id
stringlengths
2
8
text
stringlengths
16
264k
dataset_id
stringclasses
1 value
3364575
<filename>app/main/views.py from flask import render_template,request,redirect,url_for from . import main from ..request import get_sources,get_articles @main.route('/') def index(): ''' This is the view root page function that returns the index page and its data ''' business_news = get_sources('business') entertainment_news = get_sources('entertainment') technology_news = get_sources('technology') health_news = get_sources('health') title = 'News - Top News And Stories For You' return render_template('index.html',title = title,business_news = business_news,entertainment_news = entertainment_news,technology_news = technology_news, health_news = health_news) @main.route('/sources/<id>') def news(id): articles = get_articles(id) return render_template('articles.html',articles = articles)
StarcoderdataPython
8158905
import __future__ import os import sys import types def compile_source_file(source_file, flags): with open(source_file, "r") as f: source = f.read() return compile(source, os.path.basename(source_file), 'exec', flags) if __name__ == "__main__": # Compile and run test_pathlib.py as if # "from __future__ import unicode_literals" had been added at the top. flags = __future__.CO_FUTURE_UNICODE_LITERALS code = compile_source_file("test_pathlib.py", flags) mod = types.ModuleType('test_pathlib') mod.__file__ = "test_pathlib.py" sys.modules[mod.__name__] = mod eval(code, mod.__dict__) mod.main()
StarcoderdataPython
6542971
from __future__ import unicode_literals from django.db import models from Global_Equipment_library.models import LABEL_SIZES FONT_TYPES = [('Impact','Impact'), ('Palatino','Palatino'), ('Tahoma','Tahoma'), ('Century Gothic', 'Century Gothic'), ('Lucida Sans Unicode', 'Lucida Sans Unicode'), ('Arial Black', 'Arial Black'), ('Times New Roman', 'Times New Roman'), ('Arial Narrow', 'Arial Narrow'), ('Verdana', 'Verdana'), ('Copperplate', 'Copperplate'), ('Lucida Console', 'Lucida Console'), ('Gill Sans', 'Gill Sans'), ('Trebuchet MS', 'Trebuchet MS'), ('Courier', 'Courier'), ('Arial', 'Arial')] class LabelTemplate(models.Model): """ used to keep track of Label types, like Avery 5160, 5167 or the Australian labels and custom labels """ name = models.CharField(max_length=100, unique=True) size = models.CharField(max_length=10, choices=LABEL_SIZES) def __unicode__(self): return self.name class LabelTextBox(models.Model): """ a generic text box that allows settings to be overridden """ text = models.CharField(max_length=100, blank=True) font = models.CharField(max_length=100, choices=FONT_TYPES, default='Arial') bold = models.BooleanField(default=False) italic = models.BooleanField(default=False) underline = models.BooleanField(default=False) fontSize = models.IntegerField(default=12) xPoint = models.IntegerField(default=0) yPoint = models.IntegerField(default=0) def __unicode__(self): return self.text
StarcoderdataPython
9651997
# ============================================================================== # Copyright (c) Microsoft. All rights reserved. # Licensed under the MIT license. See LICENSE.md file in the project root # for full license information. # ============================================================================== from time import time # TODO: Let's switch to import logging in the future instead of print. [ebarsoum] class ProgressPrinter: ''' Accumulates training time statistics (loss and metric) and pretty prints them as training progresses. It provides the number of samples, average loss and average metric since the last print or since the start of accumulation. ''' def __init__(self, freq=None, first=0, tag=''): ''' Constructor. The optional ``freq`` parameter determines how often printing will occur. The value of 0 means an geometric schedule (1,2,4,...). A value > 0 means a arithmetic schedule (freq, 2*freq, 3*freq,...), and a value of None means no per-minibatch log. ''' from sys import maxsize if freq is None: freq = maxsize self.loss_since_start = 0 self.metric_since_start = 0 self.samples_since_start = 0 self.loss_since_last = 0 self.metric_since_last = 0 self.samples_since_last = 0 self.updates = 0 self.epochs = 0 self.freq = freq self.first = first self.tag = '' if not tag else "[{}] ".format(tag) self.epoch_start_time = 0 if freq==0: print(' average since average since examples') print(' loss last metric last ') print(' ------------------------------------------------------') def avg_loss_since_start(self): ''' Returns: the average loss since the start of accumulation ''' return self.loss_since_start/self.samples_since_start def avg_metric_since_start(self): ''' Returns: the average metric since the start of accumulation ''' return self.metric_since_start/self.samples_since_start def avg_loss_since_last(self): ''' Returns: the average loss since the last print ''' return self.loss_since_last/self.samples_since_last def avg_metric_since_last(self): ''' Returns: the average metric since the last print ''' return self.metric_since_last/self.samples_since_last def reset_start(self): ''' Resets the 'start' accumulators Returns: tuple of (average loss since start, average metric since start, samples since start) ''' ret = self.avg_loss_since_start(), self.avg_metric_since_start(), self.samples_since_start self.loss_since_start = 0 self.metric_since_start = 0 self.samples_since_start = 0 return ret def reset_last(self): ''' Resets the 'last' accumulators Returns: tuple of (average loss since last, average metric since last, samples since last) ''' ret = self.avg_loss_since_last(), self.avg_metric_since_last(), self.samples_since_last self.loss_since_last = 0 self.metric_since_last = 0 self.samples_since_last = 0 return ret def epoch_summary(self, with_metric=False): ''' If on an arithmetic schedule print an epoch summary using the 'start' accumulators. If on a geometric schedule does nothing. Args: with_metric (`bool`): if `False` it only prints the loss, otherwise it prints both the loss and the metric ''' self.epochs += 1 if self.freq > 0: self.updates = 0 avg_loss, avg_metric, samples = self.reset_start() epoch_end_time = time() time_delta = epoch_end_time - self.epoch_start_time speed = 0 if (time_delta > 0): speed = samples / time_delta self.epoch_start_time = epoch_end_time if with_metric: print("Finished Epoch [{}]: {}loss = {:0.6f} * {}, metric = {:0.1f}% * {} {:0.3f}s ({:5.1f} samples per second)".format(self.epochs, self.tag, avg_loss, samples, avg_metric*100.0, samples, time_delta, speed)) else: print("Finished Epoch [{}]: {}loss = {:0.6f} * {} {:0.3f}s ({:5.1f} samples per second)".format(self.epochs, self.tag, avg_loss, samples, time_delta, speed)) return avg_loss, avg_metric, samples # BUGBUG: for freq=0, we don't return anything here def update(self, loss, minibatch_size, metric=None): ''' Updates the accumulators using the loss, the minibatch_size and the optional metric. Args: loss (`float`): the value with which to update the loss accumulators minibatch_size (`int`): the value with which to update the samples accumulator metric (`float` or `None`): if `None` do not update the metric accumulators, otherwise update with the given value ''' self.updates += 1 self.samples_since_start += minibatch_size self.samples_since_last += minibatch_size self.loss_since_start += loss * minibatch_size self.loss_since_last += loss * minibatch_size if metric is not None: self.metric_since_start += metric * minibatch_size self.metric_since_last += metric * minibatch_size if self.epoch_start_time == 0: self.epoch_start_time = time() if self.freq == 0 and (self.updates+1) & self.updates == 0: avg_loss, avg_metric, samples = self.reset_last() if metric is not None: print(' {:8.3g} {:8.3g} {:8.3g} {:8.3g} {:10d}'.format( self.avg_loss_since_start(), avg_loss, self.avg_metric_since_start(), avg_metric, self.samples_since_start)) else: print(' {:8.3g} {:8.3g} {:8s} {:8s} {:10d}'.format( self.avg_loss_since_start(), avg_loss, '', '', self.samples_since_start)) elif self.freq > 0 and (self.updates % self.freq == 0 or self.updates <= self.first): avg_loss, avg_metric, samples = self.reset_last() if self.updates <= self.first: # printing individual MBs first_mb = self.updates else: first_mb = max(self.updates - self.freq + 1, self.first+1) if metric is not None: print(' Minibatch[{:4d}-{:4d}]: loss = {:0.6f} * {:d}, metric = {:0.1f}% * {:d}'.format( first_mb, self.updates, avg_loss, samples, avg_metric*100.0, samples)) else: print(' Minibatch[{:4d}-{:4d}]: loss = {:0.6f} * {:d}'.format( first_mb, self.updates, avg_loss, samples)) def update_with_trainer(self, trainer, with_metric=False): ''' Updates the accumulators using the loss, the minibatch_size and optionally the metric using the information from the ``trainer``. Args: trainer (:class:`cntk.trainer.Trainer`): trainer from which information is gathered with_metric (`bool`): whether to update the metric accumulators ''' self.update(trainer.previous_minibatch_loss_average,trainer.previous_minibatch_sample_count, trainer.previous_minibatch_evaluation_average if with_metric else None) # print the total number of parameters to log def log_number_of_parameters(model, trace_level=0): parameters = model.parameters from functools import reduce from operator import add, mul total_parameters = reduce(add, [reduce(mul, p1.shape) for p1 in parameters], 0) # BUGBUG: If model has uninferred dimensions, we should catch that and fail here print("Training {} parameters in {} parameter tensors.".format(total_parameters, len(parameters))) if trace_level > 0: print() for p in parameters: print ("\t{}".format(p.shape))
StarcoderdataPython
372179
# Copyright 2017 SrMouraSilva # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from application.dao.component_dao import ComponentDao from application.controller.controller import Controller class ComponentDataController(Controller): """ Maybe the pedalboard data it's not sufficient for management in a custom :class:`Components`. For example, in a possible visual pedalboard manager is necessary persist the effects positions. :class:`ComponentDataController` offers a way to salve and restore data. For your component, create a unique identifier (key) and use it for manage all your Component data. For example:: >>> key = 'raspberry-p0' >>> controller = application.controller(ComponentDataController) >>> # If key not exists, returns {} >>> controller[key] {} >>> controller[key] = {'pedalboard': 0} >>> controller[key] {'pedalboard': 0} >>> # The new data overrides old data >>> controller[key] = {'pedalboards': []} >>> controller[key] {'pedalboards': []} >>> # Changes in returned object will not change the persisted data >>> data = controller[key] >>> data['component'] = 'Raspberry P0' >>> data {'pedalboards': [], 'component': 'Raspberry P0'} >>> controller[key] {'pedalboards': []} >>> # Remove all content for 'raspberry-p0' >>> del controller[key] >>> controller[key] {} .. warning:: :class:`ComponentDataController` does not have access control, which means that any Component that eventually use *ComponentDataController* may interfere with the content (accessing, changing or removing). .. warning:: It's a easy way for save simple data. Please, don't save binaries or big content """ dao = None __data = None def configure(self): self.dao = self.app.dao(ComponentDao) self.__data = self.dao.load() def __getitem__(self, key): """ Returns the data for the informed `key`:: >>> component_data_controller[key] {'any key': 'any data'} If no data was saved for this key, an empty dictionary is returned:: >>> component_data_controller['a crazy key'] {} :param string key: :return dict: Content if exist for key informed, else empty `dict` """ try: return dict(self.__data[key]) except KeyError: return {} def __setitem__(self, key, value): """ Change the `key` identifier content to `value`:: >>> component_data_controller[key] = {'any key': 'any data'} :param string key: Identifier :param value: Data will be persisted """ self.__data[key] = value self.dao.save(self.__data) def __delitem__(self, key): """ Remove all `item` identifier content:: >>> del component_data_controller[key] :param string key: Identifier """ del self.__data[key] self.dao.save(self.__data)
StarcoderdataPython
6591883
from typing import Callable, Any from core.exceptions import StateException from core.message import Message from core.node import Node from core.topic import Topic def mitm(node1: Node, node2: Node, topic: Topic, node_name: str, interface_func: Callable[[Message, Topic], Any]): """ Publish subscribe agnostic Create a mit, connection for the system :param node1: First node :param node2: Second node :param topic: Topic to communicate on :param node_name: Name to give the system to target :param interface_func: Function to execute on all the data as the mitm :return: """ (_, _, bus_info1) = node1.server.getBusStats(node_name) (_, _, bus_info2) = node2.server.getBusStats(node_name) publisher_info = None publisher_number = 0 subscriber_info = None # NEed to create a node to sit in the middle # Checking if there's a publisher. If both are publishers then raise exception if any(topic.name in s for s in bus_info1[0]): publisher_info = (node1, bus_info1) publisher_number = 1 if any(topic.name in s for s in bus_info2[0]): if publisher_info: raise StateException("Both nodes are publishers on the requested topic") publisher_info = (node2, bus_info2) publisher_number = 2 if any(topic.name in s for s in bus_info1[1]): if publisher_number == 1: raise StateException("Node is both publisher and subscriber. This is wrong somehow") subscriber_info = (node1, bus_info1) if any(topic.name in s for s in bus_info2[1]): if subscriber_info: raise StateException("Both nodes are subscribers on the requested topic") subscriber_info = (node2, bus_info2) if not publisher_info or not subscriber_info: raise StateException("Cannot MITM this configuration", ) # Get the topic info (_, _, publisher_topicinfo) = publisher_info[0].server.getBusInfo(node_name) for topicinfo in publisher_topicinfo: if topicinfo[4] == topic.name: pub_topic_wrapper = Topic(topic_name=topicinfo[4], message=topic.message, protocol=topicinfo[3]) if topicinfo[2] is not 'o': raise StateException("Publisher isn't publishing this topic somehow, something has gone wrong") (_, _, subscriber_topicinfo) = subscriber_info[0].server.getBusInfo(node_name) subscriber_info[0].server.publisherUpdate(node_name, topic.name) publisher_info[0].server.requestTopic(node_name, topic.name, topic.protocol) print("TODO")
StarcoderdataPython
1818407
import logging from autogluon.core.constants import REGRESSION from autogluon.core.utils.try_import import try_import_rapids_cuml from .knn_model import KNNModel logger = logging.getLogger(__name__) # FIXME: Benchmarks show that CPU KNN can be trained in ~3 seconds with 0.2 second validation time for CoverType on automlbenchmark (m5.2xlarge) # This is over 100 seconds validation time on CPU with rapids installed, investigate how it was so fast on CPU. # "2021_02_26/autogluon_hpo_auto.openml_s_271.1h8c.aws.20210228T000327/aws.openml_s_271.1h8c.covertype.0.autogluon_hpo_auto/" # Noticed: different input data types, investigate locally with openml dataset version and dtypes. # TODO: Given this is so fast, consider doing rapid feature pruning class KNNRapidsModel(KNNModel): """ RAPIDS KNearestNeighbors model : https://rapids.ai/start.html NOTE: This code is experimental, it is recommend to not use this unless you are a developer. This was tested on rapids-21.06 via: conda create -n rapids-21.06 -c rapidsai -c nvidia -c conda-forge rapids=21.06 python=3.8 cudatoolkit=11.2 conda activate rapids-21.06 pip install --pre autogluon.tabular[all] """ def _get_model_type(self): try_import_rapids_cuml() from cuml.neighbors import KNeighborsClassifier, KNeighborsRegressor if self.problem_type == REGRESSION: return KNeighborsRegressor else: return KNeighborsClassifier def _set_default_params(self): default_params = {'weights': 'uniform'} for param, val in default_params.items(): self._set_default_param_value(param, val) @classmethod def _get_default_ag_args_ensemble(cls, **kwargs) -> dict: default_ag_args_ensemble = super()._get_default_ag_args_ensemble(**kwargs) extra_ag_args_ensemble = {'use_child_oof': False} default_ag_args_ensemble.update(extra_ag_args_ensemble) return default_ag_args_ensemble def _more_tags(self): return {'valid_oof': False}
StarcoderdataPython
11322715
def uniqueValues(aDict): ''' aDict: a dictionary returns: a sorted list of keys that map to unique aDict values, empty list if none ''' # Your code here count = 0 l = [] l2 = [] l3 = aDict.values() for key in aDict: count = 0 value = aDict[key] for i in l3: if value == i: count += 1 else: continue if count > 1: continue else: l.append(key) return sorted(l) aDict2 = {1: 1, 3: 2, 6: 0, 7: 0, 8: 4, 10: 0} aDict1 = {1: 1, 2: 1, 3: 1} aDict = {0: 4, 9: 4, 3: 4, 5: 2, 1: 1} print uniqueValues(aDict)
StarcoderdataPython
3516605
#! /usr/bin/env python import ConfigParser import os import sys from distutils import dir_util from redshell.constants import * # Set default values REDSHELL_DIR = os.path.expanduser(DEFAULT_REDSHELL_DIR) REDSHELL_HISTORY = os.path.expanduser(DEFAULT_REDSHELL_HISTORY) REDSHELL_REPORTS = os.path.expanduser(DEFAULT_REDSHELL_REPORTS) REDSHELL_NMAP = DEFAULT_REDSHELL_NMAP REDSHELL_SUDO = DEFAULT_REDSHELL_SUDO REDSHELL_UA = DEFAULT_REDSHELL_UA REDSHELL_PROXY = DEFAULT_REDSHELL_PROXY REDSHELL_COLLABORATOR = DEFAULT_REDSHELL_COLLABORATOR REDSHELL_DIR_SUBDIRS = ['log','output','lists','tools'] def ConfigSectionMap(section): dict1 = {} options = Config.options(section) for option in options: try: dict1[option] = Config.get(section, option) if dict1[option] == -1: print("skip: %s" % option) except: print("exception on %s!" % option) dict1[option] = None return dict1 try: Config = ConfigParser.ConfigParser() if os.path.isfile(os.path.expanduser('~'+os.sep+'redshell.conf')): Config.read("redshell.conf") else: if os.path.isfile("redshell.conf"): Config.read("redshell.conf") except: pass ## CONFIG: Paths / redshell : Redshell Home directory # Check if a value is provided in config file try: redshell_dir_conf = os.path.expanduser(ConfigSectionMap("Paths")['redshell']) # if the path does not exist, create it and use it if not os.path.isdir(redshell_dir_conf): try: os.makedirs(redshell_dir_conf) except: sys.stdout.write("Unable to create home directory: %s. Using default path: %s" % (redshell_dir_conf,DEFAULT_REDSHELL_DIR)) else: REDSHELL_DIR = redshell_dir_conf else: REDSHELL_DIR = redshell_dir_conf # Create subfolders in the homedir. if they exist just skip try: for subdir in REDSHELL_DIR_SUBDIRS: os.makedirs(REDSHELL_DIR+os.sep+subdir) except: pass # If no entry exists in config file or is not valid just ignore it except: pass try: # Set up the directory for templates REDSHELL_TEMPLATES = REDSHELL_DIR+os.sep+'templates' # If it it is not present in the homedir, copy it there if not os.path.isdir(REDSHELL_TEMPLATES): dir_util.copy_tree('templates',REDSHELL_TEMPLATES) except: pass ## CONFIG: Paths / history : Redshell history file # Check if a value is provided in config file try: redshell_history_conf = os.path.expanduser(ConfigSectionMap("Paths")['history']) if os.path.isfile(redshell_history_conf): REDSHELL_HISTORY = redshell_history_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Paths / report : Redshell directory for reports # Check if a value is provided in config file try: redshell_reports_conf = os.path.expanduser(ConfigSectionMap("Paths")['reports']) # If the path does not exist, create it and use it if not os.path.isdir(redshell_reports_conf): try: os.makedirs(redshell_reports_conf) except: sys.stdout.write("Unable to create report directory: %s. Using default path: %s" % (redshell_reports_conf,DEFAULT_REDSHELL_REPORTS)) else: REDSHELL_REPORTS = redshell_reports_conf else: REDSHELL_REPORTS = redshell_reports_conf # If no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Bin / nmap : binary for nmap # Check if a value is provided in config file try: redshell_nmap_conf = os.path.expanduser(ConfigSectionMap("Bin")['nmap']) if os.path.isfile(redshell_nmap_conf) and os.access(redshell_nmap_conf, os.X_OK): REDSHELL_NMAP = redshell_nmap_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Bin / sudo : binary for sudo # Check if a value is provided in config file try: redshell_sudo_conf = os.path.expanduser(ConfigSectionMap("Bin")['sudo']) if os.path.isfile(redshell_sudo_conf) and os.access(redshell_sudo_conf, os.X_OK): REDSHELL_SUDO = redshell_sudo_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Bin / dig : binary for dig # Check if a value is provided in config file try: redshell_dig_conf = os.path.expanduser(ConfigSectionMap("Bin")['dig']) if os.path.isfile(redshell_dig_conf) and os.access(redshell_dig_conf, os.X_OK): REDSHELL_DIG = redshell_dig_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Web / proxy : web proxy # Check if a value is provided in config file try: redshell_proxy_conf = ConfigSectionMap("Web")['proxy'] if redshell_proxy_conf: REDSHELL_PROXY = redshell_proxy_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Web / UA : web UA # Check if a value is provided in config file try: redshell_ua_conf = ConfigSectionMap("Web")['user-agent'] if redshell_ua_conf: REDSHELL_UA = redshell_ua_conf # if no entry exists in config file or is not valid just ignore it except: pass ## CONFIG: Web / collaborator-host : your collaborator host (we use batata) # Check if a value is provided in config file try: collaborator_host = ConfigSectionMap("Web")['collaborator-host'] if collaborator_host: REDSHELL_COLLABORATOR = collaborator_host # if no entry exists in config file or is not valid just ignore it except: pass
StarcoderdataPython
1787841
<reponame>vsocrates/medtype from helper import * from joblib import Parallel, delayed import requests, re ######################### Dump Ground Truth in required format for evaluation def groundtruth_dump(doc_list): base_dir = './results/{}'.format(args.data); make_dir(base_dir) fname = './results/{}/ground_{}.txt'.format(args.data, args.split) if not checkFile(fname): writer = csv.writer(open(fname, 'w'), delimiter='\t') for doc in doc_list: for men in doc['mentions']: writer.writerow([doc['_id'], men['start_offset'], men['end_offset'], men['link_id'], 1.0, 'O']) ######################### SCISPACY def scispacy(doc_list): import scispacy, spacy from scispacy.abbreviation import AbbreviationDetector from scispacy.umls_linking import UmlsEntityLinker def process_data(pid, doc_list): nlp = spacy.load("en_core_sci_sm") nlp.add_pipe(AbbreviationDetector(nlp)) # Add abbreviation deteciton module linker = UmlsEntityLinker(resolve_abbreviations=True); nlp.add_pipe(linker) # Add Entity linking module data = [] for i, doc in enumerate(doc_list): sci_res = nlp(doc['text']) res_list = {} for ent in sci_res.ents: start, end = ent.start_char, ent.end_char res_list[(start, end)] = ent._.umls_ents doc['result'] = res_list data.append(doc) if i % 10 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S"))) return data num_procs = args.workers chunks = partition(doc_list, num_procs) data_list = mergeList(Parallel(n_jobs = num_procs)(delayed(process_data)(i, chunk) for i, chunk in enumerate(chunks))) base_dir = './results/{}'.format(args.data); make_dir(base_dir) dump_pickle(data_list, '{}/{}_{}.pkl'.format(base_dir, args.model, args.split)) ######################### QUICK-UMLS def quickumls(doc_list): from quickumls import QuickUMLS assert not args.quickumls_path is None, "Provide path where QuickUMLS is installed" def process_data(pid, doc_list): data = [] matcher = QuickUMLS(args.quickumls_path, 'score', threshold=0.6) for i, doc in enumerate(doc_list): qumls_res = matcher.match(doc['text']) res_list = ddict(list) for men in qumls_res: for cand in men: start, end = cand['start'], cand['end'] umls_cui = cand['cui'] score = cand['similarity'] res_list[(start, end)].append((umls_cui, score)) doc['result'] = dict(res_list) data.append(doc) if i % 10 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S"))) return data num_procs = 1 chunks = partition(doc_list, num_procs) data_list = mergeList(Parallel(n_jobs = num_procs)(delayed(process_data)(i, chunk) for i, chunk in enumerate(chunks))) base_dir = './results/{}'.format(args.data); make_dir(base_dir) dump_pickle(data_list, '{}/{}_{}.pkl'.format(base_dir, args.model, args.split)) ######################### CTAKES def ctakes(doc_list): import ctakes_parser as cparser ctakes_url = 'http://{}:{}/ctakes'.format(args.ctakes_host, args.ctakes_port) def process_data(pid, doc_list): data = [] for i, doc in enumerate(doc_list): text = clean_text(doc['text']) res = requests.get(ctakes_url, params={"text": text}); res_list = ddict(set) if res.status_code == 200: data = res.json() for dat in data: if 'ontologyConceptArr' in dat['annotation'] and not dat['annotation']['ontologyConceptArr'] is None: start = dat['annotation']['begin'] end = dat['annotation']['end'] for cands in dat['annotation']['ontologyConceptArr']: umls_cui = cands['annotation']['cui'] score = cands['annotation']['score'] # 0.0 as lookup res_list[(start, end)].add((umls_cui, round(score, 3))) res_list = {k: list(v) for k, v in res_list.items()} doc['result'] = dict(res_list) data.append(doc) if i % 10 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S"))) return data num_procs = args.workers chunks = partition(doc_list, num_procs) data_list = mergeList(Parallel(n_jobs = num_procs)(delayed(process_data)(i, chunk) for i, chunk in enumerate(chunks))) base_dir = './results/{}'.format(args.data); make_dir(base_dir) dump_pickle(data_list, '{}/{}_{}.pkl'.format(base_dir, args.model, args.split)) ######################### METAMAP def metamap(doc_list): from pymetamap import MetaMap mm = MetaMap.get_instance(args.metamap_path) def process_data(pid, doc_list): data = [] for i, doc in enumerate(doc_list): try: text = clean_text(doc['text']) concepts, error = mm.extract_concepts([text],[doc['_id']]) assert len(text) == len(doc['text']), 'Text length does not match after pre-processing' res_list = ddict(list) for k, concept in enumerate(concepts): if concept[1] !='MMI': continue pos_info = [list(map(int, x.split('/'))) for x in concept.pos_info.replace(',', ';').replace('[', '').replace(']', '').split(';')] men_cnt = [len(x.split(',')) for x in concept.pos_info.split(';')] men_sing = replace(concept.trigger, '"').split('"')[1::2][1::2] mentions = mergeList([[men]*men_cnt[j] for j, men in enumerate(men_sing)]) for j, (start, offset) in enumerate(pos_info): end = start + offset res_list[(start, end)].append((concept.cui, concept.score)) doc['result'] = dict(res_list) data.append(doc) if i % 10 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S"))) except Exception as e: print('\nException Cause: {}'.format(e.args[0])) continue print('All work done {}!!'.format(pid)) return data num_procs = args.workers chunks = partition(doc_list, num_procs) data_list = mergeList(Parallel(n_jobs= num_procs)(delayed(process_data)(i,chunk) for i, chunk in enumerate(chunks))) base_dir = './results/{}'.format(args.data); make_dir(base_dir) dump_pickle(data_list, '{}/{}_{}.pkl'.format(base_dir, args.model, args.split)) ######################### METAMAP LITE def metamaplite(doc_list): from pymetamap import MetaMapLite mm = MetaMapLite.get_instance(args.metamaplite_path) def process_data(pid, doc_list): data, miss = [], 0 for i, doc in enumerate(doc_list): try: text = clean_text(doc['text']) concepts, error = mm.extract_concepts([text],[doc['_id']]) assert len(text) == len(doc['text']), 'Text length does not match after pre-processing' res_list = ddict(list) for k, concept in enumerate(concepts): if concept.mm !='MMI': continue pos_info = [list(map(int, x.split('/'))) for x in concept.pos_info.split(';')] mentions = replace(concept.trigger, '"').split('"')[0::2][1::2] for j, (start, offset) in enumerate(pos_info): end = start + offset res_list[(start, end)].append((concept.cui, concept.score)) doc['result'] = dict(res_list) data.append(doc) if i % 10 == 0: print('Completed [{}] {}, {}'.format(pid, i, time.strftime("%d_%m_%Y") + '_' + time.strftime("%H:%M:%S"))) except Exception as e: print('\nException Cause: {}'.format(e.args[0])) miss += 1 continue print('All work done {} | Miss: {}!!'.format(pid, miss)) return data num_procs = args.workers chunks = partition(doc_list, num_procs) data_list = mergeList(Parallel(n_jobs= num_procs)(delayed(process_data)(i,chunk) for i, chunk in enumerate(chunks))) base_dir = './results/{}'.format(args.data); make_dir(base_dir) dump_pickle(data_list, '{}/{}_{}.pkl'.format(base_dir, args.model, args.split)) if __name__ == '__main__': parser = argparse.ArgumentParser(description='') parser.add_argument('--data', default='ncbi', help='Dataset on which evaluation has to be performed.') parser.add_argument('--model', default='metamap', help='Entity linking system to use. Options: [scispacy, quickumls, ctakes, metamamp, metamaplite]') parser.add_argument('--split', default='test', help='Dataset split to evaluate on') parser.add_argument('--quickumls_path', default=None, help='QuickUMLS installation directory') parser.add_argument('--metamap_path', default=None, help='Location where MetaMap executable is installed, e.g .../public_mm/bin/metamap18') parser.add_argument('--metamaplite_path',default=None, help='Location where MetaMapLite is installed, e.g .../public_mm_lite') parser.add_argument('--ctakes_host', default='localhost', help='IP at which cTakes server is running') parser.add_argument('--ctakes_port', default=9999,type=int, help='Port at which cTakes server is running') parser.add_argument('--workers', default=1, type=int, help='Number of processes to use for parallelization') args = parser.parse_args() # Reading dataset doc_list = [] for line in open('../datasets/{}.json'.format(args.data)): doc = json.loads(line.strip()) if doc['split'] != args.split: continue doc_list.append(doc) # Dump Ground truth groundtruth_dump(doc_list) # Dump Model's output if args.model == 'quickumls': quickumls(doc_list) elif args.model == 'scispacy': scispacy(doc_list) elif args.model == 'ctakes': ctakes(doc_list) elif args.model == 'metamap': metamap(doc_list) elif args.model == 'metamaplite': metamaplite(doc_list) else: raise NotImplementedError
StarcoderdataPython
9791127
<reponame>GeorgeKandamkolathy/LocaltoSpotify import eyed3 import os import requests import json import webbrowser import http.server import sys from io import StringIO import base64 import urllib.parse import re CLIENT_ID = "128418d86c274651af8cdc709df1c143" CLIENT_SECRET = "<KEY>" def main(): unsuccesful = [] #Unsuccesful track transfers store = [] #Track location p = 0 #Progress Bar iterator i = 0 # Reused Iterator songlist = "" auth = '' #Authrorization code empty = 0 #Used to check for failed track transfers listlen = 0 #Number of tracks untagged = [] #Files without proper ID3 tagging directory = input('Music directory: ') existingstate = input('Existing or New Playlist: ') pattern = re.compile("(^(e|E)(xist)?(s)?(ing)?|^(n|N)(ew|EW)?)") while pattern.match(existingstate) == None: existingstate = input('Existing or New Playlist: ') playlistname = input('Playlist name: ') result = authenticate() result_string = result.getvalue() #Store file locations directoryencode = os.fsencode(directory) getTracks(directoryencode,store) printProgressBar(0, len(store), prefix = 'Progress:', suffix = 'Complete', length = 50) # Iterate through server output to retrive authentication code while result_string[i] != '=': i += 1 i += 1 while result_string[i] != ' ': auth = auth + result_string[i] i += 1 i = 0 #Send request to retrive access token using auth code params = { "grant_type": "authorization_code", "code": auth, "redirect_uri": "http://localhost:8000", } headers = { "Content-Type": "application/x-www-form-urlencoded", "Authorization" : "Basic " + base64.b64encode("{}:{}".format(CLIENT_ID, CLIENT_SECRET).encode('UTF-8')).decode('ascii') } html = requests.request('post', "https://accounts.spotify.com/api/token", headers=headers, params=params, data=None) token = html.json() # Final access token form for use in api calls auth = 'Bearer ' + token['access_token'] while i < len(store): printProgressBar(p + 1, len(store), prefix = 'Progress:', suffix = 'Complete', length = 50) p += 1 #If track failed don't add comma seperator to list if i > 0 and empty != 1: songlist = songlist + "%2C" empty = 0 #Stop eyed3 error ouputs sys.stderr = result #Get search terms through tags song = eyed3.core.load(store[i]) songname = song.tag.title album = song.tag.album artist = song.tag.artist #Skip files without tags if songname == None or album == None: untagged.append(store[i]) empty += 1 i += 1 continue sys.stderr = sys.__stderr__ #Encode search terms for URL usage songname = urllib.parse.quote(songname,safe='') album = urllib.parse.quote(album,safe='') artist = urllib.parse.quote(artist,safe='') #Api call for track search using track name and album response = requests.get("https://api.spotify.com/v1/search?q=track:"+ songname +"%20album:"+ album +"&type=track&limit=1", headers = {'Authorization' : auth}) dictionary = response.json() #If previous check failed replace album with artist if dictionary['tracks']['items'] == []: if artist == None: untagged.append(store[i]) i += 1 continue response = requests.get("https://api.spotify.com/v1/search?q="+ songname +"%20artist:"+ artist +"&type=track&limit=1", headers = {'Authorization' : auth}) dictionary = response.json() #If both failed add track to unsuccesful array and continue if dictionary['tracks']['items'] == []: unsuccesful.append(urllib.parse.unquote(songname)) i += 1 empty = 1 continue #Add retrived track id to list trackid = dictionary['tracks']['items'][0]['id'] songlist = songlist + "spotify%3Atrack%3A" + trackid listlen += 1 i += 1 i = 0 #Api call for user ID response = requests.get("https://api.spotify.com/v1/me", headers = {'Authorization' : auth}) response = response.json() userid = response['id'] #If user chose new playlisy make api call to create playlist new_check = re.compile("^(n|N)(ew|EW)?") exist_check = re.compile("^(e|E)(xist|XIST)?(s)?(ing|ING)?") if new_check.match(existingstate) != None: params = { "name": playlistname, "description": "Playlist transfer from local", "public": 'false' } response = requests.request('post', "https://api.spotify.com/v1/users/"+ userid +"/playlists", headers= {'Authorization' : auth,"Content-Type": "application/json","Accept": "application/json"}, params=None ,data=json.dumps(params)) response = response.json() playlistid= response['id'] #Else api call to retrive existing playlists elif exist_check.match(existingstate) != None: response = requests.get("https://api.spotify.com/v1/me/playlists", headers = {'Authorization' : auth}) response = response.json() while response['items'][i]['name'] != playlistname: if i + 1 == len(response['items']): print("Playlist Not Found") return i += 1 playlistid = response['items'][i]['id'] #Batch processing api calls for track uploafs current = 0 trackbuffer = '' j = 0 if listlen > 30: while j < len(songlist): if j + 1 == len(songlist): trackbuffer = trackbuffer + songlist[j] response = requests.request('post', "https://api.spotify.com/v1/playlists/"+ playlistid +"/tracks?uris=" + trackbuffer, headers= {'Authorization' : auth}) trackbuffer = '' if songlist[j] == '%': if songlist[j + 1] == '2' and songlist[j + 2] == 'C': current += 1 if current == 30: response = requests.request('post', "https://api.spotify.com/v1/playlists/"+ playlistid +"/tracks?uris=" + trackbuffer, headers= {'Authorization' : auth}) trackbuffer = '' current = 0 j = j + 3 trackbuffer = trackbuffer + songlist[j] j += 1 else: #Api call to add songs to playlist response = requests.request('post', "https://api.spotify.com/v1/playlists/"+ playlistid +"/tracks?uris=" + songlist, headers= {'Authorization' : auth}) print(str(len(unsuccesful)) + " Unsuccesful tracks: "+ str(unsuccesful)) print(str(len(untagged)) + " Untagged tracks: "+ str(untagged)) if len(unsuccesful) > 0 or len(untagged) > 0 : retry_check = re.compile("^(y|Y)(es|ES)?") retry_attempt = input("Would you like to attempt to add individual failed tracks?: ") if retry_check.match(retry_attempt) != None: reattempt(playlistid, auth, unsuccesful) reattempt(playlistid, auth, untagged) #Recursive calls to search subdirectories def getTracks(directoryencode,store): for entry in os.scandir(directoryencode): filename = os.fsdecode(entry) if entry.is_file() and filename.endswith(".mp3"): store.append(filename) elif entry.is_dir(): getTracks(entry.path,store) #Create temp server to handle URI redirect and retrive Auth Code def wait_for_request(server_class=http.server.HTTPServer, handler_class=http.server.BaseHTTPRequestHandler): server_address = ('', 8000) httpd = server_class(server_address, handler_class) httpd.handle_request() def authenticate(): old_stderr = sys.stderr result = StringIO() sys.stderr = result url = 'https://accounts.spotify.com/en/authorize?response_type=code&client_id=128418d86c274651af8cdc709df1c143&redirect_uri=http://localhost:8000&scope=user-read-private%20user-read-email%20playlist-modify-private%20playlist-modify-public%20playlist-read-private' webbrowser.open(url) wait_for_request() sys.stderr = old_stderr return result def reattempt(playlistid, auth, retry = [], *args): i = 0 while i < len(retry): retry[i] = re.sub('\(.+\)$', '', retry[i]) retry[i] = re.sub('^.+ -', '', retry[i]) retry[i] = os.path.splitext(retry[i])[0] response = requests.get("https://api.spotify.com/v1/search?q=track:"+ retry[i] +"&type=track&limit=3", headers = {'Authorization' : auth}) dictionary = response.json() if len(dictionary['tracks']['items']) != 0 : z = 0 print(retry[i]) while z < len(dictionary['tracks']['items']) : print(str(int(z) + 1) + ". " + dictionary['tracks']['items'][z]['name'] + ' - ' + dictionary['tracks']['items'][z]['artists'][0]['name'] + "\n") z += 1 choice = input('Add which song - 0 for none: ') while choice > z : choice = input('Add which song - 0 for none: ') if choice != 0 : track = re.sub('\:', '%3A', dictionary['tracks']['items'][int(choice) - 1]['uri']) response = requests.request('post', "https://api.spotify.com/v1/playlists/"+ playlistid +"/tracks?uris=" + track, headers= {'Authorization' : auth}) i += 1 def printProgressBar (iteration, total, prefix = '', suffix = '', decimals = 1, length = 100, fill = '█', printEnd = "\r"): """ Call in a loop to create terminal progress bar @params: iteration - Required : current iteration (Int) total - Required : total iterations (Int) prefix - Optional : prefix string (Str) suffix - Optional : suffix string (Str) decimals - Optional : positive number of decimals in percent complete (Int) length - Optional : character length of bar (Int) fill - Optional : bar fill character (Str) printEnd - Optional : end character (e.g. "\r", "\r\n") (Str) """ percent = ("{0:." + str(decimals) + "f}").format(100 * (iteration / float(total))) filledLength = int(length * iteration // total) bar = fill * filledLength + '-' * (length - filledLength) print('\r%s |%s| %s%% %s' % (prefix, bar, percent, suffix), end = printEnd) # Print New Line on Complete if iteration == total: print() if __name__ == "__main__": main() input()
StarcoderdataPython
9754739
import matplotlib.pyplot as plt import numpy as np with open('/home/ganesh/Desktop/class_acc.txt','r') as myfile: data = myfile.read() actor_list=list() accuracy_list=list() x = data.strip().split('\n') for i in range(len(x)): y=x[i].split(',') print(y) actor_list.append(y[0]) accuracy_list.append(y[1]) myfile.close() plt.scatter(np.arange(0,len(accuracy_list)),accuracy_list)
StarcoderdataPython
8034953
<reponame>andela/ah-django-unchained<filename>authors/apps/usernotifications/views.py<gh_stars>0 import jwt from django.conf import settings from django.shortcuts import get_object_or_404 from django.http import Http404 from rest_framework import status from rest_framework.generics import ( ListAPIView, UpdateAPIView ) from rest_framework.permissions import AllowAny, IsAuthenticated from rest_framework.response import Response from .serializers import NotificationSerializer, UnsubscribeSerializer from authors.apps.authentication.models import User class NotificationAPIView(ListAPIView): permission_classes = (IsAuthenticated,) serializer_class = NotificationSerializer def get(self, request, *args, **kwargs): notifications = self.notifications(request) serializer = self.serializer_class( notifications, many=True, context={'request': request} ) return Response( {"count": notifications.count(), "notifications": serializer.data} ) def notifications(self, request): # this method will be overridden by the following methods pass class AllNotificationsAPIView(NotificationAPIView): """ list all the notifications for this user """ def notifications(self, request): request.user.notifications.mark_as_sent() return request.user.notifications.active() class UnsubscribeAPIView(ListAPIView, UpdateAPIView): """ class for allowing users to unsubscribe from notifications """ permission_classes = [AllowAny] serializer_class = UnsubscribeSerializer def get(self, request, token): """ unsubscribe from email notifications """ try: email = jwt.decode(token, settings.SECRET_KEY)['email'] user = User.objects.get(email=email) except(TypeError, ValueError, OverflowError, Exception): raise Http404 user.email_notification_subscription = False user.save() message = { "message": "You have successfully unsubscribed from notifications", "email": user.email_notification_subscription, "app": user.app_notification_subscription } return Response(message, status=status.HTTP_200_OK) def put(self, request): """ unsubscribe from app notifications """ self.permission_classes.append(IsAuthenticated,) user = get_object_or_404(User, email=request.user.email) user.app_notification_subscription = False message = { "message": "You have successfully unsubscribed from app notifications", "email": user.email_notification_subscription, "app": user.app_notification_subscription } user.save() return Response(message, status=status.HTTP_200_OK) class SubscribeAPIView(UpdateAPIView): """ allow users to subscribe to notifications """ permission_classes = [IsAuthenticated] def post(self, request): """ subscribe to all notifications """ user = get_object_or_404(User, email=request.user.email) user.email_notification_subscription = True user.app_notification_subscription = True user.save() message = { "message": "You have successfully subscribed to notifications", "email": user.email_notification_subscription, "app": user.app_notification_subscription } return Response(message, status=status.HTTP_200_OK)
StarcoderdataPython
3544386
"""Setup the package.""" # Parse requirements # ------------------ import pkg_resources import pathlib def parse_requirements(path: str) -> 'list[str]': with pathlib.Path(path).open() as requirements: return [str(req) for req in pkg_resources.parse_requirements(requirements)] # Setup package # ------------- from setuptools import setup DRIVERS = ['asyncpg', 'aiopg', 'aiomysql', 'aiosqlite', 'triopg', 'trio_mysql'] setup( install_requires=parse_requirements('requirements/requirements.txt'), extras_require=dict( {driver: [f"aio-databases[{driver}]"] for driver in DRIVERS}, tests=parse_requirements('requirements/requirements-tests.txt'), ) ) # pylama:ignore=E402,D
StarcoderdataPython
1664194
<reponame>RivtLib/replit01 import operator from typing import Union from .exceptions import InvalidVersion from .legacy_version import LegacyVersion from .version import Version OP_EQ = operator.eq OP_LT = operator.lt OP_LE = operator.le OP_GT = operator.gt OP_GE = operator.ge OP_NE = operator.ne _trans_op = { "=": OP_EQ, "==": OP_EQ, "<": OP_LT, "<=": OP_LE, ">": OP_GT, ">=": OP_GE, "!=": OP_NE, } def parse( version, # type: str strict=False, # type: bool ): # type:(...) -> Union[Version, LegacyVersion] """ Parse the given version string and return either a :class:`Version` object or a LegacyVersion object depending on if the given version is a valid PEP 440 version or a legacy version. If strict=True only PEP 440 versions will be accepted. """ try: return Version(version) except InvalidVersion: if strict: raise return LegacyVersion(version)
StarcoderdataPython
270236
<reponame>bg459/gan-ensembling-loader<filename>data/data_cars.py import torch import numpy as np import os from data.image_dataset import ImageDataset from torch.utils.data import Subset from torchvision import transforms from PIL import Image import random import math from mat4py import loadmat from collections import defaultdict from .transforms import randomcrop_tensor, centercrop_tensor ###### utility functions ###### anno_path = 'dataset/cars/devkit/cars_meta.mat' data = loadmat(anno_path) class_names = data['class_names'] anno_path = 'dataset/cars/devkit/cars_train_annos.mat' data = loadmat(anno_path) class_labels = data['annotations']['class'] file_names = data['annotations']['fname'] bbox_annotations = (data['annotations']['bbox_x1'], data['annotations']['bbox_y1'], data['annotations']['bbox_x2'], data['annotations']['bbox_y2']) # for each class, which images are a member of it indices_per_class = defaultdict(list) for i in range(len(class_labels)): indices_per_class[class_labels[i]].append(i) train_indices = {k: v[:len(v)//2] for k, v in indices_per_class.items()} val_indices = {k: v[len(v)//2:-len(v)//4] for k, v in indices_per_class.items()} test_indices = {k: v[-len(v)//4:] for k, v in indices_per_class.items()} car_types = ['-'] + [x.split(' ')[-2] for x in class_names] # - for 1-indexing def get_partition_indices(part, valid_classes): fine_to_coarse_label_map = {i: valid_classes.index(x) for i, x in enumerate(car_types) if x in valid_classes} partition_indices = [] fine_labels = [] if part == 'train': [partition_indices.extend(train_indices[k]) for k in fine_to_coarse_label_map] [fine_labels.extend([k]*len(train_indices[k])) for k in fine_to_coarse_label_map] if part == 'val': [partition_indices.extend(val_indices[k]) for k in fine_to_coarse_label_map] [fine_labels.extend([k]*len(val_indices[k])) for k in fine_to_coarse_label_map] if part == 'test': [partition_indices.extend(test_indices[k]) for k in fine_to_coarse_label_map] [fine_labels.extend([k]*len(test_indices[k])) for k in fine_to_coarse_label_map] return partition_indices, fine_labels, fine_to_coarse_label_map ###### dataset functions ###### class CarsDataset: def __init__(self, partition, classes='threecars', load_w=True, **kwargs): root = 'dataset/cars/images' self.load_w = load_w self.dset = ImageDataset(root, return_path=True, **kwargs) if classes == 'sixcars': valid_classes = ['SUV', 'Sedan', 'Hatchback', 'Convertible', 'Coupe', 'Cab'] elif classes == 'threecars': valid_classes = ['SUV', 'Sedan', 'Cab'] elif classes == 'suvsedan': valid_classes = ['SUV', 'Sedan'] else: valid_classes = None print("The valid classes are: %s" % valid_classes) partition_idx, fine_labels, fine_to_coarse_label_map = get_partition_indices(partition, valid_classes) self.dset = Subset(self.dset, partition_idx) self.fine_to_coarse_label_map = fine_to_coarse_label_map self.partition_idx = partition_idx self.fine_labels = fine_labels self.coarse_labels = valid_classes def __len__(self): return len(self.dset) def __getitem__(self, idx): data = self.dset[idx] fine_label = self.fine_labels[idx] img_filename = os.path.splitext(os.path.basename(data[2]))[0] coarse_label = self.fine_to_coarse_label_map[fine_label] remapped_index = self.dset.indices[idx] # remap since it is subset assert(os.path.splitext(file_names[remapped_index])[0] == img_filename) assert(class_labels[remapped_index] == fine_label) # get bounding box bbox = (bbox_annotations[0][remapped_index], bbox_annotations[1][remapped_index], bbox_annotations[2][remapped_index], bbox_annotations[3][remapped_index]) if self.load_w: path = data[2] w_path = path.replace('images/images', 'latents').replace('jpg', 'pth') # remove batch dimension w_pth = torch.load(w_path, map_location='cpu')['w'][0].detach() return (data[0], w_pth, coarse_label, bbox, *data[2:]) return (data[0], coarse_label, bbox, *data[2:]) ###### transformation functions ##### def get_transform(dataset, transform_type): assert(dataset.lower() == 'car') if transform_type == 'imtrain': return transforms.Compose([ transforms.RandomResizedCrop(256, scale=(0.8, 1.0), interpolation=Image.ANTIALIAS), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) elif transform_type == 'imval': return transforms.Compose([ transforms.Resize(256, Image.ANTIALIAS), transforms.CenterCrop(256), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) elif transform_type == 'im2tensor': return transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) elif transform_type == 'imcrop': return transforms.Compose([ transforms.Resize(256, Image.ANTIALIAS), transforms.RandomCrop(256), transforms.RandomHorizontalFlip(p=0.5), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)), ]) elif transform_type == 'tensorbase': return TensorBaseTransform() elif transform_type == 'tensormixed': return TensorCombinedTransform() elif transform_type == 'tensormixedtrain': return TensorCombinedTransformTrain() else: raise NotImplementedError class TensorBaseTransform(object): def __init__(self): self.load_size = (256, 342) # 1.5x = (384, 512) gan output size self.crop_size = 256 self.resize = torch.nn.Upsample(self.load_size, mode='bilinear') def __call__(self, image): image = image[:, :, 64:-64, :] # crop off the black padding image = self.resize(image) image = centercrop_tensor(image, self.crop_size, self.crop_size) return image # mimics RandomCrop and RandomHorizontalFlip on Tensor inputs class TensorCombinedTransform(object): def __init__(self): self.load_size = (256, 342) # 1.5x (512, 384) self.crop_size = 256 self.resize = torch.nn.Upsample(self.load_size, mode='bilinear') def __call__(self, image): image = image[:, :, 64:-64, :] # crop off the black padding # resize 512x384 --> (342x256) (about 1.5x scale) image = self.resize(image) # random crop at 256 (for each image individually) image = torch.cat([randomcrop_tensor(im[None], self.crop_size) for im in image]) # random horizontal flip image = torch.stack([torch.flip(x, dims=(-1,)) if torch.rand(1) > 0.5 else x for x in image]) return image # mimics RandomResizeCrop and RandomHorizontalFlip on Tensor inputs class TensorCombinedTransformTrain(object): def __init__(self): # performs a tensor random-resize crop self.crop_size = 256 self.resize = torch.nn.Upsample((self.crop_size, self.crop_size), mode='bilinear') self.scale = (0.8, 1.0) self.ratio = (3. / 4., 4. / 3.) self.flip = True def get_image_size(self, img): assert(isinstance(img, torch.Tensor) and img.dim() > 2) return img.shape[-2:][::-1] def get_params(self, img): scale = self.scale ratio = self.ratio width, height = self.get_image_size(img) area = height * width for _ in range(10): target_area = random.uniform(*scale) * area log_ratio = (math.log(ratio[0]), math.log(ratio[1])) aspect_ratio = math.exp(random.uniform(*log_ratio)) w = int(round(math.sqrt(target_area * aspect_ratio))) h = int(round(math.sqrt(target_area / aspect_ratio))) if 0 < w <= width and 0 < h <= height: i = random.randint(0, height - h) j = random.randint(0, width - w) return i, j, h, w # Fallback to central crop in_ratio = float(width) / float(height) if (in_ratio < min(ratio)): w = width h = int(round(w / min(ratio))) elif (in_ratio > max(ratio)): h = height w = int(round(h * max(ratio))) else: # whole image w = width h = height i = (height - h) // 2 j = (width - w) // 2 return i, j, h, w def __call__(self, image): image = image[:, :, 64:-64, :] # crop off the black badding # random resized crop, for each image independently image_list = [] for im in image: im = im[None] i, j, h, w = self.get_params(image) im = im[:, :, i:i+h, j:j+w] # random resize crop im = self.resize(im) # resize to output size image_list.append(im) image = torch.cat(image_list, dim=0) # horizontal flip for each image independently image = torch.stack([torch.flip(x, dims=(-1,)) if torch.rand(1) > 0.5 else x for x in image]) return image
StarcoderdataPython
1941564
<reponame>gdialektakis/Statistical-Dialogue-Systems-with-Adversarial-AutoEncoders<filename>autoencoder/adversarial_autoencoder/lib/precision.py _author__ = """<NAME> (<EMAIL>)""" # Copyright (C) 2016 by # <NAME> <<EMAIL>> # All rights reserved. # Computer Science Department, University of Crete. import tensorflow as tf _FLOATX = tf.float32
StarcoderdataPython
360926
from flask import ( Blueprint, Response, render_template, current_app, request, redirect, jsonify ) import requests frontend = Blueprint('frontend', __name__, template_folder='templates') headers = {'Content-type': 'application/json'} @frontend.route('/') def index(): country_register = current_app.config['COUNTRY_REGISTER'] return render_template('index.html', country_register=country_register) @frontend.route('/country', methods=['POST']) def country(): country = request.form.getlist('country')[0] current_app.logger.info(country) country_register = current_app.config['COUNTRY_REGISTER'] url = "%s/country/%s" % (country_register, country) return redirect(url) @frontend.route('/countries.json') def countries(): country_register = current_app.config['COUNTRY_REGISTER'] url = "%s/records.json?page-size=300" % country_register resp = requests.get(url, headers=headers) countriesJson = resp.json() countries = [] for key in countriesJson: countries.append(countriesJson[key]) countries = sorted(countries, key=lambda country: country['name']) return jsonify({'entries': countries})
StarcoderdataPython
6582067
<reponame>brentp/bcbio-nextgen<filename>bcbio/provenance/versioncheck.py<gh_stars>1-10 """Check specific required program versions required during the pipeline. """ import subprocess from bcbio.pipeline import config_utils from bcbio.log import logger def samtools(config): """Ensure samtools has parallel processing required for piped analysis. """ samtools = config_utils.get_program("samtools", config) p = subprocess.Popen([samtools, "sort"], stdout=subprocess.PIPE, stderr=subprocess.STDOUT) output, _ = p.communicate() p.stdout.close() if output.find("-@") == -1: return ("Installed version of samtools sort does not have support for multithreading (-@ option) " "required to support bwa piped alignment and BAM merging. " "Please upgrade to the latest version " "from http://samtools.sourceforge.net/") def testall(items): logger.info("Testing minimum versions of installed programs") items = [x[0] for x in items] config = items[0]["config"] msgs = [] for fn in [samtools]: out = fn(config) if out: msgs.append(out) if msgs: raise OSError("Program problems found. You can upgrade dependencies with:\n" + "bcbio_nextgen.py upgrade -u skip --tooldir=/usr/local\n\n" + "\n".join(msgs))
StarcoderdataPython
3524407
from flask_wtf import FlaskForm from wtforms import StringField, IntegerField, SubmitField from wtforms.validators import DataRequired class LcdForm(FlaskForm): lcd_text = StringField('LcdText', validators=[DataRequired()]) submit = SubmitField('Display') class LcdRowForm(FlaskForm): lcd_text = StringField('LcdText', validators=[DataRequired()]) lcd_row = IntegerField('LcdRow', validators=[DataRequired()]) submit = SubmitField('Display') class GenericCPIOForm(FlaskForm): pin = IntegerField('pin', validators=[DataRequired()]) value = StringField('value', validators=[DataRequired()]) class LedForm(FlaskForm): pin = IntegerField('PIN', validators=[DataRequired()]) repetitions = IntegerField('Repetitions', validators=[DataRequired()]) submit = SubmitField('Blink!')
