string, err)) def __repr__(self): args = [self._mode, self._bufsize] args_str = ', '.join([repr(arg) for arg in args if arg is not None]) return "%s(%s)" % (type(self).__name__, args_str) def __cmp__(self, other): return 0 def __eq__(self, other): if other is FileType: return True else: return False class DirType(object): """Factory for creating dir object types TODO DOCSTRING """ def __init__(self, check=False): self.check = check def __call__(self, string): if type(string) is not str: msg = "%s must be 'str' type" raise ParameterError(None, msg) if self.check: if not _os.path.isdir(string): msg = "%s is not an actual directory" % (string) raise ParameterError(None, msg) return string def __repr__(self): return "%s(check=%s)" % (type(self).__name__, self.check) def __cmp__(self, other): return 0 def __eq__(self, other): if other is DirType: return True else: return False class _AttributeHolder(object): """Abstract base class that provides __repr__. The __repr__ method returns a string in the format:: ClassName(attr=name, attr=name, ...) The attributes are determined either by a class-level attribute, '_kwarg_names', or by inspecting the instance __dict__. """ def __repr__(self): type_name = type(self).__name__ arg_strings = [] for arg in self._get_args(): arg_strings.append(repr(arg)) for name, value in self._get_kwargs(): arg_strings.append('%s=%r' % (name, value)) return '%s(%s)' % (type_name, ', '.join(arg_strings)) def _get_kwargs(self): return sorted(self.__dict__.items()) def _get_args(self): return [] class Namespace(_AttributeHolder): """Simple object for storing attributes. Implements equality by attribute names and values, and provides a simple string representation. """ def __init__(self, **kwargs): for name in kwargs: setattr(self, name, kwargs[name]) __hash__ = None def __eq__(self, other): return vars(self) == vars(other) def __ne__(self, other): return not (self == other) def __contains__(self, key): return key in self.__dict__ def __iter__(self): return iter([a for a in dir(self) if not a.startswith('_') and a is not 'next']) class _Parameter(object): """Object that represent a parameter """ def __init__(self, name, long_name, dest, type=None, action='store', nargs=None, default=None, const=None, required=False, choices=None, section=None, help=None): self.name = name self.long_name = long_name self.dest = dest # Transform to bool self.required = bool(required) # Section in help if self.required is True: section = "Required" if section is None: section = "Others" self.section = section # Type check if type is None: type = str if type in [str, int, float, bool, FileType, DirType]: self.type = type else: msg = "not valid type '%s'. Valid types: str, int, float, bool, 'FileType', 'DirType'" % (type) raise ParameterError(self, msg) # Action check if action in ['store', 'store_true', 'store_false', 'help', 'version']: self.action = action if self.action == 'store_true': default = False if self.action == 'store_false': default = True else: msg = "not valid action '%s'. Valid actions: 'store', 'store_true', 'store_false', 'help', 'version'" % (action) raise ParameterError(self, msg) # Default type conversion if it is necessary if default not in [None, SUPPRESS]: if not _check_type(self.type, default): msg = "default value '%s' is not '%s'" % (default, self.type) raise ParameterError(self, msg) default = self.type(default) self.default = default # Const type conversion if it is necessary if const is not None: if not _check_type(self.type, const): msg = "const value '%s' is not '%s'" % (const, self.type) raise ParameterError(self, msg) const = self.type(const) self.const = const # Check choices if choices is not None: if hasattr(choices, '__iter__'): choices = [self.type(i) for i in choices] else: msg = "choices not support 'in' operator" raise ParameterError(self, msg) self.choices = choices # Check nargs (default_nargs stores is nargs is passed) if nargs is None: nargs = 1 self.default_nargs = True else: self.default_nargs = False if self.action == "store_true" or self.action == "store_false": self.nargs = 0 else: if (_ori.type(nargs) is int and nargs >= 0) or nargs in ['+', '*', '?']: if nargs == '?': if self.default is None: msg = "default value not set for nargs '?'" raise ParameterError(self, msg) if self.const is None: msg = "const value not set for nargs '?'" raise ParameterError(self, msg) self.nargs = nargs else: msg = "not valid value for nargs" raise ParameterError(self, msg) # Transform help self.help = str(help) def __str__(self): return "name=%s long_name=%s dest=%s type=%s default=%s nargs=%s required=%s choices=%s action=%s section=%s" % \ (self.name, self.long_name, self.dest, self.type, self.default, self.nargs, self.required, self.choices, self.action, self.section) class ParameterParser(_AttributeHolder): """Object for parsing command line strings into Python objects. Keyword arguments: - prog = The name of the program (default: sys.argv[0]) - short_description = Brief description of the program - description = A description of what the program does - epilog = Text at the end of help - add_help = Add a -h/--help option to the parser (default: True) """ def __init__(self, prog=None, short_description=None, description=None, bugs=None, epilog=None, add_help=True, version=None): if prog is None: prog = _os.path.basename(_sys.argv[0]) self.prog = prog self.short_description = short_description self.description = description self.bugs = bugs self.epilog = epilog self.add_help = add_help self.version = version # Store parameter objects self.parameters = [] # Store the short name of the parameters introduced by the user (for an easier checking restrictions) self.user_name_parameters = [] # Store the dependency params restrictions as a dictionary of _Parameter.names (_Parameter.name: list of _Parameter.names) self.dependency_params_restrictions = {} # Store incompatible params restrictions as a dictionary of _Parameter.names (_Parameter.name: list of _Parameter.names) self.incompatible_params_restrictions = {} if self.add_help: self.add_parameter('-h', '--help', action='help', default=SUPPRESS, help='Show this help and exit') if self.version is not None: self.add_parameter('-V', '--version', action='version', default=SUPPRESS, help='Show the version and exit') # ================================ # Pretty __repr__ methods # Inherited from _AttributeHolder # ================================ def _get_kwargs(self): names = [ 'prog', 'short_description', 'description', 'epilog' ] return [(name, getattr(self, name)) for name in names] # ================================ # Parameter methods # ================================ def add_parameter(self, short_command, long_command=None, **kwargs): try: # Checking short_command if short_command is not None and _re.match('^-[a-zA-Z]$', short_command) is not None: short_command = short_command.replace('-', '', 1) for param in self.parameters: if param.name == short_command: msg = "'%s' duplicated as short command" % (short_command) raise ParameterError(None, msg) else: msg = "'%s' is not valid as short command" % (short_command) raise ParameterError(None, msg) # Checking long_command if long_command is not None: if _re.match('^--[A-Za-z]{2,}[A-Za-z_]*[A-Za-z]$', long_command) is not None: long_command = long_command.replace('--', '', 1) for param in self.parameters: if param.long_name == long_command: msg = "' %s' duplicate as long command" % (long_command) raise ParameterError(None, msg) else: msg = "'%s' is not valid as long command" % (long_command) raise ParameterError(None, msg) # Checking dest if 'dest' in kwargs: dest = kwargs['dest'] del kwargs['dest'] else: if long_command is not None: dest = long_command else: dest = short_command for param in self.parameters: if dest == param.dest: msg = "'%s' duplicate as dest" % (dest) raise ParameterError(None, msg) new_parameter = _Parameter(short_command, long_command, dest, **kwargs) self.parameters.append(new_parameter) except ParameterError: err = _sys.exc_info()[1] self._error(err) # ================================ # Parameter methods - Restrictions # ================================ def dependency_params(self, *args): try: if _ori.len(args) < 2: msg = "dependency_params method: it needs two parameters at least" raise ParameterError(None, msg) # Check last parameters restriction = args[-1] if _ori.type(restriction) is str: r = restriction.replace('-', '', 1) if not self._valid_parameter("short", r): msg = "dependency_params method: '-%s' not exists" % (r) raise ParameterError(None, msg) restriction = [restriction] elif _ori.type(restriction) is list: for r in restriction: r = r.replace('-', '', 1) if not self._valid_parameter("short", r): msg = "dependency_params method: '-%s' not exists" % (r) raise ParameterError(None, msg) else: msg = "dependency_params method: '%s' must be a str or list type" % (restriction) raise ParameterError(None, msg) # Checking first parameters for p in args[:_ori.len(args)-1]: if _ori.type(p) is not str: msg = "dependency_params method: '%s' must be a str type" % (p) raise ParameterError(None, msg) p_replace = p.replace('-', '', 1) if not self._valid_parameter("short", p_replace): msg = "dependency_params method: '-%s' not exists" % (p_replace) raise ParameterError(None, msg) # Restriction cannot be a restriction to itself if p in restriction: msg = "dependency_params method: '%s' cannot be a restriction to itself" % (p) raise ParameterError(None, msg) # Check if there is a restriction on the same param in incompatible_params_restrictions # If not, create restriction in dependency_params_restrictions if self.incompatible_params_restrictions.has_key(p): for r in restriction: if r in self.incompatible_params_restrictions[p]: msg = "dependency_params method: '%s' cannot be a dependency and incompatibility to the same param %s" % (p, r) raise ParameterError(None, msg) if self.dependency_params_restrictions.has_key(p): for r in restriction: self.dependency_params_restrictions[p].append(r) else: self.dependency_params_restrictions[p] = restriction # Remove duplicate values in each key for key, value in self.dependency_params_restrictions.iteritems(): self.dependency_params_restrictions[key] = list(set(value)) return None except ParameterError: err = _sys.exc_info()[1] self._error(err) def incompatible_params(self, *args): try: if _ori.len(args) < 2: msg = "incompatible_params method: it needs two parameters at least" raise ParameterError(None, msg) # Check last parameters restriction = args[-1] if _ori.type(restriction) is str: r = restriction.replace('-', '', 1) if not self._valid_parameter("short", r): msg = "incompatible_params method: '-%s' not exists" % (r) raise ParameterError(None, msg) restriction = [restriction] elif _ori.type(restriction) is list: for r in restriction: r = r.replace('-', '', 1) if not self._valid_parameter("short", r): msg = "incompatible_params method: '-%s' not exists" % (r) raise ParameterError(None, msg) else: msg = "incompatible_params method: '%s' must be a str or list type" % (restriction) raise ParameterError(None, msg) # Checking first parameters for p in args[:_ori.len(args)-1]: if _ori.type(p) is not str: msg = "incompatible_params method: '%s' must be a str type" % (p) raise ParameterError(None, msg) p_replace = p.replace('-', '', 1) if not self._valid_parameter("short", p_replace): msg = "incompatible_params method: '-%s' not exists" % (p_replace) raise ParameterError(None, msg) # Restriction cannot be a restriction to itself if p in restriction: msg = "incompatible_params method: '%s' cannot be a restriction to itself" % (p) raise ParameterError(None, msg) # Check if there is a restriction on the same param in dependency_params_restrictions # If not, create restriction in incompatible_params_restrictions if self.dependency_params_restrictions.has_key(p): for r in restriction: if r in self.dependency_params_restrictions[p]: msg = "incompatible_params method: '%s' cannot be a dependency and incompatibility to the same param %s" % (p, r) raise ParameterError(None, msg) if self.incompatible_params_restrictions.has_key(p): for r in restriction: self.incompatible_params_restrictions[p].append(r) else: self.incompatible_params_restrictions[p] = restriction # Remove duplicate values in each key for key, value in self.incompatible_params_restrictions.iteritems(): self.incompatible_params_restrictions[key] = list(set(value)) return None except ParameterError: err = _sys.exc_info()[1] self._error(err) def _show_store_parameters(self): i = 0 for x in self.parameters: i += 1 print "Param %s -> %s" % (i, x) # ================================ # Parser method # ================================ def parse_params(self, args=None, namespace=None): try: if args is None: args = _sys.argv[1:] if namespace is None: namespace = Namespace() # Main loop args_len = len(args) index = 0 while index < args_len: checking_param = args[index] # Validation if _re.match('^-[A-Za-z]+$', checking_param) is not None: checking_param = checking_param.replace('-', '', 1) for p in checking_param: validated_param = self._valid_parameter("short", p) if validated_param: self.user_name_parameters.append(validated_param.name) index = self._do_action(validated_param, namespace, index, args) else: msg = "'-%s' not a valid parameter" % (p) raise ParameterError(None, msg) elif _re.match('^--[A-Za-z]{2,}[A-Za-z_]*[A-Za-z]$', checking_param): # If long parameter, check if it is valid checking_param = checking_param.replace('--', '', 1) validated_param = self._valid_parameter("long", checking_param) if validated_param: self.user_name_parameters.append(validated_param.name) index = self._do_action(validated_param, namespace, index, args) else: msg = "'--%s' not valid parameter" % (checking_param) raise ParameterError(None, msg) else: msg = "'%s' not a valid parameter format" % (checking_param) raise ParameterError(None, msg) index += 1 # Check if missing required parameters (in add_parameter option) missing_required_param_list = self._check_required_param(namespace) if len(missing_required_param_list) != 0: mpl = [] for mp in missing_required_param_list: mpl.append(mp.dest) msg = "missing required parameters %s" % (mpl) raise ParameterError(None, msg) # First check incompatible_params_restrictions for value, restrictions in self.incompatible_params_restrictions.iteritems(): value = value.replace('-', '', 1) if value in self.user_name_parameters: result = [i for i in restrictions if i.replace('-', '', 1) in self.user_name_parameters] if _ori.len(result) != 0: msg = "incompatible parameters %s" % (result) raise ParameterError(self._valid_parameter("short", value), msg) # Then check dependency_params_restrictions for value, restrictions in self.dependency_params_restrictions.iteritems(): value = value.replace('-', '', 1) if value in self.user_name_parameters: result = [i for i in restrictions if i.replace('-', '', 1) not in self.user_name_parameters] if _ori.len(result) != 0: msg = "missing required parameters %s" % (result) raise ParameterError(self._valid_parameter("short", value), msg) # Complete namespace with remaining parameters with default not SUPPRESS self._complete_namespace(namespace) return namespace except ParameterError: err = _sys.exc_info()[1] self._error(err) def _valid_parameter(self, type_param, param): """It validates the user param against the valid program parameters It returns the valid_param if there is a match """ if type_param == "short": for valid_param in self.parameters: if valid_param.name == param: return valid_param else: for valid_param in self.parameters: if valid_param.long_name == param: return valid_param return False def _do_action(self, param, namespace, external_index, args): """It does the param action and modify the namespace It can modify de index depending on param.nargs """ # Check if the action is help or version if param.action == 'help': self._print_help() elif param.action == 'version': self._print_version() else: external_index = self._store_action(param, namespace, external_index, args) return external_index def _check_required_param(self, namespace): missing_parameters = [] required_params = [p for p in self.parameters if p.required == True] for rp in required_params: for p in namespace: if p == rp.dest: break else: missing_parameters.append(rp) return missing_parameters def _complete_namespace(self, namespace): for p in self.parameters: if p.default is not SUPPRESS: if p.dest not in namespace: setattr(namespace, p.dest, p.default) return None # ================ # Actions methods # ================ def _store_action(self, param, namespace, external_index, args): # Check if param is already store for ns in namespace: if ns == param.dest: msg = "passed more than one time" raise ParameterError(param, msg) if param.action == "store_true": setattr(namespace, param.dest, True) elif param.action == "store_false": setattr(namespace, param.dest, False) else: if type(param.nargs) is int: largs = args[external_index+1:external_index+1+param.nargs] external_index += param.nargs list_values = _parse_list(param, largs) if len(list_values) is 1: setattr(namespace, param.dest, list_values[0]) else: setattr(namespace, param.dest, list_values) else: largs = [] if param.nargs == '?': if len(args) != external_index+1: if _check_type(int, args[external_index+1]) or not args[external_index+1].startswith('-'): largs.append(args[external_index+1]) external_index += 1 else: # Take const largs.append(param.const) else: # Take const largs.append(param.const) list_values = _parse_list(param, largs) else: for a in args[external_index+1:]: if _check_type(int, a) or not a.startswith('-'): largs.append(a) else: break external_index += len(largs) list_values = _parse_list(param, largs) if param.nargs == '+': if len(list_values) == 0: msg = "need at least one value" raise ParameterError(param, msg) if param.default_nargs: setattr(namespace, param.dest, list_values[0]) else: setattr(namespace, param.dest, list_values) return external_index def _print_help(self): # Copy self.parameters and sort it param_help = [] for x in self.parameters: param_help.append(_copy.copy(x)) param_help.sort(key=lambda param: param.name) sections_list = [] separator = '\n' # Name section name_section = "NAME\n" name_section += ' ' * 7 + self.prog if self.short_description is not None: name_section += ' - ' + self.short_description name_section += '\n' sections_list.append(name_section) # Description section tab_description_section = ' ' * 7 description_section = "DESCRIPTION\n" if self.description is not None: description_section += tab_description_section + self.description.replace('\n', '\n' + tab_description_section) + '\n' description_section += self._info_subsection_help(param_help, tab_description_section) + self._subsections_help(param_help, tab_description_section) sections_list.append(description_section) # Reporting bugs section if self.bugs is not None: reporting_bugs_section = "REPORTING BUGS\n" reporting_bugs_section += ' ' * 7 + "Report bugs to " + self.bugs + '\n' sections_list.append(reporting_bugs_section) # Epilog section if self.epilog is not None: sections_list.append(self.epilog) # Join all sections and print formated_help = separator.join(sections_list) self._print_message('\n' + formated_help + '\n', _sys.stdout) self._exit() def _info_subsection_help(self, param_list, actual_tab): if self.add_help is True or self.version is not None: param_tab = actual_tab + ' ' * 3 param_help_tab = param_tab + ' ' * 3 info_help = '\n' + actual_tab + 'Info:\n' # If version exist if self.version is not None: for p in param_list: if p.name == 'V': version_param = p param_list.remove(p) break info_help += param_tab + '-' + version_param.name + ', --' + version_param.long_name + '\n' info_help += param_help_tab + version_param.help + '\n\n' # If help exist if self.add_help is True: for p in param_list: if p.name == 'h': help_param = p param_list.remove(p) break info_help += param_tab + '-' + help_param.name + ', --' + help_param.long_name + '\n' info_help += param_help_tab + help_param.help + '\n' return info_help if 'info_help' in locals() else '' def _subsections_help(self, param_list, actual_tab): param_tab = actual_tab + ' ' * 3 param_help_tab = param_tab + ' ' * 3 # Order subsections subsections = sorted(set([p.section for p in param_list])) if "Others" in subsections: subsections.remove("Others") subsections.insert(0, "Others") subsections_help = '' for subsection in subsections: subsections_help += '\n' + actual_tab + '%s:' % (subsection) for p in param_list: if p.section == subsection: if p.help != SUPPRESS: subsections_help += '\n' subsections_help += param_tab + '-' + p.name + ', --' + p.long_name p_choices = '' if p.choices is not None: p_choices = "choices: " p_choices += str(p.choices) if p.nargs == '?': if p_choices is not '': p_choices += ', ' subsections_help += ' [' + p.dest.upper() + '] (' + p_choices + 'default: ' + str(p.default) + ', const: ' + str(p.const) + ')\n' elif p.nargs == '+': if p_choices is not '': p_choices = ' (' + p_choices + ')' subsections_help += ' <' + p.dest.upper() + '> [' + p.dest.upper() + ' ...]' + p_choices + '\n' elif p.nargs == 0: subsections_help += '\n' elif p.nargs == 1: if p_choices is not '': p_choices = ' (' + p_choices + ')' subsections_help += ' <' + p.dest.upper() + '>' + p_choices + '\n' else: if p_choices is not '': p_choices = ', ' + p_choices subsections_help += ' <' + p.dest.upper() + ' ...> (num: ' + str(p.nargs) + p_choices + ')\n' subsections_help += param_help_tab + p.help.replace('\n', '\n' + param_help_tab) + '\n' return subsections_help def _print_version(self): print "%s %s" % (self.prog, self.version) self._exit() def _print_message(self, message, file): if message: file.write(message) # ================ # Exit and error # ================ def _exit(self, status=0, message=None): if message: self._print_message(message, _sys.stderr) _sys.exit(status) def _error(self, message): """error(message: string) Incorporating the message to stderr and exits. """ self._exit(2, ('%s: error: %s\n') % (self.prog, message)) def throw_error(self, message): """This function allows the user to throw an error inside the parser """ self._error(message)
StarcoderdataPython
1697098