StarcoderdataPython
1743805
<gh_stars>0 import serial import logging port = "/dev/ttyUSB0" baud = 115200 #log = logging.getLogger("serialM4") class serialM4(): def __init__(self): #log.info("SerialM4 constructor called") self.com = serial.Serial(port, 115200) def run(self): #log.info("Receive thread started") while True: self.state = self.com.read(1) print(self.state) def cmd(self, char): #log.info("Serial command: '" + char + "'") self.com.write(str.encode(char)) def open(self): self.cmd("o") def close(self): self.cmd("c") def reagent(self): self.cmd("r") def waste(self): self.cmd("w") def stop(self): self.cmd("s") def inPos(self): self.cmd("Q") def inNeg(self): self.cmd("A") def outPos(self): self.cmd("X") def outNeg(self): self.cmd("Y")
StarcoderdataPython
1652072
<filename>stack_overseer/question_monitor/config/api_config.example.py # Remove .example, change to api_config.py API_KEY = "GET API KEY HERE https://stackapps.com/apps/oauth/register" # for stackExchange API GEO_CODER_API = "Whatever service endpoint APIKEY!" # GEOCODER GEO_CODER_API_ENDPOINT = "A API Endpoint Url"
StarcoderdataPython
5061396
# -*- coding: utf-8 -*- """insult_train.ipynb Automatically generated by Colaboratory. Original file is located at https://colab.research.google.com/drive/11OTc2Q2mXQ1a3O0vljL4FhhZhqJqQzT_ """ from google.colab import drive drive.mount('/content/drive') from numpy import array from keras.preprocessing.text import one_hot from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers.core import Activation, Dropout, Dense from keras.layers import Flatten, LSTM from keras.layers import GlobalMaxPooling1D from keras.models import Model from keras.layers.embeddings import Embedding from sklearn.model_selection import train_test_split from keras.preprocessing.text import Tokenizer from keras.layers import Input from keras.layers.merge import Concatenate import pandas as pd import numpy as np import re import matplotlib.pyplot as plt toxic_comments = pd.read_csv("/content/drive/My Drive/work/Keyword_Suggestion/Training/Datasets/hatekeyword.csv") toxic_comments.head() filter = toxic_comments["comment_text"] != "" toxic_comments = toxic_comments[filter] toxic_comments = toxic_comments.dropna() toxic_comments_labels = toxic_comments[["toxic", "severe_toxic", "obscene","insult"]] toxic_comments_labels.head() fig_size = plt.rcParams["figure.figsize"] fig_size[0] = 10 fig_size[1] = 8 plt.rcParams["figure.figsize"] = fig_size toxic_comments_labels.sum(axis=0).plot.bar() def preprocess_text(sen): # Remove punctuations and numbers sentence = re.sub('[^a-zA-Z]', ' ', sen) # Single character removal sentence = re.sub(r"\s+[a-zA-Z]\s+", ' ', sentence) # Removing multiple spaces sentence = re.sub(r'\s+', ' ', sentence) return sentence X = [] sentences = list(toxic_comments["comment_text"]) for sen in sentences: X.append(preprocess_text(sen)) y = toxic_comments_labels.values X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=42) tokenizer = Tokenizer(num_words=5000) tokenizer.fit_on_texts(X_train) X_train = tokenizer.texts_to_sequences(X_train) X_test = tokenizer.texts_to_sequences(X_test) vocab_size = len(tokenizer.word_index) + 1 maxlen = 200 X_train = pad_sequences(X_train, padding='post', maxlen=maxlen) X_test = pad_sequences(X_test, padding='post', maxlen=maxlen) from numpy import array from numpy import asarray from numpy import zeros embeddings_dictionary = dict() glove_file = open('/content/drive/My Drive/work/Emotion Detection/glove.6B.100d.txt', encoding="utf8") for line in glove_file: records = line.split() word = records[0] vector_dimensions = asarray(records[1:], dtype='float32') embeddings_dictionary[word] = vector_dimensions glove_file.close() embedding_matrix = zeros((vocab_size, 100)) for word, index in tokenizer.word_index.items(): embedding_vector = embeddings_dictionary.get(word) if embedding_vector is not None: embedding_matrix[index] = embedding_vector deep_inputs = Input(shape=(maxlen,)) embedding_layer = Embedding(vocab_size, 100, weights=[embedding_matrix], trainable=False)(deep_inputs) LSTM_Layer_1 = LSTM(128)(embedding_layer) dense_layer_1 = Dense(4, activation='sigmoid')(LSTM_Layer_1) model = Model(inputs=deep_inputs, outputs=dense_layer_1) model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['acc']) print(model.summary()) from keras.utils import plot_model plot_model(model, to_file='model_plot4a.png', show_shapes=True, show_layer_names=True) history = model.fit(X_train, y_train, batch_size=128, epochs=5, verbose=1, validation_split=0.2) score = model.evaluate(X_test, y_test, verbose=1) print("Test Score:", score[0]) print("Test Accuracy:", score[1]) import matplotlib.pyplot as plt plt.plot(history.history['acc']) plt.plot(history.history['val_acc']) plt.title('model accuracy') plt.ylabel('accuracy') plt.xlabel('epoch') plt.legend(['train','test'], loc='upper left') plt.show() plt.plot(history.history['loss']) plt.plot(history.history['val_loss']) plt.title('model loss') plt.ylabel('loss') plt.xlabel('epoch') plt.legend(['train','test'], loc='upper left') plt.show() predictions = model.predict(X_test, verbose=1) print(X_test) from keras.models import load_model model.save('insult_model.h5') import pickle # saving with open('insult_tokenizer.pickle', 'wb') as handle: pickle.dump(tokenizer, handle, protocol=pickle.HIGHEST_PROTOCOL) # loading with open('insult_tokenizer.pickle', 'rb') as handle: tokenizer = pickle.load(handle) model1 = load_model('insult_model.h5') score = model1.evaluate(X_test, y_test, verbose=1) print("Test Score:", score[0]) print("Test Accuracy:", score[1])
StarcoderdataPython
9609614
from flask import Flask, url_for, render_template, redirect, jsonify, json, request from requests import get import urllib.request, urllib.error, urllib.parse, json, webbrowser, requests # reference: https://github.com/pacman2020/Pokemon-flask-API def pretty(obj): return json.dumps(obj, sort_keys=True, indent=2) # def safe_get(url): r = requests.get(url) if r.status_code == 200: return requests.get(url) else: print("Failed to fulfill the request." ) print("Error code: ", r.status_code) #### Main Assignment ############## # def pokeAllREST(baseurl = 'https://pokeapi.co/api/v2/pokemon', params={}, printurl = False ): url = baseurl + "?" + urllib.parse.urlencode(params) if printurl: print(url) return safe_get(url) def pokeNameREST(baseurl = 'https://pokeapi.co/api/v2/pokemon/', id = 1, printurl = False ): url = baseurl + str(id) if printurl: print(url) return safe_get(url) def get_poke_names(n=1000): # n is limit results = pokeAllREST(params={"limit": n}) if results is None: return None else: all_poke = results.json() # print(pretty(all_poke)) return all_poke def get_poke_info(poke_id): result = pokeNameREST(id = poke_id) if result is None: return None else: this_poke = result.json() # print(pretty(this_poke)) return this_poke app = Flask(__name__) @app.route('/') def home(): limit = 36 offset = request.args.get('offset') search = request.args.get('search') if search: pokemonsJson = get('https://pokeapi.co/api/v2/pokemon/'+search.lower()) pokemon = json.loads(pokemonsJson.content) for i in pokemon['stats']: stat = i['base_stat'] if i['stat']['name'] == "hp": hp = stat if i['stat']['name'] == "attack": attack = stat if i['stat']['name'] == "defense": defense = stat if i['stat']['name'] == "speed": speed = stat pokemons = [] pokemons.append( { 'id': pokemon['id'], 'name': pokemon['name'], 'type': pokemon['types'][0]['type']['name'], 'experience': pokemon['base_experience'], 'hp': hp, 'attack': attack, 'defense': defense, 'speed': speed } ) return render_template('home.html', pokemons=pokemons) url = 'https://pokeapi.co/api/v2/pokemon?limit={}&offset={}'.format(limit, offset) pokemonsJson = get(url) all_pokemons = json.loads(pokemonsJson.content) pokemons = [] id = 0 for pokemon in all_pokemons['results']: # extracting pokemon id by URL id_p = str(pokemon['url']) id = id_p.split('/')[-2] pokemon = get_poke_info(id) for i in pokemon['stats']: stat = i['base_stat'] if i['stat']['name'] == "hp": hp = stat if i['stat']['name'] == "attack": attack = stat if i['stat']['name'] == "defense": defense = stat if i['stat']['name'] == "speed": speed = stat pokemons.append( { 'id': id, 'name': pokemon['name'], 'type': pokemon['types'][0]['type']['name'], 'experience': pokemon['base_experience'], 'hp': hp, 'attack': attack, 'defense': defense, 'speed': speed } ) return render_template('home.html', pokemons=pokemons) @app.route('/<name>') def detail(name): pokemonsJson = get('https://pokeapi.co/api/v2/pokemon/'+name) pokemon_data = json.loads(pokemonsJson.content) for i in pokemon_data['stats']: stat = i['base_stat'] if i['stat']['name'] == "hp": hp = stat if i['stat']['name'] == "attack": attack = stat if i['stat']['name'] == "defense": defense = stat if i['stat']['name'] == "speed": speed = stat pokemon ={ 'id': pokemon_data['id'], 'name': pokemon_data['name'], 'type': pokemon_data['types'][0]['type']['name'], 'experience': pokemon_data['base_experience'], 'hp': hp, 'attack': attack, 'defense': defense, 'speed': speed } return render_template('detail.html', pokemon=pokemon) if __name__ == '__main__': app.run(debug=True)
StarcoderdataPython
4930627
import logging import tempfile import os import torch from collections import OrderedDict from tqdm import tqdm from maskrcnn_benchmark.modeling.roi_heads.mask_head.inference import Masker from maskrcnn_benchmark.structures.bounding_box import BoxList from maskrcnn_benchmark.structures.boxlist_ops import boxlist_iou from pycocotools.cocoeval import COCOeval, Params def do_coco_evaluation( dataset, predictions, box_only, output_folder, iou_types, expected_results, expected_results_sigma_tol, ): logger = logging.getLogger("maskrcnn_benchmark.inference") if box_only: logger.info("Evaluating bbox proposals") areas = {"all": "", "small": "s", "medium": "m", "large": "l"} res = COCOResults("box_proposal") for limit in [100, 1000]: for area, suffix in areas.items(): stats = evaluate_box_proposals( predictions, dataset, area=area, limit=limit ) key = "AR{}@{:d}".format(suffix, limit) res.results["box_proposal"][key] = stats["ar"].item() logger.info(res) check_expected_results(res, expected_results, expected_results_sigma_tol) if output_folder: torch.save(res, os.path.join(output_folder, "box_proposals.pth")) return logger.info("Preparing results for COCO format") coco_results = {} if "bbox" in iou_types: logger.info("Preparing bbox results") coco_results["bbox"] = prepare_for_coco_detection(predictions, dataset) if "segm" in iou_types: logger.info("Preparing segm results") coco_results["segm"] = prepare_for_coco_segmentation(predictions, dataset) if 'keypoints' in iou_types: logger.info('Preparing keypoints results') coco_results['keypoints'] = prepare_for_coco_keypoint(predictions, dataset) if 'depth' in iou_types: logger.info('Preparing depth results') coco_results['depth'] = prepare_for_coco_regression(predictions, dataset) results = COCOResults(*iou_types) logger.info("Evaluating predictions") for iou_type in iou_types: with tempfile.NamedTemporaryFile() as f: file_path = f.name if output_folder: file_path = os.path.join(output_folder, iou_type + ".json") res = evaluate_predictions_on_coco( dataset.coco, coco_results[iou_type], file_path, iou_type ) results.update(res) logger.info(results) check_expected_results(results, expected_results, expected_results_sigma_tol) if output_folder: torch.save(results, os.path.join(output_folder, "coco_results.pth")) return results, coco_results def prepare_for_coco_detection(predictions, dataset): # assert isinstance(dataset, COCODataset) coco_results = [] for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] if len(prediction) == 0: continue img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) prediction = prediction.convert("xywh") boxes = prediction.bbox.tolist() scores = prediction.get_field("scores").tolist() labels = prediction.get_field("labels").tolist() mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels] coco_results.extend( [ { "image_id": original_id, "category_id": mapped_labels[k], "bbox": box, "score": scores[k], } for k, box in enumerate(boxes) # if hasattr(dataset, "class_filter_list") and mapped_labels[k] in dataset.class_filter_list ] ) return coco_results def prepare_for_coco_segmentation(predictions, dataset): import pycocotools.mask as mask_util import numpy as np masker = Masker(threshold=0.5, padding=1) # assert isinstance(dataset, COCODataset) coco_results = [] for image_id, prediction in tqdm(enumerate(predictions)): original_id = dataset.id_to_img_map[image_id] if len(prediction) == 0: continue img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) masks = prediction.get_field("mask") # t = time.time() # Masker is necessary only if masks haven't been already resized. if list(masks.shape[-2:]) != [image_height, image_width]: masks = masker(masks.expand(1, -1, -1, -1, -1), prediction) masks = masks[0] # logger.info('Time mask: {}'.format(time.time() - t)) # prediction = prediction.convert('xywh') # boxes = prediction.bbox.tolist() scores = prediction.get_field("scores").tolist() labels = prediction.get_field("labels").tolist() # rles = prediction.get_field('mask') rles = [ mask_util.encode(np.array(mask[0, :, :, np.newaxis], order="F"))[0] for mask in masks ] for rle in rles: rle["counts"] = rle["counts"].decode("utf-8") mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels] coco_results.extend( [ { "image_id": original_id, "category_id": mapped_labels[k], "segmentation": rle, "score": scores[k], } for k, rle in enumerate(rles) ] ) return coco_results def prepare_for_coco_keypoint(predictions, dataset): # assert isinstance(dataset, COCODataset) coco_results = [] for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] if len(prediction.bbox) == 0: continue # TODO replace with get_img_info? image_width = dataset.coco.imgs[original_id]['width'] image_height = dataset.coco.imgs[original_id]['height'] prediction = prediction.resize((image_width, image_height)) prediction = prediction.convert('xywh') boxes = prediction.bbox.tolist() scores = prediction.get_field('scores').tolist() labels = prediction.get_field('labels').tolist() keypoints = prediction.get_field('keypoints') keypoints = keypoints.resize((image_width, image_height)) keypoints = keypoints.keypoints.view(keypoints.keypoints.shape[0], -1).tolist() mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels] coco_results.extend([{ 'image_id': original_id, 'category_id': mapped_labels[k], 'keypoints': keypoint, 'score': scores[k]} for k, keypoint in enumerate(keypoints)]) return coco_results def prepare_for_coco_regression(predictions, dataset): # assert isinstance(dataset, COCODataset) coco_results = [] for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] if len(prediction.bbox) == 0: continue # TODO replace with get_img_info? image_width = dataset.coco.imgs[original_id]['width'] image_height = dataset.coco.imgs[original_id]['height'] prediction = prediction.resize((image_width, image_height)) prediction = prediction.convert('xywh') boxes = prediction.bbox.tolist() scores = prediction.get_field('scores').tolist() labels = prediction.get_field('labels').tolist() regs = prediction.get_field('depths').tolist() # .convert("depth") mapped_labels = [dataset.contiguous_category_id_to_json_id[i] for i in labels] coco_results.extend([{ 'image_id': original_id, 'category_id': mapped_labels[k], 'bbox': boxes[k], 'depth': reg, 'score': scores[k]} for k, reg in enumerate(regs)]) return coco_results # inspired from Detectron def evaluate_box_proposals( predictions, dataset, thresholds=None, area="all", limit=None ): """Evaluate detection proposal recall metrics. This function is a much faster alternative to the official COCO API recall evaluation code. However, it produces slightly different results. """ # Record max overlap value for each gt box # Return vector of overlap values areas = { "all": 0, "small": 1, "medium": 2, "large": 3, "96-128": 4, "128-256": 5, "256-512": 6, "512-inf": 7, } area_ranges = [ [0 ** 2, 1e5 ** 2], # all [0 ** 2, 32 ** 2], # small [32 ** 2, 96 ** 2], # medium [96 ** 2, 1e5 ** 2], # large [96 ** 2, 128 ** 2], # 96-128 [128 ** 2, 256 ** 2], # 128-256 [256 ** 2, 512 ** 2], # 256-512 [512 ** 2, 1e5 ** 2], ] # 512-inf assert area in areas, "Unknown area range: {}".format(area) area_range = area_ranges[areas[area]] gt_overlaps = [] num_pos = 0 for image_id, prediction in enumerate(predictions): original_id = dataset.id_to_img_map[image_id] img_info = dataset.get_img_info(image_id) image_width = img_info["width"] image_height = img_info["height"] prediction = prediction.resize((image_width, image_height)) # sort predictions in descending order # TODO maybe remove this and make it explicit in the documentation inds = prediction.get_field("objectness").sort(descending=True)[1] prediction = prediction[inds] ann_ids = dataset.coco.getAnnIds(imgIds=original_id) anno = dataset.coco.loadAnns(ann_ids) gt_boxes = [obj["bbox"] for obj in anno if obj["iscrowd"] == 0] gt_boxes = torch.as_tensor(gt_boxes).reshape(-1, 4) # guard against no boxes gt_boxes = BoxList(gt_boxes, (image_width, image_height), mode="xywh").convert( "xyxy" ) gt_areas = torch.as_tensor([obj["area"] for obj in anno if obj["iscrowd"] == 0]) if len(gt_boxes) == 0: continue valid_gt_inds = (gt_areas >= area_range[0]) & (gt_areas <= area_range[1]) gt_boxes = gt_boxes[valid_gt_inds] num_pos += len(gt_boxes) if len(gt_boxes) == 0: continue if len(prediction) == 0: continue if limit is not None and len(prediction) > limit: prediction = prediction[:limit] overlaps = boxlist_iou(prediction, gt_boxes) _gt_overlaps = torch.zeros(len(gt_boxes)) for j in range(min(len(prediction), len(gt_boxes))): # find which proposal box maximally covers each gt box # and get the iou amount of coverage for each gt box max_overlaps, argmax_overlaps = overlaps.max(dim=0) # find which gt box is 'best' covered (i.e. 'best' = most iou) gt_ovr, gt_ind = max_overlaps.max(dim=0) assert gt_ovr >= 0 # find the proposal box that covers the best covered gt box box_ind = argmax_overlaps[gt_ind] # record the iou coverage of this gt box _gt_overlaps[j] = overlaps[box_ind, gt_ind] assert _gt_overlaps[j] == gt_ovr # mark the proposal box and the gt box as used overlaps[box_ind, :] = -1 overlaps[:, gt_ind] = -1 # append recorded iou coverage level gt_overlaps.append(_gt_overlaps) gt_overlaps = torch.cat(gt_overlaps, dim=0) gt_overlaps, _ = torch.sort(gt_overlaps) if thresholds is None: step = 0.05 thresholds = torch.arange(0.5, 0.95 + 1e-5, step, dtype=torch.float32) recalls = torch.zeros_like(thresholds) # compute recall for each iou threshold for i, t in enumerate(thresholds): recalls[i] = (gt_overlaps >= t).float().sum() / float(num_pos) # ar = 2 * np.trapz(recalls, thresholds) ar = recalls.mean() return { "ar": ar, "recalls": recalls, "thresholds": thresholds, "gt_overlaps": gt_overlaps, "num_pos": num_pos, } def evaluate_predictions_on_coco( coco_gt, coco_results, json_result_file, iou_type="bbox" ): import json with open(json_result_file, "w") as f: json.dump(coco_results, f) from pycocotools.coco import COCO from pycocotools.cocoeval import COCOeval # coco_dt = coco_gt.loadRes(coco_results) coco_dt = coco_gt.loadRes(str(json_result_file)) if coco_results else COCO() if iou_type == "depth": coco_eval = COCORegeval(coco_gt, coco_dt, iou_type) else: coco_eval = COCOeval(coco_gt, coco_dt, iou_type) coco_eval.evaluate() coco_eval.accumulate() coco_eval.summarize() return coco_eval class COCOResults(object): METRICS = { "bbox": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "segm": ["AP", "AP50", "AP75", "APs", "APm", "APl"], "box_proposal": [ "AR@100", "ARs@100", "ARm@100", "ARl@100", "AR@1000", "ARs@1000", "ARm@1000", "ARl@1000", ], "keypoints": ["AP", "AP50", "AP75", "APm", "APl"], "depth": ["AP", "D>1.25**2", "D>1.25", "APm", "APl"], } def __init__(self, *iou_types): allowed_types = ("box_proposal", "bbox", "segm", "keypoints", "depth") assert all(iou_type in allowed_types for iou_type in iou_types) results = OrderedDict() for iou_type in iou_types: results[iou_type] = OrderedDict( [(metric, -1) for metric in COCOResults.METRICS[iou_type]] ) self.results = results def update(self, coco_eval): if coco_eval is None: return from pycocotools.cocoeval import COCOeval assert isinstance(coco_eval, COCOeval) s = coco_eval.stats iou_type = coco_eval.params.iouType res = self.results[iou_type] metrics = COCOResults.METRICS[iou_type] for idx, metric in enumerate(metrics): res[metric] = s[idx] def __repr__(self): results = '\n' for task, metrics in self.results.items(): results += 'Task: {}\n'.format(task) metric_names = metrics.keys() metric_vals = ['{:.4f}'.format(v) for v in metrics.values()] results += (', '.join(metric_names) + '\n') results += (', '.join(metric_vals) + '\n') return results def check_expected_results(results, expected_results, sigma_tol): if not expected_results: return logger = logging.getLogger("maskrcnn_benchmark.inference") for task, metric, (mean, std) in expected_results: actual_val = results.results[task][metric] lo = mean - sigma_tol * std hi = mean + sigma_tol * std ok = (lo < actual_val) and (actual_val < hi) msg = ( "{} > {} sanity check (actual vs. expected): " "{:.3f} vs. mean={:.4f}, std={:.4}, range=({:.4f}, {:.4f})" ).format(task, metric, actual_val, mean, std, lo, hi) if not ok: msg = "FAIL: " + msg logger.error(msg) else: msg = "PASS: " + msg logger.info(msg) import numpy as np import datetime import time from collections import defaultdict import copy class RegParams(Params): def setRegParams(self): self.imgIds = [] self.catIds = [] # np.arange causes trouble. the data point on arange is slightly larger than the true value self.iouThrs = np.linspace(.5, 0.95, np.round((0.95 - .5) / .05) + 1, endpoint=True) self.recThrs = np.linspace(.0, 1.00, np.round((1.00 - .0) / .01) + 1, endpoint=True) self.maxDets = [20] self.areaRng = [[0 ** 2, 1e5 ** 2], [32 ** 2, 96 ** 2], [96 ** 2, 1e5 ** 2]] self.areaRngLbl = ['all', 'medium', 'large'] self.useCats = 1 self.scoreThrs = 0.7 def __init__(self, iouType='segm'): if iouType == 'segm' or iouType == 'bbox': self.setDetParams() elif iouType == 'keypoints': self.setKpParams() elif iouType == 'depth': self.setRegParams() else: raise Exception('iouType not supported') self.iouType = iouType # useSegm is deprecated self.useSegm = None class COCORegeval(COCOeval): def __init__(self, cocoGt=None, cocoDt=None, iouType='segm'): ''' Initialize CocoEval using coco APIs for gt and dt :param cocoGt: coco object with ground truth annotations :param cocoDt: coco object with detection results :return: None ''' if not iouType: print('iouType not specified. use default iouType segm') self.cocoGt = cocoGt # ground truth COCO API self.cocoDt = cocoDt # detections COCO API self.evalImgs = defaultdict(list) # per-image per-category evaluation results [KxAxI] elements self.eval = {} # accumulated evaluation results self._gts = defaultdict(list) # gt for evaluation self._dts = defaultdict(list) # dt for evaluation self.params = RegParams(iouType=iouType) # parameters self._paramsEval = {} # parameters for evaluation self.stats = [] # result summarization self.ious = {} # ious between all gts and dts if not cocoGt is None: self.params.imgIds = sorted(cocoGt.getImgIds()) self.params.catIds = sorted(cocoGt.getCatIds()) def evaluate(self): tic = time.time() print('Running per image evaluation...') p = self.params # add backward compatibility if useSegm is specified in params if not p.useSegm is None: p.iouType = 'segm' if p.useSegm == 1 else 'bbox' print('useSegm (deprecated) is not None. Running {} evaluation'.format(p.iouType)) print('Evaluate annotation type *{}*'.format(p.iouType)) p.imgIds = list(np.unique(p.imgIds)) if p.useCats: p.catIds = list(np.unique(p.catIds)) p.maxDets = sorted(p.maxDets) self.params=p self._prepare() # loop through images, area range, max detection number catIds = p.catIds if p.useCats else [-1] if p.iouType == 'segm' or p.iouType == 'bbox': computeIoU = self.computeIoU elif p.iouType == 'keypoints': computeIoU = self.computeOks elif p.iouType == 'depth': computeIoU = self.computeRegErr self.ious = {(imgId, catId): computeIoU(imgId, catId) \ for imgId in p.imgIds for catId in catIds} evaluateImg = self.evaluateImg maxDet = p.maxDets[-1] self.evalImgs = [evaluateImg(imgId, catId, areaRng, maxDet) for catId in catIds for areaRng in p.areaRng for imgId in p.imgIds ] # print(self.evalImgs) self._paramsEval = copy.deepcopy(self.params) toc = time.time() print('DONE (t={:0.2f}s).'.format(toc-tic)) def computeRegErr(self, imgId, catId): p = self.params # dimention here should be Nxm gts = self._gts[imgId, catId] dts = self._dts[imgId, catId] inds = np.argsort([-d['score'] for d in dts], kind='mergesort') dts = [dts[i] for i in inds] # dts = [d for d in dts if d['score']>p.scoreThrs] if len(dts) > p.maxDets[-1]: dts = dts[0:p.maxDets[-1]] # if len(gts) == 0 and len(dts) == 0: if len(gts) == 0 or len(dts) == 0: return [] ious = np.zeros((len(dts), len(gts))) # compute oks between each detection and ground truth object total_error = 0 for j, gt in enumerate(gts): # create bounds for ignore regions(double the gt bbox) g = np.array(gt['disp_unity']) # g = np.array(gt['disp_base']) # g = np.array(gt['depth']) # g = np.array(gt['height_rw']) # k1 = np.count_nonzero(vg > 0) bb = gt['bbox'] x0 = bb[0] - bb[2]; x1 = bb[0] + bb[2] * 2 y0 = bb[1] - bb[3]; y1 = bb[1] + bb[3] * 2 # depth_g = g/bb[3] depth_g = g for i, dt in enumerate(dts): d = np.array(dt['depth']) dbb = dt['bbox'] bb_height = dbb[3] # depth_d = d/bb_height depth_d = d # print(depth_d,depth_g) dx = depth_d - depth_g # print(xd, bb_height, xg) # e = np.abs(dx) #/ depth_g # print(dx*2200) total_error += np.abs(dx*2200) ious[i, j] = min(depth_d/depth_g, depth_g/depth_d)# np.exp(-e) #/ e.shape[0] # print(depth_g, depth_d) total_error /= len(dts)* len(gts) # print(total_error) return ious def summarize(self): ''' Compute and display summary metrics for evaluation results. Note this functin can *only* be applied on the default parameter setting ''' def _summarize( ap=1, iouThr=None, areaRng='all', maxDets=100 ): p = self.params iStr = ' {:<18} {} @[ IoU={:<9} | area={:>6s} | maxDets={:>3d} ] = {:0.3f}' titleStr = 'Average Precision' if ap == 1 else 'Average Recall' typeStr = '(AP)' if ap==1 else '(AR)' iouStr = '{:0.2f}:{:0.2f}'.format(p.iouThrs[0], p.iouThrs[-1]) \ if iouThr is None else '{:0.2f}'.format(iouThr) aind = [i for i, aRng in enumerate(p.areaRngLbl) if aRng == areaRng] mind = [i for i, mDet in enumerate(p.maxDets) if mDet == maxDets] if ap == 1: # dimension of precision: [TxRxKxAxM] s = self.eval['precision'] # IoU if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:,:,:,aind,mind] else: # dimension of recall: [TxKxAxM] s = self.eval['recall'] if iouThr is not None: t = np.where(iouThr == p.iouThrs)[0] s = s[t] s = s[:,:,aind,mind] if len(s[s>-1])==0: mean_s = -1 else: mean_s = np.mean(s[s>-1]) print(iStr.format(titleStr, typeStr, iouStr, areaRng, maxDets, mean_s)) return mean_s def _summarizeDets(): stats = np.zeros((12,)) stats[0] = _summarize(1) stats[1] = _summarize(1, iouThr=.5, maxDets=self.params.maxDets[2]) stats[2] = _summarize(1, iouThr=.75, maxDets=self.params.maxDets[2]) stats[3] = _summarize(1, areaRng='small', maxDets=self.params.maxDets[2]) stats[4] = _summarize(1, areaRng='medium', maxDets=self.params.maxDets[2]) stats[5] = _summarize(1, areaRng='large', maxDets=self.params.maxDets[2]) stats[6] = _summarize(0, maxDets=self.params.maxDets[0]) stats[7] = _summarize(0, maxDets=self.params.maxDets[1]) stats[8] = _summarize(0, maxDets=self.params.maxDets[2]) stats[9] = _summarize(0, areaRng='small', maxDets=self.params.maxDets[2]) stats[10] = _summarize(0, areaRng='medium', maxDets=self.params.maxDets[2]) stats[11] = _summarize(0, areaRng='large', maxDets=self.params.maxDets[2]) return stats def _summarizeKps(): stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.5) stats[2] = _summarize(1, maxDets=20, iouThr=.75) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.5) stats[7] = _summarize(0, maxDets=20, iouThr=.75) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats def _summarizeRegs(): stats = np.zeros((10,)) stats[0] = _summarize(1, maxDets=20) stats[1] = _summarize(1, maxDets=20, iouThr=.65) stats[2] = _summarize(1, maxDets=20, iouThr=.8) stats[3] = _summarize(1, maxDets=20, areaRng='medium') stats[4] = _summarize(1, maxDets=20, areaRng='large') stats[5] = _summarize(0, maxDets=20) stats[6] = _summarize(0, maxDets=20, iouThr=.65) stats[7] = _summarize(0, maxDets=20, iouThr=.8) stats[8] = _summarize(0, maxDets=20, areaRng='medium') stats[9] = _summarize(0, maxDets=20, areaRng='large') return stats if not self.eval: raise Exception('Please run accumulate() first') iouType = self.params.iouType if iouType == 'segm' or iouType == 'bbox': summarize = _summarizeDets elif iouType == 'keypoints': summarize = _summarizeKps elif iouType == 'depth': summarize = _summarizeRegs self.stats = summarize()
StarcoderdataPython
68564
import datetime from subprocess import CalledProcessError # nosec from threading import Thread from typing import Dict, List, Optional, Set import boto3 import click import pytz import semver from botocore.config import Config from botocore.exceptions import ClientError from colored import attr, fg from opta.amplitude import amplitude_client from opta.cleanup_files import cleanup_files from opta.commands.local_flag import _clean_tf_folder, _handle_local_flag from opta.constants import DEV_VERSION, TF_PLAN_PATH, UPGRADE_WARNINGS, VERSION from opta.core.aws import AWS from opta.core.azure import Azure from opta.core.cloud_client import CloudClient from opta.core.gcp import GCP from opta.core.generator import gen, gen_opta_resource_tags from opta.core.kubernetes import get_cluster_name, tail_module_log, tail_namespace_events from opta.core.local import Local from opta.core.plan_displayer import PlanDisplayer from opta.core.terraform import Terraform, get_terraform_outputs from opta.error_constants import USER_ERROR_TF_LOCK from opta.exceptions import MissingState, UserErrors from opta.layer import Layer, StructuredConfig from opta.pre_check import pre_check from opta.process import ApplyOptions from opta.process import apply as apply2 from opta.utils import check_opta_file_exists, fmt_msg, logger from opta.utils.clickoptions import local_option from opta.utils.features import is_module_api_enabled @click.command() @click.option( "-c", "--config", default="opta.yaml", help="Opta config file", show_default=True ) @click.option( "-e", "--env", default=None, help="The env to use when loading the config file", show_default=True, ) @click.option( "--refresh", is_flag=True, default=False, help="Run from first block, regardless of current state", hidden=True, ) @click.option( "--image-tag", default=None, type=str, help="If this handles a service, it's the image tag you wanna deploy", ) @click.option( "--test", is_flag=True, default=False, help="Run tf plan, but don't lock state file", hidden=True, ) @click.option( "--auto-approve", is_flag=True, default=False, help="Automatically approve terraform plan.", ) @click.option( "--detailed-plan", is_flag=True, default=False, help="Show full terraform plan in detail, not the opta provided summary", ) @local_option def apply( config: str, env: Optional[str], refresh: bool, local: bool, image_tag: Optional[str], test: bool, auto_approve: bool, detailed_plan: bool, ) -> None: """Create or update infrastructure Apply changes to match the Opta configuration files in the current directory. Examples: opta apply --auto-approve opta apply -c my-config.yaml --image-tag=v1 """ config = check_opta_file_exists(config) _apply( config, env, refresh, local, image_tag, test, auto_approve, detailed_plan=detailed_plan, ) def _apply( config: str, env: Optional[str], refresh: bool, local: bool, image_tag: Optional[str], test: bool, auto_approve: bool, image_digest: Optional[str] = None, stdout_logs: bool = True, detailed_plan: bool = False, ) -> None: if is_module_api_enabled(): opts = ApplyOptions(auto_approve=auto_approve, config_path=config) apply2(opts) return pre_check() _clean_tf_folder() if local and not test: config = _local_setup(config, image_tag, refresh_local_env=True) layer = Layer.load_from_yaml(config, env) layer.verify_cloud_credentials() layer.validate_required_path_dependencies() if Terraform.download_state(layer): tf_lock_exists, _ = Terraform.tf_lock_details(layer) if tf_lock_exists: raise UserErrors(USER_ERROR_TF_LOCK) _verify_parent_layer(layer, auto_approve) event_properties: Dict = layer.get_event_properties() amplitude_client.send_event( amplitude_client.START_GEN_EVENT, event_properties=event_properties, ) # We need a region with at least 3 AZs for leader election during failover. # Also EKS historically had problems with regions that have fewer than 3 AZs. if layer.cloud == "aws": providers = layer.gen_providers(0)["provider"] aws_region = providers["aws"]["region"] azs = _fetch_availability_zones(aws_region) if len(azs) < 3: raise UserErrors( fmt_msg( f""" Opta requires a region with at least *3* availability zones like us-east-1 or us-west-2. ~You configured {aws_region}, which only has the availability zones: {azs}. ~Please choose a different region. """ ) ) Terraform.create_state_storage(layer) gen_opta_resource_tags(layer) cloud_client: CloudClient if layer.cloud == "aws": cloud_client = AWS(layer) elif layer.cloud == "google": cloud_client = GCP(layer) elif layer.cloud == "azurerm": cloud_client = Azure(layer) elif layer.cloud == "local": if local: # boolean passed via cli pass cloud_client = Local(layer) else: raise Exception(f"Cannot handle upload config for cloud {layer.cloud}") existing_config: Optional[StructuredConfig] = cloud_client.get_remote_config() old_semver_string = ( "" if existing_config is None else existing_config.get("opta_version", "").strip("v") ) current_semver_string = VERSION.strip("v") _verify_semver(old_semver_string, current_semver_string, layer, auto_approve) try: existing_modules: Set[str] = set() first_loop = True for module_idx, current_modules, total_block_count in gen( layer, existing_config, image_tag, image_digest, test, True, auto_approve ): if first_loop: # This is set during the first iteration, since the tf file must exist. existing_modules = Terraform.get_existing_modules(layer) first_loop = False configured_modules = set([x.name for x in current_modules]) - { "runx" } # Ignore runx module is_last_module = module_idx == total_block_count - 1 has_new_modules = not configured_modules.issubset(existing_modules) if not is_last_module and not has_new_modules and not refresh: continue if is_last_module: untouched_modules = existing_modules - configured_modules configured_modules = configured_modules.union(untouched_modules) layer.pre_hook(module_idx) if layer.cloud == "local": if is_last_module: targets = [] else: targets = list( map(lambda x: f"-target=module.{x}", sorted(configured_modules)) ) if test: Terraform.plan("-lock=false", *targets, layer=layer) print("Plan ran successfully, not applying since this is a test.") else: current_properties = event_properties.copy() current_properties["module_idx"] = module_idx amplitude_client.send_event( amplitude_client.APPLY_EVENT, event_properties=current_properties, ) logger.info("Planning your changes (might take a minute)") try: Terraform.plan( "-lock=false", "-input=false", f"-out={TF_PLAN_PATH}", layer=layer, *targets, quiet=True, ) except CalledProcessError as e: logger.error(e.stderr or "") raise e PlanDisplayer.display(detailed_plan=detailed_plan) if not auto_approve: click.confirm( "The above are the planned changes for your opta run. Do you approve?", abort=True, ) logger.info("Applying your changes (might take a minute)") service_modules = ( layer.get_module_by_type("k8s-service", module_idx) if layer.cloud == "aws" else layer.get_module_by_type("gcp-k8s-service", module_idx) ) if ( len(service_modules) != 0 and get_cluster_name(layer.root()) is not None and stdout_logs ): service_module = service_modules[0] # Tailing logs logger.info( f"Identified deployment for kubernetes service module {service_module.name}, tailing logs now." ) new_thread = Thread( target=tail_module_log, args=( layer, service_module.name, 10, datetime.datetime.utcnow().replace(tzinfo=pytz.UTC), 2, ), daemon=True, ) # Tailing events new_thread.start() new_thread = Thread( target=tail_namespace_events, args=( layer, datetime.datetime.utcnow().replace(tzinfo=pytz.UTC), 3, ), daemon=True, ) new_thread.start() tf_flags: List[str] = [] if auto_approve: tf_flags.append("-auto-approve") try: Terraform.apply( layer, *tf_flags, TF_PLAN_PATH, no_init=True, quiet=False ) except Exception as e: layer.post_hook(module_idx, e) raise e else: layer.post_hook(module_idx, None) cloud_client.upload_opta_config() logger.info("Opta updates complete!") except Exception as e: event_properties["success"] = False event_properties["error_name"] = e.__class__.__name__ raise e else: event_properties["success"] = True finally: amplitude_client.send_event( amplitude_client.FINISH_GEN_EVENT, event_properties=event_properties, ) def _verify_semver( old_semver_string: str, current_semver_string: str, layer: "Layer", auto_approve: bool = False, ) -> None: if old_semver_string in [DEV_VERSION, ""] or current_semver_string in [ DEV_VERSION, "", ]: return old_semver = semver.VersionInfo.parse(old_semver_string) current_semver = semver.VersionInfo.parse(current_semver_string) if old_semver > current_semver: raise UserErrors( f"You're trying to run an older version of opta (last run with version {old_semver}). " "Please update to the latest version and try again!" ) present_modules = [k.aliased_type or k.type for k in layer.modules] current_upgrade_warnings = sorted( [ (k, v) for k, v in UPGRADE_WARNINGS.items() if current_semver >= k[0] > old_semver and k[1] == layer.cloud and k[2] in present_modules ], key=lambda x: semver.VersionInfo.parse(x[0][0]), ) for current_upgrade_warning in current_upgrade_warnings: logger.info( f"{fg('magenta')}WARNING{attr(0)}: Detecting an opta upgrade to or past version {current_upgrade_warning[0]}. " f"Got the following warning: {current_upgrade_warning[1]}" ) if not auto_approve and len(current_upgrade_warnings) > 0: click.confirm( "Are you ok with the aforementioned warnings and done all precautionary steps you wish to do?", abort=True, ) # Fetch the AZs of a region with boto3 def _fetch_availability_zones(aws_region: str) -> List[str]: client = boto3.client("ec2", config=Config(region_name=aws_region)) azs: List[str] = [] resp = client.describe_availability_zones( Filters=[{"Name": "zone-type", "Values": ["availability-zone"]}] ) azs = list(map(lambda az: az["ZoneName"], resp["AvailabilityZones"])) return azs # Verify whether the parent layer exists or not def _verify_parent_layer(layer: Layer, auto_approve: bool = False) -> None: if layer.parent is None: return try: get_terraform_outputs(layer.parent) except ClientError as e: if e.response["Error"]["Code"] == "AccessDenied": raise UserErrors( f"We were unable to fetch Environment details for the Env {layer.parent.name}, on your AWS account (opta needs this to store state). " "Usually, it means that your AWS account has insufficient permissions. " "Please fix these issues and try again!" ) except MissingState as e: if not auto_approve: click.confirm( f"Failed to get the Environment state {e.args[0]} " "Usually, this means that the Environment mentioned in configuration file does not exist. \n" f"Would you like to create your environment using {layer.parent.path}?", abort=True, ) _apply( layer.parent.path, env=None, refresh=False, local=False, image_tag=None, test=False, auto_approve=False, ) cleanup_files() def _local_setup( config: str, image_tag: Optional[str] = "", refresh_local_env: bool = False ) -> str: adjusted_config, localopta_envfile = _handle_local_flag(config, False) if adjusted_config != config: # Only do this for service opta files config = adjusted_config # Config for service if refresh_local_env: _apply( config=localopta_envfile, image_tag=image_tag, auto_approve=True, local=False, env="", refresh=True, test=False, detailed_plan=True, ) _clean_tf_folder() return config
StarcoderdataPython
9625243
<reponame>Twilighters/test_task_with_email import logging from selenium.webdriver.remote.webelement import WebElement from common.constants import EmailConstants from locators.email_page_locators import EmailPageLocators from locators.login_page_locators import LoginPageLocators from models.auth import AuthData from pages.base_page import BasePage logger = logging.getLogger("test-task") class LoginPage(BasePage): def click_first_login_button(self): self.click_element(self.first_login_button()) def click_submit_button(self): self.click_element(self.submit_button()) def input_email(self, text) -> None: email_locator = self.find_element(LoginPageLocators.LOGIN_FIELD) email_locator.send_keys(text) def input_password(self, text) -> None: password_locator = self.find_element(LoginPageLocators.PASSWORD_FIELD) self.fill_element(password_locator, text) def auth(self, data: AuthData): logger.info(f'User email is "{data.login}, user password {data.password}"') self.app.login.click_first_login_button() self.input_email(data.login) self.click_submit_button() self.input_password(data.password) self.click_submit_button() def submit_button(self) -> WebElement: return self.find_element(LoginPageLocators.LOGIN_BUTTON) def first_login_button(self) -> WebElement: return self.find_element(LoginPageLocators.FIRST_LOGIN_BUTTON) def is_auth(self): element = self.find_element(EmailPageLocators.TO_WRITE_EMAIL_BUTTON).text return element == EmailConstants.SEND_EMAIL_BUTTON_TEXT
StarcoderdataPython
114325
<gh_stars>0 #!/usr/bin/python #coding:utf-8 from mylogistic import * import numpy as np import sys import argparse def MultiClassification(train_file_x, train_file_y, test_file_x, test_file_y): train_data = np.loadtxt(train_file_x, delimiter = ',', dtype = np.float) train_label_data = np.loadtxt(train_file_y, delimiter = ',', dtype = np.float) test_data = np.loadtxt(test_file_x, delimiter = ',', dtype = np.float) test_label_data = np.loadtxt(test_file_y, delimiter = ',', dtype = np.float) # train_data = np.column_stack((train_data, label_data)) # np.random.shuffle(train_data) train_x = train_data train_y = train_label_data test_x = test_data test_y = test_label_data train_x = Normalizition(train_x) test_x = Normalizition(test_x) #number of iter param = {} #二分类 iteration = 70 param['objective'] = 'multi' param['learning_rate'] = 15 param['num_iters'] = iteration param['num_class'] = 10 param['lam'] = 1 model = MyLRModel(param) model.Train(train_x, train_y) #预测(训练数据) pre_y = model.Predict(train_x) print '迭代次数:%d' %(iteration) print '训练集准确度为:%f' %(float(np.sum(train_y == pre_y)) / len(train_y)) pred_testy = model.Predict(test_x) # print test_y # print pred_testy print '测试集准确率为:%f' %(float(np.sum(test_y == pred_testy))/len(test_y)) # for i in range(0, len(train_x)): # j = np.random.permutation(len(train_x))[0] # pred = model.Predict(train_x[j,:].reshape(1,train_x.shape[1])) # print '该图像算法预测的数字是:', pred # ShowPicture(train_x, j) if __name__ == '__main__': #参数读取 # parser = argparse.ArgumentParser(description = '逻辑回归') # parser.add_argument('--train', help='训练文件') # parser.add_argument('--label', help='标签文件(可选)') # # args = parser.parse_args() # if args.train == None: # parser.print_help() # exit() train_file_x, train_file_y, test_file_x, test_file_y = sys.argv[1:5] MultiClassification(train_file_x, train_file_y, test_file_x, test_file_y)
StarcoderdataPython
12864461
import scrapy from bs4 import BeautifulSoup from lab3.items import Lab3Item class QuoteSpider(scrapy.Spider): name = 'quotes' start_urls = ['http://quotes.toscrape.com/page/1/'] page_num = 1 # 对爬取到的信息进行解析 def parse(self, response, **kwargs): soup = BeautifulSoup(response.body, 'html.parser') nodes = soup.find_all('div', {'class': 'quote'}) for node in nodes: text = node.find('span', {'class': 'text'}).text author = node.find('small', {'class': 'author'}).text tags = node.find_all('a', {'class': 'tag'}) tags_list = [] for tag in tags: tags_list.append(tag.text) # 接下来找作者链接,进去爬取里面的信息 author_link = 'http://quotes.toscrape.com/' + node.find_all('span')[1].a['href'] # 抛给author_parse进行处理 yield response.follow(author_link, self.author_parse) # print('{0:<4}:{1:<20} said:{2:<20}\n{3}'.format(self.page_num, author, text, tags_list)) item = Lab3Item(author=author, text=text, tags=tags_list) yield item print('=' * 80 + 'page:',self.page_num,'saved successfully!' + '=' * 80) # 下面爬取下一页的链接 try: self.page_num += 1 url = soup.find('li', {'class': 'next'}).a['href'] if url: next_link = 'http://quotes.toscrape.com/' + url yield scrapy.Request(next_link, callback=self.parse) except Exception: print('所有页面信息爬取结束!!!') def author_parse(self, response, **kwargs): soup = BeautifulSoup(response.body, 'html.parser') author_name = soup.find_all('div', {'class': 'author-details'})[0].find('h3').text birthday = soup.find('span').text bio = soup.find('div', {'class': 'author-description'}).text # print('{}: {}\n{}\n{}\n'.format(self.page_num, author_name, birthday, bio)) item = Lab3Item(name=author_name, birthday=birthday, bio=bio) yield item
StarcoderdataPython
3577858
import os from typing import List, Union, Optional, Any, Tuple import asyncio import aiohttp import json from configparser import ConfigParser # import websocket from slack.web.client import WebClient from slack.signature.verifier import SignatureVerifier from slack.web.slack_response import SlackResponse from slack.errors import SlackApiError from . import log from . import control from .control import CommandContext, MessageContext from .env import Env from .config import Config from . import commands from . import parser from .state import State, StateElement from .utils import get_optional def assert_future(x: Union[asyncio.Future, SlackResponse]) -> asyncio.Future: # type: ignore assert isinstance(x, asyncio.Future) return x logger = log.getLogger(__name__) class StateSave(StateElement): control: "SlackControl" def __init__(self, control: "SlackControl") -> None: self.control = control async def save(self, state: State) -> None: if state.has_section("slack"): state["slack"] = {} st = state["slack"] st["channel_id"]= get_optional(self.control._channel_id, "") class SlackControl(control.Control): _client: WebClient # _ws: websocket.WebSocketApp _config: Config _state: State _channel_name: str _channel_id: Optional[str] _admin_channel_id: str _api_token: str _app_token: str _ws_task: Any # async_io.Task[Any] won't work with Python.. _aiohttp_session: aiohttp.ClientSession def __init__(self, env: Env) -> None: super().__init__() self._config = env.config self._state = env.state api_token = os.environ.get("SLACK_API_TOKEN") if api_token is None: api_token = self._config.get("slack", "slack_api_secret_id") app_token = os.environ.get("SLACK_APP_TOKEN") if app_token is None: app_token = self._config.get("slack", "slack_app_secret_id") admin_channel_id = os.environ.get("SLACK_ADMIN_CHANNEL_ID") if admin_channel_id is None: admin_channel_id = self._config.get("slack", "slack_admin_channel_id") self._api_token = api_token self._app_token = app_token self._admin_channel_id = admin_channel_id channel_name = self._config.get("slack", "channel", empty_is_none=True) if channel_name[0] != "#": raise control.ConfigError("Expected channel name to start with #") self._channel_name = channel_name self._channel_id = self._state.get("slack", "channel_id", fallback=None) self._client = WebClient(token=api_token, run_async=True) self._aiohttp_session = aiohttp.ClientSession() async def setup(self) -> None: if self._channel_id is None: result = await assert_future(self._client.api_call( api_method="users.conversations", json={} )) if result["ok"]: logger.debug(f"result: {result}") ids = [channel["id"] for channel in result["channels"] if f"#{channel['name']}" == self._channel_name] if ids: self._channel_id = ids[0] await self._state.save() else: raise control.ConfigError(f"Could not find channel {self._channel_name} from the list of joined conversations") # logger.info("Post message") # await assert_future(self._client.api_call( # api_method="chat.postMessage", # json={"channel": self._channel_id, # "text": "hello world"} # )) self._ws_task = asyncio.create_task(self._ws_handler()) async def run(self) -> None: pass async def _ws_handler(self) -> None: num_retries = 0 def sleep_time() -> float: return min(120, pow(1.15, num_retries) * 10) try: while True: ws_url: Optional[str] = None async with self._aiohttp_session.post("https://slack.com/api/apps.connections.open", headers={"Authorization": f"Bearer {self._app_token}", "Content-type": "application/x-www-form-urlencoded"}) as response: if response.status == 200: data = json.loads(await response.text()) if bool(data.get("ok")): ws_url = data["url"] if ws_url is None: logger.error(f"Failed to acquire web socket URL; sleeping {sleep_time()} seconds and trying again") await asyncio.sleep(sleep_time()) num_retries += 1 else: got_messages = False async with aiohttp.ClientSession().ws_connect(ws_url) as session: logger.debug(f"Established websocket connection, waiting first message..") async for message in session: if not got_messages: logger.info(f"Established websocket connection successfully") if not message.data: logger.error("Message did not contain data") break got_messages = True json_message = json.loads(message.data) logger.info(f"json_message: {json_message}") try: envelope_id = json_message.get("envelope_id") except Exception as exn: logger.error(f"exception1: {exn}") raise exn # ack first, handle later, so we don't end up reprocessing crashing commands.. if envelope_id is not None: ack = {"envelope_id": envelope_id} logger.debug(f"acking with {ack}") await session.send_json(ack) logger.debug(f"acked") # Filter through bot messages and set admin rights text = json_message.get("payload", {}).get("event", {}).get("text", None) bot = json_message.get("payload", {}).get("event", {}).get("bot_id", None) if text is not None and bot is None: admin_room = json_message.get("payload", {}).get("event", {}).get("channel", None) == self._admin_channel_id command_context = CommandContext(admin_room=admin_room, control=self) await self.process_message(command_context, text) if bot is not None: logger.debug(f"Not processing bot messages as commands") if got_messages: logger.error(f"Web socket session terminated: sleeping 10 seconds and reconnecting") await asyncio.sleep(10) num_retries = 0 else: logger.error(f"Web socket session terminated without receiving any data: sleeping {sleep_time()} seconds and reconnecting") await asyncio.sleep(sleep_time()) num_retries += 1 except Exception as exn: logger.error(f"exception: {exn}") raise exn async def _command_ping(self, context: CommandContext, valid: Tuple[()]) -> None: await self.send_message(context.to_message_context(), "pong") async def send_message(self, message_context: control.MessageContext, message: str) -> None: assert len(message) == 0 or message[0] != "!" try: response = await assert_future(self._client.api_call( api_method="chat.postMessage", json={"channel": self._channel_id, "text": message} )) except SlackApiError as exn: assert exn.response["ok"] is False error = exn.response["error"] # str like 'invalid_auth', 'channel_not_found' raise control.MessageSendError(error) from exn pass
StarcoderdataPython
6625967
""" Functions for basic reading and writing of PENMAN graphs. """ from typing import Union, Iterable, List from pathlib import Path from penman.codec import PENMANCodec from penman.model import Model from penman.graph import Graph from penman.types import (Variable, file_or_filename) def decode(s: str, model: Model = None) -> Graph: """ Deserialize PENMAN-serialized *s* into its Graph object Args: s: a string containing a single PENMAN-serialized graph model: the model used for interpreting the graph Returns: the Graph object described by *s* Example: >>> from penman.interface import decode >>> decode('(b / bark-01 :ARG0 (d / dog))') <Graph object (top=b) at ...> """ codec = PENMANCodec(model=model) return codec.decode(s) def encode(g: Graph, top: Variable = None, model: Model = None, indent: Union[int, bool] = -1, compact: bool = False) -> str: """ Serialize the graph *g* from *top* to PENMAN notation. Args: g: the Graph object top: if given, the node to use as the top in serialization model: the model used for interpreting the graph indent: how to indent formatted strings compact: if ``True``, put initial attributes on the first line Returns: the PENMAN-serialized string of the Graph *g* Example: >>> from penman.interface import encode >>> from penman.graph import Graph >>> encode(Graph([('h', 'instance', 'hi')])) '(h / hi)' """ codec = PENMANCodec(model=model) return codec.encode(g, top=top, indent=indent, compact=compact) def load(source: file_or_filename, model: Model = None) -> List[Graph]: """ Deserialize a list of PENMAN-encoded graphs from *source*. Args: source: a filename or file-like object to read from model: the model used for interpreting the graph Returns: a list of Graph objects """ codec = PENMANCodec(model=model) if isinstance(source, (str, Path)): with open(source) as fh: return list(codec.iterdecode(fh)) else: assert hasattr(source, 'read') return list(codec.iterdecode(source)) def loads(string: str, model: Model = None) -> List[Graph]: """ Deserialize a list of PENMAN-encoded graphs from *string*. Args: string: a string containing graph data model: the model used for interpreting the graph Returns: a list of Graph objects """ codec = PENMANCodec(model=model) return list(codec.iterdecode(string)) def dump(graphs: Iterable[Graph], file: file_or_filename, model: Model = None, indent: Union[int, bool] = -1, compact: bool = False) -> None: """ Serialize each graph in *graphs* to PENMAN and write to *file*. Args: graphs: an iterable of Graph objects file: a filename or file-like object to write to model: the model used for interpreting the graph indent: how to indent formatted strings compact: if ``True``, put initial attributes on the first line """ codec = PENMANCodec(model=model) if isinstance(file, (str, Path)): with open(file, 'w') as fh: _dump(fh, graphs, codec, indent, compact) else: assert hasattr(file, 'write') _dump(file, graphs, codec, indent, compact) def _dump(fh, gs, codec, indent, compact): """Helper method for dump() for incremental printing.""" ss = (codec.encode(g, indent=indent, compact=compact) for g in gs) try: print(next(ss), file=fh) except StopIteration: return for s in ss: print(file=fh) print(s, file=fh) def dumps(graphs: Iterable[Graph], model: Model = None, indent: Union[int, bool] = -1, compact: bool = False) -> str: """ Serialize each graph in *graphs* to the PENMAN format. Args: graphs: an iterable of Graph objects model: the model used for interpreting the graph indent: how to indent formatted strings compact: if ``True``, put initial attributes on the first line Returns: the string of serialized graphs """ codec = PENMANCodec(model=model) strings = [codec.encode(g, indent=indent, compact=compact) for g in graphs] return '\n\n'.join(strings)