from revibe.settings.base import * ENV = 'TEST' DEBUG = True ALLOWED_HOSTS = [ '.elasticbeanstalk.com' ] DATABASES = { 'default': { 'ENGINE': 'django.db.backends.mysql', 'NAME': os.environ['RDS_DB_NAME'], 'USER': os.environ['RDS_USERNAME'], 'PASSWORD': os.environ['RDS_PASSWORD'], 'HOST': os.environ['RDS_HOSTNAME'], 'PORT': os.environ['RDS_PORT'], 'OPTIONS': { 'charset': 'utf8mb4' } } } # AWS stuff USE_S3 = True AWS_ACCESS_KEY_ID = os.getenv('AWS_ACCESS_KEY_ID') AWS_SECRET_ACCESS_KEY = os.getenv('AWS_SECRET_ACCESS_KEY') AWS_STORAGE_BUCKET_NAME = os.getenv('AWS_STORAGE_BUCKET_NAME') AWS_S3_REGION_NAME = 'us-east-2' AWS_DEFAULT_ACL = None AWS_S3_CUSTOM_DOMAIN = f'{AWS_STORAGE_BUCKET_NAME}.s3.amazonaws.com' AWS_S3_OBJECT_PARAMETERS = {'CacheControl': 'max-age=86400'} AWS_QUERYSTRING_AUTH = False # # static files STATIC_LOCATION = 'static' STATIC_URL = f'https://{AWS_S3_CUSTOM_DOMAIN}/{STATIC_LOCATION}/' STATICFILES_STORAGE = 'revibe.storage_backends.StaticStorage' # media file settings MEDIA_LOCATION = 'media' MEDIA_URL = f'https://{AWS_S3_CUSTOM_DOMAIN}/{MEDIA_LOCATION}/' DEFAULT_FILE_STORAGE = 'utils.storage_backends.MediaStorage' # custom storage settings # DEFAULT_FILE_STORAGE = 'storages.backends.s3boto3.S3Boto3Storage' # default storage settings # email settings EMAIL_BACKEND = "django_ses.SESBackend" AWS_SES_REGION_NAME = "us-east-1" AWS_SES_REGION_ENDPOINT = f'email.{AWS_SES_REGION_NAME}.amazonaws.com' _log_level = 'DEBUG' LOGGING = { 'version': 1, 'disable_existing_loggers': False, 'handlers': { 'django-file': { 'level': _log_level, 'class': 'logging.FileHandler', 'filename': '/opt/python/log/django.log', }, }, 'loggers': { 'django': { 'handlers': ['django-file'], 'level': _log_level, 'propagate': True, }, }, } # LOGGING = {} # disable logging _redis_url = "api-communication-redis.7pqvq5.ng.0001.use2.cache.amazonaws.com" _redis_port = 6379 CHANNEL_LAYERS = { "default": { "BACKEND": "channels_redis.core.RedisChannelLayer", "CONFIG": { "hosts": [(_redis_url, _redis_port)] } } } CELERY_BROKER_URL = "sqs://" CELERY_BROKER_TRANSPORT_OPTIONS = { 'region': 'us-east-2', 'visibility_timeout': 3600, # 'polling_interval': 10, 'queue_name_prefix': f'celery-{ENV}', 'CELERYD_PREFETCH_MULTIPLIER': 0, }
StarcoderdataPython
335170
<reponame>pombredanne/discipline try: from management.commands.discipline_migrate import Command from south.signals import post_migrate def command(app, *args, **kwargs): print "Discipline detected a South migration, it will now save the new" \ " schema state automatically." Command().handle() # Every time a user performs a South migration, Discipline should # perform a migration of its own, this is in case the user forgets # to run "manage.py pervert_migrate" post_migrate.connect(command) except ImportError: pass __version__ = "0.9.1"
StarcoderdataPython
6561282
<reponame>lace/lacecore from lacecore import shapes import numpy as np from vg.compat import v2 as vg def test_vertex_centroid(): cube_at_origin = shapes.cube(np.zeros(3), 3.0) np.testing.assert_array_almost_equal( cube_at_origin.vertex_centroid, np.repeat(1.5, 3) ) def test_bounding_box(): bounding_box = shapes.cube(np.zeros(3), 3.0).bounding_box np.testing.assert_array_equal(bounding_box.origin, np.zeros(3)) np.testing.assert_array_equal(bounding_box.size, np.repeat(3, 3)) def test_apex(): cube_at_origin = shapes.cube(np.zeros(3), 3.0) np.testing.assert_array_almost_equal( cube_at_origin.apex(np.array([1.0, 1.0, -1.0])), np.array([3.0, 3.0, 0.0]) ) def test_face_normals(): cube_at_origin = shapes.cube(np.zeros(3), 3.0) np.testing.assert_array_equal( cube_at_origin.face_normals(), np.repeat( np.array( [ vg.basis.neg_y, vg.basis.y, vg.basis.neg_z, vg.basis.x, vg.basis.z, vg.basis.neg_x, ] ), 2, axis=0, ), )
StarcoderdataPython
47717
# -*- coding: utf-8 -*- # # Copyright (C) 2021-2022 CERN. # # Invenio-Vocabularies is free software; you can redistribute it and/or # modify it under the terms of the MIT License; see LICENSE file for more # details. """Base data stream.""" from .errors import ReaderError, TransformerError, WriterError class StreamEntry: """Object to encapsulate streams processing.""" def __init__(self, entry, errors=None): """Constructor.""" self.entry = entry self.filtered = False self.errors = errors or [] class DataStream: """Data stream.""" def __init__(self, readers, writers, transformers=None, *args, **kwargs): """Constructor. :param readers: an ordered list of readers. :param writers: an ordered list of writers. :param transformers: an ordered list of transformers to apply. """ self._readers = readers self._transformers = transformers self._writers = writers def filter(self, stream_entry, *args, **kwargs): """Checks if an stream_entry should be filtered out (skipped).""" return False def process(self, *args, **kwargs): """Iterates over the entries. Uses the reader to get the raw entries and transforms them. It will iterate over the `StreamEntry` objects returned by the reader, apply the transformations and yield the result of writing it. """ for stream_entry in self.read(): if stream_entry.errors: yield stream_entry # reading errors else: transformed_entry = self.transform(stream_entry) if transformed_entry.errors: yield transformed_entry elif self.filter(transformed_entry): transformed_entry.filtered = True yield transformed_entry else: yield self.write(transformed_entry) def read(self): """Recursively read the entries.""" def pipe_gen(gen_funcs, piped_item=None): _gen_funcs = list(gen_funcs) # copy to avoid modifying ref list # use and remove the current generator current_gen_func = _gen_funcs.pop(0) for item in current_gen_func(piped_item): try: # exhaust iterations of subsequent generators if _gen_funcs: yield from pipe_gen(_gen_funcs, piped_item=item) # there is no subsequent generator, return the current item else: yield StreamEntry(item) except ReaderError as err: yield StreamEntry( entry=item, errors=[ f"{current_gen_func.__qualname__}: {str(err)}" ] ) read_gens = [r.read for r in self._readers] yield from pipe_gen(read_gens) def transform(self, stream_entry, *args, **kwargs): """Apply the transformations to an stream_entry.""" for transformer in self._transformers: try: stream_entry = transformer.apply(stream_entry) except TransformerError as err: stream_entry.errors.append( f"{transformer.__class__.__name__}: {str(err)}" ) return stream_entry # break loop return stream_entry def write(self, stream_entry, *args, **kwargs): """Apply the transformations to an stream_entry.""" for writer in self._writers: try: writer.write(stream_entry) except WriterError as err: stream_entry.errors.append( f"{writer.__class__.__name__}: {str(err)}" ) return stream_entry def total(self, *args, **kwargs): """The total of entries obtained from the origin.""" raise NotImplementedError()
StarcoderdataPython
3317552
<gh_stars>0 from pathlib import Path from logging import ERROR, INFO, DEBUG # Paths path_working_directory = Path(__file__).parent.parent path_credentials_directory = path_working_directory / 'credentials' path_credentials_directory.mkdir(parents=True, exist_ok=True) path_data_directory = path_working_directory / 'data' path_data_directory.mkdir(parents=True, exist_ok=True) path_logs_directory = path_working_directory / 'logs' path_logs_directory.mkdir(parents=True, exist_ok=True) # Scenario: Sync Groups and Zulip sync_groups_and_zulip = { 'logging_level': INFO, 'google_domain': '', 'mandatory_members': [], 'mandatory_streams': [], 'sleep_time': 60 * 10 } # Scenario: Create Google Groups create_google_groups = { 'logging_level': INFO, 'google_domain': '', 'user_filter_query': '', 'mandatory_members': [] } # Scenario: Get Users From Google get_users_from_google = { 'logging_level': INFO, 'google_domain': '', 'user_filter_query': '' } # Scenario: Sync Google Sheets and Zulip sync_sheets_and_zulip = { 'logging_level': INFO, 'spreadsheet_id': '', 'range_names': [], 'mandatory_members': [], 'sleep_time': 60 * 30 } # Scenario: Sync Trello and Zulip sync_trello_and_zulip = { 'logging_level': INFO, 'mandatory_members': [], 'sleep_time': 60 * 10 } # Scenario: Sync Sheets and Groups sync_sheets_and_groups = { 'logging_level': INFO, 'spreadsheet_id': '', 'range_names': [], 'mandatory_members': [], 'google_domain': '', 'sleep_time': 60 * 30 } # Scenario: Get Users From Zulip get_users_from_zulip = { 'logging_level': DEBUG }
StarcoderdataPython
72849
<filename>grortir/externals/__init__.py<gh_stars>0 """Package contains modified external modules.""" # pylint: skip-file
StarcoderdataPython
1895401
# Author: # <NAME> <<EMAIL>> # # License: BSD 3 clause """ cli """ from __future__ import print_function, division, absolute_import import argparse import splinart as spl import numpy as np def circle(img): """ circle """ def xs_func(): """ xs function """ nsamples = 500 return (np.random.random() + 2 * np.pi * np.linspace(0, 1, nsamples))%(2*np.pi) theta, path = spl.circle([.5, .5], .3, npoints=40) spl.update_img(img, path, xs_func, nrep=4000, x=theta, scale_value=.00005) def line(img): """ line """ def xs_func(): """ xs function """ nsamples = 500 return .001*np.random.random() + np.linspace(beg+.1, end-.1, nsamples) beg, end = .2, .8 path = spl.line(beg, end, .5) spl.update_img(img, path, xs_func, nrep=1000, periodic=False) def main(): """ cli """ parser = argparse.ArgumentParser(description="Splinart generator") parser.add_argument('-f', '--filename', type=str, help="filename where the output is stored", default='output.png') parser.add_argument('--path', type=str, help="path where to store the results", default='.') parser.add_argument('-s', '--shape', type=str, help='apply spline on this shape', default='circle', choices=['circle', 'line']) parser.add_argument('--show', help='show the result using matplotlib', action='store_true') args = parser.parse_args() img_size, channels = 1000, 4 img = np.ones((img_size, img_size, channels), dtype=np.float32) if args.shape == 'circle': circle(img) else: line(img) if args.show: spl.show_img(img) else: spl.save_img(img, args.path, args.filename)
StarcoderdataPython
4987020
# -*- coding: utf-8 -*- __all__ = ["TimeSeriesKMeans", "TimeSeriesKMedoids"] from sktime.clustering._k_means import TimeSeriesKMeans from sktime.clustering._k_medoids import TimeSeriesKMedoids
StarcoderdataPython
8009716
import matplotlib.patches as mpatches import matplotlib.pyplot as plt from matplotlib.collections import PatchCollection import numpy as np num_of_paths=6 max_node_path=4 grid_size_y = complex(0, max_node_path) grid_size_x = complex(0, num_of_paths) x = 0 y = num_of_paths*0.2 grid = np.mgrid[x:y:grid_size_x, x:y:grid_size_y].reshape(2, -1).T grid = grid[::-1] # print(grid) # plt.plot(grid[:,0], grid[:,1], 'ro') # plt.show()
StarcoderdataPython
3577545
# !/usr/bin/env python # -*- coding: UTF-8 -*- import os from base import FileIO from datagit.analyze.bp import GitHubAnalysisOrchestrator from datagit.graph.svc import GraphSocialNetwork from datagit.navigate.bp import GitHubNavigationAPI def generate_output_path(issue_number_x, issue_number_y) -> str: filename = f"G_{issue_number_x}-{issue_number_y}_SOCIAL-IBM.giz" return os.path.join(os.environ['DESKTOP'], filename) def main(): issue_number_x = 0 issue_number_y = 1700 IS_DEBUG = False COLLECTION_NAME = "github-IBMCodeContent_src_20200104" output_path = generate_output_path(issue_number_x, issue_number_y) orchestrator = GitHubAnalysisOrchestrator(is_debug=IS_DEBUG) social_analysis = orchestrator.distributions(collection_name=COLLECTION_NAME).social(write_to_file=True) lines = ["digraph GitHubSNA {"] api = GitHubNavigationAPI(is_debug=IS_DEBUG) for issue in range(int(issue_number_x), int(issue_number_y)): svcresult = api.navigate(COLLECTION_NAME).by_issue(issue_id=issue) if svcresult: lines += GraphSocialNetwork(is_debug=IS_DEBUG, pattern=svcresult['pattern'], d_index=svcresult['index'], df_social_entity_analysis=social_analysis['ent'], df_social_relationship_analysis=social_analysis['rel']).lines() lines.append("}") FileIO.lines_to_file(lines, output_path) print('\n'.join([ "Wrote to File", f"\tOutput Path: {output_path}"])) if __name__ == "__main__": import plac plac.call(main)
StarcoderdataPython
3469286
cont = -1 num = 0 num2 = 0 while num != 999: num = int(input('Informe um numero inteiro ou [digite 999 para parar]:')) cont+=1 #print('{} +'.format(num),end=' ') if num != 999: soma = num + num2 num2 = soma print('A soma dos {} numeros digitados é {}'.format(cont,soma))
StarcoderdataPython
3492925
<reponame>x06lan/mt save={} x=[int(i) for i in input().split()] for i in range(x[0]): tem=[int(i) for i in input().split()] a=tem[0] b=tem[1] try: save[a].append(b) except: save[a]=[] save[a].append(b) try: save[b].append(a) except: save[b]=[] save[b].append(a) def mapfind(save,path,start,targe): #print(path,targe) out=False for i in save[path[0]]: if i==targe: return True elif i==start or i in path: pass for i in save[path[0]]: out=out or mapfind(save,[i]+path,start,targe) return out print("Yes!" if mapfind(save,[x[1]],x[1],x[2]) else "No!")
StarcoderdataPython
8135018
<reponame>mszhanyi/PyMultiprocessDemo from multiprocessing import Process, Queue def f(q): q.put('hello world') def run_mp(): q = Queue() p = Process(target=f, args=[q]) p.start() print (q.get()) p.join() run_mp()
StarcoderdataPython
247729
from random import random, randint from sklearn.ensemble import RandomForestRegressor import mlflow import mlflow.sklearn import os os.environ['MLFLOW_S3_ENDPOINT_URL'] = "http://your.minio-or-s3.domain" os.environ['AWS_ACCESS_KEY_ID'] = "yourAccessKeyOrMinioUser" os.environ['AWS_SECRET_ACCESS_KEY'] = "yourSecretKeyOrMinioPassword" mlflow.set_tracking_uri("http://your.mlflow.domain") experiment_name = "mlflow-test" try: experiment_id = mlflow.create_experiment(name=experiment_name) except: experiment_id = mlflow.get_experiment_by_name(name=experiment_name).experiment_id with mlflow.start_run(experiment_id=experiment_id) as run: params = {"n_estimators": 5, "random_state": 42} sk_learn_rfr = RandomForestRegressor(**params) # Log parameters and metrics using the MLflow APIs mlflow.log_params(params) mlflow.log_param("param_1", randint(0, 100)) mlflow.log_metrics({"metric_1": random(), "metric_2": random() + 1}) # Log the sklearn model and register as version 1 mlflow.sklearn.log_model( sk_model=sk_learn_rfr, artifact_path="sklearn-model", registered_model_name="test_model" ) mlflow.log_artifact(local_path = './entrypoint.sh')
StarcoderdataPython
9682618
import nltk, re from sherlock_holmes import bohemia_ch1, bohemia_ch2, bohemia_ch3, boscombe_ch1, boscombe_ch2, boscombe_ch3 from preprocessing import preprocess_text from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.decomposition import LatentDirichletAllocation # preparing the text corpus = [bohemia_ch1, bohemia_ch2, bohemia_ch3, boscombe_ch1, boscombe_ch2, boscombe_ch3] preprocessed_corpus = [preprocess_text(chapter) for chapter in corpus] # Update stop_list: stop_list = ['mr','man','say','one','make','upon','see','look','could','bad'] # filtering topics for stop words def filter_out_stop_words(corpus): no_stops_corpus = [] for chapter in corpus: no_stops_chapter = " ".join([word for word in chapter.split(" ") if word not in stop_list]) no_stops_corpus.append(no_stops_chapter) return no_stops_corpus filtered_for_stops = filter_out_stop_words(preprocessed_corpus) # creating the bag of words model bag_of_words_creator = CountVectorizer() bag_of_words = bag_of_words_creator.fit_transform(filtered_for_stops) # creating the tf-idf model tfidf_creator = TfidfVectorizer(min_df = 0.2) tfidf = tfidf_creator.fit_transform(preprocessed_corpus) # creating the bag of words LDA model lda_bag_of_words_creator = LatentDirichletAllocation(learning_method='online', n_components=10) lda_bag_of_words = lda_bag_of_words_creator.fit_transform(bag_of_words) # creating the tf-idf LDA model lda_tfidf_creator = LatentDirichletAllocation(learning_method='online', n_components=10) lda_tfidf = lda_tfidf_creator.fit_transform(tfidf) print("~~~ Topics found by bag of words LDA ~~~") for topic_id, topic in enumerate(lda_bag_of_words_creator.components_): message = "Topic #{}: ".format(topic_id + 1) message += " ".join([bag_of_words_creator.get_feature_names()[i] for i in topic.argsort()[:-5 :-1]]) print(message) print("\n\n~~~ Topics found by tf-idf LDA ~~~") for topic_id, topic in enumerate(lda_tfidf_creator.components_): message = "Topic #{}: ".format(topic_id + 1) message += " ".join([tfidf_creator.get_feature_names()[i] for i in topic.argsort()[:-5 :-1]]) print(message)
StarcoderdataPython
6460558
<reponame>allenai/HyBayes import logging import pymc3 as pm import theano.tensor as tt from theano.compile.ops import as_op import numpy as np from scipy import stats logger = logging.getLogger('root') def add_exp_uniform_normal_t_model(hierarchical_model): """ A student-t model with normal, uniform, exp priors for mu, sigma, nu parameters, respectively. Credits of the implementation of this model in pymc3 belongs to http://nbviewer.jupyter.org/github/JWarmenhoven/DBDA-python/blob/master/Notebooks/Chapter%2016.ipynb For a discussion on this model and implementation on R refer to Chapter 16 in the book 'Doing Bayesian Data Analysis: A Tutorial with R, JAGS, and Stan', Second Edition, by <NAME> (2015). """ mean_y = np.mean([hierarchical_model.stats_y[i].mean for i in range(hierarchical_model.n_groups)]) sd_y = np.mean([hierarchical_model.stats_y[i].variance for i in range(hierarchical_model.n_groups)]) ** (0.5) with pm.Model() as hierarchical_model.pymc_model: nu = pm.Exponential("nu", 1 / 30) # mean = sd = 30 sigma = pm.Uniform("sigma", sd_y / 100, sd_y * 100, shape=hierarchical_model.n_groups) mu = pm.Normal("mu", mean_y, (100 * sd_y), shape=hierarchical_model.n_groups) observations = [] hierarchical_model.mu_parameter = "mu" hierarchical_model.sigma_parameter = "sigma" hierarchical_model.outlierness_parameter = "nu" def add_observations(): with hierarchical_model.pymc_model: for i in range(hierarchical_model.n_groups): observations.append(pm.StudentT(f'y_{i}', nu=nu, mu=mu[i], sd=sigma[i], observed=hierarchical_model.y[i])) hierarchical_model.add_observations_function = add_observations
StarcoderdataPython
1998371
# -------------- # Importing header files import numpy as np import warnings warnings.filterwarnings('ignore') #New record new_record=[[50, 9, 4, 1, 0, 0, 40, 0]] #Reading file data = np.genfromtxt(path, delimiter=",", skip_header=1) #Code starts here census = np.concatenate((data,new_record),axis=0) age = census[:,0] max_age = age.max() min_age = age.min() age_mean = round(age.mean(),2) age_std = round(age.std(),2) race_0 = census[census[:,2]==0] race_1 = census[census[:,2]==1] race_2 = census[census[:,2]==2] race_3 = census[census[:,2]==3] race_4 = census[census[:,2]==4] len_0 = len(race_0) len_1 = len(race_1) len_2 = len(race_2) len_3 = len(race_3) len_4 = len(race_4) if len(race_0) == np.array([len_0,len_1,len_2,len_3,len_4]).min(): minority_race= 0 elif len(race_1) == np.array([len_0,len_1,len_2,len_3,len_4]).min(): minority_race= 1 elif len(race_2) == np.array([len_0,len_1,len_2,len_3,len_4]).min(): minority_race= 2 elif len(race_3) == np.array([len_0,len_1,len_2,len_3,len_4]).min(): minority_race= 3 elif len(race_4) == np.array([len_0,len_1,len_2,len_3,len_4]).min(): minority_race= 4 senior_citizens = census[census[:,0] > 60] working_hours_sum = senior_citizens[:,6].sum() senior_citizens_len = len(senior_citizens) avg_working_hours = round(working_hours_sum/senior_citizens_len,2) high = census[census[:,1]> 10] low = census[census[:,1]<= 10] avg_pay_high = round(high[:,7].mean(),2) avg_pay_low = round(low[:,7].mean(),2)
StarcoderdataPython
1794265
<filename>chap18-functions/functions_00.py # This function takes no arguments def make_noise() : print("I am a noisy kid") def feed_kid() : print("Feed my favorite daughter Sonal.") return "Sonal and Daddy are happy!!" # This function takes one argument def drive_kids() : print("Get a van that can hold 30 kids.") print("Sure thing.") print("I got the van.") print("There's only 6 kids.") print("Oh no!!!!") # This function takes one argument def drive_a_kid(kid) : print("Hello {}".format(kid)) kid01 = "sonal" kid02 = "nikita" # This functions takes two arguments def drive_two_kids(arg01, arg02) : print("Start of function with two arguments") print("Good morning {}".format(arg01)) print("Good morning {}".format(arg02)) print("End of function with two arguments") drive_two_kids(kid01, kid02) # This function takes multiple arguments def main(): # Goal is to learn functions msg = "Goal is to learn functions" print(msg) # Invoke a function with no arguments make_noise() # Invoke function print(feed_kid()) drive_kids() kid_16 = "nikita" kid_15 = "anusha" kid_20 = "elisa" # One Monday we drive Nikita drive_a_kid(kid_15) # On Tuesday we drive Anusha drive_a_kid(kid_16) # On Friday we drive Elisa drive_a_kid(kid_20) drive_two_kids(kid_16, kid_15) if __name__ == "__main__": main()
StarcoderdataPython
1893091
#coding: utf-8 from flask import Blueprint, request from flask_restful import Resource, Api from HTTPJsonRule.response import SaveResponse API_VERSION_V1 = 1 API_VERSION = API_VERSION_V1 api_v1_bp = Blueprint('api_v1', __name__) api_v1 = Api(api_v1_bp) class HTTPSave(Resource): def post(self): if request.get_json: return SaveResponse(request.get_json()) api_v1.add_resource(HTTPSave, '/save')
StarcoderdataPython
3329261
<reponame>matchd-ch/matchd-backend from django.contrib.auth.models import AnonymousUser import pytest from api.tests.helper.node_helper import assert_node_field, assert_node_id @pytest.mark.django_db def test_query(query_job_types, job_type_objects): data, errors = query_job_types(AnonymousUser()) assert errors is None assert data is not None edges = data.get('jobTypes').get('edges') assert edges is not None assert len(edges) == len(job_type_objects) assert_node_id(edges[0].get('node'), 'JobType', job_type_objects[1].id) assert_node_id(edges[1].get('node'), 'JobType', job_type_objects[2].id) assert_node_id(edges[2].get('node'), 'JobType', job_type_objects[0].id) assert_node_id(edges[3].get('node'), 'JobType', job_type_objects[3].id) assert_node_field(edges[0].get('node'), 'name', job_type_objects[1].name) assert_node_field(edges[1].get('node'), 'name', job_type_objects[2].name) assert_node_field(edges[2].get('node'), 'name', job_type_objects[0].name) assert_node_field(edges[3].get('node'), 'name', job_type_objects[3].name) @pytest.mark.django_db def test_node_query(query_job_type_node, job_type_objects): data, errors = query_job_type_node(AnonymousUser(), job_type_objects[3].id) assert errors is None assert data is not None node = data.get('node') assert node is not None assert_node_id(node, 'JobType', job_type_objects[3].id) assert_node_field(node, 'name', job_type_objects[3].name)
StarcoderdataPython
170568
<gh_stars>0 # Copyright 2020 Netflix, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from datetime import datetime as dt import logging import time import repokid.hooks from repokid.role import Role, Roles from repokid.utils.dynamo import ( find_role_in_cache, get_role_data, role_ids_for_account, set_role_data, ) from tabulate import tabulate from tqdm import tqdm LOGGER = logging.getLogger("repokid") def _schedule_repo(account_number, dynamo_table, config, hooks): """ Schedule a repo for a given account. Schedule repo for a time in the future (default 7 days) for any roles in the account with repoable permissions. """ scheduled_roles = [] roles = Roles( [ Role(get_role_data(dynamo_table, roleID)) for roleID in tqdm(role_ids_for_account(dynamo_table, account_number)) ] ) scheduled_time = int(time.time()) + ( 86400 * config.get("repo_schedule_period_days", 7) ) for role in roles: if not role.aa_data: LOGGER.warning("Not scheduling %s; missing Access Advisor data", role.arn) continue if not role.repoable_permissions > 0: LOGGER.debug("Not scheduling %s; no repoable permissions", role.arn) continue if role.repo_scheduled: LOGGER.debug( "Not scheduling %s; already scheduled for %s", role.arn, role.repo_scheduled, ) continue role.repo_scheduled = scheduled_time # freeze the scheduled perms to whatever is repoable right now set_role_data( dynamo_table, role.role_id, { "RepoScheduled": scheduled_time, "ScheduledPerms": role.repoable_services, }, ) scheduled_roles.append(role) LOGGER.info( "Scheduled repo for {} days from now for account {} and these roles:\n\t{}".format( config.get("repo_schedule_period_days", 7), account_number, ", ".join([r.role_name for r in scheduled_roles]), ) ) repokid.hooks.call_hooks(hooks, "AFTER_SCHEDULE_REPO", {"roles": scheduled_roles}) def _show_scheduled_roles(account_number, dynamo_table): """ Show scheduled repos for a given account. For each scheduled show whether scheduled time is elapsed or not. """ roles = Roles( [ Role(get_role_data(dynamo_table, roleID)) for roleID in tqdm(role_ids_for_account(dynamo_table, account_number)) ] ) # filter to show only roles that are scheduled roles = roles.filter(active=True) roles = [role for role in roles if (role.repo_scheduled)] header = ["Role name", "Scheduled", "Scheduled Time Elapsed?"] rows = [] curtime = int(time.time()) for role in roles: rows.append( [ role.role_name, dt.fromtimestamp(role.repo_scheduled).strftime("%Y-%m-%d %H:%M"), role.repo_scheduled < curtime, ] ) print(tabulate(rows, headers=header)) def _cancel_scheduled_repo(account_number, dynamo_table, role_name=None, is_all=None): """ Cancel scheduled repo for a role in an account """ if not is_all and not role_name: LOGGER.error("Either a specific role to cancel or all must be provided") return if is_all: roles = Roles( [ Role(get_role_data(dynamo_table, roleID)) for roleID in role_ids_for_account(dynamo_table, account_number) ] ) # filter to show only roles that are scheduled roles = [role for role in roles if (role.repo_scheduled)] for role in roles: set_role_data( dynamo_table, role.role_id, {"RepoScheduled": 0, "ScheduledPerms": []} ) LOGGER.info( "Canceled scheduled repo for roles: {}".format( ", ".join([role.role_name for role in roles]) ) ) return role_id = find_role_in_cache(dynamo_table, account_number, role_name) if not role_id: LOGGER.warn( "Could not find role with name {} in account {}".format( role_name, account_number ) ) return role = Role(get_role_data(dynamo_table, role_id)) if not role.repo_scheduled: LOGGER.warn( "Repo was not scheduled for role {} in account {}".format( role.role_name, account_number ) ) return set_role_data( dynamo_table, role.role_id, {"RepoScheduled": 0, "ScheduledPerms": []} ) LOGGER.info( "Successfully cancelled scheduled repo for role {} in account {}".format( role.role_name, role.account ) )
StarcoderdataPython
3425787
# Copyright (C) 2010-2011 <NAME> # # Permission is hereby granted, free of charge, to any person obtaining a copy # of this software and associated documentation files (the "Software"), to # deal in the Software without restriction, including without limitation the # rights to use, copy, modify, merge, publish, distribute, sublicense, and/or # sell copies of the Software, and to permit persons to whom the Software is # furnished to do so, subject to the following conditions: # # The above copyright notice and this permission notice shall be included in # all copies or substantial portions of the Software. # # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR # IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, # FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE # AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER # LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING # FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS # IN THE SOFTWARE. from CIM14.IEC61970.Dynamics.MetaBlockConnectable import MetaBlockConnectable class BlockOutputReference(MetaBlockConnectable): """References output from another block at the meta dynamics level. The other block must be a BlockReference in containing block. """ def __init__(self, metaBlockOutput0=None, metaBlockReference0=None, *args, **kw_args): """Initialises a new 'BlockOutputReference' instance. @param metaBlockOutput0: @param metaBlockReference0: """ self._metaBlockOutput0 = None self.metaBlockOutput0 = metaBlockOutput0 self._metaBlockReference0 = [] self.metaBlockReference0 = [] if metaBlockReference0 is None else metaBlockReference0 super(BlockOutputReference, self).__init__(*args, **kw_args) _attrs = [] _attr_types = {} _defaults = {} _enums = {} _refs = ["metaBlockOutput0", "metaBlockReference0"] _many_refs = ["metaBlockReference0"] def getmetaBlockOutput0(self): return self._metaBlockOutput0 def setmetaBlockOutput0(self, value): if self._metaBlockOutput0 is not None: filtered = [x for x in self.metaBlockOutput0.BlockOutputReference if x != self] self._metaBlockOutput0._BlockOutputReference = filtered self._metaBlockOutput0 = value if self._metaBlockOutput0 is not None: if self not in self._metaBlockOutput0._BlockOutputReference: self._metaBlockOutput0._BlockOutputReference.append(self) metaBlockOutput0 = property(getmetaBlockOutput0, setmetaBlockOutput0) def getmetaBlockReference0(self): return self._metaBlockReference0 def setmetaBlockReference0(self, value): for p in self._metaBlockReference0: filtered = [q for q in p.blockOutputReference0 if q != self] self._metaBlockReference0._blockOutputReference0 = filtered for r in value: if self not in r._blockOutputReference0: r._blockOutputReference0.append(self) self._metaBlockReference0 = value metaBlockReference0 = property(getmetaBlockReference0, setmetaBlockReference0) def addmetaBlockReference0(self, *metaBlockReference0): for obj in metaBlockReference0: if self not in obj._blockOutputReference0: obj._blockOutputReference0.append(self) self._metaBlockReference0.append(obj) def removemetaBlockReference0(self, *metaBlockReference0): for obj in metaBlockReference0: if self in obj._blockOutputReference0: obj._blockOutputReference0.remove(self) self._metaBlockReference0.remove(obj)
StarcoderdataPython
99540
<reponame>DoggiKong/deco3801-project import random import string from django.db import models from django.contrib.auth.models import AbstractUser, BaseUserManager from django.core import validators from django.utils.translation import gettext_lazy as _ from systemsdb.models import hrms_system, chromatography, analytical_column class UserManager(BaseUserManager): """ Model manager for User with email as username. """ use_in_migrations = True def _create_user(self, email, first_name, last_name, password, username=None, **extra_fields): """ Create and save a User with the given email and password. """ if not email: raise ValueError('Email must be given') elif self.filter(email__iexact=email): raise ValueError('An account with this email already exists') if not first_name: raise ValueError('First name must be given') if not last_name: raise ValueError('Last name must be given') if not password: raise ValueError('A password must be given') # Generate a unique username if not given if username is None: pool = string.ascii_lowercase + string.digits username = ''.join(random.choice(pool) for i in range(8)) while self.filter(username__iexact=username): username = ''.join(random.choice(pool) for i in range(8)) # If username is given check that it is unique elif self.filter(username__iexact=username): raise ValueError('An account with this username already exists') email = self.normalize_email(email) username = self.model.normalize_username(username) user = self.model( username=username, email=email, first_name=first_name, last_name=last_name, **extra_fields ) user.set_password(password) user.save(using=self._db) return user def create_user(self, email, first_name, last_name, password=<PASSWORD>, **extra_fields): """ Create and save a User with the given email and password. """ extra_fields.setdefault('is_staff', False) extra_fields.setdefault('is_superuser', False) return self._create_user(email, first_name, last_name, password, **extra_fields) def create_superuser(self, email, first_name, last_name, password, **extra_fields): """ Create and save a User with the given email and password with superuser access. """ extra_fields.setdefault('is_staff', True) extra_fields.setdefault('is_superuser', True) if extra_fields.get('is_staff') is not True: raise ValueError('Superuser must have is_staff=True.') if extra_fields.get('is_superuser') is not True: raise ValueError('Superuser must have is_superuser=True.') return self._create_user(email, first_name, last_name, password, **extra_fields) def get_by_natural_key(self, username): return self.get(**{'{}__iexact'.format(self.model.USERNAME_FIELD): username}) class User(AbstractUser): """ User with email as username. """ email = models.EmailField(_('email address'), unique=True) first_name = models.CharField(_('first name'), max_length=30) last_name = models.CharField(_('last name'), max_length=150) position = models.TextField(blank=True) aid = models.ForeignKey('Affiliation', blank=True, null=True, on_delete=models.SET_NULL) USERNAME_FIELD = 'email' REQUIRED_FIELDS = ['first_name', 'last_name'] objects = UserManager() def __unicode__(self): return self.email class Affiliation(models.Model): """ Affiliation associated with a User. """ aid = models.CharField(max_length=100, unique=True) location = models.TextField() def __str__(self): return self.aid class user_hrms(models.Model): User_id = models.ForeignKey(User, on_delete=models.CASCADE) HRMS_id = models.ForeignKey(hrms_system, on_delete=models.CASCADE) class user_column(models.Model): User_id = models.ForeignKey(User, on_delete=models.CASCADE) Column_id = models.ForeignKey(analytical_column, on_delete=models.CASCADE) class user_chroma(models.Model): User_id = models.ForeignKey(User, on_delete=models.CASCADE) Chroma_id = models.ForeignKey(chromatography, on_delete=models.CASCADE)
StarcoderdataPython
6553611
# Copyright 2020 Amazon.com, Inc. or its affiliates. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"). # You may not use this file except in compliance with the License. # A copy of the License is located at # # http://www.apache.org/licenses/LICENSE-2.0 # # or in the "license" file accompanying this file. This file is distributed # on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either # express or implied. See the License for the specific language governing # permissions and limitations under the License. # ============================================================================== import matplotlib.pyplot as plt import numpy as np import logging import mxnet as mx ALL = 'all' class MetaLogger(): """ Class for holding the parameters and losses for a MetaRepurposer and plotting those values. """ # TODO: Add support for logging loss/parameters after each batch rather than after every epoch def __init__(self, alpha_plot=0.1): self._losses = {} self._parameters = {} self.alpha_plot = alpha_plot self.EPOCH = 'epoch' self.TASK = 'task' self.METASTEP = 'metastep' def reset(self): self._losses = {} self._parameters = {} @property def num_tasks(self): all_tasks = [] for ms in self._parameters.keys(): all_tasks.append([k for k in self._parameters[ms].keys() if isinstance(k, int)]) return len(np.unique(all_tasks)) def report(self, end, hook=None): """ Report results at end of epoch/task/metastep using hook function. """ if hook is None: hook = logging.info reporter = {self.EPOCH: self._report_epoch, self.TASK: self._report_task, self.METASTEP: self._report_metastep} reporter[end](hook) def _report_epoch(self, hook): hook('\t\tMetastep: {}, Task: {}, Epoch: {}, Loss: {:.3f}'.format( self.latest_metastep, self.latest_task, len(self._losses[self.latest_metastep][self.latest_task]), self._losses[self.latest_metastep][self.latest_task][-1])) def _report_task(self, hook): initial_loss = self._losses[self.latest_metastep][self.latest_task][0] final_loss = self._losses[self.latest_metastep][self.latest_task][-1] hook('\tMetastep: {}, Task: {}, Initial Loss: {:.3f}, Final Loss: {:.3f}, Loss delta: {:.3f}'.format( self.latest_metastep, self.latest_task, initial_loss, final_loss, final_loss - initial_loss)) def _report_metastep(self, hook): loss_total = 0 for task_loss in self._losses[self.latest_metastep].values(): loss_total += task_loss[-1] num_tasks = len(self._losses[self.latest_metastep].keys()) mean_loss = loss_total / num_tasks hook('Metastep: {}, Num tasks: {}, Mean Loss: {:.3f}'.format(self.latest_metastep, num_tasks, mean_loss)) @property def latest_metastep(self): return max(self._losses.keys()) @property def latest_task(self): return max(self._losses[self.latest_metastep].keys()) def log_loss(self, metastep, task, epoch, loss): """ Append loss to dictionary. """ if metastep not in self._losses.keys(): self._losses[metastep] = {} if task not in self._losses[metastep].keys(): self._losses[metastep][task] = [] self._losses[metastep][task].append(loss) def log_params(self, metastep, task, epoch, net): """ Append parameters to dictionary. """ parameters = {} for k, v in net.params.items(): parameters[k] = v.data().copy().asnumpy() if metastep not in self._parameters.keys(): self._parameters[metastep] = {} if task not in self._parameters[metastep].keys(): self._parameters[metastep][task] = [] self._parameters[metastep][task].append(parameters) def log_initial_params(self, ms, net): """ Log parameters before any updates made. """ if ms in self._parameters.keys(): return self.log_params(ms, ALL, -1, net) def plot_losses(self, add_label=True, figsize=(20, 4)): """ Plot the logged losses. """ if self._losses == {}: raise ValueError('No losses logged.') fig, axes = plt.subplots(ncols=self.num_tasks, figsize=figsize) fig.suptitle('Losses', fontsize=30, y=1.08) for task in range(self.num_tasks): axes[task].set_title('Task {}'.format(task)) axes[task].set_xlabel('epoch') axes[task].set_ylabel('loss') for ms in self._losses.keys(): for task in range(self.num_tasks): if task in self._losses[ms].keys(): alpha = 1 if ms == max(self._losses.keys()) else self.alpha_plot axes[task].plot(self._losses[ms][task], 'o-', alpha=alpha) if add_label: axes[task].text(x=0.05, y=self._losses[ms][task][0], s=ms) def plot_params(self, param, W, loss_fn, figsize=(20, 6), gridsize=(100, 100), a=0.2, loss_samples=100): """ Plot the logged parameters. """ if self._parameters == {}: raise ValueError('No parameters logged.') fig, axes = plt.subplots(ncols=self.num_tasks, figsize=figsize) for surface in range(self.num_tasks): for ms in sorted(self._parameters.keys()): for task in range(self.num_tasks): if task in self._parameters[ms].keys() or ms == max(self._parameters.keys()): temp_ms = ms while task not in self._parameters[temp_ms].keys(): temp_ms -= 1 x = np.concatenate([p[param] for p in self._parameters[temp_ms][task]]) x = np.concatenate([self._parameters[temp_ms]['all'][0][param], x]).T initial_point = self._parameters[temp_ms]['all'][0][param].T assert x.shape[0] == 2, 'Dimension of parameter must be 2.' label = task if ms == max(self._parameters.keys()) else None alpha = 1 if ms == max(self._parameters.keys()) else self.alpha_plot color = 'r' if surface == task else 'k' axes[surface].plot(x[0], x[1], 'o-', color=color, label=label, alpha=alpha) axes[surface].plot(initial_point[0], initial_point[1], 'o-', color='tab:pink', alpha=alpha) axes[surface].legend() axes[surface].set_title('Loss surface for Task {}'.format(surface)) # Plot loss surface extent = axes[surface].get_xlim() + axes[surface].get_ylim() grid = np.zeros(gridsize) for i, w1 in enumerate(np.linspace(extent[0], extent[1], gridsize[0])): for j, w2 in enumerate(np.linspace(extent[2], extent[3], gridsize[1])): grid[j][i] = loss_fn(mx.nd.array([w1, w2]), W[surface], loss_samples) axes[surface].imshow(grid, extent=extent, origin='lower') # Set labels axes[surface].set_xlabel(param + ' 1') axes[surface].set_ylabel(param + ' 2') fig.suptitle('Parameters', fontsize=30, y=0.9)
StarcoderdataPython
3582192
"""Define the Celery tasks.""" from celery import chain from celery.schedules import crontab from celery.utils.log import get_task_logger from {{ cookiecutter.project_name }}.celery.celery import app logger = get_task_logger(__name__) @app.task def add(x, y): return x + y
StarcoderdataPython
8093846
<gh_stars>1-10 """Preprocess the Robot model The model is available for download from https://sketchfab.com/3d-models/uaeYu2fwakD1e1bWp5Cxu3XAqrt The Python Imaging Library is required pip install pillow """ from __future__ import print_function import json import os import zipfile from PIL import Image from .utils.gltf import dump_obj_data SRC_FILENAME = "robo_obj_pose4.zip" DST_DIRECTORY = "../assets/robot" def process_meshes(zip_file): gltf = json.loads(zip_file.read("scene.gltf")) buffer = zip_file.read("scene.bin") for mesh_index in range(len(gltf["meshes"])): obj_data = dump_obj_data(gltf, buffer, mesh_index) filename = "robot{}.obj".format(mesh_index) filepath = os.path.join(DST_DIRECTORY, filename) with open(filepath, "w") as f: f.write(obj_data) def load_image(zip_file, filename): with zip_file.open(filename) as f: image = Image.open(f) image = image.transpose(Image.FLIP_TOP_BOTTOM) return image def save_image(image, filename, size=512): if max(image.size) > size: image = image.resize((size, size), Image.LANCZOS) filepath = os.path.join(DST_DIRECTORY, filename) image.save(filepath, rle=True) def process_images(zip_file): basecolor_path = "textures/material_0_baseColor.jpeg" emission_path = "textures/material_0_emissive.jpeg" packed_path = "textures/material_0_metallicRoughness.png" basecolor_image = load_image(zip_file, basecolor_path) save_image(basecolor_image, "robot_basecolor.tga") emission_image = load_image(zip_file, emission_path) save_image(emission_image, "robot_emission.tga") packed_image = load_image(zip_file, packed_path) _, roughness_image, _, _ = packed_image.convert("RGBA").split() save_image(roughness_image, "robot_roughness.tga") def main(): if not os.path.exists(DST_DIRECTORY): os.makedirs(DST_DIRECTORY) with zipfile.ZipFile(SRC_FILENAME) as zip_file: process_meshes(zip_file) process_images(zip_file) if __name__ == "__main__": main()
StarcoderdataPython
4810090
__author__ = 'Mario' omega1 = [[-5.01, -8.12, -3.68], [-5.43, -3.48, -3.54], [1.08, -5.52, 1.66], [0.86, -3.78, -4.11], [-2.67, 0.63, 7.39], [4.94, 3.29, 2.08], [-2.51, 2.09, -2.59], [-2.25, -2.13, -6.94], [5.56, 2.86, -2.26], [1.03, -3.33, 4.33]] omega2 = [[-0.91, -0.18, -0.05], [1.30, -2.06, -3.53], [-7.75, -4.54, -0.95], [-5.47, 0.50, 3.92], [6.14, 5.72, -4.85], [3.60, 1.26, 4.36], [5.37, -4.63, -3.65], [7.18, 1.46, -6.66], [-7.39, 1.17, 6.30], [-7.50, -6.32, -0.31]] omega3 = [[5.35, 2.26, 8.13], [5.12, 3.22, -2.66], [-1.34, -5.31, -9.87], [4.48, 3.42, 5.19], [7.11, 2.39, 9.21], [7.17, 4.33, -0.98], [5.75, 3.97, 6.65], [0.77, 0.27, 2.41], [0.90, -0.43, -8.71], [3.52, -0.36, 6.43]]
StarcoderdataPython
9632976
import tensorflow as tf from tensorflow.keras.layers import Dense from tensorflow.keras import Model class Actor(Model): def __init__(self, action_dim, action_lb=None, action_ub=None, hidden_size=(400, 300), name='Actor'): super(Actor, self).__init__(name=name) last_init = tf.random_uniform_initializer(minval=-0.003, maxval=0.003) self.action_dim = action_dim self.action_lb = action_lb self.action_ub = action_ub self.d1 = Dense(hidden_size[0], activation='relu', name="L1") self.d2 = Dense(hidden_size[1], activation='relu', name="L2") self.d3 = Dense(action_dim, name="L3", kernel_initializer=last_init) def call(self, state): x = self.d1(state) x = self.d2(x) action = self.d3(x) if self.action_lb is not None and self.action_ub is not None: mid = (self.action_lb + self.action_ub) / 2 span = (self.action_ub - self.action_lb) / 2 action = span * tf.nn.tanh(action) + mid return action
StarcoderdataPython
9684613