StarcoderdataPython
9727396
<reponame>denisri/soma-workflow # -*- coding: utf-8 -*- from __future__ import absolute_import from __future__ import print_function import six import os import inspect import importlib class Scheduler(object): ''' Allow to submit, kill and get the status of jobs. The Scheduler class is an abstract class which specifies the jobs management API. It has several implementations, located in ``soma_workflow.schedulers.*_scheduler``. A scheduler implementation class can be retrived using the global function :func:`get_scheduler_implementation`, or instantiated using :func:`build_scheduler`. New schedulers can be written to support computing resources types that are currently not supported (a cluster with a DRMS which has no DRMAA implementation typicalyly). The various methods of the Scheduler API have to be overloaded in this case. ''' parallel_job_submission_info = None logger = None is_sleeping = None def __init__(self): self.parallel_job_submission_info = None self.is_sleeping = False def sleep(self): self.is_sleeping = True def wake(self): self.is_sleeping = False def clean(self): pass def job_submission(self, job): ''' Submit a Soma-Workflow job Parameters ---------- job: EngineJob Job to be submitted Returns ------- job_id: string Job id for the scheduling system (DRMAA for example, or native DRMS identifier) ''' raise Exception("Scheduler is an abstract class!") def get_job_status(self, scheduler_job_id): ''' Parameters ---------- scheduler_job_id: string Job id for the scheduling system (DRMAA for example) Returns ------- status: string Job status as defined in constants.JOB_STATUS ''' raise Exception("Scheduler is an abstract class!") def get_job_exit_info(self, scheduler_job_id): ''' The exit info consists of 4 values returned in a tuple: **exit_status**: string one of the constants.JOB_EXIT_STATUS values **exit_value**: int exit code of the command (normally 0 in case of success) **term_sig**: int termination signal, 0 IF ok **resource_usage**: bytes bytes string in the shape ``b'cpupercent=60 mem=13530kb cput=00:00:12'`` etc. Items may include: * cpupercent * cput * mem * vmem * ncpus * walltime Parameters ---------- scheduler_job_id: string Job id for the scheduling system (DRMAA for example) Returns ------- exit_info: tuple exit_status, exit_value, term_sig, resource_usage ''' raise Exception("Scheduler is an abstract class!") def kill_job(self, scheduler_job_id): ''' Parameters ---------- scheduler_job_id: string Job id for the scheduling system (DRMAA for example) ''' raise Exception("Scheduler is an abstract class!") @classmethod def build_scheduler(cls, config): ''' Create a scheduler of the expected type, using configuration to parameterize it. Parameters ---------- config: Configuration configuration object instance ''' raise Exception("Scheduler is an abstract class!") def get_scheduler_implementation(scheduler_type): ''' Get the scheduler class implementation corresponding to the expected one. Parameters ---------- scheduler_type: str scheduler type: 'drmaa', 'drmaa2', 'local_basic', 'mpi', or other custom scheduler Returns ------- scheduler_class: Scheduler subclass ''' from . import schedulers if scheduler_type == 'local_basic': scheduler_type = 'local' sched_dir = os.path.dirname(schedulers.__file__) if os.path.exists(os.path.join(sched_dir, '%s_scheduler.py' % scheduler_type)): sched_mod = '%s_scheduler' % scheduler_type # try: module = importlib.import_module('.%s' % sched_mod, 'soma_workflow.schedulers') sched_list = [] # if there is a __main_scheduler__, just use it scheduler = getattr(module, '__main_scheduler__', None) if scheduler is not None: return scheduler for element in six.itervalues(module.__dict__): if element in sched_list: continue # avoid duplicates if inspect.isclass(element) and element is not Scheduler \ and issubclass(element, Scheduler): sched_list.append(element) if element.__name__.lower() == ('%sscheduler' % scheduler_type).lower(): # fully matching return element if len(sched_list) == 1: # unambiguous return sched_list[0] if len(sched_list) == 0: print('Warning: module soma_workflow.schedulers.%s contains ' 'no scheduler:' % sched_mod) else: print('Warning: module soma_workflow.schedulers.%s contains ' 'several schedulers:' % sched_mod) print([s.__name__ for s in sched_list]) # except ImportError: raise NameError('scheduler type %s is not found' % scheduler_type) def build_scheduler(scheduler_type, config): ''' Create a scheduler of the expected type, using configuration to parameterize it. Parameters ---------- scheduler_type: string type of scheduler to be built config: Configuration configuration object Returns ------- scheduler: Scheduler Scheduler instance ''' scheduler_class = get_scheduler_implementation(scheduler_type) scheduler = scheduler_class.build_scheduler(config) return scheduler def get_schedulers_list(): ''' List all available installed schedulers Returns ------- schedulers: list schedulers list. Each item is a tuple (name, enabled) ''' from . import schedulers dirname = os.path.dirname(schedulers.__file__) sched_files = os.listdir(dirname) schedulers = [] for sched_file in sched_files: if sched_file.endswith('_scheduler.py'): sched_mod = sched_file[:-3] enabled = True try: module = importlib.import_module('.%s' % sched_mod, 'soma_workflow.schedulers') except NotImplementedError: continue # skip not implemented / unfinished ones except Exception: enabled = False if sched_mod == 'local_scheduler': sched_mod = 'local_basic_scheduler' sched = sched_mod[:-10] schedulers.append((sched, enabled)) return schedulers
StarcoderdataPython
318275
/home/runner/.cache/pip/pool/1f/25/29/96266bdb681f6a20eae8a895c4d0785df90bfbe7af62a169fbb690708a
StarcoderdataPython
1879686
""" Created on 2018-08-04 @author: <NAME> <EMAIL> """ import time import warnings from concurrent import futures from typing import Dict, List, Type import numpy as np import torch import torch.nn as nn from nord.configurations.all import Configs from nord.neural_nets import NeuralDescriptor, NeuralNet from nord.data_curators import (get_cifar10_distributed, get_cifar10, get_fashion_mnist, get_activity_recognition_data) from nord.utils import progress_bar try: import horovod.torch as hvd hvd_available = True except Exception: hvd_available = False warnings.warn('Horovod not found') try: from mpi4py import MPI except Exception: warnings.warn('mpi4py not found') class AbstractNeuralEvaluator(): """A class to load a dataset and evaluate a network on it by distributing the load across N workers. """ def __init__(self, optimizer_class: Type, optimizer_params: Dict, verbose: bool): (self.trainloader, self.trainsampler, self.testloader, self.testsampler, self.classes) = [None]*5 self.data_loaded = False self.optimizer_class = optimizer_class self.optimizer_params = optimizer_params self.verbose = verbose self.conf = Configs() def load_data(self, data_percentage: float): """Check if the data is loaded and act accordingly. This is to make sure that the distributed environment has been initialized. Instantiate trainloader, trainsampler, testloader, testsampler, classes """ raise NotImplementedError def set_device(self): """Returns the device that will run the experiment, usually cuda:dev_no or cpu """ raise NotImplementedError def get_optimizer(self, net: nn.Module): """Returns the optimizer to train the network """ raise NotImplementedError def print_status_bar(self, batch_id: int, loss: float): """Print status after each epoch """ raise NotImplementedError def descriptor_to_net(self, descriptor: NeuralDescriptor, untrained: bool): """Make a net from descriptor, accounting for any distributed comms """ raise NotImplementedError def process_returns(self, loss: float, metrics: dict): """Process loss and metrics, accounting for any distributed testing """ raise NotImplementedError def train(self, net: nn.Module, epochs: int): """Network training. Parameters ---------- net : torch.nn.Module The neural network. epochs : int The number of epochs to train the network. """ device = self.set_device() try: print(MPI.COMM_WORLD.rank, 'Train Device: ', device) except Exception: print('Train Device: ', device) net.to(device) net.train() optimizer = self.get_optimizer(net) # for p in net.parameters(): # print(p) # break criterion_loss = self.conf.CRITERION[self.dataset]() if self.conf.CRITERION[self.dataset] == nn.KLDivLoss: def criterion(x, y): return criterion_loss(x.float(), y.float()) else: def criterion(x, y): return criterion_loss(x, y) for epoch in range(epochs): # loop over the dataset multiple times if self.trainsampler is not None: print('TRAINSAMPLER NOT NONE') self.trainsampler.set_epoch(epoch) test_loss = 0 for batch_idx, data in enumerate(self.trainloader, 0): # get the inputs inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() test_loss += loss.item() self.print_status_bar(batch_idx, test_loss) # criterion.increase_threshold() del optimizer def test(self, net: nn.Module): """Distributed network evaluation. Parameters ---------- net : torch.nn.Module The neural network. Returns ------- test_metrics : float The average metrics. """ device = self.set_device() try: print(MPI.COMM_WORLD.rank, 'Test Device: ', device) except Exception: print('Test Device: ', device) net.to(device) net.eval() test_loss = 0 criterion_loss = self.conf.CRITERION[self.dataset]() if self.conf.CRITERION[self.dataset] == nn.KLDivLoss: def criterion(x, y): return criterion_loss(x.float(), y.float()) else: def criterion(x, y): return criterion_loss(x, y) all_predicted = [] all_targets = [] with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(self.testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() all_predicted.extend(outputs) all_targets.extend(targets) self.print_status_bar(batch_idx, test_loss) if len(self.testloader) > 0: test_loss /= len(self.testloader) if self.testsampler is not None: if len(self.testsampler) > 0: test_loss /= len(self.testsampler) metrics = {} all_predicted = torch.stack(all_predicted) all_targets = torch.stack(all_targets) for metric in self.conf.METRIC[self.dataset]: metrics.update(metric(all_predicted, all_targets)) return test_loss, metrics def descriptor_evaluate(self, descriptor: NeuralDescriptor, epochs: int, data_percentage: float = 1.0, untrained: bool = False, dataset: str = None): """Distributed network evaluation, with a NeuralDescriptor input. Parameters ---------- descriptor : NeuralDescriptor The neural network's descriptor object. untrained : bool (optional) If True, skip the training. epochs : int Number of epochs that the net will be trained. Returns ------- test_metrics : dict The average metrics. loss: float The value of the loss function. total_time: The time required to train """ self.load_data(data_percentage, dataset) net = self.descriptor_to_net(descriptor, untrained) print(net) return self.net_evaluate(net, epochs, data_percentage, untrained, dataset) def net_evaluate(self, net: nn.Module, epochs: int, data_percentage: float = 1.0, untrained: bool = False, dataset: str = None, return_net=False): """Distributed network evaluation, with a NeuralDescriptor input. Parameters ---------- descriptor : NeuralDescriptor The neural network's descriptor object. untrained : bool (optional) If True, skip the training. epochs : int Number of epochs that the net will be trained. Returns ------- test_metrics : dict The average metrics across all workers. loss: float The value of the loss function. total_time: The time required to train """ self.load_data(data_percentage, dataset) start_time = time.time() if not net.functional: metrics = {} for metric in self.conf.METRIC[self.dataset]: metrics.update( metric(torch.Tensor([[1], [0]]), torch.Tensor([[-1], [2]])) ) return 0, metrics, 0 if not untrained: self.train(net, epochs) total_time = time.time() - start_time # in seconds loss, metrics = self.test(net) loss, metrics = self.process_returns(loss, metrics) if not return_net: return loss, metrics, total_time else: return loss, metrics, total_time, net class LocalEvaluator(AbstractNeuralEvaluator): def load_data(self, data_percentage: float, dataset: str): if not self.data_loaded: self.data_loaded = True self.dataset = dataset (self.trainloader, self.testloader, self.classes) = self.conf.DATA_LOAD[self.dataset](data_percentage) def set_device(self): """Returns the device that will run the experiment, usually cuda:dev_no or cpu """ if not torch.cuda.is_available(): return 'cpu' if hvd_available: try: return 'cuda:%d' % hvd.local_rank() # If horovod is initialized except ValueError as e: print(e) warnings.warn('Horovod not initialized') try: return 'cuda:%d' % MPI.COMM_WORLD.rank # If mpi is running except Exception as ee: print(ee) warnings.warn( 'MPI not initialized, using one GPU per node.') return 'cuda:0' def get_optimizer(self, net: nn.Module): """Returns the optimizer to train the network """ return self.optimizer_class(net.parameters(), **self.optimizer_params) def print_status_bar(self, batch_id: int, loss: float): """Print status after each epoch """ if self.verbose: progress_bar(batch_id, len(self.trainloader), 'Loss: %.2f' % (loss/(batch_id+1))) def descriptor_to_net(self, descriptor: NeuralDescriptor, untrained: bool): """Make a net from descriptor, accounting for any distributed comms """ return NeuralNet(descriptor, self.conf.NUM_CLASSES[self.dataset], self.conf.INPUT_SHAPE[self.dataset], self.conf.CHANNELS[self.dataset], untrained=untrained, keep_dimensions=self.conf.DIMENSION_KEEPING[self.dataset], dense_part=self.conf.DENSE_PART[self.dataset]) def process_returns(self, loss: float, metrics: dict): """Process loss and metrics, accounting for any distributed testing """ if self.verbose: print('Metrics of the network on the test images: ', ( metrics)) print('Loss of the network on the test images: %.4f ' % ( loss)) return loss, metrics class LocalBatchEvaluator(LocalEvaluator): def train_work(self, params: tuple): optimizer, criterion, net, inputs, labels, my_id = params # zero the parameter gradients optimizer.zero_grad() # forward + backward + optimize outputs = net(inputs) loss = criterion(outputs, labels) loss.backward() optimizer.step() my_loss = loss.item() return my_id, my_loss def train(self, nets: List[nn.Module], epochs: int): device = self.set_device() print('Device: ', device) ex = futures.ThreadPoolExecutor(max_workers=4) optimizers = [] for net in nets: net.train() net.to(device) optimizer = self.get_optimizer(net) optimizers.append(optimizer) t = time.time() criterion = self.conf.CRITERION[self.dataset]() for epoch in range(epochs): # loop over the dataset multiple times if self.trainsampler is not None: self.trainsampler.set_epoch(epoch) test_losses = [0 for _ in range(len(nets))] for batch_idx, data in enumerate(self.trainloader, 0): # get the inputs inputs, labels = data inputs, labels = inputs.to(device), labels.to(device) args = ((optimizers[i], criterion, nets[i], inputs, labels, i) for i in range(len(nets))) results = ex.map(self.train_work, args) for i, res_loss in results: # print(res_loss) test_loss = test_losses[i] test_losses[i] = test_loss + res_loss # self.print_status_bar(batch_idx, test_loss) print(time.time()-t) # criterion.increase_threshold() def descriptors_evaluate(self, descriptors: List[NeuralDescriptor], epochs: int, data_percentage: float = 1.0, untrained: bool = False, dataset: str = None): """Distributed network evaluation, with a NeuralDescriptor input. Parameters ---------- descriptor : NeuralDescriptor The neural network's descriptor object. untrained : bool (optional) If True, skip the training. epochs : int Number of epochs that the net will be trained. Returns ------- test_accuracy : float The average accuracy across all workers. """ nets = [] for descriptor in descriptors: net = self.descriptor_to_net(descriptor, untrained) nets.append(net) return self.nets_evaluate(nets, epochs, data_percentage, untrained, dataset) def nets_evaluate(self, nets: List[nn.Module], epochs: int, data_percentage: float = 1.0, untrained: bool = False, dataset: str = None): """Distributed network evaluation, with a NeuralDescriptor input. Parameters ---------- descriptor : NeuralDescriptor The neural network's descriptor object. untrained : bool (optional) If True, skip the training. epochs : int Number of epochs that the net will be trained. Returns ------- test_accuracy : float The average accuracy across all workers. """ self.load_data(data_percentage, dataset) nets_no = len(nets) losses = np.zeros(nets_no) accuracies = np.zeros(nets_no) non_functionals = [] start_time = time.time() for i in range(nets_no): net = nets[i] if not net.functional: non_functionals.append(i) if not untrained: self.train(nets, epochs) total_time = time.time() - start_time # in seconds for i in range(nets_no): if i not in non_functionals: loss, accuracy = self.test(net) loss, accuracy = self.process_returns(loss, accuracy) losses[i] = loss accuracies[i] = accuracy return losses, accuracies, total_time class DistributedEvaluator(AbstractNeuralEvaluator): def load_data(self, data_percentage: float, dataset: str): if not self.data_loaded: self.data_loaded = True if dataset == 'cifar10': (self.trainloader, self.trainsampler, self.testloader, self.testsampler, self.classes) = get_cifar10_distributed(hvd.size(), hvd.rank(), data_percentage) else: raise NotImplementedError def set_device(self): """Returns the device that will run the experiment, usually cuda:dev_no or cpu """ if not torch.cuda.is_available(): return 'cpu' return 'cuda:%d' % hvd.local_rank() def get_optimizer(self, net: nn.Module): """Returns the optimizer to train the network """ optimizer = self.optimizer_class( net.parameters(), **self.optimizer_params) optimizer = hvd.DistributedOptimizer( optimizer, named_parameters=net.named_parameters()) hvd.broadcast_optimizer_state(optimizer, root_rank=0) return optimizer def print_status_bar(self, batch_id: int, loss: float): """Print status after each epoch """ if hvd.rank() == 0 and self.verbose: progress_bar(batch_id, len(self.trainloader), 'Loss: %.2f' % (loss/(batch_id+1))) def descriptor_to_net(self, descriptor: NeuralDescriptor, untrained: bool): """Make a net from descriptor, accounting for any distributed comms """ MPI.COMM_WORLD.barrier() descriptor = MPI.COMM_WORLD.bcast(descriptor) net = NeuralNet(descriptor, self.conf.NUM_CLASSES[self.dataset], self.conf.INPUT_SHAPE[self.dataset], self.conf.CHANNELS[self.dataset], untrained=untrained, keep_dimensions=self.conf.DIMENSION_KEEPING[self.dataset]) hvd.broadcast_parameters(net.state_dict(), root_rank=0) return net def process_returns(self, loss: float, accuracy: float): """Process loss and accuracy, accounting for any distributed testing """ loss = MPI.COMM_WORLD.allreduce(loss)/hvd.size() accuracy = MPI.COMM_WORLD.allreduce(accuracy)/hvd.size() if hvd.rank() == 0 and self.verbose: print('Accuracy of the network on the test images: %.2f %%' % ( accuracy)) print('Loss of the network on the test images: %.4f ' % ( loss)) return loss, accuracy
StarcoderdataPython
8164280
#!/usr/bin/env python3 """ Using two template images, align images from one template space to another. """ import subprocess from os import PathLike from pathlib import Path from typing import List def main(from_images: List[PathLike], from_template: PathLike, to_template: PathLike, to_dir: PathLike, suffix: str = "_aligned") -> None: """ Using two template images, align images from one template space to another. Args: from_images (List[PathLike]): Paths to images you want to align. from_template (PathLike): Template the input images are aligned to. to_template (PathLike): What to align the images to. to_dir (PathLike): Where you want the results to be written to. suffix (str, optional): Suffix to append to filenames. Defaults to "_aligned". """ from_images = [Path(from_image).resolve() for from_image in from_images] from_template = Path(from_template).resolve() to_template = Path(to_template).resolve() to_dir = Path(to_dir).resolve() to_dir.mkdir(parents=True, exist_ok=True) _align_using_templates(from_images, from_template, to_template, to_dir, suffix) def _align_using_templates(from_images: List[PathLike], from_template: PathLike, to_template: PathLike, cwd: PathLike, suffix: str) -> None: """ Using two template images, align images from one template space to another. Requires that input paths be full paths. Args: from_images (List[PathLike]): Paths to images you want to align. from_template (PathLike): Template the input images are aligned to. to_template (PathLike): What to align the images to. cwd (PathLike): Where you want the results to be written to. suffix (str): Suffix to append to filenames. """ print(f"Aligning images to {to_template}") command = f""" align_epi_anat.py -dset1 {from_template} -dset2 {to_template} -dset1to2 -dset1_strip None -dset2_strip None -suffix {suffix} -child_dset1 """.split() command += from_images print(command) subprocess.run(command, cwd=cwd)
StarcoderdataPython
6525560
<filename>expenseApp/urls.py<gh_stars>0 from django.urls import path from . import views urlpatterns = [ path('', views.userList, name='index'), path('create/', views.create, name='create'), path('create/<int:pk>/deposit', views.deposit, name='deposit'), path('create/<int:pk>/expense', views.expense, name='expense'), path('detail/<int:pk>',views.detail, name='detail'), path('newUser/', views.newUser, name='newUser'), path('create/<int:pk>/edit', views.edit, name='edit'), ]
StarcoderdataPython
11361500
<filename>qa/rpc-tests/test_framework/cashlib/__init__.py<gh_stars>100-1000 # Copyright (c) 2018 The Bitcoin Unlimited developers # Distributed under the MIT software license, see the accompanying # file COPYING or http://www.opensource.org/licenses/mit-license.php. from .cashlib import init, bin2hex, signTxInput, signTxInputSchnorr, signHashSchnorr, randombytes, pubkey, spendscript, addrbin, txid, sha256, hash256, hash160, SIGHASH_ALL, SIGHASH_NONE, SIGHASH_SINGLE, SIGHASH_FORKID, SIGHASH_ANYONECANPAY, signData, ScriptMachine, ScriptFlags, ScriptError, Error, BCH
StarcoderdataPython
11240668
<filename>src/model/rule_transformation.py from sqlalchemy.sql.expression import null from sqlalchemy.sql.schema import ForeignKey from sqlalchemy.ext.hybrid import hybrid_property from database import BaseModel from sqlalchemy.orm import relationship from sqlalchemy.sql.sqltypes import Integer, String from sqlalchemy import Column from mixins.key_value_mixin import KeyValueMixin from model.transaction import Transaction class RuleTransformation(BaseModel, KeyValueMixin): __tablename__ = 'rule_transformations' rule_id = Column(Integer, ForeignKey('rules.id')) attribute_name = Column(String, nullable=False) attribute_value = Column(String) value_type = Column(String(8), default='str') rule = relationship('Rule', back_populates='rule_transformations') @classmethod def build(cls, attribute_name, attribute_value, value_type): rule_transformation = cls() rule_transformation.attribute_name = attribute_name rule_transformation.attribute_value = attribute_value rule_transformation.value_type = value_type return rule_transformation def get_as_string(self, indentation_size=2, indentation_start=4) -> str: indentation_lvl_1 = ' ' * indentation_start return f'Attribute Name: {indentation_lvl_1}{self.attribute_name} - Attribute value: {self.attribute_value} ({self.value_type})'
StarcoderdataPython
6478190
import peewee from awsanalysis.a_loader import ALoader import boto3 class SgLoader(ALoader): def dep(self): return set() def setup(self): db = self._dbMgr.getDB() class SgTable(peewee.Model): id = peewee.CharField(primary_key=True) name = peewee.CharField() class Meta: database = db """ type: 1:ingres ip, 2:ingree sg, 6:egress ip, 7:egress sg """ class SgRuleTable(peewee.Model): id = peewee.IntegerField(primary_key=True) sgid = peewee.CharField() ruleType = peewee.IntegerField() fromPort = peewee.CharField() toPort = peewee.CharField() source = peewee.CharField() protocol = peewee.CharField() class Meta: database = db self._dbMgr.addModel("SgTable", SgTable) self._dbMgr.addModel("SgRuleTable", SgRuleTable) SgTable.create_table() SgRuleTable.create_table() def load(self): filters = [] if self._conf.get("vpcid", False): filters = [{ 'Name': 'vpc-id', 'Values': [self._conf.get("vpcid")] }] ec2 = boto3.client('ec2') response = ec2.describe_security_groups(Filters=filters) sgArr = [] sgRuleArr = [] for sg in response["SecurityGroups"]: tmpSgArr, tmpSgRuleArr = self.insertSg(sg) sgArr = sgArr + tmpSgArr sgRuleArr = sgRuleArr + tmpSgRuleArr if (sgArr): self._dbMgr.getModel("SgTable").insert_many(sgArr).execute(); if (sgRuleArr): self._dbMgr.getModel("SgRuleTable").insert_many(sgRuleArr).execute(); def insertSg(self, sg): sgData = { "id": sg["GroupId"], "name": sg.get("GroupName", "") } sgRuleArr = [] marked = False for permission in sg.get("IpPermissions", []): for ip in permission["IpRanges"]: sgRuleArr = sgRuleArr + self.insertRule(sg, 1, permission, ip) marked = True for usg in permission["UserIdGroupPairs"]: sgRuleArr = sgRuleArr + self.insertRule(sg, 2, permission, usg) marked = True for permission in sg.get("IpPermissionsEgress", []): for ip in permission["IpRanges"]: sgRuleArr = sgRuleArr + self.insertRule(sg, 6, permission, ip) marked = True for usg in permission["UserIdGroupPairs"]: sgRuleArr = sgRuleArr + self.insertRule(sg, 7, permission, usg) marked = True if not marked : sgRuleArr = sgRuleArr + self.insertRule(sg, 11, {}, sg) return [sgData], sgRuleArr def insertRule(self, sg, ruleType, permission, rule): source = "" if ruleType == 1 or ruleType == 6 : source = rule.get("CidrIp", "") elif ruleType == 2 or ruleType == 7 : source = rule.get("GroupId", "") elif ruleType == 11 : source = str(rule) # unknown data type? sgRuleData = { "sgid": sg["GroupId"], "ruleType": ruleType, "fromPort": permission.get("FromPort", "??"), "toPort": permission.get("ToPort", "??"), "source": source, "protocol": permission.get("IpProtocol", "??") } return [sgRuleData]
StarcoderdataPython
6534942
import numpy as np import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import Threshold # 正交投影。。。。。。 # 坐标*外参,将坐标转变到相机坐标系下,然后用正交投影+双线性插值,获取每个点的所有的特征(遮挡问题怎么处理???,这里都没有深度测试,没有考虑遮挡) class GraphProjection(nn.Module): """Graph Projection layer, which pool 2D features to mesh The layer projects a vertex of the mesh to the 2D image and use bilinear interpolation to get the corresponding feature. """ def __init__(self): super(GraphProjection, self).__init__() def forward(self, img_features, input): self.img_feats = img_features # 决定图像宽高 # h = 248 * x/z + 111.5 # w = 248 * y/z + 111.5 # 248和111.5怎么来的??经验值? h = 248 * torch.div(input[:, 1], input[:, 2]) + 111.5 w = 248 * torch.div(input[:, 0], -input[:, 2]) + 111.5 # 裁剪图像,最大值为223 (即图像为<=224) h = torch.clamp(h, min = 0, max = 223) w = torch.clamp(w, min = 0, max = 223) # 特征图尺寸 img_sizes = [56, 28, 14, 7] out_dims = [64, 128, 256, 512] feats = [input] # 四次投影 for i in range(4): out = self.project(i, h, w, img_sizes[i], out_dims[i]) feats.append(out) # 四次投影的特征直接cat output = torch.cat(feats, 1) return output def project(self, index, h, w, img_size, out_dim): # 第index次投影, 图像尺寸h*w , 图像尺寸img_size(xy方向相同) # 取出本次特征 img_feat = self.img_feats[index] # 计算出图像尺寸大小和224原图的相对百分比,由此得出输出特征图尺寸相对于当前特征图大小 x = h / (224. / img_size) y = w / (224. / img_size) # torch.floor(x) : 小于等于x的最大整数 # torch.ceil(x) : 大于等于x的最小整数 x1, x2 = torch.floor(x).long(), torch.ceil(x).long() y1, y2 = torch.floor(y).long(), torch.ceil(y).long() # 按图像尺寸阶段最大值 x2 = torch.clamp(x2, max = img_size - 1) y2 = torch.clamp(y2, max = img_size - 1) #Q11 = torch.index_select(torch.index_select(img_feat, 1, x1), 1, y1) #Q12 = torch.index_select(torch.index_select(img_feat, 1, x1), 1, y2) #Q21 = torch.index_select(torch.index_select(img_feat, 1, x2), 1, y1) #Q22 = torch.index_select(torch.index_select(img_feat, 1, x2), 1, y2) # Q11为 Q11 = img_feat[:, x1, y1].clone() Q12 = img_feat[:, x1, y2].clone() Q21 = img_feat[:, x2, y1].clone() Q22 = img_feat[:, x2, y2].clone() x, y = x.long(), y.long() # 双线性插值 weights = torch.mul(x2 - x, y2 - y) Q11 = torch.mul(weights.float().view(-1, 1), torch.transpose(Q11, 0, 1)) weights = torch.mul(x2 - x, y - y1) Q12 = torch.mul(weights.float().view(-1, 1), torch.transpose(Q12, 0 ,1)) weights = torch.mul(x - x1, y2 - y) Q21 = torch.mul(weights.float().view(-1, 1), torch.transpose(Q21, 0, 1)) weights = torch.mul(x - x1, y - y1) Q22 = torch.mul(weights.float().view(-1, 1), torch.transpose(Q22, 0, 1)) output = Q11 + Q21 + Q12 + Q22 return output gp = GraphProjection() bs = 4 channels = 16 h = [56, 28, 14, 7] w = [56, 28, 14, 7] img_features = [] for i in range(4): img_features.append (torch.rand((bs,h[i],w[i]))) N = 500 dim = 3 input = torch.rand((N,dim)) gp(img_features,input)
StarcoderdataPython
6577227
"""Parse info about Perecrestok supremarket: `https://www.perekrestok.ru`.""" from time import sleep from typing import Dict, Optional, NamedTuple, Set, NoReturn import requests as req from selenium import webdriver # type: ignore from bs4 import BeautifulSoup # type: ignore import pandas as pd # type: ignore Category = NamedTuple("Category", [("name", str), ("url", str)]) class Perecrestok: """Allow to parse all data about products from the Perecrestok.""" def __init__(self): self.main_url = "https://www.perekrestok.ru" self.url_catalog = "https://www.perekrestok.ru/catalog" self.columns = [ "Название", "Категория", "Производитель", "Торговая марка", "Вес", "Жирность", ] self.result = pd.DataFrame(columns=self.columns) @staticmethod def __get_html(url: str) -> str: """Scroll down a HTML page and return the HTML-code.""" driver = webdriver.Chrome() driver.get(url) for i in range(0, 50000, 1080): driver.execute_script(f"window.scrollTo({i}, {i+1080})") sleep(3) page: str = driver.page_source driver.close() return page @staticmethod def __get_product_name(soup: BeautifulSoup) -> Optional[str]: """Return the porduct name.""" name = soup.find(class_="js-product__title xf-product-card__title") if name: name = name.text.split("\n")[0] return name @staticmethod def __raise_error(function_name: str) -> NoReturn: """Raise error if status code not equal 200.""" raise ValueError(f"Проблема с подключением к сети в функции {function_name}.") def get_catalog(self) -> Set[Category]: """Return set of namedtuples about all categories in the catalog.""" result: Set[Category] = set() resp = req.get(self.url_catalog) if resp.status_code != 200: self.__raise_error(self.get_catalog.__name__) soup = BeautifulSoup(resp.text, "lxml") for cat in soup.find_all(class_="xf-catalog-categories__item"): href = cat.find(class_="xf-catalog-categories__link").get("href") name = cat.text.strip() result.add(Category(name, self.main_url + href)) return result def __parse_good(self, url: str) -> Dict[str, Optional[str]]: """Parse information about the product.""" product: Dict[str, Optional[str]] = {} _ = [product.setdefault(key, None) for key in self.columns] resp = req.get(url) if resp.status_code != 200: self.__raise_error(self.__parse_good.__name__) soup = BeautifulSoup(resp.text, "lxml") product["Название"] = self.__get_product_name(soup) table = soup.find( "table", attrs={"class": "xf-product-info__table xf-product-table"} ) if table: rows = table.find_all("tr") for row in rows: key = row.find_all(class_="xf-product-table__col-header")[ 0 ].text.strip() value = row.find_all("td")[0].text.strip() if key == "Объём": key = "Вес" if key in self.columns: product[key] = value return product def __parse_category(self, category: Category) -> pd.DataFrame: """Parse all products in the categoty.""" print(f"Start parsing {category.name}.") page = self.__get_html(category.url) soup = BeautifulSoup(page, "lxml") goods = soup.find_all(class_="js-catalog-product _additionals xf-catalog__item") for good in goods: url = good.find(class_="xf-product-picture__link js-product__image").get( "href" ) url = self.main_url + url product = self.__parse_good(url) product["Категория"] = category.name self.result = pd.concat( [self.result, pd.DataFrame.from_dict(product, orient="index").T] ) self.result = self.result.dropna(subset=["Название"]).drop_duplicates( subset=["Название"] ) return self.result def parse(self) -> pd.DataFrame: """Parse all products descriptions from `https://www.perekrestok.ru`.""" for category in self.get_catalog(): self.__parse_category(category) return self.result if __name__ == "__main__": parser = Perecrestok() data = parser.parse() data.to_csv("perecrestok_goods.csv")
StarcoderdataPython
6649264
<gh_stars>1-10 """ This example exhibits some of the functionality of a peripheral BLE device, such as reading, writing and notifying characteristics. This peripheral can be used with one of the central examples running on a separate nordic device, or can be run with the nRF Connect app to explore the contents of the service """ import atexit import struct import threading import time from blatann import BleDevice from blatann.examples import example_utils, constants from blatann.gap import advertising, smp, IoCapabilities from blatann.waitables import GenericWaitable logger = example_utils.setup_logger(level="DEBUG") def on_connect(peer, event_args): """ Event callback for when a central device connects to us :param peer: The peer that connected to us :type peer: blatann.peer.Client :param event_args: None """ if peer: logger.info("Connected to peer") else: logger.warning("Connection timed out") def on_disconnect(peer, event_args): """ Event callback for when the client disconnects from us (or when we disconnect from the client) :param peer: The peer that disconnected :type peer: blatann.peer.Client :param event_args: The event args :type event_args: blatann.event_args.DisconnectionEventArgs """ logger.info("Disconnected from peer, reason: {}".format(event_args.reason)) def on_hex_conversion_characteristic_write(characteristic, event_args): """ Event callback for when the client writes to the hex conversion characteristic. This takes the data written, converts it to the hex representation, and updates the characteristic with this new value. If the client is subscribed to the characteristic, the client will be notified. :param characteristic: The hex conversion characteristic :type characteristic: blatann.gatt.gatts.GattsCharacteristic :param event_args: the event arguments :type event_args: blatann.event_args.WriteEventArgs """ logger.info("Got characteristic write - characteristic: {}, data: 0x{}".format(characteristic.uuid, str(event_args.value).encode("hex"))) new_value = "{}".format(str(event_args.value).encode("hex")) characteristic.set_value(new_value[:characteristic.max_length], notify_client=True) def on_gatts_subscription_state_changed(characteristic, event_args): """ Event callback for when a client subscribes or unsubscribes from a characteristic. This is the equivalent to when a client writes to a CCCD descriptor on a characteristic. :type characteristic: blatann.gatt.gatts.GattsCharacteristic :type event_args: blatann.event_args.SubscriptionStateChangeEventArgs """ logger.info("Subscription state changed - characteristic: {}, state: {}".format(characteristic.uuid, event_args.subscription_state)) def on_time_char_read(characteristic, event_args): """ Event callback for when the client reads our time characteristic. Gets the current time and updates the characteristic. This demonstrates "lazy evaluation" of characteristics--instead of having to constantly update this characteristic, it is only updated when read/observed by an outside actor. :param characteristic: the time characteristic :type characteristic: blatann.gatt.gatts.GattsCharacteristic :param event_args: None """ t = time.time() ms = int((t * 1000) % 1000) msg = "Time: {}.{:03}".format(time.strftime("%H:%M:%S", time.localtime(t)), ms) characteristic.set_value(msg) def on_client_pairing_complete(peer, event_args): """ Event callback for when the pairing process completes with the client :param peer: the peer that completed pairing :type peer: blatann.peer.Client :param event_args: the event arguments :type event_args: blatann.event_args.PairingCompleteEventArgs """ logger.info("Client Pairing complete, status: {}".format(event_args.status)) def on_passkey_display(peer, event_args): """ Event callback that is called when a passkey is required to be displayed to a user for the pairing process. :param peer: The peer the passkey is for :type peer: blatann.peer.Client :param event_args: The event args :type event_args: blatann.event_args.PasskeyDisplayEventArgs """ logger.info("Passkey display: {}, match: {}".format(event_args.passkey, event_args.match_request)) class CountingCharacteristicThread(object): """ Thread which updates the counting characteristic and notifies the client each time its updated. This also demonstrates the notification queuing functionality--if a notification/indication is already in progress, future notifications will be queued and sent out when the previous ones complete. """ def __init__(self, characteristic): """ :param characteristic: the counting characteristic :type characteristic: blatann.gatt.gatts.GattsCharacteristic """ self.current_value = 0 self._stop_event = threading.Event() self._stopped = threading.Event() self.characteristic = characteristic self.characteristic.on_notify_complete.register(self._on_notify_complete) self.thread = threading.Thread(target=self.run) atexit.register(self.join) self.thread.daemon = True self.thread.start() def join(self): """ Used to stop and join the thread """ self._stop_event.set() self._stopped.wait(3) def _on_notify_complete(self, characteristic, event_args): """ Event callback that is triggered when the notification finishes sending :param characteristic: The characteristic the notification was on :type characteristic: blatann.gatt.gatts.GattsCharacteristic :param event_args: The event arguments :type event_args: blatann.event_args.NotificationCompleteEventArgs """ logger.info("Notification Complete, id: {}, reason: {}".format(event_args.id, event_args.reason)) def run(self): while not self._stop_event.is_set(): try: if not self.characteristic.client_subscribed: # Do nothing until a client is subscribed time.sleep(1) continue # Increment the value and pack it self.current_value += 1 value = struct.pack("<I", self.current_value) # Send out a notification of this new value waitable = self.characteristic.notify(value) # Send a burst of 16, then wait for them all to send before trying to send more if self.current_value % 16 == 0: waitable.wait() time.sleep(1) # Wait a second before sending out the next burst except Exception as e: logger.exception(e) self._stopped.set() def main(serial_port): # Create and open the device ble_device = BleDevice(serial_port) ble_device.open() # Set up desired security parameters ble_device.client.security.set_security_params(passcode_pairing=False, bond=False, io_capabilities=IoCapabilities.DISPLAY_ONLY, out_of_band=False) ble_device.client.security.on_pairing_complete.register(on_client_pairing_complete) ble_device.client.security.on_passkey_display_required.register(on_passkey_display) # Create and add the math service service = ble_device.database.add_service(constants.MATH_SERVICE_UUID) # Create and add the hex conversion characteristic to the service hex_conv_char = service.add_characteristic(constants.HEX_CONVERT_CHAR_UUID, constants.HEX_CONVERT_CHAR_PROPERTIES, "Test Data") # Register the callback for when a write occurs and subscription state changes hex_conv_char.on_write.register(on_hex_conversion_characteristic_write) hex_conv_char.on_subscription_change.register(on_gatts_subscription_state_changed) # Create and add the counting characteristic, initializing the data to [0, 0, 0, 0] counting_char = service.add_characteristic(constants.COUNTING_CHAR_UUID, constants.COUNTING_CHAR_PROPERTIES, [0]*4) counting_char.on_subscription_change.register(on_gatts_subscription_state_changed) # Create the thread for the counting characteristic counting_char_thread = CountingCharacteristicThread(counting_char) # Create and add the time service time_service = ble_device.database.add_service(constants.TIME_SERVICE_UUID) # Add the time characteristic and register the callback for when its read time_char = time_service.add_characteristic(constants.TIME_CHAR_UUID, constants.TIME_CHAR_PROPERTIES, "Time") time_char.on_read.register(on_time_char_read) # Initialize the advertising and scan response data adv_data = advertising.AdvertisingData(local_name=constants.PERIPHERAL_NAME, flags=0x06) scan_data = advertising.AdvertisingData(service_uuid128s=constants.TIME_SERVICE_UUID, has_more_uuid128_services=True) ble_device.advertiser.set_advertise_data(adv_data, scan_data) # Start advertising logger.info("Advertising") ble_device.client.on_connect.register(on_connect) ble_device.client.on_disconnect.register(on_disconnect) ble_device.advertiser.start(timeout_sec=0, auto_restart=True) # Create a waitable that will never fire, and wait for some time w = GenericWaitable() w.wait(60*30, exception_on_timeout=False) # Keep device active for 30 mins # Cleanup counting_char_thread.join() logger.info("Done") ble_device.close() if __name__ == '__main__': main("COM49")
StarcoderdataPython
8002073
""" Render setup overrides and collections can be enabled and disabled. Disabling an override removes its effect, but keeps the override itself. Disabling a collection disables all the overrides in its list, as well as disabling any child (nested) collection it may have. To implement this behavior, overrides and collections have three attributes: 1) An enabled attribute. This attribute is readable only (output), and is (trivially) computed from the two following attributes. 2) A self enabled attribute. This writable attribute determines whether the override or collection itself is enabled. 3) A parent enabled attribute. This writable attribute is connected to its parent's enabled output attribute, unless it is a collection immediately under a render layer. The enabled output boolean value is the logical and of the self enabled attribute and the parent enabled attribute. """ def addChangeCallbacks(node): """ Add callbacks to indicate the argument node's enabled attribute changed. A list of callback IDs is returned. """ pass def createIntAttribute(longName, shortName, defaultValue): """ Helper method to create an input (writable) int attribute """ pass def computeWithIsolateSelected(node, plug, dataBlock): pass def initializeAttributes(cls): pass def compute(node, plug, dataBlock): pass def createBoolAttribute(longName, shortName, defaultValue): """ Helper method to create an input (writable) boolean attribute """ pass def createBoolOutputAttribute(longName, shortName, defaultValue): """ Helper method to create an output (readable) boolean attribute """ pass def _compute(node, plug, dataBlock): pass
StarcoderdataPython
1709316
<filename>app/main.py # encoding=utf-8 import json import logging import webapp2 import appengine_config from google.appengine.api import modules from google.appengine.api import app_identity import telegram import telegram_token from service import WordCountService # Creating the bot and getting basic info of it. BOT = telegram.Bot(token=telegram_token.TOKEN) BOT_ME = BOT.getMe() if not appengine_config.DEBUG: # Setting the webhook (callback). VERSION = modules.get_current_version_name() HOST_NAME = app_identity.get_default_version_hostname() HOST_URL = 'https://{}-dot-{}/{}'.format(VERSION, HOST_NAME, telegram_token.TOKEN) BOT.setWebhook(HOST_URL) # Text to send back after substitution. RESPONSE_TEXT = """Letters: %(letters)s Words: %(words)s Lines: %(lines)s """ RESPONSE_NO_TEXT = "Please, sent me some text. " + telegram.Emoji.PAGE_FACING_UP class MainPage(webapp2.RequestHandler): def get(self): self.response.headers['Content-Type'] = 'text/plain' self.response.write(BOT_ME) self.response.write('\n') self.response.write(HOST_URL) def post(self): json_str = self.request.body logging.info("POST Body: " + json_str) try: json_obj = json.loads(json_str) update = telegram.Update.de_json(json_obj) chat_id = update.message.chat.id text = update.message.text.encode('utf-8') if text != '': logging.info("Message Text: " + text) BOT.sendMessage(chat_id=chat_id, text=self.get_response(text)) else: logging.info("No Message Text.") BOT.sendMessage(chat_id=chat_id, text=self.get_response()) except ValueError: logging.error('No body or bad JSON body.') except AttributeError: logging.error('No correct attributes in JSON body.') def get_response(self, text=None): if text: return RESPONSE_TEXT % WordCountService.count(text) return RESPONSE_NO_TEXT app = webapp2.WSGIApplication([ ('/' + telegram_token.TOKEN, MainPage), ], debug=appengine_config.DEBUG)
StarcoderdataPython
6505000
N = int(input()) s = set(input() for i in range(N)) print (len(s))
StarcoderdataPython
3553723
#!/usr/bin/env python # Copyright (c) 2018 Oracle and/or its affiliates. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from vol_provisioner_system_test import VolumeProvisionerSystemTestInterface import oci import utils import atexit from yaml_utils import PopulateYaml class BackupVolumeSystemTest(VolumeProvisionerSystemTestInterface): KUBERNETES_RESOURCES = ["../../dist/storage-class.yaml", "../../dist/storage-class-ext3.yaml", "../../dist/oci-volume-provisioner.yaml", "../../dist/oci-volume-provisioner-rbac.yaml"] BACKUP_CLAIM_TEMPLATE = "templates/example-claim-from-backup.template" CM_VOLUME_FROM_BACKUP = "volume_provisioner_volume_from_backup" def __init__(self, test_id=None, setup=False, check_oci=False, canaryMetrics=None): super(BackupVolumeSystemTest, self).__init__(test_id=test_id, setup=setup, check_oci=check_oci, k8Resources=self.KUBERNETES_RESOURCES, canaryMetrics=canaryMetrics) def run(self): super(BackupVolumeSystemTest, self).run() if self._check_oci: # Do not run tests in the validate-test-image stage (oci_config not propagated to image) utils.log("Running system test: Create volume from backup", as_banner=True) _backup_ocid, _availability_domain = self._setup_create_volume_from_backup() _claim_target = PopulateYaml(self.BACKUP_CLAIM_TEMPLATE, self._test_id, region=_availability_domain.split(':')[1], backup_id=_backup_ocid).generateFile() _res = self._test_create_volume(_claim_target, "demooci-from-backup-" + self._test_id, availability_domain=_availability_domain, verify_func=self._volume_from_backup_check, canaryMetricName=self.CM_VOLUME_FROM_BACKUP) self._tear_down_create_volume_from_backup(_backup_ocid) self._checkTestSuccess() def _create_backup(self, volume_ocid): '''Create volume backup on OCI from existing volume @param volume_ocid: Ocid of course volume @type volume_ocid: C{Str} @return: Tuple containing the backup id, compartment id and display name @rtype: C{Tuple}''' client = oci.core.blockstorage_client.BlockstorageClient(self._oci_config) _backup_details = oci.core.models.CreateVolumeBackupDetails(volume_id=volume_ocid, display_name="backup_volume_system_test" + self._test_id) _response = client.create_volume_backup(_backup_details) utils.log("Response for creating backup for volume %s: %s" % (volume_ocid, _response.data)) _res = self._get_json_doc(str(_response.data)) return _res['id'], _res['compartment_id'], _res['display_name'] def _delete_backup(self, backup_ocid): '''Delete volume backup from OCI @param backup_ocid: Ocid of backup volume to delete @type backup_ocid: C{Str}''' client = oci.core.blockstorage_client.BlockstorageClient(self._oci_config) _response = client.delete_volume_backup(backup_ocid) utils.log("Response for deleting volume backup %s: %s" % (backup_ocid, _response.data)) def _create_volume_from_backup(self, backup_ocid, test_id, availability_domain, compartment_id): client = oci.core.blockstorage_client.BlockstorageClient(self._oci_config) _volume_details = oci.core.models.CreateVolumeDetails(volume_backup_id=backup_ocid, display_name="restored_volume_system_test" + test_id, availability_domain=availability_domain, compartment_id=compartment_id) try: _response = client.create_volume(_volume_details) utils.log("Response for creating volume from backup %s: %s %s" % (_response.data, self._get_json_doc(str(_response.data))['id'], compartment_id)) return self._get_json_doc(str(_response.data))['id'] except Exception as exc: utils.log("Failed to create volume from backup %s" % exc) def _setup_create_volume_from_backup(self, storageType=VolumeProvisionerSystemTestInterface.BLOCK_STORAGE, availability_domain=None): '''Setup environment for creating a volume from a backup device @return: OCID of generated backup @rtype: C{Str}''' utils.log("Creating test volume (using terraform)", as_banner=True) self._terraform("init", self.TERRAFORM_DIR) self._terraform("apply", self.TERRAFORM_DIR) _availability_domain = self._get_terraform_output_var(self.TERRAFORM_AVAILABILITY_DOMAIN) utils.log(self._terraform("output -json", self.TERRAFORM_DIR)) # Create replication controller and write data to the generated volume _rc_name, _rc_config = self._create_rc_or_pod("templates/example-replication-controller-with-volume-claim.template", _availability_domain, volume_name=self._get_volume_name()) self._create_file_via_replication_controller(_rc_name) self._verify_file_existance_via_replication_controller(_rc_name) # Create backup from generated volume _backup_ocid, compartment_id, _volume_name = self._create_backup(self._get_terraform_output_var(self.TERRAFORM_VOLUME_OCID)) if not self._wait_for_volume_to_create(_backup_ocid, compartment_id=compartment_id, backup=True, storageType=storageType, availability_domain=availability_domain): utils.log("Failed to find backup with name: " + _volume_name) return _backup_ocid, _availability_domain def _tear_down_create_volume_from_backup(self, backup_ocid): '''Tear down create volume from backup @param test_id: Test id used to append to component names @type test_id: C{Str} @param backup_ocid: OCID of backup from which the test volume was created @type backup_ocid: C{Str}''' def _destroy_test_volume_atexit(): utils.log("Destroying test volume (using terraform)", as_banner=True) self._terraform("destroy -force", self.TERRAFORM_DIR) atexit.register(_destroy_test_volume_atexit) self._delete_backup(backup_ocid) def _volume_from_backup_check(self, test_id, availability_domain, volume, file_name='hello.txt',): '''Verify whether the volume created from the backup is in a healthy state @param test_id: Test id to use for creating components @type test_id: C{Str} @param availability_domain: Availability domain to create resource in @type availability_domain: C{Str} @param volume: Name of volume to verify @type volume: C{Str} @param file_name: Name of file to do checks for @type file_name: C{Str}''' _ocid = volume.split('.') _ocid = _ocid[-1] _rc_name, _rc_config = self._create_rc_or_pod("templates/example-replication-controller.template", availability_domain, _ocid) utils.log("Does the file from the previous backup exist?") stdout = utils.kubectl("exec " + _rc_name + " -- ls /usr/share/nginx/html") if file_name not in stdout.split("\n"): utils.log("Error: Failed to find file %s in mounted volume" % file_name) utils.log("Deleting the replication controller (deletes the single nginx pod).") utils.kubectl("delete -f " + _rc_config)
StarcoderdataPython
5053001
#!/usr/bin/python #FOG - update IP # Adjust /opt/fog/.fogsettings # Change Mysql values and update password from environment # - DB - fog # - globalSettings # - update globalSettings set settingValue='??' where settingKey='FOG_TFTP_HOST'; # - update globalSettings set settingValue='??' where settingKey='FOG_WEB_HOST'; # - nfsGroupMembers # - update nfsGroupMembers set ngmHostename='??' where ngmMemberName='DefaultMember'; # requires these packages and the initial fog setup to be done # Run this on startup in a docker machine # apt-get install python-pip python-dev libmysqlclient-dev # pip install MySQL-python # Use python3 style print from __future__ import print_function import os import socket import MySQLdb import pdb if os.name != "nt": import fcntl import struct def get_interface_ip(ifname): s = socket.socket(socket.AF_INET, socket.SOCK_DGRAM) return socket.inet_ntoa(fcntl.ioctl(s.fileno(), 0x8915, struct.pack('256s', ifname[:15]))[20:24]) def get_lan_ip(): ip = socket.gethostbyname(socket.gethostname()) if ip.startswith("127.") and os.name != "nt": interfaces = [ "eth0", "eth1", "eth2", "wlan0", "wlan1", "wifi0", "ath0", "ath1", "ppp0", ] for ifname in interfaces: try: ip = get_interface_ip(ifname) break except IOError: pass return ip # Pull password it_pw = os.getenv("IT_PW") print("Detecting ip...") # Check environment variable if it exists ip = os.getenv("PUBLIC_IP") if ip is None: # No environment variable set, try and figure out the current IP ip = get_lan_ip() print("Found IP: {0}".format(ip)) print("Updating fog settings...") fog_settings_path = "/opt/fog/.fogsettings" # Read in the old file filedata = "" with open(fog_settings_path, 'r') as file: filedata = file.readlines() # While we write it back out, we will grab mysql values for later # Set them to defaults mysql_host="localhost" mysql_user="root" mysql_pass="" mysql_db="fog" # Now write data back out f = open(fog_settings_path, "w") for line in filedata: if line.startswith("ipaddress="): f.write("ipaddress='" + ip + "'\n") if line.startswith("password="): f.write("password='" + <PASSWORD> + "'\n") else: f.write(line) # Check for mysql values if line.startswith("snmysqluser="): mysql_user = line.split('=')[-1].strip().strip("'") if line.startswith("snmysqlpass="): mysql_pass = line.split('=')[-1].strip().strip("'") if line.startswith("snmysqlhost="): mysql_host = line.split('=')[-1].strip().strip("'") if line.startswith("snmysqldb="): # NOTE - db is fog, cant set it in .fogsettings? mysql_db = line.split('=')[-1].strip().strip("'") f.close() #pdb.set_trace() # Update the mysql server - put new IP in place db = MySQLdb.connect(host=mysql_host, user=mysql_user, passwd=<PASSWORD>, db=mysql_db, port=3306) # update TFTP host cur = db.cursor() cur.execute("update globalSettings set settingValue='" + ip + "' where settingKey='FOG_TFTP_HOST'") # Update Web Host cur = db.cursor() cur.execute("update globalSettings set settingValue='" + ip + "' where settingKey='FOG_WEB_HOST'") # Update WOL Host cur = db.cursor() cur.execute("update globalSettings set settingValue='" + ip + "' where settingKey='FOG_WOL_HOST'") # Update storage IP cur = db.cursor() cur.execute("update nfsGroupMembers set ngmHostname='" + ip + "' where ngmMemberName='DefaultMember'") db.close() # Fix the ip in default.ipxe file os.system("/bin/sed -i \"s|http://\([^/]\+\)/|http://" + ip + "/|\" /tftpboot/default.ipxe") os.system("/bin/sed -i \"s|http:///|http://" + ip + "/|\" /tftpboot/default.ipxe") # Fix the ip in the config.class.php file os.system("/bin/sed -i \"s|\\\".*\\..*\\..*\\..*\\\"|\\\"" + ip + "\\\"|\" /var/www/fog/lib/fog/config.class.php") # Run fog installer #installer_path = "~/trunk/bin" #installer_file = "installfog.sh" #print("Running fog installer...") # Don't run installer #cmd = "cd " + installer_path + "; ./" + installer_file + " -y" #print("CMD: " + cmd) #os.system(cmd) # Finished print("Finished updating fog server ip.")