#!/usr/bin/env python """ Licensed to the Apache Software Foundation (ASF) under one or more contributor license agreements. See the NOTICE file distributed with this work for additional information regarding copyright ownership. The ASF licenses this file to you under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. """ from resource_management.libraries.functions.default import default import os import status_params import ambari_simplejson as json from functions import calc_xmn_from_xms, ensure_unit_for_memory from ambari_commons.constants import AMBARI_SUDO_BINARY from ambari_commons.str_utils import string_set_intersection from resource_management.libraries.resources.hdfs_resource import HdfsResource from resource_management.libraries.functions import format from resource_management.libraries.functions.default import default from resource_management.libraries.functions import get_kinit_path from resource_management.libraries.functions import is_empty from resource_management.libraries.functions import get_unique_id_and_date from resource_management.libraries.functions.get_not_managed_resources import get_not_managed_resources from resource_management.libraries.script.script import Script from resource_management.libraries.functions.expect import expect from ambari_commons.ambari_metrics_helper import select_metric_collector_hosts_from_hostnames import sys, os script_path = os.path.realpath(__file__).split( '/services')[0] + '/../../../stack-hooks/before-INSTALL/scripts/ranger' sys.path.append(script_path) from setup_ranger_plugin_xml import generate_ranger_service_config # server configurations config = Script.get_config() stack_root = Script.get_stack_root() import os import multiprocessing cpu_count = multiprocessing.cpu_count() mem_bytes = os.sysconf('SC_PAGE_SIZE') * os.sysconf('SC_PHYS_PAGES') mem_gib = int(mem_bytes / (1024**3)) men_mib = int(mem_bytes / (1024**2)) regionserver_heapsize = int(men_mib * 0.6) master_heapsize = int(men_mib * 0.2) install_dir = stack_root + '/hbase' download_url = config['configurations']['hbase-env']['download_url'] filename = download_url.split('/')[-1] version_dir = filename.replace('.tar.gz', '').replace('.tgz', '') phoenix_install_dir = stack_root + '/phoenix-server' phoenix_download_url = config['configurations']['hbase-env'][ 'phoenix_download_url'] phoenix_filename = phoenix_download_url.split('/')[-1] phoenix_version_dir = phoenix_filename[:-7] exec_tmp_dir = Script.get_tmp_dir() sudo = AMBARI_SUDO_BINARY stack_name = status_params.stack_name agent_stack_retry_on_unavailability = config['ambariLevelParams'][ 'agent_stack_retry_on_unavailability'] agent_stack_retry_count = expect("/ambariLevelParams/agent_stack_retry_count", int) version = default("/commandParams/version", None) etc_prefix_dir = "/etc/hbase" stack_root = status_params.stack_root stack_supports_ranger_kerberos = True stack_supports_ranger_audit_db = False # hadoop default parameters hadoop_bin_dir = install_dir + '/bin' hadoop_conf_dir = '/etc/hbase' daemon_script = install_dir + "/bin/hbase-daemon.sh" region_mover = install_dir + "/bin/region_mover.rb" region_drainer = install_dir + "/bin/draining_servers.rb" hbase_cmd = install_dir + "/bin/hbase" hbase_max_direct_memory_size = None hbase_conf_dir = status_params.hbase_conf_dir limits_conf_dir = status_params.limits_conf_dir hbase_user_nofile_limit = default( "/configurations/hbase-env/hbase_user_nofile_limit", "1048576") hbase_user_nproc_limit = default( "/configurations/hbase-env/hbase_user_nproc_limit", "160000") # no symlink for phoenix-server at this point phx_daemon_script = format(phoenix_install_dir + '/bin/queryserver.py') hbase_excluded_hosts = config['commandParams']['excluded_hosts'] hbase_drain_only = default("/commandParams/mark_draining_only", False) hbase_included_hosts = config['commandParams']['included_hosts'] hbase_user = status_params.hbase_user hbase_principal_name = config['configurations']['hbase-env'][ 'hbase_principal_name'] smokeuser = config['configurations']['cluster-env']['smokeuser'] _authentication = config['configurations']['core-site'][ 'hadoop.security.authentication'] security_enabled = config['configurations']['cluster-env']['security_enabled'] # this is "hadoop-metrics.properties" for 1.x stacks metric_prop_file_name = "hadoop-metrics2-hbase.properties" # not supporting 32 bit jdk. java64_home = config['ambariLevelParams']['java_home'] java_version = expect("/ambariLevelParams/java_version", int) log_dir = config['configurations']['hbase-env']['hbase_log_dir'] java_io_tmpdir = default("/configurations/hbase-env/hbase_java_io_tmpdir", "/tmp") master_heapsize = ensure_unit_for_memory( config['configurations']['hbase-env']['hbase_master_heapsize']) regionserver_heapsize = ensure_unit_for_memory( config['configurations']['hbase-env']['hbase_regionserver_heapsize']) regionserver_xmn_max = config['configurations']['hbase-env'][ 'hbase_regionserver_xmn_max'] regionserver_xmn_percent = expect( "/configurations/hbase-env/hbase_regionserver_xmn_ratio", float) regionserver_xmn_size = calc_xmn_from_xms( regionserver_heapsize, regionserver_xmn_percent, regionserver_xmn_max) parallel_gc_threads = expect( "/configurations/hbase-env/hbase_parallel_gc_threads", int) hbase_regionserver_shutdown_timeout = expect( '/configurations/hbase-env/hbase_regionserver_shutdown_timeout', int, 30) phoenix_hosts = default('/clusterHostInfo/phoenix_query_server_hosts', []) phoenix_enabled = default('/configurations/hbase-env/phoenix_sql_enabled', False) has_phoenix = len(phoenix_hosts) > 0 pid_dir = status_params.pid_dir tmp_dir = config['configurations']['hbase-site']['hbase.tmp.dir'] local_dir = config['configurations']['hbase-site']['hbase.local.dir'] ioengine_param = default( '/configurations/hbase-site/hbase.bucketcache.ioengine', None) client_jaas_config_file = format("{hbase_conf_dir}/hbase_client_jaas.conf") master_jaas_config_file = format("{hbase_conf_dir}/hbase_master_jaas.conf") regionserver_jaas_config_file = format( "{hbase_conf_dir}/hbase_regionserver_jaas.conf") queryserver_jaas_config_file = format( "{hbase_conf_dir}/hbase_queryserver_jaas.conf") ganglia_server_hosts = default('/clusterHostInfo/ganglia_server_host', []) # is not passed when ganglia is not present has_ganglia_server = not len(ganglia_server_hosts) == 0 if has_ganglia_server: ganglia_server_host = ganglia_server_hosts[0] set_instanceId = "false" if 'cluster-env' in config[ 'configurations'] and 'metrics_collector_external_hosts' in config[ 'configurations']['cluster-env']: ams_collector_hosts = config['configurations']['cluster-env'][ 'metrics_collector_external_hosts'] set_instanceId = "true" else: ams_collector_hosts = ",".join( default("/clusterHostInfo/metrics_collector_hosts", [])) has_metric_collector = not len(ams_collector_hosts) == 0 metric_collector_port = None if has_metric_collector: if 'cluster-env' in config['configurations'] and \ 'metrics_collector_external_port' in config['configurations']['cluster-env']: metric_collector_port = config['configurations']['cluster-env'][ 'metrics_collector_external_port'] else: metric_collector_web_address = default( "/configurations/ams-site/timeline.metrics.service.webapp.address", "0.0.0.0:6188") if metric_collector_web_address.find(':') != -1: metric_collector_port = metric_collector_web_address.split(':')[1] else: metric_collector_port = '6188' if default("/configurations/ams-site/timeline.metrics.service.http.policy", "HTTP_ONLY") == "HTTPS_ONLY": metric_collector_protocol = 'https' else: metric_collector_protocol = 'http' metric_truststore_path = default( "/configurations/ams-ssl-client/ssl.client.truststore.location", "") metric_truststore_type = default( "/configurations/ams-ssl-client/ssl.client.truststore.type", "") metric_truststore_password = default( "/configurations/ams-ssl-client/ssl.client.truststore.password", "") host_in_memory_aggregation = default( "/configurations/ams-site/timeline.metrics.host.inmemory.aggregation", True) host_in_memory_aggregation_port = default( "/configurations/ams-site/timeline.metrics.host.inmemory.aggregation.port", 61888) pass metrics_report_interval = default( "/configurations/ams-site/timeline.metrics.sink.report.interval", 60) metrics_collection_period = default( "/configurations/ams-site/timeline.metrics.sink.collection.period", 10) host_in_memory_aggregation = default( "/configurations/ams-site/timeline.metrics.host.inmemory.aggregation", True) host_in_memory_aggregation_port = default( "/configurations/ams-site/timeline.metrics.host.inmemory.aggregation.port", 61888) is_aggregation_https_enabled = False if default( "/configurations/ams-site/timeline.metrics.host.inmemory.aggregation.http.policy", "HTTP_ONLY") == "HTTPS_ONLY": host_in_memory_aggregation_protocol = 'https' is_aggregation_https_enabled = True else: host_in_memory_aggregation_protocol = 'http' # if hbase is selected the hbase_regionserver_hosts, should not be empty, but still default just in case if 'datanode_hosts' in config['clusterHostInfo']: rs_hosts = default( '/clusterHostInfo/hbase_regionserver_hosts', '/clusterHostInfo/datanode_hosts' ) # if hbase_regionserver_hosts not given it is assumed that region servers on same nodes as slaves else: rs_hosts = default('/clusterHostInfo/hbase_regionserver_hosts', '/clusterHostInfo/all_hosts') smoke_test_user = config['configurations']['cluster-env']['smokeuser'] smokeuser_principal = config['configurations']['cluster-env'][ 'smokeuser_principal_name'] smokeuser_permissions = "RWXCA" service_check_data = get_unique_id_and_date() user_group = config['configurations']['cluster-env']["user_group"] if security_enabled: _hostname_lowercase = config['agentLevelParams']['hostname'].lower() master_jaas_princ = config['configurations'][ 'hbase-site']['hbase.master.kerberos.principal'].replace( '_HOST', _hostname_lowercase) master_keytab_path = config['configurations']['hbase-site'][ 'hbase.master.keytab.file'] regionserver_jaas_princ = config['configurations']['hbase-site'][ 'hbase.regionserver.kerberos.principal'].replace( '_HOST', _hostname_lowercase) _queryserver_jaas_princ = config['configurations']['hbase-site'][ 'phoenix.queryserver.kerberos.principal'] if not is_empty(_queryserver_jaas_princ): queryserver_jaas_princ = _queryserver_jaas_princ.replace( '_HOST', _hostname_lowercase) regionserver_keytab_path = config['configurations']['hbase-site'][ 'hbase.regionserver.keytab.file'] queryserver_keytab_path = config['configurations']['hbase-site'][ 'phoenix.queryserver.keytab.file'] smoke_user_keytab = config['configurations']['cluster-env']['smokeuser_keytab'] hbase_user_keytab = config['configurations']['hbase-env']['hbase_user_keytab'] kinit_path_local = get_kinit_path( default('/configurations/kerberos-env/executable_search_paths', None)) if security_enabled: kinit_cmd = format( "{kinit_path_local} -kt {hbase_user_keytab} {hbase_principal_name};") kinit_cmd_master = format( "{kinit_path_local} -kt {master_keytab_path} {master_jaas_princ};") master_security_config = format( "-Djava.security.auth.login.config={hbase_conf_dir}/hbase_master_jaas.conf" ) else: kinit_cmd = "" kinit_cmd_master = "" master_security_config = "" # log4j.properties # HBase log4j settings hbase_log_maxfilesize = default( 'configurations/hbase-log4j/hbase_log_maxfilesize', 256) hbase_log_maxbackupindex = default( 'configurations/hbase-log4j/hbase_log_maxbackupindex', 20) hbase_security_log_maxfilesize = default( 'configurations/hbase-log4j/hbase_security_log_maxfilesize', 256) hbase_security_log_maxbackupindex = default( 'configurations/hbase-log4j/hbase_security_log_maxbackupindex', 20) if (('hbase-log4j' in config['configurations']) and ('content' in config['configurations']['hbase-log4j'])): log4j_props = config['configurations']['hbase-log4j']['content'] else: log4j_props = None hbase_env_sh_template = config['configurations']['hbase-env']['content'] hbase_hdfs_root_dir = config['configurations']['hbase-site']['hbase.rootdir'] hbase_staging_dir = "/hbase/staging" # for create_hdfs_directory hostname = config['agentLevelParams']['hostname'] hdfs_user_keytab = config['configurations']['hadoop-env']['hdfs_user_keytab'] hdfs_user = config['configurations']['hadoop-env']['hdfs_user'] hdfs_principal_name = config['configurations']['hadoop-env'][ 'hdfs_principal_name'] hdfs_site = config['configurations']['hdfs-site'] default_fs = config['configurations']['core-site']['fs.defaultFS'] dfs_type = default("/clusterLevelParams/dfs_type", "") import functools # create partial functions with common arguments for every HdfsResource call # to create/delete hdfs directory/file/copyfromlocal we need to call params.HdfsResource in code HdfsResource = functools.partial( HdfsResource, user=hdfs_user, hdfs_resource_ignore_file= "/var/lib/ambari-agent/data/.hdfs_resource_ignore", security_enabled=security_enabled, keytab=hdfs_user_keytab, kinit_path_local=kinit_path_local, hadoop_bin_dir=hadoop_bin_dir, hadoop_conf_dir=hadoop_conf_dir, principal_name=hdfs_principal_name, hdfs_site=hdfs_site, default_fs=default_fs, immutable_paths=get_not_managed_resources(), dfs_type=dfs_type) zookeeper_znode_parent = config['configurations']['hbase-site'][ 'zookeeper.znode.parent'] hbase_zookeeper_quorum = config['configurations']['hbase-site'][ 'hbase.zookeeper.quorum'] hbase_zookeeper_property_clientPort = config['configurations']['hbase-site'][ 'hbase.zookeeper.property.clientPort'] hbase_zookeeper_data_dir = config['configurations']['hbase-site']['hbase.zookeeper.property.dataDir'] hbase_security_authentication = config['configurations']['hbase-site'][ 'hbase.security.authentication'] hadoop_security_authentication = config['configurations']['core-site'][ 'hadoop.security.authentication'] # ranger hbase plugin section start # to get db connector jar jdk_location = config['ambariLevelParams']['jdk_location'] # ranger host ranger_admin_hosts = default("/clusterHostInfo/ranger_admin_hosts", []) has_ranger_admin = not len(ranger_admin_hosts) == 0 xml_configurations_supported = True # ranger hbase plugin enabled property enable_ranger_hbase = default( "/configurations/ranger-hbase-plugin-properties/ranger-hbase-plugin-enabled", "No") enable_ranger_hbase = True if enable_ranger_hbase.lower() == 'yes' else False # ranger hbase properties if enable_ranger_hbase: # get ranger policy url policymgr_mgr_url = config['configurations']['admin-properties'][ 'policymgr_external_url'] if xml_configurations_supported: policymgr_mgr_url = config['configurations']['ranger-hbase-security'][ 'ranger.plugin.hbase.policy.rest.url'] if not is_empty(policymgr_mgr_url) and policymgr_mgr_url.endswith('/'): policymgr_mgr_url = policymgr_mgr_url.rstrip('/') # ranger hbase service/repository name repo_name = str(config['clusterName']) + '_hbase' repo_name_value = config['configurations']['ranger-hbase-security'][ 'ranger.plugin.hbase.service.name'] if not is_empty(repo_name_value) and repo_name_value != "{{repo_name}}": repo_name = repo_name_value common_name_for_certificate = config['configurations'][ 'ranger-hbase-plugin-properties']['common.name.for.certificate'] repo_config_username = config['configurations'][ 'ranger-hbase-plugin-properties']['REPOSITORY_CONFIG_USERNAME'] ranger_plugin_properties = config['configurations'][ 'ranger-hbase-plugin-properties'] policy_user = config['configurations']['ranger-hbase-plugin-properties'][ 'policy_user'] repo_config_password = config['configurations'][ 'ranger-hbase-plugin-properties']['REPOSITORY_CONFIG_PASSWORD'] # ranger-env config ranger_env = config['configurations']['ranger-env'] # create ranger-env config having external ranger credential properties if not has_ranger_admin and enable_ranger_hbase: external_admin_username = default( '/configurations/ranger-hbase-plugin-properties/external_admin_username', 'admin') external_admin_password = default( '/configurations/ranger-hbase-plugin-properties/external_admin_password', 'admin') external_ranger_admin_username = default( '/configurations/ranger-hbase-plugin-properties/external_ranger_admin_username', 'ranger_admin') external_ranger_admin_password = default( '/configurations/ranger-hbase-plugin-properties/external_ranger_admin_password', '<PASSWORD>!@#') ranger_env = {} ranger_env['admin_username'] = external_admin_username ranger_env['admin_password'] = <PASSWORD> ranger_env['ranger_admin_username'] = external_ranger_admin_username ranger_env['ranger_admin_password'] = external_ranger_admin_password if security_enabled: master_principal = config['configurations']['hbase-site'][ 'hbase.master.kerberos.principal'] hbase_ranger_plugin_config = { 'username': repo_config_username, 'password': repo_config_password, 'hadoop.security.authentication': hadoop_security_authentication, 'hbase.security.authentication': hbase_security_authentication, 'hbase.zookeeper.property.clientPort': hbase_zookeeper_property_clientPort, 'hbase.zookeeper.quorum': hbase_zookeeper_quorum, 'zookeeper.znode.parent': zookeeper_znode_parent, 'commonNameForCertificate': common_name_for_certificate, 'hbase.master.kerberos.principal': master_principal if security_enabled else '' } if security_enabled: hbase_ranger_plugin_config['policy.download.auth.users'] = hbase_user hbase_ranger_plugin_config['tag.download.auth.users'] = hbase_user hbase_ranger_plugin_config[ 'policy.grantrevoke.auth.users'] = hbase_user hbase_ranger_plugin_config['setup.additional.default.policies'] = "true" hbase_ranger_plugin_config[ 'default-policy.1.name'] = "Service Check User Policy for Hbase" hbase_ranger_plugin_config[ 'default-policy.1.resource.table'] = "ambarismoketest" hbase_ranger_plugin_config['default-policy.1.resource.column-family'] = "*" hbase_ranger_plugin_config['default-policy.1.resource.column'] = "*" hbase_ranger_plugin_config[ 'default-policy.1.policyItem.1.users'] = policy_user hbase_ranger_plugin_config[ 'default-policy.1.policyItem.1.accessTypes'] = "read,write,create" custom_ranger_service_config = generate_ranger_service_config( ranger_plugin_properties) if len(custom_ranger_service_config) > 0: hbase_ranger_plugin_config.update(custom_ranger_service_config) hbase_ranger_plugin_repo = { 'isEnabled': 'true', 'configs': hbase_ranger_plugin_config, 'description': 'hbase repo', 'name': repo_name, 'type': 'hbase' } ranger_hbase_principal = None ranger_hbase_keytab = None if stack_supports_ranger_kerberos and security_enabled: # hbase master ranger_hbase_principal = master_jaas_princ ranger_hbase_keytab = master_keytab_path elif stack_supports_ranger_kerberos and security_enabled: # hbase regionserver ranger_hbase_principal = regionserver_jaas_princ ranger_hbase_keytab = regionserver_keytab_path xa_audit_hdfs_is_enabled = config['configurations']['ranger-hbase-audit'][ 'xasecure.audit.destination.hdfs'] if xml_configurations_supported else False ssl_keystore_password = config['configurations']['ranger-hbase-policymgr-ssl'][ 'xasecure.policymgr.clientssl.keystore.password'] if xml_configurations_supported else None ssl_truststore_password = config['configurations'][ 'ranger-hbase-policymgr-ssl'][ 'xasecure.policymgr.clientssl.truststore.password'] if xml_configurations_supported else None credential_file = format('/etc/ranger/{repo_name}/cred.jceks') # need this to capture cluster name from where ranger hbase plugin is enabled cluster_name = config['clusterName'] # ranger hbase plugin section end create_hbase_home_directory = True hbase_home_directory = format("/user/{hbase_user}") atlas_hosts = default('/clusterHostInfo/atlas_server_hosts', []) has_atlas = len(atlas_hosts) > 0 metadata_user = default('/configurations/atlas-env/metadata_user', None) atlas_graph_storage_hostname = default( '/configurations/application-properties/atlas.graph.storage.hostname', None) atlas_graph_storage_hbase_table = default( '/configurations/application-properties/atlas.graph.storage.hbase.table', None) atlas_audit_hbase_tablename = default( '/configurations/application-properties/atlas.audit.hbase.tablename', None) if has_atlas: zk_hosts_matches = string_set_intersection(atlas_graph_storage_hostname, hbase_zookeeper_quorum) atlas_with_managed_hbase = len(zk_hosts_matches) > 0 else: atlas_with_managed_hbase = False # Hbase Atlas hook configurations atlas_hook_filename = default('/configurations/atlas-env/metadata_conf_file', 'atlas-application.properties') enable_hbase_atlas_hook = default('/configurations/hbase-env/hbase.atlas.hook', False) hbase_atlas_hook_properties = default( '/configurations/hbase-atlas-application-properties', {}) mount_table_xml_inclusion_file_full_path = None mount_table_content = None if 'viewfs-mount-table' in config['configurations']: xml_inclusion_file_name = 'viewfs-mount-table.xml' mount_table = config['configurations']['viewfs-mount-table'] if 'content' in mount_table and mount_table['content'].strip(): mount_table_xml_inclusion_file_full_path = os.path.join( hbase_conf_dir, xml_inclusion_file_name) mount_table_content = mount_table['content'] retryAble = default("/commandParams/command_retry_enabled", False)
StarcoderdataPython
4886593
<filename>test_unidecode.py from unidecode import unidecode print(unidecode("\u5317\u4EB0")) print(unidecode("\u0c13\u0c35\u0c46\u0c28\u0c4d\u200c\u0c28\u0c3f")) print(unidecode("సంతోషంగా")) print("\u0c13\u0c35\u0c46\u0c28\u0c4d\u200c\u0c28\u0c3f")
StarcoderdataPython
1708074
import azure.mgmt.batchai as batchai from azure.storage.file import FileService from azure.common.credentials import ServicePrincipalCredentials from azure.mgmt.resource import ResourceManagementClient from datetime import datetime import os def setup_bai( aad_client_id: str = None, aad_secret: str = None, aad_tenant: str = None, subscription_id: str = None, rg: str = None, location: str = None, ) -> 'batchai.BatchAIManagementClient': ''' Setup credentials, batch AI client, and the resource group that the resources will be created in All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: aad_client_id (str, optional): The client id you get from creating your Service Principle. aad_secret (str, optional): The secret key you get from creating your Service Principle. aad_tenant (str, optional): The tenant id that your Service Principle is created in. subscription_id (str, optional): The subscription id you wish for your Batch AI resources to be created in. rg (str, optional): The Resource Group you will create your work in. location (str, optional): The location/region that will create your Azure resources in. Returns: BatchAIManagementClient: An instance of the Batch AI managment client that can be used to manage Batch AI resources. ''' aad_client_id = aad_client_id or os.getenv('AAD_CLIENT_ID') aad_tenant = aad_tenant or os.getenv('AAD_TENANT') aad_secret = aad_secret or os.getenv('AAD_SECRET') subscription_id = subscription_id or os.getenv('SUBSCRIPTION_ID') rg = rg or os.getenv('RESOURCE_GROUP') location = location or os.getenv('REGION') assert aad_client_id assert aad_tenant assert aad_secret assert subscription_id assert rg assert location creds = ServicePrincipalCredentials( client_id=aad_client_id, secret=aad_secret, tenant=aad_tenant ) resource_management_client = ResourceManagementClient( credentials=creds, subscription_id=subscription_id ) resource = resource_management_client \ .resource_groups.create_or_update(rg, { 'location': location }) batchai_client = batchai.BatchAIManagementClient( credentials=creds, subscription_id=subscription_id ) return batchai_client def get_cluster( batchai_client: 'BatchAIManagementClient', name: str, rg: str = None, ws: str = None ) -> 'batchai.models.Cluster': ''' Get a BatchAI cluster by cluster name All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: batchai_client (BatchAIManagementClient): The management client to manage Batch AI resources name (str): The name of the cluster to get rg (str, optional): The resource group to look for the cluster under. ws (str, optional): The Batch AI Workspace to look for the cluster under. Returns: batchai.models.Cluster: The cluster object that is provided by the BatchAI management sdk. ''' rg = rg or os.getenv('RESOURCE_GROUP') ws = ws or os.getenv('WORKSPACE') assert rg assert ws return batchai_client.clusters.get( resource_group_name=rg, workspace_name=ws, cluster_name=name ) def create_experiment( batchai_client: 'BatchAIManagementClient', name: str, rg: str = os.getenv('RESOURCE_GROUP'), ws: str = os.getenv('WORKSPACE'), ) -> 'batchai.models.Experiment': ''' Create a BatchAI Experiment (which is the logical container for a job) All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: batchai_client (BatchAIManagementClient): The management client to manage Batch AI resources name (str): The name of the Experiment rg (str, optional): The resource group to create the experiment in. ws (str, optional): The Batch AI Workspace to create the experiment in. Returns: batchai.models.Experiment: The experiment object that is provided by the BatchAI management sdk. ''' return batchai_client.experiments.create( resource_group_name=rg, workspace_name=ws, experiment_name=name ) def create_job_params( cluster: 'batchai.models.Cluster', input_dirs: ['batchai.models.InputDirectory'], output_dirs: ['batchai.models.OutputDirectory'], container_image: str, command_line: str, job_prep_command_line: str = '', node_count: int = 1, cluster_mnt_path: str = None ): ''' Create the parameter object for the Batch AI job. All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: cluster (batchai.models.Cluster): The cluster to the parameters for. input_dir (List(batchai.models.InputDirectory)): A list of the input directories to setup. output_dir (List(batchai.models.OutputDirectory)): A list of the output directories to setup. container_image (str): The container image to use when running the job. command_line (str): The command line to execute. job_prep_command_line (str, optional): Optional command line to execute during job_preparation. node_count (int, optional): The number of nodes to use for the job. cluster_mnt_path (str, optional): The mnt path of the file share on the cluster. Returns: batchai.models.JobCreateParameters: The Parameter object to pass into the job during creation. ''' cluster_mnt_path = cluster_mnt_path or \ os.getenv('CLUSTER_CONTAINER_MNT_PATH') assert cluster_mnt_path return batchai.models.JobCreateParameters( cluster=batchai.models.ResourceId(id=cluster.id), node_count=node_count, input_directories=input_dirs, output_directories=output_dirs, std_out_err_path_prefix='$AZ_BATCHAI_MOUNT_ROOT/{0}'\ .format(cluster_mnt_path), job_preparation=batchai.models.JobPreparation( command_line=job_prep_command_line ), container_settings=batchai.models.ContainerSettings( image_source_registry=batchai.models.ImageSourceRegistry( image=container_image ) ), custom_toolkit_settings=batchai.models.CustomToolkitSettings( command_line=command_line ) ) def create_job( batchai_client: 'BatchAIManagementClient', job_name: str, job_params: 'batchai.models.JobCreateParameters', experiment_name: str, rg: str = os.getenv('RESOURCE_GROUP'), ws: str = os.getenv('WORKSPACE'), async_job: bool = True ) -> 'batchai.models.Job': ''' Create a BatchAI Experiment (which is the logical container for a job) All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: batchai_client (BatchAIManagementClient): The management client to manage Batch AI resources job_name (str): The name of the job. job_params (JobCreateParameters): The parameters to pass to the job. job_experiment_name (str): The name of the experiment to create the job under. rg (str, optional): The resource group to create the job in. ws (str, optional): The Batch AI Workspace to create the job in. Returns: batchai.models.Job: The Job object that is provided by the BatchAI management sdk. ''' job = batchai_client.jobs.create( resource_group_name=rg, workspace_name=ws, experiment_name=experiment_name, job_name=job_name, parameters=job_params ) if not async_job: return job.result() else: return job def create_workspace( batchai_client: 'BatchAIManagementClient', rg: str = None, ws: str = None, location: str = None ) -> 'batchai.models.WorkSpace': ''' Create a BatchAI Workspace All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: batchai_client (BatchAIManagementClient): The management client to manage Batch AI resources rg (str, optional): The resource group to create the workspace in. ws (str, optional): The Batch AI Workspace to create the job in. location (str, optional): The location/region that will create your Workspace in. Returns: batchai.models.Workspace: The Workspace object that is provided by the BatchAI management sdk. ''' rg = rg or os.getenv('RESOURCE_GROUP') ws = ws or os.getenv('WORKSPACE') location = location or os.getenv('REGION') assert rg assert ws assert location return batchai_client \ .workspaces \ .create(rg, ws, location) \ .result() def create_autoscale_cluster( batchai_client: 'BatchAIManagementClient', cluster_name: str, vm_size: str = None, vm_priority: str = None, min_nodes: int = None, max_nodes: int = None, initial_nodes: int = None, ws: str = None, rg: str = None, storage_account_name: str = None, storage_account_key: str = None, container_name: str = None, cluster_mnt_path: str = None, admin_user_name: str = None, admin_user_password: str = None ) -> None: ''' Create an autoscale Batch AI cluster All optional arguments will default to using the associated environment variable if the parameter is not provided. Args: batchai_client (BatchAIManagementClient): The management client to manage Batch AI resources cluster_name (str): The name of the cluster you wish to create. vm_size (str, optional): The vm size of the cluster you with to create. vm_priority (str, optional): Choose between low priority or dedicated. min_nodes (int, optional): Minimum number of nodes in the autoscale cluster. max_nodes (int, optional): Maximum number of nodes in the autoscale cluster. initial_nodes (int, optional): Initial number of nodes in the autoscale cluster. ws (str, optional): The workspace to create the cluster in. rg (str, optional): The resource group to create the cluster in. storage_account_name (str, optional): The storage account to use when mounting the blob container. storage_account_key (str, optional): The key to use when mounting the blob container. container_name (str, optional): The name of the container to use in storage. cluster_mnt_path (str, optional): The mnt path of the file share on the cluster. admin_user_name (str, optional): The username of the user to create for accessing the cluster. admin_user_password (str, optional): The password of the user to create for accesing the cluster. Returns: None ''' vm_size = vm_size or \ os.getenv('CLUSTER_VM_SIZE') vm_priority = vm_priority or \ os.getenv('CLUSTER_VM_PRIORITY') min_nodes = min_nodes if type(min_nodes) is int else \ os.getenv('CLUSTER_MINIMUM_NODE_COUNT') max_nodes = max_nodes if type(max_nodes) is int else \ os.getenv('CLUSTER_MAXIMUM_NODE_COUNT') initial_nodes = initial_nodes if type(initial_nodes) is int else \ os.getenv('CLUSTER_INITIAL_NODE_COUNT') ws = ws or os.getenv('WORKSPACE') rg = rg or os.getenv('RESOURCE_GROUP') storage_account_name = storage_account_name or \ os.getenv('STORAGE_ACCOUNT_NAME') storage_account_key = storage_account_key or \ os.getenv('STORAGE_ACCOUNT_KEY') container_name = container_name or \ os.getenv('AZURE_CONTAINER_NAME') cluster_mnt_path = cluster_mnt_path or \ os.getenv('CLUSTER_CONTAINER_MNT_PATH') admin_user_name = admin_user_name or \ os.getenv('ADMIN_USER_NAME') admin_user_password = <PASSWORD>user_password or \ os.getenv('ADMIN_USER_PASSWORD') assert vm_size assert vm_priority assert min_nodes or 0 assert max_nodes or 0 assert initial_nodes or 0 assert ws assert rg assert storage_account_name assert storage_account_key assert container_name assert cluster_mnt_path assert admin_user_name assert admin_user_password volumes = batchai.models.MountVolumes( azure_blob_file_systems=[ batchai.models.AzureBlobFileSystemReference( account_name=storage_account_name, credentials=batchai.models.AzureStorageCredentialsInfo( account_key=storage_account_key ), container_name=container_name, relative_mount_path=cluster_mnt_path ) ] ) scale_settings = batchai.models.ScaleSettings( auto_scale=batchai.models.AutoScaleSettings( minimum_node_count=min_nodes, maximum_node_count=max_nodes, initial_node_count=initial_nodes ) ) parameters = batchai.models.ClusterCreateParameters( vm_size=vm_size, vm_priority=vm_priority, scale_settings=scale_settings, node_setup=batchai.models.NodeSetup( mount_volumes=volumes ), user_account_settings=batchai.models.UserAccountSettings( admin_user_name=admin_user_name, admin_user_password=<PASSWORD> ) ) _ = batchai_client.clusters.create( resource_group_name=rg, workspace_name=ws, cluster_name=cluster_name, parameters=parameters ).result()
StarcoderdataPython
234476
<gh_stars>0 from flask import Flask, render_template, flash, redirect, url_for from app import app from flask_cors import CORS, cross_origin import random # public API, allow all requests * cors = CORS(app, resources={r"/api/*": {"origins": "*"}}) from app.utils.general import sanitize_input, convert_array_to_return_string from app.utils.rand import pick_random_move, get_available_moves from app.utils.suggest import convert_csv_to_Q, convert_input_to_key, get_index_of_max, get_available_moves, check_winner, get_max_values, compute_R, convert_Q_key_to_string_array @app.route('/') @app.route('/index') def index(): return render_template('index.html', title='Home') # suggest random move @app.route('/api/v1/rand/turn/<turn>/board/<board>') @cross_origin() def random_move(turn, board): turn, board, ok = sanitize_input(turn,board) key = convert_input_to_key(turn, board) _, board_state = key winner = check_winner(board_state) if not winner: index = pick_random_move(board) if index > -1: board[index] = turn # check winner again. board = convert_array_to_return_string(board) key = convert_input_to_key(turn, board) _, board_state = key winner = check_winner(board_state) return { "board" : board, "winner" : winner} @app.route('/api/v1/turn/<turn>/board/<board>', methods=['GET']) @cross_origin() def suggest_move(turn,board): file_path = 'Q.csv' Q = convert_csv_to_Q(file_path) turn, board, ok = sanitize_input(turn, board) winner = None if ok: key = convert_input_to_key(turn, board) state = key turn, board_state = state # check that there isn't a winner winner = check_winner(board_state) if winner == None: # check to see if are any immediate winning or blocking moves immediate_rewards = compute_R(state) if max(immediate_rewards) > 0: move_here = get_index_of_max(immediate_rewards) else: indices_possible_moves = get_available_moves(board_state) # test to see if the state is in the Q. valid_state = Q.get(state, False) if valid_state: rewards_of_moves = [] for index in indices_possible_moves: # of the possible moves get there Q scores rewards_of_moves.append(valid_state[index]) # find the max values within a range to the max value best_moves = get_max_values(rewards_of_moves) # choose a random selection from these max values move_here_value = random.choice(best_moves) if move_here_value == 0: move_here = random.choice(indices_possible_moves) else: for index in indices_possible_moves: if valid_state[index] == move_here_value: move_here = index else: move_here = random.choice(indices_possible_moves) board = list(board_state) board[move_here] = int(turn) # check winner again. board_state = tuple(board) winner = check_winner(board_state) board = convert_Q_key_to_string_array(board) board = convert_array_to_return_string(board) return { "board" : board, "winner": winner}
StarcoderdataPython
8112385
<reponame>RaghuSpaceRajan/bsuite-mdpp-merge # python3 # pylint: disable=g-bad-file-header # Copyright 2019 DeepMind Technologies Limited. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. # ============================================================================ """bsuite logging and image observation wrappers.""" from typing import Any, Dict, Sequence from bsuite import environments from bsuite.logging import base import dm_env from dm_env import specs import numpy as np from skimage import transform # Keys that are present for all experiments. These are computed from within # the `Logging` wrapper. STANDARD_KEYS = frozenset( ['steps', 'episode', 'total_return', 'episode_len', 'episode_return']) class Logging(dm_env.Environment): """Environment wrapper to track and log bsuite stats.""" def __init__(self, env: environments.Environment, logger: base.Logger, log_by_step: bool = False, log_every: bool = False): """Initializes the logging wrapper. Args: env: Environment to wrap. logger: An object that records a row of data. This must have a `write` method that accepts a dictionary mapping from column name to value. log_by_step: Whether to log based on step or episode count (default). log_every: Forces logging at each step or episode, e.g. for debugging. """ self._env = env self._logger = logger self._log_by_step = log_by_step self._log_every = log_every # Accumulating throughout experiment. self._steps = 0 self._episode = 0 self._total_return = 0.0 # Most-recent-episode. self._episode_len = 0 self._episode_return = 0.0 def flush(self): if hasattr(self._logger, 'flush'): self._logger.flush() def reset(self): timestep = self._env.reset() self._track(timestep) return timestep def step(self, action): timestep = self._env.step(action) self._track(timestep) return timestep def action_spec(self): return self._env.action_spec() def observation_spec(self): return self._env.observation_spec() def _track(self, timestep: dm_env.TimeStep): # Count transitions only. if not timestep.first(): self._steps += 1 self._episode_len += 1 if timestep.last(): self._episode += 1 self._episode_return += timestep.reward or 0.0 self._total_return += timestep.reward or 0.0 # Log statistics periodically, either by step or by episode. if self._log_by_step: if _logarithmic_logging(self._steps) or self._log_every: self._log_bsuite_data() elif timestep.last(): if _logarithmic_logging(self._episode) or self._log_every: self._log_bsuite_data() # Perform bookkeeping at the end of episodes. if timestep.last(): self._episode_len = 0 self._episode_return = 0.0 def _log_bsuite_data(self): """Log summary data for bsuite.""" data = dict( # Accumulated data. steps=self._steps, episode=self._episode, total_return=self._total_return, # Most-recent-episode data. episode_len=self._episode_len, episode_return=self._episode_return, ) # Environment-specific metadata used for scoring. data.update(self._env.bsuite_info()) self._logger.write(data) @property def raw_env(self): # Recursively unwrap until we reach the true 'raw' env. wrapped = self._env if hasattr(wrapped, 'raw_env'): return wrapped.raw_env return wrapped def __getattr__(self, attr): """Delegate attribute access to underlying environment.""" return getattr(self._env, attr) def _logarithmic_logging(episode: int, ratios: Sequence[float] = None) -> bool: """Returns `True` only at specific ratios of 10**exponent.""" if ratios is None: ratios = [1., 1.2, 1.4, 1.7, 2., 2.5, 3., 4., 5., 6., 7., 8., 9., 10.] exponent = np.floor(np.log10(np.maximum(1, episode))) special_vals = [10**exponent * ratio for ratio in ratios] return any(episode == val for val in special_vals) class ImageObservation(dm_env.Environment): """Environment wrapper to convert observations to an image-like format.""" def __init__(self, env: dm_env.Environment, shape: Sequence[int]): self._env = env self._shape = shape def observation_spec(self): spec = self._env.observation_spec() return specs.Array(shape=self._shape, dtype=spec.dtype, name=spec.name) def action_spec(self): return self._env.action_spec() def reset(self): timestep = self._env.reset() return timestep._replace( observation=to_image(self._shape, timestep.observation)) def step(self, action): timestep = self._env.step(action) return timestep._replace( observation=to_image(self._shape, timestep.observation)) def __getattr__(self, attr): """Delegate attribute access to underlying environment.""" return getattr(self._env, attr) def _small_state_to_image(shape: Sequence[int], observation: np.ndarray) -> np.ndarray: """Converts a small state into an image-like format.""" result = np.empty(shape=shape, dtype=observation.dtype) size = observation.size flattened = observation.ravel() # Explicitly handle small observation dimensions separately if size == 1: result[:] = flattened[0] elif size == 2: result[:, :shape[1] // 2] = flattened[0] result[:, shape[1] // 2:] = flattened[1] elif size == 3 or size == 4: # Top-left. result[:shape[0] // 2, :shape[1] // 2] = flattened[0] # Top-right. result[shape[0] // 2:, :shape[1] // 2] = flattened[1] # Bottom-left. result[:shape[0] // 2, shape[1] // 2:] = flattened[2] # Bottom-right. result[shape[0] // 2:, shape[1] // 2:] = flattened[-1] else: raise ValueError('Hand-crafted rule only for small state observation.') return result def _interpolate_to_image(shape: Sequence[int], observation: np.ndarray) -> np.ndarray: """Converts observation to desired shape using an interpolation.""" result = np.empty(shape=shape, dtype=observation.dtype) if len(observation.shape) == 1: observation = np.expand_dims(observation, 0) # Interpolate the image and broadcast over all trailing channels. plane_image = transform.resize(observation, shape[:2], preserve_range=True) while plane_image.ndim < len(shape): plane_image = np.expand_dims(plane_image, -1) result[:, :] = plane_image return result def to_image(shape: Sequence[int], observation: np.ndarray) -> np.ndarray: """Converts a bsuite observation into an image-like format. Example usage, converting a 3-element array into a stacked Atari-like format: observation = to_image((84, 84, 4), np.array([1, 2, 0])) Args: shape: A sequence containing the desired output shape (length >= 2). observation: A numpy array containing the observation data. Returns: A numpy array with shape `shape` and dtype matching the dtype of `observation`. The entries in this array are tiled from `observation`'s entries. """ assert len(shape) >= 2 if observation.size <= 4: return _small_state_to_image(shape, observation) elif len(observation.shape) <= 2: return _interpolate_to_image(shape, observation) else: raise ValueError( 'Cannot convert observation shape {} to desired shape {}'.format( observation.shape, shape)) class RewardNoise(environments.Environment): """Reward Noise environment wrapper.""" def __init__(self, env: environments.Environment, noise_scale: float, seed: int = None): """Builds the Reward Noise environment wrapper. Args: env: An environment whose rewards to perturb. noise_scale: Standard deviation of gaussian noise on rewards. seed: Optional seed for numpy's random number generator (RNG). """ super(RewardNoise, self).__init__() self._env = env self._noise_scale = noise_scale self._rng = np.random.RandomState(seed) def reset(self): return self._env.reset() def step(self, action): return self._add_reward_noise(self._env.step(action)) def _add_reward_noise(self, timestep: dm_env.TimeStep): if timestep.first(): return timestep reward = timestep.reward + self._noise_scale * self._rng.randn() return dm_env.TimeStep( step_type=timestep.step_type, reward=reward, discount=timestep.discount, observation=timestep.observation) def observation_spec(self): return self._env.observation_spec() def action_spec(self): return self._env.action_spec() @property def raw_env(self): # Recursively unwrap until we reach the true 'raw' env. wrapped = self._env if hasattr(wrapped, 'raw_env'): return wrapped.raw_env return wrapped def _step(self, action: int) -> dm_env.TimeStep: raise NotImplementedError('Please call step() instead of _step().') def _reset(self) -> dm_env.TimeStep: raise NotImplementedError('Please call reset() instead of _reset().') def bsuite_info(self) -> Dict[str, Any]: return self._env.bsuite_info() def __getattr__(self, attr): """Delegate attribute access to underlying environment.""" return getattr(self._env, attr) class RewardScale(environments.Environment): """Reward Scale environment wrapper.""" def __init__(self, env: environments.Environment, reward_scale: float, seed: int = None): """Builds the Reward Scale environment wrapper. Args: env: Environment whose rewards to rescale. reward_scale: Rescaling for rewards. seed: Optional seed for numpy's random number generator (RNG). """ super(RewardScale, self).__init__() self._env = env self._reward_scale = reward_scale self._rng = np.random.RandomState(seed) def reset(self): return self._env.reset() def step(self, action): return self._rescale_rewards(self._env.step(action)) def _rescale_rewards(self, timestep: dm_env.TimeStep): if timestep.first(): return timestep reward = timestep.reward * self._reward_scale return dm_env.TimeStep( step_type=timestep.step_type, reward=reward, discount=timestep.discount, observation=timestep.observation) def observation_spec(self): return self._env.observation_spec() def action_spec(self): return self._env.action_spec() def _step(self, action: int) -> dm_env.TimeStep: raise NotImplementedError('Please call step() instead of _step().') def _reset(self) -> dm_env.TimeStep: raise NotImplementedError('Please call reset() instead of _reset().') @property def raw_env(self): # Recursively unwrap until we reach the true 'raw' env. wrapped = self._env if hasattr(wrapped, 'raw_env'): return wrapped.raw_env return wrapped def bsuite_info(self) -> Dict[str, Any]: return self._env.bsuite_info() def __getattr__(self, attr): """Delegate attribute access to underlying environment.""" return getattr(self._env, attr)
StarcoderdataPython
3321148
# ##################################################################################################################### # Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved. # # # # Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance # # with the License. A copy of the License is located at # # # # http://www.apache.org/licenses/LICENSE-2.0 # # # # or in the 'license' file accompanying this file. This file is distributed on an 'AS IS' BASIS, WITHOUT WARRANTIES # # OR CONDITIONS OF ANY KIND, express or implied. See the License for the specific language governing permissions # # and limitations under the License. # # ##################################################################################################################### from aws_cdk import ( aws_s3 as s3, core, ) from lib.blueprints.byom.pipeline_definitions.deploy_actions import ( create_baseline_job_lambda, sagemaker_layer, create_invoke_lambda_custom_resource, ) from lib.blueprints.byom.pipeline_definitions.templates_parameters import ( ParameteresFactory as pf, ConditionsFactory as cf, ) from lib.blueprints.byom.pipeline_definitions.sagemaker_monitor_role import create_sagemaker_monitor_role from lib.blueprints.byom.pipeline_definitions.sagemaker_model_monitor_construct import SageMakerModelMonitor class ModelMonitorStack(core.Stack): def __init__(self, scope: core.Construct, id: str, monitoring_type: str, **kwargs) -> None: super().__init__(scope, id, **kwargs) # validate the provided monitoring_type if monitoring_type not in ["DataQuality", "ModelQuality"]: raise ValueError( ( f"The {monitoring_type} is not valid. Currently supported Monitoring Types are: " f"['DataQuality'|'ModelQuality']" ) ) # Baseline/Monitor attributes, this will be updated based on the monitoring_type self.baseline_attributes = dict() self.monitor_attributes = dict() # Parameteres # blueprint_bucket_name = pf.create_blueprint_bucket_name_parameter(self) assets_bucket_name = pf.create_assets_bucket_name_parameter(self) endpoint_name = pf.create_endpoint_name_parameter(self) baseline_job_output_location = pf.create_baseline_job_output_location_parameter(self) baseline_data = pf.create_baseline_data_parameter(self) instance_type = pf.create_instance_type_parameter(self) instance_count = pf.create_instance_count_parameter(self) instance_volume_size = pf.create_instance_volume_size_parameter(self) baseline_max_runtime_seconds = pf.create_baseline_max_runtime_seconds_parameter(self) monitor_max_runtime_seconds = pf.create_monitor_max_runtime_seconds_parameter(self, "ModelQuality") kms_key_arn = pf.create_kms_key_arn_parameter(self) baseline_job_name = pf.create_baseline_job_name_parameter(self) monitoring_schedule_name = pf.create_monitoring_schedule_name_parameter(self) data_capture_bucket = pf.create_data_capture_bucket_name_parameter(self) baseline_output_bucket = pf.create_baseline_output_bucket_name_parameter(self) data_capture_s3_location = pf.create_data_capture_location_parameter(self) monitoring_output_location = pf.create_monitoring_output_location_parameter(self) schedule_expression = pf.create_schedule_expression_parameter(self) image_uri = pf.create_algorithm_image_uri_parameter(self) # add ModelQuality specific parameters/conditions, and update self.baseline_attributes/self.monitor_attributes if monitoring_type == "ModelQuality": self._add_model_quality_resources() # conditions kms_key_arn_provided = cf.create_kms_key_arn_provided_condition(self, kms_key_arn) # Resources # assets_bucket = s3.Bucket.from_bucket_name(self, "ImportedAssetsBucket", assets_bucket_name.value_as_string) # getting blueprint bucket object from its name - will be used later in the stack blueprint_bucket = s3.Bucket.from_bucket_name( self, "ImportedBlueprintBucket", blueprint_bucket_name.value_as_string ) # create sagemaker layer sm_layer = sagemaker_layer(self, blueprint_bucket) # update Baseline attributes self.baseline_attributes.update( dict( monitoring_type=monitoring_type, baseline_job_name=baseline_job_name.value_as_string, baseline_data_location=baseline_data.value_as_string, baseline_job_output_location=baseline_job_output_location.value_as_string, endpoint_name=endpoint_name.value_as_string, instance_type=instance_type.value_as_string, instance_volume_size=instance_volume_size.value_as_string, max_runtime_seconds=baseline_max_runtime_seconds.value_as_string, kms_key_arn=core.Fn.condition_if( kms_key_arn_provided.logical_id, kms_key_arn.value_as_string, core.Aws.NO_VALUE ).to_string(), kms_key_arn_provided_condition=kms_key_arn_provided, stack_name=core.Aws.STACK_NAME, ) ) # create baseline job lambda action baseline_job_lambda = create_baseline_job_lambda( self, blueprint_bucket=blueprint_bucket, assets_bucket=assets_bucket, sm_layer=sm_layer, **self.baseline_attributes, ) # create custom resource to invoke the baseline job lambda # remove the condition from the custom resource properties. Otherwise, CFN will give an error del self.baseline_attributes["kms_key_arn_provided_condition"] invoke_lambda_custom_resource = create_invoke_lambda_custom_resource( scope=self, id="InvokeBaselineLambda", lambda_function_arn=baseline_job_lambda.function_arn, lambda_function_name=baseline_job_lambda.function_name, blueprint_bucket=blueprint_bucket, # add baseline attributes to the invoke lambda custom resource, so any change to these attributes # (via template update) will re-invoke the baseline lambda and re-calculate the baseline custom_resource_properties={ "Resource": "InvokeLambda", "function_name": baseline_job_lambda.function_name, "assets_bucket_name": assets_bucket_name.value_as_string, **self.baseline_attributes, }, ) # add dependency on baseline lambda invoke_lambda_custom_resource.node.add_dependency(baseline_job_lambda) # creating monitoring schedule sagemaker_role = create_sagemaker_monitor_role( scope=self, id="MLOpsSagemakerMonitorRole", kms_key_arn=kms_key_arn.value_as_string, assets_bucket_name=assets_bucket_name.value_as_string, data_capture_bucket=data_capture_bucket.value_as_string, data_capture_s3_location=data_capture_s3_location.value_as_string, baseline_output_bucket=baseline_output_bucket.value_as_string, baseline_job_output_location=baseline_job_output_location.value_as_string, output_s3_location=monitoring_output_location.value_as_string, kms_key_arn_provided_condition=kms_key_arn_provided, baseline_job_name=baseline_job_name.value_as_string, monitoring_schedule_name=monitoring_schedule_name.value_as_string, endpoint_name=endpoint_name.value_as_string, model_monitor_ground_truth_input=None if monitoring_type == "DataQuality" else self.monitor_attributes["ground_truth_s3_uri"], ) # resource tags resource_tags = [{"key": "stack-name", "value": core.Aws.STACK_NAME}] # update attributes self.monitor_attributes.update( dict( monitoring_schedule_name=monitoring_schedule_name.value_as_string, endpoint_name=endpoint_name.value_as_string, baseline_job_name=baseline_job_name.value_as_string, baseline_job_output_location=baseline_job_output_location.value_as_string, schedule_expression=schedule_expression.value_as_string, monitoring_output_location=monitoring_output_location.value_as_string, instance_type=instance_type.value_as_string, instance_count=instance_count.value_as_string, instance_volume_size=instance_volume_size.value_as_string, max_runtime_seconds=monitor_max_runtime_seconds.value_as_string, kms_key_arn=core.Fn.condition_if( kms_key_arn_provided.logical_id, kms_key_arn.value_as_string, core.Aws.NO_VALUE ).to_string(), role_arn=sagemaker_role.role_arn, image_uri=image_uri.value_as_string, monitoring_type=monitoring_type, tags=resource_tags, ) ) # create Sagemaker monitoring Schedule sagemaker_monitor = SageMakerModelMonitor(self, f"{monitoring_type}Monitor", **self.monitor_attributes) # add job definition dependency on sagemaker role and invoke_lambda_custom_resource (so, the baseline job is created) sagemaker_monitor.job_definition.node.add_dependency(sagemaker_role) sagemaker_monitor.job_definition.node.add_dependency(invoke_lambda_custom_resource) # Outputs # core.CfnOutput( self, id="BaselineName", value=baseline_job_name.value_as_string, ) core.CfnOutput( self, id="MonitoringScheduleJobName", value=monitoring_schedule_name.value_as_string, ) core.CfnOutput( self, id="MonitoringScheduleType", value=monitoring_type, ) core.CfnOutput( self, id="BaselineJobOutput", value=f"https://s3.console.aws.amazon.com/s3/buckets/{baseline_job_output_location.value_as_string}/", ) core.CfnOutput( self, id="MonitoringScheduleOutput", value=( f"https://s3.console.aws.amazon.com/s3/buckets/{monitoring_output_location.value_as_string}/" f"{endpoint_name.value_as_string}/{monitoring_schedule_name.value_as_string}/" ), ) core.CfnOutput( self, id="MonitoredSagemakerEndpoint", value=endpoint_name.value_as_string, ) core.CfnOutput( self, id="DataCaptureS3Location", value=( f"https://s3.console.aws.amazon.com/s3/buckets/{data_capture_s3_location.value_as_string}" f"/{endpoint_name.value_as_string}/" ), ) def _add_model_quality_resources(self): """ Adds ModelQuality specific parameters/conditions and updates self.baseline_attributes/self.monitor_attributes """ # add baseline job attributes (they are different from Monitor attributes) baseline_inference_attribute = pf.create_inference_attribute_parameter(self, "Baseline") baseline_probability_attribute = pf.create_probability_attribute_parameter(self, "Baseline") ground_truth_attribute = pf.create_ground_truth_attribute_parameter(self) # add monitor attributes monitor_inference_attribute = pf.create_inference_attribute_parameter(self, "Monitor") monitor_probability_attribute = pf.create_probability_attribute_parameter(self, "Monitor") ground_truth_s3_uri = pf.create_ground_truth_s3_uri_parameter(self) # problem_type and probability_threshold_attribute are the same for both problem_type = pf.create_problem_type_parameter(self) probability_threshold_attribute = pf.create_probability_threshold_attribute_parameter(self) # add conditions (used by monitor) is_regression_or_multiclass_classification_problem = ( cf.create_problem_type_regression_or_multiclass_classification_condition(self, problem_type) ) is_binary_classification_problem = cf.create_problem_type_binary_classification_condition(self, problem_type) # add ModelQuality Baseline attributes self.baseline_attributes.update( dict( problem_type=problem_type.value_as_string, ground_truth_attribute=ground_truth_attribute.value_as_string, inference_attribute=baseline_inference_attribute.value_as_string, probability_attribute=baseline_probability_attribute.value_as_string, probability_threshold_attribute=probability_threshold_attribute.value_as_string, ) ) # add ModelQuality Monitor attributes self.monitor_attributes.update( dict( problem_type=problem_type.value_as_string, ground_truth_s3_uri=ground_truth_s3_uri.value_as_string, # inference_attribute is required for Regression/Multiclass Classification problems # probability_attribute/probability_threshold_attribute are not used inference_attribute=core.Fn.condition_if( is_regression_or_multiclass_classification_problem.logical_id, monitor_inference_attribute.value_as_string, core.Aws.NO_VALUE, ).to_string(), # for a Binary Classification problem, we use probability_attribute and probability_threshold_attribute. # note: probability_attribute is the index of the predicted probability in the captured data by the # SageMaker endpoint. Tepically, probability_attribute="0" and probability_threshold_attribute="0.5" probability_attribute=core.Fn.condition_if( is_binary_classification_problem.logical_id, monitor_probability_attribute.value_as_string, core.Aws.NO_VALUE, ).to_string(), probability_threshold_attribute=core.Fn.condition_if( is_binary_classification_problem.logical_id, probability_threshold_attribute.value_as_string, core.Aws.NO_VALUE, ).to_string(), ) )
StarcoderdataPython
372199
from django.conf.urls import include, url from . import views urlpatterns = [ url(r'^$', views.recipesView), ]
StarcoderdataPython
1614529
<filename>tests/seq2seq_model_tests.py #!/usr/bin/env python3 # Copyright (c) Facebook, Inc. and its affiliates. All Rights Reservedimport unittest import unittest import torch from pytext.common.constants import Stage from pytext.data import Batcher from pytext.data.data import Data from pytext.data.sources.data_source import Gazetteer from pytext.data.sources.tsv import TSVDataSource from pytext.data.tensorizers import ( ByteTokenTensorizer, GazetteerTensorizer, TokenTensorizer, initialize_tensorizers, ) from pytext.models.embeddings import ( ContextualTokenEmbedding, DictEmbedding, WordEmbedding, ) from pytext.models.seq_models.rnn_encoder import LSTMSequenceEncoder from pytext.models.seq_models.rnn_encoder_decoder import RNNModel from pytext.models.seq_models.seq2seq_model import Seq2SeqModel # @dep //pytext/utils:utils_lib from pytext.utils.test import import_tests_module tests_module = import_tests_module() TEST_FILE_NAME = tests_module.test_file("seq2seq_model_unit.tsv") def get_tensorizers(add_dict_feat=False, add_contextual_feat=False): schema = {"source_sequence": str, "dict_feat": Gazetteer, "target_sequence": str} data_source = TSVDataSource.from_config( TSVDataSource.Config( train_filename=TEST_FILE_NAME, field_names=["source_sequence", "dict_feat", "target_sequence"], ), schema, ) src_tensorizer = TokenTensorizer.from_config( TokenTensorizer.Config( column="source_sequence", add_eos_token=True, add_bos_token=True ) ) tgt_tensorizer = TokenTensorizer.from_config( TokenTensorizer.Config( column="target_sequence", add_eos_token=True, add_bos_token=True ) ) tensorizers = {"src_seq_tokens": src_tensorizer, "trg_seq_tokens": tgt_tensorizer} initialize_tensorizers(tensorizers, data_source.train) if add_dict_feat: tensorizers["dict_feat"] = GazetteerTensorizer.from_config( GazetteerTensorizer.Config( text_column="source_sequence", dict_column="dict_feat" ) ) initialize_tensorizers( {"dict_feat": tensorizers["dict_feat"]}, data_source.train ) if add_contextual_feat: tensorizers["contextual_token_embedding"] = ByteTokenTensorizer.from_config( ByteTokenTensorizer.Config(column="source_sequence") ) initialize_tensorizers( {"contextual_token_embedding": tensorizers["contextual_token_embedding"]}, data_source.train, ) return tensorizers # Smoke tests that call torchscriptify and execute the model for all the cases. # This should at least make sure we're testing end to end. class Seq2SeqModelExportTests(unittest.TestCase): def test_tokens(self): model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), ), get_tensorizers(), ) model.eval() ts_model = model.torchscriptify() res = ts_model(["call", "mom"]) assert res is not None def test_tokens_contextual(self): model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), inputs=Seq2SeqModel.Config.ModelInput( contextual_token_embedding=ByteTokenTensorizer.Config() ), contextual_token_embedding=ContextualTokenEmbedding.Config(embed_dim=7), encoder_decoder=RNNModel.Config( encoder=LSTMSequenceEncoder.Config(embed_dim=519) ), ), get_tensorizers(add_contextual_feat=True), ) model.eval() ts_model = model.torchscriptify() res = ts_model(["call", "mom"], contextual_token_embedding=[0.42] * (7 * 2)) assert res is not None def test_tokens_dictfeat(self): model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), inputs=Seq2SeqModel.Config.ModelInput( dict_feat=GazetteerTensorizer.Config(text_column="source_sequence") ), encoder_decoder=RNNModel.Config( encoder=LSTMSequenceEncoder.Config(embed_dim=612) ), dict_embedding=DictEmbedding.Config(), ), get_tensorizers(add_dict_feat=True), ) model.eval() ts_model = model.torchscriptify() res = ts_model(["call", "mom"], (["call", "mom"], [0.42, 0.17], [4, 3])) assert res is not None def test_tokens_dictfeat_contextual(self): model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), inputs=Seq2SeqModel.Config.ModelInput( dict_feat=GazetteerTensorizer.Config(text_column="source_sequence"), contextual_token_embedding=ByteTokenTensorizer.Config(), ), encoder_decoder=RNNModel.Config( encoder=LSTMSequenceEncoder.Config(embed_dim=619) ), dict_embedding=DictEmbedding.Config(), contextual_token_embedding=ContextualTokenEmbedding.Config(embed_dim=7), ), get_tensorizers(add_dict_feat=True, add_contextual_feat=True), ) model.eval() ts_model = model.torchscriptify() res = ts_model( ["call", "mom"], (["call", "mom"], [0.42, 0.17], [4, 3]), [0.42] * (7 * 2) ) assert res is not None # Seq2SeqModel has restrictions on what can happen during evaluation, since # sequence generation has the opportunity to affect the underlying model. class Seq2SeqModelEvalTests(unittest.TestCase): def test_force_predictions_on_eval(self): tensorizers = get_tensorizers() model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), ), tensorizers, ) # Get sample inputs using a data source. schema = { "source_sequence": str, "dict_feat": Gazetteer, "target_sequence": str, } data = Data.from_config( Data.Config( source=TSVDataSource.Config( train_filename=TEST_FILE_NAME, field_names=["source_sequence", "dict_feat", "target_sequence"], ) ), schema, tensorizers, ) data.batcher = Batcher(1, 1, 1) raw_batch, batch = next(iter(data.batches(Stage.TRAIN, load_early=True))) inputs = model.arrange_model_inputs(batch) # Verify that model does not run sequence generation on prediction. outputs = model(*inputs) pred = model.get_pred(outputs, {"stage": Stage.EVAL}) self.assertEqual(pred, (None, None)) # Verify that attempting to set force_eval_predictions is correctly # accounted for. model.force_eval_predictions = True with self.assertRaises(AssertionError): _ = model.get_pred(outputs, {"stage": Stage.EVAL}) def test_reset_incremental_states(self): """ This test might seem trivial. However, interacting with the scripted sequence generator crosses the Torchscript boundary, which can lead to weird behavior. If the incremental states don't get properly reset, the model will produce garbage _after_ the first call, which is a pain to debug when you only catch it after training. """ tensorizers = get_tensorizers() # Avoid numeric issues with quantization by setting a known seed. torch.manual_seed(42) model = Seq2SeqModel.from_config( Seq2SeqModel.Config( source_embedding=WordEmbedding.Config(embed_dim=512), target_embedding=WordEmbedding.Config(embed_dim=512), ), tensorizers, ) # Get sample inputs using a data source. schema = { "source_sequence": str, "dict_feat": Gazetteer, "target_sequence": str, } data = Data.from_config( Data.Config( source=TSVDataSource.Config( train_filename=TEST_FILE_NAME, field_names=["source_sequence", "dict_feat", "target_sequence"], ) ), schema, tensorizers, ) data.batcher = Batcher(1, 1, 1) raw_batch, batch = next(iter(data.batches(Stage.TRAIN, load_early=True))) inputs = model.arrange_model_inputs(batch) model.eval() outputs = model(*inputs) pred, scores = model.get_pred(outputs, {"stage": Stage.TEST}) # Verify that the incremental states reset correctly. decoder = model.sequence_generator.beam_search.decoder_ens decoder.reset_incremental_states() self.assertDictEqual(decoder.incremental_states, {"0": {}}) # Verify that the model returns the same predictions. new_pred, new_scores = model.get_pred(outputs, {"stage": Stage.TEST}) self.assertEqual(new_scores, scores)
StarcoderdataPython
3220550
#!/usr/bin/env python # # Copyright 2009, Google Inc. # All rights reserved. # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are # met: # # * Redistributions of source code must retain the above copyright # notice, this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above # copyright notice, this list of conditions and the following disclaimer # in the documentation and/or other materials provided with the # distribution. # * Neither the name of Google Inc. nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS # "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT # LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR # A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT # OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, # SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT # LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, # DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY # THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT # (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. """fuse_gmock_files.py v0.1.0 Fuses Google Mock and Google Test source code into two .h files and a .cc file. SYNOPSIS fuse_gmock_files.py [GMOCK_ROOT_DIR] OUTPUT_DIR Scans GMOCK_ROOT_DIR for Google Mock and Google Test source code, assuming Google Test is in the GMOCK_ROOT_DIR/gtest sub-directory, and generates three files: OUTPUT_DIR/gtest/gtest.h, OUTPUT_DIR/gmock/gmock.h, and OUTPUT_DIR/gmock-gtest-all.cc. Then you can build your tests by adding OUTPUT_DIR to the include search path and linking with OUTPUT_DIR/gmock-gtest-all.cc. These three files contain everything you need to use Google Mock. Hence you can "install" Google Mock by copying them to wherever you want. GMOCK_ROOT_DIR can be omitted and defaults to the parent directory of the directory holding this script. EXAMPLES ./fuse_gmock_files.py fused_gmock ./fuse_gmock_files.py path/to/unpacked/gmock fused_gmock This tool is experimental. In particular, it assumes that there is no conditional inclusion of Google Mock or Google Test headers. Please report any problems to <EMAIL>. You can read http://code.google.com/p/googlemock/wiki/CookBook for more information. """ __author__ = '<EMAIL> (<NAME>)' import os import re import sets import sys # We assume that this file is in the scripts/ directory in the Google # Mock root directory. DEFAULT_GMOCK_ROOT_DIR = os.path.join(os.path.dirname(__file__), '..') # We need to call into gtest/scripts/fuse_gtest_files.py. sys.path.append(os.path.join(DEFAULT_GMOCK_ROOT_DIR, 'gtest/scripts')) import fuse_gtest_files gtest = fuse_gtest_files # Regex for matching '#include "gmock/..."'. INCLUDE_GMOCK_FILE_REGEX = re.compile(r'^\s*#\s*include\s*"(gmock/.+)"') # Where to find the source seed files. GMOCK_H_SEED = 'include/gmock/gmock.h' GMOCK_ALL_CC_SEED = 'src/gmock-all.cc' # Where to put the generated files. GTEST_H_OUTPUT = 'gtest/gtest.h' GMOCK_H_OUTPUT = 'gmock/gmock.h' GMOCK_GTEST_ALL_CC_OUTPUT = 'gmock-gtest-all.cc' def GetGTestRootDir(gmock_root): """Returns the root directory of Google Test.""" return os.path.join(gmock_root, 'gtest') def ValidateGMockRootDir(gmock_root): """Makes sure gmock_root points to a valid gmock root directory. The function aborts the program on failure. """ gtest.ValidateGTestRootDir(GetGTestRootDir(gmock_root)) gtest.VerifyFileExists(gmock_root, GMOCK_H_SEED) gtest.VerifyFileExists(gmock_root, GMOCK_ALL_CC_SEED) def ValidateOutputDir(output_dir): """Makes sure output_dir points to a valid output directory. The function aborts the program on failure. """ gtest.VerifyOutputFile(output_dir, gtest.GTEST_H_OUTPUT) gtest.VerifyOutputFile(output_dir, GMOCK_H_OUTPUT) gtest.VerifyOutputFile(output_dir, GMOCK_GTEST_ALL_CC_OUTPUT) def FuseGMockH(gmock_root, output_dir): """Scans folder gmock_root to generate gmock/gmock.h in output_dir.""" output_file = file(os.path.join(output_dir, GMOCK_H_OUTPUT), 'w') processed_files = sets.Set() # Holds all gmock headers we've processed. def ProcessFile(gmock_header_path): """Processes the given gmock header file.""" # We don't process the same header twice. if gmock_header_path in processed_files: return processed_files.add(gmock_header_path) # Reads each line in the given gmock header. for line in file(os.path.join(gmock_root, gmock_header_path), 'r'): m = INCLUDE_GMOCK_FILE_REGEX.match(line) if m: # It's '#include "gmock/..."' - let's process it recursively. ProcessFile('include/' + m.group(1)) else: m = gtest.INCLUDE_GTEST_FILE_REGEX.match(line) if m: # It's '#include "gtest/foo.h"'. We translate it to # "gtest/gtest.h", regardless of what foo is, since all # gtest headers are fused into gtest/gtest.h. # There is no need to #include gtest.h twice. if not gtest.GTEST_H_SEED in processed_files: processed_files.add(gtest.GTEST_H_SEED) output_file.write('#include "%s"\n' % (gtest.GTEST_H_OUTPUT,)) else: # Otherwise we copy the line unchanged to the output file. output_file.write(line) ProcessFile(GMOCK_H_SEED) output_file.close() def FuseGMockAllCcToFile(gmock_root, output_file): """Scans folder gmock_root to fuse gmock-all.cc into output_file.""" processed_files = sets.Set() def ProcessFile(gmock_source_file): """Processes the given gmock source file.""" # We don't process the same #included file twice. if gmock_source_file in processed_files: return processed_files.add(gmock_source_file) # Reads each line in the given gmock source file. for line in file(os.path.join(gmock_root, gmock_source_file), 'r'): m = INCLUDE_GMOCK_FILE_REGEX.match(line) if m: # It's '#include "gmock/foo.h"'. We treat it as '#include # "gmock/gmock.h"', as all other gmock headers are being fused # into gmock.h and cannot be #included directly. # There is no need to #include "gmock/gmock.h" more than once. if not GMOCK_H_SEED in processed_files: processed_files.add(GMOCK_H_SEED) output_file.write('#include "%s"\n' % (GMOCK_H_OUTPUT,)) else: m = gtest.INCLUDE_GTEST_FILE_REGEX.match(line) if m: # It's '#include "gtest/..."'. # There is no need to #include gtest.h as it has been # #included by gtest-all.cc. pass else: m = gtest.INCLUDE_SRC_FILE_REGEX.match(line) if m: # It's '#include "src/foo"' - let's process it recursively. ProcessFile(m.group(1)) else: # Otherwise we copy the line unchanged to the output file. output_file.write(line) ProcessFile(GMOCK_ALL_CC_SEED) def FuseGMockGTestAllCc(gmock_root, output_dir): """Scans folder gmock_root to generate gmock-gtest-all.cc in output_dir.""" output_file = file(os.path.join(output_dir, GMOCK_GTEST_ALL_CC_OUTPUT), 'w') # First, fuse gtest-all.cc into gmock-gtest-all.cc. gtest.FuseGTestAllCcToFile(GetGTestRootDir(gmock_root), output_file) # Next, append fused gmock-all.cc to gmock-gtest-all.cc. FuseGMockAllCcToFile(gmock_root, output_file) output_file.close() def FuseGMock(gmock_root, output_dir): """Fuses gtest.h, gmock.h, and gmock-gtest-all.h.""" ValidateGMockRootDir(gmock_root) ValidateOutputDir(output_dir) gtest.FuseGTestH(GetGTestRootDir(gmock_root), output_dir) FuseGMockH(gmock_root, output_dir) FuseGMockGTestAllCc(gmock_root, output_dir) def main(): argc = len(sys.argv) if argc == 2: # fuse_gmock_files.py OUTPUT_DIR FuseGMock(DEFAULT_GMOCK_ROOT_DIR, sys.argv[1]) elif argc == 3: # fuse_gmock_files.py GMOCK_ROOT_DIR OUTPUT_DIR FuseGMock(sys.argv[1], sys.argv[2]) else: print __doc__ sys.exit(1) if __name__ == '__main__': main()
StarcoderdataPython
1751271