StarcoderdataPython
3201478
from dash import html from dash.dependencies import Input, Output, State def get_postal_code(click_data: dict) -> str: """ Helper function for the callbacks Gets postal code from map click_data. --- Args: click_data (dict): user click information Returns: postal_code (str): Area postal code. '00180' by default. """ # try to find the area by postcode try: postal_code = str(click_data["points"][0]['location']) except: postal_code = '00180' # Kamppi Postal code return postal_code def privacy_check(postal_code: str) -> bool: """ Helper function for the callbacks. Checks if postal code is private. --- Args: postal_code (str): Area postal code. Returns: True (bool): When postal code is in the private_list False (bool): When postal code is not found in the private_list """ # List of private area postcodes private_list = ['00230', '02290', '01770'] if postal_code in private_list: return True else: return False def privacy_notice(section_title: str, neighborhood: str) -> list: """ Helper function for the callbacks. --- Args: section_title (str): Title of a sections neighborhood (str): name of the neighborhood Returns: children (list): List of html components to be displayed. """ privacy_notice_text = f""" The statistical data about postal areas where less than 30 citizens live is private due to possible privacy violations. Additionally the data representing such a small population will not yield statistically significant insights. For these reason the data available for {neighborhood} neighborhood will not be displayed. """ children = [ html.H5(section_title), html.P(privacy_notice_text), html.P("Check out the other postal areas!") ] return children def init_modal_popup(app): """ """ @app.callback( Output("help-modal-centered", "is_open"), [Input("help-open-centered", "n_clicks"), Input("help-close-centered", "n_clicks")], [State("help-modal-centered", "is_open")], ) def toggle_modal(n1: str, n2: str, is_open: bool): """ Toggle modal pop-ups. --- Args: n1 (str): id of the trigger button n2 (str): id of the trigger button is_open (bool): Current state of the modal. True for Open, False otherwise. Returns: is_open (bool): True for Open, False otherwise. Default value is False. """ if n1 or n2: return not is_open return is_open
StarcoderdataPython
8064112
<filename>config.py # токен бота TOKEN = '' # admin -@Flaiers admin_id = _ # telegram api id api_id = _ # telegram api hash api_hash = '' # telegram name session name = 'session' # фразы unknown = ['Я тебя не понимаю 😐', 'Мне непонятно 🙃', 'Твоё сообщение мне непонятно 😕', 'Я не могу понять 🙃', 'Пожалуйста, перефразируйте вопрос 😉', 'Не могу разобрать 😕', 'Некорректный вопрос 🧐', 'Такое я ещё не понимаю 🙁']
StarcoderdataPython
11352012
<reponame>fluiddyn/fluiddyn<gh_stars>10-100 """ Utilities for creating figures (:mod:`fluiddyn.output.figs`) ============================================================= .. currentmodule:: fluiddyn.output.figs Provides .. autoclass:: Figure :members: .. autoclass:: Figures :members: """ import os import sys import matplotlib import matplotlib.pyplot as plt from ..util import is_run_from_ipython from .rcparams import set_rcparams class Figures: """Represent a set of figures. Utilities to plot and save figures with matplotlib. Parameters ---------- path_save : str Related to the path where to save. hastosave : bool If True, the function `Figure.saveifhasto` save the figure. for_beamer : bool If True, use beamer layout. for_article : bool If True, use article layout. fontsize : {18, int} Font size of the text in the figures. fontsize_pad : {9, int} Font size of the pad in the figures. """ def __init__( self, path_save=None, hastosave=False, for_beamer=False, for_article=False, fontsize=18, fontsize_pad=9, ): self.hastosave = hastosave if path_save is None: self.path_save = os.getcwd() elif os.path.isabs(path_save): self.path_save = path_save else: self.path_save = os.path.join(os.getcwd(), path_save) set_rcparams(fontsize, for_article, for_beamer, fontsize_pad=9) def new_figure( self, name_file=None, num=None, fig_width_mm=200, fig_height_mm=150, size_axe=None, ): """Create a new Figure object and return it. Parameters ---------- num : int, optional Number. fig_width_mm : {200, number}, optional Width (in mm) fig_height_mm : {150, number}, optional Height (in mm) size_axe : list, optional Size of the axe. name_file : str, optional Name of the file. """ one_inch_in_mm = 25.4 fig_width_inches = float(fig_width_mm) / one_inch_in_mm fig_height_inches = float(fig_height_mm) / one_inch_in_mm figsize = [fig_width_inches, fig_height_inches] dpi_latex = 72.27 fig = Figure( num=num, figsize=figsize, dpi=dpi_latex, size_axe=size_axe, name_file=name_file, figures=self, ) return fig def show(block=None): """Show slightly more cleaver than old version of plt.show.""" if block is None: if is_run_from_ipython(): block = False plt.ion() else: block = True plt.ioff() if sys.platform.startswith("win") and not block: print("Warning: bug with anaconda and non-blocking show (?)") try: plt.show(block=block) except TypeError: plt.show() class Figure(matplotlib.figure.Figure): """One figure. Improvement (?) of `matplotlib.figure.Figure` Parameters ---------- (for the __init__ method) size_axe : list, optional Size of the axe. name_file : str, optional Name of the file. figures : :class:`fluiddyn.output.figs.Figures` Set of figures. kwargs : keyword arguments Given when create the figure. """ def __init__( self, size_axe=None, name_file=None, figures=None, **kwargs # *args, ): # Ugly workaround to be able to use the function plt.figure fig = plt.figure(**kwargs) for k, v in fig.__dict__.items(): self.__dict__[k] = v if name_file is not None: self.name_file = name_file if figures is None: self.hastosave = True self.path_save = os.getcwd() else: self.hastosave = figures.hastosave self.path_save = figures.path_save self.figures = figures title = "Fig " + str(self.number) if name_file is not None: fig.name_file = name_file title += " " + name_file self.clf() self.canvas.manager.set_window_title(title) if size_axe is not None: self.add_axes(size_axe) def saveifhasto(self, name_file=None, hastosave=None, verbose=True): """Save the figure if `hastosave` is True. Parameters ---------- name_file : str, optional Name of the file (the extension has to indicate the format). hastosave : bool, optional If True, save the figure. verbose : {True, bool}, optional Print nothing if False. """ if hastosave is None: hastosave = self.hastosave if hastosave: if name_file is None: try: name_file = self.name_file except AttributeError: raise ValueError("No name given...") if not os.path.exists(self.path_save): os.mkdir(self.path_save) path = os.path.join(self.path_save, name_file) if verbose: print("Save figure in file\n" + path) super().savefig(path)
StarcoderdataPython
3279630
<gh_stars>1-10 """ game class """ # noqa # We want only one implementation of the Game Class. # To do this, create a single instance of the Game class on import. Then # each time we try to instanciate Game(), we just return a reference to # the game class. import cmd from datetime import datetime import pprint import random import re from combat import Combat from common.ipc import Ipc from common.general import isIntStr, dateStr, logger, dLog from common.general import splitTargets, targetSearch, itemSort from common.general import getRandomItemFromList, secsSinceDate, getNeverDate from common.globals import maxCreaturesInRoom from common.help import enterHelp from creature import Creature from magic import Spell, SpellList, spellCanTargetSelf from object import ObjectFactory, isObjectFactoryType from room import RoomFactory, isRoomFactoryType, getRoomTypeFromFile class _Game(cmd.Cmd, Combat, Ipc): """ Single instance of the Game class, shared by all users (see instanciation magic at the bottom of the file)""" _instanceDebug = False def __init__(self): """ game-wide attributes """ self.instance = "Instance at %d" % self.__hash__() self._activeRooms = [] self._activePlayers = [] self._startdate = datetime.now() self._asyncThread = None self._instanceDebug = _Game._instanceDebug return None def debug(self): return pprint.pformat(vars(self)) def toggleInstanceDebug(self): self._instanceDebug = not self._instanceDebug def getInstanceDebug(self): return self._instanceDebug def getId(self): return self.instance def isValid(self): if self.getId() != "" and self._startdate < datetime.now(): return True return False def asyncTasks(self): """ Tasks that run in a separate thread with ~1 sec intervals """ self.asyncNonPlayerActions() self.asyncCharacterActions() def processDeadClients(self): True def joinGame(self, client): """ Perform required actions related to joining the game """ charObj = client.charObj if not charObj: logger.warn("Game: Character not defined - returning False") return False gameCmd = GameCmd(client) # each user gets their own cmd shell self.addToActivePlayerList(charObj) # in-game broadcast announcing game entry msg = self.txtBanner( "{} has entered the game at {}".format(charObj.getName(), dateStr("now")), bChar="=") self.gameMsg(msg + "\n") logger.info("JOINED GAME " + charObj.getId()) # add room to charObj and then display the room if self.joinRoom(1, charObj): self.charMsg(charObj, charObj.getRoom().display(charObj)) try: gameCmd.cmdloop() # start the game cmdloop finally: if client.charObj: self.leaveGame(client.charObj) return False def leaveGame(self, charObj, saveChar=True): """ Handle details of leaving a game """ self.leaveRoom(charObj) # remove character from game character list self.removeFromActivePlayerList(charObj) # final character save before throwing away charObj if saveChar: # saveChar is False when it's a suicide try: charObj.save(logStr=__class__.__name__) except AttributeError: logger.warning("Could not save character") # notification and logging msg = self.txtBanner( "{} has left the game at {}".format(charObj.getName(), dateStr("now")), bChar="=") self.gameMsg(msg + "\n") if charObj.client: charObj.client.spoolOut(msg + "\n") logger.info("LEFT GAME " + charObj.getId()) # Discard charObj if charObj.client: charObj.client.charObj = None charObj = None return True def getCharacterList(self): return self._activePlayers def addToActivePlayerList(self, charObj): """ add character to list of characters in game """ if charObj not in self.getCharacterList(): self._activePlayers.append(charObj) def removeFromActivePlayerList(self, charObj): """ remove character from list of characters in game """ if charObj in self.getCharacterList(): self._activePlayers.remove(charObj) def getActiveRoomList(self): return self._activeRooms def addToActiveRooms(self, roomObj): """ Add room to active room list """ if roomObj not in self.getActiveRoomList(): self._activeRooms.append(roomObj) return True def removeFromActiveRooms(self, roomObj): """ Remove room from active room list """ if self.isActiveRoom(roomObj): self._activeRooms.remove(roomObj) return True def isActiveRoom(self, roomObj): """ Return true if room is in active room list """ if roomObj in self.getActiveRoomList(): return True return False def getActiveRoom(self, num): """ Return the roomObj for an active room, given the room number """ for roomObj in self.getActiveRoomList(): if roomObj.getId() == num: return roomObj return None def activeRoomInfo(self): msg = "Active rooms: " + ", ".join( [x.getItemId() + "(" + str(x) + ")" for x in self.getActiveRoomList()] ) return msg def deActivateEmptyRoom(self, roomObj): """ deactiveates room if empty. Returns true if deactiveated """ if len(roomObj.getCharacterList()) == 0: self.removeFromActiveRooms(roomObj) return True return False def asyncCharacterActions(self): """ asyncronous actions that occur to players. """ for charObj in self.getCharacterList(): self.timeoutInactivePlayer(charObj) charObj.processPoisonAndRegen() def timeoutInactivePlayer(self, charObj, timeoutInSecs=300): """ kick character out of game if they have been inactive """ removeCharFromGame = False timeOutTxt = "You have timed out due to inactivity\n" if charObj.getInputDate() == getNeverDate(): # Ignore the timeout check if the input date has not been set yet # This is a timing issue in that the first run of the async loop # runs before the character is fully initialized with an input date. return(False) if secsSinceDate(charObj.getInputDate()) > timeoutInSecs: removeCharFromGame = True if not charObj.client.is_alive(): removeCharFromGame = True if removeCharFromGame: self.charMsg(charObj, timeOutTxt) logger.info("GAME TIMEOUT {}".format(charObj.getId())) self.leaveGame(charObj, saveChar=True) return(True) return(False) def asyncNonPlayerActions(self): """ asyncronous actions that are not tied to a player. """ for roomObj in self.getActiveRoomList(): if self.deActivateEmptyRoom(roomObj): continue self.creatureEncounter(roomObj) self.creaturesAttack(roomObj) return None def roomLoader(self, roomStr): """ returns a roomObj, given a roomStr """ logPrefix = "game.roomLoader (" + str(roomStr) + ") " roomObj = None roomType = "room" roomNum = 0 roomStr = str(roomStr) if isIntStr(roomStr): roomNum = int(roomStr) roomType = getRoomTypeFromFile(roomNum) elif "/" in roomStr: # if it's not a number, assume it's in the form: Room/35 roomType, roomNum = roomStr.split("/") if isIntStr(roomNum): roomNum = int(roomNum) if roomNum == 0: logger.error(logPrefix + "Room number is 0") return None else: logger.error(logPrefix + "Room number is invalid") return None # See if room is already active for oneroom in self.getActiveRoomList(): if oneroom.getRoomNum() == roomNum: # if the room alread exists roomObj = oneroom # use existing roomObj if not roomObj: roomObj = RoomFactory(roomType, roomNum) # instanciate room object roomObj.load(logStr=__class__.__name__) # load room from disk if roomObj is None: logger.error(logPrefix + "Room object is None") return roomObj # end roomLoader def joinRoom(self, roomThing, charObj): """ insert player into a room * can accept room number or roomObj * create or join room instance * add character to room instance * add room to character instance * add room to active rooms list * close spring loaded doors if room is empty # roomStr can be a room number or can be in the form Shop/35 """ roomObj = None if isinstance(roomThing, int) or isinstance(roomThing, str): roomObj = self.roomLoader(roomThing) elif isRoomFactoryType(roomThing.getType()): roomObj = roomThing if not roomObj: logger.error("joinRoom: Could not get roomObj") return False existingRoom = charObj.getRoom() if existingRoom: if existingRoom == roomObj: # if already in desired room return True # do nothing else: self.leaveRoom(charObj) # leave the previous room charObj.setRoom(roomObj) # Add room to character roomObj.addCharacter(charObj) # Add character to room self.addToActiveRooms(roomObj) # Add room to active room list return True def leaveRoom(self, charObj): """ Handle details of leaving a room * Remove room from active rooms list if it's empty * remove character from room instance * remove room from character instance * toDo - check if other players/creatures follow * toDo - notify others that character has left the room * toDo - stop/reassign attackers """ if not charObj: return False if not charObj.getRoom(): # There is no previous room, so just return return True if charObj.getRoom().getId() == 0: # Not a real room - just loaded? return True charObj.getRoom().removeCharacter(charObj) # remove charact from room # if room's character list is empty, remove room from activeRoomList if len(charObj.getRoom().getCharacterList()) == 0: self.removeFromActiveRooms(charObj.getRoom()) charObj.getRoom().removeNonPermanents(removeTmpPermFlag=False) charObj.getRoom().save() charObj.removeRoom() # Remove room from character return True def calculateObjectPrice(self, charObj, obj): """ return adjusted price for an object based on many factors """ if obj.isCursed(): return 1 price = obj.getValue() price = obj.adjustPrice(price) # object adjustment price = charObj.getRoom().adjustPrice(price) # room adjustment price = charObj.adjustPrice(price) # char adjust return price def getCorrespondingRoomObj(self, doorObj, activeOnly=False): """ Get the room object that correcponds to a door """ roomObj = self.getActiveRoom(doorObj.getToWhere()) if not roomObj: # If active room doesn't exist if not activeOnly: # Load room from disk into separate instance roomObj = self.roomLoader(doorObj.getToWhere()) else: roomObj = None return roomObj def modifyCorrespondingDoor(self, doorObj, charObj): """ When a door is opened/closed on one side, the corresponing door needs to be updated """ roomObj = self.getCorrespondingRoomObj(doorObj) if roomObj: for obj in roomObj.getInventory(): if obj.getId() == doorObj.getCorresspondingDoorId(): if doorObj.isClosed(): obj.close(charObj) else: obj.open(charObj) if doorObj.isLocked(): obj.lock() else: obj.unlock() roomObj.save() return True return True def buyTransaction( self, charObj, obj, price, prompt, successTxt="Ok.", abortTxt="Ok." ): """ buy an item """ roomObj = charObj.getRoom() if charObj.client.promptForYN(prompt): charObj.subtractCoins(price) # tax included charObj.addToInventory(obj) # add item if roomObj.getType() == "Shop": roomObj.recordTransaction(obj) # update stats roomObj.recordTransaction("sale/" + str(price)) charObj.recordTax(roomObj.getTaxAmount(price)) self.charMsg(charObj, successTxt) logger.info( "PURCHASE " + charObj.getId() + " bought " + obj.describe() + " for " + str(price) ) return True else: self.charMsg(charObj, abortTxt) return False def sellTransaction( self, charObj, obj, price, prompt, successTxt="Ok.", abortTxt="Ok." ): """ sell an item """ roomObj = charObj.getRoom() if charObj.client.promptForYN(prompt): charObj.removeFromInventory(obj) # remove item charObj.addCoins(price) # tax included if roomObj.getType() == "Shop": roomObj.recordTransaction(obj) # update stats roomObj.recordTransaction("purchase/" + str(price)) charObj.recordTax(roomObj.getTaxAmount(price)) self.charMsg(charObj, successTxt) logger.info( "SALE " + charObj.getId() + " sold " + obj.describe() + " for " + str(price) ) return True else: self.charMsg(charObj, abortTxt) return False def populateRoomCreatureCache(self, roomObj): """ Create a creature cache, so that we don't have to load the creatures every time we check for encounters. These creatures are never actually encountered. They just exist for reference """ debugPrefix = "game.populateRoomCreatureCache (" + str(roomObj.getId()) + "): " if len(roomObj.getCreatureCache()) == 0: dLog(debugPrefix + "Populating room creature cache", self._instanceDebug) # loop through all possible creatures for room and fill cache for ccNum in roomObj.getEncounterList(): ccObj = Creature(ccNum) ccObj.load() roomObj.creatureCachePush(ccObj) dLog(debugPrefix + "Cached " + ccObj.describe(), self._instanceDebug) def getEligibleCreatureList(self, roomObj): """ Determine which creatures, from the cache, can be encountered, by comparing their frequency attribute to a random roll. Fill a eligibleCreatureList with possible creatures for encounter. """ debugPrefix = "game.getEligibleCreatureList (" + str(roomObj.getId()) + "): " eligibleCreatureList = [] for ccObj in roomObj.getCreatureCache(): if ccObj.getFrequency() >= random.randint(1, 100): # Load creature to be encountered cObj = Creature(ccObj.getId()) cObj.load() eligibleCreatureList.append(cObj) dLog( debugPrefix + cObj.describe() + " is eligible", self._instanceDebug ) return eligibleCreatureList def creatureEncounter(self, roomObj): """ As an encounter, add creature to room Chance based on * room encounter rates and encounter list * creature frequency """ debugPrefix = "Game creatureEncounter (" + str(roomObj.getId()) + "): " if not roomObj.readyForEncounter(): # dLog(debugPrefix + 'Room not ready for encounter', # self._instanceDebug) return False if len(roomObj.getInventoryByType("Creature")) >= maxCreaturesInRoom: self.roomMsg( roomObj, "Others arrive, but wander off.\n", allowDupMsgs=False ) return False self.populateRoomCreatureCache(roomObj) eligibleCreatureList = self.getEligibleCreatureList(roomObj) creatureObj = getRandomItemFromList(eligibleCreatureList) if creatureObj: roomObj.addToInventory(creatureObj) dLog( debugPrefix + str(creatureObj.describe()) + " added to room", self._instanceDebug, ) self.roomMsg(roomObj, creatureObj.describe() + " has arrived\n") creatureObj.setEnterRoomTime() roomObj.setLastEncounter() return None def removeFromPlayerInventory(self, charObj, item, msg=""): """ display message and remove item from player's inventory * Has some canned responses, such as "disintegrate" """ if msg == "disint": msg = item.describe(article="The") + " disintegrates" if msg != "": self.charMsg(charObj, msg + "\n") # Remove item from player's inventory charObj.removeFromInventory(item) return None def txtBanner(self, msg, bChar="-"): """ return a string containing a banner. Default is like this: ----- mymessage ----- """ return "{0} {1} {0}".format(self.txtLine(lineChar=bChar, lineSize=5), msg) def txtLine(self, lineChar="-", lineSize=80): """ return a string containing a line line size and character are customizable Default is like this: ---------------------------------------------------------------- """ return lineChar * lineSize class GameCmd(cmd.Cmd): """ Game loop - separate one for each player * Uses cmd loop with do_<action> methods * if do_ methods return True, then loop exits """ def __init__(self, client=None): self.client = client if client: self.acctObj = client.acctObj self.gameObj = client.gameObj self.charObj = client.charObj else: self.acctObj = None self.gameObj = None self.charObj = None self._lastinput = "" self._instanceDebug = False def toggleInstanceDebug(self): self._instanceDebug = not self._instanceDebug def setInstanceDebug(self, val): self._instanceDebug = bool(val) def getInstanceDebug(self): return self._instanceDebug def getCmdPrompt(self): sp = "<" ep = ">" if self.charObj: promptsize = self.charObj.getPromptSize() else: promptsize = "full" if promptsize == "brief": promptStr = ep + " " else: promptStr = sp + "game" + ep + " " return promptStr def cmdloop(self): """ cmd method override - Game loop requires player to have character loaded """ stop = False line = "" self.preloop() while not stop: if self.client.promptForCommand(self.getCmdPrompt()): # send/recv line = self.client.getInputStr() stop = self.runcmd(line) else: stop = True self.postloop() def runcmd(self, cmd): """ workhorse of cmdloop * runcmd extracted from cmdloop so that tests can call it without prompting for input """ self._lastinput = cmd dLog("GAME cmd = " + cmd, self._instanceDebug) if self.precmd() == "stop": return True stop = self.onecmd(cmd) if self.postcmd(cmd) == "stop": return True return stop def preloop(self): """ functionality that get run once before the input loop begins """ # Set the input date when first entering the game. Required for timeout # to work properly on characters that never input a command. self.charObj.setInputDate() def precmd(self): """ cmd method override """ # If charater has timed out or been booted from the game # terminate the command loop. if self.charObj not in self.gameObj.getCharacterList(): return("stop") self.charObj.setInputDate() if self.lastcmd != "": self.charObj.setLastCmd(self.lastcmd) return(False) def postcmd(self, line): """ cmd method override """ if self.charObj: # doesn't exist if there is a suicide self.charObj.save(logStr=__class__.__name__) return(False) def emptyline(self): """ cmd method override """ return False def default(self, line): """ cmd method override """ logger.warn("*** Invalid game command: %s\n" % line) self.charObj.client.spoolOut("Invalid Command\n") def getLastCmd(self): """ Returns the first part of the last command """ return self.lastcmd.split(" ", 1)[0] def missingArgFailure(self): """ Print missing arg message and return False """ self.selfMsg(self.getLastCmd() + " what?\n") return False def getObjFromCmd(self, itemList, cmdline): """ Returns a list of target Items, given the full cmdargs """ targetItems = [] for target in splitTargets(cmdline): obj = targetSearch(itemList, target) if obj: targetItems.append(obj) targetItems += [None] * 2 # Add two None items to the list return targetItems def getCombatTarget(self, line): """ All combat commands need to determine the target """ charObj = self.charObj roomObj = charObj.getRoom() creatureList = roomObj.getInventoryByType("Creature") targetList = self.getObjFromCmd(creatureList, line) target = targetList[0] if not target: # Re-use old target if it still exists lastTarget = charObj.getCurrentlyAttacking() if lastTarget: if lastTarget in creatureList: target = lastTarget if not target: if line == "": self.selfMsg("No target.\n") else: self.selfMsg(line + " is not a valid target.\n") return None return target def parseSpellArgs(self, line): charObj = self.charObj roomObj = charObj.getRoom() charObjList = charObj.getInventory() roomInv = roomObj.getCharsAndInventory() targetList = self.getObjFromCmd(charObjList + roomInv, line) spellItem = None spellName = "" targetObj = None if self.getLastCmd() == "cast": # When casting a spell, there is no spellItem, so the first item # in the list is the target if len(targetList) >= 1: targetObj = targetList[0] spellName = line.split(" ", 1)[0] else: # When using a magic item, the first magic item encountered is the # spellItem and the next, if any, is the target for target in targetList: if not target: continue if not target.isMagicItem(): continue if not spellItem: spellItem = target if not targetObj: targetObj = target break if spellItem: spellName = spellItem.getSpellName() if spellName != "": if not targetObj and spellCanTargetSelf(spellName): targetObj = charObj return (spellItem, spellName, targetObj) def getFollowerList(self, charObj, roomObj=None): """ Returns list of characters from room that are following character """ followerList = [] if not roomObj: roomObj = charObj.getRoom() for onechar in roomObj.getCharacterList(): if onechar is charObj: # ignore self continue if onechar.getFollow() is charObj: followerList.append(onechar) return followerList def selfMsg(self, msg): """ send message using Game communnication. This simply allows us to call it without passing the extra arg) """ return self.gameObj.charMsg(self.charObj, msg) def othersMsg(self, roomObj, msg, ignore): """ send message using Game communnication. This simply allows us to call it without passing the extra arg) """ return self.gameObj.othersInRoomMsg(self.charObj, roomObj, msg, ignore) def moveDirection(self, charObj, direction): """ move subcommand - move in one of the the basic directions """ dLog("GAME move dir = " + direction, self._instanceDebug) exitDict = charObj.getRoom().getExits() if direction not in exitDict.keys(): self.selfMsg("You can't move in that direction!\n") return False destRoomNum = exitDict[direction] roomObj = self.gameObj.roomLoader(destRoomNum) if not roomObj: logger.error("Could not create roomObj " + str(destRoomNum) + ".") return False if not roomObj.canBeJoined(charObj): logger.error(roomObj.getId() + " can not be joined.") return False if self.gameObj.joinRoom(roomObj, charObj): return True else: logger.error("joinRoom Failed\n") return False return False def moveThroughPortalOrDoor(self, charObj, itemObj): """ move subcommand - move through door or portal """ if not itemObj: # no object - take no action self.selfMsg("That is not somewhere you can go!\n") return False if not itemObj.canBeEntered(charObj): self.selfMsg("You can't go there!\n") return False if itemObj.hasToll(): toll = itemObj.getToll() if charObj.canAffordAmount(toll): charObj.subtractCoins(toll) self.selfMsg("You paid a toll of {} coins.".format(toll)) else: self.selfMsg("Opening this item requires more coins than you have\n") return False dLog( "GAME move through obj = {}".format(itemObj.describe()), self._instanceDebug ) roomnum = itemObj.getToWhere() roomObj = self.gameObj.roomLoader(roomnum) if roomObj: if roomObj.canBeJoined(charObj): if self.gameObj.joinRoom(roomnum, charObj): return True else: logger.error("joinRoom Failed\n") else: logger.error(roomnum + " can not be joined") else: logger.error("Could not create roomObj " + roomnum) return False def move(self, line): """ move character from one room to another """ cmdargs = line.split(" ") charObj = self.charObj moved = False currentRoom = charObj.getRoom() oldRoom = charObj.getRoom() if currentRoom.isDirection(cmdargs[0]): # if command is a direction moved = self.moveDirection(charObj, cmdargs[0]) # Folks in the old room should see the player leave, unless hidden msg = "{} went {}\n".format( charObj.getName(), currentRoom.directionNameDict[cmdargs[0]]) self.othersMsg(oldRoom, msg, charObj.isHidden()) else: # handle doors and Portals itemList = self.getObjFromCmd(currentRoom.getInventory(), line) moved = self.moveThroughPortalOrDoor(charObj, itemList[0]) currentRoom = charObj.getRoom() arrivedMsg = "{} has arrived\n" if moved: # creatures in old room should stop attacking player self.gameObj.unAttack(oldRoom, charObj) # character possibly loses hidden charObj.possibilyLoseHiddenWhenMoving() self.selfMsg(charObj.getRoom().display(charObj)) # Folks in the new room should see the player arrive, unless hidden msg = arrivedMsg.format(charObj.getName()) self.othersMsg(currentRoom, msg, charObj.isHidden()) # Handle followers that are moving along with primary character for onechar in self.getFollowerList(charObj, oldRoom): if onechar.continuesToFollow(charObj): self.gameObj.joinRoom(currentRoom, onechar) self.gameObj.charMsg(onechar, onechar.getRoom().display(onechar)) msg = arrivedMsg.format(onechar.getName()) self.gameObj.othersInRoomMsg( onechar, currentRoom, msg, charObj.isHidden()) else: # Follower loses sight of leader and is no longer following onechar.setFollow() return True else: self.selfMsg("You can not go there!\n") return False def useObject(self, obj, line): """ Call method for using object, based on it's type/attributes """ if not obj: logger.error("game.useObject: Could not use a non-existent obj") return False if not isObjectFactoryType(obj.getType()): logger.error("game.useObject: Could not use a non-obj obj") return False if not obj.isUsable(): self.selfMsg(obj.describe(article="The") + "is not usable\n") if obj.isEquippable(): if self.charObj.equip(obj): self.selfMsg("Ok\n") else: self.selfMsg("You can't equip that\n") elif obj.isMagicItem(): self.useMagicItem(line) def useMagicItem(self, line): if line == "": return self.missingArgFailure() (spellItem, spellName, targetObj) = self.parseSpellArgs(line) if not spellItem: return self.missingArgFailure() if not targetObj: self.selfMsg("Invalid target for spell." + spellName + "\n") return False if spellItem.getType().lower() == "scroll": spellItem.readScroll(self.charObj, targetObj) # Note: A read scroll will already display the distintegrates # message via the item's cast method. Don't add it here. self.gameObj.removeFromPlayerInventory(self.charObj, spellItem) else: spellItem.cast(self.charObj, targetObj) return None def parseIpc(self, line): roomObj = self.charObj.getRoom() lastCmd = self.getLastCmd() target = None msg = "" # Get recipient, if any possibleRecipients = [] if lastCmd == "whisper": possibleRecipients = roomObj.getCharacterList() elif lastCmd == "send": possibleRecipients = self.gameObj.getCharacterList() # elif lastCmd in ['say', 'yell', 'shout', 'broadcast']: # target = None if len(possibleRecipients) > 0: targetList = self.getObjFromCmd(possibleRecipients, line) if targetList[0]: target = targetList[0] if re.search("[^ ]+ [^ ]+", line): # todo: fix this if target is more than one word. # i.e. Player #1. junk, msg = line.split(" ", 1) if msg == "": msg = self.client.promptForInput(lastCmd + " what? ") return (target, msg) def do_accept(self, line): """ transaction - accept an offer """ self.selfMsg(line + " not implemented yet\n") def do_action(self, line): """ communication - fun in-room communication """ charObj = self.charObj roomObj = charObj.getRoom() if line == "": self.selfMsg("Usage: action <txt>\n") return False msg = charObj.getName() + " " + line self.gameObj.roomMsg(roomObj, msg + "\n") logger.info(msg) charObj.setHidden(False) def do_appeal(self, line): """ ask DMs for help """ self.selfMsg(line + " not implemented yet\n") def do_att(self, line): """ combat - alias """ return self.do_attack(line) def do_attack(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Attack what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_auction(self, line): """ alias - sell """ return self.do_sell(list) def do_backstab(self, line): """ combat """ # monster gets double damage on next attack target = self.getCombatTarget(line) if not target: self.selfMsg("Backstab what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_balance(self, line): """ info - view bank balance when in a bank """ charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a bank\n") return False if not roomObj.isBank(): self.selfMsg("You can't do that here. Find a bank.\n") return False amount = charObj.getBankBalance() self.selfMsg("Your account balance is " + str(amount) + " shillings.\n") def do_block(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Block what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_break(self, line): """ alias - smash """ return self.do_smash(line) def do_bribe(self, line): """ transaction - bribe a creature to vanish """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if len(cmdargs) < 2: self.selfMsg("Try 'bribe <creature> <amount>'\n") return False if not isIntStr(cmdargs[1]): self.selfMsg("How many shillings are you trying to bribe with?'\n") return False creatureName = cmdargs[0] coins = int(cmdargs[1]) roomCreatureList = roomObj.getCreatureList() itemList = self.getObjFromCmd(roomCreatureList, creatureName) if not itemList[0]: self.selfMsg("Who are you trying to bribe?\n") return False creatureObj = itemList[0] if creatureObj: if creatureObj.acceptsBribe(charObj, coins): # Bribe succeeds - money is already subtracted self.selfMsg( creatureObj.describe(article="The") + " accepts your offer and leaves\n" ) roomObj.removeFromInventory(creatureObj) return False else: # Bribe failed - contextual response already provided charObj.setHidden(False) return False def do_brief(self, line): """ set the prompt and room description to least verbosity """ self.charObj.setPromptSize("brief") def do_broadcast(self, line): """ communication - send to everyone in the game * players are limited to X broadcasts per day (currently 5) * log broadcasted messages, in case of abuse. """ if not self.charObj.getLimitedBroadcastCount(): self.selfMsg("You have used all of your broadcasts for today\n") return False if line == "": msg = self.client.promptForInput("Enter Input: ") else: msg = line if msg != "": fullmsg = self.charObj.getName() + " broadcasted, '" + msg + "'" if self.gameObj.gameMsg(fullmsg + "\n"): logger.info(fullmsg) self.charObj.reduceLimitedBroadcastCount() else: self.selfMsg("Message not received\n") def do_buy(self, line): """ transaction - buy something from a vendor """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a vendor\n") return False if not roomObj.isVendor(): self.selfMsg("You can't do that here. Find a vendor\n") return False if len(cmdargs) < 1 or not isIntStr(cmdargs[0]): self.selfMsg("usage: buy <item> [#]\n") return False catList = roomObj.getCatalog() if int(cmdargs[0]) < 0 or int(cmdargs[0]) > (len(catList)) - 1: self.selfMsg("Bad item number. Aborted\n") return False catItem = catList[int(cmdargs[0])] oType, oNum = catItem.split("/") itemObj = ObjectFactory(oType, oNum) itemObj.load() price = self.gameObj.calculateObjectPrice(charObj, itemObj) # check if player has the funds if not charObj.canAffordAmount(price): self.selfMsg(roomObj.getCantAffordTxt()) return False # check if player can carry the Weight weight = itemObj.getWeight() if not charObj.canCarryAdditionalWeight(weight): self.selfMsg(roomObj.getCantCarryTxt(weight)) return False # prompt player for confirmation prompt = ( "You are about to spend " + str(price) + " shillings for " + itemObj.getArticle() + " " + itemObj.getName() + ". Proceed?" ) successTxt = roomObj.getSuccessTxt() abortTxt = roomObj.getAbortedTxt() self.gameObj.buyTransaction( charObj, itemObj, price, prompt, successTxt, abortTxt ) def do_cast(self, line): """ magic """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if len(cmdargs) < 1: self.selfMsg("Cast what spell?\n") spellName = cmdargs[0] line = line.lstrip(spellName) if spellName not in SpellList: self.selfMsg("That's not a valid spell.\n") return False if not charObj.knowsSpell(spellName): self.selfMsg("You haven't learned that spell.\n") return False if len(cmdargs) > 1: possibleTargets = charObj.getInventory() + roomObj.getCharsAndInventory() targetList = self.getObjFromCmd(possibleTargets, line) if targetList[0]: targetObj = targetList[0] else: self.selfMsg("Could not determine target for spell.\n") return False else: targetObj = self.charObj spellObj = Spell(charObj, targetObj, spellName) # Apply effects of spell spellObj.cast(roomObj) def do_catalog(self, line): """ info - get the catalog of items from a vendor """ charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a vendor\n") return False if not roomObj.isVendor(): self.selfMsg("You can't do that here. Find a vendor\n") return False # display # list by iterating, loading, & displaying objs itemBuf = "" for num, oneitem in enumerate(roomObj.getCatalog()): oType, oNum = oneitem.split("/") itemObj = ObjectFactory(oType, oNum) itemObj.load() # calculate price price = self.gameObj.calculateObjectPrice(charObj, itemObj) ROW_FORMAT = " ({0:2}) {1:<7} {2:<60}\n" itemBuf += ROW_FORMAT.format(num, price, itemObj.describe()) if itemBuf != "": self.selfMsg( "Catalog of items for sale\n" + ROW_FORMAT.format("#", "Price", "Description") + itemBuf ) def do_circle(self, line): """ combat - If creature is not attacking, then delay their first attack by X seconds """ target = self.getCombatTarget(line) if not target: self.selfMsg("Circle what?\n") return False if target.isAttacking(): self.selfMsg("You can't circle an attacking creature\n") return False self.gameObj.circle(self.charObj, target, self.getLastCmd()) self.selfMsg("Ok.\n") return False def do_climb(self, line): """ alias - go """ return self.do_go(line) def do_clock(self, line): """ info - time """ self.selfMsg(dateStr("now") + "\n") def do_close(self, line): """ close a door or container """ charObj = self.charObj roomObj = charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getInventory(), line) if not itemList[0]: self.selfMsg("usage: close <item> [number]\n") return False targetObj = itemList[0] if not targetObj.isClosable(charObj): if targetObj.isClosed(): self.selfMsg("It's already closed.\n") else: self.selfMsg("You can not close that!\n") return False if targetObj.close(charObj): self.selfMsg("Ok\n") if targetObj.getType() == "Door": self.gameObj.modifyCorrespondingDoor(targetObj, charObj) return False else: self.selfMsg( "You can not close " + targetObj.describe(article="the") + "\n" ) return False def do_d(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_debug(self, line): """ dm - show raw debug info abot an item/room/character/etc """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if not charObj.isDm(): self.selfMsg("Unknown Command\n") return False if len(cmdargs) == 0: self.selfMsg("usage: debug <room | self | object>") return False buf = "" if cmdargs[0].lower() == "room": buf += "=== Debug Info for Room " + str(roomObj.getId()) + " ===\n" buf += roomObj.debug() + "\n" elif cmdargs[0].lower() == "game": buf += "=== Debug Info for game ===\n" buf += self.gameObj.debug() + "\n" elif cmdargs[0].lower() == "self": buf += "=== Debug Info for Self " + str(charObj.getId()) + " ===\n" buf += charObj.debug() + "\n" else: itemList = self.getObjFromCmd( roomObj.getCharsAndInventory() + charObj.getInventory(), line ) if itemList[0]: buf += ( "=== Debug Info for Object " + str(itemList[0].getId()) + " ===\n" ) buf += itemList[0].debug() + "\n" self.selfMsg(buf) return None def do_deposit(self, line): """ transaction - make a deposit in the bank """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a bank\n") return False if not roomObj.isBank(): self.selfMsg("You can't do that here. Find a bank\n") return False if len(cmdargs) < 1 or not isIntStr(cmdargs[0]): self.selfMsg("usage: deposit <amount>\n") return False # check if player has the funds amount = int(cmdargs[0]) if not charObj.canAffordAmount(amount): self.selfMsg(roomObj.getCantAffordTxt(amount)) return False taxRate = roomObj.getTaxRate() bankfee, dAmount = charObj.calculateBankFees(amount, taxRate) prompt = ( "You are about to deposit " + str(amount) + " shillings into the bank.\n" ) if taxRate != 0: prompt += ( "The bank charges " + "a " + str(taxRate) + "% deposit fee which comes to a " + str(bankfee) + " shilling charge.\n" + "Your account will increase by " + str(dAmount) + " shillings.\n" ) prompt += "Continue?" if self.client.promptForYN(prompt): charObj.bankDeposit(amount, taxRate) roomObj.recordTransaction("deposit/" + str(dAmount)) roomObj.recordTransaction("fees/" + str(bankfee)) self.selfMsg(roomObj.getSuccessTxt()) return False else: self.selfMsg(roomObj.getAbortedTxt()) return False def do_destroy(self, line): """ dm - destroy an object or creature """ if not self.charObj.isDm(): self.selfMsg("Unknown Command\n") return False charObj = self.charObj roomObj = charObj.getRoom() roomObjList = self.getObjFromCmd(roomObj.getInventory(), line) if roomObjList[0]: roomObj.removeObject(roomObjList[0]) roomObj.save() self.selfMsg("ok\n") return False charObjList = self.getObjFromCmd(charObj.getInventory(), line) if charObjList[0]: roomObj.removeFromInventory(charObjList[0]) self.selfMsg("ok\n") return False def do_dminfo(self, line): """ dm - show char info that isn't directly avaliable to players """ if not self.charObj.isDm(): return False self.selfMsg(self.charObj.dmInfo()) def do_dm_on(self, line): """ admin - Turn DM mode on """ if self.acctObj.isAdmin(): self.charObj.setDm() self.selfMsg("ok\n") logger.info("{} just became a DM".format(self.charObj.getName())) def do_dm_off(self, line): """ dm - turn dm mode off """ if self.charObj.isDm(): self.charObj.removeDm() self.selfMsg("ok\n") else: self.selfMsg("Unknown Command\n") def do_down(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_draw(self, line): """ alias - use """ return self.do_use(line) def do_drink(self, line): """ alias - use """ return self.do_use(line) def do_drop(self, line): """ drop an item """ charObj = self.charObj roomObj = charObj.getRoom() charObjList = charObj.getInventory() targetList = self.getObjFromCmd(charObjList, line) if not targetList[0]: self.selfMsg("What are you trying to drop?\n") return False if charObj.removeFromInventory(targetList[0]): charObj.unEquip(targetList[0]) roomObj.addObject(targetList[0]) self.selfMsg("Ok\n") else: self.selfMsg("Didn't work\n") def do_e(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_east(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_echo(self, line): self.selfMsg(line + " not implemented yet\n") def do_enter(self, line): """ alias - go """ if line == "": return self.missingArgFailure() self.move(line) def do_equip(self, line): """ alias - use """ return self.do_use(line) def do_examine(self, line): """ alias - look """ return self.do_look(line) def do_exit(self, line): """ exit game - returns True to exit command loop """ return True def do_exp(self, line): self.selfMsg(self.charObj.expInfo()) def do_experience(self, line): """ info - show character's exp info """ self.selfMsg(self.charObj.expInfo()) def do_feint(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Feint at what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_file(self, line): """ info - show characters attached to account """ self.selfMsg(self.acctObj.showCharacterList()) def do_follow(self, line): """ follow another player - follower is moved when they move """ charObj = self.charObj roomObj = charObj.getRoom() charList = self.getObjFromCmd(roomObj.getCharacterList(), line) targetCharObj = charList[0] if not targetCharObj or not targetCharObj.getType() == "Character": self.selfMsg("You can't follow that\n") charObj.setFollow() # Unset follow attribute return False if targetCharObj is charObj: self.selfMsg("You can't follow yourself\n") charObj.setFollow() # Unset follow attribute return False charObj.setFollow(targetCharObj) self.selfMsg("ok\n") if not charObj.isHidden(): self.gameObj.charMsg(targetCharObj, "{} follows you\n".format(charObj.getName())) return(False) def do_full(self, line): """ set the prompt and room descriptions to maximum verbosity """ self.charObj.setPromptSize("full") def do_get(self, line): # noqa: C901 """ pick up an item """ charObj = self.charObj roomObj = charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getInventory(), line) itemObj = itemList[0] containerObj = itemList[1] if not itemObj: return self.missingArgFailure() if itemObj.getType() == "Container": if containerObj: # Player is trying to put a container from the room into a # container in the room. Let's just say no to that self.selfMsg("You can't put a container in a container\n") return False else: # The 1st item was not found, so the container is the 1st item containerObj = itemObj if containerObj: if not containerObj.getType() == "Container": self.selfMsg("That's not a container?\n") return False # Find target item in the container cList = self.getObjFromCmd(containerObj.getInventory(), line) itemObj = cList[0] if not itemObj: self.selfMsg("Put what in there?\n") return False if not itemObj.isCarryable(): self.selfMsg(itemObj.describe() + " can not be carried.\n") return False if not charObj.canCarryAdditionalWeight(itemObj.getWeight()): self.selfMsg("You are not strong enough.\n") return False guardingCreatureObj = roomObj.getGuardingCreature() if guardingCreatureObj: self.selfMsg( guardingCreatureObj.describe() + " blocks you from taking that.\n" ) return False if containerObj: if containerObj.withdraw(charObj, itemObj): self.selfMsg("ok\n") else: # Get item from room roomObj.removeObject(itemObj) if itemObj.getType() == "Coins": charObj.addCoins(itemObj.getValue()) else: charObj.addToInventory(itemObj) self.selfMsg("Ok\n") def do_go(self, line): """ go through a door or portal """ if line == "": self.selfMsg("Go where?\n") self.move(line) def do_goto(self, line): """ dm - teleport directly to a room """ cmdargs = line.split(" ") charObj = self.charObj if not self.charObj.isDm(): self.selfMsg("Unknown Command\n") return False if len(cmdargs) == 0: self.selfMsg("usage: goto <room>\n") return False self.gameObj.joinRoom(cmdargs[0], charObj) self.selfMsg(charObj.getRoom().display(charObj)) def do_h(self, line): """ alias - health """ charObj = self.charObj self.selfMsg(charObj.healthInfo()) def do_hea(self, line): """ alias - health """ charObj = self.charObj self.selfMsg(charObj.healthInfo()) def do_health(self, line): """ info - show character's health """ charObj = self.charObj self.selfMsg(charObj.healthInfo()) def do_help(self, line): """ info - enter the help system """ enterHelp(self.client) def do_hide(self, line): """ attempt to hide player or item * hidden players aren't attacked by creatures and don't show up in room listings unless they are searched for. * hidden items don't show up in room listings. """ # cmdargs = line.split(' ') charObj = self.charObj if line == "": canhide = True # can't hide if there are engaged creatures in the room, even if # they are attacking someone else. for creatObj in charObj.getRoom().getCreatureList(): if creatObj.isAttacking(): canhide = False if canhide: charObj.attemptToHide() msg = "You hide in the shadows" else: msg = "You are noticed as you hide in the shadows" charObj.setHidden(False) if charObj.isDm(): msg += "(" + str(charObj.isHidden()) + ")" self.selfMsg(msg + "\n") else: self.selfMsg(line + " not implemented yet\n") def do_hint(self, line): self.selfMsg(line + " not implemented yet\n") def do_hit(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Hit what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_hold(self, line): """ alias - use """ return self.do_use(line) def do_identify(self, line): """ info - Show detailed information about a item or character * this is considered a limited use spell """ self.selfMsg(line + " not implemented yet\n") def do_info(self, line): """ alias - information """ self.selfMsg(self.charObj.getInfo()) def do_information(self, line): """ info - show all information about a character to that character """ self.selfMsg(self.charObj.getInfo()) def do_inv(self, line): """ alias - inventory """ self.selfMsg(self.charObj.inventoryInfo()) def do_inventory(self, line): """ info - show items that character is carrying """ self.selfMsg(self.charObj.inventoryInfo()) def do_kill(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Kill what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_laugh(self, line): """ communication - reaction """ charObj = self.charObj roomObj = charObj.getRoom() extramsg = "" if line != "": extramsg = " " + line self.gameObj.roomMsg(roomObj, charObj.getName() + " laughs" + extramsg + "\n") charObj.setHidden(False) def do_list(self, line): """ alias - file """ return self.do_catalog(line) def do_lock(self, line): """ lock an object with a key """ charObj = self.charObj roomObj = charObj.getRoom() roomObjList = roomObj.getInventory() fullObjList = charObj.getInventory() + roomObjList itemList = self.getObjFromCmd(fullObjList, line) itemObj = itemList[0] keyObj = itemList[1] if not itemList[0]: return self.missingArgFailure() if not keyObj: self.selfMsg("You can't lock anything without a key\n") return False if not itemObj.isLockable(): if itemObj.isLocked(): self.selfMsg("It's already locked!\n") elif itemObj.isOpen(): self.selfMsg("You can't lock it when it's open!\n") else: self.selfMsg("This is not lockable!\n") return False if keyObj.getLockId() != itemObj.getLockId(): self.selfMsg("The key doesn't fit the lock\n") return False itemObj.lock() if itemObj.getType() == "Door": self.gameObj.modifyCorrespondingDoor(itemObj, charObj) self.selfMsg("Ok\n") return False def do_look(self, line): """ examine a creature, object, or player * includes items in both the room and in the character inventory """ roomObj = self.charObj.getRoom() # Experimenting with sorting. Not sure if we want this, so we have a # Flag for now sortList = False if sortList: allItems = itemSort(roomObj.getCharsAndInventory()) + itemSort( self.charObj.getInventory() ) else: allItems = roomObj.getCharsAndInventory() + self.charObj.getInventory() itemList = self.getObjFromCmd(allItems, line) if line == "": # display the room msg = roomObj.display(self.charObj) if not re.search("\n$", msg): msg += "\n" self.selfMsg(msg) return False if not itemList[0]: self.selfMsg("You must be blind because you " + "don't see that here\n") return False msg = itemList[0].examine() if not re.search("\n$", msg): msg += "\n" # append newline if needed self.selfMsg(msg) # display the object return False def do_lose(self, line): """ attempt to ditch someone that is following you """ roomObj = self.charObj.getRoom() charList = self.getObjFromCmd(roomObj.getCharacterList(), line) targetCharObj = charList[0] if not targetCharObj: self.selfMsg("You can't lose that\n") return False # Need to determine if lose succeeds, based on odds targetCharObj.setFollow(None) self.selfMsg("ok\n") # Notify target that they have been lost self.gameObj.charMsg(targetCharObj, "{} loses you".format(self.charObj.getName())) return False def do_lunge(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Lunge at what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_n(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_north(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_now(self, line): """ alias - clock """ return self.do_clock() def do_o(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_offer(self, line): """ transaction - offer player money/items [in return for $/items] """ self.selfMsg(self.getLastCmd() + " not implemented yet\n") def do_open(self, line): """ Open a door or a chest """ charObj = self.charObj roomObj = charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getInventory(), line) if not itemList[0]: return self.missingArgFailure() itemObj = itemList[0] if not itemObj.isOpenable(charObj): if itemObj.isOpen(): self.selfMsg("It's already open.\n") elif itemObj.isLocked(): self.selfMsg("You can't. It's locked.\n") else: self.selfMsg("You can't open that.\n") return False if itemObj.getType() == "Container": if itemObj.hasToll(): toll = itemObj.getToll() if charObj.canAffordAmount(toll): charObj.subtractCoins(toll) self.selfMsg("You paid a toll of {} coins.".format(toll)) else: self.selfMsg( "Opening this item requires more coins than you have\n" ) return False if itemObj.open(charObj): self.selfMsg("You open it.\n") self.othersMsg( roomObj, charObj.getName() + " opens the " + itemObj.getSingular() + "\n", charObj.isHidden(), ) if itemObj.getType() == "Door": self.gameObj.modifyCorrespondingDoor(itemObj, charObj) return False else: self.selfMsg("You fail to open the door.\n") return False def do_out(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_panic(self, line): """ alias - run """ self.selfMsg(line + " not implemented yet\n") def do_parley(self, line): """ communication - talk to a npc """ charObj = self.charObj roomObj = charObj.getRoom() roomCreatureList = roomObj.getCreatureList() itemList = self.getObjFromCmd(roomCreatureList, line) if not itemList[0]: self.selfMsg(self.getLastCmd() + " with whom?\n") return False creat1 = itemList[0] msg = creat1.getParleyTxt() + "\n" if creat1.getParleyAction().lower() == "teleport": self.selfMsg(msg) self.gameObj.joinRoom(creat1.getParleyTeleportRoomNum(), charObj) elif creat1.getParleyAction().lower() == "sell": saleItem = creat1.getParleySaleItem() if saleItem: price = int(saleItem.getValue() * 0.9) prompt = ( msg + " Would you like to buy " + saleItem.describe() + " for " + price + "?" ) successTxt = ( "It's all yours. Don't tell anyone " + "that you got it from me" ) abortTxt = "Another time, perhaps." self.gameObj.buyTransaction( charObj, saleItem, price, prompt, successTxt, abortTxt ) else: self.selfMsg("I have nothing to sell.\n") else: self.selfMsg(msg) charObj.setHidden(False) def do_parry(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Parry at what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_pawn(self, line): """ alias - sell """ return self.do_sell(list) def do_picklock(self, line): """ attempt to pick the lock on a door or container and open it """ charObj = self.charObj roomObj = charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getInventory(), line) if not itemList[0]: self.selfMsg("pick which item with a lock?\n") return False itemObj = itemList[0] if not itemObj.isPickable(): self.selfMsg("You can't pick that.\n") return False if itemObj.pick(charObj): self.selfMsg("You pick the lock.\n") self.othersMsg( roomObj, charObj.getName() + " picks the " + "lock on the " + itemObj.getSingular() + "\n", charObj.isHidden(), ) return False else: self.selfMsg("You fail to pick the lock.\n") self.othersMsg( roomObj, charObj.getName() + " fails to pick the lock on the " + itemObj.getSingular() + "\n", charObj.isHidden(), ) return False return False def do_prompt(self, line): """ set verbosity """ self.charObj.setPromptSize("") def do_purse(self, line): """ info - display money """ charObj = self.charObj self.selfMsg(charObj.financialInfo()) def do_put(self, line): """ place an item in a container """ charObj = self.charObj roomObj = charObj.getRoom() charObjList = charObj.getInventory() roomObjList = roomObj.getInventory() targetList = self.getObjFromCmd(charObjList + roomObjList, line) if not targetList[0]: return self.missingArgFailure() itemObj = targetList[0] containerObj = targetList[1] if not itemObj: self.selfMsg("What are you trying to put?\n") return False if not containerObj: self.selfMsg("What are you trying to put where?\n") return False if containerObj.getType() != "Container": self.selfMsg("You can't put anything in that!\n") return False if containerObj.deposit(charObj, itemObj): charObj.unEquip(itemObj) self.selfMsg("ok\n") return False self.selfMsg("Didn't work!\n") return False def do_quit(self, line): """ quit the game """ return self.do_exit(line) def do_read(self, line): """ magic - read a scroll to use the spell """ if line == "": return self.missingArgFailure() self.useMagicItem(line) return False def do_reloadperm(self, line): ''' dm - reload permanents from disk (i.e. after modification) ''' roomObj = self.charObj.getRoom() if not self.charObj.isDm(): self.selfMsg("Unknown Command\n") return False itemList = self.getObjFromCmd(roomObj.getInventory(), line) if not itemList[0]: self.selfMsg("usage: reloadperm <objectname>\n") return False roomObj.reloadPermanent(itemList[0].getId()) self.selfMsg("Ok\n") return False def do_remove(self, line): """ unequip an item that you have equipped """ return self.do_unequip(line) def do_repair(self, line): """ transaction - repair character's item in a repair shop """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a wright\n") return False if not roomObj.isRepairShop(): self.selfMsg("You can't do that here. Find a wright\n") return False if len(cmdargs) < 1 or not isIntStr(cmdargs[0]): self.selfMsg("usage: repair <item> [#]\n") playerInventory = charObj.getInventory() itemList = self.getObjFromCmd(playerInventory, line) if not itemList[0]: return self.missingArgFailure() itemObj = itemList[0] if not itemObj.canBeRepaired(): self.selfMsg("This can't be repaired\n") return False price = self.gameObj.calculateObjectPrice(charObj, itemObj) * 100 prompt = ( "You are about to repair " + itemObj.getArticle() + " " + itemObj.getName() + " for " + str(price) + " shillings. Proceed?" ) if self.client.promptForYN(prompt): itemObj.repair() roomObj.recordTransaction(itemObj) roomObj.recordTransaction("repair/" + str(price)) charObj.recordTax(roomObj.getTaxAmount(price)) self.selfMsg(roomObj.getSuccessTxt()) return False else: self.selfMsg(roomObj.getAbortedTxt()) return False def do_return(self, line): """ alias - unequip """ return self.do_unequip() def do_roominfo(self, line): """' dm - show room info """ if not self.charObj.isDm(): self.selfMsg("Unknown Command\n") return False self.selfMsg(self.charObj.getRoom().getInfo()) def do_run(self, line): """ drop weapon and escape room in random direction """ self.gameObj.run(self.charObj) def do_s(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_save(self, line): """ save character """ if self.client.charObj.save(): self.selfMsg("Saved\n") else: self.selfMsg("Could not save\n") def do_say(self, line): """ communication within room """ if line == "": msg = self.client.promptForInput("Say what? ") else: msg = line if msg != "": fullmsg = self.charObj.getName() + " said, '" + msg + "'" if self.gameObj.roomMsg(self.charObj.getRoom(), fullmsg + "\n"): self.charObj.setHidden(False) logger.info(fullmsg) else: self.selfMsg("Message not received\n") def do_search(self, line): """ attempt to find items, players, or creatures that are hidden """ charObj = self.charObj roomObj = charObj.getRoom() foundSomething = False for obj in roomObj.getInventory(): if obj.isHidden(): if charObj.searchSucceeds(obj): self.selfMsg("You find " + obj.describe() + "\n") foundSomething = True if not foundSomething: self.selfMsg("Your search turns up nothing\n") def do_sell(self, line): """ transaction - Sell an item to a pawnshop """ charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a buyer\n") return False if not roomObj.isPawnShop(): self.selfMsg("You can't do that here. Find a buyer.\n") return False itemList = self.getObjFromCmd(charObj.getInventory(), line) if not itemList[0]: return self.missingArgFailure() itemObj = itemList[0] price = int(self.gameObj.calculateObjectPrice(charObj, itemObj) * 0.8) # prompt player for confirmation prompt = ( "You are about to pawn " + itemObj.getArticle() + " " + itemObj.getName() + " for " + str(price) + " shillings. Proceed?" ) self.gameObj.sellTransaction( charObj, itemObj, price, prompt, roomObj.getSuccessTxt(), roomObj.getAbortedTxt(), ) def do_send(self, line): """ communication - direct message to another player """ if line == "": self.selfMsg("usage: send <playerName> [msg]\n") return False target, msg = self.parseIpc(line) if msg != "": fullmsg = self.charObj.getName() + " sent, '" + msg + "'" if self.gameObj.directMsg(target, fullmsg + "\n"): self.charObj.setHidden(False) logger.info("To " + target.getName() + ", " + fullmsg) else: self.selfMsg("Message not received\n") return False def do_shout(self, line): """ communication - alias for yell """ return self.do_yell(line) def do_skills(self, line): """ info - show character's skills """ self.selfMsg(self.charObj.SkillsInfo()) def do_slay(self, line): """ dm - combat - do max damage to creature, effectively killing it """ target = self.getCombatTarget(line) if not target: self.selfMsg("Slay what?\n") return False if self.charObj.isDm(): atkcmd = "slay" else: atkcmd = "attack" # if your not a dm, this is a standard attack self.gameObj.attackCreature(self.charObj, target, atkcmd) return False def do_smash(self, line): """ attempt to open a door/chest with brute force """ charObj = self.charObj roomObj = charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getInventory(), line) if not itemList[0]: return self.missingArgFailure() itemObj = itemList[0] if not itemObj.isSmashable(): self.selfMsg("This is not smashable!\n") return False if itemObj.smash(charObj): self.othersMsg( roomObj, charObj.getName() + " smashes the " + itemObj.getSingular() + " open.\n", ) self.selfMsg("You smash it open!\n") otherRoom = self.gameObj.getCorrespondingRoomObj(itemObj) if otherRoom: self.gameObj.roomMsg( otherRoom, itemObj.getSingular() + " smashes open\n" ) if itemObj.getType() == "Door": self.gameObj.modifyCorrespondingDoor(itemObj, charObj) return False else: self.othersMsg( roomObj, charObj.getName() + " fails to smash " + itemObj.describe() + " open.\n", ) self.selfMsg("Bang! You fail to smash it open!\n") otherRoom = self.gameObj.getCorrespondingRoomObj(itemObj) if otherRoom: self.gameObj.roomMsg( otherRoom, "You hear a noise on the " + "other side of the " + itemObj.getSingular() + "\n", ) return False def do_south(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_stats(self, line): """ info - show character's stats """ self.selfMsg(self.charObj.StatsInfo()) def do_status(self, line): """ alias - health """ return self.do_health() def do_steal(self, line): """ transaction - attempt to steal from another player """ self.selfMsg(line + " not implemented yet\n") def do_stopasync(self, line): """ dm - stop async thread (which should trigger an automatic restart) """ if not self.charObj.isDm(): self.selfMsg("Unknown Command\n") return False self.gameObj._asyncThread.halt() self.selfMsg("ok\n") def do_strike(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Strike what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_study(self, line): """ magic - study a scroll to learn the chant """ charObj = self.charObj if line == "": return self.missingArgFailure() (spellItem, spellName, targetObj) = self.parseSpellArgs(line) if not spellItem: self.selfMsg("Study what?\n") return False if not spellItem.getType().lower() == "scroll": self.selfMsg("You can't study that.\n") return False # Learn the spell and display the chant msg = spellItem.study(charObj) self.selfMsg(msg) # Remove item from player's inventory self.gameObj.removeFromPlayerInventory(charObj, spellItem, "disint") return False def do_suicide(self, line): if not self.client.promptForYN( "DANGER: This will permanently " + "delete your character." + " Are you sure?" ): return False charObj = self.charObj charName = charObj.getName() self.gameObj.leaveGame(self.client.charObj, saveChar=False) msg = self.gameObj.txtBanner( charName + " has shuffled off this mortal coil", bChar="=" ) charObj.delete() charObj = None self.charObj = None self.acctObj.removeCharacterFromAccount(charName) self.gameObj.gameMsg(msg) logger.info("Character deleted: " + charName) return True def do_take(self, line): """ alias - get """ return self.do_get(line) def do_talk(self, line): """ alias - parley """ return self.do_parley(line) def do_teach(self, line): """ teach another player a spell """ self.selfMsg(line + " not implemented yet\n") def do_toggle(self, line): """ dm command to set flags """ if self.charObj.isDm(): if ( line.lower() == "character" or line.lower() == "char" or line.lower() == "self" ): obj = self.charObj elif line.lower() == "room": obj = self.charObj.getRoom() elif line.lower() == "game": obj = self.gameObj elif line.lower() == "gamecmd": obj = self elif line.lower() == "client": obj = self.client else: roomObj = self.charObj.getRoom() itemList = self.getObjFromCmd(roomObj.getCharsAndInventory(), line) if itemList[0]: obj = itemList[0] else: self.selfMsg("Can't toggle " + line + "\n") self.selfMsg( "Fixed toggles:\n" + " self, room, game, gamecmd, client\n" ) return False else: self.selfMsg("Unknown Command\n") return False obj.toggleInstanceDebug() self.selfMsg( "Toggled " + line + ": debug=" + str(obj.getInstanceDebug()) + "\n" ) return False def do_thrust(self, line): """ combat """ target = self.getCombatTarget(line) if not target: self.selfMsg("Thrust at what?\n") return False self.gameObj.attackCreature(self.charObj, target, self.getLastCmd()) return False def do_track(self, line): """ show direction last player traveled """ self.selfMsg(line + " not implemented yet\n") def do_train(self, line): """ increase level if exp and location allow """ charObj = self.charObj roomObj = charObj.getRoom() roomObj.train(charObj) def do_turn(self, line): """ magic - chance for clerics/paladins to destroy creatures """ self.selfMsg(line + " not implemented yet\n") def do_u(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_unequip(self, line): """ stop using a piece of equiptment """ charObj = self.charObj targetList = self.getObjFromCmd(charObj.getInventory(), line) if not targetList[0]: return self.missingArgFailure() elif len(targetList) > 0: itemObj = targetList[0] else: itemObj = None if charObj.unEquip(itemObj): self.selfMsg("Ok\n") else: self.selfMsg("You can't do that\n") def do_unfollow(self, line): """ unfollow - stop following """ self.charObj.setFollow() # Unset follow attribute self.selfMsg("ok\n") return False def do_unlock(self, line): """ unlock a door/chest with a key """ charObj = self.charObj roomObj = charObj.getRoom() roomObjList = roomObj.getInventory() fullObjList = charObj.getInventory() + roomObjList itemList = self.getObjFromCmd(fullObjList, line) if not itemList[0]: return self.missingArgFailure() itemObj = itemList[0] keyObj = itemList[1] if not keyObj: self.selfMsg("You can't lock anything without a key\n") return False if not itemObj.isUnlockable(): if itemObj.isUnlocked(): self.selfMsg("It's already unlocked!\n") elif itemObj.isOpen(): self.selfMsg("You can't unlock it when it's open!\n") else: self.selfMsg("This is not unlockable!\n") return False if keyObj.getLockId() != itemObj.getLockId(): self.selfMsg("The key doesn't fit the lock\n") return False if itemObj.unlock(keyObj): if itemObj.getType() == "Door": self.gameObj.modifyCorrespondingDoor(itemObj, charObj) self.selfMsg("You unlock the lock.\n") self.othersMsg( roomObj, charObj.getName() + " unlocks the " + "lock on the " + itemObj.getSingular() + "\n", charObj.isHidden(), ) return False else: self.selfMsg("You fail to unlock the lock.\n") self.othersMsg( roomObj, charObj.getName() + " fails to " + "unlock the lock on the " + itemObj.getSingular() + "\n", charObj.isHidden(), ) return False return False def do_up(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_use(self, line): """ equip an item or use a scroll or magic item """ if line == "": return self.missingArgFailure() charObj = self.charObj roomObj = charObj.getRoom() objList = charObj.getInventory() + roomObj.getCharsAndInventory() targetList = self.getObjFromCmd(objList, line) itemObj = None # Require at least one arg after command for target in targetList: if not target: continue if not target.isUsable(): continue if not itemObj: itemObj = target if not itemObj: return self.missingArgFailure() type = itemObj.getType() if type == "Character" or type == "Creature": return self.missingArgFailure() if isObjectFactoryType(type): self.useObject(itemObj, line) return False logger.warn( "game.do_use: Attempt to use: " + itemObj.describe() + " - with type " + type ) if roomObj: # tmp - remove later if room object is not needed here pass # but there may be spells/items that affect the room. def do_w(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_wear(self, line): """ alias - use """ return self.do_use(line) def do_west(self, line): """ navigation """ self.move(self._lastinput[0]) # pass first letter def do_where(self, line): """ alias - look """ return self.do_look(line) def do_whisper(self, line): """ communication - char to char, with chance of being overheard """ if line == "": self.selfMsg("usage: whisper <playerName> [txt]\n") return False target, msg = self.parseIpc(line) received = False charName = self.charObj.getName() for oneChar in self.charObj.getRoom().getCharacterList(): if target == oneChar: # if is recipient oneChar.client.spoolOut( charName + " whispers, '" + msg + "'\n" # notify ) received = True else: if not oneChar.hearsWhispers(): continue oneChar.client.spoolOut( "You overhear " + charName + " whisper " + msg + "\n" ) self.charObj.setHidden(False) if received: self.selfMsg("ok\n") else: self.selfMsg("Message not received\n") return False def do_who(self, line): """ info - show who is playing the game """ charTxt = "" charObj = self.charObj charFormat = " {:20} - {:16} - {:20}\n" header = " Characters currently playing:\n" header += charFormat.format("Character Name", "Login Date", "Account") header += charFormat.format("-" * 20, "-" * 16, "-" * 20) for onechar in charObj.getRoom().getCharacterList(): charTxt += charFormat.format(onechar.getName(), dateStr(onechar.getLastLoginDate()), charObj.client.acctObj.getDisplayName()) self.selfMsg(header + charTxt) return None def do_wield(self, line): """ alias - use """ return self.do_use(line) def do_withdraw(self, line): """ transaction - take money out of the bank """ cmdargs = line.split(" ") charObj = self.charObj roomObj = charObj.getRoom() if not roomObj.getType() == "Shop": self.selfMsg("You can't do that here. Find a bank\n") return False if not roomObj.isBank(): self.selfMsg("You can't do that here. Find a bank\n") return False if len(cmdargs) < 1 or not isIntStr(cmdargs[0]): self.selfMsg("usage: withdraw <amount>\n") return False amount = int(cmdargs[0]) if not charObj.canWithdraw(amount): self.selfMsg(roomObj.getCantAffordTxt(amount)) return False taxRate = roomObj.getTaxRate() bankfee, wAmount = charObj.calculateBankFees(amount, taxRate) prompt = ( "You are about to withdraw " + str(amount) + " shillings from the bank.\n" ) if taxRate != 0: prompt += ( "The bank charges a " + str(taxRate) + "% withdrawl fee which comes to a charge of " + str(bankfee) + "shillings.\n" + "As a result, you will receive " + str(wAmount) + " shillings.\n" ) prompt += "Continue?" if self.client.promptForYN(prompt): charObj.bankWithdraw(amount, taxRate) roomObj.recordTransaction("withdrawl/" + str(wAmount)) roomObj.recordTransaction("fees/" + str(bankfee)) self.selfMsg(roomObj.getSuccessTxt()) return False else: self.selfMsg(roomObj.getAbortedTxt()) return False def do_yell(self, line): """ communication - all in room and adjoining rooms """ if line == "": msg = self.client.promptForInput(self.getLastCmd() + " what? ") else: msg = line if msg != "": fullmsg = self.charObj.getName() + " yelled, '" + msg + "'" if self.gameObj.yellMsg(self.charObj.getRoom(), fullmsg + "\n"): logger.info(fullmsg) self.charObj.setHidden(False) else: self.selfMsg("Message not received\n") # instanciate the _Game class _game = _Game() def Game(): """ return a reference to the single, existing _game instance Thus, when we try to instanciate Game, we are just returning a ref to the existing Game """ return _game
StarcoderdataPython
88627
>>> print ( '\n'.join(''.join(x) for x in zip('abc', 'ABC', '123')) ) aA1 bB2 cC3 >>>
StarcoderdataPython
4971428
<filename>python/reactive_planners/dcm_reactive_stepper.py #!/usr/bin/env python """ @namespace Controller using the dcm_vrp_planner. @file @copyright Copyright (c) 2017-2019, New York University and Max Planck Gesellschaft, License BSD-3-Clause """ import numpy as np from reactive_planners_cpp import ( StepperHead, DcmVrpPlanner, EndEffectorTrajectory3D, ) class DcmReactiveStepper(object): def __init__( self, is_left_leg_in_contact, l_min, l_max, w_min, w_max, t_min, t_max, l_p, com_height, weight, mid_air_foot_height, control_period, previous_support_foot=None, current_support_foot=None, ): if previous_support_foot is None: previous_support_foot = np.zeros((3, 1)) previous_support_foot[:] = [[0.0], [0.0], [0.0]] if current_support_foot is None: current_support_foot = np.zeros((3, 1)) current_support_foot[:] = [[0.0], [0.0], [0.0]] self.control_period = control_period # Create the stepper head. self.stepper_head = StepperHead() self.previous_support_foot = np.zeros((3, 1)) self.current_support_foot = np.zeros((3, 1)) self.previous_support_foot[:] = previous_support_foot self.current_support_foot[:] = current_support_foot self.stepper_head.set_support_feet_pos( self.previous_support_foot, self.current_support_foot ) # Create the dcm vrp planner and initialize it. self.dcm_vrp_planner = DcmVrpPlanner() self.dcm_vrp_planner.initialize( l_min, l_max, w_min, w_max, t_min, t_max, l_p, com_height, weight ) # Create the end-effector trajecotry generator. self.end_eff_traj3d = EndEffectorTrajectory3D() self.end_eff_traj3d.set_mid_air_height(mid_air_foot_height) # Parameters self.is_left_leg_in_contact = is_left_leg_in_contact self.duration_before_step_landing = 0.0 self.time_from_last_step_touchdown = 0.0 self.des_com_vel = np.zeros((3, 1)) self.right_foot_position = np.zeros((3, 1)) self.right_foot_position[:] = previous_support_foot self.right_foot_velocity = np.zeros((3, 1)) self.right_foot_acceleration = np.zeros((3, 1)) self.flying_foot_position = np.zeros((3, 1)) self.flying_foot_position[:] = previous_support_foot self.left_foot_position = np.zeros((3, 1)) self.left_foot_position[:] = current_support_foot self.left_foot_velocity = np.zeros((3, 1)) self.left_foot_acceleration = np.zeros((3, 1)) self.feasible_velocity = np.zeros((3, 1)) def set_end_eff_traj_costs( self, cost_x, cost_y, cost_z, hess_regularization ): self.end_eff_traj3d.set_costs( cost_x, cost_y, cost_z, hess_regularization ) def set_des_com_vel(self, des_com_vel): self.des_com_vel = des_com_vel def run( self, time, current_flying_foot_position, current_support_foot_position, com_position, com_velocity, base_yaw, contact, ): if current_support_foot_position is not None: self.stepper_head.set_support_feet_pos( self.stepper_head.get_previous_support_location(), current_support_foot_position, ) if not contact[0] and not contact[1]: self.stepper_head.run( self.duration_before_step_landing, current_flying_foot_position, time, ) elif self.is_left_leg_in_contact: self.stepper_head.run( self.duration_before_step_landing, current_flying_foot_position, time, contact[1], ) else: self.stepper_head.run( self.duration_before_step_landing, current_flying_foot_position, time, contact[0], ) self.time_from_last_step_touchdown = ( self.stepper_head.get_time_from_last_step_touchdown() ) self.current_support_foot[ : ] = self.stepper_head.get_current_support_location().reshape((3, 1)) self.previous_support_foot[ : ] = self.stepper_head.get_previous_support_location().reshape((3, 1)) self.dcm_vrp_planner.update( self.stepper_head.get_current_support_location(), self.stepper_head.get_time_from_last_step_touchdown(), self.stepper_head.get_is_left_leg_in_contact(), self.des_com_vel, com_position, com_velocity, base_yaw, ) assert self.dcm_vrp_planner.solve() self.duration_before_step_landing = ( self.dcm_vrp_planner.get_duration_before_step_landing() ) start_time = 0.0 current_time = self.stepper_head.get_time_from_last_step_touchdown() end_time = self.dcm_vrp_planner.get_duration_before_step_landing() self.is_left_leg_in_contact = ( self.stepper_head.get_is_left_leg_in_contact() ) # check which foot is in contact if self.stepper_head.get_is_left_leg_in_contact(): # flying foot is the right foot self.end_eff_traj3d.compute( self.stepper_head.get_previous_support_location(), self.right_foot_position, self.right_foot_velocity, self.right_foot_acceleration, self.dcm_vrp_planner.get_next_step_location(), start_time, current_time, end_time, ) self.end_eff_traj3d.get_next_state( current_time + self.control_period, self.right_foot_position, self.right_foot_velocity, self.right_foot_acceleration, ) self.flying_foot_position = self.right_foot_position # The current support foot does not move self.left_foot_position[:] = ( self.stepper_head.get_current_support_location() ).reshape((3, 1)) self.left_foot_velocity = np.zeros((3, 1)) self.left_foot_acceleration = np.zeros((3, 1)) else: # flying foot is the left foot self.end_eff_traj3d.compute( self.stepper_head.get_previous_support_location(), self.left_foot_position, self.left_foot_velocity, self.left_foot_acceleration, self.dcm_vrp_planner.get_next_step_location(), start_time, current_time, end_time, ) self.end_eff_traj3d.get_next_state( current_time + self.control_period, self.left_foot_position, self.left_foot_velocity, self.left_foot_acceleration, ) self.flying_foot_position = self.left_foot_position # The current support foot does not move self.right_foot_position[:] = ( self.stepper_head.get_current_support_location() ).reshape((3, 1)) self.right_foot_velocity = np.zeros((3, 1)) self.right_foot_acceleration = np.zeros((3, 1)) # Compute the feasible velocity. self.feasible_velocity = ( self.dcm_vrp_planner.get_next_step_location() - self.stepper_head.get_previous_support_location() ) self.feasible_velocity[2] = 0.0 return if __name__ == "__main__": is_left_leg_in_contact = True l_min = -0.5 l_max = 0.5 w_min = -0.5 w_max = 0.5 t_min = 0.1 t_max = 0.2 l_p = 0.1235 * 2 com_height = 0.26487417 weight = [1, 1, 5, 100, 100, 100, 100, 100, 100] mid_air_foot_height = 0.05 control_period = 0.001 dcm_reactive_stepper = DcmReactiveStepper( is_left_leg_in_contact, l_min, l_max, w_min, w_max, t_min, t_max, l_p, com_height, weight, mid_air_foot_height, control_period, ) time = 0.0 current_support_foot = np.array([0, 0, 0]) com_position = np.array([0, 0, com_height]) com_velocity = np.array([0, 0, 0]) base_yaw = 0.0 dcm_reactive_stepper.run( time, current_support_foot, com_position, com_velocity, base_yaw ) dcm_reactive_stepper.right_foot_position dcm_reactive_stepper.right_foot_velocity dcm_reactive_stepper.right_foot_acceleration dcm_reactive_stepper.left_foot_position dcm_reactive_stepper.left_foot_velocity dcm_reactive_stepper.left_foot_acceleration
StarcoderdataPython
1713330
from django import forms from .models import DailyNote, WeeklyNote class DailyNoteEdit(forms.ModelForm): class Meta: model = DailyNote exclude = [ 'created_by', 'updated_by', 'valid_date' ] class WeeklyNoteEdit(forms.ModelForm): class Meta: model = WeeklyNote exclude = [ 'created_by', 'updated_by', 'start_date' ]
StarcoderdataPython
226859
<gh_stars>0 import csv import os directory = "/Volumes/Disk2/Dropbox/HPC/results/Office/learn/" all = [] for file in os.listdir(directory): if file.endswith(".csv"): with open(directory+file, 'rb') as csvfile: spamreader = csv.reader(csvfile, delimiter=',', quotechar='|') count = 0 Learn_state1 = -1 Learn_previous_state1 = -1 Learn_state0 = -1 Learn_action0 = -1 Learn_reward1 = -1 Learn_reward0 = -1 Learn_previous_state0 = -1 Learn_action1 = -1 for row in spamreader: if count == 0: count = count + 1 for x,y in enumerate(row): if y == "Learn_state1": Learn_state1 = x if y == "Learn_previous_state1": Learn_previous_state1 = x if y == "Learn_state0": Learn_state0 = x if y == "Learn_action0": Learn_action0 = x if y == "Learn_reward1": Learn_reward1 = x if y == "Learn_reward0": Learn_reward0 = x if y == "Learn_previous_state0": Learn_previous_state0 = x if y == "Learn_action1": Learn_action1 = x continue r1 = row[Learn_reward0] r2 = row[Learn_reward1] if r1 == '1.9735e-316': r1 = '0' if r2 == '1.9735e-316': r2 = '0' if not r1 == "": a1 = [row[Learn_previous_state0],row[Learn_state0],row[Learn_action0],r1] all.append(a1) if not r2 == "": a2 = [row[Learn_previous_state1],row[Learn_state1],row[Learn_action1],r2] all.append(a2) #print "action: " + str(row[2]) + " reward: " + str(r1) with open('test.csv', 'w') as fp: a = csv.writer(fp, delimiter=',') a.writerows(all)
StarcoderdataPython
5123408
from pygments.style import Style from pygments.styles.default import DefaultStyle from pygments.token import Error class SimpleStyle(Style): styles = dict(DefaultStyle.styles.items()) SimpleStyle.styles[Error] = "border:"
StarcoderdataPython
1787427
influencer = { 'mahathir': [ 'tun mahathir', 'madey', 'dr mahathir', 'tun m', 'mahathir', 'madir', 'dr m', 'mahathir muhamad', ], 'anwar ibrahim': ['anwar ibrahim', 'anwar'], 'najib razak': [ 'najib razak', 'ajib', 'pakjib', 'pok jib', 'pak jib', 'najib', 'tan sri najib', ], 'pakatan harapan': ['harapan', 'pakatan harapan', 'pakatan'], 'syed saddiq': ['syed saddiq', 'syedsaddiq', 'syed', 'saddiq'], 'parti keadilan rakyat': [ 'parti keadilan rakyat', 'people justice party', 'pkr', ], 'umno': ['united malays', 'umno', 'united malays national organization'], 'barisan nasional': ['bn', 'barisan nasional'], 'parti islam semalaysia': [ 'parti islam', 'malaysian islamic party', 'parti islam semalaysia', 'parti islam malaysia', ], 'nurul izzah': ['nurul izzah', 'izzah'], 'Tunku Ismail Idris': ['tunku ismail', 'tunku ismail idris', 'tmj'], 'mca': ['malaysian chinese association', 'mca'], 'democratic action party': ['democratic action party'], 'parti amanah': [ 'national trust party', 'amanah', 'parti amanah', 'parti amanah negara', ], 'ppbm': [ 'parti pribumi bersatu malaysia', 'ppbm', 'malaysian united', 'parti pribumi', 'malaysian united indigenous party', ], 'mic': [ 'malaysian indian', 'malaysian indian congress', 'indian congress', 'mic', ], 'Tun Daim Zainuddin': [ 'daim zainuddin', 'daim', 'tun daim', 'tun daim zainuddin', ], 'datuk seri abdul hadi awang': [ 'hadi', 'datuk seri abdul hadi awang', 'hadi awang', ], 'majlis pakatan harapan': ['majlis pakatan harapan'], 'wan azizah': ['kak wan', 'azizah', 'wan azizah'], 'Parti Pribumi Bersatu Malaysia': [ 'parti pribumi bersatu malaysia', 'ppbm', 'parti bersatu', 'parti pribumi', ], 'Datuk Seri Azmin Ali': ['azmin ali', 'datuk seri azmin ali', 'azmin'], 'Datuk Johari Abdul': ['johari', 'johari abdul', 'datuk johari abdul'], 'Tengku <NAME>': ['tengku razaleigh hamzah', 'razaleigh'], 'Tan Sri Dr Rais Yatim': ['rais yatim', 'tan sri dr rais yatim'], 'rafizi ramli': ['rafizi', 'rafizi ramli'], 'bersatu': ['bersatu'], 'bernama': ['bernama'], 'donald trump': ['trump', 'donald', 'donald trump'], 'perkasa': ['pertubuhan pribumi perkasa', 'pertubuhan pribumi', 'perkasa'], 'Tan Sri Mokhzani Mahathir': [ 'tan sri mokhzani mahathir', 'mokhzani', 'mokhzani mahathir', ], 'Rais Yatim': ['rais yatim', 'rais'], '<NAME>': ['<NAME>', 'loke siew'], '<NAME>': ['rosmah', '<NAME>ur'], 'arul kanda': ['arul kanda', 'kanda'], 'manchester united': ['manchester', 'manchester united'], 'arsenal fc': ['arsenal fc', 'arsenal'], 'liverpool fc': ['liverpool fc', 'liverpool'], 'chelsea fc': ['chelsea', 'chelsea fc'], 'manchester city': ['manchester city'], 'fc barcelona': ['barcelona', 'fc barcelona'], 'real madrid cf': ['madrid', 'real madrid', 'real madrid cf'], 'fc bayern munich': ['bayern munich', 'fc bayern munich'], 'juventus fc': ['juventus fc', 'juventus'], 'zeti aziz': ['zeti aziz'], '<NAME>': ['<NAME>'], '<NAME>': ['<NAME>'], 'ks jomo': ['ks jomo'], 'jho low': ['jho low'], 'kadir jasin': ['kadir jasin'], 'zakir naik': ['zakir naik'], 'bung mokhtar': ['bung mokhtar'], 'shafie apdal': ['shafie apdal'], 'ariff md yusof': ['ariff yusof', 'datuk ariff md yusof', 'ariff md yusof'], 'felda': ['felda'], 'dato vida': ['vida', 'dato vida'], 'Jabatan Perancangan Bandar dan Desa': [ 'jabatan perancangan bandar dan desa' ], }
StarcoderdataPython
369956
from django.contrib.auth.models import Group from django.test import TestCase from apps.bot.classes.Command import Command from apps.bot.classes.bots.tg.TgBot import TgBot from apps.bot.classes.consts.Consts import Platform from apps.bot.classes.consts.Exceptions import PWarning, PError from apps.bot.classes.events.TgEvent import TgEvent from apps.bot.models import User, Profile, Chat from apps.service.management.commands.initial import Command as InitCommand from apps.service.models import City, TimeZone class BotInitializer(TestCase): Command = Command @classmethod def setUpTestData(cls): initial_command = InitCommand() initial_command.init_groups() tz, _ = TimeZone.objects.get_or_create(name='Europe/Samara') city = { 'name': 'Самара', 'synonyms': 'самара смр', 'lat': 53.195538, 'lon': 50.101783, 'timezone': tz } city, _ = City.objects.update_or_create(name=city['name'], defaults=city) all_groups = Group.objects.exclude(name="BANNED") # Первый акк админа profile = Profile.objects.create( name="Вася", surname="Пупкин", nickname_real="Васёк", gender='2', city=city, ) profile.groups.set(all_groups) chat = Chat.objects.create( name="<NAME>", chat_id=2, admin=profile ) profile.chats.add(chat) User.objects.create( user_id=1, profile=profile, platform=Platform.TG.name ) # Второй обычный юзер profile2 = Profile.objects.create( name="Иван", surname="Иванов", nickname_real="Ванёк", gender='2', city=city, ) group_user = Group.objects.get(name="USER") profile2.groups.add(group_user) profile2.chats.add(chat) User.objects.create( user_id=2, profile=profile2, platform=Platform.TG.name ) def setUp(self): self.bot = TgBot() self.event = TgEvent(bot=self.bot) self.cmd = self.Command(self.bot, self.event) self.setup_event() # def tearDown(self): # self.event.message = None def setup_event(self): self.event.is_from_user = True self.event.user = User.objects.get(user_id=1) self.event.sender = self.event.user.profile self.event.set_message(self.cmd.name) def check_correct_answer(self): return self.cmd.check_and_start(self.bot, self.event) def check_correct_pwarning(self): try: self.cmd.check_and_start(self.bot, self.event) except PWarning: return self.fail("Команда вернула не PWarning") def check_correct_perror(self): try: self.cmd.check_and_start(self.bot, self.event) except PError: return self.fail("Команда вернула не PError")
StarcoderdataPython
4864729
# -*- coding: utf-8 -*- from yapsy.IPlugin import IPlugin class Wklej(IPlugin): def execute(self, channel, username, command): if not command: yield channel, ("Nie bądź noobem i wklej na: " "https://gist.github.com/")
StarcoderdataPython
3442133
#!/usr/bin/env python3 # -*- coding: utf-8 -*- # PYTHON_ARGCOMPLETE_OK """Command Line Interface (CLI) for the geomodels package.""" import sys from . import cli sys.exit(cli.main())
StarcoderdataPython
8106353