<reponame>taushifkhan/plv-DecoySearch<filename>cs_modules/pdbHearParser.py #!/usr/bin/python helpDoc = """ PDB header parser. get formatted information from a PDB file of annotation related to a PDB Id. """ import urllib import os class pdbHeader(): def __init__(self,pdbHeader): self.header={'HEADER':'','TITLE':'','COMPND':'','SOURCE':'','EXPDTA':'','NUMMDL':''} self.headInfo = pdbHeader def _decompose_cmpd__(self,compnd): molIds = compnd.split("MOL_ID") cmpndDict = {} for m in range(1,len(molIds),2): mids = molIds[m].split(";") mol = mids[0].split(":")[-1].strip() cmpndDict[mol] = {} for k in mids[1:]: kmol = k.split(":") cmpndDict[mol][kmol[0].strip()] = kmol[1].strip() return cmpndDict def getData(self): for l in self.headInfo: nameId = l[:6].strip() if nameId in self.header.keys(): self.header[nameId] += l[10:80].strip() else: pass cmpndDict = self._decompose_cmpd__(self.header['COMPND']) sourceDict = self._decompose_cmpd__(self.header['SOURCE']) if cmpndDict.keys(): self.header['COMPND'] = {} self.header['COMPND'] = cmpndDict self.header['SOURCE'] = {} self.header['SOURCE'] = sourceDict headerTitle = self.header['HEADER'][:40].strip().lower() headPdbId = self.header['HEADER'][52:56] self.header['HEADER'] = {'Name':headerTitle,'Id':headPdbId} return self.header def getPDBheaderFile(pid): """ @param: pid -> 4 letter pdb Id - Alpha numberic @return headerFile -> open file in an array and file path __docString__ = downloads only header information from rcsb """ cwd = os.getcwd() headFile = urllib.URLopener() urlHeader = "https://files.rcsb.org/header/%s.pdb"%(pid.upper()) headsave = cwd+'/%s_header.pdb'%pid try: headFile.retrieve(urlHeader, headsave) headRead = open(headsave,'r').readlines() print "Header file:", headsave except Exception as e: raise e return headRead def main(pdbId): headRead = getPDBheaderFile(pdbId) pH = pdbHeader(headRead) hdict = pH.getData() import ipdb; ipdb.set_trace(); if __name__ == '__main__': import sys main(sys.argv[1])
StarcoderdataPython
1975843
from splitrule import SplitRule import numpy as np import math def get_labels(ys): labels = {} for y in ys: if y in labels: labels[y] += 1 else: labels[y] = 1 return labels def split(x_sorted, j): return (x_sorted[: j + 1], x_sorted[j + 1 :]) def H(label_count, total): res = 0 if total == 0: return 0 for label in label_count: p = label_count[label] / total if p != 0: res -= p * math.log(p, 2) return res def calculate_information_gain( H_dataset, l_branch, r_branch, labels_left_count, labels_right_count, labels_left_total, labels_right_total, ): H_left = H(labels_left_count, labels_left_total) H_right = H(labels_right_count, labels_right_total) total = labels_left_total + labels_right_total remainder = H_left * (labels_left_total / total) + H_right * ( labels_right_total / total ) return H_dataset - remainder def find_split(training_dataset): y_training = training_dataset[:, -1] labels_training_count = get_labels(y_training) x_training = training_dataset[:, :-1] (N, k) = x_training.shape best_split_rule = None cur_split_rule = None best_ldataset = None best_rdataset = None max_information_gain = -1 H_dataset = H(labels_training_count, N) for i in range(k): arg_sort = np.argsort(x_training[:, i]) y_sorted = y_training[arg_sort] x_sorted = x_training[arg_sort] training_sorted = training_dataset[arg_sort] labels_left_count = {} labels_right_count = labels_training_count.copy() labels_left_total = 0 for j in range(N): sorted_column = x_sorted[:, i] if j < N - 1: if sorted_column[j] == sorted_column[j + 1]: if y_sorted[j] in labels_left_count: labels_left_count[y_sorted[j]] += 1 else: labels_left_count[y_sorted[j]] = 1 labels_left_total += 1 labels_right_count[y_sorted[j]] -= 1 continue if y_sorted[j] in labels_left_count: labels_left_count[y_sorted[j]] += 1 else: labels_left_count[y_sorted[j]] = 1 labels_left_total += 1 labels_right_count[y_sorted[j]] -= 1 cur_split_rule = SplitRule(i, sorted_column[j]) (l_dataset, r_dataset) = split(training_sorted, j) labels_right_total = N - labels_left_total info_gain = calculate_information_gain( H_dataset, l_dataset, r_dataset, labels_left_count, labels_right_count, labels_left_total, labels_right_total, ) if info_gain >= max_information_gain: max_information_gain = info_gain best_split_rule = cur_split_rule best_ldataset = l_dataset best_rdataset = r_dataset return (best_split_rule, best_ldataset, best_rdataset)
StarcoderdataPython
3391597
import sqlalchemy.types as types import json def _decode(o): # Note the "unicode" part is only for python2 if isinstance(o, str): try: return int(o) except ValueError: return o elif isinstance(o, dict): return {k: _decode(v) for k, v in o.items()} elif isinstance(o, list): return [_decode(v) for v in o] else: return o class JsonDecorator(types.TypeDecorator): impl = types.String cache_ok = True def process_bind_param(self, value, dialect): return json.dumps(value, ensure_ascii=False) def process_result_value(self, value, dialect): return json.loads( value, object_hook=lambda d: {int(k) if k.lstrip('-').isdigit() else k: v for k, v in d.items()} ) def copy(self, **kw): return JsonDecorator(self.impl.length)
StarcoderdataPython
6605536
<gh_stars>1-10 # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'Z:\wwalker\maya\python\gui\weight_tools\ui\main_window.ui' # # Created by: PyQt5 UI code generator 5.7.1 # # WARNING! All changes made in this file will be lost! from PySide2 import QtCore, QtGui, QtWidgets class Ui_MainWindow(object): def setupUi(self, MainWindow): MainWindow.setObjectName("MainWindow") MainWindow.resize(168, 228) MainWindow.setMinimumSize(QtCore.QSize(168, 228)) MainWindow.setMaximumSize(QtCore.QSize(168, 228)) self.centralwidget = QtWidgets.QWidget(MainWindow) self.centralwidget.setObjectName("centralwidget") self.weight_export = QtWidgets.QPushButton(self.centralwidget) self.weight_export.setGeometry(QtCore.QRect(10, 10, 151, 61)) self.weight_export.setObjectName("weight_export") self.weight_import = QtWidgets.QPushButton(self.centralwidget) self.weight_import.setGeometry(QtCore.QRect(10, 130, 151, 61)) self.weight_import.setObjectName("weight_import") self.batch_mode = QtWidgets.QCheckBox(self.centralwidget) self.batch_mode.setGeometry(QtCore.QRect(10, 190, 70, 17)) self.batch_mode.setObjectName("batch_mode") self.bind_from_file = QtWidgets.QPushButton(self.centralwidget) self.bind_from_file.setGeometry(QtCore.QRect(10, 70, 151, 61)) self.bind_from_file.setObjectName("bind_from_file") MainWindow.setCentralWidget(self.centralwidget) self.statusbar = QtWidgets.QStatusBar(MainWindow) self.statusbar.setObjectName("statusbar") MainWindow.setStatusBar(self.statusbar) self.retranslateUi(MainWindow) QtCore.QMetaObject.connectSlotsByName(MainWindow) def retranslateUi(self, MainWindow): _translate = QtCore.QCoreApplication.translate MainWindow.setWindowTitle(_translate("MainWindow", "MainWindow")) self.weight_export.setText(_translate("MainWindow", "Export")) self.weight_import.setText(_translate("MainWindow", "Import")) self.batch_mode.setText(_translate("MainWindow", "Batch")) self.bind_from_file.setText(_translate("MainWindow", "Bind From File")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) MainWindow = QtWidgets.QMainWindow() ui = Ui_MainWindow() ui.setupUi(MainWindow) MainWindow.show() sys.exit(app.exec_())
StarcoderdataPython
1698694
class Solution: def addBoldTag(self, s: str, words: List[str]) -> str: tag = [False] * len(s) tag = [False] * len(s) for w in words: i = s.find(w) while i != -1: for k in range(i, i + len(w)): tag[k] = True i = s.find(w, i + 1) res = '' i = 0 while i < len(s): if not tag[i]: res += s[i] i += 1 continue res += '<b>' while i < len(s) and tag[i]: res += s[i] i += 1 res += '</b>' return res
StarcoderdataPython
11393377
import pygame import time from engine.keycodes import KeyCodes app = None # EXPORT class Application(object): def __init__(self, res=(640, 480), scale=1.0): global app app = self self.res = res self.screen = pygame.display.set_mode(res) self.fps = 30 self.keys = [] self.last_ts = time.time() def calc_dt(self): cur = time.time() dt = cur - self.last_ts # print("dt={}".format(dt)) self.last_ts = cur self.fps = 0.9 * self.fps + 0.1 / dt return dt @staticmethod def flip(): pygame.display.flip() def clear(self, color=(192, 128, 255)): pass def onKey(self, key): pass def onClick(self, pos): pass def handleEvents(self): for event in pygame.event.get(): if event.type == pygame.QUIT: return False self.keys = pygame.key.get_pressed() return True def loop(self, dt): pass def run(self): while self.handleEvents(): if not self.loop(self.calc_dt()): break self.flip() # EXPORT def get_screen_size(): return app.res # EXPORT def get_screen(): return app.screen # EXPORT def key_down(key_name): if key_name not in KeyCodes: return False code = KeyCodes.get(key_name) return app.keys[code]
StarcoderdataPython
12803732
<reponame>roboDocs/RoboChrome from base64 import b64encode from xml.sax.saxutils import escape from .command import moveto, lineto, quadto, curveto, closepath from .misc import dump from .text import placedtext, placedoutlines import re def parsepath(data): tokens = re.compile(br'|'.join(( br'([+-]?(?:\d*\.\d+|\d+\.?)(?:[eE][+-]?\d+)?)', # number br'([Mm])', # moveto br'([Zz])', # closepath br'([Ll])', # lineto br'([Hh])', # horizontal lineto br'([Vv])', # vertical lineto br'([Cc])', # curveto br'([Ss])', # smooth curveto br'([Qq])', # quadto br'([Tt])', # smooth quadto br'([Aa])'))) # elliptical arc counts = 0, 0, 2, 0, 2, 1, 1, 6, 4, 4, 2, 7 result, arguments = [], [] mx, my = px, py = 0.0, 0.0 previous = None m = tokens.search(data) if not m or m.lastindex != 2: # moveto raise ValueError('Invalid path.') while m: index = m.lastindex count = counts[index] relative = m.group(index).islower() while True: for i in range(count - len(arguments)): m = tokens.search(data, m.end()) if not m or m.lastindex != 1: # number raise ValueError('Invalid argument.') arguments.append(float(m.group(1))) if index == 2: # moveto x, y = arguments if relative: x += px; y += py mx, my = px, py = x, y previous = moveto(x, y) index = 4 elif index == 3: # closepath px, py = mx, my previous = closepath elif index == 4: # lineto x, y = arguments if relative: x += px; y += py px, py = x, y previous = lineto(x, y) elif index == 5: # horizontal lineto x, = arguments if relative: x += px px = x previous = lineto(x, py) elif index == 6: # vertical lineto y, = arguments if relative: y += py py = y previous = lineto(px, y) elif index == 7: # curveto x1, y1, x2, y2, x, y = arguments if relative: x1 += px; y1 += py; x2 += px; y2 += py; x += px; y += py px, py = x, y previous = curveto(x1, y1, x2, y2, x, y) elif index == 8: # smooth curveto if type(previous) == curveto: x1, y1 = px + px - previous.x2, py + py - previous.y2 else: x1, y1 = px, py x2, y2, x, y = arguments if relative: x2 += px; y2 += py; x += px; y += py px, py = x, y previous = curveto(x1, y1, x2, y2, x, y) elif index == 9: # quadto x1, y1, x, y = arguments if relative: x1 += px; y1 += py; x += px; y += py px, py = x, y previous = quadto(x1, y1, x, y) elif index == 10: # smooth quadto if type(previous) == quadto: x1, y1 = px + px - previous.x1, py + py - previous.y1 else: x1, y1 = px, py x, y = arguments if relative: x += px; y += py px, py = x, y previous = quadto(x1, y1, x, y) else: # elliptical arc raise NotImplementedError result.append(previous) arguments.clear() m = tokens.search(data, m.end()) if not m or m.lastindex != 1: # number break arguments.append(float(m.group(1))) return result def serialize(page, compress): fonts = {} for item in page.items: if isinstance(item, placedtext): if not isinstance(item, placedoutlines): for height, run in item.layout.runs(): for style, string in run: name = style.font.name data = style.font.source.readable.data if name not in fonts: fonts[name] = ( b'@font-face {\n' b' font-family: "%s";\n' b' src: url("data:font/sfnt;base64,%s");\n' b'}') % (name, b64encode(data)) if fonts: defs = ( b'<defs>\n' b'<style>\n' b'%s\n' b'</style>\n' b'</defs>\n') % b'\n'.join(fonts.values()) else: defs = b'' return ( b'<?xml version="1.0" encoding="UTF-8"?>\n' b'<!-- Flat -->\n' b'<svg version="1.1" ' b'xmlns="http://www.w3.org/2000/svg" ' b'xmlns:xlink="http://www.w3.org/1999/xlink" ' b'width="%spt" height="%spt">\n' b'<title>%s</title>\n' b'%s%s\n' b'</svg>') % ( dump(page.width), dump(page.height), escape(page.title).encode('utf-8'), defs, b'\n'.join(item.svg() for item in page.items))
StarcoderdataPython
3352877
from pyramid.view import view_config from pyramid.renderers import render from pyramid.response import Response from pyramid.exceptions import NotFound from pyramid.httpexceptions import HTTPBadRequest, HTTPNotFound from datetime import datetime import calendar import pymongo import logging log = logging.getLogger(__name__) ignore_keys = ( '_id', 'file_id', 'goes_file_id', 'diagnostic_id', 'timestamp', 'prefix' ) def find_station_fields(request, station): fields = {} env_key_col_name = station['collection'] + '.env.keys' for r in request.db[env_key_col_name].find(): key = r['_id'] if key not in ignore_keys: key_record = {} key_record['uri'] = key key_part = key.split('-') key_record['name'] = key_part[0].replace('_', ' ') if len(key_part) > 1: key_record['units'] = key_part[1].replace('_', ' ') else: key_record['units'] = None fields[key] = key_record return fields def find_station_field(request, station, field_uri): fields = find_station_fields(request, station) if field_uri in fields: return fields[field_uri] else: return None @view_config(route_name="crow_layers", request_method="GET", renderer="jsonp") def crow_layers_get(request): retVal = { 'url': request.host } retVal['provider'] = { 'name': 'Coastal Ocean Monitoring and Prediction System', 'short_name': 'COMPS', 'url': 'http://comps.marine.usf.edu', 'PIs': ['<NAME>'], 'institution': { 'name': 'University of South Florida College of Marine Science', 'url': 'http://marine.usf.edu/' }, 'group': { 'name': 'Ocean Circulation Group', 'url': 'http://ocg.marine.usf.edu/' } } layers = {} for station in request.db['stations'].find({}, {'_id': 0}): station['time_dependent'] = 'end' # Fill in field records station['fields'] = find_station_fields(request, station) layers[station['uri']] = station retVal['layers'] = layers return retVal def verify_station(request, station_uri): station_collection = request.db['stations'] station = station_collection.find_one({'uri': station_uri}) return station @view_config(route_name="crow_environment_json", renderer="jsonp") def environmental_data(request): try: station_url = request.GET['layer_uri'] field_uri = request.GET['field_uri'] start = datetime.fromtimestamp(float(request.GET['start'])) end = datetime.fromtimestamp(float(request.GET['end'])) except KeyError, ex: raise HTTPBadRequest('Missing %s GET parameter' % ex) station = verify_station(request, station_url) if station is None: raise NotFound('No station found with URI "%s"' % station_url) field = find_station_field(request, station, field_uri) if field is None: raise NotFound( 'Field %s not found for stations %s' % (field_uri, station_url) ) col_name = '%s.env' % station['collection'] collection = request.db[col_name] data = [] query = collection.find( {'timestamp': {'$gte': start, '$lte': end}, field_uri: {'$exists': 1}}, {'timestamp': 1, field_uri: 1} ).sort('timestamp', pymongo.ASCENDING) for doc in query: unix_timestamp = ( calendar.timegm(doc['timestamp'].utctimetuple()) ) data.append( [unix_timestamp, doc[field_uri]] ) return { 'station_uri': station['uri'], 'field': field, 'start': start.isoformat(), 'end': end.isoformat(), 'data': data } def get_latest_readings(request, station): col_name = '%s.env.latest' % station['collection'] data = request.db[col_name].find_one({}) if data is not None: for key in ignore_keys: if key in data: del data[key] else: data = {} return data import operator @view_config(route_name='layer_kml') def layer_kml(request): try: station_uri = request.GET['layer_uri'] except KeyError, ex: raise HTTPNotFound('Missing %s GET parameter' % ex) station = verify_station(request, station_uri) latest_readings = get_latest_readings(request, station) latest_readings = sorted( latest_readings.items(), key=operator.itemgetter(0) ) if station is not None: kml = render('layer_kml.mako', { 'now': datetime.utcnow(), 'station': station, 'latest_readings': latest_readings }, request) response = ( Response(body=kml, content_type="application/vnd.google-earth.kml+xml") ) return response else: raise NotFound()
StarcoderdataPython
1760809
from setuptools import setup, find_packages install_requires = [ 'torch>=1.9.0', 'torchvision>=0.10.0', 'tqdm' ] setup( name='anatome', version='0.0.3', description='Ἀνατομή is a PyTorch library to analyze representation of neural networks', author='<NAME>', author_email='<EMAIL>', install_requires=install_requires, packages=find_packages() )
StarcoderdataPython
8063664
#!/usr/bin/env python from __future__ import print_function """ pytrace.py """ import cStringIO import os import struct import sys # TODO: Two kinds of tracing? # - FullTracer -> Chrome trace? # - ReservoirSamplingTracer() -- flame graph that is deterministic? # TODO: Check this in but just go ahead and fix wild.sh instead. class Tracer(object): # Limit to 10M events by default. def __init__(self, max_events=10e6): self.pid = os.getpid() # append self.event_strs = cStringIO.StringIO() # After max_events we stop recording self.max_events = max_events self.num_events = 0 self.depth = 0 # Python VM callback def OnEvent(self, frame, event_type, arg): # Test overhead # 7.5 seconds. Geez. That's crazy high. # The baseline is 2.7 seconds, and _lsprof takes 3.8 seconds. # I guess that's why pytracing is a decorator and only works on one part of # the program. # pytracing isn't usable with large programs. It can't run abuild -h. # What I really want is the nicer visualization. I don't want the silly # cProfile output. self.num_events += 1 name = frame.f_code.co_name filename = frame.f_code.co_filename if event_type in ('call', 'c_call'): self.depth += 1 record = '%s%s\t%s\t%s\t%s\t%s\n' % (' ' * self.depth, event_type, filename, frame.f_lineno, name, arg) self.event_strs.write(record) if event_type in ('return', 'c_return'): self.depth -= 1 return # NOTE: Do we want a struct.pack version eventually? #self.event_strs.write('') def Start(self): sys.setprofile(self.OnEvent) def Stop(self, path): sys.setprofile(None) # Only one process should write out the file! if os.getpid() != self.pid: return # TODO: # - report number of events? # - report number of bytes? print('num_events: %d' % self.num_events, file=sys.stderr) print('Writing to %r' % path, file=sys.stderr) with open(path, 'w') as f: f.write(self.event_strs.getvalue()) def main(argv): t = Tracer() import urlparse t.Start() print(urlparse.urlparse('http://example.com/foo')) t.Stop('demo.pytrace') if __name__ == '__main__': try: main(sys.argv) except RuntimeError as e: print >>sys.stderr, 'FATAL: %s' % e sys.exit(1)
StarcoderdataPython
5101165
# Example, do not modify! print(5 / 8) # Print the sum of 7 and 10 print(7+10) # Division print(5 / 8) # Addition print(7 + 10) # Addition, subtraction print(5 + 5) print(5 - 5) # Multiplication, division, modulo, and exponentiation print(3 * 5) print(10 / 2) print(18 % 7) print(4 ** 2) print(100 * (1.1**7))
StarcoderdataPython
33965
<filename>DialogCalibrate.py # -*- coding: utf-8 -*- # Form implementation generated from reading ui file 'DialogCalibrate.ui' # # Created by: PyQt5 UI code generator 5.9.2 # # WARNING! All changes made in this file will be lost! from PyQt5 import QtCore, QtGui, QtWidgets class Ui_DialogCalibrate(object): def setupUi(self, DialogCalibrate): DialogCalibrate.setObjectName("DialogCalibrate") DialogCalibrate.resize(451, 240) self.btnAoAWingTare = QtWidgets.QPushButton(DialogCalibrate) self.btnAoAWingTare.setEnabled(True) self.btnAoAWingTare.setGeometry(QtCore.QRect(260, 80, 161, 32)) self.btnAoAWingTare.setObjectName("btnAoAWingTare") self.lblRawAoA = QtWidgets.QLabel(DialogCalibrate) self.lblRawAoA.setGeometry(QtCore.QRect(280, 20, 81, 21)) font = QtGui.QFont() font.setPointSize(14) self.lblRawAoA.setFont(font) self.lblRawAoA.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblRawAoA.setObjectName("lblRawAoA") self.txtRawAoA = QtWidgets.QLabel(DialogCalibrate) self.txtRawAoA.setGeometry(QtCore.QRect(370, 20, 56, 20)) font = QtGui.QFont() font.setPointSize(18) self.txtRawAoA.setFont(font) self.txtRawAoA.setObjectName("txtRawAoA") self.lblRawAirspeed = QtWidgets.QLabel(DialogCalibrate) self.lblRawAirspeed.setGeometry(QtCore.QRect(10, 20, 131, 21)) font = QtGui.QFont() font.setPointSize(14) self.lblRawAirspeed.setFont(font) self.lblRawAirspeed.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblRawAirspeed.setObjectName("lblRawAirspeed") self.txtRawAirspeed = QtWidgets.QLabel(DialogCalibrate) self.txtRawAirspeed.setGeometry(QtCore.QRect(150, 20, 56, 20)) font = QtGui.QFont() font.setPointSize(18) self.txtRawAirspeed.setFont(font) self.txtRawAirspeed.setObjectName("txtRawAirspeed") self.btnAirspeedTare = QtWidgets.QPushButton(DialogCalibrate) self.btnAirspeedTare.setGeometry(QtCore.QRect(30, 50, 161, 32)) self.btnAirspeedTare.setObjectName("btnAirspeedTare") self.btnDone = QtWidgets.QPushButton(DialogCalibrate) self.btnDone.setGeometry(QtCore.QRect(310, 190, 110, 32)) self.btnDone.setDefault(True) self.btnDone.setObjectName("btnDone") self.btnAoAPlatformTare = QtWidgets.QPushButton(DialogCalibrate) self.btnAoAPlatformTare.setEnabled(True) self.btnAoAPlatformTare.setGeometry(QtCore.QRect(260, 50, 161, 32)) self.btnAoAPlatformTare.setObjectName("btnAoAPlatformTare") self.inpAoAOffset = QtWidgets.QDoubleSpinBox(DialogCalibrate) self.inpAoAOffset.setGeometry(QtCore.QRect(350, 120, 62, 31)) font = QtGui.QFont() font.setPointSize(14) self.inpAoAOffset.setFont(font) self.inpAoAOffset.setDecimals(1) self.inpAoAOffset.setMaximum(90.0) self.inpAoAOffset.setSingleStep(0.1) self.inpAoAOffset.setProperty("value", 0.0) self.inpAoAOffset.setObjectName("inpAoAOffset") self.lblAoAOffset = QtWidgets.QLabel(DialogCalibrate) self.lblAoAOffset.setGeometry(QtCore.QRect(240, 120, 101, 21)) font = QtGui.QFont() font.setPointSize(14) self.lblAoAOffset.setFont(font) self.lblAoAOffset.setAlignment(QtCore.Qt.AlignRight|QtCore.Qt.AlignTrailing|QtCore.Qt.AlignVCenter) self.lblAoAOffset.setObjectName("lblAoAOffset") self.retranslateUi(DialogCalibrate) self.btnDone.clicked.connect(DialogCalibrate.accept) QtCore.QMetaObject.connectSlotsByName(DialogCalibrate) def retranslateUi(self, DialogCalibrate): _translate = QtCore.QCoreApplication.translate DialogCalibrate.setWindowTitle(_translate("DialogCalibrate", "Dialog")) self.btnAoAWingTare.setText(_translate("DialogCalibrate", "Set AoA Wing Tare")) self.lblRawAoA.setText(_translate("DialogCalibrate", "Raw AoA:")) self.txtRawAoA.setText(_translate("DialogCalibrate", "N/A")) self.lblRawAirspeed.setText(_translate("DialogCalibrate", "Raw Airspeed:")) self.txtRawAirspeed.setText(_translate("DialogCalibrate", "N/A")) self.btnAirspeedTare.setText(_translate("DialogCalibrate", "Set Airspeed Tare")) self.btnDone.setText(_translate("DialogCalibrate", "Done")) self.btnAoAPlatformTare.setText(_translate("DialogCalibrate", "Set AoA Platform Tare")) self.lblAoAOffset.setText(_translate("DialogCalibrate", "AoA Offset:")) if __name__ == "__main__": import sys app = QtWidgets.QApplication(sys.argv) DialogCalibrate = QtWidgets.QDialog() ui = Ui_DialogCalibrate() ui.setupUi(DialogCalibrate) DialogCalibrate.show() sys.exit(app.exec_())
StarcoderdataPython
5019274