<reponame>COLAB2/midca from datetime import datetime import os, sys, copy import platform, string class Logger: logFolderOptions = ["log", "_log"] def __init__(self, keys = [], filesStayOpen = False, verbose=2): ''' creates a new logger for a MIDCA run. The folder where the individual log files will be stored will be named based on the current date/time. It will be placed in ./log/, which will be created if it does not exist. Keys are both the filenames of actual log files and keys that will be passed to the logger to tell it where to log things. If no keys are passed in the default key will be "log" ''' self.keys = keys self.filesStayOpen = filesStayOpen self.verbose = verbose self.files = None def start(self): ''' Creates the folder where log files will be stored and creates file(s) ''' this_os = platform.platform() self.events = [] self.defaultKey = "log" self.working = False self.startTime = datetime.now() self.timeStr = str(self.startTime) if self.startTime.microsecond > 0: self.timeStr = self.timeStr[:-7].replace(":", "_") if "window" in this_os.lower(): self.timeStr = string.replace(self.timeStr, ':', '_').replace("-", "_") #create log dir if it does not exist. If there is a file at ./log, try ./_log. If neither works, fail and print an error message. folderFound = False self.cwd = os.getcwd() for logFolder in self.logFolderOptions: if folderFound: break self.logDir = os.path.join(self.cwd, logFolder) try: if os.path.isdir(self.logDir): folderFound = True else: if os.path.exists(self.logDir): if self.verbose > 0: print("Logger: file exists at " + self.logDir + ". Trying next option.", file = sys.stderr) else: os.mkdir(self.logDir) folderFound = True except OSError as e: if self.verbose > 0: print("Logger: error creating/accessing log directory: " + str(e), file = sys.stderr) if not folderFound: if self.verbose > 0: print("Logger: unable to create or find a log directory at any of: " + str([os.path.join(self.cwd, option) for option in self.logFolderOptions]) + ". Logging will be disabled.", file = sys.stderr) else: #now create the directory for this run self.thisRunDir = os.path.join(self.logDir, self.timeStr) try: os.mkdir(self.thisRunDir) except OSError as e: if self.verbose > 0: print("Logger: error creating log directory: " + str(e), file = sys.stderr) #now create the individual log file(s) self.files = {key: None for key in self.keys} self.working = True for key in self.keys: try: f = self.openFile(key) f.write("Log file for run starting at " + self.timeStr + "\n") except IOError as e: self.writeError(e, filename = os.path.join(self.thisRunDir, key), txt = "Log file for run starting at " + self.timeStr) self.working = False if not self.working: if self.verbose > 0: print ("Logger disabled") else: if self.verbose > 0: print("Logger: logging this run in " + self.thisRunDir, file = sys.stderr) if not self.filesStayOpen: for file in list(self.files.values()): file.close() def openFile(self, key): f = open(os.path.join(self.thisRunDir, key), 'a') self.files[key] = f return f def _user_log(self, txt, keys = []): event = UserLogEvent(txt, keys) self.logEvent(event) def logEvent(self, event): if not self.working: return event.time = datetime.now() if event.loggable: if not hasattr(event, 'keys') or not event.keys: keys = [self.defaultKey] elif event.keys == 'all': if self.files: keys = list(self.files.keys()) else: keys = [self.defaultKey] else: keys = event.keys deltaTStr = str(event.time - self.startTime) deltaTStr = deltaTStr.lstrip(":0") + " - " for key in keys: self._write(deltaTStr + str(event), key) self.events.append(event) def log(self, val, keys = []): if isinstance(val, str): self._user_log(val, keys) elif isinstance(val, Event): self.logEvent(val) else: raise ValueError("log must get a string or an Event object") def _write(self, txt, key): if not self.working: return if key not in self.files or not self.files[key] or self.files[key].closed: try: self.openFile(key) except IOError as e: self.writeError(e, filename = os.path.join(self.thisRunDir, key), txt = txt) return f = self.files[key] if f: f.write(txt + "\n") if not self.filesStayOpen: f.close() def writeError(self, e, filename = "", txt = ""): if self.verbose > 0: print("Logger: trying to write " + txt + " to file " + filename + "; got error " + str(e), file = sys.stderr) def close(self): for f in list(self.files.values()): f.close() def logOutput(self): StdoutDirector(self) class StdoutDirector: def __init__(self, logger): self.logger = logger self.stdout = sys.stdout sys.stdout = self self.current = "" #removes some color codes that mess up logging output def fixForMidca(self, s): return s.replace("", "").replace("[0m ", "") def write(self,s): self.current += self.fixForMidca(s) if self.current.endswith("\n"): if len(self.current) > 1: event = MidcaOutputEvent(self.current, ["log", "MIDCA output"]) self.logger.log(event) self.current = "" self.stdout.write(s) self.stdout.flush() def flush(self): self.stdout.flush() class Event: def __init__(self, loggable = True, keys = []): self.loggable = loggable self.keys = keys def __str__(self): raise NotImplementedError("Event subclasses must implement __str__ or set loggable to False") class MidcaOutputEvent(Event): def __init__(self, txt, keys = []): self.txt = txt self.loggable = True self.keys = keys def __str__(self): return self.txt class UserLogEvent(Event): def __init__(self, txt, keys = []): self.txt = txt self.loggable = True self.keys = keys def __str__(self): return self.txt class CycleStartEvent(Event): def __init__(self, cycle): self.cycle = cycle self.keys = 'all' self.loggable = True def __str__(self): s = "Starting cycle " + str(self.cycle) + "\n" return s class CycleEndEvent(Event): def __init__(self, cycle): self.cycle = cycle self.keys = [] self.loggable = False class PhaseStartEvent(Event): def __init__(self, phase): self.module = phase self.keys = "all" self.loggable = True def __str__(self): return "****** Starting " + str(self.module) + " Phase ******\n" class PhaseEndEvent(Event): def __init__(self, phase): self.module = phase self.keys = [] self.loggable = False class ModuleStartEvent(Event): def __init__(self, module): self.module = module self.keys = ['log'] self.loggable = True def __str__(self): s = "Running module " + str(self.module) + "\n" if "instance" in s: return s[:s.rindex("instance") - 1] else: return s class ModuleEndEvent(Event): def __init__(self, module): self.module = module self.keys = [] self.loggable = False def test(): l = Logger(["f1", "f2"]) l._write("hello!", "f1")
StarcoderdataPython
9641439
def format_int_kind(x): return 'int({0})'.format(x) with printoptions(formatter={'int_kind': format_int_kind}): print(np.random.randint(-100, 100, 10))
StarcoderdataPython
1612644
from pysensationcore import * import sensation_helpers as sh import Scan # Inner blocks scan = createInstance("Scan", "scan") comparator = createInstance("Comparator", "ComparatorInstance") # Inner block connections connect(Constant((0, 0, 0)), comparator.returnValueIfAGreaterThanB) connect(Constant((1, 0, 0)), comparator.returnValueIfAEqualsB) connect(Constant((1, 0, 0)), comparator.returnValueIfALessThanB) handScan = sh.createSensationFromPath("Hand Scan", { ("t", scan.t) : (0, 0, 0), ("duration", scan.duration) : (2, 0, 0), ("barLength", scan.barLength) : (0.1, 0, 0), ("virtualObjectXInVirtualSpace", scan.barDirection) : (1, 0, 0), ("wrist_position", scan.animationPathStart) : (0, 0.2, -0.06), ("middleFinger_distal_position", scan.animationPathEnd) : (0, 0.2, 0.06), ("t", comparator.a) : (0, 0, 0), ("duration", comparator.b) : (2, 0, 0) }, output = scan.out, intensity = comparator.out, definedInVirtualSpace = True ) setMetaData(handScan.virtualObjectXInVirtualSpace, "Input-Visibility", False) setMetaData(handScan.wrist_position, "Input-Visibility", False) setMetaData(handScan.middleFinger_distal_position, "Input-Visibility", False) setMetaData(handScan.duration, "Type", "Scalar") setMetaData(handScan.barLength, "Type", "Scalar") setMetaData(handScan, "IsFinite", True)
StarcoderdataPython
9689744
# # Visual Cryptography Cookbook # for UVA GenCyber 2018 # # <NAME> # 14 June 2018 # ### python3 visualcrypto.py --seed 1629 --xsize 80 --image message.bmp ### convert message-share.svg message-share.pdf ### print scale to 64% ### This requires the svgwrite and PIL modules are installed. ### If they are not already installed, you should be able to ### install them by running: ### pip install svgwrite ### pip install pillow import svgwrite # for generating graphics from PIL import Image # for reading a bitmap image # We'll use standard Python random, even though it is not cryptographically secure! # If you were planning to use any of these ciphers to protect nuclear secrets (please # don't!), you should replace this with a cryptographic random nubmer generator, # like the one provided by PyCrypto. After version 3.6, Python will provide the # secrets module, with a cryptographic random number generator. import random def random_sequence(n): """ Returns a random sequence of bits (0 or 1) of length n. """ return [random.choice([0, 1]) for i in range(n)] def xor(a, b): """ Returns the exclusive or (XOR) of the two input bits. """ assert a in [0, 1] assert b in [0, 1] return (a + b) % 2 def otp(m, k): """ Encrypts m using key k as a one-time pad. This simple returns the xor of each corresponding message and key bit. """ assert len(m) == len(k) return [xor(mm, kk) for mm, kk in zip(m, k)] def draw_block(svgdoc, xpos, ypos, blockx, blocky, color = "black"): """ Draws a block at position (xpos, ypos) that is filled with the solid color. """ svgdoc.add(svgdoc.rect(insert = (xpos * blockx, ypos * blocky), size = (str(blockx) + "px", str(blocky) + "px"), stroke_width = "1", stroke = "black", fill = color)) def triangle_encoding(svgdoc, xpos, ypos, blockx, blocky, code): """ Fills the block at (xpos, ypos) with a triangle encoding according to the code. code = 0 colors the traingle from the top-right to bottom-left corner; code = 1 colors the triangle from the top-left to bottom-right corner. """ svgdoc.add(svgdoc.polygon(points=[(xpos * blockx, ypos * blocky), (xpos * blockx + blockx, ypos * blocky + blocky), (xpos * blockx, ypos * blocky + blocky) if code else (xpos * blockx + blockx, ypos * blocky), (xpos * blockx, ypos * blocky)], fill='black')) def draw_encoding(svgdoc, xpos, ypos, blockx, blocky, code): if code: svgdoc.add(svgdoc.rect(insert = (xpos * blockx, ypos * blocky), size = (str(blockx // 2) + "px", str(blocky) + "px"), stroke_width = "0", stroke = "black", fill = "rgb(0,0,0)")) else: svgdoc.add(svgdoc.rect(insert = (xpos * blockx + blockx // 2, ypos * blocky), size = (str(blockx // 2) + "px", str(blocky) + "px"), stroke_width = "0", stroke = "black", fill = "rgb(0,0,0)")) def draw_matrix(svgdoc, m, width, height, plain=False, encoding=draw_encoding): columns = len(m[0]) rows = len(m) xblock = width // columns yblock = xblock # keep the blocks square (don't use full height if necessary) # print("xblock = " + str(xblock) + " columns = " + str(columns)) # print("size: " + str(xblock * columns) + " / " + str(width)) # print("size: " + str(yblock * rows) + " / " + str(height)) for rindex in range(rows): for cindex in range(columns): if plain: draw_block(svgdoc, cindex, rindex, xblock, yblock, color = "rgb(0,0,0)" if m[rindex][cindex] else "rgb(255,255,255)") else: encoding(svgdoc, cindex, rindex, xblock, yblock, m[rindex][cindex]) def draw_both(svgdoc, m1, m2, width, height, plain=False, encoding=draw_encoding): columns = len(m1[0]) assert len(m2[0]) == columns rows = len(m1) assert len(m2) == rows xblock = width // columns yblock = xblock # ysize // yrange for rindex in range(len(m1)): for cindex in range(len(m1[rindex])): encoding(svgdoc, cindex, rindex, xblock, yblock, m1[rindex][cindex]) encoding(svgdoc, cindex, rindex, xblock, yblock, m2[rindex][cindex]) ## ## encodings ## img key 0 key 1 ## A B A B ## 0 = 1 1 / 0 0 ## 1 = 0 1 / 1 0 ## ## 1 = 1/0 ## 0 = 0/1 ## A = img ## img = a xor b ## b = key xor img ASPECT = (8.6 / 6.5) xsize = 880 ysize = xsize * ASPECT def root_name(fname): ext = imgfile.find('.bmp') assert ext > 1 ifname = imgfile[:ext] ifdir = ifname.rfind('/') if ifdir >= 0: ifname = imgfile[ifdir + 1:] ifname = outputdir + ifname def generate_key(width, height): key = random_sequence(width * height) keymat = [[key[(r * width + c)] for c in range(width)] for r in range(height)] return keymat def generate_image(keymat, image, width, height, outputdir="./", colored=False): # print("Image size: " + str(width) + ", " + str(height)) print ("Processing image: " + image.name + "...") imgname = image.name image = Image.open(imgname).convert('1') iwidth, iheight = image.size if iwidth > iheight: print("Rotating image (" + str(iwidth) + ", " + str(iheight) + ")") image = image.rotate(90, expand=True) # make landscape orientation image = image.resize((width, height)) # , resample=0) ext = imgname.find('.bmp') assert ext > 1 ifname = imgname[:ext] iwidth, iheight = image.size assert iheight >= iwidth # print ("iwidth, iheight: " + str(iwidth) + "/" + str(width) + ", " + str(iheight) + "/" + str(height)) assert iwidth <= width assert iheight <= height imgmat = [[0 if c < iwidth and r < iheight and image.getpixel((c, r)) > 128 else 1 for c in range(width)] for r in range(height)] bmat = [[xor(imgmat[r][c], keymat[r][c]) for c in range(width)] for r in range(height)] svgimg = svgwrite.Drawing(filename = ifname + "-plain.svg", size = (str(xsize) + "px", str(ysize) + "px")) draw_matrix(svgimg, imgmat, xsize, ysize, plain=True, encoding=triangle_encoding) svgimg.save() svgb = svgwrite.Drawing(filename = ifname + "-share.svg", size = (str(xsize) + "px", str(ysize) + "px")) if colored: svgb.add(svgb.rect(insert = (0, 0), size = (xsize, ysize), fill = 'rgb(200,200,255)')) draw_matrix(svgb, bmat, xsize, ysize, encoding=triangle_encoding) svgb.save() svgimg = svgwrite.Drawing(filename = ifname + "-both.svg", size = (str(xsize) + "px", str(ysize) + "px")) draw_both(svgimg, keymat, bmat, xsize, ysize, plain=True, encoding=triangle_encoding) svgimg.save() if __name__ == "__main__": from argparse import ArgumentParser import math parser = ArgumentParser() parser.add_argument("-s", "--seed", dest = "seed", type=int, help="set seed (key, a number) for random number generator") parser.add_argument("-g", "--size", dest = "size", type=int, nargs = 2, help = "set the image size (two numbers, horizontal, vertical") parser.add_argument("-x", "--xsize", dest = "xsize", type=int, help = "set the image size (horizontal; vertical is scaled to page)") parser.add_argument("-k", "--keyfile", dest = "keyfilename", help="write key to output file") parser.add_argument("-c", "--colored", dest = "colored", help="use a background color", type = bool, default = False) parser.add_argument("-q", "--quiet", action="store_false", dest="verbose", default=True, help="don't print status messages to stdout") parser.add_argument("-i", "--image", type=open, dest="image") args = parser.parse_args() if args.seed: print ("Seed: " + str(args.seed)) seed = args.seed else: import time seed = int(time.time()) print ("No seed, using: " +str(seed)) random.seed(int(seed)) if args.size: width = args.size[0] height = args.size[1] print ("Size: " + str(width) + ", " + str(height)) assert not args.xsize elif args.xsize: width = args.xsize height = math.floor(width * ASPECT) print ("Size: " + str(width) + ", " + str(height)) else: # read size from source image if len(args.images) < 1: print ("Error: must either provide a source image or specify size.") else: imgfile = args.images[0] im = Image.open(imgfile).convert('1') width, height = im.size keymat = generate_key(width, height) if args.keyfilename: keyfile = args.keyfilename print ("Writing key to: " + keyfile) svgkey = svgwrite.Drawing(filename = keyfile, size = (str(xsize) + "px", str(ysize) + "px")) if args.colored: svgkey.add(svgkey.rect(insert = (0, 0), size = (xsize, ysize), fill = "rgb(255,200,200)")) draw_matrix(svgkey, keymat, xsize, ysize, encoding=triangle_encoding) svgkey.save() if args.image: print ("Generating image: " + args.image.name) #for image in args.images: generate_image(keymat, args.image, width, height) # , colored)
StarcoderdataPython
3217571
import warnings import argparse from torch import optim from torch.optim import lr_scheduler from torch.utils.data import DataLoader from dogsvscats.data import get_datasets from dogsvscats.model import train_model, load_model, MODELS from dogsvscats.callbacks import EarlyStopping from dogsvscats import config warnings.filterwarnings("ignore", category=UserWarning) parser = argparse.ArgumentParser() parser.add_argument( "-m", "--model", default=config.MODEL_NAME, choices=MODELS, help="Model name", type=str, ) parser.add_argument( "-cp", "--checkpoint-path", default=config.CHECKPOINT_PATH, help="Checkpoint Path", type=str, ) parser.add_argument("-w", "--workers", default=config.NW, help="Workers", type=int) parser.add_argument( "-bs", "--batch-size", default=config.BS, help="Batch size", type=int ) parser.add_argument( "-lr", "--learning-rate", default=config.LR, help="Learning rate", type=float ) parser.add_argument("-e", "--epochs", default=config.EPOCHS, help="Epochs", type=int) parser.add_argument( "-sp", "--scheduler-patience", default=config.SCHEDULER_PATIENCE, help="Scheduler patience", type=int, ) parser.add_argument( "-esp", "--early-stopping-patience", default=config.EARLYSTOPPING_PATIENCE, help="Early stopping patience", type=int, ) parser.add_argument("-d", "--debug", default=False, help="Debug", action="store_true") parser.add_argument( "-df", "--debug-frac", default=0.05, help="Debug fraction", type=float ) parser.add_argument( "-vf", "--valid-frac", default=config.VALID_FRAC, help="Validation fraction", type=float, ) args = parser.parse_args() train_ds, valid_ds, _ = get_datasets( valid_frac=args.valid_frac, debug=args.debug, debug_frac=args.debug_frac ) train_dl = DataLoader(train_ds, args.batch_size, shuffle=True, num_workers=args.workers) valid_dl = DataLoader(valid_ds, args.batch_size, shuffle=True, num_workers=args.workers) model = load_model(args.model) optimizer = optim.SGD(model.parameters(), args.learning_rate, momentum=0.9) scheduler = lr_scheduler.ReduceLROnPlateau( optimizer, mode="max", patience=args.scheduler_patience, verbose=True ) es = EarlyStopping( patience=args.early_stopping_patience, mode="max", verbose=True, path=args.checkpoint_path, ) model = train_model(model, optimizer, scheduler, es, train_dl, valid_dl, args.epochs)
StarcoderdataPython
8154388
<reponame>balcilar/SemiSupervisedMarkowRandomWalk<filename>sslMarkovRandomWalks.py import numpy as np def sslMarkovRandomWalks(xl,yl,xu,k=10,gamma=1,t=10,improvement=10e-5): # Written by <NAME>, <EMAIL>, France # xl is nxd size matrix shows inputs of known data. n is number of data d is dimension # yl is nx1 size vector shows label it is either 1 or -1 # xu is mxd size matrix shows input of unknown data. m is number of data d is dimension # k shows number of k-nn which keep the most k number of closest neightbor of each data point # gamma for w function # t for degree of power # improvement is stopping criteria if there is less than improvement in labels difference # merge all inputs in one matrix x=np.vstack((xl,xu)) knownlabel=len(yl) # calculate euclide distances for every pair of data point d=np.zeros((x.shape[0],x.shape[0]),dtype='float') for i in range(0,x.shape[0]-1): for j in range(i+1,x.shape[0]): d[i,j]=np.sqrt(((x[i,:]-x[j,:])**2).sum()) d[j,i]=d[i,j] # find most closest k data point for each data point index=[] for i in range(0,x.shape[0]): index.append(np.argsort(d[i,:])[0:k]) # create w matrix w=np.zeros((x.shape[0],x.shape[0]),dtype='float') # fill w matrix according to paper for i in range(0,x.shape[0]): w[index[i],i]=np.exp(-d[index[i],i]/gamma**2) for i in range(0,x.shape[0]): w[i,i]=1 # initial A matirx At=w/w.sum(axis=1) prob=At # take t power of A matrix for i in range(1,t): At=At.dot(prob) # set initial probabilities. +1 labelled data's P is 1, -1 labelled data's P is 0 # unknonw data's P is 0.5 (means no information either -1 or 1) P=np.zeros((x.shape[0],1)) Pold=P.copy() posindex=np.where(yl==1)[0] P[posindex]=1 negindex=np.where(yl==-1)[0] uindex=[i for i in range(len(yl),x.shape[0])] P[uindex]=0.5 cSums = At.sum(axis=0) #Expectation Maximization step while ((P-Pold)**2).sum() > improvement: # if tehre is significant improvement keep update of P # update mechanism of P Pold=P.copy() Ppos=At*P P[:,0]=Ppos.sum(axis=0)/cSums # even known data P is differen force them as known value # in that way we just change the unknonw data's P value P[posindex,0]=1 P[negindex,0]=0 # make final decision yu=P[:,0].copy() for i in range(0,P.shape[0]):# if P value is greater than 0.5 make it 1 unles -1 if yu[i]>=0.5: yu[i]=1 else: yu[i]=-1 # return assigned label and probabilities return yu[uindex],P[uindex,0]
StarcoderdataPython
5139362
""" q7.py Created on 2020-08-21 Updated on 2020-10-30 Copyright <NAME> 2020 Description: A file which holds the designated question class. """ # IMPORTS from sympy import latex, binomial from sympy.parsing.sympy_parser import parse_expr from the_challenge.questions.questionClasses.questionBaseClass import Question # CLASSES class Q7(Question): """ Q7: Determine the r-th term of a binomial expansion. """ def calculations(self): # Generate the binomial expression a = self.random.randint(1, 9) b = self.random.randint(1, 3) c = self.random.randint(1, 9) d = self.random.randint(1, 9) e = self.random.randint(1, 3) f = self.random.randint(4, 8) sign = self.random.choice(["+", "-"]) binomial_expression = latex(parse_expr(f"({a} * x ** {b} {sign} {c} / ({d} * x ** {e})) ** {f}")) # Generate the term which the user is supposed to calculate r = self.random.randint(2, f - 1) # Generate that term rth_term = f"{binomial(f, r - 1)} * (({a} * x ** {b}) ** {f - r + 1}) * (({sign} {c} / ({d} * x ** {e})) " \ f"** {r - 1})" rth_term = latex(parse_expr(rth_term)) # Save variables to `self.question` and `self.answer` self.question = [r, binomial_expression] self.answer = rth_term def generate_question(self): string = f"Determine the {self.ordinal(self.question[0])} term in the binomial expansion of " \ f"$${self.question[1]}$$" return string def generate_answer(self): return self.answer def generate_input_fields_prefixes(self): return ["Answer:"] @staticmethod def ordinal(n): n = int(n) suffix = ["th", "st", "nd", "rd", "th"][min(n % 10, 4)] if 11 <= n % 100 <= 13: suffix = "th" return f"{n}<sup>{suffix}</sup>" # DEBUG CODE if __name__ == "__main__": question = Q7(seed_value=1123581321) question.calculations() print(question.generate_question()) print("[ANSWER]", question.generate_answer())
StarcoderdataPython
8133183
<reponame>kevingduck/transmission # Copyright 2019 ShipChain, Inc. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from django.db import DEFAULT_DB_ALIAS, connections from django.db.migrations.executor import MigrationExecutor from django.http.response import HttpResponse from rest_framework import permissions from rest_framework.decorators import api_view, permission_classes, authentication_classes @api_view(['GET']) @authentication_classes(()) @permission_classes((permissions.AllowAny,)) def health_check(request): """ This endpoint (/health) returns 200 if no migrations are pending, else 503 https://engineering.instawork.com/elegant-database-migrations-on-ecs-74f3487da99f """ executor = MigrationExecutor(connections[DEFAULT_DB_ALIAS]) plan = executor.migration_plan(executor.loader.graph.leaf_nodes()) return HttpResponse(status=503 if plan else 200)
StarcoderdataPython
9708230
<reponame>mickypaganini/IPRNN import glob import pandas as pd import numpy as np from numpy.lib.recfunctions import stack_arrays from root_numpy import root2rec def root2panda(files_path, tree_name, mask = False, **kwargs): ''' Args: ----- files_path: a string like './data/*.root', for example tree_name: a string like 'Collection_Tree' corresponding to the name of the folder inside the root file that we want to open kwargs: arguments taken by root2rec, such as branches to consider, etc Returns: -------- output_panda: a panda dataframe like allbkg_df in which all the info from the root file will be stored Note: ----- if you are working with .root files that contain different branches, you might have to mask your data in that case, return pd.DataFrame(ss.data) ''' files = glob.glob(files_path) # -- check whether a name was passed for the tree_name --> for root files with only one tree and no folders, # -- you do not need to specify any name (I believe) if (tree_name == ''): ss = stack_arrays([root2rec(fpath, **kwargs) for fpath in files]) else: ss = stack_arrays([root2rec(fpath, tree_name, **kwargs) for fpath in files]) if (mask): return pd.DataFrame(ss.data) else: try: return pd.DataFrame(ss) except Exception, e: return pd.DataFrame(ss.data) def flatten(column): ''' Args: ----- column: a column of a pandas df whose entries are lists (or regular entries -- in which case nothing is done) e.g.: my_df['some_variable'] Returns: -------- flattened out version of the column. For example, it will turn: [1791, 2719, 1891] [1717, 1, 0, 171, 9181, 537, 12] [82, 11] ... into: 1791, 2719, 1891, 1717, 1, 0, 171, 9181, 537, 12, 82, 11, ... ''' try: return np.array([v for e in column for v in e]) except (TypeError, ValueError): return column def match_shape(arr, ref): ''' Objective: ---------- reshaping 1d array into array of arrays to match event-jets structure Args: ----- arr: 1d flattened array of values ref: reference array carrying desired event-jet structure Returns: -------- arr in the shape of ref ''' shape = [len(a) for a in ref] if len(arr) != np.sum(shape): raise ValueError('Incompatible shapes: len(arr) = {}, total elements in ref: {}'.format(len(arr), np.sum(shape))) # reorganized = [] # ptr = 0 # for nobj in shape: # reorganized.append(twoclass_output[ptr:(ptr + nobj)].astype('float32').tolist()) # ptr += nobj return [arr[ptr:(ptr + nobj)].tolist() for (ptr, nobj) in zip(np.cumsum([0] + shape[:-1]), shape)]
StarcoderdataPython
1958187
import logging import os import time import numpy as np from simulation import sim as vrep from utils import utils class SimRobot: def __init__(self, sim_port, obj_mesh_dir, num_obj, workspace_limits, is_testing, test_preset_cases, test_preset_file, place_enabled): self.sim_port = sim_port self.workspace_limits = workspace_limits self.place_enabled = place_enabled # Define home position self.home_position = [-0.3, 0.0, 0.45] # Define colors for object meshes (Tableau palette) self.color_space = np.asarray([[78.0, 121.0, 167.0], # blue [89.0, 161.0, 79.0], # green [156, 117, 95], # brown [242, 142, 43], # orange [237.0, 201.0, 72.0], # yellow [186, 176, 172], # gray [255.0, 87.0, 89.0], # red [176, 122, 161], # purple [118, 183, 178], # cyan [255, 157, 167]]) / 255.0 # pink # Read files in object mesh directory self.obj_mesh_dir = obj_mesh_dir self.num_obj = num_obj self.num_obj_clear = 0 self.mesh_list = os.listdir(self.obj_mesh_dir) # Randomly choose objects to add to scene self.obj_mesh_ind = np.random.randint(0, len(self.mesh_list), size=self.num_obj) self.obj_mesh_color = self.color_space[np.asarray(range(self.num_obj)) % 10, :] self.is_testing = is_testing self.test_preset_cases = test_preset_cases self.test_preset_file = test_preset_file # Setup simulation self.setup_sim() # If testing, read object meshes and poses from test case file if self.test_preset_cases: file = open(self.test_preset_file, 'r') file_content = file.readlines() self.test_obj_mesh_files = [] self.test_obj_mesh_colors = [] self.test_obj_positions = [] self.test_obj_orientations = [] for object_idx in range(self.num_obj): file_content_curr_object = file_content[object_idx].split() self.test_obj_mesh_files.append(os.path.join(self.obj_mesh_dir, file_content_curr_object[0])) self.test_obj_mesh_colors.append( [float(file_content_curr_object[1]), float(file_content_curr_object[2]), float(file_content_curr_object[3])]) self.test_obj_positions.append([float(file_content_curr_object[4]), float(file_content_curr_object[5]), float(file_content_curr_object[6])]) self.test_obj_orientations.append( [float(file_content_curr_object[7]), float(file_content_curr_object[8]), float(file_content_curr_object[9])]) file.close() self.obj_mesh_color = np.asarray(self.test_obj_mesh_colors) # Add objects to simulation environment self.add_objects() def setup_sim(self): # Connect to simulator self.sim_client = -1 vrep.simxFinish(-1) # Just in case, close all opened connections logging.info('Connecting to simulation...') while self.sim_client == -1: self.sim_client = vrep.simxStart('127.0.0.1', self.sim_port, True, True, 5000, 5) if self.sim_client == -1: logging.error('Failed to connect to simulation. Trying again..') time.sleep(5) else: logging.info('Connected to simulation.') self.restart_sim() break # Get handle to camera sim_ret, self.cam_handle = vrep.simxGetObjectHandle(self.sim_client, 'Vision_sensor_persp', vrep.simx_opmode_blocking) # Get camera pose and intrinsics in simulation sim_ret, cam_position = vrep.simxGetObjectPosition(self.sim_client, self.cam_handle, -1, vrep.simx_opmode_blocking) sim_ret, cam_orientation = vrep.simxGetObjectOrientation(self.sim_client, self.cam_handle, -1, vrep.simx_opmode_blocking) cam_trans = np.eye(4, 4) cam_trans[0:3, 3] = np.asarray(cam_position) cam_orientation = [-cam_orientation[0], -cam_orientation[1], -cam_orientation[2]] cam_rotm = np.eye(4, 4) cam_rotm[0:3, 0:3] = np.linalg.inv(utils.euler2rotm(cam_orientation)) self.cam_pose = np.dot(cam_trans, cam_rotm) # Compute rigid transformation representating camera pose self.cam_intrinsics = np.asarray([[618.62, 0, 320], [0, 618.62, 240], [0, 0, 1]]) self.cam_depth_scale = 1 # Get background image self.bg_color_img, self.bg_depth_img = self.get_camera_data() self.bg_depth_img = self.bg_depth_img * self.cam_depth_scale def add_objects(self): # Add each object to robot workspace at x,y location and orientation (random or pre-loaded) logging.info('Adding objects to the scene..') self.object_handles = [] self.num_obj_clear = 0 for object_idx in range(len(self.obj_mesh_ind)): curr_mesh_file = os.path.join(self.obj_mesh_dir, self.mesh_list[self.obj_mesh_ind[object_idx]]) if self.test_preset_cases: curr_mesh_file = self.test_obj_mesh_files[object_idx] curr_shape_name = 'shape_%02d' % object_idx drop_x = (self.workspace_limits[0][1] - self.workspace_limits[0][0] - 0.2) * np.random.random_sample() + \ self.workspace_limits[0][0] + 0.1 drop_y = (self.workspace_limits[1][1] - self.workspace_limits[1][0] - 0.2) * np.random.random_sample() + \ self.workspace_limits[1][0] + 0.1 object_position = [drop_x, drop_y, 0.15] object_orientation = [2 * np.pi * np.random.random_sample(), 2 * np.pi * np.random.random_sample(), 2 * np.pi * np.random.random_sample()] if self.test_preset_cases: object_position = [self.test_obj_positions[object_idx][0], self.test_obj_positions[object_idx][1], self.test_obj_positions[object_idx][2]] object_orientation = [self.test_obj_orientations[object_idx][0], self.test_obj_orientations[object_idx][1], self.test_obj_orientations[object_idx][2]] object_color = [self.obj_mesh_color[object_idx][0], self.obj_mesh_color[object_idx][1], self.obj_mesh_color[object_idx][2]] ret_resp, ret_ints, ret_floats, ret_strings, ret_buffer = vrep.simxCallScriptFunction(self.sim_client, 'remoteApiCommandServer', vrep.sim_scripttype_childscript, 'importShape', [0, 0, 255, 0], object_position + object_orientation + object_color, [curr_mesh_file, curr_shape_name], bytearray(), vrep.simx_opmode_blocking) if ret_resp == 8: logging.error('Failed to add new objects to simulation. Restarting..') self.setup_sim() else: curr_shape_handle = ret_ints[0] self.object_handles.append(curr_shape_handle) if not self.test_preset_cases: time.sleep(0.5) self.prev_obj_positions = [] self.obj_positions = [] def restart_sim(self): sim_ret, self.UR5_target_handle = vrep.simxGetObjectHandle(self.sim_client, 'UR5_target', vrep.simx_opmode_blocking) vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, (-0.5, 0, 0.3), vrep.simx_opmode_blocking) vrep.simxStopSimulation(self.sim_client, vrep.simx_opmode_blocking) vrep.simxStartSimulation(self.sim_client, vrep.simx_opmode_blocking) time.sleep(1) sim_ret, self.RG2_tip_handle = vrep.simxGetObjectHandle(self.sim_client, 'UR5_tip', vrep.simx_opmode_blocking) sim_ret, gripper_position = vrep.simxGetObjectPosition(self.sim_client, self.RG2_tip_handle, -1, vrep.simx_opmode_blocking) while gripper_position[2] > 0.4: # V-REP bug requiring multiple starts and stops to restart vrep.simxStopSimulation(self.sim_client, vrep.simx_opmode_blocking) vrep.simxStartSimulation(self.sim_client, vrep.simx_opmode_blocking) time.sleep(1) sim_ret, gripper_position = vrep.simxGetObjectPosition(self.sim_client, self.RG2_tip_handle, -1, vrep.simx_opmode_blocking) def check_sim(self): # Check if simulation is stable by checking if gripper is within workspace sim_ret, gripper_position = vrep.simxGetObjectPosition(self.sim_client, self.RG2_tip_handle, -1, vrep.simx_opmode_blocking) sim_ok = self.workspace_limits[0][0] - 0.1 < gripper_position[0] < self.workspace_limits[0][1] + 0.1 and \ self.workspace_limits[1][0] - 0.1 < gripper_position[1] < self.workspace_limits[1][1] + 0.1 and \ self.workspace_limits[2][0] < gripper_position[2] < self.workspace_limits[2][1] if not sim_ok: logging.info('Simulation unstable. Restarting environment.') self.restart_sim() self.add_objects() def get_task_score(self): key_positions = np.asarray([[-0.625, 0.125, 0.0], # red [-0.625, -0.125, 0.0], # blue [-0.375, 0.125, 0.0], # green [-0.375, -0.125, 0.0]]) # yellow obj_positions = np.asarray(self.get_obj_positions()) obj_positions.shape = (1, obj_positions.shape[0], obj_positions.shape[1]) obj_positions = np.tile(obj_positions, (key_positions.shape[0], 1, 1)) key_positions.shape = (key_positions.shape[0], 1, key_positions.shape[1]) key_positions = np.tile(key_positions, (1, obj_positions.shape[1], 1)) key_dist = np.sqrt(np.sum(np.power(obj_positions - key_positions, 2), axis=2)) key_nn_idx = np.argmin(key_dist, axis=0) return np.sum(key_nn_idx == np.asarray(range(self.num_obj)) % 4) def check_goal_reached(self): goal_reached = self.get_task_score() == self.num_obj return goal_reached def get_obj_positions(self): obj_positions = [] for object_handle in self.object_handles: sim_ret, object_position = vrep.simxGetObjectPosition(self.sim_client, object_handle, -1, vrep.simx_opmode_blocking) obj_positions.append(object_position) return obj_positions def get_obj_positions_and_orientations(self): obj_positions = [] obj_orientations = [] for object_handle in self.object_handles: sim_ret, object_position = vrep.simxGetObjectPosition(self.sim_client, object_handle, -1, vrep.simx_opmode_blocking) sim_ret, object_orientation = vrep.simxGetObjectOrientation(self.sim_client, object_handle, -1, vrep.simx_opmode_blocking) obj_positions.append(object_position) obj_orientations.append(object_orientation) return obj_positions, obj_orientations def reposition_objects(self, workspace_limits): # Move gripper out of the way self.move_to([-0.1, 0, 0.3], None) for object_handle in self.object_handles: # Drop object at random x,y location and random orientation in robot workspace drop_x = (workspace_limits[0][1] - workspace_limits[0][0] - 0.2) * np.random.random_sample() + \ workspace_limits[0][0] + 0.1 drop_y = (workspace_limits[1][1] - workspace_limits[1][0] - 0.2) * np.random.random_sample() + \ workspace_limits[1][0] + 0.1 object_position = [drop_x, drop_y, 0.15] object_orientation = [2 * np.pi * np.random.random_sample(), 2 * np.pi * np.random.random_sample(), 2 * np.pi * np.random.random_sample()] vrep.simxSetObjectPosition(self.sim_client, object_handle, -1, object_position, vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, object_handle, -1, object_orientation, vrep.simx_opmode_blocking) time.sleep(2) def get_camera_data(self): # Get color image from simulation sim_ret, resolution, raw_image = vrep.simxGetVisionSensorImage(self.sim_client, self.cam_handle, 0, vrep.simx_opmode_blocking) color_img = np.asarray(raw_image) color_img.shape = (resolution[1], resolution[0], 3) color_img = color_img.astype(np.float) / 255 color_img[color_img < 0] += 1 color_img *= 255 color_img = np.fliplr(color_img) color_img = color_img.astype(np.uint8) # Get depth image from simulation sim_ret, resolution, depth_buffer = vrep.simxGetVisionSensorDepthBuffer(self.sim_client, self.cam_handle, vrep.simx_opmode_blocking) depth_img = np.asarray(depth_buffer) depth_img.shape = (resolution[1], resolution[0]) depth_img = np.fliplr(depth_img) zNear = 0.01 zFar = 10 depth_img = depth_img * (zFar - zNear) + zNear return color_img, depth_img def close_gripper(self): gripper_motor_velocity = -0.5 gripper_motor_force = 100 sim_ret, RG2_gripper_handle = vrep.simxGetObjectHandle(self.sim_client, 'RG2_openCloseJoint', vrep.simx_opmode_blocking) sim_ret, gripper_joint_position = vrep.simxGetJointPosition(self.sim_client, RG2_gripper_handle, vrep.simx_opmode_blocking) vrep.simxSetJointForce(self.sim_client, RG2_gripper_handle, gripper_motor_force, vrep.simx_opmode_blocking) vrep.simxSetJointTargetVelocity(self.sim_client, RG2_gripper_handle, gripper_motor_velocity, vrep.simx_opmode_blocking) gripper_fully_closed = False while gripper_joint_position > -0.045: # Block until gripper is fully closed sim_ret, new_gripper_joint_position = vrep.simxGetJointPosition(self.sim_client, RG2_gripper_handle, vrep.simx_opmode_blocking) # logging.info(gripper_joint_position) if new_gripper_joint_position >= gripper_joint_position: return gripper_fully_closed gripper_joint_position = new_gripper_joint_position gripper_fully_closed = True return gripper_fully_closed def open_gripper(self): gripper_motor_velocity = 0.5 gripper_motor_force = 20 sim_ret, RG2_gripper_handle = vrep.simxGetObjectHandle(self.sim_client, 'RG2_openCloseJoint', vrep.simx_opmode_blocking) sim_ret, gripper_joint_position = vrep.simxGetJointPosition(self.sim_client, RG2_gripper_handle, vrep.simx_opmode_blocking) vrep.simxSetJointForce(self.sim_client, RG2_gripper_handle, gripper_motor_force, vrep.simx_opmode_blocking) vrep.simxSetJointTargetVelocity(self.sim_client, RG2_gripper_handle, gripper_motor_velocity, vrep.simx_opmode_blocking) while gripper_joint_position < 0.03: # Block until gripper is fully open sim_ret, gripper_joint_position = vrep.simxGetJointPosition(self.sim_client, RG2_gripper_handle, vrep.simx_opmode_blocking) def move_to(self, tool_position, tool_orientation): sim_ret, UR5_target_position = vrep.simxGetObjectPosition(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) move_direction = np.asarray( [tool_position[0] - UR5_target_position[0], tool_position[1] - UR5_target_position[1], tool_position[2] - UR5_target_position[2]]) move_magnitude = np.linalg.norm(move_direction) move_step = 0.02 * move_direction / move_magnitude try: num_move_steps = int(np.floor(move_magnitude / 0.02)) except ValueError: return False for step_iter in range(num_move_steps): vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, ( UR5_target_position[0] + move_step[0], UR5_target_position[1] + move_step[1], UR5_target_position[2] + move_step[2]), vrep.simx_opmode_blocking) sim_ret, UR5_target_position = vrep.simxGetObjectPosition(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, (tool_position[0], tool_position[1], tool_position[2]), vrep.simx_opmode_blocking) def go_home(self): self.move_to(self.home_position, None) # Primitives ---------------------------------------------------------- def grasp(self, position, heightmap_rotation_angle, grasp_vertical_offset=-0.04, grasp_location_margin=0.15, ): logging.info('Executing: grasp at (%f, %f, %f)' % (position[0], position[1], position[2])) # Compute tool orientation from heightmap rotation angle tool_rotation_angle = (heightmap_rotation_angle % np.pi) - np.pi / 2 # Avoid collision with floor position = np.asarray(position).copy() position[2] = max(position[2] + grasp_vertical_offset, self.workspace_limits[2][0] + 0.02) # Move gripper to location above grasp target location_above_grasp_target = (position[0], position[1], position[2] + grasp_location_margin) # Compute gripper position and linear movement increments tool_position = location_above_grasp_target sim_ret, UR5_target_position = vrep.simxGetObjectPosition(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) move_direction = np.asarray( [tool_position[0] - UR5_target_position[0], tool_position[1] - UR5_target_position[1], tool_position[2] - UR5_target_position[2]]) move_magnitude = np.linalg.norm(move_direction) move_step = 0.05 * move_direction / move_magnitude try: num_move_steps = int(np.floor(move_direction[0] / move_step[0])) except ValueError: return False # Compute gripper orientation and rotation increments sim_ret, gripper_orientation = vrep.simxGetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) rotation_step = 0.3 if (tool_rotation_angle - gripper_orientation[1] > 0) else -0.3 num_rotation_steps = int(np.floor((tool_rotation_angle - gripper_orientation[1]) / rotation_step)) # Simultaneously move and rotate gripper for step_iter in range(max(num_move_steps, num_rotation_steps)): vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, ( UR5_target_position[0] + move_step[0] * min(step_iter, num_move_steps), UR5_target_position[1] + move_step[1] * min(step_iter, num_move_steps), UR5_target_position[2] + move_step[2] * min(step_iter, num_move_steps)), vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, ( np.pi / 2, gripper_orientation[1] + rotation_step * min(step_iter, num_rotation_steps), np.pi / 2), vrep.simx_opmode_blocking) vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, (tool_position[0], tool_position[1], tool_position[2]), vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, (np.pi / 2, tool_rotation_angle, np.pi / 2), vrep.simx_opmode_blocking) # Ensure gripper is open self.open_gripper() # Approach grasp target self.move_to(position, None) # Close gripper to grasp target gripper_full_closed = self.close_gripper() # Move gripper to location above grasp target self.move_to(location_above_grasp_target, None) # Check if grasp is successful gripper_full_closed = self.close_gripper() grasp_success = not gripper_full_closed # Move the grasped object elsewhere if grasp_success: if self.place_enabled: self.go_home() else: self.num_obj_clear += 1 object_positions = np.asarray(self.get_obj_positions()) object_positions = object_positions[:, 2] grasped_object_ind = np.argmax(object_positions) grasped_object_handle = self.object_handles[grasped_object_ind] vrep.simxSetObjectPosition(self.sim_client, grasped_object_handle, -1, (-0.5, 0.5 + 0.05 * float(grasped_object_ind), 0.1), vrep.simx_opmode_blocking) return grasp_success def push(self, position, heightmap_rotation_angle, push_vertical_offset=0.01, pushing_point_margin=0.1): logging.info('Executing: push at (%f, %f, %f)' % (position[0], position[1], position[2])) # Compute tool orientation from heightmap rotation angle tool_rotation_angle = (heightmap_rotation_angle % np.pi) - np.pi / 2 # Adjust pushing point to be on tip of finger position[2] = position[2] + push_vertical_offset # Compute pushing direction push_orientation = [1.0, 0.0] push_direction = np.asarray([push_orientation[0] * np.cos(heightmap_rotation_angle) - push_orientation[ 1] * np.sin(heightmap_rotation_angle), push_orientation[0] * np.sin(heightmap_rotation_angle) + push_orientation[ 1] * np.cos(heightmap_rotation_angle)]) # Move gripper to location above pushing point location_above_pushing_point = (position[0], position[1], position[2] + pushing_point_margin) # Compute gripper position and linear movement increments tool_position = location_above_pushing_point sim_ret, UR5_target_position = vrep.simxGetObjectPosition(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) move_direction = np.asarray( [tool_position[0] - UR5_target_position[0], tool_position[1] - UR5_target_position[1], tool_position[2] - UR5_target_position[2]]) move_magnitude = np.linalg.norm(move_direction) move_step = 0.05 * move_direction / move_magnitude try: num_move_steps = int(np.floor(move_direction[0] / move_step[0])) except ValueError: return False # Compute gripper orientation and rotation increments sim_ret, gripper_orientation = vrep.simxGetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, vrep.simx_opmode_blocking) rotation_step = 0.3 if (tool_rotation_angle - gripper_orientation[1] > 0) else -0.3 num_rotation_steps = int(np.floor((tool_rotation_angle - gripper_orientation[1]) / rotation_step)) # Simultaneously move and rotate gripper for step_iter in range(max(num_move_steps, num_rotation_steps)): vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, ( UR5_target_position[0] + move_step[0] * min(step_iter, num_move_steps), UR5_target_position[1] + move_step[1] * min(step_iter, num_move_steps), UR5_target_position[2] + move_step[2] * min(step_iter, num_move_steps)), vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, ( np.pi / 2, gripper_orientation[1] + rotation_step * min(step_iter, num_rotation_steps), np.pi / 2), vrep.simx_opmode_blocking) vrep.simxSetObjectPosition(self.sim_client, self.UR5_target_handle, -1, (tool_position[0], tool_position[1], tool_position[2]), vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, self.UR5_target_handle, -1, (np.pi / 2, tool_rotation_angle, np.pi / 2), vrep.simx_opmode_blocking) # Ensure gripper is closed self.close_gripper() # Approach pushing point self.move_to(position, None) # Compute target location (push to the right) push_length = 0.1 target_x = min(max(position[0] + push_direction[0] * push_length, self.workspace_limits[0][0]), self.workspace_limits[0][1]) target_y = min(max(position[1] + push_direction[1] * push_length, self.workspace_limits[1][0]), self.workspace_limits[1][1]) push_length = np.sqrt(np.power(target_x - position[0], 2) + np.power(target_y - position[1], 2)) # Move in pushing direction towards target location self.move_to([target_x, target_y, position[2]], None) # Move gripper to location above grasp target self.move_to([target_x, target_y, location_above_pushing_point[2]], None) push_success = True return push_success def place(self, position, heightmap_rotation_angle, place_vertical_offset=0.04): logging.info('Executing: place at (%f, %f, %f)' % (position[0], position[1], position[2])) # Ensure gripper is closed gripper_fully_closed = self.close_gripper() if gripper_fully_closed: # There is no object present, so we cannot possibly place! return False # Compute tool orientation from heightmap rotation angle tool_rotation_angle = (heightmap_rotation_angle % np.pi) - np.pi / 2 # Avoid collision with floor position[2] = max(position[2] + place_vertical_offset, self.workspace_limits[2][0] + 0.02) # Move gripper to location above place target place_location_margin = 0.1 sim_ret, UR5_target_handle = vrep.simxGetObjectHandle(self.sim_client, 'UR5_target', vrep.simx_opmode_blocking) location_above_place_target = (position[0], position[1], position[2] + place_location_margin) self.move_to(location_above_place_target, None) sim_ret, gripper_orientation = vrep.simxGetObjectOrientation(self.sim_client, UR5_target_handle, -1, vrep.simx_opmode_blocking) if tool_rotation_angle - gripper_orientation[1] > 0: increment = 0.2 else: increment = -0.2 while abs(tool_rotation_angle - gripper_orientation[1]) >= 0.2: vrep.simxSetObjectOrientation(self.sim_client, UR5_target_handle, -1, (np.pi / 2, gripper_orientation[1] + increment, np.pi / 2), vrep.simx_opmode_blocking) time.sleep(0.01) sim_ret, gripper_orientation = vrep.simxGetObjectOrientation(self.sim_client, UR5_target_handle, -1, vrep.simx_opmode_blocking) vrep.simxSetObjectOrientation(self.sim_client, UR5_target_handle, -1, (np.pi / 2, tool_rotation_angle, np.pi / 2), vrep.simx_opmode_blocking) # Approach place target self.move_to(position, None) # Ensure gripper is open self.open_gripper() # Move gripper to location above place target self.move_to(location_above_place_target, None) return True def shutdown(self): logging.info('Shutting down simulation..') vrep.simxStopSimulation(self.sim_client, vrep.simx_opmode_oneshot) vrep.simxSynchronousTrigger(self.sim_client) time.sleep(1) vrep.simxFinish(self.sim_client) vrep.simxFinish(-1) logging.info("Disconnected from simulation.")
StarcoderdataPython
9621756
#-*- coding:utf-8 -*- from __future__ import absolute_import from __future__ import division from __future__ import print_function import paddle import paddle.fluid as fluid from utils import * import utils import contextlib import os import math os.environ["CUDA_VISIBLE_DEVICES"] = "0" class multires_unet(object): def __init__(self, rows=512, cols=512): self.rows = rows self.cols = cols def ChannelSE(self, input, num_channels, reduction_ratio=16): """ Squeeze and Excitation block, reimplementation inspired by https://github.com/Cadene/pretrained-models.pytorch/blob/master/pretrainedmodels/models/senet.py """ pool = fluid.layers.pool2d( input=input, pool_size=0, pool_type='avg', global_pooling=True) stdv = 1.0 / math.sqrt(pool.shape[1] * 1.0) squeeze = fluid.layers.fc(input=pool, size=num_channels // reduction_ratio, act='relu', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform( -stdv, stdv))) stdv = 1.0 / math.sqrt(squeeze.shape[1] * 1.0) excitation = fluid.layers.fc(input=squeeze, size=num_channels, act='sigmoid', param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.Uniform( -stdv, stdv))) scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0) return scale def SpatialSE(self, input): """ Spatial squeeze and excitation block (applied across spatial dimensions) """ conv = conv_bn_layer(input=input, num_filters=input.shape[1], filter_size=1, stride=1, act='sigmoid') conv = fluid.layers.elementwise_mul(x=input, y=conv, axis=0) return conv def scSE_block(self, x, channels): ''' Implementation of Concurrent Spatial and Channel ‘Squeeze & Excitation’ in Fully Convolutional Networks https://arxiv.org/abs/1803.02579 ''' cse = self.ChannelSE(input = x, num_channels = channels) sse = self.SpatialSE(input = x) x = fluid.layers.elementwise_add(x=cse, y=sse) return x def multi_res_block(self, inputs,filter_size1,filter_size2,filter_size3,filter_size4): conv1 = conv_bn_layer( input=inputs, num_filters=filter_size1, filter_size=3, stride=1, act='relu') conv2 = conv_bn_layer( input=conv1, num_filters=filter_size2, filter_size=3, stride=1, act='relu') conv3 = conv_bn_layer( input=conv2, num_filters=filter_size3, filter_size=3, stride=1, act='relu') conv = conv_bn_layer( input=inputs, num_filters=filter_size4, filter_size=1, stride=1, act='relu') concat = fluid.layers.concat([conv1, conv2, conv3], axis = 1) #merge in channel add = fluid.layers.elementwise_add(concat,y=conv) return add def res_path(self, inputs,filter_size,path_number): def block(x,fl): conv1 = conv_bn_layer( input=inputs, num_filters=filter_size, filter_size=3, stride=1, act='relu') conv2 = conv_bn_layer( input=inputs, num_filters=filter_size, filter_size=1, stride=1, act='relu') add = fluid.layers.elementwise_add(conv1,conv2) return add cnn = block(inputs, filter_size) if path_number <= 3: cnn = block(cnn,filter_size) if path_number <= 2: cnn = block(cnn,filter_size) if path_number <= 1: cnn = block(cnn,filter_size) return cnn def model(self, inputs): res_block1 = self.multi_res_block(inputs,8,17,26,51) res_block1 = self.scSE_block(res_block1, res_block1.shape[1]) pool1 = fluid.layers.pool2d( input=res_block1, pool_size=3, pool_stride=2, pool_padding=1, \ pool_type='max') print(pool1.shape) res_block2 = self.multi_res_block(pool1,17,35,53,105) res_block2 = self.scSE_block(res_block2, res_block2.shape[1]) pool2 = fluid.layers.pool2d( input=res_block2, pool_size=3, pool_stride=2, pool_padding=1, \ pool_type='max') print(pool2.shape) res_block3 = self.multi_res_block(pool2,31,72,106,209) res_block3 = self.scSE_block(res_block3, res_block3.shape[1]) pool3 = fluid.layers.pool2d( input=res_block3, pool_size=3, pool_stride=2, pool_padding=1, \ pool_type='max') print(pool3.shape) res_block4 = self.multi_res_block(pool3,71,142,213,426) res_block4 = self.scSE_block(res_block4, res_block4.shape[1]) pool4 = fluid.layers.pool2d( input=res_block4, pool_size=3, pool_stride=2, pool_padding=1, \ pool_type='max') print(pool4.shape) res_block5 = self.multi_res_block(pool4,142,284,427,853) upsample = deconv_bn_layer(res_block5, num_filters = 853, filter_size=4, stride=2, act='relu') print("upsample.shape",upsample.shape) res_path4 = self.res_path(res_block4,256,4) concat = fluid.layers.concat([upsample,res_path4], axis = 1) #merge in channel print("concat.shape",concat.shape) res_block6 = self.multi_res_block(concat,71,142,213,426) res_block6 = self.scSE_block(res_block6, res_block6.shape[1]) upsample = deconv_bn_layer(res_block6, num_filters = 426, filter_size=4, stride=2, act='relu') print("upsample.shape",upsample.shape) res_path3 = self.res_path(res_block3,128,3) concat = fluid.layers.concat([upsample,res_path3], axis = 1) #merge in channel print("concat.shape",concat.shape) res_block7 = self.multi_res_block(concat,31,72,106,209) res_block7 = self.scSE_block(res_block7, res_block7.shape[1]) upsample = deconv_bn_layer(res_block7, num_filters = 209, filter_size=4, stride=2, act='relu') print("upsample.shape",upsample.shape) res_path2 = self.res_path(res_block2,64,2) concat = fluid.layers.concat([upsample,res_path2], axis = 1) #merge in channel print("concat.shape",concat.shape) res_block8 = self.multi_res_block(concat,17,35,53,105) res_block8 = self.scSE_block(res_block8, res_block8.shape[1]) upsample = deconv_bn_layer(res_block8, num_filters = 105, filter_size=4, stride=2, act='relu') print("upsample.shape",upsample.shape) res_path1 = self.res_path(res_block1,32,1) concat = fluid.layers.concat([upsample,res_path1], axis = 1) #merge in channel print("concat.shape",concat.shape) res_block9 = self.multi_res_block(concat,8,17,26,51) res_block9 = self.scSE_block(res_block9, res_block9.shape[1]) conv9 = conv_bn_layer( input=res_block9, num_filters=9, filter_size=1, stride=1, act='relu') conv9_transpose = fluid.layers.transpose(x=conv9, perm=[0, 2, 3, 1]) modelOut = fluid.layers.reshape(conv9_transpose, shape=[-1, 9]) modelOut = fluid.layers.softmax(modelOut) return modelOut
StarcoderdataPython
102192
<gh_stars>1-10 #! /home/johk/anaconda3/envs/slam/bin/python import numpy as np import OpenGL.GL as gl from OpenGL.GL import * from OpenGL.GLU import * from OpenGL.GLUT import * import pangolin import pickle class D3Engine: def __init__(self): self.realPoints = [] self.creative_mode = True pass def display(self): points = None W = 990 H = 540 pangolin.CreateWindowAndBind('JSLAM', W, H) gl.glEnable(gl.GL_DEPTH_TEST) # Define Projection and initial ModelView matrix scam = pangolin.OpenGlRenderState( pangolin.ProjectionMatrix(W, H, 420, 420, 320, 240, 0.2, 100), pangolin.ModelViewLookAt(0, 2, 15, 2, -3, -5, pangolin.AxisDirection.AxisY)) handler = pangolin.Handler3D(scam) # Create Interactive View in window dcam = pangolin.CreateDisplay() dcam.SetBounds(0.0, 1.0, 0.0, 1.0, -640.0 / 480.0) dcam.SetHandler(handler) x = 0 y = 0 z = 0 # Perspective coordinates xc = 0 yc = 0 zc = 0 animation_counter = 0 while not pangolin.ShouldQuit(): failed_to_load = False try: points = pickle.load(open("data/points.p", "rb")) except Exception: failed_to_load = True pass if not failed_to_load: self.realPoints = [] for i, (xp, yp) in enumerate(points): self.realPoints.append([xp, yp, z]) gl.glClear(gl.GL_COLOR_BUFFER_BIT | gl.GL_DEPTH_BUFFER_BIT) gl.glClearColor(0, 0, 0, 0) dcam.Activate(scam) # Draw Point Cloud if not failed_to_load: points = np.random.random((100000, 3)) * 10 gl.glPointSize(2) gl.glColor3f(1.0, 0.0, 0.0) pangolin.DrawPoints(points) # Load the camera print("Animation counter: {}".format(animation_counter)) pose = np.identity(4) pose[:3, 3] = [x, y, z] gl.glLineWidth(2) gl.glColor3f(0.0, 1.0, 0.0) pangolin.DrawCamera(pose, 0.5, 0.75, 0.8) if not self.creative_mode or animation_counter > 100: zc += 0.1 scam = pangolin.OpenGlRenderState( pangolin.ProjectionMatrix(W, H, 420, 420, 320, 240, 0.2, 100), pangolin.ModelViewLookAt(0, 2, 15+zc, 2, -3, -5, pangolin.AxisDirection.AxisY)) handler = pangolin.Handler3D(scam) dcam.SetBounds(0.0, 1.0, 0.0, 1.0, -640.0 / 480.0) dcam.SetHandler(handler) z += 0.1 animation_counter += 1 pangolin.FinishFrame()
StarcoderdataPython
6618057
<reponame>mukul20-21/python_datastructure n = int(input()) item = list(map(int,input().split())) uqi = set(item) print(len(uqi))
StarcoderdataPython
6698680
<filename>disaster_response_classifier/disaster_response_classifier/train_classifier.py # import libraries import os import argparse import pandas as pd import numpy as np import re import pathlib from sqlalchemy import create_engine from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, f1_score from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import CountVectorizer, TfidfTransformer from sklearn.multioutput import MultiOutputClassifier from sklearn.svm import SVC from sklearn.model_selection import GridSearchCV from sklearn.ensemble import AdaBoostClassifier import joblib import nltk def get_project_path(): """ this function get project absolute path regardless of we the python script being executed. relative path for loading data or model can be define give project absolute path return project absolute path :return: """ if len(__file__.split("/")) > 1: project_path = str(pathlib.Path(__file__).parent.parent.absolute()) else: project_path = ".." return project_path def load_data(database_filepath): """ load stored preprocessed data from sqlite database given path to be use for generating plots and analysis. returns train data, train labels, list of class/category names :param database_filepath: :return: """ engine = create_engine("".join(["sqlite:///", database_filepath])) table_name = "".join([database_filepath.split("/")[-1], "Table"]) df = pd.read_sql_query("select * from DisasterResponseData", con=engine) X = df.iloc[:, 1] Y = df.iloc[:, 4 : df.shape[1]] category_names = df.columns[4 : df.shape[1]].to_list() return X, Y, category_names def tokenize(text): """ receives a text message and breaks it down to relevant tokens using NLP techniques the resulting word array will be used for feature extraction in classification pipeline return array of tokens :param text: :return: """ text = re.sub(r"[^a-zA-Z0-9]", " ", text.lower()) tokens = nltk.tokenize.word_tokenize(text) lemmatizer = nltk.stem.WordNetLemmatizer() clean_tokens = [] for tok in tokens: if tok.lower() not in nltk.corpus.stopwords.words("english"): clean_tok = lemmatizer.lemmatize(tok, pos="v").lower().strip() clean_tokens.append(clean_tok) return clean_tokens def build_model_simple(): """ This function helps in building the model. Creating the pipeline Return the model :return: """ pipeline = Pipeline( [ ("vect", CountVectorizer(tokenizer=tokenize)), ("tfidf", TfidfTransformer()), ("clf", MultiOutputClassifier(RandomForestClassifier())), ] ) return pipeline def build_model(): """ This function helps in building the model. Creating the pipeline Applying Grid search Return the model """ # creating pipeline pipeline = Pipeline( [ ("vect", CountVectorizer(tokenizer=tokenize)), ("tfidf", TfidfTransformer()), ("clf", MultiOutputClassifier(AdaBoostClassifier())), ] ) # parameters parameters = { "vect__ngram_range": ((1, 1), (1, 2)), "vect__max_df": (0.8, 1.0), "vect__max_features": (None, 10000), "clf__estimator__n_estimators": [50, 100], "clf__estimator__learning_rate": [0.1, 1.0], } # grid search cv = GridSearchCV(pipeline, parameters, cv=3, n_jobs=-1) return cv def build_optimized_model(): """ This function helps in building the model. Creating the pipeline Applying Grid search Return the model :return: """ clf = MultiOutputClassifier(SVC()) tune_parameters = { "clf_estimator__gamma": [1e-1, 1e-2, 1e-3], "clf_estimator__C": [1, 10, 100], "vect__ngram_range": ((1, 1), (1, 2)), "vect__max_df": (0.8, 1.0), "vect__max_features": (None, 10000), } pipeline = Pipeline( [ ("vect", CountVectorizer(tokenizer=tokenize)), ("tfidf", TfidfTransformer()), ("clf", clf), ] ) clf_grid = GridSearchCV( estimator=pipeline, n_jobs=-1, cv=3, param_grid=tune_parameters ) return clf_grid def display_evaluation_results(y_test, y_pred, label_names): """ applies classification metrics on predicted classes and prints out f1 score, accuracy and confusion matrix per class :param y_test: :param y_pred: :param label_names :return: """ for i, l_name in enumerate(label_names): labels = np.unique(y_pred) target_names = ["".join(["not ", l_name]), l_name] print( classification_report( y_pred=y_pred[:, i], y_true=y_test.iloc[:, i].to_numpy(), labels=labels, target_names=target_names, ) ) print("") print( "average accuracy {}".format( sum( [ accuracy_score(y_test.iloc[:, i].to_numpy(), y_pred[:, i]) for i in range(y_pred.shape[1]) ] ) / y_pred.shape[1] ) ) print( "average f1_score {}".format( sum( [ f1_score(y_test.iloc[:, i].to_numpy(), y_pred[:, i]) for i in range(y_pred.shape[1]) ] ) / y_pred.shape[1] ) ) def evaluate_model(model, X_test, Y_test, category_names): """ runs evaluation on test data and displays the results :param model: :param X_test: :param Y_test: :param category_names: :return: """ y_pred = model.predict(X_test) display_evaluation_results(Y_test, y_pred, category_names) def save_model(model, model_filepath, model_name="dr_trained_model.lzma"): """ saves trained model in given path :param model: :param model_filepath: :param model_name: :return: """ # save m_f = "".join([model_filepath, model_name]) if os.path.exists(m_f): os.remove(m_f) joblib.dump(value=model, filename=m_f, compress=("lzma", 9)) def generate_arg_parser(): """ this function receives input arguments for various functions. :return: """ project_path = get_project_path() # load data default_db_path = "".join([project_path, "/data/DisasterResponseDataBase.db"]) default_model_path = "".join([str(project_path), "/models/"]) parser = argparse.ArgumentParser( description="Load data from database and train classifier and dump the trained model." ) parser.add_argument( "--db_file", action="store", dest="db_file", type=str, default=default_db_path, help="Path to disaster response database", ) parser.add_argument( "--model_file", action="store", dest="model_file", type=str, default=default_model_path, help="path to store trained machine leaning model.", ) return parser.parse_args(), parser def main(): args_params, parser = generate_arg_parser() if not args_params.db_file or not args_params.model_file: parser.print_help() exit(1) print("\n Downloading required NLTK libraries....\n") nltk.download(["punkt", "wordnet", "stopwords", "averaged_perceptron_tagger"]) print("Loading data...\n DATABASE: {}".format(args_params.db_file)) X, Y, category_names = load_data(args_params.db_file) X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.2) # build/train/evaluate/save model print("Building model...") model = build_model() print("Training model...") model.fit(X_train, Y_train) print("Evaluating model...") evaluate_model(model, X_test, Y_test, category_names) print("Saving model...\n MODEL: {}".format(args_params.model_file)) save_model( model, args_params.model_file, ) # build/train/evaluate/save optimized model print("Building optimized model...") opt_model = build_optimized_model() print("Training optimized model...") opt_model.fit(X_train, Y_train) print("Evaluating optimized model...") evaluate_model(opt_model, X_test, Y_test, category_names) print("Saving optimized model...\n MODEL: {}".format(args_params.model_file)) save_model(opt_model, args_params.model_file, "dr_trained_opt_model.lzma") print("Trained model saved!") if __name__ == "__main__": main()
StarcoderdataPython
11373048
import matplotlib.pyplot as plt from collections import Counter def pieChart(cats): labels = [] percentages = [] most = Counter(cats).most_common(n=10) cat_sum = sum([value for i, (key, value) in enumerate(most)]) for i, (a, b) in enumerate(most): labels.append(a) percentages.append(b/cat_sum) fig1, ax1 = plt.subplots() ax1.pie(percentages, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() return def columnChart(heavy_hitters, title, amount): words = [] counts = [] HHs = heavy_hitters[title] for i in range(0, len(HHs[:amount*2]), 2): words.append(HHs[i]) counts.append(float(HHs[i+1])) fig, axs = plt.subplots() fig.suptitle(title, y=1.0) axs.bar(words, counts) axs.set_ylabel('Word count') axs.set_xlabel('Word') locs, labels = plt.xticks() plt.setp(labels, rotation=90) plt.show() return def uniqueWords(heavy_hitters, cat, top=10): unique_words = set([heavy_hitters[cat][i] for i in range(0, len(heavy_hitters[cat][:top*2]), 2)]) for k, _ in heavy_hitters.items(): if k == cat: continue unique_words = unique_words - set([heavy_hitters[k][i] for i in range(0, len(heavy_hitters[k][:top*2]), 2)]) return unique_words if __name__ == "__main__": result = "logs.txt" HHs = {} Cats = {} with open(result, 'r', encoding="UTF-8") as f: for line in f: if 'Counter' in line: line = line.replace("(", "").replace("{", "").replace(")", "").replace("}", "").replace("Counter", "")\ .replace(":", "").replace(",", "").replace("\'", "").replace("\n", "").split(" ") HHs[line[0]] = line[1:] else: line = line.replace(" mapped to", "").replace("\n", "").split(" ") Cats[line[1]] = int(line[0]) #pieChart(Cats) columnChart(HHs, 'Sports', 10) #print(uniqueWords(HHs, 'Sports'))
StarcoderdataPython
9610406
<filename>wplay/save_chat.py # region IMPORTS from pathlib import Path from wplay.utils import browser_config from wplay.utils import target_search from wplay.utils import target_select from wplay.utils.helpers import save_chat_folder_path from wplay.utils.Logger import Logger # endregion # region LOGGER __logger = Logger(Path(__file__).name) # endregion async def save_chat(target): """ Save the whole chat of the target person in .txt file. """ page, _ = await browser_config.configure_browser_and_load_whatsapp() if target is not None: try: await target_search.search_and_select_target(page, target) except Exception as e: print(e) await page.reload() await target_search.search_and_select_target_without_new_chat_button(page, target) else: target = await target_select.manual_select_target(page) # selectors selector_values = "#main > div > div > div > div > div > div > div > div" selector_sender = "#main > div > div > div > div > div > div > div > div > div.copyable-text" # Getting all the messages of the chat try: __logger.info("Saving chats with target") await page.waitForSelector(selector_values) values = await page.evaluate(f'''() => [...document.querySelectorAll('{selector_values}')] .map(element => element.textContent)''') sender = await page.evaluate(f'''() => [...document.querySelectorAll('{selector_sender}')] .map(element => element.getAttribute("data-pre-plain-text"))''') final_values = [x[:-8] for x in values] new_list = [a + b for a, b in zip(sender, final_values)] # opens chat file of the target person with open(save_chat_folder_path / f'chat_{target}.txt', 'w') as output: for s in new_list: output.write("%s\n" % s) except Exception as e: print(e) finally: # save the chat and close the file output.close() print(f'\nChat file saved in: {str(save_chat_folder_path/"chat_")}{target}.txt')
StarcoderdataPython
1715805
import tensorflow as tf global_step = tf.train.get_or_create_global_step() a=tf.constant([ [[1.0,2.0,3.0,4.0], [5.0,6.0,7.0,8.0], [9,10,11,12], [13,14,15,16]], [[17,18,19,20], [21,22,23,24], [25,26,27,28], [29,30,31,32]] ]) a=tf.reshape(a,[1,4,4,2]) pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID') with tf.Session() as sess: print("image:") image=sess.run(a) print (image) print("reslut:") result=sess.run(pooling) print (result) print ('{:}'.format(global_step))
StarcoderdataPython
9697010
class DecisionNode: """ A Decision Node asks a question. This holds a reference to the question, and to the two child nodes. """ def __init__(self, question, true_branch, false_branch): self.question = question self.true_branch = true_branch self.false_branch = false_branch
StarcoderdataPython
11260985
import random class Chromosome: def __init__(self, genes, fitness): self.Genes = genes self.Fitness = fitness def createPop(popSize, min, max): D = len(min) pop = [] for i in range(0, popSize): chrom = [] for j in range(0, D): chrom.append(random.uniform(min[j],max[j])) fitness = None pop.append(Chromosome(chrom, fitness)) return pop def mutate(chrom, min, max): index = random.randrange(0, len(min)) newGene = random.uniform(min[index], max[index]) Genes = chrom.Genes[:] Genes[index] = newGene return Chromosome(Genes, None) def crossover(chrom1, chrom2): index = random.randrange(0, len(chrom1.Genes)) newChrom1 = Chromosome(chrom1.Genes[:index]+chrom2.Genes[index:], None) newChrom2 = Chromosome(chrom2.Genes[:index]+chrom1.Genes[index:], None) return (newChrom1, newChrom2) def minFit(pop): N = len(pop) idx = 0 val = pop[0].Fitness for i in range(1, N): if pop[i].Fitness<val: val = pop[i].Fitness idx = i return (val, idx)
StarcoderdataPython
1862614
<gh_stars>1-10 from config import * import pandas as pd import numpy as np import networkx as nx import scipy.stats from sklearn import metrics import bct import matplotlib.pyplot as plt def get_adjmtx(corrmtx,density,verbose=False): assert density<=1 cutoff=scipy.stats.scoreatpercentile(corrmtx[np.triu_indices_from(corrmtx,1)], 100-(100*density)) # scipy.stats.scoreatpercentile: # Calculate the score at a given percentile of the input sequence. # np.triu_indices_from # Return the indices for the upper-triangle of arr. if verbose: print('cutoff:%0.3f'%cutoff) adjmtx=(corrmtx>cutoff).astype('int') adjmtx[np.diag_indices_from(adjmtx)]=0 return(adjmtx) # now generate a graph using NetworkX # created previously using get_yeo_assignments.py labeldir = '%s/references/HCP-MMP1/MMP_yeo2011_networks.csv'%(rootdir) labeldata = pd.read_csv(labeldir) def gengraph(adjmtx): G=nx.from_numpy_array(adjmtx) # get giant component Gc = max(nx.connected_components(G), key=len) Gc=G.subgraph(Gc) print('Giant component includes %d out of %d total nodes'%(len(Gc.nodes),len(G.nodes))) labeldata_Gc=labeldata.loc[list(Gc.nodes)] cl={0:'black',1:'red',2:'yellow',3:'green',4:'blue',5:'orange',6:'gray',7:'magenta'} colors=[cl[labeldata['Yeo7'].iloc[i]] for i in Gc.nodes] degrees=np.array([Gc.degree(i) for i in Gc.nodes]) layout=nx.spring_layout(Gc) nx.draw_networkx(Gc,pos=layout,with_labels=False,node_color=colors, node_size=degrees) _=plt.axis('off') yeodict={0:'Undefined',1:'Visual',2:'Somatomotor',3:'DorsalAttention', 4:'VentralAttention',5:'Limbic', 6:'Frontoparietal',7:'Default'} for i in yeodict: print(cl[i],':',yeodict[i]) def comdetc(corrmtx, adjmtx, density): # get adj matrix for giant component G=nx.from_numpy_array(adjmtx) # get giant component Gc = max(nx.connected_components(G), key=len) Gc = G.subgraph(Gc) print('Giant component includes %d out of %d total nodes'%(len(Gc.nodes),len(G.nodes))) labeldata_Gc=labeldata.loc[list(Gc.nodes)] Gc_nodelist=list(Gc.nodes) tmp=corrmtx[Gc_nodelist,:] corrmtx_Gc=tmp[:,Gc_nodelist] adjmtx=get_adjmtx(corrmtx_Gc,density) mod_binary=bct.modularity_louvain_und(adjmtx) print('modularity:',mod_binary[1]) print('Multilevel modularity optimization identifed %d communities'%len(np.unique(mod_binary[0]))) ari=metrics.adjusted_rand_score(mod_binary[0], labeldata_Gc['Yeo7']) print('Adjusted Rand index compared to Yeo 7 networks: %0.3f'%ari) degrees=np.array([Gc.degree(i) for i in Gc.nodes]) layout=nx.spring_layout(Gc) nx.draw_networkx(Gc,pos=layout,with_labels=False, node_color=[mod_binary[0][i] for i in range(len(Gc.nodes))], node_size=degrees,cmap='viridis') _=plt.axis('off') def clk(G,k): """computes average clustering coefficient for nodes with degree k""" ls= list(G.degree(nx.nodes(G))) s=0 c=0 for i in ls: if i[1]==k: s=s+ nx.clustering(G, i[0]) c=c+1 return s/c #small world def ml(G,l): """ it computes the average number of nodes within a distance less than or equal l to from any given vertex. """ s=0 for j in G.nodes: s=s+len(nx.single_source_shortest_path_length(G, j, cutoff =l))-1 #-1 becouse it counts distance(i,i)=0<cutoff return s/nx.number_of_nodes(G)
StarcoderdataPython
337598
import unittest from unittest import TestCase from pytheons.pyunit.decorators.test import test class ExampleTest(TestCase): @test def something(self): self.assertEqual(True, False) if __name__ == '__main__': unittest.main()
StarcoderdataPython
4832782
# Generated by Django 2.0 on 2018-04-04 10:13 from django.db import migrations, models class Migration(migrations.Migration): dependencies = [ ('mixnet', '0002_auto_20180216_1617'), ] operations = [ migrations.AddField( model_name='mixnet', name='auth_position', field=models.PositiveIntegerField(default=0), ), ]
StarcoderdataPython
12859296
from django.shortcuts import render, get_object_or_404 from django.core.paginator import Paginator, PageNotAnInteger, EmptyPage from products.models import Product def productList(request, productName): """产品的列表页""" submenu = productName if productName == 'robot': productName = '家用机器人' elif productName == 'monitor': productName = '智能门锁' else: productName = '人脸识别解决方案' product_list = Product.objects.filter(product_type=productName).order_by('-publish_date') # 分页处理 # 每页显示2条数据 p = Paginator(product_list, 2) if p.num_pages <= 1: page_data = '' else: # 得到当前页,默认为1 page = int(request.GET.get('page', 1)) # 对页数进行分页 product_list = p.page(page) left = [] right = [] left_has_more = False right_has_more = False first = False last = False total_pages = p.num_pages # 总页数 page_range = p.page_range # 页数迭代 if page == 1: right = page_range[page:page + 2] print(total_pages) if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True elif page == total_pages: left = page_range[(page - 3) if (page - 3) > 0 else 0:page - 1] if left[0] > 2: left_has_more = True if left[0] > 1: first = True else: left = page_range[(page - 3) if (page - 3) > 0 else 0:page - 1] right = page_range[page:page + 2] if left[0] > 2: left_has_more = True if left[0] > 1: first = True if right[-1] < total_pages - 1: right_has_more = True if right[-1] < total_pages: last = True page_data = { 'left': left, 'right': right, 'left_has_more': left_has_more, 'right_has_more': right_has_more, 'first': first, 'last': last, 'total_pages': total_pages, 'page': page, } context = { 'active_menu': 'products', 'sub_menu': submenu, 'productName': productName, 'productList': product_list, 'pageData': page_data } return render(request, 'products/productList.html', context) def productDetail(request, id): """产品的详情页""" product = get_object_or_404(Product, id=id) # 按id进行查找,没有时返回404 product.product_views += 1 # 浏览数加1 product.save() return render(request, 'products/productDetail.html', { 'active_menu': 'products', 'product': product, })
StarcoderdataPython
1923624
<reponame>luposdate/reviz<filename>reviz.py import argparse from grobid.grobid import run_grobid from model.graph_model import run_graph from views.flow_diagram_view import run_flow from views.bibliography_view import run_bib import os import json from views.graph_view import view_sugiyama, view_sugiyama_summary from utils.utils import bib_to_json import sys parser = argparse.ArgumentParser() parser.add_argument("action", help=""" (1) bib2json: convert bib-file with included publications to required format, required if not using parsifal export (2) grobid: gather citations from included papers using grobid (3) graph-model: generate json model for the citation graph with nodes and edges (4) draw: generate pdf of citation graph (5) draw-summary: include optimalisations for the citation graph (6) flow: generate flow diagram, only possible if using parsifal export """, choices=["bib2json", "grobid", "flow", "graph-model", "draw", "draw-summary"]) parser.add_argument("json", help="path for json-file") parser.add_argument("--bib-file", help="path for input bib-file, will be written to parameter 'json'", type=str, default=None) parser.add_argument("--pdf", help="destination folder for pdf-files, default: ./pdf-files", default="./pdf-files") parser.add_argument("--tei", help="destination folder for tei-files, default: ./tei-files", default="./tei-files") parser.add_argument("--tex", help="destination folder for generated tex-files, default: ./tex-files", default="./tex-files") parser.add_argument("--bibliography", dest='bib', help="generation of a pdf bibliography for the citation graph", action="store_true") parser.add_argument("--deviation", help="maximum number of edge deviations allowed for node summarization, default=0", type=float, default=0) parser.add_argument("--transitivities", help="reduce number of edges by considering transitivities", action="store_true") parser.add_argument("--transitivities-bold", help="adapt line width of transitive edges", action="store_true") parser.add_argument("--citation-counts", help="show number of direct and indirect citations for every node", action="store_true") parser.add_argument("--authors-colored", help="threshold for showing publications with same authors using colors, use a value between 0 and 1", type=float, default=-1 ) parser.add_argument("--with-single-nodes", help="nodes without any edge are displayed in the graph", action="store_true") parser.add_argument("--minimum-citations", help="only nodes with the given minimum number of citations are displayed", type=float, default=0) parser.add_argument("--original-bibtex-keys", help="the original bibtex keys are used instead of md5 hashes", action="store_true") parser.add_argument("--without-dummy-nodes", help="avoid dummy nodes for better placement of nodes for long edges", action="store_true") parser.add_argument("--dont-show-edge-corrections", help="do not show the list of edge corrections", action="store_true") parser.add_argument("--y-factor", help="factor for spacing between boxes", type=float, default=1) parser.add_argument("--without-interactive-queries", help="with this option you are not asked for manual confirmation if our algorithm is not completely certain that a citation match was found", action="store_true") args = parser.parse_args() sys.setrecursionlimit(1000000000) if args.action == "bib2json": if args.bib_file is None: raise argparse.ArgumentError("argument bib-file is missing") bib_to_json(args.json, args.bib_file) if args.action == "grobid": if not os.path.exists(args.pdf): os.makedirs(args.pdf) if not os.path.exists(args.tei): os.makedirs(args.tei) run_grobid(args.json, args.pdf, args.tei) if args.action == "graph-model": if not os.path.exists(args.tex): os.makedirs(args.tex) run_graph(args.json, args.tei, args.tex, args.original_bibtex_keys, args.without_interactive_queries) if args.action == "flow": if not os.path.exists(args.tex): os.makedirs(args.tex) run_flow(args.json, args.tex) if 'draw' in args.action: with open(os.path.join(args.tex, 'graph-model.json')) as f: graph = json.load(f) if args.action == "draw": view_sugiyama(graph, args.tex, args.with_single_nodes, args.without_dummy_nodes) if args.action == "draw-summary": view_sugiyama_summary(graph, args.tex, args.deviation, args.transitivities, args.transitivities_bold, args.citation_counts, args.authors_colored, args.with_single_nodes, args.minimum_citations, args.without_dummy_nodes, args.dont_show_edge_corrections, args.y_factor) if args.bib: run_bib(args.tex)
StarcoderdataPython
76142
import os import argparse import pyautogui import time parser = argparse.ArgumentParser() parser.add_argument("-p", "--path", help="absolute path to store screenshot.", default=r"./images") parser.add_argument("-t", "--type", help="h (in hour) or m (in minutes) or s (in seconds)", default='h') parser.add_argument("-f", "--frequency", help="frequency for taking screenshot per h/m/s.", default=1, type=int) args = parser.parse_args() sec = 0. if args.type == 'h': sec = 60 * 60 / args.frequency elif args.type == 'm': sec = 60 / args.frequency if sec < 1.: sec = 1. if os.path.isdir(args.path) != True: os.mkdir(args.path) try: while True: t = time.localtime() current_time = time.strftime("%H_%M_%S", t) file = current_time + ".jpg" image = pyautogui.screenshot(os.path.join(args.path,file)) print(f"{file} saved successfully.\n") time.sleep(sec) except KeyboardInterrupt: print("End of script by user interrupt")
StarcoderdataPython
11382764
<gh_stars>1-10 #!/usr/bin/env python # coding: utf-8 # # Methods & Results # We are going to use multiple analysis to classify the type of the animals using 16 variables including hair, feathers, eggs, milk, airborne, aquatic, predator, toothed, backbone, breathes, venomous, fins, legs, tail, domestic, catsize as our predictors. To predict the class of a new observation, the algorithms of each type will be further explained before implementation. # In[1]: { "tags": [ "hide-cell" ] } import pandas as pd from sklearn.model_selection import train_test_split, GridSearchCV import numpy as np import matplotlib.pyplot as plt import sys sys.path.append( '..' ) from src.pre_processing import * from src.train_and_predict_model import * from src.line_plot import * from src.para_optimize import * from src.std_acc import * from src.line_plot import * # The first thing is to import the data. The data set is downloaded from [UCI repository]("https://archive-beta.ics.uci.edu/ml/datasets/zoo"). It is then saved as a csv file in this project repository. Some exploratory data analysis needs to be run before running the actual analyses on the data set. Here is a preview of pre-processed data set: # In[2]: { "tags": [ "hide-input" ] } zoo_data = pd.read_csv("../results/csv/head.csv") zoo_data.columns.values[0] = "index" zoo_data # It is checked that there aren't missing values in the data set, we can clearly deduce that the data set is clean according to the data summary we generated above. Since most features are binary and categorical, there is no need to do normalization and standardization. # ```{figure-md} f1 # <img src="../results/figures/fig1.png" alt="num" class="bg-primary mb-1" width="800px"> # # A summary table of the data set # ``` # As shown in [fig.1](f1), the histograms of each feature are generated. The ones with skewed distribution might be more decisive in the prediction. However, since the data set is relatively small, all the features except the `animalName` are going to be used to predict. In the next part, we are going to split the data, into the training set and testing set. After that, different classification models will be trained and evaluated. # ## Classification # Now we will use the training set to build an accurate model, whereas the testing set is used to report the accuracy of the models. Here is a list of algorithms we will use in the following section: # # - K Nearest Neighbor(KNN) # - Decision Tree # - Support Vector Machine # - Logistic Regression # To train and evaluate each model, we split the dataset into training and testing sets. We use 80% of the total data to train the models, and the rest of the data is aimed to test the models. # ### KNN # KNN captures the idea of similarity (sometimes called distance, proximity, or closeness) with some basic mathematics we might have learned earlier. Basically in terms of geometry we can always calculate the distance between points on a graph. Similarly, using KNN we can group similar points together and predict the target with our feature variables(x). # # First of all, we have to train the model for different set of K values and finding the best K value. # Then we want to plot the accuracy for different K values. # ```{figure-md} f2 # <img src="../results/figures/k_accuracy.png" alt="num" class="bg-primary mb-1" width="500px"> # # A plot reveals the relationship between K and corresponding accuracy # ``` # As shown in [fig.2](f2), less K values provide higher accuracy. To find the best K value, we tuned the hyperparameter using GridSearch algorithm. After tuning, the best K value is 1. # ### KNN final model & Evaluation # After fitting the model using `K=1`, we evaluate the KNN model by Cross Validation and calculating the precision, recall, f1-score and support. # KNN Cross Validation Result: # In[3]: { "tags": [ "hide-input" ] } knn_cross_validate_result = pd.read_csv("../results/csv/knn_cross_validate_result.csv") knn_cross_validate_result.columns=["criteria", "score"] knn_cross_validate_result # KNN Classification Report: # In[4]: { "tags": [ "hide-input" ] } knn_classification_report= pd.read_csv("../results/csv/knn_classification_report.csv") knn_classification_report.columns.values[0]="index" knn_classification_report # ### Decision Tree # A decision tree is a decision support tool that uses a tree-like model of decisions and their possible consequences, including chance event outcomes, resource costs, and utility The goal of using a Decision Tree is to create a training model that can use to predict the class or value of the target variable by learning simple decision rules inferred from prior data(training data). # ```{figure-md} f3 # <img src="../results/figures/dt_accuracy.png" alt="num" class="bg-primary mb-1" width="500px"> # # A plot reveals the relationship between deepth and corresponding accuracy # ``` # As shown in the [fig.3](f3), the best depth of the Decision Tree is around small. We can confirm that the best value of the depth is 5 after tuning the hyperparameter and calculating the accuracy. # ### Decision Tree final model & evaluation # After training the model, we obtain the Cross Validation score, as well as the precision, recall, f1-score and support. # DT Cross Validation Result: # In[9]: { "tags": [ "hide-input" ] } dt_cross_validate_result = pd.read_csv("../results/csv/dt_cross_validate_result.csv") dt_cross_validate_result.columns=["criteria", "score"] dt_cross_validate_result # DT Cross Validation Result: # In[11]: { "tags": [ "hide-input" ] } dt_classification_report = pd.read_csv("../results/csv/dt_classification_report.csv") dt_classification_report.columns.values[0]="index" dt_classification_report # ### Support Vector Machine # SVM or Support Vector Machine is a linear model for classification and regression problems. It can solve linear and non-linear problems and work well for many practical problems. The idea of SVM is simple: The algorithm creates a line or a hyperplane which separates the data into classes{cite:p}`towards-dsci`. # # Final SVM is here used the splited test part to train again for better training, and better prediction. An svm evaluation as well as the final model is also provided below. # ### SVM training model Jaccard Score, final model and evaluation # SVM Classification Report: # In[7]: { "tags": [ "hide-input" ] } svm_classification_report= pd.read_csv("../results/csv/svm_classification_report.csv") svm_classification_report.columns.values[0]="index" svm_classification_report # ### Logistic Regression # Logistic Regression is a "Supervised machine learning" algorithm that can be used to model the probability of a certain class or event. It is used when the data is linearly separable and the outcome is binary or dichotomous in nature. That means Logistic regression is usually used for Binary classification problems{cite:p}`ibm-dsci`. # ### Logistic Regression training model Jaccard Score, final model and evaluation # # LR Classification Report: # In[1]: { "tags": [ "hide-input" ] } lr_classification_report= pd.read_csv("../results/csv/lr_classification_report.csv") lr_classification_report.columns.values[0]="index" lr_classification_report # In[ ]:
StarcoderdataPython
4820939
<gh_stars>1-10 from natsbeat import BaseTest import os class Test(BaseTest): def test_base(self): """ Basic test with exiting Natsbeat normally """ self.render_config_template( path=os.path.abspath(self.working_dir) + "/log/*" ) natsbeat_proc = self.start_beat() self.wait_until(lambda: self.log_contains("natsbeat is running")) exit_code = natsbeat_proc.kill_and_wait() assert exit_code == 0
StarcoderdataPython
3266685
<filename>hooks/check_missing_requirements.py<gh_stars>1-10 """Checks to see if the package requirements are all present in the current python environment. """ import subprocess import sys from pathlib import Path from typing import List import requirements from .utils import Hook def _parse_package_name(name: str) -> str: """ Force lower case and replace underscore with dash to compare environment packages (see https://www.python.org/dev/peps/pep-0426/#name) Args: name: Unformatted package name Returns: Formatted package name """ return name.lower().replace("_", "-") def _get_installed_packages() -> List[str]: """ Get a formatted list of packages installed in the current environment as returned by ``pip freeze`` Returns: List of formatted names of installed packages """ return [ _parse_package_name(req.name) for req in requirements.parse( subprocess.check_output( [sys.executable, "-m", "pip", "list", "--format", "freeze"] ).decode() ) ] def _get_required_packages(filepath: str) -> List[str]: """ Get a formatted list of packages from a pip requirements file. Note: This filters out ``None`` values, which may occur if the requirements file includes an install direct from a git repo without the package name in a ``#egg=`` ending. Args: Path to requirements txt file Returns: List of formatted names of installed packages """ return [ _parse_package_name(req.name) for req in requirements.parse(Path(filepath).read_text()) if req.name ] class CheckMissingRequirements(Hook): # pylint: disable=too-few-public-methods """Hook to check all requirements are installed within the current dev environment.""" def run(self) -> int: """ Checks to see if the package requirements are all present in the current environment. Note: this hook should be run before ``isort`` in order to prevent unwanted import sorting based on an incorrect environment spec. """ # assemble dict containing lists of any unmet requirements against each file: missing_requirements = { filepath: list( set(_get_required_packages(filepath)) - set(_get_installed_packages()) ) for filepath in self.args.filenames } if all((not missing for missing in missing_requirements.values())): return 0 # assemble output string of all unmet dependencies: output_str = "\n".join( [ f" - {file}: {errors}" for file, errors in missing_requirements.items() if errors ] ) print( f"These requirements are missing from your current environment:" f"\n{output_str}\n" f"\nPlease install the above or rebuild your environment to prevent " f"CI issues" ) return 1 def main(): """Hook entry point""" return CheckMissingRequirements().run() if __name__ == "__main__": sys.exit(main())
StarcoderdataPython
5150846
<gh_stars>1-10 # Copyright The PyTorch Lightning team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import warnings from typing import Any, Callable, List, Optional, Union import torch from torch import Tensor from torchmetrics.metric import Metric from torchmetrics.utilities.data import dim_zero_cat class BaseAggregator(Metric): """Base class for aggregation metrics. Args: fn: string specifying the reduction function default_value: default tensor value to use for the metric state nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float """ value: Tensor is_differentiable = None higher_is_better = None def __init__( self, fn: Union[Callable, str], default_value: Union[Tensor, List], nan_strategy: Union[str, float] = "error", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( compute_on_step=compute_on_step, dist_sync_on_step=dist_sync_on_step, process_group=process_group, dist_sync_fn=dist_sync_fn, ) allowed_nan_strategy = ("error", "warn", "ignore") if nan_strategy not in allowed_nan_strategy and not isinstance(nan_strategy, float): raise ValueError( f"Arg `nan_strategy` should either be a float or one of {allowed_nan_strategy}" f" but got {nan_strategy}." ) self.nan_strategy = nan_strategy self.add_state("value", default=default_value, dist_reduce_fx=fn) def _cast_and_nan_check_input(self, x: Union[float, Tensor]) -> Tensor: """Converts input x to a tensor if not already and afterwards checks for nans that either give an error, warning or just ignored.""" if not isinstance(x, Tensor): x = torch.as_tensor(x, dtype=torch.float32, device=self.device) nans = torch.isnan(x) if any(nans.flatten()): if self.nan_strategy == "error": raise RuntimeError("Encounted `nan` values in tensor") if self.nan_strategy == "warn": warnings.warn("Encounted `nan` values in tensor. Will be removed.", UserWarning) x = x[~nans] elif self.nan_strategy == "ignore": x = x[~nans] else: x[nans] = self.nan_strategy return x.float() def update(self, value: Union[float, Tensor]) -> None: # type: ignore """Overwrite in child class.""" pass def compute(self) -> Tensor: """Compute the aggregated value.""" return self.value.squeeze() if isinstance(self.value, Tensor) else self.value class MaxMetric(BaseAggregator): """Aggregate a stream of value into their maximum value. Args: nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float Example: >>> from torchmetrics import MaxMetric >>> metric = MaxMetric() >>> metric.update(1) >>> metric.update(torch.tensor([2, 3])) >>> metric.compute() tensor(3.) """ def __init__( self, nan_strategy: Union[str, float] = "warn", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( "max", -torch.tensor(float("inf")), nan_strategy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn, ) def update(self, value: Union[float, Tensor]) -> None: # type: ignore """Update state with data. Args: value: Either a float or tensor containing data. Additional tensor dimensions will be flattened """ value = self._cast_and_nan_check_input(value) if any(value.flatten()): # make sure tensor not empty self.value = torch.max(self.value, torch.max(value)) class MinMetric(BaseAggregator): """Aggregate a stream of value into their minimum value. Args: nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float Example: >>> from torchmetrics import MinMetric >>> metric = MinMetric() >>> metric.update(1) >>> metric.update(torch.tensor([2, 3])) >>> metric.compute() tensor(1.) """ def __init__( self, nan_strategy: Union[str, float] = "warn", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( "min", torch.tensor(float("inf")), nan_strategy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn, ) def update(self, value: Union[float, Tensor]) -> None: # type: ignore """Update state with data. Args: value: Either a float or tensor containing data. Additional tensor dimensions will be flattened """ value = self._cast_and_nan_check_input(value) if any(value.flatten()): # make sure tensor not empty self.value = torch.min(self.value, torch.min(value)) class SumMetric(BaseAggregator): """Aggregate a stream of value into their sum. Args: nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float Example: >>> from torchmetrics import SumMetric >>> metric = SumMetric() >>> metric.update(1) >>> metric.update(torch.tensor([2, 3])) >>> metric.compute() tensor(6.) """ def __init__( self, nan_strategy: Union[str, float] = "warn", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( "sum", torch.zeros(1), nan_strategy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn ) def update(self, value: Union[float, Tensor]) -> None: # type: ignore """Update state with data. Args: value: Either a float or tensor containing data. Additional tensor dimensions will be flattened """ value = self._cast_and_nan_check_input(value) self.value += value.sum() class CatMetric(BaseAggregator): """Concatenate a stream of values. Args: nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float Example: >>> from torchmetrics import CatMetric >>> metric = CatMetric() >>> metric.update(1) >>> metric.update(torch.tensor([2, 3])) >>> metric.compute() tensor([1., 2., 3.]) """ def __init__( self, nan_strategy: Union[str, float] = "warn", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__("cat", [], nan_strategy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn) def update(self, value: Union[float, Tensor]) -> None: # type: ignore """Update state with data. Args: value: Either a float or tensor containing data. Additional tensor dimensions will be flattened """ value = self._cast_and_nan_check_input(value) if any(value.flatten()): self.value.append(value) def compute(self) -> Tensor: """Compute the aggregated value.""" if isinstance(self.value, list) and self.value: return dim_zero_cat(self.value) return self.value class MeanMetric(BaseAggregator): """Aggregate a stream of value into their mean value. Args: nan_strategy: options: - ``'error'``: if any `nan` values are encounted will give a RuntimeError - ``'warn'``: if any `nan` values are encounted will give a warning and continue - ``'ignore'``: all `nan` values are silently removed - a float: if a float is provided will impude any `nan` values with this value compute_on_step: Forward only calls ``update()`` and returns None if this is set to False. default: True dist_sync_on_step: Synchronize metric state across processes at each ``forward()`` before returning the value at the step. process_group: Specify the process group on which synchronization is called. default: None (which selects the entire world) dist_sync_fn: Callback that performs the allgather operation on the metric state. When `None`, DDP will be used to perform the allgather. Raises: ValueError: If ``nan_strategy`` is not one of ``error``, ``warn``, ``ignore`` or a float Example: >>> from torchmetrics import MeanMetric >>> metric = MeanMetric() >>> metric.update(1) >>> metric.update(torch.tensor([2, 3])) >>> metric.compute() tensor([2.]) """ def __init__( self, nan_strategy: Union[str, float] = "warn", compute_on_step: bool = True, dist_sync_on_step: bool = False, process_group: Optional[Any] = None, dist_sync_fn: Callable = None, ): super().__init__( "sum", torch.zeros(1), nan_strategy, compute_on_step, dist_sync_on_step, process_group, dist_sync_fn ) self.add_state("weight", default=torch.zeros(1), dist_reduce_fx="sum") def update(self, value: Union[float, Tensor], weight: Union[float, Tensor] = 1.0) -> None: # type: ignore """Update state with data. Args: value: Either a float or tensor containing data. Additional tensor dimensions will be flattened weight: Either a float or tensor containing weights for calculating the average. Shape of weight should be able to broadcast with the shape of `value`. Default to `1.0` corresponding to simple harmonic average. """ value = self._cast_and_nan_check_input(value) weight = self._cast_and_nan_check_input(weight) # broadcast weight to values shape if not hasattr(torch, "broadcast_to"): if weight.shape == (): weight = torch.ones_like(value) * weight if weight.shape != value.shape: raise ValueError("Broadcasting not supported on PyTorch <1.8") else: weight = torch.broadcast_to(weight, value.shape) self.value += (value * weight).sum() self.weight += weight.sum() def compute(self) -> Tensor: """Compute the aggregated value.""" return self.value / self.weight