<gh_stars>10-100 # coding: utf-8 """ DSFP core file .. module:: dsfp.dsfp :platform: Linux, Windows, MacOS X :synopsis: utils for routines .. moduleauthor:: Tarvitz<<EMAIL>> """ import six from unittest import TestCase from dsfp import DSSaveFileParser import bz2 __all__ = ['TestDSFPReader', ] class TestDSFPReader(TestCase): """DSFP parser reader unit tests""" maxDiff = None def setUp(self): self.filename = bz2.BZ2File('saves/DRAKS0005.sl2.bz2') # slots starts with 0 self.valid_slots = 2 self.slots = [ { 'deaths': 155, 'name': u'Карл' }, { 'deaths': 0, 'name': u'Максимилиантр' }, { 'deaths': 0, 'name': u'Smithy' } ] self.metadata = { 'slots': 11, # it's always constant because of fixed block size # but there's a header that contains block offsets inside of # meta data block so we should check it 'start_offsets': [704, 394320, 787936, 1181552, 1575168, 1968784, 2362400, 2756016, 3149632, 3543248, 3936864], 'block_stat_size': [396, 396, 396, 396, 396, 396, 396, 396, 396, 396, 396] } def test_read_ds_file(self): """ test get character dark souls file slots """ ds = DSSaveFileParser(filename=self.filename) data = ds.get_active_slots_amount() self.assertEqual(data, self.valid_slots) def test_read_ds_slot_stats(self): ds = DSSaveFileParser(filename=self.filename) data = ds.get_stats() for (idx, slot) in enumerate(data): self.assertEqual(slot['deaths'], self.slots[idx]['deaths']) self.assertEqual(slot['name'], self.slots[idx]['name']) def test_read_ds_file_metadata(self): """ read file metadata """ ds = DSSaveFileParser(filename=self.filename) metadata = ds.get_blocks_metadata() self.assertEqual(len(metadata), self.metadata['slots']) messages = [] for idx, header in enumerate(metadata): self.assertEqual(header.block_start_offset, self.metadata['start_offsets'][idx]) try: self.assertEqual(header.slot_data.block_stat_size, self.metadata['block_stat_size'][idx]) except AssertionError as err: messages.append({'err': err, 'msg': 'Got error'}) if messages: for msg in messages: print("%(msg)s: %(err)s" % msg) raise AssertionError
StarcoderdataPython
3436401
<reponame>vinit2107/Data-Analysis import mysql.connector from mysql.connector import errorcode, cursor, Error, connection from configparser import RawConfigParser from Scripts.DDL.ddl_scripts import * from Scripts.DML.dml_scripts import * class MySQLHandler: def create_connection(self, config: RawConfigParser): """ Function to establish a connection with a MySQL server using the credentials provided in the configuration file. :param config: configuration file object obtained using configparser """ try: conn = mysql.connector.connect(user=config.get('Database', 'mysql.username'), password=config.get('Database', 'mysql.password'), host=config.get('Database', 'mysql.hostname')) conn.autocommit = True cur = conn.cursor(buffered=True) return conn, cur except mysql.connector.Error as er: print("Error connecting to the database") if er.errno == errorcode.ER_ACCESS_DENIED_ERROR: print("Error in the configuration file. Please check the credentials!") print(er) raise er def create_database(self, cur: cursor, dbname: str): """ Function to create a database of the name defined in the configuration.properties :param cur: cursor obtained through connection to the database :param dbname: name of the database to be created """ try: print(create_database_query.format(dbname)) # cur.execute("CREATE DATABASE IF NOT EXISTS `flight-analysis`;") cur.execute(create_database_query, (dbname, )) print("executed") cur.execute(use_database_query, (dbname, )) # cur.execute("USE `flight-analysis`;") except Error as er: print("Error creating database in MySQL") raise er def create_table(self, cur: cursor, tableName: str): """ Function used to create a table of the given table name. The queries will be picked up from the Scripts folder. :param cur: cursor obtained from the :param tableName: name of the table """ try: print("Creating table {}:".format(tableName), end='') cur.execute(tables.get(tableName)) print('OK') except Error as er: if er.errno == errorcode.ER_TABLE_EXISTS_ERROR: print("already exists") else: raise er def insert(self, cur: cursor, tableName: str, data): """ Function to insert records in table of the given name :param data: data to be inserted in the table :param cur: cursor obtained for MySQL :param tableName: name of the table in which the data has to be inserted """ try: print("Inserting single record in {}: ".format(tableName), end='') cur.execute(insert_map.get(tableName), data) # cur.commit() print("OK") except Error as er: print("Error inserting records in {}".format(tableName)) raise er def close_connection(self, cur: cursor, con: connection): """ Function to close the connection with MySQL server :param cur: cursor obtained after connecting with the server :param con: connection object obtained after connecting with the server """ try: print("Closing connection with MySQL.") cur.close() con.close() except Error as er: print("Error disconnecting with the server") raise er def fetch_records(self, cur, tableName: str): """ Function to fetch records from the given table name. :param cur: cursor obtained for the table :param tableName: name of the table for which the records need to be fetched :return: """ try: cur.execute(fetch_map.get(tableName)) print("OK") return cur.fetchall() except Exception as ex: print("Error fetching records from {}".format(tableName)) raise ex
StarcoderdataPython
261138
<reponame>themlphdstudent/pySIM """ author: <NAME> email: <EMAIL> Licence: BSD 2 clause Description: Example of using Euclidean distance measure. """ import numpy as np import os import sys # temporary solution for relative imports in case pyod is not installed # if pysim is installed, no need to use the following line sys.path.append( os.path.abspath(os.path.join(os.path.dirname("__file__"), '..'))) from pysiml.distances import euclidean if __name__ == "__main__": a = np.array([1, 2, 43]) b = np.array([3, 2, 1]) euclidean_dist = euclidean(a, b) print('Euclidean distance is : {}'.format(euclidean_dist))
StarcoderdataPython
5067441
<filename>While Conditions/asterisk_condition.py """ Code to make the asterisk on the left side according to the number of lines the user wants. """ #Declaring Variables x = 1 #Asking for number of lines lines = int(input("What is the number of lines you want: ")) #Initiating loop while x <= lines: print('*' * x) x = x + 1 #Stating end of Loop print("The loop has ended")
StarcoderdataPython
362417
from setuptools import setup, find_packages from gitdl import __version__ setup( name='gitdl', version=__version__, description='Download git repositories locally', long_description="", author='<NAME>', author_email='<EMAIL>', license='MIT', packages=find_packages(), install_requires=['requests', 'docopt', 'tabulate', 'tqdm'], entry_points={ 'console_scripts': [ 'gitdl=gitdl.gitdl:main', ], }, )
StarcoderdataPython
5102514
import argparse import json import subprocess import tempfile from glob import glob from pathlib import Path from typing import List, Union from urllib import request import platform import os project_root = Path(__file__).absolute().parent def run_subprocess(command): status, output = subprocess.getstatusoutput(command) if status != 0: raise RuntimeError(f"Failed to run: {command}\n{output}") os_name = platform.system() architecture_name = platform.machine().lower() def get_release(url: str, version: str): resp = request.urlopen(url) releases = json.loads(resp.read()) target_release = None for release in releases: if release["tag_name"] == version: assert ( target_release is None ), f"Multiple releases were found with tag_name: {version}." target_release = release if target_release is None: raise RuntimeError(f"No release was found with version: {version}.") return target_release def get_ort_download_link(version: str, use_cuda: bool, use_directml: bool) -> str: target_release = get_release( "https://api.github.com/repos/microsoft/onnxruntime/releases", version ) assets = target_release["assets"] assert assets def filter_assets(keywords: Union[str, List[str]]) -> None: if isinstance(keywords, str): keywords = [keywords] nonlocal assets new_assets = [] for asset in assets: for keyword in keywords: if keyword in asset["name"]: new_assets.append(asset) break if not new_assets: raise RuntimeError( f"Asset was not found. Most likely the version is too old or new that {__file__} does not support. " "Try `--ort_download_link` option to manually specify the download link." ) assets = new_assets arch_type = architecture_name if arch_type in ["x86_64", "amd64"]: arch_type = ["x64", "x86_64"] if use_directml: filter_assets("DirectML") elif os_name == "Windows": filter_assets("win") filter_assets(arch_type) if use_cuda: filter_assets("gpu") elif os_name == "Darwin": if use_cuda or use_directml: raise RuntimeError("onnxruntime for osx does not support gpu.") filter_assets("osx") filter_assets(arch_type) elif os_name == "Linux": filter_assets("linux") filter_assets(arch_type) if use_cuda: filter_assets("gpu") else: raise RuntimeError(f"Unsupported os type: {os_name}.") assets = sorted(assets, key=lambda x: x["name"]) return assets[0]["browser_download_url"] def download_and_extract_ort(download_link): if (project_root / "onnxruntime").exists(): yn = input("Found existing onnxruntime directory. Overwrite? [yn]: ") while yn != "y" and yn != "n": yn = input("Please press y or n: ") if yn == "n": return subprocess.getoutput(f"rm -r {project_root / 'onnxruntime'}") print(f"Downloading onnxruntime from {download_link}...") with tempfile.TemporaryDirectory() as tmp_dir: if(os_name == "Windows"): run_subprocess( f'powershell -Command "cd {tmp_dir}; curl.exe {download_link} -L -o archive.zip"') if "DirectML" in download_link: run_subprocess( f'powershell -Command "cd {tmp_dir}; Expand-Archive -Path archive.zip; Copy-Item archive -Recurse {project_root}/onnxruntime"') else: run_subprocess( f'powershell -Command "cd {tmp_dir}; Expand-Archive -Path archive.zip -Destination ./; Copy-Item onnxruntime* -Recurse {project_root}/onnxruntime"') else: run_subprocess(f"cd {tmp_dir} && wget {download_link} -O archive") extract_cmd = "unzip" if download_link.endswith( ".zip") else "tar xzf" run_subprocess( f"cd {tmp_dir} && {extract_cmd} archive && cp -r onnxruntime* {project_root}/onnxruntime") def get_dml_download_link(version: str): resp = request.urlopen( "https://api.nuget.org/v3/registration5-semver1/microsoft.ai.directml/index.json") jsonData = json.loads(resp.read()) releases = jsonData["items"][0]["items"] target_release = None for release in releases: if release["catalogEntry"]["version"] == version: assert ( target_release is None ), f"Multiple releases were found with tag_name: {version}." target_release = release if target_release is None: raise RuntimeError(f"No release was found with version: {version}.") return target_release["catalogEntry"]["packageContent"] def download_and_extract_dml(link): if(project_root / "directml").exists(): print( "Skip downloading DirectML because directml directory already exists." ) return print(f"Downloading DirectML from {link}") with tempfile.TemporaryDirectory() as tmp_dir: run_subprocess( f'powershell -Command "cd {tmp_dir}; curl.exe {link} -L -o archive.zip"') run_subprocess( f'powershell -Command "cd {tmp_dir}; Expand-Archive -Path archive.zip; Copy-Item archive -Recurse {project_root}/directml"') def get_voicevox_download_link(version) -> str: target_release = get_release( "https://api.github.com/repos/VOICEVOX/voicevox_core/releases", version ) assets = target_release["assets"] for asset in assets: if asset["name"] == "core.zip": return asset["browser_download_url"] raise RuntimeError( f"Asset was not found. Most likely the version is too old or new that {__file__} does not support. " "Try `--voicevox_download_link` option to manually specify the download link." ) def download_and_extract_voicevox(download_link): if (project_root / "release").exists(): print( "Skip downloading voicevox release because release directory already exists." ) return print(f"Downloading voicevox from {download_link}...") with tempfile.TemporaryDirectory() as tmp_dir: if os_name == "Windows": run_subprocess( f'powershell -Command "cd {tmp_dir}; curl.exe {download_link} -L -O;') run_subprocess( f'powershell -Command "cd {tmp_dir}; Expand-Archive -Path core.zip -Destination ./; Copy-Item core -Recurse {project_root}/release"') else: run_subprocess( f"cd {tmp_dir} && wget {download_link} && unzip core.zip && cp -r core {project_root}/release" ) def link_files(use_directml: bool): lib_prefix = "" lib_suffix = "" if os_name == "Darwin": lib_prefix = "lib" lib_suffix = ".dylib" elif os_name == "Linux": lib_prefix = "lib" lib_suffix = ".so" elif os_name == "Windows": lib_prefix = "" lib_suffix = ".dll" else: raise RuntimeError(f"Unsupported os type: {os_name}.") core_libs = glob(str(project_root/'release'/(lib_prefix+'*'+lib_suffix))) assert core_libs target_core_lib = None if len(core_libs) == 1: target_core_lib = core_libs[0] else: # TODO: Use better name so that we can decide from os_type or arch_type. print("Please enter number to select which library to use.") for i, name in enumerate(core_libs): print(f"{i}: {name}") index = input("Your choice: ") while not index.isdigit(): index = input("Please enter number") index = int(index) target_core_lib = core_libs[index] link_cmd = "copy /y" if os_name == "Windows" else "ln -s" os.makedirs(project_root / 'core/lib', exist_ok=True) run_subprocess( f"{link_cmd} {project_root/'release'/'core.h'} {project_root/'core'/'lib'}") run_subprocess( f"{link_cmd} {target_core_lib} {project_root/'core'/'lib'/(f'{lib_prefix}core{lib_suffix}')}") if use_directml: arch_type = "" if architecture_name in ["x86_64", "x64", "amd64"]: arch_type = "x64" elif architecture_name in ["i386", "x86"]: arch_type = "x86" elif architecture_name == "armv7l": arch_type = "arm" elif architecture_name == "aarch64": arch_type = "arm64" else: raise RuntimeError( f"Unsupported architecture type: {architecture_name}") dll_file_path = project_root / "directml" / \ 'bin' / f"{arch_type}-win" / "DirectML.dll" run_subprocess( f"copy /y {dll_file_path} {project_root / 'core'/'lib'/'DirectML.dll'}" ) ort_libs = glob(str(os.path.join( project_root, "onnxruntime", "runtimes", f"win-{arch_type}", "native", "*.dll"))) else: ort_libs = glob( str(project_root/'onnxruntime'/'lib'/(f"{lib_prefix}*{lib_suffix}*"))) assert ort_libs for ort_lib in ort_libs: run_subprocess(f"{link_cmd} {ort_lib} {project_root/'core'/'lib'}") if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument( "--voicevox_version", default="0.10.0", help="voicevox release tag found in https://github.com/VOICEVOX/voicevox_core/releases", ) parser.add_argument("--voicevox_download_link", help="voicevox download link") parser.add_argument( "--ort_version", default="v1.10.0", help="onnxruntime release tag found in https://github.com/microsoft/onnxruntime/releases", ) parser.add_argument("--ort_download_link", help="onnxruntime download link") parser.add_argument( "--use_cuda", action="store_true", help="enable cuda for onnxruntime" ) parser.add_argument( "--use_directml", action="store_true", help="enable directml for onnxruntime" ) parser.add_argument( "--dml_version", default="1.8.0", help="DirectML version found in https://www.nuget.org/packages/Microsoft.AI.DirectML", ) parser.add_argument( "--dml_download_link", help="directml download link" ) args = parser.parse_args() ort_download_link = args.ort_download_link if args.use_directml and os_name != "Windows": raise RuntimeError( "onnxruntime for Mac or Linux don't support DirectML") if not ort_download_link: ort_download_link = get_ort_download_link( args.ort_version, args.use_cuda, args.use_directml) download_and_extract_ort(ort_download_link) voicevox_download_link = args.voicevox_download_link if not voicevox_download_link: voicevox_download_link = get_voicevox_download_link( args.voicevox_version) download_and_extract_voicevox(voicevox_download_link) if args.use_directml: dml_download_link = args.dml_download_link if not dml_download_link: dml_download_link = get_dml_download_link(args.dml_version) download_and_extract_dml(dml_download_link) lib_path = project_root / "core/lib" if lib_path.exists(): yn = input("Found existing library at core/lib/. Overwrite? [yn]: ") while yn != "y" and yn != "n": yn = input("Please press y or n: ") if yn == "n": exit() subprocess.getoutput(f"rm -r {lib_path}") link_files(args.use_directml) print("Successfully configured!")
StarcoderdataPython
4917583
def compChooseWord(hand, wordList, n): """ Given a hand and a wordList, find the word that gives the maximum value score, and return it. This word should be calculated by considering all the words in the wordList. If no words in the wordList can be made from the hand, return None. hand: dictionary (string -> int) wordList: list (string) n: integer (HAND_SIZE; i.e., hand size required for additional points) returns: string or None """ bestScore = 0 bestWord = None for word in wordList: if isValidWord(word, hand, wordList): score = getWordScore(word, n) if score > bestScore: bestScore = score bestWord = word return bestWord
StarcoderdataPython
11215994
""" artifact_downloader.py: Fetch artifacts into a location, where a Maven repository is being built given a list of artifacts and a remote repository URL. """ import logging import os import re import urlparse from multiprocessing import Queue from multiprocessing import Lock from multiprocessing.pool import ThreadPool import maven_repo_util from maven_artifact import MavenArtifact def downloadArtifacts(remoteRepoUrl, localRepoDir, artifact, checksumMode, mkdirLock, filesetLock, fileset, errors): """Download artifact from a remote repository.""" logging.debug("Starting download of %s", str(artifact)) artifactLocalDir = os.path.join(localRepoDir, artifact.getDirPath()) try: # handle parallelism, when two threads checks if a directory exists and then both tries to create it mkdirLock.acquire() if not os.path.exists(artifactLocalDir): os.makedirs(artifactLocalDir) mkdirLock.release() remoteRepoUrl = maven_repo_util.slashAtTheEnd(remoteRepoUrl) # Download main artifact artifactUrl = remoteRepoUrl + artifact.getArtifactFilepath() artifactLocalPath = os.path.join(localRepoDir, artifact.getArtifactFilepath()) maven_repo_util.fetchFile(artifactUrl, artifactLocalPath, checksumMode, True, True, filesetLock, fileset) except BaseException as ex: logging.error("Error while downloading artifact %s: %s", artifact, str(ex)) errors.put(ex) def copyArtifact(remoteRepoPath, localRepoDir, artifact, checksumMode): """Copy artifact from a repository on the local file system along with pom and source jar""" # Copy main artifact artifactPath = os.path.join(remoteRepoPath, artifact.getArtifactFilepath()) artifactLocalPath = os.path.join(localRepoDir, artifact.getArtifactFilepath()) if os.path.exists(artifactPath) and not os.path.exists(artifactLocalPath): maven_repo_util.fetchFile(artifactPath, artifactLocalPath, checksumMode) def depListToArtifactList(depList): """Convert the maven GAV to a URL relative path""" regexComment = re.compile('#.*$') #regexLog = re.compile('^\[\w*\]') artifactList = [] for nextLine in depList: nextLine = regexComment.sub('', nextLine) nextLine = nextLine.strip() gav = maven_repo_util.parseGATCVS(nextLine) if gav: artifactList.append(MavenArtifact.createFromGAV(gav)) return artifactList def fetchArtifactList(remoteRepoUrl, localRepoDir, artifactList, checksumMode): """Create a Maven repository based on a remote repository url and a list of artifacts""" logging.info('Retrieving artifacts from repository: %s', remoteRepoUrl) if not os.path.exists(localRepoDir): os.makedirs(localRepoDir) parsedUrl = urlparse.urlparse(remoteRepoUrl) protocol = parsedUrl[0] repoPath = parsedUrl[2] if protocol == 'http' or protocol == 'https': # Create thread pool pool = ThreadPool(maven_repo_util.MAX_THREADS) errors = Queue() mkdirLock = Lock() filesetLock = Lock() fileset = set([]) for artifact in artifactList: if artifact.isSnapshot(): maven_repo_util.updateSnapshotVersionSuffix(artifact, remoteRepoUrl) pool.apply_async( downloadArtifacts, [remoteRepoUrl, localRepoDir, artifact, checksumMode, mkdirLock, filesetLock, fileset, errors] ) # Close pool and wait till all workers are finished pool.close() pool.join() # If one of the workers threw an error, log it if not errors.empty(): logging.error("During fetching files from repository %s %i error(s) occurred.", remoteRepoUrl, errors.qsize()) elif protocol == 'file': repoPath = remoteRepoUrl.replace('file://', '') for artifact in artifactList: if artifact.isSnapshot(): maven_repo_util.updateSnapshotVersionSuffix(artifact, remoteRepoUrl) copyArtifact(repoPath, localRepoDir, artifact, checksumMode) else: logging.error('Unknown protocol: %s', protocol) def fetchArtifactLists(urlToMAList, outputDir, checksumMode): """ Fetch lists of artifacts each list from its repository. """ for repoUrl in urlToMAList.keys(): artifacts = urlToMAList[repoUrl] fetchArtifactList(repoUrl, outputDir, artifacts, checksumMode)
StarcoderdataPython
5170195
import time import xml.etree.ElementTree as ET def handleMessage(oriData): xmldata = ET.fromstring(oriData) fromUserName = xmldata.find("FromUserName").text toUserName = xmldata.find("ToUserName").text content = xmldata.find("Content").text xmlDict = {"FromUserName": fromUserName,"ToUserName": toUserName, "Content": content} return xmlDict def responseMessage(content_dict={"": ""}, type="text"): toName = content_dict["FromUserName"] fromName = content_dict["ToUserName"] resContent = "Sorry, this account is under development." reply = """ <xml> <ToUserName><![CDATA[%s]]></ToUserName> <FromUserName><![CDATA[%s]]></FromUserName> <CreateTime>%s</CreateTime> <MsgType><![CDATA[text]]></MsgType> <Content><![CDATA[%s]]></Content> <FuncFlag>0</FuncFlag> </xml> """ resStr = reply % (toName, fromName, int(time.time()), resContent) return resStr
StarcoderdataPython
4874931
<gh_stars>1-10 from selenosis.settings import * # noqa INSTALLED_APPS += ('tests',) # noqa
StarcoderdataPython
3468393
# coding=utf-8 """ __purpose__ = ... __author__ = JeeysheLu [<EMAIL>] [https://www.lujianxin.com/] [2020/8/12 10:18] Copyright (c) 2020 JeeysheLu This software is licensed to you under the MIT License. Looking forward to making it better. """ import sys if __name__ == '__main__': arg = sys.argv print(arg) s = [ {"code": 1000, "message": "xxx"}, {"code": 1003, "message": "xxx"}, {"code": 1004, "message": "xxx"}, {"code": 1002, "message": "xxx"}, {"code": 1005, "message": "xxx"}, ] print(sorted(s, key=lambda x: x.get("code")))
StarcoderdataPython
3343700
import positron positron.main_level = positron.LogLevel.DEBUG log = positron.Logger('log', positron.LogLevel.IMPORTANT) log.enable_file_logging() log.debug('debug') log.io('io') log.info('info') log.warning('warning') log.error('error') log.important('important') log.critical('critical') log.iochars = 'MSG' log.io('msg')
StarcoderdataPython
9793435
# IANA registry PROFILE = 'profile' SELF = 'self' # Local relations _root = 'http://rels.registronavale.com/' SHIP_OWNER = _root + 'ship-owner' SEARCH_SHIPS = _root + 'search-ships' SHIP_BY_IMO = _root + 'ship-by-imo' OWNED_SHIPS = _root + 'owned-ships'
StarcoderdataPython