StarcoderdataPython
11297870
<filename>space_shooter.py import pygame as pg import random import math import os WIDTH,HEIGHT=600,400 pg.init() screen=pg.display.set_mode((WIDTH,HEIGHT),0,32) def write(msg,color=(255,255,255)): font=pg.font.SysFont("none",15) text=font.render(msg,True,color) text.convert() return text clock=pg.time.Clock() FPS=60 running=True screen.fill((50,50,50)) class Enemies(pg.sprite.Sprite): r=5 targetpos=(WIDTH/2,HEIGHT/2) def __init__(self,pos=[0,0],area=screen.get_rect(),): pg.sprite.Sprite.__init__(self,self.groups) self.image=pg.Surface((Enemies.r*2,Enemies.r*2)) pg.draw.circle(self.image,(200,0,0),(Enemies.r,Enemies.r),Enemies.r) self.image.set_colorkey((0,0,0)) self.image.convert() self.radius=Enemies.r self.rect=self.image.get_rect() self.pos=pos.copy() self.area=area def update(self,time): if self.area.contains(self.rect): x1=Enemies.targetpos[0] y1=Enemies.targetpos[1] x2=self.pos[0] y2=self.pos[1] d=50 self.dx=((x1-x2)/((x1-x2)**2+(y1-y2)**2)**0.5)*d*time self.dy=((y1-y2)/((x1-x2)**2+(y1-y2)**2)**0.5)*d*time self.pos[0]+=self.dx self.rect.centerx=self.pos[0] self.pos[1]+=self.dy self.rect.centery=self.pos[1] else: self.kill() Enemies.r=7 class Hero(pg.sprite.Sprite): r=5 def __init__(self,area=screen.get_rect()): pg.sprite.Sprite.__init__(self,self.groups) self.image=pg.Surface((self.r*2,self.r*2)) pg.draw.circle(self.image,(0,0,200),(self.r,self.r),self.r) self.image.set_colorkey((0,0,0)) self.image.convert() self.rect=self.image.get_rect() self.radius=self.r self.area=area self.pos=[20,20] self.speed=250 def update(self,time): key=pg.key.get_pressed() dx,dy=0,0 if key[pg.K_w]: dy=-self.speed*time if key[pg.K_s]: dy=self.speed*time if key[pg.K_d]: dx=self.speed*time if key[pg.K_a]: dx=-self.speed*time if dx+self.rect.left>self.area.left and dx+self.rect.right<self.area.right: self.pos[0]+=dx if dy+self.rect.top>self.area.top and dy+self.rect.bottom<self.area.bottom: self.pos[1]+=dy self.rect.centerx=self.pos[0] self.rect.centery=self.pos[1] class Bullets(pg.sprite.Sprite): r=2 def __init__(self,pos=[0,0],targetpos=[0,0],area=screen.get_rect()): pg.sprite.Sprite.__init__(self,self.groups) self.image=pg.Surface((self.r*2,self.r*2)) pg.draw.circle(self.image,(210,210,210),(self.r,self.r),self.r) self.image.set_colorkey((0,0,0)) self.image.convert() self.radius=self.r self.rect=self.image.get_rect() self.pos=pos.copy() self.area=area self.targetpos=targetpos self.angle=math.atan2((self.targetpos[1]-self.pos[1]),(self.targetpos[0]-self.pos[0])) self.v=700 def update(self,time): if self.area.contains(self.rect): self.pos[0]+=self.v*math.cos(self.angle)*time self.pos[1]+=self.v*math.sin(self.angle)*time self.rect.centerx=self.pos[0] self.rect.centery=self.pos[1] else: self.kill() allgroups=pg.sprite.Group() enemygroup=pg.sprite.Group() bulletgroup=pg.sprite.Group() Enemies.groups=allgroups,enemygroup Hero.groups=allgroups Bullets.groups=allgroups,bulletgroup background=pg.Surface(screen.get_rect()[2:]) background.fill((50,50,50)) screen.blit(background,(0,0)) frequency=1 bulletfrequency=0.2 f=0 bf=0 maxenemynumber=100 score=0 bullettarget=[] #spawnpoints=([2*Enemies.r,2*Enemies.r],[WIDTH-2*Enemies.r,2*Enemies.r],[2*Enemies.r,HEIGHT-2*Enemies.r],[WIDTH-2*Enemies.r,HEIGHT-2*Enemies.r]) spawnpoints=([WIDTH/2-2*Enemies.r,HEIGHT/2-2*Enemies.r],[WIDTH/2+2*Enemies.r,HEIGHT/2-2*Enemies.r],[WIDTH/2-2*Enemies.r,HEIGHT/2+2*Enemies.r],[WIDTH/2+2*Enemies.r,HEIGHT/2+2*Enemies.r]) hero=Hero() allgroups.add(hero) while running: screen.fill((50,50,50)) time=clock.tick(FPS)/1000.0 #print(1/time) for event in pg.event.get(): if event.type==pg.QUIT: running=False if event.type==pg.KEYDOWN: if event.key==pg.K_ESCAPE: running=False f+=time bf+=time if f>frequency and len(enemygroup)<=maxenemynumber: for s in spawnpoints: enemy=Enemies(s) enemygroup.add(enemy) allgroups.add(enemy) f=0 Enemies.targetpos=hero.pos if bf>bulletfrequency and pg.mouse.get_pressed()[0]: mousepos=pg.mouse.get_pos() bullet=Bullets(hero.pos,mousepos) bulletgroup.add(bullet) allgroups.add(bullet) bf=0 collision=pg.sprite.spritecollide(hero,enemygroup,True,pg.sprite.collide_circle) if collision: i=0 for bullet in bulletgroup.sprites(): if pg.sprite.spritecollide(bullet,enemygroup,True,pg.sprite.collide_circle): score+=1 allgroups.clear(screen,background) allgroups.update(time) group=enemygroup.sprites() i=0 while i <len(group): enemy=group[i] tgroup=group.copy() tgroup.remove(enemy) for enemy2 in tgroup: xDistance=enemy.pos[0]-enemy2.pos[0] yDistance=enemy.pos[1]-enemy2.pos[1] if enemy.radius+enemy2.radius>=(xDistance**2+yDistance**2)**0.5: xVelocity=enemy2.dx-enemy.dx yVelocity=enemy2.dy-enemy.dy dotProuduct=xDistance*xVelocity+yDistance*yVelocity if(dotProuduct>0): collisionScale=dotProuduct/(xDistance**2+yDistance**2) xCollision=xDistance*collisionScale yCollision=yDistance*collisionScale enemy.dx+=xCollision-enemy.dx enemy.dy+=yCollision-enemy.dy enemy2.dx-=xCollision+enemy2.dx enemy2.dy-=yCollision+enemy2.dy enemy.pos[0]+=enemy.dx enemy.pos[1]+=enemy.dy enemy2.pos[0]+=enemy2.dx enemy2.pos[1]+=enemy2.dy i+=1 allgroups.draw(screen) text=write("SCORE: "+str(score)) screen.blit(text,(0,0)) pg.display.update(text.get_rect()) pg.display.flip() pg.quit()
StarcoderdataPython
8098992
<filename>pxtrade/compliance/base.py """ Before trades can be sent for execution they need to pass any defined compliance rules. These rules may include position limits, restricted securities, ... Here compliance rules have been arranged using a composite pattern to check portfolio positions should the trade be fully executed. """ from abc import ABC, abstractmethod from .. import assets class ComplianceRule(ABC): @abstractmethod def passes(self, portfolio) -> bool: raise NotImplementedError # pragma: no cover class Compliance(ComplianceRule): """All compliance rule components have to pass for compliance as a whole to pass. """ def __init__(self): self._rules = set() def add_rule(self, rule): if not isinstance(rule, ComplianceRule): raise TypeError("Expecting Compliance Rule instance.") self._rules.add(rule) return self def remove_rule(self, rule): self._rules.discard(rule) return self def passes(self, portfolio): if not isinstance(portfolio, assets.Portfolio): raise TypeError("Expecting Portfolio instance.") for rule in self._rules: if not rule.passes(portfolio): return False return True def __len__(self): return len(self._rules)
StarcoderdataPython
1634342
<reponame>romulus97/HYDROWIRES # -*- coding: utf-8 -*- """ Created on Wed Jan 31 14:31:32 2018 @author: YSu """ from __future__ import division from scipy.optimize import differential_evolution import pandas as pd import numpy as np from datetime import datetime # ORCA flow data df_flows = pd.read_excel('reservoir_inflows.xlsx',sheet_name='Hist_flows',header=0) sites = list(df_flows.loc[:,'Oroville':]) # WECC hydro time series df_hydro = pd.read_excel('reservoir_inflows.xlsx',sheet_name='WECC_daily',header=0) dams = list(df_hydro.loc[:,'Balch 1':]) df_useful_data = pd.read_excel('reservoir_inflows.xlsx',sheet_name='Full_flows',header=0) #Useful simulated ORCA sites name ORCA_sites = list(df_useful_data) ORCA_sites = ORCA_sites[3:] O_site=[] Data_needed=[] #If we have all of the outflow data then we will use range(0,24). For now we just have inflow data. (0,15) for i in range(0,24): O_site=np.append(O_site,str(ORCA_sites[i])) Data_needed=np.append(O_site,['datetime']) Validation_Year=[2005,2010,2011] # ORCA flow data df_flows = pd.read_excel('reservoir_inflows.xlsx',sheet_name='Hist_flows',header=0) sites = list(df_flows.loc[:,'Oroville':]) Hist_flows = pd.read_excel('cord-data.xlsx',header=0) #Add year colum to the dataframe Year=[] Month=[] Day=[] for i in range(0,len(Hist_flows)): datetime_object=datetime.strftime(Hist_flows.loc[i]['datetime'],'%Y-%m-%d %H:%M:%S') Date=datetime.strptime(datetime_object,'%Y-%m-%d %H:%M:%S') Year=np.append(Year,Date.year) Month=np.append(Month,Date.month) Day=np.append(Day,Date.day) Hist_flows['Year']=Year Hist_flows['Month']=Month Hist_flows['Day']=Day His_selection = Hist_flows.loc[Hist_flows.loc[:,'Year']==2001] flows=[] for y in Validation_Year: His_selection_2 = Hist_flows.loc[Hist_flows.loc[:,'Year']==y] His_selection=His_selection.append(His_selection_2) for z in [3,7,8,9]: #for z in [9]: # s = str(dams[z]) k = str(df_hydro.loc[1][s]) I_O=str(df_hydro.loc[2][s]) if k =='Oroville' and I_O =='Inflows': site_name=['ORO_fnf'] elif k =='Oroville' and I_O =='Outflows': site_name=['ORO_otf'] elif k =='Pine Flat' and I_O =='Inflows': site_name=['PFT_fnf'] elif k =='Pine Flat' and I_O =='Outflows': site_name=['PFT_otf'] elif k =='Shasta' and I_O =='Inflows': site_name=['SHA_fnf'] elif k =='Shasta' and I_O =='Outflows': site_name=['SHA_otf'] elif k =='New Melones' and I_O =='Inflows': site_name=['NML_fnf'] elif k =='New Melones' and I_O =='Outflows': site_name=['NML_otf'] elif k =='Pardee' and I_O =='Inflows': site_name=['PAR_fnf'] elif k =='Pardee' and I_O =='Outflows': site_name=['PAR_otf'] elif k =='<NAME>' and I_O =='Inflows': site_name=['EXC_fnf'] elif k =='New Exchequer' and I_O =='Outflows': site_name=['EXC_otf'] elif k =='Folsom' and I_O =='Inflows': site_name=['FOL_fnf'] elif k =='Folsom' and I_O =='Outflows': site_name=['FOL_otf'] elif k =='<NAME>' and I_O =='Inflows': site_name=['DNP_fnf'] elif k =='<NAME>' and I_O =='Outflows': site_name=['DNP_otf'] elif k =='Millerton' and I_O =='Inflows': site_name=['MIL_fnf'] elif k =='Millerton' and I_O =='Outflows': site_name=['MIL_otf'] elif k =='Isabella' and I_O =='Inflows': site_name=['ISB_fnf'] elif k =='Isabella' and I_O =='Outflows': site_name=['ISB_otf'] elif k =='Yuba' and I_O =='Inflows': site_name=['YRS_fnf'] elif k =='Yuba' and I_O =='Outflows': site_name=['YRS_otf'] else: print(s) if k in sites: d = [] # pull relevant hydropower and flow data h = df_hydro.loc[:,s] flow_ts = His_selection.loc[:,site_name].values hydro_ts = h.loc[3:].values weeks = int(np.floor(len(hydro_ts)/7)) years = int(len(hydro_ts)/365) # upper bound of hydropower production upper = np.ceil(np.max(hydro_ts)) # function definition def res_fit(params,optimizing=True): est_power = [] refill_1_date,evac_date,peak_end,refill_2_date,storage,power_cap,starting,ending= params #Not really assuming storage to be 0. #This assumes there is a set starting storage level # iterate through every week of the year for day in range(0,365): # available hydro production based on water availability avail_power = flow_ts[year*365+day]*eff # if it's during first refill if day < refill_1_date: gen =starting- ((starting-min_power)/refill_1_date)*day storage = avail_power-gen # if it maintains the water elif day >= refill_1_date and day < evac_date: gen=min_power storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= evac_date and day < peak_end: gen= min_power+ ((power_cap-min_power)/(peak_end-evac_date)* (day- evac_date)) if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= peak_end and day < refill_2_date: gen= power_cap if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) elif day >=refill_2_date : gen = power_cap-((power_cap-ending)/(365- refill_2_date)* (day-refill_2_date)) est_power = np.append(est_power,gen) if optimizing: rmse = np.sqrt(((est_power-hydro_ts[year*365:year*365+365])**2).mean()) return rmse else: return est_power # years: 2001, 2005, 2010, 2011 est_power2=[] Save_Results=[] for year in range(0,4): # identify date of maximum inflow at ORCA site annual = flow_ts[year*365:year*365+365] annual_power = hydro_ts[year*365:year*365+365] eff=np.sum(annual_power)/np.sum(annual) max_power = np.max(annual_power) min_power =np.min(annual_power) max_flow = np.max(annual[105:260]) L = list(annual) peak_flow = L.index(max_flow) d = np.append(d,peak_flow) best_rmse = 100000 # for i in range(0,100): # optimize with DE result = differential_evolution(res_fit, bounds=[(5,15),(15,30),(20,40),(25,50),(1000,3000),(0.5*max_power,max_power),(min_power,max_power),(min_power,max_power)], maxiter=10000, popsize=1000,polish=False) parameters = result.x refill_1_date = parameters[0] evac_date = parameters[1] peak_end=parameters[2] refill_2_date = parameters[3] storage = parameters[4] power_cap= parameters[5] starting=parameters[6] ending=parameters[7] est_power = [] # iterate through every day of the year for day in range(0,365): # available hydro production based on water availability avail_power = flow_ts[year*356+day]*eff # if it's during first refill if day < refill_1_date: gen =starting- ((starting-min_power)/refill_1_date)*day storage = avail_power-gen # if it maintains the water elif day >= refill_1_date and day < evac_date: gen=min_power storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= evac_date and day < peak_end: gen= min_power+ ((power_cap-min_power)/(peak_end-evac_date)* (day- evac_date)) if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= peak_end and day < refill_2_date: gen= power_cap if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) elif day >=refill_2_date : gen = power_cap-((power_cap-ending)/(365-refill_2_date)* (day-refill_2_date)) est_power = np.append(est_power,gen) rmse = np.sqrt(((est_power-hydro_ts[year*365:year*365+365])**2).mean()) if rmse < best_rmse: best_rmse = rmse best_parameters = result.x # use best fit parameters refill_1_date = best_parameters[0] evac_date = best_parameters[1] peak_end=best_parameters[2] refill_2_date = best_parameters[3] storage = best_parameters[4] power_cap= best_parameters[5] starting=best_parameters[6] ending=best_parameters[7] Results=[d[year],starting,ending,refill_1_date,evac_date,peak_end,refill_2_date,storage,power_cap,eff,min_power] exec('Results%d=np.array(Results)' %(year)) surplus = 0 transfer = 0 est_power = [] # iterate through every day of the year for day in range(0,365): # available hydro production based on water availability avail_power = flow_ts[year*365+day]*eff # if it's during first refill if day < refill_1_date: gen =starting- ((starting-min_power)/refill_1_date)*day storage = avail_power-gen # if it maintains the water elif day >= refill_1_date and day < evac_date: gen=min_power storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= evac_date and day < peak_end: gen= min_power+ ((power_cap-min_power)/(peak_end-evac_date)* (day- evac_date)) if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) # if it's in evac period 2 elif day >= peak_end and day < refill_2_date: gen= power_cap if gen > power_cap: gen=power_cap storage= storage + (avail_power- gen) else: storage= storage + (avail_power- gen) elif day >=refill_2_date : gen = power_cap-((power_cap-ending)/(365-refill_2_date)* (day-refill_2_date)) est_power = np.append(est_power,gen) est_power2= np.append(est_power2,est_power) Save_Results=np.array([Results0,Results1,Results2,Results3]) exec("np.savetxt('1.0_FNF_Storage_Rule_%s.txt',Save_Results,delimiter = ' ')" %(s)) print(s) else: print(s) pass
StarcoderdataPython
86629
<reponame>brewst001/RAPID from django.conf.urls import patterns, include, url from django.contrib import admin import core.urls import profiles.urls import pivoteer.urls import monitors.urls urlpatterns = patterns('', url(r'^$', core.views.HomePage.as_view(), name="home"), url(r'^navigation/', include(core.urls)), url(r'^profile/', include(profiles.urls)), url(r'^pivoteer/', include(pivoteer.urls)), url(r'^monitors/', include(monitors.urls)), url(r'^admin/', include(admin.site.urls)), )
StarcoderdataPython
1743971
<reponame>sensenatchanan/flood-warning-system from .utils import sorted_by_key from floodsystem.analysis import slope_finder #from .station import typical_range_consistent, relative_water_level def stations_level_over_threshold(stations, tol): output_list = [] for station in stations: if station.typical_range_consistent() == True: relative_level = station.relative_water_level() if relative_level is not None and relative_level > tol: output_tuple = (station.name , relative_level) output_list.append(output_tuple) else: pass return sorted_by_key(output_list, 1, reverse= True) def stations_highest_rel_level(stations, N): output_list = [] for station in stations: if station.typical_range_consistent() == True: relative_level = station.relative_water_level() if relative_level is not None: output_tuple = (station.name , relative_level) output_list.append(output_tuple) else: pass result = sorted_by_key(output_list, 1, reverse= True) return result[:N] def flood_risk(station): """This fuction calculates the risk index for a particular station""" level = station.relative_water_level() risk = 0 rise = slope_finder(station) if level != None: if level > 10.0: risk = 4 if level <= 10.0 and level >1.0: if rise == True: risk = 4 else: risk = 3 if level <= 1.0 and level >0.5: if rise == True: risk = 3 else: risk = 2 if level<= 0.5: if rise == True: risk = 2 else: risk = 1 return risk def risk_town_average(town_list): """This fuction takes the list of stations in the same town to calculate an averaged risk value""" town_risk = 0 N = 0 for s in town_list: level = s.relative_water_level if level != None: town_risk += flood_risk(s) N += 1 if N > 0: average_town_risk = town_risk/N else: average_town_risk = 0 return average_town_risk def town_by_risk(dictionary): """This function extracts the list of stations of the town from a dictionary and calculate the town's average risks value. Finally, return as a list of tuples consists of (town,risk value)""" towns_risk =[] for town in dictionary: town_risk = risk_town_average(dictionary[town]) towns_risk.append((town, town_risk)) return towns_risk
StarcoderdataPython
1776473
<filename>sentiment-analysis/backend/src/pca/pca-transcribe-eventbridge.py<gh_stars>0 import json import boto3 import time import os TABLE = os.environ["TableName"] # Total number of retry attempts to make RETRY_LIMIT = 2 def lambda_handler(event, context): # Pick off our event values transcribe = boto3.client("transcribe") jobName = event["detail"]["TranscriptionJobName"] response = transcribe.get_transcription_job(TranscriptionJobName = jobName)["TranscriptionJob"] jobStatus = response["TranscriptionJobStatus"] # Read tracking entry between Transcribe job and its Step Function ddbClient = boto3.client("dynamodb") tracking = ddbClient.get_item(Key={'PKJobId': {'S': jobName}}, TableName=TABLE) # It's unlikely, but if we didn't get a value due to some race condition # meaning that the job finishes before the token was written then wait # for 5 seconds and try again. Just once. This may never happen if "Item" not in tracking: # Just sleep for a few seconds and try again time.sleep(5) tracking = ddbClient.get_item(Key={'PKJobId': {'S': jobName}}, TableName=TABLE) # Did we have a result? if "Item" in tracking: # Delete entry in DDB table - there's no way we'll be processing this again ddbClient.delete_item(Key={'PKJobId': {'S': jobName}}, TableName=TABLE) # Extract the Step Functions task and previous event status taskToken = tracking["Item"]["taskToken"]['S'] eventStatus = json.loads(tracking["Item"]["taskState"]['S']) # If the job has FAILED then we need to check if it's a service failure, # as this can happen, then we want to re-try the job another time finalResponse = jobStatus if jobStatus == "FAILED": errorMesg = response["FailureReason"] if errorMesg.startswith("Internal"): # Internal failure - we want to retry a few times, but only once retryCount = eventStatus.pop("retryCount", 0) # Not retried enough yet - let's try another time if (retryCount < RETRY_LIMIT): eventStatus["retryCount"] = retryCount + 1 finalResponse = "RETRY" # All complete - continue our workflow with this status/retry count eventStatus["transcribeStatus"] = finalResponse sfnClient = boto3.client("stepfunctions") sfnClient.send_task_success(taskToken=taskToken, output=json.dumps(eventStatus)) return { 'statusCode': 200, 'body': json.dumps('Success.') } # Main entrypoint for testing # Note, Status could be COMPLETED or FAILED if __name__ == "__main__": event = { 'version': '0', 'id': '0029c6b1-7c8e-1f61-fed5-7ef256b3660b', 'detail-type': 'Transcribe Job State Change', 'source': 'aws.transcribe', 'account': '710514874879', 'time': '2020-08-05T13:32:03Z', 'region': 'us-east-1', 'resources': [], 'detail': { 'TranscriptionJobName': '0a.93.a0.3e.00.00-13.29.09.061-09-16-2019.wav', 'TranscriptionJobStatus': 'COMPLETED' } } lambda_handler(event, "")
StarcoderdataPython
3413692
# -*- coding: utf-8 -*- ##################################################################################### # # Copyright (c) <NAME>. All rights reserved. # # This source code is subject to terms and conditions of the Apache License, Version 2.0. A # copy of the license can be found in the License.html file at the root of this distribution. If # you cannot locate the Apache License, Version 2.0, please send an email to # <EMAIL>. By using this source code in any fashion, you are agreeing to be bound # by the terms of the Apache License, Version 2.0. # # You must not remove this notice, or any other, from this software. # # ##################################################################################### ## ## Test str/byte equivalence for built-in string methods ## ## Please, Note: ## i) All commented test cases are for bytes/extensible string combination ## ii) For version 3.x the str/byte mixing below become "Raises" test cases ## ## import sys import unittest from iptest import run_test class ExtensibleStringClass(str): pass esa = ExtensibleStringClass("a") esb = ExtensibleStringClass("b") esc = ExtensibleStringClass("c") esx = ExtensibleStringClass("x") class StrBytesTest(unittest.TestCase): def test_contains(self): self.assertTrue(esa.__contains__("a")) self.assertTrue(esa.__contains__(b"a")) self.assertTrue(esa.__contains__(esa)) self.assertTrue("a".__contains__("a")) self.assertTrue("a".__contains__(b"a")) self.assertTrue("a".__contains__(esa)) self.assertTrue(b"a".__contains__("a")) self.assertTrue(b"a".__contains__(b"a")) self.assertTrue(b"a".__contains__(esa)) def test_format(self): self.assertEqual("%s" % b"a", "a") # self.assertEqual(b"%s" % b"a", b"a") # self.assertEqual("%s" % b"a", b"%s" % "a") def test_count(self): self.assertEqual("aa".count(b"a"), 2) self.assertEqual("aa".count(b"a", 0), 2) self.assertEqual("aa".count(b"a", 0, 1), 1) self.assertEqual("aa".count(esa), 2) self.assertEqual("aa".count(esa, 0), 2) self.assertEqual("aa".count(esa, 0, 1), 1) self.assertEqual(b"aa".count("a"), 2) self.assertEqual(b"aa".count("a", 0), 2) self.assertEqual(b"aa".count("a", 0, 1), 1) # self.assertEqual(b"aa".count(esa), 2) # self.assertEqual(b"aa".count(esa, 0), 2) # self.assertEqual(b"aa".count(esa, 0, 1), 1) def test_find(self): self.assertTrue("abc".find(b"b")) self.assertTrue("abc".find(b"b", 1)) self.assertTrue("abc".find(b"b", 1, 2)) self.assertTrue("abc".find(b"b", 1L)) self.assertTrue("abc".find(b"b", 1L, 2L)) self.assertTrue("abc".find(esb)) self.assertTrue("abc".find(esb, 1)) self.assertTrue("abc".find(esb, 1, 2)) self.assertTrue("abc".find(esb, 1L)) self.assertTrue("abc".find(esb, 1L, 2L)) self.assertTrue(b"abc".find("b")) self.assertTrue(b"abc".find("b", 1)) self.assertTrue(b"abc".find("b", 1, 2)) # self.assertTrue(b"abc".find(esb)) # self.assertTrue(b"abc".find(esb, 1)) # self.assertTrue(b"abc".find(esb, 1, 2)) def test_lstrip(self): self.assertEqual("xa".lstrip(b"x"), "a") self.assertEqual("xa".lstrip(esx), "a") self.assertEqual(b"xa".lstrip("x"), b"a") # self.assertEqual(b"xa".lstrip(esx), b"a") def test_partition(self): self.assertEqual("abc".partition(b"b"), ("a", "b", "c")) self.assertEqual("abc".partition(esb), ("a", "b", "c")) self.assertEqual(b"abc".partition("b"), (b"a", b"b", b"c")) # self.assertEqual(b"abc".partition(esb), (b"a", b"b", b"c")) def test_replace(self): self.assertEqual("abc".replace(b"a", "x"), "xbc") self.assertEqual("abc".replace(b"a", b"x"), "xbc") self.assertEqual("abc".replace("a", b"x"), "xbc") self.assertEqual("abc".replace(b"a", "x", 1), "xbc") self.assertEqual("abc".replace(b"a", b"x", 1), "xbc") self.assertEqual("abc".replace("a", b"x", 1), "xbc") self.assertEqual("abc".replace(b"a", buffer("x")), "xbc") self.assertEqual("abc".replace(buffer("a"), "x"), "xbc") self.assertEqual("abc".replace(buffer("a"), buffer("x")), "xbc") self.assertEqual("abc".replace(b"a", bytearray(b"x")), "xbc") self.assertEqual("abc".replace(bytearray(b"a"), "x"), "xbc") self.assertEqual("abc".replace(bytearray(b"a"), bytearray(b"x")), "xbc") self.assertEqual("abc".replace("a", esx), "xbc") self.assertEqual("abc".replace(b"a", esx), "xbc") self.assertEqual("abc".replace(esa, esx), "xbc") self.assertEqual("abc".replace(esa, b"x"), "xbc") self.assertEqual("abc".replace("a", esx, 1), "xbc") self.assertEqual("abc".replace(b"a", esx, 1), "xbc") self.assertEqual("abc".replace(esa, esx, 1), "xbc") self.assertEqual("abc".replace("a", esx, 1), "xbc") self.assertEqual(b"abc".replace(b"a", "x"), "xbc") self.assertEqual(b"abc".replace("a", "x"), "xbc") self.assertEqual(b"abc".replace("a", b"x"), "xbc") self.assertEqual(b"abc".replace(b"a", "x", 1), "xbc") self.assertEqual(b"abc".replace("a", "x", 1), "xbc") self.assertEqual(b"abc".replace("a", b"x", 1), "xbc") # self.assertEqual(b"abc".replace("a", esx), "xbc") # self.assertEqual(b"abc".replace(b"a", esx), "xbc") # self.assertEqual(b"abc".replace(esa, esx), "xbc") # self.assertEqual(b"abc".replace(esa, b"x"), "xbc") # self.assertEqual(b"abc".replace("a", esx, 1), "xbc") # self.assertEqual(b"abc".replace(b"a", esx, 1), "xbc") # self.assertEqual(b"abc".replace(esa, esx, 1), "xbc") # self.assertEqual(b"abc".replace("a", esx, 1), "xbc") def test_rfind(self): self.assertEqual("abc".rfind(b"c"), 2) self.assertEqual("abc".rfind(b"c", 1), 2) self.assertEqual("abc".rfind(b"c", 1, 3), 2) self.assertEqual("abc".rfind(b"c", 1L), 2) self.assertEqual("abc".rfind(b"c", 1L, 3L), 2) self.assertEqual("abc".rfind(esc), 2) self.assertEqual("abc".rfind(esc, 1), 2) self.assertEqual("abc".rfind(esc, 1, 3), 2) self.assertEqual("abc".rfind(esc, 1L), 2) self.assertEqual("abc".rfind(esc, 1L, 3L), 2) self.assertEqual(b"abc".rfind("c"), 2) self.assertEqual(b"abc".rfind("c", 1), 2) self.assertEqual(b"abc".rfind("c", 1, 3), 2) # self.assertEqual(b"abc".rfind(esc), 2) # self.assertEqual(b"abc".rfind(esc, 1), 2) # self.assertEqual(b"abc".rfind(esc, 1, 3), 2) def test_rindex(self): self.assertEqual("abc".rindex(b"c"), 2) self.assertEqual("abc".rindex(b"c", 1), 2) self.assertEqual("abc".rindex(b"c", 1, 3), 2) self.assertEqual("abc".rindex(b"c", 1L), 2) self.assertEqual("abc".rindex(b"c", 1L, 3L), 2) self.assertEqual("abc".rindex(esc), 2) self.assertEqual("abc".rindex(esc, 1), 2) self.assertEqual("abc".rindex(esc, 1, 3), 2) self.assertEqual("abc".rindex(esc, 1L), 2) self.assertEqual("abc".rindex(esc, 1L, 3L), 2) self.assertEqual(b"abc".rindex("c"), 2) self.assertEqual(b"abc".rindex("c", 1), 2) self.assertEqual(b"abc".rindex("c", 1, 3), 2) # self.assertEqual(b"abc".rindex(esc), 2) # self.assertEqual(b"abc".rindex(esc, 1), 2) # self.assertEqual(b"abc".rindex(esc, 1, 3), 2) def test_rpartition(self): self.assertEqual("abc".rpartition(b"b"), ("a", "b", "c")) self.assertEqual("abc".rpartition(esb), ("a", "b", "c")) self.assertEqual(b"abc".rpartition("b"), (b"a", b"b", b"c")) # self.assertEqual(b"abc".rpartition(esb), (b"a", b"b", b"c")) def test_rsplit(self): self.assertEqual("abc".rsplit(b"b"), ["a", "c"]) self.assertEqual("abc".rsplit(b"b", 1), ["a", "c"]) self.assertEqual("abc".rsplit(esb), ["a", "c"]) self.assertEqual("abc".rsplit(esb, 1), ["a", "c"]) self.assertEqual(b"abc".rsplit("b"), [b"a", b"c"]) self.assertEqual(b"abc".rsplit("b", 1), [b"a", b"c"]) # self.assertEqual(b"abc".rsplit(esb), [b"a", b"c"]) # self.assertEqual(b"abc".rsplit(esb, 1), [b"a", b"c"]) def test_rstrip(self): self.assertEqual("ax".rstrip(b"x"), "a") self.assertEqual("ax".rstrip(esx), "a") self.assertEqual(b"ax".rstrip("x"), b"a") # self.assertEqual(b"ax".rstrip(esx), b"a") def test_split(self): self.assertEqual("abc".split(b"b"), ["a", "c"]) self.assertEqual("abc".split(b"b", 1), ["a", "c"]) self.assertEqual("abc".split(esb), ["a", "c"]) self.assertEqual("abc".split(esb, 1), ["a", "c"]) self.assertEqual(b"abc".split("b"), [b"a", b"c"]) self.assertEqual(b"abc".split("b", 1), [b"a", b"c"]) # self.assertEqual(b"abc".split(esb), [b"a", b"c"]) # self.assertEqual(b"abc".split(esb, 1), [b"a", b"c"]) def test_strip(self): self.assertEqual("xax".strip(b"x"), "a") self.assertEqual("xax".strip(esx), "a") self.assertEqual(b"xax".strip("x"), b"a") # self.assertEqual(b"xax".strip(esx), b"a") def test_startswith(self): self.assertTrue("abc".startswith(b"a")) self.assertTrue("abc".startswith(b"a", 0)) self.assertTrue("abc".startswith(b"a", 0, 1)) self.assertTrue("abc".startswith(esa)) self.assertTrue("abc".startswith(esa, 0)) self.assertTrue("abc".startswith(esa, 0, 1)) self.assertTrue(b"abc".startswith("a")) self.assertTrue(b"abc".startswith("a", 0)) self.assertTrue(b"abc".startswith("a", 0, 1)) # self.assertTrue(b"abc".startswith(esa)) # self.assertTrue(b"abc".startswith(esa, 0)) # self.assertTrue(b"abc".startswith(esa, 0, 1)) def test_endswith(self): self.assertTrue("abc".endswith(b"c")) self.assertTrue("abc".endswith(b"c", 0)) self.assertTrue("abc".endswith(b"c", 0, 3)) self.assertTrue("abc".endswith(esc)) self.assertTrue("abc".endswith(esc, 0)) self.assertTrue("abc".endswith(esc, 0, 3)) self.assertTrue(b"abc".endswith("c")) self.assertTrue(b"abc".endswith("c", 0)) self.assertTrue(b"abc".endswith("c", 0, 3)) # self.assertTrue(b"abc".endswith(esc)) # self.assertTrue(b"abc".endswith(esc, 0)) # self.assertTrue(b"abc".endswith(esc, 0, 3)) def test_join(self): self.assertEqual("abc", "b".join([b"a", b"c"])) self.assertEqual("b", "a".join([b"b"])) self.assertEqual("abc", "b".join([esa, esc])) self.assertEqual("b", "a".join([esb])) self.assertEqual(b"abc", b"b".join(["a", "c"])) self.assertEqual(b"b", b"a".join(["b"])) #self.assertEqual(b"abc", b"b".join([esb, esc])) # self.assertEqual(b"b", b"a".join([esb])) run_test(__name__)
StarcoderdataPython
4938589
<reponame>tristone13th/pdf-annotations import argparse import datetime import io import os import sys import re from pathlib import Path from typing import List import pdfminer.pdftypes as pdftypes import pdfminer.settings import pdfminer.utils from pdfminer.converter import TextConverter from pdfminer.layout import LAParams, LTAnno, LTChar, LTContainer, LTTextBox from pdfminer.pdfdocument import (PDFDestinationNotFound, PDFDocument, PDFNoOutlines) from pdfminer.pdfinterp import PDFPageInterpreter, PDFResourceManager from pdfminer.pdfpage import PDFPage from pdfminer.pdfparser import PDFParser from pdfminer.psparser import PSLiteral, PSLiteralTable pdfminer.settings.STRICT = False SUBSTITUTIONS = { u'ff': 'ff', u'fi': 'fi', u'fl': 'fl', u'ffi': 'ffi', u'ffl': 'ffl', u'‘': "'", u'’': "'", u'“': '"', u'”': '"', u'…': '...', } ANNOTATION_SUBTYPES = frozenset( {'Text', 'Highlight', 'Squiggly', 'StrikeOut', 'Underline'}) ANNOTATION_NITS = frozenset({'Squiggly', 'StrikeOut', 'Underline'}) COLUMNS_PER_PAGE = 2 # default only, changed via a command-line parameter def box_hit(item, box): (x0, y0, x1, y1) = box assert item.x0 <= item.x1 and item.y0 <= item.y1 assert x0 <= x1 and y0 <= y1 # does most of the item area overlap the box? # http://math.stackexchange.com/questions/99565/simplest-way-to-calculate-the-intersect-area-of-two-rectangles x_overlap = max(0, min(item.x1, x1) - max(item.x0, x0)) y_overlap = max(0, min(item.y1, y1) - max(item.y0, y0)) overlap_area = x_overlap * y_overlap item_area = (item.x1 - item.x0) * (item.y1 - item.y0) assert overlap_area <= item_area if item_area == 0: return False else: return overlap_area >= 0.5 * item_area class RectExtractor(TextConverter): def __init__(self, resource_manager, codec='utf-8', page_number=1, la_params=None): dummy = io.StringIO() TextConverter.__init__(self, resource_manager, outfp=dummy, codec=codec, pageno=page_number, laparams=la_params) self.annotations = set() self._last_hit = frozenset() self._cur_line = set() def set_annotations(self, annotations): self.annotations = {a for a in annotations if a.boxes} # main callback from parent PDFConverter def receive_layout(self, lt_page): self.render(lt_page) self._last_hit = frozenset() self._cur_line = set() def test_boxes(self, item): hits = frozenset({a for a in self.annotations if any( {box_hit(item, b) for b in a.boxes})}) self._last_hit = hits self._cur_line.update(hits) return hits # "broadcast" newlines to _all_ annotations that received any text on the # current line, in case they see more text on the next line, even if the # most recent character was not covered. def capture_newline(self): for a in self._cur_line: a.capture('\n') self._cur_line = set() def render(self, item): # If it's a container, recurse on nested items. if isinstance(item, LTContainer): for child in item: self.render(child) # Text boxes are a subclass of container, and somehow encode newlines # (this weird logic is derived from pdfminer.converter.TextConverter) if isinstance(item, LTTextBox): self.test_boxes(item) self.capture_newline() # Each character is represented by one LTChar, and we must handle # individual characters (not higher-level objects like LTTextLine) # so that we can capture only those covered by the annotation boxes. elif isinstance(item, LTChar): for a in self.test_boxes(item): a.capture(item.get_text()) # Annotations capture whitespace not explicitly encoded in # the text. They don't have an (X,Y) position, so we need some # heuristics to match them to the nearby annotations. elif isinstance(item, LTAnno): text = item.get_text() if text == '\n': self.capture_newline() else: for a in self._last_hit: a.capture(text) class Page: def __init__(self, page_number, media_box): self.page_number = page_number self.media_box = media_box self.annotations = [] def __eq__(self, other): return self.page_number == other.page_number def __lt__(self, other): return self.page_number < other.page_number class Pos: def __init__(self, page, x, y): self.page = page self.x = x if x else 0 self.y = y if y else 0 def __lt__(self, other): """ how to compare two positions? first by page, then by column (multi columns), finally by y :param other: other position :return: Boolean (less than or not) """ if self.page < other.page: return True elif self.page == other.page: assert self.page is other.page (sx, sy) = self.normalise_to_media_box() (ox, oy) = other.normalise_to_media_box() (x0, y0, x1, y1) = self.page.media_box colwidth = (x1 - x0) / COLUMNS_PER_PAGE self_col = (sx - x0) // colwidth other_col = (ox - x0) // colwidth return self_col < other_col or (self_col == other_col and sy > oy) else: return False def normalise_to_media_box(self): """ normalise position to prevent over-floating :return: x and y """ x, y = self.x, self.y (x0, y0, x1, y1) = self.page.media_box if x < x0: x = x0 elif x > x1: x = x1 if y < y0: y = y0 elif y > y1: y = y1 return x, y class Annotation: def __init__(self, page, tag_name, coords=None, rect=None, contents=None, author=None): self.page = page self.tag_name = tag_name self.contents = None if contents == '' else contents self.rect = rect self.author = author self.text = '' if coords is None: self.boxes = None else: assert len(coords) % 8 == 0 self.boxes = [] while coords: (x0, y0, x1, y1, x2, y2, x3, y3), coords = coords[:8], coords[8:] x_values = (x0, x1, x2, x3) y_values = (y0, y1, y2, y3) box = (min(x_values), min(y_values), max(x_values), max(y_values)) self.boxes.append(box) def capture(self, text): if text == '\n': # Kludge for latex: elide hyphens if self.text.endswith('-'): self.text = self.text[:-1] # Join lines, treating newlines as space, while ignoring successive # newlines. This makes it easier for the renderer to # "broadcast" LTAnno newlines to active annotations regardless of # box hits. (Detecting paragraph breaks is tricky anyway, and left # for future future work!) elif not self.text.endswith(' '): self.text += ' ' else: self.text += text def get_text(self): if self.boxes: if self.text: # replace tex ligatures (and other common odd characters) return ''.join([SUBSTITUTIONS.get(c, c) for c in self.text.strip()]) else: # something's strange -- we have boxes but no text for them return "(XXX: missing text!)" else: return None def get_start_pos(self): if self.rect: (x0, y0, x1, y1) = self.rect elif self.boxes: (x0, y0, x1, y1) = self.boxes[0] else: return None return Pos(self.page, min(x0, x1), max(y0, y1)) def __lt__(self, other): if isinstance(other, Annotation): return self.get_start_pos() < other.get_start_pos() return self.get_start_pos() < other.pos class Outline: def __init__(self, level, title: str, dest, pos: Pos): self.level = level # remove level information in title assert title self.title = title.strip() self.dest = dest self.pos = pos def __lt__(self, other): if isinstance(other, Annotation): return self.pos < other.get_start_pos() return self.pos < other.pos class NoInputFileError(Exception): pass # substitution for comment and title text sub_dict_comment_title = { r'\_': '\\_', r'\$': '\\$', r'\{': '\\{', r'\}': '\\}', r'\|': '\\|', } # substitution for quotation text sub_dict_text = { r'[\\]*\$': '\\$', r'[\\]*\&': '&', r'[\\]*\{': '\\{', r'[\\]*\_': '\\_', r'[\\]*\}': '\\}', r'[\\]*\|': '\\|', } def format_annotation(annotation, extra=None): rawtext = annotation.get_text() comment = [l for l in annotation.contents.splitlines( ) if l] if annotation.contents else [] text = [l for l in rawtext.strip().splitlines() if l] if rawtext else [] # we are either printing: item text and item contents, or one of the two # if we see an annotation with neither, something has gone wrong assert text or comment # compute the formatted position (and extra bit if needed) as a label label = "Page %d (%s)." % ( annotation.page.page_number + 1, extra if extra else "") ret = "" labelized = False if comment: ret += '\n'.join(comment) for ori, new in sub_dict_comment_title.items(): ret = re.sub(ori, new, ret) else: assert text ret += label labelized = True if text: ret += '\n\n' for index, para in enumerate(text): for ori, new in sub_dict_text.items(): para = re.sub(ori, new, para) ret += "> " + para if index == len(text) - 1 and not labelized: ret += " \\| " + label ret += "\n" ret += "\n" else: ret += " \\| " + label + "\n\n" return ret def filter(all_items: List) -> List: """Drop the outlines with no content. """ stack = [] res = [] for item in all_items: if not isinstance(item, Outline): res.extend(stack) res.append(item) stack = [] continue while stack and item.level <= stack[-1].level: stack.pop() stack.append(item) return res class PrettyPrinter: """ Pretty-print the extracted annotations according to the output options. strict_mode: Regardless of whether there is an annotation below, the outline should be output in the form of a markdown header. """ def __init__(self, stem: str, strict_mode: bool = False): self.stem = stem self.strict_mode = strict_mode def print_all(self, outlines: List[Outline], annotations: List[Annotation], outfile): # print yaml header print('---', file=outfile) print('categories: Notes', file=outfile) print('title: Reading Notes for ' + self.stem, file=outfile) print('---\n', file=outfile) # print outlines and annotations all_items = sorted(outlines + annotations) if not self.strict_mode: all_items = filter(all_items) for a in all_items: if isinstance(a, Outline): for ori, new in sub_dict_comment_title.items(): a.title = re.sub(ori, new, a.title) print("#" * a.level + " " + a.title + "\n", file=outfile) else: print(format_annotation(a, a.tag_name), file=outfile) def resolve_dest(doc, dest): if isinstance(dest, bytes): dest = pdftypes.resolve1(doc.get_dest(dest)) elif isinstance(dest, PSLiteral): dest = pdftypes.resolve1(doc.get_dest(dest.name)) if isinstance(dest, dict): dest = dest['D'] return dest def get_outlines(doc, page_list, page_dict) -> List[Outline]: result = [] for (level, title, dest_name, action_ref, _) in doc.get_outlines(): if dest_name is None and action_ref: action = pdftypes.resolve1(action_ref) if isinstance(action, dict): subtype = action.get('S') if subtype is PSLiteralTable.intern('GoTo'): dest_name = action.get('D') if dest_name is None: continue # some may not have a link try: dest = resolve_dest(doc, dest_name) except PDFDestinationNotFound: continue # The PDF specification knows these destination types: # [page /XYZ left top zoom] # [page /Fit] # [page /FitH top] # [page /FitV left] # [page /FitR left bottom right top] # [page /FitB] (PDF 1.1) # [page /FitBH top] (PDF 1.1) # [page /FitBV left] (PDF 1.1) # ISO 32000-1, Table 151 – Destination syntax) # for more, see: https://stackoverflow.com/questions/43742984/changing-zoom-in-links-in-pdf-files if dest[1] is PSLiteralTable.intern('XYZ'): (page_ref, _, target_x, target_y) = dest[:4] elif dest[1] is PSLiteralTable.intern('FitH') or dest[1] is PSLiteralTable.intern('FitBH'): page_ref, target_y = dest[0], dest[2] target_x = 0 elif dest[1] is PSLiteralTable.intern('FitV') or dest[1] is PSLiteralTable.intern('FitBV'): page_ref, target_x = dest[0], dest[2] target_y = float('inf') elif dest[1] is PSLiteralTable.intern('Fit') or dest[1] is PSLiteralTable.intern('FitR') or dest[1] is PSLiteralTable.intern('FitB'): page_ref = dest[0] target_x, target_y = 0, float('inf') else: continue if type(page_ref) is int: page = page_list[page_ref] elif isinstance(page_ref, pdftypes.PDFObjRef): page = page_dict[page_ref.objid] else: sys.stderr.write( 'Warning: unsupported page reference in outline: %s\n' % page_ref) page = None if page: pos = Pos(page, target_x, target_y) result.append(Outline(level, title, dest_name, pos)) return result def get_annotations(pdf_annotations, page): annotations = [] for pa in pdf_annotations: subtype = pa.get('Subtype') if subtype is not None and subtype.name not in ANNOTATION_SUBTYPES: continue contents = pa.get('Contents') if contents is not None: # decode as string, normalise line endings, replace special characters contents = pdfminer.utils.decode_text(contents) contents = contents.replace('\r\n', '\n').replace('\r', '\n') contents = ''.join([SUBSTITUTIONS.get(c, c) for c in contents]) coords = pdftypes.resolve1(pa.get('QuadPoints')) rect = pdftypes.resolve1(pa.get('Rect')) author = pdftypes.resolve1(pa.get('T')) if author is not None: author = pdfminer.utils.decode_text(author) a = Annotation(page, subtype.name, coords, rect, contents, author=author) annotations.append(a) return annotations def process_file(fh): resource_manager = PDFResourceManager() la_params = LAParams() device = RectExtractor(resource_manager, la_params=la_params) interpreter = PDFPageInterpreter(resource_manager, device) parser = PDFParser(fh) doc = PDFDocument(parser) page_list = [] # pages in page order page_dict = {} # map from PDF page object ID to Page object all_annotations = [] for (page_number, pdf_page) in enumerate(PDFPage.create_pages(doc)): print("Current processing page: ", page_number) page = Page(page_number, pdf_page.mediabox) page_list.append(page) page_dict[pdf_page.pageid] = page if pdf_page.annots: pdf_annotations = [] for a in pdftypes.resolve1(pdf_page.annots): if isinstance(a, pdftypes.PDFObjRef): pdf_annotations.append(a.resolve()) else: sys.stderr.write('Warning: unknown annotation: %s\n' % a) page.annotations = get_annotations(pdf_annotations, page) page.annotations.sort() device.set_annotations(page.annotations) interpreter.process_page(pdf_page) # add text to annotation all_annotations.extend(page.annotations) outlines = [] try: outlines = get_outlines(doc, page_list, page_dict) except PDFNoOutlines: sys.stderr.write("Document doesn't include outlines (\"bookmarks\")\n") except Exception as ex: sys.stderr.write("Warning: failed to retrieve outlines: %s\n" % ex) device.close() return outlines, all_annotations def parse_args(): p = argparse.ArgumentParser(description=__doc__) p.add_argument("input", metavar="INFILE", type=argparse.FileType("rb"), default=sys.stdin, nargs='?', help="PDF file to process") p.add_argument("-o", metavar="OUTFILE", type=argparse.FileType("w", encoding="UTF-8"), dest="output", default=sys.stdout, const=sys.stdout, nargs='?', help="output file (default is stdout)") p.add_argument("-n", "--cols", default=1, type=int, metavar="COLS", dest="cols", help="number of columns per page in the document (default: 1)") return p.parse_args() def main(): args = parse_args() # reset input file if args.input is sys.stdin: f_list = os.listdir() for f in f_list: suffix = Path(f).suffix if suffix == '.pdf' or suffix == '.PDF': args.input = open(f, "rb") break if args.input is sys.stdin: raise NoInputFileError # reset output file stem = Path(args.input.name).stem.strip() args.output = open(str(datetime.date.today()) + '-' + stem + '.md', "w", encoding="UTF-8") if args.output is sys.stdout else args.output # reset columns global COLUMNS_PER_PAGE COLUMNS_PER_PAGE = args.cols # processing outlines, annotations = process_file(args.input) pp = PrettyPrinter(stem) pp.print_all(outlines, annotations, args.output) return 0 if __name__ == "__main__": try: main() except NoInputFileError: print("No PDF file under current directory.")
StarcoderdataPython
1945113
#!/usr/bin/python # # # import sys import os import datetime import commands import re import time import simplejson as json from optparse import OptionParser def run(inJsonFilename): inJson = open(inJsonFilename).read() data = json.loads(inJson) # Add a name for the output file that will be generated for item in data: newAudioFile = item['audioFile'].replace("/","_") item['inputFile'] = "/data/django/orchive/audio/%s.wav" % (item['audioFile']) item['outputFile'] = "/tmp/%s-%s-%s.wav" % (newAudioFile, item['startSec'], item['endSec']) # Run sox on each input file for item in data: startSec = float(item['startSec']) endSec = float(item['endSec']) lengthSec = endSec - startSec command = "sox %s %s trim %f %f" % (item['inputFile'], item['outputFile'], startSec, lengthSec) a = commands.getoutput(command) # Make .mf file ts = time.time() mfFilename = "/tmp/bextract-%i.mf" % ts mfFile = open(mfFilename, "w") for item in data: mfFile.write("%s\t%s\n" % (item['outputFile'], item['label'])) mfFile.close() # Run bextract on audio file mplFilename = "/tmp/bextract-%i.mpl" % ts command = "bextract %s -pm -p %s" % (mfFilename, mplFilename) a = commands.getoutput(command) # Return .mpl file as text mplFile = open(mplFilename, "r") mplData = mplFile.read() # Remove temporary audio files when done for item in data: os.remove(item['outputFile']) os.remove(mfFilename) os.remove(mplFilename) print mplData if __name__ == "__main__": usage = "usage: %prog [options] in.json" parser = OptionParser(usage) (options, args) = parser.parse_args() if len(sys.argv) < 2: parser.print_help() sys.exit(1) run(args[0])
StarcoderdataPython
11214783
import argparse import logging from . import __version__ from . import constants as c from .main import latex2plos def main(): # Setup command line option parser parser = argparse.ArgumentParser( description='Automated preparation of your LaTeX paper for submission in PLOS journals', ) parser.add_argument( 'input_filename', help='Filename of the main LaTeX document', ) parser.add_argument( '-b', '--build-dir', metavar='DIRECTORY', default=c.DEFAULT_BUILD_DIR, help="DIRECTORY where the main LaTeX document has successfully been built, '%s' by default" % c.DEFAULT_BUILD_DIR, ) parser.add_argument( '-e', '--export-dir', metavar='DIRECTORY', default=c.DEFAULT_EXPORT_DIR, help="Export to selected DIRECTORY, '%s' by default" % c.DEFAULT_EXPORT_DIR, ) parser.add_argument( '-q', '--quiet', action='store_const', const=logging.WARN, dest='verbosity', help='Be quiet, show only warnings and errors', ) parser.add_argument( '-v', '--verbose', action='store_const', const=logging.DEBUG, dest='verbosity', help='Be very verbose, show debug information', ) parser.add_argument( '--version', action='version', version="%(prog)s " + __version__, ) args = parser.parse_args() # Configure logging log_level = args.verbosity or logging.INFO logging.basicConfig(level=log_level, format="[%(levelname)s] %(message)s") latex2plos(args.input_filename, args.build_dir, args.export_dir) if __name__ == '__main__': main()
StarcoderdataPython
3434386
import logging import os import pickle import re import requests import scrapy from functools import partial from . import base_path, config, notification seen_directory = os.path.join(base_path, 'seen') os.makedirs(seen_directory, exist_ok=True) seen_filename_template = os.path.join(seen_directory, '{name}.pickle') without_whitespace = partial(re.sub, r'\s', '') class SearchKeywordPipeline: def __init__(self): self.logger = logging.getLogger('searchkeywordpipeline') self.logger.setLevel(logging.INFO) self.keywords = [ (without_whitespace(item), item) if isinstance(item, str) else (without_whitespace(item[0]), item[1]) for item in config.keywords ] self.crawled = set() self.seen = set() def open_spider(self, spider): seen_filename = seen_filename_template.format(name=spider.name) if os.path.exists(seen_filename): with open(seen_filename, 'rb') as input_file: self.seen = pickle.load(input_file) def close_spider(self, spider): seen_filename = seen_filename_template.format(name=spider.name) with open(seen_filename, 'wb') as output_file: pickle.dump(self.crawled, output_file) def process_item(self, item, spider): if item['id'] in self.crawled: raise scrapy.exceptions.DropItem('Duplicated item: {id}'.format(id=item['id'])) self.crawled.add(item['id']) for keyword_without_space, keyword in self.keywords: if keyword_without_space in without_whitespace(item['name']): if item['id'] not in self.seen: self.logger.info('Product found: {name} ({keyword})'.format( name=item['name'], keyword=keyword_without_space )) self.notify(item, keyword) break return item def notify(self, item, keyword): notification.send( title='{keyword} - ₩{price:,} (-{discount_rate:.0f}%)'.format( keyword=keyword, price=item['price'], discount_rate=item['discount_rate'] * 100 ), message=item['name'], url=item['url'], image_url=item['image_url'] ) self.logger.info('Notification sent: {message}'.format(message=item['name']))
StarcoderdataPython